
t •.. r.
f
I"

ComputerAutoma~ion
NAKED MINIGPDivision

18651 Von Karman, Irvine, California 92713
Telephone: (714) 833-8830 TWX: 910-595-1767

LSI·2 SERIES

MINICOMPUTER HANDBOOK

91-20400-0060 April 1976

PRINTED IN THE U.S.A.

TABLE OF CONTENTS

Paragraph Page

Section 1. GENERAL DESCRIPTION

INTRODUCTION
The LS.I-2 Series
Upward Compatibility
General Features

NAKED MINI LSI-2 SERIES

ALPHA LSI-2 SERIES

CHARACTERISTICS . •
Processor and Memory
Inst~uction Set •
Registers . . . • • •
Memory Addressing • • •

Memory Reference Addressing
Stack Addressing

I/O Structure . . • . .
C0ntrol Modes . • . •
Input/Output Modes
Vectored Interrupts

Processor Options • •
Plug-In Options . • . .
Peripheral Equipment

DATA HANDLING CHARACTERISTICS
Data Word Format

Bit Identification
B~t Values • • • .
Signed Numbers
Positive Numbers
Negative Numbers . • • . .

Data Byte Format
Byte Mode Processing
Register Load . • • .
Arithmetic Operations
Data Packing

Memory Address Formats
Word Addressing • .
Byte Addressing • • •
Indirect Addressing

iii

.' .

• 1-1
• • 1-1

1-1
1-1

. • . • 1-2

1-2

1-3
· 1-3
· 1-3
· 1-4
· 1-4
· 1-4

1-5
· . 1-5

1-6
1-6
1-7

· 1-7
1-8
1-8

1-8
1-8

· 1-8
1-9

.1-9
• 1-9
• 1-9

• • 1-10
· 1-10

1-11
. . . 1-11

1-11
1-12

· 1-12
· 1-12

· . 1-13

-

TABLE OF CONTENTS (continued)

Paragraph Page

2.1

2.2
2.2.1
2.2.2
2.2.3

2.3

2.4

2.5
2.5.1
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3
2.5.2.4
2.5.2.5
2.5.2.6
2.5.2.7
2.5.2.8
2.5.3
2.5.3.1
2.5.3.2
2.5.3.3
2.5.3.4
2.5.3.5
2.5.3.6
2.5.3.7
2.5.3.8

2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.4.1
2.6.4.2
2.6.5
2.6.6
2.6.6.1

2.6.7
2.6.7.1
2.6.7.2

Section 2. INTEGRATION

INTRODUCTION • • • 2-1

2-1 NAKED MILLI CONFIGURATION •
Mounting
Cooling . . • •
Interconnection .

• • . • • • • • • • • 2-1
• • • • • • • 2-1

OPTION PACK INSTALLATION

AUTOLOAD ROM INSTALLATION •

CHASSIS AND POWER SUPPLIES
Standard and Jumbo Chassis
Standard Power Supply •

Mechanical
EnvironIrental .
-Input Power • •
Output Power
Overcurrent .

.
.

.
Over and Reverse Voltage Protection •
Logic Signals . . • • . . . • • . . • •
Power Fail Detection and Sequencing

Jumbo Power Supply
Mechanical
Environmental
Input Power .
Output Power
Overcurrent 0

Over and Reverse Voltage Protection • 0

Logic Signals . 0 0 0 • 0 • 0 0 0 • •

Power Fail Detection and Sequencing

2-1

• • 2-3

• • 2-4

· • 2-4
2~4

2-4
• • 2-5
• • 2-5
• • 2-5
• • 2-6

· 2-6
2-6

· 2-6
2-6

· 2-7
· 2-7
· 2-8

• • 2-8
· 2-8
o 2-8

· . 2-8
o 0 2-8

• 2-8

ALPHA LSI-2 SERIES CHASSIS MOUNTED CONFIGURATIONS • • • • 2-9
Mounting • 0 • • • • 0 0 0 • • 2-9
Cooling . • 0 • 0 0 • • 0 • • 0 • • • • • 2-10
Motherboard Organization 0 0 • • • • 2-12
Joining Half Boards • • • • • • 2-12

Using Stiffener Kits Numbered 95-20389 2-15
Using Stiffener Kits Numbered 95-20660 • • 2-15

Module Installation, Processor Chassis Only 0 •• 2-17
Expansion Chassis . • 0 • • • 0 • • • 0 • • • • • • • 2-18

Module Installation, Processor and Expansion
Chassis 0 • 0 0 0 • • 0 • '0 • • •• 2-19

AC Power Application • • • • • • • 0 • 0 • 0 • • • • 2-20
Power Conversion - Standard LSI-2 Series Chassis. 2-20
Power Conversion - Jumbo Power Supply • • • • • • 2-21

iv

-

;.1

ill
i .,1

II
~i

I·
!

wth'rdRfb ftWHt#f=hh lm\:I'trtmt t b tit f $.. em .tcW • tj ! '1::1' II iMt't!Int t H ±ds tnt r"tktt 1j .' W:trN h t t., t hit rH 'tt d d'tt co' #t tttst#'@rt·

TABLE OF CONTENTS (continued)

Paragraph Page

3.1

3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.3.1
3. ='.3.4
3.2.4
~ • ~: • <I. 1
3.2.4.7.

' .. ~

.~.2.4.4

3.2.5

3.3
3.3.1
3.3.2
3.3.3

L4

4.1
4.1. 1
4.1. 2
4.1. 3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.4
4.1. 5
4.1. 6

4.2
4.2.1
4.2.1.1
4.2.1. 2
4.2.1.3
4.2.1.4
4.2.2
4.2.2.1
4.2.2.2

Section 3. CONSOLES

INTRODUCTION 3-1

PROGRAMMER'S CONSOLE · • 3-1
Introduction 3-1
Switches and Indicators
Machine Modes •

• • • • • • • • • 3-1

Stop Mode . . • •
Step Mode . • • •
Run Enable Mode • • • • • • .
Run Mode • • • •

Console Operation •
Console Preparation • .
Console Data Entry Procedure • • • •
Console Display Procedure
Program Execution ••••••••

Unattended Operation • • • • .

OPERATOR'S CONSOLE
Introuuction
Switches and Indicators •
Strapping Requirements

DATA/SENSE TRANSFER . • • .

Section 4. INSTRUCTIONS AND DIRECTIVES

INTRODUCTIO~

Inf'truction and Directive Classes
Symbol ic notation • • • . • . . •
Assembler Source Statement Fields

Label Field • • • • • • •

• 3-3
3-3

. . • 3-3

• 3-8
• 3-8
• 3-8

· . 3-8
• 3-9

· • 3-10
• • 3-10

3-11

• 3-11
3-11

· 3-11
3-13

3-14

· • 4-1
· 4-1

• • 4-2
• 4-2
• 4-2

4-3 Opcode Field
Operand Field
Comments Field

. • • 4-3
4-4

Arithmetic Operations
In-Line and Interrupt
Relocatability

and OVerflow
Instructions

MEMORY REF~RENCE INSTRUCTIONS •
Word Mode Operations and Instruction Format

· . 4-4
• 4-5
• 4-5

· 4-6
• 4-6

Word Mode Direct Addressing . • •. •.•• · • 4-7
Wor.d Mode Indirec,t Addressing • • • • • •
Wo~d Mode Direct Indexed Addressing • • .
Word Mode Indirect Post indexed Addressing •

Byt.e Mode Operations and Instruction Format

· • 4-7
4-7

• . • 4-7

Byte Mode Direct Addressing . • • • • •
• 4-9

4-9
4-10 Byte Mode Indirect Addressing • • • • •

v

o

o

-

Paragraph

4.2.2.3
4.2.2.4
4.2.3
4.2.4
4.2.5
4.2.6

4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.1.3
4.4.1.4
4.4.1.5
4.4.2
4.4.3
4.4.3.1

4.4.3.2

4.4.4
4.4.5
4.4.6
4.4.7
4.4.8

4.5
4.5.1
4.5.2

4.6
4.6.1
4.6.2
4.6.3
4.6.4

4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6

CompUterAutomation _~ ----,

TABLE OF CONTf.NTS (continued)

Byte Mode Dirc~ct Indexed Addressing
Byte Mode Indirect Postindexed Addressing

Arithmetic Memory Reference Instructions
Logical Memory Reference Instructions
Data Transfer Memory Reference Instructions
Program 'I'ransfer Memory Reference Instructions .

DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS . .
DVD, MPY, and NRM Instructions
ADX ADXB, SBX, and SBXB Instructions
EMX and EMXB Instructions . . • . .
MSB, MRB, MCB, and MTB Instructions
OMS Instruction •

STACK INSTRUCTIONS
Addressing Modes .

Direct Access to Stack
Indexed Access to Stack
Auto-Post.increment Access to Stack (POP)
Auto'Predecrcment Access to Stack (PUSH)
Multilevel Indirect Addressing (LSI-2/60

LSI-2/60 Program Transfer Stack Instructions .
Stack Overflow Protection (LSI-2/60 Only) .•

All Push Meek- (Auto Decrement) Stack
Instructi~ __ IS Except JSKR and JSKS .

,f1lmp il/lrt ~;t.;j(_ l.: !'ltatus or ,Jump and Stack
H('qi~;t(-r::

Aritlnllt'lic ~;L,H_:k ltl!:t-r-llctioll!;
LoqicaJ Stack IllS!: rllci- ions . .
Data Transfer Stack Instructions
Program Tran~fer S~ack Instructions
Stack Control Instruction •

IMMEDIATE INSTRUCTIONS
Format ...
Instructions • . . •

CONDITIONAL JUMP INSTRUCTIONS
Format
Microcoding •
Arithmetic Conditional Jump Instructions .
Control Conditional Jump Instructions

SHIFT INSTRUCTIONS
Operand Restrictions and Instructions Format .
Arithmetic Shift Instructions
Logical Shift Instructions • . •
Rotate Shift Instructions

ONLY)

Double Hegistcr (Long) Logical Shift Instructions
Double Register (Long) Rotate Shift Instructions •

vi

Pagc>

4-10
11-10
4-10
4-12
4-12
4-13

4-14
4-]4
4-16
4-17
4-18
4-18

4-19
4-20
4-20
4-20
4-20
4-22
4-22
4-22
4-26

4-26

iJ - :>(,

11-:"1
4-.~()

4-29
4-2q
4-30

4-30
4-30
4-30

4-31
4-31
4-31
4-12
4-33

4-33
4-31
4-34
4-35
4-36
4-37
4-37

.J...

i ie

o

l

~: ,',

I
1
I

TABLE OF CONTENTS (continued)

Paragraph Page

4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6 .
4.8.7
4.8.8
4.8.9
4.8.10
4.8.11

4.9
4.9.1
(I r. .•

,~. ').3
4.9.4
4.9.5
4.9.6

4.10
4.10.1
4.10.1.1
4.10.1. 2
4.10.2
4.10.2.1
4.10.2.2
4.10.3
4.10.3.1
4.10.3.2
4.10.4
4.10.5

4.11

4.12
4.12.1
4.12.2

4.13
4.13.1
4.13.2
4.13.3

4.14
4.14.1
4.14.2

REGISTER CHANGE INSTRUCTIONS ~ 4-38
Format . • . • . . • • • • 4-38
A Register Change Instructions • • 4-38
J~I-l/60 A Register Bit Change Instructions • • 4-39
X Register Change Instructions •• • • • • . 4-39
LSI-2/60 X Register Bit Change Instructions • 4-40
OV Pegister Change Instructions • • • • • • • 4-40
Mult~.-Register Change Instructions • • • • • • 4-41
LSI-2/60 Multi-Register Change Instructions • • 4-42
Extended Multi-Register Change Instructions • . • 4-43
1.SI-2/60 Extended Multi-Register Change Instruction • 4-43
Console Register Instructions 4-44

CON'fROL INSTHUCTIONS
r"ormat • . . • • . . . • . •
Processor Control Instructions
LSI-2/60 Processor Control Instruction
Mode Control Instructions . • •
Status Control Instructions . . •
Interrupt Control Instructions

INPUT/CUTPUT INSTRUCTIONS • • • . .
Control Input/Output Instructions

Sense Instructions
Select Instructions . . . • .

Word Input/Output Instructions
Unconditional Word Input/Output Instructions
Conditional Word Input/Output Instructions

Byte Input Instructions . • . • . • . • . •
Unconditional Byte Input Instructions
Conditional Byte Input Instructions

Bloc¥'. Input/Output Instructions • .
}\utomatic Inl?ut/Output Instructions . •.

LSI-2/60 CYCLIC REDUNDANCY CHECK INSTRUCTION

• 4-45
• 4-45

4-45
• • 4-46
• • 4-46

• 4-47
• 4-48

• 4-49
• 4-49

• . 4-49
4-50

• • 4-50
• • 4-50

• 4-51
· 4-52

4-52
• 4-53
• 4-53
· 4-54

• 4-57

· 4-58 LSI-2/60 TEXT MANIPULATION INSTRUCTIONS • •
Numeric String Formats • • • • • 4-60
Byte String Formats • • • •

ASSEMBLER CONTROL DIRECTIVES
Conditional Assembly Controls
Progl:am Location Controls • •
j\~achine Directive (MACH) •••.

DATA AND SYMBOL DEFINITION DIRECTIVES
Formats ..
Directives

vii

• . 4-61

• • 4-61
• 4-62
· 4-62
• 4-63

• • • • . 4-64
• • 4-64

4-64

t _
.. itl 1.. ___ _

-

ComputerAutomation ~

TABLE OF CONTENTS (continued)

Paragraph

4.15 PROGRAM LINKAGE. DIRECTIVES
4.15.1 Formats ...
4.15.2 Directives

4.16 SUBROUTINE DEFINITioN DIRECTIVES

4.17 LISTING FORMAT AND ASSEMBLER INPUT CONTROLS

4.18 USER DEFINED OPERATION CODE DIRECTIVE . . .

Page

4-('0
t1-6h

4-66

· . 4-67

· 4-67

4-68

Section 5. INPUT/OUTPUT AND INTERRUPT OPERATIONS

5.1

5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.1.3
5.2.2
5.2.3
5.2.4
5.2.4.1

INTRODUCTION

INPUT/OUTPUT OPERATION
Programmed I/O via Registers

Control
Sense
Data Transmission

Automatic I/O
Direct Memory Acces~;
Input/Output Examples

Control Instructions
5.2.4.2 Unconditional Instructions
5.2.4.3 Conditional Instructions
5.2.4.4 Block I/O Instructions
5.2.4.5 Automatic I/O Instructions

5.3 INTERRUPT OPERATION.
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8

6.1

6.2

6.3
6.3.1
6.3.2

Non-Input/Output
Input/Output
End-of-Block Interrupts
Interrupt Latency
Priority Resolution . • .. .
General Interrupt Handling
Examples of Initialization and Enabling
Examples of Interrupt Instructions

Section 6. PROCESSOR OPTIONS

INTRODUCTION

REAR-EDGE CONNECTORS

TELETYPE/CRT/MODEM CONTROLLER •
Baud Rate Selection .
Word Length Selection .

viii

· 5-1

5-1

· 5-1
· . 5-1
· . 5-2
· . 5-2

· 5-4
· 5-5
· 5-6
· 5-8
· 5-9

· . 5-9
5-9
5-9

· 5-10
. 5-10

. • . 5-11

Sequences

· 5-11
5-11

· 5-11
· 5-12

5-13
· 5-14

· 6-1

6-1

6-5
· • 6-5
· • 6-6

o

o

--..

:e
i
~.

~

i
E.'
~
t
il
$i

TABLE OF CONTENTS (continued)

Paragraph

6.3.3
6.3.4
6.3.5
6.3.6
6.3.6.1
6.3.6.2
6.3.6.3
6.3.7
6.3.8
6.3.9
6.3.10
6.3.]1

6.4
0.4.1
G. "

0.4.3
.).4.4
6.4.4.1
6.4.4.2

0.5
6.5.1
S.5.2
(i.').3
(J. 5.4
6.5.4.1
().S.4.2
S.S.5
6.5.6
').5.7
6.5.8
6.5.9

6.6
6.6.1
6.6.2

; 6.6.3
6.6.4
6.6.S

6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5

6.8
6.8.1

Parity Selection •..••
Stop Bit Selection •••.•
Alternate Interrupt Locations •
Data Interface Selection

Current Loop Interface . • • •
EIA RS232C/CCITT Interface • • • • •
TTL/DTL-Compatible Interface

Special Teletype Controls • • • • •
Half-Duplex Usage . • • . . . • • •
Half-Duplex Controller Instructions •
Full-Duplex Usage • • . . • • . . .
F'ull-lJuplex Controller Instructions

REAL--'I'IME CLOCK
Cluck Source Selection
Discussion of Usage • •
RTC Interrupt Enable Control
Summary • • • . • • •

FTC Interrupt Locations
RTC Instructions

AUTOLOAD
Description . . . • • •
Device and Mode Selection
Aut.oLoad Sequences .• • •
Termination of AutoLoad .

TTY and High-Speed Paper Tape Reader
Magnetic Tape, Cassette, and Disk

Error Detection . • • • • • • . . • •
Acces3ing AutoLoad ROM • • • •
Remote r,utoLoad Initiation
Automatic AutoLoad . . • .
AutoLoad Operation Summary

BASIC VARIABLES PACKAGE •
Independent Processor Interrupt Operation
Interrupt Offset • • • • .
Secondary Console Sense Register
Secondary Console Switch Functions
I/O Timing Extension

POWER FAIL RESTART
General • • •
Power Fail
Restart .•
Interrupt Control Operation •
Prog~a~ing Examples • • • •

AU~MATIC START-UP (ASU)
Restart

ix

Page

· • 6-6
• 6-6
· 6-7

· . 6-7
6-7

· • 6-7
· 6-9
· 6-9

· • 6-9
· • 6-11
· • 6-14

6-16

· • 6-20
· • 6-20

6-20
· 6-22

6-22
6-22

· 6-22

• 6-22
• • • 6-22

· 6-23
· • • 6-24

• • 6-25
6-25

· 6-25
· . 6-25

· 6-25
6-26
6-26

• 6-26

· . 6-26
• • 6-26

6-27
· 6-27
• 6-27

• • • 6-27

6-28

• 6-28
· 6-28
· 6-29
• 6-29

· • 6-29

• 6-29.
· • 6-29

.e

·0

-

ComputerAutomation ~

TABLE OF CONTENTS (continued)

Paragraph Page

7.1
7.1.1
7.1.2

7.2
7.2.1
7.2.2

7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3

8.1

8.2
8.2.1
8.2.2
8.2.3
8.2.3.1
8.2 .. '3.2
8.2.3.3
8.2.3.4

8.3
8.3.1
8.3.2
8.3.4
8.3.5
8.3.6

8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.1.3
8.4.1.4
8.4.1.5
8.4.2
8.4.2.1
8.4.2.2
8.4.2.3
U.4.2.4

Section 7. MEMORY INTERLEAVING AND BANKING

INTRODUCTION
Memory Interleaving
Memory Banking

INTERCONNECTIONS
Memory Interleaving
Memory Banking

USAGE AND INSTALLATION
Memory Interleaving
Memory Banking

Operation . . .
Memory Installation
Cabling •

Section R. MAXI-BUS CHARACTERISTICS

INTRODUCTION

MAXI-BUS COMPONENTS
Address Bus (A)
Data Bus (D)
Control Bus (C)

I/O Conunands
Utility Signals
Interrupt Signals .
DMA Signals

I/O TRANSFER TIMING
I/O Bus Considerations
Sense Instruction Timing
Input Timing
Output Timing .
Automatic Input and Output Timing

INTERRUPT CHARACTERISTICS . .
Interrupt Lines . • . • • .

Power Fail Interrupt
Console (TRAP) Interrupt
Interrupt Line 1 • • • .
Interrupt Line 2 .•• • .
Interrupt Request •

Processor Generated Interrupts
Power Fail Restart Interrupt (Optional)
AutoLoad (Optional) ..•......
Console Interrupt and Trap (Standard)
Real-Time Clock (Optional) ... •.

x

• 7-1
• • " 7-1

• • 7-1

7-1
· 7-1

7-2

7-2
7-2

· 7-4
7-4
7-6
7-7

8-1

8-3
8-3

· 8-3
8-4
8-4
8-4
8-5

. . 8-6

8-7
8-7
8-8
8-8
8-9
8-9

8-9
· 8-10
· 8-10

8-10
• 8-10

• • 8-10
· 8-11
· 8-11

8-11
8-11

· B-ll
A-ll

0

c

-

Ie

TABLE Of CONTENTS (continued)

Paragraph Page

8.4.2.5
R.4.3
8.4.4
8.4.5
8.4.6
8.4.7

8.5
8.5.1
8.5.1.1
8.5.1.2
~L5.1.)

8.5.1.4
!"" "

H.S.2.I
" "

• 5.2.3

R.6

~. 'I
8.7.1
B.7.2
B.7.3
8.7.4

d.8

H.q

'j .1

9.2
9.2.1
9.2.2
9.2.2.1
~'.2.2.2

9.2.2.3
9.2.3
9.2.3.1
9.2.3.2
9.2.4
9.2.5
9.2.5.1
9.2.5.2

Teletype/CRT/Modem Controller (Optional)'
Offsetting Processor Generated Interrupts •
Peripheral Generated Interrupts
Interrupt Transfer Timing • • • • •
Interrupt Operation Control • • •
Interrupt Request Line Trade-Offs

DMA OPERATIONS

8-12
· 8-12
· 8-12
· 8-12

• • • 8-14
· • 8-15

• 8-15
· . 8-16

· 8-16
General Characteristics •

Processor Provisions • • • •
t-Jemory Operations · 8-16
I/O Operations · 8-16
Limitations • • • •• · • • • • .• 8-17

DMA Timing • • • • •
Maxi-Bus Acquisition Timing
Memory Transfer Timing
I/O Transfer Timing •

ELECTRICAL CHARACTERISTICS

8-17
· 8-17

8-18
· 8-20

8-21

STANDARD AND JUMBO CHASSIS MOTHERBOARD ORGANIZATION • • • 8-21
Intf'rrupt Priority •••••.••
!·1cmory Bank Control, DMA Prio'ri ty • •
Processor Power Supply Signals
Expanoion and Console Interconnect

Ni\.YJ:!1 J '>1-2 SERIES MAXI-BUS REQUIREMENTS

TWO-MODULE OPTIONS'

8-26
• • 8-26

· 8-26
· . 8-26

8-28

8-28

Sect i.on 9. DEVICE INTERFACE CONTROLLER, DESIGN TECHNIQUES

INTRODuCTION

I/O CONTROL IMPLEMENTATION
Device Address Decoder
~unction Decoder

Example A •
Example B
Example C

Select, Input or Output Instruction Decoding
Example A . • • • •
Example B • • • • • • • • • •

Initialization Implementation . •
Sens~ Instruction Implementation • • • •

Positive Sensing
Negative Sensing

xi

· . 9-1

· 9-1
• . . 9-1

· . 9-3
• 9-3
· 9-3
• 9-3
· 9-3

· • • 9-6
· 9-6
· 9-6
· 9-7

• .. 9-7
• 9-7

i:
t

I

i

i
I

-
I)

CompulerAutomation· ~

TABLE OF CONT~NTS (continued)

Paragraph Page

9.3
9.3.1
9.3.2
9.3.3
9.3.4

9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

9.5
9.5.1
9.5.2
9.5.2.1
9.5.2.2
9.5.2.3
9.5.3
9.5.4
9.5.4.1
9.5.4.2
9.5.4.3
9.5.4.4

9.6

9.7

9.8

9.9

9.10

9.11

10.1

10.2

10.3
10.3.1
10.3.2

DATA TAANSFF.R CONTROl. IMPLEMENTATION
Example A
Example B •
Example C
Example D

. .
PERIPHERAL DEVICE INTERRUPT IMPLEMENTATION

Interrupt Address Rationale • • • . • .

9-9
• • • 9-9

. . 9-9

9-11

Single Interrupt Implementation Using IUR­
End-of-Block Interrupt Implementation Using IUR

· 9-11
9-11
9-14
9-14
9-14

Reentrant Interrupt Implementation
Single Interrupt Implementation Using ILl- or IL2-
End-of-Block Interrupt Implementation Using
ILl- or IL2- . . • . . • . . •

DIRECT MEMORY ACCESS IMPLEMENTATION
Initialization
Execution • •

Maxi-Bus Acquisition
Priority Auction
Data Transfer

Termination • • • .
Basic DMA Controller Architecture

Control Section . •
Word/Byte Counter .
Address Counter
Data Channel

PRIORITY AND MEMORY BANKING PROPAGATION .

I/O BUS LOADING RULES .

POWER AND GROUND SYSTEM CONCEPTS

FILTERING TECHNIQUES

STANDARD INTERFACE CONNECTOR

NORMAL INTERFACE PINS . • • •

Section 10. CONSOLE INTERFACE REQUIREMENTS

INTRODUCTION

CONSOLE - PROCESSOR INTERFACE

CONSOLE TRANSFER TIMING • • •
Establishment of Stop Mode
Register Entry and Display

xii

· 9-16

· 9-18
· 9-18
· 9-18

9-23
9-23

· 9-24
9-24

· 9-24
9-25

• . . . 9-25
9-26
9-26

· 9-26

9-27

9-27

· 9-28

9-28

· 9-29

· 10-1

· 10-1

10-2
. . 10-3

• 10-3

0

-

Ie
I

;1
t[~',

~

~
ij
j;.

ComputarAutomaUon <rA
TABLE Of CONTENTS (continued)

Paragraph Page

10.3.3
10.3.4

10.4
10.4.1
10.4.2
10.4.3
10.4.4

10.5
10.5.1
10.5.2
10.S.J
10." .4

'P ,-.
j ~; .6.1
10.6.2
10.6.1
]'j . fi. 4
Il; J •. 5
10.6.6
10.6.7

,W.7

10.8

1l.1

J l. 2
11. 2.1
11. 2.2
11. 2.3
11.2.4
11.2.5
11 .. 2.6

Step Mode Operation • • • •
Establishment of Run Mode

CONSOLE WORD FORMATS
Computer Status Word • • • •• •
Console Sense Word
Console Data Word • • • • • • • • • •
Console Control Word

MINIMUM CONSOLE REQUIREMENTS
Stopping the Processor
Rese'tting the System • • • •
Starting the System
Visual Indicators • • •

OPTIONAL CONSOLE FEATURES
Data Entry and Display
Hegister and Memory Display and Modification

• • 10-4
• 10-5

• 10-5
• • 10-5

10-6

• 10-6
• • 10-7

• 10-7
• 10-7

• • 10-8
10-8

• 10-8

• 10-8
· 10-8

10-9
Sense Register Entry and Display • • • • • • 10-9
SENSE Switch Feature •• • .
'--:onsole Interrupt Feature . • .
llUtoLoad Initiation Controls
Step ~lode Feature • • • • •

USBF CONSOLE INTERCONNECTION

OPTION PACK CONSOLE ACCOMMODATIONS

Section 11. POWER SUPPLY INTERFACE REQUIREMENTS

INTRODUCTION

DC POWER FEQUIREMENTS . '.
E~;timating DC Current Requirements
Overvoltage and Reverse Voltage Protection
Rippl~ and Noise Requirements •
Turn-on/Turn-off Overshoot
Regulation Requirements •
DC Power Storage

10-9
• 10-9
• 10-9
• 10-10

10-10

10-10

11-1

11-1
• 11-1

11-1
11-1

· 11-3
· 11-3
· 11-3

11.3 POWER MONITOR FACILITIES 11-3
11. 3.1 +5 H (Hangpower) Regulator • 11-3

· 11-3 11. 3. 2 Power Fail Detector • •

11.4

11.5
11.5.1
11.5.2
11.5.3

AC LINE SYNCHRONIZED TIMING SOURCE (OPTIONAL) · 11-5

INTERCONNECTION REQUIREMENTS • • • • • • • • • 11-5
Standard Chassis Motherboard Interface Requirements • 11-5
Jumbo Chassis Motherboard Int.erface Requirements •• 11-5
Int€~facing the LSI-3/0s Processor Directly. • •• 11-6

xiii

~. -----------------------­r::r;:

J'dljl!

, .
Section 12. INTERFACE CONTROLLER MECHANICAL CONSIDERATIONS

12.1 INTRODUCTION • J 2-1

12.2 CHASSIS CONSTRAINTS . 12-1

12.3 PRINTED CIRCUIT BOARD CONSIDERATIONS • 12-2

12.4 WI HE-WRAP BREADBOARD PC BOARD • • 12-2

12.5 FILLER PC BOARDS . • 12-2

Appendix A. HEXADECIMAL TABLES

Appendix B. RECOMMENDED DEVICE AND INTERRUPT ADDRESSES

Appendix C. INSTRUCTION SET BY CLASS

Appendix D. INSTRurTION SET IN ALPHABETICAL ORDER

Appendix E. INSTRUCTION SET IN NUMERICAL ORDER

Appendix F. EXECUTION TIMES

F.1 GENERAL ... F-1

o F.2 MEMORY PARAMETERS . F-l

F.3 EXECUTION TIME ALGORITHMS • F-2

F.4 INSTRUCTION EXECUTION TIMES • F-16 - F.5 MAXIMUM I/O TRANSFER RATES F-29

Appendix G. SOF'lWARE SUMMARY

G.1 INTRODUCTION • • • . • . • G-l

G.2 BOOTSTRAP .. . G-2

xiv

o

-

TABLE OF CONTENTS (Cont'd)

Paragraph Page

G.3
0.3.1
G. 3.2
G.3.3
G. 3.4
G.3.5
G.3.6
G.3.7
G.3.S
G.3.9
G.3.10
G.3.11

SOFTWARE OPERATION SUMMARY • • • G-2
AutoLoad • • • • ., • • • • • • • G-2
Binary Loader (BLD)' • • • • • • •
Binary Dump/Verify (BDP/VER)
Object Loader (LAMBDA) ••••••
BETA-4 Assembler • • • • • •

• G-3
• G-3
• G-3
• G-4

BE'rA-S Assembler • • • • • • • • G-4
OMEGA Conversational Assembler . . . • G-S
Source Tape Preparation Program.. • • • • • • •
Debug (DBG) • • • • • • • • •
Concordance (CONC)'.......
OS Conunand Summary (DOS, MTOS and COS) •• ••

xv

• G-6
G-7
G-S

••• G-9

Figure

1-1
1-2
1-3
1-4
1-5
1-6
1-7

2-1
2-2

2-3
2-4

0 2-5 (a)
2-5(b)
2-6
2-7
2-8
2-9

3-1
3-2

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4:"'8
4-9
4-10
4-11
4-12
4-13

- 4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27

ComputerAutomation ~

LIST OF ILLUSTRATIONS

Data Word Bit Identification
Byte Storage, Two Bytes Per Word . . • • •
Data in Memory, One Byte Per Word.
Data in Memory, Two Bytes Per Word
Basic Word Address Format . . .
Byte Address Format
Indirect Address Pointer Format .

Page

· 1-9
· 1-10

l-ll
1-12
1-12

· 1-13
· . 1-13

LSI-2/10 and LSI-2/20 Processor Layout • • 2-2
ALPHA LSI-2 Series Outline and Mounting Diagram -

Standard Chassis .•• . • . • •••••.. 2-9
Jumbo Chassis and Power Supply • . . • • • • • . 2-10
ALPHA LSI-2 Series Ventilating Systems . . • • . 2-11
Standard Chassis Motherboard Layout (viewed from rear) .. 2-13
Jumbo Chaf;~;is Motherbo.:lrd Layout (viewed from rear) 2-14
Using Kits Numbered 95-20660 2-16
Expansion Chassis Cabling Scheme . . • •. •.•. 2-19
Fan Housintj Molex Connector Pin Diagram . . • 2-21
Jumbo Power Supply :rumper Locations (TB101) . 2-23

Progranuner's Console
Operator's Console

Instructions and Directive Classes
Source Statement Format
Arithmetic Overflow . . . • . . . •
Word Mode Memory Reference Instruction Fonnat .
Word Mode Addressing Summary
Byte Mode Memory Reference Instruction Format •
Byte Mode Addressing Summary
Double-Word Memory Reference Format
Divide
Multiply and Add

.<M Shift Path
"'ormat of ADX, ADXB, SBX, and SBXB Instructions .
Format of EMX and EMXB Instructions . • . . .
Format of MSB, MRS, MCB, and MTB Instructions
Format of OMS Instruction .••••
Stack Instruction Format
Stack Organization and Management
LSI-2/60 Stack Handling Example
LSI-2/60 Program Transfer Stack Instruction
Program Transfer • . •
Operation of JSKR and RTNR Instructions •
JSKR and JSKS Temp Cells
Stack Overflow Feature . . • .
CPU Response to Stack Overflow
Immediate Instruction Format
JOC Jump On Condition Format
JOC Expression 1 Definitions

xvi

Format

• 3-2
3-12

• 4-1
· 4-2
• 4-5

4-6
4-8

· 4-9
4-11
4-15
4-15
4-16
4-16

· . 4-17
4-17
4-18

· 4-18
4-19
4-21
4-22

· 4-22
· 4-23

4-24
· • 4-25

4-26
· 4-27
• 4-30
• 4-31
• 4-32

(

i'

o

o

-

,
'iii:

t
i
~
~
4

f·

i

I

Ie

Figure

4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45

4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67
4-68

5-1
5-2
5-3
5-4
5-5
5-6

ComputerAutomatlon ~

LIST OF ILLUSTRATIONS

Page

Conditional Jump Format . • • . • . • • • . •• • • • 4-32
Single Register Shift Format 4-33
Double Register (Long) Shift Format 4-33
Arithmetic Left Shift • • • . . . • • • • 4-34
Arithmetic Right Shift
Logical Left Shift
Logical Right Shift •
Rotate Left Shift •
Rotate Right Shift
Long Left Shift . . • • • • • •
Long Right Shift • • • • • • • • •
Long Rotate Left Shift • • • •
Long Rotate Right Shift • • • • •
Register Change Format . • • •

• 4-34
• • • 4-35

. . • • • 4-35
• 4-36
· 4-36
• 4-37
• 4-37
• 4-37
• 4-37

4-38
LSI-2/60 A Register Bit Change Instruction Format • • • • 4-39
LSI-2/60 X Register Bit Change Instruction Format .• 4-40
LSI-2/60 Multi-Register Change Instruction Format
LSI-2/60 Extended Multi-Register Change
Instruction Format . • • • • • • . • • . • •

Control Format • • • • • • • • • • • .. • • c

. • 4-42

4-43
4-45

LSI-2/60 Processor Control Instruction Format • 4-46
Computer Status Word Format . • . . • • • . • 4-47
Single Word Input/Output Instruction Format • • 4-49
Block Input/Output Instruction . . . • . • 4-54
Automatic Input/Output Instruction Format . . . 4-55
In-Line Auto I/O Instruction Sequence • • • • • . 4-56
Interrupt Location Auto I/O Instruction Sequence . 4-56
LSI-2/60 Cyclic Redundancy Check Instruction Format . • • 4-57
LSI-2/60 Text Manipulation Instruction Format . 4-58
Direct/Direct Addressing . • • • . • . • • . 4-59
Direct/Indirect Addressing • . • . • • • • • . 4-59
Indirect/Direct Addressing • • • • • •. 4-59
Indirect/Indirect Addressing . • • • • . . ' 4-59
LSI-2/60 Numeric String Format . • • • • • • • . . 4-60
Begin Conditional Assembly Directives F6rmat . • • • • • 4-62
End Conditional Assembly Directive Format 4-62
Location Control Directive Format . . • • • . • . • 4-62
MACH Directive Format • . . • . . • • • . • • 4-63
Data and Symbol Definition Directive Format • 4-64
Program Linkage Directive Formats . • • • 4-66
Subroutine Definition Directive Formats • 4-67
Title Dire.ctive Format • • • • •• • • • .4-67

Sense Routines . . • •
Unconditional Data Transmission .
Condition'll Data Transmission •
Block Data Transmission • • • • •
In-Line Auto I/O Data Transmission
Initialization and Unconditional Output to

Line Printer

xvH

.. . . it • •

5-2
• 5-3
· 5-3

. • 5-4
•• 5-5

• 5-6

~I __ __

o

c

-

Figure

5-7

5-8
5-9

5-10
5-11
5-12
5-13
5-14
5-15

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11

7-1
7-2
7-3

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10

8-11

8-12

9-1
9-2
9-3

9-4
9-5
9-6

ComputerAutomation ~

LIST OF ILLUSTRATIONS (continued)

Page

Unconditional Character Read from Teletype Paper
Tape Reader . . • • • . . . • . . • • .

Initialization and Conditionai Control of Line Printer.
Conditional Input from 'l'eletype Keyboard with

• 5-6
· 5-6

Auto Echo . • . . • . • • • • • • •
Uninterruptable Block Output to Line Printer

5-7
· . 5-7

Automatic Byte Input from Card Reader . • . • • . • • • . 5-8
Line Printer Interrupt Initialization Sequence • • 5-13
Real-Time Clock Interrupt Initialization Sequence •
Line Printer Interrupt Instructions . . • • • •
Real-Time Clock Interrupt Instructions

Option Pack • • . • . . . • • • . . . • .
Option Pack Connector Jl Pin Assignments
Option Pack Connector J2 Pin Assignments
Current Loop Interface • . . •
EIA RS232C/CCITT Interface

· 5-13
5-14

· . 5-15

6-2
• 6-3
· 6-4
· 6-8

• . • 6-9
TTL/DTL Interface • . . . 6-10
Half-Duplex Program-Controlled Data Output
Program-Controlled TTY Reader Input
Full-Duplex Auto-Input Under Interrupt
RTC Interrupt Programmjnq Example ..
Power Fail Restart Soft ,. 'Ire Routines

Memory Control Connector
Interleaved Memory Installation
Memory Banking Example . . • .

Maxi-Bus Configuration
Maxi-Bus Components . • . •
I/O Transfer Timing . • . • . .
LSI-2 Series Interrupt Organization
Interrupt Transfer Timing . . .
~xi-Bus Acquisition Timing .

Memory Addressing Comparisons •
Read Access Timing • . . • . •
Write Access Timing . . . •. •..•
Standard Chassis Motherboard Slot Organization

(rear view)
Jumbo Chassis Motherboard Slot Organization

(rear view) ..••..••.....•...
Maxi-Bus Expansion Connector Pin Assignments

Device Address Decoding Techniques •
Function Decoder Configurations (Typical) .
Select, Input, or Output. Instruc·tion Decode

Configurations • • • • •
Initialization Circuit • • . . • • • • • . . •
Positive and Negative Sense Circuit Configurations
Data Transfer Control • • • • • • • • • • •

xviii

• • 6-10
· . . 6-11
· . • 6-15
· . . 6-21

• 6-30

· . 7-2
7-3

· 7-5

8-1
· 8-2

8-7
8-13

· • • 8-13
8-18

· • 8-19
8-19

· • 8-20

8-24

8-25
8-27

9-2
9-4

9-5
• . . 9-6

9-8
9-10

I

o

o

-

Figure

9-7
9-8
9-9
9-10
9-11

9-12
9-13
9-14
9-15

10-1
lO-2
10-3
"\ r '·1
10-5

lO-7

ll-l
11-2
11-3
11-4

12-1
12-2
12-3
12-4
12-5

LIST OF ILLUSTRATIONS (continued)

Single Interrupt Implementation Using IUR­
End-of-Block Interrupt Implementation • • • •
Reentrant Interrupt Implementation • • • • •
Simple IL2-/IL2- Interrupt Structure • • • •
End-of-Block Interrupt Implementation Using

ILl- and IL2- • • • • • ••••
DMA Operational Phases . • • • •
Maxi-Bus Acquisition and Priority Auction Controls
state Counter and Decoder •
DMA Transfer Timing • • • •

Processor/Console Interface •
Establishment of Stop Mode • • • • .
Register Entry/Display Sequence •
step Mode Sequence . • • •
Establishment of Run Mode . • •
Console ~'lord Formats • . • • . • • . •
Motherboard/Console Connector (J1) Pin Assignments

Power Monitor Block Diagram • • • • • • • . •
Power Monitor Timing Requirements • • • • • .
Standard Chassis User Power Supply Transition
Standard Chassis Motherboard Power Adapter

Pin Assignments ••••

Full Board Design Guide • • •
Half Board Design Guide . • • • • • • •
Standard PC Board Hardware
Wire-Wrap Breadboard PC Board •
Filler PC Boards

Adapter

B-1 Machine Code Format of Single-Word Memory Reference

Page

• 9-12
• 9-15
• 9-16
• 9-16

• 9-17
• 9-19
• 9-20
• 9-21

•• 9-22

. . 10-2
• 10-3
· 10-4
• 10-4
· 10-5

10-6
10-11

• 11-4
11-4
11-6

• 11-7

• • 12-3
· 12-4

12-5
· 12-6
· 12-7

Instructions . • • • • • • • . • • • • • • • . • • • • • E-1
E~2 Machine Code Format of Double-Word Memory Reference

E-3
E-4
E-5

E-6

E-7
E-8
E-9
E-IO

E-ll
E-12
E-13

Ins truct.ions • . . • • • . . • . . •
Machine Code Format of Byte Immediate Instructions
Machine Code Format of Conditional Jump Instructions
Machine Code Format of Single-Register Shift
Instructions • • •

Machine Code Format of Double-Register Shift
Instructions • • • • • • • • . • • • • • • •

Machine Code Format of Register Change Instructions •
Machine Code Format of Control Instructions • • •
Machine Code Format of Input/OUtput Instructions
Machine Code Format of Automatic Input/Output

Instructions • • • • • • • • . • • • • • • • • •
Machine Code Format of Block Input/Output Instructions
Machine Code Format of Stack Instructions • • • • •
Machine Code Format of LSI-2/60 Cyclic Redundancy

Check Instruction"

xix

• E-l
• E-2
• E-2

• E-2

• • E-3
E-3
E-3

• E-3

E-4
• E-4
• E-4

· • E-4

I:
~.

t Table
t ,

2-1
2-2
2-3

3-1
3-2
3-3

4-1

6-1
6-2
6-3

0 6-4

8-1

9-1
9-2

10-1

11-1

A-I
A-2

B-1
B-2
B-3

F-l
F-2
F-3
F-4
F-5
F-6

G-l

ComputerAutomation ~

LIST OF TABLES

AutoLoad ROM Set Installation •
Standard Power Supply Outputs .
Jumbo Power Supply Outputs

Console Switches and Indicators • • • • •
switch/Indicators - Operator's Console
Device Selection • • . . • • • . • • .

MACH Flag Word Values

Baud Rate Selection . •
Word Length Selections
Clock Source Selection
I/O Stretch Selection . .

Maxi-Bus Load, Drive and Termination Summary

Power and Ground Pin' Assignments ••••.
Normal Interface Pins . • • • • • •

Console Special Signal Load/Drive Summary

Standard Module Load Currents •

Hexadecimal-Decimal Conversions
Eight-Bit ASCII Teletype Codes

Recommended Device Addresses
Recommended Interrupt Address Map
Device Address 0 Command Summary

Memory Parameters . . . • • • • • • • • . •
Execution Time Algorithms • • • . • • • • . .

· 2-4
· 2-6
• 2-8

3-4
3-13

.• 3-15

· 4-64

· 6-6
· 6-6

. . 6-20
6-28

8-22

9-28
9-29

10-12

11-2

A-2
· A-3

· B-2
B-4
B-5

· F-l
F-3

l.cmory Reference Instruction Address Calculation Times.
Stack Instruction Address Calculation Times

· F-16
· F-17

F-18 Instruction Execution Times . •
Maximum Data Transfer Rates •

Assembler Directives

xx

· F-29

G-l

I

o

-

Section 1

GENERAL DESCRIPTION

1.] INTRODUCTION

The LSI-2/l0, LSI-2/20, and LSI-2/60, the MegaByter, general-purpose, stored-program
diq:i.tal computers are compatible computers which constitute the LSI-2 Series. The
LSI-2 Series is an integral part of Computer Automation's LSI Family of compatible
mi.n icomputers.

The Lf:'-:' i.)eries is an integrated family of compatible components-- three central
proce~' '·;ors, core or sem.iconductor memories, peripheral controllers, computer options,
geneC" , 'J :'o~e interfaces, etc. -- which can be combined in a multitude of configu­
r.at-; 'n' to match a wide range of needs.

All -::entral proCessors of the LSI-2 Series feature the same basic architecture,
in'~t rw::"Lion set, and I/O capabilities. However, they differ in terms of performance
as ,~lows: the LSI-l/lO operates at about one-half the operating speed of the LSI-
2/20 and LSI-2/60, the LSI-2/60 features additional instructions not implemented in
t~e LSI-2/10 and LSI-2/20. All processors are Maxi-Bus compatible and, except for
t~iming differences, programs will execute properly in any of the processors without
'.::hange (except when the additional instructions, applicable to LSI-2/60 only, are
I1s'.'d) •

'T'h~: LSI-3/05 comput.er, which is covered in a separate manual, uses a subset of the
I.ST-2 Series instructions and is also Maxi-Bus compatible.

1 • l .2 Upward Compatibil i ty

Th(' LSI-2 Series computers are upward software and I/O compatible with earlier 16-
hit computers from Computer Automation. Upward software compatibility means that
most programs written for the earlier 16..,.bit computers will run without major modifi­
cations on the LSI-2 Series computers. However, due to the expanded and improved
insLruction sets of the LSI-2 Series computers, programs written for these computers
may not run on' the earlier computers.

1.1.3 General Features

The LSI-2 Series computers feature a l6-bit word format, with 188 instructions in
the LSI-2/l0 and LSI-2/20 and 224 instructions in the LSI-2/60. The instruction set
is divided into eight major classes which provide memory-to-register and register­
to-register data movement as well as conditional jump, single and double-register
shift, register change, machine control and Input/Output instructions. The computers
utilize twelve addressing modes for effective and efficient management of memory
resources.

1-1

Ii ComputerAutomation IP£
¥ ~\\
!

f
t The LSI-2 Series computers have fully buffered I/O structures coupled with five
¥

-

levels of interrupts and five I/O modes which permit hiqh-!;peed, low-speed, synch-
ronous and asynchronous data tr,lIls fer:; to take P1ilC(~.

Memories available in the LSI-2 Series computers include Core 980 ~nd Core 1200. The
numbers definp the full cycle time of the memory in nanoseconds arid e~h memory type
can be interleaved. The user can mix, memories of differing. speeds" types, and sizes
in any of the computers to'obtain the best price/performance possible. Semiconductor
memories, including RAM, ROM, and EPROM, are also available.

The LSI-2 Series processors, memories, I/O controllers, and other components can be
rJused in a Standard chassis (5 slots) or a Jumbo chassis (9 slot), with one or more
Expansion chasses (5 slot) to accommodate the modules necessary for a system. An
optional Memory Banking feature permits the user to extend the upper limit of memory
from 32K words to 256K words for the LSI-2/l0 and 2/20, and to 5l2K words for the
LSI-2/60. The LSI-2/60 computer is always housed in a Jumbo chassis.

A major accessory to the LSI-2 Series computers is a unique Distributed I/O System

"

that reduces hardware and cabling ~equirements for I/O interface and control of a
~umber of peripheral devices. This system is described in a separate manual:

"Distributed I/O System", 91-53629.

1.2 NAKED MINI LSI-2 SERIES

The NAKED MINI LSI-2 Series computers consist of the processor and require one or
more memory modules. They are supplled without a chassis, motherboard, power supply,
or operator's or programmer's console.

The NAKED MINI LSI-2 Series computers are designed to be used as system components
along with other system components. They depend on the system power supply for a
power source, the system control panel for operational control signals, and the
system enclosure for structural and environmental support.

'~.3 ALPHA ~=~-2 SERIES

An ALPHA LSI-2 Series computer is a ready-to-run computer with a processor, memory, a
power supply module, a motherboard, a chassis and an operator's or programmer's
console. The motherboard interconnects the LSI-2 Series computer with additional I/O
and memory modules, the power supply, and the operator's or programmer's console.

1.4 CHARACTERISTICS

The characteristics of the LSI-2 Series computers are explained in subsequent sections
of this manual~ The following is an overview of the characteristics of these
computers.

1-2

-

o

n ,,;

-
ComputerAutomation ~

1,.'01 Proce.ssor and Memury

Some of the significant characteristics of the processor and memory are:

1.1. :.!.

Parallel processing of full 16-bit words and 8-bit bytes.

F'our 16-bit hardware registers (A, X, I, and P) and one 8-bit Status register.

Memory word size ot 16 bits, with each word addressable as a full l6-bit word
or as separate 8-bjt bytes.

Memory capacity is 256 words minimum, expandable to 32,768 words per bank
maximum. (Up to 262,144 words with optional Memory Banking for LSI-2/l0 and
7/20 and 524,288 words for LSI-2/60.) .

computer microcycle time is 300 ns for LSI-2/10 and 150 ns fo:!." LSI-2/20 and
1.51-2/60.

Direct Me~ory Access (standard) provides data transfer rates up to 1,020,000
w· ~.'l:'er second ir~. a single memory bank or 1,666,667 words per second with
l.r~t.erle;'t\l·'d memory banks •

. 'dl."Y 2 I S complement arithmetic processing.

Automatic memory scan (standard).

Hardware Multiply and Divide (standard).

All processors have an oscillator accuracy of +0.05%.

Instruction set

'"hese computers have powerful instruction sets consisting of 188 instructions in the
U)J-)/10 and TJST-2/20 and 224 instructions in the LSI':'2/60 divided into eight classes.
The instruction classes are:

I. Nemory R!;ferenc.!:,. Access memory in either Word or Byte mode and perform logical
and arithmetic operations involving data in memory and data in hardware registers.
Hardware Multiply, Divide and Normalize instructions are included in this class.

2. Stack. Similar to the Memory Reference class of instructions, except that Stack

3.

4.

instructions operate on words maintained in "stacks" in memory.
size, and location of stacks in use at any time are limited only
size, as are the number of stacks in use by any code module, and
code modules using any given stack.

The number,
by the memory
the number of

Byte lnunediate. Similar to the Memory Reference class in that logical and
arithmetic operations are performed inVOlving data in ha~dware registers. The
memory data, however, is contained within the instruction word so that it is
immediately available for processing without requiring an operand cycle to fetch
it. from memory.

Conditional Jump. Tests conditions within the processor and performs conditional
branches depending on the results of the tests performed. Jump may be as much
~:: ~4 ":r -.:; ~ ~.::'-::.=.-:. --:r.3 ':='":m _~e l~r::a~':"~n '":I ~ "'_":-=: -:r:r...d-=- ~:'crl.a!. 11mt;: i.:lstr,lctio.n.

d ",' "ttl

ComputerAutomation <r#\\
5. Shift. Include single register logical, aritlunetic, and rotate shifts; double

register logical and rotate shifts.

6. Register Change. Provide logical manipulation of data within hardware registers.

7. ~(l!l1::r_ol. Enable and disable interrupts; suppress status, control word, or by te
mode dat- a processinq i and p(~rform other general cOlltrol fUllct.ioll!;.

8. Input/Output. Provide conununications between the comr;uter and external devices.
They include conventional I/O instructions plus Block Transfer and Automatic
Input/Output instructions. I/O may be to/from register or directly to/from
memory.

1.4.3 Registers

Following are descriptions of hardware registers of interest to the operator and
programmer. Except for the I register, all others are under program control.

1. A Register.
operations.

X Register.
modification.
operations.

A 16-bit register used for arithmetic, logical and input/output

A 16-bit register that holds the index value for memory address
It is also used for input/output and certain aritlunetic and logic

3. OV (Overflow). A one-bit register set by arithmetic logic when an overflow
occurs. It is also used for extended shift operation. It can be tested and
modified by software.

4. BM (Byte mode). A one-bit register that specifies either word or byte mode. It
is set and cleared by software.

5. EIN (Enable Interrupts). A one-bit register that, when set, enables interrupts
of pr0cessor operation. It is set and cleared by soitware.

6. I Register. A 16-bit register that holds the instruction currently being pro­
cessed by the computer.

P Register. A 16-bit register that holds the program location counter. It
addresse~ each instruction and increments as each instruction is executed. For
skip or jump instructions (modifying normal program sequence), P is loaded with
the address of the next instruction to be executed.

1.4.4 Memory Addressing

1.4.4.1 Memory Reference Addressing

An important feature of these machines is the ability to access full 16-bit words und
8-bit bytes (half words) in memory. Memory may be as small as 256 16-bit words, and
as large as 32K 16-bit words, where K=1024. Since memory may contain 32K words, and
since each word contains two bytes, provisions are made for addressing up to 64K
bytes.

Instructions which access memory may operate in either Word or Byte mode. Memory
Reference instructions are sixteen bits in length (one-word instructions), with the

1-4

o

C'·:"
,",/

.'ffl'riltW , W'#'i"&W i+'::!Nrl!:#±'t r

ComputerAutomation ~

eiqht least~significant \;)its, plus three control bits, dedicated to memory addressing.
Th." eight least-significant bits address 256 words or l;>ytes. The ISI-2 Series com­
puters use the three control bits to specify several addressing modes. These ad­
dressing modes arf~ discussed briefly below and are eJl:plained in detail in section 4.
The addressing modes used are Scratchpad, Relative, Indexed, and Indirect.

1. Scratchpad. Scratchpad addressing accesses the first 256 words in memory in
Word mode, or the first 256 bytes in BytH mode. The first 256 words in memory
are referred to 3S "Scratchpad" memory bE~cause they are common words which can
be addressed directly by instructions located anywhere in memory.

2. Relative. In Word mode, relative addressing can address an area of memory
extending from the instruction address forward 256 words (+256) or backward 255
words (-255). In Byte mode, the range is forward 512 ~ytes. Bytes cannot be
directly addressed relative backward.

3. The. i:ld::!x (X) register can be added to the address field of Memory
Peferer(: instxuctions to form an effective memory word or byte address.

·1. Inci iT",rpF.. Indire,:::t addressing uses scratchpad or relative addressing to access
" wunl .l.l memory which contains the addrl~ss of a memory operand. The word that
0ntains a rw::>mory address rather than an operand is called an address pointer.

In Word mode, multilevel indirect addressing is possible; Le., one address
TX)inter may contain the address of another address pointer rather than the
c)ddress of an opeL'and. In Byte mode, only one level of indirect addressing is
possible.

Illdirect addressing may also be used in conjunction with indexing. When indexed
i !Idirect rtddressing is specified, the indirect operation is performed first and
~h8n the contents of the X register are added to the contents of the address
pointer" 'T.'h;~' process is called Post Indexing.

j .4.4.2 StacY. Addressing

All SL1Ck acces!>es are controlled by a stack pointer. Stacks may be accessed in the
ct'rIVC'ntional "PUSH" and "POP" fashion utilizing automatic hardware predecrement and
pu~.:, tillcrement I r e';pecti vely, of the stack pointer. Stack c0ntents can also be accessed
,hrec'ly or with indexing through the stack p'Jinter without altering the stack pointer
value.

The LSI-2 Series computers are highly flexible system components designed for easy
application to control, communications, and mbnitoring tasks. These computers are
extremely easy to program. Organization of the processor enables the computer to
obtain high memory efficiency, avoiding the problem of "core burning", so prevalent
in many computers. Memory utilization is further enhanced by the powerful and flexibl(
I/O instruction set. The I/O structure is simple and efficient, sharply reducing the
amount of :t/O logic required by units interfacing with the processor.

1-5

t
I
I ,

1.4.5.1 Control Instructions

Two types of I/O instructions, Select and Sense, provide control information to and
from an interface. The Select instructions establish operating modes, control inter­
rupts or initialize the interface. The Sense instructions permit the processo~ to
obtain the oper ,tiona I status of an interface.

1.4.5.2 Input/Output Modes

The LSI-2 Series computers feature five distinct I/O modes which, when combined with
an extensive set of I/O instructions, provide a very powerful and easy to use 1/0
s~ructure. These modes are:

1. Programmed I/O via Registers
2. Programmed I/O via Memory
3. Automatic I/O under Interrupts
4. Block I/O
S. DMA

l
I
~Transfers can be made to or from the A or X registers or directly to or from memory,
~whichever is more convenient. Both word and byte data can be handled directly, with

I byte data being packed automatically, if desired, without the need for time and
space-consuming programmed routines.

I 1. Programmed Input/Output via Registers. For greater convenience in handling data
that must be examined immediately upon input, or as the results of computations
that must be output immediately, programmed I/O transfers the data di rectly .to
and from the operating registers of the processor. Fur::hermore, programmed I/O
instructions can be combined witl~ Sense and Skip instructions to allow testing
of controller or peripheral status prior to making a transfer.

I
o
i

2. Programmed Input/Output via Memory. This mode capitalizes on the power of the
Automatic I/O instructions to transfer data to or from memory without disturbing
the working registers of the proce~sor. Any size hlock of data may be trans­
ferred Into or out of memory (limited only by the memory size).

3. Automatic Input/Output under Interrupt Control. This mode permits an interface
to transfer data to or from memory at its own data rate with minimal disturbance
of the main program. When all data has been transferred, the interface develops
an End-of-Block interrupt. This, in turn, causes an interrupt subroutine to be
entered w._Ich performs the necessary housekeeping associated with End-of-Block
operations.

4. Block Input/OUtput. For high-speed transfer rates, Block I/O transfers data
blocks of any length (up to the size of the memory). Data is exchanged directly
between memory and the peripheral interface with the index register providing
the word count. DUring execution of Block I/O instructions, the computer is
totally dedicated to the Block I/O transfer and cannot respond to interrupts
until the entire block has been successfully transferred~

5. Direct Memory Acc:ess J_~t>1~. For very hjgh speed transfer rates, DMA transfers
data directly to and from memory. Since this data transfer does not require the
processor, the processor can be performing other operations while alternating
with .DMA on a cycle stealing basis. Multiple DMA controllers may usc the DMA
feature concurrently (using alternate cycles) up to the full memory transfer
rate. When more than one memory module is installed, the modules may be two way
interleaved to provide data transfer rates of approximately twice t_he individual
memory data rates.

1-6

o

o

ComputerAutomation ~

1.4.5 3 Vectored Interrupts

The LSI-2 Series computers feature vectored ha.rdware priority interrupts, wherein
each peripheral controller supplies its own unique interrupt address to any location
in memory. '1'here are five standard interrupt levels (two internal and three external).
Tt',e t.hird external level, with control lines, can accommodate a virtually unlimited
number of vect.ored interrupts.

1.4.6 Processor Options

Four general options are offered with the LSI-2 Series computers. They are Power
Fail Restart, the 'reletype/CRT Interface, Real-Time Clock, and AutoLoad.

'l'r,c Power Fa;' 1 Hestart option mounts directly on the processor PC board of the LSI-2
Sterle,", COl11put<;r.s. The other three options mount on ~n option board (Option Pack)
'"hien pltqs ':, to a special connector (in piggyback fashion) on the processor PC board
oi UI"~ T' - -2 f.('r.i~s c<1ml?uters. None of these options 'interface directly with the
nt)t l... L0drd.

1. ,Jwer Fail Restart. This option includes the hardware necessary to detect low
input power conditions and bring the computer to an c.rderly halt until r\ormal
input power is restored. When normal power is restored, this option will
q~nerate an orderly restart. The Power ~ail Restart option allows completely
unattended operation of the computer at locations where power conditions are

3.

'.lnreliabl~. '

Rasic Variab:!..es. ---- --
pnabl:i.ng of power.
wit hout d. C011 ,,() le .

This option permits offset of proce3sor interrupts, separate
fail interrupt, and sense register jumpering for operation

Thi~~ option is required with other options that follow.

~'eletype/CR.?-~_,~odelr Interface. Interfaces a modified ASR-33 Teletype, CRT ter­
.ninal, or modem to the computer. This is a fully-buf fered interface that in­
clude~; r<~mote Te let~ype motor on/off control. In addition to the standard TTY
baud l'atp (110 baud), nj ne user selectable baud rates, ranging from 75 to 9600
b':lUds, are provided for driving a CRT terminal. Either half- or full-duplex
operation is selectable on command.

4. Real-Time Clock. The Real-Time Clock option features a crystal controlled
internal clock which may be wired to produce clock rates of 100 ~s, 1 ms, 10 ms,
or twice the input ac line frequency, (8.33 or 10 ms, 60 Hz and 50 Hz, respec­
tively). The 10 rr,s (crystal derived) rate is standard. The crystal derived
standards are accurate to +0.05%. An external clock source may also be used.
The Real-Time Clock will provide time-of-day information to the computer when
properly set arid may be used to time periodic events that must be controlled by
the computer.

5. Multi-Device AutoLOad. The three Multi-Device AutoLoad options consist of Read­
Only Memories (ROM) programmed with complete binary loaders which are capable of
loading binary programs from anyone of several 'input devices. The AutoLoad
hardware reads programs from the ROM when the COr:}sole AUTO switch is activated.

1-7

I;,!
"

I
i

-

CornputerAutomation ~

1.4.7 Plug-In Options

The LSI-2 Series computer chassis provides locations for the installation of processor
options, peripheral inter(aces, and memory modules. 'I'he options are mounted on
printed circuit boards which pluq into the locations within the computpr chas~;i s.
So~nc of the av, ,dable plug-in proccs~;or options arc:

1. Distributed I/O System.

2. Digital I/O interfaces: up to 64 bits.

3. Relay I/O interfaces: up to 32 isolated relays.

4. Modem interfaces: asynchronous and synchronous.

5. Memory Banking controller: extends upper limit of Memory to 262,144 words for
LSI-2/10, 2/20 and 524,288 words for LSI-2/60.

6. Core, RAM, ROM, and EPROM memory modules.

1. Priority Interrupt module.

o I 1.4.8 Peripheral Equipment

The following is a partial list of the various types of peripheral equipmc·nt. for
which iriterfaces to the LSI-2 Series computers have been developed. This list does
not imply that these are the only devices for which interfaces can be developed. The
interface structure of these computers is such that virtually any peripheral device
can be interfaced to the computer.

1.

2.

3.

4·
5.

6.

0,.
I 8.

ASR-33 Teletype

High-Speed Paper Tape Readers and Punches

Line Printers

Card Readers

Magnetic Tape units

Moving Head and Floppy Disks

CRT Term;nals

Communications Interfaces

1.5 DATA HANDLING CHARACTERISTICS

1.5.1 Data Word Format

Processor registers and memory locations are capable of storing data words consisting
of 16 binary digits or "bits". A word may be handled as a single 16-bit field or as
two 8-bit. bytes. The following paragraphs describe the word format of the computer.
Byte format is described later, in paragraph 1. 5.2.,

1-8

c

1.5.1.1 Bit Identific~~ion

A data word may contain a single number, or it may contain a string of individual
binary bits, with each bit having a unique meaning. For purposes of explanation and
identification, each bit within a word is uniquely identified. The identification is
accomplished hy numbt'ring each bit within a word from right to left. The bit on the
exfJeme riqhL of I h~~ word is bit 0; the bit Oil thp pxtremc left is bit 15. Figure
}--I i 11usLraLl'!; the fo:-mat of a 16-bit data word with the bit number shown above the
bit position.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

~sign bit when so used or 215.

7igure 1-1. Data Word Bit Identificat_ion

0' 1.5.1.:2 Bit Va.l ues

Tht· l"ji-2 Series computers are binary compute:rs; therefore, numeric information
sl, ,. ,(I in the computers and processed by the c:omputers must be in binary format.
Piyure 1-1 illustrates the binary value of a one-bit (1) in each bit position of the
i (, hi t .lata ""Jrd. These values are expressed as powers of ty;o. For example, a 1 in
b"- i !.as the value of ,,3 or 8. The single exception to this rule is bit 15 which
may be' used a,3 the sign bit.

1.S.1.3 Signed Numbers

Thf' r.~;T-2 Scrie:; computers ar-e capable of performing aritlunetic operations with
c;Hjr,ecl numbers. Binary two's complement nota-::ion is used to represent and process
'llU'K'ric information. Bit 15 of a data word indicates the algebraic sign of the
numbetT,nt.Jd ~",~d withj.n that \Vord.

1.5.1.4 Positive Numbers

A 1,(Jsitive number is identified by a 0 in bit 15, and the binary equivalent of the
magnitude of the posit.ive number is stored in bits 0 to 14. The largest positive
signe(l number which can be sto:>.:"ed in a 16-bit word is +:32,76710'

1.5.1.5 Negative Numbers

~ negative number is identified by a 1 in bit 15 of the data word. A negative number
is represented by the binary two's complement of the equivalent positive number. A
negative number must follow the mathematical rule where:

o - (+n) -n

For example:

o - (+5\ = -5

Negative numbers must also be constructed such that:

(+n) + (-n) = 0

The binary two' s ·.~0mplement of some numf~r ic value may be constructed by changing all
one's t r ~~,ero ar . all zeros to one, then adding one.

Note that the formation of a binary two's complement negative number from the equi­
valent positive number automatically sets the sign bit to a one. The largest negative
number that can be stored in a l6-bit word is -32,76810-

1,.2 Data Byte Format

A 16-bit data word is capable of storin'} two 8-bit bytes _ Since most data transfers
between minicomputers and periphcr(il d'~vices are in the form of bytes rather than
words, the LSI-2 Series computers provide the capability of addressing individual
hytes as well as full data words. Figure 1-2 illustrates the storage of two bytes
within one computer word.

~Bit positions within bytes are identified much the same as in 16-bit words. Figure
1-2 also illustrates the number of data bits within a byte. The bits are numbered 0
through 7 for each byte as illustrated.

16-81T WORD
I

A
\

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o

BYTE 0 BYTE

\. 7 6 5 4 3 2 C 7 6 5 4 3 2
y- ./\

Y
0 1

8-BIT BYTE 8-BIT BYTE

Figure 1--2. Byte storage, Two Bytes Per Word

I
I 1.5.2.1 Byte Mode Processing

~I 'There are thLef~ control instructions in the computer which control Word mode and Byte
mode processing. One of the instructions causes the computer to enter Byte mode
processing, and the other causes the computer to enter Word mode processing. The SIN
instruction inhibits byte mode.

In Word mode, all Memory Reference instructions access full words in memory. In Byte
mode, all Memory Reference instructions (except IMS, MPY, DVD, NRM, JMP, JST and
Stack Instructions) access one byte within a word. The method of addressing indivi­
dual bytes is discussed in a subsequent part of this section. The present. discussion
is concerned with computer operations while in Byte mode as contrasted with computer
operations in Word mode.

Byte mode affects the address and operand access cycles of the computer only. All
other computer functions operate the same as in Word mode. In By~e mode, the computer
operand cycle reads or stores a single byte from/to memory instead of a full word.
The following paragraphs illustrate Byte mode operations for Memory Reference
instructions.

1-10

(

-.-

'Wt'!ti:'.,.,.w't h"'1l"! #' VHt' "tit 'htlt"HC"f6lftf

o

C:

ComputerAutomation <rU\\
1.~). 2.:~ Reg istcr Load

In Word mode, lhe full word is loaded into the selected register. In Byte mode, the
~;e 1 ected byte is loaded into the lower eight bits of the selected register and the
upper eight bits arc set to zero. Note that the location of the byte within the
memory word does not determine the location the byte will occupy in the rf;jgiste~
being loaded.

1.').2 . .1 l\rithmetic Operations

For arithmetic purposes, bytes can only be handled as positive numbers. This is
because a byte occupies the lpwer eight bits of a register (although full 16-bit
arithmetic is performed), and the upper eight bits, which includes the sign bit,
copt(li:1 zeros.

1.5.2.4 Data Packing

Conserval:i(1!i of memory space in modern memory intens'ive computers demands that data
be p, \ ': '.f L two by t :":7 pe:/" word, if possible, but most data busses and reg is ters are
I r,·· I." i word .. 1 ,.\~lIted alld a n'>quirement arises for time consuming data packing and un­
piH";J: : \,',lre subroutines. These take the simplest general form of input-shift­
il') ,. ·;tore or fet-ch-Ot.!tput-shift-output. Byt.e mode processing becomes very useful
Lfl ,lis type of operatlon allowing data to be packed and unpacked directly with
~,j!191'! instructions. Figure 1-3 shows unpacked, byte oriented data as it would
at I·'f'el; in llIemory, while figure 1-4 shows the same data packed two bytes to a word.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

l!'ORD I) 0 0 0 0 0 0 0 0 BYTE 0
1-'

WORD 0 0 0 0 0 0 0 0 BYTE 1

WORD " "- 0 0 0 a 0 0 0 0 BYTE 2

WORD 3 0 0 0 0 0 0 0 0 BYTE 3

WORD 4 0 0 0 0 0 0 0 0 ~YTE 4

WORD 5 0 0 0 0 0 0 0 0 BYTE 5

Figure 1-3. Data in Memory, One Byte Per Word

The capability of the LSI-2 Series computers 1:0 address individual bytes in memory
allows high-sp~ed data transfers using the memory format shown in figure 1-4 for both
transmission dlld reception of data. Bytes maybe addressed sequentially and trans­
mitted or received sequentially, just as words are transmitted or received sequen­
tially ill conventional unpacked data transfers. This arrangement saves memory space
since none of the memory word is wasted, and it saves time since no software routines
are required to pack and unpack data for internal processing.

1-11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

WORD 0 BYTE 0 BYTE

WORD 1 BYTE 2 BYTE 3

WORD 2 BYTE II BYTE 5

Figure 1-4. Data in Memory, Two ByLes Per Word

1.5.3 Memory Address Formats

Maximmn memory capacity (exclusive of Memory Banking conteol) in the LSI-2 Series
computers is 32,768 words which means a byte capacity of 65,536 bytes. A sixteen bit
address is required to address 65,536 bytes. The following paragraphs discuss the
formats of the addresses that must be presented to memory for addressing both words
and bytes. This discussion is concerned only with address formats. Section 4 of

l~thiS manual discusses the memory address modes which form these addresses.

1.5.3.1 Word Addressing

Figure 1-5 illustrates the format of an address presented to memory to address a full
word. This is the format that is mwd to address instruct:ions or full data words.
The address is contained in bits O-l~" and bit 15 contains a zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

WORD ADDRESS: 15 BITS I 0
~--~--~

Figure 1-5. Basic Word Address Form3t

i

10
I 1.5.3.2 Byte Addressing

Figure 1-6 illustrates the format used to address a byte within a data word. Bits 1-15
--til contain the address of the memory word, and bit a specifies which byte within the word

is to be addressed.

Bit a = a specifies Byte a (Most Significant Byte).
Bit 0 1 specifies Byte 1 (Least Significant Byte) .

If the computer is set for Byte mode, most operand addresses presented to memory are
assmned to be byte addresses. The computer assmnes that the address is in the format
shown in figure 1-6. If the computer is set for Word mode processing, most addresses
presented to memory arc ~ssum~d ~o be word addresses in the format shown in figure 1-5.
These assmnptions apply to operand cycles only. They do not" apply to instruction
cycles or indirect addre~;s ing cycles.

1-12

C'i , "

--

Ie

"C t"" -'""'1" '·w"··*%'w·,! -dt"IH'U ·W·· ''!6!tl'w'"P''' t')'~'p\,,(k:t' tzl!st"m'eu nf . ""t'· 9'",**It»trt'Wl.tiWfM t 8M

15 14 13 12 11 10 9 8 7 6 5 4 3 2

WORD ADDRESS 15 BITS

BYTE INDICATOR: 0 ~ BYTE 0
(LEFT BYTE)

1 = BYTE 1
(R I GHT BYTE)

Figure 1-6. Byte Address Format

1.5.3.3 Indirect Addressing

o

The 1,51-2 Seriec. compucers are capable of performing single level indirect addressing
for address i r,q bytes, and multi level indirect addressing for addressing words.
Indirect addressing uses direct addressing to read a word in memory, called an address
poinl.:er. which contains the address of another word. In Byte mode, the address
point~~r cont:uil1:' the address of the byte to be addressed. The format of the address
in H' _ .ldr03S pointer is the same as that sh:)wn in figure 1-6.

In ".'ord mode, the format of the address in the address pointer is that shown in
figure 1-7. Bits 0-14 contain the address of another word in memory. Bit 15 is a
multilevel indicator. If bit 15 contains a 1, the address in bits 0-14 is the address
of another indirect address pointer. Thenuffiber of levels of indirect addressing
which may be used is limited only by memory size.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I ~~ WORD ADDRESS: 15 BITS

MULTILEVEL INDIRECT INDICATOR: 0 = OPERAND A~DRESS
1 = POINTER ADDRESS

Figure 1-7. Indirect Address Pointerfi'orrrlat

1-13

,
f I

o

c

ComputerAutornation ~

Section 2

INTEGRATION

2.1 INTRODUCTION

This section includes information and procedures for configuring a system using a
single NAKED MINI LSI-2/10 or LSI-2/20 processor board and memory, chassis and power
supplies, and ALPHA LSI-2 Series computers. Information is also included on the
im, tdl1ation of the piggyback Option Pack and on the use of the expansion computer ,

2.2 NAKED ~''':'~II CONFIGURATION

1'}1(~ fC'J 10w;i 'Vi paragraphs describe the mounting, cooling, and interconnection of the
1.,)T _ dn' :.:';1-2/20 in their minimum configurations, which include only the pro-
.:e: ;(,1 . .tnd memory boarc~s. Details of the NAKED MINI LSI-2/l0 and LSI-2/20 are
inr:'led in figure 2-1.

Th,': J,SI-2/l0 and LSI-2/20 computers may be mounted in any plane as long as the cooling
requirements are satisfied. The modules must be edge mounted with fixed interface
·onrH:~ctors. A clear area of 0.200 inch is provided along each side of the modules to

dcconunodate various types of PC board guides. The PC board guide should handle a PC
boaT.·d thickness of 0.062 inch. The computer modules should be supported along all
fou I~ edges. 'l'he interface connectors along the front of th~ modules should be hard
moullted to the user's structure and some type of support should be provided at the
re' 31': or the module.

2 • 2 • 2 Cooling

The computers operate in an ambient temperature range of 00 to 500 C. Sufficient air
flow must be maintained across the computer modules to assure that the local ambient
temperature does not (~xceed 500 C.

2.2.3 Interconnection

Required interconnections include supplying power to the modules, strapping all of
the signals from connector PI to connector P2 (with the exceptions noted below), and
interfacing the memory module and the user's system console to connector Pl.

2-1

ftt •• tHed

I ' I
I .

\

-

t
l
I

P2

PROCESSOR HALF CARD

\,PIGGYBACKI

,J2

ComputerAutomatiOl1 .~

PROCESSOR FULL CARD

REAR

Pl

Jl

Pl

AUTOLOAD ROM CHIPS

OPTION PACK

~'GGYBACKI

.\J2

Figure 2-]. LSI-2/10 and LSI-2/20 Processor Layout

f: :~-:~ II -------.,..------~-------
ii,

o

o

-

ComputerAutomation. <rA
Ten special signals ar:-nar at connector Pl. Eight of these signals are dedicated
console interface signals; the other two signals are dedica.ted power supply signals.
These signals must never be strapped to connector P2. The signals and corresponding
pin assignments are listed below.

Signdl Pin Dedication

ssw- Pl-9 Console
IF- Pl-lO Console
TTLF- PI-ll Power Supply
+5 H Pl-12 Power Supply
AL- Pl-33 Console
BM- PI-34 Console
ov- Pl-37 Console
START- Pl-38 Console
SEFV- PI-83 Console
CINT- Pl-84 Console

All pin ?~slgnments for connector PI are listed in table 8-1 which also defines the
load, drive, and termination requirements of each line.

2.1 OPTION PACK INSTALLATION

The: option Pack mounts in piggyback fashion on the right half (as viewed from the
rear) of the processor board, as shown in figure 2-1. Supporting standoffs are
provided on the processor board. All loose hardware (screws, lockwashers, washers,
IC's, and rear-edge connectors) is provided with the Option Pack.

The OptiunPack has three edge connectors. Connector PI interfaces with Jl on the
processor board. Connector Jl is the option jumper connector and connector J2 is the
'r,detype interface connector. Detailed information concerning the use of connectors
Jl and ,12 is provided in section 6.

To install the Option Pack, perform the following procedure:

1. Insert connectors ~Jl and J2 of the Option Pack through the slots in the rear
stiffener of the processor board.

2. position connector PI for insertion into connector Jl on the processor board.

3. Gently push the Option Pack into processor connector Jl, aligning the four
moun·ting holes with the standoffs on the processor board.

4. Install a screw, lockwasher, and washer in each standoff and tighten.

5. Install the rear-edge connectors as indicated in section 6.

2-3

........ .,*W" fertW't Ht'

ComputerAutomation ~

2.4 AUTOLOAD ROM INSTALLATION

When the processor module is equipped with an Option Pack that includes prOV1S10ns
for AutoLoad ROM -installation, the user can install an AutoLoad ROM set. Four empty
IC sockets are ?rovided on the Option Pack to accommodate the four-chip AutoLoad ROM
c;'"'t · ... n(" sock ~S are located at IC locations 10 I 11, 12 and 13. Table 2-1 shows the
signifj canc'- and Opt ion Pack s()cket~ /lumbers for existing ROM sets ~ ROMs should b('
installed as indic<1tcd ill thi~; tdule. Type 1 ROMs are factory installed while Typp 2
and Type 3 sets can be installed in the field.

Table 2-1. AutoLoad ROM Set Installation

AutoLoad
ROM Set

Type 1
Type 2
Type 3

Opt i on Pack h~
Socket Number

*Factory installed
''''~Figure 2-1

Bits 12, 1
14, and 15

;'~

-22
-26

13

2.5 CHASSIS AND POWER SUPPLIES

-_.-c-. r----

3 Bits 8, 9, Bits 4, 5,
10, and 11 6, and 7

,~ ,~

-21 -20
-25 -24

12 11
- _. __ ._ •• ______ • __ •• __ • __ o __ ~ .----------

Bits 0, 1 ,
2, and 3

*
-19
-23

10
.-.

Two chasses, termed Standard and Jumbo, and two power supplies are available as
accessories for use with the LSI-2/l0 and LSI-2/20 processors, memories, and peri­
pheral conLrollers. Both chasses include a motherboard, card guides, cooling fans,
and retaining hardware. One power supply is designed to be used with the Standard
chassis and is mounted within the Standard chassis. The other power supply, which is
designed for use with the Jumbo chassis, is mounted separately. Both types of chassis
~~d the power supply associated with the Jumbo chassis can be mounted in a standard
19-inch rack

2.5.1 Standard and Jumbo Chassis

Detailed information pertaining to the dimensions, characteristics, and use of the
Standard and Jumbo chassis is provided under paragraph 2.6.

2.5.2 Standard Power Supply

The power supply associated with the standard chassis is described in the following
paragraphs.

2-4

o

~ .. \ ..
~v

CotnputarAutomaUon ~

2.5.2.1 Mechanical

The dimensions of the Standard power supply are IS" x 3-1/2" x 16-3/4". A line fuse,
and power switch associated with the power supply are external to the supply. The ac
input is connected to the power supply through a 6-pin, Molex-type connector. The dc
outputs as well as logic and control signals are accessible at an edge connector
located at the front of the power supply. Pin designations ·C'.re as follows:

Edge Connector

101
102
103
104
105
106
107
lu8
'.J9
110
III
I' " .L~

113
114
115
116
117
118

Signal

TTLF­
-12 V
+5 V Hang
-12 V
PFD-

-12 V
+5 V

+12 V
+5 V
+l2V
+5 V
+12 V
+5 V
Ground

Ground

Edge Connector Signal

119 +l2V
120 Ground
121 +12 V
122 Ground
123 -12 V
124 Ground
125 -12 V
126 Ground
127 -12 V
128 Ground
129 +5 V
130 Ground
131 +5 V
132 Ground
133 +5 V
134 Ground
135 +5 V
136 Ground

Power to the computer is supplied via the fan housing cable harness. This harness is
t.l:!nninated with a Molex connector that plugs into the power supply through a hole in
the motherboard. Power to the fans is returned to the harness from a power supply
transformer secondary winding. Thus the fan supply voltage is always 115 volts ac,
+15% reg~rdless of the primary line voltdge used.

2.5.2.2 Environmental

The power supply operates in an ambient temperature of -SoC to +SOoC and an ambient
relative humidity of 5% to 95% with no condensation. The supply operates at 10,000
feet: and has a maximum no-operating elevation of 40,000 feet, for transporting by
commercial air, with no degradation to the supply.

2.5.2.3 Input Power

The power supply operates with input voltages of 98 to 127 Vac or 196 to 254 Vac, 47
to 63 Hz, single phase. Nominal line voltage is 115 Vac or 230 Vac. The power
transformer in the supply has two primaries which may be factory configured for
either 115- or 230-volt ope~ation. (See paragraph 2.6.7 for ac power application.)

2-5

-

ComputerAutomation ~

2.5.2.4 Output Power

Table 2-2 summarizes the outputs of the power supply.

Table 2-2. Standard Power Supply Outputs

Vo I tage Current

+5 +2% 25 A
+12 +2% 4 A
-12 +n; 9 A -

2.5.2.5 Overcurrent

~Each of the dc output voltages is capable of supporting any possible load, including
short circuit, for any length of time without damaging the power supply in any way.

2.5.2.6 Over and Reverse Voltage Protection

The +5 Vdc 25 A output includes an ov.~rvoltage crowbar. The crowbar prevents the
+5 Vdc output from exceeding +6.8 volt:; in the event of a pmler supply failure or
accidental application of a higher potential from an external source. Each supply
output is provided with current and voltage limiting circuitry to prevent damage to
its load or the supply in the event that one is momentarily shorted to c.mother.

2.5.2.7 Logic Signals

.The power supnly furnishes two logic signals to the computer, PFD- and TTLF-. The
PFD- signal goes to its low state whenever the ae line voltage drops below a voltage
level where the power outputs are in danger of going out of regulation. The TTLF­
signal is a two times power line frequency rectangular wave.

2.5.2.8 Power Fail Detection and Sequencing

The power supply generates both power-up and power-down signals for the purpose of
aiding in orderly startup and shutdown routines within the computer. Two outputs are
provided:

l.

2.

PFD-

+SV Hang

Power Fail Detected

Regulated Output (100 rnA)

2-6

o

o

-

I e
;.1

i.-.

I
£,
~I ~,

ComputerAutomation ~

2.5.3 Jumbo Power Supply.

The power supply associated with the Jumbo chassis is described in the following
paragraphs.

2.5.3.1 Mechanical

The Jumbo power supply is a self-contained unit that is approximately 19" x 5-1/4" x
18". A line fuse and power switch are available at the rear of the power supply.
The ac input is connected to the power supply through a six-foot standard three-wire
line cord fitted with'a three-wire plug. The dc power outputs are accessible at a
n~ar mounted connect.or (JIOl) (AMP PIN 20630-1). Logic and control signals are
a~cessible at the same connector. Connector pin designations a~e as follows:

Rear Mounted Rear Mounted
Connector !-J~01L Signal Connector (JI01)_ Signal

l. +5 V 22 N/C
2 23 N/C

24 Signal Ground
4 +5 V 25 PFD-
5 +5 V Return 26 TTLF-
6 +5 V Hang 27 Chassis Ground
7 +5 V Sense 28 N/C
8 N/C 29 -12 V Return
9 +5 V Return 30 -12 V Sense Return

10 +:: V Return 31 N/C
11 +5 V Hang Return 32 +12 V Sense Return
12 +5 V Sense Return 33 +12 V Return
l3 N/C 34 -12 V
14 N/C 35 -12 V Sense
15 +5 V Return 36 +12 V Sense
16 N/C 37 +12 V
17 N/C
18 Chassis Ground
19
20
21 Chassis Ground

An additional rear mounted connector (JI02) (TRW Cinch PIN S306 FP) supplies ac power
for the fans in the Jumbo chassis. A voltage of 115 volts + 15% is always supplied
to the fans regardless of the primary line voltage used. A"T; interlock at the con­
nector precludes delivery of power from the power supply if pcwer is not applied to
the fans. Connector pin designations are as follows:

Rear Mounted
Connector (jl02)

1
2
3

Signal

1:0 Vac
N/C
110 Vac Return

2-7

Rear Mounted
Connector (JI02)

4
5
6

Signal

Interlock Out
Chassis Ground
Interlock Return

't',".lirWtM H*,c,±t N',. 'j j ttilnt 1M l' *t 1 tt 'Nt 7 tn

ComputerAutomation ~

2.5.3.2 Environmental

The power supply operates in an ambient temperature of ooC to +50 oc and an ambient
relative humidity of 5% to 90% with no condensation. The supply operates from a to
10,000 feet.

2.5.3.3 Inp'J.t Power

The power supply operates with input voltages of 90 to 121 Vac, 103.5 to 139.7 Vac,
180 to 242 Vac, or 207 to 279.4 Vac, single phase at 47 to 63 Hz. (See paragraph
2.6.7 for ac power application.)

2.5.3.4 Output Power

Table 2-3 summarizes the outputs of the power supply.

Table 2-3. Jumbo Power Supply Outputs

I ;0 Voltage Current
I

+5 +2% 36 A
+12 +2% 5.6 A
-12 +2% 10:.7 A -

2.5.3.5 Overcurrent

Each of the dc output voltages is capable of supporting any possible load, including
short circuit, for any length of time without damaging the power supply in any way.

2.5.3.6 Over and Reverse Voltage Protection

The +5 Vdc 36 A output includes an overvoltage crowbar. The crowbar prevents the
I +5 Vdc output from exceeding +6.8 volts in the event of a power supply failure or

I accidental application of a higher potential from an external source. Each supply
output is provided with current and voltage limiting circuitry to prevent damage to I :Lts load or t: '? supply in the event that one is momentarily shorted to another.

__ ~ I 2.5.3.7 Logic Signals

The power supply furnishes two logic signals to the computer, PFD- and TTLF-. The
PFD- signal goes to its low state whenever the ac line voltage drops below a voltage
level where the power outputs are in danger of going out of regulation. The TTLF­
signal is a two times power line frequency rectangular wave.

2.5.3.8 Power Fail Detection and Sequencing

The power supply generates both power-up and power-down signals for the purpose of
aiding in orderly startup and shutdown routines within the computer. Two outputs are
provided:

l.
2.

PFD-
+5 V Hang

Power Fail Detected
Regulated Output (200 rnA)

2-8

o

ComputerAutomation ~

2.6 ALPHA 1.51-2 SERIES CHASSIS MOUNTED CONFIGURATIONS

The following paragraphs discuss mounting, cooling, installation of PC boards, and ac
power application for the ALPHA LSI-2 Series computers.

2.6.1 M.ounting

The ALPHA LSI-2/l0 and LSI-2/20 computers are installed in either a Standard or a
Jumbo LSI Series chassis; the LSI-2/60 (MegaByter) is normally shipped installed in
the Jumbo chassis. Both types of chassis can be mounted in a standard 19-inch rack.

The standard chassis (shown in figure 2-2) includes an integral power supply
(paragraph 2.5.2), three cooling fans and a motherboard having five pairs of con­
nectors to accommodate the processor, memory and I/O modules (PC boards). The Jumbo
chassis has the same fan arrangement and external dimensions as the standard chassis,
but operates w.i. ':h a separately mounted power supply (paragraph 2.5.3). It contains a
largc!r m0therbo;).r:d Having nine pairs of connectors and can therefore accommodate more
memory dnd 1,'0 modules than the standard Chassis. The mounting details shown for the
stancii:u':'; '.;hassis (in figure 2-2) apply also to the Jumbo ch:tssis.

UP liON BOARO , -.---- I~~~~I-·--l
INCl.UlnS Tn· t:RT INTERI Ar:E \
H~AL TIM~ C~OCK &AUTOLOA[)

EXPANSION CABLE
~,IPT'ON JllMPfR ENTRY/EXIT PORTS CONSOLE

LSI ~) Sf:HIFS \. '\CON\lfCTOR
FUll CARll \ .

PROCES:,IJR \ \ I "'-,
MUlHJLf- , ._-\ ----____ \

Ilho" .- \ \ -_ '.

.~ ~.

MEMORY. I/O
MUDULES

144 Hlil

LSI "·:Uflrs -.-.
Hl\lr CAnn
PROI. t S!i("f

M(lUUl.E

P()\'oJi: It !;UPPL ".

POWER CORD'

I

1--.1 j I '
I' . .

i#'~2.160 j r 15481

FAN HOUSING ASSEMBLY
IPHOTECTIVE GRILLE
PATTERN NOT SHOWN 1

MAIN POWER FUSE'

. MAIN POWER SWITCH"

.. TTY/CRT INTERFACE CASLE

'STANDARD CHASSIS ONLY

Figure 2-2. ALPHA LSI-2 Series OUtline and Mounting Diag!'am - Standard Chassis

2-9

.... ' ..

~ ________________ '_N""_""_-"""'''''''''*''_''"'''_''_, ,_ ' ",,_'..-.' ".-'"""",' _. bf_"

ComputerAutomation ~

The separately mounted power supply useq with the Jumbo chassis interconnects with
the Jumbo chassis via conllectors on the rear panel that receive power cables from the
Jumbo chassis (figure 2-3). One cable (to connector Jl02) carries the ac voltage
used to power the fans in the Jumbo chassis. The other c3ble (to connector JI01)
carries the dc voltages required by the computer. Both cables are 1_,', fccl- l-onq.

Jumbo
Chassis

o Fuse
OAe Switch I o

Power
Supply

Rear View

Figure 2-3. Jumbo Chassis and Power Supply

2.6.2 Cooling

The computer operates over an ambient temperature range of 00 to SOoC. When installed
in an enclosure, one of three types of ventilating systems must be employed to main­
tain the above temperature requirements. The ventilation area requirements for each
type of ventilating system are shown in figure 2-4.

Three cooling fans are used in each type of chassis. Each fan typically delivers
! from 60 to 80 CFM. This is sufficient to maintain the temperature of components at
l4CJpc below the;~ allowable limitations where operating at an ambient of SOoC and with
, a worst-case complement of PC boards. The fans are powered through the power trans-

former and operate on 115 V even if a 220/240 V supply is used. They operate at either
50 or 60 Hz.

1. Closed ventilating system

In the closed ventilating system, it is assumed the ambient temperature will be
maintained by the thermal interface. The minimum size enclosure must provide
adequate air flow paths for the computer's internal fans.

2. Side ventilating system

The side ventilating system establishes the minilJ1um enclosure size and rectan­
gular surface for the minimum size opening. This provides for a safety guard if
necessary.

2-10


~~~~r.~!!,!~~~~~~!>~~!~ 1 

N 
I ,..... 

I-' 

e C) 

~'--'--- 2100 IN_ TYP ~ 

/ 
/' 

/' ___ -- A/F.1 

/,// /~/----

/ 
/' 

/' --/-

.- L,_ -"-; _.- =---1---'--( 

----,/ 

/ 

---­/' 

~ 

/ 

A F 1 

.. 
/ 

A ~-- ___ ,u - ~--------1 

~_....----- ----z-... _/-~, 
~~ ------z-~ -_._-_._- - - --1 

// /' /.1 
,/ ' / 

-'- -

e 
80TTOM 

VENT 

OPENING / 
/ 

I 

1 .-------/ -", ,,,q . .' 
_j./// .--- ---- 00 '';' 
___ ~ '}.o-

~ 

Closed Vent System 

TYP, TOP & BOTTOM -- .... ' 0 -
. - - -_. -- - - -- - - ~ - -

,..:-L_ 
/ . 
/~--~ --~ 

T --i ~_ 

A 

/-. .',;;--::.-~' ------~ 
<';/ --:: 

V' ') A'f' ~~ __ "-i 
(:',j" ...d-,. L ___ _ + _____ -1 

/ 
/ 

/ E 

A.-F 2 
IN 

, ' 

--'- {''(()~/ 
Il..~"~~ 

- - -I _ 

, /1 / 
~'.-V 

TOP VENT 

OPENING 

A/F 2 
OUT .. 

-==:--.L._ 

Top/Bottom Vent System 

, '"'t~7"_"'·~""':.:<.ir..,·~,,,,,.?';~~:t~""""""~"""·~'·' 

o 

--.----

E, i2LOSURE TABULATION 

AIR FLOW '/ENTl:"l\T~l:r ! HAil "Bit nC n "D" 
DIRECTION S~ S'l'E:M I 

A/F#l 

A/F#2 

A/F#3 

I 

CLOSFD 12. IJ --- --- ---

'TOP/BOTTOM 8.75 --- --- ---

SIDE 8.75 7.0 16.0 ---
-- '--

VENT OPENING E 
TYP, BOTH SlOES 

r- - - - - - - - - - - - -/'1 f 
/ ~ I I 

/ ~ / / ,--,::tl 
/ 0':-,'~ B 

A/F 3 OUT / / ~,,'~-:: ~:, I 1 
t / "-::~',-::::.. 

/ / ,{::.'--,--<" '.;:::' I 
1" If- - - - - - - - - - - - - ~ .t:~.?~~::':-;-:':::J 1 I! E ....... ::. ... ~:::..:-:. ......... 

e 

"E" 
Sq. In. 

---

44.0 

112.0 

1 \.. ' I l~".;:::":::.:-,': 
I r- 1:3~;:?-::> " A/F 3 IN 

I I I f~.:::'...::-
A I I 6~~~):~/ ~ 11 I ,// /' 

/ Co 

~-------------Y~ 
~Z· 

Side Vent System 

, 

J 

i 
I 

Figure 2-4. ALPHA LSI-2 Series Ventilating Systems 

~ 
I 



o 

3. 

2.6.3 

Top/Bottom ventilating system 

The top/bottom ventilating system defines the minimum airflow paths for a cabinet 
with stacked equipment or an individual console enclosure. 

Motherboard Organization 

The motherboard is mounted vertically in the computer chassis and provides connectors 
to receive the processor board, memory boards and I/O controller boards as required 
to obtain a particular system configuration. 

Figure 2-5 shows the layout of the motherboard for both the Standard and Jumbo LSI 
Series chassis, as viewed from the rear (open end) of the computer. The connector 
pairs (or "slots") are arranged in rows identified as A through E in the standard 
chassis and A through K in the Jumbo chassis. The right-hand connector in each slot 
is called the "100 side" of the slot and has connector pins numbered from 101 through 

-186. The left-hand connector is called the "200 side" of the slot with the connector 
pins numbered from 201 through 286. 

connectors Jl, J2 and J3 have the same function on each of the motherboards. Jl is 
the console connector and J2 and J3 are Expansion Chassis connectors (see Expansion 
Chassis, paragraph 2.6.6). 

In the Standard LSI-2 Series chassis, connector FIOO is the connector that connects 
directly to the integral power supply located on the lower part of the chassis. In 
the Jumbo Chassis, power is brought in from the separately-mounted power supply to 
single pin connectors J4 through J9, Jil through Jl6 and 12-pin connector JIO. These 
connectors are located on the edge 01 the Jumbo motherboard. 

Figure 2-5 shows the Interrupt Priority, DMA Priority and Memory Banking control. 
The priority chains are used to assign priority to a peripheral device according to 
the location of the device's interface board in the motherboard. The DMA and Memory 
Banking cllains are strung through the "200 side" connectors only. DMA Controllers or 
Memories are assigned highest priority in slot B (B200) with second-highest priority 
given to C200, third to D200, etc., as shown. Interrupt priority is strung through 
both the 100 and 200 sides of each slot, as shown. Highest priority is given to 
B200, followed by BIOO, CIOO, C200, etc., as shown. 

Rules for using the priority chains are given in paragraph 2.6.5. 

2.6.4 Joining Half Boards 

PC boards are either "full boards" or "half boards"', depending on their width. Half 
boards can be joined with other half boards or .fillers to make a full board width. 
Full boards can be used in 19" width user designed enclosures or in the Computer 
Automation Standard or Jumbo LSI Series chassis. 

Where several half boards are used in a user-designed 19" width enclosure, or in the 
Computer Automation Standard or Jumbo LSI Series chassis, they must be joined to form 
full-sized boards. In those cases where an odd multiple of half boards is used, a 
blank filler board must be used with the last half board to provide mechanical strength 
and convenience. 

2-12 



OIl .... 
~ 
I» 

II.) 

I 
U'I 
..-. 
III 

CIl 
rt" 
III 
:;, 
Ilo 
III 
~ 
Ilo 

n ::r 
III 
rn 
rn .... 
rn 

II.) 3: 
I 0 ..... g: IN 

II) 
~ g-
III 
~ 
Ilo 

t" 
III 
'< 
0 

~. c: 
rt" 

--~ .... 
m 
~ 
Ilo 

Hl 
~ 

~ 
Ii 
m 
III 
Ii 

e, 

Interrupt 
Priority 
Chain 

From 
J2JJ3 

! OMA & 
Memory 
Banking 
Priority 
Chain I 

i , 
o 

EXPANSION CHASSIS 
INTERCONNECTION 

CABLE 

J2 

CONSOLE 
INTERCONN. 

CABLE 

Jl 

o 

" 50 

EXPANSION CHASSIS 
INTERCONNECTION 

CABLE 

J3 

r--------- ----- --- ---.- ----- --------. - --, 

e 

Interrupt 
Priority 
Chain -------------j PROCESSOR 4 

I ~oo (201) D H MEM-I/O . Aloo (101) C 1 ... 1 ~ From J2JJ3 
------____________________ J 

"'I MEM-I/O B200 t---+I MEM-I/O Bloo 

~ MEM-I/O C200 t4--I MEM-I/O Cloo 

i 
MEM-I/O 0200 MEM-I/O 0100 

MEM-I/O E200 (201) D MEM-I/O F.loo (lOll C 

I 

To J2/J3 t LpOWER Fl00 (10llC) To 
J2/J3 

SUPPLY 

~ 
I 



.=. 
"': ,. 

.. 
-' ~ .... 
~ 

X' 
~ 

:., 

~ 

i-' 
.;:. 

~ -~ ... 
.... 
'"I 
c.. 
I:"' 
III 
~ 
;. 

<; 

I"; 

~ 
c. 
-, 

::: 
~ 

:; 

~ 
~ 

;:J 
~ 

• 

Expansion Console Expansion I J2 J1 J3 I 
From I~O ~I ,~O '2' I~O ~ I 

Interrupt 
Priority Chain 

From 
J2JJ3 J2JJ3-i-r-=--=-----=-===-=---= ---- ---- ~-----PrOCessor-----------, 

Inter'upt I ~ ____ ~O~ _________ (2~~ ___________ ~~0 ____ ~~~U J5C 

P'10"t)l Chain 

MEM·I!O B200 110 B100 J6C 

: t J7C 

MEM·IIO C200 H 1/0 C100 J8C 

J9 C 

MEM·I/O 0200 0100 

r~ ,. Cll'Q.O 
.er-r-ory 

MEM·I/O E200 E100 
3 c.~ 

3ank ;ng 0,,""') 
Il.UJ 

80rtrol Chain 
DMA Priority 

Chain 
MEM·1I0 F200 F100 J11 [ 

J12C 

MEM·I/O H200 H100 J13[ 

J14[ 

MEM·I/O J200 J100 

I J 151: 

MEM·I/O K200 (201) 0 K100 (101~D J16C 

To J2/J3 To J2/J3 

(Rear View) 

~ 

I 
I 

I' 

~ 



o 

o 

--

r' hMW t eM 'Wee':,' '1 .ok r rHtrtt jjg It t tt ttt"·.,.q' 

ComputerAutomation ~ 

2.6.4.1 Using Stiffener Kits Numbered 95-20389 

If joined with a filler board, filler board model 13638-02 (assy 73-53638-02) or 
model 13265-02 (assy 73-53265-02) must be used. Filler board 13638-02 is used when 
prOl'a~ldtioll()f lilt' priority chell" i~; required. Filler board ])~6,-02 ir. blank and 
does not propagate the priority chain; it can be Iwed only a!i tht' lal:lt board ill lht' 
chain. 

Each half-board I/O module is supplied with stiffener kit 95-20389 which includes 
the following parts: 

1. Two 14-inch stiffener bars 

2. Twelve 4-40 x .500 inch nylon screws 

3. One nylon board extractor with roll pin 

4. One interface connector 

When joininl)::"wo half-board I/O modules, two stiffener kits are required. 

Th0 !itiffenfcr bars are installed on the component side of each printed circuit 
bOdXd ..ll~ ~·;t iffener bar is located parallel to the computer interface contacts on 
(~i.1o:1l p".dule. AnoUH'r stiffener bar is located at the back edge of each module 
par,tI .l.el to the peripheral interface contact strips. Finally, two stiffener bars 
(one for each module) are located on the adjacent edges of each module (what would 
be the center of a full PC board) • 

St.iffener bars are installed in the following manner: 

1. First dete~mine the physical placement of the module in the computer. That is, 
the relative placement of the module with regard to the priority string. 

2. Next, install the center stiffener bars. The nylon screw is inserted through 
from the solder side of the board. Tighten the screws. 

3. Tnstall a stiffener bar on the front and rear edges of both modules. Do not 
t.ighten the screws. 

4. 

5; 

Next, find a level work surface. Stand both modules in a vertical position 
with the front edge down. Ensure that the contact edge of each module is 
touching the table surface and that the modules are butted together. Tighten 
the nylon screws on the front edge. Now tighten the screws on the back edge. 

Finally, examine the board extractors on one of the installed boards in the 
computer. Find the similar extractor mounting holes on each module. Mount the 
extractor on each side of the module and insert the roll pin. 

2.6.4.2 Using Stiffener Kits Numbered 95-20660 

The I/O Distributor may be joined to a Filler board, model 13638-02 or model 13265-
02 (See Section 2.6.4.1), by use of a stiffener kit (95-20660). Each stiffener kit 
consists of the following parts: 

1. One stiffener bar and six 4-40 x 3/8" screws with lock washers and hex nuts. 

2. Twelve fiber washers. 
2-15 



ComputerAutomation ~ 

3. Two plastic mounting blocks with four nylon screws. 

4. Two nylon board extractors with roll pins. 

To join an I/O Distributor to a Filler board, proceed as follows: 

1. 

2. 

3. 

10 

4. 

Install the two plastic mounting blocks between the two boards . (figure 2-6) by 
inserting two nylon screws into tapped holes in each block from the solder side 
of the cards. Do not tighten screws firmly at this point. 

position the stiffener at the rear edge of the component side of the joined 
board so that the mounting holes in the stiffener are lined up with the mounting 
holes in the board. Insert one 4-40 screw through a fiber washer and through 
each mounting hole in the board (from solder side), through another fiber washer 
and through each hole in the stiffener (total six screws) as shown in section B-B 
in figure 2-6. Install a lock washer and hex nut onto each screw but do not 
tighten firmly at this point. 

Stand the boards (now joined as a single module) vertically on a level surface 
with the front edge down. Position the boards so that the sides are butted 
together and both front edge connectors are touching the level surface. Tighten 
each of the screws securely while maintaining position of the two boards. 

Examine the board extractors on a complete board. Install the supplied board 
extractors in a similar manner on opposite rear edges of the joined boards using 
the mounting holes provided. Secure with the supplied roll pins. 

This completes the joining operation. The PC board is now ready to install. When 
all boards are installed, be sure to install the board retainer at the rear of the 
Standafd, Jumbo, or Expansion computer chassis. 

BO~d Mounting Block 

~"":I:I~ 
~ 

Nylon Screws (2) 

Section A-A 

Section B-B 

Mounting __ --+---/7'""" Blocks (2) 

Stiffener 

B Extractors (2) 

~~~~~;/~ 
B

Figure 2-6. Using Kits Numbered 95-20660

2-16

c

0

c

2.6.5 Module Installat;0n, Processor Chassis Only

Do not remove or install any PC boards or cables while power is
applied to the computer.

The ALPHA LSI Series motherboard slot organization is shown in figure 2-5. All
modules, except the processor module which is restricted to the top slot (slot A),
can be placed in any location within the processor chassis. In the placement of
these modules, however, consideration must be given to pri.ority chains. These
priority chains, namely Interrupt, DMA, and Memory Banking, must be maintained. DMA
and memory modules provide for the propagation of all priorities. The I/O modules
provjde for interrupt priority, but may not provide for DMA and Memory Banking. If
I/O modules are placed above DMA or memory modules, the priority input and output
pins relating t': DMA and Memory Banking must be jumpered. '!'he priority input and
outpu.t pins fc~- OMJI, and Memory Banking are given in the chart below.

PRIORITY IN PRIORITY OUT
MNEMONIC PIN MNEMONIC PIN

DMA DPIN- 209 DPOT- 210

Memory Banking MBIN- 237 MBOT- 238

183 or 184 or
Interrupt PRIN- 283 PROT- 284

I ~~~U~IO~ ~J
Some I/O modules have the priority input and output pins brought
out to plated holes to facilitate jumpering. If these"plated
holes are not provided, the jumpers can be soldered directly to
the connector pin etch, but great care should be exercised in
this ()peratian.

Tn' ('rrupt priority is determint~d by physical location of the interface module within
tl)(~ chassis. 'l'he priority line begins with slot B200 and wea-"es through the mother­
board as shown in figure 2-5. It is routed through each I/O controller so it can
inbibit the lower priority devices when requesting service. Therefore, all I/O
modules must be placed in consecutive priority level slots to provide continuity in
the priority chain". If the priority chain is broken; down-stream interrupts may not
be 8erviced. If they a=e serviced, they will be serviced improperly.

As with Interrupt priority, DMA priority is determined by the physical location of
the D~~ controller. The DMA priority chain runs down the 200-series side connectors
only, the highest priority being in slot B200 and the lowest in slot E200. Half­
board DMA controllers must be installed in 200-series conn~ctors only.

The Memory Banking chain runs down the 2DD-series side connectors only. If half­
board memory modules are used, they must be installed in 200-series connectors only.

2-17

-

• tit 5 ttt rt'HH ttl' t ut

ComputerAutomation ~

If no specific module placement scheme is required, the general rules below may be
applied to facilitate module installation. If these rules are followed, no particular
problems should occur.

NOTE

1. Install <111 modult's with component !;idl.~ up.
2. See p<lraqr<1ph 2.fl.6 for expansion chassis rules.

1. Install processor module in t.he top slot (slot A) .

2. Install memory modules next. The various sizes and types of memory modules Cdn
be intermixed in any order. (Refer to section 7 for Memory Interleaving and
Banking information.) Half-board memory modules must be installed in 200-series
connectors only.

3. Install DMA controllers after memory modules. H~lf-board DMA controllers must
be installed in 200-series connectors only.

4. Install I/O modules last.

4C)1 . Documentation is provided for each type of I/O interface module. This document
defines the software and cabling requirements of the interface module. Refer to the I appropriate interface description to resolve any questions about the interface module.

0-:'·6.6

[=c~~:]
All I/O interface modules (except for floppy disk) must have the
rear-edge cable connector installed prior to operation of the
processor. If the connector is not installed, a default device
address of zero will be assigned to the module, causing improper
instruction execution. Device address zero i~ reserved exclu­
sively for processor use. cor details concerning assigrunent of a
unique device address to each I/O interface module, refer to the
associated interface description which is packed with each module.

Expansion Chassis

If the number of slots in the processor chassis are insufficient for a given appli­
cation, the Maxi-Bus may be expanded via one or more expansion chassis. The expansion
chassis is identical to the processor chassis (same motherboard, etc~) (refer to
figure 2-7) but includes a Buffer PC board (buffer board) to regenerate Maxi-Bus
signals, and also ribbon cables of the appropriate length for interconnecting chasses.
(The length of the cables depends upon whether the connection is from the processor
chassis to the first expansion chassis, or between subsequent expansion chassis.)

To facilitate the computer system expansion, Maxi-Bus expansion connectors J2 and J3
are provided on the motherboard immediately above slot A. (Refer to figure 8-10 for
the pin assignments of connectors J2 and J3.) Connectors J2 and J3 are connected to
buffer board connectors J2 and JI, respectively, in the first expansion chassis. If
further expansion is required, connectors J4 and J3 at the bottom of the buffer board
are connected to ·J2 and JI, respectively, of the next buffer board. The interconnect
cables shOUld be routed through slots located at the front, bottom and top of each
chassis.

2-18

c

I
'.1

I
I

o

o

"¥tMtte.ee'. Elit w

ComputerAutomation ~

The Buffer PC board is mounted witq the component side facing the expansion chassis
motherboard. Emanating from the center of the component side of each buffer board
are two ribbon cables (WI and W2). When facing the front of the chassis, the cable
on the right, W2, interfaces with connector J2 on the expansion chassis motherboard.
The cable of the left, WI, interfaces with connector J3.

Expansion may extend to a maximum of three chasses (2 expansion chasses plus main
chassis). As expansion chasses are installed, a speed degradation will occur.
Memory modules located in expansion chasses will exhibit an apparent slower system
access and cycle time (200 ns for each expansion chassis). Similarly, I/O modules
located in a second expansion chassis or beyond may require that the processor timing
circuit be altered to provide additional phase stretching during I/O operations
(refer to paragraph 6.6.5). (A minimum I/O stretch period of 100 ns is recommended
for each "subsequent" expansion chassis beyond the "first" expansion chassis.) This
timing circuit is modified simply by changing an option-jun~er connector which con­
figures all jumper-controlled processor options in the machine. This option-jumper
connector mounts to the rear-edge of the Option Pack. Note that whenever any stretch
is inserted, al;. I/O timing throughout the system is slowed down by the stretch
per ;.011.

NOTE

I~xpansion chassis must be installed below the processor chassis.

Expansion Chassis
Motherboord
(535()()·00l

J3 Jl J2

r-C;~~1.l-~--=~~ First Expansion
a..55is Assemblv
(12091-00)

ExpanSIon Ch.<sis ---~==~l,:iiJ3~:::::::::::::::-'"f~J49J
Buffer PC Board
(53536·00)

Wl

J3

t--C;F~~-+::::~~ Subsequent

, , ,
"~

W1

J4

Expansion ChaSSIS
A .. semhlies
(12031·01)

Figure 2-7. Expansion Chassis Cabling Scheme

2.6.6.1 Module Installation, Processor and Expansion Chassis

In general, the processor chassis module installation rules described in paragraph
2.6.5 (referring to priority chains, placement of half board DMA and memory modules,
etc.) are also applicable to module installation in expansion chasses. In addition
to these general rules, the following rule is applicable to installation of DMA con­
trollers in expansion chasses and must be adhered to.

DMA controllers cannot communicate with memory or I/O modules'located in up­
stream chasses. They can, however, communicate with these modules if the,y are
installed in any slot within the same chassis, or within any down-stream chassis.

2-19

--..i

If no specific module placement scheme is required, the general rules below may be
applied to facilitate module installation in the processor and expansion chassis.

l. In·stall the processor module .in ~., lot A of the processor chassis .

2. Install all memory modules.

3. Install DM controllers.

4. Install all I/O modules last.

2.6.7 AC Power Application

Computers intended for use with 110 Vac are shipped with a line cord containing a
standard 3-prong ac plug. Computers intended for use with 220/240 Vac are shipped
with a line cord, but without a plug due to the various plug configurations possible
when using 220/240 Vac. In these instances, the eustomer must install an appropriate
ac plug. Color coding for the wires contained in the ac line cord are as follows:

WIRE COLOR CODE

0 Hot Line - fused Black or Brown
Neutral - unfu~;ed White or Blue
Ground Green or Green/Yellow

.Before plugging the ac line cord into the power source, turn off the main power
switch on the back of the chassis. Connect only to a properly grounded three-prong
receptacle. When power is applied, verify that the cooling fans are operating.

2.6.7.1 Power Conversion - Standard LSI-2 Series Chassis

The Standard LSI-2 Series chassis may be powered from either 110 Vac or 220/240 Vac.
To convert from 110 to 220/240, or 220/240 to 110, follow the procedure outline
below and F2rform the appropriate step 4 for the conversion desired. Step 4a is for
converting from 110 to 220/240 and step 4b is for converting from 220/240 to 110.
Refer to figure 2-8 for pin diagram.

Step I Turn power off and remove' line cord from ac power source. i
0 Step 2 Remove Console from front of chassis.

Step 3

Step 4a

Step 4al

Disconnect ac power connector PI from the power SUPIJly. Power con­
nector PI is connected to the power supply through an opening in the
motherboard.

110 Vac to 220/240 Vac

Using a Molex removal tool, remove pin 3 from power connector Pl.
(The pins are numbered on the wiring s.ide of the connector.) Insulate
the pin with a piece of electrical tape and tie back to cable.

Step 4a2 Remove pin 6 from power connector PI and insert in pin 3 of Pl.

Step 4a3 Install d 220/240 Vac plug on the line cord.

2-20

c

-""" ...

'i'tl::tenti#M'Q% "hAUUla" >i" p'w-'wn'd t " IH'!!i.luirV&,ik'·Wa'h:"'y' ibi! "t $i:"is

ComputerAutomation ~

step 4a4 Change line fuse from 7 A, 125 V to 5 A, 250 V, slo-blo.

step 4a5 Proceed to step 5.

step 4b 220/240 Vac to 110 Vac

Step 4bl Using a Molex removal tool, remove pin 3 from power connector Pl and
insert in pin 6 of Pl. (The pins are numbered on the wiring side of
the connector.)

step 4b2 Take the pin which is tied back to the power cable (contains a blue
and a black wire) and insert in pin 3 of Pl.

step 4b3 Install a 110 Vac plug on the line cord.

step 4b4 Change line fuse from 5 A to 7 A, sio-bio.

step 5

steT"' (3

Sten -,

Reconnect power connector PI to the power supply.

Install the Console.

Connect the line cord to the appropriate source of ac power. Then
turn power on and test the computer.

008

REAR VIEW (wiring side)

Figure 2-8. Fan Housing Molex Connector Pin Diagram

2.6.7.2 Pow'-'r Conversion - Jumbo Power Supply

strapping at the terminal board of the power transformer jn the Jumbo Power Supply
can be reconfigured to permit the power supply to be operated from a power line
voltage range other than the line voltage range ordered at purchase. Strapping
procedures are given below which affect power line conversion. One of four voltage
ranges may be selected by employing the appropriate strapping procedure:

For
For
7 .
7.
and

an
an
For
For
7.

operating range of 90 to 121 volts, perform steps 1, 2, 3, 4, 5a, 6, and 7.
operating range of 103.5 to 139.7 volts, perform steps 1, 2, 3, 4, 5b, 6, and

an operating range of 180 to 242 volts, perform steps 1, 2, 3, 4, 5c, 6, and
an operating range of 207 to 279.4 volts, perform steps 1, 2, 3, 4, 5d, 6,

step 1 Turn power off and remove the line cord frcm the ac power source.

Step 2 Remove the cover of the power supply. The cover of the power supply
is in the shape of an inverted "U" forming the top and two sides. It
is secured by 18 _sheet-metal screws located at the lower sides, the

2-21

step 3

ComputerAutomation ~

side and top edges of the front panel and the rear edge of the top.
Remove these screws.

Locate the power transformer and terminal board TBI01. The transformer
is located directly behilld the front panel of the power supply at
approximately the center of the panel. The terminal board is attached
to the side of the transformer (see figure 2-9).

Step 4 Remove the two jumper wh"es (which are equipped with slip-on con­
nectors) from the terminals of the terminal board.

step Sa Establishing a 90- to l21-volt Operating Range

step Sal Attach one of the jumper wires to terminals 2 and 5; attach the re­
maining jumper wire teJ terminals 3 and 6.

step Sa2 Attach the white wire (which is also equipped with a slip-on connector)
to terminal 2, if it is not already attached to terminal 2.

Step Sa3 Replace the fuse in the fuse holder at the rear of the power supply
with a fuse rated at 15 amperes, 250 volts (Buss MDA 15), if a fuse of
this rating is not already in the fuse holder. The replacement fuse
is not supplied.

step 5a4 Proceed to step 6 below.

step 5b Establishing a 10_~_5- to 139.7-volt Operating Range

step Sbl Attach one of the jU7Tlper wires to terminaL" 1 and 4; attach the
remaining jumper wire to terminals 3 and 6.

step 5b2 Attach the white wire (which is also equipped with a slip-on connector)
to terminal l, if it is not already aU-ached to terminal 1.

Step ::>b3 Replace the fuse in the fuse holder at the rear of the power supply
with a fuse rated at 15 amperes, 250 volts (Buss MDA 15), if a fuse of
the rating is not already in the fuse holder. The replacement fuse is
not supplied.

step 5b4 Proceed to step 6 below.

step Sc Establishing a 180- to 242-volt Operating Range

Step 5cl Attach one of the jumper wires to terminals 3 and 5. (The remaining
jumper wire is not needed; however, it should be saved as a spare. If
it is necessary at some later time to convert to the 100- to llO-volt
or 115- to 127-volt operating range, the spare jumper wire will be
needed. It is suggested that the ends of the spare jumper wire be
attached to the two upright lugs of terminal 1 for convenient storage.)

step Sc2 AtLlch the whitt' wire (which is also (~quipped with a slip-on connector)
to ttnmi lid I L, i r i t_ is not already at tach0d to term inal 2.

step 5c3 Heplace the fuse in the fuse holder at the rear of the power supply
wi th a fuse rated at 8 amperes, 250 volts (Buss MDA 8), if a fuse of

2-22

c

IV
I

IV
W

e

II

!
i • _ "':"_~."l;;:""""'4':='!""''-~.··,""~5u.~"",,_' ,>,

o o e

TBlOl FRONT PANEL

of 0
I -'-1

1

I 2 I POWER
3

4 I TRANSFORMER I 5

I ~:~ ;:} 6 L _J

0 0

(O:WER REMOVED)

Figure 2-9. Jumbo Power Supply Jumper Locations (TBIOl)

~

I
'0·'" "

I

w.!.et 't"'n::"O'"fe¢"'* #1'1#1!¥r"'· .-'*:

ComputerAutomation ~

this rating is not already in the fuse holder. The replacement fuse
is not supplied.

step 5c4 Proceed to step 6 below.

step 5d -,stablishing a 207- to 279.4-volt Operating Range

Step 5dl Attach one of the jumper wires to terminals 1 and 4. (Thp remaining
jumper wire is not needed; however, it should be saved as a spare. If
it is necessary at some later time to convert to the]00- to llO-volt
or 115- to l27-volt operating range, the spare jumper wire will be
needed. It is suggested that the ends of the spare jumper wire be
attached to the two upright lugs of terminal I for convenient storage.)

Step 5d2 Attach the white wire (which is also t'quipped with a slip-on connector)
to terminal 1, if it is not already attached to terminal 1.

step 5d3 Replace the fuse in the fuse holder at the rear of the power supply
with a fuse rated at 8 amperes, 250 volts (Buss MDA 8), if a fuse of
this rating is not already in the fuse holder. The replacement fuse
is not supplied.

step 5d4 Proceed to step 6 below.

step 6 Install the cover of the power supply.

step 7 connect the line cord to the appropriate source of power, then turn
power on.

2-24

(

I

ItIH"'+"rl test. Ittd$, h\-1 .1 *«#'Mtnia'¥'i' H' Fa #. Y

ComputerAutomation ~

section 3

CONSOLES

3.1 INTRODUCTION

There are two consoles available for use with the LSI Family of computers. One is a
minimum function console called an Operator's Console which provides switches labelled
ENABLE, START, RESET, and INT and indicators labelled ON, RUN, and OV. The use and
function of these switches and indicators is described in detail in this section.

The second is a full function Progranuner's Console. The features and operation of
the PrograInm(""'~; ConsolE' are described below.

OJ.2 J->hOGRAMMER' S CONSOLE

c

3.2. ; 'ltroduction

'I'h" Programmer's Console (figure 3-1) provides facilities necessary to control and
display processor operation. The following functions can be selected using console
~w:tches and indicators:

1. Selection of stop and Step modes (STOP switch).

2. Display and/or alteration of the contents of the A,X,I, and P registers (A, X,
I, P, and READ/WRITE switches).

3. Di~play and/or all:eration of the memory location pointed to by P, with automatic
incrementing of P (M and READ/WRITE switches).

4. Joitiation of AutoLoad operation (RESET, SENSE, AUTO, and RUN switches).

l"
) . Enablement/disablement of the console (ENABLE switch and indicator).

6. Indication of power on/off (power ON indicator).

3.2.2 switches and Indicators

For the convenience of the user, the switches and indicators have been grouped into
the following secti.ons:

1. Status

2. Control

3. Entry and Display

Figure 3-1 illustrates the progranuner's console. All console switches, except the
('onsole Enable switch, are momentary contact touch switches and all indicators are

3-1

i I ,--------------- CornputerAutomatlon ~ --

i
l,'.

• e 111 • !

, I •••• I ",j •••• I •••• ! I ••• '. I
0 • eo • Q)

e-
.-l
0
en e", t::
0

e'" u
e en

e· -
So.!

.'" • Q) ~ . ~ e So.!
0-
0 ... So.!

• p..2 • .-l

.= I
M

Q)

.~ So.!
::l

eo:!! 0-•!: ""
~OJ

.!!! •
• .t • -....

.~ • "

:

.j ...

.= • ~
C

I
I

-
o

ttttrM#t b ,"ge'tff'# * t

ComputarAutomation ~

ligh t: -erni tt ing diodes (LED' s) .
in table 3-1.

The switchcl; and indicators are listed' and explained

NOTE

Due to the momentary contact nature of the console switches, the
information entered via these switches is volatile. since it is
stored electrically rather than mechanically. The information
will be lost during a power outage. All pertinent information
can be restored, however, upon power resumption through use of
the Power Fail Restart option and appropriate software to restore
the Status word. (Refer to Power Fail Restart, section 6, and
Status Control instructions, section 4.)

3.2.3 Machine Modes

There are four machine modes which are controlled from the console. These modes are:

l.
2.

!3top Mode
~~t- f.'i..) rv:ode

:3. '~lln Enable Mode
4. Run M.ode

r.;ode selection i.s made by use of the RUN and STOP switches. The RUN and STOP indi­
Cil':-)rS define the current machine mode as follows:

STOP RUN MODE

on off Stop
on on Step
off off Run Enable
off on Run

3.2.3.1 stop Mode

The stop mode conditionally halts program execution and enables the Entry and Display
section of the console. (Program execution will not halt within a SIN instruction
loop or an indirect address loop.) The Stop mode is manually entered from either the
Run mode or the Run Enable mode when the STOp· switch is pressed. While in the Stop
mode, the Entry and Display section of the Console is enabled.

3.2.3.2 step Mode

The Step mode is a transient condition in which a single instruction is executed.
The stop mode is re-entered upon completion of the instruction~ A single instruction
is executed each time the RUN switch is pressed while the STOP indicator is on.
Interrupts are not serviced while in step mode.

3-3

I , I

ComputerAutomation ~

Table 3-1. Console Switches and Indicators

SWITCH OR INDICATOR

System Status Cection

ON Indicator

ENABLE Slide Switch
And Indicator

o
I

BYTE Indicator

OV Indicator

I SENSE Swi tch and
! Indicator

I
I gystem Control Section

STOP Swi tch and
Indicator

PURPOSE

On when power is applied, off when power rs removed. The
main power switch is located on the rear of the computer
chassis.

The console enable/disable slide switch is located in a
recess on the edge of the console. When the switch is on,
the ENABLE indicator is on. Likewise, when the switch is
off the indicator is off. When in the ENABLE state, all
switches and indicators are enabled. When in the disabled
state, the only functions that are effective are:

1.

2.

3.

The SENSE switch and indicator.

The Console Sense register, Console Sense register
display, Hex Entry Keyboard for the Console Sense
reg i s te r.

Console Interrupt and Interrupt indicator.

4. The Byte, OV, ON, and Data Display indicators.

On when the processor is in Byte mode. Off when the Pro­
cessor is in Word mode.

On when the processor Overflow flag is on. Off when the
Overflow flag is off.

The SENSE switch toggles the SENSE indicator. The SENSE
indicator may be tested or changed by program instructions.
The Sense test will be true if the SENSE indicator is on.

The STOP switch toggles the STOP indicator. The indicator
is on when the Stop mode is establ ished. When the indicator
is off, the Run or Run Enable mode is established.

When the Stop mode is established and the console is enabled
(ENABLE indicator on), data entry and display operations may
be performed. In addition, the processor will fetch and
execute one program instruction each time the RUN switch is
pressed.

When in the Run Enable mode, data entry and display opera- •
tions may not be performed. The Run mode is enabled but not •
entered unti I the RUN or AutoLoad switch is pressed. I

I

1-4

wm... m#' m t'tth' .ft,

ComputerAutomation ~

Table ~-l. Console switches and Indicators (Cont'd)

SWITCH OR INDICATOR

RESET Switch and
Indicator

AUTO S\rli tch and
Indicator

INT Switch and
Indicator

RUN Swi tch and
Indicator

Entry/Display Section

Register Display
I nd i cators (0 thru 15)

PURPOSE

The indicator is on when the RESET switch is on and remains
on only as long as the switch is pressed. The RESET switch
generates a system reset signal which causes the processor
and all interfaces to be initialized.

The RESET switch should not normally be used to stop the
computer. If RESET is pressed while the computer is running,
the instruction currently being eXEcuted may not complete.
The STOP switch should normally be used to halt the computer.
RESET should be used to halt the computer only when the
processor is hung up in a non-escapable one instruction loop
(e.g., multi-level indirect address instruction with closed
address chain) or a SIN instruction loop.

The RESET switch should not be used after entering data via
the console because any flags and indicators turned on
during data entry wi 11 be turned off.

The AUTO switch is used to initiate an AutoLoad sequence if
the AutoLoad nption is installed. The AUTO switch is enabled
only during the Run Enable mode. Depressing the switch
establishes the Run mode and initiates the AutoLoad sequence.
The indicator turns on when the switch is pressed and remains
on until the AutoLoad sequence is completed. With no Auto­
Load option installed, derression of AUTO wi 11 sti 11 cause
the processor to run starting at location :0000 and the
AutoLoad indicator will come on and stay on, however, no
loading will occur.

The INT switch is used to initiate a Console Interrupt. The
switch is honored only during the RUG mode. The indicator
turns on when the switch is pressed and remains on unti I the
processor honors the Console Interrupt request.

The RUN switch is used to establ ish the Run mode when the
STOP indicator is off. When the STOP indicator is on, the
RUN switch causes one instruction to be fetched and executed
when pressed. The WRITE/READ and register indicators (A, X,
I, P and M) are turned off whenever RUN is pressed. The RUN
indicator is turned on when in the Run mode.

The 16 Register Display indicators display the contents of
either the Console Data register or the Console Sense
register depending on the state of the. S REG/DATA indicator.
When the S REG/DATA indicator is off, the contents of the
Console Data register are displayed. The Console Data

3-5

*

CpmputerAutomation ~

Table 3-1. Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

O~egister Select
Switches and
Indicators (A, X, I,
P and M)

WRITE/READ Switch
and Indicator

o
I

Hexadecimal Entry
Keyboard (0 through F)

register contains either: 1)
the A, X, I, or P register or
Register Select switches; 2)
the Console Data register; Or
the Console Data register.

the most recent contents of
memory as rqquested by the
the 11st proct's<>or output til

3) the last keyboard entry to

When the S REG/DATA indicatbr i~ on, the contents of the
4-bit Console Sense register are displayed on the Register
Display- indicators. The Console Sense register contains
either the last keyboard entry to the sense register or the
last processor output via the Status Output command. The
upper 12 Register Display indicators are turned off when
displaying the Console Sense register.

The five Register Select switches determine which one of
four processor registers or memory data IS to be involved In
a read/write operation. Each switch has a corresponding
indicator which turns on when a given switch is pressed.
The indicators are interlocked such that only one indicator
is on at a time. The A, X, I, and P switches cause a trans­
fer to occur between the tarqet register and the Console
Data register. The M switch causes a transfer between the
memory location addressed by P Register and Console Data
register to occur and also causes the P counter to increment
after the transfer. This feature permits manual scanning or
loading of sequential memory locations by repeated pressing
of the M switch.

The WRITE/READ switch is used in conjunction with the
Register Select switches. When the WRITE/READ indicator is
on, the contents of the Console Data Register wi I I be written
into the target register or addressed memory location when
the appropriate Register Select switch is pressed. When the
WRITE/READ indicator is off, the contents of the selected
register or addressed memory location are copied into the
Console Data register and displayed.

The Hexadecimal Entry Keyboard consists of 16 switches which
are used to enter data into either the 16-bit Console Data
register or the 4-bit Console Sense register as determined
by the S REG/DATA switch and indicator.

When the S REG/DATA indicator is off, each depression of a
key causes a corresponding 4-bit binary hex code to be
entered into the four least-significant bits (LSB's) of the
Console Data register with the previously entered data
shifted four places to the left. The Console Data register
will be statically displayed as long as the S REG/DATA

3-6

o

}.I

t t ct« "*f t ,,1 '" .!, W

ComputerAutomation ~

Table 3-1. Console switches and Indicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

S REG/DATA Switch
and Indicator

CLEAR Switch

indicator is off and the computer program does not alter the
contents of the Console Data register.

When the S REG/DATA indicator Is turned on, each depression
of a hex entry key causes the corresponding binary hex code
to be entered into the four-bit Console Sense register. The
Console Sense r~giste~ is statically displayed in the four
least-significant Register Display indicators so long as
S REG/DATA is in the on state and the computer program does
not modify the contents of the Console Sense register. The
upper 12 Register Display indicators are extinguished.

The S REG/DATA switch toggles the S REG/DATA indicator which
determines whether the Console Data register oj the Console
S~nse register is to be connected to the ~ex entry keyboard
and the Register Display indicators. If the S REG/DATA
indicator is off, the hex entry keyboard is used to enter
data into the Console Data register and the Register Display
indicators are connected to the Console Data register. If
the S REG/DATA indicator is on, the keyboard and display are
connected to the Console Sense register.

The CLEAR switch, when pressed, clears data from the Console
Data register. The switch does not affect the Console Sense
register and is independent of the S REG/DATA indicator.

3-7
"I
~: --------------------------------1,1

,
~
1
~

J ,
3.2.3.3 Run Enable Mode

tt 't t ';

ComputerAutomation ~

~. The Run Enable mode is an intermediate mode between the Stop and Run modes. Either
f: the Run or stop mnde may be entered from the Run Enable mode. Conversely, the Run
1 Enable mode can be entered from the Run mode by execution of a proqranuned halt. The

Run Enable mod can be entered from the stop mode by turning off the STOP indicator.
While in the Run Enable mode, tho Entry anel Display s('ction of the.coll!;o](' i:: disahl('cj.

" '(,

3.2.3.4 Run Mode

The Run Mode can be entered from the Run Enable mode. When entered, the Run mode
permits the user's program to execute. The Run mode can be established manually from
the console, semiautomatically by means of the AutoLoad option, or automatically by
means of the Power Fail Restart option. Run mode can also be establlshed by simply
applying power to the computer . .
The Run mode is entered manually from the Run Enable mode by pressing the console RUN

4t)switch. If the AutoLoad and Power Fail Restart options are installed, the Run mode
is entered from the Run Enable mode when the AUTO switch i.s pressed. The Power Fail
Restart option automatically establishes the Run mode upon application of adequate
power regardless of processor or console status prior to th8 power failure.

3.2.4 Console Operation

The console is used for initial start-up, program debug, and troubleshooting. The
primary functions executed at the console are register display and register change,
and the display and entry of memory data. The following paragraphs discuss detailed
procedures for performing these operations.

3.2.4.1 Console Preparation

~here are several conunon
may be attempted. These
operations. The initial

1. Power On

2. Enable Console

steps that must be performed before any console operation
steps prepare the console and the computer for console
steps are:

The main power switch for the computer is at the rear of the
chassis. Place the power switch in the up position (ON).
The ON indicator on the console will light and the chassis
blowers will run.

Enable the console by moving the Console Enable slide switch
(located in the recess on the side of the console) to the
enable position. The ENABLE indicator is on when the console
is enabled.

3-8

I

I

I

c

C

3. Press STOP

4. Press RESET

II t'dt#' ,tt rtt 'it" ... t ''''' ... ''9''1' 'M b"'j 'ti ". ttf"j"r

ComputerAutomation ~

The computer may come up in the Run mode because of a pre­
viously loaded program. Pressing STOP causes the computer
to leave the Run mode.

NOTE

In some cases the RUN indicator may
remain on after the STOP switch is
pressed. This condition may exist when
the computer is attempting to execute
certain I/O instructions, a SIN instruc­
tion loop, or an indirect loop. This
does not necessarily indicate a mal­
function of the computer. When this
occurs, step 4 of this procedure will
normally correct the condition.

Pressing RESET puts the computer in Word mode and initializes
the computer and peripheral interfaces. It forces the
termination of any incomplete instructions.

3.2.4.2 Console Data Entry Procedure

The Console Data Entry procedure is used to store data into selected registers or
memory locations from the console. The general procedure is to enter the data into
the.· Console Data register via the hex keyboard and then transfer the data to a target
register or addressed memory location via the Register Select switches. The detailed
procedure is as follows:

l.

2.

3.

4.

5.

6.

Ready Console

Turn S REG/DATA
Indicator off

Turn WRITE/READ
Indicator on

Memory Address

-- p

Data - Target
Register or .Memory

Sequential Memory
Stores

Prepare the console and the computer for console operations
as described in paragraph 3.2.3.1.

Enables Console Data register entry, display and transfer.

Enables writing into a selected target register or memory
location.

Before writing into memory locations, the memory address
where data is to be stored is entered into the Console Data
register and the P switch is pressed to transfer the contents
of the Console Data register to P. This step is not required
to enter data into the A, X, I, and P registers.

The data is entered into the Console Data register. The
appropriate register select switch is pressed to transfer
the contents of the Console Data register to the target
register or addressed memory location.

The P register is automatically incremented each time M is
pressed. To store data in sequential memory locations, go
back to step,S for each succeeding word. To store data in a
new location, go back to step 4.

3-9

i
Ii

.. *etkl5ettbH't·!/ 'MY:WttMri • "EihltttIWkrt'WWrW:H!$"'stttt 'rtf'

,.-----------------_._---

I

3.2.4.3 Console Display Procedure

The Console Display procedure is used to display the contents of selected re~isters
or memory locations. Tl1e general procedure is to transrer the data from a register
or memory location to the Console Data register by use of the appropriate Register
Select switch. The detailed procedure is as follows:

7. Sequential Memory
Displays

Prepare thp console dnd tIlt' computer for (loll~;oll' opf'r<lt.ioll~;

as d~scr:'ibcd in paragraph "'\.2 .. 3.1.

Enables Console Data register entry, display, and transfer.

Enables writing desired address into P register.
only prior to displaying memory locations.)

(Required

1~e address of the memory location to be displayed is entered
into the Console Data register and the P switch is pressed.
(Required only prior to displaying memory locations.)

Enables reading from a selected register or memory location.

When the appropriate Re(jister Select switch is pressed, the
contents of the selected target register or memory location
are copied into the Cons6le Data register ~nd displayed.

NOTE

For the LSI-2/60, the I register may
have been altered on certain instruction
types.

The P r~gister is incremented each time M is pressed.
Therefore, to display data in sequential memory locations,
go .back to step 6.

c The following caution is applicable when stepping through a
program on the computer:

If the computer is halted (execution of HLT instruction) within
the range of a SIN instruction, any console operati_on will cause
execution of the remaining instructions wi thin t.he SIN range
before the console is serviced. If the program loops back to the
SIN instruction before it expires, it is necessary to push the
RESET switch.

3.2.4.4 Program Execution

Programs to be executed may be entered into memory by a number of different means.
Short programs may be entered using the Console Data Entry procedure described in
paragraph 3.2.3.2. Longer programs may be entered usinq tlle AutoLoo.d feature or

3-10

c

~l
>1

o

o

set t" dr' Ot't"e t
t ,

ComputerAutomation ~

various lqader programs. Regardleas of the means used to get a program into memory,
the method used to execute that program is generally the same. The Program counter
(P register) must be set to the starting address of the program, and the computer Run

mode must be entered. The following steps are used to start program execution from
the console:

1.

2.

Ready Console

start Address
-P

Prepare the console and the computer for console operations
as. described in paragraph 3.2.3.1.

Enter the starting address of the program to be executed in
the P register.

NOTE

Enter any required starting information associated with the
program in the A, X, Sense or Data register," as appropriate.

3. Press STOP

4. Press RUN

This enables Run mode, but does not cause the computer to
enter Run mode.

Pressing the RUN switch causes the computer to enter the Run
mode. The computer will continue to run until it executes a
Halt instruction, or until the STOP or RESET switch is
pressed.

3.2.5 Unattended Operation

If for any reason the computer is left unattended when executing a program, it is
recommended that the console be disabled by placing the Console Enable switch to the
Disable position.

3.3 OPERATOR'S CONSOLE

3.3.1 Introduction

The Operator's Console (figure 3-2) provides minimum facilities for the control and
display of processor operations. It can be used in systems having the following
options: Power Fail Restart (PFR) and AutoLoad (AL) ROM or EPROM.

The console provides switches to reset the system, to interrupt the processor, and to
start the processor or initiate AutoLoad, depending on the options installed. Indi­
cators are provided to indicate power on, system running, and overflow.

3.3.2 Switches and Indicators

All switches are of the momentary-contact type activated in the down position. All
indicators are LED's. Switch and indicator operation is summarized in table 3.2.

3-11

iff tbtHWS. fl r wr#n "n ft_*tt' i t

~------------~---------- ~~~ ~

~i

o

I

10 EM8LE ON R\)"i 0"1 StA.1iT RESoET IWT

~ j - • • ~ f f~ -.-..

Figure 3-2. Operator's Console

c

c!

Switch/Indicator

ENABLE
Swi tch

RESET
Switch

START
Swi tch

INTerrupt
Swi tc '

Power ON
Indicator

RUN Indicator

OVerflow
Indicator

TablE" 3-2. switch/Indicators - Operator's Console

Function

Activation of this switch enables all oth~r switches on the
Operator's Console. ENABLE must be held down while any other
switch is activated and not released until' the activated switch
is released.

The RESET switch, when activated, forces system ~eset, initializing
the processor and all interfaces.

In systems having the AutoLoad option, this switch, when activated,
initiates AutoLoad.

In systems without the Autoload option, this switch, when de­
pressed, starts the processor operating at location :0.

When activated, this switch generates a Console Interrupt com­
manding the processor to interrupt normal processing. Once the
processor has serviced this interrupt, the Console Interrupt
Enable Mask (CON) should not be reenabled by the software for
1.5 ms to avoid interpreting switch bounce as an Interrupt Request.

This indicator, when on, indicates that power (+5 Vdc) is applied
to the Operator's Console.

This indicator, when on, indicates that the processor is in Run
mode.

This indicator indicates the state of the processor OV flag.

3.3.3 strapping Requirements

Since the Operator's Console does not have a SENSE switch or Sense Register, jumpers
(or switches) must be installed to replace these functions. The requirements vary
with two system configurations:

1. Systems Without AutoLoad aption. To start processor operation upon activation
of the START switch as explained in table 3-2, AL- must be jumpered to QATLD- on
the Option Pack or at processor connector Jl. Alternately, AL- can be jumpered
to PFD- on the motherboard.

2. systems with AutoLoad Options. with this option, the Cl.ctivation of START initi­
at~s an AutoLoad sequence. To perform an AutoLoad-and-Execute operation from a
loader device, the Sense Switch signal (SSW-, pin 2), and Enable Data sense Word
(ENDSW-, pin 28) must be strapped to ground at Option Pack connector Jl. Also,

3-13

I
1

- I
:

ComputerAutomation ~

data sense signals DSOO-OS03 must be strapped at Option Pack connector Jl for proper
selection of the loader device. These signals are on the following pins of Jl (see
figure 6-2) :

OSOO- , pin 34
OSOl-, pin 33
OS02-- , pin 36
OS03- , pin 31

The device is selected by strapping the appropriate pines) according to table
3-3. Note that this table surrunarizes the strappings for AutoLoad Type 2 and
AutoLoad Type 3 separately.

To perform an AutoLoad-and-Execute operation without a loader device, all data sense
signals (bits) must be grounded (:F). This causes an unconditional exit to location
:31 (see paragraph 6.5.6) .

3,4 OATA/SENSE TRANSFER

Contents of the Console Oata register and Sense register and the state of the SENSE
~witch can be transferred to and from the processor by th~ use of I/O instructions.

The contents of the Sense register and the state o~ the SENSE switch can be trans­
ferred by I/O instructions O'l'A, OTX, INA or INX with a device address of zero and
function code of zero. Oata is transferred on the following bits of the data bus.

OA=O
FC=O

7 6 5 4 3

I OS3 -----OSO SS OATA BUS

L-.---SENSE SWITCH
...... ----------SENSE WORD (OSO-OS3)

Using an input instruction with a device address of zero and function code of one,
the console sense word is input (it cannot be output) on the following bits of the
data bus: ,

o OA=O 3 2 1 0
FC=l

IOS3 OSO OATA BUS

I SENSE WORD (OSO-OS3)

For data transfer between the processor and the Console Oata register, console I/O
instructions OCA, OCX, ICA and ICX (OA=O, FC=4) are used. They cause the transfer of
the entire l6-bit data word using all bits of the data bus. -

.~-14

w •

ComputerAutomation

Table 3-3. Device Selection

With AutoLoad Type 2 Installed

LOAD (J 1 PIN NO.) EQUIVALENT
LOADER DEVICE MODE STRAP TO GND' HEX ADDRESS

Processor TTY ABS None :0
High-Speed Paper Tape Reader ABS 34 : 1
Magnetic Tape ABS 33 :2
Cassette ABS 33, 34 : 3
Moving-head Disk, Unit 0 ABS 36 :4
Moving-head Djsk, Unit 1 ABS 34, 36 :5
Floppy Disk ABS 33, 36 :6

Processor TTY REL 31 :8
High-Speed Paper Tape Reader REL 31 , 34 :9
Maqnctic Tape REL 31 , 33 :A

o Cassette REL 31 , 33, 34 :S
Mnvir-g-head Disk, Unit 0 REL 31 , 36 :C

r " v''lg-head Disk, Unit 1 REL 31 , 34, 36 :0
! Floppy Di sk REL 31 , 33, 36 : E

With AutoLoad Type 3 Installed

LOAD (J 1 PIN NO.) EQUIVALENT
LOADER DEVICE MODE STRAP TO GND HEX ADDRESS

Processor TTY ASS None :0
High-Speed Paper Tape Reader ASS 34 : 1

(with 010)
Magnetic Tape ASS 33 :2
010 TTY ABS 33, 34 : 3
Moving-head Disk, Unit 0 ABS 36 : 4
Moving-head Disk, Unit 1 ABS 34, 36 :5
Floppy Disk ABS 33, 36 :6

Processor TTY REL 31 :8
High-Speed Paper Tape ~eader REl 31, 34 :9

(with 010)
Magnetic Tape REL 31, 33 :A
010 TTY REL 31, 33, 34 :B
Moving-head Disk, Unit 0 REL 31, 36 :C
Moving-head Disk, Unit 1 REL 31,34,36 :D
Floppy Disk REl 31,33,36 :E

,

Ii

I
t

, 3-.1.5

I e I j,
.' !
f
'(.1

wet HHIttf'Hftrit! tn t t 1ft 'rt"Gpnt at ",

ComputerAutomation ~

section 4

INSTRUCTIONS AND DIRECTIVES

4.1 INTRODUCTION

This section describes the instructions and directives applicable to the LSI-2/10,
LSI-2/20, and LSI-2/60 MegaByter. Instructions and directives that apply only to the
LSI-2/60 MegaByter are included following ISI-2/l0, ~/20 instructions of a particular
class and will be indicated by "ISI-2/60 ONLY". For translation into an object
program, refer to assembly descriptions in the appropriate boftware manual:

OS Asse,nbler Language Reference Manual (90-96552)
OMEGA ll.ssembly System (90-96007) (Instructions designated "LSI-2/60 ONLY" are
not.supported by the OMEGA Assembly system.)

4.1 .. :'. Lls+:rllction and Directive Classes

The instruction and directive classes are listed below in figure 4-1. They are
discussed in this section.

CLASS 1 SINGLE-WORD MEMORY REFERENCE INSTRUCTIONS
CLASS 2 DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS
CLASS 3 STACK INSTRUCTIONS
CLASS 4 BYTE IMMEDIATE INSTRUCTIONS
CLASS 5 CONDITIONAL JUMP INSTRUCTIONS
CLASS 6 SHIFT INSTRUCTIONS
CLASS 7 REGISTER CHANGE AND CONTROL INSTRUCTIONS
CLASS 8 INPUT/OUTPUT INSTRUCTIONS
CLASS 9 JUMP ON CONDITION INSTRUCTIONS
CLASS 10 CYCLIC REDUNDANCY CHECK INSTRUCTION
CLASS 11 TEXT MANIPULATION INSTRUCTIONS
CLASS 12 ASSEMBLER CONTROL DIRECTIVES
CLASS 13 DATA AND SYMBOL DEFINITION DIRECT1VES
CLASS 14 PROGRAM LINKAGE DIRECTIVES
CLASS 15 SUBROUTINE DEFINITION DIRECTIVES
CLASS 16 LISTING FORMAT AND ASSEMBLER INPUT DIRECTIVES
CLASS 17 USER DEFINED OPERATION CODE DIRECTIVES

Figure 4-1 .. Instruction and Directive Classes

4-1

,I

i

I

i <.

i

ComputerAutomation ~

4.1.2 Symbolic Notation

The symbolic source code input to an assembler consists of individual symbolic state­
ment~. All of the statements taken together make up a program which is to be
translated.

All instrucUons and cert,lin directives generate object code. Othl'r dj l('ctivC's serv('
only to control the assembly process.

A source statement represents either an instruction or a directive. It contains four
fields -- the Label field, the Operations Code (Opcode) field, the Operand field and
the Comments field. Adjacent fields are separated by one or more spaces which allows
'ree-form symbolic input to the assembler. A space in the first character position
of a source statement indicates no label present. The listing output from the assem­
bler is formatted for ease in reading, with the Opcode, Operand and the Comments
fields beginning at fixed positions on the listing. Source statements on paper tape
are terminated with a carriage return. Line feeds and "rubcuts" are ignored. All
~ource statements are limited to 72 characters.

I The instructions and dir~ctives acc2ptable to the assemblers are described in detail
~in the remainder of this section. The following conventions apply:

1. Square brackets [] enclose elements which are optional and may be included or
omitted as required.

2. Two or more elements separated by a vertical bar (I) indicate that a choice must
be made from the enclosed elements.

3. A right square bracket followed by dots (] ...) indicates that the enclosed
element may be repeated an unspecified number of times.

4.1.3 Assembler Source Statement Fields

The following paragraphs discuss the four assembler source statement fields. The
relative positions of the fields are shown below in figure 4-2.

LABEL FIELD OPCODE FIELD OPERAND FIELD COMMENTS FIELD

Figure 4-2. Source Statement Fornat

4.1.3.1 Label Field

The Label field may contain a name which can be referenced by other instruction
statements. It is identified by an alphabetic (A-Z) character in the first position
of the source statement. This first character may be followed by as many as five
alphanumeric (A-Z, 0-9) or colon (:) characters. This field is terminated by one or
more spaces.

At assembly time, the label is assigned the current value and relocation attribute of
the Program counter (P register). The same name may not appear in the Label field of
more than one source statement in a given program (except when used with the SET
directive) •

4-2

i

I
I. •
I

o

ComputerAutomation ~

4.1.3.2 Opcode Field

The Opcode field contains a leqally-defined symbolic instruction or directive. In
addition, user-defined Opcodes may appear in this field. The Opcode field consists
of one to four characters, and is terminated by one or more spaces. Each source
inst_ruction statement must always have an entry in t.he Operand f1~ld.

4.1.3.3 Operand Field

Some instructions and directives require operands, others do not. In any case, the
syntax of the Operand field depends on the type of ihstruction or directive with
which it is associated. The Operand field syntax description is contained in the
discussions of the ins~ructions and directives. If the Operand field is present, it
must contain one of the fo+lowing:

1. The dollar symbol ($), representing the current program location.

2. A single s~nnbolic term.

3. r~ r::: '~yle numeric term.

4. 1\ COl"lhin;I': ion of symbolic terms, numeric terms and/or the curre!lcy symbol joined
_ t :1" ;:\yi lhmet.ic operators plus (+) or minus (-).

5. A text string.

6. A literal (=XX).

The value assigned the dollar symbol by the assembler is the value of the assembler's
Working Location Counter at the time the symbol is encounter.ed. The value is absolute
if an absolute assembly is being performed and relative if a relocatable assembly is
bt! i Ilq performed. The dollar symbol allows the programmer to reference memory loca­
tions relative to the instruction being written, rather than assigning labels to the
referel.ced location.

Symbolic terms (names) may be absolute or relative, depending on the assembly mode
under which they have been defined.

Numeric terms are always absolute. They consist of decimal, octal and hexadecimal
numbers. Decimal numbers can be any value in the range -J2768 through +32767. The
filSl diqit of the n;.unLcr must be non-zero. Octal numbers can be any octal vn1ue in
t11{-; I,mge a t.hrough 0177777. The first -- or lCdding -- diqit of the number must be
zero to specify octal numbers. Hexadecimal numbers can be any hexadecimal value in
the range : 0 through :FFFF. 'The number must be preceded by a colon (:). Although
octal and hexadecimal numbers may be signed, they are norma:ly used to generate a bit
pattern or reference a particular memory location rather than to generate a signed
numeric value.

Combinations of terms (including the dollar symbol) can be achieved by using the
arithmetic operators plus (+) and minus (-). The value of the final expression will
be in the range :0 thrc :FFFF. Combinations of relative and absolute terms are
governed by additional restrictions (see paragraph 4.1.6).

Text strings consist of any sequence of characters enclosed by single quotes (').
Inclusion of a single quote within the character string is accomplished using two
adjacent single quotes. The object code generated consists of 8-bit ASCII character
codes, packed two characters per word, or one 8-bit ASCII character in the LS byte of

4-3

l

ComputerAutomation ~

an instruction (e.g., the operands of Immediate instructions). When a DATA directive
is used, the text string may consist of one or two characters. When one character is
specified, the 8-bit code appears in the LS byte of the computer word, with the MS
byte set to zero.

If t W) "':dracter clre specified, the code for the first character L!5 put in the MS
bytt= of the CC)~,lputer word and the code for the second character is put in the LS byte
of the computer word. When the TEXT directive is used, t~e text string may consist
of as many as 57 characters. The characters are packed two per word, with the code
for the 1: irst character appearing in the MS byte of the computer word and t:he code
for the second character appearing in the LS byte of the computer word. Trailing
cha!'i:l,:ter positions are filled with blanks (:AO) -- e.g., TEXT 'A' would generate a
Vi': .. ue of : CIAO for the specified computer word.

Literals (valid only for class 1 instructions) are designated by prec2ding the operalld
with an equal (=) sign. This affects the entire operand. When a literal is en­
cGunt2red by the assembler, a word is reserved in the scratchpad area of memory to
hold the computed value of the operand. Memory addressing ::_s then generated to

ICjccess the scratchpad location.

I

4.1.3.4 Comments Field

The Comments field follows the Operand field or, for instructions which do not require
operands, the Opcode field. This field generally contains pr.ogrammer's notes, cryptic
messages, helpful hints, etc. Comments appear on the assembly listing, but do not
generate object code.

4.1.4 Arithmetic Operations and OVerflow

The LSI-2 Series computers perform two" s complement arithmetic. In Word mode, the
16-bit A register and a 16-bit memory location are used as operands. In Byte mode,
the 16-bit contents of the A register and a 16-bit operand formed from the addressed

.oyte (used as the least significant 8-bits) concatenated wit.h :00 are used as operands.

i I

Add and subtract immediate instructions are also provided fOL" both the A and X
registers. In this case, one operand is contained in either the A or X register
while the second is the least significant 8-bits of the instruction itself (e.g., AXI
:50 adds :0050 to the 16-bit X register contents while SXI :50 subtracts :0050 from
the 16-bit X register contents). In all cases, full 16-bit arithmetic is performed.

Arithmetic overflow occurs when the result of an arithmetic operation exceeds the
range -32768 through +32767. Specifically, this involves the carry from bit 14 to
bit 15 of the adder, and the carry out of bit 15 (CO). If the carry from bit 14 to
15 is not the same as the carry from 15 to CO (Le., if the values are 0 and 1 or 1
and 0), an arithmetic overflow has occurred and the overflow (OV) indicator is set.
The operation is described in figure 4-3.

4-4

~.
l'

i

!
.1

o

ComputerAutomation ~

1. Sign Carry and Carry Out 2. No Sign Carry and No Carry Out
No Overflow No Overflow

-5 = 111 1111 1111 1011 _ +5 = 0 000 0000 0000 0101
+ (-5) = 1 111 1111 1111 1011 + (+5) 0:: 0 000 0000 0000 0\0\

-10 =
1$3111 1 111 1111 0110 +10 = oFo3000 0000 0000 1010

3. Sign Carry and No Carry Out 4. No Sign Carry and Carry Out
Overflow Overflow

+32767 = 0 111 . 1111 1111 1111 -32768 = 000 0000 0000 0000
+ (+1) = 0 OCO 0000 0000 0001 + (-q = 1 111 1111 1111 1111
+32 768~~ o~lr°OO 0000 0000 0000 - 32 767"1: lFo~111 1111 1111 1111

''<not a legitimate 16-bit two's complement number

Figure 4-3. Arithmetic OVerflow

4. J • ') in-Line and Interrupt Instructions

In the descriptions that follow, reference is made to In-Line (Main-Line or Non­
llite'~rupt) instructions and Interrupt instructions. An In-Line instruction is an
ir's truction fet.chert from a location as defined by the P counter. An Interrupt in­
struction is the first instruction fetched as a result of a recognized interrupt.
'this instruction is fetched from a location defined by an interrupt address generated
as ,1 result of an Interrupt stimulus, and is independent of the contents of the P
counter.

If the Interrupt instruction (as defined above) does not alter the contents of the
P counter, control will be returned to the P counter' allowing the original program
serluence to continue.

If the Interrupt instruction does alter the contents of the P counter (JST for
example), a new Ill-Line program is initiated.

4.1.6 Relocatability

Relative and absolute programming modes are controlled by the REL and ABS directives.
The default condition of the assembler is the Relative (REL) mode. The programmer
should note that theORG directive modifies the contents, but not the relocation
attribute, of the assembler's Working Location Counter.

An absolute program (or section of coding) can only be loaded and executed in the
memory locations specified by the user at assembly time, whe~eas a relative (or
relocatable) program may be loaded and executed in any memory area specified by the
user at load time. Out-of-range memory references are resolved through the use of
the scratchpad area in the base page (the first 256 words of memory). The user
should refer to the LAMBDA Object Loader documentation.

4-5

I ComputerAutomation ~
I

, I
I,

Operands containing multiple-term expressions are reduced by the assembler to single­
term operands which may be relocatable or absolute, according to the following rule:

R = (Number of added relocdtabl(~ tenns) - (Number of ~;·lhtriH:t.('d relocdl.able term:;)
l r
.'i'

, -...

If R 1, the r.erand is relocatablej if R = 0, the operand is absolute; and if R is
not equal t·o 0 or I, the operand is illegal.

Relocatable operands are modified by the load bias (established at program load time)
when the LAMBDA Object loader is executed:

Relocated Operand Value = Assembled Operand Value + Load Bias

In addition, the location of the entire program (or block of coding) is offset by the
same load bias:

Relocated Program Location Assembled Program Location + Load Bias.

ICl.2 MEMORY REFERENCE INSTRUCTIONS .

I 4.2.1 Word Mode Operations and Instruction Format

I Word mode Memory Reference operations access full 16-bit memory operands. The default
mode of the computer is the Word mode -- i.e., when no .mone control instruction has
been executed, the computer is in the Word mode. SWM is U",e mode control instruction
which places the computer in the Word mode. In addition, the SIN, SIA and SIX in­
structions force the computer into the Word mode. The SIN instruction forces the
Word mode. for the number of succeeding instructions specified by its associated
operand. The SIA and SIX instructions unconditionally force the Word mode. The
format for the Word mode Memory Reference instructions is shown in figure 4-4.

All (16-bit) word address pointers (defined by DATA statements) consist of fifteen

I bits of address in the least significant 15 bits. The most significant bit (bit 15)
specifies indirect addressing if equal to I or direct addressing if equal to O.

1°
[LABEL] OPCODE [," I@ I ,~@]OPERAND [COMMENTS]

No Operator = Direct Address
-;, = Indirect Addressing
@ = Indexed Addressing

,"@ = Indi rect Post-indexed Addressing

Figure 4"""4. Word Mode Memory Reference Instru~tion Format

4-6

I, •
r ,

ComputerAutomalion ~

4.2.1.1 Word Mode Di::.::-::t Addressing

Word mode direct addressing allows any Memory Reference instruction to access the
first 526 words of memory (the base page/scratchpad area) as ~ll as 512 memory
locations about the instruction itself (relative to Pl. R.e14tiv.e t.o P :fQ~ward
addressing includes 256 words following (toward higher memory) the instruction and
relative to P backwards addressing includes the instruction itself and 255 memory
locations pre~eding the instruction. When the assembler e~counters a direct reference
to an out-of-range memory location, it automatically generates an address pointer and
references the associated memory location indirectly through the pointer.

4.2.1.2 Word Mode Indirect Addressing

Word mode indirect addressing allows any Memory Reference instruction to access any
memory location through an address pointer in the scratchpad area or an address
pointer in the 512 memory locations about the instruction itself (relative to P) •
Relative to ~ forward indirect addressing allows the address pointer to reside in any
memory l('c."i~ion up to 256 words forward following higher memory) the instruction and
relative t., P backwards indirect addressing allows the address pointer to be in any
mcno.ty .~ucation 255 words or less preceding the instruction. When indirect addressing
is desired, the operand should be prefixed by an asterisk (*). Multilevel indirect
a(~d' ' .. ".g is accomplished by accessing address pointers in which the most significant
bi... (bit 15) is set. The memory operand is not accessed until an address pointer
wi Lh the most signific.:l.nt bit reset (=0) is encountered. Indirect address pointers
~an be defined by the programmer through the use of the DATA directive by prefixing
t:he operand with an asterisk (*).

4.2.1.3 Word Mode Direct Indexed Addressing

Word mode direct indexed addressing allows any Memory Reference instruction to access
memory locations by algebraically summing the signed contents of the X register and
-HaY offset value in the range 0 through 255. The offset value is defined by the
operand and should be preceded by an @ symbol. When the assembler encounters a value
greater than 255 in the operand of a direct indexed Memory Reference instruction, it
automatically generates an address pointer in the scratchpad area and references the
as·;t.)ciated memory location indirect post indexed , through the pointer.

o 4.2.1..4 Word Mode Indirect Postindexed Addressing

Word mode indirect post indexed addressing allows any Memory Reference instruction to
access memory locations by algebraically summing the contents of the X register and
the contents of an address pointer in the scratchpad area. If the most significant
bit of the address pointer is set, it contains the address of another address pointer,
which in turn may contain the address of another pointer, and so forth. When an
uddress pointer with the most significant bit (bit 15) set to zero is found, the
contents of the X register are added to it to form the effective memory address. The
Inemory operand is then accessed. When indirect postindexed addressing is desired,
the operand should be prefixed by an asterisk (*) and an @ symbol.

Because the Scan Memol.'Y (SCM) instruction always uses indirect post indexed addressing,
the assembler automatically generates the necessary machine code and does not allow @
or * operators on the associated operand. The operand for this instruction should
reference a user-defined address pointer in the base. page. A summary of Word mode
addressing is shown in figure 4-5.

4-7

.1
?I

i --

I

~O I

I
I

I
I
I
i
~C

ComputerAutomation ~

(x) + :FF

f
(X)

INDEXED: 256 LOCATIONS
Y • (X) + (D) 1 LOCATIONS (X) + (X) + 25'S

(P) + I + :FF ---------------------
t

(p) + I

(p)

~

RELATIVE TO P, FORWARD: 2S6 LOCATIONS
Y • (p) + I + (D)
LOCATIONS (P) + I + (p) + I + 255

RElATIVE TO P, BACKWARD: 256 LOCATIOPiS
Y • (P) - (D)

(p) + :FF
LOCATIONS (P) + (P) - 255

~--------------------

:FF

t
:00

r--------------------
SCRATCHPAD: 256 LOCATIONS
Y • (0)
LOCATI ONS 0 + 255

Direct Addressing

"EHORY

::::::::::::::::::::::::~r~~::::::::::::::::::::::::

::: ::: ::: = ::: = = = ID'rR~N.Q: = : = = ::: ::: = :::

::::::=:::IN~T~U£TloE:=IA.Q:D~E~sI=:::= :::

::: = =A:[D~E~S=PP:IET~:::(!II I5='" :::oI::: ::: :::

:::::::::A.Q:D~ErS:!P:IETIR=(!III5:::·='I::: =:::

SCRATCH PAD ADDRESSING DR RELATIVE TO P ADDRESSING IS USED TO
ADDRESS AN ADDRESS POINTER,

elTS 0-14 OF THE ADDRESS POINTER CONTAIN A MEMORY ~DDRE$S, IF
BIT 15 OF THE ADDRESS POINTER CONTAINS A I-BIT, THE .. :EMORY ADDRESS
IN elTS 0-14 IS THE ADDRESS OF ANOTHER ADDRESS POlhT~R.'

IF BIT 15 OF THE ADDRESS POINTER CONTAINS A O-BIT, THE ADDRESS IN
BITS 0-14 IS THE ADDRESS OF THE HEMORY OPERAND,

IF INDEXING IS SPECIFIED BY THE INSTRUCTION, T~E ADDRESS IN BITS
0-14 IS ADDED TO THE CONTENTS OF THE X REGISTER TO FORM THE
EFFECTIVE OPERAND ADDRESS,

Indirect Addressing

Figure 4-5. Word Mode Addressing Summary

4-8

f

.1

lit ..
V'

C

4.2.2 Byte Mode Operar;~ns and Instruction Format

Byte mode Memory Reference operations access 8-bit byte operands. The Byte mode is
established by execution of the set Byte Mode (SBM) instruction. Note that the Byte
mode is not entered via any particular instruction, but rather by the processor being
in the Byte mode as the result of an SBM instruction. Although instruotion codes for
Word mode and Byte mode are identical, the instruction mnemonic will carry the
suffix "B" when operation is to occur in the Byte mode. For example, ADD will refer­
ence the Word mode, whereas ADDB will reference the Byte mode. The "B" suffix in the
latter mnemonic notifies the assembler that this instruction requires a Byte mode
effective address.

Byte mode is inhibited (the computer is forced into the Word mode) by execution of
the SIN, SWM, SIA and SIX instructions. The SIN instruction inhibits Byte mode
operations for the nwnher of succeeding instructions specified by its associated
operand. The SWM, SIA and SIX instructions unconditionally force the computer into
the Word mode. The format for Byte mode Memory Reference instructions is shown below
in figure 4-G ~

ALL n6-b i t) byte address pointers (BAC directive) consist of fifteen bits of word
address in the .Inost significant 15 bits. The least significant bit (bit 0) specifies
the most: r;i'1nificant 8 bits (MS byte) of the addressed word if equal to 0, or the
least: siyniC.1.cant 8 bits (LS byte) if equal to 1. Only one level of byte memory
rer"nmce indirect addressing, specified in the instruction itself, is possible.
Byte operands affecting the register are always right-justified, i.e., bytes cannot
be loaded into, added to or stored from the MS bytes of the A and X registers.

The IMS, MPY, DVD, Nlli~, JMP, JST, OMS, eRC, AIN, AlB, AOT, AOB, Stack, and Memory Bit
instructions are not affected by the Byte mode. They always use full 16-bit word
operands.

[LABEL] OPCODE t,·, I @ I "'@)OPERAND [COMMENTS]

No Operator = Direct Address
.'. = Indirect Addressing
@ ::. Indexed Addressing

*@ = Indirect Postindexed Addressing

Figure 4-6. Byte Mode Memory Reference Instruction Format

4.2.2.1 Byte Mode Direct Addressing

Byte mode direct. addressing allows any byte Memory Reference instruction to access
the first 256 bytes (128 words) of memory as well as 512 byte locations following
(toward higher memory) the instruction itself. When the assembler encounters a
direct reference to an out-of-range byte location, it automatically generates a byte
address pointer in the scratchpad area and references the associated byte location
indirectly through the pointer.

4-9

4.2.2.2 Byte Mode Indirect Addressing

Byte mode indirect addressing allows any byte Memory Reference instruction to access
any byte location through a byte address pointer in the scratchpad area or a byte
address pointer j.a the memory locations about the instruction itself (relative to P) .
Relative to P f" rward indirect addresf;ing allows the byte address pointer to ruside
ill any memory location up to 256 words following (toward higher memory) the instruc­
tion and relative to P backwards indirect addressing allows the byte address pointer
to be in any memory location 255 words or less precedinq the instruction. When in­
direct addressing is desired, the operand should be prefixed by an asterisk (*).
Byte address pointers to be used by indirect byte Memory Reference instructions can
be d8fined by the programmer by using the BAC directive. Since a byte address pointer
p' .i1izes all 16 bits to specify a given byte location, indirect byte addressing is
limited to one level.

4.2.2.3 Byte Mode Direct Indexed Addressing

I Byte mode direct indexed addressing allows any byte Memory Reference instruction to

I access byte locations by sununing the contents of the X register and any base value in
~he range 0 through 255. The base value is defined by the operand. When direct

indexed addressing is desired, the operand should be preceded by an @ symbol. When
the assembler encounters a value greater than 255 in the operand of a direct indexed
byte Memory Reference instruction, it automatically generates a byte address pointer
in the scratchpad area and references the associated byte mePlory location indirect
postindexed through the byte address pointer.

4.2.2.4 Byte Mode Indirect Postindexed Addressing

Ryte mode indirect postindexed addressing allows any byte Memory Reference instruct:ion
t.o access byte locations by sununing the contents of the X rE:'gister and the contents
of a byte address pointer in the scratchpad area. When indirect post.index(~d byt.e
addressing is desired, t.he operand should be preceded by an asterisk (*) and an @
symbol.
Because the Scan Memory Byt.e (
Because the Scan Memory Byte (SCMB) instruction always uses indirect postindexed
addressing, the assembler automatically generates the nec€ssa~y machine code and does
y)t allow @ or * operators on the associated operand. When performing byte scans,

·Ol1e operand fC'~ this instruction should reference a user defi:led byte address pointer
in the base page. A summary of Byte mode addressing is shown in figure 4-7.

~ 4.2.3 Arithmetic Memory Reference Instructions

• i
!

I
I

;:1 ..
i ., ,
~.

".

~ .,

ADD

ADDB

SUB

SUBB

ADD TO A. Adds contents of effective memory location to contents of A
register. OV is set if arithmetic overflow occurs.

ADD BYTE TO A. Adds contents of effective by-t:.e location to contents
of A register. OV is set if arithmetic overflow occurs •

SUBTRACT FROM A. subtracts contents of effective memory location from
contents of A register. OV is set if arithmetic overflow occurs.

SUBTRACT BYTE FROM A. Subtracts contents of effective byte location
from contents of A reqister. OV is set if arithmetic overflow occurs.

4-10

i' e
fl
~ :
~ ...

0

BYTE "EHORY WORD·
ADDAESS ADDRESS

(X) + :FF (Xl + :FF ---------------------- 2 , INDUED: 256 BYTES

1
Y (BYTE) • (X) + (D) •
Y (WORD) • 2(X) + (0»)
BYTE LOCATIONS (X) + (X) + (D)
WORD LOCATIONS (X)/2 + (X) + (0») 12

(X) ---------------------- (X)12

2 ((p) + 11+ :FF ---------------------- (P) + 1 + :FF

1
RELATIVE TO PI FORWARD: 512 BYTES
Y (BYTE) • 2(p) + 1 + (D»)
Y (WORD) • (P) + 1 + (0»)
BYTE LOCATIONS 2((P) + 1) + 2((P) + 1 + (D)) ft.
WORD LOCATIONS (P) + 1 + (P) + 1 + (D)

zl(p} + 1) ---------------------- (p) + 1

:FF ---------------------- :7F
SCRATCHPAO: 256 BYTES
Y (BYTE) • (D)
Y (WORD) • (0)/2
BYTE LOCATIONS 0 + 255
WORD LOCATIONS 0 + 127

:00 :00
• Integer results *. Plus odd/even bit

Direct Addressing

------~---------------BYTE OPERAND

BYTE OPERAND

INSTRUCTION: ADDRESS

ADDRESS POINTER: BYTE

(!) SCRATCH PAD ADDRESSING OR RELATIVE TO P ADDRESSING IS USE~ TO
ADGRESS AN ADDRESS POINTER.

IF INDEXING IS NOT REQUIRED, THE ADDRESS POINTER CONTAINS THE
E,FECTIVE 16-B11 BYTE ADDRESS

IF INDEXING IS REQUIRED, THE BYTE ADDRESS IN THE ADDRESS POINTER
IS ADDED TO THE VALUE IN THE X REGISTER TO FORK THE EFFECTIVE
BYTE ADDRESS.

Indirect Addressing

Fi~ure 4-7. Byte Mode Addressing Summary
"

4-11

-'''''''''i

I

-I

t' e' .. "'we ""«bOd; MwnwW "

4.2.4 Logical Memory Reference In~;tructions

AND

ANDB

lOR

lORB

XOR

XORB

AND TO A. Logically AND's contents of effective memory location with
contents of A register. Result replaces contents of A register.

JlT\JO BYTE TO A. Logically AND's contents of effective byte location
~ith contents of LS byte of A register. Result replaces contents of
LS byte of A register. MS byte of A register is reset to zero.

INCLUSIVE OR TO A. Inclusively OR's contents of effective memory
location with contents of A register. Resul~ replaces contents of
A register.

INCLUSIVE OR BYTE TO A. Inclusively OR's com:ents of effective byte
location with contents of LS byte of A register. Result replaces
contents of IS byte of A register. MS byte of A register remains
unchanged.

EXCLUSIVE OR TO A. Exclusively OR's contents of effective memory
location with contents of A register. Result replaces contents of
A register.

EXCLUSIVE OR BYTE TO A. Exclusively OR's con~ents of effective byte
location with contents of LS byte of A register. Result replaces
contents of LS byte of A register. MS byte of A register remains
unchanged.

4.2.5 Data Transfer Memory Reference Instructions

LOA

LDAB

LOX

LDXB

STA

STAB

STX

STXB

EMA

EMAB

LOAD A. Loads content: of effective memory location into A register.

LOAD A BYTE. Loads contents of effective byte location into IS byte
of A register. MS byte of A register is resp.t to zero.

LOAD X. Loads contents of effective memor~' location into X register.

LOAD X BYTE. Loads contents of effective byte location into IS byte
of X register. MS byte of X register is reset to zero.

STORE A. Stores contents of A register in effective memory location.

STORE A BYTE. stores contents of LS byte of A register in effective
byte location.

STORE X. Stores contents of X register in effective memory location.

STORE X BYTE. Stores contents of LS byte of A register in effective
byte location.

EXCHANGE MEMORY AND A. Stores contents of A register in effective
memory location and loads contents of effective memory location into
A regi~ter.

EXCHANGE MEMORY BYTE AND A. Stores contents of IS byte of A register
in effective byte location and loads contents of effective byte loca­
tion into LS byte of A register. MS byte of A register is reset to
zero.

4-12

c

4.2.6

o

ComputerAutomation ~

Program Transfpr Memory Reference Instructions

CMS COMPARE MEMORY TO A AND SKIP IF HIGH OR EQUAL. Compares contents of
effective memory location with contents of A register. If A register
is greater than contents of memory location, a one-word skip occurs.
If A register is equal to contents of memory location, a two-word skip
occurs. If A register is less than contents of memory location, next
sequential instruction is executed.

CMSB COMPARE BYTE AND SKIP IF HIGH OR EQUAL. Compares contents of effective
byte location with contents qfA register. If A register is greater
than contents of byte location, a one-word skip occurs. If A register
is equal to contents of byte location, a two-word skip occurs. If
Aregi$ter is less than contents of byte location, next sequential
instruction is executed. All 16 bits of A register are compared to
contents of effective byte location, so MS byte of A register should
be set to zero before executing the instruction.

IMS INCREMENT MEMORY AND SKIP ON ZERO RESULT. Contents of effective
memory location are incremented by one. If increment causes result to
become zero, a one-word skip occurs. If not, next sequential instruc­
tion is executed. OV is set if arithmetic overflow occurs.

NOTE

IMS is often used as an interrupt instruction in
which case, when the increment causes a zero
result, an ECHO signal is generated and sent to
the interrupting device. The interrupting device
uses the ECHO signal to develop an EOB (End-of­
Block) interrupt. Under these conditions a skip
does not occur and OV is unaffected. (See para­
graph 5.3).

JMP JUMP UNCONDITIONAL. P register is loaded with the address of effective
memory location causing an unconditional branch to that address.

JST JUMP AND STORE;. Contents of P register (address of JST instruction +1)
are stored in effective memory location and P register is then loaded
with address of effective memory location +1, causing an unconditional
branch to that address. In the LSI-2/60, this instruction will not
allow an interrupt to be serviced between it and the next instruction
executed.

NOTE

JST is often used as an interrupt instruction.
When used as such, all interrupts under EIN/DIN
control are automatically disabled upon instruction
execution. (See paragraph 5.3.) In this case,
the value, stored by the JST is not the address of
the JST instruction +1, instead, it is the address
of the interrupted In-Line location to return to
when the interrupt process is completed.

4-13

SCM

SCMB

SCAN MEMORY. Compare:.; contents of A register with contents of memory
location in data buff~r defined by address pointer in scratchpad (base
address of data buffer -1) added to contents of X register (buffer
length). If a match is found, Scan is terminated and next sequential
ir;struction is executed. X register is decremented once for each word
,canned. Thus, data buffer is scanned in descending order, beginning
with highest memory location and ending with lowes~ (bam~ address).
When a match is found, X register contains :1umber of word!; rl'md ini nq
to be scanned. Remainder of data buffer car, be sCilnnpd s imply by
executing SCM instruction again. If a match is not found when
X register reaches zero, a one-word skip occurs and instruction
terminates.

SCAN MEMORY BYTE. Compares contents of A register with contents of
memory byte locations in data buffer defined by byte address pointer
in scratchpad (byte base address of pointer -1) added to contents of
X register (data buffer length in bytes). If a match is found, Scan
is terminated and next sequential instruction is executed. X register
is decremented once for each byte scanned. Thus, data buffer is
scanned, by byte, in descending order, beginning with highest memory
byte location and ending with lowest (base address). Remainder of
data buffer can be scanned simply by executing SCMB instruction again.
If a match is not found when X register reaches zero, a one-word skip
occurs and instruction terminates. All 16 bits of A register are
compared to contents of effective byte location, so MS byte of
A register should be set to zero before executing the instruction.

NOTES

1. The SCI' l.nd SCMB instructions 'lre interrupt­
ab]Y. \;, 'Ull completi on of interrupt processing,
SC;lTI rt';;U;,," operation at- UH' po i nt wIH'n' t IH~

interrupt oCl.''.1rred.

2. The Set Byte Mode (SBM) instrhction must be
executed vrior to the execution of the SCMB
instruction.

4."3 DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS

4.3.1 DVD, MP' .. , and NRM Instructions

The DVD, MPY, and NRM Double-Word Memory Reference instructit)ns require two conse­
cutive memory locations and allow direct and indirect addressing. Indexed addressing
is not allowed and is, in fact, not useful, since these instructions manipulate both
the A and X registers. The format for these instructions is shown in figure 4-8.

DVD DIVIDE. Divides contents of the A and X registers by contents of
memory location addressed by operand 1. This addreo;s pointer
(operand l) may be direct or. indirect and occupies s(:cond word of
double-word DVD instruction.

Prior to execution of instruction, A and X reqisters contain 30-bit
dividend (as shown in figure 4-9), and addressed memory location con­
tains signed full-word divisor. Both dividencl and divisor must be
positive.

4-14

c

c

o

C,
2.,

ComputerAutomation ~

[LABEL] OPCODE [*]OPERAND1[,OPERAND2] [COMMENTS]

MPY

No Operator c Direct Address
* = Indirect Addressing

OPERAND 1 = Any absolute or relative definition of
the effective memory location.

OPERAND 2 = An optional instruction count in the range 0
thru 31 for NRM.

Figure 4-8. Double-Word Memory Reference Format

Quotient is placed in X register (sign plus 15 bits) and fractional
remainder in A register (sign plus 15 bits). OV is set if a divide
fault occurs. (Divisor ~ most significant half of dividend). If no
divide fault occurs, OV is returned to original state (prior to DVD
illstruction). Note that least significant half of dividend is 15 bits,
left justified.

13 12 11 10 9 8 7 6 5 It 3210 15 14 13 12 11 10 9 8 7 6 5 It 3 2

DIVIDEND (MSH) I I DIVIDEND (LSH)

A REGISTER X REGISTER

1 3 1 2 11 1 0 9 8 7 6 5 It 3 2 1 0 1 5 1 4 1 3 12 11 1 0 9 8 7 6 5 It 3 2 1 0

REMAINDER I [s-I.....-------Q-UO-T-I-E-N-T-----.,

A REGISTER X REGISTER

Figure 4-9. Divide

MULTIPLY AND ADD. Multiplies contents of X register by contents of
the memory location addressed by operand 1 and then adds contents of
A register to product. Address pointer (operand 1) may be direct or
indirec~ and occupies second word of double-word MPY instruction.

Prior to execution of MPY instruction, X register contains signed
full-word multiplicand, addressed memory location contains full-word
multiplier, and A register contains "offset" to be added. (Refer to
figure 4-10.) Multiplier and offset must be positive or zero. Multi­
plicand may be positive, negative, or zero. Result is placed in A and
X registers (sign plus 30 bits). Note that least significant half of
result is a IS-bit left justified value consistent with format of
least significant half of dividend.

In all cases OV will be reset (= 0) at completion of a full multiply.
The contents of OV prior to execution of MPY will be returned in the
least signj.ficant bit (bit 0) of the X register.

4-15.

c

ComputerAutomation ~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a

~(_O~I _____________ O_F_F_S_ET __________ ~II ~_S~I ___________ M_U_L_T_IP_L_I_C_A_N_D ________ ~
A REGISTER X REG I STER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 I 0 15 14 13 12 11 10 9 876 543 2 0

1 Sl

NRM

RESULT (MSH)
1 1

RESULT (LSH) I OVI

A REGISTER X REGISTER

Figure 4-10. Multiply and Add

NORMALIZE A AND X. Contents of A and X registers are arithmetically
shifted left (figure 4-11) until bit 15 of A register is not equal to
bit 14 or until maximum shift count specified (operand 2) is exhausted.
Exponent (count cell), addressed by operand 1, is a two's complement
number which is decremented (incremented in two's complement) once for
each shift until normalization occurs. Address of exponent may be
direct or indirect and occupies second word of double-word NRM instruc­
tion. No indication is given if arithmetic overflow occurs when
exponent is decremented.

NRM instruction treats A and X registers as a combined 31-bit, plU!~

sign, register ..

OV is reset (= 0) if normillization occurs; otherwise it is set (= 1).

In either case, exponent will be decremented once for each shift
performed.

A full 31-bit normalizn is performed if no instructioll count
(operand 2) is specified. Otherwise, specified count: will determine

maximum shifts performed. A normalize! operation with a count of zero
(operand 2) provides a test for normalization without affecting
contents of A and X registers.

15 14 13 12 119 8 7 6 5 432 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D 1,----1 _____ ----.lI~'-----_-~-~~_=~-_=_o
(LOST) A REG I STER X REG I STER

Figure 4-11. NRM Shift Path

4.3.2 ADX, ADXB, SBX, and SBXB Inst~uctions

The instructions ADX, ADXB, SBX, and SBXB are usable only with t.he r.SI-2/60. They
are two-word instructions that include a memory reference address operand. The
operand may be mu1>::ilevel indirect for word mode only. For/byte mode, the operand is
always a byte address. Note the ins I-ruction codes for word mode are the same as for

4-16

c

f

i

,: -
j'

J,
'r'

o

ComputerAutomation ~

byte mode. To opera V, "'n bytes, the processor must be in byte mode. Operation of
these instructions is similar to the standard memory reference instructions. The
format of these instructions is shown in figure 4-12.

[LABEL] OPCODE [*JOPERAND [COMMENTS]

No Operator = Direct Addressing
* = Indirect Addressing

Figure 4-12. Format of ADX, ADXB, SBX, and SBXB Instructions

ADX ADD TO X. Adds contents of effective, memory location to contents of
X register. OV is set if arithmetic overflow occurs.

ADXB

SBX

ADD TO X BYTE. Adds contents of effective byte location to contents
of X register. OV is set if arithmet'ic overflow occurs.

SUBTRACT FROM X. Subtracts contents of effective memory location from
contents. of X register. OV is set if arithmetic overflow occurs.

SBXB SUBTRAC~ FROM X BYTE. Subtracts contents of effective byte location
from contents of X register. OV is set if arithmetic overflow occurs.

4.3.3 EMX and EMXB Instructions

The instructions EMX and EMXB are usable only with the LSI-2/60. They are two-word
inst.ructions that include a memory reference address operand. The operand may be
multilevel indirect for word mode only.' For byte mode, the operand is always a byte
address. Note the instruction codes for word mode are the same as for byte mode. To
operate on bytes, the processor must be in byte mode. These instructions operate
similar to the standard memory reference instructions. The format of these instruc­
tion::'1 is shown in figure 4-13.

[LABEL] OPCODE [*]OPERAND [COMMENTS]

No Operator = Direct Addressing

EMX '

EMXB

* = Indirect Addressing

Figure 4-13. Format of EMX and EMXB Instructions

EXCHANGE MEMORY AND X. Stores contents of X register in effective
memory location and loads contents of effective memory location into
X register.

EXCHANGE MEMORY AND X BYTE. stores contents of LS byte of X register
in effective byte location and loads contents of effective byte loca­
tion into LS byte of X register. MSbyte of X register is reset to
zero.

4-17

ComputerAutomation .~

4.3.4 MSB, MRB, MCB, and MTB Irwtructions

The instructions MSB, MRB, MCB, and !-1TB are usable only with the LSI-2/60. These
instructions have the format shown in figure 4-14 and opurate as described below.

I.LABEL] JPCODE [*]OPERAND1,OPERAND2 [COMMENTS]

No Operator Direct Addressing
* = Indirect Addressing

Figure 4-14. Format of MSB, MRB, MCB, and MTB Instructions

A bit in memory is addressed by two operands. The first operand is the word address
of the word containing the bit to be operated on. The second operand is the bit
position in the word. The word addre~js (defined by the second word of the instruct.ion)
may be optionally indirect. The bit position within the word is contained in the

i operand 2 field of the apcode and has the limits zero through fifteen corresponding
10:0 the bit positions 0 through 15. Addressing is word mode only (not affected by
i byte mode flag) and multilevel indirection is allowed.

MSB MEMORY SE'r BIT. set;; addre~;sed bit in memory to 1 and copies old
content of addressed bit into OV flag.

MRB MEMORY RESET BIT. Sets addressed bit in mem0ry to 0 and copies old
contents of addresspd bit into OV flag.

MCB MEMORY COMPLEMENT BIT. Complements addressed bit in memory and copies
old content of addressed bit into OV flag.

MTB MEMORY TES'I' BIT. Copies content of addressed bit in memory into OV
flag.

4.3.5 DMS Instruction

'e. Jl:e nr:s instru~tio~ is usable only with the LSI-2/60. The format of the DMS instruc­
::~on ~s shaWl" In f~gure 4-15.

[LABEL] OPCODE [* I @ I ,,~@] OPERAND [COMMENTS]

No Operator Direct Addressing
* = Indirect Addressing
@ Indexed Addressing

*i Indirect Postindexed Addressing

Figure 4-15. Format of DMS Instruction

DMS DECREMENT MEMORY AND SKIP. The DMS instruction IS a two-word instruc­
tion. Indirect (*), indexed (@), and indirect postindexed (*@)
addressing are allowed. If indexing is defined, the X register will

4-18

c

"

!

c

ComputerAutomaIIon <rA
be adde~ to the final memory address to perform postindexing. When
executed the contents of the memory are decremented by one. If the
instruction was used as an interrupt instruction and the location was
decremented to minus one, then an ECHO is generated to the interrupting
device. OV is unaffected. If the instruction was used as an In-Line
instruction and the location was decremented to minu$ one, ~ one-place
skip occurs. Otherwise, OV is set is an arit~etic overflow occurs.
This instructibn operates in word mode only and is independent of the
byte mode flag.

/

4.4 STACK INSTRUCTIONS

Stack instructions permit the programmer to enter or retrieve a full l6-bit word from
a stack. A stack is a group of continuous memory locations whose length is variable
up to 32,768 words. A stack is organized on a last-in-first-out basis whereby the
last word entered into the stack will be the first word retrieved from the stack.

A stack can start at any addr~ss and fills from upper memory toward lower memory
(deureasing addresses). Except when the LSI-2/60 is used, the stack instructions,
th~mselves do not provide arty stack boundary limit testing features, and the user
mltst pro1Iide boundary limit t:eseing as overhead associated with using Stack instruc­
tior:'~. wit.t the LSI-2/60, stack boundary limit testing for overflow is provided by
thn ~~t.ack instructions themselves.

All stack instructions occupy two consecutive words in memory and operate in Word
mode only, independent of processor status. The first word contains the instruction
while the second word contains the address of the stack pointer. The format for
Stack instructions is shown below in figure 4-16.

with the LSI-2/l0 and LSI-2/20, indirection of the stack pointer and the stack pointer
address is not possible because the processor ignores bit 15. However, if bit 15 of
+:he stack pointer is 1, the stack pointer is treated as a negative number when indexing
is employed (see paragraph 4.4.1. 2). With the ISI-2/60, multilevel indirection of
the stack pointer address is permitted.

[LABEL] OPCODE [*]OPERAND[,AM] [COMMENTS]

AM = No Operator = Direct Access
- = PUSH (stack pointer decremented prior to access)
+ = POP (stack pointer Incremented after access)
@ = Indexed Addressing
* = Indirect Addressing (LSI-2/60 only)

Figure 4-16. Stack Instruction Format

The Label and Comment fields are optional with this class of instruction.

The Opcode field must be present.

One or two operands (or three operands--with the LSI-2/60) can be employed. The
first operand, an asterisk (*), is permitted only with the LSI-2/60; it is optional
and, when included, denotes indirect addressing of the stack pointer. The second

4-19

Wtt tN t 3M

ComputerAutomation ~

operand represents a memory address and must be present. The third operand (AM) is
optional and, when included, must be separated from the second operand by a comma.
This operand denotes the addressing mode of the Stack instruction. Figure 4-16
includes a list of valid third operand operators and the associated addressing modes;
paragraph 4.4.1 describes the addressing modes. in greater detaiL

Thase instructions generate two 16-bit words. The first word is tIl(' !;tack .instruct ion
opcode. The second word is the absolute address of til(' stack pointer.

Four program transfer stack instructions that facilitate interrupt processing and
subroutine calls are provided for use with the L8I-2/60 only:

JSKR
JSKS
RTNR
RTNS

.Jump and Stack Registers
Jump and Stack Status
Return Registers
Return Status

These four instructions do not permit indirect addressing of the stack pointer.

4.4.1 Addressing Modes

To provide flexibility in stack management, several addressing modes are provided
with Stack instructions (figure 4-17).

4.4.1.1 Direct Access to stack

In the Direct Access mode, the second word of the instruction (stack point.er address-­
SPA) is used to fetch the stack pointer from memory. In this mode, t.he ~tack pointer
contains t:he effective stack element address (SEA) and is used to access the stack
element tor entry, retrieval, or t0~;tillq of data.

4.4.1.2 Indexed Access to Stack

o
I In the IndexE'd Access mode, the SPA in the second word of the instruction is used to

fetch the stack pointer from memory. The contents of the signed X register are then
algebraically sununed with the stack pointer to form the effective SEA. After the
sununation, bit 15 is treated as a 0 for accessing the stack element. This allows
access to the nth element in the stack relative to the last stack entry when the X
register contains n. For example, if X = 1, the next most recent. entry is accessed.

4.4.1.3 Auto-Postincrement Access to Stack (POP)

In the Auto-Postincrement mode, the SPA is used to obtain the stack pointer. In this
mode, the stack pointer contains the effective SEA and provides direct acces~; to the
stack element. Upon completion of the stack access, the stack pointer i~; incremented.
and restored to its memory location. This mode of addressing appears to remove (POP)
the most recent entry from the stack when used with ii load type instruction.

4-20

I: •

I
1

C'
SPA

o

STACK INSTRUCTION

P OPCODE

P+l STACK POINTER ADDRESS 1----
**

SEA
STACK POINTER*

*Stack Pointer Always Points to
Most Recent Entry in Stack.

**Stack Pointer Address may be
multilevel indirect for the
LSI-2/60, except JSKR, JSKS,
RTNR, and RTNS.

Fu 11

Fu 11

Fu 11

STACK ELEMENT - Full

Empty

Empty

Empty

Empty

Figure 4-17. stack Organization and Management

4-21

:7FFF

SEA+n

SEA+l

SEA

SEA-l

SEA-2

SEA-n

:0000

t
UPPER
MEMORY

POP

PUSH

LOWER
MEMORY

1

I~." .. ····.·.·.··.I ...

.1
!

~.

ComputerAutomation ~

4.4.1.4 Auto-Predecrement Access to Stack (PUSH)

In this mode, the stack pointer is ,lcces:3ed via thE:~ SPA, decremented by onl', and
restored. The stack element is then accessed using the decremented contents of tht,
stack pointer. "Ihis mode of addressin<] appears to insert (PUSH) a new entry onto tht'

" stack when use(l with a store type in:'truction.

'!

4.4.1.5 Multilevel Indirect Addressing (LSI-2/60 ONLY)

Multilevel indirect addressing of the stack pointer may be used with all stack
instructions, except JSKR, JSKS, R'rNR, and RTNS. If, for example, a subroutine has
been called by a JSKS or JSKR, then parameters may be accessed indirectly through the
stack using the value of P that was placed on the stack. If the pop mode of addressing
is used (Auto Increment), then after the parameter has been accessed, the P value on
the stack is incremented so that a return can be made without having to modify the P
value directly. See the following example (figure 4-18).

In the example illustrated, P in the 3tack is equal to Y+2 befOH' the :;ubrou tin'"
executes and is equal to Y+4 at the time that thc R'rN~; returns to till' Ilext main1 j Ill'
instruction.

Main
Program Subroutine Stack

1
SUB DATA STKPT FULL

LDAS ,"STKPT ,+ FULL

1
FULL

P ~ Y JSKS SUB
Y+2 DATA A LDAS ,"5 TKPT ,+

1 STKPT
RTNS STKPT

STACK I-

Y+3 DATA B
Y+4

1
Figure 4-18. LSl-:V60 SLack Handling l~xamJJlc

4.4.2 LSI-2/60 Program Transfer Stack Instructions

Program transfer stack instructions ,JSKH, JSKS, RTNR, and RTNS are usable only with
the LSI-2/60. The format of these illstructions is shown in figure 4-19.

[LABEL] OPCODE OPERAND[,CNTI [COMMENTS]

CNT = Temporary Cel I Count

Figure 4-19. LSI-2/60 Pruqram Transfer Stack Instruction Format

4-22

Ul
(])
Ul
Ul
QJ
H
'0
'd
r<C

>­
H
o
E
(])

:s
tJ'
c ,"
if,

IU
Q;

H
U
C

H

c

___ 1

JSKR

JSKS

RTNR

RTNS

ComputerAutomation ~ -

JUMP ANn STACK REGISTERS. The JSKR instruction will stack information
on any stack in memory in the order X, A, STATUS, and P, as shown in
figure 4-21. The overflow and byte mode flags will be unconditionally
reset. The sta6k address pointer is updated after the stack operation.

The first word of the instruction contains an opcode and the second
word contains an address pointer. This address pointer points to a
location in memory containing the location of the stack pointer
address. After all elements are stacked, a jump to the stack pointer
address plus one is taken. See figure 4-20.

If this instruction is used as an interrupt instruction, after all
elements have been stacked and before the jump, the interrupt flag is
unconditionally turned off.

JUMP AND STACK STATUS. The JSKS instruction is identical to the JSKR
instruction, except that only STATUS and P are stacked.

Main
Program

1
JSKR SUB

1

Subroutine

SUB DATA STKPT

RTNR STKPT

Figure 4-20. Program Transfer

RETURN REGISTERS. The RTNR instruction will fetch information from a
stack in memory in the order P, STATUS, A, and X, as shown in figure
4-21. The stack address pointer will be updated after the stack fetch
operation.

Interrupts will be enabled and the OV and byte mode flags will be
loaded with the value of the corresponding bits contained in the
status word. Even though the status word contains SREG and SENSE
switch information, it is not presented to the console for storage;
therefore, the SREG and SENSE switches will not be affected.

The first word of the instruction contains an opcode and the second
word contains an address pointer called the stack address pointer.

RETURN STATUS. The RTNS instruction is identical to the RTNR instruc­
tion, except that only STATUS and P are fetched.

When either the JSKR or JSKS instruction is used, one or more temporary cells may be
stored on the stack ahead of the regular stacked information (see figure 4-21 (a) and
(b)). The optional count field of the instruction is available for the user to
specify the required number of temporary cells. To specify the number of temporary

4-23

Computer.
I

·
· I~

· Full

SAP Points Here~ Fu 11.

Empty

Empty

Empty Increasing

II '/
Empty Memory Addresses

Empty

Empty

· l,I ,.1/
;

· . Empty

Stack Address Pointer

o (a) Stack Before a JSKR or After a RTNR

·

Fu 11

Full

X

A Increasing

Status Memory Addresses

SAP Points Here-"" P
j
1

I Empty

Empty

l-' · 1/
· / I

Empty

I Stack Address Pointer III

,

I (b) Stack after a JSKR or before a RTNR

fo'iqul"l' t1-~ 1. Operal i Oil of ,1SKR and R'I'N/{ InstructiollS

4-24

i.

c

ie

cells, enter the numbe;- i.n the CNT field of the instruction format shown above. For
JSKR as many as four temporary cells may be used. For JSKS as many as six temporary
cells may be used. The corresponding RTNS orRTNR instructions must have the same
count field. These temporary cells are stored ahead of the register storage such
that the following order applies in storage from high to low memory: Temporary
Cells, X, A, STATUS, P for JSKR and Temporary Cells, STATUS, P for JSKS. Temporary
cells that are created within the stack by the temporary cell· count are not disturbed
by the JSKR, RTNR, JSKS, and RTNS instructions (figure 4-22).

One use of temporary cells is described in the following situation. A JSKR instruc­
tion is executed to stack the contents of .the A and X registers onto a stack. How­
ever, reloading of the A and X registers with their former contents upon return to
the called routine is not desired. Therefore, an RTNS instruction with a temporary
cell count of 2 specified is executed to accomplish the return to the called routine.
'fhe former contents of the A and X registers which are stored in the stack are not
restored to the A and X registers, the current (new) contents m: the A and X registers
are not disturbed, and the value of the stack address pointer now points to the stack
address as it was prior to the JSKR.

FULL FULL

FULL FULL

TEMP CELL 1 TEMP CELL 1

TEMP CELL 2 TEMP CELL 2

X TEMP CELL 3
A STATUS

STATUS OR P f--

P r- EMPTY
EMPTY 1/. ,b

, ~ , ~. EMPTY
EMPTY EMPTY
EMPTY STACK POINTER I--

STACK POINTER r--

FOR JSKR FOR JSKS

Figure 4-22. JSKR AND JSKS Temp Cells

In another situation, if a JSKS instruction with two temporary cells specified is
executed to call a subroutine, the subroutine output values are placed in the tempo­
rary cells. An RTNR instruction may be executed to accomplish the return to the
calling routine, where the values in the two temporary locations in the stack are
restored to the A and X registers.

NOTE

RTNR and RTNS may be located directly ahead of a subroutine entry
point so that they can share the same stack pointer address cell
used by a JSKR or JSKS call to the subroutine.

4-25

~' I

('
?I
II

o

CornputerAutomation ~

4.4.3 stack Overflow Protection (LSI-2/60 Only)·

When the LSI-2/60 is used, stack overflow protection is implemented in all stack
instructions that push information onto a stack. To use this feature, the stack
address pointer must reside immediately below the last available stack cell as shown
in figure 4-23

A stack overflow is the result of attpmpting to push data onto a stack wherf' the
stack address pointer is decrement.cd t.O t.he address of the stack pointer plus one.
One empty cell is always left to allow for saving P should a JSKR or JSKS subsequently
overflow. There is no protection for popping from an empty stack.

First Stack Cell

r, r,fi

Las t Stack Cell

Stack Address Pointer

- .--

Figure 4-23. : .. f i")ck Overflow Feature

Increasing Memory
Addresses

4.4.3.1 All Push Mode (Auto Decrem~nl:) Stack Instructions Except JSKR and JSKS

When a stack instruction would cause Lhe stack address pointer to reach the value of
the address of the stack address pointer plus one, the stack 3.nd stack address pointer
are not altered, the stacking operation is aborted, and a stack overflow trap is
generated. ~ overflow trap causes an interrupt to location :8 in memory. Note
that this int(,rrupt is outside of EIN/DIN control. If a JST is used as the interrupt
instruction, the address of the aborted stack instruction is stored in the memory
cell defined by the JST.

Note that the aborted instruction is not executed, but may be executcn properly once
the stack overflow condition has been corrected (e.g., by a recovery routinf' which
removes elements from the stack to some other temporary location).

4.4.3.2 Jump and Stack Status or Jump and Stack Registers

When a JSKR or JSKS instruction would cause an overflow (all required variables will
not fit on the stack and still leave one or more vacant cells), the current location
in memory that is normally stacked as the program counter (P) is placed into the
stack at SAP+I. The stack address pointer is not affected by a JSKR or JSKS if an
overflow occurs. After P has been saved, the stack overflow trap causes an interrupt

4-26

I' •
~,
.'

o

c

to location :8 as for .;',',her stack instructions that overflow. Note that a JST at the
interrupt location will store the value of Passociated with the actual location of
the JSKR or JSKS, while the value of P saved in the stack is associated with an In­
Line program. In this way, if a JSKR or JSKS used as an Interrupt instruction
causes an overflow, both the In-Line return address and the Location of the offending
instruction are available for a recovery routine. The aborted instruction is not
executed, but may be executed properly once the stack overflpw condition has been
cleared.

The three examples in figure 4-24 show how the CPU responds to stack overflow. The
first example shows' an In-tine stack instruction (excluding JSKR and JSKS) overflow
situation and the second sho~s an In-Line JSKR (note that JSKS operates in the same
way) instruction overflow. In each case, the instruction has attempted to push some
information onto a staok, the ,trap has occurred to lo~ation :8 and the JST has been
executed to the Stack Error Recovery routine, SER. Notice that the stack pointer has
not been affected, and the address stored in the return location of the SER routine
points back to the offending stack instruction. Notice also that for the JSKR in­
struction, the address of the JSKR instruction is also pushed onto the stack at
location SAP+I. The third example shows a JSKR (not~ that JSKS operates in the same
way) in'::':l"rupt instruc-cion overflow. In this case, an interrupt has been generated
to the JSKR, the JSKR has then attempted to push information onto the stack, the trap
has oc-r',.'rred to location :8 and the JST has been executed to the Stack Error Recovery
routine, SER. Notice that in this example the In-Line return location for the origina
interrupt has been pu~hed onto the stack at location SAP+l and that the address of
the JSKR instruction is stored in the return location of the SER routine. Note also
that the stack pointer has not been affected.

P
P+l

Examples of Stack Overflow

Example I. In-Line Stack Instruction (excluding
JSKR and JSKS) Overflow

Main
Program Stack After Trap Occurs

1
STAS STKPT,-

1 ""(trap occurs)

[
FULL

~ __ -=E:.:..:M.:...PT':"Y':"'----I
SAP+2

SAP+2
SAP+l
SAP

Stack Location Definition

STKPT DATA SAP
Trap Interrupt Location

:8 JST SER Stack Error Recovery Routine

SER Contents = P

1
RTN SER

Figure 4-24. CPU Response to Stack OVerflow

4-27

I
I
i

~
i

P
P+l

M

M+l

Example II. In-Line JSj(R or JSKS Instruction Overflm"

Main
Program Stack After Trap Occurs

JSKR SUB

1 ""(trap occurs)

r-+ FULL
EMPTY

Contents = P
'-- SAP+3

SAP+4
SAP+3
SAP+2
SAP+l
SAP

Trap Interrupt Location Stack Error Recovery Routine

:8 JST SER SER [Contents =: P]

j
RTN SER

Example III. Interrupt JSKR or JSKS Instruction Overflow

Main
Program

Interrupt Vector
Y JSKR

InterruptI J
(trap occurs)

Loca t i on
SUB

Stock After Trap Occurs

SAP+4
;-:+ FULL SAP+3

EMPTY SAP+2
Contents = M+l SAP+l

'-- SAP+3 SAP

Trap Interrupt Location Stack Error RecoVery Routine

:8 JST SER SER [Contents = Y]

1
RTN SER

Figure 4-24. CPU Response to St.ack Overflow (cont'c1)

4-l.8

4.4.4 Arithmetic Star~ Instructions

ADDS

SUBS

ADD STACK ELEMENT TO A. Adds contents of stack element to contents of
A register. OV is set if arithmetic overflow occurs.

SUBTRACT STACK ELEMENT FROM A. Subtracts contents of stack element
from contents of A register. OV is set if arithmetic overflow occurs.

4.4.5 Logical Stack Instructions

ANDS

IORS

AND STACK ELEMENT TO A. Logically AND's contents of stack element
with contents of A register. Result replaces contents of A register.

INCLUSIVE, OR STACK ELEMENT TO A. Inclusively OR's contents or stack
element with contents of A register. Result replaces contents of
A register.

EXCLUSIVE OR STACK ELEMENT TO A. Exclusively OR's contents of stack
element with contents of A register. Result replaces contents of
A register.

4.4.6 Data Transfer Stack Instructions

EMAS

WAS

WXS

STAS

STXS

EXCHANGE STACK ELEMENT AND A. Stores contents of A register in stack
element and loads contents of the stack element into A register.

LOAD STACK ELEMENT INTO A. Loads contents of stack element into
A register.

LOAD ST1\CK ELEMENT INTO X. Loads contents of stack element into
X register.

STORE A IN STACK ELEMENT. Stores contents of A register in stack
element.

STORE X IN STACK ELEMENT. Stores contents of X register in stack
element.

4.4.7 Program Transfer Stack Instructions

CMSS

IMSS

COMPARE STACK ELEMENT TO A AND SKIP IF HIGH OR EQUAL. Compares con­
tents of stack element with contents of A register. If A register is
greater than contents of stack element, a ene-word skip occurs. If
A register is less than contents of stack element, next sequential
instruction is executed.

INCREMENT STACK ELEMENT AND SKIP ON ZERO RESULT. Contents of stack
element are incremented by one. If increment causes result to become
zero, a one-word skip occurs. If not, the next sequential instruction
is executed. OV is set if arithmetic overflow occurs.

4-29

JMPS

JSTS

ComputerAutomation ~

JUMP UNCONDITIONAl.. P register is loaded with contents of stack
pointer (SEA), causing an unconditional branch to the addressed stack
element location. Next instruction is executed from location SEA.

JUMP AND STORE TO S'rACK t::LEMENT. Contents of P reg i~;ter (P + 2) i.UP

stored in stack element and P register is then loadod with IlddrenH ot"
stack element plus one (SEA + 1). Next instruction iH ~cCQK"od from
location SEA + 1.

~I' 4.4.8 Stack Control Instruction
I
t'i

if II

STAS STACK ELEMENT ADDRESS TO A. Loads contents of stack pointer into
A register.

4.5 IMMEDIATE INSTRUCTIONS

I" ::~ia::::tructions are similar to Memory Reference instructions in that they
4CW perform logical and arithmetic operations involving memory data and operating

i registers. The memory data, however, is stored within the immediate instruction
I itself rather than in a separate operand word or byte. The oper.:mds of the ins truc-! tions must be absolute and within the range :0 through :FF' (Le., must fit into eight I bits). The Immediate instruction format is shown in figure 4-25.

:

[LABEL] OPCODE OPERAND [COMMENTS]

OPERAND Must be absolute and in the range :0 thru :FF

Figure 4-25. Immediate Instruction Format.

4.5.2 Instructions

ADD TO A IMMEDIATE. Operand is added to contents of A register. OV
is set if arithmetic overflow occurs.

ADD TO X IMMEDIA'l'E. Operand is added to contents of X register. OV
is set if arithmetic overflow occurs.

SUBTRACT FROM A IMMEDIATE. Operand is negated (two's complemented)
and added as a l6-bit word to A register. OV is set if arithmetic
overflow occurs.

SXI SUBTRACT FROM X IMMEDIA'l'E. Operand is negated (two's complemented)
and added as a l6-bit word to X register. OV is set if arithmetic
overflow occurs.

CAl COMPARE TO A. IMMEDIATE. Operand is compared to contents of I..S byte of
A register. If unequal, a one word skip occurs. If equal, next
sequent~al instruction is executed. Contents of A register are not
disturbed. MS byte of A regist.er does not take part in comparison.

4-30

CXI COMPARF ~O X IMMEDIATE. Operand is compared to contents of LS byte of
X register. If unequal, a one word skip occurs. If equal, next
sequential instruction is executed. Contents of X register are not
disturbed. MS byte of X register does not take part in comparison.

LAP LOAD A POSITIVE IMMEDIATE. Operand is loaded into I.S byt.e of
A register. MS byte of A register is set to zero.

LXP LOAD X POSITIVE IMMEDIATE. Operand is loaded into LS byte of
X register. MS byte of X register is set to zero.

LAM LOAD A MINUS IMMEDIATE. The operand is negated (two's complemented)
and loaded as a l6-bit word into the A regis~er.

LXM LOAD X MINUS IMMEDIATE. The operand is negated (two's complemented)
and loaded as a l6-bit word into the X register.

4.6 CONDITIONAL JUMP INSTRUCTIONS

o 4.6.1 Format

C

Conditional J\~P instructions test conditions within the computer and perform program
br,lnches depending on the results of the test. A jump OCCULS if the specified condi­
tions are satisfied. All branches are direct and felative to the P register (location
of the Conditional Jump instruction). The range or Conditional Jump instructions is:

Forward Jumps:
Backward Jumps:

P+I through P+64
P through P-63

4.6.2 ~icrocoding

A general code, JOC, for Jump On Condition, is provided so the programmer can micro­
code jump conditions. There are five different conditions which may be tested indivi­
dually or in combination:

1. Sign of A (positive or negative)
2. Contents of A (zero or not zero)
3. Contents of X (zero or not zero)
4. Overflow indicator (set or reset)
5. SENSE indicator (on or off)

The conditions may be tested individually or in combination. Figure 4-26 shows the
format for the JOC instruction:

[LABEL] Joe OPERAND1,OPERAND2 [COMMENTS]

OPERAND 1-= Must be absolute and in the range :0 thru :3F
OPERAND 2 = Must represent a location within -63 thru +64

computer words.

Figure 4-26. JOC Jump On Condition Format

.

4)

o

'i

ComputerAutomation ~

JOC commands consist of two groups, the AND group and the OR group. The AND test
group requires that all of the test conditions specified by bits a through 4 of
operand I be true for the jump to take place. The OR group requires that anyone or
more of the test conditions specified be true if the jump is to take place.
Operand I consists of 6 bits (TO through T5) as definp.d by figure 4-27. Bit T5
specifies which _est group is used. Hits TO through T4 specify inclusion of a npe­
cific test condition if equal to 1. If equal to 0, the associated test condition is
not examined.

T4 = 1
T3 = 1
T2 = 1
Tl = 1
TO = 1

AND GROUP

X ,; 0
SENSE on
OV reset
A ,; 0
A positive

JOC :XX,ADR
r~------~A,------~~

TS T4 T3 T2 Tl TO

(TS = 1) OR GROUP TS

X = 0
SENSE off

= 0)

OV set (resets OV)
A = 0
A negative

Figure 4-27. JOC Expression I Definitions

The following Conditional Jump instructions are special cases of the general JOC
instruction. Since they are utilized ,1ore often than the general conditional jumps,
they have been given their own mnemoll,les. Figure 4-28 illustrates the general format
for the Conditional Jump instructions.

[LABEL] OPCODE OPERAND [COMMENTS]

OPERAND = Must represent a location within -63 thru +64
computer words.

Figure 4-28. Conditional Jump Format

4.6.3 Arithmetic Conditional Jump Instructions

JAG

JAP

• TA'~

,JAN

JUMP IF A GREATER THAN ZEHO. Jump occurs if contents of A register
are greater than zero.

JUMP IF' A POSrfIVE. ,JumI) occurs if contents of A register are greater
thall or equul to zero (A15 = 0).

JUMP J[o' A 7.i':I~O. Jump nCI:,urs if contents of A reg1.·"tcr are zero .

.TUMP] F A NO'I' Z,i':HO. ,Jump uccurs if contents of A register are not
zer() .

4-32

~'. 1

i
~ ..
[

f
!;"

if

o

JAL

JAM

JUMP 1'1:' A LESS THAN OR EQUAL TO ZERO. Jump occurs if contents of
A register are less than or equal to zero.

JUMP IF A MINUS. Jump occurs if contents of A register are less than
zero (A1S = 1).

JXZ JUMP IF X ZERO. Jump occurs if contents of X.register are not zero.

JXN JUMP IF X NOT ZERO. Jump occurs if contents of X register are not
zero.

4.6.4 Control Conditional Jump Instructions

JSS JUMP IF' SENSE INDICATOR SET. Jump occurs if SENSE indicator is on.

JSR JUMP IF SENSE INDICATOR RESET. Jump occurs if SENSE indicator is off.

JOS JUMP IS OVERFLOW SET. Jump occurs if OV equal one. OV is reset to
zero during jump.

JUMP IF OVERFLOW RESET. Jump occurs if OV equal zero.

4.7 SHIFT INSTRUCTIONS

4.7.1 Operand Restrictions and Instruction Format

Shift instructions move bit patterns in the computer registers either right or left.
shifts may involve a single register (A or X), a single register and the overflow
(OV) indicator, or both the A and X registers and the OV indicator. The processor
provides logical, arithmetic and rotate shifts. The operands (n) for single register
and double register instructions can be any absolute value from 1 through Band 16,
respectively. The single register shift instruction format is shown in figure 4-29
and the instruction format for double register (long) shifts is shown in figure 4-30.

[LABEL] OPCODE OPERAND [COMMENTS]

OPERAND = Must be absolute and in the range 1 thru 8.

Figure 4-29. Single Register Shift Format

[LABEL] OPCODE OPERAND [COMMENTS]

OPERAND ~ Hust be absolute and in the range 1 thru 16.

Figure 4-30. Double Register (Long) Shift Format

4-33

~I
.,;1· ________________________

I

0

4.7.2 Arithmetic Shift Instructions

The shift paths for the arithmetic shift instructions are illustrated below in figures·
4-31 and 4-32.

ALA

15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 0

0) DATA

LOST
A OR X REG I STER

15

0

Figure 4-3l. Arithmetic Left Shift

14 13 17 11 10 9 8 7 6 5 4 3 2 a

--- DATA ----------- .. LOST

A OR X REGISTER

Figure 4-32. Arithmetic Right Shift

ARITHMETIC SHIFT A LEFT. Contents of A register (bits 0-14) are
shifted left n places. The sign bit (bit 15) is unchanged. Zeros are
shifted into bit a and bits shifted out of bit 14 are lost.

ALX ARITHMETIC SHIFT X LEFT. Contents of X register (bits 0-14) are
shifted left n places. The sign bit (bit 15) is unchanged. Zeros are
shifted into bit a and bits shifted out of bit 14 are lost.

ARA ARITHMETIC SHIFT A RIGHT .. Contents of A register are shifted right n
places. The sign bit (bit 15) is unchanged and is shifted into and
propagated through bit 14. Bits shifted out of bit 0 are lost.

ARX ARITHMETIC SHIFT X RIGHT. Contents of X register are shifted right n
places. The sign bit (bit 15) is unchanged and is shifted into and
propagated through bit 14. Bits shifted out of bit 0 are lost.

4-34

l!i til
<

I

o

4.7.3 Logical Shift Instructions·

The shift paths for the logical shift instructions are illustrated below in figures
4-33 and 4-34.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

.·LOST ~[] DATA 0

OV A OR X REGISTER

Figure 4-33. Logical Left Shift

15 14 13 12 11 10 9 8 7 6 5 3 2 o

o -+-1------------ DATA g .. LOST

LLA

LLX

LRA

LRX

A OR X REGISTER OV

Figure 4-34. Logical Right Shift

LOGICAL SHIFT A LEFT. Contents of A register are shifted left n
places through OV. Zeros are shifted into bit O. Bits are shifted
from bit 15 of A into OV. Bits shifted out of OV are lost. A and OV
act as a 17-bit register.

LOGICAL SHIFT X LEFT. Contents of X register are shifted left n
places through OV. Zeros are shifted into bit O. Bits are shifted
from bit 15 of X into OV. Bits shifted out of OV are lost. X and OV

. act as a 17-bit register.

LOGICAL SHIFT A RIGHT. Contents of A register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shifted
from bit 0 of A into OV. Bits shifted out of OV are lost. A and OV
act as a 17-bit register.

LOGICAL SHIFT X RIGHT. Contents of X register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shifted
from bit . .o of X into OV. Bits shifted out of OV are lost. X and 6v
act as a 17-bit register.

4-35

ComputarAutomation ~

4.7.4 Rotate Shift Instructions

i

f The shift paths for the rotate shift instructions are illustrated below in figures
~~ 4-35 and 4-36.
~,i
~'

""~

I
0

I
ell "

I
I

~
OV

~
15 14

[i

RLA

RLX

RRA

RRX

l
15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 0

DATA

A OR X REGISTER

Figure 4-35. Rotate Left Shift

~ 13 12 11 10 9 8 7 6 5 4 3 2 0

DATA

A OR X REGISTER OV

Figure 4-36. Rotate Right Shift

ROTATE A LEFT WITH OVERFLOW. Contents of A register are shifted left
n 21aces through OV. OV is shifted into bit a and bit 15 is shifted
into OV. No bits are lost when this shift is executed. A and OV act
a~ a 17-bit register.

ROTATE X LEFT WITH OVERFLOW. Contents of X register are shifted left
n places through OV. ov is shifted into bi~ 0 and bit 15 is shifted
into OV. No bits are lost .when this shift is executed. X and OV act
as a l7-bit register.

ROTATE A RIGHT WITH OVERFLOW. Contents of A register are shifted
right n places through OV. OV is shifted into bit 15 and bit a 1S

shifted into OV. No bits are lost when this shift is executed. A and
OV act as a 17-bit register.

ROTATE X RIGHT WITH OVERFLOW. Contents of X register are shifted
right n places through OV. OV is shifted into bit 15 and bit a is
shifted into OV. No bits are lost when this shift is executed. X and
OV act as a l7-bit register.

4-36

c

..

e

4.7.5 Double Registe_ (Long) J~g~cal Shift Instructions

The shift paths for the Long Logical Shift instructions are shown below in figures
4-37 and 4-38.

4[]
OV

15

o I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I DATA 14 I DATA 10

A REGISTER X REGISTER

Figure 4-37. Long Left Shift

14131211 10 9 8 765 432 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LLR

D,llTA I ·1 DATA I [J.!
A REGISTER X REGISTER OV

Figure 4-38. Long Right Shift

LONG LOGICAL SHIFT LEFT. Contents of A and X registers are logically
shifted left n places through OV. Zeros are shifted into bit 0 of X
registe1-. Bits shifted from bi t 15 of X enter bit 0 of A, and from
bit 15 of A they enter ov. Bits shifted out of OV are lost. A, X and
OV act as ~ 33-bit register.

LONG LOGICAL SHIFT RIGHT. Contents of A and X registers are logically
shifted right n places through av. Zeros are shifted into bit 15 of A
register. Bits shifted from bit 0 of A enter bit 15 of X, and from
bit 0 of X they enter ov. Bits shifted out of OV are lost. A, X and
OV act as a 33-bit register.

4.7.6 Double Register (Long) Rotate Shift Instructions

Shift paths for the Long Rotate Shift instructions are shown below in figures 4-39
and 4-40.

r t
~ 15

14131211 10 9 8 7 6 5 4 3 2 1 0 15 14131211 10 9 8 7 6 5 4 3 2 1 0

, I DATA I~ I DATA I I
OV A REGISTER X REG I STER

Figure 4-39. Long Rotate Left Shift

t
15 14 1.3 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

II DATA I ~I DATA
I[
I

A REG I STER X REGISTER ov

Figure 4-40. Long Rotate Right Shift

4-37

LRL

LRR

LONG ROTATE LEFT. Contents of A and X registe=s are shifted left n
places through OV. OV i p shifted into bit 0 of X register. Bits
shifted from bit 15 of X enter bit 0 of A, and from bit 15 of A they
enter OV. No bits are lost when this shift is executed. A, X and OV
act as a 33-bit register.

LONG ROTATE RIGHT. Contents of A and X registers a.re shifted right n
places through OV. ov is shifted into bit 15 of A register. Bits
shifted from bit 0 of A enter bit 15 of X, and from bit 0 of X they
enter OV. No bits are lost when this shift is executed. A, X and OV
act as a 33-bit register.

4.8 REGISTER CHANGE INSTRUCTIONS

4.8.1 Format

~egister change instructions perform arithmetic and logical operations involving the
A register, the X register and/or the OV indicator. The Register Change instruction
format is shown in figure 4-41.

[LABEL] OPCODE [OPERAND] [COMMENTS J

OPERAND = There is no operand except for the BAO and
BXO instructions where it must be absolute
and in the ran~~ 0 thru 15.

Figure 4-41. Register Change Format

4.8.2 A Register Change Instructions

ARM A REGISTER TO MINUS ONE. Sets contents of A register to -1.

ARP .. REGISTER TO PLUS ONE. Sets contents of A register to +1.

CAR COMPLEMENT A REGISTER. Performs one's complement on contents of
A register.

DAR DECREMENT .A REGISTER. Subtracts one from contents of A register. OV
is set if arithmetic overflow occurs. '

IAR INCREMENT A REGISTER. Adds one to contents of A register. OV is set
if arithmetic overflow occurs.

NAR NEGATE A REGISTER. Performs two's complement on contents of
A register.

ZARZERO A REGISTER. Sets contents of A regist~r to zero.

4-38

,

""""III!

" v'

ComputerAutomation ~

4.8.3 LSI-2/60 A Reg:-~er Bit Change Instructions

The A Register Bit Change instructions are usable only with the LSI-2/60. The format
of these instructions is shown in figure 4-42.

[LABEL] OPCODE B IT NO. [COMMENTS]

Figure 4-42. LSI-2/60 A Register Bit Change Instruction Format

A bit in A is addressed by a parameter in the operand (BIT NO.) of the instruction
and has the limits zero through fifteen corresponding to bit positions 0 through 15.

ASB A SET BIT. sets addressed bit in A register to 1 and copies old
content of addressed bit into OV.

ARB A RESET BIT. Sets addressed bit in A register to 0 and copies old
content of addressed bit into OV.

ACB A COMPLEMENT BIT. Complements addressed bit in A register and copies
old content of addressed bit into OV.

ATE A TEST BIT. Copies content of addressed bit in A register into OV.

4.8.4 X Register Change Instructions

XRM X REGISTER TO MINUS ONE. Sets contents of X register to -1.

XRP X REGISTER TO PLUS ONE. Sets contents of X register to +1.

CXR COMPI£MENT X REGISTER. Performs one's complement on contents of
X register.

DXR DECREMENT X REGISTER. Subtracts one from contents of X register. av
is set if arithmetic overflow occurs.

IXR INCREMENT X REGISTER. Adds one to contents of X register. OV is set
if aritr~etic overflow occurs.

NXR NEGATE X REGISTER. Performs two's complement on contents of X register.
OV is set if arithmetic overflow occurs.

ZXR ZERO X REGISTER. Sets contents of X register to zero.

,

4-39

C!

(J

,,"'"

ComputerAutomation ~

4.8.5 LSI-2/60 X Register Bit Change Instructions

The X Register Bit Change instructions are usable only with the LSI-2/60. The format
of these instructions is shown in figure 4-43.

[LABEL] OPCODE B IT NO. [COMMENTS]

Figure 4-43. LSI-2/60 X Register Bit Change Instruction Format

A bit in X is addressed by a parameter in the operand (BIT NO.) of the instruction
and has the limits zero through fifteen corresponding to bit positions 0 through 15.

XSB

XRB

XCB

XTB

X SET BIT. Sets addressed bit in X register to 1 and copies old
content of addressed bit into OV.

X RESET BIT. Sets addressed bit in X register to 0 and copies old
content of addressed bit into OV.

X COMPLEMENT BIT. Complements addressed bit in X register and copies
old content of addressed bit into OV.

X TEST BIT. Copies cont.ent of addressed bit in X register into OV.

4.8.6 OV Register Change Instructions

SOV

ROV

COV

SAO

SXO

LAO

LXO

BAO

BXO

SET OVERFLO\'l. sets OV indicator (=1).

RESET OVERFLOW. Resets OV indicator (=0).

COMPLEMENT OVERFLOW. Complements ov.

SIGN OF A TO OVERFLOW. Bit_ 15 of A register is copied into OV.
A register remains unchanged.

SIGN OF X TO OVERFLOW. Bit 15 of X register is copied into OV.
X register remains un~hanged.

LSB OF A TO OVERFLOW. Bit 0 of A register is copied into OV.
A register remains unchanged.

LSB OF X TO OVERFLOW. Bit 0 of X register is copied into OV.
X register remains unchanged.

BIT OF A TO OVERFLOW. Bit n of A register is copied into OV.
A register remains unchanged. Bit n is specified by operand.

BIT OF X TO OVERFLOW. Bit n of X register is copied into OV.
X register remains unchanged. Bit n is sptcified by operand.

4-40

c

o

4.8.7 Multi-Register ~~ange Instfuctions

ZAX ZERO A AND X. Sets contents of A and X registers to zero.

AXP A AND X REGISTERS TO PLUS ONE. Sets contents of A and X regi$terft to
+1.

AXM A AND X REGISTERS TO MINUS ONE. Sets contents of A and X registers
to -1.

TAX TRANSFER A TO X. T~ansfers contents of A register to X register.
A register remains unchanged.

TXA TRANSFER X TO A. Transfers contents of X register to A register.
X register remains unchanged.

EAX EXCHANGE A AND X. Exchanges contents of A and X registers.

1\1'11\. AND OF A AND X TO A. Contents of A and X registers are logically
ANDed. Result replaces contents of A register. X register remains
unchanged.

ANX AND OF A AND X TO X. Contents of A and X registers are logically
ANDed. Result replaces content of· X register. ~ register remains
unchanged.

NRA NOR OF A AND X TO A. Contents of A and X registers are logically
NORed. Result replaces contents of A register. X register remains
unchanged.

NRX NOR OF A AND X TO X. Contents of A and X registers are logically
NORed. Result replaces contents of X register. A register remains
unchanged.

CAX

CXA

COMPLEMENT OF A TO X. Performs one's complement on contents of
A register and places result in X register. A register remains
unchanged.

COMPLEMENT OF X TO A. Performs one's complement on contents of
X register and places result in A register. X register remains
unchanged.

NAX NEGATE A TO X. Performs two's complement on contents of A register
and places result in X register. A register remains unchanged. av is
set if arithmetic overflow occurs.

NXA NEGATE X TO A. Performs two's complement on contents of X register
and places result in A register. X register remains unchanged. av is
set if arithmetic overflow occurs.

4-41

lAX

lXA

lPX

DAX

DXA •

Computer-Automation ~

INCHEMENT A '1'0 X. Acld~; one to contenls of A register and places
result in X register. A register remains unchanged. OV is set if
arithmetic overflow Occurs.

INCREHENT X TO A. Add', one to contents of X register and places
t .sult in A reqister. X register remnIng ullchanged. OV is set if
arithmetic ovetilcM occurs.

INCREMENT P TO X. Adds two to current pro'Jram counter (address of
IPX) and places result in X register. P is then incremented for the
next instructioIl fetch.

DECREMENT A TO X. Subt.racts one from contents of A register and
places result in X register. A register remains unchanged. OJ is set
if arithmetic overflow occurs.

DECHEMEN'J' X '1'0 1\. :-~I!L>lrdct~; orK' from ',:unLl'T1ts of X n~(Jit;ter
places result ill A l:cgister. X register remains unchanged.
if arithmetic overflow occurs.

a lid
OV is set.

4.8.8 LSI-2/60 Multi-Register Change! Instructions

The Multi-Register Change instructions described below are usable only with the
LSI-2/60. The format of these insl.rnct.ions is shown ill fiqure 4-44.

[[LABELl OPCODE [COMMENTS]

Figure 4-44. LSI-2/60 Muj:.i-RC'qlster Chilllq(' InstTuction Format

AXA ADD X TO A. Adds cont"nts of A and X registers and stores result in
A reqist('r-. OV flaq i~; ~;et if arilhmt-·tic ovcl-flow occurs.

AAX ADD A TO X. Adds COLt, 'l":~; of A and X registers and stores result in
., register. OV flag is set if arithmetic overflow occurs.

SXA SUBTRACT X FROM A. Subtracts conterits of X register from contents of
A register and stores result in A register. OV flag is set if arith­
metic overflow occurs.

SAX

XXA

XAX

SUBTRACT A FROM X. Sllb+Tacts content~; of A regist<:>r from contents of
X register and st.ores le~.ult in X register. OV fldg is set if arith­
metic overflow O~curs.

EXCLUSIVE OR X TO A. Performs exclusive OR on contents of A and X registers and st0res result in A register.

EXCLUSIVE OR A TO X. P~~rforms exclusivf~ OR on contents of A and X registers and stores result in X reqist:er.

4-42

c

4.8 .9. Extended Mul t~ ':"eg ister Cl)ange Instructions

BCA BIT CLEAR A. The contentH of the X register are ones complemented and
then logically ANDed with the contents of the A register. The result
replaces A and the original value of X is left unchanged.

BCX BIT CLEAR X. The contents of the X register are ones complemented and
then logically ANDed with the contents of theOA register. The result
replaces X and the original value of A is left unchanged.

BSA

BSX

EIX

BIT SET A. Contents of X register are logically ORed with contents of
A register. Result is placed in A register and X register remains
unchanged.

BIT SET X. Contents of A register are logically ORed with contents of
X register. Result is placed in X register and A register remains
unchanged.

EXECUTE INSTRUCTION POINTED TO BY X. Instruction contained in location
addressed by contents of X register is executed immediately following
EIX instruction. Next sequential instruction following EIX instruction
is skipped.

Note the following:

1. If the executed instruction is a multi-word instruction, the
second and succeeding words of the instruction must be located at
the second location after the EIX instruction (EIX+2). If the
executed instruction uses relative to P register addressing, it
is relative to location EIX+l.

2. If the executed instruction modifies the P register, the modifi­
cation is relative to location EIX+l.

3. If the executed instruction is a SCM or conditional I/O instruc­
tion, the location following the EIX instruction (EIX+l) should
be coded with a JMP $-1. This is required for recovery purposes
in the event of an interrupt or the la~k of a true sense response.

4. EIX does not allow an interrupt to be serviced between it and the
next instruction executed.

4.8.10 LSI-2/60 Extended Multi-Register Change Instruction

LSI-2/60 Extended Multi-Register Change instruction XNX is usable only with the LSI-
2/60. The format of the instruction is shown in figure 4-45.

[LABEL] OPCODE [COMMENTS]

Figure 4-45. LSI-2/60 Extended Multi-Register 'Change Instruction Format

4-43

iii :.i
.~:
1-1

XNX

ComputerAutomation ~

EXECUTE INDEXED. Execute indexed is a one·-word instructi()n that
fetches the next locati .. on in memory, adds th~ contents of X to it
(without altering 0'1), dnu then executes this new instruction. If the
new instruction modifies the program location counter or is referencing
memvry, the reference is in relation to the address following the
Xt'X I ed instruction.

Note the following:

1. XNX does not allow an interrupt to be serviced between it and the
next instruction executed.

2. None of the conditional 1/0 is XNX'ab~e.

4.8.11 Console Register Instructions

IAH INPUT CONSOLE DATA REGISTER TO A AND HALT. Contents of Console Data
register are loaded into A register. Computer then halts.

IXH INPUT CONSOLE DA'J'A REGISTER TO X AND HALT. Contents of Console Data
register are loaded i.nto X register. Computer then halts.

ICA INPUT CONSOLE DATA REGISTER TO A. Contents of Console Data register
are loaded into A register.

ICX INPUT CONSOLE DATA RE(~ISTER TO X. Contents of Console Data register
are loaded into X register.

IIH INPUT CONSOLE DATA REGT~TER TO I AND HALT. Contents of Console Data
register are loaded into T register. Computer then halts.

IMH INPUT CONSOLE DATA REGISTER TO MEMORY AND lIALT. Content~; of Console
Data register arE' ston~d into memory Ioca hon f()llowing IMII instruction.
Computer halts with P re(J ister set to locatic·n following modified
memory location.

IPH INPUT CONSOLE DA'rA IlliGlSTER TO P AND HALT. Contents of Console Data
register are loaded into P register. Computer then halts. When RUN
;5 depressed, execution of the program will begin at address just
input to P register.

ISA INPUT CONSOLE SENSE REGISTER TO A. Four-bit contents of Console Sense
register are loaded into least significant 4 bits of A register. Most
significant 12 bits of A register are set to zero.

ISX INPUT CONSOLE SENSE REGISTER TO X. Four-bit contents of Console Sense
regist~r are loaded into least significant 4 bits of X register. Most
significant 12 bits of X register are set to zero.

OAH OUTPUT A TO CONSOLE DATA REGISTER AND HALT. Contents of A register
are loaded into Console Data register. Computer then halts.

OXH OUTPUT XTO CONSOLE DATA REGISTER AND HALT. Contents of X register
are loaded into Console Data register~ Computer then halts .

. 4-44

1,

OCA

OCX

OMH

OUTPUT A TO CONSOLE DATA REGISTER.
into Console Data register.

OUTPUT X TO CONSOLE DATA REGISTER.
into Console Data register.

Contents of A register are loaded

Contents of X register are loaded

OUTPUT MEMORY TO CONSOLE DATA REGISTER AND HALT. Contents of memory
location following OMH instruction are loaded into Console Data
register. Computer halts with P register set to location following
output memory location (OMH instruction +2) .

OPH OUTPUT P TO CONSOLE DATA REGISTER AND HALT. Contents of P register
(address of OPH instruction +1) are loaded into Console Data register.
Computer then halts.

4.9 CONTROL INSTRUCTIONS

4.9.1 Fnrmat

Cnltr-ol instructions are used for general status manipulation in the computer. The
general format for these instructions is shown in figure 4-46.

[LABEL] OPCODE [OPERAND] [COMMENTS]

There is no operand except for the SIN and STOP
instructions.
For SIN, the operand must be absolute and in the
range 1 thru 6.
For STOP, the operand must be absolute and in
the range 1 thru 255.

Figure 4-46. Control Format

4.9.2 Processor Control Instructions

HLT HALT. Halts the computer.

NOP

STOP

WAIT

NO OPERATION. Performs no active function. Normally used to reserve
space for other instructions.

HALT WITH OPERAND. Halts computer with specified operand occupying
least significant 8 bits of I (instruction) register. Operand may be
any absolute expression in the range I through 255. As an example,
STOP 5 would halt with :0805 in I register.

WAIT FOR INTERRUPT. An assembler pseudo op provided for convenience
that executes as JMP $. 'Program loops on one location waiting for an
interrupt. After interrupt is serviced, return is made to WAIT in­
struction to await further interrupts.

4-45

, .

I
i
~'

~'

I'.',', ,I

1

;,';

,~. ,

ComputerAutomation ~

4.9.3 LSI-2/60 Processor Control In"truction

LSI-2/60 Processor Cont roJ in~;lrucLioll WI-' r is usable old y wi til till' 1 '-; I, -2/()O. Thn

format of the instructions is shown in figure 4-47.

[LABEL]

WFI

'.

OPCODE [COMMENTS]

'Figure 4-47. LSI-2/60 Processor Control Instruction Format

WAIT FOR INTERRUPTS. The WFI instruction is a one-word instruction
that causes the proces~or to stop and wait for an interrupt. While
the processor is waiting for an interrupt, it is off all buses,
allowing for minimum DMA and interrupt latency. If, while the pro­
cessor is waiting for an interrupt, enough time elapses before an
interrupt occurs, the run indicator will go out; however, the pro­
cessor is still waiti119 for an interrupt and when one occurs, execution
will resume. The processor will respond to any interrupt that is
enabled, including trw console. After an interrupt is serviced,
resumption of In-Line execution begins with the instruction following
the WFI instruction.

NOTE

Do not execute a WFI instruction when interrupts
are disabled 'r when the wait instruction is
wi thin the rar>qe of an active snl instruction. In
pither of these cases, the processor will lock up
and respond only to the console or reset.

4.9.4 Mode Control Instructions

SBM

SWM

SET BYTE MODE. Condit.i.on[; computer to address bytl' (8 bit) operands
rather than word operand:.'; when execut inq Memory Hv[C'rellcc instructions
{see paragraph 4.2.2).

SET WORD MODE. Conditions computer to address word (16 bits) operands
rather than byte operands when executing Memory Reference instructions
(see paragraph 4.2.1). "Reset" condition of computer is Word mode.

4-46

ie

4.9.5 status Control Instructions

The format of the 8-bit Computer status word is shown in figure 4-48.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

OS DS DS OS SSN INT BYTE OV
3 2 1 0

T

SENSE REG I ST'ER -- l=OV SET
O=OV RESET

NOTE l=BYTE MODE

Bits 3 thru 7 are zeros when no console
O=WORD MODE
l=INTERRUPTS ENABLED
O=INTERRUPTS DISABLED
l=SENSE INDICATOR ON
O=SENSE INDICATOR OFF

is installed
Bits 8 thru 15 are reserved for future . expansion

Figure 4-4B. Computer Status Word Format

SIN STATUS INHIBIT. Inhibits interrupts and places computer in Word mode
for number of succeeding instructions specified by operand. Operand
may be any absolute expression in range 1 through 6. As an example,
execution of SIN 4 instruction will force Word mode operation for four
succeeding instructions and will inhibit interrupt acknowledgement
until after completion of five succeeding instructions since interrupt~
are serviced at end of instruction execution.

SIA

NOTE

The following should be noted when using the SIN
instruction.

1. Do not place a HLT, STOP, WAIT, or WFI in­
struction within a SIN instruction range.

2.

3.

Do not place a conditional I/O in a SIN
instruction range.

Do not attempt to step through a SIN range
when the computer is in Step mode. If an
instruction sequence which falls within a SIN
range must be examined, press the RESET push­
button first to clear the SIN counter. The
sequence can then be stepped through. Note
that the computer will revert to the Word
mode.

STATUS INPUT TO A. Computer Status word is loaded into LS byte of
A register. Resets OV and places computer in Word mode. State of
interrupts is unchanged. MS byte of A register is set to zero.

4-47

SIX

SOA

SOX

STATUS INPU'l' '1'0 X. Computer StatUf; word is loaded into l.S byte of
X register. Hesets OV dl)(1 ·pl.<lce!~ coml'utpl in W(lrd mod!'. St'-ltC' of

interrupts is unchanged. MS byte of X n·qister is ~a~1 to zero.

STATUS OUTPUT FROM 1\. L'!iu't significant byte of A roqist.er is ;LQaded
into computer Status register. This instruction doe? not alter Inter­
rupt Enable flag.

STATUS OUTPUT FROM X. Least significant byte of X register is loaded
into computer status register. This instruction does not alter Inter­
rupt Enable flag.

4.9.6 Interrupt Control Instructions

EIN

DIN

eIE

ENABLE INTERRUPTS. Enables recognition of external interrupts by the
computer. Interrupts will not be serviced for a minimum of one instruc­
tion time, and a maximum of three instruction times, following EIN.

DISABLE INTERRUPTS. Prevents processor from responding to any inter­
rupts. A jumper option on processor Option Pack allows Power Fail,
Console and Trap intel.-rupt operation independent of DIN (see Section
6.6.1) .

CONSOLE INTERRUPT ENABLE. Enables Console interrupts. Console inter­
rupts are generated each time INT switd~ is pressed when computer is in
RUN mode. Console interrupts are rtlso under control of EIN/DIN instruc~
tions. 1\ jumper option on processor Option Pack allows Console inter­
rupts to be enabled indr:-!)cr)dently of EIN/DIN instructions (see Section
6.6.1). Console interrupt.c;are disabled when a Console interrupt or
TRP is serviced.

eID CONSOLE INTERRUPT DISABLE. Disables Console interrupts.

PFE POWER FAIL INTERRUPT ENABLE. When option placing Power Fail interrupt
outside EIN and DIN conLrol is installed (see Section 6.6.1), the PFE
instruction allows recognition of Power Fail interrupts. If Power Fail
interrupts were disabled ~t issuance of PFE, PFE does not take effect
succeeding instructions have been executed.

PFD

TRP

POWER FAIL INTERRUPT DISABLE. When option placing Power Fail inter­
rupts outside EIN and DIN con·trol is installed (see Section 6.6.1), the
PFD instruction inhibits recognition of Power Fail interrupts.

TRAP. Generates an interrupt to Console interrupt location if inter­
rupts are enabled, or if jumper option placing Power Fail, Console and
Trap interrupts outside EIN/DIN control is installed (see section
6.6.1). In the latter case, there is no enable or disable instruction
associated with Trap interrupts. Console interrupt is disabled when
TRP is serviced. Interrupts will not be serviced for a minimum of one
instruction time followiTlfJ TRP.

4-48 Revised 7/76

. ,..,.

4.10 INPUT/OUTPUT INS'T'RTJCTIONS

Input/Output instructions are either single word or multiple word instructions. All
single word instructions use the same format (see figure 4-49). Multiple word formats
are described separately in paragraphs 4.10.4 and 4.10.5. All I/O instructions have
8 bits available for addressing a particular peripheral device and a particular
register or function within a device. Except when the Distri~uted I/O System is
employed, these 8 bits are arbitrarily divided into ;a 5-bit Device Address field to
address one of 31 devices and a 3-bit Function Code field to specify one of 8 registers
or functions wi thin a device. The device addres sand funct.ion code may be expressed
as either one or two self-defined (i.e., numeric) or absolute operands. If a single
operand is used, it must be in the range ~O through ':FF and it represents both the
device address'and function code. If two operands are used, the first must be the
device address in the range :1 through :IF and the second must be the function code
in 1:he range : 0 through : 7 . Note that Device Address zero is reserved for the CPU.

[LABEL]

I

OPCODE OPERANDl [OPERAND2] [COMMENTS]

If OPERAND 2 is not present, OPERAND 1 must be
absolute and in the range :8 through :FF.
If OPERAND 2 is present, OPERAND 1 must be ahsolute
and in the range :1 through :IF.
OPERAND 2 must be absolute and in the range :0
through :7.

Figure 4-49. Single Word Input/Output Instruction Format

Both Word and Byte I/O instructions are available. Whether a full 16-bit word or an
8-bit byte is transferred depends upon the instruction used and is not affected by
the word/byte addressing mode flip-flop (SWM/SBM) used by Memory Reference instruc­
tions.

4.10.1 Control Input/Output Instructions

The Control I/O instructions are divided into Sense and Select instructions. Sense
instructions are used to test the status of a function within the addressed peri­
pheral device.' Select instructions are used to control the operation. of specific
functions within the addressed peripheral device. The functions tested or controlled
depend upon the individual peripheral device. Control I/O in~tructions use the
Single Word I/O instruction format shown in figure 4-49 .

4.10.1.1 Sense Instructions

SEN SENSE AND SKIP ON RESPONSE. Tests specified function in addressed
peripheral device. If a true response is obtained, the next sequential
instruction is skipped. If a false response is obtained, the next
sequential instruction is executed.

SSN SENSE AND SKIP ON NO RESPONSE. Tests specified function in addressed
peripheral device. If a false response is obtained, the next sequential
instruction is skipped. If a true response is obtained, the next
sequential instructibn is executed.

~.

4-49

, ...

ComputerAutomation ~

4.10.1.2 Select Instructions

SEL

SEA

SEX

SELECT FUNCTION. Transmits specified function code to addressed
peririleral device alonq with a Select Control s igTl.ll. All zeros are
pli1,~ed Oil Data buo.. I\n,! ,1(:tioTl q"nerat pd i:; ,} fUll,'! iOIl 01 P('f'j phPt-,ll

df ,icC' illtprLlc(' d('~;iqll.

SELECT AND PRESENT A. Transmits specified function code to addressed
peripheral device along with a Select Control signal. Contents of the
A register are placed on Data bus. Any action generated is a function
of peripheral device interface design.

SELECT AND PRESENT X. Transmits specified function code to addressed
peripheral device along with a Select C(mtrol signal. Contents of th\'
X register are placed on Data bus. Any action generated is a function
of peripheral device interface design.

NOTE

When a Select type instruction is used to turn off
interrupts that may be pendinq, it should be
preceded by a SIN 1 instruction to disable pro­
ce3sor recoq!lition of the pelldinq interrupt. This
is neces::ary ,;ince the prucessor examine;; intl'lrul't~

requests prior to the Select taking effect and
will therefoce respond to the interrupt even
though it i~ no longer pending.

4.10.2 Word Input/Ouput Instruction~;

Word I/O insLLuctions transmit 16 bits of data at a time. 'i'hey are divided into
Unconditional and Conditional instructions. Conditional instructions are automatically
repeated until a true sense response is obtained, at which time the data transmission
occurs and the next instruction in sequence is executed. Response to an interrupt
may occur "within" a conditional I/O instruction -- i.e., during a false sense response
an interrupt can be acknowledged and the computer will return to execution of the
conditional I/O instruction after servicing the interrupt. If a word input is
requested from an 8-bit device, the upper 8 bits will be input as zeros. If an input
is performed to an 8-bitdevice, the upper 8 bits will be ignored by the device.

4.10.2.1 Unconditional Word Input/Output Instructions

INA INPUT TO A REGISTER. Unconditionally transfers a full l6-bit data
word from addressed peripheral device to A register.

INAM INPUT TO A REGISTER MASKED. Unconditionally transfers a full 16-bit
data word from addressed peripheral device to processor and logically
ANOs data word with contents of A register. Result replaces contents
of A register.

4-50

\1

:1
!

o

o

INX

INXM

ComputerAutomation ~

INPUT m~ X REGISTER. Unconditionally transfers a full 16-bit data
word from addressed peripheral device to X register.

INPUT TO X REGISTER MASKED. Unconditionally transfers a full l6-bit
data word from addressed peripheral device to processor, and logically
ANDs data word with contents of X register. Result replaces contents
of X register.

OTA OUTPUT A REGISTER. Unconditionally transfers full 16-bit contents of
A register to addressed peripheral device.

OTX ,OUTPUT X REGISTER. Unconditionally transfers full 16-bit contents of
X register to addressed peripheral device.

OTZ OU'fPUT ZERO. Unconditionally transfers a 16-bi'i::. word containing all
zeros to addressed peripheral device.

4.10.2.? Conditional Word Input/OUtput Instructions

RDA

ROAM

ROX

RDXM

WRA

READ WORD TO A REGISTER. Tests specified function in addressed peri­
pheral device. If a false response is received, instruction is re­
peated (and interrupts may be acknowledged). When a true response is
received, a full 16-bit data word is transferred from addressed device
to A register.

READ WOFD TO A REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is
repeated (and interrupts may be acknowledged). When a true response is
received, a full l6-bit data word is transferred from addressed
device to processor and logically ANDed with contents of A register.
Result replaces contents of A register.

READ WORD TO X REGISTER. Tests specified function in addressed peri­
pheral device. If a false response is received, instruction is re­
peated (and interrupts may be acknowledged). When a true response is
received, a full l6-bit data word is transferred from addressed device
to X register.

READ WORD TO X REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is
repeated (and interrupts may be acknowledged). When a true response
is received, a full l6-bit data word is transferred from addressed
device to processor and logically ANDed with contents of X register.
Result replaces contents of X register.

WRITE FROM A REGISTER. Tests specified function in addressed peri­
pheral device. If a false response is received, instruction is re­
peated (and interrupts may be acknowledged). When a true response is
received, full l6-bit contents of A register are transferred to
addressed device.

,.

I .,

I
~ I

i:

"I f,
~i ,
I~' :

"I

WRX

WRZ

ComputerAutomation ~

WRITE FROM X REGISTER. Tests specified function in addressed peri­
pheral device. If a false response is received, instruction is
repeated (and interrupts may be acknowledged). When a true response
is received, full 16-bit contents of X register are transferred to
addressed device.

WRITE ZERO. Tests specified function in addressed ·peripheral device.
If a false response is rebeived, instruction is repeated (and inter­
rupts may be acknowledged). When a true response is received, a
l6-bit word containing all zeros is transferred to addressed device.

I 4.10.3 Byte Input Instructions

Byte Input instructions input 8 bits of data to the LS byte of a target register
leaving the MS byte unchanged. They are divided into Unconditional and Conditional
~nstructions. Conditional instructions are automatically repeated until a true sense
response is obtained, at which time the data transmission occurs and the next instruc­
tion in sequence is executed. Response to an interrupt may occur "within" a Condi­
tional Byte Input instruction -- i.e., during a false sense response an interrupt can
be acknowledged and the computer will return to execution of the conditional instruc­
tion after servicing the interrupt. Byte Input instructions use the Single Word
Input/OUtput instruction format as shown in figure 4-49.

4.10.3.1 Unconditional Byte Input Inst.Tuctions

IBA

I BAM

INPUT BYTE TO A REGISTER. Unconditionally transfers an 8-bit data
byte from addressed peripheral device to LS hyte of A register. MS
byte of A register remains unchanged.

INPUT BYTE TO A REGISTER MASKED. Unconditionally transfers an 8-bit
data byte from addressed peripheral device to processor and logically
ANDs data byte with contents of LS byte of A register. Result replaces
LS byte of A register and MS byte of A register remains unchanged.

IBX INPUT BYTE TO X REGISTER. Unconditionally transfers an 8-bit data
byte from addressed peripheral device to IS byte of X register. MS
byte of X register remains unchanged.

IBXM INPUT BYTE TO X REGISTER MASKED. Unconditionally transfers an 8-bit
data byte from address peripheral device to processor and logically
ANDs data byte with contents of LS byte of X register. Result replaces
LS byte of X register and MS byte of X register remains unchanged.

4-52

4.10.3.2

RBA

RBAM

RBX

RBXM

... 'i:r'" "i" 'f 1 "liil'biHW k;l/",W'aW; t 'i ft' t :t

ComputerAutomation ~

Conditional nyte Input Instructions

READ BYTE TO A REGISTER. Tests specified function in addressed peri­
pheral device. If a false response is received, instruction is
repeated (and interrupts may be acknowledged). WMn a. tJ:"U$ rtlSponse is
received, an 8-bit data byte is transferred from addressed device to
LS byte of A register and MS byte of A register remains unchanged.

READ BYTE TO A REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is
repeated (and interrupts may be acknowledged). When a true response is
received, an 8-bit data byte is transferred from addressed device to
processor and logically ANDed with contents of LS byte of A register.
Result replaces LS byte of A register and MS byte of A register remains
unchanged.

READ BYTE TO X REGISTER. Tests specified function in addressed peri­
pheral device. If a false response is received, instruction is
repeated (and interrupts may be acknowledged). When a true response
is received, an 8-bit data byte is transferred from addressed device
to LS byte of X register. MS byte of X register remains unchanged.

READ BYTE TO X REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is
repeated (ahd interrupts may be acknowledged). When a true response is
received, an 8-bit data byte is transferred from addressed device to
processor and logically ANDed with contents of LS byte of X register.
Result replaces LS byte of X register and MS byte of X register remains
unchanged.

4.10.4 Block Input/OUtput Instructions

The two instructions in this class provide for high-speed, full l6-bit data word
transfers between memory and the addressed peripheral device. The processor is totally
dedicated to these instructions until the specified block of data has been completely
transferred -- i.e., no interrupts may be serviced until the instructions have been
executed to completion.

The Block Transfer instructions are double-word instructions. The second word of the
instruction contains the base address minus one of the associated memory data buffer.
The X register contains the (positive) number of words to be transferred -- i.e., the
length of the data buffer. The memory location of each word transferred is obtained
by summing the base address minus one and the contents of the X register. As each
data word is transmitted, the X register is decremented by onc. Thus, the data
buffer is output or input in descending order, beginning with the highest memory
location and ending with the lowest memory location (base address plus length -1).
When the X register is decremented to zero, the next instruction in sequence is
executed.

4-53

i

f.

:i

~!
:i,

o

CornputerAutomation ~

The format for the Block Transfer instructions is shown in figure 4-50.

[LABEL)

[LABEL]

OPCCDE OPERAND1[,OPERAND2] [COMMENTS)

Dt\TA OPERAND3 [COMMENTSj

If OPERAND 2 is not present, OPERAND 1 must be absolute
and in the range :8 thru :FF.
-If OPERAND 2 is present, OPERAND I ~ust be absolute and
in the range :1 thru :IF.
OPERAND 2 must be absolute and in the range :0 thru :7.
OPERAND 3 must be absolute or relocatable and must
define the base address -1 of the buffer.

Figure 4-50. Block Input/Output Instruction Format

The operands of these instructions must be either self-defined (i.e., numeric) or
absolute. If only one operand i9 present, it must be in the range :8 through :FF.
The high-order 5 bits represent the peripheral device address and the low-order 3
bits represent the function code. If two operands are present, the first must be in
the range :1 through :IF and the second must be in the range :0 through :7. The
first operand represents a peripheral device address, and the second represents a
function code.

The operand of the DATA statement musl be a direct address. It represents the memory
location less one (low-order memory location) of the data buffer.

BIN BLOCK IN. Tests specified function in addressed peripheral device and
transfers a full .16-bit data word from addressed device to memory data
buffer each time a true sense response is received. Instruction
executes until all data words have been input. Interrupts are not
acknowledged until completion of instruction.

BOT BLOCK OUT. Tests specified function in addressed peripheral device
and transfers a full 16-bit data word from memory data buffer to
~ddressed device each time a true sense response is received. Instruc­
tion executes until all data words have been output. Interrupts are
not acknowledged until completion of instrt'.ction.

i

i ,~ 4.10.5 Automatic Input/Output Instructions
!

The Automatic Input/Output instructions (Auto I/O) provide data transfers directly
between memory and peripheral devices witl).out affecting the A and X registers. These
multiple word instructions effectively constitute complete I/O subroutines, thus
facilitating their use as interrupt instructions. They increment a (negative) data
word or byte counter, increment a data word or byte pointer and transfer a data word
or byte between memory and a peripheral device.

Each Auto I/O instruction occupies three words in memory. The first word contains
the instruction itself, the second word contains the two's complement (negative) of
the word or byte count for the data buffer, and the third word contains an address

4-54

c

"

i,: , I

i
, ,

!'
f

~I
r:

i
l
::Ij

o

!
I

ComputerAutomation ~

pointer specifying the address minus one, of the first (lower-order memory) location
in the memory data buffer. The dqta buffer is input or output in order of ascending
memory locations (low-order to high-order). The f;ormat for these instructions is
shown in figure 4-51.

*[LABEL]

[LABEL]

[LABEL]

OPCODE OPERAND1[,OPERAND2] [COMMENTS]

DATA OPERAND3 [COMMENTS]

BAC
or OPERAND4 [COMMENTS]
DATA

If OPERAND 2 is not present, OPERAND 1 must ,be absolute
and in the range :8 thru :FF.
If OPERAND 2 is present, OPERAND 1 must be present and
in the range:1 thru :IF.
OPERAND 2 must be absolute and in the range' :0 thru :7.
OPERAND 3 is the negative word or byte count of the
data buffer.
OPERAND 4 must be absolute or relocatable and must
define the base address -1 of the buffer.

*Format not valid for Distributed lID System.

Figure 4-51. Automatic Input/Output Instruction Format

The operands of the first two statements must be., either self-defined (Le., numeric)
or absolute. If only one operand is present, it must be in the range :8 through :FF.
The high-order 5 bits represent the device address and the low order 3 bits represent
the function code. If two operands are present, the first must be in the range :1
th:rough :1F, and the second must be in the range :0 through :7. The first operand
represents a peripheral device address, and the second represents a function code.

The second word represents the ~egative (two's complement) data word or byte count
for the data buffer. This word is incremented once prior to each data word or byte
transfer and must be present each time a block of data is to be transferred.

The fourth word of an Auto I/O instruction should contain all zeros when the instruc­
tion is used as an interrupt instruction for the Distributed I/O system.

Operation of Auto I/O instructions differs depending upon usage. When used as an 1n­
Line program instruction, the Auto I/O instruction sequence is as shown in figure
4-52. Each time the instruction is executed, the wordfbyte count and address pointer
arc incremented, one word or byte of data is transferred, and then the incremented
word count is examined. If the word count has not yet reached zero, the next instruc­
tion executed is from location P+4. If the word count reached zero, the next instruc­
tion executed is at location P+3 (End-of-Block exit location). Since Auto I/O in­
structions do not sense for the peripheral device to be ready prior to data transfer,
a Sense (SEN) instruction should be used prior to each execution (one word trans­
ferred) of the instruction, i.e., to transfer a block location, P+4 would normally
contain a jump back to a s,ense instruction prior to location P.

4-55

P
P+l
P+2
P+3
p+4

ComputerAutomation ~

Automatic ILO Instruction
Word/Byte Counter (neqative)
Word/Byte Address Pointer (start address -1]
End-of-Block Exit (Word taunt = 0)
Next Instruction (Word Count I 0)

Figure 4-52. In-Li IH' I\lIto I/O In!;;U-lIctl 011 Se<.{ut'Il.Ct'

Auto I/O instructions may also be used under interrupt control at an interrupt loca­
tion to implement a Direct Memory channel. In this application, the Auto I/O instruc­
tion is executed once each time the peripheral device indicates that it is ready for,
a data transfer by interrupting to the location containing the Auto I/O instruction.
Since the Auto I/O instructions do not alter any processor registers, no jumping to
an interrupt subroutine to save registers, status, and return location is required.
The Auto I/O instruction is, in itself, a one instruction subroutine. When executed
under interrupts, the skips after exec~tion are suppressed. Instead, if the word
count has not reached zero after a data transfer, control is passed directly back to
the In-Line program at the point it was interrupted. If the word count did reach
zero, a special signal (ECHO-) is sent to the peripheral device to indicate that it
should stop requesting further data transfers. The Auto I/O instruction transfers
control back to the In-Line program whether the ECHO- signal is true or false. Upon
receipt of ECHO-, the peripheral device stops data transfer requests, performs any
end action required (e.g., CRC generation for magnetic tape), and then generates an
End-of-Block interrupt so the program can process the data block input or prepare
another block for output. Although the End-of-Rlock interrupt C,ln bp- vectored to any
location by the peripheral controller, it is standard practice for the controller to
vector this interrupt to four locatiolls beyond the data transfer interrupt location.
Figure 4-53 illustrates the typical usage of Auto I/O instructions under interrupts.

Data Transfer Interrupt Location Automat i c I/O Instruction
1+1
1+2
1+3

Word/Byte Counter (negative)
Word/Byte Address Pointer (start
Unused (Zero for DIO)

address - 1)

End-of-Block Interrupt Location 1+4 JST EOBSUB (Jump and Store to End-of-Block

ALB

AIN

subroutine) (Also JSKR/JSKS on LSI-2/60)

Figure 4-53. Interrupt Location Auto I/O Instruction Sequence .,

AUTOMATIC INPUT BYTE TO MEMORY. Increments byte counter and address
pointer, and unconditionally transfers an 8-bit data byte from addressed
peripheral device to updated byte location in memory data buffer,
which is addressed by address pointer. When byte count is incremented
to zero, normal one-word skip after data transfer does not take place,
or when used as an interrupt instruction, an ECHO signal is sent to
addressed device.

AUTOMATIC INPUT WORD TO MEMORY. Increments word counter and address
pointer, and unconditionally transfers a full 16-bit data word from
addressed peripheral device to updated word location in memory data
buffer, which is addressed by address pointer. When word count is
incremented to zero, normal one-word skip after data transfer does not
take place, or when used as an interrupt instruction, an ECHO signal
is set to addressed device.

4-56

;1

AOB

AOT

CornputerAutomaIIon ~

AUTOMATTr OUTPUT BYTE FROM MEMORY. Increments byte counter and address
pointer, and unconditionally transfers an 8-bit byte from updated byte
location in memory data buffer, which is addressed by address pointer,
to addressed peripheral device. When byte count is incremented to
zero, normal one-word skip after data transfer does not take ,place, 0:(

when u3ed as an interrJ.lpt instruction, an ECHO signal is sent tQ
addressed device.

AUTOMATIC OUTPUT WORD FROM MEMORY. Increments word counter and address
pointer, and unconditionally outputs a full l6-bit data word from
updated word location in memory data buffer, which is addressed by
address pointer, to addressed peripheral device. When word count is
incremented to zero, normal one-word skip after data transfer does not
take place, or when used as an interr,upt instruction, an ECHO signal
is sent to addressed device.

4.11 LSI-2/60 CYCLIC REDUNDANCY CHECK INSTRUCTION

The Cvclic Redundancy Check instruction is usable only with the LSI-2/60.

The format of this instruction is shown in figure 4-54.

[LABEL] OPCODE [*]OPERAND1,OPERAND2 [COMMENTS]

No Operator r. Direct Addressing
* = Indirect Addressing

Figure 4-54. LSI-2/60 Cyclic Redundance Check Instruction Format

CRC CYCLIC REDUNDANCY CHECK. The CRC instruction is a two-word instruction
that computes an accumulated cyclic redundancy check character that
resides in memory. The first word contains an opcode and the number
of bits in the character in A (operand 2). The second word contains
an. optionally multilevel indirect pointer (operand 1) which points to
a tWO-Word buffer. The first word of the buffer contains the 16-bit
polynomial or mask for a specific CRC type. The second word of the
buffer contains the accumulated cyclic redundancy check character.

The polynomial is gel\erated such that each bit position in the poly­
nomial word corresponds to a power of X in the checking polynomial.
The highest power of Xin the checking polynomial is always assumed to
be a "1" bit; therefore, it can be considered to the right of the bit­
zero position of the polynomial word. The next to the highest power
of X is always in bit position zero. The remainder of the polynomial

4-57

ComputerAutomation ~

is coded from right to left, starting with the highest power of X and
proceeding to the lowest. Some examples follow:

For a CRC16 and the checking polynomial of

X16 + XIS + X2 + 1

the polynomial word is

1010,0000,0000,0001 or :AOOI

For a CRC12 and the checking polynomial of

X12 + XlI + x3 + x2 + X + 1

the polynomial word is

0000,1111,0000,0001 or :OFOI

For an LRC8 and the checking polynomial of

X8 + 1

the polynomial word is

0000,0000,1000,0000 or :0080

The second word conted ns the accumulated CHC/LRC charactl'r. The
A register contains the character operated on by the instruction. The
number of bits in the character in A may range from 1 to 16. The
character must be right justified. Bit positions to. the left of the
defined character length must be set to zero (0). The A, X, and OV
registers are unaffected by this instruction. Since the CRC instruction
points to its own buffer, different occurrences of the CRC instruction
can use different buffers, allowing concurrent computation of CRC for
any number of character strings or line disciplines.

4.12 LSI-2/60 TEXT MANIPULATION INSTRUCTIONS

The Text Manipulation instructions are usable only with the LSI-2/60. Instructions
ADDT, SUBT, MOVT, and CMST operate on strings of characters or bytes as opposed to
single characters or bytes. The format of the Text Manipulation instructions is
shown in figure 4-5S.

[LABEL j OPCODE [*jOPERAND1,[*]OPERAND2 [COMMENTS]

No Operator Direct Addre~~ing
Indirect Addrt'ssing (one-lew:-I)

Fiyun' 4-~)S, LSI-2/GO T!'xl Malli»ulution Itl~;tructiOIl (·'onn.!!.

4-58

c

" "111

The ADDT, SUBT, MOVT, 1 CMST instructions are three-word instructions that require
two memory reference address parameters. The first parameter follows the opcode and
is the address of the source string. The second parameter follows the first parameter
and is the address of the destination string. Both parameters lIl4y pc indirect, but
indirection is allowed for one level only. The effective address of. eM.ch operand is
always a byte address. The formats of the four modes of addr~ssing are shown in
figures 4-54, 4-57, 4-58, and 4-59.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Opcode 1 o I 0

Byte Address of Source String

Byte Address of Destination String

Figure 4-56. Direct/Direct Addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Opcode 1 01 1

Byte Address of Source String

Address of Byte Address of Destination String

Figure 4-57. Direct/Indirect Addressing

15 14 13 12 11, 10 9 8 7 6 5 3 2 o

Opcode I 1 I 0

Address of Byte Address of Source String
.

Byte Address of Destination String

Figure 4-58. Indirect/Direct Addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Opcode " 1 l' 1

Address of Byte Address of Source String

Address of Byte Address of Destination String

Figure 4-59. Indirect/Indirect Addressing

The ~ollowing is a description of the two types of strings processed, numeric strings
and byte s tr ing.s •

4-59

I

c

ComputerAutomation tlA
4.12.1 Numeric String Formats

The ADDT and SUBT instructions operate on numeric strings only. A numeric string is
a string of 8-bit bytes in which each .byte consists of a numeric code zone and a
4-bit digit. The ligit representation is typically the ASCII digit code; however,
any zone code rna" be used (e. g., EBCDIC).

During the operation of an ADDT or SUBT instruction, the numeric c;ode zone of the
source string is ignored and the numeric code zone of the destination string is used
only to rezone the result. No checking is performed to ascertain the validity of
numeric digits; therefore, special characters and nonnumeri8 digits must be removed
from the string.

The address parameters always point to the sign character which is always the first
character of each string. For a positive string, the sign byte is set to zero; for a
negative string, the sign byte is set to :FF.

A numeric string is organized such that the sign character and the most significant
digits (MSD's) of the ASCII number are in low memory addresses and the least signi­
ficant digits (LSD's) are in high memory addresses (see figure 4-60).

ALPHA

MSD

SCRTISIGN DN

Y-l Y Y+l
Low Order Memory

Increasing Address .. LSD

DN-l I DN - 2 I : :..uJ_D_4 -.l.1_D 3--L._D_2~_D_l --I-_D_O .-J

Y+N
High Order Memory

Where Y is the effective byte address of string ALPHA, the sign
is :00 for pluG, :FF for minus and SCRT is a scratch byte attached
to the destination string.

Figure 4-60. LSI-2/60 Numeric string Format

The numeric destination string is always preceded by a scratch (SCRT) byte. The
scratch byte is used by the ADDT and SUBT instructions as a scratch cell and must
always precede the sign byte (see figure 4-60). Upon completion of the instruction,
the scratch byte is left equal to zero. The scratch byte must also be zero at the
start of the instruction.

The ASCII strir1 length is entered in the low-order five bits of the X register. The
length as enter,j in the X register is the number of characters in the string inclu­
ding the sign character. The A register and the scratch byte must be entered as
zero. This instruction is interruptable during execution; therefore, if an interrupt
occurs, A, X, the scratch byte, and OV must be preserved and/or re-established before
the instruction is resumed.

Upon completion of the instruction, the X register will be unchanged and the A
register will contain a result indicator. If the A register is greater than zero,
the result is positive and non-zero. If the A register is equal to zero, the result
is'zero. If the A register is less than zero, the result is negative. The OJ flag
will be cleared if no arithmetic overflow occurs. If an arithmetic overflow occurs,
the OV flag will be set. The scratch cell of the destination string will be zero at
the completion of the operation. If the X register is input as a zero or one, a NOP
will be performed.

Note that interrupt processing should not disturb the scratch byte or the strings
being operated upon.

4-60

(

c

o

ComputerAutomaUon ~

4.12.2 By!e String Formats

A byte string is a string of 8-bit fields or bytes of data. Bytes may contain any
8-bit data field (e.g., two BCD characters, ASCII characters, data constants, etc.).
The string length is contained in the lower eight bits of the X register. The
A registe:r must be set. to zero before either the MOVT or CMST instruction is entered.
If the X register is zero, a NOP is performed. Note that these instructions are
interruptable during execution; therefore, if an interrupt occurs, both A and X
registers must be preserved and re-estab1ished before the instruction is resumed. OV
is unaffected by these operations.

ADDT

SUBT

MOVT

CMST

ADD TEXT. Two numeric strings are arithmetically added together with
the resultant numeric string replacing the destination numeric string.

SUBTRACT TEXT. The source numeric string is subtracted from the
destination numeric string with the resultant numeric string replacing
the destination numeric string.

MOVE A TEXT STRING. A byte string is moved from the source string to
the destination string. The string is moved character-by-cha:racter in
increasing addresses for each buffer. If the address of the source
string (ADDRl) is greater than or equal to th8 address of the desti­
nation string (ADDR2), then the strings may overlap with no loss of
data. If ADDRl is less than ADDR2, then (ADDR2-ADDR1) characters will
be repeated L/(ADDR2-ADDRl) times, where L is equal to the string
length. OV is unaffected by this operation. The A and X registers
will remain unchanged by this operation.

COMPARE TEXT STRINGS AND SKIP. The source string is compared to the
destination string. If both strings are equal, a two-place skip
occurs and the A and X registers will remain unchanged. If the source
string is less than the destination string, a one-place skip occurs.
If the source string is greater than the destination string, the next
In-Line instruction will be executed. If the strings mismatch, the
X register contains tht! number of characters left to compare and the
A register contains the character position in the string that mis­
compared. To compare the remainder of the strings, the A register
must be incremented and a jump executed back to the CMST instruction
without altering the X register. Note that this instruction performs
a logical compare, comparing magnitudes only. If two numeric strings
are to be compared, the SUBT instruction should be used. The CMST
instruction compares 8-bit characters one at a time starting from low
memory addresses. OV is unaffected by this operation. The last byte
of the source string cannot reside in the last byte of memory (address
:FFFF) •

4.13 ASSEMBLER CONTROL DIRECTIVES

The assembler control directives provide for conditional assembly of source statements
and establish and/or alter the contents and relocatability of the P register.. If a
label is presented on any of these control directives, it is generally assigned the
current value and relocation attribute of the assembler's Working Location Counter.
These directives do not generate computer instruction words.

4-61

ComputerAutomation ~

4.13.1 Conditional Assembly <;:ontro1s

The IFF (If False) and 1FT (If True) directives are provided to conditionally assemble
subsequent lines of source code. The format for these two instructions is shown in
figure 4-61.

[LABEL} OPCODE OPERAND [COMMENTS}

"
OPERAND = Must be an absolute value of zero (False) or

non-z~ro (True).

Figure 4-61. Begin Conditional Assembly Directives Format

The operand must be previously defined (but not

"

~ust be an ENDC directive which signals the end
ENDC directive has the following format (figure

as an external). The last line affected
of the conditional assembly. The
4-62) .

e
[LABEL] ENDC [COMMENTS]

Figure 4-62. End Conditional Assembly Directive Format

IFF and 1FT directives must not be ne~ted -- i.e., no other IFF or 1FT directive can
appear between a given IFF or 1FT directive and its associated ENDC directive. If
the value of the operand is zero, it is defined as false. If it is not equal to
zero, it is defined as true. If the value of the operand satisfies the condition of
the directivp (false for IFF and true for 1FT), the source lines between the directive
and its associated ENDC directives are assembled. If the conditions are not met, the
source lines are skipped (not assembled). The program END directive must not appear
between an IFF or 1FT directive and its associated ENDC directive.

4.13.2 Program Location Controls

The following directives control the contents and relocation attributes of the assem-
"'~ bler I s Working Location Counter. The format for these directives is shown in figure

4-63.

[LABEL] OPCODE [OPERAND] [COMMENTS]

Figure 4-63. Location Control Directive Format

4-62

ComputerAutomation· ~ -

If an operand is present, it must be predefined or self-defined (e.g., a numeric
value). It cannot be externally defined. Each program must start with an ASS, REL
or ORG directive and end with an END directive.

ASS

REL

ORG

END

ABSOLUTE ASSEMBLY. Sets relocation attribute of the assembler's
Working Location Counter to absolute. If an operand is present, the
location counter is set to value of operand." Otherwise, contents of
the location counter are unchanged. Comments may appear on an ASS
directive only if an operand is present. If a label is present, it is
set to value of operand.

RELOCATASLE ASSEMBLY. Sets relocation attribute of the assembler's
Working Location Counter to relative. If an operand is present, the
location counter is set to value of operand. If no operand is present,
contents of the location counter are unchanged and Comments field must
be blank. If a label is present, it is set to value of operand.

ORIGIN. Sets the assembler's Working Location Counter to value of
operand. Operand must be present and defined. If a label is present,
it is set to value of operand. Relocation attributes of the location
counter is unchanged.

END OF ASSEMBLY. Signifies end of an assembly. If an operand is
present, it is interpreted by object loader as execution transfer
address at end of a successful load. Since object loader does not
distinguish between END directives in main programs and subprograms,
only main programs should include a transfer address. Comments may
appear on an END directive only if an operand is present. If a label
is present, it is set to current value of the assembler's Working
Location Counter.

4.13.3 Machine Directive (MACH)

[LABEL] MACH OPERAND [COMMEN7S]

Figure 4-64. MACH Directive Format

The MACH directive (figure 4-64) allows the user to specify which 16-bit computer
instruction set is to be considered valid during this assembly. This allows program
assembly, and/or error detection, of programs written for either LSI-2 Series or
ALPHA-l6 computers. Instructions declared invalid by the MACH directive will be
flagged with a "0" error, but will be assembled correctly.

The operand must be present, absolute (not relocatable or external), and previously
defined. The value of the operand will replace the current value in the MACH flag
word, remaining in effect until the end of the current assembly or until another MACH
directive is encountered. The acceptable values of the MACH directive are shown in
table 4-1 below.

The aabel, if present, will (be set to the current Location Counter value.

4-63

I

I

.~

I

I

MACH

NOTES:

1.
2.
3.

ComputerAutomation ~.' ---

Table 4-1. MACH Flag Word Values

Value I Instruction Set'AI lowed

0 C0l111110n <,uuset of ALPHA-16 and LS 1-2 St'f 1('') only
1 ALPHA-16
2 LSI-2 Series
3 ALPHA-16 and LSI-2 Series
4 LSI-2/60
5 ALPHA-16 and LSI-2/60
6 LSI-2/60
7 ALPHA-16, LSI-2/10, -2/20, -2/60

Default valu~ of 2 is assumed if no MACH directive is entered.
MACH directIves should appear prior to program instructions.
The common subset of ALPHA-16 and LSI-2 Series instructions
is always allowed.

4.14 DATA AND SYMBOL DEFINITION DIRECTIVES

4.14.1 Formats

The directives discussed lTl this sect ion define var iClIl!; types of data, including
buffers, address pointers, and character strings. Symbol Definition directives are
also discussed. The various formats involved are shown below in figure 4-65.

4.14.2 Directives

BAC BYTE ADDRESS CONSTANT. Places byte values or addresses of operand in
sequential memory locations. Symbolic items in operand are assumed to
be "word address" values, and numeric items are assumed to be "byte
counts"l'or "byte address" values. Values of symbolic items are
"doubled" to generate byte address values. If a label is present, it
assumes the value and attributes of the assembler's Working Location
Counter before the first operand is evaluated.

[LABEL] BAC OPERANDI [,OPERAND2] [COMMENTS]

[LABEl] DATA [~':]OPERANDI [, [~':]OPERAND2] [COMMENTS]

[LABEL] TEXT OPERAND [COMMENTS]

[LABEl] RES OPERANDlf,OPERAND2] [COMMENTS]

[LABEL] {!~U} OPERAND [COMMENTS]
SET

Figure 4-65. Data and Symbol Definition Directive Format

4-64

f

:1

DATA

TEXT

DATA DEFINITION. Places values of operands in sequential memory
locations. There may be one or more operands separated by commas.
Any valid ope~and may be used. Operands are evaluated one at a time
and generated 'as sequential constants. If a label is present, it
assumes the value and attributes of the assembler's Working Location
Counter before the first operand is evaluated. An indirect address
pointer is specified by preceding operand with an asterisk (*).

NOTE

The operand may contain an externally defined
symbol which will be resolved at load time.

TEXT STRING. Generates an 8-bit ASCII character string, two characters
per word, packed left to right in sequential memory locations.
Trailing character positions are filled with blanks (:AO) to complete
full words. Operand must be a character string surrounded by single
quotes ('). When a quote is desired as a character in the string, two
contiguous single quotes must appear within the string. If a label is
present, it assumes the value and attributes of the assembler's Working
Location Counter before the test string is processed.

RES RESERVE STORAGE. Reserves storage for number of words specified by
first operand. If second operand is present, if defines a constant
which is to be stored in each reserved memory location. Both operands
must be either self-defined (e.g., a numeric value) or predefined. If
the second operand is not present, object loader will not alter reserve
memory locations at load time. If a label is present, it is set to
the address of the first reserved memory word.

EQU EQUATE SYMBOL. Assigns value and relocatability of operand to symbol
in label £ield. Symbol in label must not be defined elsewherp..
Operand must be either self-defined (e.g., a numeric value) or pre­
defined. No machine instructions are generated.

SET SET SYMBOL. Assigns value and relocatability of operand to symbol in
Label field. This directive is identical to the EQU directive, except
symbol being defined may be redefined by another SET directive. No
machine instructions are generated.

4-65

ComputerAutomation ~

4.15 PROGRAM LINKAGE DIRECTIVES

4.15.1 Formats

The directives discussed in this sectloil provide for linkage between pr(lqrame; which
have been assembled separately, but are to be loaded and expcu t\c'd. toqt~th(>l". The
formats for the 'three directives are shown below in fiqurc 4-66.

[LABEL]

[LABEL]

{~~M} OPERAND1[,OPERAND2]
EXTR

REF

[COMMENTS]

[COMMENTS]

Figure 4-66. Progra~ Linkage Direc~ive Formats

b Operands
enced by

must be symbolic names defined within the prograrr segment for NAM or refer­
the program segment for EXTE. REF may not hilve an operand.

c

4 .• 15.2 Directives

NAM

EXTR

REF

EXTERNAL NAME DEFINITI,)N. Defines ex1~prnal ~~:Itry or reference points
wi thin current progru...l" Operand of NAM directive contains one or more
symbols separated by C'_Jlluna s. Each nam((or symbol) appearing in
operand must be defined in body of pro']ram. When t.his directive is
used, it must f·recede ;111 data generatir,y statements. If a label is
present, it is as~;ignpc,:, il zero value a:ld a rr~lative relocation attri­
bute. No ilIar.hine i n~,t r 'letions arC' oCl1cratcd.

EXTERNAL REFERENCE-SCHATCHPAf). Declan~s external symbols referenced
by current program. Obipct loader links these declared external
symbols through scratchpdd (first 256 words of memory) at load time.
Each name or symbol appearing in operand and also referenced by current
program is output to object loader at load time. Since they are not
defined within current program, these symbols must not be used in
multi-term operands. References to an EXTR-defined symbol must be
direct, since assembler automatically generates indirect references
through scratchpad. If a label is present, it is as~)igned current
value and relocation attribute of the assembler's Working Location
Counter. No machine instructions are generated.

EXTERNAL REPERENCE-POINTER. Defines current location as linkage for
reference to external symbol contained in the Label field. At load
time, address assigned to external symbol is stored in memory location
of REF direct.ive.

4-66

(

I

.~

ComputarAutomation ~

4.16 SUBROUTINE DEFJNTTION DIRECTIVES

The following directives are provided primarily for documentation purposes.
used for calling and delimiting subroutines in assembler output listings.
are described below in figure 4-67.

They are
The formats

[LABEL]

[LABEL]

[LABEL]

CALL

ENT

RTN

OPERAND

OPERAND

[COMMENTS]

[COMMENTS]

[COMMENTS]

Figure 4-67. Subroutine Definition Directive Formats

No operand is allowed for ENT. The operand for RTN may be any definition of the
location of a subroutine return pointer (normally the label for the subroutine ENT) .

CALL SUBROUTINE CALL. Causes assembler to generate a Jump and store instruc
tion to location specified by operand. It is provided primarily for
documentation purposes to facilitate recognition of subroutine Call
instructions.

ENT SUBROUTINE ENTRY. Reserves a word to hold return address from a
subroutine call (JST). Assembler generates a HLT instruction for this
directive. Any source statement which causes one word to be reserved
could be used in its place.

RTN SUBROUTINE RETURN. Generates an indirect Jump via symbol in operand.
Note that operand is direct.

4.17 LISTING FORMAT AND ASSEMBLER INPUT CONTROLS

The following controls are provided for the purpose of formatting assembler output
listings. With the exception of the TITL directive, these controls are simply special
characters in the first column or position' of a source line. The format for the TIT!.
directive is shown below in figure 4-68.

TITL (one blank) ANY COMBINATION OF ALPHANUMERIC CHARACTERS
NOT EXCEEDING'Sl CHARACTERS IN LENGTH

Figure 4-68. Title Directive Format

No label field is allowed for TITL·.

TITL PAGE EJECT WITH TITLE. Generates a Top-of-Form to assembler listing
device. Page number is then printed, followed (on same line) by
character string specified in operand. Same character string is
printed with page number at top of each page. until a new TITL directivE
is encountered. If these directives 'a~e to be used throughout a

4-67

C)

ComputerAutomation <rA
program, first TITL directive should appear as first source line of

program, ahead of comments, user defined opcode definitions, and
origin statements.

(period)

*
(asterisk)

t
• (up arrow)

PAGE EJECT. Generates a Top-of-Form to assembler listing device.
This control must appear as first character of a sou~ce RtiltOJnf'nt..
Remainder of input line will be ignored. I f a TIT!. d i reet i Vp has bt~l'l\
previously processed, the title will be printed at· tJw Top-of-Form ,"l~;

described under TITL. If no TITL has been processed, a ToV-of-Form
is generated and a page number is printed.

COMMENT LINE. Allows source line comments to be exactly duplicated on
assembler listing device. This control must appear as first character
of source statement. All characters following asterisk on source
statement are duplicated on output listing. Comment lines may appear
anywhere in a program.

PAUSE. Causes assembler to halt. Assembly is continued by pressing
RUN pushbutton. This control is most useful when paper tape input is
used. Up-arrow must appear as first character of a source line.
Remainder of input line will be ignored.

4.18 USER DEFINED OPERATION CODE DIRECTIVE

User defined operation code directives allow the user to name or define his own
instruction mnemonics for the current assembly. If included in a program, user
defined opcode directives must precede all source statements other than comments or
TITL directives. The user is referred to the applicable Assembler Reference manual
for a detailed discussion of their usage.

4-68

c
I

... .,

section 5

INPUT/OUTPUT AND INTERRUPT OPERATIONS

5.1 INTRODUCTION

I/O operations are performed in one of three modes:

1. Programmed I/O via Computer Registers
2. Automatic I/O
3. Direct Memory Access (DMA)

Interrupt operations include the recognition of both external interrupts from peri­
pheral devices and internal interrupts.

5.2 T~TUT/OUTPUT OPERATION

5.2.1 Programmed I/O via Registe~s

NOTE

The instructions described under "Prograrnm~d I/O" and the examples
given do not apply when using the Distributed I/O System. Refer
to the Distributed I/O System User's Manual, 91-53629.

Interfacing with the standard perip~ral devices gen~rally consists of operations
which can be treated as members of three major categories -- Control, Sense, and Data
Transmission. The precise definitions of the various instructions, function codes
and status words depend on the design of the individual peripheral interfaces.

5.2.1.1 Control

Control instructions prepare peripheral devices for data transmission. The instruc­
tions, Select (SEL) and Select-and"'Present (SEA and SEX), initialize, establish
operating codes, and control t~e status of the addressed peripheral device. The
format for Control instructions fO~lows:

......

INST DA,FC

where:

INST = mnemonic of Control ihstruction (SEL, SEA, SEX)
DA = assigned address of deVi.ce interface (:01 thru : IF)
FC = anyone of eight funct11h_(:odes (: 0 thru : 7)

.
The SEL instruction coounands the addressed peripheral device to perform some function
(initialization, etc.) according-' to the function code. SEL is used where no further
information, other than the fundtion code, is required, so zeros are placed on the
Data bus.

..f'"
f '

5-1
.• ,!

The SEA and SEX instructions command the peripheral device to perform some function
where additional information, other thqn the function code, is required. For example,

, if the device interface controller contains a status or address register which must
\\'
¥ be set during initialization, the required information is first loaded into the A or
~ X register. Upon execution of the appropriate Select-and-Present instruction

(SEA/SEX), the contents of the A or X register are placed on the data bus. An example
of the use of a Select-and-Present instruction is when the 'l'eletype controller is
initialized for full-duplex operation (SEA/SEX 7,4 with a?propriate register, A or X,
= 1).

5.2.1. 2 Sense

Once a peripheral device has been prepared for transmission of data with the proper
commands, it is necessary to determine whether the device is ready to accept or send
the data. This is accomplished using the Sense and Skip on Response (SEN) and Sense
and Skip on No Response (SSN) instructions. One or the other of these instructions

I .should immediately precede an unconditional data transmission sequence such that an
appropriate Sense response is detected prior to the data transfer.

or:

INST

SEN
JMP

OPERANDS

DA,FC
$-1

Data Transmission

SSN DA. FC
Data Transmission

Figure 5-1. Sense Routines

Refer to figure 5-1. In the first example, the 'Sense instruction is executed until a
true response is detected and the Jump instruction is s~ipped. The data transmission
is then performed. In the second example, the Sense instruction is executed only
once. If a false response is detected, the data transmission instruction is skipped.

5.2.1.3 Data Transmission

Unconditional data transmission is accomplished using the Input
INX) and Output from Register (OTA, OTX and OTZ) instructions.
5-2.)

to Register (INA and
(Refer to figure

When the Sense response is true, the Jump, instruction is skipped and the data trans­
mission instruction is executed.

5-2

I

c

or:

INST

SEN
JMP
INA

OPERANDS

DA,FC
$-1
DA,FC

SEN DA,FC
JMP $-1
OTA DA, FC

Figure 5-2. Unconditional Data Transmission

CondlCl0nal data transmission is accomplished by combining Sense operations with data
transmission using the Read to Register (RDA, RDX, RBA and RBX) and write from Registe;
(WRA, WRXand WRZ) instructions. (Refer to figure 5-3.)

INST OPERANDS

RBA DA,FC

or:
WRX DA,FC

Figure 5-3. Conditional Data Transmission

These instructions are executed repeatedly until a true Sense response is received.
The data transmission then occurs and the next instruction in sequence is executed.
The Sense and unconditional data transfer operations can be combined in a conditional
data transfer instruction only when the function codes for the two operations are the
same. The conditional data transmission instructions are interruptable.

Block data transmissions are performed using the Block Input to Memory (BIN) and
Block Output from Memory (BOT) instructions. (Refer to figure 5-4.)

5-3

''I!I
I

. 1

LABEL

or:

BUF

INST

LXP
BIN
DATA

LXP
BOT
DATA

RES

OPERANDS

COUNT
DA,FC
BUF-l

COUNT
DA,FC
BUF-l

COUNT

Figure 5-4. Block Data Transmission

These instructions are executed repeatedly, transmitting one word of data each time a
true Sense response is received, until all data has been transmitted. The data is
transmitted in reverse order (in order of decreasing addr~sses). The next instruction
in sequence is then executed. The function code associated with these instructions
is the same as the function code used by the incorporated Sense. The block data
transmission instructions are not interruptable.

5.2.2 Automatic I/O

In-Lifie automatic data transmissions are performed using the Automatic Input to
Memory (AIN and AlB) and Automatic Output from Memory (AOT and AOB) instructions.
(Refer to figure 5-5.)

These instructions unconditionally transmit one word/byte of data each time they are
executed and are therefore preceded by an appropriate Sense command. In addition,
the Base Address pointer and the Negative Data Count are incremented, with the Data
Count eventually becoming zero and generating an exit to the End-of-Block processing
routine (EOB). Automatic I/O instructions may be used under interrupts, in which
case the Sense instruction is not required and the exits are replaced by a return to
the In-Line program. A final interrupt to a different (End-of·-Block) location is
generated by the peripheral controller when the buffer is completely transferred •

5-4

i e
,.1

fl
~i
~

fl

ti :,1
1

:1

I
1

I

c,'

LABEL INST OPERANDS

SENSE SEN DA,FC
JMP $-1
AIN DA,FC
DATA Negative Data Count (Word)
DATA BUF-1 (Word)
JMP EOB
JMP SENSE

or:
SENSE SEN DA,FC

JMP $-1
AOB DA,FC
DATA Negative Data Count (Byte)
BAC BUF-1 (Byte)
JMP EOB
JMP SENSE

BUF RES COUNT

Figure 5-5. In~Line Auto I/O Data Transmission

5.2.3 Direct Memory Access

Direct Memory Access (DMA) operation requires the use of a special I/O controller
called a DMA controller. The' controller acquires control of the computer's Maxi-Bus
from the processor and then controls high-speed data transfer to and from memory or
other controllers on the Maxi-Bus. Since the processor is not involved in the data
transfer, it can perform operations with its memory cycles interleaved with those of
the DMA controller. By the same method, concurrent DMA controller operation by more
than one DMA controller is also permitted, up to the maximum memory transfer rate.
The controller can emulate most I/O and control functions of th~ processor.

Complete details of-DMA operation are described in. paragraph 8.5. Hardware details
of the DMA controller are described in paragraph 9.5.

5-:5

o
.~

I

<t' r,,, " 'k '1 t ¥ '!rd.d' *N¥""

5.2.4 Input/Output Examples

The examples shown in figures 5-6 through 5-11 are discussed in the paragraphs that
follow.

LABEL INST OPERANDS COMMENTS

Optional SEL 4,4 In it i ali ze Line Printer

LDA CHAR A = Char to Print
SEN -4,1 Sense Line Printer Ready
JMP $-1 (Not Ready)
OTA -4,1 Unconditionally Output A

Figure 5-6. Initialization and Unconditional Output to Line Printer

LABEL INST OPERANDS COMMENTS

Optional SEL 7,4 In i t i ali ze Teletype

SEN 7,3 Sense Teletype Ready (not busy)
JMP $-1 (Not Ready)
SEL 7,2 Command Step Read
SEN 7 , 1 Sense Character Buffer Fu 11
JMP $-1 (Not Fu 11)
INA 7,0 Un cond i t i ana 11 y Input Character to A

Figure 5-7. Unconditional Character Read from Teletype Paper Tape Reader

LABEL INST OPERANDS COMMENTS

Optional SEL 4,4 Initialize Line Printer

LXP :OC Top of Form Character
WRX 4, 1 Output to Line Printer When Ready

Figure 5-8. Initialization and Conditional Control of Line Printer

5-6

(

0

.. J
i

I

-

LABEL INST

Opt i ona 1 SEN
JMP

SEL

RBA
LLA
RBA

SEL

·'1

OPERANDS

X t .. ft. _we

COMMENTS

Sense Teletype Ready (not busy)
(Not Ready)

Enable Auto Echo

Input a Teletype Character to A When Ready
Shift to Most Significant 8 Bits
Input Another Cbaracter to Least
Significant 8 Bits

Disable Auto Echo

. Figure 5-9. Conditional Input from Teletype Keyboard with Auto Echo

LABEL INST OPERANDS COMMENTS

Optional SEL 4,4 Initialize Line Printer

LXP COUNT X = Word £uffer Length
BOT 4, 1 Block Output to Line Printer
DATA BUF-l Character Buffer Address Less One

BUF RES COUNT Data Buffer

Figure 5-10. Uninterruptable Block Output to Line Printer

5-7

.. - '""1

,It f·. drrem

LABEL INST

Opt i ona 1 SEN
JMP
SEL
SEL

LOOP SEN

BUF

JMP
AlB
DATA
BAC
JMP
JMP

RES

OPERANDS

5a
$-1
5,4
5,3
5,0
$-1
5,0
-80
BUF-1
$+2
LOOP

40

ComputerAutomation <rA
COMMENTS

Serise C~rd Reader Re~dy
(Not Ready)
Initialize Card Reader
Command Card Reader Read Card
Sense Input Character Ready
(Not Ready)
Automatic Input Character to Buffer
Buffer Byte Count
Buffer Byte Address
Zero Counter Results - Exit
Loop on Non-Zero Counter Results

80 Character (Byte) Data Buffer

Figure 5-11. Automatic Byte Input from Card Reader

5.2.4.1 Control Instructions

The SEL instruction is the most widely used control instruction for peripheral devices.
It is used both for initializing the devices, as in figures 5-6, 5-7, 5-8, 5-10 and
5-11, and for causing the peripheral devices to perform specific functions, as in
figures 5-7, 5-9 and the second SEL instruction in figure 5-11. Special characters
are sometimes used for control functions (e.g., the Line Printer Top of Form character
in figure 5-8).

NOTE

When a Select type instruction is used to turn off interrupts
that may be pending, it should be preceded by a SIN 1 instruction
to disable processor recognition of the pending interrupt. This
is necessary since the processor examines interrupt requests
prior to the Select taking effect and will therefore respond to
the interrupt even though it is no longer pending.

The SEN instruction is used to test whether the specified dat.a source or destination
in the addressed peripheral device is ready to transmit or receive data. Sometimes
both the peripheral device and a particular buffer within the device must be ready
for data transmission, as in figures 5-7 and 5-11. In many cases, the Sense function
can be incorporated into the Conditional I/O instructions, as in figures 5-8 and 5-9.

5-8

l

I

I

:e

ij!!Ir'iti!'B' "1 thf' tmlee!! Wr".et'm'&*'tWt!:!:1 tttwt# eef'ttw= e'ftMt-"t1h'= ,. hhit' It '. t! 1 W''Mth • ",*'fftittmnt:«+et't#Wf

ComputerAutomation ~

5.2.4.2 Unconditiona~ Instructions

Unconditional input instructions consist of both word and byte instructions. while
the Word input instructions replace all 16 bits of the register (figure 5-7), the
byte input instructions affect only the least significant 8 bits of the register.
When byte-oriented peripheral devices are used, these instructions allow the pro­
grammer to pack the input data before storing it in memory.

The Unconditional Output instructions are word-oriented instructions. Since byte­
oriented peripheral devices accept only the least significant 8 bits of data output
from a register, there is no need for byte output instructions.

5.2.4.3 Conditional Instructions

The Conditional I/O instructions
functions into one {nstruction.
the function codes for the Sense

incorporate both the Sense and Data Transmission
These instructions make sense, of course, only when
and Data Transmission operations are the same.

The Cond:cional Input instructions consist of both word and byte instructions. While
the word input instructions replace all 16 bits of the register, the byte input
inst"."'" iu!')s affect only the least significant 8 bits of the register. When byte­
oriellted peripheral devices are used, these instructions allow the programmer to pack
tL·, input data before storing it in memory, as in figure 5-9.

The Conditional Output instructions are word-oriented instructions. Since byte­
oriented peripheral devices accept only the least significant 8 bits of data output
from a register, there is no need for byte output instructions.

Interrupts may be acknowledged during the execution of a Conditional I/O instruction.

5.2.4.4 Block I/O Instructions

The Block I/O instructions allow high-speed data transmission between memory and
peripheral devices. They essentially access each data buffer memory location by
summing the contents of the X register and the data buffer pointer (buffer address - 1)
in the second word of the instruction. Each time the addressed peripheral device
generates a true Sense response, data is transmitted and the X register is decre­
mented. Thus, the data is transmitted from, or to, the end of the buffer (higher
memory locations) first. The last word transmitted accesses the start (lowest memory
location) of the buffer. Interrupts may be acknowledged only after the X register
has been decremented to zero and the instruction has been completed, i.e., when all
data words have been input or output.

These instructions access word memory operands only (see figure 5-10). They do not
affect the contents of the A register.

5.2.4.5 Automatic I/O Instructions

Although the Auto I/O instructions have been designed specific311y as interrupt
instructions, they may also be used in non-interrupt, in-line programming. They are
three-word instructions, with the second word containing the negative (two's comple­
ment) word or byte count and the third word containing a word or byte address pointer
(buffer address - 1). Since they are unconditional transfer instructions, the speci-

5-9

I"'ll 0" n"g" t"\iI """t ",,."Vf%"W'tlt'Mii'ttM'If'iidier' ," 1 !tWeftoiHW M't' l' ''''ttt' oo'Ci!bHb t

ComputerAutomation ~

fied data source or destination in the addressed peripheral device must generate true
Sense responses before data transmission occurs. Each data transmission increments
both the data counter and the address pointer. Non-zero data counter increment
results generate a one-word skip. Zero increment results cause the next instruction
in sequence (the instruction after the address pointer which is skipped by non-zero
increment results) to be executed (see figure 5-11).

5.3 INTERRUPT OPERATION

Interrupts constitute a means of reacting quickly to random, external stimuli without
consuming valuable processing time in a continuous polling environment. Peripheral
devices which are to be operated under interrupt control are assigned reserved memory
locations anywhere in memory. These interrupt addresses are generated by the indivi­
dual peripheral controllers and generally have jumper selectable locations within the
first 512 locations of memory. Appendix B includes a table of standard interrupt
~ddress assignments.

CWhen an interrupt is recognized, the instruction at the associated interrupt location
,is executed. If the instruction does not modify the program counter, control is
immediately restored to the mainline program. otherwise, processing continues at the
location specified by the new contents of the P register. The interrupt instructions
are: IMS, JMP, JST, NOP, JSS, JSR and the Auto I/O instructions.

Before a given peripheral device can be operated under interrupt control, the inter­
rupts for that device must be enabled. This enables the device to generate an inter­
rupt request when the associated event occurs. In addition, processor interrupts
must be enabled. This is accomplisheu using the EIN instruction and allows the
processor to respond to the interrupt request of the peripheral device.

5.3.1 Non-Input/OUtput

The Increment Memory and Skip on Zero (IMS) instruction is used in interrupt pro­
gramming as a counter or timer for external events. As interrupt instructions,

~increment results of zero do not generate skips. They generate, instead, a signal
"(ECHO) to the peripheral interface which caused the interrupt. Usually this signal

is used by the device to generate a second interrupt to another reserved location at
which a Jump and Store (JST) instruction to a counter/timer maintenance subroutine
would be located.

The JST instruction is used in interrupt programming as a means of transferring
control to an interrupt subroutine in a manner such that return to the In-Line program
at the interrupted location can be accomplished upon completion of the operations
required by the interrupt. JST is the only instruction which disables processor
interrupts when it is used as an interrupt instruction. Before returning to the In­
Line program, the processor interrupts should be re-enabled.

5-10

o

o

Ie

5.3.2 Input/Output

The Automatic Input to Memory (AIN and AlB) and Automatic Output from Memory (AOT and
AOB) instructions were specifically designed as interrupt instructions. Used to
transfe~ blocks of data between memory 'and the peripheral deviee., the.e 1nstructions
contain their own word/byte count and memory word/byte address. They do not at teet
the A and X registers, the OV indicator or the P register when transferring data as
lnterrupt instructions. As each data word/byte is transmitted, the associated pointer
and counter are automatically incremented.

5.3.3 End-of-Block Interrupts

When either the IMS or Auto I/O instructions are used as inter~upt instructions,
increment results of zero (any memory location for IMS and the negative word/byte
count for the Auto I/O instructions) produce ECHO signals which are typically used by
the various peripheral devices to generate End-of-Block interrupt requests to different
reserved interrupt locations.

5.3.4 Interrupt Latency

Recognition of an interrupt request from a peripheral device by the computer is not
always instantaneous. Interrupt acknowledgement occurs "between" the execution of
instructions, i.e., just after the completion of a given instruction. The Conditional
Input/Output instructions allow recognition of interrupts before their completion as
long as false (not ready) Sense responses are obtained from the specified data source
or destination. After the interrupt is serviced, processing is resumed with the
Conditional Input/Output instruction. The Scan Memory (SCM) instruction similarly
allows recognition of interrupts after each specified word or byte of memory is
compared to the contents of the A register. If interrupts were off prior to issuing
an EIN, the EIN delays recognition of any interrupt until after the execution of from
one (minimum) to three (maximum) instructions. This allows return from interrupt
subroutines to the In-Line program before acceptance of a~other interrupt. The Block
Input/Output (BIN and BOT) instructions, the status Inhibit (SIN) instruction and all
shift instructions must be completed before recognition of an interrupt may occur.
Since their use in In-Line programs may constitute non-trivial delays in the recog-

.nition of interrupts, the programmer should use such instructions with care. In
addition, when Direct Memory Access (DMA) operations are in progress, recognition of
interrupts is delayed for the duration of data block transmission.

5.3.5 Priority Resolution

Occasionally, multiple interrupt requests occur •. When this happens, the interrupt
having the highest priority is acknowledged first, then the next, and so forth down
to the interrupt having the lowest priority. To avoid responding to the same inter­
rupt twice, one to three In-Line program instructions will always be executed between
each recognition of an interrupt. The number of instructions executed depends on the
processor type and the duration of the instructions executed. The standard interrupt
priorities are listed in figure 8-4.

5-11 [I k ______________________________ _

ComputarAutomation ~

5.3.6 General Interrupt Handling

External interrupts cause the computer to execute one instruction outside of the
In-Line program. If the instruction does not modify the P register, the computer
continues with the In-Line program after executing the interrupt instruction. If the
interrupt instruction modifies the P register (JST, JSKR, JSKS, or JMP), the computer
continues processing at the location specified by the new value in the P register.

If a peripheral device is to operate under interrupt control, reserved locations in
memory are assigned to the device. The computer then executes the instruction at the
reserved location when the peripheral device generates an interrupt to the processor.
Each device may be assigned one or more reserved locations. For example, a device
moving blocks of data to or from the computer may generate one interrupt for each
word or byte of data moved and a second interrupt when the entire Dlock of data has
been moved. The interrupt for each word or byte would require one location and the
interrupt indicating the end of the block of data would require another.

Before any interrupt can be recognized by the processor, several conditions must be
met:

1. Interrupts must be enabled, in general. If any interrupts are to be recognized,
the Enable Interrupts (EIN) instruction must be executed and the SIN count must
have expired.

2. The specific peripheral device interrupt must be enabled. Specific interrupts
are enabled by setting an interrupt enable flag in the peripheral device inter­
face controller. Enable flags are generally set by executing a Select (SEL)
instruction with a device addrt~S and function code specifying which interrupt
is to be enabled. Using interrupt enable flags, the programmer can selectively
enable and disable interrupts.

3. The inL~rrupt condition must exist (Le., the device must be ready to accept or
transmit data). Many peripheral devices "remember" interrupt conditions gener­
ated prior to enabling the interrupt enable flags. Care should be taken to
reset the peripheral device interrupts before enabling the enable flag so that
false interrupts do not occur immediately after enabling the interrupts.

4. No higher priority interrupt must be waiting. Each
computer option has a definite priority assignment.
according to priority if more than one interrupt is

peripheral interface or
Interrupts are processed

pending.

5. The computer must be in the RUN mode. Interrupts cannot be recognized when the
computer is halted, or during DMA operations.

5-12

I -

c

5.3.7 Examples of Ir.":'". ialization and Enabling Sequences

Initialization and interrupt enabling take place prior to the generation and use of
the interrupts. The examples below involving a Line Printer and the Real-T~e Clock
are typical of initialization sequences.

INST

SEN
JMP
SEL
SEL
SEL
EIN

OPERANDS

4, 1
$-1
4,7
4,5
4,6

COMMENTS

Wait for Line Printer Buffer ready
(Not Ready)
Reset Interrupt Enable flags
Enable Word Interrupt Enable flag
Enable EOB Interrupt Enable flag
Enable Processor interrupts

Figure 5-12. Line Printer Interrupt Initialization Sequence

;«.;; In addition to being reset by the SEL 4,7 instruction (figure 5-12), the interrupt
enable flags may also be reset by the Line Printer Initialization instruction
(SEL 4,4). Note that the Word interrupt enable flag is enabled before the End-of­
Block (EOB) interrupt enable flag. When specific actions in a peripheral device are
additionally required to generate interrupts (e.g., a card reader must read a card),
the instruction (SEL) causing the action must be executed before the interrupt can
take place. The sequence in figure 5-12 is used in conjunction with an AOT or AOB
instruction in the Word interrupt location and a JST instruction to an EOB routine at
the EOB interrupt location.

In addition to being reset by the SEL 8,3 instruction (figure 5-13), the interrupt
enable flags may also be reset by the Real-Time Clock Initialization instruction ~_
(SEL 8,4). Note that the Sync interrupt enable flag is armed before the Time and
Sync interrupt enable flags are enabled. This sequence is used in conjunction with
an IMS instruction in the Word interrupt location and a JST instruction to a Sync

4[t maintenance routine in the Sync interrupt location.

INST

SEL
SEL
SEL

EIN

OPERAND

8,3
8,2
8,0

COMMENTS

Reset RTC Interrupt Enable flags
Arm RTC Sync Interrupt Enable flag
Enable RTC Time and Sync Interrupt

Enable flags
Enable Processor interrupts

Figure 5-13. Real-Time Clock Interrupt Initialization Sequence

5-13

0

ComputerAutomation <rA
,

5.3.8 Examples of Interrupt Instructions

The contents of the interrupt locations associated with the above examples are illus­
trated in figures 5-14 and 5-15.

LABEL!
LOCATION INST

:42(Word) AOB
DATA

BAC

:46(EOB) JST

Main Memory

SUB
ENT

RTN

BUF RES

OPERANDS

4, 1
-80

BUF-1

SUB

SUB

40

COMMENTS

Automatic Output Byte Instruction
Negative Character Buffer Length

(Byte Counter)
Byte Address Pointer (Start -1)

Jump to End-of-Block Routine, Disable
Processor Interrupts

•

Figure 5-14. Line Printer Interrupt Instructions

Since the byte counter and address pointer are modified during the data transmission,
they must be preset each time a line of characters is to be printed prior to execu­
tion of the initialization sequence discussed in paragraph 5.3.6. When all characters
have been transferred, the instruction at location :46 is executed and control is
transferred to the EOB routine beginning at SUB. This routine might output a carriage
return character to cause the line to be printed, or perfcrm any other line termina­
tion processing required. The last character of the buffer might be a carriage
return.

5-14

(

c

LABEll
LOCATION INST

:18(Time) IMS

: lA (Sync) JST

Main Memory

SYNC ENT
SIN

STA
SIA
STA
STX
LAM
STA

LOX
LAP
AND
LRA
JAZ
SBM
SIN

LOA
EIN
RTN

OPERANDS

COUNT

SYNC

ASAVE

STATUS
XSAVE
100
COUNT

XSAVE
3
STATUS
1
$+2

ASAVE

SYNC

COMMENTS

Increment RTC Counter COUNT

Transfer to Sync Subroutine, Disable
Processor Interrupts

Save Main Program Return Location
Inhibit Status (Guarantee Word Mode)
to Save A Register

Save A Register

Save Status
Save X Register
Reset
RTC Counter COUNT

Perform Specified Maintenance Function

Restore X Register

Byte and OV Bits to A Register
Restore OV
Test Byte Mode
Restore Byte Mode
Inhibit Status (Guarantee Word Mode)
to Restore A Register

Restore A Register
Enable Processor Interrupts
Return to In-Line Program

Figure 5-15. Real-Time Clock Interrupt Instructions

Each acknowledgement of a Time interrupt causes the RTC counter COUNT to be incre­
mented. When COUNT is incremented to zero, recognition of the Sync interrupt (at
location:1A) generates execution of the SYNC interrupt subroutine.

Interrupts are automatically disabled by execution of the JST instruction, but the
addressing mode and the state of the overflow indicator are unchanged. Because the
computer might be in the Byte addressing mode when the interrupt occurs, the Word
mode is forced for one instruction so the full 16-bit contents of the A register can
be saved and the instruction address will be treated as a word address. When this is
done, the computer status is input, which also sets the addressing mode to the Word
mode and resets the overflow indicator. The status and the contents of the X register
are then saved. The Real-Time Clock counter COUNT is reset to a negative value as
part of the requi~ed maintenance operations.

5-15

;i

Restoration of the contents of the X register begins the exit sequence of the sub­
routine. The computer status is then restored and Byte mode inhibited for one
instruction to ensure restoration of the full l6-bit contents of the A register. The
interrupts are then re-enabled and the subroutine is exited prior to acknowledgement
of any other interrupt (since the EIN instruction inhibits recoqnitton Qt int.rrupts
for the duration of the RTN SYNC instruction) •

The sav~/restore sequences discussed here should be used at the beginning and end of
any interrupt subroutine to which a JST instruction at an interrupt location refers.
The Real-Time Clock counter COUNT should also be set to a negative value before the
initialization sequence discussed in paragraph 5.3.6 is e~ecuted.

",

5-16

c

,~ I

~ ..

o

"'!!!
I

ComputarAutomaIIon ~ -

Section 6

PROCESSOR OPTIONS

6.1 INTRODUCTION

This section describes how to use the various features of the Teletype/CRT/Modem
controller, Real-Time Clock (RTC), and AutoLoad (AL) options, and the Basic Variables
(BV) package which are contained on the Option Pack (figure 6-1). These features are
selectable by means of external jumpers on connectors located on the rear edge of the
board. In addition, the Power Fail Restart option contained in the processor is also
described.

The most common operating modes require no· external jumpers. Unjumpered mating
connectors are supplied with the Option Pack.

6.2 hBAR-EDGE CONNECTORS

The rear edge of the Option Pack has two connectors designated Jl and J2. Connector
Jl is used to select various operating modes via external jumpers while connector J2
is used to interface to a Teletype, CRT, or Modem.

Jl is designed to accept a 50-pin, two-row edge connector. Identifying pin numbers
silk-screened on the board apply to the Viking type 2VH25/1JN5 connector which is
numbered 1-50 with the odd numbers (1-49) in one row and even numbered pins (2-50) in
the other. In some cases, connector type 3VH25 is used. Pin designations of this
connector are Al through A25 in one row and pins Bl through B25 in the other. Corres­
ponding pins of the two types of connectors are shown in figure 6-2 along with signals
and related options (in parentheses) .

J2 is designed to accommodate a 36-pin Winchester connector (BBDJ185). The pin
assignments, signals, and related options (in parentheses) for connector J2 are shown
in figure 6-3.

NOTE

All reserved pins listed in figures 6-2 and 6-3 are not to be
used for any purpose.

Connector Jl mounts on the board with the row having pins Al through A25 (or 1 through
49) interfacing with the component side of the board. The contacts for J2 are desig­
nat.ed A through V and 1 through 18. Pins A through V interface with the component
side of the board while pins 1 through 18 interface with the solder side.

Connector Jl should be installed with connector pins Al and Bl (or 1 and 2) to the
right when viewed from the rear of the computer. Connector J2 has the signals brought
out in such a way that when interfacing with an ASR-33 Teletype, the connector may be
installed right-side up or up-side down with no ill effects. When used with terminals
other than a Teletype, J2 .must be installed with pins A and 1 to the right as viewed
from the rear of the computer.

6-1, .

ComputerAutomation ~

Connector J2 Connector J 1

6-2

I e OPTION BOARD
CONNECTOR Jl

(ACCEPTS VIKING
A 3VH25/1JN5) ""l

I...) ¥,

(RTC) TTLF ,1
SSW- (BV)

(TTY) SLCTl L OFST - (BV)

(AL) PFAL- ~ MAI- (BV)

(TTY) CP006 l\ TCLK (TTY)

(TTY) SLCT2
REMOTE AL- (AL)

(RTC)CLKIN- t,
INH- (RTC)

(TTY) CP026 f
CP013 (TTY) I

I (TTY) CP104
CP052 (TTY)

C (TTY) CP568 J CP416 (TTY)

(TTY) CP208 '1'1 RMDIS- (AL)
(RESERVED) 11'

MEC (RTC)

GND ,\!
GND

GND 1 " GND
"

(TTY) ORIN Yl G ENDSW- (BV)

(TTY) TTYOF- 1 ';
(RESERVED)

(BV) DS03- '1 G
SMDA1'- (TTY)

J~.,t (BV) DS01-
DSOO- (BV) 'j) \

(,' fJi 1 (BV) OPT-
DS02- (BV) ,

"- l

C'
(BV) RST-

CINT- (BV) ,. (RTC) 1KHZ ')
10KHZ (ATC)

(BV) STAl
STR2 (BV)

'"'!l! (BV) STR3
STR4 (BV)

(TTY) PS ;~
DTDAT - (TTY)

(TTY) WLSl '/ 4
WLS2 (TTY)

(TTY) PI It:; SBS (1TY)

e
;

Pin Assignments ~ Figure 6-2. Option Pack Connector Jl

t
6-3 ~

i:

I

i
-I

o

(TTY)

(RESERVED)

GND

GND

(TTY) ORIN

(AL) AL·-

(BV) CINT-

TDAT --

RCV

GND

MOT-

MOTt

EIAR-

CTS

SMDAT-

RDRA

OPTION BOARD
CONNECTORJ2

(ACCEPTS WINCHESTER
8BDJ18S)

RDRA

DTDAT-

EIAT-

RTS

MOT+

MOT-

GND

RCV

TDAT-

CINT- (BV)

AL- (AL)

ORIN (TTY)

GND

GND

(RESERVED)

Figure 6-3. Option Pack Connector J2 Pin Assignments

(TTY)

'.

I':i
1,i
\,

~I

o

o
.. ~

ole

6.3 TELETYPE/CRT/MODBM CONTROLLER

\

The Teletype/CRT/Modem (TTY/CRT) option interfaces a CRT, Modem, or modified ASR-33
Teletype to the computer. It performs all of the data and control signal conversions
required for the computer to control the user terminal. An ASR-33 Teletype provides
four input/output features in one package: keyboard input, page printer, paper tape
reader and paper tape punch. A CRT provides keyboard entry and display.

The interface contains a data buffer register which performs parallel-to-serial data
conversion for transferring data from the computer to the user terminal and serial­
to-parallel conversion when transferring data from the user terminal to the computer.
In addition, the interface has provisions for interrupt generation for both Word and
End-of-Block interrupts.

The TTY/CR'J' In,terface option has been assigned a standard device address of 7.

output from the computer is printed on the TTY page printer or displayed on the CRT.
If the TTY punch is turned on, the output is also punched. The TTY punch and page
printer cannot be separately controlled by the computer. The TTY operator must turn
the p"nc:l on or off as desired.

Input to the computer is accomplished via the TTY/CRT keyboard or the TTY paper tape
reader. They are controllable separately from the computer. The paper tape reader
can read bytes one at a time or continuously. Automatic Echo is a feature which
allows any input to be echoed back to the TTY/CRT for printing or display.

The Teletype or CRT can be operated in either half-duplex or full-duplex mode. The
Initialize instruction (SEL 7,4) puts the controller in the half-duplex mode.
Execution of the Select-and-Present instructions (SEA 7,4 or SEX 7,4) with the
register contents equal to 1 puts the controller in full-duplex mode.

The TTY/CRT controller has prov~s~ons for ten different baud rates, a variable length
word (with or without parity), and either one or two stop bits. Additionally, the
user can select a current loop data path for Teletypes, a TTL-~ompatible data path,
o~ an EIA RS232C/CCITT data path for various terminals. The user should consult the
terminal manufacturer's literature to determine the exact interface requirements of
the terminal •

6.3.1 Baud Rate Selection

The TTY/CRT controller .uses a variable format counter; to provide internal clock
timing for the data channel. Two counter inputs (SLCTI and SLCT2) determine the
eount pattern to be employed. ~ight counter outputs are brought out to connector JI.
One of these outputs (CP006, CP013, CP026, CP052, CPI04, CP208, CP4l6 or CP568) can
be jumpered to the TCLK terminal to provide the appropriate clock period.

The SLCTI and SLCT2 signalS are static control signals that are either grounded or
left open. Ground is available on pins 23 thru 26 of connector Jl. The grounding
configurations for selecting the various baud rates are shown in table 6-1.

6-5

I
.""'1

I

ComputerAutomation ~

Table 6-1. aaud Rate Selection

BAUD RATE SLCTl (pin 3) SLCT2 (pin 9) JUMPER

75 GND OPEN PinS to 17
110 (s tanda rd) OPEN OPEN none

134.5 OPEN GND none
150 GND OPEN Pin 8 to 18
300

,
GND OPEN Pin 8 to 19

600 GND OPEN Pin 8 to 15
1200 GND OPEN Pin 8 to 16
2400 GND OPEN Pin 8 to 13
4800 GND OPEN Pin 8 to 14
9600 GND OPEN Pin 8 to 7

,

i
I

I ~.3.2 Word Length Selecti~n
I I The user may select either 5-, 6r, 7- or 8-bit character lengths for the controller
~ to process. Character length selection is controlled by WLSl and WLS2 (pins Jl-47
i'and Jl-48, respectively). These signals are statio control signals that are either I grounded or left open. Ground is available on pins 23 through 26. The grounding
I configurations for word length selections are shown in table 6-2.

Table 6-2. Word Length Selections

WORD LENGTH WLSl (pin 4?) WLS2 (pin 48)
.-

5-bits GND GND
6-bits OPEN GND
7-bits GND OPEN

8-[):,:s (standard) OPEN OPEN

6.3.3 Parity Selection

(lIThe user can choose to have parity error processing with parity error sensed by the
: SEN 7,6 instruction. Two signals control parity in the controller. Parity Inhibit I (PI, JI-49) controls parity. When PI is open, parity is disabled. When PI is
I grounded, the parity generation and check functions are enabled and a parity bit is
I inserted into the transmitted word. When parity is enabled, the Parity Select signal

(PS, JI-45) determines whether even or odd parity is generated by the transmit func­
tion and checked by the receive function. When PS is open, even parity is selected.
When PS is grounded, odd parity is selected.

6.3.4 Stop Bit Selection

All terminal equipment requires either one or two stop bits. The stop Bit Select
signal (SBS, Jl-50) provides this selection capability. When SBS j.s grounded, one
stop bit is inserted in the transmitted word. When SBS is open, two stop bits are
inserted in the transmitted word. Note that the selection of two stop bits when
programming a 5-bit word generates 1.5 stop bits.

6-6

o

"

6.3.5 Alternate Interrupt Locations

When using the TTY/CRT controller in the half-duplex mode, the standard TTY/CRT
interrupt locations of :0002 and :0006 may be changed to :0022 and :0026, respec­
tively, by jumpering TTYOF- (Jl-29) to MEC (Jl-22). Note that thi5 te.tur~ ie auto­
Irati!::aVy m,er~iden when operating' in the full-duplex mode.

6.3.6 Data Interface Selection

The user has a choice of three types of data interface that can be used with a ter­
minal device. These interface types are current loop, RS232C/CCITT, and TTL/DTL­
compatible.

6.3.6.1 Current Loop Interface

The current loop interface (figure 6-4) utilizes a 3-wire ground conunon interface
which is characterized by the presence or absence of a 20-rnA dc signalling current.
The current loop interface converts logic signals to current signals and vice-versa
as follows:

Mark = 20-rnA current flow
space = nb current flow

The controller current-loop transmit signal is TDAT, while the controller receive
signal is RCV-. TDAT is available on connector J2 at pins Hand 12. RCV- enters the
controller at J2 pins J and 11. A logic ground reference between the controller and
the terminal device is required and is available on J2 pins K and 10.

The controller current-loop receive and transmit circuits have a 1500-ohm, I-watt
resistor in series with their respective lines. These resistors are used to set the
current level on each line to 20 rnA dc. The current-loop receive line also has a
built-in rolloff filter which limits baud rates to 150 baud maximum for use with
Teletypes. For faster current-loop devices, the filter capacitor may be removed.

6.3.6.2 EIA RS232C/CCITT Interface

The EIA .RS232C/CCITT interface (figure 6-5) uses signal levels which vary between
plus and minus seven volts. The interface provides two control signals in addition
to receive/transmit data signals. The interface signal levels are as follows:

Data: Mark = -7 Vdc
Space = +7 Vdc

Control: True = +7 Vdc
False = -7 Vdc

The controller EIA receive signal is designated EIAR- and is available
The EIA transmit signal is designated EIAT- and is available on J2 pin
EIA control signals are Request to Send (RTS) and Clear to Send (CTS).
able at J2 pin 4 while CTS enters the interface at J2 pin T.

on J2 pin S.
3. The two

RTS is avail-

The RTS and CTS lines from both the controller and terminal devices are defined for
operation with a modem. When operating without a modem (direct interface as shown in
figure 6-5a), the RTS and CTS lines must be crossed.

6-7

\i

'I

,I

I
I

''''1

RECEIVE
DATA

TRANSMIT
DATA

TTY/CRT/MODEM
CONTROLLER

J2

r-------------~~--------~ K

H

I
I
I
I PI

ComputerAutomation ~

INTERFACE
CABLE

RCV

GND

TDAT

TELETYPE
(MODIFIEDI

P21 P2

SEND

'45
6

4 J---__ -f

'45
8 J-';'-'---f

RECEIVE

TRANSMIT
FUNCTION

CURRENT
SOURCE

RECElliE
FUNCTION

Figure 6-4. Current Loop Interfa~e

with the RTS and CTS control lines crossed, half-duplex switching from Receive mode
to Transmit mode and vice-versa is controlled by the controller RTS line. When the
controller RTS line is true, the terminal device transmits to the controller. When

Othe controller RTS line is false, the controller transmits to the terminal device.
During full-duplex operation, the RTS line of both the controller and the terminal
device must be true for simultaneous transmission.

When operating with a half-duplex modem, carrier keying by means of the RTS signal is
not used to switch from Transmit to Receive modes. Instead, End-of-Message (EOM) .
character detection within the support software is used. When operating with a full­
duplex modem, no spec~l disciplines are required.

The RTS signal is generated by the controller Motor On/Off flip-flop. The Motor
On/Off flip-flop has delay circuitry which disables the controller Sense multiplexer
for 600 ms after receipt of a Motor On command. When using the Motor On/Off flip­
flop with an ErA device, the delay circuitry must be disabled. The delay circuits
are disabled by grounding the ORIN- input, Jl pin 27 or J2 pins D and 15. Note that
RTS and Motor On are in opposite sense; that is, a Motor On instruction turns RTS
off.

6-8

c

I

i

i

If\ ,-,.

Hi - t we W 'irM'd"#ti M'"bb '

ComputerAutomation ~

__ .T~ RtS

CTS CTS
TTY/CRTI

~ MODEM MODEM MODEM

CONTROLLER IlOCAU (REMOTE) HRMINAL
llAT RECEIVE

EIAR TRANSMIT

(a) Interface Without Modem

AtS RtS

CTS CtS
TTY/CRT/

MODEM
TERMINAL

CONTROLLER
EIAT RECEIVE

EIAR TRANSMIT

(b) Interface With Modem

Figure 6-5. EIA RS232C/CCITT Interface

6.3.6.3 TTL/DTL-Compatible Interface

The TTL/DTL-compatible (TTL) interface (figure 6-6) uses signal levels which vary
from a to +5 volts dc. The interface signal levels are as follows:

Mark 0.0 to +0.45 Vdc
Space = +2.4 to +5.0 Vdc

The TTL receive signal is SMDAT- which is available at Jl pin 32 and J2 pin u.
SMDAT- should be driven by an open-collector driver in the terminal device. The
controller represents only one load to the driver. The controller provides a lK ohm
pull-up resistor to +5 Vdc. The TTL transmit signal is DTDAT and is available on Jl
pin 46 and J2 pin 2. DTDAT is driven by the controller with an open-collector driver
which is capable of 50 rnA dc drive current. The terminal device must provide a pull­
up resistor to the terminal VCC supply which must not exceed 100 volts dc.

6.3.7 Special Teletype Controls

The Teletype/CRT controller contains prov~s~ons which permit user generated software
to control paper tape reader and drive motor turnon and turnoff in specially modified
ASR-33 Teletype units.

The reader control signal is designated IRDRA and is available at J2 pins V and 1.
The motor control signals are referred to as MOT+ and MOT- and are available at J2
pins M and 8, and L and 9, respectively.

6.3.8 Half-Duplex Usage

Half-duplex controller operations involve either input from, or output to, the termi­
nal device, but not simultaneously. Use of the Auto Echo feature causes input from
the device to be automatically "echoed" back for printing or display, thus eliminating
the necessity for echoing characters back under software control.

6-9

-I
I

c

RECEIVE
DATA

t5V

TRANSMIT ---+--4
DATA

RENB-

DUPEN-

MSTOP­

RCV

DTDAT-

I
I
I
I

Jl I
OR,
J2

ComputerAutomation <rA

I
I
I , ,

141611417 , DRIVER

I
SEND DATA

t5V

RECEIVE DATA

Figure 6-6. TTL/DTL Interface

Figures 6-7 and 6-8 are examples of typical half-duplex Teletype I/O sequences:

LABEL

LOOP

INST

SBM
SEL
LDAB

I MS
WRA
IMS

JMP

SEN
JMP
SWM

OPERANDS

7,4
* DATA

DATA
7, 1
COUNT

LOOP

7, 1
$-1

COMMENTS

Set Byte Addressing Mode
Initialize TTY Interface
Load Byte/Character into LS Byte of
A Register
Increment Byte Address Pointer
Output Byte when TTY is Ready
Increment Negat i ve Number of Characters
to be Transferred
Continue Data Output if Non-zero Incre­
ment Results
Wait for last character to be printed

Restore Word 'Addressing Mode
Exit

Figure 6-7. Half-Duplex Program-Controlled Data Output

6-10

o

o

.. "<I!!i

w

LABEL

LOOP

INST OPERANDS

SBM
SEL 7,4
SEL 7,0

SEL 7,3

RBA 7,1
STAB *DATA
IMS DATA
IMS COUNT

JMP LOOP

SEL 7,4

SWM

COMMENTS

Set Byte Addressing Mode
Initialize TTY Interface
Enable Auto Echo to Print Oat, Being
Input
Start the Paper Tape Reader in a Con­
tinuous Read Mode .
Input Byte when TTY is Ready
Store Character in Data Buffer in Memory
Increment Byte Address Pointer
Increment Negative Number of Characters
to be Transferred
Continue Data Input if Non-zero Increment
Results
Initialize the TTY Interface to Stop the
Paper Tape Reader and Disable the Auto
Echo

Restore Word Addressing Mode

Figure 6-8. Program-Controlled TTY Reader Input

The standard Word interrupt location for half-duplex operation is :0002. The con­
troller interrupts to this location when the Word Transfer mask is set, interrupts
are enabled, and the terminal device is ready for either input or output. A jumper
option allows this interrupt location to be relocated to location :0022. The standard
End-of-Block interrupt location for half-duplex operation of the terminal device is
location :0006. The contr~ller interrupts to this location when the Block Transfer
mask is set, interrupts are enabled, and an ECHO signal (froIn completion of an Auto
I/O interrupt sequence) is received from the processor. A jilmper option allows this
interrupt location to be relocated to location :0026. An additional jumper option
allows processor mounted option interrupts to be offset by :0100 locations. The
standard half-duplex controller interrupts can thus be relocated to locations :0102
i:lDd :0106 or :0122 and :0126 •

6.3.9 Half -Dupl.ex Controller Instructions

SEL 7,0

SEL 7,1

SEL 7,2

ENABLE AUTO ECHO. Places controller in Read mode and causes all
inputs to be echoed back to source terminal for printing or
display. Initialize instruction (SEL 7,4) turns Auto Echo off.

SELECT KEYBOARD. Places controller in Read mode.

STEP READ. Places controller in Read mode and causes character
under paper tape reader read station to be read. Paper tape is
then advanced one character position. Reader switch must be in
START position.

6-11

SEL 7,3

SEL 7,4

SEL 7,5

SEL 7,6

SEL 7,7

c SEN 0,4

,

SEN 7,1

SEN 7,2

SEN 7,3

SEN 7,4

SEN 7,5

SEN 7,6

SEN 7,7

bbbhW' '"W' ""1M

ComputerAutomation ~

CONTINUOUS READ. Places controller in Read mode and causes TTY
paper tape reader to read continuousl, until reader is stopped or
tape runs out. Reader switch must be in START position.

INITIALIZE CONTROLLER. Places controller in half-duplex and
write modes, and resets all control flags. Static marking
condition will be present.

ENABLE WORD TRANSFER INTERRUPTS. Sets appropriate interrupt mask
to enable generation of a Word interrupt each time Buffer Ready
condition occurs.

ENABLE END-OF-BLOCK INTERRUPT. Sets appropriate interrupt mask
to enable generation of an EOB interrupt upon reception of ECHO
signal from processor. Instruction must be executed after SEL 7,5
or immediate EOB interrupt will occur.

DISABLE INTERRUPTS. Disable both Word and EOB interrupts by
resetting both interrupt enable masks.

SENSE TTY CONTROLLER INSTALLED~ Tests for presence of TTY con­
troller on Option Pack. If controller is installed, next sequen­
tial instruction is skipped. If controller is not installed,
next sequential instruction is executed. (Used by diagnostic
programs.)

SENSE BUFFER READY. Tests for Buffer Ready condition. If buffer
is ready, next sequential instruction is skipped. If buffer is
not ready, next sequential instruction is executed.

SENSE WORD TRANSFB~ INTERRUPTS ENABLED. Tests if Word interrupts
are enabled. If they are, next sequential instruction is skipped.
If they are not, next sequential instruction is executed.

SENSE CONTROLLER NOT BUSY. Tests busy state of controller. If
controller is not busy processing a character, next sequential
instruction is skipped. If controller is busy, next sequential
instruction is executed.

SENSE CLEAR TO SEND. Tests CTS line from a CRT or modem. If
Signal is true, next sequential instruction is skipped. If
signal is false, next sequential instruction is executed. (This
featu~e is available only with EIA RS232C/CCITT interface option.)

SENSE TTY MOTOR ON. Tests if TTY motor is on. If it is on, next
sequential instruction is skipped. If it is off, next sequential
instruction is executed.

SENSE PARITY ERROR. Tests for occurrence of parity error during
most recent input operation. If a parity error occurred, next
sequential instruction is skipped. If a parity error did not
occur, next sequential instruction is executed. (Requires prior
strapping of parity option at rear-edge connector.)

SENSE FULL DUPLEX MODE ENABLED. Tests if controller is in full­
duplex mode. If it is, next sequential instruction is skipped.
If it is ~ot, next sequential instruction is executed.

6-12

Cl

. ..,

OTZ

OTZ

OTZ

OTZ

OTA
OTX

WRA
WRX

AOT

AOB

BOT

7,6

7,6

7,7

7,7

7,0
7,0

7,1
7,1

7,0

7,0

7,1

Mft!f1th!'t!tMttM"'t'dtttlttt" tit.., 'i7 1rt'["O'1<,4'" t t" ttettW'rIt:ltettttt'W

ComputerAutomation ~

TU~~ MOTOR ON. Turns TTY motor on and places controller in Write
mode. Turning motor on introduces a 600-ms delay for all con­
troller Sense responses and interrupts to allow motor to come up
to speed. (This feature is only available if TTY has been modi­
fied for remote motor on/off control.)

NOTE

Motor is unconditionally turned on whenever
a Power-up or System reset occurs.

CLEAR REQUEST TO SEND. When used with a CRT or modem, this
instruction turns off RTS signal and places controller in Write
mode. (This feature is available only with EIA RS232C/CCITT
interface option.)

TURN MOTOR OFF. Turns TTY motor off and places controller in
Write mode.

REQUEST TO SEND. When used with a CRT or modem, this instruction
turns on RTS signal and places controller in Write mode. (This
feature is available only with EIA RS232C/CCITT interface option.)

OUTPUT A OR X REGISTER TO CONTROLLER. Unconditionally transfers
contents of LS byte of specified register to controller and
causes character to be transmitted to terminal device.

WRITE FROM A OR X REGISTER TO CONTROLLER. Tests for output
buffer empty condition. If buffer is empty, contents of IS byte
of specified register are transferred to controller and subse­
querltly transmitted to terminal device. If buffer is not empty,
instruction is continuously repeated until it becomes empty.

OUTPUT WORD FROM MEMORY TO CONTROLLER, AUTOMATICALLY. Contents
of LS byte of memory location addressed by updated AOT address
pointer are unconditionally transferred to controller and subse­
quently transmitted to terminal device. (Refer to Auto I/O
instructions in section 4.)

OUTPUT BYTE FROM MEMORY TO CONTROLLER, AUTOMATICALLY. Contents
of memory byte location addressed by updated AOB address pointer
are unconditionally transferred to controller and subsequently
transmitted to terminal device. (Refer to Auto I/O instructions
in section 4.)

OUTPUT BLOCK FROM MEMORY TO CONTROLLER. Places controller in
Write mode and tests for output buffer empty condition. When
buffer is empty, contents of IS byte of effective memory location
are transferred to controller, and subsequently transmitted to
terminal device. Word count is decremented by one. Instruction
is repeated continuously until word count is decremented to zero.
(Refer to Block I/O instructions in section 4.)

6-13

I
t
I
~'.

! '
~
1.'
~.,

;f'
;/1
ll:
~, "

:1',

Oi
,

!
I

INA
INX

IBA
IBX

RDA
RDX

RBA
RBX

AIN

AlB

BIN

7,0
7,0

7,0
7,0

7,1
7,1

7,1
7,1

7,0

7,0

7,1

, !Id"ii'*" '.igWh-tl'jWtt"fzdr1tUffl 'taM # U tiM Pc Wo, '1 • Wi'"" BC'" '!iTa"') ft1 'i

ComputerAutornation ~

INPUT WORD FROM CONTROLLER TO A OR X REGISTER. Unconditiona lly
transfers content" of i.nput buffer to IS byte of sped fied
register. MS byte of specified register is set to zero.

INPUT BYTE FROM CONTROLLER TO A OR X REGISTER. Unconditionally
transfers contents of input buffer to LS byte of specified
register. MS byte of register is unaffected.

READ WORD FROM CONTROLLER TO A OR X REGISTER. Tests for input
buffer full condition. If buffer is full, contents are trans­
ferred to LS byte of specified register. MS byte of specified
register is set to zero. If buffer is not full, instruction is
continuously repeated until it becomes full.

READ BYTE FROM CONTROLLER TO A OR X REGISTER. Tests for input
buffer full condition. If buffer is full, contents are trans­
ferred to LS byte of specified register. MS byte of specified
register is unaffected. If buffer is not full, instruction is
continuously repeated until it becomes full.

INPUT WORD FROM CONTROLLER TO MEMORY, AUTOMATICALLY. Uncondi­
tionally transfers contents of input buffer to LS byte of memory
location addressed by updated AIN address pointer. MS byte of
memory location is set to zero. (Refer to Auto I/O instructions
in section 4.)

INPUT BYTE FROM CONTROLLER TO MEMORY, AUTOMATICALLY. Uncondi­
tionally transfers contents of input buffer to memory byte loca­
tion addressed by updated AlB address pointer. (Refer to Auto
I/O instructions in section 4.)

INPUT BLOCK FROM CONTROLLER TO MEMORY. Tests for input buffer
full condition. When buffer is full, contents are transferred to
LS byte of effective memory location. MS byte of memory location
is set to zero and word count is decremented by one. Instruction
is repeated continuously until word count is decremented to zero.
(Refer to Block I/O instructions in section 4.)

c
, 6.3.10 Full-Duplex Usage

Full-duplex controller operations allow simultaneous input and output. The interface
contains two data buffers in this mode: one for input and one for output. Use of
the Auto Echo feature causes input from the device to be automatically "echoed" back
for printing or display, thus eliminating the necessity for echoing characters back
under software control. When this feature is used, normal output data and echoed
data can be intermixed but care should be taken to assure that the resulting sequence
of output characters makes sense.

Full-duplex operation also allows use of a special "loop-back" diagnostic feature.
This mode is entered by executing the Select-and-Present instructions SEA 7,4 or
SEX 7,4 with the appropriate register (A or X) contents equal to 3. This feature
connects the output buffer to the input buffer, allowing immediate comparison of
transmitted data and received data. Figure 6-9 is an example of full-duplex data
input under interrupts.

6-14

eMr " "ee' HHtfM'W ·w' Itw" M.a',,, 1 rt!: 'r Sf 'f II fit : trU jill '/II 'j II ill" 1111 liM

I,

~ i ComputerAutomation
~
~
~ II -"

'" f LABEll •
~ LOCAl I ON INST OPERANDS COMMENTS
1;1

:2 MB 7,1 Automatic byte output
DATA -20 Negative byte count
BAC OBur-1 Addre.s of output buffer -I

:6 ZAR End-of-block termination

:22 AlB 7.0 Automatic byte Input
DATA -I Negat i ve byte count
DATA IBUF-I Address of Input buffer -I

:26 JST ENOA End-of-block termination

Main Memoa

START LAP I Set A to +1
GO SEA 7.4 Set full duplex

SEL 7.5 Enable word output mask
SEL 7.6 Enable fOB output mask
SEA 7.5 Enable word Input mask

0 SEA 7.6 fnab Ie fOB Input mask
EIN Enable interrupt!
WAIT Walt for Interrupts

EHDA ENT Ent ry for Input dOne
EIN Enable Interrupt
JAN \la It for II ne output Interrupts
DIN Disable interrupts
LAM I Setup automatIc output or Input character
STA :3
LOA I BUFA
STA :4
LOA DONE
STA 6
ZAR
JMP GO Go do It

FINISH ENT Donel
SEL 7.7 Turn off all masks
LAM 20 Re-setup output and Input Instructions
STA : 3
LOA OBUFA For next time
STA :4
LOA ZAR
STA :6
LOA IBUFA
STA :24

C! LAM I
STA :23

IBUFA BAC IBUF-I
OBUFA BAC OBUF-I
lAR ZAR
DONE JST FINISH

'~

I BUF DATA $-$
0141' 'SOURCE INPUT IS - ,

DATA :8A80 CII and LF

Figure 6-9. Full-Duplex Auto-Input:Under Interrupt

6-15

."!!'I

,i'eW'e_Wttft' ±f&&,*,'"M
M w"Ut"it '''trY 'tea"'w. '*'

In the example, a 20-character "question" is transferred to the 'I'TY. A one-character
"answer", entered at the ke)(board, is also printed but not before printing of the
question is complete.

If printing of the question is not completed when the answer is eote~ad, the -1 byte
count is incremented to zero and the processor issues an ECHO-. Upon ~eceiving ECHO-,
the controller generates an EOB interrupt to location :26. Locati0n :26 contains a
JST to the EOB routine (ENDA). The program then waits for completion of the output
byte transfer and the EOB interrupt. When it occurs, the A register is cleared and
the EOB routine for byte input initializes the output interrupt sequence for output.
The answer is then printed, completing the example.

Standard Offset
Location Locat.ion Priority

Output Word Transfer Interrupt :0002 :0102 4
Output EOB Interrupt :0006 : 0106 2
Input Word Transfer Interrupt :0022 : 0122 3
Input EOB Interrupt :0026 :0126 1

~The jumper option for offsetting interrupt locations to :0022 and :0026 (or :0122 and
I :0126) in half-duplex mode has no effect on the interrupt locations for full-duplex
, operation. Note that the EOB interrupts have priority over the word interrupts.

6.3.11 Full-Duplex Controller Instructions

SEL 7,0

SEL 7,1

SEL 7,2

SEL 7,3
10 ,<,'

!

I SEL 7,4

SEA 7,4
SEX 7,4
(A or X =

SEA 7,4
SEX 7,4
(A or X =

1)

3)

ENABLE AUTO ECHO. Causes all inputs to be echoej back to source
terminal for printing or display. Initialize instructions
(SEL/SEA/SEX 7,4) turn Auto Echo off.

SELECT KEYBOARD. Turns off paper tape reader if on, without
affecting any other operation.

STEP READ. Causes character under paper tape reader read station
to be read. Paper tape is then advanced one character position.
Reader switch must be in START position.

CONTINUOUS READ. Causes TTY paper tape reader to read continuously
until reader is stopped or tape runs out. Reader switch must be
in START position.

INITIALIZE CONTROLLER TO HALF-DUPLEX. Places controller in half­
duplex and write modes, and resets all control flags. Static
marking condition will be present.

INITIALIZE CONTROLLER TO FULL-DUPLEX. Either instruction (with
appropriate register = 1) will place controller in full-duplex
mode and reset all control flags.

INITIALIZE CONTROLLER TO FULL-DUPLEX DIAGNOSTIC. Either instruc­
tion (with appropriate register == 3) will place controller in
full-duplex mode and reset all control flags. Tn addition, the
output buffer is connected to the input buffer. Any character
which is output will be received by the input buffer.

6-16

I ,
I

i

I

o

o

SEL 7,5 .

SEA 7,5
SEX 7,'3
(A or X = 1)

SEl, 7,6

SEA 7,6
SEX 7,6
(A or X = 1)

7,7

SEA 7,7
SEX 7,7
(A or X = 1)

SEN 0,4

SEN 7,0

SEN 7,1

SEN 7,2

SEN 7,3

tttW $ 'tHdfaM h '1Pt , (t .t it U"'tf r8th. ' f t >tM

ComputerAutomation ~

E~iu.d£ OUTPU'f WORD TRANSFER INTERRUPT. Sets appropriate interrupt
mask to enable generation of an Output Word interrupt each time
output buffer empty condition occurs.

ENABLE INPUT WORD TRANSFER INTERRUPTS. Sets _Wropr iiJt$ interrupt
mask to enable generation of Input Word interrupt e,ch t~. input
.buffer full condition occurs.

ENABLE OUTPUT END-OF-BLOCK INTERRUPT. Sets appropriate interrupt
mask to enable generation of Output EOB interrupt upon reception
of ECHO signal from processor, generated as a result of Output
Word interrupt. Instruction must be executed after SEL 7,5 or
immediate output EOB interrupt will occur.

ENABLE INPUT END-OF-BLOCK INTERRUPT. Either instruction (with
appropriate register = 1) will set appropriate mask to enable
generation of Input EOB interrupt' upon reception of ECHO signal
from processor, generated as a result of Input Word interrupt.
Instruction must be executed after SEA/SEX 7,5 or an immediate
InputEOBinterrupt will occur.

DISABLE OUTPUT WORD TRANSFER AND END-O?-BLOCK INTERRUPTS.
Disables both Output Word and EOB interrupts by resetting corres­
ponding interrupt enable masks.

DISAB.LE INPUT WORD TRANSFER AND END-OF-BLOCK INTERRUPTS. Either
instruction (with appropriate register = 1) will disable both
Input Word and EOB interrupts by resettiilg corresponding interrupt
enable masks.

SENSE TTY CONTROLLER INSTALLED. Tests for presence of TTY con­
troller on Option Pack. If controller is installed, next sequen­
tial instruction is skipped. If controller is not installed,
next sequential instruction is executed. (Used by diagnostic
programs.) If buffer is full, next sequential instruction is
skipped.

SENSE INPUT BUFFER FULL. Tests for input buffer full condition.
If buffer is not full, next sequential instruction is executed.

SENSE OUTPUT BUFFER EMPTY. Tests for output buffer empty condi­
tion. If buffer is empty, next sequential instruction is skipped.
If buffer is not empty, next sequential instruction is executed.

SENSE OUTPUT WORD TRANSFER INTERRUPTS ENABLED. Tests if Output
Word interrupts are enabled. If they are, next sequential instruc­
tion is skipped. If they are not, next sequential instruction is
executed.

SENSE CONTROLLER NOT BUSY. Tests busy state of controller. If
controller is not busy processing a character, next sequential
instruction is skipped. If controller is busy, next sequential
instruction is executed.

6-17

SEN 7,4

SEN 7,5

SEN 7,6

SEN 7,7

OTZ c) 7,6

I

OTZ 7,6

OTZ 7,7

OTZ 7,7

C OTA 7,0
OTX 7,0

.. ~ WRA 7,1
WRX 7,1

AOT 7,0

·1

%*"*' "we l .. tWMW1ett.t.'±*. It I 1m "tti'(j'" tt'"Wb"'dkHt tt#t"tu'tS',· 1I"t '" , ," ** _'isM! srtt'm ., t ... 1"

ComputerAutomation ~

SENSE CLEAR TO SEND.· Tests CTS line from a CRT or modem. If
signal is true, next sequential instruction is skipped. If
signal is false, next sequential instruction is executed. (This
feature is available only with EIA RS232C/CCITT interface option.)

SENSE TTY MOTOR ON. Tests if TTY motor is on. If it is on, next
sequential instruction is skipped. If it is Gff, next sequential
instruction is executed.

SENSE PARITY ERROR. Tests for occurrence of parity error during
most recent input operation. If a parity error occurred, next
sequential instruction is skipped. If a parity error did not
occur, next sequential instruction is executed. (Requires prior
strapping of parity option at rear-edge connector.)

SENSE FULL DUPLEX MODE ENABLED. Tests if controller is in full­
duplex mode. If it is, next sequential instruction is skipped.
If it is not, next sequential instruction is executed.

TURN MOTOR ON. Turns TTY motor on. Turning motor on introduces
a 600-ms delay for all controller Sense responses and interrupts
to allow motor to come up to speed. (This feature is only avail­
able if TTY has been modified for remote motor on/off control.)

NOTE

Motor is unconditionally turned on whenever
a Power-up or System reset occurs.

CLEAR REQUEST TO ::;:~Im. When used with a CRT or modem, this
instruction turns off RTS signal. (This feature is available
only with EIA RS232C/CCITT interface option.)

TURN MOTOR OFF. Turns TTY motor off.

REQUEST TO SEND. When used with a CRT or modem, this instruction
turns on RTS signal. (This feature is available only with
EIA RS232C/CCITT interface option.)

OUTPUT A OR X REGISTER TO CONTROLLER. Unconditionally transfers
contents of LS byte of specified register to controller output
buffer and causes character to be transmitted to terminal device.

WRITE FROM A OR X REGISTER TO CONTROLLER. Tests for output
buffer empty condition. If buffer is empty, contents ofLS byte
of specified register are transferred to controller output buffer
and subsequently transmitted to terminal device. If buffer is
not empty, instruction is continuously repeated until it becomes
empty.

OUTPUT WORD FROM MEMORY TO CONTROLLER, AUTOMATICALLY. Contents of
LS byte of memory location addressed by updated AOT address
pointer are unconditionally transferred to controller output
buffer and subsequently transmitted to terminal device. (Refer
to Auto I/O instructions in section 4.)

6-18

c

I

o

-I _

AOB

BOT

INA
INX

lBA
J.BX

RDA
RDX

RBA
RBX

AIN

AlB

BIN

7,0

7,1

7,0
7,0

7,0
7,0

7,0
7,0

7,0
7,0

7,0

7,0

7,0

OU'ZClT BYTE FROM MEMORY TO CONTROLLER, AUTOMATICALLY. Contents
of memory byte location addressed by updated AOB address pointer
are unconditionally transferred to controller output buffer and
subsequently transmitted to terminal device. (Refer to Auto I/O
instructions in section 4.)

OUTPUT BLOCK FROM MEMORY TO CONTROLLER. -Tests for output buffer
empty condition. When buffer is empty, contents of LS byte of
effective memory IOGation are transferred to controller output
buffer and subsequently transmitted to terminal device. Word
count is decremented by one. Instruction is repeated continuously
until word count is decremented to zero. (Refer to Block I/O
instructions in section 4.)

INPUT WORD FROM CONTROLLER TO A OR X REGISTER. Unconditionally
transfers contents of controller input buffer to IS byte of
specified register. MS byte of. specified register is set to
zero.

INPUT BYTE FROM CONTROLLER TO A OR X REGISTER. Unconditionally
transfers contents of controller input buffer to LS byte of
specified register. MS byte of register is unaffected.

READ WORD FROM CONTROLLER TO A OR X REGISTER. Tests for input
buffer full condition. If buffer is full, contents are trans­
ferred to LS byte of specified register. MS byte of specified
register is set to zero. If buffer is not full, instruction is
continuously repeated until it becomes full.

READ BYTE FROM CONTROLLER TO A OR X RE(;rSTER. Tests for input
buffer full condition. If buffer is full, contents are trans­
ferred to LS byte of specified register. MS byte of specified
register is unaffected. If buffer is not full, instruction is
continuously repeated until it becomes full.

INPUT WORD FROM CONTROLLER TO MEMORY, AUTOMATICALLY. Uncondi­
tionally transfers contents of controller input buffer to LS byte
of memory location addressed by updated AIN address pointer.
MS byte of memory location is set to zero. (Refer to Auto I/O
instructions in section 4.)

INPUT BYTE FROM CONTROLLER TO MEMORY, AUTOMATICALLY. Uncondi­
tionally transfers contents of controller input buffer to memory
byte location addressed by updated AlB address pointer. (Refer
to Auto I/O instructions in section 4.)

INPUT BLOCK FROM CONTROLLER TO MEMORY. Tests for input buffer
full condition. When buffer is full, contents are transferred to
LS byte of effective memory location. MS byte of memory location
is set to zero and word count is decremented by one. Instruction
is repeated continuously until word count is decremented to zero.
(Refer to Block I/O instructions in section 4.)

6-1~

.~

t it' i 'bit" t 't $ g, t'MrS" oJ k"i1iMffi ** ' ,0 t ,. t

ComputerAutomation ~

6.4 REAL-TIME CLOCK

The Real-Time Clock (RTC) option provides a means to determine elapsed time and/or to
create a time-of-day clock, with software. The RTC keeps time by responding to
electrical pulses of a known frequency, such as the output of a crystal oscillator or
the input frequency of an ac power source. The standard configuration usas a cryatl'll
oscillator as the basic timing source. The clock is ap,lied to a counter chain to
produce 10-kHz, I-kHz, and lOa-Hz clock sources (timing increments' of 100 s, 1 ms,
and 10 ms, respectively). In addition, a 120-Hz clock source is available (100 Hz
when the computer is used with 50-Hz power source). The crystal derived standards,
are accurate to + 0.05%. The desired clock source is selected by a jumper wire. An
external timing source may be applied to the RTC option if some source other than the
crystal oscillator or twice the ac line frequency is desired. This allows the use of
almost any timing period.

6.4.1 Clock Source Selection

with no jumper installed, the RTC option operates from a built-in, lOa-Hz timing
source. The user can select four other timing sources (10 kHZ, 1 kHz, twice the ac
line frequency (TTLF) or a TTL-compatible external timing source).

The RTC option represents only one TTL load to the external timing source. The
external timing source must be a TTL-compatible logic signal with rise and fall times
of less than 50 ns. with regard to duty cycle, the only requirement is that the
signal be ground-true, with a minimum of 100 ns.

When the user wishes to select an alternate timing source (other than the standard
lOa-Hz source), the lOa-Hz clock source must be inhibited by grounding the INH­
input. Clock source can be selected at connector Jl using table 6-3.

Table 6-3. Clock Source Selection

" CLOCK INH- JUMPER
SOURCE (pin 12) CONNECTIONS

100 Hz (standard) OPEN none
1 ,000 Hz GND Pin 39 to pin 11

10,000 Hz GND Pin 40 to pin 1 1
TTLF GND Pin 1 to pin 11

EXTERNAL* GND User timing source to pin 11

*External timing source must be TTL/DTL compatible.

6.4.2 Discussion of Usage

If RTC interrupts are enabled, the RTC generates a Time interrupt to the processor
each time a clock pulse is detected from the clock source. This interrupt is usually
serviced by an IMS instruction at the interrupt location. Increment results of zero f
cause the generation of an ECHO signal to the RTC, which in turn generates a Sync
interrupt to the processor. The Sync interrupt is normally serviced by a JST instruc-
tion to an interrupt subroutine. The RTC has been assigned a device address of 8.

6-20

C

c

b'''+'e'tt:I!t",*'ll!:d'W .Hme tr!tch"·'d'MtM t .'dtlt:iMtrVt" 'lot '*1" ,,"":\!' t'h''',!,''j)''t't 'il

ComputerAutomation . ~

In the progranuning exa."l!le shown in figure 6-10, an external device must be sampled
once a second, using a lO-ms clock source.

LABEll
LOCATION INST

(Time)
:0018 or I MS
: 0118

(Sync)
:OOlA or JST
: 011 A

In i t j a I i za t ion

INIT

Interrupt

SYNC

COUNT

LAM
STA
SEL

5.EL

SEL

Subroutine

ENT

LAM
STA

EIN
RTN

DATA

OPERANDS

COUNT

SYNC

100
COUNT
8,4

8,2

8,0

100
COUNT

SYNC

o

COMMENTS

Increment Timing Counter

Jump and Store to Interrupt Subrout i ne,
Disable Interrupts

Set Timing Count to -100

Initialize RTC and Clear Unserviced
Interrupt Requests
Arm Sync-Allow Sync Interrupts when ECHO
is Received
Enable RTC-Allow Generation of Time and
Sync Interrupts (Since Sync is Armed)

Reserved Location for Storage of
P Register

Save Contents of Registers, Status, etc.
(see paragraph 5.3)

Reset Timing Counter to -100

Enable Interrupts
Return to In-Line Program

Figure 6-10. RTC Interrupt Progranuning .Examp1e

6-21

I

,""

I

I
.1

I
C

tm.ue:Mt:1'HH' rt rlAtW "t!f¥' ?, brfzb ',*'HI e+.trlffthftttt:.titr •• M ct''? P'YSWUM*'"bt 'f (- tW'fflri,ettHPY*bh

ComputerAutomation ~

The timing counter, COUNT, becomes zero after being incremented 100 times, i.e., C
after 100 Time interrupts, each 10 ms apart. The RTC responds to the resulting ECHO
signal by generating a Sync interrupt which is serviced by the interrupt subroutine,
SYNC. The timing counter, COUNT, is reset to -100 and the external device is sampled.

6.4.3 RTC Interrupt Enable Control

The Real-Time Clock is enabled generally by the EIN bit of the Status Word, and
specifically by the ARM SYNC and ENABLE RTC instructions. If the Real-Time Clock
logic has detected a clock source pulse at the time the RTC is enabled, a Time inter­
rupt will be generated immediately. Further, if the interrupt has been generated due
to d previously-sensed clock pulse, some time less than the period of the time clock
will elapse before the next clock pulse occurs.

6.4.4 Summary

6.4.4.1 RTC Interrupt Locations

Time Interrupt location: :0018 (offset
:OOlA (offset

:0118)
: o 11 A) Sync Interrupt location:

6.4.4.2 RTC Instructions

SEL 8,0

SEL 8,2

SEL 8 3

SEL 8,4

SEL 8,7

SEN 0,2

6. 5 AUTOLOAD

6.5.1 Description

ENABLE RTC. Allows Time and Sync interrupts to be generated (if
Sync is armed).

ARM SYNC. Allows generation of Sync interrupts if RTC is enabled
and ECHO received.

CLEAR RTC IN'l'ERRUPTS. Resets both Time and Sync interrupt re­
quests. Does not disable or disarm interrupts, but instead
removes interrupt request history from RTC.

INITIALIZE RTC. Disarms, disables, and clears interrupt requests.

DISARM SYNC. Prevents Sync interrupts from being generated
without disabling Time interrupts.

SENSE RTC INSTALLED. Tests if RTC option is installed on
Pack. If it is, next sequential instruction is skipped.
is not, next sequential instruction is executed.

Option
If it

The AutoLoad option consists of a 256-word Read-Only Memory (ROM) which has been
preprogrammed with a binary loader and micro-diagnostic, and the logic necessary to
execute both the loader and the micro-diagnostic. It supports loading of complete
programs from paper tape devices, as well as bootstrap loading from magnetic devices.

6-22

i

o

o

!
. ..."

,

tert' twt' ft' tft' : tt w. 51" , ..

AutoLoad is available :'n two forms: Type 2 and Type 3. Type 2 AutoIoad supports
devices which are interfaced to standard Computer Automation integral controllers.
Type 3 AutoIoad supports devices which are interfaced to the Computer Automation
Distributed I/O System. The following table summarizes the two AutoLoad types:

Devices Supported Type 2 'lYPe 3

Processor Teletype Reader X X
High-Speed Paper Tape Reader X
Teletype Reader via DIO X
High-Speed Paper Tape Reader via DIO X
Moving-head Disk X X
Floppy Disk X X
Magnetic Tape X X
Cassette X

For magnetic devices, AutoLoad provides a first-record bootstrap. AutoLoad requires
the presence of the Power Fail Restart (PFR) or Automatic Start-Up (ASU) processor
option.

When loading from non-disk devices, AutoLoad uses main memory locations :30 through
:3B f0T ccratchpad. A program occupying these addresses cannot be properly loaded
using AutoLoad.

The AutoLoad sequence is initiated by depressing the console AUTO switch or, in
configurations not using a console, by momentarily grounding a pin on the Option Pack
(see paragraph 6.5.7). Upon execution, the micro diagnostic is executed and a binary
program is automatically loaded into computer main memory from the selected input
device.

If more than one magnetic tape, cassette, or disk drive device is used in the system,
AutoLoad will load from the device designated as device zero.

When selecting AutoLoad from the console, the computer must be in the Run Enable mode
(STOP indicator off) to enable the AUTO switch. AUTO is interlocked with the RUN
switch so that Run mode is selected as AutoLoad is initiated. A remote AutoLoad
command (grounding a pin on the Option Pack) can be initiated at any time.

The'presence of the AutoLoad option can be sensed using the sense instruction with
device address zero and function 'code zero. This instruction is used primarily by
diagnostic and executive programs. The sense instruction takes the following form:

SEN 0,0 SENSE AUTOLOAD INSTALLED. Tests if AutoLoad option is installed.
If so, next sequential instruction is skipped. If AutoLoad is
not installed, the next sequential instruction is executed.

6.5.2 Device and Mode Selection

The input device and load mode (absolute or relocatable) is selected at the console
sense register. In computer configurations not having a console, the sense register
and certain console switch functions can be duplicated by the use of jumpers on the
Option Pack (secondary console)i see paragraphs 6.6.3 and 6.6.4. A hex code entered
into the sense register selects the following device and load mode.

6-23

c

.. "'!

-I

I

.:.1

,. 'W'H#tft'tftW'n. t' " f I ".'tr!l('-' "t ,.\ "'**;,-.','1 t',,#,

ComputerAutomation ~

Type 2 AutoLoad ROM Installed

~

LOAD MODE
LOAD DEVICE

ABSOLUTE RELOCATABLE

Processor TTY :0 : 8

High-Speed Paper Tape Reader : 1 :9
Magnetic Tape :2 :A

Cassette : 3 :B

Moving-hf;!ad Disk, Unit 0 : L, :C

Moving-head Disk, Unit 1 : 5 :D

Floppy Disk :6 : E

Type 3 AutoLoad ROM Installed

,
LOAD MODE

LOAD DEVICE
ABSOLUTE RELOCATABLE

Processor TTY :0 :8

High-Speed Paper Tape Reader," : 1 :9
Magnetic Tape :2 :A

D I 0 TTY", : 3 :8

Moving-head Disk, Unit 0 : 4 :C

Moving-head Disk, Unit 1 :5 :D

Floppy Disk :6 : E

*Under Distributed I/O System

If relocation is desired, the user enters the start address in the X register. If
"load and execute" is desired, the SENSE switch is set (ON) i for "load only", the
SENSE switch must be reset (OFF) •

6.5.3 AutoLoad Sequence

When AutoLoad is· initiated, the processor is placed in Word mode, interrupts are
disabled, and the power-up sequence of the PFR or ASU option generates a reset and
starts the computer running at location :0000. AutoLoad ROM address space is :0000
through :OOFF. AutoLoad logic causes all instruction cycles to fetch instructions
from ROM (main memory disabled) and all data cycles to access memory. The first
instruction is fetched from ROM location :0000. As the loader is executed, the
program being read from the input device is treated as data and stored in memory.

6-24

c

:~ i

i

I

-I

o

o

teN' Md. 1 t t t t t " h " 2 'tit

6.5.4 Termination of AutoLOad

The action performed at the end of a successful load is dependent on the type of
input device used and the position of the SENSE switch.

6.5.4.1 TTY and High-Speed Paper Tape Reader

Control is transferred to the start address of the loaded program if (1) the SENSE
switch is set, and (2) a valid start address was on the tape. If the SENSE switch is
reset or if no valid start address was on the tape, AutoLoad halts with :0800 in the
I register with the x register containing the next location available for loading.
The start address in the A register will be negative (:FFFF) if a valid start address
was not present.

6.5.4.2 Magnetic Tape, Cassette, and Disk

Control is transferred to the start address of the loaded program if the SENSE switch
was set. If the SENSE switch was reset, AutoLoad halts with :0800 in the I register.

6.5.5 Error Detection

The standard AutoLoad program detects checksum and format errors on paper tape
devices. If an invalid checksum or format error is detected, the program halts with
:0801 in the I register. The program may be restarted with the depression of AUTO.
If an error occurs while attempting to load from paper tape, it is sometimes possible
to backup the tape one record and press AUTO to continue. However, it is recommended
that loads exhibiting errors be completely repeated.

If an error occurs while attempting to load from magnetic tape, cassette, or disk,
AutoLoad will halt with :0801 in the I register, and may be retried by pressing AUTO.

6.5.6 Accessing AutoLoad ROM

The AutoLoad ROM normally contains 256 words, but can be expanded to 512 words for
special AutoLoad sequences or for use as a high-speed, read-only memory. To use it
as a normal read-only memory or to read out the contents of ROM, the SEL 0,1 instruc­
tion is used. When enabled under program control, the ROM occupies addresses :7800
through :7FFF, modulo 512 (:7800 through :79FF, :7AOO, :7BFF, etc.). Any memory
access in this range is automatically disabled when AutoLoad ROM is enabled.

An I/O instruction, SEL 0,0, is used to disable the AutoLoad ROM. When disabling
ROM, one additional access to ROM is required before the ROM is actually disabled.
This allows a program resident in ROM to turn itself off and then jump to main memory.

A diagnostic feature included in the ROM verifies processor integrity prior to
loading. It performs selected tests on all instruction classes, in both word and
byte modes, as well as verifying memory read/write circuitry for all addressable
memory. If an error occurs during execution of the diagnostic, the program will halt
with :080F in the I register.

6-25 -.
'.~.

o

+'_6"1'" y' Me t eu ':tI '" H· r'rep# 't .'ri,.

ComputerAutomation ~

6.5.7 Remote AutoLoad Initiation

A momentary grounding (i.e., a switch closure to ground) of pin 10 on connector Jl on
the Option Pack, or pins E or 14 on connector J2, causes the system to reset and an
AutoLoad program to be initiated. The signal must be ground-true for a minimum of
100 ns. This feature should be used only in conjunction with the secondary console
sense register (paragraph 6.6.3).

6.5.8 Automatic AutoLoad

An AutoLoad sequence can be automatically initiated upon restoration of power by
jumpering Jl pin 20 (RMDIS-) to Jl pin 5 (PFAL-). This feature is particularly
useful when using volatile memories without battery backup power in unattended opera­
tion. with this feature, memory is automatically reloaded with an operational program
from a peripheral storage device after power is restored. This feature should be
used only in conjunction with the secondary console sense register (paragraph 6.6.3).

6.5.9 AutoLoad Operation Summary

Following is a summary of the procedures required to load programs into memory using
AutoLoad. For details of console operation, see secti~n 3.

1. Enable console.
2. Press STOP to halt the computer (STOP indicator on).
3. Press RESET
4. Ready the load device.
5. If relocation desired, enter start address into X register.
6. Enter proper hex code for devic~ ~nd load mode into sense register.
7. If load and execute desired, set SENSE switch (on); if load and halt desired,

reset SENSE switch (off).
8. Press STOP to enable RUN mode (STOP indicator off).
9. Press AUTO.

6.6 BASIC VARIABLES PACKAGE

The Basic Variables package permits the user to operate high priority (processor)
interrupts independent of EIN/DIN control, offset interrupts, extend I/O transfer
timing, and perform certain console functions in the absence of a console.

6.6.1 Independent Processor Interrupt Operation

In normal operation, the Power Fail, Console and Trap interrupts (referred to as
processor generated interrupts) will not be recognized by the processor if interrupts
are not enabled (DIN instruction has disabled recognition of all interrupts). The
ErN instruction must be executed before any interrupts can be processed.

By grounding the OPT- signal (JI pin 35), the processor generated interrupts can
obtain immediate recognition by the processor when they are enabled.

With Jl pin 35 grounded, the PFE and PFD instructions control the Power Fail Restart
interrupt while the CIE and CID instructions control Console interrupts. There are
no control instructions for a Trap interrupt other than the TRP instruction itself.

6-26

I

I

()

o

it itt .t''t''Vi r',nti:s""'iW\a'wec8,"d' # 'f' if"~ t t/"tt 't' t" 't' !#f.'r$#Bifh"tf'1 \+i&'H'

6.6.2 Interrupt Offbct

All interrupts (except Power-up) generated within the processor and the Option Pack
may be relocated (offset) from the scratchpad area of memory by :100 locations to
allow for more efficient utilization of the scratchpad area.

Two types of offset are available on connector Jl. The high-priority processor
interrupts (Power Fail, Console and Trap) and the high-priority user generated inter­
rupts (ILI- and IL2-) can be offset by grounding the OFST- signal (Jl pin 4).
Likewise, the low-priority Teletype/CRT controller and Real-Time Clock option inter­
rupts can be offset by grounding the MAI- signal (Jl pin 6) •

6.6.3 Secondary Console Sense Register

The Basic Variables package contains four jumpers which permit the user to simulate
the Console Sense register and develop a Console Sense word in the absence of a
console. The jumper inputs are OSOO- (Jl pin 34), OSOl-. (Jl pin 33), OS02- (Jl pin 36'
and OS03-(Jl pin 31). DSOO- is the least significant bit of the simulated register,
while 0803- is the most significant bit. Grounding a particular jumper input intro­
duces a logic 1 into the corresponding bit position of the Console Sense word. A
logir: 0 is introduced when a given input is left open.

The entire simulated register is enabled by grounding the ENOSW- signal which is
available at Jl pin 28. Note that all control logic required t~ respond to the ISA
(:5801) and ISX (:SAOl) instructions is also provided with this feature. This feature
cannot be used when a console is installed.

6.6.4 Secondary Console Switch Functions

Secondary console SENSE and RESET switch signals which duplicate the functions of the
console are available to the user. The SSW- signal (Jl pin 2) duplicates the SENSE
switch and RST- (Jl pin 37) duplicates the RESET switch. These switch functions are
generated by taking the input pin to ground (momentarily). RST must be ground-true a
minimum of 5 9. SSW- must remain at ground when the SENSE switch is active. These
signals are collector-ORed with the corresponding console signals.

The INT switch feature of the console may be simulated via the Option Pack by input­
ting a 1.S-ms (or longer) negative-true pulse from a one-shot or other source into
the CINT input (Jl pin 38 or J2 pins F or 13). Once the processor has serviced this
interrupt, the Console Interrupt Mask (CON) must not be reenabled, under user software
control, for at least the duration of the one-shot pulse. Note that this implementa­
tion is a direct simulation of the Operator's Console INTerrupt switch (see paragraph
3.2.2) and is not. an exact hardware duplicate of the Programmer's Console INTerrupt
switch.

6.6.5 I/O Timing Extension

The Basic Variables package features an I/O stretch capability which permits the user
to slow down the I/O transfer timing when driving the Maxi-Bus through multiple
expansion chassis or over long distances. Four strap connections (STRl, STR2, STR3,
and STR4) permit the user to specify 16 different increments of stretch. The stretch
increments are 100 ns. Based on these increments, the stretch can range from 0 to
1500 ns.

6-27

"I
I

ComputerAutomation ~

Note that whenever any stretch is inserted, all I/O timing throughout the system is
slowed down. This can have an adverse effect on speed critical I/O devices and in
general reduces processor throughput. The stretch strapping scheme is shown in table
6-4. Ground is available on pins 23 through 26 of connector Jl.

Table 6-4. I/O Stretch Selection

STRAP CONFIGURATION

STRETCH ADDITION (ns)* STRlp'n'; STR3 STR2
(J 1 'p i n 44) (Jl pin 43) (Jl pin

0 OPEN OPEN OPEN
100 OPEN OPEN OPEN
200 OPEN OPEN GND
300 OPEN OPEN GND
400 OPEN GND OPEN
500 OPEN GND OPEN
600 OPEN GND GND
700 OPEN GND GND
800 GND OPEN OPEN
900 GND OPEN OPEN

, 1000 GND OPEN GND
1100 GND OPEN GND
1200 GND GND OPEN
1300 GND GND OPEN
l l ,OO GND GND GND
1500 GND GND GND

*For the LSI-2/10, these times should be doubled.
**For the LSI-2/10, STR4 must never be grounded.

6.7 POWER FAIL RESTART

6.7.1 General

STRl
42) (J 1 pin 41)

OPEN
GND
OPEN
GND
OPEN
GND
OPEN
GND
OPEN
GND
OPEN
GND
OPEN
GND
OPEN
GND

C Power Fail Restart (PFR) is an optional feature of the computer. It allows the ,
computer to operate without the requirement of human monitors. A low-power condition
or a temporary power outage is detected in time for the operating program to prepare
for the power loss. When power returns to normal, the computer is automatically
restarted without loss of data or operating position. Thus, unattended operation is
possible.

6.7.2 Power Fail

When a power failure is detected, a Power Fail interrupt is generated to the pro­
cessor. If the Power Fail interrupt is enabled, the processor is interrupted to a
reserved location in memory (location :OOlC or :OlIC if offset). The processor
executes the instruction (usually a JST to a software power-down routine) at that
location. The processor has 0.9 milliseconds to complete the power-down routine,
once it is started, before the PFR option halts the computer and protects memory fram
transient power conditions.

6-28

c

'~

K' '
I, Wi' tb b 'N! 11 t, 'It,' rt u 'Rtf"'! ,,' t t "$"5 t

t't

6.7.3 Restart

When PFR detects power restoration to an acceptable level, a power-up sequence is
started. PFR re-enables memory, sets the P register to : 0000, and qenerates a Run
signal to the computer. The computer then executes the instruction 'oo~.lJ.y a JMP to
a software power-up routine) at location :0000. The computer always un3$rqoes this
sequence when power is applied. The software power-up routine· must be completed
within 0.9 milliseconds to allow enough time to process a Power Fail interrupt if one
should occur immediately after power up.

"""--r :~~~~T-'ION ::]
,

When the Power Fail Restart option is installed, the computer
will start running at location :0000 when power is applied whether
the computer was running or not (i.e., independent of console
setting) prior to removal of power. To avoid false starts, it is
customary for the power-down subroutine to save a flag indicating
that the computer was in fact running before power failed.

6.7.4 Interrupt Control Option

A hardware wiring option may place the Power Fail interrupt outside EIN/DIN control.
Under this option (see section 6.6.1), it is necessary to execute the PFE or PFD
instructions to enable or disable the Power Fail interrupt. Without the option, the
EIN or DIN instructions must be executed and PFE and PFD have no effect.

6.7.5 Programming Examples

Figure 6-11 shows examples of simple Power Fail Restart software routines. In these
examples, the contents of the A and X registers, the computer status and the In-Line
program location at the. time of the Power Fail interrupt are saved during the power­
down sequence and restored during the power-up sequence. Note that the Power Fail
interrupt is outside EIN/DIN control in this example. If the Power Fail interrupt
were inside EIN/DIN control, the power-up routine would not have to include a PFE

~ instruction and the power-down routine would not have to include a PFD instruction.

6.8 AUTOMATIC START-UP (ASU)

Automatic Start-up is an optional feature that, like PFR, automatically starts the
processor after a power failure. It is for use in applications where it is not
required to save the processor conditions as they were prior to power failure.
Operation is similar to that of PFR except that a power fail interrupt is not generated

6.8.1 Restart

When ASU detects power restoration to an acceptable level, a power-up sequence is
started. ASU re-enables memory, sets the P register to :0000, and generates a Run

6-29 Revised 7/76

'til

• 1

M fHCfuktt''t' Hh*rr!iM"t' .tt Wt
,'aM a In •. W't"$'W'W'I' W'It! t''Hi''''d(.... '1 wsw'

signal to the computer. The computer then executes the instruction (normally a JMP
to a software power-up routine) at location :0000. The computer always undergoes
this sequence when power is applied. The software power-up routine must be completed
within 0.9 milliseconds to allow enough time to process a Power Fail interrupt if one
should occur immediately after power up.

When the ASU option is installed, the computer will start running
at location :0000 when power is applied whether the computer was
running or not (i.e., independent of console setting) prior to
removal of power.

LAIIElI
LOCATION

:0000

INST

JHP

Interrupt Location

:OOIC or
:OIIC

DOWN

UP

ASAVE
CSAVE
XSAVE
STATUS
PSTI'

JST

ENT

PFD
SIN
STA
SIA

STA
ICA
STA
STX
IHS

WAIT

ZAR

EAA

JAN
HLT
LOX
LOA
DCA
LOA

SIN
SOA
LOA
prE
EIN
JHP

DATA 0
DATA 0
DATA 0
DATA 0
DATA 0

OPERANDS

UP

DOWN

I
ASAVE

STATUS

CSAVE
XSAVE
PSTP

PSTP

$+2

XSAVE
CSAVE

STATUS

5

ASAVE

* DOWN

\

Power-Up Interrupt Loc~tlon. Contains Unconditional
Jump to Power-Up Subroutine.

Power-Down Interrupt Location. Cont.lns a Jump and
Store to Power-Down Subroutine. Using JST Automatically
Saves Contents of P Register and Dis~bles Interrupts.
Reserved Location for Storage of P Register when JST
Instruction at Power-Down Interrupt Location Is Executed.
Disable Further Power Fal I Interrupts.
Inhibit Byte Hode If Set.
Save A Register.
Read Computer Status Word to A Register, Set Word Mode,
and Reset OV Indicator.
Save Computer Status Word.
Input Console Data Register to A Register.
Save Contents of Console Data Register.
Save X Register.
Save a Flag Indicating Computer Was Stopped by a Power
Failure.
Walt for Power-Down to Complete.

JHP Instruction at Power-Up Interrupt Location Enters
Here.
Check Flag to See If Computer Was Stopped By a Power
Failure. Reset Flag.

No - Do Not Restart.
Restore X Register.

Restore Contents of Console Data Register.
Load Computer Status into A Register then set Computer
Status (Sense Switch, Data Switches, OV Indicator and
Add re s s Mod.,).
Inhibit Byte Hade If Set.

Restore A Register.
Enable Power Fall.
Enable Interrupts.
Restart Haln Program by Executing an Indirect .Jump to
Location Specified by Saved Contents of P Register.
A Register Save Location.
Console Register Save Location.
X Register Save Location.
Computer Status Word Save LocatIon.
Flag IndicatIng Proce~sor Wes Stopped By a Power Fallur •.

Figure 6-11. power Fail Restart Software Routines

6-30

t) r'WHtbtf'ttt' ,t"'u""- ',! 'llfiW'#"t .'Pt"; tr 'Ntt 'weft""'. t' '#

section 7

MEMORY 'INTERLEAVING AND BANKING

7.1 INTRODUCTION

All LSI-2 Series computers include provisions for memory interleaving and memory
banking.

7.1.1 Hemory Interleaving

Memory interleaving allows memory modules to be paired so that even and odd addresses
are assigned in different memory modules. Since a relatively high percentage of
memory accesses are sequential, interleaving allows alternate memory accesses to
address different memory modules. The result of alternate module accesses is that
the i"~':'rchronous Maxi-Bus can support DMA transfer rates higher than would be possible
without alternate accesses.

7.1.2 Memory Banking

Memory Banking allows an optional Memory Bank controller to switch memory modules off
and on so that up to Sl2K (K=1024) words of memory can be used. Each memory module
is individually controllable. A maximum of 32K words can be enabled at any given
time. switching between memory modules occurs in a single instruction time.

7.2 INTERCoNNECTIONS

Each memory module includes a 16-pin integrated circuit socket (memory control
connector) near the rear edge of the board for jumpering interleaving controls and
for connection to an optional Memory Bank controller. Jumpering and cabling is done
by using a 16-pin socket header. Pin diameter should not exceed 0.018 inches. Pin
assignments for the memory control connector are given in figure 7-1.

Four signals are used to control interleaving and banking. Memory modules operate in
their normal mode when no connection is made to any of the four control signals.

7.2.1 Memory Interleaving

When pin 5 (INTER-) is jumpered to pin 12 (GND) , the memory module is set up to
interleave and store even addresses only. When pin 6 (000-) is jumpered to pin 11
(GNO) along with the pin S to pin 12 jumper, the memory module is set up to interleave
and store odd addresses only. Memory modules are always interleaved in pairs -- one
jumpered for even (pin 5 to pin 12) and one for odd (pin 5 to pin 12 and pin 6 to
pin 11).

7-1

1

""I

!
-I

W'WI, wfli t" oM if.. ny, ,+", <tu 'hit 1 f t " #' ettkt'

• 16 *

• 2 15 *

* 3 14 •

• 4 13 •

INTER- 5 12 GRD

ODD- 6 11 GRD

EN LO- 7 10 GRD

EN HI- 8 9 GRD

*Reserved - No Connection Allowed

Figure 7-1. Memory Control Connector

7.2.2 Memory Banking

Two enable s~gnals allow the Memory Bank controller to switch memory modules on and
off. The Memory Bank controller uses either high (+5 volts) true enabling or low
(0 volts) true enabling, depending upon the particular system configuration. For
low-true enabling, the Memory Bank controller bank enable signal is connected to pin

C' .. i 7 (EN LO-) on the memory control connector, and pin 8 (EN HI-) is strapped to pin 9
! (GND). For high-true enabling, the Memory Bank controller bank enable signal is
connected to pin 8 (ENHI-). Pins 9 and 10 may be used as a ground return when
cabling to the Memory Bank controller.

7.3 USAGE AND INSTALLATION

The following paragraphs describe the usage and installation rules for memory inter­
leaving and memory banking.

7.3.1 Memory Interleaving

Memory modules are always interleaved in pairs of equal capacity or equal groups
(figure 7-2). When interleaving two equal sized modules, e.g., two 8K memory modules,
one is strapped for even interleaving and one is strapped for odd interleaving. The
two modules that are to be interleaved together must be installed in "adjacent" card

7-2

f

"ff rtH'ttltN tiM IttMlth'f t' het -neM ittaW' h Me' i'I -'!:\Ii M 'Me 1 ''s:'' .. -Me It ":",,::1 9. t 'it .' Wti'" 'w g' '("Milt" S 'M e ! M)'t *\"' U'lltl\e,W 'il ':Wd'i!' 'W j t 'n

ComputerAutomation ~

slots, with the odd strapped module closest to the processor. Memories are considered
"adjacent" as long as there is no intervening memory module, and as long as the MBIN/
MBOT, DPIN/DPOT and PRIN/PROT chains are properly chained through any intervening
Input/Output or DMA controllers. (The last slot of the main chassis is considered
"adjacent" to the first slot in the expansion chassis.)

If more than two equal-sized memory modules are to be interleavep, they are treated
in pairs with each pair strapped for one module interleaved odd and one module inter­
leaved even. Each pair of modules is then installed with the odd strapped module
first in each pair. If there is not an even number of equal sized memory modules to
strap in pairs, the leftover module(s) may be installed in any position as long as
paired groups are not split. See figure 7-2 for examples of memory module
installation.

Memory modules of unequal sizes may be interleaved together only when two or more
memory modules are grouped together as the even half of a pair, and their total
capacity is exactly equal to the capacity of the single module used as the odd half
of the pair. For example, one 8K, one 4K and two 2K modules may be interleaved

• together if the 4K and 2K modules are all strapped for even interleaving and paired
as a group with the 8K module (see figure 7-2).

7.3.2 Memory Banking

Memory banking operation, memory installation rules, and cabling rules are discussed
in the following paragraphs (also see figure 7-3).

7.3.2.1 Operation

The operation of memory banking can best be understood by considering memory modules
to be organized in a two-dimensional matrix, as shown in figure 7-3.

Normally, memory modules occupy unique address spans within the computer's total
addressing range of 32K words. Memory banking allows multiple memory modules to
occupy the same address span. When a memory address falls within that address span,
only one of the multiple modules is enabled.

A maximum of 32 memory modules may be attached to a processor. Modules are organized
as a matrix of primary and alternate modules. A module is defined as primary when
wired for a low enable signal. A primary module is enabled at power-up, after a
system reset or an initialization of the Memory Banking controller. A maximum of 32K
words may be assigned as primary modules with the remaining memory modules being
alternate modules. Alternate modules are disabled at power-up or after a reset or
initialization of the controller.

In the example of figure 7-3, there are four primary modules, two 4K and two 8K
modules. Following initialization, the computer operates as a normal 24K computer
using these modules. The two 4K modules are interleaved in this example and desig­
nated as primary modules 00 odd and 00 even (POO ODD and POO EVEN). The two 8K
modules are not interleaved in the example and are designated primary modules 10 and
20 (PIO and P20). There are seven alternate modules in this example. Each alternate
module can be assigned as the alternate module for only one primary module. For
example, modules All, A12 or Al3 are the first, second and third alternates for

7-4

r * ,",tHi ,.' I' wHs'M'f'tH 'y' 1"" 'u •. rl' 0 yn "2 ,,! .- "f , .. ·W' 'M'tuttt

A. Two 8K Modules

Processor

8K 000

BK EVEN

B. Four 4K Modules

Processor

4K 000

4K EVEN

4K 000

4K EVEN

C. Three BK Modules

Processor Processor

8K 000 8K NORMAL

8K EVEN OR 8K 000

BK NORMAL 8K EVEN

O. One BK, one 4K, two 2K Modules

.. ~ Processor

8K 000

4K EVEN
2K EVEN

2K EVEN

Figure 7-2. Interleaved Memory Installation

7-3

c

t· "'eb'#"'- 1##' h we tt *,,&4 (,If 'Mli'" 'I'MM" 1'" W $\11' jI'ri" ' 1# "(

o

4K 4K
ODD ODD

AOl POO -- - - - - 8K

4K 4K
EVEN EVEN

A02 AOl POO
8K

- - - - 8K 8K 8K 8K

,
!.i

I -'.
A13 A12 All P10

16K

4K

,

- - - - A22 8K 8K -

-
An A21 P20

24K

- - - - - - - -

~

;
~

, .
32K

L~----------------____________ ----____ 'T~ ____________________________________ ~----JI

ALTERNATE MODULES

Figure 7-3. Memory Banking Example

7-5

PRIMARY ADORE
MODULES

, .,

();

f!tt¢ T''t')'dt:ti I," '"' If "t"' if t' ?bi 'tbttWd

ComputerAutomation ~

primary module 10. Under software control, the Memory Bank controller can disable
PIO and enable All, A12 or A13. Thus, a total of 32K words of memory is available
between addresses 8K and 16K, but only 8K of the 32K is available at any given time.

In addition to providing for memory expansion beyond 32K, memory banking provides a
rapid context switching capability. For example, if module P20 contains an operating
program which uses four sets of data (i.e., four users) at different times, modules
PlO, All, A12 and A13 could each contain one set of data. Now the operating program
can switch between data sets (users) in a single instruction. Detailed programming
information is provided with the Memory Banking controller.

7.3.2.2 Memory Installation

When planning an installation using memory banking, a plan drawing similar to figure
7-3 should be prepared and each physical module assigned 'to a primary module or
.alternate module position according to the following rules:

1.

2.

3.

4.

5.

There may be, at most, 32Kwords of primary modules.

Primary module capacities and corresponding alternate module capacities must be
identical (e.g., PIO, All, A12 and A13) or primary modules may be grouped, the
sum of which has the same capacity as the corresponding alternate module (e.g.,
POO ODD plus POO EVEN matches A02).

There may not be an alternate module for which there is no corresponding primary
module.

A primary module cannot be paired with an alternate module of a different capa­
city, or with a group of smaller capacity modules, even if the smaller alternates
sum to the same capacity as the primary module. An exception is allowed for
single alternates smaller than the primary, but only for the last primary (e.g.,
A22) .

When interleaved modules are banked, they must be banked in pairs (e.g., POO
consists of two interleaved 4K modules). Modules to be banked may be interleaved
and an interleaved pair may be banked with a single module whose size is equal

o
to the interleaved pair (e.g., AOI and POO are composed of two interleaved 4K
modules while A02 is a single 8K module) .

6. After module positions are assigned, they must be installed in the following
order beginning at the processor:

a. All alternates to primary module 00 (the order of the alternates is
immaterial) .

b. Primary Module 00.

c. Remaining alternates and primaries with each set of alternates preceding
their primary.

7. Any interleaved modules must obey the rules for interleaving given in paragraph
7.3.1.

7-6

:1
~. :
il
• 1

C" ..

o
j

I

I

tttW$"*OrtHtWtt'W'Wf'tt!,tttH'torWMrlpHo '",f •• I'MU' ':t1tf :', f r II

7.3.2.3 Cabling

After modules are installed, they are cabled to the Memory Bank controller by con­
necting either the EN HI- or EN LO- memory control connector pin of each memory
module to a control output of the Memory Bank controller. The fOllowing rules apply
to cabling:

l.

2.

3 •

All primary modules use EN LO-.

All alternate modules use EN HI-.

Each interleaved module pair must have the appropriate EN lines connected to­
gether to a single Memory Bank controller output.

Cabling in this fashion guarantees that the primary modules are selected at power-up
and initialization time since the Memory Bank controller resets with all outputs low.

7-7

c

'i'I!
I

-I e
I

t· t MMw'M H 'tMe'diJrl \tImkt'nit' ttl".., ... d V ft *q 'f' l' "t' t t"

Section 8

MAXI-BUS CHARACTERISTICS

8.1 INTRODUCTION

This section describes the signals and electrical characteristics of the LSI-2 Series
computer Maxi-Bus. Additionally, the distribution of the Maxi-Bus and the computer
motherboard are discussed.

The Maxi-Bus consists of 59 lines (plus power and ground) that are used to convey
address, data, and control information to or from the processor, memory, DMA con­
trollers, and I/O controllers (see figure 8-1).

V \ Expansion Processor Max i-Bus

-I ~ Chassis

~!.. ~ L J L "'11/

Other I/O:
Memory High Speed Programmed I/O

Direct Memory Block I/O
lK to 512K words Access (DMA) Direct Memory

Channel (DMC)

Figure 8-1. Maxi-Bus Configuration

The Maxi-Bus provides a common transfer path for all system modules. Maxi-Bus trans­
fers involving memory are asynchronous,wherein the amount of time that signals from
a source device spend on the Maxi-Bus depends upon the access and cycle time of the
addressed memory module, and not upon a fixed clock interval. All Maxi-Bus operations
between the processor and the I/O controllers are synchronous and therefore do not
require timing generation within I/O controllers.

All address and data signals, as well as memory control signals from a source device,
must be driven by 32-mA, tri-state drivers. Certain control signals that can be
driven simultaneously by more than one device must use 32-mA, open-collector drivers.
Standard TTL receivers can be used by all devices. Only one receiver per line per
module is permitted; the maximum receiver loading must not exceed 1.8 rnA per module.

Address and data lines are shared by memory and I/O devices. During communication
intervals involving memory, all bus drivers on these lines must be tri-state. During
communication intervals involving standard I/O devices, bus drivers may be either
tri-state or open-collector.

8-1

.. 1m !rt't rt., t * t"¥'mtla!* tn .. Pm* 1",," .. 1 6:' e H' 9W¥W¥r "t" 'H

ComputerAutomation ~

/
"-.r A BUS (16 LINES) :>

.... ' to.

"
D BUS (16 LINES) ;>

r EXEC- · ..., IN- • OUT- • PLSE- • RST- • CLK- •
MDIS- • PROCESSOR MEMORY-

MOTHER- • SER-
I/O

BOARD • lUR- MODULES
lOCL- • PRIN- •

~
PR6T-... to.

" C BUS
lUA- • 27 LINES ;> lAR- • ECHO- •

~
lL1-

~
lL2-

DPIN- •
~

~PQT-

~
STOP-

SACK- • PFD- • SLB- • MST- • RD- • ... ~ MACK-
-'

Figure 8-2. Maxi-Bus Components

8-2

1:
1

I

I
o

,,,*,t.t!Ntrtnft:Wltt's!:' ffli:l:!nl& 'P 16\/&1'#1 'I II,,' ¥" . "'0 '* d' bow\! i
t tM tbtriiic"i*!:!M",*~*, &'1" "·'S'*W"'·· . ±ttl' if' ""1'+"1 • f ttl ", *"

ComputerAutomation ~

8.2.3 Control Bus (C)

The C bus consists of 27 unidirectional control lines which define the specific
action that an interface device is to perform. Nineteen lines are outputs from the
processor to memory and I/O controllers, while eiqht lines are inputs from either
memory or I/O controller!; to the procL':;:;or. The C bw; line!> ilTC subdi.vided into four
broad categorie~;: 1/0 conunancl, utilily !;iqnitl~;, inh-rTupt !;iqnai!;, .md IlM/\ siqnal:;.
Except as noted below, dll processor ycn(~rated or received signals may also be gener­
ated or received by DMA controllers during DMA operations.

8.2.3.1 I/O Commands

There are three signals in this category: EXEC-, IN-, and OUT-. These signals
define the type of I/O operation in process.

EXEC-

IN-

OUT-

Execute. Processor generated signal that indicates the current in­
struction is a Select or Select-and-Present instruction. EXEC- is
used typically to set or reset controls in the addressed I/O
controller.

Input. Processor generated signal that indicates the current instruc­
tion is an input instruction and that the addressed I/O controller
should place input data on the 0 bus.

Output.
tion is
data on

Proces;>or generated siqnal that indicate!; the current jnstruc­
an output instruction and thiJl: the processor has placed output
the 0 bus for the addressed I/O controller to accept.

8.2.3.2 Utility Signals

There are five signals in this category: PLSE-, RST-, CLK-, SER-, and MDIS-.

PLSE-

RST-

CLK-

SER-

Pulse. Processor generated signal which is used as a strobe pulse to
load registers during an output transfer, set or reset controls during
a Select instruction, reset data transfer controls during an input
transfer, and to reset Interrupt Stimulus Store controls upon recog­
nition of an interrupt.

System Reset. Processor or console generated signal which is used to
reset all controls in ALL interfaces to a known starting configuration.
RST- is generated by the processor in response to a power failure
condition, or when the console RESET switch is depressed (not driven
by DMA controllers) .

Clock. Processor generated, I-megahertz, free-running square-wave
signal that may be used as a timing reference by I/O controllers. It
is not synchronized to processor operation. Note that only the pro­
cessor generates this signal. DMA controllers may not generate this
signal.

Sense Response. Signal generated by addressed I/O controller which,
when true, indicates a true response to an interrogation by the pro­
cessor of some function associated with the controller or device it
controls. Interrogation is made when a Sense instruction is executed.

8-4

o

'''''"

-ie

frirrL' ... ·lf,it!leW'i't'" &HHWdtiW d"" Y'"u Np'II''!'''t!6!' 'i' b'fm.tfW,'md&nt ';'''b

8.2 MAXI-~USCOMPONENTS

The LSI-2 Series computer Maxi-Bus (figure 8-2) consists of three major components:
the Address bus (A), the Data bus (D), and the Control bus (C).

8.2.1 Address Bus (A)

The Address bus consists of 16 lines (ABOO- through ABIS-) that are time-shared by
the processor and DMA controllers.

The processor and DMA controllers use IS bits of the A bus to address memory loca­
tions. The 16th A bus bit (MSB) is used to specify word or byte memory operation.
During I/O operations, the processor uses the low-order 8 bits of the A bus to convey
device address and function code information to I/O devices. The high-order 8-bits
contain random information and are not normally used. The format of the low-order 8
bits during I/O operations is typicallY as follows:

AB07- Device Address bit 4
AB06- Device Address bit 3
ABOS-
1\1304-
AB03-
AB02-
ABOl-
ABOO-

Device Address
Device Address
Device
Function Code
Function Code
Function Code

bit 2
bit 1

P Field

F Field

NOTE

NOTE: This convention does not apply
when using the Distributed I/O System.

The eight lines devoted to the device address and function code
are arbitrarily divided into groups of five and three, respec­
tively. They can be divided differently to increase or decrease
the number of device addresses and function codes. For example,
six lines can be devoted to the device address and only two to
the function code. This would increase the number of device
addresses to 64 and reduce the number of function codes to 4.

Throughout the remainder of this design guide, all examples which involve I/O
addresses assume the arbitrary five and three division.

8.2.2 Data Bus (D)

The 0 bus consists of 16 bidirectional lines (DBOO- through DB1S-) that are time
shared by the processor, memory, and I/O Interface controllers.

The processor uses the 0 bus to read data from or write data into memory. Likewise,
the processor uses the 0 bus to transfer data to or from an I/O controller.

A DMA controller uses the 0 bus to read data from or write data into memory.

I/O controllers use the 0 bus to convey an interrupt address to the processor during
interrupt processing.

8-3

''''Hu#tI**'O. M-"bW'V" hI '!t1'if4;+' tb"rI:!x 's 'It' ! bP'*" V'tb tit t '") l#jI,'fIr -'t'ffld"n'Mttf"$' t 'SkiM *'§;f'-&¥+ !'If '011.;'

t, ComputerAutomation ~

'I
I

I
~

I

8.2.3 Control Bus (C)

The C bus consists of 27 unidirectional control lines which define the specific
action that an interface device is to perform. Nineteen lines are outputs from the
processor to mem~ry and I/O controllers, while eiqht lines are inputs from either
memory or I/O cont.rollers to the proce~>:;or. The C bw; lines are fHllJdivjek-d into four
broad categories: T/O command, uti) it.y !;iqn<ll!;, in!l'rrupt siqnal:;, ,triO I>MI\ siqna\:;.
Except as noted below, all processor ycnercJ.ted or rec(~ived signals' mdY also be gener­
ated or received by OMA controllers during OMA operations.

8.2.3.1 I/O Commands

There are three signals in this category: EXEC-, IN-, and OUT-. These signals
define the type of I/O operation in process.

EXEC-

IN-

OlJT-

Execute. Processor generated signal that indicates the currant in­
struction is a Select or Select-and-Present instruction. EXEC- is
used typically to set or reset controls in the addressed I/O
controller.

Input. Processor generated signal that indicates the current instruc­
tion is an input instruction and that the addressed I/O controller
should place input data on the 0 bus.

output.
tion is
data on

Proces~Jor generated siqnal that indicates the current :instruc­
an output instruction and that the processor has placed output
the 0 bus for the addressed I/O controller to accept.

8.2.3.2 Utility Signals

There are five signals in this cateyory: PLSE-, RST-, CLK-, SER-, and MDIS-.

PLSE- Pulse. Processor' generated signal which is used as a strobe pulse to
load registers during an output transfer, set or reset controls during
a Select instruction, reset data transfer controls during an input
transfer, and to reset Interrupt Stimulus Store controls upon recog­
nition of an interrupt.

o RST- System Reset. Processor or console generated signal which is used to
reset all controls in ALL interfaces to a known starting configuration.
RST- is generated by the processor in response to a power failure
condition, or when the console RESET switch is depressed (not driven
by OMA controllers) .

I

CLK-

SER-

Clock. Processor generated, I-megahertz, free-running square-wave
signal that may be used as a timing reference by I/O controllers. It
is not synchronized to processor operation. Note that only the pro­
cessor generates this signal. OMA controllers may not generate this
signal.

Sense Response. Signal generated by addressed I/O controller which,
when true, indicates a true response to an interrogation by the pro­
cessor of some function associated with the controller or device it
controls. Interrogation is made when a Sense instruction is executed.

8-4

o

o

MDIS- Memory ryisable. Processor generated signal which is active during
power-up and power-down sequences to assure that no spurious memory
cycles will occur during power transitions.

8.2.3.3 Interrupt Signals

There are nine signals associated with interrupt generation and processing. These
signals are: IUR-, IOCL-, PRIN-, PROT-, IAR-, ECHO-, IUA-, ILl-, and IL2-.

IUR-

IOCL-

PRIN­
and
PROT-

IAR-

ECHO-

Interrupt Request. Multiplexed interrupt request line which multiple
I/O controllers use to request interr9pt ser~ice. Interrupts requested
via this line are recognized on a priority basis. If two or more
interfaces request interrupt servic~ at the same time, recognition is
given to the highest priority interface via the priority string (PRIN­
and PRCT-).

I/O Clock. Processor generated signal which is used by I/O controllers
to synchronize lOR interrupt requests into the processor. IOCL has a
minimum duration of 150 ns; however, the duration varies with internal
processor operation. When an interrupt is recognized by the processor,
IOCL is inhibited to prevent the generation of additional IUR interrupt
requests. IOCL r~mains inhibited until the processor completes execu­
tion of the interrupt instruction and any resulting traps. DMA con­
trollers may not generate this signal.

Priority In and Priority Out. PRIN- and PROT- form an interrupt
priority chain which is strung serially through all I/O controllers
and memory modules. PRIN- is the name given to tbe priority chain
where it enters an interface. If low, it allows the interface to
generate interrupts. Each interface generates a PROT- signal to
indicate that neither it nor other upstream devices are generating an
interrupt. The PROT- signal from each I/O controller is the PRIN­
signal for the next downstream controller.

Interrupt Address Request. Processor generated signal which is used
to request an interrupt address frbm an I/O controller in response to
an interrupt request. DMA controllers may not generate this signal.

Echo. Signal generated by the processor when an Auto I/O instruction
has tr.ansferred all data, or by an IMS instruction when the count
overflows. ECHO- is typically used by the I/O controller to request
an interrupt. This interrupt vectors to a user-determined location in
memory which normally contains a JST instruction to a subroutine. The
subroutine performs the necessary housekeeping associated with an End­
of-Block or elapsed count operation. DMA controllers may not generate
this signal.

8-5

o

IUA-

ILl­
and
IL2-

8.2.3.4

e* 'ftt,L# ".," tnt W 'bOWl etj'##' • ,.b,',W,jW+iS'·"&'"

ComputerAutornation ~

Interrupt Acknowledge. Processor generated signal which goes true
upon recognition of any interrupt and remains true during execution of
the interrupt instruction. DMA controllers may not generate this
siqna I.

Interrupt Lines land 2. I/O controller generated high-priority
interrupt request lines which interrupt to locatiohs :0002 and :0006,
respectively. They are higher priority than the IUR line. ILl has
priority over IL2. ILl and IL2 do not require interrupt vectoring by
the interface as does IUR.

DMA Signals

Nine signals are associated with DMA control and processing. These signals are:
• DPIN-, DPOT-, STOP-, SACK-, PFD-, SLB-, MST-, RD- and MACK-.

DPIN­
and
DPOT-

STOP-

SACK-

PFD-

SLB-

MST-

DMA Priority In and DMA Priority Out. DPIN and DPOT form a DMA
priority chain which is strung serially through all DMA controllers
and memory modules. DPIN- is the name given to the priority chain
where it enters a DMl\ controller. If low, it allows the controller to
access memory. Each controller generates a DPOT- signal to indicate
that neither it nor other upstream controllers are communicating with
memory. The DPOT- signal from each controller is the DPIN- signal for
the next downstream controller. The DPIN- and DPOT- signals are
strung through the "200" side of the motherboard only (see paragraph
8.7) •

Stop Processor. DMA controller generated signal which stops the
processor upon completion of its current machine cycle to permit the
DMA controller to gain control of the I/O bus. STOP- may be generated
at any time and may remain active for any length of time.

stop Acknowledge. Processor generated signal which informs DMA con­
trollers that the processor has relinquished control of the I/O bus to
the DMA controllers. SACK- will remain true until STOP- is removed.

Power Failure Detected. Power supply generated signal which, when
active, forces any DMA operations to terminate in order to permit the
processor to shut down the system in an orderly manner.

Select Least Significant Byte. Processor or DMA controller generated
signal which is used for Byte Mode memory accesses. When SLB- is low,
the least significant byte (bits 0 through 7) of the addressed memory
word is accessed. When SLB- is high, the most significant byte (bits
8 through 15) of the addressed memory word is accessed. SLB- is used
to disable memory during l\utoLoad operations by forcing it low while
AB15-. is high (Word mod(?) .

Memory Start. Processor or DMA controller generated signal which is
used to initiate a memory cycle.

8-6

I

o

RD-

MACK-

ReadM~~c. Proce~sor or DMA controller generated signal which, when
low, indicates the current memory cycle is a Read/Restore cycle. When
high, RD- indicates that the current memory cycle is a Clear/Write
cycle.

Memory Acknowledge. Memory generated signal that is used to infonn
the processor or DMA controller that data is.available on the Data bus
during a Read operation, or that data has been accepted during a write
operation.

8.3 I/O TRANSFER TIMING

I/O transfer timing is the period during an I/O instruction when data is transferred
between the processor and an I/O controller. (Refer to figure 8-3.)

'-B,. "

'" EXfC OUT~

D8XX IOUTI

r1RXX.~ IINI

PLSE ~

SEA - •

NOTE

Unless otherwise noted, all timing intervals indicated in timing
diagrams are given in nanoseconds. All ,timing intervals discussed
in text are nominal.

14-- I/O STRETCH
I INSERTED HERE

1+---- 215 MAX .1
'INTERFACE GENERATED

Figure 8-3. I/O Transfer Timing

8.3.1 I/O Bus Considerations

The A bus is active for non-I/O as well as I/O instructions. To guard against respon­
ding to a non-I/O instruction, the I/O control signals (EXEC-, IN-, or OUT-) should
be used when interpreting the A bus. The SER- signal is the only exception and may
be driven independent of EXEC-, IN-, or OUT-.

Data should never be placed on the D bus by an I/O controller, except in the presence
of IN- or IAR-.

8-7

ComputarAutomation ~

8.3.2 Sense Instruction Timing

~J ;

! No Maxi-Bus control signals are generated by the processor during a Sense instruction.
t The addressed I/O controller uses the function code information to determine which
tl one of eight possible functions is to be tested. The sense information is sent to

I o

the processor via the SER- line. If the processor is looking for a Sense response,
the SER- signal is gated into the processor. Otherwise, it is ignored. The user has
275 ns to stabilize the Sense response after receipt of the Device Address signals.

8.3.3 Select Instruction Timing

During Select or Select-and-Present instructions, the EXEC- signal is generated a
minimum of 75 ns after the A bus stabilizes. The 0 bus is selected for output as a
result of EXEC- and becomes stable a maximum of 150 ns after the leading edge of
EXEC-. If a command register is used, the information on the 0 bus can be presented

.to the register by EXEC- and clocked in with PLSE-. The 0 bus contains all zeros
during the SEL instruction and is equal to the contents of the processor A or X
register during the SEA or SEX instructions, respectively.

The PLSE- signal is developed a minimum of 350 ns after EXEC-. PLSE- is generally
used to clock all control flip-flops in the I/O controller. Either the leading or
trailing edge of PLSE- may be used to set or reset control flip-flops.

8.3.4 Input Timing

1\11 input sequences, regardless of Uw 1 nput instruction type, appear basicall y the
same to an I/O controller. For all Input instructions, the IN- signal is generat(~d a
minimum of 75 ns after the A bus stabilizes. The D bus is selected for input as a
result of IN-. The IN- signal is used by the controller to gate data onto the D bus.
Data must be present and stable on the D bus no later than 300 ns after IN- goes low.

The PLSE- signal is developed a minimum of 350 ns after IN- goes low. PLSE- is
typically used to reset the buffer ready control in the I/O controller. Either the
leading or trailing edge of PLSE- may be used to reset the buffer ready control.
Note, however, that data on the 0 bus must remain stable until the leading edge of
PLSE- and must be removed no later than 75 ns after the trailing edge of IN-.

If the Input instruction issued is conditional, the Sense response (SER-) must be
stable no later than 275 ns after the A bus stabilizes to guarantee detection of SER­
by the processor. If SER- is high from the 215-ns point to the leading edge of PLSE-,
the entire input sequence is repeated for a Conditional Input or Block Input, without
issuing PLSE, until the SER- line goes low. If SER- is low at the 275-ns point, the
operation is terminated after the present cycle and PLSE- is generated to indicate
the processor has accepted the data. If SER- changes state between the 275-ns point
and the leading edge of PLSE-, the processor mayor may not detect SER-.

All Sense responses are ignored by the processor when executing Unconditional Input
instructions.

8-8

.""'1
i

c

c

B'Id' #' t¥&"t"W"t·t t' t t' #f' e""WP" "r'i "1 !'5 "fit (, 'iteM 'tt " 1 '

8.3.5 OUtput Timing

All Output instruction sequences, regardless of the Output instruction type, appear
basically the same to an I/O controller. During an Output instruction, the OUT­
signal is generated a minimum of 75 ns after the A bus stabilizes. The D bus is
selected for output as a result of OUT-. Once selected, the D bus stabilizes in a
maximum of 150 nanoseconds after the leading edge of OUT-.

The PLSE-. signal is generated a minimum of 350 ns after OUT"- goes low. PLSE- serves
two functions. The first is to clock output data into a receiving register of the
I/O controller. The second function is to reset the Output buffer empty control in
the I/O controller.

If the Output instruction is conditional, the Sense response must be stable no later
than 275 ns after the A bus stabilizes to guarantee detection of SER- by the pro­
cessor. If SER- is high from the 275-ns point to the leading edge of PLSE-, the
entire output sequence is repeated, without issuing PLSE, until the SER- line goes
low. If SER- is low at the 275-ns point, the operation is terminated after the
present cicle and PLSE- is generated to indicate the availability of data to the
controller. If SER- changes state between the 275-ns point and the leading edge of
PLSE-, the processor mayor may not detect SER-.

Any Sense responses that are generated during an Unconditional Output instruction are
ign.Jred by the processor.

8.3.6 Automatic Input and Output Timing

The Automatic Input and OUtput instructions have essentially the same transfer timing
as all other I/O instructions. The only difference is that when used as interrupt
instructions, Auto I/O instructions develop an ECHO- signal to the controller when
the last word or byte of data has been transferred. The ECHO- signal occurs no
sooner than 350 ns after IN- or OUT- during the last transfer. ECHO- is typically
used by the interface to develop an End-of-Block interrupt. These instructions are
unconditional and do not require a Sense response.

8.4 INTERRUPT CHARACTERISTICS

Minicomputers perform in a wide variety of applications where they communicate with
many different types of devices. These devices operate at widely varying speeds and
generate events that occur randomly rather than at evenly spaced time intervals. If
the events do occur at evenly spaced time intervals, these intervals may be relatively
far apart. For these reasons, a versatile and efficient computer needs a priority
interrupt system.

If a computer does not have a priority interrupt system, the computer must poll all
of the external devices which may require service. The polling must be at frequent
enough intervals so that events are serviced within a reasonable time after they
occur. Polling consumes considerable time, and may not allow much processing time
between the handling of external events.

A priority interrupt system relieves the computer of the polling responsibility. The
computer may continue processing data between external events, and may take time out
from main program processing to handle external events as they occur.

8-9

HHt'tta'Md"1ie.M ' !:)"·WtireWM"'ttHNMet'dftttti H'MtW-W' \ I ,"'H'lIofr""'yt It 11 It Hint

ComputerAutomation ~

The LSI-2 Series computers feature five levels of interrupts. Each interrupt level
uses an interrupt request line to obt~in attention from the processor. Upon obtaining
this attention, the source of the interrupt vectors the processor to an interrupt
location in memory. The interrupt location contains an interrupt instruction which
defines the specific acti.on that Hie \lr(J<.'(~HSOr is to take in pr()('('s~;inq the interrupt.

The five interrupt request lines are designated Power Fail Interrupt (PFI), Console/
Trap Interrupt (CINT), Interrupt Line I (11.1), Interrupt Line 2 (11.2), and Interrupt
Request (IUR). A priority level exists between each of these lines wherein PFI has
the highest priority, CINT is second, 11.1 is third, 11.2 is fourth and IUR is lowest
in priority. PFI, CINT, 11.1 and IL2 are self-vectorinq lines (the user does not have
to supply the interrupt address). The IUR line.is shared by multiple devices; it
features a priority chain to resolve priority when two or more devices issue ~n IIJR
interrupt request at the same time. Each·of the multiple interrupt sources that
share the IUR line causes the processor to be vectored to a distinct location that
can be anywhere in memory .

. 8.4.1 Interrupt Lines

The characteristics of each of the five interrupt request lines are discussed in the
following paragraphs.

8.4.1.1 Power Fail Interrupt

The PFI line services the power-down interrupt only. PFI is the highest priority
interrupt line in the interrupt systp'11 ;md is not accessible to the user via the
processor Maxi-Bus.

8.4.1.2 Console (TRAP) Interrupt

The CINT line services the Console and Trap interrupts only. CINT is the second
I highest priority interrupt line and is not accessible to the user via the processor C Max.L-Bus.

8.4.1.3 Interrupt Line 1

ILl vectors all interrupts to memory location :0002.
priority resolution when servicing multiple devices.
priority interrupt line and is accessible to the user

8.4.1.4 Interrupt Line 2

11.1 does not provide external
11.1 is the third highest
Vla the processor Maxi-Bus.

fT./. vectors all interr.upts to m('rnory location :0006. 11.2 is the fourth highest
priority int(~rrupt line and is accessible to the user via the processor Maxi-Bus.
Like ILl, 1L2 does not provide external priority resolution to service multiple
devices.

8-10

(

fflMtW 1eMM itt tt'P x.mWet' s·,' h t ' t· 'Wt ne . 2" .,'(• r

8.4.1.5 Interrupt Req'.1<:>r;t

The IUR line vectors interrupts to the processor from a virtually unlimited number of
devices. The IUR line has a priority string associated with it. The priority string
ensures that a device with a higher priority will be serviced before a lower priority
device when two or more IUR requests occur at the same time. When the interrupting
device has priority, it must furnish an interrupt address to .the processor upon
request. In general, IUR interrupt addresses are user defined. There is a recom­
mended list of addresses, however (refer to appendix B).

8.4.2 Processor Generated Interrupts

The LSI-2 Series computers generate two standard and six optional interrupts. In
addition, two optional pseudo ihterrupts are generated. Each of these interrupts are
discussed briefly in the follQwing paragraphs in order of priority.

0, 8.4.2.1 Power Fail Restart Interrupt (Optional)

The Power Fail Restart (PFR) option generates a power-down interrupt to location
:OOlC whenever a low-power condition exists. The power-down interrupt has the highest
priority of any interrupt serviced by the processor. When power is restored to an
acceptable level, the PFR logic causes the P register to be set to location :0000 and
the RUN mode is established to restart the system. Although location :0000 is the
power-up location, it is not a true interrupt location, but rather a pseudo interrupt
location since no interrupt processing is required to get to location :0000.

8.4.2.2 AutoLoad (Optional)

The AutoLoad option utilizes the PFR logic to develop a pseudo interrupt to location
:0000 of a special AutOLoad read-only-memory as a starting point for the AutoLoad
sequence.

8.4.2.3 Console Interrupt and Trap (Standard)

A Console interrupt can be developed when the processor is in the RUN mode and the
INT switch on the console is depressed. A Trap interrupt is developed when the TRP
instruction is executed. Both the Console and Trap interrupts share the second
highest interrupt priority; they both interrupt to lobation :OOIE.

8.4.2.4 Real-Time Clock (Optional)

The Real-Time Clock (RTC) option generates a clock an¢! sync interrupt. The Clock and
Sync interrupts share the first highest priority on the tUR line. The Clock interrupt
is vectored to location :0018, while the Sync interrupt is vectored to location
:OOlA.

8-11

:1

1

I

.1
I

!

1

i

I
I
I
• C

!t:!W'·MtttirttJrme ii¥"

ComputerAutomation ~

A.-1.7..5 'reletype/CH'I'/Modem C,Hllrol)(" (Opt iO'k,l)

The processor mounted TTY/CRT/Modem controller generiltes both Word and End-of-Block,
(EOB) interrupts via the IUR line. The Word interrupt is vectored to location :0002
while the EOB interrupt is vectored to location :0006. These interrupt vectors are
the same interrupt vectors that are used by the ILl and IL2 lines. Since ILl and IL2
do not provide priority resolution and are of a higher priority toan these inter­
rupts, the TTY Word and EOB interrupts should be displaced to alternate locations
when ILl and IL2 are used. A jumper option permits the Word and EOB interrupts to be
displaced to locations :0022 and :0026, respectively. When used in the full-duplex
mode, the TTY controller generates four interrupts (locations :0002, :0006, :0022,
and :0026). The TTY interrupts share the second highest priority on the IUR line.

8.4.3 Offsetting Processor Generated Interrupts

Figure 8-4 lists, in the order of their absolute priority, the standard interrupt
-locations for all processor generated interrupts. These interrupt locations are all
located in the scratchpad area of memory. A jumper option permits the user to offset
these locations by :100 locations to place them outside the scratchpad area. This
allows for more efficient utilization of the scratch area. IUR interrupts generated
by non-processor mounted options may be individually offset to place them outside the
scratch area.

NOTE

The power-up restart and AutoLoad start-up location (location
:0000) is not affected by the offset jumper option.

8.4.4 peripheral 0enerated Interrupts

Peripheral interface controllers may request interrupt service via the ILl-, IL2-, or
TUR.,.. request lines. The techniques used to develop these interrupt requests are
discussed in detail in section 9 of this manual.

For the purpose of priority resolution, all interrupts must be synchronized (figure
8-5) prior to being generated. Synchronization can occur only during an In-Line
program instruction. This is to ensure that when executing the interrupt instruction,
no other interrupt can intervene. When synchronization is obtained, the PROT- signal
from the interrupting device goes high (false) to disable all down-stream IUR inter­
rupts. When interrupts of higher priority than IUR are serviced, the Processor makes
the PROT- signal high to disable all IUR interrupts.

(

If interrupts are enabled, the processor recognizes an interrupt request when the
currellt In-Line program instruction has finished execution. When recognition of an
interrupt is given, the Interrupt Acknowledge signal (IUA) is issued by the processor,
and IOCL is turned off to inhibit any change in interrupt request status until the
current interrupt operation is complete. C
Approximately 2 ps after IUA- goes low, the processor generates the Interrupt Address
Request signal (IAR-) and selects the 0 bus for input. IAR- is used by the inter­
rupting controller to generate the interrupt address. The IAR- signal is low for

8-12

C ..

0,

I

IUR
Chain

11IH ,Ill .ILl

IUA~

ABSOLUTE PRIC~ITY INTERRUPT ADDRESS

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20

Power Fa i I (PF I)
Trap Interrupt (CINT)
Console Interrupt (CINT)
Interrupt Li ne 1 (I L1)
Interrupt Line 2 (IL2)
RTC Sync Interrupt (IUR)
Clock Interrupt (IUR)
TTY End-of-Block (IUR)

TTY Word (I UR)

Slot B200
Slot Bl00
Slot Cl00
Slot C200
Slot 0200
Slot 0100
Slot El00
Slot E200
Expansion Chassis Slot Al00
Expansion Chassis Slot A200
Expansion Chassis Slot B200

:OOlC (:Ol1C)
: 001 E (: 0 11 E)
: 001 E (: 0 11 E)
:0002 (:0102)
:0006 (:0106)
:OOlA (:011A)
: 001 8 (: 011 8)
:0006 (:0106);
OPTIONAL :0026 (:0126)
:0002 (:0102);
OPTIONAL :0022 (:0122)
Slots B through E accommodate plug-in
modules (either memory or I/O). All I/O
modules may use the IUR line and must
provide an interrupt address. Modules
with multiple interrupt capabilities
must have internal priority resolution
and multiple addresses. The continuity
of the priority chain must not be broken.
If broken, interrupts below the break
may not be recognized or may be recog­
nized erroneously.

Figure 8-4. LSI-2 Series Interrupt Organization

>0

IFOR PF I, CI. I LI OR I L 2 ONL YI ,

IAn

08XX

II

A ' 1(1' I I, •• OR '" 11 "AIJ" S) ~CHRON' l AT la'll ONL Y PI RIOO I; NOT CaNST ANT
R l A" ~\. ' 01 "1 ~()S ON CURAI NT INST RUCTION SEOUENCE
c_ Pt~I()RIl'" ""'rlf f'~U 1 ... dJIN
I" INII ""U" INSIRUCTIOIIj !JURATI(\N VAR.ES WITH IN~TRUCTION USED

Figure 8-5. Interrupt Transfer Timing

8-13

w ... w !i'".""·"'·W"''¥'ri1'>'''e,,'ij'frttllM'i:I''w('t' "i'il"d':ini' f'10

ComputerAutomation ~

approximately 750 ns. During this interval, the user-generated inLerrupt address
IHUSt. be available with.in 300 n~; of 11\1{- iJnd rt!lO.lin ~;t.lhl(· ullti 1 the 1(',H\inq ('dq(' 0['

PLSE-. PLSE- is used in the more complex interrupt strucLures to re~;et the Interrupt
stimulus store control.

IUA- will remain low until the interrupt instruction completes execution. The dura­
tion (IUA low) is a function of the number of machine cycles that pre required to
execute the interrupt instruction. When IUA- goes high, IOCL is re-enabled, permit­
ting subsequent interrupts to be generated.

8.4.6 Interrupt operation Control

'I Two levels of control are associated with ILl, IL2, and IUR interrupt processing-­
primary and secondary.

I
•• 1

:rhe primary control level is provided by the Enable Interrupt flip-flop (EIN) in the
processor. The EIN flip-flop is accessible to the programmer and can be enabled or

, disabled on command. When enabled, FIN allows rf'coqnition of any interrupt. Likf'-o wise, when EIN is disabled, interrupt~; will not. be F.'cognized.

The secondary control level is provided by an interrupt enable flip-flop in each I/O
controller. The interrupt enable flip-flop enables or disables the interrupt struc­
ture of the I/O controller. Like the EIN flip-flop discussed above, the interrupt
enable flip-flop in each controller can be enabled or disabled by means of a Select
instruction addressed to the specific I/O controller with the appropriate function
code.

This dual system of interrupt contre.: can be very useful to a programmer. with this
system, the programmer can control interrupts in general with the EIN flip-flop, yet
enable or disable interrupts from selected devices as conditions dictate.

Interrupts developed via the PF and CINT lines are somewhat different in that they
can be generated outside EIN control. In normal operation (that is, when operating
under EIN control), the Power Fail, Console and Trap interrupts require that EIN be
enabled. Most interrupt subroutines disable interrupts during execution of the
subroutines, causing high priority interrupts such as Power Fail to wait until EIN is
re-,·,nabled. A special jumper on the option Pack permits all interrupts generated on C the PF and CINT lines to be recognized regardless of the state of EIN.

When the jumper option is employed, two instructions (PFE and PFO) are used to control
the Power Fail circuits. The PFE instruction must have been issued before a Power
Fail interrupt can be generated. Likewise, the PFO instruction disables the genera­
tion of a Power Fail interrupt.

The Console interrupt is controlled by the CIE and CIO instructions in the same way
as in normal operation. The Trap interrupt is generated in the same manner as in
normal operation. The only difference between normal operation and the jumper option
is that EIN does not have to be set to generate the Console and Trap interrupts.

Another useful programming feature is the SIN instruction. The SIN instruction
permits the programmer to suppress recognition of all interrupts {rtnd Byte mode
operation) for up to six instructions.

8-14

o

c

".~

I

~I e

~,
~ I
"I

ComputerAutomation ~

Once an interrupt strc~ture is enqbled, an interrupt can be generated in five basic
steps:

Step 1

step 2

step 3

Step 4

Step 5

stimulus Generation--The user generates the interrupt stimulus in response
to some event or condition.

Interrupt Request Generation--The interrupt structure of the I/O controller,
if enabled, stores the interrupt stimulus and generates an interrupt
request.

\ ,
Interrupt Recognition--The processor, upon receipt of the interrupt request~
waits for the current instruction to complete execution, and, if system
interrupts are enabled (EIN set), issues an interrupt address request.

Interrupt I/O Address Generation--The interrupt structure of the I/O con­
t~oller responds to the interrupt address request by placing the interrupt
address on the D bus lines (except for ILl and IL2 interrupts).

Interrupt Instruction Execution--The processor fetches and executes the
instruction from the interrupt location.

8.4.7 Interrupt Request Line Trade-Offs

, .,

The user has a choice of three interrupt request lines, ILl, IL2, and IUR. The trade­
offs associated with each of these lines are discussed below.

The ILl and IL2 interrupt structures are the simplest structures to implement in
terms of hardware, since they do not require interrupt address logic, processor synch­
ronization logic, or down-stream priority disable logic. All of these functions are
provided in the processor. The ILl and IL2 lines are intended for single device
applications, where high-speed devices require the highest available priority to
minimize interrupt latency.

The IUR line is for multiple devices, where each device competes for service via the
priority chain. The priority of an I/O controller can be changed by simply removing
the controller from the computer chassis and relocating it in a higher or lower
priority card slot. An IUR generating controller has greater flexibility in terms of
address vectoring. If an address vector must be changed, the address may be offset
from its base location to another location by means of address select lines.

8.5 DMA OPERATIONS

An LSI-2 Series computer has a direct memory access (DMA) port which permits specially
built controllers (referred to as DMA controllers) to transfer data via the Maxi-Bus
at verY high speed to or from memory or other controllers.

8-15

W"ttttM

ComputerAutomation ~

8.5.1 General Characteristics
r 'I ~i' 8.5.1.1 Processor Provisions
~ ..
f'i
~.

~
I
i

The prccessor is designed to surrender the Maxi-Bus to a DMA controller whenever a
Stop command (STOP-) is received. Upon receipt of the STOP- signa'l, the processor
completes the current microcycle, stops, and sends a stop Acknowledge (SACK-) signal
to the requesting DMA controller(s). A DMA controller may hold STOP- active for as
long as necessary to complete requested data transfers. But once the STOP- line is
released, the Maxi-bus cannot be reacquired by the controller until SACK- goes high
(see paragraph 8.5.2.1).

8.5.1.2 Memory Operations

DMA controllers may communicate directly with memory. The DMA controller must emulate
the processor by generating a memory address and appropriate control signals. Memory
operations may be either Read (data accessed from memory) or write (data written into
memory). Data cannot be read, modified, and rewritten in one cycle. When communi­
cating wit.h a single memory module, data transfer rates of up to 625, 000 words per
second can be achieved with the standard 1.6-~s memories. When more than one memory
module is used in the computer, DMA transfer rates of up to twice the basic speed of
the memory modules can be achieved by making alternate memory accesses in different
modules. Memory interleaving straps allow even and odd addresses to be in separate
memory modules, so that sequential addressing automatically alternates between modules.

In addition to word transfer capabiJities, byte transfers may be performed by a DMA
controller. All byte packing and unpacking is done automatically by the memory
modules, with all byte data transferred on the lower eight D bus lines (the upper
eight D bus lines are ignored during byte transfers).

All memory modules contain data and address registers to permit asynchronous opera­
tion. During a write operation, the source device furnishes an address and data
along with a memory start signal. As soon as the address and data are stored in its

. rl~cristers, the memory issues an acknowledge signal and releases the bus even though
~ it has not actually finished the Write operation~ During a Read operation, the .

memory accesses the addressed location, places the data on the D bus, and then issues
the memory acknowledge signal. When the source device recognizes the memory acknow­
ledge signal, it removes the start signal releasing the Maxi-Bus. Any memory restore
operation or overhead interval does not tie up the Maxi-Bus and therefore frees the
processor or DMA controller to perform another operation.

8.5.1.3 I/O Operations

A DMA controller may emulate the I/O instructions of the processor. The I:MA con­
troller may issue Input, Output, Sense, Select, and Select-and-Present instructions.
It may perform conditional and unconditional I/O. All I/O instructions and control
lines of the Maxi-Bus that are used by the processor. for I/O operations are available
to a DMA controller when the processor is stopped.

8-16

tt t

"

o

o

8.5.1.4 Limitations

A DMA controller is not permitted to use the interrupt processing capabilities of the
processor. Interrupts are reserved for use by the processor only. I/O controllers
that are under control of a DMA controller must have their interrupt facilities
disabled.

When multiple DMA controllers are employed in a system, they must compete for'control
of the Maxi-Bus on a priority basis. DMA priority lines are strung serially through
the 200-series connectors of the LSI-2 Series motherboard. Therefore, DMA controllers
must be either full boards or half boards that are installed in the 200-series con-

I nectors of the LSI-2 Series motherboard.

When using the standard expansion chassis buffer board, a DMA controller must be in
either the same chassis or in a chassis that' is closer to the processor than a memory
module or I/O controller that it must communicate with. This is because the expansion
buffer board treats unidirectional lines (such as the A bus lines) as originating
from the processor end of a chain of expansion chassis. Therefore, unidirectional
signals which normally originate from the processor cannot be transmitted to an up­
stream memory module or I/O controller.

8.5.2 DMA Timing

The following paragraphs define DMA transfer timing. All timing intervals shown in
timing diagrams are in nanoseconds; all timing intervals discussed in the text are
nominal. Times determined by memory access and cycle intervals are shown for the
standard 1.6-~s memory modules and may be different for other memory modules.

8.5.2.IMaxi-Bus Acquisition Timing

Two signals are involved with Maxi-Bus acquisition (figure 8-6): STOP- and SACK-.
When a DMA controller is ready to make a transfer, it drives the STOP- line low
(ground-true). The processor, upon seeing STOP- low, immediately begins preparing to
vacate the Maxi-Bus. After performing the required internal housekeeping associated
with stopping, the Processor drives the SACK- signal low (ground-true).

Once SACK- goes low, the DMA controlle~ is free to commence the transfer operation.
Typically, DMA controllers operate on a request basis wherein they make one transfer
for each request received from an associated peripheral. If the DMA controller
receives another request prior to completion of the current transfer (Burst mode), it
will keep STOP- active. Otherwise it releases the STOP- line when the current opera­
tion is completed; as .signaled by the trailing edge of the Memory Acknowledge (MACK-)
signal.

After releasing the STOP- line, the DMA controller may not attempt to reacquire the
; Maxi-Bus before SACK- goes high. Once SACK- goes high, the DMA controller is forced
to wait out the DMAacquisition period before acquiring the Maxi-Bus again. DMA
latency is a function of the type of memory module used. Latency time may be longer
if a higher priority DMA controller is also requesting the Maxi-Bus.

8-17

" '.
I;:

..... ~

• M r Sr: r $" iU·

ComputerAutomation ~

PROCESSOR
OPERATION

INITIAL
ACQUISITION

DMA
OPE RilT ION

PROCESSOR
RE··SYNC

RE-'ACQUISITION
OMA
OPERATION

STOP- \'----4f1J----~"fo__...,1 n-,
~·--------~t.J---------

1'---4800 MAX ~ i'-- 2400 MAX -I- 3200 MAX ~

SACK- ---------~" \~ __ ~"I~----.__I J~
~ WORST CASE LATENCY .. I

Figure 8-6. Maxi-Bus Acquisition Timing

8.5.2.2 Memory Transfer Timing

.Memory modules of various speeds, sizes and technologies. may be intermixed in a
system. The standard 4K core memory has a cycle time of 1600 ns which provides a
maximum data transfer rate of 625,000 words/bytes per second.

A memory cycle is divided into an access interval and an overhead interval (figure
8-7). The access interval is the period when data is transferred to or from memory.
The overhead interval is used for internal memory operations. For core memories, the
overhead interval is used to·restore the contents of the word just read, or to write
the word just transferred. For non-destructive readout memories, the overhead inter­
val consists primarily of logic recovery time. For dynamic MOS memories, the overhead
also includes cycles stolen by memory to refresh dynamic storage. During the overhead
interval, the Maxi-Bus is available for other operations.

For DMA applications requiring data transfer rates in excess of 625,000 words/bytes
per second, memory interleaving can be employed. When alternate memory cycles address
different memory modules, each memory's overhead interval can be used to access
another memory module, yielding transfer rates up to twice that possible with a
single memory module. Each memory module features static control lines at the rear
of the module which permit the memory module to operate in the interleaved mode.
Each memory module can be configured to respond to either even or odd memory
addresses. This feature allows sequentially addressed memory locations to automati­
cally alternate between memory modules.

A DMA read access sequence (figure 8-8) is started by the DMA control'ler placing the
desired memory address on the A bus. A minimum of 75 ns is required for A bus set­
tling and address recognition for all memory modules before the DMA controller drives
the Memory Start (MST-) signal low. The Read (RD-) signal must be driven low no
later than 25 ns after MST- goes low.

The addressed memory module begins execution of a memory cycle when MST- goes low,
and after it has finished any previous operation. When the addressed location has
been .accessed (approximately 450 ns for standard 1600-ns memories), the contents of
the addressed memory location are placed on the D bus and the MACK- signal is issued.
The information on the D bus will remain stable until MST- is removed.

Upon receipt of MACK-,the DMA controller is free to disengage the A bus. After
allowing for the settling time of the D bus, the DMA controller strobes the contents
of the D bus into a receiving register and removes MST- and RD-. The memory module
removes MACK':' on the trailing edge of MS'I'- ilnd disengages the D bus on the trailing

B-I8

f

I
t,

MEMA I

MEM B I

MEMORY CYCLE N MEMORY CYCLE N+l

ACCESS I OVERHEAD I ACCESS I OVERHEAD I

A. NdRMAL (ADDRESSING RANDOM)

MEMORY CYCLE N MEMORY CYCLE N+2 I
ACCESS I OVERHEAD I ACCESS I OVERHEAD I

I MEMORY CYCLE N+l I MEMORY CYGLE N+3

I ACCESS OVERHEAD I ACCESS

B. INTERLEAVED

Figure 8-7. Memory Addressing Comparisons

ABXX- & SLB- .---------Yl/!!1mmlffffUA

MST-

RD-

DBXX-

MACK-

75 MIN

MEMORY
.... --ACCESS

TIME

* INTERVAL DETERMINED BY CONTROLLER TO
ACCEPT MEMORY DATA

~o

1"i9urH 8-8. Read Access Timing

8-19

J.-

I

i
I

.~

I
I

;
~ r
1 ,.

edge of MST- or RD-, whichever goes away first. The DMA controller must disengage
the A bus prior to, or coincident with, removal of t>1ST-. The DMA controller may not
initiate another memory cycle until MACK- has been removed.

A write access sequence (figure 8-9) is similar to a read access sequence, except
that the RD- signal is held high and the write data is presented to the addressed
memory at the same time MST- is generated.

A write access is started by placing the memory address on the A bus. After a minimum
of 75 ns, the MST- signal is driven low. The RD- signal is held high and the write
data is gated onto the D bus no later than 25 ns after MST- goes low. The memory
module indicates acceptance of the write data by driving the MACK- signal low.

The DMA controller must disengage the A bus and the D bus and remove MST- when MACK­
goes low. MACK- is removed on the trailing edge of MST- at the memory module.

ABXX- & SLB- ______ -----IYl#HffffUffUffll$&4

MST-

RO-

OBXX-

MACK-

-J 75MIN ~~O

MEMORY
ACCESS
TIME

-. -*---...

controller may remove MST - as soon as
MACK- is recognized

Figure 8-9. Write Access Timing

8.5.2.3 I/O Transfer Timing

A DMA controller may transfer data to or from another controller by emulating the
processor's operations on the I/O control signals. A single exception to standard
I/O transfer sequencing involves generation of MACK- during I/O transfers under DMA
control that do not involve the use of memory. In this case, the DMA controller must
generate MACK- for a minimum of 100 ns prior to completion of the I/O transfer. This
allows other DMA controllers in the system to synchronize any pending Maxi-Bus
rnqup!.ts und properly i111ctioll DM1\ priority (seC' parclfJrilph <).5 .. 2.2).

13-:W

Ii •
~. I

o

o

8.6 ELECTRICAL CHARAC'I"l':RISTICS

The Maxi-Bus is best classified as a tri-state and open-collector (wire-OR) bus,
untermin'a ted.

Most processor drivers are tri-state power elements, capable of sinking 32 rnA at
0.4·Vdc maximUm and sourcing 2.0 rnA at 2.4 Vdc minimmn. In a.few isolated cases,
open-collector TTL drivers (32-rnA sink at 0.4 Vdc) are used.

Processor receivers present one standard TTL load to the line (-1.6 rnA at 0.8 Vdc,
40 ~A at 2.4 Vdc). Depending on the nature of the particular signal, pullup resistors
to +5 Vdc are used.

Open-collector drivers in I/O and memory modules are permitted on those bus lines for
which pullup resistors are provided. Minimmn required drive capability is 32 rnA at
0.4 Vdc max. Tri-state drivers electrically equivalent to the processor bus drivers
are also allowed, as long as the logic design of the system guarantees that no two
tri-state drivers connected to the same bus line are simultaneously enabled.
Receivers on I/O and memory modules may be any standard 74-series TTL device. Only
one such receiver per module is permitted. Maximmn loading shall not exceed 1.6 rnA
per module.

Logic Levels (negative-true)

logic "1": +0.4 Vdc max.
logic "0": +2.4 Vdc min.

Table 8-1 summarizes the Maxi-Bus driver, receiver, and pullup circuits.

8.7 STANDARD AND JUMBO CHASSIS MOTHERBOARD ORGANIZATION

Figure 8-10 is an illustration of the standard chassis motherboard. The motherboard
provides six slots which are used as follows:

Slot

A
B
C
D
E
F

Purpose

LSI-2 Series Processor
universal (Memory or I/O)
Universal (Memory or I/O)
Universal (Memory or I/O)
Universal (Memory or I/O)
Power Supply

See insta'llation rules
in section 2.

Figure 8-11 is an illustration of the Jmnbo chassis motherboard. The motherboard
provides nine slots which are used as follows:

Slot

A

B
C
D

E
F
H
J
K

Pur,eose

LSI-2 Series Processor
Universal (Memory or I/O)
Universal (Memory or I/O)
Universal (Memory or I/O)
Universal (Memory or I/O) See installatibn rules
Universal (Memory or I/O) in section 2.
Universal (Memory or I/O)
Universal '(MemOry or I/O)
Universal (Memory or I/O)

In any given slot of the standard and Jumbo chassis motherboards, either a full board
(IS" x 16.5") or two half boards (each 7.5" x 16.5") may.be installed. One slot

8-21

"
','i ,I
II~ I

1,1
~ :

NOTE 2
NOTE 2
NOTE 4

oNOTE 3

NOTE 3
NOTE 3

NOTE 2
NOTE 2

SIGNAL

GND
GNO
+12V
+12V
+12V
+12V
-12V
-12V
DPIN-
OPOT-
EBSEL-

+5V
+5V
MST-
AL-
HACK-
RO-

SLB-
PFO-
MOIS-
AB08-
AB09-
AB10-
ABll-
GND
GND
AB12-
AB13-
ABI4-
ABI5-
OBI6-
OB17-
STOP-
SACK-
HBIN-
HBOT-
0800-
OB01-
0802-
D803-
+5V
+5V
OB04-
OB05-
OB06-
0807-
0808-
0809-

r 't , •.

Table 8-1. Maxi~Bus Load, Drive and Termination Summary

MOTHER- DEVICE TYPE(S) (REFER TO NOTE 1)
BOARD

PIN CPU MEMORY I/O CONT DMA CONT CONSOLE 8UfFEfl. OPT PK

1
2
3
4
5
6
7
8
9 J] J] 5

10 4 it:

11
12
13
14
15 1 ,6 5 1 5 5 5
16
17 5,6 1 5 1 2
18 2,6 5 2 5

20 2,6 5 1 5 2

21 5,6 5 ;"
22 3 5 5
23 1 5 1 5
24 1 5 1 5
25 1 5 1 5
26 1 5 1 5 5
27
28
29 1 5 1 5 5
30 1 5 1 5 5
31 1 5 1 5 5
32 1 5 1 5
33 5,6
34
35 5,6 2 2
36 3 5 5
37 5 J] J] 38 4 4 ;':

39 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1,2,5
-40 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1 ,2,5
41 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1 ,2,5
42 ' 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1 ,2,5
43
44
45 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1 ,5
46 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1 ,5
47 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1 ,5
48 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1 ,5
49 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1
50 1 ,5,6 1 ,5 2,5 1 ,5 2,5 1 ,5 1

8-22

10

'1'#' tx01'«'*#""'·

Table 8-1. j,·;axi-BuS Load, Drive and Termination Sununary (Cont'd)

MOTHER- DEVICE TYPE{S) (REFER TO NOTE 1)
BOARD

\

SIGNAL PIN CPU MEMORY I/O CONT

OB10- 51 1 ,5,6 1 ,5 2,5
DB1'- 52 1 ,5,6' 1 .5 2,5
OB12- 53 1 ,5,6 1 ,5 2,5
OB13- 54 1 ,5,6 1 ,5 2,5
OB14- 55 1 ,5,6 1 t 5 2,5
OB15- 56 1 ,5.6 1 ,5 ·2,5
EXEC- 57 1 ,6 5
IN- 58 1 ,6 5
GNO 59 , ,

GND 60
10CL- 61 1 ,6 5
OUT- 62 1 ,6 5
CLK- 63 3 5
SER- 64 5,6 2
IUR- 65 5,6 2
i ,_ 1- 66 5,6 2
IAR- 67 1 ,6 5
IL2- 68 5,6 2
RST- 69 2.5,6 5
IUA- 70 1 ,6 5
PLSE- 71 1 ,6 5
ECHO- 12 1 ,6 5
+5V 73
+5V 74
AB03- 75 1 ,6 5 5
AB04- 76 1 ,6 5 5
AB05- 77 1 ,6 5 5
AB06- 78 1 ,6 5 5
AB07- 79 1 ,6 5 5
ABOO- 80 1 ,6 5 5
AB01- 81 1 ,6 5 5
AB02- 82 1 ,6 5 5
PRIN- 83

J]
5

PROT- 84 4 4
GND 85
GND 86

NOTES:
1. DEVICE TYPES ARE AS FOLLOWS:

1) TRI-STATE DRIVER, 32-mA (8835 OR EQUIV)
2) 32-mA OPEN-COLLECTOR DRIVER

(7438 OR EQUIV)
3) 32-mA TTL DRIVER (7437 OR EQUIV)
4) 16-mA TTL DRIVER (7400 OR EQUIV)
5) TTL RECEIVER (7404 OR EQUIV)
6) PULL-UP RESISTOR (1 kn)
J) JUMPER
;~) STRAIGHT THRU SIGNAL (NO DEVICES IN

SIGNAL PATH)

8-23

,

OMA CONT COHSOlf eIJFfE~ OPl PK

1 ,5 .2,5 1 .5 t
1 ,5 2,5 1 ,5 1
1 ,5 2,5 1 ,5 1
1 j 5 2,5 1 ,5 1
1 .5 2,5 1 ,5 1
1 ,5 2,5 1 .5 1
5 5 5 5
5 5 5 5

5 5 5 5
5 5 5 5
5 5 5
2 2 2
2 2 2
2 2
5 5 5 5
2 2
5 2,5 2 5
5 5
5 5 5 5
5 5 5

1 ,5 5 5 5
1 ,5 5 5 5
1 ,5 5 5 5
1 ,5 5 5 5
1 ,5 5 5 5
1 ,5 5 5 5
1 ,5 5 5 5
1 ,5 5 5 5
5 5
4 * 4

2. DPIN-, DPOT-, MBIN-, AND MBOT- ARE
STRUNG THROUGH THE 200 SERIES CON­
NECTORS ONLY. THESE PIN POSITIONS
ARE UNASSIGNED ON THE 100 SERIES
CONNECTORS AND ARE RESERVED FOR
FUTURE EXPANSION.

3. THESE PINS CARRY SPECIAL SIGNALS ON
SLOT Al00 AND ARE RESERVED FOR
FUTURE EXPANSION ON THE REMAINING
100 AND 200 SERIES CONNECTORS.

4. EBSEL-, PIN 21" IS USED FOR TEST
ONLY.

E1*.:-~~.,'j"W :i-~F'" '7"!_"'-;-:"'~i-;:lI_ ,:~.,~~ ..

..

..

..
• tt

••
tt

-

Ji _-0" -'-. ~'.I~~~~~_~~~ :-,...~ '" i~ JIi\'t :f!!IIIIl._R . __ ~.;:-~"

W -W_'f'-------------------,

J2 Jl J3
(EXPANSION BUFFER INTERFACE) (CONSOLE INTERFACE) (EXPANSION BUFFER INTERFACE)

",:,,:=": "," " "": - - - - - -" --- : --,-,- --: -,,- - 'C-- '.,,-,a - ,"::7,~-~C-----:::~:::: ::: :::"::::',::: :':":1
. -,- ~

't~'f~r.;-"$.....,.;e"t_l:.~ .. _,..V"i'''"''_ .. ~!'O;.»....,.,~~~ ."' ~~·t·I""~''''' .~ .. ""\~ r-
"'.... ,..,..... ~ ~ ~ 'n - r ... - - - n -;: -- - .. - - - - ... "'t - _ - - """ - - __ - - ... "" _ .. 1'" po-,... n '"'ft'" n '" '" .. ~ _ ... ,.,. _ ... ~ ~ r __ "' _ ... _ ... 1 . ~ "h ••.•.•. , ••••••••• --- -- ~ ... ~ --..... --... ----.... :;:;;2! ~:~f ~ ___ JIIIOt",.......;,_"""'--____ ~-- ---... --.~a6 --

~ ~ ;;-':--,... • .. ' ···'C"", ... ;;.ctl'f:"~~· ,,~+-;;i1f ... ~..,.~~""'-t,,,.,.,,~·~ w _~. ,~t....... ~ _" 'f ~~~ __ '" "#-i:~~.~_"\' .___
-:=.:t.....,.,..~-f',.~"""'J>. "':-a--.. ~~~*~~ .. , ~..,.t"~~~~~ •• ..:..::._- __ ,.'~ ~ '-"~~_::-~' ~~. :;"£:F~ ... _

to ~ _ :.; : :~~~_-.:.'".t:...:~·:::.~~;Z!;-·:!~.:.7!.":.:.::.:.~-~ l ~: .. ~..:~~~~,.~~~'"~ ... _ .. ;.-.. ,.;~t'~
" '" ,- 0 0 -", 0 "'"'' " , ,".- o".,.-" •• ----------::zl!" ~.-••• --a-------------~ .~.. -,<, ' .,,~ • ''''-''''''?:1>'--J'.-'>AP''''''''''.' - V'~"""" ~~ . ~P~ y~~ ~W'i",~"",.--;,~;!;;~~~- >-- _ ~ b ___ #<. g':.""~.;< ,~-~~~~~i" ~ __

~. -'"-'~, ~~- .. ~~ ~~ ~:~~.:: -:::"::::;.':~:::;:::;:~:::::::~~ ~.: ~:::::::.:.:.:::=:~~~~.:~~~.::~~-:~:- ~<~~~;-:.~:-;.-~;::.- -

A,; '::. ~ ~ ': ~ .. ~ ~~ ~~. ~ ~ "'''', .. ; " - - ... ---.. -:~.:.;.~.:.:.:~.:.:;:;..:.," • ~:::::::::::::::::;::::::::~:::::~:::::::::~

F100
(POWER SUPPLY INTERFACE)

Figure 8-10. Standard Chassis Motherboard Slot Organization (rear view)

tt

tt

tt

• ..

i
I

~

!L

e (') o

J2
(EXPANSION BUFFER INTERFACE)

· II (.: . · :': ;';'. .. ,1' ••
•• • II

II

II ..
..
II ;_:;:~;: t i~ -;:;1_j~i:_"l_3:~~ I::-~"-(': -"t;:;'1.--"

(CONNECTORS J4 THROUGH J16 FORM THE POWER SUPPLY INTERFACE)

Figure 8-11. Jumbo Chassis Motherboard Slot Organization (rear view)

, ___ -'~~"'.~~~--""'~"""~~~'-""':~-':c

· · •

;

•
•

e

II

II

II

II

II

II

..
II

II

~
I

i
I
I

ComputerAutomation (gA

contains two connectors. The connector on the right (rear-facing) is referred to as
the 100-series connector and contains pins numbered 100 through 186; similarly, the
connector on the left is referred to as the 200-series connector and contains pins
numbered 200 through 286.

with the except .on of the priority chains, memory bank control, and two special
processor power supply signals, all signals are wired in a U fashion through all
half-board connectors. All exceptions are described below (shown in figure 2-6).

8.7.1 Interrupt Priority

The daisy chained interrupt priority string (PRIN-, PROT-) is wired in S fashion
beginning at thelOO-series connector of slot A, across to the 200-series connector,
then in reverse direction across the two B slot connectors, etc., until all slots are
connected. Both ends of the cl;lain are connected to the expansion connectors. Both
1?RIN- and PROT- on processor connector AlOO are used to carry special signals to the
console; the actual origin of the priority chain is slot A200.

8.7.2 Memory Bank Control, DMA Priority

The Memory Bank control (MBIN-, MBOT-), and DMA priority (DPIN-, DPOT-) lines daisy
chain down the 200-series connectors only. Therefore, memory modules and DMA con­
trollers must be either full boards or half boards installed on the 200-series side
only.

8.7.3 Processor Power Supply Signals

Two lines from the power supply, TTLF- (Twice the Line Frequency) and +5 H (Hang
Power), are wired directly between the power supply slot and processor slot AIOO.

o 8.7.4 Expansion and Console Interconnect

To facilitate expansion of Standard and Jumbo chassis configurations beyond the first
chassis and to provide for interconnection to the console, connectors are supplied on
the motherboard immediately above slot A. Two connectors, J2 and J3, are provided
for Maxi-Bus expansion; one connector, Jl, is provided to interconnect the console.
Figure 8-12 shows the pin assignments for connectors J2 and J3; figure 10-7 in
section 10 shows the pin assignments for Jl.

8-26

I:

"

II
e

t: ,{

C

o

-I e
~":.""" w

·1

¥
" ,

II

I

I

ComputerAutomallon @\

J2 J3

OPIN- 2 OB04- +5H 2 PRIN-

OPOT- 0806- SPARE 1 SPARE 3

MBIN OB08- MST- SPARE 2

+5V OB10- RO- AB15-

OB05- OB12- MACK- AB14-

OB07- SLB- AB13-

OB09- 13 AB02- MOIS- SPARE 5

OB11- 15 AB06- PFO- AB12-

OB13- 17 AB09- AB11-

19 AB05- AB08- AB10-

21 22 GND GNO

EXEC- 23 24 I GNO

GNO 25 26 SER- GND SACK-

I 28 STOP- OB01-

GND 30 AB04- OBOO- OB15-

1L1- 32 OB03- OB14-

IUR- 34 OB02- 34

IUA- 35 36 +5V 35 36

ECHO- 37 38 IL2- 38

ABOO- 39 40 IAR- 40

AB01- 41 42 42

GNO 43 44 AB03- IN-

45 46 AB07- +5V OUT-

47 48 PROT- RST- 48 IOCL-

GNO 49 50 MBOT PLSE- 50 CLK-

NOTE

Unlabeled pins are not currently used

Figure 8-12. Maxi-Bus Expansion Connector Pin Assignments

8-27

1!1
!

a

ComputerAutomation ((A

8.8 NAKED LSI-2 SERIES MAXI-BUS REQUIREMENTS

In applications where an LSI-2 Series computer is used without an LSI-2 Series mother­
board, and is instead connected to I/O and/or memory modules via user-supplied cabling,
printed circuit board, etc., the line length of each signal must be limited to
18 inches.

. .
The user-designed Maxi-Bus interface cabling must be designed to min1m1ze crosstalk,
reflections, etc., so as to preserve signal integrity. Line terminations are des­
cribed in table 8-1. In general, consultation with Computer Automation is recommended
to ensure system performance.

8.9 TWO-MODULE OPTIONS

.Any options requ1r1ng more than one PC board may
connecti.on. Unique interconnections may be made
rear edge of the two boards.

8-28

not use the motherboard for inter­
via a jumper cable installed on the

I

.~
I

I

t# If'

o

o

'tif" W I't' ' ... ',# rt 'M

section 9

DEVICE INTERFACE CONTROLLER, DESIGN TECHNIQUES

9.1 INTRODUCTION

This section describes how to design a device interface (I/O) controller that will be
compatible with the I/O structure of the LSI-2 Series computers.

9.2 I/O CONTROL IMPLEMENTATION

The following paragraphs describe I/O controller design requirements for compatibility
with the I/O structure of the processor.

9.2.1 DtN ice .Address Decoder

The Device Address decoder (figure 9-1) is a comparator circuit which compares the
five-bit Device Address field of an I/O instruction with the user assigned device
address.

The example A address decoder uses an exclusive OR (EX OR) gate and an inverter for
each of the five device address bits to be decoded. The outputs of the inverters are
tied together to form a wired-AND address decoder output signal, DAXX.

Address decoding is controlled by the five Peripheral Select signals (PSO- through
PS4-). These signals are brought in from the device interface connector to corres­
ponding EX OR gates. If a true (low) address bit is to be decoded, the corresponding
address select signal must be externally wired to ground (ground = true). Likewise,
if a false address bit is to be decoded, the address select signal must be left open
to permit the pull-up resistor to provide the false (high) address select signal.

When the device address bit agrees with the address select signal, the output of the
EX OR gate is low. All five nevice address bits must agree with the user defined
address selection. If agreement is obtained, decoder output signal DAXX goes high,
enabling recognition of I/O instructions.

Example B shows an address decoder which decodes Device Address 6. This type of
decoder is used only in dedicated applications and does not provide the flexibility
that the example A decoder offers. Refer to appendix B for standard device address
assignments.

Device Address :00 should not be used. This address is reserved
for processor mounted options, the console, and certain control
instructions. Using it will cause improper operation of the
proceSsor. Furthermore, a device interface conn~ctor containing
properly installed device address jumpers must be applied to the
rear-edge connector at all times. If it is not, a default address
of :00 will be assigned to the module.

9-1

1.0
I

N

."-.'<"."1"":".-"-' " .. ,

lK

F'SrJ--

lK

1'$'-

PS:l-

lK

PS4-

179.0\807- O-----..J

_i

Example A ~on·Dedlcated Application

Figure 9-1.

1791 A807- 0-----,

(781 A806- 00------1

+sv
(751 A803- D------'

lK (77IA805-0 d

OAXX-

~-------------OAXX
(761 A804- 0 d

Example B. Otd,CoJ!!'C A.po! ':a! ,on

Device Address Decoding Techniques

-jt">"':'f'!~.~-:,-~·,,,~'~Jj~~~;"'~-'-:·'

-sv

~ I.) OA06

A!I.

i
}

~

o

o

* *$# tt"' r) 54 : t » '3" l' : *" 'W . yt It "tM " i d' ttfNNk'!Iti!tebjt MM

9.2.2 Function Decoder

The Function decoder (figure 9-2) uses an MSI chip, or a network comprised of SSI
chips, to decode the contents of the Function field of the Address bus. The result
is a function code (1 of 8 maximum) which performs some function in the selected I/O
controller •.

The choice of chips depends upon the user's application. Figure 9-2 shows three
examples, A, Band C, of how t·o implement the Function decoder. When decoding three
or less functions, exampie C may be the most efficient. However, if chip count is a
factor, example A or B is probably more efficient. In any case, where more than
three functions are to be decoded, example A or B is probably the most efficient.

9.2.2.1 Example A

Example A uses a TTL 7442 MSI chip which is a 4 to 10 Decoder. Inputs A, Band C are
the 21, 22, and 23 inputs respectively. Input D is the 24 input. When high, input D
enables decoded output 8 or 9. However, only the first eight outputs of the decoder
(0 throuqh 7) are normally used, since eight is the maximum capacity of the three
Function field lines in its normal configuration. D input is the enable input for
the first eight decoded outputs, and utilizes the DAXX- signal for this purpose.
Whe.' t dle device address is decoded, the DAXX- signal goes low, thus enabling the
Function decoder.

Input lines from the Function field of the A bus are first unloaded by inverter gates
and then applied to the decoder. As an example, if all Function field lines were
false (high, implying Function Code 0), lows would be applied to inputs A, Band C.
The decode of all low inputs would be zero thus causing FCO- to go low. (Decoded
outputs of a 7442 are always low.} If a high signal is required, it can be obtained
by using a simple inverter gate, such as the TTL 7404 illustrated.

9.2.2.2 Example B

Example B is the same as example A, except that the outputs are reversed (output 7 =
FCa, output 6 = FCl, etc.). However, example B can only be used where the Function
field lines will not be applied to any other circuit on the same I/O controller.
This complies with the rule that each controller represents no more than one load to
each I/O line.

9.2.2.3 Example C

Example C can decode only three function codes. TTL 7410 3-input NAND gates are the
decoders. The three Function field signalS are applied to the appropriate NAND gates
to produce FCO- through FC2-. If the decoded device address is to enable the function
codes, TTL 7420 NAND gates can be used, with the DAXX signal applied to the fourth
input of each gate.

9.2.3 select, Input or OUtput Instruction Decoding

Similar to th~ Function decoder, the Select, Input or OUtput (I/O) instructions can
be decoded by an MSI chip or a network of SSI chips. Figure 9-3 shows two methods,
example A and B, of implementing this circuit. When the various instructions are
fully decoded using the Function field signals of the A bus, the Function decoder is
not generally needed.

9-3

~':1i"!'~ ... "--~'" "-"~"'f"!lf'l"~""~~'~~';-" .

ABOO­
(80;

A801-~

..:;
I

A

t8H

A802-
<821

~

~. --"-- --_-:_~=~,:::i:.- ~~'~~"_i ~!$!l;(.:._) • _ ". Il!£; _~"'" __ " u .-~~

.- .---- ·-0 .--- -·---O~--·

'.> I A

'.> IB

~ IC

DAXX- o

,-______ FCO-

OD • a FCO

4 TO 10
DECODER 1 D-FC1-

2

7442

EXAMPLE A

FC2-

FC3-'

FC4-

FC5-

FC6-

FC7-

} NOT USED

ABOO­
(80)

ABOI­
(81)

AB02-
(82)

ABOO,...
(SO)

A

ABOI- 0----1
(81) B

AB02- o---iC
(82)

DAXX ,0

EXAMPLEC

Figure 9-2. Function Decoder Configurations (Typical)

FC7-

0 FC7

4TO 10 FC6-
DECODER

20-- FCS-

FC4-

FC3-

FC2-

FC1-

7 FCO-

7442 } NOT USED

EXAMPLE B

,.-------- FCO-

FCO

FC1-

FC2-

~

M~'~f'~~. ': -"" !-i %-'.~"'. f.;:";~~r~·. '.~ ""' _L

1.0
I

I.n

e

ABOO­
(BO)

PLSE­
{711

EXEC-

ABOI­
(81)

AB02-
(82)

(571 ~
I
I + N 1

IN- I I
1581 7404. --~

. I
I

~
I

OlJT I
OUT- I I
(62) . 7404 • __ J

OAXX

o

~IA

~ ~8

~ Ie

b--do

4TO 10
DECODER

7442

EXAMPLE A

"

r-----------~--EXPO-

EXPI-

EXP2-

EXP3-

EXP4-

EXPS-

EXP6-

EXP7-

} NOT USED

EXPO (SELECT COMO)
INPO (INPUT COMO)
OTPO !OUTPUT COMO}

(Oun
(IN)
EXEC
DAXX--
PLSE

FROM
FUNCTION
DECODER

Figure 9-3. Select, Input, cr Output Instruction Decode Configurations

·· ... ~;:k~~~,..~,"¥~r~~~.---

FCO-~

FCI cL~

FC2-~

EXAMPLE 8

e

EXPO
(lNPOI
(OTPO)

EXP1

UCP2 i
I

~
I

9.2.3.1 Example A

Example A shows a T'l'T, 7442 4 to 10 Decoder used as a Select, Input or OUtput instruc­
tion decoder. The decoder also decodes the contents of the A bus Function field, but
only for the specific type of I/O instruction with which it is being used. Mmwne
the decoder is used as a Select instruction decoder. The contents of the function
field are applied to the A, Band C inputs to produce the appropr.iate function code-­
anyone of up to eight associated with the Select instruction. The decoder is enabled
by NANDing DAXX (device address decoded), EXEC and PLSE. The Select instruction and
associated functions are decoded by the one circuit.

~I 9.2. 3 • 2 Example B

o

o

·1

.• 1

J
ri

f.··.·] ,\,
1;:-

II

Example B shows a decode network of SSI chips. This circuit can offer greater effi­
ciency than the 7442 chip, depending upon the application. For example, if three

.types of I/O instructions (Select, Input and Output) are used by a controller, and
less than three functions are associated with each type instruction, it is probably
more ("fficient to use decoders of this type, each utilizing the outputs of a single
Function decoder.

9.2.4 Initialization Implementation

Initialization circuitry (figure 9-4) establishes a known static state within an I/O
controller. Initialization is started by executing a Select instruction with a
function code dedicated to initialization (nominally Function Code 4) or when the
RST- signal goes low (upon depression 0f the RESET switch on the console, or during a
power fail/restart situation) .. Figure 9-4 shows a circuit configuration for imple­
menting initialization. When the device address and function code of the Select
instruction are decoded, the DAXX and FC4 signals go high to prime the 3-input NAND
qate. EXEC goes high during the Select inst.ruction, enabling the gab.~ to produce the
INZX- and INZX signals. These signals are distributed throughout the controller to
reset or set flip-flops, data registers, counters, etc., to establish the known
static state.

FC4
EXEC
DAXX

RST

7410 INZX

~-----e---------------------- INZX-

Figure 9-4. Initialization Circuit

9-6

i
,'1

.~

.1

o

o

-1 e

•

9.2.5 Sense Instruct'>--, Implement~tion

The Sense instruction circuit (figure 9-5) can be implemented using an MSI chip or a
network comprised of SSI chips. As in the Function and I/O instruction decoders,
application determines the most efficient method. An MSI chip can accommodate up to
eight sense conditions, and provide its own function decoding. (Funct!on cuqe 4eter­
mines sense condition to be interrogated.)

The SSI network can be implemented more efficiently where three or less sense condi­
tions are to be interrogated. However, the circuit requires inputs from a Function
decoder. Both positive and negative, internal and external signals can be sensed.
An example of each is described below and illustrated in figure 9-5.

9.2.5.1 Positive Sensing

Example A snows positive sensing using a TTL 74l51A MSI chip. The 74l51A is an 8 to
1 Mul" i ,-, ;xer that p;~ovides internal function code decoding and an enable input (EN).
It :3.1[;0 provides buLh true and complement outputs. The top four inputs (0 through 3)

arc <t- "-·_ccepting External Sense (ESO through ES3) signals from the external device.
PuL-lll' re::Hstors should be connected. to each external input line (10K typical) .
II .nal Sense (IS:! through IS7) signals are applied to inputs 4 through 7. When the
d~'vice address is decoded, the multiplexer is enabled by DAXX- at the EN input. The
outputs of the A bus Function field unloading gates are applied to the decode input
of the mUltiplexer (ADO, 1, and 2). 'l'he appropriate sense signal, as determined by
tJH~ function code, is then applied to the two outputs. Only the high output (OUT) is
used in this case. The signal is inverted and applied to the Sense Response line
(SER-) by the 7438 driver. When the OUT signal is high, the SER- line goes low.
When the OUT signal is low, tht' SER- line stays high.

F.xdmple B shows polsitive sensinq using SSI chips. Both exteJ:nal and internal sensing
are again illustrated. A separat(; Function decoder is required to provide the neces­
sarI function coder;. NAND gates combine the sense lines with the associated function
cc>des. The out.puts of the NAND gates are connected in a wire-ORed configuration to
the SFR- l:ine.

9.2.5.2 Negative Sensing

Example C shows negative sensing using the 74l5lA MSI chip. Negative sensing is
similar to positive sensing, except that the low output (OUT-) of the chip is employed
rather than the high output, the EN input is grounded to permanently enable the chip
and DAXX is used to gate the multiplexer output onto the SER- line. As with positive
sensing,- all external sense lines should be provided with pull-up resistors.

Example 0 shows negative sensing using SSI chips. The negative-true signals are
inverted and applied to 7438 2-input NAND gate drivers. Function code signals enable
the appropriate driver. The outputs of the drivers may be connected in a wire-ORed­
configuration before being applied to the SER- line.

9-7

~..,~¥~"':"''''-'~i~~'?t~''f~;''''~' ----"-- -

EXTERNAL SENSE 10K +SVDC ___

Es<) • IOAD2AD11ADO

+SVOC
10K

ESI()
10K

IS-INPUT +SVDC
1 ES20

2 MULTIPLEXER

10K OUT +SVDC

ES30 • 13
INTE RNAL SENSE

'~=r 156 5

156

157_7 OUT
74151A

ID DAXX-
I

(Xl

EXAMPLE A

10K
+5VDC

ESO 0
FO

IS1---.J 743811>) +) SER-
;64) FCI

IS2

FC2

EXAMPLES

POSITIVE SENSE

Figure 9-5.

..-..

SER

lIlOTE: FOR EXAMPLES B & D,
ALL FUNCTION CODE
DECODES MUST SE
DEVELOPED USING
DAXX AS IN FIG. 9-2
EXAMPLES A & B.

~~~t J!-""~ :c-~l1_-.. ~~O,,:p ~_ .1IIl!If ~~--f<'" 

A --
ABOO 
ABOI 

EXTERNAL SENSE AB02 

10K 
·SVDC 

ESO-O 
10K 

+5VDC 

ES1- 1 
10K 

~~~i'PLEXER +5VDC 

2
OUT I---NOT USED

ES2-
10K

+5VDC

ES3- 3

INTERNAL SENSE

154-=:]4

ISS- 5

74151A

'~
OUTr q.,.-..oSER-

157- •

=:J7438 (64)
OAXX

I
EXAMPLE C

10K
+5VDC -ESO-

~ OSER-Ql I. (64)

IS2-

EXAMPLE 0

NEGATIVE SENSE

Positive and Negative Sense Circuit Configurations ~

o

o

9.3 DATA TRANSFER rm:TROL IMPLEMENTATION

The efficient transfer of data between the processor and I/O controller is controlled
by the various buffer control circuits shown in figure 9-6. An Output Buffer Empty
circuit controls the transfer of data from the processor to the int~rface (examples A
and B). An Input Buffer Full circuit controls the transfer of data from the interface
to the processor (examples C and D) .

9.3.1 Example A

Example A shows an Output Buffer Empty latch (OBE) comprised of two TTL 7400 negative
input OR gates. The latch is initially set upon execution of the Initialize instruc­
tion for the controller. The INZX signal goes high and is applied through the NOR
gate to the set side of the latch, causing it to set. The OBE signal thus goes high
and is applip.d to the Sense multiplexer from which it can be interrogated by Sense or
Conditional Output instructions using the appropriate function code. The OBE signal
can also C'.;.IU!'C an ill'..:t::rrupt through implementation of interrupt logic. When data is
tLansfe.ne(~. to the cont.Toller Output buffer, the DAXX, OUT and PLSE signals go high,
enahl ~"" '._ll<~ NAND 'gate whose output is applied to the reset side of the latch. The
la teh now n's'_~ts, inhibi ting response to further interrogations by the processor.
wl'lcn ~.' ·-1.I<~d has been transmitted, a signal should be generated to indicate comple­
L.t .. ·! ~ b',e transfer (Data Transmitted--DXMT). DXMT is applied to the same NOR gate
.:1' .,-!:6X, causing the latch to set again and indicate that the buffer is ready for
more data at the next. processor interrogation.

9. 3 .2 Exam.p}e _~

The circuit in example B does the same thing as example A. The only difference is a
TTL 7474 D type flip-flop is used, rather than the dual NOR gate latch. INZX- direct
sets the flip-·flop. The high OBE signal is then available for interrogation. When
data is transferred to the Output buffer, the flip-flop is direct reset. When DXMT­
qoes true, the flip-flop is once again set to indicate the buffer is ready to accept
more data.

9.3.3 Example_~

Example C shows a latch confi.guration of an Input Buffer Full circuit (IBF). The
latch is reset by INZX upon initialization of the controller. After data has been
transferred t.o the Input buffer, a signal should be generated to indicate the com­
pletion of the transfer (Data Received--DRCV). DRCV- sets the latch, causing rBF to
go high. The IBF signal is then applied to the Sense multiplexer where it can be
interrogated by the processor with Sense or Conditional Input instructions. IBF can
also cause an interrupt when implemented in the interrupt logic. When the data is
transferred La the processor, the DAXX, IN and PLSE signals go high, resetting the
latch.

9.3.4 Example D

Example D shows an Input Buffer Full circuit using a TTL 7474 D-type flip-flop. The
flip-flop is direct reset upon initialization. The flip-flop is set when data is
received (DRCV goes high). The flip-flop is then direct reset when the data is
transferred to the processor (DAXX, IN and PLSE go true) .

9-9

~1-~C:~.f.-' ';-'-. ~~~~.1+'i'i'-'''''·~'''~----....L: ____ _

ID
I

I-'
o

INZX

DXMT~

OUT
DAXX
PLSE~~--"",

IN
DAXX

PLSE

~

-'* ~ '---;--"'"
-~- ~--

"~~~"''-'''·-'''-.!~~l· ,.~._ ,;,~ _. ,L~-~·-

~e----------------------~

OUTPUT BUFFER EMPTY

TO ~ENSE
). OBE OR INTERRUPT

LOGIC

EXAMPLE A

INPUT BUFFER FULL

TO SENSE
). lBF OR INTERRUPT

LOGIC

Figure 9-6.

OUT
DAXX
PLSE

IN
DAXX

PLSE

INZX

Data Transfer Control

OUTPUT BUFFER EMPTY

INZX- -----_---.

21(
+5V~

TO SENSE OR
t-----OBE INTERRUPT

DXMT

EXAMPLE B

INPUT BUFFER FULL

2K

LOGIC

TO SENSE OR
+5V~D 01 IBF INTERRUPT

LOGIC

7474

DRCV IC>

EXAMPLE 0

i
I

~

"

:'.···.'11
i:

;1

"'.1 '.

";1
\'1

\1

,
I

o

o

ComputerAutomation ~ -

9.4 PERIPHERAL DEV"'ro"" INTERRUPT IMPLEMENTATION

The design requirements for various interrupt structures compatible with the LSI-2
Series computers are now discussed.

9.4.1 Interrupt Address Rationale

In general, interrupts are vectored to a location within the first 256 words of
memory. The main advantage for having interrupts vectored to this area of memory is
in the housekeeping associated with certain interrupt instructions. An Auto I/O
instruction, for instance, must have the word/byte count and address pointer redefined
after it has been moved. An IMS instruction must have the count value redefined
after it has overflowed. If the interrupt instructions are in the first 256 words of
memory, direct addressing can be used from anywhere in memory to update the instruc­
tion parameters in anticipation of the next interrupt pass.

In applicati r '",;.:; \'7h(;r.l~ the use of the first 256 words of memory for interrupts makes
proglammil~':i ,li£fit:ult, all interrupts can be offset :100 locations into the next
256 wor(lq uf memory.

The numhei. of memory locations that are reserved for interrupts varies with each I/O
CO!'.t ~'..l.~le.L. If the I/O controller is intended to move data under Auto I/O interrupt
ccnt;ol, four locations should be reserved for the Auto I/O instruction and two
lo<.:ations fo::c t.he End-of-Block CEOB) interrupt. If a simple transfer of control is
required, only two locations are required for a JST instruction. If external events
a.i he.:.ng counted, four locations must be reserved--two for the IMS instruction and
two for the EOB interrupt.

If multiple interrupts are developed by an interface, these interrupts are organized
into a faJ,lily. The Real-'1'ime Clock option has a four-word interrupt family. Family
size is strictly a function of the number of interrupts an interface develops and the
number of locations required by each interrupt instruction.

By convention, I/O controllers are designed to interrupt to an even numbered address.
If 'in I/O controller develops multiple interrupts, the base addresses of these inter­
rupts are partitioned either two or four locations apart. The standard base addresses
are :OXX2, :OXX6, :OXXA ru~d :OXXE. These standard base addresses leave locations
: OXXO and : OXXS avaj labh! for special interrupts, if required.

The Auto I/O instruction requires three locations; the IMS and JST instructions
require one location each, bul one additional location is generally left for indirect
address pointers.

9.4.2 Single Interrupt Implementation Using IUR-

This structure features an Interrupt Enable flip-flop (INTE), an Interrupt Stimulus
Store flip-flop (INTS), an Interrupt Pending fl1.p-flop (IPl), priority determination
logic, p~iority out disable logic and an interrupt address generator (figure 9-7).

The INTE flip-flop is a J-K type devicE:1 which is synchronously set or reset by an
addressed Select instruction. Function Code M (FCM) sets INTE while Function Code R
(FCR) resets INTE. The INTS flip-flop is a D-type positive-edge triggered circuit.
When enabled, INTS sets on the positive excursion of the external stimulus signal
(EXTS) •

9-11

"i-:~,,"~-~"'" d$¥f~~I'!r~'1--:""i-"l'">'~· Ii ~-=~~~-i"'!~!1 ~4ic'i1! ;~~~~~-.

~-----------o ·O------------------~

1.0
I

IV

INTERRUPT
ENABLE

2K

INTERRUPT
STIMUUS
STORE INTERRUPT

PENDING

+5V~0 0
01 IPI

OAXX
EXC
PLSE~

FCR

EXTS

RPOL

+5V

K
R

INZX-

AORR

PLSE

INZX

TERMINATE
REOUEST

'''' '0''-0----{;>-- ,ace

"" "'N-0----{;>--""
"" ;A,-0----{;>-- 'M

IOCl

7474 l-- 74107
IK a

INZX-
PRIN

tAR

lK
+5V

A: E256-(U.
lK

+5V

EI2B-@-

lK
+5V

E64@-

lK
+5V

E32-Gii'

EI6-~

·IK
+5V

EB-@-
lK

+5V

-..
E4-

Figure 9-7. Single Interrupt Implementation Using IUR-

~

ME
DO---<) IVR-(65)

0----0 PROT- (841

),--~'~- ADRR

co---o 0808- (491

rb---O OB07- (481

~OB06-(471

~OB05-(461

[l)-----() OB04-(45,

OB03-(421

~OB02-(411

I
~OB01-(401

-

~
I

o

o

An optional feature i:., Lin edge detector consisting of an Exclusive-OR gate and an
inverter. The edge detector permits the use of either: a high or low stimulus signal.
The polarity of EXTS is defined by RPOL (Request Polarity). If EXTS is a low signal
when active, RPOL is grounded. Likewise, if EXTS is a high signal when active, RPOL
is left open and the pull-up resistor provides the positive-logic level signal. When
both EXTS and RPOL are of the same polarity, the output of the edge detector will be
high causing INTS to set, if enabled. Once both INTE and IN~S are set, an interrupt
request is generated. The Interrupt Pending flip-flop is enabled when INTE and INTS
are both set. When enabled, IPI sets on the negative excursion of the processor I/O
clock (IOCL).

Once IPI is set, the structure must have priority before an IUR interrupt request can
be generated. If up-stream devices are not generating interrupts, PRIN- (Priority
In, pin 83) will be low. Both PRIN and IPI are ANDed to produce the Interrupt Request
pending (ME) signal. ME is used to develop the Interrupt Request (IUR-) signal and
disable down-stream interrupts by causing PROT- (Priority Out, pin 84) to go high.

When the processor recognizes the interrupt request, it responds by issuing the
Interru!)t Address Request (IAR) signal. If ME is still high (a higher priority
interrupt may have been generated at the same time as this one, causing PRIN- to go
high, , ... 1.1ing ME), IAR causes the inter~upt address to be generated.

The Interrupt Address generator develops a unique vectored interrupt address. The
base address that is developed is :OXX2. The Interrupt Address Select lines (E4-
through E256-) permit the user to displace the base address anywhere in the first 512
words of memory. Grounding a particular address select line adds a corresponding
decimal value to all base addresses. For example, grounding E32- adds 32 decimal
locations to all interrupt addresses.

This type of address generation permits the user to redefine interrupt locations with
a minimum of effort. In the event the user is limited by the number of pins avail­
.:tble, specific data bus drivers can be used instead of the structure shown.

When ME and IAR are high (ADRR), the Data bus drivers are enabled and the interrupt
address is transferred to the processor. The processor directs the contents of the
D bus to the Memory Address register. After the Memory Address register is loaded,
the PLSE signal is generated. The PLSE signal NANDed with ADRR will cause INTS to
reset.

At the end of the last cycle of the interrupt instruction, IoeL is re-enabled. with
l:NTS reset and IDCL enabled, IPI resets on the negative excursion of IOCL, terminating
the IUR interrupt request.

The only feature of the interrupt structure not mentioned previously is the initialize
feature. Generally, all controllers have an initialize circuit which generates the
INZX signal. INZX sets or resets all control flip-flops to a known condition. In
this case, INTEand INTS are reset by INZX. INZX is typically generated in response
to an addressed Select in~truction with a function code of 4, or by the processor
generated System Reset signal, RST-.

9-13

I
~

~
t:
"

i',','i 'I
j

~i
"

-'llI

~'I '.;.

I o
I
I
I

ComputerAutomation ~

9.4.3 End-of-Block Interrupt Implementation Using IUR

The interrupt structure shown in figure 9-8 develops two interrupts on the IUR request
line and two base addresses are developed: :OXX2 for IPI and :OXX6 for MECHO.

The structure is similar to the lUR structure described in paragraph 9.4.2, except
that an Echo Interrupt flip-flop (MECHO) is added. The interrupt reqU(.'st. (IUR) i!;

developed by ME (Interrupt Request Pending) when IPl turns on and 'priority is estab­
lished by PRIN.

ME is applied to the J input of a master-slave flip-flop (Echo Interrupt). When an
ECHO is received from the processor (indicating the last word/byte has been trans­
ferred), MECHO is generated (on the falling edge of ElCHO). MECHO is reset when IAR
and PLSE are received.

Note that IPI is set for the entire period of the interrupt and that MECHO is set
only as long as required to obtain recognition from the processor.

9.4.4 Reentrant Interrupt Implementation

Reentrant interrupt programming permits an interrupt of higher priority to interrupt
an interrupt subroutine. Interrupts of lower priority are not recognized. Reentrant
interrupt programminq requires that the Priority Out Disable latch be implemented in
the user's interface hardware. When the latch is implemented (figure 9-9), the
generation of an interrupt sets the latch, which in turn disables the generation of
PROT- to downstream devices.

The reentrant interrupt feature disables all lower priority interrupts for the dura­
tion of an entire interrupt subroutirk!. The reentrant interrupt circuit is shown in
figure 9:"'9. The circuit prevents the PROT- signal from being transmitted to the next
lower priority controller until the subroutine has been completed. The PROT disable
latch is initially set when the interrupt request is acknowledged with t.he IAR signal
from the processor. IAR is ANDed with ME to produce Address (ADRR) which enables the
interrupt address drivers and also sets the PROT Disable latch. PROTD- thus goes
low, disabling the 3-input NAND gate which normally produces the PROT- signal when
ME- goes false (high). Inhibiting the generation of PROT- prevents priority from
being passed on to lower priority controllers until the latch is reset.

The latch can be reset by issuing a Select instruction with a function code dedicated
to resetting the latch, or by initializing the controller. When the Select instruc­
tion is decoded, the DEXP (combination of DAXX, EXEC and PLSE signals) signal goes
high. DEXP is NANDed with the appropriate function code (FCX) and is applied through
a negative input OR gate to the reset side of the latch. The latch is thus reset and
PROT- is passed on to lower priority devices (if PRIN- is low).

9.4.5 Single Interrupt Implementation Using ILI- or IL2-

The structure shown in figure 9-10 consists of an Interrupt Enable (INTE) flip-flop
and interrupt request driver. The INTE flip-flop is, used to enable the driver. When
the external stimulus is applied, an interrupt request is generated. This structure
demands that the external stimulus remain active until some positive action takes
place to move data or transfer control (the issuance of the IN-, OUT- or EXEC- control
signals with the proper device address).

9-14

~*~.L;··~···-~:w._1':t-~".r""!1,"'~~:-'i-l. ,. ·.Jt ________ . ___ _

I.D
I

U1

DAXX
EXC

PLSf

e

fCM

INTERRUPT
ENABLE

o

EXTS 0-- "
RPOl

IK
.... ·.SV

{nl ECHO- ""'-------

.I61110Cl O---d 7404 ">

.1<31 'A'N

161"4R

TERMINATE REQUEST

ADRR--r----­

'LSE

INZX

~ _._ ECHO

IOCL

PAIN

IAR

'NTERRUPT
STIMULUS
STORE

7"0]

ME
IAR

nSE

Figure 9-8.

~ -'.~-:~-.. ,~.-'" _------=-~.~~-<.::=~=_~-~.,."_::_~-&.-. ~.¢t_ 4lkt ... !Q!I!' _~_K ~~-'.

(I) e

IPI ME

D>---O IUA-ISSI

IPI_

PROT-{SCI

PRIN -.I.~---+-___

E256-

EI28' 0107-1481

·SV --l ,...... ~ 0806-1411
E64-

ECHO
INTERRUPT

J.--MECHO E32- @) L ~7~0105-1481

i y- ~ 1 J~ n 74380:>---0DIICM-(4S1
K a MECHO-

*" ·sv .,,..
~ ~

0803-1421

0>---00102-1411
MECHO

D>--<> 0801 -{.o1

End-of-Block Interrupt Implementation ~
I

I

o

o

PROT
DISABLE
LATCH

AORR--------------~ PROTO

OEXP

FCX

PROTO-

PAIN ---I
ME-

7410

Figure 9-9. Reentrant Interrupt Implementation

DIIXX
EXC

PlSE

[XISo---

INTERRUPT

ENABLE

~CM o f---,-IN..:..;T..::f._

74101
\.-----C'lIc

fCR- ~, II 0

IN/X

I
I . -{3> I . I

tXIS-o---------- 1404 _____ ..1

ILH6hl
fb---OOR

n;>"'IGRI

Figure 9-10. Simple ILl-/IL2- Interrupt Structure

9.4.6 End-of-Block Interrupt Implementation Using ILl- and IL2-

PROT-(84)

The interrupt structure shown in figure 9-11 develops two interrupts which utilize
the ILl- and IL2- request lines. Since this interrupt structure is designed to
acconunodate any ECHO signal generating instruction (the four Auto I/O instructions
and the IMS instruction), no other devices may be attached to the ILl- and IL2-
request lines. These lines are totally dedicated to this structure.

9-16

h' t_


~~~"!'!~'-:9"~~'~~~~~;." 

\0 
I .... 

-.J 

e 

DAXX 
EXC 
PI.~E 

[(.H01-

1 IIIZ X 

E)(TS 

RPOL 

FCM 

FCR 

___ ll 

INTERRUPT 
ENABLE 

74107 

K cr 
R 

II< _ 
~+SV 

ME 
IAR 

PLSE 
OB041-

o 

INTERRUPT 
, flMULU~ 
STORE 

.---------llo 

2K 

7474 

L 

IOCl---

o 

INTERRUPT 
REQUEST 
r---

QI ME 

C' ,.-

~5V 

741\'7 

~INTS- ~ 

ME 

ECHO 
INTERRUPT 
REQUEST 

o 01 ECHOI 

1721 ECHO- 0 q > ECHO 1c>474 oi 

'''''00<-0 ~ ,oc, 

"'>'''-0 +'" (71IPlSE-O~ PlSE 

~M~-O d OB~l-

ECHOI 
IAR 

PlSE 
OB041- ---r---

R 

• 

• 

Figure 9-11. End-of~Block Interrupt Implementation Using ILl- and IL2-

:_~,,~._~_~_~~- [ -~ .S fi U'!~ _ --, __ iti J!;iIIi';:r'~i'lI~"-" 

e 

co OILl-(66) 

co 0 Il2-f681 

f 

~ 
I 



ComputerAutomation ~ 

This structure is essentially the same as the IUR- structure described in paragraphs 
9.4.2 and 9.4.3. The most significant difference is that the request flip-flops are 
di:,t.riblltcd di rectly to thp. 11..1- und 11..2- drivers. 'T'hf' Ol-lt'rat.ioll of thi s structur(' 
is l'~;SClltiillly the ~;dme .IS t.he nIH slructu.rc~;, excepL dur i ng l"l'qlll'St ll:'rmind.t inn. 
Once the interrupt request is generated, the request must be reC09ni~f.ld JJy thu pf·O­

cessor. The processor recognizes the highest priority interrupt first and all other 
requests in their order of priority. Since there are three higher priority interrupts 
above ILl- (Power Fail, Trap, and Console) and four above IL2- (the three just men­
tioned and ILl-), the interrupt structure must be able to detect no higher priority 
interrupt activity before terminating the request. The only thing that the Power 
Fail, Trap, and Console interrupts have in conunon is that during the interrupt address 
request interval, they all cause bit 4 of the D bus to be low. If DB04- is low 
durinq IAR, the ILl- request will not reset but will remain active since the processor 
has not honored the request. When no higher priority exists after generating the 
interrupt request, INTS is reset on the leading edge of the PLSE signal and terminates 
the interrupt request. To avoid retriggering the INTS flip-flop, the interrupt 
stimulus should remain in the active condition until an addressed I/O instruction 
(Select, Input or Output) causes the source of the stimulus to reset. 

o 9.S DIRECT MEMORY ACCESS IMPLEMENTATION 

o 

DMA controllers generally have three basic phases of operation. These phases are 
initialization, execution, and termination. This section provides a general overview 
of each of these phases. A simple overview flow chart is shown in figure 9-12. 

9.5.1 Initialization 

The initialization phase is used to transfer task parameters from an operating program 
to the DMA controller. Typically, the task parameters define operating modes, data 
transfer patLu, the total number of transfers to be made, the starting memory address 
(if memory is involved) and search parameters for items such as a disk or tape unit. 
The complexity of the task parameters is directly related to the complexity of the 
DMA controller and the various tasks it can perform. Depending on the DMA controller 
de,~; 1n, the task parameters can be transferred from memory to the DHA controller's 
registers either by use of normal I/O instructions or by means of a task control 
block which is read from memory by the DMA controller. 

Once the task parameters have been transferred, the DMA controller may begin data 
transfer execution. 

9.5.2 Execution 

The execution phase is entered upon completion of initialization. When the associated 
peripheral logic is ready to transfer data, it generates a OOA transfer request. The 
DMA controller executes the DMA request in three stages. These stages are Maxi-Bus C 
acquisition, priority auction, and data transfer. Figure 9-13 shows a typical imple­
mentation of the Maxi-Bus acquisition and priority auction logic. Figure 9-14 shows 
the state counter and decoder implementation. Figure 9-15 depicts the timing for 
both a Memory write and Memory Read operation. 

9-18 



o 

~I e 

NO 

, 

START 

INITIALIZATION PHASE 
• Obtain Task Parameters 

From Operating Program 

EXECUTION PHASE 
• Maxi-Bus Acquisition 
• Priority Auction 
• Data Transfer 

TERMINATION PHASE 
• Issue End-Of-Operation 
. Interrupt 

• Provide Transfer Status 

Figure 9-12. DMA Operational Phases 

9-19 



l'f~f;;~~~::;-'F".:¢"' .. :_~_--=-. 

'f 
t..l 
o 

(361 SACK·· ~SACK 
-~SACK-

(171 MACK-~ MACK 

-~MACK-

"D" .".-+ .". 
REQUEST 
SYNC 

02 

03-

SACK­

Fa 

MOIS-

L..----ilo 

MACK 

10 • OMARS-

7474 

R 

IENABLEI- - - -

(REOUESTI 

OMARS-

(211 PFO-

o 1 REOF 

01.-__ -' 

-

MACK­

SACK 

,-->~~ --..--, <-<~~-.~-'" -~~~'-.. ~-~~::::~:..;;'" -:: ..... ~_~~"!!.:Il!_!!$. f!: '. A __ Fe!4 §ML_~A:~<,:"" 

03-
REQUEST 
STORE 

o Q~ RQ Qr-- ESTP 

7474 MACK C 74Hl07 

~ K Q~ESTP-

IK 

1" 
+5 

PROCESSOR STOP 

01-~ -
~ 74Hl0 ~ 17438 c::J)-Q STOP- 1351 

ESTP-

OMA 
START 

o 0 

7474 PRIORITY OUT 

OPIN 
_ START-

R 0 1 01-~ OOPOT-{210 S1 
03- I 

I 

Figure 9-13 . Maxi-Bus Acquisition and Priority Auction Controls ~ 

.... 



tt",~~j;l!·~"'~"'·!'if.·'?'1-t;!"~!'>.t..,.~-~,·u.· 

ID 
I 

I\l 
...... 

e 

MACK 

OJ 

-~-~ ---------

10MHZ 

01-
START-

OSC FCLK 
(FCLK) 

Select 
o Bus 
Drivers 

o 

WRI~ =B-SOBD 

r..ad Data 
Strobe 

INCA=B-74H08 RDST 
WRITE-

Decrement 

01 ~word Counter 

03 74Hll - DECw 
SCLK 

Increment 
Addre&s Counter 

02-~ OJ 74Hl1 INCA 
SCLK 

o 
, 

STATE COUNTER 

03-

SACK SCLK 

OPIN C 

03--r-t 
01-

CLR .14HIIH __ 

(22)MDIS-

SCLK 

+5 

lK 

, J= ,00 
02 J 

"" -=3' ""'" 
Q E03-03- K_ 

lK 

~ 
+5 

Figure 9-14. State Counter and Decoder 

C '''"'UI 

K 
R 

e 

Q2 

J or-OJ 

Q~ 
74Hl07 

R 
Q~03-

Memory 
Sun 

E03-

OMST-(15) 

Q'~ 
ONII097 

fIad 
Control 

~~O-(18) OJ 7438 
WRITE-

~ 
I 



ct 
-'-}"'"""'-"!.--'::'~~-' ~5--~~"~J~~--?~'~~"_~~~~' 

~---------------o 2 O----------------------~ 

FC_of lIlJl.n.J 
S"':)P 

SAC": ~ 

STA;::J? 

SC'-~ 

01 

02 

03 

EQ3 

ES-~-

<.D 
I 

N ABXX-
N 

SDBa 

DdXX-

DEC'lo 

.... 5.,. -

MAC>C-

INCA 
. ______________ n __ __ 

A Wr :te Cycle 

Figure 9-15 . 

.... 

~.~ ,-,< 

S-"'O 1 S-
f 

SACK 

5-A.RT 

SCU( 

01 

Q2 

03 

EO] 

ES,P-

ABXX-

RD-

DEC,\ 

'.-'S T--

D8XX '. 

MACK-

'NCA 
__ ______________ ~n~ __ _ 

ROST 
________________ ~n ___ _ 

B. Read Cycle 

DMA Transfer Timing 

i 
I 

~ 



I: 

I- • I,' :i 'j 

~: 

o 

o 

tttcwtts"'O 1 t a 

ComputerAutomation ~ 

9.5.2.1 Maxi-Bus Acqt::~ition 

Maxi-Bus acquisition is initiated upon receipt of a data transfer request. The Maxi­
Bus acquisition logic consists of three control elements: a Request Store flip-flop 
(RQ), a Request Sync flip-flop (REQF) and a STOP- driver. 

The data transfer request is stored in the Request flip-flop. RQ remains set until 
the data transfer stage is entered. 

If no DMA operations are currently in progress (processor stop Acknowledge signal, 
SACK-, high), the Request Sync flip-flop is asynchronously set which causes STOP- to 
go low, requesting use of the Maxi-Bus. If a DMA operation is in progress (SACK­
low), the Request Sync flip-flbp must be set synchronously with Memory Acknowledge 
(MACK-) to assure proper bus operation. 

9.5.2.2 Priority Auction 

Prioritv a~cton is required oniy if multiple DMA c~ntrollers are employed in the same 
system. P~'iority auction permits multiple DMA controllers to compete for use of the 
Ma;d.-Bus by means of the DMA priority string (DPIN- and DPOT-). DPIN- is the name 
given to the priority chain as it enters a controller and OPOT- is the name given to 
the priority chain as it leaves each controller. The DPOT- of one controller is the 
DPIN- of the next lower priority controller. A DMA controller has priority if its 
OPIN- line is low. The number of DMA controllers which may be used within the system 
is limited only by priority ripple time on the priority string. Nominally, 200 ns 
are allocated to priority ripple. Where more than 200 ns is required for priority 
ripple, each DMA controller must be designed to abstain from b~ginning a transfer 
operation until sufficient time has elapsed for priority ripple. 

Priority auction occurs at two times: after the leading edge of SACK- and, if another 
request has been received, after the data transfer (after the trailing edge of MACK-). 
If only one OMA controller is ins taIled in the system, or if only one DMA controller 
is allowed to be active at a time in multiple OMA configurations, then priority 
ripple time need. not be allocated. 

Within the DMA controller, priority auction is controlled by a DMA Start flip-flop 
(START). START is enabled by REQF (which indicates that a synchronized data transfer 
request is pending) and is clocked by the leading edge of SACK- during initial Maxi­
Bus acquisition, or by the trailing edge of MACK- during sequential DMA operations. 
When set, START inhibits downstream DMA Priority (DPOT-, high) and starts the DMA 
State counter. 

When two or more DMA controller START controls are set simultaneously, the highest 
priority controller inhibits priority to the down-stream controllers. The down­
stream controllers, upon seeing DPIN- high, reset their START flip-flop and DMA State 
counter, aborting the data transfer. An aborted transfer remains pending until all 
higher priority DMA requests have been serviced. 

Priority auction terminates when the auction interval (normally 200 ns) has been 
timed out. 

9-23 



ComputarAutomation ~ 

9.5.2.3 Data Transfer 

When thl~ data transfer illtl_~rval is entl'red, the DMA controller is free to initiate 
d.:tta tr;1I1sfet-~; tIl or from memory or allot~H!r rio controllpl-. J\ll dat.l transft~r timing 
is controlled by the DMA controller per figure 9-15 for memury trilnHfers i,mq per 
paragraph 8.3 for transfers to/from another I/O controller. For each data trilHsfer, 
the DMA controller must generally decrement a Word or Byte counter and increment an 
Address counter if transferring data to/from memory. These overhead operations 
generally take place immediately after a data transfer to assure that address informa­
tion is stable during the next data transfer. When a data transfer is completed, the 
DMA controller enters the Priority Auction stage if more data transfers remain or 
enters the termination phase if all transfers are complete. 

The RST signal should never be used to clear the DMA Data Transfer logic since RST is 
an asynchronous signal and may occur in the middle of a memory cycle. To guarantee 
that the DMA Data Transfer logic is initiated in the proper state when power is first 
applied, the MDIS- signal should be used as shown in figures 9-13 and 9-14. 

9.5.3 Termination 

o A DMA controller should provide for two types of termination: normal and abnormal. 
A normLlL U,rminaUoll oc'curs whpn thc' Word countf'r d(~cr('ml~nt~; to z('ro with no E'rror[; 
detect-eLi. An abnormal LcnninaUoll occurs if an error condjLioll cxi:;f::;. Si.nce lJMA 
transfer operations can be terminated for a variety of reasons, termination flags 
should be used to store the reason for a termination. 

When a termination condition exists (either normal or abnormal), subsequent DMA 
transfer requests are inhibited, Maxi-Bus control is returned to the processor, and 
an End-of-Operation (EOP) interrupt j [; r'lcveloped by the DMA controller. In some 
cases, it may be desirable to have the processor periodically examine DMA controller 
status rather than generate a termination interrupt. 

Typically, the !~OP interrupt service rour.ine will input the termination flags and any 
other pertineut status, and determine if the complete transfer was acceptable. If 
the data transfer was not acceptable, the software may retry the transfer operation 
if it deems it necessary. 

It :is the responsibility of all DMA controllers to terminate with the current bus 
operation and not_ request further bus operations in the event of a power failure 
(PFD- low). This is necessary to allow the Power Fail Restart circuitry to interrupt 
the processor so that a software power down subroutine Ciln be execut.ed. Norm<111y a 
DMA controller will set a termination flag in the event of a power failure during 
active operation so that software will be aware of an incomplete operation. 

9.5.4 Basic DMA Controller Architecture 

A typical DMA controller interfaces between memory and a high speed peripheral device. 
It must be able to emulate the processor in terms of controlling memory and making 
block data transfers of any length. A typical DMA controller must be able to perform 
the following operations: 

l. 
2. 
3. 
4. 

Provide initialization sequencing by programmed I/O or DMA transfer. 
Stop the processor to seize control of the Maxi-Bus. 
Initiate a memory cycle. 
Define either a Read or Write operation. 

9-24 

( 



, ,I 

o 

C): 

·1 e 

5. 

6. 

7. 
8. 

Provide temporary clata storage and asynchronous data transfer to/from the asso­
ciated peripheral. 
Maintain the memory address for the current transfer and increment the address 
for the next transfer. 
Maintain a count of the number of remaining transfers. 
Provide error detection. 

9. Terminate transfer operations (surrender Maxi-Bus to pr0cessor) after the last 
transfer or upon an error indication. 

10. Provide End-of-Operation interrupt or status response. 

A basic DMA controller features a Control section, a Word/Byte counter, an Address 
register/counter and a Data channel as shown in figure 9-16. 

t 

9.5.4.1 Control Section 

The Control section consists of Initialization logic, a Mode Control register, Maxi­
Bus acquisition controls, DMA Priority logic and a 3-bit State counter and decoder. 

The initi.alization logic is used to set up the DMA controller for subsequent opera­
tion. It generates load signals for the mode control flags, the Word counter and the 
Addres~ register. Two techniques can be used to implement the Initialization logic. 
One technique involves the use of programmed I/O to set flags and load registers. An 
al t ,,'rnate technique involves the use of a sequencer and the DMA control logic to 
access a task control block in memory. 

The Maxi-Bus acquisition controls issue the processor STOP- signal in response to a 
DMA request. 

The DMA Priority logic permits DMA operations between multiple DMA controllers. 
During each DMA cycle, the DMA priority is auctioned so that a higher priority DMA 
controller can transfer data. 

The 3-bit state counter is used to time all operations during a data transfer. The 
decoder network decodes specific states of the counter to generate a Memory start 
(MST-) signal, increment or decrement registers and gate data and address information 
to memory. 

The Mode Control register has a mlnlmum of I-bit storage for the Read/write mode 
flag. If the user wishes to implement the Byte mode, a Byte mode flag is required to 
distinguish word transfers from byte transfers. The register may be expanded to 
accommodate other user defined flags as deemed necessary. 

9.5.4.2 Word/Byte Counter 

The Word/Byte counter is a 16-bit parallel-loaded binary counter. During initializa­
tion, the word/byte count that corresponds to the total number of words or bytes to 
be transferred is parallel loaded into the register. During execution, the Word/Byte 
counter is decremented with each DMA transfer to or from memory. The counter also 
requires a word count equal-to-zero detection feature. This feature monitors the 
count during each transfer such that when the word count reaches zero, subsequent OOA 
requests are inhibited and termination operations are performed (typically an End-of­
Operation interrupt). 

9-25 



'" I 
N 
()I 

MAXI-BUS 

I 

~ 

, 

A 

K 

V 
~ 

A 

Kr 

1* 
-:..'_~,~., __ :;:~~:~'::'. ____ -'"%~"Iff-~~,:-P- _~_~_,~""",_c.", 

-------0 -------.,- -----0----------, 

~ 
Transfer Requests & Status -

~ DMA 
C BUS CONTROL "V"'" LOGIC 

<= WORD 
COUNTER 
(16 BITS) 

> -1 
l> PERIPHERAL en 
A DEVICE 
." 

CIRCUITRY l> 
:::c 
l> 

ADDRESS 

k:=~ A BUS COUNTER 
(16 BITS) en 

"" VA ~ D BUS DATA CHANNEL USER DATA 
~ i"l V 

Figure 9-16. Basic DMA Controller Architecture ~ 



c 

o 

9.5.4.3 Address Counter 

The Address counter is a l6-bit parallel-loaded binary counter. During initializa­
tion, the starting address of the memory area being accessed is p.rallel loaded into 
the low order 15 bits of the counter. The MSB of the counter t •• at talse for Word 
mode and true for Byte mode. During execution, the Address cC)'Intar h incremented 
for each transfer (after MACK- is received). During Byte mode operations, the (Select 
Least Significant Byte (SLB) flag is used as the LSB of the address count. When SLB­
is low, the least significant byte of the transferred data word is read from or 
written into memory. Likewise, when SLB- is high, the most significant byte of the 
transferred data word is used. SLB- must be high (or not used) during word mode 
operation. 

9.5.4.4 Data Channel 

The Data channel is a temporary storage element that serves as a staging area for DMA 
data transfers to or from memory. The complexity of the channel is determined by two 
factors. The first factor is DMA latency. DMA latency is defined as the time re­
quired under worst case conditions for the processor to surrender the Maxi-Bus to a 
DMA controller (that is, the maximum time that the processor requires to do internal 
hou3ekeeping and generate a stop Acknowledge (SACK-) signal). The second factor that 
determines Data channel complexity is the user's maximum data transfer rate when 
writing into memory. 

The number of buffers required for temporary data storage in the Data channel is 
directly related to how many word transfers could be attempted prior to gaining 
control over memory. For instance, if the user has a data transfer rate of 750 
kilowords per second, 1.3 ~s would be required for each data transfer. With a latency 
of 5.6 ~s, for example, and a transfer rate of 1.3 ~s, a minimum of four words would 
be transferred and the transfer of a fifth word would have started before memory was 
under control. Thus, five buffers would be required for a 750-kiloword transfer 
rate. Furthermore, the memory capability would have to operate in the interleaved 
mode. It should be noted that when multiple DMA controllers are used, transfers .by 
higher priority controllers have the effect of increasing the apparent latency of 
lower priority DMA controllers. 

The user can avoid the necessity of multiple buffers by use of a Hog mode flip-flop. 
This flip-flop keeps the'STOP- line active and disables down-stream priority even 
though transfer requests are not occurring at a sufficient rate to sustain "Burst" 
mode. In the Burst mode, every memory cycle is dedicated to DMA transfers, i.e., 16-
bit word transfer rate of 625 kHz (single memory module). 

'9.6 PRIORITY AND MEMORY BANKING PROPAGATION' 

It is the user's responsibility to propagate the Interrupt priority, DMA priority, 
Jnd Memory Banking chains regardless of whether or not a module is associated with 
any of these chains. If a module is not associated with any of these chains, the 
corresponding chain signals (namely PRIN- and PROT- for Interrupt prior'ity, DPIN- and 
DPOT~ for DMA priority, and MBIN and MBOT for Memory Banking) must be propagated 
through the module for use by down-stream modules. These signals should be jumpered 
together within the module. The Standard arid Jumbo LSI-2 motherboard input and 

9-27 



i ComputerAutomation IPFM 
t ~~ 
0);' 

~ f output pins for Interrupt and DMA priorities, and Memory Banking, are given in the 

.• ·.1 

·1 

chart below. 

SIGNAL INPUT OUTPUT 
~1NEMON I C PIN MNEMONIC PIN 

Interrupt Priority PRIN- 183 & PROT-' 184 & 

283 284 
DMA P r i or i ty DPIN- 209 DPOT- 210 
Memory Banking MBIN- 237 MBOT- 238 

Modules associated with Interrupt or DMA priority, or Memory Banking, should use TTL 
gates for unloading and driving the corresponding chain signals. It is imperative 
that the propagation delays internal to the modules be minimized. A total of two 
microseconds is allowed for signal propagation through all modules in a chain. The 
implementation of expansion chassis buffer board look-ahead propagation limits the 
longest signal propagation path to the maximum number of modules that can be in-

·stalled in two chassis (20 half-board modules). Signal propagation delays should 
therefore be held to less than 100 ns average per module. 

9.7 I/O BUS LOADING RULES 

For loading rules, see Maxi-Bus electrical characteristics, paragraph 8.6. 

9.8 POWER AND GROUND SYSTEM CONCEPTS 

The power supply that is furnished witl! an LSI-2 Series computer produces three 
voltages: +5 Vdc, +12 Vdc and -12 Vdc. The +5 volt supply is used to provide the Vcc 
voltage for all integrated circuits in the processor, memory and I/O modules. The 
+12 and -12 volt supplies are used by the processor and memory modules and are avail­
able to all 1/" modules if needed. Typically, the +12 and -12 volt supplies provide 
power for analog and communications type interfaces. All three regulated voltages 
share a cornman ground system referred to as logic ground. 

Power (+5, +12 and -12 Vdc) and logic ground are distributed from the system power 
module through the motherboard to all plug-in modules. Within a module, +5V and 
ground are distributed by means of bus bars. The power and ground pins on the mother­
board are organized such that each bus bar can pick up a separate set of pins. 

A typical half-board module has a density of 72 integrated circuits which are organ­
ized in six rows of 12 chips. A typical full-board module has a density of 144 IC's 
organized in 12 rows of 12 chips. Bus bars are mounted in between each row of chips 
and on the outside edges of a board. A half-board module has seven bus bars, while a 
full-board module has 13. Odd numbered bus bars are ground; even numbered bus bars 
are +5 Vdc. 

Most l4-pin chips use pin 14 for Vcc (+5 Vdc in this case) and pin .7 for logic ground. 
A typical l6-pin chip uses pin 16 for Vcc and pin 8 for logic ground. By alternating 
the pin 1 orientation of each row of chips, two rows of chips can share a common +5 
or ground bus bar. The Vcc pins of all chips in adjacent rows are routed to the 
nearest +5 bus bar mounting pad. Likewise, all ground pins in adjacent rows are 
routed to the nearest ground bus bar mounting pad. 

9-28 



The bus bar is designed such that when it is installed, there is a .030-inch gap 
between the underside of the bus b~r and the printed circuit board. This is to 
permit etched circuitry to pass beneath the bus bar without shorting. (Refer to 
figure 12-3.) 

Table 9-1 lists all power and ground pin assignments that exist in the connectors of 
a typical motherboard slot (add lXX or 2XX for Standard or J~bo LSI-2 motherboards). 

Table 9-1. Power and Ground Pin Assignments 

PIN SIGNAL PIN SIGNAL 

1 ,2 Ground 43,44 +5 Vdc 
3,4 +12 Vdc 59,60 Ground 
7,8 -12 Vdc 73,74 +5 Vdc 

13,14 +5 Vdc 85,86 Ground 
27,28 Ground 

There are two ground systems in the LSI-2 Series computers. They are logic ground 
and chassis ground. It is recommended that the user avoid tying these two ground 
sY:3'::ems together. The chassis ground system usually has more noise than the logic 
ground system can tolerate. In the event it is necessary to tie the two systems 
together, they should be tied together at only one point in the user's system. For 
personnel protection, the chassis ground system is tied to earth-ground via the third 
wire in the ac line cord. 

9.9 FILTERING TECHNIQUES 

Integrated circuits introduce switching transients into the +5 Vdc power supply which 
must be filtered out. It is recommended that both high-frequency and low-frequency 
filtering be employed. The low-frequency filter consists of a 2.2 MF, 10%, 20 Vdc 
tantalum capacitor between +5V and ground for each row of 12 chips~ The high­
frequency filter consists of a .022 MF, 25 Vdc ceramic capacitor between +5V and 
ground for every four chips in a given row of chips. Thus, a typical half-board 
module would have 6 tantalum capacitors and 18 ceramic capacitors for transient 
filtering. Where a large number of MSI devices and Fairchild 9602 one-shots are 
used, it is recommended that a .022 MF ceramic capacitor be used for each device. 

The -12 Vdc supply is used by the inhibit drivers in memory. The inhibit drivers 
introduce approximately 0.5 volts of transient noise into the -12 Vdc power supply. 
If the user cannot tolerate this much noise, an inductive type filter is recommended. 

9.10 STANDARD INTERFACE CONNECTOR 

The standard interface connector is a Viking 3VH50/1JN5 or equivalent. This con­
nector features two rows of 50 contacts designated Al through A50 and Bl through B50. 
Contacts Al through ASO interface with the contact strip on the solder side of the PC 
board. Contacts Bl through BSO interface with the component side of the board. The 
interface connector should be installed with pins BI and Al to the left as viewed 
ftom the' rear of the computer. 

9-29 



ComputarAutomation ~ 

9.11 NORMAL INTERFACE PINS 

~ 
~: The interface pin assignments normally used by Computer Automation for device address 
~: and interrupt address jumpers are listed in table 9-2. 
I 
~; , 

Table 9-2. Normal Interface Pins 

PIN SIGNAL PIN SIGNAL 

AOl ps4- BOl +5 Vdc 
A02 PS3- B02 +5 Vdc 
A03 PS2- B03 GND 
A04 PS1- B04 GND 
AOS PSo- B05 GND 
A06 E8- B06 GND 
A07 E16- B07 GND 
A08 E32- B08 GND 
A09 E64- B09 GND 

.\ Al0 E128- Bl0 GND 
All E256- B 11 GND 

c -I 

i 

9-30 



7 'Sf' ,'OttUHYt'Sr 

,;'-
I, section 10 

:fii 1 CONSOLE INTERFACE REQUIREMENTS 

I 
-j 

'I 

I 
.'!III 

.1 

10.1 INTRODUCTION 

A console, be it a standard LSI-2 Series console or a user designed console, is an 
I/O device with a special set of dedicated I/O instructions having special mnemonics. 

The cansote is assigned Device Address 0 (DA=O) and shares this device address with 
the Power Fail Restart option, the AutoLoad option, and the Console and Trap Interrupt 
controls of the processor. 

The console communicates with the processor via the Maxi-Bus and uses a special set 
0' of cont.rol signals (not considered part of the Maxi-Bus) to stop, step, and start the 

proc€;-.,O::· . 

This section provides a detailed discussion of interface signals, transfer timing, 
data formats, etc. This section also discusses the minimum requirements of a console 
and how to add features to the minimum configuration console. 

10.2 CONSOLE - PROCESSOR INTERFACE 

The console interfaces to the processor via the Maxi-Bus (figure 10-1), plus special 
control lines not generally considered to be part of the Maxi-Bus. The special lines 
and the associated functions are described below. The signals are all ground-true. 

SERV-

IF-

Console Service. The SERV- signal is issued by the console to command 
the processor to service the console. The SERV- line may be considered 
an interrupt line with priority over all interrupts, but superseded by 
DMA operations. The processor responds to SERV- by performing a 
Console Control Word (CCW) input (actually, an instruction fetch from 
the console instead of memory). TheCCW determines the required 
servicing. 

Instruction Fetch. The IF- signal is issued by the processor to 
envelop the instruction fetch cycle. In. response to SERV-, the pro­
cessor performs an instruction fetch cycle, which in this case is a 
CCW fetch instead of the usual memory read cycle. The console uses 
IF- to differentiate the CCW input cycle from a status word input 
cycle; both use Device Address and Function Code O. If SERV- is 
issued coincident with the leading edge of IF- or later, the instruc­
tion fetch cycle will cause an instruction to be accessed from memory 
and subsequently executed before SERV- will be honored. SERV- must 
lead IF- by at least 1.6 ~s to guarantee that the next IF- cycle will 
be a CCW input cycle. 



" 

" 

START-

CINT-

SSW-

AL-

ov-

BM-

ComputerAutomation ~ 

MAXI-BUS 

\/ \/ 
If 

Sf:AV 

START--

CINT--
PROCESSOR 

AL- CONSOLE 

ssw-
OV-

8M-

Figure 10-1. Processor/Console Interface 

Start Processor. Signal START- is issued by the console to command 
the processor to resume processing. START- must be a minimum of 
1.6 ~s wide. The processor reSl~es processing on the trailing edge of 
START-. Signal SERV- must precede the trailing edge of START- by at 
least 1.6 Ils to guarantee the processor will immediately perform a CCW 
input instead of a memory read cycle,.hen processing is resumed. 

Console Interrupt. CIN'I'- is issued by the console to interrupt normal 
processing. Signal CIEI-, once issued, must be held true until signal 
IAR- (Interrupt Address Request) is true. 

Sense Switch. Signal SSW- is issued by the console to track the 
console SENSE switch. No synchronization is required. If the SENSE 
switch is set, signal SSW- is true. 

AutoLoad. Signal AL- is issued by the console to command the optional 
AutoLoad logic to perform an AutoLoad sequence. The AutoLoad sequence 
is initialized on the leading edge of AL- and commences on the trailing 
edge of AL-. The AL- pulse width must be 100 ns minimum. 

Overflow. The ov- signal is issued by the processor. OV- tracks the 
Overflow flip-flop internal to the processor. 

Byte Mode. The BM- signal is issued by the processor. BM- tracks the 
Byte Mode flip-flop internal to the processor. 

10.3 CONSOLE TRANSFER TIMING 

There are four basic functions (beyond normal I/O functions) that a console can 
perform. These are: establishment of the stop mode, register ent.ry and display, 
Step mode operation, and establishment of the Run mode. The timing requirements for 
each of these functions are discussed in the following paragraphs. 

] 0-2 

c 



. 

c 

o 

10.3.1 Establishment ~f stop Mode 

During the Run mode, the processor Instruction Fetch signal (IF-) is ground-true when 
the processor is fetching an instruction from memory and is high during the execution 
of the instruction. The console uses the trailing edge of the IF- signal to synch­
ronize the generation of a Console Service Request, SERV- (see figure 10-2). 

The stop mode is initiated by operator activation of the console STOP switch. with 
the STOP switch active, the SERV- signal is enabled. SERV- goes true during the 
execution period of the current instruction and remains true for the next instruction 
fetch. 

upon sensing an active SERV- signal, the processor fetches the next instruction from 
the console rather than from memory. When the processor fetches the instruction from 
the console, it addresses Device Address 0 and Function Code 0 and issues the IN­
control signal. The console, upon seeing IF- low, Device Address and Function Code 0 
and IN- low, places a Stop CCW word on the Data bus • 

The processor vectors the stop CCW word to its instruction register and executes the 
instruction. The CCW instruction algorithms cause the processor to halt. 

INSTRUCTION N·! INSTRUCTION N CCW INSTRUCTION 

STOP 'V r-------------------------------------
o ------------...... L STOP SWITCH. ACTIVATED 

tV 
• IF-

o 

+V------------------------~ SERV-
o 

DATA BUS _ 

• PROCESSOR GENERATED SIGNAL 

:ICOO IIPROCESSOR STOPPED I 

L STANDARD I/O 
TRANSFER TIMING 
ISEE FIG. 8·31 

Figure 10-2. Establishment of stop Mode 

10.3.2 Register Entry and Display 

The register entry and display sequence (figure 10-3) can be performed only when the 
processor is stopped. The sequence is initiated by activation of a Register Select 
switch on the console. The switch activation causes both SERV- and START- (Processor 
Start) to go low simultaneously. Approximately 1600 ns later, the processor resumes 
operation on the trailing edge of START-. 

Upon resumption of operation, the processor recognizes that the SERV- signal is 
active and fetches the next instruction from the console. The console, upon seeing 
IF-, Device Address and Function Code 0, and IN- low, places the CCW on the Data bus. 
The processor executes the CCW instruction and transfers data between the console and 
the target register or memory (as defined by bits 0 thru 15 of the CCW). Upon com­
pletion of the transfer, the processor stops. 

10-3 



o 

ComputerAutomation ~ 
STOP 

tV--~'S~TA~T~IC~C~O~NO~I~TI~ON~'---------------------------------------------

o 
REGISTER SHE':1 SWITCH ACIIVATEO 

.V __ ........... 

SERV·-
o 

.V __ -+_ 
START o 

tV ________________ ~ 

'IF -- o 

OATA nus 'PROCESSOR STOPPEOI 

• PROCESSOR GENERAHO SIGNAL 

'PROCESSOR STOPPlOI 

STANDARD 1'0 
'-----------'--- TRANSFER liMING 

Figure 10-3. Register Entry/Display Sequence 

10.3.3 step Mode operation 

The Step mode (figure 10-4) causes the processor to fetch one instruction from memory, 
execute the instruction and then stop. The step mode operation can be performed only 
when the processor is stopped and the console RUN switch is activated. Activation of 
the RUN switch causes the START- signal to go low. Approximately 1600 ns later, the 
processor resumes operation on the trailing edge of START-. 

Upon resumption of operation, the processor fetches the next instruction from memory 
(as defined by the current value of- the P register) and executes it. The console, 
upon seeing the trailing edge of IF-. J:!nerates SERV-. Upon completion of the execu­
tion of the instruction fetched from memory, the processor fetches a stop CCW from 
the console, executes the instruction, and then stops. 

tV 

STOP 
0 

+V 

START· 
0 

tV 
• If-

tV 

SERV-

DATA BUS 

r--'600MIN~ 

RUN SWITCH 
ACTIVATED 

'PROCESSOR STOPPEDI 

INSTRU( lION FETCH 
& EXECUTION 

• PROCESSOR GENERA. TED SIGNAL FROM 
MEMORY 

fROM 
CONSOLE 

Figure 10-4. Step Mode Sequence 

10-4 

STANDARD 110 
TRANSFER TIMING 



I 
Ii. 
I,',', I .1 

"I }i 

, 
''!l 

r,' i 

II 

o 

o 

10.3.4 Establishment ui Run Mode 

The Run mode (figure 10-5) is established by deactivation of the console STOP switch 
and activation of the console RUN switch. Activation of the RUN switch causes the 
START- signal to go low. Approximately 1600 ns later, the processor resumes operation 
on the trailing edge of START-. 

PROCESSOR STOPPED PROCESSOR RUNNING 

+V 
STOP . r'l--I ----STOP SWITCH L-....-.J 

DEACTIVATED r--'200 MIN"-] 

o 

+V I.J r--------
.~ __ R_UN_S_W_ITC_H_A_CT_IV_A_T_ED __________ <i>~ 

START-

-IF": 

• Processor Generated Signal 

Figure 10-5. Establishment of Run Mode 

10.4 CONSOLE WORD FORMATS 

Four words are used to convey information between the console and the processor: 

1. Computer Status Word 
2. Console Sense Word 
3. Console Data Word 
4. Console Control Word 

The formats of these words are shown in figure 10-6. 

10.4.1 Computer Status Word 

The Computer status word permits the program to store volatile Sense register data 
during a power failur~ and to restore the ,Sense register data during restart opera­
tions. This capability is required with the standard LSI-2 Series console since the 
sense data is stored in a volatile storage register. If non-volatile toggle switches 
are used, this capability is not required. 

The Computer Status word is transferred between the console and the processor when 
IF- is false, using special unconditional Input or output instructions with a device 
address and function code of O. During an SIA or SIX instruction, the console copies 
the state of the SENSE switch (SSW) into bit 3 of the word and the contents of the 
Sense register (DSO thru DS3) into bits 4 through 7, respectively. The internal 
processor status (bits 0, land 2) is generated concurrently within the processor. 
Upon input, the Computer Status word is loaded into either the A or X register. Note 
that the console can drive only bits 3 through 7 during an SIA or SIX instruction. 

During an SOA or sox instruction, bit 3 of the ,Computer Status word contains the new 
state of the SENSE switch and bits 4 through 7, respectively, contain the new state 
of DSO through OS3. 

10-5 



0 

o 

Computer 
Status Word 

Console 
Sense Word 

Console 
Data Word 

Console 
Control Word 

15 7 

0 0 0 0 0 0 0 o OS OS 
3 

., 
l 

I 

4 

DS DS 
1 0 

3 2 0 

SS 
0 0 0 W 

SIA(:5800) ,SOA(:6COO) 
SIX(:5AOO),SOX(:6EOO) 

\. .. _____ ---;., _----~J 
- Y "---v---I 

RESERVED FOR EXPANSION INTERNAL PROCES$0R 
STATUS BITS 

15 4 3 o 

I 0 0 0 0 0 0 0 0 0 0 0 0lo~ DS DS 
2 1 

ISA(:5802) 
I SX ( : 5AOl) 

\. ..... -----------~vr------------~) 

15 

I 
15 

I 0 0 

RESERVED FOR EXPANSION 

0 

a 

16-8 IT DATA WORD I CA ( : 5804) ,OCA ( : 4404) 
ICX(:5A04),OCX(:4604) 

o o o 

6 5 4 3 2 o 

(: lCXX) 

\. ..... ___ y.-___ J 

These bits are mutually 
exclusive; only one bit 
~ay be set at a time for 
proper operation. 

Figure 10-6. Console Word Formats 

10.4.2 Console Sense Word 

The Console Sense word is transferred from the console to the processor in response 
to an unconditional Input instruction with Device Address 0 and Function Code 1. 
During an input operation (lSA or ISX instruct.ion), the contents of the console 
Sense register, DSO through DS3, are copied into data bits 0 through 3 of the Maxi­
Bus, respectively. All other bits of the word are transferred as zeroes. No Output 
instructions are issued by the processor in conjunction with the Console Sense word. 

10.4.3 Console Data Word 

The Console Data word is a full unsigned (absolutp) 16-bit. data word that is trans­
ferred between the processor and console in response to an unconditional Input or 
Output instruction with Device Address 0 and Function Code 4. 

During routine input operations (lCA or lex instruction), the Console Data word is 
input to the processor Aor X register. Likewise, during routine output.operations 

10-6 



i 

'~ 
--I 

o 

o 

(OCA or OCX instructic~~, the Conaole Data word is transferred from the processor to 
the console. 

During a console service sequence, the Console Data word can be transferred to or 
from the processor A, X, I, or P registers as well as memory. 

10.4.4 Console Control Word 

The Console Control word (CCW) is an instruction word rather than a data word. The 
CCW is generated by the console during a console service sequence. The operation 
code of the CCW resides in bits 15 through 6, while bits 5 through 0 are modifiers. 

The processor is designed to respond to eleven different CCW codes. These codes are 
listed below: 

CCW CODE 

:lCOO 
: Ie"" 
:lC03 

:lC05 
:lC08 
:lC09 
:lClO 
:lCll 
:lC20 
:lC2l 

FUNCTION 

stop Processor 
Read Data from Memory, Increment P and Halt 
Write Data into Memory, Increment P and Halt 
Output Data from A Register and Halt 
Input Data to A Register and Halt 
Output Data from X Register and Halt 
Input Data to X Register and Halt 
Output Data from I Register and Halt 
Input Data to I Register and Halt 
output Data from P Register and Halt 
Input Data to P Register and Halt 

Note that bits 1 through 5 are mutually exclusive, i.e., only one bit may be true at 
a time.·· 

10.5 MINIMUM CONSOLE REQUIREMENTS 

A minimal user-designed console should have facilities to stop, reset, and start the 
processor, as well as have system performance indicators. 

10.5.1 Stopping the Processor 

Stopping the processor requires the issuance of a Console Service Request (SERV-) and 
the furnishing of a stop Processor CCW to the processor upon recognition of SERV-. 

The processor will not recognize the Console Service Request until completion of the 
current instruction. Upon completion of the current instruction, the processor 
recognizes the Console Service Request by initiating a CCW instruction fetch from the 
console rather than the normal instruction fetch from memory. The CCW transfer 
timing is discussed in paragraph 10.3. 

The user's console should be designed to furnish the CCW word during an input sequence 
with Devioe Address 0 and Function Code 0 (DA=O, FC=O) ONLY when the instruction 
fetch signal (IF-) is true. Once the CCW is transferred to the processor, the inter­
nal microprogram algorithm of the processor brings the processor to a stopped 
condition. 

10-7 



ComputerAutomation ~ 

10.5.2 Resetting the System 

Resetting the system is accomplished by forcing the System Reset signal (RST-) ground­
true for a minimum of 5 /-ls. This can be accomplished with a switch or a TTL­
compatible, open-collector signal cdpable of driving 32 mAo It is not necessary to 
synchronize or debounce this signal. 

10.5.3 Starting the System 

The system is started by issuance of the Start Processor signal (START-). START- is 
a ground-true signal that must have a minimum duration of 1.6 /-ls. START- should be 
driven with a 32-mA, open-collector TTL driver. 

10.5.4 Visual Indicator~ 

I Visual indicators should be provided for ease in determining t;he operational stdtus 
of the system. Indicators should be provided on the deb~unced STOP switch signal illld 
the system RESET signal. A RUN indicator can be provided by use of a 500-J.ls retrig­
gerable one-shot that is triggered by the Memory Start signal, MST-. As long as the 
system is running, the Run one-shot will be retriggered each time Memory is accessed 
and will time out 500 /-ls after the last memory access following departure from the 
Run mode. The RUN indicator should light whenever the Run one-shot is set. The Byt( 
Mode signal (BM-) and the Overflow signal (OV-) are available for display. If t.hese 
signals are applied to lamp drivers and indicators, an additional performance monitor 
can be obtained. 

10.6 OPTIONAL CONSOLE FEATURES 

The minimal console discussed in the previous paragraph can be expanded to include 
several additional features which are discussed in the following paragraphs. 

10.6.1 Data Entry and Display 

The data entry and display feature provides the capability to enter data from the 
console into the processor registers or memory. Likewise, data from t.hc processor 
registers, memory, or a program can be stored and displayed for operator observation. 

The data entry and display feature requires that the console generate the Console 
Data word. Generation of the Console Data word requires a l6-bit register and 
16 32-mA, open-collector drivers to drive DBOO- through DB15-. The entry switches 
can be applied via the storage register to the drivers. The drivers should be enabled 
only upon receipt of an Input instruction with Device Address 0 and Function Code 4 
(ICA or ICX). 

If the user desires to accept data from the processor, the console must have 16 Data 
bus receivers and a 16-bit holding register. The holding register must be clocked 
only when a Select-and-Present instruction with Device Address 0 and Function Code 4 
is received (OCA or OCX). 

Display indicators milY be tit.'d to the outputs of the ~;toraqe reqister and should 
] iqht- when a corn'spolldjn<j bit is tUH'. 

10-8 

~ I 



I 

o 

10.6.2 Re2ister and NtlffiOry Display and Modification 

This feature permits the operator to transfer the Console Data word between the 
console and the processor A, X, I, or P register or memory. 

This feature requires that, in addition to other bits, the console be able to drive 
DBOO- through DB05- during a Console Control word transfer •. Bits 1 through 5 of the 
ccw must be mutually exclusive, i.e., only one bit may be true at a time. 

The console logic should be designed such that when a register select signal for bits 
1 through 5 of the CCW is generated, the SERV- and START- signals are generated 
simultaneously. Furthermore, the generation of any CCW word, other than the Stop 
Processor CCW (:lCOO), must be enabled only when the stop mode is established. This 
is to avoid possible alteration of volatile data in a user's program during Run mode. 

10.6.3 Sense Register Entry and Display 

The Sense register entry and display feature permits the operator to generate a 
Console Sense word. The generation of a Console Sense word requires that a 4-bit 
Sense register be applied to four 32-mA, open-collector data bus drivers (DBOO­
through DB03-). The drivers should be enabled only upon receipt of an Input instruc­
tion having Device Address 0 and Function Code 1. 

10.6.4 SENSE Switch Feature 

In addition to the four sense lines discussed above, the processor will accept a 
SENSE switch signal (SSW-) that may be tested by program instructions. The ssw­
signal must be ground-true when the SENSE switch is active. 

10.6.5 Console Interrupt Feature 

The Console interrupt feature' permits the operator to interrupt normal processing. 
Console interrupts generate signal CINT- which is sent to the processor. The only 
timing restriction on CINT- is that it must remain active until the processor recog­
nizes the CINT request (recognition is obtained when the Interrupt Address Request 
(IAR-) signal goes ground-true). 

10.6.6 AutoLoad Initiation Controls 

The AutoLoad initiation controls permit the operator to command the AutoLoad option 
to perform an AutoLoad sequence. AutoLoad initiation should only be permitted when 
the system is in the Run Enable mode (STOP and RUN switches are reset or off). 
AutoLoad initiation will take place whenever the AL- signal is forced ground-true. 
The signal must be ground-true for a minimum of 100 ns to guarantee a response from 
the AutoLoad option. 

The user may use the AL- signal to set a flip-flop which, in turn, may drive an 
AutoLoad indicator. A Select instruction with a device address and function code 
of 0 can be used to reset the flip-flop when loading is complete. 

10-9 



10.6.7 Step Mode Feature 

The Step mode feature permits the operator to manually step throuqh a program, one 
instruction at a time. The Step mode is an extension of the stop mode wherein, if 
the RUN switch is aetivated while in thr.: stop mode, the processor will go into the 
Run mode, execute one instruction, recoqnize a console service request, process the 
request, and then stop. Step mode timing is discussed in paragraph 10.3. 

10.7 USER CONSOLE INTERCONNEC'I'ION 
.' 

A user-designed console can interface to t,he processor in two different ways. If the 
user has the motherboard assembly, the console can be interfaced at connector J1. If 
the motherboard is not employed in the user's system, the console can be interfaced 
directly to connector PI of the processor (see figure 10-1)" (Intercabling must be 
limited to 18 inches.) 

-Motherboard connector Jl will accept a 50-pin 3M connector (Part number 34l'j- noOO) • 

'l'his connector is designed to accommodate a SCO'l'CHFLEX'M ribbon cable (3M part number 
3365-50). A, PC board transition adapter (3M part number 3456) is also available for 
the console end of the ribbon cable. Note that power and ground are available at Ji 
in addition to all signals required for a console. The pin assignments for connector 
Jl are shown in figure 10-7. 

10.8 OPTION PACK CONSOLE ACCOMMODATIONS 

The Option Pack provides console skel.econ logic. Included in the logic are the 
following capabilities: 

1. Secondary __ Console Sense regis ter.. Grounding four ;umper pins introduces c()rres­
pondinq - "'gic 1 bits in the Console Sense register word for ISA arld ISX instruc­
tions.. Satisfies requirements of paragraph 10.6.3. 

2. Secondary Console SENSE switd~. A ground jUIllf'r~r on the pill simulates the cOIl;,olc 
SENSE switch in a set state for r:;ollditional jump instrllctiom; only. Satisfies 
requirements of paragraph 10.6.4. 

3. Secondary Console Interrupt switch. A momentary ground jumper simulates a 
Console interrupt. This jmnper option is also availab+e at the .TTY interface 
connector. Satisfies requirements of paragraph 10.6.5. 

4. Secondary AutoLoad switch. A momentary ground jumper simulates the console 
AutoLoad (AL-) signal and results in the execution of the AutoLoad sequence. 
This jumper option is also available on the TTY interface connector. (Jumper is 
active at all times and will first reset the computer if pressed while the 
computer isrunninq.) Satisfies requirements of paragraph 10.6.6. 

5. Secondary Reset switch. A momentary ground jumper simulates the console Reset 
(RST-) signal. Satisfies requirements of paragraph 10.5.2. 

Each of the above capabilities and its implementation is described in section 6 of 
this manual. 

10-10 



• 

0 

o 

,,'e 

+6V-t..-... 

AB05-

AB06-

AB07-

ABOO-

AB01-

AB02-

CINT-

EXEC-

OB15-

OV-

START-

BM-

ssw-

GND--..t ....... 

CONSOLE CONNECTOR 
(3M 3415-0000) 

CLK-

IAR-

RST-

PLSE-

IOCL-

AB03-

AB04-

OUT- , 

SERV..,.. 

OB14-

OB13-

OB12-

OB11-

OB10-

OB09-

• OB08-

OB07-

OB06-

OB05-

OB04-

OB03-, 

MST-

OB01-

OBOO-

OB02-

Figure 10-7. Motherboard/Console Connector (J1) pin Assignments 

10-11 



o 

Table 10-1. Console Special Signal Load/Drive Summary 

SIGNAL CPU CONSOLE 

ssw- 5,6 2 
IF- 2,6 5 
AL- 5,6 2 
BM- 2,6 5 
OV~ 2,6 5 
START- 2,5,6 2 
SERV- 2,5,6 2 
CINT- 5,6 2 

Device types are as follows: 

2 = 32-mA, open-collector driver (7438 or equivalent) 
5 = TTL receiver (7400 or equivalent) 
6 = Pullup resistor (1 Kohm) 

10-12 



I 

"9 
1 

-I 

c 

Section 11 

POWER SUPPLY INTERFACE REQUIREMENTS 

11.1 INTRODUCTION 

This section discusses the requirements of a user furnished power supply. Among the 
items discussed are dc power requirements, power monitor facilities, an optional ac 
line synchronized timing source and interconnection requirements. 

11.2 DC pm'lER REQUIREMENTS 

The user designed power supply must produc~ four voltages: +5 Vdc, +12 Vdc, -12 Vdc, 
and +5 H (hangpower). The +5 volt supply provides the Vcc voltage for most integrate( 
circuHr- in the processor, memory and I/O modules. The +12 and -12 volt supplies are 
use<l by the processor and memory modules and by the MOS LSI integrated circuits. 
Cer'ain analog and communications options use +12 and -12 Vdc. The +5 H hangpower 
supply is used exclusively by the processor; a detailed discussion of the +5 H supply 
is provided in paragraph 11.3. All four dc voltages share a common ground system 
referred to as logic ground. 

11.2.1 Estimating DC Current Requirements 

Before a user can design a power supply, the current requirements of each dc supply 
must be determined. The current load of most standard modules built by Computer 
Automation, Inc. are listed in table 11-1. The load currents listed are worst case 
for each module. The user can determine actual power requirements for his system 
configu~ation by summing the load currents for each standard module (and multiples 
thereof) along with the load currents of any user designed controllers. 

11.2.2 Overvoltage and Reverse Voltage Protection 

It is recommended that the +5 Vdc power supply employ overvoltage and reverse voltage 
protection devices. The overvoltage device must prevent the +5 Vdc output from 
exceeding +6.5 volts in the event of a power supply failure or an accidental applica­
tion of a high voltage potential from an external source. Each supply output should 
have circuitry to prevent damage to its load or the supply itself in the event that 
one supply is shorted to another or to ground. 

11.2.3 Ripple and. Noise Requirements 

The regulator and output filter design of each power supply must be adequate to limit 
ripple, noise and voltage transients to 50 mV peak-to-peak. 

11-1 



~.q;~~~'"~~';;~7~~~~'j:fE~~·"\"-'~ . it '>:;~~~~~. 

r-------------O- 0 

.... 
!...; 

Table 11-1. 

Tabl. 11-1 (.). Processo.r and rio Current Requuements 

ASSEMBLY 
HUIIBER COI1l'lON NAME 

de CUl'"rent (Amps) 
Revision 

Level 

53506-00 I LSI-2 Processor (Ineluding 53507 l1odule) 
S35Cl.OOI P"ograltlfler's Conscleo 
53501-1)0 Progranner's Console 
53589·00 Operlltor's Console 
53505-XX Option Pack (ma)limurn configuration) 
:362'3-01 I/O Distrlt.utor 
;2629·02 I I/O Distributor 
526Z'-03 I/O 0 is tr I butor 
536)0-XX S.',., PICOPROCESSOR lElA) 
S.3631"XX Pllrall.l PICOPROCESSOR 
53632-XX Se"" PJCOPROCESSOR (m) 
53566-U. Floppy Disk Control I er 

t..S3662~OO Protr."...r's Console 

(Note 1) 

All 
c8 (Dell. 1) 

E 
All 
AIJ 

C 
C 
C 
C 
B 
C 
0 

All 

-5V 

7.35 
0.85 
0.85 
0.22 
2. '5 
1.05 
1. ~1 
1.98 
0 .• 5 
0.70 
0.53 
3.03 
0.85 

+12V 

O.OJ 

0.050 

0.050 
0.060 

"ote 1; Devices with this revision level or aboye use low power .jevicas to reduce 
power requil'"ements. 

:wrrent requirements pl'"lor to I'"evision levels indicated were:: 

Prograntfter's Console 
I/O Distributor 

\ Sedal PICOPItOCESSOR (EIA) 
P"'all.1 PI COPROCESSOR 
Se .. ,1 ',COPROCESSOR (f"l'1') 
Floppy Dislt Controller 

1.70 Amps 
3.00 ..... ' 
1.00 Amps; 0.05 Amps. 0.065 Amps 
1.00 Amps 
1.00 Amps; 0.05 klps; 0.065 J\ItIps 
".40 Amps; 0.06 Amps 

Table 11-1 Ie). Half-c&rd I/O Controller CUrrent Requiremenes 

de Cu",.ent (A"'P") 

I -1211 

O. t4 

0.050 

0.050 

ASSEMBLY I 
NUMBER CO"MON NAAE 

~ 
-'2V T~ 

53213-00/ '6-bl, 1/0 "odul. 
5321~-XX 32·bi t Relay Contact Output 
53215-00 32·bit Rela'/' COf'Itaet Input 

·53216·00 61t-bi t Output 
53219·OO! 6lt-bi t Input 
53220 .. 00

1

16 C"annel p.rlorltY Interl'"uPt 
53222-00 I/O Orive 
53223-00 Ut IIi ty I/O Interface 
53227·0 1031202 Data Set Controller 
5)2]6-xx Dual "V/eRT Interface 
5)51)·00 Synct,ronous. 140defll Contreller 

1.50 I 1.50 
, .50 
1.50 

1.50 I 1.50 
1.50 
1.50 
T .50 

i 1. 50 , 
i.20 i 

0.50 
0.50 
1j.IS 

0.50 
0.50 
o 15 

Standard Module Load Currents 

':''1bIe iI-I (b). H~!f-rard Memory C\trrent Requirements 

I ASmBl' I 
--

~ 
I) Rev I, Ion MODEL. 

","BER I CJI'V10~ NANE 

j j RAM/~~"4 Memory 
1165J-38 53650-Uj 256 A.AI'I/r,I;J t;) 8k ROM 
11650-58. '. 53650-:0: 1 K ~ .. Vl/up to aK ROM 
1165C~6S : 5J650-XX 2K R.AM/up to BK RC»! 

j AAM·On I 'Y Memory 
11642-0" ; 5J642·n ' Itw; Words 
11f~42~08 J 536~2-'u ! 81( Wor~s 

: , RAM/EPROM ~<rI()"Y 
11530-52: S3595-.(x ~K JtM/211. EPltQM 
11530' 62 i 53595- xx 21<. RA.I"'/2!\. PR.Of'! 

. ~! ~~~=~.~ I ~i~~~=~~ ~~ ::;~: ~;:~~ 
, Cere Memory 

116il-00J.536 71.U, 4K WO~d5 

I level 

I' 
I' 

Ii 

II 

AI I 
All 
All 

All 
AI ~ 

All 

Act ive 
de Current (A~s) 

-5V +12v I· -'2' 

1.51 i 
0.60 

2.23 0.60 
3.19 0.60 

1.40 0 .• 6 , 0.02 
1.50 0.48 0.02 

2 .• 3 0.01 O. J7 
3.39 0.01 I O. J7 
2.59 0.01 0.53 
3.55 0.01 0.53 

3.20 0.30 0.20 

1.51 
2.23 
3. '9 

1.40 
1. 50 

2 .• 3 
3.J9 
2.5'3 
3.55 

1. ~O 

"I' ctive current IS t"e current draw" by " memnrv module when it Is not being aece •• ed. 
:" 'equirement is. zero without PRO" in·:.talled. Add C.12 AMps for eal;h 51: words of PROf'( ''''sulled. 

Table !.l-1 (d). FuU-Card H&aory an4 I/O Controller CUrrent RequiraM!!nt.. 

I"act :ye 

0.C3 
0.05 

O.C1 
C.OI 
0.01 
4J. ~1 

o. ,~ 

ASSEf1&Ly'l 
., !'4UMB£R COI4l1OH NAME de Current (AnIp.i 

53504-.0: 2/"/81<. ;:,:'e 1600 Memory 

53526·xx 4/SK Core 980 or 16K Core 1200 

536itl-XX 
~/e!( Core 980 

53~77-n: ! 
5J602-XX I 

:)r 1 16K Cor-e 1200 
53673·.r.x ! 
53224·0: ~ ...... gnetic Tape Interfac.e 
53512-.x.c: Asynl;hro..,o1,.;s "'adem Hu!tiple:w.er 
53530·00 I Moving Head Disk Controller No. 
53531-00 I Ml)v:n9 Head Disk Coro.troller No. 

+5V 

2.08 

3.00 

3.00 2.80 

~ .90 2.30 

3.00 
3.00 0.30 
3.50 
J.oe 

+5V +12..- -12V 

, .85 ~.'5 O.2C 

2.50 c.~o ,. '5 

4.50 2.50 : 50 0.2: 

•. 60 2.50 J.5O ~.l~ 

0.30 

-'2V 

0.60 
0.60 
0.60 

0.02 
0.02 

0.37 
O. J7 
0.53 
0.53 

0.20 

i 
I 

~ 

----------------~ .... 



:·1 

c 

,I 

11.2.4 Turn-oh/Turn-Qi£ OVershoot 

Turn-on/turn-off overshoot should not'exceed two percent (2%) of the nominal voltage 
output of each dc power supply. 

11.2.5 Regulation Requirements 

Each dc power supply should maintain a regulation envelope of +2 percent of nominal 
output voltage from a to 100 percent of full rated load over the expected range of 
input line voltage and over a temperature range of OOC to SOoC. 

I 

These regulation requirements must be maintained at the processor module. Remote 
sensing must be employed when voltage drops in the power supply wiring are of suffi­
cient magnitude to cause voltage regulation to exceed +2 percent when the load current 
is varied from no load to full load. 

11.2.6 DC Power storage 

The +5 Vdc, +12 Vdc and -12 Vdc power supplies must have sufficient storage in the 
regul;\t'i_:)n ~-.o insure regulated output for at least 2 ms after a power failure has 
been detected (refer to paragraph 11.3 for details on po~er fail detection) . 

11.3 POWER MONITOR FACILITIES 

The Power Monitor Facilities must develop a +5 H (hangpower) voltage and a ground­
true Power Failure Detected signal (PFD-) for the exclusive use of the processor. 
(See figures 11-1 and 11-2.) These prov~S10ns are required whether or not the pro­
cessor Power Fail Restart option is used. 

11.3.1 +5 H (Hangpower) Regulator 

The +5 H power supply must provide auxiliary +5 Vdc power for use by the processor to 
assure proper startup and shutdown. The +5 H supply must be the first de voltage to 
come into regulation upon application or restoration of ae line power and the last dc 
voltage to drop out of regulation upon loss or removal of ac line power. 

The +5 H supply must provide 200 rnA of dc current at +5 Vdc and regulate this voltage 
to within ~5 percent of nominal. Ripple and noise must be within 50 mV peak-to-peak. 
The +5 H supply must be in regulation at all times that the +5 Vdc and +12 Vdc sup­
plies are above 10 percent of their specified values. 

11.3.2 Power Fail Detector 

The Power Fail detector must sense when the nominal ac line voltage falls below its 
minimum sustaining level. When this minimum sustaining level is sensed, the Power 
Fail detector must generate a ground-true PFD- signal for use by the processor. 

The Power Fail detector must als.o have a timing function that turns off the +5, +12 
and -12 Vdc regulators a minimum of 2 ms after PFD- goes low. 

11-3 



c 

b ht#± ''bt*' , 'dt wet;"' • " , LAt ,M t ¢ ,,'1'$ t, ¥' 'nw ! tI'eWtU"WrtfZ"i::::ItlrIm'*'*!t!N:I:! 

When the ac line voltage rises above the minimum sustaining level, the Power Fail 
detector must turn on the +5, +12 and -12 Vdc regulators after allowing for a charge 
buildup in the storage capacitors of each regulator. The PFD- signal must remain in 
the ground-true state for a minimum of 2 ms after the +5, +12 and -12 Vdc regulators 
have reached 98 percent of their nominal values. 

The PFD- signal driver must have a minimum drive capability of 20 rnA dc and must be 
collector-ORable. The driver may be implemented with either discrete elements or 
with an integrated cin:uit. nH' loqic ]('vels for PfO- an' .1:, follows: 

True 
False 

0.0 to +0.45 Vdc 
+2.4 to +5.0 Vdc 

PART OF 

POWER 

TRANSFOfiMEfC 

>-

>-

PFO-

+5 VDC 

t 12 VDC 

.5 H 

J 15 HANG 
'0 H 

REGULATOR 
I]OOMA) 

~-:? 

PROCE:SSOR 

powtR FAIL .-.-. ~~l~lfIN~~,~~~~~~s 
[)rnCHJA 
mf Tf r., ~l 
liNE VOI.TAGF 
I\MPa/ll!fH I PI D .. 

Figure 11-1. Power Monitor Block Diagram 

DOWN SEOUlNCE UP SEOUU,CE 

~~o 
Tirn~ ., 1 mllhsecuflfh m"1 'lorn f,jlltnf) f'ligt! pI PF 0 _. u"t,1 "rst nlCjulau-d voltage rlf()n~ out 

+b H \/olt&gA IRI/f"I undelllwd wht'll +!) "",11; lImllt'} VIII ai" :5: to'~ III nommal 

Pfd· und.hned when tS H I~ ~ ~l!)"'" of nominal 

Tnl'lf' .' 1 milli~(:onfl\ tTI'". from onov. point 10 rising rdgp. of Pf 0 

Figure 11-2. Power Monitor Timing Requirements 

11-4 



11.4 AC LINE SYNCHRONIZED TIMING SOURCE (OPTIONAL) 

The processor Real-Time Clock (RTC) option has provisions for a timing source input 
which is twice the ac line frequency. The RTC option represents only one TTL load to 
the timing source. The timing source output must be a TTL-compatible logic signal 
with rise and fall times of less than 50 ns. With regard to the duty cycle of the 
signal, the only requirement is that the signal be ground-t~ue a minimum of 100 ns. 
The processor refers to this timing signal as TTLF- (Twice the Line Frequency). The 
logic levels for TTLF- are as follows: 

True = 0.0 to +0.45 Vdc 
False = +2.4 to +5.0 Vdc 

11.5 INTERCONNECTION REQUIREMENTS 

The user furnished power supply may be interfaced to the computer system in two ways: 
at the motherboard or directly at the processor. 

11.5.1 ?tandard Chassis Motherboard Interface Requirements 

In the standard LSI-2 chassis, 'the user may interface to the motherboard at slot FIOO 
(see figure 8-10). The motherboard distributes power and ground to all plug-in 
modules via the F100 connector. The FIOO connector is a 36-pin connector with two 
rows of 18 pins. When viewed from the rear of the computer, pin 101 is to the right 
on the upper row of contacts. The odd numbered contacts (101 through 135) are in the 
upper row while the even numbered contacts are in the lower row. 

When interfacing to slot FIOO, the user must provide a special PC board transition 
adapter. A detailed drawing of this adapter, showing critical dimensions, is provide. 
in figure 11-3. The interface pin assignments are shown in figure 11-4. 

11.5.2 Jumbo Chassis Motherboard Interface Requirements 

In the Jumbo LSI-2 chassis, the user may interface to the motherboard at twelve 
single-pin connectors (J4 through J9 and Jll through J16) and one 12-pin connector 
(JIO) on the side of the motherboard (see figure 8-11). Pin assignments are as 
follows: 

J4 Gnd J10-A -12 V J10-1 
.... 

J 11 Gnd 
J5 Gnd J10-B +5 V J10-2 J12 +12 V 
J6 +5 V Jl0-C PFD- J10-3 ). Gnd J13 Gnd 
J7 +5 V J10-D TTLF- J10-4 J14 Gnd 
J8 Gnd Jl0-E +5 H J10-5 J15 +5 V 
J9 -12 V Jl0-F +12 V J10-6 ... J16 +5 V 

Mating connections to the twelve single-pin connectors can be implemented using 
twelve .AMP 42332-2 Lug Connectors, or equivalent. A mating connector for the l2-pin 
connector can be assembled from an AMP 583873-1 Connector Housing, or equivalent, and 
twelve AMP 583853-5 Contact Pins, or equivalent. 

11-5 



nte 

• 

1M. 'M' tt . It Wt .... 'AWl tit 

ComputerAutomation ~ 

11.5.3 Interfacing the LSI-2 Processor Directly 

If a motherboard is not used, the user may distribute power directly to the ISI-2 
Series processor. The processor has two connectors, designated Pl and P2, which must 
be powered. Refer to table 8-1 for the appropriate power and ground pin assignments. 

CABLE INTER­
CONNECT AP.EA 

Ir~ I 
-'1~:~4eOo J 
~ 17 EOUAL SPACfS 

AT .1 56!.OO.3 EQ.2.652 
TOl. NON-ACCUMAl ATiVE 

.50 2.933 ----I 
1.005 

..... ------ 3.94 -~---~ 

CABlESTRAI III 
RELIEF AP.£A 

I 
2.00 MAX 

.62 

.~6MIN 

BOARD THICKNESS 
0.062 

Figure 11-3. Standard Chassis User Power Supply Transition Adapter 

11-6 



~I 

, I 
'I 

1 

'f'· "'1 f! ". '/ t"'" WHeWft&' , '"' '.1 ."'lrf' .. '1'.:ftAIr .... """i" '* I'ft' 'g'Nti "ni'*?" "lit'rtHdhWl/ 

TTLF- --ot 

+5H--.. 

PFO---.. 

+5V-.... -I 

GNO ........... -t 

+12V ........... -t 

-12V - ... -1 

+5V-... -t 

SLOT F10D 
INTERFACE ADAPTER 

1-_e--12V 

t-... -+12V 

I-"'-GNO 

(POWER SUPPLY MUST INTERFACE 
TO ALL PINS AS SHOWN) 

Figure 11-4. Standard Chassis Motherboard Power Adapter Pin Assignments 

11-7 



,"" 

J."I 

rrl tri*Mf + btl "is n wW8tjrji .we' en 

o 

Section 12 

INTERFACE CONTROLLER MECHANICAL CONSIDERATIONS 

12.1 INTRODUCTION 

This section discusses the mechanical design of printed circuit (PC) boards which can 
be installed in LSI-2 Series computer chassis. 

Either full or half PC boards may be used. When half boards are used, two half 
boards are joined together to form a full board. 

All boards use bus bars to distribute power and ground to circuits. The bus bars 
minimize the ground and power etch runs, leaving more space on the board for signal 
etched circuit routing. The bus bar design permits etched circuitry to be routed 
beneath the bus bar with no danger of shorting. 

Fiberglass or metal stiffeners are used on all full boards to eliminate sag and 
provide improved structural integrity. 

12.2 CHASSIS CONSTRAINTS 

The computer chassis are designed to accommodate PC boards which are 15 inches wide. 
All boards are installed in the horizontal position. When installed, the chassis 
provides four-way support for the PC board. The PC board guides support both sides 
of the board, the motherboard connectors support the front, and a board retainer 
supports the rear edge. 

The thickness of the PC board is determined by the motherboard connectors. A typical 
board is 0.062 inch thick. The motherboard connector permits variations in thickness 
ranging from 0.054 to 0.071 inch. 

All components, stiffeners, bus bars, etc., are mounted on one side of the board. 
This side of a board is referred to as the "component side", while the other side is 
referred to as the "solder side". Boards are always installed with the component 
side up. 

The chassis PC board guides are spaced on O.75-inch centers. The height of component~ 
on the component side of a board and the lead protrusion on the solder side of a 
board must be minimized to permit unimpeded airflow and easier insertion and removal 
of PC boards. All components should be no higher than 0.47 inch maximum. Lead 
protrusion should be held to 0.062 inch maximum. 

The PC board guides are an integral part of the metal computer chassis. To prevent 
short circuits on a board, the user should not permit any etched circuit runs closer 
than 0.200 inch from ei~her edge of a board. 

12-



"w6Wt)' 'tw'et 'in'" wifWH& W'M), .. e' . ti't' ,'t f' HW 1J#'UMi1WtttN: W'tt .... up 

12.3 PRINTED CIRCUIT BOARD CONSIDEHA'fIONS 
~. 

~i Figures 12-1 and 12-2 show the critical dimensions, hole patterns for bus bars, and 
~i stiffener and integrated circuit layout organization for a full and a half board, 
.1. 

~! respectively. 
1: 

The motherboard interface dimensi.ons are extremely critical and must be anhered to 
rigorously. 

The rear edge of the full board can accommodate two interface connectors (one for 
half boards). The 1.250-inch dimension from each edge is the area reserved for the 
board extractors (Part No. 40-06100-00). The O.SOO-inch dimension at the center is 
the area reserved for the board retainer. The remaining area along the rear edge is 
connector area. The 6. 350-inch dimension is the maximum allowable area that t.he 
mating connector can occupy. The overall length of a connector cannot exceed this 
dimension. 

The rear edge of a half board has room for only one interface connector. A distance 
~f 1.210 inches must be reserved for a modified board extractor (Part No. 00-00296-00). 
This leaves 5.0S0 inches of useable connector area remaining. The 5.0S0-inch dimension 
is the inside contact dimension of the standard 100-pin interface connector. 

Half boards must provide for a board extractor at both rear corners, although only 
one is installed depending upon which way the board is strapped to a second half 
board. 

Figure 12-3 shows the standard PC board hardware. 
layout planning purposes. Connector data on the 
rear-edge interface connectors is also provided. 

12.4 WIRE-WRAP BREADBOARD PC BOARD 

All dimensions are provided fat 
motherboard connector and various 

A wire-wrap hr"adboard PC board (half-board configuration) (figure 12-4) is available 
from Comput.er Automation (Part number 13234-00). This board features 72 IC sockets 
with wire-wrap posts, ground and power busses, and filters. The board can be useful 
for prototype development and checkout prior to making a formal PC board design. 

o 12.5 FILLER PC BOARDS 

Two filler boards (figure 12-5) are available for physically joining with a memory 
or I/O module as described in section 2. Filler Board model 63-l363S-02 (assy 

~ 73-5363S-02) passes all priority strings when joined with a memory or I/O module. 
Filler Board model 63-13265-02 (assy 73-53265-02) is a blank board used as the last 
board in a priority string. Order by model number. 

12-2 



I-' 
"-l 
I. 

W 

e 

'Y.E: .'1)-

Ct<OW'ER 
.I8X4~o 

2 P\.ACES 

.!lOO 

J --'.""-_""'"4"~~"'{~""O '~~~?~~f"'>i.~~'7"-':.::<-

o e e 
14 

,- . 14000 -I 
.0. R TYP 

_~C~A"FER 
~Q.3 x 45- TYP 

'--------1'1,..:: TVP 

~OLE SCHEDULE 

HOLE FI"lISHED 
REMARKS QTY SY"BOL "SAC;E DIMENSION 

A +004 PLATED 
~ REF t&.~pME~'r Bc"JDf~"t~g .035-:00; THRU 

,,028 OtA MAX!ML,;M 

:3 Too.JNG Ha.ES RlRT OF STO 
BOARD Cc>4FIGURAT!ON . 

B • 140~:~ ''0 12 • STIFFENER P-O...£S PART OF 5TO 
PLATING BOARD CO'iFIGURATiO~. ,. , + ~'itY .. ~~; ~_ ~Tf.\l~'k~:OR 

L THIS ~ OF FORMAT TO BE 
USED ~ ALL DETAIL FA8 
DRA"""GS 

-L 'OR ~nE N'ORNATiON J 
REGARDI,.c; RECOMENDED "" 

~E ~T~ ~-'~04 

@J TH!S 4REA 10 BE rREE ty SOLCER. 80TH S~:-£S. 
9. SH£PS AS sPECIFIED BELOW (SH. I "'HRU 7) CCM~ISe A COMPLETE SET O~ 

DQC:""II'ENTS FOR FABRICATION OF A PCB. 
SHEET 2 PAD .. ..sTE". 

t 3 COMPONENT SIDE "I"'. 
4 SOLDER SIDE" I ... 
5 COMPONENT SIDE SllKSCRHN M,A,STE:o. .. 
6 SOLDER SIDE OOLDER "'ASK. 

.--------------I~29. -1 s><EET 7 C;R(UND PLANE (IF REQUIRED). 

m ~"!"A(T FINGER PLAT1NG AREA • ...... -----------; •• 886 .! o Tl-tESE OI~ENS10NS ARE ESTABLISHED FP.OM T'004£ "RTWORK .. 

DETAIL ~\ 
12 PLACES 

COMPONENT SI DE 

6. STAMP R.EVISION NO •• (OLOR BLACt( t (","RACTE;;' "EIGHT .090 "':~'4IMLIr". 
5, SIU(SCREENINCi TO BE WHITE, COMPONENT SIDE Pf;:ll SI-iEET 5. 
4. ALL PLATED THRU t-+OLES TO CONfORM WIT ... 8~-2""".,,:;..7-OC .. SEC 3.~. 

WHEN STIFFENER 
IS uSEO 

3. FINISH,@ SOLDER PLATE RE .... ,NDER CF ~P: ~" 8';-2OIO,7-oo,5EC. 3.6.2.-5. 

® (~~E~~~~ 80TH SIDES Of ~~C """ 85-201017-00, SEC. ~.8. i 
© A":;ERS 10 BE GOLD CNE'" "CHL PER M-2OIOP-OC.;EC. 3.6.1.3 & 3.6.'A. 

2.. MATERIAL~.063 THICK COPPER-CLAO,2 SI:ES, CrLASS £POXY .... A;.!I,A7E G~ U::'lo), 
2 Ci! AFTE" PL .. TlNc;. 

@ THESE ARE DESIGN DIMENSIONS ONLY 
I. FA8RICATE PER THIS DRAWING AN'] C.A.l. SPf.CI~lCA""~ !~-2'~X:'7-00. 

9. PLAiE~ T).IRI.,; I-iO...ES SHAll. BE I<EP1' '0 A MAXIMUM 0: T~EE DiFfERENT SIZES. 
FAB!l!CATION NOTES' THESE '.(JTES "'LL A~AR ON >t.c ~TAIL 'AS OQA.".G5 

&. THE S".A.".CAQ.DS DEP;CTEO ON THIS DJ;A'N1NG ARE SUBJECT TO CHMIGE UPON 
WRiTTE ... APCRO"AL FROM PROJECT E~,NEE.R. A"I) OA.AFTI~ 'Sl;PERV!SQR. 

7. FO~:).f~ TC ~~E ASSEMBLY CONFIGURAilO~ seE .... A'(OUT NO. 69-20079-00. 
£. AREA u'4)ER S",F'ENER (DIOG'S 72-1()()48-oo & 72-20046-00) SHALL BE FREE OF COMPONENtS. 

@) ~"o...USI~ JI"o'W'~;~ .~~~E~2C&.~~~"'~D~TCH FREE A"'EA SHALl BE, 

.~\t'~ ~Er~~~2;g ~~"~~M~ZE~·,o-:~~MT~~~~ ~~N~LL BE, 
SHALl. BE C1lNSULTED. 

4. 

~ 
ETCH S><ALL BE NO CLOSER THAN .050 TO ANY EDGE. CUTOUT, HOLE, ETC. 

OOEN:)EO 10 MATE WITH CONNEClOA. 17-4907!>-00 OR. fQUI'''. 

INTEF\O£O TG MATE WITH CONNECTOR 17-1003';-01 O~ faUI". 

SHADED A"EA SH"LL BE FREE (J' FEED THRU HOLES "NO ETCH. 

QESIGN l"FQPJ.o>TION NOTES 

Figure 12-1. Full Board Design Guide 

-"" 

~ 
I 



of 

--------------------C) • ~ 

~ 
N 
I 

.c. 

.. :(.-
@ 

& 

r--
j 

fl"<~ 

@ 

'-- ,3.l'JC @ 
'O.350@ ------~ 

:.. r.7'"o@ ---~ 

j. ~.100@ "I " r-,.&>O@i 'I 

-1 
I ;'2 "LAC,S 

1.1 

i r--.~'"IC @J 
2 P_ACES 

,r.03 I; TYP 

, , I ,/ /r.~~"~~4E~ ~.'p 

1// 

Ie Ie :~=-----r - - TC mrl I ( le' Ie _ "_ 1______ _~~' '" 
., " .' I_I 1 , I H ---I' ,. "2'~,AC" r~~_-:;-L~ -I '--I ! i I, I :~\ ; '''' ';' ;~~?i ~~~:' :;:f:~' ~.t':~:~t 

' @ I --~ ,,480 B J 0;0';093 I oL~i'ING 3 I '"" ;."".,0 -Cc'~ .":, 1 ','~, , "1"1 " ' ,~,~", "...l.l(~' ;:"0: ::';""=-.:.' ' 1 "". " 'I i J>\ .'~ "l."c :oc j """0:..L .' ," • ""' , , , I'" -,_co, ,>" 

@;lI

l

lin lll ,.",TYP<' (1' FQ.~A' '9 9E_~-,,:0~~~>~c?'/: I I 1-- ,''' I ~,m,,;;," ,P', " ;'~'~_"" 
II c~o ilf] iii 'I • ':~~~:'ti' ~ ~\;~4\:1:i:k~;;:",X;'~;"" 

' "-.' , '+O,='-~ "" "~",,,' '''' , • 
I i 1.0 --r )~., i I ; 'c --- 1 i i-~ , 1 J....3!>3@ @ j, soc:i\~T)~,:,,!Ns' L<SCQ", ~~'-'= ' ~ -'-r~'''l"A, , -+f ' ,_ • ,~" .. ,', •• ,,, 
,.6," ',~'"', 1,''+-' I, , ,= ; 1 "~v;:o,, , , ,\ ""'" ,~~:.~.= (;j:" ~Ea",::f: 
t '". I "', " , ['] "", , '" '« .. ", '-, ,~ . '" ",,,,, ' ,'" JI " 1 s. "JG ~ '6.03 :--1 l..-:<,~ 

.2"" ,JJ ., ,,- -I": I' ' "',U, = '., ,,'~ t-.-~ I· , "" ~ 
- ','TtP..! 

--I 1--.= 
1; --':.5;:: ·'-:'·~:'U.5 .;.;::lE :5TABl_:_£: ~~ --..::: ~- ... :;::~. 

L....~, 
o;c.o'~ • ~ I IYHE~ STIFFENE~ t ,,_ _ '", IS WSEC 

-G 
OETA:L j\ 
12 PL4(ES 

-

@) fHESE AR.E 'JE3IGN DIMENSIONS ONLY 
;.. ;;.,_to'''::: --::.. .... -::....ES S-Ac. ..... SE KEV TC ~ 1!A.}:1t.1uM OF ~"''"'EE ,1f"EJ;£",- s ::'5. 
e. _ :-:'~ . .:;.A':':::' :~;. :-C :.N T'"115 C:.AIo'· ... ~ APt 5liBJE.:~ l'; ::-IA',::::: .... ~#o, 

oII=-""'''t''' :";PRC"A~ ~k:'~ P~Q,;ECT E"£I',EU ... e. ... o CRAF";iNG :::_::lE;;."SJ:l.. 
1. I=QR ~F. ~c ""E A.'~SEMo,."Y C()lt.F.::"0RATlOr-..,SEE ... MooT NO. 69-20079«. 

Q. ~~E~~~8t~,,;~~HENEq (0\11:'5 72-ICQ48-0Q A~D 72-2':;046-00) St'-t..L ;~ ;=':E 

(ll .1;g\:: .~·e ~~~~;~~;: ~:~~:f~~AR~~.3r~~·~,~~~EfbEE:Cr< ;;"'EE AQ~A ::"A~_ e~ 
. ~1>A;i'Z~~~~~'i!:~~~]t~~;~ :.-;-~.w~3~~~l~;~S;~3) ~~~~~:~E~ .. ~,:. ~: t·:.~- ~~. 

~ E-,.- ... S ... _ ;.~ ... :. - _:'::::;:" r"'Ar-.. .:::" .. C -:: ,!,',V EDGE. r:l.i;.)~ T, He_E. fiC. 

~ _"'-:'.:E:; -C ~A.-E '""- .... C')~NE(TOR '?-49C''j-OC OP EQ!.;i\;, 

~ iN'S""::;E.!) ... " IIo'IA"'S YO ..... CON",EC"OP 7. 0..,,3')·01 OPO EOUIV. 

\....L) :"'ACC A';.;'" S .... l_ 8~ I=P.E~ Cr: r:EEO - ... ;;.. hOLES. .. ",,:) ETC"". 

(JESIC,"'I ~Fc:.:'MA" ·C .... _"-0 T'ES: 

Figure 12-2. Half Board Design Guide 

e. STAJr,I~ ;;::. :: :', ·40 .• C:,-C~ EIL.).(I(, C-t..:"~·:= -.:.:",-- .:;: 

:..o(s..:=H' '.: -: 3~ *''''~:;,::'M~'''P- ::S~ ~:;. :-::-
4 ...... :::.A"'::: .'"'~ ",,:,'.ES -: CC~'CRM ,,~- ~.!-:!:~-::,::: 
3. :; ·.-5~· 

:,. _~_::.;. ::;-,t.': :l;l.:'04A~,:.:::. :~ &C:.;;.: =-:::. ~-._ 

~ ~~~::~;)~~~~ !:: .. =.~ .:.';. 

=·"::;E:': -: ;c :..:.:. :,,::. ',:"':. ;:::~ 
A\: ;.': . .:.. 

~:: -?:: 

2. '.-IA-£=-,.t..: .:::': "-;:..: _ .. =::~:"< __ :.'; ~ ::::. - __ :: ::;'--;.'. 
:,= .: =':<c. .::.;:: ,;,;- E~ po~t. - ',.':;. 
=:..a:l,I(.:. ~ =::= .-.~ :.,;,:. ....... c A'-o: ':.':'.: ;;;::-; 

FAD"'-',~~~-Q"" ~.C·:~: --::: . :r::s .\ __ .:.;:.;:.-:.:..;:; flo. .\ __ ~ :---A -,,--"0' . 

i 
I 

~ 



I, 
f-' 
tv 
I 

U1 

:. 

e 

MOTHERBOARD CONNECTOR • 
(POWER SUPPLY CONNECTOR) 

F==='~~ 
6772 ~ 
12.933) 

~~----------------- ~ 

~_w I;~) ~ 
86 PIN PN 17·10035-01 

136 PIN PN 17· 10035·02) 

REAR EDGE CONNECTOR VARIATIONS 

3 F-~ 
at~ ---- --- ---- ~-~ ~ -..: -=--=-.:. --=~:b 

I __ _ _ I 
100 PIN 

PN 17-IOOOI-50PO 

k J~ 
!¥------!n~_---.Olll~ 

~---J~~: ---J 
d- ... ---~~~-- -~ \-~_. ________ .. ___ . ...1:. ____________ ~ 

56 PIN 
PN 17-I0002-28PI 

~L955 J~ 
JI-------------- ___ l ~ 

36 PIN 
PN 17-I0002-18P1 

o 

Figure 12-3. 

e -
BUS BAR (pIN 72-10054-XX) 

~ 
~ ~ 

... ------------668 ~ 
548 _I 

• 28 ~ PINS' .4.8 
··DC .. 180 

1 I 2 I 8 9 

PI"I51.B,15 

PINS 1.6,12 "')11· 180 

-Q~I· .180 

13 .. .. 16 

~.':Jl 
T 030 f 1---1 

O~ ,~ 

y-----y----y T Y 

:=r-
STIFFENER (PIN 72-10048-00) 

rt= :3 ~ {-== 1:=1 e:::= E:::d 
I20TY" 

-L ~ ~ d; &: ~ C=-~ (;.:5 '.00 , L£J 
l,."..t. :~""m "'IL' 

~ ,... «lOTY," l;zo'm. 

-IX" 

FULL BOARD CARD EXTRACTOR (PN40-06100-00NO) 

.. NOTE: The half-board card ex­

i5r .08' OIA. 

MOUNT1NG 

[I:;: ]} 

Standard PC Board Hardware 

tractor (PNOO-"*-OO) is the 
same as the fuU-bIIIU'd extractor, 
except .130 btcIIiWI of material 
are removed ..... tip of the 
extractor. 

~ 
I 



ComputarAutomation ~ 

Figure 12-4. Wire-Wrap Breadboard PC Board 

12-6 



dft-':tt!"'V"rfi'Mfd,'wH"'tW'M "rltd 1'1'1 ,"'·3' At l' Hrt'tt'*f"tft% t n M J eft> "ret" ot!dtt!:fHoohittft 

ComputerAutomation ~ 

Memory or I/O Module Filler 

c 

Blank Filler 

Figure 12-5. Filler PC Boards 

12-7 



, 'I '''j hit ... ' t 'l 

-----------' CompuWAuIDmaIIo <rA -

Appendix A 

HEXADECIMAL TABLES 

Tables A-I and A-2 are quick reference conversion tables that have been included for 
the convenience of the user. 

A-l -



'i:"*"Rnm j 21 ' m',I!. dtnnttt'\ ''"''**''''OI"riWti 

Table A-I. Hexadecimal-Decimal Conversions 

This table is designed to facilitate conversion of positive hexadecimal integers in 
standard single-precision or double-precision format to decimal equivalents. The 
fourth and eighth digit positions therefore contain only values in the range ;0 
through :7. 

HEXADECIMAL 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

o 

E 

F 

DECIMAL EQUIVALENTS 

.DIGIT 
8 

DIGIT 
7 

DIG IT 
6 

DIGIT DIGIT DIGIT DIGIT DIGIT 
5 432 1 

134217728 8388608 524288 16 

268435456 16777216 1048576 

402653184 25165814 1572864 

32768 4096 256 

65536 8192 512 

98304 12288 768 

32 

48 

64 536870912 33554432 2097152 131072 16384 1024 

671088640 41943040 2621440 163840 20480 1280 

805306368 50331648 3145728 196608 24576 1536 

939524096 28720256 3670016 229376 28672 1792 

80 

96 

112 

67108864 4194304 262144 

75497472 471G)92 294912 

83886080 5242880 327680 

92274688 5767168 360448 

100663296 6291456 393216 

109051904 6815744 425984 

117440512 7340032 458752 

125829120 7864320 491520 

2048 128 

2304 144 

2560 160 

2816 176 

30]2 192 

3328 208 

3584 224 

3840 240 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Hexadecimal to decimal conversion is accomplished by summing the decimal equivalents 
of the hexadecimal digits. Decimal to hexadecimal conversion involves locating the 
next lower decimal number and its hexadecimal equivalent and then taking the dif­
ference. Each difference is treated similarly until the entire hexadecimal number is 
developed. 

A-2 



"1' , t % 'Nt'de - ttht' ".' 
't • t '1M -.fwru 

!l· 
I' Computer~ ~ 
! 

1 
r ;! 

~: 
~. e Table A-2. Eight-Bit ASCII Teletype Codes , 
~' ~ 

fi 
Ii' 
rl Hex Hex 
'.1 Value Card Code Graphic Value Card Code 

Graphic 

Blank :AO Blank A : C 1 12-1 
B :C2 12-2 

:A1 11-2-8 C :C3 12-3 
II :A2 7-8 0 :C4 12-4 

# :A3 3-8 E :C5 12-5 

$ :A4 11-3-8 F :C6 12-6 

% :A5 0-4-8 G : C7 12-7 

& :A6 12 H : C8 12-8 

:A7 5-8 I :C9 12-9 

( :A8 12-5-8 J :CA 11-1 

) :A9 11-5-8 K :CB 11-2 

7: :AA 11-4-8 L :cc 11-3 

+ :AB 12-6-8 M :CD 11-4 

C; :AC 0-3-8 N :CE 11-5 

:AO 11 0 :CF 11-6 

:AE 12-3-8 
/ :AF 0-1 p :DO 11-7 

Q : D 1 11-8 

0 :BO 0 R :02 11-9 

1 : B 1 1 S :D3 0-2 

2 :B2 2 T :D4 0-3 

3 :B3 3 U :D5 0-4 

4 :B4 4 V :D6 0-5 

5 :B5 5 W :07 0-6 

6 :B6 6 X :D8 0-7 

7 :B7 7 y :D9 0-8 

8 :B8 8 Z :DA 0-9 

9 :B9 9 
[ :DB 0-2-8 

:BA 2-8 \ :DC 11-7-8 

; :BB 11-6-8 ] :DD 0-5-8 

< :BC 12-4-8 t :DE ' 12-2-8 

() = :BD 6-8 +- :OF 12-7-8 

> :BE 0-6-8 
1 :BF 0-7-8 

~ 
@ :CO 4-8 

I 

,1 e 

'I 
t] 
~;.I 

A-3 -



N Nt'" 5 nz t )' t trW l' at" t 
2 "W'e . 'lit f ,wch 0$''1'''$' . ts 

o 

Appendix B 

RECOMMENDED DEVICE AND INTERRUPT ADDRESSES 

Tables B-1 and B-2 list reconunended Device and Interrupt Addresses to prevent possible 
conflict during future expansion to other I/O modules. A standard address is shown 
under one column in table B-li a second column, labeled ACTUAL, is available for 
listing the actual addresses used. 

B-1 -



"p"{Ht'''til'WI,i,reew,'* t .'$ t'fU "tt"l"MtH'bf:t!'r#W ... tt 

ComputerAutomation (gJi 

Table B-1. Recommended Device Addresses 

DEVICE 

Reserved for CPU functions*** 

Dual TTY/CRT (TTY1/CRT1) 
Dual TTY/CRT (TTYO/CRTO) 
Line Printer (LP) 
Card Reader (CR) 
Paper Tape Punch (PTP) 
Paper Tape Reader (PTR) 
Processor TTY* (TTY) 
Real-Time Clock* (RTC) 
Magnetic Tape (Mag Tape) 

Automatic Calling Unit Mux (ACUM) 
Synchronous Modem Controller (SMC) 
Asynchronous Modem Multiplexer (AMM) 
Disk 

Floppy Disk 
16-Bit I/O 

32-Bit Relay In (RCIM) 
Punch Alternate 
16-Bit Input/Output (16-Bit I/O) 
64-Bit Input (64-Bit In) 
64-Bit Uutput (64-Blt Out) 
Priority Interrupt Module (PIM) 
32-Bit Relay Out (RCOM) 

I 103 Data Set Controller (103 DSC) 
Memory Bank Controller 

Distributed I/O System 

DEVICE ADDRESSES (HEXADECIMAL) 
f---------,---"--------1 

STANDARD 

00 
01 
02 
03 
04 
05 
06(1 n 
06 
07 
08 
09 
OA 
OB 
DC 
00 
OE 
OF 
10 
11 
, 2 

13 
14 
15 
16 
17 
18 
19 
1A 
1B 
1C 
lD 
1E 
IF 

FO-FF~'d: 

ACTUAL 

* Processor Mounted options. Device Address non-alterable. 
** See Distributed I/O System User1s Manual. 

*** Refer to table B-3. 
( ) Indicates suggested alternate. 

B-2 



"Ai< eM 'tt "w" ''''';''''1'''0 '*,*,,' 

Table B-1. Recommended Device Addresses (Cont'd) 

Devices Interfaced by the Distributed I/O System: 

For devices interfaced by the Distributed I/O System (otOS), an 8-bit 
device address (including the function code field) Is used rather than the 
5-bit device address and 3-bit function code field of other devices. 

DEVICE 

Card Reader (channel 0) 
Modem (channe I 1) 
Device on 100 (channel 2) 
Device on 100 (channel 3) 
Teletype or CRT (channel 4) 
Paper Tape Reader (channel 5) 
Paper Tape Punch (channel 6) 
Line Printer (channel 7) 

B-3 

STANDARD 

FO, Fl 
F2, F3 
F4, F5 
F6, F7 
F8, F9 
FA, FB 
FC, FD 
FE, FF 

ACTUAL 



-I 

J 
.1 

· .... hht.':)~ r.HlI'ot hI.." C.hilnQ~d. 
t(1" =. f,'d-t't-61ock.. 
Srlit Addr~~::. ... "hl ... ,<.l.o.;. dnd/or c1 / indicille th.lt thi~ is the ~tandllrd I/O veclor for morC' thrm one devic.e. Only 
(lP" (kvi(t~ m.1v lI"'t d v('.:.tnr in Clny qivt'.n '-ycotCn1 • 
....... t: (\up 11~' 

r,. fll' I l'lll' It:\. 

B-4 



to 
I 

\11 

e 

FUNCTION 
CODE 

0 

1 

2 

3 

4 

5 

6 

7 

_ ,t 

SELECT COMMANDS 

AutoLoad- off 
, -

Enable AutoLoad 
ROM 

PFE (: 4002) 

PFD (: 4003) 

OCA (:4404) 
OCX (:4604) 

CIE (:4005) 

CIO (~4006) 

TRP (: 4007) 

o ft 

Table B-3. Device Address 0 Command Summary 

SENSE COMMANDS INPUT COMMANDS 

AutoLoad Option SIA (:5800), SIX (:5AOO) 
Installed 

Real-Time Clock Option I SA (: 5801) 
Installed I SX (: 5AOl) 

TTY/CRT/Modem Option ICA (:5804) 
I nsta II ed ICX (:5A04) -

-

e 

OUTPUT COMMANDS 

SOA (:6COO), sox (:6EOO) 

SIN 0 (: 6801) 

SIN 1 (: 6802) 

SIN 2 (:6803) 

SIN 3 (:6804) 

SIN 4 -(:6805) 

SIN 5 (: 6806) 

SIN 6 (: 680'7) 

, 

i 

~ 
I 



't' 1" ") e' itt ft It tl X' ,'*i'1''i!tr!7HdtftMh!ilb?'WW :,j'H#N7t i'tK'" tjj'tW'Ir"#,"i"tt't! '!:!"'Ueriffifilr ... ) 

() 

c 

ComputerAutomation ~ 

Appendix C 

INSTRUCTION SET RY CLASS 

\ 

This appendix contains the instruction set of the LSI-2 Series computers arranged in 
class order. Instructions prefixed with an asterisk (*) are available only on the 
LSI-2/60 MegaByter. 

Instruction 
Mnemonic Description 

MEMORY REFERENCE ( Clas s 1 ) 

Arithmetic 

ADD Add to A Register 
ADDFl Add Byte to A 
scm subtract from A Register 
SUBB Subtract Byte from A 

Logical 

AND AND to A 
·ANDB AND Byte with A 

lOR Inclusive OR to A 
lORB Inclusive OR Byte with A 
XOR Exclusive OR to A 
XORB Exclusive OR Byte with A 

Data Transfer 

LOA Load A 
LDAB Load A with Byte 
LOX Load X 
LDXB Load X with Byte 
STA Store A 
STAB Store Byte from A 

STX store X 
STXB Store Byte from X 
EMA Exchange A and Memory 
EMAB Exchange A and Memory Byte 

Program Transfer • 
JMP Unconditional Jump 
JST Jump and Store 
lMS Increment Memory, Skip on Zero 
SCM , Scan Memory 
SCMB Scan Memory Byte 
CMS Compare A with Memory, Skip 
CMSB Compare A with Memory Byte, Skip 

C-1 

Instruction 
Skeleton in Hex 

8800 
8800 
9000 
9000 

8000 
8000 
AOOO 
AOOO 
A800 
A800 

BOOO 
BOOO 
EOOO 
EOOO 
9800 
9800 
E800 
E800 
B800 
B800 

FOOO 
F800 
0800 
CODa 
CODa 
0000 
0000 

4-10 
4-10 
4-10 
4-10 

4-12 
4-12 
4-12 
4-12 
4-12 
4-12 

4-12 
4-12 
4-12 
4-12 
4-12 
4-12 
4-12 
4-12 
4-12 
4-12 

4-13 
4-13 
4-13 
4-14 
4-14 
4-13 
4-13 



'1 

i* d @' )' 1M {I Sf':$t alllntriiJ.'ie:te'dttltWt" tel ww·wdt t'i±'" c'n 

ComputerAutomation ~ 

Instruction 
Mnemonic Description 

DOUBLE WORD MEMORY REFERENCE (Class 2) 

Arithmetic 

DVD 

MPY 
NRM 

*ADX 
*ADXB 
*SBX 
*SBXB 

Data Transfer 

*EMX 
I *EMXB 

CJ *MSB 
i *M1{B 

*MCB 
*HTB 

Proqram Transfer 

*DMS 

Divide 
Multiply and Add 
Normalize A and X 
Add to X 
Add to X Byte 
Subtract from X 
Subtract from X Byte 

Exchange Memory and X 
Exchange Memory and X Byte 
Memory Set Bit 
Memory Reset Bit . 
Memory Complement Bit 
Memory Test Bit 

Decrement Memory and Skip 
Decrement Memory and Skip Indexed 

STACK CLASS (Class 3) 

0·'· ,'. 

Arithmetic 

ADDS 
SUBS 

Logical 

ANDS 
IORS 
XORS 

Data Transfer 

EMS 
LDAS 
LDXS 
STAS 
STXS 

Add Stack Element to A 
subtract Stack Element from A 

AND Stack Element to A 
Inclusive OR Stack Element to A 
Exclusive OR Stack Element to A 

Exchange Stack Element and A 
Load Stack Element into A 
Load Stack Element into X 
Store A in Stack Element 
Store X in Stack Element 

C-2 

Instruction 
Skeleton in Hex 

1970 
1960 
1940 
4300 
4300 
4320 
4320 

4340 
4340 
4BOO 
4B20 
4B40 
4B60 

4310 
4350 

1438 
1458 

1418 
1498 
l4B8 

l4F8 
14D8 
1698 
1478 
16B8 

4-14 
4-15 
4-16 
4-17 
4-17 
4-17 
4-17 

4-17 
4-17 
4-18 
4-18 
4-18 
4-18 

4-18 
4-18 

4-29 
4-29 

4-29 
4-29 
4-29 

4-29 
4-29 
4-29 
4-29 
4-29 



):,1 
\, 
1,11 
'/1 

f" Ntt t,') 'Pte t #WW.t 

e 

C 

·f ' 'tttt t f' eft& w 

Instruction 
Mnemonic Description 

Program Transfer 

CMSS Compare Stack Element to A and Skip 
if High or Equal 

IMSS Increment Stack Element and Skip on 
Zero Result 

JMPS Jump Unconditional to Stack Element 
JSTS Jump and Store to Stack Element 

*JSKR Jump and Stack Registers 
*JSKS Jump and Stack status 
*RTNR Return Registers 
*RTNS Return Status 

Stack Control 

SlAS stack Location to A 

BYTE IJ:VlMEDIATE (Class 4) 

AAI 
AXI 
SAl 
SXI 
CAl 

Add to A Register Immediate 
Add to X Register Immediate 
Subtract from A Register Immediate 
Subtract from X Register Immediate 
Compare t9 A Immediate, Skip if Not 

Equal 

Instruction 
Skeleton in Hex 

165S 

1678 

1608 
16F8 
4203 
4241 
6A03 
6A41 

1618 

OBOO 
C200 
0000 
C300 
COOO 

eXI Compare to X Immediate, Skip if Not ClOD 

LAP 
LXP 
LAM 
LXM 

Equal 
Load A Positive Immediate 
Load X positive Immediate 
Load A Minus Immediate 
Load X Minus Immediate 

CONDITIONAL JUMP (Class 5 or 9) 

Microcoded (Class 9) 

JOC Jump on Condition Specified 

Arithmetic (Class 5) 

JAG Jump if A Greater than Zero 
JAP Jump if A Positive 
JAZ Jump if A Zero 
JAN Jump itA Not Zero 
JAL Jump if A Less Than or Equal to Zero 
JAM Jump if A Minus 
JXZ Jump if X Zero 
JXN Jump if X Not Zero 

C-3 

C600 
C400 
C700 
C500 

2000 

3180 
3080 
2100 
3100 
2180 
2080 
2800 
3800 

4-29 

4-29 

4-30 
4-30 
4-23 
4-23 
4-23 
4-23 

4-30 

4-30 
4-30 
4-30 
4-30 
4-30 

4-31 

4-31 
4-31 
4-31 
4-31 

4-31 

4-32 
4-32 
4-32 
4-32 
4-33 
4-33 
4-33 
4-33 

--------------------................ ....... 



i 

fi 
t , 
~'" 

G 

I 

I 
I 

I 
0' 

±w' (' hi*, w±" It! ¥tp 'j ,f' ¢ t' HUr' tee 

Instruction 
Mnemonic 

Control (Class 5) 

SHIFT 

JSS 
JSR 
JOS 
JOR 

(Class 6) 

Single Register 

~rithmetic 

ARA 
ARX 
ALA 
ALX 

Loglcal 

LRA 
LRX 
LLA 
LLX 

Rotate 

RRA 
RRX 

RLA 
RLX 

Double Register 

Logical 

LLL 
LLR 

Rotate 

LRL 
LRR 

Description 

Jump 
Jump 
Jump 

if 
if 
if 

SENSE Indicator ON 
SENSE Indicator OFF 
OV Set 

Jump if OV Reset 

Arithmetic Right A 
Arithmetic Right X 
Arithmetic Left A 
Arithmetic Left X 

Logical Right A 
Logical Right X 
Logical Left A 
Logical Left X 

Rotate Right A with OV 
Rotate Right X with OV 
Rotate Left A with OV 
Rotate Left X with OV 

Long Logical Left 
Long Logical Right 

Long Rotate Left with OV 
Long Rotate Right with OV 

C-4 

ComputerAutomation ~ 

Instruction 
Skeleton in Hex 

34UO 
2400 
2200 
3200 

1000 
10A8 
1050 
1028 

1300 
13A8 
1350 
1328 

1100 
11A8 
1150 
1128 

IBOO 
IB80 

1900 
1980 

4-33 
4-33 
4-J3 
4-33 

4-34 
4-34 
4-34 
4-34 

4-35 
4-35 
4-35 
4-35 

4-36 
4-36 
4-36 
4-36 

4-37 
4-37 

4-38 
4-38 



c 

o 

u - . t -,! II Z' ttl feMrr 

Instruction 
Mnem,onic Description 

REGISTER CHANGE (Class 7) 

Accumulator 

ZAR 
ARP 
ARM 
CAR 
NAR 
IAR 
DAR 

·ASB 
·ARB 
·ACB 
·ATB 

Index 

ZXR 
XRP 
XRM 
CXR 
NXR 
IXR 
DXR 

·XSB 
·XRB 
*XCB 
·XTB 

Overflow 

SOV 
ROV 
COV 
SAO 
SXO 
LAO 

LXO 

BAO 
BXO 

Multi-Register 

ZAX 
AXP 
AXM 
TAX 
TXA 
EAX 
ANA 
ANX 

Zero A Register 
Set A Register to positive 1 
Set A Register to Minus 1 
Complement (1 's) A Register 
Negate A Register 
Increment A Register 
Decrement A Register 
A Set Bit 
A Reset Bit 
A Complement Bit 
A Test Bit 

Zero X Register 
set X Register to positive 1 
Set X Register to Minus 1 
Complement (l's) X Register 
Negate X Register 
Increment X Register 
Decrement X Register 
X Set Bit 
X Reset Bit 
X Complement Bit 
X Test Bit 

Set Overflow 
Reset Overflow 
Complement Overflow 
Sign of A to OV 
Sign of X to OV 
Least Significant Bit of A to OV 
Least Significant Bit of X to OV 
Bit of A to OV 
Bit of X to OV 

Zero A and X Register 
set A and X Registers to positive 1 
Set A and X Registers to Minus 1 
Transfer A to X 
Transfer X to Z 
Exchange A and X 
AND of A 'and X to A 
AND of A and X to X 

C-5 

Instruction 
Skeleton in Hex 

PllO 
0350 
0010 
0210 
0310 
0150 
0000 
6BlO 
6B30 
6B50 
6B70 

0108 
0528 
0008 
0408 
0508 
0128 
00A8 
6BOO 
6B20 
6B40 
6B60 

1400 
1200 
1600 
1340 
1320 
13CO 
l3AO 
1340 
1320 

0118 
0358 
0018 
0048 
0030 
0428 
0070 
0068 

4-38 
4-38 
4-38 
4-38 
4-38 
4-38 
4-38 
4-39 
4-39 
4-39 
4-39 

4-39 
4-39 
4-39 
4-39 
4-39 
4-39 
4-39 
4-40 
4-40 
4-40 
4-40 

4-40 
4-40 
4-40 
4-40 
4-40 
4-40 
4-40 
4-40 
4-40 

4-41 
4-41 
4-41 
4-41 
4-41 
4-41 
4-41 
4-41 



I 

o 

ti" ," tt' tNt M !.',t1" t, t Bitt t 1" t ¥ t 

ComputerAutomation ~ 

Instruction 
Mnemonic Description 

Illstruction 
Skeleton in Hex 

Multi-Register (Cont'd) 

NRA 
NRX 
CAX 
CXA 
NAX 
NXA 
lAX 
DCA 
IPX 
DAX 
DXA 

*AXA 
*AAX 

*SXA 
*SAX 
*XXA 
*XAX 

NOR ot A ilnd X t:o A 
NOR OF A and X to X 
Complement A (l's) and put in X 
Complement X (l's) and put in A 
Negate A and put in X 
Negate X and put in A 
Increment A and put in X 
Increment X and put in A 
Increment P and put in X 
Decrement A and put in X 
Decrement X and put in A 
Add X to A 
Add A to X 
Subtract X from A 
Subtract A from X 
Exclusive OR X to A 
Exclusive OR A to X 

Extended Multi-Register 

BCA 
BCX 
BSA 
BSX 
EIX 

*XNX 

Console Reyister 

IAH 

ICA 
ICX 
IIH 

IMH 

IPH 

ISA 
ISX 
IXH 

OAH 

OCA 
OCX 

Bit Clear A 
Bit Clear X 
Bit Set A 
Bit Set X 
Execute Instruction Pointed to By X 
Execute Indexed 

Input Console Data Register to A 
and Halt 

Input Console Data Register to A 
Input Console Data Register to X 
Input Console Data Register to I 

and Halt 
Input Console Data Register to Memory 
and Halt 

Input Console Data Register to P and 
Halt 

Input Console Sense Reg.ister to A 
Input Console Sense Register to X 
Input Console Data Register to X 

and Halt 
OUtput A to Console Data Register and 
Halt 

Output A to Console Data Register 
Output X to Console Data Register 

C-6 

0(>10 
0608 
0208 
0410 
0308 
0510 
0148 
0130 
0090 
00C8 
OOBO 
0050 
0028 
0088 
0170 
OOFO 
0168 

06CA 
06C8 
068A 
0688 
0218 
0430 

lC05 

5804 
5A04 
lCll 

lC03 

lC2l 

5801 
SAOI 
lC09 

lC04 

4404 
4604 

4-41 
4-41 
4-41 
4-41 
4-41 
4-41 
4-42 
4-42 
4-42 
4-42 
4-42 
4-42 
4-42 
4-42 
4-42 
4-42 
4-42 

4-43 
4-43 
4-43 
4-43 
4-43 
4-44 

4-44 

4-44 
4-44 
4-44 

4-44 

4-44 

4-44 
4-44 
4-44 

4-44 

4-45 
4-4S 

't!'tfctt't'tffl-



I e ., 

f' 
I' r 
,,' 
'i 

~' I 

l. 

tl 
1 

:1:1 

~'i il ';, 

: I 
:1 
"'I 

;1 

0 

..... 

;:1_ 
,,! 

Instruction 
Mnemonic Description 

Instruction 
Skeleton in Hex 

Console Register (Cont'd) 

OMH 

OPH 

OXH 

CONTROL (Class 7) 

Processor 

l"OP 
HLT 
STOP 
WAIT 

*WFI 

Mode Control 

SBM 
SWM 

Status 

SIN 
SIA 
SIX 
SOA 
SOX 

Interrupts 

EIN 
DIN 
CIE 
CID 
PFE 
PFD 
TRP 

Output Memory to Console Data Register 
and Halt 

Output P to 
Halt 

Output X to 
Halt 

No operation 
Halt 

Console 

Console 

Halt with Operand 
wait for Interrupt 
Wait for Interrupts 

Data 

Data 

Set Byte Operand Mode 
Set Word Operand Mode 

Status. Inhibit 
Status Input to A 
Status Input to X 
Status Output from A 
Status Output from X 

Enable Interrupts 
Disable Interrupts 

Register 

Regis'ter 

Console Interrupt Enable 
Console Interrupt Disable 
Power Fail Interrupt Enable 
Power Fail Interrupt Disable 
Trap 

and 

and 

lC02 

lC20 

lC08 

0000 
0800 
0800 
F600 
OlDO 

OEOO 
OFOO 

6800 
5800 
SAOO 
6COO 
6EOO 

OAOO 
OCOO 
4005 
4006 
4002 
4003 
4007 

4-45 

4-45 

4-44 

4-45 
4-45 
4-45 
4-45 
4-46 

4-46 
4-46 

4-47 
4-47 
4-48 
4-48 
4-48 

4-48 
4-48 
4-48 
4-48 
4-48 
4-48 
4-48 

I,~-------------------------



$, 
li 
t, 
.\ 
,~": ' 

fa 
I 

Instruction 
Mnemonic Description 

INPUT/OUTPUT (Class 8) 

Control 

SEL 
SEA 
SEX 
SEN 
SSN 

Unconditional Word 

INA 
INAM 
INX 
INXM 
OTA 
O'l'X 
O'I'Z 

Conditional Word 

RDA 
RDAM 
RDX 
RDXM 
WRA 
WRX 
WRZ 

Unconditional Byte 

IBA 
IBAM 
IBX 
IBXM 

Conditional Byte 

RBA 
RBAM 
RBX 
RBXM 

Block 

BIN 
BOrr 

Select 
Select and Present A 
Select and Present X 
Sense and Skip on Response 
Sense and Skip on No Response 

Input Word to A 
Input Word to A Masked 
Input Word to X 
Input Word to X Masked 
Output A 
Output X 
output Zero's 

Read Word to A 
Read Word to A Masked 
Read Word to X 
Read Word to X Masked 
Write A 
Write X 
Write Zero's 

Input Byte to A 
Input Byte to A Masked 
Input Byte to X 
Input Byte to X Masked 

Read Byte to A 
Read Byte to A Masked 
Read Byte to X 
Read Byte to X Masked 

Input Block to Memory 
OUtput Block from Memory 

C-8 

ComputerAutamation 

Instruction 
Skeleton in Hex 

4000 
4400 
4600 
4900 
4800 

5800 
5COO 
5AOO 
5EOO 
6COO 
6EOO 
6800 

5900 
5000 
5BOO 
5FOO 
6DOO 
6FOO 
6900 

7800 
7COO 
7AOO 
7EOO 

7900 
7DOO 
7BOO 
7FOO 

7100 
7500 

.. r *1 t 

~ 

Pacje 

4-50 
4-50 
4-50 
4-49 
4-49 

4-50 
4-50 
4-51 
4-51 
4-51 
4-51 
4-51 

4-51 
4-51 
4-51 
4-51 
4-51 
4-52 
4-52 

4-52 
4-52 
4-52 
4-52 

4-53 
4-53 
4-53 
4-53 

4-54 
4-54 

ltd •• 21 wtrtt'tf f (':t!tk' 



,., 

I m: I 

M •• ttl'''.'. 'ft 'tnSle t tiltH t t re'. tI It WWW' "h WIt' Wtt m:d ... ' .. e: $ .. emu wee t 1 WMter_Wi : @ • j m 

0 

o 

Innt.r.ucti.on 
,MllflIn()nJ C' 

Automatic 

AIN 
AOT 
AlB 
AOB 

Automatic Input Word to Memory 
Automatic Output Word from Memory 
Automatic Input Byte to Memory 
Automatic Output Byte from Memory 

CYCLIC REDUNDANCY CHECK (Class 10) 

*CRC Cyclic Redundancy Check 

TEXT MANIPULATION (Class 11) 

*ADDT Add Text 
*SUBT Subtract Text 
*MOVT Move a Text String 
*CMST Compare Text Strings and Skip 

C-9 

Instruction 
f:;kull~l.on 1n lIox 

5000 
6000 
5400 
6400 

4DOO 

4708 
4718 
4788 
4798 

4-56 
4-57 
4-56 
4-57 

4-57 

4-61 
4-61 
4-61 
4-61 



,': 

C 

0 

e 
~:: 

t 
~ 

~ 
~J~ 
/i, 

t '" 

.... , 
Appendix D 

INSTRUCTION SET IN ALPHABETICAL ORDER 

TIlis appendix contains the instruction set of the LSI-2 Series computers arranged in 
alphabetical order. Instructions prefixed with an asterisk (*) are available only on 
the LSI-2/60 MegaByter. 

Instruction Instruction 
Mnemonic Skeleton in Hex Description 

AAI OBob Add to A Innnediate; Direct 

*iu\x 0028 Add A to X 

*ACB 6B50 A Complement Bit 

ADD 8800 Add to A 

ADDB 8800 Add Byte 

ADDS 1438 Add Stack Element to A 

*ADDT 4708 Add Text 

*ADX 4300 Add to X 

*ADXB 4300 Add to X Byte 

AlB 5400 Automatic Input Byte to Memory 

AIN 5000 Automatic Input Word to Memory 

ALA 1050 Arithmetic Shift A Left 

ALX 1028 Arithmetic Shift X Left 

ANA 0070 AND of A and X to A 

AND 8000 AND to A 

ANDB 8000 AND Byte to A 

ANDS 1418 AND Stack Element to A 

ANX 0068 AND of A and X to X 

AOB 6400 Automatic Output Byte from Memory 

AOT 6000 Automatic Output Word from Memory 

D-l 



~.~ .. 
Ii 

.. 
: 

... 

1, 

t'·:·····i 
, 
,. 
~. 

~ 
¥.I 

Instruction 
Mnemonic 

AHA 

*ARB 

ARM 

ARP 

ARX 

*ASB 

*ATB 

*AXA 

AXI 

AXM 

AXP 

BAO 

BCA 

BCX 

BIN 

BOT 

BSA 

BSX 

BXO 

CAl 

CAR 

CAX 

CID 

CIE 

CMS 

Instruction 
Skeleton in Hex 

10DO 

6B30 

0010 

0350 

10A8 

6BIO 

6870 

0050 

C200 

0018 

0358 

1340 

06CA 

06C8 

7100 

7500 

068A 

0688 

1320 

COOO 

0210 

0208 

4006 

4005 

0000 

ComputerAutamation ~ 

Description 

Arithmetic Shift A Right 

A Reset Bit 

Set A to Minus 1 

Set A to Plus 1 

Arithmetic Shift X Right 

A Set Bit 

A Test Bit 

Add X to A 

Add to X Immediate 

Set A ilnd X to Minus 1 

Set A and X to Plus 1 

Bit of A to OVerflow 

Bit Clear A 

Bit Clear X 

Block Input to Memory 

Block Output from Memory 

Bit Set A 

Bit set X 

Bit of X to Overflow 

Compare to A Immediate, Skip if 
Unequal 

Complement A (l's) 

Complement A (l's) and Put in X 

Console Interrupt Disable 

Console Interrupt Enable 

Compare Memory to A and Skip if High or Equal 

D-2 

, 



I, 

I: e l, Instruction Instruction 
\'! Mnemonic Skeleton in Hex 
l' 
1 +: 

CMSB DOOO 

CMSS 1658 

*CMST 4798 

COY 1600 

*CRC 4DOO 

CXA 0410 

CXI CIOO 

0 
exp 0408 

DAR OODO 

DAX 00C8 

DIN OCOO 

*DMS 4310 

4350 

DVD 1970 

DXA OOBO 

DXR 00A8 

0 EAX 0428 

EIN OAOO 

''01 EIX 0218 

EMA B800 

El>1AB B800 

EMAS 14F8 

e *EMX 4340 

*EMXB 4340 

~ 

l~ • HLT 0800 
'" 
J 
l 
11 ;,;; 

Description 

Compare Byte and Skip if High 
or Equal 

Compare Stack Element to A and Skip 
if High or Equal 

Compare Text Strings and Skip 

Complement Overflow 

Cyclic Redundancy Check 

Complement X (l's) and Put in A 

Compare to X Immediate, Skip if 
Unequal 

Complement X (l's) 

Decrement A 

Decrement A and Put in X 

Disable Interrupts 

Decrement Memory and Skip 

Decrement Memory and Skip 

Divide 

Decrement X and Put in A 

Decrement X 

Exchange A and X 

Enable Interrupts 

Execute Instruction Pointed to by X 

Exchange Memory and A 

Exchange t-iemory Byte and A 

Exchange Stack Element and A 

Exchange Memory and X 

Exchange Memory and X Byte 

Halt 

D-3 



o 

0, 
J 

Instruction Instruction 
Mnemonic Skeleton in Hex 

lAB 1C05 

IAR 0150 

lAX 0148 

IBA 7800 

I BAM 7COO 

IBX 7AOO 

IBXM 7EOO 

ICA 5804 

ICX 5A04 

IIH 1Cll 

IMH lC03 

IMS D800 

IMSS 1678 

INA 5HOO 

INAM SCOO 

INX 5AOO 

INXM SEOO 

lOR AOOO 

I ORB AOOO 

laRS 1478 

IPH . , lC21 

IPX 0090 

tii:tcobWct W Nt Wm.NWzi'M #'t f M' 'MtN t'h&t'WrIt. dWYr:dM. tiM' nt M.=rt:re'tid"Qtsr'm,_ t n 

Description 

Input Console Data Register to A and 
Halt 

Increment A 

Increment A and Put in X 

Input Byte to A (Unconditionally) 

Input Byte to A, Masked 
(Unconditionally) 

Input Byte to X (Unconditionally) 

Input Byte to X, Masked 
(Unconditionally) 

Input Console Data Register to A 

Input Console Data Register to X 

Input Console Data Register to I 
and Halt 

Input Console Data Register to 
Memory and Halt 

Increment Memory and Skip on Zero 
Result 

Increment Stack Element and Skip on 
Zero 

Input Word to A (Unconditionally) 

Input Word to A, Masked 
(Unconditionally) 

Input Word to X (Unconditionally) 

Input Word to X, Masked 
(Unconditionally) 

Inclusive OR to A 

Inclusive OR Byte to A 

Inclusive OR Stack Element to A 

Input Console Data Register to P 
and Halt 

Increment P and Put in X 

D-4 

c 



o 

.,e 
I 

I 
I 

;·1 
~I r 
.~ , , 

Instruction 
Mnemonic 

ISA 

ISX 

IXA 

IXH 

IXR 

JAG 

JAL 

JAM 

JAN 

JAP 

JAZ 

JMP 

JMPS 

JOC 

JOR 

JOS 

Instruction 
Skeleton in Hex 

5801 

SAOI 

0130 

1C09 

0128 

3180 
31CO 

2180 
2lCO 

2080 
20CO 

3100 
3140 

3080 
30CO 

2100 
2140 

FOOO 

1608 

2000 

3200 
3240 

2200 
2240 

Description 

Input Console Data Switches to A 

Input Console Data Switchfl8 to X 

Increment X and Put in A 

Input Console Data Register to X and 
Halt 

Increment X 

Jump if A Positive and Not Equal to 
Zero (A)O) 

Forward Jump 
Backward Jump 

Jump if A Negative or Equal to Zero 
(AiO) 

Forward Jump 
Backward Jump 

Jump if A Negative (A(O) 
Forward Jump 
Backward Jump 

Jump if A Not Zero (A~O) 
Forward Jump 
Backward Jump 

Jump if A Positive or Equal to Zero 
(A2.0) 

Forward Jump 
Backward Jump 

Jump if A Zero (A=O) 
Forward Jump 
Backward Jump 

Jump Unconditionally 

Jump to Stack Element Unconditiortal 

Jump on Condition Specified 

Jump if Overflow Reset (OV=O) 
Forward Jump 
Backward Jump 

Jump if Overflow Set (OV=l) 
Forward Jump 
Backward Jump 

0-5 



MWM' _ 

"~ , 

ComputerAutomation ~ 

Instruction Instruction 
'; Mnemonic S~~.!~_~.on --.!.!Ll!ex ~.es (' !". :U>_~!E.!l I 

~I *JSKR 4203 Jump and Stack Rl'~isters f' 
f' 
&i 
!! *JSKS 4241 .1ll1l1 I' lind St:H'k StlltUH 

JSR Jump if Sense Switch Off (SS=O) 
2400 Forward Jump 
2440 Backward Jump 

JSS Jump if Sense Switch On (SS = ]) 
3400 Forward Jump 
3440 Backward Jump 

JST F800 Jump and Store 

JSTS l6F8 Jump and Store to Stack Element 

JXN Jump if X Non-Zero (X;o!O) 
3800 Forward Jump 
3840 Backward Jump 

JXZ Jump if X Equal to Zero (X=O) 
2800 Forward Jump 
2840 Backward Jump 

LAM C700 Load A Minus Immediate 

LAO 13CO Lsr of A to OV 

LAP C600 Load A Positive Immediate 

LDA BOOO Load A 

LDAB BOOO Load A Byte 

LDAS l4D8 Load Stack Element into A 

LDX EOOO Load X 

LDXB EOOO Load X Byte 

LDXS 1698 Load Stack Element into X 

LLA 1350 Logical Shift A Left 

LLL lBOO Long Logical Left Shift 

LLR lB80 Long Logical Right Shift 

LLX 1328 Logical Shift X Left ., 
'! 

LRA 13DO Logical Shift A Right 

D-6 



'.: 
\.' 

11 
:'1 

,I , 

.. 

I 

o 

o 

_**'2 » 'teltwrWWrbH", 't t tr ttl *1$ 2" .tt . .. , ". *** 

Instruction Instruction 
Mnemonic Skeleton in Hex 

IJRL 1900 

LRR 1980 

LRX 13A8· 

LXM C500 

LXO 13AO 

LXP C400 

*MCB 4B40 

* MOVT 4788 

MPY 1960 

*MRB 4B20 

*MSB 4BOO 

*MTB 4B60 

NAR 0310 

NAX 0308 

, NOP 0000 

NRA 0610 

NRM 1940 

NRX 0608 

NXA 0510 

NXR 0508 

OAH lC04 

OCA 4404 

OCX 4604 

OMH 1C02 

Description 

Long Rotate Left 

I,ong Rotate Riqht 

Logical Shift X Right 

Load X Minus Immediate 

LSB of X to OV 

Load X Positive Immediate 

Memory Complement Bit 

Move a Text String 

Multiply and Add 

Memory Reset Bit 

Memory Set Bit 

Memory Test Bit 

Negate A Register 

Negate A and Put in X 

No Operation 

NOR of A and X to A 

Normalize A and X 

NOR of A and X to X 

Negate X and Put in A 

Negate X Register 

Output A to Console Data Register 
and Halt 

Output A to Console Data Register 

Output X to Console Data Register 

Output Memory to Console Data 
Reg.ister and Halt 

0-7 

'!'trio ." ." i 



Instruction Instruction 
Mnemonic Skeleton in Hex 

OPH IC20 

OTA 6COO 

OTX 6EOO 

OTZ 6800 

OXH lC08 

PFO 4003 

PFE 4002 

RBA 7900 

o RBAM 7000 

RBX 7BOO 

RBXM 7F700 

RDA 5900 

ROAM 5000 

ROX 5BOO 

RDXM 5FOO 

RLA 1150 

RLX 1128 

o ROV 1200 

RRA 1100 

.. RRX llAB 

*RTNR 6A03 

*RTNS 6A4l 

SAl ODOO 

SAO 1340 

*SAX 0170 

ComputerAutomation ~ 

Description 

Output P to Console Data Register 
and Halt 

Output A Register (Unconditio~ally) 

Output X Register (Unconditionally) 

Output Zero (Unconditionally) 

Output X to Console Oata Register 
(Unconditionally) 

Power Fail Interrupt Disable 

Power Fail Interrupt Enable 

Read Byte to A Register 

Read Byte to A Register, Masked 

Read Byte to X Register 

Read Byte to X Register, Masked 

Read Word to A Register 

hEad Word to A Register, Masked 

Read Word to X Register 

Read Word to X Register, Masked 

Rotate A Left with OV 

Rotate X Left with OV 

Reset Overflow 

Rotate A Right with OV 

Rotate X Right with OV 

Return Registers 

Return Status 

Subtract from A Innnediate 

Sign of A to OV 

Subtract A from X 

D-8 



~ : 

tl 
i 

o 

o 

Instruction 
Mnemonic 

SBM 

*SBX 

*SBXB 

SCM 

SCMB 

SEA 

SEL 

SEN 

SEX 

SIA 

SIN 

SIX 

SLAS 

SOA 

SOX 

SOV 

SSN 

STA 

STAB 

STAS 

STOP 

STX 

STXB 

STXS 

SUB 

Instruction 
Skeleton in,Hex 

OEOO 

4320 

4320 

CDOO 

CDOO 

4400 

4000 

4900 

4600 

5800 

6800 

SAOO 

1618 

6COO 

6EOO 

1400 

4800 

9800 

9800 

1478 

0800 

E800 

E800 

16B8 

9000 

Description 

Set Byte Mode 

Subtract from X 

Subtract from X Byte 

Scan Memory; Indirect, Indexed, AP 
in Scratchpad 

Scan Memory Byte; Indirect, Indexed, 
AP in Scratchpad 

Select and Present A 

Select Function 

Sense and Skip on Response 

Select and Present X 

Status Input to A 

Status Inhibit 

Status Input to X 

Stack Element Address to A 

Status Output from A 

Status Output from X 

Set Overflow 

Sense and Skip and No Response 

Store A 

Store A Byte 

Store A in Stack Element 

Halt with Operand 

Store X 

Store X Byte 

Store X in Stack Element 

Subtract from A 

D-9. 



Instruction Instruction 
Mnemonic Skeleton in Hex Description 

SUBB 9000 Subtract Byte 

SUBS 1458 Subtract Stack Element from A 

*SUBT 4718 Subtract Text 

SWM OFOO Set Word Mode 

*SXA 0088 Subtract X from A 

SXI C300 Subtract from X Immediate 

SXO 1320 Sign of X to OV 

TAX 0048 Transfer A to X 

TRP 4007 Trap 

TXA 0030 Transfer X to A 

WAIT F600 Wait for Interrupt 

*WFI 0100 Wait for Interrupts 

WRA 6000 Write from A 

WRX 6FOO Write from X 

WRZ 6900 Write Zeros 

*XAX 0168 Exclusive OR A to X 

*XCB 6B40 X Complement Bit 

*XNX 0430 Execute Indexed 

XOR A800 Exclusive OR to A 

XORB A800 Exclusive OR Byte 

XORS 14B8 Exclusive OR Stack Element to A 

*XRB 6B20 X Reset Bit 

XRM 0008 Set X to Minus 1 

XRP 0528 Set X to Plus I 

*XSB 6BOO X Set Bit 

*XTB 6B60 X Test Bit 

*XXA OOFO Exclusive OR X to A 

0-10 



I 

o 

.. 

Instruction 
Mnemonic 

ZAR 

ZAX 

ZXR 

Instruction 
Skeleton in Hex 

0110 

0118 

0108 

ComputerAutomatlon ~.-

Description 

Zero A Register 

Zero A and X Registers 

Zero X Register 

D-ll 



'I: 

;': 

'I 

,I 
I 

'I 

I 

o 

o 

Appendix E 

INSTRUCTION SET IN NUMERICAL ORDER 

This appendix contains the instruction set in machine code in numerical order. For 
each instruction, reference is made to one of the machine code formats listed below. 
Instructions with variable fields (0, K, etc.) are followed by an asterisk (*). 
Those instructions which apply to the LSI-2/60 only are prefixed with as asterisk. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

[ 1 ! OPCODE D I 
D = Address Field (0 to 255) 
I = ~irect/lndirect Address Bit 
M = Address Mode Code 
y = Effective Address 

AP = Address Pointer 
M I Word Mode (Word Operand) Byte Mode (Byte Operand) - -

00 0 y = (D), Words :OO-:FF y = (D), Bytes :OO-:FF 
01 0 Y = (D) + (p) + 1 y = (0) + (p) + 1, Byte 0 
10 0 Y = (0) + (X) y = (D) + (X) 
11 0 Y = (p) ,- (0) y = (0) + (p) + 1, Byte 1 
00 1 AP = (D), AP = (AP) , Y = (AP) AP = (D), Y = (AP) 
01 1 AP = (D) + (p) + 1, AP = (AP), Y + (AP) AP = (D) + (p) + 1, Y = (AP) 
10 1 AP = (D), AP = (AP) , Y = (AP) + (X) AP = (0), Y = (AP) + (X) 
11 1 AP = (p) - (O), AP = (AP), Y = (AP) AP = (p) - (O), Y = (AP) 

Figure E-l. Machine Code Format of Single-Word ~1emory Reference Instructions 

15 14 13 12 11 10 9 8 7 6 5 4 3 

OPCOOE 

ADDRESS 

Opcode = 100 for NRM 0 through 15 
= 101 for NRM 16 through 31 
= 110 for MPY 
= 111 for DVD 

2 1 

K OR 
OPCOOE 

I = Indirect Addressing (where allowed) 
1 = Indirect Address 
o = Direct Address 

K = Instruction Count or Bit Position 

o 

Figure E-2. Machine Code Format of Double-Word Memory Reference Instructions 

E-l 



i 
t',. 

0 

Bits 

12 

7-11 

6 

0-5 

ComputarAutomation ~ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

I I I 0 I 0 I 0 I OPCODE D 

D 8-Bit Immediate Operand 

Figure E-3. Machine Code Format of Byte Immediate Instructions 

15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 0 

I 0 I o I G MICROCODE R D FIELD 

Field Definition 

G Test Group I nd i cator: 

G 1 for AND Group 
G 0 for OR Group 

Conditions Microcode of Test Conditions: 

Bit AND Group OR Group 

7 A Positive A Negat i ve 
8 A f. 0 A = 0 
9 OV Reset OV Set (Resets OV) 

10 Sense Indicalor on Sense I nd i cator off 
1 1 X f. 0 X=;O 

R Jump Direction: 

R 0 for Forward Jump 
R = 1 for Backward Jump 

D Field Jump Distance 

Figure E-4. Machine Code Format of Conditional Jump Instructions 

, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

OPCODE K 

K = Shift Control Count, Shift Will Move 1 + K Bit Positions 
Opcode = Shift Control Code Which Selects Source, Type of Shift~ 

and Location of Results 

Figure E-S. Machine Code Format of Single-Register Shift Instructions 

E-2 



it e 
¥: 
!:j 
" " \ 

o 

o 

". 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I 01 0 1 o 11 I 1 I OPCODE I K 

Opcode = Shift Control Code Which Selects the Type of Long Shi ft 
to be Executed 

K = Sh i ft Count. Sh i ft Will Move 1 + K Bit Positions 

Figure E-6. Machine Code Format of Double-Register shift Instructions 

15 14 13 12 11 10 9 876 5 4 3 2 0 

OPCODE 

Opcode = The Register Change Control Code which specifies the 
Source, Operation, and Location of Results 

Figure E-7. Machine Code F()rmat of Register Change Instructions 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

OPCODE Modifier, H or SC 

H = Halt 10 Indicator 
SC ~ Sin Instruction Count - 1 

Figure E-B. Machine Code Format of Control Instructions 

15 14 13 12 11 10 9 8 765 4 3 2 

0 1 OPCODE DEVICE FUNCTION 
ADDRESS CODE 

Function Code = Specifies which device function or register 
Device Address - The device's assigned address 

o 

o 

Opcode = Operation Code Specifying One of the I/O Instructions 

Figure E-9. Machine Code Format of Input/Output Instructions 

E-3 



, l'r'- PYt' 'j t""bK"W 'tr't'@'tifWei:t:j('f'df'krteW***W1 'S' 'StU'hAtti'. 

0 

15 14 12 11 10 8 6 4 2 o 

P 0 

P+1 BYTE/WORD COUNTER, WC (2 1 s COMPLEMENT) 

P+2 o BYTE/WORD ADDRESS POINTER, AP (START LOCATION '-1) 

Opcode = 01: Input, 10: Ou~put 
B = 0: Word Transfer 
B = 1: Byte Transfer 

Byte/Word Counter = Number of Executions Until Skip or Echo 
Byte/Word Address Pointer = Memory Location of I/O Transaction 

Figure E-10. Machine Code Format of Automatic Input/Output Instructions 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

0 1 I OPCODE I DEVICE I FUNCTION 
ADDRESS CODE 

0 BASE ADDRESS -1 

Figure E-ll. Machine Code Format of Block luput/Output Instructions 

15 14 13 12 11 10 9 8 7 6 5 4 2 a 

a OPCODE AM 

a STACK POINTER ADDRESS (SPA) 

AM = Addressing Mode 
00 Direct Access to Stack 
01 = Indexed Access to Stack 
10 = Auto-increment Access to Stack (POP) 
11 = Auto-decrement Access to Stack (PUSH) 

Figure E-12. Machine Code Format of Stack Instructions 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o I 1 I 0 I 0 I 1 I 1 I 0 I 11 0 I 0 I 0 I o I NO. OF B ITS I N 
CHAR. I N A - 1 

POINTER TO TWO-WORD BUFFER 
(OPTIONALLY MULTILEVEL INDIRECT) 

Figure E-13. Machine Code Format of LSI-2/60 Cyclic Redundancy 
Check Instruction 

E-4 



o 

I 

I 

I 
I 

it m.WOiM'tK'atetttl'ttW"iN'!t:IW,,.,.,,·t r ft¢'tHt""trttMII:W*#"! dWtM)' , fld'w' t 1M" !!b'b#±"Hee 'ifflf 'j . l' in tn r r ' ht ' ' "to' , t f itt:' Mdd .. 

,"',,"--,,'-------- -------------------
i5 14 13 12 1 i 10 u 8 7 6 5 4 3 :> 

[ I 
,-.,~, ..,. 

0 0 OPCODE 
'" J ... 

M 

BYTE ADDRtSS OF SOURCE STRING 

BYTE ADDRESS OF DESTINATION STRING L ________________ ~ 
MM: 00 = Direct/Direct Addressing 

I 01 = Direct/Indirect Addressing 

" 

10 = Indirect/Direct Addressing 
11 Indirect/Indirect Addressing L __ ,, ____ , ________________________ _ 

, igure E--14. Machine Code Format of LSI-2/60 Text Manipulation InstructiCl'::' 

I 
L __ ,, __ E-5 

f' 'tt ': ' 't 



, 
f 

! ' 
I ! 

Instruction 
Skeleton in Hex 

0000 

0008 

0010 

0018 

0028 

0030 

0048 

0050 

0068 

0070 

OOf3B 

0090 

00A8 

OOBO 

oocn 

OODO 

aoro 

o 0108 

0110 

nllB 

0128 

0130 

014B 

0150 

0168 

nt • wi f'h' et pi We! it:1lt 

ComputerAutomation ~ 

INSTRUCTION SET IN NUJI1ERICAL ORDER 

rnstruction 
Mnemon~ Description 

NOP No Operation 

XRJI1 X Register to Minus One 

ARJI1 A Register to Minus One 

AXM A and X Registers to Minus One 

*AAX Add A to X 

TXA Transfer X to A 

TAX Transfer A to X 

*AXA Add X to A 

ANX AND of A and X to X 

ANA AND of A and X to A 

*SXA Subtract. X from A 

IPX Increment. P to X 

DXR Decrem('Y' • X Register 

DXA Decrement X to A 

DAX Decrement A to X 

DAH Decrement A Register 

*XXA Exclusive OR X to A 

ZXR Zero X Register 

ZAR Zero A Register 

ZAX Zero A and X Registers 

IXR Increment X Register 

IXA Increment X to A 

IAX Increment A to X 

IAR Increment A Register 

*XAX Exclusive OR A to X 

Machine 
Code Format 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

E-7 

g-7 

E-7 

E-7 

E-7 

E-7 

E-7 



o 

o 

.. 

I Inst~Ction 
I Skeleton in Hex 

I 

I 
I 
i 
I 

I 
I 
I 

0170 

0100 

0208 

0210 

0218 

0308 

0310 

0350 

0408 

0410 

0428 

0430 

0508 

0510 

0528 

0608 

0610 

0688 

068A 

06C8 

06CA 

0800 

0800 

OAOO 

OBOO 

Ins t!"'.~ction 
Mnemonic 

*SAX 

*WFI 

CAX 

CAR 

EIX 

NAX 

NAR 

ARP 

AXP 

CXR 

CXA 

EAX 

*XNX 

NXR 

NXA 

XRP 

NRX 

NRA 

BSX 

BSA 

BCX 

BCA 

STOP * 

E:tN 

MI* 

Machine 
Description Code Format 

Subtra~t A from X E-7 

Wait for Interrupts E-13 

Complement of A to X E-7 

Complement A Register E-7 

Execute Instruction Pointed to By X E-7 

Negate A to X E-7 

Negate A Register E-7 

A Register to plus One E-7 

A and X Registers to Plus One E-7 

Complement X Register E-7 

Complement of X to A E-7 

Exchange A and X E-7 

Execute Indexed E-7 

Negate X Register E-7 

Negate X to A E-7 

X Register to plus One E-7 

NOR of A and X to X E-7 

NOR of A and X to A E-7 

Bit Set X E-7 

Bit Set A E-7 

Bit Clear X E-7 

Bit Clear A E-7 

Halt E-8 

Halt with Operand E-8 

Enable Interrupts E-8 

Add to A Immediate E-3 

E-7 

--_ ............ _ ... _._-_. 



, hn eo 'tr! pte t t PVf'* 

ComputerAutomation ~ 

IlGtruction Instruction 
Skeleton in Hex Mnemonic ~ription 

Machine 
Code Format 

) 

I 

C 

o 

• 

oeoo 

0000 

OEOO 

OFOO 

1028 

0150 

10A8 

10DO 

1128 

1150 

llA8 

11DO 

1200 

1320 

1320 

1328 

1340 

1340 

1350 

l3AO 

l3A8 

l3CO 

1300 

1400 

1418 

1438 

DIN 

SAI* 

SBM 

SWM 

ALX* 

ALA* 

ARX* 

ARA* 

RLX* 

RLA* 

RRX* 

RRA* 

ROV 

BXO* 

SXO 

LLX* 

. BAO* 

SAO 

LLA* 

LXO 

LRX* 

LAO 

LRA* 

SOV 

ANOS 

ADDS 

Disabl.e Iuterrupts E-8 

subtract from A Immediate E-3 

set Byte Mode E-8 

set Word Mode E-8 

Arithmetic Shift X Left E-5 

Arithmetic Shift. A Left E-5 

Arithmetic Shift X Right E-5 

Arithmetic Shift A Right E-5 

Rotate X Left with Overflow E-S 

Rotate A Left with OVerflow E-5 

Rotate X Right with OVerflow E-S 

Rotate A Right with Overflow E-5 

Reset Overflow E-S 

Bit of X ¥o Overflow E-5 

Sign of X to Overflow E-S 

Logical Shift X Left E-5 

Bit of A to OVerflow E-5 

sign of A to Overflow E-5 

Logical Shift A Left E-5 

LSB of X to Overflow E-5 

Logical Shift X Right E-S 

ISB of A to Overflow E-5 

Logical Shift A Right E-5 

Set Overflow E-S 

AND Stack Element to A E-12 

Add stack Element to A E-12 

E-8 



.... 

o 

o 

erMMt'U 

_____ ...0..-________ ------ ComputerAutomation ~ 

~truction I ~~~eton in Hex 
I 

1458 

1478 

1498 

l4B8 

14D8 

14F8 

1600 

1618 

J678 

1698 

16B8 

l6D8 

l6F8 

1900 

1940 

1960 

1970 

1980 

IBOO 

lB80 

1C02 

lC03 

IC04 

Inst:::;.lction 
Mnemonic 

SUBS 

STAS 

roRS 

XORS 

LDAS 

EMAS 

COV 

SLAS 

CMSS 

IMSS 

LDXS 

STXS 

JMPS 

JSTS 

LRL* 

NRM 

MPY 

DVD 

LRR* 

LLL* 

I.JLR* 

OMH 

IMH 

~escription 

Sub~ract Stack Element from A 

Store A in stack Element 

Inclusive OR Stack Element to A 

Exclusive OR Stack Element to A 

Load Stack Element into A 

Exchange Stack Element and A 

Complement Overflow 

Stack Element Address to A 

Compare stack Element to A and Skip 
if High or Equal 

Increment Stack Element and Skip on 
Zero Result 

Load Stack Element into X 

store X in Stack Element 

Jump to Slack Element Unconditional 

Jump to stack Element and store 

Long Rotate Left 

Normalize A and X 

Multiply and Add 

Divide 

Long Rotate Right 

Long Logical Shift Left 

Long Logical Shift Right 

output Console Data Register to 
Memory and Halt 

Input Console Data Register to 
Memory dnd Halt 

OAH Output A to Console Data Register 
and Halt 

E-9 

Machine 
Code Format 

E-12 

E-12 

E-12 

E-12 

E-12 

E-12 

E-5 

E-12 

E-12 

E-12 

E-l2 

E-12 

E-l2 

E-12 

E-6 

E-2 

E-2 

E-2 

E-6 

E-6 

E-6 

E-9 

E-9 

E-9 



" 

, 
l 

"'1 

'i Iii 

. .,. 

t r 'tt ," t' e 11!' 1 • , m¢t d '1 rt 

CornputerAutomation ~ 

In:.>truction Instruction 
bkeleton in Hex Mnemonic Description 

Machine 
Code Format 

I lCOS 

lC08 

lC09 

lCIO 

ICll 

I 
lC20 

~O lC21 

20HU-3F80 Fwd 
20CO-3F'CO Bkwd 

20BO Fwd 
2~')CO Bkwd 

J~I (:0 Fwd 
2140 Bkwd 

2i8G Fw..:l 
21CO Bkwd 

2200 Fwd 
2240 Bkwd 

0 ",:C)O Fwd 
2440 Bkwd 

2800 Fwd 
2P40 Bkwd 

3080 Fwd 
30CO Bkwd 

3100 Fwd 
3140 Bkwd 

3180 Fwd 
3lCO Bkwd 

3200 Fwd 
3240 Bkwd 

IAH 

OXH 

IXH 

OLH 

IIH 

OPH 

IPH 

JOC* 

JAM * 

JAZ* 

,1AL* 

JOS* 

JSR* 

JXZ* 

JAP* 

JAN* 

JAG* 

JOR* 

Input Console Data Register to A 
and Halt 

output X tq Console Data Register 
and Halt 

Input Console Data Register to X 
and Halt 

output Location to Console Data 
Register and Halt 

Input Console Data Register to I 
and Halt 

output Pto Console Data Register 
and Halt 

Input Console Da'ta Register to P 
and Halt 

Jump on Condition 

Jump if A Minus 

Jump if A Zero 

Jump if A Less Than One 

Jump if Overflow Set 

Jump if Sense Switch Reset 

Jump if X Zero 

Jump if A Positive 

Jump if A Not Zero 

Jump if A Greater Than Zero 

Jump if Overflow Reset 

E-lO 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-4 

E-4 

E-4 

E-4 

E-4 

E-4 

E-4 

E-4 

E-4 

E-4 

E-4 



c 

o 

Inst:ruction 
Skeleton in Hex 

3400 Fwd 
3440 Bkwd 

3800 Fwd 
3840 Bkwd 

4000 

4002 

.4003 

4005 

4006 

4007 

4203 

4241 

4300 

4300 

4310 

4320 

4320 

4340 

4340 

4400 

4404 

4600 

4604 

4708 

4718 

4788 

4798 

M' till, ,mWrtt.'Ntt'! m» ','·<tt. t, t' 'We 1M' 'v 

Inl.lt""r.;tion 
Mnemonic Description 

JSS* Jump if Sense Switch Set 

JXN* Jump if X Not Zero 

SEL* Select Function 

PFE . Power Fail Enable 

PFD Power Fail Disable 

CIE . Console Interrupt Enable 

crD Console Interrupt Disable 

TRP Trap 

*JSKR* Jump and Stack Registers 

*JSKS* Jump and Stack Status 

*ADX Add to X 

*ADXB Add to X Byte 

*DMS Decrement Memory and Skip 

*SBX Subtract from X 

*SBXB subtract from X Byte 

*EMX Exchange Memory and X 

*EMXB Exchange Memory and X Byte 

SEA* Select and Present A 

DCA output A to Console Register 

SEX* Select and Present X 

OCX Output X to Console Register 

*ADDT Add Text 

*SUBT subtract Text 

*MOVT Move a Text String 

*CMST Compare Text Strings and Skip 

E-11 

Machine 
Code Format 

E-4 

E-4 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-2 

E-2 

.... -2 

E-2 

E-2 

E-2 

E-2 

E-2 

E-9 

E-9 

E-9 

E-9 

E-14 

E-14 

E-14 

E-14 

--- ._---------_. ------.- ._----------.--_ ......• '. 



Instruction 
Skeleton in Hex 

4800 

4900 

4BOO 

4:820 

4B40 

4B60 

4DOO 

5000 

S400 

51300 

5800 

5801 

5804 

5900 

SAOO 

5AUO 

SAO] 

SA04 

5BOO 1° ScOO 

I .. I 
I 

I 
I 
j 

1 i 
"I ; 

5DOO 

SEOO 

SFOO 

6000 

6400 

6800 
,i I 
~I '"-____________ _ 
~I 

Instruction 
Mnemonic 

SSN* 

SEN* 

*MSB* 

*MRB* 

*MCB* 

*MTB* 

*CRC* 

AIN* 

AIB* 

INA* 

SlA 

lSA 

lCA 

RDA* 

INX* 

SIX 

ISX 

ICX 

RDX* 

INAM* 

RDAM* 

INXM* 

RDXN* 

ACYI'* 

AOB* 

OTZ* 

Description 

Sense and Skip on No Response 

Sense and Skip on Response 

Memory Set Bit 

Memory Reset Bit 

Memory Complement Bit 

Memory Test Bit 

Cyclic Redundancy Check 

Automatic Input Word to Memory 

Automatic Input Byte to Memory 

Input to A Register 

Status Input to A 

Input Sense Register to A 

Input Console Register toA 

Read W0Ld to A Register 

Input too X Register 

Status [nput tu X 

Input Sense Register to X 

Input Console Register to X 

Read Word to X Register 

Input to A Register Masked 

Read Word to A Register Masked 

Input to X Register Masked 

Read Word to X Register Masked 

Automatic Output Word from Memory 

Automatic Output Byte from Memory 

OUtput Zero 

E-12 

, ... .,.. r d: t 1 .... Wtlttt e . 

Machine 
Code Format 

E-9 

E-9 

E-2 

E-2 

E-2 

E-2 

E-13 

E-10 

E-IO 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-10 

E-10 

E-9 



r' '-~nstruction 
, Skeleton in Hex 

6800 

6900 

6A03 

6A41 

6BOO 

6BlO 

6B20 

6B30 

6BGO 

f)p,70 

6coa 

6COO 

6DOO 

nEoa 

nEOO 

6FOO 

7100 ., 
7500 

7800 

7900 

7AOO 

7BOO 

7COO 

7DOO 

ComputerAutomation @i 
Instr'.~ction . 
Mnemonic Description 

SIN* Status Inhibit 

WRZ* Write Zero 

*RTNR* Return Registers 

*RTNS* Return Status 

*XSB* X Set Bit 

*ASB* A Set Bit 

*XRB'" X Reset Bit 

*ARB* A Reset Bit 

"'XCB'" X Complement Bit 

"'ACB'" A Complement Bit 

*XTB'" X Test Bit 

*ATB'" A Test Bit 

OTA* Output A Register 

SOA status Output from A 

WRA'" Write from A Register 

OTX* uutput X Register 

SOX status Output from X 

WRX* Write from X Register 

BIN* Block In 

BOT'" Block Out 

lBA* Input Byte to A Register 

REA* Read Byte to A Register 

rBX* Input Byte to X Register 

REX* Read Byte to X Register 

IBAM* Input Byte to A Register Masked 

RBAM'" Read Byte to A Register Masked 

Machine 
Code Format 

E-8 

E-9 

E-2 

E-2 

E-6 

E-6 

E-6 

E-6 

E-6 

E-6 

E-6 

E-6 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 

E-ll 

E-ll 

E-9 

E-9 

E-9 

E-9 

E-9 

E-9 



M 0 'Us Nsf "beth !1 I 't'Nt11n i' 
, ( , at :" ,.? )., rl i ttM 

, 

~ 
r 

·ComputerAutomation 

I' 
',-.' --

~ 

j In '. :':ruction Instruction Machine I 
t, Skeleton in Hex Mnemonic Descri--p~-ion Code Format 
t 

.~ 
r< 

'lEOO IBXM* Input Byte to X Register Masked E-9 
~: , 
~I 
'~'! 7FOO RBXM* Read Byte to X Register' Masked E-9 

8000 AND* AND to A E-l 

13000 ANDB* AND Byte to A E-l 

8800 ADD* Add to A E-l 

8800 ADDB* Add Byte to A E-l 

9000 SUB* Subtract from A E-l 

9000 SUBB* Subtract Byte fX'om A E-l 

9800 STA* Store E-l 

C 'j800 STAB * Store A Byte E-l 
I 

I AOOO IOR* Inclusive OR to A E-l 

I ~ A.OOO IORB* Inclusive OR Byte to A E-l , 

;\800 XOR* Exclusive OR to A E-l 

A800 XORB* Exclm.uve OR Byte to A E-l I 
BODO LDA* Load A E-l I 
BODO LDAB* Load A Byte E-l 

B800 EM]~· Exchange Memory and A E-l 

B800 EMAB* Exchange Memory Byte and A E-l 

0 
cOOO CAl * Compare to A Immediate E-3 

CIaO CXI* Compare to X Immediate E-3 

C200 AXI* Add to X Immediate E-3 
... 

C300 SXI* Subtract from X Immediate E-3 

C400 LXP* Load X positive Immediate E-3 

C500 LXM* Load X Minus Immediate E-3 

C600 LAP* Load A Positive Immediate E-3 

·1 C700 LAM * Load A Minus Immediate E-3 

E-14 

-------.. _ .. _. __ .. _---- -_._----_ .. 



o 

$ttl 

'",-----' 

I 
I 

InstructJ. .. m. 
Skeleton in Hex 

CDOO 

CDOO 

0000 

DOOO 

DeOO 

EOOr) 

EOOO 

E800 

1':1-3UO 

"UvO 

F'600 

F800 

Instv"ction 
Mnemonic 

SCM* 

SCMB* 

CMS* 

CMSB* 

IMS* 

LDX* 

LDXB* 

STX* 

STXB* 

JMP* 

WAIT 

JST* 

t ,'>t d", 7 i' t" t "'rid'" 

Scan Memory 

Scan Memory Byte 

Compare and Skip 1.f High or Equal 

Compare Byte and Skip if High or Equal 

Increment Memory and Skip on Zero 
Result 

Load X 

Load X Byte 

Store X 

Store X Byte 

Jump Unconditional 

wait for Interrupts 

'Jump and store 

ti !'tie .. .,,,,,, tt't*W'itttWct'N 

Machine 
Code Format 

E-l 

E-l 

E-l 

E-l 

E-l, 

E-1 

E-1 

E-1 

E-1 

E-1 

E-1 

E-1 

L, _______ E-_15 ___ --,--_~ __ 



o 

Appendix F 

EXEcu'rION TIMES 

F.] GENERAL 

This appendix defines the execution time of each instruction in the instruction ·set. 
Variations in memory access time make a tabulation of execution times difficult. For 
this reason, time calculation algorithms are also provided. These algorithms are 
USF.'ful with any memory accesS time by making the appropriate memory parameter sub­
st_i tution. 

F. 2 MEMORY P AMMETERS 

TRble r"--1 lH~t:s the memory parameters. All times listed are in nanoseconds. 

Table F-l. Memory Parameters 

-.-- i .. 
j ! 

MEr40RY I CONFIGURATION C RA RO 
I 

WA WO ROt WOI lYPE I 
''''-,-.. -~ ., 

! 
600 I COI-e 980 I Add on 4K, 8K 980 380 180 800 220 420 

Core 16K 1200 500 800 I 200 1000 300 500 1200 I Add on 

Core 1600 Add on or i nteg ra 1 4K, 8K 11600 450 115°1 250 1350 ° 
(j l 

Parameters in nanoseconds are: 

c -. Cycle Time 
RA "" Read Access 
RO = Read Overhead 
WA - Write Access 
WO := Wri te Overhead 
ROI .,. Interleaved Effect i ve Read Overhead 
WOI Interleaved Effective Wr i te Overhead 

F-l 

-------,----------



F. 3 ','.:XECUTION TIME ALGORITH"1S 

Execution time algorithms are listed in table F-2. 
by class and subclass. 

f 5,,. .' *=*'0&' 

The algorithms are partitioned 

l"ii
ll ~ The Memory Reference instruction address calculation times precede the instruction 

" , execlJ,tion algo,rithms. Note that four different sets of address c<.ilculations are 

',: 
"~I" 

prov.l.ded. The list of Memory Reference instructions have algorithms which list. Al,l\r 
A3' or A4 . The appropriate address calculation variable should be used 'as indicated. 

Numerous instructions have several times listed to define variations of an instruction. 

The letter i stands for indirect address levels. Where indirect addressing is used, 
the value (RA + 400/RO) must be added for each level of indirect addressing that is 
employed. 

The letter n demotes a shift. The value 1. 6n or 3. 2n must be added to the basic 
execution time of shift instructions for each bit shifted. 

The letter W is used by ·the SCM and Block 1/0 instructions. The parenthetical 
f:xpn~ssion which precedes the. W is the time calculation on a per word b.asis. e 

NOTE 

I~:x.ecutioll times listed in the following tables are calculated for the LSI-
2/20 and LSI-2/60 computers. For the LSI-2/l0, maximum execution times 
are twiCA the values listed. 

'0 

i 1 : 

F-2 

:,i,'I' '~ 



~i 
t'j 

·1 
',I 

!I 
~·'···'·I r. ,. 
f 

r 

o 

0 

Table F-2. Execution Time Algorithms 

MEMORY REFERENCE, CLASS 

----_._---'--'-;------' .. _._-----,.-------
.·."t["""A 1 ADOAr~SIN~ "OD[ 

MOOI I 
~, .. ---+------_._---------,--- ---------------------~~----

JI r"ct Hraf('hpad ! ",. ... 10~/r:O 
._------------- -,-

d'rr:ct rel,/l,ll\l(: rorward I R,., + i~O/RO 
,j'jr"c,t rf'18tlw b.ld.wltrd I PI\ ... 8Sfl/f!O 
direct Ind·:I(~d I RI\ • 7CO/RO 
'"dl reet ,\cratc.hpnd 2R" .. 700/Jl.O .. 
I nd i rer I re I o1t 1 \It! forward 2M ... 700/AO + 
Ifld'rt"ct 'f'I.lllv,. h,tr:kw"I'd 1ft"'" lOll/no ... 

IIOAD 
"00/"0 ... (RA • !tOO/RO) 
400/kO ... (RA + "00/111.0) 
I.OO/AO" IftA ... Iton/Mol 
700/AO , (A. + ~OOI.O) 

"" .. eNI/PO 
AA • ROO/Rn 

1 1M .. ,r,O/AD 

I "" • SaO/A" 

, 'ndl rt!.C,t r~ lat I VI' Tnd,: ... cd . I 2RI\ •. '0.0._'"0,.+ 

t i-I) : ~p" • 7non,'J .. 
(I-II 12M + )OO/AO. 
(j.1) I'JlA • lOll/PO .. 
(1-1\ ~",,+700/"0+ 

--'i - ,~, 

Fl.A + t Inn/II:O 
RA ... KOO/kU t'--'-"--i ~::~~:'i~i;:~~~''''''-' : :~ : :~~~~;: 

OV",t ) Il'Idirtct ... cr,~t(.hl-lltd lfJ,A'" 70U/RO" JOO/PO + (RA + ltOO/RO) (I~I) 
RA .. IlnO/HO 
2RA + 700/111.1) t 
~M" • 100/140 ... 
2RA ... 7eo/Fl.n + 
1M + 100/',,\ • 

\ Inr!:, .. ct r",l.lllv,' rorwoIf"d I 2RA ... 7/")fI/~IJ'" /(IO/ftO ... ~RA + ""'0/ 1'(1) (i-1) 
• i ,".1; rt.'d i''' 1 ,t i vc back\'1,Hd I :OR·' • 7:JO/RO ... 7'10/PO + (RA .. ~no/~o) (i -,) ----.1 inti rect i.II •• ! ..... ,'1 ! 211A + 7f)0/RO .. 900/RO + fRA + 400/ROI (1~1) 

r,OD/MO ... (itA ... "OO/FlO) (I.,) 
10"'"0 + (RA' ~oo/pol (I-Ii 
·.\lO/Rn ... {RA. • "')n/H") (I-I) 
aOn/R,O • (AA • ,.OO/I\Ol (I ~ I) 

eOO/RO + (RA + ~oO/ROI (i-II 
enO/RO ... (RA .. I.oo/no) (I~I) 

800/"0' :nA + ~oo/nO) (I-I) 
IOOO/RI') ... (~/, + Itnr,,/Rl') 'i, I) 

I 

I :'R~~~,.,r' : ADO"['SINr. "OOE AJ I A~ 
fl-~" ·'----"-;.-,-,:::::I:~:-J·----...,.j ~'~~~/Rt: IRA .. 13(1' ... ;;:-------· 

J j r. '. t f'I' L11 j vt fon~.lrd , "II ... 1 UOO/HI) I I\A ... I Y~:J/RU 
1 dir.-t· fl! ,'\!\,(' b<'(.~.~.)rd ~A. 11sn/!.(/ 1M ... 1t.!.i'r'O 

I I tI,!'"I" j .. rI" .... ·d I "II. ... 10(:.1/"0 RA + 13f.1l1/l{{) 

~\:~'J : :~:::~::~~ ~.~~:~!~:~.)~nrW'lr~ I";:~: ~~~;:~: ~~~;;~: ~::: ~~~~~~~ ~;:n i ;::: ~~~~:~: !~g~~:~: ~~:: :~g~:~! ~:::: 
I. ;,n"Jd·,~',:.',·I, ',."llad't',,~eu ":n'''d~:'''drd 2111\. 7()I.':1'~1" 70C,/HO'" (RA + 40('1/'1:1) (I-I) }P,,'" 7110,"':''' lQOV/P,O" tP.A .. !,00/1\0) (I~" 

L ....... i~A ... lOO/RO .. 1200/*40'" (RA ... ~Oi;./ItO· (i-njlRA ... !OO/PO ... 15f'O/1\0 .. (RA + 4':O/~0) (I~1) 
_L . 'r -.. - ............... ····1· '. 

dlnet !ocr,lh,l.p"d 11../\ ... f]OC'RO : P.A" 16ou/!W 
dirf>cf r-,.Idtlve '; RA ... 1,)01l/[iO : AA + j3{U1,.~r) 
J: n'el i .. d.· .. rl Pi\, f ! 300;1010 ; ~A,'" 1(,00,'1-..0 

~~Tf :~~:~::~ ;~;~~i~~a~orw"'d ~ ~:~: ~Z~;~~: '~~~:~~~: ~:~: ~~~:;:~i ~::::: ;::: ;~~~:~: :~::~;:~: :~:: ~~~~:~: 
IndlTe't,! rl'latlv~ I'o.,clo."arll I ~R.'A·' " /IOMli',,:~'O' '+ li?,'"O,,',',','O '+ ((~~ t, r,CI)/RO) (1~1\! JAI\ • lon/l~O .. 1]0"/1'0 of \I(A ... "l'tI/P,D) I 

L. i",lir" I i,..,,)('Xt:d (" "'., !,CO/RO) fi~l)llf(I\" 7"\)/~lJ" llion/MO .. (t:,i" ~Oi.)/nc' ------- ----,---
III ", ,J"ld .... ,th ADD, ~UB, ArID, lOR. XOP. (!'lA, LOA, U;Y, C~S ",nd.lI1S 

/0; u~tJrI with STA, STx dnd Jsr. 
A:~ ", u .... ,d ... .,. JMr o"ly. 

Alt \,;"i,·d by SCM I,.,!" 

"'I 
ARITHMETIC 

AOD 
SUB 

>-
LOGICAL 

AND 
lOR 
XOR 

"' 

DATA TRANSFER 
LDA 
LDX 
STA 
STX 
EMA 

PROGRAM TRANSFER 
JMP 
JST 
JST 

(Non-Interrupt) 
( Interrupt) 

*Not Affected by Interleave. 

• A1 + RA + (400/RO) 

At + RA + 400/RO 
At + RA + 400/RO 
A2 + WA + 250/RO 
AZ + WA + 250/RO 
Al + RA + 500/R01, 

A3 
A2 + WA + 550/WO 
A2 + WA + 700/WO 

F-3 

---~ .. , .... -----.. --

+ WA + 550/WO 

" (;'ill) 
(1"\ 
(I,!I 

Me .rt 



:He. 

,~ I 

i~-' 
t, 
t' 

Table F-2. Execm:.ion Time Algorithms (Cont'd) 

MEMORY REFERENCE (Cont'd) 
----_._---------_._------------------------------~ 

IMS 

SCM 
CMS 

Al + RA + (SOO/RO)* + WA 
+ 700/RO lOin-I ine no skip 

or + 1450/RO = 0 in-line skip 
or + 8S0/RO # 0 interrupt no echo 
or + 160o/RO = 0 interrupt echo 
A4 + RA + 550/RO + (RA + 1600/RO) (w-1) 
Al + RA 

+ 550/RO for A < Y 
or + 850/RO for A = Y 
or + 1150/RO for A > Y 

f---------------------------------------------j 

DVD 

~1PY 

NRM 

DOUBLE WORD MEMORY REFERENCE, CLASS 2 

_ 2RA + 1000/RO + (RA + 400/RO) 
+ (2950 + 4S0n)/RO 

2RA + 1000/RO + (RA + 400/RO) 
+ (3100** + 600n)/RO 

2RA + 1000/RO + (kA t 400/RO) i 
+ (1400 + 600n)/RO + WA + 1750/WO 

1-----------_._--.. _-_._--
DOUBLE WORD MFMORY REFERENCE, CLASS 2 (LSI-2/60 ONLY) 

ADX 

Not Affected by Interleave 
** +300 for Negative Multipl ier 

3RA + 700/RO + 700/RO ~ 8S0/RO 
Add (RA + 400/RO) for each indirect 

F-4 

------



o 

o 

.. 

'1 

'M : , k&rn . ,. We" % 

r----
"fat'le F-2. Execution Time Algorithms (Cont'd) 

! 

DOUBLE WORD MEMORY REFERENCE (LSI-2/60 ONLY) (Cont'd) 
!---------.-- ... ---.-------- -------------- ---------4 

I 

MSB 2450 + 3RA + WA + 550/RO + 400/RQ + 550/WO 
+ 300 x N 

where N is the bit position number plus 1 
Add (RA + 400/RO) for each level of indirect 

MRB 2450 + 3RA + WA + 550/RO + 400/RO ~ 550/WO 
300 x N 

where N is the bit position number plus 1 
Add (RA + 400/RO) for each level of indirect 

MeB 2450 + 3RA + WA + 550/RO + 400/RO + 550/WO 
+ 300 x N 

where N is the bit position number plus 1 
Add (RA + 400/RO) for each level of -indirect 

MfS 1300 + 3RA + WA + 550/RO + 400/RO + 550/WO 

DMS 

+ 300 x N 
where N is the bit position number plus 1 
Add (RA + 400/RO) for each level of indirect 

I. I n- line 

1. Result not minus one 
2200 + 3RA + 700/RO + 550/RO + 

(RA + 400/RO) X N 

2. Result minus one 
3250 + 3RA + 700/RO + 550/RO + 

(RA + 400/RO) x N 

II. Interrupt 

1. 

2 • 

F-S 

Result not minus one 
1450 + 3RA + 700/RO + 550/RO + 

(RA + 400/RO) x N 

Result minus one 
2100 + 3RA+ 700/RO + 550/RO + 

(RA + 400/RO) x N 
wh~re N is the number of indirect 

cycles 
For OMS Indexed use: 850/RO instead 
of 550/RO 



I \ 

! 
I ! 

10 

... i 

I , 
I 

I , 
1 

I 

d 
I, I 

Table F-2. Execution TiIr':' Algorithms (Cont'd) 

STACK, CLASS 3 

ADDRESSING MODE S1 52 S3 

direct access 3RA + 2(400/RO) + SOO/RO S1 + 100 Sl + 300 

indirect access 3RA + 2(400/RO) + 8S0/RO Sl + 100 Sl + 300 

auto-post increment 3RA + 2(400/RO) + SOO/RO* S1 + 100 Sl + 300 
or auto-predecrement + WA + 400/wo 

51 is used with ADDS, SUBS, ANDS, lORS, XORS, EMAS, LDAS, LDXS, CMSS and IM5S. 
S2 is used with STAS, STXS, and JSTS. 
53 is used by JMPS and SLAS • 

AR I THMETI C 
ADDS 
SUBS 

LOGICAL 
ANDS 
lORS 
XORS 

DATA TRANSFER 
LDAS 
LflXS 
SlAS 
sr::,; 
EMAS 

... 

> 

PROGRAM TRANSFER 
JMPS 
JSTS 
IMS5 

CMSS 

STACK CONTROL 
SLA5 

* Not Affected by Interleave 

Sl + RA + 400/RO 

Sl + RA + 400/RO 
Sl + RA + 400/RO 
S2 + WA + 250/RO 
S2 + WA + 250/RO 
Sl + RA + SOO/RO* + WA + S50/WO 

S3 
52 + WA + S50/WO 
51 + RA + SOO/RO* + WA 

+ 700/RO ~ 0 in-line, no skip 
or + 1450/RO = 0 in-line, skip 
or + 850/RO ~ 0 interrupt, no echo 
or + 1600/RO = interrupt, echo 
Sl + RA 

+ 550/RO 
or + 850/RO 
or + 1150/RO 

F-6· 

A < Y 
A = Y 
A > Y 

f~ ! 
j ~--------------------------------------------------------------------------~ ij ----
'I 



." 

I 

I 

·"Pi'''M'tw'?:'«'tlt'''ffl''ftt!tft'i'tH, ',' ·"ttb"''gOtth'r!:tt!'t'.!f''±¥2ft t ne'.leg, He' 
'P*M' tMttt· ''WW*,"U {*" *¥,,%!!Mvi'f n Wt 1 t hW rrr 

c 

o 

''''e' "#,""$"'ttt.* t1tM'b't*IMt''H'ttt' ex "'1 .. , 

I-
Table F-2. Execution Time Algorithms (Cont'd) I 

JSKR 

JSKS 

P.TNR 

RTNS 

--....• -.----.-----

STACK, CLASS 3 (LSI-2/60 ONLY) 
. '-"'- _.,,_ .. --.. _._-------- ...... ---_._-

In -1 i ne 
7850 + 4RA + 5WA + SSO/RO + 700/RO + 3S0/WO 

+ 650/WO + 6S0/WO + 6S0/WO + 400lRO 

Interrupt 
8000 + 4RA + 5WA + 550/RO + 400/RO + 350/WO 
+ 650/WO + GSO/WO + 6S0/WO + 400lRO 

I n-] i ne 
7850 + 4RA + 3WA + 5S0/RO + 700/RO + 350/WO 
+ 650/WO + 400/RO 

Interrupt 
8000 + 4RA + 3WA + SOO/RO + 400/RO + 3S0/WO 
+ 650/WO + 400/RO 

7RA + WA + S50/RO + 400/RO + SOO/RO + 250/WO 
+ 2X850/RO + 2X700/RO 

5RA + WA + 550/RO + 400/RO + 500/RO + 250/WO 
+ 700/RO + 1400/RO 

.--------------1 
BYTE IMMEDIATE, CLASS 4 ! 

. __ ._-_._ ........ _----_ .. _--- --- .. ------ -------1 
,1\A I 
fIX I 
SAl 
SXI 

~~:} 
LAP 
LXP 
LM1 
lXM 

RA+ 1000/RO 
RA + 700/RO 
RA + 1000/RO 
RA + 700/RO 

{ RA + 1000/RO skip 
RA + 850/RO no skip 
RA + 700/RO 
RA + 700/RO 
RA + 700/RO 
RA + ?OO/RO 

F-7 



'WW 'ft1tr.t' 1I1'l**" U ' ., g 'tw.we t 't r • Mrs MWtc 

Table 1<"-2. Execution Time Algorithms (Cont'd) 

I, r­
[ I 
~I ...--,_-_-._--.-... -_ .. -'_-___ -... -.. =~~-_-,-._.-C-,.~-~=D=I T-._I~O-N~A=L-.~-,U=M=P _-.,-.,.~-.. ~~A-S~S-__ 5-_-~-.~~9~-~-~-~-_-.~=-,_-_-_-. -,,,,-, ~~=-~~-. -._""1 

f. 

I 
I 
! 
I 
:0 

, ! , I 
I 1 

I I 
I 
I 
I 
\ 

I 

I 
. .0 
I i 

MICROCODED 
JOC 

AR I THMETI C 
JAG 
JAL 
JAM 
JAP 
JAZ 
JXN 
JXZ 

CONTROL 
JOR 

JOS J JSR 
JSS 

ARITHMETIC SHIFTS 
ALA 
ALX 
ARA 
AR.X 

LOGICAL SHIFTS 
LLA 
LLX 
LRA 
LRX 

ROTATE SHIFTS 
RLA 
RLX 
RRA 
RRX 

{ 
RA + 700/RO = No Jump 

RA + 1000/RO = Jump 

SHIFT, CLASS 6 

RA + 1150 + 150n/RO 

DOUBLE REG1STER LOGICAL SHIFTS 
LLL 
LLR } 

DOUBLE REGISTER ROTATE SHIFTS 
LRL } 
lRR 

RA + 2350 + 150n/RO 

RA + 1150 + 150n/RO 

F-8 

--1 
I 

I 

.----------------------------------



,"" 

i 
'I 

1 

I 
!I 1.:,' , 

',;,',,1
1 .' 

:'1 

o 

. • 1# »WCi't r MPtft' 

'I';lble F-2. ExecutL:m Time Algorithms (Cont'd) 

REGISTER CHANGE, CLASS 7 
t---- .------------ .-----,-------.-------.-

A REGISTER CHANGE~ 
ZAR 
ARP 
ARM 

>-CAR 
NAR 
IAR 
DAR 

J 

X REGISTER CHANGE" 
ZXR 
XRP 
XRI1 

> CXR 
~XR 

IXR 
:m 

~ 

OVERF~~~}REG I STER CHANGE 

rov 
SAO'" 
SXO 
LAO 
LXO >-
BAO 
BXO ... 

MULTI-REGISTER CHANGE 
ZAX 
AXP 
l\XM 
TAX 
TXA 
EAX 
ANA 
ANX 
NRA 
NRX 
CAX 
0/\ 
NAX 
NXA 
lAX 
IXA 
IPX 
DAX 
OXA 

RA + 1000/RO 

RA + 1000/RO 

RA + 850/RO 

RA + 1300 + 150n/RO 
n is number of bits away from 0 to 15 

RA + 1300/RO 
RA + 1300/RO 
RA + 1300/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1300/RO 
RA + 1000/RO 
RA -+ 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 10oo/RO 
RA + 1000/RO 
RA + 1300/RO 
RA + 1300/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 100o/RO 

F-9 



f ,-------­

f 
~ i 
J 

1: r MUL T I-REG I STFR 

BCA} BCX 
PSA 
BSX 
EIX 

'rable F-2. Execution Tim~; Algaritluns (Cant'd) 

REGISTER CHANGE (ConL1d) 

CHANGE (Cont'd) 

_. __ .. _--_ ... __ ..... -.---

RA + 1300/RO 

RA + 500/RO + normal time of instruction 
executed 

CONSOLE REGISTER 

o 

o 

ICA 1 I CX 
ISA 
I SX 
OCA J 
OCX 

._---'-._--_ ... -
ASB 

ARB 

ACB 

XSB 

XRB 

xeB 

ATB 

XTB 

AXA 

AAX 

SXA 

SAX 

XXA 

XAX 

XNX 

-_.:..---_._._---_ .... 

RA + 1600/RO 

REGISTER CHANGE, CLASS 7 (LSI-2/60 ONLY) 

3850 + RA + 300 x N 
where N is the bit po~ition number plus 

3850 + RA + 300 x N 
where N is the bit position number plus 

3850 + RA + 300 x N 
where N is the bit position number plus 

3550 + RA + 300 x N 
where N is the bit position number plus 

3550 + RA + 300 x N 
where N is the bit position number plu~ 

3550 + RA + 300 x N 
where N is the bit position number plus 

2200 + RA + 150 x N 
where N is the bit position number plus 

1900 + RA + 150 x N 
where N is the bit position number plus 

RA + 1000/RO 

RA + 1000/RO 

RA + JOOO/RO 

RA + 1000/RO 

RA + JOOO/RO 

RA + 1000lRO 

1650 + RA + 400/RO + Instruction Execution 
time as listed in this handbook. 

F-1.0 



I·

II ....••.... ! t 

, 

i 
~. 
~ 
.~. 

f 

o 

o 

Tabl~ F-2. Execution Time Algorithms (Cont'd) 

PROCESSOR CONTROLS 
~LT (STOP)} 
NOP 

MODE CONTROLS 
SBM 
SWM 

STATUS CONTROLS 
SIA 
SIX 
SIN 
SOA 
SOX 

} 

INTERRUPT CONTROLS 
CIO 
elE 
ld N 
EIN 
PFE 
PFO 
TRP 

WFI 

CONTROL, CLASS 7 

RA + 1150/RO 

RA + 1000/RO 

RA + 1600/RO 

RA + 1600/RO 

RA + l8S0/RO 

RA + 16oo/RO 

CONTROL, CLASS 7 (lSI-2/60 ONLY) 

RA + SSO/RO first execution 
300 interrupt sampling period 

- ..... -.------------------ ·------------------···---1 
INPUT/OUTPUT, CLASS 8 

------------------------------------------------.-~ 
CONTROL 

SEN 

SEA 
SEl 
SEX 
SSN 

UNCONDITIONAL WORD 
INA 
INAM 
INX 
INXM 
OTA 
OTX 
OTZ 

RA + lS50/RO no skip 
RA + 1900/RO skip 
RA + 16oo/RO 
RA + l600/RO 
RA + 16oo/RO 
RA + 1900/RO no skip 
RA + 1700/RO skip 

RA + 1600/RO 

F-U 



':Cable 1"-2. Execution TimE: AlgorittuTis (Cont'd) 

INPUT/OUTPUT {(ontld) 
1----.------_._-------------------.---. -.. - -------.--.------- .------~ 

COND I T I ONAl W .... ORD 
RDA 
ROAM 
RDX 
RDXM >-
WRA 
WRX 
WRZ 

UNCONDITIONAL BYTE 

IBA } IBAM 
IBX 
IBXM 

{ RA + 20S0/RO successful 
RA + 2000/RO unsuccessful repeat period 

RA + 16oo/RO 

1° 
CONDITIONAL 

RBA 
RBAM 
RBX 
RBXM 

BYTE 

} { RA + 2050/RO successful 
! 

I i 

, 
i 

fl I 
',:1 t 

~ ; 
~j 
~-. 

BLOCK 
BIN 

BOT 

RA + 2000/RO unsu~cessful repeat period 

2RA + 400/RO + lS50/RO + WA + 8so/wo 
+ (WI\ + 2 OOO/WO) (W-l) 

3RA + 2 (400/RO) + 1300/RO + lRA + 2050/RO) 
(W-l) 

NOTE 

Time given assuming device sense respo~se is present. If not 
present, BIN and BOT retest for ready every 850 ns. 

AUTOMATIC 
AIN/AIB 

AOT/AOB 

3RA + 3WA .... 400/RO + 800/RO + SOO/RO;" 
+ SSO/WO + 1700/WO 
+ SSO/WO if in-line, 

or + 400/wO if interrupt 
4RA + 2WA + 400/RO + 800/RO + SOO/RO-':'­

+ 2 (SSO/WO) 
+ 1750/RO in-line, 

or + 1600/RO if interrupt 

I------------------------... ---------------.-------i 
CYCLIC REDUNDANCY CHECK, CLASS 10 (LSI-Z/60 ONLY) 

~-------.--.-. -----.,------,-----------.----,---------- .. ---------i 

eRe 

* Not Affect~d by Interleave 

700 + 4RA + WA + 550/RO + 400/RO + 700/RO 
+ 550/RO + 450 x N 

where N is the number of bits in the character 
Add (RA + 400/RO} for each l~vel of indirect 

1_'1 .. ----~ < •• ,--- ~.--~ ••• -.~"---.-.- •• " 

*'1 

F-12 



.. 

"I 

II {f' "1:·' " [ 

r , 

.,' ri k 'd$' 'up' M d'tMHttft* (t .. ttHM .. r N'ewtHM t 

Tabl~ F-2. Execution Time Algorithms (Cont'd) 

TEXT MANIPULATIOR, ~LASS 11 (LSI-2/60 ONLY) 
---------------------.. -.-------.. ---------- .-------.. --4 

°1 , 
I 
I 

I 

I 
i 

01 
I 

ADDT 

SUBT 

I. 1. Direct/Direct 
12.550 + 6RA + 2WA + 850/RO + 400/RO 
+ 850/RO + (10,680 + 2RA + WA) x N 

2. Direct/Indirect or Indirect/Direct 
12,550 + 7RA + 2WA + 850/RO 
+ 400/RO + 400/RO + 850/RO + 
(10,680 + 2RA + WA) x N 

3. Indirect/Indirect 
12.SS0 + 8RA + 2WA + 850/RO + 
400/RO + 400/RO + 400/RO + 850/RO 
+ (10,680 + 2RA + WA) x N 

where N is the number of digits. 

I I. Maximum Interrupt Latency 

1. Direct/Direct 
19,780 + 8RA + 3WA + 8S0/RO + 400/RC 
+ 8so/wo 

2. Indirect/Direct or Direct/Indirect 
19,780 + 9RA + 3WA + 850/RO + 400/RO 
+400/RO + 8so/wo 

3. Indirect/Indirect 
19,780 + loRA + 3WA + 8S0/RO + 
400/RO + 400/RO + 400/RO + 8S0/wO 

I. 1. Direct/Direct 
12,050 + 6RA + 2WA + 8S0/RO + 400/RO 
+ 8S0/RO + (10,380 + 2RA + WA) x N 

2. Direct/Indirect or Indirect/Direct 
12,050 +' 7RA + 2WA + 850/RO + 
2 X 400/RO + 8S0/RO + 
(10,380 + 2RA + WA) x N 

3. Indi,ect/lndirect 

F-13 

12,OSO + 8RA + 2WA + 8S0/RO + 
3 X 40n/RO + 850/RO + 
(10,380 + 2RA + WA) x N 

where N is the number of digits 



!Iii' I'etrttlrti: dWt'¥"W"W""''/t @M-IbiPb " l' WI/e'.fKi'I!!tlW MeM 

I' r-->-----' .. -"~-----.-..... . 

I. i 
~ I 
t I 

Table F-2. Execution Tim~ Algorithms (Cont'd) 

TExr HANIPULATION (LSI"716.0 ONLY) (Contld) I 
---"-"---"'--"--"""-"~--,---

$UBT (Contld) 

MOVT 

..... _- -- -.---.-.- .... ---... ---- .. ---------~ 

I I. Maximum Interrupt Latency I 

I . 

1. Direct/Oirect 
18.980 + 8RA + 3WA + 8S0/RO + 400/RO 
+ 8S0/RO 

2. Direct/Indirect or Indirect/Direct 
18.980 + 9RA + 3WA + 2 X 8S0/RO + 
2 X 400/RO 

3. 

1. 

Indirect/Indirect 
18.980 + lORA + 3WA + 2 X 8S0/RO + 
3 X 400/RO 

Direct/Direct 
4300 + 3RA + 8S0/RO + 400/RO + 

(RA + WA + 1000/RO + 1300/WO) x N 

2. Direct/Indirect or Indirect/Direct 
4300 + 4RA + 8S0/RO + 400/RO + 400/RO 

+ (RA + WA + 1000/RO + 1300/WO) x N 

3. Indirect/Indirect 
4300 + SRA + 8S0/RO + 400/RO + 400/RO + 

400/RO + (RA + WA + 1000/RO + 1300/WO) 
x N 

• where N is the number of bytes 
, I 

I , 

,0 

I I. Maximum Interrupt Latency 

1. Direct/Direct 
36S0 + 4RA + WA + 8S0/RO + 400/RO 

+ 1000/RO 

2. Indirect/Direct or Direct/indirect 
36S0 + SRA + WA + 8S0/RO + 400/RO 
+ 400/RO + 1000/RO 

3. Indirect/Indirect 

F-14 

36so + 6RA + WA + 8S0/RO + 400/RO 
+ 400/RO + 400/RO + 1000/RO 



I 

'i 
'I 

I 

f t 
{:I 
'!i 

o 

o 

CMST 

Table F-2. Execution Time Algorithms (Cont'd) 

1EXT MANIPULATION (lSI-2/60 ONLY) (Cont'd) 

I. 1. Direct/Direct 
5500 + 3RA + 850/RO + 400/RO 

+ (1600 + 2RA + 1000/RO) x N 

2. Direct/Indirect or Indirect/Direct 
5500 + 4RA + 850/RO + 400/RO + 400/RO 
+ (1600 + 2RA + 1000/RO) x N ' 

3. Indirect/Indirect 
5500 + 5RA + 850/RO + 400/RO + 400/RO 

+ 400/RO + (1600 + 2RA + 1000/RO) x N 
where N is the number of bytes. 

, 
1 I. Maximum Interrupt Latency 

1. Direct/Direct 
4800 + 5RA + 850/RO + 1000/RO + 400/RO 

2. Direct/Indirect or Indirect/Direct 
4'800 + 6RA + 850/RO + lOOO/RO' 
+ 400/RO + 400/RO 

3. Indirect/Indirect 

NOTE 

4800 + 7RA + 850/RO + 1000/RO + 400/RO 
+ 400/RO + 400/RO 

F0r the LSI-2/60, the'execution time algorithms for certain 
instructions must be modified as indicated below. The modifica­
tions indicated do not apply to instructions designated for 
LSI-2/60 use only. 

All Stack Add RA + 300/RO for each level of indirect 

Push Instr. Use 400/RO + 850/RO in place of 2(400/RO) 

INAM, INXM}' 
I BA, IBAM . Use RA + 1750 + 1750/RO i n'stead of RA + 1600/RO 
IBX, IBXM ' 

F-1,.5 

tj:, --,----- --
,;. 

--------" ...... _--_ ..... _ .. -------_._ ..... 



; ,'--
I, I 
~,. I' F. 4 

t, . The execution times of the instruct.ions in the instruction set are list'ed in table 

INSTRUCTION EXECUTION. TIMES 

~, ; F-S, The Memory Reference instruction address calculation times are listed in table 
Ii F-3., Stack instruction address calculation times are listed in table F-4. 
~: 
~'. 
\\, 

'i 

«) 

I 

Table F-3. Memory Reference Instruction Address Calculation Tl~es 

, __ M_E_M_O_RY ____ ~lp_R_O_C_[_$_SO_R_4-------A-D-D~-f-S-S-1_NG __ M_O_D_E ____ ~ ______________ +_------A-2------1_--------------rll; . " I r TYPE 1-10DE A I A3 

d reet srr;;tehrJac1 ! 1.6 1.6 1.6 1.7~ 

I LORE ;600 

I 

I 
~.-
I 

i 
I 
I 

I 

CORE 1200 

d reet r"l.:>tive forward 1.6 1.6 1.6 1.75 
d reet relati,c h.lckward I' 1.6 1.6 1.& 1.9 
d r,·ct inJl!,,,d 1.6 1.6 1.6 175 
indirect scr~tch~ad I 3.2 + I.G (i-I) I 3.2 + 1.6 (i-I) 3.2 + 1.6 (i-I) 3.2 + 1.6 (i-I) 
;ndir~~t '~IMiv" forw.lrd 3.2 + 1.6 (i-I) I 3.2 + 1.6 (i-I) 3.2 + 1.6 (i-I) 3.2 + 1.6 (i-1) 

WORD 

i'ldir,," .·~JiI::ve back,.ard i 3.7" 1.6 ,,-I) I 3.2 + I.G (i-l/ 3.2 T 1.6 (i '1) 3.7 + 1.(. (i-I) 
I indi,ed icd., ... d I 3·2 + 1.6 (i-I) ,3,' + 1.6 (i-il , 3.~ + 1.6 (,-I) ; 35 + 1.6 (i-J) 

r--- .. ;-.~;-:~~~ ~~'I;~~~~"<I------,II -:-:~ ------ ::-~- -" --r:i ---- -.- :"~.~~"-- . 
direct i"Cv.'~J 1.6 1.6 11.75 i 2.05 

BYTE indirect s_'"lcl'~dd 13.2 + 1.6 (,.1113.2 + 1.6 (i-1) 3.2 + 1.6 (,-1) 3.35 + ,.f (;-1) 
indirect r, L'liv.· fon"lrd I 3.2 + 1.6 (i-I) 1.2 + I 6 (i-I) I 3.2 + 1." (i-I) 1 1. ~S.,. I (. (,-Ii 
jndir"et r, 1.01 iv~ h.,ck.!.lfd I 3.1 + 1.(, (i-1) 3.2 + \.6 (i-I) 13., • 1.6 (i-I) ; 3.35 + 1.6 (i':) 

, indireol ;,,1.,,·.1 ,3.2 + 1.6 (i-I) 3.2' 1.6 (i-1) 3.1 + 1.(. (i-I) ,,<;r, + 1.6 .i-l) 

-----~:;.r ;-:., :"(-cl,p:~-- ------ r, .~------- ;7' - ----: -;-~4 -- ---- ---- .. ------1 
di I('r( reld!;vl!. forward '1.2 1.2 1.~ I. 7 

IIORD 

U T. rc 

dirf'c l . f"i.1I iv,' h.lrk.\<lard 1.25 1.35 1.~15 loP:, 
d iI, !_l i t \I~,,,,_ .. J 1 • 2 

indi I"f!t:t ',I.' ,)1 cflpad 
indi rnct ! (>I..tr iv(· f()rward 
indilt:.:l ri·!"livc backward 

di r,"rt ~,(r·.,ll:jll' 11.1 

d i r~,· t rr! 0;1, " f' 

1..<; rcc 1" i fl{j,,)o ,·d 
ir,dirl~(1 ,.tdd:hpao 
itlJtr~!CI r(·I;!tivt! forward 

! i rd i rCL t "(; 1.'1[ ; I/e backward 

1. 1, + 
2.4 + 
2.1, + 
L .4 + 

1.1, 
1.2 
1.4 
lo4+ 
2.4 + 
2.4 + 
2.5 + 

1.2 
1.2 
1.2 
1.2 

1.2 
1.2 
1.2 
1.2 

1.2 
( i-I) .2.4 + 1.2 
(i-l ) 2.4 + 1.2 
(H) 2.1, + 1.2 
(i-l ) 2.4 + 1.2 

1 . ~J 
1.2 
1.5 

( i-I) 2.~ • 1 I 

(i - I ) 2.1r .. 1. i 
(i-11 2.~ + 1.2 
(i-I) 2.6 + 1.2 

(i -I) 
(i-I) 
(i -I) 
(i -I) 

1.4 
2. " 
2.4 
2.4 
2,(, 

1./ 
1.4 
1.7 

+ i . 2 ( i·n 
+ 1.2 \i'l) 
+ 1.2 ( i -I) 
to 1 ., (i'l) 

: ! 

.!' + I .. 
2. (. + I .2 
2.t1 + 1 

, ., 
l ') + 1 .. 

.0 
; i 

(;-1) 12.6. I;> (i-I) ... I .. 
(i-I) J 2.6· 12 (i .. 1) ~'''' I.:> 
(;-1) I 2.6 + 1.2 (i-I) ".~ + 1.7 
(i-1) : 2.8 • 1.2 (i-I) .3." 1.2 

( i - 1\ 
(i· d 
; ; '1' 
( i - ~ ) 

I,· il 

\ ; - I ) 

'i I) 
~ , - t) 

~
. indir(~rt 

.------. ..:.------'-;;-; r-c-c-t -s~r~t(.hpad I" dir .... ct rcli1tive forward . I direct relative bac~ward 
WORD I d j ree t ; nJ..,x(·,d 

----t----'-----.r:-:- .-.------.. -.-.----l 
1.08 1. 18 i 1. 38 : 1 d 
l.c3 1.13 ' 1.3ll d 
1.23 I 1.33 I 1.~3 .83 
1 .08 , 1. 18 , I. 38 .. 63 lO indirecl scratchpad 

:1:: " ~r,o~ feet r'-'lli)t~"C forwdrd 
Ind. reet re dllv,' backward 

2. 06 + .98 (i -I) 12 06 + .98 (i - I) I 2.16 + .96 (i -I) 2 40 .... 90 
2.06 + .98 (i-I) 2:06 + .98 (H) 2.lf.,. .98 (i-I) ?~6 ~ .98 
2.06 + .98 (i -I ) 2. (,6 + 98 (i -;). 2.16 + .98 (i -1)' , ,t + .98 
2. If ..... 98 (i-I) 2.26 + .98 (i-I)I 2.4~ + .98 (i-I) 2.76 + .98 

I 
I 
I 
I 

CORE 960 ! i no 1 rcc t indexed 
~-~ ... - .... --- .. - .. ._-----j --,- :-:~~ 

.---------.-- -- _., -- ._. -----
, I' direct .crdt~hp~d 

d i ret: L re f.1 t i v~ 

BYTE 
direct inJ .. .'r.cJ 
indil'~ct scralchpd~ 

I inJil('ct r~l;ltive forw~rd 
indirn":l (".;1 Jljvt'~ b.lck\J..lrd 

! in.!; rect indt.~xcd 

I 
I 

I 
I. 38 
1.08 
1. 38 
2.16 + 
2.16 + 
2.16 + 
2.36 + 

I 1.48 
(i-1 ) I 2.26 + 
(i-I), 2.26+ 
(i-I) 2.26 + 
(i -I) 2.46 + 

<; u" J rli til AOD, SUb. AND. 10k. XOR. EMA, LOA, t~X. 015 "lid IMS. 
AZ s u';/~J with STA I ~l'X ,'nd JS1. 
A3 5 used h~ JMP only. 
A4 'us~J ~\' SCM ,,"ly. 

NOH 

.98 

.98 

.98 

.98 

1.68 1. 9 ~ 
1. 3,~ i .08 
1.68 I. ~B 

(i-l )i 2.46 ... .98 ( i -I) . 2. > 
(i-1) ! 2.~6 + .9~ (i -I) o. '/6 
(i -I) I 2.46 + .98 (i - I) :~ . 76 
(i -I i 2.66 + .98 ( i-I) i 2.)" 

Times giv"n in tabln "-3. F-4, ,,,,d F-5 .lpply t<.. the LSI-2120 "nJ tnc lSI-2/(,(j. LSI-2iIO tim'" ar~ 
twice those given for th~ 2/~O ~nd the 2/(,0 Wilh ,1 CI600 ,"emory, r"gardl~,s of the m~mury us"d wi:r, 
th" 2/10. 

F-16 

a!t 4# 

... .~iJ .. .S8 
+ .90 
<. .'18 

-1 ) 
-I) 
-I) 
-1 ) 



II 
~. 

I 

'I 
I 

I 

'''''''P'tit '. tWMI,'· """'eb'"bf!f'f"] 'fwe6tr1n'#Hffl:# 'W!"'f ,. ··S' ·"·'tW;"'. 1 "Uee f &:!!:tie'b='*W"',,'t' "'i&if"f'l'tfflWM'; Vi' "'W 11'."'*'t 'irtitd t 

r------,··-·---"""------- -----

0' I 

o 

MEMORY 
TYPE 

CORE 1600 

CORE 1200 

--

CORE 980 

Table F··4. Stack Instruction Address Calculation Times 
(See note following table F-3.) 

ADDRESSING MODE Sl S2 

direct access 4.8 4.9 
indexed access 4.8 4.9 
auto-post increment 6.4 6.5 
or auto-predecrement 

direct access 3.6 3.7 
indexed access 3.65 3.75 
auto-postincrement 4.8 4.9 

or auto-predecrement 

direct access 2.94 3.04 
indexed access 3. 19 3.29 
auto-post increment 3.92 4.02 
or auto-predecrement 

S3 

5. 1 
5. 1 
6.7 

3.9 
3.95 
5. 1 

3.24 
3.49 
4.22 

') 1 is used with ADDS, SUBS, AN OS , I ORS, XORS, EMAS, LDAS, LDXS, DMSS, and 
IMSS. 

$2 is used with STAS, STXS, and JSTS. 
S3 is used by JMPS and SLAS. 

F-17 



'1'1" '·'f r 'O'ttWh,.'WN'W#M t ('I j •• , .It "'r'sner'ifttM"r""'.". #. 'tiME" tatrtt, .. _ 

Table F-5. Instruction Execution Times 

MNEMONIC c1600 C1200 C980 

MEMORY REFERENCE 
------------------------------------.------------------------- -----------1 

I 

I 
i I 
I 

;:11 
~ , 
~I I 

i 

A r i t hme tic .... 
ADD 
ADDS 
SUB 
SUBB 

Logic 

Data 

AND 
ANDB 
lOR 
IORB 
XOR 
XORB 

Transfer 
LOA 
LOAB 
LOX 
LDXB ~ 

~i~B} 
STX 
STXB 
EMA 
EMAS 

Program rrClnsfer 
eMS 

CMSB 

IMSN 

IMSI 

.JMP 
JSTN 
JSTI 
SCM 

SCMB 

DVO 
MPY 
NRM1 
NRM2 

i. --------.---
I 

A1 + 3.2 
A1 + 3.2 

A1 + 1.6 

A1 + 1. 6 

A1 + (3.0 or 

A1 + (3.0 or 

A3 
1 .6 A2 + 

A2 + 1.6 

3.33) 

3.45) 

A4 + (1.6 + 2.05W) 

A4 + (1 .6 + 2. 05W) 

A1 + 1.2 

A1 + 1. 2 

A1 + 2.4 
A1 + 2.4 

A1 (1.2 or 1.55) 

A1 + (1.2 or 1. 55) 

A1 + (2.2 or 2.85) 

A1 + (2.25 or 3.0) 

A3 
A2 + 1.2 
A2 + 1.2 
A4 + (1. 2 + 2. OW) 

A4 + (1. 2 + 2. OW) 

DOUBLE WORD MEMORY REFERENCE 

13.35 
15.75 
7.05 + .6n 

F-IB 

12.74 
15. 1 
6.35 + .6n 

Al + 1.96 
A, + 1. 96 

Al + (0.98 or 
1 .53) 

Aj + (0.98 or 
1. 53) 

A, . (1. 86 c.;' 
2.61) 

A, (2.01 0r 

2.76) 
A3 
A2 + 0.98 
A2 + 0.98 
A4 + (0.98 + 

1.98w) 
A4 + (0.98 + 

1.98W) 

12.44 
14.84 

. 6.07 + .6n 



'" 

! 

f' 'k "t 'h'iT.'M,,,,' r If "t t 1 '.1 t:li: 'm' 

r~-------"---'----'--------------

I 
I 

01 

o 

I 
I 
I 
I 
I 
I 
I 
I 

Table .1"-5. Instruction Execution Times (Cont'd) 

MNEMONIC C1600 C1200 

DOUBLE WORD MEMORY REFERENCE (LSI-ZI60 ONLY) 
--.---------------------------------

DMS 

AOX } 4.8 3.65 SBX 
For each level of 
Indirection, add: 1.6 1.2 

AOXB} 
SBXB 4.8 3.7 

For each level of 
indirection, add: 1.6 1.2 

EMX 6.4 4.8 
For each level of 
indirection, add: 1.6 1.2 

'-:PXB 6.4 4.85 
For each level of 
indirection, add: 1.6 1.2 

MSB } MRB 7.7 + 0.3N 6.45 + 0.3N 
MeB 

For each level of 
indirection, add: 1.6 1.2 

MTB 6.55 + 0.3N 5.3 + 0.3N 
for each level of 
indirection, add: 1.6 1.2 

where N is the bit position number plus 

In-line 
Result not minus 
one 5.85 + 1.6N 

Result minus one' 6.9 + 1.6N 

Intenupt 
Result not minus 
one 5.1 + 1.6N 

Result minus one 5.75 + 1.6N 

For OMS indexed 
use, add: ------

5.0 + 1.2N 
6.05 + 1.2N 

4.25 + 1.2N 
4.9 + 1.2N 

0.05 

where N is the number of indirect cycles 

F-19 

------,--~.~~---'--------

.-
C980 

3.39 

0.98 

3.54 

0.98 

4. 12 

0.98 

4.27 

0.98 

5. n + o. 3~, 

0.98 

4.62 + 0.3t. 

0.98 

4.64 + 0.9t:N 
5.69 + 0.98N 

3.89 + 0.98N 
4.54 + 0.98N 

0.25 



, 
./ 
I 

f~1 
£ 
~, 
II 
,;1 
:1 

rj 
~ I 

(at "Mm t '* j' r' 'orHRfw>t 1 titt "'trtrtt'" !:' rtt' 'M1' .""" . *'_. nne " 

I 
- .-. 

i 
i FigureF-5. Instruction E;{ecution Times (Cont'd) 

MNEMONIC C1600 C1200 

STACK 

Ari thmet ic 
., 

ADDS 
SUBS 

Logic 
ANDS 
10RS >- Sl + 1.6 SI + 1.2 
XORS 

I Data Transfer 

I LDAS 
LDX5 

I STA5 ~ SI + 1.6 SI + 1.2 
5TX5} ;0 EMAS SI + 3.2 Sl + 2.4 

j , 

I Program Transfer 

I CMS5 SI + 1.6 51 + 1.2 or 1.55) 

I IMSS Sl + (J.O or 3.3) SI + (2.2 or 2.85) 

i JMPS S3 S3 
! J5TS S2 + 1.6 S2 + 1.2 

I 
Stack Control 

5LAS S3 53 

~ 

I 
\ 

, 
, 

I STACK (L51-2/60 ONLY) 
-------------- ---- JSKR I - In-line 19.75 16.85 

Interrupt 19.9 17.0 

JSKS 
In-] i ne 16.55 14.45 
Interrupt 16.7 14.6 . 

RTNR 12.8 9.7 

RTNS 9.85 7.8 

F-20 

---._-----------

',.~ 

C980 

----

SI + 0.98 

51 + 0.98 

51 + 1.96 

Sl + (0.98 or 
1.53) 

S 1 + 1.86 or 
2.61) 

53 
52 + 0.98 

I 53 \ 

-

15.37 
15.42 

13.41 
13.46 

8.54 

6.78 



.1 

it ""'00 'If I'< n!""'Uf'd"WffettlntMl:wt'Ww" ."r'W', 'i""Y'litt'%,1'e-r h"tt?N""iI'iP"rewV'WifflM .wlfH"'f'c"'b tiftTt'M' It hd Me"WWtHrew 

~ 

I 
, 

I 
I 
I 
I 
I 
I 

01 

Tabl", F-S. 

MNEMONIC 

AAI 
AXI 
SAl 
SXI 
CAl 
eXI 
LAP 
LXP 
LAM 
LXM 

f---.. ----------- . 

1,\ ; c r ocoded ... 
JOCl 
JOC2 

A r- i t hrne tic 
JAG 
JAP 
JAZ 
JAN 
JAl > JAM 
JXZ 
JXN 

Control 
JOR 
JOS 
JSR 
JSS ~ 

--"--"·."--'-~~-'-.P''''-'-.~ 

.~_L~JLl e ReJLi 5 te r 

Ar i thmet i c Sh i fts 
ALA } ALX 
ARA 
ARX 

Instruction Execution Times (Cont'd) 

c1600 C1200 

BYTE IMMEDIATE 

1.6 1.4 
1.6 1.2 
1.6 1.4 
1.6 1.2 
1.6 1. 25 or 1.4 
1.6 1.25 or 1.4 
1.6 1.2 
1.6 1.2 
1.6 1.2 
1.6 1.2 

CONDITIONAL JUMP 

1.6 1.2 or 1.4 

SHIFT 

1.6+ .15n 1.55 + .15n 

F-21 

C980 

---
1. 3B 
1.08 
1. 38 
1.0B 
1. 23 or L38 
1.23 or 1. 38 
1.08 
1.08 
1. OB 
1.08 

--~ 

1.08 or 1. 38 

1. 53 + .15n 



I I 
i. 

I , 

l 

, I 

I t 

I I 

wHet"MS" " 'g t It "br'Ws' ' 'ii' y'" t£L&J!ttlW"'U w'ri"w-bt 'tpt'mil:1er'!' r 'M' j"-"'t'Omr"t "* iNtt'h#'## ==1 

Table F-S. Instru-::tion Execution Times (Cont'd) 

MNEMONIC c1600 C1200 

SHI FT (Cont'd) 
~"'---'----."-

Single Register . (Cont I d) 

Logical Shifts 
LLA .., 

LLX 
LRA 
LRX 

~ 1.6+ . 15n 1.55 + .15n Rotate Shifts 
RLA 
RLX 
RRA 
RRX 

~ 

o uuuble Register 

Logical 

} Ltl 
LLR 2.8 + .15n 2.75 + .15n LRL 
LRR 

r--- _._.-, 

REGISTER CHANGE 
--... ----- .- "-'~-'"" ... _._--".,-. .. 

Ac(::umu I ator .., 
ARM 
ARP 
CAR 
DAR 

'0 tAR 
NAR 

I 
• I 

I 
I 

I 

Index 

ZAR 

ZXR 
XRP· 
XRM 
CXR 
NXR 
IXR 
DXR 

>- 1.6 1.4 

... 

. 
F-22 

C980 

1.53 + .15n 

2. 73 + .15n 

._--

1. 38 



I 

I 
.1 

I 

t ' t t), ,", l!:tIt' _ WUI:t!'w",IM&'1+ed,;iWt1ttMi'MWWY' hh . f ) 'k., ..)r'" W"Uz" Mit!H¥tffrd1 tit' 'M p t# 'f"' 'ii"liflliid";/ ." , , 'f" . 'u "oI t gri'y"' " ttl'tl.t .wxii+ ii" wtthkw , '1 "f'''''1' "!i:¥P' "'ed 1 ' drt' t t , e N '"e HI $ 

o 

i 
0' 

! 
I 

I 
I 

I 

I 

MNEMONIC 

Overflo~",,\ 
SOV 
ROV > 
CO:l SAO 
SXO >-
LAO I 
LXO) 
BAO} 
BXO 

MUlti-Re~ster 
lAX 
AXP 
AXM) 
rAX 
TXA 
EAX 

ANAl ANX 
NRA 
NR.X ~ 
CAX 
CXA 
NAX 
NXA, 
I AX', 
IXA 
IPX >-
DAX 

DX~l seA 
BCX 
BSA r 
BSX 
E I x.J 

Console Register 
ICA'" 
lex 
ISA 
tSX 
OCA 
ocx.,.. 

Tab} n F-5. ,Instructifm Execution Times (Cant 'd) 

c1600 C1200 C980 

REGISTER CHANGE (Cant I d) , 

1.6 1.25 1.23 

1. 75 1.7 1. 68 

\ 
1.68 1. 75 + .15n 1.7+ .15n + .15n 

1. 75 1.7 1. 68 

1.6 1.4 1. 38 
1.6 1.4 1. 38 
1. 75 1.7 1.68 

1.6 1.4 1. 38 

1. 75 1.7 1.68 
1. 75 1.7 1. 68 

1.6 1.4 1. 38 

1. 75 1.7 1. 68 

1.6 1.2 0.98 

2.05 2.0 1.98 

F-23 

--- .---~-.. -,-.-.,.,. ._------ ----_._._-



.", 

'1 f l't t tt tHNdS 'Itt _trWtttl! ttf '('w r ·,1 toU!1'h)'t1llt .. ttttttt.' #±ttcwt!tb( K ,. ., S' ,ttr 

Table F-S. Instruction Execution Times (Cont'd) 

MNEMONIC 

Console Register 
IAH ... 
IIH 
IMH 
IPH 
IXH 
OAH 
OMH 
OPH 

·OXH 

> 

(Cont I d) 

C1600 C1200 C980 

REGISTER CHANGE (Cont'd) 

I ndefi n i t.e Indefinite Indefinite 

REGISTER CHANGE (LSI-2/60 ONLY) 
~---~--------------------------------------------------------------------------

! 
I 
~ 

! 

I 

I 
;0 

I 

ASS '" 
ARB )­
XeB 
XSB 
XRB )­
xes.; 
ATB 
XTB 

AXA 
AAX 
SXA 
SAX 
XXA 
XAX 
XNX 

-,-,-----

4.3 + 0.3N 

4.0 + 0.3N 

2.65 + .15N 
2.35 + .15N 

4.25 + 0.3N 

3.95 + O.3N 

2.6 + .15N 
2.3 + .15N 

where N is the bit position number plus 

''', 

1.6 1.4 

3.25 + ~'t 2.85 + * 

4.23 + 0.3N 

3.93 + 0.3N 

2.58 + .15N 
2.28 + .15N 

1.38 

2.63 + ~~ 

* = Lnstruction execution time as listed in this 
handbook. 

F-24 



i 
I 

'i 
~ 
t! 

II 
I 

I 

."., t t' t"·"" r "., 7 9 '" ttMdt"tM*WHb' t t *-"-.u1H )" oj'. """'W"uM"tnue,..HhW k ¥ :'9' "Si "StnMtttM= 

0 

o 

Tabl~ F-S. Instruction Execution Times (Cont'd) 

MNEMONIC 

Processor 
NOP} 
HLT 
STOP 
WAIT 

Mode Control 
SBM 
SWM 

Status 
SIA 
S I~! 
SIX 
sr;~, 

SOX .J 

Interrupts 
EIN 
DIN 
CIE 
CID 
PFE 
PFD 
TRP 

-----' .. .,-,,----

C1600 

CONTROL 

1.6 

Indefinite 

1.6 
1.6 

2.05 

1.6 
1.6 

2.05 

C1200 

1.55 

Indefinite 

1.4 
1.4 

2.0 

1.25 
1.25 

2.0 

CONTROL (LSI-2/60 ONLY) 

C980 

1.53 

I ndef in i t'e 

1.38 
1.38 

1.98 

1.23 
1.23 

1.98 

--'------,.-----------------------------------.--""-f 
WFI 

first execution 1.6 
interrupt sampling 
period 0.30 

INPUT/OUTPUT 

1.2 0.98 

0.30 0.30 

--.. --.. -'--'--""-------------------------,---------~-----_i 
Control 

SEN 
SSN 

SEL} SEA 
SEX 

2.0 or 2.35 
2.15 or 2.35 

2.05 

F-25 

1.95 or 2.3 
2.1 or 2.3 

2.0 

1.93 or 2.28 
2.08 or 2.28 

1.98 



i"Ie!MIr'bbriffili't' '1", '-ir'W'h 11)_6,6 " ftiHt@,'''''¥tT'Wfbe ')$ tUt 'tiN' ** t 

--~,~.- " --"",,,-~- ._"" 

Table F-S. Instruction Execution Times (Cont'd) 
~ 

I 
MNEMONIC C1600 C1200 C98,O 

-
INPUT/OUTPUT (Can tid) , 

.-~-,~~. .,-, ._--- .-

! Urconditional Word 
INA 

., 

I INAM 
INX 

I INXM >- 2.05 2.0 1. 98 
OTA 

I OTX 
OTZ 

-' 

j C(md i tiona 1 Word 
RDA I I RDAM 
RDX 
ROAM >'" 2.45 or 2.5 2.4 or 2.45 2.38 or 2.43 

0 WRA 
WRX 

i WRZ 
-' 

U'lconditional Byte 
IBA } IBAM 2.05 2.0 1 .98 
IBX 
IBXM 

I 
! Cond i t i C'ila 1 Byte 
\ 

! RBA. } RBM1 2.45 or 2.5 2.4 or 2.45 2.38 or 2.43 i RBX I 
RBXM 

~ 

i Block 
I 

BIN 5.0 + 2.25W ll.2 + 2.2W 3.94 + 2.l8w ! 
! 

0 
BOT 4.95 + 2.5W 4. 1 + 2.45W 3.64 + 2.43W 

P.utomatic 

I AlB} AIBI 
9.95 7.9 6.98 

AIN 

I AINi 
AOB 10.2 8.15 7.23 

I 
8.0 7.08 I AOSI 10.05 

I AOT 10.2 8.15 7.23 
I AOTI 10.05 B.O 7.08 
I 
i 
! 
~ 

I 
i 
i F-26 



i 

"01 
~d 

~ 

Ji 
" -, 

:1 

, 1 t 1ft*WHRt HW% ' r tMtMe 0 
'0 5 t! &tartH t Pi' e to. f 'n #,$ tnfft t 

C 

0 

1---'---
I Tabl~ P-S. Instruction Execution times (Cont'd) 

MNEMONIC C1600 C1200 C980 

CYCLIC REDUNDANCY CHECK (LSI-2/60 ONLY) ----._-----_._--------'------_ .. _-_ .. --------._----- ----

I 

I 

eRC 7.35 + .45N 
For each 1 eve 1 of 
indirection, add: 1.6 

5.7 + .45N 4.9 + .4SN 

1.2 0.98 

where N is the number of bits in the character 

1-----_. 

TEXT MANIPULATION 
... 

I 

_ .. __ .0- __ .oo.~ 

AuOT 
Direct/Direct 19.2 + 
Direct/lndirect~ 

or 20.8 + 
I ndirect/Di rect 
Indirect/Indirect 22.4 + 

, 
where 

Maximum Interrupt Latency 
Direct/Direct 27.78 
Direct/lndirect~ 

or ~9.38 
Indirect/Direct 
Indirect/Indirect 30.98 

SUBT 
Direct/Direct 18.7 + 
Direct/lndlrect~ 

or 20.3 + 
Indirect/Direct 
Indirect/Indirect 21.9 + 

where 

Maximum Interrupt Latency 
Direct/Direct 26.78, 
Di rect/I nd i rect} 

or 28.38 
Indirect/Direct 
Indirect/Indirect 29.98 

11. 83N 

11 .83N 

11 .83N 

N is the 

11. 53N 

11. 53N 

11 .5 3N 

N is the 

F-27 

(LSI-2/60 ONLY) 

17.85 + 11.68N 

19.05 + 11.68N 

20.25 + 11.68N 

number of digits 

26.23 

27.43 

28.63 

17.35 + 11.38N 

18.55 + 11. 38N 

19.75 + 11 .38N 

number of digits 

25.28 

26.48 

27.68 

; 

17.4~ + 

18.47 + 

19.45 + 

25.66 

26.64 

28.07 

16.99 + 

17.97 + 

18.95 + 

24.86 

25.84 

26.82 

11.62N 

11 .62N 

11.62N 

11 .32N 

11.32N 

11.32N 



d M" 1 "SW'# '2 , term '"Y' I., f'tts ,"Wet: t Mtwtetwrt 'tPtt r 1
' 

1m... Crt st,.·, 

Table F-5. Instruction Execution Times (Cont'd) 

MNEMONIC c1600 C1200 C980 

TEXT MANIPULATION (LSI-2/GOONLY) (Cont'd) 
1-----.-, .. - ... ,------------------------------------------t 

110 
I " 
I I 
I 

I 

I :, 

I 
I ,( 

,0 
I ~ , 

, t 

j 
I 

I j 
i ! 

:':1 t 

~! ~ 

MOVT 
Direct/Direct 
Direct/Indirect} 

or 
Indirect/Direct 
Indirect/Indirect 

7.95 + 3.2N 

9.55 + 3.2N 

11.15 + 3.2N 

7.15 + 2.9N 

8.35 + 2.9N 

9.55 + 2.9N 

where N is the number of bytes 

Maximum Interrupt Latency 

CMST 

Direct/Direct 9.15 
Direct/Indirect} 

or 10.75 
Indirect/Direct 
Indirect/Indirect 12.35 

Direct/Direct 9.15 + 3.G5N 

or 10.75 + 3.G5N 
Direct/Indirect} 

Indirect/Direct 
Indirect/Indirect 12.35 + 3.65N 

where N is the 

Maximum Interrupt Latency 
Direct/Direct 10.5 
Directllndirect} 

or 12. 1 
Indirect/Direct 
Indirect/Indirect 13.7 

NOTE 

8.1 

9.3 

10.5 

8;35 + 3.4N 

9.55 + 3.4N 

10.75 + 3.,4N 

number of bytes 

9.45 

10.65 

11 .85 
I 

6.89 + 2.86N 

7.87 + 2.86N 

8.85 + 2.86N 

7.8 

8.78 

9.76 

8.09 + 3.36N 

9.07 + 3.36N 

10.05 + 3.J6N 

9. 15 

10.13 

11. 11 

For the LSI-2/60, the execution times of certain instructions are 
modified as indicated below. The modifications indicated do not 
apply to instructions designated for LSI-2/60 use only. 

All Stack Instructions 
For each level 
of indirection, 
add: -1.6 

Push Instructions 
Add: 

I NAM , I NXM, I BA, I BAM, 
IBX, IBXM Instructions 

Add: 0.15 

1.2 0.98 

0.05 0.25 

O. 15 O. 15 

~! 'I ! ____________________ 1"_-_2_8 ___________ ~ _______ _ 

I " ._--_._ ... -,,-_." ... _---



~ 
ft 

t 14 # · ... hewipl' t' we tp t' t w**e 

r-'--'-' -------------------

t· ""., F .. 5 MAXIMUM 1/0 TRANS~~R RATES 
~! 

\ 

The maximum I/O transfer rates are listed in table F-6. 
~ 

Table F-6. Maximum Data Transfer Rates 

t-----------~"·-------------~--"----------~-------------~--------------~ 
I/O MODE 

OMA (Interleaved) 

R Jock In 

Block Out 

;; rog ralTli1lt:O In (Cond) 
V'lti 

Byte 

r '091 drl'ned Out (Cond) 
Word 
Byte 

In (Memory) 

Programrned Out (Memory) 

I)MC In 

!JhC Out 

C1600 

625,000 w/s 

1,250,000 w/s 

444,444 w/s 

400,000 w/s 

112,369 w/s 
112,369 b/s 

112,994 w/s 
112,994 b/s 

71 ,942 w/b/ s 

72,727 w/b/s 

63,091 w/b/s 

62,111 w/b/s 

C1200 C980 

833,333 w/s 1,020,000 w/s 

1,409,000 w/s 1 ,666,666 w/s 

454,545 w/s 458,711 w/s 

408,163 w/s 411,522 w/s 

130,718 w/s 136,040 w/s 
125,896 b/s 130,718 b/s 

131,578 w/s 135,135 w/';.. 
126.582 b/s 129,870 b/s 

85,106 w/b/s 

I 
92,678 w/b/s 

82,440 w/b/s I 90,570 w/b/s 

74,627 w/b/s 82,101 w/b/s 

73,260 w/b/s 81,766 w/b/':> I •. ,,, __ ._, _. __ . ________ -L-______ -L-_______ L-.. _____ • __ -I 

w/s = words per second 
h/ c , ""I,y;!"!', per second 

w/b/s = words or bytes p~r second 

F-29 



;1 

S1 ) "d hi' met twx W "$ N "% . f' t t1 "zdt" t! trtMttHri6" '00 f! n'" 1" 11 'WW' 

r' .. 

I 0 1 

f 

o 

I 
I 

Appendix G 

SOFTWARE SUMMARY 

G.l INTRODUCTION 

This appendix contains short usage sununaries of the" standard system support software 
offered by Computer Automation. 

1\65 
Asterisk Ut) 
BAC 
CALL 
DATA 
END 
[NDC 
ENT 
EQU 
EXTR 
IFF 
1FT 
MACH 
NMI 
ORG 
Period (.) 
REF 
REl 
RES 
RTN 
SAVE 
SET 
STOP 
TEXT 
TITl 
Up Arrow (t) 
WAIT. 

Table G-l. Assembler Directives 

Define Absolute Assembly 
Comment line 
Byte Address Constant 
Subroutine Call 
Data Definition (: Hex. 0 Octal, 'ASCII'. Address) 
End of Assembly 
End of Conditional Assembly 
Subrout ine Entry 
Equate Symbol 
External Reference - Scratchpad 
Conditional Assembly if False 
Conditional Assembly if True 
Set Machine Assembly Mode 
External Name Definition 
Defihe Origin 
Page Eject without Title 
External Reference - Pointer 
Define Relocatable Assembly 
Reserve Storage 
Subroutine Return 
Save Presently Existing Symbol Table 
Set Symbol Redefinable 
Stop 
I ASC I I Message I 
Page Eject with Title 
Pause 
Wait for Interrupt 

G-l 

~--~--'-""-"~~' .-'..-.. __ .... _ ... ,--_ ... -.. - .--



·t '$w-eV6t h' "i '$' t \HM$'O't"MMrl'YMWftM!!ftt 

10-; -----~-

f I i G.2 

t I:,;,' ~" , 

'~:I 

t • I 

I 
I 
I 
i 

i I 
I G.3 

I I G.3.l 

! 
I 

BOOTSTRAP 

Lac TTY HSPT 

:nF'F8 403B 4033 
:nFF9 7939 7931 
:nFFA 1357 1357 
:nFFB 7939 7931 
:nFFC 9COO 9COO 
:nFFD 0128 0128 
:nFFE 3145 3145 
:nFFF 0800 0800 

sm'TWARE OPERATION SUMMARY 

Autoload 

RESET ,0 
I 

Enter. option control value in Console Sense Register: 

!XP5~_3 AutoLoad ROM Installed 

! I 
I 
i 

i 
! 

I 

F~-' 
.,~ Device 

'-...., 
i'h>de .~'" 
,.,,Load Abs. 

Load Rei. 

'!'TY HSPT 

:0 : 1 ----
:8 :9 

I 
TyE':::._ 3 AutoLoad ROM Installed 

I 
,0, 

j 

~ , 
" . 
'~ev1ce 

TTY HSPT* 
Mode '~ 

Load Abs. :0 :1 .. - '--
Load ReI. :8 :9 

*urider Distributed I/O System 

MT Cassette 

:2 :3 
:A :B 

MT TTY * 

:2 :3 
:A :B 

To relocate (Load ReI), set X = laod address 
For Load and Go, set SENSE Switch 
Ready Device 
AUTO 

G-2 

Moving 

Unit 0 

:4 
:C 

Moving 

Unit 0 

:4 
:C 

Head Disk 
Floppy 

Unit 1 
Disk 

:5 :6 
:D :E 

Head Disk 
Floppy 

unit 1 
Disk 

:5 :6 
:D :E 



N"r!! J mU 1j"'jtrtW-j:W 'riYfMiweioh« 'f' w'· 

. I 

I 

I 

1

0 
I 

i 

I 

o 

'\ 

G. 3.2 Bi~~EX wader (i>.uD) 

Load BLD 
set P = first location of BLD 
To relocate, set X = load address; enter :8 into Sense register 
Ready tape in reader (TTY or HSPT) 
RUN 

G.3.3 Binaxy Dump/Verify (BDP/VER) 

Load BDP/VER 
set P first location of BDP/VER 
set A = Initial location 
set X"" Last location 
Enter option control value in Console Sense register: 

~ 
Include 

Mode T'l'Y 

Abs :0 
Punch 

ReI :8 

Abs :4 
verify 

ReI :C 

For transfer address, set SENSE switch 
HUN 

EOF 

HSP'r 

: I 

:9 

:5 

:D 

If Halt (1=:0802), set A = transfer address, RUN 

6.3.4 Object Loader (LAMBDA) 

i..oad LAMBD.i'\ 

set P first location of LAMBDA 
set A = Relocation Bias or zero 
set X ~ Base Page Bias or zero 

Suppress 

TTY 

: 2 

:A 

:6 

:E 

Enter option control value in Console Sense register: 

",,-
_. 

EOF 

HSPT 

:3 

:8 

:7 

:F 

',,- Print Defined and Defined Undefined 
.~ S b 1 "_,_ ym 0 s Undefined 

"'., 
Load Mode '~ .TTY LP 

Library :0 :1 
---

unconditional :8 :9 

Ready tape in reader (TTY or HSPT) 
RUN 

Only Only 

TTY LP TTY LP 

:2 :3 :4 :5 

:A :B :C :D 

G-3 

Neither 

:6 

:E 

~"------~'-~'- .... - ... --~ _. '-'~"-""---



,I 

"'M'ette t ri 'WM@!r ""bWWID*''$"'d'ttttltfWHMllfflt'f'Wriwktrbe=** Wi duml bU'f" !!MIWtWtE't'ft' t tt*tttd trW'. tr .... b***2M't 

I 
I 

BETA-4 Assembler 

Load BETA-4 
Set P = :Olon 
RUN 
Enter option control number in Console Sense Register: 

~ 
TTY Line 

Devl..ce 
Punch Complete Error Complete 
Device Listing Only Listing 

'I'TY :0 :1 :2 

HSPT :4 :5 :6 

'I'o repeat Pass 2, add : 8 

Printer 

Error 
Only 

: 3 

:7 

To flag out-of-range memory reference instructions, set SENSE switch 
Ready source in reader (TTY or HSPT) 
RUN 

c 
G.3," BETA-8 Assembler 

, 

"'. 

Load BETA-8 
set P :=: :0100 
RUN 

~';elect option~; 

For 

Ent~ 
Sl=o 

B BATCH 
~ .. " ~.~,-,--- -------_. 

L Error _._---- ------
X Error ---... ~-,- -_. -

0 Punch EOF 
~-.-. ... 

1 Keyboard 
- -

2 T'I'Y 
-. --

3 HSP'l' 
-"'-"'-- ----- .,,-

4 Card Rdr. . , 

S Card Rdr. 

t 

LO= BO= SD:o- P#= 

Error Error Error Error 

Error Library Error Error 

Error Only N/A Error Error 

No Listing No Binary No Save 1 
-
TTY TTY Memory 1 

D.P. Error Unit 0 2 

Cent. HS Unit 1 1 
---,-

Cent . TTY Unit 2 1 

Cent. TTY Unit 3 1 

G-4 

I ,.------.---•• --. -"--"'."------

.-



tW C'A 1,7.' >rWit ' 'witteiii' em 11 'H"i6tJitfj''#'f'tf'efllrt" !f'r X'tddt'rlt* 

o 

Load OMEGA 
set P == :0100 
RUN 

Command Summary (@ = space): 

>AF. 
>An. 

>8. 

)ClnLnOn. 
>ClO. 

>DF. 
>On. 
>On@m. 

Add keyboard lines to buffer after last line. 
Add keyboard lines to buffer after line n. 

Clear the buffer. 

Connect devices. 
Punch EOF. 

Delete the last buffer line. 
Delete buffer line n. 
Delete buffer lines n through m. 

>Eh. 

>I. 
>LJ" _ 
>1.r. 
>Ln(rlm. 

set end of buffer to h (hexadecimal) and initialize OMEGA. 

Initialize OMEGA. 

List the last buffer line. 
List buffer line n. 
List buffer lines n through m. 

Punch the buffer with leader and trailer. 
Punch buffer lines n through m with leader. 
Punch buffer lines n through m. 

>PLT·~lHaF . 
)Pl1dn@m. 

)P@I)i(lm. 

)P'J'(an@m. Punch buffer lines n through m with trailer. 

>Qn. set ADD function terminator character to n. 

Read source to line n and add to buffer. 

>Sn. 
)Sn(dm. 

Read source to line n-l, add to buffer, and skip line n. 

>T. 
>Tn. 

Read source 

Reset tape 
Reset tape 

Assemble. 

to 

line 
line 

line n-l, add to buffer 

count to zero. 
count to n. 

>XA. 
>XE. 

>XA2. or XE2. 
>XI..A. or XI'E. 

Assemble with ERROR only listing. 
Assemble starting with Pass 2. 
Suppress EOF for current assembly. 

Device Selection 

Object: (0) 

o none a == none 
1 'l'eletype Keyboard 1 Teletype Paper Tape 
2 - Teletype Paper Tape 2 == Error 

and skip lines n through 

List: (L) 

0 = none 
1 == Teletype 
2 = Data Products 

m. 

Printer 
3 High Speed Paper Tape 
4 Card Reader 

3 == High Speed Paper Tape 3 = Centronics Printer 

S ... Memory (assemble) 

G-5 

,---------_.,' -------.---,._------------_ .. '--,-



! ! 
I 

G.3.{j Source Tape Preparation Program 

Load STP 
Set P = first location of STP 
RUN 

Command Summary (@ = space) : 

>AF. 
>An. 

>B. 

>C'I'T. 
>CR'l'. 
>CRP. 
>CTP. 

>DF. 
>1)n. 

O'O@ID. 
>Eh. 

>L 

>LF. 
)Ln. 

>Ln(.1m. 

)1'L. ;Il@F. 

>rI,(Jn@m. 

)P(llH i 'li1. 

>PT@n@m. 

>Qn. 

Add keyboard lines to buffer after last line. 
Add keyboard lines to buffer after line n. 

Clear the buffer. 

Connect Teletype reader and Teletype punch. 
Connect high-speed reader and Teletype punch. 
Connect high-speed reader and high-speed punch. 
Connect Teletype reader and high-speed punah. 

Delete the last buffer line. 
Delete buffer line n. 
Delete buffer lines n through m. 

Set end of buffer to h (hexadecimal). 

Initialize STP (clear buffer and setT to zero) • 

Llst the last. buffer line. 
1o:t'!: buffer line n. 
Ljst buffer lines n through m. 

Punch the .buffer with leader and trailer. 
Punch buffer lines n through m with leader. 
Panch buffer lines n through m. 
Punch buffer lines n through m with trailer. 

set .ADD function termination character to n. 

Read tape to line n and add to buffer. 

Read tape to line n-l, add to buffer, and skip line n. 
Read tape to lirte n-1, add to buffer, and skip lines n through m. 

F,,, ;::,;:t tdpe Ii :1e count to zero, 
~ )Tn. Pe,';p':. tape line count t'J n . 

. ", I , 

G-6 

, 



~I 
1'1 

10 

o 

r 
! G.l.9 Debug (DBG) 

Debug "is a 'binary relocatable' program and, as such, may be loaded any place in 
memory. Transferring to the first location in Debug (enter start location of Debug 
into the P register and depress RUN) will initialize Debug to accept any of the Debug 
commands sununarized below. 

Command Sununary (@ = space): 

>A. 
>Av. 

>Ba. 
>Ba,b. 
)Pa1ilb. 

'>Hil@b,e • 

>Ca@b@c. 

>Io. 

);, , 

)("1. 

>Rn. 
>Hnv. 

>Sa@b(~v. 

>Sa.'.~b(av@m . 

>T. 
>Tn. 

>X. 
>Xv. 

Display pseudo A register. 
Set pseudo A register to value v. 

continue breakpoint to location a. 
Continue breakpoint to location (a or b). 
Breakpoint from location a to b. 
Breakpoint from location a to location (b or c). 

Copy locations a through b at c and following. 

Fill locations a through b with value v. 

Inspect location a. 

Jump to location a. 

List contents of locations a through b. 

Modify memory starting at location a. 

Display pseudo 0 register. 
set pseudo 0 register to value v. 

Print locations a through b. 

Display relocat.ion register Rn. 
set relocation register Rn to value v. 

Search locations a through b for value v. 
Search for value v using mask word m. 

Enable console interrupt (TRAP). 
Enable console interrupt and enable interrupts. 

Display pseudo X register. 
set p~eudo X :r;egister to value v. 



Iii! 
I 

. (' 

G.3.l0 Concor~ance (CONC) 

Load CONC 
set P = :xlOO zero 
RUN 

Select Options: 

SI= 

R Repeat listing 
B BATCH 
1 Keyboard 

0 
2 TTY 
3 HSR 
4 CR 
5 unit 0 
6 Unit 1 
7 unit 2 
8 unit 3 

o 

.... 

Comput8rAutamII@i-,-

LO= 

L List 
1 TTY 
2 D.P. 
3 Cent. 



\.,'1 

" \1: 

I 
• 1 

Ii 

I I: 
" I' ., 
',',: 
~:: 

w 
r' il 
~I 
1:1 

, 

r~'"'' 
I 

• _____ I __ .~ .... ---.-, ._._ ...... ,"'~ ____ _ eo.np.,~AutamIItIon \VJ\\ 

0 

- I 0, 
I 

I 
I 

G.3.11 Os Command Summary (DOS, MTOS ar~~_.SOS) 

(:OMMAND ,-...... _--
J /ASsign 

2 • /BAtch 

3. /BEgin 

4. /cAncel 

5. /CQnment 

6. /lJAte 
*date 

7. /EXec 

8. /JOb 
~.';iat!':!5ime 

9 'Dad 

J.O. If·1st 

'.~::\ te , ..... ~:!.~~_ 
~.l~!._l?u 

11. /NJob 

RESPONSE 

unit=device[ , uni t.=devic(~ . • ] 

device 

address[,par&~eters ••• ] 

[mm/dd/yy] 

program-name[,parameters ••• ] 

program-name 

.~.~l9B/N~T::>.B time, current time 

J 2 • !FI':sum(~ [paramet~rs ••. :; 
Ilt.ime 

1.~. /3'PatlJ' 
.~R!:.'22 .. '~;~; ·~I1.~e, l?~l:':~ page l;,i.mi ts, luelnory limits, flag, time 
;.re5PT~~!' A register, X register., CPU Status 

J4. 'rIme 
't ime 

/'rYpe 

[hh:mm:ss] 

_,. L-=_" G-9 

4·.-·'t,: . 
4i{ ,:!f .. .. ~~ 


