60480500

(@55) ONTROL DATA
CORPORATION

NETWORK PRODUCTS

NETWORK PRODUCTS STIMULATOR
VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS 1

e

REVISION RECORD

REVISION ' DESCRIPTION
| =

A : Original release at PSR level 472.

(03-31-78) '
B Revised at PSR level 477 for technical corrections.

(08-15-78) ,
C Revised at PSR level 485 for technical corrections.

(12-18-78) '
D Revised to reflect the release of NPS 1.1 which includes support of input/output line speed delay,

(08-10-79) abbreviated input statement keyword, execution from system origin and nested repeats.

Publication No.
60480500

; ; Address comments concerning
REVISION LETTERS I, O, Q AND X ARE NOT USED this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086
© COPYRIGHT CONTROL DATA CORPORATION 1978, 1979
All Rights Reserved or use Comment Sheet in the

Printed in the United States of America back of this manual

LIST OF EFFECTIVE PAGES

Yew features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
nargins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
ion rather than content has changed. -

Page : Revision Page Revision i Page Revision

Cover

Title Page

ii

iii/iv

vfvi

vii

Vlll \
ix

1-1

1-2

2-1 thru 2-10
3-1 thru 3-7
4-1

4-2 thru 4-6
5-1

5-2 thru 5-5
5-6

A-1

A-2

A-3

A4

A-5

B-1 thru B-10
C-1 thru C-3
D-1

Index-1
Index-2
Comment Sheet
Mailer

Back Cover

(-E-Avivh: vk Svlvi Hek 22 A= EvEvEviv vl vl el el - RN

|

0480500 D iii/iv @

PREFACE

This manual describes the CONTROL DATA® Network As described in this publication, Network Products
Products Stimulator Version 1. The Network Products Stimulator Version 1 operates under control of the NOS 1
Stimulator provides a method of testing and exercising operating system for the cbc® CYBER 170 Series; |
network host products software; it is not an interactive CYBER 70 Models 71, 72, 73, and 74; and 6000 Series

test tool but rather a tool to test interactive systems. Computer Systems.

Through use of the Network Products Stimulator, the

Network Access Method and applications using.it can be The reader is assumed to be familiar with the network
dynamically exercised as though by a live terminal products and the NOS 1 operating system as described in
network. - Controlled terminal sessions are input to the the publications listed below.
Network Access Method from ‘a ‘previously prepared
library of user-written scripts that simulate actual The following CDC publications provide additional
terminal sessions. : information pertinent to the use of NPS.
Publication C Publication Number
Network Products 60499500

Network Access Method Version 1
Reference Manual

Network Products 60480000
‘Network Access Method Version 1

Network Definition Language

Reference Manual

Network Products 60499600
Remote Batch Facility Version 1
Reference Manual

Network Products : 60455250
Interactive Facility Version 1
Reference Manual

Network Products 60455340
TAF Version 1 Reference Manual

NOS Version1 ' 60435600
Operator's Guide

NOS Version 1 . 60435400
Reference Manual (Volume 1)

CDC manuals can be ordered from Control Data Literature and Distribution
Services, 308 North Dale Street, St. Paul, Minnesota 55103. |

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features or
parameters. '

60480500 D v/vi

CONTENTS

b

NOTATIONS USED IN THIS MANUAL ix SCRIPT File Formats 3.2 I

- SCRIPT Errors and Termination 3.2
STIM 3.2 -
1. NETWORK PRODUCTS STIMULATOR 1-1 STIM Call Statement 3-2
Input Statements 3-2
Think-Time Statement 3.3
2. SCRIPT DEFINITION 2-1 Input Speed delay Statement 3-3
LNODE Statement 3-3
Language Concepts’ 2-1 RNODE Statement 3-3
Notation 2-1 TERM Statement 3-4
Character Set 2-1 HASPCR Statement 3-5
End of Logical Line Character 2-2 HASPLP Statement 3-5
End of Physical Line Character 2-2 STIM Deck Structure 35
Cancel Character 2-2 STIM Operating Procedures 3-6
Transparent Delimiter Character 2-2 Initialization 3-6
Pseudo Directives 2-2 Execution 3-7
Message Definition 2-2 Termination 3-7
Random Access Messages 2-2 STIM File Formats 3-7
Embedded Messages 2-3
" External Messages 2.3

System End-of-Record and
End-of-Information
LABEL Directive

NNII\)NN
£ WwWW

4. REPORTR (STATISTICAL REPORT

COMMENT Directive GENERATOR) 4-1
LIST Directive - . :
Declarative Directives - REPORTR Call Statement 4-1
Log File Control 2-4 Job Structure .] 4-2
Message Timeout Control 2-4 Statistic Definitions 4-2
Global Wait for Response 2-5 Statistical Reports 4-2
Global Script Think-Time 2-5 REPORTR Control Statement Parameter
Procedural Directives 2-5 Summary 4-2
Conditional Directives 2-5 Report 1. Message toad Summary Per
Line Count Verification 2-5 Test ‘ 4-2
Message Verification 2-6 Report 2. Message L.oad Summary for
Mode Synchronization 2-6 Terminal XXXXXXX 42 |
L ocal Procedures 2-7 Report 3. Response Time Frequency for
Data Message Input 2-7 Terminal XXxxXxXx 4-4 I
SEND Directive 2-7 Report 4. Response Time Frequency for .
Send Login 2-7 Terminal xxxxxx by Class 44 |
Send Message 2-8 Report 5. Response Time Frequency for i i
Send Message Class 2-8 All Transactions by Class 4-4 |
Send From 1fn 2.8 Report 6. Response Time Frequency for
Miscellaneous Functions 2-8 All Transactions by Active
Wait MSG Response 2-8 Terminal Subset . 4-4 l
Wait Next Response 2-8 Report 7. Summary of Response Time for
IVT Terminal Commands 2-9 All Transactions 4-4
Unconditional Branch 2-9 Errors and Termination ‘ 4-4
Execution Loops 2-9
Dayfile and Log Message from .
Script) 2-9
Termination of Script Execution 2-9 .
Network Hardware F ailure : 5... TERMINAL SCRIPT WRITING 5-1
Simulation - 2-9
Program Control 2.10 MODE4 Terminal Script Writing 5-1
Event Declaration 2-10 Asynchronous Terminal Script Writing 5-1
Counter Setting and Checking 2-10 HASP Station Script Writing 5-1
Job and File Identification Procedure 5-1
: Jab Deck Structure 5-2
3. STIMULATOR OPERATION 3-1 HASP Script Restrictions 5-2
Script Examples 5-2
SCRIPT Compiler 3-1 MODE4 Script Example 5-2
SCRIPT Call Statement 3-1 ASYNC Script Examples 5-3
SCRIPT Deck Structure 3-1 HASP Script Example 5-5

60480500 D : : vii

APPENDIXES

A. Standard Character Sets A-1 C. Glossary c-1-

\N\N\A\NW\NI'\)NNNNNN

B. Diagnostics ‘ B-1 D. NPS Statement Summary ' D-1
INDEX
FIGURES
1-1 - Network Products Stimulator 3-7 RNODE Input Statement Format 3-4
Environment - 1-2 3-8 TERM Input Statement Format : 3.4
2-1 SCRIPT Directive Format 2-2 3-9 HASPCR Input Statement Format 3-5
2-2 ENDSCRIPT Directive Format 2-2 3-10 HASPLP Statement Format 3-5
2-3 XMESSAGE Directive Format 2.2 3-11 ‘Batch STIM Sample Deck Structure 3-6
2-4 LABEL Directive Format 2.3 3-12 System Origin STIM Sample Deck
2-5 COMMENT Directive Format 2-4 Structure] 3-6
2-6 LIST Directive Format 2-4 3-13 NPS DUMP Control Statement Format 3-7
2-7 LOGGING IS Directive Format 2-4 - 4-1 REPORTR Call Statement Format 4-1
2-8 TIMEOUT Directive Format 2.4 4-2 ' Example of Default NPS Statistical Report 4-3
2.9 ON TIMEOUT Directive Format 2-4 4-3 Example of NPS Statistical
2-10 Global WAIT Directive Format 2.5 Report Number. 1 - 4.3
2-11 DELAY GLOBAL Directive Format 2-5 4-4 Example of NPS Statistical
2-12 IF LINES Directive Format 2-5 Report Number 2 4-3
2-13 =IF MATCH Directive Format 2-6 4-5 Example of NPS Statistical :
2-14 MODE Directive Format 2-6 Report Number 3 4-4
-15 - Abbreviated Login Procedure Example 2-7 4-6 Example of NPS Statistical
-16 . Full Login Procedure Example 2-7 Report Number 4 - 4-5
-17 SEND MESSAGE Directive Format 2-8 4-7 Example of NPS Statistical
-18 - =SEND MESSAGE Class Directive Format 2-8 Report Number 5 4-5
-19 =SEND FROM Ifn Directive Format 2-8 4-8 Example of NPS Statistical”
-20 IVT Directive Format 2.9 Report Number 6 4-6
21 REPEAT Directive Format 2-9 4-9 Example of NPS Statistical
-1 SCRIPT Call Statement Format 3-1 Report Number 7 - 4-6
-2 SCRIPT Compiler Run Example 3.2 5-1 HASP Deck Structure Examples 5.2
-3 STIM Call Statement Format 3-3 5-2 MODES4 Script Example 5-3
-4 Think-Time Input Statement Format 3-3 5-3 - ASYNC Script Example 1 5-4
-5 Input Speed delay Statement Format 3-3 5-4 ASYNC Script Example 2 5-4
-6 - LNODE Input Statement Format 3-4 5-5 ASYNC Script Example 3 5-5
. 5-6 HASP Script Example 5-6

viii 60480500 D

NOTATIONS USED IN THIS MANUAL

O

Throughout this publication, the following conventions are
used in the presentation of statement formats. Additional
notations applicable only to the =SCRIPT directives
appear in section 2.

UPPERCASE

lowercase

60480500 A

letters " indicate words, acronyms, or
mnemonics either required by the
network software as input to it, or
produced as output.

letters .represent symbols supplied by
the Network Access Method (NAM), by
the terminal user, or by the network
software as output. When generic

... Ellipsis

[1 - Brackets

{} Braces

terms are repeated in a format, a
subscript is appended to the term for
identification.

indicate that omitted entities repeat in
the form and function of the entity last
given. S

enclose optional entities.

enclose entities from which one must be
chosen.

Unless otherwise specified, all numbers are decimal values.

NETWORK PRODUCTS STIMULATOR

M

Network Products Stimulator (NPS) is an evaluation
package used to test the Network Access Method (NAM)
and the applications using NAM. NPS allows a controlled
message load to be presented to the NAM software
without the use of external communications equipment or
related terminals. Because NPS runs as a batch job with
no exceptional system requirements, it provides a
convenient method of exercising and testing network
applications with minimal disruption of normal system
operations. NPS can be run as the only front-end in the
system, or in conjunction with a live network. Both batch
and interactive terminals can be simulated.

NPS simulates a terminal network through user-created
scripts that describe various terminal sessions. The
number . of terminal sessions that can be simulated
simultaneously is limited only by the size of central
memory and network host products limits. More central
memory is required by NPS as the number of terminals
increases. The terminal "sessions appropriate for a
particular test must be created in advance and supplied to
NPS when the stimulation is executed.

During NPS execution, a controlled message load is
transmitted to the appropriate application through the
NAM interface. Application response to each message is
the same as if an actual terminal had supplied the
message. NPS records the stimulation session as it occurs
and can prepare a report for use in analyzing performance
of an application.

NPS is composed of three separate utilities, SCRIPT,
STIM, and REPORTR, which can be executed at different
times:)

e SCRIPT creates a script library of terminal sessions
to be simulated. (A user-written description of a
single terminal session is called a script; a collection
of scripts in the format used for stimulation is called
a script library.) SCRIPT requires 35000g central
memory words for execution and 65000g central
memory words for compilation. .

e STIM performs the stimulation. It uses the script

library created by SCRIPT, the local configuration .

file (LCF) used by the Communications Supervisor,
the network configuration file (NCF) used by the
Network Supervisor, and the STIM input statements
that describe the terminals to be simulated. During
execution, STIM writes a log file of messages
transmitted to the applications, and records the
replies received from the applications. STIM requires
at least 40000g central memory words for execution
and 70000g central memory words for compilation.
STIM also. requires a dedicated peripheral processor,
and thus cannot be swapped out. o

e REPORTR extracts data from the log file created by
STIM, performs a statistical analysis on the data, and
creates a specified report. REPORTR requires
50000 central memory words for execution 'and
70000g central:memory words for compilation.

60480500 D

The three stages of NPS, the functions of each stage, and
the interface between STIM and NAM are illustrated in
figure 1-1. :

Part A of figure 1-1 illustrates the operation of SCRIPT.
SCRIPT creates a new script library as specified by the
SCRIPT directives. The directives can be maintained on
an UPDATE OLDPL or a MODIFY OPL and modified as
desired before submission to the SCRIPT compiler. The
SCRIPT directives describe a terminal session, specifying
information such as the messages to be sent, directions on

"~ when to send them, acceptable responses, and acceptable

times between responses. SCRIPT parameters also
provide instructions for scripts and messages to be listed
during creation of the new script library.

SCRIPT creates two types of output:

® A new script library containing scripts to be used in
the stimulation. The script library file is written
(using CIO format) in two parts. The first part
contains all nonembedded data messages, in the
format that STIM processes. The second consists of
the compiled object code for all scripts.

e A listing containing scripts, errors and/or messages,
as specified in the SCRIPT call.

Part B of figure 1-1 illustrates the processing that occurs
during the stimulation. The central processor routine,
STIM;, is called by control statement, reads the input, and
performs the stimulation generating dayfile messages and
the log file as output. STIM reads two sources of input:
the script library and a set of STIM input statements. The
script. library contains all scripts -and messages describing
the terminal sessions that have been created. The STIM
input statements define the terminals that are to be
simulated during this run and designate which script is to
be run on which terminal.)

The simulated network is determined by parameters on
the STIM control statement and input statements. A STIM
input statement designates each. Network Processing Unit
(NPU) to be simulated. A separate statement designates
each terminal to be simulated. The NPUs and terminals
named must have been defined in a Network Definition
Language job which creates the local configuration file.
(LCF) that will be used by the network software.

A STIM run is initiated by a batch or system origin job
containing the STIM call statement and the necessary
STIM input statements. STIM then executes as a normal
batch origin type user job, when it is initiated by a batch
job. STIM runs as a subsystem for a system origin job.

Once a STIM run is started, all simulated terminals will
login, perform the script tests, and logout as specified by
the scripts in use.

1-1

SCRIPT SCRIPT
Library Directives

SCRIPT
Compiler

Creation

Listing

-
//
-

On-line
Statistics

SCRIPT (Dayfile}
Library STIM
Interpreter | Stimulator
Scheduler P Interface
Program
Stimulation Retriever (SIP)
t
Dedicated
STIM L7 NAM chagnel
Statements /)
, 7 Real 9r Test - AlP: ' PiP
/ Application | NIP
7
7
. Ve
. / e
© g
Statistical
Analysis REPORTR - Reports

Figure 1-1. Network Products Stimulator Environment

During the stimulation, STIM supplies SIP, the Stimulator
Interface Program, with messages to be sent from the
. simulated terminals as directed by the scripts. SIP,
running in a dedicated peripheral processor, sends the
messages over a dedicated data channel to the NAM
Peripheral Interface Program, PIP, which in turn sends the
messages on to NAM and the applications using NAM, SIP
communicates with PIP in the same manner as the NPU
does, sending and receiving messages across the dedicated
data channel and emulating the hardware and software
~ control functions of the NPU. The responses come back
to SIP and STIM through the reverse procedure. STIM
records the messages and responses on a log file.

Part C of figure 1-1 illustrates the processing that occurs
when analyzing the data. REPORTR reads the log file and
produces a report containing two types of data:

® A dump of the messages sent and received during a
specified time slice.

® A statistical analysis of the messages sent and
received during another specified time slice.

- Parameters on the REPORTR control 'statement specify
the time slices reported.

] 12

An NPS run normally consists of four steps:

1.

2.

The first step is a marual operation. The user must
write a description of the terminal workload using
SCRIPT directives. The complete terminal workload
is called a script. :

The second step is a batch job (SCRIPT), which
compiles and translates the user-written scripts into
object time scripts. These object time scripts are
written to the Script Library for later use by STIM.

The third step is the actual stimulation/simulation
run executed by STIM. 'STIM configures the
simulation - environment according to parameters
specified, and maps the scripts from the Script
Library to-the terminals configured. It then performs
the test by following the compiled script procedures
from the Script Library.

The final step is the execution of the batch job
REPORTR that analyzes the data on the log file and
generates selected reports.

60480500 D

SCRIPT DEFINITION ‘ 2

A script is a user-oriented description of a predefined,
semicontrolled dialog between a terminal operator and a
network application. This dialog consists of user-written
directives used to define terminal sessions. :

LANGUAGE CONCEPTS

The Script Definition Language, an integral part of the
Network Products Stimulator package, consists of a
number of directives the script writer can use to define
terminal sessions. These directives can be maintained on
an Update or Modify program library for subsequent use
with the SCRIPT compiler.

The Script Definition Language consists of three types of
‘directives:

e Pseudo directives

e Declarative directives

e Procedural directives

Pseudo directives establish basic script characteristics;
for example, they designate 'script beginning and end.
Pseudo directives are processed by the SCRIPT compiler,

but are not executed by STIM,

Declarative and procedural directives both direct STIM to
perform routine simulation. The difference between them

is based on when they are executed. Declarative

directives declare and define test conditions that are to
be acted upon at some later time during execution of the
‘script, whereas procedural directives invoke a procedure
that is immediately acted upon during execution of the
script.

Script Definition Language directives allow the script
writer to:

o Define and save all messages to be sent from the
terminal to the host application software.

e Save output responses to specific ‘input for purposes
of response verification.

o Include timing dependencies relative to the beginning
- of the simulation or delay time between messages. .

e Do multiple value condition tests and vary the
execution of the script accordingly.

Script directive syntax errors or parameter errors are
detected by the SCRIPT compiler. They cause
termination of the compiler run with a diagnostic
message. The SCRIPT compiler scans the directive until
the statements format is satisfied. Any additional
information, beyond the basic format, is normally ignored
by the compiler.

The nominal unit of a script for a terminal session is a
message. The script causes a simulated terminal operator
message to be sent to an application, which processes the
message and returns a response.

60480500 D

NOTATION

The following notation is used throughout the description
of the Script Definition Language and supplements the
conventions given in the Preface:

= -- All Script Definition Language directives begin
with an = sign in column 1 followed by the directive
starting in column 2.

=X -- An X character immediately after the = sign
denotes that a required prefix character (B, 1, or C)
must be substituted for the X. The B character
indicates the directive is of batch mode, and the I
character indicates the directive is of interactive
mode. The character C is used only with messages
intended for conditional IFF MATCH directives.

blank or comma -- One or more blank characters or
commas must separate all language keywords and
" parameters. A blank or comma is the only
punctuation used. Extra commas or blanks are not
required if an optional parameter is omitted. Periods
are not allowed.

character -- Unless otherwise stated, the use of the
term . alphanumeric character or character implies
any of the characters in the CDC Graphic Display
Code 64-Character Set.

message -- Logical units of information transmitted
between the host system and a terminal. Depending
on the context, it can be a line of data, a file of
information, or a screen of information. If long, it
can be subdivided into blocks; that is, BLK,BLK,...,
MSG. As defined in the Network Access Method
Reference Manual, a BLK block contains a segment,
but not the last segment, of a data message. A MSG
block contains the last segment or all of a data
message.

Ifn -- Logical file name of one to seven letters or
digits.

CHARACTER SET

All upline and downline nontransparent message data in
the network is transmitted in ASCIL. NPS makes use of
the NOS extended 128-character set to represent message
traffic data. That is, all message data is represented
using the CDC 64-character set; but in order to represent
and keypunch NPS-declared messages using the full
128-ASCII - character set, two of the CDC graphic
characters are designated as escape characters. The CDC
graphic characters < and — (internal 6-bit codes 74 and
76) are the two escape characters. Thus, two CDC
graphic characters are required to represent the two
escape characters and all those characters beyond the
first 64.

The NPS character set is given in appendix A. This is the

character set that must be used in preparing message data
for use by NPS,

2-1

:In addition to the escape character designation to
represent the full 128-ASCIl character set, the following
special characters are used.

. End of Logical Line Character

NPS makes use of a special character in the NOS extended
128-character set to define a logical line delimiter. The
special character <H (internal display code 7410g) denotes
the.end of a logical line (carriage return).

Inclusion of this character in the message text results in
the special character (<H) and any characters which
follow on that 80-character statement being discarded.
The message text up to the special character.is sent to
the host as a MSG block containing a single logical line.
(Refer to the Network Access Method Reference Manual
for message characteristics.) :

End of Physical Line Character

NPS makes use of a special character in the NOS extended
128-character set to define a physical line delimiter. The
special character <1 (internal display code 7411g) denotes
the end of a physical line (line feed). ~

Inclusion of this character in the message text results in
the special character (<I) and any characters which follow
on that 80-character statement being discarded. The
message text up to the special character is sent to the
host as a BLK block containing a single physical line.
(Refer to the Network Access Method Reference Manual
for message characteristics.)

ancel Character

Cancel processing is performed by NPS. NPS makes use
of a special character in the NOS extended 128-character
set to detect and perform cancel processing. The special
character <J (internal display code 7412g) is used to
invoke cancel processing. Inclusion of this character in
the message text results in a cancel MSG block being sent
to the host. (Refer to the Network Access Method
Reference Manual for characteristics of the cancel
process.)

Transparent Delimiter Character

Transparent mode ‘message text processing is supported by
NPS. The NPS-defined NOS extended 128-character set
works equally well to construct either character or
transparent mode messages. The only requirement for
transparent mode messages is ‘that the transparent
delimiter be included as the last character of the message
text. This character is not included as input in the MSG
block that is sent to the host. .

PSEUDO DIRECTIVES

The script writer defines the bounds of a script by
specifying a SCRIPT directive and an ENDSCRIPT
directive. The script itself consists of those directives
between SCRIPT and ENDSCRIPT. The script is written to
the new script library with the name specified on the
SCRIPT call statement.

The SCRIPT directive marks the beginning of the script

and gives the script a name. The format is shown in
figure 2-1, .

] 22

) ASYNC
=SCRIPT sss { HASP }
MODE4
SsS The script name; one to three letters or digits.

Figure 2-1. SCRIPT Directive Format

The three types of terminals that can be specified in the
SCRIPT directive correspond to the three types of
terminals supported by this release. Each type |is
described fully in the Network Access Method Reference
Manual. As these three types correspond to the three
forms of the Terminal Interface Program (TIP), each is
called a TIP-type. One of the TIP types must be specified
for each script. Once designated, a script can-only be
used to simulate that type of terminal.

The ENDSCRIPT directive marks the end of the script
defined in the SCRIPT directive. Script execution stops

‘upon encountering the ENDSCRIPT directive, and the

associated terminal becomes idle. The format of
ENDSCRIPT is shown in figure 2-2.

=ENDSCRIPT

Figure 2-2. ENDSCRIPT Directive Format

MESSAGE DEFINITION

Messages used in the simulation can be defined in the
script by three different methods. Each method results in
a different scheme for storing messages and a
corresponding access method for their retrieval. The
three methods of defining messages available to the script
writer are explained under the following three headings.

Random Access Messages

One method of defining messages allows the script writer
to define a message with the XMESSAGE directive. The
format is shown in figure 2-3.

=XMESSAGE mmmmmmm

mmmmmmm The unique message identifier, one to
seven characters. :

=BMESSAGE Defines a batch message.

=IMESSAGE Defines an interactive message.

=CMESSAGE Defines a message that is to be used in

the conditional IF MATCH directive.

Figure 2-3. XMESSAGE Directive Format

60480500 D

The message text begins in columnl of the card
immediately following the XMESSAGE directive. - All
text, including blanks, up to the next valid Script
Definition Language directive is taken to be the message
text. All messages are character data only as defined in
appendix A. Each data statement can contain up to 80
characters of data. Messages defined with the
=CMESSAGE directive will only be checked through 72
characters of data. If Update is used, the Update
identifier will use columns 74 to 80. Messages defined in
this manner need not be defined in the script in which
they are referenced, but must occur within a script of the
same TIP-type as the script in which they are referenced.

The message name mmmmmmm must be unique within
IMESSAGE, BMESSAGE, or CMESSAGE directives of a
given script TIP-type; for example, a message that is
defined by any message directive in a HASP script (such
as in =SCRIPT sss,HASP) is thereafter designated for
HASP terminal use only. If a name is used to define an
IMESSAGE in a script of TIP-type ASYNC, that name
cannot be used elsewhere in the script library input to
define another IMESSAGE in an ASYNC script; however,
it can be used to define a CMESSAGE in an ASYNC
script. The same name could also be used to define an
IMESSAGE ' in a MODE4 script. It is possible to use the
same message name to define as many as eight messages
because there are three message usage types and three
TIP-types (a BMESSAGE is not allowed in an ASYNC
script). : ‘

All messages defined by XMESSAGE in the script input
are accumulated by the SCRIPT compiler and included in
the first part of the script library file. The script library
file must reside on disk during a STIM run, as the
messages are randomly accessed by STIM.

All Script Definition Language directives that access
messages defined as random access file messages must
include the message name mmmmmmm. Although
messages of any length can be defined and accessed by
this method, it is recommended that only long messages
be defined in this manner, and that very short messages be
embedded in the script.

Embedded Messages

This method of message definition and identification does
not make use of any of the MESSAGE directives. Instead,
.the message is embedded in the script immediately
following a script directive, which would otherwise
reference a message named mmmmmmm. The message
text begins in columnl of the script input line
immediately following the directive. All text, including

blanks, up to the next valid Script Definition Language -

directive is taken to be part of the message.

Further discussion of embedded script messages is
included in the discussions of those script directives that
allow this method of message definition (see Data
Message Input). Messages defined by this method can be
used for upline transmission to the host system or for
downline message verification.

Because this method embeds a message in the particular
script that uses it, multiple copies of such a message can
exist in the script library file. For this reason, it is
recommended that only very short messages, such as
terminal commands and application commands, be defined
by this method. lLonger messages (for example, job decks)
should be defined by one of the MESSAGE directives or by
the user-defined external sequential message file.

60480500 D

External Messages

This method of message definition does not use any of the
MESSAGE directives. It employs an external file with a
message that is prepared for upline transmission to the
host system. The file is created by the user and accessed
by use of the =XSEND FROM Ifn directive (described later
under Data Message Input). The file must exist as a local
file during script compilation.

System End-of-Record and End-of-Information

Because the messages sent from a terminal, particularly a
batch terminal, often contain system-defined
end-of-record (FOR) and end-of-information (EOI) cards
interspersed in the message deck, the following means are
provided for the user to identify where they are to occur,
without perturbing the SCRIPT compiler input stream:

=EOR (nn) Indicates the position in the input deck
of an end-of-record card. The nn is the
logical record level number. If omitted,
nn=0 is assumed.

=EO0I Indicates the position in the input deck

of an end-of-information card.

LABEL DIRECTIVE

Using the LABEL directive, the script writer can define a
label (a location in the script to which execution can
transfer. from another location in the same script). The
label declared can be referenced in REPEAT, GO TO, all
IF and most global directives. When control is transferred
to the specified label, execution begins at the first
executable directive following the LABEL directive. The
format of the LABEL directive is shown in figure 2-4.

=LABEL eeeeeee

eeeceeee The label name, one to seven letters or
‘ digits, that ean be referenced in other
directives in this script. Labels are local
to the script in which they are defined;
one script cannot jump to another script.

Figure 2-4. LABEL Directive Format

COMMENT DIRECTIVE

The script writer can include comments to explain the
script by using the COMMENT directive. The comments
appear in the script listing, but have no effect on the
script execution: comments are not sent to the dayfile or
the log file. SCRIPT processes the COMMENT directives
and includes them in the listing, but does not save them on
the script ‘library or pass them on to STIM. The
COMMENT directive, or its alternate form =%, has the
format shown in figure 2-5.

2-3

*

=COMMENT |

f
l

comnt

comnt The comment, which is any character data start-
ing in column 4 or 10, through column 80 of
the card image. A blank or comma must
separate the directive from the comment.
Because each comment is only a single card
image, lengthy comments must be specified
by a series of comment directives. Comments
may appear after the =ENDSCRIPT directive.

message traffic on the log file for purposes of efficiency.
The LOGGING IS directive, shown in figure 2-7, allows
the script writer to log or not log message traffic as
desired. OFF inhibits logging for that script until an ON
directive is encountered, which remains in effect until
OFF is encountered, etc. The initial state is ON.

Figure 2-5. COMMENT Directive Format

LIST DIRECTIVE

Listings of scripts can be obtained during a SCRIPT
compiler run. The LIST directive should not be placed
within the script (between SCRIPT and ENDSCRIPT), If
LIST occurs within a script, a nonfatal error occurs and
the directive is processed. The LIST directive is only in
effect if the LO=Q or the LO=M option is selected on the
SCRIPT call statement (described- in section 3). The
format of LIST is shown in figure 2-6.

=LIST sss

sss - The name of the script to be listed. If script
sss is not in the input stream, a nonfatal error
occeurs.

ON |
=LOGGING IS

OFF §
ON Indicates normal mode and the initial state.
OFF Inhibits message traffic from being logged or

included in statistical reports.

Figure 2-7. LOGGING IS Directive Format

MESSAGE TIMEOUT CONTROL

When a message has been sent from a terminal to an
application, it is reasonable to expect a response within a
defined period of time. Two global directives are
provided to set and test a timeout value in order to
prevent a script from remaining totally inactive while
waiting for a response not forthcoming. The timeout
interval can be set by the directive shown in figure 2-8. -

Figure 2-6. LIST Directive Format

DECLARATIVE DIRECTIVES

The declarative directives described here declare a
process that is nonimmediate; that is, the process is
declared but is not executed until necessary. These
directives are continuously in effect in a particular script
until they are respecified or .cancelled in the same script.
Because these directives are continuously in effect, they
are called global directives. A global directive executed
in one script has no effect on any other script.

Because it is not always possible to predict the order or
content of response messages, the script writer needs a
facility for checking responses to determine the next
desired terminal action. Because execution of the script
is sequential, it would prove cumbersome to .include the
desired test at each sequential step to test for the
anticipated response.

Global directives permit out-of-line testing of many
responses received from the application and need be
specified only once. Global directives can be used in
combination by the script writer to create a procedure,
analogous to a subroutine, that is executed on demand.

LOG FILE CONTROL

The Stimulator normally records4messages sent, responses

received, and certain statistical and diagnostic messages .

on the log file in their entirety. Depending on the nature
and state of checkout of a particular application, it might
be desirable to record only part of the upline and downline

I 24

=TIMEOQUT IS nnnn

nnnn The number of decimal seconds, 0 to 4095,
to wait after each send, before timing out.

Figure 2-8. TIMEOUT Directive Format

The TIMEOUT directive sets a timer that runs from the
time a message is sent until the number of seconds expires
or. a response is received. The timer is reset
automatically each time a message is sent from the
terminal. The timeout value can be changed at any point
in the script where a different response time is
anticipated, .

Whenever the timer reaches zero, a timeout occurs.

A nonimmediate conditional directive can be specified in
conjunction with the TIMEOUT IS directive so that, if
timeout occurs, SCRIPT execution will transfer to another
location in the same script defined by a label. The
directive for this transfer is shown in figure 2-9.

=0ON TIMEOUT JUMP TO eeeeeee

eeeeeee Script location defined by a LABEL directive.

Figure 2-9. ON TIMEOUT Directive Format

If a timeout occurs before an ON TIMEOUT directive is
executed, the terminal affected will terminate with the
message NO TIMEOUT JUMP ADDRESS. If no TIMEOUT
IS directive is in effect, the timeout value is infinite;
timeout will never occur. .

60480500 D

A declared =TIMEOUT IS nnnn can be cancelled with a
=TIMEOUT IS 0 directive.

GLOBAL WAIT FOR RESPONSE

This directive provides a means of suspending script
execution after each upline MSG block transmission until
a MSG or BLK type block response is received from the
host system. This method of operation is similar to step
mode operation. Only one message at a time will be
outstanding. The format is shown in figure 2-10.

‘GLOBAL
=WAIT { GLOBAL MSG
GLOBAL OFF
GLOBAL This option specifies script suspension
after each SEND until either a BLK or
MSG reply is received.

GLOBAL MSG This option specifies script execution
suspension after each SEND until a
MSG reply is received.

GLOBAL OFF This option cancels the global wait
declaration.

PROCEDURAL DIRECTIVES

Message dialog with a predefined sequence can be
controlled through checking of response messages by the
use of conditional directives. These directives are used as
in-line verification procedures, called local procedures.
The conditional directives are used to verify/check either
batch or interactive mode response messages received
from the host. NPS assumes that all terminals operate
with the ASCII character set.

CONDITIONAL DIRECTIVES

The following conditional directives, used separately or
together, constitute a verification procedure.

Line Count Verification

The script writer can use the IF LINES directive to
determine the approximate length of a message and cause
execution to transfer to the specified location if the
condition is satisfied. The format of the IF LINES
directive is given in figure 2-12,

Figure 2-10. Global WAIT Directive Format

GLOBAL SCRIPT THINK-TIME

Timing aspects of a script, such as operator think time,
can be controlled with the DELAY GLOBAL directive.

This directive provides a delay to be invoked just before
each upline transmission to give the effect of user think
time. The format is shown in figure 2-11.

E]

=|F LINES {;Ei nnn JUMP TO eeeeeee

LE Less than or equal.
GE Greater than or equal.
nnn Decimal number of lines, 1 to 511.

eeeeeee Script location defined by a LABEL directive.

= nnn
DELAY GLOBAL {INTERVAL nnn TO nnn}

nnri Decimal seconds, 0 to 1023.

Figure 2-11. DELAY GLOBAL Directive Format

When the first form of this directive is encountered,
script execution is suspended for nnn decimal seconds
before each message is sent upline. In the DELAY
GLOBAL INTERVAL form, a different delay time is
selected between the two values of nnn for each send.
The sequence of delay times selected for each run is
repeatable. The values must be different and the lower
value must be specified first. A =DELAY GLOBAL 0 will
turn the delay off.

An alternate form of the DELAY is available as a STIM
input statement which affects all scripts instead of just

the one in which it is specified.

60480500 D

Figure 2-12. IF LINES Directive Format

The number of logical lines of output per message are
counted and compared with nnn. The test is applied to
each block of output. The line count is accumulative for a
message consisting of multiple output blocks. Depending
on the operation chosen, less than or equal (LE) or greater
than or equal (GE), a determination is made as to whether
the condition is satisfied.

When the GE option is used, the first block of data
received is tested against the line count. If the volume of
data is great enough to satisfy the test, script execution
transfers to location eeeeeee, which must be defined as a
label. If the volume is not sufficient, lines are counted
from subsequent blocks until either the test is satisfied
and the jump to eeeeeee taken or until the
end-of-message is received. If the test fails at the
end-of-message, the next script directive is executed.

When the LE option is used, the test condition cannot be
satisfied until the end-of-message is received. If the data
received at the end of the message satisfies the test
condition, the accumulated line count is zeroed and script
execution transfers to location eeeeeee. If the data

received is greater than the line count specified, the next
script directive might be executed before the
end-of-message is received.

2-5

Only the first block of a received message is matched. If
the received message is made up of several BLKs, the
next script instruction might be executed before the
end-of-message is received whether the match succeeds
or fails. (This also can occur on =IF LINES if the LE fails
or the GE succeeds prior to receiving the MSG block). If
this occurs, the scripts will probably get out of step. The
user must ensure that loss of synchronization does not
occur. One method to prevent such an occurrence is to
include extra =WAIT MSG directives where a problem
might arise. ’

For both the GE and LE options, the next directive to be
executed is checked prior to execution to see if it is an IF
LINES directive. If it is, the line count is not zeroed
before the next directive is executed. Multiple IF LINES
directives can be used to transfer execution to different
locations, depending on the length of the message.

Message Verification

The IF MATCH directive can only be used in interactive
mode. This directive allows the script writer alternative
methods of character-by-character comparison between
the response from the host software/application and a
message embedded in the script, or defined by a
CMESSAGE. The format of the directive is shown in
figure 2-13. Any or all of the options can be specified,
but they must be specified in the order MASK, LINE,
WITH.

MASK
=|F MATCH LINE
WITH mmmmmmm

JUMP TO eeeeeee

mmmmmmm Message name.

eeeeeee Script location defined by a LABEL
directive.

The length of the base message, or mmmmmmm,

determines the number of characters that are compared.

If the response message block text is longer, its extra
characters are ignored; if the response text is shorter, a
match does not occur. If the two message texts are the
same, execution transfers to location eeeeeee, which must
be defined as a label. If the message texts do not match,
execution continues with the next script directive.

If the LINE option is specified, a mask or nonmask
comparison can be performed as described above. When
LINE is specified, the comparison is performed on each
logical line in the received block. If none of the lines in
the block match, execution continues with the next script
directive. If a match is found, execution transfers to
location eeeeeee, which must be defined as a label. If the
LINE option is not specified, a mask or nonmask
comparison is performed; however, the comparison is
performed only once on the received block starting with
its first data character.

MODE SYNCHRONIZATION

The script writer must declare the mode in which the
script is to function; the initial mode of every script is
interactive. The MODE directive places the script in
batch or interactive operation mode. The format is shown
in figure 2-14,

BA
=MODE TCH .
INTERACTIVE

Figure 2-13. IF MATCH Directive Format

If the WITH mmmmmmm option is specified, the message
name mmmmmmm must be specified in a =CMESSAGE
mmmmmmm script directive in a script of the same
TIP-type. If the WITH mmmmmmm option is not
specified, the message text must be embedded in the
script immediately following the IF MATCH directive.

The MASK option specifies where the character
comparison is to start. If MASK is not specified,
comparison starts with the first character of .both the
response message text and the compare message text;
that is, the first character of the response is compared
with the first character of the message in the script. If
MASK is specified, the mask message is limited to 72
characters in length; the mask itself is constructed by the
script writer by inserting the character # (CDC display
code character 64g) in those character positions to be
ignored in the comparison. Only one mask per line is
allowed. - For example, a mask message of +# # #
TERMINAL NAME would seek to find TERMINAL NAME
in character positions 4 through 16 of the response
message text. If a match is obtained, execution transfers
to location eeeeeee, which must be defined as a label. If
a match is not obtained, execution continues with the next
script directive.)

B 26

Figure 2-14. MODE Directive Format

On some terminals the resources are switched between
supporting batch devices and interactive consoles; such is
the case with the Mode 4 (200UT) batch terminals.

The MODE directive must be .used to synchronize the
mode of the script with the mode of the device currently
being simulated by the script. That is, when executing a
SEND directive, the mode of the script must correspond
to the mode of the device performing the send.

All upline messages are compiled to the format specified
by the SEND directive, which is consistent with the MODE
directive. This ensures proper format and synchronization
when response messages are subsequently referenced in
comparison with match messages.

The MODE BATCH directive places the script. in batch

mode. ' This allows simulation of a batch terminal device,
such as a card reader. All script directives following

MODE BATCH assume batch mode.

The MODE INTERACTIVE directive blaces the script in

interactive mode. This allows simulation of an interactive
device, such as a console. All script directives following
MODE INTERACTIVE assume interactive mode.

60480500 D

The following relates how the =MODE directive affects
certain other directives in order to control and
synchronize the script and device data:

e The mode of the script at the time the conditional IF

- directives are encountered must be the same as the

mode of the message response received from the host

system for the IF condition to be executed; therefore,

the correct MODE directive must precede the desired
mode of the IF directive.

® The =XSEND directive simulates transmitting data
from a batch or interactive device; therefore, the
appropriate MODE directive must precede the
=XSEND directive.

LOCAL PROCEDURES

A local procedure is an in-line sequence of directives and
consists of one or more sequentially executed IF
directives. Local procedures are executed only when they
are detected during sequential script execution.

When a local procedure is encountered, script execution
will wait until a data block is received from the host or
until timeout occurs. When the data block is received, the
verify procedure is executed. Multiple IF LINES
directives can be used to examine the same message data
received from the host. Muitiple IF MATCH directives
are executed independently.

DATA MESSAGE INPUT

Terminal-originated messages are transmitted to the host
system via some form of the SEND directive. These
messages were originated by the script writer in one of
the following ways:

e Defined by an XMESSAGE directive in the script and
referenced by a SEND directive.

o Created by the user as a local file and referenced by
a SEND directive.

e Defined by embedding the message text within the
script immediately following the SEND directive.

Further discussion of the first two sources of message
files can be found under Message Definition earlier in this
section.

SEND DIRECTIVE

The SEND syntax is the root of the SEND directive.
There are several derivatives of SEND. The interactive
SEND allows the user to impose control on the SEND
operation by the presence or absence of a C character
suffixed to the SEND syntax. Additionally, each SEND
root is prefixed with an I or B character to designate
whether the send is an interactive or batch SEND
directive. The mmmmmmm parameter on all SEND
directives is optional. If mmmmmmm is not used on a
SEND directive, the message text is assumed to be

embedded within the script immediately following the
SEND directive. The various derivatives of the SEND
directive are described below.

60480500 D

Send Login

This special directive can be used as an alternative to the
normal login procedure. Its chief purpose is to allow the
user to obtain the user name from the TERM input
statement rather than specify it in the message text.

The format of this special directive is:
=ISEND LOGIN mmmmmmm

This directive results in a modified version of the message
named mmmmmmm, defined in an IMESSAGE directive,
or the embedded text following (if mmmmmmm is not
specified) being sent as the terminal input to the host
system. The message text must include seven
characters which will be replaced by the username from
the TERM input statement. This is often useful when the
user name is not known at the time the script is written,
or when multiple user names are desired for use with one
script as described under option 1 of the TERM Statement
in section 3. An example of this usage is shown in
figure 2-15. :

=IMESSAGE MESSG1
SYS172,##+#+#++#,SESAME,RBF<H
=ISEND LOGIN MESSG1

SYS172 FAMILY prompt response.
FEFEEFE Mask for user name.

SESAME PASSWORD prompt response.
RBF APPLICATION prompt response.
MESSG1 Message name.

Figure 2-15. Abbreviated Login Procedure Example

The ISEND LOGIN directive can be used with either the
full or the abbreviated login procedure. For the
abbreviated login procedure, the user can respond to the
FAMILY prompt with a message that includes the text for
the FAMILY, mask for user name, PASSWORD, and
APPLICATION prompts as follows:

=ISEND LOGIN
SYS171, ####+++ ,SECRET,RBF<H

For the full login procedure, the response for the user
name can be submitted as only the seven # character
mask as shown in figure 2-16.

=ISEND
SYS171<H
=WAIT MSG
=ISEND LOGIN
FEFEFEFEFFKH
=WAIT MSG
=|SEND

Figure 2-16. Full Login Procedure Example

2-7

For the full login procedure, a combination of =ISEND and
=ISEND LOGIN must be used to respond to each of the
prompts. The =ISEND { OGIN directive must be used to
respond to - the USER prompt; responses to all other
prompts must use =ISEND directives.

NOTE

Logout is performed by use of an
ISEND directive sending a user-defined
message as specified in the script,
followed by statements that
subsequently account for any responses
from the host system.

Send Message

This directive is the simplest form of SEND and results in
a message, defined by a MESSAGE directive or an
embedded script message, being sent as terminal input to
the host. The format of the SEND directive is shown in
figure 2-17.

and must be local during execution of SCRIPT. SCRIPT
performs automatic blocking on the file.” A special
character <I results in transmission of a BLK block., A
special character <H results in transmission of a MSG
block for interactive data. An =EOR or a system defined
end-of-record results in transmission of a BLK block. An
=EOI or a system defined end-of-file or
end-of-information results in transmission of a MSG block
for batch data. The file is rewound each time it is read.
The same Ifn can be used by more than one script
TIP-type. The format of the SEND FROM Ifn directive is
shown in figure 2-19,

=XSEND FROM Ifn
=BSEND

=|SEND Indicates interactive mode.
=ISENDC FROM Ifn cc

cc Class type, decimal value, 1 to 25.

Indicates batch mode.

=XSEND [mmmmmmm]
=BSEND Indicates batch mode.

=ISEND Indicates interactive mode.

Figure 2-17. SEND MESSAGE Directive Format

Send Message Class

This directive allows the script writer to designate a class
or identifier for messages being sent to the host.
Interactive commands being’ communicated to an
application can be identified by a class designator, which
permits specific interactions between the host application
and NPS to be measured by postanalysis procedures of the
REPORTR module of NPS. The class designator is a
positive integer with a range of 1 to 25.

The format of the send message class directive is shown in
figure 2-18. This directive causes the message named
mmmmmmm, or the embedded text following, to be
designated as class type cc and sent as a terminal input to
the host. The next interactive response received is
automatically designated as the same class.

=ISENDC [mmmmmmm] cc

cc Class type, decimal value, 1 to 25.

Figure 2-18. SEND MESSAGE Class Directive Format

Send From Ifn

This directive allows the script writer to define messages
on a local file rather than defining them in the script.
The user-defined Ifn file is processed by the SCRIPT
compiler and the message text is included in the script
library. The Ifn must be a legal system logical file hame

2-8

Figure 2-19. SEND FROM Ifn Directive Format

Data characters of the messages generated from the
user-created sequential file Ifn are serially sent as the
text of a terminal input. All messages are sequentially
read and transmitted in block form to the host system.
The rate at which the individual messages are transmitted
to the host system is controlled by the Global Wait for
Response and the Global Script Think-Time directives
described earlier.,

MISCELLANEOUS FUNCTIONS

The following directives allow the script writer additional
flexibility in simulating realistic terminal sessions. The
WAIT directives are similar to the WAIT GLOBAL
directive but are executed only once.

Wait MSG Response

To control the terminal workload described by the script
and thus the execution of the script, it is sometimes
necessary to determine various positions of the output
data stream received from the host system. The WAIT
MSG directive causes execution of the script to be
suspended until a MSG block is received:

=WAIT MSG

Wait Next Response

To control the terminal workload described by the script
and thus the execution of the script, it is sometimes
necessary to determine the occurrence of various message
responses received from the host system. The =WAIT
directive causes execution of the script to be suspended
until either a MSG or BLK block response is received from
the host system. The format is:

=WAIT

60480500 D

IVT Terminal Commands

The IVT directive provides a means of simulating terminal

user-entered VT (interactive virtual terminal)
commands. (Refer to the Network Access Method
Reference Manual for characteristics of these

commands.) The format of the IVT directive is shown in
figure 2-20. Only the commands which cause information
to be sent to the application in the host computer are
provided; other commands are not provided.

B1

B2
=IVT PW,n

PL,n

TC.n
B1, B2 User break 1, user break 2.
PW,n Page width and command parameter.
PL,n Page length and command parameter.
TC.n Terminal class and command parameter.

Figure 2-20. IVT Directive Format

Unconditional Branch

The GO TO directive provides for an immediate change of
location of execution in the script; for example, it might
be used to prevent fall-through in a sequence of
conditional statements:

=G0 TO eeeeeee

This directive causes an immediate transfer of execution
to location eeeeeee, which must be defined as a label.

Execution Loops

Execution of various sequences of script directives can be
repeated for a specified number of times by including the
REPEAT directive as the last directive in the sequence.
The format is shown in figure 2-21.

=REPEAT eeeeeee nnn TIMES

nnn Decimal number of repetitions, 0 to 511.

eeeeeee Script location defined by a LABEL directive.

Figure 2-21. REPEAT Directive Format

The REPEAT directive causes a counter to be set that is
decremented by one for each subsequent time this
directive is encountered. Execution then transfers to the
label eeeeeee, as long as the counter is nonzero. -When
the counter reaches zero, REPEAT is nullified and
execution falls through to the next directive.

60480500 D

When script execution is transferred outside of a REPEAT
range, as a result of the execution of any branch
statement (for example, =IF, =ON TIMEOUT, =GEJ,
=GOTO), the counter also becomes zero.

When the REPEAT directive is encountered, it enables the
sequence of instructions, executed once prior to the
REPEAT directive, to be executed nnn additional times.
The label eeeeeee must be declared prior to the REPEAT
directive. Three levels of nesting are allowed on REPEAT
loops. Any error on a REPEAT statement causes SCRIPT
to bypass syntax checking on subsequent REPEAT
statements.

Dayfile and Log Message from Script

Error conditions; status statements, and so forth, can be
recorded during script execution through use of the LOG
directive: :

=LOG text

The LOG directive causes text to be written to the
Stimulator log file and the STIM job dayfile, Terminal and
script identifiers are output with the message. The text
must be 60 characters or less in length. If longer, the text
is truncated to 60 characters. The text begins with the
sixth character position in the line.

Termination of Script Execution

Normal termination of script execution is accomplished by
the EXIT directive:

=EXIT

Script - execution and the associated terminal

becomes idle.

stops,

Network Hardware Failure Simulation

Two directives allow the script writer to simulate failure
and automatic recovery hardware conditions that can
occur in the network during terminal connection to an
application. /

The line failure directive causes a supervisory message to
be sent to the host signaling that the line being used by
the terminal or script has failed. The format is:

=LFAIL

When the =LFAIL directive is executed, the line is
recovered and script execution continues. The next data
message received is the same as that received when the
line first became operational.

The terminal failure directive causes a supervisory
message to be sent to the host signaling that the terminal
has failed. The format is:

=TFAIL
When the =TFAIL directive is executed, the terminal fails

and is recovered in the same manner as if it had been
turned off and on again.

2-9

PROGRAM CONTROL

Two types of program control are available to the script
writer. Event recognition can be used to suspend
execution of a script until a predetermined action has
occurred in that script or in another script. Events can be
declared and used to control the execution of more than
one script; this is called interscript control. Event
declaration can be used to coordinate multiple HASP
scripts.)

Within a script, counters can be declared, and their values
can be manipulated in order to control execution in a
script. Counters do not allow interscript control.

Event Declaration

The EVENT directives are the only script directives that
provide interscript communication. An EVENT directive
can be used to cause a script to suspend the sequential
execution of script directives until the declared event is
set on by another script.

The maximum number of declared events (events with a
nonzero value) in a STIM run is limited by the assembly
option variable MAXNEVTS; default value of MAXNEVTS
is 60. The maximum value of MAXNEVTS is limited to
128. Execution of EVENT directives greater than
MAXNEVTS will result in a diagnostic dayfile message and
termination of the stimulation run during initialization
with an informative dayfile message. Declared events in
any script are global to all scripts.

Event Recognition

The EVENT ON directive indicates that the event vvvvvv
has occurred and sets the event to an on state. Execution
of an identical =EVENT ON vvvvvv directive for an event
already on increments the event cell by one; in this way
the event declarations can, in addition to recognizing on
and off states, accumulate a count of similar event
occurrences. The range of the count is 0 to 1023, with 0
being the off state. The format is:

=EVENT ON vvvvvv

Event Waiting

The EVENT WAIT directive causes script execution to
wait until the event vvvvvv has been .set to the on state
before the next sequential script directive is executed.
Multiple EVENT ONs can be balanced by multiple EVENT
WAITs. If the event has occurred at least once (count is
>0) the count is decremented by one and the next
directive is executed. If the event has not occurred or the
count has already been decremented (count is =0), script
execution waits until the event occurs (count >0). The
format is:

=EVENT WAIT vvvvvv

1 210

If multiple scripts are waiting for the same event, only
one script will be allowed to advance for each recognition
of the event (EVENT ON directive executed).

Any data sent downline to a terminal that is waiting for
an event to occur will not be processed.)

Counter Setting and Checking

The following directives allow the script writer to set and
check integer counters, which can be used to further
control terminal sessions. These counters are local to a
terminal; they do not provide interscript communication
as do the EVENT counters. The maximum number of
counters per terminal is six.

Set Counter

The SET directive declares a name, cccecee, of up to
seven characters as an integer counter and sets it to the
integer value specified by nnn, where 0 <nnn <511. The
format is:

=SET ecceeee,nnn

If the counter is not initially set, further operations
described below will not be trustworthy.

Increment Counter

The INC directive increments a counter named cccccce by
the integer value m, where 1 <m <9. The format is:

=INC cccececee,m

Decrement Counter

The DEC directive decrements a counter named ccceece
by the integer value m, where 1 <m < 9. The format is:

=DEC cccceee,m

Compare Counter

The GEJ directive compares the value in the counter
named ccccece to the integer value mmm (0 -< mmm
<511). If the counter value is greater than or equal to
mmm, execution transfers to location eeeeeee, which
must be defined as a label. If the counter is less than
mmm, execution continues with the next directive. The
format is:

=GEJ cccecce,mmm,eceeeee

60480500 D

STIMULATOR OPERATION 3

Stimulator operation encompasses compilation of
user-written scripts by the SCRIPT compiler and
stimulation of the network products software using the
library of compiled scripts. Input and output is
time-stamped and recorded on a log file for subsequent
analysis. .

SCRIPT COMPILER

The SCRIPT compiler is called by a control statement
from the system library and runs as a normal batch jab.
The parameters on the call statement are used to specify
the input/output options desired.

The initialization of the SCRIPT compiler includes reading
the control statement options and modifying the default
options accordingly.

The scripts are read from the specified input file.
Nonembedded messages from the scripts are written to
the message part of the script library file. Script
directives are converted to numeric representation.
Listings of scripts are generated if requested. Finally, the
second part of the new script library file is written
containing the converted scripts in run-time format.

SCRIPT CALL STATEMENT

The SCRIPT program call statement has the format shown
in figure 3-1. N, I, LO, and L are keyword parameters
that assume the values described in the figure. The
parameters are order independent. Defaults are assumed
if the parameters are omitted or specified without values.

Errors in the control statement parameters cause the run
to be terminated with diagnostic error messages. The
system file name ZZZZ7S1 is reserved for use by the
SCRIPT compiler. All nonembedded messages are
compiled together, so, on the output listing, messages are
not necessarily associated with the scripts in which they
are referenced.

The following are examples of SCRIPT call statement use:

SCRIPT.
Scripts are read from INPUT and the script
library NEWSL is created. Only fatal errors are
listed on the file OUTPUT.

SCRIPT(N=5L12345,I,LO=F)
Scripts are read from the file COMPILE,
creating the new script library SL12345. All
scripts and all messages are listed on the file
OUTPUT.

60480500 D

SCRIPT{N=nsl,|=ifn,L=0fn,LO=0pt)

nsl Logical file name of the new script library created
by this run. The default is NEWSL.

ifn Local input file name from which the scripts are
read:

If =ifn is omitted, input is on file COMPILE
If | is omitted, input is on file INPUT

ofn Local output file name on which the requested
listings are generated.

If =ofn is omitted, listable output is on file LIST
If L is omitted, listable output is.on file OUTPUT

If L=0, no output file is written, and listing
options specified are ignored

opt Listing options. Only one option can be specified;
the default is fatal errors only. lee options are:

E Only fatal errors are listed; this is
the default value

F All scripts and all messages are listed

M All nonembedded messages are listed,
as well as the scripts specified on
LIST directives

Q Only the scripts specified on LIST
directives are listed without nonem-
bedded messages

S All scripts are listed without non-
embedded messages

Figure 3-1. SCRIPT Call Statement Format

SCRIPT DECK STRUCTURE

The example shown in figure 3-2 illustrates a SCRIPT
compiler run. It updates an old program library and
generates a new script library. The files reside on mass
storage.

Notice that an Update slash (/) program library is used in
the example. It is recommended that the user maintain a
special character program library so as not to restrict the
format of messages or jobs to send upline.)

3-1

JOB. :
USER,RAC,SESAME, 1234.

- ATTACH(OLDPL=OLDPL5)
DEFINE(NEWPL=NEWPL6)
UPDATE(F,N,*=/)
DEFINE(NEWSL=NEWSLS)
SCRIPT,LO=S, 1.

7/8/9

/ADDFILE COMCOM

/COMDECK COMLOG

=COMMENT STANDARD LOGIN PROCEDURE
=ISEND LOGIN

JADDFILE , SCRIPTX
JDECK SCRIPTY
=SCRIPT SCY

JCALL COMLOG

=ENDSCRIPT
/IDENT EXAMPLE
/DELETE . . . (further modifications)

7/8/9
6/7/8/9

Figure 3-2. SCRIPT Compiler Run Example

SCRIPT FILE FORMATS
The script library consists of two parts:

Part 1 - script messages. This part consists of all
nonembedded data messages that are defined in the
scripts in part 2, Each message is one logical record.

Part 2 - script object code. This part consists of the
compiled object code for all scripts. Each script
occupies one logical record and a directory record is
appended at the end.

SCRIPT ERRORS AND TERMINATION

SCRIPT compiler processing falls into two main
categories, an input pass and a binary pass. In the input
pass, SCRIPT directive keywords and XMESSAGE
directives are checked. FErrors in these directives
terminate the SCRIPT run, and the message ERRORS IN
INPUT - RUN ABORTED appears in the dayfile.

If no errors are found in the input pass, the binary
generation pass is then executed. Here, SCRIPT performs
all syntax checking and ensures that each script and the
script library as a whole are complete and compatible (for
example, it ensures that all entries and messages used
have been declared). Errors in this pass terminate the
SCRIPT run with the dayfile message ERRORS IN
BINARY - RUN ABORTED.

§ 32

Upon abnormal termination, all statement images found to
have syntax errors appear in the job output file unless the
L=0 option has been declared. Normal " end-of-run is
indicated by the dayfile message SCRIPT COMPLETE.

STIM

The central processor and peripheral processor stimulation
routines, STIM and SIP, are used to supply input to and
receive output from NAM and the application using NAM.

The central processor program STIM is initially loaded by
a program call statement, for example,
STIM(n3,ng,...Np), that specifies the driver and monitor
parameters. Then STIM interprets and saves these
parameters for later use in determining the
characteristics of the stimulator run.

STIM then reads the LNODE, RNODE, HASPCR, HASPLP,
DELAY, and TERM input statements, which specify
terminal parameters. From these input parameters, STIM
builds the communication tables. STIM then initializes its
central memory buffers, builds a communication buffer
for the peripheral processor program SIP and requests SIP
to be loaded. SIP reads the communication buffer,
initializes its peripheral processor memory, and then
signals STIM that the peripheral processor is loaded and
initialized.

STIM then completes its initialization pass by configuring
the network and enters the simulation pass where script
execution is performed. At this transition, the system
real-time clock is read to establish a relative time zero.
All statistics generated by REPORTR are relative to this
zero time. :

Once stimulation is in process, STIM's function is to supply
input from simulated terminals (scripts) to SIP and to
receive from SIP all output messages directed to
simulated terminals. STIM, if so directed by the
LOGGING IS directive, records all input and output
messages on - a log file. During this time, SIP
communicates with the NAM peripheral processor routine
PIP just as the NPU does, sending and receiving messages
across the dedicated data channel, and emulating the
hardware and software control functions of the NPU. The
fact that this NPU is simulated rather than real is
transparent to PIP and the entire network.

Characteristics of the stimulation run are controlled by
parameters on a STIM program call statement. Parameter
checking is performed on the statement, and any errors
result in termination of the run with diagnostic dayfile
messages.

STIM CALL STATEMENT

The STIM program call statement has the format shown in
figure 3-3. SL, LF, ET, I, LC, and NC are keyword
parameters that assume the values described in the
figure. The parameters are order independent.

INPUT STATEMENTS

During initialization, parameter checking is performed on
the input statements that follow. Any errors result in
termination of the run with diagnostic dayfile messages.

60480500 D

STIM(SL=sIn,LF=lfn,ET=nnnn,|=ifn,LC=lcf,NC=ncf)

sin Logical file name of the direct access file contain-
ing scripts (that is, the script library file generated
from a SCRIPT compiler run); one to seven letters
or numbers. This parameter can be omitted; the
default is NEWSL.

Ifn Logical file name on which data traffic is to be
recorded; one to seven letters and numbers. This
parameter can be omitted; the default is LOGNPS.

nnnn The decimal number of seconds representing the
time limit of the simulation test; STIM terminates
after nnnn clock seconds have elapsed or upon
exit of all scripts. This parameter can be omitted;
the default assumes an infinite time period. The
legal range is 0 < nnnn < 28800 (=8 hours).

ifn Local input file (one to seven letters or numbers)
name on which STIM input statements (such as
TERM, LNODE, and so forth) are expected to
reside. The default is INPUT.

Icf Logical file name of the direct access local con-
figuration file; one to seven letters or numbers.
This parameter must not be omitted; if omitted,
the run is terminated with an appropriate
diagnostic dayfile message.

ncf - Logical file name of the direct access network con-
figuration file as defined by NDL; one to seven
letters or numbers. This parameter must not be
omitted; if omitted, the run is terminated with an
appropriate diagnostic dayfile message.

Figure 3-3. STIM Call Statement Format

Think-Time Statement

The DELAY input statement serves to establish the same
think-time for all interactive scripts (terminals) in a test.
The parameter options are the same as those included in
the DELAY GLOBAL script directive (described in
section 2), but are specified in a different manner.
However, where the script directive establishes a
think-time applicable only to the individual script in which
the directive is executed, this input statement establishes
a think-time applicable to all the scripts for an entire test
- run. Furthermore, this input statement overrides any
DELAY script directive established values.

The think-time input statement has the format shown in
figure 3-4.

Input Speed Delay Statement

For interactive asynchronous terminals, a delay
corresponding to a user's typing rate of 1 through 10

characters per second can be simulated using the IS input

statement. The delay occurs prior to sending the upline
message to the host and can be used in conjunction with
the other delay statements. When the IS input statement
is not specified a default typing rate of four characters
per second is used for all interactive terminals. An IS
value of zero turns the delay off allowing the terminal to
simulate an infinite typing rate. The IS cards can occur
anywhere among the NPS input statements.

The two formats for the IS input statement are shown in
figure 3-5. The first form causes all interactive terminals
to input isx characters per second. If more than one IS
card of this format is detected, the value in the last IS
card will be used. The second form causes the first ntl
terminals to operate at isl characters per second, the
next nt2 terminals to operate at is2 characters per
second, and so forth. These values are assigned to
terminals in the order specified by the TERM cards. The
two IS forms cannot be used in the same NPS run. An
example of the second format is:

15(3/7,1/0,2/2)

This statement would cause the first three terminals to
simulate a typing speed of seven characters per second.
The next terminal would simulate an infinite typing speed,
and the following two terminals would operate at two
characters per second. If the run included more than six
interactive ‘terminals, the remaining terminals would
operate at the default IS value of four characters per
second. If the run included fewer than six interactive
terminals, the extra IS values would be ignored.

(isx)

IS
(nt1/is1,nt2/is2, . . .ntn/isn)
where 0 < isx < 10

and 0 < ntx < 1023

{ DE LAY} {p)
D
p Assumes one of two formats representing the
following corresponding option:
nnn nnn=Decimal seconds 0-1023

I=nnn/nnn

Figure 3-4. Think-Time Input Statement Format

60480500 D

Figure 3-5. Input Speed delay Statement Format

LNODE Statement

This input statement serves to identify which front-end
NPU in the local configuration file is to be configured for
simulation by STIM. A maximum of four local NPUs can
be configured for simulation. Up to four NPUs can be
configured; at least one must be a local NPU.

One or more TERM input statements must immediately
follow the L NODE input statement to identify the
terminals connected to the local NPU. The format of the
LNODE statement is shown in figure 3-6.

RNODE Statement

This input statement serves to identify which remote NPU
in the local configuration file is to be configured for
simulation by STIM. A maximum of three remote NPUs
can be configured for simulation. Up to four NPUs can be
configured; at least one must be a local NPU.

3-3

{LNODE} {n)
L
n A simulated local NPU node ID from the Network

Definition Language NPU statement in the local
configuration file.

Figure 3-6. LNODE Input Statement Format

One or more TERM input statements must immediately
follow the RNODE input statement to identify the
terminals connected to the remote NPU. The format of
the RNODE: statement is shown in figure 3-7.

appear in any order. If the user name is specified, the last
four characters must be numeric. The user name is
sequentially incremented - in decimal for each included
terminal in the range for use if an =ISEND LOGIN
directive is encountered in the script.

{ RNORDE } (n)

n ‘A remote NPU node ID from the Network Definition
Language NPU statement in the local configuration
file.

Figure 3-7. RNODE Input Statement Format

TERM Statement

This input statement has the format shown in figure 3-8.
LN, TN, SN, LG, UN, and LS are keyword parameters that
assume the values described in the figure. The
parameters are order dependent, because the slash (/) is a
separator for option 1.

The TERM input statement serves to identify terminals
configured in the network local configuration file tables,
which are to be selected by NPS for simulation. To
achieve this identification, the TERM statement can be
used in two ways. Option 1 cannot be used with HASP
terminals.

Option 1 - Range of Terminal Identification

This option allows the user to identify a range of
terminals in the local configuration file. All terminals
within the range, including the boundary terminals, are
selected from the local configuration file for simulation.
This option makes use of the / separator and two ordered
sets of LN and TN parameters. Terminals selected by this
option all have the same TERM statement LG and SN
parameter characteristics, but the user name can vary.
The following is an example of this option:

LNODE(3) .
TERM(LN=ABC, TN=WW/LN=DEF, TN=ZZ,5N=AAA,
LG=10,UN=AAA6879)

This example illustrates’ that all lines between ABC and
DEF, inclusive, and terminals in the local configuration
file between WW and ZZ, inclusive, on these lines are to
be simulated. Furthermore, all the terminals are
connected to local NPU node 3, are to login after 10
seconds, and are to execute script AAA. The / serves to
separate and identify the lower and upper range of the
terminal list; therefore, this group of parameters must be
ordered in the statement. All other parameters can

3-4

{TERM } 1 LN=linename4,TN=trmname,/ LN=finename,,
T

TN=trmname2,SN=sid,LG=nnnn,UN=user name,
LS=line speed)

linename; Name of the line from the NDL LINE state-
ment in the local configuration file to which
this terminal is connected. No validity check
is made against the local configuration file
for this name. The first LN parameter cannot
be omitted; the second LN parameter is
optional (described in option 1).

trmname; Terminal name from the NDL TERMINAL
statement in the local configuration file. The
first TN parameter cannot be omitted; the
second TN parameter is optional (described in
option 1).

sid Name of the script on the script library that
this terminal will execute; one to three letters
or digits. This parameter cannot be omitted.

nnnn Decimal number of seconds representing this
terminal's login time. This time is relative to
the zero time or the start of the simulation
test run; this terminal will login no sooner
than nnnn seconds after time zero. Login is
defined to be the time when the line this
terminal is on is activated. Parameter LG is
optional. The default is zero. The legal
range is 0 < nnnn < 3600.

user name Optional terminal operator's valid Network
Operating System user name; one to seven
letters or digits. If the range of terminal
identification (option 1) is used as described,
the last four digits of the user name are
sequentially incremented for each succeeding
terminal in the range. This parameter need
be included only if the script (sid) contains
an ISEND LOGIN directive.

line speed Optional line speed simulated for the terminal.
Legal values for asynchronous lines are 110,
150, 300, 600, 1200, 2400, 4800, and 9600
bps. The default value is 300 bps for auto-
speed recognition lines. LS values greater
than the legal auto-speed maximum of 1200

- bps will be honored although an informative

diagnostic will be issued. For non-auto-speed
recognition lines, the default line speed is
provided by the host from the line configura-
tion file.

Legal values for synchronous lines are 2000,
2400, 4800, 9600, 19200, and 50000 bps.
The default value is 2400 bps.

A line speed value of zero causes NPS to
simulate an infinite line speed.

Figure 3-8. TERM Input Statement Format

60480500 D

In this example, the next username would be AAA6880,
then AAA6881, and so on through AAA9999, and then
becomes AAA0000.

Option 2 - Individual Terminal Identification

This option allows the user to identify a single terminal in
the local configuration file to be selected for simulation.
This option does not use the / separator; only one set of
LN and TN parameters is used. The following is an
example of this option:

LLNODE(3)
TERM(LN=ABC, TN=-WW,SN=AAA,_S=2400)

This example illustrates that terminal WW on line ABC,
connected to local NPU node 3, is to be simulated.
Execution of script AAA will begin after time zero. No
username will be supplied from the TERM card. NPS
simulates a line speed of 2400 bits per second for this
terminal. This causes a delay in the delivery of upline
batch input messages as well as a delay in the
acknowledgment of downline batch and interactive output
- messages. The delay corresponds to the time required to
receive or deliver the data and depends on the message
length and the line speed.

The relationship of TERM input statements to MODES4,
ASYNC, and HASP terminals is noted in section 5.

HASPCR Statement

The HASPCR input statement serves two purposes. It
identifies the scripts that are to be used to simulate HASP
card reader input, and also identifies the number of card
readers to be simulated on a particular HASP station.
Examples of HASPCR use appear in section 5.

If a HASP card reader is to be simulated, the HASPCR
input statement must follow the TERM input statement
defining the console display for the station. The format
of the HASPCR statement is shown in figure 3-9.

If any HASP output terminals are to be simulated, the
HASPLP input statements must follow the HASPCR input
statement defining the card readers for the station. The
format of the HASPLP statement is shown in figure 3-10.

3

{HASPLP} sidj=trmnamey, . . .
HL

,sid,=trmname,, sidx/N)

sid;

i Name of the script used to process the output

received from the host system for a HASP
terminal; a maximum of seven script names
can be used. This parameter is optional; de-
fault assumes no output processing and output
is merely logged to the log file.

trmname; Terminal name from the NDL TERMINAL
statement in the local configuration file.
Output to this terminal is processed by
script sid;.

sidx Name of the script used to process output for
all terminals not explicitly associated with
scripts. This parameter is optional; if missing,
output that is not explicitly associated with a
script is not processed, it is merely logged to
the log file.

Only one sidx parameter usage is allowed per
HASP station simulation, regardless of the
number of HASPLP statements used per
station.

N Number of terminals assigned to process out-
put with the script sidx. N is a decimal
number between 1 and 7. The N parameter
is optional; if missing and the parameter sidx
is used, N defaults to one. If N is supplied,
the sidx parameter must have been specified.

The number of terminals simulated (specified
by sid=trmname and by N) cannot exceed
seven.

{HASPCR} (sssq, . . ,ss8,)
HC

The name of the script used to simulate a HASP
card reader workload; a maximum of seven script
names is allowed. The number of script names
determines the number of card readers to be
simulated. At least one script name must be
specified or the run will terminate with an error
message during initialization.

S5

Figure 3-9. HASPCR Input Statement Format

HASPLP Statement

The HASPLP input statement serves two purposes. It
identifies the scripts that are to be used to process output
file data received from the host system, and identifies the
terminals that are to be configured and expected to
receive the output. It also explicitly associates each
script with a particular terminal so that output to a
terminal is processed by the associated script.

60480500 D

Figure 3-10. HASPLP Statement Format

TRe following are examples of the legal use of the
HASPLP input statement:

HASPLP(XYZ=ABCD)
Script XYZ is to process output received by the
terminal named ABCD. Output delivered to
other terminals is only logged.

HASPLP(XYZ=ABCD,BBB)
As in the first example, script XYZ is to process
output received by terminal ABCD. In addition,
- the script BBB is to process all output delivered
to other terminals.

STIM DECK STRUCTURE

STIM is initiated by executing a job containing the STIM
call statement and the LNODE, RNODE, and TERM input
statements. The script library and network definition
files must be attached before the STIM call card. STIM
controls the reading and processing of the input
statements to perform its initialization pass. The
information necessary for STIM to configure the simulated
network is contained in the input statements and in the
network configuration files.

The simulated network can use real or imaginary
hardware, but must be defined in the local configuration
file generated by NDL. The simulated network can be
either a subset or the full set of the local configuration
file. STIM expects the input statements to be ordered to
associate NPUs and terminals. LNODE and RNODE
statements must be followed by TERM statements
identifying those terminals connected to the specified

STIM can assume two different job deck structures, one
for a batch origin and the other for a system origin job.

A batch STIM job deck is similar to a normal user job
containing a control card record followed by an input
record. A sample batch job deck structure is shown in
figure 3-11.

JOB.
USER,DEL0077,SESAME,SYS172.
ATTACH(NEWSL=SL 123)
DEFINE(LOGNPS)
ATTACH(NCF=NCF1,LCF=LCF1)
STIM(LC=LCF,NC=NCF,ET=600)
EXIT.

DMP,

DMP(0,10000)

7/8/9

LNODE((parameters)
TERM(parameters)

TERM(parameters)
RNODE (parameters)
TERM(parameters)

TéRM(parameters)
7/8/9
6/7/8/9

STMXXXX Indirect Permanent File

ATTACH(NEWSL=SL123/UN=USERXXX)
ATTACH(NCF=NCF1,LCF=LCF 1/UN=USERXXX)
ATTACH(INFILE=INSTMTS/UN=USERXXX)

RF L(70000) , :
STIM(LC=LCF,NC=NCF,I=INFILE)

EXIT.

DMP.

DMD(0,40000)

INSTMTS File

LNODE(parameters)
TERM(parameters)

Rl\iODE(pa_rameters)
TERM(parameters)

TE'R M(parameters)

Figure 3-11. Batch STIM Sample Deck Structure

A system origin STIM job has its control statement record
and input statements residing in separate files. The
control statements must be on an indirect permanent file
that uses the system user index.377777g. The name of
this file must start with the three characters, STM,
followed by any four characters or digits. The file
containing the input statements can be a public file under
any user. This file must be attached before the STIM call
statement and specified in the statement with the I
parameter.

A system origin STIM job is initiated by a console type-in
of the indirect permanent file name, STMxxxx. A sample
deck of the job is shown in figure 3-12.

STIM OPERATING PROCEDURES

The following operational conditions are necessary for
running STIM:

1. Equipment status table (EST) entries of the NPUs
being simulated must initially be logically on in order
to be identified and used by SIP.

2. The PIP and SIP channels are dedicated.

Figure 3-12. System Origin STIM Sample Deck Structure

3. The NPUs simulated must have unique equipment
numbers.

4, All equipment on the PIP and SIP channels must be
logically off in the EST. Other equipment on the
channels must not be turned on in the EST; otherwise,
the system will probably crash.

5. If a channel is lost during PIP/SIP correspondence,
then all equipment simulated on that channel is lost
to the NPS run.

6. Any equipment on the PIP and SIP channels must be
physically OFF.,

The following procedures assume that deadstart has been
completed and all other components of the network
system have been initialized.

Initialization

STIM can be initialized at any convenient point after
deadstart. Operator procedures are required to ensure the
proper interface of NPS to the network host product and
the EST entries used for simulation.

A STIM run is initiated by executing a batch or system
origin job containing the STIM call statement and the
necessary STIM input statements. The first action
performed by STIM is to start the initialization pass by
informing the user of the version and level of NPS.
During this pass, the configuration of channels, PIP, and
NPUs is checked for conflicts. If conflicts are present,
the run is terminated with appropriate dayfile messages.
When a STIM run is initiated by a batch job, the following l
procedural message flashes at the STIM control point:

AUTHORIZE NPS, XXXy XXXy XXXy XXX

60480500 D

This message requests the console operator to authorize
use of the indicated EST entry for NPS use. If two or
more users submit STIM runs with identical channels and
NPU configuration requests, the operator must determine
which job to authorize. If authorization is given, the
operator should enter:

n.GO.
If authorization is not given, the operator can enter:
n.DROP., n.RERUN,0., or n.ROLLOUT.

If authorization is given and n.GO is entered by the
operator, the following automatic procedures are
performed and associated messages are displayed in the
STIM user dayfile and the B-display at the STIM control
point. A system origin STIM job bypasses the
authorization message and action sequence. The next
message displayed is:

STIM INITIALIZING NETWORK

Initializing the network consists of receiving and
responding to service messages sent from the host, and
constructing internal tables that reflect the network
configuration to be simulated.

When initialization .is completed, the
simulation/stimulation test state is entered and is
communicated to the operator by the following dayfile
message displayed in the STIM user dayfile and on the
B-display at the STIM control paint:

STIMULATION RUN STARTED
This message is displayed at relative zero time. Relative

zero time is defined to be that point where execution of
- the first script can begin.

Execution
Once the STIM run has been initialized without any errors,

the simulation state is entered automatically. That is, all
terminals (scripts) will be executed.

Termination

Termination of the simulation test is automatic when all
scripts have executed or if an error condition occurs.

Termination of Run'by Operator

To terminate the entire simulation run, the operator
should enter:

n.DROP. for a batch job
n.STOP. for a system origin job

where n is the control point occupied by STIM.

Termination of Run by Time Expiration

The entire simulation run terminates éutomatically if the
duration of the test, measured in seconds of elapsed clock

60480500 D

time, exceeds the time designated on the STIM call -
statement. In this case, the following message appears on
the console A and B-displays:

RUN TIME EXCEEDED. RUN TERMINATED.

Termination of Run by Test Completion

When all scripts have completely executed and all
terminals have performed logout and executed an EXIT
directive, the entire test automatically terminates and
displays the following message on the A and B-display:

STIM RUN COMPLETE

NPS Dumps on Tape

When NPS terminates abnormally and is executed from a
system origin procedure file, a network procedure file
called NPSDUMP is available to dump the NPS files to
tape. NPSDUMP is activated by executing the control
statement shown in figure 3-13.

BEGIN,NPSDUMP,NPSDUMP,newsl,lognps,netnps, Icf,ncf.

newsl Filename of script library. Default is
NEWSL.

lognps Filename of record traffic. Default is
LOGNPS. :

netnps Filename of STIM input file. Default is
NETNPS.

Icf Filename of LCF. Default is LCF.

ncf Filename of NCF. Default is NCF.

Figure 3-13. NPSDUMP Control Statement Format

Any of the parameters may be omitted. The default
filename will be what is shown in figure 3-13. The control
statement is inserted after the field length dump card,
located after the EXIT control statement. NPSDUMP will
request a labeled tape. The flashing tape request may be
processed by the operator (see NOS Operator's Guide,
Network Failure Processing). If NPS fails along with the
rest of the network and the NPSDUMP . procedure is
executed, the NPS dumps are automatically copied to the
same tape or set of tapes used for the network dumps. If
the network dumps are to be printed, the NPS dumps are
also printed.

STIM FILE FORMATS

The input file to STIM is a specified script library file
generated by a SCRIPT compiler run. The log file from a
run consists of four categories of messages:

e Downline messages from the host

® Upline messages to the host

e Dayfile messages

e Log messages (messages directly from a script)

3-7

REPORTR (STATISTICAL REPORT GENERATOR)

-------.---.----.------.-------------.-.----.-----.------

The purpose of the REPORTR program is to analyze the
data resulting from a stimulation run and convert the data
into usable information. REPORTR has the capability to
_reformat the data into a readable form and to collect,
compile, and print certain statistical information.

The 'REPORTR program can perform the following
functions, depending on the parameters specified on the
REPORTR call statement:

e The recorded event data for a selected time period
can be reformatted and printed with the message text.

e The driver and monitor data for a selected time slice
can be transferred to a working file and the message
text discarded to conserve disk space.

® The contents of the working file can be analyzed and
statistical reports generated.

REPORTR CALL STATEMENT

The REPORTR program call statement has the format
shown in figure 4-1. LF, D1, D2, T1, T2, DM, R, and L
are keyword parameters that assume the values described
in the figure. The parameters are order independent. If
any keyword=value combination is omitted, a default
value is assigned.

Errors in the REPORTR call statement result in
termination of- the run with a diagnostic error message.
The operating system scratch file names ZZZZZ7S2,
7777753, and ZZZ7ZZS4 are reserved for use by
REPORTR.

The following are examples of REPORTR usage:
REPORTR.

The name of the input log file (LF) is defined as
LOGNPS. No message traffic dump is output,
and all the data message traffic for the entire
run is extracted from the LOGNPS file for
analysis. Only the control statement parameter
summary is generated.

REPORTR(LF=SIMFILE,D1=600,D02=900, T1=0,
T2=1800,0DM=Y,R=3467)

SIMFILE is the name of the input log file. All
message traffic occurring between 10 and 15
minutes after the start of the stimulation run is
dumped to file OUTPUT. The data analysis spans
the first 30 minutes of the stimulation run. The
network configuration service messages
occurring during network initialization are
dumped. Reports 3, 4, 6, and 7 are generated.

60480500 A

REPORTR(LF=Ifn,D t=nnnnn,D2=mmmmm, T 1=sssss,
T2=ttttt, DM=y,R=ijk . . . ,L=ofn)

Ifn

nnnnn

mmmmm

$5855

trtt

ofn

ik ..

Name of the log file that contains the data
generated by the Stimulator. The default file
name is LOGNPS.

Starting time of the message traffic dump,
specified in decimal seconds. The starting
time is defined as the elapsed time into the
stimulation run from relative time zero. Al
messages transmitted and received within this
time period are formatted and dumped to the
output file. If the dump parameter is omit-
ted, no message dump is output.

Ending time of the message traffic dump,
specified in decimal seconds. The ending
time is defined as the elapsed time into the
stimulation run from relative time zero. If
D1 is specified and D2 is not specified, D2
will default to the end of the run.

Starting time of the data analysis time slice,
specified in seconds. The starting time is
defined as the elapsed time into the stimula-
tion run from relative time zero. All messages
transmitted and received within the time slice
are written to the work file after the message
text is removed. The data contained on the
work file is analyzed and selected reports
generated. |f the time slice parameter is
omitted, the entire stimulation run is analyzed.

Ending time of the data analysis time slice,
specified in decimal seconds. The ending time
is defined as the elapsed time into the stim-
ulation run from relative time zero.

A Y value causes the initial service messages
issued during network initialization to be
printed. If the keyword=value combination
is omitted, a default value N is assigned.

Local file name on which REPORTR output
will appear. The default value of ofn is
OUTPUT.

A report type selection parameter that specifies
which reports are to be generated. The pos-
sible values of ijk . . . are combinations of

the integer values 1 through 7 without separa-
tors. Integers 1 through 7 correspond to
report numbers 1 through 7 (for example,
R=2546 would result in reports 2, 4, 5, and 6
being generated).

Figure 4-1. REPORTR Call Statement Format

4-1

JOB STRUCTURE

The following illustrates the deck structure of a
REPORTR run:)

JoB.

USER,1234,PASS.

CHARGE,5678,91011.

ATTACH(LOGNPS)

REPORTR(parameters)

7/8/9

6/7/8/9

STATISTIC DEFINITIONS

The following statistical terms are used in ti’\e reports
generated by REPORTR; their interpretation for this
purpose is given here.

Arithmetic mean -- The sum of all observations (such
as response times) divided by the number of
observations.

Range -- The difference between the extreme values
in any set of observations. -

Standard deviation -- The square root of the
variance. The variance is defined as the average
squared deviation from the mean.

Interval -- The timeframe in which any number of
observations (such as response times) can occur.

Frequency -- The sum number of observations that
occur in a particular interval.

Cumulative frequency -- The additional increment of

observations found in the next interval in the
sequence of intervals.
Percent frequency -- The percentage of the total

number of observations found in a particular interval.

Cumulative percent frequency -- The additional
increment of the percentage of the total number of
cases found in the next interval in the sequence of
intervals.

Response time -- The time the host system takes to
react to a given input. When a message is sent by a
terminal and the reply from the host is received at
the same terminal, response time is defined as the
time interval between the upline send and the first
downline receive. It is the interval between an event
and the host system's response to the event. Only
those messages which receive a response are
considered in response time calculations. Response
time is only meaningful for interactive applications.

Total response time -- The sum of the response times

for a particular terminal.

Total elapsed time -- The interval starting from
relative time zero to the ending time for the
stimulation run.

Subset elapsed time -- The sum of the times that a
particular number of terminals (subset) is active.

Terminal elapsed time -- The sum of the times that a
particular terminal is active.

4-2

Active terminal subset -- The particular number. of
terminals that are logged in but not logged out during
any interval of time. ’

STATISTICAL REPORTS

There are eight statistical reports generated by
REPORTR. The first report, which is not numbered, is
always printed; it summarizes the control statement
parameters., Sort/Merge is used by REPORTR to
facilitate computation of statistics included in the
reports. Specifically, Sort/Merge is used to generate the
optional reports numbered 1 through 7. Additionally,
Sort/Merge is used to sort the interleaved message traffic
of multiple terminal runs; this results in the capability to
list separately and chronologically each terminal's
message traffic when the D1 and D2 parameters on the
REPORTR call statement are used. Thus, if Sort/Merge is
not part of the operating system, none of the reports
numbered 1 through 7 can be generated correctly.

The message traffic occurring within the time period
specified by the T1 and T2 parameters on the REPORTR
call statement is analyzed, and the reports that follow are
printed.

The term class in the statistical report refers to the
message class, which can have a value of 1 through 25. A
class value of zero indicates that a message class was not
designated.

The following notation is used in the examples of the
statistical reports:

XXXXXXX will be replaced with the terminal name
or blanks.

REPORTR CONTROL STATEMENT
PARAMETER SUMMARY

The control statement parameter summary is always
generated. An example of the report's format and content
is illustrated in figure 4-2.

REPORT 1. MESSAGE LOAD
SUMMARY PER TEST

The message load summary per test is optional. It is
selected by the R=1 parameter option on the REPORTR
call statement. The character count includes the network
block header and the message ‘text characters. An
example of the format and content of report 1l is
illustrated in figure 4-3.

REPORT 2. MESSAGE LOAD
SUMMARY FOR TERMINAL xxxxxxx

The terminal message load summary report is optional. It
is selected by the R=2 parameter option on the REPORTR
call statement and it produces one report per terminal.
The character count includes the network block header
and the message text characters. An example of the
report's format and content is illustrated in figure 4-4.

60480500 D

- REFORTR - STATISTICAL REFORT GENERATOR

REPORTFP CONTROL CARD PARAMETER SUMMARY

INFUT LCG FILE NAME (LF) LOGNPS
CUMP STARY TIME IN SECONCS [
CUMP ENC TIMF IN SECONDS 39999
CUMP NETWORK CONFIGURATICN MESSACES YES
TIME SLICE START TIME IN SECCNCS 0
TIME SLICE ENC TIME IN SECONCS ggqqgqg
STIMULATOR NCTWORK CCNFIGURATICN INFORMATION
CATE 7¢/01/08., TIME 15.02,3¢,
STIMULATCOR 7G/01/08e 14451423.STIM(LC=LCFyNC=NCF)
LNCBE(2D) '
IS(1/710)y
TERM(LAN=LINEZIDL TN=TM304A,SN=YYY,LS=110)

Figure 4-2. Example of Default NPS Statistical Report
REPORTR - STATISTICAL REPORT GENERATCR

NPS STATISTICAL REFORT NUMRER 1

MESSAGE LOAD SUMMARY PER TEST
TOTAL ELAPSEC TIME =- 493
TOTAL FMESSAGES UPLINE - 138
AVERAGF MESSAGE LENGTH UFLINE - 112
TCTAL CATA CFARACTERS UPLINE = 1435
TOTAL CHARACTER COUNT UFLINE - 2023
AVERAGE NUMBER QF CHPRACTERS PER SECONC UPLINE - 4
TOTAL MESSACE COWNLINE - 28
AVERAGE MESSAGF LENGTH CCWNLINE - 91
TOTAL CATA CHARACTERS DOWNLINE - 2041
TOTAL CHARECTYER COUNT DOKNLINE - 2566
AVERAGE NUMBER OF CHARACTERS PER SECGNC DOWNLINE - 5
TCTAL CATA CHARACTERS BRCADCAST - 0
TOTAL CCNTRCL MESSAGES - 115
TOTAL LCGFILE MESSAGES - S
TOTAL NETHWCRK SFRVICE MESSAGE =~ 46

Figure 4-3. Example of NPS Statistical Report Number 1
REFORTR = STATISTICAL REPORT GENERATOR

NPS STATISTICAL REFORT NUMBER 2

MESSAGE LOAD SUMMARY FCR TERMINAL XXXXXXXX
TERMINAL ELAFSED TIME - 484
TOTAL MESSAGES UPLINE - 18
AVERAGE MESSAGF LENGTH UPLINE - 93
TCTAL CATA CHARACTERS UPLINE - 1435
TOTAL CHARACTER COUNT UPLINE - 1691
AVERAGE NUMEER OF CHARACTERS FER SECONC UPLIhE - 3
TOTAL MESSAGE DOWNLINE - 28
AVERAGE MESSAGE LENGTH CDCWNLINE - r2
TOTAL CATA CHARACTERS DOKNLINE - ‘2041
TOTAL CHARACTER COUNY DCWNLINE - 2301
AVERAGE NUMEER OF CHARACTERS PER SECONC DOWNLINE - 4

Figure 4-4. Example of NPS Statistical Report Number 2

4-3

REPORT 3. RESPONSE TIME '
FREQUENCY' FOR TERMINAL xxxxxxx

The report of response time frequency for a terminal is
optional. It is selected by the R=3 parameter option on
the REPORTR call statement and it produces one report
for a terminal.

The report presents the interval response time frequency
distribution calculation for each script. The format and
content of the report are illustrated in figure 4-5.

REPORT 4. RESPONSE TIME FREQUENCY
FOR TERMINAL xxxxxxx BY CLASS

The report of response time frequency for a terminal by
‘class is optional.
option on the REPORTR call statement.

The report presents the interval response time frequency
distribution calculations for script statement classes. If
this report is selected, each terminal (script) using class
statements results in a generated report. The format and
content of the report are illustrated in figure 4-6.

REPORT 5. RESPONSE TIME FREQUENCY
FOR ALL TRANSACTIONS BY CLASS

The report of response time frequency for all transactions
by class is optional. It is selected by the R=5 parameter
option on the REPORTR call statement. The number of
reports produced is dependent on the defined number of
classes (class of zero included).

The report presents the interval response time frequency
distribution calculations for all classes during the entire
test. The content and format of the report are illustrated
in figure 4-7.

It is selected by the R=4 parameter °

REPORT 6. RESPONSE TIME FREQUENCY
FOR ALL TRANSACTIONS BY ACTIVE
TERMINAL SUBSET

The report of response time frequency for all transactions
by active terminal subset is optional. It is selected by the
R=6 parameter option on the REPORTR call statement.
The number of reports generated depends on the number
of subsets for the stimulator run.

The report presents the interval response time frequency
distribution calculations for each active terminal subset.
The format and content of the report are illustrated in
figure 4-8. s

REPORT 7. SUMMARY OF RESPONSE
TIME FOR ALL TRANSACTIONS

The report of summary response times is optional. It is
selected by the R=7 parameter option on the REPORTR
call statement and it produces one report per terminal.

The report presents the response times for all transactions
for the entire test. The report also generates the average
response times by active terminal subset occurring during
the entire test. The format and content of the report are
illustrated in figure 4-9. .

ERRORS AND TERMINATION

The REPORTR program validates the parameters
specified on the call statement, and terminates if the
parameters or parameter values are illegal. It will also
terminate with an error message if the logfile is empty, or
if the logfile does not contain STIMs zero-time record.
The REPORTR program issues a message to the job
dayfile upon normal completion of the program.

REPORTR - STATISTICAL REFORT GENERATOR
NFS STATISTICAL REFCRT NUMBER 3

RESFONSE TIME FREQUENCY FOR TERMINAL XXXXXXX

TERMINAL ELAFSED TIME
MINIMUM RESFCNSE TIME
TOTAL RESPCNSE TIME =
AVERAGE RESPCNSE TIME
MAXIMUM RESFCNSE TIME
NUMEER CF TRANSACTIONMNS =
STANDARC DEVIATION =

an

INTERVAL FREQUENCY CUMULATIVE
SEC NO. FREQUENCY
0-2 12 12
2-5 1 13
5-1¢0 1 14
10-1°% 1 1€
15-2¢C 3 18
20-3C] 1leg
30-40 0 18
40-5¢ 0 18

50-=-- 0 18

484
0.50
a7
4,88
15.78
18
5.56
PERCENT CUMULATIVE
FREQUENCY % FREGUENCY
£6.66 6€.66
5,55 72.22
5.55 77.77
5,55 83.33
16.66 9g,¢9
0.00 96.99
0.09 99.99
0.00 99.99
0.00 99,99

Figure 4-5. Example of NPS Statistical Report Number 3

4-4

60480500 D

REFCRTR ~ STATISTICAL REFORT GENFRATOR

NFS STATISTICAL REPORT NUMBER &

RESFCNSE TIME FREQUENCY FOR TERMINAL XXXXXXX

BY CLASS
CLASS = i
TERMINAL ELAFSED TIME = L8k
MINIMUM RESFCNSE TIME = 0.50
TOTAL RESPCNSE TIME = 87
AVERAGE RESFONSE TIME = 4.88
MAXIMUM RESFCNSE TIME = 15,78
NUMEER CF TRANSACTIOMNS = 18
STANDARC DEVIATION = : 5.656
INTERVAL FREQUFNCY CUMULATIVE PERCENT CUMULATIVE
SEC NO. FREQUENCY FREQUENCY % FREGUENCY
t-2 12 12 €6.66 6€ .66
2-% 1 13 5.55 72.22
5-10 1 14 5.55 77.77
10-1°% 1 it 5.55 82.33
15-20 3 1¢e 16.66 99,¢9
26-3¢C ¢ 1e 0.00 9¢,.99
30-40 0 18 6,00 9¢%,499
fQ-=- 0 18 0.00 9¢c.99
Figure 4-6. Example of NPS Statistical Report Number 4
REFORTF = SYATISTICAL REFORY GENERATOR
NPS STATISTICAL REFORT NUMBER 5
RESPCONSE TIME FREQUENCY FOR ALL TRANSACTIONS
. BY CLASS
CLASS = 0
TOTAL ELAPSEC TIME = 498
MINIMUM RESFCNSE TIME = 0.50
TOTAL RESPCNSE TIME = er
AVERAGE RESFCNSE TIMF = 4,88
VAXIMUM RESPCNSE TIME = 15.78
NUMBER CF TRANSACTIOMNS = 18
STANDARC DEVIATION = 5.56
INTERVAL FREGUENCY . CUMULATIVE PERCENT "CUMLLATIVE
SEC NC. FREQUENCY FREQUENCY % FREGUENCY
-2 12 12 £6.66 6€E.€6
2-5 1 12 5.55 72.22
S=-10 1 14 5.55 77.77
10-1% 1 1¢ 5.55 - 83,33
15-2¢ 3 18 16.66 9¢,e9
20-3C 0 18 0.00 9¢,q9
30-4C 0 1e 0,00 99.99
40-50 0 18 0.00 9¢,.99
50--~ 0 18 0.00 g¢,.c9

60480560 D

Figure

4-7. Example of NPS Statistical Report Number 5

4-5

REPORTK - STATISTICAL REFORT GENERATOR _
NFPS VSTATISTICM. REPORT NUMBER 6

RESPONSE TIME FREQUENCY FOR ALL TRANSACTIONS
BY ACTIVE TERMINAL SUBSET

ACTIVE TERMINAL SUBSFT = ‘ ' 1
SUBSET ELAFSED TIME = ‘ uel
FINIMUM RESFCNSE TIME = 2.50
TOTAL RESPCNSE TIME = : S 87
BVERAGE RESFCNSE TIMF = 4,88
FAXIMUM RESFONSE TIME = 15,78
NUMBER CF TRANSACTIONS = 18
STANGARC DEVIATION =. - : 5.56
INTERVAL FREQUENCY CUMULATIVE PERCENT CUMULATIVE
SEC NO. FREQUENCY FREQUENCY - % FRECUENCY
0-2 12 1z €6.66 | 66466
2-5 1 12 . 5.55 72.22
5-10 1 14 5.55 77.77
10-15 1 18 5.55 83.33
15"20 3 18 16-66 9 ogq -
20-3¢ o 18 0.00 9c,99
30-40 0 18 0.00 9¢.¢9
46-50 0 1€ 0.00 ° 9¢,eg
50<=- 0 1e 0.00 99.99
Figure 4-8. Example of NPS Statistical Report Number 6
REPORTR = STATISTICAL REFORT GENERATOR
MPS STATISTICAL REFORT NUMBER 7
RESPONSE TIME FOR ALL TRANSACTIONS
NUMBER OF TERMINALS = 1
TOTAL ELAPSEC TIME = ' 498
FINIMUN RESFCNSE TIME = 0.50
TOTAL RESPCNSE TIME = : 87
AVERAGE RESFONSE TIME = 4.88
¥AXIMUM RESFCNSE TIME = 15,78
NUMBER CF TRANSACTIONS = 18
STANCARC DEVIATION = ~ 5.56

AVERAGE RESPONSE TIME EY ACTIVE TERMINAL SUBSET

ACTIVE AVERAGE
TERMINAL RESPONSE TIME
SUBSET SEC - MSEC

1 4 882

Figure 4-9. Example of NPS Statistical 'R‘epor‘t Numbér 7

60480500 D

" TERMINAL SCRIPT WRITING : 5

D ..

The script writer must pay special attention to the type of
terminal for which the script is being written. Basic
_differences exist between the three terminal types that
can be simulated using the Network Products Stimulator.
These differences impose certain restrictions on the
manner in which the script should be written, including
the specification of the terminal type in the SCRIPT
directive. Actual script examples appear later in this
section.

MODE4 TERMINAL SCRIPT WRITING

The MODE4 terminal is represented by only one composite
script. This script is used to define and control the
workload for display, card reader, - and line printer
functions for a 200 User Terminal. Because MODE4
terminals allow both batch and interactive operations, it
is important that the desired mode of operation be
specified in the script to synchronize the mode of the
script with the mode of the device currently being
simulated. The mode of the script is explicitly declared
using the mode directive:

INTERACTIVE
=MODE
BATCH

The initial mode of the script is assumed to be interactive.

A combination of LNODE or RNODE, and TERM input
statements is required in the STIM job deck to define the
parameters necessary for MODE4 terminal simulation.
Only one TERM input statement is necessary to define the
console, card reader, and line printer of a MODE4 (200
UT) device. This statement must correspond to the
Network Definition Language LCF TERMINAL statement
of the console. NPS cannot simulate a MODE4 terminal
with the priority flag set on the NDL terminal statement.

ASYNCHRONOUS TERMINAL
SCRIPT WRITING

The asynchronous terminal is represented by one
composite script written to define and control the
workload for all terminal input and output correspondence
with the host system. Asynchronous terminals operate
only in interactive mode; therefore, no mode directive is
necessary in a script to be used solely for this terminal
type. The script remains in interactive mode.

If a MODE directive is encountered in a script declared
ASYNC, a nonfatal error results during script compilation;
-a BSEND or BMESSAGE directive causes a fatal error.
The LNODE, RNODE, and TERM input statements are
required in the STIM job deck to define parameters
necessary for asynchronous terminal simulation.

HASP STATION SCRIPT WRITING

Scripts for HASP (Houston Automatic Spooling Program)
type stations differ from the previous terminal scripts
described. The . workload for a HASP station can be

60480500 B

logically separated into three functional processes: batch
input, batch output, and interactive input/output. The
simulation of these three processes requires three
separate scripts:

1. The console display script defines only the interactive
correspondence to control the HASP station. Batch
input and output is represented by the other scripts.
A TERM input statement must be used to define the
console display and its associated script.

2. Card reader input scripts define the batch input for a
HASP station card reader. Interactive control of
card reader scripts is performed by the associated
interactive console script. The input necessary to
coordinate parameters for the card reader and its
associated script is supplied by the HASPCR input
statement read by STIM,

3. Batch output scripts define the verification process
for output files received from the-host system by the
HASP station and subsequently routed to some output
device. Interactive control of batch output scripts is
performed by the associated interactive console
script. The input necessary to coordinate parameters
for output file processing and the associated script is
supplied by the HASPLP input statement read by
STIM.

JOB AND FILE IDENTIFICATION PROCEDURE

The functional operation of the HASP workstation makes
it difficult for the user to predict when output is
forthcoming, and to what batch device output from the
host system will be routed. For example, any available
line printer can receive an output file for listing.
Furthermore, each output file can ~require unique
verification processing and, therefore, requires
identification.

The . association of a particular output stream to a
connection is under control of the network application
program. The script writer must be aware of the criteria
used by the application so that the script receives the
correct data.

For users of the Remote Batch Facility (RBF), the
association of a particular queue file to a connection can
be controlled by using the forms control code capability.
When the operating system ROUTE control statement and
the RBF SET command are used in combination, RBF
prints a file requiring a particular forms control code only
on a printer with that forms control code assigned.

The user can also assign a single script (sidx parameter) to
all line printers, and then within that script, test and
branch to the section that- contains the appropriate
procedures for the data coming downline. The test on the
data can only be made by comparing its length to a known
line count. The IF MATCH directive cannot be used with
batch data. '

5-1

JOB DECK STRUCTURE

In addition to the LNODE, RNODE, and TERM input
statements, the aforementioned HASPCR and HASPLP

input statements are required in the STIM job deck to

define necessary parameters for HASP station simulation.
Only one TERM input statement is allowed per station.

Two examples of input statements are shown in
figure 5-1. The first set of statements (example 1)
defines the parameters to simulate the console, three card
readers, and three line printers for one HASP station. The
second set of statements (example 2) defines the
parameters to simulate two HASP stations.

Example 1

LNODE(2)

TERM(LN=LINES, TN=CRT,SN=CCC,UN=12345)
HASPCR(ABC,XYZ,DEF)
HASPLP(XXX=ABCD,YYY=EFGH,ZZZ=1JKL)

Example 2

LNODE(4)
TERM(LN=LINE2,TN=CRT,SN=CCC,UN=12345)
HASPCR(ABC,DEF,GHI,JKL,MNO,PQR,STU)
HASPLP(XXX=AAAA,YYY=BBBB,ZZZ=EEEE)
HASPLP(

HASPLP(
“TERM(LN=LINE4,TN=DIS,SN=0DD,UN=123)
HASPCR(AAA,BBB)

HASPLP(PPP=KKKK)

Figure 5-1. HASP Deck Structure Examples

In example 1, the console display, CRT, identified by the
TERM input statement, is to be simulated by script CCC.
Three card reader devices are to be simulated by scripts
ABC, XYZ, and DEF. Three line printer devices (ABCD,
EFGH, and 1JKL) are to be simulated and their output
processed by scripts XXX, YYY, and ZZZ. The station is
connected to local NPU node 2. :

In example 2, the console display, CRT, identified by the
first TERM input statement, is to run script CCC. Seven
card readers identified by the HASPCR input statement
are to be simulated. The HASPLP input statements
identify - the output processing scripts and associated
terminals. The second TERM input statement identifies a
second HASP station console display, DIS. The remaining

statements identify two card readers and the output

processing script and terminal for this second station.

HASP SCRIPT RESTRICTIONS

The initial and only mode of the console display script is
interactive. The initial and only mode of the card reader
input script and batch output script is batch.

] 52

SCRIPT EXAMPLES

The following script examples were selected to illustrate

- different methods of login and logout procedures and to

highlight certain basic aspects of script writing. The
larger COBOL and BASIC programs which were contained
within the scripts have been removed to conserve space.
These scripts should function successfully - with the
insertion of any comparable program.

As shown, scripts can be created by including all of the
script messages individually in the script where needed, or
grouped together at.one point in the script, or called from
another source.

All scripts must be compiled by the SCRIPT compiler
before submitting them to STIM. The errors flagged by
the SCRIPT compiler must be corrected before STIM can
be executed.

User-written scripts can be compiled by supplying a
minimal number of job statements as illustrated below:

TEST,T777.

USER(username)

SCRIPT.

7/8/9 (multipunched in column 1)

User-written script here

7/8/9 (multipunched in column 1)
6/7/8/9 (multipunched in column 1)

Note the use of the <H end-of-line character in the
IMESSAGEs and the ISENDs to simulate the end of that
line. The <H is equivalent to pressing the SEND key at a
terminal. When an <H or <! appears in the text to signify
carriage return or line feed, nothing else on that physical
line is considered part of the text. For example, if the
line ABC<HDEF<H follows an =ISEND, only ABC will be
sent upline as an MSG block. If the line ABC<IDEFsH
follows an =ISEND, only ABC will be sent upline as a BLK
block.

MODE4 SCRIPT EXAMPLE

The following MODES4 script, shown in figure 5-2, tests
the RBF file printing capability for one or more files. The
first downline message expected is the FAMILY: prompt.
The =IF MATCH directive is used to ensure that the
FAMILY prompt is. received before sending the login
procedure upline. If the first downline message is not the
FAMILY prompt, an error in login is logged, and the script
is exited. ‘

When the FAMILY prompt is encountered, the SIGNON
message furnishes the abbreviated login procedure. Two
wait directives ensure that the prompt responses in the
SIGNON message are acknowledged before proceeding.
The PURALL message clears the queues of any data which
might not have been purged by a previous user.

The GOCR message turns on the card reader; the
following wait message directive ensures that the card
reader is actually on before proceeding. The R message
can be used to disable the normal wait following a GOCR
(20 seconds) because the message has been received
acknowledging that the card reader is ready.

60480500 D

=SCRIPT RAE MODE4
=COMMENT ## RAE TESTS FILE PRINTING
=COMMENT ## CAPABILITY OF ONE
=COMMENT ## OR MORE FILES
=COMMENT # CASE 1=0ONE FILE PRINTING
=COMMENT # CASE 2=MULTIPLE FILE PRINTING
=COMMENT # UNIT-LOGON ~e=ceccccrccoccca=a
=L0G LOGIN REQUEST ISSUED
=IF MATCH LINE JUMP TO LOGINOO
FAMILY
=LOG_ERROR IN LOGIN
=EXIT
=L ABEL LOGINOO
=]SEND SIGNON
=WAIT
=WAIT
=LABEL LOGINO& .
=L0G END LOGON PROCEDURE
=ISEND PURALL
=WAIT
=WAIT ‘
=COMMENT # END OF UNIT=LOGON ==cw=ceceas
=ISEND GOCR
=WAIT MSG
=]ISEND R
=MODE BATCH
=COMMENT # CASE 1=#GO LP# WITH ONE FILE
=BSEND OR8BF10
=MCDE INTERACTIVE

=ISEND GoLP
=WAIT MSG

=ISEND R
=MODE BATCH

=WAIT MSG

=# VERIFY THAT DRBF10 OUTPUT IS PRINTED
=L06 END CASE 1

=# CASE 2=GO LP WITH MULTIPLE PRINT FILES
=MODE INTERACTIVE

=ISEND GOCR
SWAIT MSG

=ISEND R
=MODE BATCH

=BSEND DRBF10A

=LABEL ENTRYO03

=WAIT MSG

=REPEAT ENTRYO03 2 TIMES

=COMMENT: VERIFY THAT 3 FILES ARE PRINTED
=L0G SCRIPT ENDS RAE

=COMMENT # UNIT<LOGOFF ~ecaceccccrmccenaa
=MODE INTERACTIVE

=ISEND END

=IF MATCH WITH RBFEND JUMP TO ENTRY10
=L06G RBF END PROCEDURE BAD

=EXIT

| =LABEL ENTRYIlO

=IF MATChH WITh APPDESI JUMP TO LOGOFF2
=L0G ERROR IN END PROCEDURE BAD

=EXIT

=IMESSAGE SIGNON

sNPIE2744 9RBF <H -

=IMESSAGE PURALL

PURGE ALLSH

=IMESSAGE GOCR

GO CRS<H

=IMESSAGE LOGOUT

LOGOUT<H

=IMESSAGE R

R<H

=CMESSAGE RBFEND

RBF ENDED

=CMESSAGE RESTART

TO RESTART

=IMESSAGE END

ENDSH

=IMESSAGE GOLP

GO LPsh

=CMESSAGE APPDESI

APPLICATION :

=LABEL LOGOFF2

=ISEND LOGOUT

=LABEL XXLOGO

=IF MATCH WITH RESTART JUMP TO ENTEXIT
=REPEAT XXLOGO S TIMES

=L0G ERROR IN LOGOUT PROCEDURE
=EXIT

=LABEL ENTEXIT

=EXIT

=COMMENT # END OF UNIT-LOGOUT ====ccece-
=BMESSAGE DRBF10

USER SUPPLIED COBOL PRINT TEST
=BMESSAGE DRBF10A

} USER SUPPLIED CoBOL PRINT TEST

=ENDSCRIPT

Figure 5-2. MODE4 Script Example (Sheet 1 of 2)

60480500 D

Figure 5-2. MODE4 Script Example (Sheet 2 of 2)

The MODE BATCH directive is necessary because a later
=WAIT MSG in batch mode will cause execution to wait
until batch output from I;he upline job is received. If this
MODE BATCH directive is omitted, the script will be out
of synchronization - and no batch message will come
downline to satisfy the =WAIT MSG directive.

The =BSEND messages DRBF10 and DRBF10A furnish the
COBOL programs (omitted) to test the single and multiple
file printing capabilities.

The MODE INTERACTIVE directive returns the script to
interactive mode to turn on the line printer with the
GOLP message, after which the mode is returned to batch
for receiving the output from the COBOL program.

The test process is then repeated using the DRBF10A
program to test multiple file printing. A successful test
ends through the normal sequence of END, LOGOUT,
EXIT messages. The END exits RBF, the LOGOUT exits
NVF, and the EXIT script directive informs STIM that the
scrlpt is finished.

ASYNC SCRIPT EXAMPLES

The first ASYNC script, shown in figure 5-3, illustrates
the use of an Interactive Facility (IAF) subsystem for
running a BASIC program.. The BASIC program can be any
program -the user chooses. Much of the program included
in this example has been omitted to conserve space. Each
IAF. statement and each BASIC statement is preceded by
an =ISEND directive and followed by a =WAIT MSG
directive except when no response is expected. Each
interactive message is sent upline and a downline response
is usually awaited to acknowledge the message.

=SCRIPT+3369ASYNC

=COMMENT = SCRIPT USES IAF
=COMMENT = FOR BASIC PROGRAM
=LOGGING IS ON

=L0G LOGIN IN PROGRESS

=1F MATCH LINE JUMP TO STPO2
FAMILY:S

=L0G LOGIN FAILED

=EXIT

=LABEL STPO2

=ISEND

IAFFAMSH

=WAIT MSG

=ISEND

USER+PSWDSH

=SWAIT MSG

=1SEND

IAF <H

=WAIT MSG

=1SEND

CHARGE (XXXX 9 XXXXXX) <H
=WAIT MSG

=ISEND

BASICshH

=WAIT MSG

=ISEND

OLDs 10ASH

=WAIT MSG

=ISEND

REWINDy IDASH

=WAIT MSG

=ISEND

RNR<SH

=WAIT MSG

=ISEND

LIS+2240%<H

=wAIT MSG

=ISEND

2260 GO TO 1040

=% NO =WAIT MSG IS NEEDED HERE AS
=% NO RESPONSE IS EXPECTED

=ISEND

REWINDs IDAS<H

=WAIT MSG

=ISEND

RNH<SH

=WAIT MSG

RUNNING OF BASIC PROGRAM CONTINUES HERE

=ISEND
DAYFILESH

=WAIT MSG

=TISENV

BYE<H

=wAIT MSG

=L06 LOGOUT IN PROGRESS
=EXIT

=ENDSCRIPT

The application is selected by the IAF message. The
subsequent CHARGE message supplies the necessary
accounting information required by the installation. Then,
the subsystem BASIC is selected by the next IAF message.

Following the BASIC program and the DAYFILE message,
BYE is entered to exit IAF, before EXIT causes STIM to
terminate this script.

The second ASYNC script, shown in figure 5-4, illustrafes
a very simple script.

=SCRIPTSEX9ASYNC
=WAIT MSG .

=wAIT GLOBAL MSG
=ISEND ,
sRACO133+9TVFSH
1<H .
LINE1 7O LOOPBACK<SH
LINE2 TO LOOPBACKSH
ENDL SH

 END<H

BYESH

=EXIT

=ENDSCRIPT

Figure 5-3. ASYNC Script Example 1

The first downline message expected is the FAMILY:
prompt. If the first downline message is not the FAMILY
prompt, an error in login is logged, and the script is
exited. When the FAMILY prompt is received, the family
name prompt response IAFFAM is sent .upline. The
remaining login prompts are satisfied with the message
supplying the username and password. .

| A

Figure 5-4. ASYNC Script Example 2

The Terminal Verification Facility, TVF, provides a
loopback test to echo back the text provided. The test is
specified by the number 1.

The =WAIT MSG causes STIM to wait for a downline MSG
block, which should include the FAMILY: prompt. The
=WAIT GLOBAL MSG sets up the global wait procedure.
Each time a block is sent upline to the application, STIM
will wait for an MSG block response before continuing
script execution.

In this example, when the FAMILY: prompt is received,
the abbreviated login response is sent upline. When the
message is received acknowledging the login, the message
1 is sent to select the loopback test. When the MSG block
response is received, the text LINEl TO LOOPBACK,
LINE2 TO LOOPBACK is echoed back to.the terminal.

The ENDL exits the loopback test, END exits TVF, BYE
exits NVF, and =EXIT causes STIM to terminate this script.

The third ASYNC script example, shown in figure 5-5,
illustrates a more complex abbreviated login procedure
and uses the LE (less than or equal) line count verification.

When the message 178/ (the first four characters of the
banner) is received downline, the login procedure can
begin. If 178/ is not received, the script is exited after
logging that an error exists.

60480500 D

=SCRIPT PAh ASYNC

=# YSES ABBREVIATED LOGIN AND L INE COUNT
=# VERIFICATION

=# CASE 1: ABBREVIATED LOGIN USING
=# MESSAGE STATEMENT ‘
=IF MAYCh WITH FAMN. JUMP TO RESP
=L06G ERROR IN LOGON FAMILY

=EXIT

= ABEL RESP

=ISEND LOGIN LOC

=LABEL LOG

=IF MATCh WITH TAPPLN JUMP TO LOGEND
=.0G ERROR IN LOGIN

=COMMENT = TRY LOGIN AGAIN
- =WAIT MSG

=[SEND LOGMSG

=60 TO LOG

=LABEL LOGEND

=LOG CASE '1 COMPLETED

=% CASE 2t LINE COUNT VERIFICATION - LE
=IF MATCH WITH ENTCOM JUMP TO LINES
=L0G tERROR IN INITIALIZATION
SEXIT :

=L ABEL LINES

=ISEND TSTO3

=WAIT MSG

=1F LINES LE 12 JUMP TO LOOPED

=L 06 LINES MORE THAN REQUIRED
=EXIT

=L ABEL LOOPED

=L0G CASE 2 COMPLETED

=WAIT MSG

=If MATCH WITH TOEND JUMP TO 0OUT4
=L0G #T0 END# NOT FOUND

=EXIT

=L ABEL OUT4

=ISEND END®

=WAIT MSG

=IF MATCH WITH ENTCOM JUMP TO OUT1
=L0G ERROR END PROCEDURE]l =
=.ABEL OUTI i

=1SEND

TESTO04 <k

=L0G TESTO4 SENT

=WAIT MSG

=[SENU

BYE<H

=WAIT MSG

=EXIT

=CMESSAGE FAMN

178/

=IMESSAGE LOG

s222222299 TAPPLY <H

=CMESSAGE TAPPLN

™

=IMESSAGE LOGMSG
oNPIE2T4+9TAPPLY <H
=CMESSAGE ENTCOM
ENTER COMMAND
=IMESSAGE TSTO03
N403 <K

=IMESSAGE .END#
END <n
=CMESSAGE TOEND
##ENTER #END TO END- TEST
=ENDSCRIPT

- Figure 5-5. ASYNC Script Example 3

60480500 D

If the first four characters 178/ are received, the
abbreviated login procedure is supplied by the message
LOG. The seven # characters are replaced with the user
name from the TERM statemient before the message is
sent upline. The first response to this login procedure is

expected to start with the characters TM which, in this
example, identify the terminal. If the first characters are
not TM, an error is logged and login is attempted using the
alternate abbreviated login procedure defined in message
LOGMSG. The characters TM are again checked for until
they are received, at which point login completes. Each
unsuccessful match attempt causes an error to be logged.

Once login completes successfully, LE is used to check the
application. When the. ENTER -COMMAND downline
prompt is received, the message N403 ‘is sent upline.
When this message is acknowledged (WAIT MSG) the
number of lines in the second message received is checked
to ensure that it is not more than the 12 lines expected.
If more than 12 lines are received, the script is exited

~with an error. If twelve or fewer lines are received, a

termination procedure which approximates a user ending

- the session is shown. TAPPL4 is a test application; N403

is one of the tests contained in TAPPL4 that qenerateq
the 12 lines of text tested for above.

HASP SCRIPT EXAMPLE

The following HASP example, shown in figure 5-6,
illustrates three interdependent scripts.. Script TAl is the
console script which defines the interactive
correspondence of the HASP station, script TA2 is a card
reader input script, and script TA3 is a line prlnter batch
output script. Script TAl executes until an event wait
causes it to suspend execution; TAl then waits until that
event is turned on in another script.’

Only script TAl need log in because it simulates the
console device of the HASP terminal. The first downline
message expected is the FAMILY: prompt. If this prompt
is not received, the script exits and an error message is
logged. The FAMILY prompt response supplies the user
name and the application name RBF in the abbreviated
login format. The following two wait message directives
ensure that login is successful before continuing to the

purge statement which clears the queues of any data

which might have been left in the queues by a previous
user.

The line printer forms code is supplied so that output with
a forms code of FF will be printed on line printer LPI1.
Then the card reader is turned on, At this point, the
event LOGDIN is turned on, and execution of script TA2
can proceed. TA2 sends one batch: job upline. The
ROUTE statement causes. the output from that job to be

- printed only at a line printer having the forms code FF.

Script TAl waits for event CRIRDY, which signals the
end of the card reader script TA2. The interactive
message GO LP1 turns on the line printer; however, the
line printer script TA3 is waiting for event LP1GO to be
turned on which is done by the next directive in script
TAl. Output from the job sent upline by script TAZ is
printed until at least 30 lines have been printed, at which
point it waits for the rest of the mesage, sets LP1RDY on,
and exits. Then script TAl enters its termination
sequence by sending END to exit from RBF, BYE to exit
from NVF, and EXIT to inform STIM that the HASP. script

. is completed.

=SCRIPT,TA14HASP
=LOGGING IS ON

ZIF MATCH LINE JUMP TO STP0002
FAMILY:S

=L0G LOGIN FAILED

=EXIT

=LABEL STP0002

=ISEND

+RAC0001 s yRBF <H

=WAIT MSG

=WAIT MSG

=ISEND

PURGE ALLSH

=WAIT MSG

=1SEND

SET LP1 FMS=FF<H
=WAIT MSG

=]1SEND

GO CR1ghH

=WAIT MSG ,
=L0G tVENT LOGDIN IS ON
=EVENT ON LOGDIN
=EVENT WAIT CRIRDY
=ISEND

GO LP1<H

=wAIT MSG

=L06G LP1GO EVENT ON
=EVENT ON LP1GO
=EVENT wAIT LPIRDY
=ISEND

END SH

=WAIT MSG

=WAIT MSG

=ISEND

‘BYE<H

=WALT MSG

=L0G LOGGING OFF NOW
=EXIT

=ENDSCRIPT

=SCRIPT+TA25HASP
=EVENT WAIT LOGCIN

=BSEND

JOB ,

USER(RJP0030)

BANNER. 03A

ROUTE (QUTPUT s DEF 9 DC=PRsFC=FF)
COPYs INPUT+OUTPUT.,

=EOR

LINE]

LINE2

LINE3

=E01

=L0G CARD READER SCRIPT COMPLETE
=EVENT ON CR1RDY

=EXIT

=ENDSCRIPT

=SCRIPT+TA3,HASP

=EVENT WAIT LP1GO

=MODE BATCH

=IF LINES GE 30 JUMP TO STLOG
=L0G LINES NOT ENOUGH

SEXIT
=L ABEL STLOG
=WAIT MSG

=L0G LINE PRINTER SCRIPT COMPLETE

=EVENT ON LP1RDY
=EXIT
=ENDSCRIPT

5-6

Figure 5-6. HASP Script Example

60480500 A

STANDARD CHARACTER SETS

STANDARD CHARACTER SET

All message data prepared for input to NPS is represented
using the CDC 64-character set which is one of the four
character sets represented in table A-1; but, in order to
represent and keypunch NPS declared messages using the
full. ASCIl 12B-character _set, two of the CDC
64-character set characters are designated as escape
characters., The two escape characters are the < and the
= (internal 6-bit codes 74g and 76g). Thus, twa CDC
64-character set characters are required to represent the
two characters .designated as escape characters and

represent all those characters beyond the range of the .

standard CDC 64-character set. The character set that
should be used to prepare message data for use by NPS is
shown in table A-2. -

The octal ASCIi code in table -A-1 and table A-2 is‘shown
with no parity.)

50480500 D

ASCII 128-CHARACTER SET

The character set employed by NPS is not the same as the
standard CDC 64-character set. Table A-3 contains the
complete ‘ASCII character set supported by the Network
Access Method. The standard Network Operating System
96-character subset - consists of the rightmost six
columns.. Binary designations are shown in table A-3 so
that conversion of the leftmost .two columns and
rightmost two columns to octal or hexadecimal can be’
made; no octal display code equivalents appear for the
characters of these four columns in the preceding

* conversion tables.

During output operations. to a terminal that does not.
support the full 128- or 96-character sets,. conversion
from the 96-character set to the 64-character set is
accomplished by folding column 6 into column 4 ‘and
column 7 into column 5. Converting the 128-character set
leaves extra characters. The MODE4 and HASP terminal
classes 9 through 15 replace the extra characters with
blanks, while terminal classes 1 through 8 replace the

extra characters with NULLs.

TABLE A-1. STANDARD CHARACTER SET

cbC ASCII
" Display : Hollerith External .

Code Graphic Punch BCD Sraphio o (m‘:,

{octal) (026) Code
oot : (colon} Tt 82 00 : (colon) TT 82 072
o1 A 12-1 61 A 12-1 101
02 8 122 62) 12-2 102
03 c 123 63 c 123 103
04 D 12-4 64 D 124 104
05 E 125 65 E 125 105
06 F 12:6 66 F 126 106
07 G 12-7 67 G 12:7 107
10 H 128 70 H 128 110
1 1 129 71 I 129 m
12 J 11-1 4 J -1 112
13 K 12 42 K 112 113
14 L 113 43 L 113 114
15 M 11-4 44] 114 115 .
16 N 115 45 N 15 116
17 o 11-6 46 0 116 117
20 P 17 47 P 117 120
21 Q 18 50 Q 118 121
22 R 119 61 R 19 122
23 S 02 22 s 02 123
24 T 03 23 T 03 124

. 25 v 04 24 u 04 125

- 26 v 05 25 v 05 126
27 w 06 26 w 06 127
30 X 07 27 X 07 130
31 Y o8 30 Y 08 131
32 2 09 31 z 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 .3 063
37 4 4 04 4 4 - 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11 9 9 071
45 + 12 60 + 1286 053
46 : 1 40 " n 055
47 11-8-4 54 11-8-4 052
50 / 01 21 / 01 057
51 (084 34 (1285 050
52) 1284 74) 1185 051
53 $ 1183 53 $ 1183 044
54 = 83 13 = 86 075
55 blank no punch 20 blank no punch 040
56 , (comma) 083 33 , {comma) 0-8-3 054
57 . (period) 128-3 73 . {period) 12-8-3 056
60 = 08-6 36 # 83 043
61 [‘87 S17 C 12-8-2 133
62 1. - 082 32 3 11-8-2 135
63 %11 86 16 %11 084 045
64 - 84. 14 " (quote) - 87 042
65 re 085 35 _lunderline) 08-5 137
66 v 110 or 1182111 52 1 1287 or 11:0' 11 041
67 A 087 37 & 12 046
70 t 1185 55 ' (apostrophe) 85 047
7 } 1186 ‘56 ? 087 .. 077
72 < 12:0 or 1282111 72 < 1284 or 1207 074
73 > 1187 57 > 086 076
74 - < 85 15 @ 84 100
75 2 1285 75 \ 082 134
76 | 1286 76 ~ (circumflex) 1187 136
77 ; {semicalon). 1287 77 ; {semicolon) 11-8-6 073

,fTwere zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than
+ Ttwo colons,
In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon {8-2 punch).
yield a blank (55,
The alternate Hol

).
?erith (026) and ASCII (029) punches are accepted for input only.

The % graphic and related card codes do not exist and translations

60480500 A

TABLE A-2. NPS CHARACTER SET

ASCII

Code

Standard Print

Display Code

ASCII Code

Standard Print

Display Code

Character
| ————————

Code Octal

Character

ot TN X E < chemtS R FTOONOONMPWNRFRONKKXE<<CANTO VOZXMrRUMIMOTIMOO DOI

DEL
NUL
SOH
STX
ETX
EOT
ENQ

60480500 D

072
101
102
103
104
105
106
107 -
110
111
112
113
114
115
. 116
117
120
121
122
123
124
125
126
127
130 -
131
132
060
061
062
063
064
065
066
067
070
071
053
055
052
057
050
164
165
166
167
170
171
172
173
174
175
176
177
000
001
002
003
004
005

Internal Code
6/12-Bit Octal

00
01
02
03

05
06

10
11
12
13
14
15
16
17
20
21
22.
23
24
25

27
30
31
32
33

- 35
36

40
41
4?2
43
44

45
46
47
50
51
7624
7625
7626
7627
7630
7631
7632
7633
7634
7635
7636
7637
7640
7641
7642
7643
7644
7645

Character

w
-l
~—

ZAIR "N e 0 o~ | O —

DDAV D ~@ee—)

N 3T QT O mR"C=aTO ~HhD A O T » we

oo
QT
=3 [T

DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SuB
ESC
FS
GS
RS
us
NULL

Code Octal

051
044
075
040
054
056
043
133
135
045
042
137
041
046
047 -
077
074
076
100
134
136
073
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

100

Character

v o~ O~
n :
o
-

1 HR=TY .

@ >

JIJ1110 110101010 hviayAe=s><

Z2R2MrROU~AITOTMMOOO I e

-0

Internal Code
6/12-Bit Octal

52
53
54
55

TABLE A-2. NPS CHARACTER SET (Contd)

ASCII Code ‘ ASCII Code
Display Code Display Code
Standard Print Standard Print
Character | Code Octal | Character é?}gfgﬂ ggggl Character | Code Octal | Character é;}gfgﬂ gggg]
—_"————
ACK 006 S 7646 A 136 <B 740271
BEL 007 vk 7647 NULL -—- <C 7403
BS 010 =V 7650 NULL -— <D 7404
HT 011 = (7651 NULL — <E 7405
LF 012 -) 7652 NULL —— <F 7406
VT 013 -3 7653 NULL —— <6 7407
FF 014 , —= 7654 --- - <H 781011t
CR 015 - (SP) 7655 - _— <1 74111ttt
SO 016 -, 7656 -— -—- <d 7412
SI 017 -. | 7657

TThe double character < A represents the display character < (@ in ASCII).
HThe double character < B represents the display character — (A in ASCII).
ti1he double chgracter <H represehts the end of]ogical Tine character used by NPS.}
’ fT”The double character < I represents the end of physical line character used by NPS.
1t The double character £ J represents the cancel character used by NPS.

Note: This character set is represented with no parity. The IVT terminal command PA is not
supported by NPS.

| L . 60480500 D

TABLE A-3. FULL ASCII CHARACTER SET

128-Character Set — o

oo 96-Character Subset = ———————

~«— 64-Character Subset ~e—m

by - 0 0 0 0 1 1 1 1
bg - 0 0 1 1 0 0 1 1
bg - 0 1 0 1 0 1 0 1
B1.) ; COLUMN
ts] Py B3 By by | poy ' 0 N 3 4 5 6 7
¥) 4 ¥ +
0 0 0 0 0 NUL DLE Sp 0 @ P ' p
0 0 0 1 1 SOH | DC1 ! 1 A Q a q
0 0 1 0 2 STX DC2 u 2 - B R b r
0 0 1 1 3 ETX | DC3 # 3 c S c s
0 1 0 0 4 EOT DC4 $ -4 D T d t
0 1 ‘0 1 5 ENQ | NAK % 5 E T u
0 1 1 0 6 ACK SYN & 6 F) f v
0 1 1 1 7 BEL ETB ! 7 G W g w
1 0 0 0 8 BS CAN (8 H X h X
1 0 o0 1] HT EM) 9 I Y i y
1 0 1 0 A LF SuB * J z J z
1 0 1 1 B vT ESC + : K [k {
1.1 0 o0 c FoyFs |, < L \ 1 N
1 1 o0 1 D &R | 6s _ = M] m |
1 1 1 0 £ SO RS . - > N - n ~
1 1 1 1 F st | us / ? 0 — 0 DEL
On output to a terminal that does not support a full 128-character set, the 95- to
64-character set conversion is accomplished by folding column 7 into column 5. Folding
the 128- to 95-character subset consists of replacing the excess characters with blanks.
- The character represented by the hexadecimal digits xy is found at the intersection of
column x and row y. . :

60480500 A ' A-5

DIAGNOSTIC MESSAGES ; S

D -~]

Messages that the user might encounter are listed Significance This column briefly describes the
alphabetically in table B-1. Entries in which the first problem and defines variables in the
characters might change depending on the parameters of message. .
the job in progress are listed near the end. Entries
beginning with numbers follow the alphabetic listing.
The format of the diagnostic messages consists of four Action This column states the action required
columns listing the following informations and how to perform it.
Message The message is capitalized with all

variables indicated = in - lowercase v

letters. Informative ~ messages and Issued By This column states the routine which

diagnostics are included.

generates the given message.

TABLE B-1. DIAGNOSTIC MESSAGES

Message Significance Action Issued By
AUTHORIZE NPS xx, xx, xi, XX This message flashes the EST Job may be continued or SIP
) ordinals selected for the rolled out for later use.

simulation.
BAD LCF/TERM RECORD LCF terminal records not found Verify LCF, correct problem STIM
POSITION for subsequent configuration of | and rerun. :

HASP terminals.
BAD OR MISSING NUMERIC Fatal error. Correct error and rerun. SCRIPT
FIELD
BAD SCRIPT LIBRARY FILE SCRIPT tibrary file does not | Correct problem and rerun. STIM

. contain EOF.

BADLY NESTED REPEAT Fatal error. Correctﬁerrok and rerun. SCRIPT
BATCH COMMAND ILLEGAL Fatal error. Correct error and rerun. SCRIPT
IN ASYNC SCRIPT v
CLASS NUMBER NOT WITHIN Fatal error. Correct error and rerun. SCRIPT
LEGAL RANGE
CONFLICTING FORMS OF IS The two different forms of IS Correct problem and rerun. STIM
CARD DETECTED input statement have been

detected in the same NPS run.
CONTROL CARD ERRORS - Self-explanatory Correct errors and retry. SCRIPT
RUN ABORTED o)
CONTROL TRANSFERRED INTO Fatal error. n represents Correct error and rerun . | SCRIPT
REPEAT LOOP n Tevel of nesting. .
COUNTER NAME MUST BE Fatal error. Correct error and rerun. SCRIPT
LQ 7 CHARS
DUPLICATE LABEL NAME Fatal error. Correct error and rerun. SCRIPT
DUPLICATE MESSAGE NAME Fatal error. Correct error and rerun. SCRIPT
DUPLICATE SCRIPT NAME Fatal error. Correct error and rerun. SCRIPT
=CHARACTER MISSING =character missing on input Correct error and rerun. STIM

: statement. : i

60480500 D

B-1

TABLE B-1. DIAGNOSTIC MESSAGES (Contd)

TERMINAL xxxxxxx

the user that the specific
terminal is stimulating an
infinite output line speed.

Message Significance Action Issued By
EMPTY INPUT FILE The local input file specified Correct problem and rerun. STIM
on STIM call card is empty.
_EMPTY NEWSL The SCRIPT library file speci- Correct problem and rerun. STIM
fied on the STIM call card is '
" empty.
ENDSCRIPT MISSING AT END Fatal error. Correct error and rerun. SCRIPT
OF INPUT
ENDSCRIPT NOT ALLOWED Fatal error. Correct error and rerun. SCRIPT
BEFORE SCRIPT ' :
ERRORS IN BINARY - RUN Error in =SCRIPT directive Correct error and rerun. SCRIPT
ABORTED syntax or conflict between
entries.
ERRORS IN INPUT - RUN Error in =SCRIPT directive key- | Correct error and rerun. SCRIPT
ABORTED word.
EVENT NAME MUST BE LQ 6 Fatal error. Correct error and rerun. SCRIPT
CHARS ;
FILE NOT FOUND, MUST BE Error occurs if no local file Check that file 1fn is a SCRIPT
A LOCAL FILE of the name 1fn is found when Tocal file. :
XSEND FROM 1fn is processed.
FIRST NUM MUST BE LESS Fatal error. Correct error and rerun. SCRIPT
THAN ZND NUM
FL REQUEST EXCEEDS MAX Request exceeds central memory Correct error and retry. STIM
ALLOWED indicated on JOB statement.
STIM run terminated during
initialization.
FL REQUEST IGNORED Request for additional central Call system analyst. STIM
memory during initialization v
is ignored. STIM will termi-
nate condition continues to
exist.
ILLEGAL DEVICE TYPE, DT#0 Controlling terminal for a Correct problem and rerun. STIM
HASP card reader is not a
console; TERM card does not
specify a console.
ILLEGAL FILE NAME Fatal error. Correct error and rerun. SCRIPT
ILLEGAL REASON CODE Fatal error. Correct error and rerun. SCRIPT
ILLEGAL SCRIPT NAME ON Nonfatal error. Ignore or correct later. SCRIPT
LIST , ’
ILLEGAL S1ATEMENT WITHIN - Fatal error. Correct error and rerun. SCRIPT
A SCRIPT
. ILLEGAL TIP TYPE, NOT Console specified for a HASP Correct specification and STIM .
A HASP card reader is not specified rerun.
for a HASP TIP.
INCOMPLETE LCF/TERM. Status of incomplete returned Correct error and retry. STIM
REC READ during reading an LCF terminal ‘
record.
INFINITE LS FOR Informative message to notify None. { STIM.

60480500 D

TABLE B-1. DIAGNOSTIC MESSAGES (Contd)

Message

Significance

Action

Issued By

INPUT FILE EMPTY - RUN
ABORTED

INVALID TERMINAL NAME
LABEL NAME MUST BE LQ 7
CHARS

LCF/TERM NODE MISMATCH

_ LCF/TERMINAL xxxxxxx NOT
~ FOUND ,

LEFT TERMINATOR MISSING
LEVEL OF REPEAT NESTING
MUST BE LE 3 :

LINE FAILED, TERMINAL - .
XXXXXXX

LINE RECOVERED, TERM
XXXXXXX

" LIST STMT WITHIN A SCRIPT
LS FOR TERMINAL XXXXXXX
DIFFERS FROM LCF VALUE

LS FOR TERMINAL xxxxxxx
EXCEEDS AUTO-SPEED MAX

LLT LINKAGE ERROR

MESSAGE NAME MUST BE
LQ 7 CHARS

MESSAGE NOT DEFINED OR
* WRONG TYPE

" MODE STMT IN ASYNC
SCRIPT

' MORE THAN 4 xxxx CARDS

* NESTING NOT CHECKED - ERR
ON PREV. REPEAT

NODE CARD MISSING

NO SYSTEM PRIVILEGES

~ NONFATAL ERRORS IN
SCRIPT RUN :

60480500 D

Self-explanatory.

Simulated HASP terminal name
not found in LCF.

Fatal error.

LCF terminal record NPU node

ID is not same as that on a
LNODE or RNODE input card.

LCF terminal record for ter-

minal XXXXXXX was not f0und.

Left terminator is missing on
.specified input card.

" Fatal error.

Caused by =LFAIL directive.
Self-eXplanatory.

Nonfatal error.

Informative message for non-
auto-speed asynchronous ter-
minals.

Informative message for auto-
speed asynchronous terminals.

LCF/NCF does not indicate a
1ggica1 link for a. simulated
NPU. .

Fatal error.
Fatal error.
Nonfatal error.

Too many LNODE or RNODE
input cards.

Fatal error.

LNODE card is missing in the

“INPUT file.

Application program does not
have required system privi-
Teges. to run simulation
program.

Informative message.

Correct error and retry.
Correct problem and rerun.
Correct error and rerun.

Correct error and retry.

Correct error and retry.
Correct error and retry.

Correct error and rerun.

| Recovery is automatic.

Recovered to point where
input began.

Ignore or. correct later.

None, LS value is honored.

1 None, LS value is -honored.

Correct problem and rerun.

Correct error and rerun.

Correct error and rerun. -

Ignore or correct later.

Correct error and rerun.

Correct error and rerun.
Correct problem and rerun.

Correct problem and rerun.
Job must have system ori-

. gin, which can usually be

satisfied by calling STIM
from DIS.

Ignore or correct later.

SCRIPT

STIM |

SCRIPT

STIM

STIM

- STIM
- SCRIPT

"STIM

STIM

SCRIPT
STIM

-STIM

STIM

SCRIPT

SCRIPT

SCRIPT

STIM
SCRIPT
STIM

SIP

SCRIPT

B-3e

TABLE B-1. DIAGNOSTIC MESSAGES (Contd)

B-4

Message Significance Action Issued By
NUMBER NOT WITHIN LEGAL Fatal error. ‘Correct error and rerun. ~SCRIPT
RANGE
ONLY 6 CTRS ALLOWED PER Fatal error. . Correct error and rerun. SCRIPT
SCRIPT '
OPEN xxx ERROR nn Initial access to NHP file xxx | Correct indicated error nn STIM
unsuccessful. and retry.
PARAMETER SYMBOL Parameter symbol missihg on Correct error and retry. - STIM.
MISSING. specified input card.
PARAMETER VALUE MISSING Parameter value missing on Correct error and retry. STIM
specified input card. :
PASSIVE DEVICE ON TERM A non-interactive device is Correct problem and rerun. STIM
CARD specified on a TERM card.
REPEAT LABEL NOT Fatal error.b Correct error and rerun. SCRIPT
PREVIQUSLY DEFINED '
REPORTR - BAD DM PARAMETER A value other than Y or N None. REPORTR
‘NO. DUMP ASSUMED specified for DM parameter.
N -is assumed.
REPORTR - BAD INPUT FILE A wrong input file is given to Correct problem and retry. REPORTR
- PROGRAM_ ABORTED REPORTR. ;
REPORTR - COMPLETED Successful run, None. REPORTR
REPORTR - CONTROL CARD Unrecognized keyword in con- Correct error and rerun. REPORTR
ERROR, PROGRAM ABORTED trol card. :
REPORTR - DUMP TIME D1 is:less than D2. Correct error and rerun. REPORTR
INTERVAL ERROR, ‘ : :
-PROGRAM ABORTED
REPORTR - EMPTY INPUT Inpdt file not found. Correct problem and retry. REPORTR
FILE, PROGRAM ABORTED :
REPORTR - ILLEGAL) Alphabetic charactér detected Correct problem and retry. REPORTR
NUMBER ON CONTROL CARD in a field where a numeric : :

. value is expected. ‘
REPORTR - INVALID REPORT Report number greater than 7 Correct error and rerun. REPORTR
NUMBER, PROGRAM or less than 1 spec1f1ed on
ABORTED control card.

REPORTR - NO