CONTROL DATA

C

CONTROL DATA®

CYBER 70 COMPUTER SYSTEMS
MODELS 72,73, 74

6000 COMPUTER SYSTEMS

SCOPE SYSTEM PROGRAMMER’S REFERENCE WMANUAL
MODEL 72, 73, 74 VERSION 3.4
6000 VERSION 34

REVISION RECORD

REVISION DESCRIPTION |
A Original printing.
(10-15-71)
B The EDITLIB section has been completely replaced to reflect changes and improvements to SCOPE 3.4
(11-3-72) EDITLIB. Pages affected: Front Matter; 8-1 thru 8-38; Cdmment Sheet.
C Changes and corrections resulting from product development and documentation evaluation.
(5-25-73) This is a complete reprint. Pages affected: 1-7; 2-1, 2-5, 2-11 thru 2-15, 2-17 thru 2-31; 3-1, 34, 3-6,
3-8, 3-11 thru 3-13, 3-16, 3-17, 3-19, 3-20, 3-24 thru 3-27, 3-29 thru 3-32; 4;5, 4.8, 49, 4-14, 4-16
thru 4-16.2, 4-18 thru 4-22, 424 thru 442, 445 thru 448, 4-55 thru 4-63; 5-2, 5-4, 5-6, 5-7, 5-16,
524, 5-27 thru 5-30, 5-32, 5-33; 6-3, 6-5 thru 69, 6-19, 6-20, 6-22, 6-24 thru 6-26, 6;28, 6-32, 6-35;
73, 7-5 thru 7-7, 7-11, 7-13 thru 7-16.1, 7-22 thru 7-26, 7-28; 8-6, 8-11 thru 8-13, 8-17; B-1 thru
B-23, B-25 thru B-3i, B-33 thru B-42; Index-1 thru Index-13, Comment Sheet.
D Updated to reflect SCOPE 3.4.1 release and miscellaneous technical changes. Affected pages: iii thru
(1-15-74) vii; 1-5 thru 1-8; 2-5 thru 2-8, 2-11, 2-12, 2-12.1, 2-13 thru 2-18, 2-23 thru 2-26, 2-29 thru 2-32;
3-17 thru 322, 325 thru 3-30, 3-33, 3-34; 4.5 thru 4-8, 4-13, 4-14, 4-16.1, 4-16.2, 4-17 thru 4-18.2,
4-23 thru 4-26, 4-29 thru 446, 4-49 thru 4-52, 4-57 thru 4-58.1; 5-1 thru 5-2.1, 5-5 thru 5-8, 523,
524, 5-27 thru 5-30, 5-35; all of section 6; 7-3, 74, 79 thru 7-12, 7-15 thru 7-24, 7-27, 7-28; 8-13,
8-14, 8-14.1; add new section 9; all of appendix B; entire index; Comment Sheet.
E Updated to reflect SCOPE 3.4.2 release and technical changes. Includes SCOPE System Tables from Part II of
(5-31-74) the Installation Handbook (Pub. No. 60307400). Affected pages: iv thru vii; 1-2; 2-11 thru 2-27, 2-30, 2-32;

3-8,3-12.1, 3-13, 3-15 thru 3-20, 3-26, 3-34;4-2 thru 4-3.5,4-6,4-7,4-14,4-16.1, 4-16.2, 4-18 thru 4-28,

4-31 thru 4-36, 4-39, 4-44; 5-27 thru 5-36; 6-35, 6-37, 6-46; 7-1 thru 7-5, 7-12 thru 7-16, 7-25, 7-29 thru 7-37;]

8-20, 8-23, 8-28, 8-34, 8-35, 8-37; B-3 thru B-77; entire Part II; entire Index; Comment Sheet.

Publication No.
60306500

REVISION LETTERS I, O, Q AND X ARE NOT USED Address comments concerning

this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
4201 North Lexington Ave.

Arden Hills, Minnesota 55112

1971, 1972, 1973, 1974, 1976, 1979
Control Data Corporation . or use Comment Sheet in the

Printed in the United States of America back of this manual

ii

REVISION RECORD (Cont’d)

REVISION DESCRIPTION
—
F Updated to reflect SCOPE 3.4.3 release, PSR activity, and other technical changes. New features include:
(10-11-74) RING/NORING parameter for tape processing security, RMS No-hand PPU, CMR independent RBT
chains, PP Overlay load restructure, ECS partitioning restrﬁcture, 844 spare drive support, Segmented
CMR for ECS systems, JANUS support of 580 line printers, Support of symmetric.links between CYBER
70/Models 72, 73, 74, 844 shared controller/drive support. Affected pages: iii thru ix; 1-2, 3; 2-4 thru
18; 3-5, 7, 8, 19, 20, 27; 4-1 thru 37; 52.1, 28 thru 36; 6-1 thru 10, 13, 15, 19, 26, 33 thru 41;
7-5 thru 23; 8-28; 10-1 thru 11, B-1, 2; Part II: iii thru v; 1-1 thru 113; 2-1, 2, 6, 8, 20 thru 29;
3-2, 6, 7, 20, 21, 27; 4-1; Index-1 thru 14; Comment Sheet.
G Updated to reflect PSR activity through PSR Summary level 401 and other technical changes. Affected
(5-16-75) pages: vii; 2-2, 2-6, 2-10, 2-17; 3-7 thru 3-26; 4-3, 4-8; 6-24; 7-18; 8-17; Part II: 1-1, 1-7, 1-17 thru 20,
1-24 thry 31, 1-33 thru 35, 1-37, 1-53 thru 55, 1-61, 1-76, 1-87, 1-96, 1.98; 2-1, 2-3; 3-1, 3-7; Index-1,
3, 6,9, 13, 14; Comment Sheet. A
H Updated to reflect SCOPE 3.4.4 release. New features include: Generalized device sets; Shared rotating
(9-26-75) mass storage; System control point; Programmable clipping levels; ECS stack processor; EDITLIB/
INTERCOM; SCOPE/INTERCOM Front End.
J Revised to reflect feature and PSR activity through PSR Summary level 414.
(12-31-75)
K Revised to reflect features and PSR activity through PSR Summary level 430.
(07-16-76)
L Revised to reflect SCOPE 3.4.4 at PSR Summary level 479. This is the last scheduled revision
(03-08-79) to this manual. It will be a regularly stocked item at LDS for a minimum of 12 months after

this release.

Publication No.
60306500 .

ii-afii-b

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in
the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates
pagination rather than content has changed.

Page Revision Page Revision Page Revision

Cover - 2-17 G 3-19 K
Title Page - 2-18 F ‘ 3-20 L
ii L 2-19 L 321 G
ii-a/ii-b L 2-20 L 322 G
ii L 221 K 323 G
iv L 2-22 L 324 L
iv-a L 2-23 K 3-25 L
iv-b L 224 L 3-26 L
v L 2-25 L 327 L
vi L 2-26 L 3-28 L
vii L 2-27 L 329 L
viii L 2-28 L 3-30 L
ix L 2-29 L 4-1 L
1-1 A L 2-30 K 42 F
1-2 F 2-31 L 4-3 H
1-3 L 2-32 L 44 H
14 A 2-33 K 4-5 F
1-5 D 2-34 L 4-6 H
1-6 L 3-1 L 4-7 H
1-7 H 32 K 4-8 G
1-8 D 33 L 49 K
2-1 C 34 C 4-10 K
2-2 G 3-5 F 4-11 K
2-3 A 3-6 L 4-12 L
24 L 3.7 K 4-13 L
2-5 L 3-8 L 4-14 K
2-6 G 39 K 4-15 K
2-7 F 3-10 G 4-16 K
2-8 F 3-11 L 4-16.1 K
29 L 3-12 G 4-16.2 K
2-10 L 3-12.1 E 4-16.3 K
2-11 L 3-13 G 4-16.4 K
2-12 H 3-14 L 4-16.5/4-16.6 K-
2-13 F 3-15 G 4-17 K
2-14 F 3-16 G 4-18 F
2-15 H 3-17 L 4-19 F
2-16 F 3-18 L 4-20 F

60306500 L iii

Page

Revision

421
4.22
423
424
425
426

4-26.1/4-26.2

4-27
4-28
4-29
4-30
431
4-32
4-33
4-34
4-35

5-1/5-2

5-3

54

5-5

56

5-7

5-8

59

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
520
521
522
523
524
5-25
526
5-27
5-28
529
5-30
5-31
5-32

5-32.1/5-32.2

7=:mvwwcwr*:zmmu>>>>:>>or*>>:>>>>>ur-':»or-*r*:mmmmmm:rrrrwwmm

Page

Revision

iv

5-33
5-34
5-35
5-36
5-37
5-38
5-39
540
541
6-1
6-2
6-3
64
6-5
6-6
6-7
6-8
69
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29/6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40

mmmwrmmmmmmccz::o:cc:n-n:m:»r*mm:»m"n*nmr-n-n-nw-n-nmmmmmm:ww

Page

Revision

641
642
6-43
644
645
646
7-1-
7-2
7-3
74
7-5
7-6
7-7
7-8
79
7-10
7-11
7-12
7-13
7-14

7-15/7-16

7-17
7-18
7-19
720
7-21
722
723
8-1
82
83
84
8-5
8-6
8-7
8-8
89
8-10
8-11
8-12
8-13
8-14
8-14.1
8-15
8-16
8-17
8-18
8-19

wwowwumooowwrwrb>>>ﬁmmmmmm:hmwwmxwwuormmrmwwmmmm

60306500 L

Page

Revision

Page Revision Page Revision

8-20 E Divider -
8-21 B II-1-1 L
8-22 - H II-1-2 L
8-23 L II-1-3 L
8-24 B II-14 K
8-25 B II-1-5 K
8-26 B II-1-6 L
827 K II-1-7 L
8-28 F 11-1-8 L
8-29 B I1-1-9 L
8-30 B 1I-1-10 F
8-31 H II-1-11 F
8-32 B I-1-12 F
8-33 B II-1-13 L
8-34 L II-1-14 K
9-1 D II-1-15 H
9-2 D II-1-16 K
93 D II-1-17 G
9-4 D II-1-18 K
10-1 L II-1-19 G
10-2 L II-1-20 L
10-3 L 1I-1-21 F
104 L I1-1-22 F
10-5 L II-1-23 F
10-6 F 1I-1-24 H
10-7 F II-1-25 H
10-8 F II-1-26 L
10-9 F I1-1-27 K
10-10 F I1-1-28 L
10-11 F 11-1-29 L
11-1 L 1I-1-30 L
11.2 L I1-1-31 L
11-3 L 1I-1-32 J
114 L II-1-33 K
11-5 L II-1-34 K
A-1 C II-1-35 K
A2 C II-1-36 H
A3 C 11-1-37 J
A4 C II-1-38 J
A-5 C II-1-39 K
A-6 C 11-1-40 K
A7 C II-141 H
B-1 K I1-142 K
B2 K I1I-143 H
II-144 H

ILi L II-145 J
II-ii L I1-146 L
IL-iii L II-1-47 F

60306500 L

11-1-48
11-1-49
II-1-50
II-1-51
1I-1-52
I1-1-53
11-1-54
II-1-55
1I-1-56
1I-1-57
1I-1-58
1I-1-59
1I-1-60
1I-1-61
11-1-62
1I-1-63
1I-1-64
I-1-65
11-1-66
II-1-67
II-1-68
I1-1-69
11-1-70
II-1-71
1I-1-72
1I-1-73
1I-1-74
1I-1-75
II-1-76
11-1-77
I1-1-78
1I-1-79
11-1-80
I1-1-81
11-1-82
11-1-83
11-1-84
11-1-85/11-1-86
11-1-87/11-1-88
11-1-89
H-190
1I-191
1I-1-92
1I-193
11-1.94
I1-195
I1-1-96
1I-1-97 -

AARRTTITMOIR- Ot RROMRCRRARTICOCONCRCOCRROCOROTRTRRR"TTDooT

iv-a

Page

Revision

11-1-98
I1-1-99
I1-1-100
II-1-101
11-1-102
11-1-103
II-1-104
11-1-105
I1-1-106
11-1-106.1/
II-1-106.2
11-1-107
I1-1-108
1I-1-109
1I-1-110
II-1-111
1I-1-112
I1-1-113
II-1-114
II-1-115
II-1-116
Divider
I1-2-1
I1-2-2
11-2-3
H-24
I1-2-5
I1-2-6
I1-2-7
I1-2-8
11-2-8.1
11-2-8.2
29
II-2-10
I1-2-11
I1-2-12
I1-2-13
I1-2-14
II-2-15
I1-2-16 -
II-2-17
II-2-18
I1-2-19
11-2-20
11-2-21
11-2-22
11-2-23
I1-2-24

CERCTZIDIDE T

mTmEOmEZCORACOIARC

FEEEERRARRRARRRR O E O e

Page

Revision

iv-b

11-2-25 .
I1-2-26
11-2-27
I1-2-28
11-2-29
Divider
I1-3-1
1132
11-3-3
I1-34
I1-3-5
11-3-6
11-3-7
I1-3-8
11-39
11-3-10
I1-3-11
11-3-12
I1-3-13
11-3-14
II-3-15
I1-3-16
11-3-17
11-3-18
11-3-19
11-3-20
11-3-21
11-3-22
I1-3-23
11-3-24
11-3-25
I1-3-26
11-3-27
I1-3-28
I1-3-29
11-3-30
11-3-31
I1-3-32
11-3-33
I1-3-34
I1-3-35
Divider
11-4-1
114-2
114-2.1/114-2.2
114-3
1144
114-5

mErEECT > DN NN I N NI NN IR RN N IR DI NN mmne I meme

Page

Revision

114-6

114-7

114-8
Index-1
Index-2
Index-3
Index4
Index-5
Index-6
Index-7
Comment Sheet
Back Cover

N ol ol ol ol ol ol el ol ol B

60306500 L

PREFACE

This manual describes the SCOPE 3.4.4 Operating System for the cDC® CYBER 70 Models 72, 73, and 74
and CDC 6000 Series computers. It is written for system programmers who perform system evaluation or
program modification;

Part I describes the system interface with the central processor and peripheral processors, files and file tables,
input/output, job processing, permanent file manipulation, and various system utilities. Part II contains system
tables and file formats divided into four general areas: central memory, job control point, disk and files, and
extended core storage. In general, the central memory tables, extended core storage tables, disk tables and file
formats are of interest only to system programmers. The job control point tables are of interest to all users
of the product set. Job control point tables can be used by central processor programs running at any control
point. The tables in part II serve as reference material for those familiar with the system and its product set.
More detailed information is available in the various reference manuals and internal maintenance specifications.

RELATED PUBLICATIONS

The following manuals contain additional information about the SCOPE 3.4 operating system that may be
useful to a systems programmer.

Control Data Publication Publication Number
SCOPE Version 3.4 Installation Handbook 60307400
SCOPE Version 3.4 Reference Manual 60307200
SCOPE Version 3.4 Operator’s Guide 60327300
SCOPE Version 3.4 Diagnostic Handbook 60386400
SCOPE Version 3.4 Enhanced Station Operator’s Reference Manual 60343800
CYBER Common Utilities Reference Manual 60493300
UPDATE Reference Manual 60342500 «
CYBER Record Manager Reference Manual 60307300
CYBER LOADER Reference Manual 60344200

The SCOPE 3.4 Internal Maintenance Specifications are available on listable magnetic tape.
Unless otherwise indicated, bit and byte numbers are given in decimal; word addresses, ficld and table lengths,

and block and page sizes are given in octal. Unless reserved for a specific purpose or group, all currently
unused fields, names, codes, and so on are reserved for future development.

60306500 L v

DISCLAIMER

This product is intended for use only as described in this document. Control Data cannot be responsible for
the proper functioning of undescribed features or parameters.

| + ' 60306500 L

CONTENTS PART |

60306500 L

SCOPE 3.4 INTRODUCTION
Hardware Characteristics
Extended Core Storage
Software Elements
SCOPE Organization
SCOPE System Tape

CENTRAL PROCESSOR AND SCOPE
CM Organization
Control Point Concept
CP-System Communication
CP-PP Communication
Program Recall
Central Memory Resident
Summary of Central Memory Resident Areas
CMR Segmentation for ECS System
Core Layout
Segment Loading
ECS System Image
ECS Error Recovery
System Control Point

- PERIPHERAL PROCESSORS AND SCOPE

Peripheral Processor Organization
PP Communications
PP Resident

Field Access Flag Usage

SCOPE System Monitor
Monitor Functions (CPMTR)
Memory Allocation (PPMTR)

FILES AND FILE TABLES
Files
System Files
Local Files
Permanent Files
Queue Files
ACQUIRE Macro
VERIFY Macro
SCOPE I/0O Tables
File Tables
Device Tables
Tape Drive Scheduling
RMS Set Terminology
Device Sets
RMS Tables

[S O v S g e
1
N

1
~

1
—

oot
w W

ShLhALLL

[
\O

J
N S LN

NNNNNNN;I\)NNI\)NN
O 003 h WwWWw

[
—_—

.
L4k

1
—
[38]

3-16
3

i
N
[\

4-1
4-1
4-1
4-2
4-2
4-3
4-9
4-16.3
4-17
4-17
4-21
4-25
4-27
4-27
4-29

vii

viii

INPUT/OUTPUT
1I/0 Philosophy
CIO
Allocatable Device 1/O
Stack Processor
Stack Request Formats
Dismountable Pack Processing — I/O Detail
ECS-Buffered 1/0

PERMANENT FILES
Permanent File Functions
Macro Requests
Macro Request Calls
CATALOG Function
SAVEPF Function
ATTACH Function
GETPF Function
ALTER Function
RENAME Function
EXTEND Function
PURGE Function
PERM Function
Permanent File Utility Routines
DUMPF
LOADPF
TRANSPF
Auditing Permanent Files
Permanent Files/System Interface
Permanent File Interlocks
Permanent File Tables
Private Device Set Processing
Device Set Creation and Maintenance
Using Device Sets

JOB PROCESSING
Job Flow
Job Input Queue
JANUS
Integrated Scheduler
Job Scheduling
Job Control Area
Job Descriptor Table
Job Scheduling Queues
Job Advancing
Control Card Processing
Job Termination
Normal Termination
Abnormal Termination
Job Post-processing Utilities
Job Control with Logical Identifiers

60306500 L

60306500 L

8

10

11

EDITLIB
Introduction.
System EDITLIB
EDITLIB Files
Control Cards
Directives
Files
System Security
MDI (Move System Directory)
Table Formats
Directory/Library /Program Limits

SYSTEM BULLETIN UTILITY
System Bulletin File (BULLUP Card)
BULLUP Data Cards

Processing Data Cards
Creating a System Bulletin File
Updating a System Bulletin File
Reducing a System Bulletin File
SCOPE/INTERCOM Considerations

LDCMR

Introduction

LDCMR Control Card
LDCMR Files
System Security

LDCMR Interlock
LDC
Reserved Names
Sample Jobs

LDCMR Error Messages
Non-Fatal Messages
Fatal Messages

SYSTEM DYNAMIC DUMP

Interface

Dynamic Dump File

Listing System Dynamic Dump Files
APPENDIXES

STANDARD SCOPE CHARACTER SETS

SCOPE SYMBOL DEFINITION

10-1
10-1
10-1
10-4
10-5
10-5
10-5
10-6
10-6
10-7
10-7
10-9

11-1
11-1
11-1
11-2

B-1

ECS partitioning restructure

844 spare drive support

Segmented CMR for ECS systems

JANUS support of 580 line printers

Support of symmetric links between CYBER 70/Models 72, 73, and 74
844 shared controller/drive support

Support of shared 844 devices in a dual-mainframe system
Implementation of public as well as private device sets

System Control Point

SCOPE/INTERCOM Front End

New features added with this revision to SCOPE 3.4.4 include:
844 factory format support 4
Restructure of the handling of RMS stack requests
Enhancements to job management and system control point capabilities
On-line Maintenance Software
Modification of 881 disk pack reformatting utility
INTERCOM Restart

Enhanced Station performance improvemént

Numeric values given in this document, unless otherwise indicated, are assumed to be as follows:

Bit numbers Decimal
Byte numbers Decimal
Word addresses Octal
Field/table lengths Octal
Block/page sizes Octal

This product is intended for use only as described in this document. CONTROL DATA
cannot be responsible for the proper functioning of undescribed features or undefined
parameters.

60306500 K xi/xii

CONTENTS PART |

60306500 K

SCOPE 3.4 INTRODUCTION
Hardware Characteristics
Extended Core Storage
Software Elements
SCOPE Organization
SCOPE System Tape

CENTRAL PROCESSOR AND SCOPE
CM Organization
Control Point Concept
CP-System Communication
CP-PP Communication
Program Recall
Central Memory Resident
Summary of Central Memory Resident Areas
CMR Segmentation for ECS System
. Core Layout
Segment Loading
ECS System Image
ECS Error Recovery
System Control Point

PERIPHERAL PROCESSORS AND SCOPE
Peripheral Processor Organization

PP Communications

PP-Resident
SCOPE System Monitor

Monitor Functions (CPMTR)

Memory Allocation (PPMTR)

FILES AND FILE TABLES
Files
System Files
Local Files
Permanent Files
Queue Files
ACQUIRE Macro
VERIFY Macro
SCOPE 1/O Tables
File Tables
Device Tables
Tape Drive Scheduling
RMS Set Terminology
Device Sets
RMS Tables

i b e et ped et
| S T)]
\lwu»’o—‘w

NI NN
CLELELEL

1

S T S SN S SN S SIS
LLL b4
SR OW

W W W
ALl

3-5

3-12
3-16
3-22

4-1
4-1
4-1
4=2
4-2
4-3
4-9
4-16.3
4-17
4-17
4-21
4-25
4-27
4-27
4-29

xiii ®

INPUT/OUTPUT
I/0 Philosophy
CIO
Allocatable Device 1/O
Stack Processor
Stack Request Formats
Dismountable Pack Processing — 1/O Detail
ECS-Buffered I/O

PERMANENT FILES
Permanent File Functions
Macro Requests
Macro Request Calls
CATALOG Function
SAVEPF Function
ATTACH Function
GETPF Function
ALTER Function
RENAME Function
EXTEND Function
PURGE Function
PERM Function ,
Permanent File Utility Routines
DUMPF
LOADPF
TRANSPF
Auditing Permanent Files
Permanent Files/System Interface
Permanent File Interlocks
Permanent File Tables
Private Device Set Processing
Device Set Creation and Maintenance
Using Device Sets

JOB PROCESSING
Job Flow
Job Input Queue
JANUS
Integrated Scheduler
Job Scheduling
Job Control Area
Job Descriptor Table
Job Scheduling Queues
Job Advancing
Control Card Processing
Job Termination
Normal Termination
Abnormal Termination
Job Post-processing Utilities
Job Control with Logical Identifiers

60306500 K

60306500 K

8

10

11

EDITLIB
Introduction
System EDITLIB
EDITLIB Files
Control Cards
Directives
Files
System Security
MDI (Move System Directory)
" Table Formats
Directory/Library/Program Limits
EDITLIB Errors

SYSTEM BULLETIN UTILITY
System Bulletin File (BULLUP Card)
BULLUP Data Cards

Processing Data Cards
Creating a System Bulletin File
Updating a System Bulletin File
Reducing a System Bulletin File
SCOPE/INTERCOM Considerations

LDCMR

Introduction

LDCMR Control Card
LDCMR Files
System Security

LDCMR Interlock
LDC
Reserved Names
Sample Jobs

LDCMR Error Messages
Non-Fatal Messages
Fatal Messages

SYSTEM DYNAMIC DUMP

Interface

Dynamic Dump File ‘

Listing System Dynamic Dump Files
APPENDIXES

STANDARD SCOPE CHARACTER SETS

SCOPE SYMBOL DEFINITION

10-1
10-1
10~1
104
10-5
10-5
10-5
10-6
10-6
10-7
10-7
10-9

11-1
11-1
11-1
11-2

Xv

SCOPE 3.4 INTRODUCTION 1

The operating system for CONTROL DATA® CYBER 70/Models 72, 73 and 74, and the 6000 Series computers
provides Supervisory Control of Program Execution (SCOPE). The SCOPE operating system controls the use of
CONTROL DATA CYBER 70/Models 72, 73 and 74, and 6000 Series computer hardware. Therefore, SCOPE is in
control of the computer. SCOPE accepts input in the form of jobs submitted by users and processes them as directed
by control cards accompanying each job as well as by keyboard commands input by the operator.

Efficient processing of user’s jobs is the prime objective of the operating system. This section describes the
inherent hardware characteristics, the basic software elements, and how they work together to accomplish
the prime objective.

HARDWARE CHARACTERISTICS

SCOPE uses peripheral processor units (PP) for system and input/output tasks and a central processor unit
(CPU) to execute user and system jobs. Central memory (CM) contains user programs; system software
areas are located at the upper and lower ends of central memory. An extended core storage (ECS) unit may
be used to contain SCOPE libraries and other items (such as file buffers for RMS and swap files) which
may not be contained in CM or on other mass storage devices.

®

CENTRAL PROCESSOR

The CPU is designed to perform tasks of a computational nature; it has no input/output capability. It
communicates with other system components through the central memory. Under SCOPE, the CPU is used
almost exclusively for program compilations, assemblies, and executions. The CPU makes system requests
through a CPU request register located at the reference address plus one (RA+1) of the current program
in execution.

PERIPHERAL PROCESSORS

The peripheral processors, of which there may be up to 20 (identified as PPO, PP1, . . . PPn) are identi-
cal; they perform many tasks for requesting programs in central memory.

A PP can be assigned to control, input/output, job scheduling, control card interpreting, system housekeep-
ing and other tasks as required. Tasks are assigned one at a time to each PP by the system monitor (MTR).
When an assigned task is completed, the PP signals the system. MTR waits for this signal before assigning
another task to the PP. :

Each PP is assigned a block of eight words in the system area of central memory through which communi-
cations with the system are conducted. Each block contains an input register, an output register, and a
message buffer. Peripheral processors are discussed in section 3.

| 60306500A S SR) 1-1

CENTRAL MEMORY

Central memory words are 60 bits long; each has five 12-bit PP memory words. called bytes. Each 12-bit
byte in a CM word is numbered 0 through 4. from left to right:

59 4847 3635 24 23 121 0

byte 0 byte 1 " byte 2 byte 3 ‘ byte 4

One or more user programs may be in some state of execution concurrently under SCOPE. These programs
are stored in central memory in an assigned user area; a set of system components necessary for the
operation of the system is also stored in.central memory, forming the central memory resident (CMR) and
the record block table (RBT) areas. Central memory is accessible by all PPU’s and CPU’s and forms the
communications link between all processor units in the computer system.

Central memory resident (CMR) contains system communications areas, system tables, CPU resident rou-

tines, the library directory, and information about each job currently in execution. The CMR is discussed in
section 2 of this manual; the RBT is discussed in section 4.

EXTENDED CORE STORAGE
FEATURES

Under SCOPE 3.4, Extended Core Storage (ECS) is divided into three areas: the System Area, the Dynamic
Area, and the Direct Access area. They function as follows:

System Area Contains system pointers and tables required by ECS software

Dynamic Area Paged area; contains buffers, library programs, swap files and other files
assigned to ECS

Direct Access Area Assigned to user as result of job card request; used and nianaged by

requestor. Also contains the ECS segment library in ECS control point
zero field length.

Such division of ECS allows the following features to be provided:

1/0 buffering through ECS (via CM buffers or Distributive Data Path)
Library residence in ECS . ‘

Job swapping to/from ECS by the Integrated Scheduler -
Compatibility with BNL-ECS

Segmentation of system CP code

1-2 o : , S 60306500 F

ECS PAGING

The basic element of ECS paging is a PRU made up of 100B CM words. A group of eight consecutive PRUs
(1000B CM words) forms a page. 1/O-buffering through ECS is made possible by the paging of ECS. A dead-
start installation parameter defines the buffer size. IP.EBUF determines the default buffer size for deadstart
processing and has a default value of 16 decimal pages.

ECS paging provides the following advantages:
More efficient usage of ECS through dynamic allocation/deallocation of space

Availability of ECS to more users by allowing the use of an “over-commitment” algorithm for ECS

SOFTWARE ELEMENTS

Two elements are basic to the SCOPE operating system: files and control points.

FILES

A file is an organized collection of data known to the system by a given name. Data is organized in one or
more logical records and terminated by an end-of-file indicator. Under the SCOPE operating system, the
jobs it processes and all intermediate and final results are contained in files or parts of files. Files are
discussed in section 4.

CONTROL POINTS

The system can control execution of several jobs at one time. When placed into CM before execution, each
job is assigned a value which is the control point number and the index to a control point. Jobs at control
points are assigned to a processor for execution. Each control point has a control point area in the CMR
which holds all information necessary to process the assigned job. The control point concept is discussed in
section 2.

SCOPE ORGANIZATION

The SCOPE operating system consists of PP programs, CP programs, macro definitions, and symbol defini-
tions. The entire system is contained on program library files produced by the library maintenance program
UPDATE. Programs in the library file are in source language form. Installation options are provided to
permit flexible selection of system features during the assembly and creation of a deadstart file on tape.

A system monitor is in complete supervisory control of the hardware system. The system monitor is made up

of PP overlay OV.MTR, which operates in PPO, and CPMTR, which in a disk system is assembled as part of
the central memory resident or in an ECS system consists of a number of separate segments.

60306500 L 1-3

SYSTEM LOADING

To load the operating system into a CYBER 70 or 6000 series computer, the deadstart tape is mounted on a
device and a small bootstrap loader program is set up on the hardware deadstart panel switches. When the
deadstart button of the operator’s console is activated, the bootstrap program is transferred to and executed
in PP0. The bootstrap loader reads the PP0O save program (CEA) from the first record on the deadstart file.
executes it, then reads the deadstart control program (CED) from the next record into PP0O and sets it into
operation. CED determines the type of deadstart to be performed, then loads the required routines into all
PPs invalved in the deadstart process. The routines include a display routine in PPO and 170 routines in
PP1 and PP2. CMR is read from the deadstart file intoc CM, and a display shows all deadstart functions
and the options that may be selected.
The functions include:

Type of deadstart to be performed

Level of system to be used

Level of processing to be performed on rotating mass storage (RMS) device labels

Status of permanent files to be used

Restriction of permanent files to disk pack devices (854 and 841 only)

Changes to be made to equipment configuration of the sysiem

Level of initialization of ECS

Pre-allocation of RMS devices for customer engineering diagnostic programs
The operator may select specific options or take the default option for each function.
When processing of deadstart options is completed, control is passed to MTR and DSD. The system
deadstart tape will be rewound to its load point, and it will not be referenced again during operation unless

another deadstart is necessary. The tape may be removed and the tape unit cleared for use in other
operations. At this point the system is ready to process jobs (see section 7).

14 60306500 A

60306500 D

This page has been deleted

Upon completion of system loading, the computer contains the following:

1.

"1-6

Initial system libraries, stored on one or more mass storage devices. Programs can be loaded from any
system library into PPs or CM as needed.

The central memory resident (CMR), loaded into the low end of central memory. A set of tables in
CMR contain information about the system. Some of the tables are used by the system PP programs
to communicate with each other. A record block table (RBT) is built in the upper end of CM.

Also, some programs in the system are stored in central memory in an area immediately above the
CMR. Such programs can be loaded into PPs or into other CM areas much faster than they can be
loaded from the system storage device. Storage space in CM is costly and space used to store library
programs cannot be used to run user programs; therefore, only the most necessary and frequently used
library programs are stored there. For the same reason, CMR is kept as small as possible.

The system monitor program (MTR in PPO and CPMTR in CMR) remains in overall control of the
system. It controls allocation of system physical resources (CM, ECS, channels, equipments, PPs and
CPUs). It handles all communications between user programs and the system and coordinates activities
of the other PPUs.

PP1 contains the operator console display driver program, DSD. DSD provides a communication path
between system and operator. Current system status is displayed by DSD on the two screens in the
operator console. The operator can control system operation by typing commands on the console
keyboard.

Each remaining PP contains pointers to a PP communications area, an area in CMR used for communi-
cations between each PP and MTR, and a PP resident program loaded into each PP. The resident is
responsible for reading the input register and loading PP overlay programs into its PP as assigned, and
for providing communication between the overlays and MTR.

60306500 L

SCOPE SYSTEM TAPE

The released SCOPE 3.4 system (deadstart) tape consists of:

Name -~ Description

CEA PPO save program

CE Diagnostics See next page

CED Deadstart PP control program — resides in PPO

TDR Read driver for 60x, 65x tape drives — in PP1

MDR Read driver for 66x tape drives — in PP1 and PP3

D Deadstart dump control program, handles options — in PPO
DMT Dump magnetic tape driver for 60x, 65x tape drives — in PPO
DTS , Dump magnetic tape driver for 66x tape drives — in PPO
CMR Central memory resident (up to 8 copies)

COM Deadstart option matrix generator — in PP2

IRP ‘ Deadstart RMS driver control program — in PP2

5Cp Deadstart 6603-1 driver

5CQ Deadsiart.6638 driver

5CS Deadstart 854 driver

5CT * Deadstart 6603-I1 driver

5CV Deadstart 821 driver

5CW ° Deadstart 841 driver

SCY Deadstart 844 disk subsystem driver

P Pre-address 6603-II program

osy 844 Buffer controlware

OMT MTS controlware

IRCP | Deadstart main central processor program

STL : Deadstart system initiation program (PP resident)

MTR , Systenﬁ mbnitof program

60306500 H

DSD Display control program
Library name table

Directory PP name table
PP programs — the first must be stack processor’s segment
Entry point table
External reference list

System External reference table

Libraries Pfogram numbe?r table ' -
Program name table

CP/PP routines

Any installation may expand the above records in two ways:

1.

1-8

By installing CE Diagnostics. The deadstart diagnostic sequencer, CES, will be placed after CEA,
followed by diagnostic routines selected for the site (CU1, ALS, FST, etc.), followed by routine CED.

By placing up to seven additional CMR records on the system tape for different equipment
configuration.

60306500 D

CENTRAL PROCESSOR AND SCOPE | 2

CM ORGANIZATION

" The allocation of central memory is illustrated below:

Machine FL High Core
RBT

Assigned to
Control Points

CM Library

CMR
0 : Low Core

Low core is allocated to the central memory resident portion of SCOPE, executable system programs, and
INTERCOM buffers. The length of the INTERCOM buffers area varies dynamically when INTERCOM is
running. High core is allocated to the record block table (RBT); its length varies dynamically with the load
of the system. The remaining area can be assigned to control points.

CONTROL POINT CONCEPT

Blocks of central memory storage not allocated for system use are ordered by control point number and
assigned to jobs. Each control point number has a corresponding table in CMR called the control point
area. A control point is not a physical entity, but rather a concept used to facilitate bookkeeping. The control
point number and the control point area, however, are physical quantities that do appear in the system.

Under SCOPE 3.4, any number of control points up to 15 are possible. In the released system, the default
value of N.CP is 15 decimal. In an installation with n control points for user jobs they are numbered from

1 to n. Only one job can be assigned to a control point at any one time. Once a job is assigned to a control
point, system resources such-as central memory, ECS, channels, equipments and processors may be assigned
to the control point for use by the job.

Storage assigned to a single control point is contiguous; storage for all control points is mot necessarily
contiguous. The core storage block assigned to the job at control point 2 is higher than the block for the job
at control point 1, and storage for.control point 3 is always higher than that for control point 2, and so on.

60306500 C o , A : 21

In the following figure, no storage is assigned to control points 3 and 5; unassigned storage appears
between assigned storage.

CM Library

CMR
0 Low Core

In addition to the n control points used for running jobs, two pseudo control points, numbered zero and
n+ 1, are used by the system.

Control point zero is used to identify system resources not allocated to a job at a control point; .they are
unallocated or allocated to the system. If an equipment is assigned to a control point, that number is
entered into the system table entry for that equipment. '

If not assigned to a job, the equipment is assigned to control point zero and is available to be assigned to a
job. All active system files are attached to control point zero. They include the system file, any job files
that have been read in and are waiting for scheduling, and all output files waiting to be processed by JANUS
and remote batch processors. Control point n+1 is used by monitor (MTR) when it runs a central processor
(CP) system program. For example, if MTR needs to move the storage assigned to a control point, it asks
CPMTR to initiate the CP storage move program in central memory resident. Since the CP storage move
program is not associated with any specific job running at a control point, it is assigned to control point n+1.
* There is no control point area in CMR for control point n+1.

22 - : a ' CL - 60306500 G

JOB DESCRIPTION NUMBER

During the course of execution. a job might not remain continuously at the same control point. It is possible
for the job to be swapped out while it is only partially executed. When a job is swapped out it is not
associated with a control point. When a job is swapped back in it is probably associated with a control
point other than the control point during its original assignment.

During the time a job is swapped out, the only table in CMR that contains information about the job is the
Job Descriptor Table (JDT). When a job is initialized at a control point it is also assigned to an entry in the
JDT. The job descriptor numbser is constant and is used to identify the job during its entire execution.

In order to clarify the difference between job descriptor number and control point number, JDT numbers
start at n+ | where n is the number of control points.

STORAGE MOVES

Since jobs come and go as they finish processing and new jobs begin, or as jobs are swapped in and out.
CM storage must be reallocated and jobs must be moved. If a job at a control point requests additional
storage, it may be necessary to move jobs to obtain the required storage. MTR keeps a tally of unassigned
CM in a CMR word T.UAS. Storage associated with each control point is of two types, either of which may
have a zero value.

Allocated storage is defined by the reference address (RA) and field length (FL) of the control
point.

Unallocated storage (UAS) lies between the allocated portions of two consecutive control points.
This area is associated with the lower of the two control points, but it may be transferred to
neighboring control points by moving any intervening allocated storage.

A request for a reduced field length merely transfers storage to UAS (no storage moved). A request for an
increased field length, when the total already associated with the control point is adequate, will result in a
transfer of unallocated storage to allocated: no storage move will take place.

If it is necessary to take unallocated storage from other control points to satisfy a request for increased field
length. control points above and below the requesting control point will be a scanned. This scan locates the
combination of unallocated storage blocks which will result in a move of the least amount of storage.

In the diagram shown under Control Point Concept, if control point |1 needs more storage, it will be
necessary to move control point 2. If control point 6 needs storage, sufficient unallocated storage may be
available 10 make a control point move unnecessary. If, however, control point 7 needs additional storage,

control points 4, 6 and 7 will be moved downward to provide the storage. Added storage always extends the
field length upward.

60306500 A _ 23

STORAGE MOVE EXAMPLE:

Control point 5 requests an FL of 300 (all values are increments of 100 octal).

Before After

Control Unallocated

Point RA ~ FL Storage (UAS) RA FL UAS
0 0 142 0 0 142 0
1 142 33 0 142 33 0"
2 175 31 0 175 31 0
3 226 0 500 226 0 0
4 726 20 , 130 226 20 0
5 1076 100 0 246 300 430
6 1176 150 0 1176 150 0
1 1346 0 430 1346 0 430

If MTR takes the UAS from control point 7, the 150 units of central memory at control point 6 would
have to be moved; however, taking UAS from 3 and 4 requires moving 120 units of central memory at
control point 4 and 5. (20 units are moved from 4 to 3 and 100 units are moved from 5 and added on
behind the 20 units moved to 3.)

CP - SYSTEM COMMUNICATION
A running CP program must communicate with the system in the following situations:

1. When a CP program is loaded and executed as a result of a control card call, the system must place
any parameters specified on the control card in an area where they can be read by the CP program.

2. No CP instructions allow a CP program to perform input/output; therefore a CP must send a request
to the system, to load a PP program to execute the input/output.

3. When a CP program terminates, it must advise the system that it may process the next control card.
Since a CP program cannot access memory locations outside its field length, any area reserved for communi-
cation between a CP program and the system must be within the field length of the job. The first 101B
locations of each job’s field length are reserved for this purpose. The following 10B words are reserved for
the loader table. The first program loaded into a user field length is always loaded at location RA+111B
because the reserved words are RA+0 through RA+110B.

The RA Communication Area is shown in Part II, Section 2.

2-4 60306500 L

The first word of a user field length (location RA+0) is reserved for use of hardware and software flags in
event of error. Other locations in the first hundred octal words of a user field length store information
needed for execution of system program. Monitor regularly scans location RA+1 which is presumed to con-
tain a request from the central processor for monitor to summon a peripheral program. The form of the
request is:

59 41 39 0
RLLARRRARA R R ITTTTTTTTITT T e e e e irrrertl

PP Program Name r Address of Parameters

r Recall Bit 40

Loader information is placed by the first of several loader routines in words RA +64 through RA +67.
This information is used and modified as additional loader routines complete specific tasks.

When parameters are encountered on a control card, they are placed in locations RA +2 through RA +63
by 1AJ, which stores the total number of parameters in location RA + 64. When the routine or file indicated
on the control card executes, it finds in these locations the information needed to direct execution.

CP - PP COMMUNICATION

If a user’s program places a call for a PP program in RA+ I, CPMTR will pick up the RA+1 call, insert
the control point number of the caller into bits 36 through 39 of the word, and clear bit 41. If the central
exchange jump (CEJ) installation is available, the user’s program should use it immediately after placing a
call in RA+ 1. This will cause CPMTR to begin execution immediately. If CPMTR determines that the
RA + 1 call should be assigned to a PP it will pass the call on to MTR.

When a PP is available, MTR will write the word into its PP input register, in CMR. Figure 3-2 shows
the format of a PP input register for a transient program called from a CP program. The name, the auto-
recall bit, and any parameters in bits zero through 35 appear in the input register exactly as they did in
RA + 1. Parameters are passed from a CP program to a PP program through this parameter field.

For example, if the PP program CIO is called, CIO will find the relative address of the file environment
table (FET) to be used in the operation by reading its input register. It can find the RA of the control point
field length by reading the control point number from its input register, computing the address of the
control point area, and reading the value of RA from the control point area. By adding the RA to the
relative FET address, CIO obtains the absolute address of the start of the FET. CIO then reads the
parameters for the I/O operation from the FET. In ECS systems, CPMTR traps all CIO calls and sends them to
CPCIO, where the device type is checked. If the device is RMS or ECS, the request is processed; otherwise, the
request is sent to CIO.

MTR continually scans RA + 1, in the event that the users program does not use the central exchange jump,
or the instruction is not available. When a RA+ 1 call is found MTR initiates CPMTR. Less CPU time is
used by letting CPMTR process the call, than if MTR did it directly.

Bit 59 of RA+66 is used to communicate to the user program if the central exchange jump is available. If
the hardware for this instruction is available the bit is set on.

60306500 L 2-5

PROGRAM RECALL

The recall program status is provided in SCOPE to enable efficient use of the central processor and to
capitalize on the multiprogramming capability of SCOPE. Often, a CP program must wait for an 1/0
operation to be completed before more computation can be performed. To eliminate the CPU time wasted
if the CP program were placed in a loop to await I/O completion, a CP program can ask SCOPE to put the
control point into recall status until a later time; and the CPU may be assigned to execute a program at
some other control point. The job itself may be rolled out or swapped out, as necessary.

Recall may be automatic or periodic. Auto-recall should be used when a program requests I1/0 or other

_ system action and cannot proceed until the request is completed. SCOPE will not return control until the
specific request has been satisfied. Periodic recall can be used when the program is waiting for any one of
several requests to be completed. The program will be activated periodically, so that it can determine which
request has been satisfied and whether or not it can proceed.

PERIODIC RECALL

To enter periodic recall, a CP program puts the characters RCL left-justified into RA+1. On encountering the RCL
request, CPMTR examines the auto-recall bit (bit 40); if it set, the request is considered to be an auto-recall request.
If it is not set, CPMTR checks bits 0-10 (decimal) for a delay count. If this delay count is not set, CP(MTR specifies

a default value for it. The delay count of the control point in periodic recall is examined regularly by the advance
control point routine (ACP) of MTR. When the delay count expires, the control point loses its recall status; and the
CPU is again assigned to execute the program at the control point. At this time, the CP program can check completion
bit in the FET to see if the I/O is finished. If so, the CP program may proceed with computations. If I/O is not
complete, the CP program will put itself back into recall.

AUTOMATIC RECALL

If a CP program makes a request in RA+ 1 and bit 40 of RA+1 is set to one, the control point will be put
into automatic recall after the request has been initiated. Again, the CPU is assigned to another control
point as in periodic recall. In this case, however, the program in recall will be restarted by MTR after the
completion bit in the FET has been set. MTR, not the user, checks the completion bit in the FET.

Recall and auto-recall are most often used while waiting for CIO to process an 170 request; however, any
time a PP program is called from RA + 1, with bit 40 of RA + 1 set to one, the control point will be put into
auto-recall. If bit 40 is set, bits zero through 17 of RA+ 1 must contain the address of a word in the
program’s field length called a reply word. When the PP has completed its function, it will set the comple-
tion bit (low order bit) in the reply word. When the completion bit is set, MTR will restart the program.

For a call to CIO, the reply word is the first word of an FET. For other programs the reply word need not
be part of an FET.

Some PP programs (DMP and MSG) set the completion bit only when they are called with auto-recall.
Periodic recall cannot be used for these programs.

A CP program can put itself into auto-recall without calling a PP program by putting RCL left justified in
RA +1 and setting bit 40 of RA+1 to one. Bits zero through 17 of RA+ 1 must contain the address of a
reply word. A program which has already initiated one or more 1/0 operations might go into auto-recall in
this way, using the first word of the FET associated with one of the I/0 operations as the reply word.
Figure 2-1 shows the formats of RA+1 for: a normal CIO call; a request for periodic recall; a CIO call
with auto-recall bit set; and an RCL call with auto-recall bit set. For periodic recall, a user must issue a
normal CIO call followed by an RCL request. For auto-recall, only one request is required.

2-6 60306500 G

Normally. CP programs use auto-recall for convenience. but only one request invaolving auto-recall can be
processed at one tme. For example, o tnidate 170 action on several files at once. o user must employ the
periodic recall technique. He will issue all the requests without recall (using a separate FET for each
request): then go into periodic recall. Each time the CP program is restaried by the system, it can check all
the tiles for completion and go back o pertodic recall o any are sull meomplete.

Periodic recall may be used also when a CP program can initiate an 1/0 request and then perform some
computation. In some cases, the [/O would be completed belore the computation: in others, the computa-
tion would be done first. The user would go into recall only when computation was done. and then only if
the 170 was still in process.

Periodic recall should also be used. if possible. to continue processing while only part of the data buffer has
been read or written by the I70 driver. Some of the I/0 drivers coordinate with MTR so that a program in
periodic recall is restarted after one or two PRU’s have been processed.

CIO CALL
59 42 40 ; ; 17 0
cio o _ Count for FET Address
Positioning Requests

N e ——— N —
DISPLAY CODE (ClI0O=03111 78)

CIO CALL WITH AUTO-RECALL

59 42 40 17 ; 0

ci10 1 Count for

e FET Address
Positioning Requests

REQUEST FOR PERIODIC RECALL
59 42 40 , 0

RCL 0

REQUEST FOR AUTO-RECALL
59 | . 42 40 17 0

1 ’ Pseudo

RCL FET Address

Figure 2-1. Call Formats

60306500 F | ! - e | 27]

CENTRAL MEMORY RESIDENT

The low end of core storage is reserved for the central memory resident portion of SCOPE and the system
library portions which reside in central memory. CMR contains pointers, tables and programs. Its length is
dependent upon several factors, including the number of peripheral processors and the number of control
points, which determine the number of tables in CMR and the length of certain tables. Some CMR tables
are optional and may appear only by installation parameter. Figure 2-2 illustrates a typical CMR.

Pointers and Small Tables
{Lower Table Area)

200
Control Point Area and System Exchange Packages

PP Communications Area

L.arge Tabies
(Upper Table Area)

ECS Tables -

. CM Resident Programs
{or Segmented System CM Areas)

Library Directory

Figure 2-2. Typical CMR Assignments

28 R 60306500 F

SUMMARY OF CENTRAL MEMORY RESIDENT AREAS

Lower Table Area Contains pointers to larger tables in the upper table area of CMR, along with various
flags, constants, and installation option parameters. It includes accounting information, calendar and Julian
dates, the system display label and other small tables. The lower table area occupies the first 200 words of
central memory.

Control Point Area Contains a 200-word area for each control point in the system. Each area contains the
job name, exchange package, and other information related to the job running at that control point. The
system exchange package is also contained in the same area.

PP Communications Area Contains eight words for each peripheral processor in the system, through
which they communicate with the system monitor and with each other. Each area contains the PP input
and output registers and a 6-word message buffer.

Upper Table Area Contains major tables pertinent to system and job operation.

ECS Tables Area Contains buffers for transferring PP overlays and RMS files.

CM Resident Program Area Contains four resident programs:

CP.MTR Central Processor Monitor

CP.SM Central Processor Storage Move
CP.SPM Central Processor Stack Processor Manager
CP.SCH Central Processor Memory Manager (Scheduler)

In a segmented system, the CM resident program area is overlaid by the ECS system resident and by the CP
code overlay segments.

Library Directory Contains tables related to the system libraries, including library name table, PP program
name table and the CM resident library programs.

60306500 L 29

100 T.CST
154
200 T.CPA,
T.XPIDLA
T.PPC1
* T.EST
* TENT

* T.TABL

* T.DAT

* T.RMSBUF

* TSTG

* T.APF

TRQS
T.RST
T.RBR
T.RBRBIT
T.DST
T.TRB
T.SEQ
T.INS
T.MST
T.0DT
T.VRNBUF
T.TAPES
T.MAIL
T.IDT
T.DOFB
T.PJT
T.SSCT
T.SCHPT
T.SCHJCA
T.SCHJIDT

T.BCFAP

CENTRAL MEMORY RESIDENT

Pointers

Channel Status Table

PP Status Words

Control Point Areas

System Exchange Packages

PP Cormmunication Areas
Equipment Status Table

File Name Table

CIO-CPCI10 Special FNTs
Permanent File FNTs
INTERCOM Table

Device Activity Table

RMS Buffer

Tape Staging Table

Attached Permanent File Table
Request Stack

Request Scheduling Table (RMS)
Record Block Reservation Table (Headers)
RBR Bit Table

Device Status Table

Trace Buffer

Sequencer Table

Installation Area

Mounted Set Table
Dismounted Device Table

VSN Buffer

Tapes Table

Scheduler Maitbox Bufier
Logical ID Table

Dayfile Buffers

Parameter Storage for Delayed PP Jobs
Subsystem Control Table
(Optional) Scheduler Statistics
Scheduler Job Control Area
Scheduler Job Descriptor Table

CPMTR CEFAP Buffer

* Table Must Begin Before 100008
#Table Must Begin Before 200008

2-10

T.PPOVL
T.BRKPT
T.AREA
T.ENTRY
T.DOT

T.EPAGE
T.ECSPRM
' T.LIB

"TRBT

V

PP Resident Overlay Save Buffer
Breakpoint Table (ECS System)

Area Table (ECS System)

Entry Table (ECS System)

Device Overflow Table

CM Resident Programs (Disk System)
Segmented System Areas (ECS System)
Empty Page Stack

ECS Parameters

Library Directory

INTERCOM Pointer Area
INTERCOM Buffers and User Tables

RBT Chains

60306500 L

SUMMARY OF TABLES IN UPPER TABLE AREA

Equipment Status Table One entry for each device in the system configuration. Non-allocatable devices
can be assigned to one control point at a time; allocatable devices may be attached to many control points
simultaneously.

File Name Table Contains an entry for each file in the system, created when the file is created. Several
entries are preset and remain in the system for duration; these entries are for the system library (deadstart)
file, the system and control point dayfiles, and the hardware error file. :

INTERCOM Table Provides multiplexer and port definition information for INTERCOM program use.
Assembled only by installation parameter IP.INTCM.

Device Activity Table Four-word entry for each RMS device in system. Each entry provides dynamic
information related to current activity of the RMS device.

Rotating Mass Storage Buffer Holds a message to be flashed on the bottom line of the B display. The
message is used to report an error on an RMS device and ask the operator to idle down the device.

Tape Staging Table Defines availability, assignment, and demand for tape devices.
Attached Permanent File Table Provides information for the permanent file manager and job use. Con-
trol and status information entries are created when a permanent file is cataloged initially or attached to a

qualified CP program.

Request Stack Requests for data transfers, device positioning, or logical file operations. Each allocatable
device in system has at least one 3-word entry in this table when a request for its use is active.

Record Block Reservation Table Provides continuous information as to assignment/availability of record

blocks in which file data is recorded on allocatable devices. Strings of bits in the RBRBIT table denote
current status of record blocks in each device. :

Device Status Table Directly related to the request stack; contains a 2-word entry for each allocatable device
in the system, plus an additional pseudo-entry for unassigned file processing.

Tapes Table Contains one entry (10B words/entry) for each tape unit defined.

Device Pool Table Contains a 10-word area for each RMS device. Used by associated 1SPs to pass their
internal pool area to each other.

Sequencer Table Contains 30-word entry for each preallocated RMS device for use for CE diagnostic programs.
Installation Table Reserved for specific needs of installation. Tables are generated in the area only by installation.
Mounted Set Table One entry for each mounted device set, including the .public sets.

Dismountable Device Set Entries for each RMS device plus entries for each queueing devices needed by jobs.

60306500 L 2-11

ID Table Contains Host ID, Logical IDs, and Physical (link) IDs. The ID table may be zero-length. ’
Mailbox Used for communications between system and swapped out jobs.

Dayfile Buffer Area Contains dayfile buffers and file environment table entries of the system dayfile, the
control point dayfiles, and the hardware error file. The control point zero buffer is at the end of this area.

Peripheral Job Table Contains parameters saved for delayed PP jobs.
Subsystem Control Table Contains names of defined subsystems.

Scheduler Performance Table Optional table used to collect execution data to study the efficiency of the
integrated scheduler. Created by installation parameter IP.SPT set to 1.

Job Control Area Contains entries pertinent to the scheduling of jobs by class and queue priorities.

Job Descriptor Table Contains linked entries for each class of job. Entries describe job requirements, current
status, accumulated use time of system components, etc. See Job Processing, Chapter 7.

Breakpoint Table Contains the breakpoint code exchange package, the breakpoint wait loop, flags and data
used by DSD, and the breakpoint entries. It is used by DSD and breakpoint processing.

Area Table Eight-word buffer that receives the ECS area table from a segmented system. It describes the
system ECS and CM structure.

Entry Table Contains the date-time stamp for this CMR, the associated segment library name, and a list of
the entry points defined in the tables with their addresses.

Library Directory Falls at the end of the CMR upper table area following the CM resident programs and
ECS tables; and is of variable length. It contains 2-word entries in the program name table section and 1-word
entries in the entry point table. The directory length may expand or contract as programs are added and
deleted or as program residence is changed.

CP Resident Programs (in a disk system)

Symbol Name/Function

CP.MTR . Central processor -monitor
CP.SM Central memory storage move
CP.SPM Stack processor manager
CP.SCH Memory manager scheduler

2-12 60306500 H

CMR SEGMENTATION FOR ECS SYSTEMS

CMR segmentation is implemented for installations with ECS. A segmented system is intended to have most of
its CP code ECS resident. Sections of code (segments) are loaded as needed in CM overlay aress. A segmented
system is started from an ECS system image by a bootstrap monitor function which overlays an existing system
(disk or ECS) with a new system. The ECS system image for this new system must have been created in a
previous step using the utility program LDCMR (see section 10).

CORE LAYOUT

For an ECS system, the equivalent of a disk system’s system resident programs section in CMR is a number
of specialized areas as follows:

CMR Upper
Tables, Resident Code Table Ares
(idle Program, ECS Bootstrap, Breskpoint}
Monitor Mode Return Stack
User Mode Return Stack
Monitor Mode Trace Buffer
User Mode Trace Buffer
Segmented
2 ECS System Resident z System Areas
{includes Segment Linkage) (ECS Systam)
v 4 Monitor Mode Overlay Ares 2
' Z : User Mode. Overlay Ares ' : ' :7 2
Segment Table
Library Directory) Library

60306500 F 213 e

These areas are set up by the initialization segment INIT, loaded by the bootstrap in the monitor mode overlay
area. The position of the library directory is adjusted if necessary by LDCMR. The ECS system resident con-
tains the segment linkage program which loads new segments and passes control to them, the ECS parity error
recovery routine, and some heavily used code (CPMTR start, CPMTR return to user). The trace buffer and
return stacks are used by segment linkage.

The Area table completely describes an ECS system. It is read in from the ECS image of a segmented system
by the bootstrap monitor function.

The Entry table contains the entry points for tables in CMR which are not directly accessible by a text symbol
of the T. type. This table is used by the utility LDCMR to load the ECS system and read the date-time stamp.

The Breakpoint table is initially empty. The breakpoint (N) display and commands allow breakpoints (tem-

porary halts) to be set and released in the operating system during system execution. CM, ECS, and the oper-
ating system exchange package can be observed while the operating system is at a breakpoint.

The Area table, the Entry, table, and the Breakpoint table are detailed in part II, section 1.

SEGMENT LOADING
SEGMENT LINKAGE

Linkage is done through the GOTO (GOTOTAB), CALL, and RETURN macros. These macros can be used
only in a segment defined through the SEGDEF and ENDSEG macros.

GOTO EPTNAME

transfers control to the entry point EPTNAME.

GOTO : TABLE Register

TABLE GOTOTAB EPTNAM2

GOTOTAB EPTNAM2

transfers control to the entry point referenced in a GOTOTAB macro in the position indexed by register
in TABLE.

RETURN

returns to the last address and segment saved by a CALL. The previous address and segment saved will
be used by the next RETURN.

SEGMENT DEFINITION
SEGDEF SEGMENT,mode,CM
must be called immediately after the segment IDENT (first group).

SEGMENT is the segment name.

. 214 | RS o 60306500 F

Mode ’if USER indicates user mode segment, otherwise monitor mode is assumed.
CM indicates the segxnent must be CM resident.
ENDSEG
must be called immediately before the segment END.
The name of the segment also can be the name of an entry point in the segment, but not of a tag. If it is
not an entry point, the ENDSEG macro will define an entry point by that name referencing the second word
of the segment.
The SEGDEF macro generates a sement header word with the tag . .b . REUSE.
Header format after processing by LDCMR:

59 17 _0

Index in
Segment Table

Segment Name

All segments must be reusable serially, otherwise to prevent reuse, they must zero their header word prior to
relinquishing control.

PARAMETER WORD

Linkage is done through a parameter word generated by the linkage macros and filled in by LDCMR. For a
GOTO or a CALL, Al is set to the address of the proper parameter word and a jump is made to one of the

linkage processor entry points.

Parameter word format:

59 47 29 , 17 0

Current Parameter Word Next Entry Point
Segment Index Address » Segment Index Address

The addresses are absolute. The indexes are in the segment table. The parameter word is transformed into a
return descriptor on a CALL by shifting it 30 positions and adding 1; it is stored in the proper return stack.
A RETURN loads the last stored descriptor and performs a GOTO on it. If trace buffers are defined (see
section 10 - LDCMR), all parameter words processed are stored in the trace buffer for the current mode.

60306500 H | | . - | 215

Return stack format:

Underflow Trap Address Ascending Address

Parameter Words

Z Next Free éntw %

Pointer to Next Free Entry

Trace buffer format:

Parameter Word

Parameter Word Ascending Address

Z =

Parameter Word

Pointer to Next Entry

Segment loading is done by using the segment descriptor in the second word of the segment table entry for
the segment. The address of the segment table entry for a segment is:

Segment table base address + 2 x index

The Segment table is detailed in part II, section 1.

2-16 _ ' : : 60306500 F

ECS SYSTEM IMAGE

The system is written to the ECS direct access area as an extension of control point zero ECS field length.
Two systems, named the old system (lower system) and the new system (upper system), can coexist in ECS.
LDCMR creates ECS system images of the following form:

Old System Area Table

ECS System Resident

% Segments 2

Segment Table

Nem) System Area TableT ECS
Direct
T) Access

ECS System Resident Area

Z SegmentsT %

Segment TableT

TIf a terminator replaces the new system area table, the new system sections do not appear.

The operating system requires approximately 20K of ECS in the direct access area. For example, if 40K is to
be available for user direct access, 60K must be allocated to the direct access partition. If LDCMR is to be
used after deadstart, the direct access area must be large enough to contain two operating system CP code
versions — approximately 40K, minimum.

60306500 G - o : B 217

ECS ERROR RECOVERY

Segments are protected against ECS errors in transmission or storage. An auto-corrective hamming code is
applied to them to get correction vectors. The correction vectors and two checksums are placed at the end of
the segment as shown: , ~

Segment Code

Binary Checksum Segment

Arithmetic Checksum

Correction Vectors

¢

The code is capable of correcting a single bit error every four words. Vectors correct each four words, and a
6-bit secondary correction vector makes vector words self correcting:

59 53 47 39 31 23 15 7 0

SCv Vector Vector Vector Vector Vector Vector

Errors are corrected only if they are detected by the ECS parity error mechanism. Detected errors are recorded
in a error directory, then displayed in the dayfile (by a call to CEM, function 10). Error directory entries for
a segment are linked to that segment’s segment table entry. When an ECS error is encountered on a segment
that has error directory entries, a first correction attempt uses the information in these entries. If this fails,
the error entries are released and the full correction process is re-applied. The test of a successful recovery is
the comparision of the existing checksums with the checksums for the recovered segment. The system is killed
if a segment cannot be satisfactorily recovered. A recovered segment is written back to ECS, as it is possible
the ECS error is transient.

Error directory entry format:

59) 43 41 17 0

Bit

.. ECS Address Link
Position

T=0 Bit dropped T=1 Bit picked

2-18 ‘ ' o 60306500 F

SYSTEM CONTROL POINT

A system control point provides a centralized location for a module or group of modules, allowing them to per-
form functions for one or more jobs at other control points. This facility provides overall reduction of central
memory usage. Instead of several jobs having duplicate copies of these specially privileged modules in their field
lengths, only one set of these modules needs to occupy central memory. This feature also improves coordina-
tion of control and access.

A module or group of modules which performs a specific set of functions is known as a subsystem. A subsystem
executes at a system control point and has the ability to make privileged requests (reserved by subsystems) in
addition to any requests which a standard control point is allowed. Each subsystem -has a unique four digit
ordinal by which it is referenced. Typical subsystems are a data base management system or Record Manager.

A system control point (SCP) is any control point occupied by one of the subsystems. SCP may be used to
describe both the control point and the subsystem at the control point.

A user control point (UCP) is any job or module at a control point which makes a request to a system control
point. A UCP may be a batch job, INTERCOM job, multi-user job, or another SCP.

MANAGING SUBSYSTEM RESOURCES
A subsystem at 4 control point may receive requests irregularly, leaving it idle for long periods. Since a system
control point cannot be swapped out, some other action must be taken to reduce its memory requirement while
it is idle.
The idle subsystem should be organized so that it can reduce its field length to two or three hundred words. It
should specify a half second periodic recall by using RCL with a 3777B delay period indicated by bits 10-0. The
subsystem will then be started immediately when it receives a call.
“When a call is received, the following steps must be taken:

1. Issue a MEM call to acquire the field length necessary to process the requested function.

2. Acknowledge the request by resetting RA.SSC.

3. Load the subsystem overlay(s) required to process the request.

4. Process the request.
It is essential that the above steps be taken in the order specified. If steps 1 and 2 are taken out of sequence, a
memory deadlock could occur; if the request is acknowledged before the memory is requested for the SCP, it is
possible for a second SCP to make a request and have it successfully passed to the SCP. Both SCPs would then
have outstanding SSC calls, preventing both from being swapped out. If the sum of the field lengths of the two

UCPs and the required field length of the SCP is greater than what is available, the system will be deadlocked. If
this occurs, one of the UCPs must be dropped to resolve the conflict.

60306500 L 2-19

CALLSS MACRO

The CALLSS macro is issued by a UCP to request a particular function from a subsystem. A UCP may
call more than one subsystem, either -serially or in parallel. Also a UCP may make more than one call to
an individual subsystem. The contents of registers X1, X2, Al, and A6 are destroyed during execution
of the macro. These registers should not be used as parameters. The format of the macro is:

label CALLSS ssid,addr,recall
label is an optional statement label.
ssid is a required subsystem code. (This parameter may be a register Vname.)
addr is the address of the parameter block for this request. This parameter is required and must

be nonzero. (The parameter may be a register name.) If the address is outside the UCP
field length the UCP will be aborted.

recall if non-blank, the request will be made with automatic recall. (Processing at the UCP will
be suspended until completion of the request.)

PARAMETER BLOCK

The parameter block pointed to by the addr parameter of the CALLSS macro is used by the UCP to pass param-
eter information to the SCP. The parameter block must be at least one word long.

The first word of the parameter block is used for calling and status information. The second and subsequent
words of the parameter block are used for data which is passed to the SCP by the operating system. The format
of the first word is:

59 35 23 17 13 11 0
Reserved f Restel es e
Reserved for System eservec Tor wce for rror
Installation : cocl T Status)

The fields of the first word are defined as follows:

C This bit indicates whether or not the current request has been completed. If it has been completed,
the operating system sets the bit to 1; otherwise it will remain set to zero. The user program must
set this bit to zero prior to executing the CALLSS macro.

ES The operating system sets this field to indicate the presence of an error or unavailable system con-
dition. This field is not set (all zeros) if the RT field is zero.

Bit 1 - O - subsystem currently running
1 - subsystem not initiated

Bit 2 0 - subsystem not busy
1 - subsystem busy

Bit 3 O - subsystem defined
1 - subsystem not defined

Bits 4-5 reserved

2-20 60306500 L

Bits 6-11- error condition other than those .described by bits 1, 2 and 3. Bits 6-11 can assume the
following octal values:

00 no other error

01-17 reserved for system errors
20-67 reserved for subsystem errors
70-77 reserved for installation

RT This field is set by the user prior to making a subsystem call. The meanings of the bits are:

Bit 12 0 - operating system holds the current request until the subsystem is able to accept it.
The C bit is not set until the request has been accepted and the processing of this re-
quest is finished.

1 - operating system returns control to the user if the subsystem is present, but is unable
to accept the user’s call. In this event, bit 2 in the ES field is set to 1.

ES field is not set (with the possible exception of bit 2), and subsequent errors cause
the UCP to abort.

Bit 13 0

1 - operating system sets the ES to indicate which error condition occurred, and returns
control to the user on non-fatal error conditions. (Fatal errors cause a UCP abort).

A message is issued to the UCP dayfile indicating the error condition.
The remaining bits in this word (14-59) are reserved.

When either of the RT bits is set and a condition is encountered that causes any of the bits in the ES field to be
set, the operating system sets the C field and considers the operation complete. It is therefore necessary to re-
issue the CALLSS macro.

WC Some subsystems require the user to specify the length of the parameter list. WC is the number
of words (excluding the first word) that is to be passed with the request. The maximum is
determined by the subsystem but may not exceed 77B.

If a call is issued with auto-recall, the user’s program is not restarted until the C field has been set.

A subsystem can call another subsystem as long as this does not result in a circular chain reaction. An SCP
cannot make a call to itself, unless bit 12 of the RT field is set. An attempt to call itself without bit 12 set -
can result in a subsystem hang. '

SYSTEM CONTROL POINT INTERFACES

Three types of system communication interfaces are unique to subsystems:
Subsystem notification to the operating system that it is entering active status, subsystem request
acknowledgement, special requests to the operating system allowing the subsystem to: have access

to the UCP field length, control and forward accounting data, obtain UCP swap and error status,
transmit dayfile messages and error conditions to the UCP, and exit from active status.

60306500 K 2-21 -

Subsystems should use a symbolic reference for SCP locations and operations (e.g. refer to RA.SSID not RA+50;
to SF.READ not 10).

REQUESTING ACTIVE STATUS
Subsystem notifies the operating system that it is entering active status.

The operating system does not recognize an SCP until a subsystem is loaded and ready to enter SCP status. The
subsystem puts its name and code in RA.SSID (RA+50), which is used by the operating system to identify the
subsystem and must be maintained at all times. A CALLSS macro using automatic recall is then executed with
the ssid field equal to SS.SYS.

Prior to assigning SCP status to the requesting control point, the operating system validates the following:

Request is made with recall
Program is called by a system origin job
Subsystem name in RA.SSID matches that in the corresponding subsystem control table entry

The same subsystem is not in SCP status at another control point and the maximum number of SCPs
has not been reached

If any of the above conditions are not met, an appropriate diagnostic message is entered in the dayfile and
the job is aborted. Once the -operating system has assigned SCP status to the subsystem, the C field is set if 1.

If RT bit 13 is set, failure to meet either of the last two tests will not abort the job but will set the
following codes in bits 6-11 of the ES field:

04 - Another control point has SCP status for this subsystem

05 - There are already nine control points with SCP status

The format of SCP word RA.SSID is:

59 17 0

[— SSPN SSCODE

SSPN is the subsystem program name and

where

SSCODE is the identification code (SS.XXX).

2-22 60306500 L

SUBSYSTEM REQUEST ACKNOWLEDGEMENT

A word in the SCP field length, RA.SSC (RA+51), is set by the subsystem and used as a pointer to indicate where
incoming requests from the UCP are put. The format of RA.SSC is:

59 53 35 17 [

1] oo XP ::/ LP AP

where

AP is the address of the UCP parameter area
LP is the length of the request parameter area
VF is the variable move flag
| XP is the UCP exchange package address

I is an interlock bit

I is set by the operating system when a request has been placed in the parameter area. It is cleared by the
subsystem to acknowledge that the request has been received. When the bit is cleared, AP points to a param-
eter area in which the subsystem is prepared to receive the next request. After clearing I, the subsystem should
not attempt to rewrite RA.SSC until the next request has been received.

If it is necessary to force a request, it is possible for a subsystem to call itself if bit 12 of the RT field is
set. Attempting a call to itself without this bit being set can result in a subsystem hang.

If I is set at the time of the request, one of the following actions is performed, depending on bit 12 of the
RT field:

return control to the UCP and indicate a busy status in the ES field (RT=1) or
hold the request and periodically attempt to give it to the SCP (RT=0).

The word at the address AP has the following format:

47 . 23 . 17 [t

Reserved for

Installation Reserved for .CDC STAT ADDR

ADDR is the same as the address in the CALLSS macro. This is a relative address within the UCP field length.
STAT is zero if the call is from a user; 1=normal termination of UCP, 2=error termination of UCP.

AP+1 is the job identifier whose format is:

59 17 0

Job name Job -ordinal

60306500 K 2-23

AP+2 through AP+LP-1 (minimum value of LP is 2) contains LP-2 words which are from the UCP parameter
list starting at ADDR. The UCP parameter list address is taken from the CALLSS macro call.

If the VF bit is set, the length of the move is determined by the WC field in the UCP parameter word. If
WC+3 is greater than LP, only LP words will be moved in.

If XP is non-zero, the UCP exchange package is stored in the 16 words starting at XP.

SPECIAL SUBSYSTEM REQUESTS TO THE OPERATING SYSTEM

A subsystem at the SCP has the capability of making special requests of the operating system. These special
requests, called ‘Subsystem Functions (SFCALLs), are allowable from an SCP only. If an SFCALL is issued
from a non-system control point, the control point is aborted with the error message PP CALL ERROR.

The SFCALL macro call has the following format:

label SFCALL addr,recall
where
label is an optional statement label.
addr is the address of an SFCALL parameter word pair (see below). This. parameter can be a
register.
recall if nonblank, the job is put into automatic recall. Although this option is allowed,

its use by a subsystem is discouraged.

A typical format of the SFCALL parameter word pair is:

59 53 41 23 17 5 0
RC FP UCPA SCPA FC
JNAME JOo
where
RC is the reply code
FP . is the function parameter

UCPA is the relative address within the UCP
SCPA is the relative address within the SCP

FC is the function code (an even number, incremented by one when the function has been
completed)

2-24 60306500 L

JNAME
JO

If a parameter error prevents the processing of the function, RC will be set to a value in the range 40-77.

is the job name and

is the job ordinal (JDT or CP)

The following list of SFCALL return codes (RC) gives all codes which have been defined. Not all of these I

codes apply to the SCOPE operating system. Codes 40-77 indicate that the function was not processed.

Return
Code

00
01-33
34-37
40
41
42
43
44
45
46-56
57
60
61
62
63
64
65
66
67-73
74-77

Meaning

No error encountered

Trivial errors (Reserved for CDC)
Trivial errors (Reserved for installations)
At least one error encountered in list
Job identifier invalid

SCPA not within the subsystem FL
UCPA not within the UCP FL

User job swapped out

User job not in system

(Reserved for CDC)

Connection previously established
Connection rejected

Connection not previously established
Word transfer too long

UCP not established with subsystem
Subsystem not established with receiver
Attempt to set illegal error flag

Illegal dayfile processing flag

(Reserved for CDC)

(Reserved for installations)

Possible return codes for each SFCALL function are:

Return Code
Function | 40 41 42|43 44 45 57160 61 62|63 64 65| 66
SF.REGR X X X X X
SE.TIME X
SF.ENDT X [X X X X
SF.READ X [X X X X | x
SF.STAT X X
SE.WRIT X |[X X X X | x
SE.EXIT
SE.SLTC X X X | x X
SF.CLTC X X X
SF.SWPO X X
SF.SWPI X
SF.LIST X X X X
. 60306500 L 2-25 -

The function codes (octal) used with SFCALL are as follows:

SF.REGR (02) Place message into the UCP dayfile and abort the UCP.
SE.TIME (04) - Obtain accounting data for SCP
SF.ENDT (06) Indicate end of task to UCP

SF.READ (10) Read from UCP field length

SF.WRIT (1‘4) Write to UCP field length

SF.STAT (12) Request status of UCP

SF.EXIT (16) Exit from SCP status

SF.SWPO (24) Indicate UCP as candidate for swap-out
SF.SWPI (26) Request swap-in of UCP

SE.SLTC (30) Set the long-term connection indicator
SF.CLTC 32) Clear the long-term' connection indicator
SE.LIST (34) Process a list of SF.xxxx functions

(SF.SWPO and SF.SWPI are not implemented. They are treated as unknown functions (RC=47)).

SF.INS1-4 (7OB, 72B, Reserved for installations.
74B, 76)

SF.REGR — REGRETS

The SF.REGR function code places a message into the dayfile of the UCP and/or aborts the UCP. It has the
following format.

59 53 41 23 17 6 Q

RC FP UCPA SCPA 02

JNAME JO

Definitions of the function codes are:

UCPA =0 do not abort the UCP
UCPA # 0 abort the UCP. UCPA may have the following nonzero values:

F.SExx (1) - General subsystem error
F.SEHU (2) - Hostile user error

SCPA =0 no message
SCPA # 0 address of a message that is to be sent to the UCP dayfile

FP dayfile processing flags. The following is a list of the symbolic values and their meanings
as defined for the FP field: :

F.SYCP to system dayfile, control point dayfile
F.NMSN not to control point dayfile

2-26 : 60306500 L

F.INMN not to control point dayfile, job name in message

F.CPON to control point dayfile only

F.ACFN accounting message to system dayfile only

F.AINN accounting message to system dayfile only, job name in message
F.ERLN to error file only

F.EINN to error file only, job name in message

SF.TIME — ACCOUNTING

The SF.TIME function code allows the SCP to obtain the accumulated accounting totals at its own control point.
The format is:

59 23 17 5 0

Unused SCPA 04

where

SCPA is the relative address within the SCP of a word block for raw accounting data.

The accounting totals are returned to SCPA through SCPA+5:

SCPA+0 CPA time
SCPA+1 CPB time
SCPA+2 1/0 time
SCPA+3 CM field length
SCPA+4 ECS field length
SCPA+S PP time

The symbol L.SACT must be used by all subsystems to define the word block lengths (e.g., BSS LSACT). It
allows an installation to add a specially defined area to the word block by modifying the symbol and reassembling
the subsystems using this symbol. The operating system is not responsible for setting or clearing the installation
area. .

When an installation defines one or more words for installation usage, these words must be located by using the
last address of each word block (first + L.SACT-1) and referencing installation words backwards from this address.

Since the data delivered to this area varies among operating systems, a module must be provided for each operating
system to process this area.. Multitasking users can use the data in this area to charge a particular UCP for the
SCP resources used in processing the UCP’s task. The resource data sent to the SCP can be the accumulated
totals. The subsystem at the SCP has the responsibility for storing the previous totals of used resources and for
calculating the differences.

60306500 L 2-27

SF.ENDT — SUBSYSTEM TASK COMPLETE

The SF.ENDT function informs the operating system and the UCP that the subsystem task has been completed,
and allows the SCP to distribute the accumulated resource costs back to the UCP. Its format is:

59 M 23 17 5 0

Unused UCPA SCPA 06

JNAM JO

where

UCPA is the relative address within the UCP of the request status word of the task being performed

SCPA is the relative address within the SCP of a word block of raw accounting data. The content is
the same as specified by the SF.TIME function.

If UCPA > O:

Set bit zero of the word at UCPA. (Restart UCP if auto-recall was selected). Reduce the request count
by one.

If UCPA = 0:
Do not set complete bit (bit 0). Reduce the request count by one.
" If UCPA =-1:

Do not set complete bit. Reduce activity count to zero no matter how many requests are outstanding.
(This activity count is the number of requests from the UCP (‘JOBID’) to this subsystem.) Clear the long
term connection bit if it is set.

If UCPA < -1:
Return error 43.

If SCPA # 0 compute resource usage based upon the data provided at SCPA. The resource accumulators at the
UCP are incremented with this computed resource data. The core seconds that are computed and added to the
UCP are based on the SCP field length at SCPA+3. An SCP that is multi-tasking should not charge a single user
for the full SCP field length, but use a somewhat smaller value in this field. Each of these fields can be passed
to the SF.ENDT function exactly as returned to the SCP by the SF.TIME function, or they can be adjusted as
required by the SCP. At a later time, the normal computation of the core seconds at the UCP includes the CP
and I/0 time of the SCP. The result is that the effective field length of CP and 1/O time used by the SCP is the
sum of the UCP and SCP field length.

SF.READ and SF.WRIT

SF.READ will move FP words from the UCPA to the SCPA whereas SF.WRIT will move FP words from the
SCPA to the UCPA.

2-28 60306500 L

The format of SF.READ and SF.WRIT is as follows:

59 53

41

23

17

(22

RC

Fp

UCPA

SCPA

10/14

JNAME

JOo

If RC = 42B, the SCPA or SCPA+FP is outside the SCP field length; the SCP is aborted. If RC = 43B, the

UCPA or UCPA+FP is outside the UCP field length.

Transfers of large blocks of data between the UCP and SCP should be avoided because they may cause significant

system response delays. Block transfers take place when the UCP calls an SCP or when an SCP makes an
SF.READ or SF.WRIT request to read or write data to the UCP field length. Generally, no block transfer
should attempt to transfer more than 64 words in one request or call.

SF.STAT — STATUS

The SCP uses the SF.STAT function to request the current status of the user job. The RC and
FP fields are used for reply.

RC =0

will be returned in FP as follows:

The UCPA and SCPA fields are not used, but should be set to zero in case optional uses are assigned in

the future.

SF.EXIT — EXIT FROM SCP STATUS

L Request Count
Long Term Connection Bit

The UCP is not swapped out or being swapped out. The state of the connection indicator

SF.EXIT will remove the SCP from SCP status. The following actions should be taken in the order specified:

make an SF.EXIT call,
clear RA.SSID,
ENDRUN or ABORT.

60306500 L

2-29

SF.SWPO _— SWAP OUT

SF.SWPI — SWAP IN

SF.SLTC — SET LONG TERM CONNECTION

SF.CLTC — CLEAR LONG TERM CONNECTION

These functions, along with the SF.ENDT described previously, control the setting and clearing of bits in the

Inter-Job Connection Table (T.IJCT). The T.IJCT is a part of the Subsystem Control Table (T.SSCT) used to
define and control SCP status.

Each user job has a corresponding word in the T.IJCT that contains nine connection control fields. When a
control point is assigned SCP status, it is assigned one of the nine fields in each T.IJCT word. The connection
control field contains the following connection indicators: '

WAIT RESPONSE COUNT (alternately called Request Count)

This three bit field contains the number of unanswered requests submitted to the SCP by the UCP. The
count is incremented each time a CALLSS request is passed to the SCP and decremented by an SF.ENDT
function with UCPA¥0.

LONG TERM CONNECTION

This bit is set by SF.SLTC and cleared by SF.CLTC. An SCP sets this bit to be notified when the UcCP
is terminating because of either an ENDRUN or any abnormal termination. The method of notification
is described below under End Processing for UCPs.

SWAP OUT REQUESTED BIT

This bit is set by the SF.SWPO and cleared by the SF.SWPI. If the swap out bit is set in any one of
the connection control fields for a user control point, that job is treated as if its central memory time
quantum has expired. This causes it to be swapped out unless it is locked in or there are no other jobs
in the CM queue that could use the memory that would be released by swapping it out.

While a job is swapped out, it is not aged as long as any of its connection control field swap out bits

remain set. When an SF.SWPI function causes the swap out bit to be cleared, the UCP is artificially
aged so that it can be swapped in again promptly.

2-30 60306500 K

Subsystems should use the SF.SWPO and SF.SWPI carefully because misuse can cause unnecessary and inefficient
swapping among its user jobs.

Neither the wait response count nor the long term connection is considered when a job is selected to be

swapped out. If, however, any of the connection control fields has a nonzero wait response count and the

swap out bit is not set, the swapping of that job will be delayed for over one second, if necessary, to give
the subsystem a chance to complete the request before the user job is swapped out.

An SF.SWPI function is not set complete until the swap in has been completed. If the swap out request bit
is set for a different SCP, the UCP will remain a good candidate to be swapped out again. The existence of
a wait response can, however, guarantee that it will be held at a control point for at least one second.

END PROCESSING FOR UCPs

If a program running at a UCP is terminated while there is a long term connection or a nonzero wait response
count, the SCP is notified in the form of a two word call to the SCP. The STAT field in the word at AP+0
is used to identify the termination notification. If the UCP was terminated by an ENDRUN, the STAT ficld
contains the value one. In the event of an error condition the field contains the value two. All normal calls
from the user contain a zero.

When a subsystem receives termination notification, it should complete all requests as quickly as possible,
issuing an SF.ENDT for each wait response and an SF.CLTC if the long term connection is set. Until this is
done, the termination notification is repeated every two seconds and the message CONNECTED TO scpjobname
is flashed at the UCP on the B display.

If the subsystem is unable to complete the outstanding requests, it should issue an SE.ENDT to that UCP with
a minus one (777776B) in the UCPA field to unconditionally release the UCP.

If the CONNECTED TO scpjobname continues to flash for an extended period of time, it can be assumed that
the SCP is not functioning correctly. The SCP and all of its connected UPCs can be terminated by an operator
drop on the SCP.

NORMAL SCP TERMINATION
The following steps should be taken to terminate execution of a subsystem.

Stop accepting any requests.

Complete processing any requests already received.

Issue an SF.EXIT. ‘

Do an ENDRUN.
To force a subsystem to stop accepting requests, the user can have the subsystem send a dummy request to
itself. The RT bit (bit 12) must be set whenever a CALLSS is issued. If bit 2 of the ES field is set, the
operating system has delivered a request from another UCP, which must be processed along with any other

uncompleted requests before the SF.EXIT is issued. The operating system will set the LK bit in RA.SSC and
will not send any more requests as long as LK is not cleared.

60306500 L 2-31

ABNORMAL SCP TERMINATION

A subsystem should make use of the RECOVR capability (see SCOPE Reference Manual) so that the subsystem
will be reprieved if an error condition occurs. During reprieve processing it can attempt to complete all out-
standing requests so as to cause as little user interruption as possible. The subsystem retains SCP status during
reprieve processing.

If a subsystem has completed reprieve processing or was not reprieved and attempts to terminate without
issuing the SF.EXIT, the operating system performs the SF.EXIT and issues the message SYS CTL PT STATUS
CANCELLED.

When performing the SF.EXIT function, the operating system determines if the SCP still has any long term
connection or active wait response counts with a UCP. If there are any, the following actions will be performed
by the operating system. ’

SCP is aborted with the message EXIT - WITH CONNECTIONS.

The wait response counts and long term connections are nullified.

The message subsystem name ENDED BY SYSTEM is sent to the UCP dayfile.
UCP is aborted.

SF.LIST - PRESENTS A LIST OF SF.xxxx FUNCTIONS

The multiple request capability is invoked through the use of the function code SF.LIST. The format of the
SFCALL parameter word pair in this case is:

59 53 41 23 ‘ 5 0

RC FP 0 SCPA 34

JOBID

RC = Reply Code
FP = Number of entries in the list.

SCPA = First word address of the contiguous parameter list.

When usingv the list function, the entries in the list are each one word in length. The entry consists of the

first word as described for each function. Only one UCP may be addressed for each list processed and this

is the UCP indicated in the SF.LIST word pair. An SF.LIST function may not be included as a member of
a list.

When the FC field is set complete by the operating system, the RC and FP fields must be examined for proper
action.

If FP = 0, the entire list has been processed by the operating system. If FP is nonzero, processing of
the list was abandoned and FP contains the number of entries remaining in the list. SCPA is set to the
address of the first entry in the remaining list. The subsystem reissues the SF.LIST call by resetting the
FC field and executing the SFCALL macro until FP = 0.

2-32 60306500 L

The operating system will set the RC field only if an error is detected. Multiple issues of the same
SF.LIST request (until FC is set complete and FP is zero) accumulate error returns whether or not
the entire list is processed on one SFCALL.

Special conditions and notes.

A. The operating system will abort the SCP during SF.LIST processing if a fatal error occurs in the
SFE.LIST, or in any member of the list.

B. The detailed error conditions must be determined by examining the individual list entries whenever
the SF.LIST RC field equals 40B.

C. The individual functions are handled in exactly the same way whether or not the list mode is
enabled.

D. Error status 42B when SCPA is illegal means none of the list entries have been processed. This
check is made prior to initiating the list process.

E. Error status 42B when FP = 0 means that none of the list entries have been processed on this
call. If the subsystem improperly handles the FP = 0 condition, the entire list may have been pro-
cessed prior to the subsystem abort.

F. List entries are processed sequentially by the operating system and those entries detected as
erroneous for any reason are considered completed. It is expected that in most cases the entire
list will be processed on one SFCALL. The option of abandoning the list is provided to allow the
operating system to take corrective action if it decides that either the length of the list, the
complexity of the processing or other reasons have caused (for example) an excessively long
uninterruptable interval.

G. If the SCP is aborted due to an error in one of the list entries other than the SF.LIST, RC = 40B,
SCPA and FP are updated and FC is set complete. The proper return status is also placed in the
offending list entry.

H. The functions SF.REGR, SF.SWPI and SF.EXIT are performed by a PP program instead of
CPMTR. When any of these are included in a list, processing is transferred to the PP for that
function. When it is completed, the list is abandoned rather than attempting to transfer processing
back to CPMTR. To process the remainder of the list it is necessary to reissue the SF.LIST function.

HOW TO DEFINE A SUBSYSTEM

The CMR symbol N.SBSYS determines if T.SSCT is assembled in CMR. The default value is zero which causes
T.SSCT not to be assembled. N.SBSYS is the maximum number of subsystems that may be defined. If set to
a nonzero value, that value must be at least 10B. Installations that want to define their own subsystems should
use position ordinals 10B-17B.

"The SSCT macro is provided for defining subsystems. The macro has three parameters.

SSPN Subsystem program name
SSCODE Position ordinal for the subsystem
PUF Permit User Files

SSCODE is the unique code that identifies the subsystem and determines the position within T.SSCT at which
the defining entry is assembled. Its value may not be greater than N.SBSYS. This is the same code that the

60306500 K 2-33

subsystbem uses in RA.SSID when it requests system control point status. It is also used as the ssid for the
CALLSS macro, to identify which subsystem is to be called.

If the PUF parameter is omitted, the subsystem program must reside in the system library or it will not be
granted system control point status. The PUF parameter should only be used during subsystem development.

PROGRAMMING TIPS

A system control point runs at a very high CPU priority level. When it receives a request from a user, the
CPU is immediately assigned to process the request. In most cases the CPU will not be reassigned to any of
the lower priority jobs until the SCP releases it by issuing an RCL. If the SCP uses the CPU inefficiently,
monopolizing it for long periods of time, the throughput of the whole system will suffer. When subsystem
action is blocked waiting for actions from other parts of the system, the CPU must be relinquished.

It is also important that the subsystem be ready to accept and process requests from other users. Before
issuing an RCL, it should be certain that the LK bit is not set, indicating that it is ready to receive a new
request. The autorecall bit should not be used in any RA+1 call from an SCP because an autorecall status
would prevent it from: responding to new requests as they come along.

7234 60306500 L

PERIPHERAL PROCESSORS AND SCOPE -3

PERIPHERAL PROCESSOR ORGANIZATION

When SCOPE 3.4 is loaded into the computer at deadstart time, system monitor, MTR, and the system dis-
play program, DSD, are loaded into peripheral processors 0 and 1, respectively, where they reside permanently.
All peripheral processors in the system contain a group of permanently assigned storage locations called the

PP direct cells; the contents of the direct cells are not guaranteed from one PP overlay to the next. Each

PP (except PPO and PP1) contains a copy of the PP resident program which handles common service functions I
for the PP programs that may be loaded into the unassigned pool processors.

PP programs are loaded into a pool processor by the PP resident and remain in a PP only until they have
completed a specific function. When loaded, the program may load additional overlays to help complete its
function; on completion, the program may be overlaid by another transient program loaded by PP resident
to perform another, often unrelated, function. Figure 3-1 shows a typical layout of a pool PP loaded with
a transient PP program and an overlay. The PP direct cells occupy locations 0 to 77; the PP resident is
loaded starting at location 103 to approximately 777. The remainder of the PP is occupied by PP transient
programs, except for PPO and PP1 which contain MTR and DSD, respectively.

60306500 L 3.1

Specific assignment of the PP direct.cells is detailed in the following chart.

0
Direct Cells
Pointer to input register 74 D.PPIR
Pointer to message buffer 75 D.PPMES1
* Control point address 76 D.CPAD
* Pointer to PP status word 77 D.PPSTAT
* Field access flag 100
* Reserved 101
* Reserved 102
. 103
PP Resident
773
Transient Programs
1773
?r Secondary Overlays ‘:’,7
Z 4
7777

Figure 3-1. Pool PP Layout

* Cells 76 - 102 constitute the five bytes of the PP status word in central memory.

60306500 K

PP DIRECT CELL ASSIGNMENT

Octal

—~
-~

NV AW -

32

37

40
45
46
47
50
55
56

57
60

62

64

60306500 L

ldentifier

D.Z20
D.ZI
D.Z22
D.Z3
D.z4
D.Z5
D.Z6
D.Z7
D.TO
D.TI

D.T3
D.T4
D.TS
D.T6
D.T7
D.FNT/D.TW0

D.EST/D.JPAR
D.TH2

D.DTS/D.JFL
D.TH?
D.BA/D.FRO
D.JECS/D.FRS
D.JPR/D.FR6
D.JTL/DFR7
D.PPIRB/D.FF0
D.RA/D.FF$
D.FL/D.FF6

D.FA/D.FF7
D.FIRST/D.SX0

D.IN/D.SX2

D.OUT/D.SX4

DT25 PP output register buffer

Function

Temporary
storage

D.FNT through D.FNT+9 contain words 2 and
3 of the FNT, referred to as the file status table
(FST).

D.EST through D.EST+4 contain the EST entry in
process. D.JPAR contains a job parameter word.

D.DTS contains device type code in left 6 bits
and allocation type code .in right 6 bits; D.JFL
contains CM field length requirement returned to
caller by 2TJ.

Contains first word of FET in D.BA through
D.BA + 4 (buffer address).

ECS field length returned by 2TJ to caller.
Computed job priority returned to caller by 2TJ.
Job time limit returned to caller by 2TJ.

D.PPIRB through D.PPIRB +4 contain PP input
register contents.

Reference address divided by 100 (octal) control
point to which PP is attached. ,

CM field length divided by 100 (octal) for job at
control point to which PP is attached.

Address of second word of FNT entry in process.
This and next cell contain 18-bit CM address of
word FIRST in circular 170 buffer.

This and next cell contain 18-bit CM address of
word IN in circular 1/0 buffer.

This and next cell contain 18-bit CM address
word OUT in circular 170 buffer.

Octal Identifier Function

66 D.LIMIT/D.SX6 This and next cell contain 18-bit address of word
LIMIT in circular 170 buffer.
70 D.PPONE/D.SVO Preset to constant value plus one (+ 1).
71 ' D.HN/D.SVI Preset to constant value + 100 (octal).
72 D.TH/D.SV2 Preset to constant value + 1000 (octal).
73 D.TR/D.SV3 Preset to constant value + 3.
74 D.PPIR/D.SV4 PP input register address.
75 D.PPMES| Address of first word of PP message buffer.
76 D.CPAD Address of control point area in use by PP.
17 D.PPSTAT Pointer to PP status word.
100 Field access flag.
101 Channel time in seconds.
102 Channel time in milliseconds.
PP COMMUNICATIONS

For each pool PP, CMR has an area used for communication between the PP monitor and the PP. Each
area contains a PP input register and a PP output register, each one CM-word long, plus a six CM-word
message buffer. In section 2, Figure 2-3 is a diagram of a PP communications area.

When a PP is idle, the input register in the communications area contains zero. When PPMTR assigns a PP
to load and run a transient PP program, it will load a request word into the assigned PP input register.
Figure 3-2 shows the format of a PP input register for a transient program called from a CP program.
CPMTR will have inserted the requesting program’s control point number into bit 36-39 of the word and
cleared bit 41. Bits 0-35 appear in the input register exactly as they did in RA+1 of the requesting CP
program.

59 41 39 35 0
Program Name H cp
In r No. Parsmeters
Display Code *
L Recall flag
— = 0 if RA + 1 call

= 1 if internal call

Figure 3-2. PP Input Register

34 60306500 C

The PP resident in each PP constantly scans its own input register. When it becomes non-zero. the PP resident
isues the M.ICE monitor request with EX.PLIB function code and the program name. A search is made for
the program in the CMR library directory and the program is prepared for loading. The PP will load the tran-
sient program at location 773 and store the address of the control point area to which the PP is assigned in
direct cell D.CPAD, then transfer control to location 1000 to start execution. If the transient needs to load an
overlay, it calls a subroutine in the PP resident. PP resident loads the overlay. Since the input register is not
cleared until the PP becomes idle, parameters transmitted by PPMTR in the input register can be read by the
transient program and/or any overlay. When the PP transient program has completed its function, it sends a
request to PPMTR to drop the PP. PPMTR will clear the PP input register and record the fact that the PP is
idle and that another program can be loaded into the PP. The transient program terminates by executing a
jump to the idle loop of the PP resident which scans the input register for the next assigned task.

When PP resident has a monitor request, it places a message into the PP output register in the PP commu-
nication area. The leftmost byte contains a number which identifies the function requested; other bytes may
contain parameters for the request. Additional information or parameters for the request may be placed in
the message buffer in the PP communications area. After making the request, PP resident waits for the first
byte of the output register to be set to zero, signalling that the monitor has processed the request. If
CPMTR or PPMTR need to communicate with the PP about the request being processed, it will store the
necessary information in the remaining bytes of the output register.

PP RESIDENT
The PP resident program performs two main functions:
Handles all communication between MTR and the transient and/or overlay program
Loads transient programs and overlays and initiates execution of these programs
The PP resident is made up of a series of routines, each of which performs a specific function. (See figure

3-3.) These resident routines are used by the transient and overlay programs as required. The routines, their
names, locations, calling sequences and functions are described below.

60306500 F 35

Field Access Flags

PP vResident Idle Loop ’

Load Primary PP Overlay

Request Access to Control Point Field Length

Terminate Access to Control Point Field Length

Compare Accumulator to Field Length

Process Monitor Function

Wait for Output Register to Clear

Reserve Channel

Drop Channel

Mask a Byte into Specified Words

Load PP Overlay

Access Request Stack Entry

Transmit Dayfile Message

Transmit Data To/From PPU

Read/Write Logic (Disk)

Read/Write Segments (Non-disk 1/0)

Figure 3-3. PP Resident Routines

R.FAF
R.IDLE

R.OVLJ

R.RAFL
R.PAUSE

R.TAFL

R.TFL

R.MTR
R.PROCES

R.WAIT
R.RCH

R.DCH

R.STBMSK
R.STB

R.OVL

R.EREQS

R.DFM

R.WRITEP
R.READP

R.RWP

60306500 L

R.IDLE PP Resident Idle Loop
Calling sequence: LIM RIDLE
In the idle loop. PP resident continually scans its input register for an assigned task. R.IDLE destroys direct

cells 20 through 22 and some of the temporary storage cells: R.OVLJ and all other PP resident routines
destroy only the temporary cells 0 through 17.

R.OVL) Primary (transient program) Overlay Loader
Calling sequence: Store name of overlay left-justified in D.T6, D.T7
LJIM R.OVLJ

When this routine is called, the resident loads a new primary overlay at CPPFWA minus L.PPHDR and
transfers control to location C.PPFWA.

R.OVL Overlay Loader
Calling sequence: Load A register with load point address
RIM R.OVL

The M.ICE monitor function with EX.PLIB function is issued along with the overlay name found left justified
in D.T6 and D.T7. The overlay is found and prepared for loading. After issuing the request, PP resident waits
for byte 0 of the PP output register to become zero and for word 3, byte O of the PP message buffer to
become non-zero.

If the value of word 3, byte 0 of the PP message buffer is 1, the overlay is disk resident. The stack request
has alrcady been issued by CP.MTR; therefore the resident establishes communication with the assigned stack
processor and acquires the overlay through a channel. If the value is 5, the overlay is CM resident. The CM
address of the overlay and length are given in the same PP message buffer third word. PP resident reads in

the overlay. If the value if greater than 5, the overlay is ECS resident. The PP output register and the first
four words of its message buffer are used for further communication between CP.MTR and the resident. The
overlay is loaded from the CM data buffer area or directly from ECS through DDP according to the type of
assigned System circular buffer.

R.READP Transmit Data Via Channel from Stack Processor
R.WRITEP ' Transmit Data Via Channel to Stack Processor
Calling Sequence: Load L(request)

RJM R.READP (R.WRITEP)

Computes PP word count from first and last word addresses given in the request formatted at the request
location and adds the computed word count, the address of the PP message buffer, and the control point
number to the request. The request is entered in the stack, and data is transmitted via channel directly to/
from PP memory. Upon exit from R.READP (R.WRITEP), the following information is set:

(D.T3+C.RWPPLW) LWA + | of data transmitted
(D. T3+ C.RWPPST) "~ Upper 6 bits of status

60306500 K 3-7

(D.T3+C.RWPPWT) Number of PP words transmitted

(D.T4+C.RWPPST) - Lower 12 bits of status

R.RWP Special entry point to R.READP used by LDR.
R.RWPP Word in R. READP modfied by LDR.
R.EREQS Enter Stack Request

Calling Sequence: Store L(request) in D.TO

RIM R.EREQS
This routine adds the control point number to the already formatted request and searches the central
memory request stack for an empty entry. The monitor function, M.ICE/EX.SPM is called, and PP resident
iterates until MTR accepts the request. If the available flag is set (S.STF +8S. STFA of byte C.STFB of the
second word of the request), R EREQS exits to R.IDLE. Otherwise, it returns control to its caller.
R.RAFL Request Control Point Field Length Access
Calling Sequence: RIM R.RAFL

The storage move flag for the control point is tested. If set, a call is made to R.TAFL; when clear, the field
access flag in the PP status word is set, the RA in D.RA is reset, and the FL in D.FL is reset.

(R.PAUSE is the same as R.RAFL.)
R.TAFL Terminate Control Point Field Length Access
Calling Sequence: RIM R.TAFL

This routine is called to clear the field access flags in the PP byte R.FAF and in the PP status word.

R.TFL _ Test Field Length
Calling Sequence: Load relative address
RIM R.TFL

This routine ensures that a relative address is within the field length limits. The 18-bit address is added to the
control point reference address and compared with the field length. If the resultant address is out of range,
R.TFL exits with a zero A register; otherwise, the A register will contain the resultant absolute CM address
(RA + relative address) upon exit. A call to RRAFL sets a flag which enables R.TFL to return a reliable
result. R.TAFL clears the flag. Therefore, the transient and its overlays must not call R.TFL until R.RAFL
has been called.

38 60306500 L

R.MTR .Process Monitor Function
(R.PROCES is identical with RMTR)

Calling Sequence: Store function parameters in D.T1 to D.T4
Load function code

RIM R.MTR

Places the function code in D.TO, writes D.TO through D.T4 to the output register, and waits for the output
register to clear via a call to R.WAIT.

R.WAIT PP Wait Loop

Calling Sequence: RJM R.WAIT
Determines if the monitor function is for MTR or CPMTR. If the MXN instruction is not available,
R.WAIT is modified at deadstart causing R.WAIT to assume that all functions are for MTR. If the function
is for CPMTR, the PP input register address is written into T.PPID and T.MXNCTL is read in and

executed. If the function is for MTR the input register address is written in T.PPIP.

After either action, R.-WAIT idles until byte zero of the output register is cleared.

R.RCH Request Channel
Calling Sequence: Load channel numbers
: RIM R.RCH

Channel numbers loaded in the A register will be stored in D.T1, the monitor function M.RCH inserted
into D.T4, and then D.TO through D.T4 will be written to the output register for that PP. Channel numbers
in D.T1 and D.T2 will be assigned by monitor on the following priority basis:

' D.TO D.T1 0.T2 D.T3 D.T4
‘ @ 1 o | @@ ‘ R

The highest priority is given to the channel number in the rightmost 6 bits of D.T1; the second highest to
the channel number in the leftmost 6 bits of D.T1, etc.

When assigning alternate channels, monitor will discontinue its search of D.T1 and D.T2 when it encoun-
ters 6 zero bits. If only one alternate channel is wanted, the programmer must clear D.T2 before calling
R.RCH. As an example, the coding for requesting primary channel 12 alternate channel 13 would be:

LDN 0
STD D.T2
LDC 1312B
RIM R.RCH

Normally, MTR will stop looking for alternate channels after four have been investigated; in the above
example, only two channels will be investigated.

60306500 K A 39

When R.RCH is called, the function is not considered complete until byte 0 of the output register is cleared,
which signals that a channel has been assigned.

If an M.RCH channel request is made directly to R.MTR, additional action is taken. If MTR cannot assign
a channel, it moves byte 4 of the output register to byte 0 and signals the requesting PP in byte 4 of the
output register to wait unitl the channel is assigned.

R.DCH Drop Channel
Calling Sequerice: Load channel number
RJM R.DCH

The specified channel will be dropped. Since more than one PP can request the same channel at the same
time, a MTR request must be used to reserve a channel. Only the PP reserving the channel can release it by
making a R.DCH call; the function will modify the CST entry for the channel to indicate that it is free.

R.STBMSK

Address in PP resident of a logical mask used by R.STB routine. This mask is initially 7700 octal; the value
should be restored by any routine which substitutes an alternate mask.

R.STB Store Byte
Calling Sequence: Load L(List)
' ' RIM RSTB

List has the form:

L(BYTE)
L(WORD1)
L(WORD?2)

-

L(WORDn)
ZERO

A logical AND is performed on the mask at location R.STBMSK for each word in the list before the word
is exclusive-ORed with word BYTE. R.STB is used primarily to substitute channel numbers in driver
overlays.

R.DFM Enter Dayfile Message
Calling Sequence: Load L(message) + flag bits
RIM R.DFM

3-10 60306500 G

A message is written to the dayfile and/or displayed on console. The flag bits in the high-order 6 bits of
the A register are used to determine message destinations. In the flag bit values given below, one or more
bits may be on; all are optional. Refer also to M.DFM.

- Bit Description
0 Do not send message to B display
1% Do not send message to control point dayfile
2+t Do not send message to system dayfile (A display)
3 Flag the message as an accounting message
4% Send the message to the hardware error file
5tf Do not put the job name in the message

FIELD ACCESS FLAG USAGE

The control point field access flag (R.FAF) is found at location 1008 in PP resident. A copy of the flag is
kept in CM in the PP status table entry (T.PPS1) for each PP. It is used by the PP to prevent storage
moves at a control point while the PP is accessing the control point’s field length. R.RAFL and R.TAFL
(refer to descriptions in the previous. section) obtain and release field access.

The field access flag must be set whenever data is read or written within a control point’s field length. If a
PP program is looping, waiting for an external event to occur, the loop must be performed while the field
access flag is not set, or the loop must include a call to R.RAFL. When no field access is required for a
major operation (such as searching a CMR table), it is advisable to call R.TAFL before the process.

Execution of the R.MTR subroutine or any resident routine that calls RMTR (that is, R.RCH, R.OVL,
R.EREQS, R.DFM, R.READP, R.WRITEP, and R.RWP) may result in a call to R.RAFL. If an absolute

CM address within a control point’s field length has been computed and saved, the address will be invalidated
because the control point may have been moved.

TIf bits 1 and 4 are set, the message is not sent to an INTERCOM control point dayfile, but is sent to
other control points.

TTIf bits 2 and 5 are set, the time is omitted and replaced with blanks in the control point dayfile. This
option is used to identify messages from a task that was executed on a different mainframe.

60306500 L : - 31

SCOPE SYSTEM MONITOR

The monitor performs a set of functions that must be performed by a program that is permanently resident.
Among these functions are:

® CPU scheduling

® Assignment of the PPs

® Channel reservations

® Time accounting

® Storage requests

e Other functions easily done by a centralized routine

The monitor is implemented as two distinct components. MTR, which runs continuously in PPO, and CPMTR,
which resides in central memory and uses the central processor intermittently for short bursts.

The monitoring tasks are divided between the two processors on a functional basis to distribute the work load
in the most efficient manner.

CPU SCHEDULING

A primary function of CPMTR is to assign the CPU to jobs at control points or to certain system programs
that execute in program mode. The CPU status of jobs is controlled by PPs or by the job itself. CPMTR
accepts requests for a change of status and records the current status as a set of bits in the control word

(W.CPUST) associated with each exchange package.

The most significant of these bits are:

w This bit is set by a M.RCP or M.SETST when a central program is loaded for execution;
it remains set until the program posts END in RA+1 or is aborted for any reason.

C&D These bits are set when the job is being executed in CPU A or B, respectively.

X The job is in periodic recall status because of an RCL request from the program.

Y The job is in auto-recall status and will not be restarted until the requested system
function is completed.

Z The job is suspended as it threatened to saturate the system with PP calls.

M,P&S Job execution has been temporarily suspended by storage move, checkpoint, or the job

swapper, respectively.

An exchange package exists for each control point, in addition to one for storage move and scheduler, and
one for each CPU idle program. An exchange package is ready to use the CPU if W is on and M, P, S, X,

312 60306500 G

SYSTEM JOB EXCHANGE PACKAGE AREA

Z

59 47 38 29 2 17 14 11 0
T.XPSCH J Exchange Package
for
% Scheduler snd Storage Move
W.CPSLIC C.CPSTAT C.CPSLIC "C.CPUPRI
W.CPUST . M p cenn C.CPLINK Next Active
W.CPLINK Stats Byte HeLc Control Point
W.CPTIME CPU-A Scheduler/Storage Move Time
W.CPTIMB CPU-8 Scheduler/Storage Move Time
W.PPTIME PPU Idle Time
-~ WXPIR' Scheduler Input Register
W.XPOR Scheduier Output Register
Sehaduler Only Scheduler Request Stack Table L.scv-‘msu
T.MTRRS CPMTR MTR Request Stack L.MT;KRSM
T.XPIDLA
CPU-A Idle Program Exchange Package
P=CP MTR {1f 1P, ECSB+0,
; FL=4000008 ECS FL=177777778
A B2=1 BS=L.ECSTK
87=0 A6~T.EPAGE)
W.CPSLIC C.CPSTAT C.CPSLIC C.CPUPRI
W.CPUST Status Byte M.RCLCP I C.CPLINK Next Active
W.CPLINK Time) Control Point
W.CPTIME CPU-A Idle Time
W.CPTIMB
W.PPTIME
W.XPIR) D L 3 1
< 2
T-XPIOLB {1 1P. MCPU*Z) CPU-B Idle Program Exchange Package
P=CP.MTR (If IP.ECSBFO,
FL=4000008 ECS FL=177777778
% 82=1 85=L.ECSTK =
87=1 A6=T.EPAGE) ,
W.CPSLIC CCPSTAT — [C.CPSLIC TccrupRi —
W.CPUST Status Byte _M.RCLCP s e C.CPLINK Next Active
W.CPLINK Time | Control Point
W.CPTIME ‘
W.CPTIMB CPU-B Idle Time
W.PPTIME
W.XPIR | D L E 2 '
Figure 3-4

60306500 E

3-12.1- @ .

Y, and Z are all off. CPMTR assigns the exchange package to the CPU on a priority basis. The priority used
is the CPU priority.

The CPU priority is a 6-bit field in fhe CPU status word. Priority levels, in ascending order, are listed below:

PR.IDLE Zero level default CPU job to be used only in the absence of any other
PR.BATCH Batch jobs initiated by 1IB

PR.INT INTERCOM jobs initiated by 1SI

PR.SCP System control point jobs initiated by DSD

PR.SYS Storage move and scheduler |

When more than one job is at the highest active priority level, they will share the CPU on a round-robin
basis. Each uses the CPU for BASESLIC milliseconds before control is passed to next.

This combination of priority and round-robin scheduling is overridden during the time that an RMS driver is
transferring data to or from a user’s buffer. If the user’s program is not in auto-recall, it is given a slice of
CPU time so that it can process the data as it is transferred. In this way, a low priority job may temporarily
preempt the CPU away from a high priority job. '

When CPMTR assigns the CPU to a job, the BASESLIC is added to the current time, to produce the projected
end of slice time. The end of slice time is posted in T.CPSTA (or T.CPSTB). When the time arrives, MTR
issues an M.SLICE function which causes CPMTR to select the next job for the CPU.

ASSIGNMENT OF THE PPs

PP scheduling is done by MTR. A PP can be requested by a CPU program through a call in RA+1, or by
another PP through an M.RPJ or M.EES monitor function.

MTR always reserves at least one PP for the RMS stack processors to ensure that the stack processor is not
locked out while all programs in the PPs are waiting for stack processor to access RMS. More than one PP
can be reserved for the stack processors. (See N.SPRPP in CMR.) MTR maintains three lists of PP calls
that are not currently assigned to a PP.

PP Job Queue. This is the overflow list where PP calls are placed when no PP is available. It is a first
in first out, ordered queue except for stack processors. A PP call that MTR identifies as a stack
processor will be added at the front of the list, pushing down all the members already in the list.

Delay Stack. This is a list of PP calls for the M.RPJ function with a nonzero time delay. They are
ordered in sequence of their time delay. When the delay is expired, they are removed from the delay
stack and assigned to a PP or added to the PP job queue if no PP is available.

Event stack. This is a list of PP calls for the M.EES function. It is searched periodically to find any

entries whose event has occurred. When one is found it is removed from the event stack and assigned
to a PP or added to the PP job queue if no PP is available.

60306500 G 3-13

MTR keeps the control values for these lists in PPO. The PP calls are kept in the peripheral job table (T.PJT)
in central memory. Each call consists of the input register and three words for the PP message buffer. When
a PJT entry is not in use, the input register word is set to zero.

CHANNEL RESERVATIONS

CPMTR processes channel reservations. The CPU is used for this frequently used function as it is easily
accessed from PP resident. If the requested channel is already busy, MTR periodically reissues the request
to CPMTR.

TIME ACCOUNTING

MTR uses the real time clock on channel 14g as the source for its time keeping duties. MTR maintains the
two basic system time clocks T.CLK and T.MSC. T.CLK is a 24-hour clock that gives the time of day in
hours, minutes and seconds. v

Bits 12-35 of T.MSC contain the total number of seconds since the last deadstart, expressed as a 24-bit
binary number. Bits 0-11 are the binary fractional parts of a second. Bits 0-35 contain a continuous binary
number recording the time as seconds times 4096, which is used as the accounting basis for CPU time, 1/0
time and PP time.

CPU time is compiled by CPMTR. Each time the CPU is rescheduled, the current value of T.MSC is re-
corded so that the elapsed time can be computed the next time the CPU is rescheduled.

MTR accumulates I/O time and PP time, except that portion for RMS devices. This part is accumulated by
CPMTR from a PRU count that is passed to it in the M.SPRCL function from stack processor.

STORAGE REQUESTS

MTR and integrated scheduler perform the memory management tasks in a synchronized procedure. MTR will
attempt to process storage requests. If storage is not available, MTR will initiate scheduler to determine if
storage will be made available. MTR will not attempt to process any storage requests while scheduler is
running.

CPMTR ORGANIZATION

CPMTR is the one central program that has no exchange package area of its own. It runs in monitor mode
and selects the user mode programs to be run next. When CPMTR is not running, its exchange package is
stored in the area reserved for the user mode program selected to be run. The user mode program makes a
system request by placing the system call in the word at RA+1 and performing a central exchange jump (XJ)
instruction. This reinitiates the execution of CPMTR and saves the register contents of the user mode pro-
gram in its exchange package area. :

PP programs also can direct system requests to CPMTR. Typically, they use the RMTR routine of PP

resident for such requests. R.MTR places the monitor function in its output register and then determines if
the function should be directed to CPMTR or to MTR. When calling CPMTR, the PP input register address

3-14 60306500 L

is written in T.PPID so CPMTR can identify the calling PP without scanning all the output registers. Then
the PP resident routine executes the monitor exchange jump (either MAN or MXN) to initiate CPMTR execu-
tion. MAN causes an exchange jump to the address in the CPU’s MA register; MXN causes an exchange
jump to the address in the PP’s A register. When the system is using the MXN (IP.XJ=1), CPMTR maintains
a special control word at TMSNCTL. This word is read and executed by PP resident to ensure that the
correct exchange jump address is used with the MXN.

When CPMTR begins, it must determine why it was called. It first checks RA+1 of the user mode program
that was running. If RA+1 is non-zero, its content is picked up by CPMTR and RA+l is cleared. This call
is compared against a list of system calls to be performed immediately by CPMTR. If not one of these, the
call is placed into the small buffer at TMTRRS where MTR assigns it to a PP. If the RA+1 call does not
have the auto-recall bit set, CP]MTR immediately returns control to the user program.

If the auto-recall bit is set, CPMTR sets that control point into auto-recall status and reassigns the CPU to
another user program.

The list of system calls performed by CPMTR includes ABT, END, RCL, TIM, XJR and others.

If RA+1 is empty, T.PPID is checked. If an input register address is in T.PPID, CPMTR clears it and checks
the corresponding output register for a function to be performed. The CPMTR functions are described with
the other monitor functions.

If RA+1 and T.PPID are both empty, MTR’s output register is checked. This extra check is made because
MTR does not use T.PPID when it issues a CPMTR function. Otherwise, a function from MTR is handled
just like any other PP.

If CPMTR cannot determine why it was called, it returns control to the interrupted user program.

MTR STRUCTURE
Unlike CPMTR, MTR is not initiated to perform a specific function. It runs continuously and must keep
searching for requests directed to it. The frequency with which it scans for each type of request can have

major impact on system efficiency. The following major responsibilities are listed in an order which corre-
sponds roughly to the frequency with which they should be performed.

® Advance system clocks

The accuracy of the system clocks in T.CLK and T.MSC is directly related to the frequency with whlch
MTR accesses the real time clock on channel l4g. .

® Check T.PPIP
This is the word into which PP resident writes its input register address when it has a monitor function

for MTR. Frequent checking reduces the MTR response time and reduces chances of conflict between
two PPs in the use of this word.

| 60306500 G - B e oL 315 @

® Check T.MTRRS

This is the short buffer through which CPMTR passes PP calls taken from RA+1. It is also used for
some PP monitor functions called by CPMTR or scheduler (M.SEF or M.ISP). MTR should keep this
buffer clear so that it will not inhibit the efficient execution of CPMTR.

® Check individﬁal PP output registers

T.PPIP is used for quick attention from MTR on monitor functions. It is still necessary for MTR to
scan the output registers because if two PPs make requests in near unison, one will be lost from T.PPIP.
Also several monitor functions, such as' M.BUFPTR, M.DFM, M.RCH and M.RSTOR, may not be com-
pleted on their first processing. These functions will be processed more quickly if the output registers
are scanned more frequently.

® Advance control point
Examine each control point in turn to see if a PP program should be initiated from the event stack, if
the CPU should be restarted from recall status, or if 1AJ should be called to advance to the next control
statement.

® Check RA+1

Examine RA+1; and if ‘it is nonzero, initiate CPMTR. This function is intended only to initiate CPMTR
for a program that does not use the exchange jump capability.

MONITOR FUNCTIONS

The following descriptions of the monitor functions are in alphabetic order.. The tables in Part II, section 1,
of this manual list the monitor functions in numerical sequence. Functions with a code number of less than
or equal to M.MMTRCPU are assigned to CPMTR.

M.ABORT ABORT CONTROL POINT AND DROP PP
(M. ABORT, *# % o sk snskor)

The job at the requesting PPU is terminated. The requesting processor is responsible for the dayfile message.
Operation of this function is identical with function M.DPP except that the error flag in the control point
area is set to F.ERPP to note the abort function.

M.BUFPTR WATCH BUFFER POINTER WORD
(M.BUFPTR,**** *xxx 00AA AAAA) ‘

AAAAAA Buffer pointer address.

1/O drivers use this function to give MTR the absolute address of the buffer pointer that is being updated.

MTR monitors the value of that pointer and when it changes, restarts the control point if it is in periodic
recall.

e 316 e o | 60306500 G

M.CCPA CHANGE CONTROL POINT ASSIGNMENT |
(M.CCPA, % sk stk kxNN)

The requesting PPU is released from its current control point assignment as if it had issued an M.DPP func-

tion, but its input register is not cleared. The PPU is assigned to control point NN, and the new control point I
number inserted in its input register. It is the responsibility of the requesting PP to alter D.CPAD. R.TAFL
should also be used to clear the field access flag at the old control point.

M.CLRST CLEAR STATUS
(M.CLRST,BBBB,**** ##:#* QONN)

BBBB Pattern of bits to be cleared
NN Control point number (only is in MTR output register)

Called to clear CP status bits in byte C.CPSTAT in control point linkage. Will cause linkage to or delinkage
from chain of control points actively waiting for a CPU.

M.CPJ CAPTURE PERIPHERAL JOB
(M.CPJ,00XX XXX X H#dk shokkok)

XXXXXX Buffer address, relative to RA
This request is issued to find a job for a control point either in the event stack or in the PP delay stack.
The event stack is searched first; if a job is found, its data is written to the buffer whose address is given

in the request. When the end of the delay stack is reached, the function is completed.

M.CPUST CHANGE CPU STATUS
(M.CPUST, 000X *#k ko skiks)

X=0 If either CPU is OFF, it is turned ON. If the CPU was locked OFF at deadstart time,
it remains OFF.

X=1 1If both CPUs are ON, CPU-A is turned OFF.

X=2 If both CPUs are ON, CPU:B is turned OFF.

When the requested function cannot be performed, no action is taken.

M.DCP DROP CENTRAL PROCESSOR JOB

*
(M.DCP,****’* **,****‘,****)

Execution of the central processor job at control point is stopped. The control point status bits W, X, Y,
and Z are cleared. The control point status bits set prior to M.DCP are returned in byte 1 of the output
register of the requesting PPU, '

60306500 L | 3-17

M.DFM PROCESS DAYFILE MESSAGE
(M.DFM,FFFF MMMM|###% %)

Dayfile flag bits FFFF determines message handling:

Do not send message to B display

Do not send message to control point dayfile

Do not send message to system dayfile (no A display)
Flag message as an accounting message

Send message to hardware error file

Do not insert job name in system dayfile

DB AW =0

If bits 1 and 4 are both set, the message is not sent to an INTERCOM control point dayfile, but is sent to
other control points. If bits 2 and 5 are both set, the time is omitted and replaced with blanks in the
control point dayfile. This option is used to identify messages from a task that was executed on a different
mainframe.

If bit 3 is set, a dollar sign precedes the dayfile entry to .identify it as an accounting message. If bit 5 is
also set, the dollar sign is suppressed on the assumption that a job which is not identified by a job name
cannot be billed for resources.

When the value of MMMM is greater than that in PPOR, it is taken to be the LWA + 1 of the message in
the PP message buffer. When the value is less than that in PPOR, MMMM is taken to be a dump index for
a requested dayfile dump.

Value of dayfile dump index:.

0 System dayfile dump
1 thru N.CP Control point dayfile dump
N.CP+1 Hardware error file dump

M.DPP DROP PP
(M.DPP,FFFF,****,****,****)

MTR clears the PP control assignment (the PP status word and the PP input are cleared). If the value of
FFFF represents M.DPP, the PP time is not incremented.

M.EES ENTER EVENT STACK
(M.EES,00AA,AAAA **** SYTT)

AAAAAA Word address in Event Stack

Y Byte address in word AAAAAA
TT Bit address in byte Y

S Combined value of F and B:

Event stack job assigned when bit is off (F.ESOFF)
Event stack job assigned when bit is on (F.ESON)
AAAAAA is an absolute address (F.ESABS)
AAAAAA is relative to RA (F.ESREL)

AAAAAA is a control point area address (F.ESCPA)

Wwwwm™
nowononn
N—O RO

318 60306500 L

This function is used to call a PP program after a specified event has occurred. That event must be defined
as a specific bit being set or off. The bit is defined by the parameters in the output registers. W.PPMES1
contains the input register image of the program that is to be assigned when the event occurs. The contents
of W.PPMES4, W.PPMESS, and W.PPMES6 are also saved and set in the message buffer when the program

is called. This function will not complete if the peripheral job table is full. If pouible. use M.EESD instead
of M.EES.

M.EESD ENTER EVENT STACK AND DROP PPU
(M.EESD,00AA,AAAA FFFF,SYTT)

Combines the functions of M.EES and M.DPP. This function will be completed even if the peripheral]Ob
table is full. If FFFF=M.EESD, the control point will not be charged for the PP time. All other parameters
are identical to M.EES.

M.ICE INITIATE CENTRAL EXECUTIVE
(M.ICE,PPPP,PPPP,PPPP,EX .xxx)

EX.xxx is a subfunction to be performed. See part II, section 1, under Monitor Functions, for a listing of
these subfunctions. The PPPP fields can be used as parameters to the subfunction. Subfunction routines
may run in either monitor mode or user mode. Those run in user mode use the exchange package at
T.XPSCH. The content of the M.ICE call is placed into the user mode input register at T.SPSCH+W XPIR
before the user mode routine is initiated. This input register is cleared to signal completion.

M.ISP INITIATE STACK PROCESSOR

(M.ISP,000X,000N, **** CCCC)
CCCC DST ordinal of stack processor to be initiated
X=0 Initiate 1SS only if PP active flag is zero
X#0 Initiate 1S5 regardless of PP active flag setting
N=0 Initial assignment of 1SP to the DST entry

N=1(or 2) A partner call

A check is made to see if a PP is assigned to this DST ordinal. If there is none, a check for an available
PP is made. If an available one is found, set the PP active flag and place the DST ordinal and 1S5 in its
input register. If a PP is found to be assigned to the DST ordinal, the setting of X determines if 1S5 is to
be initiated or not. If not set, the output register is cleared and an exit made; if set, proceed as for an
available PP. If the PP job stack is full, the routine is exited. The 1S5 program is the PP input register
DST ordinal checker and stack processor loader. When N is 1 or 2 and X # 0, this is a call from 1SP for
a partner to work together for a dual access device.

MKILL BAD FUNCTION REQUEST
(MKILL,**** s00 s30s snes)

MTR flags the function request as bad and automatically enters STEP 0 mode. The requesting PP is hung.

60306500 K 3-19

M.NTIME ENTER NEW TIME LIMIT
(M.NTIME,TTTT,T***,*#** **NN) |

A central processor job time limit of TTTTT . seconds is entered at the control point. Any previous time
limit is superseded. If the requesting PPU is assigned to control point zero, the parameter NN will give the
number of -the control point to be considered; in any other case this parameter is irrelevant.

M.PASS PPMTR IGNORES FUNCTION REQUEST
(M.PASS, 4% $H&x wrik 1h4¥)

Indicates a no-operation by PPMTR which will be cleared by another routine.

M.PATCH INSERT A PATCH IN PPMTR
(M.PATCH,AAAA,BBBB,CCCC,DDDD)

The routine inserts a patch in the monitor program at the address indicated.
AAAA Insertion address for patch BBBB

CCCC Insertion address for patch DDDD

M.RACT REQUEST CONTROL POINT ACTIVITY
(M.RACT,**NN,I[IL**#* #k#¥)

This request provides the various activity counts of control point NN at a given time (NN cannot be zero). If
IIII is nonzero, the pseudo-activity count will be incremented or decremented by the constant IIII (after sign
extension). Monitor replies through the PP output register:

Byte 1 Control point status byte

Byte 2 General activity count

Byte 3 Count of outstanding delayed PP requests
Byte 4 Pseudo-activity count

M.RBTSTO REQUEST RBT STORAGE
(M.RBTSTO,SSSS, ok ok kK s Aok **’ ek K #)

PPMTR sets SSSS*100 as the new RBT starting address. If the request cannot be honored, the old RBT
starting address is returned in SSSS.

3-20 60306500 L

M.RCH REQUEST CHANNEL RESERVATION
(M.RCH,BBAA,DDCC,***G,RRRR)

AA Ist choice channel number
BB 2nd choice channel number
ccC 3rd choice channel number
DD 4th choice channel number
G=0 Normal charge for channel time.
G=4 Do not charge control point for channel time.
RRRR = 0000 Request immediate reply.
RRRR # 0000 No reply until a requested channel has been reserved.

When channel zero is requested, it must be field AA. Zero BB, CC, or DD implies no more choices. If none
of the requested channels is available, PPMTR will set byte O of the PPU output register to zero. When a
channel is granted, its number is returned in the PPU output register byte 1 (location of AA) and byte 4 is
set to non-zero value. Thus, programs that request an immediate reply must check that byte 4 is non-zero
before using the channel.
On -exit, if a channel has been reserved, the output register appears:

0000 XXXX TTTG TTTT YYYY

XXXX Channel number

TTTG TTTT Information from the channel status word, where G is the charge/
no charge bit for channel time. :

YYYY PP input register address

M.RCLCP RECALL CENTRAL PROGRAM
(M.RCLCP, ###% ks xxks shnk)

This request is effective only if the central program associated with the requesting PPU is in recall status, and
no error flag is set at the control point. The status of the control point is set to waiting (W). In any other

case, the status of the control point is not altered.

M.RCP REQUEST CENTRAL PROCESSOR

) (M.RCP,****,****,**"**,****) :

This request is ignored under the following conditions:
Requesting PPU is assigned to control éoint zero
Error’ﬂag is set for the control point
Job is alregdy in the waiting status.

If none of the above conditions exist, CPMTR sets the job in waiting status (W).

60306500 G Lo ' - » 3-21

M.RPJ REQUEST PERIPHERAL JOB
(M.RPJ,SSSS,FFFF, *##* *x%x)

This function requests that another PPU program be initiated after a specified time delay. The first word of
the requesting PPU message buffer contains the input register image of the new PPU program. The time delay
is SSSS seconds plus FFFF/10,000B seconds. If the time delay is zero and no PPU is available, the request is
entered in the PP job queue. If no space is available in the PP job queue buffer of PPMTR, the entire re-
quest remains pending until a queue entry becomes free. MRPJD should be used in preference to M.RPJ
whenever possible.

M.RPJD REQUEST PERIPHERAL JOB AND DROP PPU
(M.RPJD,DDDD,DDDD,FFFF,****)

Combines the functions of M.RPJ and M.DPP. This fucntion will be completed even if the peripheral job
table is full. If FFFF=M.RPJ, the control point will not be charged for the PP time. The use of the time
delay is the same as for M.RPJ.

M.RSTOR REQUEST STORAGE
(M.RSTOR,CCCC XXXX,00TT,****)

ccce Requested CM/100 octal
XXXX Requested ECS/1000 octal
T 00 CM request only

01 ECS request only

02 CM and ECS request

03 Request reserved CM

04 Request CM—will await response

06 Request CM and ECS—will await response
07 IP.POSFL requested by swapper

20 Priority storage requested

Assign CCCC central memory and/or XXXX extended core storage to the control point of the requesting PPU
Monitor replies to this request by setting CCCC and/or XXXX to the values actually assigned to the control
point and by setting byte O to zero. These values should be compared with the original values requested to
determine whether these requests have been honored or not. A request for more storage is rejected if not
enough storage is available or if a storage move is already in progress. A request for less storage always is
honored immediately. If TT = 02, PPMTR can honor part of the request without honoring the remainder.

MEMORY ALLOCATION

Central memory and direct-access extended core storage is assigned in the same sequence as control point
numbers. Storage associated with any control point is contiguous.

3-22 B - , 60306500 G

All storage is associated with the assigned control points. If no user jobs are assigned to control points, all
storage is associated with the central memory resident, which operates at control point zero. All storage,
therefore, falls into one of two categories:

Allocated storage, defined by the RA and FL of the control point.

Unallocated storage, defined as that which occurs between the allocated storage of two consecutive
control points. All unallocated storage is associated with the lower numbered control point.

PPMTR maintains two tables in PP zero which contain the size of allocated and unallocated CM and ECS
storage associated with each control point (0 through N.CP). A request for reduced field length will have
the effect of reducing the amount of allocated storage and transferring the value to unallocated status; no
storage is actually moved. When the total storage associated with a control point is sufficient, a request for
an increased field length will cause transfer of the increased value from the unallocated to allocated state;
no actual storage move takes place.

If there is insufficient storage associated with a control point to satisfy an increased field length request,
unallocated storage may be transferred from adjacent control points. A scan of the unallocated storage table
entries for the adjacent control points will locate a combination of blocks which results in moving the least
amount of storage.

When a control point RA and/or FL is to be changed. PPMTR will suspend the control point by setting the
M bit of the CP status byte. If a CM move is necessary. PPMTR will set the storage move flag and wait for
all PPs assigned to the control point to pause and then initiates the system exchange package to start the
storage move program. After completion of the move, PPMTR will modify the control point RA and/or FL
and resume the control point by clearing the M status bit.

A PPU pause occurs when the field access flag (C.FAF) in the PP status word is zero. If an ECS parity
error occurs during an ECS move, PPMTR will abort both the requesting control point and the control point
whose ECS is being moved, if it is no longer intact.

M.SCB SYSTEM CIRCULAR BUFFER SURVEILLANCE
(M.SCB,**** 00BB,BBBB,EX.CBM)

BBBBBB = System Circular Buffer Address

The system circular buffer is an FET-like table that has a trigger and a direction flag in addition to FIRST,
IN, OUT and LIMIT. MTR uses IN, OUT, and the trigger and direction (RMS-to~ECS or ECS-to-RMS) to

determine if a threshold has been reached. If not, no action is taken. If so, MTR issues an M.ICE/EX.CBM
function to start CBM for processing of the system circular buffer.

M.SCH INITIATE INTEGRATED SCHEDULER
(M.SCH,000X,00CC,003J,J31J)

When X = 2, the contents of this output register are placed into a buffer at T.SCHRS for integrated
scheduler’s attention during its next normal execution. Integrated scheduler is not initiated immediately.
When integrated scheduler processes this request it will link the JDT at location JJJJJJ to the job queue
for JCA ordinal CC. If CC is zero, the job class is taken from the JDT.

When X # 2, the output register contents are not passed to scheduler. Both types cause MTR to initiate
scheduler.

60306500 G 3-23

M.SEF SET ERROR FLAG
(M.SEF,**NN,EEEE#*#* i)

Monitor will drop the central program at control point NN by putting the program in zero status, and setting
the error flag to the value EEEE.

The M.SEF function recognizes two special control values in the error flag field that are used to initiate and
terminate the memo mode. ‘

When a control point is in memo mode, error flags are not set in byte C.CPEF(1), but are recorded in
bits 0-5 of byte C.CPMEMO(0). The high order bits (6-11) of C.CPMEMO are set on when the control point
is in memo mode, and are used by MTR to recognize the mode.

F.ERMEMO (-77B) is used to initiate memo mode. Bits 6-11 of C.CPMEMO are set on. Bits 0-5 of
C.CPEF are moved to bits 0-5 of C.CPMEMO and C.CPEF is cleared. If the control point is already in
memo mode, the effect of the F.ERMEMO is to clear an error flag memo without terminating the memo
mode.

F.ERTMM (-0) is used to terminate memo mode. Bits 0-5 of C.CPMEMO are moved to C.CPEF and
C.CPMEMO s cleared. Error flag zero can also be used to terminate memo mode, but it will clear both the
error memo and the error flag fields. If an error memo is already recorded when the F.ERTMM is issued,
the memo will be made an error flag causing the normal error flag processing to take place.

When a control point is in memo mode, the M.SEF function with error flag values 1 through 77B will not
cause the CPU to be dropped as when in normal error flag mode; however, there are some exceptions. The
following error codes are caused by errors in the central program and render the CPU useless.

2 F.ERAR Arithmetic error

4 F.ERCP CPU abort (ABT in RA+1)

5 F.ERPCE PP call error (garbage in RA+1)
15 F.ERRCL Auto-recall error

Any of these codes will cause the control point to revert to normal error flag mode.

Cautions

When entering memo mode it is possible that an error flag had been set just prior to the processing of the
F.ERMEMO. The PP program that initiates memo mode should immediately check the error memo field
after completion of the F.ERMEMO. If an error memo is set it should be assumed that it occurred as an
error flag prior to the FFERMEMO. Usually the best action at this point is an F.ERTMM. Since the pro-
gram is not yet committed to its critical stage, it is best to allow the error flag processing to continue.

Memo mode is restricted to use during single control card executions only. It is the responsibility of the
program that initiates memo mode to terminate it. If 1AJ finds a control point in memo mode, it will

process it as an error flag.

M.SEQ ASSIGN JOB SEQUENCE NUMBER

(M.SEQ’#*#*,#**t’###*,tt**)

Monitor returns in byte 1 of the PPU output register a job sequence number (in display code).

3-24 60306500 L

M.SETST SET STATUS BITS
(M.SETST,BBBB, **** ****)0NN)

BBBB ~ Pattern of bits to be set
NN Control point number (only if in MTR output register)

Called to set CP status bits in byte C.CPSTAT in control point NN area. May cause linkage to or delmkage
. from chain of control points actively waiting for a CPU.

M.SLICE TERMINATE TIME SLICE PERIOD
(M.SLICE,**** s54% s4xs anss)

Only the PPMTR can issue this function request. It is issued to interrupt an executing user mode program so
that CPMTR can reschedule the use of CPUs.

M.SPM SPM CALL FROM 1SP
(M.SPM, PPPP, PPPP, PPPP, EX xxx)

The PPPP fields are subfunction parameters.
EX.xxx is the subfunction to be performed as follows:

EX.SPRCL Stack processor recall. SPM is called to terminate the actual 1/O portion of the current
stack request. SPM will terminate, reissue or otherwise further process the stack request
and issue a new stack request or special order (O.IDLE, O.DROP, O.SEEK) to 1SP

and complete the function. Call format is:
(M.SPM, sk sk sdexkk EX SPRCL)

EX.STAT Change status. SPM is called to change 1SP status in the DST and take appropriate
action. DST status is:

0 - No PP assigned.
1 - PP assigned but not ready. PPIR - PP assigned and ready.

When PPMTR assigns ISP to a PP, it changes the DST status from zero to one.
After initialization, 1SP issues an EX.STAT with PPIR status. This call may be issued
again later to wake up SPM if 1SP is idle and the PPMTR stack processor drop

flag is set. A pending EDITLIB or LDCMR will set a wait flag for 1SP. When 1SP is
idle and encounters the flag, 1SP issues a status of one to SPM and re-initializes it-
self. When 1SP is idle and detects an outstanding channel request for its channel, it
issues a status of zero to SPM to request a drop. SPM will then issue an O.DROP

to 1SP so that 1SP can give up the PP. Call format is:

(M.SPM, 0000, 0000, SSSS, EX.STAT)
Where - SSSS = 0 - Request drop

1 - Request inactive status (reinitializing)

PPIR - Request active status (initialized)

EX.NXTPB Get next PB/PRU. This is a time critical éall made during the I/O transfer. This call
is entered by 1SP into its PPOR just prior to starting transfer of the current PB/PRU
chunk of data. While the current chunk is being transferred, PPMTR sees the PPOR

60306500 L , : 325

call and initiates SPM. If the current transfer is a write, SPM will allocate more RBs,
if needed. In any case, SPM then converts the current RB position in the RBT chain
to a PB position and stores this in PPMES4, bytes 0-2 of the 1SP communication
area. When 1SP completes the current PB/PRU transfer, it updates PPMES6 (current
PB/PRU) from PPMES4 (next PB/PRU), issues the next EX.NXTPB call to the PPOR
and continues the transfer. Call format is:

(M.SPM, 2, SSPP, PPPP, EX.NXTPB)

where SSPP, PPPP = Successor call type
PPPP = 0 - No successor call (clear PPOR)
PPPP +# 0 and SS = 0 - Set up M.BUFPTR call)
PPPP # 0 and SS # 0 - Set up M.SCB call PPPP - successor call parameters.

M.SPRCL. STACK PROCESSOR RECALL
(M.SPRCL,00AA,BBBB,000F,CCCC)

CCCC is the control point area address. The I/O time and PP time are updated by the product of AA*BBBB.
The count of outstanding stack requests is modified in W.CPSR: ‘

F=0 No adjustment
F=1 Subtract one
F=2 Add one

Execution can be resumed if the control point is in recall.

M.TRACE ENTER MONITOR TRACE MODE
(M.TRACE,AAAA FFFF NNNN, ***¥)

AAAA Absolute address of buffer within requesting field length of
requesting job

FFFF Length of buffer

NNNN Pointer to next available word-pair in buffer

3-26 60306500 L

A buffer must be provided by the trace mode requestor into which this PPMTR function will write trace
records. Each record is a two-word entry containing function and PP status information. This function is

reserved for CDC developmental use.

M.TSR TERMINATE STORAGE REQUEST

(M_TSR,****’****,****’****)

Request is valid if real time monitor is installed (IP.RTMTR is nonzero); terminates wait period involving an

M.RSTOR request.

PP ASSIGNMENT

To control PP assignments, MTR keeps (in PPO) an 8-byte status word for the PP entries which form the
PP status table. Each status word has one of two formats, depending upon whether the PP is assigned or
unassigned and available.

1 2 3 4 5 6 7 8
CPAD EXTRA BUFPTR APLINK JUMPAD PPFLAG PPSEC PPMSEC

CPAD Base address of control point area to which PP is assigned.

EXTRA Spare byte.

BUFPTR The low order 12 bits of the buffer pointer the last time that MTR looked
at it (refer to M.BUFPTR).

APLINK Active PPU link. This is a pointer to the next member in a chain of active
PPUs. The chain always starts with MTR (PPO) and ends with DSD (PP1).
The next PPU is identified by its output tegister index value.

JUMPAD This is the address saved for reentry to a partially completed monitor
function that has been exited via an RIM MAINLOOP.

PPFLAG Flag is set when PP contains a stack processor (PP assigned). When idle,
PPFLAG contains the link to the next idle PP.

PPSEC PP starting time in seconds.

PPMSEC PP starting time in milliseconds.

When the PP is unassigned and available, the PPU status word is linked in a chain of unassigned and available
PPs, using byte 6 of the status word (PPFLAG). PP direct cell PPIA contains a pointer to the status word
at the head of the chain. Byte 6 contains a pointer to the status word of the next available PP. If no more
PPs are available, byte 6 contains zero. A chain of three available PPs is illustrated in figure 3-5.

60306500 L

327

PPIA 110 byte 6

50 ~ PPO
60 130 [* - PP1
70 ~ PP2-
100 ~ PP3
> 110 60 PP4
120 ~ PP5
130 = 0 PP6
140 ~ PP7
150 ~ PP8
160 ~ PP9 (N.PPU-1)

Figure 3-5. PP Chain

MTR assigns a PP by writing a peripheral job name and a control point number into the PP’s input register
to perform one of the following actions:

. Satisfy a PP program call issued as an RA+1 request.
e Answer a PP request for another PP job (M.EES or M.RPJ request).

° Initiate a stack processor when an I/O request is issued for a mass storage device to which no stack
processor is currently assigned.

. Call the PP program IAJ to a control point when all control point activity has ceased.

® 3-28 60306500 L

MTR maintains a PP queue table containing a maximum of 40 entries, each 4 bytes long. Each entry

corresponds to a 4-word entry in the peripheral job table (PJT) in CMR. In the queue, the following chains
are kept: .

° A queue of PP jobs that cannot be initiated currently because PPs are not available. This PP job
queue is a chain of PP input register images.

. A queue of PP jobs that must be initiated after a given time delay. This queue is a time-ordered
chain of PP register images, called the delay stack.

° A separate queue of PP jobs for each control point which must be initiated after a specified bit has
been set or cleared in CM. This queue is called the event stack.

) An empty queue of all unused entries in the PP queue.

Three pointers in MTR define the beginning of each chain:

NPPQ PP job queue
NACT PP delay stack
EMPTY Empty chain

The pointers to the event stack are in the MTR control point table EVST. Each control point has a sep-
arate EVST. A fourth pointer, LPPQ, defines the end of the PP job queue. When the time delay expires
for an entry in the delay stack, that entry will be transferred to the end of the job queue.

Chaining of the queue entries uses byte 3 of each 4-byte entry. Bytes 1 and 2 contain the PPFLAG or the
maturation time for entries in the delay stack. The end of a chain of entries is signaled by zeros in byte 3.

A PP job queue containing a two-entry overload queue, a one-entry delay stack, the empty chain, and two
one-entry event stacks is illustrated in figure 3-6.

60306500 L | 390

NPPQ Stack Processor . . 1
Flag
NACT———» TIME Contro! Point 2 .
Number
EMPTY—_—’ * * * * * 3
Control Point 0
EVST Pointer = Address M.EES 4
Flags

LPPQ Stack l!’-‘||‘:=It2s>;cessor . . 5 <l
Control Point n M.EES
EVST Pointer Address Flags 6

* * * * » 7] —

® 3.30

Figure 3-6. PP Job Queue

60306500 L

FILES AND FILE TABLES 4

FILES

A name associated with each file identifies it to the system and to the user. Files are stored on either alloca-
table or nonallocatable devices. Rotating mass storage units, such as disk or drum, are allocatable because

files on these devices may be allocated to more than one control point. Other devices, such as magnetic tapes,
card readers, punches, and line printers, are nonallocatable because they can process only one file at a time.

Files associated with a job running at a control point are assigned or attached to a control point. Files not
associated with running jobs are assigned to control point zero.

Files are associated with one of the following groups: system, local, permanent, and queue. The following
paragraphs describe briefly each of the file groups. Files are uniquely known by the Ifn, the source or
destination ID, and the terminal ID (if applicable).

SYSTEM FILES

The files described below are always in the system; they are always assigned to control point zero and reside
on allocatable devices. These files, except for the job dayfile, are maintained on system devices as permanent
files.

SYSTEM This file has the name of ZZZZZ04 and contains a copy of the deadstart system tape.

DAYFILE The system dayfile contains a complete record of all activity in the system. Normally, when a
message is sent to any job dayfile, it also is sent to the system dayfile. At intervals, the system- dayfile can be
dumped to a line printer, punch, or magnetic tape.

DFILEn Each user control point in the system has a job dayfile; n is the control point number. These
files are assigned to control point zero and a user cannot access them directly. When a user job terminates,
the content of the job dayfile is copied to the end of the job output file. A job dayfile contains images of all
control cards processed, appropriate system messages concerning the job run, plus messages sent to the dayfile
by the job. .

60305600 L 41

CERFILE If hardware errors are discovered by running programs, a message is written to this file.
Periodically, the file is dumped for examination by customer engineers so they can take remedial action.

Z7Z7ZZCMR This file contains the absolute segments of CMR in an ECS system. Depending on the options
selected, this file is used by LDCMR at deadstart or when the system is reloaded.

2727706 If the installation parameter IP.ELIB is one, this file is created to contain the ECS library.

2777723 This file contains a copy of the CM resident library area. It is created by Deadstart and is
updated by EDITLIB. It is not permanently attached to control point zero and is used only for deadstart
recovery. : '

LOCAL FILES

Any files, other than permanent files, attached to a job running at a control point are local files. They may
be on allocatable or non-allocatable devices.

Local files assigned to a control point must have unique names. Two local files named INPUT and OUT-
PUT are associated with each job. INPUT contains the job file; the job name is changed to the name
INPUT when the job is assigned to a control point. OUTPUT is assigned to the job when the first reference
to it occurs. It has a disposition code which indicates the job output is to be produced on peripheral devices
in the area from which the user submitted the job. .

When a local file is detached from a control point, disposition depends on its control point, disposition code,
and device type on which it resides. For local files on non-allocatable devices, the device and the related table
space will be released. Assigned storage and related table space is released for local files on allocatable devices,
other than private disk packs, having a zero disposition code. Files with the special names OUTPUT, PUNCH,
PUNCHB, PS0C, FILMPR, FILMPL, HARDPL, HARDPR, and PLOT are assigned non-zero disposition codes
when created. All other files are assigned a zero disposition code when created. For local files with other dis-
position codes the file name is changed to job name and the file is assigned to control point zero. A local file
with the name PUNCH or PUNCHB: will be output to a card punch; the file OUTPUT is printed.

PERMANENT FILES

Permanent files are saved across deadstarts and are therefore considered to be permanent to the system. Con-
trols over file access and mode of use are provided to define various degrees of privacy. When a permanent
file is created, the privacy defined determines which user can access it and the kind of processing allowed.

42 60306500 F

QUEUE FILES

To provide for the recovery of input and output files from disk tables on non-recovery deadstarts, the input

- and output queues are kept as permanent files. All input files that enter the system via JANUS, INTERCOM
Remote Batch processor, or load tape (n.XbTLOAD) are automatically cataloged. They are not purged until
the job has completed execution and all output files of the job have been cataloged. When the PFC (formerly
the RBTC) becomes full, a message is issued to the operator and input halts until there is more space for files
to be cataloged.

The file name table entry of queue files contains permanent file information and the file description parameters.
1TJ is the common routine for entering a file into the input queue called by JANUS, INTERCOM Import
processors and DSP for ROUTE(1fn,DC=IN). 2VTJ verifies the job card parameters. 1QF is the PP routine which
catalogs and purges queue files.

INPUT QUEUE

Jobs may enter the system from sources such as card reader, magnetic tape, or remote devices. In every case,
a job file is read by a system package operating at a control point which then writes the job to a local file
on an allocatable device. When the file has been written, its entry in the file name table is altered to indicate
an input disposition code, the file is cataloged and released to control point zero as an input file. The input
queue consists of all files assigned to control point zero with an input disposition code. "

The system packages that read in batched local jobs ensure that each job file in the system has a unique 7-
character name. The job name from the job card is truncated to the first five characters (or extended with
zeros to five characters) and two unique sequence characters are added. All numerals ahd letters may be used
as sequence characters, therefore 1,296 sequence combinations are possible for a single five-character job name.
Even though unique combinations are exhausted, duplication of names is not significant unless the earlier job
has not been completely processed when the duplicate enters the system,

QUTPUT QUEUE

Output files originate from local files on allocatable devices; they have non-zero disposition codes. When a job

terminates, such files are cataloged, assigned to control point zero, and given either the job name or the name

in the file ID field of the FNT file routing supplement. These files then form a system output queue which is,
. essentially, a list of files waiting to be output to unit record equipment.

In each output queue file name table entry, fields define the' destination of the file. The characteristics that

-are defined are device type, terminal ID, destination ID, external and internal characteristics codes, disposition
codes, and forms codes.

60306500H | * A S 43

Local files can be put into the output queue as follows:

The user gives the file a special name. When a file with a special name is created, it receives a non-zero
disposition code. These files are sent to the corresponding destination when the file is released for output
processing. For example, the file named OUTPUT receives a print dlsposmon code. A file named PUNCH
receives a punch disposition code.

The user can specify file disposition with a DISPOSE or ROUTE control card or macro. The file can
have any name. Files must reside on allocatable devices that are members of the QUEUE set.

Files in the output queue must be on allocatable devices. A file is put into the output queue when the job
terminates or when a CLOSE,UNLOAD, or CLOSE,RETURN is performed. Since the name of an output
queue file may be the name of the job which created it, and since a job may create several files which go
into the output queue, names in the output queue often are not unique.
PLACING FILES IN QUEUES - ROUTE MACRO
The ROUTE function places a file in an input or output queue. This function is available as a control card
or as a macro. Use of the ROUTE macro allows a system job additional capabilities denied a user job. A
system job can specify a source ID, a seven-character job name, a pre-dayfile 1fn, and a priority. Other
capabilities are the same as for user jobs. See the SCOPE Reference Manual, publication number 60307200,
for a discussion of the ROUTE control card.
The user must construct a parameter block in the format described below before calling the ROUTE macro.

ROUTE tag,recall

tag Address of the ROUTE parameter block

recall Optional non-blank character indicating automatic recall

PARAMETER BLOCK FORMAT

59 ‘ 47 41 35 23 21 17 11 0
tag Logical File Name Error Unused A
: B ; Code
: ' Forms Code/ Disposition gl]!
tagtt 0000 INPUT Flags Code clic| Flags
Station |ID- Station 1D~
tag+2 Source Destination Unused TID
tag+3 File Identifier (FID) B Priority
tag+4 ‘ ; Pre-dayfile Ifn Repeat | Unused
Count

44 Sl e © 60306500 H

Word Bits

' tag - 59-18

17-12

tag+l 59-48

47-36

35-24

23-21

60306500 F

Field

Logical File Name

Error Code

Unused

A

Zero

Forms Code/
INPUT Flags

Disposition Code

EC

Description

Ifn of file to be ROUTED; must be mass storage file, not
a permanent file; does not reside on a dismountable device;
must have at least read permission

Code returned by system when bit 12 of flag field is set.
A list of the error codes and diagnostic messages follows
the description of the parameter block.

Complete bit. Must be zero when macro is issued; system
sets to one when function is complete

Twelve bits of zero. Allows compatibility with previous
callers of DSP. The old calling sequence puts the Ifn in
tagtl.

Two display code letters and/or digits identifying the
forms to be used for this file. Default is standard forms.
If the file is to be routed to an INPUT queue, this field.
is defined as: ¢

47 Unused
46 Unused ~
45 - Do not catalog INPUT file
44 FID= 7 characters specified. Ignored if not a
systems job
43 Send file to INPUT queue even if job card error
42 Use dependency count

41-36 Dependency count
Disposition Code mnemonic in display code

External characteristics code translated by the following
table: .

Value

(octal) Print File Punch File
0 - EC(default) ~ EC(default)
1 -- EC=SB

2 EC=A4 , EC=80COL
k EC=B4 --

4 EC=B6 EC=026

5 EC=A6 EC=029

6 EC=A9 EC=ASCII

7 Reserved for installations

45

Word Bits Field Description

tag+l 20 ~ Unused
19-18 IC Internal characteristics codes transformed by the following
table: '
0 IC or IC=DIS (default) — display code
1 IC=ASCII
2 IC=BIN — Binary
3 Reserved
17-0 Flag Bits Indicate which parameters are specified:
17 File name assigned by system is returned at
tag bits 59-18 ‘
16-15 Unused
14 Repeat count v
13 Dayfile attached for immediate route to output
(systems jobs only)
12 No dayfile message, return error code in bits
12-17 of word 1 of calling sequence
1 Pre-dayfile 1fn specified (systems job only)
1Q Forms code
9 Priority
8 Internal characteristics -
7 External characteristics”
6 FID=* System appends two unique sequence
characters to the file identifier
5 FID System uses FID specified in tag+3,
bits 59-18. Only systems jobs can
specify seven characters, other users
specify five.
4 Disposition code
3 Route to remote station
2 TID
1 Route to central site
0 End-of-job (deferred ROUTE)
tag+2 5942 Station ID- Specified by system jobs only. The three display code
Source characters in this field are used as the source ID for a
job routed to an input queue. When this field is binary
zero, the routed file has no SID. When DC=IN, the job’s
source ID is used as the setting of this field. A job’s source
ID is found in the control point area.
- 41-24 Station ID- Display code destination ID. The file is processed by the
Destination system with this logical identifier.
23-12 Unused
11-0 TID Display code identifier of the INTERCOM terminal to which

the file is sent.

46 | | ; S 60306500 H

Word Bits Field Description

tagt+3 59-18 FID If the calling job has not been loaded completely from
the system library, only a maximum of five characters may
be used to specify FID. The additional two character
sequence number is determined by flag bits 5 and 6. Seven
characters may be specified by calling jobs which are loaded
completely from the system library.

17-13 Unused

12 B Must be set if priority is specified.

11-0 Priority Priority for an interactively routed output file being routed
to the routing terminal.

tag+4 59-18 Pre-dayfile lfn The logical file name of the file which contains the pre-

dayfile. This parameter is only meaningful for DC=IN, and
can only be specified by systems jobs.

17 Unused

€
16-12 REP Repeat count.

11-0 Unused

ERROR PROCESSING

When an error occurs in processing a ROUTE macro, either a dayfile message explaining the error is issued, or
an error code is returned in bits 17-12 of the first word in the parameter block. If the address of the param-
eter block is outside the field length of the job or if the complete bit is set when the macro is issued, the
job aborts. For all other errors, the ROUTE macro is not executed but processing continues. If bit 12 of the
flag field is set, an error code is returned and no dayfile message is issued. If bit 12 is not set, a dayfile
message is issued and no error code is returned.

When a diagnostic is issued for the ROUTE macro, the message ERROR IN ROUTE FUNCTION LEN= is
issued, followed by the message describing the error.

60306500H ST ; 47

Error Code
(octal)

01
02
03
04
05
06
07
10
11
12
13
15
16
17
20
21
22

23

.24

25

26

Message

INYALID LFN — DSP

CANT ROUTE NON ALLOCATABLE EQP

CANT ROUTE PEﬁM FILE

NO PERMISSION TO ROUTE THIS FILE

ROUTE TO INPUT NOT IMMEDIATE — IGNORED
IMMEDIATE ROUTING — NO FILE - IGNORED
INVALID DISPOSITION CODE — ROUTING IGNORED
INVALID FID — ROUTING IGNORED

DSP ABORTED BY SYSTEM

DSP PARAMETER OUTSIDE FL

PRIORITY SPECIFICATION IGNORED

EI200 SPECIFIED — INTERCOM USED (DSP)

CAN NOT ROUTE INPUT FILE

DSP COMPLETE BIT ALREADY SET

FILE ON DISMOUNTABLE DEVICE - ROUTINC IGNORED
TID NOT ALPHANUMERIC — ROUTING IGNORED
FORMS CODE NOT ALPHANUMERIC — ROUTING IGNORED
INVALID LINK TYPE — ROUTING IGNORED (DSP)
RESERVED

PRE-DAYFILE LFﬁ AND NO DC=IN — ROUTE IGNORED

PRE-DAYFILE FILE NOT FOUND — ROUTING IGNORED

60306500 G

ACQUIRE MACRO

The acquire macro calls the PP routine QAF to search the input, print, punch, special (non-standard) output,
and execution queues looking for entries that satisfy given selection criteria. The user specifies one of four
functions specified by a function code in bits 1-3 of word 0 in the ACQUIRE parameter list: ALTER,
modify queue entries; GET, attach a file to the caller's control point; PEEK, return information about the
queue entries; or COUNT, count the entries in the specified queue(s). QAF can be called only by a routine
resident in the system library.

ACQUIRE addr,recall,N.

addr The address of the first word of the parameter list.
recall Optional parameter whose presence indicates recall.

N Required parameter to distinguish this new macro from an older version.

The file selection is based on particular parameters that describe the attributes of a file or group of files. The
most important are file ‘type (queue type), such as INPUT, OUTPUT, PUNCH, or special output; and priority.

ALTER

ALTER, function code 0, gives the user the ability to change various fields within the queue entries that match
the selection criteria specified in the parameter list, Required parameters are queue type and the ALTER flag
bits which indicate the actions to be performed. Optional parameters are queue entry name, address of an

abort message, source ID, destination ID(s), terminal ID. Note that the forms code and priority fields contain
the new values and, thus, cannot be used as a search criteria.

The actions that can be performed are:

a) Change routing of INPUT and/or OUTPUT queue files to the central site.

b) Change routing of INPUT and/or OUTPUT queue files to another terminal.

¢) Change priority of OUTPUT queue files.

d) Change forms code of OUTPUT queue files except for non~standard output (PLOT, FILM, etc.)

e) Change repeat count of OUTPUT queue files except for non-standard output.

f) Abort/Evict queue entries and issue supplied error message.

The bits that indicate these actions may be set in any combination, but certain combinations are mutually

exclusive. For example, if both a) and b) are specified, the result is as if only a) had been specified. Similarly,
f) overrides all other actions.

The user may also set the queue type bits in any combination but the combinations used when aborting a job
can make a difference. For example, if all queue types are specified, the job is killed rather than dropped.

GET

GET, function code 1, selects the file that best meets selection criteria and attaches it to the control point of
the calling routine. Required fields are: function code, priority, file type, and a zeroed completion bit.

60306500 K 4-9 @

Before a file is attached, a search is made to ensure that no file having the same name is already attached. If a
duplicate file is found, an error code of 12B is returned and the completion bit is set. The search for a duplicate
file name can be suppressed by setting the inhibit search flag.

When the selected file is attached, an FNT supplement of type 0101B (if an input file is attached) or 0102B (if
the attached file is output) is created and linked to the base FNT. The control point number of the job is writ-
ten into the FNT. When the file is returned by the calling job, the FNT supplement is erased.

After the file is attached, the complete bit is set to one, the file name and FNT address are inserted, and the »
source ID and the destination ID are entered. Should no file satisfy all the selection criteria, the complete bit
is set to one, the FNT address is zeroed and an error code of 02B is returned.

PEEK

PEEK, function code 2, creates a list of three-word reply entries built from the queue entries matching the
selection criteria. Required fields are function code, priority, zeroed completion bit, the first word address of
the reply buffer in the user’s field length where the reply entries are returned, the queue type count of the
number of reply entries to be returned, and the queue type. Only one queue may be specified in the queue
type. Optional queue entry selection criteria also include the starting FNT address or JDT ordinal from an
earlier PEEK request for the same queue.

PEEK begins examining the FNT entries at the point specified by the FNT address or at the start of the FNT
if no address is provided. For each file that matches the file selection criteria, a three-word reply entry is built
from the file’s FNT. The reply entry is placed in the reply buffer, and the file type count is incremented by
one. PEEK continues searching until the requested number of reply entries is found or the end of the FNT is
encountered. The function works in a similar manner for the execution queue using an optional starting JDT
ordinal.

On return to the calling routine, the reply buffer, beginning at the first word address specified, contains the
three-word reply entries. The count field for the queue type requested contains the number of reply entries
built. The count is either the number requested or the number of entries built upon reaching the end of the
FNT or JDT. For example:

A user calls the QAF PEEK function to obtain 20 input queue reply entries for files having a destination
ID of ABC. The search is to -begin at FNT address 4420B, with reply entries stored in the user field
length, beginning at REPBUF. QAF begins searching the FNT at FNT address 4420B looking for input
queue having a destination ID of ABC. Assuming that only 15 entries are found before reaching the end
of the FNT, the file count is set to 15, the FNT address is set to zero, and REPBUF contains 15 three-
word input queue file reply entries built from the FNT of the 15 qualifying files. If 20 entries are found
with the last qualified at FNT address 4730B, the FNT address is set to 4733B, ready to begin the next
search, the input queue file count remains 20, and REPBUF contains 20 three-word reply entries.

A special PEEK function is defined with the file type field zero. The caller may check a particular FNT entry
at the address specified to determine whether or not the entry matches the file selection criteria. Required
fields are function code, a zeroed completion bit, the queue type field cleared, the first word address of the
reply buffer, and the FNT address of the file. Optional parameters are any of the file selection criteria.

If the file at the specified address qualifies, the queue type, the complete bit, priority, etc. are inserted into
the fields and a single three-word reply entry, built from the FNT entry, is placed in the reply buffer. If the
file does not qualify, the complete bit is set, an error code of 02B is inserted, and the queue type field
remains clear. ,

4-10 60306500 K

Format of the three-word reply entry for an input queue file is:

57 47 41 35 29 23 11
Filename Priority
Source 1D Destination. ID Reserved FNT Ordinal
Job Dependency Maximum | Maximum R d Terminal 1D
Dependency ID Wait Count NT MT eserve ermina
Drives Drives

Format of the three-word reply entry for an output queue (print, PUNCH, or special output) file is:
3 41 23 1"

58 5
Filename Priority
Source ID Destination 1D Forms Code FNT Ordinal
Repeat Disposition Code Size of File Reserved - Terminatl ID
Count
LFile Interrupt Bit
Format of the three-word reply entry for an execution queue entry is:
59 41 34 29 23 17 11
Not _—
Jobname Used Priority
Source ID Time FL/100B Job Ordinal
T
OP ACT ERR |Y] CP STAT Reserved TID
Word 0 Bits 59-18 Filename/Jobname
17-12 Not used
11-0 Priority
Word 1 Bits 59-42 Source ID
41-24 Destination ID/Time left in quarter milliseconds for execution
23-12 Forms code for output; not used for input; Job FL/100B for execution
11-0 FNT ordinal/JDT ordinal

60306500 K

Word 2 :
INPUT Bits 59-58 Job dependency ID

57-48 Not used
47-36 - Dependency wait count

35-30 Maximum number of 9-track drives to be assigned at one time
29-24 Maximum number of 7-track drives to be assigned at one time
23-12 Reserved for CDC
11-0 Terminal ID
Word 2
OUTPUT Bits 59 1 means file interrupted
58-54 Repeat count '
53-42 - Disposition code
41-24 Size of file
23-12 Reserved for CDC
11-0 Terminal ID
Word 2
EXECUTION
Bits 59-42 Operator action codes (SCOPE 2 only)
41-36 Error flag values
10B Kill
4 Drop
2 Rerun
35 Type of job (0 = 7600 or CDC CYBER 70 Model 76; 1 = all others)
34-30 Control point number the job currently occupies
29-24 Job status
70B Waiting for MMF action
60B Waiting for pack mount
40B Waiting for operator action
30B Waiting for tape/device assignment
20B Waiting for permanent file
10B Waiting for time/event
02B Executing
23-12 Reserved for future TID expansion
11-0 Terminal ID
COUNT

COUNT, function code 3, counts the number of queue entries of a specified type satisfying the selection
criteria. Multiple queue type bits can be set on a single call giving the caller the count of each queue type

4-12 ‘ - 60306500 L

desired. Required fields are queue type, function code, a zeroed completion bit, and priority. Optional fields
are the rest of the file selection criteria.

The counts of the queue types specified are returned to caller, and the complete bit is set. The filename, file
type, disposition code, source ID, destination ID, FNT address, and priority are returned for the first file that

satisfies the selection criteria.

ACQUIRE PARAMETER LIST FORMAT

QAF requires the parameter list to be at least six words in length. The list can be longer if there are additional
destination IDs. The additional length is specified in the additional destination ID word count field.

59 47 41 35 23 17 11 5 3 0
Eil Error Q T B
ilename Code ueue Type | A
A . Repeat FWA of Reply Buffer/
Alter Flags Forms Code Disposition Code Count Message Address (ALTER)
L FNT Address/
Source D Destination ID 1 JDT Ordinal Job class
Reserved TiDn Reserved TiDc Priority
Pre-Dayfile LFN C|p|E|F| G Executing
job count
Additional DID Input File . . Special Output
Word Count Count Output File Count Punch File Count File Count

Destination ID 2

Destination ID 3

Destination 1D 4

Destination ID n

Zero Terminator

GaTmMmooOw

60306500 L

Function Code (bits 3-1)
Complete bit (bit 0)
Pre-dayfile bit (bit 17)
Class 2 Input file inhibit bit (bit 16)
Class 1 Input file inhibit bit (bit 15)
Inhibit duplicate file name search (bit 14)
Reserved (bits 13-12)

Parameter List Format

4-14

Word O

Bits 59-18

17-12

11-4

File Name

If the file name of a particular file is specified on any function, each FNT
entry is examined until the specified file name is found. This file must
meet the specified criteria to qualify as the selected file.

Error Code

Code Message

01B Invalid queue type

02B No queue entry found with specified parameters
03B Function prohibits 7777B priority
04B No FNT space

05B Invalid reply entry buffer address

06B Internal QAF error on FNT address
07B Illegal Request

10B Too many extra DID words

11B PEEK requires single queue type

12B Duplicate file name on GET

13B Count of zero is invalid _
14B LFN needed for file having pre-dayfile
15B Invalid FNT address/JDT ordinal

Queue Type

The queue type must be supplied on all functions except the special PEEK func-
tion when it must be zero. The binary values are: 00000001 (INPUT), 00000010
OUTPUT), 00000100 (PUNCH) or 00001000 (special output,), or 00010000
(execution). ' :

INPUT file Has a valid FNT entry, is unlocked at control point
zero and has a disposition code of 04B (INPUT job),
05B (INPUT tape job), or 06B (INPUT tape job on P
display).

OUTPUT file Has a valid FNT entry, is unlocked at control point
zero and has a disposition code of 40B (any 501, 512,
or 580), 41B (any 501), 42B (any 512), 43B (any
580-12), 44B (any 580-16), or 45B (any 580-20).

PUNCH file Has a valid FNT entry, is unlocked at control point
zero and has a disposition code of 10B (PUNCH 026
set from display code).

Special output file Has a valid FNT entry, is unlocked at control point
zero and has a disposition code of 20B (film print),
22B (film plot), 24B (hard copy print), 26B (hard
copy plot) or 30B (plot).

Executing job has a valid JDT entry
Function Code

0 ALTER

1B GET

60306500 K

2B PEEK
3B COUNT
0 Complete Bit
The complete bit must be cleared before any call to QAF. The bit is set on
completion of any function.
Word 1 Bits 59-48 ALTER flags

Bit 53 Abort/evict job/file
52 Change repeat count
51 Change forms code, for other functions means compare forms codes
50 Change priority
49 Change Terminal ID to TIDn
48 Send to central site

47-36 Forms Code
35-24 Disposition Code
23 Not Used
22-18 Repeat Count
17-0 FWA of Reply Buffér or a message to be issued when aborting a job.
Limited to 30 characters.
Word 2 Bits 59-48 Sour;:e ID (SID)
41-24 Destination ID 1 (DID)
23-12 FNT Address/JIDT Ordinal

This field in the parameter list is an absolute FNT address whenever 2 queue
type other than job queue is specified. It is a JDT ordinal whenever only the
job queue is specified. The field is an FNT address and is required on a
special PEEK function and optional on all other functions.

11-0 Job Class
Bit 5 Graphics job

4 Express job

3 Multiuser job

2 INTERCOM job

I Batch job with non-alloc device requirement

0 ' Batch job without non-alloc device requirement

Word 3 Bits 59-36 TIDn New TID (used by ALTER only)
35-12 TIDc Current Terminal ID (used for search)
11-0 Priority

If zero priority is specified and the other criteria are satisfied, GET attaches
the first file found; PEEK writes a reply entry for each file; and COUNT
increments the file type count. If the priority is greater than zero and less
than 7777B and the other criteria are satisfied, GET attaches the first file

60306500 K 4-15 @

Word 4 Bits 59-18

17
16

15

14

13-12
11-0

Word 5 Bits 59-48

4-16

having a priority greater than or equal to the specification; PEEK writes a
reply entry for each file that has a priority greater than or equal to the
specification; and COUNT increments the file type count when a file has a
priority greater than or equal to that specified. If the priority is equal to
77778, GET attaches the file having the highest priority among those that
satisfy all requirements, PEEK and COUNT do not allow this priority and
return an error code of 03B. ALTER does not use the priority as a search
criteria. This value replaces whatever the entry had before if bit SO in word 1
is set.

Pre-Dayfile LFN

The pre-dayfile logical file name is required only if the qualifying INPUT
file has a pre~dayfile. If the file has a pre-dayfile, a separate FNT entry is
created to describe the pre-dayfile entry. If the pre-dayfile 1fn is not given,
the complete bit is set and the error code 14B is returned. If a pre-dayfile
Ifn is always in the field, the pre-dayfile flag must be checked after each
call to prevent duplicating the file name in the FNT entries.

Pre-Dayfile Flag Bit
Class 2 INPUT File Inhibit Flag

The class 1 and class 2 INPUT file inhibit flags are used to achieve selectivity
in terms of file classes for GET, PEEK, or COUNT functions. A class 1 file
has no non-allocatable files associated with it. A class 2 INPUT file has at
least one non-allocatable file associated with it. If the job card specifies
MTxx, NTxx, or ECxxx, a non<allocatable file is associated with the INPUT
file. If the caller sets the class 2 inhibit flag on a GET call and also sets the
INPUT file type bit, only class 1 INPUT files are returned.

Class 1 INPUT File Inhibit Flag

Inhibit Duplicate File Name Search Flag

If the flag is 1, no search is made for a duplicate file name.

Not Used

Executing Job Count

Additional DID Word Count

The additional word count is used whenever more than one is needed in
the parameter list. Additional DIDs are packed three per word and termi-
nated by a byte of zeros. A maximum of 64 (decimal) is allowed. The
count is the number of CM words required to hold the additional DIDs.

It is not necessary to allocate an additional CM word simply to hold a
terminating byte of zeros. To hold six additional DIDs, for a total of seven
DIDs in the parameter list, the DID word count is two — three DIDs in
the first word and three in the second.

60306500 K

47-36 INPUT File Count

Only one of the four file count fields can be specified on a PEEK function;
the other fields are not used. File type determines which file count field is
to be used.

35-24 OUTPUT File Count

23-12 PUNCH File Count

11-0 Special Output File Count

Word 6 Bits 59-42 Destination ID 2
41-24 Destination ID 3

23-6 Destination ID 4

5-0 Not Used

Word n Bits 59-42 Destination ID n

41-24 Zero Terminator
23-6
5-0 Not Used

60306500 K 4-16.1 e

SUMMARY OF PARAMETER LIST USAGE

The required and optional parameter list field usage for each QAF function and the corresponding returned
parameters are shown below:

Field Name Field Usage

ALTER GET PEEK COUNT
Call Return Call Return Call Return Call Return

File/Job Name 0] X (o] X - X - X
Error Code - X - X - X - X
Queue Type R X R X R X R X
QAF Function Code R - R - R - R -
Complete Bit R X R X R X R X
ALTER Flags R - - - - - - -
Forms Code 0 - 0} - 0 - 0 -
DISP Code - - o} X (0] X 0
Repeat Count 0] - - X - X - -
FWA Reply Buffer 0] - - - R - - -
Source ID 0] - (6] X (0] X 0] X
DID 1 0 - 0 X (0] X 0 X
FNT Add/JDT Ord 0 X 0 X O/RtT X 0 X
Terminal IDn 6] -~ - - - - - -
Terminal ID¢c o] - 0 - 0} - 0 -
Priority o} - R X R X R X
Pre-Dayfile LFN - - —/R¥ - T— - - -
Pre-Dayfile Flag - - - X - X - X
Class 2 Inhibit 0 - 0 - 0 - o) -
Class 1 Inhibit 0 - 0 - 0 - o} -
Executing Job Count - - - - R/—t+ X - X
Add DID Word Count 0 - 0 - 0 - 0 -
Input File Count - - - - R/-t% X - X
Output File Count - - - - R/-tt X - X
Punch File Count - - - - R/—f+ X - X
Special Out File Count - - - - R/—#t X - X
DID 2 0 - 0 - (0] - 0 -
DID n 0 - 0 - (o] - 0 -

Explanation of Symbols: O Optional Parameter

X Parameter Returned by QAF
- Parameter Not Used

R

Required Parameter

tRequired only if pre-day file is present.
t1Second symbol is for the special PEEK function.

o 4162 60306500 K

VERIFYJ MACRO

The VERIFYJ macro performs verification of basic job statement information for a new job input file. The
job statement information is obtained from a buffer in the user’s field length. This macro verifies the infor-
mation, creates a system name for the new job, assigns the file to a queue device, and returns an FNT address
in addition to jobname and verified status. VERIFYJ is available only to routines loaded from the system
library.

The VERIFYJ macro formats a call to the PP routine VEJ (verify job statement) to perform the required
functions. VEJ can be called only by a routine resident in the system library.

VERIFYJ. has the following RA+1 interface:

59 42 40 ‘ , 0

VEJ Tag

]
L Recall Bit

The user must construct a parameter block in the format described below before calling the VERIFYJ macro.

VERIFYJ] tag,recall
tag Address of the VERIFYJ parameter block
recall Optional non-blank character indicating automatic recall

60306500 K 4-16.3 o

VERIFYJ PARAMETER BLOCK FORMAT

Tag

Tag+1

Tag+2

Tag+3

Tag+4

Word

- tag

e 4-164

59 47 23 17 " 0
» *
jobname* Ecr;?’; Zero ¢
Unused Reserved TID
Unusad Buf LWA
Unused Buf FWA
FNT ADDR* Unused
*These fields are returned by the VERIFYJ macro.
Bits -Field Description
59-18 jobname The name assigned to the new job file which will be an input |
queue file once the file contents are complete.
17-12 Error Code Status return

VERIFYJ parameter block outside FL
Complete bit already set
No permission to call VEJ

0 Successful
1 Job card error
-2 Buffer out of field length
3 Reserved
4 FNT full
5
6
7

60306500 K

11-1 Zero
0 Cc Complete bit. Must be zero when macro used.
0 On call
1 On completion of call
tag+l 59-24 Unused
23-12 Reserved
11-0 TID Terminal identification code

tag+2 59-18 Unused

17-0 Buf LWA Address of the last word + 1 in buffer of the cards to be
- verified. R '

tag+3 59-18 Unused

17-0 Buf FWA Address of the first word in the buffer of the cards to be
verified. :
tag+4 59-48 FNT ADDR The location of the FNT for this ﬁlé. The name of the file

will be that one returned as jobname above.

47-0 Unused

Error code and corresponding fields returned.

Error Code Fields Returned
0 All * fields as indicated in the parameter block
1 All * fields as above, except if there is a jobname error, then jobname will be ERROR xy,

where xy is the system sequence ID.

2 Only error code and complete bit.

4 Only error code and complete bit.
5 None — job aborted.

6 Only error code — job aborted.

7 Only error code and complete bit.

60306500 K : 4-16.5/4-16.6 ®

SCOPE 1/0 TABLES

SCOPE coordinates the requirements of input/output files with the status of input/output devices. File tables
and device tables are updated continually to provide interface for user jobs and system programs.

FILE TABLES

The status and requirements of files is kept in the following tables: File Environment Table (FET), File Name
Table (FNT), File Information Table (FIT), and Record Block Table (RBT). The FET and FIT are created
within the job field length; the other tables are CM resident. The CM resident tables are in the upper table
area of CMR, except the RBT which resides at the highest addresses of CM. Detailed descriptions of CM resi-
dent tables appear in part II, section 1. The FET and FIT are detailed in part II, section 2.

FILE ENVIRONMENT TABLE

Every file for which /O is to be performed must have a FET. Each FET consists of a basic S-word entry
followed by additional words; the form depends on the type of I/O to be performed.

The basic 5-word FET entry is as follows:

Record
. Levels
59 47 35 32 23 17 713 8 2 0
o ‘ ’ B = Busy (Free = 1
FET 0 Logical File Name in Display Code o] soooe (ve| > - M‘:c;’e((;:ary ! i
FET 1| Device Type Flag Bits Disp. Code | “FET FIRST
FET 2 0 IN
Buffer
Parameters
FET 3 0 ouTt
LIMIT < FL
OUT < LIMIT
FET 4 FNT Pointer RB Size PRU Size LIMIT IN < LIMIT
~ OUT > FIRST
IN > FIRST

LFET -5 Length of FET minus 5 words for basic entry

60306500 K 4-17

Worki Working
FET S fwa S:oral:eg hwa+1 Storage
FET 6 uBC _MLRS . «a{—Sequential Files (tape)
Record Request/Return Info -=+{ Random/Indexed
— - . . ' Files (Mass Storage)
FET 7 Record Number Index Length Index fwa

FET 5 is used for input/output blocking/deblocking by CPC
FET 5 and FET 6 are used for S and L tape file processing

FET 6 and FET 7 are used for indexed file processing by CPC; FET 6 is used to pass RMS address
between CP programs and system PP input/output routines

UBC Unused bit count
MLRS Maximum logical record size (S/L tapes only)

When the UP and/or EP flags are set in FET 1, then FET 8 contains:

59 47 29 .17 0

FET 8 EOIl Return Address Error Return Address

When standard file labels are to be written, the following FET words are filled with information from the
LABEL control card or macro. When a labeled file is read, the fields will contain data read from the label.

59 47 29 23 17 0
FET 9 File Label Name (First 10 Characters)
FET 10 File Label Name (Last 7 Characters) | Position Number
FET 11 Edition Number Retention Cycle Creation Date
FET 12 6-Character Muiti-File Name Reel Number

When LFET-5 flag in FET 1 is set to 1 for extended label processing, FET 9 has the following format:

59 | 3 17 0

Label Erfor Code Length of Label Buffer FWA of Label Buffer

4-18 60306500 F

SYSTEM FET ENTRIES
FET entries tor the system dayfile. the hardware error file. and the control point dayfiles are kept in the

upper table area of CMR. adjacent to the control point zero dayfile buffer. The format of the one-word
daytile FET entries is:

59 47 35 23 11 ; 0

Index Buffer Size Rel Buf Addr Limit (unused)

Index is the entry position relative to the table origin (T.DFB). Buffer sizes are set by SCOPE assembly
configuration parameters internal to CMR. The origin of each buffer is found by adding the relative buffer
address to the T.DFB origin address of the dayfile buffer area in CMR. The CP zero dayfile buffer is preset
with a legend in the first eight words as follows: (b represents blank character)

bDAYFILEG: s
bbbNORMALD
(bbbbbbbb)
DEADBDSTART
FIIE 2 0 T BN JOE 2T 2O O |
COPYRIGHTD
CONTROLDDA
TADCORP.bH1
9701222

The system dayfile area in-CMR is diagrammed below:

T.DF8
' / . ‘ System FET Entries

Y prrzzzzzz222227727777777772722777227777777

LE.DFBO (buffer size)

Buffer)
Addresses

Relative

< TEDFET L.DFB
1 | LE.DFB2
Y LE.DFB3
LE.DFB4
v | | LE.DFB5

LE.DFB6

Y — EDFE7
7

| 60306500 F | S | | . 419

When the system is assembled, several system file entries are built into the FNT/FST for control point
dayfiles, system (library) file, and hardware error file. Their initial entries are diagrammed in the following
figure.

~ Control Point Zero

0=Unlockod7/- 1 0
bp

TENT .
z 2 z 2 z 0 4 0 0 }Pnonty
Device FWA of RBT | Current RBT | Cur RBT E«r
Type | ° l Word-Pair Word-Pair__| Ordinal__pvie Current PRU
Status
0 , - ol7 4 0 0o 01 }m.,m‘m
o A Y £ ! L 3 Ionoo 0 ——0
° °
PO o‘ 7 4 0 00 ———01
o F] L 3 0 1 H*ooo 0 0
0- 0
0 , ol7 4 0 00 ———or
0 ¢ ' L E° 0 2 Halpooo 0 0
0 0
0 0l7 4 0 0]0 ———n
o F ! L E 0 3 Hobom 0—a
0 ‘ 0
0 0]7 4 0 0j0 o1
D E t L £ 0 4 lﬁHwoo 0 e
0 0o
° o[7 4 0 o0lo o1
<= ¥
) F i L E 1 5]oHnooo' T —
o 0
0 ol1 4 0 0fo0 e 01
c E R F] L E J*xxn | —
0 ~ - 0
0— — 0|7 4 0 0f0——ar
z oz z 2 z o 3 loHonoo: 0~ 0
0 - ' . Q
0 — ol7 4 000 00 1
2z 2z 2z z zZ o 8 H1looom 100100100700 |§ LE-FNT-1
device : {mm
type 20 - - - 0 1(ECS library
ax | entry if
0 0[7 4 40j0o 0 o 1 |lUIPELIB=O
LINK 1
e |90 7 7 44 a4 10 0

4-20 : _ : : ' 60306500 F

FILE NAME TABLE (FNT)

To provide linkage between user programs and all I/O processing routines, SCOPE maintains the FNT in CMR
upper table area. Each basic entry in the file name table consists of three words; one or two three-word exten-
sions to entries may occur in some instances, extending the entry to 6 or 9 words in length. The first word
contains the logical file name, control point number to which it is assigned, as well as other pertinent infor-
mation. The second and third words constitute the file status information; the format differs depending upon
the type of file and where it resides. The various forms of the FNT entry are detailed in part II, section 1.
The second and third words of the FNT entry are often called the FST (File Status Table) entry.

DEVICE TABLES

Tables in CMR that provide information on' input/output equipment and channels are used by SCOPE to make
file assignments. Tables included in this section: Equipment Status Table (EST), containing entries for all I/O
equipment in the configured system; Device Status Table (DST) and Device Activity Table (DAT), providing
information related to mass storage devices and controllers; Record Block Reservation (RBR) and Record Block
Table (RBT) containing information on each record block in a mass storage device; the Dismountable Device
Table (DDT) and Mounted Set Table (MST) containing information related to the recording surfaces. The
Channel Status Table (CST) provides I/O channel availability information and serves as an interlock for
major file tables, which prevents modification of the same table entry by two or more programs. Also
included are the TAPES table and the Tape Staging Table (STG), the Device Pool Table (DPT), and the
INTERCOM Table (ITABL). These tables are detailed in part II, section 1.

EQUIPMENT STATUS TABLE (EST)

The Equipment Status Table resides in the upper table area of CMR and is pointed to by P.EST in the
CMR pointer area. Table length is variable depending upon the system configuration at deadstart. There-
fore, the CMR pointer word also includes the LWA + | address of the EST.

The EST contains a one-word entry for each device configured in the system, including consoles and remote
terminal MUX devices. Each entry describes current status of the device and includes the device hardware
mnemonic name, channels to which it is attached, device unit number, etc.

Entries in the EST are numbered starting with one; an entry number, called the EST ordinal, is used to
xdentlfy the table position of each equipment entry. The EST ordinal of the equipment being assigned is
given as xx in the operator type-in n.ASSIGNxx.

The EST is the basic reference for most other 170 tables. EST ordinals are found in the FNT/FST entries
for linking file entries to their assigned equipment. EST ordinals in the TAPES table link tape entries to
related equipment entries in the EST. Likewise, EST ordinals are found in the Record Block Reservation
(RBR) table, linking that table to the allocatable device it describes.

60306500H ; ‘ , 421

DISMOUNTABLE DEVICE TABLE (DDT)

The dismountable device table is used to maintain the status of rotating mass storage devices that are logically
removable from the system. The fixed section of the DDT is used to relate the status of an RMS drive to the
status of the pack mounted on that drive. The variable section of the DDT is used to store pack requests that
have not been satisfied. The second word of a fixed section entry has a pointer to the EST entry for the
drive. Whenever the physical status of the drive changes, the EST is updated. IRN compares the status bits in
the EST with the status bits in the DDT ‘and calls 1PK when a difference is detected. 1PK updates the DDT
to reflect the new status of the drive and checks the variable section of the DDT to see if any pack requests
can be satisfied. If a requested pack has been mounted, 1PK updates the fixed section to include the DAM
and MST. ordinals, deletes the variable section entry, and recalls the job that had requested the pack. When a
new pack request is made, 1PK checks the DDT to see if the device is already mounted. If it is mounted,
IPK satisfies the request. If the pack is not mounted, 1PK makes an entry in the variable section of the DDT
and swaps the job out.

MOUNTED SET TABLE (MST)

The Mounted Set Table is used to keep pointers for each mounted device set in the system. Each MST entry
has a corresponding set subdirectory table entry in the FNT. Entries are made by MNT when a master device
is mounted and deleted by DSM when a master device is dismounted.

DEVICE STATUS TABLE (DST)

The stack processor uses the device status table in processing of mass storage files. The DST is located adjacent
to the request stack in CMR upper table area. Each controller has one DST two-word entry which specifies the
overlay to be used by the stack processor (1SP) for each controller, pointers to a chain of .requests entered in

the request stack for that controller, and device availability information.

Each entry is numbered, starting from 1, to identify DST ordinals. The format of a DST entry is shown in
part II, section 1.

In word 2, if the chain start and chain end pointers are not equal, a PP is assigned to process the stack entry
chain. The assigned PP address is given in byte 4 of word 2; when the entry is completed and the PP is dropped,
the byte is set to zero.

The device status table is a key table in the processing of allocatable storage files. DST ordinals are found in
the Device Activity Table (DAT), the Record Block Reservation (RBR) table header, and the Equipment Status
Table (EST). A DST ordinal appears in each DST entry; it is placed into the input register of the PP assigned
to process an entry for that device in the request stack.

When a device is dual access type, an additional DST entry is assigned to the device. This entry immediately
follows the first DST entry and is called the Dual Access Status word pair. The format of a Dual Access Status
word pair is shown in part II, section 1.

For a dual access scheme, two 1SPs can be assigned to a DST entry and share accesses to the DST entry and
the chain of stack requests and communicate with each other through the Device Pool Table.

422 - ‘ I o ’ 60306500 F

The Dual Access Status word pair is mainly used for interlocking accesses to these common tables. Also, this
word pair is used to hold connection information for the second controller and the location and length of the
Device Pool Table.

Through the Unit Lock-out Table, accesses to particular units from particular controllers can be locked out
while access is in dual mode.

DEVICE ACTIVITY TABLE (DAT)

The device activity table is directly related to the device status table. It has one entry for each DST entry and
is referenced by the mass storage device open overlay (3DO) in determining the best RBR to assign to a new

or overflowing file.

DAT entry for a dual access scheme is followed by a dummy entry in the same way that a DST entry is fol-
lowed by a Dual,’ Access Status word pair.

The formats for DAT entries are shown in part II, section 1.

CHANNEL STATUS TABLE (CST)
The Channel Status Table, residing in the lower table area of CMR, contains a one-word entry for each hard-
ware channel and each pseudo channel in the system. For a reserved channel the PP reserving the channel is
identified in the entry.
The channel number is obtained by a PP program from the EST entry for the type of equipment. The
length of the CST includes entries for a minimum of 12 hardware channels (optionally 24 maximum) and
13 pseudo channel numbers.
Access to the FST/FNT/RBT is controlled by an interlock scheme which prevents two or more programs
from attempting to modify the same table entry at the same time. Not all table accesses require pseudo«-
channel reservations. Some of the conditions which require pseudo channels are:

Entry is added to FNT

File is assigned to a control point, causing FNT modification

FST code/status byte is initialized

Details of the Channel Status Table are given in part II, section 1.

60306500 K 4-23

Tables related to file processing on non-allocatable devices:

FET
FNT Pointer
EST
e
CST EST Ordinal
FET Pointer >
FNT/FST
FNT Pointer
TAPES
STG

I TAPES STAGING TABLE (STG)

A satisfied job has all the tapes requested on its jobcard. Unfilled demand is the sum of the jobcard reservations
of active jobs, less the tapes assigned to them.

The NO TAPE STATUS FLAG makes it possible to issue tape channel functions through DSD without inter-
ference from tape status processing. Status processing is not performed if the byte is non-zero. Normal system

operation resumes when the byte is zeroed.

The three clocks are used, to make event triggers for automatic assignment.

l The Tapes Staging Table appears in part II, section 1.

4-24 60306500 K

TAPE DRIVE SCHEDULING

Tape drive scheduling improves overall system throughput, particularly as it relates to tape job setup and
execution. Automatic assignment, prescheduling, and overcommitment options are controlled by the value
of IP.TSG.

AUTOMATIC TAPE DRIVE ASSIGNMENT

ANSI tape labels include a volume serial number (VSN) field. The user can have tape drives assigned auto-
matically to his ANSI-labeled tapes by specifying the VSN on a VSN statement, in the REQUEST function,
or as a parameter on the REQUEST or LABEL control: statement. The VSN statement relates the external
sticker or VSN to the logical file name and also provides information required for the tape job prescheduling
display. When used with the REQUEST or LABEL control statements or the REQUEST function, it relates
a VSN to a logical file name, which is relevant to equipment assignment. By itself, however, the VSN serves
no purpose. When a VSN control statement provides the first reference to a file, a dummy FNT entry is

set up using equipment code 64. If no subsequent REQUEST or LABEL control statement or REQUEST
function provides additional information about the file, CIO finds the 64 equipment code in the FNT entry,
releases that entry, and creates a default disk file. This feature does not encroach upon automatic assignment
by label. The VSN parameter declares the tape label as either type U (full ANSI-standard label) or type Z
(SCOPE 3 nonstandard label). The Z labels are not ANSI standard because the recording-density field

- (character 12 of the volume header label) is not standard.

For automatic assignment of unlabeled tapes, the VSN must be entered by the operator. The tape is then
assigned automatically to all jobs naming its VSN. Y-labeled tapes do not contain VSN information; however,
to achieve automatic tape assignment the operator can enter a VSN for a Y tape through the console. No
automatic assignment is provided for 2MT or 2NT parameters.

- TAPE JOB PRESCHEDULING

The tape job prescheduling display is an extension of the P-display and lists, by VSN, the tape reels required
by each tape job. A tape job is defined as one having MT and/or NT parameters on its job card. All incoming
tape jobs are entered in a prescheduling queue, a subset of the input queue. The purpose of having a pre-
scheduling queue is to advise the operator of tape reel requirements and to hold jobs in abeyance until such
reels can be obtained from the tape library. This arrangement also allows the operator some control over the
selection of tape jobs for execution.

60306500 L ' 425 ©

The operator communicates with the prescheduling queue through DSD type-ins and the P-display. Each

time the P-display is requested, tape jobs having the highest priority are displayed. A job requiring tapes is
not placed in the normal job input queue until the operator releases it with a type-in. Once released, the job
will be considered by assignment to a control point and execution; it will no longer appear in the pre-
scheduling display.

JOB SCHEDULING WITH TAPE DRIVE OVERCOMMITMENT

Job scheduling based on tape drive overcommitment assumes that a tape job does not always need its maxi-
mum tape requirement for the duration of the job and that most processing activity uses less than the maxi-
mum number of drives necessary for job completion. Therefore, a job is assigned only those drives it needs

to continue execution at any instant in time; excess drives, at that instant, are made available to run other jobs.
Such a job scheduling algorithm permits the total tape requirements of all active jobs to exceed the total
number of drives in the installation. However, a system deadlock could occur if two or more jobs have

unfilled tape demands in that every tape drive is assigned but no job has enough tapes to run to completion.
Such a deadlock could be broken only by rerunning or killing one of the competing jobs. Preventing dead-
locks is a function of tape assignment, not job scheduling, although the job scheduling algorithm includes

some built-in deadlock prevention features.

As part of REQUEST processing, SCOPE 3.4 provides a deadlock prevention algorithm. A potential deadlock
exists if at least two jobs have unsatisfied tape requirements and the number of free tapes is less than the
maximum required to satisfy any one job. Deadlock prevention refuses any tape assignment (manual or auto-
matic) if such assignment would create a potential deadlock.

Tape jobs could be scheduled at random without regard to tapc drive availability and the deadlock algorithm
would evade deadlocks, but the resulting refusal of tape assignments would cause operator confusion and loss
of efficiency. Job scheduling based on tape drive overcommitment, therefore, attempts to create an optimal
situation and deadlock prevention avoids the worst-case situations.

4-26 60306500 L

DYNAMIC TAPE DRIVE STATUS CHECKING

Information concerning the physical status of tape drive units is entered into the TAPES table and updated by
periodic checks of unassigned units for a ready/non-ready status. This information is displayed in the top half
of the P display. The period for status checking is set by the installation; it must be short enough to preclude
the possibility of an operator dismounting a tape from a tape drive and mounting another without detection.
Such periodic checking of unassigned tape drives makes automatic assignment more efficient and flexible.

TAPES TABLE

Initially a tape drive is set to not-ready status, as noted in the TAPES table. When a drive is made ready, the
TAPES table is updated with information from the tape label. (If the tape is unlabeled, this fact is noted in
the table.) A search is made, then, for a job that needs the tape and the tape is assigned to it, providing such
an assignment will not cause a deadlock. This action applies to both labeled tapes and tapes qualifying as
scratch, per IP.TSG.

Whenever a requested tape cannot be located immediately. the requesting job is rolled out until the operator
mounts the tape. When the tape is found, it will be automatically assigned to the requesting job and the job
rolled back into CM to continue processing. While the job is rolled out, the operator may make a manual tape
assignment which will cause the job to be rolled in automatically.

Dynamic tape drive status checking permits the automatic assignment of unlabeled tapes by volume serial num--
ber. A VSN entered by the operator is recorded in the TAPES table; as long as that drive remains in the
rcady status, the system knows that the tape is still mounted and that it may be assigned without operator
intervention to any job requesting that VSN.

60306500 L 4.26.1/4-26.2

RMS SET TERMINOLOGY

All disks used in the operating system are divided into sets. The term disk includes fixed disks and removable
packs, and is distinct from a drive which can hold different disk packs at different times. A set is an inde-
pendent group of disks; a disk belongs to only one set and files do not overflow to another set. Any user
may own his own set of removable disk packs. ‘

NOTE

The SCOPE 3.4.3 category “‘private pack™ no longer
exists: it is superseded by private sets. All RMS devices
are now allocatable (all devices can be divided among
several jobs).

Private sets are removable and mountable by job requests and operator action. Each member is mounted as
needed, and members (other than the master) may be dismounted by operator typein at any point in process-
ing; masters may be dismounted when no jobs reference them.

Public sets remain mounted at all times and have either PF default, system, queue, or scratch attributes, or a
combination thereof (these can all be combined in one set). Also, the members individually have SYS, PF,
and Q attributes to further delimit file allocation. All these attributes are set by the operator at deadstart,
and the individual devices can be given PF and Q attributes only by initialization deadstarts,

Members of public sets may not be dismounted; however, empty members can be deleted by DELSET, and
new members added by ADDSET.

The system set is used for the system file and its related files created by post-deadstart use of EDITLIB and
LDCMR, and the dayfile and CERFILE. There is no parameter on the REQUEST card to specify system. The
user may request the system set (and VSN) by name.

The PF default set is assigned when a file requests *PF and no setname; only the PF default set is consulted
on an ATTACH when no SN (setname) is supplied.

The Q set is assigned for special name files such as OUTPUT, PUNCH, etc.: these files may not be assigned to
another set. Deadstart consults only the Q set to retrieve the queues. If a file is to be moved via DISPOSE
or ROUTE, it must first be assigned to the Q set with a REQUEST(Ifn,*Q) request.

Scratch sets are unlike the other sets as several sets may have the scratch attribute. Files not assigned by

- REQUEST and not special-named (OUTPUT, etc.) are assigned to a scratch set.

DEVICE SETS

Every RMS device is a member of a group of devices known as a device set. Such device sets can be either
public sets or private (user) sets.

Each public device set is assigned one or more of the following set attributes:

System Set This set contains system ftiles such as ZZZZZ04, ZZZZ723, the system
dayfile, and the C.E. diagnostic file.

60306500 L 4-27

Permanent File Default Set This set contains permanent files for which an alternate device set is
not explicitly assigned.

Queue Set This set contains the INPUT, OUTPUT, and PUNCH queueA files.

System Default (Scratch) Set This set contains non-permanent files for which a device set residence
is not explicitly assigned.

Device set attributes are assigned at deadstart. All four attributes must be assigned for each mainframe. Only
the system default attribute can be assigned to more than one device set on a mainframe.

A private device set is a group of RMS devices which can contain permanent files and be logically and physi-
cally removed from a running system. Permanent files stored on a private device set can therefore be trans-
ferred from one computer to another without moving the entire system. Specific attributes cannot be assigned
to private device sets.

Every device in either a public or a private device set can (but need not) be assigned one or more of the
following device attributes:

System Device This device can contain the system files given above for the system set
attribute. The system device attribute can be assigned only to public
devices that are members of the system set.

Master Device The master device contains system tables relating to its device set.
These tables include the Device Label, the PFD (Permanent File Direc-
tory), the PFC (Permanent File Catalog), the SMT (Set Member Table),
the DAM (Device Allocation Map), the PFT (Physical Flaw Table), and
the LFT (Logical Flaw Table). Every device set must have a master
device.

Permanent File Device This device can contain files for which the REQUEST control card
specifies *PF.

Queue Device This device can contain files with names such as INPUT, OUTPUT,
and PUNCH, files with non-zero disposition codes, and files for which
the REQUEST control card specifies *Q.

The system device attribute is assigned at deadstart; the master, permanent file, and queue device attributes
are assigned when the device set is created. Attributes assigned to devices (except for the system device attri-
bute) need not match the attributes assigned to the device sets of which they are members.

SHARED DEVICE SETS

In a dual-mainframe system, certain device sets can be shared between mainframes. Such sets must consist
entirely of 844 devices and cannot have the system set attribute. When a device set is shared, all devices
within that set are shared. Devices can be shared at either the unit or the controller level. The system uses
the hardware reserve feature to reserve access to critical tables during an update; consequently, not more than
one mainframe can access a device during this process. A pool of free space is maintained in the RBR of
each mainframe sharing the device. Additional space is maintained in the DAM on the master device. The
pool is replenished when it gets low, and excess is returned to the DAM. If a stack request is outstanding but all
local space is used, the request is chained into the Device Overflow Table (DOT) contained in CMR. Permanent
file access between mainframes is coordinated through the PFC.

4-28 60306500 H

RMS TABLES

FET
3
EST = ‘
cST
Set FNTs
7) -
] FNT/FST |-
-
J
— DAT
Nt I
- P T REQUEST
STACK
- RBR = '
' __ Disk RBR
(DAM)
3
- MST -
- ooT '

- RBT

4-29

60306500 H

To comprehend the functions of the various tables involved, the methods of mass storage space allocation
must be understood. Terms are defined below:

SECTOR: the smallest accessible physical space increment on a track of a rotating mass storage device.

PRU: (physical record unit): the smallest amount of data a user may access; it is 64 decimal (100 octal)
central memory words and is usually equal to 1 sector.

RB (record block): the smallest amount of mass storage that can be allocated. An RB, defined in the RBR
header, is several PRUs in length.

RBR (record block reservation): a bit-coded table which indicates those RBs on a device which are

. assigned to a file, flawed (defective), or available for assignment. A 0-bit indicates that the specific RB is
available for assignment. The number of physical record units in a standard RB (default RB size) is given in
the following table:

Type/Device Default

Device RMS Type Codes PRU/RB

(decimal)
6603-1 DISK AA 01 o
6638 DISK AB 02 50
6603-11 DISK AC 04 *x
821 DISK AL 05 320
841 DISK PACK AM 06 56
854 DISK PACK AP 07 4
844 DISK PACK AY 13 56
** INNER ZONE IS 50 PRU/RB

OUTER ZONE IS 64 PRU/RB
2 RBRs ARE REQUIRED

430 | 60306500 H

\54
AN

Sector 53

Number —/ \

= 1 SECTOR

=1 PRU

= 64“0) CM Words
= 320“0, PP Words

Half-Track Recording Technique

Alternate sectors of a physical recording track on 6603 or 6638 disks are numbered consecutively; interven-
ing sectors are numbered the same way. Essentially, one recording track is divided into two half tracks, one
containing the odd-numbered sectors, the other even-numbered sectors. The time required to move to the
next numbered sector is used to set up parameters and load or unload PP memory in preparation for the
read/write of the next sector.

60306500 F , : ' RO : 431

RECORD BLOCK RESERVATION TABLE

A record block on a mass storage device is allocated to a file before any data can be written to that file. As
data is written and a record block is filled, another record block must be assigned. Before the stack
processor can select a record block to assign to a file, it must determine availability of record blocks. A
record block reservation table maintained in CMR provides this information.

Each mass storage device is represented by at least one entry in the RBR. Several RBRs can be generated
for a single device, each describing a unique area on the device. Each entry is made up of a two-word
header and a variable length bit table. Each bit represents the availability of the corresponding record
block; if a bit is zero, the RB is available for assignment; if a bit is one, the RB is not available.

The first word of each RBR header contains a 6-bit allocation style code supplied as a parameter to the RBR
macro when the CMR is assembled at an installation. Unique allocation style codes for each RBR may be set
by the installation; this code can be used to direct a file to the RBR with a specific RB size and/or recording
technique.

RECORD BLOCK TABLE (RBT)

The Record Block Table (RBT) is file-oriented. Each mass storage file in the system has an associated RBT chain.
The RBT, located in the highest address end of central memory, consists of word pairs which are linked forward
to form an RBT chain for each file that exists on an allocatable device currently recognized by the system. The
RBT expands and contracts by 100 (octal) word blocks as files are allocated and released. A maximum of 8192
(decimal) central memory words may be assigned to contain all the RBT entries active at any one time.

When a mass storage file is established, a two-word RBT entry is created for that file; additional entries are
assigned and linked in a chain as the file expands and entries are needed. Each entry consists of ten 12-bit
bytes, some are used as pointers to additional entries in the chain and to other tables. Remaining bytes in the
entry contain the RB numbers of record blocks assigned to the file. RB numbers are placed in sequential RB
bytes in order of their assignment. An RB number serves as the address of a bit in the RBR and DAM bit
tables representing the availability of that record block; it is also the address of the corresponding physical
record block on the mass storage device. RBT entries are addressed by RBT word-pair ordinals. The word-
pair ordinals are numbered sequentially starting from the highest address in central memory.

The CMR pointer word P.RBT contains the current size of central memory divided by 100 (octal), as well as
the current length of the RBT in 100 (octal) word increments. The same word also contains the RBT word
pair ordinal of the first member of the RBT empty chain. Unused word pairs in the RBT are linked together
to- form the empty chain. As record blocks are released from an evicted file, the dropped word pairs are
linked into the empty chain. Word pairs are assigned to files from the head of the RBT empty chain and the
new first-member word pair ordinal is entered into the CMR pointer word. The RBT channel is requested as
an interlock before a word pair is removed from the empty chain.

432 | e , | - 60306500 H

RBT Empty RBT Size
P.RBT ’ Chain Ord. (n Blocks)
Entry
Ordinal ‘ - High
: , Core
1
16 32
il = T ' — ——1 RBT
26 0
- ~ 24 B | }
n+40g,

~— T T T Low
: Core

Word 1 of the first word pair assigned to a file contains ordinals, flags, etc. The RB bytes denote the record
blocks assigned to the file. These bytes, initially zero, are set as each record block is assigned. The values in
the RB bytes are RB numbers which indicate the physical address on the device and a corresponding bit in the
bit tables. As a file expands, additional RBs are entered into the RB byte fields until the word pair is filled;
in this case, another word pair is assigned to the file and linked to the current word pair. If no more record
blocks are assignable from the RBR/DAM table, an overflow condition occurs; in this case; a word pair in
overflow format is linked into the chain, another word pair is linked to-the overflow word pair, and process-
ing continues with the remaining RB byte fields in the last link on the overflowed device set to zero.

As a file is evicted or record blocks are dropped, the RB bytes are cleared When an entxre word pair is
emptied, it is linked into the RBT empty chain.

The end of a file’s RBT chain is a word pair having zeros in byte O of the first word. The last word pair in
the empty chain contains all zeros. . ;

The interrelationship of the FNT, RBT, and RBR entries for a file assigned to an outer zone half track on a
6603 disk is illustrated in figure 4-2. Pointers in the lower table area of CMR give the first word address of
the FNT and the RBR area. The RBT size, in 100B word blocks, is multiplied by 40B to yield the number of
wcerd pair ordinals in the RBT. Multiplying -any RBT ordinal by 2 and subtracting it from the LWA+1 address
of central memory will produce the address of the word pair entry.

60306500 H - O - L , 433

CMR

1

|

P.RBR

FWA RBR.

.RBT Size

P.FNT

FWA FNT

LWA+1 ENT

I

FNT

RBT

FNT —>

File Name (1fn) |]

FST {

FET}Address

[os] NI
A\

First
RBT Ord.

Current
RBT Ord.

\
T
Current X

PRU

3

0000

002{0

1511

1617

0000| 52

0000

0000

0000

0000

0000

RBR Area

RBR Table No. 3 Header |

[10 |

Bit-Table

RBR Table No. 4 Header |

Address

e

{10]

|

P

RB size ——
=100

Bit-Table {

-
11110 10\QF)0 01
~

127

(Last +1 PRU
written)

FNT/RBT/DDT/RBR Interface
for a Sequential File on a
6603 RMS Outer Zone -

l 4-34

Figure 4-2. File Table Interfaces
(all numbers are octal)

60306500 H

When the file is established for a job, an entry is made in the FNT; and a pointer to this entry is placed in
the job’s FET for the file. The FST entry in the FNT for a mass storage file contains the RBT ordinal of

the first word pair assigned to the file (27 in this example), and the current word pair assigned. It also in-
cludes the RBn byte number representing the current position of the file and the current PRU number in the
record block being accessed. RB bytes are numbered from O through 7 starting with the middle byte of the
first word of the pair. In this example, the current RBT ordinal is 52 and the RBn byte number is 1. Byte 1
in the first word of any file RBT word pair contains the ordinal of the DAM table entry and the MST table
entry used by the file. The DDT has a range of DAM ordinals associated with that device. The DDT points
to the EST; the RBR points to the EST. Thus, the RBR ordinal can be found from the DAM.

The current record block in the file is found by using the RB number in the RBn byte of the RBT word

pair currently being accessed. These RBT pointers are in the FST entry; the example showing word-pair

ordinal 52, byte RB1. Only 3 bits in the FST are needed to point to one of the 8 RB bytes in the RBT
word pair. The RB number in byte RB1 is 1517 octal or 847 decimal. To find the RBR table entry, find
the DDT entry with the same MST ordinal (5 in this example), the DAM within range (2), and the RBR
pointing to the same EST (10). Since the first DAM fits on one PRU, the next DAM is the RBR for this

file (ordinal 4). To find the corresponding bit in the RBR bit table, subtract one from 847 to get 846, di-
vide by 60 to get 14 and a remainder of 6. Then the RBR bit table entry is bit 53 (59 minus the remainder)
in the fifteenth word (fwa + 16 octal) of the bit string. To find the corresponding physical address on the
device, subtract one from 1517 to get 1516 and apply the formulas given in Part II, section 1, under RECORD
BLOCK TABLE ENTRY. According to the RB address format for a 6603 disk, the physical address is outer
zone, head position 151 of head group 3, and consists of even-numbered PRUs. A byte in the RBT points

to the last PRU written plus one; a byte in the FST points to the PRU being accessed in the current record
block.

INTERCOM TABLES
 INTERCOM uses word 16B of the CMR pointer area as the pointer to the INTERCOM Multiplexer Table and

the INTERCOM pointer area. The Multiplexer Table and subtable entries contain a complete description of the
communications equipment to be serviced by INTERCOM. The Muitiplexer Table is central memory resident.

The INTERCOM pointer and buffer area is generated when INTERCOM is initialized and is not resident when
INTERCOM is not running in the system. This area contains pointers to the various chains in the INTERCOM

buffer area itself.

The INTERCOM tables are detailed in Part II, section 1.

60306500H ' T . , 4-35

When the file is established for a job, an entry is made in the FNT; and a pointer to this entry is placed in
the job’s FET for the file. The FST entry in the FNT for a mass storage file contains the RBT ordinal of

the first word pair assigned to the file (27 in this example), and the current word pair assigned. It also in-
cludes the RBn byte number representing the current position of the file and the current PRU number in the
record block being accessed. RB bytes are numbered from O through 7 starting with the middle byte of the
first word of the pair. In this example, the current RBT ordinal is 52 and the RBn byte number is 1. Byte |
in the first word of any file RBT word pair contains the ordinal of the RBR table entry used by the file.
The ordinal points to a two-word table header in the RBR area which, in turn, points to the bit string for
the area on the device to which the file is assigned.

The current record block in the file is found by using the RB number in the RBn byte of the RBT word
pair currently being accessed. These RBT pointers are in the FST entry; the example showing word-pair
ordinal 52, byte RBI1. Only 3 bits in the FST are needed to point to one of the 8 RB bytes in the RBT
word pair. The RB number in byte RBI is 1517 octal or 847 decimal. To find the corresponding bit in the
RBR bit table, subtract one from 847 to get 846, divide by 60 to get 14 and a remainder of 6. Then the
RBR bit table entry is bit 53 (59 minus the remainder) in the fifteenth word (fwa + 16 octal) of the bit
string. To find the corresponding physical address on the device, subtract one from 1517 to get 1516 and ,
apply the formulas given on the bottom of figure 4-3. According to the RB address format for a 6603 disk,
the physical address is outer zone, head position 151 of head group 3, and consists of even-numbered PRUs.
A byte in the RBT points to the last PRU written plus one; a byte in the FST points to the PRU being
accessed in the current record block.

INTERCOM TABLES

INTERCOM uses word 16B of the CMR pointei area as the pointer to the INTERCOM Multiplexer Table and
the INTERCOM pointer area. The Multiplexer Table and subtable entries contain a complete description of the
communications equipment to be serviced by INTERCOM. The Multiplexer Table is central memory resident.

The INTERCOM pointer and buffer area is generated when INTERCOM is initialized and is not resident when
INTERCOM is not running in the system. This area contains pointers to the various chains in the INTERCOM
buffer area itself.

The INTERCOM buffer area is in two partitions. The lower partition contains 20B-word buffers and the upper
partition contains 100B-word buffers. Both partitions are totally dynamic; they are assigned and released on
demand. The large buffers are used for the INTERCOM wide band subsystem and are not present if INTER-
COM is not running wide band. The small buffers are used for all data transfers except wide band, and the
small buffers are always present if INTERCOM is in the system.

- The INTERCOM tables are detailed in part II, section 1.

60306500 F . | | | 437

INPUT/OUTPUT 5

1/0 PHILOSOPHY

Input and output request processing depends upon the source of each request. Active user CM programs issue
RA +1 requests for 1/O which are cycled through CPMTR. PP programs request 1/O by placing a monitor re-
quest into their PP output register. System programs, which run at control point N.CP + 1, cannot make mon-
itor requests through RA + 1. Since they run as CM service functions for PP programs, they make such re-
quests through the output register of the PP servicing the program.

CPMTR assigns the I/O request to CP.CIO which, in turn, assigns it to the proper processor, CIO or 1SP. CIO
(circular input/output) processes requests for magnetic tape, Teletype, and unit record 1/O; and 1SP (stack
processor) processes all requests for mass storage 1/0.

Another 1/O processor, JANUS, exists in SCOPE, but its function is limited to processing unit record 1/O for
the system input and output queues. The queues contain job input and output files and are related to the
job processing activities of SCOPE. JANUS is discussed under the job processing section of this manual.

CiO

The circular input/output processor consists of the central memory program CP.CIO, the PP program OV.CIO
and several PP 1/O drivers. A system programmer can write his own input/output software, or he can have
his program generate a call to CIO. Before calling CIO, the program must set up circular buffer parameters
and the CIO operation code in the file environment table (FET) for the file. The relative address of the FET

is placed in the CIO call.

A PP routine places a CIO call in its PP output register; MTR passes it through the CP input register for the
CP.MTR. A CP program places a CIO call in the CP request register (RA+1). When MTR accepts the CIO
call, it assigns a PP and clears byte O of the PP output register.

When CP.MTR detects a CIO call, it passes it to CP.CIO for validation and selection of the proper CP.CIO
routine to supervise execution of the function. The CIO call is then reissued via the request stack and
CP.MTR to be processed by the required CIO driver; RA+1 is cleared. When the I/O operation is completed,
CP.CIO adds one to the code/status field of FET word one. As all CIO codes placed in the FET code/
status field are even numbers, an odd number in that field signals completion of the operation (or that the

file is not busy).

60306500 L : 5-1/5-2

NORMAL

v PERMANENT PACK QUEUE

SWAP UNSUCCESSFUL

i e e i e e S e s

NEW FILE FST

NON-SYSTEM JOB

TEAMINATION

CLOSER SYSTEM JoB
RBT WORD 5
PAIR ASSIGNED °¢A\°

NOT MOUNTED
OVERFLOW DEVICE

NORMAL
TERMINATION

NORMAL
TERMINATION

EVICT FUNC?)ON NOT ON-LINE
CURRENT POSITION
NOT MOUNTED
CURRENT POSITION
MOUNTED
OVERFLOW WORD PAIR ON EEAD
NO AVAILABLE RB'S
NO OVERFLOW
OST ORDINALA1 s DST ORDINAL =1 " 300 OVERFLOW 0::’5‘; DEVICE ABNORMAL
U FLow TERMINATION
NO DEVICE ACCESS OVERFLOW DEVICE
NEEDED ON-LINE AND MOUNTED

EVENT STACK

PLACEMENT INTO ~ ———

LEGEND

DIRECT CALL [——

LOGICAL PRECEDENCE ~mrssmrmresmmsy/fmscmmcsicti . %
INDIRECT CALL —————— e "

60306500 F

‘Figure 5-2. Device Set I/O Processing

5-2.1

SCQOPE CIO CODES (3.4)

All codes indicated by = are illegal; all reserved codes are itlegal. All codes are octal for coded mode
operations; add 2 for binary mode. Example: 010 is coded READ, 012 is binary READ.

000 RPHR 054 # 130 CLOSE,NR

004 WPHR 060 UNLOAD 134 *

\Qlo READ 064 * 140 OPEN

014 WRITE 070 RETURN 144 OPEN WRITE
020 READSKP 074 * 150 CLOSE

024 WRITER 100 OPEN,NR 154 #

030 * 104 OPEN WRITE,NR 160 OPEN

034 WRITEF 110 POSMF 164 *

040 BKSP 114 EVICT 170 CLOSE,UNLOAD
044 BKSPRU 120 OPEN,NR 174 CLOSE,RETURN
050 REWIND 124 .

/200 Series for Special Read or Write (reverse, skip, nonstop, rewrite, and so on)

200 READC 230 s 254 *

204 WRITEC : 234 REWRITEF 260 READN
210 READLS 240 SKIPF 264 WRITEN
214 REWRITE 244 * 270 #

220 # 250 READNS 274 *

224 REWRITER

300 Series for Tape OPEN and CLOSE

300 OPEN,NR 324 354
304 % 330 CLOSER 360w
310 334« 364 ¥
314« _ 340 OPEN 370 CLOSER,UNLOAD
30 350 CLOSER 374 CLQSER,RETURN

400 $eries (Reserved for CDC)

500 Series (Reserved for Installations)

600 Series

600 * 630 * 654 #
604 * 634 * 660 *
610 * 640 SKIPB 664 *
614 * 644 % 670 *®
620 * 650 % . 674 *
624 *

700 Series (Reserved for CDC)

60306500 L

5-3

CIRCULAR BUFFER

A circular buffer is a temporary storage area in central memory through which data passes during 1/0
operations. It is termed circular because 1/0 processing routines treat the last word and the first word of the
buffer area as contiguous.

FIRST is the first word address of the circular buffer. Routines that process 1/0 never change the
value of FIRST.

LIMIT is the last word address + 1 of the buffer area. No data is stored in this word. When LIMIT
is reached, the next address accessed is FIRST. Routines that process I/0 never change the value of
LIMIT. ' '

OUT is the next location from which data is removed from the circular buffer. CIO or the calling
program changes OUT depending on whether the operation is read or write.

IN is the next location into which data is written. CIO or the calling program changes IN depend-
ing on whether the operation is read or write. When IN=O0UT-1, the buffer is full. A partly filled
buffer extends from OUT to IN-1.

FIRST "FIRST

%////}//// / | e

54 60306500 C

Circular Buffer

File Environment Table " ﬂ%///% /

000000 0T
% ///////j LIMIT _—\—P-OUT

Space for Data

e LIMIT i

The circular buffer must be at least one word larger than the length of one PRU. For a write operation, at
least one PRU of data should be in the buffer. For a read operation, the buffer must have room to receive
one PRU of data. Less than one PRU may be transmitted only if an end-of-record is read or written. -

CIO OPERATION

When MTR initiates CP.CIO to perform file 170, CP.CIO locates the FNT for the file. If the FNT pointer
in the FET is non-zero, CP.CIO checks the FNT entry indicated by the pointer to determine if the file name
in the FNT entry is the same as the file name in the FET; it will also check that the file is assigned to the
job control point. If the names do not match or if the FNT pointer is zero, CP.CIO will search the entire
FNT for a file assigned to that job control point with a matching name. If the file is not found, CP.CIO will
create a FNT entry for the file. Such files are always local and assigned to allocatable devices. Once the
FNT entry is found or created, CP.CIO stores the address of the FNT entry in the FET. The FNT pointer
in the FET facilitates the FNT search.

If file status is busy, CP.CIO posts the request for rescheduling and exits. Otherwise, CP,CIO checks the
code field in the FET against the last code/status field in the FNT to ensure the requested operation can
legally follow the preceding operation. If not, CP.CIO replaces the RA+ 1 call with a request for the PP
program CEM which handles error messages, then reissues the RA+1 call to be processed again by
CP.MTR. If the operation is legal, CP.CIO transfers the code/status field in the FET to the last code/status
field in the FNT. The proper CP.CIO routine is selected to supervise function execution.

60306500 A 55

When the file is opened, CP.CIO determines if the file is on an allocatable or nonallocatable device or is

ECS resident by checking the device code in the second word of the FNT. If the file is ECS resident, an
ECS extension routine is called to process the request. If the file is on an allocatable device, CP.CIO calls
CP4ES, which calls SPM to enter the request.in the I/O request stack in CMR. The stack processor (1SP)
schedules /O on allocatable devices; it will perform the 1/O and set the completion bit. OV.CIO and its
overlays process 1/O requests for files on nonallocatable devices.

When OV.CIO is required, MTR assigns an available PP and causes OV.CIO to be loaded and initialiied.
Depending upon the operatjon, OV.CIO will call one or more of the following overlays.

Function routines:

1CL File close (nontape files)

10P File open (nontape files) -

1TO Tape open ‘

IMF ' Multifile positioning

1RP/2RP ‘ Reel close — EOR processor

1TF : Move tape forward (except long record (L) tapes) .
2TB S Move tape backward (except long record (L) tapes)
3DO Mass storage device file open

3IC ;- File close for MTS tapes

31F I Multifile positioning for MTS tapes

3IL Slave for 310, 3IC, and 31V

3IM- Write error message for MTS tape

310 - Tape open for MTS tapes A

3V - Reel close — EOR processor for MTS tapes
4ES Enter stack request (mass storage 1/0)

6WM Write error message

‘Tape Drivers:

1T ‘ Main MTS tape driver, calls the nlx overlays
"1IRS Read 7-track stranger (S) tapes ,
IRT ' Read: 7-track SCOPE standard labeled tapes
IMT Read/write other: tapes. (7-track) -

INR Read 9-track stranger (S) tapes

INW Write 9-track stranger (S) tapes

1WS Write 7-track stranger (S) tapes

1WI ' Write 7-track SCOPE staridard labeled tapes -
1R9) Read 9-track ‘SCOPE standard labeled tapes
1W9 Write 9-track SCOPE standard labeled tapes -
1TS ©° Tapé samplef

21A " © L tape read — MTS ‘tapes

21B L tape write — MTS tapes

21C Coded SCOPE read (7-track) — MTS tapes
21D Coded SCOPE write (7-track) — MTS tapes
21L Label read/write — MTS tapes

2IR Normal read — MTS tapes

2w <Normal write — MTS tapes

5-6 60306500 L

Unit record drivers:

- 2PC On line card punch
2RC On line card reader
pA 0 On line printer

Tape error recovery drivers:

1P1/3PM Write error recovery — tape LGR positioning driver
1P2 Write error recovery — erase/rewrite driver

1P3/3PO Write error recovery — verification driver

1P4/3PS Write error recovery — final LGNR positioning driver
IRV Initialize/terminate read error recovery

IR2 Read parity error recovery

1R3 Read error recovery — reposition/reread

INO Noise error recovery — read error processing

IN2 Noise error recovery — read recovery driver

IN3 Noise error recovery — skip noise record

ICS Write CM data — 7/9 track stranger tape read recovery
ICT Write CM data — 7/9 track SCOPE standard tape read recovery
ICR - Write CM data — 7-track other tape read recovery

3IE Error diagnosis — MTS tapes

3IR Read recovery — MTS tapes

v Write recovery — MTS tapes

If the file device code is for a non-allocatable device, CIO loads an I/O driver into its PP to perform the
actual 1fO. The overlay selected is determined by the operation requested. For example, if a user issues a
request to read data from a file on a SCOPE standard format 7-track tape, CIO will call the overlay 1RT
into its PP. IRT will reserve one of the hardware channels connected to the equipment. It then issues the
function codes to connect the controller and tape drive. 1RT issues functions to transmit one PRU of data
from the tape drive over the data channel.

IRT accumulates the PRU of data in a PP buffer. When the entire PRU is transmitted or an end-of-record
(short PRU) is encountered, 1RT picks up the pointers to the circular buffer in central memory from the
FET. IRT continues to transfer PRUs of data from the tape through-the PP buffer to the circular buffer
until the buffer is full or an end-of-record is encountered. IRT updates the PRU count in the file FNT,
releases the channel, sets completion bits in the FNT and FET, and drops out.

~ The following charts depict the logical sequence of events during various CIO tape operations.

60306500 D . R | 57

READ

Ry
s,
Ry
o
Y
&,,%
s
(g
{/
%y,
C""v

1. Exit if not enough room in buffer for one
maximum size physical record. b X

2. Exit if not enough room in buffer for MLRS

words. X x X X
3. Read one physical record into PP, X X X X
4. Read one physical record into CM. X X

5.‘ If physical record exceeds maximum allow-
able, return error status DEVICE CAPACITY
EXCEEDED and perform error procedures. X X

6. If physical record exceeds maximum logical
record size, return error status DEVICE
CAPACITY EXCEEDED and perform error
procedures. If a long record is encountered,
excess information is discarded without noti-
fication to user, X x X X

7. If end-of-file mark was read, perform end-

of-file mark procedures, X x x X X X
8. If noise records encountered, go to 3. x X X X X x
9. If parity error, perform parity procedures. X X x X X X

10. If end-of-tape reflective spot was encountered
and tape is uniabeled, perform end-of-reel

procedures. b4 X b X
11. If short PRU was read, strip level number. X X
12. I zero length PRU was read, go to 21. X b3
13. When 6681 is present, convert data in PP
from BCD to display code. x X
14. When 6681 is present, convert data in CM
from External BCD to display code. : X
15. Convert 1632 line terminator to 0000. X
16. Transmit data to CM. ' x x x X
17. Update IN. ’ x X X X X X

58 . ; 60306500 A

READ (Continued) $ $ N
Fo/8s/ 8/ 8/ &/ 8
> . /) o Q 4]
@ @ @ (? =) ‘oo ~ ~
18. Fetch OUT from CM. x X
19. Place in word 7 of FET the number of un-
used bits in the last data word. X b X X
20. Iffull PRU,goto 1. X X
21. If last record was level 17 of tape mark, set
end-~of-file status. X X X x X *X
22. Set end of record in status field of FET and
exit. X X e X x x

60306500 A '

READN

1. Fetch size of MLRS from word 7 of FET. X X x x

2. Exit it not enough room in circular buffer for one logical
record plus header word. Buffer size must be > 2(record)

+ 1 (header) to avoid OUT = IN when buffer is full. x X X X
3. Read one physical record into PP. X b
4. 'Read one physical record into CM. X b

6. If physical record exceeds maximum allowable, return error
status DEVICE CAPACITY EXCEEDED and perform error
procedures. X X

6. Iflogical record exceeds MLRS, return error status DEVICE

CAPACITY EXCEEDED and perform error procedures. X X
7. If end-of-file (tape mark) was read, perform end-of-file

mark procedures. Go to 18. X X X X
8. ! noise records encountered, go to 3. X X 7 b X
9. |f parity error, perform parity procedures. X X X X

10. If end-of-tape reflective spot was encountered on uniabeled
tape, perform end-of-reel procedures. X X X X,

11. When 6681 is present, convert data in PP from BCD to

display code. X

12. When 6681 is present, convert data in CM from BCD to X
display code.

13. Transmit data to CM. X x

14. Update IN in PP memory. . Cx X X .

15. Place in buffer header word, length of record and number

of unused bits in last data word. X X x x
16. .pdate IN. X X X X
i7. Fetch OUT. x X X x
18. If last record was tape mark, set end-of-file status and exit. x X X X
19. Goto 2. X x X X

5-10 ’ : S : : 60306500 A

READSKP

Read one physical record into PP.

2. |If physical record exceeds maximum allow-
able (512 CM words, etc), return error status
DEVICE CAPACITY EXCEEDED and per-
form error procedures.

3. Read one physical record directly from
tape to CM buffer, stopping without error
when available buffer space is full.

4. If end-of-file (tape mark) was read, perform
end-of-file mark procedures.

5. If noise records encountered, go to 1.

6. If parity error, perform parity procedures.

7. If end-of-tape reflective spot is encountered
on unlabeled tape, perform end-of-reel pro-
cedures.

8. If short PRU was read, strip level number.

9. If zero length PRU was read, go to 10.

10. When 6681 present, convert data in PP from
BCD to display code.

11. When 6681 present, convert data in CM from
BCD to display code.

12. Convert 1632 line terminator to 0000.

13. Transmit data to CM. If record exceeds
circular buffer, stop without error at buffer
full. '

14. Place number of unused bits in last data word
inword 7 of FET.

15. Update IN.

16. Fetch OUT from CM.

17. Ifany unused space in circular buffer, go to 1.

60306500 A

X X
X X
X X
X X
X X
X X

x
X X
X X
X X

5-11

READSKP (Continued) & /& 5
é‘bf a‘b 4 e“é Qf ‘b‘@é c.g
; o8/ ® cSP [) v v

18. |f last record was fuli PRU, set n = 1. and

proceed to SKIPF. x x
19. IfLisless than 17,set L=0. ' X x x x
20. If record was end of file mark (tape mark),

assume level = 17, x x x X
21. If level number is less than 1, sst n = 1 and :

proceed to SKIPF., x x x X
22. If level number is less than L, set n = 1 and ,

skip to first end-of-file mark (tape mark). X x
23. If last record was level 17, set end-of-file

status and exit. b X X X X x
24. If last record was not level 17, return end- .

of-record status at\!d axit. b x X x x b4

5-12 | o | | 60306500 A

RPHR

1. Set OQUT =IN.

2. Exit if not enough room in buffer for one maximum size physical record.

3. Read one physical record into PP,

4. If physical reéord exceeds maximum allowable, return error status DEVICE
CAPACITY EXCEEDED and perform error procedures. If a long record is
encountered, excess information is discarded without notification to user.

5. If end-of-file mark was read, perform end-of-file mark procedures.

6. If noise records encountered, go to 3.

7. If parity error, perform parity procedures.

8. If zero length PRU was read, go to 13.

9. Transmit data to CM.

10. Update IN,

11. 1f last record was level 17 or tape ﬁ\ark, set end-of-file status.

12. Exit.

60306500 A~

WRITE L /P N N
A § 3
$8/58/ & &/
@ Q ; (- ~ ~
1. Exit if not full PRU. X
2. If data from OUT to IN exceeds maximum
logical record size from FET, return DEVICE
CAPACITY EXCEEDED and perform error
procedures. X X
3. Fetch number of unused bits in last data
word from FET and adjust record length. If
record length constitutes a noise record,
return DEVICE CAPACITY EXCEEDED and
perform error procedures, x x
4. Reed one PRU of data starting at QUT from
CM to PP. X
5. Reed data contained between OUT and IN
from CM to PP. Adjust by unused bit count. X
6. When 6681 present, convert display. code to
BCD in PP memory. X
7. When 6681 present, convert from display
code to BCD in CM,
8. Convert zero byte line terminator to 1632. x
9. Write record to tape. x X
10. Write, from CM to tape, data contained be-
tween OUT and IN, adjusted by unused bit
count. x
11. When 6681 present, convert data in CM buf-
fer back to display code.
12. If parity error, perform parity procedures, b X X
13. If end-of-tape reflective spot, perform end-
of-reel procedures. X x X
14, Update OUT. X X X
16. Exit. X X
16. Fetch IN from CM, X
17. Gotol. x

5-14

60306500 A

WRITER & & N \
. > Lo
Q @ (? foq, ~
1. tfIN = OUT, exit. X X
2. If PRU not full, insert level number in PP
buffer. x
3. If data from OUT to IN exceeds maximum
logical record size from FET, return DEVICE
CAPACITY EXCEEDED and perform error
procedures. x x
4. Fetch number of unused bits in last data
word from FET and adjust record length.
If record length constitutes a noise record,
return DEVICE CAPACITY EXCEEDED
and perform error procedures. x X
5. Read one PRU starting at OUT or between
OUT and IN, whichever is smaller, from CM
to PP, x
6. Read data between OUT and IN from CM
to PP. Adjust by unused bit count. x
7. When 6681 is present, convert display code
to BCD in PP memory. X
8. When 6681 is present, convert display code
to BCD in CM.
9. Convert zero byte line terminator to 1632. X
10. If IN = OUT, write zero length record. Go
to 12. X
11. Write record to tape. X x
12. Write data between OUT and IN from CM to
tape, adjust by unused bit count.
13. When 6681 is present, convert data in CM
buffer to display code.
14. |If parity error, perform parity procedure. X x X
15. If end-of-tape reflective spot, perform end-
of-reel procedures. x x x
16. Update OUT, x x X
17. Exit. x X
18. If full PRU is not written, exit. X
19. Gotol. x
60306500 L

5-15

WRITEF

10.

1.

12.

13.

14,

16.

16.

5-16.

If no data from OUT to IN, go to 20.
1f ho data from OUT to IN, go to 17.
If not full PRU, insert O level number.

If data from OUT to IN exceeds maximum
logical record size, return DEVICE CAPA-
CITY EXCEEDED and perform error pro-
cedures.

Fetch number of unused bits in last data
word from FET and adjust record length.
If record length constitutes a noise record,
return DEVICE CAPACITY EXCEEDED
and perform error procedures.

Fetch one PRU of data starting st OUT or
data betwesn OUT and IN, whichever is
smaller, from CM to PP.

Read data contained between OUT and IN

from CM to PP. Adjust by unused bit count.

When 6681 is present, convert display code
to BCD in PP memory.

When 6681 is present, convert display code

to BCD in CM.
Convert zero byte line terminator to 1632,
Write record to tape.

Write data between OUT and IN from CM to
tape, adjust by unused bit count.

When 6681 is praint, convert dats in CM
buffer to displiy code.

If parity error, perform perity procedures.

it end-of-tape reflective spot, perform end-
of-reel procedures.

Update OUT.

X X
x X x b
X X
X x X X
X X X X
X X
X X
X x
X
X
X X X X
X X
X
X x X X X X
X X X X X X
x X X X X b

60306500 C

WRITEF (Continued)

17. Write end-of-file mark and exit.

18. If full PRU is not written, write zero length
level 17 record and exit.

19. Goto 3.

20. If last operation was WRITE, write zero
length PRU.

21. Goto 17.

. 60306500 A

WRITEN

& S &
) &
S§/85/8/S
© () ~ ~
1. H OUT = IN, exit. x b x X
2. Fetch header word from OUT. Set PPOUT = OUT + 1.
Set PPIN = PPOUT + number of CM words in logical record.
If PPIN has passed IN, exit. b b X X
3. If data from PPOUT to PPIN exceeds maximum physical
record size, return DEVICE CAPACITY EXCEEDED and
perform error procedures, X X
4. Adjust record length by number of unused bits in last data
word (from header word). If noise record, return DEVICE
CAPACITY EXCEEDED and perform error procedures. x X X x
5. Fetch data contained between PPOUT and PPIN. Adjust
by unused bit count. x X
6. When 6681 is present, convert display code to BCD in PP
memory. X
7. When 6681 is present, convert display code to BCD in CM. X
8. Write record to tape. X X
9. Write data betwean OUT and IN from CM to tape, adjust
by unused bit. X X
10. When 6681 is present, convert data in CM buffer back to
display code. X
11, If parity error, perform parity procedures. x X X X
12. If end-of-tape reflective spot, perform end-of-reel pro-
cedures. X x X X
13. Update PPOUT. x x
14. Update OUT. Fetch IN. Go to 1. x x x X
5-18 60306500 A

WPHR > gb
SE/85
1. If IN=OUT, exit. x x
2. If more than 512 words in buffer, return DEVICE CAPACITY EXCEEDED to
FET. X X
3. Fetch data from OUT to IN, or 512 words from OUT, whichever is smaller. | X X
4. Write record to tape. x X
5. If parity error, perform parity procedures. X x
6. If end-of-tape reflective spot, perform end-of-reei procedures. X x
7. Update OUT and exit. X x

60306500 A |) | ‘ | 549

SKIPF § /& /a/s >
ENELVES S/ $/ 8

Q@
S /)9 c}’ 9 3 S
1. fn=0,setn=1, X x X x X X
2. If L isless than 17, interpret as L equals 0. x x X x
3. Read.a physical record. X X X X x b
4. If noise record encountered, go to 3. x X b3 x x X
5. If end-of-tape reflective spot encountered
on unlabeled tape, perform end-of-reei pro-
cedures. : x X X X
6. Ifrecord is full PRU,goto 3. x x
7. If end-of-file mark encountered on unlabeled
tape, assume level number equals 17, X X X X
8. If record is not end-of-file mark, assume
level number equals 0. X X X X
9. If end-of-file mark encountered on labeled
tape, perform end-of-file procedures. x x X X x b
10. If level number is less than L, go to 3. X x xv b3 b X
11, Subtract 1 fromn. 1fn+0, go to 3. X X x X x x
12. Return end of record to status. if last level ’
number was 17, return end of file to status. 4
Exit. x X X x X X

s20 - o - 60306500 A

SKips ?“"p § & 4 S 4
& $ '5’?‘9& &§/F/)&/)S
) @ Q © =) ~ ~
1. ¥n=0,setn=1. - X X X X X X
2, If L s less than 17, interpret as L equals 0. x x x x

3. If reel is at beginning of data (either physi-
cal load point or zero physical record count),

set beginning of information and exit. x X x x x x
4. Read one physical record backward. X X x x x x
5." If noise record encountered, go to 4. X X X X x x
6. If record was full PRU, go to 3. x X
7. If this i; first read backward, go to 3. b x
8. Position forward over short PRU. x X

9. klf end-of-file mark encountered, assume
level number = 17. Otherwise, assume level
number = 0. ; x X o ox x

10. If level number is less than L, go to 3. x x X x x x

11, Subtract 1 from n. If n is not equal to zero,
go.to 3. X x x x X x

12. Exit. ' X x X x

60306500 A L s

1

BSKP

The BKSP function is identical to SKIPB with
n=1and L =0.

O &
BKSPRU & § A
‘?P ,5\ ’&é’ . é.\ -Q‘# ??
& > Qo 3
: @ Q@ o, (:? 0? ~ v
1. If atload poini or PRU count = O, set begin-
ning of information in FET and exit. x X X X X
2. Backspace one physical record. b X X X X
3. Subtract 1 from n. If n not equal to 0, go to
1. X X X X X
4. Exit. x X X X X
5-22 © 60306500 A

ALLOCATABLE DEVICE I/0

Most files in the system are stored on allocatable units. The system library ZZZZZ04 is stored on an allocat-
able unit known as the system device. Each time a non-CM resident CP program or a PP overlay is to be
loaded from that library, /0 must be performed on the system device. The job and system dayfiles and the
CE error files are stored on allocatable units, as are all input and output queue files and all files created by
CIO.

A request for 170 on a mass storage allocatable unit must be placed in a table, called the request stack. The
stack is searched, and the request which will require the minimum amount of overhead to access the data is
chosen. Overhead involves switching head groups on the disk or physically moving heads. By using a
priority-incrementing scheme for scheduling disk 1/0, overhead is kept to a minimum.

All mass storage units are connected to controllers which are connected to hardware channels of the
computer. For some disk devices, the controller and the disk unit form one piece of equipment.-In most

cases, however, the controller and the disk are physically separate units. All mass storage units connected to
a single controller must be of the same type.

READC

The READC function is intended primarily for system use with mass storage files. Since READC uses

inter-sector time to the maximum while reading high-speed mass storage devices, it does not include checks

for erroneous programming and control words. READC would only be used by system programmers.
READC Ifn,recall

READC transmits PRU’s continuously to the circular buffer, with a control word preceding each PRU.
READC is a function applicable to all mass storage devices. Reading continues until:

Buffer does not have enough room for the next PRU and its control word.
An error condition occurs.

End-of-information is encountered. 5

Code and status on completion; where x depends on file mode:

00020x - -Normal completion
QOee20x ~ Error code ee
74123x EOI

On mass storage, the same amount of data is transmitted for every PRU: the control word and one device
standard PRU. The last 12 bits of the control word and the entire standard PRU length are exactly the
physical data recorded on the device, including system control information.

60306500 D R A : | e s

Format of the PRU is shown below.

PRU size

59 53 47 35 29 23 0
PRU size UBC Byte Count
Good Data
lev
Invalid Data

PRU size 64 central memory words in each PRU on the device

UBC Unused bit count; always 0

Byte count Count of the number of 12-bit bytes of data. It must be equal to 5

lev

times the number of central memory words occupied by the data.
The value is recorded on disk as 12 bits, but expanded here to 24

bits.

SCOPE logic;d record level number. If byte count divided by S is

a full PRU, lev does not exist.

The READC macro generates the following code:

59

47

40

29

17

SA1

Ifn

RJ

cpPC

000003

-

000200

READLS

The READLS function is applicable only to mass storage files. READLS reads several random records into
the file circular buffer according to the list of direct access addresses provided by the user. No information

in the buffer will reveal boundaries. This function should be used by system programmers only.

READLS Ifn, recall

524

60306500 H

Before READLS is called, bits 0-17 of FET+6 should be set to the address of the list of addresses to be read. I

Reading continues until:

List of addresses is exhausted.

End-of-information is encountered while reading a record.

The buffer is full.

An error condition occurs.

The request is discontinued for device repositioning.
Code and status on completion: -
Bits 3 and 4 will contain 01, 10, or 11. 10=end of record, 1lsend of file; giving the status at the point
where the operation terminated. The operation will terminate with EOI status if the last PRU of the file is
read and no EOR or EOF occurs. The contents of bits 5 through 8 do not pertain to this description.
The address pointer is updated by the system when a READLS terminates so that the function can be
reissued by the user without the user changing the pointer. The updated pointer will reflect the next record

to be read. If reading stopped in the middle of a record, the pointer will reflect the next position to be read.

The words in the list of addresses to be read can have one of two formats, but the format of the entire list
must be the same. A word of all zeros must terminate the list.

Bits 36-59 contain a PRU number, the same as used in SCOPE indexes. These are the numbers the
system returns. to the record request/return information field (bits 0-29 of word 7) of the FET
when records are written on a mass storage device. Bits 0-35 are zero. A user list in this format will
be converted by the system to the next format.

Bits 0-35 contain the SCOPE internal direct access address (RBTA/RBB/PRU) address RBT.

The READLS macro generates the following code:

59 a7 40 29 17 _ 0

SA1 | tn ORI - cPC

000003 Oopr ’ 000210

60306500H SR | L 525

CONTINUOUS WRITE (WRITEC)

The WRITEC function is intended primarily for system use. Since it uses inter-sector time to the maximum
on high speed mass storage devices, it does not include checks for erroneous programming and control
words.

WRITEC Ifn,recall

WRITEC transmits PRU’s from the circular buffer to a mass storage device. Each PRU in the buffer must
be preceded by a control word. Writing continues until:

Buffer is empty
An error occurs

The diagram of the PRU and control word appears with the discussion of READC. PRU size must be stan-
dard 64 CM words for mass storage; if not, serious errors will result. The 24 low-order bits of the control
word and the full CM words are written to the device.

BC is the count in 12-bit bytes of good data in this PRU and must be a multiple of 5. If BC/5 is less than
device PRU size, then the next 12-bit byte after the good data is the SCOPE level number in binary. L must
be in the range 0 < 1< 17 octal.

The unused bit count field (UBC) in the header word represents the number of unused bits in the last data
word of a PRU. Since mass storage files are in SCOPE logical record format, data resolution is to the
nearest full CM word so that the UBC field will always be zero. This field is reserved for future expansion.

If the file has any data at all, it must be terminated by some end-of-logical-record; the level 17 octal must
appear as a zero-length logical record.

The WRITEC macro generates the following code:

59 47 40 29 17 0

SA1 Ifn RJ CPC

000003 ofr| | 000204

5-26 o ‘ _ ‘ _ Lo 60306500 H

STACK PROCESSOR

The Stack Processor consists of the CM resident manager CP.SPM, the PP program 1SP and its various overlays.
Basically, the components of the Stack Processor and their functions are:

CP.SPM The Stack Processor Manager

OV.1S5 Examines DST ordinal and loads 3DO if DST ordinal = 1, other-
wise loads 1SP

OV.1SP The Stack Processor driver supervisor

OV.1IRN Requests/releases RBT storage; merges released chains to the empty
chain

0OV.3DO Assigns a device and an RBT word pair to a new or overflowing file

0ov.4DO Processes stack requests which require no device access — specifically

0O.SKPF/O.SKPB with skip counts of 777777B and O.BPRU.

SPM is called to enter, terminate and reissue stack requests. It performs all RMS I/O functions except file
assignment (3DO), non-I/O skipping (4DO), and physical I/O (1SP). Request scheduling and device optimization
is performed by SPM. 1SP is a driver and handles one request at a time. A PP or CP system routine initiates
I/0O by placing a stack request (first two words of format) in the first two words of its associated communi-
cation area (T.PPCn for PPn) and calling the CP monitor function SPM (M.ICE/EX. SPM). SPM picks up the
stack request from the communication area, generates the third word, puts the three-word stack request into
the request stack area and links it to the proper DST chain. If the priority bit in the stack request is set, that
stack request becomes the first stack request in the proper DST chain. The priority bit should be used with
discretion; otherwise, the possibility exists that priority stack requests will be pushed down in the DST chain.

RMS I/0 is performed by SPM selecting a stack request and assigning it to a 1SP driver that is assigned to a
DST ordinal which represents an access to the specified RMS device. If, at the time a stack request is received,
no 1SP is up, the request will be entered by SPM and an M.ISP (initiate stack processor driver) request will be
sent to MTR. If the MTR communication path is busy, no request is posted and 1SP will be assigned later
during the normal MTR DST scan for work outstanding with no PP assigned. The PP is assigned by MTR by
using the second word of the DST as the PPIR entry to call up the proper PP routine.

When 1SP comes up, it initializes the driver by concatenating the driver code letter (from the PPIR) with the
characters 3S to form the driver name, 3Sx, and loading that PP overlay into the driver area in the PP. Channel
and equipment numbers are in the PPIR. Initialization is completed and SPM is called for a stack request. (A
special procedure is used during EDITLIBs.) 1SP performs the I/O requested, obtaining field access as necessary,
and, at I/O completion, returns the stack request to SPM for termination processing. If there is another stack
request outstanding for this driver, SPM assigns it to 1SP at this time. Otherwise, it assigns the 1SP to idle.

A subsequent stack request for this driver need only be placed in this 1SP’s PP communlcatlon area to start
1/0.

The code for each driver is contained in a common deck in the program libréry file. The common deck and
driver overlay names are listed below:

Common Deck 1SP Overlay Device Type
RMSA 3sP 6603-1 disk
RMSB 3SQ 6638 disk

60306500 L :5-27

Common Deck 1SP Overlay Device Type

RMSP 3SS 854 disk pack

RMSC 38T ‘ 6603-11 disk

RMSL 38V 821 data file

RMSM 3SW 841 multiple disk drive
RMSY 3SY 844 disk pack

In addition to the overlay area for the driver, 1SP has an overlay area for the executive routine that performs
the other side of the data transfer or a non-data transfer related function. There are currently four such execu-
tive routines:

CM input/output

PP input/output

Positioning

ECS I/O via CM buffers or DDP

As each stack request is processed, the appropriate executive routine is loaded if necessary. No load occurs if
the proper routine is already present.

' MTR insures that at least one PP contains a stack processor at all times, or that one is reserved for that pur-
pose. This requirement is necessary so that it is always possible to load a PP overlay that resides on mass
storage. To avoid unnecessary loading and dropping of stack processors, a stack processor will remain in the
PP until MTR needs a free PP. At that point MTR will set a PP request flag for SPM. Idle stack processors
check this flag in their idle loop and call SPM if it is set. SPM will then issue a drop order to the first idle
stack processor it finds. If all stack processor PPs are busy, no action is taken until one is about to go idle.
When the monitor drop flag is set, SPM issues a drop order to the PP instead of an idle order. '

STACK REQUEST FORMATS

/
There are two kinds of stack request formats—external and internal. The external formats are those used by
PP and CP routines in submitting I/O initiation requests to SPM through the communication area of the caller.
The internal format is used for SPM/1SP communication through the 1SP communication area. It is different
from the external format because 1SP does not work with record blocks (RBs) but with physical blocks (PBs).
SPM converts RBs to PBs for 1SP so that 1SP will not have to access the RBT chains.

The external stack request formats consist of three words. The first two words are supplied by the caller; the

third word is added by SPM. The first word specifies the type of stack request (order code, interlock flag,

direct) and source of RMS file or device information (FST pointer, RBT chain pointer, equipment pointer).

The second word specifies the other side of the request (PP, CM, ECS). The third word is SPM internal infor-
mation. External stack request formats are summarized in the Request Stack Entry illustration in part II, section 1.

The internal stack request format consists of three words and is part of the SPM/1SP interface at communication
area locations PPMES4-6. The first and third words contain the next and current PB/PRU transfer information
in their leftmost three and four bytes, respectively. The second word and rightmost two bytes of the first word
are as in the original stack request. The next PB/PRU information in the first word is updated by the NXTPB
function of SPM in an overlap asynchronous fashion so that 1SP can continue to do I/O and have it available
when needed. At that ‘point, 1SP uses it to update the current PB/PRU in word three which drives 1SP’s current
operation and the process is then repeated. This is ‘done to facilitate device streaming. The internal stack request
format is summarized in the following diagram.

5-28 60306500 K

59 47 35 23 -1 0
Next PB/PRU

PPMES4 :

p First Last

i PRU PRU
PPMESS {As In Original Stack Request)

Current PB/PRU

PPMES6 , E§Tl

PB First Last Current Ordina

PRU PRU PRU

The first and last PRU fields specify the range of the request within the specified PB and the current PRU
is the one currently being processed. NEXT PB/PRU means the next one to be processed by 1SP and in
the case of skipping backward is the logically preceding one in the file.

STACK PROCESSOR ORDER CODES

Order codes used in mass storage I/0 request stack entries differ from those used in the CIO code/status
fields of FET and FST entries. The three groups of codes correspond to the formats for the second word of
a request stack entry. Order codes and standard system symbols are given below:

Central Memory Read/Write Orders

00 O.READ
01 O.RDSK
02- O.RCMPR
06 O.RMR

Corresponds to READ maér_o, CIO codes 010 and 012. Read data from device to CM until
(a) end of information is reached, (b) a short PRU is read, or (¢) next PRU does not fit into
the buffer.T

Corresponds to READSKP macro, CIO codes 020 and 022. Read as for O.READ until
(a) or (b) above, or (c) the CM buffer is completely full; then change to O.SKF with N = |
unless reading was stopped by (b) with record level > request level.’

No corresponding CPC macro or CIO code. Read as for O.READ but do not transmit
the first n CM words of the PRU, where n is the number of CM words in the PRFX
(77) table. Used for loading programs from a system library in which the first n words
represent the PRFX (77) table in each record and contain information of interest only
to EDITLIB and deadstart. '

Corresponds to READLS macro, CIO codes 210 and 212. Read several. records for
which disk addresses are given in a table; pointer to table is in FET+8. Address of
table must be in the user’s field length. Read records until EOR is reached, buffer
capacity is exceeded, or the addresses are exhausted.

TSee logical sequence of events charts appearing earlier in this section.

60306500 K

5-29

03 O.RDNS
‘24 O.WCTNU
O.WCTU
20 O.RCTNU
O.RCTU
04 O.WRT
05 O.WRTR

| Corresponds to the READNS macro, CIO codes 250 and 252. Read data from device into

CM buffer until (a) end of information is reached, (b) a short PRU with record level 16 or
17 has been read, or (c) next PRU does not fit into CM buffer. Used by loader when read-
ing a relocatable binary field, since it does not stop at an ordinary end of logical record.

Corresponds to WRITEC macro, CIO codes 204 and 206. Provides non-stop writing
from CM to device without releasing/reloading PP between records. User’s buffer must
contain at least two records. Writing stops when buffer is empty.

Corresponds to READC macro, CIO codes 200 and 202. Provides non-stop reading
from device to CM without releasing/reloading PP between logical records. Buffer must
provide space for at least two records and their header words.

Corresponds to WRITE macro, CIO codes 014 and 016. Write data from CM to device until
CM buffer contains less than a full PRU.T

Corresponds to WRITER macro, CIO codes 024 and 026. Write data from CM until CM
buffer is empty, ending with short PRU (zero-length if necessary) with level number spec-
ified in request. If EOF flag bit is set, corresponds to WRITEF system macro, CIO codes
034 and 036. Same as above, but short PRU is followed by zero-length level 17 record -
(logical end of file mark).

Peripheral Processor Read/Write Orders .

10

11

14

15

Positioning Orders

12

13

16

O.RDP

O.RDPNP

O.WRP

O.WRPR

O.SKF

0.SKB

O.BPRU

Same as O.READ, except read data from device into requesting PP's memory

Same as O.RCMPR, except read data from device into requesting PP's.memory. Used for
loading mass storage resident PP programs and overlays.

Same as O.WRT, except write data from requesting PP's memory to device.

Same as O.WRTR, except write data from requesting PP's memory to device.

Corresponds to SKIPF macro, CIO codes 240 and 242. Skip forward until N short PRUs
with level > the level specified in the request have been read, or end of information is
reached. With N = 777777, the file is positioned at end of information.t

Corresponds to SKIPB macro, CIO codes 640 and 642. Skip backward one or more PRUs
until N short PRUs with level > the level specified in the request have been read, then move
forward over the last of these. With N = 777777, the file is positioned at beginning of in-
formation (rewound).’f

Corresponds to the BKSPRU macro, CIO codes 044 and 046. Skip backward N PRUs. This
repositioning is by physical record units rather than logical records.’

T See logical sequence of events charts appearing earlier in this section.

l 5-30

60306500 K

17 O.RCHN Release allocatable storage and RBTs (processed by SPM). For permanent file set RBT
chains, the first word pair to be evicted must be a first word pair or an overflow word
pair.

SPM/1SP Communication Orders (Internal Format Only)

35 O.IDLE SPM has determined that there is no work for this 1SP and that MTR is not requesting a PP, 1SP
checks the order code in its idle loop, waiting for SPM to assign a stack request. When another
order code appears, 1SP will process it.

36 O.DROP SPM has determined that this ISP is either idle or going idle and that MTR is requesting a PP.
1SP will drop out.

37 O.SEEK SPM has stack requests for this 1SP but none are on-cylinder. 1SP will issue overlap seeks (up to
5), monitor the units and reserve-the first one to come on cylinder. (Overlap seeks may also be
issued with other stack requests. In this case, no monitoring is done. The seeks are issued before
stack request execution; status is taken after stack request execution and returned to SPM with
the stack request.)

The following table is a summary of stack processor orders:

Octal System , : Order

Code Symboel Function

00 O.READ Read into central memory

01 O.RDSK Read-skip into central memory

02 O.RCMPR Read into central memory, drop first 3 CM words

03 O.RDNS Read nonstop

04 - O.WRT Write from central memory

05 O.WRTR Write EOF/EOR from central memory

06 O.RMR Read multiple records to central memory

07 Not currently defined

10 O.RDP Read into PPU memory

I O.RDPNP Read into PPU, drop first 3 CM words

12 OSKF Skip forward '

13 OSKB Skip backward

14 O.WRP Write from PPU memory

15 O.WRPR Write EOF/EOR from PPU memory

16 O.BPRU Backspace n PRUs

17 O.RCHN Evict

20 O.RCTNU Read nonstop (comparable to tape READN)
O.RCTU

24 O.WCTNU Write nonstop (comparable to tape WRITEN)
O.WCTU

35 O.IDLE Wait for stack request

36 O.DROP Drop PP

37 O.SEEK Issue overlap seek
STACK PROCESSOR/SYSTEM INTERFACE

The system tables, system routines, and MTR functions used by the stack processor are described in this section.

60306500 K 5-31

TABLES

Control Point Areas: Control point error flag, storage move flag, RA, and FL. The stack processor accesses
but never changes these fields.

DST: All fields of the DST entry whose ordinal is placed by MTR in the 1SP input register are used. SPM
makes all DST changes except one made by MTR during 1SP assignment to a PP.

EST: Mass storage flag, unloaded flag, off flag, and DST ordinal are checked but not altered.

FET: Code and status field in first word, error processing flag in second word are accessed by SPM. IN and
OUT pointers in third and fourth words are accessed by 1SP. Code and status is marked busy (even value)
before a request enters the stack and is marked complete (odd value) when the request is executed.

FST: RBT/RB/PRU position pointers in first word, code and status field in second word are accessed by
SPM. The code/status field has been processed the same as for the FET.

RMSBUF: Stack processor (1SP) formats and stores RMS hardware error diagnostics in the RMSBUF three-
word area for DSD to display.

RST: Request scheduling table is parallel to the request stack area and is used by SPM to hold request
scheduling parameters.

DDT: First and last DAM ordinals, MST ordinal, and EST ordinal are all used by SPM in determining RBR
ordinal of a permanent file set member and whether or not it is mounted.

RBR area: All the first header word, the EST ordinal, and available RB count bytes in the second header
word are used by SPM. SPM assigns record blocks for a write request by searching the RBR table for avail- -
able bits. When the request is terminated or re~issued, SPM sets the corresponding bits in the RBR for all
record blocks assigned for the write operation. SPM also clears RBR bits when record blocks are released and
updates the available RB count.

RBT: All fields. The pseudo channel CH.RBT is reserved only when RBT word pairs are being removed from
the RBT empty chain.

SCB: FIRST, IN, OUT, and LIMIT are accessed in the same manner as an FET when transferring data
between RMS and ECS.

R.STBMSK (PP Resident): Contains appropriate mask when calling R.STB; always returned to 7700 octal,

its normal value.

SYSTEM ROUTINES/PROGRAMS

PP Programs

18X Stack processor auxiliary program is called by MTR request for tasks that 1SP cannot
handle or does not have time to do. For example, 1SP does not issue dayfile messages,

because if the dayfile buffer is full, 1SP and MTR could loop endlessly waiting for each
other.

5-32 60306500 K

MTR ~ System Monitor calls 1SP initially (via 185) when a request has been made for an inactive
DST entry and performs various functions for 1SP while it is processing the request.

71D Stack processor auxiliary program called by 1SX. 7ID informs the operator (via a flashing
message at the bottom of the B-display) that the job associated with control point xx has,
an outstanding request for an idled device.

PP Resident Routines:

R.DCH Releases a channel reservation.

R.IDLE Entered when 1SP releases its PP.
R.MTR Used for all MTR functions other than reserve or drop channel.
R.TAFL Terminates access to the control point field length. When necessary, it is used to interlock

storage moves during execution of a request, and when a request is terminating (except at
control point zero) to switch 1SP back to control point zero.

R.OVL Loads driver overlay 3Sx.
R.RCH Reserves a channel.
R.STB Inserts controller equipment number into device function codes and channel number into

I/0O instructions.

R.TFL : Computes an absolute CM address from one that is relative to a control point’s RA, and
- checks whether or not a relative CM address is within the control point’s FL.

Monitor Functions:
M.DPP Releases PP assignment.

M.SPM Used by 1SP to call SPM. The three executives are:
EX.SPRCL - Stack processor recall; terminate a stack request
EX.STAT - Change status; get next stack request
EX.NXTPB - Get next PB/PRU

M.RCH Used (rather than R.RCH) with zero in byte 4 to reserve pseudo channel CH.RBT only if
it is immediately available.

M.RPJ Used for calling 1SX to another PP.

MKILL Used when a bad monitor request has been made.

SPM/1SP INTERFACE

The PP communication area through which SPM and 1SP communicate is highly structured. This area consists of

a PP input register (PPIR), PP output register (PPOR) and a six-word PP message buffer (PPMES1-6). The PPIR,
used to call 1SP, comes directly from the second word of the DST and contains initialization information such as
drive, name, equipment and channel number. The PPOR is used by 1SP to initiate SPM via the M.SPM monitor

call in addition to other monitor calls, PPMES1-2 are used for up to five byte pairs (corresponding bytes of
PPMES1-2) of overlap seek information and for the 1SX error information interface. PPMES3 is for SPM internal
information although 1SP supplies the device PRU/PB count in the right-most byte during initialization. PPMES4-6
is the internal format stack request that SPM gives to 1SP. The order field in PPMES4 is monitored by 1SP to
determine what work there is to be done.

60306500 K 5-32.1/5-32.2

The format of the 1SP communication area is:

59 ~ 32 21 12 11
PPIR 18 PO Driver osT
Name | Ordinal E . 0 CH
PPOR M.SPM EX.xxx
M.xxx
PPMEST* Unit Ordinal Unit Ordinal Unit Ordinal 0 -

1SX Error Information

PPMES2* PB, P8y P8, - | | -
18X Error Information

PPMES3 | SPM Internal Information PRU/\PBF

PPMESS) Internal , ofser

PPMES5 Format

‘ppmess Stack Request

*EXAMPLE SHOWS THREE.UNITS SPECIFIED FOR OVERLAP SEEK WITH ZERO TERMINATOR

STACK PROCESSOR ERROR CONDITIONS

This section describes the error conditions that can be detected by the stack processor. In some cases, the action
depends on debug mode. With [P.DEBUG=0, these conditions are treated similarly to other errors: an error code
is placed in the code and status field of FET and FST entries and the control point is aborted. if error processing
(EP) bit in FET is zero. With IP.DEBUG # 0, an invalid MTR function is issued with the 1SP output register
having 77 in byte 0 and an error code in byte 1.

END OF INFORMATION)

Puts Ol into bits 9-13 of code/status, but does not issue a message or abort control point. (Non-fatal
condition.)

PARITY ERROR

A parity error is reported when any possibly recoverable device error occurs during a read or write operation.
These include actual parity error, lost data, and mispositioning. The PRU is reread or rewritten up to 10

60306500 K 5-33 @

attempts (3 for ECS). Whether success is attained or not, request execution continues after setting a flag. When
request execution is completed, or the request is about to be reissued to the stack, the flag is examined. If the
error was recovered, 1SX is called with code 03 (dayfile message RECOVERED PARITY ERROR), but this
condition does not affect code/status or abort the control point. If all 10 attempts fail, 1SX is called with
code 04 (dayfile message UNCORRECTABLE PARITY ERROR), 04 is put into bits 9-13 of code/status, and
the control point is aborted if EP bit is zero. A request at control point 0 is not aborted. ’

When an uncorrectable parity error occurs for a READ request and the EP bit is nonzero, request execution
terminates with the bad PRU being the last one read.

BUFFER PARAMETER ERROR

This error occurs when a request is processed that references an FET when not all the following conditions
are satisfied:

0 < FIRST < LIMIT < field length
FIRST < IN < LIMIT
FIRST < OUT < LIMIT

Calls 1SX with code 11B (dayfile message BUFFER ARGUMENT ERROR), puts 22B into bits 13-9 of code/
status, and aborts control point if EP bit is zero.

NOT ASSEMBLED FOR ECS

This error occurs when a request references a DST entry for an ECS device. 1SP issues a bad MTR request
(code 77B).

UNDEFINED ORDER CODE

A request contains order code 07. Calls 1SX with code 22B (dayfile message INVALID STACK ENTRY), puts.
22B into bits 13-9 of code/status and aborts control point if EP bit is zero.

NO FET FOR O.RMR

A request contains order code 06 (O.RMR), but no FET was specified. Calls 1SX with code 11B (dayfile
message BUFFER ARGUMENT ERROR), puts 22B into bits 13-9 of code/status and aborts control point
if EP bit is zero.

ADDRESS OUT OF FL FOR O.RMR

Address for table of disk addresses for O.RMR is out of field length. Call 1SX with code 22B (dayfile mes-
sage INVALID STACK ENTRY), puts 22B into bits 13-9 of code/status and aborts control point if the EP
bit is zero.

INTERLOCK BROKEN

A group of interlocked stack requests were interrupted by a malfunction of a controller and/or unit. 1SP puts
24B into bits 13-9 of code/status.

| 5.34 60306500 K

RMS HARDWARE ERROR

An RMS hardware error is reported when any of the following errors occur on a device:

Unit not ready - 6603-I1 positioning failure
Positioner not ready No status returned

6681 internal/external reject Address byte not accepted

Unit busy too long No disconnect on status request
Channel stays active after ‘connect’ or ‘function’ Abnormal on seek

Unable to connect - Chanrel not active after ACN

These error conditions are reported by 1SP (via a flashing message at the bottom of the B-display). The
function on which the error condition occurred is retried until it is recovered or until the device is idled down
by the operator (in either case, the error diagnostic is cleared). If the device is idled, 22B is returned to bits
13-9 of code/status and 7ID is called. The operator is notified of the job name associated with the idled
equipment (via a flashing message at the bottom of the B-display). 1SX is called when the operator acknowl-
edges the message (message is also sent to the dayfile), and the control point is aborted if the EP bit is zero.

DISMOUNTABLE PACK PROCESSING — 1/0 DETAIL .

Figure 5-1 shows the flow of control of disk I/O, including the processing of dismountable devices.

NORMAL CALLS FOR READ/WRITE

The user requests I/O by calling CIO in RA+1. CIO calls 3DO if the file is new to éssign it to a specific
pack as discussed below under SPM. If it is an existing assigned disk file, CIO loads 4ES which:

performs random positioning
generates the stack request which accomplishes the function

issues the function to SPM via the PP resident routine R.EREQS

SPM processes all stack requests. Some system routines (JANUS, overlay loads, batch terminals) send requests
directly to SPM rather than use CIO. SPM perforrns release-chain functlons except for those file segments
whxch are not on-hne : »

SPM first determines if the function is a read or write function and whether the current segment of the file
is on-line. If the function is a normal write (not REWRITE), SPM assigns RBs to the file based on. the
amount of data in the buffer; if there is no space in the file and no free space in the current RBR, SPM
sends the request to 3DO. When the write completes and too much space has been assigned, SPM is again
called to remove any extra RBs. '

SPM next determines which DST this disk belongs to and adds the request to that DST’s chain. MTR en-

sures that a stack processor or a DST is active by checking the DST cham pointers; if there is no activity,
MTR activates 1SP. :

60306500 H . : e _ : 5 535

CLOSE
cio

CLOSER

when an
EST status
changes

for each
job waiting

pack not
on-line

swapin complete

m=mmeemee Path of normal read/write cails

e - NOrmMal RBTs, M.ICE, and overlays

= = == Generate event which activates program in event stack
== == == Put program in event stack

| a;.;;

300
{4DO)

implicit and
explicit
chain evicts

segrment @

dismounted

:
|
;
|
|
|
!
|

Figure 5-1. Device Set 1/0 Processing

® 536 ; o : , 60306500 H

1SP processes I/O to an arbitrary point, for example, to a cylinder boundary, and then may re-issue the
request to SPM. 1SP always returns the request to SPM if the' DAM ordinal in the RBT changes; thus the
ordinal 777 in overflow wordpairs always causes a request to return to SPM, and then to 3DO.

SPM-3DO INTERFACE

SPM forwards to 3DO all requests which fail at any point in the above description: BKSPRU; release-chain
not mounted; SKIPF or SKIPB with count=777777B; file is new and has no RBTs (hasn’t been assigned);
position is at an overflow wordpair (DAM=777B); etc. 3DO masquerades as the stack processor for the first
DST, which is reserved; actual disk controllers begin at the second DST. Thus SPM forwards 3DO requests
via the same mechanism as normal requests by putting them on the first DST chain.

3DO DEVICE ASSIGNMENT

The only task of 3DO is to select a disk for files requiring space to write, such as new files. Other tasks are
passed on. BKSPRU and SKIPF/SKIPB with count=777777B are sent to 4DO for completion. If the current
segment of the file is not on a mounted pack, or if the function is not a write (as opposed to REWRITE), or
if the file still has space available to write in, 1PK is called.

If the FNT indicates a new file (no RBTs), 3DO qbtains a wordpair and changes the format from new-file to
existing file by moving the flags from the FNT to the RBT. Next, the set for the file is chosen; if SN was
specified, no selection is made. If SN was not specified, *PF, *Q, or *SYS (+*SYS is available only by macro)
is selected as specified. If none is specified, a flag is set to indicate that a scratch set is required.

Order of device selection: ’ ' .

1. - the device must belong to the required set
2. if #PF, =Q, or *SYS, the device must also have that attribute

3. if a device type or allocation style or VSN was specified, attempt to match it; if no match, but
DV was specified, repeat the attempt ignoring the requirements of VSN, device type, and alloca-
tion style.

Selection is limited to the allowed devices. Controller and unit activity from the DAT, and available space in
the RBR are factors in selection of the optimal device. 3DO creates an overflow wordpair (for all but new
files) and an empty wordpair for the selected device, and re-issues the request to SPM. 3DO considers only
mounted devices. If 3DO finds no space available and this is not a public set request 3DO calls 1PK to
consider selection of an unmounted member of the set.

Once the file is written, its device set attribute is fixed.

1PK CHOOSING AND MOUNTING MEMBERS
1PK may be called by CIO, MNT, ADS or independently via M.RPJ. 3DO may not load 1PK via R.OVL

because 3DO is considered a stack processor and therefore not allowed to use M.DFM or other 1/O because
‘it could lead to a deadlock condition. 1PK issues dayfile messages and can be accessed by 3DO only via a

60306500 H - e o S o s31 e

call by M.RPJ. The calling routine places a function number in the PP input register byte 2 to specify the
1PK function desired:

function 6

Calls from 3DO are always made using function 6, and 1PK is called via M.RPJ. The call from CIO for
CLOSER is also done in this way, so 1PK must determine if CIO is called and if the function is CLOSER.

If not CLOSER, if the function is a write (not REWRITE) and if the input register byte 4 is zero indicating
a write at EOI, space must be assigned. Assuming 3DO checked the mounted devices, read the SMT and as-
sign the file to a pack with available space which is not mounted, considering first the online devices, then
those not present. If there is no space and the user has not set UP, the user is aborted with error.10 —
device capacity exceeded. 1PK selects a device and calls MNT as an overlay. When the mount is successful,
MNT reloads 1PK which re-issues the stack request. If the pack is not online, 1PX function 9 is put on the
event stack with the stack request in its message buffer; see the following discussion on functions 5, 0, and 9.

If UP is on and there is no space, complete the FET with error 10 — device capacity exceeded. If the cur-
rent position is not online on a public set, abort the job.

If not CLOSER and not a write, the first step is a mount. First, advance position past any overflow word-
pair; check if required disk is mounted (if yes, re~initiate the function by calling CIO, or SPM if CIO not in
input register); if not CIO, call MNT which will call 1PK back and the process will repeat if MNT found the
pack online and mounted it. If not, MNT calls 1PK function 2 to swap the job out while waiting for the
pack. When the operator puts the pack on and turns ON the EST, 1PK function 5 will be called by 1RN
which periodically checks ON/OFF changes. Function S will cause the removal of all 1PKs from the event
stack which were waiting and they re-issue the stack request; MNT finds the pack online and I/O proceeds.

CLOSER is processed by ClO calling 1PK function 6. When 1PK detects a CLOSER call, 1PK processing
depends on whether the position is EOI. If EOI, a dummy overflow wordpair is attached on the end of the
RBT. The DAM and VSN fields will be zero.. Both EOI and EOV status are set in the FET.

If the current positibn is not EOI, the file is positioned to the next EOV wordpair, or to EOI if that comes
first. If the current position is an EOV wordpair, nothing is done. EQV status is returned to the FET if
the new position is an EOV wordpair, or EOI if encountered. - ‘

If MNT finds the operator dismount flag set in the SMT, it loads 1PK mode 7, which calls 1PK mode 8 with
a delay, which re-issues the stack request. This continues until the pack goes offline or is remounted.

functions 1, 2

These functions are called by MNT when a required pack is not online to delay the job until the pack
becomes available. The SN/VSN are put into the variable area of the DDT if not there. The JDT enters
the queue with others that may be waiting on that DDT. 1PK function 9 is put in the event stack on the
JDT swapin, and the job is swapped out by the macro C1SO. The initial PP input register from the cailer is
sent on in the message buffer. Stack requests are added to the message buffer.

‘function 5

Function 5 is called by IRN when an EST FREE, BUSY, or OFF status changes (becomes different from the
DDT). The fixed DDT for this EST is updated. If a pack has come online and appears in the variable-DDT
area, 1P function 0 is called for each job queued on the DDT and the job is cleared. '

* 538 o R , o , . 60306500 H

functions 8, 9

Function 8 swaps the job in. Function 9 re-initiates the I/O function. If the input register was CIO, func-
tion 9 will re-issue it to CIQ. If not CIO, the stack request is in the message buffer and is re-issued to SPM.

REMOVING A PACK — DELSET AND DSMOUNT

Both DELSET and DSMOUNT can be used to make a disk unavailable to the system. DELSET removes a
disk from set membership and requires that there be no files on it. DSMOUNT makes a disk unavailable to a

job; operator dismount, DMNT, permits the operator to remove a pack from a drive. DELSET uses PP rou-
tine DLM; DSMOUNT and DMNT use PP routine DSM. '

DLM and DSM must halt all stack request activity before a disk may be removed from mounted status. To
do: this, they set the request-idle bit in the EST; 1PK checks the stack request area for requests for this unit,
and if it finds none, sets the EST status to FB=11 to indicate there is no activity; then any subsequent re-
quests for the pack cause the requesting job to be swapped, and DLM or DSM can put the pack into unavail-
able status. :

DELSET removes a disk from a set by zeroing its entry in the SMT (which defines set membership). Before
this is done, DLM searches the RBT for local files and the PFC for permanent files resident on this disk, and
checks that the SMT usable count matches the total DAM available counts (if the disk is in dismounted status).
If any test fails, DLM aborts the job.

A DSMOUNT call from a job (including the automatic one at end of job) decrements the set’s activity and
resets it to dismounted status if no jobs reference it. The operator typein DMNT resets the disk to dismounted
statug as soon as all I/O clears, and sets the operator dismount flag in the SMT so that no other mainframe
“may mount the disk. Only an RMNT typein or a RECOVER clears this flag. . ‘

An operator dismount proceeds as follows:

®

If the pack is mounted on this mainframe—
1. The EST request-idle bit is set which locks out all I/O

2. The routine waits until all activity stops on the disk (signalled by FB being set to 11); then
it clears request-idle

3. If the device is not shared, the RBR is translated into a DAM and written on the disk; the
mounted flag is cleared from this mainframe’s bit in the SMT entry; the DDT is written in
dismounted format (S.DDSN=1)

-4. : If the device is shared, the RBR is simply hot written to the disk. The PP reads the DAM,
clears all bits in the DAM which are clear in the RBRs, and then writes the DAM back.
Other processing is the same as in 3 above.

If the pack is not mounted but is online on this mainframe, DSM simply sets the EST to FB=11.

If another mainframe has the pack mounted, DSM terminates with an operator message that the pack
cannot yet be removed. It sets the EST to FB=10 (free). The pack cannot now be mounted unless the
- operator enters RMNT (remount). The operator can attempt DMNT again later.

If no other mainframe has the member mounted, DSM sets the EST to OFF and FB=0 (no pack online).
The operator may then remove the pack.

60306500 H ‘ R | o R 539 @

ECS-BUFFERED 1/0

Reading and writing of large sequential RMS files is greatly enhanced by the use of ECS buffers. Such oper-
ations involve the use of a small central memory buffer in the user’s field length and a large user’s buffer in
ECS. The data is transferred between ECS and the RMS device either through a system circular buffer (SCB)
in central memory or through a distributive data path (DDP). The following describes a write sequence in-
volving an ECS buffer; a read sequence is essentially the reverse.

The user requests ECS buffering on a file-by-filé basis through the REQUEST control card or REQUEST
macro. On the control card, the user includes an EC parameter in addition to the normal parameters in one
of the following forms:

EC For a default (IP.BUF) size buffer

EC(xxxx) For a buffer of xxxx-thousand (octal) words
EC(xxxxK) .

EC(xxxxP) For a buffer of xxxx(octal) pages.

In the REQUEST macro, the user must set bit 33 to one in the second word of the parameter list. In the
fourth word of the parameter list, the buffer size must be set into bits 0-11 and the display code character K
or P must be set into bits 12-17.

In a write sequence, the user first puts data into a central memory buffer, which need be only about 200
words long, then issues a CIO call through RA +1. If an XJ instruction follows the request in RA + 1, the
job is exchange-jumped out of execution, and CP.MTR begins processing the request.

CP.MTR recognizes the CIO call and passes it to CP.CIO for processing. ECS-buffered file I/O causes CP.CIO
to perform a validity check on the FET and activates the proper ECS driver. The data is then written directly
from the user’s central memory buffer to the user’s buffer in ECS. '

The above process continues until the user’s ECS buffer is full, then a stack request is generated by CP.CIO,
requesting that the ECS buffer be written to an RMS device. In processing the request, the stack processor
1SP loads the appropriate ECS executive routines into an area of 1SP memory.

At a request of 1SP for an SCB, CBM (system circular buffer manager) assigns the first one available from the list
of SCBs. Each SCB has an integral number of PRUs so that PRUs are not split across the end of the buffer.
When a central memory buffer path is selected, 1SP uses the SCB in the normal circular 1/0 mode, with the fol-
lowing modification. In addition to FIRST, IN, OUT, and LIMIT, the FET-like SCB control table also contains
a TRIGGER and a DIRECTION field. Before the transfer, 1SP puts an M.SCB in its PPOR. During the transfer,
MTR checks to see if the trigger has been reached. If s0, it calls CBM to process the SCB; if not, no action is
‘taken. This circular I/O continues until the ECS buffer has been emptied and all data has been written out to
the RMS file. The processing is designed to prevent 1SP from missing disk revolutlons during an I/O buffer
transfer. ,

When the distributive data path is selected, the processing is very similar. CP routines do the same bookkeepping
as in the central memory case, but only point to the data in ECS instead of transferring it to central memory. As
a result, much less central memory is used for the transfer: N words instead of 65xN words for an SCB contain~-
ing N PRUs. :

540 ,, B 60306500 H

The following illustrates the general flow of output to an ECS buffered RMS file. Either data path may be
assigned dynamically, depending on availability.

Central
Memory

60306500 H

1
System Circular

User
Buffer (SCB) Buffer
1
A
S >

i

CBM (Circular Buffer Manager) ECS
i i Buffer

RMS
1SP DDP -

541 |

PERMANENT FILES 6

A permanent file is a mass storage file cataloged so that its location and identification are always known to the
system. The installation designates rotating mass storage devices to contain files made permanent by the user.
When creating a private device set, a user can designate permanent file devices. Any file, regardless of content,
which is not already permanent and which resides on a permanent file device, may be made permanent by
explicit request. Files on magnetic tape or ECS may not be made permanent.

In a multi-mainframe enviroment, permanent files may be transferred between linked mainframes. The MMF
station is used to stage files between mainframes.

PERMANENT FILE FUNCTIONS

The following permanent file functions are available as system macros:

CATALOG’ arln existing local mass-storage file. thereby making it a permanent
‘ file,
SAVEPF stage out a local copy of the file and catalog the file.
ATTACH a previously cataloged file to a control point.
GETPF stage in a local copy of the permanent file.

* RENAME a file in the permanent file direciory.
EXTEND a currently attached file by making permanent an extension to it.
PURGE a file from the permanent file directory.
ALTER allows the iogical end-of-file to be set to the current file position.
PERM‘ | allows a running program to determine what permissions have

been granted to an attached file.

FDB generates ‘a file description block required for interface with the
permanent file system.

In addition, two SCOPE system macros and control cards may be used on an attached permanent file to
logically detach it prior to job completion.

macro: CLOSE Ifn, UNLOAD or CLOSE ifn, RETURN

control card: RETURN (Ifn) or UNLOAD (Ifn)

60306500 F R | el

MACRO REQUESTS
The permanent file functions CATALOG, SAVEPF. ATTTACH. GETPF, RENAME, EXTEND. ALTER. and

PURGE are available either as control cards or running program macro calls. The same parameters are used
for both; they differ in the call format and in the capability to test status in the running program.

All permanent file macro requests share a common format:

name fdbaddr.RC,RT,NR
name Macro name written in a COMPASS instruction mnemonic field
fdbaddr Address of fifth word in a file definition block (FDB)
RC.RTNR Optional parameters
RC Returns a code to the FDB and gives control

to the requestor on non-fatal errors.

RT Returns a code to the EDB and inhibits per-
manent file queuing. (Queueing occurs when
a file cannot be attached immediately.)

NR Specifies no recall. (All permanent file macro
calls. are issued in recall unless NR is
specified.)

Error messages will be written to the job dayfile, uniess the RT or RC parameter is specified.

PARAMETERS

The parameters described below are common to both control cards and macro functions. With the excep-
tion of Ifn and pfn, parameters may be given in any order. Each is written in the form: cc = value or
password where cc is a two-letter parameter code. The Ifn and pfn parameters are position dependent; if
one or the other is omitted, the Ifn and pfn are considered to be the same string of characters. In the case
when a pfn contains more than 7 characters in the parameter, the Ifn will be the first 7 characters given in
the pfn. ‘

ifn , Logical file name; 1-7 character alphanumeric name (first charac-
ter alphabetic) by which a file is known and referenced at a con-
trol point. Once a permanent file is attached to a control point, it
is referenced by this name.

pfn Permanent file name; 1-40 alphanumeric characters, assigned by
file creator, under which a file is cataloged.

RP Retention period in days, (0-999) specified by creator; indefinite

retention indicated by 999. Installation default value is defined by
the installation.

62 SRR e | 60306500 F

60306500 K

AC
cY

LC

PW

TK
CN
MD
EX
RD
XR

MR

RwW

D

ST

FO

RB

Account parameter; 1-9 letters or numbers.

Cycle number (1-999) assigned by creator. Default value on initial
CATALOG is 1, and on ATTACH, the highest number cataloged.

Lowest cycle number cataloged is referenced when value given is
non-zero; default is highest number cataloged.

List of passwords used to establish user’s access permission. Writ-
ten as:

PW =psw PPSWypsWa, L L L JPSW,
PW also is used in a CATALOG request when a new cycle is

added or PUBLIC file created, and in a PURGE request in per-
manent file name mode; up to five ;passwords allowed, each 1-9

" letters or numbers.

Turnkey

Control

Modify Password definition
Extend 1-9 letters and numbers
Read

Common

If non-zero, gives read permission only which will permit read
access of the file by other users.

If non-zero, multi-read with single rewrite will be allowed. If zero,
and either CN, MD or EX permission is requested, exclusive access
will be given.

Identifies ﬁlé creator; 1-9 letters and numbers. The ID name PUBLIC
is reserved for PUBLIC files, and SYSTEM is reserved for SYSTEM
files.

Staging ID; three letters and numbers that specify logical ID, Host ID
or link ID. The staging ID identifies the mainframe where the file
resides. When both ST and SN appear, ST takes precedence and SN
is ignored.

File structure (ordering of data) is checked so that extend and modify
permissions will have meaning for direct access (DA), actual key (AK),
or indexed sequential (IS) files. Applies to Record Manager files only.

If nonzero and S.PCRB in PFC entry is set, PURGE will not allow
the mass storage associated with the file to be released. RB is used
when the routine RECOVER has encountered RBT chain conflicts
with other files.

EC : Allocates ECS for permanent file 170 buffer. |

EC=K Allocate a standard number of 1K biocks.

EC=nnnn Allocate an octal number of 1K blocks.
EC=nnnnK Same as above. If K is omitted and P is not

given, K is assumed.
EC=nnnnP Allocate an octal number of ECS pages.

SN Device set name 1-7 letters and digits, first character a letter, If
specified on an ATTACH or PURGE, the specified permanent file
resides on the device set.

STAGING ID

The staging ID, ST, identifies the mainframe where the file resides. It may be either a linked mainframe or
the local mainframe that is executing the calling routine. The host ID (local mainframe), the link ID (linked
mainframe), or a logical ID may be specified for ST.

When the host or the link ID is specified and the station is running, the local or the linked mainframe is given
the task of satisfying the file request. When a logical ID is specified, the task is assigned to the mainframe
having that ID in its logical ID table.

Example:

Three system files, FILEA, FILEB, and FILEC normally reside at mainframe A, MFA; but occasionally
will be moved to mainfame B, MFB.

A user who knows the physical location of the files can set the ST parameter (on a GETPF, SAVEPF,
or PURGE) to the proper value (example, ST=MFB) before submitting a job.

By using a logical ID in the ST parameter, however, the routine could remain the same no matter
where the file reside. The installation would associate these three files with a logical ID, such as ABC.
The caller then would specify ST=ABC and mainframe having ABC in its logical ID table would be
assigned to the task.

UNIVERSAL PERMISSION

An installation may define a combination of one or more permissions to be granted automatically by
activating the universal permission option (IP.UP). A nine-character password is defined by the installation
for such a permission combination. When this password is given on an ATTACH request, the permissions
are granted.

6-4 60306500 F

PUBLIC FILES

If the public permission password is correctly specified. a file may be cataloged under the 1D of PUBLIC;
then the user can omit the ID parameter on all permanent file requests. Attaching a PUBLIC file does not
preclude the necessity of using correct permission codes.

As all cycles of a file share the same ID, when the first cycle of a file is cataloged. as PUBLIC, all subsequent
cycles will become PUBLIC. With the RENAME function, a PUBLIC file cin be given a new owner 1D,
making it a private file.

MACRO REQUEST CALLS

Each permanent file request macro expansion (except FDB) will generate an RA + 1 call to the permanent
file PP program. All permanent file macro requests are issued with recall status set (bit 40 in word 2 of the

request) uniess NR (no recall) parameter is present in the macro call.

An RA +1 call to a permanent file PP program has the following format:

59 39 ’ ; 17 0
PP Program Name DH fdbaddr
a=0 If the NR parameter is present in the macro call.
a=1 If the NR parameter is not present in the macro call.

FILE DEFINITION BLOCK

Parameters necessary for the execution of a permanent file function are contained in a central memory table -
called the file definition block (FDB). Error codes are returned to the user via the FDB. The FDB is generated
automatically for control card calls, but it must be generated by an FDB macro for use by other permanent
file macro calls. The format of the FDB is shown in part II, section 2.

60306500 F s e T R TP) , 65

The macro for generating an FDB has the following format:

fdbaddr

fdbaddr

parumel ers

FDB ifnpfn.parameters

is the symbol associated with word 4 of the FDB; it must be
present in the location field.

are separated by commas. and the list is terminated by a blank.
Parameters include any of the 2-letter parameter codes listed
above. Parameters are entered into the FDB as they are encoun-
tered in the list.

The FDB is generated in-line during assembly whenever the macro is called.

If the RC and RT parameter is specified in a macro call, a return code will be available to the user in word
| 4. fdbaddr, bits 9-17.

Word 4, bits 0-8, contain the PFM request code stored in the following format:

Bit

8

7

6

5-2

0

Request code examples (octal):
020
130

210

6-6

Content (when set)

NR option given

RT option given (implies RC given also)

RC option given when bit is zero; no RC or RT option when bit is one

Function code

0010
0100
0110
o111
1000
1010
1100

Not used

ATTACH, GETPF
CATALOG, SAVEPF
EXTEND

ALTER

PURGE, PURGE(ST=xxx)
RENAME

PERM

Functioh completed when set to one

Catalog; return error code and control to user on non-fatal error.

Extend file; abort job on any error.

Attach file; return error code on any error and inhibit file queuing. »

60306500 F

. Word 4, bits 9-17, contain a 9-bit return code which can assume the following octal values; the associated
message is written to the job dayfile.

‘000 Function successful
001 ID error
002 Ifn already in use
003 Unknown 1fn
\%)4 No room for extra cycle (limit is five)
005 Permanent file catalog (PFC) full
006 No 1fn or pfn
007 {nut used)
010 Latest index not written for a random file
011 File not on PF device
012 File not in system
013 Archive retrieval aborted
014 Bad LPF communication .
015) Cycle number limit reached. Maximum value of cycle number is 999
016 Permanent file directory (PFD) full
- 017 Function attempted on non-permanent file
020 Function attempted on non-local file
021 (Not used) -
022 File never assigned to a device
023 Cycle incomplete or dumped
024 File already attached
025 File unavailable
026 (Not used)
027 Illegal 1fn
030 File dumped
031-032 (Not used)
033 ALTER needs exclusive access
034 (Not used)
" 035 File already in system
036 (Not used)
037 (Not used)
041 Device set not mounted at control point
042 RBT chain too large for PFC
043-067 (Not used)
070 PFM stopped by system
071 Incorrect permission
072 FDB address invalid
073 I/O error on PFD/PFC read/write
074 ST parameter illegal with private device set (MMF-PURGE)

On control card requests, all errors are fatal; on macro requests, unless an RC or RT parameter is specified,
all errors are fatal. If RC or RT is specified on a macro call, an error code will result in control being returned
to the user. Any job that attempts a privacy breach is terminated.

On contro} card or macro requests for GETPF, SAVEPF, or PURGE(ST=xxx), all errors are fatal. The job is
terminated and an error message is written to the job dayfile.

60306500 L 6-7

The parameter words of the FDB have the following format:

59

Code

Right Adjusted Parameter Value

As shown above, parameters are stored, one per word in any order. Parameter code values are placed in bits
0-5. The format of values entered in the parameter field is indicated in parentheses in the following list.

00
02
03
04
05
06
07
10
11
13

14
16
17
2024
25
27
31
32
33
40
41
43

RP
(004
TK
CN
MD
EX
RD
MR
XR

ID

AC
EC
PW
FO

LC
ST
RW
SN

RB

End of FDB list

Retention period in days (binary)
Cycle number (binary)

Turnkey password (display code)
Control password (display code)
Modify password (display code)
Extend password (display code)
Read password (display code)
Multi-read access only (binary)
Control, modify, and extend password definition
(display code)

User identification (display code)
Account parameter (display code)
Request ECS buffering of I/O (display code)
Submitted passwords (display code)
File organization (display code)

Used internally for checkpoint/restart
Lowest cycle (binary)

Staging ID

Multi-read with single rewrite
Setname (left justified, display code)
Reserved for VSN parameter

PURGE RB conflict parameter

© 60306500 H

CATALOG FUNCTION
CATALOG fdbaddr.RC.RT.NR

For this request. the required parameters in the FDB are Ifn, pfn and ID. If the permanent file name is
unique to the ID specified, the request is considered an initial catalog. The initial catalog defines the
passwords necessary to access any of up to 5 cycles that may be cataloged with the same pfn and ID. If
there is no CY parameter specified, it is assumed to be 1. The following parameters are relevant on an
initial catalog;

CYy Cycle number

XR Control, modify, extend, common password definition
CN Control password

MD Modify password

EX Extend password

RD Read password

TK Turnkey password

RP Retention period

FO File validity check

RW ~ Read with rewrite permission
MR Multi-read access

PW Password list

AC Account parameter

If a file with the same pfn and ID has already been cataloged, the request will be considered a new cycle
catalog. If a CY parameter is not specified, it is assumed to be one larger than the highest cycle. Control
permission must be established to do a new cycle catalog. The following parameters are relevant on a new
cycle catalog:

(6 ¢ Cycle number

PW Password list

RP Retention period

FO File validity check

RW - Read with rewrite permission
MR Multi-read access

If RC is specified, the user is notified of a non-fatal error condition by an error return code at fdbaddr in
the FDB.

If RT is specified. the call is regarded as real-time. Specifying the RT option forces the RC option. In both
cases, informative and diagnostic messages to the dayfile are suppressed.

Initial Catalog Example:

FDBA FDB LF1 ,MFPILE,CN=-Z,MD~X,TK=Y,ID=~ABC

CATALOG FDBA,RC

LF1 is assumed to exist on a valid permanent file device as a local file to this control point.

60306500 F L PR e 69 |

The CATALOG macro references FDBA which contains the necessary parameters to make LF1 permanent.

Since RC is specified on the CATALOG macro, control will be returned to the user on a non-fatal error;
and a return code will be made available in location FDBA (bits 9-17). If RC is not specified, all errors
result in termination and a diagnostic message.

New Cycle Catalog Example:

CATALOG FDBS

FDBS FDB LF16 ,MFILE,CY=-12,PW=Y,Z,ID=ABC

This job will add a second cycle to permanent file MFILE, created in the preceding example. File LF16 is
assumed to be a valid local file on a permanent file device. The PW parameter is used to submit the
passwords needed to obtain control permission. Had the initial catalog attempt aborted, MFILE would not
exist; and this new cycle attempt would be processed as an initial cataloging. If successful as an initial
catalog, the file would be unprotected as no passwords are defined in the FDB. An alternate form of the
FDB could be used:

FDBS FDB LF16 ,MFILE,CY=~12,PW=Y,Z,ID=ABC,TK=Y,CN=Z,MD=X
The above FDB would perform equaily as well for a new cycle catalog because the TK, CN and MD

parameters-would be ignored. If initial cataloging had failed, this FDB would catalog the file with protec-
tion and the PW parameter list would be ignored.

SAVEPF FUNCTION (multi-mainframe only)

SAVEPF fdbaddr,RC,RT NR

The SAVEPF request requites the Ifn, pfn, ID and ST parameters in the FDB. The optional parameters are
the same as those for the CATALOG function. Refer to the CATALOG function for more details.

SAVEPF stages a local file specified by the Ifn to be cataloged at the mainframe associated wiht the ST param-
eter. The mainframe where the file is to be cataloged may be either a linked mainframe or the local mainframe.

In both cases, two files exist after the call: a new or updated permanent file and the local file attached to the
calling routine. S :

6-10 . o . , o 60306500 F

ATTACH FUNCTION

ATTACH fdbaddr,RC,RT.NR

The ATTACH request requires the Ifn, pfn and ID parameters in the FDB. The following parameters are
optional:

CY . Cycle number to be attached
PW Password list

MR Multi-read access

LC Lowest cycle number

RW Multi-read/rewrite access

EC ECS buffering for I/O

SN Setname

RC parameter is the same as for CATALOG. When RT is specified, a code of 25 is returned to the FDB if
the file is currently in use. If the RT parameter is not specified, the following circumstances will cause a job
issuing an attach request to be queued for the desired file:

File not available for exclusive access by requesting job
Attached permanent file (APF)table full

Archived file temporarily unavailable. The ATTACH request will.cause a LOADPF job to be set up.
and scheduled through the tape scheduler. The job requesting the ATTACH will be swapped out
until the file is available. Permanent file utility is running.

If the CY. parameter is zero or not present and the permanent file has multiple cycles, the default cycle
attached is the one with the largest cycle number, presumably the latest cataloged. If the CY parameter is
present and that particular cycle number is not known to the system, the request cannot be honored. If both
LC and CY are specified, LC is ignored and the conflict is resolved.

System evaluation of passwords establishes the type of access granted to the user for each file. Subsequent

to ATTACH, the user cannot access the file in any way for which he does not have permission. For

example, if ATTACH results in only-READ permission, the user cannot subsequently attempt to use
MODIFY or EXTEND.

ATTACH does not preclude opening the file. The success of an OPEN request depends upon the permission
granted when the file is attached. If the file is attached to another control point and multi-read access is not
possible, PFM will wait for access to the file.

Attach Example:

FDBZ FDB LF,MFILE,MR=1,PW=Y,ID=ABC,CY=1

ATTACH = FDBZ,RC,RT

60306500 H I | D | el

The permanent file MFILE is referenced again. Explicitly stating CY =1 ensures that cycle one will be
attached. '

In the FDB, only the password for turnkey appears; EXTEND and READ permissions will be granted by
defauit. In this example, the macro contains MR = 1; therefore all permissions except READ are ignored,
making the file available for multi-read access.

In the macro request, the presence of RC and RT parameters would result in the octal code 25 being
returned at location FDBZ if the file is unavailable.

CATALOG FDB1
CLOSE LF1,UNLOAD,RECALL
ATTACH FDB1
FDB1 FDB LF1,PERMF,TK=T,MD=M,EX=E,CN=C,PW=T, ID=ABC

The above example illustrates several points. Assuming that local file LF1 has been created, it is cataloged
as cycle 1 (by default) of permanent file PERMF. The file is protected by turnkey, control, modify and
extend passwords. The PW parameter in the FDB is ignored in cataloging.

After cataloging is complete, a CLOSE/UNLOAD logically detaches the file from the job.

As illustrated, the file PERMF now can be re-attached. Although not mandatory, the same FDB is used to
conserve CM space. When PERMF is attached, the defauit cycle number is the largest cataloged; therefore
cycle 1 is the only cycle present. The PW parameter contains the turnkey password giving READ access
permission by default. This example illustrates an implicit read-only attach.

The same example is shown with two FDBs:

FDB1 ¥DB LF1,PERMF, TK=T ,MD=M, EX~E, CN=C, ID=ABC
FDB2 ¥DB LF1,PERMF,PW~T, ID=ABC

CATALOG PDB1

CLOSE LF¥1,UNLOAD,RECALL

ATTACH ¥DB2

612 | | - 60306500 A

GETPF FUNCTION (multi-mainframe only)
GETPF fdbaddr, RC,RT,NR

The GETPF request requirés the Ifn, pfn, ID, and ST parameters in the FDB. The optional parameters are the
same as those for the ATTACH function except for RW, which is ignored if present. See the ATTACH function
for more detail.

GETPF prepares for staging the requested permanent file from the mainframe specified by the ST parameter
and attaching a local copy of that file to the calling routine. The file must be opened before actual staging
occurs. The mainframe specified by the ST parameter may be either the linked mainframe or the local main-
frame. In both cases, two files exist after the file is staged: the permanent file and a local copy of the file
attached to the calling routine.

The local copy of the file is processed, even if the permanent file specified resides at the same mainframe.

ALTER FUNCTION
ALTER fdbaddr,RC,RT,NR

The ALTER function causes the current position of an attached permanent file (designated by Ifn in the
FDB) to be recorded as end-of-information in the RBTC of that file. Permissions needed to perform the
ALTER function depend upon the context in which function is issued. If the current position of the file is
less than the file EOI (as attached), modify permission, extend permission and exclusive access are required.
If the current position is greater than the file EOI, ALTER operates similarly to the EXTEND function and
extend permission is required.

RENAME FUNCTION
RENAME fdbaddr,RC.RT

Any or all information cataloged by the user can be replaced through the RENAME function. The file must
be attached to the requesting job with all permissions granted. A file owner can change permanent file
name, cycle numbers, passwords, and even the user ID.

In the FDB for this request, Ifn is the only required parameter. The specified parameters will cause
- replacement of existing parameter information if they contradict the cataloged information. If they dupli-
cate the cataloged information, the parameters are ignored.

Parameters which could result in replacement:

pfn Permanent file name EX Extend password

ID Owner identification » MD Modify password

RP Retention periof ' CN Control password

CY Cycle number v AC Account name

TK Turnkey password XR Common password definition
RD -~ Read password ' '

60306500 H : . : SRR 6-13

The PW parameter may be specified to submit the public password if the file ID is to be renamed PUBLIC.
Other parameters in the FDB will be ignored. Changing the ID, pfn, or passwords for any cycle cataloged
will change all cycles. No ID, pfn, or CY changes are permitted if any of the cycles have been dumped
(mode 2 dump) or archived as retrieval of such files would be impossible. RC and RT are as for
CATALOG. .

An attempt to rename PFN/ID when the new PFN/ID pair currently exist will be ignored; however, the
remainder of the specified changes will still occur.

Rename Example:

ATTACH '~ FDBA

RENAME FDBB
FDBA FDB DFILE,MFILE,PW=Z,Y,X,ID=ABC
FDBB FDB DFILE,PFILE2,RD=W,MD=,CN=22

Assuming that MFILE was cataloged with X, Y and Z as passwords for modify, turnkey and control, read
access would be given by default when DFILE is attached as a local file. By RENAME action, the cataloged
permanent file name will be replaced with PFILE2. A new password, ZZ, will replace the existing password
for control permission; a read password, W, will be cataloged for the non-existent read password. The
password for modify permission will be removed, and none will replace it. The owner’s ID remains
unchanged. Since no cycle number was given in FDBA, the cycle with the largest number will be attached;
renaming will not change the existing cycle number, as no replacement is given in FDBB.

FDB1 FDB LFILE,MFILE,CY=9,RD=Y,ID=ABC
FDB2 FDB LFILE,MFILE,CY=8,PW=X,Y,Z,ID=ABC
FDB3 FDB LFILE,MFILE,RD=Z

ATTACH FDB2

RENAME FDB1

RENAME FDB3

This example illustrates that for renaming pﬁrposes, the same file can be called more than once in a job. If
the read password was originally cataloged as X, it is changed to Y when the file is renamed as cycle 9, and
then finally changed to Z. The appearance of an identical ID parameter in FDB1 will be ignored.

EXTEND FUNCTION
EXTEND fdbaddr,RC,RT,NR

Local extensions can be written at the end-of-information point of an attached permanent file, and an
extend function issued, thus extending the length of the permanent file. The file must be attached with
EXTEND permission granted.

6-14 | . L 60306500 H

In the FDB, the required parameter is Ifn; the extend password, if defined, must appear in the PW list. The
extended section of the file will acquire the privacy controls of the permanent file.

If Ifn is an indexed file, the current index will be assumed to be the only valid index for the entire file.
Random files must be closed before an EXTEND request is made.

Extend Example:

ATTACH FDBX
EXTEND FDBX
FDBX FDB LF1,PROGLIB1,ID=XYZ

The program that attaches permanent file PROGLIBI as the local file LF1 writes beyond the end of
information. Assuming that no password was required for extend permission, it would be given by default.
Prior to program termination, the EXTEND request would make permanent any additions written to the
file.

PURGE FUNCTION
PURGE fdbaddr,RC.RT.NR

A cycle of a file can be removed from the catalog of permanent files by the PURGE function. In the macro,
fdbaddr is required; RC and RT are as for CATALOG. In the FDB, the lfn is the only required parameter if
the file was attached before the purge function was issued; all other parameters are ignored. The optional
parameters are: CY, SN, LC, EC, RB, and PW. Control permission must be granted, or the job will be
terminated. For the macro request, the FDB referenced may be one used at attach time; or it may be a new
FDB. Only one cycle of a file may be purged at a time. When the last cycle of the file is purged, the
entire permanent file name entry is removed from the directory and catalog.

A user attempting to purge a permanent file already attached must specify the 1fn under which the file was
attached. This purge is by local file name, and the user need provide only the lfn in the FDB.

To purge a file not already attached, the user must specify a local file name not in use at his control point.
The permanent file name, ID and password list must be given. If the file resides on a private device set, the
SN parameter must be given. ‘

To PURGE a permanent file at a linked mainframe, the user must specify the ST parameter. If both the ST
and SN parameters are specified, the VSN parameter is ignored and the PURGE takes place at the mainframe
specified (either the linked mainframe or the local mainframe). If RB=1 is specified in the FDB and the RB
conflict flag has been set in the PFC by RECOVER, the RBs in the chain will be zeroed and thus the storage
will not be released to the system. The FNT permissions will be reduced to control only to prevent further
use of the file.

60306500 L 6-15

PERM FUNCTION

The PERM function is available only as a system macro. A running program can determine if a file is a
non-permanent local file or what permissions have been granted to a currently attached permanent file.

PERM fdbaddr,RC

The Ifn of an attached permanent file should be given in the FDB. This macro produces a 5-bit code in the
fdbaddr return code field. The bits represent the following information:

Bits 0-3
1000 CONTROL permission
0100 MODIFY permission
0010 EXTEND permission
0001 ' READ permission

Bit 4

non-permanent file
permanent file

O

A return code of zero signifies that the 1Ifn was not in the FNT for the control point (a non-existent file) or
that some other error was detected.

Perm Example:

FDBA FDB DFLN,PFILE,CY=1,PW=XXX, ID=ABDC
ATTACH FDBA,RC
PERM FDBA

Assuming the file had been cataloged with passwords required for control and modify permissions, the
ATTACH request would have generated control permission by the password XXX and read and extend
permissions by default. A subsequent PERM request would cause an octal 13 value to be returned to the
FDB. The code indicates a permanent file is attached with read, extend and control permissions.

6-16 60306500 A

PERMANENT FILE UTILITY ROUTINES

The utility routines provide the capability for dumping permanent files to tape, loading dumped files from
tape, transferring permanent files and tables from one mass storage device to another, and producing printed
reports on the status of each permanent file.

The following routines perform these functions:

DUMPF = Copies all mass storage resident permanent files to tape. The purpose is either to clear all
permanent files from mass storage devices or to provide periodic back-up files for an installation. May
be used with system devices or user device sets.

LOADPF - Counterpart of DUMP; required to reload permanent files from tape to mass storage. Loads
files onto system devices or user device sets.

- TRANSPF Enables permanent files-and/or related tables to be transferred to a public RMS device or to
a private device set. Cannot move system files. l

AUDIT Produces a formatted output file containing statistics on permanent files in the system. User
device sets and system devices can be audited.

A permanent file named DUM, having an ID of PUBLIC, must be cataloged before a DUMPF or TRANSPF
function may be called. Control cards calling these functions must include required passwords for DUM, for
which an implicit attach will be performed. DUM must reside on the device set on which DUMPF or TRANSPF
will be working. The DUM passwords are defined by the installation and can be changed as often as desired.
Since these passwords are used to determine the mode and legality of the utilities, an installation can define
(and redefine) the passwords to prevent unauthorized users from calling the utilities and thus maintain the
integrity of the data bases.

Four passwords are meaningful to DUMPF, turnkey, read, modify, and control. The turnkey password is
assembled into DUMPF and is specified only for the initial catalog of DUM. The other three passwords are
specified for the DUMPF utility to determine the mode. If any of the read, modify, turnkey, and control
passwords are defined, they must be specified on the TRANSPF call.

The DUMPF routine writes a labeled tape in S format. The job deck must contain a REQUEST card specify-
ing a file DUMTAPE on a new S tape before the call to DUMPF. A job deck must contain a REQUEST card
specifying a file DUMTAPE on an existing S tape before a call to LOADPF. Example:

REQUEST(DUMTAPE,HY,S,N) for DUMPF
REQUEST(DUMTAPE, HY,S,E) for LOADPF

60306500 H . | S 617

DUMPF

The DUMPF utility is used to clear permanent files from a mass storage device or to maintain selectively a
file back-up system. Directives may be used to specify the files to be dumped. Files must be dumped to a
labeled S tape.

Before DUMPF can be run, a permanent file named DUM with an ID of PUBLIC must be cataloged on the
device set to be dumped. DUM must have passwords as defined below. These passwords provide the installa
tion some security for its files.

TK=DUMPF Value assembled into DUMPF program

RD=xxxxx Password used to call DUMPF for mode 1 dump

MD=yyyyy Password used to call DUMPF for mode 2 dump

CN=zz222 Password used to call DUMPF for mode 3 dump
Several copies of the DUMPF utility may be executing at the same time. All copies running simultaneously
must be the same mode and type; the DUMPF parameters must be identical. If an attempt is made to run
a DUMPF with different parameters than one already running, all jobs having issued a DUMPF, except the
first one, will be aborted.

DUMPF must be on a system library. Parity errors will be flagged. No files should be attached to a job con-
taining DUMPF operations during DUMPF execution.

Before the DUMPF is issued, a REQUEST card must define the dump file, DUMTAPE, as a new S tape.
The format of the DUMPF control card is:
DUMPF(p1,p2,...,pn)

PW is the only required parameter. The parameters listed below may be included. An unrecognizable param-
eter will cause DUMPF to abort.

PW=x Password that allows DUMPF to run. The DUMPF password is defined when the
file DUM is cataloged. The password specified must correspond with the mode of
dump desired.

LF=lfn File to receive output listing. Default is OUTPUT.
MO=n Mode in which DUMPF runs. The value of n may be one of the following:

1 Permanent files are dumped as backup, leaving the PFC, PFD, and all
associated disk space intact. The read password must be specified.
MO=1 is the default.

2 Permanent files are dumped and associated disk space is released; the
PFD and PFC entries for the files are left intact. Flags are set in the
PFD to indicate the file is no longer disk resident. The modify pass-
word must be specified. This is called an archive dump.

6-18 ‘ ' . o 60306500 H

CL

DP=C

ID=owner

PF=pfn

CY=nnn

IN=ddd

IN=yyddd

LA=mmddyy

DA=yyddd

CD=mmddyy

TI=hhmm

SN=setname

60306500 F

3 Permanent files are dumped and the PFD, PFC, and all associated disk
space is released as the permanent files are dumped. The control pass-
word must be specified. Before DUMPF will execute with MO=2 or
MO=3, the operator must respond to a message:

THIS WILL BE A DESTRUCTIVE PERMANENT FILE DUMP,
TYPE GO OR DROP

Complete list option designator. If CL is specified, all files in the directory are
listed, whether or not they are dumped. If CL is not specified, only those files
dumped are listed.

Dump all files; this is the default.
Dump expired files.

Dump files modified, renamed, created, or extended since the last DP=C dump
was taken.

Files with this owner identification are dumped.
Files with this permanent file name are dumped. ID=owner must be specified also.

Permanent file with specified pfn, ID, and ¢ycle will be dumped. If PF and ID
are not specified, CY is ignored. If the requested cycle of the petmanent file can-
not be found, a message is issued and DUMPF continues,

Files inactive this number of days are dumped. See also the TI parameter
description:

Files inactive since this ordinal date are dumped. See also the TI parameter
description.

Files last attached before this date are dumped. See also the TI parameter
description.

Files created, modified, renamed, or extended after this date are dumped. Also
see the T1 parameter description.

Files created, modified, renamed, or extended after this date are dumped. See
also the TI parameter description.

This four-digit time parameter modifies the time associated with CD, DA, JN, LA,
or In parameters. If none of the latter is specified, TI is ignored.

Example: LA=031573,TI=1200 files attached since noon on March 15, 1973 will
not be dumped. Files not attached since noon on March 15, 1973 will be dumped.

Only files on this device set will be dumped. The master device for this set must
have been mounted before the DUMPF card is issued.

6-19

VSN=vsn Only files residing on this device will be dumped. If dumping from a device set,
the SN parameter also must be specified. If dumping from a system device, VSN
specifies an EST ordinal and no SN parameter is used.

Fifn Directives will be read from this file. If I is specified, but not equivalenced,
INPUT is used. If I is not specified, no directive file is used. The directive file
is used to specify particular files to be dumped. If a directive file is used, the
only other parameters that can be specified are SN, MO, CL, and PW. The only
valid parameters for directives are permanent file name (PF=pfn), cycle number
(CY=nnn), and owner identification (ID=owner). If directives are used, the date
and time of the last dump are not modified. Directives can be used only for
mode 1 dumps. The format of a directive card is:

PF=pfn,CY=nnn,ID=owner
The output listing will contain the following items for each cycle:

Permanent file name
owner ID

cycle number
volume serial number
date of last dump
comment

DUMPF writes the dump to a multi-volume magnetic tape file having the format shown in the following figure:

Tape Label Volume snd Header Labels
Tape Mark
. 8-word header
File PFD entry (16 words)
Label PFC information
Contents of dumped lile
frain wwn e S G T — . — — —— — — G—— — — by iy w— i
Oumped
File Last EOR of dumped file
EOF Tape Mark
Next l-ww’::ud'
File
Label fsTC

Permanent File Dump Tape Format
6-20 ‘ : ‘ 60306500 H

8-Word Header (format is same as file header label on tape)

59 53 47 43 3 29 23 7 " s 0
H o R | + | o u M ’ A T
A b 3 a) F a ’ . f
) a a a 8 A a. | o o o
' [} [[} v | & a a a | o
1 | o |8 1+ A T wJalw e
v € R | x | o o 0 ° ° °
A A a A a4 a A a a a
a A A a A & a a a &

PFD Entry of Dumped Format
) ,
RBTC Entry up to #nd Including the First Word of the RBT Chain

Information in the first 20 characters of tape label:
HDRIDUMPF TAPE- NEW

Or:

VOLIDUMPF TAPE- UNIT

FIELD LENGTH FIRST

(No. of CHARACTER FIELD
characters) . POSITION DESCRIPTION
3 | HDR

| 4 i

17 5 DUMP TAPE OF P.F.
6 22 - (blank)

4 28 0001

4 32 0001

4 36 (blank)

2 40 01

1 42 (blank)

5 43 BIRTH

| 48 (blank)

5 49 NEVER

] 54 X

6 55 000000

20 61 (blank)

60306500 D

NAME OF FIELD

Label identifier

Label numer

File label name

Multifile identification

Reel number

Muittifile position number
Reserved for tape compatibility
Edition number

Reserved for tape compatibility
Creation date

Reserved for tape compatibility
Expiration Date

Security

Block count

Reserved for tape compatibility

6-21

DUMPF EXAMPLES:

1.

Jos.

REQUEST(DUM, *PF)

COPYBR{INPUT DUM!}

CATALOG{DUM,DUM TK=DUMPF RD=PERM1 ,MD-PERM2,CN‘PERM?,PW-puch pamword)
7/8/9

7819
e/7/18/9

This job catalogs DUM on the system set prior to running DUMPF.

2.

6-22

Full dump of all permanent files, assuming DUM was cataloged as in example 1. Files on user device
sets will not be dumped.

JOB.
REQUEST(DUMTAPE HY SN}
DUMPF (PW=PERM1)

8/7/8/9

‘Dump cycle 3 of permanent file TESTFILE with ID of SAM, releasing disk space and the PFD and

PFC entries for this cycle.

JOB.

REQUEST(DUMTAPE HY S.N)

DUMPF (PW=PERM3IPF=TESTFILE,CY=3,MO=3,1D=SAM)
er1/8/9

Dump all files cataloged under the ID of MARLOWE, releasing disk space but keeping directories intact.

JOB.

REQUEST(DUMTAPE HY S,N)
DUMPF(PW=PERM2,1D=MARLOWE MO=2)
6/7/8/19

Dump certain files of device set SPECPRJ whose master device has volume serial number 479.

Jos.

MOUNT (SN=SPECPRJ,VSN=479) Mount master
REQUEST DUM, *PF SN=SPECPRJ.

REWIND DUM,

CATALOG DUM,TK=DUMPF RD=PERMT,
MOD=PZ ,CN=P3 PW=public password.

RETURN(DUM)
REQUEST(DUMTAPE HY.S,N)
DUMPF(1,PW=PERM1,SN=SPECPRJ)
7/8/9

PF=COB0L.CY=39,ID=RON
PF=FTN,ID=SLEITER
PF=RUN.CY=79,10=CDCSVL
6/7/8/9

60306500 D

LOADPF

The LOADPF utility loads permanent files that have been dumped to tape. All (or a selected portion of) files
on the tape may be loaded. An optional directive file specifies individual files to be loaded. Multiple copies

of LOADPF may execute at the same time. A job may access a file as soon as it is entered into the permanent
file tables. For each cycle loaded, LOADPF makes an output listing entry that contains the permanent file
name, owner ID, cycle number, date of last dump, and a comment.

If the dump tape contains a duplicate permanent file name, owner ID combination for a file to be loaded,
a message is sent to the operator and the file is ignored unless LP=R is specified. If a parity error occurs
during loading, the file is flagged in the permanent file tables. LOADPF aborts if it encounters an
unrecognizable parameter in the program call statement.

Before LOADPF is called, a REQUEST or LABEL control card must define a load file with the name
DUMTAPE, residing on an existing labeled S tape.

The format of the LOADPF control card is the following:
LOADPF(pl,p2,...,pn)

All parameters are optional. Permissible parameters are:

IP=A Load all files; this is the default. Existing files are not replaced unless the file is
incomplete or not disk resident.

LP=P Load files only if present in the permanent file directory and not disk resident -
(archived).

LP=X Do not load expired files.

LP= Replace existing files. Both X and R may be specified in the form LP=X,R.

LP=0 Permanent file dump tape is in SCOPE 3.2 or 3.3 format. If IP=0 is not specified,

the tape is assumed to be a SCOPE 3.4 permanent file dump tape. The O option
may be used with other LP parameters in the form LP=R,0,X.

LF=ifn Use logical file name lfn as output file. The default is the file OUTPUT. The out-
put listing will be written to this file.

CL Complete list designator. If this parameter is specified, all files on the dump tape will
be listed, whether or not they are loaded. If CL is omitted, only loaded files will
be listed.

SN=setname Specifies the name of the device set to which the files are loaded. The master device

of this set must have been previously mounted.

VSN=vsn If loading a device set, specifies the volume serial number of the RMS device onto
which the permanent files are loaded. The SN parameter must also be included, and
the master device of the set must have been previously mounted.

VSN=eq If loading a system device, specifies the EST ordinal of the RMS device onto which

the permanent files are loaded.

60306500 H : o : 6-23

ID=owner All files with this owner ID will be loaded.

PF=pfn All files with this permanent file name and the specified owner ID will be loaded.
ID=name must also be supplied.

CY=nnn The cycle of the specified permanent file name/owner ID is loaded. ID=owner and
PF=pfn must also be given. Unless a specific cycle number is given, all cycles of the
file will be ioaded.

I=lfn Read directives from a file with this logical file name. If I is not specified, no
directives are used. If I is specified but not equivalenced, directives are read from
the file INPUT. The permanent file name (PF), cycle number (CY), and owner
identification (ID) may be specified. If a directive file is used, only those files speci-
fied are loaded. The format of the directives is the following:

PF=pfn,CY=nnn,ID=owner

If a directive file is used, the only other parameters that can be specified are CL
and SN.

ARCHIVE FEATURE

The archive feature is automatic, and the user will be unaware of this system activity when loading is from
tape. When an attempt is made to attach an archived permanent file, the operator may type n.GO which
causes the file to be loaded from the appropriate dump tape. An archived file can be purged without actually
loading the file.

LOADPF EXAMPLES

JoB1.
REQUEST{DUMTAPE HY S,E)
LOADPF.

6/7/8/9

This job loads all files on the tape unless LOADPF finds the owner ID, permanent file name, and cycle num-
ber combination already in the system; such files are skipped.

- 6-24 ’ . 60306500 G

Jos2.
REQUEST(DUMTAPE,HY S,E)
LOADPF{LP=X)

6/7/819 .

This job loads all non-expired permanent files from tape.

Joss.
REQUEST(DUMTAPE HY S E}

- LOADPF (PF=STARTREK,!D=SPOCK)
6/7/8/9

All cycles of the permanent file STARTREK with owner ID SPOCK are loaded unless one of the following
conditions arises:
The permanent file name/owner ID combination already exists in the system with different passwords.
A duplicate cycle number is encountered.

The permanent file name/owner ID combination already has five cycles cataloged.

Josa.

REQUEST(DUMTAPE, ...)

LOADPE(1)

/1819

PF=PASSERIFORMES,CY=21,1D=VEERY

PF=ANATINAE,ID=GADWALL

PF=PROCELLARHFORMES, ID=FULMAR ‘
6/7/8/9

This job loads the specified permanent files from tape.

TRANSPF
The TRANSPF utility can do either of the following:

Change the residence of files and permanent file tables within a device set so that all permanent file
information may be removed from a device. (single device set TRANSPF)

Copy files from one device set to another. (dual device set TRANSPF)
The format of the control card is the following:
TRANSPF(p1,p2, . . . ,pn)

The TS parameter is always required. The PW parameter is required if passwords have been defined for the
file DUM. The format of the parameters is the following:

PW=a,b,c Specifies read, control, turnkey, and modify passwords if they are defined for the perma-
nent file DUM. If passwords have been defined for the file DUM, they must be specified
with this parameter or the utility will abort. No default exists.

60306500 H | | 625

FS=set1 Name of the device set from which the permanent file information is to be transferred.

TS=set2 Name of the device set to which the permanent file information is to be transferred.

FM=vsnl Volume serial number (VSN) of the member device from which the permanent file infor-
mation is to be transferred. Required when setl=set2. Cannot be specified when setl#set2.
Assumed value when setl#set2 is all devices in setl.

TM=vsn2 Volume serial number (VSN) of the member device to which the permanent file information
is to be transferred. Data that cannot be contained on this device will overflow to another
member of the device set specified by TS. Cannot be specified when set#set2. If setl=set2,
files will not overflow into the FM device. Default is all devices in set2. If setl=set2 and
FM specifies a master device, TM is required.

LF=lfn Name of the file on which the output listing is written. Default is OUTPUT.

Before the TRANSPF utility can be executed, a permanent file with the name of DUM and ID of PUBLIC
must be cataloged on the device set specified by the FS parameter. If this is not done, TRANSPF will abort.

TRANSPF will issue an internal ATTACH of the permanent file DUM; the passwords submitted in this ATTACH
will be those that are submitted via the PW parameter on the TRANSPF request. If TRANSPF is unable to
attach the permanent file DUM, the function will abort.

To prevent overflow on PF assignment, the FM device is changed to a non-PF device prior to data transfer.

Before fhe TRANSPF utility is called, a MOUNT must be issued for the master devices of the device sets
specified by the FS and TS parameters. TRANSPF must have exclusive access to the set; if the set is
mounted on shared drives, no other MF can be logged in (have set mounted).

SINGLE DEVICE SET TRANSPF (set1=set2)

A single device set TRANSPF is requested if the device set specified by the FS parameter is the same as the
device set specified by the TS parameter.

TRANSFERRING FROM A MEMBER

If the FM parameter does not specify a master device, permanent files residing on the FM device will be moved
to:the TM device.. A file will be moved if any part resides on the FM device. Once the file has been transferred,
the disk space associated with the old copy will be released. If the file cannot be completely contained on the
TM device, the file will overflow to another device in the set, but will not overflow onto the FM device. If the
transfer of a file is unsuccessful, that file will be skipped, but TRANSPF will not abort. A file transfer may be
unsuccessful because of:

uncorrectable parity errors;
not enough space in the device set to accommodate two copies of the file simultaneously;
permanent file catalog full.

When all permanent file information is successfully transferred from the FM device, that device will be desig-
nated as a non-pf device.

6-26 ' : : o 60306500 H

TRANSFERRING FROM A MASTER

When the FM parameter specifies a master device, the device set tables will be moved to the device specified
by TM, and the device labels for both devices will be updated to reflect the new organization of the device
set. If the tables cannot be successfully moved, the device set will not be changed by the TRANSPF utility.
Table transfers may fail for one of the following reasons:

uncorrectable parity errors;
not enough space on the TM device to completely contain the disk tables.

After the master device is successfully changed, permanent files residing on the FM device will be moved to the
TM device as d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>