ICEM GPL G2

for NOS C%DQXOL

Reference 60462520

ICEM GPL
for NOS

Reference

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60462520

Related Manuals

A e
oo e’

Background:
H
tiser’s
Guide
60456940 |/
Manual Set:
| | | ¢
Introduction Data Basic Drafting ;
and System Management Construction Functions ’
Controls
Reference Reference Reference
Reference
60457130 , 60461410) 60461420) 60461440 |}
7 ——g| ;
Advanced l Numerical I BPL : |
Desi Control e
esign Referance.
Reference Reference LSRR
60461430) 60461450)

Additional References:

—
System I
ICEM Programmer’s
Tablet
Overlays Reference
60458080
60457140 60458560 Y/

A
Sorac”

©1985, 1987 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

ﬁ%
N,

2 ICEM GPL for NOS .« Reyvision C

Manual History

Revision C documents GPL for ICEM DDN Version 1.62, printed in January 1987.

This revision includes the new commands MSTRNG and MSFILE for handling menu
strings, enhancements to TLPATH, and miscellaneous technical and editorial changes.
For clearer understanding, three commands were moved from chapter 6 to chapters
where their operation is more functional. BLANKE and UNBLNK were moved to
chapter 9; MODIFY was moved to chapter 14. Technical changes are indicated by
change bars; change bars are not used on pages that have only editorial changes.

Revision System

Level Version Date

A 1.57 May 1985

B 1.6 December 1985

C 1.62 January 1987

Revision C Manual History 3

hererd

S

o N
Y o

~ -~

Contents
About This Manual 11 Entity and Character String
Audi 1 Management Major Words 3-2
u ex.xce crrrr Variable Declaration, RTL I/O,
Organization 11 and File Major Words. 3-3
Conventlons 1 3 Program M anagement Maj or
Additional Related Publications . . 14 Words. 3-3
Ordering Manuals 14 Display Control Major Words . . . 3-4
Submitting Comments 14 Entity Definition Major Words . . 3-5
Entity Manipulation Major
Introduction 1-1 Words. 3-6
Drafting Modal Major Words . . . 3-7
Statement Elements 1-2 Drafting Entity Definition Major
Statement Types 1-4 Words. 3-9
Program File Format 1-6 Numerical Control Major Words 3-10
Restrictions 1-7 Interactive Command Major
Syntax Conventions 1-9 Words. 3-10
Creating Geometry with GPL . . 1-10 Input/Output Major Words 3-10
Filing GPL Program Results with
the Current Drawing 1-10 Branching and Conditional
Running a GPL Program 1-11 Statements 4-1
Using the PAUSE Statement . . 1-11 GOTO 41
Computed GOTO 4-2
Components of a GPL Statement . 2-1 IF 4-3
Major Words 2-1 FOR 4-5
Minor Words 2-1 EOFL 4-6
Defined Symbols 2-2 JUMPTO 4-6
Constants 2-3
Named Entities 2-4 Modal Statements 5-1
Variables 2'6 BLANK 5_1
Sta:temen't Labels 2-11 CURSOR 5-1
Arithmetic Operators and DISDEF 5-2
Expressions. 2-12 DISTOL 5.9
Functions 2-13 FONT T 5'
Logical Operators 2-16 ST e -3
. LEVEL 5-4
Punctuation Symbols 2-17 MSFILE 54
Character Strings 2-18 PAINT 5'
Text Variable 2-18 AINT . -5
. PEN 5-5
GPL Vocabulary I (Major Words) 2-19 RECOVR 5.6
GPL Vocabulary II (Minor, @~ 2T Thecce e e)
Modal, and Positional Words). . 2-20 REFRES 5-6
RESCAL 5-7
Overview of Major Words 3-1 SELENT 57
SELGRP 5-8
Branching and Conditional Major SELMOD 5-8
Words. 3-1 SPATHS 5.9
Modal Major Words S Ui §
odal Major Words 3 STATUS 5-10
SYSDEC 5-10
Revision. C Contents 5

Entity and Character String

Statements 6-1
ASSIGN e 6-1
ATTRIB 6-3
CHECK 6-7
CLEAR e 6-7
CMPCHR 6-8
CMPENT 6-9
CONVER 6-10
DEFINE 6-12
DELETE 6-13
EVALC 6-14
EVALS 6-16
MOVCHR 6-19
MOVENT 6-19
OBTAIN 6-20
SETCHL 6-32
TRIME 6-32

Variable Declaration, RTL 1/0,

and File Statements. 7-1
CHAR 7-1
COMMON 7-2
CONST 7-3
DATA 7-4
ENTITY 7-5
FILE 7-6
GET 7-7
REAL 7-8
SAVE. 7-9

Program Management

Statements 8-1
CALL 8-1
CONTIN 8-
DATE 8-2
FINI 8-2
MAIN 8-3
MSTRNG 8-4
PAUSE 8-5
PROC 8-6
REMARK 8-7
RETURN 8-7
STOP 8-8
TIME 8-8

6 ICEM GPL for NOS

Display Control Statements 9-1

BLANKE 9-1
CHANGE 9-3
MAP 9-5
REPANT 9-6
UNBLNK 9-7
VBORDS. 9-8
VIEW 9-9
VNAMES 9-11
VVECS 9-12
WAIT. 9-12
ZOOM 9-13
POINT Statements 10-1
POINT 10-1
LINE Statements 11-1
CHAMFR (Bevel) 11-1
LINE 11-3

ARC/CIRCLE Statements 12-1

CIRCLE 12-1
FILLET 12-10

Two-Dimensional Curve

Statements 13-1
ELLIPS 13-1
GCONIC 13-2
HYPERB 13-3
PARABO 13-4
PTSET 13-5
SPLINE 13-7
STRING 13-11

Entity Manipulation Statements 14-1

ARRAY 14-1
GROUP 14-10
MIRROR 14-11
MODIFY 14-12
PROJEC 14-15
RTRIEV 14-17
TEMPLT 14-21

Revision C

AN

@ ¢

PN

(v

v

¢
C

Three-Dimensional Curve
Statements

CMPCRV
MACCRV
SPCURV.

CMSRF
CONE
CYLNDR
DEVSRF
FILSRF
HEXDRN
LPSOID
PLANE
REVSRF
RULSRF
SPHERE
TABCYL
TORUS

ANSI 1973 Drafting Modal
Statements

CSET
CSIZE

SLANT
TXTANG
TXTJUS
WLINE

Revision C

ANSI 1973 Dimensioning and
Other Statements

CDIMEN.
CLINE
DDIMEN
LABEL
LDIMEN.
NOTE
RDIMEN.
SECTON

ANSI 1982 Drafting Modal
Statements

AUTOD

CRES

DUAL
FRACT
LDDIAM
LEADER.
MATERL
PREFIX
SECALN
SECVIS
SLANT
TXTJUS
TXTORG.
WLINE

ANSI 1982 Dimensioning and
Other Statements

ADIMEN
BALOON

Contents 7

CDIMEN.
CLINE
CURARR
DATFEA
DATUM
DDIMEN
GEOTOL.
LABEL
LDIMEN.
MAGNFY
MODDFT
NOTE

SRFTEX

Numerical Control Statements

SETGPG
TLPATH

Interactive Statements
DISPLA

MENU
QUERY

TEXT

GPL Input and Output

Conventions and Restrictions . .
File Formats
Fixed Format Input/Qutput . . .
BULK S

Using the EXEC Statement . . .

8 ICEM GPL for NOS

Compiling a GPL Program . .. 24-1
GPL Control Statement 24-1

Library Format Under NOS .. 244

Menu 5.13 GPL 25-1
513 GPL 25-1
Glossary A-1

Minor, Modal, and Positional
Relationship Words. B-1

ICEM DDN Entity Types. C-1
GPL Execution Error Messages . D-1
System I/O Commands E-1

GTGT: GRAPL-to-GPL

Translator. F-1
GPL Program Examples G-1
Flange Program G-1
Bushing Program G-16

Revision C

£
e

=
IR

pﬁnm

oD

b

Figures

1-1. GPL File Structure 1-11 13-2. Spline 13-9
10-1. Vectored Point 10-3 13-3. String 13-14
10-2. Point on the End of a Curve 10-5 G-1. Standard Welding Neck

10-3. Point at the Intersection of Flange G-1
Two Curves 10-7 G-2. Flange Layout G-2
11-1. Chamfer 11-2 G-3. First Variant of Welding Neck

11-2. Tangent Indicators 11-5 Flange Generated by GPL

11-3. Line Tangent to Two Curves 11-5
11-4. Line Through a Point and

Tangent to a Curve. 11-7
11-5. From a Point at an Angle . . 11-8
11-6. Tangent to a Curve and

Perpendicular to a Line 11-13
12-1. Fillet 12-11
12-2. Fillet with Automatic Trim . 12-12
13-1. Parabola 13-4
Revision C

Nominal Diameter 200 Units of

Measure G-15
G-4. Second Variant of Welding

Neck Flange Generated by GPL

Nominal Diameter 250 Units of

Measure G-15
G-5. Default Bushing Generated by

BUCHSE. G-21
G-6. Bushing Variant G-21

Contents 9

B ettt il

By, s ‘ﬁﬂ

A g N/ ;
= : R L

About This Manual

This manual describes GPL, the graphics programming language of ICEM DDN. ICEM
DDN is the CONTROL DATA® Integrated Computer-aided Engineering and
Manufacturing Design/Drafting/Numerical Control (ICEM DDN) software system.

Audience

This manual is a reference source for design engineers and drafting personnel who
have had initial training in the use of the ICEM DDN system. It is not intended to be
a tutorial guide to ICEM DDN. New users should refer to the ICEM Design/Drafting
User’s Guide for a step-by-step introduction to the ICEM DDN system.
Organization

This manual is organized as follows:

Chapter Description

1 Introduces the GPL programming language and briefly describes the
statement elements, statement types, program file format, restrictions, and
syntax of the language.

2 Describes the components of a GPL statement. It is a more detailed
discussion of each of the statement elements.

3 Is a brief overview of the operation of each major word statement.
4 Describes the operation of branching and conditional statements.
5 Explains the use of modal statements.

6 Tells how to manage data information.

7 Explains how to manage part information.

8 Describes how to manage program information.

9 Shows how to control the display of geometry.

10 Explains how to create points.

11 Describes how to create lines.

12 Shows how to create arcs and circles.

13 Explains how to create two-dimensional curves.

14 Tells how to manipulate entities.

15 Describes how to create three-dimensional entities.

16 Shows how to create different surfaces.

17 Explains how to set the ANSI 1973 drafting modals.

18 Tells how to create ANSI 1973 drafting entities.

Revision C About This Manual 11

Chapter Description

19 Explains how to set the ANSI 1982 drafting modals.
20 Tells how to create ANSI- 1982 drafting entities.

21 Sﬁows the use of numerical control functions.

22 Describes how to use interactive commands.

23 Describes GPL input and output.

24 Explains how a GPL program is compiled.

25 Describes the operation of menu 5.13 GPL.

This manual is part of the ICEM DDN manual set.

The ICEM Design/Drafting Introduction and System Controls manual gives an overview
of the major ICEM DDN concepts and describes menus 1 through 4 of the main menu:
modals and fonts, blank/unblank operatiqns, delete operations, and the file/terminate

sequence.

The ICEM Design/Drafting Data Management manual describes menus 5 through 8 of
the main menu: special functions, data base management operations, input/output
operations, and display control.

The ICEM Design/Drafting Basic Construction manual describes menus 9 through 14 of
the main menu: point construction, line construction, arc construction, special curve
construction, entity manipulation, and data verification.

The ICEM Design/Drafting Drafting Functions manual describes menus 16, 18, and 19:
drafting functions, analysis, and SI/US resize.

The ICEM Advanced Design manual describes menu 15 ADVANCED DESIGN, which
covers three-dimensional curves and surfaces.

The ICEM Numerical Control manual describes menu 17 NUMERICAL CONTROL, the
numerical control programming part of ICEM DDN.

12 ICEM GPL for NOS

Revision C

A, o

s eowe?

PN

e/

Wi

N

Conventions

In this manual, headings contain a series of numbers separated by periods. These
numbers represent the selections available within the ICEM DDN menu hierarchy. The
first number in the heading is the main menu choice, the second number is from the
second-level menu, and so on. For example, menu choice 12.7.3 HEXAGON is from the
third level of the menu hierarchy.

el

When the word system is used, it refers to the ICEM DDN software system. When the
Network Operating System is referred to, it is called either NOS or the operating
system.

All text that the system displays is printed in uppercase letters in a special typeface,
for example:

PEN THICKNESS
1.0N
2.0FF
(‘ 3.SET PEN/THICKNESS

Revision C About This Manual 13

Additional Related Publications

You can find related information in the following publications:

: Publication

Manual Title Number
Network Products Interactive Facility Version 1 Reference 60455250
Manual
Network Products Interactive Facility Version 1 User’s Guide 60455260
NOS Version 1 Reference Manual, Volume 1 60435400
UNIPLOT Version 3 User’s Guide/Reference Manual 60454730
Automatically Programmed Tooling System (APT 1V) 17326900
XEDIT Version 3 Reference Manual 60455730
1(\,‘;Iraphi;:s Terminal Assist Version 1 User’s Guide/Reference 60476100

anua

NOS 2 Reference Set, Volume 1 Introduction to Interactive Usage 60459660

NOS 2 Reference Set, Volume 2 Guide to System Usage 60459670
NOS 2 Reference Set, Volume 3 System Commands 60459680
ICEM Schematics Reference Manual 60456540
ICEM User-Defined Tablet Overlay 60457650
ICEM Engineering Data Library Version 1 Reference Manual 60459740

ICEM Design/Drafting GRAPL Programming Language Manual 60461460

Ordering Manuals

Control Data manuals are available through Control Data sales offices or through
Control Data Corporation Literature Distribution Services (308 North Dale Street, St.
Paul, Minnesota 55103).

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your opinion
of the manual’s usability, to suggest specific improvements, and to report technical or
typographical errors. If the comment sheet has already been used, you can mail your
comments to:

Control Data Corporation

Technology and Publications Division ARH219
4201 Lexington Avenue North

St. Paul, Minnesota 55126-6198

AT

S

S

W‘P“ﬁ/

Please indicate whether or not you would like a written response.

14 ICEM GPL for NOS

Revision C

2
NI

AR

O

Introduction 1
Statement Elements 1-2
Statement Types e e e 1-4
Major Word Statements 1-4
Assignment Statements e 1-5
Branching Statements 1-5
Conditional Statements 1-5
Program File Format i 1-6
Restrictions e 1-7
Syntax Conventions e 1-9
Creating Geometry with GPL 1-10
~ Filing GPL Program Results with the Current Drawing 1-10
Running a GPL Program, 1-11
Using the PAUSE Statement 1-11

0O

©O0O

~

Introduction | 1

With Graphics Programming Language (GPL), you can write programs that create and
file ICEM DDN part drawings. GPL statements are generally similar in operation to
features in interactive ICEM DDN. They are used to create entities, set modals,
retrieve and store data base information, and perform other operations required to
create and file drawings. GPL statement syntax is similar in many respects to Control
Data’s Automatically Programmed Tooling System (APT) programming language.

You can use GPL programs for a number of purposes. You can:

GPL is compiled externally from ICEM DDN (refer to chapter 24) and executed

Create your own customized menus.

Write programs that create similar parts parametrically. Starting from one part,
you can create a family of parts by running the same program using different
values for the input variables. Refer to the example programs in appendix G.

Create your own customized graphics process for a special application.
Read and write to external data files.

Execute FORTRAN binary code. Please note that the FORTRAN subroutines that
GPL executes must be fully compiled.

Make graphs and tables.

Write customized tutorials.

Calculate serial functions.
Analyze data.

Read information from the ICEM DDN database.

internally from ICEM DDN (refer to chapter 25).

A GPL program is a series of statements that performs the operations for creating a
part drawing. Refer to appendix G for a complete program example.

The sequence of statements in the input file generally determines the sequence of
operations to be performed. In addition, control statements in the GPL program can
test for certain logical conditions, and the outcome of those tests directs the program to
execute different program sequences.

The GRAPL-to-GPL Translator (GTGT) utility automatically translates GRAPL source
programs to GPL source programs. A one-to-one correspondence between GRAPL and

GPL does not exist; statements that cannot be translated are flagged with informative
remarks in the GPL source. Refer to appendix F.

Revision C Introduction 1-1

T T T TR

Statement Elements

Statement Elements

A GPL statement consists of different elements. These elements are described in detail
in chapter 2, Components of a GPL Statement. Briefly, a statement consists of the

following elements:

Element

Description

Major words

Minor words

Constants

Entity names

Variable names

Statement labels

Arithmetic operators

1.2 ICEM GPL for NOS

Statement elements that name the GPL operation to be
performed. A major word that requires modifying
parameters is followed by a slash (/). The slash separates
the major word from its parameters.

Specially reserved modifier elements that follow a major
word. Minor words indicate required information such as
positional relationships, surface materials, geometrical
dimensions, delta values, and other information. Appendix
B lists and describes the minor words.

Numeric values that do not vary during program
execution.

Names given to a geometric definition. Entity names in
GPL are local unless intentionally assigned to the data

base. Such assigned names are then available elsewhere
in ICEM DDN.

Names given to any combination of mathematical
variables, constants, function statements, and arithmetic
expressions.

Optional integer fields, from 1 to 5 digits in length, which
uniquely identify the GPL statement in which they
appear. If present, the label appears as the first element
in a GPL statement, and each label must be unique
within a given program. At least one blank must appear
between the label and the remainder of the statement.

A statement label is used to identify the statement to
receive control from a branching or conditional statement.
Refer to chapter 4, Branching and Conditional Statements,
for more information on this feature.

The operations of addition, subtraction, exponentiation,
multiplication, and division.

Revision C

S T =
w 4

~

Element

Statement Elements

Description

Logical operators

Functions

Punctuation

Character strings

Lower case letters in text

Text variable

Revision C

The conditional operations of equality, such as:
® Less than

® Less than or equal to

® Equal to

® Not equal to

® QGreater than or equal to

® Greater than

Reserved keywords for standard trigonometric and
arithmetic functions.

The use of symbols or spaces to delineate parts of GPL
statements.

Strings of one or more contiguous text characters enclosed
in single quotes.

Under NOS, lowercase letters may be input, output, and
defined. For interactive input (via TEXT) the receiving
character field must be made twice as large as the
maximum number of characters expected. During
execution of the GPL program, the user simply clears the
keyboard LOCK key so that lowercase characters can be
entered. The text that was entered can later be output via
the NOTE statement. The definition of lowercase letters is
somewhat more troublesome: first switch the terminal to
ASCII, then edit your program that defines the strings (as
constants or in DATA statements), then switch the
terminal back to NORMAL, and finally replace all
occurrences of ™’ in the program by T’.

A variable name assigned to a character string.

Introduction 1-3

Statement Types

Statement Types

There are four types of GPL statements:

Type

Description

Major word statement

Assignment statement

Branching statement

Conditional statement

Major Word Statements

Describes an operation that the GPL program performs.

Links a name to a major word statement or an
arithmetic expression.

Interrupts the normal sequential execution of the
statements in a program and transfers control to
another statement in the program.

Makes a logical decision. If the statement is true, the
statement either assigns a variable or transfers control
to another statement in the program. If false, the
statement continues execution with the next statement
following the conditional statement.

Major word statements are used for the following purposes:

Statement

Description

Data management

Entity definition

Interactive commands

Modals and fonts

Part management

Program management

1-4 ICEM GPL for NOS

Used to obtain entity data. These commands include
operations similar to some operations in menu 5
SPECIAL FUNCTIONS.

Defines an entity. This statement can also be an
assignment statement. Entity definitions are equivalent
to the types and forms found in the interactive version
of ICEM DDN. Refer to the ICEM DDN System
Programmer’s Reference Manual for descriptions of the
types and forms as they are in the data base. Refer to
appendix C for a list of entity types.

Provides for user interaction with the GPL program.

Controls system modals and fonts. These commands

include operations similar to some operations in menus
1 MODALS AND FONTS and 16.1 DRAFTING
MODALS.

Controls part management. This command includes the
file operation similar to that in menu 4 FILE.

Controls program management.

Revision C

A A

A

Qoo

&awﬂ 4

el

Statement Types

Assignment Statements

Assignment statements are used for the following purposes:

Statement Description

Entity names Links a name to a major word entity definition
statement.

Text variable names Links a name to a literal constant.

Variable names Links a name to a mathematical expression.

Branching Statements
Branching statements are used to unconditionally transfer control from one part of the

program to another part of the program. There are two unconditional branching
statements, the GOTO statement and the JUMPTO statement.

Conditional Statements

Conditional statements are used to test for logical conditions and then perform some
action. The conditional statements are:

Type Description

FOR statement . Defines a conditional loop.

IF with assignment Tests a logical condition and assigns a variable if true.
IF with branching Tests a logical condition and branches if true.
Computed GOTO Branches from a numerical condition.

NOTE

For the advanced programmer, several system /O commands are available. Refer to
appendix E.

Revision C Introduction 1-5

Program File Format

Program File Format

The format requirements of a program file are:

® The first word in a GPL statement must be one of the following:
= Major word
-~ Statement label
= Entity name
- Mathematical variable

® Variable assignment statements must precede any statements that reference those
variables.

® A program statement can be written on more than one line. A dollar sign (§) is
used to continue the statement to the next line. Statement elements should not be
broken, with the exception of character strings, which may be broken.
Examples:
Correct Use Incorrect Use
CIRCLE/CENTER,PT001,LARGE,$ CIRCLE/CENTER,PT0013,LARGE, TANS

TANTQ,CIROO1 TO,CIR0O1
NOTE/PT345,ANGLE, O, "WEIGHT=33.5%
GRAMS FOR ALL BEARINGS~

® The last line of the program must contain a FINI or STOP statement (for a
description of these statements, refer to Major Word Statements, earlier in this
chapter).

NOTE

TELEX users should use the FINI statement rather than the STOP statement. TELEX
interprets a STOP statement as a user break and aborts a program.

1-6 ICEM GPL for NOS

Revision C

Restrictions

Restrictions

The following restrictions apply to a GPL program:

The length of a GPL statement is limited to a maximum of 80 characters per line.
The statement can be continued on subsequent lines by using the $ (dollar sign)
character. The number of continuation lines is limited to 19.

The number of variables stored in the run-time library (RTL) is limited to 510.

The total number of characters for simple entity names and simple variables is
limited to a maximum of 6 characters. For subscripted variables, the total of 6
characters includes the characters, but not the parentheses and subscript.

The maximum length of all strings and symbolic names taken together in a string
is 1600 characters.

The DELETE statement can delete only by using entity names. The exception is the
DELETE/POINTS statement which deletes all points whether they are named or
unnamed. This is different from the interactive version of ICEM Design/Drafting
where entities can be deleted by entity type.

Use caution when using the same entity name for different definitions. A
redefinition is accepted and the name is dropped from the previous entity.

It takes more time to run a GPL program if any of the following are true:

- PAINT/OFF is not used.

- The GET statement is used.

- The ASSIGN statement is used.

Scientific notation is not available in GPL.

Unlike FORTRAN, GPL does not differentiate between real and integer variables.
All angles in entity definition statements must be in degrees.

Angles can be in radians for internal calculations in the GPL program.
Trigonometric functions are available for evaluating angles in radians.

All angles, whether in degrees or radians, must be expressed in decimal fractions.
Minutes and seconds are not allowed.

Examples:
20-1/2° is expressed in GPL as 20.5
10°, 45 min is expressed in GPL as 10.75

The result of an entity construction is a pointer to the ICEM DDN data base. Such
a pointer cannot be used in arithmetic statements.

Example:

PT=POINT/10,10,50

The point PT cannot be used as a variable in arithmetic statements.

Revision C ' Introduction 1-7

Restrictions

Expressions can be used as indices of arrays, as initial, step, and until values of a
FOR statement, and as a value for the computed GOTO statement. Expressions can
also appear in major word statements in place of real variables or constants.
However, an expression that defines an index cannot use another index expression
in that definition. In GPL, an index is a valid index expression if it contains more
than one constant or variable. For example, X(I(J)) is a valid index expression;
however, Y(1,2*J) is not valid.

The order of declarative statements at the beginning of a program must be as
follows:

MAIN or PROC
CONST

COMMON

ENTITY, REAL, CHAR!
END COM

ENTITY, REAL, CHAR!
Data

Executable statements
FINI or RETURN

Blanks outside of character strings are ignored if they precede or follow a separator
(the comma).

Blanks cannot be used within keywords, symbolic names, or constants.

Blanks must be used as separators with the reserved words FOR, GOTO, TO,
STEP, and UNTIL.

For example:

Valid Use Invalid Use
GOTO 10 GOTO10
GO TO 20 GOTO20

FOR I=X, STEP Y, UNTIL Z FORI=X,STEPY UNTILZ

Strings (enclosed by apostrophes) may contain all characters including apostrophes
and $. However, as in standard FORTRAN, apostrophes within a string must
appear as two consecutive apostrophes. To be recognized as part of the string, the $§
must be followed by at least one non-blank character within the same line. If, on
the other hand, the $ is the last non-blank character of a line, it is considered a
continuation mark, and the string continues with the first non-blank character of
the next line.

1. ENTITY, REAL, and CHAR can be in any order among themselves.

1.8 ICEM GPL for NOS : _ Revision C

W F

gty

»

ke

@R

Syntax Conventions

Syntax Conventions

In this manual the following conventions are used in defining allowable syntax for GPL

statements:

® All angles used to define an entity are expressed in degrees.

® The positive angular direction is counterclockwise.

® Units of measure are either millimeters or inches.
- All U.S. customary unit measurements are in inches.
- All SI unit measurements are in millimeters.

¢ All major and minor words are uppercase (for example, LINE, TANTO, and
CIRCLE).

® Geometric entities are referred to by their entity type in lowercase (for example,
line, point, and circle).

® Other names are represented by meaningful lowercase pseudonyms (for example,
xcoord, radius, and angle).

® Items listed vertically within parentheses indicate that you must choose one of the
items.

® All items enclosed in brackets are optional.

® Items arranged vertically within brackets indicate that you may choose one of the
items.

® [,..] in a statement format indicates that the preceding parameter can be continued
as an optional list of items.

Example:

Program Statement Explanation

SAVE/variablel,...] Indicates that a list of variables can be saved in the

UTF.

SAVE/A1,B1,C,DEFX

Revision C Introduction 1-9

Creating Geometry with GPL

==
e \

Creating Geometry with GPL
The following steps create geometry with GPL: (

Nowac?

® A GPL program is written in a local file using the operating system text editor.
® The GPL compiler compiles the program using the local text file.

e ICEM DDN menu 5.13.3 executes this program and creates the part geometry in
the part drawing. Refer to chapter 25. During execution, GPL may issue execution
error messages (listed in appendix D).

Filing GPL Program Results with the Current Drawing

How you file the GPL program output depends on whether or not you include the FILE
statement in the program input file.

If the FILE statement is omitted from the program, the output drawing is displayed on
the screen as a part of the current work view.

If the current work view is not blank, the GPL output drawing is superimposed on the
current contents of the part drawing.

To make the GPL output drawing a permanent part of the current part drawing, you
must manually file the part, using the File/Exit menu operation 4.FILE CURRENT
PART/EXIT ICEM DDN, before logging out of ICEM DDN.

If the GPL program contains a FILE statement, the part drawing is filed automatically
as the current part and sheet number when the FILE statement is encountered.

et
-

1-10 ICEM GPL for NOS Revision C

Running a GPL Program

Running a GPL Program

Using menu choice 5.13.3 RUN GPL PROGRAM, you can run your GPL program.
When you enter 5.13.3, the system displays:

ENTER SIX CHARACTER NAME Enter the name of the program to be run.

The system checks for a local, external library that contains the name of the program.
If found, the program is executed immediately.

The program to be executed must be compiled and the resulting object code must be
put on a local external file named GPLLIB. It is not put there automatically after
compilation. The GPL overlay library named GOLIB, another local external file, is also
required. Refer to figure 1-1.

IcEMDDN D COMPILER®
coLie® GPLLIB @ source ©
NOTES:

ICEMDDN: Menu 5.13.

COMPILER: To compile GPL source programs.

GOLIB: GPL secondary overlay file (part of ICEMDDN).

GPLLIB: Library of compiled GPL programs.

SOURCE: File containing GPL source programs (name not unique).

Figure 1-1. GPL File Structure

Using the PAUSE Statement

If the GPL program has a PAUSE statement, the program stops execution at the
PAUSE statement. You can then perform other ICEM DDN operations. When you want
to continue the program, select menu choice 5.13.2 CONTINUE GPL PROGRAM. The
program resumes execution at the first line following the PAUSE command.

Revision C Introduction 1-11

3
5

b
J

)

& e

| e g

00

©O0

Components of a GPL Statement 2
Major Words e 2-1
Minor Words e e 2-1
Defined Symbols e 2-2
Constants e e e e 2-3
Conventions e e 2-3
Using the Assignment Statement to Create a Constant 2-3
Named Entities e 2-4
Simple (Nonsubscripted) Entity Names 2-5
Subscripted (Array) Entity Names 2-5
Variables e e e e e e e 2-6
Using the Assignment Statement to Name Variables 2-6
Simple (Nonsubscripted) Variables 2-6
Subscripted (Array) Variables 2-7
Creating Variables Using 5.2.1 VARIABLE CALCULATION 2-8
Saving Variables in the RTL or the UTF 2-8
Using the SAVE Statement 2-9
Using the REAL Statements 2-9
Using the CHAR and ENTITY Statements 2-10
Using the GET Statement 2-10
Statement Labels e 2-11
Arithmetic Operators and Expressions 2-12
Functions e e 2-13
Logical Operators e e 2-16
Punctuation Symbols 2-17
Character Strings 2-18
Text Variable e 2-18
GPL Vocabulary I (Major Words) 2-19
GPL Vocabulary II (Minor, Modal, and Positional Words) 2-20

O

©O

Comeonents of a GPL Statement 2

Major Words

Major words are the statement elements that name the GPL operation to be performed.
A major word is followed by a slash (/) unless there are no modifier elements. Major
words are reserved keywords, and may not be used as variable names.

Examples:
Program Statement Explanation
POINT/3,3,0 The major word POINT defines a point at coordinates
(3,3,0).
PTO01=POINT/4,4,0 Point PT001 is defined at coordinates (4,4,0).
CIR1=CIRCLE/CENTER, $ Circle CIR1 is defined using point PT001 as the
PT001,RADIUS,2.5 center with a radius of 2.5 units of measure.

Minor Words

Minor words are modifier elements that follow a major word and indicate information
such as positional relationships, surface materials, geometrical dimensions, and delta
values. Minor words are also reserved keywords, and may not be used as variable
names.

Examples:

Program Statement Explanation

POINT/DELTA,PT001,2,4 A point is created delta from point PT001, 2 units of
measure in the x positive direction and 4 units of
measure in the y positive direction.

POINT/CENTER, CIR1 A point is created at the center of circle CIRI.

CIR1=CIRCLE/CENTER,PT001,$ Circle CIR1 is created using point PT001 as the

RADIUS,2.5 center with a radius of 2.5 units of measure.

Revision C Components of a GPL Statement 2-1

Defined Symbols

N
—

Defined Symbols

You can define a symbol to represent a geometric entity or variable name. The symbol
consists of up to 6 alphanumeric characters, starting with an alpha character. It may
not be a GPL vocabulary word (that is, a reserved word). It may have subscripts up to
three dimensions.

Geometric entity names should (must, if subscripted) be declared in an ENTITY
statement. These entity names are defined by assignment (=) of major word statements
which define the geometric entity, or by the interactive SELECT statement.

You can use variable names instead of constants or expressions. You can define a
variable name in one of three ways: using an assignment statement, using one of the
interactive commands such as a PARAMS or POS statement, or using the GET
statement if the variable is defined in the run-time library (RTL). Such variables
should (must, if subscripted) be declared in a REAL statement.

You can also use variable names to represent strings. These names are called text
variables and must be declared in a CHAR statement. The CHAR statement must have
at least one dimension which defines the maximum length in characters of the text
variable. All text variables have two character counts: maximum and current. Both
counts are preset to the number given in the CHAR statement.

While the maximum count does not change, the current count is redefined whenever

the variable serves as receiving location (statements CONVER, DATE, TIME, TEXT,

OBTAIN, MOVCHR, and READ). For MOVCHR, the current length of the target string

is increased when necessary to include the last target character position of the move. p

When the variable serves as the source (statements CLOSE, CMPCHR, DISPLA, EXEC, R
GET, MENU, MOVCHR, OPEN, PARAMS, PAUSE, POS, QUERY, SAVE, SELECT,

STOP, TEXT, WRITE, and DRAFTING CREATION), only the current number of

characters is available.

You can use the OBTAIN statement to retrieve the current length, and the SETCHL
statement to set it (within the bounds of the maximum length).

2.2 ICEM GPL for NOS ' Revision C

N

Constants

Constants

Conventions

The following conventions apply to the use of numerical constants in GPL programs:

Real constants are limited to 7 places to the left and 10 places to the right of the
decimal point.

The entire constant may not exceed a total of 15 decimal digits.

The plus sign for positive numbers is optional.

A decimal point need not be entered if the data has no fractional value.
Preceding or trailing zeros need not be entered.

Real or integer constants can be assigned to a symbolic name using the CONST
statement. The symbolic name can then be used as real or integer constants.

Using the Assignment Statement to Create a Constant

You can create a constant by using an assignment statement. A constant is a name
given to specific numerical value.

Format:

name=value

Parameter Description

name The name assighed to the constant.

value The value of the constant.

Examples:

Program Statement Explanation

A=3.5 A is created with a constant value of 3.5.

B=450 B is created with a constant value of 450.
C=125*A+B-100 C is created with a constant value of (125%*A+B-100).
NOTE

Scientific notation is not available in the GPL language.

Revision C Components of a GPL Statement 2-3

Named Entities

Named Entities

You can name an entity by using an assignment statement when creating the entity.
Entity names are optional. Note that entity names defined in a GPL program are local
(unlike entity names defined interactively under ICEM DDN menu 5.11 NAMED
ENTITIES) and cannot be referenced interactively after execution of the GPL program

which defined the name.
NOTE

Entity names in GPL are local unless specifically defined in the data base using the

ASSIGN statement.

All ICEM DDN major and minor word names are reserved and may not be used as

entity names.
Entity names can be simple or subscripted.
Statement format:

name=description

Parameter Description
name The name assigned to the entity.
description The entity description. It is a major word statement defining a

geometric entity.

24 ICEM GPL for NOS

Revision C

=
—

o

e
A

G

Named Entities

Simple (Nonsubscripted) Entity Names

Simple entities are entity names assigned to one entity only. Simple entity names can
be from 1 to 6 alphanumeric characters; the first character must be alphabetic.

Subscripted (Array) Entity Names

Subscripted (array) entities are a group of entities stored in the same array name. This
array may be subscripted up to three dimensions. The location in the array is
determined by a subscript index value enclosed in parentheses. A subscripted entity
name consists of a 1- to 6-character alphanumeric name, beginning with an alphabetic
character, followed by one, two, or three subscripts separated by commas and enclosed
in parentheses.

A subscripted entity name must be dimensioned with an ENTITY statement in each
program or subprogram that references the entity.

The following are examples of the ENTITY statement and valid subscripted entity
names:

Program Statement Explanation

ENTITY/PT(10),L(200),ART(10) Point PT, line L, and arctangent ART are
: dimensioned as entity arrays.

PT(10)=POINT/3,3,0 Point PT(10) is created as the 10th element in the PT
entity array.

L(108)=LINE/PT3,PT4 Line L(108) is created as the 108th element in the L
entity array.

ART(6)=CIRCLE/CENTER,PT(10)$ Arc ART(6) is created as the 6th element in the ART
,TANTO,L(108)$ entity array.
, GOANG, 10, ENDANG, 50

P(1,J,K)=POINT/1,J,K Point P(1,J,K) is created as the element in the
three-dimensional array P at the location defined by
the current values of I, J, and K.

Revision C Components of a GPL Statement 2-5

Variables

Variables

A variable is an assignment statement that assigns any combination of variables,
constants, functions, and arithmetic expressions to a name. Variables can be assigned
either real or integer values, but internally, all variables are stored as real values.

Using the Assignment Statement to Name Variables

You can name a variable by using an assignment statement. A variable name is a
name given to any combination of variables, constants, function statements, and
arithmetic expressions.

Format:
name=value
Parameter Description
name The name assigned to the variable.
value The value of the variable.

Simple (Nonsubscripted) Variables

Simple variables are variable names assigned to a single value. Simple variable names

can be from 1 to 6 alphanumeric characters; the first character must be alphabetic.

2-6 ICEM GPL for NOS Revision C

%

& O

ale

Variables

Subscripted (Array) Variables

Subscripted (array) variables are a group of variables using the same name for an

array of values. This array may be subscripted up to three dimensions. The location in
the group is determined by a subscript enclosed in parentheses. A subscripted (array)
variable name consists of a 1- to 6-character alphanumeric name that begins with an
alphabetic character, which is followed by one, two, or three subscripts separated by
commas and enclosed in parentheses.

® Subscripted variables must be dimensioned by a SIZE or REAL statement in each
program that references the variable.

® Simple variables can be saved in the RTL using the SAVE statement.

® The number of all subscripted variable array elements is limited to a total of

2,097,152.

® The subscripted variable array is a one-, two-, or three-dimensional array.

® Subscripts can be simple variables, for example, ABCD(J).

® Major and minor word names are reserved and cannot be used as variable names.

The following are examples of correct and incorrect subscripted variable names:

Correct use:

Program Statement

Explanation

ABCDEF=K+SIN(I)

ABCDE(6)=10.0

X(10,2,5)=Y(1,J,K)
Incorrect use:

Program Statement

Uses 6 characters.

Uses fewer than 6 characters not including the
subscript.

Uses three-dimensional subscripts.

Explanation

ABCDEFG=47 .1
POINT(3)=TOLDEF
RADIUS(3)=R

7ABCDE=ABCDE

Revision C

Uses 7 characters.
Uses the major word POINT.
Uses the minor word RADIUS.

Uses numeral as first character.

Components of a GPL Statement 2-7

Variables

03
Creating Variables Using 5.2.1 VARIABLE CALCULATION

Using 5.2.1 VARIABLE CALCULATION, you can define a simple variable and assign a @
value to it. The variable name must be from 1 to 6 characters, the first of which must

be an alphabetic character. The value can be specified as either a constant or an

expression. After successful evaluation, the variable is automatically stored in the RTL.

Any variables in the right-hand part of any statement in an expression must have been
previously defined, and must exist in the RTL. Variables defined and saved with this

menu choice are subsequently available to GPL programs using the GET statement.

Saving Variables in the RTL or the UTF

Variable values can be carried over from one GPL program to subsequent programs
without having to repeat the assignment statement in each program. There are two
variable storage areas in ICEM DDN:

¢ Run-Time Library (RTL)

The RTL is used to store variables for the duration of an ICEM DDN session and
is stored with the part. These variables are available to all programs executed
during the session. At the end of a session, variable assignments stored in the RTL
are saved only if you file the current part drawing. If you do not file the drawing,
the variables are lost when you log out of ICEM DDN. When you retrieve the part
drawing for a future session, variable assignments saved with a part drawing are
automatically placed in the RTL. Simple variables are stored in the RTL only if
they are specified in a SAVE statement (refer to the SAVE major word description
later in this section) or defined interactively under menu 5.1 VARIABLE
CALCULATION (refer to the ICEM Design/Drafting Data Management manual) or N
via data capture. The GET statement must be used to return variables from the ,
RTL before use in a GPL program.

® User Technology File (UTF)

You can globally save variable assignments stored in the RTL by moving them to
the UTF using 5.3.2 MOVE VARIABLES FROM RTL TO UTF. You can retrieve
variable assignments stored in the UTF for use in a GPL program executed at a
later time. Programs, however, cannot access variable assignments directly from the
UTF. For each subsequent session, variables stored in the UTF must be moved into
the RTL for the session before the variables can be referenced in any program.
UTF variables are moved to the RTL using menu operation 5.3.1 MOVE
VARIABLES FROM UTF TO RTL. A variable assignment stored in the UTF
remains as originally defined until that variable is redefined in a subsequent
assignment statement and stored once again in the UTF.

[
%

C

2-8 ICEM GPL for NOS Revision C

=

Variables

Using the SAVE Statement

You must use the SAVE statement to save your simple variables before you use them
in a subsequent program or subprogram. The SAVE statement reserves space in the
RTL. For example, the following series of statements explains this process.

Program Statement Explanation

A=1 A is equal to the value of 1.

B=4 B is equal to the value of 4.

F=15 F is equal to the value of 15.

TAR=A+B TAR is equal to the value of A plus B or 1 plus 4.

ABCD=TAR*F ABCD is equal to the value of TAR times F or §
times 15.

SAVE/A,B,F,TAR,ABCD This statement saves these variables in the RTL.

Using the REAL Statements

You must use the REAL statements to reserve storage space for your subscripted
mathematical variables in the GPL program before you define them in the program.
You must reserve this space before all statements in a given program except MAIN,
REMARK, and other declarations.

These statements are used for the following purpose:

Statement Purpose

REAL Reserves space for calculated values.

Example:

Program Statement Explanation

REAL/A,B,C(5) Reserves space for variables A, B, and five spaces for
variable C.

Revision C Components of a GPL Statement 2-9

Variables

Using the CHAR and ENTITY Statements

The CHAR statement declares the names as text variables and reserves space by
character length in the GPL program. The ENTITY statement declares the names as
entities and reserves space in the GPL program for their pointers. Subscripted entity
names must be dimensioned to the number of entities that are assigned.

These statements are used for the following purposes:

Statement Purpose

CHAR Reserves space for text variables.

ENTITY Reserves space for entity data base pointers.
Example:

Program Statement

Explanation

CHAR/CHR 1(10)

ENTITY/PT(10)

ENTITY/CIR(2)

Declares text variable CHR1 and reserves space for 10
characters for CHR1.

Reserves space for 10 pointers named PT(1) through PT(10).

Reserves space for 2 pointers named CIR(1) and CIR(2).

Using the GET Statement

You must use the GET statement in a subprogram to retrieve the values of variables if

they are stored in the RTL. These values are only available if they were stored in the
RTL using 5.2.1 VARIABLE CALCULATION or if they were stored in the RTL using a
SAVE statement in a different program executed earlier.

Example:

Program Statement

Explanation

GET/A.B,F,TAR,ABCD

2-10 ICEM GPL for NOS

Retrieves the values of previously stored variables A, B, F,
TAR, and ABCD.

Revision C

ale
0 e’

iy

R

Statement Labels

Statement Labels

Statement labels are optional integer fields, from 1 to 5 digits in length, which
uniquely identify the GPL statement in which the statement label appears. If present,
the label appears as the first element in a GPL statement, and each label must be
unique within a given program. At least one blank must appear between the label and
the remainder of the statement.

® A statement label is used to identify the statement to receive control from a
branching or conditional statement. Refer to chapter 4, Branching and Conditional
Statements, for more information on this feature.

® Statement labels are not required on all GPL statements.

® One and only one statement label must exist somewhere for each transfer of
control.

® Labels must be positive integers with 5 or fewer digits.

Example:

Program Statement Explanation

GOTO 250 Branch unconditionally to statement label 250.
250 CONTIN Execution continues at the next statement.

Revision C Components of a GPL Statement 2-11

Arithmetic Operators and Expressions

Arithmetic Operators and Expressions

Arithmetic expressions use arithmetic operators to combine constants, variables, or

functions in a sequence that can be reduced to a single arithmetic value.

The arithmetic operators available in GPL are:

+ Addition

- Subtraction

** Exponentiation
* Multiplication
/ Division

Arithmetic expressions are evaluated from left to right in the following order of

preference:
® Exponentiation
® Multiplication and division

® Addition and subtraction

Nested expressions (expressions within parentheses) are evaluated first, proceeding from

the innermost expression to the outermost.
Example:
CALC=((3+7)/2-4)**3+5%6

Operation

Result

The innermost nest (3+7) is evaluated
first.

Division (10/2) is the first operation to
be performed in the second-level nest.

Subtraction (5-4) is performed after
division in the second-level nest.

Exponentiation (1**3) is the highest-order
operation.

Multiplication (5%6) is the next
highest-order operation.

Addition (1+30) is the last operation.
The final result is 31.

2-12 ICEM GPL for NOS

(10/2-4)**3 + 5%6
(5-4)**3+5%6
1**3+5%*6
1+5%6

1+30

31

Revision C

ol

oM

Functions

Functions

Functions are elements that provide a quick and simple means of performing certain
commonly used arithmetic/trigonometric operations. They can be used in variable
assignment statements. There are two types of functions: those that require a single
argument and those that require several arguments.

Format:

function(argument(s))

Parameter Description
function The function name.
(argument(s)) The argument(s) for the function. The argument(s) can be

variable(s).

The following functions are available in GPL:

Function! Description

ABS or ABSF Finds the value of a number without regard to sign (the absolute
value).

ACOS Finds the arc cosine. The answer is returned in radians.

ACOSF Finds the arc cosine. The answer is returned in degrees.

ASIN Finds the arc sine. The answer is returned in radians.

ASINF Finds the arc sine. The answer is returned in degrees.

ATAN Finds the arctangent given “the tangent of an angle. The answer is
returned in radians.

ATANF Finds the arctangent given the tangent of an angle. The answer is
returned in degrees.

COS Finds the cosine of an angle. The angle must be expressed in
radians.

COSF Finds the cosine of an angle. The angle must be expressed in
degrees.

COSH Finds the hyperbolic cosine of an angle.

EXP or EXPF Finds the value of e raised to a power.

1. Some functions have alternate forms, which have been provided for compatibility with Automated

Programmed Tooling System (APT).

Revision C

Components of a GPL Statement 2-13

Functions

Function?

Description

GETBIT (var,
pos, num)

LOG or LOGF
LOG10

MIN

MAX

ROUND

SETBIT
(var,pos,num,val)

SIGN

SIN
SINF

SINH

SQRT or SQRTF
TRUNC

TAN

TANH

Gets the bit string of length 'num’ from variable 'var’, starting at
position ’pos’.

NOTE

For GETBIT and SETBIT, the bit position (ranging from 1 to 48 in
NOS) is the lower end of the bit string in the variable (after it has
been converted to integer internally).

Finds the natural logarithm of a number (base e).

Finds the common logarithfn of a number (base 10).

Finds the minimum value of a series (up to 64 arguments).

Finds the maximum value of a series (up to 64 arguments).

Rounds a real number to its nearest integer (0.5 rounds up).

Creates a new bit string by setting 'num’ bits with the new bit
representation of 'val’ in variable 'var’ starting at position ’pos’. The
arguments remain unchanged. The new variable value is passed as
the function value.

NOTE

For GETBIT and SETBIT, the bit position (ranging from 1 to 48 in
NOQOS) is the lower end of the bit string in the variable (after it has
been converted to integer internally).

Transfers the sign of the second argument to the first argument
(similar to the FORTRAN SIGN function).

Finds the sine of an angle. The angle must be expressed in radians.
Finds the sine of an angle. The angle must be expressed in degrees.
Finds the hyperbolic sine of an angle.

Finds the square root of a number.

Truncates a real number to its integer part.

Finds the tangent of an angle. The angle must be expressed in
radians.

Finds the hyperbolic tangent of an angle.

2. Some functions have alternate forms, which have been provided for compatibility with Automated
Programmed Tooling System (APT).

2-14 ICEM GPL for NOS : Revision C

o 2

Functions

' Examples:
(; Program Statement Explanation
A=ATNF(0.5) The variable A is equal to 26.565°.
A=ATAN(0.5) The variable A is equal to 0.4636 radians.
PZ=L*SINF(45) The variable PZ is equal to L times the sine of 45°
SKL=SIN(K*L) The variable SKL is equal to the sine of K times L
(K*L).
PI=4*ATAN(1) The variable Pl is equal to four times the arctangent
of 1. The answer is returned in radians.
B=SINF (ANGR) The variable B is equal to the sine of ANGR.
] C=L*COSF(ANG1)+$ The variable C is equal to L times the cosine of angle
(K*SINF (ANG2) ANG1 plus K times the sine of angle ANG2.
IF(GETBIT(J,1,1).NE.O)S If the bit string of length 1 from variable J at
GOTO10 position 1 is not equal to 0 (if J is odd) go to 10.
J=SETBIT(J,1,1,0) Creates a new bit string by setting 1 bit to 0 J at

position 1 (round J to next lower even number).

Revision C Components of a GPL Statement 2-15

Logical Operators

Logical Operators

Logical operators available in GPL are the conditional operations of equality. They are
used within the IF statement only. The periods are not part of the operators; they are
required to separate the operators from the objects being compared.

Symbol Description

.LE. Less than or equal to

.LT. Less than

.EQ. Equal to

.NE. Not equal to

.GE. Greater than or equal to

.GT. Greater than 7
AND. Logical and |
.O,R. Logical inclusive or

NOTE

.AND. and .OR. operators cannot be combined. A GPL program can use multiple
.AND.s, or it can use multiple .OR.s, but it cannot use combined .AND.s and .OR.s.

Examples: & s
Program Statement Explanation
IF (STAT.EQ.-1) GOTO 40 If the variable STAT is equal to -1, jump to the line
labeled 40.
g B
H
R

2-16 ICEM GPL for NOS Revision C

Punctuation Symbols

Punctuation Symbols

({ The following punctuation marks and other special symbols are used in GPL
statements:
Symbol Description

, Separates modifiers in major word statements and also separates
multiple subscripts.

Separates a logical operator from the two values to be compared or
acts as a decimal point.

/ Separates major words from following modifiers.

= Assigns a name to an entity, a constant, an expression, or another
name.

$3 Indicates the end of a statement; comments can appear on the same
(line to the right of the double dollar signs ($$). This is equivalent
to a REMARK statement if $$ appears in columns 1 and 2.

Encloses character strings.

() Indicates nested expressions within arithmetic expressions or
encloses a subscript.

$ Indicates that the statement is continued on the next line.
Character strings can be continued on a subsequent line also in
(this manner; other statement elements, such as minor words, entity
names, literal constants, variable names, and so forth, cannot be
continued from line to line.

Blank (spaces) Generally, indicates spacing only. The compiler usually ignores
blanks except in the GOTO and FOR statements. Blanks in
character strings, which are used for display purposes are also
significant.

eRe

Revision C Components of a GPL Statement 2-17

Character Strings

Character Strings

A character string is a string of one or more contiguous text characters enclosed in
single quotes. It is used in many interactive and drafting statements.

Example:

Program Statement Explanation

MENU/‘CREATE THE CONNECTING CURVE’,$ The character string CREATE THE
’LINE*ARC*SPLINE*‘,$ CONNECTING CURVE is defined in the
CHOICE,STAT MENU command.

Text Variable

A variable name assigned to a character string. This variable name can be assigned
using either the interactive TEXT command or the MOVCHR statement.

Examples:
Program Statement Explanation
MOVCHR/8, ‘CUT HERE”,1,A,1 Text variable A is defined with the text of CUT
HERE.
MOVCHR/5, ‘REF 1°,1,B,1 Text variable B is defined with the text of REF 1.
MOVCHR/ 15, “CONSTANT$ Text variable C is defined with the text of
RADIUS’,1,C,1 CONSTANT RADIUS.
TEXT/’ENTER TEXT’,TXT,STAT The variable TXT is assigned to the alphanumeric
string you enter.
MOVCHR/ 16, * TOLERANCE=$ "~ The variable TXT is assigned using the MOVCHR
0.0015°,1,TXT,1 statement.
NOTE

Text variables can be used in place of character strings in attributes, notes, labels,
dimensions, and other statements.

2.18 ICEM GPL for NOS Revision C

et

N
g

éf A

G

ol

. W

GPL Vocabulary I (Major Words)

The following are GPL vocabulary words and must not be used as symbols:

1. Modals and Fonts

AHEAD
ANGCTL
ANUNIT
ARAUTO
ARIN
AROUT
ARROW
ATAIL
AUTOD
BLANK

2. Major Word Statements

ADIMEN
ARRAY
ASSIGN
ATTRIB
BALOON
BEZIER
BEZSRF?®
BLANKE
BULK
CDIMEN
CHAMFR
CHANGE
CHECK
CIRCLE
CLEAR
CLINE
CLOSE
CMPCHR
CMPCRV
CMPENT

CDISPL
CRES
CSET
CSIZE
CURSOR
DECMAL
DIMOF
DIMORG
DISDEF
DISTOL

CMSRF
CONE
CONVER
CURARR
CYLNDR
DATE
DATFEA
DATUM
DDIMEN
DEFINE
DELETE
DEVSRF
DISPLA
ELLIPS
EVALC
EVALS
EXEC
FILE
FILLET

DORIG
DSCALE
DUAL
FONT
FRACT
KEYIN
LDDIAM
LEADER
LEVEL
MATERL

FILSRF
FIND?
GCONIC
GEOTOL
GET
GROUP
HEXDRN
HYPERB
HEXDRN
IMF3
LABEL
LDIMEN
LINE
LPSOID
MACCRV
MAGNFY
MAP
MENU
MIRROR

3. Program Control and Declaratives

CALL
CHAR
COMMON
CONST
CONTIN

Revision C

DATA
ELSE
ELSEIF
END

ENDCOM

3. Reserved for future use.
4. Reserved for compilation purposes.

ENDIF
ENTITY
EOFI
FINI
FOR

PAINT
PEN
PREFIX
RECOVR
REFRES
RESCAL
SECALN
SECVIS
SELENT
SELGRP

MODDFT
MODIFY
MOVCHR
MOVENT
MSFILE
MSTRNG
NOTE
OBTAIN
OFSRF?®
OPEN
PARABO
PARAMS
PARTNO3
PLANE
POINT
POS
PROJEC
PTSET
QUERY

go?
GOTO

IF
JUMPTO
MAIN

GPL Vocabulary 1 (Major Words)

SELMOD
SEQNO?
SLANT
SPATHS
STATUS
SYSDEC
TXTANG
TXTIN®
TXTJUS
TXTLOC

RDIMEN
READ
REPANT
REVSRF
REWIND
ROTATE®
RTRIEV
RULSRF
SAVE

SEARCH®

SECARR
SECTON
SELECT
SETCHL
SETGPG
SPCURV
SPHERE
SPLINE

SRCHD

PAUSE
PROC
REAL
REMARK
RETURN

TXTORG
TXTOUT?
TXTROT®
VBORDS
VNAMES
VVECS
WLINE
WPLANE?
ZSURF

SRFTEX
STRING
SYSTEM?
TABCYL
TAPER
TEMPLT
TEXT
THIKNS
TIME
TLPATH
TORUS
TRANSL?
TRIME
UNBLNK
USTRUC
VECTOR
VIEW
WRITE
ZOOM

STEP
STOP
THEN
TO*
UNTIL

Components of a GPL Statement 2-19

GPL Vocabulary II (Minor, Modal, and

GPL Vocabulary II (Minor, Modal, and
Positional Words)

The following are GPL vocabulary words and must not be used as symbols:

ABOVE
ACYCLC
ADD

. AFTER
. ALL
ALUM
ANGLE
ARCS
AREA
AROUND
ARRDO
ARRW
ASPCT
ATANGL
ATNAME
AUTO
AUX
BASIC
BEARDS
BEFORE
BELOW
BLNK
BORDER
BOTH
BRACKT
BRASS
CCW
CENLIN
CENTER
CHAIN
CHARST
CIRC
CIRCUM
COMPOS
CONIC
CONTUR
COORD
COPPER
COPY
CORNER
CREATE
CRT
CURDEP
CURVE

CURVW
Cw
CYCLIC
DASHED
DATMOD
DATREF
DECIM
DEFVW
DEGREE
DEGTOL
DEL
DELANG
DELATR
DELTA
DELTAX
DELTAY
DELTAZ
DETAIL
DIFFER
DIRECT
DISP2
DISTNC
DONT
DOWNSP
DRILL
EAST
EDGE
END
ENDANG
ENTER
ENTNAM
ENTPTR
ENTTY
ENTTYP
EQUATR
ERRST
FAST
FILTER
FINE
FIRST
FLAT
GCHAR
GLASS

5. Reserved for future use.

2-20 ICEM GPL for NOS

GLOBAL
GOANG
GPATRN
HANGLE
HORIZ
INFIN
INPUT
INSIDE
INSTNC
INTOF
IRON
JOG
LARGE
LATHE
LEAD
LEADR
LEFT
LENGTH
LEVL
LIMIT
LIN
LINES
LLEFT
LMC
LOCAL
LRIGHT
MAGNES
MARBLE
MATRIX
MEMBER
MIDDLE
MINUTE
MMC
MODFY
MODVW
NAME
NECK
NEGATV
NFIXED
NOAREA
NONE
NOPROJ

NORMAL
NORPNT
NORTH
NORTRN
NUMBER?®
NUMBRX
NUMBRY
NVARY
OFF

ON
ORIGIN
ouT
OUTPUT
PARAM
PARBLC
PARLA
PARLEL
PARNOR
PARTNA
PATERN
PENNUM
PERPTO
PHANTM
PIERCE
PLASTC
POINTS
POSITN
POSITV
POSN
PTZ
RADANG
RADIUS
RATIO
RECT
REF
REGIN
REGOUT
RELAX
RFS
RIGHT
ROUGH
RTHETA

RUBBER
SCALAR
SCALE
SECDIS
SECOND
SEQNUM
SHEET
SINGLE
SLATE
SLOPE
SMALL
SOLID
SOUTH
SPHRIC
START
STD
STDVW
STEEL
SUBAT
SUPP1
SUPP2
SUPP11
SUPP22
SUPPB
SUPPB1
SUPPB2
TAB1°
TAB2°
TAB3®
TABLET
TANTO
TEXTD
THICK
THREAD
TILTAN
TOLER
TOLMOD
TOLREF
TOTAL
TRIM
TYPIN
UDIREC
ULEFT

UNIT
UPATHS
URIGHT
USER
USTART
UTERM
UWRITE
VDEF
VDIREC
VECSUM
VERTCL
VPATHS
WEST
WIDTH
WITP
WITX
XAXIS
XLARGE
XMOVE
XSMALL
XSTART
XTROT
XVALUE
XYMOVE
XYZMOV®
XZMOVE?®
YAXIS
YES
YLARGE
YMOVE
YSMALL
YSTART
YTROT
YVALUE
YZMOVE®
ZAXIS
ZLARGE
ZMOVE?®
ZSMALL
ZSTART
ZTROT
ZVALUE

Revision C

i

&
O

Overview of Major Words 3
Branching and Conditional Major Words 3-1
Modal Major Words e 3-1
Entity and Character String Management Major Words 3-2
Variable Declaration, RTL IO, and File Major Words 383
Program Management Major Words 3-3
Display Control Major Words i 3-4
Entity Definition Major Words 3-5
Entity Manipulation Major Words 3-6
Drafting Modal Major Words 3-7
Drafting Entity Definition Major Words 3-9
Numerical Control Major Words, 3-10
Interactive Command Major Words 3-10
Input/Output Major Words 3-10

oo

©0O

Overview of Major Words 3

Branching and Conditional Major Words

Use the following major words to test for logical conditions or to transfer control from
one section of the program to another section:

Major Word Description

GOTO Branches unconditionally to a statement label.

Computed GOTO Branches conditionally to a statement label.

IF Branches conditionally or assigns a value.

THEN Indicates that the following statements are executed only if the
condition of the IF statement is true.

ELSE Indicates that the following statements are executed only if the
condition of the IF statement is false.

ELSEIF Checks a secondary condition only if the first condition is false.

ENDIF Ends an IF block.

FOR Creates an iterative loop for repetitive operations.

EOFI Terminates a FOR loop.

JUMPTO Branches unconditionally to a statement label.

Modal Major Words

Use the following major words to set the modals for system operation:

Major Word Description

BLANK Blanks all subsequent entities.

CURSOR Defines the input device for cursor control.

DISDEF Displays subsequent entities only in the view of definition.
DISTOL Sets the display tolerance.

FONT Sets the line font for all subsequently created entities.
LEVEL Assigns a level number to all subsequently created entities.
MSFILE Changes the ﬁenu string file.

PAINT Sets the drawing of entities on or off.

PEN Sets the pen number.

RECOVR Sets GPL recovery file on or off.

REFRES Turns on the refresh buffer of the workstation.

Revision C Overview of Major Words 3-1

Entity and Character String Management Major Words

Major Word Description

RESCAL Sets the RESCALE? prompt on or off.

SELENT Selects the method of entity selection (single, chain, region in, or
region out).

SELGRP Turns on the ability to select single entities from a group.

SELMOD Sets the method of entity selection on or off (sequence number,
pointer, and entity names).

SPATHS Sets the number of surface paths for a surface.

STATUS Suppresses fatal error messages.

SYSDEC Sets the system decimal places.

ZSURF Sets the current transform coordinate depth (the zt-axis).

Entity and Character String Management Major Words

Use the following major words to manage the data base for entities:

Major Word Description

ASSIGN Assigns a name to an entity using its sequence number or its
local GPL name.

ATTRIB Attaches attributes to an entity.

CHECK Tests for a legal pointer.

CLEAR Clears the name of an entity.

CMPCHR Compares two character strings.

CMPENT Tests an array of pointers to get the entry point.

CONVER Converts a real number to a character string or converts a
character string to a real number.

DEFINE Generates a set of entities.

DELETE Deletes entities.

EVALC Evaluates a curve for coordinates or parameters.

EVALS Evaluates a surface for coordinates or parameters.

MOVCHR Transfers a character string.

MOVENT Transfers pointers.

OBTAIN Extracts data from the TAB1, TAB2, or TAB3 data bases.

SETCHL Sets the character length of a string.

TRIME Trims an entity.

3-2 ICEM GPL for NOS

Revision C

e
W &

)

-~

Variable Declaration, RTL 1/O, and File Major Words

Variable Declaration, RTL I/O, and File Major Words

Use the following major words to declare text variables and entities, manage variables,
and manage the part data base:

Major Word Description

CHAR Declares and reserves storage space for a text variable.
COMMON Declares a common block for any following variables.
CONST Assigns numerical value to a symbolic name.

DATA Initializes a variable to a value.

ENDCOM Terminates a common block.

ENTITY Reserves storage space for entity data base pointers.
FILE Catalogs the drawing for later modification or retrieval.
GET Retrieves simple variables from the RTL.

REAL Reserves storage space for real variables.

SAVE Saves simple variables in the RTL.

Program Management Major Words

Use the following major words to manage the program:

Major Word

Description

CALL

CONTIN

DATE
FINI
MAIN
MSTRNG
PAUSE

PROC

REMARK
RETURN

Revision C

Calls a GPL subroutine (refer to the PROC statement described
below).

Continues program execution at the next GPL statement. Used as
a labelled statement in structured programs.

Retrieves the current system date.

Indicates the end of a GPL program.

Indicates the first statement in a GPL program.
Executes a menu string from within a GPL program.

Halts the program run. The program can be resumed using menu
5.13.2 CONTINUE GPL PROGRAM.

Indicates the first statement in a GPL program used as a
subroutine.

Adds descriptive comments to the part program.

Returns control from the subroutine to the calling program.

Overview of Major Words 3-3

Display Control Major Words

Major Word

Description

STOP

TIME

Terminates the execution of a GPL program. This is different
from the FINI statement, which is always placed at the end of a
GPL program.

Retrieves the current system time.

Display Control Major Words

Major Word

Use the following major words to control the view display:

Description

BLANKE
CHANGE
MAP
REPANT
UNBLNK
VBORDS
VIEW
VNAMES
VVECS

ZOOM

3-4 ICEM GPL for NOS

Blanks selected entities.

Changes current work view.

Maps transform coordinates from one view to another.
Repaints the display.

Unblanks an entity.

Sets view borders on or off.

Creates a new view.

Sets view names on or off.

Sets view vectors on or off.

Zooms a view.

Revision C

2

o,
Ny

G

~~

oNe

Entity Definition Major Words

Use the following major words to create entities:

Entity Definition Major Words

Major Word Description

CIRCLE Creates an arc or a circle.

CHAMFR Creates a bevel near the intersection of two lines.

CMPCRV Creates a composite curve.

CMSRF Creates a curve mesh surface.

CONE Creates a cone.

CYLNDR Creates a cylinder.

DEVSRF Creates a developable surface.

ELLIPS Creates an ellipse.

FILLET Creates a fillet near the intersection of two lines.

FILSRF Creates a fillet surface.

GCONIC Creates a general conic, that is, a circle, ellipse, hyperbola, or
parabola.

HEXDRN Creates a hexahedron.

HYPERB Creates a hyperbola.

LINE Creates a line.

LPSOID Creates an ellipsoid.

MACCRV Creates a machining/draft curve.

PARABO Creates a parabola.

PLANE Creates a plane.

POINT Creates a unique point.

PTSET Creates a point set.

REVSRF Creates a surface of revolution.

RULSRF Creates a ruled surface.

SPCURV Creates the starting and ending conditions for a
three-dimensional spline curve.

Revision C Overview of Major Words 3-5

Entity Manipulation Major Words

Major Word Description

SPHERE Creates a sphere.

SPLINE Creates a spline through a series of points.
STRING Creates a string figure.

TABCYL Creates a tabulated cylinder.

TORUS Creates a torus.

VECTOR Creates a vector.

Entity Manipulation Major Words

Use the following major words to manipulate entities:

Major Word

Description

ARRAY
GROUP

MIRROR

MODIFY

PROJEC

RTRIEV
TEMPLT

3-6 ICEM GPL for NOS

Copies a geometric entity in a rectangular or circular arr

ay.

Creates a group of entities to be considered as a single logical

unit (entity).

Creates a mirror (reversed) image of an entity or group of

entities.
Modifies an entity.

Creates a three-dimensional figure by projecting a
two-dimensional configuration onto a plane parallel to the
original plane (ANSI 1973 and ANSI 1982).

Retrieves a pattern.

Creates a template. .

Revision C

A

Drafting Modal Major Words

Drafting Modal Major Words

~

Major Word

Use the following major words to set the drafting modals for drafting operation:

Description

AHEAD
ANGCTL
ANUNIT

ARAUTO
ARIN

AROUT
ARROW

ATAIL
AUTOD
CDISPL

(CRES

CSET
CSIZE
DECMAL

(DIMOF
DIMORG

DORIG
DSCALE
DUAL

Revision C

Modifies the arrowhead length (ANSI 1973 and ANSI 1982).
Controls the text angle (ANSI 1982).

Sets the method for angular dimension repiesentation (ANSI
1982). '

Determines the placement of arrows (ANSI 1982).

Sets arrows inside witness lines for all subsequent dimensions
(ANSI 1973 and ANSI 1982).

Sets arrows outside witness lines for all subsequent dimensions
(ANSI 1973 and ANSI 1982).

Switches arrowhead alignment on or off (ANSI 1973 and ANSI
1982).

Controls the entry point of the tail location (ANSI 1982).
Controls auto-dimensioning (ANSI 1973 and ANSI 1982).
Sets character display ratios (ANSI 1973 and ANSI 1982).

Selects the output representation for standard set type characters
(ANSI 1982).

Sets the character set used (ANSI 1973 and ANSI 1982).
Varies the character size (ANSI 1973 and ANSI 1982).

Sets the number of decimal places displayed in dimensioning for
decimal numbers; changes the system from using integers to
using real numbers (ANSI 1973 and ANSI 1982).

Sets the dimension offset distance (ANSI 1973 and ANSI 1982).

Sets which side of a generated dimension specifies the dimension
origin (ANSI 1982).

Sets the label and dimension origins (ANSI 1973).
Sets the drafting scale factor (ANSI 1973 and ANSI 1982).
Sets dual dimensions on or off (ANSI 1973 and ANSI 1982).

Overview of Major Words 3-7

Drafting Modal Major Words

Major Word Description

FRACT Changes the dimensioning display from using decimal numbers to
using fractional (integer) numbers (ANSI 1973 and ANSI 1982).

KEYIN Permits manual entry of dimension texts (ANSI 1973).

LDDIAM Forces diameter symbol in linear dimensions (ANSI 1982).

LEADER Determines the placement of the label leader with respect to the
label text (ANSI 1982).

MATERL Specifies the type of material for section lining (ANSI 1973 and
ANSI 1982).

PREFIX Changes the prefix character (ANSI 1982).

SECALN Controls the alignment of section lining (ANSI 1982).

SECVIS Determines whether to display section lining in all views or the

view of definition only (ANSI 1982).

SLANT Sets the slanted or vertical character set (ANSI 1973 and ANSI
1982).

TXTANG Sets the text angle (ANSI 1973).

TXTJUS Sets the text justification (ANSI 1973 and ANSI 1982).

TXTORG Determines the method of indicating the position of text.

WLINE Sets the display of witness lines for linear dimensions (ANSI

1973 and ANSI 1982).

The same word may operate slightly differently in ANSI 1973 and ANSI 1982. Check
the appropriate chapter for complete details. ANSI 1973 statements are described in
chapter 17 and ANSI 1982 statements are described in chapter 20.

3-8 ICEM GPL for NOS Revision C

Pt
e

a: - W' im j(!i

Drafting Entity Definition Major Words

Drafting Entity Definition Major Words

Use the following major words to create drafting entities:

Major Word Description

ADIMEN Creates angular dimensions (ANSI 1982).

BALOON Draws a balloon with an arrow pointing to an entity (ANSI
1982).

CDIMEN Creates a circular dimension label with a leader line (ANSI 1973
and ANSI 1982).

CLINE Creates a centerline (ANSI 1973 and ANSI 1982). .

CURARR Draws an arrowhead at any position along an existing entity

(ANSI 1982).

DATFEA Displays a datum feature symbol and associated text within a
feature frame symbol (ANSI 1982).

DATUM Defines a datum target symbol (ANSI 1982).

DDIMEN Creates a diametric dimension label (ANSI 1973 and ANSI 1982).

GEOTOL Displays geometric tolerance or composite geometric tolerance

symbols and associated text within a feature frame (ANSI 1982).

LABEL Creates a label with leader line (ANSI 1973 and ANSI 1982).

LDIMEN Creates a linear dimension label (ANSI 1973 and ANSI 1982).

MAGNFY Produces a magnified drawing of a circular area (ANSI 1982).

MODDFT Modifies certain drafting entities without having to redefine those
entities (ANSI 1982). ‘

NOTE Creates a general note (ANSI 1973 and ANSI 1982).

RDIMEN Creates an angular dimension with cifcular witness lines (ANSI
1973).

SECARR Creates cross-section arrows (ANSI 1982).

SECTON Automatically creates section lining lines for any closed figure

(ANSI 1973 and ANSI 1982).

SRFTEX Displays the standard basic symbol for surface texture (ANSI
1982).

TAPER Creates a slope or taper dimension drawn to two lines (ANSI
1982).

THIKNS Produces a dimension between two curves (ANSI 1982).

The same word may operate differently in ANSI 1973 and ANSI 1982. Check the
appropriate chapter for complete details. ANSI 1973 statements are described in
chapter 17 and ANSI 1982 statements are described in chapter 20.

Revision C Overview of Major Words 3-9

Numerical Control Major Words

Numerical Control Major Words

Use the following major words for numerical control operations.

Major Word Description
SETGPG Sets the N/C parameters in a generation parameter group (GPQ).
TLPATH Defines a toolpath from an existing entity, a list of entities or an

entity array.

Interactive Command Major Words

+Use the following major words for operations that request input from the person who is
running the program:

Major Word Description

DISPLA Displays text and real variables.

MENU Requests a selection from displayed menu choices during a GPL
program run.

PARAMS Requests values for a list of displayed data entry items (the
values can then be used in the program).

POS Requests a screen position selection using the graphics cursor.

QUERY Requests a YES or NO to a displayed question.

SELECT Request a selection from any entity displayed on the screen.

TEXT Requests character string input.

Input/Output Major Words

Use the following major words for input/output operations:

Major Word Description

BULK Transfers bulk data.

CLOSE Closes a previously opened file.
EXEC Executes a FORTRAN subroutine.
OPEN Opens a file.

READ Inputs a file.

REWIND Rewinds a file.

USTRUC Outputs a UNISTRUC file.
WRITE Outputs a file.

3-10 ICEM GPL for NOS Revision C

g ™

C

©0

Branching and Conditional Statements 4
GOTO . . . o 4-1
Computed GOTO e e e 4-2
IF e e e e 4-3

Executing Conditionally, 4-4
FOR . . . e e e e 4-5
EOFT . . . e e e 4-6
JUMPTO e e 4-6

0

©0O

~

Branching and Conditional Statements 4

Branching and conditional statements control the execution of a GPL program.

Major Word Description

GOTO Either branches unconditionally or branches to specified
statement labels (computed GOTO).

IF Either branches conditionally or conditionally executes one or
more statements.

THEN Indicates that the following block of code to the next ELSE,
ELSEIF, or ENDIF is executed only if the condition in the IF
statement is true.

ELSE Indicates that the following block of code to the next ENDIF is
executed only if the condition on the IF statement is false.

ELSEIF Checks a secondary condition only if the first condition is false.

ENDIF Ends an IF block.

FOR Creates an iterative loop for repetitive operations.

EOFI Terminates a FOR loop.

JUMPTO Branches unconditionally.

GOTO

The GOTO statement specifies an unconditional transfer of control.
Statement format:

GOTO statement label

Parameter Description

statement label The GPL statement at which the execution of the program should
continue. It must be separated from the GOTO by a space.

Example:

Program Statement Explanation

GOTO 100 Unconditionally transfers control to statement label
100.

10 POINT/A,B This statement is ignored.

100 A=A+1 The program continues execution at this statement.

Revision C Branching and Conditional Statements 4-1

Computed GOTO

Computed GOTO

The computed GOTO branches to a label in a list of labels. The label indicated is
specified by the value of a locator variable. If the locator is less than or greater than

the number of labels given, the system displays:
RANGE ERROR IN COMPUTED GOTO

Statement format:

GOTO (label,...),locator
Parameter Description
label The list of statement labels. Labels must be separated by commas

and enclosed in parentheses.

locator The variable name whose value indicates the order of the label in

the list of labels.

Example:
Program Statement Explanation
GOTO (25,35,45),X For this computed GOTO statement, if X is equal to

1, the program branches to statement label 25. If X is
equal to 2, the program branches to statement label
35. And, if X is equal to 3, the program branches to

statement label 45.

4-2 ICEM GPL for NOS

Revision C

e O

e

OO

IF

IF

The IF statement conditionally transfers control of the GPL program or conditionally
executes one or more statements. The IF statement contains a logical condition to be
evaluated as either true or false. If the logical expression is true, the conditional
transfer or variable assignment is executed. If the logical expression is false, the
conditional action is ignored, and execution continues with the next statement unless a
condition statement block is specified by a THEN keyword. If the logical condition is
false, and a statement block is specified by a THEN keyword, execution continues
following the next ELSE, ELSEIF, or ENDIF block control keyword.

The condition expression can also be one or more logical expressions using the .OR.
and .AND. operators. For example:

IF (A.LT.1.0R.A.GT.9) GOTO 9
IF (I.NE.1.AND.I.NE.5.AND.I.NE.11) THEN

The IF.. THEN statement block can be formatted for easy readability in the following
manner.

IF (condition) THEN

Statements
ELSEIF (condition) THEN

Statements
ELSE

Statements
ENDIF

The following reserved words are used for control in the IF statement block:

Block Control

Keywords Description

THEN Executes the following statements if the condition is true.

ELSEIF Checks a secondary condition in an IF statement only if the first
condition is false.

ELSE Executes the following statements if none of the previous conditions
are true.

ENDIF Terminates a compound IF statement.

NOTE

.AND. and .OR. operators cannot be combined. A GPL program can use multiple
.AND.s, or it can use multiplie .OR.s, but it cannot use combined .AND.s and .OR.s.

Revision C Branching and Conditional Statements 4-3

IF

Executing Conditionally
Statement format:
IF (valuel.operator.value2) executable statement

Parameter Description

value The variables or constants to be compared in the condition. The
condition must be enclosed in parentheses.

operator The logical operation to be evaluated. The operator must have
periods on both sides. The following keywords can be used as
operators:
Logical
Operator Definition
LT Less than
LE Less than or equal to
EQ Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
AND Logical and
OR Logical inclusive or

The condition may be compound; that is, two or more logical
conditions associated by AND or OR.

executable Any executable statement (assignment, GOTO, or major word).
statement

Examples:

Program Statement Explanation

QUAD=2 Set the variable QUAD to have the value of 2.

IF (ANG.LT.90) QUAD=1 If the variable ANG is less than 90°, then set the

variable QUAD to have the value of 1. This statement
conditionally assigns a name to an expression.

IF (QUAD.LT.2) GOTO 20 If the variable QUAD is less than 2, then branch to
statement label 20.

4-4 ICEM GPL for NOS Revision C

S
w1 %«Mﬁ:ﬁf

Program Statement Explanation

IF (I.EQ.1.AND.J.EQ.2) THEN If the compound condition is true (that is, I=1 and
Jd=2), then the following block of statements is
executed until the next ELSE, ELSEIF, or ENDIF.

~ -~

IF (STAT.NE.O) $ If the variable STAT is not equal to 0, then execute
DISPLA/’STATUS’, STAT the DISPLA statement.
FOR

The FOR statement and the EOFI statement are used to construct iterative loops. The
FOR statement initiates the loop, and the EOFI statement terminates the loop.

The first time the loop is executed, the index variable has the initial value. Each time
the loop is executed after that, the value of the index variable is changed by the step
value until either:

(® The index variable exceeds the final value (for a positive step value), or

® The index variable is exceeded by the value (for a negative value).

The program then terminates the loop and executes the next statement following the
EOFI statement.

Statement format:
FOR index=initial value [,STEP step], UNTIL final value

(Parameter Description

index Any simple variable name. It must be separated from the FOR
word by a space. The index and the initial value must be joined by
an equals sign.

initial value The initial index value. It can be any integer value.

STEP The minor word indicating that the next value is the step value of
the statement.

(C step The step, or increment, value. It can be any value; the default
value is 1 if STEP is omitted.

UNTIL The minor word indicating that the next value is the final value for
the statement.

final value The final value. It can be any value. If the final value is less than
the initial value, and the step value is positive, the loop executes
zero times.

Revision C Branching and Conditional Statements 4-5

EOF1

EOFI

The EOFI statement is used to terminate an iterative loop initiated by a FOR
statement.

Statement format:

EOFI

Example:

Program Statement Explanation

FOR 1=2, STEP 2, UNTIL 10 The FOR loop with variable I as an index. The loop
is repeated with values for I of 2, 4, 6, 8, and 10,
then the program continues with the statement after
EOFI.

J=I1*42 The variable J is set up to have the value of I
squared. Each time through the loop, the current
value of I is used.

POINT/J,J A point is created at the coordinates specified by J, J.
Each time through the loop, a new point is created
using the expression I squared where the value of I is
squared.

EOFI The loop is ended. The loop creates points at the x-
and y-coordinates of (4,4), (16,16), (36,36), (64,64), and
(100,100).

JUMPTO

The JUMPTO statement branches unconditionally to the statement label indicated.
Program execution continues at the specified statement label. This statement’s function
is identical to that of the GOTO statement.

Statement format:

JUMPTQ/ 1abel
Parameter Description
label The number of the statement label.
Example:
Program Statement Explanation
JUMPTO/359 The program branches to statement label 359.
359 A=11 The program resumes execution at statement label

359.

46 ICEM GPL for NOS Revision C

A A
%ﬁﬁ gt '

Pt
Qs

“
S

C

OO0

Modal Statements 53
BLANK . . . e e e e e e 5-1
CURSOR e e e 5-1
DISDEF e e e e e 5-2
DISTOL e e 5-2
FONT . . . e e e e e e 5-3
LEVEL e e e e 5-4
MSFILE . . . e e e e e e 5-4
PAINT . . . e e e e e e 5-5
PEN . . e e e e 5-5
RECOVR e e s 5-6
REFRES 5-6
RESCAL 5-7
SELENT . . . e e e e e 5-7
SELGRP . . . e e e 5-8
SELMOD e e e e 5-8
SPATHS . . . e e e e 5-9
STATUS . . e 5-10
SYSDEC e e e e 5-10
ZSURF e e e e e e e e 5-11

oNe

Modal Statements 5

Modal statements set parameters for creating entities.

BLANK

The BLANK statement blanks all succeeding entities. The default value for BLANK is
OFF.

Statement format:

BLANK/[ON]
OFF
Parameter Description
ON Blanks all succeeding entities.
OFF Does not blank all succe;eding entities. |
Example:
Program Statement Explanation
BLANK/OFF . All succeeding entities are displayed as they are
created.

CURSOR

The CURSOR statement determines the input device for graphics cursor control.
Statement format:

CURSOR/(CRT J

TABLET

Parameter Description

CRT The input device for graphics cursor control is the graphics
terminal.

TABLET The input device for graphics cursor control is the tablet and its
stylus.

Example:

Program Statement Explanation

CURSOR/CRT The graphics terminal is the input device for the

graphics cursor.

Revision C Modal Statements 5-1

DISDEF

DISDEF

The DISDEF statement displays all subsequent entities in the view of definition only.
Statement format:

DISDEF/{ON]

OFF
Parameter Description
ON Displays all subsequent entities only in the view of definition.
OFF Turns off view of definition display.
Example:
Program Statement Explanation
DISDEF/ON All subsequent entities are displayed only in the view

of definition.

DISTOL

The DISTOL statement controls the display tolerance of curves. The display tolerance
controls the pictorial representation of the straight line approximations of curves. This
does not affect the mathematical representation of curves in the ICEM DDN data base.

Statement format:

DISTOL/tolerance
Parameter’ Description
tolerance The numerical value of the display tolerance. The display is coarser

as the tolerance becomes larger with fewer approximating line
segments used for the display. The display is finer as the tolerance
becomes smaller with more line segments used for the display.

Example:
Program Statement Explanation
DISTOL/.001 The display tolerance for all subsequent curves is

0.001.

5-2 ICEM GPL for NOS Revision C

ok
o T—

PN
&y

'

o

-~

FONT

FONT

The FONT statement defines the line font for subsequently defined lines and curves.
The default font mode is normal weight and solid. Conics, splines, strings, labels, and
dimensions are always normal weight and solid.

Statement format:

SOLID
FONT/| DASHED

PHANTM

CENLIN

Parameter Description

SOLID The minor word indicating solid lines continuously over the entire
length of the entity.

DASHED The minor word indicating dashed lines of equal segments separated
by equal spaces. The segment is a nominal 3.16 mm (0.125 in) and
the space is 0.79 mm (0.031 in). A dashed entity has a minimum of
three parts, that is, two segments and a space. The dashed line is
forced solid if the line length is less than 7.10 mm (0.281 in). A
dashed circular line is segmented to generate approximate arc
lengths of 3.16 mm (0.125 in) and spacing of 0.79 mm (0.031 in). A
dashed arc always starts and ends with a segment. A dashed circle
always has a segment centered about 0°.

PHANTM The minor word indicating phantom lines made of a dashed line
with a long segment, followed by two short segments. Spaces
between all segments are equal. A phantom line starts and ends
with a long segment. A phantom circle starts with a long segment
centered at 0° and ends with short segments. The long segment is
adjusted to assure proper closing. The segments are:

® Long: 19.0 mm nominal (0.75 in)
® Short: 3.16 mm (0.125 in)
® Space: 0.79 mm (0.031 in)

CENLIN The minor word indicating a centerline made up of a long segment
followed by a short segment. Spacing between elements is equal.

Example:

Program Statement Explanation

FONT/DASHED All subsequent entities are displayed in a dashed line
font.

Revision C Modal Statements 5-3

LEVEL

The LEVEL statement changes the level number that you are using. Until the level is
changed again, all subsequent entities are defined on this level. Level numbers 0
through 1023 are allowed.

Statement format:

LEVEL/1evel number

Parameter Description

level number The number of the level where you want to create new entities.
Example:

Program Statement Explanation

LEVEL/3 All new entities are created on level number 3.
MSFILE

The MSFILE statement changes the menu string file from which your external menu
strings are executed. All subsequent references to external menu strings, whether from
the MSTRING statement or from a tablet, will use this file.

The default file name is MSTRING.

You also have the option of loading the original mstring filename into a GPL text
variable. You can then have the GPL program reset the filename name back to the
original filename before terminating the program.

Statement format:

MSFILE/(text variable)l,ofn text varl

(‘msifn’)
Parameter " Description
text variable The name of a text variable containing the file name that contains

the menu strings that are accessed by subsequent MSTRNG
statements. This variable should be dimensioned to 7 characters.

'mslfn’ The name of a local, external file (enclosed in single quotes) that
contains the menu strings that are accessed by subsequent
MSTRNG statements.

ofn text var The name of a text variable that receives the original local mstring
filename. This variable should be dimensioned to 7 characters.

The following error message is issued if the MSTRING file is not found or cannot be
retrieved.

MENU STRING FILE CANNOT BE RETRIEVED

5-4 ICEM GPL for NOS Revision C

2
8 Mfd ﬁmwwﬁ:f‘

e
<

PAINT

Example:

Program Statement Explanation

CHAR/OLFIL(7) Dimension the variable that receives the old menu
string file to 7.

MSFILE/‘MSFL1‘,0LFIL Change the menu string file to 'MSFL1’. Save the
name of the old file in OLFIL.

MSTRNG/NAME , TLPATH Execute the menu string TLPATH which resides on
the current menu string file (MSFL1).

MSFILE/OLFIL . Change the menu string file back to the original file.

PAINT

The PAINT statement turns on or off the display of entities at creation time. The
default is ON.

Statement format:

PAINT/(ON]
OFF
Parameter Description
ON Turns on the drawing of entities.
OFF Turns off the drawing of entities. They are not drawn until a
REPANT is done.
Example:
Program Statement Explanation
PAINT/ON All subsequent entities are displayed as they are
created.

PEN

The PEN statement sets a new pen number for all subsequent entities. The pen
number remains in effect until a new pen number is selected.

Statement format:
PEN/pen number

Parameter Description

pen number The number of the pen used in drawing subsequent entities. Pens
are numbered from 0 to 16.

Example:

Program Statement Explanation

PEN/ 10 All subsequent entities are drawn with pen number
10.

Revision C) Modal Statements 5-5

RECOVR

RECOVR

The RECOVR statement writes the GPL recovery file to file GPLREC when a FILE
statement is encountered. GPLREC will contain any geometry created after the last

FILE statement up to the FINI statement or a program abort.

Statement format:

RECOVR/(ON]

OFF

Parameter Description

ON Writes file GPLREC when a FILE statement is encountered.

OFF Does not write file GPLREC when a FILE statement is
encountered.

REFRES

The REFRES statement places all entities created in the workstation refresh buffer. If

the workstation is not used, this statement is ignored.

Statement format:

REFRES/{ON]

OFF
Parameter Description
ON Places all entities created in the workstation refresh buffer.
OFF The refresh mode is not used.
Example:

Program Statement

Explanation

REFRES/ON

5-6 ICEM GPL for NOS

The refresh buffer is used as storage for the created

entities.

Revision C

o g
N

[,
A

(

RESCAL

RESCAL

The RESCAL statement suppresses the RESCALE? message during the display of an
entity if part of the entity is located outside the current view area.

Statement format:

RESCAL/(ON l

OFF

Parameter Description

ON Displays the RESCALE? message if part of an entity is outside the
current view area.

OFF Does not display the RESCALE? message if part of an entity is
outside the current view area.

Example:

Program Statement Explanation

RESCAL/ON The RESCALE? message is displayed if part of an

entity is outside the current view area.
SELENT

The SELENT statement indicates the form of entity selection.

Statement format:

SINGLE
CHAIN
SELENT/|REGIN
REGOUT
USER
Parameter Description
SINGLE Selects single entities.
CHAIN Selects chained entities.
REGIN Selects all the entities within a region.
REGOUT Selects all the entities outside a region.
USER The user chooses the means of selection interactively, then selects.
Example:
Program Statement Explanation
SELENT/SINGLE Entities are selected singly.
Revision C Modal Statements 5-7

SELGRP

7y

W 7
SELGRP @
The SELGRP statement allows selection of a group member or composite curve -
member.

Statement format:

SELGRP/{ON]
OFF
Parameter Description
ON Indicates that an entity cannot be selected from a group or
composite curve.
OFF Indicates that an entity can be selected from a group or composite
curve.
Example: ¢ >
Program Statement Explanation
SELMOD/ON Entities cannot be selected from a group or composite
curve. Only the group or composite curve can be
selected.
SELMOD
The SELMOD statement sets the method of entity selection. '
L
Statement format:
SELMOD/ {ON]
OFF
Parameter Description
ON Allows for selection of entities by methods other than secreen
position (that is, entity name, entity pointer, sequence number, and PR
so forth).
& s
OFF Allows for selection of entities by screen position.

5-8 ICEM GPL for NOS Revision C

SPATHS

SPATHS

The SPATHS statement modifies the surface display path modals.

Statement format:

SPATHS/UPATHS ,upaths,VPATHS, vpaths, UDIREC,upoints,VDIREC, vpoints

Parameter Description

UPATHS The minor word indicating the number of upaths.

upaths The number of paths in the u direction.

VPATHS The minor word indicating the number of vpaths.

vpaths The number of paths in the v direction.

UDIREC The minor word indicating the number of upoints.

upoints The number of points per upath.

VDIREC The minor word indicating the number of vpoints.

vpoints The number of points per vpath.

Example:

Program Statement Explanation

SPATHS/UPATHS, 7 ,VPATHS, 11,$ All subsequent surfaces are created with 7 upaths, 11
UDIREC, 16,VDIREC,24 vpaths, 16 upoints, and 24 vpoints.

Revision C

Modal Statements 5-9

STATUS

STATUS

The STATUS statement suppresses fatal error messages during a GPL run. After entity
construction statements, use the OBTAIN/ERRST command to check the error code for
bad pointer errors. Bad pointer errors affect the creation of subsequent entities that
use the bad pointers as references.

Statement format:

STATUS/(ON]

OFF
Parameter Description
ON Suppresses fatal error messages during a GPL run.
OFF Displays fatal error messages during a GPL run.
Example:
Program Statement Explanation
STATUS/ON Fatal errors are not indicated during a GPL run.
SYSDEC

The SYSDEC statement controls the number of decimal places after the decimal point
for all displayed real number input and output.

Statement format:

SYSDEC/number
Parameter Description
number The number of decimal places after the decimal point.
Example:
Program Statement Explanation
SYSDEC/6 All real number input and output is displayed with 6

decimal places.

5-16 ICEM GPL for NOS Revision C

ZSURF

ZSURF

The ZSURF statement sets the current value of the Z plane so that only x- and
y-coordinates are required.

™ ™

Statement format:

ZSURF/depth
Parameter Description
depth The z depth or work plane where all subsequent entities are
created.
Example:
Program Statement Explanation
ZSURF/1.5 All subsequent two-dimensional entities are created at
(a z depth of 1.5 in.

Revision C Modal Statements 5-11

ey

Yo

Entity and Character String Statements 6

ASSIGN . . . e 6-1
By Sequence Number 6-1
By Entity e 6-2

ATTRIB 6-3
Creating and Associating Attributes and Subattributes with an Entity 6-3
Deleting Attributes and Subattributes from an Entity 6-5
Copying All Attributes and Subattributes from One Entity to Another 6-6

CHECK e e e 6-7

CLEAR e e 6-7

CMPCHR e e e 6-8

CMPENT e e e e e 6-9

CONVER e e e e 6-10
Converting a Real Number into a Character String 6-10
Converting a Character String into a Real Number 6-11

DEFINE e e 6-12

DELETE e 6-13
Deleting Single Entities 6-13
Deleting from an Entity Array o e 6-13
Deleting All Points in a Single Operation. 6-13

EVALC e e 6-14
Parameter Returns Pointo o oo Lo 6-14
Point Returns Parameter 6-15

EVALS . . e e e 6-16
Parameter Returns Point, 6-16
Point Returns Parameter 6-18

MOVCHR e e e e e e e e e 6-19

MOVENT e e e e 6-19

OBTAIN e O 6-20
Coordinates e e 6-20
Number of Characters e 6-21
View Pointer e e e 6-22
Definition View Pointer e 6-23
Current View Pointer e e 6-23
Entity Name e e e 6-24
Entity Pointer e 6-25
Parameters of an Entity 6-27
Latest Error Number e 6-27
Entity Type and Form 6-28
Part Name and Sheet Number 6-28
Members of a Group S 6-28
Character String e 6-29
Sequence Number P 6-29

Attribute and Subattributes 6-30
Pen, Level, Color, and Font Numbers 6-31
SETCHL 6-32
TRIME 6-32

© 0

©O

Entity and Character String Statements 6

ala

Entity and character string statements perform different management functions. Several
of these definitions are equivalent to types and forms found in menus 3 DELETE and 5
SPECIAL FUNCTIONS.

ASSIGN

The ASSIGN statement defines a name in the data base for an entity that is identified
by its sequence number or its local GPL name. The name assigned can be either
simple or subscripted. The sequence number can be expressed either as an integer
value or by a variable name.

By Sequence Number

(Statement format:
ASSIGN/SEQNUM, number , ‘name’ [,status]
text variable

Parameter Description

SEQNUM The minor word indicating sequence number assignment.

number The sequence number assigned to the entity.
(‘name’ The name in single quotes assigned to the entity. This name must

not exceed 10 characters.
text variable A text variable that contains the entity name.
status A variable that contains the status of the assignment. If status is

provided, it can have the following values:

Value Description
0 The assignment was successful.
(-1 Another entity already has that name.

If status is not provided and the entity name already exists, it is
detached from its previous use and is assigned to this entity.

Example:

Program Statement Explanation

ASSIGN/SEQNUM, 25, $ Entity with sequence number 25 is given the name
“ENT1”,STAT ENT1 in the text.

Revision C Entity and Character String Statements 6-1

ASSIGN

;3%

!
b
By Entity
Statement format: (E
ASSIGN/entity,{ “name’ [,status]
text variable
Parameter Description
entity The entity name.
‘name’ The name in single quotes assigned to the entity.
text variable A text variable that contains the name of the entity.
status A variable that contains the status of the assignment.
Value Description
0 The assignment was successful. ¢ >
-1 Another entity already has that name.

If status is not provided and the entity name already exists, it is
detached from its previous use and is assigned to this entity.

Example:
Program Statement Explanation ; Sh
- S
ASSIGN/SN(3) ,ENT2 Entity SN(3) is given the name contained in the text
variable ENT2.
F o
& s

6-2 ICEM GPL for NOS Revision C

ATTRIB

ATTRIB

The ATTRIB statement attaches, copies, or deletes attributes from entities. Attributes
consist of any textual information attached to an entity. Subattributes are combinations
of text or numeric information.

The textual information can be entered directly using single quotes or indirectly using
a text variable (refer to the TEXT command).

Creating and Associating Attributes and Subattributes with an
Entity
Statement format:

NAME ,namef,...]

ATTRIB/(entityl,...] ,ATNAME,[’attribute name’), SUBAT, | NUMBER,valuel,...]

LEVL, leve! text variable BOTH,name,valuel,...]
(C Parameter Description

entity The name or names of the entity assigned to this attribute. Names
must be separated by commas. A maximum of 20 entities may be
selected.

LEVL The minor word indicating that attributes are to be assigned by
level numbers. The attributes are assigned to all entities on that
level.

(level The level number of the entities to be assigned this attribute.
’ ATNAME The minor word indicating the attribute name.

‘attribute name’ The attribute name enclosed in single quotes.

text variable A text variable containing the attribute name.

SUBAT The minor word indicating the subattribute names or numbers.

(NAME The minor word indicating the subattribute names.
name The subattribute name or names assigned to the attribute can be

either a text variable containing the name or the name itself
enclosed in single quotes ('name’). Names must be separated by

commas.
NUMBER The minor word indicating the subattribute values.
value The subattribute value or values assigned to the attribute. Values

must be separated by commas.

BOTH The minor word indicating both subattribute names and values. The
names and values must be specified in the following order: name,
value. Names and values must be separated by commas.

Revision C Entity and Character String Statements 6-3

ATTRIB

Examples:

Program Statement

Explanation

ATTRIB/PT002,LN0O3, LNOO4$
,LNOO5, SP005, SP006$
,ATNAME , “CHANNEL ‘' $
»SUBAT ,BOTH$
, ‘WIDTH’, 12.0$%

, “HEIGHT” , 16.0%
, “LENGTH” , 145.5%

ATTRIB/LEVL, 104%
, ATNAME , XTIME

The attribute name 'CHANNEL' is assigned to the
following entities: point PT002; lines LN003, LN004,
and LNO0O5; and splines SP005 and SP00S6.

In addition, the entities are assigned the following
three subattributes of text and numerical data:

Text Numerical Data
WIDTH 12.0

HEIGHT 16.0

LENGTH 145.5

All entities on level 104 have the attribute name stored
in the variable XTIME.

The new attributes and subattributes are inserted at the end of the list of existing
attributes and subattributes for that entity.

6-4 ICEM GPL for NOS

Revision C

ATTRIB

Deleting Attributes and Subattributes from an Entity

Statement format:

o~

ATTRIB/DELATR,entity|,ATNAME,atrank[, ...]1[,SUBAT,subrank, ...]

Parameter Description

DELATR ‘The minor word indicating that attributes are to be deleted.

entity The name of the entity from which the attributes are to be deleted.
ATNAME The minor word indicating the numerical rank number of the

attribute name. If ATNAME alone is specified, all attributes and
subattributes are deleted.

atrank The rank number of the attributes you want to delete. Ranks must
(be separated by commas. The rank refers to the numerical order of
the attributes. If ATNAME is specified, only attributes indicated are
deleted.
SUBAT The minor word indicating the numerical rank number of the

subattribute names or numbers. If omitted, all the subattributes of
the indicated attribute are deleted.

subrank The rank number or numbers of the subattributes to be deleted.
Ranks must be separated by commas. The rank refers to the
(numerical order of the subattributes. If SUBAT is specified, only
subattributes indicated are deleted.

If ATNAME is not specified, all attributes and subattributes associated with the given
entity are deleted. If ATNAME, but not SUBAT is specified, the attribute and all
associated subattributes are deleted. If both are specified, only subattributes are

deleted.
Example:
(Program Statement Explanation
ATTRIB/DELATR,PT003,PT006$ Subattribute numbers 5, 6, and 7 are deleted from
,PT122,ATNAME , 3% points PT003, PT006, and PT122.
,SUBAT,5,6,7

Revision C Entity and Character String Statements 6-5

ATTRIB

Copying All Attiributes and Subattributes from One Entity to
Another

Statement format:

ATTRIB/COPY,entity1,entity2], BEFORE]
AFTER

Parameter Description

COPY The minor word indicating that the attributes of the first entity are
copied to the second entity.

entityl The name of the entity whose attributes are copied.

entity2 The name of the entity that receives the copied attributes.

BEFORE The minor word indicating that the copied attributes are to be

placed before the attribute list of the second entity.

AFTER The minor word indicating that the copied attributes are to be
placed after the attribute list of the second entity.

If neither BEFORE nor AFTER is specified, AFTER is assumed.

Example:

Program Statement Explanation

ATTRIB/COPY,LN145$ All of the attributes of entity LN145 are copied before
,LN322, BEFORE the attribute list of entity LN322.

6-6 ICEM GPL for NOS Revision C

g,
[

~

o ‘ :3

CHECK

CHECK
The CHECK statement tests an entity for a legal ICEM DDN pointer.

Statement format:

CHECK/entity,result

Parameter Description
entity The name of the entity tested.
result The name of the variable that receives the result of the test for a

legal pointer. The result values are:

Result Description
0 The entity has a legal pointer.
-1 The entity has an illegal pointer.

NOTE

Manipulating entities outside a GPL program and then entering the program using
menu 5.13.2 CONTINUE GPL PROGRAM can produce unpredictable pointers.

Example:

Program Statement Explanation

CHECK/PT003, TEST Entity PT003 is tested for a legal pointer and the

IF (TEST.EQ.0) GO TO 200 variable TEST receives the result. If PT003 has a
legal pointer, the program branches to statement 200.

CLEAR

The CLEAR statement removes the name associated with an entity from the data base.
Statement format:

CLEAR/[‘name”’]
text variable

Parameter Description

’name’ The name of the entity in single quotes.

text variable The name of a text variable that contains the name of the entity.

Example:

Program Statement Explanation

CLEAR/’PT51’ Removes the name PT51 from the entity it is
associated with in the data base.

Revision C Entity and Character String Statements 6-7

CMPCHR

CMPCHR

The CMPCHR statement compares one character string with another character string
and returns a result indicating whether the two strings are equal.

Statement format:

CMPCHR/number ,string1,chposi,string2,chpos2,result

Parameter Description

number The number of characters to compare.

stringl The name of the first text variable or the first character string.

chposl The position of the first character to test in stringl.

string2 The name of the second text variable or the second character
string.

chpos2 The position of the first character to test in string2.

result The name of the variable that receives the result of the test for the

equality of the two character strings. The result values are:

Result Description

0 The character strings are equal.
-1 The character strings are not equal.
Example:

Program Statement Explanation

CMPCHR/6,NOTE1,10,$ Text variable NOTE2 is tested for a 6-character string that
NOTE2,31,TEST matches a 6-character string in NOTE1. The variable TEST
receives the result of the test.

Text
Variable Text

NOTE 1 PART NO. 23-334.

NOTE2 O-RINGS ARE REQUIRED FOR PART 23-334.

For these two notes:

® The 6-character string in NOTE1 at character position
10 matches the 6-character string in NOTE2 at
character position 31.

® The result value is 0.

6-8 ICEM GPL for NOS Revision C

CMPENT

CMPENT

The CMPENT statement compares one entity with an array of entity pointers to get
the appropriate index into the entity array.

Statement format:

CMPENT/NUMBER, number ,array,entity,result

Parameter Description
NUMBER The minor word for indicating that the value is the number of
array elements.
number The number of array elements.
array The name of the array of entity pointers.
entity The name of the entity checked.
result The name of the variable that receives the result of checking the
entity against the pointer array. The result values are:
Result Description
-1 The array does not contain the entity.
>0 The resulting index number.
Example:
Program Statement Explanation
CMPENT/NUMBER, 10,PT,$ Entity pointer array PT is tested for entity PT3 and
PT3,TEST the variable TEST receives the result. If the array
does not contain a pointer for PT3, the result value is
-1.
Revision C Entity and Character String Statements 6-9

CONVER

CONVER

The CONVER statement either converts a real number into a character string or
converts a character string into a real number. The maximum length of the character
string is 10 characters.

Converting a Real Number into a Character String

Statement format:

CONVER/ (POSITV
NEGATV

Parameter

],decimal places,NUMBER,variable,text variable

Description

POSITV

NEGATV

decimal places

NUMBER

variable

text variable

The minor word indicating that the characters in the string are to
be right-justified and may have leading blanks.

The minor word indicating that the characters in the string are to
be left-justified.

The number of decimal places after the decimal point in the real
number,

The minor word indicating that the following variable contains a
real number that is to be converted to a character string and
placed in the specified text variable.

The name of the variable that contains the real number.

The name of the text variable that receives the converted number.

Example:

Program Statement Explanation

CONVER/POSITV, 4,NUMBERS Real variable L is converted into a character string in
,L,LENGTH text variable LENGTH. The number is stored in the

character string positively to the value of four decimal
places.

6-10 ICEM GPL for NOS Revision C

ey
W

i)

T i) 5

CONVER

Converting a Character String into a Real Number
Statement format:

CONVER/NUMBER, text variable,variable,status

Parameter Description

NUMBER The minor word indicating that the following text variable is to be
converted into a real number and placed in the specified variable.

text variable The name of the text variable that contains the character string.

variable The name of the variable that receives the converted real number.

status The name of the variable that receives the status of the conversion.

The status values are:

Status Description
0 The real number was converted correctly.
-1 The character string contained illegal characters.
"~ Example:
Program Statement Explanation
CONVER/NUMBER, LENGTH, $ Text variable LENGTH is converted to real variable
L,TEST L. The variable TEST receives the status.
Revision C Entity and Character String Statements 6-11

DEFINE

DEFINE

The DEFINE statement generates a number of points, lines, or arcs with one
statement. The coordinate array size must be a multiple of 3 (points), 6 (lines), or 9
(arcs) times the number of entities. If an entity array is specified, the array size must
equal the number of entities given.

Statement format:

POINTS
DEFINE/|LINES |,number,coord array[,entity arrayl
ARCS

Parameter Description

POINTS The minor word for defining a number of points. Each three values
in the coordinate array are the transform coordinates of a point.

LINES The minor word for defining a number of lines. Each six values in
the coordinate array are the transform coordinates of the endpoints
of a line.

ARCS The minor word for defining a number of arcs. Each nine values in
the coordinate array are the transform coordinates of three points
that define an arc (the arc extends from the first point through the
second point and ends at the third point).

number The number of entities defined.

coord array The name of a coordinate array.

entity array The name of an entity array that receives the newly defined
entities.

Example:

Program Statement Explanation

REAL/PNTCOR(12) Reserve space for 12 elements of PNTCOR.

ENTITY/PNTENT(4) Receive space for 4 entities in PNTENT.

DATA/PNTCOR, 1,2,0,3,4,0$ Initialize PNTCOR with 4 sets of point coordinates.

5,6,0,7,8,0

DEFINE/POINTS,4,PNTCOR(1)$ Define 4 points in the PNTENT array from the

PNTENT(1) coordinates stored in PNTCOR. PNTENT(1) has the

coordinates (1,2,0); PNTENT(2) has the coordinates
(3,4,0); and so forth.

6-12 ICEM GPL for NOS Revision C

e
g

(.
% # ii 33

DELETE

DELETE

The DELETE statement deletes entities not required for subsequent definitions.

Deleting Single Entities
Statement format:
‘DELETE/namel[,...]

Parameter Description

name The name or names of the entities that are to be deleted.
Example:

Program Statement Explanation

DELETE/PT1,LN1,CIR4 Point PT1, line LN1, and circle CIR4 are deleted.

Deleting from an Entity Array
Statement format:

DELETE/NUMBER,count ,entity array

Parameter Description

NUMBER The minor word indicating that a number of entities are to be
deleted from an entity array.

count The number of entities to be deleted from the entity array.

entity array The name of the entity array.

Example:

Program Statement Explanation

DELETE/NUMBER, 10,ET(1) The first 10 elements of entity array ET are deleted.

Deleting All Points in a Single Operation

Statement format:

DELETE/POINTS
Parameter Description
POINTS The minor word indicating that all points are to be deleted from
the part drawing.
NOTE

We do not recommend using this statement if points have been used in the definition
of other entities.

Revision C Entity and Character String Statements 6-13

EVALC

EVALC a
The EVALC statement evaluates a curve and returns either th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>