
FORTRAN 200 VERSION 1

FOR USE WITH

coc® CYBER 200 VIRTUAL STORAGE
OPERATING SYSTEM

VERSION 2

REFERENCE MANUAL

60480200

@~
CONTf\.OL

DATA

Revision

A (06/30/83)

B (11/30/83)

c (02/14/84)

D (03/30/84)

E (04/01/85)

F (10/31/85)

G (04/16/86)

H (12/03/86)

J (10/23/87)

REVISION RECORD

Description

Prerelease.

Manual released in conjunction with the official release of the product (PSR level 600).
The manual content is the same as that of the prerelease version.

Manual revised to include additional error messages and minor technical corrections (for
PSR level 600).

Manual updated for PSR level 607 release (VSOS 2.1.5).

Manual updated for PSR level 631 release (VSOS 2.1.6).

Manual revised to include the new features: dynamic file allocation with Q8NORED; the
addition of the GO parameter on the FORTRAN control statement; and other minor technical
corrections for PSR level 644 release (VSOS 2.2).

Manual updated for PSR level 654 release (VSOS 2.2.5).

Manual updated for PSR level 670 release (VSOS 2.3).

Manual updated for PSR level 690 release (VSOS 2.3.5).

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

<f:lcoPYRIGHT CONTROL DATA CORPORATION
1983, 1984, 1985, 1986, 1987
All Right.a Reserved
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Technology and Publications Division
P. O. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

60480200 J

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision

Front Cover 6-4 H
Inside Front Cover H 6-5 c
Title Page 6-6 thru 6-11 A
ii J 6-12 D
iii J 6-13 thru 6-15 A
iv J 6-16 D
v/vi H 6-17 F
vii thru ix H 6-18 c
x J 6-19 A
xi J 6-20 A
xii thru xiv H 6-21 c
xv/xvi H 6-22 c
xvii G 6-23 H
1-1 H 6-24 c
1-2 H 6-25 E
1-3 F 6-26 c
1-4 H 6-27 c
2-1 H 6-28 H
2-2 F 6-29 E
2-2.112-2.2 F 6-30 E

2-3 E 6-31 A
2-4 A 6-32 A

2-5 A 6-33 c
2-6 H 6-34 E

2-6.1/2-6.2 H 6-35 c
2-7 H 6-36 H

2-8 H 6-37 c
2-9 E 6-38 A
2-10 A 6-39 A

2-11 F 6-40 H
2-12 J 6-41 A
3-1 thru 3-3 A 6-42 F

3-4 H 6-43 A
3-4.1/3-4.2 H 6-44 E
3-5 F 6-45 thru 6-48 A

3-6 A 6-49 thru 6-52 E
3-7 thru 3-9 J 6-53 D

3-10 thru 3-14 A 6-54 J
4-1 A 6-55 thru 6-57 H
4-2 A 7-1 A

4-3 H 7-2 E

4-4 H 7-3 thru 7-6 A

4-5 A 7-7 F

4-6 E 7-8 F

4-7 A 7-8.1/7-8.2 F

5-1 H 7-9 A
5-2 H 7-10 A

5-3 E 7-11 F

5-4 A 7-12 A

5-5 H 8-1 J

5-6 J 8-2 A

5-7 E 8-3 E

5-8 H 8-4 E

5-9 A 9-1 E

6-1 H 9-2 A

6-2 c 9-3 F
6-2.1/6-2.2 c 9-4 A

6-3 A 9-5 E

60480200 J iii

Page Revision Page Revision

9-6 F 14-7 H
9-7 E 14-8 A
9-8 thru 9-12 A 14-9 A
9-13 thru 9-15 E 14-10 H
9-16 H 14-11 H
9-17 H 14-12 J
9-18 thru 9-21 J 14-13 A
9-22 H 14-14 A
9-23 H 14-15 H
9-24 J 14-16 J
10-1 D A-1 H
10-2 thru 10-5 A A-2 H
10-6 E B-1 thru B-8 A
10-7 J B-9 E
10-8 J B-10 c
10-9 F B-11 J
10-10 J B-12 J
10-11 thru 10-17 D B-12.l/B-12.2 J
10-18 A B-13 F
10-19 A B-14 H
10-20 thru 10-24 H B-15 E
10-24. l/ 10-24.2 H B-16 F
10-25 thru 10-28 H B-17 H
10-28. l/10-28. 2 E B-18 F
10-29 H B-19 thru B-25 E
10-30 thru 10-32 D B-26 F
10-33 thru -10-37 A B-26. l G
10-38 J B-26.2 G
10-38. l/ 10-38.2 J B-27 A
10-39 D B-28 F
10-40 D B-29 J
10-41 G B-30 J
10-42 G B-30.l/B-30.2 H
10-43 D B-31 E
11-1 E B-32 F
11-2 thru 11-6 H B-33 F
11-6.1/11-6.2 H B-34 A
11-7 thru 11-9 A B-35 J
11-10 thru 11-13 F B-36 J
11-14 J B-37 A
11-15 F. B-)8 A
11-16 thru 11-18 c B-39 c
11-19 E E-40 J
12-1 A ll-.;O.l/B-40.2 G
12-2 G B-41 thru B-43 J
12-3 E B-44 H
12-4 G C-1 A
12-4.l J C-2 A
12-4.2 G C-3 H
12-4.3/12-4.4 G D-1 F
12-5 ti•'~' 12-16 E D-2 thru D-5 A
13-1 F E-1 J
13-2 F E-2 H
13-3 thru 13-5 H E-3 A
13-6 F F-1 H
13-7 thru 13-10 H F-2 thru F-7 F
14-1 thru 14-4 G G-1 thru G-10 J
14-5 H Index-! thru -13 J
14-6 H Cooment Sheet/Mailer J
14-6.1/ 14-6.2 J Inside Back Cover H

Back Cover

iv 60480200 J

PREFACE

This manual describes the CONTROL DATA® FORTRAN
200 programming language. FORTRAN 200 is available
under the CDC® CYBER 200 Virtual Storage Operating

I System (VSOS) on CYBER 200 Computer Systems.

Before using this manual, you should be familiar I
with the FORTRAN language in general. Familiarity
with the Virtual Storage Operating System, GYBER
200 hardware, and vector processing concepts would I
be helpful.

FORTRAN 200 is a superset of the American National
Standards Institute FORTRAN language, which is
described in ANSI document X3.9-1978. Many of the
extensions of the FORTRAN 200 language enable you
to use the vector processing capabil ... ties of the
CYBER 200 hardware.

Information relating to this manual can be found in I
the publications listed below.

60480200 H

Publication

CDC CYBER 200 Assembler Version 2 Reference Manual

CDC CYBER Model 205 Hardware Reference Manual

CDC CYBER 200 Virtual Storage Operating System
Reference Manual, Volume l of 2

CDC CYBER 200 Virtual Storage Operating System
Reference Manual, Volume 2 of 2

VSOS User's Guide for FORTRAN 200 Programmers

Publication
Number

60485010

60256020

60459410

60459420

60455390

CDC manuals can be obtained from your local Control Data office.
Sites within the United States can also order manuals from:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

This product is intended for use only as described in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or parameters.

I

I

v/vi

NOTATIONS

1. INTRODUCTION

Program Structure
Statements

Statement Structure
Statement Labels
Initial Lines
Continuation Lines
Comment Lines
Statement Order

Input Data

2. LANGUAGE ELEMENTS

Character Set
Symbolic Names
FORTRAN Keywords
Constants

Integer Constants
Half-Precision Constants
Real Constants
Double-Precision Constants
Complex Constants
Logical Constants
Character Constants
Hollerith Constants
Hexadecimal Constants
Bit Constants

Symbolic Constants
I Constant Expressions

Variables

I

Arrays
Array Declaration
Array References
Array Size
Array Storage

Substrings
Data Element Representation

Integer Elements
Half-Precision Elements
Real Elements
Double-Precision Elements
Complex Elements
Logical Elements
Hollerith Elements
Character Elements
Hexadecimal Elements
Bit Elements

3. SPECIFICATION AND INITIALIZATION
STATEMENTS

Type Specification Statements
INTEGER Statement
HALF PRECISION Statement
REAL Statement
DOUBLE PRECISION Statement
COMPLEX Statement

60480200 H

CONTENTS

xvii

1-1

1-1
1-1
1-1
1-2
1-3
1-3
1-3
1-3
1-4

2-1

2-1
2-1
2-2
2-2
2-2
2-2
2-2.1
2-·3
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-9
2-11
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-12
2-12
2-12

3-1

3-1
3-1
3-2
3-2
3-2
3-3

LOGICAL Statement
CHARACTER Statement
BIT Statement

IMPLICIT Statement
DIMENSION Statement
ROWWISE Statement
COMMON Statement
EQUIVALENCE Statement
EXTERNAL Statement
INTRINSIC Statement
SAVE Statement
PARAMETER Statement
DESCRIPTOR Statement
Variable, Array, and Substring Initialization

Initialization Using Type Specification
Statements

Initialization Using the Data Statement
Initialization Rules

Initializing Non-Bit Items
Initializing Bit Items

4. SCALAR EXPRESSIONS AND SCALAR ASSIGNMENT
STATEMENTS

Scalar Expressions
Scalar Arithmetic Expressions
Scalar Character Expressions
Scalar Relational Expressions
Scalar Logical Expressions
Order of Expression Evaluation

Scalar Assignment Statements
Scalar Arithmetic Assignment Statements
Scalar Character Assignment Statements
Scalar Logical Assignment Statements
Statement Label Assignment Statement

5. FLOW CONTROL STATEMENTS

GO TO Statements
Unconditional GO TO
Assigned GO TO Statement
Computed GO TO Statement

IF Statements
Arithmetic IF Statement
Logical IF Statement
Block IF Statement

ELSE IF Statement
ELSE Statement
END IF Statement
Block IF Structures
Nesting Block IF Structures and DO

Loops
DO Statement

DO Loops
Nesting DO Loops and Block IF Structures

CONTINUE Statement
PAUSE Statement
STOP Statement
CALL Statement
RETURN Statement

3-3
3-4
3-5
3-5
3-6
3-6
3-6
3-8
3-9
3-10
3-11
3-11
3-12
3-12

3-12
3-12
3-13
3-13
3-14

4-1

4-1
4-1
4-2
4-3
4-4
4-5
4-5
4-5
4-6
4-6
4-7

5-1

5-1
5-1
5-1
5-2
5-2
5-Z
5-3
5-3
5-4
5-4
5-5
5-5

5-6
5-6
5-6
5-7
5-8
5-8
5-8
5-9
5-9

vii

6. INPUT/OUTPUT STATEMENTS

Records
Formatted Records
Unformatted Records
Endfi le Records

Files
External Files
Internal Files
Extended Internal Files

Input/Output Statement Components
Control Information List

ACCESS Specifier
BLANK Specifier
BUFS Specifier
DIRECT Specifier
END Specifier
ERR Specifier
EXIST Specifier
FILE Specifier
FMT Specifier
FORM Specifier
FORMATTED Specifier
IOSTAT Specifier
NAME Specifier
NAMED Specifier
NEXTREC Specifier
NUMBER Specifier
OPENED Specifier
REC Specifier
RECL Specifier
SEQUENTIAL Specifier
STATUS Specifier
UNFORMATTED Specifier
UNIT Specifier

Input/Output List
Input/Output List Items
Implied DO Loops in Input/Output

Statements
Carriage Control
Formatted Input/Output Statements

Formatted READ Statement
Formatted WRITE Statement
Formatted PRINT Statement
Formatted PUNCH Statement

Format Specification
FORMAT Statement

viii

Character Format Specification
Noncharacter Format Specification
Edit Descriptors

A Descriptor
B Descriptor
BN Descriptor
BZ Descriptor
D Descriptor
E Descriptor
F Descriptor
G Descriptor
H Descriptor
I Descriptor
L Descriptor
P Descriptor
R Descriptor
S Descriptor
SP Descriptor
SS Descriptor
T Descriptor
TL Descriptor
TR Descriptor
X Descriptor
Z Descriptor
Apostrophe Descriptor
Slash Descriptor
Colon Descriptor

6-1

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-3
6-3
6-4
6-4
6-4
6-5
6-5
6-6
6-6
6-6
6-6
6-6
6-8
6-8
6-8
6-8
6-8
6-9
6-9
6-9
6-9
6-10
6-10
6-10
6-11
6-11

6-12
6-13
6-13
6-13
6-14
6-15
6-15
6-16
6-16
6-16
6-18
6-18
6-18
6-21
6-21
6-22
6-22
6-24
6-25
6-26
6-27
6-27
6-28
6-29
6-30
6-31
6-32
6-32
6-33
6-33
6-35
6-35
6-36
6-37
6-37
6-38

Unformatted Input/Output Statements
Unformatted READ Statement
Unformatted WRITE Statement

List-Directed Input/Output Statements
List-Directed READ Statement
List-Directed WRITE Statement
List-Directed PRINT Statement
List-Directed PUNCH Statement

List-Directed Formatting
List-Directed Input Formatting
List-Directed Output Formatting

Namelist Input/Output Statements
NAMELIST Statement
Namelist READ Statement
Namelist WRITE Statement
Namelist PRINT Statement
Namelist PUNCH Statement

Namelist Formatting
Namelist Input Formatting
Namelist Output Formatting

Buffer Input/Output Statements
Direct Access Input/Output
Internal File Input/Output
Extended Internal File Input/Output Statements

DECODE Statement
ENCODE Statement

Concurrent Input/Output Statements
Direct Calls to SIL Routines
Auxiliary Input/Output Statements

OPEN Statement
CLOSE Statement
INQUIRE Statement

File Positioning Statements
REWIND Statement
BACKSPACE Statement
ENDFILE Statement

7. PROGRAM UNITS AND STATEMENT FUNCTIONS

Main Programs
Program Statement
Main Program Body
END Statement for Main Programs
Main Program Example

Function Subprograms
FUNCTION Statement
Function Body
RETURN Statement for Function Subprograms
END Statement for Function Subprograms
Function References
Function Subprogram Example

Subroutine Subprograms
SUBROUTINE Statement
Subroutine Body
RETURN Statement for Subroutine

Subprograms
END Statement for Subroutine Subprograms
Subroutine Calls
Subroutine Subprogram Example

Subprogram Cooununication
Coounon Blocks
Arguments

Duouny Arguments
Actual Arguments

Argument Correspondence
Restrictions on Association of Arguments
Arrays as Duouny Arguments
Subprogram Names as Actual Arguments

Entry Points
ENTRY Statement
Secondary Entry Points in Functions
Secondary Entry Points in Subroutines
Referencing Secondary Entry Points

6-38
6-38
6-40
6-41
6-41
6-41
6-42
6-43
6-43
6-43
6-44
6-45
6-45
6-45
6-46
6-46
6-48
6-48
6-48
b-49
6-49
6-49
b-'>0
6-51
6-51
6-52
6-52
b-53
6-53
6-53
6-'>4
6-55
6-56
6-56
6-56
6-57

7-1

7-1
7-1
7-1
7-2
7-2
7-3
7-4
7-4
7-5
7-5
7-5
7-b
7-b
7-b
7-6

7-7
7-7
7-7
7-7
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8.1
7-8.1
7-9
7-9
7-9
7-10
7-10

60480200 H

I

Secondary Entry Point Argument Lists
Secondary Entry Point Example

Block Data Subprograms
BLOCK DATA Statement
Block Data Subprogram Body
END Statement for Block Data Subprograms
Block Data Subprogram Example

Statement Functions
Defining Statement Functions
Referencing Statement Functions
Statement Function Example

8, ARRAY ASSIGNMENT STATEMENTS

Subarray References
Conformable Subarray References
Array Expressions
Array Assignment Statement

9. VECTOR PROGRAMMING

Overview
Vectors and Descriptors

Vector References
Descriptors

Descriptor Statement
Descriptor Arrays
Initializing Vectors and Descriptors
Descriptor ASSIGN Statement
FREE Statement

Bit Data Type
Bit Constants
Bit Variables and Arrays
Bit Element Representation
BIT Statement
Initializing Bit Items

Vector Expressions
Vector Arithmetic Expressions
Vector Relational Expressions
Bit Expressions

Vector Assignment Statements
Vector Arithmetic Assignment Statements
Bit Assignment Statements

WHERE Statement
Block WHERE Statement

OTHERWISE Statement
END WHERE Statement
Block WHERE Structures
Nesting Block WHERE Structures

Vector Function Subprograms
Defining Vector Functions
Referencing Vector Functions
Vector Function Example
Secondary Entry Points

Loop Vectorization
Charact2ristics of Vectorizable DO Loops

Arithmetic Assignment Statements in
Vectorizable DO Loops

Scalar Assignments in Vectorizable
Loops

Loop-Dependent Array References In
Vectorizable Loops

Generation of Calls to STACKLIB Routines
Loop Vectorization Messages

10, INTRINSIC FUNCTIONS

Scalar Intrinsic Functions
Vector Intrinsic Functions
Function Descriptions

ABS
ACOS

60480200 H

7-10
7-10
7-10
7-10
7-11
7-11
7-11
7-11
7-11
7-12
7-12

8-1

8-1
8-3
8-3
8-3

9-1

9-1
9-1
9-1
9-2
9-3
9-3
9-4
9-4
9-5
9-5
9-6
9-6
9-6
9-6
9-6
9-7
9-7
9-8
9-9
9-10
9-10
9-11
9-11
9-12
9-12
9-12
9-12
9-13
9-14
9-14
9-14
9-15
9-15
9-15
9-16

9-20

9-21

9-21
9-23
9-23

10-1

10-1
10-6
10-9
10-11
10-11

AIMAG
AINT
ALOG
ALOGlO
AMAXO
AMAXl
AMINO
AMINl
AMOD
ANINT
ASIN
ATAN
ATAN2
BTOL
CABS
ccos
CEXP
CHAR
CLOG
CMPLX
CONJG
cos
COSH
COTAN
CSIN
CSQRT
DABS
DACOS
DAS IN
DATAN
DATAN2
DATE
DBLE
DCOS
DCOSH
DDIM
DEXP
DFLOAT
DIM
DINT
DLOG
DLOGlO
DMAXl
DMINl
DMOD
DNINT
DP ROD
DSIGN
DSIN
DSINH
DSQRT
DTAN
DTANH
EXP
EXTEND
FLOAT
HABS
HA COS
HALF
HAS IN
HATAN
HATAN2
HCOS
HCOSH
HCOTAN
HDIM
HEXP
HINT
HLOG
HLOGlO
HMAXl
HMINl
HMOD
HNINT
HSIGN

10-11
10-11
10-11
10-11
10-11
10-11
10-11
10-11
10-11
10-11
10-12
10-12
10-12
10-12
10-12
10-12
10-12
10-12
10-12
10-12
10-13
10-13
10-13
10-13
10-lJ
10-13
10-13
10-13
10-13
10-13
10-13
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-17
10-17
10-17

ix

HSIN 10-17 SIN 10-30

HSINH 10-17 SINH 10-30
HSQRT 10-17 SNGL 10-30

HTAN 10-17 SQRT 10-30
HT ANH 10-17 TAN 10-30
!ABS 10-17 TANH 10-30

!CHAR 10-17 TIME 10-30

!DIM 10-17 VABS 10-30
!DINT 10-18 VACOS 10-31

IDNINT 10-18 VAIMAG 10-31
!FIX 10-18 VAINT 10-31
IHI NT 10-18 VALOG 10-31

IHNINT 10-18 VALOGlO 10-31
INDEX 10-18 VAMOD 10-31
INT 10-18 VANINT 10-31

!SIGN 10-18 VAS IN 10-32

LEN 10-18 VATAN 10-32
LGE 10-18 VATAN2 10-32

LGT 10-19 VCABS 10-32

LLE 10-19 vccos 10-33

LLT 10-19 VCEXP 10-33

LOG 10-19 VCLOG 10-33
LOGlO 10-19 VCMPLX 10-33
LTOB 10-19 VCONJG 10-33
MAX 10-19 vcos 10-33

MAXO 10-19 VCSIN 10-33
MAXl 10-20 VCSQRT 10-34
MIN 10-20 VDBLE 10-34
MINO 10-20 VDIM 10-34

MINl 10-20 VEXP 10-34

MOD 10-20 VEX TEND 10-34

NINT 10-20 VFLOAT 10-34

Q8SCNT 10-20 VHABS 10-34

Q8SDFB 10-20 VHACOS 10-34

Q8SDOT 10-20 VHALF 10-35
Q8SEQ 10-21 VHASIN 10-35

Q8SEXTB 10-21 VHATAN 10-35

Q8SGE 10-21 VHATAN2 10-35
Q8SINSB 10-21 VHCOS 10-35

Q8SLEN 10-21 VHDIM 10-35
Q8SLT 10-21 VHEXP 10-35
Q8SMAX 10-22 VHINT 10-36

Q8SMAXI 10-22 Vl:Il.OG 10-36
Q8SMIN 10-22 Vl:Il.OGlO 10-36
Q8SMINI 10-22 VHMOD 10-36

Q8SNE 10-22 VHNINT 10-36
Q8SPROD 10-23 VHSIGN 10-36
Q8SSUM 10-23 VHS IN 10-36

Q8VADJM 10-23 VHSQRT 10-36
Q8VAVG 10-23 VHTAN 10-37
Q8VAVGD 10-23 VIABS 10-37

Q8VCMPRS 10-24 VIDIM 10-37
Q8VCTRL 10-24 VI FIX 10-37
Q8VDCMPR 10-24 VIHINT 10-37

Q8VDELT 10-24 VIHNINT 10-37
Q8VEQI 10-24 .1 VINT 10-37
Q8VGATHP 10-25 VI SIGN 10-37
Q8VGATHR 10-25 VLOG 10-38
Q8VGEI 10-25 VLOGlO 10-38
Q8VINTL 10-26 VMOD 10-38

Q8VLTI 10-26 VNINT 10-38

I Q8VMASK 10-27 VRAND 10-38
Q8VMERG 10-27 VREAL 10-38

Q8VMKO 10-27 VSIGN 10-38.1 I
Q8VMKZ 10-27 VSIN 10-39
Q8VNEI 10-28 VSNGL 10-39

Q8VREV 10-28 VSQRT 10-39
Q8VSCATP 10-28 VTAN 10-39
Q8VSCATR 10-28.1 Vector Intrinsic Function Examples 10-39
Q8VXPND 10-29 Bit Manipulation Function Examples 10-39

RANF 10-29 Restructuring DO Loops as Vector
REAL 10-29 Operations 10-39

RP ROD 10-29 Using a Bit Vector as a Mask 10-39

SECOND 10-29 Restructuring DO Loops With Nonunit
SIGN 10-30 Stride 10-41

x 60480200 J

Loop-Dependent Conditional Forward
Transfers

Su11DDing a Vector
Finding the Minimum and Maximum

Vector Elements
Gathering and Scattering
Locating the Greatest Absolute Value
Multidimensional Arrays

11, PREDEFINED SUBROUTINES

Random Number Subroutines
RANGET
RANS ET
VRANF

Concurrent Input/Output Subroutines
Array Alignment
Subroutine Calls

Q7BUFIN
Q7BUFOUT
Q7WAIT
Q7SEEK
Q7STOP

Miscellaneous Input/Output Subroutines
QBWIDTH
QBNORED

Error Processing and Debugging Subroutines
Data Flag· Branch Manager

Data Flag Branch Register
Data Flag Branch Processing
Data Flag Branch Subroutines

System Error Processor
MDU MP

STACKLIB Subroutines
STACKLIB Subroutine Characteristics
STACKLIB Subroutine Naming Convention
STACKLIB Call Formats
STACKLIB Argument Checking and Error

Processing

12. SPECIAL CALLS

Arguments
Label References
Symbolic References
Literals

Special Call Statement Examples
Using Special Calls to Manipulate

Registers
Using Special Calls to Vectorize DO Loops
Warning About Using QB Special Calls

QBLINKV Special Call Warning
Overlapping Scalar Instruction

Warnings
Special Call Formats

13, PRODUCT INTERFACES

Program Compilation, Loading, and Execution
CYBER 200 Job Submittal
CYBER 200 Interactive Session

Operating System Interface
System Interface Language
Debugging Utilities

Subprogram Linkage
Prologue and Epilogue

Standard Calling Sequence
Fast Calls

60480200 J

10-41
10-42

10-42
10-42
10-43
10-43

11-1

11-1
11-1
11-1
11-1
11-1
11-2
11-3
11-3
11-3
11-4
11-5
11-5
11-5
11-5
11-5
11-6
11-6
11-6
11-8
11-11
11-13
11-14
11-14
11-14
11-18
11-18

11-19

12-1

12-1
12-1
12-2
12-2
12-2

12-2
12-3
12-4.1
12-4.1

12-4.1
12-4.1

13-1

13-1
13-1
13-5
13-5
13-5
13-5
13-9
13-9
13-9
13-10

14. FORTRAN CONTROL STATEMENT

Abbreviation
Defaults
Keywords
Keywords and Their Options

ABC
ANSI
BINARY
C64
DO
ERRORS
ELEV
F66
GO
INPUT
LIST
LO
OPTIMIZE
SC
SDEB
SYNTAX
TM
UNSAFE

Control Statement Examples
Compiler-Generated Listings

Cross-Reference Maps
Statement Label Map
Variable Map
Symbolic Constant Map
Procedure Map

Assembly Listing
Register Map and Storage Map
Index Map

Execution-Time File Reassignment
Control of Drop File Size
Error Messages

APPENDIXES

A Character Sets
B Diagnostics
C Glossary
D FORTRAN 200 Statement Su11DDary
E Compatibility Features
F Differences Between VSOS Release

2 • 1. 6 and 2. 2
G Vector Progra11DDing

INDEX

FIGURES

1-1 FORTRAN Program Example
1-2 Statement Structure
1-3 Statement Order
2-1 Symbolic Name Examples
2-2 Integer Constants Format
2-3 Integer Constants Examples
2-4 Half-Precision Constants Format
2-5 Half-Precision Constants Examples
2-6 Real Constants Format
2-7 Real Constants Examples
2-8 Double-Precision Constants Format
2-9 Double-Precision Constants Examples
2-10 Complex Constants Format
2-11 Complex Constants Examples

14-1

14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-2
14-2
14-3
14-3
14-3
14-4
14-4
14-4
14-5
14-5
14-5
14-5
14-6
14-6
14-6
14-6
14-6.1
14-6.l
14-6.l
14-12
14-13
14-14
14-15
14-15
14-15
14-16
14-16
14-16

A-1
B-1
C-1
D-1
E-1

F-1
G-1

1-2
1-3
1-4
2-1
2-2
2-2
2-2
2-2.1
2-3
2-3
2-3
2-3
2-3
2-4

xi

I

2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23

2-24
2-25
2-26
2-27

2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
1-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34

3-35
4-1
4-2
4-3
.'i-4
4-5
4-6
4-7
4-8
4-9

xii

Logical Constants Format
Logical Constants Examples
Character Constants Format
Character Constants Examples
Hollerith Constants Format
Hollerith Constants Examples
Hexadecimal Constants Format
Hexadecimal Constants Examples
Symbolic Constants Examples
Variables Examples
Array Declaration Format
Array Declarations and References

Examples
Array Element References Format
Array Size Computation Formulas
Array Size Computation Example
Array Element Position Computation

Example
Substring Format
Substring Examples
Integer Element Representation
Half-Precision Element Representation
Real Element Representation
Double-Precision Element Representation
Complex Element Representation
Logical Element Representation
INTEGER Statement Format
INTEGER Statement Example
HALF PRECISION Statement Format
HALF PRECISION Statement Example
REAL Statement Format
REAL Statement Example
DOUBLE PRECISION Statement Format
DOUBLE PRECISION Statement Example
COMPLEX Statement Format
COMPLEX Statement Example
LOGICAL Statement Format
LOGICAL Statement Example
CHARACTER Statement Format
CHARACTER Statement Examples
IMPLICIT Statement Format
IMPLICIT Statement Example
DIMENSION Statement Format
DIMENSION Statement Example
ROWWISE Statement Format
ROWWISE Statement Example
COMMON Statement Format
COMMON Statement Examples
EQUIVALENCE Statement Format
EQUIVALENCE Statement Examples
EXTERNAL Statement Format
EXTERNAL Statement Example
INTRINSIC Statement Format
iNTRINSIC Statement Example
SAVE Statement Format
SAVE Statement Example
PARAMETER Statement Format
PARAMETER Statement Example
DATA Statement Format
Implied DO Loop Format for DATA

Statements
DATA Statement Examples
Scalar Arithmetic Expression Format
Scalar Arithmetic Expression Examples
Scalar Character Expression Format
Scalar Character Expression Examples
Scalar Relational Expression Format
Scalar Relational Expression Example
Scalar Logical Expression Format
Scalar Logical Expression Examples
Scalar Arithmetic Assignment Statement

Format

2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6.1

2-7
2-7
2-8
2-8

2-9
2-9
2-9
2-11
2-11
2-11
2-11
2-12
2-12
3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-4
3-4
3-4.1
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-7
3-8
3-8
3-9
3-9
3-10
3-10
3-11
3-11
3-11
3-11
3-12
3-13

3-13
3-14
4-1
4-2
4-3
4-3
4-3
4-4
4-4
4-4

4-5

4-10

4-11

4-12

4-13

4-14

4-15

4-16

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19

5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6--18
6-19
6-20
6-21
6-22
6-23
6-24

Scalar Arithmetic Assignment Statement
Examples

Scalar Character Assignment Statement
Format

Scalar Character Assignment Statement
Examples

Scalar Logical Assignment Statement
Format

Scalar Logical Assignment Statement
Examples

Statement Label Assignment Statement
Format

Statement Label Assignment Statement
Example

Unconditional GO TO Statement Format
Unconditional GO TO Statement Example
Assigned GO TO Statement Format
Assigned GO TO Statement Example
Computed GO TO Statement Format
Computed GO TO Statement Example
Arithmetic IF Statement Format
Arithmetic IF Statement Example
Logical IF Statement Format
Logical IF Statement Example
Block IF Statement Format
Block IF Statement Example
ELSE IF Stat~ment Format
ELSE IF Statement Example
ELSE Statement Format
ELSE Statement Example
END IF Statement Format
Simple Block IF Structure
Block IF Structure With ELSE IF

Statement
Block IF Structure With ELSE Statement
Nested Block IF Structure
DO Statement Format
DO Loop Format
DO Loop Example
Nested DO Loops Example
CONTINUE Statement Format
CONTINUE Statement Example
PAUSE Statement Format
PAUSE Statement Example
STOP Statement Format
STOP Statement Example
ACCESS Specifier Format
BLANK Specifier Format
BUFS Specifier Format
DIRECT Specifier Format
END Specifier Format
ERR Specifier Format
EXIST Specifier Format
FILE Specifier Format
FMT Specifier Format
FORM Specifier Format
FORMATTED Specifier Format
IOSTAT Specifier Format
NAME Specifier Format
NAMED Specifier Format
NEXTREC Specifier Format
NUMBER Specifier Format
OPENED Specifier Format
REC Specifier Format
RECL Specifier Format
SEQUENTIAL Specifier Format
STATUS Specifier Format
UNFORMATTED Specifier Format
UNIT Specifier Format
Implied DO Loop Format For

Input/Output Statements

4-5

4-6

4-6

4-7

4-7

4-7

4-7
5-1
.J-1
5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-4
5-4
5-5
5-5

5-5
5-5
5-6
5-b
5-6
5-7
5-7
'.Hl
5-8
5-8
5-8
5-8
5-8
6-3
6-5
6-5
6-5
b-5
6-5
6-6
6-6
6-7
6-7
6-7
6-8
6-8
6-8
6-8
6-9
6-9
b-9
b-9
6-10
6-10
6-11
b-11

6-12

60480200 H

6-25

6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-57
6-58
6-59
6-60
6-61
6-62
6-63
6-64
6-65
6-66
6-67
6-68
6-69
6-70
6-71
6-72
6-73
6-74
6-75
6-76
6-77
6-78
6-79
6-80
6-81
6-82
6-83
6-84
6-85
6-86
6-87
6-88
6-89
6-90
6-91
6-92
6-93
6-94
6-95

Implied DO Loop in Input/Output
Statement Example

Formatted READ Statement Format
Formatted READ Statement Example
Formatted WRITE Statement Format
Formatted Write Statement Example
PRINT Statement Format
PRINT Statement Example
PUNCH Statement Format
PUNCH Statement Example
FORMAT Statement Format
FORMAT Statement Example
Character Format Specification Example
A Descriptor Format
A Descriptor Example
B Descriptor Format
B Descriptor Example
BN Descriptor Format
BN Descriptor Example
BZ Descriptor Format
BZ Descriptor Example
D Descriptor Format
D, E, F, and G Input Field Format
D Output Field Format
D Descriptor Example
E Descriptor Format
E Output Field Format
E Descriptor Example
F Descriptor Format
F Output Field Format
F Descriptor Example
G Descriptor Format
G Descriptor Example
H Descriptor Format
H Descriptor Example
I Descriptor Format
I Descriptor Example
L Descriptor Format
L Descriptor Example
P Descriptor Format
P Descriptor Example
R Descriptor Format
R Descriptor Example
S Descriptor Format
S Descriptor Example
SP Descriptor Format
SP Descriptor Example
SS Descriptor Format
SS Descriptor Example
T Descriptor Format
T Descriptor Example
TL Descriptor Format
TL Descriptor Example
TR Descriptor Format
TR Descriptor Example
X Descriptor Format
X Descriptor Example
Z Descriptor Format
Z Descriptor Example
Apostrophe Descriptor Format
Apostrophe Descriptor Example
Slash Descriptor Format
Slash Descriptor Example
Colon Descriptor Format
Colon Descriptor Example
Unformatted READ Statement Format
Unformatted READ Statement Example
Unformatted WRITE Statement Format
Unformatted WRITE Statement Example
List-Directed READ Statement Format
List-Directed READ Statement Examples
List-Directed WRITE Statement Format

60480200 H

6-12
6-13
6-14
6-14
6-15
6-15
6-15
6-16
6-16
6-16
6-17
6-17
6-18
6-20
6-21
6-21
6-21
6-22
6-22
6-22
6-22
6-23
6-23
6-23
6-24
6-24
6-25
6-25
6-25
6-26
6-26
6-27
6-27
6-28
6-28
6-28
6-29
6-29
6-29
6-30
6-30
6-31
6-32
6-32
6-32
6-32
6-32
6-33
6-33
6-33
6-34
6-34
6-35
6-35
6-35
6-36
6-36
6-37
6-37
6-37
6-37
6-38
6-38
6-39
6-39
6-40
6-40
6-40
6-41
6-41
6-42

6-96
6-97
6-98
6-99
6-100
6-101
6-102
6-103
6-104
6-105
6-106
6-107
6-108
6-109
6-110
6-111
6-112
6-11]

6-114

6-115
6-116

6-117
6-118
6-119
6-120
6-121
6-122
6-123
6-124
6-125
6-126

6-127
6-128
7-1
7-2
7-3
7-4

7-5
7-6
7-7

7-8

7-9
7-10

7-11
7-12
7-13

7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
8-1
8-2
8-3

8-4

8-5
8-6

List-Directed WRITE Statement Examples
List-Directed PRINT Statement Format
List-Directed PRINT Statement Example
List-Directed PUNCH Statement Format
List-Directed PUNCH Statement Example
NAMELIST Statement Format
NAMELIST Statement Example
Namelist READ Statement Format
Namelist READ Statement ~xample
Namelist WRITE Statement Format
Namelist WRITE Statement Example
Namelist PRINT Statement Format
Namelist PRINT Statement Example
Namelist PUNCH Statement Format
Namelist PUNCH Statement Example
Namelist Input Format
Namelist Output Format
Formatted Direct Access Input/Output

Example
Unformatted Direct Access Input/Output

Example
Internal File Input/Output Example
DECODE Statement Format

DECODE Statement Example
ENCODE Statement Format
ENCODE Statement Example
OPEN Statement Format
OPEN and CLOSE Statement Examples
CLOSE Statement Format
INQUIRE Statement Format
INQUIRE Statement Examples
REWIND Statement Format
REWIND, BACKSPACE, and ENDFILE

Statement Example
BACKSPACE Statement Format
ENDFILE Statement Format
Main Program Structure
PROGRAM Statement Format
END Statement Format
Main Program, Function, and Subroutine

Example
Function Subprogram Structure
FUNCTION Statement Format
Modification of Function Arguments

Example
RETURN Statement for Function

Subprograms Format
Function Reference Format
Function With Same Name as an Intrinsic

Function Example
Subroutine Subprogram Structure
SUBROUTINE Statement Format
RETURN Statement for Subroutine

Subprograms Format
CALL Statement Format
ENTRY Statement Format
Secondary Entry Points Example
Block Data Subprogram Structure
BLOCK DATA Statement Format
BLOCK DATA Statement Examples
Statement Function Definition Format
Statement Function Reference Format
Statement Function Example
Implied DO Subscript Expression Format
Order of Subarray Elements Example
Subarray References Using Columnwise

and Rowwise Arrays Example
Conformable and Nonconformable Subarray

References Examples
Array Expressions Examples
Array Assignment Statement Format

6-42
6-42
6-42
6-43
6-43
6-45
b-45
6-45
6-46
6-46
6-47
6-47
6-47
6-48
6-48
6-48
6-49

6-50

6-50
6-51
6-51

6-52
6-52
6-53
6-53
6-54
6-54
6-55
6-56 I
6-56

6-56
6-57 I
6-':J7
7-1
7-2
7-2

7-3
7-3
7-4

7-5

7-5
7-5

7-6
7-6
7-6

7-7
7-8
7-9
7-10
7-10
7-11
7-11
7-11
7-12
7-12
8-1
8-2

8-2

l!-3
l!-3
8-3

xiii

8-7
9-1

9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11

9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24

9-25

9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33
9-34

9-35
9-36

9-37
9-38
9-39

9-40

9-41

1
9-41.l

9-41.2

9-42
9-43
9-44
9-45
9-46

9-47

I 9-48
9-49
9-50
9-51

I 9-52
9-53
10-1
10-2
10-2.1
10-2.2
10-3

xiv

Array Assignment Statement Examples
Scalar vs, Vector Processing

Illustration
Vector Reference Format
Vector Reference Examples
Descriptor Representation
Descriptor Examples
DESCRIPTOR Statement Format
DESCRIPTOR Statement Example
Vector Initialization Example
Descriptor Initialization Example
Descriptor ASSIGN Statement Format
Descriptor ASSIGN and FREE Statement

Examples
FREE Statement Format
Bit Constants Format
Bit Constants Examples
BIT Statement Format
BIT Statement Example
Initialization of Bit Items Examples
Vector Arithmetic Expression Format
Vector Arithmetic Expression Examples
Vector Relational Expression Format
Vector Relational Expression Examples
Bit Expression Format
Bit Expression Examples
Vector Arithmetic Assignment Statement

Format
Vector Arithmetic Assignment Statement

Examples
Bit Assignment Statement Format
Bit Assignment Statement Examples
WHERE Statement Format
WHERE Statement Examples
Block WHERE Statement Format
OTHERWISE Statement Format
END WHERE Statement Format
Simple Block WHERE Structure
Block WHERE Structure With OTHERWISE

Statement
Block WHERE Structure Examples
FUNCTION Statement Format for Vector

Functions
Vector Function Reference Format
Vector Function Examples
ENTRY Statement for Vector Functions

Format
Example of Secondary Entry Points in

Vector Functions
DO Loops
DO Loops With the Incrementation

Parameter Ill
DO Loops With the Incrementation

Parameter 112
Vectorizable Loop #1
Vectorizable Loop #2
Vectorizable Loop #3
General Form of Recursive Assignments
Vectorizable and Nonvectorizable

Loops With Scalars
Subscript Expression Forms
Vectorizable Loop #4
Feedback Example
Overlap Example
Possible Feedback With Generalized

Subscripts
Transformable Loops
Vectorizer Output
Function Q8VGATHP Example
Q8VGATHR Function Example
Q8VGEI Function Example
Q8VLTI Function Example
Q8VSCATP Function Example With Vector

Input Argument

8-4

9-2
9-2
9-3
9-3
9-3
9-3
9-4
9-4
9-4
9-5

9-5
9-5
9-6
9-6
9-6
9-6
9-7
9-7
9-8
9-8
9-9
9-9
9-9

9-10

9-11
9-11
9-11
9-11
9-12
9-12
9-12
9-12
9-13

9-13
9-14

9-14
9-14
9-15

9-15

9-15
9-19

9-19

9-19
9-20
9-20
9-20
9-21

9-21
9-21
9-22
9-22
9-22

9-23
9-23
9-24

10-25
10-25
10-26
10-26

10-28

10-4

10-5
10-6
10-7
10-8
10-9
10-10
10-ll

10-12
10-13

11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-7.l
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
12-1
12-2
12-3
12-4
12-5
12-b
12-b.l

12-7
13-1

13-2

13-3

13-4
13-5
13-6
14-1

14-2
14-3
14-4
14-5
14-b
14-7
14-8

Q8VSCATP Function Example With
Scalar Input Argument

Q8VSCATR Function Example
Bit Vector Mask Example
Nonunit Stride Example
Conditional Vector Store - Example
Conditional Vector Store - Example 2
Vector Summing Example
Minimum and Maximum Element Search

Example
Gathering and Scattering Example
Greatest Absolute Value Search

Example
RANGET Call Format
RANSET Call Format
VRANF Call Format
Q7BUFIN Call Format
Q7BUFOUT Call Format
Q7WAIT Call Format
Q7SEEK Call Format
Q7STOP Call Format
Q8WIDTH Call Format
Data Flag Branch Register Format
Scope of Selected Conditions
Q7DFCL1 Call Format
Q7DFSET Call Format
Q7DFBR Call Format
Q7DFLAGS Call Format
Q7DFOFF Call Format
SEP Call Format
MDUMP Call Format
Special Call Statement Format
Special Call Statement Example #1
Special Call Statement Example #2
Special Call Statement Example #3
Generated Code
Alternate Generated Code
Special Call Examples That

Vectorize DO Loops
Instruction Formats
Example of a NOS 2 Interactive

Session Submitting a CYBER 200 Job
Example of a NOS 2 Interactive

Session Submitting a CYBER 200
Job With the GO Option

Example of a CYBER 200 Interactive
Logan and Logout From a NOS 2
Front-End System

SIL Call Format
Standard Calling Sequence
Fast Calling Sequence Example
Control Statement Example With

Default Values
Control Statement Example
Statement Label Map Format
Source Listing Example
Variable Map Format
Symbolic Constant Map Format
Procedure 11ap Format
Compiled-Module Listing (Index Map)

Example

TABLES

1-1
2-1
2-2
2-3

2-4
3-1
3-2

Types of Statements
FORTRAN Character Set
Array Element Size
Subscripting Order for a Three-

Dimensional Array A(2,3,4)
Array Position Formulas
Alignment Requirements
Alignment Requirements for

Equivalence (Xl,X2)

10-28 .1
10-29
10-40
10-41
10-41
10-42
10-42

10-41
10-43

10-43
11-1
11-1
11-1
11-)
11-4
11-4
ll-5
11-5
11-5
11-b
11-10
11-11
11-11
11-12
11-12
11-12
11-13
11-14
12-1
12-2
12-2
U-2
12-2
12-3

12-3
12-15

13-2

13-b

13-8
13-9
13-9
13-10

14-6
14-6 .1
14-b.l
14-7
14-12
14-13
14-14

14-15

1-2
2-1
2-8

2-9
2-10
3-7

3-9

60480200 H

I

I

3-3
4-1
4-2

4-3
4-4
4-5
4-6

4-7
4-8

6-1
6-2
6-3
6-4
7-1
7-2

7-3

7-4

Initialization Conversions
Arithmetic Operators
Result Type for Arithmetic Operations

+ - * I
Result Type for OPl ** OP2
Relational Operators
Logical Operators
Truth Table Definitions of Logical

Operators
Precedence of Operators
Type Conversion for Scalar Arithmetic

Assignment
Control Information List Specifiers
Carriage Control Characters
Edit Descriptors
Values for dl, w, d, and e
File Connection Examples
Automatically Preconnected Files &nd

Units
Differences Between Functions and

Subroutines
Dummy and Actual Argument

Correspondence

60480200 H

3-14
4-1

4-2
4-2
4-3
4-4

4-4
4-5

4-6
6-4
6-13
6-19
6-44
7-1

7-1

7-3

7-9

9-1

9-2
9-3

9-4

9-5

10-1
10-2
10-3
10-4
11-1
11-2
11-3
12-1
12-2
12-3
14-1

Type Conversion for Vector Arithmetic
Assignment (v a aexp)

Criteria for Vectorizable Loops
Criteria for Vectorizable Scalar

Assignments
Criteria for Vectorizable

Expressions
Criteria for Vectorizable Array

Elements
Scalar Intrinsic Functions
Vector Intrinsic Functions
Mathematical Functions
Bit Manipulation Functions
Data Flag Branch Conditions
Multiple Interrupt Processing
STACKLIB Routines
Operand Designators
Special Call Formats
Special Calls Listed by OP Code
Keyword Abbreviations and Parameter

Defaults

9-10
9-16

9-17

9-18

9-18
10-1
10-6
10-9
10-40
11-7
11-11
11-15
12-4.2
12-5
12-14

14-1

xv/xvi I

NOTATIONS

Certain notations are used throughout this manual.
The meanings of these notations are:

UPPERCASE

lowercase

[)

{}

60480200 G

Uppercase letters in syntax repre­
sent elements, such as language
keywords, that must appear exactly
as shown.

Lowercase letters in syntax repre­
sent entities that you must supply.

Brackets surrounding an
syntax denote that the
optional.

item
item

in
is

Braces surrounding two or more
stacked items in syntax denote that
one of the stacked items must be
used.

shading

A delta represents a blank that is
not optional.

A horizontal ellipsis indicates
that the previous item in syntax
can be repeated more than once.

A vertical ellipsis indicates that
one or more lines have been deleted
from a listing or example.

Shading indicates features or
parameters that are extensions or
restrictions to standard FORTRAN
as described in ANSI docment
XJ.9-1978.

xvii I

I

INTRODUCTION 1

The CONTROL DATA FORTRAN 200 compiler operates under
control of the CYBER 200 Virtual Storage Operating
System on the CYBER 200 series computer hardware.
The FORTRAN 200 compiler translates FORTRAN source
code into relocatable binary object code.

A FORTRAN program can be entered onto a file by
using a card reader or a terminal, and a control
statement can be used to invoke the FORTRAN com­
piler. The compiler reads the source code from the
file and processes the program, generating a source
listing and object code. The source listing is a
list of source statements and any diagnostic infor­
mation generated by the compiler. The object code
can be loaded and executed by using control
statements.

The FORTRAN 200 language is a superset of the
standard FORTRAN language that is defined in the
American National Standards Institute (ANSI) do cu-
ment ANSI X3.9-1978. The FORTRAN 200 compiler
provides two types of extensions to the standard
FORTRAN language:

Extensions that are common in FORTRAN languages
implemented on other Control Data computers

Extensions that provide access to the vector
processing capabilities of the CYBER 200 series
computer hardware

This manual uses shading to indicate those features
that are extensions to the standard FORTRAN lan­
guage.

This section describes the general structure of a
FORTRAN program and of FORTRAN statements.

PROGRAM STRUCTURE
A FORTRAN program consists of one or more
separately-defined program units. A program unit,
which consists of a series of comment lines and
source lines containing FORTRAN statements, is
either a main program or a subprogram. A FORTRAN
program must contain one main program; it can also
contain any number of subprograms.

A FORTRAN main program begins with an optional
PROGRAM statement and ends with an END statement.
If you omit the PROGRAM statement, the compiler
supplies a default PROGRAM statement. The main
program must end with an END statement. The PROGRAM
statement and the END statement are described in
section 7.

A FORTRAN subprogram begins with a SUBROUTINE,
FUNCTION, or BLOCK DATA statement, and ends with an
END statement. These statements are described in
section 7. Subprograms can be written in languages
other than FORTRAN, such as CYBER 200 assembly lan­
guage, but special consideration must be given to
the interface; see section 13 for more information.

60480200 H

The FORTRAN compiler provides a number of predefined
subprograms that you can reference in your FORTRAN
program. These subprograms are described in
sections 10 through 13, and in appendix E.

See figure 1-1 for an example of a complete FORTRAN
200 program. The program in figure 1-1 consists of
one main program; it does not contain any sub­
programs.

The program shown in figure 1-1 is written on a
FORTRAN coding form. Each line of the coding form
represents a source line that can be keypunched, or
typed at a terminal.

STATEMENTS
There are two classes of statements in the FORTRAN
language: executable statements and nonexecutable
statements. Executable statements describe the
operations that the compiled program performs. All
the executable statements in a program together
constitute the execution sequence of the program.

Executable statements do the following:

Control the order in which the statements in
the program execute

Input, output, modify, and store data

Nonexecutable statements are not
execution sequence of the program.
perform the following functions:

part of the
Instead, they

Describe the characteristics, arrangement,
format, and initial values of data

Classify program units

Define entry points within subprograms

Optionally, specify the file requirements of
the program

See table 1-1 for a summary of the types of state­
ments.

STATEMENT STRUCTURE

The FORTRAN 200 language is a fixed-format
programming language; this means that the position
of a FORTRAN statement in the source line is sig­
nificant to the meaning of the statement. FORTRAN
source lines can be a maximum of 9b columns long.
FORTRAN source lines consist of four fixed fields:

The label field is in columns 1 through 5 of
each source line and can contain a statement
label. Column 1 of the label field can also be

1-1

... Tl ._or I= -

Figure 1-1. FORTRAN Program Example

TABLE 1-1 • TYPES OF STATEMENTS

Executable Nonexecutable

Assignment statements Specification and
initialization
statements

Flow control statements FORMAT and NAMELIST
statements

Input/output statements PROGRAM, FUNCTION,
SUBROUTINE , and
BLOCK DATA statements

END statement

1-2

used to specify that the source line is a
comment line. Statement labels and comments
are described later in this section.

The continuation field is in column 6 of each
source line · and is used to specify that the
source line is a continuation line for the
statement that appears in the previous source
line. Continuation lines are discussed later
in this section.

The statement field is in columns 7 through 72
of each source line and contains the FORTRAN
statement. The statement can appear anywhere
in the statement field. Blanks in FORTRAN
statements are ignored except in character con­
stants and in Hollerith constants. If a state­
ment is too long to be contained in the
statement field of one source line, it can be
continued in the statement field of subsequent
source lines. Statement continuation is
discussed later in this section.

The length of a source line can range from 80 I
columns (card input) to 9b columns. The
identification field is ignored by the
compiler; therefore, you can place any
information in this field. The contents of the
identification field are written on the source
listing. One possible use of the identification
field is to number the cards in a punched card
deck.

See figure 1-2 for an illustration of the structure
of FORTRAN statements.

ST AT EM ENT LABELS

A statement label is a 1- through 5-digit integer.
A statement label can appear in the label field of

60480200 H

5 6 72 73 80

I 11
~---------------

I I
~--

~ '''''""" fl•ld

l__ Identification field (ignored>

,___Continuation field Ca blank or a zero
indicates an initial Line; any other
character indicates a continuation Line)

.__Label field Ccan contain a statement Label; a C
or* in column 1 indicates a comment Line)

Figure 1-2.

a statement and identifies the statement so that it
can be referenced from elsewhere in the program
unit. A label can be referenced more than once,
but it must not be defined more than once in a
program unit. A label in one program unit cannot
be referenced in another program unit. A statement
does not need a label unless it is referenced in
another statement. Blanks and leading zeros in
labels are ignored. Labels on continuation state­
ments are ignored. Labels do not have to appear in
numerical order.

INITIAL LINES

An initial line is a source line in which a FORTRAN
statement begins.
statement label.

An initial line can contain a
Column 1 of an initial line must

not contain the letter C or an asterisk. The con­
tinuation field of an initial line must contain a
blank or a zero. The FORTRAN statement can appear
anywhere in the statement field.

CONTINUATION LINES

A continuation line is a source line that contains
a continuation of the statement that appears in the
previous source line. You specify a source line to
be a continuation line by placing a character other
than a blank or zero in the continuation field.

The label field of a continuation line is ignored
by the compiler; however, column 1 of a continuation
line must not contain the letter C or an asterisk.

The statement field of a continuation line contains
a portion of the FORTRAN statement that is not
contained in the previous source line.

A FORTRAN statement can be continued on up to 19
continuation lines. The maximum length of a FORTRAN
statement is 1320 characters. This is computed by
multiplying 66 characters, which is the length of
the statement field, by 20 lines (one initial line
plus 19 continuation lines).

60480200 F

Statement Structure

A continuation line can follow an initial line or
another continuation line. Comment lines can appear
between an initial line and a continuation line, and
between two continuation lines.

COMMENT LINES

A comment line is a source line that can be used to
document the program. You specify a source line to
be a comment line by placing the letter C or an
asterisk in column 1 of the source line. You can
place any characters in the remaining columns of
the source line. Any of the characters listed in
appendix A can be used in comments, including those
that are not in the FORTRAN character set.

Comment lines are printed on the source listing,
but have no effect on program execution or on the
object code produced by the compiler.

Source lines that contain blanks in columns
through 72 are considered to be comment lines.

Comment lines can appear anywhere in the program,
including between an initial line and a continuation
line, and between two continuation lines. Comment
lines that are placed after an END statement are
printed at the beginning of the next program unit.

STATEMENT ORDER

There are restrictions on the order in which
statements can appear in a program unit. See figure
1-3 for an illustration of the statement order
restrictions.

The figure shows that a PROGRAM, SUBROUTINE,
FUNCTION, or BLOCK DATA statement must appear first
in a program unit, although a comment line can
precede the PROGRAM, SUBROUTINE, FUNCTION, or BLOCK
DATA statement. If a PROGRAM statement is not
specified in the main program, the compiler uses a
default PROGRAM statement. Comment lines can appear
anywhere in a program unit. Comment lines that

1-3

PROGRAM, FUNCTION, SUBROUTINE,
BLOCK DATA

PARAMETERtt

IMPLICITttt

Other
Specification
Statements Comment

Lines
FORMAT,
ENTRYt Statement

Function
Definitions

DATA NAME­
LIS T

END

Executable
Statements

tMust not appear in an if-block, elseif-block,
else-block, where-block, or otherwise-block,
or in the range of a DO statement.

ttif the type of the constant used in the
PARAMETER statement depends on an IMPLICIT or
type specification statement, the PARAMETER
statement must appear after the IMPLICIT or
type specification statement.

tttif this statement specifies the type of a
constant that is used in a PARAMETER state­
ment or in an array bound expression, it must
appear before the PARAMETER statement or the
statement that contains the array bound
expression.

Figure 1-3. Statement Order

appear after an END statement are printed at the
beginning of the next program unit.

FORMAT and ENTRY statements must appear before the
END statement. The ENTRY statement must not appear
in an if-block, elseif-block, else-block, where­
block, or otherwise-block, or in the range of a DO
statement.

PARAMETER statements must appear before any DATA
statements. If the type of a constant that is used
in a PARAMETER statement depends on an IMPLICIT or
on a type specification statement, the IMPLICIT or
type specification statement must precede the
PARAMETER statement.

1-4

DATA statements must appear after any PARAMETER
statements.

IMPLICIT statements must appear before any other
specification statements (except PARAMETER state­
ments), statement function definitions, and exe­
cutable statements. If the type of a constant that
is used in a PARAMETER statement depends on an
IMPLICIT statement, the IMPLICIT statement must
appear before the PARAMETER statement. If the type
of an integer variable that is used in a dimension
bound expression depends on an IMPLICIT statement,
the IMPLICIT statement must appear before the
statement in which the dimension bound expression
appears.

Specification statements other than the IMPLICIT
statement must appear after any IMPLICIT statements,
and before any statement function def ini t.ions and
executable statements. If the type of a constant
that is used in a PARAMETER statement depends on a
type specification statement, that type specifica­
tion statement must appear before the PARAMETER
statement. If the type of an integer variable that
is used in a dimension bound expression depends on
a type specification statement, that type specifi­
cation statement must appear before the statement
in which the dimension bound expression appears.

Statement function definitions must appear after
any IMPLICIT and type specification statements, and
must appear before any executable statements.

Executable statements must appear after any IMPLICIT
and type specification statements, and statement
function definitions.

The END statement must be the last statement in a
program unit.

INPUT DATA
Input data are data that are transferred from an
external medium, such as a disk or tape, to an area
in memory that can be accessed by the program.
Input data are not part of the source program
record. Input statements cause data to be input to
the program.

The data that appear on an input line can be in any
format; there are no fixed fields for input data.
The fields of an input line that are read by an
input statement are determined by the input state­
ment or by any associated FORMAT statement. See
section 6 for more information about input data.

60480200 H

LANGUAGE ELEMENTS 2

This section describes the language elements that
are used to construct FORTRAN 200 statements. The
language elements include characters, symbolic
names, keywords, constants, symbolic constants,
variables, arrays, and substrings. This section
also describes the internal representation of data.

CHARACTER SET
Any of the 52 characters listed in table 2-1 can be
used in the syntax of a FORTRAN program. These
characters are from the American Standard Character
Set for Information Interchange (ASCII), CYBER 200
characters that are not listed in table 2-1 can be
used in comments, character constants, and
Hollerith constants.

TABLE 2-1. FORTRAN CHARACTER SET

Character Class Characters

Alphabetic Uppercase letters A
through Z

N\Deric Digits 0 through 9

Special /J,. Blank or space - Equals sign
+ Plus sign
- Minus sign or hyphen

* Multiplication sign or
asterisk

I Division sign or slash
(Left parenthesis
) Right parenthesis

• Comma . Decimal point or period
& Ampersand , Apostrophe
: Colon
; Semicolon
[Left bracket
] Right bracket

See appendix A for the internal hexadecimal repre­
sentations, printer graphic representations, and
card punches for the CYBER 200 character set.

Some of the characters do not appear on all key­
punches and terminals, If your keyboard lacks a
character that you need, then use whatever character
that is present which has the same internal
hexadecimal representation as the needed character.

Blanks are not significant in FORTRAN statements
except in character constants and Hollerith
constants. Therefore, you can insert blanks in
statements to make the program more readable. You
can also insert blanks in language elements, such

60480200 H

as symbolic names and constants. The symbol /Ji. is
used in this manual to denote a blank that is not
optional.

SYMBOLIC NAMES
A FORTRAN 200 symbolic name is user-supplied, can I
have up to eight letters and digits, and must begin
with a letter. Symbolic names can be any of the
following:

Main program name

Subroutine name

Function name

Block data subprogram name

Statement function name

Symbolic constant name

Variable name

Array name

Descriptor name

Descriptor array name

Common block name

Namelist group name

A symbolic name can be the same as a FORTRAN
keyword, Conflicts can occur if a symbolic name is
used to represent more than one program component.
For example, a symbolic name must not be used as
both a main program name and a variable name. Con­
flicts can also occur if a symbolic name duplicates
the name of a predefined subroutine, the name of an
intrinsic function, or a special call name.

See figure 2-1 for examples of legal and illegal
symbolic names.

Legal symbolic names:

LEGAL
LEGAL1
READ
OKSYMBOL

Illegal symbolic names:

ILLEGAL!
1BADSYM
SYMBOLTOOLONG

Figure 2-1. Symbolic Name Examples

2-1

FORTRAN KEYWORDS
A FORTRAN keyword is a name that has a special
meaning to the FORTRAN compiler when used in the
appropriate context. FORTRAN keywords are not
reserved words; therefore, you can use the keywords
as symbolic names.

Some of the characters in the FORTRAN character set
have special meanings to the compiler when used in
the appropriate context. For example, a comma used
in a statement punctuates the statement.

CONSTANTS
A constant is a value that cannot be changed by the
program. The 10 types of constants are: integer,
half-precision, real, double-precision, complex,
logical, character, Hollerith, hexadecimal, and bit.

An arithmetic constant is a constant that is of
type integer, real, double-precision, half­
precision or complex. An arithmetic constant can
be either signed or unsigned. A signed constant is
an arithmetic constant with a leading plus or minus
sign. An unsigned constant is an arithmetic
constant without a leading sign.

A constant is identified in a program by a symbolic
name or by the constant value. A constant that is
identified by a symbolic name is called a symbolic
constant. Symbolic constants are described later
in this section.

A constant that is identified by the constant value
has a specific source program format that depends
on the type of the constant. The source program
formats of constants are described in the following
paragraphs. The internal representation of each
type of constant is described later in this section.
See section 9 for a description of bit constants.

INTEGER CONST ANTS

An integer constant is a string of decimal digits
that does not contain a decimal point or a comma.
See figure 2-2 for the format of an integer con­
stant. See figure 2-3 for examples of legal and
illegal integer constants.

sign dee-digits

sign

dee-digits

A plus sign or a minus sign;
optional. If a sign is not
specified, the constant is
positive.

A string of 1 to 14 of the decimal
digits 0 through 9.

Figure 2-2. Integer Constants Format

Legal integer constants:

0
-1957
1980
12345678901234

Illegal integer constants:

1.957
123,456
123456789012345

Figure 2-3. Integer Constants Examples

HALF-PRECISION CONST ANTS

A half-precision constant is a string of decimal
digits that contains an exponent, or a decimal point
and an exponent. A half-precision constant is
written like a real constant or a double-precision
constant except the letter S is used instead of the
letter E or the letter D. The exponent portion of
a half-precision constant must always be written.
See figure 2-4 for the format of a half-precision
constant.

sign man S sign exp

sign A plus sign or a minus sign; optional.
If a si_gn is not specified, the value
that follows the sign is positive.

man A string of one or more of the decimal
digits 0 through 9 that represent the
mantissa of the half-precision
constant. One decimal point can appear
anywhere in the string.

exp A string of one or more of the decimal
digits 0 through 9 that represent the
base 10 exponent of the half-precision
constant.

Figure 2-4. Half-Precision Constants Format

The value of a half-precision constant is the
product of the mantissa and the result of 10 raised
to the exponent. The minimum and maximum half­
precision constants are approximately -2. l 77807S40
and 2.177807S40. See figure 2-5 for examples of
legal and illegal half-precision constants. The
values that the half-precision constants represent
are shown in parentheses.

2-2 60480200 F

Legal half-precision constants:

8S10

3.5S15

4.2S-111

-3. 5S-15

-4.25111

Illegal half-precision constants:

1957
1.957
1.95751.957
200.95
12.12.12550

<8.0•1010)

(3.5•101 5>

C4.2•1o-1 11>

C-3.5•10-15>

(-4.2•10111)

Figure 2-5. Half-Precision Constants Examples

REAL CONST ANTS

A real constant is a string of decimal digits that
contains a decimal point or an exponent, or both,
See figure 2-6 for the format of a real constant.

60480200 F 2-2.112-2.2 I

sign man E sign exp

sign A plus sign or a minus sign; optional.
If a sign is not specified, the value
that follows the sign is positive.

man A string of one or more of the decimal
digits 0 through 9 that represent the
mantissa of the real constant. One
decimal point can appear anywhere in
the string.

exp A string of one or more of the decimal
digits 0 through 9 that represent the
base 10 exponent of the real constant;
optional. If exp is not specified, the
preceding E and sign must not be
specified.

Figure 2-6. Real Constants Format

The value of a real constant is the product of the
mantissa and the result of 10 raised to the
exponent. See figure 2-7 for examples of legal and
illegal real constants. The values that the legal I constants represent are shown in parentheses. The
minimum and maximum real constants are approxi­
mately -9.53E8644 and 9.53E8644.

Legal real constants:

2E100
1.957
-19.84

3.5E15

4.2E-111

-3.5E-15

-4. 2E111

Illegal real constants:

123,456.789
1. 957E1. 957
200.9E
12.12.12E50

C2.0*1o100)_
C1. 957>
<-19.84)

C3.5*1015)

C4.2*1o-111 >

C-3.5*10-15>

C-4.2*10111 >

Figure 2-7. Real Constants Examples

DOUBLE-PRECISION CONSTANTS

A double-precision constant is a string of decimal
digits that contains an exponent, or a decimal
point and an exponent. A double-precision constant
is written like a real constant or a half-precision
constant except the letter D is used instead of the
letter E or the letters. The exponent portion of·
a double-precision constant must always be written.
See figure 2-8 for the format of a double-precision
constant.

The value of a double-precision constant is the
product of the mantissa and the result of 10 raised
to the exponent. See figure 2-9 for examples of
legal and illegal double-precision constants. The

60480200 E

values that the legal constants represent are shown
in parentheses. The minimum and maximum double-1
precision constants are approximately -9.53D8644
and 9.53D8644, respectively.

sign man D sign exp

sign

man

A plus sign or a minus sign; optional.
If a sign is not specified, the value
that follows the sign is positive.

of one or more of the decimal
through 9 that represent the
of the double-precision

A string
digits 0
mantissa
constant. One decimal point can appear
anywhere in the string.

exp A string of one or more of the decimal
digits 0 through 9 that represent the
base 10 exponent of the double­
precision constant.

Figure 2-8. Double-Precision Constants Format

Legal double-precision constants:

7D100

3.5D15

4.2D-111

-3.5D-15

-4.2D111

Illegal double-precision constants:

1957
1.957
1.957D1.957
200.9D
12.12.12D50

(7.0*10100)

(3.5*101 5>

C4.2*1o-1 11>

C-3. 5*10-15>

C-4.2*10111 >

Figure 2-9. Double-Precision Constants Examples

COMPLEX CONSTANTS

A complex constant is a pair of real or integer
constants separated by a comma and enclosed in
parentheses. See figure 2-10 for the format of a
complex constant. See figure 2-11 for examples of
legal and illegal complex constants.

Creal-part,imag-part)

real-part

imag-part

A real or integer constant that
represents the real part of the
complex constant

A real or integer constant that
represents the imaginary part of
the complex constant

Figure 2-10. Complex Constants Format

2-3

Legal complex constants:

(1957,1957)
C1.957,3.5E15)
C-4.2E-111,3.5E-15)

Illegal complex constants:

1957, 1957
C1. 957 ,3. 5D15 >
C-4.2S-111,3.5E-15>

Figure 2-11. Complex Constants Examples

LOGICAL CONSTANTS

A logical constant is one of two specific strings
of characters. See figure 2-12 for the format of a
logical constant. The decimal points are part of
the logical constant and must be written. See
figure 2-13 for examples of legal and illegal
logical constants.

.Logical-value.

Logical-value One of the following
character strings:

TRUE
FALSE

Figure 2-12. Logical Constants Format

Legal Logical constants:

• TRUE.
• FALSE.

Illegal Logical constants:

TRUE
FALSE
0
1

Figure 2-13. Logical Constants Examples

CHARACTER CONSTANTS

A character constant is a string of one or more
characters enclosed in apostrophes. See figure 2-14
for the format of a character constant.

2-4

'char-string'

char-string A string of 1 through 65535
characters from the CYBER 200
character set

Figure 2-14. Character Constants Format

Blanks are significant in a character constant.
Any of the characters listed in appendix A can be
used in a character constant. In order to represent
an apostrophe in a character constant, two consecu­
tive apostrophes must be written.

Character constants, unlike Hollerith constants:,
can be used in character expressfons and in char­
acter assignment statements. Character constants
must not be used in arithmetic expressions or in
arithmetic assignment statements.

See figure 2-15 for examples of legal and illegal
character constants. The symbol l!J. is used to
denote blanks in the character constants shown.

Legal character constants:

'LEGAL l!J. CHARACTER l!J. CONSTANT'
112345 /j, 67890 /j, I

I !iil#SXll!'
'WHAT' 'Sl!J. UP?'

Illegal character constants:

'ILLEGAL.6 CHARACTER l!J. CONSTANT"
'PI /j, IS /j, '"I

Figure 2-15. Character Constants Examples

~Ff·WCCN•ANfl'.l"Y,:; •
p .

!A Hollerith constant is a string of one or moi•
reharacters preceded by an unsigned integer and th~
;letter H or the letter R. See figure 2-16 for t~
!foniat of a Hollerith constant.
X' .
:::.,·:

:
count H string

or
count R string

count An unsigned integer constant that
specifies the exact number of
characters in the Hollerith constant;
count must be greater than 0 and no
greater than 255.

string A string of characters from the CYBER
200 character set. This string begins
in the next character position after
the H or R and must contain exactly
the number of characters specified in
count.

Figure 2-16. Hollerith Constants Format

Blanks are significant in a Hollerith constant.
Any of the characters listed in appendix A can be
used in a Hollerith constant.

There are two types of Hollerith constants: H type
and R type. An H type Hollerith constant is left­
justified and blank-filled; an R type Hollerith
constant is right-justified and binary-zero-filled.
The internal representation of Hollerith constants
is described later in this s,ection.

60480200 A

Hollerith constants, unlike character constants,
can be used in arithmetic expressions and in arith­
metic assignment statements. Hollerith constants
must not be used in character expressions or in
character assignment statements.

See figure 2-17 for examples of legal and illegal
Hollerith constants. The symbol A is used to
denote blanks in the Hollerith constants shown.

Legal Hollerith constants:

24HLEGALA HOLLERITH A CONSTANT
5R12345
6H!iil#SXI!
10HWHAT'Sl1 UP?

Illegal Hollerith constants:

OH ILLEGAL A HOLLERITH A CONSTANT
7HPI ti IS A 1T

Figure 2-17. Hollerith Constants Examples

HEXADECIMAL CONST ANTS

A hexadecimal constant is a string of hexadecimal
digits enclosed in apostrophes and preceded by the
letter X. See figure 2-18 for the format of a
hexadecimal constant. See figure 2-19 for examples
of legal and illegal hexadecimal constants.

X'hex-digits'

hex-digits A string of 1 through 255 of the
hexadecimal digits 0 through 9 and
A through F. The hexadecimal
digits correspond to the decimal
values 0 through 15.

Figure 2-18. Hexadecimal Constants Format

BIT CONSTANTS

Bit constants are a vector programming feature of
the FORTRAN 200 language. See section 9 for a
description of bit constants.

SYMBOLIC CONST ANTS
A symbolic constant is a constant identified by a
symbolic name. The value of a symbolic constant

CHARACTER•3 KAREN

Legal hexadecimal constants:

X'1957'
X'ABCDEF'
X'12A'

Illegal hexadecimal constants:

X''
X'WRONG'
z '12A I

Figure 2-19. Hexadecimal Constants Examples

must not be changed by the program. A symbolic
constant must be defined in a PARAMETER statement
before it is used in a program. See section 3 for
a description of the PARAMETER statement.

The eight types of symbolic constants are: integer,
half-precision, real, double-precision, complex,
logical, character, and bit. The type of a sym­
bolic constant is specified by the first letter of
the symbolic name or by a type specification state­
ment. If the type of a symbolic constant depends
on a type specification or IMPLICIT statement, the
type specification or IMPLICIT statement must
appear before the PARAMETER statement that defines
the constant. The internal representation of each
type of symbolic constant is described later in
this section.

Certain restrictions apply to symbolic constants.
A symbolic constant must not appear as part of
another constant. For example, if X is a real
symbolic constant, (O.,X) is not a complex constant.
A symbolic constant must not be used in a PROGRAM
or FORMAT statement. A symbolic constant must not
appear as input data.

See figure 2-20 for examples of symbolic constants.
The program segment shown in figure 2-20 defines
four symbolic constants:

MARY is a symbolic constant that represents the
integer value 10.

CATHY is a symbolic constant that represents
the real value 9.5.

KAREN is a symbolic constant that represents
the character value SHY.

BETH is a symbolic constant the represents the
logical value .FALSE ••

LOGICAL BETH
PARAMETERCMARY=10,CATHY=9.5,KAREN='SHY',BETH=.FALSE.>

Figure 2-20. Symbolic Constants Examples

60480200 A 2-5

CONSTANT EXPRESSIONS
A constant expression is an expression in which
only constants (or symbolic constants) and opera­
tors are used, If an arithnetic expression is
written using only constants and operators, the
expression is an arithmetic constant expression,
If a logical or character expression is written
using only constants and operators, the expression
is a logical constant expression or a character
constant expression, respectively.

Note that variable, array element, and function
references are not allowed. See section 4 for a
complete discussion of expressions,

VARIABLES
A variable is an entity whose value can be changed
during execution of the program. A variable is
identified by a symbolic name, which is called a
variable name. The FORTRAN compiler associates the
variable name with a storage location; whenever the
variable name is referenced in the program, the
value that is stored in that storage location is
referenced,

The eight types of variables are: integer, hal~
.precision, real, double-precision, complex, logical,
character, and bit, The type of a variable is
specified by the first letter of the variable name
or by a type specification statement, The internal
representation of each type of variable is described
later in this section.

See figure 2-21 for examples of variables, The
program segment declares two variables whose types
are specified by the first letter of the variable
name:

NEPTUNE is an integer variable,

EARTH is a real variable.

CHARACTER PLUTO
LOGICAL MARS

NEPTUNE = 5
EARTH = 2.5

Figure 2-21. Variables Examples

The program
whose types
statements:

segment al so declares
are specified by type

PLUTO is a character variable.

MARS is a logical variable.

2-6

two variables
specification

ARRAYS
An array is an ordered set of elements identified
by a single symbolic name, which is called an array
name. The value of each element of an array can be
changed during program execution. The FORTRAN
compiler associates each element of an array with a
storage location; whenever an array element is
referenced, the value that is in the corresponding
storage location is referenced. Whenever an entire
array is referenced, the values of all of the array
elements are referenced.

The eight types of arrays are: integer, half­
precision, real, double-precision, complex, logical,
character, and bit. The type of an array is
specified by the first letter of the array name or
by a type specification statement, The internal
representation of elements of each type of array is
described later in this section.

ARRAY DECLARATION

An array must be declared in a program unit before
it can be referenced in that program unit. All
declarations of a particular array must be the same
in all program units. An array can be declared
only once in a program unit and can be declared in
any one of the following statements:

DIMENSION statement

ROWWISE statement

COMMON statement

Any type specification statement

See section 3 for a description of these statements.
An array declarator is used in these statements to
specify the array name and the array size, See
figure 2-22 for the format of an array declarator.

See figure 2-23 for examples of array declarations.

An array is treated exactly like an assumed size
array, under the following conditions:

For

is

The array is a formal parameter.

No lower bound is specified.

The upper bound is one.

The ABC option is not selected (no subscript
checking),

When the array is the first dimension bound
declarator for a rowwise array and the last for
a columnwise array.

example:

FUNCTION F (A, B, C, N)
REAL A(N,l), B(l)
ROWWISE C(l,N)

equivalent to:

FUNCTION F (A, B, C, N)
REAL A(N,*), B(*)
ROWWISE C(*,N)

60480200 H

a-name(dims>
or

a-name<dims>•cl
or

a-name•cl<dims>

a-name A symbolic name that is the array name.

dims A list of 1 to 7 dimension bound declarators separated by commas. Each dimension bound
declarator has the following form:

cl

lower: upper

lower

upper

An integer expression that specifies the lower bound of the dimension; optional.
Any integer variables or integer array element references that appear in the
expression must appear in the dummy argument list of the subprogram, or in a common
block. Integer variables and integer array element references must not be used in
the expression if the array declarator appears in the main program. If lower is not
specified, the colon must not be written. If lower is not specified, the lower
bound of the dimension is 1.

An integer expression that specifies the upper bound of the dimension. Any integer
variables or integer array element references that appear in the expression must
appear in the dummy argument list of the subprogram, or in a common block. Integer
variables and integer array element references must not be used in the expression if
the array declarator appears in the main program. In array declarators that do not
appear in ROWWISE statements, the last upper in dims can be an asterisk. In array
declarators that appear in ROWWISE statements, the first upper in dims can be an
asterisk. The asterisk specifies that the upper bound of the dimension is unknown.

An unsigned integer constant greater than O, an integer constant expression enclosed in
parentheses, an asterisk enclosed in parentheses, or a simple integer variable; optional. The
cl specifies the length in characters of each element of a character array. If cl is an
asterisk enclosed in parentheses, the array must be a dummy argument in a subprogram. The
asterisk specifies that elements of the dummy array are the same length as those in the actual
array. The array declarator forms that use cl can only be used when the array declarator
appears in a CHARACTER statement.

Figure 2-22. Array Declaration Format

60480200 H 2-6.1/2-6.2 I

CO ... ON K
DIMENSION MOOSEC2,5:7,•>
REAL LIONC-2:1,5:•)
ROWWISE BEARC•,2:3,2)
ROWWISE MONKEYC3:•,5>
CHARACTER CHIMPC10)•8

MOOSEC1,6,1) = MONKEYC3,2)
LIONC-2,20) = BEARC1,2,1)

END
SUBROUTINE SWINGERSCI,J,CHIMP)
CO ... ON K
DIMENSION GORILLA(I+3,J:K-5,•)
CHARACTER CHIMPC10)•(•)

GORILLACI,J,1) = 3.5E47

END

Figure 2-23. Array Declarations and
References Examples

ARRAY REFERENCES

Particular elements of an array can be referenced
in a program unit by specifying the array name and
a list of subscripts. The subscripts specify the
position of the element in the array. See figure
2-24 for the format of an array element reference.

The number of subscripts in an array element refer­
ence must be the same as the number of dimensions
declared for the array in the array declaration.
This restriction does not apply if the array element
reference appears in an EQUIVALENCE statement.

See figure 2-23 for examples of array element
references.

An entire array can be referenced by specifying the
array name without subscripts. This causes all
elements of the array to be referenced except when
the array name appears in an EQUIVALENCE statement
or in namelist input. When an array name without
subscripts appears in an EQUIVALENCE statement or
in namelist input, only the first element of the
array is referenced.

60480200 H

a-name(subs>

a-na11e

subs

A S)llllbolic name that is the array
nane.

A list of scalar arithmetic
expressions of type integer, half­
precision, real, or double-precision
separated by commas. The nU11ber of
subscripts in the list must be the
s1111e as the nunber of array
declarators specified in the array
declaration. The value of each
subscript must not be less than the
lower bound of the dimension or
greater than the upper bound of the
dimension. If an expression in subs
is not integer, the result is
truncated to an integer.

Figure 2-24. Array Element References Format

ARRAY SIZE

The size of an array depends on the number of
elements specified in the array declaration and the
type of the array.

The number of elements in an array is computed by
multiplying the number of elements in each dimen­
sion. The number of elements in each dimension is
computed by subtracting the lower bound from the
upper bound and adding the value 1.

The amount of storage required for an array is
computed by multiplying the number of elements in
the array by the number of words required for each
element. The number of words required for each
element depends on the type of the array. See
table 2-2 for the number of bits per array element
for each data type; knowing that there are 64 bits
per fullword, you can compute the number of full­
words per array element.

See figure 2-25 for the mathematical formulas used
to compute the size of an array. See figure 2-26
for an example of an array size computation.

ARRAY STORAGE

Arrays can have one to seven dimensions; therefore,
you can think of an array geometrically. For
example, a !-dimensional array can be thought of as
a linear list, a 2-dimensional array can be thought
of as a matrix, and a 3-dimensional array can be
thought of as a series of matrices.

2-1 I

TABLE 2-2. ADAY ELEMENT SIZE

Type of Array Number of Bita Per
Array Element

Integer 64

Real 64

Double-precision 128

Balf-Preciaioa 32

Complex 128

Logical 64

Character 8 per character (the number of
characters per element can be
specified in the CHARACTER
statement; if it is not speci-
fied, 1 character per element
is used)

Bit l

The ni.mber of ele•ents ;n an array ;s c011puted
by:

N = ((upper - lower + 1> 1 * •.. *
(upper - lower + 1>n>

where:

N ;s the number of elements ;n the array,
upper ;s the upper bound of the d;mens;on,
lower ;s the lower bound of the d;mens;on,
and n ;s the number of d;mens;on declarators
spec;f;ed ;n the array declarat;on.

The amount of storage requ;red for an array ;s
computed by:

S = N * E

where:

I 2-a

S ;s the number of fullwords required for
the array, N ;s the number of elements ;n
the array, and E ;s the number of fullwords
requ;red for each array element.

f;gure 2-2S. Array She C011putat fon For11u.las

GIVEN:

The following array declarat;on:

COfllPLEX HOWBIGCS,3:S>

PROBLEM:

f;nd the ni.mber of elements ;n HOWBIG and the
amount of storage requ;red for HOWBIG.

SOLUTION:

The number of elements ;n HOWBIG ;s computed by:

N = C CS - 1 + 1) * CS - 3 + 1))
= cs * 3)
= 1S elements

The amount of storage requ;red for HOWBIG ;s
computed by:

S = 1S elements * 2 fullwords per element
= 30 fullwords

f;gure 2-26. Array s;ze Co•putat;on Ex .. ple

However, all arrays are stored internally as linear
lists. Mathematical formulas are applied to the
subscripts in order to translate the subscripts into
a particular position in a linear list. Therefore,
in order to determine the internal position of a
particular array element, you must know the mathe­
matical formulas used to map the subscripts into
the linear list.

The mathematical formula used depends on the order
in which array elements are stored in memory and
the number of dimensions specified in the array
declaration. There are two ways array elements can
be stored: in columnwise order and in rowwise
order.

The order of array elements depends on haw the array
is declared. If the array is declared in a
DIMENSION, COMMON, or type specification statement,
the elements are stored in columnwise order. If
the array is declared in a ROWWISE statement, the
elements are stored in rowwise order.

The order of elements in a columnwise array is
determined by varying the subscripts through their
entire range of values such that the leftmost sub­
script varies most rapidly. The order of elements
in a rowwise array is determined by varying the
subscripts through their entire range of values such
that the rightmost subscript varies most rapidly.
See table 2-3 for a comparison of colullllllfise and
rowwise arrays.

60480200 H

TABLE 2-3. SUBSCRIPTING ORDER FOR A THREE­
DIMENSIONAL ARRAY A(2,3,4)

ROWWISE
Subscript
Succession

Ordinality

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Conventional
Subscript
Succession

A(l, 1, 1)
A(2,l,l)
A(l, 2, l)
A(2,2,l)
A(l,3,1)
A(2,3, l)
A(l, 1,2)
A(2,l,2)
A(l,2,2)
A(2,2,2)
A(l,3,2)
A(2,3,2)
A(l, 1,3)
A(2,l,3)
A(l,2,3)
A(2,2,3)
A(l,3,3)
A(2,3,3)
A(l, 1,4)
A(2, l,4)
A(l,2,4)
A(2,2,4)
A(l,3,4)
A(2,3,4)

In order to find the internal position of a partic­
ular array element, use the appropriate formula from
table 2-4. The result of this formula indicates the
position of the element in the internal linear list
of elements. The elements are numbered beginning
with 1. See figure 2-27 for an example of an array
element position computation.

SUBSTRINGS
A substring is a reference to a portion of a char­
acter string. The character string can be contained
in a variable or in an array element. The variable
name or the array name must be declared in a
CHARACTER statement. See figure 2-28 for the format
of a substring. See figure 2-29 for examples of
substrings.

Variable name Contents of
or array element variable or
reference array element

FOX BROWN

CHICKC3) YELLOW

BEAVER BLUE

GIVEN:

The following array declarations:

COM~LEX POSITIONC5,3,2:4)

PROBLEM:

Find the position in the array of array element
POSITIONC1,2,3).

SOLUTION:

The position of array element POSITIONC1,2,3>
is computed by:

position = 1+C C1-1)+ C5-1 +1 >•<2-1))+
C C5-1 +1 > •C3-1 +1 > •C3-2> >

= 1+5+15
= 21

Thus, POSITIONC1,2,3> is element 21 of the
array.

Figure 2-27. Array Element Position
Computation Exa.ple

char-nameCleft-char:right-char>

char-na•e

left-char

A variable or array ele•ent of type
character.

An integer expression greater than
zero that specifies the character
position in char-name of the first
character in the substring;
optional. The left-char value must
be less than or equal to
right-char. If left-char is not
specified, the first character in
char-name is the first character of
the substring.

right-char An integer expression greater than
or equal to left-char that specifies I
the character position in char-name
of the last character in the sub­
string; optional. The right-char
value must be Less than or equal to
the position of the last character
in char-name. If right-char is not
specified, the Last character in
char-name is the last character in
the substring.

Figure 2-28. Substring Format

Substring Characters
reference referenced

FOXC2:4) ROW

CHICK C3) C4: 6) LOW

BEAVER(:) BLUE

Figure 2-29. Substring Examples

60480200 E 2-9

N
I

0

a-
0
~
O>
0
N
0
0

>

l

2

3

4

5

6

7

Number of Dimensions and
Dimension Declarator

(AL:Au)

(AL:Au,BL:Bu)
(BL:Bu,AL:Au)

(AL:Au,BL:Bu,CL:Cu)
(CL:Cu,BL:Bu,AL:Au)

(AL:Au,BL:Bu,CL:Cu·Dr.=Du>
<1>r.:nu,cL:cu,BL:Bu,AL:Au>

(AL:Au,BL:Bu,CL:Cu,DL:Du,EL:Eu)
(EL:Eu,DL:Du,CL:Cu,BL:Bu,AL:Au)

(AL:Au,BL:Bu,CL:Cu,DL:Du,EL:Eu,FL:Fu)
(FL:Fu,EL:Eu,DL:Du,CL:Cu,BL:Bu,AL:Au)

(AL:Au,BL:Bu,CL:cu.Dt=Du,EL:Eu,FL:Fu,Gi,:Gu)
(GL:Gu,FL:Fu,EL:Eu,DL:Du,CL:Cu,BL:Bu,AL:Au)

TABLE 2-4, ARRAY POSITION FORMULAS

Subscript Array Element Location Formula

(a) l+(a-AL)

(a,b) l+(a-AL)+[(Au-AL+l)*(b-Bi.))
(b,a)

(a,b,c) l+(a-AL)+[(Au-AL+l)*(b-BL))
(c,b,a) +[(Au-AL+l)*(Bu-BL+l)*(c-CL))

(a,b,c,d) l+(a-AL)+[(Au-AL+l)*(b-BL))
(d,c,b,a) +[(Au-AL+l)*(Bu-BL+l)*(c-CL)l

+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(d-Dt))

(a,b,c,d,e) l+(a-AL)+[(Au-AL+l)*(b-BL))
(e,d,c,b,a) +[(Au-AL+l)*(Bu-BL+l)*(c-CL))

+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(d-DL))
+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(Du-Dt+l)*(e-EL))

(a,b,c,d,e,f) l+(a-AL)+[(Au-AL+l)*(b-BL)]
(f ,e,d,c,b,a) +[(Au-AL+l)*(Bu-BL+l)*(C-CL)]

+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(D-DL))
+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(Du-Dr.+l)*(e-EL)]
+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(Du-Dr.+l)*(Eu-EL+l)*(f-FL))

(a,b,c,d,e,f,g) l+(a-AL)+[(Au-AL+l)*(b-BL))
(g,f ,e,d,c,b,a) +[(Au-AL+l)*(Bu-BL+l)*(c-CL)l

+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(d-DL)]
+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(Du-Dt+l)*(e-EL)l
+[(Au-AL+l)*(Bu-BL+l)*(Cu-CL+l)*(Du-Dr.+l)*(Eu-EL+l)*(Fu-FL+l)*(g-GL)]

DAT A ELEMENT
REPRESENTATION

The following paragraphs describe the internal
representation of data elements. A data element is
a constant, variable, or array element. The way in
which a data element is represented internally
depends on the type of the data element.

A data element can have one of the following data
types: integer, half-precision, real, double­
precision, complex, logical, character, Hollerith,
hexadecimal, or bit. A symbolic constant cannot be
Hollerith, hexadecimal, or bit; a variable or an
array cannot be Hollerith or hexadecimal.

See section 9 for the internal representation of
bit elements.

INTEGER ELEMENTS

An integer element occupies one word of storage.
Bits 0 through 15 are undefined; bits 16 through 63
contain the two's complement representation of the
integer value. See figure 2-30 for a diagram of
the internal representation of an integer element.

a

undefined

15 16

two's complement
integer

Figure 2-30. I~teger Element Representation

The minimum and maximum integer elements are -2**47
and 2**47-1.

HALF-PRECISION. ELEMENTS

A half-precision element occupies one-half word of
storage. Bits 0 through 7 contain a two's com­
plement integer that represents the binary exponent
of the half-precision value; bits 8 through 31
contain a two's complement integer that represents
the mantissa of the half-precision value. See
figure 2-31 for a diagram of the internal represen­
tation of a half-precision element.

0

two's complement
integer exponent

7 8

two's complement
integer mantissa

31

Figure 2-31. Half-Precision Element
Representation

Half-precision elements
ized form: the most
placed in bit 9, and
appropriately.

60480200 F

are represented in normal­
significant bit is always
the exponent is adjusted

The minimum and maximum half-precision elements are
approximately -2.177807S40 and 2.177807S40.
smallest half-precision value greater than
that can be represented is 8.077936S-28;
largest half-precision value less than zero
can be represented is -8.077938S-28.
precision elements are precise to about
decimal digits.

REAL ELEMENTS

The
zero

the
that

Half­
seven

A real element occupies one word of storage. Bits
0 through 15 contain a two's complement integer that
represents the binary exponent of the real value;
bits 16 through 63 contain a two's complement
integer that represents the mantissa of the real
value. See figure 2-32 for a diagram of the
internal representation of a real element.

0

two's complement
integer exponent

15 16

two's complement
integer mantissa

63

Figure 2-32. Real Element Representation

Real elements are represented in normalized form:
the most significant bit of the mantissa is always
placed in bit 17, and the exponent is adjusted
appropriately.

The minimum and maximum real elements are
approximately -9.53E8644 and 9.53E8644. The
smallest real value greater than zero that can be
represented is 5.19E-8618; the largest real value
less than zero that can be represented is
-5.19E-8618. Real elements are precise to about 14
decimal digits.

DOUBLE-PRECISION ELEMENTS

A double-precision element occupies two consecutive
words of storage. The first word has the same
format as a real data element; the first word
expresses the most significant portion of the
double-precision element. The second word has the
same format as the first word except the exponent
is 47 less than the exponent of the first word, and
the mantissa is not normalized. The second word is
always zero or positive. See figure 2-33 for a
diagram of the internal representation of a double­
precision element.

a 15 16

two's complement two's complement
integer exponent integer mantissa

two's complement two's complement
integer exponent integer mantissa

Figure 2-33. Double-Precision Element
Representation

63

2-11

The first word of a double-precision element is
represented in normalized form: the most signifi­
cant bit is always placed in bit 17, and the
exponent is adjusted appropriately.

The minimum and maximum double-precision elements
are approximately -9.53D8644 and 9.53D8644. The
smallest double-precision value greater than zero
that can be represented is S.19D-8618; the largest
double-precision value less than zero that can be
represented is -S.19D-8618. The smallest
double-precision value greater than zero that can
be used in comparison is S. l 9D-8617; the largest
double-precision value less than zero that can be
used in comparison is -S.19D-8617. Double­
precision elements are precise to about 28 decimal
digits.

COMPLEX ELEMENTS

A complex element occupies two consecutive words of
storage. Each word has the same format as real data
elements. The first word represents the real part
of the complex value; the second word represents the
imaginary part of the complex value. See figure
2-34 for a diagram of the internal representation
of a complex element.

0

two's complement
integer exponent
for real part

15 16

two's complement
integer exponent
for imaginary part

two's complement
integer mantissa
for real part

63

two's complement
integer mantissa
for imaginary part

Figure 2-34. Complex Element Representation

LOGICAL ELEMENTS

A logical element occupies one word of storage,
Bits 0 through 62 contain zeros; bit 63 contains
either a 0 or a l, corresponding to .FALSE, and

I .TRUE., respectively. See figure 2-35 for a diagram
of the internal representation of a logical element.

0 63

I 000 ...

where d is a 1 or a 0, meaning true or false,
respectively.

Figure 2-35. Logical Element Representation

2-12

HOLLERITH ELEMENTS

A Hollerith element occupies one
character in the Hollerith value.
in a Hollerith element are stored
bytes. A byte is 8 bits. A word is

byte for each
The characters
in consecutive

8 bytes,

An H type Hollerith element is left-justified in
each word. If an H type Hollerith element does not
completely fill a word, the unused portion of the
word, which is on the right, is filled with blanks.
An H type Hollerith element that is too long is
truncated on the right.

An R type Hollerith element is right-justified in
each word. If an R type Hollerith element does not
completely fill a word, the unused portion of the
word, which is on the left, is filled with binary
zeros. An R type Hollerith element that is too long
causes an error.

CHARACTER ELEMENTS

A character element occupies one
character in the character value.

byte for each
The characters

in a character element are stored in consecutive
bytes. A byte is 8 bits. A word is 8 bytes.

A character element is left-justified in a variable
or array element. If a character element does not
completely fill a variable or array element, the
unused portion, which is on the right, is filled
with blanks. A character element that is too long
is truncated on the right.

HEXADECIMAL ELEMENTS

A hexadecimal element occupies 4 bits for each
hexadecimal digit in the hexadecimal value. Each
hexadecimal digit in a hexadecimal element is stored
in consecutive 4-bit groups.

is right-justified in a
If a hexadecimal element

a variable or array
which is on the left,

A hexadecimal element
variable or array element.
does not completely fill
element, the unused portion,
is filled with binary zeros.

BIT ELEMENTS

Bit elements are a vector programming feature of
the FORTRAN 200 language. See section 9 for a
description of the internal representation of bit
elements.

60480200 J

SPECIFICATION AND INITIALIZATION STATEMENTS 3

Specification statements are nonexecutable state­
ments that define the characteristics of symbolic
names. Specification statements define the type of
a symbolic name, the dimensions of an array, the
length of a character variable or array element,
and how storage is to be shared.

Any specification statements must appear before all
DATA statements, NAMELIS'!:. statement$, statement
function definitions, and executable statements in
the program unit.

This section describes each of the specification
statements. The specification statements are:

Type specification statements

IMPLICIT statement

DIMENSION statement

COMMON statement

EQUIVALENCE statement

EXTERNAL statement

INTRINSIC statement

SAVE statement

PARAMETER statement

The DESCRIPTOR statement is a 'lector progra111111frig
feature of the CYBER 200 FORTRAN language. See
section 9 for a description of the DESCRIPTOR
statement.

This section also describes the DATA statement,
which is a nonexecutable statement used for ini­
tialization. The DATA statement is not a specifi­
cation statement.

TYPE SPECIFICATION
STATEMENTS
A type specification statement is a specification
statement that associates a list of symbolic names
with a data type. A type specification statement
can also be used to initialize variables and entire
arrays. Initialization is described later in this.
section. The type specification statements are:
INTEGER, HALF PRECISION, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, CHARACTER, aJ!,d B:IT«

If a type specification statement is not used to
associate a symbolic name with a data type, the
first letter of the symbolic name determines the
data type with which the symbolic name is associ­
ated. Symbolic names that begin with the letters
I, J, K, L, M, and N are associated with the integer

60480200 A

data type. Symbolic names that begin with any other
letter are associated with the real data type.
This convention is called the first-letter rule.

The first-letter rule can be changed by using the
IMPLICIT statement; the IMPLICIT statement is de­
scribed later in this section.

The following symbolic names must be associated
with a data type either by using a type specifi­
cation statement or by using the first-letter rule:

Symbolic constant names

Variable names

Array names

Function names (except for intrinsic function
names)

The intrinsic function names have predefined types
or have types that are determined by the actual
arguments appearing in the function reference. The
first-letter rule does not affect the intrinsic
function names. An intrinsic function name need
not appear in a type specification statement. If
an intrinsic function name does appeai: in a type
specification statement, the type specification
statement has no effect on the predefined type of
the intrinsic function name.

The following paragraphs describe each of the type
specification statements.

INTEGER STATEMENT

The INTEGER statement can be used to associate a
list of variable names, array names, symbolic con­
stant names, and function names with the integer
data type. The INTEGER statement can also be useci
to initialize variables and entire arrays. Initial,..
ization ill . described later in this section. See
figure 3-1 for the format of the INTEGER statement.

di

A variable name, array name, symbolic
constant name, array declarator, or
function name.

An integer constant; optional. Thh
specifies an initial value for v;.
Initialization is described later in
this section. If vi is a function
name, di must be omitted. If di is
omitted, the surrounding slashes must
also be omitted.

Figure 3-1. INTEGER Statement Format

3-1

See figure 3-2 for an example of the INTEGER state­
ment. The INTEGER statement in the example asso­
ciates DOG, CAT, and MOUSE with the integer data
type. The INTEGER statement also declares CAT to
be an array of two elements, and intia11aea ·DOG t.C!
1.1 CAT(l) to 2, and CATC2) to 3. The PARAMETER
statement declares MOUSE to be an integer symbolic
constant having the value 4.

.
INTEGER DOG/!'f ,CAT C2)~ ,lllOUSE
PARAMETERCMOUSE=4>

Figure 3-2. INTEGER Statement Example

HALF PRECISION STATEMENT

The HALF PRECISION statement can be used to associ­
ate a list of variable names, array names, symbolic
constant names, and function names with the half­
precision data type. The HALF PRECISION statement
can also be used to initialize variables and entire
arrays. Initialization is described later in this
section. See figure 3-3 for the format of the HALF
PRECISION statement.

vi A variable name, array name, symbolic
constant name, array declarator, or
function name.

di A half-precision constant; optional.
This specifies an initial value for
vi. Initialization is described Later
in this section. If vi is a function
name, d; must be omitted. If di is
omitted, the surrounding slashes must
also be omitted.

Figure 3-3. HALF PRECISION Statement Format

See figure 3-4 for an example of the HALF PRECISION
statement. The HALF PRECISION statement in the
example associates WOLF, FOX, and COYOTE with the
half-precision data type. The HALF PRECISION
statement also declares FOX to be an array of two
elements, and initializes WOLF to l.Os+IO, FOX(l)
to 2.0s+lO, and FOX(2) to 3.0S+lO. The PARAMETER
statement declares COYOTE to be a half-precision:
symbolic constant having the value 4.0s+lO. ·

REAL STATEMENT

The REAL statement can be used to associate a list
of variable names, array names, symbolic constant
names., and function names with the real data type.
The REAL statement can also be used to initialize
.variables and. entire arrays. Initialization. ie
Jiescribed later in. this section.. See figure :3-5
for the format of the REAL statement •

vi A variable name, array natne, symbolic
constant name, array declarator, or
function name •

.lff · ·''A. rdl <c>nstam; eption•t:. Thi•
Specifies an in;t;aL value for v;. y,

Initialization is described later irl.
this section. If vi is a function
name, di must be omitted. If di is
omitted, the surrounding slashes must
also be ontitted.

Figure 3-5. REAL Statement Format

See figure 3-6 for an example of the REAL statement.
The REAL statement in the example associates HORSE,
COW, and SHEEP with the real data type. The REAL
statement also declares COW to be an array of two
elements, and intializes HORSE to O.l, COW(l) to
1.1, and COW(2) to 2.1. The PARAMETER statement
declares SHEEP to be a real symbolic constant hav­
ing the value 3.1.

.
REAL HORSE/0.1/,COWC2)/1.1,?.1/,SHEEP
PARAMETERCSHEEP=3.1) .

Figure 3-6. REAL Statement Example

DOUBLE PRECISION STATEMENT

The DOUBLE PRECISION statement can be used to
associate a list of variable names, array names,
symbolic constant names, and function names with
the double-precision data type. The DOUBLE
PRECISION statement can also be used to initialize
variables and entire arrays. Initialization iB
described later . in this section. See figure 3..:j
for the format of the DOUBLE PRECISION statement.

HALF PRECISION WOLF/1.0S+10/,FOXC2>12.0S+10,3.0S+10/,COYOTE
PARAMETERCCOYOTE=4.0S+10)

3-2 60480200 A

vi

di

A variable name, array name, symbolic
constant name, array declarator, or
function name.

A double-precision constant; optional.
This specifies an initial value for
vi• Initialization is described Later
in this section. If vi is a function
name, di must be omitted. If di is
omitted, the surrounding slashes must
also be omitted.

COMPLEX STATEMENT

The COMPLEX statement can be used to assoclate a
list of variable names, array names, symbolic con­
stant names, and function names with the complex
data type. The COMPLEX statement can also be used
to initialize variables and entire arrays. Initial­
ization is described later in this section. See
figure 3-9 for the format of the COMPLEX statement.

Figure 3-7. DOUBLE PRECISION Statement Format

See figure 3-10 for an example of the COMPLEX
statement. The COMPLEX statement in the example
associates TADPOLE, FROG, and TOAD with the complex
data type. The COMPLEX statement also declares
FROG to be an array of two elements, and initializes
TADPOLE to (0.0,0.0), FROG(l) to (l.0,1.0), and
FROG(2) to (2.0,2.0). The PARAMETER statement de­
clares TOAD to be a complex symbolic constant having
the value (3.0,3.0).

See figure 3-8 for an example of the DOUBLE
PRECISION statement. The DOUBLE PRECISION state­
ment in the example associates BEAVER, OTTER, and
MUSKRAT with the double-precision data type. The
DOUBLE PRECISION statement also declares OTTER to
be an array of two elements, and initializes BEAVER
to 2.0D+IO, OTTER(!) to 3.0D+IO, and OTTER(2) to
4.0D+IO. The PARAMETER statement declares MUSKRAT
to be a double-precision symbolic constant having
the value 5.0D+lO.

LOGICAL STATEMENT

The LOGICAL statement can be used to associate a
list of variable names, array names, symbolic con­
stant names, and function names with the logical
data type. The LOGICAL statement can also be used
to initialize variables and entire arrays. Ini­
tialization is described later in this section.
See figure 3-11 for the format of the LOGICAL
statement,

DOUBLE PRECISION BEAVER/2.00+10/,0TTERC2>13.00+10,4.00+10/,MUSKRAT
PARAMETERCMUSKRAT=5.0D+10)

Figure 3-8. DOUBLE PRECISION Statement Example

vi A variable name, array name, symbolic constant name,
array declarator, or function name.

di A complex constant; optional. This specifies an initial
value for vi. Initialization is described Later in this
section. If vi is a function name, di must be omitted.
If d; is omitted, the surrounding slashes must also be
omitted.

Figure 3-9. COMPLEX Statement Format

.
COMPLEX TADPOLE/CO.O,O.O>l,FROGC2)/C1.0,1.0>,C2.0,2.0)/,TOAD
PARAMETERCTOAD=C3.0,3.0))

Figure 3-10. COMPLEX Statement Example

60480200 A 3-3

di

A variable name, array name, symbolic
constant name, array declarator, or
function name.

A Logical constant; optional. This
specifies an initial value for vi.
Initialization is described Later in
this section. If vi is a function
name, di must be omitted. If di is
omitted, the surrounding slashes must
also be omitted.

Figure 3-11. LOGICAL Statement Format

See figure 3-12 for an example of the LOGICAL
statement. The LOGICAL statement in the example
associates FINCH, HERON, and PARROT with the logi­
cal data type. The LOGICAL statement also declares
HERON to be an array of two elements, and ini­
tializes FINCH to .TRUE., HERON(l) to .TRUE., and
HERON(2) to .FALSE.. The PARAMETER statement
declares PARROT to be a logical symbolic constant
having the value .FALSE ••

CHARACTER STATEMENT

The CHARACTER statement can be used to associate a
list of variable names, array names, symbolic con­
stant names, and function names with the character
data type. The CHARACTER statement can also be
used to initialize variables and entire arrays.
Initialization is described later in this section.
See figure 3-13 for the format of the CHARACTER
statement.

LOGICAL FINCH/.TRUE./,HERONC2)/.TRUE.,.FALSE./,PARROT
PARAMETERCPARROT=.FALSE.)

Figure 3-12. LOGICAL Statement Example

I 3-4 60480200 H

K Optional. Specifies the length in characters of each vi (maximum character length is 65,535). The
character length syntax is the same as ki (described below).

The length specified in K is overridden by any ki• If K is omitted, a length of 1 byte is used
for each vi that is not accompanied by a ki (regardless of any length specification that appears
in an IMPLICIT statement>. If K is omitted, the preceding asterisk must also be omitted.

vi A variable name, array name, symbolic constant name, array declarator, or function name.

ki Optional. Specifies the length in characters of a specific variable, vi• The maximum character
length is 65,535; ki is either a·constant or variable expression or an asterisk depending on vi:

di

ki is a constant expression and vi is unrestricted; ki must be parenthesized (enclosed in
parentheses> unless it is a simple constant.

ki is a variable expression and Vi must be a dummy argument; ki must be parenthesized and all
simple variables or arrays in ki must be dummy arguments or in a common block.

ki is a parenthesized asterisk C•> and Vi must be a dummy argument or symbolic constant name.

Any variable or symbolic constants in ki must be associated with the integer data type before the
CHARACTER statement.

If ki is an expression, it is truncated to an integer character length. If ki is an asterisk and
vi is a dummy argument, the length of vi is the same as the length of the corresponding actual
argument in the subprogram reference. If ki is an asterisk and vi is a symbolic constant name, the
length of vi is the length of its value in the PARAMETER statement.

If vi is an array declarator, ki must appear between the array name and the dimension
specification.

If ki is omitted, the length of vi is determined by K. If ki is omitted, the preceding asterisk
must also be omitted.

A character constant or a Hollerith constant; optional. This specifies an initial value for vi•
Initialization is described later in this section. If vi is a function name, di must be omitted.
If di is omitted, the surrounding slashes must also be omitted.

Figure 3-13. CHARACTER Statement Format

60480200 H 3-4.1/3-4.2 e

See figure 3-14 for examples of the CHARACTER
statement. The CHARACTER statements in the example
associate BIRD, FISH, ANIMAL, and TREE with the
character data type. The CHARACTER statements also
declare BIRD to be five characters long, FISH to be
four, ANIMAL to be an array of two elements each of
which is three characters long, and TREE to be five
characters long. The CHARACTER statements initial­
ize BIRD to the character value FINCH, FISH to the
character value CARP, ANIMAL(l) to the character
value CAT, and ANIMAL(2) to the character value
DOG. The PARAMETER statement declares TREE to be a
character symbolic constant having the value BIRCH.

CHARACTER•4 BIRD•5/'FINCH'/,FISH/'CARP'/
CHARACTER ANIMAL•3C2)/'CAT','DOG'/,TREE•5
PARAMETERCTREE='BIRCH')

F;gure 3-14. CHARACTER Statement Examples

BIT STATEMENT

The BIT statement is a vector programming feature
of the CYBER 200 FORTRAN language. See section 9
for a description of the BIT statement.

IMPLICIT STATEMENT
The IMPLICIT statement is used to change the first­
letter rule. The first-letter rule associates
symbolic names with data types when the symbolic
names do not appear in type specification state­
ments. The first-letter rule normally functions as
follows:

Symbolic names that begin with the letters I,
J, K, L, M, and N are associated with the inte­
ger data type.

Symbolic names that begin with the letters A
through H and 0 through Z are associated with
the real data type.

The IMPLICIT statement changes the first-letter
rule such that symbolic names that begin with the
letters you specify are associated with the data
types you specify. See figure 3-15 for the format
of the IMPLICIT statement.

The IMPLICIT statement must precede all other
specification statements except PARAMETER state­
ments; however, if an IMPLICIT statement determines
the type of a symbolic constant, the IMPLICIT
statement must precede the PARAMETER statement that
defines the symbolic constant.

An IMPLICIT statement that appears in a function
or subroutine affects the data type of the dummy
arguments and the function name as well as other
symbolic names in the subprogram.

60480200 F

IMPLICIT typ1 Cl;st 1>, ••• ,typm Cl;stm>

tYP;

l; st;

The name of a data type: INTEGER, HALF
PRECISION, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, CHARACTER, or BIT. If
CHARACTER ;s used, you can spec;fy the
length after the data type name; see the
descr;pt;on of the CHARACTER statement.

A l;st of the form:

where v; ;s a letter or a range of
letters. A range of letters cons;sts of
two letters separated by a hyphen.
Letters spec;f;ed ;n a range must be ;n
alphabet;cal order from left to r;ght.

F;gure 3-15. IMPLICIT Statement Format

An IMPLICIT statement must not associate a partic- I
ular character with more than one data type. If a
particular character is not associated with a data
type in an IMPLICIT statement, the normal first­
letter rule is used for that particular character.
Thus, the IMPLICIT statement overrides the normal
first-letter rule only for the characters you
specify in the IMPLICIT statement.

The first letter of a symbolic name is used to
associate a symbolic name with a data type only
when the symbolic name is not associated with a
data type by a type specification statement.

Intrinsic function names have predefined types
or have types that are determined by the actual
arguments appearing in the function reference. The
first-letter rule does not affect intrinsic func­
tion names.

See figure 3-16 for an example of the IMPLICIT
statement, The IMPLICIT statement in the example
changes the first-letter rule such that the fol­
lowing statements are true:

All symbolic names beginning with the letters A
and B that do not appear in a type specifica­
tion statement are associated with the real
data type.

All symbolic names beginning with the letter C
that do not appear in a type specification
statement are associated with the character
data type. Each of these variables and array
elements are eight characters long.

All symbolic names beginning with the letters D
through K that do not appear in a type speci­
fication statement are associated with the real
data type.

All symbolic names beginning with the letter L
that do not appear in a type specification
statement are associated with the logical data
type.

3-5

.
PARAMETERCMOUSE=1>
IMPLICIT CHARACTER•8CC>,REALCD-K),LOGICALCL)

PARAMETERCLOST=.TRUE.)

Figure 3-16. IMPLICIT Statement Example

All symbolic names beginning with the letters M
and N that do not appear in a type specifica­
tion statement are associated with the integer
data type.

All symbolic names beginning with the letters 0
through Z that do not appear in a type speci­
fication statement are associated with the real
data type.

The first PARAMETER statement in the example de­
clares MOUSE to be an integer symbolic constant
having the value 1. The second PARAMETER statement
in the example declares LOST to be a logical sym­
bolic constant having the value .TRUE ••

DIMENSION STATEMENT
The DIMENSION statement declares symbolic names to
be array names and specifies the bounds of each
dimension. An array that is declared by using the
DIMENSION statement is a coltDD.nwise array. See
section 2 for a description of coltDD.nwise arrays.
See figure 3-17 for the format of the DIMENSION
statement.

DIMENSION a1, ••• ,an

ai An array declarator. See section 2 for a
description of array declarators.

Figure 3-17. DIMENSION Statement Format

An array declarator that appears in a DIMENSION
statement must not appear in any other statement in
the program un.it. However, an array name that is
declared in a DIMENSION statement can appear with­
out an array declarator in a type specification
statement or in a COMMON statement.

See figure 3-18 for an example of the DIMENSION
statement. The DIMENSION statement in the example
declares HEN to be a coltDD.nwise array of ten ele­
ments and CHICK to be a coltDD.nwise array of five
elements. Subsequently, the INTEGER statement
associates the array HEN with the integer data type
and the COMMON statement places both HEN and CHICK
in the unnamed common block.

3-6

DIMENSION HENC10),CHICKC5)
INTEGER HEN
COMMON // HEN,CHICK

Figure 3-18. DIMENSION State•ent Ex1111ple

.ROWWISE STATEMENT
The ROWWISE statement declares symbolic names to
be array names and specifies the bounds of each
dimension. An array that is declared by using the
ROWWISE statement is a rowwise array. See section
2 for a description of rowwise arrays. See figure
3-19 for the format of the ROWWISE statement.

ROWWISE a1, ••• ,an

An array declarator. See section 2 for a
description of array declarators.

Figure 3-19. ROWWISE Statement Format

An array declarator that appears in a ROWWISE
statement must not appear in any other statement in
the program unit. However, an array name that is
declared in a ROWWISE statement can appear without
an array declarator in a type specification or
COMMON statement.

See figure 3-20 for an example of the ROWWISE
statement. The ROWWISE statement in the example
declares HEN to be a rowwise array of ten elements
and CHICK to be a rowwise array of six elements.
Subsequently, the INTEGER statement associates the
array HEN with the integer data type and the COMMON
statement places both HEN and CHICK in the unnamed
common block.

ROWWISE HENC2,5),CHICKC2,3)
INTEGER HEN
COMMON // HEN,CHICK

Figure 3-20. ROWWISE Statement Example

COMMON STATEMENT
The COMMON statement is used to declare common
blocks. A common block is an area of storage that
can be refereuced and defined by more than one pro­
gram unit. See figure 3-21 for the format of the
COMMON statement.

60480200 A

blki

Li st;

A symbolic name that represents the
name of the common block. If blki is
not specified, the COMMON statement
defines the unnamed common block. If
the first common block defined by a
COMMON statement is the unnamed common
block, the slashes can be omitted as
well as blk;.

A List of elements that are members of
the block blk;. The List is of the
form:

where u; is a variable name, an array
name, or an array declarator.

The comma that follows List; can be
omitted.

Figure 3-21. COMMON Statement Format

The two types of common blocks are named common
blocks and unnamed common blocks. A named common
block is identified by a symbolic name. A named
common block that is shared between two or more
program uni ts must have the S!lme name in each pro­
gram unit. The name of a named common block can be
the same as a variable name or an array name that
is in the common block. The size of a named common
block must be the same in all program units. Vari­
ables and arrays that are contained in a named
common block can be initialized by DATA statements
or by type specification statements. Initializa­
tion is described later in this section.

An unnamed common block, which is also called blank
common, is not identified by a symbolic name. There
can be only one unnamed common block in each pro­
gram. The size of an unnamed common block does not
have to be the same in all program units. Variables
and arrays that are contained in an unnamed common
block must not be initialized by DATA statements or
by type specification statements.

Variables and entire arrays can be placed in a
common block by using the COMMON statement. A
variable or an array can appear in only one COMMON
statement per program unit. An array element
reference must not appear in a COMMON statement.

I Using both character and noncharacter variables in
the same conman block is allowed.

An array can be declared in a COMMON statement by
specifying an array declarator in the COMMON state­
ment. An array declarator that appears in a COMMON
statement must not appear in any other statement in
the program unit. However, an array name that is
declared in a COMMON statement can appear without
an array declarator in a type specification state­
ment. Arrays that are declared in COMMON statements
are columnwise arrays. See section 2 for a descrip­
tion of columnwise arrays.

Variables and arrays listed in the COMMON statement
are stored in the order in which they appear in the
COMMON statement. The first variable or array be­
gins on a doubleword boundary. Subsequent variables
or arrays begin in the first available byte after

60480200 J

the previous variable or array; alignment is
performed. See table 3-1 for the alignment of each
type of variable and array.

TABLE 3-1. ALIGNMENT REQUIREMENTS

Type Boundary

Integer Fullword

Half-precision Halfword

Real Fullword

Double-precision Fullword

Complex Fullword

Logical Fullword

Character Byte

Bit Bit

A common block name can appear more than once in a
COMMON statement or in several COMMON statements in
a program unit; the elements are stored
cumulatively in the order of their occurrence in
all COMMON statements in the program unit.

NOTE

The length of a named common block cannot
exceed 231-1 words.

The amount of storage required for each variable in
a common block depends on the type of the
variable. See the description of the internal
representation of data elements in section 2. The
amount of storage required for each array in a
common block depends on the array size. See the
discussion of array size in section 2.

The names of variables and arrays that appear in a
common block do not have to be the same in each
program unit that uses the common block. No type
conversion is performed if the data types of corre­
sponding elements of a common block are different
in different program units. The name of a variable
or array that appears in a named common block can
be the same as the name of the common block.

If a program unit does not use all of the variables
and arrays in a named or unnamed common block,
placeholders can be inserted in the COMMON
statement to force proper correspondence of the
variables and arrays in the common block.
Placeholders are variable names or array names that
are not used in the program unit.

An unnamed common block does not have to be the
same size in all program unitr that use it. There­
fore, if a program unit does not use one or more
variables or arrays that appear at the end of the
common block, those variables and arrays do not
have to be declared in the COMMON statement for
that program unit. A named common block must
always be the same size in all program units that
use it, however.

The dummy arguments of a subprogram must not appear
in a common block.

3-7

See figure 3-22 for examples of the COMMON state­
ment. The COMMON statements in the example create
two common blocks: the named common block PRECIOUS
and the unnamed common block. Diagrams of each
cormnon block are given.

EQUIVALENCE STATEMENT
The EQUIVALENCE statement specifies that two or
more variable names or array names in the same pro­
gram unit identify the same storage location. See
figure 3-23 for the format of the EQUIVALENCE
statement.

An entire array cannot be referenced in an
EQUIVALENCE statement; only individual array ele­
ments can be referenced. If you specify an array
name without a subscript in an EQUIVALENCE state­
ment, the first element of the array is referenced.

An array element can be referenced in an
EQUIVALENCE statement by specifying the array name
and a list of subscript expressions, The subscript
expressions must be integer expressions that
contain constants only. The number of subscript
expressions specified must be the same as the
number of array declarators specified in the array
declaration.

Array elements can also be referenced in an
EQUIVALENCE statement by specifying the array name
and a single subscript expression. The subscript
expression must be an integer expression that
contains constants only. The single subscript is
interpreted as though the subscript expression were
the leftmost subscript and the missing subscript

PROGRAM STONESCINPUT,OUTPUT)

DIMENSION JADEC2>

EQUIVALENCE(group1>, ••• ,Cgroupm)

group; A List of the form:

where v; is a variable name,_array
element, array name, or substring.
Array declarators are not permitted.
There must be at Least two items
specified in each group. Commas that
separate the groups are optional.

Figure 3-23. EQUIVALENCE Statement Format

expressions each have their respective lower
dimension bound value. See the description of
array storage in section 2 for more information
about the internal linear representation of arrays.

Two or more variables or arrays of different types
can share the same storage location. If your
program conforms to ANS I standards, storage
alignment is handled automatically. If you use
non-ANSI types, you must ensure that the variables
and arrays are aligned on the proper boundary. See
table 3-2 for the aligrnnent requirements of
variables and arrays. Note that character and
noncharacter types can be equivalenced.

Equivalencing different data types does not cause
type conversion or imply mathematical equivalence.
Arithmetic operations on mixed data types can
produce unexpected results.

COMMON JADE,SHALE /PRECIOUS/ DIAMONDC3>,EMERALD

3-8

END
SUBROUTINE ROCKS
COMMON JADE1,JADE2

END
SUBROUTINE GEM
COMMON /PRECIOUS/ DIA,DUMMYC3>

END

Diagrams of common blocks:

Unnamed JADE C1) JADE C2) SHALE
Common JADE1 JADE2

Conrnon DIAMOND (1) DIAMONDC2) DIAMOND(3) Block DIA DUMMYC1> DUMMY C2) PRECIOUS

Figure 3-22. COMMON Statement Examples

EMERALD
DUMMY (3)

60480200 J

TABLE 3-2, ALIGNMENT REQUIREMENTS FOR
EQUIVALENCE(Xl,X2)

Integer
Xl Real

Double-precision
Complex
Logical

Integer Fullword
Real
Double-precision
Complex
Logical

Half-precision Fullword

Character Fullword

Bit Fullword

A variable or array that is in a common block can
share storage with another variable or array; how­
ever, the variable or array with which it shares
storage must not also be in a common block. An
EQUIVALENCE statement can lengthen a common block
as long as the common block is extended after the
last variable or array in the common block. An
EQUIVALENCE statement must not extend a common block
before the first variable or array in the common
block.

A d1.DD1Dy argtnent must not appear in an EQUIVALENCE
statement.

An EQUIVALENCE statement must not be used to cause
a single storage location to contain more than one
element of the same array.

See figure 3-24 for examples of the EQUIVALENCE
statement. The first EQUIVALENCE statement causes
the variables VOLUME and GALLONS to share one
storage location and SPEED and RATE to share
another storage location. 'nle second and third
EQUIVALENCE statements cause three arrays to
partially overlap. nie overlapping arrays are
shown in the figure.

EXTERNAL STATEMENT
'nle EXTERNAL statement specifies that a symbolic
name is defined outside of the program unit that
contains the EXTERNAL statement. 'nle EXTERNAL
statement can be used to accomplish any of the
following:

To pass a subprogram name to another subprogram

To specify which version of an intrinsic func­
tion is to be used for those intrinsic functions
that have both an inline version and an external
version

To write and reference a subprogram that has
the same name as an intrinsic function

60480200 J

X2

Half-precision Character Bit

Fullword Fullword Fullword

Halfword Halfword Halfword

Halfword Byte Byte

Halfword Byte Bit

INTEGER ARRAYAC10),ARRAYBC10>,VARAC5>
EQUIVALENCECVOLUME,GALLONS>,CSPEED,RATE)
EQUIVALENCECARRAYAC1>,ARRAYBC5))
EQUIVALENCECVARA,ARRAYA)

Storage is shared by the overlapping arrays:

ARRAYAC1)
ARRAYAC2>
ARRAYAC3)
ARRAYAC4)
ARRAYAC5)
ARRAYA(6)
ARRAYAC7>
ARRAYAC8)
ARRAYA(9)
ARRAYAC10>

ARRAYBC1)
ARRAYBC2)
ARRAYBC3)
ARRAYBC4)
ARRA YB CS>
ARRAYBC6)
ARRAYBC7>
ARRAYB(8)
ARRAYB(9)
ARRAYBC10>

VARA(1)
VARAC2>
VARAC3)
VARAC4)
VARAC5)

Figure 3-24. EQUIVALENCE Statement Examples

See figure 3-25 for the format of the EXTERNAL
statement.

EXTERNAL proc1, ••• ,procn

proc; The name of an external procedure, dummy
procedure, or block data subprogram

Figure 3-25. EXTERNAL Statement Format

3-9

I

I

If a subprogram name appears in the actual arg\DDent
list of a reference to another subprogram, the sub­
program name must appear in an EXTERNAL statement.

If a function reference appears in the actual
arg\DDent 1 ist of a subprogram reference, the name
of the function does not have to appear in an
EXTERNAL statement, however, because the result of
the function reference is the actual argument,
rather than the function name.

For an intrinsic function that has both an inline
version and an external version, you can use the
EXTERNAL statement to control which version of the
intrinsic function is used. In order to cause the
external version to be used, declare the intrinsic
function name in an EXTERNAL statement and do not
supply a function that has an entry point of the
same name as the intrinsic function. If the intrin­
sic function name is not declared in an EXTERNAL
statement, the inline version of the function is
used. See section 10 for a description of inline
and external intrinsic functions.

You can reference a function that you have supplied
that has an entry point of the same name as an
intrinsic function. To do this, you must declare
the entry point name in an EXTERNAL statement and
supply the fonc ti on that has that entry point. If
you declare the entry point name in an EXTERNAL
statement and provide an entry point of that name,
the intrinsic function cannot be referenced in that
program unit.

A symbolic name that appears in an EXTERNAL state­
ment must not be used as the name of an intrinsic
function, statement function, variable, or array.

See figure 3-26 for an example of the EXTERNAL
statement. The EXTERNAL statement enables the sub­
program names SUBROUl and SUBROU2 to be passed to
the subroutine CALC.

3-10

PROGRA~ EXTCOUTPUT)
EXTERNAL SUBROU1,SUBROU2

CALL CALCCSUBROU1,K)
CALL CALCCSUBROU2,K)

END
SUBROUTINE CALCCSUB,K)

CALL SUB

RETURN
END

Figure 3-26. EXTERNAL Statement Example

INTRINSIC STATEMENT
The INTRINSIC statement specifies that a symbolic
name is the name of a specific intrinsic function.
The INTRINSIC statement can be used to enable a
specific intrinsic function name to be passed as an
argument to another subprogram. See figure 3-27
for the format of the INTRINSIC statement.

INTRINSIC int1, ••• ,intn

inti The name of an intrinsic function. See
section 10 for a list of the intrinsic
functions.

Figure 3-27. INTRINSIC Statement Format

If a specific intrinsic function name appears in
the actual argument list of a reference to another
subprogram, the specific intrinsic function name
must be declared in an INTRINSIC statement.

If a specific intrinsic function reference appears
in the actual argument list of a subprogram refer­
ence, the name of the specif ii: intrinsic function
does not have to be declared in an INTRINSIC state­
ment, however, because the result of the function
reference is the actual arg\DDent, rather than the
function name.

The two kinds of intrinsic functions are specific
intrinsic functions and generic intrinsic functions:

A specific intrinsic function accepts arguments
of a particular type only. The name of a spe­
cific intrinsic function can appear in an
INTRINSIC statement. The appearance of type
conversion, lexical relationship, and maximum
and minim\DD intrinsic functions in an INTRINSIC
statement has no effect on their use as actual
arg\DDents.

A generic intrinsic function accepts arguments
of various types. The name of a generic in­
trinsic function can appear in an INTRINSIC
statement, but its appearance in an INTRINSIC
statement has no effect on its use as an actual
argument.

Some intrinsic functions are both generic and spe­
cific. The name of an intrinsic function that is
both specific and generic can appear in an INTRINSIC
statement, but the function name is assumed to be
the specific function name. See section 10 for
more information on intrinsic functions.

A symbolic name that appears in an INTRINSIC state­
ment must not be used as the name of an external
subprogram, statement function, variable, or array.

See figure 3-28 for an example of the INTRINSIC
statement. The INTRINSIC statement in the example
enables the specific function names SIN and COS to
be passed to the subroutine CALC.

60480200 A

PROGRAM INTCOUTPUT)
INTRINSIC SIN,COS

CALL CALCCSIN,A,B)

CALL CALCCCOS,A,B)

END
SUBROUTINE CALCCSUB,A,B)
B = SUB(A)
RETURN
END

Figure 3-28. INTRINSIC Statement Example

SAVE STATEMENT
The SAVE statement speclf ies that the values of
variables and arrays in a subprogram are to be
preserved after execution of the subprogram ls
completed. Normally, the values of var !ables and
arrays are not preserved after the RETURN statement
or the END statement of a subprogram is executed.
See figure 3-29 for the format of the SAVE state­
ment.

SAVE name1, ••• ,namen

name; A variable name, array name, or common
block name. If name; is a block name,
then the block name must be enclosed in
slashes, for example: SAVE /blockname/.
Do not use slashes with the other two
types. A particular name can appear in
a SAVE statement only once per program
unit and must not be a dummy argument,
subprogram name, or common block
member. A SAVE statement that lists no
names is equivalent to one that lists
all the names.

Figure 3-29. SAVE Statement Format

If no variable names, array names, or common block
names are specified in a SAVE statement, the values
of all variables, arrays, and common blocks that
are accessible to the program unit in which the
SAVE statement appears are preserved. If such a
SAVE statement appears in a program unit, no other
SAVE statements can appear in that program unit.

If a conmen block name is specified in a SAVE
statement in a subprogram, the common block name
must be specified in a SAVE statement in every
subprogram that uses the common block.

60480200 A

See figure 3-30 for an example of the SAVE state­
ment. The SAVE statement in the example causes the
value of the variable TOTAL to be saved after
execution of the subroutine SUM.

2

SUBROUTINE SUMCA)
SAVE TOTAL
TOTAL = TOTAL + A
IFCA .EQ. 0.0) GO TO 2
PRINT 1 TOTAL
RETURN
END

Figure 3-30. SAVE Statement Example

PARAMETER STATEMENT
The PARAMETER statement defines the names and values
of symbolic constants. A symbolic constant ls a
constant that is identified by a symbolic name.
See figure 3-31 for the format of the PARAMETER
statement.

PARAMETERCname1=value1, ••• ,namen=valuen>

name;

value;

A symbolic constant name; name; must be
associated with a data type before it
is used in a PARAMETER statement •.

A constant or constant expression of
type integer, half-precision, real,
double-precision, complex, logical,
character, or bit.

If name; is of an arithmetic type,
value; must be of an arithmetic type;
the particular type can differ. If the
particular arithmetic data types are
different, value; is converted to the
data type of name;.

If name; is not of an arithmetic type,
value; must be of the same data type as
name;.

Figure 3-31. PARAMETER Statement Format

The eight types of symbolic constants are: integer,
half-precision, real, double-precision, complex,
logical, character, and bit. The type of a sym­
bolic constant ls specified by the first letter of
the symbolic name or by a type specification state­
ment. If the type of a symbolic constant depends
on a type specification or IMPLICIT statement, the
type specif !cation or IMPLICIT statement must
appear before the PARAMETER statement that defines
the constant. See section 2 for a description of
symbolic constants.

3-11

See figure 3-32 for an example of the PARAMETER
statement. The PARAMETER statement in the example
declares ONE to be an integer symbolic constant
having the value 1, TWO to be an integer symbolic
constant having the value 2, and POINT2 to be a
real symbolic constant having the value 0.2.

iNTEGER ONE, TWO
REAL POINT2
PARAMETERCONE=1,TW0=2,POINT2=0.2>

Figure 3-32. PARAMETER Statement Example

DESCRIPTOR STATEMENT
The DESCRIPTOR statement is a vector programming
feature of the CYBER 200 FORTRAN language. See
section 9 for a description of the DESCRIPTOR
statement.

VARIABLE, ARRA y I AND
SUBSTRING INITIALIZATION
Variables, arrays, and substrings can be initialized
by using an initialization statement. The initial
value that is assigned to a variable, array, or
substring is the value that the variable, array, or
substring has when execution of the compiled program
begins.

If a variable, array, or substring is not initial­
ized by an initialization statement, the value of
the variable, array, or substring is not defined;
therefore, the executing program itself must assign
a value to the variable, array, or substring. A
value must be assigned to a variable, array, or
substring before the variable, array, or substring
can be referenced.

Any variable, array, or substring can be initialized
by an initialization statement unless it is a dummy
argument, it is the same as the name of the func­
tion in which it appears, it appears in an unnamed
common block, or it is equivalenced to a variable,
array, or substring that appears in an unnamed com­
mon block. Variables, arrays, and substrings that
appear in a named common block can be initialized
by an initialization statement. A block data sub­
program can be used for initialization of variables,
arrays, and substrings that appear in named common
blocks. See section 7 for a description of block
data subprograms.

Variables and arrays can be initialized in one of
two ways:

By using a type specification statement

By using a DATA statement

3-12

Substrings can be initialized only in DATA state­
ments.

Each of these initialization methods are described
in the following paragraphs. The rules for ini­
tialization are also described.

INTIALIZATION USING TYPE
SPECIFICATION STATEMENTS
The type specification statements can be used to
assign initial values to variables and arrays. The
type specification statements are: INTEGER, HALF
PRECISION, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
CHARACTER, and BIT. See the descriptions of these
statements for their formats.

Initialization of variables and arrays using type
specification statements differs from initialization
using the DATA statement in the following ways:

The initial value of a variable or array must
appear immediately after the variable name or
array name in the type specification statement.
A list of names followed by a list of constants
is not permitted.

Only entire arrays can be initialized in type
specification statements. Particular elements
of an array cannot be initialized unless all
elements are initialized.

An implied DO loop cannot be used in a type
specification statement. Implied DO loops are
described later in this section.

The initialization rules are described later in
this section. See the descriptions of the type
specification statements for examples of variable
411d array initialization using type specification
,ltatements.

INITIALIZATION USING THE DAT A
STATEMENT

The DATA statement can be used to assign initial
values to variables, arrays, and substrings. See
figure 3-33 for the format of the DATA statement.
An implied DO loop can appear in a DATA statement.
See figure 3-34 for the format of an implied DO
loop.

Initialization of variables and arrays using the
DATA statement differs from initialization using
type specification statements in the following ways:

A list of variable names and array names fol­
lowed by a list of constants can be specified
in a DATA statement. The first variable or the
first array element is assigned the value of the
first constant in the list, the second variable
or the second array element is assigned the
value of the second constant in the list, and
so on.

Particular elements of an array can be initial­
ized without initializing all elements of the
array.

60480200 A

ki

A variable List of the form:

where wi is a variable, array element,
array, substring, or implied DO Loop.
Subscript expressions and substring
expressions used to identify array elements
and substrings must be integer constant
expressions, but subscript expressions can
include references to the control variable
of any containing implied DO Loop.

A data List of the form:

j•d1, ••• ,j•dm

where di is an optionally signed constant.
The j• is an optional repeat specifica­

tion; j must be an unsigned integer
constant.

Figure 3-33. DATA Statement Format

An implied DO loop can be used in a DATA state­
ment. An implied DO loop that appears in a
DATA statement is processed in a manner similar
to the way in which an implied DO loop in an
input/output statement is processed, except
that it has no effect on the definition status
of the control variable of the implied DO. See
section 6 for a description of implied DO loops
in input/output statements.

INITIALIZATION RULES

Certain rules must be followed when you initialize
variables, arrays, and substrings. 'Furthermore·t::

;fti.ere are special restrfottons that apply to th~'
~i'.P,itiali;ation of .variables: And; }~~E'•Y& .of ,typ~ bltc;i;S{

The following paragraphs describe the rules for
initializing variables, arrays, and substrings.

Initializing Non-Bit Items

The rules for initializing variables and arrays
of type integer, ··U;;..p·~~f$in~~. real, double­
precision, complex, character, and logical, and for
initializing substrings are:

If you specify a variable, array
substring in the list of variable
names, and substrings, you must
constant for each variable, array
substring.

element, or
names, array
specify one
element, or

If you specify an array name or an implied DO
loop in the list of variable names, array
names, array elements, and substrings, you must
provide one constant for each element of the
array that is to be initialized.

60480200 A

Li st

cvar

A List of array elements and implied DO
Loops.

A simple integer variable; cvar is used
as the control variable for the implied
DO Loop. The control variable cvar
must not also be the control v3riable
of a containing implied DO Loop. A
DATA statement does not affect the
definition status of any variable
having the same name as cvar.

An arithmetic expression of type
integer; aexp1 is used as the initial
value for the control variable. The
expression can contain only constants
and references to the control variables
of containing implied DO Loops.

aexp2 An arithmetic expression of type
integer; aexp2 is used as the terminal
value for the control variable. The
expression can contain only constants
and references to the control variables
of containing implied DO Loops.

An arithmetic expression of type
integer; optional; aexp3 is used as
the incrementation value for the
control variable. If aexp~ is not
specified, the incrementation value is
1. If the result of aexp3 is positive,
aexp1 must be Less than or equal to
aexpz. If the result of aexp3 is
negative, aexp1 must be greater than or
equal to aexp2• The result of aexp3
must not be zero. The expression can
contain only constants and references
to the control variables of containing
implied DO Loops.

Figure 3-34. Implied DO Loop Format for
DATA Statements

Dummy arguments must not be initialized.

Variables and arrays that are in an unnamed
common block must not be initialized.

If you initialize a variable, array element,
or substring with a character constant ~t 4(
i6llerith constant:, the character constant of:'.
~ileri.th constan:~. is padded or truncated to
the size of the variable or array element.

The type of a variable or array that is being
initialized does not have to be the same type
as the constant that is assigned to it by an
initialization statement. See table 3-3 for
the rules for mixed mode initialization.

It< a variable or array of any type except bit
is initialized with a bit constant, the con­
~tant is padded on the left with zero bits or
tr~ncated on the 1ef t to fit the variable.

3-13

TABLE 3-3. INITIALIZATION CONVERSIONS

Constant Type
Variable It·· ~ir-2· ,·s~ ff/'.//. ·, .,·,' .·' . :'\¥

Type Double- Character Integer Precision Real Precision Complex Logical I01.blt' Bit Hex

Integer nocon c c c c n/a no con nocon nocon

Half- c nocon c c c n/a nocon nocon nocon
Precision

·,h ,. , '

Real c c no con c c n/a no con nocon nocon

Double- c c c no con c n/a no con no con nocon
Precision .~ f
Complex c ' c c c nocon n/a no con nocon nocon

Logical n/a n/a n/a n/a n/a no con nocon nocon nocon,,

Character n/a ' n/a n/a n/a n/a n/a no con no con nocon .. 1

lit n/a n/a ri/a rt/a
7

n/a ttla
~;o

ii.la nocon nocon.

· .. ·'' . ' '· '<. ..::.:. ';, '•, ~- ,.""' , "• ..:· ·'"< • .,.>:< '•.· '» ~-. h'..,.

··~ :.::::.. " . ,," ·'· .. .;;_< :..!.L'' ... ·:.'<" .,. ->.: -,.,'.'<~. ' ~

The letter c indicates that conversion is performed;
the type combination is not allowed.

See figure 3-35 for examples of initialization of
non-bit variables and arrays using the DATA state­
ment. The first DATA statement in the example
initializes LION to 1, TIGER(l) to 2.0, TIGER(2) to
2.5, and BEAR(3) to POLAR. The second DATA state­
ment in the example initializes the ten elements of
array HUNTER to O; the real constant O.O is con­
verted to integer.

f riitialhing &it Items
Bit data items are a vector prograDDing feature of
the CYBER 200 FORTRAN language. See section 9 foi:;
a description of bit item initi{ll;i.zation.

3-14

nocon, that conversion is not

~IMENSION TIGERC2>
CHARACTER•8 BEARC10)
INTEGER HUNTERC10)

performed; and n/a, that

DATA LION,TIGER,BEARC3)/1,2.0,2.5,'POLAR'/
DATA CHUNTER(l),1=1,10)/10•0.0/

Figure 3-35. DATA Statement Examples

60480200 A

SCALAR EXPRESSIONS AND SCALAR
ASSIGNMENT STATEMENTS

4

This section describes how expressions are written
and evaluated and how values are assigned to vari­
ables and arrays. The expressions and assignment
statements described in this section are scalar.
See section 9 for a description of vector expres­
sions and vector assignment statements.

SCALAR EXPRESSIONS
A scalar expression is a string of operators and
scalar operands that defines the rules for computing
a value. A scalar expression is evaluated during
program execution. There are four kinds of scalar
expressions:

Scalar arithmetic expressions

Scalar character expressions

Scalar relational expressions

Scalar logical expressions

Scalar expressions are described in the following
paragraphs.

SCALAR ARITHMETIC EXPRESSIONS

A scalar arithmetic expression is an expression
that yields a numeric value. A scalar arithmetic
expression can appear in a scalar arithmetic as­
signment statement, scalar relational expression,
vector arithmetic assignment statement, or vector
relational expression. See figure 4-1 for the
format of a scalar arithmetic expression.

The operators that can be used in a scalar
arithmetic expression are called arithmetic oper­
ators. See table 4-1 for a list of the arithmetic
operators.

The order in which a scalar arithmetic expression
is evaluated depends on the precedence of the oper­
ators specified. The order of expression evaluation
is described later in this section.

TABLE 4-1. ARITHMETIC OPERATORS

Operator Operation

+ Addition or unary plus

- Subtraction or unary minus

* Multi plication

I Division

** Exponentiation

60480200 A

aexp

aexp

term

fact

prim

A scalar arithmetic expression of one
of the forms:

term
+ term
- term
aexp + term
aexp - term

An arithmetic term of one of the forms:

fact
term * fact
term/fact

An arithmetic factor of one of the
forms:

prim
prim ** fact

An arithmetic primary, which can be
any of the following:

unsigned arithmetic constant
arithmetic symbolic constant
arithmetic variable
arithmetic array element
scalar arithmetic function

reference
scalar arithmetic expression

enclosed in parentheses.

Figure 4-1. Scalar Arithmetic Expression Format

Operators that are mathematically associative or
commutative might be reordered during compilation.
You can force a definite ordering of mathematically
associative operators of equal precedence by using
parentheses. Expressions involving the division of
integers are not reordered during compilation.

If the result of the division of two integers is
not an integer, then the fractional portion of the
result is discarded.

The appearance of an array element or a function
reference in an expression requires the evaluation
of the subscripts or the actual arguments. This
evaluation does not affect the type of the expres­
s ion result; however, the type of the actual argu­
ments of some predefined generic functions affects
the type of the function result. Evaluation of a
function must not alter the value of any other
element in the statement in which the function
reference appears.

4-1

An expreSBion that is not mathematically defined
cannot be evaluated. For example, division by zero
or the square root of a negative number must not be
specified in an expression.

The operands that can appear in a scalar arithmetic
expression are, in order of decreasing dominance:

Complex

Double-precision

Real

Integer

When an arithmetic operator functions on two
operands of different types, the value of the
dominated operand is converted to the type of the
dominant operand before the operation is performed.
The result is of the type of the dominant operand.
See table 4-2 for the resulting data types for
+ - * I operations. See table 4-3 for resulting
data types for ** operations.

See figure 4-2 for examples of scalar arithmetic
expressions.

3.5
3.5 + N
-C3.5+N)/2**M
CXBAR+CBCI,J+I,K)/3.0))
-CC+DELTA•AERO)
C-Y-SQRTCY••2-C4•A•C)))/C2.0•A)
GROSS-TAX*D.04
TEMP+VCM,AMAX1CA,Q))*Y**C/CH-FACTCK+3))

N, M, I, J, and K are ;nteger var;ables, XBAR,
C, DELTA, AERO, A, GROSS, TAX, Q, TEMP, Y, and
H are real var;ables, B and FACT are real
arrays, and V ;s a real funct;on.

f;gure 4-2. Scalar Ar;thmet;c
Express;on Exa•ples

SCALAR CHARACTER EXPRESSIONS

A scalar character expression yields a character
value. A scalar character expression can appear in
a scalar character aBBignment statement and in a
scalar relational expression. See figure 4-3 for
the format of a scalar character expression.

TABLE 4-2. RESULT TYPE FOR ARITHMETIC OPERATIONS + - * /

Type of OP2
Type of OPl

Integer Real Double-Precision Half-Precision Complex

Integer Integer Real Double-precision Half-precision Complex

Real Real Real Double-precision Real Complex

Double-precision Double-precision Double-precision Double-precision Double-precision Complex

Half-precision Half-precision Real Double-precision Half-precision Complex

Complex Complex Complex Complex Complex Complex

TABLE 4-3. RESULT TYPE FOR OPl ** OP2

Type of OP2
Type of OPl

Integer Real Double-Precision Half-Precision Complex

Integer Integer Real Double-precision Half-precision Complex

Real Real Real Double-precision Real Complex

Double-precision Double-precision Double-precision Double-precision Double-precision Complex

Half-precision Half-precision Real Double-precision Half-precision Complex

Complex Complex Complex Complex Complex Complex
":·,

4-2 60480200 A

cexp
or

cexp // cexp

cexp A character constant, character variable,
character array element, character
function reference, substring, or scalar
character expression enclosed in
parentheses

Figure 4-3. Scalar Character Expression Format

The operator that can be used in a scalar character
expression is called a character operator. The

I character operator is the concatenation symbol //.

The order in which a scalar character expression is
evaluated depends on the precedence of the operators
specified. The order of expression evaluation is
described later in this section.

All of the operands that appear in a scalar
character expression must be of type character.

See figure 4-4 for examples of scalar character
expressions.

'ING'
CHAR VAR
CHARVAR C1: 2)
CHARVAR // 'ING'
CHARARRCI)
CHARARRCI)CJ:J+1)
CHARARRCI) // 'ING'
CHARFUNCX+Y)

CHARVAR is a character variable, CHARARR is a
character array, and CHARFUN is a character
function.

Figure 4-4. Scalar Character
Expression Examples

SCALAR RELATIONAL EXPRESSIONS

A scalar relational expression yields a logical
value. A scalar relational expression can appear
in a scalar logical expression. See figure 4-5 for
the format of a scalar relational expression.

aexp op aexp
or

cexp op cexp

aexp A scalar arithmetic expression

cexp A scalar character expression

op A relational operator

60480200 H

Figure 4-5. Scalar Relational
Expression Format

The operators that can be used in a scalar rela­
tional expression are called relational operators.
See table 4-4 for a list of the relational opera­
tors.

TABLE 4-4. RELATIONAL OPERATORS

Operator Relation

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GE. Greater than or equal to

.GT. Greater than

The order in which a scalar relational expression
is evaluated depends on the precedence of the
operators specified. The order of expression eval­
uation is described later in this section.

A scalar relational expression that contains scalar
arithmetic expressions is evaluated as follows:

1. Each scalar arithmetic expression is evaluated.
The data types of the arithmetic expression
results can be, in order of decreasing
dominance:

Complex

Double-precision

Real

Half-precision

Integer

2. If the types of the results of the scalar
arithmetic expressions differ, the value of the
dominated result is converted to the type of
the dominant result.

3. The relational operation is then performed.

Scalar arithmetic expressions of type complex can
appear in a scalar relational expression only when
the operators .EQ. or .NE. are used.

When a scalar relational expression contains scalar
character expressions, the corresponding characters
in the results of the two expressions are compared
one character at a time from left to right. The
internal hexadecimal representations of the char­
acters are compared; see appendix A for the internal
hexadecimal representations of characters. If the
results of the two scalar character expressions
have different lengths, the shorter of the expres­
sions is padded on the right with blanks until the
lengths are equal.

See figure 4-6 for examples of scalar relational
expressions.

4-3

I

SALARY .LT. EXPENSES
INDEX .EQ. LIMIT
X+Y/3.0•Z .NE. X
ACI) .GE. SQRTCR)
'STRING' .LE. CHARVAR

SALARY, EXPENSES, X, Y, Z, and R are real
variables, INDEX and LIMIT are integer
variables, A is a real array, and CHARVAR is a
character variable.

Figure 4-6. Scalar Relational
Expression Ex ample

SCALAR LOGICAL EXPRESSIONS

A scalar logical expression is an expression that
yields a logical value. A scalar logical expression
can appear in a scalar logical expression and in a
scalar logical assignment statement. A scalar
logical expression can be a single scalar relational
expression. See figure 4-7 for the format of a
scalar logical expression.

lexp
or

lexp op lexp
or

.NOT. lexp

lexp A scalar relational expression, logical
constant, logical variable, logical
array element, logical function
reference, or scalar logical expression
enclosed in parentheses

op One of the logical operators .AND.,
.OR., .XOR,, .EQV., or .NEQV.

Figure 4-7. Scalar Logical Expression Format

The operators that can be used in a scalar logical
expression are called logical operators. See table
4-5 for a list of the logical operators. See table
4-6 for the truth table definitions of the logical
operators.

The order in which a scalar logical expression is
evaluated depends on the precedence of the operators
specified. The order of expression evaluation is
described later in this section.

TABLE 4-5. LOGICAL OPERATORS

Operator Operation

.AND. Logical and

.OR. Logical inclusive or

.XOR. Logical exclusive or

.NOT. Logical negation

.EQV. Logical equivalence

.NEQV, Logical nonequivalence

If two .NOT. operators are adjacent to each other,
the second .NOT, operator and its operand must be
enclosed in parentheses, If a .NOT, operator is
adj a cent to any other logical operator, the ,NOT.
operator must appear to the right of the other
logical operator,

The logical operators .AND., .OR., .XOR., .EQV.,
and .NEQV. must not appear adjacent to each other.

See figure 4-8 for examples of scalar logical
expressions.

LX .EQV, LY
LX .AND •• NOT. LY
X+2.0.NE.Y/3.0.AND.LX.OR.LY
.NOT.CLX .AND •• NOT. LY)
.NOT. C .NOT. CLX .AND •• NOT. LY))
LOG VAR
LOGARR Cl)
.TRUE.
• FALSE.

LX, LY, and LOGVAR are logical variables, LOGARR
is a logical array, and X and Y are real
variables.

Figure 4-8. Scalar Logical
Expression Examples

TABLE 4-6. TRUTH TABLE DEFINITIONS OF LOGICAL OPERATORS

p q p.AND.q p.OR.q p.XOR.q p.EQV.q p.NEQV.q .NOT.p

T T T T F T F F

T F F T T F T F

F T F T T F T T

F F F F F T F T

4-4 60480200 H

ORDER OF EXPRESSION EVALUATION

The order in which an expression is evaluated
depends on the precedence of the operators specified
in the expression. Operators of higher precedence
are evaluated before operators of lower precedence.
See table 4-7 for the precedence of operators.

TABLE 4-7. PRECEDENCE OF OPERATORS

Precedence Operators Category

First ** Arithmetic

Second *,I Arithmetic

Third +,- Arithmetic

Fourth II Character

Fifth .LT.,.LE.,.EQ., Relational
.NE., .GE., .GT.

Sixth .NOT. Logical

Seventh .AND. Logical

Eighth .OR. Logical

Ninth .XOR., .EQV.,. Logical
NEQV.

When arithmetic operators of equal precedence are
specified in an arithmetic expression, the order in
which those operators are evaluated can affect the
result of the expression. When two or more opera­
tors of equal precedence appear in an arithmetic
expression, the operators are evaluated in an order
that is mathematically equivalent to evaluating
them from left to right except for the exponen­
tiation operator. When two exponentiation operators
appear in an expression, the exponentiation opera­
tors are evaluated in an order that is mathemati­
cally equivalent to evaluating them from right to
left.

You can change the order of expression evaluation
by enclosing portions of the expression in paren­
theses. The portions of an expression that are
enclosed in parentheses are evaluated first begin­
ning with the deepest nesting of parentheses. The
normal rules for expression evaluation apply within
the parenthesized portions of an expression.

SCALAR ASSIGNMENT
STATEMENTS
A scalar assignment statement is a statement that
causes the result of a scalar expression to be
assigned to a variable or an array element. A
scalar assignment statement is performed during
program execution. There are four kinds of scalar
assignment statements:

60480200 A

Scalar arithmetic assignment statements

Scalar character assignment statements

Scalar logical assignment statements

Statement label assignment statements

Scalar assignment statements are described in the
following paragraphs.

SCALAR ARITHMETIC ASSIGNMENT
STATEMENTS

A scalar arithmetic assignment statement assigns
the result of a scalar arithmetic expression to an
arithmetic variable or an arithmetic array element.
See figure 4-9 for the format of a scalar arithmetic
assignment statement.

var = aexp

var A simple variable or array element of
type integer, half-precision, real,
double-precision, or complex

aexp A scalar arithmetic expression

Figure 4-9. Scalar Arithmetic Assignment
Statement Format

If the type of the variable or array element that
appears to the left of the equals sign differs from
the type of the expression that appears to the
right of the equals sign, type conversion is per­
formed. The result of the expression is converted
to the type of the variable or array element and
replaces the value of the variable or array element.
See table 4-8 for the rules for type conversion
during arithmetic assignment.

See figure 4-10 for examples of scalar arithmetic
assignment statements. The first, third, and fifth
assignment statements in the example require no
type conversion. The second assignment statement
truncates the fractional part of 5. 75 and assigns
it to I; therefore, the value 5 is assigned to I.
The fourth assignment statement converts the value
of I to real and assigns it to A.

I I + 1
I = 5.75
A = SQRT(B)
A = I
ARR(l) = ARR(J) + ARRCI+J)

I and J are integer variables, A and B are real
variables, and ARR is a real array.

Figure 4-10. Scalar Arithmetic
Assignment Statement Examples

4-5

I

TABLE 4-8. TYPE CONVERSION FOR SCALAR ARITHMETIC ASSIGNMENT

Variable or
Array Element

Type

Expression Result Type

Integer

Integer No conversion

Real Convert to real

Real

Truncate
fractional part

No conversion

Convert to real
then truncate
fractional part

,, Convert to real
then truncate

, fractional part

Complex

Truncate real
part; discard
imaginary part

Convert to real , Convert to real ' Use real part;
discard imagi­

j nary part

Double-precision Convert to
double-precision

Convert to No conversion , Convert to ,,, Convert real
double-precision

'',', '/ -,,'
Half-precision Convert to

half-precision
Convert to
half-precision

Complex Convert to real
part; use 0 for
imaginary part

Use for real
part; use 0 for
imaginary part

SCALAR CHARACTER ASSIGNMENT
STATEMENTS

A scalar character assignment statement assigns the
result of a scalar character expression to a char­
acter variable, character array element, or sub­
string. See figure 4-11 for the format of a scalar
character assignment statement.

var = cexp

var

cexp

A character variable, character array
element, or substring reference; var
must not be part of any operand in cexp.

A scalar character expression.

Figure 4-11. Scalar Character
Assignment Statement Format

When the length of the variable or array element
that appears to the left of the equals sign and the
length of the expression result that appears to the
right of the equals sign are the same, the scalar
character assignment statement causes the value of
the variable or array element to be replaced with
the expression result.

When the length of the variable or array element is
longer than the length of the expression result,
the expression result is extended on the right with
blanks so that the lengths are equal. Assignment
is then performed.

4-6

double-precision'; part to
F " double-

.<<. :/-"/tt;~::!=/.'.'h.L~\VO:.t< ~.·_,..,/'
'Convert 'to , No conversion
half-precision

Convert to real
for real part;
use 0 for imagi­
nary part

Convert to real
for real part;
use 0 for imagi-,,

'nary part ,
" ,C ~'~- , ~±£

precision;
discard imag­
inary part

Convert real
part to half­
prec i sion;
discard iaiag­
inary part

No conversion

When the length of the variable or array element is
shorter than the length of the expression result,
the expression result is truncated on the right so
that the lengths are equal. Assignment is then
performed.

See figure 4-12 for examples of scalar character
assignment statements.

VOWELS = 'AEIOU'
CHARARRCI) = CHARVAR
CHARVARC1:2) = CHARVARC3:4)

VOWELS and CHARVAR are character variables, and
CHARARR is a character array.

Figure 4-12. Scalar Character
Assignment Statement Examples

SCALAR LOGICAL ASSIGNMENT
STATEMENTS

A scalar logical assignment statement assigns the
result of a scalar logical expression to a logical
variable or a logical array element, See figure
4-13 for the format of a scalar logical assignment
statement.

60480200 E

var = Lexp

var A Logical variable or Logical array
element

Lexp A scalar Logical expression

Figure 4-13. Scalar Logical
Assigrvnent Statement Format

A scalar logical assignment statement causes the
result of the expression that appears to the right
of the equals sign to be assigned to the variable
or array element that appears to the left of the
equals sign.

See figure 4-14 for examples of scalar logical
assignment statements.

LOGVAR = • TRUE.
LOGVAR X .GT. Y
LOGVAR X .GT. Y .AND. X .LE. 0
LOGARRCI) = L1 .OR. L2
LOGARRCI) = X .GT. Y .OR. LOGVAR

LOGVAR, L1, and L2 are Logical variables, X and
Y are real variables, and LOGARR is a Logical
array.

Figure 4-14. Scalar Logical
Assignment Statement Examples

STATEMENT LABEL ASSIGNMENT
STATEMENT

A statement label assignment statement assigns a
statement label to an integer variable. See figure
4-15 for the format of a statement label assignment
statement.

A statement label must be assigned to an integer
variable if the integer variable is used in an
assigned GO TO statement or as a format identifier
in an input/output statement. See section 5 for a

60480200 A

ASSIGN s L TO var

sl A statement Label

var An integer variable

Figure 4-15. Statement Label
Assignment Statement Format

description of the assigned GO TO statement. See
section 6 for a description of format identifiers
in input/output statements. An integer variable
that contains a statement label must not be used in
any other way.

An integer variable that contains a statement label
can be redefined with the same statement label,
with a different statement label, or with any
integer value.

:'J!he ASStGN stiteiiiant th•t iif used for •tat~f
label assignment is not related to the descriptor
ASSIGN statement. The descriptor ASSIGN statement
is a vector progralllllling feature of the CYBER 200
FORTRAN language. See section 9 for a description
<of . the descriptor ASSIGN statuient .•
6<:· _'. ·.-:.: '· . :·:: ·.·. ·. : ·'-. ·.

See figure 4-16 for an example of a statement label
assignment statement. The statement label assign­
ment statement in the example causes the GO TO
statement in the example to transfer control to the
statement labeled 100.

ASSIGN 100 TO LABEL
GO TO LABELC100,200,300>

Figure 4-16. Statement Label
Assignment Statement Example

4-7

I

FLOW CONTROL STATEMENTS 5

Flow control statements are executable statements
that alter the normal flow of control in an execut­
ing program. Normally, statements are executed in
the order of their appearance in the program, except
when a condition such as an end-of-file condition
or a data flag branch occurs.

The flow control statements are:

GO TO statements

IF statements

DO statement

CONTINUE statement

PAUSE statement

STOP statement

CALL statement

RETURN statement

This section describes each of the flow control
statements.

GO TO STATEMENTS
The GO TO statement is an executable statement that
transfers control to another executable statement.
The three types of GO TO statements are the uncon­
ditional GO TO statement, the assigned GO TO state­
ment, and the computed GO TO statement. Each type
of GO TO statement is described in the following
paragraphs.

UNCONDITIONAL GO TO

The unconditional GO TO statement is an executable
statement that transfers control to another execut­
able statement in the same program unit. See
figure 5-1 for the format of the unconditional GO
TO statement.

When an unconditional GO TO statement is executed,
control transfers to the statement whose statement
label is specified in the unconditional GO TO
statement.

GO TO sl

sl A statement label that appears in the
label field of an executable statement
in the same program unit that contains
the GO TO statement

Figure 5-1. Unconditional GO TO
Statement Format

60480200 H

The statement that appears after an unconditional
GO TO statement should have a statement label;
otherwise, the statement can never be executed.

See figure 5-2 for an example of the unconditional
GO TO statement. The GO TO statement in the example
transfers control to the statement labeled 200.

100

200

GO TO 200
I = I + 1

I = I + 2

Figure 5-2. Unconditional GO TO
Statement Example

ASSIGNED GO TO STATEMENT

The assigned GO TO statement is an executable
statement that transfers control to another execut­
able statement in the same program unit depending
on the value of an integer variable. See figure
5-3 for the format of the assigned GO TO statement.

GO TO var
or

GO TO var,Csl1,

var A simple integer variable whose value is
assigned by a statement label assignment
statement before the GO TO statement is
executed

sl i A statement label that appears in the
label field of an executable statement in
the same program unit that contains the
GO TO statement

The comma that separates var from the statement
label list is optional.

Figure 5-3. Assigned GO TO Statement Format

When an assigned GO TO statement is executed,
control transfers according to the following rules:

If a list of statement labels is not specified
in the assigned GO TO statement, control trans­
fers to the statement label that is contained
in the integer variable.

5-1

If a list of statement labels is specified in
the assigned GO TO statement, control transfers
to the statement label that is contained in the
integer variable; however, the statement label
contained in the integer variable must appear
in the list of statement labels.

The integer variable must be defined before the
assigned GO TO statement is executed. The value of
the integer variable must be the statement label of
an executable statement in the same program unit in
which the assigned GO TO statement appears. The
statement label ASSIGN statement is used to assign
the value to the integer variable. See section 4
for a description of this statement.

The statement that appears after an assigned GO TO
statement should have a statement label; otherwise,
the statement can never be executed.

See figure 5-4 for an example of the assigned GO TO
statement. The first assigned GO TO statement in
the example transfers control to the statement
labeled 200. The second assigned GO TO statement
in the example transfers control to the statement
labeled 400.

ASSIGN 200 TO LABEL
GO TO LABEL

100 I = I + 1

200

300

400

I = I + 2
ASSIGN 400 TO LABEL
GO TO LABEL,C100,200,300,400,500)
I = I + 3

I I + 4

Figure 5-4. Assigned GO TO Statement Example

COMPUTED GO TO STATEMENT

The computed GO TO statement is an executable
statement that transfers control to another execut­
able statement in the same program unit depending
on the value of an integer expression. See figure
5-5 for the format of the computed GO TO statement.

When a computed GO TO statement is executed,
control transfers to one of the statement labels
that appears in the computed GO TO statement. The
integer expression that appears in the computed GO
TO selects the statement label to which control
transfers. If the result of the expression is 1,
control transfers to the first statement label in

I the list. If the result of the expression is 2,
control transfers to the second statement label in
the list, and so on. If the result of the expres­
sion is less than 1 or greater than the number of
statement labels in the list, control transfers to
the statement that follows the computed GO TO
statement.

5-2

GO TOCsl1, ,sln>,aexp

sli A state•ent Label that appears in the
Label field of an executable statement
in the same program unit that contains
the GO TO statement

aexp A scalar integer expression

The comma that separates the statement Label List
from aexp is optional.

Figure 5-5. Computed GO TO Statement Format

See figure 5-6 for an example of the computed GO TO
statement. The computed GO TO statement in the
example is executed four times. The first time the
computed GO TO statement is executed, it transfers
control to the statement labeled 200; the second
time the computed GO TO statement is executed, it
transfers control to the statement labeled 300; the
third time the computed GO TO statement is executed,
it transfers control to the statement labeled 400;
the fourth time the computed GO TO statement is
executed, it transfers control to the statement
that follows the computed GO TO statement.

100

200

300

400

I = 0
N 0
N N + 1
GO TOC200,300,400>,N
I = I * 23

I = I + 5
GO TO 100
I = I + 10
GO TO 100
I = I + 20
GO TO 100

Figure 5-6. Computed GO TO Statement Example

IF STATEMENTS
The IF statement is an executable statement that
determines whether one or more statements are
executed depending on a specified condition. The
three types of IF statements are the arithmetic IF
statement, the logical IF statement, and the block
IF statement. Each type of IF statement is de­
scribed in the following paragraphs.

ARITHMETIC IF STATEMENT

The arithmetic IF statement is an executable state­
ment that transfers control to another executable
statement in the same program unit depending on the
result of an arithmetic expression. See figure 5-7
for the format of the arithmetic IF statement.

60480200 H

aexp A scalar arithmetic expression of any
type except complex

A statement Label that appears in the
Label field of an executable statement
in the same program unit that contains
the IF statement

Figure 5-7. Arithmetic IF Statement Format

When an arithmetic IF statement is executed, the
arithmetic exp cession is evaluated. Control
transfers to one of the three statement labels
specified in the arithmetic IF statement. If the
result of the expression is negative, control
transfers to the first statement label in the
arithmetic IF statement. If the result of the
expression is zero, control transfers to the second
statement label in the arithmetic IF statement. If
the result of the expression is positive, control
transfers to the third statement label in the
arithmetic IF statement.

See figure 5-8 for an example of the arithmetic IF
statement. The arithmetic IF statement in the
example transfers control to the statement labeled
100 if the result of A - B is negative; the arith­
metic IF statement transfers control to the state­
ment labeled 200 if the result of A - B is zero or
positive.

100

200

IFCA-B) 100,200,200
TEMP = A
A B
B TEMP
c 25.0

Figure 5-8. Arithmetic IF Statement Example

LOGICAL IF STATEMENT

The logical IF statement is an executable statement
that controls the execution of the statement that
appears in the logical IF statement depending on
the result of a logical expression. See figure 5-9
for the format of the logical IF statement.

When a logical IF statement is executed, the logical
expression is evaluated. If the result of the
expression is .TRUE., the statement that appears in
the logical IF statement is executed; then the
statement that follows the logical IF statement is
executed unless the executable statement in the
logical IF statement transfers control elsewhere.

If the result of the expression is .FALSE., the
statement that appears in the logical IF statement
is not executed; instead, the statement that follows
the logical IF statement is executed.

60480200 E

IF Clexp) st

Lexp A scalar Logical expression

st Any executable statement except a DO
statement, Logical IF statement, block
IF statement, ELSE IF statement, ELSE
statement, END IF statement, block
WHERE statement, OTHERWISE statement,
END WHERE statement, or END statement

Figure 5-9. Logical IF Statement Format

The C64 option on the FTN200 control statement
controls how comparisons are performed for logical
expressions that appear in logical IF statements.
If the C64 option is specified, integer comparisons
for the relational operators .EQ. and .NE. are
fullword comparisons; thus, all 64 bits of the
integer operands are compared,

If the C64 option is not specified, integer compar­
isons for the relational operators .EQ. and .NE.
are not fullword comparisons; only bits 16 through
63 are compared.

Because bits O through 15 of an integer value are
always 0, the C64 option is not normally used. The
C64 option is used mainly in programs that use
integer variables to contain Hollerith data.

See figure 5-10 for an example of the logical IF
statement. The logical IF statement in the example
causes the GO TO statement to be executed if A is
greater than or equal to B. The GO TO statement is
not executed if A is less than B.

200

IFCA.GE.B) GO TO 200
TEMP = A
A = B
B TEMP
c 25.0

Figure 5-10. Logical IF Statement Exaqile

BLOCK IF ST AT EM ENT

The block IF statement is an executable statement
that controls the execution of blocks of executable
statements in the same program unit depending on
the result of a logical expression. See figure
5-11 for the format of the block IF statement.

IF Clexp) THEN

lexp A scalar Logical expression

Figure 5-11. Block IF Statement Format

5-3

I

I

Nesting Block IF Structures and DO Loops

A nested block IF structure is a block IF structure
that appears in an if-block, elseif-block, or
else-block of another block IF structure. A nested
block IF structure must appear entirely within an
if-block, elseif-block, or else-block. Control can
transfer from an if-block, elseif-block, or else­
block of a nested block IF structure to the if­
block, elseif-block, or else-block of the outer
block IF structure in which the nested block IF
structure appears. However, the converse is not
true: control must not transfer from an if-block,
elseif-block, or else-block of an outer block IF
structure to an if-block, elseif-block, or else­
block of a nested block IF st rue ture. See figure
5-21 for a nested block IF structure.

IF Cl exp) THEN- - - - - - - -

i f-block-1

IF Clexp) THEN

i f-block-2

END IF

if-bloc k-1

END IF - - -

}
Nested
Block IF
Structure

Outer
Block IF
Structure

Figure 5-21. Nested Block IF Structure

A block IF structure that appears in the range of a
DO statement must be entirely in the range of the
DO statement. An END IF statement must not be the
terminal statement of a DO loop. A DO statement
can appear in an if-block, elseif-block, or else­
block, but the entire range of the DO statement
must appear in the if-block, elseif-block, or
else-block.

DO STATEMENT
The DO statement is an executable statement that
causes a group of statements to be executed repeat­
edly. See figure 5-22 for the format of the DO
statement.

Every DO statement has a range. The range of a DO
statement consists of all of the executable state­
ments beginning with the first executable statement
after the DO statement and ending with the terminal
statement specified in the DO statement.

DO LOOPS

A DO loop consists of a DO statement and the range
of the DO statement. See figure 5-23 for the
format of a DO loop.

A DO statement must be the first statement of a DO
loop. A DO loop can be entered only through the DO
statement.

The terminal statement of a DO loop can be any
statement except the following:

RETURN statement

5-6

sl The statement label that appears in the
label field of the last statement in
the DO loop.

cvar A variable of any arithmetic type
except complex; cvar is used as the
control variable for the DO loop. The
control variable cvar must not also be
the control variable of an outer DO
loop.

aex1>3

A scalar arithmetic expression of any
type except complex; aexp1 is used as
the initial value for the control
variable.

A scalar arithmetic expression of any
type except complex; aexp2 is used as
the terminal value for the control
variable.

A scalar arithmetic expression of any
type except complex; optional; aexp3
is used as the incrementation value for
the control variable. If aexp~ is
not specified, the incrementation value
for the control variable is 1. The
result of aexp3 must not be zero.

Figure 5-22. DO Statement Format

DO statement

Executable statments

} Terminal statement

Range
of DO
statement

Figure 5-23. DO Loop Format

STOP statement

END statement

Unconditional 00 TO statement

Assigned 00 TO statement

Special call statement {unless the label is the I
target of a GO TO statement)

DO statement

Arithmetic IF statement

Block IF statement

ELSE IF statement

ELSE statement

END IF statement

Block WHERE statement

60480200 J

OTHERWISE statement

For compatibility with CYBER 200 FORTRAN, a DO
statement can also have an extended range. The
extended range of a DO loop consists of the
statements executed when control transfers out of
and then returns to the range of the DO loop. A
transfer out of the range of a DO loop is allowed
at any time. When such a transfer occurs, the
control variable remains defined at its most recent
value in the loop. The extended range of the DO
loop must not contain a DO loop that has its own
extended range.

When a DO statement is executed, the following
operations are performed:

1. The expressions in the DO statement are evalu­
ated. (If an expression uses the control
variable, it must be defined before the DO
statement.)

2. The control variable is initialized with the
initial value specified in the DO statement.

3. If the incrementation value is positive, the
value of the control variable is compared to
the terminal value specified in the DO state­
ment. If the value of the control variable is
less than or equal to the terminal value, the
range of the DO statement is executed. If the
value of the control variable is greater than

·the terminal value, control transfers to the
statement that follows the terminal statement.

If the incrementation value is negative, the
value of the control variable is compared to
the terminal value specified in the DO state­
ment. If the value of the control variable is
greater than or equal to the terminal value,
the range of the DO statement is executed. If
the value of the control variable is less than
the terminal value, control transfers to the
statement that follows the terminal statement.

Thus, a DO loop can be executed zero times.

4. The value of the control variable is incre­
mented by the amount specified in the DO state­
ment; then step 3 is repeated.

The control variable of a DO statement must not be
redefined in the range of the DO statement. How­
ever, variables that specify the initial value,
terminal value, and incrementation value for the
control variable can be redefined in the range of
the DO statement. Redefining those variables has
no effect on the execution of the DO loop.

The compiler might generate more efficient object
code for a DO loop if you specify the DO=l option
on the FTN200 control statement.

The compiler can generate vector machine
instructions for some DO loops if you specify the V
compilation option on the FTN200 control
statement. See section 9 for a description of loop
vectorization.

See figure 5-24 for an example of a DO loop. The
range of the DO statement in the example consists
of all of the statements shown in the figure except

60480200 E

100

DO 100 I = 1,10,2
IF(A(l).LT.8(1)) THEN
TEMP A(I)
A(I) = 8(1)

8(1) = TEMP
END IF
CONTINUE

Figure 5-24. DO Loop Example

the DO statement. The DO loop in the example is
executed five times. The values that are assigned
to the control variable I are 1, 3, 5, 7, and 9.

NESTING DO LOOPS AND BLOCK
IF STRUCTURES

A nested DO loop is a DO loop that appears within
another DO loop or within an if-block,
elseif-block, or else-block. DO loops can be
nested to any leve 1. A nested DO loop must be
entirely within the outer DO loop. When DO loops
are nested, each DO loop must have a unique control
variable.

The terminal statement of a nested DO loop can be
the same as the terminal statement of an outer DO
loop or can appear before the terminal statement of
the outer DO loop. If more than one DO loop has
the same terminal statement, control can transfer
to the terminal statement only from within the
range of the innermost DO statement.

A DO loop that is nested in an if-block, elseif­
block, or else-block must be entirely within the
if-block, else if-block, or else-block. A block IF
structure that is nested in a DO loop must be
entirely within the DO loop.

See figures 5-24 and 5-25 for examples of nested DO
loops and block IF structures.

100

200

DO 100 I = 1,10
DO 100 J = 1,5
ACI,J) = 0.0
CONTINUE

IFCA.LT.8) THEN
DO 200 I = 1 , 1 0
CCI) = 100.0
CONTINUE
END IF

Figure 5-25. Nested DO Loops Example

5-7

CONTINUE STATEMENT
The CONTINUE statement is an executable statement
that performs nothing. See figure 5-26 for the
format of the CONTINUE statement.

CONTINUE

Figure 5-26. CONTINUE Statement Format

When a CONTINUE statement is executed, no operation
is performed. The flow of control is not inter­
rupted. The CONTINUE statement is used to carry a
statement label. For example, a CONTINUE statement
can be used as the terminal statement c,f a DO loop
when a statement such as an unconditional GO TO or
arithnetic IF statement would otherwise be the
terminal statement.

See figure 5-27 for an example of the CONTINUE
statement.

100

DO 100 I 1,10

IFCA.LT.B> A
CONTINUE

B

Figure 5-27. CONTINUE Statement Example

PAUSE STATEMENT
The PAUSE statement is an executable statement that
temporarily halts execution of the program. See
figure 5-28 for the format of the PAUSE statement.

PAUSE disp

disp One to five decimal digits or a
character constant; optional

Figure 5-28. PAUSE Statement Format

When a PAUSE statement is executed, the string of
decimal digits or the character constant is dis­
played in the job dayfile or at your terminal. If
no string is specified in the PAUSE statement, the
character string PAUSE is displayed in the job
dayfile or at your terminal. The PAUSE statement
then halts program execution until a response is
received.

If the job is executing in batch mode, the operator
must enter a carriage return from the console in
order to resume execution of the program. If the

5-8

job is executing interactively, you must enter a
carriage return from your terminal in order to
resume execution of the program. Program execution
resumes with the next executable statement after
the PAUSE statement.

See figure 5-29 for an example of the PAUSE state­
ment.

I=I+J+K
PAUSE 'HI THERE'
L = I + 2

Figure 5-29. PAUSE Statement Example

STOP STATEMENT
The STOP statement is an executable statement that
permanently halts execution of the program. See
figure 5-30 for the format of the STOP statement.

STOP di sp

disp One to five decimal digits or a
character constant; optional

Figure 5-30. STOP Statement Format

When a STOP statement is executed, the string of
decimal digits or the character constant, if I
specified, is displayed in the job dayfile or at
your terminal. The string is also written on the
output file of the program. If no string is
specified in the STOP statement, the character
string STOP is displayed in the job dayfile or at
your terminal. The string is also written on the
output file of the program. The STOP statement
then halts program execution and returns control to
the operating system.

See figure 5-31 for an example of the STOP state­
ment.

IFCA.EQ.0.0) THEN
STOP 'A IS 0'
ELSE
C =BIA
END IF

Figure 5-31. STOP Statement Example

60480200 H

CALL STATEMENT
The CALL statement is an executable statement that
transfers control to a subroutine subprogram or to
a predefined subroutine. See section 7 for a
description of the CALL statement.

50480200 A

RETURN STATEMENT
The RETURN statement is an executable statement
that returns control from a subroutine or function
subprogram to the program unit that called the
subroutine or function subprogram. See section 7
for a description of the RETURN statement.

5-9

I

INPUT/OUTPUT STATEMENTS 6

Input/output statements transfer data between files
and internal storage. Some input/output statements
manipulate files, and some input/ output statements
inquire about the properties of files.

The types of input/output statements are:

Sequential access formatted input/output state­
ments

Direct access formatted input/output statements

Sequential
statements

access unformatted input/ output

Direct access unformatted input/output state­
ments

List-directed input/output statements

Namelist input/output statements

Buffer input/output statements

Internal file input/output statements

Extended internal file input/output statements

Concurrent input/output statements

Direct calls to System Interface Language (SIL)
routines

Auxiliary input/output statements

File positioning statements

This section describes records, files, and the
input/output statements. The buffer input/output
statements are provided for compatibility with
other FORTRAN compilers; see appendix E for a
description of the buffer input/ output statements.
The concurrent input/output statements are written
as calls to predefined subroutines; see section 11
for a description of the concurrent input/output
subroutines. See section 13 for a description of
direct calls to SIL routines.

All types of FORTRAN 200 I/O statements result in
calls to SIL subroutines that perform the physical
I/O. Each FORTRAN I/O statement specifies one or
more records of data to be read or written. When
writing data, the SIL subroutine inserts the data
into the record structure of the file; when reading
data it extracts the data from the record structure.

The SIL record structure is transparent to
FORTRAN 200 I/O processing. A FORTRAN 200 program
cannot specify the SIL record structure. If the
file already exists, the record structure already
defined for the file is used; if the FORTRAN pro­
gram creates a sequential access file, the control
word delimited (W) record type is used; if the
FORTRAN program creates a direct access file, the
fixed-length (F) record type is used.

60480200 H

RECORDS
Input/output statements transfer records of data
between files and internal storage. A record is a
sequence of values or a sequence of characters.
For example, a punched card is a record. A record
need not always correspond to a physical entity,
however. The three types of records are formatted
records, unformatted records, and endfile records.
Each type of record is described in the following
paragraphs.

FORMATTED RECORDS

A formatted record consists of a sequence of
character values that can be read and written only
by sequential access formatted input/ output state­
ments, direct access formatted input/ output state­
ments, list-directed input/output statements,
namelist input/ output statements, internal file I
input/output statements, extended internal file
input/output statements, concurrent input/output
statements, and direct calls to SIL routines. The I
length (in characters) of a formatted record cannot
be less than zero or greater than 224-1.

UNFORMATTED RECORDS

An unformatted record consists of a sequence of
values that can be read and written only by sequen­
tial access unformatted input/output statements,
direct access unformatted input/ output statements,
and buffer input/ output statements. The length of
an unformatted record cannot be less than zero
bytes; unlike formatted records, it can be greater
than 224-1 characters.

ENDFILE RECORDS

An endfile record consists of an end-of-file mark
that can be written only by an ENDFILE statement.
An endfile record must occur only as the last
record of a file. An endfile record does not have
a length property.

FORTRAN 200 writes a SIL end-of-group delimiter as I
the endfile record.

FILES
A file is a sequence of records. A file exists if
it is a local file, an attached permanent file, an
attached pool file, or a public file. See the
operating system reference manual for a description
of these types of files. All input/ output state­
ments can refer to files that exist. The INQUIRE
statement, OPEN statement, CLOSE statement, ENDFILE
statement, and all WRITE, PRINT, and PUNCH state­
ments can also refer to files that do not exist.

6-1

In order to reference a file in a FORTRAN program,
the file must be connected to a unit. A unit is a
path between a FORTRAN program and a file. A unit
is identified by an integer constant from 0 to 999
or by an H type Hollerith constant. A file cannot
be referenced in an input/output statement unless
it is connected to a unit; a file that is not
connected to a unit can be referenced in an OPEN
statement, CLOSE statement, or INQUIRE statement,
however.

A file can be connected to a unit by using the OPEN
statement; a file can be disconnected from a unit
by using the CLOSE statement. A file can be
explicitly preconnected to a unit by using the
PROGRAM statement. However, in the absence of
PROGRAM statement specifications, a unit is
implicitly preconnected to a file whose name is
determined by the unit identifier. See the de­
scriptions of these statements for more information
about how to connect a file to a unit.

If an input/output statement references a unit that
has not been explicitly connected to a file, the
unit is implicitly preconnected to a file whose
name is derived from the unit identifier. See the
description of the UNIT specifier for more infor­
mation about processor-determined connection of
unite and files.

A file can be connected to more than one unit at
the same time, but more than one file cannot be
connected to the same unit at the same time. Also,
the unit to which a file is connected can be changed
during program execution.

Each file has an initial point and a terminal point.
The initial point of a file is the position before
the first record of the file. The terminal point
is the position after the last record of the file.

If a file is positioned within a record, that
record is the current record. The record that
appears before the current record is the preceding
record, and the record that appears after the
current record is the next record.

If a file is positioned between two records, the
record that appears before the file position is the
preceding record, and the record that appears after
the file position is the next record.

The three types of files are external files,
internal files, and extended internal files. Each
type of file is described in the following para­
graphs.

EXTERNAL FILES

An external file is a sequence of records that is
contained on an external device, such as a disk.
Each external file is identified by a file name. A
file name is a string of one to eight letters or
digits. The first character of the file name must
be a letter; however, files created by the operating
system can have file names that begin with a number.
You must not use file names which begin with any of
the following characters: QS, Q6, Q7, Q8, or Q9.

6-2

Input/output statements affect the position of an
external file. The position of an external file is
the position of the file after execution of the
last input/output statement that referenced the
file. If an input/output statement did not previ­
ously reference the file, the position of the file
is the initial point of the file.

You can access external files sequentially or
directly. The method by which you access a file is
determined when the file is connected to a unit.

A sequential access external file has the following
properties:

The order of the records is the order in which
the records are written. A record that is
beyond the last record written must not be read.

The records of the file can be either all for­
matted records or all unformatted records. The
last record of the file can be an endf ile
record.

The records of the file must not be read or
written by direct access input/output state­
ments.

A direct access external file has the following
properties:

The order of the records is the order of their
record numbers. The records can be read or
written in any order. A record that has not
been written since the file was created must
not be read.

The reco_rds of the file can be either all for­
matted records or all unformatted records. The
file must not contain an endfile record.

The records of the file can be read and written
only by direct access input/output statements.

All records of the file must have the same
length.

Each record of the file is identified by a
positive record number. The record number is
specified when the record is written and can
never be changed. A record cannot be deleted,
but a record can be rewritten.

INTERNAL FILES

An internal file is a sequence of records contained
in memory. An internal file cannot be identified
by a file name.

An internal file is always positioned at the
initial point prior to execution of a data transfer
input/output statement.

You can access internal files only through sequen­
tial access formatted input/output statements. The
method by which you access a file is specified when
the file is connected to a unit.

60480200 c

A sequential access internal file has the following
properties:

An internal file is a character variable,
character array element, character array, or
substring.

If an internal file is a character variable,
character array element, or a substring, the
internal file consists of a single record whose
length is the same as the length of the char­
acter variable, character array element, or
substring. If an internal file is a character
array, the internal file is a sequence of char­
acter array elements; each element is a record

60480200 c

of the file. The order of the records in the
file is the same as the order of the elements
in the character array. Every record of the
file has the same length, which is the length
of the elements of the character array.

The character variable, character array element,
or substring that is the record of the internal
file is defined by writing the record. If the
number of characters written in a record is
less than the length of the record, the remain­
ing portion of the record is filled with blanks.

A record can be read only if the character
variable, character array element, or substring
that is the record has been defined.

6-2.1/6-2.2

A character variable, character array element,
or substring that is a record of an internal
file can be defined without using an output
statement. For example,' the character variable,
character array element, or substring could be
defined by using a scalar character assignment
statement.

An internal file can be read or written only by
sequential access formatted input/output state­
ments that do not specify list-directed or
namelist formatting.

Internal files must not be referenced by auxil­
iary input/output statements.

The implied value of the
NULL for internal files.

BLANK specifier is
The BLANK specifier

is described later in this section.

EXTENDED INTERNAL FILES

An extended internal file is a sequence of records
that is contained in memory, An extended internal
file cannot be identified by a file name.

An extended internal file is always positioned at
the initial point prior to execution of a data
transfer input/output statement.

An extended internal file has the following prop­
erties:

An extended internal file is a noncharacter
variable, noncharacter array element, or non­
charac ter array.

A record of an extended internal file is a
number of consecutive bytes, The length (number
of bytes) of a record of an extended internal
file is specified in the ENCODE/DECODE state­
ment. Every record of an extended internal
file has the same length. The first byte of
the first record is the first byte of the vari­
able, array, or array element. The first byte
of the second record is the byte immediately
following the last byte of the first record,
and so forth.

The variable, array element, or array that is
the record of the extended internal file is
defined by writing the record (with an ENCODE
statement), If the number of characters
encoded in a record is less than the length of
the record, the remaining portion of the record
is filled with blanks.

A record can be read (decoded) only if that
portion of the variable, array element, or
array that is the extended internal file has
been defined.

A record of an extended internal file can be
defined without using an ENCODE statement. For
example, the variable, array element, or array
could be defined by using an assignment state­
ment.

An extended internal file can be read or written
only by ENCODE and DECODE statements.

Extended internal files must not be referenced
by auxiliary input/output statements.

60480200 A

The implied value of the BLANK specifier is
NULL for extended internal files. The BLANK
specifier is described later in this section.

An extended internal file is assumed to have
enough records to contain all the data written
with an ENCODE statement or read with a DECODE
statement.

INPUT /OUTPUT STATEMENT
COMPONENTS
An input/output statement consists of a FORTRAN
keyword, an optional control information list, and
an optional input/ output list. The keyword speci­
fies the kind of input/output operation that is to
be performed.

The control information list controls execution of
the input/ output statement. The input/ output list
specifies the variables and arrays that are used
for the input/output operation. The control infor­
mation list and the input/output list are described
in the following paragraphs.

CONTROL INFORMATION LIST

A control information list is a set of specifiers
that control the way in which an input/output
operation is performed. The specifiers that appear
in a control information list must be separated by
commas. The specifiers that can appear in a con­
trol information list are summarized in table 6-1.
The table shows the purpose of each specifier.
Each of the specifiers is described in the follow­
ing paragraphs.

ACCESS Specifier

The ACCESS specifier indicates the access method
for a particular file. The access method can be
sequential access or direct access. See figure 6-1
for the format of the ACCESS specifier.

ACCESS cexp

cexp A scalar character expression that
specifies an access method. The
values that can be specified are:

SEQUENTIAL

DIRECT

Indicates sequential
access

Indicates direct access

If the ACCESS specifier is omitted,
ACCESS='SEQUENTIAL' is used.

If the ACCESS specifier appears in an
INQUIRE statement, cexp must be a
character variable, character array
element, or substring, and the value
of cexp is returned by the INQUIRE
statement.

Figure 6-1. ACCESS Specifier Format

6-3

I

Specifier

ACCESS

BLANK

BUFS

DIRECT

END

ERR

EXIST

FILE

nrr
FORM

FORMATTED

IOSTAT

NAME

NAMED

NEXTREC

NUMBER

OPENED

REC

RECL

SEQUENTIAL

STATUS

UNFORMATTED

UNIT

TABLE 6-1. CONTROL INFORMATION LIST SPECIFIERS

Purpose

Indicates the access method for a particular file

Indicates how blanks in numeric input fields are interpreted by formatted input
statements

Indicates the buffer length in 512 word blocks for a particular unit

Indicates if a particular file is a direct access file

Indicates the statement to which control transfers when an end-of-file condition occurs

Indicates the statement to which control transfers when an input/output error occurs

Indicates if a particular file exists or if a particular unit exists

Indicates the name of the file that is to be connected or for which the INQUIRE state­
ment is to return specifier values

Indicates the format specification for a formatted input/output operation

Indicates whether a particular file is connected for formatted input/output or for
unformatted input/output

Indicates if formatted input/output can be performed on a particular file

Indicates if an input/output error condition exists

Indicates the name of the file referenced in an INQUIRE statement

Indicates if a particular file has a name

Indicates the next record that would be read or written by a direct access input/output
statement

Indicates the identifier of the unit to which a particular file is connected

Indicates if a particular file is connected to a unit or if a particular unit is
connected to a file

Indicates the number of the record to be read or written by a direct access input/output
statement

Indicates the length of each record of a direct access file

Indicates if a particular file is a sequential access.file

Indicates the status and disposition of a file connected to a particular unit

Indicates if unformatted input/output can be performed on a particular file

Indicates the unit on which an input/output statement functions

An ACCESS specifier that appears in an OPEN state­
ment for a new file establishes the access method
for the file. An ACCESS specifier that appears in
an OPEN statement for an existing file must specify
an access method permitted by the operating system.

You can use the BLANK specifier only with files
that contain formatted records.

BUFS Specifier

If direct access is specified, the record length
must also be specified with the RECL specifier.

BLANK Specifier

The BLANK specifier indicates how blanks in numeric
input fields are interpreted by formatted input
statements. See figure 6-2 for the format of the
BLANK specifier.

6-4

The BUFS specifier indicates the buffer size in 512
word blocks for a particular file. See figure 6-3
for the format of the BUFS specifier.

The BUFS specifier must not change the buffer
length of a file already connected to a unit.

DIRECT Specifier

The DIRECT specifier indicates if a particular file
is a direct access file. See figure 6-4 for the
format of the DIRECT specifier.

b0480ZOO H

BLANK = cexp

cexp A scalar character expression that
specifies how blanks in numeric input
fields are interpreted by formatted
input statements. The values that can
be specified are:

NULL Indicates that blanks in
numeric input fields are
ignored by the formatted input
st at ement s

ZERO Indicates that blanks in
numeric input fields are
interpreted as zeros by
formatt.ed input state•ents

If the BLANK specifier is omitted,
BLANK='NULL' is used.

If the BLANK specifier appears in an
INQUIRE statement, cexp must be a
character variable, character array
element, or substring, and the value
of cexp is returned by the INQUIRE
state•ent.

Figure 6-2. BLANK Specifier For•at

BUFS = aexp

aexp A scalar integer expression that
specifies the size in 512 word blocks
of the buffer for a unit. The value
of aexp must be no less than 1 and no
greater than 24.

If the BUFS specifier is 011itted,
BUFS=8 is used.

If the BUFS specifier appears in an
INQUIRE statement, aexp must be an
integer variable or an integer array
element, and the value of aexp is
returned by the INQUIRE statement.

Figure 6-3. BUFS Specifier Format

END Specifier

The END specifier indicates the statement to which
control transfers when an end-of-file condition
occurs. See figure 6-5 for the format of the END
specifier.

If an end-of-file condition occurs, the following
steps are taken:

1. Execution of the input statement terminates.

2. If the input statement contains an IOSTAT
specifier, the input statement assigns a neg­
ative value to the integer variable or integer
array element specified in the IOSTAT specifier.

3. Control transfers to the statement label that
is specified in the END specifier.

60480200 c

DIRECT = cvar

cvar A character variable, character array
element, or substring; the value of
cvar is returned by the INQUIRE
statement in which the DIRECT specifier
appears. The values that can be
returned are:

YES

NO

UNKNOWN

Indicates that a particular
file is a direct access file

Indicates that a particular
file is not a direct access
file

Indicates that the access
method of a particular file
is not known

Figure 6-4. DIRECT Specifier For•at

END sl

sl The state•ent label that appears in the
label field of the statement to which
control transfers when an end-of-file
condition occurs during an input
operation. The statement to which
control transfers must be in the same
program unit as the input statement that
contains the END specifier.

If the END specifier is omitted, an
execution-time error occurs when an
end-of-file condition occurs during an
input operation.

Figure 6-5. END Specifier Format

ERR Specifier

The ERR specifier indicates the statement to which
control transfers when an input/output error occurs.
See figure 6-6 for the format of the ERR specifier.

ERR = sl

sl The statement label that appears in the
label field of the statement to which
control transfers when an error occurs
during an input/output operation. The
statement to which control transfers must
be in the same program unit as the
input/output statement that contains the
ERR spec if i er.

If the ERR specifier is omitted, an error
message is issued.

Figure 6-6. ERR Specifier For•at

6-5

If an input/output error occurs, the following
steps are taken:

1. Execution of the input/output statement termi­
nates.

2. The position of the file specified in the
input/output statement becomes undefined.

3. If the input/output statement contains an
IOSTAT specifier, the input/output statement
assigns the number of the execution-time error
that occurred to the integer variable or integer
array element specified in the IOSTAT specifier.
See appendix B for the numbers and descriptions
of the execution-time errors.

4. Control transfers to the statement label that
is specified in the ERR specifier.

EXIST Specifier

The EXIST specifier indicates if a particular file
exists or lf a particular unit exists. See figure
6-7 for the format of the EXIST specifier.

EXIST lvar

lvar A logical variable or logical array
element; the value of lvar is returned
by the INQUIRE state•ent in which the
EXIST specifier appears. The values
that can be returned are:

.TRUE. Indicates that a particular
file or unit exists

• FALSE. Indicates that a particular
file or unit does not exist

Figure 6-7. EXIST Specifier Format

FILE Specifier

The FILE specifier indicates the name of the f i Le
that is to be connected or for which the INQUIRE
statement is to return specifier values. See figure
6-8 for the format of the FILE specifier.

FMT Specifier

The FMT specifier indicates the format specification
to be used for a formatted, list-directed, or name­
list input/output operation. See figure 6-9 for
the format of the FMT specifier.

FORM Specifier

The FORM specifier indicates whether a particular
file is connected for formatted i.nput/output or for
unformatted input/output. See figure 6-10 for the
format of the FORM specifier.

6-6

FILE = cexp

cexp A scalar character expression that
specifies the name of a file. A FILE
specifier that appears in an OPEN
statement specifies the name of the
file to be connected to a unit. If
the file name specified for cexp does
not exist, a new file of that name is
created.

If the FILE specifier is omitted from
an OPEN statement and if the unit
specified in the OPEN state•ent is not
connected to a file, the unit is
connected to a file as follows:

•

•

•

•

If STATUS='SCRATCH' is specified
in the OPEN state•ent, the unit is
connected to a
processor-deter•ined file.

If the STATUS specifier is not
SCRATCH, and if the unit number
specified is no less than 0 and no
greater than 999, the unit is
connected to the file TAPEun1111,
where unum is the unit number.

If the STATUS specifier is not
SCRATCH, and if the unit number
specified is of the for• nHf,
where f is a valid syste• file
name, the unit is connected to the
file f.

In all other cases, the unit is
not connected to a file •

A FILE specifier that appears in an
INQUIRE statement specifies the name
of the file for which the INQUIRE
statement returns values of other
specifiers. The file name specified
for cexp need not exist.

If the FILE specifier is omitted from
an INQUIRE statement, the UNIT
specifier must appear in the INQUIRE
statement.

Figure 6-8. FILE Specifier Format

A FORM specifier that appears in an OPEN statement
for a new flle establishes the type of input/output
that can be performed on the fi.le. A FORM speci­
fier that appears in an OPEN statement for an
existing file must specify the type of input/output
that was established for the file when the file was
created.

FORMATTED Specifier

The FORMATTED specifier indicates if formatted
input/output can be performed on a particular file.
See figure 6-ll for the format of the FORMATTED
spec i. fie r.

60480200 A

FlllT = fid

fid A format identifier; fid can be any of
the following:

• The statement label that appears in
the label field of a FORMAT
statement. The FORMAT statement
must appear in the same program
unit as the input/output statement
that contains the FMT specifier.

• An integer variable that has been
assigned the statement label of a
FORMAT statement by a statement
label assignment state11ent. The
FORMAT statement must appear in the
same program unit as the
input/output statement that
contains the FMT specifier.

• A scalar character expression whose
result is a format specification.
Format specification is described
later in this section. An
expression that involves the
concatentation of an operand whose
length specification is unknown
(specified by an asterisk in the
CHARACTER statement) is not
permitted unless the operand is a
S)'lllbolic constant.

• A characterflt'itJi)ft1'fr .. array,
character lf;i.Jll)~;UJ;; array
element, or substring that contains
a for•at specification. Format
specification is described later in
this section.

• An asterisk, which indicates that
the input/output statement is a
list-directed input/output
statement.

The characters FMT= can be omitted, but
if they are omitted, fid must be the
second item in the control information
list. The first item in the control
information list must be the unit
specifier without the characters UNIT=.

Figure 6-9. FMT Specifier Format

FORM = cexp

cexp A scalar character expression that
specifies the type of input/output that
can be performed on a file. The values
that can be specified are:

FORMATTED

UNFORMATTED

Indicates that a
particular file is being
connected for formatted
input/output

Indicates that a
particular file is being
connected for
unformatted input/output

If the FORM specifier is omitted,
FORM='UNFORMATTED' is used if the file
is being connected for direct access
input/output; FORM='FORMATTED' is used
if the file is being connected for
sequential access input/output.

If the FORM specifier appears in an
INQUIRE statement, cexp must be a
character variable, character array
element, or substring, and the value of
cexp is returned by the INQUIRE
statement. If the type of input/output
that can be performed on a file is not
known, the value UNKNOWN is returned by
the INQUIRE state111ent.

Figure 6-10. FORM Specifier Format

FORMATTED = CV ar

cvar A character variable, character array
element, or substring; the value of
cvar is returned by the INQUIRE
statement in which the FORMATTED
specifier appears. The values that
can be returned are:

YES Indicates that for•atted
input/output can be
performed on a particular
file

NO Indicates that for•atted
input/output cannot be
performed on a particular
file

UNKNOWN Indicates that the type of
input/output that can be
performed on a particular
file is not known

Figure 6-11. FORMATTED Specifier Format

60480200 A 6-7

IOST AT Specifier

The IOSTAT specifier indicates if an input/output
error condition exists. See figure 6-12 for the
format of the IOSTAT specifier.

IOSTAT = avar

a var An ;nteger var;able or an ;nteger
array element; the value of avar ;s
returned by the statement ;n wh;ch the
IOSTAT spec;f;er appears. The values
that can be returned are:

-1

0

Ind;cates that an end-of-f;le
cond;t;on ex;sts, but no error
cond;t;on ex;sts

Ind;cates that ne;ther an
end-of-f;le cond;t;on nor an
error cond;t;on ex;sts

>O Ind;cates that an error
cond;t;on ex;sts. The value
;s the number of the execut;on­
t;me error message. See ap­
pend;x B for the numbers and
descr;pt;ons of the execut;on­
t ;me errors.

F;gure 6-12. IOSTAT Spec;f;er Format

NAME Specifier

The NAME specifier indicates the name of the file
referenced in an INQUIRE statement. See figure
6-13 for the format of the NAME specifier.

NAME cvar

cvar A character var;able, character array
element, or substr;ng; the value of
cvar ;s returned by the INQUIRE
statement ;n wh;ch the NAME specif;er
appears. The value that ;s returned ;s
the name of the f;le referenced ;n the
INQUIRE statement. If the f;le has no
name, cvar ;s undef;ned.

6-8

If the NAME spec;f;er appears ;n an
INQUIRE statement that also conta;ns a
FILE spec;f;er, the value returned for
cvar ;s not necessar;ly the same as the
f;le spec;f;ed ;n the FILE spec;f;er.
For example, the value returned for
cvar could be a f;le name qual;f;ed by
a user ;dent;f;cat;on.

The value returned for cvar ;s always
su;table for use ;n a FILE spec;f;er
that appears ;n an OPEN statement.

F;gure 6-13. NAME Spec;f;er Format

NAMED Specifier

The NAMED specifier indicates if a particular file
has a name. See figure 6-14 for the format of the
NAMED specifier.

NAMED

lvar

lvar

A log;cal var;able or a log;cal array
element; the value of lvar ;s returned
by the INQUIRE statement ;n wh;ch the
NAMED spec;f;er appears. The values
that can be returned are:

• TRUE.

• FALSE.

Ind;cates that a part;cular
f;le has a name

Ind;cates that a part;cular
f;le does not have a name.

NEXTREC Specifier

The NEXTREC specifier indicates the next record
that would be read or written by a direct access
input/output statement. See figure 6-15 for the
format of the NEXTREC specifier.

NEXTREC avar

avar An ;nteger var;able or an ;nteger array
element; the value of avar ;s returned
by the INQUIRE statement ;n wh;ch the
NEXTREC spec;f;er appears. The value
that ;s returned ;s the record number
of the next record of a part;cular f;le
to be read or wr;tten by a d;rect
access ;nput/output statement. If n is
the record number of the most recent
record read or wr;tten on a f;le, n+1
;s the record number that ;s returned
for avar. If no records were read or
wr;tten prev;ously, the value 1 ;s
returned for avar.

If the f;le ;snot connected for d;rect
access ;nput/output, or ;f the pos;t;on
of the f;le ;s unknown because of a
prev;ous ;nput/output error, avar ;s
undeffoed.

F;gure 6-15. NEXTREC Spec;f;er Format

NUMBER Specifier

The NUMBER specifier indicates the unit identifier
of the unit to which a particular file is connected.
See figure 6-16 for the format of the NUMBER speci­
fier.

60480200 A

NUMBER = avar

avar An integer variable or an integer array
element; the value of avar is returned
by the INQUIRE statement in which the
NUMBER specifier appears. The value
that is returned is the identifier of
the unit to which the file referenced
in the INQUIRE statement is connected.

If the unit identifier is an integer
that is no Less than 0 and no greater
than 999, the integer value is returned
for avar.

If the unit identifier is of the form
nHTAPEk, where k is an integer that is
no Less than 0 and no greater than 999,
the integer value k is returned for
avar.

If the unit identifier is of the form
nHf, where f is a string of one through
eight characters, the value nHf is
returned for avar.

If the file is not connected to a unit,
avar is undefined.

Figure 6-16. NUMBER Specifier Format

OPENED Specifier

The OPENED specifier indicates if a particular file
is connected to a unit, or if a particular unit is
connected to a file. See figure 6-17 for the format
of the OPE~D specifier.

OPENED lvar

Lvar A Logical variable or a Logical array
element; the value of Lvar is returned
by the INQUIRE statement in which the
OPENED specifier appears. The values
that can be returned are:

.TRUE.

.FALSE.

Indicates that a particular
file is connected to a unit,
or that a particular unit is
connected to a file

Indicates that a particular
file is not connected to a
unit, or that a particular
unit is not connected to a
file

Figure 6-17. OPENED Specifier Format

60480200 A

REC Specifier

The REC specifier indicates
record to be read or written
input/output statement. See
format of the REC specifier.

the number of the
by a direct access

figure 6-18 for the

REC = aexp

aexp A positive scalar integer expression
that specifies the nunber of the record
to be read or written in a file
connected for direct access input/
output.

Figure 6-18. REC Specifier Format

RECL Specifier

The RECL specifier indicates the length of each
record of a file. See figure 6-19 for the format
of the RECL specifier.

RECL = aexp

a exp A positive scalar integer expression
that specifies the Length of each of
the records of a direct access file.
The Length is measured in bytes for
both formatted and unformatted
records. ~te is 8 bits. A
character is represented as 1 byte.

If the RECL specifier appears in an
INQUIRE statement, aexp must be an
integer variable or an integer array
element, and the value of aexp is
returned by the INQUIRE statement.

Figure 6-19. RECL Specifier Format

A RECL specifier that appears in an OPEN statement
for a new file establishes the record length for
the records of the file. A RECL specifier that
appears in an OPEN statement for an existing file
must specify the record length that was established
for the records of the file when the file was
created.

You must use the RECL specifier for files that are
being connected for direct access input/output.

SEQUENTIAL Specifier

The SEQUENTIAL specifier indicates if a particular
file is a sequential access file. See figure 6-20
for the format of the SEQUENTIAL specifier.

6-9

SEQUENTIAL cvar

cvar A character variable, character array
element, or substring; the value of
cvar is returned by the INQUIRE
statement in which the SEQUENTIAL
specifier appears. The values that can
be returned are:

YES Indicates that a particular
file is a sequential access
file

NO Indicates that a particular
file is not a sequential
access file

UNKNOWN Indicates that the access
method of a particular file
is not known.

Figure 6-20. SEQUENTIAL Specifier Format

STATUS Specifier

The STATUS specifier indicates the status and
disposition of a file connected to a particular
unit. See figure 6-21 for the format of the STATUS
specifier.

UNFORMATTED Specifier

The UNFORMATTED specifier indicates if unformatted
input/output can be performed on a particular file.
See figure 6-22 for the format of the UNFORMATTED
specifier.

UNIT Specifier

The UNIT specifier indicates the unit on which an
input/output statement functions, See figure 6-23
for the format of the UNIT specifier,

A unit that appears in a UNIT specifier must be
connected unless the UNIT specifier appears in an
OPEN, CLOSE, or INQUIRE statement. All units whose
identifiers are integers in the range 0 through 999
are implicitly preconnected to files whose names
are of the form TAPEn, where n is the unit identi­
fier. All units whose identifiers are Hollerith
values of the form nHf, where f is a valid file
name, are implicitly preconnected to the named
files.

A unit can be explicitly preconnected by using the
PROGRAM statement or execution control statement.
A unit can be connected during program execution by
using the OPEN statement, See the descriptions of
these stateaents for more information about unit
connection.

6-10

STATUS = cexp

cexp A scalar character expression that
specifies the status and disposition of
a file when the file is connected and
disconnected. If the STATUS specifier
appears in an OPEN statement, the
values that can be specified for cexp
are:

OLD

NEW

SCRATCH

UNKNOWN

Indicates that the file
already exists. If OLD is
specified, a FILE specifier
must also appear in the OPEN
statement.

Indicates that the file does
not already exist. If NEW
is specified, a FILE
specifier must also appear
in the OPEN statement.

Indicates that the file is
to be connected to the unit
during program execution,
and deleted when the file is
disconnected. If SCRATCH is
specified, the file must not
have a name.

Indicates that the status of
the file is
processor-dependent.

If the STATUS specifier is omitted from
an OPEN statement, STATUS='UNKNOWN' is
used.

If the STATUS specifier appears in a
CLOSE statement, the values that can be
specified for cexp are:

KEEP

DELETE

Indicates that the file is
to exist after execution of
the CLOSE statement if it
exists before execution of
the CLOSE statement. KEEP
must not be specified for a
file whose status is SCRATCH.

Indicates that the file is
not to exist after execution
of the CLOSE statement.

If the STATUS specifier is omitted from
a CLOSE statement, STATUS='KEEP' is
used unless the status specified in the
OPEN statement was SCRATCH, in which
case STATUS='DELETE' is used.

Figure 6-21. STATUS Specifier Format

60480200 A

UNFORMATTED = cvar

cvar A character variable, character array
element, or substring; the value of
cvar is returned by the INQUIRE
statement in which the UNFORMATTED
specifier appears. The values that can
be returned are:

YES

NO

UNKNOWN

Indicates that unformatted
input/output can be
performed on a particular
file

Indicates that unfor•atted
input/output cannot be
performed on a particular
file

Indicates that the type of
input/output that can be
performed on a particular
file is not known

. Figure 6-22. UNFORMATTED Specifier Format

UNIT = unum

unun A unit identifier; unum can be any of
the following:

• A scalar integer expression whose
result is no less than D and no
greater than 999.

• Ir scalar integer exp,..ssion whos~'
result ;s of the form nHf, where f
is a string of one through eight
characters.

• A character variable, character
array element, or substring that
identifies an internal file.

• An asterisk, which indicates that
the unit is a processor-determined
unit that is preconnected for
formatted sequential input/output.
See the description of the PROGRAM
statement.

The characters UNIT= can be omitted,
but if they are omitted, unum must be
the first item in the control
information list.

Figure 6-23. UNIT Specifier Format

60480200 A

If a unit that appears in a UNIT specifier is not
connected to a file, and if that UNIT specifier is
used in an input/output statement other than an
OPEN, CLOSE, or INQUIRE statement, the processor
connects that unit to a file as follows:

If the unit was explicitly preconnected to a
file by the PROGRAM statement or by the execu­
tion control statement, and if the unit has
never been closed, the unit is connected to the
file to which it was explicitly preconnected .•

If the unit is implicitly preconnected to a
file, it is connected to that file.

For all other cases an error occurs.

INPUT/ OUTPUT LIST

An input/output list specifies the entities whose
values are transferred by an input/output statement.
An input/output list can contain input/output list
items and implied DO loops. The items in an
input/output list must be separated by COllllSS •

Input/output list items and implied DO loops are
described in the following paragraphs.

Input/Output List Items

An input 1 ist item is an entity whose value is
assigned by an input statement. An input list item
can be any of the following:

Variable (except a control variable of an
implied DO)

Array

Array element

Substring

Descriptor

.vector

·rf an input list item is a descriptor, data is
input to the vector that is associated with that

·<t,escriptor.

An output list item is an entity whose value is
copied to a file by an output statement. An output
list item can be any of the following:

Variable.

Array.

Array element.

Substring.

6-11

~l,)escdpt~:f'

;"v~ctor •. ·

Any expression. A character expression that
involves the concatentation of an operand whose
length specification is unknown (specified by
an asterisk in the CHARACTER statement) is not
permitted unless the operand is a symbolic
constant.

A descriptor, . desci:'iptor array, or descripi:oi:-.
· array element.

A descriptor, descriptor array, or descriptor
array element preceded by an ampersand.

~

If an output list item is a descriptor and you omit;
the ampersand, data is transferred from the vector
associated with the descriptor. If you specify the
:~~ersand, the descdpt;or .vi;ll.~e is tran11fei;red.

Implied DO Loops in Input/Output Statements

An implied DO loop is an input list that is assigned
values repeatedly by an input statement, or an out­
put list whose values are copied repeatedly to a
file by an output statement. See figure 6-24 for
t 1e format of an implied DO loop.

When an implied DO loop that appears in an input/
output statement is executed, the following steps
are taken:

1. The expressions in the implied DO loop are
defaulted or evaluated and, if necessary, their
results are converted to the type of the con­
trol variable.

2. The control variable is initialized with the
value specified in the first expression.

3. The iteration count, K, for the implied DO is
established according to the following relation:

K • MAX(O,INT((aexp2 + aexp3 - aexpl)/aexp3))

Note that the iteration count can be zero.

4. The input/output list, 1.olist, is processed K
times. After each time, cvar is incremented by
aexp3.

5. Processing continues with the next input/output
list item or implied DO.

When an implied DO loop appears in an input state­
ment, the input 11.st items in the input list of the
implied DO loop are assigned a value each time the
implied DO loop is iterated. The value of the con­
trol variable must not be affected by the data
input.

When an implied DO loop appears in an c~tput state­
ment, the output list items in the output 1 ist of
the implied DO loop are copied to the file each
time the implied DO loop is .iterated.

See figure 6-25 for an example of an implied DO
loop list item. The values input and output by the
input/output statements in the example are shown.

6-12

iolist An input/output list.

cvar A variable of any arithmetic type
except complex; cvar is used as the
control variable for the implied DO
loop. The control variable cvar
must not also be the control vari­
able of a containing implied DO loop.

A scalar arithmetic expression of
any type except complex; aexp1 is
used as the initial value for the
control variable.

A scalar arithmetic expression of
any type except complex; aexp2 is
used as the terminal value for the
control variable.

A scalar arithmetic expression of
any type except complex; optional;
aexp3 is used as the incrementation
value for the control variable. If
aexp3 is not specified, the incre­
mentation value for the control
variable is 1. T~e result of aexp3
must not be zero.

Figure 6-24. Implied DO Loop Format
For Input/Output Statements

REAL ACS>

READC1,100> CACI>,I=1,5>, B
100 FORMATC6CF5.2,1X))

WRITEC2,200) CI,ACI>,I=1,5)
200 FORMAT C ''1' ,I2,2X,F5.2)

Input:

00.01'100.02A00.0~.04l100.05ll00.06'1

Output:

'1'11 '1'10.01
'1'12 6'10. 02
663'160. 03
6646'10.04
'165 '1'10. 05

Figure 6-25. Implied DO Loop in
Input/Output Statement Example

60480200 D

I

I

I

CARRIAGE CONTROL
When an output record is sent to a line printer,
the first character of the record is used for
carriage control and is not printed. For output
directed to any other device, such as a card punch,
carriage control characters are not required; all
characters of an output record are output.

See table 6-2 for a summary of the standard FORTRAN
carriage control characters and their functions.
Other carriage control characters might be available
at your particular site.

TABLE 6-2. CARRIAGE CONTROL CHARACTERS

Character Function

tJ. Output record is printed on
next line (single-spacing)

0 One line is skipped and output
record is printed on the fol-
lowing line (double-spacing)

l Output record is printed on the
top of the next page

+ Output record is printed on the
current line (overprinting)

You can generate a carriage control character for
formatted output by using any exit descriptor
(al though the X, H, and apostrophe descriptors are
the most commonly used). Na'Qiitli1U:.:·arilJ;,list-directed
output automatically gene~ate 'appropriate carriage
control characters.

If you do not specify a carriage control character
as the first character of each record to be printed
by a line printer, unexpected line spacing may
result.

FORMATTED INPUT /OUTPUT
STATEMENTS
A formatted input/output statement transfers data
between a sequential access external file, direct
access external file, or internal file, and internal
storage in a format that you specify. Format
specification is described later in this section.

Those aspects of formatted input/output which are
unique to direct access external files are discussed
separately under Direct Access Input/Output State­
ments. Those aspects unique to internal file
formatted input/output are discussed under Internal
File Input/Output Statements. The remainder of
this discussion assumes the most common file type
for formatted input/output: a sequential access
external file.

The unit you specify in a formatted input/output
statement must be preconnected to a file capable of
formatted input/output, or must be connected for
formatted input/output. (You can connect a unit by

60480200 A

using the OPEN statement. Preconnection can be
implicit or can be done explicitly with the 'PROGRAlf
.Jt;a,~~llle1lt; ?r w{t;!t ,t.he .e~ecutio11. f?Ontrol:~~at;~llt~).

If the unit you specify is preconnected, the
processor connects the unit to the file before the
input/output statement is executed. See the de­
scription of the UNIT specifier for more information
about processor-determined unit connection.

A FMT specifier must appear in a formatted input/
output statement. The input/output list is optional
in a formatted input/output statement.

The formatted input/output statements are:

Formatted READ statement

Formatted WRITE statement

Formatted PRINT statement

Formatted PUNCH statement

Each of these statements is described in the fol­
lowing paragraphs.

FORMATTED READ STATEMENT

The formatted READ statement transfers data from a
sequential access external file to internal storage
in the format you specify. See figure 6-26 for the
format of the formatted READ statement.

READ Ceil i st) iL ist
or

READ fid, Hist

cilist

iL ist

A control information List. The
following specifiers must appear in
c i list:

UNIT
FMT

The following specifiers can also
appear in cilist:

END
ERR
I OST AT
REC

An input List; optional.

fid A format identifier. See the
description of the FMT specifier for
the items that can be specified for
fid.

If the second form of the formatted READ
statement is used and Hist is not specified,
the comma separating fid from ilist must not
appear.

Figure 6-26. Formatted READ Statement Format

If the second form of the formatted READ statement
shown in figure 6-26 is used, data is transferred
from the unit SHINPUT.

6-13

The number of words in the input 1 i.st and the edit
descriptors you specify in the associated format
specification must correspond to the format of the
input record. If the input list is omitted from
the formatted READ statement, at least one record
is skipped. (The actual number of records skipped
is determined by the FORMAT statement.)

If a formatted READ statement attempts to read
beyond the end of a file, an execution-time error
occurs. You can avoid this error by specifying the
END or IOSTAT speci.fier in the formatted READ
statement.

See figure 6-27 for an example of the formatted
READ statement. The values input by the formatted
READ statements in the example are shown. The
values input by the first formatted READ statement
are input from the file connected to unit 1. When
an end-of-file condition is detected during exe­
cution of the first formatted READ statement, con­
trol transfers to the statement labeled 10 and N is
assigned the value -1. If an input error occurs
during execution of the first formatted READ state­
ment, control transfers to the statement labeled 20
and the variable N is assigned the number of the
execution-time error.

The values input by the second formatted READ
statement are input from the file called INPUT.

100

10

I = 0
I = I + 1
READC1,100,END=10,ERR=20,IOSTAT=N> A,B
FORMATC2CF5.2,1X))
READ 100, C,D
AVGCI) = CA+B+C+D)/4
GO TO 1
CALL PLOTCAVG,1-1)

STOP
20 CALL IOERRCN)

Input:

1 0 • Oll.120. OD.6.
50. OM70. OOti

f;gure 6-27. Formatted READ Statement Ex1111ple

FORMATTED WRITE STATEMENT WRITE cc; Ust> oUst

The formatted WRITE statement transfers data from
internal storage to a sequential access external
file in the specified format. See figure 6-28 for
the format of the formatted WRITE statement.

If the output list is omitted from the formatted
WRITE statement and if an empty format specification
of the form () is used, one output line is skipped.

See figure 6-29 for an example of the formatted
WRITE statement. The values output by the formatted
WRITE statements in the example are shown. The
values are output to the file connected to unit 2.
If an output error occurs during execution of one
of the formatted WRITE statements, control transfers
to the statement labeled 20 and the variable If is
assigned the number of the execution-time error.

6-14

oUst

A control ;nformat;on l;st. The
follow;ng spec;f;ers must appear ;n
cHht:

UNIT
FMT

The follow;ng spec;f;ers can also
appear ;n c;l;st:

ERR
IOSTAT
REC

An output l;st; opt;onal.

f;gure 6-28. Formatted WRITE State11ent For•at

60480200 A

B = 5.0
DO 10 I = 1,3
A = 3.0 + I
IF CA.LT.B) THEN
WRITEC2,200,ERR=20,IOSTAT=N) A,B

200 FORMATC'.t:.' ,F5.2,'.t:.I~ESS.t:.THAN.t:.' ,F5.2)
ELSEIF CA .GT. 8) THEN
WRITEC2,201,ERR=20,IOSTAT=N> A,B

201 FORMATC'.t:.' ,F5.2,'.t:.Ist:.GREATER.t:.THAN.t:.' ,F5.2)
ELSE
WRITEC2,202,ERR=20,IOSTAT=N} A,B

202 FORMAT< '.t:.' ,F5.2, 'l:.Ist:.EQUAL.t:.TO.t:.1 ,F5.2)
END IF

10 CONTINUE

20 CALL IOERRCN)

Output:

lll:l.4.00llI~ESSl:.THANl:l.l:l.5.00
Ill:. 5 .OOlllst:.EQUAL.t:.TO MS.DO
t:.t:. 6.00llI st:.GREATER.t:.THANM 5 .00

Figure 6-29. Formatted Write Statement Example

FORMATTED PRINT STATEMENT

The formatted PRINT statement transfers data from
internal storage to the unlt 6HOUTPUT. See figure
6-30 for the format of the formatted PRINT state­
ment.

If the output list does not appear in the formatted
PRINT statement, format control continues until the
format is exhausted or until the first repeatable
or colon edit descriptor is encountered. Thus, at
least one line ls printed.

See figure 6-31 for an example of the formatted
PRINT statement. The values output by the format­
ted PRINT statements in the example are shown. The
values are written to the unit 6HOUTPUT.

FORMATTED PUNCH STATEMENT

The formatted PUNCH statement transfers data from
internal storage to the unit SHPUNCH in the format
you specify. See figure 6-32 for the format of the
formatted PUNCH statement.

If the output list does not appear in the formatted
PUNCH statement, format control continues until the
format ls exhausted or until the first repeatable
or colon edit descriptor ls encountered. Thus, at
least one line is written.

See figure 6-33 for an example of the formatted
PUNCH statement. The values output by the format­
ted PUNCH statements in the example are shown. The
values are output to the unit SHPUNCH.

60480200 A

ol ht

A format identifier. See the
description of the FMT specifier for
the items that can be specified for
fid.

An output list; optional

If olist is not specified, the comma separating
fid from olist must not appear.

Figure 6-30. PRINT Statement Format

200

201

Output:

REAL AC5)/5•30.0/

PRINT 200
FORMATC'l:.FIL~UTPUTllCONTAINS:')
PRINT 201,CACI>,I=1,5)
FORMATC'.t:.' ,5CF4.1,1X))

!:.FILE OUTPUT CONTAINS:
.t:.30. Ot:.30. Ot:.30. Ot:.30. Ot:.30. Ot:.

Figure 6-31. PRINT Statement Example

6-15

PUNCH fid, olist

fid A format identifier. See the
description of the FMT specifier for
the items that can be specified for
fid.

ol ist An output list; optional.

If olist is not specified, the co111a separating
fid from olist must not appear.

Figure 6-32. PUNCH Statement Format

200

201

Output:

REAL AC5)/5•20.0/

PUNCH 200
FORMATC'FILE PUNCH CONTAINS:')
PUNCH 201,CACI>,I=1,5)
FORMATC5CF5.2,1X))

FILE PUNCH CONTAINS:
20.0 20.0 20.0 20.0 20.0

Figure 6-33. PUNCH Statement Example

FORMAT SPECIFICATION
A format speclf lcatlon ls a llst of edit descrlptors
that specifies how data ls to be converted durlng
execution of a formatted lnput/output statement.
Each item that appears in the input/output list of
a formatted input/output statement must correspond
to an edit descriptor that appears in the format
speclficatlon. You must use a format specification
with each formatted input/output statement. A
format speciflcatlon can appear ln one of three
places:

In a FORMAT statement

In a character expression, character variable,
character array, character array element, or
substring that appears as a format speclflcatlon
in the formatted lnput/output statement

·tn a noncharaci::er array that "appears as a' for''-'
mat speclflcation in the formatted lnput/outp~t

:. nat~t?,nt- , , .·

Each of these methods of format specification ls
described in the following paragraphs. The edlt
descrlptors are described later ln this section.

FORMAT STATEMENT

The FORMAT statement ls a nonexecutable statement
that provides a format speciflcatlon for a format­
ted input/output statement. See figure 6-34 for
the format of the FORMAT statement.

6-16

sl FORMAT Cfspec)

sl

fspec

A statement label

A format specification consisting of
zero or more edit descriptors sepa­
rated by c011mas. The com•a can be
omitted:

Between a P edit descriptor and an
immediately following F, E, D, or
G edit descriptor

Before or after a slash edit
descriptor

Before or after a colon edit
descriptor

Figure 6-34. FORMAT Statement For•at

If you supply a FORMAT statement, lt must appear in
the same program unit as the formatted lnput/output
statements that use lt.

See figure 6-35 for an example of the FORMAT state­
ment. The flrst FORMAT statement ln the example
provides a format specif !cation for the formatted
READ statement. The second FORMAT statement ln the
example provides a format specification for the
formatted WRITE statement.

CHARACTER· FORMAT SPECIFICATION

A character format specification ls a character
expression whose result ls a format specification,
or a character variable, character array, character
array element, or subs tr lng that contains a format
speclflcatlon. The format specification must be
enclosed in parentheses. One or more blanks can
precede the left parenthesis. Any characters fol­
lowing the right parenthesis are disregarded.

If you supply a character format specification, it
must be specified by the H!IT specifier in the I
formatted input/output statement that uses it.

If an apostrophe appears in a character constant or
in an H output field that is part of a character
format speciflcatlon, two consecutive apostrophes
must be written for each apostrophe. The two con­
secutive apostrophes represent only one character
of the H output field and they are counted as one
character in specifying the length of the field.

If an apostrophe edit descriptor ls used in a
character format specification, two consecutive
apostrophes must be used for each of the delimiting
apostrophes of the apostrophe descriptor. In order
to represent one apostrophe in an apostrophe de­
scr lptor that appears in a character constant f9rmat
specification, eight consecutive apostrophes must
be specified. The eight consecutive apostrophes
represent only one character of the apostrophe out­
put field.

See figure 6-36 for an example of a character format
specificatlon. The character array CHARFMT in the
example contains a format specification that ls used
by the formatted READ statement. The formatted
WRITE statement uses a character expression as a
format specification.

60480200 D

Input:

READC1,100) A,B,C
100 FORMATC3X,F5.2,T15,2CF3.1,2X))

WRITEC2,200>
200 FORNATC'1Su.NARY OF'/' OUTSTANDING ORDERS:')

Input: Output:

1SUNNARYMF
~UTSTANDING ORDERS:

A a c

Figure 6-35. FORMAT State11ent Exa11ple

.
INTEGER INPUT1C2>, INPUT2C2>
CHARACTER•10 CHARFMT(2)
DATA CHARFNT /'CI5,5X,I5)','C5X,I5,I5)'/,NONEY/2525/

.
DO 10 I = 1,2
READC1,CHARFMTCI)) INPUT1CI>,INPUT2CI)

10 CONTINUE

WRITE<2, • c• •tffHE ANSWER Is~·• ,I4> •>MONEY

Output: MONEY

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

rH.-swERAI~ ~ ~
INPUT1 C1) INPUT2C1)

2345678901234567

~~
INPUT1 C2> INPUT2C2>

Figure 6-36. Character Format Specification Example

60480200 F 6-17

I

NONCHARACTER FORMAT SPECIFICATION

Format specifications can be contained in a non­
character array. The rules for noncharacter format
specification are the same as for character format
specification.

EDIT DESCRIPTORS

Edit descriptors describe the fields of an input
record and the fields of an output record, and
specify how an input/output operation is to convert
data.

The two types of edit descriptors are repeatable
edit descriptors and nonrepeatable edit descriptors.
The repeatable edit descriptors are: A, B, D, E,
F, G, I, L, R, and z. A repeatable edit descriptor
can be preceded by a repeat specification. Repeat­
able edit descriptors correspond to the items in
the input/output list of the formatted input/output
statement.

The nonrepeatable edit descriptors are: BN, BZ, H,
P, T, TL, TR, S, SP, SS, X, the apostrophe, the
slash, and the colon. A nonrepeatable edit de­
scriptor must not be preceded by a repeat specifi­
cation. Nonrepeatable edit descriptors do not
correspond to the items in the input/output list of
the formatted input/output statement.

When a formatted input/output statement is executed,
format control is initiated. The actions performed
under format control depend on the edit descriptors
that appear in the format specification and the
items in the input/output list.

If no items appear in the input/output list, format
control continues until the format is exhausted or
until the first repeatable or colon edit descriptor
is encountered. Thus, as least one record is read
or written.

If one or more items appear in the input/output
list, at least one repeatable edit descriptor must
appear in the format specification. Each input/
output list item corresponds to a repeatable edit
descriptor; however, an input/output list item of
type complex corresponds to two edit descriptors.

Edit descriptors are evaluated from left to right
during execution of a formatted input/output state­
ment. After each repeatable edit descriptor, H
edit descriptor, or apostrophe edit descriptor is
processed, the file is positioned after the last
field read or written. You can use the T, TL, TR,
X, and slash descriptors to change the position in
a record. You can repeat groups of edit descriptors
by enclosing them in parentheses and preceding the
group with a repeat specification. A repeat speci­
fication, if given, must be greater than 0 and less
than 256.

6-18

Format control terminates when all of the items in
the input/output list have been input or output and
another repeatable edit descriptor, colon edit
descriptor, or the end of the format specification
is encountered. There can be more repeatable edit
descriptors than input/output list items; the
excess edit descriptors are not interpreted.

If the rightmost parenthesis of the format speci­
fication is reached before all of the items in the
input/output list have been input or output, the
input file or the output file is positioned at the
beginning of the next record, and format control is
continued with the edit descriptor that follows the
left parenthesis which corresponds to the preceding
right parenthesis. If there is no preceding right
parenthesis, format control continues with the edit
descriptor that follows the first left parenthesis
of the format specification.

If a format specification is reused in this manner,
the reused portion of the format specification must
contain at least one repeatable edit descriptor.
If format control reverts to a parenthesis that is
preceded by a repeat specification, the repeat
specification is reused. Reuse of a format speci­
fication has no effect on the scale factor, sign
control, or blank interpretation control that is in
effect.

The edit descriptors and their functions are
summarized in table 6-3. Each of the edit de­
scriptors is described in the following paragraphs.

A Descriptor

The A descriptor formats character data during
input/output operations. See figure 6-37 for the
format of the A descriptor.

rA[w]

r An unsigned integer constant CO < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant CO < w < 256)
that specifies the width in characters of
the A input field or A output field. If w
is 0111itted, the length of the list item
determines the length of the external field.

Figure 6-37. A Descriptor For•at

60480200 c

TABLE 6-3. EDIT DESCRIPTORS

Descriptor Purpose

A Formats data of any type but bit as though it were character data

BN Causes blanks in numeric input fields to be ignored

BZ Causes blanks in numeric input fields to be interpreted as zeros

D Formats real, double-precision, lifi!:..prf!citiii>IL~{;and complex data

E Formats real, double-precision, l\S1~~pitft:iisi.>n:, '::and complex data

F Formats real, double-precision, fta1.f'.;~ec:fiil6n~f:and complex data

G Formats real, double-precision, ftli~:..pt,cisJ!>P>f;and complex data

H Places a string of characters in an output record

I Formats integer data

L Formats logical data

P Establishes a scale factor for data formatted by D, E, F, and G descriptors

if. . . ··ioim:ats dad of' any typ(.ilht(b#'i~:itiough 'it Wilre, cl,ia!a~t,~f:C1a~:
s Suppresses printing of the plus sign during output of numeric data

SP Suppresses printing of the plus sign during output of numeric data

SS Suppresses printing of the plus sign during output of numeric data

T Specifies the column from which the next character is to be input or to which the next char-
acter is to be output

TL Moves the input/output record pointer to the left

TR Moves the input/output record pointer to the right

x Moves the input/output record pointer to the right

. . ··;: ."~icibiitl{· chii&:of" ~;.f/cWii'liat:;liif1t•;,~~'fti·~Y~;;}ieii4e~l.:i ·· dii;a;.

Delimits a string of characters and places them in an output record

I Indicates that no more data is to be input from the current record or output to the current
record during execution of the current input/output statement

Terminates format control if there are no more items in the input/output list

When the A descriptor formats data during an input
operation, the value in the input field is assigned
to the input list item. The number of characters
input is the number of characters in the A input
field. The input list item can be of any data type.

The data that appears in an A input field can be a
string of characters. Any of the characters listed
in appendix A can appear in an A input field.
Blanks are significant characters in an A input
field.

60480200 A

If the length of the input list item is less than
the width of the A input field, the rightmost char­
acters in the A input field are assigned to the
input list item.

If the length of the input list item is greater
than the width of the A input field, the character
value input is left-justified and blank-filled in
the input list item.

6-19

q_'!tput

When the A descriptor formats data during an output
operation, the value of the output list item is
placed in the output field. The number of char­
acters output is the mmber of characters in the A
output Held. The output list item can be of any
data type.

Any of the characters listed in appendix A can
appear in an A output field.

If the length of the output list it- is less than
the width of the A output field, the character

CHARACTER A•4,B•8~r.•10

READC1,100) A,B,C
100 FORNAT(3A8>

WRITE(2,200) A,B,C
200 FOMAT('A' ,3A8)

Input:

A 8 c D E f 6 H III I

I
J K L "

I

value that is output is right-justifled and blank­
filled in the A output field.

If the length of the output 1 ist item is greater
than the width of the A output field, the leftmost
characters of the output list item are placed in
the A output field.

Examples

See figure 6-38 for an example of the A descriptor.

N 0 p Q R s T u v w xi y z
II

I
E f 6 H I I I JKLMNO p QRSTUVWXt.t.

A B c

Output:

A B c

E F 6 H I I I JKLMNOP Q R S T U V W X t. t..

I I I
t. It. t. 11 11 I

t. t. E F G H I J K L " N 0 p Q R s T u v w x

Figure 6-38. A Descriptor Exa111ple

6-20 60480200 A

I

I

B Descriptor

The B descriptor formats bit data during input/
output operations. See figure 6-39 for the format
of the B descriptor.

rBw

r

w

An unsigned integer constant CO < r < 256>
that is used as a repeat specification;
optional. The default is 1.

An unsigned integer constant <O < w < 256>
that specifies the width in characters of
the B input field or B output field.

Figure 6-39. 8 Descriptor Format

When the B descriptor formats data during an input
operation, the value in the input field is converted
to type bit and is assigned to the input list item.
One bit is input. The input list item must be of
type bit.

The data that appears in a B input field must be in
the proper format. The B input field must contain
a 0 or a 1 in the rightmost column; all other
columns must be blank.

When the B descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char­
acters are placed in the output field. One bit is
output. The output list item must be of type bit.

The B output field contains a 0 or a 1 in the
rightmost column; all other columns are blank.

Examples

See figure 6-40 for an example of the B descriptor.

BN Descriptor

The BN descriptor causes blanks that appear within
subsequent numeric fields of an input record to be
ignored. See figure 6-41 for the format of the BN
descriptor.

The BN descriptor cannot be associated with an
input/output list item.

The BN descriptor affects only blanks that appear
within numeric fields of an input record. However,
if a numeric field of an input record contains all
blanks, the numeric field has the value O.

60480200 c

100

200

Input:

BIT A,8

READ(1,100) A,B
FORMAT C2B5)

WRITEC2,200) A,8
FORMAT C 1.61 ,81 ,83)

;A AS1 ~;A,....0-~--0-.
A B

Output:

A B

c=:=J I
.6~----'

ol

Figure 6-40. 8 Descriptor Example

BN

Figure 6-41. BN Descriptor Format

Normally, blanks that appear within numeric fields
of an input record are either treated as zeros or
are ignored, depc.nding on the BLANK specifier in
effect for the file. The BN descriptor overrides
any previous specification; it is effective only
for the input list items whose edit descriptors are
processed after the BN descriptor in the format
specification.

The BN descriptor affects only input fields
described by the I, F, E, D, G, and Z edit de­
scriptors. The BN desc r lptor has no effect during
execution of an output statement.

See figure 6-42 for an example of the BN descriptor.

6-21

100

Input:

READC1,100) NUM
FORMATCBN,17)

87~5

87655

NUM

Figure 6-42. BN Descriptor Example

BZ Descriptor

The BZ descriptor causes blanks that appear within
subsequent mDlleric fields of an input record to be
treated as zeros. See figure 6-43 for the format
of the BZ descriptor.

ez

Figure 6-43. BZ Descriptor Format

The BZ descriptor cannot be associated with an
input/output list item.

The BZ descriptor affects only blanks that appear
within numeric fields of an input record; leading
blanks are not affected.

Normally, blanks that appear within numeric fields
of an input record are either treated as zeros or
are ignored, depending on the BLANK specifier that
appears in the OPEN statement for the unit. The BZ
descriptor overrides any previous specification; it
is effective only for the input list items whose
edit descriptors appear to the right of the BZ
descriptor in the format specification.

The BZ descriptor affects only input fields
described by the I, F, E, D, edit
descriptors. The BZ descriptor no
during execution of an output statement.

See figure 6-44 for an·example of the BZ descriptor.

D Descriptor

The D descriptor formats double-precision data
during input/output ope rations. The D descriptor
can also format ·~+~'-PF~P~~.~~q ~!'tf real data during
input/output operatfons. ''I'Wo consecutive D, E, F,
or G descriptors can format complex data during
input/output operations. See figure 6-45 for the
format of the D descriptor.

6-22

100

Input:

READ C1, 100) NUM
FORMATCBZ,17>

87~5

8760505

NUM

Figure 6-44. BZ Descriptor Exa111ple

rDw.d

r An unsigned integer constant CO < r <
256> that is used as a repeat specifi­
cation; optional. The default is 1.

w

d

An unsigned integer constant CO < w <
256> that specifies the width in char­
acters of the D input field or D output
field (including the exponent).

An unsigned integer constant less than or
equal to w that specifies the number of
digits to the right of the decimal point
in the mantissa.

Figure 6-45. D Descriptor Format

When the D descriptor formats data during an input
operation, the value in the input field is con­
verted to type ,~U'-precii,~1(}#,$ real, or double­
prec ls ion and is·· assigned to "the input list item.
The data type to which the value is converted is
the data type of the input list item to which the
value is assigned. The input list item must ·be of
type t·~~"i';Pt~~ill~.~- real, double-precision, or
complex. If the input list item is of type com­
plex, two consecutive D, E, F, or G descriptors are
required: the first is for the real part of the
complex value, the second is for the imaginary part
of the complex value. (The two descriptors may be
different, Note also that nonrepeatable edit
descriptors can appear between the two successive
descriptors.)

The data that appears in a D input field must be in
the proper format. See figure 6-46 for the format
of a D input field.

60480200 c

I
I

I
[~]digits

digits

int-con st

blanks

{:} int-const

m "''"''' [:] ·ot-o~ ..
A string of one or more of the
decimal digits 0 through 9; digits
can contain one decimal point.

An unsigned integer constant.

One or more blanks.

Figure 6-46. D, E, F, and G Input Field Format

Blanks that appear in a D input field are inter­
preted according to any BN or BZ edit descriptor,
or according to any BLANK specifier in effect for
the file. If you do not specify a BN or BZ edit
descriptor or a BLANK specifier, blanks that appear
in a D input field are ignored.

A decimal point that appears in a D input field
overrides the decimal point position specified in
the D descriptor.

When the D descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char­
acters are placed in the output field. The output
list item must be of type half-precision, real,
double-precision, or complex. If the output list
item is of type complex, two consecutive D, E, F,
or G descriptors are required: the first is for
the real part of the complex value, the second is
for the imaginary part of the complex value. (The
two descriptors may be different. Note also that
nonrepeatable edit descriptors can appear between
the two descriptors.)

See figure 6-47 for the format of a D output field.
The scale factor k controls the decimal normali­
zation. The output field contains k leading zeros
and (d-k) significant digits after the decimal
point. If k is greater than zero and less than
(d+2), the output field contains k significant
digits to the left of the decimal point and (d-k+l)
significant digits to the right of the decimal
point. Other values of k are not permitted.

If the length of the output list item is less than
the width of the D output field specified, the
value of the output list item is right-justified
and blank-filled in the D output field.

If the length of the output list item is greater
than the width of the D output field, the D output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.

60480200 H

[~ J a.digits [DJ {~}exp

digits

exp

A string of d of the decimal digits 0
through 9, where d is specified in
the D descriptor.

A string of two to four of the
decimal digits 0 through 9. If exp
is Less than or equal to 99, two
digits are output. If exp is greater
than 99 and Less than or equal to
999, three digits are output and the
0 is suppressed. If exp is greater
than 999, four digits are output.

Figure 6-47. D Output Field Format

Output of the sign of a positive mantissa is con­
trolled by the S, SP, and SS descriptors.

Examples

See figure 6-48 for an example of the D descriptor.

DOUBLE PRECISION A,B

READC1,100) A,B
100 FORMATCD4.2,D6.1)

WRITEC2,200) A,B
200 FORMATC'6',2CD12.4,1X))

Input:

0.1234D+02 0.1D+04

A B

Output:

A B

0.12340+02 ~

l1660.1234D+02t.660.1000D+04.6

Figure 6-48. D Descriptor Example

6-23

E Descriptor

The E descriptor formats real data during input/
output operations. The E descriptor can also for­
mat half-precision and double-precision data during
input/output operations. Two consecutive D, E, F,
or G descriptors can format complex data during
input/output operations. See figure 6-49 for the
format of the E descriptor.

rEw.d
or

rEw.dEe

r An unsigned integer constant CO < r < 256>
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant CO < w < 256)
that specifies the width in characters of
the E input field or E output field
(including the exponent>.

d An unsigned integer constant Less than or
equal to w that specifies the number of
digits to the right of the decimal point in
the mantissa.

e An unsigned integer constant CO < e < 256>
that specifies the number of digits in the
exponent field; e has no effect on input.

Figure 6-49. E Descriptor Format

When the E descriptor formats data during an input
operation, the value in the input field is converted
to type half-precision, real, or double-precision
and is assigned to the input 1 ist item. The data
type to which the value is converted is the data
type of the input list item to which the value is
assigned. The input list item must be of type
half-precision, real, double-precision, or complex.
If the input list item is of type complex, two con­
secutive D, E, F, or G descriptors are required:
the first is for the real part of the complex value;
the second is for the imaginary part of the complex
value. (The two descriptors can be different. Note
also that nonrepeatable descriptors can appear be­
tween the the two descriptors.)

The data that appears in an E input field must be
in the proper format. See figure 6-46 for the for­
mat of an E input field.

Leading blanks in an E input field are ignored.
Other blanks that appear in an E input field are
interpreted according to any BN or BZ edit descrip­
tor, or according to any BLANK specifier in the
OPEN statement that connected the file to the unit.
If you do not specify a BN or BZ edit descriptor or
a BLANK specifier, blanks that appear in an E input
field are ignored.

A decimal point that appears in an E input field
overrides the decimal point position specified in
the E descriptor.

6-24

When the E descriptor formats data during an output
operation, the value of the output 1 ist item is
converted to a string of characters. These char­
acters are placed in the output field. The output
list item must be of type half-precision, real,
double-precision, or complex. If the output list
item is of type complex, two consecutive D, E, F,
or G descriptors are required: the first is for
the real part of the complex value; the second ls
for the imaginary part of the complex value. (The
two descriptors may be different. Note also that
non repeatable edit descriptors can appear between
the two descriptors.)

See figure 6-50 for the format of an E output
field. The scale factor k controls the decimal
normalization. If -d<k<= O, the output field after
the decimal point contains lkl leading zeros and
(d-lkl-) significant digits. A zero is output to
the left of the decimal point if space permits. If
k is greater than zero and less than (d+2), the
output field contains k significant digits to the
left of the decimal point and (d-k+l) significant
digits to the right of the decimal point. Other
values of k are not permitted.

[~] O.d ig its CEJ { ~ } exp

digits A string of d of the decimal digits 0
through 9, where d is specified in
the E descriptor.

exp A string of two to four of the
decimal digits 0 through 9. If exp
is Less than or equal to 99, two
digits are output. If exp is greater
than 99 and Less than or equal to
999, three digits are output and the
E is suppressed. If exp is greater
than 999, four digits are output and
the E is suppressed.

If an E descriptor of the form
rEw.dEe is specified e digits are
output.

Figure 6-50. E Output Field Format

If the length of the output 1 ist item is less than
the width of the E output field specified, the
value of the output list item is right-justified
and blank-filled in the E output field.

If the length of the output list item is greater
than the width of the E output field, the E output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.

Output of the sign of a positive mantissa is con­
trolled by the S, SP, and SS descriptors.

See figure 6-51 for an example of the E descriptor.

60480200 c

I

REAL A,B

READ C1, 100) A,B
100 FORMATCE4.2,E6.1)

WRITE C2,200) A,B
200 FORMATC'.O.' ,E12.4E4, 1X,E7.1)

Input:

IT 10 "",

02 0.1E+04

A B

Output:

A B

.. ,,,, ' ."· T .. 11

.0.0.1234E+0002tro.1E+04

Figure 6-51. E Descriptor Example

F Descriptor

The F descriptor formats real data during input/
output operations. The F descriptor can also for­
mat half-precision and double-precision data during
input/output operations. Two consecutive D, E, F,
or G descriptors can format complex data during
input/output operations. See figure 6-52 for the
format of the F descriptor.

When the F descriptor formats data during an input
operation, the value in the input field is converted
to type half-prectsion, real, or double-precision
and is assigned to the input list item. The data
type to which the value is converted is the data
type of the input 1 ist item to which the value is
assigned. The input list item must be of type
half-precision, real, double-precision, or complex.
When paired with a D, E, G, or another F descriptor,
the F descriptor can format complex data during
input/output operations; the first descriptor ls
for the real part of the complex value; the second
is for the imaginary part of the complex value.
(The two descriptors may be different. Note also
that nonrepeatable edit descriptors can appear
between the two descriptors.)

60480200 E

rFw
or

rFw.d

r

w

d

An unsigned integer constant CO < r < 256)
that is used as a repeat specification;
optional. The default is 1.

An unsigned integer constant CO < w < 256)
that specifies the width in characters of
the F input field or F output field.

An unsigned integer constant less than or
equal to w that specifies the number of
digits to the right of the decimal point.

Figure 6-52. F Descriptor Format

The data that appears in an F input fleld must be
in the proper format. See figure 6-46 for the
format of an F input field.

Blanks that appear in an F input field are inter­
preted according to any BN or BZ edit descriptor,
or according to any BLANK specifier in the OPEN
statement in effect for the file. If you do not
specify a BN or BZ edit descriptor or a BLANK
specifier, blanks that appear in an F input fleld
are ignored.

A decimal point that appears in an F input field
overrides the decimal point position specified in
the F descriptor.

When the F descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char­
acters are placed in the output field. The output
list item must be of type half-precision, real,
double-precision, or complex. If the output list
item is of type complex, two consecutive D, E, F,
or G descriptors are required: the first is for
the real part of the complex value; the second is
for the imaginary part of the complex value. (The
two descriptors can be different. Note also that
nonrepeatable edit descriptors can appear between
the two descriptors.)

See figure 6-53 for the format of an F output field.

[~ J digits

digits A string of the decimal digits 0
through 9; digits contains one
decimal point.

Figure 6-53. F Output Field Format

If the length of the output list item is less than
the width of the F output field specified, the
value of the output list item is right-justified
and blank-filled in the F output field.

6-25

If the length of the output list item is greater
than the width of the F output field, the F output
field is filled with asterisks. However, asterisks
are not printed if the 111idth of the field is not
exceeded when optional characters are omitted.

Output of the sign of a positive value is controlled
by the S, SP, and SS descriptors.

Examples

See figure 6-54 for an example of the F descriptor.

100

REAL A,B

READ C1, 1 OQ) A,B
FORMATCF4. 2,F5)

WRITEC2,200) A,B
200 FORMATC't.',F5.2,F7)

Input:

iT.
~a

A B

Output:

Figure 6-54. F Descriptor Example

G Descriptor

The G descriptor formats :'Ji4~'f.;;~r~~lstq~-,' real, and
double-precision data during input/output opera­
tions. A G descriptor can be paired 111ith a D, E,
F, or another G descriptor to format complex data
during input/output operations. See figure 6-55
for the format of the G descriptor.

When the G descriptor formats data during an input
operation, the value in the input field is converted
to type)Ji!!'t',:jii!,~l!I, real, or double-precision

6-26

rGw
or

rGw.d
or

rGw.dEe

r

w

d

e

An unsigned integer constant CO < r < 256)
that is used as a repeat specification;
optional. The default is 1.

An unsigned integer constant CO < w < 256)
that specifies the width in characters of
the G input field or G output field
(including the exponent).

An unsigned integer constant less than w
that specifies the number of digits to the
right of the decimal point in the mantissa.

An unsigned integer constant CO < e < 256)
that specifies the number of digits in the
exponent field; e has no effect on input.

Figure 6-55. G Descriptor Format

and is assigned to the input list item. The data
type to which the value is converted is the data
type of the input list item to which the value is
assigned. The input list item must be of type
half-precision; real, double-precision, or complex.
·If "the input list item is of type complex, two
consecutive D, E, F, or G descriptors are required:
the first is for the real part of the complex value;
the second is for the imaginary part of the complex
value. (The two descriptors can be different. Note
also that nonrepeatable edit descriptors can appear
between the two descriptors.)

The data that appears in a G input field must be in
the proper format. See figure 6-46 for the format
of a G input field.

Blanks that appear within a G input field are
interpreted according to any BN or BZ edit de­
scriptor, or according to any blank specifier in
effect for the file. If you do not specify a BN or
BZ edit descriptor or a BLANK specifier, blanks
that appear within a G input field are ignored.

A. decimal point that appears in a G input field
overrides the decimal point position specified in
the G descriptor.

When the G descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char­
acters are placed in the output field. The output
list item must be of type '~llA!f.~pt.~~b~qlJ:.; real,
double-precision, or complex. If the output list
item is of type complex, two consecutive D, E, F,
or G descriptors are required: the first is for
the real part of the complex value; the second is
for the imaginary part of the complex value. (The
two descriptors can be different. Note also that
nonrepeatable edit descriptors can appear between
the two descriptors.)

60480200 c

The format of a G output field depends on the
magnitude of the data being output. If the data
being output is no less than 0 .1 and no greater
than lO**d, the format of the G output field is the
same as the format of the F output field; however,
the scale factor, if any, is ignored and n blanks
are inserted to the right of the G output field
when the magnitude of the output data is in this
range. (The value of n is 4 for the Gw.d form and
e+2 for the Gw.dEe form.) See figure 6-53 for the
format of an F output field.

If the data being output is less than 0.1 or greater
than lO**d, the format of the G output field is the
same as the format of the E output field and the
scale factor is effective. See figure 6-50 for the
format of the E output field.

If the length of the output 1 ist item is less than
the width of the G output field specified, the value
of the output list item is right-justified and
blank-filled in the G output field.

If the length of the output 1 ist item is greater
than the width of the G output field, the G output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.

Output of the sign of a positive value is controlled
by the S, SP, and SS descriptors.

Examples

See figure 6-56 for an example of the G descriptor.

H Descriptor

The H descriptor causes a string of characters to
be placed in an output record. The H descriptor
can be used only for output operations. See figure
6-57 for the format of the H descriptor.

The H descriptor cannot be associated with an
input/output list item.

When the H descriptor is used for an output opera­
tion, the string of characters specified in the H
descriptor is placed in the output field. The
number of characters output is the number of char­
acters in the H output field.

Any of the characters listed in appendix A can
appear in an H output field. Blanks are significant
characters in an H output field.

See figure 6-58 for an example of the H descriptor.

I Descriptor

The I descriptor formats integer data during input/
output operations. See figure 6-59 for the format
of the I descriptor.

60480200 c

REAL A,B

READ C1, 100) A,B
100 FORMATCG5.3,G8.1)

WRITEC2,200) A,B
200 FORMATC't.' ,2CG10.3, 1X))

Input:

A B

Output:

A B

~ .. ,,_,I
t.~t.12. 3t.t.t.t.~E+OTt.

Figure 6-56. G Descriptor Example

nHstring

n

st ring

An unsigned integer constant CO < n <
256> that specifies the exact number
of characters in string.

A string of characters from the CYBER
200 character set. This string
begins in the next character position
after the H and must contain exactly
the number of characters specified in
n.

Figure 6-57. H Descriptor Format

6-27

WRITEC2,'C18HliPROGRAM''~UTPUT:>'>

Output:

PROGRAM'SllOUTPUT:

Figure 6-58. H Descriptor Example

rI1t1
or

riw.m

r An unsigned integer constant CO < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant CO < w < 256)
that specifies the width in characters of
the I input field or I output field.

m An unsigned integer constant less than or
equal to w that specifies the minimum
number of digits to be output to the I
output field; m has no effect on input.

Figure 6-59. I Descriptor Format

When the I descriptor formats data during an input
operation, the value in the input field is con­
verted to type integer and is assigned to the input
list item. The input List item must be of type
integer.

The data that appears in an I input field must be
of the same format as an integer constant.

Blanks that appear within an I input field are
I interpreted according to any BN or BZ edit de­

scriptor, or according to any blank specifier in
effect for the file. If you do not specify a BN or
BZ edit descriptor or a BLANK specifier, blanks
that appear within an I input field are ignored.

When the I descriptor formats data during an output
operation, the value of the output List item is
converted to a string of characters. These char­
acters are placed in the output field. The output
list item must be of type integer.

The data that is output ·to an I output field
consists of one or more of the dee I.ma l digits O
through 9. If a descriptor of the form riw.m is
used, at least m digits are output; leading zeros
are output if necessary. If m Is 0 and if the
value of the output List item is 0, the output
field consists of blanks.

6-28

If the length of the output list item is less than
the width of the I output field specified, the
value of the output list item is right-justified
and blank-filled in the I output field.

If the length of the output List Ltem is greater
than the width of the I output field, the I output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.
(Leading zeros produced as a result of a nonzero m
value are not considered optional.)

Output of the sign of a value is controlled by the
S, SP, and SS descriptors.

See figure 6-60 for an example of the I descriptor.

100

INTEGER NUM1,NUM2

READC1,100> NUM1,NUM2
FORMATC2I1>

WRITEC2,200) NUM1,NUM2
200 FORMAT<'~' ,17,17.5)

Input:

NUM1 NUM2

Output:

NUM1 NUM2

I ~!8~L~hjoos1
Figure 6-60. I Descriptor Example

L Descriptor

The L descriptor formats logical data during input/
output operations. See figure 6-61 for the format
of the L descriptor.

60480200 H

rLw

r

w

An unsigned integer constant CO < r < 256>
that is used as a repeat specification;
optional. The default is 1.

An unsigned integer constant CO < w < 256>
that specifies the width in characters of
the L input field or L output field.

Figure 6-61. L Descriptor Format

When the L descriptor formats data during an input
operation, the value in the input field is converted
to type logical and is assigned to· the input list
item. The input list item must be of type logical.

The L input field must contain a T or an F. The T
or the F can be preceded only by a decimal point or
by any number of blanks. The T or the F can be
followed by any other characters. For example, the
logical constants .TRUE. and .FALSE. can appear in
an L input field.

When the L descriptor formats data during an output
operation, the value of the output list item ls
converted to a string of characters. These char­
acters are placed in the output field. The number
of characters output is the number of characters in
the L output field. The output list item must be
of type logical.

The L output field contains a T or an F in the
rightmost column; all other columns are blank.

See figure 6-62 for an example of the L descriptor.

P Descriptor

The P descriptor causes a scale factor to be
applied to data that is input or output using the
D, E, F, or G edit descriptors. A scale factor is
a number that increases or decreases a value by a
power of 10. See figure 6-63 for the format of the
P descriptor.

The P descriptor cannot be associated with an
input/output list item.

At the beginning of execution of each input/output
statement, the value of the scale factor is zero.
If a P descriptor is specified, the scale factor it
produces applies to all data that is formatted by
D, E, F, and G descriptors that are processed after
the P descriptor in the format specification.

60480200 E

kP

k

LOGICAL LA,LE,LI

READC1,100> LA,LE,LI
100 FORMATCL5,L9,L7)

WRITEC2,200> LA,LE,LI
200 FORMATC'.6', 3L4)

Input:

l,·r~~·-FALSE.~·r;I I ~ .TRUE.

LA LE LI

Output:

LA LE LI

:c~_Su··]
.6.6.6.6Ts~

Figure 6-62. L Descriptor Example

An optionally signed integer constant used
as the scale factor Ck < 256>. If the
scale factor is to apply to a field width
Cd) specified on a D, E, or G edit descrip­
tor, the value must be within the range
-d<k<d+2.

Figure 6-63. P Descriptor Format

Values that are formatted by the D, E, F, and G
descriptors are divided by the result of the value I
10 raised to the scale factor currently in effect.
However, if an exponent is specified in a value
that appears in a D, E, F, or G input field, the
scale factor has no effect.

During an output operation, the effect of the scale
factor depends on the descriptor that formats the
output values:

f>-29

I

I

I

If a D or an E descriptor formats an output
value, the mantissa of the value is multiplied
by the result of the value 10 raised to the
scale factor. The exponent of the value is
reduced by the scale factor.

If an F descriptor formats an output value,
value ls multiplied by the result of the value
10 raised to the scale factor.

If a G descriptor formats an output value, the
effect depends on the magnitude of the data
being output. If the magnitude of the data is
no less than 0.1 and less than lO**d, there is
no effect. If the magnitude of the data is not
in this range, the effect ls the same as if an
E descriptor had been used to format the output
value.

Examples

See figure 6-64 for an example of the P descriptor.

REAL A,B

.

R Descriptor

The R descriptor formats character data during
input/ output operations, See figure 6-65 for the
format of the R descriptor.

rRw

r An unsigned integer constant CO < r < 256>
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant CO < w < 256)
that specifies the width in characters of
the R input field or R output field.

Ffgure 6.-65. RJ>esc,:riptor. For•eit

READC1, 100> A,B
100 FORMATC2P,F5.2,E7.3)

.
WRITEC2,200> A,B

200 FORMAT(' ',-1P,F10.5,E12.2)

Input:

1.2345 0.222E+01

A B

Output:

A B

I 1
1
•2~·, ! I ·.-:·;··: I ,

AAMO. 12345 AAAAO .02E+02

Figure 6-64. P Descriptor Exa11ple

6-30 60480200 E

When the R descriptor formats data during an input
operation, the value in the. input field is assigned
to the input list item, The number of characters
input is the number of characters in the R input
field. The input list item can be of any data type.

The data that appears in an R input field can be a
string of any of the characters listed in appendix
A.

If the length of the input list item is less than
the width of the R input field, the rightmost char­
acters in the R input field are assigned to the
input list item.

If the length of the input list item is greater
than the width of the R input field, the character
value input is right-justified and binary-zero­
filled in the input list item,

When the R descriptor formats data during an output
operation, the value of the output list item is
placed in the output field, The number of char-

CHARACTER A•4,B•8,C•10

.
READC1,100) A,B,C

100 FORMATC3R8)

WRITEC2,200> A,B,C
200 FORMATC'.6',3A8)

Input:

acters output is the number of characters in the R
output field. The output list item can be of any
data type.

Any of the characters listed in appendix A can
appear in an R output field, Blanks are signifi­
cant characters in an R output field,

If the length of the output list item is less than
the width of the R output field, the character val­
ue that is output is right-justified and character­
zero-filled in the R output field.

If the length of the output list item is greater
than the width of the R output field, the rightmost
characters of the output list item are placed in
the R output field.

Examples

See figure 6-66 for an example of the R descriptor.

S Descriptor

The S descriptor controls the printing of the plus
sign during output of numeric data. The S descrip­
tor specifies that a plus sign not be printed. The

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

E F G H IJKLMNOP binary QRSTUVWX zeros

A B c

A B c

E F G H I J K L M N 0 P binary Q R STUVWX zeros

.6 4 ASCII null E f G H I J K L M N 0 P Q R S T U V W X
characters

Figure 6-6.6. R Descdptor Example

60480200 A 6-31

effect of the S descriptor is identical to that of
the SS descriptor. See figure 6-67 for the format
of the S descriptor.

s

Figure 6-67. S Descriptor Format

The S descriptor cannot be associated with an
input/output list item.

The S descriptor affects the sign of data that is
output using the 1, D, E, F, and G descriptors
only. The S descriptor has no effect during the
execution of an input statement.

If no S descriptor, SP descriptor, or SS descriptor
is specified in a format specification, an optional
plus sign is not printed. The S descriptor does
not affect the sign of an exponent.

See figure 6-68 for an example of the S descriptor.

INTEGER NlJll1,NUM2

NlJll1 = 123
NUM2 = 12345
WRITEC2,200) NUM1,NUM2

200 FORMATC't.'S,2CI5,2X»

Output:

NUM1 NUM2

S:I t.:t:.t.123t.t112345:6t.

Figure 6-68. S Descriptor Example

SP Descriptor

The SP descriptor controls the printing of the plus
sign during output of numeric data. The SP de­
scriptor specifies that a plus sign must always be
printed in front of positive numeric values. See
figure 6-69 for the format of the SP descriptor.

SP

Figure 6-69. SP Descriptor Format

6-32

The SP descriptor cannot be associated with an
input/output list item.

The SP descriptor affects the sign of data that is
output using the I, D, E, F, and G descriptors
only. The SP descriptor has no effect during. the
execution of an input statement.

If no S descriptor, SP descriptor, or SS descriptor
is specified in a format specification, an optional
plus sign is not printed. The SP descriptor does
not affect the sign of an exponent.

See figure 6-70 for an example of the SP descriptor.

INTEGER NUM1,NUM2

NUM1 = 123
NUM2 = 12345
WRITEC2,200> NlJll1,NlJll2

200 FORMATC't.'SP,2CI5,2X))

Output:

NUM1 NlJll2

XT
M+123t.t.*****M

Figure 6-70. SP Descriptor Ex1111ple

SS Descriptor

The SS descriptor controls the print.log of the plus
sign during output of numeric data. The SS de­
scriptor specifies that a plus sign not be printed.
The effect of the SS descriptor is identical to that
of the S descriptor. See figure 6-71 for the format
of the SS descriptor.

SS

Figure 6-71. SS Descriptor Format

The SS descriptor cannot be associated with an
input/output list item.

The SS descriptor affects the sign of data that is
output using the I, D, E, F, and G descriptors
only. The SS descriptor has no effect during the
execution of an input statement,

60480200 A

If no S descriptor, SP descriptor, or SS descriptor
is specified in a format specification, an optional
plus sign is not printed, The SS descriptor does
not affect the sign of an exponent.

See figure 6-72 for an example of the SS descriptor.

200

Output:

INTEGER NUM1,NUM2

NUM1 = 123
NUM2 = 12345
WRITEC2,200) NUM1,NUM2
FORMATC't.'SS,2CI5,2X))

NUM1 NUM2

XI
t.~t.123till12345~.6

Figure 6-72. SS Descriptor Example

T Descriptor

The T descriptor specifies the column from which
the next character is to be input, or the column to
which the next character is to be output, See
figure 6-73 for the format of the T descriptor.

Tc

c An unsigned integer constant CO < c < 256)
that specifies the column of the input
record from which the next character is
to be input, or the column of the output
record to which the next character is to be
output.

Figure 6-73. T Descriptor Format

The T descriptor cannot be associated with an
input/output list item.

When the T descriptor is used during an input
operation, the next character to be read from the
input record is the character that is in the column
specified in the T descriptor.

60480200 c

When the T descriptor is used during an output
operation, the next character to be written to the
output record is written to the column of the out­
put record specified in the T descriptor. When the
next character is written, any undefined characters
to the left are set to blank; however, the T de­
scriptor does not affect the length of the output
record.

Examples

See figure 6-74 for an example of the T descriptor.

100

200

INTEGER NUM1,NUM2

READC1,100) NUM1,NUM2
FORMATCI3,T2,I3)

WRITEC2,200> NUM1,NUM2
FORMATC't.',T5,I3,T10,I3)

Input:

~
~8

NUM1 NUM2

Output:

NUM1 NUM2

~~ t.t.t.!J. 1 23 M:i. 234

Figure 6-74. T Descriptor Example

TL Descriptor

The TL descriptor moves the input/output record
pointer to the left. The input/output record
pointer indicates the column from which the next
character is input, or the column to which the next
character is output. See figure 6-75 for the for­
mat of the TL descriptor.

The TL descriptor cannot be associated with an
input/output list item.

6-33

I

TLn

n An unsigned integer constant CO < n < 256)
that specifies how many columns to the
left of the current column to move the
input/output record pointer.

Figure 6-75. TL Descriptor Format

When the TL descriptor is used during an input
operation, the input record pointer is repositioned
to a column that appears to the left of the current
column. The TL descriptor specifies how many col­
umns to the left of the current column to move the
pointer. The character that appears in that column
is the next character to be read by the input
statement.

If the TL descriptor moves the input record pointer
to the left of the first column of the input record,
the input record pointer is repositioned to the
first column of the input record.

100

·INTEGER NlJll1,NlJll2

READC1,100> NU1111,Nllll2
FORNATCI3,TL1,I3)

WRITEC2,200) NlJll1,NlJll2

When the TL descriptor is used during an output
operation, the output record pointer is repositioned
to a column that appears to the left of the current
column. The TL descriptor specifies how many col­
umns to the left of the current column to move the
pointer. The next character to be output is output
in that column. When the next character is written,
any undefined characters to the left are set to
blank; however, the TL descriptor does not affect
the length of the output record.

If the TL descriptor moves the output record pointer
to the left of the first column of the output rec­
ord, the output record pointer ls repositioned to
the first column of the output record.

Example!!,

See figure 6-76 for an example of the TL descriptor.

200 FORNATC'A' ,I3, 'AOFATHEAAAAAAREA DEFECTIVE', TL17,I3>

Input:

~
~~

NlJll1 Nllll2

Output:

NlJll1 NlJll2

1 t~A:J~REAomcrm
Figure 6-76. TL Descriptor Exa111ple

6-34 60480200 E

TR Descriptor

The TR descriptor moves the input/output record
pointer to the right. The input/output record
pointer indicates the column from which the next
character is to be input, or the column to which
the next character is to be output. See figure
6-77 for the format of the TR descriptor.

TRn

n An unsigned integer constant CO < n < 256>
that specifies how many columns to the right
of the current column to move the input/
output record pointer.

Figure 6-77. TR Descriptor Format

The TR descriptor cannot be associated with an
input/output list item.

When the TR descriptor is used during an input
operation, the input record pointer is repositioned
to a column that appears to the right of the cur­
rent column. The TR descriptor specifies how many
columns to the right of the current column to move
the pointer. The character that appears in that
column is the next character to be read by the
input statement.

When the TR descriptor is used during an output
operation, the output record pointer is repositioned
to a column that appears to the right of the cur­
rent column. The TR descriptor specifies how many
columns to the right of the current column to move
the pointer. The next character to be output is
output in that column. When the next character is
written, any undefined characters to the left are
set to blank; however, the TR descriptor does not
affect the length of the output record.

Examples

See figure 6-78 for an example of the TR descriptor.

X Descriptor

The X descriptor moves the input/output record
pointer to the right. The input/output record
pointer indicates the column from which the next
character is input, or the column to which the next
character is output. See figure 6-79 for the
format of the X descriptor.

The X descriptor cannot be associated with an
input/output list item.

60480200 c

nX

100

200

Input:

INTEGER NUM1,NUM2

READC1,100) NUM1,NUM2
FORMATCI3,TR5,I3)

WRITEC2,200> NUM1,NUM2
FORMATC't.' ,I3, TR7,I3)

T45~

~~
NUM1 NUM2

Output:

Figure 6-78. TR Descriptor Example

n An unsigned integer constant CO < n < 256)
that specifies how many columns to the right
of the current column to move the input/
output record pointer.

Figure 6-79. X Descriptor Format

When the X descriptor is used during an input
operation, the input record pointer is repositioned
to a column that appears to the right of the cur­
rent column. The X descriptor specifies how many
columns to the right of the current column to move
the pointer. The character that appears in that
column is the next character to be read by the
input statement.

6-35

When the X descriptor is used during an output
operation, the output record pointer is repositioned
to a column that appears to the right of the cur­
rent column. The X descriptor specifies how many
columns to the right of the current column to move
the pointer. The next character to be output is
output in that column. When the next character is
written, any undefined characters to the left are
set to blank; however, the X descriptor does not
affect the length of the output record.

Examples

See figure 6-80 for an example of the X descriptor.

100

200

Input:

INTEGER NUM1,NUM2

READC1,100) NUM1,NUM2
FORMATCI3,5X,I3)

WRITEC2,200> NUM1,NUM2
FORMATC'll.' ,I3,7X,I3)

T45~

~~
NUM1 NUM2

Output:

NUM1 NUM2

er~ ti. 123 /j./j./j./j./j./j./j. 901

Figure 6-80. X Descriptor Example

f Z Descriptor

The Z descriptor formats hexadecimal data during
input/output operations. See figure 6-81 for the
format of the Z descriptor.

6-36

rZw
or

rzw.m

r An unsigned integer constant CO < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant CO < w < 256)
that specifies the width in characters of
the Z input field or Z output field.

m An unsigned integer constant less than or
equal to w that specifies the number of
digits to be output to the Z output field;
m has no effect on input.

Figure 6-81. Z Descriptor Format

'When the Z descriptor formats data during an input
operation, the value in the input· field is treated
as a sequence of hexadecimal digits and is assigned
to the input list item. The input list item can be
of any data type.

The data that appears in a Z input field must be a
string of the hexadecimal digits 0 through 9 and
uppercase or lowercase A through F. The hexa- I
decimal digits correspond to the decimal values 0
through 15. Each hexadecimal digit occupies 4 bits.

Blanks that appear within a Z input field are
interpreted according to any BN or BZ edit de­
scriptors, or according to any blank specifier in
effect for the file. If you do not specify a BN or
BZ edit descriptor or a BLANK specifier, blanks
that appear within a Z input field are ignored.

When the Z descriptor formats data during an output
operation, the value of the output list item is
converted to a string of the hexadecimal digits 0
through 9 and A through F. The hexadecimal digits
correspond to the decimal values 0 through 15.
These characters are placed in the output field.
The output list item can be of any data type.

If a descriptor of the form rZw.m is used, at least
m digits are output; leading zeros are output if
necessary. If m is 0 and if the value of the out­
put list item is 0, the output field consists of
blanks.

If the length of the output list item is less than
the width of the Z output field specified, the
value of the output list item is right-justified
and blank-filled in the Z output field.

If the length of the output list item is greater
than the width of the Z output field, the rightmost
hexadecimal digits are placed in the Z output field.

60480200 H

I

Examples

See figure 6-82 for an example of the Z descrlptor.

100

200

Input:

CHARACTER•4 HEX1,HEX2

READC1,100> HEX1,HEX2
FORlllATCZ8,Z1>

WRITEC2,200) HEX1,HEX2
FORMAT C 16 1 ,Z4,Z8.4>

0 2 4 6 8 A C E 5

X'02468ACE' X'00000005'

HEX1 HEX2

Output:

HEX1 HEX2

x I 02468ACE I X'00000005'

Figure 6-82. Z Descriptor Example

Apostrophe Descriptor

The apostrophe descrlptor causes a string of char­
acters to be placed in an output record. The
apostrophe descrlptor can be used only for output
operations. See figure 6-83 for the format of the
apostrophe descrlptor.

'string'

stdng A string of from 1 through 255 char­
acters from the CYBER 200 character
set.

Figure 6-83. Apostrophe Descriptor Format

60480200 c

The apostrophe descriptor cannot be associated with
an input/output list item.

When the apostrophe descriptor is used for an out­
put operation, the string of characters specified
in the apostrophe descriptor is placed in the out­
put field. The number of characters output is the
number of characters in the apostrophe output fieLd.

Any of the characters listed in appendix A can
appear in an apostrophe output field. Blanks are
significant characters in an apostrophe output
field. An apostrophe can be represented in an
apostrophe output field by specifying two con­
secutive apostrophes.

See figure 6-84 for an example of the apostrophe
descriptor.

WRITEC2,'C''t.PROGRAM''''S OUTPUT:'')')

Output:

t.PROGRAM'St.OUTPUT:

Figure 6-84. Apostrophe Descriptor Example

Slash Descriptor

The slash descriptor indicates that no more data is
to be input from the current record or output to
the current record during the execution of the cur­
rent input/output statement. See figure 6-85 for
the format of the slash descriptor.

I

Figure 6-85. Slash Descriptor Format

When the slash descriptor is used during an input
operation that involves a record of a sequential
file, the remaining port ion of the current record
ls sklpped and the file is posltioned at the begin­
ning of the next record.

When the slash descriptor is used during an input
operatlon that involves a record of a direct access
file, the remaining portion of the current record
ls sk lpped and the record number ls increased by
one. The flle h positloned at the beginning of
that record.

6-37

When a slash descriptor is used during an output
operation that involves a sequential file, a new
record is created. The new record is the last rec­
ord of the file and the new record is the current
record. Consecutive slash descrlptors can cause
empty records to be output to a sequential file.

When the slash descriptor is used during an output
operation that involves a record of a dlrect access
file or a record of an internal file, the record
number is increased by one and the file is posi­
t.ioned at the beginning of that record. Consecutive
slash descriptors cause records of a dlrect access
file or records of an internal file to be filled
with blanks.

Examples

See figure 6-86 for an example of the slash de­
scriptor.

6-38

100

INTEGER NUM

READC1, 100) NUM
FORMAT Cl ,I3)

WRITEC2,200) NUM
200 FORMAT ('6HEADING I ,II I, '6NUM= I ,13)

Input:

2 3 4

98
0

NUM

Output:

NUM

567

6HEADING

blank record
blank record

MUM=

Figure 6-86. Slash Descriptor Example

Colon Descriptor

The colon descriptor terminates format control if
there are no more items in the input/output list.
The colon descriptor has no effect if there are
more items in the input/output list. See figure
6-87 for the format of the colon descriptor.

Figure 6-87. Colon Descriptor Format

See figure 6-88 for an example of the colon de­
scriptor.

UNFORMATTED INPUT/OUTPUT
STATEMENTS
An unformatted input/output statement transfers
data between a sequential access external file or a
direct access external file and internal storage.
No formatting is performed; the data is transferred
as it exists on the external file or in internal
storage.

Those aspects of unformatted input/output which are
unique to d l rect access external files are dis­
cussed separately under Direct Access Input/Output
Statements. The remainder of this discussion
assumes the most common file type for unformatted
input/output: a sequential access external file.

The unit specified in an unformatted input/output
statement must be connected for unformatted input/
output; a .~n.i t ... c. a,n. be c.011.n(\Ctt;d .. bv using the OPEN
statement '.~;;'.t~~:':ilMt:~lf

1f the unit specified is not connected, the proc­
essor connects the unit to a f Lle before the input/
output statement Ls executed. See the description
of the UNIT specifier for more information about
processor-determined unit connection.

A FMT spec i.f ier must not appear in an unformatted
input/output statement. The input/output list is
optional in an unformatted input/output statement.

The unformatted input/output statements are:

Unformatted READ statement

Unformatted WRITE statement

Each of these statements is described in the fol­
lowing paragraphs.

UNFORMATTED READ STATEMENT

The unformatted READ statement transfers data from
a sequential access external file to internal stor­
age in the format ln which it exists on the file.
See figure 6-89 for the format of the unformatted
READ statement.

60480200 A

INTEGER NIJll1,NIJll2

READC1,100> NIJll1,NUM2
100 FORMATCI5,I3,:,2I5,4I2)

WRITEC2,200) NIJll1,NUM2
200 FOllMATC'6' ,IS, :,2X,I3, :,'6ARE6TH~NSWERS. I)

Input:

TT90
~a

NUM1 NIJll2

Output:

NIJll1 NIJll2

~x ll 12345M678

f;gure 6-88. Colon Descr;ptor Ex11111ple

dUst

il ist

A control ;nformat;on l;st. The UNIT
specifier must appear in cilist and
must not be an aster;sk.

The following specifiers can also
appear ;n cilist:

END
ERR
IOSTAT
REC

Figure 6-89. Unformatted READ Statement Format

When an unformatted READ statement is executed, one
record is transferred from the file to internal
storage, No formatting is performed. The file
must be positioned at the beginning of an unformat­
ted record or at the beginning of an endfile record
when execution of an unformatted READ statement
begins.

60480200 A

The number of items in the input list must be less
than or equal to the number of values in the input
record. The type of each value in the input record
must be the same as the type of the input list item
to which it corresponds. However, a complex input
list item can correspond to two real values in the
input record, and two real input list items can
correspond to one complex value in the input record.

If the input list does not appear in the unformatted
READ statement, one input record is skipped.

If an unformatted READ statement attempts to read
beyond the end of a file, an execution-time error
occurs. You can avoid this occurrence by speci­
fying the END specifier or the IOSTAT specifier on
the unformatted READ statement,

See figure 6-90 for an example of the unformatted
READ statement. The values input by the unformatted
READ statement in the example are shown. The values
input by the unformatted READ statement are input
from the file connected to unit l. When an end-of­
file condition is detected during execution of the
unformatted READ statement, N is assigned the value
-1, and control transfers to the statement labeled
10. If an input error occurs during execution of
the unformatted READ statement, control transfers
to the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

6-39

I

CHARACTER*8 CHARSC10>

DO 1 1=1,10
READC1,END=10,ERR=20,IOSTAT=N) CHARSCI)

1 CONTINUE
10 CALL SORTCCHARS,I-1)

STOP
20 CALL IOERRCN>

Input is the binary representation of the characters:

F IRST.t.t.t.
SECOND.t.t.
THIRDt.66

CHARSC1>
CHARSC2>
CHARSC3)

Figure 6-90. Unformatted READ State•ent Example

UNFORMATTED WRITE STATEMENT

The unformatted WRITE statement transfers data from
internal storage to a sequential access external
file in the format in which it exists in internal
storage. See figure 6-91 for the format of the
unformatted WRITE statement.

WRITE Ccilist) olist

cilist

olist

A control information list. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

ERR
IOSTAT
REC

An output list; optional.

Figure 6-91. Unformatted WRITE Statement Format

When an unformatted WRITE statement is executed,
one record is transferred from internal storage to
the file. No formatting is performed.

If the output list does not appear in the unformat­
ted WRITE statement, a zero length record is output.

6-40

See figure 6-92 for an example of the unformatted
WRITE statement. The values output by the unfor­
matted WRITE statement in the example are shown.
The values are output to the file connected to unit
2. If an output error occurs during execution of
the unformatted WRITE statement, control transfers
to the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

CHARACTER•8 CHARS/'ABCDEFGH'/

WRITEC2,ERR=20,IOSTAT=N) CHARS

20 CALL IOERR CN)

Output is the binary representation of the
characters:

ABCDEFGH

Figure 6-92. Unformatted WRITE
State11ent Example

60480200 H

LIST-DIRECTED INPUT /OUTPUT
STATEMENTS

A list-directed input/output statement transfers
data between a sequential access external file and
internal storage in list-directed format. List­
directed formatting is described later in this
section.

The unit specified in a list-directed input/output
statement must be capable of formatted sequential
input/output, or must be connected for formatted
sequential input/output. (A unit can be connected
by using the OPEN statement. Preconnection can be
implicit or can be done explicitly with the PROGRAM
statement or the execution control statement.)

If the unit specified is preconnected, the processor
connects the unit to the file before the input/
output statement is executed. See the description
of the UNIT specifier for more information about
processor-determined unit connection.

An asterisk in the input/output statement specifies
list-directed input/output; the input/output list
is optional in the statement.

The list-directed input/output statements are:

List-directed READ statement

List-directed WRITE statement

List-directed PRINT statement

List-directed PUNCH statement

Each of these statements is described in the fol­
lowing paragraphs.

LIST-DIRECTED READ ST A TEMENT

The list-directed READ statement transfers data
from a sequential access external file to internal
storage in list-directed format. See figure 6-93
for the format of the list-directed READ statement.

If a control information list is not specified in a
list-directed READ statement, data is transferred
from the unit SHINPUT. If the input 1 i.st does not
appear in the list-directed READ statement, one
input record is skipped.

If a list-directed READ statement attempts to read
beyond the end of a file, an execution-time error
occurs. You can prevent this error by specifying
the END specifier or the IOSTAT specifier on the
list-directed READ statement.

See figure 6-94 for examples of the list-directed
READ statement. The values input by the list­
directed READ statements in the example are shown.
The values input by the first list-directed READ
statement are input from the file connected to unit
1. When an end-of-file condition is detected dur­
ing execution of the first list-directed READ
statement, control transfers to the statement
labeled 10, and N is assigned the value -1. If an
input error occurs during execution of the first
list-directed READ statement, control transfers to
the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

60480200 A

READCcilist) ilist
or

READ •,ilist

cil ist A control information List. The
following specifiers must appear in
cilist:

iL ist

UNIT
FMT Cmust be an asterisk)

The following specifiers can also
appear in cilist:

END
ERR
IOSTAT

An input List; optional.

If the second form of the List-directed READ
statement is used and ilist is not specified,
the comma separating the asterisk from ilist
must not appear.

Figure 6-93. List-Directed READ
Statement Format

I = 0
I = I + 1
READC1,•,END=10,ERR=20,IOSTAT=N) A,B
READ•, C,D
AVGCI) = CA+B+C+D)/4
GOTO 1

10 CALL PLOTCAVG,I-1>

STOP
20 CALL IOERRCN)

Input:

1 O. OOt.t.t.20. 0
70. Ot.t. 50. 0

Figure 6-94.

COn unit 1)
COn file INPUT>

List-Directed READ
Statement Examples

The values input by the second list-directed READ
statement are input from the unit SHINPUT.

LIST-DIRECTED WRITE STATEMENT

The list-directed WRITE statement transfers data
from internal storage to a sequential access ex­
ternal file i.n list-directed format. See figure
6-95 for the format of the list-directed WRITE
statement.

6-41

I

WRITE(cilist) olist

cilist A control information list. The
following specifiers must appear in
c il i st:

olist

UNIT
FMT (must be an asterisk)

The following specifiers can also
appear in cilist:

ERR
IOSTAT

An output list; optional.

Figure 6-95. List-Directed WRITE
Statement Format

If the output list does not appear in the list­
d i rected WRITE statement, a record consisting of a
single blank character is written,

See figure 6-96 for examples of the list-directed
WRITE statement. The value output by the list­
directed WRITE statements in the example are shown.
The values are output to the file connected to unit
2, If an output error occurs during execution of
the first list-directed WRITE statement, control
transfers to the statement labeled 20 and the var­
iable N is assigned the number of the execution-time
error.

LIST-DIRECTED PRINT STATEMENT

The list-directed PRINT statement transfers data
from internal storage to the unit 6HOUTPUT in list­
directed format. See figure 6-97 for the format of
the list-directed PRINT statement.

INTEGER J C4>
COMPLEX ZC2)
DOUBLE PRECISION Q

PRINT *, ol ist

ol ist An output list; optional

If olist is not specified, the comma separating
the asterisk from olist must not appear.

Figure 6-97. List-Directed PRINT
Statement Format

If the output list does not appear in the 1 ist­
directed PRINT statement, a record consisting of a
single blank is written.

See figure 6-98 for an example of the list-directed
PRINT statement, The values output by the list­
directed PRINT statement in the example are shown.
The values are output to the unit 6HOUTPUT.

I=5
PR INT *, I THE /),.ANSWER /),. IS /),. I, I

Output:

!),. THE/),. ANSWER!),. IS/),. 5

Figure 6-98. List-Directed PRINT
Statement Example

DATA J,Z,Q /1,-2,3,-4,C7.,-1.>,C-3.,2.),1.D-5/
WRITEC2,•,ERR=20,IOSTAT=n> J
WRITEC2,•) J
WRITEC2,•) ZC1) 1 Q

STOP
20 CALL IOERR CN>

Output:

~1 ~-2 ~3 ~-4

(7.0000000000000,-1.0000000000000) 1.000000000000000000000000000E-05

Figure 6-96. List-Directed WRITE State11ent Exa11ples

6-42 60480200 F

LIST -DIRECTED PUNCH STATEMENT

The list-directed PUNCH statement transfers data
from internal storage to the unit 3HPUNCH in list­
directed format. See figure 6-99 for the format of
the list-directed PUNCH statement.

PUNCH*, olist

ol ist An output list; optional

If olist is not specified, the comma separating
the asterisk from olist must not appear.

Figure 6-99. List-Directed PUNCH
Statement Format

If the output list does not appear in the list­
directed PUNCH statement, a record consisting of a
single blank character is punched.

See figure 6-100 for an example of the list­
directed PUNCH statement. The values output by the
list-directed PUNCH statement in the example are
shown. The values are output to the file called
PUNCH.

I = 5
PUNCH *, I THE ti. ANSWER ti. IS ti. I ,I

Output:

ti.THE ti. ANSWER ti. IS ti. 5

Figure 6-100. List-Directed PUNCH
Statement Example

LIST-DIRECTED FORMATTING
List-directed input/output statements transfer data
between sequential access external files and inter­
nal storage in list-directed format. List-directed
format is a predefined format specification.

List-directed formatting for input and
described in the following paragraphs.

LIST -DIRECTED INPUT FORMATTING

output is

~
~'

One or more contiguous blanks

A comma optionally preceded and optionally
followed by one or more contiguous blanks

A slash optionally preceded and optionally
followed by one or more contiguous blanks (the
slash separator terminates the input operation)

When a list-directed input statement is executed,
the value in the first input field of a record is
assigned to the first input list item in the input
statement, the value in the next field is assigned
to the second input list item, and so on.

If a list-directed input statement follows a list­
directed input statement that terminated in the
middle of a record, the second input statement
begins inputting the values from the first input
field of the next record.

Execution of a list-directed input statement
terminates when all of the items in the input list
have been assigned values. You can also terminate
execution of a list-directed input statement by
using the slash as a separator in the input data.

If all of the input fields of a record are input
before execution of the list-directed input state­
ment is terminated, the input statement continues
inputting values from the input fields of subsequent
records.

The value that appears in an input field is con­
verted to the type of the input list item to which
the value is assigned. The format of a value that
appears in an input field depends on the type of
the input list item to which it is assigned:

When the input list item is of type integer,
the value in the corresponding input field must
have the same format as an I input field.

When the input list item is of type real,
double-precision, ~r '~l'f;..P~tCijJf:o~g the value
in the correspondirig input field must have the
same format as an F input field.

When the input list item is of type complex,
the value in the corresponding input field must
have the same format as a complex constant.
Both the real part and imaginary part of the
complex constant can be preceded or followed by
blanks. The end of the record can occur be­
tween the real part and the comma, or between
the comma and the imaginary part.

When the input list item is of type logical,
the value in the corresponding input field must
have the same format as an L input field; how­
ever, slashes and commas are not permitted as
optional characters in the input field.

~~-
A list-directed input statement transfers data from if;:/~
a sequential access external file to internal stor- '"I ~~ -
age. The data read must be in list-directed input (;1
format. A list-directed input record consists of ~

When the input list item is of type character,
the value in the corresponding input field must
be a string of one or more characters enclosed
in apostrophes. The characters must be from
the CYBER 200 character set. An apostrophe
that appears in the character string must be
represented as two consecutive apostrophes.
The end of the record can occur in a character
string without affecting the characters in the
string.

zero or more blanks followed by a list of input 0
fields separated by any of the following separators: ~

60480200 A 6-43

When the input list item is of type bit, the
value in the corresponding input field must
have the same format as a B input field.

If several adjacent input fields contain the same
value, you can use a repeat specification rather
than explicitly specifying each input field. A
repeat specification is an unsigned integer constant
greater than or equal to 1 followed by an asterisk
that precedes the input field to be repeated.

For input list items of type character, if the
length of the input list item is less than the
length of the character value in the input field,
the leftmost characters in the input field are
assigned to the input list item, If the length of
the input list item is greater than the width of
the character value in the input field, the char­
acter value input is left-justified and blank­
filled in the input list item,

A null value can be assigned to an input list item
by specifying two consecutive separators in the
input data. When a null value is assigned to an
input list item, the value of the input list item
is not changed. A null value can be assigned to an
input list item of type complex; however, a null
value must be assigned to both the real part and
the imaginary part of the complex input list item.

If an input operation is terminated by using the
slash as a separator in the input data, the values
of any.input list items that have not been assigned
values by the input operation are not changed,

LIST-DIRECTED OUTPUT FORMATTING

A list-directed output statement transfers data
from internal storage to a sequential access
external file. The data is output in list-directed
output format. A list-directed output record
consists of a blank followed by a list of output
fields separated by blanks.

When a list-directed output statement is executed,
the values of the output list items are converted
to character strings and placed in the output file.
A blank is inserted between each output field,
except before and after character values. Each
list-directed output statement outputs a new record,

Execution of a list-directed output statement
terminates when the values of all of the output
list items have been output.

If a list-directed output statement outputs a line
that is longer than 137 characters, the line is
continued on subsequent output lines. Lines are
broken at separators; however, a line can be broken
between the real part and the imaginary part of a
complex output value, and a line can be broken in a
character output value.

A blank is always inserted at the beginning of each
output line; the blank is provided for carriage
control in case the file is printed on a line
printer,

The format of a value that is output to an output
field depends on the type of the output list item
being output:

6-44

When the output list item is of type integer,
the value written to the corresponding output
field has the same format as an Il6 output
field; however, leading blanks are removed.

When the output list item is of type real,
double-precision, or half-precision, the value
written to the corresponding output field has
the same format as an F output field or an E
output field, depending on the magnitude of the
value. If the magnitude of the value is greater
than or equal to 10**-3 and less than or equal I
to lO**dl, the output field has the same format
as a OPF output field: dl+l digits are output.

If the magnitude of the
10**-3 or greater than or
output field has the same
output field,

value is less than
equal to lO**dl, the
format as a lPEw.dEe -,.

The values of dl, w, d, and e depend on the
data type of the output list item. See table
6-4 for the values.

When the output list item is of type complex,
the value written to the corresponding output
field has the same format as a complex constant.
No blanks appear in the constant unless the end
of the record occurs in the constant. The end
of the record can occur between the real part
and the comma, or between the comma and the
imaginary part.

When the output list item is of type logical,
the value written to the corresponding output
field has the same format as an L output field,

When the output list item is of type character,
the value written to the corresponding output
field is a string of one or more characters.
The string is not enclosed in apostrophes. The
characters are from the CYBER 200 character
set. An apostrophe that appears in the char­
acter string is represented as one apostrophe.
The end of the record can occur in a character
string without affecting the characters in the
string; however, a blank is always output as
the first character in a record in order to
provide carriage control.

When the output list item is of type bit, the
value written to the corresponding output field
has the same format as a B output field.

Null values cannot be output. The slash cannot be
output as a separator.

TABLE 6-4. VALUES FOR dl, w, d, AND e

Output List
dl w d e Item Type

Real 13 22 13 4

Double-Precision 27 36 27 4

Half-Precision 6 13 6 2

60480200 E

I

NAMELIST INPUT I OUTPUT
STATEMENTS

A namelist input/output statement transfers data
between a sequential access external file and
internal storage in namelist format. Namelist
formatting is described later in this section.

The unit specified in a namelist input/output
statement must be preconnected to a file capable of
formatted sequential input/output, or must be con­
nected for formatted input/output. (A unit can be
connected by using the OPEN statement. Precon­
nection can be implicit or can be done explicitly
with the PROGRAM statement or the execution control
statement.

If the unit specified is preconnected, the processor
connects the unit to the file before the input/
output statement is executed. See the description
of the UNIT specifier for more information about
processor-determined unit connection.

A FKT specifier in a namelist input/output statement
must specify a namelist group name. A namelist
input/output statement must not contain an input/
output list.

The NAMELIST statement defines a namelist group.
The namelist input/output statements are:

Namelist READ statement

Namelist WRITE statement

Namelist PRINT statement

Namelist PUNCH statement

The NAMELIST statement and each of the namelist
input/output statements are described in the fol­
lowing paragraphs.

NAMELIST STATEMENT

The NAMELIST statement is a nonexecutable statement
that defines one or more namelist groups. A name­
list group is an input/output list that is identi­
fied by a symbolic name; the symbolic name is called
the namelist group name. See figure 6-101 for the
format of the NAMELIST statement.

NAMELIST /grpname1/ niolist1 ••• /grpnamen/niolistn

grpname1

niolist;

A symbolic name that is used as the
namelist group name

A list of one or more variable names
and array names separated by commas
that are used as the namelist group

Figure 6-101. NAMELIST Statement Format

A NAMELIST statement that defines a namelist group
must appear in each program unit that performs
namelist input/output using that namel!st group.

60480200 A

See figure 6-102 for an example of the NAMELIST
statement. The NAMELIST statement in the example
defines two namelist groups: the first is called
GR.OUPl and consists of the items A and B, and the
second is called GROUP2 and consists of the item D.

REAL A
COMPLEX B
DOUBLE PRECISION D
NAMELIST /GROUP1/A,B/GROUP2/D

READC1, GROUP1)
READC1, GROUP2)

Figure 6-102. NAMELIST Statement Example

NAMELIST READ STATEMENT

The namel!st READ statement transfers data from a
sequential access external file to internal storage
in namelist format. See figure 6-103 for the for­
mat of the namelist READ statement.

READ Ccilist)
or

READ grpname

c il ist

grpname

A control information list. The
following specifiers must appear in
cilist:

UNIT
FMT Cmust be a namelist

group name>

The following specifiers can also
appear in cilist:

END
ERR
IOSTAT

A namelist group name.

Figure 6-103. Namelist READ Statement Format

When a namelist READ statement is executed, one
namelist group is transferred from the file to the
items in the namelist group. The values read are
converted to the type of the items to which they
are assigned,

If a control information list is not specified in a
namelist READ statement, data is transferred from
the unit 5HINPUT.

6-45

If a namelist READ statement attempts to read
beyond the end of a file, an execution-time error
occurs. You can prevent this error by specifying
the END specifier or the IOSTAT specifier on the
namelist READ statement.

See figure 6-104 for an example of the namelist
READ statement. The values input by the namelist
READ statements in the example are shown. The
values input by the first namelist READ statement
are input from the file connected to unit 1. When
an end-of-file condition is detected during exe­
cution of the first namelist READ statement, control
transfers to the statement labeled 10, and N is
assigned the value -1. If an input error occurs
during execution of the first namelist READ state­
ment, control transfers to the statement labeled 20
and the variable N is assigned the number of the
execution-time error.

The values input by the second namelist READ
statement are input from the unit 5HINPUT.

NAMELIST WRITE STATEMENT

The namelist WRITE statement transfers data from
internal storage to a sequential access external
file in namelist format. See figure 6-105 for the
format of the namelist WRITE statement.

See figure 6-106 for an example of the namelist
WRITE statement. The values output by the namelist
WRITE statement in the example are shown. The val­
ues are output to the file connected to unit 2. If
an output error occurs during execution of the
namelist WRITE statement, control transfers to the
statement labeled 20 and the variable N is assigned
the number of the execution-time error.

NAMELIST PRINT ST A TEMENT

The namelist PRINT statement transfers data from
internal storage to the unit 6HOUTPUT in namelist
format. See figure 6-107 for the format of the
namelist PRINT statement.

See figure 6-108 for an example of the namelist
PRINT statement. The values output by the namelist
PRINT statement in the example are shown. The
values are output to the unit 6HOUTPUT.

6-46

NAMELIST /GROUP1/A,B/GROUP2/C,D

I = 0
I = I + 1
READC1,GROUP1,END=10,ERR=20,IOSTAT=N)
READ GROUP2
AVGCI) = CA+B+C+D)/4
GOTO 1

10 CALL PLOT(AVG,I-1)

STOP
20 CALL IOERRCN>

Input:

ll.&GROUP1
t.A=10.0,B=20.0
ll.&END
ll.&GROUP2
ll.C=SO.O,D=70.0
t.&END

Figure 6-104. Namelist READ Statement Example

WRITE Ceil ist)

ci list A control information list. The
following specifiers must appear in
cil ist:

UNIT
FMT (must be a namelist

group name>

The following specifiers can also
appear in cilist:

ERR
IOSTAT

Figure 6-105. Namelist WRITE Statement Format

60480200 A

REAL A
INTEGER I
COMPLEX C
NAMELIST /GROUP/A,I,C

A= 5.7
I = 12
c = (1.0,0.0>
WRITEC2,GROUP,ERR=20,IOSTAT=N)

20 CALL IOERR(N)

Output:

Output:

.O.&GROUP

.O.A=5.7000000000000,I=12,C=C1.0000000000000,0.0000000000000E+OO>

.0.&END

Figure 6-106. Namelist WRITE Statement Example

PRINT grpname

grpname A namelist group name

Figure 6-107. Namelist PRINT Statement Format

REAL A
INTEGER I
COMPLEX C
NAMELIST /GROUP/A,I,C

A= 5.7
I = 12
c = (1.0,0.0>
PRINT GROUP

.O.&GROUP

.0.A=5.7000000000000,I=12,C=C1.0000000000000,0.0000000000000E+OO>

.O.&END

Figure 6-108. Namelist PRINT Statement Example

60480200 A 6-47

NAMELIST PUNCH STATEMENT

The namelist PUNCH statement transfers data from
internal storage to the unit SHPUNCH in namelist
format. See figure 6-109 for the format of the
namelist PUNCH statement.

PUNCH grpname

grpname A namelist group name

Figure 6-109. Namelist PUNCH Statement Format

See figure 6-110 for an example of the namelist
PUNCH statement. The values output by the namelist
PUNCH statement in the example are shown. The
values are output to the unit SHPUNCH.

NAMELIST FORMATTING

Namelist input/output statements transfer data
between sequential access external files and in­
ternal storage in namelist format. Namelist format
is a predefined format specification,

Namelist formatting for input and output is de­
scribed in the following paragraphs.

NAMELIST INPUT FORMATTING

A namelist input statement transfers data from a
sequential access external file to internal storage.
The data read must be in namelist input format.
See figure 6-111 for the format of namelist input.

Output:

REAL A
INTEGER I
COMPLEX C
NAMELIST /GROUP/A,I,C

A 5.7
I 12
c (1.0,0.0)
PUNCH GROUP

ti.&grpname sep d1sep ••• sepdn&END

sep A separator consisting of a comma,
blank, or record boundary, surrounded
by zero or more blanks or record
boundaries.

grpname A namelist group name

di A data item of one of the following
forms:

var= con st
aname=const sep ••• sep const
aname=r*const sep ••• sep r*const
aname(sub)=const

where:

var A simple variable

aname

sub

con st

r

An array name

An integer constant
expression

A constant

An integer constant
repeat specification

Each record must have a blank in the first
column.

Figure 6-111. Namelist Input Format

ti.&GROUP
6A=S.7000000000000,I=12,C=(1.0000000000000,0.0000000000000E+OO>
MEND

Figure 6-110. Namelist PUNCH Statement Example

6-48 60480200 A

When a namelist input statement is executed, the
value specified for each item of the namelist input
group in the input data is assigned to the item in
the namelist input group,

Execution of a namelist input statement terminates
when all of the values in the namelist input data
are assigned to the corresponding item in the
namelist group.

The value specified for each item in the namelist
input group is converted to the type of the input I list item to which the value is assigned, A bit,
logical, character, or complex constant must be of
the same type as the corresponding input list item,

For input list items of type character, if the
length of the namelis t group item is less than the
length of the value specified for that item in the
input data, the leftmost characters in the input
value are assigned to the namelist group item. If
the length of the namelist group item is greater
than the length of the value specified for that
item in the input data, the character value input
is left-justified and blank-filled in the namelist
group item.

An integer, half-precision, real, or double­
precision constant can be used for an integer,
half-precision, real, or double-precision input
list item. The forms for integer, half-precision,
real, and double-precision constants are described
for list-directed input earlier in this section
under the heading, List-Directed Input Formatting.

Use of the BLANK specifier in an OPEN statement has
no effect on namelist editing.

If a value is not specified for an
namelist group, the value of that
changed.

NAMELIST OUTPUT FORMATTING

item of
item is

the
not

A namelist output statement transfers data from
internal storage to a sequential access external
file. The data is output in namelist output format.
See figure 6-112 for the format of namelist output.

When a namelist output statement is executed, the
value of each namelist group item is converted to a
character string and transferred to the output file
in namelist format.

Execution of a namelist output statement terminates
when the values of all namel ist group items are
output to the file.

BUFFER INPUT/OUTPUT
STATEMENTS
A buffer input/output statement transfers data
between a sequential access external file and a
buffer area in internal storage. The buffer input/
output statements are provided for compatibility
with other FORTRAN compilers and are not intended
for use with new programs. See appendix E for a
description of the buffer input/output statements.

60480200 E

.6&grpname

.6data1

.6datan

.6&END

grpname

data;

A namelist group name

A data item of one of the following
forms:

var=const
aname=const1 .6 ••• .6 constn

where:

var A simple variable

aname An array name

con st A constant

No output record can be longer than 137 char­
acters. If necessary, the output record is
split into multiple records, each no longer than
137 characters. The split occurs at the end of
a constant, after the comma within a complex
constant, or within a character constant. A
blank is inserted in the first column of each
record.

Figure 6-112. Namelist Output Format

DIRECT ACCESS INPUT /OUTPUT
To perform input and output on a direct access
file, you must satisfy four conditions: open the
file as a direct access file; declare the proper
record length; include the REC specifier in the
input/output statement; and leave out the END
specification in the input/output statement.

The OPEN statement must be used to connect a direct
access file; the OPEN statement is described later
in this section.

When the slash descriptor is used during a formatted
input operation that involves a record of a direct
access file, the remaining portion of the current
record is skipped and the record number is increased
by one. The file is positioned at the beginning of
that record.

When the slash descriptor is used during a formatted
output operation that involves a record of a direct
access file, the remainder of the record is blank­
filled, the record number is increased by one, and
the file is positioned at the beginning of that
record. Consecutive slash descriptors cause records
of a direct access file to be filled with blanks.

When a formatted output statement causes data to be
output to a direct access file, the number of char­
acters output must not exceed the record length of
the file. If the number of characters output to a
direct access file is less than the length of a
record of the file, the remaining portion of the
record is filled with blanks.

6-49

I

When an unformatted output statement causes data to
be output to a direct access file, the number of
words output 1111st not exceed the length of a record
of the file. If the number of words output to a
direct access file is less than the length of a
record of the file, the remaining portion of the
record is undefined.

See figure 6-113 for an example of a formatted
direct access READ statement that reads a direct
access file. The values input by the READ
statement in the example are shown. The values
input by the READ statement are input from the file
connected to unit 1. If an input error occurs
during execution of the READ statement, control
transfers to the statement labeled 20 and the
variable N is assigned the number of the
execution-time error.

The slash descriptor in the format specification
causes the record number to be incremented by 1.

See figure 6-114 for an example of an unformatted
READ statement that reads a direct access file.
The values input by the READ statement in the
example are shown. The values input by the READ
statement are input from the file connected to unit
1. If an input error occurs during execution of
the READ statement, control transfers to the state­
ment labeled 20 and the variable N is assigned the
number of the execution-time error.

INTERNAL FILE INPUT /OUTPUT

Formatted input/output statements can perform input
and output on internal files. In order to perform
input and output on an internal file, you must use
a character variable, a character array, or a
substring as the UNIT specifier in the control
information list of the formatted input/output
statement.

CHARACTER CHAR•8

100

20

Input:

Record

READC1,100,REC=2,ERR=20,IOSTAT=N) I,J
FORMATCI4,/I4)

CALL IOERRCN>

Number Record

1884

2 1885 ...1 1885 I

3 1886 ... 1 1886 J

4 1887

Figure 6-113. Formatted Direct Access
Input/Output Example

When an input operation is performed on an internal
file, data is transferred from consecutive locations
of the internal file beginning at the first char­
acter position; the input values are stored in the
items in the input list. Formatting is performed
according to the format specification you provide.

When the slash descriptor is used during an input
operation that involves a record of an internal
file, the remaining portion of the current record

READC1,REC=2,ERR=20,IOSTAT=N) CHAR

20 CALL IOERRCN>

Input:

Record N~ber Record (Binary Representation>

FIRST t.t.t.

2 SECONDt.t. ----... ·I SECONot.t. I CHAR

3 THIRDMt.

Figure 6-114. Unformatted Direct Access Input/Output Example

I 6-50 60480200 E

is skipped and the record number is increased by
one. The file is positioned at the beginning of
that record.

When an output operation is performed on an internal
file, the values of the output list items are con­
verted to character strings and transferred to the
internal file. The character string is formatted
according to the format specification you provide.

When the slash descriptor is used during an output
operation that involves a record of an internal
file, the remainder of the current record is blank­
filled, the record number is increased by one, and
the file is positioned at the beginning of that
record. Consecutive slash descriptors cause records
of an internal file to be filled with blanks.

The length of a character string output to a record
of an internal file must not be greater than the
length of the file. If the length of the character
string output to a record of an internal file is
less than the length of the record, the remaining
portion of the record is filled with blanks.

See figure 6-115 for an example of a formatted READ
statement that reads an internal file. The values
input by the formatted internal file READ statement
in the example are shown. The values input by the
formatted internal file READ statement are input
from the internal file CHAR.

CHARACTER CHAR•8
INTEGER INT

CHAR = '12345678'
READCCHAR,100) INT

100 FORMATCI4)

Input:

CHAR

112345678

~
INT

Figure 6-115. Internal File
Input/Output Example

EXTENDED INTERNAL FILE
INPUT /OUTPUT STATEMENTS
An extended internal file input/output statement
transfers data between an extended internal file
,9.nd internal. stora~e in a forma~ that .You !ipec;lfy.•.·

60480200 E

.Format specification f~r · ·extended· 'int~rn'af:···rnd:;
input/output statements is the same as for formatted:;

-input/output statements.

Extended internal file input/output statements can:
also perform input and output operations on internal:·
files.

~A FMT specifier must appear in an extended internal
file input/output statement. The input/output list
',is optional.

.The extended internal file input/output statementsw
·,,.re:

DECODE statement

ENCODE statement

:Each of these statements is described in the fol.;,
.lowing paragraphs,

:oecooe STATEMENT

'Tlle DECODE statement transfers data from an extended
internal file or from an internal file to internal,'.
storage in the format you specify. See figur•:
·:6-116 for the format of the DECODE statement. ·'

DECODE Cno-chars,fid,uid) iolist

no-chars

'.. fid

uid

iol i st

An unsigned integer constant or an
integer variable greater than or
equal to 1; no-chars specifies the
number of characters in each record
of the extended internal file or

F:

the internal file. ·It
A format identifier; fid must not
specify List-directed or namelist
formatting.

A unit identifier; uid must be an
extended internal file identifier
or an internal file identifier.

An input/output List; optional.

Figure 6-116. DECODE Statement Format

The DECODE statement is analogous to the formatted
READ statement.

The number of words in the input list and the edit
descriptors specified in the associated format
specification must correspond to the format of the
input record. An input record is skipped for each
slash descriptor that appears in the associated;
format specification.

See figure 6-117 for an example of the DECODE
statement. The values input by the DECODE statement.
in the example are shown. The values input by the
DECODE statement are input from the internal file
~c •.

6-51 I

I CHARACTER*8 CRECC4),CHAR1,CHAR2
INTEGER I,J
DATA CREC/2•' ','12345678 1 ,'LAST REC'/

100

Input:

DECODE (32,100,CREC) I,J,CHAR1,CHAR2
FORMATC16X,2I4,2A4>

CREC C1) CREC <2> CRECC3)

1234 5678 LASTAt.t.A

I J CHAR1

I and J contain internal integer values.

EOR

CRECC4)

CHAR2

Figure 6-117. DECOOE Statement Example

ENCODE STATEMENT

The ENCODE statement transfers data from internal
storage to an extended internal file or to an in­
ternal file in the format you specify. See figure
6-118 for the format of the ENCODE statement.

The ENCODE statement is analogous to the formatted
WRITE statement.

See figure 6-119 for an example of the ENCODE
statement. The values output by the ENCODE state­
ment are output to the internal file CREC.

CONCURRENT INPUT /OUTPUT
STATEMENTS
The concurrent input/output statements cause input/
output operations to be initiated, then return
control to the program. The concurrent input/output
statements are written as calls to predefined sub­
routines. See sect ion 11 for a description of the
!?.Onet1.rrent i!).put/c;>utput subrout~rtes.

6-52

ENCODE <no-chars,fid,uid) iolist

no-chars

fid

uid

i o list

An unsigned integer constant or an
integer variable greater than or
equal to 1; no-chars specifies the
number of characters in each record
of the extended internal file or
the internal file.

A format identifier; fid must not
specify list-directed or namelist
formatting.

A unit identifier; uid must be an
extended internal file identifier
or an internal file identifier.

An input/output list; optional.

figure 6-118. ENCODE Statement Format

60480200 E

CHARACTER*8 CRECC4),CHAR1,CHAR2
INTEGER I,J
DATA CHAR1,CHAR2/ 'THEllBEGI I, 'NNINGt.t.t.' /
DATA I,J /2•37 /

ENCODE C32,200,CREC) CHAR1,CHAR2,I,J
200 FORMATC'THISt.ISt.',2A8,2I2>

Output:

CHAR1 CHAR2 I J

THEllBEGI NN INGt.t.t. 37 37

THI St.I St. TH Et.BEG I NNINGt.t.t. 3 73 7t.t.t.t.

CREC C1 > CRECC2> CREC (3) CRECC4>

EOR

Figure 6-119. ENCODE Statement Example

DIRECT CALLS TO SIL ROUTINES
You can cause control to transfer to a System
Interface Language (SIL) subroutine by using a
direct call to the subroutine. See section 13 for
a description of direct calls to SIL routines.

AUXILIARY INPUT /OUTPUT
STATEMENTS
Auxiliary input/output statements connect files to
units, disconnect files from units, and inquire
about the properties of a file or unit.

The auxiliary input/output statements are:

OPEN statement

CLOSE statement

INQUIRE statement

Each of these statements is described in the fol­
lowing paragraphs.

OPEN STATEMENT

The OPEN statement connects an existing file to a
unit, creates a file that is preconnected to a
unit, creates and connects a new file to a unit, or
changes certain of the properties of the connection
of a file and unit. See figure 6-120 for the
format of the OPEN statement.

60480200 D

OPEN Ccilist)

ci list A control information list. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

ACCESS
BLANK
BUFS
ERR
FILE
FORM
IOSTAT
RECL (must be specified if

ACCESS=' DIRECT')
STATUS

Figure 6-120. OPEN Statement Format

An OPEN statement can appear in any program unit.
The file connected by an OPEN statement can be ref­
erenced in any program unit.

If the file already exists, the record structure
already defined for the file is used; if the
FORTRAN program creates a sequential access file,
the control word delimited (W) record type is used;
if the FORTRAN program creates a direct access
file, the fixed-length (F) record type is used.

6-53

I

If a unit is connected to a file that exists,
execution of an OPEN statement for that unit is
permitted. If the FILE specifier does not appear
in the OPEN statement, the file connected to the
unit by the OPEN statement is the same as the file
that is already connected to the unit.

If the file to be connected to the unit does not
exist and is the same as the file to which the unit
is preconnected, the properties specified by the
OPEN statement become part of the connection.

If the file to be connected to the unit is not the
same as the file to which the unit is connected,
the file that is currently connected to the unit is
disconnected from that unit before the OPEN state­
ment is executed. The effect is the same as if a
CLOSE statement (without a STATUS specifier) had
been executed before the OPEN statement.

If the file to be connected to the unit is the same
as the file to which the unit is connected, the
specifiers that appear in the OPEN statement must
have the same values as those that are currently in
effect; however, the BLANK specifier can have a
value different from the value currently in effect.
In that case, the new value of the BLANK specifier
becomes effective. The position of the file is not
affected.

If a file is connected to a unit, an OPEN statement
can be used to connect that file to another unit.
A file can be connected to more than one unit at
the same time. The position of the file is not
affected.

See figure 6-121 for examples of the OPEN statement.
The first OPEN statement in the example connects
the file MYFILE to unit 1. The file MYFILE is a
direct access file with a record length of 10
characters.

.

The second OPEN statement in the example connects
the file HERFILE to unit l; however, the file MYFILE
is already connected to unit 1. Therefore, the
file MYFILE is disconnected from unit l before file
HERFILE is connected.

If an input/output error occurs during execution of
either of the OPEN statements, control transfers to
the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

CLOSE ST A TEMENT

The CLOSE statement disconnects a file from a
unit. See figure 6-122 for the format of the CLOSE
statement.

CLOSE Cci list)

cilist A control information list. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

ERR
IOSTAT
STATUS

Figure 6-122. CLOSE Statement Format

A CLOSE statement can appear in any program unit.
The CLOSE statement need not appear in the same
program unit as the OPEN statement that connects
the file to the unit.

OPENC1,FILE='MYFILE',ACCESS='DIRECT',RECL=10,ERR=20,
+IOSTAT=N)

100
READC1,100,REC=2,ERR=20,IOSTAT=N) NPUT
FORMATCIS)

OPENC1,FILE='HERFILE',ERR=20,IOSTAT=N)
READC1,100,.END=10,ERR=20,IOSTAT=N)

.
CLOSEC1,ERR=20,IOSTAT=N)

10 CALL OUT CNPUT>

20 CALL IOERR CN>

Figure 6-121. OPEN and CLOSE Statement Examples

6-54 60480200 J

If a CLOSE statement specifies a unit that does not
exist or has no file connected to it, the CLOSE
statement has no effect.

After a file has been disconnected from a unit by a
CLOSE statement, the file can be reconnected to a
unit as long as the file still exists, and the unit
can be reconnected to a file.

After normal termination of program execution, all
files are automatically disconnected from their
respective units. The effect is the same as if a
CLOSE statement (with the STATUS specifier value
KEEP) had been executed for each connected unit.
However, if a particular file was connected by an
OPEN statement with the STATUS specifier value
SCRATCH, the effect is the same as if a CLOSE
statement (with the STATUS specifier value DELETE)
had been executed for that unit.

See figure 6-121 for an example of the CLOSE
statement. The CLOSE statement in the example
disconnects the file HERFILE from unit 1.

If an input/output error occurs during execution of
the CLOSE statement, control transfers to the
statement labeled 20 and the variable N is assigned
the number of the execution-time error.

INQUIRE STATEMENT

The two types of INQUIRE statements are the INQUIRE
by file statement and the INQUIRE by unit statement.
The INQUIRE by file statement inquires about the
properties of a particular file, The INQUIRE by
unit statement inquires about the properties of a
particular unit. See figure 6-123 for the format
of the INQUIRE statement.

Following execution of an INQUIRE statement, the
specified parameters contain values that are
current at the time the statement is executed,

If a unit number is specified and the unit is
opened, the ACCESS, BLANK, DIRECT, EXIST, FORM,
FORMATTED, NEXTREC, NAME, NAMED, NUMBER,
OPENED, RECL, SEQUENTIAL, and UNFORMATTED
variables will contain information about the
file associated with the unit, EXIST returns a
TRUE value only if the unit has been opened by
a reference on the PROGRAM statement or the
OPEN statement; it does not indicate whether a
file by this name is local or not.

If a file name is specified, the ACCESS, BLANK,
DIRECT, EXIST, FORM, FORMATTED, NEXTREC, NAME,
NAMED, NUMBER, OPENED, RECL, SEQUENTIAL, and
UNFORMATTED variables will contain information
about the file and the unit it is associated
with.

If the file name specified in an INQUIRE by file
statement is not valid or if the file does not
exist, the values returned for the specifiers
DIRECT, FORMATTED, NAME, NAMED, SEQUENTIAL, and
UNFORMATTED are undefined,

60480200 H

INQUIRE Ccilist>

ci list A control information list. The FILE
specifier must appear in cilist for
an INQUIRE by file statement. The
UNIT specifier must appear in cilist
for an INQUIRE by unit state~ent, and
the UNIT specifier must not be an
asterisk.

The following specifiers can also
appear in cilist:

ACCESS
BLANK
BUFS
DIRECT
ERR
EXIST
FORM
FORMATTED
IOSTAT
NAME
NAMED
NEXTREC
NUMBER
OPENED
RECL
SEQUENTIAL
UNFORMATTED

Figure 6-123. INQUIRE Statement Format

If the unit specified in an INQUIRE by unit
statement is not valid or if the unit is not con­
nected, the values returned for the specifiers
ACCESS, BLANK, DIRECT, FORM, FORMATTED, NAME, NAMED,
NEXTREC, NUMBER, RECL, SEQUENTIAL, and UNFORMATTED
are undefined,

Values are always returned for the specifiers EXIST
and OPENED unless an error occurs,

If an error occurs during the execution of an
INQUIRE statement, the values returned for all
specifiers in the INQUIRE statement except the
IOSTAT specifier are undefined.

The INQUIRE statement can be executed before,
during, or after a file is connected to a unit.
The values returned for the specifiers are those
that are current at the time the INQUIRE statement
is executed,

A variable or array element that becomes defined or
undefined as a result of its use in a specifier in
an INQUIRE statement must not be referenced in any
other specifier in the same INQUIRE statement.

See figure 6-124 for examples of the INQUIRE state­
ment. The values returned for the specifiers in
the INQUIRE statements are shown.

6-55

CHARACTER C1•8
LOGICAL L1,L2,L3

OPENC1,FILE='HISFILE',ACCESS='DIRECT',RECL=20>

INQUIREC1,DIRECT=C1,0PENED=L1>

CLOSE C1>
INQUIRECFILE='HISFILE',EXIST=L2,0PENED=L3)

Values returned by INQUIRE statements:

C1 YES
L 1 • TRUE.
L2 • TRUE.
L3 .FALSE.

Figure 6-124. INQUIRE Statement Examples

FILE POSITIONING
STATEMENTS

The file positioning statements change the position
of a file that is connected to a unit.

The file positioning statements are:

REWIND statement

BACKSPACE statement

ENDFILE statement

Each of these statements is described in the fol­
lowing paragraphs.

REWIND STATEMENT

The REWIND statement positions a file at its initial
point. See figure 6-125 for the format of the
REWIND statement.

If the file is already positioned at its initial
point, the REWIND statement has no effect. A REWIND
statement for a file that is connected but does not
exist has no effect.

The REWIND statement cannot rewind a file connected
for direct access.

See figure 6-126 for an example of the REWIND
statement. The REWIND statement in the example
positions the file connected to unit l to its
initial point.

6-56

REWIND Cci list)
or

REWIND uid

cil ist A control infor.at ion list. The UNIT
specifier •ust appear in cilist and
•ust not be an asterisk.

uid

The following specifiers can also
appear in cilist:

ERR
IOSTAT

A unit identifier.

Figure 6-125. REWIND Statement Format

DO 5 1=1,10
WRITEC1,100> I

100 FORMAT< '.6RECORD.6' ,12)
5 CONTINUE

ENDFILE 1

REWIND 1
READC1,105) I

105 FORMATC8X,I2)
BACKSPACE 1

Figure 6-126. REWIND, BACKSPACE, and
ENDFILE StateMent Example

BACKSPACE STATEMENT

The BACKSPACE statement positions a file before the
preceding record. See figure 6-127 for the format
of the BACKSPACE statement.

If there is no preceding record, the BACKSPACE
statement has no effect. If the preceding record
is an endfile record, the BACKSPACE statement
positions the file before the endfile record.

A BACKSPACE statement for a file that is connected
but does not exist is not permitted.

Backspace can only be done on units that have been
used by the OPEN statement or some data transfer
1/0 statement.

The BACKSPACE statement cannot position a file
connected for direct access.

See figure 6-126 for an example of the BACKSPACE
statement. The BACKSPACE statement in the example
positions the file connected to unit 1 to the
preceding record, which is the first record.

60480200 H

I

I

BACKSPACE Ccilist)
or

BACKSPACE uid

cilist

uid

A control information List. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

ERR
IOSTAT

A unit identifier.

Figure 6-127. BACKSPACE Statement Format

ENDFILE STATEMENT

The ENDFILE statement outputs an endfile record as
the next record of the file, The file is then
positioned after the endfile record. See figure
6-128 for the format of the ENDFILE statement.

The ENDFILE statement cannot write an endfile
record on a file connected for direct access; it
can only write an end file record on a file con­
nected for sequential access, If a file containing
an end file record is connected for direct access,
only the records that precede the endfile record
can be read.

60480200 H

ENDFILE Ccilist)
or

ENDFILE uid

cil ist A control information List. The UNIT
specifier must appear in cilist and
must not be an asterisk.

uid

The following specifiers can also
appear in cilist:

ERR
I OST AT

A unit identifier.

Figure 6-128. ENDFILE Statement Format

After execution of an ENDFILE statement, a REWIND
or BACKSPACE statement must be used to reposition
the file before data can be input or output to the
file,

An ENDFILE statement for a file that is connected
but does not exist creates the file,

See figure 6-126 for an example of the ENDFILE
statement, The ENDFILE statement in the example
writes an endfile record on the file connected to
unit 1.

6-57

I

PROGRAM UNITS AND STATEMENT FUNCTIONS 7

A FORTRAN program consists of one or more program
units. A program unit is a main program, a function
subprogram, a subroutine subprogram, or a block
data subprogram.

This section describes main programs, function
subprograms, subroutine subprograms, block data
subprograms, and statement functions. Intrinsic
functions and predefined subroutines are described
in sections 10 and 11.

MAIN PROGRAMS
A main program is a group of statements that begins
with an optional PROGRAM statement and ends with an
END statement. See figure 7-1 for the structure of
a main program. A FORTRAN program must have one
main program,

PROGRAM statement (optional)

Main program body

END statement

Figure 7-1. Main Program Structure

PROGRAM STATEMENT

The PROGRAM statement is the first statement in a
main program; however, the PROGRAM statement can be
omitted. The PROGRAM statement assigns a name to
the program and optionally declares files, precon­
nects files to units for input/output operations
performed by the program, and requests the mapping
of dynamic space into large pages. See figure 7-2
for the format of the PROGRAM statement.

Usfog a PROGRAM statement to preconnect files to
units eliminates the need to connect files to units
using the OPEN statement. See table 7-1 for exam­
ples of file preconnection using the PROGRAM state­
ment. For each PROGRAM statement example, the table
shows the OPEN statement that would result in the
equivalent unit and file connection.

, The attributes of a preconnected file are the'
attributes already assigned to the file if the file
exists. If the file is a new file, the attributes
of the file are assigned when the first input/output
statement that references the file is executed.

Certain units and files are automatically precon­
nected for formatted sequential input/output. These
units and files are used for input/output statements
that do not contain control information lists or
whose UNIT specifiers are asterisks. See table 7-2
for the units and files that are automatically pre­
connected and the statements that can use the files
and units.

File

INPUT

OUTPUT

PUNCH

TABLE 7-2. AUTOMATICALLY
PRECONNECTED FILES AND UNITS

Unit Statements that can
use the preconnection

SH INPUT Formatted READ statement
List-directed READ statement
Namelist READ statement

6HOUTPUT Formatted WRITE statement
Formatted PRINT statement
List-directed PRINT statement
Namelist PRINT stat~ment

5HPUNCH Formatted PUNCH statement
List-directed PUNCH statement
Namelist PUNCH statement

MAIN PROGRAM BODY

The body of a main program can contain nonexecutable
and executable statements. The statements that
must not appear in the body of a main program are:
BLOCK DATA, PROGRAM, FUNCTION, SUBROUTINE, RETURN,
END, and ENTRY. The appearance of a SAVE statement
in a main program has no effect.

A main program must not be referenced from a sub­
program or from itself.

Program execution begins with the first executable
statement in the main program.

TABLE 7-1. FILE CONNECTION EXAMPLES -
PROGRAM Statement Preconnection Equivalent OPEN Statement Connection

PROGRAM NAME(MYFILE) OPEN(UNIT=6HMYFILE,FILE='MYFILE', ...)
PROGRAM NAME(TAPEI) OPEN(UNIT=l,FILE='TAPEl', ...)
PROGRAM NAME(UNITI) OPEN(UNIT=l,FILE='UNITl', ...)
PROGRAM NAME(MYFILE,UN=MYFILE) OPEN(UNIT=ZHUN,FILE='MYFILE', ...)
PROGRAM NAME(MYFILE,TAPEl=MYFILE) OPEN(UNIT=l,FILE='MYFILE', ...)
PROGRAM NAME(MYFILE,UNITl=MYFILE) OPEN(UNIT=l,FILE='MYFILE', ...)

60480200 A 7-1

pname A symbolic name that is used as the name of the main entry point of the program and the name
of the object module. The symbolic name must not be the same as the name of an external sub­
program, a block data subprogram, or a common block that is used in the program. The symbolic
name must not be the same as any symbolic name that is used in the main program unit, but it
can be the same as a file name or an alternate unit name. If the PROGRAM statement is omitted,
pname is M_A_I_N.

A preconnection specifier; optional; psi can be a file declaration specifier or an alternate
unit specifier.

A file declaration specifier has the following format:

fn or fn=bl

fn A symbolic file name.

bl An unsigned integer constant greater than or equal to 1 and less than or equal to 24;
bl is the buffer length in 512 word blocks for the file. The default is 8. If a
file name appears in the PROGRAM statement, the buffer length of the file must not be
changed by any OPEN statements.

An alternate unit specifier has the following format:

an=f n

an A symbolic name that is used as an alternate unit name; the value specified for an
must be such that nHan is an external unit identifier Cn is the number of characters
in an, and an is a valid system file name). Usually an is of the form TAPEk or UNITk,
where k is an integer that is no Less than 0 and no greater than 999 and has no
Leading zeros.

fn A symbolic file name; fn must appear previously in a file declaration specifier; fn
can appear in more than one alternate unit specifier.

[RLP=nlpJt A dynamic space mapping parameter of the form [RLP=nlpJ; optional. It requests that a certain
number of large pages of dynamic space be mapped in at the start of program execution. This
map parameter can appear anywhere in the PROGRAM statement parameter List; however, it must not
appear more than once. Its omission means that dynamic space is mapped in small pages.

The map parameter has the following format:

[RLPJ or [RLP=nlpJ

nlp Optional unsigned integer constant; nlp gives the number of Large pages of dynamic
space that are mapped in at the start of program execution. A large page is 65536
full words. The default for nlp is 1. Thus, [RLPJ has the same meaning as [RLP=1J.

If the PROGRAM statement has neither psi parameters nor an RLP parameter, the parentheses must not appear.

tThe brackets [J are part of the map parameter. If you use the map parameter, the brackets must appear.

Figure 7-2. PROGRAM Statement Format

END STATEMENT FOR MAIN PROGRAMS MAIN PROGRAM EXAMPLE

A main program must end with one END statement.
See figure 7-3 for the format of the END statement.
An END statement can contain a statement label.
The END statement must not be continued. If an END
statement in a main program is executed before a
STOP statement, the END statement has the same
effect as a STOP statement.

END

Figure 7-3. END Statement Format

7-2

See figure 7-4 for an example of a main program.
The PROGRAM statement in the main program specifies
that the name of the program is AVG, and declares
two files, DATA and OUT. The file DATA is precon­
nected to unit 1 and the file OUT is preconnected
to unit 2. The file DATA must exist before program
execution and must be a formatted sequential ex­
ternal file. The file OUT need not exist before
program execution, but if it does exist, it must be
a formatted sequential external file. If the file
OUT does not exist, it becomes a formatted sequen­
tial external file when the WRITE statement is
executed.

60480200 E

PROGRAM AVG~fll:~~,~-~~
INTEGER NUMBERC10), NSUM
REAL RESULT
READC1,100>CNUMBERCI>,I=1,10)
NSUM = NADDCNUMBER>
CALL DIVIDECNSUM,10,RESULT)
WRITEC2,200>CNUMBERCI>,I=1,10>,RESULT
STOP

100 FORMATC10I2)
200 FORMATC'1THE AVERAGE OF'/10C' ',I2)/' IS ',F7.3>

END

FUNCTION NADDCIARRAY)
INTEGER IARRAYC10>
N = 0
DO 10 I=1, 10
N = IARRAYCI) + N

10 CONTINUE
NADD = N
RETURN
END

SUBROUTINE DIVIDECN,I,Q)
INTEGER N,I
REAL Q
Q = REALCN)/REALCI>
RETURN
END

F;gure 7-4. Main Progra111, Function, and Subroutine Example

FUNCTION SUBPROGRAMS
A function subprogram ls a group of statements that
begins with a FUNCTION statement and ends with an
END statement. See figure 7-5 for the structure of
a function subprogram.

FUNCTION statement

Function body

END statement

A FORTRAN program can have any number of function
subprograms. A function subprogram ls executed
when a function reference ls encountered in a
statement that appears in a program unit other than
the function subprogram being referenced.

F;gure 7-5. Function Subprogram Structure

How Referenced

Results

Type and
Length

Alternate
Return

A function subprogram differs from a subroutine
subprogram in a number of ways. See table 7-3 for
a summary of the differences between function sub­
programs and subroutine subprograms.

TABLE 7-3. DIFFERENCES BETWEEN FUNCTIONS AND SUBROUTINES

Functions Subroutines

The function name appears in an expression. The subroutine name appears in a CALL
Parentheses must follow the name even if statement. Parentheses after the name can
there are no arguments. be omitted if there are no arguments.

A function must return a value through the A subroutine can return any number of
function name • It can also return values values through arguments and common
through common blocks and by modifying its blocks.
arguments; certain restrictions apply and
are described later in this section.

A function name has a data type and length. A subroutine name does not have a data type
The type and length of a function name are or length.
the type and length of the function
result.

Alternate return specifiers must not occur Alternate return specifiers can occur as
as arguments. arguments.

60480200 A 7-3

Functions that you define are external functions.
You can also reference function subprograms that
are predefined; these functions are called intrinsic
functions. Some intrinsic functions are external
functions, some intrinsic functions are inline
functions, and some intrinsic functions can be
either external or inline. See section 10 for a
description of the external and inline intrinsic
functions.

FUNCTION STATEMENT

The FUNCTION statement is the first statement in a
function subprogram, The FUNCTION statement assigns
a name and a type to the function. The FUNCTION
statement can also specify dummy arguments used in
the function subprogram. Dummy arguments are
described later in this section. See figure 7-6
for the format of the FUNCTION statement.

typ FUNCTION fname Cdarg1, ••• ,dargn>
or

CHARACTER FUNCTION fname•len Cdarg1, ••• ,dargn>

typ A type specification for fname;
optional; typ can be any of the
following:

fna•e

Len

dargi

7-4

INTEGER
ffALF Prt!CJ:St•
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER
CHARACTER•len

A symbolic name that is used as the
name of the main entry point of the
function.

An integer constant expression whose
result is greater than O; optional;
Len specifies the length in characters
of fname.

An asterisk enclosed in parentheses
can be specified for Len, which
indicates that the length of fname is
the same as the length of fname in the
referencing program unit.

If Len is omitted, the preceding
asterisk must not appear. The default
is 1.

A dummy argument, which can be a vari­
able, array, de$cril)tcir, de$tr1Pto(
array,· du111111y function name, or dummy
subroutine name; optional. No two
dummy arguments can have the same
name. The parentheses are required
even if no dummy arguments appear.

Figure 7-6. FUNCTION Statement Format

The type of the function name is determined by the
FUNCTION statement, by a type specification state­
ment that appears in the function body, or by the
first letter of the function name. An IMPLICIT
statement that appears in the function body can
affect the type of the function name. The type of
the function name must be the same in all program
units that reference the function.

The name of a function subprogram is the name of
the main entry point of the function. You can
assign other names to a function subprogram by
using the ENTRY statement; these other names are
the names of secondary entry points of the function.
Secondary entry points are described later in this
section.

FUNCTION BODY

The body of a function subprogram can contain
nonexecutable and executable statements. The
statements that must not appear in the body of a
function subprogram are: BLOCK DATA, PROGRAM,
FUNCTION, SUBROUTINE, and END, The body of a
function subprogram must not contain a statement
that directly or indirectly references the function
subprogram.

Execution of a function normally begins with the
first executable statement in the function sub­
program. Execution of a function subprogram that
has secondary entry points can begin elsewhere in
the body of the function subprogram. Secondary
entry points are described later in this section.

The function name is considered to be a variable
name in the function body. A value must be assigned
to the function name before a RETURN statement is
executed. The value of the function name can be
referenced and changed in the function body. The
value that the function name has when a RETURN
statement is executed is the value that is returned
to the program unit that referenced the function.

The function name must not be initialized in a type
specification or DATA statement. The function name
must not appear in any nonexecutable statements in
the function body except in a type specification
statement 91,'l~ ~ ~~lot~fo~, li•t· of".··.~!# ,-t--!'
If you use a function name that is the same as the
name of an intrinsic function, you cannot reference
the intrinsic function in the function body. See
section 10 for a list of the intrinsic function
names.

The statements in the function body can modify the
arguments that are passed to the function in order
to return additional values to the program unit
that references the function; however, a function
must not modify any arguments that are used else­
where in the statement that contains the function
reference. Also, a function must not modify any
dummy arguments whose corresponding actual arguments
are constants, symbolic constants, substrings,
vectors, function references, or expressions that
contain operators or are enclosed in parentheses.

60480200 A

See figure 7-7 for an example of a function that
modifies its arguments. The function reference in
the example passes the values 9.0 and 16.0 to the
function PYTHAG. The function returns the value
5.0 through its name; furthermore, the function
changes the value of A to 3.0 and changes the value
of B to 4.0.

PROGRAM ARGMOD
REAL A,B,C
DATA A,B /9.0,16.0/

c PYTHAGCA,B)

END

FUNCTION PYTHAGCA,B)
REAL A,B
PYTHAG = SQRTCA+B)
A = SQRTCA)
B = SQRTCB)
RETURN
END

Figure 7-7. Modification of Function
Arguments Example

The statements in the function body can modify the
values of common block elements in order to return
additional values to the program unit that refer­
ences the function; however, two restrictions apply:

A function must not modify any common block
elements that are used elsewhere in the state­
ment that contains the function reference.

A function must not modify a common block ele­
ment if the value of the common block element
affects another function reference that is in
the same statement.

RETURN STATEMENT FOR FUNCTION
SUBPROGRAMS

The RETURN statement is an executable statement
that returns control from a function subprogram to
the program unit that called the function subpro­
gram. See figure 7-8 for the format of the RETURN
statement for function subprograms.

RETURN

Figure 7-8. RETURN Statement for
Function Subprograms Format

In a function subprogram, execution of a RETURN
statement causes the value computed by the function
to replace the function reference. Evaluation of
the statement that contains the function reference
continues.

60480200 A

END STATEMENT FOR FUNCTION
SUBPROGRAMS

A function must end with one END statement. See
figure 7-3 for the format of the END statement. An
END statement can contain a statement label. The
END statement must not be continued. If an END
statement in a function is executed before a RETURN
statement, the END statement has the same effect as
a RETURN statement.

FUNCTION REFERENCES

A function is referenced by
reference. See figure 7-9 for
function reference.

using a function
the format of a

fnameCaarg1,

fname

aargi

The name of an entry point of a
function subprogram.

An actual argument, which can be a
constant, symbolic constant,
expression (except concatentation of
an operand whose length is specified
as C•>>, substring, variable, array,
array element, vector reference,
descriptor, descriptor array,
descriptor array element, actual
function name, actual subroutine na•e,
dummy function name, or dummy
subroutine name; optional. The
parentheses are required even if no
actual arguments appear.

Figure 7-9. Function Reference Format

A function can be referenced from a main program,
statement function, another function subprogram, or
a subroutine subprogram. A function reference can
appear in an arithmetic, logical, or character
expression.

Recursive references are not permitted. A recursive
reference is a reference that directly or indirectly
references the function in which it appears.

A function reference causes control to transfer to
the function subprogram. The statements in the
function are executed during the evaluation of the
expression in which the function reference appears.
The values that the actual arguments have at the
time the function is referenced are the values that
are used during execution of the function.

When a RETURN statement is executed in a function
subprogram, control returns to the program unit
that referenced the function. Evaluation of the
statement that contains the function reference then
continues.

A reference to a function that has the same name as
an intrinsic function references the intrinsic
function rather than your function. See section 10
for a list of the intrinsic function names. In

7-5

order to reference a function that has the same
name as an intrinsic function, you must declare the
function name in an EXTERNAL statement in all pro­
gram units that reference that function. See sec­
tion 3 for a description of the EXTERNAL statement.

See figure 7-10 for an example of a reference to a
function that has the same name as an intrinsic
function. The function reference in the example
references the function TIME that is shown, rather
than the intrinsic function TIME.

100

PROGRAM EXTFUN
REAL IN,OUT,HOURS
EXTERNAL TIME

READ 100, IN,OUT
FORMATC2F4.1)
HOURS = TIMECIN,OUT)

END

FUNCTION TIMECIN,OUT)
REAL IN,OUT
IFCIN.LE.OUT) THEN

TIME = OUT - IN
ELSE IFCIN.GT.12) THEN

TIME = OUT + C24 - IN)
ELSE

TIME = OUT + C12 - IN)
END IF
RETURN
END

Figure 7-10. Function With Same Name as an
Intrinsic Function Example

FUNCTION SUBPROGRAM EXAMPLE

See figure 7-4 for an example of a function sub­
program. The name of the function in the example
is NADD. NADD is an integer function that has one
dummy argument, IARRAY, which is an array of 10
elements. The function is referenced in the main
program. The actual argument in the function
reference is NUMBER, which is an array of 10
elements.

SUBROUTINE SUBPROGRAMS
A subroutine subprogram is a group of statements
that begins with a SUBROUTINE statement and ends
with an END statement. See figure 7-11 for the
structure of a subroutine subprogram.

SUBROUTINE statement

Subroutine body

END statement

Figure 7-11. Subroutine Subprogram Structure

7-6

A FORTRAN program can have any number of subroutine
subprograms. A subroutine subprogram is executed
when a CALL statement is executed in a program unit
other than the subroutine subprogram being called.

A subroutine subprogram differs from a function
subprogram in a number of ways. See table 7-3 for
a summary of the differences between subroutine
subprograms and function subprograms.

You can define and reference your own subroutine
subprograms. You can also reference subroutine
subprograms that are predefined. See section 11
for a description of the predefined subroutines.
All subroutine subprograms are external subprograms.

SUBROUTINE STATEMENT

The SUBROUTINE statement is the first statement in
a subroutine subprogram. The SUBROUTINE statement
assigns a name to the subroutine and can also
specify dummy arguments that are used in the sub­
routine subprogram. Dummy arguments are described
later in this section. See figure 7-12 for the
format of the SUBROUTINE statement.

SUBROUTINE sname Cdarg1, ••• ,dargn>

sname A symbolic na111e that is used as the
name of the main entry point of the
subroutine.

A d1111my arg1.111ent, which can be a var­
iable, array, descriptor, descriptor
array, dummy function name, du1n111y sub­
routine name, or asterisk; optional.
No two dummy arguments can have the
same name. If no dummy arguments
appear, the parentheses are optional.

Figure 7-12. SUBROUTINE Statement Format

The name of a subroutine subprogram cannot be
associated with a data type; the name of a sub­
routine subprogram is the name of the main entry
point of the subroutine. You can assign other names
to a subroutine subprogram by using the ENTRY
statement; these other names are the names of sec­
ondary entry points of the subroutine. Secondary
entry points are described later in this section.

SUBROUTINE BODY

The body of a subroutine subprogram can contain
nonexecutable and executable statements. The
statements that must not appear in the body of a
subroutine subprogram are: BLOCK DATA, PROGRAM,
FUNCTION, SUBROUTINE, and END. The body of a sub­
routine subprogram must not contain a statement
that directly or indirectly calls the subroutine·
subprogram.

Execution of a subroutine normally begins with the
first executable statement in the subroutine sub­
program. Execution of a subroutine subprogram that
has secondary entry points can begin elsewhere in
the body of the subroutine subprogram. Secondary
entry points are described later in this section.

60480200 A

The subroutine name must not appear in any state­
ments in the subroutine body.

The statements in the subroutine body can modify
the arguments that are passed to the subroutine;
however, a subroutine must not modify dummy argu­
ments whose corresponding actual arguments are
constants, symbolic constants, substrings, vectors,
function references, or expressions that contain
operators or are enclosed in parentheses. The
statements in the subroutine body can modify any
coDDDon block elements without restriction.

RETURN STATEMENT FOR SUBROUTINE
SUBPROGRAMS

The RETURN statement is an executable statement
that returns control from a subroutine subprogram
to the program unit that called the subroutine sub­
program. See figure 7-13 for the format of the
RETURN statement for subroutine subprograms.

RETURN alt

alt An integer constant or a simple
integer variable that indicates to
which of the statement labels in the
CALL statement control is to
transfer when the RETURN statement
is executed; optional. If alt is
not specified, control transfers to
the statement that follows the CALL
statement.

Figure 7-13. RETURN Statement for
Subroutine Subprograms Format

In a subroutine subprogram, execution of a RETURN
statement transfers control to the first executable
statement after t;he CALL statement that called the
subroutine subprogram. You can specify that con­
trol be returned to another statement in the program
unit that called the subroutine by using alternate
returns.

In order to use an alternate return, you must supply
a list of statement labels in the actual argument
list of the CALL statement that calls the sub­
routine. See the description of the CALL statement
for the syntax of the statement label list.

You must also place asterisks in the duDDDy argument
lists of the SUBROUTINE statement or ENTRY statement
in the subroutine subprogram. The asterisks must
correspond to the statement labels specified in the
actual argument list of the CALL statement. See
the description of the SUBROUTINE statement and the
description of the ENTRY statement for the syntax
of the dummy argument list.

The RETURN statement parameter can then be used to
indicate to which of the statement labels in the
CALL statement control transfers when the RETURN
statement is executed. A RETURN statement parameter
of 1 indicates that control returns to the first
statement label in the actual argument list,

60480200 F

a RETURN statement parameter of 2 indicates that
control returns to the second statement label in
the actual argument list, and so on.

If the RETURN statement parameter is less than 1 or
greater than the number of statement labels speci­
fied in the actual argument list, control returns
to the first executable statement after the CALL
statement that referenced the subprogram.

You can use a RETURN statement that has no RETURN
statement parameter in a subroutine that also uses
alternate returns.

Alternate returns must not appear in a function
subprogram.

END STATEMENT FOR SUBROUTINE
SUBPROGRAMS

A subroutine must end with one END statement. See
figure 7-3 for the format of the END statement. An
END statement can contain a statement label. The
END statement must not be continued. If an END
statement in a subroutine is executed before a
RETURN statement, the END statement has the same
effect as a RETURN statement with no alternate
return specifier.

SUBROUTINE CALLS

A subroutine is called by using the CALL statement.
The CALL statement is an executable statement that
transfers control to a subroutine subprogram or a
predefined subroutine. See figure 7-14 for the
format of the CALL statement.

A subroutine can be called from a main program,
function subprogram, or another subroutine sub­
program.

Recursive calls are not permitted. A recursive
call is a CALL statement that directly or indirectly
calls the program unit in which it appears.

When a CALL statement is executed, control transfers
to the subroutine subprogram or predefined sub­
routine specified in the CALL statement. Execution
of the CALL statement is not complete until control
returns from the subroutine subprogram or predefined
subroutine specified in the CALL statement.

Control normally returns to the first executable
statement after the CALL statement. However, you
can specify that control return to some other
statement in the calling program unit. See the
description of the RETURN statement for subroutine
subprograms.

SUBROUTINE SUBPROGRAM EXAMPLE

See figure 7-4 for an example of a subroutine
subprogram. The name of the subroutine in the
example is DIVIDE. It has three dUDDDy arguments,
N, I, and Q that are variables of type integer,
integer, and real, respectively. The subroutine is
called in the main program. The actual arguments
in the CALL statement are NSUM, 10, and RESULT.
NSUM is an integer variable, 10 is an integer
constant, and RESULT is a real variable.

1-1 I

CALL sname (argument List)

sname The name of an entry point of a subroutine subprogram.

argument List aarg1, ••• ,aargn

aargi

If no argument List appears, the parentheses are optional.

An actual argument, which can be a constant, symbolic constant,
expression (except concatentation of an operand whose Length is
specified as C•>>, substring, variable, array, array element, vector
reference, descriptor, descriptor array, descriptor array element,
actual function name, actual subroutine name, dummy function name,
dummy subroutine name, or alternate return specifier. An alternate
return specifier is a state11ent label prefixed by an asterisk or
ampersand. A statement label that appears in the argument List of a
CALL statement must appear in the label field of an executable
statement in the program unit that contains the CALL statement.

Figure 7-14.

SUBPROGRAM COMMUNICATION
You can transfer data between main programs,
function subprograms, and subroutine subprograms in
two ways: by using comon blocks and by using
arguments.

COMMON BLOCKS

Comon blocks are areas of storage that can be
referenced by one or more program units. The two
types of comon blocks are unnamed cOD1Don blocks
and named comon blocks. See section 3 for a
description of comon blocks.

ARGUMENTS

Arguments are individual language elements that can
be referenced by one or more program units. The
two types of arguments are dummy arguments and
actual arguments.

Dummy Arguments

Dummy arguments are variables, arrays, descriptors,
descriptor arrays~ dummy function names, or dummy
subroutine names that appear in the argument list
of a FUNCTION, SUBROUTINE, or ENTRY statement.
Asterisks used for alternate returns from a sub­
routine can also appear in the dummy argument list
of a SUBROUTINE statement, or in the dumy argument
list of an ENTRY statement that appears in a sub­
routine subprogram.

DU111Dy arguments must be assigned appropriate data
types. Dummy arguments can be used in the body of
a function or subroutine subprogram. A dummy argu­
ment must not appear in a COMMON, EQUIVALENCE, or
DATA statement.

Actual Arguments

Actual arguments are constants, symbolic constants,
expressions (except concatenation of an operand
whose length is specified as (*)), substrings,
variables, arrays, array elements, vectors, de­
scriptors, descriptor arrays, descriptor array

7-8

CALL Statet1ent Format

elements, actual function names, actual subroutine
names, dummy function names, or dummy subroutine
names that appear in the argument list of a func­
tion reference or CALL statement. Alternate return
specifiers can appear in the actual argument list
of a CALL statement.

ARGUMENT CORRESPONDENCE

Each actual argument corresponds to a dummy argu­
ment. The data type of an actual argument must be
the same as the data type of the dummy argument to
which it corresponds, except that an actual argument
of type Hollerith can correspond to a dummy argument
of any type other than characte.r or bit.

The length of an actual argument must be the same
as the length of the dummy argument to which it
corresponds.

The number and order of the actual arguments must
be the same as the number and order of the dummy
arguments.

If an actual argument is a constant, symbolic
constant, expression that contains operators or is
enclosed in parentheses, substring, or vector, the
value of the corresponding dummy argument must not
be modified in the subprogram.

See table 7-4 for the legal correspondences of
actual and dummy arguments.

RESTRICTIONS ON ASSOCIATION
OF ARGUMENTS

If a subprogram reference causes a dummy argument
in the referenced subprogram to become associated
with another dummy argument in the referenced
subprogram, neither dummy argument can be defined
during execution of that subprogram.

For example, if a subroutine is headed by:

SUBROUTINE XYZ (A,B)

and is referenced by:

CALL XYZ (C,C)

60480200 F

then the dummy arguments A and B each become
associated with the same actual argument C and
therefore with each other. Neither A nor B can he
defined during this execution of subroutine XYZ or
by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument
to become associated with an entity in a common
block in the referenced subprogram or in a sub­
program referenced by the referenced subprogram,
neither the dummy argument nor the entity in the
common block can be defined within the subprogram
or within a subprogram referenced by the referenced
subprogram.

For example, if a subroutine contains the state­
ments:

SUBROUTINE XYZ (A)
COMMON C

and is referenced by a program unit that contains
the statements:

COMMON B
CALL XYZ (B)

then the dummy argtDDent A becomes associated with
the actual arg\DDent B. Because B and C are
allocated the same space in the blank common block,
A and C then reference the same space. Neither A
nor C can be defined during execution of the
subroutine XYZ or by any procedures referenced by
XYZ.

60480200 F

ARRAYS AS DUMMY ARGUMENTS

The size of an array that is a dummy argument must
be declared in the subprogram like all other
arrays.Dimension bound expressions for such an
array can contain integer variables that are in a
common block or that are dummy arguments. If an
integer variable that is used in a dimension bound
expres- sion is a dummy argument, it must appear in
the dummy argument list of every FUNCTION,
SUBROUTINE, and ENTRY statement that contains the
array name.

The upper bound of the last dimension of a column­
wise array can be an asterisk. The upper bound of
the first dimension of a rowwise array can be an
asterisk. Such an array is called an assumed-size
array. An assumed-size array must not appear with­
out subscripts in an input/output list or in an
array assigmnent statement.

SUBPROGRAM NAMES AS ACTUAL
ARGUMENTS

If an intrinsic function name is used as an actual
argument, it must be declared in an INTRINSIC
statement in the calling program unit. If a sub­
routine name or an external function name is used
as an actual argument, it must be declared in an
EXTERNAL statement in the calling program unit.
The corresponding dummy argument in the referenced
subprogram can be used either as an actual argument
in subprogram references, or as a subprogram name
in subprogram references.

7-8.1 n-8. 2 I

TABLE 7-4. DUMMY AND ACTUAL
ARGUMENT CORRESPONDENCE

Dummy Argument

V.ariable

Array

Descriptor

Descriptor ar•Y·

Dummy function name

Dummy subroutine name

Asterisk denoting
alternate return for
subroutine only

Asterisk denoting
vector function
result

ENTRY POINTS

Actual Argument

Constant
Symbolic constant
Scalar expression
Substring
Variable
Array element

Array element
Array

Vector reference
Descriptor
Descriptor array

element

Descriptor array
element

Descriptor array

Actual function name
Dummy function name

Actual subroutine name
Dummy subroutine name

Alternate return speci­
fier (a statement label
prefixed by an asterisk
or ampersand)

Vector reference
Descriptor array

element
Descriptor

An entry point is a place in a function or sub­
routine where execution begins when the function or
subroutine is referenced. Each function and sub­
routine has one main entry point. The main entry
point is the first executable statement after the
FUNCTION or SUBROUTINE statement.

An entry point is identified by an entry point name.
The name of the main entry point is the name of the
function or subroutine, which is specified by the
FUNCTION or SUBROUTINE statement.

Functions and subroutines can have entry points
other than the main entry point. These entry points
are called secondary entry points. Secondary entry
points are Identified by secondary entry point
names. Secondary entry points are defined by using
the ENTRY statement.

ENTRY STATEMENT

The ENTRY statement specifies that the first exe­
cutable statement after the ENTRY statement is a
secondary entry point. The ENTRY statement also
specifies the name of the secondary entry point it
defines. You can specify any number of secondary
entry points in a function or subroutine. See
figure 7-15 for the format of the ENTRY statement.

60480200 A

ENTRY sename Cdarg1,

senaine A symbolic name that is used as the
name of a secondary entry point in the
function or subroutine.

dargi A dlMllmy argument, which can be a vari­
able, array, descriptor, descriptor
array, dummy function name, dU11my
subroutine name, or asterisk; option­
al. An asterisk can be specified only
if the ENTRY statement appears in a
sub- routine. No two dummy arguments
can have the same name. If no dum•y
arguments appear, the parentheses are
optional.

Figure 7-15. ENTRY Statement For•at

An ENTRY statement is nonexecutable. An ENTRY
statement must not appear in the range of a DO
statement or in an if-block, elseif-block, or else­
block. An ENTRY statement must not appear in a
main program or in a block data subprogram.

SECONDARY ENTRY POINTS IN FUNCTIONS

When an ENTRY statement appears In a function sub­
program, a secondary entry point ls defined for the
function. The type of a secondary entry point name
in a function is determined by a type specif !cation
statement that appears in the function body or by
the first letter of the secondary entry point name.
An IMPLICIT statement that appears in the function
body can affect the type of the secondary entry
point.

A secondary entry point name need not be associated
with the same data type as the main entry point
name or any other secondary entry point names in
the function; however, a function reference that
uses a secondary entry point name must be associated
with the same data type as the secondary entry point
name.

Scalar functions can have vector secondary entry
points, and vector functions can have scalar sec­
ondary entry points. See section 9 for a descrip­
tion of vector functions.

The name of a secondary entry point in a function
must not appear in any nonexecutable statements in
the function body except in a type specification
statement or in .the input/output list of a lfAMBLIS',f

·statement.

At least one secondary entry point name must be
assigned a value before a RETURN statement is exe­
cuted. When one entry point name is assigned a
value, all other entry point names that have the
same data type and length are assigned the same
value. The values of entry points that are not of
the same data type or length are undefined.

7-9

SECONDARY ENTRY POINTS IN
SUBROUTINES

When an ENTRY statement appears in a subroutine
subprogram, a secondary entry point is defined for
the subroutine. The name of a secondary entry
polnt in a subroutine must not be associated with a
data type.

The name of a secondary entry point in a subroutine
must not appear in any statements in the subroutine
body.

REFERENCING SECONDARY ENTRY POINTS

A secondary entry point name of a function is
referenced in the same way as the main entry point
name ls referenced; however, the secondary entry
point name is used in the function reference rather
than the main entry point name. The secondary entry
point reference must be of the same type as the
secondary entry point. See the description of
function references for the fomat of a function
reference.

A secondary entry point name of a subroutine ls
called in the same way as the main entry point name;
however, the secondary entry point name ls used in
the CALL statement rather than the main entry point
name. See the description of subroutine calls for
the fomat of the CALL statement.

Recursive function references and recursive sub­
routine calls are not pemltted. A function or
subroutine must not directly or indirectly reference
any of its own entry points, In a function, the
value of an entry point name can be referenced and
changed because the entry point name ls treated
like a variable name in the function body; 1f an
entry point name ls not followed by an argument
list, the use of the entry point name .Ls not a
function reference.

SECONDARY ENTRY POINT ARGUMENT
LISTS

A secondary entry point of a funct.Lon must have at
least one dummy argument; a secondary entry point
of a subroutine need not have any arguments.

The list of arguments in an ENTRY statement need
not contain the same elements as the argument lists
of other FUNCTION, SUBROUTINE, or ENTRY statements
ln the same program unit.

A dummy argument must not appear ln an executable
statement that precedes the first dummy argument
list in which the dummy argument appears. Thus, a
dummy argument in an ENTRY statement must not
appear in an executable statement preceding that
ENTRY statement unless the dummy argument also
appears in a FUNCTION, SUBROUTINE, or ENTRY state­
ment that precedes the executable statement.

A dummy argument in an ENTRY statement must not
appear in the expression of a statement function
definition unless one of the following is true:

7-10

The dummy argument in the ENTRY statement ls
also a dummy argument in the statement function.

The dummy argument in the ENTRY statement is
also a dummy argument ln the FUNCTION or
SUBROUTINE statement.

The ENTRY statement in which the dummy argu­
ment appears precedes the statement function
deflnltlon.

An executable statement containing a dummy argument
can be executed only lf the dummy argument appears
ln the argument list of the entry point that was
referenced.

SECONDARY ENTRY POINT EXAMPLE

See figure 7-16 for an example of a function that
has a secondary entry point. The main entry point
of the function in the example is !SOS; a secondary
entry point is ANYTRI. Because ISOS and ANYTRI are
of the same data type and length, assigning a value
to ANYTRI causes the same value to be assigned to
!SOS.

PROGRAM ENT
REAL ISOS,ANYTRI,BASE,HEIGHT

AREA ISOSCBASE,BASE)

AREA ANYTRICBASE,HEIGHT>

ENO

FUNCTION ISOSCB,H)
REAL ISOS,ANYTRI,B,H
H = SQRTCCB**2) - CCBASE/2)**2))
ENTRY ANYTRICB,H)
ANYTRI = CB•H)/2
RETURN
END

Figure 7-16. Secondary Entry Points Example

BLOCK DATA SUBPROGRAMS
A block data subprogram ls a group of statements
that begins with a BLOCK DATA statement and ends
with an END statement. See f lgure 7-17 for the
structure of a block data subprogram.

BLOCK DATA statement

Block data subprogram body

END statement

Figure 7-17. Block Data Subprogram Structure

A FORTRAN program can have any number of block data
subprograms. A block data subprogram ls a nonexe­
cutable subprogram.

BLOCK DAT A STATEMENT

The BLOCK DATA statement ls the flrst statement in
a block data subprogram. The BLOCK DATA statement
can assign a name to the block data subprogram.
See figure 7-18 for the format of the BLOCK DATA
statement.

60480200 A

BLOCK DATA bname

bname A symbolic name; optional; bname is
used as the name of the block data
subprogram.

Figure 7-18. BLOCK DATA Statement Format

BLOCK DATA SUBPROGRAM BODY

The body of a block data subprogram can contain any
of the following statements:

IMPLICIT statements

Type specification statements

EQUIVALENCE statements

DIMENSION statements

IOWWISB statements

COMMON statements

DESCitlP'l'Oll: $tatementa

DATA statements

PARAMETER statements

SAVE statements

No other statements can appear in the body of a
block data subprogram.

The purpose of a block data subprogram is to ini­
tialize the values of elements in named common
blocks before program execution begins. Elements
in the unnamed common block must not be initialized
in a block data subprogram.

If any element in a particular common block is
initialized in a block data subprogram, a complete
set of specification statements for the entire
common block must be present, including any type
specification, EQUIVALENCE, and DIMENSION state­
ments. Not all of the elements of a common block
need be initialized.

A separate block data subprogram is not required
for each common block. Different variables and
array elements in a common block can be initialized
in different program units, but no variable or array
element can be initialized more than once.

END STATEMENT FOR BLOCK DATA
SUBPROGRAMS

A block data subprogram must end with one END
statement. See figure 7-3 for the format of the
END statement. An END statement can contain a
statement label. The END statement must not be
continued.

60480200 F

BLOCK DAT A SUBPROGRAM EXAMPLE

See figure 7-19 for an example of a block data
subprogram. The block data subprogram CITIES ini­
tializes part of common block EAST and all of
common block MIDWEST. The block data subprogram
STATES initializes the remainder of common block
EAST and all of common block US,

PROGRAM BLOCK
IMPLICIT REALCA-Z)
COMMON /US/ CA,OH,MN
COMMON /EAST/ NY,WASH,BOSTON
COMMON /MIDWEST/ DETROIT,TOLEDO,CHICAGO

END

BLOCK DATA CITIES
IMPLICIT REALCA-Z)
COMMON /EAST/ NY,WASH,BOSTON
COMMON /MIDWEST/ DETROIT,TOLEDO,CHICAGO
DATA BOSTON,DETROIT,TOLEDO,CHICAGO /4•0.0/
END

BLOCK DATA STATES
IMPLICIT REALCA-Z)
COMMON /EAST/ NY,WASH,BOSTON
COMMON /US/ CA,OH,MN
DATA NY,WASH /2•5.0/
DATA CA,OH,MN /3•10.0/
END

Figure 7-19. BLOCK DATA Statement Examples

STATEMENT FUNCTIONS
A statement function is a single statement that
defines the rules for computing a value. A state­
ment function can be referenced anywhere in the
program unit in which the statement function is
defined. A statement function reference specifies
the arguments that are passed to the statement
function.

DEFINING STATEMENT FUNCTIONS

A statement function is defined by using a statement
function definition. See figure 7-20 for the for­
mat of a statement function definition.

sfname Cdarg1, ••• ,dargn> = expression

sf name A symbolic name that is used as the
name of the statement function.

dargi A dummy argument, which can be a
simple variable; optional. No two
dummy arguments can have the same
name. The parentheses are required
even if no dummy argument appear.

Figure 7-20. Statement Function
Definition Format

7-11

I

A statement function must be defined before the
first executable statement in the progra11. unit in
which the statement function is referenced. A
statement function must be defined after all non­
executable statements except DATA, FORMAT, and EllTRY
statements.

The names of d111111ay argU11ents can be the same as
other symbolic names used in the progra11. unit, such
as other variable names. The expression that
appears in a st~tement function definition can con­
tain constants, symbolic constants, variables, array
elements, substrings, and function references in
addition to the d111111ay arguments of the statement
function, If the expression contains other state­
ment function references, the statement functions
that are referenced must be defined before the
statement function that contains the statement
function reference.

Recursive statement function references are not
permitted. A recursive statement function reference
is a statement function reference that directly or
indirectly references the statement function in
which it appears.

The type of a statement function result depends on
the type of the statement function name. The data
type with which a statement function name is
associated is specified by a type specification
statement or by the first letter of the statement
function name. See section 3 for a description of
type specification.

The result of the expression in a statement function
is converted to the type of the statement function
name; the rules for type conversion in a statement
function are the same as the rules for type con­
version during assignment. See section 4 for a
description of type conversion during assigmaent.

A statement function name must not appear in an
EQUIVAU:NCE, COMMON, EXTERNAL, or IllTRINSIC state­
ment. A statement function nmae must not be
dimensioned or initialized.

REFERENCING STATEMENT FUNCTIONS

A statement function is referenced by using a
statement function reference. See figure 7-21 for
the format of a state11e11t function reference.

A statement function reference can appear in an
arithmetic, logical, or character expression.

7-12

sfn•e The n•e of a state11ent function
that is defined in the program unit
in which the state11ent function
reference appears.

An actual arguaent, which can be a
scalar expression of the same data
type as the corresponding dummy
argument; optional. The actual
arg1.111ents •ust agree in n1.111ber and
order with the dummy arguments. The
parentheses are required even if no
actual argU11ents appear.

Figure 7-21. State11ent Function
Reference For•at

A statement function is evaluated during the eval­
uation of the expression in which the statement
function reference appears. The values that the
actual arguments have at the time the statement
function is evaluated are the values that are used
during evaluation of the statement function.

STATEMENT FUNCTION EXAMPLE

See figure 7-22 for an example of a statement
function. The first statement function in the
example is called SQUARE and has one dU111111y argument,
B, which is real. The second statement function in
the example is called HEIGHT and has one dummy
argU11ent, B, which is real. Statement function
HEIGHT references the intrinsic function SQB.T and
the statement function SQUARE.

PROGRAM SFUNC
IMPLICIT REALCA-Z)
SQUARECB) = 8••2
HEIGHTCB) = SQRTCSQUARE(B) - SQUARECB/2))

ANYTRI = (BASE * HEIGHTCBASE))/2

END

Figure 7-22. State•ent Function Ex•ple

60480200 A

ARRAY ASSIGNMENT STATEMENTS 8

An array assignment statement is an executable
statement that assigns the results of array expres­
sions to array elements. A single array assignment
statement can assign different values to different
array elements.

In order to assign different values to different
array elements using scalar assignment statements,
you would have to write a DO loop. An array as­
signment statement could be used instead of the DO
loop; therefore, an array assignment statement can
be thought of as a shorthand notation for a FORTRAN
DO loop.

Using an array assignment statement does not pro­
hibit vectorization. If the DO loop equivalent of
an array assignment statement is vectorizable, the
array assignment statement can be compiled into
vector machine instructions. In order to do this,
you must specify the V compilation option on the
FORTRAN control statement. See section 9 for a
description of vectorizable DO loops.

Array assignment statements are neither a part of
the standard FORTRAN language nor a part of the
vector programming features of the FORTRAN 200
language.

This section describes subarray references,
formable subarrays, array expressions, and
assignment statements.

SU BARRA Y REFERENCES

con­
array

A subarray reference is a reference to a portion of
an array. A subarray reference can be a reference
to one element, several elements, or all elements
of an array.

A subarray reference consists of an array name and
a subscript. The subscript must contain at least
one implied DO subscript expression. The subscript
can also contain standard subscript expressions,
which are described in section 2.

An implied DO subscript expression can have one of
three formats. See figure 8-1 for the formats of
implied DO subscript expressions.

The first form indicates subscript expression values
from avar1 through avar2 starting with avar1
and incrementing by avar3.

The second form is equivalent to the first form
where avar1 and avar2 are the lower and upper
bounds of the corresponding dimension respectively,
and avar3 is 1.

60480200 J

avar1:avarz:avar3
or

*
or

avar1 :•:avar3

*

An integer constant or simple integer
variable; avar1 is the initial value of
the subscript expression.

An integer constant or simple integer
variable; avar2 is the terminal value
of the subscript expression.

An integer constant or simple integer
variable; optional; avar3 is the in­
crementation value for the subscript
expression. If avar3 is not specified,
the colon that precedes it must not
appear. The default is 1.

When used in the second format, the
asterisk represents lower:upper; when
used in the third format, the asterisk
represents upper; lower and upper are
the lower bound and upper bound of the
corresponding dimension, respectively.

Figure 8-1. Implied DO Subscript
Expression Format

The third form is equivalent to the first form where
avar2 is the upper bound of the corresponding
dimension.

The second and third forms must not be used for the
last subscript of an assumed-size columnwise array.
The second and third forms must not be used for the
first subscript of an assumed-size rowwise array.

If the value of (avar2-avaq)/avar3 is not
integral, the subscript expression is never equal
to the terminal value avar2. There are no re­
strictions on the values of avar1, avar2, and
avar3. The value of avar3 can be negative,
avar1 can be greater than avar2, or both. If
avar3 is negative and avar1 is less than
avar2, or if avar3 is positive and avar1 is
greater than avar2, the subarray reference con­
tains no elements.

An implied DO subscript expression can appear only
in an array expression. An array expression can
appear only in an array assignment statement.

8-1

I

The order of the elements of a subarray reference
is always columnwise: the leftmost implied DO sub­
script expression varies most rapidly. This rule
applies to all subarray references, regardless of
whether the array is declared in a DIMENSION state­
ment or in a ROWWISE statement. See figure 8-2 for
an example that illustrates the order of the ele­
ments of a subarray reference.

The order of the elements of a subarray reference
does not have to be the same as the order of the
the elements of the array itself. A subarray
reference can involve a columnwise array or a row­
wise array. The order of elements of the array
itself determines whether the elements of the sub­
array reference are located in consecutive memory
locations.

See figure 8-3 for an illustration of the differ­
ences between a subarray reference involving a
columnwise array and a subarray reference involving
a rowwise array.

Declaration:

DIMENSION IC5,2>
DATA I /0,1,2,3,4,5,6,7,8,9/

Order of array elements:

Declaration:

DIMENSION AC2,2,2)
or

ROWWISE AC2,2,2>

Subarray Reference

AC•,•,1>

AC1:2, 1, 1:2)

Order of
Subarray Elements

AC1,1,1)
AC2, 1, 1)
AC1,2,1)
AC2,2, 1)

AC1,1,1)
AC2,1,1>
AC1,1,2)
AC2, 1,2)

Figure 8-2. Order of Subarray Elements Example

IC2, 1 > IC3, 1) I C1,2> I C2,2> IC3,2> 1(4,2)

I I 2 I 5 I 6 I 7 I 8

Declaration:

ROWWISE IC5,2>
DATA I /0,1,2,3,4,5,6,7,8,9/

Order of array elements:

I C1 ,2> I C2, 1) IC2,2) IC3,1> 1(3,2) I (4, 1) IC4,2> IC5, 1 >

I I 2 I I 6 I 7 I 8

Values of Values of
Sub array Sub array

Order of Reference for Reference for
Subarray Reference Sub array Elements DIMENSION ROWWISE

IC1 :3,•) I C1, 1> 0 0
IC2, 1) 1 2
I C3, 1> 2 4
I C1,2> 5 1
IC2,2) 6 3
IC3,2) 7 5

Figure 8-3. Subarray References Using Columnwise and Rowwise Arrays Example

8-2 60480200 A

CONFORMABLE SUBARRAY
REFERENCES

Two subarray references are conformable subarray
,references if they satisfy the following conditions:

The number of implied DO subscript expressions,
in each subarray reference must be the same.
The number of standard subscript expressions in.
each subarray reference has no effect on the
conform.ability of two subarray references.

The first implied DO subscript expression in
one subarray reference must be the same as the
first implied DO subscript expression in the
other subarray reference, the second implied 00
subscript expression in one subarray reference'.
must be the same as the second implied DO sub­
script expression in the other subarray refer­
ence, and so on. The appearance of standard·
subscript expressions in the subarray references
has no effect on the conformability of two
subarray references. Two implied DO subscripts'
are the same if their initial values, termina~

values, and incrementation values are the same.

;Two subarray references need not have the same
number of standard subscripts nor be of the same
data type in order to be conformable subarray

.. references.

The· number of elements of a subarray reference ilt.
the same as the number of elements of any subarray
reference that is conformable with it.

See figure 8-4 for examples of. conformable and non-
conformable subarray references. ·

Declaration:

DIMENSION AC5,3> ,9 C8.,5> ,C C5,3 ,4>

Conformable Subarray References:

A and A
AC1:5,3> and 9C1 :5:1,2)
AC1:5,3> and 9(1,1 :5)
AC1:4,3> and CC1,2,1 :4)
A and 9(1:5,1:3)
AC1:5,1 :3) and CC1 :5,2,1 :3)
AC1:5:2,2> and 9C1:5:2,4)

Nonconformable Subarray References:

A
9(1:5,1 :3)
A C1 :4,3)
AC1 :5,1 :3)

and
and
and
and

9
9C1:3,1 :5>
CC1 :1,2,1 :4>
8(1:3,1:5)

Figure 8-4. Conformable and Nonconformable
Subarray References Examples

ARRAY EXPRESSIONS
An array expression is the same as a scalar expres­
sion, except an array expression must contain at
least one subarray reference. Any two subarray
references in an array expression must be conform­
,i.ble subarray ref•H::en,ces,

60480200 E

g ·~ ., '. ./ . .;- '· . .,.: «-; --'."."'%::::-.. W-::<'-~ »-~ ~

'When an array expression is evaluated, 1'tlll'' 'c;p!'
:.erations specified are performed on correspondin8;
'elements of the array operands. Any scalar entities
that appear in an expression are treated as if they
were arrays that have the same number of elements
as the subarray references in the expression, and
.as if the values of those elements were the value
'of the scalar entity.

An array expression can appear only in an array
assignment statement.

See figure 8-5 for examples of array expressions.

Declaration:

DIMENSION A(5,5) ,8(10,5) ,C(5, 10)

Array Expressions:

A + 3.1
AC1:3,1> * AC1:3,2)/AC1:3,3) * AC1:3,4>
ACI, 1 :5> ** 2.0
9C10,1:5> + CC1:5,10) + 1.0 - AC1,1)
CA - 9(1:5,*))/24.5 * CC•,1:5)

Figure 8-5. Array Expressions Examples

ARRAY ASSIGNMENT
STATEMENT
~ .
An array assignment statement consists
array reference and an array expression.
. 8'""6 for the format of an array assignment

of a sub­
See figure .
statement,

suba =· arexp

sub a A subarray reference that is con­
formable with the result of arexp

arexp An array expression or any scalar
expression

..

If a scalar expression is specified in an array
assignment statement, the elements of the subarray
reference are replaced with the scalar value.

If an array expression is specified in an array
assignment statement, the values of the elements of
the subarray reference are replaced with the values
of the corresponding elements in the array expres­
sion result.

The data type conversion rules for scalar assignment
statements apply to array assignment statements.
See section 4 for a description of the data type
conversion rules for assignment statements.

See figure 8-7 for examples of array assignment
.statements. , .•

8-3

I

I

Each of the statement pairs:

DIMENSION XC5,3),YC2,5>
XC1:5,3) = Y(2,1:5)

DIMENSION XC5,3),YC2,5)
X(•,3> = Y (2,•>

has the same effect as the statements:

DIMENSION X(5,3>,Y<2,5>
DO 100 I=1,5,1
X<I,3> =Y(2,l)

100 CONTINUE

which accomplishes the following assignments:

x (1 ,3) = y (2, 1)

XC2,3) = YC2,2)
XC3,3) = YC2,3)
x (4,3) = y (2,4)
XC5,3) = Y C2,5)

The statement pair:

DIMENSION XC5,3), YC10,3,2)
XC1:•:3,•) = Y(1:5:3,•,2>

has the same effect as the statements:

DIMENSION XC5,3),YC10,3,2>
DO 200 I2=1,3, 1
DO 100 I1=1,5,3
XCI1,I2) = YCI1,I2,2)

100 CONTINUE
200 CONTINUE

which accomplishes the following assignments:

XC1,1) = Y<1,1,2>
X<4,1) = YC4,1,2>
XC1,2) = Y<1,2,2)
XC4,2) = YC4,2,2)
XC1,3) = YC1,3,2)
XC4,3) = YC4,3,2)

Figure 8-7. Array Assignment Statement Examples

8-4 60480200 E

VECTOR PROGRAMMING 9

The FORTRAN 200 compiler provides a set of features
that enables you to use the vector processing hard­
ware of the CYBER 200 computer. These features are
extensions to the standard FORTRAN language.

Use of the vector programming features can decrease
the amount of time needed to execute a program.
This section describes the vector programming fea­
tures of the FORTRAN 200 language.

OVERVIEW
The FORTRAN 200 compiler translates FORTRAN state­
ments into machine language instructions. Two
types of machine language instructions can be gen­
erated by the compiler and executed by the CYBER
200 computer: scalar machine instructions and
vector machine instructions.

There are three distinct steps in the performance
of an operation. The steps are:

Values are loaded from memory.

An operation is performed on the values.

The result is stored back into memory.

A scalar machine instruction is a machine instruc­
tion that performs an operation on a single set of
values. Thus, each of the three steps is performed
in order and cannot be overlapped.

A vector machine instruction is a machine instruc­
tion that performs an operation on a stream of
values. The stream of values is called a vector.
The values in a vector must be located in contiguous
memory locations.

Execution of a vector machine instruction involves
the same three steps as for a scalar machine in­
struction; however, the steps can be overlapped.
While the result of one oper-ation is being stored
back into memory, the operation can be performed on
another set of values; while the operation Js being
performed on that set of values, another set of
values can be loaded from memory. Thus, the central
processor does not have to wait for values to be
loaded and stored.

When the same operation is to be performed on a
series of operands, a vector machine instruction
can perform the operation faster than a series of
scalar machine instructions. The more sets of
operands there are, the more efficient the vector
machine instruction is. See figure 9-1 for an
illustration of the difference between scalar
machine instructions and vector machine instruc­
tions. (Figure 9-1 ls intended to illustrate the
concept of vector processing, and does not neces­
sarily represent the actual implementatton or the
time proportions between scalar and vector process­
ing.)

60480200 E

The CYBER 200 central processor consists of two
parts: a scalar instruction processor and a vector
instruction processor. The scalar processor exe­
cutes scalar instructions; the vector processor
executes vector instructions. Both processors can
execute instructions simultaneously as long as the
instructions do not conflict. See the appropriate
hardware reference manual for a detailed descrip­
tion of the vector processing hardware.

Vector machine instructions can be generated by the
compiler when you do either or both of the follow­
ing:

Use vector programming statements, such as
vector assignment statements, or vector function
references

Specify the optimize V compilation option in I
the FTN200 control statement, which causes the
compiler to generate vector machine instruc­
tions for certain types of DO loops

VECTORS AND DESCRIPTORS
A vector is a series of values that are stored in
contiguous memory locations. The first element of
a vector must be an array element.

Vectors are referenced by using vector references
or descriptors. A vector reference or a descriptor
specifies the following information:

The first element of the vector, which must be
an array element

The length of the vector

The data type of the vector

Vector references specify this information explic­
itly. Descriptors can be thought of as pointers to
vectors. Vector references and descriptors are
described in the following paragraphs.

VECTOR REFERENCES

A vector r<i>ference explicitly specifies the first
element of the vector, the length of the vector,
and the data type of the vector. See figure 9-2
for the format of a vector reference.

The first element of a vector must be an array
element; however, a vector has no other relation to
the array,

The order of elements of the array affects the
order of elements in a vector. See section 2 fot
111ore information about array storage.

9-1

Load A and B Load A and B

Perfora C=A+B Perfora C=A+B Load D and E

Store C Store C Perform F=D+E

Load D and E Store F

Perfora F=D+E

Store F

Scalar Nachine Instructions:

Load values

Perform operation

Store result

--- time

Vector Nachine instructions:

Load values

Perform operations

Store results

--- time

Figure 9-1. Scalar vs. Vector Processing Illustration

aname(base;len)

aname The name of an array of type integer,
half-precision, real, double­
precision, complex, or bit.

base A list of subscript expressions
separated by commas; base indicates
the element of array aname that is the
first element of the vector. The
number of subscript expressions in
base must be the same as the number of
dimensions in array aname. The value
of ear.h subscript expression must not
be less than the lower bound of the
dimension or greater than the upper
bound of the dimension. If an
expression in base is not integer, the
value is truncated to integer.

len

9-2

A scalar expression of type integer
whose result is positive; len
specifies the number of elements in
the vector. The length must not
exceed 65535 elements for vectors of
type integer, half-precision, real, or
bit; the length must not exceed 32767
elements for vectors of type
double-precision or complex.

Figure 9-2. Vector Reference Format

An array element can be an element of aore than one
vector. An array element that is part of a vector
can be modified as though it were not part of any
vector. The array elements that are part of a
vector can be input and output. You can place a
vector reference in an input/output statement. You
can place a vector reference in a DATA statement in
order to initialize the elements of the vector.
Initialization of vectors is described later in
this section.

The data type of a vector is the data type of the
array element that is used to specify the first
element of the vector. Vectors can be integer,
half-precision, real, double-precision, complex,
and bit. Vectors of type double-precision and
complex are highly restricted.

See figure 9-3 for examples of vector references.

DESCRIPTORS

Each vector that is defined in a program unit
requires at least one vector reference; however,
once you define the vector by using a vector refer­
ence, you can reference that vector symbolically by
using a descriptor.

A descriptor is a symbolic name that represents a
vector. The symbolic name must be declared in a
DESCRIPTOR statement. The DESCRIPTOR statement is
described later in this section. The symbolic name
must be associated with the same data type as the

60480200 A

Declarations:

DIMENSION AC10),8C10,10)
ROWWISE CC10,10)

Vector reference

AC3;5)

8C1,1;5>

CC1,1;5)

Vector

AC3)
AC4>
ACS>
AC6)
AC7)

8C1,1)
8(2,1)
8C3, 1)
8(4,1)
8CS, 1)

C C1, 1>
CC1,2)
C C1,3)
C C1,4>
CC1,5)

Figure 9-3. Vector Reference Examples

data type of the vector that it represents; however,
the symbolic name cannot be associated with the
double-precision data type. Double-precision
vectors can be defined and referenced by using
vector references only.

A descriptor must be associated with a vector before
the descriptor can be used. A descriptor can be
associated with a vector by using a DATA statement
or a descriptor ASSIGN statement.

A DATA statement associates a descriptor with a
vector before program execution begins. When a
descriptor appears in the var !able list of a DATA
statement, the descriptor is initialized rather
than the vector that .it references. Initialization
of descriptors is described later in this section.

The descriptor ASSIGN statement is an executable
statement that associates a descriptor with a vector
during program execution. Thus, any subsequent
reference to the descriptor references the vector
with which it is associated. A descriptor can be
redefined by using other descriptor ASSIGN state­
ments. The descriptor ASSIGN statement is described
later in this section.

See figure 9-4 for the internal format of a
descriptor. The vector length of an integer, real,
or complex vector is the m.unber of fullwords the
vector occupies. The vector length of a half­
precision vector is the number of halfwords the
vector occupies. The vector length of a bit vector
is the number of bits the vector occupies.

See figure 9-5 for examples of descriptors. The
DESCRIPTOR statement in the example declares MYVEC
and YOURVEC to be descriptors. MYVEC is an integer
descriptor; an integer vector must be associated
with MYVEC before MYVEC can be used. YOURVEC is a
real descriptor; a real vector must be associated
with YOURVEC before YOURVEC can be used.

60480200 F

0

unsigned integer
expressing vector
length

16

virtual address of
vector's first element

Figure 9-4. Descriptor Representation

INTEGER MYVEC
REAL YOURVEC
DESCRIPTOR MYVEC,YOURVEC

Figure 9-5. Descriptor Examples

DESCRIPTOR Statement

63

The DESCRIPTOR statement is a nonexecutable speci­
fication statement that declares a symbolic name to
be a descriptor. See figure 9-6 for the format of
the DESCRIPTOR statement.

DESCRIPTOR v1, ••• ,vn

vi A variable name, array name, or array
declarator of type integer, half­
precision, real, complex, or bit

Figure 9-6. DESCRIPTOR Statement Format

A symbolic name that appears in a DESCRIPTOR state­
ment ls associated with a data type. The data type
with which it is associated is determined by the
first letter of the symbolic name or by a type
specification statement. A symbolic name that
appears in a DESCRIPTOR statement can be associated
with any of the following data types: integer,
half-precision, real, complex, or bit. Although
vectors can be associated with the double-precision
data type, descriptors cannot.

The DESCRIPTOR statement can be used to declare a
descriptor array.

See figure 9-7 for an example of the DESCRIPTOR
statement. The DESCRIPTOR statement in the example
specifies that A is a descriptor, B is a descriptor
array of five elements, and C is a descriptor array
of 10 elements.

Descriptor Arrays

Descriptors can be organized into arrays by using
the DESCRIPTOR, DIMENSION, or ROWWISE statement, or
by using a type specification statement. See figure
9-6 for the format of the DESCRIPTOR statement.

9-3

I

INTEGER A
REAL 8(5)
DESCRIPTOR A,B,CC10)

Figure 9-7. DESCRIPTOR Statement Example

Descriptor arrays are referenced in the same way as
other arrays: by specifying the descriptor array
name and a subscript.

Initializing Vectors and Descriptors

The nonexecutable DATA statement can be used to
initialize vectors and descriptors. Double­
precls!on vectors cannot be initialized, and
descriptors cannot be associated with the double­
preclsion data type. See section 3 for a descrip­
tion of the DATA statement,

Initializing a vector causes the values you specify
to be assigned to the vector elements before program
execution begins, In order to initialize a vector,
place a vector reference in the variable list of
the DATA statement. The vector reference must con­
tain integer constants for the subscript expression
and the length specification.

Place the initial values for the vector in the
value list of the DATA statement, The number of
constants in the value list must be the same as the
number of elements in the vector.

See figure 9-8 for an example of vector initial­
ization. The first DATA statement in the example
initializes the elements of vector A(1; 5) to 1. 0,
2.0, 3.0, 4.0, and 5.0 respectively. The second
DATA statement in the example initializes each
element of vector B(1;5) to O.O.

.
REAL AC5) ,BC10)
DATA AC1;5) /1.0,2.0,3.0,4.0,5.0/
DATA BC1;5) /5*0.0/

Figure 9-8. Vector Initialization Example

Initializing a descriptor causes the descriptor to
be associated with a vector before execution of the
program. Initializing a descriptor does not cause
values to be assigned to the vector itself, In
order to initialize a descriptor, place the
descriptor name in the variable list of a DATA
statement. The symbolic name must be declared in a
DESCRIPTOR statement.

9-4

Place a vector reference in the value list of the
DATA statement. The vector reference must contain
integer constants for the subscript expression and
length specification. The number of vector refer­
ences in the value list must be the same as the
number of descriptors in the variable list.

The data type of the descriptor must be the same as
the data type of the vector with which the descrip­
tor is associated.

The repeat specification can be used in the value
list of the DATA statement in order to repeat the
use of a vector reference for initialization of
more than one descriptor.

Descriptor arrays and descriptor array elements can
be initialized by a DATA statement in the same way.

See figure 9-9 for an example of descriptor
initialization. The first DATA statement in the
example associates the elements of the descriptor
array Vl with the vectors A(l;5), B(1;5), C(l;7),
C(1;7), and C(1;7) respectively. The second DATA
statement in the example associates the descriptors
V2 and V3 with the vector C(8;2),

REAL AC5),BC10>,CC10)
REAL V1 C5) ,V2,V3
DESCRIPTOR V1,V2,V3
DATA V1 /AC1;5>,BC1;S>,3•CC1;7)/
DATA V2,V3 /2•CC8;2)/

Figure 9-9. Descriptor Initialization Example

Descriptor ASSIGN Statement

The descriptor ASSIGN statement ls an executable
statement that associates a descriptor with a
vector. See figure 9-10 for the format of the
descriptor ASSIGN statement.

Execution of a descriptor ASSIGN statement of the
first form associates the descriptor p with the
vector referenced by q.

See figure 9-11 for examples of descriptor ASSIGN
statements of the first form. The first descriptor
ASSIGN statement in the example associates the
first element of the descriptor array Vl with the
vector A(l;5). The second descriptor ASSIGN state­
ment associates the second element of the descriptor
array Vl with the first element of descriptor array
Vl, which is the vector A(l;5). The third descrip­
tor ASSIGN statement associates the descriptor V2
with the vector C(8;2).

Execution of a descriptor ASSIGN
second form causes storage to be
cated for a vector and causes the
fied in the descriptor ASSIGN
associated with that vector.

statement of the
dynamically allo­
descr iptor speci­
statement to be

60480200 A

ASSIGN p,q
or

ASSIGN p,.DYN. aexp

p

q

aexp

A descriptor or descriptor array
element of type integer, half­
precision, real, complex, or bit.
The data type of p must be the same
as the data type of q.

A vector reference, or a previously­
assigned descriptor or descriptor
array element; q can be of type inte­
ger, half-precision, real, complex,
or bit. The data type of q must be
the same as the data type of p.

A scalar expression of type integer;
aexp indicates the number of half­
words, fullwords, doublewords, or
bits to be allocated for the vector
when the descriptor ASSIGN statement
is executed.

Figure 9-10. Descriptor ASSIGN

Storage allocated by using a descriptor ASSIGN
statement of the second form is available until a
FREE or RETURN statement is executed. A FREE or
RETURN statement returns storage allocated by all
descriptor ASSIGN statements in the program unit.

See figure 9-11 for examples of descriptor ASSIGN
statements of the second form. The fourth descrip­
tor ASSIGN statement in the example allocates
storage for a 100-fullword vector; that vector can
be referenced by using the descriptor array element
Vl(3). The fifth descriptor ASSIGN statement
allocates storage for a 250-fullword vector; that
vector can be referenced by using the descriptor
array element Vl(4).

FREE Statement

The FREE statement returns all storage that is
allocated by descriptor ASSIGN statements containing
• DYN. in the program unit in which the FREE state­
ment appears. See figure 9-12 for the format of
the FREE statement.

Statement Format FREE

REAL A(5),C(10)
REAL V1,V2
DESCRIPTOR V1 (5l,V2

ASSIGN V1(1),A(1;5)
ASSIGN V1(2),V1(1)
ASSIGN V2,CC8;2)

ASSIGN V1 (3) ,.DYN.100
ASSIGN V1 (4),.DYN.250

FREE

Figure 9-11. Descriptor ASSIGN and
FREE Statement Examples

Normally, storage for vectors is allocated at
compilation time. However, by using a descriptor
ASSIGN statement of the second form, you can allo­
cate storage for a vector at execution time.

Storage is allocated in units that are dependent on
the type of descriptor: fullwords are allocated
for integer and real descriptors; halfwords are
allocated for half-precision descriptors; double­
words are allocated for complex descriptors; bits
are allocated for bit descriptors.

60480200 E

Figure 9-12. FREE Statement Format

Also, storage allocated by descriptor ASSIGN state­
ments containing .DYN. is automatically returned
after execution of each program unit is completed.

See figure 9-11 for an example of the FREE state­
ment. The FREE statement in the example returns
all storage allocated by the fourth and fifth
descriptor ASSIGN statements. Thus, 350 fullwords
are returned. Descriptor array elements V 1 (3) and
Vl(4) no longer reference that storage and must not
be referenced after the FREE statement unless they
are first associated with a vector.

BIT DAT A TYPE
The vector programming features of the FORTRAN 200
language include the bit data type. Language
elements that are associated with the bit data type
are used in bit expressions and bit assignment
statements. Also, vector relational expressions
yield vectors of type bit.

The language elements that can be associated with
the bit data type include constants, variables,
arrays, function names, and descriptors.

Bit vectors are useful in controlling the evaluation
of vector expressions in WHERE statements and block
WHERE structures. The WHERE statement and block
WHERE structures are described later in this
section.

The following paragraphs describe the bit data type.

9-5

BIT CONST ANTS

A bit constant is a string of binary digits enclosed
in apostrophes and preceded by the letter B. See
figure 9-13 for the format of a bit constant. See
figure 9-14 for examples of legal and illegal bit
constants.

B'bin-digits'

bin-digits A string of 1 through 255 of the
binary digits 0 and 1. The binary
digits correspond to the decimal
values 0 and 1.

Figure 9-13. Bit Constants Format

Legal bit constants:

B'O'
B'1001001001'
B'11111'

Illegal bit constants:

B' I

B '1957'
10100108

Figure 9-14. Bit Constants Examples

BIT VARIABLES AND ARRAYS

Variables and arrays can be associated with the bit
data type. In order to associate a variable or
array with the bit data type, you must declare the

I variable name or array name in a BIT or IMPLICIT
statement.

BIT ELEMENT REPRESENTATION

A bit constant occupies l bit for each binary digit
in the bit value. The binary digits in a bit
constant are stored in consecutive bits. The word
boundary is not significant in bit elements.

BIT STATEMENT

The BIT statement can be used to associate a list
of variable names, array names, and function names
with the bit data type. The BIT statement can also
be used to initialize bit variables and entire bit
arrays. See figure 9-15 for the format of the BIT
statement.

See figure 9-16 for an example of the BIT statement.
The BIT statement in the example associates SEAL
and WALRUS with the bit data type. The BIT state­
ment also declares WALRUS to be an array of two
elements, and intializes SEAL to B'J', WALRUS(!) to
B'l', and WALRUS(2) to B'O'.

9-6

A variable name, array name, symbolic
constant name, array declarator, or
function name.

A bit constant; optional. This speci­
fies an initial value for vi. If vi
is a function name, di must be
omitted. If di is omitted, the
surrounding slashes must be omitted.

Figure 9-15. BIT Statement Format

BIT SEAL/B'1 '/,WALRUSC2)/B'1 ',B'O'/

Figure 9-16. BIT Statement Example

INITIALIZING BIT ITEMS

Bit variables and entire bit arrays can be initial­
ized by using the BIT statement. Bit variables,
arrays, and array elements can be initialized by
using the DATA statement or the BIT statement. The
rules for initializing variables and arrays of type
bit are:

If you specify a bit variable or a bit array
element in the list of variable names and array
names, you must specify one 1-bit constant for
each bit variable or bit array element.

If you specify a bit array name or an implied
DO loop in the list of variable names and array
names, you can provide one or more constants
whose total length is equal to the length of
the contiguous portion of the bit array that is
to be initialized. The length of each constant
must equal the length of the contiguous portion
of the bit array to which it corresponds.

Dummy arguments must not be initialized.

Variables and arrays that are in an unnamed
common block must not be initialized.

See figure 9-17 for examples of initialization of
bit variables and arrays using the DATA statement.
The first DATA statement in the example initializes
BVARl and BARRl(l) to B'O' and B'l' respectively.
The second DATA statement initializes the elements
of array BARR2 to B'l', B'l', B'O', B'l', B'O',
B'O', B'O', B'l ', B'O', and B'l' respectively. The
third DATA statement initializes both BARR3(1) and
BARR3(6) to B'O'. The fourth DATA statement
initializes BARR4(1,l), BARR4(2,l), BARR4(1,4), and
BARR4(2,4) to B'O', B'l ', B'O', and B'l' respec­
tively. The fifth DATA statement initializes the
elements of array BARRS to B'l', B'l', B'l', B'l',
B'O', B'O', B'O', and B'O' respectively.

60480200 F

BIT BVAR1
BIT BARR1C10>,BARR2C10>,BARR3C10>,BARR4C5,5),BARR5C8)
DATA BVAR1,BARR1C1> /B'0',B'1'/
DATA BARR2 /B'1101000101'/
DATA CBARR3CI>,I=1,10,5) /2•B'0'/
DATA CCBARR4CI,J),I=1,2>,J=1,5,3) /2•B'01'/
DATA CBARR5CI),I=1,8> /X'FO'/

Figure 9-17. Initialization of Bit Items Examples

VECTOR EXPRESSIONS
A vector express ion is a st r Ing of opera tors and
operands that de{ines the rules for computing the
values of vector elements. At least one of the
operands must be a vector reference, descriptor,
descriptor array element, or vector function refer­
ence. A vector expression can contain scalar data
elements. A vector expression is evaluated during
program execution. There are three kinds of vector
expressions:

Vector arithmetic expressions

Vector relational expressions

Bit express ions

Vector expressions are described in the following
paragraphs.

VECTOR ARITHMETIC EXPRESSIONS

A vector arithmetic expression is a vector expres­
sion that yields a numeric vector. A vector arith­
metic expression can appear in a vector arithmetic
assignment statement or in a vector relational
expression. See figure 9-18 for the format of a
vector arithmetic expression.

The operators that can be used in a vector arith­
metic expression are the arithmetic operators +, -,
*• /, and **; however, there are two restrictions:

The exponent lat ion operator must not appear in
a vector arithmetic expression that yields a
complex result.

Arithmetic operators must not appear in a
vector arithmetic expression that yields a
double-precision result. (A double-precision
vector arithmetic expression must consist of a
double-precision vector reference or a double­
precision vector function reference, and must
appear only in a vector adthmetic assignment
statement of type double-precision.)

See section 4 for a description of the arithmetic
operators.

60480200 E

vaexp

vaexp

term

fact

prim

A vector arithmetic expression of one
of the forms:

term
+ term
- term
vaexp + term
vaexp - term

An arithmetic term of one of the forms:

fact
term * fact
term/ fact

An arithmetic factor of one of the
forms:

prim
prim ** fact

An arithmetic primary. An arithmetic
primary can be an unsigned arithmetic
constant, arithmetic symbolic constant,
arithmetic variable, arithmetic array
element, scalar arithmetic function
reference, scalar arithmetic expression
enclosed in parentheses, vector refer­
ence, descriptor, descriptor array
element, vector function reference, or
vector arithmetic expression enclosed
in parentheses.

Figure 9-18. Vector Arithmetic
Expression Format

The order in which a vector arithmetic expression
is evaluated is the same as the order in which a
scalar ar i thmet le express ion is evaluated. The
order of evaluation of expressions is described in
section 4.

The operands that can appear in a vector arithmetic
express.ion can be scalar operands and vector
operands. The scalar operands can be constants,
symbolic constants, variables, array eleaents, and

9-7

I

scalar function references. The vector operands
can be vector references, descriptors, descriptor
array elements, and vector function references. A
vector arithmetic expression must contain at least
one vector operand.

The data type of the operands that appear in a
vector arithmetic expression can be integer, half­
precision, real, double-precision, or complex;
however, the following restrictions apply to vector
arithmetic expressions that contain double-precision
operands:

The expression must contain no operators.

The expression can appear only in
arithmetic assignment statement
double-precision.

a vector
of type

All vector operands that appear in a vector arith­
metic expression must have the same length.

When a vector arithmetic expression is evaluated,
each operation in the expression is evaluated in
the order described in section 4.

Operations that involve two vector operands sepa­
rated by a binary operator are performed using the
corresponding elements of the vector operands.

Operations that involve a scalar operand and a
vector operand separated by a binary operator are
performed using the scalar operand and each element
of the vector operand.

Operations that involve a vector operand and a
unary operator are performed using each element of
the vector operand.

The results of an operation are placed in a single
result vector. The elements of the result vector
correspond to the elements of the vector operand.
The result vector can be used as a vector operand
in subsequent operations.

After all of the operations in a vector arithmetic
expression are performed, the result vector is
assigned to the vector appearing on the left side
of the vector arithmetic assignment statement that
contains the expression. Vector arithmetic assign­
ment statements are described later in this section.

See figure 9-19 for examples of vector arithmetic
expressions.

9-8

501
501 + 502
501 + R * 3. 0
50ARR(3)
V5QRT (Q (1; 100); 501)

501 and 502 are real descriptors, R is a real
scalar variable, SDARR is a real descriptor
array, and Q is a real scalar array.

Figure 9-19. Vector Arithmetic
Expression Examples

VECTOR RELATIONAL EXPRESSIONS

A vector relational expression is a vector expres­
sion that yields a bit vector. A vector relational
expression can appear in a bit assignment statement.
See figure 9-20 for the format of a vector rela­
tional expression.

saexp op vaexp
or

vaexp op saexp
or

vaexp op vaexp

saexp A scalar arithmetic expression of type
integer, half-precision, or real.

vaexp A vector arithmetic expression of type
integer, half-precision, or real.

op A relational operator

Figure 9-20. Vector Relational
Expression Format

The operators that can be used in a vector rela­
tional expression are the relational operators
.EQ., .NE., .GE., .GT., .LE., and .LT.. The periods
are part of the operators and must appear. See
section 4 for a description of the relational
operators.

The order in which a vector relational expression
is evaluated is the same as the order in which a
scalar relational expression is evaluated. The
order of evaluation of expressions is described in
section 4.

The operands that can appear in a vector relational
expression can be scalar operands and vector
operands. The scalar operands can be scalar arith­
metic expressions. The vector operands can be
vector arithmetic expressions. A vector relational
expression must contain at least one vector operand.

The data type of the operands that appear in a
vector relational expression can be integer, half­
precision, or real.

All vector operands that appear in a vector rela­
tional expression must have the same length.

When a vector relational expression is evaluated,
each arithmetic expression in the vector relational
expression is evaluated. Evaluation of the arith­
metic expressions results in two operands for the
vector relational expression. The operands can be
two vector operands or one scalar operand and one
vector operand.

Vector relational expressions that involve two
vector operands are performed using the correspond­
ing elements of the vector operands. The comparison
specified by the relational operator is performed
for the corresponding elements of the vector
operands. The result of each comparison can be
either a I, which means that the relation is true,
or a O, which means that the relation is false.

60480200 A

The results of the comparisons are placed in a
single result vector, which is a bit vector. The
elements of the resulting bit vector correspond to
the elements of the vector operands.

Vector relational expressions that involve a scalar
operand and a vector operand are performed using
the scalar operand and each element of the vector
operand. The comparison specified by the relational
operator is performed for the scalar operand and
each element of the vector operand. The result of
each comparison can be either a 1, which means that
the relation is true, or a O, which means that the
relation is false. The results of the comparisons
are placed in a single result vector, which is a
bit vector. The elements of the resulting bit
vector correspond to the elements of the vector
operand.

See figure 9-21 for examples of vector relational
expressions.

5.0 .EQ. AC1;5>
AC1;5> .EQ. 5.0
SALARY .LT. EXPENSES
AC1;5) .NE. BC1;5> + CC1;5) * 2.0

A, B, and C are real arrays, and SALARY and
EXPENSES are real descriptors.

Figure 9-21. Vector Relational
Expression Examples

BIT EXPRESSIONS

A bit expression is a vector expression that yields
a bit vector. A bit expression can appear in a bit
assignment statement. See figure 9-22 for the
format of a bit expression.

bexp
or

bexp op bexp
or

.NOT. bexp

bexp A vector relational expression, vector
reference of type bit, descriptor of
type bit, descriptor array element of
type bit, vector function reference of
type bit, bit constant, bit variable,
bit array element, or bit expression
enclosed in parentheses

op One of the logical operators .AND.,
.OR., .XOR., .EQV., or .NEQV.

Figure 9-22. Bit Expression Format

The operators that can be used in a 'bit expression
are the logical operators .AND., .OR., .XOR.,
.EQV., .NEQV., and .NOT.. The periods are part of
the operators and must appear. See section 4 for a
description of the logical operators.

60480200 A

The order in which a bit expression is evaluated is
the same as the order in which a scalar logical
expression is evaluated. The order of evaluation
of expressions is described in section 4.

The operands that can appear in a bit expression
can be scalar operands and vector operands. The
scalar operands can be constants, variables, and
array elements. The vector operands can be vector
references, descriptors, descriptor array elements,
vector function references, vector relational
expressions, and bit expressions enclosed in
parentheses.

The data type of the operands that appear in a bit
expression must be associated with the bit data
type.

The vector operands of a bit expression must have
the same length. If operands of different lengths
are used, results are unpredictable. No diagnostic
is issued for operands of different lengths.

When a bit expression is evaluated, all vector
relational expressions in the bit expression are
evaluated. Evaluation of the vector relational
expressions rP.sults in bit vectors; thus, a logical
operation specified by a logical operator is
performed on two vector operands of type bit, or a
scalar operand of type bit and a vector operand of
type bit.

Bit expressions that involve two vector operands
are performed using the corresponding elements of
the vector operands. The operation specified by
the bit operator is performed for the corresponding
elements of the vector operands. The result of
each operation can be either a 1, which represents
the logical value • TRUE. , or a 0, which represents
the logical value .FALSE.. The results of the
logical operations are placed in a single result
vector, which is a bit vector. The elements of the
resulting bit vector correspond to the elements of
the longest vector operand,

Bit expressions that involve a scalar operand and a
vector operand are performed using the scalar
operand and each element of the vector operand.
The operation specified by the logical operator is
performed for the scalar operand and each element
of the vector operand. The result of each logical
operation can be either a 1, which represents the
logical value .TRUE., or a 0, which represents the
logical value .FALSE.. The results of the opera­
tions are placed in a single result vector, which
is a bit vector. The elements of the resulting bit
vector correspond to the elements of the vector
operand.

See figure 9-23 for examples of bit expressions.

BVAR
BV1 .OR. BV2
CBV1 .OR. BV2> .OR. BV3
(81 C1;10> .GE. 82(1;10)) .AND. 83C1;10)

BVAR is a bit variable; BV1, BV2, and BV3 are
descriptors of type bit; and B1, 82, and B3
are bit arrays.

Figure 9-23. Bit Expression Examples

9-9

VECTOR ASSIGNMENT
STATEMENTS

A vector assignment statement is a statement that
causes the result of a vector expression to be
assigned to a vector. A vector assignment statement
is performed during program execution. There are
two kinds of vector assignment statements:

Vector arithmetic assignment statements

Bit assignment statements

Vector assignment statements are described in the
following paragraphs.

VECTOR ARITHMETIC ASSIGNMENT
STATEMENTS

A vector arithmetic assignment statement assigns
the result of a vector arithmetic expression to a
vector. See figure 9-24 for the format of a vector
arithmetic assignment statement.

v = aexp

v

aexp

A vector reference of type integer,
half-precision, real, double-precision,
or complex, or a descriptor or
descriptor array element of type
integer, half-precision, real, or
complex

A vector arithmetic expression or a
scalar arithmetic expression

Figure 9-24. Vector Arithmetic Assignment
Statement Format

If the type of the vector reference, descriptor, or
descriptor array element that appears to the left
of the equals sign differs from the type of the
vector expression on the right of the equals sign,
type conversion is performed. The result vector of
the vector expression is converted to the type of
the vector reference, descriptor, or descriptor
array element and replaces the value of the vector.
See table 9-1 for the rules for type conversion
during vector arithmetic assignment.

If the type of the vector reference, descriptor, or
descriptor array element that appears to the left
of the equals sign is double-precision, the vector
expression on the right of the equals sign must be
a vector reference of type double-precision, or a
reference to a double-precision vector function.

If the vector expression on the right of the equals
sign evaluates to a scalar, that scalar is stored
into each element of the vector represented on the
left of the equals sign.

If the vector expression on the right of the equals
sign evaluates to a vector, the elements of the
resulting vector are assigned to the corresponding
elements of the vector represented on the left of
the equals sign.

The result of the vector expression on the right
side of the equal sign must have the same length as
the vector on the left side of the equal sign, If
the lengths are different, results are unpredict­
able. No execution-time check is performed to
determine if the lengths are equal, and no diag­
nostic is issued.

See figure 9-25 for examples of vector arithmetic
assignment statements.

TABLE 9-1, TYPE CONVERSION FOR VECTOR ARITHMETIC ASSIGNMENT (v = aexp)

Expression Result Type
Type of v

Integer Half-precision Real Double-precision Complex

Integer No Convert to Truncate Not allowed Truncate real
conversion real then truncate fractional part; discard

fractional part part imaginary part

Half-precision Convert to No conversion Convert to Not allo"1ed Convert real
half- half- part to half-
precision precision precision; discard

imaginary part

Real Convert to Convert to No Convert to real Use real part;
real real conversion part discard imaginary

Double-precision Not Not Not No Not
allowed allowed allowed conversion allowed

Complex Convert to Convert Lo Use for Not No
real for real for real part; allowed conversion
real part; real part; use 0 for
use 0 for use 0 for imaginary
imaginary imaginary part
part part

9-10 60480200 A

SD1 = SD1 + SD2
SD1 = QC1;100) + R * 3.0
SDARR(3) = VSQRT(Q(1;100);SD1)

SD1 and SD2 are descriptors of type real, Q is
an array of type real, R is a variable of type
real, and SDARR is a descriptor array of type
real.

Figure 9-25. Vector Arithmetic Assignment
Statement Examples

BIT ASSIGNMENT STATEMENTS

A bit assignment
vector relational
the result of a
figure 9-26 for
statement.

v = bexp

statement assigns the result of a
expression to a vector, or assigns
bit expression to a vector. See
the format of a bit assignment

v A vector reference of type bit, or
a descriptor or descriptor array
element of type bit

bexp A bit expression

Figure 9-26. Bit Assignment Statement Format

The type of the vector reference, descriptor, or
descriptor array element that appears to the left
of the equals sign must be the same as the type of
the vector expression on the right of the equals
sign. Type conversion is not performed.

Execution of a bit assignment statement causes the
result of the vector relational expression or bit
expression to be assigned to the vector represented
on the left of the equals sign.

The vector represented on the left of the equals
sign must have the same length as the result of the
vector expression. If the lengths are different,
results are unpredictable. No execution-time check
is performed to determine if the lengths are dif­
ferent, and no diagnostic is issued.

See figure 9-27 for examples of bit assignment
statements.

BC1;100) = BD
BD = BD .OR. BC1;100)

Figure 9-27. Bit Assignment Statement Examples

60480200 A

WHERE STATEMENT
The WHERE statement provides for the execution of
one vector assignment statement using a control
vector. A control vector is a bit vector that
controls the storing of values into a vector. See
figure 9-28 for the format of a WHERE statement.

WHERE (bexp) vast

bexp A bit expression

vast A vector assignment statement

Figure 9-28. WHERE Statement Format

All vector operands in the bit expression, and in
the vector expression that appears in the vector
assignment statement, must have the same length.
All vectors and vector expressions that appear in
the vector assignment statement must be of type
integer or reRl. The vector expression that appears
in the vector assignment statement must contain
only addition, subtraction, multiplication, and
division operations, and references to the vector
functions VFLOAT, VIFIX, VINT, VAINT, VSQRT, VABS,
and VIABS.

When the WHERE statement is executed, the bit
expression is evaluated. The evaluation produces a
control vector. A control vector is a bit vector
that controls the storing of values into a vector,
This control vector is used for the vector assign­
ment statement that appears in the WHERE statement.

The vector expression that appears in the vector
assignment statement is evaluated. Each value of
the result vector is assigned to the corresponding
vector element on the left side of the vector
assignment statement only if the corresponding
element in the control vector contains a 1.

A value is not assigned to the corresponding vector
element on the left side of the vector assignment
statement if the corresponding element in the
control vector contains a O. If a value is not
assigned to a vector element, data flag branches
are disabled for the operations that compute that
value. See section 11 for a description of data
flag branches.

See figure 9-29 for examples of the WHERE statement.
The first WHERE statement in the example causes the
value 3.0 to be assigned to the first and fourth
elements of vector C(l;S). All other elements of
vector C(l;S) are unchanged.

The second WHERE statement causes the values 9.0
and 15.0 to be assigned to the first and second
elements of vector C(l;S) respectively. All other
elements of vector C(l;S) are unchanged.

9-11

PROGRAlll WHEREX
REAL A(5),8(5),C(5)
BIT CA(5) ,C8(5)
DATA A /3.0,9.0,12.0,2.0,16.0/
DATA 8 /6.0,6.0,10.0,5.0,4.0/
DATA C 19.0,3.0,0.0,7.0,7.0I
DATA CA /8'11101'/,C8 /8'11000'/

WHERE CAC1;5).LT.BC1;5)) CC1;5>=BC1;5>-A<1;5)

WHERE CCAC1;5>.AND.C8C1;5)) CC1;S>=AC1;5)+BC1;5)

WHERE CCC1;5>.NE.O.O> AC1;5)=BC1;5l/CC1;5>

Figure 9-29. WHERE Statement Examples

The third WHERE statement causes the values .66667,
2.0, .71429, and .57143 to be assigned to the first,
second, fourth, and fifth elements of vector A(l;S)
respectively. The division of the third element of
vector B(l;S) by the third element of vector C(l;S)
is a division by zero; however, because the third
element of the control vector contains a 0, no data
flag branch occurs.

BLOCK WHERE ST A TEMENT
The block WHERE statement is used to define a block
WHERE structure. See figure 9-30 for the format of
the block WHERE statement.

WHERE Cbexp)

bexp A bit expression

Figure 9-30. Block WHERE Statement Format

When the block WHERE statement is executed, the bit
expression is evaluated. The evaluation produces a
control vector. A control vector is a bit vector
that controls the storing of values into a vector.
This control vector is used for all of the vector
assignment statements that appear between the block
WHERE statement and the next END WHERE statement.

OTHERWISE STATEMENT

The OTHERWISE statement can be used in a block
WHERE structure to reverse the effect of the
control vector established in the block WHERE
statement. Reversing the effect of the control
vector causes a value to be assigned to a vector
element only if the corresponding element in the
control vector contains a 0, rather than a 1. See
figure 9-31 for the format of the OTHERWISE state­
ment.

9-12

OTHERWISE

Figure 9-31. OTHERWISE Statement Format

An OTHERWISE statement affects all vector assignment
statements that appear between the OTHERWISE state­
ment and the next END WHERE statement.

END WHERE STATEMENT

The END WHERE statement terminates a block WHERE
structure. Each block WHERE statement must have
one corresponding END WHERE statement. See figure
9-32 for the format of the END WHERE statement.

END WHERE

Figure 9-32. END WHERE Statement Format

BLOCK WHERE STRUCTURES

Block WHERE structures provide for the execution of
any number of vector assignment statements using a
single control vector. A control vector is a bit
vector that controls the storing of values into a
vector.

A block WHERE structure begins with a block WHERE
statement and ends with an END WHERE statement; it
can contain one OTHERWISE statement. The block
WHERE statement can be followed by a block of vec­
tor assignment statements called a where-block. An
OTHERWISE statement can be followed by a block of
vector assignment statements called an otherwise­
block.

A where-block or an otherwise-block can contain any
number of vector assignment statements or it can
contain no statements. No other types of statements
can appear in a where-block or otherwise-block.
All vector operands that appear in a where-block or
otherwise-block must have the same length as the
control vector that is established in the block
WHERE statement. All vectors and vector expressions
that appear in a where-block or otherwise-block
must be of type integer or real. All vector
expressions that appear in a where-block or
otherwise-block must contain only addition, sub­
traction, multiplication, and division operations,
and references to the vector functions VFLOAT,
VIFIX, VINT, VAINT, VSQRT, VABS, and VIABS.

Control must not transfer into a where-block or
otherwise-block.

See figure 9-33 for the format of a simple block
WHERE structure. When the block WHERE statement is
executed, the bit expression in the block WHERE
statement is evaluated. The evaluation produces a
control vector. A control vector is a bit vector
that controls the storing of values into a vector.
This control vector is used for all of the vector
assignment statements that appear between the block
WHERE statement and the next END WHERE statement.

60480200 A

WHERE Ce)

where-block

END WHERE

Figure 9-33. Simple Block WHERE Structure

The vector assignment statements in the where-block
are then executed in order as follows:

L The vector expression that appears in a vector
assignment statement in the where-block is
evaluated.

2. Each value of the result vector is assigned to
the corresponding vector element on the left
side of the vector assignment statement only if
the corresponding element in the control vector
contains a l. A value ls not assigned to the
corresponding vector element on the left side
of the vector assignment statement tf the
corresponding element in the control vector
con ta ins a O. If a value is not assigned to a
vector element, data flag branches are disabled
for the operations that compute that value.
See section 11 for a description of data flag
branches.

3. Steps 1 and 2 are repeated for each vector
assignment statement in the where-block.

See figure 9-34 for the format of a block WHERE
structure that contains an OTHERWISE statement.
When the block WHERE statement is executed, the bit
expression in the block WHERE statement is evalu­
ated. The evaluation produces a control vector. A
control vector ts a bit vector that controls the
storing of values into a vector. This control
vector is used for all of the vector assignment
statements that appear between the block WHERE
statement and the next END WHERE statement.

WHERE Ce)

where-block

OTHERWISE

otherwise-block

END WHERE

Figure 9-34. Block WHERE Structure With
OTHERWISE Statement

The vector assignment statements in the where-block
are then executed in order as follows:

l. The vector expression that appears in a vector
assignment statement in the where-block is
evaluated.

2. Each value of the result vector is assigned to
the corresponding vector element on the left
side of the vector assignment statement only if
the corresponding element in the control vector
contains a l. A value is not assigned to the
corresponding vector element on the left side
of the vector assigrnnent statement tf the
corre!'pondin,g elemen,t in the control vector

60480200 E

contains a O. If a value is not assigned to a
vector element, data flag branches are disabled
for the operations that compute that value.
See section 11 for a description of data flag
branches.

3. Steps 1 and 2 are repeated for each vector
assignment statement in the where-block.

The vector assignment statements in the otherwise­
block are then executed in order as follows:

L The vector expression that appears in a vector
assignment statement in the otherwise-block is
evaluated.

2. Each value of the result vector is assigned to
the corresponding vector element on the left
side of the vector assignment statement only if
the corresponding element in the control vector
contains a O. A value is not assigned to the
corresponding vector element on the left side
of the vector assignment statement if the
corresponding element in the control vector
contains a l. If a value is not assigned to a
vector element, data flag branches are disabled
for the operations that compute that value.
See section 11 for a description of data flag
branches.

3. Steps 1 and 2 are repeated for each vector
assignment statement in the otherwise-block.

See figure 9-35 for examples of block WHERE struc­
tures. The statements in the where-block of the
first block WHERE structure cause the values 25.0,
100.0, and 400.0 to be assigned to the first, third;
and fifth elements of vector E(l;5) respectively.
They also cause the values 5. O, 10. 0, and 20. 0 to
be assigned to the first, third, and fifth elements
of vector C(l;5) respectively, and cause the values
6.0, 24.0, and 96.0 to be assigned to the first,
third, and fifth elements of vector D(l;5) respec­
tively. All other elements of vectors C(l;5) and
D(l;5) are unchanged.

The statements in the where-block of the second
block WHERE structure cause the values 25.0, 100.0,
and 400.0 to be assigned to the first, third, and
ftfth elements of vector E(l;5) respectively. They
also cause the values 5. 0, 10. 0, and 20. 0 to be
assigned to the first, third, and ftfth elements of
vector C(l;S) respectively, and cause the values
6.0, 24.0, and 96.0 to be assigned to the first,
third, and fifth elements of vector D(l;S) respec­
tively.

The statements in the otherwise-block of the third I
block WHERE structure cause the value 16. 0 to be
assigned to the second and fourth elements of
vectors C(l;S) and D(l;5).

NESTING BLOCK WHERE STRUCTURES

A block WHERE structure can appear in an if-block,
elseif-block, or else-block of a block IF structure,
but the entire block WHERE structure must appear in
the if-block, else-block, or elseif-block.

A block WHERE structure can appear in the range of
a DO loop, but the entlre block WHERE structure
111ust appear in the range of the DO loop. An END
WHERE statement can be the terminal state111ent of a
DO loop.

9-13

I

PROGRAM BWHEREX
REAL A(5),BC5),C(5),D(5),E(5)
BIT CA (5), CB (5)
DATA A /3.0,1.0,6.0,12.0,12.0/
DATA B /4.0,1.0,8.0,12.0,16.0/
DATA C /5•0.0/,D /5•0.0/,E /5•0.0/
DATA CA /B'10101'/,CB /B'11111'/

WHERE CAC1;5>.NE.BC1;5))
EC1;5)=AC1;5>•AC1;5)+BC1;5)*8(1;5>
CC1;5>=VSQRTCEC1;5>;CC1;5))
DC1;5)=AC1;5>*BC1;5)/2.0

END WHERE

WHERE CCAC1;5>.AND.CBC1;5))
EC1;5)=AC1;5>•AC1;5)+BC1;5>*BC1;5>
CC1;5>=VSQRTCEC1;5);CC1;5))
DC1;5>=AC1;5>*BC1;5>12.0

END WHERE

WHERE CAC1;5).NE.BC1;5))
EC1;5)=AC1;5>•AC1;5)+BC1;5>*BC1;5)
CC1;5)=VSQRTCEC1;5>;CC1;5))
DC1;5>=AC1;5>*BC1;5)/2.0

OTHERWISE
EC1;5)=16.0
CC1;5>=16.0
DC1;5>=16.0

END WHERE

Figure 9-35. Block WHERE Structure Examples

VECTOR FUNCTION SUBPROGRAMS
Vee tor function subprograms are similar to scalar
function subprograms; however, vector func t ton
subprograms return a vector result rather than a
scalar result. Vector function subprograms are
described in the following paragraphs.

DEFINING VECTOR FUNCTIONS

Vector functions, like scalar functions, begin with
a FUNCTION statement and end with an END statement.
See figure 9-36 for the format of the FUNCTION
statement for vector functions.

The name of a vector function must be declared in a
DESCRIPTOR statement in the vector function body.

Except for these differences, vector functions are
defined in the same way as scalar functions. See
section 7 for a description of scalar funct.lons.

REFERENCING VECTOR FUNCTIONS

Vector functions, like scalar functions,
referenced by placing a function reference
statement. See figure 9-37 for the format
vector function reference.

9-14

are
in a
of a

typ FUNCTION fname Cdarg1, ••• ,dar9n;*>

typ A type specification for fname;
optional; type can be any of the
following:

fname

INTEGER
HALF PRECISION
REAL
COMPLEX
BIT

A symbolic name that is used as the
name of the function; fname must
appear in a DESCRIPTOR statement.

A dummy argument, which can be a
variable, array, descriptor, descrip­
tor array, dummy function name, or
dummy subroutine name. It cannot be a
vector reference. No two dummy argu­
ments can have the same name.

Figure 9-36. FUNCTION Statement
Format for Vector Functions

fnameCiarg1,

fname

iargi

oarg

The name of an entry point of a vec­
tor function subprogram.

An input argument, which can be a
constant, symbolic constant, scalar
expression <except concatenation of
an operand whose length is specified
as <•>>, substring, variable, array,
array element, vector reference, de­
scriptor, descriptor array, descrip­
tor array element, actual function
name, actual subroutine name, dummy
function name, or dummy subroutine
name.

Output argument specifying the vector
in which the function result is re­
turned or the vector length.

A vector is specified as a vector
reference, descriptor, or descriptor
array element.

A vector length is specified as an
integer expression. The compiler
allocates a temporary vector of the
specified length in which the function
result is returned. The data type of
the temporary vector is the same as
the data tvpe of the function.

Figure 9-37. Vector Function Reference Format

Input arguments are values that are passed to the
vector function; the output argument is the value
that is returned from the vector function.

Except for these differences, vector functions are
referenced in the same way as scalar functions.
See section 7 for a description of scalar functions.

60480200 E

VECTOR FUNCTION EXAMPLE

The two programs shown in figure 9-38 both produce
the same result. Each defines and references a
vector function named VPYTHAG. The difference
between the two programs is in how each passes
arguments.

1. Array Arguments

PROGRAM VECFUNC
REAL AC100>, BC100>, CC100)

CC1;100)
STOP
END

VPY THAG CA,B; 100>

FUNCTION VPYTHAGCVA,VB;*)
REAL VAC100>, VBC100>, VCC100>, VDC100)
DESCRIPTOR VPYTHAG
VCC1;100) = VAC1;100) + VBC1;100)
VPYTHAG = VSQRTCVCC1;100>;VDC1;100))
RETURN
END

2. Descriptor Arguments

PROGRAM VECFUNC
REAL AC100, BC100), CC100)

CC1;100>
STOP
END

VPYTHAGCAC1;100>,BC1;100>;CC1;100))

FUNCTION VPYTHAGCVA,VB;•>
REAL IJGC100>, VDC100)
DESCRIPTOR VPY THAG, VA, VB
VCC1;100) = VA + VB
VPYTHAG = VSQRTCVCC1;100>;VDC1;100))
RETURN
END

Figure 9-38. Vector Function Examples

The function definition in example declares the
dummy arguments VA and VB as arrays. The function
reference, therefore, specifies array names as the
actual arguments.

The function definition in example 2 declares the
dummy arguments VA and VB as vector descriptors.
The function reference, therefore, specifies vector
references as the actual arguments.

The examples differ, also, in how each specifies
the output argument. Example 1 specifies the
vector length, 100; example 2 specifies the result
vector reference.

SECONDARY ENTRY POINTS

Vector functions, like sealar functions, can have
more than one entry point. Normally, a vector
function has only one entry point, which is estab­
lished by the FUNCTION statement; however, the
ENTRY statement can appear in the body of the vector
function in order to define secondary entry points.

60480200 E

See figure 9-39 for the format of the ENTRY state­
ment for vector functions.

ENTRY sename Cdarg1,

sename A symbolic name that is used as the
name of the secondary entry point.

A dummy argument, which can be a
variable, array, descriptor, descrip­
tor array, dummy function name, or
dummy subroutine name. It cannot be a
vector reference. No two dummy argu­
ments can have the same name.

Figure 9-39. ENTRY Statement for
Vector Functions Format

The ENTRY point name must appear in a DESCRIPTOR
statement in the body of the vector function body.

Except for these differences, secondary entry
points of vector functions are defined and refer­
enced in the same way as secondary entry points of
scalar functions. See section 7 for a description
of secondary entry points in scalar functions.

See figure 9-40 for an example of a secondary entry
point in a vector function. The main entry point
of the vector function in the example is VECISOS.
A secondary entry point is VECTRI.

PROGRAM VECENT
REAL VECISOS,VECTRI
REAL ARC100>,BSC100>,HTC100>

ARC1;100>=VECISOSCBS,BS;10Q)

ARC1;100)=VECTRICBS,HT;100)

END

FUNCTION VECISOSCB,H;•)
REAL BC100>,HC100>,RC100)
DESCRIPTOR VECISOS,VECTRI
RC1;100>=CBC1;100>••2>-CCBC1;100)/2)•*2>

HC1;100>=VSQRTCRC1;100>;HC1;100))
ENTRY VECTRICB,H;*)
VECTRI=CBC1;100)•HC1;100))/2
RETURN
END

Figure 9-40. Example of Secondary Entry
Points in Vector Functions

LOOP VECTORIZATION

Vector machine instructions can be generated for
certain types of DO loops in a FORTRAN 200 program
without using any of the other vector programming
features. This reduces the· execution time of the
statements in the DO loop. The generation of
vector machine instructions for FORTRAN DO loops is
called loop vectorization.

9-15

I
I

In order to use the loop vectorization feature,
specify the OPTIMIZE=V compilation option on the
FTN200 control statement. This causes the compiler
to analyze each DO loop in the program. If the
loop can be vectorized, the compiler generates
vector machine instructions for the loop.

If the loop cannot be vectorized, the compiler
attempts to transform the loop into a call to a
STACKLIB routine. A STACKLIB routine is a prede­
fined subroutine. STACKLIB routines are described
in section 11.

If the loop cannot be vectorized or transformed
into a call to a STACKLIB routine, the compiler
generates the usual scalar machine instructions for
the loop.

The vectorizer generates a listing that indicates
how many loops were vectorized and how many loops
were transformed into STACKLIB calls, Diagnostics
are issued that indicate the reasons particular
loops could not be vectorized. The vectorizer
diagnostics are listed in appendix B. Because
vectorized expressions are reordered and sometimes
evaluated with different algorithms, the vectorized
and original scalar code may produce different
results, especially in the low order bits. This
difference is primarily attributed to precision
differences between the vector and scalar hardware.

The following paragraphs describe the character­
istics of vectorizable loops, the generation of
STACKLIB calls, and the vectorizer messages.

CHARACTERISTICS OF VECTORIZABLE
DO LOOPS

A vectorizable DO loop is a loop with certain
characteristics. These characteristics are sum­
marized in tables 9-2 through 9-5. Many of these I
conditions are explained in detail below.

A vectorizable DO loop body contains statements I
with the conditions shown in table 9-2.

A vectorizable assignment is a scalar assignment
with the following characteristics:

Left hand side: A simple variable,
An array element with sub­
scripts not dependent on a
control variable,
A vectorizable array element;

Right hand side: A vectorizable expression.

The assignment is subject to the additional condi­
tions shown in table 9-3,

A vectorizable expression is a scalar expression
which can contain the constructs shown in table 9-4.

A vectorizable array element is an array element
whose subscripts are dependent on the control vari­
ables of vectorizable loops. The subscripted array
and the subscripts are subject to the additional
conditions shown in table 9-5.

TABLE 9-2. CRITERIA FOR VECTORIZABLE LOOPS

Permissible Constructs

Control variable is type
integer,

Control variable appears in an
array subscript.

The initial or terminal param­
eter is not a constant, and the
control variable subscripts
arrays dimensions which have
been declared as constant
(rather than assumed or adjust­
able). If this is the inner­
most loop of a loop nest, the
constant dimension restriction
does not apply.

Incrementation parameter is an
expression, (If not explicitly
specified, it is a constant 1.)

Contains an inner vectorizable
DO loop.

9-16

Permissible Constructs
If Unsafe Is Specified

Same as permissible constructs,

Same as permissible constructs,

The initial or terminal param­
eter is not a constant and the
control variable only sub­
scripts array dimensions which
are assumed or adjustable.

Same as permissible constructs.

Same as permissible constructs.

Constructs Which
Inhibit Vectorization

Control variable is not type
integer.

Control variable is unused.

An inner loop has an initial or
terminal parameter which is not
a constant.

Contains an inner nonvectoriz­
able DO loop.

60480200 H

TABLE 9-2. CRITERIA FOR VECTORIZABLE LOOPS (Contd)

Permissible Constructs

Contains an inner loop which
has constant initial and termi­
nal parameters.

Contains an inner loop and the
incrementation parameter
(explicit or defaulted) of the
outer loop is a constant 1.

Contains an inner loop and the
total iteration count of all
loops is less than 65536
(2**16).

An innermost loop with any
iteration count.

The loop body contains DO and
CONTINUE statements.

The loop body contains a vec­
torizable scalar assignment
statement.

No other statement.

No label in the DO statement is
referenced by a GOTO.

Contains an inner loop with an
increment of 1.

Permissible Constructs
If Unsafe Is Specified

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Constructs Which
Inhibit Vectorization

Contains an inner loop and its
initial or terminal value is
not a constant.

Contains an inner loop and the
increment of the outer loop is
not a constant 1.

Contains an inner loop and the
total iteration count is at
least 65536.

Contains any flow control
statement other than DO or
CONTINUE,

Contains any other assignment.

Contains any input, output, or
memory transfer statement.

The loop has an extended range.

Contains an inner loop with a
nonunit increment.

TABLE 9-3. CRITERIA FOR VECTORIZABLE SCALAR ASSIGNMENTS

Permissible Constructs Permissible Constructs Constructs Which
If Unsafe Is Specified Inhibit Vectorization

The assignment is feedback free. Same as permissible constructs. The assignment might cause
feedback.

The assignment is recursion Same as permissible constructs. The assignment might cause
free, or the assignment is a recursion.
recursive reduction assignment
(sum, product, or dot product),
or the assignment is a recur-
sive interval assignment.

60480200 H 9-17

I

I

I

TABLE 9-4, CRITERIA FOR VECTORIZABLE EXPRESSIONS

Permissible Constructs

Arithmetic operators (+, -, *,
/, **)and logical operators.

Integer, real, half-precision,
and logical data elements.

References to the intrinsic
functions ABS, ACOS, ALOG,
ALOGlO, ASIN, ATAN, COS, EXP,
FLOAT, !ABS, !FIX, SIN, SQRT,
and TAN.

Any variable which has been
equivalenced.

A simple variable or an array
element whose subscripts are
independent of the control
variable of any vectorizable
loop.

A vectorizable array element.

The control variable of the
immediately enclosing DO loop.

Permissible Constructs
If Unsafe ls Specified

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs,
References to AINT, AIMAG, and
AMOD.

Any variable which has been
equivalenced.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Constructs Which
Inhibit Vectorization

Relational operators.

Any data element with type
other than integer, real, half­
precision, or logical.

References to external sub­
routines or functions, or
references to intrinsics other
than ABS, ACOS, ALOG, ALOGlO,
ASIN, ATAN, COS, EXP, FLOAT,
!ABS, !FIX, SIN, SQRT, or TAN.

An array element with loop
dependent subscripts which
cannot be vectorized,

A control variable of some
outer DO loop.

TABLE 9-5. CRITERIA FOR VECTORIZABLE ARRAY ELEMENTS

Permissible Constructs

The array has type integer,
real, half-precision, or
logical.

The array has been equiva­
lenced, and equivalenced arrays
do not have feedback.

Subscript is of the form c+n,
where c is a control variable
and n is a loop invariant
expression.

Subscript of the form nl*c+n2,
where c is the control variable
of the immediately enclosing DO
loop, and nl and n2 are loop
invariant expressions.

Subscript is a vectorizable
expression.

Loop dependent subscripts which
increase by an invariant amount.

Loop dependent subscripts which
are contiguous.

9-18

Permissible Constructs
If Unsafe Is Specified

Same as permissible constructs.

The array has been equivalenced.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Same as permissible constructs.

Constructs Which
Inhibit Vectorization

The array is any type other
than integer, real, half­
precision, or logical,

Subscript of the form nl*c+n2,
where c is the control variable
of some outer loop and nl is
not constant 1.

Subscript is not a vectorizable
expression.

Subscripts which do not increase
by an invariant amount,

Subscripts which are not con­
tiguous.

60480200 J

I

'Ille range of a vectorizable loop can contain
assignment statements, CONTINUE statements, and DO
statements, If other statements, such as input/
output statements and IF statements, appear in the
range of a 00 loop, the DO loop cannot be vector­
ized, See loop 3 in figure 9-41 for an example of
a simple vectorizable DO loop.

DO 222 KEM=1,300 ... ,.,____~CD

DO 100 i=1,10---@
DO 200 J=1,N 11 (11

200 A CJ ,I>=X CJ ,I>

100 CONTINUE

222 CONTINUE

400
200
300

500

DO 300 MM=1, 11 "" @
DO 200 JJ=1,30~

DO 400 IN=1,200 "" @

CONTINUE
CONTINUE

CONTINUE
DO 500 IN=1,70000 ~
B (IN) =C (IN)

CONTINUE

Figure 9-41. DO Loops

The initial and terminal parameters of the DO
statement can be any integer expression for the DO
loop to vectorize. However, both must be constant
expressions for an outer loop to vectorize. See
figure 9-41 for an example. Loop 3 in the example
has a variable terminal parameter. Loop 2 contains
loop 3; therefore, loop 2 (the outer loop) cannot
be vectorized.

The incrementation parameter of the DO statement of
the innermost loop can be any expression for that
loop to vectorize. However, it must be a constant
one for an outer loop to vectorize. See figure
9-41.l for an example.

The incrementation parameter of the DO statement
of an outer loop must be a constant one for that
loop to vectorize. See figure 9-41.2 for an
example.

60480200 J

2

3

DO 1 1=1,100,1
DO A1 J=1,100,1

CONTINUE

DO 2 I-1,100,1
DO 2 J=1,100,2

CONTINUE

Might vectorize
Might vectorize

Cannot vectorize
Might vectorize

Figure 9-41.1. DO Loops With the
Incrementation Parameter #1

DO 3 I=1,100,2
DO 3 J=1, 100, 1

CONTINUE

Cannot vectorize
Might vectorize

Figure 9-41.2. DO Loops With the
Incrementation Parameter #2

The innermost loop can be vectorized regardless of
its iterative count, However, the entire nest of
loops must be less than or equal to 65535. See
figure 9-41 for an example. Loop 7 in figure 9-41
will vectorize if it is the innermost loop. Loops
6 and 5 in the example can be vectorized, depending
on the range of the innermost loop; however, loop 4
cannot be vectorized because 30*200*11 = 66000.

When the initial or terminal parameter of a loop is
a variable, the dimensions of loop-dependent array
references in the loop are used to determine the
largest possible iterative count through which the
loop can pass, and this count is used to decide if
the loop can be vectorized.

The UNSAFE compilation opt ion can be specified for
unsafe vectorization. When UNSAFE is specified,
the compiler vectorizes loops that contain
variably-dimensioned arrays, even if the terminal
value of the loop is variable. The optimization is
considered unsafe because the presence of only
variable dimensions might cause the iterative loop
count to exceed 65535.

If the UNSAFE compilation option is used with
variably-dimensioned arrays and variable initial or
terminal values, the iterative count is assumed to
be less than 65536.

9-19

The UNSAFE compilation option also enables vector­
ization of loops that contain an equivalenced data
element on the left side of an assignment statement.

If a loop cannot be vectorized, then a loop that
contains the nonvectorizable loop cannot be vector­
ized. See figure 9-41 for an example. Loop 2 in
the example cannot be vectorized; therefore, loop l
cannot be vectorized.

If the
every
other.
lenced

UNSAFE compilation
array is considered

Otherwise, possible
arrays are considered.

option is specified,
independent of any
overlaps of equiva-

Arithmetic Assignment Statements in
Vectorizable DO Loops

Operators in assignment statements in a vectorizable
loop can be any of the aritlunetic or logical oper­
ators. The use of relational operations within a
loop causes the loop not to be vectorized.

The type of an operand appearing in the range of a
vectorizable loop can be of type integer, half­
precision, real, or logical. See figure 9-42 for
an example of a vectorizable loop that contains a
logical assignment statement.

References to variably-dimensioned arrays cause a
loop with a variable initial or terminal value to
be nonvec tori zable, unless the loop is the inner­
most loop, or the UNSAFE compilation option is
selected. In figure 9-43, loop l is vectorizable
but loop 2 is only vectorized if the UNSAFE
compilation option is selected.

Function and array references can appear in the
range of a vectorizable loop. However, function
references are restricted to references to the
intrinsic functions ABS, IABS, FLOAT, IFIX, SQRT,
EXP, ALOG, ALOGlO, SIN, COS, TAN, ACOS, ASIN, and
ATAN. References in a loop to other intrinsic
functions, or to any functions that you provide,
cause the loop to be nonvectorizable.

Loop-dependent array references are subject to
several restrictions. Loop-independent array
references are considered to be scalars in the
context of loop vectorization.

LOGICAL A, C, R,

3

2

FUNCTION FCOFFS,F1,F2,N)
DIMENSION OFFSC10,N>, F1C10,N),F2CN)
DO 1 I=1,N • <i)

OFFS C1,I) = F1C2,I) I 4.0
DO 2 J=1,N • @

DO 3 1=1, 10
OFFSCI,J) F1CI,J) + 5.0

CONTINUE
F2 CJ >=2•J
CONTINUE
F=OFFSC2,2>
RETURN
END

Figure 9-43. Vectorizable Loop #2

The left side of an assignment statement appearing
in the range of a vectorizable DO loop must be a
loop-dependent array reference or a scalar refer­
ence. A vector reference or descriptor on the left
side makes the loop nonvectorizable. A loop-­
dependent array reference is an array reference
with at least one loop-dependent subscript expres­
sion. See figures 9-41, 9-42, 9-43, and 9-44 for
examples. The left sides of the assignment state­
ments in the examples are all loop-dependent array
references.

20
10

DIMENSION AC10,10), BC10,10)
DO 10 I =1, 10 1------------CD

DO 20 J =1 , 10, 2 • @
ACJ,I) = BCJ,J)

CONTINUE
CONTINUE

Figure 9-44. Vectorizable Loop #3

DIMENSION ACSOOOO>, CCSOOOO>, RC49999)
INTEGER X
DO 999 X=2,SOOOO
RCX-1) = CACX-1) .AND. ACX)) .OR. CCCX-1) .AND. CCX))

900 CONTINUE

Figure 9-42. Vectorizable Loop #1

9-20 60480200 J

I

I

Scalar Assignments in Vectorizable loops

A scalar reference is a simple variable or a loop
independent array reference. Seal ars appearing as
the left hand side of an assignment are subject to
certain restrictions in order that the containing
loop vectorizes. The restrictions are:

If a scalar is defined by a recursive reduction
assignment, the scalar cannot be assigned or
referenced in any other vectorizable state­
ment. If a scalar is de fined by a recursive
interval assignment, the scalar cannot be
referenced in any statement preceding the
recursive definition. It cannot be defined in
any other statement, before or after. See
figure 9-45.

If a scalar is not defined by a recursive
assignment, the scalar cannot be referenced
before the first definition of that scalar in
the loop. The right hand side of an assignment
is referenced before the left hand side.

:f the scalar is defined in an outer loop and
also appears in a loop contained within the
outer loop, the outer loop cannot be vectorized.

If the scalar is
reference to the
subscript.

an array
array must

Reduction Assignments:

s s + uCi)
s=s•u(i)
s = s + u(i) * v(i)

Interval Assignments:

s = s + r

s Scalar

element,
have the

every
srune

(SUM)
(PRODUCT>
(DOT PRODUCT>

r Loop invariant scalar expression

u Vector expression

v Vector expression

ALL variables and expressions must be real,
integer, or half-precision.

Figure 9-45. General Form of
Recursive Assignments

See figure 9-46 for examples. Loop has non­
vec torizable recursive statements, while loop 2 is
vectorizable. Loop 3 is not vectorizable because T
is referenced before its definition. Loop 4 is not
vectorizable because T is defined in the outer loop
and referenced in an inner loop. Loop 5 is vector­
izable. Loop 6 is not vectorizable due to different
subscripts on array A.

60480200 J

2

3

5
4

6

DIMENSION AC10,10>, 8(10,10), CC10,10) DO 1 I=1, 10 ,__ _________ CD
R = R + ACI, 1>
R = S * B C1,I)
S S + I * CCI,I)
p p + Q
Q Q + 2
DO 2 1=1, 10 .,.,...,.._ ________ --1@
R R + ACI,1>
S S * BC1,I>
T T + I * CCI,l)
Q Q + 2
p p + Q

DO 3 1=1, 10 .. •--------------@
AC!,1) = T
T = BCI,2)
DO 4 J=1, 10 .. •-----------@
T = ACI,1) + BCI,1)
CCI,1) = CCI,1) * T + ACI,1)/T
DO 5 J=1,10 ... •-------------~
T = ACJ,I) + BCJ,I)
CCJ,I) = CCJ,I) * T
CONTINUE
CONTINUE

+ ACJ,I>/T

DO 6 1=1,10 .,.,.-------------~
AC1,K> = 2
AC1,K+1) = 3

Figure 9-46. Vectorizable and
Nonvectorizable Loops with Scalars

Loop-Dependent Array References
in Vectorizable Loops

The subscript expression of a loop-dependent array
reference must be of the proper form in order for
the loop to be vectorized. See figure 9-47 for the
subscript expression forms that can be used for
loop-dependent array references without causing the
loop to be nonvectorizable.

c
c+n
c-n
c•n

Any expression that can appear on the right
hand side of an assignment.

c A control variable.

n Loop invariant expression.

Figure 9-47. Subscript Expression Forms

See figures 9-41, 9-42, and 9-48 for examples of
loops that contain subscript expressions that can
appear in a vectorizahle loop.

As the control variable passes through the range of
values, the loop-dependent subscripts of array
references must increase by an invariant amount. I

9-21

1

DIMENSION AC-2:2), XC10), 8(100), CC100000)
READ (62) X
DO 1 1=1,10

ACSINCI)) 8Cl**2) + CCXCI})

Figure 9-48. Vectorizable Loop #4

See figure 9-44 for an example. In the example,
the subscripts of array A are increasing in incre­
ments of 2, and the subscripts of array B are
increasing in increments of 22. Therefore, loop 2
can be vectorized, but loop 1 cannot be vectorized.

Al though loop-dependent array references to a
particular array can appear on both sides of
assignment statements in the range of a DO loop, in
certain cases this could inhibit vectorization of
the loop. When an array reference appears on the
right side of an assignment statement, elements of
the array are being accessed. When an array refer­
ence appears on the left side, elements of the
array are being defined. If, for any particular
array, an array element is defined and then
redefined or accessed in any subsequent iteration,
that loop has feedback. Unless the compiler can be
certain feedback does not occur, the containing
loop is not vectorized. It is possible to redefine
an array element in the same iteration or to over­
lap accesses and definitions so that an array
element is accessed before or in the same iteration
as the definition. Because of the parallel nature
of vector operations, vectors arc not suitable for
use in describing any iterative procedure contain­
ing feedback.

See figure 9-49 for an example that illustrates
feedback.

The program segment in the example consists of a DO
loop whose terminal statement is a CONTINUE state­
ment. The loop contains an assignment statement,
which contains two loop-dependent array references.
The array elements referenced and defined by suc­
cessive iterations of the loop are shown in the
example.

Elements A(2), A(3), and A(4) constitute the over­
lap. On the first iteration of the loop, A(2) is
1. On the second iteration, A(2) is accessed and
is used to define A(3). After execution of the
loop, the five elements of A have the values 1, 2,
4, 8, and 16 respectively.

A vectorizer interpretation of the same loop would
be to assign the (i-l)th element multiplied by 2
to the fth element of A, where i ranges from 2 to
5, In this case the five elements of A would have
the values 1, 2, 4, 6, and 8 respectively after
execution of the loop.

The loop is not vectorizable.

I 9-22

DIMENSION ACS>
DATA A/1,2,3,4,5/

DO 1 1=1,4
ACI+1)=ACI)*2
CONTINUE

The Loop references and defines the elements
of A as follows:

Reference

A(1 >
AC2)
AC3>
A(4)

Figure 9-49.

Defined

AC2)
A(3)
AC4>
A(5)

Feedback Example

See figure 9-50 for an example of a loop that
contains overlap but not feedback. The array ele­
ments referenced and defined by successive itera­
tions of this loop are shown in the example.

The overlapping elements are A(2), A(3), and A(4).
However, no element is defined on one iteration and
accessed on a successive iteration. Therefore, the
results of executing this DO loop would be identical
to that of a vectorizer interpretation of the loop.

DIMENSION A(5)
DATA A/1,2,3,4,5/

DO 2 1=2,5
ACI-1>=AC1)•2

2 CONTINUE

The Loop references and defines the elements
of A as fol Lows:

Reference

A(2)
A(3)
AC4>
A(5)

Figure 9-50.

Defined

A(1)
A(2)
A(3)
A(4)

Overlap Example

60480200 H

Unless all subscripts are of the form nl*c+n2, it
is very difficult to determine if feedback exists.
In figure 9-51, loop l is not vectorizable. If any
two elements of X lire identical, this loop indeed
has feedback, If the same loop is split into two
parts, loops 2 and 3, the loops are vectorizable.

2

3

REAL AC100000), TEMPC100>
INTEGER X C100)
READC62>X
DO 1 I=1,100

ACXCI)) = ACXCI)) + 1
DO 2 1=1,100

TEMPCI) = ACXCI)) + 1
DO 3 I=1, mo

A(X(l)) = TEMP(!)

Figure 9-51. Possible Feedback With
Generalized Subscripts

GENERATION OF CALLS TO ST ACKLIB
ROUTINES

G)

@

®

If a loop cannot be vectorized, the compiler
attempts to transform the loop into a call to a
STACKLIB routine or repiace the loop with inline
vector macro code, A STACKLIB routine is a prede­
fined subroutine; STACKLIB routines are described
in section 11. lnline vector macro code is composed
of machine inst~uctions that are placed in the
object code produced by the compiler,

In order for a loop to be transformed into a call
to a STACKLIB routine or into inline vector macro
code, the loop must contain no nested loops and the
loop must be of the proper type. See figure 9-52
for the types of loops that can be transformed.

In all of the loops in figure 9-52, X and Y repre­
sent distinct one-dimensional arrays of type real
which do not appear in an EQUIVALENCE statement, S
represents a simple real variable, Variables L and
M represent any DO loop initial and terminal value
parameters. The va·dable I represents any DO loop
control variable.

A transformable loop must contain only one assign­
ment statement of one of the forms indicated in
figure 9-52. CONTINUE statements can appear in the

60480200 H

DO 1 I=L,M
XCI> = XCI-1) + Y(I)
DO 2 I=L,M

2 XCI) =Y(I) +XCI-1)
DO 3 I=L,f'I

3 S = S+X CI>
DO 4 I = L,f'I

4 S = X CI) + S
DO 5 I = L,f'I

5 S = S+X(I)*Y(I)
DO 6 I = L,f'I

6 S = X(l)*Y(I) + S
DO 7 I=L,M

7 S = S+XCI>•XCI)
DO 8 I = L,M

8 S = X(l)•X(I) + S
DO 9 I = L,M

9 S = S+X(I)**2
DO 10 I = L,M

10 S = XCI)*•2+S

Figure 9-52. Transformable Loops

loop. The loop incrementation parameter must be 1,
which is the default.

Loops and 2 in fig1ire 9-52 are transtormed into
calls to a STACKLIB routine that performs addition
recursively. Loops 3 through 10 are transformed
into inline vector macro code.

LOOP VECTORIZATION MESSAGES

Messages are printed on the source listing that
indicate how many loops exisl in the program, how
many loops are vectorized, and how many loops are
transformed into calls to STACKLlB routines.

For loops that cannot be vectorized, a message is
issued that indicates the first impediment to
vectorization encountered by the compiler. The
compiler analyzes a loop for vectorization from the
bottom to the top; therefore, the diagnostic might
not reflect the impediment to vectorization with
the lowest source line number. See appendix B for
a complete list of the vectorizer messages,

Messages are also printed on the source listing
that indicate which loops are transformed into calls
to STACKLIB routines.

See figure 9-53 for an example of the source
listing of a program compiled with the OPTIMIZE=V
compilation option.

9-23 I

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

2

3

PROGRAM VECTRISE
DIMENSION A(100),B(100)
EXTERNAL F
DO 1 !=1,100

A(l)=A(l)+B(I)
DO 2 I•1,100

A(I)•A(I-1)+8(1)
0031=1,100

B(F(I))•A(I)
END

3 LOOPS WERE EXAMINED FOR POSSIBLE VECTORIZATION.

1 LOOP WAS VECTORIZED.

[FIRST LINE OF VECTORIZED LOOPS
LINE (COUNT)

00004 (1)

1 LOOP WAS STACKLIBBED.

[FIRST LINE OF STACKLIBBEO LOOPS
LI NE (COUNT)

00006 (1)

1 LOOP WAS LEFT SCALAR.

(NUMBER OF LOOPS VECTORIZED))

(NUMBE~ OF LOOPS STACKLIBBEO)]

[FIRST LINE OF THE LOOP / LINE THAT PREVENTS VECTORIZATION / THE REASON THAT PREVENTS VECTORIZATION)
FIRST AT LINE REASON THAT THE LOOP WAS NOT VECTORIZED.

00008 00009 A DESTINATION VARIABLE CONTAINS AN EXTERNAL SUBPROGRAM REFERENCE (F).

VECTRISE - NO ERRORS

Figure 9-53. Vectorizer Output

9-24 60480200 J

INTRINSIC FUNCTIONS 10

The FORTRAN 200 language includes a nlDber of
functions that are predefined and can be refer­
enced from a program. These functions are called
intrinsic functions.

Intrinsic functions perfoI'lll common operations, such
as converting values from one data type to another,
truncating values, and finding the largest or
mallest values in a list of values. Some of the
intrinsic functions perfoI'lll common mathematical
caaputations, such as caaputing the square root of
a nmber, changing the sign of a nlDber, and per­
foI'llling trigonometric operations.

An intrinsic function is referenced by placing a
function reference in a FORTRAN statement. Scalar
function references are described in section 7;
vector function references are described in section
9,

You can reference a function that you have supplied
thst hss an entry point of the sme name as an in­
trinsic function. To do this, you must declare the
entry point name in an EXTERNAL statement and sup­
ply the function that has that entry point. If you
declare the entry point name in an EXTERNAL state­
ment and provide a function thst hss an entry point
of thst name, the intrinsic function cannot be ref­
erenced in thst program unit.

If an intrinsic function name appears in the actual
argument list of a function reference or subroutine
call, the intrinsic function name must be declared
in an INTRINSIC statement in the same program unit.

An intrinsic function can be a specific function or
a generic function. A specific function accepts
arg1111ents of a specific data type and returns a re­
sult of a specific data type. A generic function
accepts arg1111ents of more than one data type. Ex­
cept for type conversion generic functions, the
data type of the arg1111ents determines the data type
of the result.

A generic function name
actual argument list of
subroutine call unless
specific function name.

must not appear in the
a function reference or

the name is used as a
For example, ABS is both a

generic function name and a specific function
name. If it is used as a generic function name, it
must not be passed as an argument; if it is used as
a specific function name, it can be paaaed as an
arg-ent.

An intrinsic function can be a scalar intrinsic
function or a vector intrins:i.c function. A scalar
intrinsic function produces a scalar result; a vec­
tor intrinsic function produces a vector result.

SCALAR INTRINSIC RJNCTIONS
A scalar intrinsic function produces a scalar re­
sult. The arguments thst are passed to a scalar
intrinsic function can be scalar arguments, vector
arguments, or both, depending on the function. A
scalar argument is a constant, symbolic constant,
expression (except concatenation of an operand whose
length is specified as (*)), substring, variable,
or array element. A vector argument is a vector,
descriptor, or descriptor array element.

At execution time, the result of a reference to a
scalar intrinsic function is returned through the
function name and replaces the function reference
in the statement. Scalar in tr in sic functions do not
alter the values of the arg\Dents that are paaaed
to them.

Some of the scalar intrinsic function nmes begin
with the prefix QSS. These functions perform more
complicated manipulations and usually use a CYBER
200 hardware feature. Functions thst begin with the
prefix Q8S must not appear in the argument list of
a function reference or subroutine call.

See table 10-1 for a list of the scalar intrinsic
functions. For each function, the table shows the
purpose of the function, the arguments accepted by
the function, the generic name of the function, the
specific names of the function, the data type of the
arguments accepted by the function, and the data
type of the result returned by the function. The I
arguments are represented as a for a scalar, v for
a vector, cv for a control vector, and i for
integer scalar.

TABLE 10-1, SCALAR INTRINSIC FUNCTIONS

Purpose Arguments Generic Specific Type of Type of
Name Name Argument Function

Absolute value (a) ABS IABS INTEGER INTEGER
1fABS. UALF , ·'..:. :.:-·,. .BldJ'· ::--·<;

ABS REAL REAL
DABS DOUBLE DOUBLE
CABS COMPLEX REAL

Arccosine (a) ACOS 'J:W;Os.·. i:, iALP'<<· ,·,:~,.-, .w.t.·
ACOS REAL REAL
DACOS DOUBLE DOUBLE

60480200 D 10-1

TABLE 10-1, SCALAR INTRINSIC FUNCTIONS (Contd)

Purpose Arg\Dllents Generic Specific Type of Type of
Name Name Arg\Dllent Function

Imaginary part of a complex (a) - AIMAG COMPLEX REAL
n\Dllber

Truncate (a) AINT 11IR'r 1IALF BALr
AINT REAL REAL
DINT DOUBLE DOUBLE

Nearest whole number (a) AN INT llNINT HALF 1W.t
AN INT REAL REAL
DNINT DOUBLE DOUBLE

Arcsine (a) ASIN .·11AS1R 1IALF BALI'
ASIN REAL REAL
DAS IN DOUBLE DOUBLE

Arctangent (a) ATAN llATAif 11Au'. BALI'
ATAN REAL REAL
DATAN DOUBLE DOUBLE

(a1,a2) ATAN2 11ATAN2 BALI' BAI.I'
ATAN2 REAL REAL
DATAN2 DOUBLE DOUBLE

Convert to logical (a) - BTOL BIT LOGICAL

Return character whose internal (a) - CHAR INTEGER CHARACTER
hexadecimal representation is
equivalent to the integer
arg\Dllent

Convert to complex (a) or CMPLX - INTEGER COMPLEX
(ai.a2) =t4:

. ~ ., • •' 0 'ilALF ,:·· . ·COMPI.El : ;.,,·

CMPLX REAL COMPLEX
- DOUBLE COMPLEX
- COMPLEX COMPLEX

Conjugate of a complex number (a) - CONJG COMPLEX COMPLEX

Cosine (a) cos ··•cos BAJ..1'' 1W.t
cos REAL REAL
DCOS DOUBLE DOUBLE
ccos COMPLEX COMPLEX

Hyperbolic cosine (a) COSH BCOSK BAL1' BAU
COSH REAL REAL
DCOSH DOUBLE DOUBLE

Cotangent (a) COT AN HCOTAN HALF HALF
CO TAN REAL REAL

Date () or (a) - DA'l'!E any CHARACTER*8

Convert to double-precision (a) DBLE DFLOAT INTEGER DOUBLE
.,. HALF DOUBLE
- REAL DOUBLE
- DOUBLE DOUBLE
- COMPLEX DOUBLE

Positive difference (al ,a2) DIM IDIM INTEGER INTEGER
IDIM HALF •· BAI.I'
DIM REAL REAL
DDIM DOUBLE DOUBLE

Extended precision product (a1,a2) - DPROD REAL DOUBLE
IPR.OD • BALI'

.
UAL

10-2 60480200 A

TABLE IO-I. SCALAR INTRINSIC FUNCTIONS (Contd)

Purpose ArgU111ents Generic Specific Type of Type of
Name Name Argument Function

Exponential (a) EXP HEXP -HALF HALF
EXP REAL REAL
DEXP DOUBLE DOUBLE
CEXP COMPLEX COMPLEX

Convert to half-precision (a) HALF - INTEGER HALF
- HALF HALF
- REAL HALF
- DOUBLE HALF
- COMPLEX HALF

Return integer equivalent of the (a) - I CHAR CHARACTER INTEGER
internal hexadecimal representa-
tion of the character argument

Index of a substring (aI,a2) - INDEX CHARACTER INTEGER

Convert to integer (a) INT - INTEGER INTEGER
IHI NT HALF INTEGER
INT REAL INTEGER
!FIX REAL INTEGER
ID INT DOUBLE INTEGER
- COMPLEX INTEGER

Length (a) - LEN CHARACTER INTEGER

Lexically greater than or equal (aI,a2) - LGE CHARACTER LOGICAL
to

Lexically greater than (a1,a2) - LGT CHARACTER LOGICAL

Lexically less than or equal to (aI,a2) - LLE CHARACTER LOGICAL

Lexically less than (aI,a2) - LLT CHARACTER LOGICAL

Natural logarithm (a) LOG BLOG HALF HALF
ALOG REAL REAL
DLOG DOUBLE DOUBLE
CLOG COMPLEX COMPLEX

Common logarithm (a) LOG IO HLOGIO HALF HALF
ALOGlO REAL REAL
DLOGlO DOUBLE DOUBLE

Convert to bit (a) - LTOB LOGICAL BIT

Largest value (a I ,a2 • • •) MAX MAXO INTEGER INTEGER
HMAXI HALF HALF
AMAX I REAL REAL
DMAXl DOUBLE DOUBLE

- AMAXO INTEGER REAL
MAXI REAL INTEGER

Smallest value (a1,a2, ...) MIN MINO INTEGER INTEGER
HMINI HALF HALF
AMINI REAL REAL
DMINl DOUBLE DOUBLE

- AMINO INTEGER REAL
MINI REAL INTEGER

60480200 A I0-3

TABLE 10-1, SCALAB. INTRINSIC FUNCTIONS (Contd)

Purpose Arguments Generic Specific Type of Type of
Name Name Argument Function

Remainder (a1 ,az) MOD MOD INTEGER INTEGER
BMOD HALF HALF
AMOD REAL REAL
DMOD DOUBLE DOUBLE

Nearest integer (a) NINT IHNINT HALF INTEGEB.
NINT REAL INTEGER
IDNINT DOUBLE INTEGER

Count number of 1 bits in bit (v) - Q8SCNT BIT INTEGER
vector

Test a bit in the data flag (a1,a2) - QSSDFB INTEGER LOGICAL
branch register

Compute dot product of two (v1,v2) QSSDOT - INTEGER INTEGER
vectors - HALF HALF

- REAL REAL

Number of pairs of corresponding Cv1,v2) QSSEQ - INTEGER INTEGER
vector elements preceding first - HALF INTEGER
pair of corresponding vector - REAL INTEGER
elements in which the element
of the first vector is equal to
the element of the second vector

Extract bits (a,i1 ,i2) QSSEXTB - REAL TYPELESS
- INTEGER TYPELESS
- LOGICAL TYPELESS

Number of pairs of corresponding Cv1, v2) QSSGE - INTEGER INTEGER
vector elements preceding first - HALF INTEGER
pair of corresponding vector - REAL INTEGER
elements in which the element
of the first vector is greater
than or equal to the element of
the second vector

Insert bits Ca1,i1,i2,a2) Q8SINSB - REAL TYPELESS
- INTEGER TYPELESS
- LOGICAL TYPELESS

Obtain length of vector (v) QSSLEN - INTEGER INTEGER
- HALF INTEGER
- REAL INTEGER
- COMPLEX INTEGER

Number of pairs of corresponding (v1,vz) QSSLT - INTEGER INTEGER
vector elements preceding first - HALF INTEGER
pair of corresponding vector - REAL INTEGER
elements in which the element
of the first vector is less than
the element of the second vector

Largest vector element (v) or (v,cv) QSSMAX - INTEGER INTEGER
- HALF HALF
- REAL REAL

Number of elements preceding (v) or (v,cv) QSSMAXI - INTEGER INTEGER
largest vector element - HALF INTEGER

- REAL INTEGER

10-4 60480200 A

TABLE 10-1. SCALAR INTRINSIC FUNCTIONS (Contd)

Purpose Arguments Generic Specific Type of Type of
Name Name Argument Function

Smallest vector element (v) or (v,cv) QSSMIN - INTEGER INTEGER
- HALF INTEGER
- REAL INTEGER

Number of elements preceding (v) or (v ,cv) Q8SMINI - INTEGER INTEGER
smallest vector element - HALF HALF

- REAL REAL

Number of pairs of corresponding (v1,v2) QSSNE - INTEGER INTEGER
vector elements preceding first - HALF INTEGER
pair of corresponding vector - REAL INTEGER
elements in which the element
of the first vector is not
equal to the element of the
second vector

Compute product of vector (v) or (v,cv) Q8SPROD - INTEGER INTEGER
elements - HALF HALF

- REAL REAL

Compute sum of vector elements (v) or (v,cv) QB SS UM - INTEGER INTEGER
- HALF HALF
- REAL REAL

Random number in the range 0 to l () or (a) - RANF any REAL

Convert to real (a) REAL REAL INTEGER REAL
FLOAT INTEGER REAL
EXTEND HALF REAL
- REAL REAL
SNGL DOUBLE REAL
- COMPLEX REAL

CPU time in seconds since start () or (a) - SECOND any REAL

of job

Transfer of sign (a1,a2) SIGN ISIGN INTEGER INTEGER
HSIGN HALF HALF
SIGN REAL REAL
DSIGN DOUBLE DOUBLE

Sine (a) SIN HSIN HALF HALF
SIN REAL REAL
DSIN DOUBLE DOUBLE
CSIN COMPLEX COMPLEX

Hyperbolic sine (a) SINH HSINH HALF HALF
SINH REAL REAL
DSINH DOUBLE DOUBLE

Square root (a) SQRT HSQRT HALF HALF
SQRT REAL REAL
DSQRT DOUBLE DOUBLE
CSQRT COMPLEX COMPLEX

Tangent (a) TAN HTAN HALF HALF
TAN REAL REAL
DTAN DOUBLE DOUBLE

Hyperbolic tangent (a) TANH HTANH HALF HALF
TANH REAL REAL
DTANH DOUBLE DOUBLE

Time of day () or (a) - TIME any CHARACTER*8

60480200 A 10-5

To reference a function that you supply that has
the same nsme as one of the intrinsic functions
described in this section, you must declare the
function nsme in an EXTERNAL statement and supply
the function. However, if you do this, you cannot
also reference the intrinsic function having that
nsme within that progrsm unit.

Note that you must both declare the function nsme
in an 'EXTERNAL statement and supply the function.
If you declare a function name in an EXTERNAL
statement and do not supply the function, a
reference to the function references the intcinsic
function having that name. However, the DATE, TIME
and SECOND functions are exceptions to this rule.

VECTOR INTRINSIC RJNCTIONS
A vector intrinsic function produces a vector re­
sult. The argument list of a vector intrinsic
function reference consists of one or more input
arguments followed by one output argument. A semi­
colon separates the input arguments from the output
argument.

The input arguments are the arg11111ents whose values
are passed to the vector intrinsic function. The
input arguments can be scalar arguments, vector ar­
guments, or both, depending on the function. A
scalar argument is a constant, symbolic constant,
expression (except concatenation of an operand
whose length is specified as (*)), substring, vari­
able, or array element. A vector argument is a
vector, descriptor, or descriptor array element.

The output argument is the argument whose value is
changed or returned by the vector intrinsic func­
tion. The output argument can be a vector argument
or an integer expression. If the output argument

is a vector argument, the vector function result is
returned through the output argument. If the out­
put argument is an integer expression, the compiler
automatically allocates a temporary vector through
which the result is returned. The temporary vector
data type will be the same as the function, and the
vector length will be the integer expression result.

At execution time, the result of a reference to a
vector intrinsic function is returned through the
output argument. Some vector intrinsic functions
alter the values that the output argument had before
the function reference; other vector intrinsic
functions assign new values to the output argument
without regard to its previous values. A vector
intrinsic function does not return values through
the function name.

Many of the vector intrinsic functions are the vec­
tor equivalents of the scalar intrinsic functions.
The names of these functions are the letter V fol­
lowed by the scalar intrinsic function name.

Some of the vector intrinsic function names begin
with the prefix Q8V. These functions perform more
complicated manipulations and usually use a CYBEll
200 hardware feature. Functions that begin with the
prefix Q8V must not appear in the argument list of
a function reference or subroutine call.

See table 10-2 for a list of the vector intrinsic
functions. For each function, the table shows the
purpose of the function, the arguments accepted by
the function, the generic name of the function, the
specific names of the function, the data type of the
arguments accepted by the function, and the data
type of the result returned by the function. The
arguments are represented as u for the output
argument, v for a vector, cv for a control vector, I
and a, i, or n for a scalar.

TABLE 10-2. VECTOR INTRINSIC FUNCTIONS

Purpose Arguments
Generic Specific Type of Type of

Name Name Argument Function

Compute averages of adjacent (v;u) Q8VADJM - HALF HALF
elements - REAL REAL

Compute averages of corresponding (v1 ,v2 ;u) Q8VAVG - HALF HALF
elements - REAL REAL

Compute average differences of (v1 ,v2 ;u) Q8VAVGD - HALF HALF
corresponding elements - REAL REAL

Delete selected elements from (v,cv;u) Q8VCMPRS - INTEGER INTEGER
vector - HALF HALF

- REAL REAL

Store selected elements into (v,cv;u) Q8VCTRL - INTEGER INTEGER
vector - HALF HALF

- REAL REAL

Compute differences between (v;u) Q8VDELT - HALF HALF
adjacent elements of vector - REAL REAL

Number of elements preceding the (v1 ,vz;u) Q8VEQI - HALF INTEGER
value of each element of the - REAL INTEGER
first vector in the second vector

Select elements at specified (v,i,n;u) Q8VGATHP - INTEGER INTEGER
interval from one vector to - HALF HALF
create a vector - REAL REAL

10-6 60480200 E

TABIB 10-2. VECTOR INTRINSIC FUNCTIONS (Contd)

Purpose Arguments
Generic Specific Type of Type of

Name Name Argument Function

Select elements from one vector (v,i;u) Q8VGATHR - INTEGER INTEGER
to create a vector - HALF HALF

- REAL REAL

For each element in the first (v 1 ,v2 ;u) Q8VGEI - HALF INTEGER
vector, the number of elements - REAL INTEGER
preceding the first element of
the second vector for which the
element in the first vector is
greater than or equal to the
element in the second vector.

Create a vector whose elements (a1 ,a 2 ;u) Q8VINTL - INTEGER INTEGER
form an arithmetic progression - HALF HALF

- REAL REAL

For each element in the first (v 1 ,v2 ;u) Q8VLTI - HALF INTEGER
vector, the number of elements - REAL INTEGER
preceding the first element of
the second vector for which the
element in the first vector is
less than the element in the
second vector.

Mask values of two vectors into (v1 ,v 2 ,cv;u) Q8VMASK - INTEGER INTEGER
one vector - HALF HALF

- REAL REAL

Merge values of two vectors into (vpv2 ,cv;u) Q8VMERG - INTEGER INTEGER
one vector - IIALF HALF

- REAL REAL

Create a bit pattern whose first (a 1 ,a 2 ;u) Q8VMKO - INTEGER BIT
group of bits are l's

Create a bit pattern whose first (a 1 ,a 2 ;u) Q8VMKZ - INTEGER BIT
group of bits are O's

Number of elements preceding the (v1 ,v 2;u) Q8VNEI - HALF INTEGER
first element· of the second - REAL INTEGER
vector that is not equal to each
element of the first vector

Reverse order of elements in (v;u) Q8VREV - INTEGER INTEGER
vector - HALF HALF

- REAL REAL

Scatter elements taken at speci- (v,i,n;u) Q8VSCATP - INTEGER INTEGER
fied interval from one vector - !!ALF HALF
into another vector - REAL REAL

Scatter elements from one vector (v,i ;u) QBVSCATR - INTEGER INTEGER
into another vector - HALF HALF

- REAL REAL

InsPrt zeros into vector (v,cv;u) QBVXPND - INTEGER INTEGER
- !!ALF HALF
- REAL REAL

Absolute value (v;u) VABS VI ABS INTEGER INTEGER
VHABS HALF HALF
VABS REAL REAL
VCABS CCMPLEX REAL

Arcc:vsine (v;u) VACOS VHACOS HALF HALF~
VA COS REAL REAL

60480200 F 10-7

TABLE 10-2. VECTOR INTRINSIC FUNCTIONS (Contd)

Purpose Argl.Dnents
Generic Specific Type of Type of

Name Name Argument Function

Imaginary part of a complex (v;u) - VAIMAG CCMPLEX REAL
n1.Dnber

Truncate (v;u) VA INT VA INT REAL REAL
VHINT HALF HALF

Nearest whole ntDDber (v;u) VA NI NT VAN INT REAL REAL
VHNINT HALF HALF

Arcsine (v;u) VAS IN VHASlN HALF HALF
VA SIN REAL REAL

Arctangent (v;u) VA TAN VHATAN HALF HALF
VA TAN REAL REAL

(v 1 ,v2 ;u) VATAN2 VHATAN2 HALF HALF
VATAN2 REAL REAL

Convert to complex (v 1 ,v2 ;u) VQ1PLX - CCMPLEX CCMPLEX
or (v;u) - INTEGER CCMPLEX

- REAL Ca-!PLEX
- HALF CCMPLEX

Conjugate of a complex ntDDber (v;u) - VCONJG CCMPLEX CCMPLEX

Cosine (v;u) vcos VHCOS HALF HALF
vcos REAL REAL
vccos CCMPLEX CCMPLEX

Convert to double-precision (v;u) VDBLE - REAL DOUBLE

Positive difference (v1 ,v2 ;u) VDIM VI DIM INTEGER INTEGER
VHDIM HALF HALF
VDIM REAL REAL

Exponential (v;u) VEXP VHEXP HAIF HALF
VEXP REAL REAL
VCEXP CCMPLEX CCMPLEX

Convert to half-precision (v;u) VHALF - HAIF HALF
- INTEGER HALF
- REAL HALF
- CCMPLEX HALF

Convert to integer (v;u) VINT - INTEGER INTEGER
VIHlNT HALF INTEGER
VINT REAL INTEGER
VIFIX REAL INTEGER
- CCMPLEX INTEGER

Natural logarithm (v;u) VLOG VHLOG HALF HALF
VA LOG REAL REAL
VCLOG CCMPLEX CCMPLEX

Common logarithm (v;u) VLOGlO VHI.OG 10 HAIF HALF
VALOGlO REAL REAL

Remainder (v 1 ,v2 ;u) VMOD VMOD INTEGER INTEGER
VHMOD HALF HALF
VAMOD REAL REAL

Nearest integer (v;u) VNINT VNINT REAL INTEGER
VIHNINT HALF INTEGER

I Random Vector (i;u) - VRAND INTEGER REAL

10-8 60480200 J

TABLE 10-2. VECTOR INTRINSIC FUNCTIONS (Contd)

Purpose Arguments

Convert to real (v;u)

Transfer of sign (v 1,v2 ;u)

Sine (v;u)

Square root (v;u)

Tangent (v;u)

FUNCTION DESCRIPTIONS
The scalar and vector intrinsic functions are de­
scribed in the following paragraphs. The functions
are listed in alphabetical order.

See table 10-1 or table 10-2 for a summary of the
intrinsic functions.

The mathematical generic
also listed in table 10-3.

intrinsic functions are
The mathematical generic

Generic Specific Type of Type of
Name Name Argument Function

VREAL - REAL REAL
VFLOAT INTEGER REAL
VREAL INTEGER REAL
VEXTEND HALF REAL
VSNGL DOUBLE REAL
- CCMPLEX REAL

VSIGN VISIGN INTEGER INTEGER
VHSIGN HALF HALF
VSIGN REAL REAL

VSIN VHS IN HALF HALF
VSIN REAL REAL
VCSIN CCl1PLEX CCl1PLEX

VSQRT VHSQRT HAIF HALF
VSQRT REAL REAL
VCSQRT CCMPLEX CCl1PLEX

VTAN VHTAN HALF HALF
VfAN REAL REAL

intrinsic functions are listed in alphabetical order
according to their generic scalar function names.
The corresponding generic vector function name and
the specific scalar and vector function names are
also listed. This table gives the mathematical
definition, domain, and range of each mathematical
intrinsic function.

The values returned by some of the mathematical in­
trinsic functions can be infinite.

TABLE 10-3. MATHEMATICAL FUNCTIONS

Generic Generic Specific Specific
Mathematical Domain Range Scalar Vector Scalar Vector

Function Funct.ion Function Function
Definition (Argument Range) (Result Range)

ACOS(a) VACOS(v;u) HA COS VHACOS cos (a) !al < 1 0 i result i 1T
ACOS VACOS
DACOS

AS IN(a) VASIN(v;u) HAS IN VHASIN sin- 1(a) !al < 1 - 7T/2 i result < 1T /2
ASIN VAS IN -
DAS IN

ATAN(a) VATAN(v;u) HATAN VHATAN tan- 1(a) - 1T/2 .s. result < 1T /2
ATAN VATAN
DATAN

ATAN2(a 1 ,a2) VATAN2(v;u) HATAN2 VHATAN2 tan-l(a 1/az) - 1T < result < 1T
ATAN2 VATAN2
DATAN2

COS (a) VCOS(v;u) HCOS VHCOS cos(a) -1 < result < 1 - -cos vcos
DCOS

ccos vccos imaginary part
< 19905.80

601180200 F 10-9

TABLE 10-3. MATHEMATICAL FUNCTIONS (Contd)

Generic Generic Specific Specific Mathematical Domain Scalar Vector Scalar Vector Range
Function Function Function Function Definition (Argument Range) (Result Range)

COSH(a) - RCOSR - cosh(a) lal < 92.88171 1 < result

COSH I al -19842.031
DCOSR < a < 19905.80 I

COTAN(a) - HCOTAN - cotan(a)
COT AN

- - DPROD - a1 * a2

EXP(a) VEXP(v;u) REXP VREXP ea a < 92.88171 0 < result

EXP VEXP a < 19905.80
DEXP

CEXP VCEXP real part
< 19905.80

LOG(a) VLOG(v;u) HLOG VHLOG loge(a) a > 0 result < 92.88171

ALOG VALOG result < 19905.80
DLOG

CLOG VCLOG a I (O. ,o.) real part < 19905.80
- ~ < imaginary .5_ ~

LOGlO(a) VLOGlO(v;u) HLOGlO VHLOGlO log1o<a> a > 0 result < 40.33801

ALOGlO VALOGlO result < 8644.979
DLOGlO

MOD(a1 ,a2) VMOD(v1 ,v2;u) MOD VMOD a1-Ca1/a2J*a2 a2 I o
HMOD VRMOD
AMOD VAMOD
DMOD

- - RPROD - al * a2

SIN(a) VSIN(v;u) HSIN VHS IN sin(a) -1 .5_ result .5_ 1
SIN VSIN
DSIN

CSIN VCSIN imaginary part
< 19905.80

SINR(a) - RSINH - sinh(a) lal < 92.88171

I SINR lal -19842.031
DSINR < a < 19905.80

SQRT(a) VSQRT(v;u) RSQRT VHSQRT al/2 a > 0 0 < result -SQRT VSQRT
DSQRT
CSQRT VCSQRT

TAN(a) VTAN(v;u) RTAN VRTAN tan(a)
TAN VTAN
DTAN

TANR(a) - RTANH - tanh(a) -1 .5_ result .5_ 1
TANH
DTANR

10-10 60480200 J

ABS

ABS(a) is a generic scalar function that returns the
absolute value of the argument. The argument can
be of type integer, real, double-precision, half­
precision, or complex. The result is of the same
data type as the argument unless the argument is of
type complex. For a complex argument, the result
is of type real.

For an integer, real, double-precision, ot' half­
precision argment, the result is I a I • For a com­
plex argument, the result is the square root of
(ar2+ai2).

ABS is also a specific scalar function that accepts
a real argment and returns a real result. The
other specific scalar function names are !ABS, DABS,
BABS,- and CABS •

ACOS

ACOS(a) is a generic scalar function that returns
the arccosine of the argU111ent. The argU111ent can be
of type real, double-precision, or half-precision.
The result is of the same data type as the argU111ent

I and is expressed in radians. See table 10-3 for
the domain and range of the function.

ACOS is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DACOS and
BACOS.

AIMAG

AIMAG(a) is a specific scalar function that returns
the imaginary part of the argument. The argW11ent
must be of type complex. The result is of type
real. For a complex argument (ar,ai), the result
is ai. There is no generic scalar function name.

AINT

AINT(a) is a generic scalar function that truncates
the fractional part of the argument and returns the
whole number part of the argument. The argument can
be of type real, double-precision, or half­
precision. The result is of the same data type as
the argument.

The result is 0 if the absolute value of the argu­
ment is less than L. If the absolute value of the
argument is not less than L, the result is the
largest integer with the same sign as the argument
that does not exceed the magnitude of the argument.

AINT is also a specific scalar function that ac­
cepts a real argument and returns a real result.
The other specific scalar function names are DINT
and HINT.

ALOG

ALOG(a) is a specific scalar function that returns
the natural logarithm of the argument. The argument
must be of type real. The result is of type real.
See table 10-3 for the domain and range of the
function. The generic scalar function name is LOG.

60480200 D

ALOGlO

ALOGlO(a) is a specific scalar function that returns
the common logarithm of the argument. The argument
must be of type real. The result is of type real.
See table 10-3 for the domain and range of the
function. The generic scalar function name is
LOGlO,

AMAXO

AMAXO(a1,a2, •••) is a specific scalar function
that returns the value of the largest argument. All
of the arguments must be of type integer, The re­
sult is of type real. There is no generic scalar
function name.

AMAXl

AMAXL(a1,a2 1 •••) is a specific scalar function
that returns the value of the largest argument. All
of the arguments must be of type real, The result
is of type real. The generic scalar function name
is MAX.

AMINO

AMINO(a1,a2,•••> is a specific scalar function
that returns the value of the smallest argU111ent.
All of the arguments must be of type integer. The
result is of type real. There is no generic scalar
function name.

AMINl

AMINl(a1,a2,•••> is a specific scalar function
that returns the value of the smallest argument.
All of the argU111ents must be of type real. The re­
sult is of type real. The generic scalar function
name is MIN.

AMOD

AMOD(a1,a 2) is a specific scalar function that
returns the result of the first argument modulo the
second argument. The arguments must be of type
real. The result is of type real. See table 10-3
for the domain and range of the function. The
generic scalar function name is MOD.

ANINT

ANINT(a) is a generic scalar function that returns
the whole number that is nearest to the argument.
The argument can be of type real, double-precision,
or half-precision. The result is of the same data
type as the argument.

ANINT is also a specific scalar function that ac­
cepts a real argument and returns a real result.
The other specific scalar function names are DNINT
and HNINT.

10-11

ASIN

ASIN(a) is a generic scalar function that returns
the arcsine of the argument. The argument can be
of type real, double-precision, or half-precision.
The result is of the same data type as the argument

I and is expressed in radians. See table 10-3 for
the domain and range of the function.

ASIN is also a specific scalar function that ac­
cepts a real argument and returns a real result.
The other specific scalar function names are DASIN
and HASIN.

ATAN

ATAN(a) is a generic scalar function that returns
the arc tangent of the argument. The argument can
be of type real, double-precision, or half­
precision. The result is of the same data type as

I the argument and is expressed in radians. See
table 10-3 for the domain and range of the function.

ATAN is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DATAN and
HATAN.

ATAN2

ATAN2(a1,a2) is a generic scalar function that
returns the arctangent of the ratio of the two ar­
guments. The arguments can be of type real, double­
precision, or half-precision, but both arguments
must be of the same data type. The arguments must
not both be 0. The result is of the same data type

I as the arguments and is expressed in radians. See
table 10-3 for the domain and range of the function.

ATAN2 is also a specific scalar function that ac­
cepts two real arguments and returns a real result.
The other specific scalar function names are DATAN2
and HATAN2.

BTOL

BTOL(a) is a specific scalar function that converts
a bit value into a logical value. The argument must
be of type bit. The result is of type logical. If
the argument has the value B 'O', the function re­
turns the value • FALSE. ; if the argument has the
value B'l', the function returns the value .TRUE ••
There is no generic scalar function name.

CABS

CABS(a) is a specific scalar function that computes
the modulus of the argument and returns a result
that is greater than or equal to 0. The argument
must be of type complex. The result is of type
real. For a complex argument (ar ,ai), the result
is the square root of (ar2+ai2). The generic
scalar function name is ABS.

10-12

ccos
CCOS (a) is a specific scalar function that returns
the cosine of the argument. The argument must be
of type complex and is expressed in radians. The I
result is of type complex. See table 10-3 for the
domain and range of the function. The generic
scalar function name is COS.

CEXP

CEXP(a) is a specific scalar function that computes
the exponential of the argument. The argument must
be of type complex. The result is of type complex.
See table 10-3 for the domain and range of the
function. The generic scalar function name is EXP.

CHAR

CHAR(a) is a specific scalar function that returns
the character represented by character code a in I
the ASCII character set. The argument must be of
type integer. The value of the argument must be no
less than 0 and no greater than 255. The result is
of type character.

The argument is converted to hexadecimal, and the
character that is represented internally by that
hexadecimal value is returned.

For example, CHAR(65) returns the character A. (The
integer 65 is converted to X '41 ', which is the in­
ternal hexadecimal representation of the character
A.) See appendix A for the ASCII character code I
values. There is no generic scalar function name.

CLOG

CLOG(a) is a specific scalar function that returns
the natural logarithm of the argument. The argument
must be of type complex. The result is of type
complex. See table 10-3 for the domain and range I
of the function. The generic scalar function name
is LOG.

CMPLX

The scalar function CMPLX has two forms: CMPLX(a)
and CMPLX(a1,a2).

CMPLX(a) is a generic scalar function that converts
the argument into a complex value. The argument can
be of type integer, real, double-precision, half­
precision, or complex. The result is of type com­
plex.

For an integer, real, double-precision, or half­
precision argument, the result is a complex value
whose real part is the value of the argument and
whose imaginary part is O. For a complex argument,
the result is the value of the argument.

60480200 D

CKPLX(a1,a2) is a generic scalar function that
converts the two arguments into a complex value.
The arguments can be of type integer, real, double­
precision, or half-precision, but both arguments
must be of the same data type. The result is of
type complex.

The result is a complex value whose real part is the
value of the first argument and whose imaginary part
is the value of the second argument.

CMPLX is also a specific scalar function that ac­
cepts a real argument and returns a complex result.

CON JG

CONJG(a) is a specific scalar function that returns
the conjugate of the argument. The argument must
be of type complex. The result is of type com­
plex. For a complex number (ar,ai), the result is
(ar,-ai). There is no generic scalar function name.

cos
COS(a) is a generic scalar function that returns
the cosine of the argument. The argument can be of
type real, double-precision, half-precision, or

I complex and is expressed in radians. The result is
of the same data type as the argument. See table
10-3 for the domain and range of the function.

COS is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DCOS,
HCOS, and CCOS.

COSH

COSH(a) is a generic scalar function that returns
the hyperbolic cosine of the argument. The argu­
ment can be of type real, double-precision, or
half-precision. The result is of the same data

I type as the argument. See table 10-3 for the
domain and range of the function.

COSH is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DCOSH and
HCOSH.

COT AN
COTAN(a) is a generic scalar function that returns
the cotangent of the argument. The argument can be I of type real or half-precision and is expressed in
radians. COTAN first reduces its argument modulo
2pi. The result is of the same data type as the
argument. See table 10-3 for the domain and range
of the function.

COTAN is also a specific scalar function that
accepts a real argument and returns a real result.
The other specific scalar function name is HCOTAN.

60480200 D

CSIN

CSIN(a) is a specific scalar function that returns
the sine of the argument. The argument must be of
type complex and is expressed in radians. The I
result is of type complex. See table 10-3 for the
domain and range of the function. The generic
scalar function name is SIN.

CSQRT

CSQRT(a) is a specific scalar function that returns
the square root of the argument. The argument must
be of type complex. The real part of the argument
must be greater than or equal to 0. The result is
of type complex. See table 10-3 for the domain and
range of the function. The generic scalar function
name is SQRT.

DABS
DABS(a) is a specific scalar function that returns
the absolute value of the argument. The argument
must be of type double-precision. The result is of
type double-precision. The generic scalar function
name is ABS.

DA COS
DACOS(a) is a specific scalar function that returns
the arccosine of the argument. The argument must
be of type double-precision. The result is of type
double-precision and is expressed in radians. See I
table 10-3 for the domain and range of the function.
The generic scalar function name is ACOS.

DASIN

DASIN(a) is a specific scalar function that returns
the arcsine of the argument. The argument must be
of type double-precision. The result is of type
double-precision and is expressed in radians. See I
table 10-3 for the domain and range of the function.
The generic scalar function name is ASIN.

DAT AN
DATAN(a) is a specific scalar function that returns
the arctangent of the argument. The argument must
be of type double-precision. The result is of type
double-precision and is expressed in radians. See I
table 10-3 for the domain and range of the function.
The generic scalar function name is ATAN.

DATAN2
DATAN2(a1 1 az) is a specific scalar function
that returns the arctangent of the ratio of the two
arguments. The arguments must be of type double­
precision. The result is of type double-precision
and is expressed in radians. See table 10-3 for I
the domain and range of the function. The generic
scalar function name is ATAN2.

10-13

DATE

DATE() is a specific scalar function that returns
the current date. The parentheses are required,
but an argument is not required. You can supply
one argument of any data type, but the argument is
ignored. The result is a character string of the
form mm/dd/yy, where mm represents the month, dd
represents the day, and yy represents the year.

There is no generic scalar function name.

DBLE

DBLE (a) is a generic scalar function that converts
the argument into a double-precision value. The
argument can be of type integer, real, double­
precision, half-precision, or complex. The result
is of type double-precision. There are no specific
scalar function names.

DCOS

DCOS(a) is a specific scalar function that returns
the cosine of the argument. The argument must be

I of type double-precision and is expressed in
radians. The result is of type double-precision.
See table 10-3 for the domain and range of the
function. The generic scalar function name is COS.

DCOSH

DCOSH(a) is a specific scalar function that returns
the hyperbolic cosine of the argument. The argu-

1 ment must be of type double-precision. The result
is of type double-precision. See table 10-3 for
the domain and range of the function. The generic
scalar function name is COSH.

DDIM

DDIM(a1,a2) is a specific scalar function that
returns the positive difference between the two
arguments. The arguments must be of type double­
precision. The result is of type double-precision.
The result is the first argument minus the second
argument; however, if the result is negative, the
value 0 is returned. The generic scalar function
name is DIM.

DEXP

DEXP(a) is a specific scalar function that returns
the exponential of the argument. The argument must
be of type double-precision. The result is of type
double-precision. See table 10-3 for the domain
and range of the function. The generic scalar
function name is EXP.

DFLOAT

DFLOAT(i) is a specific scalar function that
converts the argument to a double-precision value.
The argument must be of type integer. The result
is of type double-precision. The generic scalar
function name is DBLE.

10-14

DIM

DIM(a1,a2) is a generic scalar function that
returns the positive difference between the two
arguments. The arguments can be of type integer,
real, double-precision, or half-precision, tut both
arguments must be of the same data type. The re­
sult is of the same data type as the arguments.

The result is the first argument minus the second
argument; however, if the result is negative, the
value 0 is returned.

DIM is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are !DIM, DDIM,
and HDIM.

DINT

DINT(a) is a specific scalar function that truncates
the fractional part of the argument and returns the
whole number part of the argument. The argument
must be of type double-precision. The result is of
type double-precision.

The result is 0 if the absolute value of the
argument is less than 1. If the absolute value of
the argument is not less than 1, the result is the
largest integer with the same sign as the argument
that does not exceed the magnitude of the argument.
The generic scalar function name is AINT.

DLOG

DLOG(a) is a specific scalar function that returns
the natural logarithm of the argument. The argument
must be of type double-precision. The result is of
type double-precision. See table 10-3 for the I
domain and range of the function. The generic
scalar function name is LOG.

DLOG10

DLOGlO(a) is a specific scalar function
returns the common logarithm of the argument.
argument must be of type double-precision.
result is of type double-precision. See table
for the domain and range of the function.
generic scalar function name is LOGlO.

DMAXl

that
The
The

10-3
The

r.ttAXl(a1,a2,···) is a specific scalar function
that returns the value of the largest argument.
All of the arguments must be of type double­
precision. The result is of type double-precision.
The generic scalar function name is MAX.

DMINl

IMINl(a1,a2,···) is a specific scalar function
that returns the value of the smallest argument.
All of the arguments must be of type double­
precision. The result is of type double-precision.
The generic scalar function name is MIN.

60480200 D

DMOD

DMOD(a1,a2) is a specific scalar function that
returns the result of the first argument modulo the
second argument. The arguments must be of type
double-precision. The result is of type double­
precision. See table 10-3 for the domain and range
of the function. The generic scalar function name
is MOD.

DNINT

DNINT(a) is a specific scalar function that returns
the whole number that is nearest to the argument.
The argument must be of type double-precision. The
result is of type double-precision. The generic
scalar function name is ANINT.

DPROD

DPROD(a1,az) is a specific scalar function that
returns the product of the two arguments. The
arguments must be of type real. The result is of
type double-precision. See table 10-3 for the
domain and range of the function. There is no
ge'neric scalar function name.

DSIGN

DSIGN(a1,a2) is a specific scalar function that
combines the absolute value of the first argument
with the sign of the second argument. The arguments
must be of type double-precision. The result is of
type double-precision. The generic scalar function
name is SIGN.

DSIN

DSIN(a) is a specific scalar function that returns
the sine of the argument. The argument must be of

I type double-precision and is expressed in radians.
The result is of type double-precision. See table
10-3 for the domain and range of the function. The
generic scalar function name is SIN.

DSINH

DSINH(a) is a specific scalar function that returns
the hyperbolic sine of the argument. The argument
must be of type double-precision. The result is of

I type double-precision. See table 10-3 for the
domain and range of the function. The generic
scalar function name is SINH.

DSQRT

DSQRT(a) is a specific scalar function that returns
the square root of the argument. The argument must
be of type double-precision. The result is of type
double-precision. See table 10-3 for the domain
and range of the function. The generic scalar
function name is SQRT.

60480200 D

DTAN

DTAN(a) is a specific scalar function that returns
the tangent of the argument. The argument must be
of type double-precision and is expressed in I
radians. DTAN first reduces its argument modulo
2pi. The result is of type double-precision. See
table 10-3 for the domain and range of the
function. The generic scalar function name is TAN.

DTANH

DTANH(a) is a specific scalar function that returns
the hyperbolic tangent of the argument. The argu­
ment must be of type double-precision. The result
is of type double-precision. See table 10-3 for I
the domain and range of the function. The generic
scalar function name is TANH.

EXP

EXP (a) is a generic scalar function that returns
the exponential of the argument. The argument can
be of type real, double-precision, half-precision,
or complex. The result is of the same data type as
the argument. See table 10-3 for the domain and
range of the function.

EXP is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DEXP,
HEXP, and CEXP.

EXTEND

EXTEND (a) is a specific scalar function that
converts the argument into a real value. The argu­
ment must be of type half-precision. The result is
of type real. The generic scalar function name is
REAL.

FLOAT

FLOAT(a) is a specific scalar function that converts
the argument into a real value. The argument must
be of type integer. The result is of type real.
The generic scalar function name is REAL.

HABS

HABS(a) is a specific scalar function that returns
the absolute value of the argument. The argument
must be of type hal f-prec is ion. The result is of
type half-precision. The generic scalar function
name is ABS.

HA COS

HACOS (a) is a specific scalar function that returns
the arccosine of the argument. The argument must
be of type half-precision. The result is of type
half-precision and is expressed in radians. See I
table 10-3 for the domain and range of the
function. The generic scalar function name is ACOS.

10-15

HALF

HALF(a) is a generic scalar function that converts
the argument into a half-precision value. The
argument can be of type integer, real, double-­
precision, half-precision, or complex. The result
is of type half-precision. There are no specific
scalar function names.

HASIN

HASIN(a) is a specific scalar function that returns
the arcsine of the argument. The argument must be
of type half-precision. The result is of type half-

1 precision and is expressed in radians. See table
10-3 for the danain and range of the function. The
generic scalar function name is ASIN.

HAT AN

HATAN(a) is a specific scalar function that returns
the arctangent of the argument. The argument must
be of type half-precision. The result is of type

I half-precision and is expressed in radians. See
table 10-3 for the danain and range of the
function. The generic scalar function name is ATAN.

HATAN2

HATAN2(a1,a2) is a specific scalar function
that returns the arctangent of the ratio of the two
arguments. The arguments must be of type half­
precision. The result is of type half-precisio~

I and is expressed in radians. See table 10-3 for
the domain and range of the function. The generic
scalar function name is ATAN2.

HCOS

HCOS(a) is
the cosine I of type
radians.
See table
function.

HCOSH

a specific scalar function that returns
of the argument. The argument must be

half-precision and is expressed in
The result is of type half-precision.
10-3 for the domain and range of the
The generic scalar function name is COS.

HCOSH(a) is a specific scalar function that returns
the hyperbolic cosine of the argument. The argument
must be of type half-precision. The result is of

I type half-precision. See table 10-3 for the domain
and range of the function. The generic scalar
function name is COSH.

HCOTAN

HCOTAN(a) is a specific scalar function that returns
the cotangent of the argument. The argument must

I be of type half-precision and is expressed i.n
radians. The result is of type half-precision.
See table 10-3 for the danain and range of the
function. The generic scalar function name is
COTAN.

10-16

HDIM

HDIM(a1,a2) is a specific scalar function that
returns the positive difference between the two
arguments. The arguments must be of type half­
precision. The result is of type half-precision.
The result is the first argument minus the second
argument; however, if the result is negative, the
value 0 is returned. The generic scalar function
name is DIM.

HEXP

HEXP (a) is a specific scalar function that returns
the exponential of the argument. The argument must
be of type half-precision. The result is of type
half-precision. See table 10-3 for the domain and I
range of the function. The generic scalar function
name is EXP.

HINT

HINT(a) is a specific scalar function that truncates
the fractional part of the argument and returns the
whole number part of the argument. The argument
must be of type half-precision. The result is of
type half-precision.

The result is 0 if the absolute value of the
argument is less than 1. If the absolute value of
the argument is not less than 1, the result is the
largest integer with the same sign as the argument
that does not exceed the magnitude of the argument.
The generic scalar function name is AINT.

HLOG

HLOG(a) is a specific scalar function that returns
the natural log :dthm of the argument. The argu­
ment must be of type half-precision. The result is
of type half-precision. See table 10-3 for the
domain and range of the function. The generic
scalar function name is LOG.

HLOGlO

HLOGlO(a) is a specific scalar function that
returns the common logarithm of .the argument. The
argument must be of type half-precision. The re­
sult is of type half-precision. See table 10-3 for
the domain and range of the function. The generic
scalar function name is LOGlO.

HMAXl

HMAXl{a1,a2, •.•) is a specific scalar function
that returns the value of the largest argument.
All of the arguments must be of type half­
precision. The result is of type half-precision.
The generic scalar function name is MAX.

HMINl

HMINl(a1,a2, •••) is a specific scalar function
that returns the value of the smallest argument.
All of the arguments must be of type half-precision.
The result is of type half-precision. The generic
scalar function name is MIN.

60480200 D

HMOD

HMOD(a1,a2) is a specific scalar function that
returns the result of the first argument modulo the
second argument. The arguments must be of type
half-precision. The result is of type half­
precision. See table 10-3 for the domain and range
of the function. The generic scalar function name
is MOD.

HNINT

HNINT(a) is a specific scalar function that returns
the whole number that is nearest to the argument.
The argument must be of type half-precision. The
result is of type half-precision. The generic
scalar function name is ANINT.

HSIGN

HSIGN(a1,a2) is a specific scalar function that
combines the magnitude of the first argument with
the sign of the second argument. The arguments
must be of type half-precision. The result is of
type half-precision. The generic scalar function
name is SIGN.

HSIN

HSIN(a) is a specific scalar function that returns
the sine of the argument. The argument must be of

I type half-precision and is expressed in radians.
The result is of type half-precision. See table
10-3 for the domain and range of the function. The
generic scalar function name is SIN.

HSINH

HSINH(a) is a specific scalar function that returns
the hyperbolic sine of the argument. The argument
must be of type half-precision. The result is of

I type half-precision. See table 10-3 for the domain
and range of the function. The generic scalar
function name is SINH.

HSQRT

HSQRT(a) is a specific scalar function that returns
the square root of the argument. The argument must
be of type half-precision. The result is of type
half-precision. See table 10-3 for the domain and
range of the function. The generic scalar function
name is SQRT.

60480200 D

HTAN

IITAN(a) is a specific scalar function that returns
the tangent of the argument. The argument must be
of type half-precision and is expressed in I
radians. The result is of type half-precision.
See table 10-3 for the domain and range of the
function. The generic scalar function name is TAN.

HT ANH

IITANH(a) is a specific scalar function that returns
the hyperbolic tangent of the argument. The argu­
ment must be of type half-precision. The result is
of type half-precision. See table 10-3 for the I
domain and range of the function. The generic
scalar function name is TANH.

IABS

!ABS (a) is a specific scalar function that returns
the absolute value of the argument. The argument
must be of type integer. The result is of type
integer. The generic scalar function name is ABS.

ICHAR

ICHAR(a) is a specific scalar function that returns
the integer equivalent of the internal hexadecimal
representation of character a in the ASCII
character set. The argument must be of type I
character. The result is of type integer.

For example, CHAR('A') returns the integer 65.
(The internal hexadecimal representation of the
character A is X'41', which is 65 when converted to
integer.) See appendix A for the ASCII character I
code values. There is no generic scalar function
name.

IDIM

IDIM(a1,a2) is a specific scalar function that
returns the positive difference between the two
arguments. The arguments must be of type integer.
The result is of type integer. The result is the
first argument minus the second argument; however,
if the result is negative or O, the value 0 is
returned. The generic scalar function name is DIM.

10-17

IDINT

IDINT(a) is a specific scalar function that
converts the argument into an integer value. The
argument must be of type double-precision. The
result is of type integer. The result is the sign
of the argument multiplied by the largest integer
less than or equal to the absolute value of the
argument. The generic scalar function name is INT.

IDNINT

IDNINT(a) is a specific scalar function that
returns the integer that is nearest to the argument.
The argument must be of type double-precision. The
result is of type integer. The generic scalar
function name is NINT.

IFIX

IFIX(a) is a specific scalar function that converts
the argument into an integer value. The argument
must be of type real. The result is of type inte­
ger. The result is the sign of the argument multi­
plied by the largest integer less than or equal to
the absolute value of the argument. The generic
scalar function name is INT.

IHINT

IHINT(a) is a specific scalar function that
converts the argument into an integer value. The
argument must be of type half-precision. The
result is of type integer. The result is the sign
of the argument multiplied by the largest integer
less than or equal to the absolute value of the
argument. The generic scalar function name is INT.

IHNINT

IHNINT(a) is specific scalar function that returns
the integer that is nearest to the argument. The
argument must be of type half-precision. The re­
sult is of type integer. The generic scalar func­
tion name is NINT.

INDEX

INDEX(a1,a2) is a specific scalar function that
returns the character position in the first argu­
ment in which the second argument begins. The
arguments must be of type character. The result is
of type integer.

If character string az appears in character
string al more than once, the starting position
of the first occurrence of az is returned. If
character string az does not appear in character
string al, the value 0 is returned, If the
length of a 1 is less than the length of az. the
value 0 is returned.

For example, the result of INDEX('ABCDE','CDE') is
3. The result of INDEX('ABCDE' ,'F') is 0.

There is no generic scalar function name.

10-18

INT

INT(a) is a generic scalar function that converts
the argument into an integer value. The argument
can be of type integer, real, double-precision,
half-precision, or complex. The result is of type
integer.

The result is the sign of the argument multiplied
by the largest integer less than or equal to the
absolute value of the argument. For an argument of
type complex, the result is the sign of the real
part of the argument multiplied by the largest in­
teger less than or equal to the absolute value of
the real part of the argument.

INT is also a specific scalar function that accepts
a real argument and returns an integer result. The
other specific scalar function names are IFIX,
!DINT, and !HINT.

ISIGN

ISIGN(a1,a2) is a specific scalar function that
combines the magnitude of the first argument with
the sign of the second argument. The arguments
must be of type integer. The result is of type
integer. The generic scalar function name is SIGN.

LEN

LEN(a) is a specific scalar function that returns
the length in characters of the argument. The
argument must be of type character. The result is
of type integer, For example, the result of
LEN('ABCDE') is 5. The arg\DDent need not be
defined at the time the function reference is
executed. There is no generic scalar function name.

LGE

LGE(a1,a2) is a specific scalar function that
returns a logical value indicating if the first
argument is lexically greater than or equal to the
second argument. The arguments must be of type
character. If the arg\DDents have different lengths,
the shorter argument is extended on the right with
blanks. The result is of type logical,

The arg\DDents are compared character by character
from left to right until two corresponding char­
acters are unequal, If a character of a1 is
greater than the corresponding character in az,
the logical value .TRUE. is returned. If a
character of a1 is less than the corresponding
character in az, the logical value .FALSE. is
returned. If all characters of a 1 are equal to
the corresponding characters in az, the logical
value .TRUE. is returned. See appendix A for the
collating sequence.

For example,
.TRUE.. The
is .FALSE ••
.TRUE ••

the result of LGE('CDC' ,'CDC') is
result of LGE('CYBER203' ,'CYBER205')

The result of LGE('CONTROL', 'CDC') is

There is no generic scalar function name.

60480200 A

LGT

LGT(a1,a2) is a specific scalar function that
returns a logical value indicating if the first
argtDDent is lexically greater than the second argu­
ment. · The argtDDents must be of type character. If
the argtDDents have different lengths, the shorter
argtDDent is extended on the right with blanks. The
result is of type logical.

The arguments are compared character by character
from left to right until two corresponding
characters are unequal. If a character of a 1 is
greater than the corresponding character in a2,
the logical value • TRUE. is returned. If a
character of al is less than the corresponding
character in a2, the logical value .FALSE. is
returned. If all characters of al are equal to
the corresponding characters in a 2 , the logical
value .FALSE. is returned. See appendix A for the
collating sequence.

For example, the result of LGT('CDC' ,'CDC') is
.FALSE •• The result of LGT('CYBER203','CYBER205')
is • FALSE.. The result of LGT('CONTROL' , 'CDC') is
.TRUE ••

There is no generic scalar function name.

LLE

LLE(a1,a2) is a specific scalar function that
returns a logical value indicating if the first
argtDDent is lexically less than or equal to the
second argtDDent. The arguments must be of type
character. If the argtDDents have different
lengths, the shorter argtDDent is extended on the
right with blanks. The result is of type logical.

The argtDDents are compared character by character
from left to right unti 1 two corresponding char­
acters are unequal. If a character of al is less
than the corresponding character in az, the
logical value .TRUE. is returned. If a character
of al is greater than the corresponding character
in az, the logical value .FALSE. is returned. If
all characters of a 1 are equal to the corre­
sponding characters in a 2 , the logical value
.TRUE. is returned. See appendix A for the
collating sequence.

For example, the result of LLE('CDC' ,'CDC') is
.TRUE.. The result of LLE('CYBER203' ,'CYBER205')
is .TRUE.. The result of LLE('CONTROL', 'CDC') is
.FALSE ••

There is no generic scalar function name.

LLT

LLT(a1,a2) is a specific scalar function that
returns a logical value indicating if the first
argtDDent is lexically less than the second argument.
The argtDDents must be of type character. If the
arguments have different lengths, the shorter argu­
ment is extended on the right with blanks. The
result is of type logical.

The arguments are compared character by character
from left to right until two corresponding char­
acters are unequal. If a character of al is less
than the corresponding character in az, the

60480200 A

logical value .TRUE. is returned. If a character
of a1 is greater than the corresponding character
in az, the logical value .FALSE. is returned. If
all characters of al are equal to the corre­
sponding characters in az, the logical value
.FALSE. is returned. See appendix A for the
collating sequence.

For example, the result of LLT('CDC' ,'CDC') is
.FALSE.. The result of LLT('CYBER203', 'CYBER205')
is .TRUE.. The result of LLT('CONTROL' ,'CDC') is
.FALSE ••

There is no generic scalar function name.

LOG

LOG(a) is a generic scalar function that returns
the natural logarithm of the argument. The argu­
ment can be of type real, double-precision, half­
precision, or complex. The result is of the same
data type as the argument. See table 10-3 for the
domain and range of the function.

The specific scalar function names are ALOG, DLOG,
HLOG, and CLOG.

LOG10

LOGlO(a) is a generic scalar function that returns
the comm.on logarithm of the argtDDent. The argument
can be of type real, double-precision, or half­
precision. The result is of the same data type as
the argument. See table 10-3 for the domain and
range of the function.

The specific scalar function names are ALOGlO,
DLOGlO, and HLOGlO.

LTOB

LTOB(a) is a specific scalar function that converts
a logical value into a bit value. The argument
must be of type logical. The result is of type
bit. If the argument has the value .FALSE., the
function returns the value B'O'; if the argument
has the value .TRUE., the function returns the
value B' l'. There is no generic scalar function
name.

MAX

MAX(a1,az, •••) is a generic scalar function
that returns the value of the largest argument.
The arguments can be of type integer, real, double­
precision, or half-precision, but all of the argu­
ments must be of the same data type. The result is
of the same data type as the argument.

The specific scalar function names are MAXO, AMAX!,
DMAXl, and HMAXl.

MAXO

MAXO(a1,a2, •••) is a specific scalar function
that returns the value of the largest argument.
All of the arguments must be of type integer. The
result ls of type integer. The generic scalar
function name is MAX.

10-19

MAX1

MAX:l(a1,a2,•••> is a specific scalar function
that returns the value of the largest argument.
All of the arguments must be of type real. The
result is of type integer, There is no generic
scalar function name.

MIN

MIN(a1,a2, •••) is a generic scalar function
that returns the value of the smallest argument.
The arguments can be of type integer, real, double­
precision, or half-precision, but all of the
arguments must be of the same data type, The
result is of the same data type as the argument.

The specific scalar function names are MINO, AMINI,
DMINl, and HMINl,

MINO

MINO(al ,a2, •••) is a specific scalar function
that returns the value of the smallest argument.
All of the arguments must be of type integer. The
result is of type integer. The generic scalar
function name is MIN.

MIN1

MINl(a1,a2, ...) is a specific scalar function
that returns the value of the smallest argument.
All of the arguments must be of type real. The
result is of type integer. There is no generic
scalar function name.

MOD

MOD(a1 ,a2) is a generic scalar function that
returns the result of the first argument modulo the
second argument. The arguments can be of type
integer, real, double-precision, or half-precision,
but both arguments must be of the same data type.
The result is of the same data type as the
arguments. See table 10-3 for the domain and range
of the function.

MOD is also a specific scalar function that accepts
an integer argument and returns an integer result.
The other specific scalar function names are AMOD,
DMOD, and HMOD.

NINT

NINT(a) is a generic scalar function that returns
the integer that is nearest to the argument. The
argument can be of type real, double-precision, or
half-precision. The result is of type integer.

NINT is also a specific scalar function that
accepts a real argument and returns an integer
result. The other specific scalar function names
are IDNINT and IHNINT.

10-20

Q8SCNT

Q8SCNT(v) is a specific scalar function that
returns the number of l bits in the argument, The
argument must be a vector of type bit, The result
is of type integer,

For example, if bit vector vi consists of the I
elements l 0 0 1 1, the result of Q8SCNT(v1) is 3.

There is no generic scalar function name.

Q8SDFB

Q8SDFB(a1,a2) is a specific scalar function
that tests the bits of the data flag branch reg­
ister. The arguments must be constants of type
integer. The first argument is the number of the
bit to be tested. The bits of the data flag branch
register are numbered from the left beginning with
O. The second argument can have one of the
following values:

0 The bit being tested is not to be changed,

The bit being tested is to be changed to o.

2 The bit being tested is to be changed to 1.

3 The bit being tested is to be changed to 0
if it is currently 1, or the bit being
tested is to be changed to l if it is
currently O.

The result is of type logical. The result is
, TRUE, if the bit being tested is l; the result is
.FALSE, if the bit being tested is O. The action
specified by the second argument is performed after
the bit is tested.

For example, if the 10th bit of the data flag
branch register is 1, the result of Q8SDFB(9 ,3) is
.TRUE.. This function reference causes the 10th
bit of the data flag branch register to be changed
to 0,

Figure 11-10 shows the data flag branch register
format.

There is no generic scalar function name.

QSSDOT

Q8SDOT(v1,v2) is a generic scalar function that
returns the dot product of the two arguments. The
arguments must be vectors and can be of type in­
teger, real, or half-precision. If the arguments
have different lengths, the excess elements of the
longer argument are ignored. The result is of the
same data type as the arguments. The result is the
sum of the products of corresponding elements of
the vector arguments.

For example, if vector v1 consists of the ele-1
ments 0 l 3 and vector v2 consists of the
elements 2 2 2, the result of Q8SDOT(v1,v2) is
(0*2)+(1*2)+(3*2), which is 8.

There are no specific scalar function names.

60480200 H

QSSEQ

Q8SEQ(v1,v2) is a generic scalar function that
returns the number of pairs of corresponding vector
elements that precede the first pair of corre­
sponding vector elements in which the element of
the first argument equals the element of the second
argument. If this condition is never true, the
function returns the number of elements in the
shorter vector argument. The arguments must be two
vectors or one scalar and one vector. The argu­
ments can be of type integer, real, or half­
precision. If the arguments are vectors that have
different lengths, the excess elements of the
longer vector are ignored. The result is of type
integer.

I For example, if vector v 1 consists of the elements
0 1 3 4 and vector v2 consists of the elements 2
2 2 4, the result of Q8SEQ(v1 ,v2) is 3. If
scalar s1 has the value 4 and vector v 2 con­
sists of the elements 2 2 2 4, the result of
Q8SEQ(s1,v2) is 3.

There are no specific scalar function names.

QSSEXTB

Q8SEXTB(a,i 1 ,i 2) is a generic scalar function
that extracts bits from one of the arguments. The
argument a can be of type integer, real, or logi­
cal. The arguments i1 and i2 must be of type
integer. The result is typeless.

The function
beginning at
from the left

extracts i1 bits from input
bit position i2• (Bits are
beginning with O.)

value a,
numbered

The Q8SEXTB function result is right-justified with
binary zero fill when it is an integer. For
example, if I and M are integer variables and I has
the value 6, then the statement

M = QSSEXTB(I,4,59)

has the result M = 0011, which is 3 in decimal, The
form of the Q8SEXTB function result might change
when the result is not an integer. In the example
above, if M were a real variable, M would have the
real variable representation of the number 3.

There are no specific scalar function names.

QSSGE

Q8SGE(v1 ,v2) is a generic scalar function that
returns the number of pairs of corresponding vector
elements that precede the first pair of corre­
sponding vector elements in which the element of
the first argument is greater than or equal to the
element of the second argument. If this condition
is never true, the function returns the number of
elements in the shorter vector argument. The argu­
ments must be two vectors or one scalar and one
vector. The arguments can be of type integer,
real, or half-precision. If the arguments are
vectors that have different lengths, the excess
elements of the longer vector are ignored. The
result is of type integer.

60480200 H

For example, if vector Vl consists of the
elements 0 1 3 4 and vector vz consists of the
elements 2 2 2 4, the result of Q8SGE(v 1 ,vz) is
2. If scalar s1 has the value 4 and vector vz
consists of the elements 2 2 2 4, the result of
Q8SGE(s 1 , v2) is 3.

There are no specific scalar function names.

QSSINSB

Q8SINSB(a1,i1,iz,a2) is a generic scalar
function that creates a word and inserts bits into
the word. The arguments a 1 and az can be of
type integer, real, or logical; they need not be of
the same data type. The arguments i1 and iz
must be of type integer. The result is typeless.

The result is the value of a2, except that i1
bits beginning with bit 12 are replaced with the
rightmost i1 bits of al• The values of the
arguments are not
the left beginning

For example, if I
the value 1 and N
the value 2, the
0011.

changed. Bits are numbered from
with O.

is an integer variable that has
is an integer variable that has
result of QSSINSB(I,1,63,N) is

There are no specific scalar function names.

QSSLEN

Q8SLEN(v) is a generic scalar function that returns
the number of elements in the argument. The argu­
ment must be a vector and can be of type integer,
real, half-precision, or complex. The result is of
type integer. For an argument of type complex, the
result is half the number of elements in the vector.

I

For example, if vector v1 consists
elements 0 1 3 4, the result of Q8SLEN(v1)

of
is 4.

the I
There are no specific scalar function names.

QSSLT

Q8SLT(v1,v2) is a generic scalar function that
returns the number of pairs of corresponding vector
elements that precede the first pair of corre­
sponding vector elements in which the element of
the first argument is less than the element of the
second argument. If this condition is never true,
the function returns the number of elements in the
shorter vector argument. The arguments must be two
vectors or one scalar and one vector. The argu­
ments can be of type integer, real, or half­
precision. If the arguments are vectors that have
different lengths, the excess elements of the
longer vector are ignored. The result is of type
integer.

For example, if vector Vl consists of the
elements 0 1 3 4 and vector v2 consists of the
elements 2 2 2 4, the result of Q8SL1'(v1,v2) is
o. If scalar s1 has the value 4 and vector vz
consists of the elements 2 2 'L 4, the result of
Q8SLT(s1,v2) is 4.

There are no specific scalar function names.

10-21

I

QBSMAX

The scalar function Q8SMAX
QBSMAX(v) and QBSMAX(v,cv),

has two forms:

QBSMAX(v) is a generic scalar function that returns
the value of the largest element of the argument,
The argument must be a vector and can be of type
integer, real, or half-precision. The result is of
the same data type as the argument.

For example, if vector v1 consists of the
elements 0 1 3 4, the result of Q8SMAX(v1) is 4.

Q8SMAX(v,cv) is a generic scalar function that
returns the value of the largest element of the
argument v whose corresponding element in the con­
trol vector cv contains a 1 bit, The argument v
must be a vector and can be of type integer, real,
or half-precision, The argument cv, which is used
as the control vector, must be a vector of type
bit. The result is of the same data type as the
argument v,

For example, if vector v1 consists of the ele­
ments 0 1 3 4 and bit vector c1 consists of the
elements 1 0, the result of Q8SMAX(v1,c1)
is 3,

There are no specific scalar fun~tion names.

QSSMAXI

The scalar function Q8SMAXI
Q8SMAXI(v) and Q8SMAXI(v,cv),

has two forms:

Q8SMAXI(v) is a generic scalar function that
returns the number of elements preceding the
largest element of the argument. The argument must
be a vector and can be of type integer, real, or
half-precision. The result is of the same data
type as the argument.

For example, if vector vl consists
elements 0 1 3 4, the result of Q8SMAXI(v1)

of the
is 3.

Q8SMAXI(v,cv) is a generic scalar function that
returns the number of elements preceding the
largest element of the argument v whose corre­
sponding element in the control vector cv contains
a 1 bit, The argument v must be a vector and can
be of type integer, real, or half-precision, The
argument cv, which is used as the control vector,
must be a vector of type bit, The result is of the
same data type as the argument v.

For example, if vector v1 consists of the ele­
ments 0 1 3 4 and bit vector c1 consists of the
elements 0 1 O, the result of Q8SMAXI(v1,c1)
is 2.

There are no specific scalar function names.

QSSMIN

The scalar function Q8SMIN
Q8SMIN(v) and Q8SMIN(v,cv),

has two forms:

Q8SMIN(v) is a generic scalar function that returns
the value of the smallest element of the argument.
The argument must be a vector and can be of type
integer, real, or half-precision. The result is of
the same data type as the argument.

• 10-22

For example, if vector v1 consists of the
elements 0 1 3 4, the result of Q8SMIN(v1) is O.

Q8SMIN(v,cv) is a generic scalar function that
returns the value of the smallest element of the
argument v whose corresponding element in the
control vector cv contains a 1 bit. The argument v
must be a vector and can be of type integer, real,
or half-precision. The argument cv, which is used
as the control vector, must be a vector of type
bit, The result is of the same data type as the
argument v,

For example, if vector v1 consists of the elements
0 1 3 4 and bit vector c1 consists of the elements
0 1 1 1, the result of Q8SMIN(v1,c1) is 1.

There are no specific scalar function names.

QSSMINI

The scalar function Q8SMINI has
Q8SMINI(v) and Q8SMINI(v,cv),

two forms:

Q8SMINI(v) is a generic scalar function that
returns the number of elements preceding the
smallest element of the argument. The argument
must be a vector and can be of type integer, real,
or half-precision. The result is of the same data
type as the argument.

For example, if vector v1 consists of the
elements l 2 3 4, the result of Q8SMINI(v1) is O.

Q8SMINI(v,cv) is a generic scalar function that
returns the number of elements preceding the
smallest element of the argument v whose corre­
sponding element in the control vector cv contains
a 1 bit, The argument v must be a vector and can
be of type integer, real, or half-precision. The
argument cv, which is used as the control vector,
must be a vector of type bit. The result is of the
same data type as the argument v.

For example, if vector v1 consists of the elements
l 2 3 4 and bit vector c1 consists of the elements
0 0 1 1, the result of Q8SMINI(v1,c1) is 2,

There are no specific scalar function names.

QSSNE

Q8SNE(v1,v2) is a generic scalar function that
returns the number of pairs of corresponding vector
elements that precede the first pair of corre­
sponding vector elements in which the element of
the first argument does not equal the element of
the second argument. If this condition is never
true, the function returns the number of elements
in the shorter vector. The arguments must be two
vectors or one scalar and one vector. The
arguments can be of type integer, real, or half­
precision, If the arguments are vectors that have
different lengths, the excess elements of the
longer vector are ignored. The result is of type
integer.

For example, if vector v1 consists of the
elements 0 1 3 4 and vector v2 consists of the
elements 2 2 2 4, the result of Q8SNE(v1,v2) is
o. If scalar s1 has the value 4 and vector v2
consists of the elements 4 4 4 2, the result of
Q8SNE(s l • vz) is 3.

60480200 H

There are no specific scalar function names.

Q8SPROD

The scalar function Q8SPROD
Q8SPROD(v) and Q8SPROD(v,cv).

has two forms:

Q8SPROD(v) is a generic scalar function that
returns the product of the elements of the argument.
The argument must be a vector and can be of type
integer, real, or half-precision. The result is of
the same data type as the argument.

For example, if vector vi consists of the elements
i 3 7, the result of Q8SPROD(vi) is (i*3*7),
which is 2i.

Q8SPROD(v,cv) is a generic scalar function that
returns the product of the elements of the argument
v whose corresponding element in the control vector
cv contains a i bit. The argument v must be a
vector and can be of type integer, real, or half­
precision. The argument cv, which is used as the
control vector, must be a vector of type bit. The
result is of the same data type as the argument v.

For example, if vector vi
i 3 7 and bit vector ci
l i 0, the result of
which is 3.

consists of the elements
consists of the elements
Q8SPROD(vi,ci) is (i*3),

There are no specific scalar function names.

Q8SSUM

The scalar function Q8SSUM
Q8SSUM(v) and Q8SSUM(v,cv).

has two forms:

Q8SSUM(v) is a generic scalar function that returns
the sum of the elements of the argument. The argu­
ment must be a vector and can be of type integer,
real, or half-precision. The result is of the same
data type as the argument.

For example, if vector vi consists of the elements
i 3 7, the result of Q8SSUM(vi) is (1+3+7), which
is ii.

Q8SSUM(v,cv) is a generic scalar function that
returns the sum of the elements of the argument v
whose corresponding element in the control vector
cv contains a i bit. The argument v must be a
vector and can be of type integer, real, or half­
precision. The argument cv, which is used as the
control vector, must be a vector of type bit. The
result is of the same data type as the argument v.

For example, if vector vi
i 3 7 and bit vector ci
i i O, the result of
which is 4.

consists of the elements
consists of the elements
Q8SSUM(vi,ci) is (i+3),

There are no specific scalar function names.

Q8VADJM

Q8VADJM(v;u) is a generic vector function that
returns the averages of adjacent elements of the
input argument. The input argument v must be a
vector and can be of type real or half-precision.
The output argument can be a vector of the same
data type as the input argument, or an integer

60480200 H

expression that specifies the length of the vector
function result. The output argument must be one
element shorter than the input argument, or longer.

The first element of the output argument is the
average of the first and second elements of the
input argument; the second element of the output
argument is the average of the second and third
elements of the input argument, and so on.

For example, if input argument vi is a vector
that consists of the elements O.O 2.0 4.0 6.0, the
function reference Q8VADJM(vi;ui) assigns the
values i.o 3.0 5.0 to the output argument ui•

There are no specific vector function names.

Q8VAVG

Q8VAVG(vi,v2;u) is a generic vector function
that returns the averages of the corresponding
elements of the two input arguments. The input
arguments must be two vectors or one scalar and one
vector. The input arguments can be of type real or
half-precision. The output argument can be a vector
of the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result. All input arguments and
output arguments must have the same length. If one
of the input arguments is a scalar, it is treated
as if it were a vector of the appropriate length
with all elements having the value of the scalar.

The first element of the output argument is the
average of the first element of one input argument
and the first element of the other input argument;
the second element of the output argument is the
average of the second element of one input argument
and the second element of the other input argument,
and so on.

For example, if input argument v1 is a vector
that consists of the elements O.O 2.0 4.0 6.0 and
input argument v2 is a vector that consists of
the elements 2.0 4.0 6.0 8.0, the function ref­
erence Q8VAVG(vi,v2;ui) assigns the values
i.o 3.0 5.0 7.0 to the output argument ui• If
the input argument vi is a vector that consists
of the elements O.O 2.0 4.0 b.O and the input
argument s1 is a scalar that has the value io.o,
the function reference Q8VAVG(vi,si;ui)
assigns the values 5.0 6.0 7 .O 8.0 to the output
argument ui.

There are no specific vector function names.

Q8VAVGD

Q8VAVGD(vlt v2; u) is a generic vector tunction
that returns the averages of the ditferences of
corresponding elements of the two input arguments.
The input arguments must be two vectors or one
scalar and one vector. The input arguments can be
of type real or half-precision. The output argument
can be a vector of the same data type as the input
argument, or an integer expression that specifies
the length of the vector function result. All
input arguments and output arguments must have the
same length. If one of the input arguments is a
scalar, it is treated as if it were a vector of the
appropriate length with all elements having the
value of the scalar.

io-23 •

The first element of the output vector is half of
the difference of the first element of the first
input argument minus the first element of the
second input argument; the second element of the
output vector is half of the difference of the
second element of the first input argument minus
the second element of the second input argument,
and so on.

For example, if input argument v1 is a vector
that consists of the elements 2.0 4.0 6.0 8.0 and
input argument v2 is a vector that consists of
the elements 0.0 1.0 2.0 3.0, the function ref­
erence Q8VAVGD(v1 ,v2;u1) assigns the values
1.0 1.5 2.0 2.5 to the output argument ui. If
the input argument v1 is a vector that consists
of the elements 2.0 4.0 6.0 8.0 and the input
argument s 1 is a scalar that has the value 0.0,
the function reference Q8VAVGD(v1,s1;u1)
assigns the values 1.0 2.0 3.0 4.0 to the output
argument u1 •

There are no specific vector function names.

QBVCMPRS

Q8VCMPRS(v ,cv; u) is a generic vector function that
creates a vector consisting of selected elements of
the input argument v. The input argument v must be
a vector and can be of type integer, real, or half­
precision. The input argument cv, which is used as
a control vector, must be a vector of type bit.
The output argument can be a vector of the same
data type as the input argument, or an integer
expression that specifies the length of the vector
function result. The input arguments must have the
same length. The length of the output argument is
determined by the number of l bits in cv.

The output argument consists of all of the elements
of the input argument v whose corresponding elements
in the control vector cv contain a l bit.

For example, if input argument Vl is a vector
that consists of the elements 2 4 6 8 and input
argument cv1 is a bit vector that consists of
the elements 0 1 0 1, the function reference
Q8VCMPRS(v1 ,cv 1 ;ui) assigns the values 4 8 to
the output argument u1•

There are no specific vector function names.

QBVCTRL

Q8VCTRL(v,cv;u) is a generic vector function that
replaces selected elements of the output argument
with the corresponding elements of the input argu­
ment v. The input argument v must be a vector and
can be of type integer, real, or half-precision.
The input argument cv must be a vector of type
bit. The output argument can be a vector of the
same data type as the input argument, or an integer
expression that specifies the length of the vector
function result. All input arguments and output
arguments must have the same length.

All of the elements of the output argument retain
their previous values except for those elements
whose corresponding elements in the control vector
cv contain a 1 bit. Those elements whose corre­
sponding elements in the control vector cv contain
a 1 bit are replaced with the corresponding element
from the input vector v.

• 10-24

For example, if input argument v1 is a vector
that consists of the elements 2 4 6 8, the input
argument cv1 is a bit vector that consists of the
elements O l 0 1, ana output argument u1 is a
vector that consists of the elements 4 5 8 9; the
function reference Q8VCTRL(v1,cv1;u1) assigns
the values 4 4 8 8 to the output argument u1.

There are no specific vector function names.

QBVDCMPR

Q8VDCMPR(v1,v2,cv;u) is a generic vector
function that replaces selected elements of the
vz argument with the corresponding elements of
the v 1 argument using the cv control argument.
The input arguments v 1 and vz must be vectors
and can be of type integer, real, or half preci­
sion. The input argument cv, which is used as a
control vector, must be a vector of type bit. The
output argument u can be a vector of the same data
type as the input arguments v1 and vz, or an
integer expression that specifies the length of the
vector function result. The input arguments vz
and cv and the output argument u must have the same
length.

All of the elements of the input argument vz move
to the output argument except for those elements
where corresponding elements in the control vector
cv contain a 1 bit; those elements are replaced
i.ith consecutive elements from the input argument
vi.

For example, if the input argument v1 is a vector
that consists of the elements 20 40, the input
argument vz consists of the elements l 2 3 4, and
the input argument cv is a bit vector that consists
of the elements 0 1 0 1; the function reference
Q8VDCMPR(v1 ,v2 ,cv;u) assigns the values 20 3
40 to the output argument u.

There are no specific vector function names.

QBVDELT

Q8VDELT(v;u) is a generic vector function that
returns the differences of adjacent elements of the
input argument. The input argument must be a
vector and can be of type real or half-precision.
The output argument can be a vector of the same
data type as the input argument, or an integer
expression that specifies the length of the vector
function result. The output argument must be one
element shorter than the input argument, or longer.

The first element of the output argument is the
value of the second element of the input argument
minus the first element of the input argument; the
second element of the output argument is the value
of the third element of the input argument minus
the second element of the input argument, and so on.

For example, if input argument v1 is a vector
that consists of the elements 0.0 2.0 5.0 'l.O, the
function reference Q8VDELT(v1;u1) assigns the
values 2.0 3.0 4.0 to the output argument u1.

There are no specific vector function names.

60480200 H

Q8VEQI

Q8VEQI(v1,v2;u) is a generic vector function
that returns the number of elements that precede
the value of each element of the first input argu­
ment in the second input argument. The input argu­
ments must be two vectors and can be of type real
or half-precision. The output argument can be a
vector of type integer, or an integer expression
that specifies the length of the vector function
result. The input arguments can have different
lengths, but the output argument must not be shorter
than input argument vl•

The function searches argument v2 for an element
that is equal to the first element of vl. If the

60480200 H

function finds such an element, it assigns to the
first element of the output argument the number of
elements that precede that element in argument
v2. If the function does not find such an ele­
ment, it returns the number of elements in argument
v2, The function repeats this operation for each
element of argument v1 , assigning the result to
the corresponding element of the output argument.

For example, if input argument v1 is a vector
that consists of the elements 1.0 2.0 3.0 4.0 and
input argument v2 is a vector that consists of
the elements 4.0 5.0 1.0 2.0, the function ref-
erence Q8VEQI(v1,v2 ;u1) assigns the values 2
3 4 0 to the output argument u1,

There are no specific vector function names.

10-24.1/10-24.Z

I

QSVGATHP

Q8VGATHP(v,i,n;u) is a generic vector function that
creates a vector consisting of selected elements of
the input argument v. The input argument v must be
a vector and can be of type integer, half-precision,
or real. The input arguments i and n must be
scalars of type integer. The output argument can
be a vector of the same data type as the input
argument, or an integer expression that specifies
the length of the vector function result.

The input argument i determines which elements of
input argument v are assigned to the output argu­
ment. Beginning with the first element of v, every
ith element is assigned to the output argument,
until n elements have been assigned.

The number of elements assigned is determined by
the input argument n; the lengths of input argument
v and the output argument have no effect on the
number of elements assigned. If the value of n
causes the length of either the input argument v or
the output argument to be exceeded, results are
unpredictable.

See figure 10-1 for an example of the Q8VGATHP
function,

Arguments

V1 10.0 19.0 11.0 15.0 o.o 2.0 s.o
11 2

N1 4

Function Reference

Q8VGATHP CV1,I1,N1;U1)

Result

U1 10.0 11.0 0.0 5.0

Figure 10-1. Function Q8VGATHP Example

This function contrasts with the generic
function Q8VSCATP,

There are no specific vector function names.

QSVGATHR

vector

Q8VGATHR(v ,i; u) is a generic vector function that
creates a vector consisting of selected elements of
the input argument v. The input argument v must be
a vector and can be of type integer, real, or half­
precision, The input argument i must be a vector
of type integer, The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result. The input vector i
and the output vector u must be the same length.
The length of input vector v should not be less
than the greatest integer in input vector i.

60480200 H

Each element of the output argument corresponds to
an element in input argument i. The elements in
input argument i indicate which elements of input
argument v are assigned to the corresponding ele­
ments in the output argument. For example, it an
element of i contains a 1, the first element of
input argument v is assigned to the element of the
output argument that corresponds to the element of
i. An element of input argument v can be assigned
to more than one element of the output argument and
not all elements of the input argument v must be
assigned to the output argument.

For example, if input argument vl is a vector
that consists of the elements 2.0 4.0 6.0 8.0 9.0
and input argument i1 is a vector that consists
of the elements 1 4 4 2, the function reference
Q8VGATHR(v1,i 1;u1) assigns the values 2.0 8.0
8.0 4.0 to the output argument ul • See figure
10-2 for an illustration of this example.

V1 2.0 4.0 6.0 8.0 9.0

I 4~ 11 1

• t t t.o U1 2.0 8.0 8.0

Figure 10-2. Q8VGATHR Function Example

This function contrasts with the generic vector
function Q8VSCATR.

There are no specific vector function names.

QSVGEI

Q8VGEI(v1,v2;u) is a generic vector function.
For each element of the first argument, vector
v 1 , Q8VGEI returns a nonnegative integer that is

I

a count of certain elements in the second argument,
vector v2. This count is the number of elements
that precede the first element found in v2 for
which the element in v1 is greater than or equal
to the element of v2 0 The two input vectors must I
both be the same type, either real or half preci­
sion. (The output vector does not have to be the
same type.) The output argument u can be a vector
of type integer, or an integer expression that
specifies the length of the vector function result.
The input arguments can have different lengths, but
the output argument must not be shorter than the
input argument v1.

To create output argument u, Q8VGEI repeats the
same search procedure for each element of argument
v1. It assigns the result of the procedure to
the corresponding element of the output argument
u, The paragraph below describes this search and
assign process by showing how it works for finding
the first element of the output argument u from the
first element of argument v1•

Q8VGEI
element

obtains the result to put in the first
of the output argument u by searching

argument
elements
v1. The
of v1 is
argument

v2. The search compares successive
of argument v2 with the first element of
comparisons stop when the first element
greater than or equal to an element of
v2. This element of argument v2 is

10-25

the object of the search, The number of elements
that precede that target element in argument vz
is the result of the successful search, The
function puts this result into the first element of
argument u. If the search is unsuccessful, its
result is the total number of elements in argument
vz, and the function assigns this number to the
first element of argument u.

I For example, if input argument v1 is a vector
that consists of the elements 1,0 0.0 9.0 4.5 and
input argument v2 is a vector that consists of
the elements 5.0 4,0 1.0 2,0, the function ref­
erence Q8VGEI(v1 ,v2 ;u) assigns the values 2 4 0
1 to the output argument u. See figure 10-2.1 for
an illustration of this example.

There are no specific vector function names.

u

V1

V2

t

2 4 0 1

t t t t
1.~o o.o_ :·o 4.5 ----5.0 4.0 .o 2.0 - - - - -

Shows assignment of search result to
element of output argument U.

.,,,,,,,. Shows first comparison where element of
argument V1 is greater than or equal to
element of argument V2.

',,Shows unsuccessful search.

Figure 10-2.1. Q8VGEI Function Example

QSVINTL

Q8VINTL(a1 ,az;u) is a generic vector function
that creates a vector whose adjacent elements I differ by a specified interval. The input argu­
ments must be two scalar expressions of type real,
integer, or half precision. Both input arguments
must be of the same type. The output argument can
be a vector of the same type as the input argument
or an integer expression that specifies the length
of the vector function result. The output argument
can be of any length.

The function assigns the value of input argument
a 1 to the first element of the output argument.
Each succeeding element of the output argument is
assigned the value of the previous element plus the
value of the input argument az.

For example, if input argument s 1 is a scalar
that has the value 3, input argument s2 is a
scalar that has the value 2, and output argument
u1 is a vector that consists of four elements;
the function reference Q8VINTL(s1,s2;ul)
assigns the values 3 5 7 9 to the output argument
u1.

There are no specific vector function names.

10-26

QSVLTI

Q8VLTI(vi. vz; u) is a generic vector function,
For each element of the first argument, vector
v1, Q8VLT1 returns a nonnegative integer that is
a count of certain elements in the second argument,
vector vz. This count is the number of elements
that precede the first element found in vz for
which the element in v1 is less than the element
of v2 , The two input vectors must both be the I
same type, either real or half precision. (The
output vector does not have to be the same type.)
The output argument u can be a vector of type
integer, or an integer expression that specifies
the length of the vector function result. The
input arguments can have different lengths, but the
output argument must not be shorter than the input
argument v1,

To create output argument u, Q8VLT1 repeats the
same search procedure for each element of argument
vi. It assigns the result of the procedure to
the corresponding element of the output argument
u, The paragraph below describes this search and
assign process by showing how it works for finding
the first element of the output argument u from the
first element of argument vl•

Q8VLTI obtains the result to put in the first ele­
ment of the output argument u by searching argument
vz, The search compares successive elements of
argument v2 with the first element of v1• The
comparisons stop when the first element of v1 is
less than an element of argument vz. This ele­
ment of argument vz is the object of the search.
The number of elements that precede that target
element in argument vz is the result of the
successful search. The function puts this result
into the first element of argument u, If the
search is unsuccessful, its result is the total
number of elements in argument vz, and the func­
tion assigns this number to the first element of
argument u,

For example, if input argument v1 is a vector I
that consists of the elements 3.0 0.0 9,0 5.0 and
input argument v2 is a vector that consists of
the elements 2.0 1.0 4.0 5.0, the function ref­
erence Q8VLTI(v1,vz;u) assigns the values 2 0 4
4 to the output argument u, See figure 10-2. 2 for
an illustration of this example.

There are no specific vector function names.

u 2 0 4 4

t t t t
V1 3.0 o.o 9.0 5.0
~ ___ "" -

V2 2.0 1.0 .o 5.0

t Shows assignment of search result to
element of output argument u.

./"' Shows first comparison where element of
argument V1 is Less than element of
argument V2.

' , Shows unsuccessfu L search.

Figure 10-2.2. Q8VLTI Function Example

60480200 H

QSVMASK

Q8VMASK(vI,v2,cv;u) is a generic vector function
that creates a vector, each element of which has
the same value as its corresponding element in
input argument vI or input argument v2. The
input arguments vI and v2 must be two vectors,
a scalar and a vector, or two scalars. The input
arguments vI and v2 can be of type integer,
real, or half-precision, but both input arguments
must be of the same data type. The input argument
cv, which is used as the control vector, must be a
vector of type bit. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result. The length of the
output argument must be the same as the length of
the input argument cv, or longer. If input argument
VI or input argument v2 is a scalar, it is
treated as if it were a vector of the appropriate
length with all elements having the value of the
scalar.

If an element in the control vector cv contains a I
bit, the corresponding element in the output argu­
ment is assigned the value of the corresponding
element in input argument vI• If an element in
the control vector cv contains a 0 bit, the corre­
sponding element in the output argument is assigned
the value of the corresponding element in the input
argument v2 ,

For example, if input argument vI is a vector
that consists of the elements 1 2 3 4, input argu­
ment v2 is a vector that consists of the elements
0 1 2 3, and input argument cvl is a bit vector
that consists of the elements 0 1 0 l; the function
reference Q8VMASK(vI,v2,cvI;u1) assigns the
values 0 2 2 4 to the output argument u1• If
input argument sI is a scalar that has the value
5, input argument v2 is a vector that consists of
the elements 0 1 2 3, and input argument cvI is a
bit vector that consists of the elements 0 I 0 I;
the function reference QBVMASK(sI,v2,cvI;uI)
assigns the values 0 5 2 5 to the output argument
u1.

There are no specific vector function names.

Q8VMERG

Q8VMERG(v1,v2,cv;u) is a generic vector function
that merges the input arguments v1 and v2 into
a single output argument. The input arguments vi
and v2 must be two vectors. The input arguments
vi and v2 can be of type integer, real, or
half-precision, but both input arguments must be of
the same data type. The input argument cv, which
is used as the control vector, must be a vector of
type bit. The output argument can be a vector of
the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result. The length of the output
argument must be the same as the length of the
input argument cv, or longer.

If an element in the control vector cv contains a 1
bit, the corresponding element in the output
argument is assigned the value of the first element
in input argument v1 that has not already been
assigned to the output argument. If an element in
the control vector cv contains a 0 bit, the corre­
sponding element in the output argument is assigned

60480200 H

the value of the first element in input argument
v2 that has not already been assigned to the
output argument.

For example, if input argument v1 is a vector
that consists of the elements 1 5 7 9, input argu­
ment v2 is a vector that consists of the elements
0 3 4 8, and input argument cv1 is a bit vector
that consists of the elements 0 1 0 0 I 1 0 l; the
function reference Q8VMERG(v1,v2,cv1;u1)
assigns the values 0 1 3 4 5 7 8 9 to the output
argument u 1•

There are no specific vector function names.

Q8VMKO

Q8VMKO(a1,a2;u) is a generic vector function
that creates a bit vector that consists of all 1
bits, all 0 bits, or a pattern of 1 bits and 0 bits
beginning with a 1 bit. The input arguments must
be two scalar constants of type integer. The
output argument can be a vector of type bit, or an
integer expression that specifies the length of the
vector function result. The output argument can be
of any length.

The function assigns a1 bits followed by (a2
-a1) 0 bits to the output argument. This pattern
of bi ts is repeated until the output argument is
filled.

For example, if input argument s1 is a scalar that
has the value 1, input argument s 2 is a scalar
that has the value 3, and output argument u 1 is a
bit vector that consists of 10 elements; the func­
tion reference Q8VMKO(s1,s2;u1) assigns the
values 1 0 0 1 0 0 1 0 0 1 to the output argument
ul• If input argument s1 is a scalar that has
the value 0, input argument s2 is a scalar that
has the value 1, and output argument u 1 is a bit
vector that consists of four elements; the function
reference Q8VMKO(s1,s2;u1) assigns the values
0 0 0 0 to the output argument ul•

There are no specific vector function names.

Q8VMKZ

Q8VMKZ(a1,a2;u) is a generic vector function
that creates a bit vector that consists of all 0
bits, all 1 bits, or a pattern of 0 bits and 1 bits
beginning with a 0 bit. The input arguments must
be two scalar constants of type integer. The output
argument can be a vector of type bit, or an integer
expression that specifies the length of the vector
function result. The output argument can be of any
length,

The function assigns a pattern of a2 bits consist­
ing of a1 0 bits followed by (a2 - a1) 1 bits
to the output argument. This pattern of bits is
repeated until the output argument is filled.

For example, if input argument s 1 is a scalar that
has the value 1, input argument s2 is a scalar
that has the value 3, and output argument u1 is a
bit vector that consists of 10 elements; the func­
tion reference Q8VMKZ{s1,s2;u1) assigns the
values 0 1 1 0 1 1 0 1 1 0 to the output argument
u1. If input argument s1 is a scalar that has
the value 0, input argument s2 is a scalar that

10-27

I has the value 1, and output argument
vector that consists of four elements;
reference Q8VMKZ(s1,sz;u1) assigns
1 1 1 1 to the output argument u1,

ul is a bit
the function
the values

I

There are no specific vector function names.

Q8VNEI

Q8VNEI(vl>v2;u) is a generic vector function,
For each element of the first argument, vector
v1, Q8VNEI returns a nonnegative integer that is
a count of certain elements in the second argument,
vector v2, The count is of the elements that
precede the first element in v2 that is not equal
to the element of v1• The input arguments must
be two vectors and can be of type real or half­
precision. The output argument can be a vector of
type integer, or an integer expression that speci­
fies the length of the vector function result, The
input arguments can have different lengths, but the
output argument must not be shorter than the input
argument v1,

The function searches argument v2 for an element
that is not equal to the first element of v1• If
the function finds such an element, it assigns to
the first element of the output argument the number
of elements that precede that element in argument
v2. If the function does not find such an ele­
ment, it returns the number of elements in argument
v2, The function repeats this operation for each
element of argument v1, assigning the result to
the corresponding element of the output argument.

For example, if input argument vl is a vector
that consists of the elements 4.0 2.0 4.0 2.0 and
input argument v2 is a vector that consists of
the elements 4.0 4.0 1.0 2.0, the function ref-
erence Q8VNEI(v1,v2;u1) assigns the values 2
0 2 0 to the output argument u1.

There are no specific vector function names.

Arguments

V1 o.o 50.0

11 2

N1 4

U1 9.0 9,0

Function Reference

Q8VSCATP CV1,I1,N1;U1)

Result

U1 o.o 9.0

-1.0

9.0

so.a

Q8VREV

QBVREV(v;u) is a generic vector function that moves
the elements of the input argument into the output
argument such that the elements of the output argu­
ment are in reverse order, The input argument must
be a vector and can be of type integer, real, or
half-precision. The output argument can be a vector
of the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result. The output argument must
be the same length as the input argument.

For example, if input argument
that consists of the elements 1 2
reference Q8VREV(v1;u1) assigns
2 1 to the output argument u1,

v1 is a vector I
3 4, the function
the values 4 3

There are no specific vector function names,

Q8VSCATP

QBVSCATP(v,i,n;u) is a generic vector function that
replaces selected elements of an output vector with
elements from another vector or with a scalar. The
.input argument v can be a vector or a scalar and
can be of type integer, half-precision, or real,
The input arguments i and n must be scalars of type
integer. The output argument u must be a vector of
the same data type as the input argument v.

If input argument v is a vector, the input argu­
ments i and n determine which elements and the
number of elements to be replaced. The first
element of v replaces the first element of u.
Succeeding elements of v replace every ith element
thereafter of u, until n elements of u have been
replaced, In general, for l(=j(=n, vj replaces

ul+(j-l)*i•

See figure 10-3 for an example of the Q8VSCATP
function, in which the input argument v is a vector.
Input arguments i1 and n1 are integer scalars,
and output argument u1 is a real vector, The
example shows the status of u1 before and after
the call to Q8VSCATP,

60.0

9.0 9.0 9.0 9.0 9.0

9.0 -1.0 9.0 60.0 9.0

I

Figure 10-3. Q8VSCATP Function Example With Vector Input Argument

10-28 60480200 H

If input argument v is a scalar, the input argu­
ments i and n determine the elements of the output
argument that are to be replaced by the input argu­
ment v. The value of v replaces the first element
of the output argument, and every ith element
thereafter, until n elements are replaced.

See figure 10-4 for an example of the Q8VSCATP
function in which the input argument v is a
scalar. The example shows the status of the output
argument Ul before and after the call to Q8VSCATP,

The number of elements replaced in the output
argument is determined by the value of the input
argument n. The lengths of the input argument v or
of the output argument have no effect on the number I of elements replaced, If the value of n exceeds
the number of elements in either the input argument
v or the output argument, the results are unpre­
dictable.

ArgUlllent s

V1

11

N1

-1.0

2

4

This function contrasts with the the generic vector
function Q8VGATHP.

There are no specific vector function names.

Q8VSCATR

Q8VSCATR(v,i;u) is a generic vector function that
creates a vector consisting of selected elements of
the input argument v. The input argument v must be
a vector and can be of type integer, real, or half­
precision. The input argument i must be a vector
of type integer. The output argument lllUSt be a
vector of the same data type as the input argument
v. The input arguments v and i should be the same
length. The output argument length should be not
less than the greatest integer in the input
argument i.

U1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0

Function Reference

Q8VSCATP <V1,I1,N1;U1>

U1 -1.0 9.0 -1.0 9.0 -1.0 9.0 -1.0 9.0

Figure 10-4. Q8VSCATP Function Example With Scalar Input Ar9U111ent

__)

60480200 E 10-28.1/10-28.2

Each element of the input argument v corresponds to
an element in input argument i. The elements in
input argument i indicate to which elements in the
output argument the elements in input argument v
are assigned. For example, if an element of i con­
tains a 1, the element of input argument v that
corresponds to that element in i is assigned to the
first element of the output argument. An element
of the output argument can be assigned more than
one value; the last value an element is assigned is
the value that it retains.

For example, if input argument v1 is a vector
that consists of the elements 2.0 4.0 6.0 8.0,
input argument i 1 is a vector that consists of
the elements 1 4 4 2, and output argument u1 is a
vector that consists of the elements 9.0 9.0 9.0 9.0
9.0; the function reference Q8VSCATR(v1 ,i1;u1)
assigns the values 2.0 8.0 9.0 6.0 9.0 to the out­
put argument u1. The fourth element of the output
argument is assigned the value 4.0, but is then
reassigned the value 6.0. The third element of the
output vector is never assigned; therefore, it
retains its previous value. See figure 10-5 for an
illustration of this example.

V1 2.0 4.0 6.0 8.0

I I I I
11 1 4 4 2

I ~ U1 2.0 8.0 9.0 6.0 9.0

Figure 10-5. Q8VSCATR Function Example

This function contrasts with the generic vector
function Q8VGATHR.

There are no specific vector function names.

QBVXPND

Q8VXPND(v ,cv;u) is a generic vector function that
creates a vector that consists of the elements of
input argument v plus additional elements having
the value 0 or 0.0. The input argument v must be a
vector of type integer, real, or half-precision.
The input argument cv, which is used as the control
vector, must be a vector of type bit. The output
argument can be a vector of the same data type as
the input argument, or an integer expression that
specifies the length of the vector function result.
The length of the output argument must be the same
as the length of the input argument cv.

There is a one-to-one positional correspondence
between the elements of the output vector (u) and
the control vector (cv). For each position in the
control vector (cv) that contains a 1, there will
be a value in the output vector (u) in the same
corresponding position. For each position in the
control vector (cv) that contains a 0, there will
be a 0 or 0.0 in the output vector (u) in the same
corresponding position. The values that the con­
trol vector inserts into the output vector come
from a third vector, the input vector. The input
vector is an ordered list of the values to be
placed in the output vector.

60480200 H

For example, if v1 is an input vector comprising I
the ordered elements 5.0 15.0 25.0 and if cv1 is
a control vector comprising the elements l 0 0 1,
then Q8VXPND(v1,cv1;u1) would create the
output vector u1 comprising the ordered elements
5.0 o.o 0.0 15.0.

There are no specific vector function names.

RANF

RANF() is a specific scalar function that returns a
random number from 0 to 1. The parentheses are
required, but an argument is not required. You can
supply one argument of any data type, but the argu­
ment is ignored. The result is of type real. The
multiplicative congruential method modulo 247 is
used to generate the next random number in the
sequence:

xn+l = (a*xn) mod 247

The value of multiplier a is X'00004C65DA2C866D'.
The seed can be obtained and reset by using the
predefined subroutines RANGET and RANSET, re­
spectively. The default value of the seed is
X'000054F4A3B933BD'. A vector of random numbers
can be generated by using the predefined subroutine
VRANF.

There is no generic scalar function name.

REAL

REAL(a) is a generic scalar function that converts
the argument into a real value. The argument can
be of type integer, real, double-precision, half­
precision, or complex. The result is of type real.

REAL is also a specific scalar function that accepts
an integer argument and returns a real result. The
other specific scalar function names are FLOAT,
SNGL, and EXTEND.

RPROD

RPROD(a1 ,a2) is a specific scalar function that
returns the product of the two arguments, The ar­
guments must be of type half-precision. The result
is of type real. See table 10-3 for the domain and
range of the function. There is no generic scalar
function name.

SECOND

SECOND() is a specific scalar function that returns
the amount of central processor time that has
elapsed since the job began. The parentheses are
required, but an argument is not required. You can
supply one argument of any data type, but the argu­
ment is ignored. The result is of type real. The
result is expressed in seconds, and is precise to
within l microsecond.

There is no generic scalar function name.

10-29

SIGN

SIGN(a1,a2) is a generic scalar function that
combines the magnitude of the first argument with
the sign of the second argument. The arguments can
be of type integer, real, double-precision, or
half-precision, but both arguments must be of the
same data type. The result is of the same data type
as the arguments.

SIGN is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are !SIGN,
DSIGN, and HSIGN.

SIN

SIN(a) is a generic scalar function that returns
the sine of the argument. The argument can be of
type real, double-precision, half-precision, or
complex and is expressed in radians. The result is
of the same data type as the argument. See table
10-3 for the domain and range of the function.

SIN is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DSIN,
HSIN, and CSIN.

SINH

SINH(a) is a generic scalar function that returns
the hyperbolic sine of the argument. The argument
can be of type real, double-precision, or half­
precision. The result is of the same data type as
the argument. See table 10-3 for the domain and
range of the function.

SINH is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DSINH and
HSINH.

SNGL

SNGL(a) is a specific scalar function that converts
the argument into a real value. The argument must
be of type double-precision. The result is of type
real. The generic scalar function name is REAL.

SQRT

SQRT(a) is a generic scalar function that returns
the square root of the argument. The argument can
be of type real, double-precision, half-precision,
or complex. The result is of the same data type as
the argument. See table 10-3 for the domain and
range of the function.

SQRT is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DSQRT,
HSQRT, and CSQRT.

10-30

TAN

TAN(a) is a generic scalar function that returns
the tangent of the argument. The argument can be
of type real, double-precision, or half-precision
and is expressed in radians. The result is of the
same data type as the argument. See table 10-3 for
the domain and range of the function.

TAN is also a specific scalar function that accepts
a real argument and returns a real result. The
other specific scalar function names are DTAN and
HTAN.

TANH

TANH(a) is a generic scalar function that returns
the hyperbolic tangent of the argument. The ar­
gument can be of type real, double-precision, or
half-precision. The result is of the same data
type as the argument. See table 10-3 for the
domain and range of the function.

TANH is also a specific scalar function that ac­
cepts a real argument and returns a real result.
The other specific scalar function names are DTANH
and HTANH.

TIME

TIME() is a specific scalar function that returns
the current time. The parentheses are required,
but an argument is not required. You can supply
one argument of any data type, but the argument is
ignored. The result is a character string of the
form hh:mm:ss, where hh represents the hour, mm
represents the minute, and ss represents the second.

There is no generic scalar function name.

VABS

VABS(v;u) is a generic vector function that returns
the absolute value of each element of the input
argument. The input argument must be a vector and
can be of type integer, real, half-precision, or
complex. The output argument can be a vector of
the same data type as the input argument unless the
input argument is of type complex. For a complex
input argument, the output argument must be of type
real. The output argument can be an integer that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of ABS(a), where a is the corresponding ele­
ment in the input argument. ABS is a generic scalar
function.

VABS is also a specific vector function that accepts
a real vector input argument and returns a real
vector output argument. The other specific vector
function names are VIABS, VHABS, and VCABS.

60480200 D

VACOS

VACOS(v;u) is a generic vector function that returns
the arccosine of each element of the input argument.
The input argument must be a vector and can be of
type real or half-preci.sion. The output argument
can be a vector of the same data type as the input
argument, or an integer expression that specifies
the length of the vector function result.

Each element of the output argument is assigned the
result of ACOS(a), where a is the corresponding
element in the input argument. ACOS is a generic
scalar function.

VACOS is also a specific vector function that
accepts a real vector input argument and returns a
real vector output argument. The other specific
vector function name is VHACOS.

VAIMAG

VAIMAG(v;u) is a specific vector function that
returns the imaginary part of each element of the
input argument. The input argument must be a vec­
tor of type complex. The output argument can be a
vector of type real, or an integer expression that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of AIMAG(a), where a ts the corresponding
element in the input argument. AIMAG is a specific
scalar function.

There is no generic vector function name.

VAINT

VAINT(v;u) is a generic vector function that trun­
cates the fractional part of the each element of
the input argument and returns the whole number
part of each element of the input argument. The
input argument must be a vector and can be of type
real or half-precision. The output argument can be
a vector of the same data type as the input argu­
ment, or an integer expression that specifies the
length of the vector function result.

Each element of the output argument is assigned the
result of AINT(a), where a is the corresponding
element in the input argument. AINT is a generic
scalar function.

VAINT is also a specific vector function that
accepts a real vector input argument and returns a
real vector output argument. The other specific
vector function name is VHINT.

VALOG

VALOG(v;u) is a specific vector function that
returns the natural logarithm of each element of
the input argument. The input argument must be a
vector of type real. The output argument can be a
vector of type real, or an integer expression that
specifies the length of the vector function result.

60480200 D

Each element of the output argument is assigned the
result of ALOG(a), where a is the corresponding
element in the input argument. ALOG is a specific
scalar function.

The generic vector function name is VLOG.

VALOG10

VALOGlO(v;u) is a specific vector function that
returns the common logarithm of each element of the
input argument. The input argument must be a vec­
tor of type real. The output argument can be a
vector of type real, or an integer expression that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of ALOGlO(a), where a is the corresponding
element in the input argument. ALOGlO is a specific
scalar function.

The generic vector function name is VLOGlO.

VAMOD

VAMOD(v1, vz; u) is a specific vector function
that returns the result of the elements of first
input argument modulo the corresponding elements in
the second input argument. The input arguments must
be vectors of type real. The output argument can
be a vector of type real, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of AMOD(a1,a2), where a1 and az are
corresponding elements of the input arguments v1
and vz respectively. AMOD is a specific scalar
function.

The generic vector function name is VMOD.

VANINT

VANINT(v;u) is a generic vector function that
returns the whole number that is nearest to each
element of the input argument. The input argument
must be a vector and can be of type real or half­
prec1s1on. The output argument can be a vector of
the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result.

Each element of the output argument is assigned the
result of ANINT (a), where a is the corresponding
element in the input argument. ANINT is a generic
seal ar function.

VANINT is also a specific vector function that
accepts a real vector input argument and returns a
real vector output argument. The other specific
vector function name is VHNINT.

10-31

YASIN
VASIN(v;u) is a generic vector function that returns
the arcsine of each element of the input argument.
The input argument must be a vector and can be of
type real or half-precision. The output argument
can be a vector of the same data type as the input
argument, or an integer expression that specifies
the length of the vector function result.

Each element of the output arg1.111ent is assigned the
result of ASIN(a), where a is the corresponding
element in the input argument. ASIN is a generic
scalar function.

VASIN is also a specific vector function that
accepts a real vector input argument and returns a
real vector output argument. The other specific
vector function name is VHASIN.

VAT AN

VATAN(v; u) is a generic vector function that returns
the arctangent of each element of the input argu­
ment. The input argument must be a vector and can
be of type real or half-precision. The output
argument can be a vector of the same data type as
the input argument, or an integer expression that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of ATAN(a), where a is the corresponding
element in the input argument. ATAN is a generic
scalar function.

VATAN is also a specific vector function that
accepts a real vector input argument and returns a

10-32

-'fe~l , vector output argument. The other specific
:vector function name is VHATAN.

VATAN2

VATAN2(v1 ,vz;u) is a generic vector function
that returns the arctangent of the ratio of each
corresponding pair of input arguments. The input
arguments must be vectors and can be of type real
or half-precision. Both input arguments must be of
the same data type. Two corresponding elements of
the input arguments must not both be O. The output
argument can be a vector of the same data type as
the input argument, or an integer expression that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of ATAN2(a1,az), where a 1 and az are
the corresponding elements in input arguments v1
and vz· ATAN2 is a generic scalar function.

VATAN2 is also a specific vector function that
accepts two real vector input arguments and returns
a real vector output argument. The other specific
vector function name is VHATAN2.

VCABS

VCABS(v;u) is a specific vector function that
computes the modulus of each element of the input
argument and returns results that are greater than
or equal to O. The input argument must be a vector
of type complex. The output argument can be a
vector of type real, or an integer expression that
specifies the length of the vector function result.

60480200 D

Each element of the output argument is assigned the
result CABS(a), where a is the corresponding ele­
ment in the input argument. CABS is a specific
scalar function.

The generic vector function name is VABS.

vccos
VCCOS(v;u) is a specific vector function that
returns the cosine of each element of the input
argument. The input argument must be a vector of
type complex. The output argument can be a vector
of the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result.

Each element of the output argument is assigned the
result of CCOS(a), where a is the corresponding
element in the input argument. CCOS is a specific
scalar function.

The generic vector function name is VCOS.

VCEXP
VCEXP(v;u) is a specific vector function that com­
putes the exponential of each element of the input
argument. The input argument must be a vector of
type complex. The output argument can be a vector
of the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result.

Each element of the output argument is assigned the
result of CEXP(a), where a is the corresponding
element in the input argument. CEXP is a specific
scalar function.

The generic vector function name is EXP.

VCLOG

VCLOG(v;u) is a specific vector function that
returns the natural logarithm of each element of
the input argument. The input argument must be a
vector of type complex. The output argument can be
a vector of the same data type as the input argu­
ment, or an integer expression that specifies the
length of the vector function result.

Each element of the output argument is assigned the
result of CLOG(a), where a is the corresponding
element in the input argument. CLOG is a specific
scalar function.

The generic vector function name is VLOG.

VCMPLX

The vector function VCMPLX has
VCMPLX(v;u) and VCMPLX(v1,v2;u).

two forms:

VCMPLX(v;u) is a generic vector function that
converts each element of the input argument into a
complex value. The input argument must be a vector
and can be of type integer, real, half-precision,
or complex. The output argument can be a vector of
type real, or an integer expression that specifies
the length of the vector function result.

60480200 A

Each element of the output argument is assigned the
result of CMPLX(a), where a ls the corresponding
element in the input argument. CMPLX is a generic
scalar function.

VCMPLX(vltv2;u) is a generic vector function
that converts each corresponding pair of elements
in the input arguments into a complex value. The
input arguments must be vectors and can be of type
real or half-precision. Both input arguments must
be of the same data type. The output argument can
be a vector of type real, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of CMPLX(a1,a2), where ai and a2 are
corresponding elements in the input arguments.
CMPLX is a generic scalar function,

There are no specific vector function names.

VCONJG

VCONJG(v;u) is a specific vector function that
returns the conjugate of each element of the input
argument. The input argument must be a vector of
type complex. The output argument can be a vector
of the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result.

Each element of the output argument is assigned the
result of CONJG(a), where a is the corresponding
element in the input argument. CONJG is a specific
scalar function.

There is no generic vector function name,

vcos
VCOS(v;u) is a generic vector function that returns
the cosine of each element of the input argument.
The input argument must be a vector and can be of
type real, half-precision, or complex. The output
argument can be a vector of the same data type as
the input argument, or an integer expression that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of COS(a), where a is the corresponding
element in the input argument. COS is a generic
scalar function.

VCOS is also a specific vector function that accepts
a real vector input argument and returns a real
vector output argument. The other <Jpecific vector
function names are VHCOS and VCCOS.

VCSIN

VCSIN(v; u) is a spec:i.fic vector function that
returns the sine of each element of the input argu­
ment. The input argument must be a vector of type
complex. The output argument can be a vector of the
same data type as the input argument, or an integer
expression that specifies the length of the vector
function result.

10-33

Each element of the output argument is assigned the
result of CSIN(a), where a is the corresponding
element in the input argument. CSIN is a specific
scalar function.

The generic vector function ruuae is VSIN.

VCSQRT

VCSQRT(v;u) is a specific vector function that
returns the square root of each element of the input
argument. The input argument must be a vector of
type complex. The real part of each element of the
input argument must be greater than or equal to 0,
The output argument can be a vector of the same
data type as the input argument, or an integer
expression that specifies the length of the vector
function result,

Each element of the output argument is assigned the
result of CSQRT(a), where a is the corresponding
element in the input argument. CSQRT is a specific
scalar function.

The generic vector function name is VSQRT.

VDBLE

VDBLE(v;u) is a generic vector function that
converts each element of the input argument into a
double-precision value, The input argument must be
a vector and can be of type real. The output argu­
ment can be a vector of type double-precision, or
an integer expression that specifies the length of
the vector function result.

Each element of the output argument is assigned the
result of DBLE(a), where a is the corresponding
element in the input argument. DBLE is a generic
scalar function.

There are no specific vector function names.

VDIM

VDIM(v1,vz;u) is a generic vector function that
returns the positive difference between each corre­
sponding pair of input arguments, The input argu­
ments must be vectors and can be of type integer,
real, or half-precision. Both input arguments must
be of the same data type. The output argument can
be a vector of the same data type as the input
argument, or an integer expression that specifies
the length of the vector function result,

Each element of the output argument is assigned the
result of DIM(a1,a2), where a 1 and az are
corresponding elements of the input arguments. DIM
is a generic scalar function.

VDIM is also a specific vector function that accepts
a real vector input argument and returns a real
vector output argument. The other specific vector
function names are VIDIM and VHDIM.

VEXP

VEXP(v;u) is a generic vector function that returns
the exponential of each element of the input argu­
ment. The input argument must be a vector and can

10-34

be of type real, half-preeisiOn, or complex. The
output argument can be a vector of the same data
type as the input argument, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of EXP(a), where a is the corresponding
element in the input argument. EXP is a generic
scalar function.

VEXP is also a specific vector function that accepts
a real vector input argument and returns a real
vector output argument. The other specific vector
function names are VHEXP and VCEXP.

VEXTEND

EXTEND(v;u) is a specific vector function that
converts each element of the input argument into a
real value. The input argument must be a vector of
type half-precision, The output argument can be a
vector of type real, or an integer expression that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of EXTEND(a), where a is the corresponding
element in the input argument. EXTEND is a speci­
fic scalar function.

The generic vector function name is VREAL.

VFLOAT

VFLOAT(v;u) is a specific vector function that
converts each element of the input argument into a
real value. The input argument must be a vector of
type integer. The output argument can be a vector
of type real, or an integer expression that speci­
fies the length of_ the vector function result,

Each element of the output argument is assigned the
result of FLOAT(a), where a is the corresponding
element in the input argument. FLOAT is a specific
scalar function.

The generic vector function name is VREAL.

VHABS

VHABS(v;u) is a specific vector function that re­
turns the absolute value of each element of the in­
put argument. The input argument must be a vector
of type half-precision. The output argument can be
a vector of the same data type as the input argu­
ment, or an integer expression that specifies the
length of the vector function result.

Each element of the output argument is assigned the
result of HABS(a), where a i.s the corresponding
element in the input argument. BABS is a specific
scalar function.

The generic vector function name is VABS.

VHACOS

VHACOS(v;u) is a specific vector function that re­
turns the arccosine of each element of the input
argument, The input argument must be a vector of

60480200 A

type half-precision. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

Each element of the output argument is assigned the
result of HACOS(a), where a is the corresponding
element in the input argument. HACOS is a specific
scalar function.

The generic vector function name is VACOS.

VHALF

VHALF(v;u) is a generic vector function that con­
verts each element of the input argument into a
half-precision value. The input argument must be a
vector and can be of type integer, real, half­
precision, or complex. The output argument can be
a vector of type half-precision, or an integer
expression that specifies the length of the vector
function result.

Each element of the output argument is assigned the
result of HALF(a), where a is the corresponding
element in the input argument. HALF is a generic
scalar function.

There are no specific vector function names.

VHASIN

VHASIN(v;u) is a specific vector function that
returns the arcsine of each element of the input
argument. The input argument must be a vector of
type half-precision. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

Each element of the output argument is assigned the
result of HASIN(a), where a is the corresponding
element in the input argument. HASIN is a specific
scalar function.

The generic vector function name is VASIN.

VHATAN

VHATAN(v;u) is a specific vector function that re­
turns the arctangent of each element of the input
argument. The input argument must be a vector of
type half-precision. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

Each element of the output argument is assigned the
result of HATAN(a), where a is the corresponding
element in the input argument. HATAN is a specific
scalar function.

The generic vector function name is VATAN.

60480200 A

VHATAN2

VHATAN2(v1,vz;u) is a specific vector function
that returns the arctangent of the ratio of each
corresponding pair of input arguments. The input
arguments must be vectors of type half-precision.
Two corresponding elements of the input arguments
must not both be O. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

Each element of the output argument is assigned the
result of HATAN2(a1,az), where a1 and az
are corresponding elements of the input arguments.
HATAN2 is a specific scalar function.

The generic vector function name is VATAN2.

VHCOS

VHCOS(v;u) is a specific vector function that
returns the cosine of each element of the input
argument. The input argument must be a vector of
type half-precision. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

Each element of the output argument is assigned the
result of HCOS(a), where a is the corresponding
element in the input argument. HCOS is a specific
scalar function.

The generic vector function name is VCOS.

VHDIM

VHDIM(v1 ,vz;u) is a specific vector function
that returns the positive difference between each
pair of corresponding input arguments. The input
arguments must be vectors of type half-precision.
The output argument can be a vector of the same
data type as the input argument, or an integer
expression that specifies the length of the vector
function result.

Each element of the output argument is assigned the
result of HDIM(a1,az), where a1 and az are
corresponding elements of the input arguments.
HDIM is a specific scalar function.

The generic vector function name is VDIM.

VHEXP

VHEXP(v;u) is a specific vector function that re­
turns the exponential of each element of the input
argument. The input argument must be a vector of
type half-precision. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

10-35

Each element of the output argument is assigned the
result of HEXP(a), where a is the corresponding
element in the input argument. HEXP is a specific
scalar function.

The generic vector function name is VEXP.

VHINT

VHINT(a) is a specific vector function that trun­
cates the fractional part of each element of the
input argument and returns the whole number part of
each element of the input argument. The input
argument must be a vector of type half-precision.
The output argument can be a vector of the same data
type as the input argument, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of HINT(a), where a is the corresponding
element in the input argument. HINT is a specific
scalar function.

The generic vector function name is VAINT.

VHLOG

VHLOG(v;u) is a specific vector function that re­
turns the natural logarithm of each element of the
input argument. The input argument must be a vec­
tor of type half-precision. The output argument
can be a vector of the same data type as the input
argument, or an integer expression that specifies
the length of the vector function result.

Each element of the output argument is assigned the
result of HLOG(a), where a is the corresponding
element in the input argument. HLOG is a specific
scalar function.

The generic vector function name is VLOG.

VHLOG10

VHLOGlO(v;u) is a specific vector function that
returns the coDDnon logarithm of each element of the
input argument. The input argument must be a vec­
tor of type half-precision. The output argument
can be a vector of the same data type as the input
argument, or an integer expression that specifies
the length of the vector function result.

Each element of the output argument is assigned the
result of HLOG!O(a), where a is the corresponding
element in the input argument. HLOGlO is a specific
scalar function.

The generic vector function name is VLOGlO.

VHMOD

VHMOD(v1, v2; u) is a specific vector function
that returns the result of the elements of first
input argument modulo the corresponding elements in
the second input argument. The input arguments
must be vectors of type half-precision. The output
argument can be a vector of the same data type as
the input argument, or an integer expression that
specifies the length of the vector function result.

10-36

Each element of the output argument is assigned the
result of HMOD(a1,a2), where a1 and a2 are
corresponding elements in the input argument. BMOD
is a specific scalar function.

The generic vector function name is VMOD.

VHNINT

VHNINT(v;u) is a specific vector function that
returns the whole number that is nearest to each
element of the input argument. The input argument
must be a vector of type half-precision. The output
argument can be a vector of the same data type as
the input argument, or an integer expression that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of HNINT(a), where a is the corresponding
element in the input argument. HNINT is a specific
scalar function.

The generic vector function name is VANINT.

VHSIGN

VHSIGN(v1,v2;u) is a specific vector function
that combines the magnitude of each element of the
first input argument with the sign of the corre­
sponding element in the second input argument. The
input arguments must be vectors of type half­
precision. The output argument can be a vector of
the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result.

Each element of the output argument is assigned the
result of HSIGN(a1,a2), where a1 and a2 are
the corresponding elements in the input arguments.
HSIGN is a specific scalar function.

The generic vector function name is VSIGN.

VHSIN

VHSIN(v;u) is a specific vector function that
returns the sine of each element of the input argu­
ment. The input argument must be a vector of type
half-precision. The output argument can be a vector
of the same data type as the input argument, or an
integer expression that specifies the length of the
vector function result.

Each element of the output argument is assigned the
result of HS IN(a), where a is the corresponding
element in the input argument. HSIN is a specific
scalar function.

The generic vector function name is VSIN.

VHSQRT

VHSQRT(v;u) is a specific vector function that re­
turns the square root of each element of the input
argument. The input argument must be a vector of
type half-precision. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

60480200 A

Bach element of the output argument is assigned the
result of HSQRT(a), where a is the corresponding
element in the input argument. RSQRT is a specific
scalar function.

The generic vector function name is VSQRT.

VHTAN

VRTAN(v;u) is a specific vector function that
returns the tangent of each element of the input
argument, The input argument must be a vector of
type half-precision, The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

Each element of the output argument is assigned the
result of HTAN(a), where a is the corresponding
element in the input argument. HTAN is a specific
scalar function.

The generic vector function name is VTAN.

VIABS

VIABS(v;u) is a specific vector function that
returns the absolute value of each element of the
input argument. The input argument must be a vec­
tor of type integer. The output argument can be a
vector of the same data type as the input argument,
or an integer expression that specifies the length
of the vector function result.

Each element of the output argument is assigned the
result of IABS(a), where a is the corresponding
element in the input argument. IABS is a specific
scalar function.

The generic vector function name is VABS.

VIDIM

VIDIM(v1,vz;u) is a specific vector function
that returns the positive difference between each
corresponding pair of input arguments. The input
arguments must be vectors of type integer. The
output argument can be a vector of the same data
type as the input argument, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of IDIM(a1,az), where al and az are
the corresponding elements in the input arguments.
IDIM is a specific scalar function.

The generic vector function name is VDIM.

VIFIX

VIFIX(v;u) is a specific vector function that con­
verts each element of the input argument into an
integer value. The input argument must be a vector
of type real. The output argument can be a vector
of ty?e integer, or an integer expression that
specifies the length of the vector function result.

60480200 A

Bach element of the output argument is assigned the
result of IFIX(a), where a is the corresponding
element in the input argument. IFIX is a specific
scalar function.

The generic vector function I18111e is VINT.

VIHINT

VIHINT(v;u) is a specific vector function that con­
verts each element of the input argument into an
integer value, The input argument must be a vector
of type half-precision, The output argument can be
a vector of type integer, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of IHINT(a), where a is the corresponding
element in the input argument. IHINT is a specific
scalar function.

The generic vector function name is VINT.

VIHNINT

VIHNINT(v;u) is specific vector function that re­
turns the integer that is nearest to each element
of the input argument, The input argument must be
a vector of type half-precision, The output argu­
ment can be a vector of type integer, or an integer
expression that specifies the length of the vector
function result.

Each element of the output argument is assigned the
result of IHNINT(a), where a is the corresponding
element in the input argument, IHNINT is a speci­
fic scalar function.

The generic vector function name is VNINT.

VINT

VINT(v; u) is a generic vector function that con­
verts each element of the input argument into an
integer value, The input argument must be a vector
and can be of type integer, real, half-precision,
or complex, The output argument can be a vector of
type integer, or an integer expression that speci­
fies the length of the vector function result.

Each element of the output argument is assigned the
result of INT(a), where a is the corresponding ele­
ment in the input argument, INT is a generic scalar
function.

VINT is also a specific vector function that accepts
a real vector input argument and returns an integer
vector output argument. The other specific vector
function names are VIFIX and VIHINT.

VISIGN

VISIGN(v1, v2 ;u) is a specific vector function
that combines the magnitude of each element of the
first input argument with the sign of the corre­
sponding element in the second input argument. The

10-37

input arglDDents must be vectors of type integer.
The output arglDDent can be a vector of the same
data type as the input arglDDent, or an integer
expression that specifies the length of the vector
function result.

Each element of the output argument is assigned the
result of ISIGN(ai.az), where a 1 and a 2 are
the corresponding elements in the input arguments.
!SIGN is a specific scalar function.

The generic vector function name is VSIGN.

VLOG

VLOG(v;u) is a generic vector function that returns
the natural logarithm of each element of the input
argument. The input arglDDent must be a vector and
can be of type real, half-precision, or complex.
The output argument can be a vector of the same
data type as the input argument, or an integer
expression that specifies the length of the vector
function result.

Each element of the output argument is assigned the
result of LOG(a), where a is the corresponding ele­
ment in the input argl.Dllent. LOG is a generic scalar
function.

The specific vector function names are VALOG, VHLOG,
and VCLOG.

VLOG10

VLOGlO(v;u) is a generic vector function that
returns the common logarithm of each element of the
input arglDDent. The input arglDDent must be a vector
and can be of type real or half-precision. The
output arglDDent can be a vector of the same data
type as the input argument, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of LOGlO(a), where a is the corresponding
element in the input arglDDent. LOGlO is a generic
seal ar function •

The specific vector function names are VALOGlO and
VHLOGlO.

VMOD

VMOD(v1,vz;u) is a generic vector function that
returns the result of the elements of first input
argument modulo the corresponding elements in the
second input arglDDent. The input arglDDents must be
vectors and can be of type integer, real, or half­
precision. Both input arglDDents must be of the same
data type. The output argument can be a vector of
the same data type as the input arglDDent, or an
integer expression that specifies the length of the
vector function result.

Each element of the output argument is assigned the
result of MOD(a1,a2), where a1 and az are
the corresponding elements in the input arguments,
MOD is a generic scalar function,

10-38

VMOD is also a specific vector function that accepts
an integer vector input arglDDent and returns an
integer vector output arglDDent. The other specific
vector function names are VAMOD and VHMOD.

VNINT

VNINT(v;u) is a generic vector function that returns
the integer that is nearest to each element of the
input arg1.D11ent. The input arglDDent must be a vec­
tor and can be of type real, or half-precision.
The output arglDDent can be a vector of type integer,
or an integer expression that specifies the length
of the vector function result.

Each element of the output argument is assigned the
result of NINT(a), where a is the corresponding
element in the input argument. NINT is a generic
scalar function.

VNINT is also a specific vector function that ac­
cepts a real vector input argLU:Dent and returns an
integer vector output argument. The other specific
vector function name is VIHNINT.

VRAND

VRAND (i;u) is a specific vector function that
returns a vector of random numbers. The input
argument is required, but its value is ignored.
The output argument is either a real vector or an
integer expression that specifies the length of the
vector function result.

Each element of the output argument is assigned the
next random number. VRAND, RANF, and VRANF return
consecutive random numbers from the same sequence.

VRAND operates most efficiently if called with the
same result vector length and RANF, VRANF, and
RANSET are not called.

VREAL

VREAL(v;u) is a generic vector function that con­
verts each element of the input argument into a I
real value. The input argument must be a vector
and can be of type integer, real, half-precision,
or complex. The output argument can be a vector of
type real, or an integer expression that specifies
the length of the vector function result.

Each element of the output argument is assigned the
result of REAL(a), where a is the corresponding
element in the input argument. REAL is a generic
scalar function.

VREAL is also a specific vector function that ac­
cepts an integer vector input argument and returns
a real vector output argument. The other speci­
fic vector function names are VFLOAT, VSNGL, and
VEXTEND.

60480200 J

VSIN

VSIN(v;u) is a generic vector function that returns
the sine of each element of the input argument.
The input argument must be a vector and can be of
type real, half-precision, or complex. The output
argument can be a vector of the same data type as
the input argument, or an integer expression that
specifies the length of the vector function result.

Each element of the output argument is assigned the
result of SIN(a), where a is the corresponding ele­
ment in the input argument. SIN is a generic scalar
function.

VSIN is also a specific vector function that ac­
cepts a real vector input argument and returns a
real vector output argument. The other specific
vector function names are VHSIN and VCSIN.

VSNGL

VSNGL(v;u) is a specific vector function that con­
verts each element of the input argument into a
real value. The input argument must be a vector of
type double-precision. The output argument can be
a vector of type real, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of SNGL(a), where a is the corresponding
element in the input argument. SNGL is a specific
scalar function.

The generic vector function name is VREAL.

VSQRT

VSQRT(v;u) is a generic vector function that returns
the square root of each element of the input argu­
ment. The input argument must be a vector and can
be of type real, half-precision, or complex. The
output argument can be a vector of the same data
type as the input argument, or an integer expression
that specifies the length of the vector function
result.

Each element of the output argument is assigned the
result of SQRT(a), where a is the corresponding
element in the input argument. SQRT is a generic
scalar function.

VSQRT is also a specific vector function that ac­
cepts a real vector input argument and returns a
real vector output argument. The other specific
vector function names are VHSQRT and VCSQRT.

VTAN

VTAN(v;u) is a generic vector function that returns
the tangent of each element of the input argument.
The input argument must be a vector and can be of
type real or half-precision. The output argument
can be a vector of the same data type as the input
argument, or an integer expression that specifies
the length of the vector function result.

60480200 D

Each element of the output argument is assigned the
result of TAN(a), where a is the corresponding ele­
ment in the input argument. TAN is a generic scalar
function.

vrAN is also a specific vector function that accepts
a real vector input argument and returns a real
vector output argument. The other specific vector
function name is VHTAN.

VECTOR INTRINSIC FUNCTION
EXAMPLES

The following paragraphs describe two sets of
examples that use the vector intrinsic functions.
The first set of examples demonstrates the bit
manipulation functions. The second set of examples
uses vector functions to vectorize DO loops.

BIT MANIPULATION FUNCTION EXAMPLES

Table 10-4 shows examples using the bit
manipulation functions (Q8VMKZ, Q8VCTRL, Q8VCMPRS,
Q8VXPND, Q8VMASK, and Q8MERG).

RESTRUCTURING DO LOOPS AS VECTOR
OPERATIONS

The vector functions described in this section can
be used to restructure DO loops as vector
operations. The following paragraphs provide
examples of how this is done. (For background
information on vector programming, refer to section
9.)

Using a Bit Vector as a Mask

Suppose a calculation is to be performed using
pairs of operands from two arrays, but not on every
pair of operands in the arrays. To restructure the
calculation as a vector operation, create a bit
vector that serves as a mask indicating the pairs
of operands on which the calculation is performed.

For example, consider the following DO loop:

00 10 I=l,N
IF (TEST(I) .LT. EPSILON) GO TO 10
A= X(I) * Y(I) + 3.1
B = X(I) / Y(I) - 2.9
R(I) = SQRT(A ** 2 - B)

10 CONTINUE

The operand vectors in the 00 loop are arrays X and
Y; the result vector is array R. The test TEST (I)
. LT. EPSILON determines the operand pairs on which
the calculation is performed. If the test is true,
the calculation is not performed on the operand
pair; if the test is false, the calculation is
performed on the operand pair.

To restructure the DO loop so that it becomes a
vector operation, create a bit vector containing
the results of the test for values 1 through N.
Each 1 bit in the bit vector marks an operand pair
on which the calculation is performed. The
restructured code is shown in figure 10-6.

10-39

Table 10-4. Bit Manipulation Functions

Function FORTRAN Statements Function Input and Output

QSVMKZ INTEGER X/2/, Y/5/, L/14/ X: 2 L: 14
(Create bit mask) BIT B(l4) Y: 5

B(l;l4) = Q8VMKZ(X, Y; L) B: 00111001110011

Q8VCTRL INTEGER A(5)/7,5,6,7,9/, R(5)/4,3,2,3,2/ A: 7 5 6 7 9
(Controlled store) BIT B(5)/B'01001'/ B: 0 1 0 0 1

R(1;5) = Q8VCTRL(A(l;5),B(l;5);R(l;5)) R: 4 3 2 3 2
R: 4 5 2 3 9

Q8VCMPRS (Compress) INTEGER A(5)/l,2,3,4,5/, R(2) A: 1 2 3 4 5
BIT B(5)/B'Ol001'/ B: 0 1 0 0 1
R(l;2) = Q8VCMPRS(A(l;5),B(l;5);R(l;2)) R: 2 5

Q8VXPND (Expand) INTEGER A(3)/3,9,7/, R(5) A: 3 9 7
BIT B(5)/B'Ol011'/ B: 0 1 0 1 1
R(l;S) = Q8VXPND(A(l;3),B(l;5);R(l;5)) R: 0 3 0 9 7

Q8VMASK (Mask) INTEGER C(5)/l,3,2,3,l/, D(5)/4,6,9,8,7/,R(5) C: 1 3 2 3 1
BIT B(5)/B'l0011'/ D: 4 6 9 8 7
R(1;5) = Q8VMASK(C(l;S),D(l;S),B(l;S);R(l;5)) B: 1 0 0 1 1

R: 1 6 9 3 1

Q8VMERG (Merge) INTEGER C(5)/l,3,2,4,0/, D(5)/5,6,9,8,7/,R(S) C: 1 3 2 4 0
BIT B(S)/B'lOOll'/ D: s 6 9 8 7
R(l;S) • Q8VMERG(C(l;S),D(l;5),B(l;S);R(l;5)) B: 1 0 0 1 1

I: I 5 li '.J 2

DIMENSION VXCN), VYCN>, VACN), VBCN> ... •-----Declares additional arrays required for the vector operation
BIT BITVCN) and the bit vector.

BITVC1;N) = TESTC1;N) .GE. EPSILON------ Performs the comparison for each element of TEST and stores
a 1 bit in the corresponding element of BITV if the test is
true •

. L = Q8SCNTCBITVC1;N>>~----------~Counts the 1 bits in the bit vector.

VXC1;L> = Q8VCMPRSCXC1;N>,BITVC1;N>;VXC1;L>>~Creates operand vectors containing only those operands on
VYC1;L> = Q8VCMPRSCYC1;N>,BITVC1;N);VYC1;L)) which the calculation is to be performed.

VAC1;L> = VXC1;L> * VYC1;L> + 3.1~------Performs the calculation.
VBC1;L) = VXC1;L) I VYC1;L> - 2.9
VAC1;L) = VAC1;L> * VAC1;L> - VBC1;L)
VBC1;L> = VSQRTCVAC1;L>;VBC1;L))

RC1;N) = Q8VXPNDCVBC1;L>,BITVC1;N>;RC1;N>>~ Expands the result vector. For each 1 bit in the bit
vector, a calculation result is stored in the R array. For
each 0 bit in the bit vector, a zero value is stored in the
R array.

Figure 10-6. Bit Vector Mask Example

10-40 60480200 D

VSIGN

VSIGN(v1,v2;u) is a generic vector function
that combines the magnitude of each element of the
first input argument with the sign of the corre­
sponding element in the second input argument. The
input arguments must be vectors and can be of type
integer, real, or half-precision. Both input argu­
ments must be of the same data type, The out put
argument can be a vector of the same data type as
the input argument, or an integer expression that
specifies the length of the vector function result,

60480200 J

Each element of the output argument is assigned the
result of SIGN(a1,a2), where a1 and a2 are
the corresponding elements in the input arguments.
SIGN is a generic scalar function,

VSIGN is also a specific vector function that
accepts a real vector input argument and returns a
real vector output argument. The other specific
vector function names are VISIGN and VHSIGN.

10-38.1110-38.2 I

Restructuring DO Loops With Nonunit Stride

Another type of DO loop calculation in which not
every pair of operands is used ls the DO loop for
which the index increment ls not 1 (nonunit
stride). Once again, to restructure the DO loop as
a vector operation, create a bit vector to act as a
mask indicating the operand pairs on which the
calculation is performed.

For example, consider the following DO loop:

DO 10 I=l,N,2
A(I) = B(I) + 2.0 * C(I)

10 CONTINUE

The operand vectors are arrays B and C; the result
vector is array A.

To generate the bit vector for a nonunit stride
loop, use the Q8VMKO function. It generates a
pattern of 1 and 0 bits beginning wlth a 1 bit.
The restructured code ls shown in figure 10-7.

Loop-Dependent Conditional Forward Transfers

The next two examples illustrate DO loops that are
rest rue tured such that the calculation is performed
on all sets of operands, but a bit vector is used
to determine which calculation results are kept.

For example, consider the following DO loop:

DO 10 I=l, 1000
A(I) = B(I) * C(I)
IF (A(I) .LE. 0.0) GO TO 10
R(I) = SQRT(A(I) ** 2 + W(I)) * .05 + D(I)
S (I) = A(I) * D (I)

10 CONTINUE

The operand vectors are arrays A, B, C, D, and W;
the result vectors are arrays R and S.

In the restructured code, the calculation is
performed on all 1000 sets of operands. However,
by controlling the result element assignment using
the Q8VCTRL function, only those results that
correspond to 1 bits in the bit vector are stored
in the result vectors. The restructured code ls
shown in figure 10-8.

DIMENSION VACN), VBCN>, VCCN) ... ~-------Declares additional arrays required for the vector operation
BIT BITVCN> and the bit vector.

BITVC1;N) = Q8VMKOC1,2;BITVC1;N>>..,.'-------Generates an alternating 1 and 0 bit pattern.

L = Q8SCNTCBITVC1;N>> ... ~-----------Counts the 1 bits in the bit vector.

VCC1;L) = Q8VCMPRSCCC1;N>,BITVC1;N>;VCC1;L))~Creates operand vectors containing only those operands on
VBC1;L> = Q8VCMPRSCBC1;N),BITVC1;N>;VBC1;L)) which the calculation is to be performed.

VAC1;L) = VBC1;L) + 2.0 * VCC1;L) ...,.1------Performs the calculation.

AC1;N> = Q8VXPNDCVAC1;L>,BITVC1;N>;AC1;N>>~Expands the result vector. For each 1 bit in the bit
vector, a calculation result is stored in the A array. For
each 0 bit in the bit vector, a zero value is stored in the
A array.

Figure 10-7. Nonunit Stride Example

DIMENSION T1C1000>, T2C1000>..,.------------Declares additional arrays required for the vector
BIT BITVC1000) operation and the bit vector.

AC1;1000> = BC1;1000> * CC1;1000)
BITVC1;1000> = AC1;1000) .GT. 0.0 -----------Generates the bit vector.

T1C1;1000> = WC1;1000) + AC1;1000) ** 2 1---------Performs the calculation for the R result vector
T2C1;1000> = VSQRTCT1C1;1000>;T2C1;1000>> on all 1000 sets of operands.
T1C1;1000> = T2C1;1000) * .05 + DC1;1000)

RC1;1000> = Q8VCTRLCT1C1;1000>,BITVC1;1000>;RC1;1000>>~Stores the results corresponding to 1 bits in the
bit vector in the R result vector.

T1 C1;1000) = AC1;1000) * DC1;1000>----------Performs the calculation for the S result vector
on all 1000 sets of operands.

SC1;1000) = Q8VCTRLCT1C1;1000>,BITVC1;1000>;SC1;1000))~Stores the results corresponding to 1 bits in the
bit vector in the S result vector.

Figure 10-8. Conditional Vector Store - ExaftlPle 1

60480200 G 10-41

I

I

The second example restructures the following DO
loop:

DO 10 I=l ,N
IF (TEST(I) .EQ. 0.0) GO TO 10
R(I) = EXP(A(I))
S(I) = SQRT(B(I) + C(I) ** 2)

10 CONTINUE

The operand vectors are arrays A, B, and C; the
result vectors are arrays R and S.

Again, in the restructured code, the calculation is
perf armed on all N sets of operands. The Q8VCTRL
function is then used with a bit vector to
determine the results that are kept. The
restructured code is shown in figure 10-9.

Summing a Vector

The Q8SSUM function is
loop that sums a vector.
following DO loop:

s = 0
DO 10 I=l, 100

used to restructure a DO
For example, consider the

10 S = S + A(I) * B(I) / C(I) + .OS * D(l)

The restructured code is shown in figure 10-10.

Finding the Minimum and
Maximum Vector Elements

The Q8SMIN and Q8SMAX functions can be used to find
the minimum element and the maximum element,
respectively, in a vector. For example, consider
the following DO loop:

DO 10 I=l, 100
A(I) = C(I) ** 2 + .OS * F(I)
B(I) = E(I) ** 2 - D(I)
ASCA = AMINl(A(I), ASCA)
BSCA = AMAXl(B(I), BSCA)

10 CONTINUE

The restructured code is shown in figure 10-11.

Gathering and Scattering

The Q8VGATHR and Q8VSCATR functions enable
vectorization of DO loops that use indirect
indexing. In a loop that uses indirect indexing,
the loop index references an element in an index
array whose value is used as the index to the
operand array. For example, consider the following
DO loops:

DO 10 I=l, 100
TEMPA(I) = A(IA(I))

10 CONTINUE

DO 20 I=l, 100
A(IA(I)) = TEMPA(I)

20 CONTINUE

DIMENSION RCCN>, SC(N)...,.~~~~~~~~~~Declares additional arrays required for the vector operation
BIT BITVCN> and the bit vector.

BITV (1; N>

SCC1;N)
RCC1;N)
SC (1 ;N)

RC1;N>
S C1; N>

TESTC1;N) .NE. a.a ~~~~~~A 1 bit is stored for each TEST element not equal to a.a.

BC1;N) + CC1;N) ** 2 ~~~~~~Performs calculations on all N sets of operands.
VEXPCAC1;N>;RCC1;N))
VSQRTCSCC1;N>;SCC1;N))

Q8VCTRLCRCC1;N>,BITVC1;N);RC1;N))~Stores the results corresponding to 1 bits in the bit vector
Q8VCTRLCSCC1;N>,BITVC1;N>;SC1;N)) in the result vectors.

Figure 1a-9. Conditional Vector Store - Example 2

DIMENSION TEMPC1aa>
TEMPC1;1aa> = AC1;1aa> * BC1;1aa> I CC1;1aa> + .a5 * DC1;1aa>

S = Q8SSUMCTEMPC1;1aa>>~Sums the elements of vector TEMP.

AC1;100)
0(1; 1aa>

TEMP1
TEMP2

Figure 1a-1a. Vector Summing Example

CC1;1aa> ** 2 + .a5 * FC1;1aa>
EC1;1aa> ** 2 - DC1;1aa>

Q8SMINCAC1;1aa>>~Finds the minimum element in A.
Q8SMAXCBC1;1aa>> • Finds the maximum element in B.

ASCA AMIN1CASCA,TEMP1)
BSCA AMAX1CBSCA,TEMP2)

Figure 1a-11. Minimum and Maximum Element Search Example

10-42 60480200 G

The same operations can be performed using the
following statements:

TEMPA(l;lOO) "
+ Q8VGATHR(A{l;l00),IA(l;l00);TEMPA(l;l00))
A(l;lOO) =

+ Q8VSCATR(TEMPA(1;100),IA(l;l00);A{l;l00))

In this second example, a temporary vector is
created for each indirectly indexed operand array
using the Q8VGATHR function. The Q8VSCATR function
is used to store the result vector be ca use it is
also indirectly indexed. This is the original DO
loop:

DO 10 I•l, 100
10 A(IA(I)) =

+ EXP(B(IB(I)) * C(I) + D(ID(I)) ** 2 - .5)

The restructured code is shown in figure 10-12.

locating the Greatest Absolute Value

The following DO loop determines the index of the
greatest absolute value in array B:

BMAX = B(l)
DO 10 I=l, 100
IF (ABS(B(I)) .LE. BMAX) GO TO 10
IMAX = I

10 CONTINUE

The restructured loop uses the VABS function to
store the absolute value of each element in the B
vector and the Q8SMAXI function to find the index

of the greatest value in the absolute value
vector. The res true tured code is shown in figure
10-13.

VBC1;100) = VABSCBC1;100>; VBC1;100))
IMAX = Q8SMAXICVBC1;100))

Figure 10-13. Greatest Absolute Value
Search Example

Multidimensional Arrays

A vector is a sequence of elements stored in
contiguous space. Therefore, a portion of a
multidimensional array can be referenced as a
vector only if it is contiguous space. Otherwise,
it must be compressed to contiguous space using a
bit vector as described in the nonunit stride
example. Contiguous space is referenced in a
columnwise array if the dimensions vary in order
beginning with the first dimension. (For a rowwise
array, the dimensions must vary fr<D last to first.)

Consider the following DO loop using a columnwise
array:

DO 10 I•l, 1000
10 A(I) = SQRT(D(I,5) + 3.0)

The loop accesses the fifth column of the
two-dimensional I array. This loop can be
rewritten as the following statement:

A(l;lOOO) = VSQRT{D(l,5;1000) + 3.0; A(l;lOOO)}

DIMENSION TEMPAC100>, TEMPBC100), TEMPDC100>

TEMPBC1;100)
TEMPDC1;100)

TEMPBC1;100) =
TEMPAC1;100) =

Q8VGATHRCBC1;100>,IBC1;100); TEMPBC1;10Q))
Q8VGATHRCDC1;100>,IDC1;100); TEMPOC1;100>>

TEMPBC1;100) * CC1;100) + TEMPDC1;100) ** 2 - .5
VEXPCTEMPBC1;100); TEMPAC1;100>>

AC1;100> = Q8VSCATRCTEMPAC1;100>,IAC1;100>; AC1;100))

60480200 D 10-43

PREDEFINED SUBROUTINES 11

The FORTRAN 200 language includes a number of
subroutlnes that are predefined and can be called
from a program. The five categories of predefined
subroutines are:

Random number subroutines

Concurrent input/output subroutines

Miscellaneous input/output subroutines

Error processing and debugging subroutines

STACKLIB subroutines

A predefined subroutine is called by placing a sub­
routine call .ln a program. Subroutine calls are
described in section 7. This section describes each
of the predefined subroutines.

RANDOM NUMBER
SUBROUTINES
Three predefined subroutines are used in generating
random numbers. These subroutines return the
current value of the seed used by the random number
generator, set the value of the seed used by the
random number generator, and generate a vector of
random numbers. The random number subroutines are
RANGET, RANSET, and VRANF.

RANG ET

The RANGET subroutine returns the current value of
the seed used by the random number gene rat or. See
figure 11-1 for the format of a RANGET call.

CALL RANGETCn)

n An integer variable or array element; n is
assigned the value of the random number
generator seed

Figure 11-1. RANGET Call Format

RANS ET

The RANSET subroutine sets the value of the seed
used by the random number generator. See figure
11-2 for the format of a RANSET call.

If the argument ls a positive odd integer, the
seed is set to the value of the argument. If the
argument ls a positive even integer, the seed is
set to the value of the argument plus l. If the
argument is 0 or negative, or if RANSET i.s not
called, the seed ls set to the default value
X' 000054F4A3B933BD'.

60480200 E

CALL RANSETCn)

n An integer constant, symbolic constant,
expression, variable, or array element; the
value of n is used to set the random number
generator seed

Figure 11-2. RANSET Call Format

VRANF

The VRANF subroutine generates a vector of random
numbers. See figure 11-3 for the format of a VRANF
call.

CALL VRANFCv ,n)

v A real array that is to contain the
generated vector of random numbers

n An integer that specifies the length of v

Figure 11-3. VRANF Call Format

CONCURRENT INPUT/ OUTPUT
SUBROUTINES
FORTRAN 200 defines four subroutines that perform
concurrent input/output operations. A concurrent
input/output operation ls one that is performed
while other statements in the program are being
executed. The FORTRAN 200 concurrent input/output
subroutines are Q7BUFIN, Q7BUFOUT, Q7WAIT, and
Q7SEEK.

Normally, execution of a program ls suspended until
an input/output operation ls completed; it then
continues with the next executable statement after
the input/output statement.

Concurrent input/output operation allows you to
initiate an input/output operation, continue
executing other statements in the program simulta­
neously, and return periodically to check the
progress of the input/output operation.

Concurrent input/output operations may be used to
transfer data between memory and mass storage.

While a file is being used in a concurrent input/
output operation, it cannot be used in any other
type of input/output operatlon; 1t must first be
closed.

11-1

You as programmer need to provide for a number of
functions when using the concurrent input/output
operations. FORTRAN 200 will not automatically
supply any needed padding to ensure correspondence
between a data record size and the physical block
from (or to) which the data are transferred. Fur­
thermore, it will not automatically recognize
whether there is a logical end-of-file before the
end of the physical block of data that is assigned
to the file. The concurrent input/output sub­
routines recognize only the physical end of the
file, not the logical end-of-file. FORTRAN 200 will
not check the error conditions that result from the
data transfer, You do this by calling the Q7WAIT
subroutine. No other notification is made of any
input/output error that occurs during a concurrent
input/output operation.

Concurrent input/output reduces the execution time
of a program by overlapping input/output operations
with other computations. The greatest efficiency
can be achieved by overlapping all input/output
operations with other computations.

ARRAY ALIGNMENT

When using the concurrent input/output subroutines,
you must properly align and define arrays. Arrays
used by Q7BUFIN and Q7BUFOUT calls must be aligned
on a block boundary in memory, and be defined as
multiples of blocks, where a block is 512 words of
memory. Arrays not spanning full blocks must be
padded out to full blocks. The program will abort
in execution if the arrays used are not block
aligned. Alignment can be accomplished by declar­
ing the arrays to reside in one or more labeled
common blocks, then using the GRSP or GRLP param­
eter of the system utility LOAD to load the common
blocks. While both parameters are intended for
aligning labeled common blocks to page boundaries,
the fact that a system page is always a multiple of
512 blocks ensures that the common blocks will
start on a 512-word block boundary,

For example, if we have the following declaration
in the program:

COMMON/ANAME/BIGRAY(l0240),RA2(51200)

This example declares two arrays, BIGRAY of size
10240 words, and RAZ, of size 51200 words, in
labeled common block ANAME, and we compile the pro­
gram unit, and LOAD the program with the following:

LOAD,BINARY,CN=XECUTE,GRSP=*ANAME.
or

LOAD,BINARY,CN=XECUTE,GRLP=*ANAME.

The arrays will be block aligned. (Use of GROS and
GROL can also accomplish the same purpose).

Q7BUFIN and Q7BUFOUT use the System Interface
Language (SIL) routines QSREAD and Q5WRITE to
perform the system I/O functions. The Q5 routines
handle such I/O in units of system pages. The
system recognizes two types of page definitions: a

11-2

LARGE page (LP), which is 128 512-word blocks, and
a SMALL page (SP), which can be defined at system
startup time to be either one, four or sixteen I
blocks. (See the VSOS reference manual, volume
one, for further clarification of the page concept),
In a single call, the Q5 routines are capable of
handling up to a maximum of twenty-four (24) pages
of either type. The type of pages that an array is
loaded on (LP or SP) can be controlled by the GRSP
or GRLP parameter mentioned above. For more
details on the use of those parameters, please
refer to the LOAD command in the VSOS reference
manual, volume one.

As the intent of concurrent I/O is to have maximum
processing and I/O overlap, the Q7BUFxx routines
attempt to pass the arrays to the QS routines in
multiples of twenty-four pages, If the array is
larger than 24 pages, the Q7BUFxx routines will
take care of making multiple calls until all the
data in the array is moved. However, the effect of
concurrent I/O is mostly lost, The Q7BUFxx rou­
tines will retain control in order to issue the
multiple I/O requests. After the last I/O has been
initiated, control is returned to the user program.
User processing and I/O overlap are therefore I
limited to the last I/O request which completes
the transfer of data to/from the array.

Choosing how the arrays should be loaded obviously
has significant impact on how well concurrent I/O
can perform. If the array involved is larger than
24 SMALL pages (24 x 512 x installation defined
SMALL page size), one should consider loading the
array on LARGE pages, However, LARGE page I/O
could also cause more data to be moved than neces­
sary. Some judgment and experimentation might be I
needed for optimal results,

As mentioned above, the QS routines handle data
transfers in pages. They do accept arrays that are
only block aligned, but in those cases where the
block alignment does not also match up to a page
alignment, the maximum quantity of data transfer­
rable is reduced. For example, if the page size is
defined as four blocks, an array spanning blocks 4
to 99 (96 blocks, starting on a SP boundary) can be
handled in one Q5 call, while the same array
spanning block 3 to 98 of memory will have to be
handled in two calls, because the array straddles a
page boundary.

The MAP parameter on the Q7BUFxx calls is used to
inform those routines how the array involved in
this I/O operation is loaded. These routines rely
on the MAP parameter to be correctly specified. If
the MAP parameter does not match the way the array
is actually loaded, unpredictable operations could
result. If an array is loaded on SMALL pages and
is being processed with a MAP parameter of LARGE
(refer to description of the MAP parameter in the
next section), a system I/O error status may be
returned and the request rejected. If an array
loaded on LARGE pages is processed with a MAP
parameter of SMALL, many calls will be made to the
system, as the Q7BUFxx routines will try to pass
only up to twenty-four SMALL pages worth of data to
the Q5 routines per call.

60480200 H

SUBROUTINE CALLS

The four concurrent input/output subroutines are:

Q7BUFIN

Transfers data from a file on mass storage
to an array in memory

Q7BUFOUT

Transfers data from an array in memory to a
file on mass storage

Q7WAIT

Determines if an input/output operation is
complete and if any input/output errors
occurred during the input/output operation

Q7SEEK

Resets the page address at which data is to
be transferred

Two Q7BUFIN calls, two Q7BUFOUT calls, or one
Q7BUFIN call and one Q7BUFOUT call can be active at
one time for a particular file. If two input/output
operations are performed on a file at the same time,
you must ensure that the portion of the file
affected by one input/output operation does not
overlap the portion of the file affected by the
other input/output operation. If more than two
input/output operations are attempted on a file at
the same time, the program is aborted.

File positioning can be accomplished in two ways:

By specifying the relative page address as a
parameter in the Q7BUFIN or Q7BUFOUT call

By establishing a relative page address using a
Q7SEEK call before a Q7BUFIN or Q7BUFOUT call
is executed

If a file is not positioned by using either method,
the file is scanned sequentially beginning at the
first 512 word block of the file when the file is
referenced initially. Thereafter, each Q7BUFIN and
Q7BUFOUT call moves the current read/write position
forward by a specified amount. This amount is the
number of 512 word blocks read or written by the
Q7BUFIN or Q7BUFOUT call, and is specified in the
argument list of the call.

Each of the concurrent input/output subroutines is
described in the following paragraphs.

Q7BUFIN

The Q7BUFIN subroutine transfers data from a mass
storage file to an array in memory. The Q7BUFIN
subroutine initiates the input operation, and then
returns control to the program. See figure
11-4 for the format of a Q7BUFIN call.

The array into which the data is input must not be
referenced until the subroutine Q7WAIT is called to
determine that the input operation is complete and
that no input errors occurred.

60480200 H

CALL Q78UFINCuid,a,len,map,faddr>

uid

a

len

map

A unit identifier.

An array or array element that is
aligned on a 512 word block boundary.
Data that is read is stored beginning
at the address of a.

An integer expression that indicates
the number of 512 word blocks to be
transferred.

A character expression; optional. The
result of map can have one of the
following values:

SMALL

LARGE

The array is mapped in
small pages

The array is mapped in
large pages

The default is SMALL.

faddr An integer expression whose result
specifies the position of the unit
before data is transferred; optional.
If faddr is specified, map must be
specified. The default is the current
position.

Figure 11-4. Q7BUFIN Call Format

If improper array alignment forces multiple ex­
plicit input requests to be issued, concurrent
input processing stops after the initial input
request is completed. Thus, program execution is
suspended until the input operation is completed.

Depending on the value of len, a Q7BUFIN call might
transfer data into only part of the array, or it
might transfer data into memory locations beyond
the end of the array.

Q7BUFOUT

The Q7BUFOUT subroutine transfers data from an
array in memory to a mass storage file. The
Q7BUFOUT subroutine initiates the output operation,
then returns control to the program. See figure
11-5 for the format of a Q7BUFOUT call.

The array from which the data is output must not be
referenced until the subroutine Q7WAIT is called to
determine that the output operation is complete and
that no output errors occurred.

If improper array alignment forces multiple ex­
plicit output requests to be issued, concurrent
output processing stops after the initial output
request is completed. Thus, program execution is
suspended until the output operation is completed.

Depending on the value of len,
might transfer data from only part
it might transfer data from memory
the end of the array.

a Q7BUFOUT call
of the array, or
locations beyond

11-3

I

I

CALL Q78UFOUTCuid,a,len,map,faddr)

uid

a

len

map

A unit identifier.

An array or array element that is
aligned on a 512 word block boundary.
Data that starts at the address of a
is written to the external unit.

An integer expression that indicates
the number of 512 word blocks to be
transferred.

A character expression; optional. The
result of map can have one of the
following values:

SMALL The array is mapped in
small pages

LARGE The array is mapped in
large pages

The default is SMALL.

faddr An integer expression whose result
specifies the position of the unit
before data is transferred; optional.
If faddr is specified, map must be
specified. The default is the current
position.

Figure 11-5. Q78UFOUT Call Format

Q7WAIT

The Q7WAIT subroutine determines if an input/output
operation is complete and if any input/output errors
occurred during the input/output operation. The
Q7WAIT subroutine must be called after each Q7BUFIN
or Q7BUFOUT call. See figure 11-6 for the format
of a Q7WAIT call.

Each time the Q7WAIT subroutine is called, it
returns a status value that indicates the status of
the input/output operation. If the input/output
operation is still in progress, the Q7WAIT sub­
routine can cause control to return to the program
or the Q7WAIT routine can cause program execution
to be suspended until the input/output operation is
completed. The arguments in the Q7WAIT call deter­
mine which alternative is used.

The status value returned by the Q7WAIT subroutine
also indicates if an input/output error occurred,
or if the physical end of the file was reached.

An array that is specified in a Q7BUFIN or Q7BUFOUT
call must not be referenced until the Q7WAIT sub­
routine is called and indicates that the input/
output operation is complete and that no input/
output errors occurred.

CALL Q7WAITCuid, a, stat, ret, len>

uid

a

stat

ret

len

A unit identifier.

An array or array element that appears in
a call to Q78UFIN or Q78UFOUT.

An integer variable whose value is
returned by the Q7WAIT call. The value
returned indicates the status of the
input/output operation. The values that
can be returned are:

0 The input/output operation was
completed normally.

1 The physical end of the file was
reached during the input/output
operation.

2 Hardware failure caused an
input/output error.

3 The input/output operation is not
yet completed.

4 The MAP parameter is inconsistent
with how the array is grouped on
the LOAD statement.

An integer constant or variable that
specifies the action to be taken after
execution of the call to Q7WAIT is
completed; optional. The values that can
be specified are:

0 If the specified input/output
operation is not yet completed
(the value 3 was returned for
stat>, concurrent input/output
processing is to stop until the
input/output operation is
completed.

If the specified input/output
operation is not yet completed
(the value 3 was returned for
stat), concurrent input/output
processing is to continue.

The default is 0.

An integer variable whose value is
returned by the Q?WAIT call; optional.
The value returned is the number of 512
word blocks actually transferred during
the input/output operation. If the
physical end of the file was reached
during the input/output operation, the
number of 512 word blocks actually
transferred might be fewer than the
number requested.

If len is specified, ret must be
specified.

Figure 11-6. Q7WAIT Call Format

11-4 60480200 H

I

I

Q7SEEK

The Q7SEEK subroutine repositions the mass storage
file by resetting the 512 word block address of the
file. See figure 11-7 for the format of a Q7SEEK
call.

CALL Q7SEEK(uid,faddr)

uid

faddr

A unit identifier.

An integer expression whose result
positions the unit; optional. If faddr
is 0 or omitted, the file is repositioned
to the beginning of the file as if a
REWIND statement had been executed for
that unit. Otherwise, faddr has the same
effect as the faddr parameter of a
Q7BUFIN or Q7BUFOUT call.

Figure 11-7. Q7SEEK Call Format

A file can be rewound by using the statement CALL
Q7SEEK(u,O) or CALL Q7SEEK(u), where u is the logi­
cal unit number.

Q7STOP

The subroutine Q7STOP enables you to specify the
program termination level desired. The subroutine
calls Q5TERM; program execution is then halted at
the Q7STOP call. A character expression is dis­
played in the job dayfile or at your terminal. See
figure 11-7.1 for the format of the Q7STOP call.

CALL Q7STOP(string,irval)

string

i rval

Character expression to be displayed
in the job dayfile or at your
terminal upon termination.

Integer which indicates the level of
termination desired.

irval < 0
1 < irval < 4

5 < irval < 8

irval > 8

normal termination
error termination,
return code = 4.
fatal termination,
return code = 8.
abort termination,
return code = 8,
program dump
performed.

Figure 11-7.1. Q7STOP Call Format

60480200 H

MISCELLANEOUS INPUT/ OUTPUT
SUBROUTINES

Two predefined subroutines perform miscellaneous
input/output-related operations. The miscellaneous
input/output subroutines are QSWIDTH and QSNORED.

Q8WIDTH

The subroutine QSWIDTH sets a fixed record length
for an ASCII output file. The default record length
is variable, with trailing blanks removed from each
line. See figure 11-8 for the format of a Q8WIDTH
call.

CALL Q8WIDTHCuid,width)

uid A unit identifier.

width An integer
length for
the file.
blanks are
the record

that specifies the record
subsequent ASCII output to
If 0 is specified, trailing
removed from each line and
length is variable.

Figure 11-8. Q8WIDTH Call Format

Q8NORED

The subroutine Q8NORED is a null operation with
VSOS Release 2.2 because of the dynamic file
allocation feature in this release. With this
feature, when your program creates a file, the
system allocates the initial amount of file space.
If you have specified a file length, your speci­
fication is used; otherwise, the system chooses the
initial file length. Thereafter, the system reduces
the size of your file only if you request it by
calling the QSREDUCE subroutine.

The system does not automatically reduce the size
of your file at the completion of program execu­
tion. Because this automatic file size reduction
no longer takes place, you do not need to halt it
with Q8NORED. A QSNORED is similar to a null
operation; there
Q8NORED does not
reductions.

is no
stop

abnormal termination and
any automatic file size

The dynamic file allocation feature allocates
additional space to your file as needed. You can
advise the system of the allocation unit size to
use for these additions; this will reduce the
impact on performance of file fragmentation. The
system adjusts this number as needed for the
particular device selected and the file growth
pattern. If necessary, you can stop the additional
allocations by specifying NOEXTEND when you create
the file. See appendix F for a description of how
QSNORED works in VSOS Release 2.1.6.

11-5

I

ERROR PROCESSING AND
DEBUGGING SUBROUTINES

Several predefined subroutines are used to process
execution-time errors and to debug a program. The
error processing and debugging subroutines are the
data flag branch subroutines Q7DFCL1, Q7DFSET,
Q7DFLAGS, and Q7DFOFF, the sys tern error processor
subroutine SEP, and the debugging subroutine MDUMP.

DAT A FLAG BRANCH MANAGER

The data flag branch manager (DFBM) is a subroutine
that processes data flag branches when they occur
during execution of a program.

A data flag branch is an automatic transfer of con­
trol to the data flag branch manager when a partic­
ular condition is detected. A data flag branch is
a CYBER 200 hardware function. The hardware mon­
itors a register, which is called the data flag
branch register, to determine if a particular con­
dition exists and if that condition is to cause a
data flag branch.

Some of the conditions that can cause a data flag
branch are:

An attempt to compute the square root of a
negative number

An attempt to divide a number by 0

An exponent overflow during the computation of
a number too large to represent

An attempt to use an indefinite value in an
operation

The reduction of the job interval timer to 0
(cannot occur unless the program sets the job
interval timer)

0 3 16 19

t product bits t
condition-
enable bits

Dynamic

32

inclusive OR

trhese are undefined bits.
Any instruction that
attempts to set, clear,
or sample these bits
produces undefined
results.

product bits

t

of

The execution ot a hardware breakpoint instruc­
tion in some ca>1es (cannot occur unless the
program uses the system utility DEBUG or the BKP
instruction)

You can specify how a data flag branch is to be
processed by using the predet ined data flag branch
subroutines.

Normally, when the hardware detects a particular
condition, it causes control to transfer to DFBM,
which processes the data flag branch. DFBM then
returns control to the program or aborts the
program.

You can provide one or more branch-handling routines
to process data flag branches. If you provide a
branch-handling routine for a particular condition,
DFBM transfers control to the branch-handling
routine. Your branch-handling routine can process
the condition and return control to the program.

The following paragraphs describe the data flag
branch register, data flag branch processing, and
the data flag branch subroutines that you can use
to specify how data flag branches are to be
processed.

Data Flag Branch Register

The data flag branch register is a 64-bit register
that is located in the CYBER 200 central processor.
The data flag branch register consists of data
flags, which indicate if a particular condition
exists, condition-enable bits, which specify the
conditions that can cause a data flag branch, and
product bits, which indicate if an enabled condition
exists. Several other bits are also contained in
the data flag branch register. See figure 11-9 for
an illustration of the data flag branch register.

35 48 50 53 55

data flags t

J
\/

Data-
fl ag-br anc h- -
enable bit

Free data flags ~

Monitoring counter
enable flags ----'

Pipe 2 register
1nstruct1on flag -...1

59 63

t

Figure 11-9. Data Flag Branch Register Format

I 11-6 60480200 H

The data flags are bits 35 through 47 of the data
flag branch register, Each data flag corresponds
to a particular condition. If a condition occurs
during execution of a program, the corresponding
data flag is set to 1 by the hardware.

For example, if an attempt is made to divide a
number by 0, bit 41 is set to 1 by the hardware,
Once a data flag is set to 1 by the hardware, it
remains set to 1 until the program or DFBM sets it
to O.

The condition-enable bits are bits 19 through 31 of
the data flag branch register, Each condition­
enable bit corresponds to a bit in the data flag
field: bit 19 corresponds to bit 35, bit 20 corre­
sponds to bit 36, and so on. Each condition-enable
bit specifies whether the condition to which it
corresponds can cause a data flag branch. If a
condition-enable bit is set to 1, a data flag branch
can occur when that condition exists; if a
condition-enable bit is set to 0, a data flag branch
cannot occur when that condition exists.

For example, in order for a data flag branch to
occur when an attempt is made to divide a number by
0, bit 25 must be set to 1.

60480200 H

You can set the condition-enable bits for some
conditions to 1 or 0 by using data flag branch sub­
routine calls. Some condition-enable bits are
initialized by the system at the beginning of pro­
gram execution.

The product bits are bits 3 through 15 of the data
flag branch register. Each product bit corresponds
to a bit in the data flag field: bit 3 corresponds
to bit 35, bit 4 corresponds to bit 36, and so on.
Each product bit specifies whether the condition to
which it corresponds exists and is enabled, A
product bit is the logical product (logical .AND.)
of the corresponding data flag and the corresponding
condition-enable bit. If a product bit is set to
1, the condition exists and is enabled. If a
product bit is set to O, the condition does not
exist or it is not enabled.

For example, if bit 9 is set to 1, then an attempt
to divide a number by 0 occurred and that condition
is enabled.

Product bits are set to 1 or 0 by the system during
program execution, You can test the bits by using
the Q8BADF special call, See section 12 for a
description of the Q8BADF special call. A product
bit remains set to l until the corresponding
condition-enable bit is set to O, or until the
corresponding data flag is set to O.

11-6.1/11-6.21

Bit 51 is the logical sum (logical inclusive .OR.)
of all of the product bits. Bit 51 is set to 1 by
the hardware when at least one of the product bits
is set to 1. Bit 51 remains set to 1 until all of
the product bits are set to O.

register. The table also shows the condition-enable
bit and the product bit that corresponds to each
data flag, the classification of each condition, and
the priority of each condition.

Bit 52 is the data-flag-branch-enable bit. Data
flag branches can only occur when bit 52 is set to
1. Bit 52 is set to l or 0 by the hardware and by
DFBM. Bit 52 is set to 0 when a data flag branch
is initiated.

The following paragraphs describe the classification
of conditions, the default conditions, and the
hardware processing of data flag branches.

Condition Classifications

When both bit 51 and bit 52 are set to 1, a data
flag branch occurs.

Bit 58 is the pipe 2 register instruction data flag.
Bit 58 is set to l by the hardware when a pipe 2
register instruction sets one of the data flags to
1. Once bit 58 is set to 1, it remains set to 1
until the program or DFBM sets it to O. See the
appropriate hardware reference manual for a
description of pipe 2 register instructions.

There are two classes of conditions that can cause
data flag branches: class I conditions and class
III conditions. Class I conditions are conditions
that are always enabled. (The condition-enable bits
for class I conditions are always set to 1.) The
class I conditions are JIT, SFT, and BKP.

See table 11-1 for the condition that corresponds
to each of the data flags in the data flag branch

A class I condition cannot exist unless the program
performs a specific action to cause the condition.
For example, a class I condition could be caused by
using the breakpoint feature of the system utility
DEBUG, or by using the special call Q8WJTIME to set
the job interval timer.

TABLE 11-1. DATA FLAG BRANCH CONDITIONS

Class Designator Condition Description

I

I

III

III

III

III

III

III

III

III

III

III

I

SFT (Reserved)

JIT Job interval timer has reduced to zero.

SSC Selected condition has not been met. In search
for masked key, there was no match; or count of
nonzero translated bytes is greater than 65535.

DDF Decimal data fault. A sign was found in a
digit position, or vice versa.

TBZ Truncation of leading nonzero digits or bits,
or decimal or binary division by zero.

ORD Dynamic inclusive OR of the preceding three
conditions (SSC, DDF, and TBZ). Enabling this
condition permits a branch on any of the three
cond it fons •

FDV Floating-point divide fault.

EXO Exponent overflow.

RMZ Result is machine zero.

ORX Dynamic inclusive OR of the preceding three
conditions (FDV, EXO, and RMZ). Enabling this
condition permits a branch on any of the three
conditions.

SRT Square root operation on negative operand.

IND Indefinite result or indefinite operand.

BKP Breakpoint flag was set on the breakpoint
instruction (instruction #04).

tset during execution-time initialization.

60480200 A

Condition­
Enable Bit

21

22

23

24

26

27

28

Data
Flag

35

36

37

38

39

40

41

42

43

44

45

46

47

Product
Bit

3

4

5

6

7

8

9

10

11

12

13

14

15

Priority

2

11

12

13

5

8

9

10

4

6

7

3

11-7

Class III conditions are conditions that can be
enabled or disabled, You can enable and dlsable a
class III condition by uslng the predef lned sub­
routines Q7DFSET and Q7DFOFF respectively. These
subroutines are described later in this section.
The class III conditlons are ORX, ORD, SRT, IND,
FDV, EXO, RMZ, SSC, DDF, and TBZ,

An ORX condition exists if an FDV, EXO, or RMZ
condition exlsts.

An ORD condition exists if an SSC, DDF, or TBZ
condition exists.

An SRT condition exists if the program attempts to
compute the square root of a negative number. When
this condition occurs, the two's complement of the
square root of the absolute value of the number ls
computed, This result is meaningful, but not math­
ematically correct.

An IND condltion exists if an indefinite value is
computed and stored into memory or the register
file, The condition also occurs if one or more of
the operands of a floating-point operation have
indefinite values. Both floating-point arithmetic
operations and floating-point comparisons can cause
the IND condition, Because an indefinite value
results from a floatlng-point operation Involving
one or more indefinite operands, indefinite values
can be propagated easily. The FDV condition and the
EXO condition can also cause an IND condition,

An FDV condition exlsts if a f loatlng-point division
operation ls attempted with a divisor of O. A
divisor of 0 ls either a machine-zero or a
floating-point number that has an all-zero
coefficient. A divisor that has an indefinite value
ls not a 0 divisor and does not cause the FDV con­
dition, The result of a dlvlsion by 0 is an in­
definite value, which causes the IND condition. See
section 2 for a description of the representations
for machine-zero values and indefinite values,

An EXO condltlon exists if the exponent of a number
ls too large to be represented. The EXO condition
can also cause an IND condition.

An RMZ condition exists if the result of an opera­
tion is a machine-zero. See sectlon 2 for a de­
scription of the representation of machine-zero,

An SSC condition exlsts if a selected conditlon is
not satisfied.

A DDF condition exlsts if a decimal data fault
occurred. A decimal data fault occurs when the sign
of a number appears in a position that should con­
tain a digit, or vice versa,

A TBZ condition exists if the leading nonzero bits
or digits of a number are truncated, or if a decimal
or binary division operation ls attempted with a
divisor of O.

DFBM processes class I conditions individually, as
if each class I condition were caused by a separate
event. DFBM processes class III conditions as a
group, as if they were all caused by a single event.

A data flag branch that is caused by a class I con­
dition is called a class I branch. A data flag
branch that is caused by a class III condition ls
called a class III branch.

11-8

Default Conditions

At the time program execution begins, six
condition-enable bits are automatically set in the
data flag branch register. This enables a data flag
branch to occur 1f any of these conditions exists
dur lng program execution. The conditlons that are
initially enabled are JIT, SFT, BKP, IND, SRT, and
FDV.

Hardware Processing of Data Flag Branches

'When an enabled condition occurs during program
execution, the following steps are performed by the
hardware:

Blt 52 ls set to O. This disables all further
data flag branches.

The address of the instruction that would have
been executed next is placed in register #1.

Control transfers to the address that is stored
ln register 112, which is the address of a DFBM
entry point. (This address ls placed in reg­
ister #2 at the time program executlon begins.)

The processing performed by DFBM depends on the bit
settings in the data flag branch register and by any
speclflcatlons that were made by calls to the pre­
defined subroutines Q7DFCL1, Q7DFSET, and Q7DFOFF.

The address that ls stored in register #1 ls not
necessarily the address of the instruction immedi­
ately following the instruction that caused the data
flag branch. The hardware initiates a data flag
branch only after all currently executing instruc­
tions have finlshed executing, Because instructions
might be executing in parallel when the condition
that causes a data flag branch exists, the data flag
branch can occur up to 35 instructions after the
instruction that caused it. Also, the point at
which control transfers to DFBM can dlffer between
executions of the same program because the load and
store hardware operations can occur at different
points as a result of the asynchronous nature of
CYBER 200 input/output.

Use of the special calls Q8BADF or Q8LSDFR, or the
system utility DEBUG in a program that calls DFBM
entry points can effect changes in the data flag
branch register that conflict with DFBM. Therefore,
you should use caution when using the special calls
Q8BADF and Q8LSDFR, and the system utility DEBUG.

Data Flag Branch Processing

'When a data flag branch occurs, the hardware trans­
fers control to DFBM. DFBM then checks the product
bits of the data flag branch register to determine
what condition caused the data flag branch. DFBM
checks the product bits beginning with the product
bit that corresponds to the highest priority con­
dition; therefore DFBM checks the product bits ln
the following order:

1, Bit 4 JIT condition

2, Bit 3 SFT condition

3. Bit 15 BKP condition

60480200 A

4. Bit 12 ORX condition

5. Bit 8 ORD condition

6. Bit 13 SRT condition

7. Bit 14 IND condition

8. Bit 9 FDV condition

9. Bit 10 EXO condition

10. Bit 11 RMZ condition

11. Bit 5 SSC condition

12. Bit 6 DOF condition

13. Bit 7 TBZ condition

DFBM then performs one of the following:

If no branch-handling routine is specified for
the condition, default processing ls performed.

If a branch-handling routine is specified for
the condition and if the condition is a class I
condition, class I branch processing ls per­
formed using the branch-handling routine.

If a branch-handling routine is specified for
the condition and if the condition is a class
III condition, class III branch processing is
performed using the branch-handling routine.

Default Branch Processing

In the absence of a user-written branch-handling
routine to process the class I or class III branch,
the hardware initiates a data flag branch which DFBM
processes. DFBM performs the following processing
steps:

Having checked the data flag branch register to
determine which condition exists and has the
highest priority, DFBM transfers control to a
predefined routine that issues an error message
for that condition if appropriate.

If the program specified an error exit sub­
routine by calling the system error processing
predefined subroutine SEP before the data flag
branch occurred, control is transferred to that
error exit subroutine. The predefined sub­
routine SEP is described later in this section.

If an error exit was not previously specified,
and if the error that occurred was nonfatal,
DFBM sets one or all of the data flags to 0 and
returns control to the program. If a class I
condition caused the data flag branch, the data
flag corresponding to the highest priority
existing condition is set to O. If a class III
condition caused the data flag branch, all data
flags are set to O. Setting a data flag to 0
automatically sets the corresponding product bit
to 0 as well.

If an error exit was not previously specified,
and if the error that occurred was fatal or
catastrophic, DFBM outputs the contents of the
data flag branch register and aborts the pro­
gram. If the program is part of a batch job, a
post-mortem dump is also output,

60480200 A

Class I Branch Processing Using Branch-Handling
Routine

When a class I condition is detected, the hardware
initiates a data flag branch and DFBM processes the
data flag branch. If you do not provide a branch­
handling routine to process the class I branch, DFBM
uses default data flag branch processing to process
the data flag branch.

If you provide a branch-handling routine for the
class I branch, DFBM performs the following steps:

Having checked the data flag branch register to
determine which condition exists and has the
highest priority, DFBM sets the data flag for
that condition to 0, This automatically sets
the corresponding product bit to 0 as well.

DFBM transfers control to the branch-handling
routine that was specified in the most recent
call to Q7DFCL1 for the particular condition.

In order to process a class I branch using a
branch-handling routine, you must supply one or more
branch-handling routines and you must call the pre­
defined subroutine Q7DFCL1 in order to specify the
address of the branch-handling routine to be used
when a particular condition causes a class I branch.

A class I branch-handling routine must be written
in a lower-level language, such as CYBER 200 assem­
bly language, A class I branch-handling routine
cannot be written in FORTRAN. See the CYBER 200
Assembler reference manual for a description of the
CYBER 200 assembly language.

A class I branch-handling routine is responsible for
most of the interface between itself and DFBM. DFBM
does not use a standard calling sequence to call the
branch-handling routine. Instead, DFBM transfers
control to the address speclf ied in the most recent
call to Q7DFCL1 for the particular condition.
Therefore, the address of the data base of the class
I branch-handling routine is not available in
register #lE.

The branch-handling routine must save the values in
register #1 through #FF, and the branch-handling
routine must restore the values of those registers
before returning control to DFBM.

The address to which the class I branch-handling
routine must transfer control is returned in a pa­
rameter of the most recent call to Q7DFCL1 for the
particular condition. At the time control branches
to the class I branch-handling routine, all data
flag branches are disabled.

The address of the branch-handling routine used for
class I data flag branches must be specif led in a
call to the predefined subroutine Q7DFCL1 before a
class I data flag branch occurs. At least one
Q7DFCL1 call must be made for each class I condition
processed by a branch-handling routine. The speci­
fication of a class I branch-handling routine is
effective for the duration of program execution, or
until another call to Q7DFCL1 is executed for a
particular condition. The branch-handling routine
used for class I data flag branches can be changed
during execution of the program by using multiple
calls to Q7DFCL1. The predefined subroutine
Q7DFCL1 is described later in this section.

11-9

Class III Branch Processing Using Branch-Handling
Bou tine

When a class Ill cond!.tion is detected, the hard­
ware initiates a data flag branch and DFBM processes
the data flag branch, If you do not provide a
branch-handling routine to process the class III
branch, DFBM uses default data flag branch process­
ing to process the data flag branch.

If you provide a branch-handling routine for the
class III branch, DFBM performs the following steps:

Having checked the data flag branch register to
determine which condition exists and has the
highest priority, DFBM saves a copy of the
entire register file of the routine in which the
data flag branch was initiated.

DFBM sets all of the data flags in the data flag
branch register to O. This automatically sets
all of the product bits to 0 as well.

DFBM sets bit 52 of the data flag branch reg­
ister to 1, which enables further data flag
branches.

DFBM transfers control to the branch-handling
routine specified in the call to Q7DFSET that
was in effect at the time the data flag branch
occurred.

In order to process a class Ill branch using a
branch-handling routine, you must supply one or more
branch-handling routines, and you must call the
predefined subroutine Q7DFSET in order to specify
the name of the branch-handling routine to be used
when a particular condition causes a class III
branch.

A class III branch-handling routine can be a FORTRAN
subroutine, but it must have no arguments. Data
communication between the branch-handling routine
and higher level routines can be accomplished by
using common blocks.

If a class Ill branch occurs while the branch­
handling routine is executing, DFBM causes a cata­
strophic error message to be issued and aborts the
program. The branch-handling routlne can disable
class Ill branches while the branch-handling routine
is executing; this is done by calling the predefined
subroutine Q7DFSET from the branch-handling routine.

If a class I branch occurs while a branch-handling
routine is executing, the class I branch ls proc­
essed immediately.

All data flags are set to 0 before control is
transferred from DFBM to a branch-handling routine;
however, the branch·-handling routine can determine
which data flags were set to l at the time of the
data flag branch by calling the predefined sub­
routines, Q7DFLAGS or Q7DFBR.

The name of the branch-handling routine used for
class III data flag branches must be specified in a
call to the predefined subroutine Q7DFSET before a
class III data flag branch occurs. Each subroutine
in a program can make different specifications of
how class III branches are to be handled within that
subroutine and in subroutines called by that sub­
routine. These specifications have no effect on the
specifications that were made in higher-level sub­
routines.

11-10

See figure 11-10 for an illustration of the scope I
of calls to Q7DFSET. The main program in the
example begins execution with the default conditions
in effect and executes until the first call to
Q7DFSET ls executed. A new set of conditions is
selected by the second Q7DFSET call and remains ln
effect until the Q7DFSET call in subroutine K is
executed. The set of conditions selected by the
Q7DFSET call that appears in subroutine K remains
in effect throughout execution of subroutine K,
which includes execution of subroutine D.

MAIN

CALL Q7DFSET

CALL Q7DFSET

CALL Q7DFSET

RETURN RETURN

RETURN

Figure 11-10. Scope of Selected Conditions I

When execution of subroutine K is completed and
control returns to the main program, the conditions
that were in effect when subroutine K was called are
reestablished. This set of conditions remains ln
effect throughout execution of the remainder of the
program, which includes execution of subroutine z.

Multiple Conditions Per Branch

The execution of a single machine language instruc­
tion can cause several class I and class III con­
ditions to be flagged at the same time. When
several product bits are set to 1 in the data flag
branch register, the hardware causes control to
transfer to DFBM as. as described previously. DFBM
then processes each class I condition and one class
III condition before returning control to the
program.

If a data flag branch occurs and more than one
product bit is set to 1, DFBM processes any class I
conditions first according to the priority of the
condition. Then, if processing the class I condi­
tion does not cause the program to abort, DFBM
processes the highest prior lty class III condition
that exists.

See table 11-2 for the processing that would be
performed for a data flag branch involving multiple
conditions. This table assumes that any branch­
handling routines return control to the program.

60480200 F

TABLE 11-2. MULTIPLE INTERRUPT PROCESSING

Class I Class III
Branch- Branch- Processlng Performed After
Handling Handllng Control Transfers to DFBM
Routine Routine
Provided Provided

No No Class I error message
issued, program aborted

Yes No Class I routine executed,
class III error message
issued, program aborted
for fatal message and re-
s1DDed otherwise

No Yes Class I error message
issued, program aborted
(class III routine not
executed although class III
condition flagged)

Yes Yes Class I routine executed,
class III routine then
executed, program resumed
(no error messages issued
by DFBM)

Data Flag Branch Subroutines

Several predefined subroutines enable you to con­
trol processing performed by DFBM. These subrou­
tines specify class I and class III branch-handling
routines, reference the bit settings of the data
flag branch register, and enable/disable class III
data flag branches. The data flag branch subrou­
tines are Q7DFCL1, Q7DFSET, Q7DFBR, Q7DFLAGS, and
Q7DFOFF.

Q7DFCL1

The Q7DFCL1 subroutine specifies the address of a
branch-handling routine to which control transfers
when a class I data flag branch occurs. The
Q7DFCL1 subroutine also returns the address to
which the branch-handling routine must return upon

I completion. See figure 11-11 for the format of a
Q7DFCL1 call.

At least one Q7DFCL1 call must be made for each
class I condition that you want to process with a
branch-handling routine. More than one Q7DFCL1
call can be made for a particular condition; the
most recently executed Q7DFCL1 call for a particu­
lar condition is the call that is effective.

Q7DFSET

The Q7DFSET subroutine can be used to do either or
both of the following:

Specify the conditions for which a class III
data flag branch is to occur by setting the
appropriate condition-enable bits in the data
flag branch register

60480200 F

CALL Q7DFCL1Cbhr,return,'cd')

bhr

return

cd

A fullword variable that contains the
virtual bit address of the
branch-handling routine to which DFB~
is to transfer control if the
specified condition occurs.

A fullword variable. The Q7DFCL1
call assigns to return the virtual
bit address in DFB" to which the
branch-handling routine for the
specified condition is to transfer
control upon completion.

A class I condition designator.

Figure 11-11. Q7DFCL1 Call Format

Specify the name of the branch-handling routine
that is to be called when a data flag branch
occurs for a particular class III condition

I

See figure 11-12 for the format of a Q7DFSET call. I

More than one Q7DFSET call can be made for a par­
ticular condition; the Q7DFSET call that is effec­
t! ve at a particular time depends on the scope of
the Q7DFSET calls. The scope of a Q7DFSET call is
described previously in this section.

CALL Q?DFSETCbhr)
or

CALL Q7DFSETCbhr,'NUL')
or

CALL Q7DFSETCbhr,'cd1 ', ,'cdn'>

bhr

'NUL'

A zero or the name of the branch-
handl ing routine that is to be called
if a class III branch occurs. If a
zero is specified, default processing
is performed for class III branches
(thus, the specification in effect at
the time program execution began is re­
established>.

Indicates that all class III condition­
enable bits are to be set to zero,
which disables all class III branches.

A class III condition designator or the
characters STD. If condition desig­
nators are specified, the corresponding
condition-enable bits are set to 1. If
STD is specified, the condition-enable
bits corresponding to the conditions
SRT, IND, and FDV are set to 1. Con­
dition designators and STD can be
specified in the same Q7DFSET call.

Figure 11-12. Q7DFSET Call Format

11-11

I

The Q7DFBR subroutine returns a copy of the data
flag branch register contents. If you call Q7DFBR
before any interrupts, class I or class III, have
occurred, the result is undefined.

If program execution causes an error condition that
leads to a data flag condition: The bit in the
data flag branch register corresponding to that
error condition is set to l. Otherwise, the bit
stays at O. See table 11-1 for the data flag
branch conditions.

I See figure 11-13 for the format of a Q7DFBR call.

I

CALL Q7DFBRCivar)

ivar An integer variable that gets a copy of
the data flag branch register contents.

Figure 11-13. Q7DFBR Call Format

Q7DFLAGS

The subroutine Q7DFLAGS references the bit settings
I in the data flag branch register. See figure 11-14

for the format of a Q7DFLAGS call.

The subroutine Q7DFLAGS returns an array of logical
values that indicate whether each product bit in
the data flag branch register was set to 1 or to 0
at the time the data flag branch occurred. The
logical value .TRUE. indicates that the correspond­
ing bit was set to 1; the logical value .FALSE.
indicates that the corresponding bit was set to O.

If Q7DFLAGS is called before any class III branches
have occurred, all of the logical values returned
are .FALSE, and all other values returned are O.

Q7DFOFF

The subroutine Q7DFOFF disables specified class III
branches at the time control returns to the program

I from a branch-handling routine. See figure 11-15
for the format of a Q7DFOFF call.

A Q7DFOFF call can appear only in a branch-handling
routine; if the call appears in any other routine,
the call has no effect.

Class III branches that are disabled by a Q7DFOFF
call become disabled only when control returns to
the program from the branch-handling routine in
which the Q7DFOFF call appears. The conditions
that are disabled by a Q7DFOFF call remain disabled
until a Q7DFSET call is executed.

The scope of a Q7DFOFF call is the same as the
scope of its associated Q7DFSET call. The scope of
a Q7DFSET call is described previously in this
section.

11-12

CALL Q7DFLAGSCpb,df,ad,rf)

pb A 1-dimensional 10-element array of type
logical; the Q7DFLAGS call assigns logical
values to the array elements that indicate
the setting of the class III product
bits: the value .TRUE. corresponds to the
bit value 1, and the value .FALSE.
corresponds to the bit value O. The first
element of array pb corresponds to the
class III condition having the highest
priority, the second element of array pb
corresponds to the class III condition
having the second-highest priority, and so
on. See table 11-1 for the priorities of
the conditions.

df A 1-dimensional 11-element array of type
logical; the Q7DFLAGS call assigns logical
values to the array elements that indicate
the settings of the class III data flags
and the pipe 2 register instruction flag:
the value .TRUE. corresponds to the bit
value 1, and the value .FALSE. corresponds
to the bit value O. The first element of
array df corresponds to the class III
condition having the highest priority, the
second element of array df corresponds to
the class III condition having the
second-highest priority, and so on; the
11th element of array df corresponds to
the pipe 2 register instruction data
flag. See table 11-1 for the priorities
of the conditions.

ad A variable of type integer; the Q7DFLAGS
call assigns to ad the address contained
in register #1, which is the address of
the instruction that would have been
executed next had the data flag branch not
occurred.

rf A 1-dimensional 256-element array or
symbolic descriptor array of type integer
or real; optional. The Q7DFLAGS call
assigns to the elements of rf the contents
of the register file at the time the data
flag branch occurred.

Figure 11-14. Q7DFLAGS Call Format

CALL Q7DFOFFC'cd1, ••• ,'cdn)

cdi A class III condition designator,
or the characters ALL or STD. If
condition designators are specified,
the corresponding condition-enable
bits are set to O. If ALL is speci­
fied, all condition-enable bits are
set to O. If STD is specified, the
condition-enable bits corresponding
to the conditions SRT, IND, and FDV
are set to O.

Figure 11-15. Q7DFOFF Call Format

60480200 F

I

I

SYSTEM ERROR PROCESSOR Parameter Pl and at least one additional param­
eter must be specified in a SEP call. A parameter
must be indicated as 0 if that parameter is not to
be specified; however, trailing zero parameters can
be omitted.

The system error processor (SEP) is a subroutine
that changes certain attributes of execution-time
errors. Some of the attributes of an error that
can be changed are the severity of the error, the
number of nonfatal errors that can occur during
program execution, the printing of the error mes­
sage, and the content of the error message. See
figure 11-16 for the format of a SEP call.

SEP calls can appear as frequently as required in a
program, and the error attributes can be changed
any number of times during program execution.

You should use caution when changing the severity
of an error from fatal to nonfatal,

PS

The error number of the run-time error. See appendix B. When P1 is zero, all other parameters
must be zero except p4, which refers to the global nonfatal error count.

Indicates the error severity to which P1 is to be changed. Parameter P2 can be one of the
following:

'F' Sets the error severity to fatal. Program execution is terminated abnormally when this
condition occurs.

'W' Sets the error severity to warning. Execution continues when this nonfatal condition
occurs.

0 The error severity is not changed.

When a fatal error is changed to a warning error, parameter p4 should also be specified to change
the maximum error count to a nonzero number.

The error exit subroutine entry point name, which must be included in an EXTERNAL statement in the
same program unit. If the error p1 occurs, entry point P3 is called and execution continues from
there. If P3 is zero, no error exit is implied and processing continues if the error is non­
fatal. If p1 is a fatal error and the subroutine P3 executes a RETURN, the program aborts; if p1
is nonfatal and P3 executes a RETURN, program execution continues.

An integer constant indicating the maximum error count for nonfatal errors; if the number of non­
fatal error condition occurrences reaches p4, execution terminates. An infinite error count is
indicated by a value of -1. If p4 is zero, no change for this parameter is indicated Cp4 might
have been assigned a value in a previous SEP call). If p4 is greater than 255, SEP sets P4 to
255.

The maximum error count for a warning error for which SEP has not been called is 25. The maximum
error count for a fatal error for which SEP has not been called is zero. When P2 changes a fatal
error to a warning error, P4 should also be specified.

The error display supression argument, applying only to nonfatal errors. The values that can be
specified for Ps are:

'S' Indicates that the error message, normally sent to the user's dayfile or to the terminal,
is to be supressed.

0 No message suppression is to take place.

The number of characters in p7, excluding bracketing apostrophes.

A character string that replaces the standard message associated with p1• The string must be
enclosed by apostrophes to form a character constant. Parameter p6 must appear when P7 appears.

Figure 11-16. SEP Call Format

60480200 F 11-13

I

MDU MP

The subroutine MDUMP is a debugging subroutine that
outputs the contents of specified areas of virtual
memory. See figure 11-17 for the format of an
MDUMP call.

CALL MDUMPCfirst,Len,dtype,uid)

first

len

dtype

uid

A simple variable, array, or array
element with which the area to be
dumped begins.

Length in fullwords of area to be
dumped.

Dump format:

'Z'

'I'

'Ew.d'
or

'Fw.d'

Hexadecimal dump

Integer dump

Floating-point dump, where w
is the field width and d is
the factional decimal digit
count

If dtype has a value other than one of
the above, a hexadecimal dump is made.

An external unit identifier.

Figure 11-17. MDUMP Call Format

The subroutine MDUMP can be called from a FORTRAN
I program or from assembly language subroutines that

are called by a FORTRAN program. MDUMP is called
from an assembly language subroutine by using the
standard calling sequence conventions. See section
13 for a description of the standard calling
sequence conventions. The external unit identifier
specified in an MDUMP call that appears in an
assembly language subroutine must be defined in the
same way as for MDUMP calls that appear in a
FORTRAN program unit.

ST ACKLIB SUBROUTINES
The STACKLIB subroutines are a library of prede­
fined subroutines designed to optimize certain DO
loop constructs that do not lend themselves to
direct vector calculations. The STACKLIB subrou­
tines optimize these constructs by efficient use of
the instruction stack and register file.

If vectorization is requested with the OPTIMIZE=V
compilation option, the compiler attempts to
transform each DO loop it cannot vectorize into a
STACKLIB subroutine call as described under Gener­
ation of Calls to STACKLIB Routines in section 9.
The compiler may not recognize a DO loop as vector­
izable or as convertible to a STACKLIB routine. In
that case, you can optimize your program yourself
by replacing the unconverted DO loops with the
appropriate calls to STACKLIB routines.

11-14

NOTE

STACKLIB calls only provide scalar optimi­
zation. Whenever possible, restructure DO
loop constructs so that they execute as
vector operations.

Each STACKLIB call replaces a DO loop. Table 11-3
defines each available STACKLIB subroutine with an
example of a DO loop that is the equivalent of the
corresponding STACKLIB call.

ST ACKLIB SUBROUTINE
CHARACTERISTICS

The STACKLIB subroutines in table 11-3 are defined
in terms of the following characteristics:

Forward count: Indicates that vector elements
are processed in increasing subscript order.

Backward count: Indicates that vector elements
are processed in decreasing subscript order.

Dyadic operation: Indicates that the equiv­
alent calculation is a DO loop comprising one
arithmetic operation performed on two operands.

Triadic operation: Indicates that the equiv­
alent calculation is a DO loop comprising two
arithmetic operations performed on three
operands.

Broadcasts: Indicates that the subroutine uses
one or more scalar (loop invariant) operands.
All other operands are vector (loop dependent)
operands.

Recursive: Indicates that an element of the
result vector is used to compute the next
element of the result vector. A call to a
recursive STACKLIB routine specifies the same
vector as the result vector and as one of the
operand vectors.

Normal order: Indicates a triadic operation in
which the first arithmetic operation (using the
first and second operands) is performed first
and the second arithmetic operation (using the
third operand and the operation result) is
performed second. For example, using normal
order, the expression A + B * C is computed as
(A + B) * C.

Reverse order: Indicates a triadic operation
in which the second arithmetic cperation (using
the second and third operands) is performed
first and the first arithmetic operation (using
the first operand and the operation result) is
performed second. For example, using reverse
order, the expression A + B * C is computed
A + (B * C).

60480200 J

TABLE 11-3. STACKLIB ROUTINES

Recursive Add, Normal Count, Forward Order (Q8A0x0)

Name: Q8A010 Q8A020

Recursive
Operand: vl v2

Example: CALL Q8A010(R(2),A(2),R(l),L-l) CALL Q8A020(R(2),R(l),B(2),L-l)

DO Loop
Equivalent
of STACKLIB DO 10 1=2,L DO 10 1=2,L
Call: 10 R(I) = A(I) + R(I-1) 10 R(I) = R(I-1) + B(I)

Recursive Multiply Add, Normal Count, Forward Order (Q8MAOx0)

Name: Q8MA020 Q8MA040

Recursive
Operand: v2 v4

Example: CALL Q8MA020(R(2),A(l),R(l),C(2),L-l) CALL Q8MA040(R(2),R(l),B(2),C(2),L-l)

DO Loop
Equivalent
of STACKLIB DO 10 1=2,L DO 10 1=2,L
Call: 10 R(I) =(A(I-1) * R(I-1)) + C(I) 10 R(l) =(R(I-1) * B(l))+ C(l)

Recursive Multiply Add, Normal Count, Reverse Order (Q8AMOxl)

Name: Q8AMOll Q8AM021

Recursive
Operand: vl v2

Example: CALL Q8AMOll(R(2),A(2),B(l),R(l),L-l) CALL Q8AM02l(R(2),A(2),R(l),C(l),L-l)

DO Loop
Equivalent
of STACKLIB DO 10 1=2,L DO 10 1=2,L
Call: 10 R(I) = A(I) + (B(l-1) * R(l-1)) 10 R(I) = A(I) + (R(I-1) * C(l-1))

Recursive Multiply Add, Backwards Count, Reverse Order (Q8AMOx3)

Name: Q8AM013 Q8AM023

Recursive
Operand: vi v2

Example: CALL Q8AM013(R(L-l),A(L-l),B(L-l),R(L),L-l) CALL Q8AM023(R(L-l),A(L-l),R(L),C(L-l),L-l)

DO Loop
Equivalent DO 10 1=2,L DO 10 1=2,L
of STACKLIB J = (L+l) - l J = (L+l) - I
Call: 10 R(J) = A(J) + (B(J) * R(J+l)) 10 R(J) = A(J) + (R(J+l) * C(J)) I

60480200 E 11-15

Name:

Recursive
Operand:

Broadcast
Operand:

Example:

DO Loop
Equivalent
of STACKLIB
Call:

Name:

Recursive
Operand:

Broadcast
Operand:

Example:

DO Loop
Equivalent
of STACKLIB
Call:

Name:

Broadcast
Operand:

Example:

DO Loop
Equivalent
of STACKLIB
Call:

Name:

Broadcast
Operand:

Example:

DO Loop
Equivalent
of STACKLIB
Call:

11-16

TABLE 11-3. STACKLIB ROUTINES (Contd)

Recursive Multiply Add, Broadcast, Backwards Count, Forward Order (Q8MAxl2)

Q8MA212 Q8MA412

111 11 l

v2 114

CALL Q8MA212(R(L-l),A(L-l),S,R(L),L-l) CALL Q8MA412(R(L-l),S,B(L-l),R\L),L-l)

DO 10 1=2,L
J = (L+l) - I

10 R(J) =(A(J) * S)+ R(J+l)

DO 10 l=2,L
J = (L+l) - I

lO R(J) =(S * B(J)) + R(J+l)

Recursive Multiply Add, Broadcast, Backwards Count, Reverse Order (Q8AMx43)

Q8AM143 Q8AM243

v4 114

vl v2

CALL Q8AM143(R(L-l),R(L),B(L-l),S,L-l) CALL Q8AM243(R(L-l),R(L),S,C(L-l),L-l)

DO 10 1=2,L DO 10 1=2,L
J = (L+l) - I J = (L+l) - I

10 R(J) = R(J+l) + (B(J) * S) 10 R(J) = R(J+l) + (S * C(J))

Nonrecursive Multiply Add, Broadcast, Forward Count, Normal Order (Q8MAx00)

Q8MA200 Q8MA400

v2 114

CALL Q8MA200(R(2),A(2),S,C(2),L-l) CALL Q8MA400(R(2),S,B(2),C(2),L-l)

DO 10 1=2,L DO 10 l=2,L
10 R(l) = A(I) * S + C(l) 10 R(l) = S * B(l) + C(l)

Nonrecursive Multiply Add, Broadcast, Forward Count, Reverse Order (Q8AMx01)

Q8AMl 01 Q8AM201

vl 112

CALL Q8AM10l{R(2),A(2),B(2),S,L-l) CALL Q8AM20l(R(2),A(2),S,C(2),L-l)

DO 10 I=2,L DO 10 1=2,L
10 R(I) = A(I) + B(I) * S 10 R(I) = A(l) + S * C(I)

60480200 c

Name:

Recursive
Operand:

Example:

DO Loop
Equivalent
of STAClCLIB
Call:

Name:

Recursive
t' Operand:

Example:

DO Loop
Equivalent
of STAClCLIB
Call:

Name:

Broadcast
Operand:

Example:

00 Loop
Equivalent
of STAClCLlB
Call:

Name:

Recursive
Operand:

Broadcast
Operands:

Example:

DO Loop
Equivalent
of STAClCLIB
Call:

60480200 c

TABUS ll-3. STACKLIB ROUTINES (Contd)

Recursive Subtract Multiply, Forward Count, Reverse Order (Q8SM0xl)

Q8SM0ll Q8SM021

vl v2

CALL Q8SM0ll(R(2),A(2),B(2),R(l),L-l) CALL Q8SM02l(R(2),A(2),R(l),C(2),L-l)

DO 10 I•2,L DO 10 !•2,L
10 R(I) • A(I) - (B(I) * R(I-1)) 10 R(I) • A(I) - (R(I-1) * C(I))

Recursive Subtract Multiply, Backwards Count, Reverse Order (Q8SM0x3)

Q8SM013 Q8SM023

vl v2

CALL Q8SM013(R(L-l),A(L-1),B(L-l),R(L),L-l) CALL Q8SM023(R(L-l),A(L-l),R(L),C(L~l),L-l)

00 10 !•2,L DO 10 I•2,L
J • (L+l) - I J = (L+l) - I

10 R(J) = A(J) - (B(J) * R(J+l)) 10 R(J) = A(J) - (R(J+l) * C(J))

Nonrecursive Subtract Multiply, Broadcast, Forward Count, Reverse Order (Q8SMx0l)

Q8SM10l Q8SM20l

vl v2

CALL Q8SM10l(R(2),A(2),B(2),S,L-l) CALL Q8SM20l(R(2),A(2),S,C(2),L-l)

00 10 !=2,L DO 10 1=2,L
10 R(I) = A(I) - 8(1) * S 10 R(I) = A(l) - (S * C(l))

Recursive Divide Add, Broadcasts, Backwards Count, Reverse Order (Q8DAxx3)

Q8DA523 Q8DA613

v2 vl

vl,v4 v2,v4

CALL Q8QA523(R(L-l),S,R(L),T,L-l) CALL Q8DA613(R(L-l),S,T,R(L),L-l)

DO 10 1=2,L DO 10 1=2,L
J = (L+l) - l J = (L+l) - l

10 R(J) = s I (R(J+l) + T) 10 R(J) = S I (T + R(J+l))

11-17

TABLE 11-3. STACKLIB ROUTINES (Contd)

Dot Product

Name: Q8DCOOOO Q8DC0010

Number of
Vectors: 2 1

Example: CALL Q8DCOOOO(S~A(2),B(2),L-l) CALL Q8DC0010(S,A(2),L-1)

DO Loop
Equivalent
of STACKLIB DO 10 1=2,L DO 10 1=2,L
Call: 10 S = S + A(I) * B(I) 10 S = S + A(I) * A(I)

Sum of Vector Elements

Name: Q8DA0000

Example: CALL Q8DA0000(S,A(2),L-l)

DO Loop
Equivalent
of STACKLIB DO 10 1•2,L
Call: 10 S = S + A(I)

STACKLIB SUBROUTINE NAMING
CONVENTION
Except for the dot product and sum of vector ele­
ments subroutines, each STACKLIB subroutine is
named according to the following naming convention:

For dyadic operations:

Q8fbrm

For triadic operations:

Q8fsbrm

f Letter designating the first
operation (A•add, S=subtract,
and D=divide).

arithmetic
M=multiply,

s Letter designating the second arithmetic
operation (triadic operations only) (A=add,
S•subtract, M=multiply, and D=divide).

b Number designating the broadcast (scalar or
invariant) operands (O=no broadcast oper­
ands, l=operand vl, 2=operand v2,)=operands
vl and v2, 4= operand v4, S=operands vl and
v4, and 6=operands v2 and v4).

r Number designating the recursive operand
whose value is replaced by the result vector
address offset by 1 (O=no recursive oper­
ands, !=operand vl, 2•operand v2,)=operands
vl and v2, 4= operand v4, 5=operands vl ftnd
v4, and 6=operands v2 and v4).

m Number designating the count and order for
a triadic operation (for a dyadic opera­
tion, the value is always 0) (O=forward
count, normal order; !=forward count,
reverse order; 2=backwards count, normal
order; and 3=backwards count, reverse
order).

11-18

For example, using this naming convention, the name
Q8MA020 indicates that the subroutine has the
following characteristics:

Arithmetic operations: Multiply and add

Broadcast operands: None

Recursive operands: v2

Count and order: Forward and normal

Not all STACKLIB routines that could be defined by
this naming convention actually exist. Table 11-3
lists the available STACKLIB routines with their
characteristics.

ST ACKLIB CALL FORMATS

A STACKLIB call for a dyadic operation specifies
four parameter values as follows:

CALL Q8xnnn(result,v2,vl,length)

result

v2

vl

length

First address of the result vector

First address of the left operand
vector

First address of the right operand
vector

Positive integer indicating the
number of results to be produced

60480200 c

I

A STACKLIB call for a triadic operation is the same
as for a dyadic call except that it specifies a
third operand vector as follows:

CALL Q8xxnnn(result, v4, v2, vi ,length)

result

v4

v2

vi

length

60480200 E

First address of the result vector

First address of the left operand
vector

First address of the middle operand
vector

First address of the right operand
vector

Positive integer indicating the num­
ber of results to be produced

ST ACKLIB ARGUMENT CHECKING AND
ERROR PROCESSING

Because the STACKLIB subroutines are implemented
for high performance, the subroutines do not check
for argument validity. All vectors are assumed to
be of type real (an explicit descriptor must be of
type real) and the length is assumed to be a posi­
tive integer. Standard FORTRAN calling sequence
conventions are assumed.

If an operand is designated as recursive, the
routine ignores the value specified as the first
address of that operand vector. Instead, the rou­
tine uses the first address of the result vector
offset by I. For example, if operand vi is desig­
nated as recursive, any value specified for vl is
ignored.

An error condition that occurs during execution of
a STACKLIB routine can only be detected by the Data
Flag Branch processor.

11-19

SPECIAL CALLS 12

The FORTRAN 200 language includes a number of spe­
cial call statements that directly generate machine
language instructions,

Before using special call statements, you should be
familiar with the machine language instructions, the
assembly language symbolic instructions, the CYBER
200 hardware, and the CYBER 200 Assembler. See the
appropriate hardware reference manual and the CYBER
200 Assembler reference manual for more information.

Special call statements are not recommended for most
FORTRAN applications. Use them only when absolutely
necessary and only to accomplish specific pro­
gramming tasks.

A special call statement cons lsts of the keyword
CALL followed by a special call name and an argument
list. A FORTRAN program unit can contain one or
more special call statements. See figure 12-1 for
the format of a special call statement.

m One of the special call names beginning
with Q8

An argument corresponding to one of the
fields of the instruction format

Figure 12-1. Special Call Statement Format

ARGUMENTS
Arguments that are used in special call statements
must be label references, symbolic references, or
literals.

The arguments used in the special call statements
correspond to the fields of the machine language
instructions. The arguments used in the assembly
language symbolic instructions can appear dif­
ferently, but they are functionally the same. For
example, the machine language instruction 1178 is
RTOR R,T in assembly language, but the FORTRAN spe­
cial call statement is CALL Q8RTOR(R,,T). The extra
comma is required because of the mlssing operand S
that can appear between operands R and T in some
instructions.

The arguments in a special call statement must
rigidly follow the machine language instruction
format. Any missing arguments must be indicated by
a comma, although trailing missing arguments can be
omitted,

Normally, the arguments must appear in the order of
the fields of the machine language instruction. An
exception is that only one iirgument is allowed for
an entire 8-bit subfunction field (G bits) having
1-bit subfields. Another exception is thiit for the
indexed branch lnstructions ffBO through lfBS, the
combined Y and B fields require only one argument

60480200 A

in the special call statement; this argument is
usually a label reference. If the combined fields
represent two register designators, however, you
must use a 16-bit hexadecimal constant,

When an arg=ent is a literal, place the value of
the literal in the instruction field. When an
arg1.Dnent is a variable, place the register number
of the variable in the instruction field.

When necessary, the compiler generates a load in­
struction before the special call statement machine
instruction and a store instruction afterward. Only
registers #20 through #FF are used for this purpose,
The low-order temporary registers may be used, but
the generated object code destroys their contents
when it reverts to using standard FORTRAN 200
statements.

The bits in the subfunction field (G bits) of
machine language instruction formats #1, #2, and #3
are not checked against the operands to ensure the
validity of the instruction. There will be no
warning messages for any special call statements
that transfer control in or out of the range of a
DO loop, if-block, else-block, elseif-block, where­
block, or otherwise-block.

LABEL REFERENCES

A label reference is designated by prefixing a
statement label with an asterisk or ampersand,
Label references can appear in the following machine
instruction formats:

In the combined Y and B fields of a format #C
machine language instruction

In the 48-bi t I field of a format # 5 machine
language instruction, except when only 24 bits
of the I field are used by certain instructions

In the 8-bit I field of a format #9 and format
#B machine language instruction

If the label reference appears in the combined Y and
B fields of a format lie machine language instruc­
tion, the label reference is translated into a code
halfword offset from the special call statement to
the statement in the program unit identified by the
label. The labeled statement can appear before or
after the special call statement.

If the label reference appears in the 48-bit I field
of a format #5 machine language instruction, the
label reference is translated into the bit address
of the statement tagged by the label. This bit
address is a relative bit address with respect to
the base address of the code section of the program
unit in which the special call statement appears.

If the label reference appears in the 8-bit immedi­
ate field of a lf2F, 1132, or #33 machine language
instruction, the label reference is translated into
a halfword offset from the special call statement

12-1

to the statement tagged by the label. If the
resulting half1Jord offset exceeds a magnitude of
255, a 0 is used to initialize the 8-bit I field;
no warning message is issued.

A label reference is the only kind of argtUDent that
can appear in the branch field of a relative branch
machine language instruction.

SYMBOLIC REFERENCES

A symbolic reference can be a variable, array
element, descriptor, descriptor array element, or
vector reference of type integer, half-precision,
real, or logical. Fullword symbolic references in
halfword instruction fields are illegal, and half­
word symbolic references in fullword instruction
fields are illegal.

Symbolic references can appear in any 8-bit register
designator field, except in halfword registers.
Registers that are modified by branch instructions
must not be referenced symbolically.

LITERALS

A literal can be a decimal, hexadecimal, bit, char­
acter, or Hollerith constant, and can be used for
any instruction field. Any missing argtUDents are
asstUDed to be constants whose values are O. In
general, constants are interpreted as register
designators rather than as data used by an instruc­
tion.

SPECIAL CALL STATEMENT EXAMPLES
The following paragraphs contain two sets of
special call statement examples. The first set of
examples uses special calls to store information in
the register file. The second set of examples uses
special call statements to vectorize DO loops.

USING SPECIAL CALLS TO MANIPULATE
REGISTERS

See figure 12-2 for the first example of the use of
special call st'itements. The call to Q8BSAVE sets
register #3 to the bit address of the next instruc­
tion, which has statement label 10. The call to
Q8EX in the statement labeled 10 sets register #4
to the bit offset of statement 10 from the base
address of the code section. In the next statement,
the call to QSSUBX sets integer variable CB to the
base address of the code sec ti on. The next call to
QSEX sets variable I to the bit offset of the
statement labeled 20. The next statement sets var­
iable L20 to the actual address of the statement
labeled 20. This information is then used in the
call to Q8BGE.

See figure 12-3 for the second example of the use
I of special call statements. Each special call

statement places the character string AB in
register #41. These examples demonstrate how
literals can be used as arguments; however, the use
of register #41 would probably cause an error
because registers 1120 to (/FF are assigned by the
compiler.

12-2

INTEGER CB,L20
CALL G8BSAVEC3,,3)

10 CALL Q8EXC4,&10)
CALL Q8SUBXC3,4,CB)
CALL QSEXCI,&20>
L20=I+CB

CALL Q8BGECA,B,L20)

20

Figure 12-2. Special Call Statement Example #1

CALL Q8ESC65,'AB')
CALL Q8ESCX'41',X'4142')
CALL Q8ESCB'1000001 ','AB')
CALL Q8ESC'A','AB')

Figure 12-3. Special Call Statement Example #2

See figure 12-4 for the third example of the use of
special call statements. If J is assigned to
register 1122 by the compiler, this example generates
machine language instructions; see figure 12-5 for
the assembly language representation of the machine
language instructions generated.

CALL Q8ES C3, 1 >
CALL Q8ES C4,2>
CALL Q8ADDXC3,4,J)

Figure 12-4. Special Call Statement Example #3

ES R3, 1
ES R4.2
ADDX R3,R4,R22

Figure 12-5. Generated Code

1f J is not assigned to register #22 by the com­
piler, different machine language instructions would
be generated; see figure 12-6 for the alternate
assembly language representation of the machine
language instructions generated.

60480200 G

ES
ES
AODX
STO

R3, 1
R4,2
R3,R4, T1
(DATA BASE,
LOCATION OF

RELATIVE
J>,T1

Figure 12-6. Alternate Generated Code

USING SPECIAL CALLS TO VECTORIZE
DO LOOPS
DO loops often perform the loop calculation
selectively. Many contain tests that determine the
operand pairs on which the loop calculation is
performed. For other DO loops, the index increment
is not 1 (nonunit stride). These types of 00 loops

Eu111ple 1:

can often be transformed into vector arithmetic
operations controlled by a bit vector. This
transformation can be done using either the WHERE
statement (described in section 9) or special
calls. (Use of the WHERE statement is recommended
because it produces more readable code.)

NOTE

The automatic vectorizer can vectorize
nonunit stride DO loops.

Figure 12-6. l contains examples of DO loop trans­
formations using special calls. These special
calls are used:

QSADDNV Vector addition

QSSUBNV Vector subtraction

QSMPYSV Vector multiplication

QSDIVSV. Vector division

The following DO Loop performs a multiplication operation for each 1 bit in the BITV vector. It uses
the STOL function to convert each bit in the vector to its corresponding logical value (false for each
0 bit; true for each 1 bit>.

DO 10 I=1,N
10 IF CBTOLCBlTVCIJ)) R(l) = A{I) * 8(1)

The sa111e Loop can be writtP.n as the following special call statement:

CALL Q8MPYSV(X'00',,AC1;N>,,B<l;N>,BITVC1;N),RC1;N))

ha111ple 2:

The following DO loop has a nonunit >tride Cthe loop index is incremented by 2>:

DO 10 1=1,N,2
10 ACI> = BCil + 2.0 * CCI>

The 00 Loop can be rewritten using a bit vector CBITV>, a temporary vector <TEMP>, and a special call
statement, as follows:

BITVC1;N) = Q8VMKOC1,2;BITVC1;N>> Stores alternate 1 and 0 bits beginning with a 1 bit.
TEMP(1;N> = 2.0 * CC1;N)
CALL Q8ADDNV(X'00',,BC1;N>,,TEMPCl;N>,BITVC1;N>,AC1;N))

The following DO Loop is the same as the DO Loop in example 2 except it performs a subtraction
operation instead of an addition oper3tion:

DO 10 1=1,N,2
10 ACI) = 8(1) - 2.0 * CCI>

The DO loop can be rewritten using a bit 11ector CBITV>, a te111porary vector CTEMP), and a special call
statement, as follows:

BITVC1;N> ~ Q8VMKOC1,2;BITVC1;N)) Stores alternate 1 and 0 bits beginning with a 1 bit.
TEMPC1;N> = 2.0 * CC1;N>
CALL Q8SUBNVCX'00',,8<1;N>,,TEMPCl;N),BITVC1;N>,AC1;N>>

Figure 12-6.1. Special C~ll E~amples That Vect~rize Do Loops <Sheet 1 of 2>

60480200 E 12-3

I

Example 4:

The following DO loop performs an addition operation when a test is evaluated true:

DO 10 1=1,100
ACI) = BC!) + CCI>
IF CACI) .EQ. O.O> DC!)

10 GCI) = ACI) + DCI>
ECI> + FCI>

The DO loop can be restructured using a bit vector CBITV) and a special call statement, as follows:

AC1;100> = BC1;100) + CC1;100>
BITVC1;100> = AC1;100) .EQ. 0.0 A 1 bit is stored corresponding to each O.O element in A.

CALL Q8ADDNVCX'00',,EC1;100>,,FC1;100>,BITVC1;100),DC1;100>>
GC1;100> = AC1;100> + DC1;100>

Example 5:

The following DO loop performs a division operation when a test is evaluated true:

DO 10 1=1,100
10 IF CCCI> .NE. 0.0) ACI> = BCI> I C(I)

The DO loop can be restructured using a bit vector CBITV) and a special statement, as follows:

BITVC1;100) = CC1;100> .NE. 0.0 A 1 bit is stored corresponding to each nonzero element in c.

CALL Q8DIVSVCX'00',,BC1;100>,,CC1;100),BITVC1;100),AC1;100))

Example 6:

The following DO loop performs a multiplication operation and a constant assignment only when a test is
evaluated false:

DO 10 I=1, 100
ACI> = BCI) * CCI>
IF CACI) .NE. 0.0) GO TO 20
ACI) = DCI) * ECI)
BCI) = 1.0

20 CONTINUE
FCI) = ACI) + BCI>

10 CONTINUE

The DO loop can be restructured by reversing the test so that a 1 bit is stored in the bit vector BITV
corresponding to each case where the multiplication operation and constant assignment should be
performed. The Q8VCTRL function is used to perform the constant assignment; the value 1.0 is stored in
each element in B that corresponds to a 1 bit in BITV.

AC1;100> = BC1;100) * CC1;100>
BITVC1;100) = AC1;100> .EQ. a.a
CALL Q8MPYSVCX'00',,DC1;100>,,EC1;100>,BITVC1;100>,AC1;100))
BC1;100> = Q8VCTRLC1.0,BITVC1;100>;BC1;10Q))
FC1;100) = AC1;100> + BC1;100>

Figure 12-6.1. Special Call Examples That Vectorize Do Loops (Sheet 2 of 2)

12-4 60480200 G

WARNING ABOUT USING Q8 SPECIAL CALLS
Because the QB special calls directly access the
CYBER 205 hardware functions, they are extremely
powerful. lk>wever, the proper use of such calls
requires a thorough understanding of the hard ware
specifics. The compiler typically translates the
calls with their arguments directly into machine
instructions. It does very little parameter valid­
ity checking and knows very little, if anything,
about hardware exceptional conditions. Given that
the compiler has no provisions to handle hardware
idiosyncrasies, the translated code might not
perform as intended.

Following are two situations that we know can cause
problems. When you write machine level code by
writing QB special calls, you must be aware of
these situations and code around them accordingly.

Q8LINKV Special Call Warning

One such case is the QBLINKV special call. The
LINKV machine instruction enables efficient proc­
essing of two sequeritial vector instructions, where
the second instruction needs as input the output
from the first instruction. T-wo of the hardware
requirements of using LINKV are the following:

The two vector instructions are linkable.

The two vector instructions immediately follow
the LINKV instruction. If there are any scalar
instructions between LINKV and the two vector
instructions that the LINKV is linking, a
hardware illegal instruction fault results.

I In the following example, A, B, C, and D are vector
descriptors:

CALL QBLINKV(X'lO')
CALL Q8MPYSV(X'l0' ,,A,,B,,C)
CALL QSADDNV(X'OB',,C,,1.0,,D)

I All the descriptors must be assigned to registers
before compilation. However, if any descriptor is
stared in memory, the compiler generates code to
load that descriptor into a register. The compiler
inserts the code, a scalar instruction, between the
LINKV and MPYSV. The position of this scalar
instruction makes it an illegal hardware
instruction.

604B0200 J

Overlapping Scalar Instruction Warnings

Another situation that can be a problem is shown in
the following example:

IMPLICIT HALF PRECISION (A-Z)
CALL QBDIVSH(Rl,Sl,Tl)
CALL Q8ADDNH(R2,52,Tl)

In this example, the half-precision variable Tl
should end up with the result of R2 + 52. However,
if R2 or 52 happens to form an odd/ even half-word
register pair with Tl, a problem occurs. In this
situation, the hardware allows the result of Rl/51
to be inserted into Tl after the result of R2 + 52
was inserted into Tl. Thus, the final value in Tl
is the result of the divide rather than the result
of the add. This example shows that Tl might not
contain the expected result.

This kind of problem is not limited to only the two
instructions, QBDIV5H and QBADDNH, in the above
example. It can occur whenever all of the follow­
ing conditions hold:

Two 32-bit scalar instructions overlap in
execution; that is, the hardware performs them
in parallel.

There is a T to T (output register designation)
conflict; that is, both of the 32-bit scalar
instructions put their results in the same
output register.

R2 or S2 forms an odd/ even half-word register
pair with Tl; that is, one of the input var­
iables in the second 32-bit scalar instruction
forms an odd/ even half-word register pair with
the output register in that instruction.

The second 32-bit scalar instruction takes less
time to complete than the first.

SPECIAL CALL FORMATS
Each special call name is a mnemonic preceded by QB.
The mnemonics are identical or similar to the CYBER
200 assembly language mnemonics.

The first field of each machine instruction is the
operation code field (F), which indicates the
function to be performed. The special call name
supplies the operation code in the generated
instruction. Other operands are specified as
arguments in the special call. See table 12-1 for
a description of the operand designators.

12-4.1

TABLE 12-l. OPERAND DESIGNATORS

Designator Format Type Definition

A l and 3 Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

2 Specifies a register that contains the base address for a source sparse vector
field.

c Specifies a fullword or halfword register, the length and type of which is
determined by G field bits.

B l and 3 Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

2 Specifies a register that contains the base address for a source sparse vector
field.

c Specifies a register that contains the branch base address in the rightmost 48
bits, or must be set to zero, depending on G bit 2.

c l, 2, and 3 Specifies a register that contains the field length and base address for st or-
ing the result vector or string field.

c Specifies a fullword or halfword register that contains the sum of (A) + (X)
for indexed branch instructions, but must be set to zero for compare floating-
point instructions.

c + l l Specifies a register containing the offset for C and Z vector fields. If
the C + l designator is used, the C designator must specify an even-numbered
register.

G l, 2, 3, 9, 8-bit designator specifies certain subfunction conditions. Subfunctions in-
B and c elude length of operands (32- or 64-bit), normal or broadcast source vectors,

and so on. The number of bits used in the G designator varies with instruc-
tions. For some format 3 instructions, used as an immediate byte I8.

I 5 48-bi t index used to form the branch address in a B6 branch instruction. In BE
and BF index instructions, I is a 48-bit operand.

6 In 3E and 3F index instructions, l is a 16-bit operand.

B In the 33 branch instruction, the 6-bit I is the number of the DFB object bits
used in the branching operation.

R 4 In the register and 3D instructions, R is the register containing an operand to
be used in an arithmetic operation.

5 and 6 In the 3E, 3F, BE, and BF index instructions, R is a destination register for
the transfer of an operand or operand sum. In the B6 branch instruction, this
register contains an item count used to form the branch address.

7' 8, and A R specifies registers and branching conditions given in the individual inst rue-
tion descriptions.

s 4 In the register and 3D instructions, s is a register containing an operand to
be used in an arithmetic operation.

7' 8, and 9 S specifies registers and branching conditions given in the individual instruc-
tion descriptions.

T 4 T specifies a destination register for the transfer of the arithmetic results.

7, 8, 9 T specifies a register that contains the base address and, in some cases, the
and B field length of the corresponding result field or branch address.

A T specifies a register containing the old state of a register, DFB register,
and so on; in an index, branch, or inter-register transfer operation.

12-4.2 60480200 G

TABLE 12-1. OPERAND DESIGNATORS (Contd)

Designator Format Type Definition

x I and 3

2

c

y l and 3

2

c

z 1

2

3

c

Specifies a register that contains the offset or index for vector or string
source field A,

Specifies a register that contains length and base address for order vector
corresponding to source sparse vector field A.

In indexed branch or compare floating-point instructions (BO - BS), specifies
a fullword or halfword register that contains an operand, the length and type
of which is determined by G field bits.

Specifies a register that contains the offset or index for vector or string
field B.

Specifies a register that contains the length and base address for the order
vector corresponding to source sparse vector field B.

In indexed branch or compare floating-point instructions (BO - BS), Y specifies
one of the following: a register that contains an index used to form the
branch address; part of the halfword item count in a relative branch; or a
destination register for storing a one if the condition is met, and zero
otherwise.

Z specifies a register that contains the base address for the order vector used
to control the result vector in field c.

Z specifies a register that contains the length and base address for the order
vector corresponding to result sparse vector field C.

Z specifies a register that contains the index for result field C.

In indexed branch or compare floating-point instructions (BO - BS), contains
a two's complement or unsigned integer that determines whether the condition
is met.

See table 12•2 'for the special call formats• The'
bits of the subfunction field (G bits) that can be
set to 0 or 1 are indicated with an x. In table
12-2, the following notations are used:

d

e

Indicates a fullword register containing'
a descriptor

Indicates a fullword register with an
exponent field that contains a length
operand f Indicates a fullword register containing

an operand

h

a

i

60480200 G

Indicates a halfword register containing
an operand

Indicates a fullword register containing
an address; the length field is ignored

Indicates a fullword register containing
an index

eh

FP

Indicates a halfword register with an
exponent field that contains a length
operand

ls an abbreviation for floating-point

OV Is an abbreviation for order vector

ls an abbreviation for right-justified

12-4.3112-4.4 I

I
SE Is an abbreviation for sign-extended N Indicates normalized upper result

YB Indicates a combined Y and B field S Indicates significant result

.OP. Indicates one of the logical operators
.EQ., .NE., .GE., or .LT. See table 12-3 for the special call names listed by

operation code.
u Indicates upper result

L Indicates lower result

Special Call

CALL Q8ABSV(G,X,A,,,Z,C)

CALL Q8ACPS(G,X,A,Y,B,Z,C)

CALL Q8ADDLS(G,X,A,Y,B,Z,C)

CALL Q8ADDLV(G,X,A,Y,B,Z,C)

CALL Q8ADDNS(G,X,A,Y,B,Z,C)

CALL Q8ADDNV(G,X,A,Y,B,Z,C)

CALL Q8ADDUS(G,X,A,Y,B,Z,C)

CALL Q8ADDUV(G,X,A,Y,B,Z,C)

CALL Q8ADDXV(G,X,A,Y,B,Z,C)

60480200 E

See figure 12-7 for an illustration of the 12
machine instruction formats.

TABLE 12-2. SPECIAL CALL FORMATS

Op Code
(Hex)

79

59

99

CF

61

2B

41

Al

81

62

42

A2

82

60

40

AO

80

63

83

Instruction
Format

A

A

4

4

4

2

4

4

2

4

4

2

4

Description

Absolute, fullword FP:
ABS(Rf) --+ Tf

Absolute, halfword FP:
ABS(Rh) --+Th

Absolute, vector: ABS(A) -+ C

Au·GE.Bn-+ ~.set zn,ov
length-+ z0_ 15

Add lower, fullword FP:
((Rf)+(Sf))1-+ Tf

Add to length, Ro-15+S48-63-+
To-15,R16-63-+ T16-63

Add lower, halfword FP:
((Rh)+(Sh))1-+ Th

Add lower, sparse vector:
(A+B)L -+ C

Add lower, vector: (A+B)L ... C

Add normalized, fullword FP:
((Rf)+Sf))N -+ Tf

Add normalized, halfword FP:
((~)+(Sh))N-+ Th

Add normalized, sparse vector:
(A+B)N -+ C

Add normalized, vector: (A+B)N ... C

Add upper, fullword FP:
((Rf)+(Sf))u -+Tf

Add upper, halfword FP:
((Rh)+(Sh))U --+Th

Add upper, sparse vector:
(A+B)u -+ C

Add upper, vector: (A+B)u-+ C

Add index, fullword:
R16-63+516-63-+
T16-63•R0-15 ... To-15

Add index, vector:
At6-6J+B16-63--+
C16-63•A0-15 ... Co-1s

G Bits

xxxx 0000

xooo xxxx

xx.xx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

ox.xx xooo

12-5

I

I

TABLE 12-2, SPECIAL CALL FORMATS (Contd)

Special Call
Op Code Instruction Description G Bits

(Hex) Format

CALL Q8ADJE(Rf,Sf ,Tf) 75 4 Adjust exponent, fullword FP:
(Rf) per S Tf

CALL QBADJEH(Rh,Sh,Th) 55 4 Adjust exponent, halfword FP:
(Rh) per S Th

CALL QBADJEV(G,X,A,Y,B,Z,C) 95 1 Adjust exponent, vector:
A per B-+ C xxxx xooo

CALL QBADJM(G,X,A,,,Z,C) Dl 1 Adjacent mean: <Au+1+Au)/2 en xxxo 0000

CALL QBADJS(Rf,Sf,Tf) 74 4 Adjust significance, fullword FP:
(Rf) per S -+ Tf

CALL Q8ADJSH(Rh,Sh,Th) 54 4 Adjust significance, halfword FP:
(Rh) per S -+Th

CALL QBADJSV(G,X,A,Y,B,Z,C) 94 1 Adjust significance, vector: xxxx xooo
A per B-+ C

CALL QBAND(,X,A,Y,B,Z,C) Fl 3 Logical AND: A•B-+ C

CALL QBANDN(,X,A,Y,B,Z,C) F6 3 Logical AND NOT: A·B c

I
CALL Q8ANDNV(G,X,A,Y,B,Z,C) 9D 1 Logical AND NOT: xxxx xllo

A•B-+ C, vector

CALL Q8ANDV(G,X,A,Y,B,Z,C) 9D l Logical AND: xxxx xool
A•B-+ C, vector

CALL Q8AVG(G,X,A,,,Z,C) DO l Vector average: (An+Bn)/2 -+Cn xx xx xooo

CALL Q8AVGD(G,X,A,,,Z,C) D4 1 Vector average difference: xx xx XOOO

(Au-Bn)/2-+ Cn

CALL QBBAB(G,Sa,Ta) 32 9 Branch and alter bit: xxxx oxxo
CSa) is bit to be altered,
(Ta) is branch address

CALL QBBADF(G,16,Ta) 33 B D.F. reg. bit branch and alter: xxxx oxxo
16 is bit altered, (Ta) is branch
address

CALL QBBARB(G,S,T) 2F 9 Branch to [SJ on condition of xxxx 0000

bit 63 of register T

CALL QBBEQ(Rf,sf ,Ta) 24 8 Branch to (Ta) if (Rf) .EQ.(Sf),
fullword FP compare

CALL Q8BGE(Rf,sf ,Ta) 26 8 Branch to (Ta) if (Rf).GE.(Sf),
fullword FP compare

CALL QBBHEQ(Rh,sh,Ta) 20 8 Branch to (Ta) if (Rh).EQ.(Sh),
halfword FP compare

CALL QBBHGE(Rh,sh,Ta) 22 8 Branch to (Ta) if (Rh) .GE. (Sh),
halfword FP compare

CALL QBBHLT(Rh,sh,Ta) 23 8 Branch to (Ta) if (Rh).LT.(Sh),
halfword FP compare

CALL QBBHNE(Rh,sh,Ta) 21 8 Branch to (Ta) if (Rh).NE.(Sh),
halfword FP compare

CALL Q8BIM(Ri,I48) B6 5 Branch immediate to (Ri)+I48

12-6 60480200 E

Special Call

CALL Q8BKPT(Ra)

CALL Q8CFPEQ(G,X,A,YB)
CALL Q8CFPGE(G,X,A,YB)
CALL Q8CFPGT(G,X,A,YB)
CALL Q8CFPLE(G,X,A,YB)
CALL Q8CFPLT(G,X,A,YB)
CALL Q8CFPNE(G,X,A,YB)

CALL Q8CFPEQ(G,X,A,Y)
CALL Q8CFPGE(G,X,A,Y)
CALL Q8CFPGT(G,X,A,Y)
CALL Q8CFPLE(G,X,A,Y)
CALL Q8CFPLT(G,X,A,Y)
CALL Q8CFPNE(G,X,A,Y)

CALL Q8CLG(Rf••Tf)

CALL Q8CLGV(G,X,A,,,Z,C)

CALL Q8CLOCK(,,Tf)

CALL Q8CMPEQ(G,X,A,Y,B,Z)
CALL Q8CMPGE(G,X,A,Y,B,Z)
CALL Q8CMPLT(G,X,A,Y,B,Z)
CALL Q8CMPNE(G,X,A,Y,B,Z)

CALL Q8CONV(G,X,A,,,Z,C)

CALL Q8CPSV(G, ,A,, ,Z,C)

CALL Q8DF.LTA(G,X,A,,,Z,C)

60480200 E

TABLE 12-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

04

27

2S

36

11

BO
B2
BS
B4
B3
Bl

BO
B2
BS
84
B3
Bl

72

52

92

39

C4
C6
C7
cs

lE

IF

76

96

14

BC

35

05

Instruction
Format

4

8

8

7

A

c
c
c
c
c
c

c
c
c
c
c
c

A

A

A

l
1
1
1

7

7

A

7

2

7

Description

Breakpoint: R16-63-
breakpoint reglster

Branch to (Ta) if (Rf).LT.(Sf),
fullword FP compare

Branch to (Ta} if (Rf).NE.(Sf},
fullword FP compare

Set (Rf) to next instruction
address, branch to (Ta+si]

Convert binary R to packed BCD T,
flKed length

Compare FP and branch if (A}.OP.
(X) then branch to (Y} + (B) or
relative from current location

Compare FP and set condition if
(A).OP.(X) then 1-+ Y else 0 -Y

Ceiling, fullword FP:
nearest integer .GE. (Rf) - Tf

Ceiling, halfword FP:
nearest integer .GE. (Rh) ... Th

Ceiling, vector: nearest integer
.GE.A ... C

Transmit (real time clock) ...
T16-63•0- To-Ls

Vector compare, form order vector:
if CAn).OP.(Bn}, set bit Zn in
order vector

Count: H of leading bits equal to
bit at [R+SJ ... T48-63

Count l's in field R: #of l's in
fteld [R+S] - T48-63

Contract, fullword FP: R64-+ T32

Contract, vector: A64-+ C32

Compress bit string: every Rn sub­
string from Rn+sn pattern - T

Compress vector: vector A ... sparse
C, controlled by OV Z

(Rf)-1 ... (Re), lf (Rf) +o branch
to [T8 +s 1]

Vector delta: <Au+1-An) ... Cn

G Bits

xloK KXXK
xlox KXXK
xlox xxxx
Klox xxxK
xlox XXKK
xlox xxxx

xllK xxxx
xllx xxxx
xllx xxxx
xllx xxxx
xllx xxxx
xllK xxxx

XKXK 0000

XOOX XOOO
xoox xooo
xoox xooo
KOOK XOOO

OXXK 0000

xxoo 0000

KXXO 0000

12-7

I

I

I

I
I

I

Special Call

CALL Q8DIVSS(G,X,A,Y,B,Z,C)

CALL Q8DIVSV(G,X,A,Y,B,Z,C)

CALL Q8DIVUS(G,X,A,Y,B,Z,C)

CALL Q8DIVUV(G,X,A,Y,B,Z,C)

CALL Q8DOTV(G,X,A,Y,B,Z,C)

CALL Q8ELEN(Re,Il6)

CALL Q8ES(Rfll6)

CALL Q8ESH(Rh,Il6)

CALL Q8EX(Rf,148)

CALL QBEXH(Rh,124)

CALL Q8EXIT

CALL Q8EXPV(G,X,A,, ,Z,C)

CALL Q8EXTB(Rf,Sd,Tf)

CALL Q8EXTH(Rh••Tf)

CALL QBEXTV(G,X,A,,,Z,C)

CALL QBFAULT(G)

12-8

TABLE 12-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

6F

4F

AF

8F

6C

4C

AC

BC

DC

10

2A

3E

40

BE

CD

09

7A

SA

9A

6E

SC

9C

SD

06

Inst ruction
Format

4

4

2

4

4

2

A

6

6

6

s

5

4

A

A

4

A

A

7

Description

Divide significant, fullword FP:
((Rf)/(Sf))S-+ Tf

Divide significant, halfword FP:
((Rh)/(Sh))S-+ Th

Divide significant, sparse vector:
(A/B)s -+ C

Divide significant, vector:
(A/B)s -+ C

Divide upper, fullword FP:
((Rf)/(Sf))u-+ Tf

Divide upper, halfword FP:
((Rh) I (Sh))U ... Th

Divide upper, sparse vector:
(A/B)u-+ C

Divide upper, vector: (A/B)u-+ C

Dot product vector: A·B-+ C,C+l

Convert packed BCD to binary T,
fixed length

Enter length:
Il6-+ R0_ 15 ,R16_63 unchanged

Enter short, fullword:
Il6-+ R16_63 ,RJ ,SE,0-+ RO-lS

Enter short, halfword:
Il6-+ R8_31 ,RJ ,SE,O-+ Ro-7

Enter index, fullword:
148-+ Rt6-63•0-+ Ro-15

Enter index, halfword:
I24 -+ R8-31 •0 -+ Ro-7

Exlt force, job mode to monitor
mode

Exponent, fullword:
Ro-ts ... T16-63•SE,O -+To-is

Exponent, halfword:
Ro-7-+ T8-3l•SE,O -+To-7

Exponent vector:
Ao-1s - c48-63•sE,o-+ co-1s

Extract blts from Rf to Tt per Sd

Extend halfword FP: R12 - T64

Extend vector: A32-+ C64

Extend index, halfword FP:
R8-31 ... T16-63SE,Ro-7 - To-1s,SE

Simulate fault

G Bits

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxoo 0000

xxxx 0000

oxxx 0000

0000 xxxx

60480200 E

Special Call

CALL Q8FLRV(G,X,A,,,z,c)

CALL Q8IBXEQ(G,X,A,YB,Z,C)
CALL Q8IBXGE(G,X,A,YB,Z,C)
CALL Q8IBXGT(G,X,A,YB,Z,C)
CALL Q81BXLE(G,X,A,YB,Z,C)
CALL Q8IBXLT(G,X,A,YB,Z,C)
CALL Q81BXNE(G,X,A,YB,Z,C)

CALL Q81BXEQ(G,X,A,Y,,Z,C)
CALL Q81BXGE(G,X,A,Y,,Z,C)
CALL Q8IBXGT(G,X,A,Y,,Z,C)
CALL Q81BXLE(G,X,A,Y,,Z,C)
CALL Q81BXLT(G,X,A,Y,,Z,C)
CALL Q8IBXNE(G,X,A,Y,,Z,C)

CALL Q8IDLE

CALL Q8INSB(Rf,Sd,Tf)

CALL Q8INTVAL(G,,A,,B,Z,C)

CALL Q8IOR(,X,A,Y,B,Z,C)

CALL Q810RV(G,X,A,Y,B,Z,C)

CALL Q81S(Rf,116)

CALL Q8ISH(Rh,Il6)

CALL Q81X(Rf,148)

CALL Q8LINKV(G)

CALL Q8LODAR

CALL Q8LODH(Ra,si,Th)

CALL Q8LODKEY(Rf,sa,Ta)

60480200 E

TABLE 12-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

71

51

91

31

BO
B2
BS
B4
B3
Bl

BO
B2
BS
B4
B3
Bl

00

60

OF

F2

90

3F

4E

BF

CE

56

7E

OD

12

SE

OF

Instruction
Format

A

A

7

c
c
c
c
c
c

c
c
c
c
c
c

4

4

3

6

6

s

s

7

4

7

7

4

Description

Floor, fullword FP:
nearest integer .LE.(Rf)-+ Tf

Floor, halfword FP:
nearest integer .LE. (1%) ... Th

Floor, vector: nearest integer
.LE.A-+ C

(Rf)+l-+ (Rf)> if (Rf) rO branch
to [Ta,Si] \

Increment and branch index:
(A)+(X)-+ C,Alen--+ Glen;
if (A)+(X).OP.(Z) then branch to
(Y)+(B) or YB halfwords from
current location

Increment index and set condition:
(A)+(X)-+ C,Alen ... Glen;
if (A)+(X) ,OP. (Z) then l ... Y else
0 ... y

Idle: enable external interrupts
and idle

Insert blts from Rf to Tf per Sd

Interval vector: A+((n-2)*B) ... C

Logical inclusive OR: A+B ... C

Logical vector inclusive OR:
A+B ... C

Increase short, fullword:
R16-63+I16--+ R16-63 •Ro-15
unchanged

Increase short, halfword:
R8_31 +Il6 ... R8_31 •Ro-? unchanged

Increase index, fullword:
I48+R-+ R

Increase index, halfword:
I24+R-+ R

Link next two vector instructions

Load fullword:
load [Ra+S i] -+ Tf

Load associative registers:
beginning at 400xxg ... AR

Load byte: [Ra+stJ-+
Ts6-63•o ... To-ss

Load key from (Rf)• translate
virtual (Sa) to absolute Ta

G Bits

xxxx 0000

xoox xxxx
xoox xxxx
xoox xxxx
xoox xxxx
xoox xxxx
xoox xxxx

xolx xxxx
xolx xxxx
xolx xxxx
xolx xxxx
xolx xxxx
xolx xxxx

xxxo 0000

xxxx xolo

OOOX XOOO

12-9 I

Special Call

CALL Q8MASKV(G,,A,,B,Z,C)

CALL Q8MAX(G,X,A,,B,Z,C)

I
CALL Q8MCMPW(G,X,A,,B,,C)

CALL Q8MIN(G,X,A,,B,Z,C)

I
CALL QBMOVL(G,X,A,,B,Z,C)

I

CALL Q8MPYLS(G,X,A,Y,B,Z,C)

CALL Q8MPYLV(G,X,A,Y,B,Z,C)

CALL Q8MPYSS(G,X,A,Y,B,Z,C)

CALL QBMPYSV(G,X,A,Y,B,Z,C)

CALL QBMPYUS(G,X,A,Y,B,Z,C)

CALL QBMPYUV(G,X,A,Y,B,Z,C)

12-10

TABLE 12-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

3B

38

7C

16

lD

BB

lC

DB

cc

D9

F8

69

49

A9

B9

6B

4B

AB

SB

6B

48

AB

B8

Instruction
Format

A

A

A

7

7

2

7

3

3

4

4

2

4

4

2

4

4

2

Description

Load and store data flag register:
(DFR) -+ Tf, (Rf) -+ DFR

Transmit length R0_15 to length
T0_15 , T6_63 unchanged

Length to register, fullword FP:
Ro-15 -+ T4B-63 ,0 -+ To-47

Mask bit strings: alternate (Ra)
string and (Sa) string-+ T string

Form bit mask: repeat (Rn) ones
and (Sn)-(~) zeros-+ T string

If Zn= l ,An-+ Cn; if Zn=O, Bn--+ Cn;
result length-+ Co-15

Form mask: repeat (Rn) zeros and
(3n)-(Rn) ones--+ T string

Vector maximum:
Amax -+ C, item count -+ B

Find A=B per maskword C, A index
incremented by number of words

Vector minimum:
Amin-+ C, item count-+ B

Move bytes left: A -+ C (left to
right)

Multiply lower, fullword FP:
((Rf)*(Sf))L-+ Tf

Multiply lower, halfword FP:
((Rh)*(Sh))L -+Th

Multiply lower, sparse vector:
(A*B)L-+ C

Multiply lower, vector: (A*B) 1 -+ C

Multiply significant, fullword FP:
((Rf)*(Sf))S-+ Tf

Multiply significant, halfword FP:
((Rh)*(Sh))s-+ Th

Multiply significant, sparse
vector: (A*B)s-+ C

Multiply significant, vector:
(A*B)s -+ C

Multiply upper, fullword FP:
((Rf)*(Sf))u -+Tf

Multiply upper, halfword FP:
((Rh)*(Sh))u-+ Th

Multiply upper, sparse vector:
(A*B)u -+ C

Multiply upper, vector: (A*B)u-+ C

G Bits

xoox xooo

xxoo oxoo

0000 ooox

xxoo oxoo

xxxx oxox

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

60480200 E

Special Call

CALL Q8MRGV(G,,A,,B,Z,C)

CALL Q8MTIME(Rf)

CALL Q8NAND(,X,A,Y,B,Z,C)

CALL Q8NANDV(G,X,A,Y,B,Z,C)

CALL Q8NOR(,X,A,Y,B,Z,C)

CALL Q8NORV(G,X,A,Y,B,Z,C)

CALL Q80RN(,X,A,Y,B,Z,C)

CALL Q80RNV(G,X,A,Y,B,Z,C)

CALL Q80RV(G,X,A,Y,B,Z,C)

CALL Q8PACKV(G,X,A,Y,B,Z,C)

CALL Q8POLYEV(G,X,A,Y,B,Z,C)

CALL Q8PRODCT(G,X,A,,,Z,C)

CALL Q8RAND(Rf,Sf ,Tf)

CALL QSRCON(Rt,, Th)

CALL Q8RCONV(G ,X ,A,, ,z, C)

CALL Q8RIOR(Rf,Sf ,Tf)

CALL Q8RJTIME(,, Tf)

CALL Q8RTOR(Rf, , T f)

60480200 E

TABLE 12-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

3D

3C

15

BD

OA

F3

9D

F4

90

F5

90

90

7B

SB

9B

DE

DB

2D

77

97

2E

37

78

58

2C

Inst ruction
Format

4

4

7

2

4

3

3

3

4

4

4

A

4

A

A

A

4

Description

Multiply index, fullword:
R16-63*S16-63-+ T16-63•0-+ T0-15

Multiply index, halfword:
R8-31 *Sa-31 ... T8-31 •o ... To-7

Merge bit strings: interleave (Rd)
string with (Sd) string-+
Td string

Merge vector: if Zn=l, An-+ Cn;
if Zn=O, Bn-+ Cn; result
length-+ Co-15

Transmit (Rf)-+ monitor interval
timer

Logical NAND: A·B -+ C

Logical NAND: A•B -+ C, vector

Logical NOR: A+B-+ C

Logical NOR: A+B -. C, vector

Logical OR NOT: A+B -+C

Logical OR NOT: A+B -+ C, vector

Logical inclusive OR: A+B -+ C,
vector

Pack, fullword FP:
R48-63 and Sl6-63--+ Tf

Pack, halfword FP:
R24-31 and Ss-31 -+Th

Pack, vector:
~8-63 and Bt6-63-+ C

Polynomial evaluation: An per
a- en

Vector product: Product
(AQ,A1 , •• ·An)-+ C

Logical AND: R,S -+ T

Rounded contract, fullword FP:
~4-+ T32

Rounded contract, vector:
Af,4 rounded -+ 32

Logical inclusive OR: R,S-+ T

Read job interval timer to (Tf)

Register to register fullword
transmit: (Rf)-+ Tf

Register to register halfword
transmit: (Rh)-+ Th

Logical exclusive OR: R,S-+ T

G Bits

I
xoox xoox

xxxx xoll I

xxxx xloo I

xxxx xlol I
xxxx xolo

xxxx xooo

xxxx 0000

xxoo 0000

oxxx 0000

12-11

I

I

I

I

Special Call

CALL Q8SELEQ(G,X,A,Y,B,Z,C)
CALL QSSELGE(G,X,A,Y,B,Z,C)
CALL Q8SELLT(G,X,A,Y,B,Z,C)
CALL Q8SELNE(G,X,A,Y,B,Z,C)

CALL Q8 SET CF (Rf)

CALL Q8SHlFT (Rf,Sf,Tf)

CALL Q8SHlFTl(Rf,l8,Tf)

CALL Q8SHlFTV(G,X,A,Y,B,Z,C)

CALL Q8SQRTV(G,X,A,,,Z,C)

CALL Q8SRCHEQ(G ,,A ,,B ,Z ,C)
CALL Q8SRCHGE(G,,A,,B,Z,C)
CALL Q8SRCHLT(G, ,A, ,B,Z,C)
CALL Q8SRCHNE(G, ,A, ,B ,Z ,C)

CALL Q8ST0AR

CALL Q8SUBLS(G,X,A,Y,B,Z,C)

CALL Q8SUBLV(G,X,A,Y,B,Z,C)

CALL Q8SIJBNS(G,X,A,Y,B,Z,C)

CALL Q8SUBNV(G,X,A,Y,B,Z,C)

12-12

TABLE 12-2, SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

28

co
C2
C3
Cl

08

34

30

8A

73

53

93

C8
CA
CB
C9

7F

oc

13

SF

65

45

85

66

46

86

Instruction
Format

7

4

4

7

A

A

1
1
l
l

7

4

7

7

4

4

2

4

4

2

Description

Scan left to right from [Td,Si]
for byte equal to 18, index Si

Vector select: if An.OP.Bn,
then count up to the condition
met-+ C

Input/output: set channel (Rf)
channel flag

Shift Rf by (Sf) -+ Tf

Shift Rf by 18 Tf

Shift A by B-+C, vector

Significant square root, fullword
FP: (SQRT(Rf))S-+ Tf

Significant square root, halfword
FP: (SQRT(Rh))S-+ Th

Significant square root, vector:
SQRT(A)s-+ C

Vector search from indexed list:
each (An).OP.(Bn), count-+ Cn

Store, fullword: store (Tf)
address [Ra+Si)

Store associativP. registers:
AR-+ 400xx5 and higher addresses

Store byte (character):
Ts6-63-+ address [Ra+si]

Store, halfword: (Th)-+
address Ra+s 1

Subtract lower, fullword FP:
((Rf)-(Sf))L-+ Tf

Subtract lower, halfword FP:
((Rh)-(Sh))L -+Tf

Subtract lower, sparse vector:
(A-B)L-+ C

Subtract lower, vector: (A-B)L-+ C

Subtract normalized, fullword FP:
((Rf)-(Sf))N-+ Tf

Subtract normalized, halfword FP:
((Rh)-(Sh))N -+ Tf

Subtract normalized, sparse
vector: (A-B)N-+ C

Subtract normalized, vector:
(A-B)N -+ C

G Bits

XXOX KOOO

xxox xooo
xxox xooo
xxox xooo

XXXX KXXK

XXXK OXKO

XXKO 0000

XKXO 0000

XKKO 0000

XKXO 0000

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

60480200 E

Special Call

CALL Q8SUBUS(G,X,A,Y,B,Z,C)

CALL QSSUBUV(G,X,A,Y,B,Z,C)

CALL QSSUBXV(G,X,A,Y,B,Z,C)

CALL QSSUM(G,X,A,,,Z,C)

CALL QSTRUV(G,X,A,,,Z,C)

CALL QSVREVV(G,X,A,,,Z,C)

CALL QSVSB(,,Ta)

CALL QSVTOV(G,X,A,,,Z,C)

CALL QSVTOVX(G, ,A, ,B, ,C)

CALL QBVXTOV(G, ,A, ,B, ,C)

CALL QBWJTIME(Rf}

CALL Q8XOR(,X,A,Y,B,Z,C)

CALL QBXORN(,X,A,Y,B,Z,C)

CALL QBXORNV(G,X,A,Y,B,Z,C)

CALL QBXORV(G,X,A,Y,B,Z,C)

60480200 E

TABLE 12-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

64

44

A4

84

67

87

DA

7D

OE

70

50

90

BB

03

98

B7

BA

3A

FO

F7

9D

9D

Instruction
Format

4

4

2

4

7

4

A

A

4

A

3

3

Description

Subtract upper, fullword FP:
((Rf)-(Sf))U -+ Tf

Subtract upper, halfword FP:
((Rh)-(Sh))U -+ Th

Subtract upper, sparse vector:
(A-B)u-+ C

Subtract upper, vector: (A-B)u-+ C

Subtract index: R16-6rs16-63 ...
r16-6J•Ro-1s -+To-1s

Subtract index, vector:
A16-63-Bl6-63-+ C16-63•Ao-15-+
Co-15

Vector sum: Sum(Ao,A1, •• ·An> -+
C,C+l

Swap registers: start with Sf,
storing at Tdand loading from Rd

Translate external interrupt:
(Tf)=priority, branch to Ra [s1]

Truncate, fullword FP:
nearest integer .LE.(Rf) -+ Tf

Truncate, halfword FP:
nearest integer .LE.(Rh)-+ Th

Truncate, vector:
nearest integer .LE.(A)-+ C

Transmit vector reversed to
vector: Arev-+ C

Void instruction stack and branch
to (Ta)

Vector to vector transmit: A-+C

Vector to vector .indexed transmit:
B -+ C indexed by A

Vector to vector indexed transmit:
B indexed by A -+ C

Transmit (Rf) -+job interval timer

Loglcal exclusive OR: A-B-+ C

Logical equivalence (exclusive OR
NOT): A-B-+ C

Logical exclusive OR NOT:
(equivalence) A-B-+ C, vector

Logical exclusive OR: A-B-+ C,
vector

G Bits

xxxx xxxx

xxxx xxxx

OXXX XOOO

xxoo 0000

I

I

xxxx 0000

xxxo 0000

xxxx 0000

xooo xxxx

xooo oxxx

I
xxxx xlll

xxxx xooo

12-13

TABLE 12-3. SPECIAL CALLS LISTED BY OP CODE

Op Code Special Op Code Special Op Code Special Op Code Special
(hex) Call (hex) Call (hex) Call (hex) Call

00 Q81DLE 41 Q8ADDLH 7C Q8LTOR B2 Q81BXGE
03 Q8VSB 42 Q8ADDNH 7D Q8SWAP Q8CFPGE
04 Q8BKPT 44 Q8SUBUH 7E Q8LOD B3 Q8IBXLT
06 Q8FAULT 45 Q8SUBLH 7F Q8STO Q8CFPLT
08 Q8SETCF 46 Q8SUBNH 80 Q8ADDUV B4 Q8IBXLE
09 Q8EXIT 48 Q8MJ>YUH 81 Q8ADDLV Q8CFPLE
OA Q8MTIME 49 Q8MJ>YLH 82 Q8ADDNV BS Q8IBXGT
oc Q8STOAR 4B Q8MPYSH 83 Q8ADDXV Q8CFPGT
OD Q8LODAR 4C Q8DIVUH 84 Q8SUBUV B6 Q8BIM
OE Q8TLXI 4D Q8ESH 85 Q8SUBLV B7 Q8VTOVX
OF Q8LODKEY 4E Q81SH 86 Q8SUBNV B8 Q8VREVV
10 Q8DTOB 4F Q8DIVSH 87 Q8SUBXV BA Q8VXTOV
11 Q8BTOD 50 Q8TRUH 88 Q8MPYUV BB Q8MASKV
12 Q8LODC 51 Q8FLRH 89 Q8MPYLV BC Q8CPSV
13 Q8STOC 52 Q8CLGH 8A Q8SHIFTV BD Q8MRGV
14 Q8CPSB 53 Q8SQRTH 8B Q8MPYSV BE Q8EX
15 Q8MRGB 54 Q8ADJSH 8C Q8DIVUV BF Q8IX
16 Q8MASKB 55 Q8ADJEH 8F Q8DIVSV co Q8SELEQ
lC Q8MASKZ 56 Q8LINKV 90 Q8TRUV Cl Q8SELNE
ID Q8MASKO 58 Q8RTORH 91 Q8FLRV C2 Q8SELGE
IE Q8CNTEQ 59 Q8ABSH 92 Q8CLGV C3 Q8SELLT
IF Q8CNTO SA Q8EXPH 93 Q8SQRTV C4 Q8CMPEQ
20 Q8BHEQ SB Q8J>ACKH 94 Q8ADJSV cs Q8CMPNE
21 Q8BHNE SC Q8EXTH 95 Q8ADJEV C6 Q8CMPGE
22 Q8BHGE SD Q8EXTXH 96 Q8CONV C7 Q8CMPLT
23 Q8BHLT SE Q8LODH 97 Q8RCONV C8 Q8SRCHEQ
24 Q8BEQ SF Q8STOH 98 Q8VTOV C9 Q8SRCHNE
25 Q8BNE 60 Q8ADDU 99 Q8ABSV CA Q8SRCHGE
26 Q8BGE 61 Q8ADDL 9A Q8EXPV CB Q8SRCHLT
27 Q8BLT 62 Q8ADDN 9B Q8PACKV cc Q8MCMPW
28 Q8SCNLEQ 63 Q8ADDX 9C Q8EXTV CD Q8EXH
2A Q8ELEN 64 Q8SUBU 9D Q8ANDNV CE Q81XH
2B Q8ADDLEN 65 Q8SUBL Q8ANDV CF Q8ACPS
2C Q8RXOR 66 Q8SUBN Q8NANDV DO Q8AVG
2D Q8RAND 67 Q8SUBX Q8NORV DI Q8ADJM
2E Q8RIOR 68 Q8MPYU Q80RNV D4 Q8AVGD
2F Q8BARB 69 Q8MPYL Q80RV DS Q8DELTA
30 Q8SHIFTI 6B Q8MPYS Q8XOR."<V 08 Q8MAX
31 Q8IBNZ 6C Q8DIVU Q8XORV D9 Q8MIN
32 Q8BAB 6D QB IN SB AO Q8ADDUS DA Q8SUM
33 QBBADF 6E Q8EXTB Al Q8ADDLS DB Q8PRODCT
34 Q8SHIFT 6F Q8DIVS A2 Q8ADDNS DC Q8DOTV
3S Q8DBNZ 70 Q8TRU A4 Q8SUBUS DE Q8POLYEV
36 Q8BSAVE 71 Q8FLR AS Q8SUBLS DF Q8INTVAL
37 Q8RJTTME 72 QBCLG A6 Q8SUBNS FO Q8XOR
38 Q8LTOL 73 Q8SQRT A8 Q8MPYUS Fl Q8AND
39 Q8CLOCK 74 Q8ADJS A9 Q8MPYLS F2 Q8IOR
3A Q8WJTIME 75 Q8ADJE AB QBMPYSS F3 QBNAND
3B Q8LSDFR 76 Q8CON AC Q8DIVUS F4 Q8NOR
3C Q8MPYXH 77 Q8RCON AF Q8DIVSS FS Q80RN
3D Q8MPYX 78 Q8RTOR BO Q81BXEQ F6 Q8ANDN
3E Q8ES 79 QB ABS Q8CFPEQ Fl QBXOR."<
3F Q8IS 7A Q8EXP Bl Q81BXNE F8 Q8MOVL
40 Q8ADDUH 7B Q8PACK Q8CFPNE FB QBZTOD

11?-1& ~n&Rn1nn F.

a-
0
&;
0
N

8
tzl

.....
'I"
\J1 -

FORMAT 1 - Used for Vector, Vector Macro, and Some Nontypical Instructions:

0 7 8 15 16 23 24 31 32 39 40 47 48

A B z F G x (Length and
y

(Length and (Control Vector (Function> CSubfunct ion> (Offset for A) Base Address) (Offset for B) Base Address) Base Address)

FORMAT 2 - Used for Sparse Vector and Some Nontypical Instructions:

0 7 8 15 16 23 24 31 32 39 40 47 48

x y z
F G (Order Vector A (Order Vector B (Order Vector

(Function) CSubfunct ion) Length and (Base Address) Length and (Base Address) Length and
Base Address> Base Address) Base Address)

FORMAT 3 - Used for Logical String and String Instructions:

0 7 8 15 16 23 24 31 32 39 40 47 48

F G x A y B z
C Function) (Subfunct ion> CI ndex for A> (Length and (Index for B) (Length and Clndex for C) Base Address> Base Address)

FORMAT 4 - Used for Some Register, for all Monitor instructions, and for the #3D, and #04 Nontypical Instructions:

0

F
(Fun ct ion)

7 8

R
(Source 1)

15 16

s
(Source 2)

23 24

T
(Destination)

31

FORMAT 5 - Used for the #BE, #BF, #CD, and #CE Index Instructions and for the #B6 Branch Instruction:

0

F
(Function)

7 8

T
(Destination)

15 16

I
(48 Bits)

FORMAT 6 - Used for the #3E, #3F, #4D, and #4E Index Instructions and the #2A Register Instruction:

0

F
(Function)

7 8

R
<Destination>

15 16 23 24 31

I
C16 Bits)

Figure 12-7. Instruction Formats (Sheet 1 of 2>

55 56

c
<Length and
Base Address>

C + I
I (Offset

63

L ~r _: ~z:_ _J

55 56 63

c
Result

Length and
Base Address

55 56 63

c
(Length and

Base Address)

63

-.... N
I

a.

g
~
OD
0

~
0

l"1

FORMAT 7 - Used for Some Branch and Nontypical Instructions:

0 7 8 15 16 23 24 31

1c2::, I R I s lcBase~d=l

FORMAT 8 - Used for Some Branch Instructions:

0 7 8 15 16 23 24

F R s T
(Fun ct ion) CReq i st er) CReqi st er) (Base Address)

--

FORMAT 9 - Used for the #32 Branch Instruction:

0 7 8 15 16 23 24

s F G (Bit Test T (Function) Designator Address>

FORMAT A - Used for Some Index, Branch, and Register Instructions:

0

F
(Function)

7 8

R
(Old State)

15 16 23 24

T
(New State)

UNDEFINED (MUST BE 0)

FORMAT B - Used for the #33 Branch Instruction:

0

F
<Function)

7 8

G
(Subfunct ion)

15161718 23 24

T
(6 Bits) I (Base Address)

.__.....__UNDEFINED (MUST BE 0)

FORMAT C - Used for the #BO through #B5 Branch Instructions:

0

F
(Function)

7 8

G
CSubfunct ion)

15 16

x
(Register)

23 24

A
(Register

31

31

31

31

31 32
y

(Index)

39 40

B

(Base Address>

Figure 12-7. Instruction Fonnats (Sheet 2 of 2)

47 48
z

<Register)

55 56

c
(Register>

63

PRODUCT INTERFACES 13

This section describes the relationship between
FORTRAN programs and other CYBER 200 software prod­
ucts. This section includes general descriptions
of:

The basic procedure for compiling and executing
a FORTRAN program

The major operating system features that can be
accessed from a FORTRAN program using the System
Interface Language (SIL) routines and the
debugging facilities

The conventions used in linking the program
units of a FORTRAN program

PROGRAM COMPILATION,
LOADING, AND EXECUTION
There are two ways to compile, load, and execute a
FORTRAN 200 program on the CYBER 200:

1. Execute the following three CYBER 200 control
statements in a CYBER 200 batch job or
interactive session:

a.

b.

A FTN200 statement
14) to compile the
relocatable binary.

(described in section
program and create a

A LOAD statement (described in the VSOS
Reference manual, Volume l) to load the
relocatable binary and to build a controlee
file.

c. A control statement naming the controlee
file (The default file name is GO.) This
control statement executes the FORTRAN 200
program.

Future runs of the program can execute the
stored object code. This is useful when a
program needs to be executed several times.

2, Execute a FTN200 control statement with the GO
parameter set to 1. When you specify GO=l in a
CYBER. 200 batch job or interactive session,
your FORTRAN 200 program is loaded and executed
if it compiles with no fatal errors. The LOAD
utility is not used which means that the
operating system overhead of bringing in the
LOAD is eliminated. However, the object code
is not stored for future use, so each run of
the program requires a compile. This method is
good for short programs that will not be
executed often, or for debugging running
programs.

You can use the GO parameter only if the system
shared library is active in your installation.

60480200 F

Appendix F gives the procedure to compile,
load, and execute a FORTRAN 200 program, when
the system shared library is not active in your
installation.

The input file read by the FORTRAN 200 compiler can
contain more than one subprogram. Although subpro­
grams can be compiled without a main program, a
program cannot be loaded or executed without a main
program.

Program compilation, loading, and
possible only within a CYBER 200 job
session. For a full description of
and interactive sessions, refer to
erence Manual, volume 1.

CYBER 200 JOB SUBMITTAL

execution are
or interactive
CYBER 200 jobs
the VSOS Ref-

To submit a CYBER 200 job, you login to a front-end
system, create a CYBER 200 job file, and then sub­
mit the CYBER 200 job file to the CYBER 200 system
for execution. The actual statement used to submit
the job differs depending on the front-end operating
system. Ask site personnel for the appropriate
statement for your site. Appendix F gives an
example of a batch CYBER 200 job submittal on a
VSOS release 2.1.6 installation.

Figure 13-1 shows a NOS 2 interactive session in
which a batch job is submitted to a CYBER 200
system. The following paragraphs describe the
session shown in the figure.

After logging in to the NOS 2 system and specifying
NORMAL and BATCH modes, the user gets and displays
the contents of the CYBER 200 job file.

The first statement in the job file is the job
statement (JOB1,STTY3.). The parameter STTY3
specifies the CYBER 200 mainframe identifier TY3.
(You must ask site personnel for the mainframe
identifier effective at your site,)

The second statement reads the file ACCT205 which
contains the CY205 accounting information. You can
also use the USER statement which specifies the
user name, account name, and user password.

As described earlier, the three control statements:
(FTN200, LOAD, and GO) will compile, load, and
execute a FORTRAN 200 program. If you use the GO
parameter, the one control statement FTN200, will
execute the program if there are no fatal errors
from the compilation.

Figure 13-1, a FORTRAN 200 program source is listed
between two --EOR-- indicators. The XEDIT editor
uses --EOR-- to display an end-of-record delimiter.
One end-of-record delimiter separates the program
from the control statements, and another separates
the program from the input data (here, a sequence
of integers 1,2,3,4,S).

13-1 •

13-2

Cdate) Ctime>
CNOS Z logon banner)
FAMILY: ,user1,passwd -4---------------------Entry to logon to NOS 2.
JSN: ABGU,NAMIAF IAF logon is successful.

READY.
normal ----------------------------- Ensures the terminal is in

READY. normal mode.
batch Switches NOS 2 to batch mode.
RFL,O.
/get,job1 ---------------------------Gets the file JOB1.
/xedit,job1 Calls a text editor to
XEOIT 3.1.00 display the job file

?? P* contents.
/JOB
/NOSEQ
JOB1 ,STTY3.
/REAO,ACCT205
COMMENT. JOB EXAMPLE TO DEMONSTRATE STANDARD 2.2 RUN
COMMENT. FILE ACCT205 ON THE NOS SYSTEM CONTAINS THE
COMMENT. CY205 ACCOUNTING INFORMATION. AN EXAMPLE
COMMENT. OF THE CONTENT OF THIS FILE MIGHT BE
COMMENT.
COMMENT. USERCU=ZOS USERNUM,PA=205 PASSWORD,AC=205 ACCOUNT)
COMMENT. RESOURCECTL=10,JCAT=JOEFAULT) -
COMMENT.
FTN200. -4---------------------------Calls the compiler.
LOAD. LOAD to write controlee.
60. Execute.
/EOR

PROGRAM LOOP
K=O
00 10 I = 1,5
READ 100,J

100 FORMATCI1) -------------------------FORTRAN source code.
10 K = J + K

PRINT 200
ZOO FORMAT(' THE SUM IS')

PRINT 300,K
300 FORMATC1X,IZ>

STOP
ENO

/EOR
1 4------------------------------- Input data to the FORTRAN
2 program.
3
4
5
/EOF
ENO OF FILE

Figure 13-1. Example of a NOS 2 Interactive Session
Submitting a CYBER 200 Job (Sheet 1 of 3)

60480200 F

?? end
JOB1 IS A LOCAL FILE
/submit,job1,e Submits job to be executed
12.29.00 SUBMIT COMPLETE. JSN IS AAKZ. on 205.

/enquire,jsn •-------------------------Displays job status.

JSN SC CS OS LID STATUS

AAKZ.B •• RB.TY3.INPUT QUEUE
AAKK.B. .RB. .PRINT QUEUE

/enquire,jsn

JSN SC CS DS LID STATUS

AAKZ.B •• RB.TY3.INPUT QUEUE
AAKK.B. .RB. .PRINT QUEUE

/enqui re,j sn

AAKM. T. ON. BC. • EXECUTING

JSN SC CS OS LID STATUS

AAKM.T.ON.BC. • EXECUTING

JSN SC CS OS LID STATUS

AAKM.T.ON.BC. .EXECUTING

AALD.R. .RB.M10.PRINT QUEUE
/qget,aald,pr •-------------------------Output file becomes local

QGET COMPLETE. file.
/xedit,aald Calls a text editor to

XEDIT 3.1.00 display the output file.
?? l-rsys- Locates the dayfile.
--EOR--
--EOR-
--EOR--
1 12.17.10 RSYSK11 VS22DBC 013428 DEVSYS G JOB1AABC

08/28/85
?? P* Lists the dayfile.
1 12.17.10 RSYSK11 VS22DBC 013428 DEVSYS G JOB1AABC

08/28/85
12.17.11 RESOURCE,TL=10.
12.17.11 COMMENT. JOB EXAMPLE TO DEMONSTRATE STANDARD 2.2 RUN
12.17.11 COMMENT. FILE ACCT205 ON THE NOS SYSTEM CONTAINS THE
12.17.11 COMMENT. CY205 ACCOUNTING INFORMATION. AN EXAMPLE
12.17.11 COMMENT. OF THE CONTENT OF THIS FILE MIGHT BE
12.17.11 COMMENT.
12.17.11 COMMENT. USERCU=205 USERNl.M,PA=205 PASSWORD,AC=205 ACCOUNT)
12.17.11 COMMENT. RESOURCECTL=10,JCAT=JDEFAULT) -
12.17.11 COMMENT.
12.17.11 FTN200.
12.17.11 FORTRAN 200 CYCLE K10 BUILT 08/17/85 18:00
12.17.12 COMPILING LOOP
12.17.13 NO ERRORS
12.17.13 0.148 SECONDS COMPILATION TIME
12.17.13 ALL DONE
12.17.13 LOAD.
12.17.14 LOAD R2.2 CYCLE K10
12.17.15 ALL DONE
12.17.15 GO.

60480200 H

Figure 13-1. Example of a NOS 2 Interactive Session
Submitting a CYBER 200 Job (Sheet 2 of 3)

I

I

I

13-3

I

13-4

12.17.16 STOP
12.17.16 ALL DONE
12.17.16 SYSTEM TIME UNITS CSTU>
12.17.16 USER CPU TIME (SECS)
12.17.16 SYSTEM CPU TIME SECS)
12.17.16 USER MEMORY USAGE CPAGE•SECS)
12.17.16 USER AVERAGE WORKING SET SIZE (PAGES)
12.17.16 NIJtlBER OF VIRTUAL SYSTEM REQUESTS
12.17.16 NIJtlBER OF SMALL PAGE FAULTS
12.17.16 NUMBER OF DISK I/0 REQUESTS
12.17.16 NIJtlBER OF DISK SECTORS TRANSFERRED
12.17.16 SSCOMPLETE$$

END OF FILE

3.565
.809

1.115
91.135

112
382

36
20
37

?? l-the sum is-2 -4---------------------- Locates the program output.
00008 200 FORMAT(' THE SIJtl IS')

0001/00008
--EOR-
--EOR--

THE Sll"I IS
?? p2 ----------------------------Displays the program output.

THE SIJtl IS
15

?? end
AALD IS A LOCAL FILE.
/route,aald,dc=lp •----------------------Routes the output file to a

ROUTE COMPLETE. JSN IS AALF. printer.
/bye Requests IAF logout.
UN=13428AA LOG OFF 12.32.42
JSN=AAKM SRU-S= 1.951
CHARACTERS= 8.181KCHS
IAF CONNECT TIME 00.14.11. ------------------ IAF logout.
LOGGED OUT.

Figure 13-1. Example of a NOS 2 Interactive Session
Submitting a CYBER 200 Job (Sheet 3 of 3)

60480200 H

Because no input file is specified on the FTN200
statement, the program to be compiled is read from
the INPUT file (the job file).

The LOAD statement generates an executable program
on the default file GO, and the GO statement
executes the program on that file. The executable
program reads its input data from the INPUT record,
which is now the third record (the record
containing the sequence of integers 1,2,3,4,S).

Figure 13-2 shows an example using the GO parameter
on the FORTRAN control statement. With the GO
parameter no LOAD and executing of controlee
statements is needed.

The NOS 2 command SUBMIT,JOBFILE,E submits the
CYBER 200 job file for execution. The NOS 2 com­
mand ENQUIRE,JSN displays the status of the user's
jobs. After the job output file is returned to the
NOS 2 print queue, the NOS 2 command, QGET,ABGK,PR
changes the output file to a local file. The user
locates and displays the dayfile showing that the
job executed normally. He then locates and displays
the program output. Finally, he routes the entire
output file to a printer and logs out.

CYBER 200 INTERACTIVE SESSION

I To begin a CYBER 200 interactive session, you first
login to the front-end system, then connect to the
CYBER 200 system, and finally enter a LOGON state­
ment to login to the CYBER 200 system. Ask site
personnel for the entries required to connect to
the CYBER 200 system from your front-end system.
Figure 13-3 shows a CYBER 200 interactive session
within a NOS interactive session.

To execute a CYBER 200 control statement within an
interactive session, you enter the statement and
then wait for the ALL DONE response indicating the
statement processing has finished.

OPERATING SYSTEM
INTERFACE
A FORTRAN program can interact with the operating
system while it is executing. This is accomplished
by using the System Interface Language (SIL).
Various debugging facilities can also be accessed
by a FORTRAN program while it is executing.

The following paragraphs describe SIL and the
debugging facilities. See the Operating System
reference manual for more detailed information.

SYSTEM INTERFACE LANGUAGE

System Interface Language (SIL) is a set of sub­
routines that can be called from a FORTRAN program
to exchange information with the operating system,

60480200 H

(The SIL routines can also be called from CYBER 200
assembly language programs and Implementation Lan­
guage (IMPL) programs.) The two types of SIL sub­
routines are non-input/ output SIL subroutines and
input/output SIL subroutines.

Some of the functions that the non-input/output SIL
subroutines perform are:

Informing the operating system of the system
requirements of the program

Communicating with the system operator

Determining the task processing if an error
occurs

Some of the functions that the input/output SIL
subroutines perform are:

Accessing permanent, local, pool, and tape files

Creating public files

Manipulating the file information table (FIT)

Opening and closing files to prepare for input/
output

Performing input/output

Positioning files

See figure 13-4 for the general format of a SIL I
call. See the operating system reference manual
for a complete list of all of the SIL subroutines,

DEBUGGING UTILITIES

Program debugging is assisted by compilation diag­
nostics, execution diagnostics, and program abort
dumps. A program abort dump contains information
from the drop file, including a subroutine trace­
back. (The dump content is described in the VSOS
Reference Manual, volume 1.)

Three debugging utilities are provided to aid you
in debugging a FORTRAN program:

The DEBUG utility enables you to specify places
in the FORTRAN program where you want to
suspend execution temporarily and display or I
alter the contents of selected locations.

The LOOK utility enables you to examine the
contents of selected locations of any type of
file, such as a data file or controllee file.

The DUMP utility displays the contents of
selected portions of a drop file,

Each of these debugging utilities is described in
detail in the operating system reference manual.

13-5

13-6

(date> (time>
CNOS 2 logon banner)
FAMILY: ,user1,passwd •---------------------Entry to logon to NOS 2.
JSN: ABGV,NAMIAF IAF logon is successful.

READY.
normal •----------------------------Ensures the terminal is

READY. in normal mode.
batch Switches NOS 2 to batch mode.
RFL,O.
/get,job2 ---------------------------Gets the file JOB1.
/xedit,job2 Calls a text editor to

XEDIT 3.1.00 display the job file
?? P* contents.
/JOB
/NO SEQ
JOB2,STTY3.
/READ,ACCT205
COMMENT. JOB EXAMPLE TO DEMONSTRATE COMPILE AND GO
COMMENT. FILE ACCT205 ON THE NOS SYSTEM CONTAINS THE
COMMENT. CY205 ACCOUNTING INFORMATION. AN EXAMPLE
COMMENT. OF THE CONTENT OF THIS FILE MIGHT BE
COMMENT.
COMMENT. USERCU=205 USERNUM,PA=205 PASSWORD,AC=205 ACCOUNT)
COMMENT. RESOURCECTL=10,JCAT=JDEFAULT) -
COMMENT.
FTN200,GO. ---------------------------calls the compiler with
/EOR with GO option. Note

PROGRAM LOOP
K=O
DO 10 I = 1,5
READ 100,J

that no LOAD and
executing of controlee
statements are needed.

100 FORMATCI1> ------------------------FORTRAN source code.
10 K = J + K

PRINT 200
200 FORMAT(' THE SUM IS'>

PRINT 300,K
300 FORMATC1X,I2)

STOP
END

/EOR
1 ------------------------------- Input data to the FORTRAN
2 program.
3
4
5
/EOF
END OF FILE

Figure 13-2. Example of a NOS 2 Interactive Session
Submitting a CYBER 200 Job With the GO Option (Sheet 1 of 3)

60480200 F

?? end
JOB2 IS A LOCAL FILE
/submit,job2,e ------------------------Submits job to be
12.34.00 SUBMIT COMPLETE. JSN IS AALI. executed on 205.

/enquire,jsn Displays job status.

JSN SC CS DS LID STATUS

AALI.B •• RB.TY3.INPUT QUEUE
/enquire,jsn

JSN SC CS DS LID STATUS

AALG.T.ON.BC. EXECUTING
/enquire,jsn

AALG.T.ON.BC. .EXECUTING

JSN SC CS OS LID STATUS

AALG.T.ON.BC. .EXECUTING

JSN SC CS DS LID STATUS

AALK.R. .RB.M10.PRINT QUEUE
/qget,aalk,pr -------------------------Output file becomes local

QGET COMPLETE. file.
/xedit,aalk Calls a text editor to

XEDIT 3.1.00 display the output file.
?? l-rsys- Locates the dayfile.
--EOR--
--EOR--
1 12.22.10 RSYSK11 VS22DBC 013428 DEVSYS G JOB2AABF

08/28/85
?? P* ----------------------------Lists the dayfile.
1 12.22.10 RSYSK11 VS22DBC 013428 DEVSYS G JOB2AABF

08/28/85
12.22.11
12.22.11
12.22.11
12.22.11
12.22.11
12.22.11
12.22.11
12.22.11
12.22.11
12.22.11
12.22.11
12.22.12
12.22.13
12.22.16
12.22.16
12.22.16
12.22.16
12.22.16
12.22.16
12.22.16
12.22.16
12.22.16
12.22.16
12.22.16
12.22.16

END OF FILE

60480200 H

RESOURCE,TL=10.
COMMENT. JOB EXAMPLE TO DEMONSTRATE COMPILE AND GO
COMMENT. FILE ACCT205 ON THE NOS SYSTEM CONTAINS THE
COMMENT. CY205 ACCOUNTING INFORMATION. AN EXAMPLE
COMMENT. OF THE CONTENT OF THIS FILE MIGHT BE
COMMENT.
COMMENT. USERCU=205 USERNUM,PA=205 PASSWORD,AC=205 ACCOUNT)
COMMENT. RESOURCECTL=10,JCAT=JDEFAULT) -
COMMENT.
FTN200,GO.
FORTRAN 200 CYCLE K10
COMPILING LOOP

NO ERRORS
STOP

ALL DONE
SYSTEM TIME UNITS CSTU)
USER CPU TIME (SECS)
SYSTEM CPU TIME SECS>

BUILT 08/17/85 18:00

USER MEMORY USAGE CPAGE*SECS)
USER AVERAGE WORKING SET SIZE (PAGES)
NUMBER OF VIRTUAL SYSTEM REQUESTS
NUMBER OF SMALL PAGE FAULTS
NUMBER OF DISK I/O REQUESTS
NUMBER OF DISK SECTORS TRANSFERRED
$$COMPLETE$$

3.565
.809

1.115
91.135

112
382
36
20
37

Figure 13-2. Example of a NOS 2 Interactive Session
Submitting a CYBER 200 Job With the GO Option (Sheet 2 of 3)

I

I

13-7

I

I

?? l-the sum is-2 -~~~~~~~~~~~~~~~~~~~~~~~~-Locates the program
00008 200 FORMAT(I THE SUM IS') output.

0001/00008
--EOR-

THE SUM IS
?? p2 -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Displays the program

THE SUM IS output.
15

?? end
AALK IS A LOCAL FILE.
/route,aalk,dc=lp .,."-~~~~~~~~~~~~~~~~~~~~~~~~-Routes the output file

ROUTE COMPLETE. JSN IS AALL. to a printer.
/bye Requests IAF logout.
UN=13428AA LOG OFF
JSN=AAKM SRU-S=

12.42.42
2.302

CHARACTERS= 4,706KCHS
IAF CONNECT TIME 00.05.23.
LOGGED OUT.

Figure 13-2. Example of a NOS 2 Interactive Session
Submitting a CYBER 200 Job With the GO Option (Sheet 3 of 3)

(date) (time)
(NOS 2 logon banner)
FAMILY: ,user1,xpwxpwx ~~~-~-~~~~~~~~~~~~~~~~­
JSN: ABGU,NAMIAF--~~~~--~~--~-~-~----------

READY.
hello,itf-~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

UN=USER1 LOG OFF 11.57.30.
JSN=ABGU SRU-S 1.000.
IAF CONNECT TIME 00.00.42. ------------------
ITF 1 .0 - 596
Terminal T1398, connection 7
Enter LID (or?): abc ..,.~~~~~~~~~~~~~~~~~~~~~~~­
[ITF, connecting to host ABC.]

PLEASE- ENTER CY200 LOGON --------------------­
logon,user1,passwd
OS 2 .1 RSYSL592 VSYSL592 G 09998. 7564 ACTIVE NONE --------
NIL
$bye -~~~~~~~~~~-~---~~~-~~~~---~-~-~­
BYE ... ---~~~~-~---~-------~-~---~~-~~-
ITF CONNECT TIME: 00.02.52. -----------------­
JSN: ABJH, NAMIAF

READY.
bye ... ~~--------------------~~--~-~~--

UN=USER1
JSN=ABJH

LOG OFF
SRU-S

13.26.51.
1.000.

!AF CONNECT TIME: 00.02.28. -------------------
LOGGED OUT.

NOS 2 logon.
IAF logon is successful.

Requests ITF connection.

Leaves IAF application and
enters ITF application.

Enters valid logical id.

Successful link to VSOS.
Valid CYBER 200 logon line.
Banner for CYBER 200
operating system.
CYBER 200 logout request.
Logout response.
Leaves ITF and returns to
IAF.

Request to logout from IAF.

IAF logout.

Figure 13-3. Example of a CYBER 200 Interactive Logon and Logout From a NOS 2 Front-End System

13-8 60480200 H

I

CALL Q5xxxxxx<p1, ••• ,pn>

xxxxxx
Pi

The name of a SIL routine
A SIL parameter

Figure 13-4. SIL Call Format

SUBPROGRAM LINKAGE
The following paragraphs describe the subprogram
linkage conventions used by the FORTRAN compiler.
The subprogram linkage conventions include:

The prologue and epilogue generated by the
FORTRAN compiler for subroutines and functions

The standard calling sequence used for subrou­
tine calls and function references

The fast calling sequence used for some subrou­
tine calls and function references

The file initialization performed before pro­
gram execution in order to enable input/output
operations

PROLOGUE AND EPILOGUE
The FORTRAN compiler generates a prologue and
epilogue for subroutine calls and function refer­
ences. The prologue and epilogue depend on whether
the subroutine or function is a non-zero-swap rou­
tine or a zero-swap routine.

A non-zero-swap routine is a routine that requires
the values currently in the registers to be saved
upon entering the routine. For a non-zero-swap
routine, the prologue code performs the following
functions:

I. Saves the values in registers #IA through #lF

2. Saves the values of the calling routine's
registers and loads the registers with the
values they had during the most recent execution
of the called subprogram (this involves a swap
instruction that destroys the contents of
registers #IA through #IF)

3. Restores the values in registers llIA (return
address), #IE (data base address), and #IF
(Data Flag Branch Manager table pointer)

4. Updates the values in registers llIB (dynamic
stack address), lllC (current stack pointer),
and #ID (previous stack pointer)

5. Clears the length field of register lllF for the
Data Flag Branch Manager

60480200 H

For a non-zero-swap routine, the epilogue code per­
forms the following functions:

I. saves the values of the registers that were
assigned by the called routine and loads into
the registers the values they had before the
subprogram was called

2. lf the length field of register #IF is nonzero,
restores the condition-enable bits of the data
flag branch register to the values they had
before the subprogram was called, preserving
the free data flags

3. Returns control to the address specified in
register /1 lA

A zero-swap routine is a routine that does not
require the values in all registers to be saved upon
entering the routine. The compiler generates a
zero-swap routine if all of the following conditions
are satisfied:

Compilation option 0 or Z is specified in
the FTN200 control statement

There are no calls or function references (other
than to FORTRAN routines that can be generated
inline)

There are no input/output statements

No vector programming features are used

The generated code can be reasonably executed
using only registers lf3 through #13, and
possibly registers #17, #18, and 1119

No special call statements are used

STANDARD CALLING SEQUENCE

In general, the FORTRAN compiler uses the subprogram
linkage conventions described in volume 2 of the
operating system reference manual. When a subrou­
tine or function that you have written calls a sub­
routine or references an external function, such as
one written in assembly language, the standard
calling sequence in machine language is essentially
as shown in figure I3-5.

#78xx001E

#78yy0017

#361A00zz

Load register #1E with the address
xx of the callee data base.

Load register #17 with the
parameter list descriptor yy.

Branch to entry point zz of the
called procedure after setting a
return location in register #1A.

Figure 13-5. Standard Calling Sequence

I3-9

In the instructions in the figure, registers lllE,
#17, and #IA are the conventional data base regis­
ter, parameter descriptor register, and return reg­
ister, respectively; xx contains the callee data
base address, yy contains the descriptor of the
parameter list, and zz contains the procedure entry
point address, All of the other global and envi­
ronment registers are initialized by the operating
system,

Register #17 contains a descriptor of the argument
vector, The length portion of register #17 contains
the number of fullwords in the argument vector,
The address portion contains t~e address of the
first word of the argument vector.

Each word in the argument vector corresponds to an
actual argument in the external procedure reference.
The length portion of each word is zero unless the
argument is of type character; if the argument is
of type character, the length portion contains the
length of the character variable or character array
element. The address portion of each word contains
the address of the actual argument.

At the time a subprogram reference is executed, each
variable listed as a dummy argument is associated
with the same storage location as the actual argu­
ment corresponding to it (call by address), Each
definition of a dummy argument can change the value
in that storage location. Thus, when control
returns to the referencing program unit, the values
of the actual arguments can be different from what
they were before the subprogram reference.

For function references, halfword function results
are returned in the high-order half of register
#18, fullword function results are returned in
register #18, and doubleword function results are
returned in registers #18 and #19, Halfword results
are returned for half-precision functions; fullword
results are returned for integer, real, and logical
functions; doubleword results are returned for
double-precision and complex functions.

Vector functions return results in the result
vector, which is passed in the parameter list.

FAST CALLS

Many intrinsic functions have a fast call entry
point as well as a standard call entry point. The
c001piler generates a fast call to these functions

13-10

unless the function name appears in an EXTERNAL
statement in the calling program. 1be standard call
entry point is the function name. See section 10
for a list of the fast call entry point names,
(Not all intrinsic functions have fast call entry
points). Fast calls are not generated for subpro­
grams that you write.

1be difference between the standard and fast calling
sequences is the method by which parameters are
passed to the called subprogram. For the standard
calling sequence, parameters are passed using a
parameter list in memory; for the fast calling
sequence, parameters are passed using registers 113
through #6 as required by the number and length of
the parameters. Scalar results are returned for
functions called with the standard calling
sequence. Vector functions return results in the
result vector; register #18 is automatically preset
by the caller to the descriptor of the result
vector.

See figure 13-6 for an example of a fast call to a
scalar function having one argument.

#78xx001E

#78yy0003

#361A00zz

Load register #1E with the address
of the callee data base.

Load register #3 with the
function's actual arguments.

Branch to the fast call entry
point of the called function and
set a return Location in register
#1A.

Figure 13-6. Fast Calling Sequence Example

In the instructions in the figure, xx contains the I
callee data base address, yy contains the function
parameter, and zz contains the function entry point
address. Function parameters must be loaded in
consecutive registers beginning with register #3
and in the order specified in the function descrip­
tions; see section 10 for the function descriptions,

All of the other global and environment registers
are initialized by the operating system.

60480200 H

FORTRAN CONTROL STATEMENT 14

This section describes the FORTRAN control state­
ment, its parameters, and the kinds of output
information that it can direct the FORTRAN 200
compiler to produce.

The FTN200 control statement calls the FORTRAN 200
compiler, specifies the files for input and output,
and determines the kind of output produced. The
following forms can be used to invoke the compiler:

FTN200.
FTN200,olist.
FTN200 olist.
FTN200(olist)

where olist is an optional list of parameters in any
order separated by commas or blanks. FTN200. exe­
cutes the compiler with all options being default.

Each parameter consists of a keyword and an optional
value. For example:

LIST'*lfn

where LIST is the keyword and lfn is an optional
local file name.

ABBREVIATION
Some keywords can be abbreviated. For single word
keywords, the abbreviation can be from one to all
of the leftmost consecutive letters of the word.
The following are acceptable abbreviations of the
keyword BINARY:

B

Bl
BIN
BINA
BINAR
BINARY

DEFAULTS
There are two kinds of parameter defaults. The
first kind occurs when the parameter and its value
are both omitted. The second kind occurs when the
parameter is given but the value is omitted.

The keywords, their minimal abbreviations, and
their defaults are summarized in table 14-1 and
discussed in detail in the following paragraphs.
Appendix F contains the appropriate information for
release VSOS 2.1.6.

KEYWORDS
Keywords can be either binary or multiple-option.
A binary keyword either does or does not select its
option. For example, you can select 64 bit com-

60480200 G

TABLE 14-1. KEYWORD ABBREVIATIONS AND
PARAMETER DEFAULTS

Minimal First Default Second Default
Keyword Abbrevi- (Omit Keyword (Omit Value

at ion and Value) Only)

ABC ABC ABC•O ABC•l

ANSI ANSI ANSI•O ANSI•W

BINARY B B=BINARY/16 BsBINARY/16

C64 C64 C64=0 C64=1

DO DO 00=0 DO•l

ERRORS E E=OUTPUT/16 EaERRS/16

ELEV ELEV ELEV=W ELEV•F

F66 F66 F66•0 F66=1

GO GO GO=O GO=l

INPUT I !=INPUT IsCOMPILE

LIST L L=OUTPUT/336 L=LIST/336

LO LO LO=S LO=SX

OPTIMIZE OPT OPT=O OPT=l

SC SC sc .. o SC•l

SDEB SDEB SDEB=O SDEB•l

SYNTAX SYN SYN=O SYN=!

TM TM TM=HOST TM=205

UNSAFE UNS UNS=O UNS=l

parison either by selecting C64 or by selecting
C64=1. You can get the alternative (48 bit com­
parison) either by selecting nothing or by selecting
C64=0. The multiple-option keywords, on the other
hand, have several options in addition to the
default. For example, OPTIMIZE has five options in
addition to the default.

KEYWORDS AND THEIR
OPTIONS
Following is a list of the FORTRAN 200 control
statement parameters and their options. They are
listed alphabetically by keyword.

14-1

I

ABC

Instructs the compiler to perform array bound
checking on all executable statements and to
generate code that will detect it during exe­
cution. This option should not be turned on in
a production code, because it may affect the
performance of execution.

ABC=l

Set array bound checking on.

ABC=O

Set array bound checking off.

ABC

Same as ABC=l.

omit

Same as ABCaO.

ANSI

Specifies whether and how severely to diagnose non­
ANSI extensions. The valid options are:

ANSI•F

Treats non-ANSI uses as fatal errors.
ANSI messages become fatal errors.

ANSI=W

Treats non-ANSI uses as warnings.

ANSI=O

Generates no ANSI diagnostics.

ANSI

Same as ANSI=W.

omit

Same as ANSI=O.

BINARY

All

Specifies the name of the file to which the compiler
writes the binary object code. See appendix F for
a description of the BINARY parameter in release
VSOS 2.1.6.

The disposition of the binary file depends on the
kind of file. If the file is an attached permanent
file, then it is used, and any explicit or implied
length specification is ignored. If the file is an
existing local file, then the compiler returns it
and creates a new file. The compiler creates a new
local file in all other cases. The compiler per­
forms these functions by calling Q5GETFIL with the
RETURN parameter specified as described in the VSOS
reference manual, Volume 1.

With VSOS Release 2.2, you do not need to specify
file length because the system allocates as many
blocks as necessary for the file to hold the binary

14-2

object code. If you do use the length option, the
first space allocation for the file is the length
you specify.

The valid options are:

BINARY=lf n/ len

Writes object code on the file Un, ini­
tially setting the length at len blocks.
The option len can be an integer constant
or a hexadecimal constant prt!fixed with a
#. A block is 512 consecutive words. The
len default is 16 blocks. The compiler
passes len as the file length in its call
to QSGETFIL,

BINARY=lfn

Same as BINARY=lfn/16.

BINARY

Same as BlNARY=SlNARY/16.

omit

Same as BINARY=BINARY/16.

BINARY=O

Generates no object code.

The BINARY
parameter.
code, the
parameter
warnings.

parameter might conflict with the GO
If BINARY is set to generate object
only acceptable option for the GO

is O. Any other options generate

C64

Instructs the compiler to generate code that will
compare all 64 bits of an integer for .EQ. and .NE.
operators in the logical IF statement. The valid
options are:

DO

C64=1

Generates code to compare 64 bits.

C64=0

C64

omit

Generates code to compare 48 bits for
integer arithmetic.

Same as C64=1.

Same as C64=0.

Specifies how the compiler is to interpret DO loops.
The option of 00=1 generates more efficient code
for DO loops in some cases. On the other hand, the
program wi Ll not execute correctly if DO=I and a DO
loop has a zero iteration count. The valid options
are:

60480200 c;

Minimum iteration count is one.

Minimum iteration count is zero.

DO

Same as DO=l.

omit

ERRORS

Same as 00=1 if F66 is specified, otherwise
same as 00•0.

Specifies a file name for recording the error
information. See appendix F for a description of
the ERRORS parameter in release VSOS 2.1.6.

The file length that you specify with ERRORS is not
necessarily always what you get; there is one
exception. If you have specified the same file name
with LIST, the actual file length will become the
larger of the two. If your LIST specifies a larger
file than your ERRORS specification, the LIST file
size prevails.

The disposition of the errors file depends on the
kind of file. If the file is an attached permanent
file, then it is used, and any explicit or implied
length specification is ignored. If the file is an
existing local file, then the compiler returns it
and creates a new file. The compiler creates a new
local file in all other cases. The compiler per­
forms these functions by calling Q5GETFIL with the
RETURN parameter specified,

The valid options are:

ERRORS=lfn/ len

Writes error diagnostics on the file lfn,
initially setting the length at len blocks
if there is an error of at least ELEV
severity. The option len can be an integer
constant or a hexadecimal constant prefixed
with a #, A block has 512 words. The len
default is 16 blocks. The compiler passes
len as the file length in its call to
Q5GETFIL.

With, VSOS Release 2.2, you do not need to specify
the file length because the system allocates as
many blocks as necessary for the file to hold the
error diagnostics. If you do use the length
option, the first initial allocation for the file
is 16 blocks.

If the error diagnostics take up more than 16
blocks of space, the system increases the length of
the lf n file as needed to hold all the error
diagnostics.

ERRORS=lfn

Same as ERRORS=lfn/16,

ERRORS

Same as ERRORS=ERRS/16.

60480200 G

omit

Same as ERRORS=OUTPUT/16.

Specifies the error severity threshold for writing
the error diagnostics on the ERRORS file. Error
severity levels are ordered by increasing severity.
Specification of a level selects the level and all
levels above. The valid options are:

F66

ELEV-W

Sets the write threshold at the warning
level. The warning level signifies a syntax
error. The system writes error diagnostics
and the co1111>ilation continues. Also writes
all fatal and catastrophic errors.

ELEV•F

Sets the write threshold at the fatal level•
A fatal error prevents compiliation of the
faulty statement and writes error diagnos­
tics for the fatal level. The compiler
generates no binary file. Also writes all
catastrophic errors.

ELEV=C

ELEV

omit

Sets the write threshold at the catastrophic
level. A catastrophic error stops the
compiler with no further processing.

Same as ELKV .. l'".

Same as ELEV=W.

Instructs the compiler whether the source file, as
specified in the INPUT parameter, contains the ANSI
X3.9-1966 FORTRAN based dialect of FORTRAN 200.
When you specify F66, then ANSI=O and DO=l are
assumed. If you have specified other values, warn­
ings are issued. The valid options are:

F66=1

Source file contains the l %6 r"OllTRAN
dialect.

F6b=O

omit

Source file contains the 1978 r"ORTRAN 200
dialect.

Same as F66=l.

Same F66=0.

14-3 I

GO
If the pr:ogram compiles with no fatal errors, the
GO parameter indicates that the program is to be
executed; this means the user does not need to
specify the parameters LOAD and GO as in VSOS
release 2.1.6. With the GO parameter specified,
the FTN200 statement compiles and executes the
program. The GO parameter works only in those
installations which have the system shared library
feature active. The valid options are as follows:

GO

GO=O

GO=l

Omit

Execute the user program upon completion of
a nonfatal compile.

Only compile the user program.

Same as GO.

Same as GO=O.

With the GO parameter, your program executes using
the system shared library and a dynamic LINKER
utility that loads dynamic modules and gives
control to the called module. The system shared
library is a file that contains the LINKER utility,
directories, shared utilities, and a shared SYSLIB.

For batch jobs, the GO task reads and writes files
as specified in your FORTRAN 200 source program.
On the other hand, interactive sessions require
that you create two files before beginning the
compilation of your program: INPUT and QSINPUT.
INPUT holds your source code, which is input to the
FTN200 compiler, and QSINPUT contains the input
data for the compiled pr•Jgram. Unless you specify
other input files, you must create the INPUT and
QSINPUT file before beginning the compilation of
your program. Additionally, interactive compile
and GO creates two output files: QSOUTPUT for the
compiler listing and OUTPUT for the output of your
executing program.

The GO parameter might conflict with the BINARY and
SYNTAX parameters. For the BINARY parameter, if
you specify GO=l, then you must specify BINARY=O;

I otherwise, error messages are returned. For the
SYNTAX parameter, if you specify GO=l, then you
must either omit the SYNTAX parameter or set I SYNTAX=O; otherwise, error messages are returned.

If the FORTRAN 200 compiler is statically loaded
(loaded with LINK=M) you must not specify the GO
parameter; otherwise, an error message is returned.

INPUT

Specifies the name of the input source code file
for the compiler. The valid options are:

INPUT=lfn

Name of the file is lfn.

14-4

INPUT

Same as INPUT=COMPILE.

omit

Same as lNPUT=INPU'f.

The maximum record length for the input file is %

characters.

LIST

Specifies the file name to which the compiler can
write the the source listing and other requested
information except diagnostics. See appendix F for
a description of the LIST parameter in release VSOS
2.1.6.

The file length that you specify with LIST is not
necessarily always what you get; there is one
exception. If you have specified the same file
name with ERRORS, the actual file length will become
the larger of the two. If your ERRORS specifies a
larger file than your LIST specification, the ERRORS
file size prevails.

The disposition of the list file depends on the
kind of file. If the file is an attached permanent
file, then it is used, and any explicit or implied
length specification is ignored. If the file is an
existing local file, then the compiler returns it
and creates a new file. The compiler creates a new
local file in all other cases. The compiler passes
!en as the file length in its call to QSGETFIL.

With VSOS Release 2. 2, you do not need to specify
the file length, because the system allocates as
many blocks as necessary for the file to hold the
listing. If you do use the length option, the
first space allocation for the file is 336 blocks.

The valid options are:

LIST=lfn/ len

Writes listing on the file lfn, initially
setting the length at len blocks. The
option len can be an integer constant or a
hexad.ecimal constant prefixed with a II. A
block is 512 consecutive words. The len
default is 336 blocks. LIST performs these
functions by calling QSGETFIL with the
RETURN parameter specified. If the listing
takes up more than 336 blocks of space, the
system increases the length of the file as
needed to hold the entire listing.

LIST=lfn

Same as LIST=lfn/336.

LIST

Same as LIST=LIST/336.

omit

Same as LIST=OUTPUT/336,

LIST=O

Supresses all listing except that directed
to the ERRORS file.

60480200 G

I

I

LO
Specifies what information is to appear on any
listing file generated with the LIST parameter.
You can specify multiple options by concatenating
the option letters. The valid options are:

LO=[op][op] •••

LO

omit

The option op can specify any of the fol­
lowing to be written to the listing file:

A Assembly listing of object code

M Map of register file and storage
assignments

S Source code

x Cross-reference map

I Index map

Same as LO=SX.

Same as LO•S.

NOTES

The LO parameter might conflict with the
SYNTAX parameter.

If the I option is specified, the S option
must also be specified (for example, LO=SI
is valid).

OPTIMIZE

Specifies to the compiler whether to optimize scalar
code and, if so, which optimizations to perform.
Performs mainframe dependent optimizations for the
target mainframe as specified in the TM parameter.
OPTIMIZE produces mofe efficient code at the
expense of increased compilation time. As with the
LO parameter, multiple options can be specified by
concatenating the options.

OPTIMIZE=[op][op] •••

The option op can be any of the following:

60480200 H

D

p

Optimize DO loops.

Propagate compile-time computable
results.

R Remove redundant code.

S Schedule instructions.

v Vectorize certain types of DO loops
and transform other types into
STACK.LIB routines. See section 9
for more information.

SC

OPTIMIZE•l

Same as OPTIMIZE•DPRSV.

OPTIMIZE=O

No optimization is performed.

OPTIMIZE

Same as OPTIMIZE=!.

omit

Same as OPTIMIZE=O

NOTE

The OPTIMIZE parameter might conflict with
the SYNTAX parameter.

Specifies how the compiler interprets the reserved
names for the FORTRAN 200 special calls. The valid
options are:

SC=l

SC=O

SC

omit

SDEB

Interprets names as machine instruction
references.

Interprets names as user-supplied subroutine
references.

Same as SC=l.

Same as SC=O.

Specifies whether to suppress the DEBUG symbol
tables. The DEBUG utility needs the tables to
reference FORTRAN 200 variables and line numbers.
The run time error processor needs them for subrou­
tine tracebacks. The BINARY and controllee files
are shorter without the tables. The valid options
are:

SDEB=l

Supresses the DEBUG symbol tables.

SDEB=O

Generates the DEBUG symbol tables.

SDEB

Same as SDEB=l.

omit

Same as SDEB=O.

14-5

I

SYNTAX
Instructs the compiler to perform a quick syntax
check on the source program. See appendix F for a
description of the SYNTAX parameter in release VSOS
2.1.6. The valid options are:

SYNTAX=l

Performs a full syntactic scan but generates
no BINARY file.

SYNTAX=O

Compiles completely.

SYNTAX

Same as SYNTAX=l.

omit

Same as SYNTAX=O.

NOTE

The SYNTAX parameter might conflict with
the BINARY, LO, GO, OPTIMIZE, and UNSAFE
parameters. When SYNTAX=l, the only accept­
able options for these parameters are
BINARY=O, OPTIMIZE=O, UNSAFE=O, LO=S, LO=X,
LO=SI, LO=SX, and LO=SIX.

Any other options generate warnings.

TM

Specifies the target mainframe to execute the gen­
erated object code The selections are mutually
exclusive. The default is the host mainframe: the
mainframe that compiled the program. The valid
options are:

TM=n

The option n can be any of the following
target mainframe codes:

205 CYBER 205

HOST Host mainframe

TM

Same as TM 205

omit

Same as TM HOST

UNSAFE

Instructs and permits the compiler to perform
certain optimizations that might be unsafe. For
example, if the end value of a DO loop is variable
and if the loop contains dummy array references, the
compiler cannot determine the number of iterations
of the loop. Vectorization, therefore, might be

14-6

unsafe because the loop count could exceed 65535,
the maximum length for a vector. See section 9 for
more information on the UNSAFE parameter. The
valid options are:

UNSAFE=!

Allows unsafe optimization.

UNSAFE=O

Disallows unsafe optimization.

UNSAFE

Same as UNSAFE=!.

omit

Same as UNSAFE=O.

NOTE

The UNSAFE parameter might conflict with
the SYNTAX parameter.

CONTROL STATEMENT
EXAMPLES
Figures 14-1 and 14-2 show examples of the use of
FORTRAN 200 control statements. Appendix F con­
tains the appropriate information in figures 14-1
and 14-2 for release VSOS 2.1.6.

Figure 14-1 shows the all-default case. The FTN200
statement alone assigns default values to each
option. The figure lists the default values.

The ERRORS file of figure 14-1 has a default length
of 16, but the ERRORS file is the same file as the
LIST file, and the greater length takes precedence.

FTN200. is equivalent to:

FTN200,ANSI=O,
BINARY=BINARY/16,
C64=0,
DO=O,
ERRORS=OUTPUT/336,
ELEV=W,
F66=0,
GO=O,
INPUT=INPUT,
LIST=OUTPUT/336,
LO=S,
OPTll'IIZE=O,
SC=O,
SDEB=O,
SYNTAX=O,
TM=HOST,
UNSAFE=O.

Figure 14-1. Control Statement Example With
Default Values

60480200 H

Figure 14-2 shows an example of a FORTRAN 200
trol statement with some options specified
others allowed to default, The list shows
values, including the default values,

con­
and
all

Although the ERRORS file of figure 14-2 has been
specified with a length of 16, the LIST file is the
same file and its default length is 336; the length
of 336 takes precedence,

FTN200,I=SOURCE,L=LOOK,OPT=1,LO=AS,SC,TM=205,
B=LGO/#AA,C64,E=l.OOK/16

is equivalent to (including defaults):

FTN200,ANSI=O,
BINARY=LGO/#AA,
C64=1,
DO=O,
ERRORS=LOOK/336,
ELEV=W,
F66=0,
GO=O,
INPUT=SOURCE,
LIST=LOOK/336,
LO=AS,
OPTIMIZE=DPRSV,
SC=1,
SYNTAX=O,
TM=205,
UNSAFE=O.

Figure 14-2. Control Statement Example

COMPILER-GENERATED
LISTINGS
The FORTRAN 200 compiler can place a variety of
information in the source listing file, The LO
compilation options A, M, S, I, and X control that
information placement.

A header line at the top of each page of the source
listing contains the compiler version, the type of
listing, the time, the date, and the page number.

The source program listing (including comments) is
the first item to be placed on the file. It has 58
lines per printed page, excluding headers. The out­
put lines are numbered on the right and the source
lines on the left. The cross-reference maps, to be
discussed later, use the source line numbers.

Any appropriate diagnostics appear at the end of
each program unit, If you selected no compilation
options but there were syntax errors, any diagnos­
tics would appear immediately after the source
listing. If, instead, your syntax were acceptable
and there were no diagnostics, the message NO
ERRORS would appear after the source listing. Each
error diagnostic indicates the source line number
of the error, the error number, and the error
severity level, See appendix B for a summary of
the diagnostics.

The following listings appear after the source
program:

Cross-reference maps

Assembly listing

60480200 J

Storage map and register map

Index map

Any generated diagnostics follow the storage and
register maps.

CROSS-REFERENCE MAPS

If you select LO=X, then one to four cross-reference
maps will appear in the source listing. The maps
appear immediately following the source program.
The four cross-reference maps are:

Statement label map

Variable map

Symbolic constant map

Procedure map

Statement Label Map

The statement label map provides information about
each statement label used in the program. See figure
14-3 for a statement label map format and figure
14-4 for a statement label map example. The state­
ment label map will not print if the program has no
statement labels. Uses of the statement label map
include:

Finding unreferenced FORMAT statements and
other unreferenced but labeled statements

Verifying that flow control statements have
proper statement labels

Locating labeled statements and their references

STATEMENT LABEL MAP
--LABEL---DEFINED---ADDRESS---REFERENCES

lbl def addr refs

lbl A statement label that appears in the
label field of a FORTRAN statement

def The source line number of the statement
in which lbl appears in the label field

addr Bit address of the label relative to
code section; suppressed for format
labels or if no object was generated.

refs The source line numbers of all source
lines that contain references to lbl

Figure 14-3. Statement Label Map Format

14-6.1/14-6.2

I
I

"' 0
~
00
0
N
0
0

::c

.....
~
I

FORTRAN 200 CYCLE 14 BUILT 11/22/82 20:38 SOURCE LISTING

00001
00002
00003
00004
00005
00006
00007

00008
00009
00010
00011
00012
00013
00014
00015
00016

PROGRAM PASCAL(OUTPUT)
INTEGER L<11) ,ONE,A,B
PARAMETER (0NE=1)
IADD(A,B) =A+ B
DATA L (11) /ONE/
PRINT 4,<I,1=1,11)

4 FORMAT('1COMBINATIONS OF M THINGS TAKEN NAT',
X 'A TIME.'//20X,'-N-' /1115)

DO 200 I =1 , 1 0
K = 11 - I
L(K) = 1
DO 100 J = K,10

100 LLl) = IADD(L(J),L(J+1))
200 PRINT 3, (L(J) ,J=K, 11>
3 FORMAT~1I5)

STOP
END

FORTRAN 200 CYCLE 14 BUILT 11/22/82 20:38 CROSS REF LISTING

STATEMENT LABEL MAP
--LABEL---DEFINED---REFERENCES

100
200
3
4

12
13
14

7

11
8

13
6

PASCAL COMPILED 12/07/82 14:22

PASCAL COMPILED 12/07/82 14:22

VARIABLE MAP
--NAME-------BLOCK------TYPE------CLASS-------REFERENCES A=ARGLIST, C=CTRL OF DO, !=DATA INIT, R=READ, S=STORE, W=WRITE

A INTEGER SIMPLE 2 4 4
B INTEGER SIMPLE 2 4 4
I INTEGER SIMPLE 6 6 8 9
J INTEGER SIMPLE 11 12 12 12 13 13
K INTEGER SIMPLE 9/S 10 11 13
L INTEGER ARRAY 2 5/I 10/S 12/S 12 12 13
PASCAL PROGRAM 1

SYMBOLIC CONSTANT MAP
--NAME-------TYPE-------VALUE--------------------------------------REFERENCES S=DEFINITION LINE

ONE INTEGER

PROCEDURE MAP
--NAME-------TYPE-------CLASS-------------REFERENCES

IADD INTEGER STAT FUNC 4/S

2 3/S

D=STMT FN DEF, A=ARGLIST

12

Figure 14-4. Source Listing Example (Sheet 1 of 5)

I

....
"'"

I
FORTRAN 200 CYCLE 14 BUILT 11 /22182 20:38 ASSEMBLY LISTING PASCAL COMPILED 12/07/82 14:22 I

00

LOCATION MACHINE LINE SOURCE ASSEMBLY REPRESENTATION
COUNTER INSTRUCTION NUMBER LABEL

PASCAL I DENT
ENTRY PASCAL

00001 A00006

0000000 7D00151 c PASCAL SWAP ,C #1A,CUR STACK
0000020 781 cooi D RTOR CUR_STACK,PREV_STACK
0000040 781 B001 c RTOR DYN SPACE,CUR_STACK
0000060 3E360028 ES CG '3°6,40
0000080 30360637 SHI FTI CG36,6,CG 37
OOOOOAO 631B371B ADDX DYN SPACE,CG 37 ,DYN SPACE
oooooco 7B361 C1C PACK CG_'3°6,CUR_STACK,CUR=STACK
OOOOOEO 3E381280 ES CG 38,4736
0000100 631 E3839 ADDX CALLEDATA,CG 38,CG 39
0000120 2A390016 ELEN CG 39,22 - -
0000140 7D391400 SWAP CG-39,C #20
0000160 782F0003 RTOR L 'CooooT_DESCR,PR_3
0000180 3E040000 ES PR 4,0
00001AO 3E050000 ES PR-5,0
00001CO BE3A000000000000 EX CG3A,.EXTC.F PROLOG
0000200 BE1EOOOOOOOOOOOO EX CALLEDATA,.DB:'"F PROLOG
0000240 361A003A BSAVE RETURN,CG 3A -
0000260 781B0022 RTOR DYN SPACE°;PI DYNSP
0000280 3E3B0060 00006 ES CG '3°8,96 -
00002AO 7F203B16 STO [DATABASE,CG_3BJ,C_#1
00002CO 78320017 RTOR *ARG VECT,C PARM DESCR
00002EO 78320003 RTOR *ARG=VECT,P1f_3 -
0000300 2A030003 ELEN PR 3,3
0000320 3E3C0061 ES CG""°"3C,97
0000340 7F203C30 STO [DATABASE,CG_3CJ,L_F4_DESCR
0000360 78350017 RTOR *ARG_VECT,C__PARM_DESCR

• • • 0000920 361A0039 BS AVE RETURN,CG_39
0000940 3E3A0032 ES CG 3A,50
0000960 7E203A3B LOO [DATA8ASE,CG 3AJ,CG 3B
0000980 8406382600242B13 IBXLE,8R8 CG 3B,AL 26,~002,~ 2B,PR 13
00009CO 3E3C0032 ES cG""""3c,5o- - -
00009EO 7F203C13 STO [DATABASE,CG 3CJ,PR 13
OOOOAOO 3E030000 00015 ES PR 3,0 - -
0000A20 8E3DOOOOOOOOOOOO EX CG3D,.EXTC.F EPILOG

a- I
0000A60 8E1EOOOOOOOOOOOO EX CALLEDATA,.oe:-F_EPILOG

0 OOOOAAO 361A003D BSAVE RETURN,CG_3D
"'" 00 END 0
N
0
0

> Figure 14-4. Source Listing Example (Sheet 2 of 5)

"' 0
~
co
0
N
0
0

>

....
~
I

"'

FORTRAN 200 CYCLE 14

REG. NAlllE
NO

00 0 CllllACHINE ZERO)
01 DATA FLAG RETURN
02 DATA-FLAG-ENTRY
03 PR 3- -
04 PR-4
05 PR-S
06 PR-6

07 PR-7
08 PR-8
09 PR-9
OA PR-A
OB PR-B
DC PR-C
OD PR-D
OE PR-E
OF PR-F

10 PR-10
11 PR-11
12 PR-12
13 Pln3
14 c #20

1E CALLE DATA
1F DATA FLAG TABLE
20 DATABASE -
21 PARllll DESCR
22 PI DYNSP
23 c 1Ta
24 Cl#A
2S K-
26 AL 26
27 CG-27
28 D L 0000
29 D-cnoos
2A r-
2B AL 2B
2C CG""2C
2D L V'l DESCR
2E Cc1-DESCR
2F Cco1roo1 DESCR
30 CF4 DEsCR
31 L-F3-DESCR
32 *ARG-VECT

BUILT 11/22/82 20:38 REGISTER lllAP PASCAL COlllPILED 12/07/82 14:22

FULLWORD REGISTER Ill
REG. NAlllE REG. NAlllE REG. NAlllE REG. NAlllE

NO NO NO NO

33 *ARG VECT 66 FR 66 99 FR 99 cc FR CC
34 *ARG-VECT 67 FR-67 9A FR-9A CD FR-CD
35 *ARG-VECT 68 FR-68 9B FR9e CE FR-CE
36 CG 3o 69 FR-69 9C FR-9C CF FR-CF
37 CG-37 6A FR6A 9D FR-9D DO FR-DO
38 CG-38 6B FR-6B 9E FR-9E D1 FR-D1
39 CG59 6C FR-6C 9F FR°""9F D2 FR-D2
3A CG-3A 6D FR-6D AO FR-AO D3 FR-D3
3B CG-3B 6E FR-6E A1 FR-A1 D4 FRD4
3C CG5C 6F FR-6F A2 FR-A2 DS FR-DS
3D CG-3D 70 FR70 A3 FR-A3 D6 FR-D6
3E CG5E 71 FR71 A4 FR-A4 D7 FR-D7
3F CG-3F 72 FR72 AS FR-AS D8 FR-D8
40 CG-40 73 FR73 A6 FR-A6 D9 FR-D9
41 FR-41 74 FR74 A7 FR-A7 DA FR-DA
42 FR-42 7S FR7S A8 FR-A8 DB FR-DB
43 FR-43 76 FR-76 A9 FR-A9 DC FR-DC
44 FR-44 n FR-77 AA FR-AA DD FR-DD
4S FR-4S 78 FR78 AB FR-AB DE FR-DE
46 FR-46 79 FR-79 AC FR-AC DF FR-DF
47 FR-47 7A FR-7A AD FR-AD EO FR-EO

• • •
S1 FR S1 84 FR 84 B7 FR B7 EA FR EA
S2 FR-S2 8S FR-8S B8 FR-B8 EB FR-EB
S3 FR"""53 86 FR86 B9 FR-B9 EC FR-EC
S4 FR-S4 87 FR-87 BA FR-BA ED FR-ED
SS FR-SS 88 FR-88 BB FR-BB EE FR-EE
S6 FR"""56 89 FR-89 BC FRBC EF FR-EF
S7 FR-S7 8A FRBA BD FR-BD FO FR-FO
SS FR-S8 BB FR-88 BE FR-BE F1 FR-F1
S9 FR"""59 BC FR-8C BF FR-BF F2 FR-F2
SA FR-5A 8D FR-SD co FR-CO F3 FR-F3
SB FR-SB BE FR-8E C1 FR-C1 F4 FR-F4
SC FR-SC 8F FR-8F C2 FR-C2 FS FR~S
SD FR-SD 90 FR-90 C3 FR-C3 F6 FRF6
SE FR-SE 91 FR-91 C4 FR-C4 F7 FR-F7
SF FR:'iF 92 Ftr92 cs FirtS F8 FrF8
60 FR-60 93 FR-93 C6 FR-C6 F9 FR-F9
61 FR-61 94 FR-94 C7 FR-C7 FA FR-FA
62 FR-62 9S FR-9S cs FR-CS FB FR-FB
63 FR-63 96 FR-96 C9 FR-C9 FC FR-FC

64 FR-64 97 FR-97 CA FR-CA FD FR-FD
6S FR-6S 98 FR-98 CB FR-CB FE FR-FE - - - FF FRl'F

Figure 14-4. Source Listing Example (Sheet 3 of S>

...
~
I ...

0

a-
0
~
00
0
N
0
0

=

FORTRAN 200 CYCLE 14 BUILT 11/22/82 20:38 STORAGE MAP PASCAL COMPILED 12/07/82 14:22

PROGRAM NAME IS PASCAL TOTAL LENGTH IS 56 HEX HALF W OROS

DATA AREA COPY OF ALL REGISTERS USED BY THIS FORTRAN PROGRAM
START ADDRESS = 1280 (START ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS) I I

SCALARS AND CONSTANTS ASSIGNED TO REGISTERS
LOCATION REG. NO NAME

1300 22 PI DYNSP
1340 23 c_#B
1380 24 C #A
13CO 25 c
1480 28 D L 0000
14CO 29 D:L:ooo8
1500 2A J

DESCRIPTORS ASSIGNED TO REGISTERS
LOCATION REG. NO NAME

15CO 2D L 97 DESCR
1600 2E Cc1-DEscR
1640 2F L-C00001 DESCR
1680 30 CF4 DESCR
16CO 31 L-F3-DESCR
1700 32 *ARG-VECT
1740 33 *ARG-VECT
1780 34 *ARG-VECT
17CO 35 *ARG-VECT

(LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)
CLASS TYPE

SIMPLE VARIABLE
CONSTANT
CONSTANT
SIMPLE VARIABLE
SIMPLE VARIABLE
SIMPLE VARIABLE
SIMPLE VARIABLE

INTGR
INT GR
INT GR
INT GR
INTGR
INTGR
INT GR

(LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)

ARRAY
ARRAY
CHAR/BIT /FORMAT
CHAR/BIT /FORMAT
CHAR/BIT /FORMAT
ARGIJt'IENT VECTOR
AR GUM ENT VECTOR
ARGIJt'IENT VECTOR
ARGUMENT VECTOR

NOTE: TOTAL NUMBER OF REGISTERS TO BE FETCHED INTO REG.FILE STARTING WITH REG.20 HEX IS 16 HEX

GENERATED OBJECT CODE
START ADDRESS = 0 LENGTH = 56 HEX HALF WORDS (START ADDRESS IS RELATIVE TO CODE AREA BASE ADDRESS)

CHARACTER CONSTANTS,LITERALS AND FORMAT SEGMENTS
START ADDRESS = 0 LENGTH = 1A HEX HALF WORDS (START ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS)

ARGUMENT VECTORS
START ADDRESS = 340 LENGTH = 48 HEX HALF WORDS (START ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS)

Figure 14-4. Source Listing Example (Sheet 4 of 5)

I

I

I

"' 0
~
co
0

"' 0
0

::c

.....
t

CONSTANTS, DESCRIPTORS, NON-CO"'ON VARIABLES, AND NAMELISTS NOT ASSIGNED TO REGISTERS
START ADDRESS = C40 LENGTH = 0 HEX HALF WORDS (START ADDRESS IS RELATIVE TO DATA AREA BASE ADDRESS>

LOCATION SYMBOLIC NAME OR HEX VALUE

C80
cco
DOO
D40

1000

I
A
B
L
4F55545055542020

LOCATION SYMBOLIC NAME OR HEX VALUE

1040 0

TEMPORARY STORAGE

COlllllON BLOCKS

NO CO"'ON BLOCK IS SPEC IF IED

LIST OF ALL ENTRY POINTS

LOCATION SYMBOLIC NAME

0 PASCAL

LIST OF ALL EXTERNALS

SYMBOLIC NAME

F EPILOG
F-CPFSO
F-TFO
F-LPFO
F-PROLOG

14.30.37.UCLP, 10, L2T1P2 ,

LENGTH =

0.59KLNS.

CLASS

SIMPLE VARIABLE
SIMPLE VARIABLE
SIMPLE VARIABLE
ARRAY VARIABLE
CONSTANT

CLASS

CONSTANT

TYPE (LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)

INT
INT
INT
INT
TYP

TYPE (LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)

INT

0 HEX HALF WORDS (STORAGE IS SCATTERED THROUGHOUT DATA AREA)

(LOCATIONS ARE RELATIVE TO CODE AREA BASE ADDRESS)

Figure 14-4. Source Listing Example (Sheet 5 of 5)

I

I
I

Variable ·Map

The variable map provides information about each
symbolic name used in a program except for procedure
names and symbolic constant names. The variable map
is always printed when you select the LO=X compila­
tion option. See figure 14-5 for the variable map
format and figure 14-4 for a variable map example.

Some uses of the variable map include:

Identifying symbolic names that are not associ­
ated with the proper data type

Locating where symbolic names are assigned
values

VARIABLE MAP
--NAME---BLOCK~-ADDRESS---TYPE---CLASS---REFERENCES

sym blk addr typ els refs

Identifying functions that should be arrays

Locating misspelled symbolic names

Verifying that symbolic names are in the proper
common blocks

Finding all statements in a program for a given
symbolic name reference

Finding symbolic names that are defined but
never used

sym A symbolic name that appears in the program. Symbolic names are Listed in alphabetical order.

blk The name of the common block in which sym appears. If sym appears in the unnamed common block,
two consecutive slashes are printed for blk. If sym does not appear in any common block, the blk
field is left blank.

addr Bit address of the variable relative to the blk or the database if blk is Left blank, or if the
register is assigned to the variable. Full word registers are specified as REG rr and halfword
registers as HREG rr.

typ The data type with which sym is associated; typ can be any of the following:

INTEGER
HALF PRECISION
REAL
DOUBLE
COMPLEX
LOGICAL
CHAR*len Clen is the character length)
BIT

els The class of sym; els can be any of the following:

refs

SIMPLE
ARRAY
DESCRIPTOR
DESCRIPTOR ARRAY
UNKNOWN

The source line numbers of all source lines that contain references to sym. The source line
numbers are listed in numerical order, and multiple references are Listed. A source Line number
appearing in refs can be followed by a suffix. A suffix describes how sym is used in the source
line. The suffixes and their meanings are:

/A The symbolic name sym is an actual argument in a subroutine call or function reference.

IC The symbolic name sym is the control variable of a DO loop.

/I The symbolic name sym is initialized in a DATA statement.

/R The symbolic name sym appears in the input/output List of an input statement.

/S The symbolic name sym appears on the Left side of an assignment statement.

/W The symbolic name sym appears in the input/output List of an output statement.

Figure 14-5. Variable Map Format

14-12 60480200 J

Symbolic Constant Map

The symbolic constant map provides information about
each symbolic constant used in a program. See
figure 14-6 for the symbolic constant map format and
figure 14-4 for a symbolic constant map example.
The symbolic constant map wi.11 not print Lf the
given program uses no symbolic constants. Uses of
the symbolic constant map include:

Verifying that symbolic constant names are
assigned proper values

SY"BOLIC CONSTANT "AP
--NA"E---TYPE---VALUE---REFERENCES

sym typ val refs

Verifying association of a symbolic constant
with the proper data type

Finding symbolic constant names that are defined
but never used

Finding the defining PARAMETER statement for
each symbolic constant and all occurrences of a
given symbolic constant in the program

sym A symbolic name that appears in the program. Symbolic nantes are listed in alphabetical order.

typ The data type with which sym is associated; typ can be any of the following:

INTEGER
HALF PR EC IS ION
REAL
DOUBLE
C°"PLEX
LOGICAL
CHAR*len Clen is the character length>
BIT

val The value assigned to the symbolic nante sym. The format of var depends on the data type of sym:

Integer
The integer value is printed. A negative value is preceded by a minus sign.

Half-precision, real, and double-precision
The value is printed as a hexadecimal string constant. The format is X'nnn'.

Complex
The complex value is printed as two hexadecimal string constants. The first constant
represents the real part, and the second constant represents the imaginary part. The
format is X'nnn',X'nnn'.

Logical
The logical value is printed as the logical constant .TRUE. or .FALSE ••

Character

Bit

The character value is printed as a character string enclosed in apostrophes. If the
string is too long to fit in the columns provided, the trailing apostrophe is replaced by
an ellipsis.

The bit value is printed as a bit string enclosed in apostrophes. The format is B'nnn'.
If the string is too long to fit in the columns provided, the trailing apostrophe is
replaced by an ellipsis.

refs The source line numbers of all source lines that contain references to sym. The source line
numbers are listed in numerical order, and multiple references are listed. A source line number
appearing in refs can be followed by the suffix IS, which indicates that the symbolic constant is
defined in that source line.

Figure 14-6. Symbolic Constant "ap Format

60480200 A 14-13

Procedure Map

The procedure map provides information about sub­
routines, functions, statement functions, and
external symbolic names used in a program, The
procedure map will not print if the program uses no
procedures. See figure 14-7 for the procedure map
format and figure 14-4 for a procedure map example.
Some uses of the procedure map include:

Identifying statement functions that should be
arrays

PROCEDURE MAP
--NAME---TYPE---CLASS---REFERENCES

sym typ els refs

Verifying association of procedure names with
the proper data types

Finding misspelled procedure names

Finding statement function def inittons

Finding defined statement function names that
are never used

Finding all procedure name references

sym The symbolic name of a subroutine, function, statement function, or external symbol. Symbolic
names are listed in alphabetical order.

typ The data type with which sym is associated; typ can be any of the following:

INTEGER
HALF PRECISION
REAL
DOUBLE
COMPLEX
LOGICAL
CHAR•len <Len is the character length)
BIT
GENERIC (for generic intrinsic flllctions>

If the symbolic name sym is a subroutine name or an external symbol, the typ field is left blank.

els The class of sym; els can be any of the following:

SUBROUTINE
Subroutine

DUMMY SUBR
Subroutine name is a dummy argument

INTRINSIC
Intrinsic function

STAT FUNC
Statement function

BASIC EXTRN
Basic external function

DUMMY FUNC
Function name is a dummy argument

EXTERNAL
The symbolic name sym appears in an EXTERNAL statement and is not of any other class

refs The source line numbers of all source lines that contain references to sym. The source line
numbers are listed in numerical order, and multiple references are listed. If sym is a statement
function name, a source line number appearing in refs can be followed by the suffix ID, which
indicates that the statement function is defined in that source line.

Figure 14-7. Procedure Map Format

14-14 60480200 A

ASSEMBLY LISTING
If you select LO=A, an assembly representation of
the FORTRAN program appears after any cross­
reference maps. See figure 14-4 for an assembly
listing example. See the CYBER 200 Assembler
reference manual for more information on assembly
language. The assembly listing includes:

The location counter (the offset from the code
area base address)

The machine instruction in hexadecimal (either
halfword or fullword instruction)

The source line number of the associated source
program statement

The instruction mnemonic, instruction quali­
fiers, and operands

REGISTER MAP AND STORAGE MAP

If you select LO=M, a listing of the contents of
the 256-register register file and a storage map
appear after any assembly listing. See figure 14-4
for an example register map and storage map. The
storage map gives the following information:

Starting address and size of data area copy of
the register file

Name, location, class,
scalars, constants, and
registers

and data type of all
externals assigned to

Name, location, and class of descriptors
assigned to registers

Length and starting address of the object code

Length and starting address of character con­
stants, literals, and format segments

Length and starting address of argument vectors

Length and starting address of constants,
externals, descriptors, variables (not in
common), namelist groups, and character scalars
not assigned to registers

Quantity of temporary storage

Common blocks

Entry points

Externals

The FORTRAN 200 register usage conforms to standard
CYBER 200 Operating System register conventions,
which are described in volume 2 of the CYBER 200
Operating System reference manual.

INDEX MAP

If you select LO=SI, a source listing followed by a
sorted compiled-module listing (index map) is
provided. The index map is an alphabetized listing
with the following information:

Module name

Number of errors

Starting page number

The I option is valid with the
options A, M, and X when the S
specified. See figure 14-8 for
example.

LO compilation
option is also

an index map

COMPILEO-MODULE LISTING

MODULE NAME

CLINIC
FILTER
FORTXD
OCEAN
RELAX
STATE
STEP
TRACER

8 MODULES COMPILED

NUMBER OF ERRORS

190 WARNING 40 FATAL
31 WARNING

NO ERRORS
5 WARNING

45 WARNING 13 FATAL
2 WARNING

40 WARNING 5 FATAL
76 WARNING 13 FATAL

Figure 14-8. Compiled-Module Listing (Index-Map> Example

STARTING PAGE NUMBER

1
17
21
23
38
45
47
56

60480200 H 14-15

EXECUTION-TIME FILE
REASSIGNMENT

You can change the file preconnections used by your
program at execution time. To do so, you can
either override the preconnection specifier list on
the PROGRAM statement or append additional specifi­
cations to the list.

NOTE

Execution-time file reassignment is only
effective for preconnections specified on
the PROGRAM statement. It cannot change
connections specified on OPEN statements.

To reassign files at execution time, you enter an
execution statement consisting of the controllee
file name (default name GO), a separator character
(blank, comma, or left parenthesis), and the new
preconnection specifier list, To completely replace
the list, prefix the new list with two asterisks
(**).

Assuming the controllee file name is GO, the
possible formats are as follows:

or

or

or

or

GO(**message)

GO **message.

GO,**message.

Entirely overrides. Preconnection speci­
fiers in the message are used to replace
the entire PROGRAM statement preconnection
specifier list.

GO(message)

GO message.

GO,message.

Concatenates. The specifications are processed
as though the message followed a specification
in the PROGRAM statement (that is, when a new
unit is given in the message, it creates a new
unit in addition to any unit in the PROGRAM
statement). If the same unit is given in the
message and previously declared in the PROGRAM
statement, then it will reconnect the unit with
the new file specified in the message. As a

14-16

result of this, the old file is no longer
connected to its unit. If you still need the
old file, the preconnection specifier should be
specified again in the message. (See page 7-2
for preconnection specifier information.)

The message is a list of declarations in the same
format as the PROGRAM statement. See section 7 for
a description of the PROGRAM statement.

Any unit given in the message but not in the PROGRAM
statement creates a new unit and is in addition to
any unit in the PROGRAM declaration.

If the same unit is given in the message and I
previously defined in the PROGRAM statement, it
will first be disconnected from the file assigned
in the PROGRAM statement declaration and then will
make a new preconnection with the file specified in
the message.

You cannot use the concatenation form to get around
syntax, file name, or parameter errors in the orig­
inal PROGRAM statement. The original PROGRAM
statement declaration string is processed before
the execution-time reassignments.

When you execute a program interactively under
DEBUG, there will be a prompt for a preconnection
specifier list. You can respond with a period for
no reassignment or with a preconnection specifier
list in any of the foregoing formats.

CONTROL OF DROP FILE SIZE
If you get an execution-time error message DROP
FILE OVERFLCM, increase the size of the drop file
and rerun the program. Increase the drop file size
with the CDF parameter of the LOAD system control
statement or with the D parameter of the SWITCH
system control statement, Increasing the drop file
size usually solves the overflow problem, but some­
times a program error (especially an infinite loop)
could be the cause.

ERROR MESSAGES
If you improperly use the options in the compiler's
control statement or if the compiler fails, it will
issue an error message, The control statement error
messages are listed in Appendix B.

60480200 J

CHARACTER SETS A

The CYBER FORTRAN 200 compiler recognizes 52
characters, The FORTRAN character set is a subset
of the ASCII 64-character set, and the ASCII
64-character set is a subset of the VSOS character
set. See table A-1.

Any of the characters in the FORTRAN character set
can appear in a FORTRAN program. Any of the
characters in the 64-character set can appear in
comments and character strings.

Table A-1 also shows the internal hexadecimal
representation and the Hollerith punch code for

TABLE A-1.

CYBER FORTRAN 200
ASCII

64-Character
Character Set Set

t:i. t:i.
!
II

It
$
%

& &
, ,

((
))

* *
+ +

• ,
- -.
I I
0 0
l 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
: :
; ;

< <
= =
> >

?
@

A A
B B
c c
D D

E E
F F
G G

60480200 H

each character. Each hexadecimal digit in the
internal hexadecimal representation corresponds to
4 bits, The Hollerith punch code indicates the
rows that are punched in a computer card for each
character.

Some characters do not appear on all keypunches and
terminals. If a particular character is not
represented on a keypunch or terminal, a character
that appears on the keypunch or terminal that has
the same internal hexadecimal representation can be
substituted,

CHARACTER SETS

VSOS Character Set Hex Decimal

t:i. space 20 032
! exclamation point 21 033
11 quote 22 034
II pound sign 23 035
$ dollar sign 24 036
% percent sign 25 037
& ampersand 26 038
' apostrophe 27 039
(left parenthesis 28 040
) right parenthesis 29 041
* asterisk 2A 042
+ plus 2B 043 . comma 2C 044
- minus 2D 045
, period 2E 046
I slash 2F 047
0 30 048
1 31 049
2 32 050
3 33 051
4 34 052
5 35 053
6 36 054
7 37 055
8 38 056
9 39 057
: colon 3A 058
; semicolon 3B 059
< less than 3C 060
= equals sign 3D 061
> greater than 3E 062
? question mark 3F 063
@ commercial at 40 064
A 41 065
B 42 06b
c 43 067
D 44 068
E 45 069
F 46 070
G 47 071

A-1 e

TABLE A-1. CHARACTER SETS (Contd)

CYBER FORTRAN 200 ASCII
64-Character VSOS Character Set Hex Decimal

Character Set Set

H H H 48 072
I I I 49 073
J J J 4A 074
K K K 4B 07S
L L L 4C 076
M M M 4D 077
N N N 4E 078
0 0 0 4F 079
p p p so 080
Q Q Q Sl 081
R R R Sl 082
s s s S3 083
T T T S4 084
u u u SS 08S
v v v S6 086
w w w S7 087
x x x S8 088
y y y S9 089
z z z SA 090
[[[left bracket SB 091

\ \ reverse slash SC 092
I I I right bracket SD 093

A A circumflex SE 094
underscore SF 09S - -;:- reverse apostrophe 60 096

a 61 097
b 62 098
c 63 099
d 64 100
e 6S 10 l
f 66 102
g 67 103
h 68 104
i 69 lOS
j 6A 106
k 6B 107

1 6C 108
m 6D 109
n 6E 110
0 6F 111
p 70 112
q 71 113
r 72 114
s 73 llS
t 74 116
u 7S 117
v 76 118
w 77 119
x 78 120
y 79 121
z 7A 122
{ left brace 7B 123
I vertical bar 7C 124
} right brace 7D 12S
- tilde 7E 126

e A-2 60480200 H

DIAGNOSTICS B

This appendix describes the five groups of diagnos­
tic messages:

Compiler failure messages

Compilation error messages

Execution-time error messages

Vectorizer messages

Control statement error messages

COMPILER FAILURE AND
COMPILATION ERRORS

When the compiler fails or detects errors, it issues
a message. The compiler failure and compilation
error messages are listed in table B-1.

COMPILER FAILURE

When the compiler fails, it generates error mes­
sages.

The compiler error type is:

A(abort)

The compiler failed and compilation was
terminated. The return code is 8 (RC=S).

COMPILATION ERRORS

When the compiler detects errors in the source pro­
gram, it issues one or more messages.

Lowercase letters such as param, name, and window
appear in some of the messages. These lowercase
letters indicate the position where a part of the
source code is inserted with the error message.
The term param means a parameter is inserted, name
means a name ls inserted, and window means a source
1 ine segment is inserted. This provides you with
more specific information on the nature of the error
than the message alone provides.

Some of the error numbers under 900 have no cur­
-rently assigned messages. These are reserved by
CDC for future use. The range from 900 to 999 is
reserved for individual site use.

The compilation error types are:

N(non-ANSI)

The statement with one or more errors did
not comply with ANSI Standard X3.9-1978.
Whether the error(s) are ignored, are
warning, or are fatal depends on the state
of the ANSI option.

60480200 A

W(warning)

The statement containing one or more errors
compiled to the end, but part of the state­
ment might not have been processed. The
return code is 4 (RC=4).

F(fatal)

The statement containing one or more errors
did not compile and did not generate object
code. The return code is 8 (RC=S).

RETURN CODES

With a batch job, you can choose whether to initiate
error exit processing or to allow the job processing
to continue. You have control through the Termina­
tion Value (TV) control statement and the error
Return Code value from the compiler.

All return codes that are less than or equal to the
termination value you specify in the TV control
statement are ignored, and the job processing con­
tinues. All return codes that are greater than the
termination value you specify in the TV control
statement initiate error processing as specified by
the EXIT control statement. The Termination Value
control statement is discussed in the appropriate
operating system reference manual.

EXECUTION-TIME ERRORS
When errors are detected during execution of a
previously compiled program, the system issues one
or more messages. The execution-time error messages
are listed in table B-2.

Some of the error numbers under 900 have no cur­
rently assigned messages. These are reserved by
CDC for future use. The range from 900 to 999 is
reserved for individual site use.

The System
change the
errors.

Error Processor (SEP) can be used to
attributes of certain execution-time

The execution-time error types are:

W(warning)

The system sends a warning message to the
user via some peripheral device and con­
tinues execution until the warning limit is
reached. The return code for the warning
limit is 4 (RC=4). Errors with a warning
classification can be altered by SEP to be
fatal.

F(fatal)

Execution is terminated abnormally. The
return code is 8 (RC=S). Errors with a
fatal classification can be altered by SEP
to be warnings.

B-1

C(catastrophic)

Execution is terminated abnormally. The
return code is 8 (RC=8). Catastrophic
errors cannot be altered by SEP to be fatal
or warnings. You cannot control the condi­
tion except for replacement of the standard
message.

Many execution-time error
information appended. The
time error message is:

messages have extra
form of an execution-

ERROR xxx IN subr AT LINE nn message

where xxx is the error number, subr is the name of
the error-containing routine, nn is the line num­
ber of the error-containing statement, and message
is the execution-time error message as it appears
in table B-2.

This form indicates the error location in the pro­
gram. Since the error is detected in an execution­
time routine, the identified statement should be an
I/O statement or a reference to a FORTRAN 200
supplied function such as SIN or COS.

The form of the error message for data flag branch
errors is:

ERROR xxx: EXECUTION INTERRUPTED
IN subr AT LINE nnn message

where xxx,
meanings as
message.

subr, nn, and message have the same
in the foregoing execution-time error

Data flag branch error messages have the register l
address appended to them.

If the error occurred in your routine, the subrou­
tine should correspond to the register 1 address.
If, however, the register 1 address is in an
execution-time routine, the subroutine and 1 ine
number identify the location in your program that
generated the call to FORTRAN execution-time.

VECTORIZER MESSAGES

A vectorizer message indicates the compiler's first
impediment to vectorization. The messages are only
informative and not associated with any return code.
The messages are listed in table B-3. They are
issued when you specify the FORTRAN 200 control
statement option OPTIMIZE=V. The form of a vector­
izer message is:

LINE xxxxx LINE yyyyy message

where xxxxx is the
loop begins, yyyyy
the impediment is
vectorizer message.

source line number where the DO
is the source line number where
detected, and message is the

CONTROL STATEMENT
ERROR MESSAGES

If you improperly use the options in the
control statement or if the compiler
issues an error message. The control
error messages are 1 isted in table B-4.
three kinds of error messages:

WARNING

compiler's
fails, it
statement
There are

Message issued and compilation proceeds.

ERROR

Message issued and compilation terminates.

COMPILER FAILURE

Message issued and compilation terminates.

TABLE B-1. COMPILER ERROR MESSAGES

Error Error
Message Significance Action

Number Type

93 F SYNTAX ERROR IN SAVE (self explanatory) Correct error; recompile.
STATEMENT

94 w REDUNDANT SAVE STATEMENT There are two SAVE state- Correct error; recompile.
ments. They have been
used in such a way as to
save the same variable.

95 w REDUNDANT APPEARANCE OF A variable may appear in a Correct error; recompile.
name IN SAVE STATEMENT SAVE statement only once.

96 A COMPILER FAILURE - VARIABLE The storage class table Follow site-defined
EQUIVALENCED TO COMMON BLOCK became invalid during the procedure.
THAT HAS NO ELEMENT allocation phase.

97 A COMPILER FAILURE - ERROR The compiler-built error Follow site-defined
MESSAGE num TOO LONG message exceeded 117 procedure.

characters.

B-2 60480200 A

Error
Number

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

60480200 A

Error
Type

A

A

A

A

F

F

F

F

F

F

F

F

F

F

F

F

w

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

COMPILER FAILURE - I/O STACK
FORMED INCORRECTLY

COMPILER FAILURE - INVALID
DESCRIPTOR ENCOUNTERED IN
ALLOCATION PHASE(2)

COMPILER FAILURE - TABLE AREA
OVERFLOW

COMPILER FAILURE

INVALID SUBPROGRAM NAME

FUNCTION CANNOT BE CALLED
AS A SUBROUTINE

EXPECTED COMMON BLOCK NAME IN
VICINITY OF ((((window>>>>

EXPECTED"," IN VICINITY OF
««window»»

MISSING OPERATOR OR DELIMITER
IN VICINITY OF ((((window>>>>

INVALID OPERAND IN VICINITY
OF <<<<window>>>>

INVALID OR MISSING DELIMITER
IN VICINITY OF <<<<window>>>>

INVALID USE OF ARRAY name

MISSING LEFT PARENTHESIS

INVALID USE OF HEXADECIMAL
CONSTANT

RECURSIVE SUBPROGRAM
REFERENCE

INVALID ARGUMENT DELIMITER
IN VICINITY OF ((((window>>>>

SAVE STATEMENT MUST PRECEDE
ALL EXECUTABLE STATEMENTS

EXPECTED "/" IN VICINITY OF
<«<window»»

Significance

The input/output list stack
that was built by the
IOLIST processor became
invalid during the parse
phase.

The descriptor table became
invalid.

One of the compiler table
areas reached its maximum
size. Possibly the program
was too big to be compiled.

Compiler detected an
internal inconsistency.

The subprogram is compiled
as a main program.

A function is called with a
CALL statement.

A common block name is
expected.

A comma is expected between
items in a SAVE statement.

An operator or delimlter is
required.

An expression contains an
invalid operand.

A delimiter is required.

An array name appears with­
out a subscript.

A left parenthesis is
required.

A hexadecimal constant is
used improperly.

A subprogram calls itself.

Arguments must be delimited
by commas.

A SAVE statement incor­
rectly follows executable
statements.

A slash must precede and
follow any common block
name in a SAVE statement.

Action

Follow site-defined
procedure.

Follow site-defined
procedure.

Follow site-defined
procedure.

Follow site-defined
procedure.

Correct error; recompile.

Replace the CALL state­
ment with a statement
that contains a function
reference; recompile.

Correct error; recompile.

Correct error; recompile.

Supply missing operator
or dellmiter; recompile.

Correct error; recompile.

Supply missing delimiter
or correct error in
existing delimiter;
recompile.

Supply subscript for
array reference;
recompile.

Supply missing left
parenthesis; recompile.

Correct error; recompile.

Remove recursive sub­
program references from
the program; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

B-3

Error
Number

116

117

118

120

121

122

123

124

125

126

127

128

129

130

131

132

B-4

Error
Type

F

w

F

w

w

F

w

F

F

w

F

F

F

F

F

w

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

EXPECTED COMMON BLOCK NAME
IN VICINITY OF <<<<window))))

STATEMENT FUNCTION name NOT
ALLOWED IN SAVE STATEMENT

INVALID OPERATOR IN VICINITY
OF <<<<window))))

EXTERNAL name NOT ALLOWED
IN SAVE STATEMENT

INTRINSIC FUNCTION name NOT
ALLOWED IN SAVE STATEMENT

INVALID TYPE MIXING IN
VICINITY OF <<<<window))))

NAMELIST GROUP name NOT
ALLOWED IN SAVE STATEMENT

INVALID TYPE USAGE IN A
RELATIONAL OR ARITHMETIC
EXPRESSION IN VICINITY OF
««window»»

MORE THAN 19 CONTINUATION
LINES

THIS STATEMENT CANNOT BE
EXECUTED

INDEFINITE RESULT, PRODUCT
TOO LARGE

DIVIDE FAULT IN CONSTANT
ARITHMETIC

EXPONENT OVERFLOW IN CONSTANT
ARITHMETIC

INVALID DELIMITER IN VECTOR
REFERENCE IN VICINITY OF
««window»»

SUBSCRIPT FOR NON-DIMENSIONED
ARRAY, OR STMT FUNCTION DEF
DOES NOT PRECEDE ALL
EXECUTABLE STATEMENTS

ENTRY POINT name NOT ALLOWED
IN SAVE STATEMENT

Significance

A common block name is
expected in the SAVE
statement.

SAVE applies only to local
variables or COMMON blocks.

The operator cannot be used
in the expression.

SAVE applies only to local
variables or COMMON blocks.

SAVE applies only to local
variables or COMMON blocks.

The data types of two
entities that appear in the
statement are incompatible.

SAVE applies only to local
variables or COMMON blocks.

(self explanatory)

All continuation lines
after line 19 are not
compiled.

A previous statement does
not allow execution of this
statement.

The multiplication of two
constants produces a result
that is too large.

The division of one con­
stant by another produces
a divide fault.

Constant arithmetic
produces exponent overflow.

A vector reference has an
invalid delimiter: e.g. a
colon where a semicolon is
required.

The array that appears on
the left side of an assign­
ment is not dimensioned, or
this is a statement func­
tion definition that does
not precede all executable
statements.

SAVE applies only to local
variables or COMMON blocks.

Action

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Restructure the statement
so that no more than 19
continuation lines are
used; recompile.

Check for an error in
logic. Check for a
missing label on the
current statement.

Verify that an indefinite
result does not affect
the logic of the program.

Verify that the divide
fault does not affect the
logic of the program.

Verify that exponent
overflow does not affect
the logic of the program.

Correct error; recompile.

Correct error; recompile.

Correct error; recomp.ile.

60480200 A

Error Error
Number Type

133 w

134 w

135 F

136 F

137 F

138 F

139 F

140 w

141 w

142 w

143 w

144 F

145 F

146 F

147 F

149 F

150 F

60480200 A

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

PROGRAM NAME NOT ALLOWED IN
SAVE STATEMENT

BLOCK DATA NAME NOT ALLOWED
IN SAVE STATEMENT

INVALID LABEL IN VICINITY OF
««window»»

DESCRIPTOR TYPE IS NOT
INTEGER, HALF PRECISION,
REAL, BIT, OR COMPLEX

INVALID DELIMITER FOR HEX OR
BIT CONSTANT IN VICINITY OF
««window>»>

DOUBLY DEFINED LABEL

NO SOURCE PROGRAM

SYMBOLIC CONSTANT name NOT
ALLOWED IN SAVE STATEMENT

DUMMY ARGUMENT name NOT
ALLOWED IN SAVE STATEMENT

COMMON BLOCK ELEMENT name NOT
ALLOWED IN SAVE STATEMENT

SAVED VARIABLE name CANNOT
APPEAR IN COMMON STATEMENT

SUBSCRIPT MUST BE INTEGER
CONSTANT

SPECIFICATION STATEMENTS
MUST PRECEDE ALL EXECUTABLE
STATEMENTS

INVALID VARIABLE name IN DATA
STATEMENT

SYNTAX ERROR IN DATA LIST
IN VICINITY OF ((((window))))

TOO MANY SUBSCRIPTS

SYNTAX ERROR IN HEXADECIMAL
OR BIT CONSTANT IN VICINITY
OF <<<<window>>>>

Significance

SAVE applies only to local
variables or COMMON blocks.

SAVE applies only to local
variables or COMMON blocks.

A label must be numeric and
between 1 and 99999.

A descriptor must be of one
of these types.

Hexadecimal and bit con­
stants must be delimited by
apostrophes.

The same label appears on
more than one statement in
a program.

The input file specified in
the FORTRAN control state­
ment does not exist or is
empty.

SAVE applies only to local
variables or COMMON blocks.

SAVE applies only to local
variables or COMMON blocks.

SAVE applies only to local
variables or COMMON blocks.

SAVE applies only to local
variables or COMMON blocks.

The subscript is not an
integer constant.

A specification statement
appears after an executable
statement.

A symbol that appears in a
DATA statement cannot be

initialized.

An error appears in the
DATA statement.

The array is declared to
have fewer dimensions than
there are subscripts.

An error appears in a hexa­
decimal or bit constant.

Action

Correct error; recompile.

Correct error; recompile.

Supply numeric label;
recompile.

Change the type of the
descriptor; recompile.

Change delimiters to
apostrophes; recompile.

Change one of the
occurrences of the label.
Also, check all refer­
ences to the label that
is changed in order to
maintain correct logic;
recompile.

Correct error in the
INPUT parameter of the
FORTRAN control state­
ment; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Change the subscript to
integer constant; recom­
pile.

Move all specification
statements in front of
all executable state­
ments; recompile.

Remove the symbol from
the DATA statement;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

B-5

Error
Number

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

B-6

Error
Type

F

F

F

F

F

F

F

F

F

F

F

w

F

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

INVALID DATA ITEM IN VICINITY
OF <<<<window))))

INVALID VECTOR REFERENCE TYPE
IN DATA STATEMENT IN VICINITY
OF <<<<window))))

CHARACTER, HEX OR BIT
CONSTANT TOO LARGE

INVALID USE OF VECTOR
REFERENCE IN DATA STATEMENT

TOO MANY DATA CONSTANTS

SYNTAX ERROR IN VICINITY OF
((((window»»

SPECIFICATION STATEMENTS MUST
PRECEDE STATEMENT FUNCTION
DEFINITIONS

INVALID ELEMENT IN
SPECIFICATION STATEMENT IN
VICINITY OF <<<<window))))

INVALID OPERATOR IN
SPECIFICATION STATEMENT IN
VICINITY OF ((((window))))

SYNTAX ERROR IN LENGTH
SPECIFICATION OF CHARACTER
VARIABLE(S) IN VICINITY OF
((((window»»

SAVED VARIABLE name CANNOT
APPEAR IN EXTERNAL STATEMENT

VARIABLE name TYPED MORE
THAN ONCE

LENGTH SPECIFICATION FORMAT
ERROR IN VICINITY OF
((((window»»

CHARACTER LENGTH MUST BE
GREATER THAN 0 AND LESS
THAN 65536

SAVED VARIABLE name CANNOT
APPEAR IN INTRINSIC STATEMENT

INVALID STATEMENT ON LOGICAL
IF

Significance

Incorrect data item in a
DATA statement.

Incorrect type for a vector
reference in the variable
list of a DATA statement

Constant is too large to be
represented.

Vector reference used
improperly in a DATA
statement.

There are more values in a
DATA statement than there
are variables. The extra
values are not used.

A language construct is
written improperly.

A specification statement
appears after a statement
function definition.

Invalid element in TYPE
statement.

Operator used incorrectly
in TYPE statement or
DIMENSION statement.

The length specification
that appears in a CHARACTER
statement is incorrect.

SAVE applies only to local
variables or COMMON blocks.

The first type is used.
The additional type speci­
fications are ignored.

The length specification
that appears in a CHARACTER
statement is incorrect.

The length specification
for a character variable
is zero, negative, or too
large.

SAVE applies only to local
variables or COMMON blocks.

The consequent statement
on a logical IF is not
allowed.

Action

Correct error; recompile.

Correct error; recompile.

Reduce size of constant;
recompile.

Correct error; recompile.

Verify that the proper
number of variables and
constants are specified.

Correct error; recompile.

Move all specification
statements in front of
all statement function
definitions; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Verify that the first
type is intended. Check
user-defined names to
find out if two differ­
ent variables are
intended.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

60480200 A

Error
Number

167

168

169

170

171

172

174

175

176

177

178

179

180

181

182

183

184

185

60480200 A

Error
Type

w

F

F

F

N

w

F

F

F

F

F

F

F

F

F

F

N

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

NO LABELED COMMON IN BLOCK
DATA SUBPROGRAM

INVALID STATEMENT IN BLOCK
DATA SUBPROGRAM

AN ASSUMED SIZE BOUND IS
NOT PERMITTED IN AN ARRAY
ASSIGNMENT STATEMENT

INVALID FIELD SPECIFICATION
IN FORMAT STATEMENT IN THE
VICINITY OF ((((window>>>>

ENCODE AND DECODE ARE NOT
PART OF STANDARD FORTRAN

FUNCTION NAME IS NOT ASSIGNED
A VALUE

ENTRY IN RANGE OF DO OR IN
BLOCK IF

"()" IS REQUIRED IF FUNCTION
HAS NO ARAGUMENTS

INVALID DUMMY ARGUMENT IN
VICINITY OF ((((window>>>>

MISSING NAMELIST NAME

INVALID NAMELIST NAME

MISSING SLASH AFTER NAMELIST
NAME

LIST ITEM MUST BE A VARIABLE

INVALID OPERATOR IN VICINITY
OF <<<<window>>>>

INVALID OR MISSING VARIABLE
IN VICINITY OF <<<<window>>>>

SYNTAX ERROR IN LABEL STRING

HOLLERITH CONSTANTS ARE NOT
DEFINED IN ANSI FORTRAN

INVALID LABEL REFERENCE IN
VICINITY OF <<<<window>>>>

Significance

No labeled common blocks
are declared in the BLOCK
DATA subprogram.

This statement cannot
appear in a BLOCK DATA
subprogram.

(self explanatory)

This FORMAT statement
contains a field that is
not currently defined.

This is a non-ANSI feature.

A function returns a value
through its name. The name
must be assigned a value
during execution of the
function.

An ENTRY statement appears
in the range of a DO loop
or in a block IF.

The subprogram is compiled
as a main program.

An argument that appears in
a FUNCTION or SUBROUTINE
statement is invalid.

A NAMELIST statement does
not contain a namelist
name.

A namelist name is invalid.

A namelist name must be
enclosed in slashes.

(self explanatory)

(self explanatory)

Expected variable reference
is missing or malformed.

Label string for computed
go to contains syntax error

Character constants are the
only means of representing
character data in ANSI
FORTRAN

(self explanatory)

Action

Verify that all state­
ments appear in the
BLOCK DATA subprogram
as intended.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Use internal I/O instead.

Check the function for a
missing assignment
statement.

Remove the ENTRY state­
ment from the range of
the DO loop or block IF;
recompile.

Supply the argument list
for the FUNCTION state­
ment; recompile.

Correct error; recompile.

Supply the namelist name
enclosed in slashes;
recompile.

Correct error; recompile.

Supply the missing slash
after the namelist name;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompil''•

Error
Number

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

B-8

Error
Type

F

F

F

F

F

N

F

F

F

F

F

F

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

MORE THAN 253 COMMON BLOCK
NAMES

ATTEMPTED TO RE-ORDER COMMON

VARIABLE name APPEARS IN
COMMON MORE THAN ONCE

ENTRY MUST BE IN A SUBROUTINE
OR FUNCTION

DUPLICATION OF DUMMY ARGUMENT
name

REAL, HALF PRECISION, OR
DOUBLE PRECISION SUBSCRIPT
USAGE IS NON-ANSI

INCORRECT FORMATION OF I/O
STATEMENT

AN EXTERNAL I/O UNIT MUST
BE OF TYPE INTEGER IN param
STATEMENT

EXPRESSION ON A COMPUTED GOTO
MUST BE TYPE INTEGER

INVALID OPTION IN I/O
STATEMENT

REFERENCED UNDEFINED FORMAT

RECORD LENGTH MUST BE INTEGER
CONSTANT OR INTEGER VARIABLE

FORMAT SPECIFICATION MUST
BE A FORMAT LABEL, ARRAY
NAME, OR INTEGER VARIABLE
ASSIGNED TO A FORMAT LABEL

INVALID ELEMENT IN I/O LIST
IN VICINITY OF <<<<window>>>>

SYNTAX ERROR IN I/O LIST
IN THE VICINITY OF
<«<window»»

Significance

Too many common blocks are
used in the program.

COMMON and EQUIVALENCE
statements conflict.

(self explanatory)

An ENTRY statement appears
in a main program or a
BLOCK DATA subprogram.

The same name appears
more than once in the
dummy argument list of a
FUNCTION, SUBROUTINE,
ENTRY statement.

(self explanatory)

I/O statement control
information list is
incorrect.

or

Units can be specified as
integers only.

The expression's type was
not integer.

The option specified cannot
be used with the input/
output statement.

The format specified in an
input/output statement is
not defined in the program.

A non-integer record length
is specified in an input/
output statement.

The format specification in
an input/output statement
is not valid.

Invalid element: e.g.,
an expression in an input
list.

(self explanatory)

Action

Reduce the number of
common blocks used;
recompile.

Correct error; recompile.

Eliminate all but one
occurrence of the
variable from the COMMON
statement; recompile.

Remove the ENTRY state­
ment; recompile.

Eliminate all but one
occurrence of the dummy
argument from the argu­
ment list of the state­
ment; recompile.

Place an INT function
around the non-integer
expression or otherwise
repair the statement;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Eliminate or change the
option; recompile.

Check for a missing
FORMAT statement, or
check for an error in the
format number specified
in the input/output
statement.

Change the record length
specification to an inte­
ger constant or an inte­
ger variable; recompile.

Supply a legal format
specification; recompile.

Correct error; recompile.

Correct error; recompile.

60480200 A

Error
Number

202

203

204

205

206

207

208

209

210

211

212

213

215

216

217

218

60480200 E

Error
Type

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

INVALID FORMATION OF COMMON
STATEMENT

COMMON BLOCK NAME IS NOT
SYMBOLIC

DUPLICATE SYMBOLIC NAME name
IN COMMON STATEMENT

DATA CANNOT BE PRESET IN
BLANK COMMON

DUMMY ARGUMENT CANNOT APPEAR
IN COMMON

INTRINSIC FUNCTION name WAS
GIVEN A NON-CONFIRMING
TYPE -- TYPING IGNORED

A VARIABLE IN A DIMENSION
STATEMENT MUST BE DIMENSIONED

MISSING COMMA IN VICINITY
OF <<<<window))))

DIMENSIONING FORMAT ERROR
IN VICINITY OF <<<<window))))

ERROR IN DIMENSIONING name
- ONLY LAST UPPER DIMENSION
BOUND CAN BE "*"

DIMENSION BOUND VARIABLE
name NOT IN COMMON, OR IN
ARGUMENT LIST WITH ARRAY

ERROR IN DIMENSIONING name
- ROWWISE, SO ONLY FIRST
UPPER DIMENSION BOUND CAN
BE "*"

MORE THAN 7 DIMENSIONS
SPECIFIED FOR ARRAY name

EXPLICIT TYPE OF name
CONFLICTS WITH PREVIOUS
USAGE

INVALID OR MISSING REFERENCE
IN DO STATEMENT

LABEL REFERENCE GREATER THAN
99999

Significance

Syntax error in commmon
statement.

An invalid symbol is
specified as a common block
name.

The same symbol appears
more than once in a COMMON
statement.

BLOCK DATA subprograms can
be used to initialize data
in named common blocks
only.

A dummy argument appears in
a COMMON statement.

Intrinsic function types
cannot be changed by type
specification statements.

The dimension specification
for a variable that appears
in a DIMENSION statement is
not specified.

A comma is required.

(self explanatory)

For columnwise arrays, an
asterisk can be specified
for only the upper bound of
the last dimension.

The variable has no value
assigned to it.

For rowwise arrays, an
asterisk can be specified
for only the upper bound
of the first dimension.

An array can have no more
than 7 dimensions.

The type declaration state­
ment for the named variable
specifies a different type
than that implied by an
earlier data declaration
statement.

(self explanatory)

A label can have no more
than 5 digits.

Action

Correct error; recompile.

Supply a valid identifier
as the name of the common
block; recompile.

Change the symbols so
that all of the symbols
in the COMMON statement
are unique; recompile.

Remove initialized vari­
able from blank common or
use executable statements
to initialize it.

Change the name of the
dummy argument or change
the name in the COMMON
statement; recompile.

Correct error; recompile.

Add the dimension speci­
fication to the variable
name that appears in the
statement; recompile.

Supply the comma;
recompile.

Correct error; recompile.

Verify that a columnwise
array is intended and
correct error; recompile.

Correct error; recompile.

Verify that a rowwise
array is intended and
correct error; recompile.

Reduce the number of
dimensions; recompile.

Move the explicit type
statement so that it is
the first reference to
the variable.

Correct error; recompile.

Shorten the label to 5
digits. Correct all
references to the label
appropriately; recompile.

B-9

I

Error
Number

219

220

221

222

224

225

226

227

228

229

230

231

232

233

B-10

Error
Type

F

N

F

F

F

F

F

F

F

F

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

INVALID PARAMETER IN DO
STATEMENT

ANSI STANDARD PROHIBITS
MIXING CHARACTER AND NON­
CHARACTER VARIABLE IN
COMMON

DO LOOP NEVER TERMINATED

A DO LOOP MAY NOT TERMINATE
ON THIS STATEMENT

INVALID COMPONENT BEING
EQUIVALENCED

INVALID DELIMITER SEPARATING
EQUIVALENCE GROUPS

ARRAY ELEMENT MUST HAVE
AT LEAST ONE SUBSCRIPT

ONLY SYMBOLIC NAMES CAN
APPEAR IN EXTERNAL
STATEMENTS

EXTERNAL STATEMENT DID NOT
PRECEDE REFERENCE OR VARIABLE
name IS WRONG TYPE

INVALID USE OF NAME IN
EXTERNAL STATEMENT

INVALID EXPRESSION IN IF
STATEMENT

COMMA IS ONLY OPERATOR
ALLOWED BETWEEN LABELS

SUBSCRIPT EXPRESSION NOT
INTEGER, REAL, HALF
PRECISION, OR DOUBLE
PRECISION

UNIT MUST BE SPECIFIED IN
AN OPEN STATEMENT

Significance

The initial terminal or
incrementation parameter
in the DO statement is
invalid.

The ANSI FORTRAN standard
requires that a common
block contain only char­
acter or noncharacter
variables.

An END statement appears in
the range of a DO loop.

This statement cannot be
the last statement in a DO
loop.

The argument of the EQUIVA­
LENCE statement is invalid.

Equivalence groups must be
separated by commas.

An array name appears that
does not have a subscript.

Something other than a sym­
bolic name appears in an
EXTERNAL statement.

(self explanatory)

(self explanatory)

An arithmetic IF statement
must have an arithmetic or
logical expression.

An operator other than a
comma was found between
labels.

A subscript expression can
be integer, real, half
precision, or double­
precision.

The UNIT specifier was
omitted from this OPEN
statement; there is no
default unit for the OPEN
statement.

Action

Correct error; recompile.

To maintain conformance
with the ANSI standard,
split the common block
into two blocks, one for
character data and the
other for noncharacter
data.

Supply the last statement
of the DO loop if it is
missing, or move the END
statement out of the DO
loop; recompile.

Add a CONTINUE statement
after this statement.
Move the label of this
statement to the label
field of the CONTINUE
statement; recompile.

Correct error; recompile.

Add commas between
equivalence groups;
recompile.

Supply the subscript;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Change the operator to a
comma; recompile.

Change the type of
expression in the sub­
script; recompile.

Add a UNIT specifier to
the OPEN statement.

60480200 c

Error
Number

234

235

236

238

239

240

241

242

243

244

245

246

247

60480200 J

Error
Type

F

F

w

w

w

N

F

F

F

F

F

F

w

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

ITEMS IN COMMON MUST BE
ARRAYS OR Sil1PLE VARIABLES

COMPUTED GO TO EXPRESSION
MISSING IN VICINITY OF
<«<window»»

UNREFERENCED FORMAT

UNREFERENCED NAMELIST

CONFLICTING INITIALIZATION(S)
OF name

FORMAT SPECIFIER IS NON-ANSI

BUFFER MUST BE VARIABLE OR
ARRAY OR SUBSCRIPTED VARIABLE

EQUIVALENCE RELATION ERROR
BETWEEN GROUPS

NON-REDEFINABLE VARIABLE IN
INPUT LIST

ARRAY name REFERENCED WITH
TOO MANY SUBSCRIPTS

CONSTANTS MAY BE TOO LARGE

E~IVALENCE HAS ATTEMPTED TO
RE-ORIGIN COMMON

MISSING SUBSCRIPT(S) FOR
ARRAY name, IDWER BOUND(S)
SUBSTITUTED

Significance

Something other than an
array or simple variable
appears in a common block.

A computed GO TO statement
expected an integer
expression.

A FORMAT statement appears
in a program, but is not
referenced in an input/
output statement.

A NAMELIST statement
appears in the program, but
it is not referenced in an
input/output statement.

A variable, array element,
or substring can be ini­
tialized only once within
a program unit.

This format specifier does
not conform to Standard
FORTRAN.

Bad buffer specification in
buffer input/output state­
ment.

Equivalence declaration
conflicts with other
declarations.

The input list specifies a
variable whose value cannot
be altered, such as a DO
loop control variable.

'nte number of subscripts
specified in an array
reference is not the same
as the number of dimensions
declared in the array
declarator.

Conversion routine detects
possible problem.

The EQUIVALENCE statement
is incompatible with a
COMMON statement. A common
block cannot be extended at
its beginning.

An array reference has
missing subscript expres­
sions; the lower bound of
the missing subscript is
used.

Action

Remove the erroneous
element from the CCMMON
statement; recompile.

Correct error; recompile.

Check the format refer­
ences in all input/output
statements to find out if
the proper formats are
specified.

Check the namelist refer­
ences in all input/output
statements to find out if
the proper namelists are
specified.

'nte most recently encoun­
tered initialization is
used. To eliminate the
warning message, remove
the redundant initializa­
tion.

Use a form found in the
FORTRAN 77 Standard;
recompile.

Correct error; recompile.

Correct error; recompile.

Remove the non­
redefinable variable
from the input list.

Check the array declar­
ator and correct the
array reference appro­
priately; recompile.

Correct error; recompile.

Correct the EQUIVALENCE
statement so that it does
not extend the common
block at its beginning;
recompile.

Verify that the lower
bound is intended.

B-11

I

Error
Number

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

B-12

Error
Type

N

w

w

w

w

w

F

F

F

F

F

F

F

F

F

TABLE B-1. CCMPILER ERROR MESSAGES (Contd)

Message

HALF-PRECISION DATA TYPE IS
NON-ANSI

RETURN STATEMENT IGNORED IN
BLOCK DATA SUBPROGRAM

RETURN STATEMENT REPLACED
BY STOP STATEMENT IN MAIN
PROGRAM

INVALID PARAMETER IN RETURN
STATEMENT

TYPE OF RETURN PARAMETER
MUST BE INTEGER

INVALID VALUE FOR RETURN
STATEMENT

SYNTAX ERROR ON LEFT SIDE OF
ASSIGNMENT STATEMENT IN
VICINITY OF <<<<window))))

NON-REDEFINABLE VARIABLE ON
LEFT SIDE OF ASSIGNMENT
STATEMENT

INVALID FORMAT SPECIFIER

FORMAT STATEMENT IN BLOCK
DATA SUBPROGRAM

END STATEMENT MUST NOT BE
CONTINUED

ILLEGAL STATEMENT IN Q8LINKV
SEQUENCE

CANNOT ASSIGN TYPELESS
RESULT TO HALF PRECISION,
DOUBLE PRECISION, OR C<MPLEX
VARIABLE < ••• >

ASSIGN MUST BE FOLLOWED
EITHER BY A LABEL OR A
DESCRIPTOR VARIABLE

ASSIGN VARIABLE MUST BE
SIMPLE INTEGER VARIABLE

Significance

The half-precision data
type is not defined in the
ANSI FORTRAN standard.

A BLOCK DATA subprogram
does not permit a RETURN
statement. The RETURN
statement is ignored.

A main program requires a
STOP statement rather than
a RETURN statement. The
RETURN statement is assumed
to be a STOP statement.

The parameter in the RETURN
statement is ignored.

The parameter in a RETURN
statement must be integer.
The noninteger parameter
is ignored.

Value is greater than the
number of alternate returns,
or is not positive.

An error appears to the
left of an equals sign.

The value of the variable
that appears to the left of
the equals sign cannot be
changed.

The item specified in the
field reserved for the
FORMAT specifier does not
refer to a FORMAT.

A FORMAT statement cannot
appear in a BLOCK DATA
subprogram.

The END statement only
appears once in each pro­
gram unit. It must not be
continued.

Your statement that uses
Q8LINKV is not a special
call statement.

Typeless result is 64 bits;
cannot assign to a
non-64-bit variable.

(self explanatory)

(self explanatory)

Action

To maintain conformance
with the ANSI standard,
use an ANSI standard
data type.

No action necessary.

No action necessary.

Verify that ignoring the
parameter does not affect
the logic of the program.

Verify that ignoring the
parameter does not affect
the logic of the program.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Remove the FORMAT state­
ment from the BLOCK DATA
subprogram; recompile.

Correct error; recompile.

Rewrite your statement as
a special call; recompile.

Change the type of the
variable; recompile.

Correct error; recompile.

Correct error; recompile.

60480200 J

TABLE B-1, COMPILER ERROR MESSAGES (Contd)

Error Error
Message Significance Ac.ti.on Number Type

264 F MISSING SUBSCRIPTS IN An array name appears with- Supply the subscripts;
VICINITY OF <<<<window>>>> out subscripts. recompile.

265 F MISSING LABEL(S) IN GO TO - A computed GO TO statement Supply proper number of
POSSIBLE MISUSE OF COMPUTED must specify statement statement labels;
GO TO STATEMENT IN SOURCE labels to which control can recompile.

transfer depending on the
condition.

'

I I

I
I
I
I

I
I I I

i I !

f,()480201• i\··l.'. ll:-12.21

Error
Number

268

269

270

271

273

274

275

276

277

278

279

280

281

60480200 F

Error
Type

F

F

F

F

w

F

F

F

F

N

F

w

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

LOGICAL CONSTANT CANNOT
INITIALIZE OTHER TYPES

LIST OF VARIABLES IN
THE DATA STATEMENT IS
LONGER THAN THE LIST OF
CONSTANTS.

FLOATING POINT NUMBER OUT
OF ALLOWABLE RANGE

TYPE MUST BE INTEGER
CONSTANT OR INTEGER VARIABLE

MISSING END STATEMENT

ARRAY DECLARATOR NOT A
VARIABLE IN VICINITY OF
««window»»

VARIABLE name CANNOT BE
DIMENSIONED

ATTEMPT TO RE-DIMENSION
VARIABLE name

PROGRAM STARTS WITH A
CONTINUATION CARD

USE OF AN ASSUMED SIZE
ARRAY AS AN INTERNAL UNIT
IS NON-ANSI

ADJUSTABLE ARRAY name IS NOT
A DUMMY ARGUMENT

DIMENSION BOUND EXPRESSION(S)
FOR ARRAY name CONVERTED TO
INTEGER

LOGICAL VARIABLES CAN
ONLY BE INITIALIZED WITH
.TRUE. OR .FALSE.

Significance

A logical constant can
initialize a logical
variable only.

(self explanatory)

A real constant is too
small or too large to be
represented.

A noninteger number is
used where an integer or
an integer variable
is required.

The compiler supplied an
END statement.

Array declarator in
dimension statement is
not a variable.

The variable's use in a
previous declaration con­
flicts with DIMENSION.
(e.g., name appears both in
an EXTERNAL statement and a
DIMENSION statement).

The variable is already
dimensioned.

The first statement of a
program has a nonzero,
nonblank character in
column 6.

The ANSI FORTRAN standard
does not support internal
file I/O to or from an
array of unknown length
(*).

The array name does not
appear in the argument
list of the FUNCTION or
SUBROUTINE statement.

The dimension bound expres­
sions were truncated to
integer.

(self explanatory)

Action

Replace the logical
constant with a constant
of the appropriate type,
or change the type speci­
fication of the variable
being initialized to
logical; recompile.

Eliminate the excessive
variables, or add more
constants to the DATA
statement; recompile.

Correct error; recompile.

Change the number to an
integer; recompile.

No action necessary.

Correct error; recompile.

Correct error; recompile.

Eliminate one of the
dimension specifications
or change the variable
name; recompile.

Supply the source state­
ments that are missing
from the beginning of the
program; recompile.

To maintain conformance
with the ANSI standard,
explicitly define the
array length.

Place the array name in
the argument list of the
FUNCTION or SUBROUTINE
statement and correct all
subprogram references
appropriately; recompile.

Verify that the intended
values for dimension
bound expressions are
used.

Correct error; recompile.

B-13

I

Error
Number

283

285

287

288

290

291

292

293

294

295

296

297

298

B-14

Error
Type

w

F

F

F

w

F

F

F

F

F

F

F

w

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

EQUIVALENCE VARIABLE
ATTEMPTED TO BE ASSIGNED TO
IMPROPER BOUNDARY

DO LOOP IS BRANCHED INTO,
BUT HAS NO EXTENDE~ RANGE

REFERENCE TO UNDEFINED LABEL

ZERO**ZERO OR NEGATIVE
POWER IS AN UNDEFINED
ARITHMETIC EXPRESSION

FORMAT NOT LABELED

INVALID TYPE FOR VECTOR
LENGTH IN VICINITY OF
<«<window»»

VECTOR LENGTH CANNOT BE A
NEGATIVE CONSTANT

TYPE ERROR IN A VECTOR
ARITHMETIC OR BIT
ASSIGNMENT STATEMENT

INVALID TYPE IN A VECTOR
EXPRESSION

VECTOR EXPRESSION ASSIGNED
TO A NON-VECTOR VARIABLE

SUBSCRIPT REFERENCE FOR
NON-DIMENSIONED ARRAY name

DESCRIPTOR NOT INITIALIZED
BY VECTOR REFERENCE

COMMON BLOCK HAS BEEN PADDED
IN ORDER TO ENSURE ALIGNMENT

Significance

An EQUIVALENCE statement
attempted to assign a
logical, integer, real,
double-precision, or com­
plex variable to a nonword
boundary, or a character
variable to a nonbyte
boundary.

Control cannot branch into
a DO loop without first
branching out of it.

A label is referenced, but
it does not appear in the
label field of any state­
ment in the program.

Raising zero to the zero
power or to a negative
power produces an undefined
result.

A FORMAT statement requires
a label in the label field.
The unlabeled FORMAT state­
ment is not used.

The length must be integer.

(self explanatory)

(self explanatory)

(self explanatory)

A vector must be on the
left side of a vector
assignment statement.

A subscript is specified
for a variable that is
not dimensioned.

(self explanatory)

Alignment of the common
block is performed by the
compiler to place a char­
acter variable on a byte
boundary or other variables
(except bit) on a word
boundary.

Action

Correct error; recompile.

Correct error; recompile.

Change the label
reference so that it
references a label that
exists in the program, or
supply the missing
label in the program;
recompile.

Correct error; recompile.

Verify that the FORMAT
statement is not ref er­
enced in the program.

Correct error; recompile,

Correct error; recompile,

Correct error; recompile.

Correct error; recompile.

Replace the variable on
the left of the vector
assignment statement with
a vector; recompile.

Use a DIMENSION statement
to dimension the vari­
able, or remove the sub­
script from the variable
reference; recompile.

Initailize the descriptor
with a vector reference.

No action necessary.

60480200 H

Error Error
Number Type

299 F

-300 F

301 F

302 N

303 F

304 F

305 w

306 F

308 F

309 F

312 F

313 F

314 F

315 F

316 F

317 F

60480200 E

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

FIRST AND LAST MUST BE
VARIABLES OR ARRAY ELEMENTS

EXTRANEOUS INFORMATION
AT END OF STATEMENT

STATEMENT CANNOT BE
IDENTIFIED

VECTOR USAGE IS NON-ANSI

DIGIT STRING EXCEEDS MAXIMUM
OF FIVE

INVALID CHARACTER
l

INVALID CONSTANT ON A PAUSE
OR STOP

INVALID CONSTANT TYPE

HOLLERITH FIELD COUNT IS
TOO LARGE

SYMBOLIC NAME HAS MORE
THAN 8 CHARACTERS

LOGICAL CONSTANT OR LOGICAL/
RELATIONAL OPERATOR IS
INCORRECT

ERROR IN HOLLERITH COUNT

REAL NUMBER CANNOT BE
FOLLOWED BY A LETTER

COMPLEX NUMBER COMPONENTS
MUST BE REAL OR INTEGER

MISSING RIGHT PARENTHESIS

AN ASSUMED SIZE ARRAY IS NOT
ALLOWED IN AN I/O LIST

Significance

Invalid specification for
first or last location in
BUFFER IN or BUFFER OUT
statement.

The compiler ignored the
extra information at the
end of the statement.

Syntax error in statement.

Explicit vector us~ge is
not permitted under the
ANSI standard.

No more than 5 digits can
appear in the digit string.

A character is used that
is not in the FORTRAN
200 character set.

The constant is ignored.

(self explanatory)

Too many characters are in
a Hollerith field. No more
than 255 characters can
appear in a Hollerith
field.

A symbolic name can consist
of no more than 8 charac­
ters.

(self explanatory)

Hollerith count does not
accurately identify the
number of elements in
Hollerith constant.

Real number is ill-formed.

A complex number can con­
sist of real or integer
components only.

A right parenthesis is
required.

An I/O list cannot include
an array reference to an
array of unknown size.

Action

Correct error; recompile.

Verify that the compiler
interpreted the statement
correctly.

Correct error; recompile.

Change vector assignment
to a DO loop assignment;
recompile.

Reduce the string to 5
digits; recompile.

Replace the character
with the appropriate
character from the
FORTRAN 200 character
set; recompile.

Verify that the constant
is not intended.

Correct error; recompile.

Reduce the Hollerith
field to no more than 255
characters; recompile.

Reduce the symbolic name
to no more than 8 charac­
ters; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Change the double­
precision components
of the complex number
to real; recompile.

Supply the right paren­
thesis; recompile.

Ensure that the size of
each array in the I/O
list has been specified.

B-15

I

Error
Number

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

B-16

Error
Type

F

F

w

F

F

F

F

F

F

F

F

F

F

F

w

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

ZERO LENGTH CHARACTER STRING

INCORRECT ARGUMENT FIELD
SYNTAX

IMPLICIT STATEMENT MUST
BE FIRST SPECIFICATION
STATEMENT

INVALID TYPE IN IMPLICIT
STATEMENT

INVALID USE OF "*"

IMPLICIT RANGE IS INCORRECT

NON-FORTRAN CHARACTER FOUND
AND IS NOT IN HOLLERITH
CHARACTER STRING

SYNTAX ERROR AFTER A
SYMBOLIC NAME IN VICINITY
OF <<<<window>>>>

INVALID CHARACTER AFTER
A ZERO IN VICINITY OF
<«<window»»

SYNTAX ERROR AFTER AN INTEGER
CONSTANT IN VICINITY OF
<«<window))))

SYNTAX ERROR FOLLOWING A
PERIOD IN VICINITY OF
««window»»

INVALID CHARACTER IN
LOGICAL CONSTANT OR LOGICAL/
RELATIONAL OPERATOR IN
VICINITY OF ((((window))))

SYNTAX ERROR AFTER A REAL
NUMBER IN VICINITY OF
<«<window»»

INVALID CHARACTER APPEARS
IN THE NUMBER PART OF THE
EXPONENT FIELD IN VICINITY
OF <<<<window>>>>

TOO MANY DIGITS IN THE
EXPONENT FIELD IN VICINITY OF
<«<window»»

Significance

The length of a character
string is specified to be
zero.

(self explanatory)

Other statements appear
before an IMPLICIT state­
ment. The IMPLICIT state­
ment is ignored.

The valid types ar~
INTEGER, HALF PRECISION,
REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, BIT, and
CHARACTER.

(self explanatory)

The characters specified in
the range of an IMPLICIT
statement must be in alpha­
betical order. A character
cannot be associated with
more than one type.

A character is used that is
not in the FORTRAN 200
character set. These char­
acters can be used only in
Hollerith strings.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

The exponent field is
truncated.

Action

Change the zero to a
positive integer;
recompile.

Correct error; recompile.

Verify that ignoring the
IMPLICIT statement does
not affect the logic of
the program.

Correct error; recompile.

Correct error; recompile.

Arrange the characters in
alphabetical order and
eliminate duplicate spec­
ifications for charac­
ters; recompile.

Replace the character
with the appropriate
character from the
FORTRAN 200 character
set; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error;. recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Verify that the trun­
cation does not affect
the logic of the program.

60480200 F

Error
Number

333

334

335

336

337

338

339

340

341

342

343

344

345

348

60480200 H

Error
Type

F

F

F

F

F

F

F

F

F

F

F

F

F

N

TABLE B-1, COMPILER ERROR MESSAGES (Contd)

Message

SYNTAX ERROR FOLLOWING A
SYMBOLIC STRING THAT WAS
FOLLOWED BY A PERIOD IN
VICINITY OF <<<window>>>

SYNTAX ERROR FOLLOWING A
LOGICAL CONSTANT IN VICINITY
OF <<<<window>>>>

SYNTAX ERROR FOLLOWING A REAL
CONSTANT IN VICINI1Y OF
««window»»

SYNTAX ERROR FOLLOWING AN "*"
IN VICINITY OF <<<<window>>>>

SYNTAX ERROR FOLLOWING A
CHARACTER STRING IN VICINITY
OF <<<<window>>>>

SYNTAX ERROR FOLLOWING A
COMPLEX CONSTANT IN VICINITY
OF <<<<window>>>>

SYNTAX ERROR IN A LABEL
REFERENCE FIELD IN VICINITY
OF <<<<window>>>>

SUBSCRIPT REFERENCE OUT OF
RANGE

DO LOOPS OR IF BLOCKS NESTED
IMPROPERLY

DO-LOOP CONTROL VARIABLE
USED IMPROPERLY

INVALID SYNTAX IN SUBARRAY
REFERENCE IN VICINITY OF
<«<window»»

IMPLIED DO STRUCTURES DO NOT
MATCH

& DESCRIPTOR NOT ALLOWED TO
EXIST ON READ STATEMENT

SYMBOLIC NAME HAS MORE THAN
6 CHARACTERS

Significance

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

Self explanatory lexical
error.

The subscript is less than
the lower bound, or greater
than the upper bound of the
array.

Nested DO loops and IF
blocks must appear entirely
within outer DO loops
and IF blocks,

The variable used as the
loop index cannot be
altered within the range
of the DO loop.

(self explanatory)

Non-conformable arrays
appear in an array assign­
ment statement.

Only an output list can
prefix a descriptor with
an ampersand to transfer
the descriptor value.

A FORTRAN 200 symbolic
name can have up to 8 char­
acters. However, to
satisfy ANSI standard X3.9,
1978, a symbolic name can
consist of no more than 6
characters.

Action

Correct error; recompile.

Correct error; recompile.

Correct error; recompile,

Correct error; recompile,

Correct error; recompile.

Correct error; recompile.

Correct error; recompile,

Verify that the reference I
is intended,

Restructure the DO loops
and IF blocks so that
the nested DO loops
are entirely within the
outer DO loops and IF
blocks; recompile.

Remove all statements
that alter the value of
the loop index from the
DO loop; recompile,

Correct error; recompile.

Correct error; recompile,

Use a DATA statement or
an ASSIGN statement to
set the descriptor value.

If the symbolic name is
to meet ANSI standards,
reduce the symbolic name
to no more than 6 char­
acters; recompile.

B-17

Error
Number

349

350

351

352

353

354

355

356

357

358

359

360

362

364

365

B-18

Error
Type

F

F

F

F

F

F

w

w

F

F

w

N

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

TYPE OF OUTPUT ARGUMENT AND
TYPE OF FUNCTION NAME DO NOT
MATCH

INVALID OUTPUT ARGUMENT IN A
FUNCTION REFERENCE

VECTOR EXPRESSION REQUIRES
MORE TEMPORARIES, CODE CANNOT
BE GENERATED

VECTOR REFERENCE DATA ITEM
USED FOR NON-DESCRIPTOR
VARIABLE ITEM

CHARACTER CONSTANT CANNOT
INITIALIZE A BIT VARIABLE

INVALID INITIALIZATION OF A
CHARACTER OR BIT VARIABLE

CHARACTER CONSTANT TOO
LONG - TRUNCATED ON THE
RHS

HEX OR BIT CONSTANT TOO
LONG - TRUNCATED ON THE LHS

BIT VARIABLES ARE NOT ALLOWED
IN BUFFER IN/OUT

INVALID DESCRIPTOR
INITIALIZATION IN VICINITY
OF <<<<window>>>>

VECTOR TYPE CHANGED TO BE
SAME AS DESCRIPTOR IT
INITIALIZES

NON-ANSI PROGRAM STATEMENT-­
NO PARAMETER ALLOWED AFTER
PROGRAM NAME

INVALID RIGHT-HAND SIDE FOR
DESCRIPTOR ASSIGN

+-*/ ARE THE ONLY PERMITTED
OPERATORS FOR COMPLEX VECTORS

ZERO ** ZERO OR NEGATIVE
IS AN UNDEFINED ARITHMETIC
EXPRESSION

Significance

(self explanatory)

(self explanatory)

Compiler limitation
exceeded.

Illegal vector reference in
constant list in DATA
statement.

DATA statement cannot have
character string as a value
for a bit variable.

A character variable may
only be initialized with
a character constant. A
bit variable may only be
initialized with a bit or
hexadecimal constant.

The character constant is
truncated on the right
side. A character constant
can contain no more than
255 characters.

The hexadecimal or bit con­
stant is truncated on the
left side. A hexadecimal
or bit constant can con­
tain no more than 255
characters.

(self explanatory)

(self explanatory)

Type conversion for vector
in DATA statement.

Declaring files or units
for input/output operations
after the program name in a
program statement is
illegal for ANSI FORTRAN.

(self explanatory)

Incorrect operator for
complex vector expression.

The exponentiation of two
zero constants produces an
indefinite result.

Action

Correct error; recompile.

Correct error; recompile.

Simplify statement";
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Verify that the trun­
cation does not affect
the logic of the program.

Verify that the trun­
cation does not affect
the logic of the program.

Correct error; recompile.
Equivalence the bit vari­
able to nonbit variables,
and perform the I/O on
the nonbit variables

Correct error; recompile.

Verify that this change
does not affect the logic
of the program.

Delete parameters follow­
ing program name; recom­
pile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

60480200 F

Error
Number

366

369

370

371

372

373

374

375

376

377

378

379

380

381

382

60480200 E

Error
Type

F

F

F

A

F

F

F

F

A

w

F

F

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

INVALID SUBSCRIPT IN IMPLIED
DO IN VICINITY OF
««window>»>

VARIABLE name APPEARS IN
DESCRIPTOR STATEMENT HORE
THAN ONCE

HISSING LABEL IN ARITHMETIC
IF

JAM TEMP TABLE OVERFLOW

EACH IMPLIED DO COMPONENT IN
A SUBARRAY REFERENCE HUST
BE TYPE INTEGER

INVALID SYMBOL IN EQUIVALENCE

TOO LITTLE DATA IN HEX OR BIT
CONSTANT

TOO HUCH DATA IN HEX OR BIT
CONSTANT

NO EVEN-ODD REGISTER PAIR
AVAILABLE

INSTRUCTION SCHEDULING
ABANDONED - REGISTER JAM

THE COMMON BLOCK NAME AND
AN ENTRY NAME ARE THE SAHE

SCALAR ARGUMENTS NOT ALLOWED
IN Q8SDOT

RELATIVE BRANCH OUT OF RANGE

A SPECIAL CALL RELATIVE
BRANCH MAY ONLY BRANCH TO A
STATEMENT LABEL

NON-ZERO OPERAND IN SPECIAL
CALL FIELD THAT HUST BE NULL
OR ZERO

Significance

(self explanatory)

(self explanatory)

An arithmetic IF must have
three labels to which con­
trol can transfer depending
on the condition. Labels
can be duplicated.

Compilation aborted.

(self explanatory)

A symbol equivalenced did
not represent an array or
simple variable.

The length of the bit con­
stant must equal the length
of the portion of the bit
array being initialized.

The length of the bit con­
stant must equal the length
of the portion of the bit
array being initialized.

The compiler-generated code
required an even-odd
register pair and none was
available.

Compiler was unable to
optimize instruction
scheduling.

The name of a common block
and the name of an entry
point are the same.

(self explanatory)

Branch too far in special
call.

Branching a constant number
of halfwords is not
permitted.

Arguments are missing or in
the wrong order.

Action

Correct error; recompile.

Correct error; recompile.

Supply the missing label
in the arithmetic IF
statement; recompile.

Recompile without
instruction scheduling.

Correct error; recompile.

Correct error; recompile.

Increase the length of
the bit constant to the
appropriate size;
recompile.

Decrease the length of
the bit constant to the
appropriate size;
recompile.

Follow site-defined
procedure.

No action necessary;
object code is gener­
ated.

Change one of the names;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

B-19 I

Error
Number

383

385

386

387

388

391

392

393

394

395

396

397

398

399

400

I B-20

Error
Type

w

F

A

w

F

F

F

F

w

F

F

F

w

w

w

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

HOLLERITH CONSTANT TOO
LONG - TRUNCATED ON RHS

SUBROUTINE CONTAINS NON­
STANDARD RETURN BUT NO * IN
ARGUMENT LI ST

COMPILER FAILURE -
IRRESOLVABLE REGISTER JAM

R CONSTANT TOO LONG -
TRUNCATED ON RHS

HOLLERITH CONSTANT NOT
PERMITTED IN SPECIAL CALL

DUMMY ARGUMENT MAY NOT
APPEAR IN EQUIVALENCE

MISSING SYMBOLIC NAME

MISSING "="

SYMBOLIC CONSTANT name
PREVIOUSLY DECLARED

SYMBOLIC CONSTANT name
PREVIOUSLY USED FOR
SOMETHING ELSE

VALUE MUST BE CONSTANT OR
CONSTANT EXPRESSION

INCOMPATIBLE TYPES FOR
SYMBOLIC NAME AND ITS VALUE

PARAMETER STATEMENTS MUST
PRECEDE DATA STATEMENTS

PARAMETER STATEMENTS MUST
PRECEDE STATEMENT FUNCTION
DEFINITIONS

PARAMETER STATEMENTS MUST
PRECEDE EXECUTABLE STATEMENTS

Significance

The Hollerith constant is
truncated on the right
side. A Hollerith constant
can have no more than 255
characters.

Asterisks must appear in
the argument list of the
SUBROUTINE statement.
Each asterisk must
correspond to a statement
label that appears in the
argument list of the sub­
routine CALL statement.

Compilation aborted.

The R constant is truncated
on the right side. An R
constant can have no more
than 255 characters.

(self explanatory)

(self explanatory)

Symbolic name missing from
PARAMETER statement.

Equals sign missing from
PARAMETER statement.

A symbolic constant is
declared more than once.
The first declaration was
used.

A symbolic constant must
not be the same as another
symbol in the program.

The value specified for a
symbolic constant is not a
constant.

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

Action

Verify that the trunca­
tion does not affect the
logic of the program.

Place asterisks in the
appropriate positions in
the argument list of the
SUBROUTINE statement.
Place statement labels in
the appropriate positions
in the CALL statements;
recompile.

Recompile without optimi­
zation.

Verify that the trunca­
tion does not affect the
logic of the program.

Remove the Hollerith
constant from the special
call; recompile.

Correct error; recompile.

Supply the symbolic name;
recompile.

Supply the equals sign;
recompile.

Verify that the first
declaration is intended.

Change the symbolic
constant so that it is
unique in the program;
recompile.

Change the value to a
constant or a constant
expression; recompile.

Correct error; recompile.

Move the PARAMETER state­
ment in front of the DATA
statement; recompile.

Move the PARAMETER state­
ment in front of the
statement function
definitions; recompile.

Move the PARAMETER
statement in front of all
executable statements;
recompile.

60480200 E

Error
Number

401

404

405

406

407

408

409

411

412

413

414

415

416

417

418

60480200 E

Error
Type

F

F

F

F

A

F

F

w

A

A

F

F

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

MISUSE OF SYMBOLIC CONSTANT
name

DUPLICATE OR CONFLICTING
IMPLICIT TYPE

ILLEGAL INSTRUCTION FOR
TARGET MACHINE

INVALID BLOCK IF NESTING

COMPILER FAILURE -- INVALID
VARIABLE TYPE DETECTED IN
I/O LIST

BRANCH INTO BLOCK IF

MISSING ENDIF

MISSING THEN IN ELSE IF
STATEMENT

COMPILER FAILURE - INVALID
REGISTER TYPE DETECTED
DURING REGISTER MAP
PROCESSING

COMPILER FAILURE -- INVALID
PHASE DETECTED DURING
REGISTER MAP PROCESSING

INAPPROPRIATE NAME FOLLOWED
BY LEFT PARENTHESIS IN
VICINITY OF <<<<window))))

MISUSE OF LEFT PARENTHESIS
IN VICINITY OF <<<<window>>>>

MISUSE OF COMMA IN VICINITY
OF <<<<window>>>>

MISUSE OF SEMICOLON IN
VICINITY OF <<<<window>>>>

MISUSE OF COLON IN
VICINITY OF <<<<window>>>>

Significance

A symbolic constant can
be used like any other
constant, except it
cannot appear in a complex
constant, in a FORMAT
statement, or in a PROGRAM
statement. Also, it
cannot appear as input
data.

A letter must not be
assigned more than one
implicit type.

The program cannot be cor­
rectly executed on the
machine for which it is
compiled.

A nested block IF must be
entirely contained in an
outer block IF.

Typeless or hex variable is
found in I/O list.

Control cannot transfer
into an if-block, else­
block, or elseif-block.

Each block IF statement
must have a corresponding
END IF statement.

The keyword THEN must
follow the keyword ELSE IF.

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(Self explanatory)

Action

Correct error; recompile.

Correct error; recompile.

Verify that the correct
target machine is speci­
fied in the FORTRAN
control statement.

Correct error; recompile.

Follow site-defined pro­
cedure.

Rewrite the statement so
that it does not transfer
control into an if-block,
else-block, or elseif­
block.

Supply the missing END IF
statement; recompile.

Supply the missing THEN.

Follow site-defined
procedure. Remove "A"
list option.

Follow site-defined
procedure. Remove "A"
list option.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

B-21

I

Error
Number

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

I B-22

Error
Type

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

MISUSE OF CONCATENATION
OPERATOR IN VICINITY OF
««window»»

MISUSE OF ".NOT." OPERATOR
IN VICINITY OF ((((window))))

MISUSE OF RELATIONAL OPERATOR
IN VICINITY OF ((((window))))

MISUSE OF LOGICAL OPERATOR
IN VICINITY OF ((((window))))

TWO RELATIONAL OPERATORS
IN A ROW IN VICINITY OF
««window»»

RIGHT PARENTHESIS FOLLOWED
BY LEFT PARENTHESIS WITH
NO INTERVENING OPERATOR
IN VICINITY OF ((((window))))

INCORRECT USE OF CHARACTER
SUBSTRING IN VICINITY OF
««window»»

MISSING OPERATOR AFTER RIGHT
PARENTHESIS IN VICINITY OF
<«<window»»

INVALID SUBSTRING NOTATION
OR SUBSCRIPT/SUBSTRING
REVERSED IN VICINITY OF
««window»»

BRANCH INTO THE RANGE OF A
WHERE

INVALID VECTOR OPERATION IN
THE RANGE OF A WHERE

MISSING ENDWHERE

WHERE EXPRESSION MUST BE OF
TYPE BIT

MISSING BLOCK WHERE

EXTRA OTHERWISE

Significance

(Self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

Syntax incorrect for sub­
string reference.

Control must not transfer
into a where-block or
otherwise-block.

A vector assignment state­
ment that appears in a
WHERE statement, where­
block, or otherwise-block
contains an invalid opera­
tor or function reference.

Each block WHERE statement
must have a corresponding
END WHERE statement.

The expression in the WHERE
statement or block WHERE
statement is not of type
bit.

An OTHERWISE statement or
an END WHERE statement
appears without a corre­
sponding block WHERE
statement.

Only one OTHERWISE state­
ment can appear in a block
WHERE structure.

Action

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Rewrite the program so
that it does not transfer
control into a where­
block or otherwise-block;
recompile.

Remove or rewrite the
statement; recompile.

Supply the missing
END WHERE statement;
recompile.

Supply an expression of
type bit; recompile.

Check for mismatched or
missing block WHERE
statement; recompile.

Rewrite block WHERE
structure using no more
than one OTHERWISE state­
ment; recompile.

60480200 E

Error
Number

434

435

436

437

438

439

440

441

442

443

444

445

446

448

449

450

60480200 E

Error
Type

F

F

F

F

w

w

F

F

F

F

N

F

F

F

w

F

IABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

INVALID STATEMENT IN THE
RANGE OF A WHERE

TERMINAL STATEMENT OF DO
WITHIN RANGE OF A WHERE

MISSING OPERAND IN VICINITY
OF <<<<window>>>>

MISUSE OF LOGICAL
EXPRESSION IN VICINITY
OF ((((window))))

SUBSCRIPT LESS THAN LOWER
DIMENSION BOUND

SUBSCRIPT GREATER THAN
UPPER DIMENSION BOUND

INTRINSIC STATEMENTS ARE
NOT ALLOWED IN BLOCK DATA
SUBPROGRAMS

INTRINSIC STATEMENTS MUST
PRECEDE ALL EXECUTABLE
STATEMENTS

EXPECTED INTRINSIC FUNCTION
NAME - FOUND name

SUBSTRING NAME name IS NOT
TYPE CHARACTER

INTRINSIC FUNCTION name IS
NON-ANSI

ILLEGAL DELIMITER IN A
SUBSTRING REFERENCE IN
VICINITY OF ((((window))))

NON-SCALAR SUBSCRIPT IN
VICINITY OF ((((window))))

ADJUSTABLE LENGTH CHARACTER
FUNCTIONS DO NOT EXIST

LENGTH EXPRESSION FOR
CHARACTER VARIABLE(S)
CONVERTED TO TYPE INTEGER

EXPRESSION IN SUBSTRING IS
NOT TYPE INTEGER

Significance

Only vector assignment
statements of type integer
or real can appear in a
where-block an otherwise­
block or the vector assign­
ment statement portion of a
WHERE statement.

If a block WHERE structure
appears in the range of a
DO statement, the entire
block WHERE structure must
appear in the range of the
DO statement.

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

Something other than an
intrinsic function name
appears in an INTRINSIC
statement.

The variable must be type
character.

The function is not in the
list of intrinsic functions
in ANSI Standard X3.9,
1978.

The correct form is
"("expression":"expres­
sion")".

A vector or descriptor must
not be used as an array
subscript.

Invalid character type
declaration.

Invalid character type
declaration.

(self explanatory)

Action

Remove or rewrite the
invalid statements;
recompile.

Move the terminal state­
ment of the DO loop so
that it is on or after
the END WHERE statement
of the block WHERE struc­
ture; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Remove INTRINSIC state­
ments from block data
subprogram; recompile.

Correct error; recompile.

Correct error or remove
name from INTRINSIC
statement; recompile.

Correct error; recompile.

Declare it EXTERNAL;
recompile.

Correct error; recompile.

Change subscript to a
scalar; recompile.

Correct error; recompile.

Verify that conversion
results in proper length
specification.

Correct error; recompile.

B-23 I

Error
Number

451

452

453

454

455

456

457

459

460

462

463

464

465

I B-24

Error
Type

F

F

w

w

F

F

F

F

F

F

F

F

A

TA?LE B-1, COMPILER ERROR MESSAGES (Contd)

Message

EXECUTABLE LABEL WAS
PREVIOUSLY REFERENCED AND/OR
DEFINED AS A FORMAT LABEL

FORMAT LABEL WAS PREVIOUSLY
REFERENCED AND/OR DEFINED
AS AN EXECUTABLE LABEL

FORMAT LABEL MIGHT HAVE BEEN
ASSIGNED TO GOTO VARIABLE
name

EXECUTABLE LABEL MIGHT HAVE
BEEN ASSIGNED TO FORMAT
VARIABLE name

FORMAT VARIABLE name WAS
NEVER ASSIGNED TO A FORMAT
LABEL

ARGUMENT OF GENERIC FUNCTION
name HAS WRONG TYPE

CONFLICTING USES OF INTRINSIC
FUNCTION NAME name

TOO FEW ARGUMENTS FOR
INTRINSIC FUNCTION name

SYNTAX ERROR IN ARGUMENT LIST

WRONG TYPE FOR ARGUMENT
OF INTRINSIC FUNCTION name

WRONG NUMBER OF ARGUMENTS
FOR INTRINSIC FUNCTION name

STATEMENT FUNCTION NAMES CAN­
NOT BE USED AS ACTUAL
ARGUMENTS

CONFLICTING USES OF INTRINSIC
FUNCTION name's SLOW ENTRY
POINT NAME

Significance

The label of an executable
statement is referenced or
defined as the label of a
nonexecutable FORMAT state­
ment.

The label of a nonexecut­
able FORMAT statement is
referenced or defined as
the label of an executable
statement.

Control must not transfer
to a nonexecutable state­
ment, such as a FORMAT
statement.

A format specification must
not reference an executable
statement.

The format variable is
referenced before a label
is assigned to it by a
statement label assign­
ment statement.

The argument of the generic
function is of the wrong
data type.

(self explanatory)

Additional arguments are
required.

The argument list does not
use correct syntax.

The argument of the
intrinsic function is
of the wrong data type.

(self explanatory)

Statement functions can be
referenced only from the
program unit in which they
are defined.

(self explanatory)

Action

Correct error; recompile.

Correct error; recompile.

Verify that the state­
ment label assignment
statement assigns the
label of an executable
statement to the assigned
GOTO variable.

Verify that the state­
ment label assignment
statement assigns the
label of a FORMAT state­
ment to the format
variable.

Provide a statement
label assignment state­
ment for the format
label; recompile.

Change the type of the
argument; recompile.

Correct error; recompile.

Provide proper number
of arguments; recompile.

Refer to the argument
list definition within
the program or, if pre­
defined, within the
documentation.

Change the type of the
argument; recompile.

Provide proper number
of arguments; recompile.

Remove statement function
name from argument list;
recompile.

Follow site-defined
procedure,

60480200 E

Error
Number

466

467

468

470

471

472

473

474

475

476

477

478

479

480

60480200 E

Error
Type

F

F

F

F

N

F

F

A

F

F

F

A

w

A

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

RESULT SPECIFICATION MISSING
FROM VECTOR INTRINSIC
FUNCTION name

SEMICOLON NOT PERMITTED
IN REFERENCE TO INTRINSIC
FUNCTION name

ASSUMED LENGTH CHARACTER
VARIABLE CANNOT BE
CONCATENATED

INTRINSIC FUNCTION name
CANNOT BE USED AS AN ACTUAL
ARGUMENT

INTRINSIC FUNCTION name
CANNOT BE USED AS AN ACTUAL
ARGUMENT IN STANDARD
CONFORMING PROGRAMS

EXTERNAL PROCEDURE name
USED AS AN ACTUAL ARGUMENT
NOT DECLARED IN AN EXTERNAL
STATEMENT

INTRINSIC FUNCTION name
USED AS AN ACTUAL
ARGUMENT NOT DECLARED IN
INTRINSIC STATEMENT

COMPILER FAILURE - name
CANNOT BE A BASIC EXTERNAL

NAMELIST GROUP NAME name
CANNOT BE USED AS AN ACTUAL
ARGUMENT

ENTRY POINT NAME name
CANNOT BE USED AS AN ACTUAL
ARGUMENT

PROGRAM NAME name CANNOT BE
USED AS AN ACTUAL ARGUMENT

COMPILER FAILURE - ATTEMPT
TO USE BLOCK DATA NAME name
AS AN ACTUAL ARGUMENT

INTRINSIC FUNCTION name WAS
TYPED -- TYPING IGNORED

COMPILER FAILURE - VALUE OF
NAME CLASS OUT OF RANGE

Significance

A vector output argument
must be the last item in
the argument list of a
vector intrinsic function
and must be preceded by a
semicolon.

(self explanatory)

A character variable whose
declared length is,* cannot
be included in a character
expression.

(self explanatory)

This function usage is not
permitted under ANSI
Standard X3.9, 1978.

In order to pass an exter­
nal function or subroutine
as an actual argument, you
must declare its name in
an EXTERNAL statement.

In order to pass an
intrinsic function as an
actual argument, you must
declare its name in an
INTRINSIC statement.

(self explanatory)

A namelist group name
cannot be passed as an
argument; instead, it must
be explicitly defined in
a NAMELIST statement in
each program unit that
uses it.

(self explanatory)

(self explanatory)

(self explanatory)

Intrinsic function types
cannot be affected by type
specification statements.

(self explanatory)

Action

Provide a vector output
argument; recompile.

Correct error; recompile.

Use a character variable
whose length is known.

Correct error; recompile.

If it is a user supplied
routine, declare it
EXTERNAL and recompile.

Declare the function or
subroutine name in an
EXTERNAL statement;
recompile.

Declare the intrinsic
function name in an
INTRINSIC statement;
recompile.

Follow site-defined
procedure.

Remove namelist group
name from argument list;
recompile.

Correct error; recompile.

Correct error; recompile.

Follow site-defined
procedure.

No action required.

Follow site-defined
procedure.

B-25

I

Error
Number

481

483

484

485

486

487

488

489

490

491

492

493

494

495

496

B-26

Error
Type

F

A

F

F

F

N

F

F

F

F

F

F

F

F

A

TABLE B-1, COMPILER ERROR MESSAGES (Contd)

Message

DUMMY ARGUMENT name CANNOT BE
USED AS A STATEMENT FUNCTION
NAME

COMPILER FAILURE --- GFN LIST
FOR GENERIC name IS EMPTY

name CANNOT BE USED AS A
STATEMENT FUNCTION NAME

FORWARD REFERENCE TO
STATEMENT FUNCTION name
NOT ALLOWED

LENGTH OF A STATEMENT
FUNCTION DUMMY CHARACTER
ARGlMENT name CANNOT BE
ASSlMED

ONLY VARIABLES MAY BE USED
AS STATEMENT FUNCTION DUMMY
ARGlMENTS

name MAY ONLY APPEAR ONCE
IN STATEMENT FUNCTION DUMMY
ARGUMENT LIST

ERROR IN STATEMENT FUNCTION
DUMMY ARGtMENT LIST

SYNTAX ERROR IN STATEMENT
FUNCTION DEFINITION

ERROR IN STATEMENT FUNCTION
STATEMENT EXPRESSION

TOO MANY ARGUMENTS FOR
STATEMENT FUNCTION name

TOO FEW ARGtMENTS FOR
STATEMENT FUNCTION name

SYNTAX ERROR IN REFERENCE
TO STATEMENT FUNCTION name

A TYPE CONVERSION IS NOT
POSSIBLE FOR AN ACTUAL
ARGlMENT OF STATEMENT
FUNCTION name

CC»t:PILER FAILURE - name
IS NOT A STATEMENT FUNCTION

Significance

Statement functions can­
not have the same name as
a dummy argument of the
subprogram in which the
statement function is
defined.

(self explanatory)

(self explanatory)

A statement function must
be defined before it is
referenced,

The length of a dummy
argument appearing in a
FUNCTION statement must
be specified explicitly.

Something other than a
variable is used as a
dummy argument in a
statement function
definition.

The name appears more
than once in the dUDDy
argument list of a
statement function
definition.

The dummy argument list
of a statement function
definition is invalid.

(self explanatory)

(self explanatory)

The number of actual and
dummy arguments must be
the same.

The number of actual and
dummy arguments must be
the same.

(self explanatory)

Type of actual argument not
as expected.

(self explanatory)

Action

Change statement func­
tion name or argument
name; recompile,

Follow site-defined
procedure.

Correct error; recompile.

~ve statement function
definition in front of
reference; recompile.

Correct error; recompile.

Change dummy argument
to a variable; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Follow site-defined
procedure.

60480200 F

Error
Number

497

498

499

500

501

503

505

506

507

508

509

510

511

512

513

514

515

60480200 G

Error
Type

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

RECURSIVE STATEMENT FUNCTION
DEFINITION

MISSING ARGUMENT IN STATE­
MENT FUNCTION REFERENCE

VECTOR FUNCTION NAME MUST
APPEAR IN A DESCRlPTOR
STATEMENT WITHIN THE BODY OF
THE FUNCTION

SYNTAX ERROR IN AN OPEN
STATEMENT IN VICINITY OF
««window»»

SYNTAX ERROR IN A CLOSE
STATEMENT IN VICINITY OF
«.«window))))

SYNTAX ERROR IN AN INQUIRE
STATEMENT IN VICINITY OF
««window>»>

SYNTAX ERROR IN A FILE
POSITIONING STATEMENT IN
VICINITY OF <<<<window))))

param IS NOT ALLOWED

VECTOR LENGTH CANNOT EXCEED
65535

SCALAR FUNCTION NAME CANNOT
APPEAR IN A DESCRIPTOR
STATEMENT

A VECTOR CANNOT BE USED AS
AN ACTUAL ARGUMENT IN A
STATEMENT FUNCTION REFERENCE

MORE THAN ONE UNIT SPECIFIER
IN param STATEMENT

MORE THAN ONE FORMAT
SPECIFIER IN param STATEMENT

MORE THAN ONE "REC="
SPECIFIER IN param STATEMENT

MORE THAN ONE "END="
SPECIFIER IN param STATEMENT

MORE THAN ONE "ERR="
SPECIFIER IN param STATEMENT

MORE THAN ONE "IOSTAT="
SPECIFIER IN param STATEMENT

Significance

A statement function
directly or indirectly
references itself.

The number of actual and
dummy arguments must be
the same.

One of the following:
1. Vector function name is

not in any descriptor
statement, or

2. The descriptor state­
ment containing the
vector function name is
not within the body of
the function.

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

The maximum vector length
is 65535 elements.

(self explanatory)

An actual argument in a
statement function refer­
ence must be a scalar
expression.

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

Action

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile. I
Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

B-26.1

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Error Error Message Significance Action Number Type

516 F MORE THAN ONE "FILE=" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

517 F MORE THAN ONE "ACCESS=" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

518 F MORE THAN ONE "SEQUENTIAL=" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

519 F MORE THAN ONE "DlRECT=" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

520 F MORE THAN ONE "FORM=" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

521 F MORE THAN ONE "FORMATTED=" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

522 F MORE THAN ONE "UNFORMATTED=" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

I B-26. 2 60480200 G

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Error Error Message Significance Action
Number Type

523 F MORE THAN ONE "RECL•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

524 F MORE THAN ONE "BUFS•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT -

525 F MORE THAN ONE "NEXTREC•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

526 F MORE THAN ONE "NUMBER•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

527 F MORE THAN ONE "NAME•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

528 F MORE THAN ONE "EXIST•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

529 F MORE THAN ONE "OPENED•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

530 F MORE THAN ONE "BLANK•" (self explanatory) Correct error; recompile.
IN param STATEMENT

531 F MORE THAN ONE "STATUS•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

532 F MORE THAN ONE "NAMED•" (self explanatory) Correct error; recompile.
SPECIFIER IN param STATEMENT

535 F UNIT SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE AN INTEGER

536 F "REC•" SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE AN INTEGER

537 F "END•" SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE AN
EXECUTABLE STATEMENT NUMBER

538 F ''ERR•" SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE AN
EXECUTABLE STATEMENT NUMBER

539 F "IOSTAT•" SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE AN INTEGER
VARIABLE ARRAY ELEMENT

540 F "FILE•" SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE A CHARACTER
EXPRESSION

541 F "STATUS•" SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE A CHARACTER
EXPRESSION

542 F "ACCESS=" SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE A CHARACTER
EXPRESSION

543 F "ACCESS•" SPECIFIER IN param (self explanatory) Correct error; recompile.
STATEMENT MUST BE A CHARACTER
VARIABLE ARRAY ELEMENT, OR
SUBSTRING

60480200 A B-27

Error
Number

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

I B-28

Error
Type

F

F_

F

F

F

F

F

F

F

F

F

F

F

F

F

F

TABLE B-1, COMPILER ERROR MESSAGES (Contd)

Message

"SEQUENTIAL•" SPECIFIER IN
param STATEMENT MUST BE A
CHARACTER VARIABLE, ARRAY
ELEMENT OR SUBSTRING

"DIRECT•" SPECIFIER IN param
STATEMENT MUST BE A CHARACTER
VARIABLE ARRAY ELEMENT, OR
SUBSTRING

"FORM•" SPECIFIER IN param
STATEMENT MUST BE A CHARACTER
EXPRESSION

"FORM=" SPECIFIER IN param
STATEMENT MUST BE A CHARACTER
VARIABLE ARRAY ELEMENT, OR
SUBSTRING

"FORMATTED•" SPECIFIER IN
param STATEMENT MUST BE A
CHARACTER VARIABLE, ARRAY
ELEMENT, OR SUBSTRING

"UNFORMATTED=" SPECIFIER IN
param STATEMENT MUST BE A
CHARACTER VARIABLE, ARRAY
ELEMENT, OR SUBSTRING

"RECL•" SPECIFIER IN param
STATEMENT MUST BE AN INTEGER
EXPRESSION

"RECL=" SPECIFIER IN param
STATEMENT MUST BE AN INTEGER
VARIABLE OR ARRAY ELEMENT

"BUFS=" SPECIFIER IN param
STATEMENT MUST BE AN INTEGER
EXPRESSION

"BUFS=" SPECIFIER IN param
STATEMENT MUST BE AN INTEGER
OR ARRAY ELEMENT VARIABLE

"NEXTREC=" SPECIFIER IN param
STATEMENT MUST BE AN INTEGER
EXPRESSION

"NUMBER=" SPECIFIER IN param
STATEMENT MUST BE AN INTEGER
VARIABLE OR ARRAY ELEMENT

"NAME=" SPECIFIER IN param
STATEMENT MUST BE A CHARACTER
VARIABLE ARRAY ELEMENT, OR
SUBSTRING

"NAMED=" SPECIFIER IN param
STATEMENT MUST BE A l.DGICAL
VARIABLE OR ARRAY ELEMENT

"EXIST=" SPECIFIER IN param
STATEMENT MUST BE A l.DGICAL
VARIABLE OR ARRAY ELEMENT

"OPENED•" SPECIFIER IN param
STATEMENT MUST BE A l.DGICAL
VARIABLE OR ARRAY ELEMENT

Significance

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

Action

Correct error; recompile.

Correct error; recompile.

Correct error; recompile,

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

60480200 F

Error
Nmnber

560

565

566

567

568

570

571

572

573

577

578

580

60480200 J

Error
Type

F

N

N

N

N

F

N

N

F

F

N

F

TABLE B-1. COMPILER ERROR MESSAGES (Contd)

Message

"BLANK=" SPECIFIER IN param
STATEMENT MUST BE A
CHARACTER EXPRESSION

PERFORMED MODE CONVERSION OF
UNIT SPECIFIER TO TYPE
INTEGER IN param STATEMENT

PERFORMED MODE CONVERSION OF
"RECL=" SPECIFIER TO TYPE
INTEGER IN param STATEMENT

PERFORMED MODE CONVERSION OF
"BUFS=" SPECIFIER TO TYPE
INTEGER IN param STATEMENT

PERFORMED MODE CONVERSION
OF "REC=" SPECIFIER TO TYPE
INTEGER IN param STATEMENT

AN INQUIRE STATEMENT MUST HAVE
EITHER A UNIT SPECIFIER OR A
"FILE•" SPECIFIER, BUT NOT
BOTH

ASSIGN A CHARACTER CONSTANT
TO A NON-CHARACTER VARIABLE
IS NON-ANSI

NUMBER OF SUBSCRIPTS DOES NOT
MATCH NUMBER OF DIMENSIONS
DECLARED

VECTOR LENGTH FOR COMPLEX OR
DOUBLE PRECISION VARIABLES
CANNOT EXCEED 32767

BIT VECTOR FUNCTION DECLARED
IN THE FORM OF A SCALAR
FUNCTION IS ILLEGAL

CHARACTER AND NONCHARACTER
VARIABLES CANNOT BE
E~IVAI.ENCED

ADJUSTABLE LENGTH
SPECIFICATION name IS NOT
IN COMMON, OR IN ARGUMENT
LIST WITH CHARACTER VARIABLE

Significance

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

Vector function declaration
requires a nonempty argu­
ment list followed by the
character string (;*) as
illustrated in figure 9-36.

ANSI FORTRAN permits only
character to character
equivalencing or real,
integer, logical, double
precision, and complex
equivalencing.

If, in a subroutine, an
integer variable is used
instead of a constant to
specify a character dummy
argmnent length, the inte­
ger variable must either
be in common or be in a
dummy arg1.1nent in the same
list as the character
dummy argument.

Action

Correct error; recompile.

Surround expression with
an INT function call, or
otherwise repair it;
recompile.

Surround expression with
an INT function call, or
otherwise repair it;
recompile.

Surround expression with
an INT function call, or
otherwise repair it;
recompile.

Surround expression with
an INT function call, or
otherwise repair it;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Split equivalence groups
into character and
noncharacter groups;
recompile.

Correct error; recompile.

B-29

I

Error
Number

581

582

584

585

586

587

588

589

591

592

I B-30

Error
Type

F

A

A

F

A

F

F

F

F

F

TAB IE B-1. C<ltPILSR RRROR, MESSAGES (COlitd)

Message

ADJUSTABIE IENGTH CHARACTER
VARIABLE name IS NOT A DllmY
ARGUMENT

COMPILER FAILURE - BAD
REGISTER MANAGER REQUEST

COMPILER FAILURE - FAST CALL
CONFUSION

VECTOR FUNCTION name RESULT
LENGTH MUST BE INTEGER
EXPRESSION

COMPILER FAILURE -
ARGUMENT MODE MISMATCH
FOR VECTOR FUNCTION name

ARRAY NAME CANNOT BE USED
AS ACTUAL ARGUMENT OF name

EXTERNAL PROCEDURE NAME
CANNOT BE USED AS ACTUAL
ARGUMENT OF name

INTRINSIC FUNCTION NAME
CANNOT BE USED AS ACTUAL
ARGUMENT OF name

EXTERNAL SYMBOL CANNOT BE
USED AS ACTUAL ARGUMENT
OF name

IESCRIPTOR ARRAY NAME CANNOT
BE USED AS ACTUAL ARGUMENT
OF name

Significance

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

(self explanatory)

The named function requires
an argument of another
type.

Action

Correct error; recompile

Follow site-defined
procedure.

Follow site-defined
procedure.

Correct error; recompile.

Follow site-defined
procedure.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

60480200 J

Error
Number

001

002

003

004

005

006

007

008

60480200 H

Error
Level

c

c

F

c

F

c

c

F

TABLE B-2, EXECUTION TIME ERROR MESSAGES

Message

SIL DETECTED ERROR

ANOTHER I/O STATEMENT IS
ALREADY IN PROGRESS

MAXIMUM INTERNAL FILE ~ENGTH
EXCEEDED,

"END-" IS NOT PERMITTED IN AN
OUTPUT CILIST.

HOLLERITH CONVERSION ON INPUT
IS IMPOSSIBLE

SEQUENTIAL I/O MAY NOT SPECIFY
A RECORD NUMBER

ORDER OF LIBRARY CALLS DID NOT
CONFORM TO CORRECT COMPILER
GENERATED SEQUENCE

REMAINDER OF FORMAT CONTAINS
NO DATA CONVERSION EDIT
DESCRIPTORS

Significance

Followed by the SIL error
message text. SIL error
messages are explained in
the OS Reference Manual.

A function that does I/O
has been called in an I/O
list,

Attempted to read or write
beyond the end of an
internal file.

(self explanatory)

ANSI Standard FORTRAN '77
does not provide for an H
descriptor in a FORMAT
used for input.

The compiler generated a
sequential I/O call, but
indicated direct access by
specifying REC=.

I/O library calls were made
out of sequence. This should
not happen if all I/O
is done with FORTRAN
routines,

The FORMAT was exhausted
before the end of the I/O
list. The repeatable part
of the FORMAT cannot convert
data,

Action

Proper action is deter­
minedby the SIL message.

Remove I/O statement
from function, or move
function call outside I/O
statement.

Reduce the number of
records being referenced
by the internal I/O state
ment, or use an "l::ND~"

specifier on input.

Correct error; recompile.

Correct error; recompile.

Follow site-defined
procedure,

Follow site-defined
procedure.

Make the FORMAT and I/O
agree with each other on
the number of items to be
read/written; rerun,

B-30.1/B-JO.l I

Error
Number

009

010

011

012

013

014

015

016

017

018

019

020

021

60480200 E

TABLE B-2. EXECUTION TIME ERROR MESSAGES (Contd)

Error
Level

Message

F VALUE GIVEN FOR DO VARIABLE
TYPE IS NOT ACCEPTABLE

c

c

c

c

c

c

c

c

F

F

F

c

VALUE GIVEN FOR INTEGER UNIT
IDENTIFIER IS OUTSIDE THE
RANGE 0 ••• 999

ATTEMPT TO OPEN MORE THAN
2048 UNITS

ATTEMPT TO OPEN MORE THAN
70 FILES

ATTEMPT TO USE A UNIT ALREADY
CLOSED

FILE ORGANIZATION CONFLICTS
WITH ACCESS SPECIFIER

ATTEMPT TO DECLARE AN ALTERNATE
UNIT FOR A NONEXISTENT FILE

INVALID PROGRAM STATEMENT
PARAMETER TABLE

UNMATCHED PARENTHESES

UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFSET

UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFCL1

UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFOFF

ROUTINES CALLING Q7DFSET
NESTED TOO DEEPLY

Significance

I/O list implied DO
variables must be integer,
half precision, real or
double precision. This
could indicate a compiler
failure.

An integer unit number
must be a one to three
digit non-negative number.

2048 is maximum number
of distinct units chat
may be opened in one
program execution.

70 is maximum number of
files that may be open
at the same time.

You are attempting to use
a closed unit without
first reopening it.

Direct access I/O is
allowed only on direct
access files, and
sequential access I/O
only on sequential files.

The program's execution
control statement has an
alternate unit specifier
for an undeclared file.

Format of data passed from
main program is wrong.
This would be an extra­
ordinary error in FORTRAN
main programs.

The execution control
statement is incorrectly
formatted.

A call to Q7DFSET has
incorrect arguments.

A call to Q7DFCL1 has
incorrect arguments.

A call to Q7DFOFF has
incorrect arguments.

You have called Q7DFSET
from 101 different
subroutine levels.

Action

Follow site-defined
procedure.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Use a file whose organiza­
tion supports the type of
I/O you wish to do.

Declare the file in the
control statement or on
the PROGRAM statement (if
the ** form is not used).

Follow site-defined
procedure.

Either surround the list
of preconnection speci­
fiers and RLP specifiers
with parentheses or ter­
minate the list with a
period or carriage return.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

B-31

I

I

I

I

I

Error
Number

022

023

024

025

026

027

028

029

B-32

TABLE B-2, EXECIITION TIME ERROR MESSAGES (Contd)

Error
Level Message

W DATA FLAG BRANCH - ORX -
REGISTER 1 ADDRESS

w

F

F

F

w

w

w

DATA FLAG BRANCH - ORD -
REGISTER 1 ADDRESS

DATA FLAG BRANCH - IMAGINARY
SQUARE ROOT - REGISTER 1 ADDRESS

DATA FLAG BRANCH - INDEFINITE
RESULT - REGISTER 1 ADDRESS

DATA FLAG BRANCH - ZERO DIVISOR
- REGISTER 1 ADDRESS

DATA FLAG BRANCH - EXO -
REGISTER 1 ADDRESS

DATA FLAG BRANCH - RMZ -
REGISTER 1 ADDRESS

DATA FLAG BRANCH - SSC -
REGISTER 1 ADDRESS

Significance

You used Q7DFSET to set data
flag register bit 28. There
is a divide fault, exponent
overflow, or result machine
zero, Register 1 address
indicates a location
encountered after the
condition.

You used Q7DFSET to set data
flag register bit 24. The
selected condition is not
met, or there is a.decimal
arithmetic fault, Register
1 address indicates a
location encountered
after the condition.

Data flag register bits 13,
29, and 45 are set. You
are attempting to solve for
square root of a negative
number. Register 1 address
indicates a location
encountered after the
condition.

Data flag register bits 14,
30, and 46 are set. There
is an indefinite result or
operand. Register 1 ad­
dress indicates a location
encountered after the
condition.

Data flag register 9, 25,
and 41 are set. This is an
attempted division by zero.
Register 1 address indicates
a location encountered after
the condition,

You used Q7DFSET to set data
flag register bit 26, There
is a floating point exponent
overflow. Register 1 ad­
dress indicates a location
encountered after the
condition.

You used Q7DFSET to set data
flag register bit 27. Some
operation's result was zero.
Register 1 address indicates
a location encountered after
the condition.

You used Q7DFSET to set data
flag register bit 21. The
selected condition was not
met. Register 1 address
indicates a location encoun­
tered after the condition.

Action

Prevent the problem, or
use Q7DFSET to specify a
routine to handle the
problem or don't use
Q7DFSET to set data flag
register bit 28.

Prevent the problem, or
use Q7DFSET to specify
a routine to handle the
problem or don't use
Q7DFSET to set data flag
register bit 24.

Prevent the problem, or
use Q7DFSET to specify
a routine to handle the
problem or don't use
Q7DFSET to set data flag
register bit 24,

Prevent the problem, or
use Q7DFSET to specify a
routine to handle the
problem or to reset data
flag register bit 30.

Prevent the problem, or
use Q7DFSET to specify a
routine to handle the
problem or to reset data
flag register bit 25.

Prevent the problem, or
use Q7DFSET to specify a
routine to handle the
problem or don't use
Q7DFSET to set data flag
register bit 26.

Prevent the problem, or
use Q7DFSET to specify a
routine to handle the
problem or don't use
Q7DFSET to set data flag
register bit 27.

Preveut the problem, or
use Q7DFSET to specify a
routine to handle the
problem or don't use
Q7DFSET to set data flag
register bit 21.

60480200 F

Error
Number

030

031

032

033

034

035

036

038

039

040

041

60480200 F

Error
Level

w

w

c

F

c

F

F

c

c

c

c

TABLE B-2, EXECUTION TIME ERROR MESSAGES (Contd)

Message

DATA FLAG BRANCH - DDF -
REGISTER 1 ADDRESS

DATA FLAG BRANCH - TBZ -
REGISTER 1 ADDRESS

CLASS I DATA FLAG BRANCH -
NO INTERRUPT ROUTINE PROVIDED
- REGISTER 1 ADDRESS

CLASS III INTERRUPT IN CLASS
III INTERRUPT HANDLING ROUTINE
- REGISTER 1 ADDRESS

DATA FLAG BRANCH, NO PRODUCT
BITS ON - REGISTER 1 ADDRESS

FORTRAN SECOND USE OF Q7DFCL1
CONFLICTS WITH USER

USER USE OF Q7DFCL1 CONFLICTS
WITH FORTRAN SECOND

VALUE GIVEN FOR ACCESS
SPECIFIER IS NOT RECOGNIZED

VALUE GIVEN FOR FORMAT
SPECIFIER IS NOT RECOGNIZED

BLANK SPECIFIER MAY NOT BE
GIVEN FOR AN UNFORMATTED FILE

VALUE GIVEN FOR BLANK SPECIFIER
IS NOT RECOGNIZED

Significance

You used Q7DFSET to set data
flag register bit 22. A
decimal instruction received
bad data. Register 1 address
indicates a location encoun­
tered after the condition.

You used Q7DFSET to set data
flag register bit 23. There
is decimal arithmetic over­
flow, Register 1 address
indicates a location encoun­
tered after the condition.

Software Interrupt, bit 19;
Job Interval Timer, bit 20;
or Breakpoint, bit 31 enable
bit was set. There is no
response routine to handle
the cause of the interrupt.
Register 1 address indicates
a location encountered after
the condition.

Interrupt occured while a
Data Flag Branch response
was being processed. The
response and the new inter­
rupt are both associated
with the bit range of 21
••• 31. Register 1 address
indicates a location
encountered after the
condition.

This error message suggests
a hardware or software
error. This is an extra­
ordinary condition. Regis­
ter 1 address indicates a
location encountered after
the condition.

SECOND uses Q7DFCL1 to link
itself to data flag branches
resulting from bit 36.

SECOND uses Q7DFCL1 to link
itself to data flag branches
resulting from bit 36.

The value must be either
'SEQUENTIAL' or 'DIRECT',
optionally followed by
blanks.

The value must be
either 'FORMATTED' or
'UNFORMATTED', optionally
followed by blanks.

The "BLANK=" specifier
does not apply when a file
is opened as unformatted.

Must be either 'NULL' or
'ZERO', optionally followed
by blanks.

Action

Prevent the problem, or
use Q7DFSET to specify a
routine to handle the
problem or don't use
Q7DFSET to set data flag
register bit 22.

Prevent the problem, or
use Q7DFSET to specify a
routine to handle the
problem or don't use
Q7DFSET to set data flag
register bit 23.

Prevent the problem, or
use Q7DFSET to specify a
routine to handle the
problem or to reset the
data flag register bit 19,
20, and 31.

Correct error; rerun.

Follow site-defined
procedure.

Remove call to SECOND or
remove previous Q7DFCL1
call enabling 'JIT',

Remove call to Q7DFCL1 or
remove previous SECOND
call.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

B-33

I

I

Error
Number

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

B-34

Error
Level

c

c

c

c

c

c

c

c

c

F

F

F

F

F

F

TABLE B-2. EXECUTION TIME ERROR MESSAGES (Contd)

Message

VALUE GIVEN FOR OPEN STATUS IS
NOT RECOGNIZED

RECORD LENGTH MUST BE SPECIFIED
FOR A DIRECT ACCESS FILE

RECORD LENGTH MAY NOT BE
SPECIFIED FOR A SEQUENTIAL
ACCESS FILE

VALUE GIVEN FOR RECORD LENGTH
IS OUT OF RANGE 1 ••• (2**24)-1

VALUE GIVEN FOR BUFFER LENGTH
IS OUT OF RANGE 1 ••• 24

FILE NAME MAY NOT HAVE LEADING
OR EMBEDDED BLANKS

FILE NAME MAY NOT BE SPECIFIED
FOR A SCRATCH FILE

FILE NAME MUST BE SPECIFIED
FOR A NEW FILE

FILE NAME MUST BE SPECIFIED
FOR AN OLD FILE

FILE ALREADY CONNECTED AS A
SEQUENTIAL ACCESS FILE

FILE ALREADY CONNECTED AS A
DIRECT ACCESS FILE

FILE ALREADY CONNECTED AS A
FORMATTED FILE

FILE ALREADY CONNECTED AS AN
UNFORMATTED FILE

FILE ALREADY CONNECTED AS A
SCRATCH FILE

FILE ALREADY CONNECTED AS A
NAMED FILE

Significance

Must be 'OLD', 'NEW',
'SCRATCH', or 'UNKNOWN',
optionally followed by
blanks.

"RECL•" must be specified
for the OPEN of a direct
access file.

"RECL•" must not be
specified on the OPEN
of a sequential access
file.

The value associated with
"RECL~" must fall within
the prescribed range.

The allowable values for
buffer length lie between
1 and 24 512-word blocks.

A blank character preceeds
a non-blank character in
the specified name.

'SCRATCH' status files do
not have names.

Files without 'SCRATCH'
status must be named in the
OPEN statement

Files without 'SCRATCH'
status must be named in the
OPEN statement

Attempted to use OPEN to
change the file's "ACCESS="
specifier from 'SEQUENTIAL'
to 'DIRECT' •

Attempted to use OPEN to
change the file's "ACCESS•"
specifier from 'DIRECT'
to 'SEQUENTIAL'.

Attempted to use OPEN to
change the file's "FORM•"
specifier from 'FORMATTED'
to 'UNFORMATTED'.

Attempted to use OPEN to
change the file's "FORMs"
specifier from 'UNFORMATTED'
to 'FORMATTED'.

Attempted to use OPEN to
change the file connected
to the specified unit from
a 'SCRATCH' file to a named
file.

Attempted to use OPEN to
change the file connected
to the specified unit from
an 'OLD' or 'NEW' file to
a 'SCRATCH' file.

Action

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

60480200 A

Error
Number

057

058

059

060

061

062

063

064

065

066

067

068

069

Error
Level

F

F

F

c

c

c

F

F

F

c

c

c

c

60480200 J

TABLE B-2. EXECtrrION TIME ERROR MESSAGES (Contd)

Message

RECORD LENGTH MAY NOT BE
CHANGED FOR A CONNECTED FILE

BUFFER LENGTH MAY NOT BE
CHANGED FOR A CONNECTED FILE

ABSOLUTE VALUE OF CONSTANT
EXCEEDS 255

A SCRATCH FILE MAY NOT BE
CLOSED WITH 'KEEP'

VALUE GIVEN FOR CLOSE STATUS
IS NOT RECOGNIZED

UNIT DOES NOT EXIST

ATTEMPT TO BACKSPACE A
PRECONNECTED UNIT

UNIT ALREADY CLOSED

UNIT NOT CONNECTED TO A
SEQUENTIAL ACCESS FILE

UNEXPECTED CHARACTER

INVALID CHARACTER

PREMATURE END or LIST ITEM

NULL LIST ITEM

Significance

Attempted to use OPEN to
change the "RECL=" value
of an already open file.

Attempted to use OPEN to
change the "BUFS=" value
of an already open file.

Numbers in edit descriptors
must not exceed 255, or be
less than -255.

Unnamed files cannot be
kept.

Must be 'KEEP' or 'DELETE',
optionally followed by
blanks.

There is a malformed unit
identifier such as a
negative unit number.

BACKSPACE may be done only
on units that have been used
by OPEN or some data trans­
fer I/O statement.

Attempted to BACKSPACE or
REWIND a closed unit.

Attempted to BACKSPACE or
REWIND a unit opened for
'DIRECT' access.

Execution time preconnection
specifier list has an out­
of-place character. The
following line and the
period on the second line
down show the character to
be changed.

Execution time preconnection
specifier list has an in­
appropriate character. The
following line and the
period on the second line
down show the character to
be changed.

A separator was found before
the end of the executation
time preconnection specifier
list item. The following
line and the period on the
second line down show the
separator.

Execution time preconnection
specifier list begins or
ends in a comma or it has
two adjacent commas. The
following line and the
period on the second line
down show the terminator of
the null element.

Action

Correct error; rerun.

Correct error; rerun.

'Ille following line and the
period two lines down
identify the number that
is out of range.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

B-35

I

I

I

Error
Number

070

071

072

073

074

075

076

077

078

079

080

B-36

Error
Level

c

c

c

c

F

F

c

c

c

c

F

TABLE B-2. EXECUTION TIME ERROR MESSAGES (Contd)

Message

EXPECTED COMMA MISSING

FILE OR UNIT NAME TOO LONG

MULTIPLE RLP SPECIFICATIONS

REDUNDANT OR CONTRADICTORY
UNIT IDENTIFIER USE

NEW FILE ALREADY EXISTS

OLD FILE DOES NOT EXIST

VALUE REPETITION COUNT IS
GREATER THAN (2**47)-1

VALUE REPETITION COUNT MUST
BE GREATER THAN ZERO

INPUT IS INCCMPATIBLE WITH
LIST ITEM TYPE

RECORD SIZE TOO SMALL

NUMBER OF VALUES REQUIRED BY
INPUT LIST GREATER THAN
NUMBER OF VALUES IN RECORD

Significance

Two execution time precon­
nection specifier list
elements seem run together.
The following line and
period on the second line
down show the beginning of
the second element.

File and unit names are
limited to 8 characters.
The following line and the
period on the second line
down show the ninth
character.

Only one RLP specification
is allowed in the effective
execution time preconnec­
tion specifier list. The
following line and the
period on the second line
down show the second RLP
specification.

The same unit identifier
may not appear in two pre­
connect ion specifiers. The
following line and the
period on the second line
down show the second
identifier use.

You specified a 'NEW' status
for an already existing file
in the OPEN statement.

You specified an 'OLD'
status for a nonexistent
file in the OPEN statement.

List directed input record
has unreasonably large
repetition(*) count.

List directed input record
has a negative or zero
repetition (*) count value.

There is a conflict between
a list item and the corre­
sponding input record char­
acter(s) in the input from
a 'FORMATTED' file.

System record size for your
file is too short for list
directed output to put all
of the characters of a value
on the same line.

The unformatted READ needs
enough information in the
record to define all input
list items.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct input file; rerun.

Correct input file; rerun.

Correct error; rerun.

Use a file with a larger
minimum record length.

Correct error; rerun.

60480200 J

Error
Number

081

082

083

084

085

086

087

088

089

090

Error
Level

c

c

c

F

F

F

F

F

F

F

60480200 A

TABLE B-2. EXECUTION TIME ERROR MESSAGES (Contd)

Message

FILE NAMES MUST CONTAIN AT
LEAST ONE LETTER

RLP VALUE MUST NOT EXCEED
(2**26)-1

INVALID DATA TYPE CODE

CONSTANT MUST NOT BE 0 FOR
THIS EDIT DESCRIPTOR

PORTION OF TRANSLATED FORMAT
STRING BEFORE LAST "("
IS TOO LONG

APOSTROPHE STRING IS LONGER
THAN 255 CHARACTERS

NUU. APOSTROPHE STRING

UNEXPECTED END OF FORMAT

NON-BLANKS NOT PERMITTED
BEFORE INITIAL LEFT PARENTHESIS

INVALID EDIT DESCRIPTOR

Significance

Cannot have an all numeric
file name. The following
line and the period on the
second line down identify
the file name.

RLP value is too large.
Entire machine address
space is 2**26 large pages.
The following line and the
period on the second line
down identify the incorrect
RLP specification.

List directed output
encountered a garbled
output list item. This is
an extraordinary error for
a FORTRAN routine.

A numeric part of an edit
de~criptor was zero when it
should not have been. The
following line and the
period on the second line
down identify the edit
descriptor.

The run-time format length
exceeds the format transla­
tor capacity. The following
line and the period on the
second line down shows where
the translator's capacity
was exhausted.

Maximum length for an apos­
trophe string edit descrip­
tor is 255 characters. The
following line and the
period on the second line
down identify the string.

Zero length character
strings are disallowed.

Reached end of format with­
out finding all balancing
right parentheses. Follow­
ing line shows the format
in question.

The first non-blank char­
acter in the format was not
"(". The following line and
the period on the second
line down identify the
first non-blank character.

Some succession of charac­
ters fails to form a proper
edit descriptor. The fol­
lowing line and the period
on the second line down in­
dicate the region of format
being examined.

Action

Correct error; rerun.

Correct error; rerun.

Follow site-defined
procedure.

Correct error; rerun.

Correct error, rerun.

Correct error, rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

B-37

Error
Number

091

092

093

094

095

096

097

B-38

Error
Level

F

F

F

F

F

F

F

TABLE B-2. EXECUTION TIME ERROR MESSAGES (Contd)

Message

COMMA REQUIRED BEFORE THIS
CHARACTER

A DIGIT WAS EXPECTED AFTER
THE SIGN

THIS IS NOT A REPEATABLE
EDIT DESCRIPTOR

EDIT DESCRIPTOR ENDED
PREMATURELY

THIS CHARACTER IS PERMITIED
ONLY IN A HOLLERITH STRING

SIGNED CONSTANTS ARE VALID
ONLY FOR SCALE FACTORS

TO INCLUDE AN APOSTROPHE IN
AN APOSTROPHE STRING USE TWO
CONSECUTIVE APOSTROPHES

Significance

The indicated edit descrip­
tor and the one before must
have a separating comma.
The following line and the
period on the second line
down indicate the region of
format being examined.

A digit must follow a plus
or minus sign that appears
in an edit descriptor. The
following line and the
period on the second line
down indicate the region of
format being examined.

A repetition count was
placed before a non­
repeatable edit descriptor.
The following line and the
period on the second line
down indicate the region of
format being examined.

Separator encountered before
edit descriptor was fully
formed. The following line
and the period on the second
line down indicate the
region of format being
examined.

The indicated character can­
not be used to form any kind
of edit descriptor except
Hollerith, or apostrophe.
Here, it is used in another
context. The following line
and the period on the second
line down indicate the
region of format being
examined.

Except for Hollerith and
apostrophe edit descriptors,
P is the only edit descrip­
tor that can contain a plus
or minus. The following
line and the period on the
second line down indicate
the region of format being
examined.

The ending of the apostrophe
string edit descriptor
suggests that the string was
meant to include an apostro­
phe instead. The following
line and the period on the
second line down indicate
the region of format being
examined.

Action

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun.

60480200 A

Error
Number

098

099

100

101

102

103

104

105

106

107

108

109

110

60480200 c

Error
Level

c

c

F

F

F

F

c

F

c

c

c

F

TABLE B-2. EXECUTION TIME ERROR MESSAGES (Contd)

Message

INSUFFICIENT SPACE RESERVED
FOR TRANSLATED FORMAT -
LIBRARY FAILURE

INVALID EDIT DESCRIPTOR IN
TRANSLATED FORMAT

A SEPARATOR IS REQUIRED
AFTER NAMELIST GROUP NAME

MAXIMUM RECORD SIZE EXCEEDED

FORMAT EDIT DESCRIPTOR
INCOMPATIBLE WITH LIST ITEM
TYPE

INVALID SEPARATOR ENCOUNTERED

INVALID CHARACTER STRING
DELIMITER

ERROR IN TRANSLATED RUN
TIME FORMAT

MAGNITUDE OF VALUE GREATER
THAN (2**47)-1

INVALID OUTPUT LIST ITEM

RECORD NUMBER MUST BE
SPECIFIED FOR DIRECT ACCESS I/O

NAMELIST ITEM DOES NOT
BELONG TO GROUP IN WHICH IT
APPEARS

UNEXPECTED END OF LINE IN
NAMELIST INPUT

Significance

This is an extraordinary
condition. The translator
should not run out of space.
The following line and the
period on the second line
down indicate the area of
the format being processed
when the translator ran out
of space.

The translated format con­
tains an error.

A NAMELIST group and the
first variable name in an
input record ran together.

Attempted to write a record
that is too large for the
file.

Trying to proceas a list
item type that does not
fit the type described by
the edit descriptor.

List directed or NAMELIST
input encountered a char­
acter other than blank,
comma, or slash after a
character constant.

List directed or NAMELIST
input encountered a null
character string - two
adjacent apostrophes fol­
lowed by a non-apostrophe.

You have made a direct call
to the format translator to
translate a run-time format
that has an error and
ignored the error code.

An input value exceeds the
machine's capacity to
represent integers.

An I/O library call passed
the library invalid infor­
mation. This would be an
extraordinary error for a
FORTRAN program.

The compiler generated a
direct access I/O call, but
indicated sequential access
by not specifying REC=.

NAMELIST input record
specifies a variable name
that is not declared in the
NAMELIST group being read.

End of line encountered in
area that is disallowed by
the format for the NAMELIST
data.

Action

Correct error; rerun.

Look for something that
could have overwritten
the format.

Correct input file; rerun.

Correct error; rerun.

Correct error; rerun.

Correct input file; rerun.

Correct input file; rerun.

Do not attempt to use the
translated form of a for­
mat that has an error.

Correct error; rerun.

Follow site-defined
procedure.

Follow site-defined
procedure.

Correct error; rerun.

Correct input file; rerun.

B-39

I

Error
Number

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

128

B-40

Error
Level

c

c

F

F

F

F

c

c

c

F

F

w

F

F

F

F

TABI.E B-2. EXECUTION TIME ERROR MESSAGES (Contd)

Message

UNRECOGNIZABI.E SUBSCRIPT DIGIT
IN NAMELIST INPUT

NAMELIST ITEM SUBSCRIPT IS OUT
OF RANGE

NAMELIST ITEM SUBSCRIPT LACKS
EXPECTED II , II

NAMELIST ITEM SUBSCRIPT
EXPRESSION LACKS EXPECTED 11) 11

NAMELIST ITEM ASSIGNMENT
LACKS EXPECTED 11=11

REPETITION COUNT AND VALUE
MUST BE ON THE SAME LINE

FILE IS NOT POSITIONED AT
BEGINNING OF A NAMELIST BLOCK

A NON Q7BUF IN/OUT OPERATION
TO THIS UNIT IS NOT ACCEPTABI.E

A NON BUFFER IN/OUT OPERATION
TO THIS UNIT IS NOT ACCEPTABI.E

ARRAY MUST BE ON A BLOCK
BOUNDARY

MORE THAN 2 OUTSTANDING
REQUESTS FOR SAME FILE

BLOCK LENGTH MUST BE A POSITIVE
NON-ZERO VALUE

MAP PARAMETER CONTAINS AN
INVALID VALUE

THE PREVIOUS BUFFER I/O
OPERATION ENDED ABNORMALLY
AND THE UNIT FUNCTION HAS
NOT BEEN CALLED.

SCALE FACTOR IS OUT OF RANGE

INCOMPATIBI.E EDIT DESCRIPTOR
FIELDS

Significance

A subscript value has a
non-numeric character in
a NAMELIST input record.

A subscript value is too
small or too large in a
NAMELIST input record

'Th.e dimensionality implied
by a NAMELIST input record
is smaller than that of the
array.

'Th.e dimensionality implied
by a NAMELIST input record
is greater than that of the
array.

The NAMELIST input record
item name and its value run
together with no 11=11

between.

An asterisk may not be the
last character of a NAMELIST
input line.

Attempted a NAMELIST input
when the first record had
no NAMELIST group name.

Attempted to mix Q7 and
non-Q7 I/O on one unit.

Attempted to mix BUFFER and
non-BUFFER I/O on one unit.

User's ARRAY was not on a
block boundary.

There are more than 2 out­
standing I/O operations to
a file.

Block length for Q7SEEK
must not be negative.

Map parameter contains
something other than
'SMALL' or 'LARGE'.

(self explanatory)

The scale factor (k) on the
P edit descriptor cannot be
applied to a D, E, or G
edit descriptor because it
would remove all signif i­
cance from the field.

The field width specified
is too small to contain the
other widths specified in
the edit descriptor.

Action

Correct input file; rerun.

Correct input file; rerun.

Correct error; rerun.

Correct error; rerun.

Correct input file; rerun.

Correct input file; rerun.

Correct error; rerun.

Correct error; rerun.

Correct error; rerun,

Use a CctiMON declaration
and load with parameter
GRSP or GRLP.

Call Q7WAIT.

Correct error; rerun.

Correct error; rerun.

Call UNIT function.

Change the scale factor
(k) or the field width
(d) to fit within the
range -d (k (d+2 where
k < 256.

Increase the field width
or decrease the other
widths in the edit
descriptor.

60480200 J

Message

THIS LOOP IS BRANCHED
INTO

THIS LOOP IS BRANCHED
OUT OF

THE DO NEST CONTAINS
EIGHT OR MORE LOOPS

THIS OUTER LOOP HAS MORE
THAN 65535 ITERATIONS

A DESTINATION VARIABLE
MAY BE A RECURSIVE
DEFINITION

A DESTINATION VARIABLE
IS NOT REAL, INTEGER,
LOGICAL, HALF PRECISION,
OR COMPLEX

THE DO VARIABLE IS NOT
AN INTEGER

THIS IS AN OUTER LOOP
WITH VARIABLE INITIAL
OR TERMINAL VALUES
WITHOUT UNSAFE
OPTIMIZATION

THIS LOOPS CONTAINS
A NONVECTORIZABLE
LOOP

A PROPERTY OF AN
EMBEDDED LOOP PREVENTS
THIS LOOP FROM
VECTORIZING

60480200 J

TABLE B-3. VECTORIZER MESSAGES

Significance

A DO loop must be entered
from the top.

A DO loop must be exited
at the bottom.

Only the innermost seven
loops of a nest can be
vectorized.

The length of a vector in
a DO nest cannot exceed
65535 (or 32767 if the
loop contains complex
arrays).

A feedback condition
either does or may exist.

lbuble precision, char­
acter, and bit data
elements cannot be
vectorized.

Only integer loop control
variables are vectorized,

An outer loop has a non­
unit incrementation
parameter.

Loop initial or terminal
parameter is not con­
stant and the control
variable only subscripts
adjustable or assumed
dimensions.

Any nonvectorizable inner
loop prohibits vectoriza­
tion of all outer loops.

An inner loop prevents
vectorization of all
outer loops.

Action

F.xtended DO loop ranges are not vectorized. If the
branches are to an extended range, moving the
extended range into the DO loop body may permit
vectorization.

F.xtended DO loop ranges are not vectorized. If the
branches are to an extended range, moving the
extended range into the DO loop body may permit
vectorization,

Because an array can have at most seven subscripts,
no attempt is made to vectorize more than seven
loops. If possible, only the seven innermost loop
control variables should be used in subscripts.

The innermost loop can be vectorized regardless of
its iteration count. The DO nest might be manually
collapsed into a single DO statement.

If array bounds are adjustable or assumed and the
loop parameters are not constants, or if the sub­
scripts are complicated, the vectorizer may be
unable to determine if feedback does not occur and
unable to vectorize. If the loop is feedback free,
use of constant array bounds or simpler subscripts
might permit vectorization. If, on the other hand,
the loop is recursive, it cannot be properly exe­
cuted on the vector hardware. Unsafe vectorization
permits possible feedback among equivalenced arrays
if the different array names are used.

Unless the data can be recoded in an acceptable
data type, it cannot be vectorized.

If the DO statement is originally of the form DO
label cv=ll,ul,incr, the statement might be
replaced with DO label icv•l,(ul-ll+incr)/incr,
where icv is new integer variable, and the state­
ment cv•ll+(icv-l)*incr can be inserted at the
head of the loop.

The loops might be rearranged to avoid a nonunit
increment.

'ftte vectorizer is unable to determine if an outer
loop has an iteration count above or below 65535.
'ftte innermost loop can be vectorized regardless of
its iteration count. The DO nest might be manually
collapsed into a single DO statement. If constant
array bounds or constant loop parameters are used,
the loop might vectorize. If unsafe optimization
is selected, the loop will vectorize and the itera­
tion count will be assumed to be less than or equal
to 65535.

If the inner loop can be made vectorizable, the
outer loop might also vectorize.

This covers a variety of problems usually caused by
complicated subscripts, adjustable or assumed array
bounds, and complicated loop parameters. Possibly
a control variable is used in different subscript
positions.

B-41 e

Message

A SOURCE VARIABLE IS NOT
REAL, INTEGER, LOGICAL,
HALF PRECISION, OR
CCMPLEX

A SOURCE VARIABI.E MAY
BE A RECURSIVE
IEFINITION

A SCALAR USED IN AN
OUTER LOOP IS ALSO
USED IN AN INNER LOOP

A SCALAR IS REFERENCED
BEFORE OR IN THE SAME
STATEMENT AS ITS
FIRST DEFINITION

A NONVECTORIZABLE
FUNCTION IS CALLED

AN OPERATOR CANNOT BE
VECTORIZED

THIS LOOP CONTAINS A
VECTOR ASSIGNMENT

THIS LOOP CONTAINS A
NONVECTORIZABLE KIND
OF STATEMENT

THE CONTROL VARIABLE OF
THIS LOOP IS NEVER USED
IN A SUBSCRIPT OR AN
EXPRESSION

e B-42

TABLE B-3. VECTORIZER MESSAGES (Contd)

Significance

Double-precision, char­
acter, and bit data
elements will not be
vectorized.

A feedback condition
either does or may exist.

A scalar can be defined
only in the innermost
loop in which it appears.

A scalar's value cannot
depend upon its value in
a previous iteration in
the general case.

The loop references an
external subprogram or
nonvectorizable intrinsic
function.

Only arithmetic (+, -, *•
/,and**) logical opera­
tors are vectorizable.

The loop cannot contain
vector assignment state­
ments.

Only scalar assignment
statements and embedded
DO loops can be vector­
ized.

All statements in the
loop are explicitly and
implicitly independent of
the value of the loop
control variable.

Action

Unless the data can be recoded in an acceptable
data type, it cannot be vectorized,

If array bounds are adjustable or assumed and the
loop parameters are not constants, or if the sub­
scripts are complicated, the vectorizer may be
unable to determine if feedback does not occur and
unable to vectorize. If the loop is feedback free,
use of constant array bounds or simpler subscripts
might permit vectorization. If, on the other hand,
the loop is recursive, it cannot be properly exe­
cuted on the vector hardware, Unsafe vectorization

·permits possible feedback among equivalenced arrays
if the different array names are used.

If the scalar is used for different purposes in the
inner and outer loop, new scalars can be introduced
for each purpose.

If the scalar values form an arithmetic progression,
an interval recursive assignment can be used, An
interval assignment sss+r can be moved to the top
of the loop. All references to s between the top
of the loop and the original position of the
assignment are changed to references of s-r. If
the scalar is used to compute a sum, product, or
dot product, partial results are not available
within the loop.

Only vectorizable intrinsic functions can be used
in the loop. If the subprogram values are not
dependent on any definitions in the loop, the sub­
program values can be precomputed and stored in an
auxiliary array for use in the loop. The vector­
izable intrinsics are ABS, ACOS, ALOG, ALOGlO,
ASIN, ATAN, COS, EXP, FLOAT, !ABS, !FIX, SIN, SQRT,
and TAN.

The DO loop might be rewritten as two or more loops
so that expressions with nonvectorizable operators
are in separate unvectorized loops with their
results stored in an auxiliary array for use in the
loop.

Loops containing explicit vectors are assuned to be
manually optimized.

All other kinds of statements should be moved out
of the loop if possible.

The corresponding DO statement serves no discern­
ible purpose and should probably be deleted.

60480200 J

Message

THIS OUTER LOOP HAS A
VARIABLE INCREMENT

AN INNER LOOP MIGHT NOT
COMPLETELY SPAN THE
CORRESPONDING DIMENSION
OF A DESTINATION ARRAY

AN INNER LOOP MIGHT NOT
COMPLETELY SPAN THE
CORRESPONDING DIMENSION
OF A SOURCE ARRAY

60480200 J

TABLE B-3. VECTORIZER MESSAGES (Contd)

Significance

The value of an incre­
mentation parameter of an
outer or embedded loop
cannot be computed during
compilation and might be
other than 1.

When a control variable
appears in a subscript
for a dimension of an
array, the dimension
bounds must equal the
initial and terminal
parameter of the DO
statement of the control
variable.

When a control variable
appears in a subscript
for a dimension of an
array, the dimension
bounds must equal the
initial and terminal
parameter of the DO
statement of the control
variable.

Action

If the increment is constant, that constant should
be used, The PARAMETER statement can be used to
define symbolic constants. The innermost loop can
always be vectorized regardless of its increment,
The DO nest might be manually collapsed into a
single DO statement or the loops might be
rearranged to avoid a variable increment.

The innermost loop can always be vectorized
regardless of spanning. The DO nest might be
manually collapsed into a single DO statement,
Complicated subscripts, assumed or adjustable
arrays, or complicated loop parameters can make
it difficult to verify spanning,

The innermost loop can always be vectorized
regardless of spanning, The DO nest might be
manually collapsed into a single DO statement.
Complicated subscripts, asstuned or adjustable
arrays, or complicated loop parameters can
make it difficult to verify spanning.

B~Je

Error
Type

**COMPILER
FAILURE--

**ERROR--

**ERROR~

**ERROR~

**ERROR~

**ERROR~

**ERROR--

**ERROR--

**ERROR--

**WARNING--

**WARNING--

**WARMING--

**WARNING--

**WARNING--

**WARMING--

TABLE B-4, CONTROL STATEMENT ERROR MESSAGES

Messaget

IMPROPER CALL TO Q7PROMPT.

INPUT FILE RECORD TYPE UNDEFINED,

RIGHT HAND SIDE OF 'LO=c' is INVALID,

'S' OPTION MUST BE SPECIFIED WITH 'I',

RIGHT HAND SIDE OF 'OPT=c' IS INVALID.

SIL DETECTED ERROR FOR BINARY FILE.

SIL DETECTED ERROR FOR ERROR FILE.

SIL DETECTED ERROR FOR INPUT FILE,

SIL DETECTED ERROR FOR LIST FILE.

WHEN 'F66' IS SPECIFIED 'ANSI' IS NOT APPLICABLE.
'ANSI=O' IS ASSUMED.

WHEN 'F66' IS SPECIFIED 'DO=O' IS NOT APPLICATION,
'D0-1' IS ASSUMED.

WHEN 'SYNTAX' IS SPECIFIED 'BINARY' IS NOT APPLICABLE,
'BINARY=O' IS ASSUMED.

WHEN 'SYNTAX' IS SPECIFIED 'LO=c' IS NOT APPLICABLE.
IT IS IGNORED.

WHEN 'SYNTAX' IS SPECIFIED 'OPTIMIZE' IS NOT APPLICABLE,
'OPTIMIZE=O' IS ASSUMED.

WHEN 'SYNTAX' IS SPECIFIED 'UNSAFE' IS NOT APPLICABLE.
'UNSAFE=O' IS ASSUMED.

Significance

Compilation terminates.

The input file has no record
structure. Compilation ter­
minates.

The only valid options are A, M,
S, I, X, or their combinations.
Compilation terminates.

If the S option is not specified
with the I option, compilation
terminates.

The only valid options are D, P,
R, S, V, or their combinations,
Compilation terminates.

Message followed by an SIL error
message, Compilation terminates.

Message followed by an SIL error
message, Compilation terminates.

Message followed by an SIL error
message, Compilation terminates.

Message followed by an SIL error
message. Compilation terminates,

While compiling the 19b6 FORTRAN
dialect, it makes no sense to
diagnose deviations to the 1978
FORTRAN dialect. Compilation
proceeds,

The 1966 FORTRAN dialect does
not support zero iterations for
DO loops. Compilation proceeds.

When the compiler does quick
syntax checking, it produces no
object file. Compilation
proceeds.

The SYNTAX control statement
conflicts with LO=S, LO=X, and
LO=SX. Compilation proceeds,

OPTIMIZE conflicts with SYNTAX.
Compilation proceeds.

UNSAFE conflicts with SYNTAX.
Compilation proceeds,

tA lower case c in a message signifies the position of a compiler-supplied, appropriate single character
embedded in the message,

B-44 60480200 H

GLOSSARY c

Terms used in the main text of this manual are
described in this section. The definitions give
the general meanings of the terms. Precise defi­
nitions are given in the main text. Also, most
general terms regarding computers and terms defined
in the American National Standards documents re­
garding the FORTRAN language have been excluded.

Array -
An ordered set of variables identified by a
single symbolic name. Referencing a single
element of an array requires the array name
plus a subscript that specifies the element's
position in the array.

Array Declarator -
Specifies the dimensions of an array.

ASCII Data -
Characters, each of which has a standard in­
ternal representation. One byte (8 bits) is
required for each character.

Binary File -
A type of file that can be manipulated by
unformatted input/output routines.

Bit Data -
A binary value represented in a FORTRAN program
as a binary number in the format B'bb ••• b' where
each b is a 0 or a 1. Each 0 or 1 becomes a 0
bit or a 1 bit in the internal representation
for the binary value.

Buffer Input/Output -
Input and output statements that cause data to
be transferred between binary files and a buf­
fer area in main memory.

Character Data -
An ASCII value represented in a FORTRAN program
by a character string in the format 'cc ... c'
where each c is in ASCII. Each character be­
comes a byte of ASCII data in the internal
representation for the ASCII value.

Colon Notation -
The notation used to express implied DO sub­
script expressions in a subarray. The colons
separate the initial, terminal, and incrementa­
tion values for the implied DO.

Columnwise -
The ordering of the elements in an array· de­
clared in a DIMENSION, COMMON, or explicit type
statement (the other ordering is rowwise), The
succession of subscripts corresponding to the
elements of a columnwise array is with the
value of the leftmost subscript expression
varying the fastest.

Compilation Time -
The period of time during which the FORTRAN
compiler is reading the program and producing
the relocatable module for the program. Com­
pilation is initiated by the FTN200 system
control statement.

60480200 A

Conformability -
Determines whether two subarrays can occur in
the same expression. Two subarrays are con­
formable if they contain the same number of
implied DO subscripts and if corresponding
implied DO subscript expressions are identical.

Control Vector -
A bit vector that controls the storing of
values into a vector. The control vector
elements are set to a configuration of Os and
ls. Control vectors are used in WHERE state­
ments, block WHERE structures, and some FORTRAN­
supplied functions.

Controllee File -
A file that consists of object code generated
by the loader. The loader builds a controllee
file from relocatable object code produced by a
compiler, plus relocatable object code of any
externally-defined routines.

Data Element -
A constant, variable, array, or array element.

Data Flag Branch Manager (DFBM) -
A FORTRAN execution-time and CYBER 200 library
routine that processes data flag branches when
they occur in an executing program. A data
flag branch is a hardware function of the CYBER
200 computers.

Data Flag Branch (DFB) Register -
Part of the data flag branch hardware, It ls a
64-bit register located in the CYBER 200 central
processor.

Declaration -
A specification statement that declares attri­
butes of variables, arrays, or function names.

Defining -
Process whereby a variable or array element
acquires a predictable or meaningful value.
Definition can take place through data initial­
ization, parameter association, DO statement
execution, input statement execution, or assign­
ment statement execution. Defining contrasts
with naming and referencing.

Descriptor -
A pointer
forms, the
the vector.

Dominance -

to a vector. In several FORTRAN
descriptor can be used instead of

A conventional data type hierarchy determining
the data type of the result of expression
evaluation. Dominated operands are converted
during evaluation to the dominant type. The
type complex dominates all other types, with
types double-precision, real, half-precision,
and integer following in order of decreasing
dominance,

C-1

Drop File -
A file that is created and maintained for each
executing program. Contains any modified pages
of the program file, any free space attached,
and any read-only data space defined to have
temporary write access.

Dynamic Space -
Virtual memory space available for allocation
and deallocation at execution time. In partic­
ular, space for vectors can be assigned in the
dynamic space area by using the descriptor
ASSIGN statement.

Execution Time -
The period of time during which the compiled
program is executing. Execution is initiated
by a system control statement.

Explicit Typing -
Specification of the data type of a variable or
array by means of one of the explicit type
statements (the INTEGER, HALF PRECISION, REAL,
COMPLEX, DOUBLE PRECISION, BIT, CHARACTER, and
LOGICAL statements). Explicit typing overrides
any implicit typing.

External Function -
A function that is defined outside of the
program unit that references it. A reference
to an external function generates code in the
object program that causes control to transfer
to the external function during program execu­
tion. External functions contrast with inline
functions.

File -
A collection of information that can be defined
by output statements, or referenced by input
statements. A file can reside on a disk or
tape.

First-Letter Rule -
Type association for data names according to
the first letter of the name. Type assignment
made is type integer to any name beginning with
the letter I, J, K, L, M, or N, and type real
to all others. The IMPLICIT statement is used
to alter these defaults.

Floating-Point -
Refers to the internal representation for half­
precision, real, double-precision, and complex
data.

Generic Function -
A function whose result mode depends on the
mode of the argument.

Hexadecimal Data -
A value represented in a FORTRAN program as a
hexadecimal number in the format X'hh ••• h'
where each h is a hexadecimal digit (one of the
digits 0 through 9 or one of the letters A
through F). Each digit becomes the 4-bit binary
equivalent in the internal representation for
the value.

Implicit Typing -

C-2

Specification of the data type of a variable or
array by means of the first-letter rule for
data names.

Index Vector -
An integer vector whose elements are indexes
into another vector. An index is an ordinal
number indicating element position in a vector.
Some of the FORTRAN-supplied functions use
index vectors.

Inline Function -
A type of predefined function. Referencing an
inline function causes the function's object
code to be inserted directly into the relo­
catable object code of the program during
compilation. Inline functions contrast with
external functions.

Input -
The name of the file read with FORTRAN READ
statements that do not specify a unit number.
To be used, INPUT must be declared in the
PROGRAM statement or in the execution line.

Large Page -
A block of 65536 words in memory starting on a
large page boundary. A loader call parameter
can be used to tell the operating system that
the specified modules are to be placed within a
large page loaded on a large page boundary.

Loader -
A utility that links relocatable object modules,
together with modules from user libraries or
the system library as needed to satisfy external
references. It then converts external refer­
ences and relocatable addresses into the virtual
address constants. Thus, relocatable modules
are transformed into a virtual code controllee
file with the (default) name of GO.

Logical Unit Number -
Integer between 1 and 99 associated with a file
by means of the PROGRAM statement declarations
or execution line declarations, and used to
refer to the file when performing FORTRAN input/
output.

Loop-Dependent -
Describes a variable whose value changes as the
value of the control variable of a DO loop
passes through the range specified in the DO
statement. A loop-dependent variable is de­
fined within the range of the loop, while a
loop-independent variable is defined (or could
be defined with the same effect) outside the
range of the loop.

Loop-Independent -
Describes a variable whose value remains con­
stant within the range of a DO loop.

Naming -
Identifying data (or a procedure) without
necessarily implying that its current value is
to be made available (or, for procedures, that
the procedure actions are to be made available)
during the execution of the statement in which
.it is identified. Naming contrasts with refer­
encing and defining.

Object Module -
The relocatable representation of a
unit created by compilation of the
unit. Consists of object code,

program
program

60480200 A

Output -
The name of the file to which all execution-time
error messages and records output with PRINT
statements are written. WRITE statements can
also be used to write on OUTPUT if OUTPUT is
given a logical unit number in the PROGRAM
statement.

Precedence -
A conventional arithmetic, relational, and
logical operator hierarchy determining the
order in which operations are performed during
expression evaluation. Operator precedence in
FORTRAN corresponds to the mathematical notion
of the precedence of mathematical operations.

Predefined Function -
FORTRAN-supplied code that performs
manipulations. Predefined functions
inline functions, external functions,
inline and external functions.

Program -

conunon
can be
or both

A procedure described in the FORTRAN programming
language, consisting of at least a main program
along with any functions and subroutines writ­
ten by you that are referenced directly or
indirectly by that main program.

Punch -
The name of the file to which records written
by the PUNCH statement are written.

Record -
The amount of information read or written by a
single FORTRAN READ or WRITE statement. In
formatted input/output, a new record is started
each time a slash edit descriptor or a format
repetition is processed.

Referencing -
Identifying data for the purpose of making its
current value available during the execution of
the statement containing the reference. Also,
identifying a procedure for the purpose of
making the actions specified available for
execution. Referencing contrasts with naming
and defining.

Rowwise -
The ordering of the elements in an array
declared in a ROWWISE statement (the other
ordering is columnwise). The succession of
subscripts corresponding to the elements of a
rowwise array is with the value of the right­
most subscript expression varying the fastest.

Scalar -
A single value; contrasted to vectors, which
are typically groups of values.

Semicolon Notation -
A notation used to express a vector. The
semicolon separates the two items specifying
the vector, namely, its first element and its
length.

60480200 H

Side Effect -
The alteration of an argument or an element
in a common area as a result of a function
reference.

Small Page -
A block of 512 words in memory starting on a
small page boundary. A small page is the
smallest unit that can be moved in or out of
main memory by the operating system.

Special Call -
A feature that can be used to cause specific
machine instructions to be generated in the
object code at compilation time.

STACKLIB Routine -
A routine that optimizes certain loops that
cannot be vectorized.

Subarray -
A cross section of an array. Identified either
by the array name or by the array name quali­
fied by a subscript containing (among other
kinds of subscript expressions) one or more
subscript expressions in colon notation.

Subscripted Array Name -
An array name followed by a parenthesized list
of integer constants or simple integer expres­
sions that specify a particular element in an
array. A subscripted array name is either an
array element reference or an array element
definition.

Symbolic Constant -
A name that has a constant value. The value is
specified by the PARAMETER statement.

System Interface Language - I
A set of subroutines that user programs can
call to perform system functions.

Unit -
A disk or tape on which a file can be created
and kept by the operating system.

Vector -
A data representation that typically consists
of more than one value; contrasted to scalar
data, which represent single values. A subset
of an array of scalar elements or of the dynamic
space area, delimited by a length and a sub­
script which designates the position in the
array of the vector's first element.

Vectorize -
Cause vector machine instructions to be gener­
ated as part of the object code either by using
vector data and referencing vector functions,
or by including vectorizable DO loops in a pro­
gram compiled when the OPTIMIZE=V compilation
option has been selected.

Virtual Memory -
A conceptual extension of main memory achieved
by a hardware/ software technique which permits
memory references beyond the physical limita­
tion of main memory. Virtual memory addresses
are associated with real addresses in physical
memory during program execution.

C-3

FORTRAN 200 STATEMENT SUMMARY D

This appendix contains a s~ry of the statement forms described in the main text. Given are the entities
that compose each statement; refer to the main text for the detailed specifications for these entities.
Brackets around an item indicate that the item is optional. Abbreviations used in this appendix are the I
following:

adecl array declarator

aarg actual argiaent

aexp scalar arithmetic expression of any type except complex

alt integer constant or siaple integer variable

arexp scalar arithmetic expression

variable or array element of type integer. ""'J(+J~-1~; real, double-precision, or complex
:<-. '» 0 ~ • •• • / 0 "' •• • • •A

arithvar

arrayexp array expression or any scalar expression

blk common block -

cblist list of variables, arrays, or array declarators separated by commas

charvar character variable, array eleaent, or substring reference

cilist control infol'll&tion list

cexp scalar character expression

contvar control variable, which can be a variable of any type except complex

darg d1D111y argument

disp one to five decimal digits or a character constant

dlist list of initial values, which can be constants or constants preceded by repeat specifications

exp expression

fid format identifier

first first location in buffer

fspec format specification

group list of two or more variables, array elements, arrays, or substrings, separated by commas

grpname namelist group name

int intrinsic function name

iolist input/output list

isexp integer scalar expression

ivar integer variable

60480200 F D-1

k integer constant, variable, expression enclosed in parentheses, or asterisk enclosed in
parentheses that specifies the length in characters of v.

K constant, symbolic constant enclosed in parentheses, expression enclosed in parentheses, or
asterisk enclosed in parentheses that specifies the length in characters of each v.

last

lexp

let list

logvar

map

~··

name

proc

savename

sl

statfunc

last 1oca tion in buffer

scalar logical expression

list of letters and ranges of letters

logical variable or array element

.. dynallic · apace . illappi1tg .~i!!iit

d.U ttan&fer.•Od•

symbolic constant name

naeHst illput/output li~t

record length ·1n.···.characteri8

procedure name

variable, array, or co11111on block name

statement label

statement function naae

stmt executable statement other than DO, logical IF, block IF, ELSE IF, ELSE, END IF, 'J>J.j)¢Ji. ·WRltU~
OTHERWISE, END WHBU.~ or END

suba • su'barray ·reference

type INTEGER, BALF PRECISION, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER, orll'.t

uid unit identifier

v symbolic constant, variable, array, array declarator, or function name

VllUJl'

value constant. constant expression. or :extended conlitant expreilie:to~·

vec vector reference, descriptor, or d~actiptor ·array el•ent

vlist list of variables, arrays, array elements, substrings, or implied DO loops, separated by commas

SCALAR ASSIGNMENT STATEMENTS
arithvar 2 arexp

charvar • cexp

logvar • lexp

ASSIGN sl TO ivar

FLOW CONTROL STATEMENTS
GO TO sl

GO TO ivar[,) (sl[, ••• ,sl))

GO TO (sl[, ••• ,sl))[,) isexp

D-2

4-5

4-6

4-7

4-7

5-1

5-1

5-2

60480200 A

IF (aexp) sl,sl,sl

IF (lexp) stmt

IF (lexp) THEN
ELSE IF (lexp) THEN
ELSE
END IF

DO sl contvar 2 aexp1,aexp2[,aexp3]

CONTINUE

PAUSE [disp]

STOP [disp)

SPECIFICATION ST A TEMENTS
IMPLICIT type1(list1)[, ••• ,typeai(listm)J

type vi (/d1/l [, ••• , Vnl/dn/l l

CHARACTER [*Kl vl [*kl l/d1/l [, ••• ,vn [*kl I/dn/J I

DIMENSION adecl1[, ••• ,adeclnl

llOWWISE adecl1(•••• ,lideclnJ

COMMON [/blk1/l cblist1 [, ••• , /[blknl/ cblistnl

EQUIVALENCE (group1) [, ••• ,(groupn)J

EXTERNAL proc1 [, ••• , procnl

INTRINSIC int1 [, ••• , intnl

DATA vlist1 /dlist1/ [, ••• ,vlistn /dlistn/l

SAVE /savename1/ 1 ••• , /savenamen/

PROCEDURE DEFINITION
PROGRAM [proc] [(psi[, ••• ,psn))l [,map)

statfunc ([darg1(, ••• ,dargnJI) =exp

[type) FUNCTION proc (darg1(, ••• ,dargnJ)
except for type = CHARACTER

CHARACTER FUNCTION proc [*K) (darg1[, ••• ,dargnJ)

SUBROUTINE proc [(darg1(, ••• ,dargnJ))

BLOCK DATA [proc)

ENTRY proc [(darg1[, ••• ,dargnJ)]
for subroutines

ENTRY proc (darg1[, ••• ,dargnJ)
for functions

RETURN [alt)
for subroutines

RETURN
for functions

CALL proc [(aarg1[, ••• ,aargnl>l

END

60480200 A

5-3

5-3

5-3

5-6

5-8

5-8

5-8

3-5

3-1

3-4

3-6

3-7

3-8

3-9

3-10

3-13

3-11

3-11

7-2

7-11

7-4

7-4

7-6

7-11

7-9

7-9

7-7

1-5

1-7

7-2

D-3

INPUT/OUTPUT STATEMENTS
READ (cilist) [iolist)

READ fid [,iolist)

READ* [,iolist)

WRITE (cilist) [iolist)

PRINT fid [,iolist]

PRINT * [,iolist]

PUNCH fid [,iolist]

PUNCH* [,iolist]

BUFFER IN (uid,mode)(first,last)

BUFFER OUT (uid,mode)(first,last)

ENCODE (no-chars,fid,uid) [iolist]

DECODE (no-chars,fid,uid) [iolist]

NAMELIST /grpname1/ niolist1 [••• /grpnamen/ niolistnl

READ (cilist)
READ grpname

WRITE (cilist)

PRINT grpname

PUNCH grpname

REWIND (cilist)
REWIND uid

BACKSPACE (cilist)
BACKSPACE uid

ENDFILE (cilist)
ENDFILE uid

OPEN (cilist)

CLOSE (cilist)

INQUIRE (cilist)

sl FORMAT (fspec)

UNIT (uid)

LENG'lll (uid)

ARRAY ASSIGNMENT
suba .. arrayexp

D-4

6-13
6-39
6-41

6-13

6-41

6-14
6-40
6-42

6-15

6-42

6-16

6-43

E-1

E-2

6-52

6-51

6-45

6-45

6-46

6-47

6-48

6-56

6-56

6-57

6-53

6-54

6-55

6-16

E-2

E-2

8-3

60480200 A

VECTOR STATEMENTS
ASSIGN desc,vec
ASSIGN desc, .DYN. isexp

FREE

vec = vaexp

bvec = bexp

WHERE (bexp) vector assignment statement

WHERE (bexp)
OTHERWISE
END WHERE

DESCRIPTOR v1(, ••• ,vnl

type FUNCTION proc (dars1(1 ••• ,darsnl;*)

ENTRY proc (darg1(, ••• ,darsnl;*)

DATA vlist1 /dlist1/ [, ••• ,vlistn /dlistn/l
where vlist can include vector references and descriptors, and dlist can include
vector references

60480200 A

9-5

9-5

9-10

9-11

9-11

9-12

9-3

9-6

9-14

9-15

9-6

D-5

COMPATIBILITY FEATURES E

Certain features of FORTRAN 200 are provided only
for compatibility with FORTRAN Extended. The com­
patibility features are described in this appendix.

NOTE

The features described in this appendix
should not be used for new programs and are
intended only for the conversion of existing
programs,

HOLLERITH CONST ANT
COMPATIBILITY
Hollerith elements are described in section 2,
Statement Elements. For compatibility, Hollerith
constants are supported in relational and arithmetic
expressions.

A Hollerith constant used in an arithmetic or
relational expression is limited to eight char­
acters. An H constant is left-justified with blank
fill in a fullword. An H constant that is too long
is truncated on the right, and a warning diagnostic
is issued, An R constant is right-justified with
binary zero fill in a fullword. An R constant that
is too long is truncated on the right and a warning
diagnostic is issued.

The Hollerith constant is considered typeless. A
typeless constant is not converted for use as an
argument or for assignment. If Hollerith constants
are the only operands in an arithmetic expression,
the result is type integer.

BUFFER IN AND BUFFER
OUT COMPATIBILITY
Input, output, and memory transfer statements are
described in section 6. The BUFFER IN and BUFFER
OUT statements are provided for compatibility with
FORTRAN Extended. The UNIT and LENGTH functions
are also provided for compatibility.

The BUFFER IN and BUFFER OUT statements are used to
transmit binary data between binary files and main
memory. The length of the buffer area in which the
data is contained should be an even number of bytes
for tape files, or a multiple of pages for disk
files. Ordering the data in this manner provides
for the most economical use of storage.

A file referenced in a BUFFER IN or BUFFER OUT
statement must be preconnected or connected for
sequential access, The specified unit must not be
referenced in any other data transfer input/output
statement while connected, However, the unit can
be closed and opened again. The unit can be refer­
enced in the file positioning statements BACKSPACE,
ENDFILE, and REWIND. The unit or the file can also
be referenced in an INQUIRE statement,

60480200 J

After a BUFFER IN or BUFFER OUT, the error statue
of the logical unit involved should be checked by
using the UNIT function before another operation
with the unit is initiated. The unit status should
also be checked before the buffered data is used,
After the unit check, the number of bytes read by a
BUFFER IN can be optained with the LENGTH function.

BUFFER IN STATEMENT

The format of the BUFFER IN statement is shown in
figure E-1.

BUFFER IN Cu,mode) Cfi rst ,last)

u

mode

first

last

External unit identifier.

Disregarded.

A variable or array element name that
can be type character, integer, half­
precision, real, double-precision,
complex, or logical, and which defines
the first location of the buffer into
which data is to be transmitted.

A variable or array element name that
can be type character, integer, half­
precision, complex, or logical, and
which defines the location in the
buffer into which the last data item
is to be transmitted.

Figure E-1. BUFFER IN Statement

Execution of the BUFFER IN statement causes transfer
of data from the specified external unit to the
buffer defined by first and last, Only one record
is read for each BUFFER IN statement.

The location of last cannot precede first in memory.
The value (last-first+l) must be less than or equal
to 12288 words (twenty-four 512-word blocks).

BUFFER OUT STATEMENT

The format of the BUFFER OUT statement is shown in
figure E-2.

Execution of a BUFFER OUT statement transfers data
to the specified external unit from the buffer
defined by first and 1 as t • One logical record is I
written for each BUFFER OUT statement, The
parameters first and last must refer to the same
array, and last cannot precede first in memory,

E-1

I
9llFFER OU1' Cu,mode) C first, last)

u External unit identifier

mode Disregarded.

first A variable or array element name that
can be type character, half-precision,
real, integer, double-precision, com­
plex, or logical, and which defines
the first location of the buffer from
which data is to be transmitted.

last A variable or array element name that
can be type character, half-precision,
real, integer, double-precision, com­
plex, or logical, and which defines the
location in the buffer from which the
last data item is to be transmitted.

Figure E-2. BUFFER OUT Statement

UNIT FUNCTION

The format of the UNIT function is shown
E-3.

UNIT Cu)

u External unit identifier.

Figure E-3. UNIT Function

in figure

The UNIT function checks the status of a data
transmission operation. The function returns one
of the following values:

-1.0 Unit ready

O.O Unit ready; end-of-file encountered

1.0 Unit ready; parity error encountered

After a BUFFER IN or BUFFER OUT, the UNIT function
should be called before any further operations are
performed on the file.

I The UNIT function can be referenced in an arithmetic
IF statement that branches to appropriate state­
ments, as directed by the value returned.

Note that the meaning of the sign of the value
returned by the UNIT function is different from that
of the values returned by the input/output status
specifiers described in section 6.

LENGTH FUNCTION

The format of the LENGTH function is shown in
figure E-4.

E-2

LENGTH Cu>

u External unit identifier.

Figure E-4. LENGTH Function

This funct.ion returns an integer value that
represents the number of bytes actually read. If
the buffer area is larger than the physical record,
the excess buffer space is undefined. If the phys­
ical record is larger than the buffer, the remainder
of the record is lost.

SPECIFICATION
COMPATIBILITY
Input/output lists and data formatting are described
in section 6. For compatibility with FORTRAN
Extended, the * specification is supported, the *
specification is identical to the ' specification,
except that asterisks replace the apostrophes.

INTRINSIC FUNCTION
COMPATIBILITY
Intrinsic functions are described in section IO.
For compatibility, a number of additional functions
are supplied. The functions are shown in table E-1.

TABLE E-1. FUNCTIONS SUPPLIED FOR COMPATIBILITY

Function Argument Result Type Reference Type

MASK(n) Logical Typeless
Integer
Real

SHIFT(a,n) Logical Typeless
Integer
Real

COMPL(a) Logical Typeless
Integer
Real

AND(al ,a2, •••) Logical Typeless
Integer
Real

OR(al ,a2, •••) Logical Typeless
Integer
Real

XOR(al,a2, •••) Logical Typeless
Integer
Real

60480200 H

A typeless function generates a result that is
typeless. A typeless result is not converted for
use as an arg1DDent or for assignment. For example,
the statement:

X • Y + SHIFT(l,5)

does not involve conversion of the SHIFT result from
integer to real. The result ls typeless and is used
without conversion.

AND

AND(al ,a2, •••) computes the bit-by-bit logical
product of al through an.

COMPL

COMPL(a) computes the bit-by-bit Boolean complement
of a.

MASK

MASK(n) forms a mask of n bits set to 1 starting at
the left of the word. The value of n must be in the

60480200 A

range 0 through 64. The result is undefined for an
arg1DDent outside this range.

OR

Oll(al,a2, •••) computes the bit-by-bit logical OR of
al through, an.

SHIFT

SHIFT(a,n) produces a shift of n bit positions in
a. If n is positive, the shift ls left circular.
If n is negative, the shift is right end-off with
sign extension from bit zero. The n value aust in
in the range -64 through 64. The result is
undefined if n is outside this range. The argument
n must be of type integer.

XOR

XOR(al,a2, •••) computes the bit-by-bit exclusive OR
of al through an,

E-3

I

DIFFERENCES BETWEEN VSOS RELEASE 2.1.6 AND 2.2 F

This appendix has been included for those CDC
customers who are not running the current PSR level
644 release VSOS 2.2 and subsequent releases.

To provide you with a better understanding of this
appendix, a feature summary for release VSOS 2.2
has been supplied, In addition, this appendix will
describe the FTN200 features as they appeared at
release VSOS 2.1.6.

VSOS 2.2 FEATURES
The FTN200 features that changed as a result of
VSOS 2.2 are as follows:

1. The basic procedure for compiling and executing
a FTN200 program.

At VSOS release 2 ,2 an alternative method was
established for compiling and executing a
FTN200 program, In order to execute a program
on the 2.1.6 system the user needed the fol­
lowing control statements: FTN200, LOAD, and
GO. Now, on VSOS release 2.2 the user can
compile and execute a program by simply spec­
ifying GO (or GO=l) on the FTN200 control
statements. For example, FTN200, GO=l. When
using the GO parameter, the system shared
library feature must be active at your
installation.

2. The parameters on the FTN200 control statement,

The following parameter has been added:

GO parameter (See section 14 for more
information)

The following parameters have changed:

BINARY - If the GO parameter is specified,
then BINARY must be omitted or
set to zero.

You do not need to specify file
length because the system
allocates as many blocks as
necessary for the file to hold
the binary object code. If you
do use the length option, the
first space allocation for the
file is the length you specify.

ERRORS - You do not need to specify the
file length because the system
allocates as many blocks as
necessary for the file to hold
the error diagnostics, If you do
not use the length option, the
first initial allocation for the
file is 16 blocks,

60480200 H

LIST You do not need to specify the
file length because the system
allocates as many blocks as
necessary for the file to hold
the listing. If you do not use
the length option, the first
space allocation for the file is
336 blocks.

SYNTAX - If the GO parameter is specified,
the SYNTAX parameter must be
omitted or set to zero.

3, Changes to the LOAD statement.

The following parameter has been added:

LINK parameter (See the VSOS manual for
more information)

Note the following change in using the LlB
parameter:

LIB=F200LIB is not required on VSOS release
2.2 because the contents of F200LIB have
now been put on SYSLIB. Since the default
for the LIB parameter is LIB=SYSLIB, the
LIB parameter can now be omitted,

4. FTN200 source code changes.

Changed feature:

Q8NORED subroutine (See section 11 for more I
information)

VSOS 2.1.6 FEATURES
The FTN200 features that changed as a result of
release VSOS 2.2 will appear in this section, but
will be documented as they appeared at release VSOS
2.1.6.

PROGRAM COMPILATION,
LOADING, AND EXECUTION

CYBER 200 program compilation, loading, and execu­
tion are controlled by the CYBER 200 virtual state
operating system (VSOS).

The three steps, compilation, loading, and execu­
tion, are performed when the following three CYBER
200 control statements are executed in a CYBER 200
job or interactive session:

1. An FTN200 statement (described in section 14).

2. A LOAD statement (described in the VSOS Ref­
erence Manual, volume 1).

F-1

3. A control statement naming the file on which
the LOAD statement wrote the executable pro­
gram. (The default file name is GO.)

NOTE

To load a FORTRAN 200 program, the LOAD
statement must use the LIB parameter to
specify the site's FORTRAN 200 library.
For example: LOAD,LIB=F200LIB.

The input file read by the FORTRAN 200 compiler can
contain more than one subprogram. Although sub­
programs can be compiled without a main program, a
program cannot be loaded or executed without a main
program.

Program compilation, loading, and execution are
possible only within a CYBER 200 job or inter­
active session. For a full description of CYBER
200 jobs and interactive sessions, refer to the
VSOS Reference Manual, volume 1.

(date) (time)
CNOS 2 logon banner>

CY BER 200 JOB SU BM ITT Al

To submit a CYBER 200 job, you login to a front-end
system, create a CYBER 200 job file, and then sub­
mit the CYBER 200 job file to the CYBER 200 system
for execution. The actual statement used to submit
the job differs depending on the front-end operating
system. Ask site personnel for the appropriate
statement for your site.

Figure F-1 shows a NOS 2 interactive session in
which a batch job is submitted to a CYBER 200
system. The following paragraphs describe the
session shown in the figure.

After logging in to the NOS 2 system and specifying
NORMAL and BATCH modes, the user gets and displays
the contents of the CYBER 200 job file.

The first statement in the job file is the job
statement (ADEY,STABC.). The parameter STABC
specifies the CYBER 200 mainframe identifier ABC.
(You must ask site personnel for the mainframe
identifier effective at your site.)

FAMILY: ,user1,passwd~~~~~~~~~~~~~~~~~~~~~~~~~-Entry to logon to NOS 2.
JSN: ABGU,NAMIAF IAF logon is successful.

F-2

READY.
normal~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-Ensures the terminal is in

READY. normal mode.
batch Switches NOS 2 to batch
RFL,O. mode.
/get,jobfile Gets the file JOBFILE.
/xedit,jobfile Calls a text editor to

XEDIT 3.1.00 display the job file
?? P* contents.
ADEY,STABC.
USER,USER=PUBS124,AC~OUNT=ACCT933,PASSWORD=XYZ.
RESOURCE,TL=5.
FTN200.
LOAD,LIB=F200LIB.
GO.
-EOR-

PROGRAM LOOP
K = 0
DO 10 I=1,5
READ 100,J

100 FORMATCI1)
10 K = J + K

PRINT 200
200 FORMAT(' THE SUM IS')

PRINT 300,K
300 FORMATC1X,I2)

STOP
END

--EOR--
1
2
3
4
5
END OF FILE

Figure F-1. Example of a NOS 2 Interactive Session
Submitting a CYBER 200 Job <Sheet 1 of 2>

60480200 F

?? end
JOBFILE IS A LOCAL FILE
/submit,jobfile,e.._-----------------------~Submits the job for
13.08.17 SUBMIT COMPLETE. JOBNAME IS ABGX execution.

/enquire,jsn Displays job status.
JSN SC CS OS LID STATUS JSN SC CS OS LID STATUS

ABGX.B. .RB.ABC.INPUT QUEUE ABGU. T.ON.BC. .EXECUTING
/enquire,jsn

JSN SC CS OS LID STATUS
ABGU. T .ON.BC. .EXECUTING
/enquire,jsn

JSN SC CS OS LID STATUS
ABKK.B. .RB.C17.PRINT QUEUE

JSN SC CS OS LID STATUS

JSN SC CS OS LID STATUS
ABGU. T .ON.BC. .EXECUTING

/qget,abkk,pr ._--------------------------Output file becomes Local
QGET ,ABGK. fi Le.
/xedit,abkk Calls a text editor to

XEDIT 3.1.00 display the output file.
?? L-adey- Locates the dayfile.
--EOR-
--EOR-
1 13.06.31 RSYSL592

10/06/83
VSYSL592 012306 PUBLIC G ADEY

?? P* .__ ______________________________ Lists the dayf i Le.

1 13.06.31 RSYSL592 VSYSL592 012306 PUBLIC G
10/06/83

13.06.32 RESOURCE,TL=10.
13.06.32 FTN200.
13.06.35 FORTRAN 200 CYCLE L592 BUILT 07/27/83 14:31
13.06.37 COMPILING LOOP
13.06.37 NO ERRORS
13.06.46 0.049 SECONDS COMPILATION TIME
13.06.50 ALL DONE
13.06.52 LOAD,LIB=F200LIB.
13.06.55 LOAD R2.1 CYCLE L592
13.07.03 ALL DONE
13.07 .04 GO.
13.07.09 FILE 42GO EXTENDED, NEW LENGTH 276
13.07.09 FILE 42GO EXTENDED, NEW LENGTH 324
13.07.10 STOP
13.07.13 ALL DONE
13.07.14 SYSTEM TIME UNITS (STU) 5.188
13.07.14 $$COMPLETE$$

END OF FILE

ADEY

?? L-the sum is-2 ._-----------------------~Locates the program output.
00008 200 FORMAT(' THE SUM IS')

0001/00008
-EOR-
--EOR-

THE SUM IS
?? p24------------------------------~Displays the program output.

THE SUM IS
15

?? end
ABKK IS A LOCAL FILE
/route,abkk,dc=Lp -------------------------Routes the output file to a

ROUTE COMPLETE. printer.
/bye Requests IAF Logout.

UN=USER1 LOG OFF
JSN=ABGU SRU-S

13.23.10.
1.693.

IAF CONNECT TIME: 00.15.46 • .._-----------------IAF logout.
LOGGED OUT.

60480200 F

Figure F-1. Example of a NOS 2 Interactive Session
Submitting a CYBER 200 Job (Sheet 2 of 2)

F-3 e

The second statement in the job file is the USER
statement. It specifies the CYBER 200 user name,
account name, and the user password.

The third statement in the job file is the RESOURCE
statement. The parameter TL=S specifies a five­
second time limit.

As described earlier, the next three control state­
ments (FTN200, LOAD, and GO) compile, load and
execute a FORTRAN 200 program. The FORTRAN 200
program source is listed between two --EOR-- indi­
cators. -EOR-- is the indicator the XEDIT editor
uses to display an end-of-record delimiter. One
end-of-record delimiter separates the program from
the control statements and another separates the
program from the input data (here, a sequence of
integers).

Because no input file is specified on the FTN200
statement, the program to be compiled is read from
file INPUT (the job file). The LOAD statement
generates an executable program on the default file
GO. The GO statement executes the program on file
GO; the program reads its input data from file
INPUT which now contains the sequence of integers
from the job file.

The NOS 2 command SUBMIT,JOBFILE,E submits the
CYBER 200 job file for execution. The NOS 2 com­
mand ENQUIRE, JSN displays the status of the user's
jobs. After the job output file is returned to the
NOS 2 print queue, the NOS 2 command, QGET,ABGK,PR
changes the output file to a local file. The user
locates and displays the dayfile showing that the
job executed normally. He then locates and displays
the program output. Finally, he routes the entire
output file to a printer and logs out.

FORTRAN CONTROL ST A TEMENT
This section describes the FORTRAN control state­
ment, its parameters, and the kinds of output
information that it can direct the FORTRAN 200
compiler to produce.

DEFAULTS

There are two kinds of parameter defaults. The
first kind occurs when the parameter and its value
are both omitted. The second kind occurs when the
parameter is given but the value is omitted.

The keywords, their minimal abbreviations, and
their defaults are summarized in table F-1 and
discussed in detail in the following paragraphs,

e F-4

TABLE F-1. KEYWORD ABBREVIATIONS AND
PARAMETER DEFAULTS

Minimal First Default Second Default
Keyword Abbrevi- (Omit Keyword (Omit Value

at ion and Value) Only)

ANSI ANSI ANSI=O ANSI=W

BINARY B B=BINARY/16 B=BINARY/16

C64 C64 C64=0 C64=1

DO DO 00=0 DO=l

ERRORS E E=OUTPUT/16 E=ERRS/16

ELEV ELEV ELEV=W ELEV=F

F66 F66 F66=0 F66=1

INPUT I I=INPUT !=COMPILE

LIST L L=OUTPUT/336 L=LIST/336

LO LO LO=S LO=SX

OPTIMIZE OPT OPT=O OPT=l

SC SC SC=O SC=l

SDEB SDEB SDEB=O SDEB=l

SYNTAX SYN SYN=O SYN=l

TM TM TM=HOST TM=205

UNSAFE UNS UNS=O UNS=l

BINARY

Specifies the name of the file to which the compiler
writes the binary object code.

The disposition of the binary file depends on the
kind of file. If the file is an attached permanent
file, then it is used, and any explicit or implied
length specification is ignored. If the file is an
existing local file, then the compiler returns it
and creates a new file. The compiler creates a new
local file in all other cases. The compiler per­
forms these functions by calling QSGETFIL with the
RETURN parameter specified as described in the VSOS
reference manual, Volume 1.

60480200 F

The valid options are:

BINARY•lfn/len

Writes object code on the file lfn, ini­
tially setting the length at len blocks.
The option len can be an integer constant
or a hexadecimal constant prefixed with a
fl. A block is 512 consecutive words. The
len default is 16 blocks. The compiler
passes len as the file length in its call
to QSGETFIL.

BINARYalfn

Same as BINARY=lfn/16.

BINARY

Same as BINARY=BINARY/16.

omit

Same as BINARY=BINARY/16.

BINARY=O

Generates no object code.

NOTE

The BINARY parameter might conflict with
the SYNTAX parameter. For instance, when
BINARY=O, the only acceptable option for
the SYNTAX parameter is 1. Otherwise,
warnings are generated.

ERRORS

Specifies a file name for recording the error
information.

The file length that you specify with ERRORS is not
necessarily always what you get; there is one
exception. If you have specified the same file
name with LIST, the actual file length will become
the larger of the two. If your LIST specifies a
larger file than your ERRORS specification, the
LIST file size prevails.

The disposition of the errors file depends on the
kind of file, If the file is an attached permanent
file, then it is used, and any explicit or implied
length specification is ignored. If the file is an
existing local file, then the compiler returns it

60480200 F

and creates a new file, The compiler creates a new
local file in all other cases. The compiler per­
forms these functions by calling QSGETFIL with the
RETURN parameter specified.

The valid options are:

LIST

ERRORS=lfn/len

Writes error diagnostics on the file lfn,
initially setting the length at len blocks
if there is an error of at least ELEV
severity. The option len can be an integer
constant or a hexadecimal constant prefixed
with a II. A block has 512 words. The len
default is 16 blocks. The c0mpiler passes
len as the file length in its call to
QSGETFIL.

ERRORS=lfn

Same as ERRORS=lfn/16.

ERRORS

Same as ERRORS=ERRS/16,

omit

Same as ERRORS=OUTPUT/16.

Specifies the file name to which the compiler can
write the the source listing and other requested
information except diagnostics.

The file length that you specify with LIST is not
necessarily always what you get; there is one
exception. If you have specified the same file
name with ERRORS, the actual file length will
become the larger of the two. If your ERRORS
specifies a larger file than your LIST spec­
ification, the ERRORS file size prevails.

The disposition of the list file depends on the
kind of file. If the file is an attached permanent
file, then it is used, and any explicit or implied
length specification is ignored. If the file is an
existing local file, then the compiler returns it
and creates a new file, The compiler creates a new
local file in all other cases. The compiler passes
len as the file length in its call to QSGETFIL.

F-5 e

SYNTAX

Instructs the compiler to perform a quick syntax
check on the source program, The valid options are:

SYNTAX=l

Performs a full syntactic scan but generates
no BINARY file,

SYNTAX=O

Compiles completely.

SYNTAX

Same as·SYNTAX=l.

omit

Same as SYNTAX=O.

NOTE

The SYNTAX parameter might conflict with
the BINARY, LO, OPTIMIZE, and UNSAFE param­
eters. When SYNTAX=l, the only acceptable
options for these parameters are BINARY=O,
OPTIMIZE=O, UNSAFE=O, LO=S, LO=X, and LO=SX.

Any other options generate warnings.

CONTROL STATEMENT
EXAMPLES
Figures F-2 and F-3 show examples of the use of
FORTRAN 200 control statements.

Figure F-2 shows the all-default case. The FTN200.
statement alone assigns default values to each
option. The figure lists the default values.

The ERRORS file of figure F-2 has a default length
of 16, but the ERRORS file is the same file as the
LIST file, and the greater length takes precedence.

Figure F-3 shows an example of a FORTRAN 200 con­
trol statement with some options specified and
others allowed to default. The list shows all
values, including the default values.

e F-6

Although the ERRORS file of figure F-4 has been
specified with a length of 16, the LIST file is the
same file and its default length is 336; the length
of 336 takes precedence.

FTN200. is equivalent to:

FTN200,ANSI=O,
BINARY=BINARY /16,
C64=0,
DO=O,
ERRORS=OUTPUT/336,
ELEV=W,
F66=0,
INPUT=INPUT,
LIST=OUTPUT/336,
LO=S,
OPTUHZE=O,
SC=O,
SDEB=O,
SYNTAX=O,
Tfll=HOST,
UNSAFE=O.

Figure F-2. Control Statement Example With
Default Values

FTN200,I=SOURCE,L=LOOK,OPT=1,LO=AS,SC,
Tfll=205,B=LGO/#AA,C64,E=LOOK/16

is equivalent to (including defaults):

FTN200,ANSI=O,
BINARY=LGO/#AA,
C64=1,
DO=O,
ERRORS=LOOK/336,
ELEV=W,
INPUT=SOURCE,
LIST=LOOK/336,
LO=AS,
OPTIMIZE=DPRSV,
SC=1,
SYNTAX=O,
TM=205,
UNSAFE=O.

Figure F-3. Control Statement Example

60480200 F

QSNORED

The subroutine Q8NORED supresses the normal file
size reduction that is performed at the completion
of program execution. Normally, files created by a
program are initially 128 512-word blocks long, and
are reduced at the completion of program execution
to a minimal size. If Q8NORED is called in the
program, the files specified in the Q9NORED call
retain their initial size, rather than being
reduced. See figure F-4 for the format of a
Q8NORED call.

60480200 F

CALL Q8NORED
or

CALL Q8NOREDCuid1, ••• ,uidn)

uid An external unit identifier

Figure F-4. QSNORED

If no logical unit numbers are specified in the
Q8NORED call, all files retain their initial size,
rather than being reduced.

F-7e

VECTOR PROGRAMMING G

This appendix presents an introduction to the
vector processing capabilities of FORTRAN 200. The
first part of this appendix introduces elementary
concepts of vectors. The second part describes
what kinds of program constructs can be vectorized
by the automatic vectorization feature of the CYBER
200 compiler, and how they are vectorized for the
greatest increase in execution speed. It also
explains what kinds of program constructs inhibit
vectorization. The third part gives a detailed
description of how the hardware instructions
accomplish vectorization; this part is intended for
those desiring more information about vectorization
concepts. The fourth part describes the
vectorization report messages.

The discussion assumes you are familiar with a
version of FORTRAN 77, but unfamiliar with vectors
and vector programming. To apply the vectorization
concepts presented in this appendix, your program
must be written in FORTRAN 200 and compiled and
executed on the CYBER 200.

INTRODUCTION TO VECTORS
FORTRAN programs frequently contain many DO loops
that perform operations on arrays. If the arrays
are large, the loops can be quite time-consuming.
The vector processing capability of the CYBER 200
provides a way of making array operations within DO
loops considerably faster.

WHAT IS A VECTOR?

To a mathematician, a vector is a set of N numbers
uniquely defining a distance and a direction in an
N-dimensional space. A FORTRAN programmer
generally uses the term vector of length N to mean
any one-dimensional set of N numbers. Arrays, and
portions of arrays, can be thought of as vectors.
For example, the following statements define a
5-element vector and store some values into it:

DIME~SION A(5)
DATA A /6.0, 1.0, 2.0, 9.0, 7.0/

The vector can be pictured as shown in figure G-1.

AC1 > AC2> AC3> AC4> ACS>

6.a 1.a 2.a 9.a 7.a

Figure G-1. Vector Example

A scalar A vector can be contrasted with a scalar.
is simply a single value, such as a
variable, or array element. The
arithmetic operations in your existing
programs are known as scalar operations.
following example, the variables R and

constant,
familiar

FORTRAN
In the
S are

60480200 J

scalars. The
operation and
variable T:

addition of R and S is a
the result is stored in the

scalar
scalar

DATA R, S/l.O, 2.0/

T = R + S

Scalar operations involve single-valued operands
and calculate single-valued results.

Vector operations, however, operate on vectors and
calculate results for vectors. Vectors usually
consist of more than one element. The following
example shows
internally be
operation:

an array
performed

operation that
as a single

can
vector

DIMENSION A(5), B(5), C(5)
DATA A/6.0, 1.0, 2.0, 9.0, 7.0/
DATA B/O.O, 10.0, 8.0, 4.0, 1.0/

DO 10 I=l ,5
C(I) = A(I) + B(I)

10 CONTINUE

This program defines three arrays: A, B, and c.
The contents of arrays A and B are added and the
result is stored in the array C. The addition can
be performed as vector addition because A and B can
be represented as vectors in the machine. In a
vector addition, elements of one vector are added
to corresponding elements of another vector, The
vector addition can be pictured as shown in figure
G-2.

A C1) AC2> AC3) AC4) ACS>
Vector A:

6.a 1.a 2.a 9.a 7.a

+ + + + +

8C1) 8C2) 8C3) 8C4> 8CS)
Vector 8:

a.a 11a.a I a.a 4.a 1.0

l l l l l
c C1) c C2> c C3) c C4) CCS)

Vector C:
6.0 j 11.0 I 10.0 13.a a.a

Figure G-2. Vector Addition

Thus, the result of this figure is a vector having
the values 6.0, 11.0, 10.0, 13.0, and 8.0.

G-1 e

WHY ARE VECTOR OPERATIONS FASTER
THAN SCALAR OPERATIONS?

Vector operations on the CYBER 200 are performed
using a pipeline type of processor. To see why the
pipeline processor executes faster, consider the
following DO loop, which adds the number 5 .O to
each element of a IO-element array A, and stores
the results in the array B:

DIMENSION A(lO), B(lO)

DO 10 I~l ,10
B(I) = A(I) + 5.0

10 CONTINUE

Consider a single calculation within this loop, the
calculation B(l) = A(l) + S. The FORTRAN compiler
translates this statement into a sequence of
machine instructions. To simplify the example, we
assume a hypothetical computer on which the
assignment statement B(l) A(l) + 5.0 is
translated into the following machine instructions:

LOAD
ADD
STORE
BRANCH

A(l)
s.o
B(l)

Now focus on the ADD instruction. On a scalar
processor, the ADD instruction for a particular
operand must be complete before the ADD for the
next operand can begin. For example, the ADD for
A(l) must be complete before the ADD for A(2) can
begin.

On a pipeline processor, however, the ADD is
divided into a sequence of steps. In this example,
we assume five steps, with each step requiring one
cycle of execution time. Thus, the ADD instruction
can be pictured as shown in figure G-3.

2 3 4 s

Figure G-3. Add Instruction

Each box. represents one step of the ADD instruction.

In scalar processing, all steps must be complete
for an operand before processing of the next
operand can begin; a single ADD takes 5 cycles.
With pipeline processing, after a step is complete,
that step can process the next operand. In our
example, at the beginning of the first cycle, the
first step of the ADD instruction begins processing
A(l). See figure G-4.

2 3 4 s

AC6) ACS> AC4) AC3) AC2>

2 3 4 s

AC1>

Figure G-4. Add Instruction - Cycle 1

When step 1 is complete for A(l), A(l) moves on to
step 2 and step 1 begins for A(2). See figure G-5.

2 3 4 s

AC2> AC1)

Figure G-S. Add Instruction - Cycle 2

At the end of cycle 2, A(1) moves on to step 3,
A(2) moves to step 2, and step 1 begins processing
the next operand. Diagrams for cycles 3, 4, and 5
are shown in figure G-6.

Cycle 3:

2 3 4 s

AC3) AC2> AC1)

Cycle 4:

2 3 4 s

AC4> AC3) AC2) AC1)

Cycle S:

2 3 4 s

ACS) AC4) AC3) AC2) AC1)

Figure G-6. Add Instruction -
Cycles 3, 4, and S

At cycle S, five operands are being processed by
the ADD instruction. At cycle 6, the operation
A(l) + 5 .O is complete and the result is ready to
be stored into B(l). See figure G-7.

------;~AC1> + S.O ---BC1)

Figure G-7. Add Instruction - Cycle 6

e G-2 60480200 J

Subsequently, an ADD is completed every cycle. The
hardware that allows for processing multiple
operands by a single instruction is known as a
pipeline.

Not only are 205 pipes segmented, but memory access
is by groups of words (8 words per operand) so that
memory access is faster.

All the elements of A can be loaded in two or three
memory cycles (depending on how A is positioned in
memory), instead of ten separate cycles for each
element.

VECTORIZATION
Vectorization is the process of transforming scalar
operations into vector operations. The CYBER 200
compiler has the capability of automatically
vectorizing a program using the vector-processing
hardware of the CYBER 200. This section describes
how the vector-processing capabilities available to
the CYBER 200 compiler analyzes your DO loops which
are candidates for vectorization. This section
also describes constructs in DO loops that cannot
be vectorized.

THE FORTRAN VECTORIZER

The CYBER 200 compiler has the capability of
automatically vectorizing DO loops in your
program. Automatic vectorization is performed by a
component called the vectorizer.

To select automatic vectorization of your program,
specify OPTIMIZE = V (or OPT=V) on the compilation
command. DO loops are described in the next
subsection. When OPT=V is selected, and the
compiler finds no FATAL compilation errors,

DO variable must be of type integer

vectorization can occur. The vectorizer first
scans the source code for DO loops. If there are
no DO loops in your program, no vectorization will
occur. Other types of loops are not vectorized.

Specifying OPTzV will usually result in faster
execution time of the resulting object code but it
does increase compilation time. See NOTE below.

A vectorization report automatically follows the
source code if OPT=V is selected.

NOTE

Because of the startup overhead involved
in vector processing, vector operations
may not be faster than scalar operations
for short vectors. However, vector
operations are almost always faster for
longer vectors; the longer the vectors,
the greater the time savings. Also, the
time savings achieved depends on the
operations being performed.

DO LOOPS

DO loops must meet certain basic criteria before
they are considered for vectorization. If the DO
loop does satisfy these criteria, the vectorizer
will analyze it further to determine if it can be
vectorized. See figure G-8.

Once the DO loop meets these criteria, it is a
candidate for vectorization. However, some types
of statements within the loop can still prevent
vectorization of the DO loop. For a description of
statements that cannot be vectorized, see Items
that Inhibit Vectorization.

\ If present, the increment parameter must
~1 on an outer loop. It can be any value
~ most loop.

be a constant
for the inner-

DO label[,] var=exp1, exp2 [,exp3]

label

}
No branches out of the loop <such as a GOTO or arithme-

~~~~~~~~~~~~ tic IF statement) from within the body of the DO loop, 
or branches from an extended range. 

final statement 

Figure G-8. DO Loop Criteria 

60480200 J G-3 e 



NOTE 

Multidimensional arrays in DO loops should 
be used with care. Whenever possible, the 
innermost loop should iterate over the 
first subscript, the next outermost loop 
should iterate over the second subscript, 
and so forth. A loop that iterates in 
this way will execute faster than one 
which iterates in some other order. This 
is because each reference to the array is 
made to the next closest array element 
(arrays are stored in columnwise order). 
For example, the following statements do 
not reference elements in the order they 
are stored: 

DIMENSION A(20,30,40),B(20,30,40) 

DO 10 I=l,20 

10 

DO 10 J=l,30 
DO 10 K=l,40 

A(I, J, K) 
CONTINUE 

B(I, J, K) 

The following example ensures that 
elements ·are referenced in the order they 
are stored and therefore executes faster: 

DIMENSION A(20,30,40), B(20,30,40) 

DO 10 K=l ,40 
DO 10 J=l,30 
DO 10 I=l ,20 

A(I, J, K) 
10 CONTINUE 

of The benefits 
storage order 
vectorization. 

are 

B(I, J, K) 

accessing arrays in 
achieved regardless of 

DATA TYPES 

The data type of values used within DO loops 
affects the amount of vectorization that occurs. A 
statement containing a character or double 
precision operand cannot be vectorized. Real, 
integer, and half precision types are more likely 
to be vectorized. Logical and complex data can 
also be vectorized, but not as often as the above 
mentioned types. 

Internal operations that accomplish vectorization 
can be type-specific; that is, they work only for a 
certain data type. The descriptions of the 
internal operations in the Vector Operations 
section indicate any type-specific restrictions. 
If a statement contains a data type that cannot be 
vectorized, the vectorization report will indicate 
that the DO loop was not vectorized. It is 
important to remember that implicit conversion does 
not change the data type of the array. For 
example, in the following assignment statement: 

A= 1 

the compiler assigns the real value 1.0 to A; even 
though you used an integer in the assignment 
statement, the resulting data type of A is real. 

• G-4 

ITEMS THAT INHIBIT VECTORIZATION 

Some loops have statements that cannot be 
vectorized. The types of statements that cannot be 
vectorized are as follows: 

A statement that causes an external reference 
cannot be vectorized; for example, a CALL 
statement, a non-intrinsic function reference, 
and all input/output statements cause external 
references. 

Statements 
character 
vectorized. 

that reference elements of 
or double precision cannot 

type 
be 

A statement or group of statements that is 
executed an indeterminate number of times 
cannot be vectorized; for example, statements 
controlled by a logical or arithmetic IF cannot 
be vectorized. 

Statements in a recurrence cycle cannot be 
vectorized. Recurrence cycles are described in 
the following subsection. 

The vectorization report indicates statements that 
cannot be vectorized. 

Recurrence Cycles 

A recurrence cycle exists when one or more 
statements depend on one another. This can occur 
when more than one iteration of a loop causes the 
same location in memory to be accessed. Recurrence 
cycles prevent vectorization because all statements 
in a recurrence cycle must be executed for a 
particular iteration of a loop before the next 
iteration of the loop can take place. In other 
words, these statements cannot be executed in 
parallel and therefore cannot be vectorized. 

For example: 

10 

DO 10 I=l ,N 
A(l) • B(l) + C(I)~Statement 1 
B(I+l) = A(l)'4-----Statement 2 

CONTINUE 

By unravelling the first three passes through the 
loop, we can more clearly see the recurrence cycle 
as shown in figure G-9. 

The value of B(2) is used in statement 1 after it 
is assigned a value in statement 2 of the previous 
iteration (arrow labeled l); the value of A(I) is 
used in statement 2 after it is assigned a value in 
statement 1 of the same iteration (arrow labeled 
2). Due to this interdependence, there is a 
recurrence cycle. 

However, if statement 2 is changed to B(I-1) 
A(I), then no recurrence cycle exists. For example: 

10 

DO 10 I=l,N 
A(I) = B(I) + C(I)~ Statement 1 
B(I-1) = A(I)------ Statement 2 

CONTINUE 

Although A(I) is referenced in both statements of 
the DO loop; no recurrence cycle exists. By 
unraveling the first three passes through the loop, 
we can see that a recurrence cycle is not created 
as shown in figure G-10. 

60480200 J 



1=1 

Statement AC1> = 8(1) + CC1) 

'z.. 
Statement 2 8(2) = AC1) 

1=2 ~ 
Statement AC2> = 8(2) + CC2> 

'z.. 
Statement 2 8(3) = AC2> 

1=3 ~ 
AC3) = 8(3) + CC3) 

" 8(4) = AC3) 

Statement 

Statement 2 

Figure G-9. Recurrence Cycle 

1=1 

Statement AC1) = 8(1> + c (1) 

~ 
Statement 2 8(0) = AC1> 

I=2 

Statement AC2) = 8(2) + CC2> 

"' Statement 2 8(1) = AC2> 

1=3 

Statement AC3) = 8(3) + CC3) 

~ 
8C2> = AC3) Statement 2 

Figure G-10. Recurrence Cycle - Not Created 

This is because in the 1=2 iteration, B(2) appears 
to the right of the equal sign, but it has not been 
computed in a previous iteration of the same loop. 
Recurrence cycles prevent vectorization of the 
loops contained in the cycle. The vectorization 
report indicates one statement of a recurrence 
cycle. 

Self recurrence is a recurrence cycle that occurs 
on one statement. For example: 

DO 10 J=l,5 
A(J) = A(J-1) * B(J) 

10 CONTINUE 

The value of A(J-1) is computed in a previous 
iteration of the loop. Self-recurrence occurs for 
A; therefore, the loop cannot be vectorized. 

60480200 J 

VECTOR OPERATIONS 
The vectorization component of the compiler 
vectorizes a program by scanning the object code 
and replacing scalar operations by equivalent 
vector operations. Certain of these operations are 
performed by the CYBER 200 hardware. The hardware 
vector operations include scattering, gathering, 
reduction, interval vector generation, scalar 
expansion, broadcasting, intrinsic function 
promotion, and stripmining. These hardware 
operations are described in this subsection. This 
subsection is intended for those readers deairing 
more detailed information of the vector-processing 
methods used to vectorize. Many of the terms 
described in this su~section are used in the 
vectorization report described lat'!!r in this 
appendix. 

NOTE 

The examples presented in this section are 
for illustrative purposes only. For 
actual examples of complete vectorized 
programs, see the vectorization report 
discussion in this appendix. 

SCATTERING AND GATHERING 

The scatter and gather ope rat.ions are used to 
vectorize stat"?ments that reference noncontiguous 
elements of an array. The scatter instruction is 
used 
stored 
array. 

when contiguous elements of 
into noncontiguous elements 
For example: 

DIMENSION A(3,3), B(3), C(9) 
DO 10 I=l ,3 

DO 20 J=l,3 
A(I,J) = B(J) 

20 CONTINUE 
10 CONTINUE 

an array are 
of another 

In this example, every element of B is assigned to 
every third element of A in the inner DO loop. The 
assignment statement assigns elements of array B to 
the noncontiguous elements of array A. This is 
shown internally in figure G-11. 

The gather instruction is used to gather 
noncontiguous elements of an array into an internal 
temporary vector. For example: 

DO 20 J=l,3 
B(J) = C(J**2) + B(J) 

20 CONTINUE 

This is shown internally in figure G-12. 

THE INTERVAL VECTOR 

Operations involving the assignment of a sequence 
of integers are vectorized using an interval 
vector. For example: 

DO 10 I=l, 1000 
A(I) • I 

10 CONTINUE 

In this example, the integers 1 through 1000 are 
assigned to corresponding array elements. This is 
shown in figure G-13. 

G-5. 



Array A Array 8 

A C1, 1> 

A C2, 1> 

AC3, 1 > 

A C1,2 > 

A C2,2) 

~..-------. 
8 C1) 

-------~ 8C2) 

AC3,2> 

A C1,3 > 

------ 8(3) ...-------- ..___. 

AC2,3) 

AC3,3 > 

Figure G-11. Scatter Instruction - Internal 

An interval vector is generated for the innermost 
loop's control variable, or for the scalar variable 
which assigned an arithmetic sequence. For example, 

10 

J=O 
DO 10 I=l,500 
J=J+2 
A(J)=I 

Internally: 

A(2)=1 
A(4)=2 

A( 1000)=500 

Array 

8(1) 

8(2) 

8C3> 

8 Array 8 

- 8C1) + - 8(2) + 

- 8C3> + 

Array A Interval Vector 

1 

A C1 > 

::::=== AC2) 

AC3) ,.------
AC4) ,.------
ACS> 

--------AC6) 

--------AC?> 

--------AC8) 

--------AC9) ,.------
AC10> 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

. . 

. . . 
A C1000> 1000 

Figure G-13. Interval Vector 

REDUCTION 

Some loops are vectorized through operations known 
as sum, product, or dot product reduction. 
Reduction is commonly used when vector elements are 
summed into a scalar variable. Reduction uses the 
SUM, PRODUCT, or DOT hardware instructions to 

Internal 
Temporary 
Array T Array C 

/ 
T C1) 

------------TC2> 

c C1) 

c C2) 

CC3) 

c C4) 

c (5) 

TC3) 

~ 
CC6) 

ccn 

CC8) 

CC9) 

Figure G-12. Gather Instruction - Internal 

e G-6 60480200 J 



reduce all elements of the vectors, 
asslgns the result to a scalar varlable. 
works only on type rea 1, integer, 
precislon data. For example: 

REAL 8(100), C(IOO) 
A = 0.0 
DO 10 Isl, 100 

A = A + 8(1) * C(I) 

10 CONTINUE 

and then 
Reduction 

and half 

The product of 8(1) * 
internal temporary scalar 
shown in figure G-14. 

C(I) is summed into an 
arbitrarily named TEMP 

8(1) * c (1) 

+ 

8(2) * c (2) 

+ 

8(3) * c (3) 

: : + 

8(100) * c (100) 

~ 
Figure G-14. Internal Temporary Scalar 

A Exf!anded to a Vector Array 8 

AC1> 8(1) 

A(2) 8(2) 

AC3> 8(3) 

A(4) 8(4) 

A(5) 8 (5) 

A(6) 8(6) 

A(7) 8(7) 

A(8) 8(8) 

A(9) 8(9) 

A(10) 8(10) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

The hardware lnst ruction DOT computes the sum <>f 
all pairwise multiplicatlons of 8 and C; the sum is 
added to and assigned to the scalar varible A and 
the process is then complete: 

SUM (8(1) * C(l) + 8(2) * C(2\ + ... + 8(100) * 
C(lOO)) +A-A 

NOTE 

Using the hardware instructions SUM, 
PRODUCT and DOT can sometimes gener.ite 
different results from the scalar execution 
of the summation in the DO loop due to a 
different order and normalization of 
summing the elements (they are summed in 
parallel without normalization). 

SCALAR EXPANSION 

Scalar expansion (or promotion) is a technique that 
is used in the vectorization of expressions 
containing scalar operands. The vectorlzer 
replaces a scalar with an internal tempordry 
vector. This is done so that each trip through the 
loop can reference a different memory location, 
thereby allowing vector processing. For example: 

DOSlsl,10 
A=8( 1) + R(l) .,_ ____ Statement l 

C(I) = A+ D(l)---- Statement 2 
5 CONTINUE 

The vectorizer performs the assignment in statement 
l using a scalar expansion of A and the values in 8 
and R. This ls shown internally in figure G-15. 

The value in A( 10) is the value assigned to the 
scalar A upon loop termination; the values of A(l) 
through A(9) are not used in calculating the v.1lue 
of A at loop termination. 

Array R 

R (1) 

R (2) 

R (3) 

R(4) 

R (5) 

Statement 1 
R(6) 

RC?> 

R (8) 

R(9) 

R <10> 

Figure G-15. Scalar Expansion 

60480200 J G-7 e 



BROADCASTING 

Broadcasting is the treatment of a scalar value as 
a temporary ve·ctor. The purpose of broadcasting is 
to perform vector operations when one of the 
operands has an invariant value. 

For example: 

B-1.0 
DO 10 I=l,10 

A(I) = B------- Statement 1 
10 CONTINUE 

In statement 1, the value of B (in this case 1.0) 
is assigned to an element of array A on each 
iteration of the loop. The statement is vectorized 
using the broadcast operation as shown in figure 
G-16. 

A 8 

AC1> 

AC2) 

AC3> ~ ..-1 1.----.0 

/ . . . 
AC10) 

Figure G-16. 8roacast Operation Example 

INTRINSIC PROMOTION 

The vectorizer replaces certain intrinsic function 
references and expressions involving exponentiation 
with an equivalent vector version. This operation 
is called intrinsic promotion. 

For example: 

00 10 Iml,10 
_A(I) =SIN (B(I)) 

10 CONTINUE 

The vector version of the SIN intrinsic can process 
a vector of values as shown in figure G-17. 

The math routines called by exponentiation 
operations also have vector equivalents. Thus, for 
example, the statement 

A(I) = X(I) ** 2 

can be vectorized. 

e G-8 

AC1) 

AC2> 

AC3) 

AC4) 

. . . 
AC10) 

~ ~Vector 
----version 

/'"" 

8(1) 

8(2) 

8(3) 

8(4) 

. . . 
8(10) 

Figure G-17. Intrinsic Promotion Example 

STRIPMINING 

Stripmining is used by the vectorizer to vectorize 
loops where the iteration count either is unknown 
(as in an assumed-size array) or exceeds the 
hardware vector length of 65535. Dummy argument 
arrays that are dimensioned to size 1 are treated 
as assumed-size arrays and are candidates for 
stripmining in the vectorization process. For 
example (vector length exceeds 65535): 

DO 10 I=l,100000 
A(I)=B(I) 

10 CONTINUE 

Internally, 
performed. 
operation. 

two separate vector operations are 
See figure G-18 for the first vector 

Array A Array 8 

AC1) 8(1) 

AC2) 8(2) 

AC3) 8(3) 

. . . . . . 
AC65535) 8(65535) 

Figure G-18. First Vector Operation 

60480200 J 



See figure G-19 for the second vector operation. 

Array A Array 8 

AC65536 8(65536) 

AC65537 8(65537) 

. . . . . . 
AC100000) 8(100000) 

Figure G-19. Second Vector Operation 

LOOP COLLAPSE 

When a multidimensional array is vectorized, active 
contiguous dimensions are collapsed to a single 
dimension. Active dimensions are dimensions that 
are referenced in the DO loop. Loop collapse 
occurs only when the loop bounds span the array 
dimension. For example: 

DIMENSION A(5,15), B(5,15) 
DO 10 I=l, 10 

DO 20 J=l, 5 
(J,I) = B(J,I) + 5 

20 CONTINUE 
10 CONTINUE 

FORTRAN 200 CYCLE 235L3 BUILT 06/03/87 11:32 SOURCE LISTING 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 2 
00012 
00013 
00014 3 
00015 
00016 
00017 4 
000111 

PROGRAM VX 
REAL A( 10, 10, 10) ,B( 10, 10).C( 10) ,D( 10), S 
INTEGER l,J,K 
A(•,•,1)•8 
A( 1,"', • )•B 
OD 1 K•1, 10 

DO 1 J•1, 10 
DD 1 1•1, 10 

S•S+A(l ,J,K) 
DD21•1,10 

C( i)•C(l-1)+0(1) 
DD 3 J•1,10 

DD 3 1•2,9 
B(l,J)•1 

DD 4 J•1,10 
DO 4 1•1,10 

CALL F(A(l,J,1),B(l,J)) 
END 

[A] 12 LOOPS WERE EXAMINED FOR POSSIBLE VECTORIZATION. 

[B] 7 LOOPS WERE VECTORIZED. 

VECTORIZER REPORT 
Figure G-20 is an example of a FORTRAN 200 program 
and the vectorizer report it creates. 

The line marked [A) indicates the number of loops 
in the source program, including the explicit DO 
loops and implicit loops of an array assignment. 
Implied loops of a READ or WRITE statement are not 
included • 

The line marked [BJ indicates all loops that are 
vectorized. If no loops are vectorized, the 
message NO LOOPS WERE VECTORIZED is printed and the 
report continues with the stacklib section. 

Each vectorized loop is listed by indicating the 
first source line number (the number in the left 
margin) of the loop. For explicit DO loops this is 
the DO statement. For array assignments, it is the 
assignment. This is followed by a count of loops 
that are vectorized beginning at that line. For 
explicit DO loops, the count is always 1. For an 
array assignment, the count is the number of 
dimensions vectorized. 

The line marked [C] indicates all loops that are 
stacklibbed. If no loops are vectorized, the 
message NO LOOPS WERE STACKLIBBED is printed and 
the report continues with the nonvectorizable 
section. 

vx COMPILED 06/16/87 18:50 SAFE DPT•V PAGE 

0001/00001 
0001/00002 
0001/00003 
0001/00004 
0001/00005 
0001/00006 
0001/00007 
0001/00008 
0001/00009 
0001/00010 
0001/00011 
0001/00012 
0001/00013 
0001/00014 
0001/00015 
0001/00016 
0001/00017 
0001/00018 

[FIRST LINE OF VECTORIZED LOOPS (NUMBER OF LOOPS VECTORIZED)] 
LINE (COUNT) LINE (COUNT) LINE (COUNT) LINE (COUNT) LINE (COUNT) LINE (COUNT) 

00004 ( 2) 00005 1) 00006 ( 1) 

[C] 1 LOOP WAS STACKLIBBEO. 

[FIRST LINE OF STACKLIBBEO LOOPS (NUMBER OF LOOPS STACKLIBBED)] 
LINE (COUNT) 

00010 ( 1) 

[D] 4 LOOPS WERE LEFT SCALAR. 

00007 ( 1) 00008 ( 1) 

[FIRST 
FIRST 

LINE OF 
AT LINE 

THE LOOP / LINE THAT PREVENTS VECTORIZATION / THE REASON THAT PREVENTS VECTORIZATION) 
REASON THAT THE LOOP WAS NOT VECTORIZED. 

00005 00005 A PROPERTY OF AN EMBEDDED LOOP PREVENTS THIS LOOP FROM VECTORIZING. 

00013 ( 

00012 00014 
00015 00017 

AN INNER LOOP MIGHT NOT COMPLETELY SPAN THE CORRESPONDING DIMENSION OF A DESTINATION ARRAY (B). 
THIS LOOP CONTAINS A NONVECTORIZABLE LOOP. 

00016 00017 THIS LOOP CONTAINS A NDNVECTORIZABLE KIND OF STATEMENT. 

Figure G-20. Vectorizer Report Example 

1) 

60480200 J G-9 e 



Each stacklibbed loop is listed by indicating the 
first source line number (the number in the left 
margin) of the loop. For explicit DO loops this is 
the DO statement. For array assignments, it is the 
assignment. This is followed by a count of loops 
that are stacklibbed beginning at that line. For 
explicit DO loops, the count is always 1. For an 
array assignment, the count is the number of 
dimensions stacklibbed. 

The line marked (D) indicates all loops which can 
not be translated. These loops remain in their 
original scalar form. If no loops are left scalar, 
the message NO LOOPS WERE LEFT SCALAR ia printed 
and the report ends. 

e G-10 

Each nonvectorizable loop is listed by indicating 
the first source line number (the number in the 
left margin) of the loop. For explicit DO loops 
this is the DO statement. For array assignments, 
it is the assignment. This is followed by a line 
containing the nonvectorizable construct, and a 
message indicting why the loop was not 
vectorizable. In some cases, a symbol in 
parentheses is appended if it is a property of that 
symbol or a construct containing that symbol that 
prevented vectorization. 

Because a loop is abandoned as soon as a single 
problem is found, a loop may have additional 
constructs which prevent vectorization. 

604H0200 J 



I 

A Edit Descriptor 6-18 
A Listing Option 14-4, 14-15 
ABC 14-2 
ABS Function 10-11 
ACCESS Specifier 6-3 
ACOS Function 10-11 
Actual Arguments 

See Arguments 
Addition 4-1 
Adjustable Array 2-7, 7-8 
Aexp 

See Expressions, Arithmetic 
AIMAG Function 10-11 
AINT Function 10-11 
Aligning 

Arrays for Concurrent I/O 11-2 
Dynamic Space on Large Page Boundaries 

ALL Condition Designator 11-12 
ALL DONE Response 13-4 
ALOG Function 10-11 
ALOGlO Functfon 10-11 
Alternate Return Specifiers 7-3, 7-7, 7-8 
Alternate Unit Specifiers 7-2 
AMAXO Function 10-11 
AMAX! Function 10-11 
AMINO Function 10-11 
AMINl Function 10-11 
AMOD Function 10-11 
Ampersand 

Use in Label References 12-1 
Use in Namelist Input/Output 6-48 
Use in Outputting Descriptors 6-12 

.AND. 4-4 
And (logical) 4-4 
AND Function E-3 
ANINT Function 10-11 
ANSI Compil~tion Option 14-2 
Apostrophe Edit Descriptor 6-37 
Arguments 

Actual 7-5, 7-7, 7-8, 7-12 
Correspondence of 7-9 
Dummy 7-6, 7-7, 7-8, 7-9, 7-10, 7-11 
Of Special Calls 12-1 

7-2 

Restrictions on Association 7-8 
Subprogram names as 3-9, 3-10, 7-8.1, 7-9 

Arithmetic Assignment 
See Assignment 

Arithmetic Expressions 
See Expressions 

Arithmetic IF Statement 5-2 
Arithmetic Operators 

See Expressions 
Arithmetic Overflow 

See Overflow 
Array 

Adjustable 2-7, 7-8 
As Dummy Arguments 7-8 
Assignment 8-1 
Assumed-Size 2-7, 7-8 
Bounds 2-6 
Columnwise order 2-8 
Declaration 2-6.1, 3-6 
Declarators 2-6.1 
Declared in COMMON 3-7 
DIMENSION Statement 3-6 

60480200 J 

INDEX 

Array (Contd) 
In Input/Output List 6-ll 
Initialization 3-12 
Of Descriptors 9-3 
Position formulas 2-10 
References 2-7 
References in Equivalence 3-8 
Rowwise order 2-8 
ROWWISE Statement 3-6 
Size 2-7 
Storage 2-7 
Subarray 8-1 
Subscripts 2-7, 2-9 
Type Specification 3-1 

Array Assignment Features 
Array Assignment Statements 8-3 
Array Expressions 8-3 
Conformable Subarray References 
Implied DO Subscript Expressions 
Subarray References 8-1 

ASIN Function 10-12 
Assembly Language 

Calling Sequence 13-5 
Calls to SIL Routines 13-4 
Subprograms 1-1 

Assembly Listing 14-4, 14-15 
ASSIGN Statement 

Descriptor 9-3, 9-4 
Statement Label 4-7 

Assigned GO TO Statement 5-1 
Assignment 

Scalar 
Arithmetic 4-5 
Character 4-6 
Logical 4-6 

Statement Label 4-7 
Type Conversion 4-5 
Vector 

Arithmetic 9-10 
Bit 9-11 
Controlled using WHERE 9-11 

Assumed-Size Array 2-7, 7-8 
Asterisk 

Edit Descriptor 
Format Identifier 
Operator 4-1 
Unit Identifier 

E-2 
6-7 

6-11 
Use in Array Declarators 2-7 
Use in Dummy Argument List 7-8 
Use in Functions 7-4 

8-3 
8-1 

Use in Implied DO Subscript Expressions 
Use in Label References 12-1 
Use in List-Directed Input/Output 6-41 

ATAN Function 10-12 
ATAN2 Function 10-12 
Auxiliary Input/Output Statements 

CLOSE 6-54 
INQUIRE 6-55 
OPEN 6-53 

B Edit Descriptor 6-21 
BACKSPACE Statement 6-57 
Batch Processing 13-1 
BINARY Compilation Option 14-2 

8-1 

Index-I 



Binary Data Input/Output 
Bit 

6-38, 6-40, E-1 

Constants 9-6 
Data Representation 9-6 

Bit Assignment 
See Assignment 

Bit Edit Descriptor 6-21 
Bit Expressions 

See Expressions 
Bit Operators 

See Expressions 
Bit Pattern Initialization 
BIT Statement 9-6 
Bit Vector 

Declaration 9-6 
Use in WHERE Statement 

BKP Condition 11-7 
Blank Common 

See Unnamed Common 
BLANK Specifier 6-4 
Blanks 

10-27 

9-11 

For Carriage Control 6-13 
In Input Data 6-4, 6-21, 6-22 
In Syntax 2-1 

BLOCK DATA Statement 7-10 
Block Data Subprograms 7-10 
Block IF Statement 5-3 
Block IF Structures 

Description 5-5 
Nesting 5-6, 5-7, 9-14 

Block WHERE Statement 9-12 
Block WHERE Structures 

Description 9-12 
Nesting 5-6, 5-7, 9-14 

BN Edit Descriptor 6-21 
Branch 

See Data Flag Branch Manager 
See Flow Control Statements 

Branch-Handling Routines 11-9 
Breakpoints 11-7 
Broadcasts 11-14 
BTOL Function 10-12 
BUFFER IN Statement 
Buff er Input/Output 
BUFFER OUT Statement 
Buffer Size 6-4 
BUFS Specifier 6-4 

E-1 
E-1 

E-1 

BZ Edit Descriptor 6-21 

CABS Function 10-12 
CALL Statement 7-7 
Calling Sequence 13-5 
Calls to STACKLIB Routines 

See STACKLIB Routines 
Carriage Control 6-13 
CCOS Function 10-12 
Cexp 

See Expressions, Character 
CEXP Function 10-12 
CHAR Function 10-12 
Character 

Constants 2-4 
Data Representation 2-12 
Substrings 2-9 

Character Assignment 
See Assignment 

Character Edit Descriptors 
A 6-18 
H 6-27 
R 6-30 

Character Expressions 
See Expressions 

Character Format Specification 6-16 

Index-2 

Character Operator 
See Expressions 

Character Set 2-1, 
CHARACTER Statement 
Cilist 

A-1 
3-4.1 

See Control Information List 
Class I Branches 

See Data Flag Branch Manager 
Class III Branches 

See Data Flag Branch Manager 
CLOG Function 10-12 
CLOSE Statement 6-54 
CMPLX Function 10-12 
Coding Form 1-1 
Colon 

Edit Descriptor 6-38 
Notation 8-1 

Column Conventions 1-2 
Columnwise Arrays 2-8 
Cooments 1-3 
·common 

Alignment in 3-7 
Array Declaration in 3-7 
Declaration 3-6 
Extending using EQUIVALENCE 
Initializing 7-10 
Placeholders in 3-7 
Use in Functions 7-5 

COMMON Statement 3-6 
Comparisons 

In Logical IF 5-3, 14-2 
Compatibility Features 

AND Function E-3 
Asterisk Specification E-2 
BUFFER IN Statement E-1 
Buffer Input/Output E-1 
BUFFER OUT Statement E-1 
COMPL Function E-3 
Hollerith Constants E-1 
Intrinsic Functions E-2 
LENGTH Function E-2 
MASK Function E-3 
OR Function E-3 
SHIFT Function E-3 
Specification Compatibility 
UNIT Function E-2 
XOR Function E-3 

Compilation 

3-8 

E-2 

Basic Overview 
FTN200 Control 
Options 14-1 

13-1, F-1 
Statement 14-1, F-4 

Compilation Options 
Abbreviation of 
ABC 14-2 
ANSI 14-2, F-4 
BINARY 14-2, F-4 

14-1, F-4 

C64 5-3, 14-2, F-4 
Defaults 14-1, F-4 
DO 5-7, 14-2, F-4 
ELEV 14-3, F-4 
ERRORS 14-3, F-4 
F66 14-3, F-4 
GO 14-4 
INPUT 14-4, F-4 
LIST 14-4, F-4 
LO 14-5, F-4 
OPTIMIZE 14-5, F-4 
SC 14-5, F-4 
SDEB 14-5, F-4 
SYNTAX 14-4, 14-6, F-4 
TM 14-5, F-4 
UNSAFE 14-6, F-4 

Compiler-Generated Listings 14-6.l 
COMPL Function E-3 

I 

I 

I 

60480200 J 



Complex 
Constants 2-3 
Data Representation 2-12 
Range of Values 2-12 

Complex Edit Descriptors 
See Numeric Edit Descriptors 

COMPLEX Statement 3-3 
Computed GO TO Statement 5-2 
Concatenation 4-3 
Concurrent Input/Output 

Array Alignment 11-2 
Description 11-1 
Q7BUFIN 11-3 
Q7BUFOUT 11-3 
Q7SEEK 11-6 
Q7WAIT 11-4 

Condition designators 11-7 
Condition-Enable Bits 11-6 
Conditions Causing Data Flag Branches 
Conformable Subarray References 8-3 
CONJG Function 10-13 

11-6 

Connecting Files and Units 6-2, 6-53, 7-1 
Connecting to the CYBER 200 System 13-4 
Constants 

Arithmetic 2-2 
Bit 9-6 
Character 2-4 
Complex 2-3 
Double-Precision 2-3 
Half-Precision 2-2 
Hexadecimal 2-5 
Hollerith 2-4, E-1 
Integer 2-2 
Logical 2-4 
Real 2-2 
Symbolic 2-5 

Continuation of Statements 1-2, 1-3 
CONTINUE Statement 5-8 
Control Information List 6-3 
Control Information List Specifiers 

ACCESS 6-3 
BLANK 6-4 
BUFS 6-4 
DIRECT 6-4 
END 6-5 
ERR 6-5 
EXIST 6-6 
FILE 6-6 
FMT 6-6 
FORM 6-6 
FORMATTED 6-6 
IOSTAT 6-8 
NAME 6-8 
NAMED 6-8 
NEXTREC 6-8 
NUMBER 6-8 
OPENED 6-9 
REC 6-9 
RECL 6-9 
SEQUENTIAL 6-9 
STATUS 6-10 
UNFORMATTED 6-10 
UNIT 6-10 

Control Statement 
Diagnostics B-43 
FORTRAN 14-1 
FTN200 9-1, 14-1, F-1, F-2, F-4 
Parameters 14-1, F-4 

Control Variable 
In Input/Output List 6-11, 6-12 
Of DO 5-6 
Of Implied DO 3-13, 6-12 

Control Vector 
In WHERE 9-11, 9-12 

60480200 J 

Control Word Delimited Record Type 6-1 
Conversion 

During Assignment 4-5 
During Expressions Evaluation 4-2 
During Initialization 3-13, 3-14 
During Input/Output 6-16, 6-38, 6-43, 6-48, 

6-49, 6-50, 6-51 
COS Function 
GOSH Function 
COTAN Function 

10-13 
10-13 

10-13 
Cross-Reference Maps 

See Maps 
CSIN Function 
CSQRT Function 
Current Record 
Cvar 

10-13 
10-13 
6-2 

See Control Variable 
CYBER 200 Job Submittal 
C64 Compilation Option 

D Edit Descriptor 6-22 
DABS Function 10-13 
DACOS Function 10-13 
DASIN Function 10-13 
Data 1-4 

13-1, F-2 
5-3, 14-2 

Data Element Representation 2-11 
Data Flag Branch Conditions 11-7 
Data-Flag-Branch-Enable Bit 11-6 
Data Flag Branch Manager 

Description 11-6 
Q7DFBR 11-12 
Q7DFCL1 11-11 
Q7DFLAGS 11-12 
Q7DFOFF 11-12 
Q7DFSET 11-11 

Data Flags 11-6 
Data items 6-48, 6-49 
Data List 

See DATA Statement 
Data Representation 

Bit 2-12, 9-6 
Character 2-12 
Complex 2-12 
Double-Precision 2-11 
Half-Precision 2-11 
Hexadecimal 2-12 
Hollerith 2-12, E-1 
Integer 2-11 
Logical 2-12 
Real 2-11 

DATA Statement 3-12, 9-3, 9-4 
DATAN Function 10-13 
DATAN2 Function 10-13 
DATE Function 10-14 
DBLE Function 10-14 
DCOS Function 10-14 
DCOSH Function 10-14 
DDF Condition 11-7, 11-8 
DDIM Function 10-14 
DEBUG Utility 11-7, 11-8, 13-5, 14-5 
Debugging 

Compiler-Generated Listings 14-4, 14-6 
DEBUG Utility 14-5 
Nonstandard Usages 14-2 
Specifying Error File 14-2, F-5 
Specifying Listing File 14-3, F-5 
Specifying Listing Options 14-4, F-5 
Specifying Severity Threshold 14-3 
Syntax Check 14-5, F-6 
Utilities 13-5 

Decimal Arithmetic Overflow 
See Overflow 

Index-3 

I 

I 



I 

Decimal Data Fault 11-7, 11-8 
Declarations 3-1 
Declarators 

Description 2-6 
Use in COMMON 3-7 
Use in DIMENSION 3-6 
Use in ROWWISE 3-6 
Use in Type Statements 3-1, 3-2, 3-3, 3-4 

DECODE Statement 6-51 
Descriptor ASSIGN Statement 9-3, 9-4 
Descriptor Mode 

See Descriptor Type Specification 
DESCRIPTOR Statement 9-3 
Descriptor Type Specification 3-1 
Descriptors 

Arrays of 9-3 
Description 9-2 
In Input/Output List 6-11 
Initializing 9-4 
Outputting using Ampersand 6-12 

Designators 
See Operand Designators 

DEXP Function 10-14 
DFB 

See Data Flag Branch Manager 
DFBM 

See Data Flag Branch Manager 
DFLOAT Function 10-14 
Diagnostic Me"ssages 

Changing 11-13 
Explanations B-1 
For Non-Standard Usage 14-2 
Specifying Error File 14-2, F-5 
Specifying Severity Threshold 11-13, 14-3 

DIM Function 10-14 
Dimension Bound Expression 

See Array 
DIMENSION Statement 3-6 
DINT Function 10-14 
Direct Access 

ACCESS Specifier 6-3 
DIRECT Specifier 6-4 
Input/Output 6-2, 6-49 
REC Specifier 6-9 
RECL Specifier 6-9 

DIRECT Specifier 6-4 
Disconnecting Files and Units 6-54 
Divide Fault 11-7, 11-8 
Division 4-1 
Division by Zero 1-8, 11-9 
DLOG Function 10-14 
DLOGlO Function 10-14 
DMAXl Fupction 10-14 
DMINl Function 10-14 
DMOD Function 10-15 
DNINT Function 10-15 
DO Compilation Option 5-7, 14-2 
00 Loops 

CONTINUE Statement 5-8 
Control Variable 5-6 
DO Compilation Option 5-7, 14-2 
DO Statement 5-6 
Execution of 5-7 
Extended Range 5-7 
Incrementation Value 5-6 
Initial Value 5-6 
Nested 5-6, 5-7, 9-14 
Terminal Statement 5-6 
Terminal Value 5-6 
Using Special Calls 12-3 
Vectorization of 9-15, 9-20, 11-14 

00 Statement 5-6 
DO Variable 

See Control Variable 

Index-4 

Dominance 
See Conversion 

Double-Precision 
Constants 2-3 
Data Representation 2-11 
Range of Values 2-11 

Double-Precision Edit Descriptors 
See Numeric Edit Descriptors 

DOUBLE PRECISION Statement 3-2 
Double-Spaced Output 6-13 
Drop File 

Control of Size 14-16 
Displaying 

DSIGN Function 
DSIN Function 
DSINH Function 
DSQRT Function 
DTAN Function 
DTANH Function 

using DUMP 
10-15 

10-15 
10-15 
10-15 

10-15 
10-15 

13-5 

Dummy Arguments 
· See Arguments 
DUMP Utility 13-5 
Dumping Memory 11-14 
Dyadic Operation 11-14 
.DYN. 9-5 
Dynamic File Allocation 11-5, 14-2, 14-3 
Dynamic Linker Utility 14-4 
Dynamic Space 

Mapping to Large Pages 7-1 
Vector Allocation 9-5 

E Edit Descriptor 6-24 
Edit Descriptors 

A 6-18 
B 6-21 
BN 6-21 
BZ 6-22 
D 6-22 
E 6-24 
F 6-25 
G 6-26 
H 6-27 
I 6-27 
L 6-28 
p 6-29 
R 6-30 
s 6-31 
SP 6-32 
SS 6-32 
T 6-33 
TL 6-33 
TR 6-35 
x 6-35 
z 6-36 
' (apostrophe) 6-37 
I (slash) 6-37 

(colon) 6-38 
Elements of FORTRAN 2-1 
ELEV Compilation Option 14-3 
Else-Blocks 5-5 
ELSE Statement 5-4 
Elseif-Blocks 5-5 
ELSE IF Statement 5-4 
ENCODE Statement 6-52 
END IF Statement 5-5 
End-of-File 

Checking for 6-5 
Endfile Record 6-1, 6-56 

End-of-Group Delimiter 6-1 
END Specifier 6-5 
END Statement 7-2, 7-5, 7-7, 
END WHERE Statement 9-12 
Endfile Records 6-1, 6-56 

7-11 

60480200 J 



ENDFILE Statement 6-57 
Entry Points 

Main 7-2, 7-4, 7-6, 7-9 
Secondary 7-9, 9-15 

ENTRY Statement 7-9, 9-15 
EOF 

See End-of-File 
Epilogue 13-5 
.EQ. 4-3 
Equal to (.EQ.) 4-3 
Equivalence 

Alignment Requirements 3-9 
Array References in 3-8 
Common Block Members in 3-8 

Equivalence (logical) 4-4 
EQUIVALENCE Statement 3-8 
.EQV. 4-4 
ERR Specifier 6-5 
Error 

Count 11-13 
Messages B-1 
Processing 11-5, 11-12, 11-13 

Error Count 11-13 
Error Processing 11-6, 11-12, 11-13 
Errors 

Changing Messages 11-13 
During Input/Output 6-5, 6-8 
Specifying File for 14-2, F-5 
Specifying Severity Threshold 11-13, 14-3 

ERRORS Compilation Option 14-3, F-5 
Exclusive Or (logical) 4-4 
Executable Statements 1-1 
Execution 13-1, F-1 
Execution-Time 

File Reassignment 14-16 
Storage Allocation 9-5 

EXIST Specifier 6-6 
Existing Files 

EXIST Specifier 
STATUS Specifier 

EXO Condition 11-7, 

6-6 
6-10 

11-8 
EXP Function 10-15 
Explicit Vectorization 

See Vector Programming 
Exponent Overflow 11-7, 11-8 
Exponentiation 4-1 
Expressions 

Constant 2-6 
Hollerith Constants in E-1 
Operators 

Arithmetic 4-1 
Character 4-3 
Logical 4-4 
Precedence of 4-5 
Relational 4-3 

Order of Evaluation 4-1, 4-5 
Parentheses in 4-5 
Scalar 

Arithmetic 4-1 
Character 4-2 
Logical 4-4 
Relational 4-3 

Type Conversion 4-2 
Vector 

Arithmetic 9-7 
Bit 9-9 
Relational 9-8 

EXTEND Function 10-15 
Extended Internal Files 6-3 
Extended Range 5-7 
Extending Common 

See Common 
External Files 6-2 
External Functions 7-4 
EXTERNAL Statement 3-9 

60480200 J 

F Edit Descriptor 6-25 
F Record Type 6-1 
Fast Calls 13-6 
FDV Condition 11-7, 11-8 
File Information Table 13-4 
File Organization 6-2 
File Positioning Statements 

BACKSPACE 6-56 
ENDFILE 6-56 
REWIND 6-56 

FILE Specifier 6-6 
Files 

Accessing using SIL 13-4 
Allocation 11-5, 14-2, 14-3, 14-4 
Connecting 6-1, 6-53, 7-1 
Current Record 6-2 
Description 6-1 
Direct Access 6-2 
Disconnecting 6-54 
Extended Internal 6-3 
External 6-2 
Initial Point 6-2 
Inquiring about 6-55 
Internal 6-2 
Local 6-1 
LOOK Utility 13-5 
Names 6-2 
Next Record 6-2 
Permanent 6-1 
Pool 6-1 
Position 6-2, 6-56 
Preceding Record 6-2 
Preconnecting using PROGRAM 7-1 
Public 6-1 
Reassignment 14-15 
Sequential Access 6-2 
Terminal Point 6-2 

First-Letter Rule 3-1 
FIT 

See File Information Table 
Fixed-length Records 6-1 
FLOAT Function 10-15 
Floating-Point Divide Fault 11-7, 11-8 
Floating-Point Number 

See Data Representation, Real 
Flow Control Statements 

CALL 7-7 
CONTINUE 5-8 
Description 5-1 
DO 5-6 
GO TO 5-1 
IF 5-2 
PAUSE 5-8 
RETURN 7-5, 7-7 
STOP 5-8 

FMT Specifier 6-6 
FORM Specifier 6-6 
Format Control 6-18 
Format Identifier 6-7 
Format Label 

See Format Identifier 
Format Specification 

Character 6-16 
Edit Descriptors 6-18 
FMT Specifier 6-6 
FORMAT Statement 6-16 
Noncharacter 6-18 

FORMAT Statement 6-16 
Formatted Input/Output Statements 

FORMAT 6-16 
PRINT 6-15 
PUNCH 6-15 
READ 6-13 
WRITE 6-14 

Formatted Records 6-1 

Index-5 I 



FORMATTED Specifier 6-6 
Formatting 

List-Directed 6-43 
Namelist 6-48 

FORTRAN Control Statement 
See Control Statement 

FORTRAN 66 14-3 
Forward Reference 

See Statement Functions 
FREE Statement 9-5 
FTN200 Control Statement 

See Control Statement 
I Function Descriptions 10-9 

Function Names 7-4 
Function References 7-5 
FUNCTION Statement 7-4 
Functions 

Intrinsic 10-1 
Scalar 7-3 
Statement Functions 7-11 
Vector 

Definition 9-14 
References 9-14 
Secondary Entry Points 9-15 

F200LIB Library 13-1 
F66 Compilation Option 14-3 

G Edit Descriptor 6-26 
.GE, 4-3 
Generic Functions 3-10 
GO Compilation Option 13-1, 13-2, 13-3, 14-1, 

14-2' 14-4' 14-6 
GO Control Statement F-4 
GO TO Statements 

ASSIGN Statement 4-7 
Assigned 5-1 
Computed 5-2 
Unconditional 5-1 

Greater Than (.GT.) 4-3 
Greater Than or Equal to (.GE,) 4-3 
Group Names 6-45 
.GT. 4-3 

H Edit Descriptor 6-27 
H Type Hollerith Constant 2-4, E-1 
HABS Function 10-15 
HACOS Function 10-15 
HALF Function 10-15 
Half-Precision 

Constants 2-2 
Data Representation 2-11 
Range of Values 2-11 

Half-Precision Edit Descriptors 
See Numeric Edit Descriptors 

HALF PRECISION Statement 3-2 
Hardware Errors 

See Data Flag Branch Manager 
HASIN Function 10-16 
HATAN Function 10-16 
HATAN2 Function 10-16 
HCOS Function 10-16 
HCOSH Function 10-16 
HCOTAN Function 10-16 
HDIM Function 10-16 
Hexadecimal 

Constants 2-5 
Data Representation 2-12 

Hexadecimal Edit Descriptor 6-36 
HEXP Function 10-16 
HINT Function 10-16 
HLOG Function 10-16 
HLOGlO Function 10-16 
HMAXl Function 10-16 

Index-6 

HMINl Function 
HMOD Function 
HNINT Function 
Hollerith 

10-16 
10-17 

10-17 

Constants 2-4, E-1 
Data Representation 

HSIGN Function 10-17 
HSIN Function 10-17 
HSINH Function 10-17 
HSQRT Function 10-17 
HTAN Function 10-17 
HTANH Function 10-17 

I Edit Descriptor 6-27 
!ABS Function 10-17 
!CHAR Function 10-17 
Identification Field 1-2 
!DIM Function 10-17 
!DINT Function 10-18 
IDNINT Function 10-18 
INDEX Function 10-18 
If-Blocks 5-5 
IF Statements 

Arithmetic 5-2 
Block 5-3 

2-12 

C64 Option for Logical 5-3, 14-2 
ELSE 5-4 
ELSE IF 5-4 
END IF 5-5 
Logical 5-3 

IF Structures 
See Block IF Structures 

!FIX Function 10-18 
!HINT Function 10-18 
IHNINT Function 10-18 
!list 

See Input/Output List 
Imaginary Square Root 11-7, 11-8 
IMPL 

See Implementation Language 
Implementation Language 13-4 
IMPLICIT Statement 3-5 
Implicit Type Specification 3-5 
Implicit Vectorization 

See Loop Vectorization 
Implied DO 

Control Variable 3-13, 6-12 
In DATA Statement 3-12 
In Input/Output Statement 6-12 
Subscript Expressions 8-1 

Inclusive Or (logical) 4-4 
Incrementation Value 

Of DO 5-6 
Of Implied DO 3-13, 6-12 

IND Condition 11-7, 11-8 
Indefinite Values 11-7, 11-8 
Index Function 10-18 
Index Variable 

See Control Variable 
Index Map 14-15 
Induction Variable 

See Control Variable 
Initial Lines 1-3 
Initial Point of a File 6-2 
Initial Value 

Of DO 5-6 
Of Implied DO 3-13, 6-12 

Initialization 
Mixed Mode Conversion 3-13, 3-14 
Of Common Blocks 7-10 
Of Vectors and Descriptors 9-4 
Rules for Bit Items 9-6 
Rules for Non-Bit Items 3-13 

I 

60480200 J 



Initialization (Contd) 
Using Data Statement 3-12 
Using Type Specification Statements 3-12 

Inline Functions 7-4 
INPUT Compilation Option 14-4 
Input Data 1-4 
Input File 14-4 
Input/Output 

Binary Data 6-38, 6-40, E-1 
Buffer E-1 
Concurrent 11-2 
Conversion 6-16, 6-38, 6-43, 6-48, 6-49, 

6-50, 6-51 
End-of-File Check 6-5 
Error Check 6-5, 6-8 
SIL Routines 3-2 
Statements 6-1 

Input/Output List 
Arrays in 6-11 
Control Variables in 6-11 
Descriptors in 6-11 
Expressions in 6-12 
Implied DO in 6-12 
Substrings in 6-11 
Vectors in 6-12 

Input/Output Statements 
Auxiliary 

CLOSE 6-54 
INQUIRE 6-55 
OPEN 6-53 

Buffer E-1 
Concurrent 

Q7BUFIN 11-3 
Q7BUFOUT 11-3 
Q7SEEK 11-5 
Q7WAIT 11-4 

Direct Access 6-49 
Extended Internal File 

DECODE 6-51 
ENCODE 6-52 

Formatted 
FORMAT 
PRINT 
PUNCH 
READ 
WRITE 

6-16 
6-15 
6-15 

6-13 
6-14 

Formatting 
List-Directed 6-43 
Namelist 6-48 

Internal File 6-50 
List-Directed 

PRINT 6-42 
PUNCH 6-43 
READ 6-41 
WRITE 6-41 

Miscellaneous 
Q8NORED 11-5 
Q8WIDTH 11-5 

Namelist 
NAMELIST 6-45 
PRINT 6-46 
PUNCH 6-48 
READ 6-45 
WRITE 6-46 

SIL Calls 13-4 
Unformatted 

READ 6-38 
WRITE 6-40 

INQUIRE Statement 6-56 
Instruction Scheduling 

See OPTIMIZE Compilation Option 
Instructions 

See Machine Instructions 
INT Function 10-18 

60480200 J 

Integer 
Constants 2-2 
Data Representation 2-11 
Range of Values 2-11 

Integer Edit Descriptor 6-27 
Integer Expressions 

See Expressions, Scalar 
INTEGER Statement 3-1 
Interactive Session 13-4 
Internal Data Representation 

See Data Representation 
Internal Files 

Extended 6-51 
Standard 6-2, 6-50 

Interrupt 
See Data Flag Branch Manager 

Interrupt-Handling Routines 
See Branch-Handling Routines 

Intrinsic Functions 3-10, 7-4, 10-1 
INTRINSIC Statement 3-10 
Invoking 

Compiler 
See Control Statement 

Functions 
See Function References 

Subroutines 
See CALL Statement 

Iolist 
See Input/Output List 

IOSTAT Specifier 6-8 
!SIGN Function 10-18 

JIT Condition 11-7 
Job Interval Timer 11-7 
Job Statement 13-1, F-2 
Job Submission 13-1, F-2 

Keywords 2-2 

L Edit Descriptor 6-28 
Label 

See Statement Label 
Label Field 1-2 
Label References in Special Calls 12-1 
Labeled Common 

See Named Common 
Language Elements 2-1 
.LE. 4-3 
LEN Function 10-18 
LENGTH Function E-2 
Less Than (.LT.) 4-3 
Less Than or Equal to (.LE.) 4-3 
Lexp 

See Expressions, Logical 
LGE Function 10-18 
LGT Function 10-18 
LIB Parameter 

See LOAD Statement 
Library 

See System Shared Library 
Library Functions 

See Intrinsic Functions 
See Predefined Subroutines 

Line Printer Output 6-12 
Linkage Conventions 13-5 
Linker Utility 14-4 
LIST Compilation Option 14-4, F-5 
List-Directed Input/Output Statements 

Formatting 6-43 
PRINT 6-42 

lndex-7 I 



I 

I 

I 

List-Directed Input/Output Statements (Contd) 
PUNCH 6-43 
READ 6-4I 
WRITE 6-4I 

List Item 
See Input/Output List 

Listing File I4-4, F-5 
Listing Maps 

See Maps 
Listing Options 

A I4-4, I4- I5 
M I4-4, I4- I5 
s I4-4 
x I4-4, I4-6, I4-I2, I4-I3, I4-I4 

Literals in Special Calls I2-I, I2-2 
LLE Function I~I9 
LLT Function I~I9 
LO Compilation Option I4-5 
LOAD Statement I3-I, F-I 
Local Files 

Accessing using SIL I3-4 
Description 6-I 

LOG Function I~I9 
LOGIO Function I~I9 

Logging in to the CYBER 200 System I3-4 
Logical 

Constants 2-4 
Data Representation 2-I2 

Logical Assignment 
See Assignment 

Logical Edit Descriptor 6-28 
Logical Expressions 

See Expressions 
Logical IF Statement 

C64 Option 5-3, I4-2 
Description 5-3 

Logical Operators 
See Expressions 

LOGICAL Statement 3-3 
LOGON Command I3-4 
LOOK Utility I3-5 
Loop Vectorization 

Criteria for 9-I6 
Description 9-I5 
Loop-Dependent Array Reference 9-2I 
Messages 9-23 
OPTIMIZE Compilation Option 9-I5, I4-4 
Scalar Assignment 9-2I 
STACKLIB Routines 9-I5, 9-I9, II-I4 
UNSAFE Compilation Option 9-I7, I4-5 

Loops 
DO 5-6 
Implied DO 3-I2, 6-I2 

.LT. 4-3 
LTOB Function I~I9 

M Listing Option I4-4, I4-I5 
Machine Instructions 

Formats of I2-I5, I2-I6 
Generating using Special Calls I2-I, I4-4 
In Calling Sequence I3-5 

Machine Zero II-8, II-9 
Main Entry Points 

See Entry Points 
Main Programs I-I, 7-I 
Mapping Dynamic Space to Large Pages 7-2 
Maps 

Cross-Reference 
Procedure I4-4, I4-I4 
Statement Label I4-4, I4-6.I 
Symbolic Constant I4-4, I4-I3 
Variable I4-4, I4-I2 

Index I4-I5 

Index-8 

Maps (Contd) 
Register I4-4, I4-I5 
Storage I4-4, I4-I5 

MASK Function E-3 
MAX Function IO-I9 
MAXO Function IO-I9 
MAXI Function I0-20 
MDUMP Subroutine II-I4 
Memory Dump II-I4 
META 

See Assembly Language 
MIN Function I0-20 
MINO Function I0-20 
MINI Function I0-20 
Minus Sign 4-I 
MOD Function I0-20 
Mode 

See Type Specification 
Multiplication 4-I 

NAME Specifier 6-8 
Named Common 3-6 
NAMED Specifier 6-8 
Namelist ·Input/Output Statements 

Formatting 6-48 
Group Names 6-45 
NAMELIST 6-45 
PRINT 6-46 
PUNCH 6-48 
READ 6-45 
WRITE 6-46 

NAMELIST Statement 6-45 
Names 

See Function Names 
See Symbolic Names 

.NE. 4-3 

.NEQV. 4-4 
Nested 

Block IF Structures 5-6, 5-7, 9-I4 
Block WHERE Structures 5-6, 5-7, 9-I4 
DO Loops 5-6, 5-7, 9-I4 

New Files 
EXIST Specifier 6-6 
STATUS Specifier 6-IO 

Next Record 6-2, 6-8 
NEXTREC Specifier 6-8 
NINT Function I0-20 
Noncharacter Format Specification 6-I8 
Nonequivalence (logical) 4-4 
Nonexecutable Statements I-I 
Nonrepeatable Edit Descriptors 6-I8 
Non-zero-swap Routine I3-5 
.NOT. 4-4 
Not (logical) 4-4 
Not Equal (.NE.) 4-3 
Notations xvii 
NUMBER Specifier 6-8 
Numeric Edit Descriptors 

D 6-22 
E 6-24 
F 6-25 
G 6-26 
I 6-27 
p 6-29 
s 6-3I 
SP 6-32 
SS 6-32 
z 6-36 

Object Code File I4-2, F-5 
Object Mainframe 

See Target Machine 

60480200 J 



Old Files 
EXIST Specifier 6-6 
STATUS Specifier 6-10 

Olist 
See Input/Output List 

Op 
See Expressions, Operators 

Op Code 
See Operation Codes 

OPEN Statement 6-53 
OPENED Specifier 6-9 
Operand Designators 12-4.2 
Operating System 13-1, F-1 
Operation Codes 12-14 
Operator Precedence 4-5 
Operators 

See Expressions 
OPT 

See OPTIMIZE Compilation Option 
OPTIMIZE Compilation Option 14-5 
.OR. 4-4 
Or (logical) 4-4 
OR Function E-3 
ORD Condition 11-7, 11-8 
Order of Evaluation 4-1, 4-5 
ORX Condition 11-7, 11-8 
Otherwise-Blocks 9-12 
OTHERWISE Statement 9-12 
Output 

See Input/Output 
Overflow 11-7, 11-8 

I Overlapping Scalar Instruction Warnings 12-4.1 
Overprinting 6-13 

P Edit Descriptor 6-29 
Pagination 6-13 
PARAMETER Statement 3-11 
Par3meters of Control Statement 14-1, F-4 

See Also Arguments 
Parentheses 

In Expressions 4-5 
In Function References 7-3, 7-5 

PAUSE Statement 5-8 
Permanent Files 6-1 
Pipe 2 Register Instruction Flag 11-6 
Placeholders 3-7 
Plus Sign 

For Carriage Control 6-13 
Operator 4-1 
Printing During Output 6-31, 6-32 

Pool Files 6-1 
Positioning a File 6-2, 6-56 
Precedence of Operators 4-5 
Preceding Record 6-2 
Preconnecting Files and Units 

Description 6-1 
On Execution Statement 14-15 
On PROGRAM Statement 7-1 

Preconnection Specifier 7-1 
Predefined Subroutines 

See Also Intrinsic Functions 
MDUMP 11-14 
Q7BUFIN 11-3 
Q7BUFOUT 11-3 
Q7DFBR 11-12 
Q7DFCL1 11-11 
Q7DFLAGS 11-12 
Q7DFOFF 11-12 
Q7DFSET 11-11 
Q7SEEK 11-5 
Q7STOP 11-5 
Q7WAIT 11-4 
Q8NORED 11-5, F-7 

60480200 J 

Q8WIDTH 
RANG ET 
RAN SET 

11-5 
11-1 
11-1 

SEP 11-13 
STACKLIB Routines 
VRANF 11-1 

PRINT Statemeuts 
Formatted 6-15 
List-Directed 6-42 
Namelist 6-46 

11-14 

Printer Carriage Control 6-13 
Procedures 

See Subprogram 
Product Bits 11-6 
Program 

Compilation 13-1 
Execution 13-1 
Structure 1-1 
Units 1-1, 7-1 

PROGRAM Statement 
Description 7-1 
Overriding the File Preconnection List 14-15 

Prologue 13-5 
Public Files 6-1 
PUNCH Statements 

Formatted 6-15 
List-Directed 6-43 
Namelist 6-48 

Q7BUFIN Subroutine 11-3 
Q7BUFOUT Subroutine 11-3 
Q7DFBR Subroutine 11-10, 11-11, 11-12 
Q7DFCL1 Subroutine 11-11 
Q7DFLAGS Subroutine 11-12 
Q7DFOFF Subroutine 11-12 
Q7DFSET Subroutine 11-11 
Q7SEEK Subroutine 11-5 
Q7STOP Subroutine 11-5 
Q7WAIT Subroutine 11-4 
Q8BADF Special Call 11-6, 11-8, 12-6 
Q8LINKV Special Call Warning 12-4.1 
Q8LSDFR Special Call ll-8, 12-10 
Q8NORED Subroutine 11-5, F-7 
Q8SCNT Function 10-20 
Q8SDFB Function 10-20 
Q8SDOT Function 10-20 
Q8SEQ Function 10-21 
Q8SEXTB Function 10-21 
Q8SGE Function 10-21 
Q8SINSB Function 10-21 
Q8SLEN Function 10-21 
Q8SLT Function 10-21 
Q8SMAX Function 10-22 
Q8SMAXI Function 10-22 
Q8SMIN Function 10-22 
Q8SMINI Function 10-22 
Q8SNE Function 10-22 
Q8SPECIAL Special Call Warning 12-4.1 
Q8SPROD Function 10-23 
Q8SSUM Function 10-23 
Q8VADJM Function 10-23 
QBVAVG Function 10-23 
Q8VAVGD Function 10-23 
Q8VCMPRS Function 10-24 
Q8VCTRL Function 10-24 
Q8VDCMPR Function 10-24 
Q8VDELT Function 10-24 
Q8VEQI Function 10-24.1 
Q8VGATHP Function 10-25 
Q8VGATHR Function 10-25 
Q8VGEI Function 10-25 
Q8VINTL Function 10-26 
Q8VLTI Function 10-26 

Index-9 



Q8VMASK Function 10-27 
Q8VMERG Function 10-27 
Q8VMKO Function 10-27 
Q8VMKZ Function 10-27 
Q8VNEI Function 10-28 
Q8VREV Function 10-28 
Q8VSCATP Function 10-28 
Q8VSCATR Function 10-28.1 
Q8VXPND Function 10-29 
Q8WIDTH Subroutine 11-5 
Q8WJTIME Special Call 11-7, 12-13 

R Edit Descriptor 6-30 
R Type Hollerith Constant 2-4, E-1 
Random Numbers 

RANGET 11-1 
RANSET 11-1 
VRANF 11-1 

RANF Function 10-29 
Range of DO 5-6 
RANGET Subroutine 11-1 
RANSET Subroutine 11-1 
READ Statements 

Real 

Formatted 6-13 
List-Directed 6-41 
Namelist 6-45 
Unformatted 6-38 

Constants 2-2.1 
Data Representation 2-11 
Range of Values 2-11 

Real Edit Descriptors 
See Numeric Edit Descriptors 

Real Expressions 
See Expressions, Scalar 

REAL Function 10-29 
REAL Statement 3-2 
Reassigning Files 14-15 
REC Specifier 6-9 
RECL Specifier 6-9 
Record Length 

Range for Formatted Records 6-1 
Range for Unformatted Records 6-1 
RECL Specifier 6-9 
Setting using Q8WIDTH 11-5 

Record Number 6-9 
Record Type 6-1, 6-53 
Records 

Endfile 6-1 
Formatted 6-1 
Unformatted 6-1 

Recursive DO Loops 11-14 
Recursive Subprograms 7-4, 7-5, 7-6, 7-7, 

7-10, 7-12 
References 

See Array References 
See CALL Statement 
See Function References 
See Vector References 

Register Manipulation Examples 12-2 
Register Map 

See Maps 
Register Swap 13-5 
Relational Expressions 

See Expressions 
Relational Operators 

See Expressions 
Re-origin of Common 

See Common 
Repeat Specification 6-18 
Repeatable Edit Descriptors 6-18 
RESOURCE Statement 13-1, F-4 
Result Machine Zero 11-7, 11-8 

Index-10 

Return Codes B-1 
RETURN Statement 7-5, 7-7 
REWIND Statement 6-56 
RLP Parameter 7-2 
RMZ Condition 11-8, 11-9 
Rowwise Array Declaration 2-6, 2-8, 3-6 
ROWWISE Statement 3-6 
RPROD Function 10-29 
Run-Time 

See Execution-Time 

S Edit Descriptor 6-31 
S Listing Option 14-4 
SAVE Statement 3-11 
SC Compilation Option 14-5 
Scalar Assignment 

See Assignment 
Scalar Expressions 

See Express ions 
Scalar Functions 

See Functions 
Scalar Instruction 12-4.1 
Scalar Optimization 11-14 
Scale Factor 6-29 
Scratch Files 6-10 
SDEB Compilation Option 14-5 
SECOND Function 10-29 
Secondary Entry Points 

See Entry Points 
SEP Subroutine 11-13 
Sequential Access 

ACCESS Specifier 6-3 
Description 6-2 
SEQUENTIAL Specifier 6-9 

SEQUENTIAL Specifier 6-9 
Severity Threshold 14-3 
SFT Condition 11-7 
Shading xv 
Shared Library 13-1, 14-3 
SHIFT Function E-3 
SIGN Function 10-30 
Signed Constants 

SIL 
See Constants 

Calls 6-53, 13-5, C-3 
Record Type 6-1 
Routines 6-53 

Simple Variables 
See Variables 

SIN Function 10-30 
Single-Spaced Output 6-13 
SINH Function 10-30 
Sl 

See Statement Label 
Slash 

Edit Descriptor 6-37 
Operator 4-1 

SNGL Function 10-30 
Software Interrupt 

See Data Flag Branch Manager 
Source File 

See Input File 
Source Listing 14-4 
SP Edit Descriptor 6-32 
Special Calls 12-1, 14-4 
Special Calls Examples 12-2 
Special Call Formats 12-4.1 
Specific Functions 3-10 
Specification Statements 

BIT 9-6 
CHARACTER 3-4 
COMMON 3-6 
COMPLEX 3-3 

I 

I 

60480200 J 



Specification Statements (Contd) 
DATA 3-11 
DESCRIPTOR 9-3 
DOUBLE PRECISION 3-3 
EQUIVALENCE 3-8 
EXTERNAL 3-9 
HALF PRECISION 3-2 
IMPLICIT 3-5 
INTEGER 3-1 
INTRINSIC 3-10 
LOGICAL 3-3 
PARAMETER 3-11 
REAL 3-2 
SAVE 3-11 

SQRT Function 10-30 
Square Root of Negative Number 

See Imaginary Square Root 
SRT Condition 11-8 
SS Edit Descriptor 6-32 
SSC Condition 11-7, 11-8 
STACKLIB Subroutines 11-14 

I STACKLIB Routines 

I 

I 

Automatic Call Generation 
Explicit Calls 11-14 
Generation 9-23 

Standard Calling Sequence 13-5 
Statement 

Field 1-2 
Structure· 1-2 

Statement Functions 7-11 
Statement Label 

Assignment 4-7 
Description 1-2 
In CALL Statement 7-7 
Map 14-6.l 

Statements 
Continuation of 1-3 
Order 1-3 
Types of 1-1 

STATUS Specifier 6-10 

9-22 

STD Condition Designator 11-11, 11-12 
STOP Statement 5-8 
Storage Allocation 9-5 
Storage Map 

See Maps 
Structure 

Block IF 5-5 
Program 1-1 
Statement 1-2 

Subarray References 8-1, 8-3 
Submitting a Job 13-1, F-2 
Subprogram 

Block Data 7-10 
Calling Sequence 13-5 
Communication 7-8 
Description 1-1 
Fast Calls 13-6 
Linkage 13-5 
Names as Actual Arguments 3-9, 3-10, 7-9 
SAVE Statement Usage 3-11 
Scalar 

Functions 7-3 
Statement Functions 7-11 
Subroutines 7-6 

Vector Functions 9-14 
SUBROUTINE Statement 7-6 
Subroutines 

Calling 
See CALL Statement 

Predefined 11-1 
User-Written 7-6 

Subscript Expressions 
See Subscripts 

Subscripted Variables 
See Array 

60480200 J 

Subscripts 2-7 
Substrings 

Description 2-9 
In Input/Output List 6-11 

Subtraction 4-1 
Supplied Procedures 

See Intrinsic Functions 
See Predefined Subroutines 

Suppressing Debug Tables 14-5 
Suppressing Plus Sign in Output 6-31 
Swapping Registers 13-5 
Symbolic 

Constants 2-5 
Names 2-1 
References in Special Calls 12-1, 12-2 

Symbolic Constants 
Description of 2-5 
PARAMETER Statement 3-11 

SYNTAX Compilation Option 14-4, 
System Error Processor 11-13 
System Interface Language 

See SIL 
System Shared Library 13-1, 14-3 

T Edit Descriptor 6-33 
Tab Control 6-33, 6-35 
TAN Function 10-30 
TANH Function 10-30 
Tape Files 13-4 
Target Machine 14-5 
TBZ Condition 11-7, 11-8 
Terminal Point of a File 6-2 
Terminal Statement of DO 5-6 
Terminal Value 

Of DO 5-6 
Of Implied DO 3-13, 6-12 

Terminating Execution 5-8 
TIME Function 10-30 
TL Edit Descriptor 6-33 
TM Compilation Option 14-6 
TR Edit Descriptor 6-35 
Transfer Control 

See Flow Control Statements 
Triadic Operation 11-14 

14-6, F-6 

Truncation of Leading Bits 11-7, 11-8 
Truth Table for Logical Operators 4-4 
Type Conversion 

See Conversion 
Type Specification 

BIT 9-6 
CHARACTER 3-4 
COMPLEX 3-3 
Default 3-1, 3-5 
DOUBLE PRECISION 3-3 
First-Letter Rule 3-1 
HALF PRECISION 3-2 
IMPLICIT 3-5 
Initialization using 3-12 
INTEGER 3-1 
Intrinsic Functions 3-1 
LOGICAL 3-3 
REAL 3-2 

U Compilation Option 
See UNSAFE Compilation Option 

Unconditional GO TO Stateaent 5-1 
Unformatted Input/Output 

FORM Specifier 6-6 
FORMATTED Specifier 6-10 

Unformatted Input/Output Statements 
READ 6-38 
WRITE 6-40 

Unformatted Records 6-1 

Index-11 



UNFORMATTED Specifier 6-10 
UNIT Function E-2 
Unit Identifier 

Declaration on PROGRAM Statement 7-1 
Description 6-1, 6-11 
NUMBER Specifier 6-8 
UNIT Specifier 6-10, 6-11 

Unit Number 
See Unit Identifier 

UNIT Specifier 6-10 
Units 

Input/Output 6-1 
Program 1-1, 7-1 

Unnamed Common 
Description 3-6 
Initialization Restriction 3-13 

Unnamed Files 
See Scratch Files 

UNS 
See UNSAFE Compilation Option 

UNSAFE Compilation Option 14-6 
USER Statement 13-1, F-4 
Unsigned Constant 2-2 

V Compilation Option 
See OPTIMIZE Compilation Option 

VABS Function 10-30 
VACOS Function 10-31 
VAIMAG Function 10-31 
VAINT Function 10-31 
VALOG Function 10-31 
VALOGlO Function 10-31 
VAMOD Function 10-31 
VANINT Function 10-31 
Var 

See Variables 
Variable-Length Records 6-1 
Variables 

Description 2-6 
Initializing 3-12, 9-6 
Type Specification 3-1, 9-6 

I Variable Map 14-12 
VASIN Function 10-32 
VATAN Function 10-32 
VATAN2 Function 10-32 
VCABS Function 10-32 
VCCOS Function 10-33 
VCEXP Function 10-33 
VCLOG Function 10-33 
VCMPLX Function 10-33 
VCONJG Function 10-33 
VCOS Function 10-33 
VCSIN Function 10-33 
VCSQRT Function 10-34 
VDBLE Function 10-34 
VDIM Function 10-34 
Vector Assignment 

See Assignment 
Vector Expressions 

See Expressions 
Vector Functions 

See Functions 
Vector Programming 

Broadcasting G-8 
Data Types G-4 
DO Loops G-3 
FORTRAN Vectorizer G-3 
Interval Vector G-5 
Intrinsic Promotion G-8 
Introduction to Vectors G-1 
Items That Inhibit Vectorization G-4 
Loop Collapse G-9 
Programming 9-1, G-1 

Index-12 

Vector Programming (Contd) 
Recurrence Cycles G-4 
Reduction G-6 
Scalar Expansion G-7 
Scattering and Gathering G-5 
Stripmining G-8 
Vector Operations G-5 
Vectorization G-3 
Vectorizer Report G-9 
What is a Vector G-1 
Why Are Vector Operations Faster Than Scalar 

Operations G-2 
Vector References 9-1 
Vectorization of Loops 

See Loop Vectorization 
Vectors 

Description 9-1 
In Input/Output List 6-11 

VEXP Function 10-34 
VEXTEND Function 10-34 
VFLOAT Function 10-34 
VHABS Function 10-34 
VHACOS Function 10-34 
VHALF Function 10-34 
VHASIN Function 10-35 
VHATAN Function 10-35 
VHATAN2 Function 10-35 
VHCOS Function 10-35 
VHDIM Function 10-35 
VHEXP Function 10-35 
VHINT Function 10-35 
VHLOG Function 10-35 
VHLOGlO Function 10-35 
VHMOD Function 10-35 
VHNINT Function 10-35 
VHSIGN Function 10-35 
VHSIN Function 10-36 
VHSQRT Function 10-36 
VHTAN Function 10-37 
VIABS Function 10-37 
VIDIM Function 10-37 
VIFIX Function 10-37 
VIHINT Function 10-37 
VIHNINT Function 10-37 
VINT Function 10-37 
VISIGN Function 10-37 
VLOG Function 10-38 
VLOGlO Function 10-38 
VMOD Function 10-38 
VNINT Function 10-38 
VRAND Function 10-38 
VRANF Subroutine 11-2 
VREAL Function 10-38 
VSIGN Function 10-38.1 
VSIN Function 10-39 
VSNGL Function 10-39 
VSQRT Function 10-39 
VTAN Function 10-39 

W Record Type 6-1 
Warnings 

Q8SPECIAL 12-4.1 
Q8LINKV 12-4.1 
Scalar Instruction 12-4.1 

Where-blocks 9-12 
WHERE Statement 9-11 
WHERE Structures 

See Block WHERE Structures 
WRITE Statements 

Formatted 6-14 
List-Directed 6-41 
Namelist 6-46 
Unformatted 6-40 

60480200 J 

I 



X Edit Descriptor 
X Listing Option 
.XOR. 4-4 
XOR Function E-3 

Z Edit Descriptor 
Zero-swap Routine 

60480200 J 

6-15 
14-4, 14-6, 14-12, 14-13, 14-14 

6-36 
13-5 

+ (plus) 
See Plus 

- (minus) 4-1 
* (asterisk) 

See Asterisk 
** (two asterisks) 4-1 
I (slash) 

See Slash 
II (two slashes) 4-3 
& (ampersand) 

See Ampersand 
' (apostrophe) 

See Apostrophe 
(colon) 

See Colon 

lndex-13 I 





n 
c 
-4 

> 
5 
~ ,... 
z 
m 

COMMENT SHEET 

MANUAL TITLE: FORTRAN 200 Version 1 Reference Manual 

PUBLICATION NO.: 60480200 

REVISION: J 

This form is not intended to be used as an order blank. Control Data Corporation 
welcomes your evaluation of this manual. Please indicate any errors, suggested 
additions or deletions, or general comments on the back (please include page number 
references). 

FOLD 

Please reply --- No reply necessary ---

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MN. 

POSTAGE WILL BE PAID BY ADDRESSEE 

(5 2) CONT1'0L DATA 
Technology and Publications Division 

MailStop: SVL104 
P.O. Box 3492 
Sunnyvale, California 94088-3492 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

~------------------------------------------------------------------------------------------------------------FOLD FOLD 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 
FOLD ON DOTTED LINES AND TAPE 

NAME: 

COMPANY: 

STREET ADDRESS: 

CITY/STATE/ZIP: 

TAPE TAPE 





FORTRAN 200 Q7 Q8 QUICK INDEX 

Predefined Subroutines QB Routines (Continued) 

MD UMP 11-14 QBSMAX Function 10-22 

Q7BUFIN 11-3 QBSMAXI Function 10-22 

Q7BUFOUT 11-3 QBSMIN Function 10-22 

Q7DFBR 11-12 QBSMINI Function 10-22 

Q7DFCL1 11-11 QBSNE Function 10-22 

Q7DFLAGS 11-12 QBSPROD Function 10-23 

Q7DFOFF 11-12 QBSSUM Function 10-23 

Q7DFSET 11-11 QBVADJM Function 10-23 

Q7SEEK 11-5 QBVAVG Function 10-23 

Q7STOP 11-5 QBVAVGD Function 10-23 

Q7WAIT 11-4 QBVCMPRS Function 10-24 

QB NORED 11-5, F-7 QBVCTRL Function 10-24 

QBWIDTH 11-5 QBVDCMPR Function 10-24 

RAN GET 11-1 QBVDELT Function 10-24 

RAN SET 11-1 QBVEQI Function 10-24.1 

SEP 11-13 QBVGATHP Function 10-25 

STACK.LIB Routines 11-14 QBVGATHR Function 10-25 

VRANF 11-1 QBVGEI Function 10-25 

QBVINTL Function 10-26 

QBVLTI Function 10-26 

QB Routines QBVMASK Function 10-27 

QBVMERG Function 10-27 

QBSCNT Function 10-20 QBVMKO Function 10-27 

QBSDFB Function 10-20 QBVMKZ Function 10-27 

QBSDOT Function 10-20 QBVNEI Function 10-2B 

QBSEQ Function 10-21 QBVREV Function 10-2B 

QBSEXTB Function 10-21 QBVSCATP Function 10-2B 

QBSGE Function 10-21 QBVSCATR Function 10-2B .1 

QBSINSB Function 10-21 QBVXPND Function 10-29 

QBSLEN Function 10-21 

QBSLT Function 10-21 QB Special Calls 12-5 

• 604B0200 H 



CORPORATE HEADQUARTERS. P.O. BOX 0, MINNEAPOLIS, MINN. 55440 
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

(52) 
CONT1'0L 

DATA 

LITHO IN U.S.A. 


	Preface
	Contents
	NOTATIONS
	INTRODUCTION
	Program Structure
	Statements
	Input Data

	LANGUAGE ELEMENTS
	Character Set
	Symbolic Names
	FORTRAN Keywords
	Constants
	Symbolic Constants
	Constant Expressions
	Variables
	Arrays
	Substrings
	Data Element Representation

	SPECIFICATION AND INITIALIZATION STATEMENTS
	Type Specification Statements
	IMPLICIT Statement
	DIMENSION Statement
	ROWWISE Statement
	COMMON Statement
	EQUIVALENCE Statement
	EXTERNAL Statement
	INTRINSIC Statement
	SAVE Statement
	PARAMETER Statement
	DESCRIPTOR Statement
	Variable, Array, and Substring Initialization

	SCALAR EXPRESSIONS AND SCALAR ASSIGNMENT STATEMENTS
	Scalar Expressions
	Scalar Assignment Statements

	FLOW CONTROL STATEMENTS
	GO TO Statements
	IF Statements
	DO Statement
	CONTINUE Statement
	PAUSE Statement
	STOP Statement
	CALL Statement
	RETURN Statement

	INPUT/OUTPUT STATEMENTS
	Records
	Files
	Input/Output Statement Components
	Carriage Control
	Formatted Input/Output Statements
	Format Specification
	Unformatted Input/Output Statements
	List-Directed Input/Output Statements
	List-Directed Formatting
	Namelist Input/Output Statements
	Namelist Formatting
	Buffer Input/Output Statements
	Direct Access Input/Output
	Internal File Input/Output
	Extended Internal File Input/Output Statements
	Concurrent Input/Output Statements
	Direct Calls to SIL Routines
	Auxliary Input/Output Statements
	File Positioning Statements

	PROGRAM UNITS AND STATEMENT FUNCTIONS
	Main Programs
	Function Subprograms
	Subroutine Subprograms
	Subprogram Communication
	Entry Points
	Block Data Subprograms
	Statement Functions

	ARRAY ASSIGNMENT STATEMENTS
	Subarray References
	Conformable Subarray References
	Array Expressions
	Array Assignment Statements

	VECTOR PROGRAMMING
	Overview
	Vectors and Descriptors
	Bit Data Type
	Vector Expressions
	Vector Assignment Statements
	WHERE Statement
	Block WHERE Statement
	Vector Function Subprograms
	Loop Vectorization

	INTRINSIC FUNCTIONS
	Scalar Intrinsic Functions
	Vector Intrinsic Functions
	Function Descriptions
	Vector Intrinsic Function Examples

	PREDEFINED SUBROUTINES
	Random Number Subroutines
	Concurrent Input/Output Subroutines
	Miscellaneous Input/Output Subroutines
	Error Processing and Debugging Subroutines
	STACKLIB Subroutines

	SPECIAL CALLS
	Arguments
	Special Call Statement Examples
	Special Call Formats

	PRODUCT INTERFACES
	Program Compilation, Loading, and Execution
	Operating System Interface
	Subprogram Linkage
	Prologue and Epilogue

	FORTRAN CONTROL STATEMENT
	Abbreviation
	Defaults
	Keywords
	Keywords and Their Options
	Control Statement Examples
	Compiler-Generated Listings
	Execution-Time File Reassignment
	Control of Drop File Size
	Error Messages

	APPENDIXES
	A - Character Sets
	B - Diagnostics
	C - Glossary
	D - FORTRAN 200 Statement Summary
	E - Compatibility Features
	F - Differences Between VSOS Releases 2.1.6 and 2.2
	G - Vector Programming

	INDEX

