FORTRAN 200 VERSION 1

FOR USE WITH
CcDC® CYBER 200 VIRTUAL STORAGE
OPERATING SYSTEM

VERSION 2

REFERENCE MANUAL @D

CONTROL
DATA

60480200

REVISION RECORD

Revision

A

B

REVISION LETTERS I, O, Q, AND X ARE NOT USED

(06/30/83)

(11/30/83)

(02/14/84)

(03/30/84)
(04/01/85)

(10/31/85)

(04/16/86)
(12/03/86)

(10/23/87)

Description

Prerelease.

Manual released in conjunction with the official release of the product (PSR level 600).
The manual content is the same as that of the prerelease version.

Manual revised to include additional error messages and minor technical corrections (for
PSR level 600).

Manual updated for PSR level 607 release (VSOS 2.1.5).

Manual updated for PSR level 631 release (VSOS 2.1.6).

Manual revised to include the new features: dynamic file allocation with Q8NORED; the
addition of the GO parameter on the FORTRAN control statement; and other minor technical
corrections for PSR level 644 release (VSOS 2.2).

Manual updated for PSR level 654 release (VSOS 2.2.5).

Manual updated for PSR level 670 release (VSOS 2.3).

Manual updated for PSR level 690 release (VSOS 2.3.5).

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Technology and Publications Division

© COPYRIGHT CONTROL DATA CORPORATION P. O. BOX 3492
1983, 1984, 1985, 1986, 1987 SUNNYVALE, CALIFORNIA 94088-3492

A1l Rights Reserved
Printed in the United States of America

ii

or use Comment Sheet in the back of this manual

60480200 J

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision
Front Cover - 6-4 H
Inside Front Cover H 6-5 C
Title Page - 6-6 thru 6-11 A
it J 6-12 D
iii J 6-13 thru 6-15 A
iv J 6-16 D
v/vi H 6-17 F
vii thru ix H 6-18 C
X J 6-19 A
xi J 6-20 A
xii thru xiv H 6-21 [
xv/xvi H 6-22 c
xvii G 6-23 H
1-1 H 6-24 [
1-2 H 6-25 E
1-3 F 6-26 C
1-4 H 6-27 [
2-1 H 6-28 H
2-2 F 6-29 E
2-2,1/2-2.2 F 6-30 E
2-3 E 6-31 A
2-4 A 6-32 A
2-5 A 6-33 C
2-6 H 6-34 E
2-6.1/2-6.2 H 6-35 C
2-7 H 6-36 H
2-8 H 6-37 c
2-9 E 6-38 A
2-10 A 6-39 A
2-11 F 6-40 H
2-12 J 6-41 A
3-1 thru 3-3 A 6-42 F
3-4 H 6-43 A
3-4,1/3~4.2 H 6-44 E
3-5 F 6-45 thru 6-48 A
3-6 A 6-49 thru 6-52 E
3-7 thru 3-9 J 6-53 D
3-10 thru 3-14 A 6-54 J
4-1 A 6-55 thru 6-57 H
4-2 A 7-1 A
4-3 H 7-2 E
4=4 H 7-3 thru 7-6 A
4-5 A 7-7 F
4-6 E 7-8 F
4-7 A 7-8.1/7-8.2 F
5-1 H 7-9 A
5-2 H 7-10 A
5-3 E 7-11 F
5-4 A 7-12 A
5-5 H 8-1 J
5-6 J 8-2 A
5-7 E 8-3 E
5-8 H 8-4 E
5-9 A 9-1 E
6-1 H 9-2 A
6-2 C 9-3 F
6-2.1/6-2.2 C 9-4 A
6-3 A 9-5 E

60480200 J iii

Page

9-6

9-7

9-8 thru 9-12
9-13 thru 9-15
9-16

9-17

9-18 thru 9-21
9-22

9-23

9-24

10-1

10-2 thru 10-5
10-6

10-7

10-8

10-9

10-10

10-11 thru 10-17
10-18

10-19

10-20 thru 10-24
10-24.1/10-24.,2
10-25 thru 10-28
10-28.1/10-28.2
10-29

10-30 thru 10-32
10-33 thru 10-37
10-38
10-38.1/10-38.2
10-39

10-40

10-41

10-42

10-43

11-1

11-2 thru 11-6
11-6.1/11-6.2
11-7 thru 11-9
11-10 thru 11-13
11-14

11-15

11-16 thru 11-18
11-19

12-1

12-2

12-3

12-4

12-4.1

12-4,2
12-4.3/12-4 .4
12-5 ciurwr 12-16
13-1

13-2

13-3 thru 13-5
13-6

13-7 thru 13-10
14-1 thru 14-4
14-5

14-6
14-6.1/14-6.2

Revision

CEZOEREMIE M HOQOCOMOPFOTNGEPEINODOQOUUGGPODINHETENEPPUOUGCHGUMPOGEN T GE S EHP>@EMT

Page

14-7

14-8

14-9

14-10

14-11

14-12

14-13

14-14

14-15

14-16

A-1

A-2

B-1 thru B-8
B-9

B-10

B-11

B-12
B-12.1/B-12,2
B-13

B-14

B-15

B-16

B-17

B-18

B-19 thru B-25
B-26

B-26.1

B-26.2

B-27

B-28

B-29

B-30
B-30.1/B-30.2
B-31

B-32

B-33

B-34

B-35

B-36

B-37

B-38

B-39

240
B-40.1/B-40,2
B-~41 thru B-43
B-44

c-1

c-2

c-3

D-1

D-2 thru D-5
E-1

E-2

E-3

F-1

F-2 thru F-7
G-1 thru G-10
Index-1 thru -13

Comment Sheet/Mailer
Inside Back Cover

Back Cover

Revision

I TG GG EPmGPH IR IO PCUPTIRINGOGHEP>POOM BRI HE N GGG OMEPE I QI >G> T

60480200 J

PREFACE

This manual describes the CONTROL DATA® FORTRAN
200 programming language. FORTRAN 200 is available
under the CDC® CYBER 200 Virtual Storage Operating
System (VSOS) on CYBER 200 Computer Systems.

FORTRAN 200 is a superset of the American National
Standards Institute FORTRAN language, which is
described in ANSI document X3.9-1978. Many of the
extensions of the FORTRAN 200 language enable you
to use the vector processing capabilities of the
CYBER 200 hardware.

Publication

CDC CYBER 200 Assembler Version 2 Reference Manual

CDC CYBER Model 205 Hardware Reference Manual

Before using this manual, you should be familiar I
with the FORTRAN language in general. Familiarity
with the Virtual Storage Operating System, CYBER
200 hardware, and vector processing concepts would I
be helpful.

Information relating to this manual can be found in l
the publications listed below.

Publication
Number

60485010

60256020 I

CDC CYBER 200 Virtual Storage Operating System

Reference Manual, Volume 1 of

CDC CYBER 200 Virtual Storage
Reference Manual, Volume 2 of

VSOS User”s Guide for FORTRAN

2

60459410

Operating System

2

200 Programmers

60459420

60455390

CDC manuals can be obtained from your local Control Data office.
Sites within the United States can also order manuals from:

Control Data Corporation
Literature and Distribution Services

308 North Dale Street

St. Paul, Minnesota 55103

This product is intended for use only as described in this

document.

Control Data cannot be

responsible for the

proper functioning of undescribed features or parameters.

60480200 H

v/vi

CONTENTS

NOTATIONS
1. INTRODUCTION

Program Structure

Statements
Statement Structure
Statement Labels
Initial Lines
Continuation Lines
Comment Lines
Statement Order

Input Data

2. LANGUAGE ELEMENTS

Character Set

Symbolic Names

FORTRAN Keywords

Constants
Integer Constants
Half-Precision Constants
Real Constants
Double-Precision Constants
Complex Constants
Logical Constants
Character Constants
Hollerith Constants
Hexadecimal Constants
Bit Constants

Symbolic Constants

Constant Expressions

Variables

Arrays
Array Declaration
Array References
Array Size
Array Storage

Substrings

Data Element Representation
Integer Elements
Half-Precision Elements
Real Elements
Double-Precision Elements
Complex Elements
Logical Elements
Hollerith Elements
Character Elements
Hexadecimal Elements
Bit Elements

3. SPECIFICATION AND INITIALIZATION
STATEMENTS

Type Specification Statements
INTEGER Statement
HALF PRECISION Statement
REAL Statement
DOUBLE PRECISION Statement
COMPLEX Statement

60480200 H

xvii

—
|
—

— b b e
1
FPLOWWWN - -

N
|
—

USFUSLL
NN -

NN
U U

.

—

U L ,
OWNNNOoOooOULLULULEESEPOLWWLWNDNON

NIT?NNNNNNNNNNNNNN
—
—

N
b

——

——

2-11
2-11
2-12
2-12
2-12
2-12
2-12
2-12

3-1

3-1
3-2
3-2
3-2
3-3

LOGICAL Statement
CHARACTER Statement
BIT Statement
IMPLICIT Statement
DIMENSION Statement
ROWWISE Statement
COMMON Statement
EQUIVALENCE Statement
EXTERNAL Statement
INTRINSIC Statement
SAVE Statement
PARAMETER Statement
DESCRIPTOR Statement
Variable, Array, and Substring Initialization
Initialization Using Type Specification
Statements
Initialization Using the Data Statement
Initialization Rules
Initializing Non-Bit Items
Initializing Bit Items

4. SCALAR EXPRESSIONS AND SCALAR ASSIGNMENT
STATEMENTS

Scalar Expressions
Scalar Arithmetic Expressions
Scalar Character Expressions
Scalar Relational Expressions
Scalar Logical Expressions
Order of Expression Evaluation

Scalar Assignment Statements
Scalar Arithmetic Assignment Statements
Scalar Character Assignment Statements
Scalar Logical Assignment Statements
Statement Label Assignment Statement

5. FLOW CONTROL STATEMENTS

GO TO Statements
Unconditional GO TO
Assigned GO TO Statement
Computed GO TO Statement

IF Statements
Arithmetic IF Statement
Logical IF Statement
Block IF Statement

ELSE IF Statement

ELSE Statement

END IF Statement

Block IF Structures

Nesting Block IF Structures and DO
Loops

DO Statement
DO Loops
Nesting DO Loops and Block IF Structures

CONTINUE Statement

PAUSE Statement

STOP Statement

CALL Statement

RETURN Statement

oo VKL e W

3-10
3-11
3-11
3-12
3-12

3-12
3-12
3-13
3-13
3-14

w
[
—

VO EPWWNRNDN ==~

UlUIU'IU\k{lMU"U\Ul
W LWy OO o

vii

6. INPUT/OUTPUT STATEMENTS

Records
Formatted Records
Unformatted Records
Endfile Records
Files
External Files
Internal Files
Extended Internal Files
Input/Output Statement Components
Control Information List
ACCESS Specifier
BLANK Specifier
BUFS Specifier
DIRECT Specifier
END Specifier
ERR Specifier
EXIST Specifier
FILE Specifier
FMT Specifier
FORM Specifier
FORMATTED Specifier
IOSTAT Specifier
NAME Specifier
NAMED Specifier
NEXTREC Specifier
NUMBER Specifier
OPENED Specifier
REC Specifier
RECL Specifier
SEQUENTIAL Specifier
STATUS Specifier
UNFORMATTED Specifier
UNIT Specifier
Input/Output List
Input/Output List Items

Implied DO Loops in Input/Output

Statements
Carriage Control
Formatted Input/Output Statements
Formatted READ Statement
Formatted WRITE Statement
Formatted PRINT Statement
Formatted PUNCH Statement
Format Specification
FORMAT Statement
Character Format Specification
Noncharacter Format Specification
Edit Descriptors
A Descriptor
B Descriptor
BN Descriptor
BZ Descriptor
Descriptor
Descriptor
Descriptor
Descriptor
Descriptor
Descriptor
Descriptor
Descriptor
Descriptor
Descriptor
SP Descriptor
SS Descriptor
T Descriptor
TL Descriptor
TR Descriptor
X Descriptor
Z Descriptor
Apostrophe Descriptor
Slash Descriptor
Colon Descriptor

LMIYE A TDOEED

viii

6-1
6-1
6-1
6-1
6-1
6-2

1
LCLOWOVWOWXPOEOOOIITIITAAATTTULWL &S & &

@@0@@0@0@?@@00®@®0

=]
|

6-10
6-10
6-10
6-11
6-11

6-12
6-13
6-13
6-13
6-14
6-15
6-15
6-16
6-16
6-16
6-18
6-18
6-18
6-21
6-21
6-22
6-22
6-24
6-25
6-26
6-27
6-27
6-28
6-29
6-30
6-31
6-32
6-32
6-33
6-33
6-35
6-35
6-36
6-37
6-37
6-38

Unformatted Input/Output Statements
Unformatted READ Statement
Unformatted WRITE Statement

List-Directed Input/Qutput Statements
List-Directed READ Statement
List-Directed WRITE Statement
List-Directed PRINT Statement
List-Directed PUNCH Statement

List-Directed Formatting
List-Directed Input Formatting
List-Directed Output Formatting

Namelist Input/Output Statements
NAMELIST Statement
Namelist READ Statement
Namelist WRITE Statement
Namelist PRINT Statement
Namelist PUNCH Statement

Namelist Formatting
Namelist Input Formatting
Namelist Output Formatting

Buffer Input/Output Statements

Direct Access Input/Output

Internal File Input/Output

Extended Internal File Input/Output Statements
DECODE Statement
ENCODE Statement

Concurrent Input/Output Statements

Direct Calls to SIL Routines

Auxiliary Input/Output Statements
OPEN Statement
CLOSE Statement
INQUIRE Statement

File Positioning Statements
REWIND Statement
BACKSPACE Statement
ENDFILE Statement

7. PROGRAM UNITS AND STATEMENT FUNCTIONS

Main Programs
Program Statement
Main Program Body
END Statement for Main Programs
Main Program Example
Function Subprograms
FUNCTION Statement
Function Body
RETURN Statement for Function Subprograms
END Statement for Function Subprograms
Function References
Function Subprogram Example
Subroutine Subprograms
SUBROUTINE Statement
Subroutine Body
RETURN Statement for Subroutine
Subprograms
END Statement for Subroutine Subprograms
Subroutine Calls
Subroutine Subprogram Example
Subprogram Communication
Common Blocks
Arguments
Dummy Arguments
Actual Arguments
Argument Correspondence
Restrictions on Association of Arguments

NNNMNNNTNTTTTTT
T O LLL EPTVLNONNDF -

|

]

UL
== O \C\O 00000 OC OO 0000 N~~~

Arrays as Dummy Arguments -8.
Subprogram Names as Actual Arguments -8.
Entry Points -
ENTRY Statement -
Secondary Entry Points in Functions -
Secondary Entry Points in Subroutines -10
Referencing Secondary Entry Points -10
60480200 H

—_—

Secondary Entry Point Argument Lists
Secondary Entry Point Example
Block Data Subprograms
BLOCK DATA Statement
Block Data Subprogram Body
END Statement for Block Data Subprograms
Block Data Subprogram Example
Statement Functions
Defining Statement Functions
Referencing Statement Functions
Statement Function Example

8. ARRAY ASSIGNMENT STATEMENTS

Subarray References

Conformable Subarray References
Array Expressions

Array Assignment Statement

9. VECTOR PROGRAMMING

Overview
Vectors and Descriptors
Vector References
Descriptors
Descriptor Statement
Descriptor Arrays
Initializing Vectors and Descriptors
Descriptor ASSIGN Statement
FREE Statement
Bit Data Type
Bit Constants
Bit Variables and Arrays
Bit Element Representation
BIT Statement
Initializing Bit Items
Vector Expressions
Vector Arithmetic Expressions
Vector Relational Expressions
Bit Expressions
Vector Assignment Statements
Vector Arithmetic Assignment Statements
Bit Assignment Statements
WHERE Statement
Block WHERE Statement
OTHERWISE Statement
END WHERE Statement
Block WHERE Structures
Nesting Block WHERE Structures
Vector Function Subprograms
Defining Vector Functions
Referencing Vector Functions
Vector Function Example
Secondary Entry Points
Loop Vectorization
Characteristics of Vectorizable DO Loops
Arithmetic Assignment Statements in
Vectorizable DO Loops
Scalar Assignments in Vectorizable
Loops
Loop-Dependent Array References In
Vectorizable Loops
Generation of Calls to STACKLIB Routines
Loop Vectorization Messages

10. INTRINSIC FUNCTIONS

Scalar Intrinsic Functions
Vector Intrinsic Functions
Function Descriptions

ABS

ACOS

60480200 H

8-1
8-3
8-3
8-3

o
1
—

\D‘O\D\D\O\O\O\D‘O?W\D\D\D\D\DOO‘D
NNV NE SWWEN — -

]
-]

9-21

9-21
9-23
9-23

10-1

10-1
10-6
10-9
10-11
10-11

AIMAG
AINT
ALOG
ALOG10
AMAXO
AMAX1
AMINO
AMIN1
AMOD
ANINT
ASIN
ATAN
ATAN2
BTOL
CABS
ccos
CEXP
CHAR
CLOG
CMPLX
CONJG
cos
COSH
COTAN
CSIN
CSQRT
DABS
DACOS
DASIN
DATAN
DATAN2
DATE
DBLE
DCOS
DCOSH
DDIM
DEXP
DFLOAT
DIM
DINT
DLOG
DLOG10
DMAX1
DMINI
DMOD
DNINT
DPROD
DSIGN
DSIN
DSINH
DSQRT
DTAN
DTANH
EXP
EXTEND
FLOAT
HABS
HACOS
HALF
HASIN
HATAN
HATAN2
HCOS
HCOSH
HCOTAN
HDIM
HEXP
HINT
HLOG
HLOG10
HMAX1
HMIN1
HMOD
HNINT
HSIGN

10-11
10-11
10-11
10-11
10-11
10-11
10-11
10-11
10-11
10-11
10-12
10-12
10-12
10-12
10-12
10-12
10-12
10~12
10-12
10-12
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-13
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-14
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-15
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-16
10-17
10-17
10-17

ix

HSIN 10-17 SIN 10-30

HSINH 10-17 SINH 10-30
HSQRT 10-17 SNGL 10-30
HTAN 10-17 SQRT 10-30
HTANH 10-17 TAN 10-30
IABS 10-17 TANH 10-30
ICHAR 10-17 TIME 10-30
IDIM 10-17 VABS 10-30
IDINT 10-18 VACOS 10-31
IDNINT 10-18 VAIMAG 10-31
IFIX 10-18 VAINT 10-31
IHINT 10-18 VALOG 10-31
THNINT 10-18 VALOG10 10-31
INDEX 10-18 VAMOD 10-31
INT 10-18 VANINT 10-31
ISIGN 10-18 VASIN 10-32
LEN 10-18 VATAN 10-32
LGE 10-18 VATAN2 10-32
LGT 10-19 VCABS 10-32
LLE 10-19 VCCos 10-33
LLT 10-19 VCEXP 10-33
LOG 10-19 VCLOG 10-33
LOG10 10-19 VCMPLX 10-33
LTOB 10-19 VCONJG 10-33
MAX 10-19 vCos 10-33
MAXO0 10-19 VCSIN 10-33
MAX1 10-20 VCSQRT 10-34
MIN 10-20 VDBLE 10-34
MINO 10-20 VDIM 10-34
MIN1 10-20 VEXP 10-34
MOD 10-20 VEXTEND 10-34
NINT 10-20 VFLOAT 10-34
Q8SCNT 10-20 VHABS 10-34
Q8SDFB 10-20 VHACOS 10-34
Q8sDOT 10-20 VHALF 10-35
Q8SEQ 10-21 VHASIN 10-35
Q8SEXTB 10-21 VHATAN 10-35
Q8SGE 10-21 VHATAN2 10-35
Q8SINSB 10-21 VHCOS 10-35
Q8SLEN 10-21 VHDIM 10-35
Q8SLT 10-21 VHEXP 10-35
Q8SMAX 10-22 VHINT 10-36
Q8SMAXI 10-22 VHLOG 10-36
Q8SMIN 10-22 VHLOG10 10-36
Q8SMINI 10-22 VHMOD 10-36
Q8SNE 10-22 VHNINT 10-36
Q8SPROD 10-23 VHSIGN 10-36
Q8SSUM 10-23 VHSIN 10-36
Q8VADIM 10-23 VHSQRT 10-36
Q8VAVG 10-23 VHTAN 10-37
Q8VAVGD 10-23 VIABS 10-37
Q8VCMPRS 10-24 VIDIM 10-37
Q8VCTRL 10-24 VIFIX 10-37
Q8VDCMPR 10-24 VIHINT 10-37
Q8VDELT 10-24 VIHNINT 10-37
Q8VEQI 10-24.1 VINT 10-37
Q8VGATHP 10-25 VISIGN 10-37
Q8VGATHR 10-25 VLOG 10-38
Q8VGEIL 10~-25 VLOG10 10-38
Q8VINTL 10-26 VMOD 10-38
Q8VLTI 10-26 VNINT 10-38
Q8VMASK 10-27 VRAND 10-38
Q8VMERG 10-27 VREAL 10-38
Q8VMKO 10-27 VSIGN 10-38.1
Q8VMKZ 10-27 VSIN 10-39
Q8VNEIL 10-28 VSNGL 10-39
Q8VREV 10-28 VSQRT 10-39
Q8VSCATP 10-28 VTAN 10-39
Q8VSCATR 10-28.1 Vector Intrinsic Function Examples 10-39
Q8VXPND 10-29 Bit Manipulation Function Examples 10-39
RANF 10-29 Restructuring DO Loops as Vector

REAL 10-29 Operations 10-39
RPROD 10-29 Using a Bit Vector as a Mask 10-39
SECOND 10-29 Restructuring DO Loops With Nonunit

SIGN 10-30 Stride 10-41

60480200 J

Loop-Dependent Conditional Forward
Transfers

Summing a Vector

Finding the Minimum and Maximum
Vector Elements

Gathering and Scattering

Locating the Greatest Absolute Value

Multidimensional Arrays

11. PREDEFINED SUBROUTINES

Random Number Subroutines
RANGET
RANSET
" VRANF
Concurrent Input/Output Subroutines
Array Alignment
Subroutine Calls
Q7BUFIN
Q7BUFOUT
Q7WAIT
Q7SEEK
Q7STOP
Miscellaneous Input/Output Subroutines
Q8WIDTH
Q8NORED
Error Processing and Debugging Subroutines
Data Flag Branch Manager
Data Flag Branch Register
Data Flag Branch Processing
Data Flag Branch Subroutines
System Error Processor
MDUMP
STACKLIB Subroutines
STACKLIB Subroutine Characteristics
STACKLIB Subroutine Naming Convention
STACKLIB Call Formats
STACKLIB Argument Checking and Error
Processing

12. SPECIAL CALLS

Arguments
Label References
Symbolic References
Literals
Special Call Statement Examples
Using Special Calls to Manipulate
Registers
Using Special Calls to Vectorize DO Loops
Warning About Using Q8 Special Calls
Q8LINKV Special Call Warning
Overlapping Scalar Instruction
Warnings
Special Call Formats

13. PRODUCT INTERFACES

Program Compilation, Loading, and Execution
CYBER 200 Job Submittal
CYBER 200 Interactive Session
Operating System Interface
System Interface Language
Debugging Utilities
Subprogram Linkage
Prologue and Epilogue
Standard Calling Sequence
Fast Calls

60480200 J

10-41
10-42

10-42
10-42
10-43
10-43

11-1
11-1
11-1
11-1
11-1
11-2
11-3
11-3
11-3
11-4
11-5
11-5
11-5
11-5
11-5
11-6
11-6
11-6
11-8
11-11
11-13
11-14
11-14
11-14
11-18
11-18

11-19

13-1

13-1
13-1
13-5
13-5
13-5
13-5
13-9
13-9
13-9
13-10

14. FORTRAN CONTROL STATEMENT

Abbreviation
Defaults
Keywords
Keywords and Their Options
ABC
ANSI
BINARY
C64
DO
ERRORS
ELEV
F66
GO
INPUT
LIST
Lo
OPTIMIZE
SC
SDEB
SYNTAX
™
UNSAFE
Control Statement Examples
Compiler-Generated Listings
Cross-Reference Maps
Statement Label Map
Variable Map
Symbolic Constant Map
Procedure Map
Assembly Listing
Register Map and Storage Map
Index Map
Execution-Time File Reassignment
Control of Drop File Size
Error Messages

APPENDIXES

Character Sets

Diagnostics

Glossary

FORTRAN 200 Statement Summary

Compatibility Features

Differences Between VSOS Release
2.1.6 and 2.2

Vector Programming

mEOO W

«

INDEX

FIGURES

FORTRAN Program Example

Statement Structure

Statement Order

Symbolic Name Examples

Integer Constants Format

Integer Constants Examples
Half-Precision Constants Format
Half-Precision Constants Examples
Real Constants Format

Real Constants Examples
Double-Precision Constants Format
Double-Precision Constants Examples
Complex Constants Format

Complex Constants Examples

|
—— 0 O NN WN = WN

NNNNNNI\IJNNNNHD—’—
- O

14-1

14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-2
14-2
14-3
14-3
14-3
14-4
14-4
l4-4
14-5
14-5
14-5
14-5
14-6
14-6
14-6
14-6
14-6.1
14-6.1
14-6.1
14-12
14-13
14-14
14-15
14-15
14-15
14-16
14-16
14-16

FLWLLWLWRNDPRODNDND - LN
.
—

xi

[

Lo

uuwuwt,'«:uwwu
VOO ~NOUL & W~

[}
—
o

[
v

fbfbw

] [
OOV SN~ W

bbfbb

xii

Logical Constants Format

Logical Constants Examples

Character Constants Format

Character Constants Examples

Hollerith Constants Format

Hollerith Constants Examples

Hexadecimal Constants Format

Hexadecimal Constants Examples

Symbolic Constants Examples

Variables Examples

Array Declaration Format

Array Declarations and References
Examples

Array Element References Format

Array Size Computation Formulas

Array Size Computation Example

Array Element Position Computation
Example

Substring Format

Substring Examples

Integer Element Representation

Half-Precision Element Representation

Real Element Representation

Double-Precision Element Representation

Complex Element Representation

Logical Element Representation

INTEGER Statement Format

INTEGER Statement Example

HALF PRECISION Statement Format

HALF PRECISION Statement Example

REAL Statement Format

REAL Statement Example

DOUBLE PRECISION Statement Format

DOUBLE PRECISION Statement Example

COMPLEX Statement Format

COMPLEX Statement Example

LOGICAL Statement Format

LOGICAL Statement Example

CHARACTER Statement Format

CHARACTER Statement Examples

IMPLICIT Statement Format

IMPLICIT Statement Example

DIMENSION Statement Format

DIMENSION Statement Example

ROWWISE Statement Format

ROWWISE Statement Example

COMMON Statement Format

COMMON Statement Examples

EQUIVALENCE Statement Format

EQUIVALENCE Statement Examples

EXTERNAL Statement Format

EXTERNAL Statement Example

INTRINSIC Statement Format

INTRINSIC Statement Example

SAVE Statement Format

SAVE Statement Example

PARAMETER Statement Format

PARAMETER Statement Example

DATA Statement Format

Implied DO Loop Format for DATA
Statements

DATA Statement Examples

Scalar Arithmetic Expression Format

Scalar Arithmetic Expression Examples

Scalar Character Expression Format

Scalar Character Expression Examples

Scalar Relational Expression Format

Scalar Relational Expression Example

Scalar Logical Expression Format

Scalar Logical Expression Examples

Scalar Arithmetic Assignment Statement
Format

TERY OTURNRNTYITY
|
@ O N~ [V RV Y R R R Y
:
2

.
—

U |
HFOOWRXONRTTTITUVUL AL WWWWNNNN

wuuuuuuuuuwu$uuuuwuwuuwwu
o

!
—
o

ey ? » oo

v
|

1
OO ~NT VW —

(G RNV
|11

5-10
5-11
5-12
5-13
5-14
5-15
5-le
5-17
5-18
5-19

5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31

Scalar Arithmetic Assignment Statement
Examples

Scalar Character Assignment Statement
Format

Scalar Character Assignment Statement
Examples

Scalar Logical Assignment Statement
Format

Scalar Logical Assignment Statement:
Examples

Statement Label Assignment Statement
Format

Statement Label Assignment Statement
Example

Unconditional GO TO Statement Format

Unconditional GO TO Statement Example

Assigned GO TO Statement Format

Assigned GO TO Statement Example

Computed GO TO Statement Format

Computed GO TO Statement Example

Arithmetic IF Statement Format

Arithmetic IF Statement Example

Logical IF Statement Format

Logical IF Statement Example

Block IF Statement Format

Block IF Statement Example

ELSE IF Statement Format

ELSE IF Statement Example

ELSE Statement Format

ELSE Statement Example

END IF Statement Format

Simple Block IF Structure

Block IF Structure With ELSE IF
Statement

Block IF Structure With ELSE Statement

Nested Block IF Structure

DO Statement Format

DO Loop Format

DO Loop Example

Nested DO Lcops Example

CONTINUE Statement Format

CONTINUE Statement Example

PAUSE Statement Format

PAUSE Statement Example

STOP Statement Format

STOP Statement Example

ACCESS Specifier Format

BLANK Specifier Format

BUFS Specifier Format

DIRECT Specifier Format

END Specifier Format

ERR Specifier Format

EXIST Specifier Format

FILE Specifier Format

FMT Specifier Format

FORM Specifier Format

FORMATTED Specifier Format

IOSTAT Specifier Format

4-5

4-6

I
VO S PFDPOLOEERELWLWNONNN = -~

[|

e
CLeLCLCLXXXTXENINNOCOOTTUULUULULWEEXEOXXXENNOCOo UL

oooooo@ooo¢oTwwmuvmwmmmuu

NAME Specifier Format 6—
NAMED Specifier Format 6-
NEXTREC Specifier Format 6—
NUMBER Specifier Format 6-
OPENED Specifier Format 6=
REC Specifier Format b=
RECL Specifier Format [ehd
SEQUENTIAL Specifier Format 6-10
STATUS Specifier Format 6-10
UNFORMATTED Specifier Format 6-11
UNIT Specifier Format b-11
Implied DO Loop Format For
Input/Output Statements 6-12
60480200 H

6-25

6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-57
6-58
6-59
6-60
6-61
6-62
6-63
6-64
6-65
6-66
6-67
6-68
6-69
6-70
6-71
6-72
6-73
6-74
6-75
6-76
6-77
6-78
6-79
6-80
6-81
6-82
6-83
6-84
6-85
6-86
6-87
6-88
6-89
6-90
6-91
6-92
6-93
6-94
6-95

Implied DO Loop in Input/Output
Statement Example

Formatted READ Statement Format

Formatted READ Statement Example

Formatted WRITE Statement Format

Formatted Write Statement Example

PRINT Statement Format

PRINT Statement Example

PUNCH Statement Format

PUNCH Statement Example

FORMAT Statement Format

FORMAT Statement Example

Character Format Specification Example

A Descriptor Format

A Descriptor Example

B Descriptor Format

B Descriptor Example

BN Descriptor Format

BN Descriptor Example

BZ Descriptor Format

BZ Descriptor Example

D Descriptor Format

D, E, F, and G Input Field Format

Output Field Format

Descriptor Example

Descriptor Format

Output Field Format

Descriptor Example

Descriptor Format

Output Field Format

Descriptor Example

Descriptor Format

Descriptor Example

Descriptor Format

Descriptor Example

Descriptor Format

Descriptor Example

Descriptor Format

Descriptor Example

Descriptor Format

Descriptor Example

Descriptor Format

Descriptor Example

Descriptor Format

Descriptor Example

SP Descriptor Format

SP Descriptor Example

SS Descriptor Format

SS Descriptor Example

T Descriptor Format

T Descriptor Example

TL Descriptor Format

TL Descriptor Example

TR Descriptor Format

TR Descriptor Example

X Descriptor Format

X Descriptor Example

Z Descriptor Format

Z Descriptor Example

Apostrophe Descriptor Format

Apostrophe Descriptor Example

Slash Descriptor Format

Slash Descriptor Example

Colon Descriptor Format

Colon Descriptor Example

Unformatted READ Statement Format

Unformatted READ Statement Example

Unformatted WRITE Statement Format

Unformatted WRITE Statement Example

List-Directed READ Statement Format

List-Directed READ Statement Examples

List-Directed WRITE Statement Format

LB OUYECEHAHADT I OO MmO O

60480200 H

7-11
7-12
7-13

7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22

List-Directed WRITE Statement Examples

List-Directed PRINT Statement Format

List-Directed PRINT Statement Example

List-Directed PUNCH Statement Format

List-Directed PUNCH Statement Example

NAMELIST Statement Format

NAMELIST Statement Example

Namelist READ Statement Format

Namelist READ Statement Lkxample

Namelist WRITE Statement Format

Namelist WRITE Statement Example

Namelist PRINT Statement Format

Namelist PRINT Statement Example

Namelist PUNCH Statement Format

Namelist PUNCH Statement Example

Namelist Input Format

Namelist OQutput Format

Formatted Direct Access Input/Output
Example

Unformatted Direct Access Input/Output
Example

Internal File Input/Output Example

DECODE Statement Format

DECODE Statement Example

ENCODE Statement Format

ENCODE Statement Example

OPEN Statement Format

OPEN and CLOSE Statement Examples

CLOSE Statement Format

INQUIRE Statement Format

INQUIRE Statement Examples

REWIND Statement Format

REWIND, BACKSPACE, and ENDFILE
Statement Example

BACKSPACE Statement Format

ENDFILE Statement Format

Main Program Structure

PROGRAM Statement Format

END Statement Format

Main Program, Function, and Subroutine
Example

Function Subprogram Structure

FUNCTION Statement Format

Modification of Function Arguments
Example

RETURN Statement for Function
Subprograms Format

Function Reference Format

Function With Same Name as an Intrinsic
Function Example

Subroutine Subprogram Structure

SUBROUTINE Statement Format

RETURN Statement for Subroutine
Subprograms Format

CALL Statement Format

ENTRY Statement Format

Secondary Entry Points Example

Block Data Subprogram Structure

BLOCK DATA Statement Format

BLOCK DATA Statement Examples

Statement Function Definition Format

Statement Function Reference Format

Statement Function Example

Implied DO Subscript Expression Format

Order of Subarray Elements Example

Subarray References Using Columnwise
and Rowwise Arrays Example

Conformable and Nonconformable Subarray
References Examples

Array Expressions Examples

Array Assignment Statement Format

8-3
8-3
8-3

xiii

e
—_~d

PEPELE
Rl I NV, B S R VLN]

O O

=)
I

10

-}
[
—
—

9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24

9-25

9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33
9-34

9-35
9-36

9-37
9-38
9-39

9-40

9-41
9-41.1

9-41.2

9-47
9-48
9-49
9-50
9-51

9-52
9-53
10-1
10-2
10-2.1
10-2.2
10-3

xiv

Array Assignment Statement Examples

Scalar vs. Vector Processing
Illustration

Vector Reference Format

Vector Reference Examples

Descriptor Representation

Descriptor Examples

DESCRIPTOR Statement Format

DESCRIPTOR Statement Example

Vector Initialization Example

Descriptor Initialization Example

Descriptor ASSIGN Statement Format

Descriptor ASSIGN and FREE Statement
Examples

FREE Statement Format

Bit Constants Format

Bit Constants Examples

BIT Statement Format

BIT Statement Example

Initialization of Bit Items Examples

Vector Arithmetic Expression Format

Vector Arithmetic Expression Examples

Vector Relational Expression Format

Vector Relational Expression Examples

Bit Expression Format

Bit Expression Examples

Vector Arithmetic Assignment Statement
Format

Vector Arithmetic Assignment Statement
Examples

Bit Assignment Statement Format

Bit Assignment Statement Examples

WHERE Statement Format

WHERE Statement Examples

Block WHERE Statement Format

OTHERWISE Statement Format

END WHERE Statement Format

Simple Block WHERE Structure

Block WHERE Structure With OTHERWISE
Statement

Block WHERE Structure Examples

FUNCTION Statement Format for Vector
Functions

Vector Function Reference Format

Vector Function Examples

ENTRY Statement for Vector Functions
Format

Example of Secondary Entry Points in
Vector Functions

DO Loops

DO Loops With the Incrementation
Parameter #1

DO Loops With the Incrementation
Parameter #2

Vectorizable Loop #1

Vectorizable Loop #2

Vectorizable Loop #3

General Form of Recursive Assignments

Vectorizable and Nonvectorizable
Loops With Scalars

Subscript Expression Forms

Vectorizable Loop #4

Feedback Example

Overlap Example

Possible Feedback With Generalized
Subscripts

Transformable Loops

Vectorizer Output

Function Q8VGATHP Example

Q8VGATHR Function Example

Q8VGEI Function Example

Q8VLTI Function Example

Q8VSCATP Function Example With Vector
Input Argument

T
Eo

[U
LEPrPPLLLLUNON

\D\D\f\D\D

O WO O WO O
e [

Lo

ND\D\D\D\O\D\ID\O\D\O\D\D\D
WWOWWOWooOoNNOOOo

O
I
—
o

9-11
9-11
9-11
9-11
9-12
9-12
9-12
9-12
9-13

9-13
9-14

9-14
9-14
9-15

9-15

9-15
9-19

9-19
9-20
9-20
9-20
9-21

9-21
9-21
9-22
9-22
9-22

9-23
9-23
9-24
10-25
10-25
10-26
10-26

10-28

10-4 Q8VSCATP Function Example With

Scalar Input Argument 10-28.1
10-5 Q8VSCATR Function Example 10-29
10-6 Bit Vector Mask Example 10-40
10-7 Nonunit Stride Example 10-41
10-8 Conditional Vector Store - Example 1 10-41
10-9 Conditional Vector Store — Example 2 10-42
10-10 Vector Summing Example 10-42
10-11 Minimum and Maximum Element Search

Example 10-42
10-12 Gathering and Scattering Example 10-43
10-13 Greatest Absolute Value Search

Example 10-43
11-1 RANGET Call Format 11-1
11-2 RANSET Call Format 11-1
11-3 VRANF Call Format 11-1
11-4 Q7BUFIN Call Format 11-3
11-5 Q7BUFOUT Call Format 11-4
11-6 Q7WAIT Call Format 11-4
11-7 Q7SEEK Call Format 11-5
11-7.1 Q7STOP Call Format 11-5
11-8 Q8WIDTH Call Format 11-5
11-9 Data Flag Branch Register Format 11-6
11-10 Scope of Selected Conditions 11-10
11-11 Q7DFCL1 Call Format 11-11
11-12 Q7DFSET Call Format 11-11
11-13 Q7DFBR Call Format 11-12
11-14 Q7DFLAGS Call Format 11-12
11-15 Q7DFOFF Call Format 11-12
11-16 SEP Call Format 11-13
11-17 MDUMP Call Format 11-14
12-1 Special Call Statement Format 12-1
12-2 Special Call Statement Example #1 12-2
12-3 Special Call Statement Example #2 12-2
12-4 Special Call Statement Example #3 12=2
12-5 Generated Code 12-2
12-6 Alternate Generated Code 12-3
12-6.1 Special Call Examples That

Vectorize DO Loops 12-3
12-7 Instruction Formats 12-15
13-1 Example of a NOS 2 Interactive

Session Submitting a CYBER 200 Job 13-2
13-2 Example of a NOS 2 Interactive

Session Submitting a CYBER 200

Job With the GO Option 13-6
13-3 Example of a CYBER 200 Interactive

Logon and Logout From a NOS 2

Front-End System 13-8
13-4 SIL Call Format 13-9
13-5 Standard Calling Sequence 13-9
13-6 Fast Calling Sequence Example 13-10
14-1 Control Statement Example With

Default Values 14-6
14-2 Control Statement Example 14-6.1
14-3 Statement Label Map Format 14-6.1
14-4 Source Listing Example 14-7
14-5 Variable Map Format 14-12
14-6 Symbolic Constant Map Format 14-13
14-7 Procedure Map Format 14-14
14-8 Compiled-Module Listing (Index Map)

Example 14-15
TABLES
1-1 Types of Statements 1-2
2-1 FORTRAN Character Set 2~-1
2-2 Array Element Size 2-8
2-3 Subscripting Order for a Three-

Dimensional Array A(2,3,4) 2-9
2-4 Array Position Formulas 2-10
3-1 Alignment Requirements 3-7
3-2 Alignment Requirements for

Equivalence (X1,X2) 3-9

60480200 H

3-3 Initialization Conversions

4-1 Arithmetic Operators

4-2 Result Type for Arithmetic Operations
+ - %/

4-3 Result Type for OP1 ** QP2

4=4 Relational Operators

4-5 Logical Operators

4-6 Truth Table Definitions of Logical
Operators

4=7 Precedence of Operators

4-8 Type Conversion for Scalar Arithmetic
Assignment

6-1 Control Information List Specifiers

6-2 Carriage Control Characters

6-3 Edit Descriptors

6-4 Values for dl, w, d, and e

7-1 File Connection Examples

7-2 Automatically Preconnected Files and
Units

7-3 Differences Between Functions and
Subroutines

7-4 Dummy and Actual Argument
Correspondence

60480200 H

9-5

10-1
10-2
10-3
10-4
11-1
11-2
11-3
12-1
12-2
12-3
14-1

Type Conversion for Vector Arithmetic
Assignment (v = aexp)

Criteria for Vectorizable Loops

Criteria for Vectorizable Scalar
Assignments

Criteria for Vectorizable
Expressions

Criteria for Vectorizable Array
Elements

Scalar Intrinsic Functions

Vector Intrinsic Functions

Mathematical Functions

Bit Manipulation Functions

Data Flag Branch Conditions

Multiple Interrupt Processing

STACKLIB Routines

Operand Designators

Special Call Formats

Special Calls Listed by OP Code

Keyword Abbreviations and Parameter
Defaults

xv/xvi l

NOTATIONS

Certain notations are used throughout this manual.
The meanings of these notations are:

UPPERCASE

lowercase

(1

(}

60480200 G

Uppercase letters in syntax repre-
sent elements, such as language
keywords, that must appear exactly
as shown.

Lowercase letters in syntax repre-
sent entities that you must supply.

Brackets surrounding an item in
syntax denote that the item {is
optional.

Braces surrounding two or more
stacked items in syntax denote that
one of the stacked items must be
used .

Shad ing

A delta represents a blank that is
not optional.

A horizontal ellipsis 1indicates
that the previous item in syntax
can be repeated more than once.

A vertical ellipsis indicates that
one or more lines have been deleted
from a listing or example.

Shading indicates features or
parameters that are extensions or
restrictions to standard FORTRAN
as described in ANSI document
X3.9-1978.

xvii I

INTRODUCTION 1

“

The CONTROL DATA FORTRAN 200 compiler operates under
control of the CYBER 200 Virtual Storage Operating
System on the CYBER 200 series computer hardware.
The FORTRAN 200 compiler translates FORTRAN source
code into relocatable binary object code.

A FORTRAN program can be entered onto a file by
using a card reader or a terminal, and a control
statement can be used to invoke the FORTRAN com—
piler. The compiler reads the source code from the
file and processes the program, generating a source
listing and object code. The source listing is a
list of source statements and any diagnostic infor-
mation generated by the compiler. The object code
can be 1loaded and executed by wusing control
statements.

The FORTRAN 200 language 1is a superset of the
standard FORTRAN language that is defined in the
American National Standards Institute (ANSI) docu-
ment ANSI X3.9-1978, The FORTRAN 200 compiler
provides two types of extensions to the standard
FORTRAN language:

Extensions that are common in FORTRAN languages
implemented on other Control Data computers

Extensions that provide access to the vector
processing capabilities of the CYBER 200 series
computer hardware

This manual uses shading to indicate those features
that are extensions to the standard FORTRAN lan-
guage.

This section describes the general structure of a
FORTRAN program and of FORTRAN statements.

PROGRAM STRUCTURE

A FORTRAN program consists of one or more
separately—-defined program units. A program unit,
which consists of a series of comment lines and
source lines containing FORTRAN statements, is
either a main program or a subprogram. A FORTRAN
program must contain one main program; it can also
contain any number of subprograms.

A FORTRAN main program begins with an optional
PROGRAM statement and ends with an END statement.
If you omit the PROGRAM statement, the compiler
supplies a default PROGRAM statement. The main
program must end with an END statement. The PROGRAM
statement and the END statement are described in
section 7.

A FORTRAN subprogram begins with a SUBROUTINE,
FUNCTION, or BLOCK DATA statement, and ends with an
END statement. These statements are described in
section 7. Subprograms can be written in languages
other than FORTRAN, such as CYBER 200 assembly lan-
guage, but special consideration must be given to
the interface; see section 13 for more information.

60480200 H

The FORTRAN compiler provides a number of predetined
subprograms that you can reference in your FORTRAN
program. These subprograms are described in
sections 10 through 13, and in appendix E.

See figure l-1 for an example of a complete FORTRAN
200 program. The program in figure l-1 consists of
one main program; it does not contain any sub-
programs.

The program shown in figure 1-1 1is written on a
FORTRAN coding form. Each line of the coding form
represents a source line that can be keypunched, or
typed at a terminal.

STATEMENTS

There are two classes of statements in the FORTRAN
language: executable statements and nonexecutable
statements. Executable statements describe the
operations that the compiled program performs. All
the executable statements in a program together
constitute the execution sequence of the program.

Executable statements do the following:

Control the order in which the statements in
the program execute

Input, output, modify, and store data

Nonexecutable statements are not part of the
execution sequence of the program. Instead, they
perform the following functions:

Describe the characteristics, arrangement,
format, and initial values of data

Classify program units
Define entry points within subprograms

Optionally, specify the file requirements of
the program

See table l-1 for a summary of the types of state-
ments.

STATEMENT STRUCTURE

The FORTRAN 200 language is a fixed-format
programming language; this means that the position
of a FORTRAN statement in the source line is sig-
nificant to the meaning of the statement. FORTRAN
source lines can be a maximum of 96 columns long.
FORTRAN source lines consist of four fixed fields:

The label field is in columns 1 through 5 of
each source line and can contain a statement
label. Column 1 of the label field can also be

COBTRED crmascoomaroms

oo PASCAL ™
AOUTINE DATE M”
:"A"': FORTRANM STATEMENT -
e §-aimao Hor Tz wamen
1fagageqsfeloyoyegiofingagagreggegyegiogaofanzagzayae omyaey 2110 g0l or oy ey a0 ey segan ey ofengeapesyeapeny g 1oy 83,83 4;98108, 87) 081091 00 61162 €2 poa 08 Y2 r3yeyrege) 17 e regee |
11} 1414 _Lwlrlhmn)l 1411111 L1 e e v et v bttty
111 e (i) b Lo ey v tee e v P v falaaaaaag
111 iyl Loy ea v e v ev s frerv e e rrenae feranrtenibieanag
Cl 111 e et v r e e e v vy rn v et vt v eve e et aadafaarrgy
111 | PR iy Ll b e v e P e b e
L1 | [FigiRim(A B ATi1 AT AL ITILIME . A/I200060 3 =M=/ 1111111
lllﬂhmﬁ)lllllllillllllllllj_LLlIlllillllliill Ly ettt bbbyl leat
clll Ly e e v e b bt ety 1131111t 11111111t A il
111 D‘lllIl‘lﬁljflllOllllLl]lll’lJ‘LllllllJll IENEEE NS 111111819 1 it 1 1114111
Lt stk oy v st o v s v r et g v e v ve s Py e v p e bree g e r e gttty
111 LI{IK[)'-llllllllllIllllllll L1t L1431l | W T A1 1111 letratal
s 11 Lo] wh=iadion v Lo s v e e frre et e e v et v vy e e r bl
Wt Ll O QY bt P v el e beerp el
121 IRIY) nJm#Ihme)lJBdedﬂLL sttt by v by v v b v e b et
| {130 | AMQLODS 1 f o v vy o tve e foypttereeferrepeerefegprertgaft 1111
Lt ISP by et e e v e ety e e vttt eerer e fog ety gnrela e
L1 s v v v el e ee v b p v v v by v v r by sy v for gt eyt
14 te b v e v v prer v bt et rr v et e lar et ade bty
111 I'll 140 bgour e pootr e g1t £ 100 br oy arned AL b iy by ey il
111 L Pat e e a o bep v e pp v r e e p b ryprebep o pne by b g ey pe et rirnd
L1 ca v vv e b e e fevee v e eer v ve e gy v b i g el
B0 OO DO WL, Lt L] 29)> [43703] 401810047 49{ 09| 00} 81{83) 53 04 08 0887 | 08 {80| 00 01} 2} 3 (r2frayreg e vy e o]
Figure 1-1. FORTRAN Program Example
TABLE 1-1. TYPES OF STATEMENTS The statement field is in columns 7 through 72
of each source line and contains the FORTRAN
statement. The statement can appear anywhere
Executable Nonexecutable in the statement field. Blanks in FORTRAN

Assignment statements Specification and
initialization

statements

FORMAT and NAMELIST
statements

Flow control statements

Input/output statements PROGRAM, FUNCTION,
SUBROUTINE, and

BLOCK DATA statements

END statement

used to specify that the source 1line is a
comment line. Statement labels and comments
are described later in this section.

The continuation field is in column 6 of each
source line and 1s used to specify that the
source line 1s a continuation 1line for the
statement that appears in the previous source
line. Continuation lines are discussed later
in this section.

statements are ignored except in character con-
stants and in Hollerith constants. If a state-
ment 1is too long to be contained in the
statement field of one source line, it can be
continued in the statement field of subsequent
source lines. Statement continuation is
discussed later in this section.

The length of a source line can range from 80

columns (card input) to 96 columns. The
identification field is ignored by the
compiler; therefore, you can place any

information in this field. The contents of the
identification field are written on the source
listing. One possible use of the identification
field is to number the cards in a punched card
deck.

See figure 1-2 for an illustration of the structure
of FORTRAN statements.

STATEMENT LABELS

A statement label is a 1- through 5-digit integer.
A statement label can appear in the label field of

60480200 H

72 73 80

Mv\\/\/—v/ .,

Statement field

L— Continuation field (a blank or a zero
indicates an initial line; any other
character indicates a continuation Line)

— Label field (can contain a statement label; a C
or * in column 1 indicates a comment Line)

L—— Identification field (ignored)

Figure 1-2.

a statement and identifies the statement so that it
can be referenced from elsewhere in the program
unit. A label can be referenced more than once,
but it must not be defined more than once in a
program unit. A label in one program unit cannot
be referenced in another program unit. A statement
does not need a label unless 1t 1is referenced in
another statement. Blanks and leading zeros in
labels are ignored. Labels on continuation state-
ments are ignored. Labels do not have to appear in
numerical order.

INITIAL LINES

An initial line is a source line in which a FORTRAN
statement begins. An initial 1line can contain a
statement label. Column 1 of an initial line must
not contain the letter C or an asterisk. The con-
tinuation field of an initial 1line must contain a
blank or a zero. The FORTRAN statement can appear
anywhere in the statement field.

CONTINUATION LINES

A continuation line 1s a source line that contains
a continuation of the statement that appears in the
previous source line. You specify a source line to
be a continuation line by placing a character other
than a blank or zero in the continuation field.

The label field of a continuation line 1s ignored
by the compiler; however, column 1 of a continuation
line must not contain the letter C or an asterisk.

The statement field of a continuation line contains
a portion of the FORTRAN statement that 1is not
contained in the previous source line.

A FORTRAN statement can be continued on up to 19
continuation lines. The maximum length of a FORTRAN
statement is 1320 characters. This 1s computed by
multiplying 66 characters, which is the 1length of
the statement field, by 20 lines (one initial 1line
plus 19 continuation lines).

60480200 F

Statement Structure

A continuation line can follow an initial line or
another continuation line. Comment lines can appear
between an initial line and a continuation line, and
between two continuation lines.

COMMENT LINES

A comment line is a source line that can be used to
document the program. You specify a source line to
be a comment line by placing the letter C or an
asterisk in column 1 of the source line. You can
place any characters in the remaining columns of
the source line. Any of the characters listed in
appendix A can be used in comments, including those
that are not in the FORTRAN character set.

Comment lines are printed on the source listing,
but have no effect on program execution or on the
object code produced by the compiler.

Source 1lines that contain blanks in columns 1
through 72 are considered to be comment lines.

Comment lines can appear anywhere in the program,
including between an initial line and a continuation
line, and between two continuation lines. Comment
lines that are placed after an END statement are
printed at the beginning of the next program unit.

STATEMENT ORDER

There are restrictions on the order in which
statements can appear in a program unit. See figure
1-3 for an 1illustration of the statement order
restrictions.

The figure shows that a PROGRAM, SUBROUTINE,
FUNCTION, or BLOCK DATA statement must appear first
in a program unit, although a comment 1line can
precede the PROGRAM, SUBROUTINE, FUNCTION, or BLOCK
DATA statement. If a PROGRAM statement is not
specified in the main program, the compiler uses a
default PROGRAM statement. Comment lines can appear
anywhere in a program unit. Comment 1lines that

1-3

PROGRAM, FUNCTION, SUBROUTINE,
BLOCK DATA
mpLrcrtitt
1.
PARAMETERT T other
Specification
Comment
Statements Lines
FORMA'_;’_,
ENTRY Statement
Function
Definitions
NAME-
DATA | [1sT
Executable
Statements
END

TMust not appear in an if-block, elseif-block,
else-block, where-block, or otherwise-block,
or in the range of a DO statement.

TTIf the type of the constant used in the
PARAMETER statement depends on an IMPLICIT or
type specification statement, the PARAMETER
statement must appear after the IMPLICIT or
type specification statement.

TTTIf this statement specifies the type of a
constant that is used in a PARAMETER state-
ment or in an array bound expression, it must
appear before the PARAMETER statement or the
statement that contains the array bound
expression.

Figure 1-3. Statement Order

appear after an END statement are printed at the
beginning of the next program unit.

FORMAT and ENTRY statements must appear before the
END statement. The ENTRY statement must not appear
in an 1if-block, elseif-block, else-block, where-
block, or otherwise-block, or in the range of a DO
statement.

PARAMETER statements must appear before any DATA
statements. If the type of a constant that is used
in a PARAMETER statement depends on an IMPLICIT or
on a type specification statement, the IMPLICIT or
type specification statement must precede the
PARAMETER statement.

DATA statements must appear after any PARAMETER
statements.

IMPLICIT statements must appear before any other
specification statements (except PARAMETER state-
ments), statement function definitions, and exe-
cutable statements. If the type of a constant that
is used in a PARAMETER statement depends on an
IMPLICIT statement, the IMPLICIT statement must
appear before the PARAMETER statement. If the type
of an integer variable that is used in a dimension
bound expression depends on an IMPLICIT statement,
the IMPLICIT statement must appear before the
statement in which the dimension bound expression
appears.

Specification statements other than the IMPLICIT
statement must appear after any IMPLICIT statements,
and before any statement function definitions and
executable statements. If the type of a constant
that is used in a PARAMETER statement depends on a
type specification statement, that type specifica-
tion statement must appear before the PARAMETER
statement. If the type of an integer variable that
is used in a dimension bound expression depends on
a type specification statement, that type specifi-
cation statement must appear before the statement
in which the dimension bound expression appears.

Statement function definitions must appear after
any IMPLICIT and type specification statements, and
must appear before any executable statements.

Executable statements must appear after any IMPLICIT
and type specification statements, and statement

function definitions.

The END statement must be the last statement in a
program unit.

INPUT DATA

Input data are data that are transferred from an
external medium, such as a disk or tape, to an area
in memory that can be accessed by the program.
Input data are not part of the source program
record. Input statements cause data to be input to
the program.

The data that appear on an input line can be in any
format; there are no fixed fields for input data.
The fields of an input line that are read by an
input statement are determined by the input state-
ment or by any associated FORMAT statement. See
section 6 for more information about input data.

60480200 H

LANGUAGE ELEMENTS 2

L]

This section describes the language elements that
are used to construct FORTRAN 200 statements. The
language elements 1include characters, symbolic
names, keywords, constants, symbolic constants,
variables, arrays, and substrings. This section
also describes the internal representation of data.

CHARACTER SET

Any of the 52 characters listed in table 2-1 can be
used in the syntax of a FORTRAN program. These
characters are from the American Standard Character
Set for Information Interchange (ASCII). CYBER 200
characters that are not listed in table 2-1 can be
used in comments, character constants, and
Hollerith constants.

TABLE 2-1. FORTRAN CHARACTER SET

Characters

Character Class

q

Alphabetic Uppercase letters A

through 2
Numeric Digits O through 9

Special A Blank or space

Equals sign

Plus sign

Minus sign or hyphen

Multiplication sign or
asterisk

Division sign or slash

Left parenthesis

Right parenthesis

Comma

Decimal point or period

Ampersand

Apostrophe

Colon

Semicolon

Left bracket

Right bracket

AR P e e~ * 1+ 0

—t e oo

See appendix A for the internal hexadecimal repre-
sentations, printer graphic representations, and
card punches for the CYBER 200 character set.

Some of the characters do not appear on all key-
punches and terminals. If your keyboard lacks a
character that you need, then use whatever character
that 1s present which has the same internal
hexadecimal representation as the needed character.

Blanks are not significant in FORTRAN statements
except in character constants and Hollerith
constants. Therefore, you can insert blanks in
statements to make the program more readable. You
can also insert blanks in language elements, such

60480200 H

as symbolic names and constants. The symbol A is
used in this manual to denote a blank that is not
optional.

SYMBOLIC NAMES

A FORTRAN 200 symbolic name is user-supplied, can
have up to eight letters and digits, and must begin
with a letter. Symbolic names can be any of the
following:

Main program name

Subroutine name

Function name

Block data subprogram name

Statement function name

Symbolic constant name

Variable name

Array name

Descriptor name

Descriptor array name

Common block name

Namelist group name
A symbolic name can be the same as a FORTRAN
keyword. Conflicts can occur if a symbolic name is
used to represent more than one program component.
For example, a symbolic name must not be used as
both a main program name and a variable name. Con-
flicts can also occur if a symbolic name duplicates
the name of a predefined subroutine, the name of an

intrinsic function, or a special call name.

See figure 2-1 for examples of legal and 1illegal
symbolic names.

Legal symbolic names:

LEGAL
LEGAL1
READ
OKSYMBOL

Illegal symbolic names:

ILLEGAL!
1BADSYM
SYMBOLTOOLONG

Figure 2-1. Symbolic Name Examples

FORTRAN KEYWORDS

A FORTRAN keyword is a name that has a special
meaning to the FORTRAN compiler when used in the
appropriate context. FORTRAN keywords are not
reserved words; therefore, you can use the keywords
as symbolic names.

Some of the characters in the FORTRAN character set
have special meanings to the compiler when used in
the appropriate context. For example, a comma used
in a statement punctuates the statement.

CONSTANTS

A constant is a value that cannot be changed by the
program. The 10 types of constants are: integer,
half-precision, real, double-precision, complex,
logical, character, Hollerith, hexadecimal, and bit.

An arithmetic constant 1is a constant that 1s of
type integer, real, double-precision, half-
precision or complex. An arithmetic constant can
be either signed or unsigned. A signed constant is
an arithmetic constant with a leading plus or minus
sign. An unsigned constant 1s an arithmetic
constant without a leading sign.

A constant is identified in a program by a symbolic
name or by the constant value. A constant that is
identified by a symbolic name 1is called a symbolic
constant. Symbolic constants are described later
in this section.

A constant that 1s identified by the constant value
has a specific source program format that depends
on the type of the constant. The source program
formats of constants are described in the following
paragraphs. The 1nternal representation of each
type of constant is described later in this section.
See section 9 for a description of bit constants.

INTEGER CONSTANTS

An integer constant is a string of decimal digits
that does not contain a decimal point or a comma.
See figure 2-2 for the format of an integer con-
stant. See figure 2-3 for examples of legal and
illegal integer constants.

Legal integer constants:

0

-1957

1980
12345678901234

Illegal integer constants:

1.957
123,456
123456789012345

Figure 2-3. Integer Constants Examples

HALF-PRECISION CONSTANTS

A half-precision constant 1is a string of decimal
digits that contains an exponent, or a decimal point
and an exponent. A half-precision constant is
written like a real constant or a double-precision
constant except the letter S is used instead of the
letter E or the letter D. The exponent portion of
a half-precision constant must always be written.
See figure 2-4 for the format of a half-precision
constant.

sign man S sign exp

sign A plus sign or a minus sign; optional.
If a sign is not specified, the value
that follows the sign is positive.

man A string of one or more of the decimal
digits 0 through 9 that represent the
mantissa of the half-precision
constant. One decimal point can appear
anywhere in the string.

exp A string of one or more of the decimal
digits 0 through 9 that represent the
base 10 exponent of the half-precision
constant.

sign dec-digits

sign A plus sign or a minus sign;
optional. If a sign is not
specified, the constant is
positive.

dec-digits A string of 1 to 14 of the decimal
digits 0 through 9.

Figure 2-2. 1Integer Constants Format

Figure 2-4. Half-Precision Constants Format

The value of a half-precision constant is the
product of the mantissa and the result of 10 raised
to the exponent. The minimum and maximum half-
precision constants are approximately -2.177807S40
and 2.177807S40. See figure 2-5 for examples of
legal and 1illegal half-precision constants. The
values that the half-precision constants represent
are shown in parentheses.

60480200 F

Legal half-precision constants:

8s10
3.5815
4.25-111
-3.58-15
-4.25111
Illegal half-precision constants:
1957
1.957
1.95781.957

200.9s
12.12.12s50

(8.0#1010)
(3.5+1015)
4.2¢10"111)
(-3.5+¢10"15)
(-4.2¢1011")

Figure 2-5. Half-Precision Constants Examples

REAL CONSTANTS

A real constant is a string of decimal digits that
contains a decimal point or an exponeat, or both.
See figure 2-~6 for the format of a real constant,

60480200 F

2-2.1/2-2.2 |

sign man E sign exp

sign A plus sign or a minus sign; optional.
If a sign is not specified, the value
that follows the sign is positive.

man A string of one or more of the decimal
digits 0 through 9 that represent the
mantissa of the real constant. One
decimal point can appear anywhere in
the string.

exp A string of one or more of the decimal
digits 0 through 9 that represent the
base 10 exponent of the real constant;
optional. If exp is not specified, the
preceding E and sign must not be
specified.

Figure 2-6. Real Constants Format

The value of a real constant is the product of the
mantissa and the result of 10 raised to the
exponent. See figure 2-7 for examples of legal and
illegal real constants. The values that the legal
constants represent are shown in parentheses. The
minimum and maximum real constants are approxi-
mately -9.53E8644 and 9.53E8644,

Legal real constants:

2E100 (2.0%10100),
1.957 (1.957)
-19.84 (-19.84)
3.5€15 (3.5%1015)
4.26-111 (4.2%10"111)
-3.56-15 (-3.5%10"15)
-4, 26111 (-4.2%10111)

Illegal real constants:

123,456.789

1.957€1.957
200.9€

12.12.12€50

Figure 2-7. Real Constants Examples

DOUBLE-PRECISION CONSTANTS

A double-precision constant is a string of decimal
digits that contains an exponent, or a decimal
point and an exponent. A double-precision constant
is written like a real constant or a half-precision
constant except the letter D is used instead of the

letter E or the letter S. The exponent portion of"

a double-precision constant must always be written.
See figure 2-8 for the format of a double-precision
constant.

The value of a double-precision constant is the
product of the mantissa and the result of 10 raised
to the exponent. See figure 2-9 for examples of
legal and illegal double-precision constants. The

60480200 E

values that the legal constants represent are shown
in parentheses. The minimum and maximum double-
precision constants are approximately -9.53D8644
and 9.53D8644, respectively.

sign man D sign exp

sign A plus sign or a minus sign; optional.
If a sign is not specified, the value
that follows the sign is positive.

man A string of one or more of the decimal
digits 0 through 9 that represent the
mantissa of the double-precision
constant. One decimal point can appear
anywhere in the string.

exp A string of one or more of the decimal
digits 0 through 9 that represent the
base 10 exponent of the double-
precision constant.

Figure 2-8. Double-Precision Constants Format

Legal double-precision constants:

70100 (7.0%10100)
3.5015 (3.5%1015)
4.20-111 (4.2%107111)
-3.5b-15 (-3.5%10"15)
-4.20111 (-4.2+10111)

Illegal double-precision constants:

1957

1.957
1.95701.957
200.90
12.12.12050

Figure 2-9. Double-Precision Constants Examples

COMPLEX CONSTANTS

A complex constant is a pair of real or integer
constants separated by a comma and enclosed in
parentheses. See figure 2-10 for the format of a
complex constant., See figure 2-11 for examples of
legal and illegal complex constants.

(real-part,imag-part)

real-part A real or integer constant that
represents the real part of the
complex constant

imag-part A real or integer constant that

represents the imaginary part of
the complex constant

Figure 2-10. Complex Constants Format

Legal complex constants:

(1957,1957)
(1.957,3.5€15)
(-4.2E-111,3.5€-15)

Illegal complex constants:
1957,1957

(1.957,3.5015)
(-4.25-111,3.56-15)

Figure 2-11. Complex Constants Examples

LOGICAL CONSTANTS

A logical constant is one of two specific strings
of characters. See figure 2-12 for the format of a
logical constant. The decimal points are part of
the logical constant and must be written. See
figure 2-13 for examples of 1legal and illegal
logical constants.

.logical-value.

logical-value One of the following

character strings:

TRUE
FALSE

Figure 2-12. Logical Constants Format

Legal logical constants:

- TRUE.
«FALSE.

Illegal logical constants:

TRUE
FALSE
0

1

Figure 2-13. Logical Constants Examples

CHARACTER CONSTANTS

A character constant is a string of one or more
characters enclosed in apostrophes. See figure 2-14
for the format of a character constant.

'char-string'

char-string A string of 1 through 65535
characters from the CYBER 200

character set

Figure 2-14. Character Constants Format

Blanks are significant in a character constant.
Any of the characters listed in appendix A can be
used in a character constant. In order to represent
an apostrophe in a character constant, two consecu-
tive apostrophes must be written.

Character constants, unlike Hollerith constants,
can be used in character expressions and in char-
acter assignment statements. Character constants
must not be used in arithmetic expressions or in
arithmetic assignment statements.

See figure 2-15 for examples of legal and illegal
character constants. The symbol A is used to
denote blanks in the character constants shown.

Legal character constants:

'LEGAL A CHARACTER ACONSTANT'
'12345A67890 A

VIoHSKe!

'WHAT''S A UP?!

Illegal character constants:

'ILLEGAL A CHARACTER A CONSTANT"
'‘PIAISA T

Figure 2-15. Character Constants Examples

A Hollerith constant 1is a string of one or more
characters preceded by an unsigned integer and the
letter H or the letter R. See figure 2-16 for the
format of a Hollerith constant.

count H string
or
count R string

count An unsigned integer constant that
specifies the exact number of
characters in the Hollerith constant;
count must be greater than 0 and no
greater than 255.

string A string of characters from the CYBER
200 character set. This string begins
in the next character position after
the H or R and must contain exactly
the number of characters specified in
count .

Figure 2-16. Hollerith Constants Format

Blanks are significant in a Hollerith constant.

Any of the characters listed in appendix A can be
used in a Hollerith constant.

There are two types of Hollerith constants: H type
and R type. An H type Hollerith constant is left-
Justified and blank-filled; an R type Hollerith
constant 1s right-justified and binary-zero-filled.
The internal representation of Hollerith constants
is described later in this section.

60480200 A

Hollerith constants, unlike character constants,
can be used in arithmetic expressions and in arith-
metic assignment statements. Hollerith constants
must not be used in character expressions or in
character assignment statements.

See figure 2-17 for examples of legal and illegal
Hollerith constants. The symbol A is used to
denote blanks in the Hollerith constants shown.

Legal Hollerith constants:

24HLEGAL A HOLLERITH A CONSTANT
5R12345

6H!DHSX ¢

10HWHAT 'S A UP?

Illegal Hollerith constants:

OHILLEGAL A HOLLERITH ACONSTANT
THPIAISAT

Figure 2-17. Hollerith Constants Examples

HEXADECIMAL CONSTANTS

A hexadecimal constant is a string of hexadecimal
digits enclosed in apostrophes and preceded by the
letter X. See figure 2-18 for the format of a
hexadecimal constant. See figure 2-19 for examples
of legal and illegal hexadecimal constants.

X'hex-digits'

hex-digits A string of 1 through 255 of the
hexadecimal digits 0 through 9 and
A through F. The hexadecimal
digits correspond to the decimal

values 0 through 15.

Figure 2-18. Hexadecimal Constants Format

BIT CONSTANTS
Bit constants are a vector programming feature of

the FORTRAN 200 language. See section 9 for a
description of bit constants.

SYMBOLIC CONSTANTS

A symbolic constant is a constant identified by a
symbolic name. The value of a symbolic constant

Legal hexadecimal constants:

X'1957"
X 'ABCDEF'
X'12A"

ItLlegal hexadecimal constants:
Xll

X'WRONG'
Z'12A"

Figure 2-19. Hexadecimal Constants Examples

must not be changed by the program. A symbolic
constant must be defined in a PARAMETER statement
before it is used in a program. See section 3 for
a description of the PARAMETER statement.

The eight types of symbolic constants are: integer,
half-precision, real, double-precision, complex,
logical, character, and bit. The type of a sym-
bolic constant is specified by the first letter of
the symbolic name or by a type specification state-
ment. If the type of a symbolic constant depends
on a type specification or IMPLICIT statement, the
type specification or IMPLICIT statement must
appear before the PARAMETER statement that defines
the constant. The internal representation of each
type of symbolic constant 1is described later in
this section.

Certain restrictions apply to symbolic constants.
A symbolic constant must not appear as part of
another constant. For example, if X is a real
symbolic constant, (0.,X) is not a complex constant.
A symbolic constant must not be used in a PROGRAM
or FORMAT statement. A symbolic constant must not
appear as input data.

See figure 2-20 for examples of symbolic constants.
The program segment shown in figure 2-20 defines
four symbolic constants:

MARY is a symbolic constant that represents the
integer value 10.

CATHY is a symbolic constant that represents
the real value 9.5.

KAREN is a symbolic constant that represents
the character value SHY.

BETH is a symbolic constant the represents the
logical value .FALSE..

CHARACTER*3 KAREN
LOGICAL BETH

PARAMETER (MARY=10,CATHY=9.5,KAREN="'SHY' BETH=. FALSE.)

Figure 2-20. Symbolic Constants Examples

60480200 A

CONSTANT EXPRESSIONS

A constant expression 1s an expression in which
only constants (or symbolic constants) and opera-
tors are used. If an arithmetic expression is
written using only constants and operators, the
expression 1is an arithmetic constant expression.
If a logical or character expression is written
using only constants and operators, the expression
is a 1logical constant expression or a character
constant expression, respectively.

Note that variable, array element, and function
references are not allowed. See section 4 for a
complete discussion of expressions.

VARIABLES

A variable is an entity whose value can be changed
during execution of the program. A variable is
identified by a symbolic name, which is called a
variable name. The FORTRAN compiler associates the
variable name with a storage location; whenever the
variable name 1is referenced in the program, the
value that is stored in that storage location is
referenced.

The eight types of variables are: integer, half-
precision, real, double-precision, complex, logical,
character, and bit. The type of a variable is
specified by the first letter of the variable name
or by a type specification statement. The internal
representation of each type of variable is described
later in this section.

See figure 2-21 for examples of variables. The
program segment declares two variables whose types
are specified by the first letter of the variable
name:

NEPTUNE is an integer variable.

EARTH is a real variable.

CHARACTER PLUTO
LOGICAL MARS

NEPTUNE = 5
EARTH = 2.5

Figure 2-21. Variables Examples

The program segment also declares two variables
whose types are specified by type specification
statements:

PLUTO is a character variable.

MARS 1s a logical variable.

2-6

ARRAYS

An array is an ordered set of elements identified
by a single symbolic name, which is called an array
name. The value of each element of an array can be
changed during program execution. The FORTRAN
compiler assoclates each element of an array with a
storage location; whenever an array element 1is
referenced, the value that is in the corresponding
storage location is referenced. Whenever an entire
array is referenced, the values of all of the array
elements are referenced.

The eight types of arrays are: integer, half-
precision, real, double-precision, complex, logical,
character, and bit. The type of an array 1is
specified by the first letter of the array name or
by a type specification statement. The internal
representation of elements of each type of array is
described later in this section.

ARRAY DECLARATION

An array must be declared in a program unit before
it can be referenced in that program unit. All
declarations of a particular array must be the same
in all program units. An array can be declared
only once in a program unit and can be declared in
any one of the following statements:

DIMENSION statement

ROWWISE statement

COMMON statement

Any type specification statement
See section 3 for a description of these statements.
An array declarator is used in these statements to
specify the array name and the array size. See
figure 2-22 for the format of an array declarator.

See figure 2-23 for examples of array declarations.

An array is treated exactly like an assumed size
array, under the following conditions:

The array is a formal parameter.
No lower bound is specified.
The upper bound is one.

The ABC option is not selected (no subscript
checking).

When the array is the first dimension bound
declarator for a rowwlse array and the last for
a columnwise array.

For example:
FUNCTION F (A, B, C, N)
REAL A(N,1), B(1)
ROWWISE C(1,N)

1s equivalent to:
FUNCTION F (A, B, C, N)

REAL A(N,*), B(*)
ROWWISE C(*,N)

60480200 H

a-name(dims)
or
a-name(dims)*cl
or
a—-name*cl (dims)
a-name A symbolic name that is the array name.
dims A list of 1 to 7 dimension bound declarators separated by commas. Each dimension bound
declarator has the following form:
Lower:upper
Lower An integer expression that specifies the lower bound of the dimension; optional.
Any integer variables or integer array element references that appear in the
expression must appear in the dummy argument Llist of the subprogram, or in a common
block. Integer variables and integer array element references must not be used in
the expression if the array declarator appears in the main program. If Lower is not
specified, the colon must not be written. If Lower is not specified, the Lower
bound of the dimension is 1.
upper An integer expression that specifies the upper bound of the dimension. Any integer
variables or integer array element references that appear in the expression must
appear in the dummy argument List of the subprogram, or in a common block. Integer
variables and integer array element references must not be used in the expression if
the array declarator appears in the main program. In array declarators that do not
appear in ROWWISE statements, the last upper in dims can be an asterisk. In array
declarators that appear in ROWWISE statements, the first upper in dims can be an
asterisk. The asterisk specifies that the upper bound of the dimension is unknown.
cl An unsigned integer constant greater than 0, an integer constant expression enclosed in
parentheses, an asterisk enclosed in parentheses, or a simple integer variable; optional. The
cl specifies the length in characters of each element of a character array. If cl is an
asterisk enclosed in parentheses, the array must be a dummy argument in a subprogram. The
asterisk specifies that elements of the dummy array are the same length as those in the actual
array. The array declarator forms that use cl can only be used when the array declarator
appears in a CHARACTER statement.

Figure 2-22. Array Declaration Format

60480200 H 2-6.1/2-6.2 |

COMMON K

DIMENSION MOOSE(2,5:7,%)
REAL LION(-2:1,5:%)
ROWWISE BEAR(%,2:3,2)
ROWWISE MONKEY (3:%,5)
CHARACTER CHIMP(10)*8

MOOSE(1,6,1) = MONKEY(3,2)
LION(-2,20) = BEAR(1,2,1)

END

SUBROUTINE SWINGERS (I,J,CHIMP)
COMMON K

DIMENSION GORILLA(I+3,J:K-5,%)
CHARACTER CHIMP(10) *(%)

GORILLA(I,J,1) = 3.5€47

END

Figure 2-23. Array Declarations and
References Examples

ARRAY REFERENCES

Particular elements of an array can be referenced
in a program unit by specifying the array name and
a list of subscripts. The subscripts specify the
position of the element in the array. See figure
2-24 for the format of an array element reference.

The number of subscripts in an array element refer—
ence must be the same as the number of dimensions
declared for the array in the array declaratiom.
This restriction does not apply if the array element
reference appears in an EQUIVALENCE statement.

See figure 2-23 for examples of array element
references.

An entire array can be referenced by specifying the
array name without subscripts. This causes all
elements of the array to be referenced except when
the array name appears in an EQUIVALENCE statement
or in namelist input. When an array name without
subscripts appears in an EQUIVALENCE statement or
in namelist 1input, only the first element of the
array is referenced.

60480200 H

a-name(subs)

a-name A symbolic name that is the array
name.

subs A List of scalar arithmetic
expressions of type integer, half-
precision, real, or double-precision
separated by commas. The number of
subscripts in the List must be the
same as the number of array
declarators specified in the array
decltaration. The value of each
subscript must not be less than the
Llower bound of the dimension or
greater than the upper bound of the
dimension. If an expression in subs
is not integer, the result is
truncated to an integer.

Figure 2-24. Array Element References Format

ARRAY SIZE

The size of an array depends on the number of
elements specified in the array declaration and the
type of the array.

The number of elements in an array is computed by
multiplying the number of elements in each dimen-
sion. The number of elements in each dimension is
computed by subtracting the lower bound from the
upper bound and adding the value 1.

The amount of storage required for an array is
computed by multiplying the number of elements in
the array by the number of words required for each
element. The number of words required for each
element depends on the type of the array. See
table 2-2 for the number of bits per array element
for each data type; knowing that there are 64 bits
per fullword, you can compute the number of full-
words per array element.

See figure 2-25 for the mathematical formulas used
to compute the size of an array. See figure 2-26
for an example of an array size computation.

ARRAY STORAGE

Arrays can have one to seven dimensions; therefore,
you can think of an array geometrically. For
example, a l-dimensional array can be thought of as
a linear list, a 2-dimensional array can be thought
of as a matrix, and a 3-dimensional array can be
thought of as a series of matrices.

-7

TABLE 2-2. ARRAY ELEMENT SIZE

Type of Array

Number of Bits Per
Array Element

Integer 64
Real 64
Double-precision | 128

Half-precision 32

Complex 128
Logical 64
Character 8 per character (the number of

characters per element can be
specified in the CHARACTER
statement; if it is not speci-
fied, 1 character per element
is used)

Bit 1

T

w

The number of elements in an array is computed
by:

N = (C(upper - Llower + 1)4 «
(upper - Lower + 1)

*

where:

N is the number of elements in the array,
upper is the upper bound of the dimension,
Llower is the lower bound of the dimension,
and n is the number of dimension declarators
specified in the array declaration.

he amount of storage required for an array is

computed by:

S=N=*xE
here:

S is the number of fullwords required for
the array, N is the number of elements in
the array, and E is the number of fullwords
required for each array element.

j 2-8

Figure 2-25. Array Size Computation Formulas

GIVEN:

The following array declaration:
COMPLEX HOWBIG(5,3:5)

PROBLEM:

Find the number of elements in HOWBIG and the
amount of storage required for HOWBIG.

SOLUTION:
The number of elements in HOWBIG is computed by:
(G -1+1) % G-3+1))

G *3)
15 elements

The amount of storage required for HOWBIG is
computed by:

15 elements * 2 fullwords per element
30 fullwords

S

Figure 2-26. Array Size Computation Example

However, all arrays are stored internally as linear
lists. Mathematical formulas are applied to the
subscripts in order to translate the subscripts into
a particular position in a linear list. Therefore,
in order to determine the internal position of a
particular array element, you must know the mathe-
matical formulas used to map the subscripts into
the linear list.

The mathematical formula used depends on the order
in which array elements are stored in memory and
the number of dimensions specified in the array

declaration. There are two ways array elements can
be stored: in columnwise order and in rowwise
order.

The order of array elements depends on how the array
is declared. If the array 1s declared in a
DIMENSION, COMMON, or type specification statement,
the elements are stored in colummwise order. If
the array is declared in a ROWWISE statement, the
elements are stored in rowwise order.

The order of elements in a columnwise array 1is
determined by varying the subscripts through their
entire range of values such that the leftmost sub-
script varies most rapidly. The order of elements
in a rowwise array 1is determined by varying the
subscripts through their entire range of values such
that the rightmost subscript varies most rapidly.
See table 2-3 for a comparison of columnwise and
rowwise arrays.

60480200 H

TABLE 2-3. SUBSCRIPTING ORDER FOR A THREE-
DIMENSIONAL ARRAY A(2,3,4)

ROWWISE Conventional
Subscript Ordinality Subscript
Succession Succession

A(l,1,1) 1 A(1,1,1)
A(1,1,2) 2 A(2,1,1)

A(1,1,3) 3 A(1,2,1)

A(1,1,4) 4 A(2,2,1)

A(1,2,1) 5 A(1,3,1)
A(1,2,2) 6 A(2,3,1)

A(1,2,3) 7 A(l1,1,2)
A(1,2,4) 8 A(2,1,2)

A(1,3,1) 9 A(1,2,2)
A(1,3,2) 10 A(2,2,2)

A(1,3,3) 11 A(1,3,2)
A(1,3,4) 12 A(2,3,2)
A(2,1,1) 13 A(1,1,3)
A(2,1,2) 14 A(2,1,3)
A(2,1,3) 15 A(1,2,3)
A(2,1,4) 16 A(2,2,3)

A(2,2,1) 17 A(l1,3,3)
A(2,2,2) 18 A(2,3,3)

A(2,2,3) 19 A(1,1,4)
A(2,2,4) 20 A(2,1,4)

A(2,3,1) 21 A(l1,2,4)
A(2,3,2) 22 A(2,2,4)

A(2,3,3) 23 A(l1,3,4)
A(2,3,4 24 A(2,3,4)

In order to find the internal position of a partic-
ular array element, use the appropriate formula from
table 2-4. The result of this formula indicates the
position of the element in the internal linear list
of elements. The elements are numbered beginning
with 1. See figure 2-27 for an example of an array
element position computation.

SUBSTRINGS

A substring is a reference to a portion of a char-
acter string. The character string can be contained
in a variable or in an array element. The variable

name or the array name must be declared in a
CHARACTER statement. See figure 2-28 for the format
of a substring. See figure 2-29 for examples of
substrings.

GIVEN:

PROBLEM:

Find the pos
POSITION(1,2

SOLUTION:

The position

The following array declarations:

COMFLEX POSITION(S5,3,2:4)

ition in the array of array element
3.
4

of array element POSITION(1,2,3)

is computed by:

position = 1+((1-1)+(5-1+1)%(2-1))+
((5-141)*(3-1+1)*(3-2))
= 145415
=21
Thus, POSITION(1,2,3) is element 21 of the
array.
Figure 2-27. Array Element Position

Computation Example

char-name

Left-char

right-char

char-name(left-char:right-char)

A variable or array element of type
character.

An integer expression greater than
zero that specifies the character
position in char-name of the first
character in the substring;
optional. The lLeft-char value must
be Less than or equal to
right-char. 1If left-char is not
specified, the first character in
char-name is the first character of
the substring.

An integer expression greater than
or equal to Left-char that specifies
the character position in char-name
of the last character in the sub-
string; optional. The right-char
value must be lLess than or equal to
the position of the lLast character
in char-name. If right-char is not
specified, the last character in
char-name is the lLast character in
the substring.

Figure 2-28.

Substring Format

Variable name Contents of

or array element variable or Substring Characters
reference array element reference referenced
FOX BROWN FOX(2:4) ROW
CHICK(3) YELLOW CHICK(3) (4:6) LOW

BEAVER BLUE BEAVER(:) BLUE

Figure 2-29.

60480200 E

Substring Examples

2-9

01-2

vV 00208%09

TABLE 2-4. ARRAY POSITION FORMULAS

Number of Dimensions and

Dimension Declarator Subscript Array Element Location Formula

(AL:Au) (a) l+(a-AL)

(ALzAu,BL:Bu) (a,b) 1+(8-AL)+[(AU-AL+1)*(b-BL)]

(By,:By,Ar,:Ay) (b,a)

(AL:AU’BL:BU'CchU) (a,b,c) 1+(3'AL)+[(AU'AL"'I)*(b'BL)]

(CL:CU,BL:Bu,AL:Au) (c,b,a) +[(AU-AL+1)*(BU-BL+1)*(C“CL)]

(AL:AU’BL:BU'CL:CU'DL:DU) (a,b,c,d) l+(8-AL)+[(Au‘AL+l)*(b-BL)]

(Dy,:Dy,Cy, :Cy, By, :By,Ay, tAy) (d,c,b,a) +[(Ay=Ap+1)*(By-B+1)*(c=Cp,)]
+[(AU-AL+1)*(BU-BL+1)*(Cu-CL+1)*(d-DL)]

(AL:AU,BL:BU,CLSCU,DLzbu,EL:Eu) (a,b,c,d,e) l+(a-AL)+[(AU-AL+1)*(b-BL)]

(EL:EU’DL:DU’CL:CU’BL:BU’AL:AU) (e,d,c,b,a) +[(AU-AL+1)*(BU-BL+1)*(c-CL)]
+[(Ay-Ap+1)*(By-Bp+1)*(Cy~Cp+1)*(d-Dy,)]
+[(Ay=Ap+1)*(By=By+1)*(Cy—Cp+1)*(Dy=Dp+1)*(e-Ey)]

(Ay,:Ay,Bp,:By,CL:Cy, Dt Dy, Ey,:Ey,Fy: Fy) (a,b,c,d,e,f) 1+(a-Ap,)+[(Ay=A+1)*(b-By)]

(FL:Fu,EL:Eu,DL:DU,CL:CU,BLtnu,ALtAu) (f,e,d,c,b,a) +[(AU-AL+1)*(BU-BL+1)*(C'CL)]
+[(AU-AL+1)*(BU-BL+1)*(CU—CL+1)*(D-DL)]
+[(Ay=Ap+1)*(By=B+1)*(Cy=Cp+1) *(Dy-Dy+1)*(e=Ep)]
+[(Ay=Ap+1)*(By-By+1)*(Cy—Cp+1)*(Dy=Dp+1) *(Ey-Ep+1)*(£~Fy)]

(Ay,:Ay,By,:By,C:Cy, Dy, : Dy, Ey, :Ey,, Fy, : Fy, 61, :Gy) (a,b,c,d,e,f,g) 1+(a-Ap)+ [(Ay=Ap+1)*(b-Bp)]

(GL:GU,FL:Fu,EL:Eu,DL:Du,CL:CU,BLtnu,AL:Au) (g,f,e,d,c,b,a) +[(AU-AL+1)*(Bu-BL+1)*(c-CL)]

+[(AU-AL+1)*(Bu*BL+l)*(Cu‘CL+1)*(d'DL)]
+[(Ag=Ap+1)*(By-By+1)*(Cy=Cy+1)*(Dy=Dy+1)*(e~Ey,)]
+[(Ay=Ap+1)*(By=-Br+1)*(Cy~Cp+1)*(Dy=Dy+1)*(Ey=E+1)*(Fy=-F+1)*(g~Gy,)]

DATA ELEMENT
REPRESENTATION

The following paragraphs describe the internal
representation of data elements. A data element is
a constant, variable, or array element. The way in
which a data element is represented internally
depends on the type of the data element.

A data element can have one of the following data
types: integer, half-precision, real, double-
precision, complex, logical, character, Hollerith,
hexadecimal, or bit. A symbolic constant cannot be
Hollerith, hexadecimal, or bit; a variable or an
array cannot be Hollerith or hexadecimal.

See section 9 for the internal representation of
bit elements.

INTEGER ELEMENTS

An integer element occupies one word of storage.
Bits O through 15 are undefined; bits 16 through 63
contain the two”s complement representation of the
integer value., See figure 2-30 for a diagram of
the internal representation of an integer element.

0 15 16 53

undefined two's complement

integer

Figure 2-30. Integer Element Representation

The minimum and maximum integer elements are -2%*47
and 2%*47-1,

HALF-PRECISION ELEMENTS

A half-precision element occupies one-half word of
storage. Bits O through 7 contain a two”s com-
plement integer that represents the binary exponent
of the half-precision value; bits 8 through 31
contain a two”s complement integer that represents
the mantissa of the half-precision value. See
figure 2-31 for a diagram of the internal represen-
tation of a half-precision element.

0 78 31

two's complement
integer exponent

two's complement
integer mantissa

Figure 2-31. Half-Precision Element
Representation

Half-precision elements are represented in normal-
ized form: the most significant bit 1is always
placed in bit 9, and the exponent 1is adjusted
appropriately.

60480200 F

The minimum and maximum half-precision elements are
approximately -2,177807S540 and 2.177807S40. The
smallest half-precision value greater than zero
that can be represented 1is 8.077936S5-28; the
largest half-precision value less than zero that
can be represented is -8.077938S-28. Half-
precision elements are precise to about seven
decimal digits.

REAL ELEMENTS

A real element occupies one word of storage. Bits
0 through 15 contain a two”s complement integer that
represents the binary exponent of the real value;
bits 16 through 63 contain a two”s complement
integer that represents the mantissa of the real
value. See figure 2-32 for a diagram of the
internal representation of a real element.

0 15 16 63

two's complement
integer exponent

two's complement
integer mantissa

Figure 2-32. Real Element Representation

Real elements are represented in normalized form:
the most significant bit of the mantissa is always
placed in bit 17, and the exponent is adjusted
appropriately.

The minimum and maximum real elements are
approximately -9.53E8644 and 9.53E8644. The
smallest real value greater than zero that can be
represented is 5.19E-8618; the largest real value
less than zero that «can be represented is
-5.19E-8618. Real elements are precise to about 14
decimal digits.

DOUBLE-PRECISION ELEMENTS

A double-precision element occupies two consecutive
words of storage. The first word has the same
format as a real data element; the first word
expresses the most significant portion of the
double-precision element. The second word has the
same format as the first word except the exponent
is 47 less than the exponent of the first word, and
the mantissa is not normalized. The second word is
always zero or positive. See figure 2-33 for a
diagram of the internal representation of a double-
precision element.

0 15 16 63

two's complement
integer mantissa

two's complement
integer exponent

two's complement
integer mantissa

two's complement
integer exponent

Figure 2-33. Double-Precision Element
Representation

2-11

The first word of a double-precision element is
represented in normalized form: the most signifi-
cant bit 1s always placed in bit 17, and the
exponent is adjusted appropriately.

The minimum and maximum double-precision elements
are approximately -9.53D8644 and 9.53D8644. The
smallest double-precision value greater than zero
that can be represented 1is 5.19D-8618; the largest
double-precision value less than zero that can be
represented is -5.19D-8618. The smallest
double-precision value greater than zero that can
be used in comparison is 5.19D-8617; the largest
double-precision value less than zero that can be
used 1in comparison is -5.19D-8617. Double-
precision elements are precise to about 28 decimal
digits.

COMPLEX ELEMENTS

A complex element occupies two consecutive words of
storage. Each word has the same format as real data
elements. The first word represents the real part
of the complex value; the second word represents the
imaginary part of the complex value. See figure
2-34 for a diagram of the internal representation
of a complex element.

0 15 16 63

two's complement
integer mantissa
for real part

two's complement
integer exponent
for real part

two's complement
integer mantissa
for imaginary part

two's complement
integer exponent
for imaginary part

Figure 2-34. Complex Element Representation

LOGICAL ELEMENTS

A logical element occupies one word of storage.
Bits O through 62 contain zeros; bit 63 contains
either a 0 or a 1, corresponding to L,FALSE. and
.TRUE., respectively. See figure 2-35 for a diagram
of the internal representation of a logical element,

0 63

000... 00d

where d is a 1 or a 0, meaning true or false,
respectively.

Figure 2-35. Logical Element Representation

HOLLERITH ELEMENTS

A Hollerith element occuples one byte for each
character in the Hollerith value. The characters
in a Hollerith element are stored in consecutive
bytes. A byte is 8 bits. A word is 8 bytes.

An H type Hollerith element is left—justified in
each word. 1If an H type Hollerith element does not
completely fill a word, the unused portion of the
word, which is on the right, is filled with blanks.
An H type Hollerith element that is too long is
truncated on the right.

An R type Hollerith element is right-justified in
each word. If an R type Hollerith element does not
completely fill a word, the unused portion of the
word, which is on the left, is filled with binary
zeros. An R type Hollerith element that is too long
causes an error.

CHARACTER ELEMENTS

A character element occupies one byte for each
character in the character value. The characters
in a character element are stored in consecutive
bytes. A byte is 8 bits. A word is 8 bytes.

A character element is left-—justified in a variable
or array element. If a character element does not
completely fill a variable or array element, the
unused portion, which 1is on the right, is filled
with blanks. A character element that is too long
is truncated on the right.

HEXADECIMAL ELEMENTS

A hexadecimal element occupies 4 bits for each
hexadecimal digit in the hexadecimal value. Each
hexadecimal digit in a hexadecimal element is stored
in consecutive 4-bit groups.

A hexadecimal eclement is right-justified in a
variable or array element. If a hexadecimal element
does not completely fill a variable or array
element, the unused portion, which is on the left,
is filled with binary zeros.

BIT ELEMENTS

Bit elements are a vector programming feature of
the FORTRAN 200 1language. See section 9 for a
description of the internal representation of bit
elements.

60480200 J

SPECIFICATION AND INITIALIZATION STATEMENTS 3

Specification statements are nonexecutable state-
ments that define the characteristics of symbolic
names. Specification statements define the type of
a symbolic name, the dimensions of an array, the
length of a character variable or array element,
and how storage is to be shared.

Any specification statements must appear before all
DATA statements, NAMELIST statements, statement
function definitions, and executable statements in
the program unit.

This section describes each of the specification
statements. The specification statements are:

Type specification statements
IMPLICIT statement

DIMENSION statement

ROWWISE statement

COMMON statement

EQUIVALENCE statement
EXTERNAL statement

INTRINSIC statement

SAVE statement

PARAMETER statement

DESCRIPTOR statement

The DESCRIPTOR statement is a vector programming
feature of the CYBER 200 FORTRAN language. See
section 9 for a description of the DESCRIPTOR
statement.

This section also describes the DATA statement,
which is a nonexecutable statement used for ini-
tialization. The DATA statement is not a specifi-
cation statement.

TYPE SPECIFICATION
STATEMENTS

A type specification statement is a specification
statement that associates a list of symbolic names
with a data type. A type specification statement
can also be used to initialize variables and entire
arrays. Initialization is described later in this
section. The type specification statements are:
INTEGER, HALF PRECISION, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, CHARACTER, and BIT.

If a type specification statement is not used to
associate a symbolic name with a data type, the
first letter of the symbolic name determines the
data type with which the symbolic name is associ-
ated. Symbolic names that begin with the letters
I, J, K, L, M, and N are assoclated with the integer

60480200 A

data type. Symbolic names that begin with any other
letter are associated with the real data type.
This convention is called the first-letter rule.

The first-letter rule can be changed by using the
IMPLICIT statement; the IMPLICIT statement is de-
scribed later in this section.

The following symbolic names must be associated
with a data type either by using a type specifi-
cation statement or by using the first-letter rule:

Symbolic constant names

Variable names

Array names

Function names (except for intrinsic function
names)

Descriptor names
Descriptor array names

The intrinsic function names have predefined types
or have types that are determined by the actual
arguments appearing in the function reference. The
first-letter rule does not affect the intrinsic
function names. An intrinsic function name need
not appear in a type specification statement. If
an intrinsic function name does appear in a type
specification statement, the type specification
statement has no effect on the predefined type of
the intrinsic function name.

The following paragraphs describe each of the type
specification statements.

INTEGER STATEMENT

The INTEGER statement can be used to associate a
list of variable names, array names, symbolic con-
stant names, and function names with the integer
data type. The INTEGER statement can also be used
to initialize variables and entire arrays. Initial-
ization is described later in this section. See
figure 3-1 for the format of the INTEGER statement.

INTEGER vq/di/, ... ,vn/dn/

\Z A variable name, array name, symbolic
constant name, array declarator, or
function name.

d; An integer constant; optional. This
specifies an initial value for vj.
Initialization is described Later in
this section. If v; is a function
name, d; must be omitted. If d; is
omitted, the surrounding slashes must
also be omitted.

Figure 3-1. INTEGER Statement Format

See figure 3-2 for an example of the INTEGER state-
ment. The INTEGER statement in the example asso-
ciates DOG, CAT, and MOUSE with the integer data
type. The INTEGER statement also declares CAT to
be an array of two elements, ‘and intializes DOG to
1, CAT(1) to 2, and CAT(2) to 3. The PARAMETER
statement declares MOUSE to be an integer symbolic
constant having the value 4.

INTEGER DOG/1/,CAT (2)/2,3/ ,MOUSE
PARAMETER (MOUSE=4)

Figure 3-2. INTEGER Statement Example

HALF PRECISION STATEMENT

The HALF PRECISION statement can be used to associ-
ate a list of variable names, array names, symbolic
constant names, and function names with the half-
precision data type. The HALF PRECISION statement
can also be used to initialize variables and entire
arrays. Initialization is described later in this
section. See figure 3-3 for the format of the HALF
PRECISION statement.

HALF PRECISION vq/dq/, ... ,vp/d,/

v A variable name, array name, symbolic
constant name, array declarator, or
function name.

A half-precision constant; optional.
This specifies an initial value for
vj. Initialization is described later
in this section. If v; is a function
name, d; must be omitted. If d; is
omitted, the surrounding slashes must
also be omitted.

Figure 3-3. HALF PRECISION Statement Format

See figure 3-4 for an example of the HALF PRECISION
statement. The HALF PRECISION statement in the
example associates WOLF, FOX, and COYOTE with the
half-precision data type. The HALF PRECISION
statement also declares FOX to be an array of two
elements, and initializes WOLF to 1.0S+10, FOX(1)
to 2.08+10, and FOX(2) to 3.0S+10. The PARAMETER
statement declares COYOTE to be a half-precision
symbolic constant having the value 4.0S+10.

REAL STATEMENT

The REAL statement can be used to associate a list
of variable names, array names, symbolic constant
names, and function names with the real data type.
The REAL statement can also be used to initialize
variables and entire arrays, Initialization is
described later in this section, See figure 3-5
for the format of the REAL statement.

REAL vq/d4/, ... ,vpldg/

v A variable name, array name, symbolic
constant name, array declarator, or
function name.

di “A-real constant; optional. " This
specifies an initial value for v;.
Initialization is described Later in
this section. If v; is a function
name, d; must be omitted. If d; is
omitted, the surrounding slashes must
also be omitted.

Figure 3-5. REAL Statement Format

See figure 3-6 for an example of the REAL statement.
The REAL statement in the example associates HORSE,
COW, and SHEEP with the real data type. The REAL
statement also declares COW to be an array of two
elements, and intializes HORSE to 0.1, COW(l) to
1.1, and COW(2) to 2.1. The PARAMETER statement
declares SHEEP to be a real symbolic constant hav-
ing the value 3.1.

REAL HORSE/0.1/,COW(2)/1.1,2.1/,SHEEP
PARAMETER (SHEEP=3.1)

Figure 3-6. REAL Statement Example

DOUBLE PRECISION STATEMENT

The DOUBLE PRECISION statement can be wused to
associate a list of variable names, array names,
symbolic constant names, and function names with
the double-precision data type. The DOUBLE
PRECISION statement can also be used to initialize
variables and entire arrays. Initialization is
described later in this section. See figure 3-7
for the format of the DOUBLE PRECISION statement.

PARAMETER (COYOTE=4.0S+10)

HALF PRECISION WOLF/1.0s+10/,FOX(2)/2.08+10,3.0s+10/,COYOTE

Figure 3-4. HALF PRECISION Statement Example

3-2

60480200 A

DOUBLE PRECISION vq/dq/, ... ,vp/dp/

vy A variable name, array name, symbolic
constant name, array declarator, or
function name.

d; A double-precision constant; optional.

This specifies an initial value for
v;. Initialization is described later
in this section. If v; is a function
name, d; must be omitted. If dj is
omitted, the surrounding slashes must
also be omitted.

Figure 3-7. DOUBLE PRECISION Statement Format

See figure 3-8 for an example of the DOUBLE
PRECISION statement. The DOUBLE PRECISION state-
ment in the example associates BEAVER, OTTER, and
MUSKRAT with the double-precision data type. The
DOUBLE PRECISION statement also declares OTTER to
be an array of two elements, and initializes BEAVER
to 2.0D+10, OTTER(1l) to 3.0D+10, and OTTER(2) to
4.0D+10. The PARAMETER statement declares MUSKRAT
to be a double-precision symbolic constant having
the value 5.0D+10.

COMPLEX STATEMENT

The COMPLEX statement can be used to assoclate a
list of variable names, array names, symbolic con-
stant names, and function names with the complex
data type. The COMPLEX statement can also be used
to initialize variables and entire arrays. Initial-
ization is described later in this section. See
figure 3-9 for the format of the COMPLEX statement.

See figure 3-10 for an example of the COMPLEX
statement. The COMPLEX statement in the example
associates TADPOLE, FROG, and TOAD with the complex
data type. The COMPLEX statement also declares
FROG to be an array of two elements, and initializes
TADPOLE to (0.0,0.0), FROG(l) to (1.0,1.0), and
FROG(2) to (2.0,2.0). The PARAMETER statement de-
clares TOAD to be a complex symbolic constant having
the value (3.0,3.0).

LOGICAL STATEMENT

The LOGICAL statement can be used to associate a
list of variable names, array names, symbolic con-
stant names, and function names with the logical
data type. The LOGICAL statement can also be used
to initfalize variables and entire arrays. Ini-
tialization 1is described later in this sectionm.
See figure 3-11 for the format of the LOGICAL
statement.

PARAMETER (MUSKRAT=5.00+10)

BOUBLE PRECISION BEAVER/2.00+10/,0TTER(2)/3.00+10,4.00+10/,MUSKRAT

Figure 3-8. DOUBLE PRECISION Statement Example

COMPLEX vq/dy/, ... ,vn/dn/

omitted.

v A variable name, array name, symbolic constant name,
array declarator, or function name.

d; A complex constant; optional. This specifies an initial
value for v;. Initialization is described later in this
section. If Vi is a function name, d; must be omitted.
If d; is omitted, the surrounding slashes must also be

Figure 3-9. COMPLEX Statement Format

PARAMETER (TOAD=(3.0,3.0))

COMPLEX TADPOLE/(0.0,0.0)/,FROG(2)/(1.0,1.0),¢2.0,2.0)/,TOAD

Figure 3-10. COMPLEX Statement Example

60480200 A

LOGICAL vq/dq/, «.. ,vp/dp/

v A variable name, array name, symbolic
constant name, array declarator, or
function name.

d4 A logical constant; optional. This
specifies an initial value for v;_
Initialization is described later in
this section. If v; is a function
name, d; must be omitted. If d; is
omitted, the surrounding slashes must
also be omitted.

Figure 3-11. LOGICAL Statement Format

See figure 3-12 for an example of the LOGICAL
statement. The LOGICAL statement in the example
associates FINCH, HERON, and PARROT with the logi-
cal data type. The LOGICAL statement also declares
HERON to be an array of two elements, and ini-
tializes FINCH to .TRUE., HERON(1l) to .TRUE., and
HERON(2) to .FALSE.. The PARAMETER statement
declares PARROT to be a logical symbolic constant
having the value .FALSE..

CHARACTER STATEMENT

The CHARACTER statement can be used to associate a
list of variable names, array names, symbolic con-
stant names, and function names with the character
data type. The CHARACTER statement can also be
used to initialize variables and entire arrays.
Initialization is described later in this section.
See figure 3-13 for the format of the CHARACTER

statement.

LOGICAL FINCH/.TRUE./,HERON(2)/.TRUE,,.FALSE./, PARROT
PARAMETER (PARROT=.FALSE.)

3~

Figure 3-12.

LOGICAL Statement Example

60480200 H

CHARACTER*K vq*k1/d1/, =« ,vn*kn/dn/

K Optional. Specifies the length in characters of each v; (maximum character length is 65,535). The
character length syntax is the same as k; (described below).

The length specified in K is overridden by any k;. If K is omitted, a Length of 1 byte is used
for each v; that is not accompanied by a k; (regardless of any Length specification that appears
in an IMPLICIT statement). If K is omitted, the preceding asterisk must also be omitted.

Vi A variable name, array name, symbolic constant name, array declarator, or function name.

k; Optional. Specifies the Length in characters of a specific variable, v;. The maximum character
Llength is 65,535; k; is either a constant or variable expression or an asterisk depending on vj:

k; is a constant expression and v; is unrestricted; kj must be parenthesized (enclosed in
parentheses) unless it is a simple constant.

k; is a variable expression and v;j must be a dummy argument; k; must be parenthesized and all
simple variables or arrays in k; must be dummy arguments or in a common block.

k;j is a parenthesized asterisk (*) and v;j must be a dummy argument or symbolic constant name.

Any variable or symbolic constants in k; must be associated with the integer data type before the
CHARACTER statement.

If k; is an expression, it is truncated to an integer character length. If k; is an asterisk and
vj is a dummy argument, the length of v; is the same as the length of the corresponding actual
argument in the subprogram reference. If k; is an asterisk and v; is a symbolic constant name, the
Length of v; is the length of its value in the PARAMETER statement.

If v; is an array declarator, k; must appear between the array name and the dimension
specification.

If k; is omitted, the length of v; is determined by K. If k; is omitted, the preceding asterisk
must also be omitted.

d; A character constant or a Hollerith constant; optional. This specifies an initial value for vj.
Initialization is described later in this section. If v; is a function name, d; must be omitted.
If d; is omitted, the surrounding slashes must also be omitted.

Figure 3-13. CHARACTER Statement Format

60480200 H 3-4.1/3-4.2 @

See figure 3-14 for examples of the CHARACTER
statement. The CHARACTER statements 1in the example
associate BIRD, FISH, ANIMAL, and TREE with the
character data type. The CHARACTER statements also
declare BIRD to be five characters long, FISH to be
four, ANIMAL to be an array of two elements each of
which is three characters long, and TREE to be five
characters long. The CHARACTER statements initial-
ize BIRD to the character value FINCH, FISH to the
character value CARP, ANIMAL(l) to the character
value CAT, and ANIMAL(2) to the character value
DOG. The PARAMETER statement declares TREE to be a
character symbolic constant having the value BIRCH.

CHARACTER*4 BIRD*5/'FINCH'/, FISH/'CARP'/
CHARACTER ANIMAL*3(2)/°'CAT','DOG'/,TREE*5
PARAMETER (TREE='BIRCH')

Figure 3-14. CHARACTER Statement Examples

BIT STATEMENT

The BIT statement 1s a vector programming feature
of the CYBER 200 FORTRAN language. See section 9
for a description of the BIT statement.

IMPLICIT STATEMENT

The IMPLICIT statement is used to change the first-
letter rule. The first-letter rule associates
symbolic names with data types when the symbolic
names do not appear in type specification state-
ments, The first-letter rule normally functions as
follows:

Symbolic names that begin with the letters I,
J, K, L, M, and N are associated with the inte-
ger data type.

Symbolic names that begin with the letters A
through H and O through Z are associated with
the real data type.

The IMPLICIT statement changes the first-letter
rule such that symbolic names that begin with the
letters you specify are associated with the data
types you specify. See figure 3-15 for the format
of the IMPLICIT statement.

The IMPLICIT statement must precede all other
specification statements except PARAMETER state-
ments; however, if an IMPLICIT statement determines
the type of a symbolic constant, the IMPLICIT
statement must precede the PARAMETER statement that
defines the symbolic constant.

An IMPLICIT statement that appears in a function
or subroutine affects the data type of the dummy
arguments and the function name as well as other
symbolic names in the subprogram.

60480200 F

IMPLICIT typq (listq), ... ,typp (Listpy)

typ; The name of a data type: INTEGER, HALF
PRECISION, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, CHARACTER, or BIT. If
CHARACTER is used, you can specify the
length after the data type name; see the
description of the CHARACTER statement.

List; A List of the form:
V9s e ,Vp

where v; is a letter or a range of
Lletters. A range of letters consists of
two letters separated by a hyphen.
Letters specified in a range must be in
alphabetical order from Left to right.

Figure 3-15. IMPLICIT Statement Format

An IMPLICIT statement must not associate a partic- [
ular character with more than one data type. If a
particular character is not associated with a data
type in an IMPLICIT statement, the normal first-
letter rule is used for that particular character.
Thus, the IMPLICIT statement overrides the normal
first-letter rule only for the characters you
specify in the IMPLICIT statement.

The first letter of a symbolic name is used to
associate a symbolic name with a data type only
when the symbolic name 1is not associated with a
data type by a type specification statement.

Intrinsic function names have predefined types
or have types that are determined by the actual
arguments appearing in the function reference. The
first-letter rule does not affect intrinsic func-
tion names.

See figure 3-16 for an example of the IMPLICIT
statement. The IMPLICIT statement in the example
changes the first-letter rule such that the fol-
lowing statements are true:

All symbolic names beginuning with the letters A
and B that do not appear in a type specifica-
tion statement are associated with the real
data type.

All symbolic names beginning with the letter C
that do not appear in a type specification
statement are associated with the character
data type. Each of these variables and array
elements are eight characters long.

All symbolic names beginning with the letters D
through K that do not appear in a type speci-
fication statement are associated with the real
data type.

All symbolic names beginning with the letter L
that do not appear in a type specification
statement are associated with the logical data

type.

PARAMETER (MOUSE=1)
IMPLICIT CHARACTER#8(C),REAL (D-K),LOGICAL (L)

PARAMETER (LOST=.TRUE.)

Figure 3-16. IMPLICIT Statement Example

All symbolic names beginning with the letters M

and N that do not appear in a type specifica-
tion statement are associated with the integer
data type.

All symbolic names beginning with the letters O
through Z that do not appear in a type speci-
fication statement are associated with the real
data type.

The first PARAMETER statement in the example de-
clares MOUSE to be an integer symbolic constant
having the value 1. The second PARAMETER statement
in the example declares LOST to be a logical sym-
bolic constant having the value .TRUE..

DIMENSION STATEMENT

The DIMENSION statement declares symbolic names to
be array names and specifies the bounds of each
dimension. An array that is declared by using the
DIMENSION statement 1is a columnwise array. See
section 2 for a description of columnwise arrays.
See figure 3-17 for the format of the DIMENSION
statement.

DIMENSION aq, ... ,a,

a; An array declarator. See section 2 for a
description of array declarators.

Figure 3-17. DIMENSION Statement Format

An array declarator that appears in a DIMENSION
statement must not appear in any other statement in
the program unit. However, an array name that is
declared in a DIMENSION statement can appear with-
out an array declarator in a type specification
statement or in a COMMON statement.

See figure 3-18 for an example of the DIMENSION
statement. The DIMENSION statement in the example
declares HEN to be a columnwise array of ten ele-
ments and CHICK to be a columnwise array of five
elements. Subsequently, the INTEGER statement
associates the array HEN with the integer data type
and the COMMON statement places both HEN and CHICK
in the unnamed common block.

DIMENSION HEN(10),CHICK(S)
INTEGER HEN
COMMON // HEN,CHICK

Figure 3-18. DIMENSION Statement Example

ROWWISE STATEMENT

The ROWWISE statement declares symbolic names to
be array names and specifies the bounds of each
dimension. An array that is declared by using the
ROWWISE statement is a rowwise array. See section
2 for a description of rowwise arrays. See figure
3-19 for the format of the ROWWISE statement.

ROWWISE aq, ... ,a,

a; An array declarator. See section 2 for a
description of array declarators.

Figure 3-19. ROWWISE Statement Format

An array declarator that appears in a ROWWISE
statement must not appear in any other statement in
the program unit. However, an array name that is
declared in a ROWWISE statement can appear without
an array declarator in a type specification or
COMMON statement.

See figure 3-20 for an example of the ROWWISE
statement, The ROWWISE statement in the example
declares HEN to be a rowwise array of ten elements
and CHICK to be a rowwise array of six elements.
Subsequently, the INTEGER statement associates the
array HEN with the integer data type and the COMMON
statement places both HEN and CHICK in the unnamed
common block.

ROWWISE HEN(2,5),CHICK(2,3)
INTEGER HEN
COMMON // HEN,CHICK

Figure 3-20. ROWWISE Statement Example

COMMON STATEMENT

The COMMON statement is used to declare common
blocks. A common block is an area of storage that
can be refereuced and defined by more than one pro-
gram unit. See figure 3-21 for the format of the
COMMON statement.

60480200 A

COMMON /blkq/listq, ... ,/blk,/list,

blk A symbolic name that represents the
name of the common block. If blk; is
not specified, the COMMON statement
defines the unnamed common block. If
the first common block defined by a
COMMON statement is the unnamed common
block, the slashes can be omitted as
well as blk;.

i

listi A List of elements that are members of
the block blk;. The Llist is of the
form:

U1, aee ,um

where u; is a variable name, an array
name, or an array declarator.

The comma that follows listi can be
omitted.

Figure 3-21. COMMON Statement Format

The two types of common blocks are named common
blocks and unnamed common blocks. A named common
block is identified by a symbolic name. A named
common block that 1is shared between two or more
program units must have the same name in each pro-
gram unit. The name of a named common block can be
the same as a variable name or an array name that
is in the common block. The size of a named common
block must be the same in all program units. Vari-
ables and arrays that are contained in a named
common block can be initialized by DATA statements
or by type specification statements. Initializa-
tion is described later in this section.

An unnamed common block, which is also called blank
common, is not identified by a symbolic name. There
can be only one unnamed common block in each pro-
gram. The size of an unnamed common block does not
have to be the same in all program units. Variables
and arrays that are contained in an unnamed common
block must not be initialized by DATA statements or
by type specification statements.

Variables and entire arrays can be placed in a
common block by using the COMMON statement. A
variable or an array can appear in only one COMMON
statement per program unit. An array element
reference must not appear in a COMMON statement.
Using both character and noncharacter variables in
the same common block is allowed.

An array can be declared in a COMMON statement by
specifying an array declarator in the COMMON state-
ment. An array declarator that appears in a COMMON
statement must not appear in any other statement in
the program unit. However, an array name that is
declared in a COMMON statement can appear without
an array declarator 1n a type specification state-
ment. Arrays that are declared in COMMON statements
are columnwise arrays. See section 2 for a descrip-
tion of columnwise arrays.

Variables and arrays listed in the COMMON statement
are stored in the order in which they appear in the
COMMON statement. The first variable or array be-
gins on a doubleword boundary. Subsequent variables
or arrays begin in the first available byte after

60480200 J

the previous variable or array; alignment {is
performed. See table 3-1 for the alignment of each
type of variable and array.

TABLE 3-1. ALIGNMENT REQUIREMENTS

Type Boundary
Integer Fullword
Half-precision Halfword
Real Fullword
Double-precision Fullword
Complex Fullword
Logical Fullword
Character Byte
Bit Bit

A common block name can appear more than once in a
COMMON statement or in several COMMON statements in
a program unit; the elements are stored
cumulatively in the order of their occurrence in
all COMMON statements in the program unit.

NOTE

The length of a named common block cannot
exceed 231-1 words.

The amount of storage required for each variable in
a common block depends on the type of the
variable. See the description of the internal
representation of data elements in section 2. The
amount of storage required for each array in a
common block depends on the array size. See the
discussion of array size in section 2.

The names of variables and arrays that appear in a
common block do not have to be the same in each
program unit that uses the common block. No type
conversion is performed if the data types of corre-
sponding elements of a common block are different
in different program units. The name of a variable
or array that appears in a named common block can
be the same as the name of the common block.

If a program unit does not use all of the variables
and arrays in a named or unnamed common block,
placeholders can be 1inserted in the COMMON
statement to force proper correspondence of the
variables and arrays in the common block.
Placeholders are variable names or array names that
are not used in the program unit.

An unnamed common block does not have to be the
same size in all program unite that use it. There-
fore, if a program unit does not use one or more
variables or arrays that appear at the end of the
common block, those variables and arrays do not
have to be declared in the COMMON statement for
that program unit. A named common block must
always Dbe the same size in all program units that
use it, however.

The dummy arguments of a subprogram must not appear
in a common block.

See figure 3-22 for examples of the COMMON state-
ment. The COMMON statements in the example create
two common blocks: the named common block PRECIOUS
and the unnamed common block. Diagrams of each
common block are given.

EQUIVALENCE STATEMENT

The EQULVALENCE statement specifies that two or
more variable names or array names in the same pro-
gram unit identify the same storage location. See
figure 3-23 for the format of the EQUIVALENCE
statement.

An entire array cannot be referenced in an
EQUIVALENCE statement; only individual array ele-
ments can be referenced. If you specify an array
name without a subscript in an EQUIVALENCE state-
ment, the first element of the array is referenced.

An array element can be referenced in an
EQUIVALENCE statement by specifying the array name
and a list of subscript expressions. The subscript
expressions must be integer expressions that
contain constants only. The number of subscript
expressions specified must be the same as the
number of array declarators specified in the array
declaration.

Array elements can also be referenced in an
EQUIVALENCE statement by specifying the array name
and a single subscript expression. The subscript
expression must be an integer expression that
contains constants only. The single subscript is
interpreted as though the subscript expression were
the leftmost subscript and the missing subscript

EQUIVALENCE(groupq), ... +(groupy)

group; A list of the form:

V1, eese ,Vn

where v; is a variable name, array
element, array name, or substring.
Array declarators are not permitted.
There must be at least two items
specified in each group. Commas that
separate the groups are optional.

Figure 3-23. EQUIVALENCE Statement Format

expressions each have their respective lower
dimension bound value. See the description of
array storage in section 2 for more information
about the internal linear representation of arrays.

Two or more variables or arrays of different types
can share the same storage location. If your
program conforms to ANSI standards, storage
alignment 1is handled automatically. If you use
non-ANSI types, you must ensure that the variables
and arrays are aligned on the proper boundary. See
table 3-2 for the aligmnment requirements of
variables and arrays. Note that character and
noncharacter types can be equivalenced.

Equivalencing different data types does not cause
type conversion or imply mathematical equivalence.
Arithmetic operations on mixed data types can
produce unexpected results.

PROGRAM STONES (INPUT,OUTPUT)

DIMENSION JADE (2)

END
SUBROUTINE ROCKS
COMMON JADE1, JADE?2

END
SUBROUTINE GEM
COMMON /PRECIOUS/ DIA,DUMMY (3)

END

Diagrams of common blocks:

COMMON JADE,SHALE /PRECIOUS/ DIAMOND (3) ,EMERALD

Unnamed JADE (1) JADE (2) SHALE
Common JADE1 JADE2

;‘f""":" DIAMOND (1) DIAMOND (2) DIAMOND (3) EMERALD
PR?(C: ToUs DIA DUMMY (1) DUMMY (2) DUMMY (3)

Figure 3-22. COMMON Statement Examples

60480200 J

TABLE 3-2.

ALIGNMENT REQUIREMENTS FOR

EQUIVALENCE(X1,X2)
X2
Integer
X1 Real

Double-precision Half-precision Character Bit

Complex

Logical
Integer Fullword Fullword Fullword Fullword
Real
Double-precision
Complex
Logical
Half-precision Fullword Halfword Halfword Halfword
Character Fullword Halfword Byte Byte
Bit Fullword Halfword Byte Bit

A variable or array that is in a common block can
share storage with another variable or array; how-
ever, the variable or array with which it shares
storage must not also be in a common block. An
EQUIVALENCE statement can lengthen a common block
as long as the common block is extended after the
last variable or array in the common block. An
EQUIVALENCE statement must not extend a common block
before the first variable or array in the common
block.

A dummy argument must not appear in an EQUIVALENCE
statement.

An EQUIVALENCE statement must not be used to cause
a single storage location to contain more than one
element of the same array.

See figure 3-24 for examples of the EQUIVALENCE
statement., The first EQUIVALENCE statement causes
the variables VOLUME and GALLONS to share one
storage location and SPEED and RATE to share
another storage 1location. The second and third
EQUIVALENCE statements cause three arrays to
partially overlap. The overlapping arrays are
shown in the figure.

EXTERNAL STATEMENT

The EXTERNAL statement specifies that a symbolic
name is defined outside of the program unit that
contains the EXTERNAL statement. The EXTERNAL
statement can be used to accomplish any of the
following:

To pass a subprogram name to another subprogram
To specify which version of an intrinsic func-
tion is to be used for those intrinsic functions
that have both an inline version and an external

version

To write and reference a subprogram that has
the same name as an intrinsic function

60480200 J

INTEGER ARRAYA(10) ,ARRAYB(10) ,VARA(5)
EQUIVALENCE (VOLUME ,GALLONS) , (SPEED,RATE)
EQUIVALENCE (ARRAYA(1) ,ARRAYB(5))
EQUIVALENCE (VARA,ARRAYA)

Storage is shared by the overlapping arrays:

ARRAYB(1)

ARRAYB(2)

ARRAYB(3)

ARRAYB (4)
ARRAYA(1) ARRAYB(S) VARA(1)
ARRAYA(2) ARRAYB(6) VARA (2)
ARRAYA(3) ARRAYB (7) VARA(3)
ARRAYA(4) ARRAYB(8) VARA (4)
ARRAYA(S) ARRAYB(9) VARA(5)
ARRAYA(6) ARRAYB(10)
ARRAYA(7)
ARRAYA(8)
ARRAYA(9)
ARRAYA(10)

Figure 3-24. EQUIVALENCE Statement Examples

See figure 3-25 for the
statement.

format of the EXTERNAL

EXTERNAL procq, ... ,proc,

The name of an external procedure, dummy
procedure, or block data subprogram

proc;

Figure 3-25. EXTERNAL Statement Format

3-9

If a subprogram name appears in the actual argument
list of a reference to another subprogram, the sub-
program name must appear in an EXTERNAL statement.

If a function reference appears in the actual
argument list of a subprogram reference, the name
of the function does not have to appear in an
EXTERNAL statement, however, because the result of
the function reference 1s the actual argument,
rather than the function name.

For an intrinsic function that has both an inline
version and an external version, you can use the
EXTERNAL statement to control which version of the
intrinsic function is used. 1In order to cause the
external version to be used, declare the intrinsic
function name in an EXTERNAL statement and do not
supply a function that has an entry point of the
same name as the intrinsic function. If the intrin-
sic function name is not declared in an EXTERNAL
statement, the inline version of the function is
used. See section 10 for a description of inline
and external intrinsic functions.

You can reference a function that you have supplied
that has an entry point of the same name as an
intrinsic function. To do this, you must declare
the entry point name in an EXTERNAL statement and
supply the function that has that entry point. If
you declare the entry point name in an EXTERNAL
statement and provide an entry point of that name,
the intrinsic function cannot be referenced in that
program unit.

A symbolic name that appears in an EXTERNAL state-
ment must not be used as the name of an intrinsic
function, statement function, variable, or array.

See figure 3-26 for an example of the EXTERNAL
statement. The EXTERNAL statement enables the sub-
program names SUBROUl and SUBROU2 to be passed to
the subroutine CALC.

PROGRAM EXT (OUTPUT)
EXTERNAL SUBROU1,SUBROU2

CALL CALC(SUBROU1,K)
CALL CALC(SUBROU2,K)

END
SUBROUTINE CALC(SUB,K)

CALL suBs

RETURN
END

Figure 3-26. EXTERNAL Statement Example

3-10

INTRINSIC STATEMENT

The INTRINSIC statement specifies that a symbolic
name is the name of a specific intrinsic function.
The INTRINSIC statement can be used to enable a
specific intrinsic function name to be passed as an
argument to another subprogram. See figure 3-27
for the format of the INTRINSIC statement.

INTRINSIC intq, ... ,intp

The name of an intrinsic function. See
section 10 for a list of the intrinsic
functions.

inty

Figure 3-27. INTRINSIC Statement Format

If a specific intrinsic function name appears in
the actual argument list of a reference to another
subprogram, the specific intrinsic function name
must be declared in an INTRINSIC statement.

If a specific intrinsic function reference appears
in the actual argument list of a subprogram refer-
ence, the name of the specifi¢ intrinsic function
does not have to be declared in an INTRINSIC state-
ment, however, because the result of the function
reference is the actual argument, rather than the
function name.

The two kinds of intrinsic functions are specific
intrinsic functions and generic intrinsic functions:

A specific intrinsic function accepts arguments
of a particular type only. The name of a spe-
cific 1intrinsic function can appear in an
INTRINSIC statement. The appearance of type
conversion, lexical relationship, and maximum
and minimum intrinsic functions in an INTRINSIC
statement has no effect on their use as actual
arguments.

A generic intrinsic function accepts arguments
of various types. The name of a generic in-
trinsic function can appear in an INTRINSIC
statement, but its appearance in an INTRINSIC
statement has no effect on its use as an actual
argument.

Some intrinsic functions are both generic and spe-
cific. The name of an intrinsic function that is
both specific and generic can appear in an INTRINSIC
statement, but the function name is assumed to be
the specific function name. See section 10 for
more information on intrinsic functioms.

A symbolic name that appears in an INTRINSIC state-
ment must not be used as the name of an external
subprogram, statement function, variable, or array.

See figure 3-28 for an example of the INTRINSIC
statement. The INTRINSIC statement in the example
enables the specific function names SIN and COS to
be passed to the subroutine CALC.

60480200 A

PROGRAM INT (OUTPUT)
INTRINSIC SIN,COS

CALL CALC(SIN,A,B)

CALL CALC(COS,A,B)

END

SUBROUTINE CALC(SUB,A,B)
B = SUB(A)

RETURN

END

Figure 3-28. INTRINSIC Statement Example

SAVE STATEMENT

The SAVE statement specifies that the values of
variables and arrays in a subprogram are to be
preserved after execution of the subprogram is
completed. Normally, the values of variables and
arrays are not preserved after the RETURN statement
or the END statement of a subprogram is executed.
See figure 3-29 for the format of the SAVE state-
ment .

SAVE nameq, ... ,namep,

name; A variable name, array name, or common
block name. If name; is a block name,
then the block name must be enclosed in
slashes, for example: SAVE /blockname/.
Do not use slashes with the other two
types. A particular name can appear in
a SAVE statement only once per program
unit and must not be a dummy argument,
subprogram name, or common block
member. A SAVE statement that Lists no
names is equivalent to one that Llists
all the names.

Figure 3-29. SAVE Statement Format

If no variable names, array names, or common block
names are specified in a SAVE statement, the values
of all variables, arrays, and common blocks that
are accessible to the program unit in which the
SAVE statement appears are preserved. If such a
SAVE statement appears in a program unit, no other
SAVE statements can appear in that program unit.

If a common block name is specified in a SAVE
statement in a subprogram, the common block name
must be specified in a SAVE statement in every
subprogram that uses the common block.

60480200 A

See figure 3-30 for an example of the SAVE state-
ment. The SAVE statement in the example causes the
value of the variable TOTAL to be saved after
execution of the subroutine SUM.

SUBROUTINE SUM(A)
SAVE TOTAL
TOTAL = TOTAL + A
IF(A .EQ. 0.0) GO TO 2
PRINT 1 TOTAL
2 RETURN
END

Figure 3-30. SAVE Statement Example

PARAMETER STATEMENT

The PARAMETER statement defines the names and values
of symbolic constants. A symbolic constant is a
constant that is lidentified by a symbolic name.
See figure 3-31 for the format of the PARAMETER
statement.

PARAMETER (nameq=valueq, ... ,name,=valuep)

name; A symbolic constant name; name; must be
associated with a data type before it
is used in a PARAMETER statement.

value; A constant or constant expression of
type integer, half-precision, real,
double-precision, complex, logical,
character, or bit.

If name; is of an arithmetic type,
value; must be of an arithmetic type;
the particular type can differ. If the
particular arithmetic data types are
different, value; is converted to the
data type of name;.

If name; is not of an arithmetic type,
valuei must be of the same data type as

namei -

Figure 3-31. PARAMETER Statement Format

The eight types of symbolic constants are: integer,
half-precision, real, double-precision, complex,
logical, character, and bit. The type of a sym-
bolic constant is specified by the first letter of
the symbolic name or by a type specification state-
ment. If the type of a symbolic constant depends
on a type specification or IMPLICIT statement, the
type specification or IMPLICIT statement must
appear before the PARAMETER statement that defines
the constant. See section 2 for a description of
symbolic constants.

3-11

See figure 3-32 for an example of the PARAMETER
statement. The PARAMETER statement in the example
declares ONE to be an integer symbolic constant
having the value 1, TWO to be an integer symbolic
constant having the value 2, and POINT2 to be a
real symbolic constant having the value 0.2.

INTEGER ONE,TWO
REAL POINTZ2
PARAMETER (ONE=1,TW0=2,POINT2=0.2)

Figure 3-32. PARAMETER Statement Example

DESCRIPTOR STATEMENT

The DESCRIPTOR statement is a vector programming
feature of the CYBER 200 FORTRAN language. See
section 9 for a description of the DESCRIPTOR
statement.

VARIABLE, ARRAY, AND
SUBSTRING INITIALIZATION

Variables, arrays, and substrings can be initialized
by using an initialization statement. The initial
value that is assigned to a variable, array, or
substring is the value that the variable, array, or
substring has when execution of the compiled program
begins.

If a variable, array, or substring is not initial-
ized by an initialization statement, the value of
the variable, array, or substring 1is not defined;
therefore, the executing program itself must assign
a value to the variable, array, or substring. A
value must be assigned to a variable, array, or
substring before the variable, array, or substring
can be referenced.

Any variable, array, or substring can be initialized
by an initialization statement unless it is a dummy
argument, it is the same as the name of the func-
tion in which it appears, it appears in an unnamed
common block, or it 1is equivalenced to a variable,
array, or substring that appears in an unnamed com-
mon block. Variables, arrays, and substrings that
appear in a named common block can be initialized
by an initialization statement. A block data sub-
program can be used for initialization of variables,
arrays, and substrings that appear in named common
blocks. See section 7 for a description of block
data subprograms.

Variables and arrays can be initialized in one of
two ways:

By using a type specification statement

By using a DATA statement

3-12

Substrings can be initialized only in DATA state-
ments.

Each of these initialization methods are described
in the following paragraphs. The rules for ini-
tialization are also described.

INTIALIZATION USING TYPE
SPECIFICATION STATEMENTS

The type specification statements can be used to
assign initial values to variables and arrays. The
type specification statements are: INTEGER, HALF
PRECISION, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
CHARACTER, and BIT. See the descriptions of these
statements for their formats,

Initialization of wvariables and arrays using type
specification statements differs from initializatiom
using the DATA statement in the following ways:

The initial value of a variable or array must
appear immediately after the variable name or
array name in the type specification statement.
A list of names followed by a list of constants
is not permitted.

Only entire arrays can be initialized in type
specification statements. Particular elements
of an array cannot be initialized unless all
elements are initialized.

An implied DO loop cannot be used in a type
specification statement. Implied DO loops are
described later in this section.

The initialization rules are described later in
this section. See the descriptions of the type
specification statements for examples of variable
and array initialization using type specification

‘statements. = :

INITIALIZATION USING THE DATA
STATEMENT

The DATA statement can be used to assign initial
values to variables, arrays, and substrings. See
figure 3-33 for the format of the DATA statement.
An implied DO loop can appear in a DATA statement.
See figure 3-34 for the format of an implied DO
loop.

Initialization of variables and arrays using the
DATA statement differs from initialization wusing
type specification statements in the following ways:

A 1list of variable names and array names fol-
lowed by a list of constants can be specified
in a DATA statement. The first variable or the
first array element is assigned the value of the
first constant in the list, the second variable
or the second array element is assigned the
value of the second constant in the list, and
so on.

Particular elements of an array can be initial-

ized without initializing all elements of the
array.

60480200 A

DATA vq/kq/, wev ,Vp/kp!

vj A variable List of the form:

Wi, =ee ,Mp

where w; is a variable, array element,
array, substring, or implied DO Lloop.
Subscript expressions and substring
expressions used to identify array elements
and substrings must be integer constant
expressions, but subscript expressions can
include references to the control variable
of any containing implied DO Lloop.

A data List of the form:

j*dq, ... ,i%dy
where di is an optionally signed constant.
The j* is an optional repeat specifica-

tion; j must be an unsigned integer
constant.

Figure 3-33. DATA Statement Format

An implied DO loop can be used in a DATA state-
ment. An implied DO loop that appears in a
DATA statement is processed in a manner similar
to the way in which an implied DO loop in an
input/output statement 1is processed, except
that it has no effect on the definition status
of the control variable of the implied DO. See
section 6 for a description of implied DO loops
in input/output statements.

INITIALIZATION RULES

Certain rules must be followed when you initialize

variables, arrays, and substrings. Furthermore,

there are special restrictions that apply to the

:;nitialization of variables and arrays of type bit.

The following paragraphs describe the rules for
initializing variables, arrays, and substrings.

Initializing Non-Bit Items

The rules for 1initializing variables and arrays
of type integer, half-precision, real, double-
precision, complex, character, and logical, and for
initializing substrings are:

If you specify a variable, array element, or
substring in the list of variable names, array
names, and substrings, you must specify one
constant for each variable, array element, or
substring.

If you specify an array name or an implied DO
loop in the 1list of variable names, array
names, array elements, and substrings, you must
provide one constant for each element of the
array that is to be initialized.

60480200 A

(List,cvar=aexp1,aexpz,aexp3)

Llist A List of array elements and implied DO
Loops.
cvar A simple integer variable; cvar is used

as the control variable for the implied
DO loop. The control variable cvar
must not also be the control variable
of a containing implied DO Loop. A
DATA statement does not affect the
definition status of any variable
having the same name as cvar.

aexpq An arithmetic expression of type
integer; aexpq is used as the initial
value for the control variable. The
expression can contain only constants
and references to the control variables
of containing implied DO Lloops.

aexpp An arithmetic expression of type
integer; aexp, is used as the terminal
value for the control variable. The
expression can contain only constants
and references to the control variables
of containing implied DO Loops.

aexpsz An arithmetic expression of type
integer; optional; aexpz is used as
the incrementation value for the
control variable. If aexpz is not
specified, the incrementation value is
1. If the result of aexpz is positive,
aexp4q must be less than or equal to
aexppy. If the result of aexpz is
negative, aexpq must be greater than or
equal to aexpp. The result of aexpsz
must not be zero. The expression can
contain only constants and references
to the control variables of containing
implied DO Lloops.

Figure 3-34. Implied DO Loop Format for
DATA Statements

Dummy arguments must not be initialized.

Variables and arrays that are in an unnamed
common block must not be initialized.

If you initialize a variable, array element,
or substring with a character constant or a
Hollerith constant, the character constant or
Hollerith constant is padded or truncated to
the size of the variable or array element.

The type of a variable or array that is being
initialized does not have to be the same type
as the constant that is assigned to it by an
initialization statement. See table 3-3 for
the rules for mixed mode initialization.

If a variable or array of any type except bit

is initialized with a bit constant, the con-
stant is padded on the left with zero bits or
truncated on the left to fit the variable.

3-13

TABLE 3-3. INITIALIZATION CONVERSIONS
Constant Type
Variable G T - T——‘: 1
Type Half- - Double- Character ' :
Integer Precision Real Precision Complex Logical Hollerith Bit Hex

= == e

Integer nocon c c c c n/a nocon T=nocon nocon

Half- c nocon c c c n/a nocon nocon nocon

Precision

Real c c nocon c c n/a nocon nocon nocon

Double- c c c nocon c n/a nocon nocon nocon

Precision |

Complex c c c c nocon n/a nocon nocon nocon

Logical n/a n/a n/a n/a n/a nocon nocon nocon nocon

Character n/a n/a n/a n/a n/a n/a nocon nocon nocon

Bit n/a n/a n/a n/a n/a n/a n/a nocon nocon

The letter c indicates that conversion is performed; nocon, that conversion is not performed; and n/a, that

the type combination is not allowed.

See figure 3-35 for examples of initialization of
non-bit variables and arrays using the DATA state-
ment. The first DATA statement in the example
initializes LION to 1, TIGER(1l) to 2.0, TIGER(2) to
2.5, and BEAR(3) to POLAR. The second DATA state-
ment in the example initializes the ten elements of
array HUNTER to 0; the real constant 0.0 is con-
verted to integer.

Initializing Bit ltems

Bit data items are a vector programming feature of
the CYBER 200 FORTRAN language. See section 9 for
a description of bit item initialization.

QIMENSION TIGER(2)
CHARACTER*8 BEAR (10)
INTEGER HUNTER(10)
DATA LION,TIGER,BEAR(3)/1,2.0,2.5,'POLAR"/
DATA (HUNTER(I),I=1,10)/10%0.0/

Figure 3-35.

DATA Statement Examples

60480200 A

SCALAR EXPRESSIONS AND SCALAR 4
ASSIGNMENT STATEMENTS

This section describes how expressions are written
and evaluated and how values are assigned to vari-
ables and arrays. The expressions and assignment
statements described in this section are scalar.
See section 9 for a description of vector expres-
sions and vector assignment statements.

SCALAR EXPRESSIONS

A scalar expression 1is a string of operators and
scalar operands that defines the rules for computing
a value. A scalar expression is evaluated during
program execution. There are four kinds of scalar
expressions:

Scalar arithmetic expressions
Scalar character expressions
Scalar relational expressions
Scalar logical expressions

Scalar expressions are described in the following
paragraphs.

SCALAR ARITHMETIC EXPRESSIONS

A scalar arithmetic expression is an expression
that yields a numeric value. A scalar arithmetic
expression can appear in a scalar arithmetic as-
signment statement, scalar relational expression,
vector arithmetic assigmment statement, or vector
relational expression. See figure 4-1 for the
format of a scalar aritlmetic expression.

The operators that can be wused in a scalar
arithmetic expression are called arithmetic oper-
ators. See table 4-1 for a list of the arithmetic
operators.

The order in which a scalar arithmetic expression
is evaluated depends on the precedence of the oper-
ators specified. The order of expression evaluation
is described later in this section.

TABLE 4-1. ARITHMETIC OPERATORS

Operator Operation
— |
+ Addition or unary plus
- Subtraction or unary minus
* Multiplication
/ Division
*% Exponentiation

60480200 A

aexp

aexp A scalar arithmetic expression of one
of the forms:

term

+ term

- term

aexp + term
aexp - term

term An arithmetic term of one of the forms:

fact
term * fact
term/fact

fact An arithmetic factor of one of the
forms:

prim
prim ** fact

prim An arithmetic primary, which can be
any of the following:

unsigned arithmetic constant

arithmetic symbolic constant

arithmetic variable

arithmetic array element

scalar arithmetic function
reference

scalar arithmetic expression
enclosed in parentheses.

Figure 4-1. Scalar Arithmetic Expression Format

Operators that are mathematically associative or
commutative might be reordered during compilation.
You can force a definite ordering of mathematically
associative operators of equal precedence by using
parentheses. Expressions involving the division of
integers are not reordered during compilation.

If the result of the division of two integers is
not an integer, then the fractional portion of the
result is discarded.

The appearance of an array element or a function
reference in an expression requires the evaluation
of the subscripts or the actual arguments. This
evaluation does not affect the type of the expres-
sion result; however, the type of the actual argu-
ments of some predefined generic functions affects
the type of the function result. Evaluation of a
function must not alter the value of any other
element in the statement in which the function
reference appears.

An expression that 1is not mathematically defined
cannot be evaluated. For example, division by zero
or the square root of a negative number must not be
specified in an expression.

The operands that can appear in a scalar arithmetic
expression are, in order of decreasing dominance:

Complex
Double-precision
Real
‘Half-precision
Integer

When an arithmetic operator functions on two
operands of different types, the value of the
dominated operand is converted to the type of the
dominant operand before the operation is performed.
The result is of the type of the dominant operand.
See table 4-2 for the resulting data types for
+ - * / operations. See table 4-3 for resulting
data types for ** operationms.

See figure 4-2 for examples of scalar arithmetic
expressions.

3.5

3.5+N

= (3.54N) /2+*M
= (C+DELTA*AERO)

GROSS-TAX*0.04

(XBAR+(B(I,J+I,K)/3.0))
(=Y=SQRT (Y**2-(4*A%C)))/ (2.0%A)
TEMP+V (M, AMAX1 (A,Q)) *Y**C/ (H-FACT (K+3))
N, M, I, J, and K are integer variables, XBAR,
C, DELTA, AERO, A, GROSS, TAX, @, TEMP, Y, and

H are real variables, B and FACT are real
arrays, and V is a real function.

Figure 4-2.

Scalar Arithmetic

Expression Examples

SCALAR CHARACTER EXPRESSIONS

A scalar character expression yields a character

value.

A scalar character expression can appear in

a scalar character assignment statement and in a

scalar relational expression.

See figure 4-3 for

the format of a scalar character expression.

TABLE 4-2. RESULT TYPE FOR ARITHMETIC OPERATIONS + - * /

Type of OP2
Type of OPl
Integer Real Double-Precision Half-Precision Complex
Integer Integer Real Double-precision Half-precision Complex
Real Real Real Double-precision Real Complex
Double-precision Double-precision Double-precision Double-precision Double-precision Complex
Half-precision Half-precision Real Double-precision Half-precision Complex
Complex Complex Complex Complex Complex Complex
TABLE 4-3. RESULT TYPE FOR OPl1 ** OP2
Type of OP2
Type of OPl
Integer Real Double-Precision Half-Precision Complex
Integer Integer Real Double-precision Half-precision Complex
Real Real Real Double-precision Real Complex
Double-precision Double-precision Double-precision Double-precision Double-precision Complex
Half-precision Half-precision Real Double-precision Half-precision Complex
Complex Complex Complex Complex Complex Complex
4-2 60480200 A

cexp
or
cexp // cexp

cexp A character constant, character variable,
character array element, character
function reference, substring, or scalar
character expression enclosed in
parentheses

Figure 4-3. Scalar Character Expression Format

The operator that can be used in a scalar character
expression 1s called a character operator. The
character operator is the concatenation symbol //.

The order in which a scalar character expression is
evaluated depends on the precedence of the operators
specified. The order of expression evaluation is
described later in this sectiom.

All of the operands that appear 1in a scalar
character expression must be of type character.

See figure 4-4 for examples of scalar character
expressions.

'ING'

CHARVAR
CHARVAR(1:2)
CHARVAR // '"ING'

CHARARR (I)
CHARARR (I) (J:J+1)
CHARARR(I) // 'ING'
CHARFUN (X+Y)

CHARVAR is a character variable, CHARARR is a
character array, and CHARFUN is a character
function.

Figure 4-4. Scalar Character
Expression Examples

SCALAR RELATIONAL EXPRESSIONS

A scalar relational expression yields a 1logical
value. A scalar relational expression can appear
in a scalar logical expression. See figure 4-5 for
the format of a scalar relational expression.

aexp op aexp
or
cexp op cexp

aexp A scalar arithmetic expression
cexp A scalar character expression
op A relational operator

Figure 4-5. Scalar Relational
Expression Format

60480200 H

The operators that can be used in a scalar rela-
tional expression are called relational operators.
See table 4-4 for a list of the relational opera-
tors.

TABLE 4-4. RELATIONAL OPERATORS

Operator Relation
.LT. Less than =ﬂ
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GE. Greater than or equal to
.GT. Greater than

The order in which a scalar relational expression
is evaluated depends on the precedence of the
operators specified. The order of expression eval-
uation is described later in this section.

A scalar relational expression that contains scalar
arithmetic expressions is evaluated as follows:

1. Each scalar arithmetic expression is evaluated.
The data types of the arithmetic expression
results can be, 1in order of decreasing
dominance:

Complex
Double-precision
Real
Half-precision
Integer

2. If the types of the results of the scalar
arithmetic expressions differ, the value of the
dominated result 1is converted to the type of
the dominant result.

3. The relational operation is then performed.

Scalar arithmetic expressions of type complex can
appear in a scalar relational expression only when
the operators .EQ. or .NE. are used.

When a scalar relational expression contains scalar
character expressions, the corresponding characters
in the results of the two expressions are compared
one character at a time from left to right. The
internal hexadecimal representations of the char-
acters are compared; see appendix A for the internal
hexadecimal representations of characters. If the
results of the two scalar character expressions
have different lengths, the shorter of the expres-
sions is padded on the right with blanks until the
lengths are equal.

See figure 4-6 for examples of scalar relational
expressions.

SALARY .LT. EXPENSES
INDEX .EQ. LIMIT
X+Y/3.0%Z .NE. X

A(I) .GE. SQRT(R)
'STRING' .LE. CHARVAR

SALARY, EXPENSES, X, Y, Z, and R are real
variables, INDEX and LIMIT are integer
variables, A is a real array, and CHARVAR is a
character variable.

Figure 4-6. Scalar Relational
Expression Example

SCALAR LOGICAL EXPRESSIONS

A scalar logical expression 1s an expression that
yields a logical value. A scalar logical expression
can appear in a scalar logical expression and in a
scalar logical assignment statement. A scalar
logical expression can be a single scalar relational
expression. See figure 4-7 for the format of a
scalar logical expression.

Llexp
or
Lexp op lexp
or
.NOT. lexp
Llexp A scalar relational expression, Logical
constant, logical variable, logical
array element, logical function
reference, or scalar logical expression
enclosed in parentheses
op One of the logical operators .AND.,
.OR., .XOR., .EQV., or .NEQV.

Figure 4-7. Scalar Logical Expression Format

The operators that can be used in a scalar logical
expression are called logical operators. See table
4-5 for a list of the logical operators. See table
4-6 for the truth table definitions of the logical
operators.

The order in which a scalar logical expression is
evaluated depends on the precedence of the operators
specified. The order of expression evaluation is
described later in this section.

TABLE 4-5. LOGICAL OPERATORS

Operator Operation

#

o ?

.OR. Logical inclusive or

.XOR. Logical exclusive or

+NOT. Logical negation

.EQV. Logical equivalence

.NEQV. Logical nonequivalence

If two .NOT. operators are adjacent to each other,
the second .NOT. operator and its operand must be
enclosed in parentheses. If a .NOT. operator is
adjacent to any other logical operator, the .NOT.
operator must appear to the right of the other
logical operator.

The logical operators .AND., .OR., .XOR., .EQV.,
and .NEQV. must not appear adjacent to each other.

See figure 4-8 for examples of scalar logical
expressions.

LX .EQV. LY

LX .AND. .NOT. LY
X+2.0.NE.Y/3.0.AND.LX.OR.LY
«NOT.(LX .AND. .NOT. LY)
<NOT.(.NOT.(LX .AND. .NOT. LY))
LOGVAR

LOGARR(I)

. TRUE.

.FALSE.

LX, LY, and LOGVAR are logical variables, LOGARR
is a logical array, and X and Y are real
variables.

Figure 4-8., Scalar Logical
Expression Examples

TABLE 4-6. TRUTH TABLE DEFINITIONS OF LOGICAL OPERATORS

P q p.AND.q p.OR.q p.XOR.q p.-EQV.q p.NEQV.q .NOT.p
T T T T T F F
T F F T F T F
F T F T F T T
F F F F T F T

4=4

60480200 H

ORDER OF EXPRESSION EVALUATION

The order 1in which an expression 1is evaluated
depends on the precedence of the operators specified
in the expression. Operators of higher precedence
are evaluated before operators of lower precedence.
See table 4-7 for the precedence of operators.

TABLE 4-7. PRECEDENCE OF OPERATORS

Precedence Operators Category
First *& Arithmetic
Second * ./ Arithmetic
Third +,- Arithmetic
Fourth 1/ Character
Fifth .LT.,.LE.,.EQ., Relational

.NE.,.GE.,.GT.
Sixth .NOT. Logical
Seventh +AND. Logical
Eighth .OR. Logical
Ninth .XOR.,.EQV.,. Logical
NEQV.

When arithmetic operators of equal precedence are
specified in an arithmetic expression, the order in
which those operators are evaluated can affect the
result of the expression. When two or more opera-
tors of equal precedence appear in an arithmetic
expression, the operators are evaluated in an order
that 1is mathematically equivalent to evaluating
them from left to right except for the exponen-
tiation operator. When two exponentiation operators

appear in an expression, the exponentiation opera-
tors are evaluated in an order that is mathemati-

cally equivalent to evaluating them from right to
left.

You can change the order of expression evaluation
by enclosing portions of the expression in paren-
theses. The portions of an expression that are
enclosed in parentheses are evaluated first begin-
ning with the deepest nesting of parentheses. The
normal rules for expression evaluation apply within
the parenthesized portions of an expression.

SCALAR ASSIGNMENT
STATEMENTS

A scalar assignment statement is a statement that
causes the result of a scalar expression to be
assigned to a variable or an array element. A
scalar assignment statement is performed during
program execution. There are four kinds of scalar
assignment statements:

60480200 A

Scalar arithmetic assignment statements
Scalar character assignment statements
Scalar logical assignment statements
Statement label assignment statements

Scalar assignment statements are described in the
following paragraphs.

SCALAR ARITHMETIC ASSIGNMENT
STATEMENTS

A scalar arithmetic assignment statement assigns
the result of a scalar arithmetic expression to an
arithmetic variable or an arithmetic array element.
See figure 4-9 for the format of a scalar arithmetic
assignment statement.

var = aexp

var A simple variable or array element of
type integer, half-precision, real,
double-precision, or complex

aexp A scalar arithmetic expression

Figure 4-9. Scalar Arithmetic Assignment
Statement Format

If the type of the variable or array element that
appears to the left of the equals sign differs from
the type of the expression that appears to the
right of the equals sign, type conversion 1is per-
formed. The result of the expression is converted
to the type of the variable or array element and
replaces the value of the variable or array element.
See table 4-8 for the rules for type conversion
during arithmetic assignment.

See figure 4-10 for examples of scalar arithmetic
assignment statements. The first, third, and fifth
assignment statements in the example require no
type conversion. The second assignment statement
truncates the fractional part of 5.75 and assigns
it to I; therefore, the value 5 is assigned to I.
The fourth assignment statement converts the value
of I to real and assigns it to A.

I=1+1

I1=5.75

A = SQRT(B)

A=1

ARR(I) = ARR(J) + ARR(I+J)

I and J are integer variables, A and B are real
variables, and ARR is a real array.

Figure 4-10. Scalar Arithmetic
Assignment Statement Examples

fractional part

then truncate
fractional part

TABLE 4-8. TYPE CONVERSION FOR SCALAR ARITHMETIC ASSIGNMENT
Variable or Expression Result Type
Array Element | B = =
Type Integer Real Double-precision | Half-Precision Complex
—
Integer No conversion Truncate Convert to real Convert to real Truncate real

then truncate
fractional part

part; discard
imaginary part

Real

Convert to real

No conversion

Convert to real

Convert to real

Use real part;
discard imagi-
nary part

Double-precision

Convert to
double-precision

Convert to
double-precision

No conversion

. Convert to |
double-precision

Convert real
part to
double-
precision;

discard imag-
inary part

part; use 0 for
imaginary part

part; use 0 for
imaginary part

for real part;
use 0 for imagi-

Tialf-precision Convert to Convert to Convert to No conversion Convert real
half-precision half-precision half-precision part to half-
precision;
discard imag-
inary part
Complex Convert to real Use for real Convert to real Convert to real No conversion

for real part;
~use 0 for imagi~

nary part

‘mary part
o —ﬁ;i

SCALAR CHARACTER ASSIGNMENT
STATEMENTS

A scalar character assigmment statement assigns the
result of a scalar character expression to a char-
acter variable, character array element, or sub-
string. See figure 4-11 for the format of a scalar
character assignment statement.

var = cexp

var A character variable, character array
element, or substring reference; var
must not be part of any operand in cexp.

cexp A scalar character expression.

Figure 4-11. Scalar Character
Assignment Statement Format

When the length of the variable or array element
that appears to the left of the equals sign and the
length of the expression result that appears to the
right of the equals sign are the same, the scalar
character assignment statement causes the value of
the variable or array element to be replaced with
the expression result.

When the length of the variable or array element is
longer than the length of the expression result,
the expression result 1is extended on the right with
blanks so that the lengths are equal. Assignment
is then performed.

When the length of the variable or array element is
shorter than the length of the expression result,
the expression result is truncated on the right so
that the lengths are equal. Assignment is then
performed.

See figure 4-12 for examples of scalar character
assignment statements.

VOWELS = 'AEIOU'
CHARARR(I) = CHARVAR
CHARVAR(1:2) = CHARVAR(3:4)

VOWELS and CHARVAR are character variables, and
CHARARR is a character array.

Figure 4-12. Scalar Character
Assignment Statement Examples

SCALAR LOGICAL ASSIGNMENT
STATEMENTS

A scalar logical assignment statement assigns the
result of a scalar logical expression to a logical
variable or a logical array element. See figure
4-13 for the format of a scalar logical assignment

statement.

60480200 E

var = lexp

var A logical variable or Logical array
element
Lexp A scalar logical expression

Figure 4-13. Scalar Logical
Assignment Statement Format

A scalar logical assignment statement causes the

result of the expression that appears to the right
of the equals sign to be assigned to the variable

or array element that appears to the left of the
equals sign.

See figure 4-14 for examples of scalar logical
assignment statements.

LOGVAR
LOGVAR
LOGVAR
LOGARR (I)
LOGARR (I)

.TRUE.

X .GT. Y

X .6T. Y .AND. X .LE. O
L1 .OR. L2

X .GT. Y .OR. LOGVAR

LOGVAR, L1, and L2 are logical variables, X and
Y are real variables, and LOGARR is a logical
array.

Figure 4-14. Scalar Logical
Assignment Statement Examples

STATEMENT LABEL ASSIGNMENT
STATEMENT

A statement label assignment statement assigns a
statement label to an integer variable. See figure
4-15 for the format of a statement label assigmment
statement.

A statement label must be assigned to an integer
variable if the integer variable is wused in an
assigned GO TO statement or as a format identifier
in an input/output statement. See section 5 for a

60480200 A

ASSIGN sl TO var

sl A statement Llabel

var An integer variable

Figure 4-15. Statement Label
Assignment Statement Format

description of the assigned GO TO statement. See
section 6 for a description of format identifiers
in input/output statements. An integer variable
that contains a statement label must not be used in
any other way.

An integer variable that contains a statement label
can be redefined with the same statement 1label,
with a different statement label, or with any
integer value.

The ASSIGN statement that is used for statement
label assignment is not related to the descriptor
ASSIGN statement. The descriptor ASSIGN statement
is a vector programming feature of the CYBER 200
FORTRAN language. See section 9 for a description
of the descriptor ASSIGN statement.

See figure 4-16 for an example of a statement label
assignment statement. The statement label assign-
ment statement in the example causes the GO TO
statement in the example to transfer control to the
statement labeled 100.

ASSIGN 100 TO LABEL
G0 TO LABEL (100,200,300)

Figure 4-16. Statement Label
Assignment Statement Example

FLOW CONTROL STATEMENTS 3

Flow control statements are executable statements
that alter the normal flow of control in an execut-
ing program. Normally, statements are executed in
the order of their appearance in the program, except
when a condition such as an end-of-file condition
or a data flag branch occurs.

The flow control statements are:
GO TO statements
IF statements
DO statement
CONTINUE statement
PAUSE statement

STOP statement

CALL statement
RETURN statement

This section describes each of the flow control
statements.

GO TO STATEMENTS

The GO TO statement is an executable statement that
transfers control to another executable statement.
The three types of GO TO statements are the uncon-
ditional GO TO statement, the assigned GO TO state-
ment, and the computed GO TO statement. Each type
of GO TO statement is described in the following
paragraphs.

UNCONDITIONAL GO TO

The unconditional GO TO statement is an executable
statement that transfers control to another execut-
able statement in the same program unit. See
figure 5-1 for the format of the unconditional GO
TO statement.

When an unconditional GO TO statement 1is executed,
control transfers to the statement whose statement
label 1s specified in the wunconditional GO TO
statement.

GO TO st

sl A statement label that appears in the
Label field of an executable statement
in the same program unit that contains
the GO TO statement

Figure 5-1. Unconditional GO TO
Statement Format

60480200 H

The statement that appears after an unconditional
GO TO statement should have a statement label;
otherwise, the statement can never be executed.

See figure 5-2 for an example of the unconditional
GO TO statement. The GO TO statement in the example
transfers control to the statement labeled 200.

100 I=1+1

200 1=1+2

Figure 5-2. Unconditional GO TO
Statement Example

ASSIGNED GO TO STATEMENT

The assigned GO TO statement is an executable
statement that transfers control to another execut-
able statement in the same program unit depending
on the value of an integer variable. See figure
5-3 for the format of the assigned GO TO statement.

GO TO var
or
G0 TO var,(slq, ... ,sly)

var A simple integer variable whose value is
assigned by a statement label assignment
statement before the GO TO statement is
executed
sl; A statement Llabel that appears in the
Label field of an executable statement in
the same program unit that contains the
GO TO statement

The comma that separates var from the statement
Label list is optional.

Figure 5-3. Assigned GO TO Statement Format

When an assigned GO TO statement is executed,
control transfers according to the following rules:

If a list of statement labels 1is not specified
in the assigned GO TO statement, control trans-
fers to the statement label that is contained
in the integer variable.

If a list of statement labels is specified in
the assigned GO TO statement, control transfers
to the statement label that is contained in the
integer variable; however, the statement label
contained in the integer variable must appear
in the 1list of statement labels.

The integer variable must be defined before the
assigned GO TO statement 1s executed. The value of
the integer variable must be the statement label of
an executable statement in the same program unit in
which the assigned GO TO statement appears. The
statement label ASSIGN statement is used to assign
the value to the integer variable. See section 4
for a description of this statement.

The statement that appears after an assigned GO TO
statement should have a statement label; otherwise,
the statement can never be executed.

See figure 5-4 for an example of the assigned GO TO
statement. The first assigned GO TO statement in
the example transfers control to the statement
labeled 200. The second assigned GO TO statement

in the example transfers control to the statement
labeled 400.

ASSIGN 200 TO LABEL
G0 TO LABEL
100 I1=1+1

200 I=1+2

ASSIGN 400 TO LABEL

GO TO LABEL,(100,200,300,400,500)
300 I=1+3

400 I=1+4

Figure 5-4. Assigned GO TO Statement Example

COMPUTED GO TO STATEMENT

The computed GO TO statement is an executable
statement that transfers control to another execut-
able statement in the same program unit depending
on the value of an integer expression. See figure
5-5 for the format of the computed GO TO statement.

When a computed GO TO statement 1is executed,
control transfers to one of the statement labels
that appears in the computed GO TO statement. The
integer expression that appears in the computed GO
TO selects the statement label to which control
transfers. If the result of the expression 1is 1,
control transfers to the first statement label in
the 1list. If the result of the expression is 2,
control transfers to the second statement label in
the list, and so on. If the result of the expres-
sion is less than 1 or greater than the number of
statement labels in the list, control transfers to
the statement that follows the computed GO TO
statement.

5-2

GO TO(slqy, ... ,Slp),aexp

sty A statement label that appears in the
Llabel field of an executable statement
in the same program unit that contains
the GO TO statement

aexp A scalar integer expression

The comma that separates the statement label List
from aexp is optional.

Figure 5-5. Computed GO TO Statement Format

See figure 5-6 for an example of the computed GO TO
statement. The computed GO TO statement in the
example is executed four times. The first time the
computed GO TO statement is executed, it transfers
control to the statement labeled 200; the second
time the computed GO TO statement is executed, it
transfers control to the statement labeled 300; the
third time the computed GO TO statement is executed,
it transfers control to the statement labeled 400;
the fourth time the computed GO TO statement is
executed, it transfers control to the statement
that follows the computed GO TO statement.

1=0
N=0
00 N=N+1
60 T0(200,300,400) ,N
I=1%23
2000 I=I+5
G0 TO 100
300 1=1+10
G0 TO 100
400 I=1+20
G0 TO 100

Figure 5-6. Computed GO TO Statement Example

IF STATEMENTS

The IF statement is an executable statement that
determines whether one or more statements are
executed depending on a specified condition. The
three types of IF statements are the arithmetic IF
statement, the logical IF statement, and the block
IF statement., Each type of IF statement is de-
scribed in the following paragraphs.

ARITHMETIC IF STATEMENT

The arithmetic IF statement is an executable state-
ment that transfers control to another executable
statement in the same program unit depending on the
result of an arithmetic expression. See figure 5-7
for the format of the arithmetic IF statement.

60480200 H

IF (aexp) slq,sly,sl3

aexp A scalar arithmetic expression of any
type except complex

sly A statement Llabel that appears in the
label field of an executable statement
in the same program unit that contains
the IF statement

Figure 5-7. Arithmetic IF Statement Format

When an arithmetic IF statement is executed, the
arithmetic expgession is evaluated. Control
transfers to one of the three statement labels
specified in the arithmetic IF statement. If the
result of the expression 1s negative, control
transfers to the first statement label in the
arithmetic IF statement. If the result of the
expression is zero, control transfers to the second
statement label in the arithmetic IF statement. If
the result of the expression 1s positive, control
transfers to the third statement 1label in the
arithmetic IF statement.

See figure 5-8 for an example of the arithmetic IF
statement. The arithmetic IF statement in the
example transfers control to the statement labeled
100 if the result of A - B is negative; the arith-
metic IF statement transfers control to the state-
ment labeled 200 if the result of A - B is zero or
positive.

1F(A-B) 100,200,200
100 TEMP = A

A =8B
B = TEMP
200 ¢ =25.0

Figure 5-8. Arithmetic IF Statement Example

LOGICAL IF STATEMENT

The logical IF statement is an executable statement
that controls the execution of the statement that
appears in the logical IF statement depending on
the result of a logical expression. See figure 5-9
for the format of the logical IF statement.

When a logical IF statement is executed, the logical
expression 1s evaluated. If the result of the
expression is .TRUE., the statement that appears in
the logical IF statement is executed; then the
statement that follows the logical IF statement is
executed unless the executable statement in the
logical IF statement transfers control elsewhere.

If the result of the expression is .FALSE., the
statement that appears in the logical IF statement
is not executed; instead, the statement that follows
the logical IF statement is executed.

60480200 E

IF (lexp) st

Lexp A scalar logical expression

st Any executable statement except a DO
statement, logical IF statement, block
IF statement, ELSE IF statement, ELSE
statement, END IF statement, block
WHERE statement, OTHERWISE statement,
END WHERE statement, or END statement

Figure 5-9. Logical IF Statement Format

The C64 option on the FTN200 control statement
controls how comparisons are performed for logical
expressions that appear in logical IF statements.
If the C64 option is specified, integer comparisons
for the relational operators .EQ. and .NE. are
fullword comparisons; thus, all 64 bits of the
integer operands are compared.

If the C64 option is not specified, integer compar-
isons for the relational operators .EQ. and .NE.
are not fullword comparisons; only bits 16 through
63 are compared.

Because bits 0 through 15 of an integer value are
always 0, the C64 option is not normally used. The
C64 option is used mainly in programs that use
integer variables to contain Hollerith data,

See figure 5-10 for an example of the logical IF
statement. The logical IF statement in the example
causes the GO TO statement to be executed if A is
greater than or equal to B. The GO TO statement is
not executed if A is less than B.

IF(A.GE.B) GO TO 200

TEMP = A

A=8

B = TEMP
200 c=2.0

Figure 5-10. Logical IF Statement Example

BLOCK IF STATEMENT

The block IF statement is an executable statement
that controls the execution of blocks of executable
statements in the same program unit depending on
the result of a logical expression. See figure
5-11 for the format of the block IF statement.

IF (Lexp) THEN

Lexp A scalar logical expression

Figure 5-11. Block IF Statement Format

Nesting Block IF Structures and DO Loops

A nested block IF structure is a block IF structure
that appears 1in an 1f-block, elseif-block, or
else-block of another block IF structure. A nested
block IF structure must appear entirely within an
if-block, elseif-block, or else-block. Control can
transfer from an 1f-block, elseif-block, or else-
block of a nested block IF structure to the 1if-
block, elseif-block, or else-block of the outer
block IF structure in which the nested block IF
structure appears. However, the converse is not
true: control must not transfer from an if-block,
elseif-block, or else-block of an outer block IF

structure to an if-block, elseif-block, or else-
block of a nested block IF structure. See figure
5-21 for a nested block IF structure.
IF (lexp) THEN — o — — — — — — \
if-block-1
IF (Lexp) THEN —
Nested Outer
if-block-2 Block IF Block IF
Structure Structure
END IF — — —
if-block-1
END IF — — — o o e o — — /

DO sl cvar = aexpq,aexpp,aexps

sl The statement label that appears in the
Label field of the last statement in

the DO Loop.

cvar A variable of any arithmetic type
except complex; cvar is used as the
control variable for the DO loop. The
control variable cvar must not also be
the control variable of an outer DO
Loop.

aexpq A scalar arithmetic expression of any
type except complex; aexpq is used as
the initial value for the control
variable.

aexpy A scalar arithmetic expression of any
type except complex; aexpp is used as
the terminal value for the control
variable,

aexpz A scalar arithmetic expression of any

type except complex; optional;

is used as the incrementation value for

the control variable. If aexp

not specified, the incrementation value

for the control variable is 1.

result of aexpz must not be zero.

aexpz
is

The

Figure 5-21. Nested Block IF Structure

A block IF structure that appears in the range of a
DO statement must be entirely in the range of the
DO statement. An END IF statement must not be the
terminal statement of a DO loop. A DO statement
can appear 1in an 1f-block, elseif-block, or else-
block, but the entire range of the DO statement
must appear in the if-block, elseif-block, or
else-block.

DO STATEMENT

The DO statement is an executable statement that
causes a group of statements to be executed repeat-
edly. See figure 5-22 for the format of the DO
statement.

Every DO statement has a range. The range of a DO
statement consists of all of the executable state-
ments beginning with the first executable statement
after the DO statement and ending with the terminal
statement specified in the DO statement.

DO LOOPS
A DO loop consists of a DO statement and the range

of the DO statement. See figure 5-23 for the
format of a DO loop.

A DO statement must be the first statement of a DO
loop. A DO loop can be entered only through the DO
statement.

The terminal statement of a DO loop can be any
statement except the following:

RETURN statement

5-6

Figure 5-22.

DO Statement Format

DO statement

Executable statments Range
of DO
Terminal statement statement

Figure 5-23. DO Loop Format

STOP statement
END statement
Unconditional GO TO statement

Assigned GO TO statement

Special call statement (unless the label 1is the

target of a GO TO statement)
DO statement

Arithmetic IF statement
Block IF statement

ELSE IF statement

ELSE statement

END IF statement

Block WHERE statement

60480200 J

OTHERWISE statement

For compatibility with CYBER 200 FORTRAN, a DO
statement can also have an extended range. The
extended range of a DO 1loop consists of the
statements executed when control transfers out of
and then returns to the range of the DO loop. A
transfer out of the range of a DO loop is allowed
at any time. When such a transfer occurs, the
control variable remains defined at its most recent
value in the loop. The extended range of the DO
loop must not contain a DO loop that has its own
extended range.

When a DO statement 1is executed, the following
operations are performed:

1. The expressions in the DO statement are evalu-
ated. (If an expression uses the control
variable, it must be defined before the DO
statement.)

2. The control variable is initialized with the
initial value specified in the DO statement.

3. If the incrementation value is positive, the
value of the control variable is compared to
the terminal value specified in the DO state-
ment. If the value of the control variable is
less than or equal to the terminal value, the
range of the DO statement is executed. If the
value of the control variable is greater than
‘the terminal value, control transfers to the
statement that follows the terminal statement.

If the incrementation value is negative, the
value of the control variable is compared to
the terminal value specified in the DO state-
ment. If the value of the control variable is
greater than or equal to the terminal value,
the range of the DO statement is executed. If
the value of the control variable is less than
the terminal value, control transfers to the
statement that follows the terminal statement.

Thus, a DO loop can be executed zero times.

4., The value of the control variable is incre-
mented by the amount specified in the DO state-
ment; then step 3 is repeated.

The control variable of a DO statement must not be
redefined in the range of the DO statement. How-
ever, variables that specify the 1initial value,
terminal value, and incrementation value for the
control variable can be redefined in the range of
the DO statement. Redefining those variables has
no effect on the execution of the DO loop.

The compiler might generate more efficient object
code for a DO loop if you specify the DO=1 option
on the FTIN200 control statement.

The compiler can generate vector machine
instructions for some DO loops if you specify the V
compilation option on the FTN200 control
statement. See section 9 for a description of loop
vectorization.

See figure 5-24 for an example of a DO loop. The

range of the DO statement in the example consists
of all of the statements shown in the figure except

60480200 E

0 100 I = 1,10,2
IF(ACD).LT.B(I)) THEN

TEMP = A(I)
A(I) = B(D)
B(I) = TEMP
END IF

100 CONTINUE

Figure 5-24. DO Loop Example

the DO statement. The DO loop in the example is
executed five times. The values that are assigned
to the control variable I are 1, 3, 5, 7, and 9.

NESTING DO LOOPS AND BLOCK
IF STRUCTURES

A nested DO loop is a DO loop that appears within
another DO loop or within an if-block,
elseif-block, or else-block. DO 1loops <can be
nested to any level. A nested DO loop must be
entirely within the outer DO loop. When DO 1loops
are nested, each DO loop must have a unique control
variable.

The terminal statement of a nested DO loop can be
the same as the terminal statement of an outer DO
loop or can appear before the terminal statement of
the outer DO loop. If more than one DO loop has
the same terminal statement, control can transfer
to the terminal statement only from within the
range of the innermost DO statement.

A DO loop that is nested in an if-block, elseif-
block, or else-block must be entirely within the
if-block, elseif-block, or else-block. A block IF
structure that is nested in a DO loop must be
entirely within the DO loop.

See figures 5-24 and 5-25 for examples of nested DO
loops and block IF structures.

00 100 I
D0 100 J
ACLJ) =
100 CONTINUE

1,1
1,5
0

ounn
.

IF(A.LT.B) THEN

D0 200 I = 1,10

Cc(1) = 100.0
200 CONTINUE

END IF

Figure 5-25. Nested DO Loops Example

5-7

CONTINUE STATEMENT

The CONTINUE statement is an executable statement
that performs nothing. See figure 5-26 for the
format of the CONTINUE statement.

CONTINUE

Figure 5-26. CONTINUE Statement Format

When a CONTINUE statement is executed, no operation
is performed. The flow of control is not inter-
rupted. The CONTINUE statement is used to carry a
statement label. For example, a CONTINUE statement
can be used as the terminal statement c¢f a DO loop
when a statement such as an unconditional GO TO or
arithmetic IF statement would otherwise be the
terminal statement.

See figure 5-27 for an example of the CONTINUE
statement.

job is executing interactively, you must enter a
carriage return from your terminal in order to
resume execution of the program. Program execution
resumes with the next executable statement after
the PAUSE statement.

See figure 5-29 for an example of the PAUSE state-
ment.

I=1+J+K
PAUSE 'HI THERE'
L=1+2

0 100 I = 1,10

IF(A.LT.B) A =8B
100 CONTINUE

Figure 5-29. PAUSE Statement Example

STOP STATEMENT

The STOP statement is an executable statement that
permanently halts execution of the program. See
figure 5-30 for the format of the STOP statemeut.

Figure 5-27. CONTINUE Statement Example

PAUSE STATEMENT

The PAUSE statement is an executable statement that
temporarily halts execution of the program. See
figure 5-28 for the format of the PAUSE statement.

PAUSE disp

disp One to five decimal digits or a
character constant; optional

Figure 5-28. PAUSE Statement Format

When a PAUSE statement is executed, the string of
decimal digits or the character constant is dis-
played in the job dayfile or at your terminal. If
no string is specified in the PAUSE statement, the
character string PAUSE 1is displayed in the job
dayfile or at your terminal. The PAUSE statement
then halts program execution until a response 1is
received.

If the job is executing in batch mode, the operator

must enter a carriage return from the console in
order to resume execution of the program. If the

5-8

STOP disp

disp One to five decimal digits or a
character constant; optional

Figure 5-30. STOP Statement Format

When a STOP statement is executed, the string of
decimal digits or the character constant, if
specified, 1is displayed in the job dayfile or at
your terminal. The string is also written on the
output file of the program. If no string is
specified in the STOP statement, the character
string STOP is displayed in the job dayfile or at
your terminal. The string is also written on the
output file of the program. The STOP statement
then halts program execution and returns control to
the operating system.

See figure 5-31 for an example of the STOP state-
ment.

IF(A.EQ.0.0) THEN
STOP 'A IS O'
ELSE

C =B/A

END IF

Figure 5-31. STOP Statement Example

60480200 H

CALL STATEMENT

The CALL statement is an executable statement that
transfers control to a subroutine subprogram or to
a predefined subroutine. See section 7 for a
description of the CALL statement.

50480200 A

RETURN STATEMENT

The RETURN statement is an executable statement
that returns control from a subroutine or function
subprogram to the program unit that called the
subroutine or function subprogram. See section 7
for a description of the RETURN statement.

5-9

INPUT/OUTPUT STATEMENTS 6

Input/output statements transfer data between files
and internal storage. Some input/output statements
manipulate files, and some input/output statements
inquire about the properties of files.

The types of input/output statements are:

Sequential access formatted input/output state-
ments

Direct access formatted input/output statements

Sequential access unformatted input/output
statements

Direct access unformatted input/output state-
ments

List-directed input/output statements

Namelist input/output statements

Buffer input/output statements

Internal file input/output statements

Extended internal file input/output statements
Concurrent input/output statements

Direct calls to System Interface Language (SIL)
routines

Auxiliary input/output statements
File positioning statements

This section describes records, files, and the
input/output statements. The buffer input/output
statements are provided for compatibility with
other FORTRAN compilers; see appendix E for a
description of the buffer input/output statements.
The concurrent input/output statements are written
as calls to predefined subroutines; see section 11
for a description of the concurrent input/output
subroutines. See section 13 for a description of
direct calls to SIL routines.

All types of FORTRAN 200 I/0 statements result in
calls to SIL subroutines that perform the physical
I/0. Each FORTRAN I1/0 statement specifies one or
more records of data to be read or written. When
writing data, the SIL subroutine inserts the data
into the record structure of the file; when reading
data 1t extracts the data from the record structure.

The SIL record structure 1is transparent to
FORTRAN 200 I/0 processing. A FORTRAN 200 program
cannot specify the SIL record structure. If the
file already exists, the record structure already
defined for the file is used; if the FORTRAN pro-
gram creates a sequential access file, the control
word delimited (W) record type is used; if the
FORTRAN program creates a direct access file, the
fixed-length (F) record type is used.

60480200 H

RECORDS

Input/output statements transfer records of data
between files and internal storage. A record is a
sequence of values or a sequence of characters.
For example, a punched card is a record. A record
need not always correspond to a physical entity,
however. The three types of records are formatted
records, unformatted records, and endfile records.
Each type of record is described in the following
paragraphs.

FORMATTED RECORDS

A formatted record consists of a sequence of
character values that can be read and written only
by sequential access formatted input/output state-
ments, direct access formatted input/output state-
ments, list-directed input/output statements,
namelist input/output statements, internal file
input/output statements, extended internal file
input/output statements, concurrent input/output
statements, and direct calls to SIL routines. The
length (in characters) of a formatted record cannot
be less than zero or greater than 2243,

UNFORMATTED RECORDS

An unformatted record consists of a sequence of
values that can be read and written only by sequen—
tial access unformatted input/output statements,
direct access unformatted input/output statements,
and buffer input/output statements. The length of
an unformatted record cannot be 1less than zero
bytes; unlike formatted records, it can be greater
than 224-] characters.

ENDFILE RECORDS

An endfile record consists of an end-of-file mark
that can be written only by an ENDFILE statement.
An endfile record must occur only as the last
record of a file. An endfile record does not have
a length property.

FORTRAN 200 writes a SIL end-of-group delimiter as
the endfile record.

FILES

A file is a sequence of records. A file exists 1if
it is a local file, an attached permanent file, an
attached pool file, or a public file. See the
operating system reference manual for a description
of these types of files. All input/output state-
ments can refer to files that exist. The INQUIRE
statement, OPEN statement, CLOSE statement, ENDFILE
statement, and all WRITE, PRINT, and PUNCH state-
ments can also refer to files that do not exist.

In order to reference a file in a FORTRAN program,
the file must be connected to a unit. A unit is a
path between a FORTRAN program and a file. A unit
is identified by an integer constant from 0 to 999
or by an H type Hollerith constant. A file cannot
be referenced in an input/output statement unless
it 1s connected to a unit; a file that 1s not
connected to a unit can be referenced in an OPEN
statement, CLOSE statement, or INQUIRE statement,
however.

A file can be connected to a unit by using the OPEN
statement; a file can be disconnected from a unit
by using the CLOSE statement. A file can be
explicitly preconnected to a wunit by using the
PROGRAM statement. However, in the absence of
PROGRAM statement specifications, a unit is
implicitly preconnected to a file whose name is
determined by the unit identifier. See the de-
scriptions of these statements for more information
about how to connect a file to a unit.

If an input/output statement references a unit that
has not been explicitly connected to a file, the
unit 1is implicitly preconnected to a file whose
name is derived from the unit identifier. See the
description of the UNIT specifier for more infor-
mation about processor-determined connection of
units and files.

A file can be connected to more than one unit at
the same time, but more than one file cannot be
connected to the same unit at the same time. Also,
the unit to which a file is connected can be changed
during program execution.

Each file has an initial point and a terminal point.
The initial point of a file is the position before
the first record of the file. The terminal point
is the position after the last record of the file.

If a file is positioned within a record, that
record 1is the current record. The record that
appears before the current record is the preceding
record, and the record that appears after the
current record is the next record.

If a file is positioned between two records, the
record that appears before the file position is the
preceding record, and the record that appears after
the file position is the next record.

The three types of files are external files,
internal files, and extended internal files. Each
type of file is described in the following para-
graphs.

EXTERNAL FILES

An external file is a sequence of records that is
contained on an external device, such as a disk.
Each external file is identified by a file name. A
file name is a string of one to eight letters or
digits. The first character of the file name must
be a letter; however, files created by the operating
system can have file names that begin with a number.
You must not use file names which begin with any of
the following characters: Q5, Q6, Q7, Q8, or Q9.

Input/output statements affect the position of an
external file. The position of an external file is
the position of the file after execution of the
last input/output statement that referenced the
file. If an input/output statement did not previ-
ously reference the file, the position of the file
is the initial point of the file.

You «can access external files sequentially or
directly. The method by which you access a file is
determined when the file is connected to a unit.

A sequential access external file has the following
properties:

The order of the records is the order in which
the records are written. A record that is
beyond the last record written must not be read.

The records of the file can be either all for-
matted records or all unformatted records. The
last record of the file can be an endfile
record.

The records of the file must not be read or
written by direct access input/output state-
ments.

A direct access external file has the following
properties:

The order of the records is the order of their
record numbers. The records can be read or
written in any order. A record that has not
been written since the file was created must
not be read.

The records of the file can be either all for-
matted records or all unformatted records. The
file must not contain an endfile record.

The records of the file can be read and written
only by direct access input/output statements.

All records of the file must have the same
length.

Each record of the file is identified by a
positive record number. The record number is
specified when the record is written and can
never be changed. A record cannot be deleted,
but a record can be rewritten.

INTERNAL FILES

An internal file is a sequence of records contained
in memory. An internal file cannot be identified
by a file name.

An internal file 1is always positioned at the
initial point prior to execution of a data transfer
input/output statement.

You can access internal files only through sequen-
tial access formatted input/output statements. The
method by which you access a file is specified when
the file is connected to a unit.

60480200 C

A sequential access internal file has the following
properties:

An internal file 1is a character wvariable,
character array element, character array, or
substring.

If an internal file 1is a character variable,
character array element, or a substring, the
internal file consists of a single record whose
length is the same as the length of the char-
acter variable, character array element, or
substring. If an internal file is a character
array, the internal file is a sequence of char-
acter array elements; each element is a record

™

60480200 C

of the file. The order of the records in the
file is the same as the order of the elements
in the character array. Every record of the
file has the same length, which is the length
of the elements of the character array.

The character variable, character array element,
or substring that is the record of the internal
file is defined by writing the record. If the
number of characters written in a record is
less than the length of the record, the remain-
ing portion of the record is filled with blanks.

A record can be read only if the character

variable, character array element, or substring
that is the record has been defined.

6-2.1/6-2.2

A character variable, character array element,
or substring that is a record of an internal
file can be defined without using an output
statement. For example, the character variable,
character array element, or substring could be
defined by using a scalar character assigmment
statement.

An internal file can be read or written only by
sequential access formatted input/output state-
ments that do not specify list-directed or
namelist formatting.

Internal files must not be referenced by auxil-
iary input/output statements.

The implied value of the BLANK specifier is
NULL for internal files., The BLANK specifier
is described later in this section.

EXTENDED INTERNAL FILES

An extended internal file is a sequence of records
that is contained in memory. An extended internal
file cannot be identified by a file name.

An extended internal file is always positioned at
the initial point prior to execution of a data
transfer input/output statement.

An extended internal file has the following prop-
erties:

An extended internal file is a noncharacter
variable, noncharacter array element, or non-
character array.

A record of an extended internal file is a
number of consecutive bytes. The length (number
of bytes) of a record of an extended internal
file is specified in the ENCODE/DECODE state-
ment. Every record of an extended internal
file has the same length. The first byte of
the first record is the first byte of the vari-
able, array, or array element. The first byte
of the second record is the byte immediately
following the last byte of the first record,
and so forth.

The variable, array element, or array that fis
the record of the extended internal file is
defined by writing the record (with an ENCODE
statement). If the number of characters
encoded in a record is less than the length of
the record, the remaining portion of the record
is filled with blanks.

A record can be read (decoded) only if that
portion of the variable, array element, or
array that 1is the extended internal file has
been defined.

A record of an extended internal file can be
defined without using an ENCODE statement. For
example, the variable, array element, or array
could be defined by using an assignment state-
ment.

An extended internal file can be read or written
only by ENCODE and DECODE statements.

Extended internal files must not be referenced
by auxiliary input/output statements.

60480200 A

The implied value of the BLANK specifier is
NULL for extended internal files. The BLANK
specifier is described later in this section.

An extended internal file 1is assumed to have
enough records to contain all the data written
with an ENCODE statement or read with a DECODE
statement.

INPUT/OUTPUT STATEMENT
COMPONENTS

An input/output statement consists of a FORTRAN
keyword, an optional control information list, and
an optional input/output list. The keyword speci-
fies the kind of input/output operation that is to
be performed.

The control information list controls execution of
the input/output statement. The input/output list
specifies the variables and arrays that are used
for the input/output operation. The control infor-
mation list and the input/output list are described
in the following paragraphs.

CONTROL INFORMATION LIST

A control information list 1is a set of specifiers
that control the way in which an input/output
operation is performed. The specifiers that appear
in a control information list must be separated by
commas. The specifiers that can appear in a con-
trol information list are summarized in table 6-1.
The table shows the purpose of each specifier.
Each of the specifiers is described in the follow-
ing paragraphs.

ACCESS Specifier

The ACCESS specifier indicates the access method
for a particular file. The access method can be
sequential access or direct access. See figure 6-1
for the format of the ACCESS specifier.

ACCESS = cexp

cexp A scalar character expression that
specifies an access method. The
values that can be specified are:

SEQUENTIAL Indicates sequential
access
DIRECT Indicates direct access

If the ACCESS specifier is omitted,
ACCESS='SEQUENTIAL' is used.

If the ACCESS specifier appears in an
INQUIRE statement, cexp must be a
character variable, character array
element, or substring, and the value
of cexp is returned by the INQUIRE
statement.

Figure 6-1. ACCESS Specifier Format

TABLE 6-1. CONTROL INFORMATION LIST SPECIFIERS

Specifier Purpose
_ — —
ACCESS Indicates the access method for a particular file
BLANK Indicates how blanks in numeric input fields are interpreted by formatted input
statements
BUFS Indicates the buffer length in 512 word blocks for a particular umit
DIRECT Indicates if a particular file is a direct access file
END Indicates the statement to which control transfers when an end-of-file condition occurs
ERR Indicates the statement to which control transfers when an input/output error occurs
EXIST Indicates if a particular file exists or if a particular unit exists
FILE * Indicates the name of the file that is to be connected or for which the INQUIRE state-
ment is to return specifier values
T Indicates the format specification for a formatted input/output operation
FORM Indicates whether a particular file is connected for formatted input/output or for
unformatted input/output
FORMATTED Indicates if formatted input/output can be performed on a particular file
IOSTAT Indicates if an input/output error condition exists
NAME Indicates the name of the file referenced in an INQUIRE statement
NAMED Indicates if a particular file has a name
NEXTREC Indicates the next record that would be read or written by a direct access input/output
statement
NUMBER Indicates the identifier of the unit to which a particular file is connected
OPENED Indicates if a particular file is connected to a unit or if a particular unit is
connected to a file
REC Indicates the number of the record to be read or writtem by a direct access input/output
statement
RECL Indicates the length of each record of a direct access file
SEQUENTIAL Indicates if a particular file is a sequential access file
STATUS Indicates the status and disposition of a file connected to a particular unit
UNFORMATTED Indicates if unformatted input/output can be performed on a particular file
UNIT Indicates the unit on which an input/output statement functions
An ACCESS specifier that appears in an OPEN state- You can use the BLANK specifier only with files
ment for a new file establishes the access method that contain formatted records.

for the file. An ACCESS specifier that appears in
an OPEN statement for an existing file must specify

an access method permitted by the operating system. BUFS Specifier

The BUFS specifier indicates the buffer size in 512
If direct access is specified, the record length word blocks for a particular file. See figure 6-3
must also be specified with the RECL specifier. for the format of the BUFS specifier.

The BUFS specifier must not change the buffer
length of a file already connected to a unit.

BLANK Specifier
DIRECT Specifier
The BLANK specifier indicates how blanks in numeric

input fields are interpreted by formatted input The DIRECT specifier indicates if a particular file
statements. See figure 6-2 for the format of the is a direct access file. See figure 6-4 for the
BLANK specifier. format of the DIRECT specifier.

64 60480200 H

BLANK = cexp

cexp A scalar character expression that
specifies how blanks in numeric input
fields are interpreted by formatted
input statements. The values that can
be specified are:

NULL Indicates that blanks in
numeric input fields are
ignored by the formatted input
statements

ZERO Indicates that blanks in
numeric input fields are
interpreted as zeros by
formatted input statements

If the BLANK specifier is omitted,
BLANK='NULL' is used.

If the BLANK specifier appears in an
INQUIRE statement, cexp must be a
character variable, character array
element, or substring, and the value
of cexp is returned by the INQUIRE
statement.

Figure 6-2. BLANK Specifier Format

BUFS = aexp

aexp A scalar integer expression that
specifies the size in 512 word blocks
of the buffer for a unit. The value
of aexp must be no less than 1 and no
greater than 24.

I1f the BUFS specifier is omitted,
BUFS=8 is used.

1f the BUFS specifier appears in an
INQUIRE statement, aexp must be an
integer variable or an integer array
element, and the value of aexp is
returned by the INQUIRE statement.

Figure 6-3. BUFS Specifier Format

END Specifier

The END specifier indicates the statement to which
control transfers when an end-of-file condition
occurs. See figure 6~5 for the format of the END
specifier.

If an end-of-file condition occurs, the following
steps are taken:

1. Execution of the input statement terminates.

2. If the {input statement contains an IOSTAT
specifier, the input statement assigns a neg-
ative value to the integer variable or integer
array element specified in the IOSTAT specifier.

3. Control transfers to the statement label that
is specified in the END specifier.

60480200 C

DIRECT = cvar

cvar A character variable, character array
element, or substring; the value of
cvar is returned by the INQUIRE
statement in which the DIRECT specifier
appears. The values that can be
returned are:

YES Indicates that a particular
file is a direct access file

NO Indicates that a particular
file is not a direct access
file

UNKNOWN Indicates that the access
method of a particular file
is not known

Figure 6-4. DIRECT Specifier Format

END = sl

sl The statement lLabel that appears in the
Label field of the statement to which
control transfers when an end-of-file
condition occurs during an input
operation. The statement to which
control transfers must be in the same
program unit as the input statement that
"contains the END specifier.

If the END specifier is omitted, an
execution-time error occurs when an

end-of-file condition occurs during an
input operation.

Figure 6-5. END Specifier Format

ERR Specifier

The ERR specifier indicates the statement to which
control transfers when an input/output error occurs.
See figure 6-6 for the format of the ERR specifier.

ERR = sl

sl The statement label that appears in the
Label field of the statement to which
control transfers when an error occurs
during an input/output operation. The
statement to which control transfers must
be in the same program unit as the
input/output statement that contains the
ERR specifier.

If the ERR specifier is omitted, an error
message is issued.

Figure 6-6. ERR Specifier Format

If an input/output error occurs, the following
steps are taken:

1. Executlon of the input/output statement termi-
nates.

2. The position of the file specified in the
input/output statement becomes undefined.

3. If the 1input/output statement contains an
IOSTAT specifier, the input/output statement
assigns the number of the execution-time error
that occurred to the integer variable or ianteger
array element specified in the IOSTAT specifier.
See appendix B for the numbers and descriptions
of the execution-time errors.

4. Control transfers to the statement label that
is specified in the ERR specifier.

EXIST Specifier

The EXIST specifier indicates if a particular file
exists or if a particular unit exists. See figure
6-7 for the format of the EXIST specifier.

EXIST = lvar

lvar A logical variable or logical array
element; the value of lvar is returned
by the INQUIRE statement in which the
EXIST specifier appears. The values
that can be returned are:

. TRUE. Indicates that a particular
file or unit exists

.FALSE. Indicates that a particular
file or unit does not exist

Figure 6-7. EXIST Specifier Format

FILE Specifier

The FILE specifier indicates the name of the file
that is to be connected or for which the INQUIRE
statement is to return specifier values. See figure
6-8 for the format of the FILE specifier.

FMT Specifier

The FMT specifier indicates the format specification
to be used for a formatted, list-directed, or name-
list 1input/output operation. See figure 6-9 for
the format of the FMT specifier.

FORM Specifier

The FORM specifier indicates whether a particular
file is connected for formatted input/output or for
unformatted input/output. See figure 6-10 for the
format of the FORM specifier.

6-6

FILE = cexp

cexp A scalar character expression that
specifies the name of a file. A FILE
specifier that appears in an OPEN
statement specifies the name of the
file to be connected to a unit. If
the file name specified for cexp does
not exist, a new file of that name is
created.

If the FILE specifier is omitted from
an OPEN statement and if the unit
specified in the OPEN statement is not
connected to a file, the unit is
connected to a file as follows:

e If STATUS='SCRATCH' is specified
in the OPEN statement, the unit is
connected to a
processor-determined file.

e If the STATUS specifier is not
SCRATCH, and if the unit number
specified is no less than 0 and no
greater than 999, the unit is
connected to the file TAPEunum,
where unum is the unit number.

e If the STATUS specifier is not
SCRATCH, and if the unit number
specified is of the form nHf,
where f is a valid system file
name, the unit is connected to the
file f.

e In all other cases, the unit is
not connected to a file.

A FILE specifier that appears in an
INQUIRE statement specifies the name
of the file for which the INQUIRE
statement returns values of other
specifiers. The file name specified
for cexp need not exist.

If the FILE specifier is omitted from
an INQUIRE statement, the UNIT
specifier must appear in the INQUIRE
statement.

Figure 6-8. FILE Specifier Format

A FORM specifier that appears in an OPEN statement
for a new file establishes the type of input/output
that can be performed on the file. A FORM speci-
fier that appears in an OPEN statement for an
existing file must specify the type of input/output
that was established for the file when the file was
created.

FORMATTED Specifier

The FORMATTED specifier indicates if formatted
input/output can be performed on a particular file.
See figure 6-11 for the format of the FORMATTED
specifier.

60480200 A

FMT = fid

fid A format identifier; fid can be any of
the following:

e The statement Label that appears in
the Label field of a FORMAT
statement. The FORMAT statement
must appear in the same program
unit as the input/output statement
that contains the FMT specifier.

e An integer variable that has been
assigned the statement label of a
FORMAT statement by a statement
Label assignment statement. The
FORMAT statement must appear in the
same program unit as the
input /output statement that
contains the FMT specifier.

e A scalar character expression whose
result is a format specification.
Format specification is described
Later in this section. An
expression that involves the
concatentation of an operand whose
Length specification is unknown
(specified by an asterisk in the
CHARACTER statement) is not
permitted unless the operand is a
symbolic constant.

e A characteriof non StéE array,
character igr noncharacter array

element, 6} substring that contains
a format specification. Format
specification is described Later in
this section.

e An asterisk, which indicates that
the input/output statement is a
List-directed input/output
statement.

The characters FMT= can be omitted, but
if they are omitted, fid must be the
second item in the control information
list. The first item in the control
information list must be the unit
specifier without the characters UNIT=.

FORM = cexp

cexp A scalar character expression that
specifies the type of input/output that
can be performed on a file. The values
that can be specified are:

FORMATTED Indicates that a
particular file is being
connected for formatted
input/output

UNFORMATTED Indicates that a
particular file is being
connected for
unformatted input/output

I1f the FORM specifier is omitted,
FORM='UNFORMATTED' is used if the file
is being connected for direct access
input /output; FORM='FORMATTED' is used
if the file is being connected for
sequential access input/output.

If the FORM specifier appears in an
INQUIRE statement, cexp must be a
character variable, character array
element, or substring, and the value of
cexp is returned by the INQUIRE
statement. If the type of input/output
that can be performed on a file is not
known, the value UNKNOWN is returned by
the INQUIRE statement.

Figure 6-10. FORM Specifier Format

Figure 6-9. FMT Specifier Format

60480200 A

FORMATTED = cvar

cvar A character variable, character array
element, or substring; the value of
cvar is returned by the INQUIRE
statement in which the FORMATTED
specifier appears. The values that
can be returned are:

YES Indicates that formatted
input/output can be

performed on a particular
file

NO Indicates that formatted
input/output cannot be
performed on a particular
file

UNKNOWN Indicates that the type of
input/output that can be
performed on a particular
file is not known

Figure 6-11. FORMATTED Specifier Format

6-7

IOSTAT Specifier

The IOSTAT specifier indicates if an input/output
error condition exists. See figure 6-12 for the
format of the IOSTAT specifier.

IOSTAT = avar

avar An integer variable or an integer
array element; the value of avar is
returned by the statement in which the
IOSTAT specifier appears. The values
that can be returned are:

-1 Indicates that an end-of-file
condition exists, but no error
condition exists

0 Indicates that neither an
end-of-file condition nor an
error condition exists

>0 Indicates that an error
condition exists. The value
is the number of the execution-
time error message. See ap-
pendix B for the numbers and
descriptions of the execution-
time errors.

Figure 6-12. 10STAT Specifier Format

NAME Specifier

The NAME specifier indicates the name of the file
referenced in an INQUIRE statement. See figure
6-13 for the format of the NAME specifier.

NAME = cvar

cvar A character variable, character array
element, or substring; the value of
cvar is returned by the INQUIRE
statement in which the NAME specifier
appears. The value that is returned is
the name of the file referenced in the
INQUIRE statement. If the file has no
name, cvar is undefined.

If the NAME specifier appears in an
INQUIRE statement that also contains a
FILE specifier, the value returned for
cvar is not necessarily the same as the
file specified in the FILE specifier.
For example, the value returned for
cvar could be a file name qualified by
a user identification.

The value returned for cvar is always
suitable for use in a FILE specifier
that appears in an OPEN statement.

Figure 6-13. NAME Specifier Format

NAMED Specifier

The NAMED specifier indicates if a particular file
has a name. See figure 6-14 for the format of the
NAMED specifier.

NAMED = Llvar

lvar A logical variable or a logical array
element; the value of lvar is returned
by the INQUIRE statement in which the
NAMED specifier appears. The values
that can be returned are:

. TRUE. Indicates that a particular
file has a name

.FALSE. Indicates that a particular
file does not have a name.

Figure 6-14. NAMED Specifier Format

NEXTREC Specifier

The NEXTREC specifier indicates the next record
that would be read or written by a direct access
input/output statement. See figure 6-15 for the
format of the NEXTREC specifier.

NEXTREC = avar

avar An integer variable or an integer array
element; the value of avar is returned
by the INQUIRE statement in which the
NEXTREC specifier appears. The value
that is returned is the record number
of the next record of a particular file
to be read or written by a direct
access input/output statement. If n is
the record number of the most recent
record read or written on a file, n+1
is the record number that is returned
for avar. If no records were read or
written previously, the value 1 is
returned for avar.

If the file is not connected for direct
access input/output, or if the position
of the file is unknown because of a
previous input/output error, avar is
undefined.

Figure 6-15. NEXTREC Specifier Format

NUMBER Specifier

The NUMBER specifier indicates the unit identifier
of the unit to which a particular file is connected.
See figure 6-16 for the format of the NUMBER speci-
fier.

60480200 A

avar

NUMBER = avar

An integer variable or an integer array
element; the value of avar is returned
by the INQUIRE statement in which the
NUMBER specifier appears. The value
that is returned is the identifier of
the unit to which the file referenced
in the INQUIRE statement is connected.

I1f the unit identifier is an integer
that is no less than 0 and no greater
than 999, the integer value is returned
for avar.

I1f the unit identifier is of the form
nHTAPEk, where k is an integer that is
no less than 0 and no greater than 999,
the integer value k is returned for
avar.

If the unit identifier is of the form
nHf, where f is a string of one through
eight characters, the value nHf is
returned for avar.

I1f the file is not connected to a unit,
avar is undefined.

Figure 6-16.

NUMBER Specifier Format

OPENED Specifier
The OPENED specifier indicates if a particular file

is connected to a unit,
connected to a file.

or if a particular unit is
See figure 6-17 for the format

of the OPENED specifler.

lvar

OPENED =

lvar

A logical variable or a logical array

element; the value of lvar is returned
by the INQUIRE statement in which the

OPENED specifier appears. The values

that can be returned are:

.TRUE. Indicates that a particular
file is connected to a unit,
or that a particular unit is
connected to a file

.FALSE. Indicates that a particular

file is not connected to a
unit, or that a particular

unit is not connected to a
file

Figure 6-17.

60480200 A

OPENED Specifier Format

REC Specifier

The REC

specifier

indicates the number of the

record to be read or written by a direct access

input/output statement.

See figure 6-18 for the

format of the REC specifier,

REC =

aexp

aexp

A positive scalar integer expression
that specifies the number of the record
to be read or written in a file
connected for direct access input/
output.

Figure 6-18.

REC Specifier Format

RECL Specifier
The RECL specifier indicates the length of each

record of a file.

See figure 6-19 for the format

of the RECL specifier.

aexp

RECL =

aexp

A positive scalar integer expression
that specifies the length of each of
the records of a direct access file.
The length is measured in bytes for
both formatted and unformatted
records. A byte is 8 bits. A
character is represented as 1 byte. .

{

If the RECL specifier appears in an 1
INQUIRE statement, aexp must be an
integer variable or an integer array
element, and the value of aexp is
returned by the INQUIRE statement.

Figure 6-19.

RECL Specifier Format

A RECL specifier that appears in an OPEN statement
for a new file establishes the record length for

the records of the file.

A RECL specifier that

appears in an OPEN statement for an existing file
must specify the record length that was established
for the records of the file when the file was

created.

You must use the RECL specifier for files that are
being connected for direct access input/output.

SEQUENTIAL Specifier
The SEQUENTIAL specifier indicates if a particular

file is a sequential access file.

See figure 6-20

for the format of the SEQUENTIAL specifier.

SEQUENTIAL = cvar

cvar A character variable, character array
element, or substring; the value of

cvar is returned by the INQUIRE
statement in which the SEQUENTIAL

specifier appears. The values that can
be returned are:

YES Indicates that a particular
file is a sequential access
file

NO Indicates that a particular

file is not a sequential
access file

Indicates that the access
method of a particular file
is not known.

UNKNOWN

Figure 6-20. SEQUENTIAL Specifier Format

STATUS Specifier

The STATUS specifier indicates the status and
disposition of a file connected to a particular
unit. See figure 6-21 for the format of the STATUS
specifier.

UNFORMATTED Specifier

The UNFORMATTED specifier indicates if unformatted
input/output can be performed on a particular file.
See figure 6~22 for the format of the UNFORMATTED
specifier.

UNIT Specifier

The UNIT specifier indicates the unit on which an
input/output statement functions. See figure 6-23
for the format of the UNIT specifier.

A unit that appears in a UNIT specifier must be
connected unless the UNIT specifier appears in an
OPEN, CLOSE, or INQUIRE statement. All units whose
identifiers are integers in the range 0 through 999
are implicitly preconnected to files whose names
are of the form TAPEn, where n is the unit identi-
fier. All units whose identifiers are Hollerith
values of the form nHf, where f is a valid file
name, are implicitly preconnected to the named
files.

A unit can be explicitly preconnected by using the
PROGRAM statement or execution control statement.
A unit can be connected during program execution by
using the OPEN statement. See the descriptions of
these statements for more information about unit
connection.

6-10

STATUS = cexp

cexp

A scalar character expression that
specifies the status and disposition of
a file when the file is connected and
disconnected. If the STATUS specifier
appears in an OPEN statement, the
values that can be specified for cexp
are:

oLD Indicates that the file
already exists. If OLD is
specified, a FILE specifier
must also appear in the OPEN
statement.

NEW Indicates that the file does
not already exist. If NEW
is specified, a FILE
specifier must also appear
in the OPEN statement.

Indicates that the file is
to be connected to the unit
during program execution,
and deleted when the file is
disconnected. If SCRATCH is
specified, the file must not
have a name.

SCRATCH

Indicates that the status of
the file is
processor-dependent.

UNKNOWN

If the STATUS specifier is omitted from
an OPEN statement, STATUS='UNKNOWN' is
used.

If the STATUS specifier appears in a
CLOSE statement, the values that can be
specified for cexp are:

KEEP Indicates that the file is
to exist after execution of
the CLOSE statement if it
exists before execution of
the CLOSE statement. KEEP
must not be specified for a
file whose status is SCRATCH.

DELETE Indicates that the file is
not to exist after execution
of the CLOSE statement.

I1f the STATUS specifier is omitted from
a CLOSE statement, STATUS='KEEP' is
used unless the status specified in the

OPEN statement was SCRATCH, in which
case STATUS='DELETE' is used.

Figure 6-21. STATUS Specifier Format

60480200 A

UNFORMATTED = cvar

cvar A character variable, character array
element, or substring; the value of
cvar is returned by the INQUIRE
statement in which the UNFORMATTED
specifier appears. The values that can
be returned are:

YES Indicates that unformatted
input/output can be
performed on a particular
file

NO Indicates that unformatted
input/output cannot be
performed on a particular
file

UNKNOWN Indicates that the type of
input/output that can be
performed on a particular
file is not known

_Figure 6-22. UNFORMATTED Specifier Format

UNIT = unum

unum A unit identifier; unum can be any of
the following:

e A scalar integer expression whose
result is no less than 0 and no
greater than 999.

o A scalar integer expression whose
result is of the form nHf, where f
is a string of one through eight
characters.

e A character variable, character
array element, or substring that
identifies an internal file.

e An asterisk, which indicates that
the unit is a processor-determined
unit that is preconnected for
formatted sequential input/output.
See the description of the PROGRAM
statement.

The characters UNIT= can be omitted,
but if they are omitted, unum must be
the first item in the control
information Llist.

Figure 6-23. UNIT Specifier Format

60480200 A

If a unit that appears in a UNIT specifier is not
connected to a file, and if that UNIT specifier is
used in an input/output statement other than an
OPEN, CLOSE, or INQUIRE statement, the processor
connects that unit to a file as follows:

If the unit was explicitly preconnected to a
file by the PROGRAM statement or by the execu-
tion control statement, and if the unit has
never been closed, the unit 1s connected to the
file to which it was explicitly preconnected.

If the unit 1is implicitly preconnected to a
file, it is connected to that file.

For all other cases an error occurs.

INPUT/OUTPUT LIST

An input/output list specifies the entities whose
values are transferred by an input/output statement.
An 1input/output 1list can contain input/output list
items and implied DO 1loops. The items in an
input/output list must be separated by commas.

Input/output list items and implied DO loops are
described in the following paragraphs.

Input/Output List Items

An input 1list item is an entity whose value is
assigned by an input statement. An input list item
can be any of the following:

Variable (except a control variable of an
implied DO)

Array

Array element
Substring
Descriptor

-Vector

‘If an input 1list {tem is a descriptor, data 1is

input to the vector that is associated with that
descriptor.

An output 1list item is an entity whose value is
copied to a file by an output statement. An output
list item can be any of the following:

Variable.

Array.

Array element.

Substring.

6-11

. Descriptor,
Vector.

Any expression. A character expression that
involves the concatentation of an operand whose
length specification 1is unknown (specified by
an asterisk 1in the CHARACTER statement) 1is not
permitted unless the operand 1is a symbolic
constant.

A descriptor, descriptor array, or descriptor
array element.

A descriptor, descriptor array, or descriptor
array element preceded by an ampersand.

If an output 1ist item is a descriptor and you omit
the ampersand, data is transferred from the vector
associated with the descriptor. If you specify the
ampersand, the descriptor value is transferred,

Implied DO Loops in Input/Output Statements

An implied DO loop 1is an input list that is assigned
values repeatedly by an input statement, or an out-
put list whose values are copied repeatedly to a
file by an output statement. See figure 6-24 for
t e format of an implied DO loop.

When an implied DO loop that appears in an input/
output statement is executed, the following steps
are taken:

1. The expressions in the implied DO loop are
defaulted or evaluated and, if necessary, their
results are converted to the type of the con-
trol variable.

2. The control variable 1is initialized with the
value specified in the first expression.

3. The iteration count, K, for the implied DO is
established according to the following relation:

K = MAX(0,INT((aexp2 + aexp3 - aexpl)/aexp3))
Note that the iteration count can be zero.

4, The input/output 1list, iolist, 1is processed K
times. After each time, cvar is incremented by
aexp3.

5. Processing continues with the next input/output
list item or implied DO.

When an implied DO loop appears in an input state-
ment, the input list items in the input list of the
implied DO loop are assigned a value each time the
implied DO loop is iterated. The value of the con-
trol variable must not be affected by the data
input.

When an implied DO loop appears in an cutput state-
ment, the output list items in the output list of
the implied DO loop are copied to the file each
time the implied DO loop is iterated.

See figure 6-25 for an example of an implied DO

loop list item. The values input and output by the
input/output statements in the example are shown.

6-12

(iolist, cvar = aexpq,aexp2,aexp3)

iolist An input/output Llist.

cvar A variable of any arithmetic type
except complex; cvar is used as the
control variable for the implied DO
Loop. The control variable cvar
must not also be the control vari-
able of a containing implied DO loop.

aexpq A scalar arithmetic expression of
any type except complex; aexpq is
used as the initial value for the
control variable.

aexpp A scalar arithmetic expression of
any type except complex; aexpp is
used as the terminal value for the
control variable.

aexp3 A scalar arithmetic expression of
any type except complex; optional;
aexpz is used as the incrementation
value for the control variable. If
aexpz is not specified, the incre-
mentation value for the control
variable is 1. The result of aexp3
must not be zero.

Figure 6-24. Implied DO Loop Format
For Input/Output Statements

REAL A(5)

READ(1,100) (A(I),I1=1,5), B
100 FORMAT(6(F5.2,1X))

WRITE(2,200) (I,ACD),I=1,5)
200 FORMAT('A',I2,2X,F5.2)

Input:

00.01A00.02A00.03A00.04A00.05A400.06A

Output:

AA1AA0.01

AA2AA0.02
AA3AA0.03
AALAAD.04
AA5AA0.05

Figure 6-25. Implied DO Loop in
Input/Output Statement Example

60480200 D

CARRIAGE CONTROL

When an output record 1is sent to a line printer,
the first character of the record 1is used for
carriage control and is not printed. For output
directed to any other device, such as a card punch,
carriage control characters are not required; all
characters of an output record are output.

See table 6-2 for a summary of the standard FORTRAN
carriage control characters and their functions.
Other carriage control characters might be available
at your particular site.

TABLE 6-2. CARRIAGE CONTROL CHARACTERS

Character Function

A Output record is printed on
next line (single-spacing)

0 One line is skipped and output
record is printed on the fol-
lowing line (double-spacing)

1 Output record is printed on the
top of the next page

+ Output record is printed on the
current line (overprinting)

You can generate a carriage control character fort
formatted output by wusing any exit descriptor
(although the X, H, and apostrophe descriptors are
the most commonly used). Namelist and list-directed
output automatically generate appropriate carriage
control characters.

If you do not specify a carriage control character
as the first character of each record to be printed
by a 1line printer, unexpected line spacing may
result.

FORMATTED INPUT/OUTPUT
STATEMENTS

A formatted input/output statement transfers data
between a sequential access external file, direct
access external file, or internal file, and internal
storage in a format that you specify. Format
specification is described later in this section.

Those aspects of formatted input/output which are
unique to direct access external files are discussed
separately under Direct Access Input/Output State-
ments. Those aspects wunique to internal file
formatted input/output are discussed under Intermal
File 1Input/Output Statements. The remainder of
this discussion assumes the most common file type
for formatted input/output: a sequential access
external file.

The unit you specify in a formatted input/output
statement must be preconnected to a file capable of
formatted input/output, or must be connected for
formatted input/output. (You can connect a unit by

60480200 A

using the OPEN statement. Preconnection can be
implicit ‘or can be done explicitly with the PROGRAM
statement or with the execution control statement.)

If the wunit you specify is preconnected, the
processor connects the unit to the file before the
input/output statement 1is executed. See the de-
scription of the UNIT specifier for more information
about processor-determined unit connection.

A FMT specifier must appear in a formatted input/
output statement. The input/output list is optional
in a formatted input/output statement.
The formatted input/output statements are:

Formatted READ statement

Formatted WRITE statement

Formatted PRINT statement

Formatted PUNCH statement
Each of these statements is described in the fol-

lowing paragraphs.

FORMATTED READ STATEMENT

The formatted READ statement transfers data from a
sequential access external file to internal storage
in the format you specify. See figure 6-26 for the
format of the formatted READ statement.

READ (cilist) ilist
or
READ fid, ilist

cilist A control information List. The
following specifiers must appear in
cilist:
UNIT
FMT

The following specifiers can also
appear in cilist:

END
ERR
IOSTAT
REC

ilist An input Llist; optional.

fid A format identifier. See the
description of the FMT specifier for

the items that can be specified for
fid.

If the second form of the formatted READ
statement is used and ilist is not specified,
the comma separating fid from ilist must not
appear.

Figure 6-26. Formatted READ Statement Format

If the second form of the formatted READ statement
shown in figure 6-26 is used, data 1is transferred
from the unit SHINPUT.

The number of words in the input list and the edit
descriptors you specify in the associated format
specification must correspond to the format of the
input record. If the input 1list is omitted from
the formatted READ statement, at least one record
is skipped. (The actual number of records skipped
is determined by the FORMAT statement.)

If a formatted READ statement attempts to read
beyond the end of a file, an execution-time error
occurs. You can avoid this error by specifying the
END or IOSTAT specifier in the formatted READ
statement.

See figure 6-27 for an example of the formatted
READ statement. The values input by the formatted
READ statements in the example are shown. The
values input by the first formatted READ statement
are input from the file connected to unit 1. When
an end-of-file condition is detected during exe-
cution of the first formatted READ statement, con-
trol transfers to the statement labeled 10 and N is
assigned the value -1. If an input error occurs
during execution of the first formatted READ state-
ment, control transfers to the statement labeled 20
and the variable N is assigned the number of the
execution~time error.

The values input by the second formatted READ
statement are input from the file called INPUT.

FORMATTED WRITE STATEMENT

The formatted WRITE statement transfers data from
internal storage to a sequential access external
file in the specified format. See figure 6-28 for
the format of the formatted WRITE statement.

If the output list is omitted from the formatted
WRITE statement and if an empty format specification
of the form () is used, one output line is skipped.

See figure 6-29 for an example of the formatted
WRITE statement. The values output by the formatted
WRITE statements in the example are shown. The
values are output to the file connected to unit 2.
If an output error occurs during execution of one
of the formatted WRITE statements, control transfers
to the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

6-14

1=0

1 1 =1+1
READ(1,100,END=10,ERR=20,10STAT=N) A,B

100 FORMAT (2(F5.2,1X))
READ 100, C,D
AVG(I) = (A+B+C+D)/4
GO TO 1

10 CALL PLOT(AVG,I-1)
STOP

20 CALL IOERR(N)

Input:
10.00A20.00A
50.00470.00A

Figure 6-27. Formatted READ Statement Example

WRITE (cilist) olist

cilist

olist

A control information list. The
following specifiers must appear in
cilist:

UNIT
FMT

The following specifiers can also
appear in cilist:

ERR
IOSTAT
REC

An output Llist; optional.

Figure 6-28. Formatted WRITE Statement Format

60480200 A

8=5.0

A=3.0+1

ELSE

ENDIF
10 CONTINUE

Output:

00101 =1,3

IF (A.LT.B) THEN
WRITE(2,200,ERR=20,10STAT=N) A,8

200 FORMAT('A',F5.2,'AISALESSATHANA' ,F5.2)
ELSEIF (A .GT.
WRITE(2,201,ERR=20,10STAT=N) A,B

201 FORMAT('A',F5.2, 'AISAGREATERATHANA' ,F5.2)

20 CALL IOERR(N)

AA4.00AISALESSATHANAAS.00
AAS5.00AISAEQUALATO AAS.00
AA6.00AISAGREATERATHANAA5.00

B) THEN

WRITE(2,202,ERR=20,I10STAT=N) A,B
202 FORMAT('A',F5.2,'AISAEQUALATOA' ,FS5.2)

Figure 6-29. Formatted Write Statement Example

FORMATTED PRINT STATEMENT

The formatted PRINT statement transfers data from
internal storage to the unit 6HOUTPUT. See figure
6-30 for the format of the formatted PRINT state-
ment .

If the output list does not appear in the formatted
PRINT statement, format control continues until the
format is exhausted or until the first repeatable
or colon edit descriptor is encountered. Thus, at
least one line is printed.

See figure 6-31 for an example of the formatted
PRINT statement. The values output by the format-
ted PRINT statements in the example are shown. The
values are written to the unit 6HOUTPUT.

FORMATTED PUNCH STATEMENT

The formatted PUNCH statement transfers data from
internal storage to the unit 5HPUNCH in the format
you specify. See figure 6-32 for the format of the
formatted PUNCH statement.

If the output list does not appear in the formatted
PUNCH statement, format control continues until the
format 1Is exhausted or until the first repeatable
or colon edit descriptor is encountered. Thus, at
least one line is written.

See figure 6-33 for an example of the formatted
PUNCH statement. The values output by the format-
ted PUNCH statements in the example are shown. The
values are output to the unit 5HPUNCH.

60480200 A

PRINT fid, olist

fid A format identifier. See the
description of the FMT specifier for
the items that can be specified for
fid.

olist An output Llist; optional

If olist is not specified, the comma separating
fid from olist must not appear.

Figure 6-30. PRINT Statement Format

REAL A(5)/5%30.0/

PRINT 200

200 FORMAT ('AFILEAOUTPUTACONTAINS: ')
PRINT 201,(ACD),I=1,5)

201 FORMAT ('A' ,5(F4.1,1X))

Output:

AFILE OUTPUT CONTAINS:
A30.0A30.0430.0A30.0A30.0A

Figure 6-31. PRINT Statement Example

6-15

PUNCH fid, olist

fid A format identifier. See the
description of the FMT specifier for
the items that can be specified for
fid.

olist An output Llist; optional.

If olist is not specified, the comma separating
fid from olist must not appear.

Figure 6-32. PUNCH Statement Format

REAL A(5)/5%20.0/

PUNCH 200

200 FORMAT('FILE PUNCH CONTAINS:')
PUNCH 201, (ACD),I=1,5)

201 FORMAT(5(F5.2,1X))

Output:

FILE PUNCH CONTAINS:
20.0 20.0 20.0 20.0 20.0

Figure 6-33. PUNCH Statement Example

FORMAT SPECIFICATION

A format specificatlon is a list of edit descrlptors
that specifies how data is to be converted during
execution of a formatted input/output statement.
Each item that appears in the input/output list of
a formatted input/output statement must correspond
to an edit descriptor that appears in the format

specification. You must use a format specification
with each formatted input/output statement. A
format specification can appear in one of three

places:
In a FORMAT statement

In a character expression, character variable,
character array, character array element, or
substring that appears as a format specification
in the formatted input/output statement

In a noncharacter array that appears as a for—
mat specification in the formatted Input/output
statement

Each of these methods of format specification is
described in the following paragraphs. The edit
descriptors are described later in this section.

FORMAT STATEMENT

The FORMAT statement is a nonexecutable statement
that provides a format specification for a format-
ted input/output statement. See figure 6-34 for
the format of the FORMAT statement.

6-16

sl FORMAT (fspec)

sl A statement label

A format specification consisting of
zero or more edit descriptors sepa-
rated by commas. The comma can be
omitted:

fspec

Between a P edit descriptor and an
immediately following F, E, D, or
G edit descriptor

Before or after a slash edit
descriptor

Before or after a colon edit
descriptor

Figure 6-34. FORMAT Statement Format

If you supply a FORMAT statement, it must appear in
the same program unit as the formatted input/output
statements that use it.

See figure 6-35 for an example of the FORMAT state-
ment. The first FORMAT statement in the example
provides a format specification for the formatted
READ statement. The second FORMAT statement in the
example provides a format specification for the
formatted WRITE statement.

CHARACTER FORMAT SPECIFICATION

A character format specification 1Is a character
expression whose result Is a format specification,
or a character variable, character array, character
array element, or substring that contains a format
specification. The format specification must be
enclosed in parentheses. One or more blanks can
precede the left parenthesis. Any characters fol-
lowing the right parenthesis are disregarded.

If you supply a character format specification, it
must be specified by the MMT specifier in the
formatted input/output statement that uses it.

If an apostrophe appears in a character constant or
in an H output field that is part of a character
format specification, two consecutive apostrophes
must be written for each apostrophe. The two con-
secutive apostrophes represent only one character
of the H output field and they are counted as one
character in specifying the length of the field.

If an apostrophe edit descriptor is wused in a
character format specification, two consecutive
apostrophes must be used for each of the delimiting
apostrophes of the apostrophe descriptor. In order
to represent one apostrophe in an apostrophe de-
scriptor that appears in a character constant format
specification, eight consecutive apostrophes must
be specified. The eight consecutive apostrophes
represent only one character of the apostrophe out-
put field.

See figure 6-~36 for an example of a character format
specification. The character array CHARFMT in the
example contains a format specification that is used
by the formatted READ statement. The formatted
WRITE statement uses a character expression as a
format specification.

60480200 D

READ(1,100) A,B,C
100 FORMAT(3X,F5.2,T15,2(F3.1,2X))

WRITE(2,200)
200 FORMAT('1SUMMARY OF'/' OUTSTANDING ORDERS:')

Input: Output:
AAA31.49AA2.002.1AA02.2AA 1SUMMARYAOF
AOUTSTANDING ORDERS:
31.49 2.1 2.2
A B C

Figure 6-35. FORMAT Statement Example

INTEGER INPUT1(2), INPUT2(2)
CHARACTER#10 CHARFMT(2)
DATA CHARFMT /°(I5,5X,I5)'," (5X,15,15)"/,MONEY/2525/

2010 I = 1,2
READ (1,CHARFMT(I)) INPUT1(I),INPUT2(I)
10 CONT INUE

WRITE(2, ' (*'ATHE ANSWER ISA'',I4)°)MONEY

Input: Output: MONEY
12 3 4 5 6 7 8 9 01 2 3 4 5 6 7 2525
12345 12345 THEAANSHERAISES}Z_S,
INPUT1 (1) INPUT2(1)
12 3 45 6 7 8 9 012 3 45 6 7
L ‘ J 1 ‘ J
67890 12345
INPUT1(2) INPUT2(2)

Figure 6-36. Character Format Specification Example

60480200 F 6-17

NONCHARACTER FORMAT SPECIFICATION

Format specifications can be contained in a non-
character array. The rules for noncharacter format
specification are the same as for character format
specification.

EDIT DESCRIPTORS

Edit descriptors describe the fields of an input
record and the fields of an output record, and
specify how an input/output operation is to convert
data.

The two types of edit descriptors are repeatable
edit descriptors and nonrepeatable edit descriptors.
The repeatable edit descriptors are: A, B, D, E,
F, G, I, L, R, and Z. A repeatable edit descriptor
can be preceded by a repeat specification. Repeat-
able edit descriptors correspond to the items in
the input/output 1list of the formatted input/output
statement.

The nonrepeatable edit descriptors are: BN, BZ, H,
p, T, TL, TR, S, SP, SS, X, the apostrophe, the
slash, and the colon. A nonrepeatable edit de-
scriptor must not be preceded by a repeat specifi-
cation. Nonrepeatable edit descriptors do not
correspond to the items in the input/output list of
the formatted input/output statement.

When a formatted input/output statement is executed,
format control is initiated. The actions performed
under format control depend on the edit descriptors
that appear 1in the format specification and the
items in the input/output list.

If no items appear in the input/output list, format
control continues until the format is exhausted or
until the first repeatable or colon edit descriptor
is encountered. Thus, as least one record is read
or written.

If one or more items appear in the input/output
list, at least one repeatable edit descriptor must
appear in the format specification. Each input/
output list item corresponds to a repeatable edit
descriptor; however, an input/output 1list item of
type complex corresponds to two edit descriptors.

Edit descriptors are evaluated from left to right
during execution of a formatted input/output state-
ment. After each repeatable edit descriptor, H
edit descriptor, or apostrophe edit descriptor is
processed, the file is positioned after the last
field read or written. You can use the T, TL, TR,
X, and slash descriptors to change the position in
a record. You can repeat groups of edit descriptors
by enclosing them in parentheses and preceding the
group with a repeat specification. A repeat speci-
fication, if given, must be greater than O and less
than 256.

6-18

Format control terminates when all of the items in
the input/output list have been input or output and
another repeatable edit descriptor, colon edit
descriptor, or the end of the format specification
is encountered. There can be more repeatable edit
descriptors than 1input/output 1list items; the
excess edit descriptors are not interpreted.

If the rightmost parenthesis of the format speci-
fication is reached before all of the items in the
input/output 1list have been input or output, the
input file or the output file is positioned at the
beginning of the next record, and format control is
continued with the edit descriptor that follows the
left parenthesis which corresponds to the preceding
right parenthesis. If there 1is no preceding right
parenthesis, format control continues with the edit
descriptor that follows the first left parenthesis
of the format specification.

If a format specification is reused in this manner,
the reused portion of the format specification must
contain at least one repeatable edit descriptor.
If format control reverts to a parenthesis that is
preceded by a repeat specification, the repeat
specification is reused. Reuse of a format speci-
fication has no effect on the scale factor, sign
control, or blank interpretation control that is in
effect.

The edit descriptors and their functions are
summarized in table 6-3. Each of the edit de-
scriptors is described in the following paragraphs.

A Descriptor

The A descriptor formats character data during
input /output operations. See figure 6-37 for the
format of the A descriptor.

rACw]

r An unsigned integer constant (0 < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant (0 < w < 256)
that specifies the width in characters of
the A input field or A output field. If w
is omitted, the length of the List item
determines the length of the external field.

Figure 6-37. A Descriptor Format

60480200 C

TABLE 6-3.

EDIT DESCRIPTORS

Descriptor Purpose
A Formats data of any type but bit as though it were character data
B‘ ; Formats bit data
BN Causes blanks in numeric input fields to be ignored
BZ Causes blanks in numeric input fields to be interpreted as zeros
D Formats real, double-precision, half-precision, and complex data
E Formats real, double-precision, half-precision,‘and complex data
F Formats real, double-precision, half-precision, and complex data
G Formats real, double-precision, ﬁalf*precisiqn, and complex data
H Places a string of characters in an output record
I Formats integer data
L Formats logical data
P Establishes a scale factor for data formatted by D, E, F, and G descriptors
kb Formats data of any type but bit as though it were character data
S Suppresses printing of the plus sign during output of numeric data
SP Suppresses printing of the plus sign during output of numeric data
SS Suppresses printing of the plus sign during output of numeric data
T Specifies the column from which the next character is to be input or to which the next char-

acter is to be output
TL Moves the input/output record pointer to the left
TR Moves the input/output record pointer to the right
X Moves the input/output record pointer to the right
2 Formats data of én? t&pe but bit as though it were hexadecimal data
‘ Delimits a string of characters and places them in an output record
/ Indicates that no more data is to be input from the current record or output to the current
record during execution of the current input/output statement
: Terminates format control if there are no more items in the input/output list
Input If the length of the input list item is less than

When the A descriptor formats data during an input
operation, the value in the input field is assigned
to the input list item. The number of characters
input 1is the number of characters in the A input
field. The input list item can be of any data type.

The data that appears in an A input field can be a
string of characters. Any of the characters listed
in appendix A can appear in an A 1input field.
Blanks are significant characters in an A input
field.

60480200 A

the width of the A input field, the rightmost char-
acters in the A input field are assigned to the
input list item.

If the length of the input list item is greater
than the width of the A input field, the character
value input is left-justified and blank-filled in
the input list item.

6-19

Output

When the A descriptor formats data during an output
operation, the value of the output list item is
placed in the output field. The number of char-
acters output is the number of characters in the A
output field. The output list item can be of any
data type.

Any of the characters listed in appendix A can
appear in an A output field.

If the length of the output list item is less than
the width of the A output field, the character

value that is output is right-justified and blank-
filled in the A output field.

If the length of the output list item is greater
than the width of the A output field, the leftmost
characters of the output list item are placed in
the A output field.

Examples

See figure 6-38 for an example of the A descriptor.

CHARACTER A#4,B*8.C*10
READ(1,100) A,B,C
100 FORMAT (3A8)
WRITE(2,200) A,8,C
200 FORMAT('A',3A8)
Input:
A B CDE F 6 HI JKLMNDUOUPA QR STWUUV WX Y 2
L Il] 1]|
\ \ A
EFGH IJKLMNOP QRSTUVWXAA
A 8 [
Output:
A 8 [
EFGH IJKLMNOP QRSTUVENXAA
| i IR R 1
AAAAAE F G H I J KL M NOP @R STUUV WX

Figure 6-38.

6-20

A Descriptor Example

60480200 A

B Descriptor

The B descriptor formats bit data during input/

output operations. See figure 6-39 for the format
of the B descriptor.

rBw

r An unsigned integer constant (0 < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant (0 < w < 256)
that specifies the width in characters of
the B input field or B output field.

Figure 6-39. B Descriptor Format

Input

When the B descriptor formats data during an input
operation, the value in the input field is converted
to type bit and is assigned to the input list item.
One bit 1is input. The input list item must be of
type bit.

The data that appears in a B input field must be in
the proper format. The B input field must contain
a 0 or a 1 in the rightmost column; all other
columns must be blank.

Qutput

When the B descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char-
acters are placed in the output field. One bit is
output. The output list item must be of type bit.

The B output field contains a 0 or a 1 in the
rightmost column; all other columns are blank.

Examples

See figure 6-40 for an example of the B descriptor.

BN Descriptor

The BN descriptor causes blanks that appear within
subsequent numeric fields of an input vecord to be
ignored. See figure 6-41 for the format of the BN
descriptor.

The BN descriptor cannot be associated with an
input/output list item.

The BN descriptor affects only blanks that appear
within numeric fields of an input record. However,
if a numeric field of an input record contains all
blanks, the numeric field has the value 0.

60480200 C

READ(1,100) A,B
100 FORMAT (285)

WRITE(2,200) A,B
200 FORMAT("A',B1,83)

.
-

Input:

AAAATALAAD
| i—
1 0
A B
Output:
A 8
1 0

Figure 6-40. B Descriptor Example

Figure 6-41. BN Descriptor Format

Normally, blanks that appear within numeric fields
of an input record are either treated as zeros or
are 1ignored, depending on the BLANK specifier in
effect for the file. The BN descriptor overrides
any previous specification; it is effective only
for the input list items whose edit descriptors are
processed after the BN descriptor in the format
specification.

The BN descriptor affects only 1{input fields
described by the I, F, E, D, G, and Z edit de-
scriptors. The BN descriptor has no effect during
execution of an output statement.

See figure 6-42 for an example of the BN descriptor.

6-21

READ (1,100) NUM
100 FORMAT (BN,17)

Input:

[preses

87655

NUM

Figure 6-42. BN Descriptor Example

BZ Descriptor

The BZ descriptor causes blanks that appear within
subsequent numeric fields of an input record to be
treated as zeros. See figure 6-43 for the format
of the BZ descriptor.

BZ

Figure 6-43. BZ Descriptor Format

The BZ descriptor cannot be associated with an
input/output list item.

The BZ descriptor affects only blanks that appear
within numeric fields of an input record; leading
blanks are not affected.

Normally, blanks that appear within numeric fields
of an input record are either treated as zeros or
are ignored, depending on the BLANK specifier that
appears in the OPEN statement for the unit. The BZ
descriptor overrides any previous specification; it
is effective only for the input list items whose
edit descriptors appear to the right of the BZ
descriptor in the format specification.

The BZ descriptor affects only input fields
described by the I, F, E, D, G, i Z edit
descriptors. The BZ descriptor has effect
during execution of an output statement.

See figure 6-44 for an-example of the BZ descriptor.

D Descriptor

The D descriptor formats double-precision data
during input/output operations. The D descriptor
can also format half— T 1 d real data during
input/output operations. Two consecutive D, E, F,
or G descriptors can format complex data during
input/output operations. See figure 6-45 for the
format of the D descriptor.

6-22

READ (1,100) NUM
100 FORMAT(BZ,17)

Input:

[s7eses

8760505

Figure 6-44. BZ Descriptor Example

rDw.d

r An unsigned integer constant (0 < r <
256) that is used as a repeat specifi-
cation; optional. The default is 1.

W An unsigned integer constant (0 < w <
256) that specifies the width in char-
acters of the D input field or D output
field (including the exponent).

d An unsigned integer constant less than or
equal to w that specifies the number of
digits to the right of the decimal point
in the mantissa.

Figure 6-45. D Descriptor Format

Input

When the D descriptor formats data during an input
operation, the value in the 1input field is con-
verted to type f-precisic real, or double-
precision and is assigned to the input list item.
The data type to which the value is converted is
the data type of the input list item to which the
value 1is assxgned The input list item must-be of
type s real, double-precision, or
compl put list item is of type com-
plex, two consecutive D, E, F, or G descriptors are
required: the first is for the real part of the
complex value, the second is for the imaginary part
of the complex value. (The two descriptors may be
different. Note also that nonrepeatable edit
descriptors can appear between the two successive

descriptors.)

The data that appears in a D input field must be in

the proper format. See figure 6-46 for the format
of a D input field.

60480200 C

+
({_} int-const

[:] digits | <

Cblanks] [:] int-const

\)|

digits A string of one or more of the
decimal digits 0 through 9; digits
can contain one decimal point.

woauvmo

int-const An unsigned integer constant.

blanks One or more blanks.

[f] 0.digits [0J {f} exp

digits A string of d of the decimal digits O
through 9, where d is specified in
the D descriptor.

exp A string of two to four of the
decimal digits O through 9. If exp
is less than or equal to 99, two
digits are output. If exp is greater
than 99 and less than or equal to
999, three digits are output and the
0 is suppressed. If exp is greater
than 999, four digits are output.

Figure 6-46. D, E, F, and G Input Field Format

Blanks that appear in a D input field are inter—
preted according to any BN or BZ edit descriptor,
or according to any BLANK specifier in effect for
the file. If you do not specify a BN or BZ edit
descriptor or a BLANK specifier, blanks that appear
in a D input field are ignored.

A decimal point that appears in a D input field
overrides the decimal point position specified in
the D descriptor.

OQutput

When the D descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char-
acters are placed in the output field. The output
list item must be of type half-precision, real,
double-precision, or complex. If the output list
item is of type complex, two consecutive D, E, F,
or G descriptors are required: the first is for
the real part of the complex value, the second is
for the imaginary part of the complex value. (The
two descriptors may be different. Note also that
nonrepeatable edit descriptors can appear between
the two descriptors.)

See figure 6-47 for the format of a D output field.
The scale factor k controls the decimal normali-
zation. The output field contains k leading zeros
and (d-k) significant digits after the decimal
point, If k 1s greater than zero and less than
(d+2), the output field contains k significant
digits to the left of the decimal point and (d-k+1)
significant digits to the right of the decimal
point. Other values of k are not permitted.

If the length of the output list item is less than
the width of the D output field specified, the
value of the output list item is right-justified
and blank-filled in the D output field.

If the length of the output list item is greater
than the width of the D output field, the D output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.

60480200 H

Figure 6-47. D OQutput Field Format

Output of the sign of a positive mantissa is con—
trolled by the S, SP, and SS descriptors.

Examples

See figure 6-48 for an example of the D descriptor.

DOUBLE PRECISION A,B

READ(1,100) A,B
100 FORMAT(D4.2,06.1)

WRITE(2,200) A,B
200 FORMAT('A',2(D12.4,1X))

Input:
1234|10.0+ﬁ
\
0.1234D+02 0.1D+04
A B
Output:
A B
0.1234D+02 0.10+04

A /
[
IAAAO .1 2340+02|AAAO. 1 OOOD+04'A

Figure 6-48. D Descriptor Example

6-23

E Descriptor

The E descriptor formats real data during input/
output operations. The E descriptor can also for-
mat half-precision and double-precision data during
input/output operations. Two consecutive D, E, F,
or G descriptors can format complex data during
input/output operations. See figure 6-49 for the
format of the E descriptor.

rEw.d
or
rEw.dEe

r An unsigned integer constant (0 < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant (0 < w < 256)
that specifies the width in characters of
the E input field or E output field
(including the exponent).

d An unsigned integer constant less than or
equal to w that specifies the number of
digits to the right of the decimal point in
the mantissa.

e An unsigned integer constant (0 < e < 256)
that specifies the number of digits in the
exponent field; e has no effect on input.

Figure 6-49. E Descriptor Format

Input

When the E descriptor formats data during an input
operation, the value in the input field is converted
to type half-precision, real, or double-precision
and is assigned to the input list item. The data
type to which the value 1is converted is the data
type of the input list item to which the value is
assigned. The input 1list item must be of type
half-precision, real, double-precision, or complex.
If the input list item is of type complex, two con-
secutive D, E, F, or G descriptors are required:
the first is for the real part of the complex value;
the second is for the imaginary part of the complex
value. (The two descriptors can be different. Note
also that nonrepeatable descriptors can appear be-
tween the the two descriptors.)

The data that appears in an E input field must be
in the proper format. See figure 6-46 for the for-
mat of an E input field.

Leading blanks in an E input field are ignored.
Other blanks that appear in an E input field are
interpreted according to any BN or BZ edit descrip-
tor, or according to any BLANK specifier in the
OPEN statement that connected the file to the unit.
If you do not specify a BN or BZ edit descriptor or
a BLANK specifier, blanks that appear in an E input
field are ignored.

A decimal point that appears in an E input field

overrides the decimal point position specified in
the E descriptor.

6-24

Output

When the E descriptor formats data during an output
operation, the value of the output list (tem 1is
converted to a string of characters. These char-
acters are placed in the output field. The output
list item must be of type half-precision, real,
double-precision, or complex. If the output list
item is of type complex, two consecutive D, E, F,
or G descriptors are required: the first is for
the real part of the complex value; the second is
for the imaginary part of the complex value. (The
two descriptors may be different. Note also that
nonrepeatable edit descriptors can appear between
the two descriptors.)

See figure 6-50 for the format of an E output
field. The scale factor k coatrols the decimal
normalization. If -d<k<= 0, the output field after
the decimal point contains |k| leading zeros and
(d-1k]) significant digits. A zero is output to
the left of the decimal point if space permits. If
k is greater than zero and less than (d+2), the
output field contains k significant digits to the
left of the decimal point and (d-k+1) significant
digits to the right of the decimal point. Other
values of k are not permitted.

[:] 0.digits [E] {t} exp

digits A string of d of the decimal digits 0
through 9, where d is specified in
the E descriptor.

exp A string of two to four of the
decimal digits O through 9. If exp
is less than or equal to 99, two
digits are output. If exp is greater
than 99 and less than or equal to
999, three digits are output and the
E is suppressed. If exp is greater
than 999, four digits are output and
the E is suppressed.

If an E descriptor of the form
rEw.dEe is specified e digits are
output.

Figure 6-50. E Output Field Format

If the length of the output list item is less than
the width of the E output field specified, the
value of the output list item is right-justified
and blank-filled in the E output field.

If the length of the output list item is greater
than the width of the E output field, the E output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.

Output of the sign of a positive mantissa is con-
trolled by the S, SP, and SS descriptors.

Examples

See figure 6-51 for an example of the E descriptor.

60480200 C

READ (1,100) A,B
100 FORMAT (E4.2,E6.1)

WRITE (2,200) A,B
200 FORMAT('A',E12.4E4,1X,E7.1)

Input:

Egzﬁ‘10.0#2

/
0.1234E+02 0.1E+04

A -]

Output:

A B

0.1234E+02 0.1E+04

[r0.1234£+0002240. 1€ +04!

Figure 6-51. E Descriptor Example

F Descriptor

The F descriptor formats real data during 1input/
output operations. The F descriptor can also for-
mat half-precision and double-precision data during
input/output operations. Two consecutive D, E, F,
or G descriptors can format complex data during
input/output operations. See figure 6-52 for the
format of the F descriptor.

Input

When the F descriptor formats data during an input
operation, the value in the input field is converted
to type half-precision, real, or double-precision
and is assigned to the input list item. The data
type to which the value 1is converted is the data
type of the input list item to which the value is
assigned. The input 1list item must be of type
half-precision, real, double-precision, or complex.
When paired with a D, E, G, or another F descriptor,
the F descriptor can format complex data during
input/output operations; the first descriptor is
for the real part of the complex value; the second
is for the imaginary part of the complex value.
(The two descriptors may be different. Note also
that nonrepeatable edit descriptors can appear
between the two descriptors.)

60480200 E

rfFw
or
rFw.d

r An unsigned integer constant (0 < r < 256)
that is used as a repeat specification;
optional. The default is 1.

W An unsigned integer constant (0 < w < 256)
that specifies the width in characters of
the F input field or F output field.

d An unsigned integer constant less than or
equal to w that specifies the number of
digits to the right of the decimal point.

Figure 6-52. F Descriptor Format

The data that appears in an F input field must be
in the proper format. See figure 6-46 for the
format of an F input field.

Blanks that appear in an F input field are inter-
preted according to any BN or BZ edit descriptor,
or according to any BLANK specifier in the OPEN
statement in effect for the file. If you do not
specify a BN or BZ edit descriptor or a BLANK
specifier, blanks that appear in an F input field
are ignored.

A decimal point that appears in an F input field
overrides the decimal point position specified in
the F descriptor.

Output

When the F descriptor formats data during an output
operation, the value of the output 1list item is
converted to a string of characters. These char-
acters are placed in the output field. The output
list item must be of type half-precision, real,
double-precision, or complex. If the output 1list
item is of type complex, two consecutive D, E, F,
or G descriptors are required: the first is for
the real part of the complex value; the second is
for the imaginary part of the complex value. (The
two descriptors can be different. Note also that
nonrepeatable edit descriptors can appear between
the two descriptors.)

See figure 6-53 for the format of an F output field.

[:] digits

digits A string of the decimal digits O
through 9; digits contains one
decimal point.

Figure 6-53. F Output Field Format

If the length of the output list item is less than
the width of the F output field specified, the
value of the output list item is right-justified
and blank-filled in the F output field.

6-25

If the length of the output list item is greater
than the width of the F output field, the F output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.

Output of the sign of a positive value is controlled
by the S, SP, and SS descriptors.
Examples

See figure 6-54 for an example of the F descriptor.

REAL A,8

READ (1,100) A,B
100 FORMAT(F4.2,F5)

WRITE (2,200) A,B
200 FORMAT ('A',F5.2,F7)

Input:
ﬂiiﬂ 56789

12.34 56789.0

A B

Output :

A B

12.34 56789.0

Ta12.34/56789.

Figure 6-54. F Descriptor Example

G Descriptor

The G descriptor formats half-precision, real, and
double-precision data during input/output opera-
tions. A G descriptor can be paired with a D, E,
F, or another G descriptor to format complex data
during 1input/output operations. See figure 6-55
for the format of the G descriptor.

Input

When the G descriptor formats data during an input
the value in the input field is converted
~prec m, real, or double-precision

rGw
or
r6w.d
or
rGw.dEe

r An unsigned integer constant (0 < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant (0 < w < 256)
that specifies the width in characters of
the G input field or G output field
(including the exponent).

d An unsigned integer constant less than w
that specifies the number of digits to the
right of the decimal point in the mantissa.

e An unsigned integer constant (0 < e < 256)
that specifies the number of digits in the
exponent field; e has no effect on input.

Figure 6-55. G Descriptor Format

and is assigned to the input list item. The data
type to which the value is converted is the data
type of the input 1list item to which the value is
assigned. The input list item must be of type
half-precision, real, double-precision, or complex.
If the input list item is of type complex, two
consecutive D, E, F, or G descriptors are required:
the first is for the real part of the complex value;
the second is for the imaginary part of the complex
value. (The two descriptors can be different. Note
also that nonrepeatable edit descriptors can appear
between the two descriptors.)

The data that appears in a G input field must be in
the proper format. See figure 6-46 for the format
of a G input field.

Blanks that appear within a G input field are
interpreted according to any BN or BZ edit de-
scriptor, or according to any blank specifier in
effect for the file. If you do not specify a BN or
BZ edit descriptor or a BLANK specifier, blanks
that appear within a G input field are ignored.

A decimal point that appears in a G input field
overrides the decimal point position specified in
the G descriptor.

Output

When the G descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char-
acters are placed in the output field. The output
list item must be of type half-precision, real,
double-precision, or complex. If the output list
item is of type complex, two consecutive D, E, F,
or G descriptors are required: the first is for
the real part of the complex value; the second is
for the imaginary part of the complex value. (The
two descriptors can be different. Note also that
nonrepeatable edit descriptors can appear between
the two descriptors.,)

60480200 C

The format of a G output field depends on the
magnitude of the data being output. T1If the data
being output is no less than 0.1 and no greater
than 10**d, the format of the G output field is the
same as the format of the F output field; however,
the scale factor, if any, is ignored and n blanks
are 1inserted to the right of the G output field
when the magnitude of the output data is 1in this
range. (The value of n is 4 for the Gw.d form and
e+2 for the Gw.dEe form.) See figure 6-53 for the
format of an F output field.

If the data being output is less than 0.1 or greater
than 10**d, the format of the G output field is the
same as the format of the E output field and the
scale factor is effective. See figure 6-50 for the
format of the E output field.

If the length of the output list item is less than
the width of the G output field specified, the value
of the output 1list 1item is right-justified and
blank-filled in the G output field.

If the length of the output list item is greater
than the width of the G output field, the G output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.

Output of the sign of a positive value is controlled
by the S, SP, and SS descriptors.

Examples

See figure 6-56 for an example of the G descriptor.

H Descriptor

The H descriptor causes a string of characters to
be placed in an output record. The H descriptor
can be used only for output operations. See figure
6-57 for the format of the H descriptor.

The H descriptor cannot be associated with an
input/output list item.

When the H descriptor is used for an output opera-
tion, the string of characters specified in the H
descriptor 1is placed in the output field. The
number of characters output is the number of char-
acters in the H output field.

Any of the characters listed 1in appendix A can
appear in an H output field. Blanks are significant
characters in an H output field.

See figure 6-58 for an example of the H descriptor.

| Descriptor

The I descriptor formats integer data during input/
output operations. See figure 6-59 for the format
of the I descriptor.

60480200 C

Input:

Output:

READ (1,100) A,B
100 FORMAT (G5.3,G68.1)

WRITE (2,200) A,B
200 FORMATC('A',2(610.3,1X))

ﬁ?ﬁ 12146351

12.345 1214635.1

A B

A B

12.345 1214635.1

T
Y

AhA12.3A08AAA0.121E+07A

Figure 6-56. G Descriptor Example

nHstring

string

An unsigned integer constant (0 < n <
256) that specifies the exact number
of characters in string.

A string of characters from the CYBER
200 character set. This string
begins in the next character position
after the H and must contain exactly
the number of characters specified in
n.

Figure 6-57. H Descriptor Format

6-27

WRITE (2, (18HAPROGRAM' ' SAOUTPUT:) ")

Output:

PROGRAM' SAQUTPUT:

Figure 6-58. H Descriptor Example

rivw
or
riw.m

r An unsigned integer constant (0 < r < 256)
that is used as a repeat specification;
optional. The default is 1.

W An unsigned integer constant (0 < w < 256)
that specifies the width in characters of
the I input field or I output field.

m An unsigned integer constant less than or
equal to w that specifies the minimum
number of digits to be output to the I
output field; m has no effect on input.

Figure 6-59. I Descriptor Format

Input

When the I descriptor formats data during an input
operation, the value in the 1input field is con-
verted to type integer and is assigned to the input
list item. The 1input list item must be of type
integer.

The data that appears in an I input field must be
of the same format as an integer constant.

Blanks that appear within an I input field are
interpreted according to any BN or BZ edit de-
scriptor, or according to any blank specifier in
effect for the file. If you do not specify a BN or
BZ edit descriptor or a BLANK specifier, blanks
that appear within an I input field are ignored.

Output

When the I descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char-
acters are placed in the output field. The output
list item must be of type integer.

The data that 1is output to an I output field
consists of one or more of the decimal digits 0
through 9. If a descriptor of the form rlw.m is
used, at least m digits are output; leading zeros
are output if necessary. If m is O and if the
value of the output Llist item is 0, the output
field consists of blanks.

6-28

If the length of the output list item is less than
the width of the T output field specified, the
value of the output Llist item is right-justified
and blank-filled in the I output field.

If the length of the output list item is greater
than the width of the 1 output field, the I output
field is filled with asterisks. However, asterisks
are not printed if the width of the field is not
exceeded when optional characters are omitted.
(Leading zeros produced as a result of a nonzero m
value are not considered optional.)

Output of the sign of a value is controlled by the
S, SP, and SS descriptors.

Examples

See figure 6-60 for an example of the I descriptor.

INTEGER NUMT,NUM2

READ (1,100) NUM1,NUM2
100 FORMAT (2I1)

WRITE(2,200) NUM1,NUM2
200 FORMAT (A',17,17.5)

Input:
'%_: l
5 5
NUM1 NUM2
Output:
NUM1 NUM2
5 5
A'AAAAAASBADO00S'

Figure 6-60. I Descriptor Example

L Descriptor

The L descriptor formats logical data during input/
output operations. See figure 6-61 for the format
of the L descriptor.

60480200 H

rLw

r An unsigned integer constant (0 < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant (0 < w < 256)
that specifies the width in characters of
the L input field or L output field.

Figure 6-61. L Descriptor Format

Input

When the L descriptor formats data during an input
operation, the value in the input field is converted
to type logical and is assigned to the input list
item. The input list item must be of type logical.

The L input field must contain a T or an F. The T
or the F can be preceded only by a decimal point or
by any number of blanks. The T or the F can be
followed by any other characters. For example, the
logical constants .TRUE. and .FALSE. can appear in
an L input field.

Output

When the L descriptor formats data during an output
operation, the value of the output list item is
converted to a string of characters. These char-
acters are placed in the output field. The number
of characters output is the number of characters in
the L output field. The output list item must be
of type logical.

The L output field contains a T or an F in the
rightmost column; all other columns are blank.

Examples

See figure 6-62 for an example of the L descriptor.

P Descriptor

The P descriptor causes a scale factor to be
applied to data that is input or output using the
D, E, F, or G edit descriptors. A scale factor is
a number that increases or decreases a value by a
power of 10. See figure 6-63 for the format of the
P descriptor.

The P descriptor cannot be associated with an
input/output list item.

At the beginning of execution of each input/output
statement, the value of the scale factor is zero.
If a P descriptor is specified, the scale factor it
produces applies to all data that is formatted by
D, E, F, and G descriptors that are processed after
the P descriptor in the format specification.

60480200 E

LOGICAL LA,LE,LI

READ (1,100) LA,LE,LI
100 FORMAT(LS5,L9,L7)

WRITE(2,200) LA,LE,LI
200 FORMAT ('A', 3L4)

Input:

|AAATA"AA . FALSE:‘AAATUTAI

[55

. TRUE. .FALSE. -TRUE.

LA LE LI

Output:

LA LE LI

-TRUE. -FALSE. .TRUE.

I T

AAAATAAAFAAAT!

Figure 6-62. L Descriptor Example

kP

k An optionally signed integer constant used
as the scale factor (k < 256). If the
scale factor is to apply to a field width
(d) specified on a D, E, or G edit descrip-
tor, the value must be within the range
-d<k<d+2.

Figure 6-63. P Descriptor Format

Input

Values that are formatted by the D, E, F, and G
descriptors are divided by the result of the value
10 raised to the scale factor currently in effect.
However, if an exponent is specified in a value
that appears in a D, E, F, or G input field, the
scale factor has no effect.

Output
During an output operation, the effect of the scale

factor depends on the descriptor that formats the
output values:

6-29

If a D or an E descriptor formats an output R Descriptor
value, the mantissa of the value 1is multiplied)

by the result of the value 10 raised to the The R descriptor formats character data during
scale factor. The exponent of the value is input/output operations. See figure 6-65 for the
reduced by the scale factor. format of the R descriptor.

If an F descriptor formats an output value,
value 1is multiplied by the result of the value
10 raised to the scale factor.

If a G descriptor formats an output value, the rRw
effect depends on the magnitude of the data
being output. TIf the magnitude of the data is

no less than 0.1 and less than 10**d, there is r An unsigned integer constant (0 < r < 256)
no effect. TIf the magnitude of the data is not that is used as a repeat specification;

in this range, the effect is the same as if an optional. The default is 1.

E descriptor had been used to format the output

value. w An unsigned integer constant (0 < w < 256)

that specifies the width in characters of
the R input field or R output field.

Examples
See figure 6-64 for an example of the P descriptor. Figure 6-65. R Descriptor Format

REAL A,B

READ(1,100) A,B
100 FORMAT(2P,F5.2,E7.3)

WRITE(2,200) A,B
200 FORMAT(' *,-1P,F10.5,E12.2)

Input:

&33 222E+01

1.2345 0.222e+01

A B

Output :

A B

1.2345 0.222E+01

U VI L
AAAAD.12345 AAAA0.02E+02

Figure 6-64. P Descriptor Example

6-30 60480200 E

Input

When the R descriptor formats data during an input
operation, the value in the input field is assigned
to the input 1list item. The number of characters
input 1is the number of characters in the R 1input
field. The input list item can be of any data type.

The data that appears in an R input field can be a
string of any of the characters listed in appendix
A.

If the length of the input list item is less than
the width of the R input field, the rightmost char-
acters in the R input field are assigned to the
input list item.

If the length of the input list item 1is greater
than the width of the R input field, the character
value 1input 18 right-justified and binary-zero-
filled in the input list item.

Qutput

When the R descriptor formats data during an output
operation, the value of the output list item is
placed in the output field. The number of char-

acters output 18 the number of characters in the R
output field. The output list item can be of any
data type.

Any of the characters listed in appendix A can
appear in an R output field. Blanks are signifi-
cant characters in an R output field.

If the length of the output list item is less than
the width of the R output field, the character val-
ue that is output is right-justified and character-
zero-filled in the R output field.

If the length of the output list item is greater
than the width of the R output field, the rightmost
characters of the output list item are placed in
the R output field.

Examples

See figure 6-66 for an example of the R descriptor.

S Descriptor

The S descriptor controls the printing of the plus
sign during output of numeric data. The S descrip-
tor specifies that a plus sign not be printed. The

CHARACTER A4,B*8,C%10

READ (1,100) A,B,C
100 FORMAT (3R8)

WRITE(2,200) A,B,C
200 FORMAT ('A',3A8)

Input:

IA B C D E F 6 HIII J K L M NDO PIIQ R § T UV W Xl Yy 2

/

H

characters

binary
EFGH IJKLMNOP DI QRS TU VWX
A B ¢
A B c
binary
EFGH IJKLMNOP DIMY QRS TUVWX
{ y
T T L

Figure 6-66.

60480200 A

R Descriptor Example

6-31

effect of the S descriptor is identical to that of
the SS descriptor. See figure 6-67 for the format
of the S descriptor.

Figure 6-67. S Descriptor Format

The S descriptor cannot be associated with an
input/output list item.

The S descriptor affects the sign of data that is
output using the T, D, E, F, and G descriptors
only. The S descriptor has no effect during the
execution of an input statement.

If no S descriptor, SP descriptor, or SS descriptor
is specified in a format specification, an optiomal
plus sign is not printed. The S descriptor does
not affect the sign of an exponent.

See figure 6~68 for an example of the S descriptor.

INTEGER NUM1,NUM2

.

NUM1 = 123

NUM2 = 12345

WRITE(2,200) NUM1,NUM2
200 FORMAT ('A'S,2(15,2X))

Output:

NUM1 NUM2

123 | | 12345
) l—dl
ha123'aa 23450

Figure 6-68. S Descriptor Example

A

SP Descriptor

The SP descriptor controls the printing of the plus
sign during output of numeric data. The SP de-
scriptor specifies that a plus sign must always be
printed in front of positive numeric values. See
figure 6-69 for the format of the SP descriptor.

SP

Figure 6-69. SP Descriptor Format

6-32

The SP descriptor cannot be associated with an
input/output list item.

The SP descriptor affects the sign of data that is
output using the I, D, E, F, and G descriptors
only. The SP descriptor has no effect during the
execution of an input statement.

If no S descriptor, SP descriptor, or SS descriptor
is specified in a format specification, an optional
plus sign is not printed. The SP descriptor does
not affect the sign of an exponent.

See figure 6-70 for an example of the SP descriptor.

INTEGER NUM1,NUM2

NUMT = 123

NUM2 = 12345

WRITE(2,200) NUM1,NUM2
200 FORMAT ('A'SP,2(15,2X))

Output :
NUM1 NUM2
123 12345
F'JL'1
AAHI2IAA X *RNAA

Figure 6-70. SP Descriptor Example

SS Descriptor

The SS descriptor controls the printing of the plus
sign during output of numeric data. The SS de-
scriptor specifies that a plus sign not be printed.
The effect of the SS descriptor is ideatical to that
of the S descriptor. See figure 6-71 for the format
of the SS descriptor.

SS

Figure 6-71. SS Descriptor Format

The SS descriptor cannot be associated with an
input/output list item.

The SS descriptor affects the sign of data that is
output using the I, D, E, F, and G descriptors
only. The SS descriptor has no effect during the
execution of an input statement,

60480200 A

If no S descriptor, SP descriptor, or SS descriptor
is specified in a format specification, an optional
plus sign is not printed. The SS descriptor does
not affect the sign of an exponent.

See figure 6~72 for an example of the SS descriptor.

INTEGER NUM1,NUM2

NUM1 = 123

NUM2 = 12345

WRITE(2,200) NUM1,NUM2
200 FORMAT('A'SS,2(I5,2X))

Output:
NUM1 NUM2

123 12345

y
U r‘i:i

AAAMI23AA1234500

Figure 6-72. SS Descriptor Example

T Descriptor

The T descriptor specifies the column from which
the next character is to be input, or the column to
which the next character is to be output. See
figure 6-73 for the format of the T descriptor.

Tec

¢ An unsigned integer constant (0 < c < 256)
that specifies the column of the input
record from which the next character is
to be input, or the column of the output
record to which the next character is to be
output.

Figure 6-73. T Descriptor Format

The T descriptor cannot be associated with an
input/output list item.

Input

When the T descriptor 1s used during an iaput
operation, the next character to be read from the
input record is the character that is in the column
specified in the T descriptor.

60480200 C

Output

When the T descriptor is used during an output
operation, the next character to be writtem to the
output record is written to the column of the out-
put record specified in the T descriptor. When the
next character is written, any undefined characters
to the left are set to blank; however, the T de-
scriptor does not affect the length of the output
record.

Examples

See figure 6-74 for an example of the T descriptor.

INTEGER NUM1,NUM2

READ (1,100) NUM1,NUM2
100 FORMAT(13,72,I3)

WRITE(2,200) NUM1,NUM2
200 FORMAT('A',TS,13,710,13)

Input:
(134
y
123 234
NUM1 NUM2
Output:
NUM1 NUM2
123 234

AAAA;1 23A0A234

Figure 6-74. T Descriptor Example

TL Descriptor

The TL descriptor moves the input/output record
pointer to the left. The 1input/output record
pointer indicates the column from which the next
character is input, or the column to which the next
character is output, See figure 6-75 for the for-
mat of the TL descriptor.

The TL descriptor cannot be associated with an
input/output list item.

6-33

TLn

n An unsigned integer constant (0 < n < 256)
that specifies how many columns to the
Left of the current column to move the
input/output record pointer.

Figure 6-75. TL Descriptor Format

Input

When the TL descriptor 1is wused during an input
operation, the input record pointer is repositioned
to a column that appears to the left of the current
column., The TL descriptor specifies how many col-
umns to the left of the current column to move the
pointer. The character that appears in that column
is the next character to be read by the input
statement.

If the TL descriptor moves the input record pointer
to the left of the first column of the input record,
the input record pointer 1is repositioned to the
first column of the input record.

Output

When the TL descriptor is used during an output
operation, the output record pointer is repositioned
to a column that appears to the left of the current
column. The TL descriptor specifies how many col-
umns to the left of the current column to move the
pointer. The next character to be output is output
in that column. When the next character is written,
any undefined characters to the left are set to
blank; however, the TL descriptor does not affect
the length of the output record.

If the TL descriptor moves the output record pointer
to the left of the first column of the output rec-
ord, the output record pointer is repositioned to
the first column of the output record.

Examples

See figure 6-76 for an example of the TL descriptor.

'iNTEGER NUM1 ,NUM2

100 FORMAT(I3,TL1,13)

Input:
Jd.2,3,45
=
123 345
NUM1 NUM2
Output:
NUM1 NUM2
123 345

5

READ(1,100) NUM1,NUM2

WRITE(2,200) NUM1,NUM2
200 FORMAT('A’,13,'AOFATHE AAAAAARE ADEFECTIVE',TL17,13)

A123A0FATHEA34S5AARE A DEFECTIVE

Figure 6-76.

6-34

TL Descriptor Example

60480200 E

TR Descriptor

The TR descriptor moves the input/output record
pointer to the right. The input/output record
pointer indicates the column from which the next
character is to be input, or the column to which
the next character is to be output. See figure
6-77 for the format of the TR descriptor.

TRn

n An unsigned integer constant (0 < n < 256)
that specifies how many columns to the right
of the current column to move the input/
output record pointer.

Figure 6-77. TR Descriptor Format

The TR descriptor cannot be associated with an
input/output list item.

Input

When the TR descriptor 1is used during an input
operation, the input record pointer is repositioned
to a column that appears to the right of the cur-
rent column. The TR descriptor specifies how many
columns to the right of the current column to move
the pointer. The character that appears 1in that
column is the next character to be read by the
input statement.

Output

When the TR descriptor is used during an output
operation, the output record pointer is repositioned
to a column that appears to the right of the cur-
rent column. The TR descriptor specifies how many
columns to the right of the current column to move
the pointer. The next character to be output is
output in that column. When the next character is
written, any undefined characters to the left are
set to blank; however, the TR descriptor does not
affect the length of the output record.

Examples

See figure 6-78 for an example of the TR descriptor.

X Descriptor

The X descriptor moves the 1input/output record
pointer to the right. The 1input/output record
pointer indicates the column from which the next
character is input, or the column to which the next
character is output. See figure 6-79 for the
format of the X descriptor.

The X descriptor cannot be associated with an
input/output list item.

60480200 C

INTEGER NUM1,NUM2

READ (1,100) NUM1,NUM2
100 FORMAT(I3,TR5,I3)

WRITE(2,200) NUM1,NUM2
200 FORMAT('A',13,TR7,13)

Input:

ﬂ_3_214 5678901

|123| m

NUM1 NUM2
Output:

NUM1 NUM2

123 901

A1 23'AAAAAAA;901

Figure 6-78. TR Descriptor Example

nX

n An unsigned integer constant (0 < n < 256)
that specifies how many columns to the right
of the current column to move the input/
output record pointer.

Figure 6-79. X Descriptor Format

Input

When the X descriptor is wused during an input
operation, the input record pointer is repositioned
to a column that appears to the right of the cur-
rent column., The X descriptor specifies how many
columns to the right of the current column to move
the pointer. The character that appears in that
column is the next character to be read by the
input statement.

6-35

Output

When the X descriptor 1s used during an output
operation, the output record pointer is repositioned
to a column that appears to the right of the cur-
rent column. The X descriptor specifies how many
columns to the right of the current column to move
the poianter. The next character to be output is
output in that column. When the next character is
written, any undefined characters to the left are
set to blank; however, the X descriptor does not
affect the length of the output record.

Examples

See figure 6-80 for an example of the X descriptor.

INTEGER NUM1,NUM2

READ (1,100) NUM1,NUM2
100 FORMAT(13,5X,13)

WRITE (2,200) NUM1,NUM2
200 FORMAT('A',13,7X,13)

Input:

C_f_fl“ 5678901

A

123 901

NUM1 NUM2
Output:

NUM1 NUM2

123 901

A123AAAAAAAQNI

Figure 6-80. X Descriptor Example

| Z Descriptor

' The Z descriptor formats hexadecimal data during
input/output operations. See figure 6-81 for the
format of the Z descriptor.

6-36

riw
or
rZw.m

r An unsigned integer constant (0 < r < 256)
that is used as a repeat specification;
optional. The default is 1.

w An unsigned integer constant (0 < w < 256)
that specifies the width in characters of
the Z input field or Z output field.

m An unsigned integer constant less than or
equal to w that specifies the number of
digits to be output to the Z output field;
m has no effect on input.

Figure 6-81. 1 Descriptor Format

Input

When the Z descriptor formats data during an input
operation, the value in the input-field is treated
as a sequence of hexadecimal digits and is assigned
to the input list item. The input list item can be
of any data type.

The data that appears in a Z input field must be a
string of the hexadecimal digits O through 9 and
uppercase or lowercase A through F. The hexa-
decimal digits correspond to the decimal values O
through 15. Each hexadecimal digit occupies 4 bits.

Blanks that appear within a Z input field are
interpreted according to any BN or BZ edit de-
scriptors, or according to any blank specifier im
effect for the file. If you do not specify a BN or
BZ edit descriptor or a BLANK specifier, blanks
that appear within a Z input field are ignored.

Qutput

When the Z descriptor formats data during an output
operation, the value of the output list item is
converted to a string of the hexadecimal digits 0O
through 9 and A through F. The hexadecimal digits
correspond to the decimal values O through 15.
These characters are placed in the output field.
The output list ftem can be of any data type.

If a descriptor of the form rZw.m is used, at least
m digits are output; leading zeros are output if
necessary. If m is O and if the value of the out-
put list item is 0, the output field consists of
blanks.

If the length of the output list item is less than
the width of the Z output field specified, the
value of the output list item is right-justified
and blank-filled in the Z output field.

If the length of the output list item is greater

than the width of the Z output field, the rightmost
hexadecimal digits are placed in the Z output field.

60480200 H

Examples

See figure 6-82 for an example of the Z descriptor.

CHARACTER*4 HEX1,HEX2

READ(1,100) HEX1,HEX2
100 FORMAT(28,11)

WRITE(2,200) HEX1,HEX2
200 FORMATC'A',Z4,28.4)

Input:
IO 24 68AC E|5
Yy l
X'02468ACE"’ X *00000005 *
HEX1 HEX2
Output:
HEX1 HEX2
X '02468ACE" X *00000005*

ABAC AAAAOOOS;

Figure 6-82. 1 Descriptor Example

Apostrophe Descriptor

The apostrophe descriptor causes a string of char-
acters to be placed in an output record. The
apostrophe descriptor can be used only for output
operations. See figure 6-83 for the format of the
apostrophe descriptor.

‘string’

string A string of from 1 through 255 char-
acters from the CYBER 200 character
set.

Figure 6-83. Apostrophe Descriptor Format

60480200 C

The apostrophe descriptor cannot be assoclated with
an input/output list item.

When the apostrophe descriptor is used for an out-
put operation, the string of characters specified
in the apostrophe descriptor is placed in the out-
put field. The number of characters output is the
number of characters in the apostrophe output fieid.

Any of the characters listed in appendix A can
appear in an apostrophe output field. Blanks are
significant characters 1in an apostrophe output
field. An apostrophe can be represented in an
apostrophe output field by specifying two con-
secutive apostrophes.

See figure 6-84 for an example of the apostrophe
descriptor.

WRITE(2,' (''APROGRAM''''S OUTPUT:'")")

Output:

APROGRAM'SAOUTPUT:

Figure 6-84. Apostrophe Descriptor Example

Slash Descriptor

The slash descriptor indicates that no more data is
to be input from the current record or output to
the current record during the execution of the cur-
rent input/output statement. See figure 6-85 for
the format of the slash descriptor.

Figure 6-85. Slash Descriptor Format

Lnput

When the slash descriptor is used during an input
operation that involves a record of a sequential
file, the remaining portion of the current record
is skipped and the file is positioned at the begin-
ning of the next record.

When the slash descriptor is used during an input
operation that involves a record of a direct access
file, the remaining portion of the current record
s skipped and the record number is increased by
one, The file is positioned at the beginning of
that record.

6-37

Output

When a slash descriptor is used during an output
operation that involves a sequential file, a new
record is created. The new record is the last rec-
ord of the file and the new record is the current
record. Congecutive slash descriptors can cause
empty records to be output to a sequential file.

When the slash descriptor is used during an output
operation that involves a record of a direct access
file or a record of an internal file, the record
number is 1increased by one and the file is posi-
tioned at the beginning of that record. Consecutive
slash descriptors cause records of a direct access
file or records of an internal file to be filled
with blanks.

Examples

See figure 6-86 for an example of the slash de-
scriptor.

INTEGER NUM

READ(1,100) NUM
100 FORMAT(/,I3)

WRITE(2,200) NUM
200 FORMAT (*AHEADING',///,'ANUM=",13)

Input:

1234

567

NUM

Output:

NUM

567
|
AHEADING

blank record
blank record

ANUM =|567;

Figure 6-86. Slash Descriptor Example

6-38

Colon Descriptor

The colon descriptor terminates format control if
there are no more items In the input/output list.
The colon descriptor has no effect if there are
more items lan the input/output list. See figure
6-87 for the format of the colon descriptor.

Figure 6-87. Colon Descriptor Format

See figure 6-88 for an example of the colon de-
scriptor.

UNFORMATTED INPUT/OUTPUT
STATEMENTS

An unformatted input/output statement transfers
data between a sequential access external file or a
direct access external file and internal storage.
No formatting is performed; the data is transferred
as it exists on the external file or in internal
storage.

Those aspects of unformatted input/output which are
unique to direct access external files are dis-
cussed separately under Direct Access Input/Output
Statements. The remainder of this discussion
assumes the most common file type for unformatted
input/output: a sequential access external file.

The unit specified in an unformatted input/output
statement must be connected for unformatted input/
output; a unit can be connected by using the OPEN
statement ot the PROGRAM statement.

1f the unit specified is not connected, the proc-
essor connects the unit to a file before the input/
output statement is executed. See the description
of the UNIT specifier for more information about
processor-determined unit connection.

A FMT specifier must not appear in an unformatted
input/output statement. The input/output list is
optional in an unformatted input/output statement.

The unformatted input/output statements are:
Unformatted READ statement

Unformatted WRITE statement

Each of these statements is described in the fol-
lowing paragraphs.

UNFORMATTED READ STATEMENT

The unformatted READ statement transfers data from
a sequential access external file to iaternal stor-
age in the format in which it exists on the file.
See figure 6-89 for the format of the unformatted
READ statement.

60480200 A

Input:

1234567890

12345 | | 678
NUMT NUM2
Output:
N1 NUM2
12345 | | 678
y
A'Tgsz'u\‘ﬁﬁ'

INTEGER NUM1,NUM2

READ (1,100) NUM1,NUM2
100 FORMAT(IS,I3,:,215,412)

WRITE(2,200) NUM1,NUM2
200 FORMAT('A',I5,:,2X,13,:, 'AAREATHEAANSWERS. ')

Figure 6-88. Colon Descriptor Example

READ (cilist) ilist

cilist A control information List. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

END
ERR
IOSTAT
REC

ilist An input Llist; optional.

Figure 6-89. Unformatted READ Statement Format

When an unformatted READ statement 1s executed, one
record 1is transferred from the file to internal
storage. No formatting 1is performed. The file
must be positioned at the beginning of an unformat-
ted record or at the beginning of an endfile record
when execution of an unformatted READ statement
begins.

60480200 A

The number of items in the input list must be less
than or equal to the number of values in the input
record. The type of each value in the input record
must be the same as the type of the input list item
to which it corresponds. However, a complex input
list item can correspond to two real values in the
input record, and two real input list items can
correspond to one complex value in the input record.

If the input list does not appear in the unformatted
READ statement, one input record is skipped.

If an unformatted READ statement attempts to read
beyond the end of a file, an execution-time error
occurs. You can avold this occurrence by speci-
fying the END specifier or the IOSTAT specifier on
the unformatted READ statement.

See figure 6-90 for an example of the unformatted
READ statement. The values input by the unformatted
READ statement in the example are shown. The values
input by the unformatted READ statement are input
from the file connected to unit 1. When an end-of-
file condition is detected during execution of the
unformatted READ statement, N is assigned the value
-1, and control transfers to the statement labeled
10. If an input error occurs during execution of
the unformatted READ statement, control transfers
to the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

6-39

Input is the binary rep

CHARACTER*8 CHARS (10)

00 1 1=1,10
READ (1,END=10,

1 CONTINUE

10 CALL SORT(CHARS,I-1)
STOP

20 CALL IOERR(N)

ERR=20,I0STAT=N) CHARS (1)

resentation of the characters:

FIRSTAAA CHARS (1)
SECONDAA CHARS (2)
THIRDAAA CHARS (3)
Figure 6-90. Unformatted READ Statement Example

UNFORMATTED WRITE STATEMENT

The unformatted WRITE statement transfers data from
internal storage to a sequential access external
file in the format in which it exists in internal
storage. See figure 6-91 for the format of the
unformatted WRITE statement.

WRITE (cilist) olist

A control information List. The UNIT
specifier must appear in cilist and
must not be an asterisk.

cilist

The following specifiers can also
appear in cilist:

ERR
IOSTAT
REC

olist An output List; optional.

Figure 6-91. Unformatted WRITE Statement Format

When an unformatted WRITE statement 1s executed,
one record is transferred from internal storage to
the file. No formatting is performed.

If the output list does not appear in the unformat-
ted WRITE statement, a zero length record is output.

6-40

See figure 6-92 for an example of the unformatted
WRITE statement. The values output by the unfor-
matted WRITE statement in the example are shown.
The values are output to the file connected to unit
2. If an output error occurs during execution of
the unformatted WRITE statement, control transfers
to the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

CHARACTER*8 CHARS/'ABCDEFGH'/

WRITE (2,ERR=20,I0STAT=N) CHARS

CALL IOERR (N)

20

Output is the binary representation of the
characters:

ABCDEFGH

Figure 6-92. Unformatted WRITE
Statement Example

60480200

LIST-DIRECTED INPUT/OUTPUT
STATEMENTS

A list-directed input/output statement transfers
data between a sequential access external file and
internal storage in 1list-directed format. List-
directed formatting 1is described later in this
section.

The unit specified in a list-directed input/output
statement must be capable of formatted sequential
input/output, or must be connected for formatted
sequential input/output. (A unit can be connected
by using the OPEN statement. Preconnection can be
implicit or can be done explicitly with the PROGRAM
statement or the execution control statement.)

If the unit specified is preconnected, the processor
connects the unit to the file before the input/
output statement 1is executed. See the description
of the UNIT specifier for more information about
processor-determined unit connection.

An asterisk in the input/output statement specifies
list-directed input/output; the 1input/output list
is optional in the statement.

The list-directed input/output statements are:
List-directed READ statement
List-directed WRITE statement
List-directed PRINT statement
List-directed PUNCH statement

Each of these statements is described in the fol-
lowing paragraphs.

LIST-DIRECTED READ STATEMENT

The list-directed READ statement transfers data
from a sequential access external file to internal
storage in list-directed format. See figure 6-93
for the format of the list-directed READ statement.

If a control information list 1s not specified in a
list-directed READ statement, data is transferred
from the unit SHINPUT. If the input list does not
appear 1in the 1list-directed READ statement, one
input record is skipped.

If a list-directed READ statement attempts to read
beyond the end of a file, an execution-time error
occurs. You can prevent this error by specifying
the END specifier or the IOSTAT specifier on the
list-directed READ statement.

See figure 6-94 for examples of the list-directed
READ statement. The values input by the list-
directed READ statements in the example are shown.
The values input by the first list-directed READ
statement are input from the file connected to unit
1. When an end-of-file condition is detected dur-
ing execution of the first list-directed READ
statement, control transfers to the statement
labeled 10, and N is assigned the value -1. If an
input error occurs during execution of the first
list-directed READ statement, control transfers to
the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

60480200 A

READ (cilist) ilist
or
READ *,ilist

cilist A control information Llist. The
following specifiers must appear in
cilist:
UNIT

FMT (must be an asterisk)

The following specifiers can also
appear in cilist:

END
ERR
IOSTAT

ilist An input List; optional.

If the second form of the list-directed READ

statement is used and ilist is not specified,
the comma separating the asterisk from ilist

must not appear.

Figure 6-93. List-Directed READ
Statement Format

1=0
1 I=1+1
READ (1,%,END=10,ERR=20,I0STAT=N) A,B

READ*, C,D
AVG(I) = (A+B+C+D)/4
GOTO 1

10 CALL PLOT(AVG,I-1)

sTOP
20 CALL IOERR(N)

Input:
10.004AA20.0 On unit 1)
70.04A50.0 (On file INPUT)

Figure 6-94. List-Directed READ
Statement Examples

The values input by the second list-directed READ
statement are input from the unit SHINPUT.

LIST-DIRECTED WRITE STATEMENT

The 1list-directed WRITE statement transfers data
from internal storage to a sequential access ex-
ternal file 1in 1list-directed format. See figure
6-95 for the format of the list-directed WRITE
statement.

6-41

WRITE(cilist) olist

cilist A control information List. The
following specifiers must appear in
cilist:

UNIT
FMT (must be an asterisk)

The following specifiers can also
appear in cilist:

ERR
IOSTAT

olist An output Llist; optional.

Figure 6-95. List-Directed WRITE
Statement Format

If the output list does not appear in the list-
directed WRITE statement, a record consisting of a
single blank character is written.

See figure 6-96 for examples of the list-directed
WRITE statement. The value output by the list-
directed WRITE statements in the example are shown.
The values are output to the file connected to unit
2. If an output error occurs during execution of
the first list-directed WRITE statement, control
transfers to the statement labeled 20 and the var-
iable N is assigned the number of the execution-time
error.

LIST-DIRECTED PRINT STATEMENT

The list-directed PRINT statement transfers data
from internal storage to the unit 6HOUTPUT in list-
directed format. See figure 6-97 for the format of
the list-directed PRINT statement.

PRINT *, olist

olist An output List; optional

If olist is not specified, the comma separating
the asterisk from olist must not appear.

Figure 6-97. List-Directed PRINT
Statement Format

If the output list does not appear in the list-
directed PRINT statement, a record consisting of a
single blank is written.

See figure 6-98 for an example of the list-directed
PRINT statement. The values output by the list-
directed PRINT statement in the example are shown.
The values are output to the unit 6HOUTPUT.

1=5
PRINT *, 'THE AANSWERAISA',I

Output:

ATHE AANSWERAISAS

Figure 6-98. List-Directed PRINT
Statement Example

INTEGER J(4)
COMPLEX Z(2)
DOUBLE PRECISION Q

WRITE(2,%) J
WRITE(2,%) Z(1),Q

STOP
20 CALL IOERR (N)

Output:
Al A-2 A3 A-4

DATA J,2,Q /1,-2,3,-4,(7.,-1.) ,(-3.,2.),1.0=5/
WRITE(2,*,ERR=20,I0STAT=n) J

(7.0000000000000,-1. 0000000000000

1.000000000000000000000000000E~05

Figure 6~96. List-Directed WRITE Statement Examples

6-42

60480200 F

LIST-DIRECTED PUNCH STATEMENT

The list-directed PUNCH statement transfers data
from internal storage to the unit 5HPUNCH in list-
directed format. See figure 6-99 for the format of
the list-directed PUNCH statement.

PUNCH *, olist
olist An output Llist; optional

If olist is not specified, the comma separating
the asterisk from olist must not appear.

Figure 6-99. List-Directed PUNCH
Statement Format

If the output 1list does not appear in the list-
directed PUNCH statement, a record consisting of a
single blank character is punched.

See figure 6-100 for an example of the 1list-
directed PUNCH statement. The values output by the
list-directed PUNCH statement in the example are

shown., The values are output to the file called
PUNCH.
I1=5
PUNCH *, 'THE AANSWERAISA',I
Output:
ATHE A ANSWERAISAS

Figure 6-100. List-Directed PUNCH
Statement Example

LIST-DIRECTED FORMATTING

List-directed input/output statements transfer data
between sequential access external files and inter-
nal storage in list-directed format. List-directed
format is a predefined format specification.

List-directed formatting for input and output is
described in the following paragraphs.

N

LIST-DIRECTED INPUT FORMATTING

A list-directed input statement transfers data from
a sequential access external file to internal stor-
age. The data read must be in list-directed input
format. A list-directed input record consists of
zero or more blanks followed by a 1list of input
fields separated by any of the following separators:

60480200 A

€9'
.
LN
&
/0

%

One or more contiguous blanks

A comma optionally preceded and optionally
followed by one or more contiguous blanks

A slash optionally preceded and optionally
followed by one or more contiguous blanks (the
slash separator terminates the input operation)

When a list-directed input statement is executed,
the value in the first input field of a record is
assigned to the first input list item in the input
statement, the value in the next field is assigned
to the second input list item, and so on.

If a list-directed input statement follows a list-
directed input statement that terminated in the
middle of a record, the second input statement
begins inputting the values from the first input
field of the next record.

Execution of a list-directed 1input statement
terminates when all of the items in the input list
have been assigned values. You can also terminate
execution of a list-directed input statement by
using the slash as a separator in the input data.

If all of the input fields of a record are input
before execution of the list-directed input state-
ment 1is terminated, the input statement continues
inputting values from the input fields of subsequent
records.

The value that appears in an input field is con-
verted to the type of the input list item to which
the value is assigned. The format of a value that
appears in an input field depends on the type of
the input list item to which it is assigned:

When the input 1list item is of type integer,
the value in the corresponding input field must
have the same format as an I input field.

When the input 1list 1item is of type real,
double-precision, or half-precision, the value
in the corresponding input field must have the
same format as an F input field.

When the input list item is of type complex,
the value in the corresponding input field must
have the same format as a complex constant,
Both the real part and imaginary part of the
complex constant can be preceded or followed by
blanks. The end of the record can occur be-
tween the real part and the comma, or between
the comma and the imaginary part.

When the input list item is of type logical,
the value in the corresponding input field must
have the same format as an L input field; how-
ever, slashes and commas are not permitted as
optional characters in the input field.

When the input list item is of type character,
the value in the corresponding input field must
be a string of one or more characters enclosed
in apostrophes. The characters must be from
the CYBER 200 character set. An apostrophe
that appears 1in the character string must be
represented as two consecutive apostrophes.
The end of the record can occur in a character
string without affecting the characters in the
string.

6-43

When the input 1list item is of type bit, the
value in the corresponding input field must
have the same format as a B input field.

If several adjacent input fields contain the same
value, you can use a repeat specification rather
than explicitly specifying each input field. A
repeat specification is an unsigned integer constant
greater than or equal to 1 followed by an asterisk
that precedes the input field to be repeated.

For input 1list items of type character, if the
length of the input 1list item is less than the
length of the character value in the input field,
the leftmost characters in the input field are
assigned to the input list item. If the length of
the input list item is greater than the width of
the character value in the input field, the char-
acter value 1input is left-justified and blank-
filled in the input list item.

A null value can be assigned to an input list item
by specifying two consecutive separators in the
input data. When a null value is assigned to an
input list item, the value of the input list item
is not changed. A null value can be assigned to an
input 1list item of type complex; however, a null
value must be assigned to both the real part and
the imaginary part of the complex input list item.

If an 1input operation 1is terminated by using the
slash as a separator in the input data, the values
of any input list items that have not been assigned
values by the input operation are not changed.

LIST-DIRECTED OUTPUT FORMATTING

A 1list-directed output statement transfers data
from internal storage to a sequential access
external file. The data is output in list-directed
output format. A list-directed output record
consists of a blank followed by a list of output
fields separated by blanks.

When a list-directed output statement 1is executed,
the values of the output list items are converted
to character strings and placed in the output file.
A blank 1is 1inserted between each output field,
except before and after character values. Each
list-directed output statement outputs a new record.

Execution of a 1list-directed output statement
terminates when the values of all of the output
list items have been output,

If a list-directed output statement outputs a line
that is longer than 137 characters, the line 1is
continued on subsequent output 1lines. Lines are
broken at separators; however, a line can be broken
between the real part and the imaginary part of a
complex output value, and a line can be broken in a
character output value.

A blank is always inserted at the beginning of each

output line; the blank is provided for carriage
control in case the file 1is printed on a line
printer.

The format of a value that is output to an output

field depends on the type of the output list item
being output:

6-44

When the output list item is of type integer,
the value written to the corresponding output
field has the same format as an 116 output
field; however, leading blanks are removed.

When the output 1list item 1is of type real,
double-precision, or half-precision, the value
written to the corresponding output field has
the same format as an F output field or am E
output field, depending on the magnitude of the
value. If the magnitude of the value is greater
than or equal to 10**-3 and less than or equal
to 10**dl, the output field has the same format
as a OPF output field: d1+1 digits are output.

If the magnitude of the value is less than
10**-3 or greater than or equal to 10**dl, the
output field has the same format as a 1PEw.dEe
output field. ndid

The values of dl, w, d, and e depend on the
data type of the output list item. See table
6-4 for the values.

When the output 1list item is of type complex,
the value written to the corresponding output
field has the same format as a complex constant.
No blanks appear in the constant unless the end
of the record occurs in the constant. The end
of the record can occur between the real part
and the comma, or between the comma and the
imaginary part.

When the output list item is of type logical,
the value written to the corresponding output
field has the same format as an L output field.

When the output list item is of type character,
the value writtem to the corresponding output
field is a string of one or more characters.
The string is not enclosed in apostrophes. The
characters are from the CYBER 200 character
set. An apostrophe that appears in the char-
acter string is represented as one apostrophe.
The end of the record can occur in a character
string without affecting the characters in the
string; however, a blank is always output as
the first character in a record in order to
provide carriage control.

When the output list item is of type bit, the

value written to the corresponding output field
has the same format as a B output field.

Null values cannot be output. The slash cannot be
output as a separator.

TABLE 6-4. VALUES FOR dl1, w, d, AND e

Output List
Item Type dl v d e
Real 13 22 13 4
Double-Precision 27 36 27 4
Half-Precision 6 13 6 2
60480200 E

NAMELIST INPUT/OUTPUT
STATEMENTS

A namelist input/output statement transfers data
between a sequential access external file and
internal storage in namelist format. Namelist
formatting is described later in this section.

The wunit specified in a namelist input/output
statement must be preconnected to a file capable of
formatted sequential input/output, or must be con-
nected for formatted input/output. (A unit can be
connected by wusing the OPEN statement. Precon-
nection can be implicit or can be done explicitly
with the PROGRAM statement or the execution control
statement.

If the unit specified is preconnected, the processor
connects the unit to the file before the input/
output statement 1is executed. See the description
of the UNIT specifier for more information about
processor-determined unit connection.

A PMT specifier in a namelist input/output statement
must specify a namelist group name. A namelist
input/output statement must not contain an input/
output list.

The NAMELIST statement defines a namelist group.
The namelist input/output statements are:

Namelist READ statement
Namelist WRITE statement
Namelist PRINT statement
Namelist PUNCH statement
The NAMELIST statement and each of the namelist

input/output statements are described in the fol-
lowing paragraphs.

NAMELIST STATEMENT

The NAMELIST statement is a nonexecutable statement
that defines one or more namelist groups. A name-
list group is an input/output list that is identi-
fied by a symbolic name; the symbolic name is called
the namelist group name. See figure 6-101 for the
format of the NAMELIST statement.

NAMELIST /grpnameq/ niolistq.../grpnamen/niolist,

grpnameq A symbolic name that is used as the
namelist group name
niolist; A List of one or more variable names

and array names separated by commas
that are used as the namelist group

Figure 6-101. NAMELIST Statement Format

A NAMELIST statement that defines a namelist group
must appear in each program unit that performs
namelist input/output using that namelist group.

60480200 A

See figure 6-102 for an example of the NAMELIST
statement. The NAMELIST statement in the example
defines two namelist groups: the first is called
GROUP1 and consists of the items A and B, and the
second is called GROUP2 and consists of the item D.

REAL A

COMPLEX B

DOUBLE PRECISION D

NAMELIST /GROUP1/A,B/GROUP2/D

-

READ(1, GROUP1)
READ (1, GROUP2)

Figure 6-102. NAMELIST Statement Example

NAMELIST READ STATEMENT

The namelist READ statement transfers data from a
sequential access external file to internal storage
in namelist format. See figure 6-103 for the for-
mat of the namelist READ statement.

READ (cilist)
or
READ grpname

cilist A control information List. The
following specifiers must appear in
cilist:
UNIT

FMT (must be a namelist
group name)

The following specifiers can also
appear in cilist:

END
ERR
IOSTAT

grpname A namelist group name.

Figure 6-103. Namelist READ Statement Format

When a namelist READ statement is executed, one
namelist group is transferred from the file to the
items in the namelist group. The values read are
converted to the type of the items to which they
are assigned.

If a control information list is not specified in a
namelist READ statement, data is transferred from
the unit 5SHINPUT.

6-45

If a namelist READ statement attempts to read
beyond the end of a file, an execution-time error
occurs. You can prevent this error by specifying
the END specifier or the IOSTAT specifier on the
namelist READ statement.

See figure 6-104 for an example of the namelist
READ statement. The values input by the namelist
READ statements in the example are shown. The
values input by the first namelist READ statement
are input from the file connected to unmit 1. When
an end-of-file condition is detected during exe-
cution of the first namelist READ statement, control
transfers to the statement labeled 10, and N is
assigned the value -1. If an input error occurs
during execution of the first namelist READ state-
ment, control transfers to the statement labeled 20

and the variable N is assigned the number of the
execution-time error.

The wvalues input by the second namelist READ
statement are input from the unit 5SHINPUT.

NAMELIST WRITE STATEMENT

The namelist WRITE statement transfers data from
internal storage to a sequential access external
file in namelist format. See figure 6-105 for the
format of the namelist WRITE statement.

See figure 6-106 for an example of the namelist
WRITE statement. The values output by the namelist
WRITE statement in the example are shown. The val-
ues are output to the file connected to unit 2. If
an output error occurs during execution of the
namelist WRITE statement, control transfers to the
statement labeled 20 and the variable N is assigned
the number of the execution-time error.

NAMELIST PRINT STATEMENT

The namelist PRINT statement transfers data from
internal storage to the unit 6HOUTPUT in namelist
format. See figure 6-107 for the format of the
namelist PRINT statement.

See figure 6-108 for an example of the namelist
PRINT statement. The values output by the namelist
PRINT statement in the example are shown. The
values are output to the unit 6HOUTPUT.

6-46

&AMELIST /GROUP1/A ,B/GROUP2/C,D

0
1 I=1+1
READ (1,GROUP1,END=10,ERR=20,I0STAT=N)
READ GROUP2
AVG(I) = (A+B+C+D)/4
GOTO 1
10 CALL PLOT(AVG,I-1)

L B

STOP
20 CALL IOERR(N)

Input:

ARGROUP1
AA=10.0,8=20.0
AREND

ARGROUP2
AC=50.0,b=70.0
AREND

Figure 6-104. Namelist READ Statement Example

WRITE (cilist)

cilist A control information list. The
following specifiers must appear in
cilist:
UNIT

FMT (must be a namelist
group name)

The following specifiers can also
appear in cilist:

ERR
IOSTAT

Figure 6-105. Namelist WRITE Statement Format

60480200 A

R
I

c
N

A
I
c
W

20 ¢

Output:

ARGROU
AA=5.7
AREND

EAL A

NTEGER I

OMPLEX C

AMELIST /GROUP/A,I,C

= 5.7

=12

= (1.0,0.0
RITE(2,GROUP,ERR=20,I0STAT=N)

ALL IOERR(N)

P
000000000000,1=12,C=(1.0000000000000,0.0000000000000E+00)

Figure 6-106. Namelist WRITE Statement Example

PRINT grpname

grpname A namelist group name

Figure 6-107. Namelist PRINT Statement Format

REAL

A

INTEGER I
COMPLEX C
NAMELIST /GROUP/A,I,C

A=5.7
1 =12
¢ = (.0,0.00
PRINT GROUP
Output:
A&GROUP

AA=5.7000000000000,1=12,C=(1.0000000000000,0.0000000000000E+00)

AREND

60480200 A

Figure 6-108. Namelist PRINT Statement Example

6-47

NAMELIST PUNCH STATEMENT

The namelist PUNCH statement transfers data from
internal storage to the unit S5HPUNCH in namelist
format. See figure 6-109 for the format of the
namelist PUNCH statement.

PUNCH grpname

grpname A namelist group name

Figure 6-109. Namelist PUNCH Statement Format

See figure 6-110 for an example of the namelist
PUNCH statement. The values output by the namelist
PUNCH statement in the example are shown. The
values are output to the unit 5SHPUNCH.

NAMELIST FORMATTING

Namelist input/output statements transfer data
between sequential access external files and in-
ternal storage in namelist format. Namelist format
is a predefined format specification.

Namelist formatting for input and output is de-
scribed in the following paragraphs.

NAMELIST INPUT FORMATTING

A namelist input statement transfers data from a
sequential access external file to internal storage.
The data read must be in namelist input format.
See figure 6-111 for the format of namelist input.

A&grpname sep dqsep...sepd,&END

sep A separator consisting of a comma,
btank, or record boundary, surrounded
by zero or more blanks or record
boundaries.

grpname A namelist group name

d; A data item of one of the following
forms:
var=const

aname=const sep...sep const
aname=r*const sep...sep r*const
aname(sub)=const

where:
var A simple variable
aname An array name
sub An integer constant
expression
const A constant
r An integer constant

repeat specification

Each record must have a blank in the first
column.

Figure 6-111. Namelist Input Format

REAL A

INTEGER I

COMPLEX C

NAMELIST /GROUP/A,I,C

A=s5.7
I =12
c=0(.0,0.00
PUNCH GROUP
Output:
ARGROUP

AZEND

AA=5.7000000000000,1=12,C=(1.0000000000000,0.0000000000000E+00)

Figure 6-110. Namelist PUNCH Statement Example

6-48

60480200 A

~

When a namelist input statement 1is executed, the
value specified for each item of the namelist input
group in the input data is assigned to the item in
the namelist input group.

Execution of a namelist input statement terminates
when all of the values in the namelist input data
are assigned to the corresponding item in the
namelist group.

The value specified for each item in the namelist
input group is converted to the type of the input
list item to which the value is assigned. A bit,
logical, character, or complex constant must be of
the same type as the corresponding input list item.

For input 1list items of type character, if the
length of the namelist group item is less than the

length of the value specified for that item in the
input data, the leftmost characters in the input
value are assigned to the namelist group item. If
the length of the namelist group item is greater
than the length of the value specified for that
item in the input data, the character value input
is left-justified and blank-filled in the namelist
group item.

An integer, Thalf-precision, vreal, or double~-
precision constant can be used for an integer,
half-precision, real, or double-precision input
list item. The forms for integer, half-precision,
real, and double-precision constants are described
for list—directed input earlier in this section
under the heading, List-Directed Input Formatting.

Use of the BLANK specifier in an OPEN statement has
no effect on namelist editing.

If a value is not specified for an item of the
namelist group, the value of that item is not
changed.

NAMELIST OUTPUT FORMATTING

A namelist output statement transfers data from
internal storage to a sequential access external
file. The data is output in namelist output format.
See figure 6-112 for the format of namelist output.

When a namelist output statement is executed, the
value of each namelist group item is converted to a
character string and transferred to the output file
in namelist format.

Execution of a namelist output statement terminates
when the values of all namelist group items are
output to the file.

BUFFER INPUT/OUTPUT
STATEMENTS

A buffer input/output statement transfers data
between a sequential access external file and a
buffer area in internal storage. The buffer input/
output statements are provided for compatibility
with other FORTRAN compilers and are not intended
for use with new programs. See appendix E for a
description of the buffer input/output statements.

60480200 E

ARgrpname
Adataq
Adatay,
AREND
grpname A namelist group name
data; A data item of one of the following
forms:
var=const

aname=constq A ... Aconst,

where:
var A simple variable
aname An array name
const A constant

No output record can be longer than 137 char-
acters, If necessary, the output record is
split into multiple records, each no Longer than
137 characters. The split occurs at the end of
a constant, after the comma within a complex
constant, or within a character constant. A
blank is inserted in the first column of each
record.

Figure 6-112. Namelist Output Format

DIRECT ACCESS INPUT/OUTPUT

To perform input and output on a direct access
file, you must satisfy four conditions: open the
file as a direct access file; declare the proper
record length; include the REC specifier in the
input/output statement; and leave out the END
specification in the input/output statement.

The OPEN statement must be used to connect a direct
access file; the OPEN statement is described later
in this section.

When the slash descriptor is used during a formatted
input operation that involves a record of a direct
access file, the remaining portion of the current
record is skipped and the record number is increased
by one. The file is positioned at the beginning of
that record.

When the slash descriptor is used during a formatted
output operation that involves a record of a direct
access file, the remainder of the record is blank-
filled, the record number is increased by one, and
the file is positioned at the beginning of that
record. Consecutive slash descriptors cause records
of a direct access file to be filled with blanks.

When a formatted output statement causes data to be
output to a direct access file, the number of char-
acters output must not exceed the record length of
the file. 1If the number of characters output to a
direct access file 1s less than the length of a
record of the file, the remaining portion of the
record is filled with blanks.

6-49

When an unformatted output statement causes data to
be output to a direct access file, the number of
words output must not exceed the length of a record
of the file. If the number of words output to a
direct access file is less than the length of a
record of the file, the remaining portion of the
record is undefined.

See figure 6-113 for an example of a formatted
direct access READ statement that reads a direct
access file. The values input by the READ
statement in the example are shown. The values
input by the READ statement are input from the file
connected to unit 1. If an input error occurs
during execution of the READ statement, control
transfers to the statement labeled 20 and the
variable N is assigned the number of the
execution-time error.

The slash descriptor in the format specification
causes the record number to be incremented by 1.

See figure 6-114 for an example of an unformatted
READ statement that reads a direct access file.
The values input by the READ statement in the
example are shown. The values input by the READ
statement are input from the file connected to unit
1. If an input error occurs during execution of
the READ statement, control transfers to the state-
ment labeled 20 and the variable N is assigned the
number of the execution-time error.

INTERNAL FILE INPUT/OUTPUT

Formatted input/output statements can perform input
and output on internal files. In order to perform
input and output on an internal file, you must use
a character variable, a character array, or a
substring as the UNIT specifier in the control
information 1list of the formatted input/output
statement.

READ (1,100,REC=2,ERR=20, IOSTAT=N) 1,
100 FORMAT(14,/14)

20 CALL IOERR(N)

Input:

Record Number Record

1 1884

2 1885 1885 I
3 1886 1886 J

4 1887

;

Figure 6-113. Formatted Direct Access
Input/Output Example

When an input operation is performed on an internal
file, data is transferred from consecutive locations
of the internal file beginning at the first char-
acter position; the input values are stored in the
items in the input 1list. Formatting is performed
according to the format specification you provide.

When the slash descriptor is used during an input
operation that involves a record of an internal
file, the remaining portion of the current record

CHARACTER CHAR*8

20 CALL IOERR(N)

Input:

READ (1,REC=2,ERR=20,I0STAT=N) CHAR

Record (Binary Representation)

Record Number

1
2
3

FIRSTAAA

SECONDAA ——————— 3| SECONDAA CHAR
THIRDAAA

] &%

Figure 6-114. Unformatted Direct Access Input/Output Example

60480200 E

is skipped and the record number is increased by
one. The file is positioned at the beginning of
that record.

When an output operation is performed on an internal
file, the values of the output list items are con-
verted to character strings and transferred to the
internal file. The character string is formatted
according to the format specification you provide.

When the slash descriptor is used during an output
operation that involves a record of an internal
file, the remainder of the current record is blank-
filled, the record number is increased by one, and
the file is positioned at the beginning of that
record. Consecutive slash descriptors cause records
of an internal file to be filled with blanks.

The length of a character string output to a record
of an internal file must not be greater than the
length of the file. If the length of the character
string output to a record of an internmal file is
less than the length of the record, the remaining
portion of the record is filled with blanks.

See figure 6-115 for an example of a formatted READ
statement that reads an internal file. The values
input by the formatted internal file READ statement
in the example are shown. The values input by the
formatted internal file READ statement are input
from the internal file CHAR.

CHARACTER CHAR*8
INTEGER INT

CHAR = '12345678"
READ (CHAR,100) INT
100 FORMAT(I4)

Input:

CHAR

12345678
LJ

/
1234

INT

Format specification for extended internal file
input/output statements is the same as for formatted
input/output statements.

Extended internal file input/output statements can
also perform input and output operations on internal
files.

A FMT specifier must appear in an extended internal
file input/output statement. The input/output list
is optional.

The extended internal file input/output statements
are:

DECODE statement
ENCODE statement

Each of these statements is described in the fol-
lowing paragraphs.

DECODE STATEMENT

The DECODE statement transfers data from an extended
internal file or from an internal file to internal
storage in the format you specify. See figure
6-116 for the format of the DECODE statement.

Figure 6-115. Internal File
Input/Output Example

EXTENDED INTERNAL FILE
INPUT/OUTPUT STATEMENTS

An extended internal file input/output statement
transfers data between an extended internal file
and internal storage in a format that you specify.

60480200 E

DECODE (no-chars,fid,uid) iolist

An unsigned integer constant or an
integer variable greater than or
equal to 1; no-chars specifies the
number of characters in each record
of the extended internal file or
the internal file.

no~chars

fid A format identifier; fid must not
specify List-directed or namelist
formatting.

uid A unit identifier; uid must be an
extended internal file identifier
or an internal file identifier.

iolist An input/output Llist; optional.

Figure 6-116. DECODE Statement Format

The DECODE statement is analogous to the formatted
READ statement.

The number of words in the input list and the edit
descriptors specified in the associated format
specification must correspond to the format of the
input record. An input record is skipped for each
slash descriptor that appears in the associated
format specification.

See figure 6-117 for an example of the DECODE
statement. The values input by the DECODE statement
in the example are shown. The values input by the
DECODE statement are input from the internal file
CREC.

6-51 ||

CHARACTER%8 CREC(4),CHAR1,CHARZ |
INTEGER I,J
DATA CREC/2%* ','12345678" ,'LAST REC'/
DECODE (32,100,CREC) 1,J,CHART,CHARZ2
100 FORMAT(16X,214,2A4)
Input: EOR
CREC(1) CREC(2) CREC(3) CREC(4) v
AMAAAADA | ADAAANAAA 12345678 LASTAREC
L ’__I 1L _Ji__1
Y Y l Y
1234 5678 LASTAAAA AREC AAAA
I J CHAR1 CHARZ2
I and J contain internal integer values.

Figure 6-117.

DECODE Statement Example

ENCODE STATEMENT
The ENCODE statement transfers data from internal
storage to an extended internal file or to an in- no-chars
ternal file in the format you specify. See figure
6-118 for the format of the ENCODE statement.
The ENCODE statement is analogous to the formatted
WRITE statement.
See figure 6-119 for an example of the ENCODE .
statement. The values output by the ENCODE state- fid
ment are output to the internal file CREC.

uid
CONCURRENT INPUT/OUTPUT
STATEMENTS
The concurrent input/output statements cause input/ iolist
output operations to be initiated, then return

ENCODE (no-chars,fid,uid) iolist

An unsigned integer constant or an
integer variable greater than or
equal to 1; no-chars specifies the
number of characters in each record
of the extended internal file or
the internal file.

A format identifier; fid must not
specify list-directed or namelist
formatting.

A unit identifier; uid must be an
extended internal file identifier
or an internal file identifier.

An input/output list; optional.

control to the program. The concurrent input/output
statements are written as calls to predefined sub-
routines. See section 11 for a description of the
concurrent input/output subroutines.

6-52

Figure 6-118.

ENCODE Statement Format

60480200 E

INTEGER I,J

DATA I,J/2%37/

CHARACTER*8 CREC (4),CHAR1,CHAR2

DATA CHAR1,CHAR2/'THEABEGI', 'NNINGAAA'/

ENCODE (32,200,CREC) CHAR1,CHAR2,I,J

1

200 FORMAT ('THISAISA',2A8,212)
Output:
CHAR1 CHAR2 1 J
THEABEGI NNINGAAA 37 37
y
I]
THISAISA THEABEGI NNINGAAA 3737A00A0
CREC(1) CREC(2) CREC(3) CREC (&)

EOR

Figure 6-119.

DIRECT CALLS TO SIL ROUTINES

You can cause control to transfer to a System
Interface Language (SIL) subroutine by wusing a
direct call to the subroutine. See section 13 for
a description of direct calls to SIL routines.

AUXILIARY INPUT/OUTPUT
STATEMENTS

Auxiliary input/output statements connect files to
units, disconnect files from units, and 1inquire

about the properties of a file or unit.
The auxiliary input/output statements are:
OPEN statement
CLOSE statement
INQUIRE statement

Each of these statements 1is described in the fol-
lowing paragraphs.

OPEN STATEMENT

The OPEN statement connects an existing file to a
unit, creates a file that 1is preconnected to a
unit, creates and connects a new file to a unit, or
changes certain of the properties of the connection
of a file and unit. See figure 6-120 for the
format of the OPEN statement.

60480200 D

ENCODE Statement Example

OPEN (cilist)

cilist A control information Llist. The UNIT
specifier must appear in cilist and

must not be an asterisk.

The following specifiers can also
appear in cilist:

ACCESS

BLANK

BUFS

ERR

FILE

FORM

IOSTAT

RECL (must be specified if

ACCESS='DIRECT")

STATUS

Figure 6-120. OPEN Statement Format

An OPEN statement can appear in any program unit.
The file connected by an OPEN statement can be ref-
erenced in any program unit.

If the file already exists, the record structure
already defined for the file 1is wused; 1if the
FORTRAN program creates a sequential access file,
the control word delimited (W) record type is used;
if the FORTRAN program creates a direct access
file, the fixed-length (F) record type is used.

If a unit is connected to a file that exists,
execution of an OPEN statement for that unit is
permitted. TIf the FILE specifier does not appear
in the OPEN statement, the file connected to the
unit by the OPEN statement is the same as the file
that is already connected to the unit.

If the file to be connected to the unit does not
exist and is the same as the file to which the unit
is preconnected, the properties specified by the
OPEN statement become part of the connection.

If the file to be connected to the unit is not the
same as the file to which the unit is connected,
the file that 1is currently connected to the unit is
disconnected from that unit before the OPEN state-
ment 1s executed. The effect is the same as if a
CLOSE statement (without a STATUS specifier) had
been executed before the OPEN statement.

If the file to be connected to the unit is the same
as the file to which the unit is connected, the
specifiers that appear in the OPEN statement must
have the same values as those that are currently in
effect; however, the BLANK specifier can have a
value different from the value currently in effect.
In that case, the new value of the BLANK specifier
becomes effective. The position of the file is not
affected. ’

If a file is connected to a unit, an OPEN statement
can be used to connect that file to another unit.
A file can be connected to more than one unit at
the same time. The position of the file is not
affected.

See figure 6-121 for examples of the OPEN statement.
The first OPEN statement in the example connects
the file MYFILE to unit 1. The file MYFILE is a
direct access file with a record 1length of 10
characters.

The second OPEN statement in the example connects
the file HERFILE to unit 1; however, the file MYFILE
is already connected to unit 1. Therefore, the
file MYFILE is disconnected from unit 1 before file
HERFILE is connected.

If an input/output error occurs during execution of
either of the OPEN statements, control transfers to
the statement labeled 20 and the variable N is
assigned the number of the execution-time error.

CLOSE STATEMENT

The CLOSE statement disconnects a file from a
unit. See figure 6-122 for the format of the CLOSE
statement.

CLOSE (cilist)

cilist A control information Llist. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

ERR
IOSTAT
STATUS

Figure 6-122. CLOSE Statement Format

A CLOSE statement can appear in any program unit.
The CLOSE statement need not appear in the same
program unit as the OPEN statement that connects
the file to the unit.

+I0STAT=N)

100 FORMAT (I5)

10 CALL OUT (NPUT)

20 CALL IOERR (N)

OPEN(1,FILE="MYFILE' ,ACCESS='DIRECT' RECL=10,ERR=20,

READ(1,100,REC=2,ERR=20,I0STAT=N) NPUT

OPEN(1,FILE="HERFILE' ,ERR=20,I0STAT=N)
READ (1,100,END=10,ERR=20, IOSTAT=N)

CLOSE (1,ERR=20, IOSTAT=N)

Figure 6-121. OPEN and CLOSE Statement Examples

60480200 J

If a CLOSE statement specifies a unit that does not
exist or has no file connected to it, the CLOSE
statement has no effect.

After a file has been disconnected from a unit by a
CLOSE statement, the file can be reconnected to a
unit as long as the file still exists, and the unit
can be reconnected to a file.

After normal termination of program execution, all
files are automatically disconnected from their
respective units. The effect is the same as if a
CLOSE statement (with the STATUS specifier value
KEEP) had been executed for each connected unit.
However, if a particular file was connected by an
OPEN statement with the STATUS specifier value
SCRATCH, the effect is the same as if a CLOSE
statement (with the STATUS specifier value DELETE)
had been executed for that unit.

See figure 6-121 for an example of the CLOSE
statement. The CLOSE statement in the example
disconnects the file HERFILE from unit 1.

If an input/output error occurs during execution of
the CLOSE statement, control transfers to the
statement labeled 20 and the variable N is assigned
the number of the execution-time error.

INQUIRE STATEMENT

The two types of INQUIRE statements are the INQUIRE
by file statement and the INQUIRE by unit statement.
The INQUIRE by file statement inquires about the
properties of a particular file. The INQUIRE by
unit statement inquires about the properties of a
particular unit. See figure 6-123 for the format
of the INQUIRE statement.

Following execution of an INQUIRE statement, the
specified parameters contain values that are
current at the time the statement is executed.

If a unit number 1is specified and the unit 1is
opened, the ACCESS, BLANK, DIRECT, EXIST, FORM,
FORMATTED, NEXTREC, NAME, NAMED, NUMBER,
OPENED, RECL, SEQUENTIAL, and UNFORMATTED
variables will contain information about the
file associated with the unit. EXIST returns a
TRUE value only if the unit has been opened by
a reference on the PROGRAM statement or the
OPEN statement; it does not indicate whether a
file by this name is local or not.

If a file name 1s specified, the ACCESS, BLANK,
DIRECT, EXIST, FORM, FORMATTED, NEXTREC, NAME,
NAMED, NUMBER, OPENED, RECL, SEQUENTIAL, and
UNFORMATTED variables will contain information
about the file and the unit it is associated
with,

If the file name specified in an INQUIRE by file
statement 1is not valid or if the file does not
exist, the values returned for the specifiers
DIRECT, FORMATTED, NAME, NAMED, SEQUENTIAL, and
UNFORMATTED are undefined.

60480200 H

INQUIRE (cilist)

cilist A control information list. The FILE
specifier must appear in cilist for
an INQUIRE by file statement. The
UNIT specifier must appear in cilist
for an INQUIRE by unit statement, and
the UNIT specifier must not be an
asterisk.

The following specifiers can also
appear in cilist:

ACCESS
BLANK

BUFS
DIRECT

ERR

EXIST

FORM
FORMATTED
IOSTAT
NAME

NAMED
NEXTREC
NUMBER
OPENED
RECL
SEQUENTIAL
UNFORMATTED

Figure 6-123. INQUIRE Statement Format

If the unit specified in an INQUIRE by wunit
statement is not valid or if the unit is not con-
nected, the values returned for the specifiers
ACCESS, BLANK, DIRECT, FORM, FORMATTED, NAME, NAMED,
NEXTREC, NUMBER, RECL, SEQUENTIAL, and UNFORMATTED
are undefined.

Values are always returned for the specifiers EXIST
and OPENED unless an error occurs.

If an error occurs during the execution of an
INQUIRE statement, the values returned for all
specifiers in the INQUIRE statement except the
IOSTAT specifier are undefined.

The INQUIRE statement can be executed before,
during, or after a file is connected to a unit.
The values returned for the specifiers are those
that are current at the time the INQUIRE statement
is executed.

A variable or array element that becomes defined or
undefined as a result of its use in a specifier in
an INQUIRE statement must not be referenced in any
other specifier in the same INQUIRE statement.

See figure 6-124 for examples of the INQUIRE state-

ment. The values returned for the specifiers in
the INQUIRE statements are shown.

6-55

CHARACTER C1%8
LOGICAL L1,L2,L3

OPEN(1,FILE="HISFILE', ACCESS='DIRECT',RECL=20)

INQUIRE (1,DIRECT=C1,0PENED=L1)

CLOSE (1)
INQUIRE(FILE='HISFILE' EXIST=L2,0PENED=L3)

Values returned by INQUIRE statements:

C1 = YES

L1 = .TRUE.
L2 = .TRUE.
L3 = .FALSE.

REWIND (cilist)
or
REWIND uid

cilist A control information Llist. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

ERR
IOSTAT

uid A unit identifier.

Figure 6-125. REWIND Statement Format

Figure 6-124. INQUIRE Statement Examples

FILE POSITIONING
STATEMENTS

The file positioning statements change the position
of a file that is connected to a unit.

The file positioning statements are:
REWIND statement
BACKSPACE statement
ENDFILE statement

Each of these statements is described in the fol-
lowing paragraphs.

REWIND STATEMENT

The REWIND statement positions a file at its initial
point. See figure 6-125 for the format of the
REWIND statement.

If the file is already positioned at its initial
point, the REWIND statement has no effect. A REWIND
statement for a file that is connected but does not
exist has no effect.

The REWIND statement cannot rewind a file connected
for direct access.

See figure 6-126 for an example of the REWIND
statement. The REWIND statement in the example
positions the file connected to wunit 1 to its
initial point.

6-56

p0 5 1=1,10
WRITE(1,100) I
100 FORMAT ('ARECORDA',I2)
5 CONTINUE
ENDFILE 1

REWIND 1

READ (1,105) I
105 FORMAT(8X,I2)

BACKSPACE 1

Figure 6-126. REWIND, BACKSPACE, and
ENDFILE Statement Example

BACKSPACE STATEMENT

The BACKSPACE statement positions a file before the
preceding record. See figure 6-127 for the format
of the BACKSPACE statement.

If there is no preceding record, the BACKSPACE
statement has no effect. If the preceding record
is an endfile record, the BACKSPACE statement
positions the file before the endfile record.

A BACKSPACE statement for a file that is connected
but does not exist is not permitted.

Backspace can only be done on units that have been
used by the OPEN statement or some data transfer
I1/0 statement.

The BACKSPACE statement cannot position a file
connected for direct access.

See figure 6-126 for an example of the BACKSPACE
statement. The BACKSPACE statement in the example
positions the file connected to unit 1 to the
preceding record, which is the first record.

60480200 H

BACKSPACE (cilist)
or
BACKSPACE uid

cilist A control information List. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

ERR
IOSTAT

uid A unit identifier.

Figure 6-127. BACKSPACE Statement Format

ENDFILE STATEMENT

The ENDFILE statement outputs an endfile record as
the next record of the file. The file 1is then
positioned after the endfile record. See figure
6-128 for the format of the ENDFILE statement.

The ENDFILE statement cannot write an endfile
record on a file connected for direct access; it
can only write an endfile record on a file con-
nected for sequential access. If a file containing
an endfile record 1is connected for direct access,
only the records that precede the endfile record
can be read.

60480200 H

ENDFILE (cilist)
or
ENDFILE uid

cilist A control information Llist. The UNIT
specifier must appear in cilist and
must not be an asterisk.

The following specifiers can also
appear in cilist:

ERR
IOSTAT

uid A unit identifier.

Figure 6-128. ENDFILE Statement Format

After execution of an ENDFILE statement, a REWIND
or BACKSPACE statement must be used to reposition
the file before data can be input or output to the
file.

An ENDFILE statement for a file that is connected
but does not exist creates the file.

See figure 6-126 for an example of the ENDFILE
statement. The ENDFILE statement in the example
writes an endfile record on the file connected to
unit 1.

PROGRAM UNITS AND STATEMENT FUNCTIONS 7

A FORTRAN program consists of one or more program
units. A program unit is a main program, a function
subprogram, a subroutine subprogram, or a block
data subprogram.

This section describes main programs, function
subprograms, subroutine subprograms, block data
subprograms, and statement functions. Intrinsic
functions and predefined subroutines are described
in sections 10 and 11.

MAIN PROGRAMS

A main program is a group of statements that begins
with an optional PROGRAM statement and ends with an
END statement. See figure 7-1 for the structure of
a main program. A FORTRAN program must have one
main program.

PROGRAM statement (optional)
Main program body

END statement

Figure 7-1. Main Program Structure

PROGRAM STATEMENT

The PROGRAM statement is the first statement in a
main program; however, the PROGRAM statement can be
omitted. The PROGRAM statement assigns a name to
the program and optionally declares files, precon-
nects files to units for {input/output operations
performed by the program, and requests the mapping
of dynamic space into large pages. See figure 7-2
for the format of the PROGRAM statement.

Using a PROGRAM statement to preconnect files to
units eliminates the need to connect files to units
using the OPEN statement. See table 7-1 for exam-—
ples of file preconnection using the PROGRAM state-
ment. For each PROGRAM statement example, the table
shows the OPEN statement that would result in the
equivalent unit and file connection.

The attributes of a preconnected file are the
attributes already assigned to the file if the file
exists. If the file is a new file, the attributes
of the file are assigned when the first input/output
statement that references the file is executed.

Certain units and files are automatically precon-
nected for formatted sequential input/output. These
units and files are used for input/output statements
that do not contain control information 1lists or
whose UNIT specifiers are asterisks. See table 7-2
for the units and files that are automatically pre-
connected and the statements that can use the files
and units.

TABLE 7-2. AUTOMATICALLY
PRECONNECTED FILES AND UNITS

File Unit Statements that can
use the preconnection

Formatted READ statement
List-directed READ statement
Namelist READ statement

INPUT SHINPUT

OUTPUT 6HOUTPUT Formatted WRITE statement
Formatted PRINT statement
List-directed PRINT statement
Namelist PRINT statement

Formatted PUNCH statement
List-directed PUNCH statement
Namelist PUNCH statement

PUNCH SHPUNCH

MAIN PROGRAM BODY

The body of a main program can contain nonexecutable
and executable statements. The statements that
must not appear in the body of a main program are:
BLOCK DATA, PROGRAM, FUNCTION, SUBROUTINE, RETURN,
END, and ENTRY. The appearance of a SAVE statement
in a main program has no effect.

A main program must not be referenced from a sub-
program or from itself.

Program execution begins with the first executable
statement in the main program.

TABLE 7-1. FILE CONNECTION EXAMPLES

PROGRAM Statement Preconnection

Equivalent OPEN Statement Connection

PROGRAM NAME(MYFILE)

PROGRAM NAME(TAPE!L)

PROGRAM NAME(UNITI)

PROGRAM NAME (MYFILE,UN=MYFILE)
PROGRAM NAME(MYFILE,TAPE1=MYFILE)
PROGRAM NAME (MYFILE,UNIT1=MYFILE)

OPEN(UNIT=6HMYFILE ,FILE="MYFILE', ...)
OPEN(UNIT=1,FILE='TAPEL", ...)
OPEN(UNIT=1,FILE="UNITL", ...)
OPEN(UNIT=2HUN,FILE="MYFILE’, ...)
OPEN(UNIT=1,FILE="MYFILE', ...)
OPEN(UNIT=1,FILE="MYFILE', ...)

60480200 A

PROGRAM pname (pSqy «.. ,PSp,IRLP=nlpl)

pname A symbolic name that is used as the name of the main entry point of the program and the name
of the object module. The symbolic name must not be the same as the name of an external sub-
program, a block data subprogram, or a common block that is used in the program. The symbolic
name must not be the same as any symbolic name that is used in the main program unit, but it
can be the same as a file name or an alternate unit name. If the PROGRAM statement is omitted,
pname is M_A I N.

pSs; A preconnection specifier; optional; ps; can be a file declaration specifier or an alternate
unit specifier.

A file declaration specifier has the following format:
fn or fn=bl
fn A symbolic file name.
bl An unsigned integer constant greater than or equal to 1 and less than or equal to 24;
bl is the buffer length in 512 word blocks for the file. The default is 8. If a
file name appears in the PROGRAM statement, the buffer Length of the file must not be
changed by any OPEN statements.
An alternate unit specifier has the following format:

an=fn

an A symbolic name that is used as an alternate unit name; the value specified for an
must be such that nHan is an external unit identifier (n is the number of characters
in an, and an is a valid system file name). Usually an is of the form TAPEk or UNITk,
where k is an integer that is no less than 0 and no greater than 999 and has no
leading zeros.

fn A symbolic file name; fn must appear previously in a file declaration specifier; fn
can appear in more than one alternate unit specifier.

[RLP=an]T A dynamic space mapping parameter of the form [RLP=nlpl; optional. It requests that a certain
number of large pages of dynamic space be mapped in at the start of program execution. This
map parameter can appear anywhere in the PROGRAM statement parameter List; however, it must not
appear more than once. Its omission means that dynamic space is mapped in small pages.

The map parameter has the following format:
CRLP] or [RLP=nlp]
nlp Optional unsigned integer constant; nlp gives the number of Large pages of dynamic
space that are mapped in at the start of program execution. A large page is 65536
full words. The default for nilp is 1. Thus, [RLP] has the same meaning as [RLP=1].

If the PROGRAM statement has neither ps; parameters nor an RLP parameter, the parentheses must not appear.

tThe brackets [1 are part of the map parameter. If you use the map parameter, the brackets must appear.

Figure 7-2. PROGRAM Statement Format

END STATEMENT FOR MAIN PROGRAMS MAIN PROGRAM EXAMPLE

A main program must end with one END statement.
See figure 7-3 for the format of the END statement.
An END statement can contain a statement label.
The END statement must not be continued. If an END
statement in a main program is executed before a
STOP statement, the END statement has the same
effect as a STOP statement.

END

Figure 7-3. END Statement Format

7-2

See figure 7-4 for an example of a main program.
The PROGRAM statement in the main program specifies
that the name of the program is AVG, and declares
two files, DATA and OUT. The file DATA is precon-
nected to unit 1 and the file OUT is preconnected
to unit 2. The file DATA must exist before program
execution and must be a formatted sequential ex-—
ternal file. The file OUT need not exist before
program execution, but if it does exist, it must be
a formatted sequential external file. If the file
OUT does not exist, it becomes a formatted sequen-
tial external file when the WRITE statement is
executed.

60480200 E

PROGRAM AVG {DATA,OUT,TAPE1=D
INTEGER NUMBER (10), NSUM
REAL RESULT

READ (1,100) (NUMBER (1) ,1=1,10)
NSUM = NADD (NUMBER)

CALL DIVIDE(NSUM,10,RESULT)

sTOP

FORMAT (1012)

FORMAT ('1THE AVERAGE OF'/10('
END

100
200

FUNCTION NADD (IARRAY)
INTEGER IARRAY (10)
N=0

po 10 1=1,10

N = IARRAY(I) + N

CONTINUE
NADD = N

RETURN
END

10

SUBROUTINE DIVIDE(N,I,Q)
INTEGER N, I

REAL Q

Q = REAL (N) /REAL(I)

RETURN
END

WRITE (2,200) (NUMBER(I) ,I=1,10) ,RESULT

',12)/* 1S ' ,F7.3)

Figure 7-4.

Main Program, Function, and Subroutine Example

FUNCTION SUBPROGRAMS

A function subprogram is a group of statements that
begins with a FUNCTION statement and ends with an
END statement. See figure 7-5 for the structure of
a function subprogram.

FUNCTION statement
Function body

END statement

A FORTRAN program can have any number of function
subprograms. A function subprogram 1is executed
when a function reference 1is encountered in a

Figure 7-5. Function Subprogram Structure

A function subprogram differs from a subroutine

statement that appears in a program unit other than
the function subprogram being referenced.

subprogram in a number of ways. See table 7-3 for
a summary of the differences between function sub-
programs and subroutine subprograms.

TABLE 7-3. DIFFERENCES BETWEEN FUNCTIONS AND SUBROUTINES
Functions Subroutines
— —————— —
How Referenced The function name appears in an expression. The subroutine name appears in a CALL
Parentheses must follow the name even if statement. Parentheses after the name can
there are no arguments. be omitted if there are no arguments.
Results A function must return a value through the A subroutine can return any number of
function name. It can also return values values through arguments and common
through common blocks and by modifying its blocks.
arguments; certain restrictions apply and
are described later in this section.
Type and A function name has a data type and length. A subroutine name does not have a data type
Length The type and length of a function name are or length.
the type and length of the function
result.
Alternate Alternate return specifiers must not occur Alternate return specifiers can occur as
Return as arguments. arguments.
60480200 A 7-3

Functions that you define are external functions.
You can also reference function subprograms that
are predefined; these functions are called intrimsic
functions, Some intrinsic functions are external
functions, some Iintrinsic functions are 1inline
functions, and some intrinsic functions can be
either external or inline. See section 10 for a
description of the external and inline intrimsic
functions.

FUNCTION STATEMENT

The FUNCTION statement is the first statement in a
function subprogram. The FUNCTION statement assigns
a name and a type to the function. The FUNCTION
statement can also specify dummy arguments used in
the function subprogram. Dummy arguments are
described later in this section. See figure 7-6
for the format of the FUNCTION statement.

typ FUNCTION fname (dargq, ... ,dargp)
or
CHARACTER FUNCTION fnamexlen (dargq, ... ,dargp)

typ A type specification for fname;
optional; typ can be any of the
following:
INTEGER
HALF PRECISION
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER
CHARACTER*Len
fname A symbolic name that is used as the
name of the main entry point of the
function.
Len An integer constant expression whose

result is greater than 0; optional;
len specifies the lLength in characters
of fname.

An asterisk enclosed in parentheses
can be specified for len, which
indicates that the length of fname is
the same as the length of fname in the
referencing program unit.

If Len is omitted, the preceding
asterisk must not appear. The default

is 1.

dargi A dummy argument, which can be a vari-
able, array, descriptor, descriptor
array, dummy function name, or dummy
subroutine name; optional. No two
dummy arguments can have the same
name. The parentheses are required
even if no dummy arguments appear.

Figure 7-6. FUNCTION Statement Format

7-4

The type of the function name is determined by the
FUNCTION statement, by a type specification state-
ment that appears in the function body, or by the
first letter of the function name. An IMPLICIT
statement that appears in the function body can
affect the type of the function name. The type of
the function name must be the same in all program
units that reference the function.

The name of a function subprogram is the name of
the main entry point of the function. You can
assign other names to a function subprogram by
using the ENTRY statement; these other names are
the names of secondary entry points of the function.
Secondary entry points are described later in this
section.

FUNCTION BODY

The body of a function subprogram can contain
nonexecutable and executable statements. The
statements that must not appear in the body of a
function subprogram are: BLOCK DATA, PROGRAM,
FUNCTION, SUBROUTINE, and END. The body of a
function subprogram must not contain a statement
that directly or indirectly references the function
subprogram.

Execution of a function normally begins with the
first executable statement in the function sub-
program. Execution of a function subprogram that
has secondary entry points can begin elsewhere in
the body of the function subprogram. Secondary
entry points are described later in this section.

The function name is considered to be a variable
name in the function body. A value must be assigned
to the function name before a RETURN statement is
executed. The value of the function name can be
referenced and changed in the function body. The
value that the function name has when a RETURN
statement is executed is the value that is returned
to the program unit that referenced the function.

The function name must not be initialized in a type
specification or DATA statement. The function name
must not appear 1in any nonexecutable statements in
the function body except in a type specification
statement or in the input/output list of a NAMELIST
statement.

If you use a function name that is the same as the
name of an intrinsic function, you cannot reference
the intrinsic function in the function body. See
section 10 for a 1list of the intrinsic function
names.

The statements in the function body can modify the
arguments that are passed to the function in order
to return additional values to the program unit
that references the function; however, a function
must not modify any arguments that are used else-
where in the statement that contains the function
reference. Also, a function must not modify any
dummy arguments whose corresponding actual arguments
are constants, symbolic constants, substrings,
vectors, function references, or expressions that
contain operators or are enclosed in parentheses.

60480200 A

See figure 7-7 for an example of a function that
modifies its arguments. The function reference in
the example passes the values 9.0 and 16.0 to the
function PYTHAG. The function returns the value
5.0 through its name; furthermore, the function
changes the value of A to 3.0 and changes the value
of B to 4.0.

PROGRAM ARGMOD
REAL A,B,C
DATA A,B /9.0,16.0/

= PYTHAG(A,B)

¢ O

END

FUNCTION PYTHAG(A,B)
REAL A,B

PYTHAG = SQRT (A+B)
A = SQRT(A)

B = SQRT(B)

RETURN

END

Figure 7-7. Modification of Function
Arguments Example

The statements in the function body can modify the
values of common block elements in order to return
additional values to the program unit that refer-
ences the function; however, two restrictioms apply:

A function must not modify any common block
elements that are used elsewhere in the state-
ment that contains the function reference.

A function must not modify a common block ele-
ment if the value of the common block element
affects another function reference that is in
the same statement.

RETURN STATEMENT FOR FUNCTION
SUBPROGRAMS

The RETURN statement 1is an executable statement
that returns control from a function subprogram to
the program unit that called the function subpro-
gram. See figure 7-8 for the format of the RETURN
statement for function subprograms.

RETURN

Figure 7-8. RETURN Statement for
Function Subprograms Format

In a function subprogram, execution of a RETURN
statement causes the value computed by the function
to replace the function reference. Evaluation of
the statement that contains the function reference
continues.

60480200 A

END STATEMENT FOR FUNCTION
SUBPROGRAMS

A function must end with one END statement. See
figure 7-3 for the format of the END statement. An
END statement can contain a statement label. The
END statement must not be continued. If an END
statement in a function is executed before a RETURN
gtatement, the END statement has the same effect as
a RETURN statement.

FUNCTION REFERENCES

A function 1is referenced by wusing a function
reference. See figure 7-9 for the format of a
function reference.

fname(aargy, ... ,aargp)

fname The name of an entry point of a
function subprogram.

aargi An actual argument, which can be a
constant, symbolic constant,
expression (except concatentation of
an operand whose length is specified
as (%)), substring, variable, array,
array element, vector reference,
descriptor, descriptor array,
descriptor array element, actual
function name, actual subroutine name,
dummy function name, or dummy
subroutine name; optional. The
parentheses are required even if no
actual arguments appear.

Figure 7-9. Function Reference Format

A function can be referenced from a main program,
statement function, another function subprogram, or
a subroutine subprogram. A function reference can
appear in an arithmetic, 1logical, or character
expression.

Recursive references are not permitted. A recursive
reference is a reference that directly or indirectly
references the function in which it appears.

A function reference causes control to transfer to
the function subprogram. The statements in the
function are executed during the evaluation of the
expression in which the function reference appears.
The values that the actual arguments have at the
time the function is referenced are the values that
are used during execution of the function.

When a RETURN statement is executed in a function
subprogram, control returns to the program unit
that referenced the function. Evaluation of the
statement that contains the function reference then
continues.

A reference to a function that has the same name as
an Intrinsic function references the intrinsic

function rather than your function. See section 10
for a 1list of the intrinsic function names. In

order to reference a function that has the same
name as an intrinsic function, you must declare the
function name in an EXTERNAL statement in all pro-
gram units that reference that function. See sec-
tion 3 for a description of the EXTERNAL statement.

See figure 7-10 for an example of a reference to a
function that has the same name as an intrinsic
function. The function reference in the example
references the function TIME that is shown, rather
than the intrinsic function TIME.

PROGRAM EXTFUN
REAL IN,OUT,HOURS
EXTERNAL TIME

READ 100, IN,OUT
100 FORMAT (2F4.1)
HOURS = TIMECIN,OUT)

END
FUNCTION TIME(IN,OUT)
REAL IN,OUT
IF(IN.LE.OUT) THEN
TIME = OUT - IN
ELSE IF(IN.GT.12) THEN
TIME = OUT + (24 - IN)
ELSE
TIME = OUT + (12 - IN)
END IF

RETURN
END

Figure 7-10. Function With Same Name as an
Intrinsic Function Example

FUNCTION SUBPROGRAM EXAMPLE

See figure 7-4 for an example of a function sub-
program. The name of the function in the example
is NADD. NADD is an integer function that has one
dummy argument, IARRAY, which 1s an array of 10
elements. The function is referenced in the main
program. The actual argument in the function
reference 1is NUMBER, which is an array of 10
elements.

SUBROUTINE SUBPROGRAMS

A subroutine subprogram is a group of statements
that begins with a SUBROUTINE statement and ends
with an END statement. See figure 7-11 for the
structure of a subroutine subprogram.

SUBROUTINE statement
Subroutine body

END statement

Figure 7-11. Subroutine Subprogram Structure

7-6

A FORTRAN program can have any number of subroutine
subprograms. A subroutine subprogram is executed
when a CALL statement is executed in a program unit
other than the subroutine subprogram being called.

A subroutine subprogram differs from a function
subprogram in a number of ways. See table 7-3 for
a summary of the differences between subroutine
subprograms and function subprograms.

You can define and reference your own subroutine
subprograms. You can also reference subroutine
subprograms that are predefined. See section 11
for a description of the predefined subroutines.
All subroutine subprograms are external subprograms.

SUBROUTINE STATEMENT

The SUBROUTINE statement is the first statement in
a subroutine subprogram. The SUBROUTINE statement
assigns a name to the subroutine and can also
specify dummy arguments that are used in the sub-
routine subprogram. Dummy arguments are described
later in this section. See figure 7-12 for the
format of the SUBROUTINE statement.

SUBROUTINE sname (dargq, ... ,dargp,)

sname A symbolic name that is used as the
name of the main entry point of the
subroutine.

dargi A dummy argument, which can be a var-

iable, array, descriptor, descriptor
array, dummy function name, dummy sub-
routine name, or asterisk; optional.
No two dummy arguments can have the
same name. If no dummy arguments
appear, the parentheses are optional.

Figure 7-12. SUBROUTINE Statement Format

The name of a subroutine subprogram cannot be
associated with a data type; the name of a sub-
routine subprogram is the name of the main entry
point of the subroutine. You can assign other names
to a subroutine subprogram by wusing the ENTRY
statement; these other names are the names of sec-
ondary entry points of the subroutine. Secondary
entry points are described later in this section.

SUBROUTINE BODY

The body of a subroutine subprogram can contain
nonexecutable and executable statements. The
statements that must not appear in the body of a
subroutine subprogram are: BLOCK DATA, PROGRAM,
FUNCTION, SUBROUTINE, and END. The body of a sub-
routine subprogram must not contain a statement
that directly or indirectly calls the subroutine
subprogram.

Execution of a subroutine normally begins with the
first executable statement in the subroutine sub-
program. Execution of a subroutine subprogram that
has secondary entry points can begin elsewhere in
the body of the subroutine subprogram. Secondary
entry points are described later in this section.

6048C200 A

The subroutine name must not appear in any state-
ments in the subroutine body.

The statements in the subroutine body can modify
the arguments that are passed to the subroutine;
however, a subroutine must not modify dummy argu-
ments whose corresponding actual arguments are
constants, symbolic constants, substrings, vectors,
function references, or expressions that contain
operators or are enclosed in parentheses. The
statements in the subroutine body can modify any
common block elements without restriction.

RETURN STATEMENT FOR SUBROUTINE
SUBPROGRAMS

The RETURN statement 1is an executable statement
that returns control from a subroutine subprogram
to the program unit that called the subroutine sub-
program. See figure 7-13 for the format of the
RETURN statement for subroutine subprograms.

RETURN alt

alt An integer constant or a simple
integer variable that indicates to
which of the statement Labels in the
CALL statement control is to
transfer when the RETURN statement
is executed; optional. If alt is
not specified, control transfers to
the statement that follows the CALL
statement.

Figure 7-13. RETURN Statement for
Subroutine Subprograms Format

In a subroutine subprogram, execution of a RETURN
statement transfers control to the first executable
statement after the CALL statement that called the
subroutine subprogram. You can specify that con-
trol be returned to another statement in the program
unit that called the subroutine by using alternate
returns.

In order to use an alternate return, you must supply
a list of statement labels in the actual argument
list of the CALL statement that calls the sub-
routine. See the description of the CALL statement
for the syntax of the statement label 1list.

You must also place asterisks in the dummy argument
lists of the SUBROUTINE statement or ENTRY statement
in the subroutine subprogram. The asterisks must
correspond to the statement labels specified in the
actual argument list of the CALL statement. See
the description of the SUBROUTINE statement and the
description of the ENTRY statement for the syntax
of the dummy argument list.

The RETURN statement parameter can then be used to
indicate to which of the statement labels in the
CALL statement control transfers when the RETURN
statement is executed. A RETURN statement parameter
of 1 indicates that control returns to the first
statement label in the actual argument 1list,

60480200 F

a RETURN statement parameter of 2 indicates that
control returns to the second statement label in
the actual argument list, and so on.

If the RETURN statement parameter is less than 1 or
greater than the number of statement labels speci-
fied in the actual argument list, control returns
to the first executable statement after the CALL
statement that referenced the subprogram.

You can use a RETURN statement that has no RETURN
statement parameter in a subroutine that also uses
alternate returns.

Alternate returns must not appear in a function
subprogram.

END STATEMENT FOR SUBROUTINE
SUBPROGRAMS

A subroutine must end with one END statement. See
figure 7-3 for the format of the END statement. An
END statement can contain a statement label. The
END statement must not be continued. If an END
statement in a subroutine is executed before a
RETURN statement, the END statement has the same
effect as a RETURN statement with no alternate
return specifier.

SUBROUTINE CALLS

A subroutine is called by using the CALL statement.
The CALL statement 1is an executable statement that
transfers control to a subroutine subprogram or a
predefined subroutine. See figure 7-14 for the
format of the CALL statement.

A subroutine can be called from a main program,
function subprogram, or another subroutine sub-
program.

Recursive calls are not permitted. A recursive
call is a CALL statement that directly or indirectly
calls the program unit in which it appears.

When a CALL statement is executed, control transfers
to the subroutine subprogram or predefined sub-
routine specified in the CALL statement. Execution
of the CALL statement is not complete until control
returns from the subroutine subprogram or predefined
subroutine specified in the CALL statement.

Control normally returns to the first executable
statement after the CALL statement. However, you
can specify that control return to some other
statement in the calling program unit. See the
description of the RETURN statement for subroutine
subprograms.

SUBROUTINE SUBPROGRAM EXAMPLE

See figure 7-4 for an example of a subroutine
subprogram. The name of the subroutine in the
example is DIVIDE. It has three dummy arguments,
N, I, and Q that are variables of type integer,
integer, and real, respectively. The subroutine is
called in the main program. The actual arguments
in the CALL statement are NSUM, 10, and RESULT.
NSUM is an integer variable, 10 1is an 1integer
constant, and RESULT is a real variable.

7-7 |

CALL sname (argument Llist)

argument Llist aargq, ... ,aarg,

sname The name of an entry point of a subroutine subprogram.

If no argument List appears, the parentheses are optional.

aarg; An actual argument, which can be a constant, symbolic constant,
expression (except concatentation of an operand whose length is
specified as (%)), substring, variable, array, array element, vector
reference, descriptor, descriptor array, descriptor array element,
actual function name, actual subroutine name, dummy function name,
dummy subroutine name, or alternate return specifier. An alternate
return specifier is a statement label prefixed by an asterisk or
ampersand. A statement label that appears in the argument List of a
CALL statement must appear in the lLabel field of an executable
statement in the program unit that contains the CALL statement.

Figure 7-14.

SUBPROGRAM COMMUNICATION

You can transfer data between main programs,
function subprograms, and subroutine subprograms in
two ways: by using common blocks and by using
arguments.

COMMON BLOCKS

Common blocks are areas of storage that can be
referenced by one or more program units. The two
types of common blocks are unnamed common blocks
and named common blocks. See section 3 for a
description of common blocks.

ARGUMENTS

Arguments are individual language elements that can
be referenced by one or more program units. The
two types of arguments are dummy arguments and
actual arguments.

Dummy Arguments

Dummy arguments are variables, arrays, descriptors,
descriptor arrays, dummy function names, or dummy
subroutine names that appear in the argument list
of a FUNCTION, SUBROUTINE, or ENTRY statement.
Asterisks used for alternate returns from a sub-
routine can also appear in the dummy argument list
of a SUBROUTINE statement, or in the dummy argument
list of an ENTRY statement that appears in a sub-
routine subprogram.

Dummy arguments must be assigned appropriate data
types. Dummy arguments can be used in the body of
a function or subroutine subprogram. A dummy argu-
ment must not appear in a COMMON, EQUIVALENCE, or
DATA statement.

Actual Arguments

Actual arguments are constants, symbolic constants,
expressions (except concatenation of an operand
whose length 1is specified as (*)), substrings,
variables, arrays, array elements, vectors, de-
scriptors, descriptor arrays, descriptor array

7-8

CALL Statement Format

elements, actual function names, actual subroutine
names, dummy function names, or dummy subroutine
names that appear in the argument list of a func-
tion reference or CALL statement. Alternate return
specifiers can appear in the actual argument list
of a CALL statement.

ARGUMENT CORRESPONDENCE

Each actual argument corresponds to a dummy argu—
ment. The data type of an actual argument must be
the same as the data type of the dummy argument to
which it corresponds, except that an actual argument
of type Hollerith can correspond to a dummy argument
of any type other than character or bit.

The length of an actual argument must be the same
as the length of the dummy argument to which it
corresponds.

The number and order of the actual arguments must
be the same as the number and order of the dummy
arguments.

If an actual argument 1is a constant, symbolic
constant, expression that contains operators or is
enclosed in parentheses, substring, or vector, the
value of the corresponding dummy argument must not
be modified in the subprogram.

See table 7-4 for the legal correspondences of

actual and dummy arguments.

RESTRICTIONS ON ASSOCIATION
OF ARGUMENTS

If a subprogram reference causes a dummy argument

in the referenced subprogram to become associated

with another dummy argument in the referenced

subprogram, neither dummy argument can be defined

during execution of that subprogram.

For example, if a subroutine is headed by:
SUBROUTINE XYZ (A,B)

and is referenced by:

CALL XYZ (C,C)

60480200 F

then the dummy arguments A and B each become
associated with the same actual argument C and
therefore with each other. Neither A nor B can be
defined during this execution of subroutine XYZ or
by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument
to become associated with an entity in a common
block in the referenced subprogram or in a sub-
program referenced by the referenced subprogram,
neither the dummy argument nor the entity in the
common block can be defined within the subprogram
or within a subprogram referenced by the referenced
subprogram.

For example, if a subroutine contains the state-
ments:

SUBROUTINE XYZ (A)
COMMON C

and is referenced by a program unit that contains
the statements:

COMMON B
CALL XYZ (B)

then the dummy argument A becomes associated with
the actual argument B. Because B and C are
allocated the same space in the blank common block,
A and C then reference the same space. Neither A
nor C can be defined during execution of the
subroutine XYZ or by any procedures referenced by
XYZ.

60480200 F

ARRAYS AS DUMMY ARGUMENTS

The size of an array that is a dummy argument must
be declared in the subprogram 1like all other
arrays.Dimension bound expressions for such an
array can contain integer variables that are in a
common block or that are dummy arguments. If an
integer variable that is used in a dimension bound
expres— sion is a dummy argument, it must appear in
the d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>