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CYBER 180 OVERVIEW 1

This document presents an overview of the CYBER 180 system, primarily from a hardware
perspective. A brief software overview, however, is contained in section 12.

INTRODUCTION
The CYBER 180 mainframes support two architectures:

e The CYBER 180 architecture (Virtual State) with 64-bit central memory words, virtual
memory management, 16-bit PP instructions and 16-bit I/0 channels, and so forth.
CYBER 180 is the native mode of the processor.

° The CYBER 170 architecture (Real State) with 60-bit central memory words, 12-bit PP
instructions and 12-bit I/0 channels, and so forth. The CYBER 170 environment
requires support from the CYBER 180 state of the processor.

Both the CYBER 170 and CYBER 180 environments may be present at the same time with the
processor executing in either environment. The CYBER 170 environment allows current

CYBER 170 application codes to be efficiently run on the CYBER 180 mainframes. Either CYBER
170 NOS or NOS/BE may be installed in the CYBER 170 environment of CYBER 180. This allows
users to install CYBER 180 mainframes and utilize the CYBER 170 application packages and
other existing CYBER 170 programs and then migrate tasks to the CYBER 180 environment as
desired. The CYBER 180-based operating system is termed NOS/VE.

The CYBER 180 mainframe consists of a processor, central memory, and I/0 unit (figure 1-1).

1 PROCESSOR

MAINTENANCE o CENTRAL
CHANNEL T MEMORY
1
Y
, ////<(/ v
\ ( 1/0 UNIT | 1/0 SUBSYSTEMS
o o

Figure 1-1. CYBER 180 Mainframe
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The first four CYBER 180 systems have been termed S1, S2, S3 and Theta. The smallest of the
four systems, Sl, is approximately equal to a CYBER 172 in performance. Each of the larger
systems 1is targeted at a 3X increase in performance resulting in Theta being approximately
27 times more powerful than Sl. The four systems with their respective Series 800 product
designations and central memory sizes are as follows:

sl 825 2 to 8 M Bytes

S2 835 4 to 16 M Bytes
S3 855 4 to 16 M Bytes
Theta 885 4 to 32 M Bytes

CENTRAL PROCESSOR

The CYBER 180 processor has the following primary operational registers:

Program Address (P) Register - 64 bits
16 Address (A) Registers - 48 bits ecach
16 Operand (X) Registers - 64 bits each

These and other registers associated with a specific process (or job) are contained in a 52
word (64 bit words) exchange package. This package contains all the information required
for the processor to initiate or restart a process. These registers represented in the
exchange package are called process registers as they are associated with a specific process
(or job). There are also 14 registers in the processor which contain information relative
to the processor rather than to a specific process. Processor registers include items such
as page table information, options installed, and error logging. Two of these processor
registers, Monitor Process State (MPS) and Job Process State (JPS) contain the real memory
addresses for the current exchange package for monitor and job state respectively. Thus, an
exchange operation from CYBER 180 monitor to job will store the environment of the monitor
process in an exchange package at MPS and initiate the process whose exchange package is
‘located at JPS. This monitor to job exchange (figure 1-2) is initiated by an Exchange
Instruction within the monitor process. The subsequent job to monitor exchange may be
initiated by either an Exchange instruction or by the occurrence of some condition requiring
monitor intervention such as external interrupt, page fault, and power warning.

1-2 60459960 A



PROCESSOR

PROCESSOR REGISTERS

CENTRAL MEMORY

MPS
MPS .
JPS STEP 1
-— MONITOR EXCHANGE PACKAGE
PROCESS REGISTERS JPS —
P Register JOB EXCHANGE PACKAGE .
16 A Registers
16 X Registers
!
STEP 2

Figure 1-2.

VIRTUAL MEMORY

Monitor to Job Exchange

Central processor references to central memory (other than an exchange operation) involve a

virtual mapping algorithm.
paragraphs:

1.
address?)

60459960 A

Security and access validation (Does this process have permission to access this

The transformation from the 48-bit virtual address used by the
process (or job) to the actual address involves 2 steps as described in the following




2. Virtual Memory Management (Where does the desired information actually reside?)

The 48 bit Process Virtual Address (PVA) (figure 1-3) consists of the following:

16 20 32 63

PVA RN SEG BN

Figure 1-3. Process Virtual Address

RN: Ring Number (0-15) for security validation

SEG: Segment Number identifying 1 of 4096 segments potentially available within a
single process”s address space. Each of these segments has security
properties such as read only and execute only.

BN: Byte Number identifying a specific byte on the leftmost byte of a word or
string within a specific segment.

NOTE

All registers are numbered left to right
with bit 63 as the rightmost bit.

The first step of this virtual mapping algorithm is organized on a segment basis because
security attributes are assigned per segment. The segment number is used to obtain a Segment
Descriptor from the Segment Table for the process. This Segment Descriptor contains
security information for the segment in this specific process. For example, a segment could
be read only in one process while reads and writes both could be allowed from another
process. This security information plus the nature of the reference (RNI, read, write, and
so forth) are used to verify the validity of the request relative to security considerations.

When the request is invalid the process will be halted and the operating system notified.
When the request is valid, an Active Segment Identifier (ASID) is obtained from the Segment
Descriptor. This ASID identifies the segment on a system basis. Thus, many processes may
individually use segments such as 0, 1, or 2, and have the virtual algorithm map these into
unique system addresses. ‘This also allows segments named uniquely in different processes to
map into a single segment (with potentially different access privileges). This ASID
replaces the Ring Number and Segment Number in the PVA to produce a System Virtual Address
(SVA) (figure 1-4).

16 32 63

ASID BN

Figure 1-4. System Virtual Address

ASID: Active Segment Identifier
BN: Byte Number from the PVA

1-4 60459960 A



The second step of the virtual mapping algorithm is organized on a page basis because
physical memory is managed on a page basis.
page) of the segment within the system.
are currently in central memory are listed in the System Page Table.
step 1) is used to access this table to determine if the page is in central memory, and if
so, where. When the page is in central memory, the desired references are completed and
processor execution continues. When the page is not in central memory, the process in
execution is interrupted. Control is then given to the operating system which makes the

This step locates the required portion (or
Those pages of the various active segments which
The SVA (produced in

necessary arrangements to have the desired page brought into central memory after which the

interrupted process may be resumed.

The virtual mapping algorithm, terminating in a Real Memory Address (RMA) for central

memory, may be summarized as shown in figure 1-5.

PVA

&

SEGMENT TABLE

SECURITY
AND ACCESS (Is this a valid reference
VALIDATION for this process?)

SVA

SYSTEM PAGE TABLE
PHYSICAL
MEMORY (Is this address in a page
MANAGEMENT currently in central
memory?)
RMA
Figure 1-5. PVA To RMA Transformation

Since both the Segment Table and System Page Map reside in central memory,
that some type of hardware assist will be required to achieve high performance.
hardware assistance will vary according to the performance requirements of a specific

it is obvious

system; however, figure 1-6 illustrates a typical approach implemented in several processors.

60459960 A
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A cache-like Segment Map containing the Segment Descriptors for the most recently accessed
segments is first accessed followed by a reference to the Segment Table in central memory
only when the Segment Descriptor is not in the Segment MAP. A Page Map similarily supports
the SVA to RMA translation process. In addition the SVA is used in parallel to the Page MAP
reference to access a cache memory organized by SVA. When the cache contains the data, the

access to the Page MAP is terminated. When the cache does not contain the data, the access
through the Page MAP and on to central memory is continued.

PVA

Y

1
SEGMENT [NOT IN | SEGMENT _ | INVALID
MAP SEGMENT TABLE > | REFERENCES
MAP
v VALID REFERENCES
SVA
PAGE NOT IN
, _ CENTRAL MEMORY
i Y
NOT IN SYSTEM -
HE -
CAC PAGE MAP AGE PAGE TABLE
MAP
v OPERATING
SYSTEM
RMA CONTROL

CENTRAL
MEMORY

4
DATA %

Figure 1-6. Typical MAP/CACHE Usage
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INSTRUCTION SET

The CYBER 180 processor instruction set consists of the following 149 instructions:

General (Load, Store, Branch) 76
System (Call, Return, and so forth) 19
Floating Point 16
BDP 18
Vector (Theta systems only) _20

149

The 76 general instructions include load and store operations on words (64 bits), bytes and
bits; integer arithmetic operations; branches, copies, address arithmetic, direct enters and
shift operations.

The system instructions include CALL, RETURN and POP instructions to facilitate the use of
mod=! .r z2odz, The EXCHANGE, COMPARE/SWAP, PROCESSOR INTERRUPT and TEST AND SET BIT support
task management and interprocessor communication. The COPY FREE COUNTER provides access to
a 48-bit microsecond timer for system accounting. The COPY TO/FROM STATE REGISTER instruc-
tions allow the reading and writing of certain processor and process state registers. The
LOAD PAGE TABLE INDEX and PURGE BUFFER instructions allows the operating system to maintain
the MAP, cache and System Page Table. The BRANCH ON CONDITION REGISTER instruction allows
the testing and alteration of the registers involved in the interrupt structure. The
KEYPOINT instruction allows both trace and timing data to be gathered on a process.

The single-precision floating-point instructions operate on 64-bit floating point operands
consisting of a 49-bit sign/magnitude coefficient (48-bit positive number plus sign bit) and
a 15-bit exponent allowing a range of 2+4095 , 9-4096 plus representations for Indefl-
nite, Infinite and Zero. The floating-point operations are two address of the form, Xk
replaced by Xk + Xj (in contrast to CYBER 170 which is Xi replaced by Xj + Xk). There are
also two convert instructions which allow conversion between single-precision operands and
64-bit integers. The double-precision floating-point instructions support use of double
length coefficients (96 bits plus sign). The BRANCH and COMPARE instructions complete this
subset.

The BDP instructicns use descriptor fields directly following the instruction in the code
stream to describe fields in central memory involved in the BDP operations. For example,
the DECIMAL SUM instruction reads two decimal fields from central memory, sums them and
replaces one of the two input fields with the result. There are 16 different data formats
which may be specified for these fields including binary, packed and unpacked decimal. Not
all types of data formats are acceptable input for every instruction.

The vector instructions perform integer, logical and single-precision floating-point
operations on data fields in central memory up to 512;3 words in length. These data

fields are always contiguous except for summation which produces a single output operand and
the Gather, Scatter pair of instructions which are designed specifically for noncontiguous
operations.

Refer to section 10 for more information.
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CENTRAL MEMORY

The central memories for the CYBER 180 systems are available in the following sizes:

M1 825 2, 4 or 8 MB

M2 835 4, 8, 12 or 16 MB

M3 855 4, 8, 12 or 16 MB
THETA 885 8, 12, 16, 24 or 32 MB

These memories all include Single Error Correction/Double Error Detection (SEC/DED) as is
described under RAM. Each memory contains one port for the I/0 unit, one port for the
processor and one port for a second processor.

1/0 UNIT (IOU)

The IOU contains up to 20 peripheral processors (PP”s) and up to 24 I/0 channels (either
CYBER 170 12-bit channels and/or CYBER 180 16-bit channels). The PP°s each have a 4K x
16-bit memory and are capable of accessing central memory and any I/0 channels.

These PP”s execute both a 12-bit instruction set compatible with CYBER 170 and a new 16-bit
instruction set. These are implemented such that the 12-bit instruction set is a subset of
the 16-bit instruction set. The 12-bit instruction set allows appropriate I/0 system
support of the CYBER 170 state in the mainframe such that CYBER 170 NOS and NOS/BE are
supported. The 12-bit instruction set includes 60-bit read/write operations for central
memory, the required processor interrupt signals and the ability to utilize the 12-bit CYBER
170 channels.

The 16-bit instruction set allows support of the CYBER 180 state in the mainframe and

includes 64-bit read/write operations for central memory and the ability to utilize the
16-bit CYBER 180 channels.

MAINTENANCE CHANNEL

The maintenance channel provides an access from any PP to a set of maintenance registers
within a specific system element such as processor, memory or 1/0 unit. These registers are:

) control registers independent of a specific process

° error logging and status registers
° performance data registers

1-8 60459960 A



A typical system is illustrated in figure 1-7.

]

PROCESSOR

- AARI
CENTRAL
MEMORY

o]

1/0 UNIT
=Imac |

MAC = MAINTENANCE ACCESS CHANNEL
MR = MAINTENANCE REGISTERS

Y

Figure 1-7. Typical Maintenance Channel

The PP may use the maintenance channel to perform operations such as:

writing the processor registers such as Page Table Address

reading the Corrected Error Logs from central memory

reading the Options Installed Register in the IOU to determine the number of PPs

initializing all system elements

causing the processor to perform a exchange operation loading the exchange package

from the location pointed to by MPS, setting the CYBER 180 Monitor Flag and

beginning execution

° causing the processor to halt, allowing the reading of selected error logs followed
by resumption of processor execution

e causing the processor to halt execution and then to perform a an exchange operation

storing an exchange package into memory

CALL/RETURN OPERATIONS

The CALL, RETURN and POP operations efficiently support structured languages like PASCAL.
The CALL instruction simply stores a copy of its current environment such as register
contents or flags into central memory and then branches to a new process and resumes
execution. When the new or CALLed process is complete, the execution of a RETURN
instruction retrieves the environment from central memory and resumes execution immediately
following the CAIL instruction. The environment stored into central memory is called a
STACK FRAME and is similar in format to an exchange package. This STACK FRAME is stored
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into an area called a STACK which may contain many STACK FRAMES as successive processes are

CALLed without iIntervening RETURN operations.

STACK FRAMES from the STACK in circumstances when a RETURN is not appropriate.

The POP instruction facilitates removal of

The TRAP operation very closely parallels a CALL except that the TRAP is initiated by the
interrupt structure rather than by an explicit instruction.

INTERRUPT

The CYBER
Condition
recording

STRUCTURE

180 Interrupt Structure is organized around two 16-bit registers; the Monitor
Register (MCR) and the User Condition Register (UCR). These registers allow the

of those program anomalies or other events potentially important enough to justify

the interruption of the process currently being executed. Figures 1-8 and 1-9 list the

conditions represented in each register and outlines the action to be taken for each. Each

bit in the two registers has an associated mask bit which allows some selection of the
action to be taken. The actions to be taken include:

HALT - The processor stops execution.
EXCH - An exchange to CYBER 180 monitor mode.
TRAP - CALL-1ike operation to amother process without
performing an exchange.
STACK - Record condition but take no further action at this time.
ASSOCIATED MONITOR MASK M:ISTK
REGISTER BIT SET CLEAR
TRAP
TRAP ENABLED TRAP DISABLED ENAOB;.ED
DISABLED
F BIT NUMBER AND DEFINITION Jos, | Mowmom | om | MOMTOR | jiowiron
- 48 Detected Uncorrectable Error Mon EXCH TRAP EXCH HALT HALT
- 49  Unassigned EXCH TRAP EXCH HALT HALT
P+ 50 Short Warning Sys EXCH TRAP EXCH STACK STACK
51 Instruction Specification Error Mon EXCH TRAP EXCH HALT HALT
52  Address Specification Error Mon EXCH TRAP EXCH HALT HALT
P+ 53 170 Exchange Request Sys EXCH TRAP EXCH STACK STACK
54  Access Violation Mon EXCH TRAP EXCH HALT HALT
55  Environment Specification Error Mon EXCH TRAP EXCH HALT HALT
P+ 56 External Interrupt Sys EXCH TRAP EXCH STACK STACK
P 57 Page Table Search Without Find Mon EXCH TRAP EXCH HALT HALT
P+ 58 System Call Status - This bit is a flag only and does not cause any hardware action.
P+ 59  System Interval Timer Sys EXCH TRAP EXCH STACK STACK
P/P+*| 60 Invalid Segment/Ring Number Zero Mon EXCH TRAP EXCH HALT HALT
P 61 Outward Call/lnward Return Mon EXCH TRAP EXCH HALT HALT
P+ 62  Soft Error Log Sys EXCH TRAP EXCH STACK STACK
- 63 Trap Exception Stétus - This bit is a flag only and does not cause any hardware. action.
* P, unless P+ for RNO on loads

1-10

Figure 1-8. Monitor Condition Register
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ASSOCIATED USER MASK M::-K
REGISTER BIT SET CLEAR
TRAP
TRAP ENABLED * TRAP DISABLED ENA()BF:.ED
DISABLED
P JoB MONITOR JoB moniToR | JOB OR
REG BIT NUMBER AND DEFINITION MODE MODE MODE MODE MODE
48  Privileged Instruction Fault Mon TRAP TRAP EXCH HALT
49  Unimplemented Instruction Mon TRAP TRAP EXCH HALT These
50 Free Flag User TRAP TRAP STACK STACK mask bits
P+ 51 Process Interval Timer User TRAP TRAP STACK STACK are
52 Inter-ring Pop Mon TRAP TRAP EXCH HALT p”"ﬁ:““w
53 Critical Frame Flag Mon TRAP TRAP EXCH HALT
P+ 54  Keypoint User TRAP TRAP STACK STACK
p 55 Divide Fault User TRAP TRAP STACK STACK STACK
p 56 Debug User TRAP TRAP STACK STACK STACK
P 57  Arithimetic Overflow User TRAP TRAP STACK STACK STACK
P+ 58 Exponent Overflow User TRAP TRAP STACK STACK STACK
P+ 53 Exponent Underflow User TRAP TRAP STACK STACK STACK
P+ 60 F. P, Loss of Significance User TRAP TRAP STACK STACK STACK
[] 61 F. P. Indefinite User TRAP TRAP STACK STACK STACK
P 62 Arithmetic Loss of Significance User TRAP TRAP STACK STACK STACK
[ 63 Invalid BDP Data User TRAP TRAP STACK STACK STACK
Figure 1-9. User Condition Register
60459960 A
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A simple example is the occurrence of power failure warning with the processor in job mode
which will be indicated by the setting of bit 50 in the MCR. This in turn causes an
Exchange to CYBER 180 monitor which in turn allows the processor to take the appropriate
action in view of imminent shutdown. A process generated condition such as Arithmetic
Overflow (UCR 57) on the other hand may simply be ignored or stacked by the process.

Figure 1-10 illustrates the different methods of transition between various CYBER 180
processes. The CYBER 180 Monitor initiates task A which in turn CALLS task B which at a
later point initiates a RETURN to task A. At some other point in time a condition occurs in
task A which causes a TRAP to the trap handler which subsequently returns control to task A.

C180
MONITOR

C180 MONITOR STATE
/ €180 JOB STATE

HANDLER

Figure 1-10. Transitions Between CYBER 180 Tasks
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Figure 1-11 illustrates the initiation.of task D which CALLs task B which in turn CALLs task
C which subsequently passes control back to task D through a series of two RETURN opera-
tions. Note that task B may be shared by A and D.

C180
MONITOR

C180 MONITOR STATE
C180 JOB STATE

C180
TASK D

HANDLER

RETURN CALL

C180
TASK C

Figure 1-11. Multiple Level Call
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C170 SUPPORT

The ability to execute CYBER 170 software on the CYBER 180 mainframes is an important part
of the CYBER 180 strategy. The CYBER 170 enviroment is supported somewhat like a special
purpose CYBER 180 job as illustrated in figure 1-12. Both CYBER 170 monitor and job state
exist within the CYBER 180 job state. CYBER 170 state is not allowed to exist within CYBER
180 monitor state. Transitions between CYBER 170 monitor and CYBER 170 job do not require
any intervention by a CYBER 180 task. The CYBER 170 Exchange Requests from the PP”s and
CYBER 170 Central Exchange Jump to MA cause CYBER 170 exchanges directly from CYBER 170 job
to monitor. CYBER 170 Central Exchange Jumps to Bj+K cause CYBER 170 exchanges directly

from CYBER 170 monitor to job.

While the CYBER 170 Exchange Requests from PP”s are handled within the CYBER 170
environment, all other interrupts will cause a transition (TRAP or Exchange) to the CYBER
180 state. There is a CYBER 180 task named Executive Interface (EI) which is directly
involved in the support of the CYBER 170 environment and handles any traps from within the
CYBER 170 environment. For example, the CMU instructions are not executed directly in the
CYBER 170 enviromment but instead cause a Trap to EI which simulates the CMU operation and
then executes a Return to the subsequent CYBER 170 instruction.

Thus, the CYBER 170 environment within the CYBER 180 mainframes consists of the hardware
plus EI and the CYBER 180 monitor.

There are several extensions to the CYBER 170 processor instruction set and architecture to
allow a 2-million word central memory (the instruction space of a specific job still being
limited to 131K in CYBER 170). These are extensions rather than modifications, thus, CYBER
170 user jobs that ran under NOS or NOS/BE are directly transportable to the CYBER 180
mainframes with NOS or NOS/BE installed. The operating systems are basically identical to
those running on CYBER 170 mainframes with minor changes to take advantage of the
extensions. There is also the capability to declare part of central memory as Unified
Extended Memory (UEM) and thus to access it via the 011, 012, 0l4, Ol5 instructions in a
manner analogous to ECS on the CYBER 170°s and LCME on the CYBER 176. This 2-million word
address space, however allocated (CM or UEM), 1s one CYBER 180 segment with the ASID of
FFFF).

The PPs are capable of running dual state also. When executing 12-bit instructions and
using the 12-bit CYBER 170 channels, the PP"s are directly compatible to CYBER 170
mainframes with the addition of a Relocation (R) register to allow access to the entire
CYBER 170 2-million word address space. The PP when running 12-bit instruction may initiate
60-bit read or write operations with central memory. The 60-bit write operations will
automatically cause the purge of appropriate cache entries where necessary. (The byte
number plus the knowledge that 60-bit writes imply an ASID of FFFF allow this purge).
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C180
MONITOR

C180 MONITOR

€180 JOB
W C170 STATE
c180 g2 OF C180
TASK A ~F
05
& c170

MONITOR

C170

C170
EXCHANGE

MONITOR

C170 JOB

EXECUTIVE
INTERFACE

Figure 1-12. CYBER 170 Processor Environment

RAM

A key part of the CYBER 180 strategy is to achieve a significant step forward in the

reliability, availability and maintainability of these systems. This has been an integral
part of the hardware design process.

Reliability features are intended to reduce the number of hardware and software fallures and
reduce the risk of a minor component fault becoming a major equipment or system failure.
Availability features provide alternate solutions to failures rather than immediate
correction, thus allowing the system to remain available to users until a later time when
proper corrections can be made. Maintainability features make the system easier to maintain
by improving error isolation and ease of correction. Because these features sometimes

60459960 A



overlap, there is no attempt made here to separate them according to reliability,

availability, or maintainability.

CYBER 170/180 SIMILARITIES/DIFFERENCES SUMMARY

Some of these features are:

Confidence level tests run agailnst critical system elements during system

initialization.

Maintenance registers to set certain conditions and report error status.

Parity checking on major data and address paths.

SECDED in central memory.

Reconfiguration of central memory to bypass a failing area.

Reconfiguration of peripheral processors to bypass a failing processor.

On-line diagnostics that can be run concurrent with customer usage.

An engineering file to predict potential failures.

Isclation diagnostics to narrow down the cause of failure.

Remote technical assistance.

CPU

CYBER 170

60-bit word

Word addressing

8 X registers (60 bits)

-8 B registers (18 bits)

8 A registers

1°s complement arithmetic

CYBER 170 instruction set

Register-to-register operations

Some character handling instructions

CYBER 180

64-bit word

Byte/word addressing (8
bytes/word, byte = 8 bits)

16 X registers (64 bits)

No B registers

16 A registers (48 bits)

(store/load instructions)

2”s complement arithmetic in CYBER 180
State, 1°s complement arithmetic in
CYBER 170 State

CYBER 180 + CYBER 170 instruction set mode
bits Virtual Machine Identifier (VMID) in
CYBER 180 exchange package enables CYBER
180 or CYBER 170 State Instructions
Register-to~register operations

Full set of character handling instructions

Vector instructions (memory to memory) on
high—-performance models
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MEMORY

PPs

CYBER 170

Maximum 131K word user address space

RA/FL relocation

17-bit word address within RA/FL
defined address space

262K maximum system executable
memory

Memory moves + swapping to manage
memory

CYBER 170

Up to 2x10 12-bit PPU"s
Up to 2x12 12-bit channels

Executes 12-bit PPU code

Memory size is 4K x 12 bits
12-bit wide data channels

60-bit access to central memory
to central memory

18-bit central memory address
for PPU read/write

Real central memory addressing
500-ns major cycle time

16-words long deadstart panel

60459960 A

CYBER 180

4096 times 2**3]1 byte user virtual address
space

Hardware-segmented memory (maximum 4096
segments per user address space)

Two-part virtual address—-segment number
(12 bits)-signed byte offset into segment
(32 bits) space

64-Mbyte (potentially 2#**31 byte) executable

real memory 1 11471 7?7/ ( q?

Hardware paged + swapping to manage memory

CYBER 180

Up to 4x5 16-bit PP”s
Up to 6x4 12/16~bit channels

Executes 12-bit, 16-bit, or mixture, PP
code (upward compatible with CYBER 170)

Memory size is 4K x 16 bits
12-and/or 16-bit wide data channels
64—-(4x16 bits) and 60-(5x12 bits) bit access
28-bit central memory address for PP
read/write
Real central memory addressing
250-ns major cycle time
16-words long deadstart panel
+

512-word read only memory usable at
deadstart
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SYSTEM

CYBER 170

No shared memory among user address
spaces (defined by its RA/FL)

Code/data mixed within user”s
address space

Exchange operation to go to
CPU Momitor

CPU supports CYBER 170 instruction
set

System runs at System Control
Points or in PPU”s, CPU
Monitor routes RA+1 requests

Subsystems (that is, Telex, Magnet,
Data Manager, and so forth) are
protected by RA/FL mechanisms

from -each otheror user, can be
called only via CPU Monitor

CYBER 180

Segments sharable among user address spaces
(code and data sharing possible)

Segments can be read/write/ execute, or
combination - globally sharable code

Exchange operation to go to CPU Monitor

CPU supports coexisting CYBER 180 and
CYBER 170 instruction sets. VMID field,
within CYBER 180 exchange package, is used
to switch between CYBER 170/180 State
instruction sets. The CYBER 170
environment for CYBER 170 NOS or CYBER 170
NOS/BE is established within the CYBER 180
job space and then state switching may be
accomplished by an exchange or trap
operation and Call or Return instructioms.
CYBER 170 external interrupts are supported
and handled within the CYBER 170
environment.

Most CYBER 180 system code runs within user
address space and obeys the same calling
calling, loading/linking conventions.

-Levels of system code are protected by a
hardware supported hierarchical ring
mechanism from less capable code modules
(15 ring levels are provided).

-System code can be directly called by
RETURN Jump like CALL instruction without
software assist.

Subsystems are protected by hardware
supported (key/lock) mechanisms from each
other, directly callable by user code with-
out software assist
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CYBER 180 HARDWARE SUMMARY

CONFIGURATION

Currently four CYBER 180

S1 (Pl processor, Ml
S2 (P2 processor, M2
S3 (P3 processor, M3
THETA (processor and

[

systems

memory,
memory,
memory,
memory,

are in the design/implementation phase:

I1 I0U)
12 10U)
12 I0U)
12 10U)

Performance range (single processor);

Pl approximately 1 x CYBER 172, Theta approximately 36 x CYBER 172

Dual, symmetric multiprocessing in CYBER 180 state

One, maximum 20 PP, I/0 unit per system

Maximum memory M2 - 16 Mbytes
M3 - 32 Mbytes

Memory ports M2 - 4 ports each 64-bits wide
M3 - 4 ports each 64-bits wide

CONSTRUCTION

PP“s microcoded via ROM control store, 5 per barrel

Processors microcoded via RAM control store

P2 - ECL1OK logic

P3/Theta - LSI and F100K logic

Convection/Freon cooled

MAINTENANCE

Dedicated maintenance PP termed MCU - Maintenance Control Unit

8 bit channel protocol to a maintenance channel (that is, 8 bits of data within the

rightmost 8 bits of PP"s word is used only)

- loads processors” microcode.
- read/write processor”s/memory”s maintenance registers.

60459960 A
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MEMORY

Phased
SECDED error correctien
16K chips in M2 and in M3
Memory functions:
- to route interrupts from

processor to processor

or

PP to processor (new 16 bit instruction)

- to interlock memory

Byte (8 bits) addressable

Top 4 bits of CYBER 1807"s 64 bit memory word are not used in CYBER 170 State

PROCESSORS

32 program accessible registers

16 X registers (also used for indexing)
16 A registers (48-bit logical/virtual address)

Exchange package

~ Address of CYBER 180 CPU Monitor”s exchange package (MPS) is set at Deadstart.
- Job Mode Exchange Package address (JPS) is set by CYBER 180 CPU Monitor.

Exchange Interrupts initiate exchange to CPU Monitor

Trap Interrupts initiate partial exchange within job”s Address Space and certain
registers are saved at the address contained in the A0 register.

Fast cache per processor

- Not cross connected to other processor, must be software managed in CYBER 180 State.
- PP initiated central memory writes invalidate corresponding CPU”s cache entries on
60-bit transfers.

UTDTITAT  MEMORY
VIRTUAL MEMORY

/PROTECTION

g

logical/virtual address consists of three parts:

31-bit byte offset into a segment.

12-bit segment number, this is a word offset to a Segment Descriptor, within the
Segment Table defined by an Exchange Package.

-~  4-bit ring number (refer to the following explanation).

!
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A logical address is translated to a real memory address through a one-per—address-space
Segment Table (its real memory address is defined by words 34 and 35 of an exchange
package) plus a one-per-system global Page Table. CYBER 180 CPU Monitor rumns within its
own Addrecs Space and can only access a small part of the physical memory. No direct
real memory addressing.

Protection is on a segment basis: read/write/execute plus rings/keys (refer to the
following explanation).

A special Binding Section is used to transfer control between separately compiled code
modules. The new P address and the address to the list of the called code module”s
respective Binding Section entries is extracted by a CALL instruction from the Binding
Section. The new Binding Section”s address is left in register A3 on completion of the
CALL instruction initiated transfer.

CALL instruction saves the current execution environment in virtual memory at the
address within A0 register. The number of registers saved is specified by a mask in XO
register. The CYBER 180 RETURN instruction is used to return to the previous execution
environment and restore the saved registers.

All linkage information local to an Address Space is placed into a code module specific
Binding Section by the CYBER 180 Loader (for example, address of common and data
sections, pointers to external variables, linkage for external entry points) therefore,
the code module remains globally sharable since it does not contain any address space
specific local information.

Hierarchical protection among segments within an address space is by a hardware
supported ring mechanism.

- Instruction counter contains a 4-bit ring number (that is, it is a logical address).

- this ring number can only be changed by a CALL, RETURN, or EXCHANGE instruction
initiated transfer.

- Segment Description Table Entry contains two ring numbers; Rl and R2.

- Hardware checks P against Rl and R2 when executing code from a segment and tests the
Ring Number of the A register against Rl (RN < R2) for a valid write access and
against R2 (RN < R2) for a valid read access.

- Interrupt to CPU Monitor, with Access Violation Monitor condition bit set when
incorrect match is detected, perform memory access operation when everything is
satisfactory.

Keys provide nonhierarchical isolation between segments, within one address space, at
one ring level of protection. Majority of subsystem code (like Telex, Magnet, Data
Manager, Cobol Message Control System) runs in User Job Address Spaces. Without
keys/locks, an error within one subsystem could damage global data owned and managed by
another subsystem within the same hierarchical level of ring protection.

The one-per—address—space Segment Table and the system global page table are not
accessed on every memory reference. Once a logical/virtual address is translated to a
real memory address it is saved in a small one-per—processor Segment/Page Map and reused
on any subsequent access to the same address.
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PERIPHERAL PROCESSORS

Upward compatible with CYBER 170 PPU”s.
16-bit memory word

- CYBER 170 instructions and 12-bit mode data are contained within the rightmost 12

bits.
- 12/16-bit mode instructions are differentiated by:
leftmost bit = O for CYBER 170 compatiblie 12-bit

ER 17
instructions
= 1 for new CYBER 180 16-bit mode

instructions.

60 and 64-bit mode central memory read/write instructions

- CYBER 170 compatible 60-bit transfers from/to 5x12-bit PP words. Top 4 bits of the
16-bit PP word are set to zeros.
new 64-bit mode instructions transfer to/from 4x16-bit PPU words.

28-bit central memory address

- central memory addressing is by real memory addresses.

- new relocation register which contains a base address which is added to a relative,
18-bit central memory address to form an absolute address. New 12-bit instructions
to load and store it.

12 and 16-bit external channel interfaces (hard wired), if a 12-bit external channel
interface is used on a channel the most significant 4 bits of the internal channel word
are cleared.

Packed input/output instructions transmit 3x16-bit memory words to/from 12-bit external
devices as four channel words.

New 16-bit instruction to interrupt CYBER 180 CPU"s, old 26X instruction is still
provided for controlling the execution of the CPU in CYBER 170 State.

CYBER 170 STATE OPERATION

Microcode and hardwired logic (that is, in addition to that required for the execution
of CYBER 180 State instructions), depending on the processor model, provide coexisting
support for both CYBER 180 and CYBER 170 instructions within a CYBER 180 CPU.

CYBER 170 PPU”s are upward compatible with PP”s in the CYBER 180 I/O Unit. CYBER 170
compatible 12-bit instructions are contained within the lower 12 bits of the new 16-bit PP
memory word.

CYBER 180 hardware is capable of supporting several variant CYBER 170/180 Dual State
User/System Operational Enviromments. For illustrative purposes, this section assumes a
Cooperative Operational Environment since this mode requires the full support of CYBER 1807s
Dual State hardware. : .
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CPU State Switching

VMID within a CYBER 180 exchange package enables CYBER 180 or CYBER 170 State
instructions

VMID = 0 for CYBER 180.
1 for CYBER 170.

CYBER 180 CPU Monitor can directly manipulate VMIDs.
CYBER 180 or CYBER 170 environment is established by either

-  exchanging, with the correct VMID set for CYBER 180 or CYBER 170 State, from CYBER
180 Monitor to CYBER 180 Job Mode

or

- executing a CALL instruction within a CYBER 180 Job”s Address Space and transfer
control directly to the CYBER 170 environment

or

- trapping, which may establish VMID=0 from either CYBER 170 or CYBER 180 State but
may not establish a VMID=1

or

- executing a CYBER 180 RETURN instruction. The target enviromment is established by
restoring the register images contained in CYBER 180 virtual memory at the address
within A2 register, (that is, for VMID=0 return is into CYBER 180 State, for VMID=1
return is to CYBER 170 State).

The target CYBER 170 exchange package must reside within CYBER 1807"s A and X registers for
the CALL initiated mode switch, or contained within the CYBER 180 exchange package for the
first alternative, previous to initiating the mode switching operation or within the Stack
Frame Save Area for Return. The CYBER 170 State P address and the new VMID (that is,
VMID=1) are both extracted from the Binding Section for the CALL mode of switching.

CYBER 170 Central Memory Image

One CYBER 180 segment contains the CYBER 170 memory image. The ASID for this segment is
FFFF.

Pages of the CYBER 170 memory segment must be at consecutive memory addresses, starting
at Real Memory Address zero.

All CYBER 170 addresses are relocated by the RA register defined by the active exchange
package and used as offset into the CYBER 170 segment. CYBER 180°s virtual memory
mechanisms (that is, segment and page table) are used to translate this logical/virtual
address into real memory address.

Pages corresponding to the CYBER 170 segment must have page descriptors in the CYBER 180
Page Table.

CYBER 170 memory segment is managed by a minimally altered NOS or NOS/BE operating
system.
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Central Memory Extended (CME)

Maximum memory size available to the system is two million words.
RAc and FlLc are 21-bit registers which are used to address the memory.
Maximum memory available to a single job is 131K words (17-bit address).

Central memory extended is contained within a single contiguous segment along with CYBER
170 central memory.

Soft Extended Core Storage (ECS)

CPU

Maximum size of soft ECS and central memory (including CME) is two million words.
RAe and Fle are used to allocate soft ECS to a job.

Block copy instructions (011,012) and single word load/store instructions (014,015) are
used to reference soft ECS.

Soft ECS is contained within a single contiguous segment along with CYBER 170 central
memory .

Management

1-24

Unified CPU Dispatcher assigns processor, within CYBER 180 or CYBER 170 CPU Monitor, to
the highest priority CYBER 170 or CYBER 180 Control Point.

One CYBER 180 Address Space/Control Point is defined as the CYBER 170 Emulator Job. It
is dispatched by the CYBER 180 CPU Monitor when either

- the currently highest priority Control Point is executing in CYBER 170 State
or

— a PP initiated Exchange Request Monitor Condition is detected (that is, bit 53 of
the Monitor Condition register is found set by the CYBER 180 CPU Monitor).

CYBER 170 CPU Monitor (NOS or NOS/BE variant) services CYBER 170 State PP or RA+1

requests and either dispatches a CYBER 170 Control Point or returns to the CYBER 180
Monitor.
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CYBER 170 Exchange Requests

PP°s initiated CYBER 170 State Exchange Request (that is, by a 26X instruction) either

- changes the CYBER 170 State Execution enviromnment, as defined for a CYBER 170
processor (that is, enter CYBER 170 CPU Monitor within the CYBER 170 memory segment
via standard CYBER 170 State exchange operations, or do nothing), while the CPU is
executing within the CYBER 170 environment

or

- sets bit 53 of the Monitor Condition Register and halts the PP while the processor
is in CYBER 180 State. Setting a bit in the Monitor Condition Register results in
an exchange to CYBER 180 CPU Monitor which immediately dispatches the Emulator Job.
CYBER 170 State is thus entered and exchange to the CYBER 170 CPU Monitor takes

place, the requesting PP is also restarted by the hardware after the Al170 exchange,
if necessary, takes place.
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VIRTUAL MEMORY MECHANISM . 2

To understand CYBER 180 completely, it is necessary to get a firm grasp of the three
main areas:

Virtual Memory Mechanism
Interrupt System
Call/Return Mechanism

Until a firm comprehension of all three of these areas has been obtained, it is not
possible to tie them together and appreciate the whole.

This section deals with the basic concepts of the CYBER 180 virtual memory mechanism.
Virtual memory was originally conceived as a solution to the overlay problem. However, as
technology has advanced, it has evolved into a solution to the security problem. This is
the primary purpose of the CYBER 180 virtual memory mechanism. Fach ezecuting rask operates
in its own, unique address space which is divided into a number of segments. Each segment
may be 231-1 bytes (2 billion bytes) long. It will be seen later that it is the segment
which forms the basis of the security and protection mechanisms. It is important to
understand the difference between segments and pages. The segment is the unit of virtual
mamory management. i has attrihutes, such as length, access privileges and other features
peculiar to the protection scheme as will be seen later. The page is the unit of real
memory management. Pages do not have attributes. They are present in the hardware to
assist the software (operating system) with the management of the very large real memories
which may be supported by CYBER 180. The page size is a variable which is set during system
initialization and 1is constant from one deadstart until the next.

The only addresses available to software are virtual memory addresses. CYBER 180
processors dc oot have a real memory address mode, and the only places they are used are in
hardware tables used in address translation. This section describes the address translation
mechanism. It is of interest to study this mechanism, and there are certain software
responsibilities for the operating system to optimize the process. In the more general
sense however, it is important to understand the role of segments, and what a proliferation
of segments, which are all active concurrently, can do to the performance of the system. 1In
addition, programmers must maintain good locality of reference. That is, all code that is
being used at one time should be collected in one place (in virtual memory). Likewise, all
data in use at one time should be collected in one place. The importance of this cannot be
overstressed since the hardware depends on this good locality of reference to minimize
address translation time.
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ADDRESS TRANSLATION

The fundamental address, available to a programmer, is the PROCESS VIRTUAL ADDRESS
(PVA). To the user, this appears as a segment number and a byte offset within the segment.
It also includes a ring number which is part of the protection mechanism discussed later

(figure 2-1).

18 20 3233 83
RN SEG BN
L sign Bit* L Byte offset within
a segment
Segment No.
Ring No.

*Serves to prevent address increments from exceeding the segment.

Figure 2-1. Process Virtual Address

The segment number is a 12-bit field which is used as an index into a Process Segment
Table which is created by the operating system for each process (task(l)) which is active in
the system. )

(1) The terms process and task are synonomous. A task is the unit of execution of the CYBER
180 operating system. A process is the hardware term for a task.
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Segment numbers are assigned sequentially from zero. This is not essential, but is natural
and the hardware has been optimized assuming this to be the case. Segment descriptor table
entries (SDE) are 64-bits long, and contain information relating to the privileges and
protection of that segment. They also contain an ASID which is a 16-bit identifier used and
created by the operating system which identifies each active segment uniquely on a
system-wide basis.

Address translation takes place in two steps. The first step translates a PVA to a
system virtual address (SVA). The process segment descriptor table (SDT) is used for this
purpose. It will be seen later that the concept of the system virtual address is extremely
important. It forms the basis for code sharing, and processor cache memories are organized
on SVA”s - not real memory addresses.

In the first step of the translation the hardware takes the ASID from the entry in the
SDT pointed to by the SEG field of the PVA. It then catenates this with the BN field of the
PVA to form the SVA (figure 2-2).

PVA

IRNI SEG ” BN ]
sDT

sval aso | ]

SPT

[ HasH |

S/PID | Ppra

[ RMA |

Figure 2-2. Address Translation
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The processor views the BN as a Page Number (PN) and a byte offset within that page, or
Page Offset (PO). To determine where (or if) the page resides in real memory a further
access to the System Page Table (SPT) is made. Since many more pages exist in virtual
memory than in real memory, a hashing algorithm is used to compute the page table index. On
CYBER 180 the page number and the ASID are hashed via an exclusive OR; this is discussed in
more detail later. The page table index is used to select a candidate entry from the system
page table. The table is then searched forward linearly until a valid page with the desired
entry is found, or until 32 entries have been searched. If the search terminates without a
hit, the page is assumed not to be in central memory and a page fault is indicated.

a hit is made, the page frame address (PFA) in the page table is catenated with the

Once
page offset from the SVA to form a 32-bit RMA. Figure 2-3 illustrates the formation of PN
and PO for a 4096 Byte Page.
BYTE NUMBER 55 63
lO 00000001101 1210:;1011011;101101101
/AND AND \
copy 1111000/ \ooo0111|  copy
PSM NOT PSM
000000011011010(1011000 0000011]101101101
PAGE NUMBER PAGE OFFSET
Figure 2-3. Formation of Page Number and Page Offset
(For a 4096 Byte Page)
PAGE SIZE

The page size is determined by the value of the Page Size Mask (PSM). This is a 7-bit
register which expresses the page size in multiples of 512 bytes such that the page size is
given by:

page size = 29 x 27-(+/PSM)

Where the PSM is a solid mask extending from left to right. A PSM of zero indicates the
largest page size (64KB). The term (+/PSM) expresses the summation of the one bits (Pop
Count) in the PSM.
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HASHING ALGORITHMS

The hashing algorithm takes an exclusive OR of the low-order 16-bits of the page number and
the ASID. If the page number is only 15-bits long, then a zero is catenated to the lefthand
end to make it 16-bits. Since the resulting hash must be as random as possible, the most
random low order bits of one quantity should be exclusively OR“ed with the most random high
order bits of another. The low order 16-bits of the PN are the most random part of that
quantity and the same will be true of the ASID if it is assigned sequentially starting from
zero. This is not desirable and it is incumbent upon the operating system to ensure the
appropriate randomness in the ASID. This may be achieved by assigning ASID”s from zero on
up and then inverting the bits. Hence, the first 16 ASID”s should be:

HEX BINARY

1 0000 0000 0000 0000 0000

2 8000 1000 0000 0000 0000

3 4000 0100 0000 0000 0000

4 €000 1100 0000 0000 0000

5 2000 0010 0000 0000 0000

6  A000 1010 0000 0000 0000

7 6000 0110 0000 0000 0000

8 E000 1110 0000 0000 0000

9 1000 0001 0000 0000 0000

10 9000 1001 0000 0000 0000
11 5000 0101 0000 0000 0000
12 D000 1101 0000 0000 0000
13 3000 0011 0000 0000 0000
14 BOOO 1011 0000 0000 0000
15 7000 0111 0000 0000 0000
16  FO000 1111 0000 0000 0000

and so on. Another technique which could be used by the operating system is to use a
pseudo-random number generator for ASID assignment.
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The result of the hash is AND“ed to the Page Table Length (PTL) and four zeros catenated to
form the page table index (figure 2-4).

PN (15-22)
ASID (16) 0000001111111111111111
AND
[ 1
l PN (16)
SELECT LOW-
XOR ORDER 16-BITS
r HASH INDEX | [oooo] | PTL ] L11111111 ]
|
CATENATE | CATENATE
L HASH INDEX | ooooJ [ PTL 11111111 ]
AND
A 4

| (PAGE TABLE INDEX) |

Figure 2-4. Hashing Algorithm

PAGE TABLE SEARCH

Since the hashing algorithm is a many-to-one mapping it is entirely possible for two
different pages to hash to the same page table entry (PTE). To ensure that the correct
entry has been found the ASID and Page Number portion of the SVA is compared with the System
Page ID held in the PTE. If they do not compare equal, then a linear search is initiated
which is controlled by bits O & 1 of the PTE. The search continues until 32 entries have
been searched, the correct entry found, or until an end of search condition is indicated by
bit one (figure 2-5).
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Initial —

Index =1 )
01 *(2)
101 *(3)
11 * REQD. ENTRY * *(4)

—
-
i

Continue Search

-
L]

Valid Entry

Figure 2-5. Page Table Search Example

*(1) The first entry accessed is valid (bit 0=1) but has the wrong Segment Page
Identifier (SPID). Since bit 1=1 the next entry is checked.

*(2) The second entry is invalid but search can continue.
*(3) The third entry is the same as the first.

*(4) The fourth entry matches the required SPID. The sequence terminates at this
point. The continue bit (bit 1) does not necessarily indicate an end of search
at this point since other multiple entries with this hash or an adjacent hash
may be present.

The algorithm for setting the continue search bit is self-evident. When an entry is
invalidated its continue bit is checked. If it is set then no further action is necessary
since it is part of a chain to an entry further down in the Page Table. If it is zero, then
the table may be searched backwards to clear out possible continue bits for the, now,
invalid entry. If the previous entry had its continue bit clear, then the process terminates
since there is no chain to investigate. If the continue bit was set, then it is cleared and
a check made to determine whether further continue bits can be cleared. Conditions for
further clearing are: an ASID of zero (a null entry by software convention); an ASID of
nonzero which hashes directly to this entry - in which case the continue chain being cleared
could have started higher up (figure 2-6). Note that a special system instruction (Load
Page Table Index) has been defined to.aid in this process. This instruction is described in
a later section.
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In summary, the hardware uses the Segment Descriptor Table to translate a PVA into an
SVA. It then uses the System Page Table to translate the SVA into an RMA. The SDT and the
SPT are hardware tables which are constructed and managed by software. Naturally, if every
reference to memory required at least two additional memory references, the processors would
execute extremely slowly. It will be seen later on that a number of hardware buffers are
utilized to eliminate this overhead.

CONTINUE
BIT=1?

i

GET PREVIOUS \
> ENTRY

CONTINUE
BIT=1?

SET CONTINUE
BIT TO ZERO

END

Figure 2-6. Page Table Search Flowchart
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It is assumed that the Operating System assigns 2 to 4 times as many entries in the page
table as there are pages in real memory. This is to accommodate coincident hash indexes
with the minimum search. Since the general environment contains two processors care must be
taken when changing page table entries and the special interlock instructions must be used
for this purpose. Details of this usage can be found in a later section which deals with
the system instructions.

The only mode of operation of the hardware is a virtual address mode. There are no
instructions which deal directly with real memory addresses. The hardware has been designed
with dynamic paging in mind. That is pages are brought into memory on a demand basis and
page table entries are purged based on a least recently used (LRU) algorithm. This
algorithm is the responsibility of the operating system. However, two flags are kept in the
PTE to help in the process. These are kept in the VM field (bits 2-3) and have the
following meaning:

(1) Whenever a page is used (read, written or executed) the hardware sets bit 2 in the
PTE.

(ii) Whenever a page is modified (written) the hardware sets bit 3 in the PTE.
Combinations of bits 2-3 have the following meanings:

00 - New page, unused and unmodified

0l - Unused but modified (see note below)
10 - Used but not modified
11 - Used and modified

Pages are chosen as candidates for purging based on the value of this VM field and their
LRU status. Since any page which has been modified must be written to mass storage when it
is purged, modified pages will typically have a higher resistance to purging. The status
unused but modified can arise from software algorithms. The VM bits are never cleared by
hardware. They are cleared by software when pages are purged and to force updates to the
LRU status of all pages. In this latter mechanism, it is expected that the Operating System
will periodically zero all used bits in the page table. This will effectively reset the LRU
status. Ensuing activity will automatically update this status.

Although the hardware has been designed with dynamic paging in mind, it is not a
prerequisite. In particular, when running in a pure CYBER 170 State, static paging will be
used. The entire CYBER 170 environment will be assigned to a single CYBER 180 segment which
operates in CYBER 180 job mode. Pages in this segment and in real memory have a one-to—-one
correspondence, and once initialized, the page table will not change. CYBER 170 will
operate in a virtual memory segment which has a size corresponding to the amount of real
memory in the system. The ASID is set to HEX FFFF and SEG to zero, a pseudo RMA mode will
exist within the hardware. Note that this is a pseudo mode since the hardware will still go
through the address translation mechanism. However, there will be no page faults.
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SECURITY AND PROTECTION 3

Security is a subject, particularly as it pertains to computer systems, which is rapidly
gaining in importance. Being cognizant of this fact, CYBER 180 has been designed to meet
the most stringent security requirements of the industry. The degree of security achieved
by a CYBER 180 system is controlled by the software exploitation of the hardware features.
The hardware has been designed to provide facilities which will detect breaches of security,
or attempted breaches of security. However, it is the software which really controls the

desired level of security. If a rigid set of conventions is not followed, then loopholes
will exist which will no doubt be detected by ingenious users. The way in which the
software and hardware must play together is similar to other disciplines which must be
followed if a system is to be totally secure. These disciplines embrace the installation
management, the operators, the administration. In fact they embrace the entire
organization. The computer is only one small, albeit important, part of this whole.

The responsibilities of the organization are not discussed here. Instead the discussion
is confined to the hardware and software facilities provided by CYBER 180 systems. It will
be divided into two major areas: the first deals with the software facilities and their
interfaces to the end user, and the second deals with the hardware facilities and their use
by the software.

SOFTWARE FACILITIES

ACCESS CONTROL

A basic objective of NOS/VE is to provide efficient and safe services to multiple users
simul taneously and asynchronously. Levels of service to be provided range from complete
isolation of users from each other teo controlled sharing between cooperating users. 1In
order to allow this range of service levels, the system has adopted a general access control
strategy or security model which serves as the conceptual basis for the detailed
implementation of all the access control mechanism in the system.

The access control strategy is based on a conceptual access control matrix. Rows of the
matrix represent all possible users of the system. In the access control matrix these are
called subjects. Columns of the matrix represent all possible system resources that can be
accessed by a subject. In the access control matrix these are called objects, such as
subjects, files, and equipment. Each element in the matrix identified by a subject-object
pair contains the valid kinds of access or access rights that the subject has to that
particular object. Figure 3-1 illustrates access control.

TAPE
SUBJECT SUBJECT FILE FILE DRIVE
A B [ D E
OWNER OWNER
SUBJECT A ADMIN. RW USE
OWNER
SUBJECT B R R.X

Figure 3-1. Access Control Example
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In the example, subject A is the administrator of subject B, the owner of file C and of
tape drive E. Subject A can read and write file C and use tape drive E. Subject B can read
file C and owns and can read and execute file D. Every access any subject makes to any
object is validated via the access control matrix. The access is permitted only if the
corresponding access right is in the appropriate element in the access control matrix.

Obviously, the operating system cannot maintain a physical matrix which is consulted on
every access. A variety of features of the system architecture interact to implement the
conceptual access control matrix. Some of the major features of the NOS/VE implementation
of the access control architecture are listed below:

User identification and validation

-~ A user must be known before gaining access to the system.

- The resources a user can use are a function of user controls, project controls and

the current state of the system.

- An attribute of every user is the lowest ring number of execution.

- Modification to the user validation information may only be performed by the system,

account and project administrators who control the user”s installation.

File system

~ All files in the system, local or permanent, are owned by a single user.

-  Access to permanent files by any other user besides the owner is regulated by an
access control list that is associated with each file. The access control list
contains the names and access rights of all users permitted to access the file.

- All files, local or permanent, have one or more ring brackets associated with them
which are used as qualifiers to file access.

° If a file is readable, then it possesses a read bracket which defines those
rings in which it can be read.

° If a file is writable, then it possesses a write bracket which defines those
rings in which it can be written.

° If a file is executable, then it possesses an execute bracket which defines
those rings in which it may execute and a call bracket which defines those rings
from which it may be called.

The ring brackets associated with a file are specified by the owner of the file.

However, the file system will not allow any user to specify any ring bracket of

higher privilege than the ring in which the user is executing.

- All files, local or permanent, possess certain attributes that describe the contents
of the file. The ring brackets associated with reading, writing, executing and
calling are all file attributes. Whether a given user has read, write or execute
permission to another user”s permanent file is determined by the access control list
of the file. The combination of these twoc factors allow rings to be a unit of
protection recognizable system wide. The reason this is useful to the operating
system is that it wishes to discriminate between system code and nonsystem code
running in a user job regardless of the user on whose behalf the job is executing.
Since the user”s installation administrators control the assignment of ring numbers
in the validation files, the user controls the extent and connotation of his
installation ring usage. If an installation chooses to associate different rings
with different security classifications, it may do so. If it wishes to run all
users at a single ring, then the only use of rings will be to protect the operating
system from users” programs.
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Segment management

- For a file accessed through the system virtual memory mechanism, the file protection
attributes maintained by the file system are used by segment management to build the
segment descriptor table entries used by the CPU address translation logic when
referencing the segment. The attributes the file system software have maintained
are continuously enforced by the hardware when the file is being referenced.

~ The loader accesses all object libraries through the segment level access facility
of the file and memory management systems. It also uses segment management to
create the transient segments that are used for the data areas of the executing
program. The loader is responsible for creating these segments with the correct
protection attributes to assure proper execution and protection of the program.

An example illustrates how these mechanisms interact to effect access control in
NOS/VE. Consider two users, TOM and BILL. TOM has been validated by the installation to
execute in ring nine. BILL has been validated to run in ring eleven. TOM develops an
application and stores it in the permanent file catalog. Since TOM was executing in ring
nine when he cataloged his application, it has an execute bracket of (nine,nine) by
default. In order to allow BILL to use his application, TOM must set the call bracket of
his application permanent file to eleven and give BILL execute permission in the access
control list of the file. Since TOM is the owner of his application, he is the only user
permitted to set its call bracket and place entries in its access control list.

In order to use TOM“s application, BILL must first ATTACH the file for execute access. This
will succeed because TOM has placed BILL in the access control list of the file and
specified execute access. BILL then executes a program which uses TOM”s application.

BILL"s program is loaded in ring eleven and TOM”s program is loaded in ring nine. Because
TOM”s program has a call bracket that extends to ring eleven, BILL”s program can call TOM”s
and use the service it provides.

HARDWARE FACILITIES

One of the primary design goals of CYBER 180 systems was to improve the overall system
reliability. In the past a limiting factor has been the operating system. This software is
large — of the order of one million lines of code - and is error prone. An error in today’s
systems often causes those systems to crash, interrupting normal service. Since it is
unlikely that such a vast quantity of code can be generated error free, other solutions must
be sought. In the CYBER 180 the solution chosen is to give each user his or her own copy of
the operating system; then if a particular copy of the system fails it will cause nothing
more serious than a single job to abort. With this approach, the operating system and the
user”s code become an entity, and facilities must be provided to separate and protect
operating system modules from user modules and from each other. This is the primary reason
for the CYBER 180 security system. A second major objective is to provide controlled access
to all code and data. To this end users are protected from each other, and can be protected
from the system.

The key to this protection mechanism is the CYBER 180 virtual memory mechanism. In

particular, the virtual memory segment is the basic element which is protected. However,
before the attributes of this segment are discussed, it is necessary to understand how
segments are arranged in virtual memory for utilization by a user.
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VIRTUAL MEMORY USER ADDRESS SPACE

The concept of an Address Space is vital to CYBER 180. It is simply the set of
addresses known to an executing process. On CYBER 170 this would be the set of real memory
addresses embraced by RA and FL. On CYBER 180 it is the set of virtual memory addresses
specified by the entries in the SDT. Each process executing in a CYBER 180 system has a
unique SDT. The address and length of this table are specified by process state registers
held in the exchange package used to define the enviromment of the exchange interval for
each task. Each entry in the SDT consists of a full word and describes all of the
attributes of one segment. Just as CYBER 170 users are constrained to an address space by
the RA/FL mechanism, so are CYBER 180 users constrained to an address space by the SDT.
This, then, is the basic element of protection. The discussion of the protection mechanisms
which follow describes the protection offered within a virtual memory address space.

It is useful at this stage to see what happens when a user attempts to access code or
data segments not in his address space. The only addresses known to the user are process
virtual addresses (PVAs). Refer to figure 3-2. Each PVA has three components: a ring
number, a segment number, and a byte number.

i6 20 32 63

RN SEG BN

Figure 3-2. Process Virtual Address

The ring number is discussed later in this section. The segment number is assigned by the
operating system (segment manager) in ascending sequential order starting with zero. These
are the names, and are the only names by which the user knows his segments. They act as an
index into the process segment table which contains entries only for those segments to which
the user has access rights. The byte number field simply denotes a byte offset within a
segment. The only way a user can attempt to access a segment which is not contained within
his address space is by specifying a segment number greater than any assigned by the
operating system for that process. However, when an attempt is made to reference that
segment an exchange interrupt results since the segment number is greater than the Segment
Table Length (STL). The STL is set by the operating system and held in a process state
register which can be read but not written - it is set by an exchange jump. The hardware
performs this basic test for every reference which is made to memory.

Whenever an exchange jump occurs, a switch of address spaces occurs. The operating
system monitor runs in its own, unique address space. This is not true of the bulk of the
operating system. Services such as those offered by Record Manager reside within the user”s
address space. Further protection mechanisms, which are described below, come into play to
protect these parts of the system from the user and vice versa. It is important to
conceptualize and remember that all this happens in virtual memory. Conceptually, operating
system segments which reside in the user address space exist as multiple copies in virtual
memory. To optimize the use of real memory the operating system will typically keep a
single copy of the code in real memory which will be shared by several users. The
individual users will be unaware of this since they are only aware of what happens in
virtual memory. There is no possible breach of security here since each user is totally
unaware of the existence of other users.
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SEGMENT ATTRIBUTES

Once a user has been confined to an address space, the segment becomes the basis of the
security mechanism. Each segment has a set of attributes associated with it which are
recorded in the Segment Descriptor Entry (SDE) in the SDT. These attributes are its global
system name, its access attributes, its rings and its global and local locks. A segment
also has a length associated with it, which is not kept in the SDE. Since these are
recorded in the SDE, and the SDE is unique to a given process, it is possible for a segment
to be shared by more than one process, yet have different attributes for each process. The
format of an SDE is shown in figure 3-3:

0 24 6 8 12 16 32 34 63

V[ [ale] w | e sfszas/g///////////////////g

Figure 3-3. Segment Descriptor Entry (SDE)

The first four fields determine the access privileges for the segment. Values for these
fields are as follows:

VL : 00 - Invalid entry. A segment which is no longer being used by a process does not have
to have its SDE removed from the SDT but simply invalidated. If segments are
viewed as files, their entries would be invalidated when the files (segments) are
closed and purged.

01 - Reserved.
10 - Regular segment. This denotes an active segment for the executing process.

11 - Cache by-pass segment. It is important to keep certain tables and interlock words
in a cache by-pass segment. An example is the exchange package. The exchange
jump mechanism works from a real memory address, hence data in cache memory, which
memories are addressed via a System Virtual Address (SVA), does not get updated.

XP : 00 - Nonexecutable segment. This is a data segment which would normally have either
read or write access.

01 - Nonprivileged executable segment. Some instructions can only be executed if they
reside in a segment having the attributes of local or global privilege. In this
way certain operations are restricted for use by the Operating System and cannot
be invoked accidentally by a user executing garbage - for example, literals.

10 - Local-privileged executable segment. Code contained in segments with that
attribute may execute all unprivileged instructions and all instructions
restricted to local privilege. In particular, trap handlers will have at least
local privilege since the trap enable flip-flop and the trap enable delay
flip—-flop can only be set by a system copy instruction, and these flags can only
be written in local privileged mode.

11 - Global-privileged executable segment. Code contained in segments having global
privilege may execute all instructions except those restricted to monitor mode.
This includes those instructions restricted to local privileged mode, which is a
subset of global privilege.
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01 -

10 -

11 -

WP :00 -

01 -

10 -

11 -

Nonreadable segment. Such a segment will either have write privilege or execute
privilege. An execute privilege segment would normally have only that attribute.
However, literals may be stored in the segment and read from the segment with load
instructions provided for that purpose. The load instructions always load from an
address relative to P - the program address counter. 1In this case the read access
is implicitly equated to the execute access of the segment.

Read under control of the Key/Lock mechanism. For a segment controlled by a lock,
this control may selectively apply to either the read or write privilege of the
segment. This code indicates that reads are under key/lock control.

Read not under the control of Key/Lock. This is a normal read privilege assigned
to the segment.

Binding Section — Read not under the control of Key/Locks. Binding Sections,
which contain pointers to external procedures and data, always have read
privilege, and are never subject to Key/Lock control.

Nonwritable segment. Typically, all executable segments are nonwritable. This is
because CYBER 180 code is usually organized into pure procedures. A user could
generate a code segment from assembly language which modified code. However, this
code segment would not be charable with other users.

Write controlled by the Key/Lock mechanism. This is the write counterpart of
RP=01 and indicates that the segment is writable but only if the Key/Lock access
is correct.

Write not under control of Key/Lock. This is a normal, writable data segment.

Reserved.

The XP, RP and WP are the first level of protection offered within a user address space.

Figure 3-4 illustrates segment protection within an address space.
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Figure 3-4. Segment Protection Within An Address Space

Hence, users are first absolutely constrained to their address space. Within this
space code and data are organized into segments, then the segments are assigned various
privileges. Most of the operating system and entire subsystems are expected to exist in the
user address space. These mechanisms, therefore, are necessary to ensure the appropriate
security is maintained at all times. Notice that even privileged portions of the operating
system, such as trap handlers with local privilege, can reside in the same address space as
a user who may be executing completely unchecked code - and therefore very unreliable code.

This level of protection will guarantee that code segments are not arbitrarily
over-written by users, leading to unpredictable results, and it will guarantee that
read-only data segments are not destroyed either willfully or accidentally. However, this
level of protection is insufficient by itself. For example, users could read and write
segments of the operating system, or users with inadequate security clearances could gain
access to private data segments. To accommodate these aspects of security three further
mechanisms are provided.
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RINGS OF PROTECTION

To provide a separation between code and data segments, and prevent unauthorized
access, each address space is organized into a series of Rings of Protection. A maximum of
fifteen such rings are permitted in an address space. They may be regarded as separate
machine states having differing privileges. The rings are organized hierarchically such
that the lower the ring number the higher the privilege, Ring 1 having the highest
privilege. In general, code residing in Ring n can read and write segments in Ring n and
higher numbered rings. 1In addition, code in Ring n can call procedures in Ring n and lower
numbered rings, although such calling is carefully controlled. The ring protection
mechanism is controlled by the Rl and R2 fields in the SDE, the R3 field in the Code Base
Pointer (CBP) and the ring number carried in all PVA“s - particularly those held in
A Registers and P Registers. Code and Data Segments need not reside in a single ring but
may exist in several rings. When this occurs the segment is said to reside in a Ring
Bracket. The extent of this ring bracket is defined by the Rl and R2 fields of the SDE.

There are four Ring Brackets which are associated with each and every segment. These
rings brackets are for read, write, execute and call. The first three of these are truly
segment attributes and are described by the SDE, the fourth - the call bracket - is
associated with the segment by the operating system with no loss in generality. 1In
practice, the cperating system does not only associate these ring brackets with segments but
associates them with every file in the system, either local or permanent, regardless whether
or not a given file is a segment. The checking which is performed by the hardware is
described below for each type of access.

Execute Access

A segment which resides in several rings has its execute bracket described by the Rl
and R2 fields of the SDE. Thus if:

SDE.R1 < P.RN < SDE.R2

then the segment is a member of the execute bracket. If control is transferred to the
segment from within the execute bracket, then the ring number in the P Register (P.RN) is
unchanged. If control is transferred from outside the ring bracket (via an inter-ring
call), then P.RN is always set to SDE.R2. Calls, if permitted, can only be made inward.

The hardware validates execute access once and only once when a segment is entered. The
fact that calls can only be made inward (or to the same ring) often appears confusing, but
the reason is quite straightforward. Care must always be taken when crossing domains of
protection to ensure that no security violation occurs. This is particularly true when
traversing from one domain to another with higher privilege. If an outward call were
permitted then its counterpart, an inward return, would also have to be permitted. However,
a return is an unsolicited GO TO, which implies a traversal of domains of protection without
the necessary control. So it 1s really an inward return which must be prevented.

Call Access
Two main checks are exercised by the hardware when a call is made. The first ensures
that the call is an inward call:
PVA.RN > SDE.R1
where PVA.RN is the ring number of the PVA containing the entry point of the called

procedure, and SDE.R1 is the lower range of the ring bracket of the called procedure.
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The second check ensures that the caller has adequate privilege to call the callee:
PVA.RN < CBP.R3

where CBP.R3 is the CBP gate ring number.

Hence, callee can restrict entry to the procedure such that he may only be called from
certain rings. Now one more case is of interest. That is, where a routine is called on
behalf of another caller. This can happen when a caller calls on a more privileged
procedure legitimately, but then requests that the callee in turn call a third procedure to
which callee has access but caller does not. Via a high level language, this is constructed
very simply by a pointer to procedure. To prevent this form of unauthorized call, the
hardware performs an additional check:

Aj.RN < CBP.R3
where Aj.Rn is the ring number of the pointer used to access the binding section containing
the relevant CBP. This A register will not have more privilege than the code requesting the
call. It is that code which must reside within callee”s call ring bracket. In practice,

since P.RN will always be less than or equal to Aj.RN the hardware only has to perform the
latter test.

Read Access

An executing procedure may read a segment providing the following is true:
PVA.RN < SDE.R2

where PVA.RN is the ring number of the pointer (held in an A Register) used to access
virtual memory, and SDE.R2 is the outermost ring number for the segment being accessed.

Thus, a procedure may read a segment from a ring of equal or lower privilege than its

own. For the read access to be successful, of course, the segment must have the read
attribute associated with it.

Write Access

An executing procedure may write a segment providing the following is true:
PVA.RN < SDE.R1
where PVA.RN is the ring number of the pointer (held in the A Register) used to access

virtual memory, and SDE.Rl is the innermost ring number of the ring bracket for the segment
being accessed.
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These four major ring brackets are shown in figure 3-5:

MOST PRIVILEGE LEAST PRIVILEGE

WM\’\ZVX“ R N
uuniin

READ
BRACKET
1€n<R2

EXECUTE
BRACKET
R1<n<R2

CALL
BRACKET
R2<n<R3

[ ] ] 7
EXAMPLE R1=3, R2=5, R3=7  R1SR2<R3 / / /

Figure 3-5. Ring Brackets

In this example the R1l, R2 and R3 parameters, which define the ring brackets for a
particular segment, have been set as follows:

Rl = 3
R2 =5
R3 =7

The segment may be written from another segment if that other segment resides in ring 3
or in a lower numbered ring (ring 1 or 2).

The segment may be read from another segment, providing the other segment resides in
ring 5 or in a lower numbered ring (rings 1 to 4).

The segment may execute in rings 3, 4 or 5. If the segment is called from ring 3 it
will execute in ring 3. If it is called from ring 5 it will execute in ring 5 and so on.
If it is called from ring 6 (or a ring numbered greater than 6), then it will execute in
ring 5 - the least privileged of rings 3, 4, and 5.
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The segment may be called from either rings 6 or 7. Segments may always be called from
other segments in the same ring that they are in. Consequently, the segment may be called
from rings 3 through 7. It may not be called from any rings greater than 7, which are
outside the call bracket. Neither may it be called from a ring number less than three since
this would constitute an outward call. This case is covered in section 7, where Call/Return
is discussed. Call/Return is the primary mechanism for crossing protection boundaries
within an address space.

Figure 3-6 shows how ring brackets are used:

R,X R,X RW
(3,11,11) (11,11,11) (11,11)
RING
1
1 1
I T
R,X RW | |
(8,8,11) (8.8) | |
RING | |
8 | |
| |
| |
1 1 1 [
1 || 1] ]
R.X RW ' | ' '
33,11) (3.3) I I | |
3 | | | |
| | | |
| I | Lo —J

Figure 3-6. Example of Ring Brackets

In this example the extremities of the ring brackets for each segment are denoted by the
numbers in parentheses as: (R1,R2,R3). The procedure in ring 11 may call on the procedure
in ring 8 since the call bracket for this latter procedure has been set to 1l. The
procedure in ring 8 may read and write into the data segment belonging to the procedure in
ring 11, since the segment has Read/Write access and its Rl and R2 fields have both been set
to 11. In this way the procedure in ring 11 may pass parameters to and receive results from
the procedure in ring 8. Likewise, the procedure in ring 3 may be called from either the
procedure in ring 8 or the procedure in ring 11, because the ring 3 procedure has its call
bracket equal to ring 11. The logical extensions of the data segments in each ring are
indicated by dotted lines in the diagram. Notice that there are no extensions to the
execute segments since the Rl and R2 fields restrict execution of the segment to a
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particular ring. Thus, the procedure in ring 11 may only be executed in ring 11, the
procedure in ring 8 may only be executed in ring 8, and the procedure in ring 3 may only be
executed in ring 3.

On the left side of the figure there is an execute segment having Rl and R2 fields equal
to 3 and 11 respectively. Consequently, this procedure may be executed in any ring between 3
and 11 inclusive. Such a procedure might be a trap handler or the FORTRAN math library. A
user executing in ring 11 may call on square root, for example, which would then execute in
ring 11. Similarily, a procedure in ring 8 utilizing square root would have it execute in
ring 8. In other words, the square root procedure always executes with the privilege of the
caller. This is required, since it is acting on behalf of the caller.

Now the segment may only be read, written or executed if it has the appropriate access
permission associated with the segment. 1In other words for a segment to be written from
another segment it must contain write permission and the other segment must reside in a ring
from which the first segment may be written.

Within a single address space, therefore, rings of protection provide a mechanism for
protecting sensitive code and data. Two cases are of particular interest.

The first of these deals with the need to know. A procedure should have access only to
those procedures and data segments necessary to do its task. Now remember that the ring
mechanism is hierarchical. That is, the lower the ring number, the higher the privilege.
Consequently, the ring mechanism is very attractive in a military enviromment where security
clearances are also hierarchical. A higher clearance (lower ring number) allows access to

more documents, but a smaller number of individuals (segments) are granted such a clearance.

The second case is concerned with degrees of potential damage. The segments of a system
may be effectively segregated into two or more rings according to the damage that may be
wrought when these segments are misused. The segments whose misuse is likely to cause the
greatest damage are given lower ring numbers. By means of this segregation the bulk of the
operating system may reside within the user”s address space and yet be protected from the
vagaries of undebugged user code. If part of the operating system does fail, then the
damage may be contained and cause nothing worse than the user job to abort. Hence, rings
will be used extensively by the operating system for damage control, and also made available
for the user to create an hierarchical security structure. Figure 3-7 illustrates the
resulting user address space.

[ I [ r 1
X R RW B - RING N+2
- | u | o)
-— LIJ
|
‘ g
[ [ [ [ ] .
X R RW B a
- RING N+l |,
ot B o N o B E
- (%]
<
L
[ [ [ I i o
=
X R RW B L RING N \H)

Figure 3-7. Ring Protection Within An Address Space
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The address space, which is the basic unit of protection, now has two further protective
mechanisms. The first restricts the type of access to a segment, and the second limits the
region from which a segment may be accessed.

RING NUMBERS IN POINTERS

The only addresses with which programmers deal are Process Virtual Addresses (PVAs).
Refer to figure 3-8. A set of 16 address registers (A Registers) exists in the hardware to
hold these addresses during instruction execution.

16 20 32 63
RN SEG BN

Figure 3-8. Process Virtual Address

The SEG and BN fields designate the segment being addressed and the byte offset within
that segment respectively. The RN field is the ring number associated with the access being
made. This ring number is most important to the ring security in the system since it is
common for a procedure to perform work on behalf of another, less privileged procedure.

When this happens it is important that the more privileged procedure does not act with
greater authority than has been assigned to the caller. To this end, whenever an A Register
is loaded, either explicitly (via a Load or Copy instruction), or implicitly (via a Return
or Pop instruction) the hardware places the ring number with least privilege into the
register. A comparison is made between the ring number of an A Register being used for the
load, the ring number of the pointer being loaded and the ring number of the R1 field of the
SDE associated with the A Register used to load the pointer (refer to figure 3-9). The
largest of these three ring numbers is entered into the destination A Register.
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Figure 3-9. A Register Ring Voting

When an A Register is loaded via a Copy from an X Register, a comparison is made between
the Ring Number of the pointer held in the X Register and the Ring Number held in the P
Register, the larger of the two values being used. Since this cannot be as rigorous a test
as that used for loading A Registers, care must be exercised in its use. For example, if a
procedure calls on a second procedure in a more privileged ring, and a pointer or pointers
are passed via loading an X Register and copying the X Register to an A Register, then the
callee may end up acting on behalf of caller, with more privilege than caller is allowed.
However, when this happens callee - the more privileged procedure - is at fault. It is
incumbent upon the more privileged - and therefore more trustworthy - procedure to maintain
the security of the system down through his level. If this fundamental software convention
is not followed, there is nothing the hardware can do to maintain system integrity.
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GLOBAL AND LOCAL KEY/LOCKS

Keys and locks provide two other protection mechanisms in the hardware. These deal with
mutually suspicious code segments which reside within the same ring of protection. Here
again, two cases are of interest: the protection of local data (where Local Key/Locks are
used), and the isolation of competing applications. Some examples will help to clarify the
problems being addressed by these mechanisms. Following these examples there is a
description of how the hardware functions, and then a final example to tie the entire
concept together.

Local Key/Lock Usage

An example of Local Key/Lock usage may be taken from a math function which has been
developed and is being marketed by some organization. Since the function is general purpose
it will typically reside in the same ring of execution as the user who 1s calling it.
However, the developer may wish to restrict access to coefficients he has derived and which
exist in a separate (read-only) segment. Hence, the scenario is one in which a read-only
data segment can only be accessed from a given code segment or segments in a given ring.

This type of access protection is accomplished by means of Local Keys and Locks being
applied to all segments in that ring.

Global Key/Lock Usage

Notice that the purpose of Local Key/Locks is to protect local data (data which is used
by a particular procedure or procedures). Global Key/Locks, in turn, are used for isolation
rather than for protection. For example, two proprietary applications for competing
organizations may coexist within a user address space. The applications are regarded as
subsystems and, as such, have been placed in a ring of execution of more privilege than that
of the end user. Within this ring it is necessary to isolate the applications so that they
may neither call each other, nor read nor write data from one to the other. Global Key/Locks
are used to achieve this isolation.

Key/Lock Hardware Mechanism

There is a lock associated with every segment. It is described by a six-bit field in
the SDE, hence up to 64 different locks may coexist. Whenever a segment is executed, the
lock associated with that segment becomes the current key. The various values which locks
may have assume no hierarchical significance, as with rings. Of importance only is whether
the key/locks are the same or different. Two bits in the SDE describe whether the lock
associated with the segment is a Local Lock or a Global Lock, or whether the single six-bit

lock value acts as both a Local and Global Lock. The format of SDE bits 32-39 is shown in
figure 3-10:

32 33 34 ' 39
G L KEY/LOCK

Figure 3-10. Format of SDE Bits 32-39
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The G and L fields have the following meaning:

Procedure Global Local

s L

0 0 Master Key Master Key
0 1 Master Key 6-bit Key

1 0 6-bit Key Master Key
1 1 6-bit Key 6-bit Key

Data

4 L

0 0 No Lock No Lock

0 1 No Lock 6-bit Lock
1 0 6-bit Lock No Lock

1 1 6-bit Lock 6-bit Lock

A Master Key will fit any Lock, and any Key will fit a No Lock. In general, access to
one segment from another segment will only be granted if the first segment has no lock

(Local and Global), or if the second segment has a Master Key (Local and Global), or if the
Global and Local Keys exactly match the Global and Lacal Tocks. These tasts which are
executed by the hardware, are in addition to these already described for rings and type of
access. However, the Key/Lock tests are performed selectively as controlled by the RP and
WP fields in the SDE. Hence, even though a Global and/or Local Lock may have been specified
for a segment, the test for read access will only apply when the Lock applies to read access
as indicated by an RP value of Ol. Write accesses are similarly controlled by WP.

In addition to the tests performed for read and write access, Global Key/Lock tests are
performed on Calls and Returns. A call is permitted when callee has a Master Key, when
caller has No Lock, or when callee”s Key exactly equals caller”s Lock. The Key
transformations which take place on a call are summarized as follows:

Caller”s Global Callee”s Global New Global
Key Lock Key
0 0 0
0 K2 K2
K1l 0 K1l
K1 K2 K1l if K1 = K2

else Access Violation

On a Return, the hardware checks (against caller”s SDE) to ensure that caller”s Global Key,
obtained from the Stack Frame Save Area, is equal to Caller”s Global Lock. The following
combinations are permitted:

New Global Key Global Lock
(from SFSA) (from SDE)

0 0

K1 K1l

K1l 0

All other Key/Lock transformations result in an Access Violation.
The new Local Key on a call is always taken unconditionally from Callee”s Local Key value

in the SDE. On Return the hardware verifies that the Local Key obtained from the SFSA
exactly matches the Local Lock taken from Caller”s SDE.
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Key/Lock Example

Figure 3-11 illustrates the usage of Key/Lock values and should help to clarify the
mechanism.

USER (11)
R.X RW RW
(0,5) (0,5,R,W) (0,5)

PROTECTED
APPLICATION (8)

R.X RW RW R.X RW RW
{3,3,R,W) (3,0,R,W) (4,4) (4,4 RW) (4,0,R,W)

OPERATING SYSTEM (3)

R.X RW R.X RW
(0,1) 0,1,W) (0,2) (0,2w)

Figure 3-11. Key/Lock Example
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In this example, three rings of protection are utilized. Ring 3 is the most privileged
ring, where parts of the operating system reside. Ring 8 contains two applications which
must be isolated from each other, but callable from a user in Ring 11. The information in
parentheses defines the Global Lock, Local Lock and whether these Locks apply to read
accesses (R), write accesses (W) or both.

In order to isolate the applications from each other they are assigned different Global
Key/Locks. Likewise, for them to be called by a user in Ring 11, and to be able to call the
operating system in Ring 3, the user and the operating system are assigned Global Key/Lock
values equal to zero. In other words the user and the operating system have Master Global
Keys — No Global Locks. This is consistent with the general software convention for Global
Locks: Subsystems are confined to rings greater than those for the operating system but less
than those for the user. Each Subsystem in these rings is assigned a unique Global Key/Lock
value. This limits the total number of Subsystems within a single user address space to
63. In the example, Application A cannot read or write Application B”s data segments since
the Global Key/Lock values are different. Likewise the applications cannot call each other.
Consequently, they have been totally isolated from each other, even though they reside in
the same ring of protection. However, the user, in Ring 11 may call on either application
and on the operating system, since the user has a Global Key/Lock of zero - a Master Global
Key. When a call is made on an application it runs with its own Global Key, thus ensuring
continued isolation. On return to the user, the user”s Global key is restored to him. The
user cannot read or write the applications” ring. When the aperating svstem isg r2lled from
the user it runs with a Master Global Key (user has a Master Global Key, operating system
has No Global Lock). Hence, nominally, the operating system can read and write the
applications data segments. However, when the operating system is called from an
application, then it executes with the Global Key of that application and cannot read or
write the other application”s data segments. Hence when the operating system executes on
behalf of a protected or isolated application, it executes with the privilege of that
application, and consequently cannot be tricked by that application into giving it access to
data from which it is otherwise isolated.

Local Key/Locks work rather differently. Whenever a call is made to a procedure in
another segment, callee executes with his own Local Key. This value is associated with the
Local Lock of the data segments accessed by that procedure. In the example, the user has a
read/write data segment to which Key/Lock verification applies. It has a unique Local
Key/Lock value of five. Consequently, the applications in Ring 8, which have Local Keys of
three and four respectively, and the operating system which executes in Ring 3 with a Local
Key value of either one or two cannot access this data segment. This is true even though
the data segment is available for reading and writing, and resides in Ring 11 - a ring with
very little privilege. Similarly, the operating system cannot read or write either of the
applications” data segments since they have different Local Key/Lock values from the
operating system, and each other. Hence, Local Key/Locks are used to protect local data
regardless of the ring structure in use.

By software convention the operating system segments (both code and data) are assigned
nonzero Local Key/Locks. This has the added advantage that various modules of the operating
system can be protected from each other. In the example, there are two modules, both in
Ring 3, which can call each other and can read each others data segments. However, the data
segments can only be written from the module to which they belong. This is a very powerful
debug aid for the operating system. In today’s systems it is not uncommon for one module of
the operating system to accidentally destroy data belonging to another module. The damage
is not discovered until the second module is called, by which time the culprit is
unidentifiable. Through the use of Local Key/Locks the culprit can be identified at the
time the data was over-written, or at the time when this was attempted.

3-18 60459960 A



Since the SDE contains a single Key/Lock value for Global and Local Key/Locks, and since
the algorithms for transforming Global Key values on a call are different for the two types

of Key/Locks, it is necessary to maintain two separate values for the current key.

The

current key is maintained in the P Register and figure 3-12 indicates that two separate

six-bit fields exist in the P Register for this purpose.

0 2 8 10 16 20 32 33 63
e Dieenlond | »
/) 7 )

Figure 3-12.

Program Address Register

In summary, there are three basic forms of protection from within a user space: the type

of access to a segment, the ring protection mechanism, and Global and Local Key/Lock
values. For every access attempted, all three of these tests must be successful.

one of them fails, an Access Violation interrupt results, and the user is exchanged
his address space into the Operating System monitor address space where appropriate
results. The complete, protected user address space is illustrated in figure 3-13:
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The following flowcharts (figures 3-14 and 3-15) describe the complete virtual memory
address translation and access control.
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Figure 3-14. Virtual Memory Address Translation Flowchart
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BUFFER MEMORIES 4

To minimize the time necessary to translate a PVA to an RMA a number of hardware buffer
memories are utilized. The description given here is based on P3 buffer memories. The
organization varies from processor to processor, but the fundamental concepts are the same.

Figure 4-1 gives a pictorial representation of these buffer memories. The Segment MAP
contains the most recently used entries from the Process Segment Table. In the first stage
of address translation the processor uses this MAP to translate the PVA to an SVA. This SVA
is then transmitted to the cache memory and the Page MAP. Each of these buffers are
organized on the basis of the SVA, the Page MAP containing the most recently used entries in
the SPT, and the cache containing the most recently used words in system virtual memory.
Simultaneously, a search is made of the Page MAP and cache. If a cache hit occurs, then no
further action is required. However if the required data is not in cache, then the search
of the Page MAP is relevant. If a hit occurs the required address translation completes and
central memory may be accesssed via the appropriate RMA. Only when there is no hit in the
page MAP must the processor actually search the SPT in real memory.

CENTRAL
PROCESSOR
PVA
SVA
SEGMENT ‘ ‘

MAP

PAGE
I MAP CACHE
A

SDT SPT

CENTRAL
MEMORY

Figure 4-1. CYBER 180 Buffer Memories
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SEGMENT MAP

The purpose of the segment MAP is to translate a segment number (SEG) to an Active
Segment Identifier (ASID). This is the first step in the address translation mechanism and
translates a PVA to an SVA. Figure 4-2 illustrates the general process. A set associative
technique is employed whereby an index is used to select a set, and then an associative
(simultaneous) comparison is made between each entry in the set and the required segment
number. P3 has 16 such sets in its Segment MAP, each set having two members. To index into
the MAP the lower four bits of the segment number are used as a hash index. These bits are

—mm A PPN
Lllc II.IUEDL ranaom ydll. UL I-IJU bEsl.llEuL numper .

The hash index identifies one of two entries in the segment MAP which are candidates for
translation of the given SEG. The segment MAP simultaneously compares the set tag entries
with the mode of operation (job/monitor) and the upper eight bits of the SEG. If a hit is
made, then the ASID is taken from the segment descriptor word held in the MAP. If no hit
occurs, then the ASID must be fetched from the segment descriptor table in real memory.

The tag field of the segment MAP contains a bit to indicate which entry in the two sets
is the least recently used (LRU). There are only two candidates. This entry is then used to
receive the new segment descriptor. The tag field does not contain the segment table
address (STA). TInstead two registers are used: one for the inh STA 2nd one for monitor.
During an exchange to monitor state the monitor STA is compared to that obtalned from the
monitor ewchange package. Similarly with the job STA when an exchange to job state occurs.

If the values do not compare, then all entries for either job or monitor in the segment MAP
are invalidated.
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Figure 4-2. Segment Map Operation

The most recently used segment numbers appear in the MAP. Hence, the more segments used
by a process the less likely it will be to find the entry in the MAP. The system performs
most efficiently if the MAP entries for monitor and job are not hashed to the same location
in the MAP. This is best handled by the operating system assigning job segment numbers
sequentially from zero, and monitor segment numbers from FFF downwards sequentially. This
has the affect of creating a 32 entry buffer which is filled from the top with job segment
descriptors, and from the bottom with monitor segment descriptors (figure 4-3). The choice
of a starting segment number for monitor need not be FFF, but should be of the form XXF. 1In
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fact, FFF will probably be used for some special purpose by the operating system, and, in
any case, would maximize the dead space in the monitor segment table. The practical choice
for the starting segment number is computed from:

(number of monitor segments) .OR. OOF

in which case the maximum number of dead entries will be 15.

When the MAP is degraded (due to a parity error) one set is eliminated. This means that
the probability of a miss is heightened and performance degrades.

MTR SEG 0 —»
MTR SEG 1 —»

TOTAL 32 ENTRIES

hY
A
A )
. &
3
me

JOB SEG 1 —>
JOB SEG 00—

Figure 4-3. - Segment Map Allocation

PAGE MAP

The purpose of the page MAP (figure 4-4) is to tranmslate the SVA from the segment MAP
into an RMA. As with the segment MAP a set associative technique is used. In this case
there are 32 sets, and the low order five bits of the page number are used as a hash index
to select a set. The page number is formed from the byte number by executing a logical
product with the page size mask. Depending on the page size the page number will not be
right justified, and the hardware performs the necessary justification before extracting the
hash index. :
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SVA (FROM SEGMENT MAP)
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[ ASID | PN LESS 5-BITS |
MODIFIED
—LRU STATUS
VALID

Figure 4-4. Page Map Operation

The page MAP simultaneously compares the set tag entries with the high-order 33-bits of
the SVA. Note that the valid bit is not included in this operation. Invalid PVA“s (and
therefore invalid SVA“s) do not get this far in the translation mechanism. If a hit is made,
then the RMA 1is formed from the SVA in the page MAP data table, and the page offset.
Otherwise, a page table search is initiated.

The tag field in the page MAP contains two bits to indicate which entry in the two sets
is the LRU. There are only two candidates. However, two bits are allocated on P3 to allow
for up to four entries per set.
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The most recently used pages appear in the page MAP. Hence, the more pages used by a
process, the less likely it will be to find the entry in the MAP. When the page MAP is
degraded, one group of entries is eliminated. The probability of a hit is reduced, and

performance degrades.

The modified bit is carried in the page MAP, but not the used bit. Actions taken on a
hit and a miss are described below, and clarify the setting of these bits:

1) MAP Miss - Page Table Hit
the used bit in the PTE

: { t
(i1) Copy the modify bit to the MAP
(iii) Copy the addresses to the MAP

P |
cau

Write : (1) Set used and modify bits in the PTE
(ii) Copy the modify bit to the MAP
(1iii) Copy the addresses to the MAP

2) MAP Hit
Read : (1) Simply form the RMA - no page table access is necessary

he modify bit is set in the MAP, then the process is identical to

.

Write : (i) 1f

t
ead

(ii) If the modify bit is not set in the MAP, then a page table search is
required to set the modify bit in the PTE. The same bit is set in the MAP.
At this time the modify bit in the PTE and in the MAP is set, and the used
bit is set in the PTE.

The MAP and the cache perform similar functions. Once the segment MAP has formed an SVA
it sends it simultaneously to the page MAP and the cache. If there is a cache hit, and the
operation is a read, then there is no need to access the page MAP, data being read directly
from cache.

On a read the cache hit overrides everything. Consequently, it is possible to to get a
cache hit even when the relevant page is not in central memory. This is because the cache
is organized on the SVA. The operating system must ensure that cache accurately reflects
the contents of system virtual memory at all times. Whether the data actually resides on
disk or in real memory is immaterial. On writes, the situation is different. CYBER 180
processors always write through cache. This means that the appropriate entry in cache is
either updated or purged on a write. Actual implementation is processor model dependent.
On P3 when a cache hit occurs on a write, if it is a full-word write, then the word is
updated. For a partial-word write, the word is purged. On another processor cache is
updated regardless of the nature of the write.

CACHE MEMORY

CYBER 180 supports very large, cost effective memories. It achieves this at the expense
of some memory speed, and to make up for this loss of speed a buffer memory, (cache memory),
is placed in the faster processors. The most recently used words in system virtual memory
are held in a much smaller, faster memory. The management of this memory is in figure 4-5.

A set—-associative technique is used to control entries in the cache. On P3 a maximum of
four entries per associative set are employed. An entry in a set consists of a tag field,
which identifies the entry, and 32 bytes (4 words) of data which are termed a BLOCK. There
are 256 sets on P3.
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Figure 4-5. Cache Memory Operation

Bits 51-58 of the SVA are used as a hash index into the sets. These represent the most
random part of the SVA. The low-order five bits of the SVA represent the word within block,
and the byte within word respectively. Note that the ASID does not enter into the hash
index computation. This is deliberate since in CYBER 170 State only a single segment
(ASID. = FFFF) is used, and this has no randomness.

Once a set has been selected, a simultaneous comparison of the upper 35 bits of the SVA
and the tag entries is made. If there is a hit, and the entry is valid, that entry is
used. If there is no hit, then a set is chosen for the new entry and the appropriate words
read up. Entries are chosen first on the basis of their validity, and then on their LRU
status. Whenever a new entry is made in a set an entire block (four words) is read up,
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starting with the required word and proceeding left to right unless the instruction is a
right to left (BDP numeric) type. Cache regards central memory as a series of four-word
blocks which always start on a block boundary.

If, at any time, cache is not busy after it found a hit, then it automatically looks
ahead one block. If it gets a hit, then the sequence ends, otherwise it initiates a read on
that block.

" Cache will always be organized on SVA for C180 processors.

SOFTWARE IMPLICATIONS

There are several software implications in the use of the cache and the MAP s,
particularly in a multiprocessing environment. It is incumbent upon the operating system
software to ensure that stale data does not exist at any time in the MAP or the cache (CYBER
180 physical I1/0 and memory writes performed by another processor do not update
automatically the processor local cache). The following guidelines should be followed by
the software:

1) Whenever a page table entry is changed the Page MAP must be purged. Not only the
Page MAP in the processor updatinmg the page tables but in ithe secound processor, if
available. Care must be exercised by the software at this time, and to some extent,
the hardware depends on the software to take certain precautions . The reason for
this is the noninterruptibility of the CYBER 180 instructions. Before an
instruction is placed in execution it is prevalidated. The hardware ensures that
all pages required to complete the execution of the instruction are in memory before
execution commences. Once execution starts, the processor assumes that the pages it
requires will remain there. Hence, a second processor must not delete a page from
memory without first notifying the other processor. A typical sequence of events is:

(1) Set the invalid bit in the PTE - This ensures that an instruction cannot start
which requires this page, but that it can complete if it has already started.
In other words, the processor ignores the valid bit once an instruction has been
prevalidated.

(2) Send an interrupt to the second processor asking to purge MAP.

(3) First processor waits for acknowledgement from second processor that MAP has
been purged.

(4) First processor updates the page table entry.
(5) First processor sets valid bit in PTE.

Since the valid bit was dropped prior to sending the interrupt, no instruction can
be started using the page which is absent or deleted. An instruction making such a
reference would cause a page fault, and this page fault will not be processed until
the in progress page table update has been completed. This is another interlock
which must be set up by the 0/S software. That is, only one processor can execute a
page table update at one time.

Notice also that when a page table update is made, cache memory need not be purged
if the operation is a write, since writes always write through cache memory,
prevalidation will ensure that the page exists in memory. If the operation is a
read, even though the page has been purged from memory, the copy in cache memory is
still good, and the hardware will use this copy as has already been described.
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2) There is a danger, in a multiprocessor environment, of the cache becoming stale
whenever a processor is assigned to a job. At this time, the 0/S should check the
LPID (Last Processor ID) field in the Job Exchange package against the processor ID
(PID). If the quantities are not identical, then cache must be purged.

These are not the only times when cache and the MAP must be purged. It will be seen in a
later section (Purge Buffer) that similar problems arise during I/0. The points made here
are merely illustrative. There has to be a cooperative effort between the hardware and
software, and great care must be exercised when designing for the multiprocessor environment.
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CENTRAL PROCESSOR LOGICAL ENVIRONMENT 5

This chapter discusses processor state and process state registers. Processor state
registers define the operational state of the processor without regard to a specific
process. Process state registers define a specific process.

PROCESSOR STATE REGISTERS

Each processor has a set of registers which define the operational state of the
processor. These registers are described fully in the MIGDS, however, several points are of
interest here:

1. CYBER 180 has an exchange mechanism, similar in function to CYBER 170, which executes
quite differently from CYBER 170. Whereas on CYBER 170 a true exchange occurs (that is,
the operating registers are stored in memory and loaded with the contents of those same
memory cells), on CYBER 180 the operating registers (process state registers) are stored
in one area of memory and loaded from a different area in memory. Since an exchange
jump always changes the operating mode from job to monitor, or vice versa, two exchange
packages are located in memory: a monitor exchange package and a job exchange package.
These exchange packages are located at real memory addresses specified by the Job
Process State (JPS) and the Monitor Process State (MPS) registers. They must not be
located at the same address, nor must they overlap. Finally, they must be on a double
word boundary. To this end, the least significant four bits of the JPS and MPS are

ignored (treated as zeros — figures 5-1 and 5-2).

a
E REAL MEMORY ADDRESS

Figure 5-1. JPS and MPS Registers

A

Figure 5-2. PTA Register
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2.

Two registers the Page Table Address (PTA) and the Page Table Length (PTL) specify the
size of the Page Table. The Page Table must be located on a boundary which is zero
modulo the Page Table Length. The reason for this is that the hardware accesses the
Page Table frequently and computes an index for this purpose. To find the address of
the required entry, instead of adding the index to the PTA it is simply catenated - a
much faster operation. Depending on the page table length the low-order 9-17 bits of
the PTA must be set to zero.

The PTL, which indicates the length of the Page Table, is simply used as a mask which is

used to ensure that a hash index with the page table remains within the bounds of the

______ Ta o

page table. 1Its use is described in ihe seciion dealing with virtual memory.
The Page Size Mask (PSM) specifies the page size to be used. The page size may be chosen

from 512 bytes to 64K bytes. However, typical page sizes are expected to be 2KB and 4KB.
As with the PTL, the use of the PSM is discussed fully in the virtual memory section.

Two registers deal with equipment identification — the Element ID (EID) and the
Processor ID (PID). The first is a unique, world-wide identification, the format is
shown in figure 5-3. The second (the PID) is a abbreviated version which uniquely
identifies an equipment within a system. The PID is used on exchanges to identify the
Last Processor ID (LPID), and is used in a self-discovery process during system
initiglization. A third registcr - Qt‘r‘!ne‘ﬂ Tnaetallad (f‘7§ - r-nma’afac the deeﬁsiﬁ&{ﬁﬂ
of the equipment. This is a 64-bit register which indicates the number of PP“s, cache

P g . | -

WESEMOTY eigc, poOrts o centrai memory, and 50 forihe.

(N
o &=

TYPE MODEL

1D NO. SERIAL NUMBER

Figure 5-3. Element ID Register

There is a 32-bit microsecond counter - the System Interval Timer (SIT) - which counts
down, and is used to establish job time slices.

One final register is of interest at this stage and that is the Virtual Machine
Capability List (VMCL). Many of the CYBER 180 processors are microprocessors and the
microcode may describe various machines which are termed virtual machines. CYBER 180 is
one such virtual machine but many others are possible, in particular CYBER 170. This
16-bit register controls the virtual machines the user (customer) is permitted to run.
For example, a CYBER 180 customer who has not purchased the CYBER 170 emulator is
prevented from executing CYBER 170 code via the register.




The remaining processor state registers (there are several) deal with the operational

status of the processor and its maintenance.

Access to these registers is controlled.
the Maintenance Control Unit (MCU), and can be read from the processor.
can only be written when the appropriate privilege has been granted.

registers is illustrated in the figure 5-4.

Many of these registers are model dependent.

Most registers can be read and written from

However, registers
Access to the

PROCESSOR
ACCESS

[ss:] STATUS SUMMARY

PID PROCESSOR IDENTIFIER

PROCESSOR
READ

VMCL | VIRTUAL MACHINE CAP. LIST

EID | ELEMENT ID.

ol OPTIONS INSTALLED |
CONTROL MEMORY ADDRESS
CONTROL MEMORY BREAKPOINT

DEC ENVIRONMENT CONTROL |

PTL PAGE TABLE LENGTH

PROCESSOR PSM | PAGE SIZE MASK
READ PTA PAGE TABLE ADD.

MPS MTR. PROC. STATE
PTM* |PROCESSOR TEST MODE
JPS JOB PROC. STATE **
SIT SYS. INT. TIMER **

PROCESSOR CACHE CEL* CORRECTED ERROR LOG

READ/WRITE MAP CEL* CORRECTED ERROR LOG

CONTROL MEMORY CEL* ]

RETRY CORRECTED ERROR LOG*

PFS* PROCESSOR FAULT STATUS

*  WRITE IN GLOBAL PRIVILEGE MODE ONLY
**  WRITE IN MONITOR MODE ONLY

MCH
ACCESS

MCH READ

MCH READ

MCH
READ/WRITE

MCH
READ/WRITE

MCH
READ/WRITE

¥ EIKLL
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PROCESS STATE REGISTERS

There is a large set of registers which define each process state, these include the P,
A, and X registers. These registers completely describe the operational environment of a
job or process, and if the process is interrupted for any reason that environment must be
captured in order for processing to resume after the interrupt has been dealt with. This is
accomplished by the exchange mechanism during which all the process state registers are
saved in an exchange package (figure 5-5), and a fresh set of registers (defining the
process exchanged to) are loaded from a second exchange package.

BYTE(HEX) WORD(DEC)
00 D7I 08 15‘16 63
0 P 0
8 VMID UVMID Al 1
10 Flags Trap Enables A1 2
18 User Mask A2 3
20 Monitor Mask A3 4
28 User Condition Al 5
30 Monitor Condition ) A5 6
38 |Kypt.Cass| LPID | AG 7
40 Keypoint Mask A7 8
48 Keypoint Code A8 9
50 A9 10
58 Process Int. Timer AA 1"
60 AB 12
68 Base Constant AC 13
70 AD 14
78 | Model Dependent Fiags AE 15
80 Segment Table Length AF 16
88 X0 ) 17
90 X1 18
co 24
cs X8 25
Do X9 26
D8 XA 27
E0 X8 28
E8 XC 29
Fo XD 30
F8 XE 31
100 XF 32
108 Model Dependent Word 33
110 | Segment Table Address 0 1 Pointer 34
118 Trap Pointer 35
120 | Debug lndexi Debug Mask Debug List Pointer 36
128 Largest Ring Num Top of Stack Ring Number 1 37
i ‘ I~
Top of Stack Ring Numbher 15 51

63

Figure 5-5. CYBER 180 Exchange Package (CYBER 180 Process)



The process state registers are summarized below. The 33 basic oL and if the process is
Perating registers (P, A and X registers) are described elsewhere in this document. This
section will cover the remaining process state registers. The VMID designates the virtual
machine to which control is being transferred. VMID”s of zero (CYBER 180) and one (CYBER
170) have been defined for the CYBER 180 processors. The UVMID is a register used to
designate an invalid (undefined) VMID to which the processor attempted to transfer control.
If an exchange jump is attempted to a nonexistent virtual machine, then the exchange
completes, and a second exchange interrupt occurs immediately on an Environment
Specification Error. This is when the UVMID is set to identify the fault to the operating
system.

A series of flags are located in word 2 of the exchange package. These are: The
Critical Frame Flag (CFF); the On Condition Flag (OCF); the Keypoint Enable Flag (KEF); and
two flags to control trap interrupts. These are primarily software flags which are carried
by the hardware. Their usage is described in later sections of this document.

The User and Monitor Mask Registers and Condition Registers are used to control
interrupts and are discussed fully in the section dealing with interrupts. Similarly, the
Keypoint Class, Keypoint Mask and Keypoint Code Registers are described in the section
dealing with Keypoint. These registers control the keypoint process.

The LPID (Last Processor ID) has already been introduced (refer to Cache Memory). It
records the PID of the processor executing a given exchange interval. The PIT (Processor
Interval Timer) is a 32-bit microsecond timer analagous to the SIT. It counts down, at a
microsecond rate, and interrupts the processor whenever it reaches zero. It is used for
timing within a given task (or process).

The Base Constant is a register used by the 0/S as an index to a control point area for
an executing task. The STA and STL (Segment Table Address and Length) specify the RMA and
length of the SDT to the hardware. Remember, the SDT is a hardware table used in the
virtual memory address translation and, as such, it must be located at a real memory
address. The combination of the STA and STL also uniquely define the task address space.

The model dependent flags and word are used by the hardware, typically, to help in
hardware checkout. They do not have any particular significance to the software. The Debug
Index, Debug Mask and Debug List Pointer are used to control the debug facility, and are
discussed fully in a later section.

The Trap Pointer carries the address of the trap handler to be used by an executing
task. It is discussed in the section dealing with interrupts. Likewise, the Untranslatable
Pointer (UTP) is also covered in the interrupt section. This register holds the pointer or
address which could not be translated, causing an exchange to O/S monitor. Finally, there
are 15 Top of Stack Pointers, one for each ring of execution. Their utilization is covered
in the section dealing with Call/Return. On most processors (at least P1-P3) these pointers
are not kept in live registers but reside in the exchange package in central memory. The
Largest Ring Number Register has been included in the event that the Top of Stack Pointers
are kept in live registers. In which case the hardware could be organized such that the
exchange mechanism would only have to exchange those pointers actually in use in the process.

As with the processor state registers, access to the process state registers is
carefully controlled. This access is illustrated in figures 5-6 and 5-7.
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PROCESSOR
ACCESS

PROCESSOR

PROCESSOR
READ/WRITE

PROCESSOR
READ/WRITE

STL SEGMENT TABLE LENGTH

MCR MONITOR CONDITION REGISTER
UCR USER CONDITION REGISTER
MDF MODEL DEPENDENT FLAGS

STA SEG. TABLE ADDRESS
BC BASE CONSTANT

UTP UNTRANSLATABLE POINTER]

P REGISTER

MDW MODEL DEPENDENT WORD

\iERDFﬁ’?\iTE/’ )
N

7

CFF CRITICAL FRAME FLAG
OCF ON CONDITION FLAG
nt  IneEpuc mpey

DM IDEBUG MASK REGISTER

UM j USER MASK

TE| TRAP ENABLES*
KCN|KEYPOINT CLASS NUMBER *
KEYPOINT MASK

KC* KEYPOINT CODE
PIT* PROC. INT. TIMER
TP* TRAP POINTER

DLP* DEBUG LiST POINTER

[MM_— | moNITOR MASK **

*  WRITE IN LOCAL PRIVILEGED MODE ONLY
**  WRITE IN MONITOR MODE ONLY

MCH
ACCESS

/=N

MCH
READ/WRITE

\REANI;(/:V'-\:RITE/
N v

MCH
READ/WRITE

MCH
READ/WRITE

NOTE: ONLY THOSE PROCESS STATE REGISTERS WHICH MAY BE
ACCESSED VIA THE PROCESSOR COPY INSTRUCTION OR
VIA THE MAINTENANCE CHANNEL ARE SHOWN.

&)}

Figure 5-6. Process State Registers
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VMID VIRTUAL MACHINE ID
UVMID UNTRANSLATABLE VIRT. MACH. ID
LRN LARGEST RING NUMBER

LPI LAST PROCESSOR ID

TOS1 TOP OF STACK RING 1

TOS2 TOP OF STACK RING 2

b))

M

932
¢

TOS14 TOP OF STACK RING 14

TOS15 TOP OF STACK RING 15

Figure 5-7.

Process State Registers Accessed by Exchange Operation
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INTERRUPTS PART I 6

First of all, the CYBER 180 interrupt system 1s hierarchical. That is, a process may be
interrupted and control transferred to an operating system interrupt handler. Depending on
the status of this new environment, it may be interrupted itself but via a different
mechanism. The two basic interrupt mechanisms are termed: exchange interrupts and trap
interrupts. Both forms of interrupt save the current enviromment (as described by the
process state registers) and transfer control to some other code module. 1In the case of an
exchange interrupt, control transfers from a user or subsystem address space to the monitor
address space. Trap interrupts, on the other hand, are processed within the address space
of the current process.

Trap interrupts are controlled by two process state registers: the trap enable flip-flop
(TEF) and the trap enable delay flip-flop (TED). The settings of these registers are
controlled by the exchange mechanism. Hence, it is the software designer”s choice whether a
monitor exchange interrupt is handled with traps enabled or disabled. This is an important
design decision as will be seen later on.

Two pairs of process state registers are used to monitor interrupts and control the
actions taken when a condition arises which may interrupt a process. These are the Monitor
Condition Register (MCR) and the Monitor Mask Register (MM), and the User Condition Register
(UCR) and User Mask Register (UM). The condition registers are normally filled with zeros.
Each bit in the registers corresponds to a particular interrupt condition and when that
condition is encountered, the bit is set to indicate that fact. For each bit in the
condition registers, there is a corresponding bit in the mask registers and when both bits
are set, an interrupt is taken. In other words, the processor takes the logical product of
the two register pairs, and then takes an interrupt if the result is nonzero (figure 6-1).

MCR|]0O 0 0 0 0 0 O 0 O 1 0 0 O O O O

MMR}|O 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

<>

INTERRUPT

Figure 6-1. Basic Interrupt Mechanism
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Now although there are only two condition registers (for the monitor and user), there
are really four classes of conditions. They have been grouped into two registers simply for
software convenience. The four classes are monitor conditions, system conditions, user
conditions, and status indicators (figure 6-2). Conditions which are signaled in the MCR
have a higher priority than (are acted on before) those flagged in the UCR. Notice that the
MCR contains all system conditions, flags and most of the monitor conditions. The UCR
contains all user conditions and some monitor conditioms. The monitor conditions which are
in the UCR are there so that the user may process them via a trap interrupt from within the
user address space.

SYSTEM CONDITIONS MONITOR CONDITIONS

Power Warning
External Interrupt
System Interval Timer
Soft Error Log

C170 Exchange Request

Detected Uncorrectable Error
Instruction Specification Error
Address Specification Error
Invalid Segment

Access Violation

Environment Specification Error
Page Table Search Without Find
OQutward Call/Inward Return

Unimplemented Instruction
Privileged Instruction Fault
Inter-Ring Pop

Critical Frame Flag

!

MONITOR CONDITION USER CONDITION
REGISTER REGISTER

1 )

STATUS INDICATORS USER CONDITIONS

e Monitor Call
e Trap Exception

Free Flag

Process Interval Timer
Keypoint

Divide Fault

Debug

Arithmetic Overflow

Exponent Overflow

Exponent Underflow
Floating-point Loss of Significance
Floating-point Indefinite
Arithmetic Loss of Significance
Invalid BDP Data

Figure 6-2. Interrupt Conditions
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Monitor conditions are organized such that they are typically only encountered in job
mode, the exceptions being uncorrectable errors which can occur at any time. When these
conditions arise, an exchange jump from job mode to monitor mode takes place. A recurrence
of the same condition (or another monitor condition) causes the processor to halt when traps
are disabled. That is, with the exception of hardware diagnostics, the code executed in
monitor state is arranged so that these conditions cannot arise. System conditions, on the
other hand, occur any time, cause an exchange interrupt from job state to monitor state, and
are stacked when encountered in monitor mode with trap disabled. This means that care must
be taken when processing an interrupt to ensure that conditions are not lost.

Consider the following situation: The machine is in job mode, traps enabled and a page
fault occurs (figure 6-3). During the processing of the page fault (in monitor mode), a
soft error occurs. If traps are disabled, then this condition is simply remembered
(stacked). When the page fault processing completes if an exchange is taken back to the
process originally interrupted or another process, then the soft error is lost. It is
stored away in the monitor exchange package. There is only one way to guarantee that this
condition is not lost and that is to run in monitor mode, traps enabled. Testing the live
MCR does not suffice, since subsequent to this test, an exchange back to job state must be
made, and there is a finite time between the test and the point where the exchange is
committed.
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I Rynning Process - Job Mode - Traps Enabled

MR is a *live’ registar which collects interrupts.
[ L] l M is a 'live’ register which has conditions e
selected.
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II A Page Faylt Occurs

IESR 010
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XJ from job wode
p_monitor mode

Condition causing the
interrupt is saved in
the exchange package
pointed to by JPS.

A{:_‘.lu traps

[258 . s
e

The 'live’ NCR register is loaded
from the exchange package pointed
to by MPS.

IIT Sofe Errer Condition

NCR ) ,
0 —m7mM M — l)ld Nothing happens. The condition is stacked (i.e.«
nn resembered} but no further action is taken.

b Y

IV Paae faylt Processing Completes
FL Stored in WPS XP
0010
L]

b

The MCR in the JPS exchange package is zeroed and an exchange to job
mode executed. Tha soft error is now saved in the MPS exchange package-
and is pot acted on-

Loaded from JPS XP.

Figure 6-3. Examples of Interrupts
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However, it is not necessary to have traps enabled for all monitor mode processing. The
preferable sequence is to enter monitor with traps enabled, immediately disable traps,
complete processing of the iInterrupt, enable traps, and return to job mode. Any conditions
which have arisen during the interrupt processing are handled via an appropriate trap
handler.

The interrupt system is hierarchical. The hierarchy does have a meaning and should be
used. For conditions logged in the Monitor Condition Register, the hierarchy is:

+--> STACK
-—t
EXCHANGE -> TRAP
—+

+--> HALT

Thus, an interrupt occurring in C180 job mode will cause an exchange to C180 monitor. An
interrupt in C180 monitor with traps enabled will cause a trap. An interrupt in C180
monitor with traps disabled will cause either a stack or halt depending on the specific
interrupt. It is incumbent upon the system to spend as little time as possible processing
interrupts with traps disabled because a higher priority interrupt may be pending. Some
care is necessary when designing the Operating System in this area.

The interrupt processing, as it affects the MCR, is very similar for the UCR. This
register collects user conditions which typically lead to a trap interrupt. These
conditions are best handled from within the user”s address space — built by a system
routine. The hierarchy for these conditions is simply:

TRAP -> STACK

Thus, an interrupt with traps enabled will cause a trap whether in Cl180 job or monitor; an
interrupt with traps disabled will be stacked.

In other words, the condition may be acted on or remembered. However, interrupt handlers
are organized such that these conditions cannot arise, hence stacking will not occur very
often. As has been previously stated, the relationship between the UCR and the User Mask
Register (UM) is the same as that between the MCR and MM. If a particular condition has not
been selected by the user in the UM then, effectively, it is stacked indefinitely. Certain
instructions (floating-point arithmetic) yield results which could differ depending on the
settings in the User Mask. This occurs when end-cases such as exponent overflow and
underflow are encountered. Also held in the UCR are four monitor conditions. The hierarchy
for these is:

TRAP -> EXCHANGE -> HALT

Thus, an interrupt with traps enabled will cause a trap whether in C180 job or monitor. An
interrupt with traps disabled will cause an exchange to C180 monitor when an interrupt
occurs in C180 job mode and a halt when an interrupt occurs in C180 monitor mode.

The exchange and halt conditions should normally arise very infrequently or not at all
since the interrupt handlers can be organized to prevent this. These monitor conditions
have been placed in the UCR for specific reasons. For example, a trap on an unimplemented
instruction is intended to be used for a software simulation of an instruction which is not
in the repertoire of CYBER 180. This simulation must take place from within the users
address space. Other monitor conditions in the UCR will have to wait until the system
instructions have been discussed, in particular CALL/RETURN.
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A more detailed discussion of the interrupt system where each condition is considered is
postponed until the stack processing characteristics of CYBER 180 are described. Some final
points will help to clarify the general process at this stage:

1. The overall scheme of events is represented in figure 6-4. In this flowchart stacked
conditions lead to an RNI (Read Next Instruction). As indicated in the previous
paragraph, this is a conceptual process only.

EXCHANGE

TRAP

HALT

RNI

TRAP

RNI

HALT

EXCHANGE

* TRAPS ENABLED MEANS THE TRAP ENABLE FLIP-FLOP (TEF) IS SET
AND THE TRAP ENABLE DELAY FLIP-FLOP (TED) IS CLEAR.

Figure 6-4. Interrupt Flowchart
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2. Conceptually, the hardware checks for interrupts before, during and after instructions.
In actuality, only uncorrectable errors can occur at any point, and the wrap—up after
one instruction and prevalidation for the next can become essentially a single process.

3. The hardware typically collects interrupts not between instructions, but between the
instructions” points of no return. There comes a point in every CYBER 180 instruction
when something is written (memory, register file, and so forth). Once this happens, the
instruction is committed, and, with the exception of hardware faults, interrupt
conditions which arise apply up to the next point of no return (figure 6-5).

Points of No Return

¢ ! ¢

INST. A | INST. B I INST. C | st

N ————— ———
Interrupts between
here and here apply
to instruction B, etc.

Figure 6-5. P3 Pipelined Instruction Stream

The concept of a point of no return is important, since hardware errors which occur
before this point can be retried. If the retry is successful, then a soft error condition
is recorded, otherwise a Detected Uncorrectable Error (DUE) is flagged.
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CALL/RETURN/POP MECHANISM 7

The CYBER 180 CALL/RETURN mechanism is the technique for crossing protection boundaries
within an address space. It is also used for transferring control between procedures
(subroutines). It is designed to satisfy the requirements of block structured languages
permitting recursive calls such as CYBIL - the implementation language for CYBER 180.

SOFTWARE CONSIDERATIONS

Before describing the CALL/RETURN mechanism, a short introduction to block structured
languages is in order. Procedures (subroutines) in a block structured language are organized
into a series of nested blocks (figure 7-1). In each set of blocks, variables are related.
Variables are classified into two types: static and dynamic. Static variables are allocated
to fixed memory addresses and tend to be used throughout a program. Dynamic variables are
allocated to different memory address each time a procedure is called. This allocation
occurs in a stack. A stack is an area of memory which can grow and shrink dynamically, in
accordance with the demands. Each time a procedure is called a new stack frame for that
procedure is created. On CYBER 180 much of the management of this stack is accomplished by
the hardware of the CALL/RETURN mechanism. The objective is to contain the code for a given
function in a compartment for which there are controlled modes of entry. The variables used
by this compartment (or block) are generated each time the block is entered and are erased
when the block is exited.
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6 procedure a;
7 var
8 i_a,
9 j_a: integer;
10 procedure b;
1 var
12 i_b: integer;
13 procedure c;
14 var
15 i_c: integer,
16 j-a: boolean;
17 it = i_b;
18 if j_a then
19 ia =i
20 if
21 d; {Call procedure D}
22 procend c;
23 i.b = j_a;
*ERROR* 24 i-b = i_c;
25 ¢; {Call procedure C}
26 procend b;
27
28 procedure d;
29 var
30 i~d: integer;
31 procedure e;
32 var
33 i—e: integer;
34 i—e = i_d;
35 i-e = i_a;
36 procend e;
*ERROR* 37 ¢; {Call procedure C}
38 procend d;
39 b; {Call procedure B}
40 procend a;
LINE SEVERITY
NUMBER LEVEL ERROR MESSAGE
24 ERROR Undeclared identifier - 1_C.
37 ERROR Undeclared identifier - C

Figure 7-1. Example of Block Structure

In the diagram, two sets of nested blocks are shown in module A. These are (B,C) and
(D,E). The replacement statements in procedure C involve variables described in the program
module A and in the procedures B and C. Knowledge of the whereabouts of these variables is
maintained by a static link which is held in the stack frame for each procedure. This
linkage is called static since it is known by the compiler at compile time and never changes.

7-2 60459960 A



Figure 7-2 illustrates the stack mechanism. The process starts by creating a stack
frame for the dynamic variables in the module A. A Current Stack Frame pointer (CSF) points
to the beginning of this stack frame and a Dynamic Space Pointer (DSP) points to the next
available (free) space in the stack. On CYBER 180, the stack frame and the pointers are
established by software. When procedure B is called, procedure A”“s environment is saved and
a stack frame created for procedure B. A dynamic link is created pointing to procedure A”s
stack frame, and a static link pointing (in this case) to the same stack frame. The dynamic
link is termed the Previous Save Area pointer (PSA) and is automatically updated on a CALL
and RETURN by the CYBER 180 hardware.

A START
B
C
CALL D
CALL C
D
E_
DSP —»
DSP — CSF B FRAME :|
PSA
CALL B csp A FRAME A FRAME
CALL C CALL D
DSP ——+
DSP —» CSF D FRAME :|
PSA
cse C FRAME C FRAME
s N N
B FRAME B FRAME
[: A FRAME :] A FRAME 3

Figure 7-2. Stack Frame Manipulation by Call/Return
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A call on procedure C follows in much the same way, and again the static and dynamic
links simply point to the previous stack frame. However, when procedure C calls on
procedure D, the dynamic link (for stack management) points to the previous stack frame,
whereas the static link points to the stack frame for module A, but not to those declared in
blocks B and C which are contained within A but do not contain D. The reason for this is
that procedure D is a block within the base module, A, and procedure D has access to
variables declared in module A, but not to those declared in blocks B or C.

On each procedure call the DSP is updated to point to the next available space within
the stack. This is a software function on CYBER 180, and represents the reservation of an
area in the stack which is large enough to accommodate all of the dynamic variables for a
given procedure - a quantity which is known only to the software.

Since each time a procedure is called, the caller”s enviromment is saved, it is easy to
see that a procedure may be reentered or called recursively. This is true providing all
code is organized into pure procedures. That is, no code modification is permitted.

The CALL/RETURN mechanism provides facilities for protection, dynamic linking and
virtual machine switching. These features of CALL and RETURN are developed separately
because of their importance. First, it is necessary to understand the hardware support for
the basic mechanism.

Consider an executing procedure (procedure A) which calls a second procedure,
procedure B. Refer to figure 7-3. Four parameters are of interest:

- Top of Stack (TOS) Pointer - in exchange package.
- Dynamic Space Pointer (DSP)- held in AO.
~ Current Stack Frame (CSF) - held in Al.
-~ Previous Stack Frame (PSF) - held in A2.
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PROCEDURE A:
CALL B;
DSP —»
STACK
FRAME
TOS '
csp—"]_ FORA
PSA —
INITIAL STATE
DSP —
‘ STACK
TOS,DSP T0S FRAME
cSF—™ cse " FOR B
ENVIRONMENT ENVIRONMENT
rsa—sl __OFA__ | pa—sl __OFA __|
STACK STACK
FRAME FRAME
FOR A FOR A
AFTER SOFTWARE
AFTSEs%gSLL CREATION OF STACK
FRAME FOR B

These quantities are pointing within the stack as indicated prior to the CALL.

CALL is issued,

Figure 7-3. Basic Call Mechanism

the following steps occur:

When the

1. Caller”s environment is saved in caller”s stack frame, and TOS is updated to reflect the
next free space in the stack.

2. PSA is set to DSP. pL < H

3. CSF and DSP are set to TOS.
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The next step is for the software to create a stack frame to hold dynamic variables for
procedure B. At this time, the four key parameters are pointing into the stack for
procedure B precisely as they had been for procedure A. Return can be accomplished easily
" since the pointers to A”s stack frame have been saved (in A0O-A2) in the stack frame save
area (figure 7-4).

PROCEDURE B;

DSP —»
. STACK
RETURN FRAME
END TOS _ FOR B
CSF
ENVIRONMENT
PSA—s _ _OFA |
‘ STACK
FRAME
FOR A x%
INITIAL STATE
\
DSP, CSF and PSA are all )
reset from A’s stack frame
save area.
DSP —®»
STACK TOS is reset from final
CSE FRAME value in A1 (CSF) by the
TOS —p— FOR A RETURN mechanism.
PSA —&|

Figure 7-4. Basic Return Mechanism

CALL - THE BASIC MECHANISM

A stack is created by the operating system for each ring of execution. A TOS pointer
for each of these stacks is kept in the exchange package.. Whenever a procedure calls
another procedure, the caller”s environment is saved in the stack frame save area (figure
7-5). The first four words of this area are stored unconditionally, the remaining words are
stored under the control of the caller. The caller formats a Stack Frame Descriptor in
X0-Right prior to issuing the CALL. The descriptor specifies which X and A registers are to
be saved, in addition to those saved by default. Registers saved must be contiguously
numbered. In the case of A registers, since AO-A2 are saved unconditionally,
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it is only necessary to specify the upper limit of the contiguous list.

The descriptor is

analagous to that used by load/store multiple instructions, which are described later. It
must be supplied, and the terminal A register designator must be greater or equal to two.
If no X registers are to be saved then the terminal X register designator (Xt) should be

less than the starting X register designator (Xs).

registers are automatically restored.

When callee returns to caller, these

suggests a software calling convention whereby the caller saves the enviromment.

Hence, the operation of the hardware strongly

* STORED ONLY ON TRAP OPERATIONS

BYTE(HEX) WORD(DEC)
X 7\ 0 P REGISTER 0
SMA'\\'/"EMUM 8 [vmip] A0 REGISTER (DYNAMIC SPACE POINTER) 1
AREA 10 | FRAME DESCRIPTION | A1 REGISTER (CURRENT STACK FRAME POINTER) | 2
v 18 [ USER MASK A2 REGISTER (PREVIOUS SAVE AREA POINTER) 3
20 A3 REGISTER (BINDING SECTION POINTER) 4
28 | USER CONDITION* A4 REGISTER (ARGUMENT POINTER) 5
30 [ MONITOR CONDITION* | A5 REGISTER 6
38 A6 REGISTER _ 7
40 A7 REGISTER 8
MAXIMUM . i
SAVE = . . ~
AREA *
80 | 00— 15 | AF REGISTER 16
88 X0 REGISTER 17
~ e
-~ : ~
v 100 XF REGISTER 32
00 » 63

Figure 7-5.

CYBER 180 supports two forms of the CALL instruction which may be loosely regarded as
general purpose (CALL INDIRECT) and special purpose (CALL RELATIVE) calls.

Stack Frame Save Area

The CALL

INDIRECT may call into a different segment in a different ring, and as will be shown later,

into a different virtual machine.
environment.

quite different privileges.

The
but the

1)
2)
3)

Caller”s environment is saved
Caller”s stack frame is-pushed

executed.
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Whereas the CALL RELATIVE calls into the same
Al though the same basic mechanism applies to both forms of the call, the
general purpose version must guarantee the privacy of the callee and caller who may have

flowcharts given at the end of this section describe these instructions completely
following basic steps are followed:

The P register is updated to point to the first instruction of the callee to be




General

There is a single return instruction which simply inverts this process:

1)
2)
3)

D

2)

3)

Callee”s stack frame is popped.
Caller s environment is restored.

The P Register is updated (from caller”s environment) so that it points to the first
instruction following the original CALL, to be executed.

Notes:

Caller”s environment is saved in caller”s stack. In fact, it is saved at the top of
caller”s stack. To minimize the execution time for a CALL this enviromment is
stored on word boundaries. If the top of stack happens not to be on a word
boundary, then the -stack frame save area will be forced to a word boundary by the
CALL instruction.

Callee”s stack frame is not created per se. The CSF pointer is updated to point to
the first entry in the stack frame, but it is the responsibility of callee, via
software, to reserve the appropriate amount of space in the stack. It is also
recommended that an integral number of words be reserved for that purpose.

Since the CALL RELATIVE calls to a word boundary, every procedure (subroutine) must
start on a word boundary. While this is not strictly necessary for external
procedures, when the process of binding is described, the reason for this convention
will become apparent.

RETURN - THE BASIC MECHANISM

7-8

The basic return mechanism, pops callee”s stack frame and restores caller”s stack frame
as the active frame. In other words, the environment which exists following the execution
of a RETURN instruction is precisely that which existed prior to the execution of the
associated CALL instruction. Figure 7-6 illustrates the changes which occur in the stack
when this sequence is followed:

CALL (intra-ring)
CALL (inter-ring) from ring 11 to ring 3)

RETURN
RETURN

60459960 A



V 09665%709

6-L

RING 3 DSP*—»]
TOS — TOS - TOS,CSF—+ TOS —» TOS —»
RETURN RETURN
) TOS—+
@ psa—«f SFSA DSP—+}
RING 11 Intra-ring CALL Inter-ring CALL
TOS,CSF—# TOS,CSF—»
(DSP)
DSP —+] PSA —» SFSA psA-» SFSA DSP—+}
TOS,CSF —» TOS,CSF —»
psa—s SFSA SFSA SFSA SFSA PSA—o] SFSA
* Moved by software
Figure 7-6. Call/Return




Since calls are typically to inner rings, returns are typically to outer, less privileged
rings. Care must be exercised to ensure that callee”s greater privileges are not
transmitted back to caller. Callee”s ring number may appear in any A Register used by
callee - not just those saved by caller. To ensure that this ring number does not get
returned to caller, a check is made by the return instruction to ensure that no A Register
is returned to caller with a ring number that exceeds caller”s ring number. This process is
termed rippling, and figure 7-7 illustrates the process. Caller”s overall privileges,
maintained in the P Register are automatically restored when caller”s P Register is loaded
from the stack frame save area. A check is made to ensure that the global and local keys
which are loaded are identically equal to those to be found in caller”s Segment

Descriptor Entry.

Yes

1LA Registers

Treated? END

~ Get Next
A A-Register

A.RNZP.RN ?

Set A-RN=P.RN

Figure 7-7. Rippling
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General Notes:

1) Processes start execution, typically, in their outermost ring. Stacks in all rings
will be empty except for the one in the primary ring of execution. As calls are
made inward entries are made in other stacks which will be emptied as RETURN”s are
issued. The question might reasonably be asked, "Why have fifteen stacks?”. Again
when the security of the system is considered the reason for this becomes obvious.
Since the stack holds the dynamic variables for an executing process, that process
has Read/Write access to the stack. If there were only a single stack then an
executing process could make a call to a procedure in an inner ring, and then access
that procedure”s dynamic variables, which would be at the top of the stack. The
only way to prevent this would be for callee to zero out all dynamic variables
used. This would be prohibitively time consuming.

2) CALL and RETURN are time consuming operations and are designed to satisfy the
general architectural requirements of CYBER 180. In particular, the generalized
form of CALL (CALL INDIRECT) should only be used when an external procedure call is
made to a procedure in another segment. When binding is discussed it is seen that
the Binder actually assists with this task.

The flowcharts at the end of this section describe the overall process for RETURN.

POP - THE BASIC MECHANISM

There are times, typically in the presence of an error, or a nonlocal GOTO, when it is
necessary to eliminate an entry or a number of entries from a particular stack. Since these
entries will have been created by a series of calls, a similar series of returns will
accomplish the required purge. However, when the purging is to be completed without
executing intervening instructions this can only be achieved by an appropriate software
sequence, or by issuing a POP instruction which has been provided fcr this purpose. The POP
instruction simply moves the CSF, PSA and TOS pointers eliminating the stack frame but not
changing the P~counter. Figure 7-8 is an example wherein calls have been made three deep
into the structure of a program and then the entire set of calls aborted. POP”s can only be
issued within the current ring of execution. Access violations are not checked, and if a
POP is attempted across rings (as indicated by the ring number in A2-PSA), then the
instruction execution is inhibited and the program interrupted.
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X

Procedure A
Procedure B
Procedure C

POP
POP
RETURN

CALLC

CALLB .

Control returned CALL A
. - )
line from C

DSP-+

DSP-» PSA-+ DSP -]

CSF - CSF—»f
DSP o) PSA—* PSA-*1 DSP-»

CSF _,) A A A A CSF o A
DSP—f PSA -+ PSA-»

DSP-#

CSF—» X X X X X X CSF X

START CALL A CALL B CALL C POP POP RETURN

Figure 7-8. Example of POP Instruction

THE BINDING SECTION - CODE SHARING

It is important that the entry to procedures be carefully controlled. That is,
procedures must receive control only at those points they expect to receive control - their
entry points. To make this possible, procedures are not entered directly, but are entered
via a pointer to the procedure. This pointer is held in a Binding Section. All such
pointers are placed in the Binding Section by the Loader, and the CALL mechanism then
guarantees that the call is made via a Binding Section.

The objective on CYBER 180 is to have one copy of a code segment in memory which is
shared by several users. Each user has a copy of each code sequence required in his virtual
memory address space. For example, the FORTRAN compiler exists only one time in real
memory, but depending on which user has the CPU it operates on different compilation units.
There must ke wothing o the code segment which makes a direct reference to data which is
modiiied. This is accomplished by placing pointers to such data in a Binding Section which
is created along with each code module, and then give the address of the Binding Section to
the callee when the procedure call is invoked.
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Each task executing then, has some code, which it may be sharing with other tasks, and
some data which is typlically unique to itself. When a compiler compiles some source code,
it compiles offsets into the Binding Section and directives to the loader for building the
Binding Sec:tion. It is then the responsibility of the loader to 1link all code modules and
build the necessary Binding Sections. This process is described more fully in the section
on software.

The Binding Section is in a separate segment and is identified uniquely by iis segment
descriptor entry (refer to section on virtval memorv). It typically contains peinters to
external proceduvres and peointere to weorking storage areas which held static variables. That
is, variables which do not appear iIn a stack frame. When a procedure calls on another
procedure which is defined externally, then the call points into the Binding Section. The
Binding Section (by convention) has one, or two, full word entries which contain a Code Base
Pointer (CBP) and a pointer to the callee”s Binding Section (figure 7-9). The CBP points to
the first executable statement in procedure D. The VMID and R3 fields in the CBP are
discussed shortly. The EPF (external procedure flag) field in the one state indicates that
the procedure being called is an external procedure, and therefore the next entry in the
Binding Section is the pointer to callee”s Binding Section. This field is nothing more than
a flag to differentiate between single-word and double-word entries in the Binding Section.
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A’s BINDING

SECTION
A
T WORKING
\ - STORAGE
C— SECTION
FOR A
CALL B
B's BINDING
e SECTION
. .
K
;3'; b
L i
L ¥
&;-‘i"‘“»’ﬁ%éw}

CODE BASE POINTER
//VMIDF’V/ R3 | RN SEG BN
4 Fl

POINTER TO CALLEE’S BINDING SECTION

Figure 7-9. Call Indirect Example

Whenever a call is made to a procedure in another ring, this form of the call
instruction (via the Binding Section) must be used. However, for critical (intrasegment,
intraring) calls a shorter form of the call instruction should be used. This form finds the
first executable statement of the caller at P plus an offset and obviates the need for a
CBP. The offset used by this instruction is a 16-bit long word offset, hence all procedures
must start on a word boundary.
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In srder to make code sharing possible, each task sharing the code must have its own

data. The location of thic data
defined via the Process Segment Table.
Package for that process.

have unique entries in the System Page Table for their Binding Sections and data.

is deiined through the Binding Section, which,
The Segment Table Address is defined by the Exchange
Hence, each instance of a process has an exchange package which

describes the process state registers for that exchange interval.

in turn

This defines the
whereabouts of the code and data to be used by the process, via the virtual memory
mechanism. Different tasks using the same code will have their own Segment Tables and will

the page table entry for the code segment will be shared by all tasks sharing the code
(figure 7-10). The way this happens is quite simple if one remembers the basic virtual
memory address translation mechanism.

, is

However,

T mme e s MR M MR e e M e e M AR Sem M e T e moe mm wes  mew R mm e mm m— mes mm = mm m= mmm me

r TASK A L4 -
) I
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VA_FOR TASK A DATA
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L | SYSTEM PAGE TABLE SEGHENT
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Code Sharing
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The key to code sharing lies with concept of the SVA. Code which is being shared actually
resides as two conceptually separate copies in two address spaces. When this code is
referenced (via a PVA) the first step is to translate the PVA into an SVA. The operating
system arranges for code which is to be shared to have common SVAs. The translation to a
real memory address will then result in the same locations in central memory regardless of
the process requesting the translation. This is accomplished by assigning common ASID”s to
shared code segments, which happens the first time the segment is referenced. Neither the
originator of the code being shared, nor any users of it need be aware that the code is
being shared. The only contingency is that code be organized into pure procedures. Code
sharing per se, is unrelated to CALL/RETURN. However, the separation of code and data, the
absence of direct references to the data in the code, and the Binding section all play their
part. When a procedure is called from another procedure, caller gives callee”s Binding
Section to him. That is, caller carries 2 pointer to callee”s Binding Section as a
parameter of the call. It is by this mechanism that shared code (that is, code shared in
real memory) reccives different datz sets on which to werk. The wherezbouts of these
Binding Sections is determined by the Loader which licads multiple copics =i the code which
will ultimately be shared, into virtual memory (figure 7-11).

A BSA B L BSB BSC
A "’ ¢ I
CALL B CALL B
CALL €
BSA
B
LOADED INTO
VIRTUAL MEMORY
CALL ¢

BSB

BSC

Figure 7-11. Loading Mechanism
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Two further areas, software conventions and parameter passing, need to be discussed
before the basic mechanism can be summarized. Parameter passing 1s discussed first. In
general, when a procedure is called from another procedure, parameters need to be passed
between them. The general parameter passing technique selected for CYBER 180 is to pass an
argument list pointer to the callee. Typically, this argument list pointer points to a list
of pointers which in turn point to data to be referenced by the called procedure. By
convention, the argument pointer is held in A4 and the convention is supported by the
hardware which transfers the argument list pointer to A4 during the execution of a CALL
instruction.

Two other pointers are used by procedures, namely the Binding Section pointer and the
static link. Of these, the Binding Section pointer is by far the more important and by
convention is held in A3. As with the argument list pointer, this software convention is
supported by the hardware. The choice of registers A3 and A4 to hold these quantities
simplifies the saving and restoring of them during CALL”s and RETURN”s since the
instructions always saves a contiguous set of A Registers, and AO-A2 are always saved by a
CALL. The static link is not always required, and for those cases where it is needed it is
carried by software and the hardware has no part in its maintenance.

FLAGS

There are two flags which are handled by the CALL/RETURN/POP instructions. These are
the On—-Condition Flag (OCF) and the Critical Frame Flag (CFF). They are software flags
which are reset by the hardware on each call to a new procedure.

ON-CONDITION FLAG

The end-user causes the OCF to be set by requesting that a particular code sequence be
executed when a chosen error arises. This is generally done via a high level language, and
the compiler generates the code necessary to set the OCF and generate a dummy stack frame
for the On-Condition processing (figure 7-12). A pointer in the user”s stack frame points
to this dummy. All exception conditions are typically selected by the process monitor.
When one arises a trap interrupt occurs and the trap handler searches the stack for the
presence of an OCF which is set. On-Conditions are set by a particular procedure. When a
CALL is made, the OCF associated with the calling procedure is saved (in the stack frame
save area) as part of caller”s environment, and the OCF is cleared. If an appropriate
exception arises, then it will be handled by caller”s On-Condition action, unless callee had
also requested specific action to be taken on the same exception. The following should be
remembered:

e Actions to be taken on exceptions are specified by the user. They are recorded in a
dummy stack frame, and by setting the OCF.

e Actions are established by a given procedure but carry across procedure calls.

e Each procedure may have its own unique set of On—-Conditiomns.
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PROCEDURE A

: 0CF set and B
_ g—dummy stack
ON CO?DITION o frame created |~ —"~"—~———
CALL B <
l4—O0CF saved in D ‘
SFSA of A and umnny
then cleared. FOR
ON-CONDITION
PROCEDURE B
A
_. ———————

Figure 7-12. On-Condition Handling

CRITICAL FRAME FLAG

term

The critical frame flag is a software device for declaring a procedure critical. The
critical is used to denote the fact that some tidy-up is required before leaving the

procedure is question. In other words exit from the procedure must take place in an orderly

mann
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er. An example will help to clarify this:

Imagine a job running under the control of a subsystem. The job may open a file or set
some locks which must be closed or cleared before the job is terminated. If the job
terminates abnormally the standard tidy-up procedure would pop the stack frames in use
prior to returning to the subsystem for final exit. However, in the case where
particular action is required before a stack frame is eliminated, a different path must
be followed. The critical frame flag is used to alert the subsystem in control of this
situation. When the locks are set or files opened, the critical frame flag is also set,
and subsequently saved, in the procedures stack frame save area, whenever it calls on
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another procedure. An attempt to pop a stack frame with the critical frame flag set is
detected by the hardware and a trap interrupt taken. The trap handler hands control
back to the subsystem which (by an investigation of user”s stack) can perform the
necessary tidy-up operations.

OUTWARD-CALLS/INWARD RETURNS

Calls may only be made within the same ring of protection or to an inner ring (figure
7-13). However, there are various circumstances which require the execution of a call to an
outer ring. For example, when an end-user job is initiated a call must be made to the outer
ring where the user program resides. Since the hardware prohibits the execution of this
call it must be accomplished by the software.

When an outward call is attempted, an interrupt occurs and the following steps are taken
(assuming the machine is in job mode, traps enabled):

1) An exchange interrupt occurs (outward-call).

2) The exchange interrupt handler sets the free-flag and issues an exchange. This will
cause control to return to the original outward call instruction. However, before
it can be reissued:

3) A trap interrupt occurs (free-flag). This is really an implicit call into the stack
in caller”s ring of execution. The free-flag is nothing more than a mechanism for
converting an exchange interrupt into a trap interrupt.

4) The trap handler creates two dummy frames in callee”s stack. The first dummy frame
is callee”s eventual stack frame, the second is created simply to be popped via a
return which will transfer control to callee.

5) The trap handler executes a RETURN to callee. This pops the second dummy stack
frame (figure 7-13).
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Hence, to execute an outward call, the interrupt handler software arranges to an outward
return to callee. An inward return is the reverse of this procedure and consists of
executing an inward call to the original caller as follows:

1) An exchange interrupt occurs (inward call).

2) The exchange interrupt handler sets the free-flag and issues an exchange. This
causes control to return to the original inward return instruction. However, before
it can be reissued:

3) A trap interrupt occurs (free-flag). This is really an implied call into the stack
in callee”s ring of execution.

4) The trap handler calls on Task Monitor in caller”s ring of execution.
Task Monitor:

5) Eliminates three frames from callee”s stack.

6) Adjusts its own stack frame to point to caller”s stack frame

7) Issues a return.

On the inward return the implicit call to replace the return is actually an inward call
to Task Monitor (figure 7-14).
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The general case of an outward call and inward return has been treated here. It can be
a time consuming process, and it should be used sparingly. Fortunately, the operating
system generally knows ahead of time that an outward call is to be issued and need not
bother to take the exchange jump and force a trap interrupt. Instead, the functions
performed by the trap handler can be performed by the caller before issuing an outward call,
and an outward return can be issued directly to transfer control to callee. Similarly, when
an outward call is made, it is known that there will be a subsequent inward return. The
functions performed by Task Monitor can be performed by caller prior to issuing the outward
call. This can be accomplished by caller calling on an outward call Service Procedure which
creates two stack frames in callee”s stack such that it appears as though callee was called
by a Service Procedure in his own ring of execution, and called the original (outward call)
Service Procedure. The outward call Service Procedure then returns to callee to transfer
control. Callee subsequently returns to an inward return Service Procedure in his own ring
of execution, which pops its own stack frame before making an inward call on the original
outward call Service Procedure. This procedure then returns to the original caller (figure
7-15).
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OBJECT MODULE BINDING

Whenever a procedure is compiled or assembled, directives are compiled with it to enable
the loader to create a Binding Section. 1In fact, all references to Working Storage,
external procedures, and so forth, are compiled as offsets into the Binding Section. Hence,
when a program is executed, there will be multiple Binding Sections (one per procedure).
There is nothing wrong with this except that procedures which are called from several other
procedures will have an entry in several Binding Sections. This is wasteful in terms of
space. Also, many calls to external procedures will translate into calls within the same
segment (intrasegment calls). These are really only, external procedure calls at compile
time. They become internal procedures at execute time. The difference is that an external
procedure call must be made with a CALL INDIRECT via the Binding Section, whereas an
internal procedure call can be made with the more efficient CALL RELATIVE instruction. The
Object Library Generator minimizes these space and time inefficiencies.

The Object Library Generator performs two major functions:

1) It eliminates redundancy by taking all procedures in a module to be bound and
placing them in a single code section. It also combines all Binding Sections into a
single Binding Section and eliminates redundant entries to external procedures.

2) Since many calls to external procedures will translate to calls to internal
procedures during the coalescing of the Binding Sections, the CALL INDIRECT
instructions are converted to CALL RELATIVE instructions for these procedures, and
their entries eliminated completely from the Binding Section (figure 7-16).
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Figure 7-16.

Binding Process

This second major function of the Object Library Generator imposes a restriction on the
format of the call instructions which have been designed with this purpose in mind. Since
they have similar formats, all that need be done by the Object Library Generator is to
change the operation code from B5 to BO, set the desired value in the Q-field and force the
j-field to three, which is the conventional register for the Binding Section (figure 7-17).

7-26

60459960 A




CALL INDIRECT

J K
Bindiﬁé////

Saction Argument List Pointer
Pointer

CALL RgLATIv:\\\\

80 3 K - P+8xQ

B S a AJ+8xQ

Figure 7-17. Conversion from Call Indirect to Call Relative

VIRTUAL MACHINES

CYBER 180 provides a capability to support several virtual machines. The two most
important of these are the native machine (CYBER 180) and CYBER 170. The call mechanism
permits a procedure being executed on one virtual machine to call another procedure which
will execute with a different virtual machine. The exact mechanism which accomplishes this
machine switch will not be described here but will be covered in a separate section on
virtual machines.

ZERO RING NUMBER

) In the section on virtual memory it was explained that there are fifteen rings of
protection on CYBER 180. These are numbered 1-15. Ring number zero has been reserved for a
special purpose, namely: Dynamic Linking. Traditionmally, a program has been written as a
series of subroutines or procedures. These subroutines are compiled separately, then linked
together with a loader prior to their execution. Depending on the system, all subroutines
referenced had to be present before the program could be placed in execution. Frequently,
this restriction is levied even though all subroutines may not be used. This happens to be
one way of solving the problem of linking, loading and placing a program into execution, but
it is by no means the only one. Certainly, this alternative is open to CYBER 180 and may be
a common method invoked by the user. However, CYBER 180 provides another option which is to
link and load a procedure the first time it is called and not before. If a procedure is
referenced but never called, it need never go through the linking and loading mechanism, and
will never require that memory be allocated to it. This process is known as Dynamic
Linking, and a ring number of zero is reserved to denote an unlinked pointer.

Ring numbers ~f zerno can accur in one of two ways: in an attempt to load a pointer into
.

an A register, and in an attempt to call on an unlinked procedure. The CYBER 180 hardware
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automatically detects this condition and causes an exchange interrupt to be taken if the
machine is in job mode. The exchange interrupt handler can then schedule the appropriate
operating system procedure to form the necessary link and load the required procedure.

When a ring number zero is detected on a load instruction the following sequence occurs:
1) The load instruction completes, loading the invalid pointer into the appropriate A
register with a ring number determined by the normal ring number contention

mechanisms. Refer to figure 7-18.

2) An exchange interrupt occurs. The P Register stored in the exchange package (at
JPS) points to the instruction following the load instruction.

JPS

LOAD A5. Aks @ ExeH

—>o]FFrF| BN ]

| S
——’?;LFFFI BN

Max {Ab-RN.SDE.R1}

S

Figure 7-18. Ring Number Zero on Load A

When a ring number zero is detected on a CALL instruction the following sequence occurs:
1) The execution of the call instruction is inhibited.

2) An exchange interrupt is taken. The P Register stored in the exchange package (at
JPS) points to the CALL instruction iL
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M the necessary link an question, and the Untranslatable Pointer Register stored in the same
exchange package, contains the CBP (with a ring number of zero) from the Binding Section
which caused the interrupt (figure 7-19).

JPS

A J

EXCH
RN=0

uTp TOTEFFI BN
[

BS

CALL A3.A4.@Q

Figure 7-19. Ring Number Zero on Call

The Untranslatable Pointer (UTP) is the key to handling this exception condition which
is combined with an Invalid Segment exception. The sequence the interrupt handler should
follow on sensing an Invalid Segment condition is to check on the Untranslatable Pointer
Register. 1If this has a zero ring number plus a segment number of all ones, then a ring
number zero condition has been detected by a CALL instruction (as opposed to an Invalid
Segment}. The Untranslatable Pointer, by software convention contains a dummy Segment
Number of all ones (to flag an unlinked pointer) and the Byte Offset contains a pointer to
loader tables which contain information necessary to form the required link. The
appropriate entry is made in the Binding Section containing the unlinked Code Base Pointer
and an exchange jump executed, which will cause the CALL to be reissued.

If the UTP contained no indication of the fault (this must be established by software
convention) then the individual A Registers (at JPS) must be scanned for the fake segment
number. The zero ring number will no longer exist in the register or registers in question,
since it will be eliminated by the ring number voting mechanism. The register or registers
in question are loaded with the correct segment number and byte offset and an exchange jump
issued to continue processing. Remember to scan all A Registers since several of them could
have zero ring numbers if a Load Multiple instruction is used.

Dynamic linking is an option provided by the CYBER 180 hardware. It provides an
alternative to conventional loading techniques. However, there is no need to support this
particular technique by software. That is an operating system design decision.
Nevertheless, without hardware support of this nature the choice would not be available.
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FLOWCHARTS OF THE OVERALL PROCESS

Figures 7-20, 7-21, and 7-22 describe the overall process for CALL, RETURN and POP.
Included in the flow-chart for CALL are those steps which are unique to a trap interrupt.
Remember a trap interrupt is nothing more than an unsolicited call in which all the A
registers and X registers are saved. There are some additional steps. In particular the
condition causing the trap is erased from either the User Condition Registér or the Monitor
Condition Register and those registers are captured in the Stack Frame Save Area.
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CROSSING PROTECTION BOUNDARIES 8

The foregoing sections described the basic protection mechanisms provided by the CYBER
180 hardware. This included the primary protection afforded by address space as well as
other protection mechanisms within the address space. It is now necessary to describe the
techniques for crossing protection boundaries. Two techniques are available, one for
switching between address spaces and one for crossing protection boundaries within an
address space.

CHANGING ADDRESS SPACES

The exchange jump is used to transfer control from one address space tc another. When
an exchange jurr occurs the machine state changes hetween .Job Mode and Monitor Mode. This
state is controlied by a4 flip-flop which cannct he cleared or set by software other than by
an exchange jump when the flip-flop is complementzsd. CYBER 180 processors are always
deadstarted into twonitor Mode wvia a half exchange. The operating system monitor is the most
privileged module of the operating system. It resides in its own address space and has
additional, special privileges because it operates in a unique machine state. It is the
most trustworthy piece of code in the system. The operating system monitor establishes
users” operating environments (by defining their exchange packages) and, consequently,
establishes in part their level of security. This concept of trustworthiness is very
important to CYBER 180 systems. In general, the lower the ring of execution, the more
trustworthy is a code module. CYBER 180 hardware provides the tools necessary to construct
a system with any desired level of security. Nevertheless, those hardware facilities are
only as good as the software which uses them. For a system to be truly secure, software
conventions must be enforced. These conventions form part of the overall architectural
design of the system. In concert with this theme the hardware does very little checking on
the operating system monitor. In particular, no ring number checks are performed during an
exchange jump. If the monitor elects to increase a user”s authority (by assigning an A
Register Ring Number lower than his ring of execution), then the user runs with that greater
privilege. Because of this and other reasons, the operating system monitor should be an
extremely small, thoroughly debugged piece of code.

PROTECTION BOUNDARIES WITHIN AN ADDRESS SPACE

Call/Return is the primary mechanism for crossing protection boundaries within an
address space. It is the only mechanism for crossing ring boundaries. Two conditions must
be satisifed before crossing a protection boundary. First, the caller must be permitted to
make the call; second, the callee must not act on behalf of caller with more authority than
caller. (The following discussion assumes that the reader is familiar with the basic
Call/Return mechanism.) In Zail/Return, the caller always pruvides the callee with his
privileges. As a result, it cnly possible fo make a call from a more privileged ving to
2 less privileged ring of execution. If the reverse happens then callee, in a less
privileged ring than caller, would receive caller”s privileges and there would be an
immediate, potential breach in security. The hardware prevents this eventuality by
detecting attempts either to call outward to a ring of less privilege, or to return inward
to a ring of more privilege. Such an attempted breach in security causes an exchange
interrupt into the monitor address space.
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Most of the information pertaining to security is managed by hardware and is contained
in hardware tables — albeit they are constructed by software. The main such table is the
segment descriptor table (SDT). Whenever a call is made to another segment across a
protection boundary, the transfer must take place in a controlled manner. To accomplish
this, calls across protection boundaries do not take place directly but use instead an
indirect address (PVA) held in a pointer in a binding section. By software convention,
binding sections are not writable in user rings, and are constructed by the Loader based on
directives issued by compilers and assemblers. The hardware ensures that all calls across
protection boundaries take place via a binding section entry. An access violation interrupt
causes an exchange to monitor mode if an attempt is made to bypass this mechanism.

Many other security checks are performed by the hardware during a call. Some are fairly
straightforward. For example:

e The Stack Frame Save Area must be in a segment which has write permission.

e Callee”s entry point (obtained from the binding section) must be in a segment which
has execute permission.

e Caller”s Global Key must be identical to Callee”s Global Lock, unless either Caller
has a Master Global Key, or callee has no Global Lock.

The hardware also ensures that the Caller is within Callee”s call Bracket - as described in
the section on Rings of Protection. The pointer to callee”s entry point in the binding
section is named a Code Base Pointer (CBP) and has the following format (figure 8-1):

o
H

9 12 16 20 32 63
V,

/ R3 | RN SEG BN

VMID VIRTUAL MACHINE IDENTIFIER
EPF EXTERNAL PROCEDURE FLAG

R3 HIGHEST RING NUMBER FOR CALL
RN RING NUMBER

X

///NMID

Figure 8-1. Code Base Pointer - CBP

A call is permitted providing
PVA.RN < CBP.R3

The first check performed by the hardware during a Call ensures that Caller”s ring number
(held in the P Register) is within Callee”s call bracket. That is:

P.RN < CBP.R3
In practice this check is made implicitly. An explicit check is made against the Aj ring
number as described below. Of itself this check is insufficient since a caller could ask a

more privileged procedure to call a third procedure on his behalf to which he does not
normally have access.
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In figure 8-2, procedure A resides in ring 13 and procedure B resides in ring 1ll.

RING 13 RING 11
PROCEDURE A 8S PROCEDURE B
L~y BS
117y
N ,\
P.RN = 13 } SESA P.RN=11 }
A3.RN = 13 ) / AJANSTY
k \ cBP.R3=13
CALLB CBP.R3-11 -
- EXECUTEC )
- -
=~ Transiates to : a

CALL AJ, AK, Q

Where AJ.RN=13 - the ring
number of A's Binding Section.

Figure 8-2. Calling a Procedure on Behalf of Another Procedure

Procedure A is allowed to call procedure B since it is within procedure B”s call bracket.
Similarly, procedure B is allowed to call on procedure C. However, procedure A is not
allowed to call on procedure C, and if procedure B, acting on behalf of procedure A, is
asked to call call procedure C, via procedure A”s binding section, then the call must be
disallowed. The hardware detects this condition by ensuring that

% Aj.RN < CBP.R3

where Aj.RN is the ring number contained in the pointer to A”s binding section. This ring
number will be greater than or equal to procedure A”s ring of execution, even though it is
being used by procedure B. A combination of the hardware ring number voting mechanism and
software conventions ensures that the correct ring number has been entered into Register Aj.

Two final security actions take place during a call. First, a software convention which
is supported by the hardware places the Argument List Pointer in Register A4. This register
contains caller”s Ring number (or a ring number greater than caller”s). This is guaranteed
by the hardware. However, software is responsible for ensuring that all parameters used
from caller, by callee are referenced via this argument list pointer. This is just one
example where a software convention comes into play to ensure that the correct level of
security is maintained. The important fact to note is that it is always the more privileged
procedure which must enforce the software convention. The final security action during a
call is for the hardware to copy caller”s P-left (bits 0-31) into Register XO-left. This
provides callee with an unforgeable copy of caller”s privileges — Ring, Global Key, Local
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Key and Segment Number. If the more trustworthy callee wants to make absolutely sure he is
not being tricked in any way by caller, he should make use of this data to validate all
accesses to code and data made on behalf of caller.

So far only the call mechanism has been discussed. However, eventually, the called
procedure must return to the caller. At this time care must be taken to ensure that caller
does not receive more privilege than he is entitled to receive. The caller”s environment is
saved in caller”s stack, which is a read/write segment within the user”s address space which
can be modified. It is important to ensure that the ring numbers and key/lock values
restored to caller reflect his original privileges. When a return is issued the hardware
performs the following tests to ensure that caller”s privileges are correct:

1) Caller”s stack must reside in a readable segment. This is determined by ensuring
that the segment number in A2 (PSA) points to a segment which has read access.

2) Caller”s code segment must have execute access. This is determined from the new
P Register obtained from the previous stack frame save area.

3) Caller”s Local key must be identical to the Local Key of the caller”s code segment.

4) Caller”s Global Key must be identical to the Global Lock of the caller”s code
segment, provided the associated segments Global Lock is not a No Lock.

5) For each A Register loaded from the SFSA the normal ring voting procedure is
applied. The Key here is that the A Register used to load the remaining A Registers
is A2 which callee received directly from caller.

6) For each A Register not loaded from the SFSA, the ring number shall be forced to be
at least as great as caller”s ring of execution. Hence, if caller did not elect to
save certain A Registers, but callee used them, they may have callee”s ring number
in them. The mechanism of forcing them to at least caller”s ring, which is known as
Rippling, ensures that there is no breach in security.

The hardware performs two further tests in addition to these. The first test ensures
that the initial value held in A2 (PSA) exactly equals the value of A0 (DSP) stored in the
stack frame save area. This is known as a stack check. Strictly speaking this is not an
access violation, but it does indicate that if the caller”s SFSA is inconsistent, it has
probably been overwritten. The hardware flags an environment specification error rather than
an access violation in this case. The second test which is relevant ensures that callee
returns to an outer ring. That is, caller”s ring number must not be less than the ring
number initially held in A2 (PSA).

Many of the security checks performed by the hardware require that A2 is intact. Since
this is handed to callee by the hardware with at least caller”s ring number, this provides
very tight security protection provided callee does not use A2 for any general purpose in
his procedure. Here again, a software convention must be followed to maintain system
security. In general, A Registers AO0O-A2 should be reserved for stack manipulation only.

INTERSEGMENT BRANCH

It was mentioned earlier that the Call/Return mechanism is the primary mechanism
employed for crossing protection boundaries. It is the only mechanism available for
crossing rings. However, another instruction, Intersegment Branch, may be used to transfer
control from one segment to another. Since such a transfer of control involves
transgressing a Key/Lock protection boundary the hardware must ensure that the correct
Key/Lock transformations occur. The execution of this instruction is illustrated in figure
8-3.
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Figure 8-3. Intersegment Branch

Notice that the new P Register ring number is forced to the value in the old P Register.
Ring boundaries cannot be crossed by this instruction. In addition, the new P Register
Local Key is taken from the associated SDE Local Lock - an executing procedure always runs
with its own Local Key. Global Key/Lock transformations follow the rules established for
calling a procedure. That is, the new Global Key must be identically equal to the old
Global Key unless the old Global Key was a Master Key or the new Global Key was obtained
from a No Lock. In summary:

01d Global | New SDE | New Global
Key | Global Lock | Key
b | 0 | 0
0 | K2 | K2
K1 | 0 | K1
K1l | K2 | Access Violation

This gives rise to an apparent anomaly. If procedure A with a Master Global Key
transfers control to procedure B with a Nonmaster Global Lock, then procedure B will execute
with the Nonmaster Global Key. If procedure B subsequently transfers control back to
procedure A, procedure A will then execute with a Nonmaster Global Key, even though it is
entitled to the Master Global Key. Here again, software conventions come into play. If the
previous discussion on Key/Locks is referenced, it will be noticed that, by convention, for
rings containing segments with Nonmaster Global Keys, all segments will have a Nonmaster
Global Key. All other segments (in other rings) will have Master Global Keys. Hence, the
situation described above should never arise since the Intersegment branch instruction never
crosses a ring boundary.
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WHEN HARDWARE CHECKS OCCUR

The hardware makes the following checks for access violations on each occurrence of the

actions listed below:

Read Access to a segment:
(a) The segment must have read access.

(b) The segment must be readable from the ring of the procedure making the access
(this is via the ring number of the A Register used to make this access).

(c) The current Local Key exactly equals the Local Lock of the segment, in the
absence of a Master Local Key or No Lock.

(d) The current Global Key exactly equals the Global Lock of the segment, in the
absence of a Master Global Key or No Lock.

Write Access to a segment:
(a) The segment must have write access.

(b) The segment must be writable from the ring of the procedure making the access
(this is via the ring number of the A Register used to make the access).

(c) The current Local Key exactly equals the Local Lock of the segment, in the
absence of a Master Local Key or No Lock.

(d) The current Global Key exactly equals the Global Lock of the Segment, in the
absence of a Master Global Key or No Lock.

Call to an external procedure:
(a) The CBP must be in a binding section.
(b) The current Stack Frame Save Area must be in a segment which has write access.
(c) The procedure being called must be in a segment which has execute access.
(d) Caller must be within callee”s call bracket.

(e) Caller”s Global Key must be exactly equal to callee”s Global Lock, in the
absence of a Master Global Key or No Lock.

(f) The call must not be an outward call.
Return from an external procedure:
(a) The previous Stack Frame Save Area must be in a segment which has read access.

(b) The procedure to which control is returned must be in a segment which has
execute access.

(c) The final Local Key (obtained from the P Register in the SFSA) exactly equals
the associated segment”s (caller”s) Local Lock.
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(d) The final Global Key (obtained from the P Register in the SFSA) exactly equals
the associated segment”s (caller”s) Global Lock, provided the associated
segment”s Global Lock is not a No Lock.

(e) The return must be an outward return.

In addition, for each A Register ring number which is less than the final P Register
ring number, the associated A Registers ring number is set equal to the P Register ring
number.

First instruction issued from a new segment:

(a) The segment must have execute access. This check is not repeated for further
instructions issued from the same segment. Normally, the check occurs during
the execution of the instruction which transferred control to the new segment -
that is during the call or intersegment branch.

Branch to a new segment:

(a) The current Global Key (in the P Register) exactly equals the associated
segment”s (branch to) Global Lock, in the absence of a Master Global Key or No
Global Lock.

These are not the only checks performed by the hardware during the execution of these
instructions. These are just the checks which are made to ensure that an access violation
is not being attempted. Many other checks are made to ensure that the hardware functions
correctly. For example, all branches must be to parcel boundaries, and all calls must be to
word boundaries.

SOFTWARE CONVENTIONS

The hardware provides the mechanism necessary to construct a secure system. However, it
is the software usage of the hardware which determines the ultimate level of security. For
the system to be completely secure, the software must adhere to several conventions. Some
of these have been discussed in the previous sections, they are now summarized in this
section.

RINGS OF PROTECTION

Since the ring protection mechanism is hierarchical, the higher the privilege assigned
to a procedure (the lower the ring number), the more trustworthy that procedure must be.
This has two implications: the more privileged a procedure, the more thoroughly it must be
checked out. The operating system monitor, which is the most privileged procedure in the
system, should be kept as small as possible and thoroughly checked out. Secondly, it is
always incumbent on the more privileged procedure to ensure that its own integrity is not
jeopardized. In particular, care must be exercised when a procedure acts on behalf of a
less privileged procedure. In this case whenever data is referenced via caller”s arguments,
callee must reference this data through directly loaded A Registers. In other words callee
must ensure that the hardware A Register ring voting is exercised whenever caller”s pointers
are used. This is as opposed to loading a pointer in an X Register and then switching this
into an A Register (using a Copy X to A instruction) when callee”s ring number could result
in caller”s pointer. Since most software will be developed in a high level language, it is
the compilers which must adhere to this convention.
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KEY/LOCKS

Two types of Key/Locks are provided to protect local code and data and to isolate
mutually suspicious subsystems. For these nonhierarchical mechanisms to function as
desired, their values must be assigned in accordance with certain conventions regarding the
allocation of Key/Lock values.

First of all for Global Key/Locks: for every segment in rings isolating subsystems from
each other the Global Lock must be set to a nonzero value. Segments in all other rings must
carry a Global Lock value equal to zero. This ensures that users may freely call on
subsystems and the operating system, subsystems may freely call on the operating system, yet
subsystems are totally isolated from each other.

In general, user, subsystem and system procedures will be assigned with a nonzero Local
Lock. That is, no procedure will have a Master Local Key. This ensures that data can be
restricted to be written or accessed by only local procedures. Typically, all nonlocal data
are not controlled.

CONTROLLING PROCEDURES

As has already been described, much of the security of the system is ensured by the
hardware. The hardware utilizes various hardware tables, in particular, the Segment
Descriptor Table. These tables are constructed by software procedures. These procedures are
very trustworthy; they will execute in low numbered rings but not necessarily Ring 1. They
should be developed in such a way that they are self-contained, as small as possible, and
impossible to tamper with unless the most stringent security checks have been taken and
passed. The security mechanisms which have already been described will take care of
security problems when the procedures are being executed. However, when they are modified,
either statically or dynamically, a combination of installation procedures and operating
system services must be brought into play to ensure that the security of the system is
maintained.

USER RESPONSIBILITIES

The hardware and software mechanisms which interplay to provide system-wide security and
protection have been described. At first glance it may appear that the utilization of these
facilities places a heavy burden on the end-user. Fortunately, this is not the case,
although an onus is placed on the installation management. Much of the security of the
system is centered on the operating system file system. Every file carries with it the four
ring brackets - for Read, Write, Execute and Call - which have already been described.

These ring brackets are assigned based on the privilege which the user has been validated.
Hence, before a user can log in to the system, in either batch or interactive mode, that
user must be known to the system. He will identify himself via a user number and a
password. These parameters will direct the system to a validation file containing the
privileges of the user.

The normal end-user should be totally unaware of his ring of execution and whether or
not his code and data segments carry nonzero Local Locks. For an end-user the Global Lock
will be zero. If the user desires to protect some local data, then suitable directives to
the operating system will cause the setting of the appropriate Local Lock values. Again the
actual value of these Local Locks is of no concern to the user. Consequently, the average
end-user who is, for example, running FORTRAN codes need not be concerned with the security
mechanisms of the system. At the same time these mechanisms will be in play to isolate him
from other users and from the system.
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INTERRUPTS PART II 9

The section on CALL/RETURN should be thoroughly understood before proceeding with this
section. When the subject of interrupts was introduced their hierarchical nature was
described. This hierarchy involved two types of interrupts: exchange interrupts and trap
interrupts. In an exchange interrupt the state of the machine changes from job mode to
monitor mode, all process state registers are saved in one area of memory and loaded from
another area. Included in the process state registers is the P Register and execution
continues after the exchange at the address pointed to by the P Register.

In a trap interrupt, although the purpose is similar (that is, to stop the normal
sequence of operation and transfer control to another instruction sequence in such a way
that the original sequence can be restarted at the point that it was interrupted) the
mechanism is quite different. In fact, a trap interrupt is an implicit CALL. Not all the
process state registers are saved and very few are loaded with different values. A maximum
stack frame save area is created and all A Registers and X Registers are saved in it, along
with other key process state registers. The P Register is saved, and processing continues at
the address given by a Code Base Pointer (CBP) in the Binding Section of the interrupted
process. The address of this CBP is given by the Trap Pointer, and the CBP must point to an
external procedure for the trap interrupt to complete.

Trap interrupts, therefore, transfer control to an address within the address space of
the executing process. This is important because the trap handler will normally have to
make reference to flags and data held in user”s stack. In fact, the outward-call/inward-
return mechanism described in the last section was conducted primarily in the user address
space even though it was initiated by an exchange interrupt. The free-flag was used to
cause an interrupt to take place in user”s address space.

Of major importance to the trap interrupt operation is the management of the condition
registers and trap control flags: the trap enable flip—flop (TEF) and trap enable delay
(TED). When the trap interrupt is taken the User and Monitor Condition registers are stored
in the stack frame save area and the bit (or bits) which cause the interrupt are cleared
from the appropriate condition register. Hence, these registers are reset on the trap and
can start collecting new fault conditions in an unambiguous manner. Also, when the trap
interrupt is taken, traps are disabled - the TEF is cleared.

To reenable interrupts, two mechanisms are available. Simply setting the TEF via a COPY
instruction will accomplish this. However, this is not the normal technique used. The trap
interrupt is an implicit CALL, and the continuation of normal processing is accomplished by
a RETURN instruction. Part of the RETURN mechanism reenables interrupts. The sequence of
events is to set the TEF and the TED (by a single COPY instruction), then issue the RETURN.
When the TED is set traps are disabled regardless of the setting of the TEF. The RETURN
instruction clears the TED which, if the TEF is set, reenables interrupts. Since the TED is
cleared only upon completion of the RETURN instruction, problems associated with enabling
traps in one instruction step, then returning in a second step, are avoided.
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INTERRUPT CONDITIONS

Now that the basic interrupt mechanism has been described, we can proceed to the
individual interrupt conditions. CYBER 180 interrupts are precise. That is, the interrupt
handler can always refer back exactly to the instruction which caused the interrupt, or
which was being executed when the interrupt occurred. However, depending on the nature of
the interrupt, the method for tracing back to the instruction in question varies.

A basic architectural philosophy of CYBER 180 is that an instruction is not interrupted
during its execution. Conditions which would prevent an instruction from executing are
checked before the instruction is committed. The concept of a point of no return was
introduced in an earlier section on interrupts and this is an important concept. Any
exception conditions detected before the point of no return will prevent the instruction
from executing, an interrupt will be taken, and the P Register, at the time of the
interrupt, will point to the instruction which could not be executed.

MONITOR CONDITION REGISTER (MCR)

Figure 1-8 lists the conditions recorded in the Monitor Condition Register. Following
are some notes on these conditionms.

Detected Uncorrectable Error (DUE)

This interrupt indicates that an uncorrectable error has been detected in either the
processor or the memory on a reference generated by the processor.

Ma jor data paths, registers, control memories all carry either parity or SECDED. Any
error which is detected before the point of no return of an instruction causes the
instruction to be retried. A retry counter (one counter which applies to all errors) may be
set. If the instruction retry is unsuccessful, then a Detected Uncorrectable Error is
recorded. The P Register saved by the interrupt, points to the instruction that was in
execution (but before its point of no return) at the time the interrupt occurred. If the
error arose after the point of no return, then it will be handled by the complete portion of
the instruction execution. In this case the P Register saved by the interrupt points to the
instruction following the one which was in execution when the error was detected. This
means that there is no way of resuming the instruction stream after the interrupt. However,
since the state of the process which was executing is undefined there is little point in
doing this.

To aid recovering processors at this point the Processor Not Damaged (PND) flag is set
if the fault occurred before the point of no return. When this flag is set the process
environment is intact even though further processing may be impossible. This fact may be
utilized by the damaged assessor to effect a subsequent restart of the process.

Memory malfunctions are included in this condition. An understanding of the types of
errors which can arise in memory may help in an assessment as to the best way to handle
them. A simplified picture of memory error detection is shown in figure 9-1. Data
transmissions between a processor and memory are checked for correct parity at the processor
port, the memory port and at the memory array paks. Memory itself, such as chips and bank
logic, has a SECDED.
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Figure 9-1.

Memory Error Detection

to this point result in a memory detected malfunction. The transmission is then parity
checked at the processor port and an error here results in a processor detected
malfunction. The now incorrect data continues to its destination and the process in
execution should be handled as previously described.

The requesting processor must wait

The transmission does a SECDED check and then is
Errors detected up

Two forms of write request are of interest: a partial write, in which only a portion of
a 64-bit central memory word is written; and a full-word write, in which a 64-bit word is
stored in central memory.

On a partial write, the word being modified must first be fetched from central memory,
The data transmission is checked for parity at the memory port and again at
the memory array paks (actually at the SECDED generator). The word to be modified is then
Finally it is updated, has a new SECDED code generated for

then rewritten.

fetched and checked for SECDED.

it, and then 1is saved in central memory. Any error
memory detected malfunction.

which is detected is recorded as a

On a full-word write the sequence is the same as for the partial write, except that the
steps where the word is read from central memory and updated are omitted. Hence on a
full-word write only parity errors can be detected.
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A write request is essentially an asynchronous event. The processor issues the request
to memory and continues processing. Any errors which are detected (by memory) are reported
back to the processor at a point in the processing which is not associated with the write
operation which failed. Hence, it is virtually impossible to relate back to the instruction
which is affected by the error. It is pointless therefore, to continue execution of the
process in question.

It is not a bad strategy when the errors are encountered, to assume that a user job was
being processed, and attempt to take the interrupt. If the error was transient or in a part
of the machine that can be bypassed, then the task can be aborted and processing can
proceed, maybe after an appropriate reconfiguration has taken place. If a second occurrence
of the failure is encountered during the interrupt, the processor will either try to trap or
will halt. In the extreme case the processor will halt.

When a DUE is present there may be other bits set in the MCR/UCR as a result of the
error, all of which should be disregarded.

Not Assigned

This bit is not set implicitly by any hardware condition, but may be set or cleared
explicitly by software on Exchange or Branch on Condition Register as any other condition
register bit. When set explicitly, this bit causes program interruptions in a manner
identical to bit 48 of the MCR.

Short Warning

A short warning interrupt is one of several asynchronous interrupts (external events)
which can arise. In all cases like these the P Register saved by the interrupt points to
the next instruction in sequence to be executed. In other words, it is always detected at
the next point of no return encountered. A short warning interrupt indicates that within a
minimum of 2.5 seconds a system critical component will fail and will automatically shut
itself down. It is up to the operating system to take the necessary steps within this
timeframe to ensure an orderly restart. System critical components include as a minimum the
MG set (main power supply) and all mainframe elements (processors, memories and the IOU).
In addition, customers have an option to purchase a Configuration Environment Monitor (CEM)
which will detect and report impending shutdowns in key peripheral equipment such as the
system disk(s) and controller(s). This interrupt signals an impending shutdown of a key
equipment. It may be a power failure, but it could be a high-temperature condition or some
other condition which is likely to cause damage to the equipment unless prompt action is
taken. This interrupt will never cause the processor to halt.

The short warning bit in the MCR remains set as long as the condition holds. That is,
even though an exchange interrupt occurs, and a new copy of the MCR 1s obtained, the power
warning bit remains set. Hence, if the operating system monitor is entered with the traps
enabled, an immediate trap results.

There is a second indication of a short warning which is intended for use in CYBER 170
State. A bit is reserved for that purpose in the Processor Status Summary Register. The
process of recording the condition is basically the same as that for the MCR. As long as
the situation holds, the condition remains recorded in the Status Summary Register. In the
event that it clears (a transient power loss) the condition goes away. This enables
software to monitor for restart conditioms.
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Instruction Specification Error

This is one of a class of errors where either the user has made an error (such as
executing data) or is deliberately trying to tamper with the system. In either event an
exchange interrupt is taken with the P Register saved (at JPS) pointing to the instruction
which caused the error. The only case where a user may be deliberately trying to destroy
the system is when the user attempts to execute a monitor instruction in job mode. These
special instructions for use only by monitor are described in a later section. The
interrupt enables the operating system to abort the job and report to the end-user the
precise instruction, and address within the process being executed which caused the fault.

Address Specification Error

Certain instructions require a particular form of an address to be used. If the
required form is not used this interrupt will occur, and the operating system can follow the
actions suggested for an instruction specification error. Here also the P Register saved
(at JPS) points to the instruction with the faulty address. In addition, the faulty address
is loaded into the Untranslatable Pointer Register (UTP).

C170 Exchange Request

CYBER 180 is designed such that it may execute the instructions not only of CYBER 180
but of other machines as well. CYBER 170 is the most important of these. On CYBER 170 the
IOU can initiate an exchange jump in the CPU. However, when this happens on CYBER 180 it
can only be executed if the CYBER 170 virtual machine is being executed. If the CYBER 180
virtual machine is being executed, then an exchange request interrupt occurs and the CYBER
180 monitor must then exchange to the CYBER 170 virtual machine in order for the request to
be satisfied. This is an asynchronous interrupt and the P Register stored (at JPS) by the
interrupt is set accordingly.

Access Violation

This interrupt occurs when a user attempts to access code or data to which he has not
been granted access privelege. The CYBER 180 protection mechanism is described fully in the
section dealing with virtual memory. It is a mechanism which is built into the hardware and
any attempt to circumvent it leads to this interrupt. This is the same as an instruction

specification error in that the P Register (saved at JPS) points to the instruction which
attempted to violate the protection mechanism.
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Enviromnment Specification Error

This interrupt indicates that the environment has been destroyed in some way, typically
by a programming error. The destruction is such that an illogical or impossible situation
develops and further processing is impossible. The most common cause of this is the
destruction of the information in the stack by a user. Since the stack has read/write
access and contains dynamic variables along with link information for calls and returns,
this is not uncommon. Further processing is impossible and the operating system must abort
the job. This interrupt behaves exactly as an instruction specification error with one
exception. In most cases the P Register saved during the interrupt points to the
instruction which caused the error. However, this error can arise when the processor is
attempting to trap or exchange on another interrupt. If a trap was being attempted but
could not complete, then an exchange will be attempted if the machine is in job mode. If
the exchange is successful, then the P Register saved (at JPS) points to the instruction
which originally caused the trap and the trap exception bit will be set. The operating
system must abort the job at this time, but should check for the trap exception and then
report to the user:

a) the instruction executed or about to be executed when the original interrupt occurred
b) the nature of the original interrupt
c) the final reason for the job abort — which is the environment specification error

If the machine is in monitor mode when the trap exception occurs it will halt, since the
monitor”s environment has been destroyed. ,

For exchange interrupts the situation is different. If an exchange from monitor to job
is attempted such that the job in question is not permitted to execute the given virtual
machine to which it is exchanging, then the following happens:

a) The exchange from monitor to job completes and an enviromment specification error is
detected.

b) An exchange is taken immediately from job to monitor.

That is, the environment specification error is associated with the job and recorded in the
exchange package stored at JPS. Also, the P Register saved in this exchange package is
identical to that which was loaded from JPS when the original exchange from monitor to job
was attempted.

If a virtual machine mismatch occurs on an attempted exchange from job to monitor, then
the hardware must have failed in some serious, undetected manner. The processor has no
recourse other than to halt. This situation is unlikely to occur and is also difficult to
detect. There will be no indication in the processor error logs and there will be no
indication in either the exchange package at JPS or that at MPS. An investigation of the PVA
in the P Register at the time of the halt (by the MCU) and an investigation of the Monitor
Condition Register (and Monitor Mask Register), followed by a check on the registers
controll ing virtual machine switching should reveal the nature of the problem. If
unexplained processor halts are to be avoided, then the code in the MCU should include a
check for these conditioms.

9-6 : 60459960 A



External Interrupt

An external interrupt is an asynchronous interrupt. It is a signal to a processor that
another processor requires some action to be performed. Precisely which processor is making
the request and the nature of the request must be relayed by software convention. A message
buffer must be set up in central memory to contain this information. Once the request is
satisfied, an exchange jump back to job continues normal processing.

Page Table Search Without Find

This is a simple page fault - a user has tried to access a page which is not in real
memory. The operating system must arrange for the page to be brought into memory before
processing can continue. This condition is always caught in the prevalidation of an
instruction, that is, before the point of no return. Consequently, the P Register saved by
the interrupt (at JPS) points to the instruction which could not be executed because of the
missing page. In addition, the Untranslatable Pointer register (UTP) contains the address
(PVA) which gave the page fault. Hence, in order to satisfy the page fault the operating
system does not have to trace back through the code being executed. It can gain all the
information it requires from the UTP. Once the page fault is satisfied, an exchange back to
job continues normal processing. Page faulting does not always result in loading a fresh
page in memory. The operating system must apply various safeguards to ensure that a process
that is running away in a write loop does not consume all of real memory. Typically, this
can be done by limiting the size of the segments being used by the user.

One last point: certain code segments of the operating system must be wired down, that
is, not paged. This is to avoid the recursion of faults which could otherwise occur. For
example, the Page Fault Handler, itself, cannot get a page fault. Such a condition normally
causes a processor halt via the hierarchy mechanism of the CYBER 180 interrupt system.

System Call

Unlike the conditions discussed to this point, the system call condition is not an
interrupt condition but is a flag for the operating system monitor. The value of the
corresponding bit in the Monitor Mask register has no affect on the setting of this flag. A
process executing in job mode may need to make a request on the operating system monitor for
some action. To do this, the process stores a request message in a message buffer, then
issues an exchange jump. This switches the machine state from job to monitor, and to all
intents and purposes appears to monitor as if an exchange interrupt occurred. An
investigation of the MCR at JPS reveals the system call flag set, and the necessary action
is taken. The P Register saved during the exchange (at JPS) points to the instruction
following the exchange jump, hence an exchange back to job continues normal processing.
Unlike true interrupt conditions, if this flag is set by the special system instruction
which modifies the MCR, then an interrupt does not result.

Care should be taken by the interrupt handler to ensure that only the MCR is checked for
that condition. This is different from the normal mechanism in which the logical product of
the MM and MCR is checked. The simplest procedure for the operating system to follow is to
ensure that the MM bit (bit 10) is always set on exchange to job.
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System Interval Timer

The System Interval Timer (SIT) resides in a processor state register. It is the single
timer for the entire system. It is a 32-bit counter which is decremented once every
microsecond. When it counts to zero this interrupt is taken. This is an asynchronous
interrupt and the P Register stored at JPS points to the instruction following the one being
executed when the SIT decremented to zero. The SIT is intended to be used for time slicing
and accounting. ' Once the counter has decremented to zero it does not stop counting. That
is, it will next decrement to -1 (2%*32 -1) and continue decrementing.

Invalid Segment/Ring Number Zero

The invalid segment condition bit in the MCR combines two conditions. The first of
these is a true invalid segment and the second is an unlinked pointer, ring number zero. An
invalid segment condition arises when either a segment descriptor table entry (SDE) has been
flagged as an invalid entry (VL field = 00), or when the Segment Table Length (STL) has been
exceeded. This latter condition occurs when the Segment Number (SEG) portion of a PVA is
greater than STL, that is, when SEG > STL. For these conditions the P Register stored at
JPS points to the instruction which attempted the central memory access which gave rise to
the condition.

A ring number zero condition arises when an unlinked pointer has been loaded. The
operating system must arrange for the loader to form the necessary links as described
previously in the section dealing with dynamic loading. In all cases the unlinked pointer
is placed in the Untranslatable Pointer Register (UIP) and contains all the information
necessary for the operating system to form the appropriate link. When an unlinked pointer
is loaded, then the load completes before the interrupt is taken. Hence, the P Register
stored at JPS points to the instruction following the load instruction which loaded the
unl inked pointer. This means the unlinked pointer was loaded into an A Register and the
operating system must take care to replace this register value with the correct, linked
pointer.

Outward Call/Inward Return

The ring hierarchy has been established such that procedures in inner rings may access
code and data in outer rings (rings with higher numbers and lower privilege), and procedures
in outer rings may CALL on procedures in inner rings in a controlled manner. This has been
described in the section on CALL/RETURN. This condition has been provided to prevent a user
from attempting an outward call or an inward return, and thereby causing a possible security
breach. The P Register stored at JPS points to the CALL or RETURN instruction in question,
and the operating system must either abort the job or simulate the required call. - This
latter process has already been described. :
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Soft Error Log

This condition bit sets when the processor encounters a hardware error which was
corrected by the hardware. This includes correctable errors in the processor itself and may
include, if selected, single bit errors in central memory. Examples in the processor
include a successful instruction retry, cache or MAP parity errors, and so forth. These
vary from processor type to processor type. These correctable errors are also reported in
the Status Summary register (for processor or memory) hence it is not necessary for the
processor to be interrupted on every correctable error. The choice may be made to ignore
this interrupt (by not setting the appropriate bit in the Monitor Mask register) and treat
these errors in an asynchronous manner via the Maintenance Control Unit (MCU) - a designated
PP in the IOU. The P Register stored at JPS points to the next instruction to be executed.
That is, if the interrupt is taken, then the operating system monitor after processing the
interrupt has only to issue an exchange to continue normal processing.

Trap Exception

Trap exception is similar to system call in that it is not an interrupt condition but is
a flag to the operating system. The flag indicates that for some reason a trap interrupt
was attempted but could not be completed because a condition was encountered which prevented
it. Hence, at least two other bits will be set in the MCR whenever the Trap Exception bit
is set, one being the bit which prevented the trap from completing, and the other being the
bit that caused the trap. An example of this process is an arithmetic overflow encountered
and a trap attempted. However, in attempting to store the Stack Frame Save Area a page
fault in the Stack is detected and an exchange interrupt taken. After satisfying the page
fault the operating system exchanges back to the user (taking care to clear the Trap
Exception bit in the MCR), whereupon the trap will take place since the condition has not
been removed from the UCR. The P Register stored at JPS contains the PVA which would have
been laid down in the Stack Frame Save Area had the trap been successful.

General Notes on the MCR:

° The condition bits in the MCR have been sequenced in a priority order from left to
right with the most serious conditions towards the leftmost end of the register.
The recommended (but not mandatory) order of processing is in this sequence.
Consequently, the fatal system conditions occupy the first three bits in the
register and the trap exception flag the last.

e Whenever an invalid pointer is encountered for whatever reason, an interrupt occurs
and the invalid pointer is placed in the Untranslatable Pointer Register.

. Interrupts which may occur in multiples of particular interest are the four which
cause entries in the UTP: Invalid Segment/Ring Number Zero (ISG), Address
Specification Error (ASE), Access Violation (AV), and Page Table Search Without Find
(PSWF). If these occur in combination, then the following precedence applies to the
PVA entered in the UTP: ISG, ASE, AV, PSWF.
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USER CONDITION REGISTER (UCR)

Figure 1-9 lists the conditions recorded in the User Condition Register. Following are

some notes on these conditions. Rather than repeat information, the arithmetic conditions
have been grouped into classes which describe their behavior.

Privileged Instruction Fault

This is really a monitor condition and could have been implemented in the MCR. However,
by recording it in the UCR there is an opportunity for handling the condition from within
the user”s address space. This is the first of four monitor conditions which are recorded
in the UCR.  They are all characterized by the fact that they cannot be stacked and are
termed the nonstackable conditions. In practice this condition, which arises because a user
has attempted to execute a privileged instruction in a nonprivileged mode, will normally be
handled by the operating system directly. For a discussion on the privileged modes of
operation of CYBER 180, refer to section on system instructions.

The P Register stored in the Stack Frame Save Area (SFSA) points to the instruction
which gave the fault. The execution of this instruction is inhibited.

Unimplemented Instruction

This is the second monitor condition which is flagged in the UCR. It provides a
capability for emulating a model dependent instruction with suitable software. Since the
emulation should occur from within the user”s address space a trap rather than an exchange
is taken. The P Register stored in the SFSA points to the illegal instruction which caused
the trap.

Free Flag

An example of the use of this flag is given in the section on CALL/RETURN mechanism. In
that case an outward CALL was simulated by the operating system from within the user”s
address space. The transition from the monitor”s address space to the user”s address space
was made by setting the Free Flag in the exchange package at JPS, and executing an exchange
jump from monitor to job. In the prevalidation of the next instruction to be executed in
the user”s job, the Free Flag is detected and a trap taken. The P Register stored in the
SFSA points to the next instruction to be executed in the user”s code. This UCR condition
is unique in that it takes priority over MCR conditions which may arise at the same time.

Process Interval Timer

The Process Interval Timer (PIT) is a 32-bit counter which decrements once every
microsecond. Each process has a unique counter when it is in execution. Whenever a PIT
reaches zero a condition bit sets in the UCR, and if enabled, a trap is taken. The PIT
continues counting at this time. One microsecond after the PIT has zeroed, the counter
assumes a value of -1 (2**32-1) and the decrementing continues. This condition is an
asynchronous interrupt similar to the SIT which is recorded in the MCR. The P Register
saved in the SFSA points to the next instruction to be executed. In other words, when the
trap handler has completed its processing and issued a RETURN, normal instruction execution
resumes.
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Inter—rigg POP

This is the third monitor condition which is recorded in the UCR. The POP instruction
is described in the section on CALL/RETURN mechanism. Its function is to dispose of stack
frames, typically during tidy-up when a process is being terminated. The POP instruction
merely moves pointers (DSP,CSF,PSA,TOS) which point at a given stack. It does not contain
any of the safeguards required when crossing rings. Hence, 1f a ring crossing is attempted
in the tidy-up process, a trap 1s taken and software procedures are invoked to ensure the
ring crossing takes place in a controlled manner. The P Register saved in the SFSA points
to the POP instruction which attempted the ring crossing, and whose execution was inhibited.

Critical Frame Flag

This is the fourth and final monitor condition which is recorded in the UCR. The
Critical Frame Flag (CFF) is a software flag which is acted on by the hardware. Software
sets this flag to prevent the disposal of certain stack frames which may be shared by
separate tasks running in the same address space. The flag is cleared by CALL and trap so
that each instance of a procedure begins in a noncritical state. It is likewise restored on
a POP or a RETURN in order for the criticality of the current stack frame to be determined.
This condition provides an interrupt into the user”s address space and the trap handler must
determine how the stack frame can be disposed. In other words the criticality of the stack
frame is set by software convention, and any alteration of the criticality or disposal of
the stack frame must be under the control of the same software. The P Register, saved in
the SFSA, points to the RETURN or POP instruction which attempted to eliminate the critical
stack frame.

Keypoint

The keypoint condition indicates that software is to collect hardware performance data

at this point of the program. For a full discussion of this topic see the section dealing
with Performance Monitoring. In this case the P Register saved in the SFSA points to the

instruction following the keypoint instruction which caused the trap.
General Notes:

a) The first seven conditions recorded in the UCR have been described above. They
comprise four monitor conditions and three user conditions. The bits in the User
Mask Register (UM) corresponding to these seven conditions are permanently selected
by the hardware. Hence, if one of these conditions arises, and traps are enabled,
then a trap will be taken.

b) For the four, nonstackable, monitor conditions, execution of the instruction causing
the trap is always inhibited. Furthermore, the offending instruction is rarely if
ever executed. However, since the P Register saved in the SFSA points to the
offending instruction, the trap handler must advance the value of the P Register
saved in the SFSA, before issuing a RETURN.
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Debug

This condition indicates that a debug condition was met such as a storage reference made
or branch taken. For a full discussion of the facilities in this area, see the section on
debug. The P Register saved in the SFSA points to the instruction which caused the trap to
occur.

Invalid BDP Data

This condition indicates that a BDP instruction encountered data which did not match the
required format. In this case the P Register saved in the SFSA points to the instruction
which encountered the invalid BDP data. For a full discussion of required formats, refer to
section on BDP instructions.

Arithmetic Conditions

The remaining seven user conditions are arithmetic conditions.

Divide Fault

Arithmetic Overflow

Floating Point Indefinite
Arithmetic Loss of Significance
Exponent Overflow

Exponent Underflow

Floating Point Loss of Significance

They fall into two classes depending on whether the P Register stored in the SFSA points to
the instruction which caused the fault or whether it points to the instruction following the
one which caused the fault. In addition, the instruction may or may not be executed before
the trap is taken. In general, the intent of CYBER 180 1is to be able to identify the
instruction which caused the fault. This means that the P Register saved in the SFSA
normally points to the instruction in question. This is particularly important since it is
impossible to back up the instruction stream when an instruction has executed and the

P Register has been advanced. (It follows automatically that the instruction execution is
normally inhibited.) However, in the case of floating-point instructions the following is
apparent. If the result is not indefinite or infinite, but is an exponent overflow or
underflow condition, then it will be a true value even though it is out-of-range of the
standard floating-point numbers. In the general scheme of events this is unimportant, but
code can be provided to correct the situation without loss.

The vector instructions require some special attention because of the multiple operands
involved. Floating-point vectors may encounter several (up to four) of these conditions.
The vector instruction execution is not inhibited and the interrupt occurs after the
completion of the vector instruction.
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° If a single condition is encountered, the P Register saved in the SFSA will follow
the pattern for scalar instructionms.

P points to the following instruction for:

Exponent Overflow
Exponent Underflow
Floating Point Lost of Significance

P points to the vector instruction which encountered the interrupt for:

Divide Fault

Arithmetic Overflow

Floating Point Indefinite
Arithmetic Loss of Significance

° If multiple conditions are encountered which require different values of P, the P
will always be set to point to the instruction following the vector instruction
which encountered the multiple conditions.

Since the conditions themselves are self-explanatory the discussion below groups them
into two major categories and 1s restricted to irregularities.

Conditions Where the Instruction is Inhibited

For this class of arithmetic faults, the execution of the instruction which caused the
fault is inhibited, and the P Register saved in the SFSA points to that instruction.
Exceptions are noted in the following text. The conditions which fall into this category
are: )

- Divide Fault (integer, decimal, floating-point)

-~ Arithmetic Overflow (integer, decimal)

- Floating-point Indefinite

- Arithmetic Loss of Significance (integer,decimal)

General Notes:

a) Floating-point indefinite falls into this category since it can arise on a branch
instruction (32-bits) as well as on an arithmetic operation (l6-bits). Hence, it is
not possible to backup the instruction stream.

b) A divide fault occurs either on a divide by zero or when the divisor is an
unnormalized floating—point number. The latter case does not necessarily result in a
divide fault, but the single and double precision quotient operations do not
prenormalize. (However, all floating-point operations postnormalize to the extent
that normalized numbers will emerge if normalized numbers are input to the
floating—-point unit.) Also, if traps are disabled or the divide fault interrupt is
not selected, then the instruction is still inhibited and execution continues at the
next instruction in sequence.

¢c) Traps on user conditions have been included for convenience. They may be selected
or disabled by the user via the UM, and cause an interruption to the normal
execution sequence. When the condition has not been selected but is encountered,
the appropriate bit is still set in the UCR, and may be tested and cleared by a
special instruction: Branch on Condition Register.  This instruction is discussed in
the section dealing with system instruction.
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Conditions Where the Instruction is Executed

For this class of arithmetic faults, the execution of the instruction which caused the

fault is completed, and the P register, saved in the SFSA, points to the next instruction.
The conditions which fall into this category are:

-Exponent Overflow
-Exponent Underflow
-Floating Point Loss of Significance

General Notes:

1) It is important that the instructions during which the condition arose are executed,
since the CYBER 180 floating point format has been chosen such that, even though an
exponent overflow or underflow occurs, a true result is returned. This is explained
in more detail in the section on floating-point instructions. It provides a
programmer with the opportunity to scale variables and continue processing if
desired.

SIMULATED INTERRUPTS

There are two ways in which an interrupt can be generated artificially. These are by
setting a bit in the UCR (by a Branch on Condition Register instruction), and by setting a
bit in the UM when the corresponding bit is already set in the UCR. In both instances, the
P Register saved in the SFSA points to the instruction following that which set the bit in
either a Mask Register or a Condition Register, that 1is, following a Branch on Condition
Register (BCR) or a copy. It is not good practice to set bits in a UCR. This facility has
been included as a diagnostic aid to verify that the interrupt system is functioning
correctly.

MULTIPLE INTERRUPTS

When more than one interrupt condition arises at one time the following rules apply:
a) Exchange interrupts are always serviced before trap interrupts by the hardware.

b) When multiple interrupts of the same type occur simultaneously, they are all
recorded in the condition registers. The precise mechanism is processor model
dependent: some processors recording all coincident conditions simultaneously,
others recording them one at a time. The interrupt handlers must accommodate
multiple, simultaneous interrupts.

Multiple interrupts arise because of the asynchronous nature of certain interrupt
conditions. Since the P Register saved by the interrupt is intended to point to either the
instruction which caused the fault or to the following instruction, it is important to
understand what is contained in that register. The following general rules should help.

a) A Detected Uncorrectable Error (DUE) always takes precedence and leaves the
P Register in an undefined state.
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b) The synchronous interrupts take priority over the asynchronous interrupts.

Care must be taken when designing and generating interrupt handlers, and these rules
must be applied at all times. The following example will clarify the pitfalls.

When an asynchronous interrupt occurs (for example, a PIT), the P Register saved in the
SFSA points to the next instruction to be executed. Hence, the trap is taken, processed,
and a RETURN issued, which continues normal processing. However, if a PIT occurs
simul taneously with, for example, an unimplemented instruction, then the P Register saved in
the SFSA points to the unimplemented instruction. If only the PIT is acted on, then the
RETURN will cause the unimplemented instruction fault to be detected again. However, if
only the unimplemented instruction was acted on the PIT would never be seen. This is
because on a trap the UCR is saved in the SFSA and the live UCR is zeroed. It is the live
UCR which carries back across the return. This is different from the exchange mechanism
when a fresh copy of the condition registers is invoked (either from the exchange package at
MPS, or that at JPS) for each exchange interval. If an exchange condition is processed, but
the bit in the condition register in the exchange package in memory is not cleared, then an
exchange loop will follow.

Probably the safest rule to follow is to process all conditions which have arisen, and
which have been selected, at one time.

Finally, software cooperation is needed when interrupts are caused artificially (for
example, by setting the UM dynamically). If the normal action taken by the interrupt
handler is to advance the P counter, then in this case an instruction will be omitted. For
example, in this sequence

ENTE XF,X“E6”

ENTP XE, 1

CPYXS XE, XF

LX XF, A5, ABC
the LX instruction may be spaced over by the interrupt handler. To avoid such an
occurrence, it is recommended that a do nothing (CPYXX X0,X0) be inserted immediately
following the instruction causing the trap - in this case (CPYXS XE,XF) .
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CENTRAL PROCESSOR INSTRUCTIONS 10

Complete details of the operation of the central processor instructions for CYBER 180
may be found in the MIGDS. It is not the intention to repeat all the information here.
This section will confine itself to features of these instructions which are unique to CYBER
180, and it will highlight some characteristics about which questions have frequently been
asked.

REGISTERS

CYBER 180 has 33 general purpose registers. These are the P Register, 16 64-bit
X Registers, and 16 48-bit A Registers (figure 10-1).

The P Register or Program Address Register contains the PVA of the instruction in
central memory during the time it is read, interpreted and executed by the processor. It
also carries information relating to the privacy of the code segment being executed. This
information contains the current ring of execution and the global and local keys of the
process.

The 16 X Registers are named X0-XF using hexadecimal notation. They are general purpose
registers used to hold logical quantities, signed integers and signed floating-point
numbers. They have a left half and a right half and there are instructions which operate on
the entire 64-bit register, and other instructions which operate only on the lower 32-bits
(bits 32-63) in which case the register is referred to as X-Right. Instructions which
operate on the lower 32-bits of an X register do not modify the upper 32 bits.

The 16 A Registers are used to hold PVA“s to address operands in central memory. They

are referred to as AO-AF and are identical to the low-order 48-bits of the P Register.
There is no implied relationship between the A Register and X Register as on CYBER 170.

60459960 A 10-1



P REGISTER FORMAT

10 16 20 32 63

NO

8
/ N
GK /ﬁ LK RN SEG BN

A REGISTER FORMAT — PVA
16 20 32 63

RN SEG BN

X REGISTER FORMAT

0 3132 63

X-LEFT X-RIGHT

Figure 10-1. General Purpose Registers

GENERAL STRUCTURE

Bit numbering on CYBER 180 processors is left to right zero origin. This system applies
to words in memory, bytes in words, bits in bytes, bits in registers, and so forth.

CYBER 180 is a byte addressable machine - unlike CYBER 170 which is a word addressable
machine. For this reason there is no No Operation (NOP) instruction. All instructions
consist of an integral number of bytes and instruction parcels can span word boundaries or
page boundaries but not segment boundaries. Each segment is a unique entity and has no
relation to the segments numbered immediately prior to or following it.

CYBER 180 instructions are noninterruptible. The processor always prevalidates an
instruction before executing it. It is not possible to have a page fault during the
execution of an instruction. This design philosophy has been chosen to simplify the
development of CYBER 180 processors and is directly responsible for restrictions on the

lengths of certain operands. These restrictions are particularly in evidence in the BDP
instructions.
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Another major difference between CYBER 180 and CYBER 170 is that CYBER 180 instructions
are basically 2-address instructions whereas CYBER 170 instructions are basically 3-address.

INSTRUCTION GROUPS

There are four groups of instructions on CYBER 180 as follows:

General Instructions (76) - Load/Store, Integer Arithmetic, Logicals,

Branches, Enters, Copies, Address Arithmetic,
Shifts, and so forth.

BDP Instructions (18) - Moves, Compares, Decimal Arithmetic, Translate,
Edit.

Floating-Point Instructions (16) Floating-Point Arithmetic, Branches, Compare.

System Instructions (19) - Subroutine link, page table management, cache
management, maintenance register copies,
interlocks, and so forth.

These groups are discussed separately in that sequence.

NOTE

This document does not include a discussion
of CYBER 180 vector instructions.
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GENERAL INSTRUCTIONS

Four instruction formats (figure 10-2), one one-parcel and three two-parcel instructions
are used for the general instructions. These instructions are termed jkiD, SjkiD, jk and
jkQ instructions. j,k and i refer to register subscript designators such as Xj, Ak, Xi. Q
is always a signed (2°s complement) 16-bit constant, D is an unsigned 12-bit constant
(except when used in the shift and scale instructions), and S is a suboperation.

jkiD INSTRUCTION FORMAT

0 8 12 16 20 31

oP i k i D

SjkiD INSTRUCTION FORMAT

0 5 8 12 16 20 31

opP S i k i D

jk INSTRUCTION FORMAT

0 8 12 15

opP | k

jkQ INSTRUCTION FORMAT

0 8 12 16 31

opP i k Q

Figure 10-2. General Instruction Formats
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LOAD/STORE BYTES, WORDS, BITS

These instructions load data into and store data from X Registers. Points to be noted
are:

1) If X0 is specified as a register for index arithmetic, it is interpreted as no index.

2) 1If the information to be loaded is less than a full register (64-bits) then the
information is loaded right justified, zero fill.

3) 1If a 64-bit word 1s loaded or stored the data must be located on a full word
boundary or an address specification error will be flagged.

4) The address of the data to be loaded or stored is the address of the leftmost byte
in memory for load/store byte.

LOAD/STORE A REGISTER

A Registers are used to address operands to be fetched from or stored in central

memory. When these operations occur a security check is made to ensure that the privacy of
the data is maintained. Part of that security check consists of ensuring that data is not
accessed outside a segment”s ring bracket. The ring number in the PVA held in an A Register
is used for this purpose. It is possible to change a ring number in a PVA held in central
memory. However, that PVA can only be used via an A Register, hence when an A Register is
loaded, the processor ensures that a ring number smaller than that permitted is not entered
in the register. It accomplishes this by selecting the largest ring number from:

(a) The six bytes addressed in central memory.
(b) The current Aj Register.
(c) The SDE.R1 pointed to by the segment number in Aj Register.

and inserting that into the PVA.RN of the destination register (figure 10-3).
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Aj

[rn] see | BN —
S—

CENTRAL MEMORY

aN]  sec | BN |

i | ——

sDT

U mire] w0 || pr77zzzZ

1 ]

Ak (DESTINATION)

Figure 10-3. A Register Ring Voting

The importance of the ring number assignment is discussed, in depth, in the section on
security. In that section, software conventions are also described which are necessary if
the integrity of the system is to be maintained.

LOAD/STORE MULTIPLE REGISTERS
These instructions permit the simultaneous loading and storing of a set of A Registers

and a set of X Registers. Points to note are:

e One X Register (X0) is lost to the process itself. It holds the designations of the
register sets to be stored or loaded. )

® Registers to be saved or restored must lie on a full-word boundary in central
memory. Failure to specify a full-word address will result in an address
specification error.

° A single set of contiguous A Registers, and a single set of contiguous X Registers
may be saved or loaded by these instruction. i

e When a set of A Registers is loaded, ring number validation occurs as described in
the section on single A Register loading.
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If a single A Register or a single X Register is to be loaded/stored, then the start
and end designators must be equal.

If no A Register or no X Register is to be loaded/stored, then the starting
designator must be set greater than the end designator.

INTEGER ARITHMETIC

Integer arithmetic is fairly standard. A full set of operations is provided for both
the 32-bit integers and the 64-bit integers.

Integer arithmetic is 2”s complement arithmetic. Hence (-X .NE. NOT X), minus zero
(-0) does NOT exist, and the magnitude of the largest negative number is one greater
than the magnitude of the largest positive number.

The major difference between the 32-bit operands and the 64-bit operands is the
point at which overflow is detected.

No rounding occurs on any of the instructionms.

The branch tests for less than and less than or equal to are generated by switching
the operands in the greater than and greater than or equal to tests.

The results of an integer compare are placed in bits 32 and 33 of register
X1-Right. These bit settings are 00, Ol and 11 for Xj equal to, greater than and
less than Xk respectively (figure 10-4). The remainder of X1-Right is cleared,
hence a nonzero branch on Xl1-Right detects a not equal result.

=

[ Xk

[000————— o] eauaL

L X1R [mo———————oJ Xj GREATER THAN Xk

‘110—-—-————-0] Xj LESS THAN Xk

Figure 10-4. Results of Integer Compare
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° Register X0 (or XO-Right) cannot be tested explicitly by a branch or compare
instruction, since the use of this register by any of these instructions is
interpreted as zero. The designation X0 is used to test other registers for a
nonzero or zero value. If it is necessary to test X0 it must first be copied to

another register.

° The range of 64-bit operations is provided to satisfy the requirements of FORTRAN,
and other processors dealing with large integer values. In particular, numerical
analysis, commonly conducted in unnormalized floating point arithmetic on CYBER 170
and other machines, is expected to be performed using this arithmetic. 32-bit
integers are designed for use in index and address arithmetic, the overflow
condition arising at the upper byte number address within a segment.

e All branches must be to a parcel boundary or an address specification error is
detected.

BRANCH INSTRUCTIONS

Conditional with Increment

This instruction (figure 10-5), which operates on 64-bit operands is intended for use by
FORTRAN in DO loop compilations. Points to note are:

e Whenever the branch is taken, Xk is incremented by one.

o If Xj is specified as X0 then all zeros is assumed by the hardware. The intent here
is to use a negative index to count through zero.

No NORPAL
EXIT

Xk = Xk ¢ )

i

BRANCH T0
{P+22Q)

Figure 10-5. Conditional Branch with Increment
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Conditional, Ak

The purpose of this instruction is to compare two A Registers (figure 10-6).

However,

since A Registers contain only PVA”s, and PVA”s have three components, special actions are

required. Points to note are:

e The ring numbers of the PVA“s form no part of the comparison.

. Segment number fields (SEG) are compared strictly on an equality/nonequality basis.

° Byte numbers (BN) are compared as signed 32-bit, 2”s complement integers.

BNCA j>>BN{AK}

NO

BN{A j}=BN{AK)?

BRANCH EXIT
{70 P=2x2}

YES

X1R=N00——0

XiR=330 ——— 0 X3R=010

NORMAL EXIT

Figure 10-6. Branch Conditional, Ak

Unconditional Branch, Indexed

The reach of this instruction is controlled by the index value in Xk-Right.

It is

expected that the 24-bit operand, enter instruction will be used in conjunction with this

branch.
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Unconditional Branch, (A) Indexed

The branches discussed so far are all branches made relative to the current value of the
P Register. The branches occur within a segment and no checking on the privacy has to be
made when the branch is taken since the segment is the basis of the privacy in the system.
One instruction, the Intersegment Branch (figure 10-7), is provided to enable branches to be
taken directly from one segment to another.

OLD P REGISTER

Aok P ix]an] ses | BN
—rd 1

Aj REGISTER
[rn] sec | BN |
——

SDT

\ LT | [\ pzzzz22222

SELECT
\
ok ] wk [an] sec | BN |

NEW P REGISTER

Figure 10-7. Intersegment Branch

The following actions occur in the execution of this instruction (figure 10-8).

1) The P Register byte number is set to the byte number of Aj plus an index
(2*Xk-Right).

2) The P Register segment number is set to the Aj segment number.
3) The P Register ring number is not changed.

4) The P Register global keys are set as follows:

01d P-Reg | Segment Descriptor | New P-Reg
G-Key | (Aj SEG) G-Key | G-Key
0 I 0 I 0
0 | K | K
K | 0 | K
K | K I K
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The new P Register local key is taken from the segment descriptor local lock.

SEGMENT A SEGMENT B
GLOBAL KEY = D {MASTER} GLOBAL KEY = b
PocK = O BRANCH {S/R CALLY | p oo - |

P=6K = b -

BRANCH
{S/R RETURNZ}

Figure 10-8. Intersegment Branch - Global Key Settings

This instruction can be used as a short subroutine call. In general, the code for CYBER
180 is collected into a series of pure procedures (nonmodifiable code) which may be entered
recursively. Special CALL and RETURN instructions are provided for the purpose. However,
since these instructions require considerable access validation, and stack processing
(retention of the environment) the overhead is relatively high. To circumvent this overhead

for short general purpose subroutines (that is, functions), the intersegment branch can be
used. When used in this manner, the return address must be loaded into an A Register prior

to the branch. However, care must be exercised. The global key of the new P Register is
always set to the lower privilege of the two segments involved. Hence, if an intersegment
branch is made to a segment with less privilege than the current one, when a return is made
(via another intersegment branch) the original P Register (for the original segment) will
have a global key with less privilege than it started out with (figure 10-8). Local keys
will not exhibit this characteristic. This instruction must work in this manner, since a
user can never increase his privileges without the express action of the operating system.
Since, privilege is inviolate from the hardware point of view, care must be exercised.

In practice, this situation should never arise due to the intended usage of global
Key/Locks and the associated software conventions. Refer to section on Key/Lock mechanism.
Hence, procedure calls within the same ring between mutually suspicious subsystems are not
permitted, and calls inter-ring must use the CALL/RETURN mechanism.

One last point, the next instruction fetch is included in this instruction validation
procedure. Hence, if the segment being branched to does not have execute access, or its
ring bracket is inside that of the old P Register ring number, then an access violation will
result.
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COPY INSTRUCTIONS

These instructions are straightforward. Copy X to X, A to A, X-Right to X-Right, A to X
and X to A. The only point of note concerns the Copy X to A. Here again the question of
privacy arises. More privilege must not be granted via the ring number portion of the PVA
than is permitted. To prevent this the hardware enters the larger of the ring numbers found
in the P Register and the X Register into the destination A Register (figure 10-9).

P _REGISTER X REGISTER
U ekl | rd see BN | U/ r] see | BN |
sl e ———
L l
R
SELECT
LARGER

]

v r
ENJ SEG [ BN l

Figure 10-9. Copy X to A Operation

ADDRESS ARITHMETIC

These instructions modify the value of the PVA held in an A Register. The ring number
field is never changed and, in general, the segment number is replaced and the byte number
modified. Points to note are:

° The Copy P with Indexing and Displacement will copy the P Register, less its keys
and ring number into an A Register if the X Register index specified is X0 and the
displacement is zero.

° The Copy A with Displacement, Modulo is intended to modify an A Register and force
the resulting byte number field to a byte parcel, half-word or full-word boundary
(figures 10-10 and 10-11). This is done by truncating the appropriate number of
bits in the least significant portion of the BN field. The most common usage is
expected to be to force to the next boundary. In this case the D field of the
instruction would be set to the complement of the j-field. For example, to force an
address to the next full-word boundary D would be 7 and j zero. In this instruction
the D field is a positive integer constant. It is zero extended, not sign extended
to the left when it is added to the BN field.
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Figure 10-10. Address Increment
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Sum
[0 —  ———— D112fe——

Y
{ BN

—~

{four bits: 0000%}

AN

llj

D DA
Li'_},____
T

Y Y l
E31=V;EG I;i BN ===1

60459960 A

Figure 10-11. Address Increment, Modulo
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ENTER INSTRUCTIONS

These instructions, in general, operate on 64-bit X Registers. Three instructions enter

positive or negative 4-bit values obtained from the j-field of the instruction, and enter a
16-bit signed integer into the 64-bit register.

Four other instructions deal with entering values into X0 and Xl. The first two
instructions enter 8-bit logical quantitites into X0 and X1 respectively. The third
instruction enters a 24-bit quantity into X1l. The value entered is a 24-bit signed integer
and it is intended that this instruction be used in conjunction with the unconditional
indexed branch instruction to extend the reach of the branch. The range of the 24-bit
integer is:

-223 <m 5.(223_1)

and since the branch works on a parcel boundary (indexed by 2*X1-Right) the effective reach
is:

-224 £ reach 5.(224—2)

or roughly +/- 16,000,000 bytes. This is not a full segment but it is an enormous reach.

This is important since the reach of the conditional branch instruction is limited to the
size of the Q-field. In bytes this is:

-216 < reach < (216-2)
or roughly +/- 65,000 bytes, which is not enough for a generalized compilation process.

When difficulties are encountered in this area, the conditional branch should be inverted
and used in conjunction with an unconditional branch (figure 10-12).

BRREQ X5,X6,LABEL ——-—+
becomes : v Reach > 216
+——BRRNE X5,X6,LAB1
| ENTC X1, (LABEL-*)/2
| BRREL X1 —_—
LAB1 +> — |

- v Long Reach > 224

Figure 10-12. Long Reach Conditional Branch

The fourth instruction enters a 24-bit quantity into XO. It is intended for use in
conjunction with the CALL instruction. A descriptor value (in the low-order 16-bits) and an
8-bit quantity can be entered with a single instruction. The 8-bit quantity will be used by
software to indicate the number of parameters to be transmitted on the call.
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The final enter instruction is the only instruction in the repertoire that pertains to
the left half of an X Register exclusively. Three options are provided (figure 10-13).

1) Clear Xk-Left - set to zeros
2) Set Xk-Left - set to ones
3) Set Xk-Left to the sign of Xk-Right.

The last option is expected to be the most commonly used and drags the sign of the Xk-Right,
or converts a half-word integer into a full-word integer.

L oo K44 «]
XK~-LEFT
00 ——fo 7]
XK-LEFT
J=01 > 11 1|
4=10 or 11
XK=LEFT ¥ XK=PTGHT
[ss e |

Figure 10-13. Enter Signs

SHIFTS

Circular and End-Off shifts are provided for the full X Register and End-Off shifts for
the right half of an X Register. Points to note are:

] Shift counts are formed from the summation of Xi-Right and D. These quantities are
signed 27s complementfﬁ—bit integers.

S

° The sign of the 8-bit shift count determines the direction of the shift. Positive
is interpreted as left shift.

o Left shift end-off has zero fill in the right of the register.

] Right shift end-off is with sign-extension. In other words this is an arithmetic
shift.

e There is no logical right shift end-off.
The hardware checks the -sign of the 8-bit shift count to determine the direction of the
shift, and complements the count if it is negative. It then extracts either the low-order

6-bits (for full-word shifts) or the low-order 5-bits (for half-word shifts). Consequently,
left shifts range from-0-63 (or 31) and right shifts range from 1-64 (or 32).

N
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LOGICAL OPERATIONS

The logical instructions operate on 64-bit quantities and are standard. Five operations
are provided:

1) Logical Sum - OR

2) Logical Difference - EOR

3) Logical Product — AND

4) Logical Complement - NOT

5) Logical Inhibit - AND NOT

The truth tables for these operafions are shown in the accompanying diagram.

OR EOR AND NOT AND NOT

0011 0011 0011 1111 0011
0101 0101 0101 0101 0101

0111 0110 0001 1010 0010

LOGICAL TRUTH TABLES

BIT STRING OPERATIONS

These instructions pertain to a contiguous string of bits in a 64-bit (full word)
X Register. The address and size of the bit string is specified by a 12-bit designator
which is interpreted as a starting bit address and a number of bits (length).

0 56 11

|Starting Bit| Length - 1 |
Address | |

L A

The instructions all use a bit string descriptor formed by adding a 12-bit offset
(unsigned, positive integer) to the right half of an X Register with no overflow detection.
If the sum of the starting bit address and the length is greater than 63 an instruction
specification error is flagged. Use of X0 as an index is interpreted as all zeros.
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Three instructions are provided: Joo

1) Isolate Bit Mask - Forms a solid mask in a 64-bit X Register (figure 10-14).

a 4 2 3 BIT DESCRIPTOR {20.19}

1 1 2 T Y Y Yy 5 § 6 b
0 [ 3 2 L 0 y A 2 b Y 8 2 4 1} 3
XK p oj11 11]0 D

Figure 10-14. Isolate Bit Mask

0

0

2) Isolate to Xk - Extracts a sié&ng of bits from Xj as specified by the bit string
designator and places them in XK right justified zero fill (figure 10-15).

(OCTAL NUMBER) 2 4 2 6 BIT DESCRIPTOR (20,22)

| ] e
: !

0 4 8 12 16 2 24 28 36 40 44 48 52 56 60 63

‘ l
v

0 4 8 12 16 20 24 28 32 36 40 48 52 56 60 63

X
)
)

Figure 10-15. 1Isolate to Xk

3) 1Insert into Xk ~ Performs the inverse of the previous instruction, taking the right
most bits from Xj as specified by the length field in the bit string descriptor, and
inserts them into Xk as per the bit string descriptor. All other bits in Xk are
unchanged.
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MARK TO BOOLEAN

This instruction is intended to take the result of a compare instruction which is in
X1-Right bits 32 and 33, and convert it to a Boolean (True/False) result. Results from all
compare instructions are as follows.

| Relation | X1-Right | Value |
| | 32 33 | I
| X =XJ |0 ol o |
] Xk >XJ | 0 1 ] 1 ]
| Xk < X3 |1 1 | 3 |

However, relational expressions are frequently encountered with the form:
(A #B)

The Mark to Boolean is designed to produce a Boolean result for any relational
expression. It does this by using the j-field of the instruction to define the relational
expression being evaluated.

The value of the j-field relates to the value of the X1-Right comparison result. Four
values are possible (0,1,2,3) of which three (0,1,3) are used by the compare instructions.
Each bit in the j-field points to a value in the Xl-Register. For example; 1000 points to
value O, 0100 points to value 1, 1001 points to values O and 3 (figure 10-16).

J-FIELD
VALUES
o¢———
14—
24—
3¢

Figure 10-16. Mark to Boolean J-Field Usage

If the value pointed to by the j-field is true, then a true result is set in the XK-Register
by setting bit O (sign bit) and clearing the remaining 63 bits. Otherwise a false value is
indicated by clearing XK. Only six relational values are of interest: <, >, #, =, <, and

2. Hence only six values for j are required. These are 1,4,5,8,9 and C for <, >, ¥, = <,
and > respectively (figure 10-17). =
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i-FIELD

TEST TEST
HEX | BINARY (LITERAL) ACTUAL REQD
0 0000 NONE NONE NO
1 0001 < < YES
2 0010 NONE NONE NO
3 0011 < < NO
4 0100 > > YES
5 0101 > &< # YES
6 0110 > > NO
7 0111 > &< # NO
8 1000 = = YES
9 1001 < &= < YES
A 1010 = = NO
B 1011 <&= < NO
c 1100 > &= 2 YES
D 1101 > <&= ALL NO
E 1110 > &= 2 NO
F 11 >, <&= ALL NO

60459960 A

Figure 10-17.

Mark to Boolean Tests
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BDP INSTRUCTIONS

The BDP instructions utilize three instruction formats: jK plus two descriptors, jKiD
plus two descriptors and jKiD plus one descriptor (figure 10-18).

BDP Instruction Formats
jk PLUS TWO DESCRIPTORS

Pl o [ i «]

P+2I DESCRIPTOR j |

]| DESCRIPTOR k |

jkiD PLUS TWO DESCRIPTORS

Pl or | i | k]| i DA” |

P+41 DESCRIPTOR j ]

pea DESCRIPTOR k |

jkiD PLUS ONE DESCRIPTOR

el oo | ]k | ] D B

pia| DESCRIPTOR j |
BDP Descriptor
0 4 8 16 31
7
F // T L 0
7
I_ L orrser
OPERAND LENGTH IF F=0
DATA TYPE :

LENGTH FLAG

Figure 10-18. BDP Instruction Formats and BDP Descriptor
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Data descriptors are 32-bits long, situated on a(parcel boundary, are in the main
instruction stream and contain information about the Iocation, size and type of the data.
The following points should be noted:

e BDP data is always referenced by the BDP instruction via data descriptors.

e Data descriptors form part of the code stream and since CYBER 180 is designed to
operate on pure procedures (no code modification), the data descriptors cannot be
modified.

. The length of BDP operands may be specified in the descriptor (F=0), or may be
treated as a variable (F=1) located in either X0 or X1 for the j-descriptor and
K-descriptor (first and second) respectively. Values of length in the descriptor
from 00-FF correspond to lengths of 0-255 bytes. When the length 1s obtained from
an X Register (X0 or X1) bits 55-63 are used values 000-100 corresponding to lengths
of 0-256 respectively. iengths greater then 254 are illegal. This restriction
arises from the philoscphv of noninterruptible instructions.

® The maximum lengths of operands are a function of the operand type as follows.

Packed Decimal (Types 0-3,12,13) - 19 Bytes
. Unpacked Decimal (Types 4-8) - 38 Bytes
Binary (Types 10,11,14,15) - 8 Bytes
Al phanumeric (Type 9) - 256 Bytes

e Instructions are typically 2-Address. This means that one of the operands is
usually modified by the operation, such as:

A = A+B

Since BDP operations function on a memory-to-memory basis that can lead to problems
if care is not used.

. When source and destination data fields overlap (other than exactly overlay each
other) the BDP instructions result in undefined data.

BDP DATA TYPES

Sixteen data types have been defined for use by the BDP instructions (figure 10-19).
They include:

~ Four Packed Decimal Types

- Five Unpacked Decimal Types

One Alphanumeric Type (ASCII)

- Two Binary Types

- Four Translated Types (2 Packed and 2 Binary)
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MAXIMUM
PACKED DECIMAL NO SIGN BYTE COUNT

TYPEOIDIDID{DI s 19

PACKED DECIMAL NO SIGN SLACK DIGIT

tvee1 [ o] o | o]p] | 19
PACKED DECIMAL SIGNED

tveez [ b | o |p| o] \}]DIS—I 19
PACKED DECIMAL SIGNED SLACK DIGIT

tveez [ o | o[ o] o] L P To]s] 19

UNPACKED DECIMAL UNSIGNED
tweal o | o | o | | 38

UNPACKED DECIMAL TRAILING SIGN COMBINED HOLLERITH

TVPE§[D|D|DJ{}|D[c13s
UNPACKED DECIMAL TRAILING SIGN SEPARATE

wes[ o [ o [ o | | Y[ o | s | s
UNPACKED DECIMAL LEADING SIGN COMBINED HOLLERITH

wez| ¢ [ o | o | | 38

UNPACKED DECIMAL LEADING SIGN SEPARATE
tves| s [ o | b ¢ 38

ALPHANUMERIC (ASCH)
weo[ ¢ | ¢ ] ¢ | ¢ 256

BINARY UNSIGNED

TYPE 10| { 8
BINARY SIGNED

Tvpe 11| 2'S COMPLEMENT { 8

TYPE 12 = TRANSLATED PACKED DECIMAL SIGNED (= 2) 19

TYPE 13 = TRANSLATED PACKED DECIMAL SIGNED SLACK DIGIT (=3) 19

TYPE 14 = TRANSLATED BINARY UNSIGNED (= 10) 8

TYPE 15 = TRANSLATED BINARY SIGNED (= 11) 8

Figure 10-19. BDP Data Types

The following points should be noted:
° The only character code recognized by the hardware is ASCII.
° The hardware does not operate on digit boundaries where digits are 4-bit packed
decimal quantities. The concept of the slack digit has been invented to accommodate

packed decimal quantities with odd numbered lengths. This is strictly an internal
data representation.
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e Sign conventions are as follows:

Packed Decimal : + HEX A,B,C,E,F - C preferred
- HEX D
Unpacked Decimal : + HEX 2B (ASCII +)
Separate - HEX 2D (ASCII -)
Unpacked Decimal :
Combined
[ I I | |
ASCII : HEX } Interpretation } Comments }
| I | |
1-9 | 31-39 | +1 - 49 | |
| A-1 | 41-49 | | Preferred |
J-R | 4A-4F | -1 - -9 | ]
| 50-52 | | |
| { | 7B | +0 | Preferred |
| o | 30 | +0 | |
| & | 26 | +0 I |
| } | 7 | -0 | Preferred |
| - | 20 | -0 I |
| I I I I

e Both +0 and -0 can occur and are treated as equivalent.
° Operations need not be on the same type operands.
Translated Data Types
There are four translated data types which are:
- Translated Packed Decimal Signed with and without slack digit.
- Translated Binary signed and unsigned.

The purpose of these data types is to be able to handle EBCDIC data via the hardware. Now
the only characters recognized within the CYBER 180 system boundaries are ASCII characters.
However, outside the system boundaries EBCDIC data is very important. It is the intent on
CYBER 180 to translate EBCDIC data character by character as it crosses the system boundary
to its ASCII equivalent. (Typically this data will be on magnetic tape, and the translation
will occur on the fly in the magnetic tape controller). For the purposes of this
translation the incoming data will be translated eight bits at a time regardless of data
type. This means that integer values (signed and unsigned) and packed decimal values will
be translated to a meaningless jumble. However, the translation algorithm is well defined.
CYBER 180 processors recognize these data types, translate them to meaningful data, operate
on them, and, if necessary translate the results back to meaningless jumble (figure 10-20).

The only data type not handled by this technique is Packed Decimal Unsigned. Unpacked
Decimal Data translates correctly from EBCDIC to its ASCII equivalent.

The translation algorithms are straightforward and are defined in the MIGDS. They will
not be restated here.
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CYBER 180

<

® EXTERNAL ENVIRONMENT

SYSTEM BOUNDARY

ENVIRONMENT: ASCH
TRANSLATED
DATA
BDP OP
JUMBLE TRANSLATES
OPERATES
JUMBLE TRANSLATES
(IF NECESSARY)

EBCDIC DATA

10-24

Figure 10-20.

Translated Data Types
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Figure 10-21 is an example of a decimal add.

1
7 o] i |
" A=A+B
b/ a |o a| 02 |
7/ K3 O B
PACKED DECIMAL 17349682 o [ 7 s]afe]e]e] 2]
+ +
UNPACKED DECIMAL 4379 {3 a3 3]s 7]3 o]

PACKED DECIMAL 17354061 D
1] 7]sfs]efofe]]

ADD A, +04 (TYPE 0 - PACKED DECIMAL UNSIGNED, LENGTH 8) TO

Aj +0, (TYPE 4 - UNPACKED DECIMAL UNSIGNED, LENGTH 4) RESULT TO
Ay + 0, (SAME TYPE AS SECOND OPERAND)

Figure 10-21. Decimal Add Example

NUMERIC OPERATIONS

General points of interest are:

These operations, in general, work right to left. Cache memory operation takes this
into account when loading words into a block in cache memory.

When the results exceed the length of the destination field an Arithmetic Loss of
Significance or an Arithmetic Overflow condition is detected, depending on the
instruction.

Leading zeros are supplied or leading digits truncated to accommodate unequal source
and destination field lengths. (With 2-Address instructions, one operand serves as
both source and destination).

Destination operand lengths of zero are treated as NOP“s, except that error sensing
will occur unless the source operand field length is also zero.
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Arithmetic

Four operations are provided: sum, difference, product and quotient. Points to note are:

Scaling

Data types which may be freely mixed are: 0-6, 12 and 13. All other data types must
be converted to one of these data types via a Numeric Move prior to the operation.

If the operands are of unequal length, then the shorter one has leading zeros
appended to equalize the lengths. If significant digits cannot be stored because the
length of the result is greater than the length of the destination field, the
leading digits are truncated and an arithmetic overflow is flagged. The only
exception to this rule is a divide by zero, when a divide fault is flagged, and the
destination field is unchanged.

\

Two instruct oﬁs are provided to facilitate multiplying and dividing by ten (scaling).

Several

Move

The

10-26

points should be noted:

Scaling is accomplished by shifting the decimal quantity left or right. The shift
count is a signed 32-bit integer formed from [Xi]+D. The sign of the shift count
gives the direction of the shift, left being positive. The shift count is taken
from the least significant 8-bits of the shift count field (the 2°s complement of
these if a right shift).

Shifting is end-off, zero fill regardless of direction.

If the destination field is longer than the source field then zeros are appended to
the left of the result.

When nonzero digits are shifted end-off, or the source field is truncated to fit the
destination field an arithmetic loss of significance is flagged.

Rounding on right shifts is accomplished by adding five to the last digit shifted
end-off and propogating the carry.

Alphanumerics are treated as type 4 (unpacked decimal, unsigned) and cannot be used
as a destination field.

Signs are transferred (not shifted) unless the result is zero in which case the sign
is positive. Preferred signs are always used in the destination field.

following points should be noted:

Decimal move operates right to left.

All data types can be freely mixed in this instruction.

A primary use of this instruction is to convert from one data type to another.
Alphanumerics are treated as type 4 (unpacked decimal, unsigned).

If nonzero digits are truncated to fit the destination field, then an arithmetic
loss of significance is flagged.
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Compare

The following points should be noted:
e The instruction performs an algebraic comparison.

. If the lengths of the operands are unequal, then zeros are appended to the left hand
end of the shorter operand prior to the comparison.

e Data types 0-6, 12 and 13 may be freely mixed in this instruction.
e The result of the comparison is returned in X1 in the standard CYBER 180 manner:
Source = destination: X1-Right = 000—-0

Source > destination: X1-Right = 010---0
Source < destination: X1-Right = 110---0

BYTE INSTRUCTIONS

These instructions:
e Operate on alphanumeric quantities (type 9).
e Operate left to right.
e Use ASCII blanks as a fill character when unequal operand lengths are encountered.

e Destination field lengths of zero result in a NOP except that exception sensing on
nonzero source field lengths will occur.

Compare

Two compare instructions are provided: uncollated and collated. In the former, each
character is treated as an 8-bit absolute value. The following points should be noted:

° The operation proceeds from left to right.
° Trailing spaces are appended to equalize field lengths.

° The results of the comparison are left in X1-Right in the standard CYBER 180 manner,
that is:

Source = Destination : X1-Right = 000—-0
Source > Destination : X1-Right = 010---0
Source < Destination : Xl1-Right = 110---0

In addition, the sequence number of the unequal bytes is placed in XO-Right.
® Collated compare proceeds as the uncollated until an inequality is detected, at
which stage the unequal characters are translated according to the collate table (at

(Aj)+D) and the translated characters compared. If these compare equal, then the
comparison continues (figures 10-22 and 10-23).
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The collate table is provided by the user and contains 256 characters. The
character to be translated is used as an index into this table. The complete table
must always be provided since instructions are always prevalidated. If the complete
table did not exist, it is possible to get a page fault during the prevalidation
which could lead to a job abort.

The collated compare instructions can require up to seven pages to be resident in
memory before execution starts. This is more than any other instruction. Seven
pages come from the instruction itself, two for each operand and two for the collate
table, assuming that all these quantities cross page boundaries, which is possible.

Aj

0 1 2 3 4 5 b ?789AB C D EF

—>{plcfafc]¥ 0
L 1
Ak 2 TRANSLATE EQUAL
3
b 1] ufe) y ue 03 DY 05— 0B OC ——OF
t| (o1 lp2) 03 oy 05— 0B DC——0OF
7[10{11 22 13 14(35) ——1A
8
1T\
A A # u {0115}
B
C
D
E
F
Figure 10-22. Collated Compare Operation
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XOR=0

f €g = "blank

f

SET X0-R = 0

= Source Character

= Destination Character

= Source Length

= Destination Length

= Use C  or €y as an index

into the collating table
to obtain the sequence
number .

c=10
€ = ¢+l

C, = "blank"

d

I

Next
Characters

XLR=0LE — -

-0

X1LR=110

o

XOR = C~1

60459960 A

Figure 10-23. Collated Compare Operation Flowchart
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Byte Scan

This instruction is intended to examine a character string for the presence or absence
of a character or characters. It is similar in function to a repeated equality search.
However, its operation is the reverse of an equality search. Instead of comparing a search
character with each character in a character string, the character string is passed over a
set of characters to determine whether or not there is a match. 1In fact an actual set of
characters is not specified for the scan, but a bit map indicating the presence or absence
of a character in the set is established by the user. Characters are treated left to right
in the source field and each character is used as an index into the bit map. If the bit is
ON (=1), then the operation terminates, otherwise the next character is taken. Points to
note are:

e Each character in the source field is treated as an 8-bit absolute value regardless
of the data type specified in the descriptor field.

e The sequence number of the character causing the instruction to terminate is
returned in XO-Right.

. The character which caused the instruction to terminate is returned in X1-Right.

° If the scan terminates by exhausting all characters in the source field, then
X0-Right contains the length of the original byte string, and X1-Right is set to
80000000 (HEX) (sign bit set, remainder cleared).

° If the bit map is complemented, then the operation switches from a Byte Scan While
Nonmember (figure 10-24) to a Byte Scan While Member.
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C = C+l

C>Ls?

NO

(s
BITHMAP

YES

Current Source Character
Source Operand Length
Bit array indicating set members

Next Char
{Cs}

BITMAP{(s}=17

XiR = Cs

END

A

XOR = Ls

X1R=100 ——0

END

60459960 A

Figure 10-24.

Scan While Nonmember Operation
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Some examples will help to clarify the operation. Remembering that the ASCII representation
in hex, for A-Z = 41-5A, for a-z = 61-7A and blank = 20.

"Example 1. Search a character string for the first blank.
Since we are only looking for a blank here, we want the scan to stop on a blank, which

means the bit map should have a one in the 20(HEX) position and zeros everywhere else.
In other words the bit map set, is a set of one element.

0123456789ABCDETF HEX

| 0000

| 0000

| 8000

| 0000

| 0000

| 0000

| 0000
e | 0000

|

|

|

|

|

|

|

I

o OO
(=N NNl
[ NeNoNol
[eNeNeoNe)

0000
0000
0000
0000
0000
0000
0000
0000

HEODOWEPE VOIS WN
P —— e e — e ——— e
[eNe]

[N

o

o o

L

- Example 2. Search a character string for the first nonblank; discard leading blanks.

This is the converse of the previous example, and the bit map set is the complement of
the previous one. That is, ones everywhere except in the 20 (hex) position.
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0123456789ABCDETF

-

0l11 11}
1]11 1 1]
2101 11}
3]11-- 1 1]
4 | .. |
5 | .. |
6 | . |
71 .. |
8 | .. |
9 | . |
A e ]
B | . |
c | .. |
D | .. |
EJ]11 - 11]
Fl11 —1 1]

Example 3. Search a character string for the first nonalphabetic, nonblank character.
bits 41-5A (hex), 61-7A (hex) and 20 (hex) equal to zero and all else ones.
bit map is everything except blank and the alphabetics.

o

123456789ABCDETF

000000000111

000000000111

HOOOOFrFOHH
HOOO O M =
o= O O

HEOOW POOENIIITUBM S~ WN-O

T T T T oo oron]
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HEX

FFFF
FFFF
7FFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

HEX

FFFF
FFFF
7FFF
FFFF
0000
001F
0000
001F
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

Set

The
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Translate
The translate instruction translates from one 8-bit character representation to a second
8-bit character representation via a translate table. Points to note are:
° Translation occurs left to right. If the source field is longer than the
destination field, the rightmost characters are truncated. If the source field is
shorter than the destination field, the destination field is filled in its rightmost

characters with translated blanks.

) The data type field is ignored. Each 8-bit character is interpreted as an absolute
8-bit quantity.

° Translation occurs exactly as for collated compare. Each character in the source
field is treated as an index into a 256 byte translate table.

e All values in the translate table must be supplied if a job is not to be aborted
prematurely.

Move Bytes

This instruction simply performs a memory-to-memory move of a string of characters.
Points to note are:

e The operation proceeds left to right.

. Unequal source and destination field lengths are accommodated by truncating trailing
characters, or filling trailing characters with blanks (20(hex)).

° If the source and destination fields overlap in any way other than exactly, then the
results will be undefined.

Edit

The EDIT instruction is intended for use primarily in COBOL compilations. It takes a
source data field and formats it for subsequent display. It 1s a very complex instruction,
the execution of which is controlled by an edit mask (located at (Ai+D)) which consists of a
sequence of micro-operations (figure 10-25).
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EDIT INSTRUCTION

(v ] u | 01 ]

(U 9| o | 02 ]

L SOURCE DATA FIELD {

U

[ EDIT MASK (e——

U

e DESTINATION DATA FIELD \

INITIAL VALUES OF THE SPECIAL CHARACTERS TABLE

b b + - . $ /
l_ L stasu
DOLLAR SIGN
PERIOD

COMMA
NEGATIVE SIGN
POSITIVE SIGN
BLANK - SUPPRESSION CHARACTER
BLANK - FILL CHARACTER

Figure 10-25. Edit Instruction

Points to note are:
e The destination field is always alphanumeric (type 9).

e With the exception of binary data (types 10,11,14 & 15) all data types are
acceptable in the source field.

@ A number of special tables and flags are made available to the edit instruction by
the hardware. These are described in the key to symbols for flow-charts.
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The source field sign is skipped by micro—ops addressing the source field. For
combined signs, the numeric value only is interpreted.

If the length of the edit mask is zero or one, then the instruction results in no
operation.

The Edit Mask

The edit mask consists of a string of 8-bit bytes each containing a micro-operation code

(MOP) and a specification value (SV) (figure 10-26). The first byte of the edit mask
contains the length of the edit mask including itself. Hence, up to 254 MOP“s may be
specified per edit instruction.

E LENGTH OF EDIT MASK INCLUDING ITSELF

PN

L | mom(| mor2 |) I (

| L—SPECIFICATION VALUE

MICRO-OPERATION CODE

Figure 10-26. Edit Mask

General Notes on EDIT:

Edit is a complex instruction. It is really a set of instructions which are built
up in the edit mask, much like an instruction stack. Each micro-operation directs
some control over the destination field, so that source data can be formatted in a
generalized manner.

Edit is best understood by working through examples. In appendix C of the MIGDS
there are numerous examples of edit masks and their affect on a variety of source
fields. These examples will not be repeated here but are recommended reading for
anyone wishing to understand this instruction fully.

Figures 10-27 through 10-43 describe the operation of the edit instruction itself, and
the operation of each micro-op.
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Key to Symbols:

i

sci
SDi
DCj
MCk

ES

ZF

SN

SCT

SCTy
sV

SM

SM¢

LS

LD

LSM

60459960 A

Index for the source field in bytes for data type 9 and in digits for all other
data types (skipping slack digits on data types 1, 3,and 13 and skipping
separate sign on data types 2, 3, 6, 8 and 12).

Index for destination field, initialized to O.

Index for mask, initialized to O.

Source character addressed by base of source field indexed by 1i.

Source digit addressed by base of source field indexed by 1i.

Destination byte addressed by base of destination field indexed by j.

Mask byte addressed by base of mask field indexed by k.

End supression toggle (initialized False and then set True when end supression
occurs) .

Zero field toggle (initialized True and then set False when nonzero source digit
is processed).

Sign toggle (initialized False and then set True if source field is negative).

Special character table (initialized by hardware as indicated in edit overview
diagram, and may be read/written by certain MOPs).

The (n+l)th entry in the SCT (n must be 0-7).

Specification value.

Symbol, which is a string of 0-15 characters which may be created and inserted
into the destination field. It is initialized to zero length and once used must
be recreated before further use.

The cth symbol character.

Length of source field in digits (or in characters for type 9).

Length of edit mask in bytes.

Length of destination of field in bytes.

Length of the symbol in bytes, initialized to O.

Loop counting mechanism associated with SV and SM.

Loop counting mechanism associated with LSM and SM.
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{

Get Length of
Edit Mask {lm}

Initialize SCT
= (20202B2p2C
2E@N2Flyy

!

Initialize
X{lbol Length
SM= 0

!

fnitialize Flag
ES = FALSI
SN = FALSE

2F = TRUE

Signed
Source Field?

o

P I P Y
L L stasH
L DOLLAR SIGN
PERIOD
conma
NEGATIVE SIGN
POSITIVE SIGN
BLANK - SUPPRESSION CHARACTER

BLANK - FILL CHARACTER

TIAL VA OF T 3P ARACTERS TA {3CT2
INST.SPEC
ERROR
Examine
Sign
J INVALID BDP DATA - These flowcharts

!

Initialize
Source Field
Index

i=0

Data Type
= 3.3 or 137

do not describe any specific step
following the detection of Invalid BDP
Data because the individual processor
is free either to terminate the
instruction iemediately or to continue
until the END Instruction conditions

Initialize
Destination
Field Index

f

Initialize
Mask Index
k=0

!

arg met. {In either case the output
eld is undefined and bit b3 of the
UCR is sat.}
i=) K = ked
= II!;;!III
11
No
This instruction
may terminate
EXECUTE ——__| during the execu-
NEXT MOP tion of a MOP by
exhausting mask
I length-etc.
>

Figure 10-27.
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Edit Overview, Including Initialization
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END

MopP
ES = TRUE
Invalid
BDP Data
|
END
MoP

Invalid
BDP Data

Invalid
BDP Data

DCj=NUMERIC
1SDi}

4
l i=1+12 l
\
=3+

| o

Notes:

w

. This MOP translates 1-15 digits in the source field to their equivalent

ASCII characters and copies them to the destination field.

. The function NUMERIC is flow-charted elsewhere. and insures that -the data

being translated is valid~ numeric data-

Set ES true if SV # 0.

60459960 A

Figure 10-28. MOP O - Move Source Digits
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YES
END
MoP
NO
ES = TRUE
Source Invalid
Data Type BDP Data
=97
YES
r=20
> r o= r+}
END
Mop
! Invalid
BDP Data
| Invalid
4 BDP Data

DCj = SCi
y
i = i+)
Notes: jo= 3+
1. This MOP copies 1-15

characters from the
source field to the
destination field.

Figure 10-29. MOP 1 - Move Source Characters
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r=20
Y
> ro=or+l
YES :

ND
r>sve fop

NO

k = k+1

Invalid
BDP Data

A

Notes:

L. This MOP moves 1-15 characters from the
edit mask {in essence a micro-op string}
to the destination field.

2. Any of the source data types 0. L. 24 3.

Yo 54 ba 72 84 9, 12 or 13 are legal for this MOP.

60459960 A

Figure 10-30. MOP 4 - Move Mask Characters
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LSM = 1
YES NO
SMg = SCTy Shp = SCTg,
Y
END
Mop
Notes:

1.

c.

This MOP sets the symbol to a single character
representing the sign of the source data field.

If the source data field is negative. then the sign
is either set to minus {default value in the SCT} or
to the value which has been stored in SCT{3}.

If the source data field is positive. then the sign

is set to a value selected from the SCT indexed by the ’
least significant three bits of the specification value.
Assuming a default SCT SV would normally have a value
equal to 1 or 2 corresponding to blank and plus-.

All values of SV are legal although only the rightmost
three bits are interpreted when SV is used as an index.

Any of source data types 04 la 24 31 Y4 51 ba 74 84 94
12 or 13 are legal for this MOP.

10-42

Figure 10-31. MOP 5 - Select Sign as Symbol
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+

LSM = sV

> r=r+1
YES END
MoP
NO
k = k*l
4
YES
Invalid
BDP Data
NO
snr_l = Hck

=

Notes:

. This MOP copies 1-15 characters from the edit
mask to the symbol.

2. All values of SV are legal for this MOP.

3. Any of the source data types 0.1 L. 21 34 Y44 54 ba
?+ 84 9. 12 or 13 are legal for this MOP.

=

Figure 10-32. MOP 6 - Select Mask Characters as Symbols
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END
MoP
Source Invalid
Data Type BDP Data
= 97

Invalid
BDP Data

NO

Invalid
BDP Data

DCj = NUMERIC
{SDi}

5C§ = SCTy

Invalid
BDIP Data

Notes:

Y L. This MOP translates 1-15 digits from
the source field to their ASCII
equivalent and copies them to the
4 destination field. Leading zeros

are supressed - replaced by SCT{l}
which defaults to a blank - and the
first nonzero digit is preceded by
* 5 = sM the characters {if any} in the symbol.

The test for SDi = O is for the value
0. For example. a code of 3C on type
} 5 has the value 0.

DCj=NUMERIC
{SDi}

ES = TRUE

v
:

4

Figure 10-33. MOP 7 - Move Source Digits or Suppress with Floating Symbol
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YES

\

NO
ES = TRUE
4
t =0
Y
t = t+d

DCj o= Sm
\
i= i+l
Y
<
Notes:

1. If the End Suppression flag {ES} is not seta
then this MOP copies the characters in the

END
morp

Lsm =0

Invalid
| BDP Data

symbol to the destination field.

2. Any of source data types 01 la 24 31 Y2 51 ke 7,
9. 12 or 13 are legal for this MOP.

-5}

Y

END
Mnop
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Figure 10-34. MOP 8 - End Float
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YES NO

t =0 YES
y
NO
> t =t+l
DCj = SCT
sV
Yy
YES
=0
LSM = je
\
NO END Y
Mop
END
YES Invalid 1nop
BDP Data
A NO
DCj = snt_l
Y
j o= 3+
Y
Notes:

L. This MOP either inserts the symbol characters or a
character from the SCT into the destination field.

2. This MOP is controlled by the SV field. The most
significant bit of this field is used as a flag.
If set~ then the symbol is inserted %nto the
destination field- otherwise the SVth character
from the SCT is inserted into the destination field.

3. Any of source data types 0. 1. 24 32 Y41 51 ba 74 8.
9. 12 or 13 are legal for this MOP.

Invalid
BDP Data

Figure 10-35. MOP 9 - Insert Symbol or SCT Character
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YES
sv>7 ?

t=10
> t =t+l
t >Lsn?

<>
<

i = SCTD

END 2Cj = SCT
Lsn=0 }""‘! Hop ] ’ o

L

Dy =

SCTs

v

Invalid
BDP Data

DC5 =My

I i=in

|

|
|

|

Notes:

NO
NO

sV >7

Copy the Symbol to the destination field when the source
field is positive. otherwise copy SCTU once for each
character in the Symbol.

sve ?

Copy SCTgy once to the destination field when the source
field is positive. otherwise copy SCTc| once.

Any of source data types 0+ 1. 2+ 31 41 51 ba 7. 84 9.
12 or 13 are legal for this MOP.

Figure 10-36.

60459960 A

MOP A - Insert Symbol or SCT Character if Source is
Positive, Elsewhere Insert Blanks
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YES No

r N >

Invalid
BDP Data

END 41 2§ = SCTu DCj = SCTsv

MoP

[
(i = STy BCj = Sh,_y
i=in
Notes: L. This MOP is identical in all respects to MOP A except
that the blank insertion occurs for a positive rather than
negative source field.
2. Any of source data types 0+ 1, 21 34 4. 51 ba 7. 8, 9.
12 or 13 are legal for this MOP.
Figure 10-37. MOP B - Insert Symbol or SCT Character if
Source 1is Negative, Else Insert Blanks
10-48
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YES No

[4, SV>77 >

t =0 Invalid
BDP Data
t = t+l

LSt g H o ] LIS NN SIS

Invalid
8DP Data s :
o= 3%

END
nop

DCj = SCTy

Notes: L. This MOP is identical in all respects to MOP A except
that the blank insertion occurs only when zero suppression
is in effect.

2. Any of source data types 0. 1y 2. 32 4 5+ ba 7. 84 T4
125 or 13 are legal for this MOP.

Figure 10-38. MOP C - Insert Symbol or SCT Character,
Unless Suppression
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k = k+L
YES
E | Invalid
BDP Data
NO
SCT = MCk
sV
Y
END
MOP

Notes: 1. This MOP cogies the next character from the edit mask
into the SVth character of the SCT.

2. Only the low-order three bits of the SV are used by this MOP.

3. Any of source data types 0+ la 21 34 UYa 54 ba 71 81 94
12 or 13 are legal for this MOP.

Figure 10-39. MOP D - Write SCT Entry
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Notes:

Y

r = r+)

YES END
MOP
NO
—
YES Invalid
BDP Data
NO
DCj = SCTL
y
Jj = j*l

1.

2.

This MOP copies the suppression character {from SCT{1}} into
the destination field SV times.

Any of source data types Da L1 24 32 Y1 54 ha 7+ 84 9.
12. or 13 are legal for this MOP.

60459960 A

Figure 10-40. MOP E - Spread Suppression Character
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YE END

Mop
NO
NO
END
Inst.
. . . . YES
This reset of the destination field index
causes all characters previously
transmitted to the destination field
to be. in effect. discarded {even when j=0
more than SV characters were previously
transmitted}.
Y
r=20
A J
> r = r+)
END
nopP
| Invalid
| BDP Data
'3
i = SCTI
Y
j= 3%

Notes: L. This MOP functions only for source fields with a zero value. A non-zero source
.field causes the termination of the edit instruction {not just this MOP}.

2. For a zero source field. SV suppression characters are copied into the
destination field.

3. Any of source data types 0a la 21 32 41 5+ ba 72 8+ 9+ 12 or L3 are legal for this MOP.

Figure 10-41. MOP F - Reset and Suppression Zero Field
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See MOP 0 and ?

YES ource NO
Data Type =
12 or 137
Translate NoO
Jumble YES Source
EBCDIC to Data Type< 47
Packed
Numeric
Yy YES Source NO
< Data Type =

b or 82

YES YES NO

< <
{31]}]‘[= £ SDi <= (BH}M,’

P4
303, % SDi é{E’i}M/

YES

YES

DCj ='£3|JZ!']I"*SI)i

(l.‘l}]'h

{‘”'}Lhé SDié {4‘1}}‘[”’

NO

< < ?
(HA}M’—SDi €152y,

YES

Shy = L2l 7 >

Invalid
BDP Data

Figure 10-42. Numeric Function
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Translate
Jumble
EBCDIC to
Packed
Numeric

Invalid
\ BDP Data

Sign = {B}LL?

Sign< {A}.M:?

Sign = {D}LE?

v

Set SN
True

Source
Data Type =
2 or 13 2

Source
Data Type
2or 37

Invalid
BDP Data
»- <
y
A
> < Set SN
True
Y
. Yes
< D
Y
End
Examine
Sign

ource No
Data Type =

Sor 77

{“A}]-l:é Sign= {52}“:?

Sign =
{El}lh.or {Eb}lb or
{TD)lb?

Pt =
{31}]'5.— Sign —{B‘I}M:?

{413y, £Sign €449y, ¢

Sign =
{Eb)lh or {30}15

or {BC}LL or
{78}15?

No

Invalid
BDPBData

A
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Figure 10-43.

Examine Sign
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Calculate Subscript

This instruction facilitates the computation of offsets in a multidimensioned array
(figure 10-44). To understand how this instruction works it is necessary to formulate the
equations used to calculate an index into an array. First of all it is assumed that the
index values have an arbitrary origin. That is an array may be declared with an index that
runs from a minimum to a maximum value such as: 2-10, -5-4, 0-15, 1-100, and so forth. Also
it 1s assumed that an array may have an arbitrary number of dimensions, although repeated
use of this instruction is required if the number of dimensions is greater than two.

The general expression for calculating a zero origin index into a multi-dimensional
array A* B* C *D * .., is:

([(a-A)(b.-B+1)+(b-B)] (c.~C+1)+(c~C)) (d.-D+1)+(d-D)....
Where a. = maximum value of a
and A = minimum value of a, and so forth.
For example, take the array defined as follows
(3..10, 5..7, 8..9) (figure 10-44)
In this case: a. = 9; A = 8;
b. =7; B =5
c. =10; C = 3;
and the O-origin index is given by
[(a-8)(3) + (b=5)] (8) + (c-3)
For example, the index of the element (6,6,8) [(c,b,a)] is:
[(8-8).3 + (6-5)] 8 + (6-3) = 11

Calculate Subscript is designed to compute the index of a 2-dimensional array. This is
given by:

i = (a-A) (b.-B+1) + (b-B)
The terms A, B and b. are constants, as is the expression b., A, B. The terms B and

b. and the expression b.-B+l are called the minimum and maximum values, and the size
respectively.
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3,5,9 45,9 5,59 6,59 7,5,9 8,5,9 95,9 10,5,9

10,6,9
35,8 4,5,8 55,8 6,5,8 75,8 85,8 9,58 10,5,8

10,7,9

3,6,8 46,8 5,6,8 6,6,8 76,8 86,8 9,6,8 10,6,8

w ¢

37,8 47,8 5,7,8 6,7,8 7,78 8,7,8 9,7,8 10,7,8

Figure 10-44. ARRAY (3..10, 5..7, 8..9)

To form the required index the quantities a, b, b., A, B and SIZE need to be specified.
In the Calculate Subscript instruction the maximum, minimum and size quantities are supplied
by a table found at (Ai1)+D called the Subscript Range Table (SRT) (figure 10-45). The raw

index values (a and b) are found in the source field (Aj) and destination register (Xk).
The instruction proceeds as follows (figure 10-46):

SIZE MIN MAX

L L 32-BITS, SIGNED
16-BITS, SIGNED
16-BITS, UNSIGNED

Figure 10-45. Subscript Range Table
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o |

L
SRT l
[ size | wmn ] MAX
1Z A2 o |
l '
Xk-R v
INDEX
[ SOURCE DATA (c) I
( (c) - MIN = ON ]
| (c - MIN) * SIZE | @
Xk-R O

INDEX + ON J

1. Take the binary value of the source field and subtract MIN from this value.

Figure 10-46. Calculate Subscript Operation

occurrence number (ON)

2. Check that the occurrence number lies in the range:

3. Multiply this value by SIZE.

0 < ON < MAX

[(a=A)(b.-B+1)].

4., Add this product (ON * SIZE) to the contents of Xk Right.

60459960 A

(a-A) =
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Points to note are:

. The SRT must be situated on a full word boundary. Failure to do so results in an
Address Specification Error.

e The instruction performs a range check (step 3). If the index is out of range, then
an Invalid BDP Data condition is detected.

. Since the contents of Xk are expected to be used as an index to access an array
element, Xk is expected to hold the starting index of the most frequently changing
variable corrected for a zero origin. In other words Xk should hold (b-B).

° For multiply dimensioned arrays where more than two dimensions are involved the
general formula is viewed as follows:

index = (a-A) + (b-B)(a.-a) + (c-A)(a.-A)(b.-B) + ...

The Calculate Subscript instruction may be used twice as follows:

(a) Set Xk to (a-A).

(b) Calculate subscript and add - Aj will point to b, (Ai) + D will point to SRT(1l).
(c) Calculate subscript and add - Aj will point to c, (Ai) + D will point to SRT(2).

The SRT entries are:

|size |Min|Max

[ Sp—

}(a.—A+1) A I(b.-B)|

—]

i(a.+1—A)(b.+1-B)iB }(c.—C)}

° Source field data types which are permitted are 0-6, 10 and 11.

A flowchart for Calculate Subscript is shown in figure 10-47.
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i

SRT_Address
= [ai] +

SRT Address Address
=0 mod 8 2 ghec
TRAP Invalid BDP Data
Source Field
Address =
[Ai] + o

\

Convert Source
Data to Binary
{if necessary}

ON = Source
Data- SRTI{MIN}

YES

NO

YES

NO

NO
ON = ON % SRT

Mask Bit Set ?
{SIZE}

XkR =

XkR+oN TRAP Invalid BDP Data

END

Figure 10-47. Calculate Subscript and Add
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Immed iate Data

There are three instructions in this group which operate with a single byte of source
data held in the instruction itself. The instructions move or add to, or compare with a
destination data element. Since there is a single descriptor the j-field, which is usually
used with a descriptor to locate the source date, has a special function, namely that of
determining the data type of the immediate operand.

For move and compare an operand is formed from the immediate operand which is controlled
by the destination data type, and is either moved to or compared with the destination
field. The lower order two bits of the j-field determine how this operand is formed as
shown in figure 10-48:

2
1]
oP /// J K I /// OPERAND

/ BYTE
IMMEDIATEJ

Operand Data Type

—»INMED.OPD.

Xi-RIGHT

v/ S

<

Figure 10-48. Immediate Data BDP Instructions
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| | | | |
| j-field | Source |Destination|Action |
| |Data Typel Data Type | |
| | | |
| o0 | 10 |10,11,14,15|Binary: operand is right |
| || 5 }justified zero filled. |
| |
| o1 | 4 |0-6,12,13 |Decimal: operand is right |
| I | | justified zero filled, with |
| | | |sign (plus) supplied as |
| | | |required. ]
| | | |
| 10 | 9 |Ignored |Alphanumeric: immediate |
| | | |operand is repeated throughout]|
| | | |the receiving field. |
| | | | |
| 11 | 9 |Ignored |Alphanumeric: operand is left |
I I l | justified, blank filled. |

For Add, only the first two of these values for j have any meaning. In other words, only
the low order bit of the j-field is used.

Points to note are:

e Once the immediate operand has been formed, these instructions perform exactly as
their numeric counterparts.

e Unauthorized data types yield an Instruction Specification Error.

. On Immediate Add, if an overflow condition occurs, it is recognized and the program
interrupt taken as required.

. The results of the compare are specified in X1-Right in the standard CYBER 180
manner:

Source = destination : Xl1-Right = 00---0
Source > destination : X1-Right = 01---0
Source < destination : Xl-Right = 11—-0

FLOATING-POINT INSTRUCTIONS

There are sixteen instructions which operate on floating-point variables. Before
describing them, it is necessary to understand the CYBER 180 floating-point format. In
designing this format the objective was to yield the same results as CYBER 170 when
operating with the same data using the same instructions. Since CYBER 170 has a 60-bit word
and CYBER 180 has a 64-bit word there will be differences unless 4-bits of the CYBER 180
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word are ignored. This was considered unacceptable, hence some trade-offs were made. The
basic objective was used to define the magnitude of the fraction, end-cases will occur at
different times on the two machines. General points of interest are:

Single precision floating-point numbers consist of a sign, a signed exponent, and a
48-bit fraction (figure 10-49). Double precision floating~point numbers consist of
a sign, a signed exponent and a 96-bit fraction (figure 10-50).

01 1516 63

EXPONENT FRACTION

L——SIGN t—BINARY POINT

Figure 10-49. Single Precision Floating-Point Format

01 15 16 63

EXPONENT LEFT HALF OF FRACTION

SIGN
64 79 80 127

RIGHT HALF OF FRACTION

I—I‘\)OT USED AS INPUT, BUT SET ON QUTPUT

10-62

Figure 10-50. Double Precision Floating-Point Format

The binary point occurs to the left of the fraction - as opposed to CYBER 170 where
it is on the right.

The representation is signed-magnitude. The fraction is always a positive value.
It also means that both plus zero (+0) and minus zero (-0) are represented.

The exponent is a 15-bit biased quantity which has two bits reserved immediately to
the right of the most significant (bias) bit. These bits are used to flag the
special conditions of overflow (infinite), underflow (zero), and indefinite.

Actual exponent values take 12-bits as opposed to 10-bits on CYBER 170 and this
affects end cases.

There are no rounding instructions on CYBER 180. This will lead to differences
between CYBER 180 and CYBER 170 for those CYBER 170 procedures using rounded
arithmetic - notably the FORTRAN math library.

There is a full complement of instructions which operate on double precision
floating-point numbers. Typically these execute in microcode and have not been
included for reasons of speed, but for convenience. Hence, it is not practical
time-wise to simulate rounded single-precision arithmetic using these instructions.

The sign and exponent of the lower half of a double precision floating-point number
are ignored on input to a double precision operation and set equal to the sign and
exponent of the upper half on output. This convention simplifies the task of
programming a double precision floating-point compare for which there is no hardware
instruction.
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The FORTRAN statement:

DOUBLE A,B

IF(A-B) 10,20,30

can be compiled as follows, assuming A and B to be in
registers X2-X5.

BRFEQ  X2,X4,ATMP# .upper halves equal

BRFGT  X2,X4,A30# .ADB (A-B +ve)
AlO# BSS 0 .A<B (A-B -ve)
ATMP# BRFEQ  X3,X5,A20# .A=B (A-B zero)
BRFGT  X3,X5,A304# .ADB (A-B +ve)
BRXEQ  X0,X0,Al0# .A<B (A-B -ve)

which is a reasonably compact sequence.

Some care must be taken when constructing double-precision numbers to adhere to the
hardware conventions, or comparisons may yield spurious results. The lower half of a
double-precision quantity may have a fraction consisting entirely of zeroes, but have an
exponent which is in range. These numbers are denoted by the symbol Z3 and are really
unnormalized zeros. If Z3 is compared to Zero (a word of all zeros) the result may be
less than or greater than, depending on the sign of Z3. However, Z3 compares equal to
itself.

e Unlike CYBER 170, there is no explicit normalization operation. However, when
normalized operands are presented to the floating-point units, normalized numbers
result. In particular, add and subtract instructions perform a full
post-normalization. hence, a floating add of zero will suffice to normalize a
floating—-point number.

Results emitted by the floating-point units vary in accordance with the user mask (UM)
register setting. When an operation yields either an exponent overflow or exponent
underflow, a predetermined result of either infinity or zero will be returned unless the
UM bit is set which corresponds to that condition. In these cases the true result is
returned. This is made possible by the representation chosen for floating-point
variables and is discussed more fully below in the section dealing with nonstandard
floating-point numbers. When both the UM bit is set and traps are enabled, the
floating-point operations exhibit a unique feature: they complete execution before the
trap is taken. This is made possible by two factors. First, the floating-point
representation accommodates all out-of-range numbers which can be generated by the
hardware. Next, all floating-point arithmetic instructions are 16-bit instructions.
Consequently, there can be no loss of precision as a result of executing the
instruction. This is true for underflow and overflow results and for floating—-point
loss of significance. It is not true for indefinite, which can arise in both 16-bit and
32-bit instructions (branches). A predetermined result will always be returned for
indefinite unless the corresponding UM bit is set and traps are enabled, in which case
instruction execution is inhibited.
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Nonstandard Numbers
Standard floating-point numbers have biased exponents in the range (hex.):
(3000) < e < (5000)
This leaves numbers with exponents in the ranges (hex.) of:
(0000) < e < (3000) and
(5000) < e < (7FFF)

for .the representation of nonstandard numbers. These gaps in the range have the following
meanings (hex.):

(7000) < e < (7FFF) : INDEFINITE
(5000) < e < (7000) : INFINITE

These numbers with exponent overflow may be generated by the hardware.
(1000) < e < (3000) : UNDERFLOW

These numbers with exponent overflow may be generated by the hardware.
(0000) < e < (1000) : ZERO

With the single exception of the hex. number (0000), these numbers cannot be
generated by the hardware.

Input operands having exponents in the range (hex.) of:
(0000) < e < (3000)
are interpreted as Zero by the hardware.
The full range of floating-point numbers is tabulated (figure 10-51), followed by an
illustration of the nonstandard numbers (figure 10-52). A word consisting entirely of zeros

may be received as input to, or issued as output from, a floating-point unit as a true
zero. By hardware convention, however, zero is a nonstandard floating-point number.
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HEXADECIMAL EXPONENT INCLUDING CO-EFFICIENT SIGN

ACTUAL EXPONENT (TO THE BASE 2)

INPUT ARGUMENTS

IXXX | == —— INDEFINITE
6FFF | 212,287
INFINITE
COEFFICIENT
SIGN EQUAL 09
10 0 5000 | 24,096
(POSITIVE
BERS
NUMBERS) | s pr | 24095
} NUMBERS IN THIS RANGE
4000 | 20 STANDARD | WITH ZERO COEFFICIENTS
IFFF i_, ARE TERMED +23
3000 | 2—4.096
2FFF :—4997
1000 | 2—12,288 | ZERO +22
OXXX | - — - - | ZERO +21
8XXX| — - - - | ZERO -z1
COEFFICIENT | 9000 | 2—12,288
SIGN EQUAL 4 ZERO -z2
TO 1 AFFF | 2—4,097
(NEGATIVE
NUMBERS) B000 | 2—4.096
BFEF | 2—1 NUMBERS IN THIS RANGE
0 WITH ZERO COEFFICIENTS
€000 i STANDARD | ,ov TERMED —z3
CFFF | 24095
Doco | 24096
INFINI
EFFF 312,287 NFINITE
FXXX| - — - INDEFINITE

60459960 A

Figure 10-51.

Floating-Point Representation
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INPUT

01234 15

[s 00 x x]
X = BINARY

DIGIT (0/1) [S 0

S = SIGN (0/1)

1]
=)

x
o
x
x
—J

[s110x x|

=
$101X x|
f[s 111 x x|  =inDEer

ouTPUT

01234 15
fo o] =o
fs1010 o] =
[s1110 o] =woer

Figure 10-52. Nonstandard Floating-Point Numbers

CONVERT INSTRUCTIONS
Two instructions are provided to translate between integers and floating-point numbers.
Points to note are:
e When converting from integer, numbers outside the range:
-248 through (248 -1)
/
are truncated in their rightmost bits. / X
Y
~N

\J

)

-
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e When converting to integer, numbers which are: fy
¢

-indefinite o
—infinite

-have actual (unbiased) exponents < O

~have fractions = 0 -

are converted to zero.
Numbers in the range:
-(263 215y through (263 -215)

are converted exactly, and numbers outside this range have the least significant
64-bits of the result returned as the result with a floating-point loss of
significance condition detected.

ADD/SUBTRACT - SINGLE AND DOUBLE PRECISION

Points to note are:
) These are 2—-address instructions.

e Double precision operands are located in registers Xj and Xjt+l, Xk and Xk+l. If j
or k = F then (j+l) or (k+l) = O.

° Indefinite or infinite source operands yield indefinite or infinite results (figure
10-53).

. Nonstandard numbers (in the gap) are input as zero.

° These instructions post—-normalize. In fact, they provide the mechanism for
normalizing unnormalized numbers.

. When an exponent overflow occurs one of two things happens depending on the
condition of the mask bit corresponding with this condition. If the mask bit is not
set: no interrupt occurs and the standard form for infinity is output.

If the mask bit is set: the exponent along with its bias, and the normalized
fraction along with ite sign is returned as the result. Even though an overflow
condition has been detected, the result is still a trues and accurate floating-point
representation of the vesult. An intervupt is taken and actions which follow are
then determined by the code compiled (by the user) to handle this interrupt.

e When an exponent underflow occurs, precisely the same actions take place as with an
exponent overflow, except that when the mask bit (for exponent underflow) is not set
a result of zero (all zeros) is returned. With the mask bit set, the result will be
true result in the gap between zero and the standard floating point numbers.

2%

° When the operation results in a zero fra:%ion (including the overflow bit) a result
of all zeros is returned if the mask bit associated with floating—point loss of
significance 1s clear. If the mask bit is set, then the exponent along with its
bias, is returned with a zero fraction, and a floating-point loss of significance is
recorded. The exception to this rule occurs when both operands are zero, as defined
by their exponents. No loss of significance occurs in this case. If both operands
are zero, however, and at least one of them has a standard exponent and a zero
fraction (23), then a floating-point loss of significance results.
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Add

Xj -
Xk v ‘o -~ SIND
L] s 40 - IND
+o +00 0 IND IND
-0 -0 IND -0 IND
JIND IND IND IND IND
Subtract
X
- ! v 0 -0 FIND
v » - +o IND
s +0 IND +0 IND
- -0 - IND IND
SIND IND IND IND IND

Figure 10-53. Add/Subtract - Nonstandard Floating-Point Numbers

PRODUCT - SINGLE AND DOUBLE PRECISION

Points to note are:
° This is a 2-address instruction (A=A*B).

° Indefinite, infinite or zero source operands yield indefinite, infinite or zero
results (figure 10-54).

. Nonstandard numbers (in the gap) are input as zero.
‘e This operation performs the following function:

a b (atb)
A.2 * B.,2 =A.B.2
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h Il o -N 0 -0 " - | 31N
"™ » -p 0 0 | - IND
-N -P P 0 0 - ‘o IND
.0 ) o 0 o ™D mp | IND
-0 0 0 0 0 1) mwp | IND
+on w | D N | o -= | D
- o | e (1) | - s | 1N

FIND IND | IND D e | INp INd | IND

Figure 10-54. Multiply — Nonstandard Floating-Point Numbers

In single precision it forms a 96-bit product from two 48-bit source operands then
normalizes one bit position. This means that normalized input yields normalized
output. However, if the source operands are unnormalized, the state of the product
is unknown. The reason for this one bit normalization is that the smallest
normalized coefficient is a half. If this is squared, the smallest product results
(namely a quarter) which is unnormalized by one bit position.

® Exponent underflow and exponent overflow are handled as previously with
add/subtract. Since the exponents are added in this case, the largest positive
exponent that can be obtained is 8190 and the largest negative exponent is -8192.
Both of these quantities fall in the range of nonstandard numbers. Hence, if they
are generated, and the associated mask bit is set, a correct value is returned.

1R
[

QUOTIENT - SINGLE AND DOUBLE PRECISION

Points to note are:
e This is a 2-address instruction (A=A/B).

' Indefinite, infinite and zero source operands yield indefinite, infinite or zero
results (figure 10-55).
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Xj

Xk +N -N +0 -0 ‘o ~on SIND
o .4
- -

+N +a -Q S = 0 0 IND
< L4
m m
" "

-N -2 +Q z = () o IND
[ c
-4 -
1] 1]

+0 0 0 ~ - o 0 IND
. x x
E A

-0 0 0 3 3 o 0 IND
2 2

‘o ‘o - 2 2 IND IND IND
X x
- -
-3 @
= 3

-0 - ‘o m m IND IND IND
L -] L

TIND IND | IND IND IND | IND
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Figure 10-55. Divide - Nonstandard Floating-Point Numbers

Nonstandard numbers (in the gap) are input as zero.
This operation performs the following function:

a b (a=b)
A.2 / B.2 = (A/B) .2

In single precision a 96-bit dividend is formed by appending 48-zeros to the low
order bit of the second operand. A 48-bit quotient is formed which is normalized
one bit position. This means that normalized input yields normalized output.
However, if the source operands are unnormalized, then the state of the quotient is
unknown. The reason for this one bit normalization is that the largest normalized
fraction is

-48
1 -2

and the smallest normalized fraction is a half. The quotient formed by dividing
these quantities is

=47
2 -2

which overflows by one bit.
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e Two cases are of special interest. These are a divisor of zero, and a resulting
quotient which would be equal to or greater than 2.0. In those cases, the
instruction execution is inhibited, a divide fault indicated and the corresponding
interrupt taken if the mask bit is set.

BRANCH AND COMPARE INSTRUCTIONS

Two single-precision floating-point quantities may be compared for: equal, not equal,
greater than, greater than or equal. When the condition is met either a branch may be taken
or the results of the comparison may be returned to register X1-Right. When the result of
the comparison is transmitted to X1-Right in the standard CYBER 180 manner:

Xj = Xk, Xl-Right = 000---0
Xj > Xk, Xl-Right = 010---0
Xj < Xk, Xl-Right = 110---0

In addition, an indefinite condition is flagged by the value 100---0 in X1-Right.
Points to note are:

1) Operands compared by branch instructions will have the same results as those
compared by the compare instruction. All of those instructions examine the
exponents and signs of the input operands to determine the nature of the
comparison. The result is determined directly if the exponent of either operand
shows it to be zero, infinite, or indefinite. This is also true if the operand
signs differ. While this approach minimizes execution time, some anomalies may
occur if the operands are unnormalized. Of particular interest is the Z3 operand,
which has an in-range exponent but a zero fraction. Z3 is an unnormalized zero, but
since these preliminary decisions are based solely on examination of the exponent,
comparisons involving Z3 yield arbitrary results.

When Z3 is compared to a true zero (as defined by its exponent), the result (<,>) is
determined by the sign of Z3. An equal comparison is not possible. When Z3 is
compared to an in-range quantity, however, the result (<,>,=) is based not only on
the sign, but in the case of the signs being equal, it is based on the magnitude of
the exponent as well. In the peculiar case of Z3 having a large exponent (but a
zero fraction) and the second operand having a small exponent (but a nonzero
fraction), this second operand will have its fraction driven to zero during exponent
equalization, and the quantitites will compare equal. Comparisons involving Z3 are
unique in that they may yield results which differ from other similar operatiomns,
such as subtracting the two quantities being compared and then branching on the
result. Figures 10-56 and 10-57 at the end of this section should help clarify
these and other issues relating to floating-point 'instructions.

2) 1If ¥C is specified as a register, it is interpreted as all zeros. This means that
the contents of X0 cannot be tested explicitly.

3) 1If either operand is indefinite, a floating-point indefinite condition is recorded
and a normal exit taken. ([ /14 Alvi

4) When both operands are standard floating-point numbers, a floating-point subtract is
executed to determine the results of the comparison.
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Xk X +N -N +0 -0 ‘o -0» TIND
+N ) < < < > < IND
-N > ) > > > < IND
+0 > < - = > < ND
-0 > < . = > < (1)
‘o < < < < |1 < ND
- > > > > > D | N

SIND | IND IND IND Ny | IND IND IND

Figure 10-56. BRANCH and COMPARE - Nonstandard Floating-Point Numbers

Exception Branch

This instruction tests a single precision floating—-point number for an exception
condition (figure 10-57). Conditions sensed are exponent overflow, exponent underflow and
indefinite and then are determined by the exponent value as described previously.

A user may elect not to set the mask bits in the user condition register to force an
interrupt when an exception condition arises. Instead, the conditions may be sensed in line
via use of that instruction.

3
0 ? .0

oP Jl K Q

L 00 - EXPONENT OVERFLOW
0) - EXPONENT UNDERFLOMW
10 or 11 - INDEFINITE

Figure 10-57. Exception Branch
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SYSTEM INSTRUCTIONS

INTRODUCTION

The CYBER 180 instruction repertoire includes 16 instructions which are designed to
facilitate operating system processing. These instructions include the CALL/RETURN/POP
instructions which have already been discussed. While some of these are specific to the
operating system, others,like CALL/RETURN, have a more general utility. A mechanism has
been defined whereby the operating system specific instructions cannot be executed by users
in a destructive or accidental manner. This mechanism is described in the following
paragraphs.

PRIVILEGED STATES OF EXECUTION

There are two major machine states, which are referred to as monitor mode and user
mode. When the machine i!s in the menitor mode, exchange interrupts are disabled. In
addition, certain system instructions have their execution restricted to this mode. The
switch between the two states can only be made with an exchange jump which may be issued
either explicitly, as in the case of a monitor to job switch or a system call by a user, or
implicitly in the form of an exchange interrupt in job mode. This machine state cannot be
altered by any means other than an exchange jump. It is set at deadstart/initialization
time by master clearing the processor, and it is recorded in the Environment Control
Register (DEC) for maintenance purposes.

When the processor is in monitor mode, typically, traps are disabled, which, in turn,
means that interrupts are locked out. Since the CYBER 180 systems are designed to provide a
minimum response time to an external stimulus (external interrupt) it is important to
minimize the time consumed with interrupts locked-out. If operating system instructions are
restricted to monitor mode, then those processors using these instructions would have to run
in monitor mode and interrupt response times would increase. For this reason certain other
privileged states have been introduced. These privileged states are termed: global, local
and unprivileged and are structured hierarchically. The controlling unit for these states
is the code segment, the states being established by the Segment Descriptor Entries (SDE”s)
for those code segments (figure 10-58).
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e[ w Fl 22220000

l. 00 Non-executable Segment
0} Non-privileged Executable Segment
30 Llocal privileged Executable Segment
3) Global privileged Executable Segment

00 Invalid

D) Peserved

30 Regular Segment

11} Cache By-pass Segment

Figure 10-58. Segment Description Table Entry - SDE

This hierarchical concept of privileged states has the following advantages:

Qe

The amount of code which must be executed with interrupts disabled can be kept to an
absolute minimum, which guarantees an interrupt response time.

The operating system monitor can be restricted to a small number of critical
functions. This minimizes the amount of code which must be developed and maximizes
the mean time between failures for this code. In fact, the goal is to have no
software errors in this code.

Access to certain registers, for example hardware maintenance registers, can be
restricted to users who have the need to access (in particular write) these
registers.

As a result, the normal end-user will run in an unprivileged mode, whereas certain
portions of the operating system will run with various privileges, and maintenance routines
(on-line diagnostics) will have the privilege necessary to access the hardware maintenance
registers. A detailed description of the system instructions and their intended usage now

follows.
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EXCHANGE JUMP

The exchange jump instruction is used to switch the processor between monitor mode and
job mode. During an exchange jump the current state of the machine, as described by the
process state registers, is saved in central memory, and a new state is created by loading
the process state registers from another area in central memory. Unlike CYBER 170 machines,
CYBER 180 machines do not swap the contents of central memory and the process state
registers. Instead, the registers are saved in one area and loaded from another. These
areas in central memory are specified by two processor state registers: Monitor Process
State (MPS); and Job Process State (JPS). These registers hold Real Memory Addresses. This
is very important and has software implications. The exchange jump mechanism is one of the
very few operations which bypasses the virtual memory mechanism. In turn, this means that
it bypasses cache for those processors which have cache buffers. Hence, if care is not
exercised stale data can end up in cache memory (which works off an SVA) after an exchange
jump. This could be handled by purging the appropriate part of cache. However, the
recommendation is that exchange packages be placed in cache bypass segments so that they
never get loaded into cache (refer to figure 10-58).

Exchange jumps can occur explicitly or implicitly as follows:

a) If the processor is in monitor mode, an exchange jump will place the processor in
job mode, and instruction execution will commence at the PVA specified by the
content of the P Register in word zero of the exchange package at JPS.

b) 1If the processor is in job mode, a user may issue an exchange jump, which will place
the processor in monitor mode at an address specified by the content of the
P Register found in word zero of the exchange package at MPS. This is termed a
System Call and sets bit 58 in the MCR to differentiate it from other monitor fault
conditions.

c) When the processor is in job mode, a monitor fault condition as determined by the
MCR will cause an exchange interrupt which will place the processor in monitor mode.

It is important to understand the concept of an address space as defined by the entries
in a Segment Descriptor Table (SDT) for a process. Each user has an address space which
contains all the code being executed in that user process and the data on which that code is
operating. In addition, the user address space will include the operating system services
required for the process and at least one segment for communication with the operating
system address space. The user address space and the operating system address space are
distinct entities. It is impossible for the user to access the operating system address
space and it is extremely difficult for the operating system to access the user address
space. The translation of a PVA involves a table look—-up in the SDT and since the user”s
SDT is inactive when the operating system monitor is executing, the automatic address
translation does not function. The operating system has created the user SDT. Hence it can
simulate the address translate mechanism, but this would be tedious and impractical. This
is one reason why trap interrupts have been provided so that those conditions which must be
handled from within the user”s address space cause interrupts to that environment.

When a system call is issued by a user it is necessary for the user to communicate with
the operating system such that Monitor can determine the reason for the call. There are a
number of ways this can be accomplished. One way is to communicate the required information
across the address spaces in X Registers. This is perhaps the simplest technique, although
it has the drawback that the amount of information which can be transmitted is limited.
Another technique is for the operating system to create a Segment which exists in both the
operating system and user address spaces. This is simple to achieve and suggests a general
communication medium for jobs and the operating system monitor.
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The exchange jump mechanism can be used to effect a virtual machine switch. On CYBER
180 this mechanism, along with the CALL/RETURN mechanism is the technique used to switch
between CYBER 180 native state and CYBER 170 state. This process is discussed fully in the
section dealing with CYBER 170 state. When monitor exchanges to job and makes a virtual
machine switch, a common exchange package is established between the two virtual machines.
The Virtual Machine Capability List (VMCL) determines which virtual machines exist in a
given processor. If an exchange is made to a virtual machine which does not exist (a
VMID/VMCL mismatch), then an Environment Specification Error is detected, and, on completion
of the exchange jump, an exchange interrupt occurs. The converse of this is theoretically
impossible since the initialization process always commences in a CYBER 180 environment.
However, a hardware failure could generate this condition, in which case the processor will
halt, since monitor conditions always cause an exchange interrupt from job mode to CYBER 180
monitor mode.

KEYPOINT

CYBER 180 hardware has built-in facilities for gathering system performance data. These
facilities are activated by the keypoint instruction. Performance data may be gathered
either by software or by an optional hardware performance monitoring facility (PMF).
Software retrieval is governed by the Keypoint Enable Flag (KEF) — a process state register
which is set for an exchange interval by the operating system. If the KEF is set and traps
are enabled, then an interrupt will occur on keypoint instructions under control of the
Keypoint Mask (KM) register. It is then the responsibility of the trap interrupt routine to
save any required data. Hardware retrieval of performance data is controlled by register 22
in the PMF, and is independent of any retrieval by software. The hardware records the
keypoint class, keypoint code, and time of day. This information may be recovered by
software over the maintenance channel. In addition to this data, the PMF can monitor other
specific events such as cache hits, MAP hits and Page Table hits, which could not be
measured readily via software techniques.

Keypoint instructions are activated under the control of the Keypoint Mask (KM) and
selected by the Keypoint Class Number (KCN).  Complete identification of the instruction is
by Keypoint Code within KCN.

The j-field of the instruction contains the KCN which is used as a bit index into the
Keypoint Mask. That is, a KCN of five indexes bit 5 of the KM - the sixth bit from the
left-hand end of the KM. If this bit is set, then performance data is collected. This data
typically includes: time of day; KCN; and Keypoint Code (figure 10-59).
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Figure 10-59. Keypoint Operation

In general, Keypoint instructions are placed throughout code segments where performance
data is gathered. For example, performance data on I/0 routines may be required. A
Keypoint Class, as specified by the KCN could be established for all I/0 routines and
Keypoint instructions inserted as appropriate with this KCN. The individual routines would

then be identified uniquely by the Keypoint Code formed from Register-Xk and the Q-field of
the keypoint instruction.

COMPARE SWAP

There are two techniques which are employed by CYBER 180 to interlock data in central
memory which is accessed/modified by more than one processor. One functions on a word basis
and the other on a bit basis. The general theory of the interlock instructions is to
establish a convention whereby a zero indicates unlocked and a one indicates locked. To set
a lock, a one is set in a register which is then exchanged with the interlock in central
memory. If the result in the register is a one, then the lock was already set, otherwise it
has been set and the process can continue.
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The actual operation of the Compare/Swap instruction is more complicated than this model
(figure 10-60) although the theory is the same. In the Compare/Swap a quantity in register
Xk is compared with the interlock word in central memory whose PVA is contained in register
Aj. If they are equal, then the lock can be set, and this is accomplished by storing X0 in
the interlock word. If they are unequal, then the interlock word is loaded into register Xk
to indicate that the lock was already set. In addition to this basic Compare/Swap, or
compare and set lock, a check is made to determine whether the interlock is locked by
hardware. If it is, then a branch exit is taken to (P+2*Q).

oP i k Q —— P+2*Q
4
BRANCH IF
Aj Xk LOCKED
INTERLOCK WORD
" I 2\ l
STORE IF
EQUAL c
X0 0
[ M LOAD IF
41 P UNEQUAL
A
R
E
Xk ‘\V)7
—~{ |

Figure 10-60. Compare/Swap Operation

A single interlock pattern has been reserved for the hardware in this respect. This
interlock pattern is a word which consists of all ones in its first 32 bit positions. The
need for this hardware interlock arises from the fact that the total operation does not take
place in memory. Rather the processor uses a memory exchange function to exchange the
interlock word with a word having all ones in its leftmost 32 bits. This sets the hardware
lock if it was not already set. It then proceeds to complete the remainder of the operation
in the processor, finally storing the appropriate word into the interlock, thereby clearing
the hardware lock. Software is prevented from setting the hardware lock by this
instruction. If XO-left contains all ones then an Instruction Specification Error is
detected. This hardware interlock process ensures that during the execution of this
instruction no other processor can attempt the same instruction on the same interlock word.
In other words, once the instruction has been committed it will run to conclusion without
interference. Instructions which exhibit this characteristic are called Nonpreemptive
Instructions.
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In a monoprocessor environment, a similar problem can arise if memory accesses take
place out of sequence with respect to the sequence in which they were issued. It is for
this reason that these instructions are preserialized and postserialized with respect to
memory accesses on the part of the given processor. All memory requests issued by the
processor are satisfied before the interlock instruction is issued, and the memory accesses
for the interlock are completed before the next instruction is issued. On the memories
designed for S2 and S3, requests are satisfied in the sequence they are issued. However,
this may not be true for a common bulk memory with a slow access and many banks. For these
memories it is conceivable that only those requests for the same bank will be sequenced.
This is an important concept, since this function is not always performed by the hardware
and it is sometimes incumbent upon the programmer to ensure the desired serialization is
carried out.

General Notes:

. Since this instruction swaps the contents of a register and central memory, it
requires that the interlock word be in a segment which has both Read and Write
access.

. The interlock word must reside on a word boundary. This is in order that the 64-bit
memory exchange function can be used. An Address Specification Error results if
this condition is not met.

. The operation (exchange) occurs in central memory and bypasses cache. Cache is
bypassed on the read portion and purged on the write. Since the purpose is to
interlock processors a common point must be utilized. Cache memory is peculiar to a
given processor and, therefore, cannot be used and should be bypassed.

. To simplify the debug operation the following assumptions are made:
~ The operands are not locked (by hardware).

- The operands are used for both read and write access.

- The branch reject address is not used as an argument for debug.

TEST AND SET BIT

This is the second instruction available for interlocking processors. Unlike the
Compare/Swap, the Test and Set Bit instruction functions on a single bit in memory. The
operation is straight-forward. An interlock bit in central memory is loaded into register
Xk, right justified, zero filled, and the bit is set in central memory. A subsequent
investigation of register Xk will determine whether the lock has been set. If Xk is zero,
the the lock has been set, otherwise it was already locked (figure 10-61).
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Figure 10-61. Test and Set Bit

This instruction is nonpreemptive. No accesses to the byte containing the interlock bit
are permitted from any port on central memory during the execution of this instruction. It
also is preserialized and postserialized with respect to this processor as described under
Compare/Swap. Note, however, that the instruction unconditionally sets the lock. If it was
already set, then action depending on the lock must be postponed. To clear a lock, the
store bit instruction, which is described under the general instructions, must be used.
Since the Store Bit instruction has a general utility it is undesirable to penalize it by
pre- and postserialization. Nevertheless the requirement remains to preserialize when
clearing a lock. This may be achieved by issuing a Test and Set Bit instruction before a
Store Bit to clear a lock. This resets the already set lock and postserializes thereby
effectively preserializing the following instruction.

General Notes:

° The byte containing the interlock bit must reside in a segment which has both Read
and Write access since the instruction both loads (into Xk) and stores into the
interlock bit.

° Here again cache should be bypassed to ensure that the interlock bit resides in a

memory common to all registers. The instruction bypasses cache on read and purges
the entry on a write.
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e The bit address is formed from the contents of Registers Aj and X0. Aj carries a
byte address, XO-Register carries a bit address which is treated as a byte address
and a bit address within that byte. The byte address portion is sign extended in
its leftmost three bits and added to the Byte Number field of Aj to form the byte
address of the interlock byte.

TEST AND SET PAGE

The purpose of this instruction is to give the Real Memory Address (RMA) corresponding
to a PVA, provided as an argument to the instruction. If the required page is not in
memory, then a flag is returned to indicate this fact. The PVA is initially contained in
register Aj and the RMA returned in Xk-Right. When the page is not in real memory Xk-R is
returned with the sign bit (bit-32) set. For pages in memory the used bit in the PTE is
set. The assumption is that the page will be used almost immediately, and that used pages
are aged via a least frequently used algorithm, hence the page tends to be held in real
memory.

When the page is not in memory a page fault does not occur. In general, page fault
sensing and access violations on Aj do not take place, However, Address Specification
errors, and Invalid Segment sensing do occur.

Probably the most prevalent usage of this instruction is to determine an RMA for I/0,
since the PP“s in the IOU can only access real memory addresses.

COPY FREE RUNNING COUNTER

There is a one microsecond clock in central memory whose value may be read by this
instruction. This clock, termed the Free Running Counter, is classified as a central memory
maintenance register, and is the only such register having access via the memory port. The
remainder are accessed via the Maintenance Channel (MCH). The Free Running Counter may be
written (but not read) from the MCH, and may be read by the CPU via the memory port using
this instruction. The counter is a 48-bit register which is read into register Xk, right
justified, zero filled. The address of the counter (register BO) is supplied in bits 56-63
of register Xj. In addition, bit 33 of Xj is used to designate which of two memory ports
accessible by the processor shall be used.

LOAD PAGE TABLE INDEX

This instruction is included in the repertoire specifically to aid in the management of
the page table. Starting with an SVA it determines whether or not a given entry is in the
page table, and if so, where it is.

To use this instruction an SVA must first be derived from a PVA by software. This
quantity is used by the instruction out of register Xj. The instruction then uses the
virtual memory mechanism to search the page table for the required entry. The only
difference between the virtual memory mechanism and the instruction is that the instruction
ignores the valid bit in the PTE. This is to facilitiate the implementation of the
algorithm for clearing continue bits in the page table. This algorithm is described in the
section on virtual memory and requires determining whether a given entry hashed directly to
the PTE, or was some distance from the direct hash entry.
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The instruction returns the index of the PTE in Xk-Right. This is true even when the
entry is not found, in which case it returns the index of the last entry searched. Xl-Right
contains the count of entries searched and a flag (bit-32) to indicate whether the required
entry was found (figure 10-62). An investigation of the quantity answers the hash-direct
question, and obviates the need for software to simulate the hashing algorithm.

| SV A B

HASH
SYSTEM PAGE TABLE
—_—
e}
RESULT

Xk-R
[ INDEX ]
X1-R
[ COUNT |

Figure 10-62. Load Page Table Index

The instruction is permitted to execute only when the processor is in Local or Global
privileged mode. Although page table management is an operating system function, it is not
necessarily prudent to do this management in monitor mode when interrupts would be
disabled. 1Instead, a system job is created which has special privileges; in this instance
the job would have at least local privilege.
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PROCESSOR INTERRUPT

This instruction provides the capability for one processor to interrupt one or more
processors connected to the same memory. The receiving processor has the external interrupt
bit (bit-56) set in its Monitor Condition Register and reacts according to the state of that
processor. The actual interrupt is routed from memory port to memory port or ports.
Register Xk-Right is used by the instruction to determine which memory the interrupts are
routed through. Bit 33 of Xk-Right selects one of two memory ports connected to the
interrupting processor, and bits 56-63 select the ports to which the interrupt will be sent.

General Notes:

1) Interrupts may be sent to or received from the IOU. When an interrupt is sent to
the IOU it is ignored.

2) A software convention must be developed so that the interrupted processor or
processors can determine the reason for the interrupt. For this reason it is
necessary for the interrupting processor to preserialize the instruction. That is,
all memory references on behalf of the interrupting processor are satisfied before
the instruction is issued to ensure that the message has been stored successfully
before the interrupt is sent.

3) It is possible for a processor to interrupt itself, although this may have limited
utility.

4) Examples of the use of this instruction are:

- One processor changing the state of the world. That is, a processor creates a
new page table and switches to its use. A second processor would be idled while
the switch was in progress.

- The IOU wants to alert a processor to the fact that is has completed an I/O
operation.

- The MCU (a special PP in the IOU) wants a processor to perform some maintenance
function on its behalf.

These are all examples of system functions. For this reason this instruction carries
with it a Global Privilege.

BRANCH ON CONDITION REGISTER

This instruction provides the means for testing, setting and clearing bits in the
condition registers. Testing of bits, and modifying bits in the User Condition Register
(UCR) are unprivileged operations. However, setting or clearing bits in the Monitor
Condition Register (MCR) can only occur from monitor mode.

Although the instruction can be used to test for the presence or absence of a bit in the
condition register, the most common application will probably be to test for a bit set, and
if set clear it and branch. This provides a mechanism for checking for interrupts without
paying the penalty for a trap or an exchange interrupt. Since this instruction can set a
bit in a condition register it can cause an interrupt. When the bit is set it will appear
to the hardware that the condition arose. Whenever a bit is set a branch exit is taken, and
it is this branch address which is saved in the exchange package or stack frame save area as
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the interrupt occurs. A subsequent exchange or return instruction will then cause
processing to resume at the branch address. The ability to set a bit in a condition
register has been included primarily for diagnostic purposes. However, no special
privileges apply to the UCR since a user cannot cause wanton destruction of the system
through that register. Setting a bit in the UCR will cause an interrupt, providing the
corresponding bit is set in the User Mask Register and traps are enabled. Similarly for the
MCR except for the two flags which are held in that register. These are the System Call
(bit-58) and Trap Exception (bit-63). If either of these bits is set in the MCR then there
will not be an interrupt, regardless of the state of the machine and the value of the
corresponding bits in the MM. :

COPY

The copy instructions provide the means for copying state registers (both processor and
process state registers) to X Registers and vice versa. Most state registers are numbered
uniquely such that the register number serves as an address, both for the copy instructions
and for access of the registers over the Maintenance Channel. The copy instructions
function by taking the address of the state registers from the last eight bits of register
Xj, and then copying to/from register Xk. The value in Xk will always be right justified
and zero filled. The following general notes are of interest:

° Not all state registers are available to the processor. For example, the Status
Summary register can only be accessed via the MCH - and then only in a Read Mede:.

® Except for those registers which cannot be accessed the Copy to Xk instruction is
nonprivileged.

. The Copy from Xk instruction, that is, write to a state register, carries various
privileges depending on the address of the state register. An attempt to write a
state register from a segment with the wrong privilege causes an interrupt.

. Attempts to write a read-only register or to write a nonexistent register act as no
operations.

° Attempts to read a nonexistent register result in all zeros being returned.
. Certain process state registers (defined in the exchange package) do not have
addresses, and cannot be read/written via the copy instructions. In fact, these

registers can only be set via the exchange jump mechanism. Figure 10-63 illustrates
the accessibility to the registers.
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COPY ACCESS PRIVILEGES

e | EZ COPY FROM copY TO -8
53 | b STATE STATE 2y
22 | 3¢ REGISTER REGISTER ]
£° | =2 REGISTER NAME READ WRITE
00-0F 00 STATUS SUMMARY NO ACCESS
10 ELEMENT ID
10-1F 1 PROCESSOR 1D UNPRIV. NO ACCESS R
12 OPTIONS INSTALLED
13 VIRTUAL MACHINE CAPABILITY LIST
21 PMF KEYPOINT
22 PMF BUFFER
30 DEPENDENT ENVIRONMENT CONTROL
20-2F 31 CONTROL STORE ADDRESS NO ACCESS NO ACCESS R/W
30-3F 32 CONTROL STORE BREAKPOINT
20 | P REGISTER
41 | MONITOR PROCESS STATE POINTER
42 MONITOR CONDITION REGISTER
43 USER CONDITION REGISTER
44 UNTRANSLATABLE POINTER
40-4F 45 SEGMENT TABLE LENGTH
46 SEGMENT TABLE ADDRESS UNPRIV. NO ACCESS R/W
50-5F 47 | BASE CONSTANT
48 | PAGE TABLE ADDRESS
49 PAGE TABLE LENGTH
4aA PAGE SIZE MASK
50 MODEL DEPENDENT FLAGS
51 MODEL DEPENDENT WORD
60 MONITOR MASK REGISTER
60-6F 61 JOB PROCESS STATE POINTER UNPRIV. MONITOR R/W
70-7F 62 | SYSTEM INTERVAL TIMER
80-8F PROCESSOR FAULT STATUS
80-8F 90 | RETRY CORRECTED ERROR LOG
90-9F 9N CONTROL STORE CORRECTED ERROR LOG | UNPRIV. GLOBAL R/W
AO0-AF 92 CACHE CORRECTED ERROR LOG
BO-BF 93 | MAP CORRECTED ERROR LOG
A0 PROCESSOR TEST MODE
COC3 | TRAP ENABLES
c4 | TRAP POINTER
CO-CF c5 | DEBUG POINTER
C6 | KEYPOINT MASK UNPRIV. LOCAL R/W
DO-DF | €7 | KEYPOINT CODE
c8 | KEYPOINT CLASS NUMBER
c9 | PROCESS INTERVAL TIMER
CA-CB [ KEYPOINT ENABLE FLAG
EO-E1 CRITICAL FRAME FLAG
EO-EF | E2E3 | ON CONDITION FLAG
E4 | DEBUG INDEX UNPRIV. UNPRIV. RW
FO-FF E5 | DEBUG MASK REGISTER
E6 USER MASK REGISTER

Figure 10-63.

Processor Register Definitions and Accesses
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e Various flip-flops may be set by the copy instructions and some special provisions
for these have been made. When a state register is read, it is always possible
address Xj and the destination Xk to be the same register. When writing, however,
two registers are usually used. For the single-bit registers multiple addresses
have been supplied such that a single register can act as both the address and
data. For example, EO and El are two addresses for the critical frame flag. A copy
to CFF with a value of EO will clear the CFF, and with El will set it (figure
10-64). This concept has been carried even further for the Trap Enable Flip-flop
(TEF) and the Trap Enable Delay (TED), when four addresses are reserved for the
combined two registers which may be set simultaneously by a single copy instruction
(figure 10-64). This is a very important fact when the process of enabling traps
after a trap interrupt is considered. Traps are enabled when the TEF is set, and
the TED is clear. When a trap interrupt occurs the TEF clears. To both the TEF and

the TED are set and a Return issued. The setting of the two flags can take place in
one instruction.

oP J K
Address
E)} {(=CFF)
XdJ/K ._..L
l dnwa
!

Figure 10-64. Copy to Single Bit Register

PURGE BUFFER

The cache and MAP buffers, present on certain CYBER 180 processors, were described in an
earlier section. They are fast buffer memories designed to give rapid access to frequently
used data, and contain copies of data held in central memory. Whenever the copy and the base
data are different, the copy is said to be stale, and must be purged from the buffer in
question. Some purging is provided automatically by the hardware, but there are many
instances where the onus is placed on the software to ensure that the appropriate buffer or
buffers are purged. The Purge Buffer instruction has been provided for this purpose. The
instruction has several options which are controlled by the k-field of the instruction.
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These include purging either the MAP or the cache, and either totally or selectively by an
SVA or a PVA. Purging the cache via a PVA is an unprivileged instruction; all other forms
of the instruction carry a Local privilege. This is to protect against a user purging
entries in another user”s address space. Technically, such an act would not constitute a
violation of the security in the system, but it could degrade the performance of another job.

Selective purging in the cache is for all entries in a 512-byte block, and all entries
in a segment. For the MAP, all entries for a page or for a segment may be purged.

The instruction preserializes and postserializes. This is simply to ensure that there
are no outstanding memory requests from this processor when the buffer is purged, and that
an outstanding request issued before the purge, does not complete after the purge.

For those models which do not have cache or MAP buffers this instruction 1is treated as a
no operation.

Care should be exercised deciding when to use the Purge Buffer instruction and deciding
how much to purge. If no data or too little data is purged results could be fatal and
erratic. If too much is purged, performance could be affected. Certainly the latter is
less serious and an initial version of an operating system erring in this direction probably
would be acceptable. The main point is to be aware of those times when stale data is likely
to accumulate in a buffer memory. These are described in the following paragraphs.

Cache

a) Whenever an ASID is reassigned

b) In a multiprocessor environment, whenever one processor modifies a page which is
used (shared) by a second processor

Cache memory contains a copy of the most recently used words (code and data in most
models) in system virtual memory. Consequently, software must ensure that the cache always
reflects accurately what is in system virtual memory. Since virtual memory is represented
by the file system on CYBER 180, real memory acts as a cache to virtual memory. When a page
is reassigned in real memory the image of the old page in virtual memory does not change.

As a result, cache need not be purged. By organizing cache memories as system virtual
addresses, the number and frequency of necessary purges are minimized.

MAP

a) Whenever a used or valid bit is cleared in the page table
b) Whenever a segment”s attributes change
c) Whenever an ASID is deleted

In general, the Segment MAP contains a copy of the SDE and the Page MAP contains a copy
of the PTE. Hence, whenever anything in an SDE or a PTE changes the MAP should be purged.
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EXECUTE ALGORITHM

The Execute Algorithm instruction is a device for reserving an op code for model
dependent instructions. For example, a customer may buy a pop. count instruction similar
to that available on CYBER 170. On a machine having no special instructions which utilize
this feature, execution of the instruction results in an unimplemented instruction error.
In addition, op. codes BE and BF have been reserved for customer use, such as for software
simulation of instructions which do not exist within the CYBER 180 instruction repertoire.

PROGRAM ERROR

An operation code consisting entirely of zeros has been reserved. Execution of the
instruction yields an instruction specification error. The idea behind the reservation is
that when programs run away and start executing data and so forth, it is likely that zero
bytes will be encountered — hence the condition.

SCOPE LOOP SYNC

Execution of this instruction triggers a signal at an external test point which is
suitable for synchronizing test equipment. Systems with a central memory refresh counter
also issue a refresh counter resynch function, followed by a read of word O of the current
C180 exchange package. Systems without central memory refresh only provide the external
test point signal.
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DEBUG 11

CYBER 180 processors provide a debug facility which assists programmers debugging at the
machine code level in C180 State. The operation of debug is fairly complex since, in
affect, it provides an interrupt capability during an instruction execution. In practice,
the instruction is not executed until the debug processing is complete, although
prevalidation of the instruction may complete prior to the debug. As a result of this
flexibility the state of the process must be retained across interrupts, and several process
state registers have been defined for this purpose.

The user may elect to debug based on a number of conditions. These are:

e Whenever data is read from a specified area in virtual memory

. Whenever data is written into a specified area in virtual memory

® Whenever an instruction is fetched from a specified area in virtual memory
. Whenever a branch is made to a specified area in virtual memory

) Whenever either a CALL INDIRECT or a CALL RELATIVE instruction is issued to a
procedure in a specified area in virtual memory

These constitute five debug conditions and for any instruction issued the user may elect
to debug on any combination of these conditions, for up to 32 different areas in virtual
memory. The conditions are specified in a debug list (figure 11-1), which is provided by
the user, and further controlled by the Debug Mask Register (DM). Finally, debugging is
activated by setting bit 56 in the User Mask Register (UM) and enabling traps.
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DEBUG LIST POINTER (DLP) DEBUG LIST

L I |
DEBUG INDEX (DI) ( 3% 7 ;E/} ;ﬁgv'v4 )
vV T T T T -
/17 l
// UP TO 32 ENTRIES
/
/ /
;!
PasEN
( pC 55/ SEG BN-LOW
~ N
> SN\
AV

DEBUG CODE

%

L END OF LIST

CALL
BRANCH
INSTRUCTION FETCH
DATA WRITE

- DATA READ

Figure 11-1. Debug List

Each entry in the debug list consists of two words, which must be placed on word
boundaries. The two words describe:

The debug conditions; the segment in virtual memory to which the conditions apply; and

the range of addresses (byte numbers) in the segment to which the debug conditions are
restricted (figure 11-2).
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Figure 11-2. Debug List Entries

The Debug Code (DC) may be selectively activated at run time, by setting the DM
appropriately. Refer to figure 11-3. For each condition set in the DC there is a
corresponding condition select in the DM. Debugging occurs only when there is a coincidence
between a condition bit in the DC, and a condition select bit in the DM.
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—END OF LIST SEEN
—DEBUG SCAN IN PROGRESS
—DATA READ
DATA WRITE
INSTRUCTION FETCH
RANCH

I-CALL

DEBUG MASK

DEBUG CODE

l—END OF LIST
CALL

—BRANCH
INSTRUCTION FETCH

DATA WRITE

—DATA READ

Figure 11-3. Debug Condition Select

A user may insert a debug list into his program, set the DM to select a range of

conditions, but run in a normal mode by not choosing to trap on debug.

In this case the

overhead due to debugging is zero. Performance degradation due to debug testing will occur

whenever the
occur unless

11-4

1)
2)
3)

4)

5)

Traps are enabled.

Bit-56 in the UM is set (debugging selected).

The process is C180.

first two items in the following list are true; however, a debug trap will not
all of the following are true:

The DM and DC registers both select a test that is satisfied for the current

instruction.

The end of list seen flag in the DM is not set.

60459960 A




When these conditions are met the debug list is scanned and trap interrupts taken, as
required, by the hardware setting bit 56 in the UCR.

The hardware utilizes three process state registers to control scanning of the debug
list. These are: the debug list pointer (DLP); the debug index (DI); and the DM. The DLP
gives the starting address of the debug list, the DI keeps track of the position within that
list, and the DM contains two flags to control the initiation and termination of the debug.
The first of these flags is the Debug Scan in Progress flag which controls the start of the
process. Conceptually, whenever an instruction is executed this flag is cleared. Then when
the next instruction is issued and debug is active, the processor starts scanning the debug
list from the beginning. The second flag is the End of List Seen flag, and controls the
termination of debugging for the current instruction. This flag is set when either 32
entries in the debug list have been scanned, or when an end of list bit is encountered in a
debug code. Again, conceptually, the flag is cleared whenever an instruction is executed.
The complete, conceptual, hardware process is shown in figure 11-4. These flags are
primarily hardware flags which have been included in a process state register so that the
hardware can remember where it is when an interrupt is taken. If they are set by software
they could perturb the operation of debug.
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Figure 11-4. Conceptual Debug Procedure
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General Notes:

1)

2)

3

4)

5)

6)

7)

Debugging only occurs when traps are enabled. Hence, the interrupt handlers cannot
make use of this facility. However, monitor mode code can make use of debug -
providing traps are enabled.

Debug list entries beyond the 32nd are ignored regardless of whether or not an end
of list seen flag has been encountered in the DC.

The user must have been granted local privilege in order to alter the DLP. 1In other
words, local privilege is required to specify a different debug list in the same
process.

Several instructions apply to more than one debug condition. For example, many BDP
instructions can trap on both Read and Write since they have both source and
destination operands in memory. One instruction, CALL INDIRECT, applies to four
debug conditions (it is a CALL, it reads from the Binding Section, it writes into
the Stack Frame Save Area, and it is fetched).

Also, some instructions have more than one operand which is checked for a debug
trap. Typically, these are instructions which specify the address of a table to be
used in conjunction with two operands (for example, Translate and Edit).

Exchange jumps, which branch to a value found in an exchange package at a real
memory address, do not cause a debug trap on branch. Similarly, Compare and Swap

does not cause a debug trap on branch when it rejects as a result of a hardware lock
set.

When a debug trap occurs the P Register stored in the Stack Frame Save Area points
to the instruction which would have been executed had the debug trap not been

taken. Also when a debug trap is taken, the DI will have an odd value. That is, it
will point to the second word of a word pair entry in the debug list. However, while
the debug list is being scanned, interrupts are enabled, and should an asynchronous
interrupt occur, such as PIT, and External Interrupt, then the DI may be either odd
or even.
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CYBER 180 SOFTWARE OVERVIEW 12

This section gives a brief overview of the system software for Control Data”s CYBER 180
program. Included is a discussion of the operating system and product set. Specifically
excluded is any discussion of maintenance software.

OPERATING SYSTEM (NOS/VE)

The internal name for the new operating system for CYBER 180 native state is NOS/VE.

PRODUCT SET

LANGUAGE PROCESSORS

The initial release of CYBER 180 software will include two user languages: FORTRAN and
COBOL. Subsequent releases will contain the following languages: APL, ALGOL-60, ALGOL-68,
BASIC, PASCAL, PL/1 and JOVIAL.

FORTRAN

CYBER 180 FORTRAN is a reimplementation in CYBIL of FORTRAN 5, which is an existing
CYBER 170 FORTRAN product written in assembly language.

COBOL

CYBER 180 COBOL is a reimplementation in CYBIL of the existing CYBER 170 COBOL 6.

SUPPORT SERVICES

The CYBER 180 support services include Sort/Merge, Basic and Advanced Access Methods,
and Loader. The Basic Access Methods and the loader are parts of the NOS/VE operating
system.

Sort/Merge

CYBER 180 Sort/Merge is a reimplementation in CYBIL of the CYBER 170 SORT 5 Product.
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Data Management

Data Management for CYBER 180 will be provided by the Information Management Facility
(IMF180) and is based on the existing DMS170 and also on the European Data Management System
(EDMS). The first release of this product will be with the second release of the operating
system.

USER INTERFACES

There are two levels of user interface on CYBER 180. The command interface is the view
of CYBER 180 as seen by all users from interactive or batch jobs. It is analogous to the
control card interface on CYBER 170. The program interface is the view of CYBER 180 as seen
by all programmers: system programmers, application programmers, and user programmers. It
is analogous to the macro interface on CYBER 170.

COMMAND INTERFACE

The key design criteria for the Command Interface is to provide a usable consistent
inter face across all modes of access to the system by all users, operators or system
maintenance personnel. A major factor in achieving consistency is the use of a System
Command Language (SCL) which provides a common syntax, control statements and procedure
mechanism that are used by all commands and command utilities.

NOS/VE Command Summary

In order to give an overview of the capabilities of NOS/VE, a list of some of the
available commands and their more important general characteristics is provided.

System Access

All users that access the system must have been previously registered as valid users of
the system by an installation administrator and must identify themselves each time they use
the system in interactive or batch mode. The installation administrator can organize users
into groups called families and within families into groups according to account and project.

System access command summary:

LOGIN
LOGOUT

owmrem T s -

SET_PASSWORD

File System

All users have a master catalog associated with them which is conventionally given the
same name as their user name. The master catalog can contain an arbitrary number of files
and subcatalogs. Each subcatalog can also contain an arbitrary number of files or
subcatalogs which allows users to build their own hierarchy of files.

Each file consists of data and a set of attributes which describe the data that are used
to cause the data in the file to be properly interpreted by programs accessing the file.

Both data and its attributes are maintained in the catalog or subcatalog in which the file
is located.
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File system command summary:

CREATE FILE
DELETE FILE

CREATE CATALOG

DELETE CATALOG
CREATE_FILE_PERMIT
DELETE FILE PERMIT
CREATE CATATOG PERMIT
DELETE_CATALOG_PERMIT
ATTACH FILE

DETACH FILE

DISPLAY FILE

SET FILE ATTRIBUTES
DISPLAY FILE ATTRIBUTES
CHANGE FILE ATTRIBUTES
COPY_FILE
COMPARE_FILE

Job Management

A job is the basic mechanism for organizing work to be performed by the system.
runs on behalf of a single user and is used as the accounting envelope and unit of

scheduling.

Job management command summary:

SUBMIT_JOB
TERMINATE JOB

PRINT FILE

DISPLAY JOB_STATUS
DISPLAY PRINT STATUS
JOB/JOBEND

Resource Management

Resource management command summary:

RESERVE_RESOURCE
RELEASE_RESOURCE
REQUEST_MAGNETIC_TAPE
REQUEST TERMINAL
SET_JOB_LIMIT

Program Execution Commands

A job

Program execution is the process of combining and executing a number of separately
produced modules. It is the basic means by which users perform the work they require.

Program execution command summary:

EXECUTE_TASK
name call
SET PROGRAM ATTRIBUTES

DISPLAY PROGRAM ATTRIBUTES
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Program Compilation Commands
Program compilation command summary:

FTIN
COBOL
CYBIL

SCL Procedure and Control Commands

In addition to providing a consistent syntax for all system supplied commands, SCL also
provides the facility for users to extend the system in a consistent manner. This is
accomplished by the SCL procedure capability.

SCL procedure and control command summary:

PROC
PROCEND

procedure name call
INCLUDE FILE

EXIT PROC
IF/ELSE/ELSEIF/IFEND
FOR/FOREND

LOOP /LOOPEND
WHILE/WHILEND
REPEAT/UNTIL
WHEN/WHENE ND

CREATE VARIABLE
DELETE_VARIABLE

Command Utilities

SOURCE CODE MAINTENANCE

EDITOR

OBJECT CODE MAINTENANCE

INTERACTIVE DEBUGGER (SYMBOLIC FOR CYBIL ONLY)
ACCOUNT, PROJECT, MEMBER AND USER ADMINISTRATION

PROGRAM INTERFACE

User and application programmers access the system primarily via FORTRAN and COBOL.
User programs written in these standardized languages should migrate easily from CYBER 170
to CYBER 180. System programmers access the system via CYBIL, the implementation language
for CYBER 180. Most of NOS/VE will be written in CYBIL, with assembly language only being
used either to take advantage of specific machine capabilities that are otherwise
unavailable or to achieve high performance in critical areas.

The program interface to NOS/VE is accessed via CYBIL procedure calls. The parameters
and data structures conform to the CYBIL rules for variables, constants and types.
Therefore, in order to understand the program interface to the system, a working knowledge
of CYBIL is required.
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CYBIL

CYBIL, the implementation language for CYBER 180, is derived from the programming
language PASCAL developed by Dr. Niklaus Wirth of Switzerland. The four major declarations
of CYBIL are constants (1, 2... A, B, etc.), variables (cells in memory that contain a
value), procedures, and types. The concept of type, which was popularized by Dr. Wirth,
allows a programmer to declare his own types of data. This appears frequently in the NOS/VE
interfaces, where type declarations define the values the operating system procedures
operate on.

Declarations may be specified globally (essentially allocated at load time) or within a
procedure (allocated when a procedure is called), which is the general concept of block
structure.

BASIC SYNTAX

The module is the basic unit of compilation in a CYBIL program.

MODULE<module name>
<declaration>
{declaration>
<declaration>

MODEND<module name>;

It is essentially a list of global declarations, where each declaration is either a
constant, variable, procedure, or type declaration.

The format for a procedure declaration follows:

PROCEDURE (attributes> ){procedure name> ({parameter definition)>)
<declaration>

{declaration>

<declaration>

{statement>

{statement>

{statement>

. » .

PROCEND<procedure name>;

This includes a list of declarations local to the procedure (constant, variable,
procedure or type) followed by a series of statements. These declarations are activated each
time this particular procedure is called and deactivated when the procedure returns, which
is part of the block structuring capability of CYBIL. The statements available in CYBIL are
typical high-level language statements such as assignment, IF THEN ELSE, FOR, WHILE, and
procedure reference.
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TYPE DECLARATIONS

The use of programmer—defined types denotes the permissible values that a variable may
assume, and the structuring method of the variable. Because these type declarations are so
explicit, a certain amount of internal checking such as access verification is possible at
compile time. Hence, many errors which have traditionally been found at execution time are
detected by the compiler at compile time. When programming in CYBIL, it is a common
experience for a program to execute as soon as an error-free compilation has been obtained,
even though it might yield incorrect results.

Fixed Types

INTEGER (64 bits)

CHARACTER (8-bit ASCII character)
ORDINAL

BOOLEAN (logical operator)
SUBRANGE

POINTER

Fixed type declarations are built into the language. The Ordinal type is a delineated
list of constants that is a symbolic way of representing values. With the Subrange type,
the programmer can specify a subset of permissible values for an integer variable. The
Pointer is a dereferenced version of any one of the fixed, structured or adaptable types.

Structured Types

SETS
STRINGS
ARRAY
RECORD

Structured type declarations enable the programmer to define his own types. Sets define
a series of values that are either present or absent. The Record type, used frequently in
NOS/VE documentation, is a series of fields each of predefined or user defined type. Such a
recursive type definition is used to build arbitrary and unique structures.

Storage Types

- HEAP
- SEQUENCE

A Heap is a memory data structure that is used for the random allocation and

deallocation of other variables at execution time. A Sequence is used for the sequential
allocation and/or accessing of other variables at execution time.
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Adaptable Types

ADAPTABIE
ADAPTABILE
ADAPTABLE
ADAPTABLE
ADAPTABLE

[}

Adaptable type declarations are those whose bound is determined at program execution.

This applies to
variable-length
whose sizes are

STRING
ARRAY
RECORD
HEAP

SE QUENCE

variable-length strings or arrays, or to records which contain

strings or arrays. Adaptable heap and sequence refer to blocks of memory

determined at execution time.

EXAMPLES OF DECLARATIONS

Type Declarations

The following module of CYBIL code shows some examples of type declarations
12-1), and how they relate to variable and procedure declarationms.

(figure

module type_declarations_example;

type
ordinal_example = (attached, opened, closed, detached);
type
record_example = record
o: ordinal_example,
i:  integer,
b: boolean,
recend;
type
array_type_example = array [1 .. 10] of record_example;

{No memory allocated yet}

var

i1:  integer,
i2:  integer,
b1: boolean,
b2: boolean,

5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25 al: array_type_example,

26 a2: array_type_example;

27

28 procedure example;

29 a1[3].0 := opened;

30 a2[3].o0 := attached;

31 procend example;

32

33 modend type_declaration_example;
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Figure 12-1. TYPE Declarations
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The first example on lines 7 and 8 is an ordinal type declaration. This particular
ordinal type has four values: attached, opened, closed or detached. The other two examples
on lines 9 through 16 are both structured type declarations. The record type has three
fields: o, i, and b. The o-field is of the type ordinal example, which means it may be
attached, opened, closed, or detached (see line 8). The i-field is an integer type, and the
b-field is a Boolean type. The third declaration (lines 15 and 16) is an array type, which
is defined as an array of 1 to 10 of the user-defined type record example (refer to line 10).

These three examples show how types may be cascaded to form arbitrarily complex
structures. The program does not allocate memory, but simply defines three kinds of values
that are associated with the variables shown in lines 20 through 26.

The key word var in line 20 indicates the allocation of variables. In this instance
there are six variables of three different types. The first two, il and i2, are both
integer types. The next two, bl and b2, are both boolean types. The last two variables, al
and a2, are both array types as defined by the user in line 16.

The procedure declaration in line 29 specifies that the value of o-field of the third
element in array al be set to opened. Line 30 specifies that the o-field of the third
element of array a2 be attached. Both of these declarations are consistent with the list of
permissible ordinal values specified in line 8.

CYBIL Declarations

The following module of CYBIL code shows examples of all declarations (figure 12-2), how
they may be nested, and what sort of range-checking is done by the compiler.

This module contains five major declarations: a constant (lines 7 and 8) a variable
(lines 10 and 11), two types (lines 13 through 17, and lines 19 and 20), and a procedure
(lines 22 through 49).

Within the procedure declaration are three more declarations: two variables (lines 24
and 25, and lines 27 and 28), and a nested procedure (lines 30 through 36). These
declarations are followed by a series of statements (lines 38 through 48). Within the
nested procedure are a variable declaration (lines 32 and 33), and one statement (line 35).

In line 44, table (1) is a variable defined in line 11 as an array of the type specified
by the record in lines 14 through 17. The second field in that record (line 16) is file
status, which is the ordinal type specified in line 20. Thus, in line 44, when the file
status of table (i) is designated as opened, the compiler accepts this statement as valid
because opened is one of the ordinal values declared in line 20. In line 45, however, the
compiler rejects as an error the assignment of 1 (which is the internal data mapping for
opened). This makes the code more readable by minimizing unnecessary references to other
documentation, in this case to look up the definition of 1.

Another compiler check is shown in line 48 where the subrange k is assigned a value of
500. According to line 28, however, the variable k can assume any value from O to the
constant table size, which is specified as 100 in line 8. As a result, 500 is beyond the
range of O to 100, and the compiler rejects this statement as an error.

These and other features of CYBIL make it possible to do a large amount of program
debugging at compile time.
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5 module CYBIL_x_declarations_ example;
6
7 const
8 table_size = 100;
9
10 var
11 table: array [1 . . table_size] of table_entry;
12
13 type
14 table_entry = record
15 file_name: string (10) of char,
16 file_status: file_status_type,
17 recend;
18
19 type
g(:l) file_status_type = (attached, opened, closed, detached):
gg procedure main_ procedure;
24 var
25 i: 1. . table_size;
26
27 var
28 k: 0 . . table_size;
29
g? procedure nested _ procedure;
32 var
33 k: 1 . . table_size;
34
35 k: = i;
36 procend nested_procedure;
37
38 k:=0;
39 for i : = 1 to table_size do
40 if table [i] . file_status = detached then
41 table [i] . file_name : = - -
42 k:=k + 1;
43 ifend;
44 table [i] . file_status : = opened;
*ERROR* 45 table [i] . file_status : = 1;
46 forend;
47 nested_procedure;
*ERROR* 48 k : = 500;
49 procend main_procedure;
50 modend CYBIL _x_declarations_example;
LINE SEVERITY
NUMBER LEVEL ERROR MESSAGE
45 ERROR Incompatible types are not assignable.
48 ERROR Value out of range.
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Figure 12-2. CYBIL Declarations
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CYBER 180 OPERATING SYSTEM (NOS/VE)

SYSTEM STRUCTURE

NOS/VE is designed to run predominately in the central processor. There are several

reasons for this. One is to take advantage of higher level implementation languages and
_lower central memory costs in order to increase the productivity of the software development
process. Another aspect 1s the greater reliability derived from protection and security
mechanisms such as virtual memory translation which are bypassed by the peripheral
processors. NOS/VE maintainability is also enhanced if its code is not dispersed in the
peripheral processors. In addition, localizing NOS/VE in the central processor will
eliminate the architectural necessity of including peripheral processors in successor
product lines.

The virtual memory mechanism of CYBER 180 is an advantage both to user programmers and
to CDC”s system programmers. Much of the operating system and most of the product set
software executes in virtual memory. NOS/VE and user jobs run in the same environment
without special constraints. Thus, the system can use itself and take advantage of the same
software made available to the users.

Initially, CYBER 180 systems will operate in dual state, that is with two separate
operating systems running in the same mainframe: NOS/VE and NOS/170, or NOS/VE and NOS/BE.
These two operating systems communicate across a memory link, but do not perform a very
dynamic sharing of the hardware. Peripheral processors and central memory are partitioned.
Certain peripheral equipments are associated with CYBER 170 state and others with CYBER 180
state. Dual state operation is a requirement on initial CYBER 180 systems, and NOS/VE may
be accessed only by coming through the CYBER 170 operating system.

NOS/VE is composed of a series of jobs. These may be user jobs, operator jobs, or jobs
that are part of the operating system. Within each job the unit of execution is the task.
Each executable task has an exchange package and segment descriptor table associated with
it. Tasks are further broken down into a series of object modules that are compilations of
some higher level language such as CYBIL.

CPU Monitor

The CPU monitor is the most privileged part of NOS/VE, residing in ring 1. It sees
exchange packages and segment descriptor tables for a series of tasks. These tasks, whether
from user jobs or system jobs, are all handled alike by the CPU monitor. The monitor
communicates to the task through the signal buffer.

The basic responsibilities of CPU monitor are task dispatching, physical I/0, and
exchange interrupt processing.
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Task Attributes and Components

In addition to the exchange package, segment descriptor table and signal buffer, each
task has a set of standard operating system routines for use during execution. The most
privileged is the task monitor in ring 1, which handles traps and communicates with the CPU
monitor using an Exchange instruction or by sending a signal via the CPU monitor to a system
job. Task services occupy rings 2 to 6, and include record manager, Loader, file manager,
buffer manager, and segment manager. Rings 7 to 15 are available for user, application and
system modules. Procedure calls are used to communicate between task monitor and task
services and, in turn, between task services and module code.

System Jobs

Tasks in the system job are responsible for multiplexing all of the users across the
resources of the system. These include job initiator, job terminator, system operator and
page manager. Page manager manipulates the page table, selecting which pages are in which
working set, and so forth.

MEMORY MANAGEMENT

There are two concepts of memory in the CYBER 180: virtual memory and real memory.
Virtual memory is divided into segments, and is the view of memory as seen by all end users,
by the software product set, and by a significant portion of NOS/VE. Real memory is divided
into pages, and is the low-level view of memory as seen by that part of NOS/VE that is
responsible for manipulating system page tables and other similar functions.

Even though virtual memory provides a large address space, system programmers can not
ignore their requirement to write efficient, high-performance code. To accomplish this,
procedures that reference one another should be placed as close together as possible. This
increases the probability that they will be in the same page. Procedure and data references
within a single page (or low number of pages) increase performance by minimizing working set
size and eliminating unnecessary page swapping. This concept of locality of reference is
important to follow, even though the programmer is relieved of many other memory management
details.

Virtual Memory Management

The following NOS/VE components are responsible for virtual memory management.
File System

The file system maintains the ring and key attributes for all local and permanent
files. It also provides segment level access to files, where files are made available in a
segment of address space and are accessible with loads and stores.

NOTE

Files are also accessible through the record
manager with gets and puts.
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Segment Manager

The segment manager adds and removes segments from the task address space and assigns
the active segment identifiers (ASID).

Compilers

Compilers are responsible for generating object modules. An object module is produced
from language-dependent units of source code, for example, a main program or subroutine in
FORTRAN, or a module in CYBIL. Each object module is separated into multiple object text
sections that are separately manipulable at load time. The object modules produced by
compilers typically contain three kinds of sections: executable code (that is,
instructions), working storage (read only and read write data), and binding information
(virtual addresses).

Loader

The Loader links modules in virtual memory. It also assigns process virtual addresses
(PVA). This includes the ring number, segment number, and byte number (the offset within a
segment), all of which are assigned at load time, not compile time. ' The Loader also
enforces binding segment conventions, for example, that procedure descriptors are aligned on
word boundaries and that they only contain valid protection information.

Object Library Generator

The object library generator takes the raw compiler output and reformats these object
modules into load modules, which can be loaded more efficiently. It also creates object

libraries, and binds multiple modules that were compiled separately into single loadable
units.

Real Memory Management

The following NOS/VE components are responsible for real memory management.
Page Management

Page management is responsible for maintaining job working sets, that is the number of
pages of virtual memory that must be in real memory for the job to progress. This solves
the same problem that Cl70 systems solve with overlays, however in C180, the system rather
than the user is responsible for the details of the solution.

Job Scheduler

Job scheduler is responsible for sharing the amount of memory among all the job working
sets. This is similar to the CYBER 170 function of swapping.
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FORTRAN LGO EXAMPLE

In this example, the user is validated to execute in ring 1ll. The user calls the FORTRAN

compiler and compiles two programs, one named Main and the other named Sub.
the output of both Main and Sub in LGO, and then executes that program.

file LGO is shown in figure 12-3.

The user puts
The format of the

LOCAL FILE LGO

USER
COMMAND
STREAM
(VALIDATED FOR
RING 11)

®
FTN,I=MAIN,B=LGO
FTN,I=SUB,B=LGO
LGO

[ J

]

R1=11, R2=11, R3=11

e NAME

IDR e TIME & DATE CREATED
e ETC,

LIB e FTNLIB

SDC CODE SECTION

SDC BINDING SECTION

SDC WORKING STORAGE
SECTION

SDC COMMON BLOCKS

TEX, RPL, BIT, REL, ADR,
XRL, EPT, BIN

RECORDS FOR CODE, BINDING
AND WORKING STORAGE
SECTIONS

TRA o STARTING ADDRESS
e END OF MODULE

IDR

LIB e FTNLIB

SDC e CODE

SDC e BINDING

SDC e WORKING STORAGE

SDC ¢ COMMON BLOCKS

TEX, RPL, BIT, REL, ADR,
XRL, EPT, BIN

RECORDS FOR CODE BINDING
AND WORKING STORAGE
SECTIONS

TRA

OBJECT
MODULE
FOR
MAIN

OBJECT

MODULE
FOR
suB
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Figure 12-3. Local File LGO
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Note that the Rl, R2, and R3 ring numbers are all ring 11, which are the default ring
numbers derived from the user”s validated ring number, in this case ring 11. The user is
not required to specify these segment attributes, and their assignment is usually
a function of the installation manager.

The LGO file itself is comprised of two object modules, one for Main and one for Sub.
Each module has three separate sections: code, binding, and working storage. These are
followed by a series of interpretive records that provide the values and fill in the data in
those three sections. Finally in each module, the transfer record gives the optional
starting procedure name and specifies that it is the end of the module.

Several segments are created when the LGO is executed.

Process Segment Number Name
10 code segment
11 binding segment
12 working storage segment
13 object library file
14 stack segment

It is important to understand the difference between a section and a segment. A section
is a part of a module (figure 12-4). At load time, sections from all modules having the
same attributes are allocated contiguously in the same segment. Thus, a process segment may
contain similar sections from different modules, which minimizes fragmentation. Segments
are closely associated with physical memory, and are the basic unit of allocation in virtual
memory.

The ring numbers (11 in this example) are derived from the ring numbers of the LGO file
and applied appropriately to these process segments. The code segment contains instructions
and has Read and Execute privilege. The binding segment contains addresses of working
storage and of other routines to be called (in this case Sine and Random). The binding
segment is readable but not user-writable. All addresses in the binding segment are valid,
and if one, for instance, should point to an address of a system routine that goes across
rings, the user cannot overwrite that address. The working storage segment contains static
data associated with the various modules.

The object library file is a segment-level access file stored in process segment 13.
The file is accessed using Load and Store machine instructions to reference directly segment
13. It is particularly important, therefore, to protect against invalid accesses to this
type of file. Because this is a read-execute file, the file system software prohibits any
attempted writes to that file, and when the file is included in a task address space, the
access attributes in the associated segment descriptor are used by the hardware to prevent
any write access.
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CODE
SECTION

FOR

MAIN

CODE
SECTION
FOR
SuB

OBJECT
LIBRARY
FILE:
OPENED
FOR
SEGMENT
LEVEL
ACCESS

PROCESS SEGMENT 10 11
R,X(11,11,11) B (11,11)
ENTER MAIN LA A3,A5,2
CALL SUB CALLSEG  A3,A6,1
CALL SINE CALLSEG A3,A63
CALL RANDOM | CALLSEG A3.A65
ENTER SUB LA A3,A5,2
CALL RANDOM | CALLSEG  A3,A6.1
CALL SINE CALLSEG  A3,A6.3
CALL SINE CALLSEG  A3,A6.3
BINDING
13 SECTION
RX (11,11,11) FOR SINE
BINDING
ONARY
_ _| . DicTioNARY | SECTION
PAGE CODE FOR RANDOM
BOUNDARY FOR
SINE
CODE
FOR
RANDOM
PAGE |~ m
INTERPRETIVE
BouNDARY | 'NTERFRETH
SINE
INTREPRETIVE
TEXT FOR
RANDOM

WORKING STORAGE
suB

SINE

RANDOM

WORKING STORAGE
RANDOM

SINE

14
RW (11,11)

BINDING

SECTION
FOR
MAIN

BINDING
SECTION
FOR suB

RUN

TIME
STACK

FOR
RING 11

12
RW (11,11)

WORKING
STORAGE .
FOR
MAIN

WORKING
STORAGE
FOR SuB

WORKING

STORAGE
FOR
SINE

WORKING
STORAGE
FOR
RANDOM
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Figure 12-4.

FORTRAN LGO Example
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The object library generator has reformatted the object code for subroutines Sine and
Random into load modules that can be executed. Also included in the object library file is
interpretive text for Sine and Random. This directs the Loader on where to locate and how
to initialize the binding sections and working storage sections for Sine and Random. All of
the code is together in one part of the file, and all of the interpretive text is together
in another part of the file. This is done for locality of reference, that is to minimize
references across page boundaries.

Figure 12-5 illustrates the various pointers which are established. The pointers with
broken arrows are generated by the compiler, and are offsets into the Binding Section. The
pointers shown with unbroken arrows are supplied by the Loader. They all reside in the
Binding Section (which contains only addresses), and forge the necessary link between a
program and the data on which it is to operate.

PROCESS SEGMENT 10 n 12
R,X(11,11,11) B (11,11) RW (11,11)
ENTER MAIN LA A3,A5,2 WORKING STORAGE
CALL SUB CALLSEG  A3,A6,1+ a sus
CODE CALL SINE CALLSEG A3,A6,3 BINDING WORKING
SECTION CALL RANDOM CALLSEG A3,A6, SINE SECTION STORAGE
FOR FOR FOR
MAIN RANDOM MAIN MAIN
> —|WORKING STORAGE ] orrme
cope | ENTER sus LA A3,A5,2 RANDOM BINDING | eronaGE
SECTION | CALL RANDOM | CALLSEG ~ A3A6,1 SECTION FOR SUB
FOR CALL SINE CALLSEG  A3,A6,3 SINE FOR SUB
SUB CALL SINE CALLSEG  A3,A6,3 WORKING
STORAGE
BINDING FOR
13 SECTION 14 SINE
RX (11,11,11) FOR SINE RW (17.11) WORKING
BINDING STORAGE
ICTIONARY
_— _Di_____ — SECTION FOR
PAGE CODE FOR RANDOM RANDOM
BOUNDARY FOR
OBJECT SINE
LIBRARY CODE RUN
FILE: FOR TIME
OPENED RANDOM STACK
FOR FOR
SEGMENT — r— RING 11
LEVEL Bc;ﬁﬁsARv INTERPRETIVE
ACCESS TEXT FOR
SINE
INTREPRETIVE
TEXT FOR
RANDOM

Figure 12-5. FORTRAN LGO Example, Pointers
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When the program is debugged and ready for production operation, Loader overhead is
reduced by running LGO through the object library generator, turning it into a segment-level
access file. The two modules in LGO (Main and Sub) are bound into a single loadable module

(New). Once again, the ring brackets of LGO (11, 11, 11) are carried forward to the new
object library file.

The format of this new object library is shown in greater detail in figure 12-6.

PAGE NEW - DICTIONARY
BOUNDARY
ARY f—————— 1
CODE
IN CODE
EXECUTABLE (INSTRUCTIONS)
FORM FOR MODULE
‘NEW’
PAGE T — T T T 7 <
BOUNDARY MODULE HEADER
LINKAGE
ELEMENT
INTERPRETIVE
WORKING INFORMATION
STORAGE piows
ELEMENT MODULE ‘NEW'
ENTRY POINT
ELEMENT
INFORMATION
ELEMENT

Figure 12-6. Object Library Format - Segment Level Access File
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First is the entry point name dictionary for the single module named New. This points
to the header, which tells the Loader where to find the other interpretive information for
this module. The module code is in executable form, and is physically separated from the
interpretive information. This segment level access file is now contained in process
segment 10 as shown in figure 12-7.

PROCESS SEGMENT 10 1 12
RX (11,11,11) B (11,11) RW (11,11)
DICTIONARY WORKING STORAGE WORKING
_________ WORKING STORAGE STORAGE
ENTER MAIN LA A3,A5,2 SINE FOR NEW
CALL SUB CALLREL A3,A6,125 (FROM
CALL SINE CALLSEG A3,A6,2 MAIN)
D
CALL RANDOM |CALLSEG A3,A6,4 RANDOM
BINDING WORKING
SECTION STORAGE
CODE
FOR SINE FOR NEW
SECTION (FROM SUB)
FOR BINDING
NEW SECTION FOR WORKING
———————— —
ENTER SUB LA A3,A5,10 RANDOM STORAGE
CALL RANDOM  |CALLSEG A3,A6,4 13 14 FOR SINE
CALL SINE CALLSEG A3,A6,2 R, X (11,11,11) RW (11,11)
CALL SINE CALLSEG A3,A6,2 WORKING
STORAGE
FOR
RANDOM
————————— RUN
OBJECT TIME
LIBRARY STACK
INTERPRETIVE FILE FOR
INFORMATION CONTAINING RING 11
FOR NEW SINE
AND
RANDOM

Figure 12-7. FORTRAN LGO Example, Conclusion

In the previous example, Main and Sub were compiled separately. This resulted in
redundant procedure descriptors for both Sine and Random in the binding segment. Since all
calls to the operating system are procedure calls, every system call a module makes will
result in a binding system entry. When several modules are combined together, however, the
object library generator compresses any redundant entries into single copies within the new
binding segment, and modifies the code accordingly.

The working storage segment remains the same as before because all of the static data
from Main and from Sub is needed by the single module New.

If this figure is compared with the previous figure showing the load image, some
important differences can be noted. Not only has the Binding Section for New been
compressed, but the call from Main to Sub has been modified to a CALLREL (Call Relative)
from a CALLSEG (Call Indirect). The Call Relative is a shorter form of the general call

instruction which is reserved for intrasegment calls when protection boundaries are not
crossed.
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