60495800

@5) CONTROL DATA

CYBER RECORD MANAGER

BASIC ACCESS METHODS
VERSION 1.5
USER’S GUIDE

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1

ALPHABETIC LIST OF FORTRAN CALL STATEMENTS

W
SEQUENTIAL FILES ,
closeM 301 GETP30 REPIE.L L 3-17

ENDFILE 3-9 IEETCH ... 23 REWND 3-20
FILESO 2-1 e 3-15
. PUT 3-11 CSTOREF. 2-2
GET 3-15 PUTE 3-21 WEOR 3-9
TR 3-10

FILEWA2-1 IFETCH [. 2-3 REWND 4-11

FITOMP56 OPENM. 12 156 STOREE . . .,22

60495800 €

604958(

@ \ CONTROL DATA
CORPORATION

CYBER RECORD MANAGER
BASIC ACCESS METHODS
VERSION 1.5

USER’S GUIDE

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1

REVISION RECORD

Revision Description
A (03/31/77) Original release.
B (06/15/79) This revision reflects CDC® CYBER Record Manager Basic Access Methods Version 1.5 at PSR

level 498. Basic Access Methods support only sequential and word addressable file
organizations; all information relating to indexed sequential, direct access, and actual
key file organizations has been removed. The entire manual has been reprinted.

€ (04/01/81) This revision reflects CDC CYBER Record Manager Basic Access Methods Version 1.5 at PSR
Tevel 528. A1l program examples have been updated to FORTRAN Version 5.1, and
miscellaneous technical and editorial changes have been made.

REVISION LETTERS I, 0, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE

© COPYRIGHT CONTROL DATA CORPORATION 1977, 1979, 1981 SUNNYVALE, CALIFORNIA 394086
A1l Rights Reserved
Printed in the United States of America : or use Comment Sheet in the back of this manual

ii - . 60495800 C

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed. :

Page Revision

Cover

Inside Cover
Title Page
ii

iii/iv

v/vi

vii

viii

ix
1-1 thru 1-4

1-5
1-6
2-1 thru 2-12
3-1 thru 3-27
4-1 thru 4-12
5-1 thru 5-9
A-1
A-2
A-3
A-4
B-1
C-1
c-2
D-1 thru D-6
E-1
E-2
F-1 thru F-4

Index-1 thru -4
Comment Sheet
Mailer

Back Cover

Pl OOO0O0OOOOOREOOOOOOOTOOOOOOOI O 8

60495800 C) iii/iv

PREFACE -

CONTROL DATA® CYBER Record Manager Basic Access
Methods (BAM) Version 1.5 operates under control of the
following operating systems:

e NOS 1 for the CONTROL DATA CYBER 170 Series;
CYBER 70 Models 71, 72, 73, 74; and 6000 Series

Computer Systems.

e NOSBE 1l for the CDC® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, 74; and 6000 Series
Computer Systems.

BAM handles all input/output processing of files with
sequential or word addressable organization. User
programs concerned with either of these file types can
communicate with BAM indirectly through a compiler,
using the calls supplied by the language; directly through
COMRASS macros; or directly through FORTRAN calls.
This quide s designed specifically for FORTRAN
programmers who are processing files through direct calls
to BAM; the material presented, however, can be used to
advantage by programmers utilizing COMPASS or any of
the languages that provide indirect access to BAM.

The following publications are of primary interest:

Publication

CYBER Record Manager Basic Access
Methods Version 1.5 Reference Manual

FORTRAN Version 5 Reference Manual

NOS Version 1 Reference Manual,
Volume 1 of 2

NOS/BE Version 1 Reference Manual

The following publications are of secondary interest:

60495800 C

Publication

CYBER Record Manager Advanced Access
Methods Version 2 Reference Manual

CYBER Record Manager Advanced Access
Methods Version 2 User's Guide

FORM Version 1 Reference Manual

NOS Version 1 Manual Abstracts

NOS Version 1 Reference Manual,
Volume 2 of 2

NOS/BE Version 1 Manual Abstracts

Programming examples, written in FORTRAN Version 5,
emphasize file information table (FIT) field values;
specifically, why they are set by the user and how they are
interpreted by BAM. Wherever practical, information is
collected and organized into tabular form to provide quick
reference.

The NOS manual abstracts and the NOS/BE manual
abstracts are pocket-sized manuals containing brief
descriptions of the contents and intended audience .of all
NOS and NOS product set manuals, and NOS/BE and
NOS/BE product set manuals, respectively. The abstracts
manuals are useful in determining which manuals are of
greatest interest to a particular reader. The Software
Publications ~Release History serves as a guide in
determining which revision level of software
documentation corresponds to the Programming Systems
Report (PSR) level of installed site software.

Related material is contained in the following publications.

Publication
Number _

60495700

60481300
60435400

60493800

Publication
Number

60499300

60499400

60496200
84000420

60445300

84000470

Software Publications Release History " 60481000

8-Bit Subroutines Version 1 Reference Manual 60459500

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This manual describes a subset of the features
documented in the Basic Access Methods and
FORTRAN Version 5 reference manuals. Control
Data cannot be responsible for the proper functioning
of any features not documented in the Basic Access
Methods or FORTRAN Version 5 reference manuals.

60495800 C

 CONTENTS

NOTATIONS ix Opening the File 3-11
Writing Records 3-11
1. INTRODUCTION TO CYBER RECORD Closing the File 3-11
MANAGER 1-1 Sample Creation Program 3-12
Processing a Sequential File 3-14
Issuing Direct Calls 1-1 Establishing the FIT 3-14
File Organizations Available 1-2 Opening the File 3-14
Sequential Files 1-2 Reading Records 3-15
Word Addressable Files 1-2 + Skipping Records 3-15
BAM Loading 1-2 Replacing a Record 3-17
BAM and FORTRAN 1-3 Adding Records 3-17
BAM and COMPASS 1-3 Rewinding the File 3-20
Partial Record Processing 3-20
Reading Partial Records 3-20
2. FILE PROCESSING CONCEPTS 2-1 Writing Partial Records 3-21
Sample Partial Record
File Information Table 2-1 Processing Program 3-22
Creating the FIT 2-1 Redefining the File 3-23
Using the FIT 2-2 Writing W Type Records 3-23
FILE Control Statement 2-2 Reading W Type Records 3-23
CALL STOREF Statement 2-2 Tape Labeling 3-23
IFETCH Function 2-3 Standard Labeled Files 3-23
Record Types . 2-3 System Processing of Standard Labels 3-25
Decimal Character Count, D Type Records 2-3 User Processing of Standard Labels 3-25
Fixed Length, F Type Records 2-4 Nonstandard Labeled Files 3-26
Record Mark, R Type Records 2-4 Unlabeled Files 3-27
System, S Type Records 2-5
Trailer Count, T Type Records 2-5 4. WORD ADDRESSABLE FILE PROCESSING 4-1
Undefined, U Type Records 2-5
Contro!l Word, W Type Records 2-6 Concepts of Physical File Structure 4-1
Zero Byte, Z Type Records 2-6 Available Record Types 4-1
Summary of Record Types 2-6 Describing F Type Records 4-1
Owncode Processing 2-8 Describing U Type Records 4-1
End-of-Data Exit 2-8 Describing W Type Records 4-1
Error Exit 2-8 Summary of Record Types 4-2
Label Exit 2-8 Creating a Word Addressable File 4-2
General File Processing 2-9 Establishing the FIT 4-2
Establishing the FIT 2-9 Opening the File 4-2
Defining. the Working Storage Area 2-10 Writing Records 4.2
Opening the File 2-10 Closing the File 4-3
Processing the File 2-11 Sample Creation Program 4-3
Reading Records 2-11 Processing a Word Addressable File 4-5
Writing New Records 2-11 Establishing the FIT 4-6
Updating the File 2-11 Opening the File 4-6
Closing the File 2-12 Reading Records 4-6
: Adding Records 4-7
3. SEQUENTIAL FILE PROCESSING 3-1 Replacing a Record 4-11
Rewinding the File 4-11
Concepts of Physical File Structure 3-1
Structure on Mass Storage 3-1 5. ERROR PROCESSING 5-1
Structure on SI and I Tapes 3-1
Structure on S and L Tapes 3-5 FIT Fields Under User Control 5-1
Describing Block Types 3-5 Dayfile Control, DFC 5-2
Describing I Type Blocks 3-5 Error File Control, EFC 5-2
Describing C Type Blocks 3-6 Trivial Error Limit, ERL 5-2
Describing K Type Blocks 3-6 Error Option for Parity Errars, EO 5-2
Describing £ Type Blocks 3-7 End-of-Data Exit, DX 5-2
Summary of Block Types 3-7 Error Exit, EX 5-3
Concepts of Logical File Structure 3-7 FIT Fields Under System Control 5-4
File Boundaries 3-7 Trivial Error Count, ECT .54
Writing File Boundaries 3-9 Error Status, ES 5-5
Writing an End-of-Section 3-9 Fatal/Nonfatal Flag, FNF 5-5
Writing an End-of-Partition 3-9 Parity Error Flag, PEF 5-5
Writing a Tapemark 3-10 System Parity Error Severity, SES 5-6
Creating a Sequential File 3-10 Processing the Error File 5-6
Establishing the FIT 3-11 Dumping the FIT 5-6

60495800 C vii @

A

B8
C

i
VE N

MUN\ANNI'\)NNNNN

t
£ W O

7
v

iy
[N

viii

Standard Character Sets
Summary of FORTRAN Call Statements
Glossary

CALL FILExx Statement Examples
FILE Control Statement Examples
CALL STOREF Statement Examples
IFETCH Examples
Numbering Conventions
End-of-Data User Subroutine Setup
Error Exit User Subroutine Setup
Working Storage Area Use
Mass Storage Sequential File Structure
SI and I Tape File Structure
S and L Tape File Structure
Sequential File Block and Record
Type Summary
File Formats for which Sections
are Defined
File Formats for which Partitions
are Defined
CALL WEOR Statement Examples
CALL ENDFILE Statement Example

BAM File Organization Characteristics
Summary of FORTRAN Calls

Summary of COMPASS Macro Calls
Summary of Record Types

Partial List of FIT Field Default Values
Summary of Block Types

" APPENDIXES

A-1 D
B8-1 E
c-1 F
INDEX
FIGURES

2-1 3.9
22 3-10
2-3 3.11
2-3 3.12
2.3’ 3.13
2-8 3.14
2-9 3.15
2-10 3.16
3.4 4-1
3-4
3.5 4-2

4-3
3-8 44

4-5
3.9

5-1
3-9 5.2
3-10 5.3
310 5.4

TABLES

1-2 3.2
1-4 5.1
1-5
2-7 5.2
2-9 5-3
3-2

5.4

Summary of FIT Fields

File Interchange
Sequential File Boundary Processing

Creating a Sequential File

Reading a Sequential File

Skipping Records on a Sequential File

Replacing a Record in a Sequential File

Adding Records to a Sequential File

Partial Record Processing

Redefining the File

Reading W Type Records

Word Addressable File Record Type
Summary

Creating a Word Addressable File

Reading a Word Addressable File

Adding Records to a Word Addressable File

Replacing a Record in a Word
Addressable File

Using an End-of-Data Exit

Using an Error Exit

CRMEP Control Statement Examples

Dumping the FIT

Operating System/BAM File Terminology
Error Processing FIT Fields Under
User Control
Conditions Causing End-of-Data Exit
Error Processing FIT Fields Under
System Control
CRMEP Control Statement Parameters

"'Tl'."IU
b b

e s
NI R b bt s o

1 & 1
Ve NWVO o

oD EN

i
N

U‘I\n\ln\.ﬂ-l-\
oV E

vy
N = [a2]

L
~ O

60495800 C

NOTATIONS

The following notations are used throughout the manual
with consistent meaning:

UPPERCASE

lowercase

(]

60495800 C

In language syntax, uppercase
indicates a statement keyword or
character that is to be written as
shown.

in language syntax, lowercase
indicates a name, number, or symbal
that is to be supplied by the
programmer.

In language syntax, brackets indicate
an item that can be used or omitted.

In lanqguage syntax, braces indicate
that only one of the vertically stacked
items can be used.

In language syntax, a horizontal
ellipsis indicates that the preceding
optional item in brackets can be
repeated as necessary.

In program examples, a vertical
ellipsis indicates that statements or
parts of the program have not been
shown,

Numbers that appear without a subscript are decimal
values. Other value formats are denoted as:

Neochl
n...nB

N...nW

Value is decimal
Value is octal

Value is decimal, specified in words

INTRODUCTION TO CYBER RECORD MANAGER 1

CONTROL DATA CYBER Record Manager (CRM) is a
group of routines that provide an interface between user
programs and the operating system routines that read and
write files on hardware devices. The file pracessing
capabilities of CYBER Record Manager are divided into
two categories: the Basic Access Methods (BAM) and the
Advanced Access Methods (AAM). The term BAM refers to
the CYBER Record Manager routines that process
sequential and word addressable file organizations. The
term AAM refers to the CYBER Record Manager routines
that process indexed sequential, direct access, and actual
key file organizations.

The CYBER Record Manager routines handle the opening,
positioning, and closing of referenced files. The routines
also perform input/output operations for the files based on
information provided by the calling program. This
information is conveyed to BAM or AAM through a basic
communication area called a file information table (FIT).
The FIT includes descriptive information that is used by
BAM or AAM to formulate calls for action by the operating
system. FIT entries include the method by which the file is
to be accessed, descriptions of record size and type, and a
variety of options that include provision for end-of-data
and error exit processing.

The calling program is responsible for establishing a FIT
for each file that is to be referenced by the CRM routines.
This operation is usually performed by the language
processor as part of the language syntax; however, CRM
can be accessed directly through user-supplied routines
written in FORTRAN or COMPASS. FORTRAN routines
access BAM and AAM through direct calls to library
routines; the call statements and their appropriate
parameters are summarized in appendix B. COMPASS
routines access BAM and AAM through macro calls; the
macros and their appropriate parameters are detailed in
the CYBER Record Manager reference manuals.

The file formats created and recognized by direct calls to
the CRM routines are independent of the language or
processor through which input/output calls are initiated. A
file created by ore source language can usually be
pracessed by another. For example, the FORTRAN
programmer with no working knowledge of the COBOL
language can, by using direct calls, access a file that was
created by a COBOL program. Similarly, the COMPASS
programmer with no working knowledge of the FORTRAN
language can access a file that was created by a
FORTRAN program.

ISSUING DIRECT CALLS

The systems programmer writing execution time
input/output routines for high level languages can access
CRM through direct calls. The internal calls generated for
the FORTRAN PRINT statement and the COBOL WRITE
statement are typical examples. Languages that utilize
the file management capabilities of BAM or AAM include
the FORTRAN, COBOL, ALGOL., and PL/I compilers; the
Sort/Merge and FORM utility packages; and the Query

Update data processing language. BASIC, APL, and Update

do not utilize CRM,

60495800 C

The systems programmer writing FORTRAN or COMPASS
subroutines for use by applications programs can access
CRM through direct calls. Any applications language that
maintains an interface capability with the FORTRAN
compiler or COMPASS assembler can call a subroutine to
initiate file processing.

The FORTRAN applications programmer can exercise one
of two options: access CRM directly through FORTRAN

direct calls, or access CRM indirectly by utilizing the
standard input/output statements provided by the
FORTRAN language.

The applications programmer who is performing user label
processing on magnetic tapes must access BAM through
direct calls. Access must be through a COMPASS macro

call.

All other applications programmers can access CRM
indirectly. File processing is accomplished through the use
of standard input/output statements provided by the
applications language. The standard input/output
statements generate internal code that establishes the FIT
and initiates calls to the appropriate CRM routines for file
processing. The applications programmer need not be
concerned with how a file is physically structured or how
logical records are physically represented. Once the file
organization and file structure are supplied to CRM by a
logical description within the applications program or by
control statements that precede the program, a file can be
accessed with standard read and write functions.

In summary, the user who issues direct calls to BAM or
AAM is one of the following:

e A FORTRAN or COMPASS programmer writing
execution time routines for high level languages

e A FORTRAN programmer writing applications
programs that require the advantages available
through direct calls

e A FORTRAN or COMPASS programmer writing
input/output modules for use by applications programs

e A COMPASS programmer writing modules to handle
user label processing for applications programs

The programmer directly accessing CRM is responsible for
the following:

e Establishing the FIT to define the file structure and
subsequent processing limits

@ Establishing a working storage area in a program for
passing data records between the program and the file
storage device

e Issuing direct calls to CRM to open the file, to process
input and output operations for the file, and to close

the file

The programmer indirec-tly accessing CRM is responsible
for the following:

® Understanding CRM terminology and concepts to
ensure program efficiency

e Supplementing, as necessary, input/output processing
provided by the applications language by using a FILE
control statement to override some of the defaults

FILE ORGANIZATIONS AVAILABLE

BAM controls the physical representation of sequential
(5Q) and word addressable (WA) files. AAM controls the
physical representation of indexed sequential (IS), direct
access (DA), and actual key (AK) files. AAM file
organizations and processing operations are detailed in the
AAM reference manual and user's guide.

Table 1-1 summarizes various file characteristics and
indicates which BAM file organizations apply.

SEQUENTIAL FILES

A sequential file is a collection of records stored in the
same physical order in which they were generated. A
sequential file has no associated pointers or indexes;
consequently, a specific record is located by reading the
file sequentially from beginning-of-information until it is
found.

Sequential file organization is best suited to applications
that require large portions of the file to be accessed.
Large sequential files are generally written on magnetic
tape; small sequential files usually reside on mass storage
devices.

WORD ADDRESSABLE FILES

A word addressable file is a collection of contiguous
computer words stored on disk. This type of file is

restricted to disk storage because records are typically
accessed in random order. Each word has an ordinal, called
a word address, indicating its offset from the origin of the
file. By stating a word address, the contents of that word
(or that word and those following) can be accessed. With
word addressable file organization, you can preassign
locations to records as they are written, leaving space for
anticipated records not yet available.

Word addressable file organization is best suited to
applications handling data items that have serial numbers
or that are numbered in sequential order. The information
to be associated with each item is placed in a word directly
related to the sequence as the information becomes
available. Information can be retrieved randomly by word
address; information can also be retrieved sequentially,
providing records are contiguous.

BAM LOADING

BAM routines provide all input and output between a
referenced sequential or word addressable file and the
operating systems that physically read or write the file on
a storage device. To reduce field length, BAM is divided
into functional capsules that are loaded by controlling
routines at execution time. The controlling routines
transfer control to the Fast Dynamic Loader (FDL), which

1-2°

TABLE 1-1. BAM FILE ORGANIZATION CHARACTERISTICS

Characteristic ' sQ WA
Access FIT X X
Close files X X
D type records X
Disk storage medium X X
Error processing ' X X
F type records X X
File positioning X
Label processing X
Open files X X
Owncode exits X X
R type records X
Random access X
Read complete records X X
Read partial records X
Replace records X X
S type records X
Sequential access X X
T type records X
Tape storage medium X
Terminal file processing X
U type records X X
Variable-length blocks X
Variable-length records X X
W type records X X
Write boundary marks X
Write complete records X X
Write partial records X
Z type records. X

locates and loads the capsules needed to process the
FORTRAN call or COMPASS macro call. Capsules are
systematically loaded when needed and remain in memory
as long as they are required by any open file. Open and
label processing capsules, for example, are unloaded when
their operations are interrupted by an operation not
associated with open processing. For optimum efficiency
in loading, the open processing for all files should be
completed before other processing is specified.

60495800 C

BAM AND FORTRAN

FORTRAN direct calls to BAM allow sequential files to be
processed with features not available through the standard
READ and WRITE statements or through calls to READMS
and WRITMS. The features are as follows:

e ' Reading and writing partial, as well as complete
records

e Passing control to a user subroutine when section,
partition, or file boundaries are read

e Passing control to a user subroutine when a fatal or
nonfatal error occurs

e Processing under user control at end-of-volume
e Writing section and partition boundaries

@ Processing magnetic tape labels through a user's

COMPASS-coded subroutine
e Skipping records
e Managing buffers
e Closing files prior to end-of-program execution
You must create and process word addressable files

through calls to BAM. You cannot establish or process
them through the FORM or Sort/Merge utilities.

When BAM is called directly, the following conditions must
be met for each file:

@ An array must be dimensioned as 35 words for the file
information table (FIT). This array identifies the
referenced file for all other BAM calls.

e The file organization must be identified by a call to
one of the following subroutines:

FILESQ Sequential organization

FILEWA Word addressable organization

e A CALL FILExx statement must be executed before
any other BAM call., Parameters in the call to FILExx
establish FIT fields to guide processing.

® The file must be opened by a call to OPENM.
e All read and write operations for the file must occur

through BAM calls. READ and WRITE or other
standard input or output statements, including

READMS and WRITMS, must not be used unless you

Afirst close the file by a call to CLLOSEM,

e After all processing, the file must be closed by a call
to CLOSEM to ensure file integrity.

60495800 C

Records are written to the file from an array or variable of
any type identified by the working storage area (WSA) field
of the FIT. You can change this array with each write.

Any file defined to BAM through a CALL FILExx
statement must not appear on the PROGRAM statement.
If such a file did appear, tables and a buffer would be
allocated yet never used, and possible complications in file
name use in subroutines might oceur.

The FILExx routines reside on system library SYSLIB; the
other BAM routines reside on BAMLIB. FILExx routines

reference BAMLIB when they are executed. Therefore, if
you do not use a FILExx routine, you must include one of

the following to reference BAMLIB:
e A LIBRARY,BAMLIB. statement before execution

¢ An LDSET,LIB=BAMLIB.

statement in the load
sequence for the job step i

Table 1-2 summarizes the FORTRAN direct call

statements to BAM.

BAM AND COMPASS

COMPASS macro calls to BAM represent an alternative to
the READ, WRITE, or other macros previously available
that used the CPC (central program control) routine to
execute. BAM and CPC cannot both be used to process a
given file in one program. Both sets of macros can be used

in the same program only as long as they are processing
different files. Existing files created through CPC can be

processed by BAM once the file and record structure are
properly defined in BAM terminology.

All COMPASS macro calls to BAM reside on COMPASS
system text IOTEXT, which you must specify with the
S=IOTEXT parameter on the COMPASS control statement

at assembly time.

When BAM is called directly, the program must meet the
following conditions for each file:

e The FILE macro must appear in a nonexecutable
portion of the program. The macro is an assembly
time statement that results in construction of the
FIT. The FIT address, rather than the file name, is
used in all BAM macro references to the file.

e The file must be opened by an OPENM macro.

e All read and write operations for the file must occur
through BAM macros.

e After all processing, the file must be closed by a
CLOSEM macro to ensure file integrity.

Table 1-3 summarizes the COMPASS macro calls to BAM.

TABLE 1-2. -SUMMARY OF FORTRAN CALLS

Function

Call Name

- Applicable
File Type

Action Taken

Comments

File creation and
maintenance

FILExx

IFETCH

STOREF

FITDMP

SQ, WA

SQ, WA

SQ, WA

50, WA

Creates a file
information table
(FIT).

Retrieves the value
of a specified
field in the FIT.

Sets a value in a
FIT field.

Dumps the contents
of a FIT to the
error file.

Must be the first call executed.
Any file name defined on this
statement must not appear on
the PROGRAM statement.

Can precede an OPENM call.

Can precede an OPENM call.

Forces the EFC FIT field to 2

or 3.

File initialization
and termination

OPENM

CLOSEM

SQ, WA

SQ, WA

Opens a file.

Closes a file.

Tape labels are processed
providing the file is rewound.

IFETCH, STOREF, and FITOMP can
follow a CLOSEM call.

Data transfer

GET

GETP

PUT

puTP

SQ, WA

SQ

SQ, WA

5Q

Reads a record.

Reads a partial
record.

Writes a record.

Writes a partial
record.

For WA files, word address is
automatically incremented after
the read.

Not valid for R type records.
For WA files, writing always
begins on a word boundary.

Not valid for R type records.

File updating

REPLC

Sq

Replaces a record.

Valid only for mass storage
files with block type C and
record type_F or W.

File positioning

SKIP

REWND

5Q

SQ, WA

Skips records for-
ward or backward.

Rewinds a file.

An output file can be
positioned backward only.
Skipping logical records back-
ward is not valid for D, R, T,
and U type records or K and E
type blocks. Skipping logical
records forward is not valid
for U type records.

Unlabeled or nonstandard
labeled tape files rewind to
the beginning of the current
volume. Mass storage or stand-
ard Jabeled tape files rewind
to beginning-of-information.

Boundary_ conditions

ENDFILE

WEOR

WTMK

SQ

SQ

3Q

Writes an end-
of-partition
terminator.

Writes an end-of-
section terminator.

Writes a tapemark.

End-of-partition is synonymous
with operating system end-of-
file.

End-of-section is synonymous
with operating system end-of-
record. Used to terminate an

S type record being constructed
by PUTP.

Recommended for user tape
labels only.

60495800 C

TABLE 1-3. SUMMARY_OF COMPASS MACRO CALLS

Function.

Macro Name

Applicable
File Type

Action Taken

Comments

File creation and
maintenance

FILE

FETCH

STORE

SETFIT

FITOMP

SQ, WA

. SQ, WA

SQ, WA

SQ, WA

SQ, WA

Creates a file
information table
(FIT).

Retrieves the value
of a specified field
in the FIT.

Sets a value in a
FIT field.

Sets values in
fields of the FIT
with values supplied
through the FILE
control statement.

Dumps the contents
of a FIT to the
error file.

Must appear in a nonexecutable
portion of the program.

Code expansion destroys values
in some user registers. Can
precede an OPENM call.

Code expansion destroys values
in some user registers. Can
precede an OPENM call.

Must precede an OPENM call.
Values in all user registers
are destroyed.

Forces the EFC FIT field to 2
or 3.

File initialization
and termination

OPENM

CLOSEM

5Q, WA

SQ, WA

Opens a file.

Closes a file.

Tape labels are processed
providing the file is rewound.

Should be the last macro issued
for a file.

Data transfer

CHECK

CHECKR

GET

GETP
GETWR
PUT
PUTP

PUTWR

SQ, WA

SQ, WA

SQ, WA

sQ

SQ

SQ, WA

3Q

5Q

Checks I1/0 comple-
tion status and
places an active
job in recall.

Checks 1/0 comple-
tion status and
returns control to
the user without
placing an active
job in recall.

Reads a record.

Reads a partial
record.

Reads data in units
of words.

Writes a record.
Writes a partial
record.

Writes data in
units of words.

Must follow a GETWR or PUTWR
before other BAM operations on
that file. Because end-of-
data and error exits are sup-
pressed, the FP and ES FIT
fields should be checked after

control returns.

For WA files, word address is
automatically incremented after
the read. :

Not valid for R type records.
Must be followed by a CHECK or
CHECKR call.

For WA files, writing always
begins on a word boundary.

Not valid for R type records.

Must be followed by a CHECK or
CHECKR call.

File updating

60495800 B

REPLACE

SQ

Replaces a record
in a file.

Replacement record must be
the same size as the record
replaced.

1-5

TABLE 1-3. SUMMARY OF

COMPASS MACRO CALLS (Contd)

Function

Macro Name

Applicable
File Type

Action Taken

Comments

File positioning

SKIP

REWINDM

5Q

SQ, WA

Repositions a file
backward or forward.

Rewinds a file.

An output file can be
positioned backward only.
Skipping logical records back-
ward is not valid for D, R, T,
and U type records or X and E
type blocks. Skipping logical
records forward is not valid
for U type records.

Unlabeled or nonstandard
labeled tape files rewind to
beginning of current volume.
Mass storage or standard
labeled tape files rewind to
beginning~of-information.

Boundary conditions

ENDFILE

WEOR

WTMK

SQ

SQ

SQ

Writes an end-of-
partition terminator.

Writes an end-of-
section terminator.

Writes a tapemark.

End-of-partition is synonymous
¥j%h operating system end-of-
ile.

End-of-section is synonymous
with operating system end-of-
record. Used to terminate an

S type record being constructed
by PUTP.

Does not flush the buffer.

User label
processing

GETL

PUTL

CLOSEL

SQ

sQ

sQ

Reads the next
label of a label
group.

Writes a label.

Terminates label
processing.

Labels are retrieved in sequen-
tial order.

The label appropriate to the
current file position is sub-
mitted to be written to the
output file.

Used to exit a label processing
routine and return to the
calling routine for continued
processing.

60495800 C

FILE PROCESSING CONCEPTS | 9

All BAM files are processed in the same general manner.
The file is opened, records are written or read, and the file
is closed. File processing is affected by:

e File information table (FIT)

The FIT established for the file defines the file
structure and specifies other information pertinent to
file processing.

e Record type

The record type declared for the file is used in
determining the format of records written to the file.

e Processing options

Once selected, an option affects all subsequent file
processing until the option selection is changed.

This section of the guide presents the basic concepts of file
processing to familiarize you with the general principles
involved in processing a BAM file. Subsequent sections
discuss file processing in detail for each BAM file
organization.

FILE INFORMATION TABLE

You must establish a file information table (FIT) for each

file to be processed by BAM before the file can be opened.
The contents of the fields in this table define the structure
of the file and govern file processing. The FIT is a 35-word
table that contains fields describing such information as
record type, record size, file organization, error count,
error flags, and information used by internal system
routines to determine file status and position. You set
some fields; BAM sets others.

FIT fields can be set when the FIT is constructed, when the
file is opened, and when a processing statement is
executed. When the file is opened, any field that has not
been set to a specific value is set to a default value. A
default value is in effect until the field is changed by a
subsequent program statement, When a file processing
statement is executed, BAM uses the current contents of
the applicable FIT fields.

CREATING THE FIT

The FIT is constructed when a call to the FILExx
subroutine is executed. The format is:

CALL FILExx(fit,field,value,. . .,field,value)

The mnemonic specified for xx determines the file
organization.

e FILESQ specifies a sequential file and sets the file
organization (FO) field in the FIT to SQ.

e FILEWA specifies a word addressable file and sets the
file organization (FO) field in the FIT to WA,

60495800 C

The first parameter in the CALL FIL_Exx statement is the
name of the integer array in which the FIT is stored. The
remaining parameters are FIT field mnemonics and values
for the fields. When the CALL FILExx statement is
executed; the FIT is established in the named array and the
specified fields are set to the designated values.

All of the FIT fields required for file processing can be set
by the CALL FILExx statement. FIT fields are identified
by mnemonics such as RT (record type) and LFN (logical
file name). Values for the fields can be program locations,
positive integers, and symbolic options. Appendix D lists
the FIT fields applicable to each file organization and
indicates the fields that can be set by the CALL FILExx
statement. More detailed discussions of the individual FIT
fields can be found in the sections on the file organizations.

The first parameter in a CALL FIL_Exx statement is a
single entry that names the array to hold the FIT; all
subsequent parameters in the statement are paired. The
first parameter of a pair specifies the FIT field mnemonic,
and the second parameter specifies the value for the field.
Some examples of paired parameters are:

LENYNEWFILE! Logical file name
NEWFILE

RT,'F F type records

FL,42 Fixed-length records of

42 characters

Pairs of parameters can appear in any order in the
argument list. Figure 2-1 shows some examples of the
CALL FILExx statement.

CALL FILESQ(SQOFIT,'LFN','SQFILE",'BT",'C','RT",
'F''FL',30)

The FIT for the sequential file is constructed in
the array named SQFIT; the logical file name is
SQFILE, the block type is C, the record type
is F (fixed), and the record length is 30.

CALL FILESQ(SQ1tFIT,'LFN','SQ1FILE''BT','C',
'WSA',BFR,'DX',DATAEX)

The FIT for the sequential file is constructed in
the array named SQ1FIT; the logical file name
is SQ1FILE, the block type is C, the working
storage area is BFR, and the end-of-data routine
is DATAEX.

CALL FILEWA(WAFIT,'LFN','WAFILE''ERL"50)
The FIT for. the word addressable file is constructed

in the array named WAFIT; the logical file name is
WAFILE, and the trivial error limit is 50.

Figure 2-1. CALL FILExx Statement Examples

Each field is assigned a default value when a value is not
specified. You should be aware of each default value and
the effect it can have on a program.

Any specified value that exceeds the maximum field size is
truncated. Misspelled or otherwise unrecognizable FIT
mnemonics are noted on the dayfile and ignored. In each
of these cases, an informative diagnostic is issued. A
mnemonic that is valid but not applicable to the specified
file organization is ignored providing it produces no
conflict with other mnemonics.

If the program is compiled without fatal errors and is
loaded and executed, FIT field values are checked for
validity and consistency. If the same field is referenced
more than once, the last value specified is used.

The following fields are most frequently used in the CALL
FILExx statement:

BT Block type if file organization is sequential

RT Record type (and additional fields required by
the individual record type)

MRL Maximum record length
LFN Logical file name
WSA Working storage area

ERL Trivial error limit

USING THE HIT

Execution of a BAM file processing statement depends on
the current contents of the FIT. You are responsible for
setting appropriate fields with execution values. A field
value is provided in one of several ways:

e Specify the field and value in the CALL FILExx
statement. The value becomes part of the FIT at
execution time.

e Omit the field definition and accept the default
value. The default becomes part of the FIT at the
time the file is opened.

e Specify the field as a parameter in the FILE control
statement. The value becomes part of the FIT when
the file is opened, and it overrides any previous value
set in the field.

e Execute the CALL STOREF statement to store a value
directly into the FIT. The field is set at the time the
statement is executed.

e Set the field value in a file processing statement. A
value from a CALL GET or CALL PUT statement is
set in the FIT when the statement is executed.

The last value set in a FIT field governs the operation using
that field. The default value remains in effect until
changed.

FILE Control Statement

The FILE control statement is used at file open time to set

values in FIT fields. The specified values can either set

fields not previously set or override values specified in the
CALL FILExx statement. Values from the FILE control
statement are saved on an internal scratch file until the

2-2

file is opened for the first time during execution. The
FILE control statement can appear anywhere in the control
statement portion of the job before the statement that
calls for execution of the compiled program.

Some of the FIT fields that can be set by the CALL FILExx
statement can be set by the FILE control statement. FIT
fields that cannot be set by the FILE control statement are
those that specify a program address. Values for the fields
can be positive integers and symbolic options. Appendix D
lists the FIT fields applicable to each file organization and
indicates the fields that can be set by the FILE control
statement.

The first parameter in the FILE control statement must be
the logical file name. This is followed by one or more
parameters that specify FIT field settings. A parameter is
specified as a FIT field mnemonic and a value separated by
an equal sign. Figure 2-2 shows some examples of the
FILE control statement.

FILE(MYFILE,FO=SQ,MRL=80,PC=508)

The sequential file has the logical file name MYFILE.
The maximum record length (MRL) and padding
character (PC) fields are specified for the file.

FILE(WAFILE FO=WA EFC=1DFC=2)
The word addressable file has the logical file name

WAFILE. The error file control (EFC) and dayfile
control (DFC) fields are specified for the file.

Figure 2-2. FILE Control Statement Examples

A FILE control statement cannot be continued to a second
card or line image. When all parameters cannot be
specified in one 80-column statement, additional FILE
control statements with the same logical file name can be
included in the control statement portion of the job. If the
same FIT field is referenced in more than one FILE control
statement, the last value encountered defines the field.
Overlapping fields are reported on the dayfile. Consider
the following statements:

FILE,Ifn. Cancels preceding FILE control
statements for Ifn
FILE. Cancels all preceding FILE control

statements

An error in the FILE control statement causes the entire
statement to be ignored. The error and the parameter in
question are printed on the dayfile. Control transfers to
the next EXIT.

CALL STOREF Statement

A FIT field value can be set or changed during program
execution by the CALL STOREF statement. The format is:

CALL STOREF(fit,field,value)

This statement can be executed before or after the file is
opened; it must be after the CALL FILExx statement. The
record type (RT) field cannot be set after the file has been
opened. Fields that can be set by the CALL STOREF
staterhent are indicated for each file organization in
appendix D.

60495800 C

Only one field in the FIT can be set by each CALL STOREF
statement. The mnemonic for the field and the value to be
stored in the field are specified in the statement. 1 The
value can be an integer, integer variable, or a symbolic
option. Integer values are retained as integers in the FIT.
Symbalic values become bit strings and are fetched as a
single bit or an octal value, depending on the bit string
length.

Figure 2-3 shows some examples of the CALL STOREF
statement.

CALL STOREF(SQFILE,'RL',80)

Execution of this statement stores 80 in the RL
(record length) field of the FIT.in the array named
SQFILE.

CALL STOREF(WAFILE,'ERL',100)

Execution of this statement stores 100 in the ERL
{trivial error limit} field of the FIT in the array
named WAFILE.

ICOUNT=IFETCH(SQFILE,'RL"
This statement returns the value of the RL (record
fength) field to the variable ICOUNT.

IF(IFETCH(MYFILE,'PD').EQ.3) GO TO 20
This statement causes a branch to statement 20 if
the PD (processing direction) field is set to 10; the
symbolic option 10 is stored in PD as the bit string
011.

CALL IFETCH(WAFILE,'WA'IWORD)

This statement returns the value of the WA {word
address) field to the integer variable IWORD.

Figure 2-3. CALL STOREF Statement Examples

IFETCH Function

The value in a FIT field can be retrieved from the FIT by
using the IFETCH integer function ar by calling FETCH as
a subroutine. The formats ara:

FETCH(fit,field)
CALL IFETCH(fit,field,variable)

The word variable denotes an integer variable in which the
FIT field value will be returned.

IFETCH can be used before or after the file is opened.
Fields that can be retrieved by IFETCH are indicated for
each file organization in appendix D. The format of the
value returned depends on the type of field requested.

e A field that you specify as an integer is returned as a
right-justified integer.

e A length field value is returned as a 6-bit character
equivalent except for the buffer size (BFS) field,
which is returned in words (as specified).

e A one-bit field value is returned as a positive or
negative integer; the magnitude of the integer is
undefined.

Py A symbolic field value that requires more than one bit
is returned as an integer. (Refer to appendix D for
the integer values.) '

Figure 2-4 shows some examples of IFETCH.

RECORD TYPES

You determine the amount of information in a record by
specifying record type. Eight different record types are
supported by BAM. Each record type is applicable to a
specific situation. All records in a given file must be the
same record type. :

60495800 C

Figure 2-4. {FETCH Examples

In addition to the record type (RT) field in the FIT, various
other fields are required depending on the record type. FIT
fields related to the length of a record or of a field within
the record are specified as a number of characters,
counting from 1. Fields indicating the position of a word
or of a character within a word are specified as the word
or character position, counting from Q. Figure 2-5
illustrates the numbering conventions used to describe a
record and the position of a field in a record.

01234 82

)

Character positions O through 82 contain a record
with 83 characters.

0 10 20 80

Word 0 Word 1 Word 2 Word 8

Words O through 8 are required to hold the
83-character record.

0123 4567829

80 8182

Character positions 0, 1, and 2 in word 8 contain
the last three characters of the record, which are
record character positions 80, 81, and 82. .Char-
acter positions 83 through 89 are undefined.

Figure 2-5. Numbering Conventions

DECIMAL CHARACTER COUNT,
D TYPE RECORDS

D type records each contain a field that specifies the
exact number of characters in that record. This type of

record is useful when record lengths vary widely due to the

varying amount of information toc be recorded for a
specific item. For example, a file could have D type

2-3

records when each record contains data related to
telephone number activity; records vary widely in length
because each telephone can be used to make a different
number of calls. You can specify D type records for
sequential files, but not for word addressable files.

Four FIT fields are required to describe D type records.

RT Record type. This FIT field must specify
D type records.

LP Length field beginning character position.
This FIT field must specify the record
character position in which the length field
begins, starting with character position 0 of
the record.

L Length field length. This FIT field must
specify the number of characters (1
through 6) in the field designating the
number of characters in the record.

MRL Maximum record length. This FIT field
specifies the maximum number of characters
to be moved to the working storage area.
The field is required for both a read and a
write operation; it must be set before a
record can be processed.

The length field defined by the LP and LL fields normally
contains a right-justified display code value with zero or
blank fill. The field can contain a binary value if the Cl

field is set; the field can contain a sign overpunch value if
the SB field is set.

If you set the minimum record length (MNR) field, it must
include the length field and ™ should be at least
10 characters. The default value set by BAM is the sum of
the values in the LP and LL fields.

When writing a D type record, BAM uses the contents of
the length field (defined by the LP and LL fields) to
determine how many characters to write. Any
user-specified value for the record length (RL) field is
ignored. When reading a D type record, BAM again uses
the length field to determine record length. At the
completion of a successful read, the RL field is set to the
record length.

FIXED LENGTH, F TYPE RECORDS

F type records always contain the same number of
characters in every record. This is the simplest record
type. It is useful in applications where all records in the
file contain the same amount of information. For example,
an inventory file could have F type records when each
record contains the part number, normal supply value, and
current supply value. You can specify F type records for
sequential and word addressable files.

Two FIT fields are required to describe F type records.

RT Record type. This FIT field must specify
F type records.

FL Fixed length. This FIT field must specify the
number of characters in every record..

2-4

When writing an F type record, the number of characters
specified by the FL field are always written. A longer
user-supplied record is truncated; a shorter record is not
recognized even if the write request specifies a record
length less than the FL field value. You must add blank or
zero fill if the number of significant characters in the
record is less than the number specified by the FL field.

RECORD MARK, R TYPE RECORDS

R type records are terminated by a special character
known as a record mark. You select the record mark
character, which can be any character in the character
set. The selected character can appear in the record only
as the terminating character. R type records can be used
to conserve storage space when record length varies
disparately. For example, R type records could be used for
a file containing records that list the machines an
employee can operate; record lengths would vary
considerably because employee skills and machine names
also vary in length. You can specify R type records for
sequential files, but not for word addressable files.

You must select R type records with discretion because
each time a record is read or written, every character of

the record must be examined in a search for the
terminator. This process is very inefficient.

Three FIT fields are required to describe R type records.

RT Record type. This FIT field must specify
R type records.

RMK Record mark character. This FIT field
indicates the terminating character for each
record (default is the right bracket]).

MRL Maximum record length. This FIT field
specifies the maximum number of characters
to be moved to the working storage area.
The field is required for both a read and a
write operation; it must be set before a
record can be processed.

The last character of every record in the file must be the
record mark you supply as part of the data record. When
an R type record is read, the record mark is returned as
part of the record and the record length (RL) field is set to
the total record length, including the record mark. Any
user-supplied value for the RL field is ignored when the
record is read or written. If the minimum record length
(MNR) field is set, it should be at least 10 characters.

The values for the RMK field can be specified in one of
three formats that ultimately translate to the display code
equivalent of the desired character.

O"'nn" The two-digit octal value of the desired
record mark character is specified directly.

dd The actal display code value is specified by
“the decimal value equivalent.

R"x" The specific character is given for BAM to
translate to display code; this format is not
valid in a FILE control statement.

If RMK is set to zero, the default record mark character
(the right bracket) terminates the record.

60495800 C

SYSTEM, S TYPE RECORDS

S type records have certain characteristics depending on
whether the file exists on a PRU device or on an S or L
tape.

e On a PRU device (disk, SI tape, I tape), each record

occupies an integral number of central memory words
and is terminated by a system-supplied terminating
marker. Data grouping consists of one or more PRUs
terminated by a short PRU or zero-length PRU. An
S type record is equivalent to a logical record under
NOS and a system-logical-record under NOS/BE.

e On an$S or L tape, each record is a tape physical
record terminated by an interrecord gap.

S type records are used by systems programmers more
often than by applications programmers. This record type
is used when files must interface with the operating system
without the benefit of BAM. If BAM is available for
reading a file, other record types are preferable. You can
specify S type records for sequential files, but not for word
addressable files.

S type records exist by default on the following files:

e Binary files written by compilers or other members of
the product set that do not use CYBER Record
Manager

e Files written by BUFFER OUT in FORTRAN

e Files written by COMPASS when BAM macros were
not used and disposition was not for unit record
equipment

e Files written by utility programs such as Update

Three FIT fields are required to describe S type records on
PRU or S/ devices.

RT Record type. This FIT field must specify
S type records.

RL Record length. This FIT field specifies the
actual number of characters to be written.
The field is required for a write operation
only. After a record is read, RL contains the
number of characters read.

MRL Maximum record length. This FIT field
specifies the maximum number of characters
to be moved to the working storage area.
The field is required for a full record read; it
is ignored for a partial read. If MRL is set to
zero, records of any size can be written. If
MRL is set to a value and that value is
exceeded, an excess data error occurs.

On PRU devices, S type records always occupy an integral
rnumber of words of storage. BAM rounds upward any user
value for record length to a multiple of 10 characters if
- necessary. The terminating marker that the operating

system supplies to delineate the end of
system-logical-records on PRU devices is not a part of the
user record in the working storage area or buffer.

On an L tape, S type records can have any number of

characters. On an S tape, S type records cannot exceed
S tape block size.

60495800 C

TRAILER COUNT, T TYPE RECORDS

T type records each consist of a fixed-length header
followed by a variable number of fixed-length trailer
items. This record type is useful in situations where the
amount of information known about each item is the same

but where it is not known how many items a given record
will have. For example, a file containing census data could
have information related to the family as a whole in the
fixed-length base and information related to an individual
family member in each trailer item. You can specify
T type records for sequential files, but not for word
addressable files.

Six fields in the FIT are required to describe T type
recards.

RT Record type. This FIT field must specify
T type records.

HL Header length. This FIT field specifies the
number of characters in the fixed-length
header portion of the record.

cP Trailer count beginning character position.
This FIT field specifies the character position
(counting from 0) within the fixed-length
header in which the trailer count field begins.

CL Count field length. This FIT field specifies
the number of characters (1 to 6) in the
count field.

TL Trailer length. This FIT field specifies the
number of characters in one trailer item.

MRL Maximum record length. This FIT field
specifies the maximum number of characters
to be moved to the working storage area.

The field is required for both a read and a
write operation; it must be set before a

record can be processed.

The value of the count field described by the CP and CL
fields is assumed to be decimal, right-justified, and display
code zero or blank filled. If the value of the count field is
a binary integer, the COMP-1 (Cl) field must be set. The
sign-overpunch (SB) field must be set if the value in the
count field is a sign-overpunch value.

The length specified by the HL field is the logical minimum
record length; the field must be specified explicitly. The
count field must be within the header portion of the
record; therefore, the sum of the values in the CP and CL
fields cannot be greater than the value in the HL field.
The minimum record length should be at least
10 characters.

Because BAM determines record length from the HL, TL,
CP, and CL fields, you should not set the record length
(RL) field. BAM sets the RL field to the number of
characters read or written after successfully processing a
record.

UNDEFINED, U TYPE RECORDS

U type records have a format that differs from the other
record types supported by BAM. This record type is most
commonly specified when an existing file has records that
do not correspond to any other record type supported by
BAM. You can specify U type records for sequential and

) word addressable files.

BAM makes no assumptions about the contents of U type ;

records. No search for record delimiters or control words
is performed; if such delimiters exist, BAM assumes they
are part of the data.

Three FIT fields are required to describe U type records.
This FIT field must specify

RT Record type.
U type records.

RL Record length. This FIT field specifies the
number of characters to be read or written,
The field is required for both read and write
operations.

MRL Maximum record length. This FIT field

specifies the maximum number of characters

to be moved to the working storage area.

The field is required for a read operation; it

is not required for a write operation.

CONTROL WORD, W TYPE RECORDS

W type records are prefixed with a record control word
supplied by BAM. This word indicates the user data record
size and the size of the preceding record, and holds flags
that BAM uses to maintain file position and check parity.
The control word is written at all block boundaries. You
can specify W type records for sequential and word
addressable files.

Variable-length W type records are packed and, therefore,
conserve space. This record type provides the fastest
access for variable-length records since BAM does not
search for end-of-record marks or check record count
fields. Record type defaults to W for both sequential and
word addressable files.

Four FIT fields are required to describe W type records.

RT Record type. This FIT field must specify
W type records (default).

RL Record length. This FIT field specifies the
number of characters to be written.

MRL Maximum record length. This FIT field

specifies the maximum number of characters

to be moved to the working storage area.

The field is required for both a read and a

write operation.

CM Conversion mode. This FIT field must be set
to NO (default) to disallow character

conversion, which would destroy control word
information.

The RL field must be set for each record written. At the
completion of a write operation, BAM stores the record
length in the control word. The default value for RL is-0,
which is an acceptable length for W type records. If you
inadvertently omit the RL parameter, BAM writes a
control word showing a wuser record length of zero
characters and returns to the user program without
comment.

2-6

v

Record length is not required for reading records because
BAM has this information in the control word for each
record. With the exception of a partial read request on a
sequential file, any record length in the read request is
ignored. At the completion of a successful read, the RL
field in the FIT is set to the number of characters just read.

ZERO BYTE, Z TYPE RECORDS

Z type records are terminated by 12 bits of zero in
character positions 8 and 9 of the last central memory
word in the record. Because the end of a record is marked,
BAM automatically discards full words of nonsignificant
blanks from a record to reduce mass storage use. You can
specify Z type records for sequential files, but not for
word addressable files.

Two fields in the FIT are required to describe Z type
records.

RT Record type.
Z type records.

This FIT field must specify

FL Full length. This FIT field specifies the
maximum number of characters in any record.

When Z type records are being read, BAM sets the record
length (RL) field to the number of characters read, not
including blank padding. It is not necessary to specify a
value for the RL field when Z type records are being
written; however, by setting the RL field, you can speed
processing as BAM attempts to minimize storage use and

suppress blanks at the end of the user record. When a
record is written, the following occurs:
e If the value of the RL field is not zero, BAM

determines the end of the record by searching
backward from RL for the first nonblank character.
The zero byte is added in the last two character
positions; binary zeros are stored between the last
significant character and the first character of the
zero byte.

e If the value of the RL field is zero, BAM determines
the end of the record by searching backward from FL
for the first nonblank character. The zero byte is
added in the last two character positions; binary zeros
are stored between the last significant character and
the first character of the zero byte.

If the installation is using a 64-character set, you should
avoid two adjacent colons in data records or ensure that
the colons are not aligned as the two lower characters in a
central memory word. Because the display code equivalent
of these characters is also 12 bits of zero, the colons would
mistakenly signal the end of the record if they occupied
character positions 8 and 9 in any word within the record.
If a record ends with a colon, BAM appends one blank to
preserve the colon and distinguish it from binary zero fill.

SUMMARY OF RECORD TYPES

Record types are summarized in table 2-1. The listing
includes required FIT fields and, where appropriate, the
actual value to be entered.

60495800 C

TABLE 2-1. SUMMARY OF RECORD TYPES

Record Type

Description

Required FIT Fields

Restrictions

D
(decimal count)

Each record contains a
field that specifies the
exact number of characters
in that record. -

RT D

LP Length field
character position

LL Length field length

MRL Maximum record length

Used with sequential
files only.

I1legal for backward skip.
I11egal with REPLC.

F .
(fixed length)

Each record in the file
contains the same number
of characters.

RT F
FL Fixed length

Backward skip requires
record length to be a
multiple of 10 char-
acters when block type
is C.

R
(record mark)

Each record is terminated
by a record mark.

RT R

RMK Record mark character
(default is])

MRL Maximum record length

Used with sequential
files only.

I1legal with GETP
and PUTP.

i11egal for backward skip.
I71legal with REPLC.

S
(system)

Each record on a PRU
device is a system-
logical-record; each
record on an S or L tape
is a tape physical record.

RT S

RL Record length
(write only)

MRL Maximum record length
(read only)

Used with sequential
files only.

I11egal with K or E
blocking.

I1legal with REPLC.

T
(trailer count)

Each record consists of a
fixed-length header
followed by a variable
number of fixed-length
trailer items.

RT T

HL Header. length

cpP Trailer count

CL Count field length
L Trailer length

MRL Maximum record length

Used with sequential
files only.

I1legal for backward
skip-

I1legal with REPLC.

(control word)

with a record control
word.

RL Record length (write
only)

MRL Max imum record length

M NO (no character
conversion)

u Each record has a format RT U I1legal with REPLC.
(undefined) that differs from other
record types supported by RL Record length I1legal with SKIP.
BAM.
MRL Maximum record length Illegal with GETP...
(read only) ISKIP'.
W Each record is prefixed RT W (default) I1legal with K or E

blocking.

60495800 C

2-7

TABLE 2-1. SUMMARY OF RECORD TYPES (Contd)

Record Type Description Required FIT-Fields Restrictions
Z Fach record is terminated RT z Used with sequential
(zero byte) by 12 bits of zero in the files only.
low-order position of the FL Full length .
last word in the record. Iliegal with REPLC.

OWNCODE PROCESSING

Owncode processing includes seyveral options that you can
select or change at the time the file is created or at any
time during subsequent file processing. Once you select
one of these options, it affects all subsequent file
processing until you change the option by resetting the
appropriate FIT field.

End-of-data exit and error exit owncode processing apply
to both sequential and word addressable file organizations.
Label exit owncode processing applies only to sequential
file organization. Each option is discussed in the following
paragraphs.

END-OF-DATA EXIT

End-of-data exit processing applies to sequential and word
addressable file organizations. You specify the option by
setting the end-of-data exit (DX) field in the FIT. Defining
an end-of-data exit allows you to gain control when an
end-of-data condition is encountered. An end-of-data
condition occurs when a sequential read on a sequential or
word addressable file encounters end-of-information; when
a sequential read on a sequential file encounters an
end-of-section or an end-of-partition; when a forward skip
on a sequential file encounters end-of-information; or when
a backward skip on a sequential output file encounters
beginning-of-information. The file position (FP) field in
the FIT is set to 1 for a beginning-of-information condition
and to 100g for an end-of-information condition.

The name of a user subroutine is specified for the DX field
through the CALL FILExx or CALL STOREF statements.
For sequential files only, you can specify an end-of-data
exit in a read or partial read request.

Figure 2-6 illustrates the format of a user subroutine that
processes an end-of-data condition. The subroutine must
be declared EXTERNAL, and labeled or blank common
should be used to pass information between the main
program and the owncode subroutine. No parameters can
. be passed. Exit is made through a RETURN statement,
which passes control to the calling program at the
statement following the BAM call that resulted in the
end-of-data exit.

When end-of-data exit is taken for end-of-information,
continued attempts to read without repositioning the file
cause an error condition. Control is then transferred to
the error exit, if one is specified, instead of to the
end-of-data exit. A trivial error condition is produced if
continued skipping is attempted after end-of-data accurs.

End-of-data exit processing is discussed in more detail in
section 5.

2-8

PROGRAM DATAEX
EXTERNAL OWNCODE

.CALL FILESQ(SQFIT,'DX',OWNCODE, . . .)

END

SUBROUTINE OWNCODE

RETURN
END

Figure 2-6. End-of-Data User Subroutine Setup

ERROR EXIT

Error exit processing applies to sequential and word
addressable file organizations. You specify the option by
setting the error exit (EX) field in the FIT. Defining an
error exit allows you to transfer control to a reccvery
subroutine after a fatal or trivial error occurs. If the error
is fatal, no further input/output can be performed on that
file; any such attempt causes the job to terminate.

The name of a user subroutine is specified for the EX field
through the CALL FILExx or CALL STOREF statement.
For word addressable files only, you can specify an error
exit in a read request. For both sequential and word
addressable files, you can specify an error exit in a write
request.

Figure 2-7 illustrates the format of a user subroutine that
processes an error condition. The subroutine must be
declared EXTERNAL, and labeled or blank common should
be used to pass information between the main program and
the error exit subroutine. No parameters can be passed.
Exit is made through a RETURN statement, which passes
control to the calling program at the statement following
the BAM call that resulted in the error exit.

Error processing is discussed in more detail in section 5.

LABEL EXIT

Label exit processing applies only to sequential file
organization. You specify the option by setting the label
exit (LX) field in the FIT. Defining a label exit allows you

to transfer control to a user label subroutine during open
and close processing of a tape file.

60495800 C

PROGRAM ERROR
EXTERNAL ERREX

bALL FILEWA(WAFIT,'LFN',' WAFILE','EX",ERREX)
CALL OPENM(WAFIT)
CALL GET(WAFIT,BFR)

END
SUBROUTINE ERREX

RETURN
END

FIT field values supplied in a FILE control statement
become part of the FIT when the file is opened. Fields not
specified receive default settings as listed in table 2-2.
Once a value for a given FIT field is changed, the default
no longer applies. .

TABLE 2-2. PARTIAL LIST OF FIT FIELD DEFAULT VALUES i

Figure 2-7. Error Exit User Subroutine Setup

The name of a user subroutine is specified for the LX field
through the CALL FILESQ or CALL STOREF statement.
The subroutine must be coded in COMPASS because the
COMPASS macros GETL, PUTL, and CLOSEL provide for
user label processing. You are responsible for returning
control to BAM for continuation of open and close
processing.

The user label processing (ULP) field must be set to any
value other than NO. The open flag (OF) field must be -set
to R; this effects a file rewind on open and allows the label
to be accessed. One subroutine need not account for all
labels used in processing. Because the LX parameter can
be reset, separate routines can be executed for various file
positions. Label processing is discussed in more detail in
section 3.

GENERAL FILE PROCESSING

Follow the same general procedures for all BAM files being
accessed by direct calls:

1. Construct the FIT.

2. Define a working storage area.
3. Open the file.

4. Process the file.

5. Close the file.

When a BAM file processing statement is executed,
parameters in the statement are placed in their respective
FIT fields. Omitted parameters do not affect the current
FIT values.

ESTABLISHING THE FIT

You must establish the FIT before any other references are
made to the file. Detailed construction of the FIT in the
proper format is performed by BAM when the CALL
FILExx statement is executed. You must provide FIT field
values for the logical file name (LFN) field and any fields
for which the default value is not to be used. Specific
fields required for file processing depend on the file
organization and are discussed in the sections on file
processing.

60495800 C

Field .
Category and Type Default Meaning
File FO0=5Q Sequential file organ-
structure ization
ASCII=0 64-character display
code
BT=I Block type I
MBL=5120 Maximum block size
5120 characters
MRL=0 No maximum record
length
RT=W Record type W
File CF=R File rewind after
processing close
CM=NO No code conversion
for tape read/write
OF=R File rewind before
open
PD=INPUT File open for read
only
VF=U Tape volume unload
after close volume
Owncode DX=0 No user owncode
exits for end-of-data
processing
EX=0 No user owncode for
error processing
LX=0 No user owncode for
label processing
Error DFC=0 Except for fatal
processing errors, no dayfile
messages
EFC=0 No error file
messages
EQ=T File terminate on
parity error -
ERL=0 Unlimited trivial
errors

NOTE: Other default values can exist under
certain circumstances.

DEFINING THE WORKING STORAGE AREA

The working storage area is a user-defined area where
BAM finds or returns one record for a write or read
operation. The address of this area is stored in the working
storage area (WSA) field in the FIT. The working storage
area is typically a one-dimensignal character or integer
array. If specified as a CHARACTER type data structure,
WSA must be word-aligned.

Figure 2-8 shows the events that occur in response to your
request to write a record. BAM moves the record from the
working storage area into the file buffer in central
memory. When the buffer is full, or at other times
appropriate to processing, BAM makes a request to the
operating system to transfer the buffer contents to a
storage device.

In response to your request to read a record, BAM moves
one record from the buffer into the working storage area.
If the record is not in the buffer, the operating system is
requested to transfer the proper block of information to
the buffer so that your request can be carried out. You are
aware only that records are moved from and to the working
storage area upon request. All other record or block
movement is internal to BAM.

You can change the working storage area anytime during
execution of the program. FEach record written can
originate in a different area of the program. You need not
move a record to a specific area for writing. Any address
set in the WSA field by the write request, or stored in the
WSA field before a write request, is used during execution
of the write request.

BAM considers the working storage area to have a length
of MRL characters. Any attempt to read more than MRL
characters results in a trivial error 142 with MRL
characters moved to WSA and the file positioned at the
beginning of the next record.

A full record is returned for each read request (except in
the special case of a partial record read on a sequential
file). The number of characters in the. record is always
returned to you in the RL field in the FIT. Because the
working storage area is comprised of an integral number of
words, only the specific number of characters that are a
part of the record can be considered valid.

OPENING THE FILE

You must open the file with a call to OPENM before any
file processing can be performed. Open processing includes
the following events in the order listed:

1. FIT fields specified on the CALL OPENM statement
are set.

2. FILE control statement parameters are placed in FIT

fields. FILE statement values can override values
previously set by the CALL FILExx or CALL STOREF

statement.

3. For an existing file, file descriptions are extracted
from the FSTT and stored in the FIT. FSTT values can
override previous FIT values.

RA User Field Length

User program sets WSA field in FIT.

FIT

WSA Pointer

' . .
-~ Pointer to working storage area.

L L

<

WSA

<

el

e

— PUT statement in user program moves record in
working storage area to buffer.

e

<

FWB

BAM uses operating
system routines

L

Many records
” collected in buffer

£7 to storage.

for buffer transfer

FWB + BFS

-

RA + FLi

Figure 2-8. Working Storage Area Use

2-10

60495800 C

4, Minimum parameters required by the file organization
are checked.

5. FIT fields are checked for consistency in logic.

6. Buffer space is calculated and reserved by BAM unless
you have allocated the space.

7. The open/close flag (OC) field in the FIT is set to
opened.

8. Any labels on magnetic tape files are processed.

If BAM detects an error in format or an omission or
inconsistency in logic in the FIT fields, an appropriate
diagnostic is issued. This frequently accurs when all fields
required for a particular file organization have not been
defined correctly or when a specified field precludes
another specified field. An error detected during open
processing prevents the open/close flag (QC) field from
- being set to opened.

PROCESSING THE FILE

Records in a BAM file can be read, written, and replaced.
Sequential access is supported for both sequential and word
. addressable files; random access is supported for word
addressable files.

The processing direction (PD) field in the FIT determines
the operations that can be performed on the file. For
reading records, set the PD field to either INPUT or 105 for
writing records, set it to either OUTPUT or 10,

Reading Records

Sequential files are read by position (sequentially). A full
read accesses the next record in logical sequence in the
file. A partial read accesses a specified number of
characters in logical sequence from the present position
within the file. When a full read operation is performed,
BAM returns the full record to the working storage area
defined by the WSA field in the FIT. When a partial read
operation is performed, BAM returns the specified number
of characters; characters from PTL to the next word
boundary are undefined.

You can read word addressable files sequentially or by
word address (randomly) with full records only. A
sequential read accesses the next record in logical
sequence in the file. A random read accesses the record
associated with the word address (WA) field of the FIT; you
can set the word address value by using a CALL STOREF
statement prior to the read or by including the value in the
read request. When a read operation is performed, BAM
returns the full record to the working storage area defined
by th?j WSA field and resets WA to the word following the
record.

At the end of the read operation, the record length (RL)
field in the FIT is set by BAM. If no error accurs, the RL
field reflects the number of characters returned to the
working storage area; it is equal to the number of
characters required by user setting or record control fields.

60495800 C

The number of characters transferred to the working
storage area during any read operation is affected by the
rmaximum record length (MRL) field in the FIT as well as
by any other control information pertinent to the record.
With the exception of S type records on disk, the value in
the MRL field sets an absolute limit on data transfer as
follows:

e If the MRL field is greater than zero, the specified
value sets an upper limit on the number of characters
that can be read, even if this limit is smaller than a
given record.

e If the MRL field is zero and.S type records stored on a
PRU device are being read, records of any length can
be read by a partial read operatior. For any other
type record, an MRL field of zero indicates no data

can be transferred to the working storage area.

Writing New Records

A write operation causes a record to be moved from a
working storage area to the buffer for the file being
processed. The length of the record written is determined
by the record length (RL) field in the FIT or other control
information appropriate to the record type.

Sequential files are written sequentially. The record in the
working storage area when the first write operation is
executed becomes the first physical record in the file. The
second write operation produces the second record, which
is written directly following the first.

For sequential files, you can write a partial record. You
must specify the number of characters to be written in the
partial write request. For each request, data is transferred
from the beginning of the working storage area to the file.
A partial write is particularly useful for constructing a
single record from information residing several places in
storage. By changing the working storage area address for
each call, you can gather data from several sources. You
must identify the end of the record with a record length
specification appropriate to the type of record under
construction or with a write end-of-section request when
record type is S.

You can write word addressable files randomly or

sequentially with full records only. Each record begins at
the address specified.in the word address (WA) field of the
FIT. You can write records in sequential order because
BAM sets the WA field to the address of the next available
ward in the file after each write; when this address is
accepted as the word address for the next succeeding
write, records can be written sequentially. You can write
records in random order by changing the word address for
each write.

UPDATING THE FILE

You can update a sequential mass storage file by replacing
the record previously read with a record from the -working
storage area. The replacement record must have the same
length as the record being replaced. If a replace request is

not immediately preceded by a read of the record to be
replaced, a trivial error results and the request is ignored.

You can update a word addressable file by averwriting a
record stored at a particular word address with a record
from the waorking storage area. The replacement record
must have the same length as the record being replaced
unless space was left to add to a record or space was left
by a shorter record.

§ cLOSING THE FILE .

At the end of processing, you must close the file. Close
pracessing includes the following events:

e User data records for an output file are written to the
file storage device from the central memory buffer.
i This event is called flushing the buffer.

2-12

e End-of-information is written if applicable to the file

organization.

e Any labels on magnetic tape files are processed.

e The open/close flag (OC) field in the FIT is set to

closed.

A trivial error occurs if you attempf to close a file that
has never been opened or has already been closed.

Close processing also includes file positioning. The file can
be rewound, not rewound, unloaded, returned to the
operating system, detached from the job, or disconnected
from the terminal. If you specify rewind or no rewind, the
file can be reopened by the same program. If you specify
any other positioning option, the file is not available for
further processing.

60495800 C

SEQUENTIAL FILE PROCESSING 3

A sequential file is a mass storage or magnetic tape file of
records that are stored in the physical order in which they
were written. No logical order exists other than the
relative physical record position. To read any given
record, many other records might have to be read or
skipped under user program control. No key exists by
which a record in a sequential file can be retrieved by key
value. Sequential file organization is assumed by default if
another organization is not defined.

Sequential files can reside on mass storage devices or
magnetic tape. In concept, sequential files on mass
storage are analogous to files on unlabeled tape;
beginning-of-information is the start of the first user
record, and end-of-information is the end of the last user
record.

CONCEPTS OF PHYSICAL
FILE STRUCTURE

Individual records in sequential files are grouped in large
units called blocks. Blocking provides for efficient use of
hardware on which files are stored or for construction of
phy sical groupings in situations such as tape interchange.

On tape, the blocks become the physical records that
appear between interrecord gaps. The Ilogical block
structure, therefore, is dependent on the physical structure
that can be written by the routines controlling tape
operations and on the routines that logically interpret the
physical records. On mass storage, the logical block
structure is maintained by BAM routines that interface
with the operating system routines for reading and writing
on a device.

Once you select an appropriate block type, BAM performs
all manipulations required for block construction. You
specify block type for BAM with the BT parameter. You
can define four types of blocking:

1 Every block is 5120 characters long; the first
word is an internal control word. Records can
span blocks. Only W type records can appear in
I blocks.

C Every block is the same length. You or BAM sets
the specific length appropriate to the device on

which the file resides. Records can span blocks.
Any type of record can appear in C blocks.

K Every block contains the same number of records;

but because all records need not be the same:

length, all blocks are not necessarily the same
. length. Any type of record except S and W can
appear in a K type block. These blocks are
-applicable to S and L tapes only and are used
frequently for file interchange with another
computer system. Records cannot span blocks.
You can specify .padding to ensure that the
minimum block size is acceptable for another
computer system or to increase block size so that
it exceeds noise record size on tape.

60495800 C

E Block length can vary from the minimum number
to the maximum number of characters defined.
As many whole records as possible are placed in
each block such that MBL is not exceeded. Any
type of record except S and W can appear in an
E type block. These blocks are applicable to S
and L tapes only and are used frequently for file
interchange with another computer system.
Records cannot span blocks. You can specify
padding to ensure that the minimum block size is
acceptable for another computer system or to
increase block size so that it exceeds noise record

size on tape.

All sequential files processed by BAM are blocked
according to one of these types. You must select block B
type before the file is opened for initial write operations, §
and you cannot change block type for the life of the file. :

Table 3-1 summarizes block types.

STRUCTURE ON MASS STORAGE

A sequential file on a mass storage device can have one of
the following block types:

I Internal control word. Each block contains 5120
characters.

C Character count. Each block is a multiple of PRU
size for a particular device (640 characters for
disk). Each block contains the number of
characters specified by the maximum block length
(MBL) field of the FIT, up to a maximum of 5120
characters.

Figure 3-1 illustrates sequential file structure ‘for mass |
storage files.

STRUCTURE ON SI AND | TAPES

A sequential file on SI or I tape has a structure similar to
that of a mass storage file. The PRU size on tape,
however, can be a maximum of either 1280 or 5120
characters, depending on whether coded or binargl data is

written. You must set the conversion mode (CM) field in
the FIT to YES for coded data.
Block type for binary data can be:

1 Internai control word. Each block contains 5120
characters.

C Character count. Each block can contain a
maximum of 5120 characters of binary data.

Block type for NOS/BE coded data (SI tape files only) can
be:

C Character count. Each block can contain a
maximum of 1280 characters of coded data.

Figure 3-2 illustrates sequential file structure for SI and 1
tape files.

3-1

*papped
9q ues sx50|g
*s}201q ueds jou
-UB3 SpJU0d3Y .
*SpJ023J4 gy ueyy
43M3J ULB3UOD
ued a8t} Jo “pajJod
uor3jLided e jo -dns abueyduazuy
42019 3sel ayL adey puJepue3s [SNY
(Boz s1 *SpA0daL :
1lhejep) 40 JBquNu BwRS
g92=24d (1 st 9y3} suLejuod ‘SPA023J4 gy
1Lnejap)| 2049 yoea 3Ing| SULPIUOD XI0(q yoey A
(z st u=gy ‘apqeL4eA st
1Lnelap) yjbus| yoorg| -0z snutw
36ewep u=1nWp (021§ St suag3oedeys| < saajoedeyd
ButJajunoous q[neap) *SpJ0oJa4| ui S48 40 0215 40
s3] 14 adey (0 st XeUW="1gW 1e3tsAyd ade}| wrwixew e| wnwixew e M pue §
404 Auan0dad| 3inejep) Se pa3p40ddajuleiucd uedjurequod ued 31daoxs
poob apiaoud ulli=gNW =19 34R SYD0{g} %I0Lq yde3] 20[q yode3 tebajyg Leba il adAy Auy| ¥
(sap1s *pajuoddns jou sbueyousjur adey puepuels ISNY
43430
LL® 401 0 °$3201q ueds *K43A0234
¢sadeq ued SpPU0I3U 40449 A3t.ed
T 40}] spaodad adAy § s93eqL|loey azLs
0z snulw Joj 3daoxy N¥d=18W “sp4o|-£3L|LqL3edwod
sJda3oedeyd *3001q ade} Iuo *AA3N0I34 JOJAUD A3Lded sa3ellitoey -JaJ4 9dA3 M 404 2 3d00S 404
ut s4g *paLtid| SL p4odaus adhy s aug 9ZLS fYd="18W °SP40234 2dAg M J04 butryooiq 9
‘9384 fsade]| sAemie sL 9L} *3udLoL44af 03 385 2G ued
d9js5uedy S 403 40 ‘uoljiised| gz snuiw jsow st Q=1dW| ABU3 ‘payoolq
poob pue 0216 St ‘U0L]09S B| SJ4@}0PURYD]*SU8]0RARYD | *SJUBIIBARYD | "sddjoeJEyd | "SJI}IRJEYD -un 34e SpJo
AoualoL e 3Lneysp) 40 300G 1se|| ui S48 jJo 0215 40 021§ 40 021§ 30 08¢1 40] "0219 30 wnuixew -J94 adhy S
ea4b yam Xew="gW au3 A[qLs| uwnwixew e wnwLXEW ® wnwixew e wnwiL xew e wnwixew ef e 03 dn °su3joe ybnoya |y
K| [euad3uL -50d 3d80xajulejuod uedjuleluod ued | ulejuod ued | ulejuod ued| uLe3juod ued] -Jeyd g SuLel .
$$3004(=19 %2019 yoe3| %o01q yoej| yoopq yoez %2019 yoe3g§ >o01q yoel %0014 yoe3j| -uod ¥20iq yoej adAy Auy| 9
*s$)201q ueds
ued SpJ0oddY
-pead buraq "NYd 340ys
a4e Spuo *fJaeulq B SR pap.odau
-034 buoy S{ UOLJBWJOJUT ’ SL 3001q 340YyS
uaym Ajae e faaydoys
-ndt3ued (3Lnegoap) 32014 °q ued 3|L4
fLaoupu M=1Y ay3 UL pJo 40 ‘uoliiged
[BFUER] =294 3SdL} Byl ‘pajJoddns jou sbueyousjur adey puaepuels ISNY ‘U01329s B UL
pue adLA (3Lnegap) 03 J83utod e ¥201q 35®| Byl
-ap abeuois ON=W2{ SapnioutL yoLym *U9340YS 3q ued
uzsmiaq ‘pJaoM {0ujued} S|t) J0 ‘uorilided uoL3oss B ul }O0{q 3SBL YL *sJdajoedeyd
Jajsuedy (3inejap) ¥001q ® Yilm 021§ Ssuiejuod
JSe4 3pLAOUY 1=18 utbag syoolg *S48700J4RYd QZTG SULBIUOD %00{q yoe3 1ebal L] 201G yoe3 Apuo Mj 1
Leuotidg | padinbay ! S P I Aaeutg IS * n%S\G | sadk) sd)
SoL3st uc SON uo 34/SON Sa|td
43300 4RY] uot3druasag L) ' abeuaojs ssey m—wmmwww< ¥oo1g
Spl3t4 114 po1RLO0SSY s9|L4 adel
S3dAL 22078 40 AYYWWNS “T-¢€ 378vL

60495800 C

3-2

9dA3 paoddy 1Y
201G 48d Spuodsy gy
J330edaeyd buipped ad
3201 q J43d suajdeaeyd 10 3dLILNW INW
yibus| paooau wnuLull HNKW
yibual 00| q wnwiull GNW
yjbus| yooiq wnwixey g
9poll UOLSJUBAUO) W)
adA3 yooig 18
. 3zLs Jayng S48
1N3931
‘pajsoddns abueydusiut
{89z st adey pJepuels ISNY
1Lhegap)
§92=2d *7gW ulylim arqissod
' *popped aqf Se Spuodas I oym Auew
(2 st ued sxyd0(g| se suiejuod 3o0{q yoe3
31neyap)
u="10H *5320(q
ueds jou] °pz shutw
*abeurep uLtu=YNWi (0216 St =ued spJaoday] su4ajovdRyd| - suajovdeyd
Butaajunoous 1 nesap) uL g4 4o 021§ 40
safL4 adey (0 st Xel=1qW “gW 03 gNW] wnwixew e wnwixew e
404 AU3A0DBL| 3|he4ap) Wou4y SOLJRAjULRIUOD UeDfULRIUOD uRD M pue § 3da2
poob apiacad| uLw=gNW 3=i8 y3buay 3d01g| ¥001q yoea| yd01q yde3 ebatl1 tebal L] -X3 8dA3 Auy| 3
feuoiidp | pauainbay 1 S (5 1 v Kaeurg IS * uwuoU_m v sadA| "
so13st Luo SON Luo 38/SON sl adAy
-J4332ed4ey) uoy3dyu0sag abeua03s ssep s nmmwwz 3oolg
SP13td 114 PaIRL00SSy sa|t4 adey LaeMoLLY

{P2u0d) S3dAL MJ078 40 AYYWWNS

“T1-t 3avl

3-3

60495800 C

| Type Blocking
Every block contains 5120 characters. .

l—Block control word

Records can span blocks.

Logical Logical Logical Logical Logical ; Logical Logical Logical Logical
record record record record record record record record record
1 block
C Type Blocking
Every block is a muitiple of PRU size. Except for S type,
records can span blocks.
1 i
Logical Logical Logical Logical Logical Logical Logical
record record record record record record record /.
1 block

Figure 3-1. Mass Storage Sequential File Structure

I Type Blocking
Every block contains 5120 characters; binary data only.

r Block control word

Records can span blocks.

C Type Blocking
Every block is 5120 characters if binary; 1280 characters

Except for S type,

Logical Logical Logical L.ogical Logical Logical L.ogical Logical Logical
record record record record record record record record record
1 block

if coded. records can span blocks.
| 1
Logical Logical Logical Logical Logical Logical Logicat
record record record record record record record
1 block

3-4

Figure 3-2. SI and | Tape File Structure

60495800 C.

STRUCTURE ON S AND L TAPES

A sequential file on S or L tape has blocks equivalent to

physical records written on the tape. S and L tapes do not
define a fixed-size PRU. The length of the logical block

written also defines the physical block.

Block types that can appear on S or L tapes are:

1-

C

Internal control word. Each block contains 5120
characters.

Character count. Each block is a maximum of
5120 characters.

Record count. Each block has the number of
records defined by the blocking factor (RB).

Exact records. FEach block contains as many
whole records as possible within the maximum

block length declared.

I Figure 3-3 illustrates sequential file structure for S and L
tape files.

DESCRIBING BLOCK TYPES

Blocks are described by parameters in a FILE control
statement or a CALL FILESQ statement. The block type
selected affects any buffer that is defined with a BFS
parameter. BFS is specified in words. If you specify BFS,
it must exceed by two words the larger of one of the
followings

e Block size defined or defauit MBL.

e Physical record unit size of the resident device for the
file. For mass storage, PRU size is 64 words; for SI or
I tapes, size is 512 binary words or 128 coded words.

For S/L devices, PRU size is not applicable.

DESCRIBING | TYPE BLOCKS

I type blocks begin with a block control word that contains
block and record identification. You cannot access this
word. Contents of the control word include a pointer to
the first record beginning in the block. (Records can span
blocks.)

| Type Blocking
Every block contains 5120 characters.

Block control word
—

Records can span blocks.

Logical Logical Logical Logical L.ogical Logical Logical Logical L.ogical
record record record record record record record record record
1 block

C Type Blocking
A block is a maximum of 5120 6-bit characters;
BFS in characters minus 20 for L tapes.

Except for S type,
records can span blocks. !

13

Logical Logical Logical ogical
record record record record

Logical Logical Logical
record record record.

1 block

K Type Blocking
Each block length is the sum of RB record lengths.

Record size is variable,

Logical Logical Logical Logical Logical Last block has RB or fewer records. Records
~ record record record record record cannot span blocks.
1 2 3 4 RB
1 block !
E Type Blocking
Each block length is between MNB and MBL characters. Both record size and block size are variable. I
Logical Logical L ogical Logical Logical Logical Block ends on the last full record that
record record record record record record does not cause block length to exceed
MBL. Records cannot span blocks.
1 block I

Figure 3-3. S and L Tape File Structure

60495800 C

3-5

1 tYpe blocks can contain only W type records. To describe
an I type block, specify the following parameters for the

FIT fields:

BT=I Block type I.
RT=W Record type in I blocks must be W.
CM=NO No conversion of data to external

code when the file is being written;
CM=YES is not allowed for W type
records.

If you do not specify values for the BT, RT, or CM fields, -

default values are as shown (I, W, and NO).

I type blocks are always 5120 characters long; therefore,
any specified block length is ignored.

DESCRIBING C TYPE BLOCKS

C type blocks contain the number of characters specified
by the value of the maximum block length (MBL) field.
With the possible exception of the last block of a section,
partition, or file, each block is always filled. Any record
type except S can span blocks.

C type blocks can contain any type record. S type records
cannot be blocked, although block type can be set to C for
SCOPE 2 compatibility, For S type records, any user value
for MBL is not changed for files on any device.

To describe a C type block, specify the following
parameters for the FIT fields:

BT=C Block type C.

Maximum number of characters in
each block.

MBL=max

If you do not specify the MBL field, default values are
supplied as follows:

Mass storage MBL.=0 (unblocked)

L tapes MBL=value of the buffer size (BFS)
field in characters minus 20

Other tapes MBL=5120 binary characters

For mass storage files, the MBL field can be set to 0 or a

multiple of PRU size. The most efficient value for the

MBL field is 0 because fewer control words need to be

checked; this is particularly true for W type records. If
the value specified is not equal to 0 or a multiple of PRU

size, it is rounded down to a multiple. With MBL set to
PRU size with W type records, a boundary condition exists
if a parity error occurs; this facilitates error recovery.

For L tapes, the MBL field can be a maximum of the value
of the BFS field in characters minus 20. For all other
tapes, the MBL field can be a maximum of 5120 characters.

DESCRIBING K TYPE BLOCKS

K type blocks each contain the same number of records,
but the blocks can differ in length because all records need
not be the same length. Records cannot span blocks.

K type blocks are restricted to S and L tapes. Any record
type except S and W can appear in K type blocks.

K type blocks are often used for file interchange. You can
specify padding for a minimum block size so that blocks
meet requirements of other computer systems. You can
dlso use padding to ensure that block size exceeds noise
record size on tape.

To describe a K type block, specify the following
parameters for the FIT fields:

BT=K Block type K.
Maximum number of characters in each

block. Maximum block length must not
exceed 5120 characters for S tapes.

MBL =max

RB=n Nurhber of whole records to be contained
in each block.

If you do not specify values for the MBL and RB fields,
default values are supplied as follows:

MBL 5120 characters
RB 1

If the block is to be padded for interchange purposes, the
following fields are required:

Minimum number of characters in each
block. The value can be 0 and must not
exceed MBL.. The block is padded to this
length if necessary. The last block on
the file might contain fewer than MNB
characters.

MNB=min

MUL=n Multiple number of characters that must

exist in the block. The value must be an
even number; it can be 0, which defaults

to 2, and must not exceed 62.
PC=ccB Display code (octal) equivalent of the
character to be used for padding. The
value can be 0 and must not
exceed 77g.

If you do not specify values for MNB, MUL, and PC fields,
default values are supplied as follows:

MNB " a

MUL 2

PC 76B, which is equivalent to — in the CDC
character set and to -~ in the ASCI
subsets

When you specify padding, BAM ensures that at least MNB
characters are written and the total number of characters
is a multiple of MUL. The character specified by PC is
used for padding. If record type is R, the record mark
character defined by RMK must not be the same as the
padding character defined by PC. .

MNB is not required if padding is not desired; nevertheless,
changing the default zero minimum block size to a value
equivalent to the noise record defined on a system is often

advisable.

60495800 C

DESCRIBING E TYPE BLOCKS

E type blocks contain as many whole records as possible in
the maximum user-defined block size. Records cannot
span blocks. :

E type blocks are restricted to S and L tapes. Any record
type except S and W can appear in E type blocks.

E type blocks are often used for file interchange. You can
specify padding for a minimum block size so that blocks
meet requirements of other computer systems. You can
also use padding to ensure that block size exceeds noise
record size on tape.

To describe an E type block, specify the following
parameters for the FIT fields:

BT=E . Block type E.
Maximum number of characters in each

block. Maximum block length must not
exceed 5120 characters for S tapes.

MBL.=max

If you do not specify a value for the MBL field, a default
value is supplied as follows:

MBL 5120 characters

If the block is to be padded for interchange purpaoses, the
following fields are required:

Minimum number of characters in each
block. The value can be 0 and must not
exceed MBL. The block is padded to this
length if necessary. The last block on
the file might contain fewer than MNB
characters.

MNB=min

MNR=min Minimum record length. The difference
between the minimum and maximum
block size must be greater than the
difference between the minimum and
maximum record size. The character
multiple also must be less than the
minimum record size. MBL minus MNB
must exceed MRL minus MNR,; and MNR

must exceed MUL.

MU =n Multiple number of characters that must
exist in the block. The value must be an
even number; it can be 0, which defaults
to 2, and must not exceed 62.

PC=ccB Display code (octal) equivalent of the

character to be used for padding. The
value can be0O and must not
exceed 77g.

If you do not specify values for MNB, MNR, MUL, and PC
fields, default values are supplied as follows:

MNB 0

MNR 0

MUL 2

PC 768, which is equivalent to — in the CDC
character set and to -~ in the ASCII
subsets ’

60495800 C

When you specify padding, BAM ensures that at least MNB
characters are written and the total number of characters
is a multiple of MUL. The character specified by PC is
used for padding. If record type is R, the record mark
character defined by RMK must not be the same as the
padding character defined by PC.

SUMMARY OF BLOCK TYPES

Figure 3-4 illustrates sequential file block types and
indicates the record types that are applicable. Each FIT
field that must be set, either by specification or by
default, is included.

CONCEPTS OF LOGICAL FILE STRUCTURE

The logical beginning and end of a file are defined in
relation to user records in that file. Beginning-of-

information (BOI) is that point in a file before which no
user data exists; end-of-information (EQI) is that point in a
file after which no user data exists. BOI and EOI refer to
one file only, even when files are stored on magnetic tape.
These terms cannot encompass a multifile set. A tape
trailer label, whether it is a labeled tape or internal trailer
information from an unlabeled SI tape, is past EOL An
unlabeled S/L. tape has no system trailer label, and EOI is
undefined.

Other logical divisions that can exist between BOI and £01
are record, section, and partition.

e A record is a group of related characters. The
structure and characteristics of records are defined

through a record format. The beginning and ending
points of a record are implicit within each format.

e A section is a group of records terminated by a special
record or condition, depending on the block and record

type and storage device.

e A partition is a group of one or more sections
terminated by a special record or condition, depending
on the block and record type and storage device.

FILE BOUNDARIES

The logical divisions of a file depend upon a physical
boundary that can be written and then read as written.
Depending on the particular file format and device,

however, not all logical file divisions are possible.

A sequential file can have the following divisions and
boundaries:

Beginning Beginn‘ing-of-information (BGD

Record End is established by control information
Section End-of-section (EOS)

Partition End-of-partition (EOP)

End ‘ End--of-informat‘ion (EOID)

BAM terminology is not always the same as that of the
operating system. Table 3-2 indicates general file
terminology and the terms used by the operating system
and BAM.

3-7

__—

SEQUENTIAL FILES

FO=SQ (default)

I : S/L Tapes Only

/l\

C Blocks I Blocks K Blocks E Blocks
BT=C BT=1 (default) BT=K BT=E
S Records W Records
RT=S RT=W (default)
RL=n (write only) MR L=max
MR L=max (read only) RL=n (write only)
CM=NO (default)
D Records F Records R Records T Records U Records Z Records
RT=D RT=F RT=R RT=T RT=U RT=2
LL=n FL=n MR L=max CL=n MRL=max Fl=n
LP=n RMK=char CP=n {read only}
MR L=max HL=n RL=n
TL=n
MR L=max
Figure 3-4. Sequential File Block and Record Type Summary
TABLE 3-2. OPERATING SYSTEM/BAM FILE TERMINOLOGY
General File Terminology Operating System Term BAM Term

Beginning of physical file
Single record

End of unit/data record
End of logical record

End of logical file

End of physical file

Beginning-of-information
Unit record or line image
End-of-record

End-of-file

End-of-information

Beginning~of-information
Data record

End-of -record
End-of-section
End-of-partition

End-of-information

3-8

60495800 C

Because the device on which the file resides might require
a boundary condition to terminate a block or might require
a boundary indicator to be written as a separate block, any
block count maintained by the system might not be what
you expect. The block number (BN) field of the FIT
reflects actual blocks encountered and includes blocks
containing only a boundary indicator, as well as blocks with
user records. For magnetic tape files on NOS/BE, the job
dayfile shows actual blocks encountered. A value greater
than that defined by the blocking factor results from
boundary blocks.

When a file is read, BAM sets the file position (FP) field of
the FIT as boundary conditions are encountered. Boundary
conditions are defined as follows:

e Beginning-of-information is defined for all sequential
files stored on all devices.

e Sections are defined for formats shown in figure 3-5;
the letter s indicates a section boundary can exist.

e Partitions are defined for formats shown in figure 3-6;
the letter p indicates a partition boundary can exist.

e End-of-information is defined for all formats and
devices except an unlabeled S or L. tape.

For C type blocks on a PRU device with records other than
type W, an EOS boundary appears before either a partition
or end-of-information boundary. The EOS boundary is
written as part of the response to your request for EOP or
EOL. The FP field setting for a read does nat distinguish an
EOS written at your request from an EOS written as a
result of an EOP or EOI request; consequently, you must be
aware of specific boundaries existing when processing
depends on particular conditions.

WRITING FILE BOUNDARIES

An end-of-information boundary is written by the system
when the CLOSEM request is executed in a file creation
run. Any information in the central memory buffer is
written to the file before close occurs.

File boundaries that can be written by issuing a request
within a source program are:

e End-of-section
e End-of-partition
e Tapemark

Each type of request is described in the following
paragraphs. Refer to appendix F for an example on writing
and processing file boundaries.

Writing an End-of-Section

An end-of-section boundary is written by executing a
CALL WEOR statement. The format is:

CALL WEORC(fit,lvD)
The buffer is written to the file before the section
boundary is written. This statement is also used to
terminate an S type record being constructed through a
series of partial write requests.

You can include a level number parameter. A value of 0
(end-of-section) or 17g (end-of-partition) can be written.

60495800 C

PRU Devices
RT
BT b F R S T U W Z
I) s
C s s s s s 3 s
S/L Tapes
RT
BT D F R § T U w 2
| .
C S

Figure 3-6. File Formats for Which Sections are Defined

PRU Devices
RT
BT D F R § T U w Z
| p
C 3] P P P p P p P
S/L Tapes
RT
BT D F R § T U w Z
! p
C P P P P p p P P
K p P P p p P
E P P P p P P

Figure 3-6. File Formats for Which Partitions are Deﬁnéd
When terminating a section with a WEOR call, you must
consider the following:

e For S type records, a read of EOS returns an EOR
value to the file position (FP) field; the EOS value is

never returned.

e For C, K, or E type blocks on an S/L device, an EQS
cannot be detected by a GET call.

e For W type records, the file must be on a record
boundary to write an EOS.

Figure 3-7 shows some examples of the CALL.WEOR
statement.
Writing an End-of-Partition

An end-of-partition boundary is written by executing a
CALL ENDFILE statement. The format is:

CALL ENDFILE(fit)

CALL WEOR(SQFIT)

This statement writes an end-of-section for the file
described by SQFIT and terminates the block wuth
level 00. The FP field is set to 10g.

CALL WEOR(SQFIT,178)

This statement writes an end-of-section for the file
described by SQFIT and terminates the block with
level 17g. On an SI tape this results in a short PRU
level O followed by a zero length PRU level 178.

Figure 3-7. CALL WEOR Statement Examples

The buffer is written to the file before the partition
boundary is written.

When terminating a partition with an ENDFILE call, you
must consider the following:

e For W type records, an ENDFILE call writes a control
word with the end-of-partition flag set, and
terminates the current PRU or block.

e For PRU devices when record type is not W, an
ENDFILE call terminates the current system-logical-
record with a short PRU level 0, and writes a
zero-length PRU level 17g,

e For S/L devices when record type is not W, an
ENDFILE call terminates the current block and writes

a tapemark.

@ For S type records only, an ENDFILE call can be
issued in midrecord.

Figure 3-8 shows an example of the CALL ENDFILE
statement.

CALL ENDFILE(SQFIT)

This statement writes an end-of-partition for the file

described by SQF]|T. The FP field is set to 40g.

Figure 3-8. CALL ENDFILE Statement Example

.
Writing a Tapemark

A tapemark is written by executing a CALL WTMK
statement. The format is:

CALL WTMK(fit)

Use of a tapemark boundary should be confined to a user
label processing routine for nonstandard labels in ‘which
labels are separated from data by this mark. Do not use it
elsewhere,

User label processing must be performed through a

COMPASS-coded routine. Refer to the BAM reference
manual for details.

3-10

CREATING A SEQUENTIAL FILE

A sequential file is created by writing records to a file
with a defined record type and block structure. You can
declare file characteristics through a combination of FILE
control statements, source language statements, and
installation default values. Once the file structure is
defined, records are inserted into the file by the CALL
PUT statement.

FIT fields that must be defined on a sequentxal file
creation run are as follows:

LFN Logical file name consisting of one to seven
characters and beginning with a letter

FO File organization set to 5Q (default is SQ)

BT Block type and any fields required by the
block type (default is I}

PD Processing direction set to OUTPUT or 1-O

RT Record type and any fields required by the

record type (default is W)

Other optional FIT fields that can be defined on the
creation run and can be changed on a subsequent run are as
follows:

DX End-of-data exit (default is no exit)
EX Error exit (default is no exit)
LX Label exit (default is no exit)

ERL Trivial error limit (default is no limit)

DFC Dayfile control (default is only fatal errors to
the dayfile)

EFC Error file control (default is no messages to
the error file)

PC Padding character (default is 76g)
BFS Buffer size (default is buffer size calculated
by BAM)

FwB First word address of the buffer (default is
buffer address provided by BAM)

When you create a sequential file, you must declare file

characteristics by setting applicable fields in/ the FIT

before the file is opened. Except as noted in appendix D,

you can specify FIT fields in the FILE control statement,

the CALL FILESQ statement, or the CALL STOREF

statement. After all records have been written, you must
close the file with the CALL CLOSEM statement.

On a file creation run, the only statements you can issue
are those that perform the following:

e Establish the FIT.

e Open and close the file.

e Write records.

e Write boundary conditions.

e Store and fetch FIT fields.

60495800 C

ESTABLISHING THE FIT

The first statement referencing the sequential file must be

the CALL FILESQ statement. When this statement is
executed, the FIT is constructed and the specified values

are stored in appropriate FIT fields. The first parameter in
the CALL FILESQ statement is the name of the array to
hold the FIT. The same FIT array name is the first
parameter in every statement accessing the sequential
file. Refer to section 2, File Processing Concepts, for a
more detailed explanation of the FIT and the CALL
FILESQ statement.

OPENING THE FILE

You must open the sequential file with a CALL OPENM
statement before any records can be written to the file.
The format is:

CALL OPENM(fit,pd)

Open processing includes storing FILE control statement
values in the FIT, processing buffer parameters, supplying
default values for FIT fields not set by the source program,
anddchecking the FIT for logical consistency and required
fields.

The first parameter in the open request for file creation is
the name of the array that cantains the FIT. The second
parameter must specify 1-0O or OUTPUT; this sets the
processing direction (PD) field in the FIT to read/write or
write only. ’

When the following statement is executed, the file
identified by the FIT in array SQFIT is opened for a read or
write operation:

CALL OPENM(SQFIT,1-0O"

WRITING RECORDS

Records are written to a sequential file by executing a
CALL PUT statement. The format is:

CALL PUT(fit,wsa,rl,0,0,0,ex)

Each record to be written must be established at the
working storage area location.

The first parameter in the write request for file creation is
the name of the array that contains the FIT. Other
parameters set FIT fields that BAM uses to write the
record to the file. The following FIT fields can be set by
the write request: -

WSA Working storage area from which the record
is written to the file.

RL Record length, which applies to S, U, and W
type records only.

EX Error exit subroutine to be executed if an
error_occurs.

60495800 C

Fields not specified in the write request default to the
current value in the FIT. After the record is written, BAM
updates the following FIT fields:

RC Record count
BN Block number if a new black was begun
RL Record length requested or calculated

When the following statement is executed, a record is
added to the file identified by the FIT in array SQFIT:

CALL PUT(SQFIT,WSA,30,0,0,0,ERREXIT)

The array WSA is the working storage area that contains
the record to be written. The record contains 30
characters. The three zeros represent parameters that are
not applicable to sequential files. If an error occurs during
execution of this statement, control is transferred to

subroutine ERREXIT.

CLOSING THE FILE

The last program statement referencing the file must be a
CALL CLOSEM statement. The format is:

CALL CLOSEM(fit,cf,type)

When the statement is executed, any data in the central
memory buffer is written to the file.

The first parameter in the close request is the name of the
array that contains the FIT.

The second parameter sets the close flag (CF) field, which
provides for file positioning and disposition. The following
values can be specified for the CF field:

e R (rewind)

The file is rewound to beginning-of-information and
the open/close flag (OC) field is set to closed; this is
the default setting for FILE close.

e N (norewind)

The file is not rewound and the OC field is set to
closed; the file remains at the current position.-

e U (unload)

The file is rewound, the OC field is cleared, the file is
detached from the job, a tape is unloaded, and scratch
mass storage space assigned to the file is released.

This is the default setting for VOLUME close.

® RET (return)
The file is rewound, the OC field is cleared, the file is
detached from the job, and buffer space is released. A

tape is unloaded. and the device is returned to the
system.

e DET (detach)

The file is not rewound, the OC field is cleared, buffer
space is released, and the file is disassociated from
the job.

3-11

e DIS (disconnect)

The terminal file is disconnected, the OC field is
cleared, and the file is disassociated from the job. For
a non-terminal file, the OC field is cleared, the file is
disassociated from the job, and the file remains at
current position.

A third parameter you can specify in the close request
indicates the type of close that is to be performed. The
following values can be specified:

e FIE
The file is closed; this is the default setting.

e VOLUME

The current tape reel is terminated and volumes are
switched. Processing can continue on the next volume

without issuing another OPENM.

A close request issued for a file that has never been
opened, or that has been closed but neither unloaded nor
reopened, results in a trivial error. The file is positioned
as specified before the error is issued.

When the CF field is set to R or N and the file is
subsequently reopened, FIT verification and FILE control
statement processing are not repeated. When the CF field
is set to U, RET, DET, or DIS, FIT verification and FILE
control statement processing are repeated; to resume
processing, the file must be reattached to the job and
opened.

To ensure allocation of a new buffer when a file is
reopened in a program, the file must be closed with the CF
field set to DET, and the BFS field must be reset.

When the following statement is executed, the file
identified by the FIT in array SQFIT is unloaded, the OC
flag is cleared, and the file name is removed from the
active file list.

CALL CLOSEM(SQFIT,'U")

SAMPLE CREATION PROGRAM

Program SQCREAT, shown in figure 3-9, creates a
permanent sequential file through direct calls to BAM.
The illustration includes the control statements used for
the NOS and NOS/BE operating systems, the input file, the
source listing, a printout of the contents of the input file,
and an octal dump of the newly created sequential file.
The program reads a ten-record input file and stores the

records on file SQFILE. The input records for creating the
file exist initially on INPUT.

Note the following information about the control
statements:

e The DEFINE control statement effects permanent file
storage of SQFILE on NOS. REQUEST and CATALQOG
control statements must be substituted for DEFINE
when operation is under NOS/BE.

@ The FILE control statement sets values in the BT, RT,
and FL FIT fields. The EFC field is set to 3, which
specifies errors and notes are to be written to the
error file. :

3-12

e The TDUMP control statement dumps the contents of
the permanent file. This control statement is not
available for operation under NOS/BE.

® The CRMEP control statement processes the error
file. The mnemonic L.O indicates all messages are to
be displayed. The CRMEP control statement is
detailed in section 5.

Statements in the program are defined as follows:

e DIMENSION SQFIT(35), WSA(3)

This statement allocates a 35-word array named
SQFIT for FIT construction and a 3-word working
storage area named WSA.

e CALL FILESQ (SQFIT, "-FN, 'SQFILE")
This statement sets fields in the FIT to describe the
structure of the sequential file. Two required
parameters are included:
FIT array (SQFIT)
Logical file name (SQFILE)

Three additional required parameters could have been
included, but appear instead on the FILE control
statement:

Black type C (BT=C)
Fixed length records (RT=F)

Fixed record length of 30 characters (FL=30)

e CALL OPENM (SQFIT, '1-Q%)

This statement opens the file described by SQFIT for
reading and writing.

e READ (¥, '(3A10), END=20) WSA
PRINT 15, WSA

These statements read the input file into the working
storage area (WSA) and print the contents. If
end-of-file is encountered, control is transferred to a
statement that closes the file.

e CALL PUT (SQFIT, WSA)

This statement writes the record from the working.
storage area to the BAM file.

e CALL CLOSEM (SQFIT)

This statement writes the buffer to the file and writes
end-of-informatian.

A printout of the ten-record input file follows the source

listing., Each record contains 30 characters and, therefore,
occupies three words in memory.

The file dump illustrates the internal representation of
SQFILE.

60495800 C

CONTROL STATEMENTS

NOS Operating System

Job statement

USER control statement

CHARGE control statement

FTNS.

DEFINE (SQFILE/CT=PU, M=W)
FILE(SQFILE,BT=C,RT=F,FL=30,EFC=3)
LGO.

CRMEP(LO)

TDUMP,I=SQFILE,

INPUT FILE

0001 TIMESHAR 04/21/78 178900
0002 ARBITRON 01/13/78 161320
0003 TICKETRO 09/01/78 147380
0004 SYNTONIC 06/14/78 000116
0005 COMMCRED 05/11/78 004672
0006 SVBUREAU 05/13/78 000197
0007 COMMACOR 02/17/78 001432
0008 LEARNCTR 03/06/78 000097
0009 CYBERSCH 04/02/78 100724
0010 DATASVCS 04/17/78 001872

SOURCE LISTING

[z ExExEzNs NNzl

PROGRAM SQCREAT
DIMENSION SQFIT(35), WSA(3)

CALL OPENM (SQFIT, 'I-O")

PRINT 15, WSA

15 FORMAT (1X,3A10)
CALL PUT (SQFIT, WSA)
60 TO 10

20 CALL CLOSEM (SQFIT)
END

QUTPUT

0001 TIMESHAR 04/21/78 178%00
0002 ARBITRON 01/13/78 161320
0003 TICKETRO 09/01/78 147380
0004 SYNTONIC 06/14/78 000116
0005 COMMCRED 05/11/78 004672
0006 SVBUREAU 05/13/78 000197
0007 COMMACOR 02/17/78 001432
0008 LEARNCTR 03/06/78 000097
0009 CYBERSCH 04/02/78 100724
0010 DATASVCS 04/17/78 001872

CRMEP(LO)

10 READ (%, "(3A10)°, END = 20) WSA

NOS/BE Operating System

Job statement

ACCOUNT control statement

FTNS.

FILE(SQFILE,BT=C,RT=F, FL=30,EFC=3)
REQUEST(SQFILE, *PF)

LGO.

CATALOG(SQFILE,ID=BAMUG)

CRMEP (LO)

THIS PROGRAM CREATES A PERMANENT SEQUENTIAL FILE
(SQFILE) THROUGH DIRECT CALLS TO BAK. THE INPUT
RECORDS EXIST INITIALLY ON INPUT.
THE TEN=-RECORD INPUT FILE, PRINTS EACH RECORD,
AND STORES THE RECORDS ON SQFILE.

THE PROGRAM READS

CALL FILES@ (SQFIT, 'LFN', °SQFILE®)

Figure 3-9. Creating a Sequential File (Sheet 1 of 2)

60495800 C

3-15 e

1 - FILE OUNP - TOURP, I=SQFILE.
F 1R 14 O~ 3333 3334 5524 1115 0523 1001 2255 3337 5035 3450 4243 5534 4243 4433 3355 3333 3335 5501 2202 1124
00 01 T ImES HAR 04 /2 1/ 78 178 90 0 Q0 02 A RB IT
F 1R 14w 4= 2217 14655 3334 5034 3850 4243 5534 4134 3635.3355 3333 3336 5524 1103 1305 2422 1755 3344 5033 3450
RO N 01 /1 3/ 78 161320 00 03 T I1C KE TR O 09 /0 1/
F 1R 1W 10~ 4243 5534 3742 3643 3355 3333 3337 5523 3116 2417 1611 0355 3341 5034 3750 4243 5533 3333 3434 4155
78 1 47 38 0 0004 S YNTO NI C 06 /1 4/ .78 000 11 6
F TR 14 14~ 3333 3340 5503 1715 1503 2205 0455 3340 5034 3450 4243 5533 3337 4142 3555 3333 3341 5523 2602 2522
00 05 ¢ oM ®mC REOD 05 /1 1/ 78 004 67 2 00 06 5 VB UR
F 1R 14W 20~ 0501 2555 3340 5034 3650 4243 5533 3333 3444 4255 3333 3342 5503 1715 1501 0317 2255 3335 5034 4250
EAU 05 /137 78 00019 7 00 07 ¢ oM KA CO R 02 /1 77/
F 1R 1 W 24- 4243 5533 3334 3736 3555 3333 3343 5514 0501 2216 0324 2255 3336 5033 4150 4243 5533 3333 3344 4255
78 001 43 2 00 08 L EARN CTR 03 /0 6/ 78 00009 7
F 1R 149 30~ 3333 3344 5503 3102 0522 2303 1055 3337 5033 3550 4243 5534 3333 4235 3755 3333 3433 5504 0124 0123
00 09 ¢ YB ER S5CH 04 /0 2/ 78 - 10072 4 00 10 D AT AS
F 1R 1W 34 2603 2355 3337 5034 4250 4243 5533 3334 4342 3555
Ve s 04 /1 7/ 78 00187 2
~— END OF RECORD —
- END OF INFORMATION ~-
— END OF DUMP -~ ‘
Figure 3-9. Creating a Sequential File (Sheet 2 of 2)

PROCESSING A SEQUENTIAL FILE

After the file creation run, a sequentfal file can be
attached, read, positioned, updated, and rewound. File
processing is governed by many of the FIT fields set on the

file creation run.

You cannot change the following FIT fields when an
existing file is being processed:

FO File organization

BT Block type and fields required by the block
type

RT Record type and fields required by the record
type

FL Record length (F and Z type records only)

You must set the following FIT fields before the file is
opened unless the default values are to be accepted:
BFS Buffer size

FwWB First word address of the buffer

Optional fields you can set at any time before they are
required by a file processing statement are as follows:

DX End-of-data exit
EX Error exit

X Label exit

ERL Trivial error limit
DFC Dayfile control
EFC Error file control
PC Padding character

ESTABLISHING THE AT
The FIT is established for an existing file in the same

manner as for a new file during the creation run. The
CALL FILESQ statement is required for any program using

3-14

the file. AIll parameters applicable to structure must be
repeated in each program in which the file is processed.
BAM does not make such information a part of the file.

You can use the CALL FILESQ statement to specify all FIT
fields required to define minimum file structure. These
values become part of the FIT during execution, but can be
overwritten by FILE control statement values at the time

the file is opened.

OPENING THE FILE

Before you can access any data records in an existing file,
%/_ou must open the file with a CALL OPENM statement.
he format is:

CALL OPENM(fit,pd,of)

Open request parameters are stored in applicable FIT fields
during open processing. FILE control statement processing

and FIT consistency checks are performed in the same
manner as on a file creation run.

The first parameter in the open request is the name of the
array that contains the FIT. Additional parameters can set
the following FIT fields:

PD Processing direction

OF Open flag

The setting of the PD field determines the input/output
statements that can be executed. You can set the PD field
as follows:

INPUT Statements that read or position the file
can be executed (default).

OUTPUT Only statements that write new records
to the file can be executed.

1-0 Any file processing statement related to

input/output can be executed. (If the PD
field is set by any statement other than
the CALL OPENM. statement, the
characters IO rather than 1-O must be
specified.)

60495800 C

A trivial error occurs if execution of a file processing
statement is attempted and the PD field is not set to an
appropriate value for that statement.

File positioning by the open request is determined by the
OF field. You can set this field as follows:

R The file is rewound to beginning-of-information
(default).

N The file is not rewound.

E The file is positioned at the end of current
information to extend the file (applicable only to
an existing file on mass storage).

During open processing, labels on a tape file are
processed. l.abels are not processed unless the file is
rewound at open time.

When the following statement is executed, the file
described by SQFIT is opened with no rewind; any file
processing statement related to input/output can be
executed:

CALL OPENM(SGFIT,T-O','N"

READING RECORDS

Records in a sequential file are read in the physical order
in which they were written. Records are read by executing
a CALL GET statement. The format is:

CALL GET(fit,wsa,0,0,0,rl,dx)

The file must be attached and open for either input or
input/output (the PD field is set to INPUT or 10).

The first parameter in the read request is the name of the
array that contains the FIT. Additional parameters set the

following FIT fields:

WSA Working storage area that is to receive the
record.
RL Record length, which is required only for

U type records.

DX End-of-data exit subroutine to be executed if
a file boundary is encountered.

You can set the MRL field of the FIT to the maximum
number of characters to be read before the read request is

executed. MRL sets a maximum that overrides the actual
record length. If control information in the record (control

word or fields, such as LL or LP in D type records)
indicates more data than MRL, an excess data error occurs
when that record is read.

After a record is read, BAM updates the following FIT
fields:

RL Record length
RC Record count
BN Block number currently in progress

60495800 C

When the following statement is executed, a record in the
file described by SQFIT is read into working storage area

WSA:
CALL GET(SQFIT,WSA,0,0,0,0,ENDEX)

The first three zeros represent parameters that are not
applicable to sequential file organization; the fourth zero
is not applicable to the specific record type. If
end-of-data is reached during execution of this statement,
control is transferred to subroutine ENDEX.

Program SQREAD, shown in figure 3-10, reads the
previously created file SQFILE. The file must be
attached. The program performs the following:

e Dimensions the FIT and working storage area.

e Defines the file characteristics through the CALL
FILESQ statement.

P Opens the file for input.

@ Reads records through the CALL GET statement into
the working storage area (WSA).

® Retrieves the value of FIT field FP.

e Tests for end-of-section, which is 10g or 8, before
printing the contents of the buffer.

e Prints each record together with the FP field value,
which is 0020g (end-of-record).

SKIPPING RECORDS

You can position a sequential file forward or backward a
specified number of records by executing a CALL SKIP
statement. The format is:

CALL SKIP(fit,count)

The type of skip allowed depends upon the record and block
type. A forward skip of a tape file can cross volume
boundaries; a backward skip cannot.

The first parameter in the skip request is the name of the
array that contains the FIT. The second parameter is the
number gf records to be skipped. The skip count can be a
positive number for forward skipping and a negative
number for backward skipping; the skip count can also be a
variable. No FIT fields are set by the skip request.

When the following statement is executed, a forward skip
of 25 records in the file described by SQFIT is performed:

CALL SKIP(SGFIT,+25)
A forward skip is allowed for all record types except U.

When .the following statement is executed, a backward skip
of 10 records in the file described by SQFIT is performed:

CALL SKIP(SQFIT,-10)
A backward skip is allowed for F, S, W, and Z type

records. For F type records in C type blacks, record length
must be a multiple of 10 characters.

3-15

T

SOURCE LISTING

THIS PROGRAM READS THE PREVIOUSLY CREATED SQFILE,
RETRIEVES THE VALUE OF THE FP FIELD, AND PRINTS

OO0

PROGRAM SQREAD

+ 'EFCY, 3)
CALL OPENM (SQFIT)
10 CALL GET (SQFIT, WSA)

PRINT 15, WSA, IFP

15 FORMAT (1X,3A10,1X,04)
60 T0 10

20 CALL CLOSEM (SQFIT)
END

QUTPUT

TIMESHAR 04/21/78 178900
ARBITRON 01/13/78 161320
TICKETRO 09/01/78 147380
06/14/78 000116
0005 COMMCRED 05/11/78 004672
0006 SVBUREAU 05/13/78 000197
0007 COMMACOR 02/17/78 001432
0008 LEARNCTR 03/06/78 Q00097
0009 CYBERSCH 04/02/78 100724
0010 DATASVCS 04/17/78 001872

0001
0002
0003
0004 SYNTONIC

EACH RECORD TOGETHER WITH THE FP FIELD VALUE.

DIMENSION SQFIT(35), WSA(3)
CALL FILESQ (SQFIT, 'LFN', 'SQFILE',
+ .IBTI' ICI' IRTI’ lFl’ lFLI’ 30’

IFP=IFETCH (SQFIT, °‘FP")
IF (IFP .EQ. 8) GO TO 20

0020
0020
0020
0020
0020
0020
0020
0020
0020
0020

Figure 3-10. Reading a Sequential File

A backward skip is not allowed for D, R, T, or U type
records, nor for any record type with E or K type blocks.

A backward skip does not begin after a write operation
until the contents of the buffer are written to the device
and an end-of-information is written.

A file boundary terminates a skip in either direction. The
skip continues over the boundary condition and stops. On a
backward skip, the file is positioned immediately before a
section or partition and after a beginning-of-information.
On a forward skip, the file is positioned immediately after
a section or partition, but before an end-of-information.

Crossing a section or partition boundary, or encountering
beginning- or end-of-information transfers control to any
user end-of-data subroutine defined in the DX field of the
FIT. The FP field reflects the boundary with an octal
value as follows:

0001 Beginning-of-information
0010 End-of-section

0040 End-of-partition

0100 End-of-information

3-16

Consider a file containing the following records and
boundaries: : ’

ASTER
BLAZING-STAR
COLUMBINE

section boundary

DELPHINIUM
ELDERBERRY

FUCHSIA

GERANIUM
partition boundary
HEATHER

IRIS
end-of-information

If file position is at the start of ASTER, a forward skip of 2
records positions the file at the start of COLUMBINE.

From the start of COLUMBINE, a backward skip of 2
records positions the file at the start of ASTER.

From the start of GERANIUM, a backward skip of 5
records positions the file before the section boundary. The
routine indicated in the DX field of the FIT executes.

60495800 C

If file position is within ELDERBERRY, a forward skip of
0 records positions the file to the start of FUCHSIA. From
the same position within ELDERBERRY, a backward skip
of 0O records positions the file to the start of
ELDERBERRY if the previous file operation was a partial
read; otherwise, it produces no change in file position.

From the start of COLUMBINE, a forward skip of 100
records positions the file at the start of DELPHINIUM,
The routine indicated in the DX field of the FIT executes.

Program SKIPREC, shown in figure 3-11, reads the
previously created file SQFILE. The file must be attached.

SOURCE LISTING

c THIS PROGRAM PERFORMS A FORWARD SKIP OF 8
C RECORDS IN PERMANENT FILE SQFILE AND THEN
[» READS AND PRINTS THE REST OF THE FILE.
c
C

PROGRAM SKIPREC
DIMENSION SQFIT(35), WSA(3)
CALL FILESQ (SQFIT, °'LFN®, 'SQFILE',
+ IBTI' lcl’ 'RT', 'F', IFLI’ 30’
+ ‘EFCT, 3)
CALL OPENM-(SQFIT)
CALL SKIP (SQFIT, +8)
10 CALL GET (SQFIT, WSA)
IF (IFETCH (SQFIT, 'FP') .EQ. 8) GO TO 20
PRINT 15, WSA
15 FORMAT (1X,3A10)

GO TO 10
20 CALL CLOSEM (SQFIT)
END
OUTPUT

0009 CYBERSCH 04/02/78 100724
0010 DATASVCS 04/17/78 001872

Figure 3-11. Skipping Records on a Sequential File
The program performs the following:
e Dimensions the FIT and working storage area.

@ Defines the file characteristics through the CALL
FILESQ statement.

e Opens the file for input.

e Performs a forward skip of 8 records before readlng
and printing the file.

e Closes the file when end-of-section is reached.

REPLACING A RECORD

You can update a sequential file by replacing the last
record read with a record from the workmg storage area.
The following restrictions apply:

e The file must be a mass storage file open for
mput/output (PD field set to 10).

e Block type must be C.

e Record type must be F or W.

60495800 C

e The replacement record must have the same record
length as the record being replaced.

e The replace request must be preceded by a read
request of the record to be replaced.

A record is replaced by executing a CALL REPLC
statement. The format is:

CALL REPLC(fit,wsa,0,0,0,0,ex)

The first parameter in the replace request is the name of
the array that contains the FIT. Additional parameters set
the following fields in the FIT:

WSA Working storage area that contains the
replacement record.

EX Error exit subroutine to be executed if an
error occurs.

If the last operation before a replace was not a read
request, a trivial error results and the replace request is

ignared.

When the following statements are executed, the
replacement record read from the file described by FIT2
overwrites the record previously read from the file
described by FIT1:

CALL GET(FIT1,WSA)

CALL GET(FIT2,WSA)

CALL REPLC(FIT1,WSA,0,0,0,0,ERREX)
The four =zeros represent parameters that are not
applicable to sequential file organization. If an error

occurs during execution of the statement, control is
transferred to subroutine ERREX.

Program REPLACE, shown in figure 3-12, replaces the
seventh record in the previously created file SQFILE. The
file must be attached.

The program performs the following:

e Dimensions the FIT and working storage area.

e Defines the file charactenstxcs through the CALL
FILESQ statement.

e Opens the file for input/output.
e Performs a forward skip of 6 records.
e Reads record 0007 into working storage area (WSA).

e Reads a new record from INPUT into the working
storage area.

e Issues a replace request, which effects an overwrite of
record 0007.

e Issues a rewind of SQFILE.

e Reads and prints the file to illustrate that
NEWRECRD has replaced COMMACOR.

ADDING RECORDS

You can add records to an existing sequential file by
executing a CALL OPENM extend followed by a CALL

PUT statement. The file must be attached for either
output or input/output. (The PD field is set to OUTPUT

or 10.)

3-17

INPUT FILE

0007 NEWRECRD 05/12/78

SOURCE LISTING

ON FILE INPUT.

OO

PROGRAM REPLACE

+
+
CALL
CALL
CALL GET (SQFIT,
READ
CALL
CALL
CALL

'EFC’

10 GET (SQFIT,
PRINT 15, WSA
FORMAT (1X,3A10)
60 TO 10

15

20
END

QUTPUT

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010

04/21/78
01/13/78
09/01/78
06/14/78
05/11/78
05/13/78
05/12/78
03/06/78
04/02/78
04/17/78

TIMESHAR
ARBITRON
TICKETRO
SYNTONIC
COMMCRED
SVBUREAU
NEWRECRD
LEARNCTR
CYBERSCH
DATASVCS

123456

THIS PROGRAM REPLACES THE SEVENTH RECORD IN
PERMANENT FILE SQFILE WITH A NEW RECORD EXISTING
IT THEN READS AND PRINTS THE
FILE WITH THE REPLACED RECORD.

DIMENSION SGFIT(35), WSA(3)
CALL FILESQ (SQFIT, 'LFN', 'SQFILE',
'BTY, 'c', 'RT', 'F', 'FL', 30,

)

OPENM (SQFIT, 'I-0")
SKIP (SQFIT, +6)

WSA)

"(3A10) ', WSA
REPLC (SQFIT, WSA)
REWND (SQFIT, WSA)

WSA)

IF (IFETCH (SQFIT, 'FP') .EQ. 8) GO TO 20

CALL CLOSEM (SQFIT)

178900
161320
147380
000116
004672
000197
123456
000097
100724
001872

Figure 3-12. Replacing a Record in a Sequential File

Program ADDRECS, shown in figure 3-13, adds two
records to file SQFILE. The input records exist initially on
INPUT. The program performs the following:

Dimensions the FIT and working storage area.

e

e Defines the file characteristics through the CALL
FILESQ statement.

e Opens the file for input/output and includes the
extend (E) parameter; this sets the open flag (OF)
field of the FIT to indicate file positioning at end of
current information.)

e Reads the input file into the working storage area
(WSA); rewinds - the file when ‘end-of-file is
encountered.

e Reads and prints the complete file.

® 3-18

Tests for end-of-section (103 or 8) in the FP field to
bypass file boundaries and avoid reprinting the last

record of a section. (Refer to appendix F, Sequential
File Boundary Processing.)

Tests for end-of-information (100g or 64) in the FP

field to determine the end of the file.

Closes the file when end-of-information is reached.

The printout that follows the source listing reflects the
addition of the two new records 0011 and 0012. The NOS
operating system automatically extends the file. When
operations are under NOS/BE, an EXTEND control
statement must be included after execution. -

A NOS file dump is included to illustrate the internal
representation of updated file SQFILE.

60495800 C

INPUT FILE -

0011 ADDREC11 11/11/78 000000
0012 ADDREC12 11/11/78 000000

SOURCE LISTING

FILE SQFILE.

DYDY

ON FILE INPUT.
THE COMPLETE FILE.

THIS PROGRAM ADDS TWO RECORDS TO PERMANENT
THE INPUT RECORDS EXIST INITIALLY

THE PROGRAM THEN READS AND PRINTS

PROGRAM ADDRECS
DIMENSION SQFIT(35), WSA(3)
CALL FILESQ (SQFIT, 'LFN', °SQFILE',
+ ‘BT', *C', 'RT', 'F', °FL', 30,
+ YEFC, 3)
CALL OPENM (SQFIT, °'I-0', 'E')
10 READ (%, '(3A10)', END=30) WSA
20 CALL PUT (SQFIT, WSA)

G0 TO 10

30 CALL REWND (SQFIT)

40 CALL GET (SQFIT, WSA)
IF (IFETCH (SQFIT, °‘FP') .EQ. 8) GO TO 40
IF (IFETCH (SQFIT, 'FP') .EQ. 64) GO TO 50

PRINT 45, WSA

45 FORMAT (1X,3A10)

GO TO 40

50 CALL CLOSEM (SQFIT)

END

OUTPUT

0001 TIMESHAR 04/21/78
0002 ARBITRON 01/13/78
0003 TICKETRO 09/01/78
0004 SYNTONIC 06/14/78
0005 COMMCRED 05/11/78
0006 SVBUREAU 05/13/78
0007 NEWRECRD 05/12/78
0008 LEARNCTR 03/06/78
0009 CYBERSCH 04/02/78
0010 DATASVCS 04/17/78
0011 ADDREC11 11/11/78
0012 ADDREC12 11/11/78

1 - FILE DUMP -
F 1R 14W 0- 3333
00
F 1R 14 4~ 2217
RO
F 1R 1W 10~ 4243
78
F 1R 14w 14~ 3333
a0
F TR 1¥ 20~ 0501
EA
F 1R 1W 24~ 4243
. 78
F 1R 1¥ 30~ 3333
00
F 1R 1 34- 2603
ve

—— END OF RECORD -~

F 1R 2¥ 0- 3333
oa
F 1R 2¥ 4= 0334
€1

~= END OF RECORD —

— END OF INFORMATION --

~— END OF DUMP —

3555
2

178900
161320
147380
000116
004672
000197
123456
000097
100724
001872
000000
000000

TOUMP, I=SQFILE.

5526 1115 0523 1001 2255 3337 5035 3450 4243 5534 4243
T R 04 /72 1/ 78 178

3334 5034 3650 4243 5534 4134 3635 3355 3333 3336 5524
ot /1 3/ 78 1 61 32 0 g0 03 T
3762 3643 3355 3333 3337 5523 3116 2417 1611 0355 3341
47 38 0 00 04 § YN TO NI C 06

5503 1715 1503 2205 0455 3340 5034 3450 4243 5533 3337

C OM MC RE D 0os5 71 1/ 78 0 04
3340 5034 3650 4243 5533 3333 3444 4255 3333 3342 5516
0s /71 37/ 78 0 00 19 7 a0 07 N
3536 3740 4155 3333 3343 5514 0501 2216 0324 2255 3336
23 45 6 00 08 L EA RN CT R 03

5503 3102 0522 2303 1055 3337 5033 3550 4243 5534 3333
H 04 /70 27/ 78 1 00

3337 5034 4250 4243 5533 3334 4342 3555

04 /71 7/ 78 001 87 2

5501 0404 2205 0334 3455 3434 5034 3450 4243 5533 3333

3333

3355

A DD RE c1 1 11 /71 17 78 0 00 00 O

3434 5034 3450 4243 5533 3333 3333 3355
11 /71 1/ 78 0 00 00 O

3333
00

3335 5501 2202
02 A RSB
1755 3344 5033
0 09 /0
5533 3333 3434
0 00 11
3341 5523 2602
06 S veB
0455 3340 5034
4 05 /1
5533 3333 3344
0 00 09
3433 5504 0124
10 D AT

3435 5501 0404
12 A DD

2205
R E

60495800 C

Figure 3-13. Adding Records to a Sequential File

3-19 @

REWINDING THE FILE

You can rewind a sequential file by executing a CALL
REWND statement. The format is:

CALL REWND(fit)
Positioning is determined by the type of file.
e Mass storage file

Rewind is to beginning-of-information, which is the
beginning of the first user record.

e Unlabeled tape

Rewind is to the load point of the volume currently
mounted. :

e Labeled tape

Rewind is to a point after the labels. If the current
file position is not within the first volume of a
multivolume file, volume boundaries are crossed as
necessary to return to the file beginning; rewind is ta
a point after the labels at the beginning of the first
file volume.

The only parameter in the rewind request is the name of
the array containing the FIT,

When the following statement is executed, the file
described by SQFIT is rewound to beginning-of-information:

CALL REWND(SQFIT)

If a rewind request is issued after a write request, file
processing is completed before rewind. Information in the
central memory buffer is written to the device, and an
end-of-information boundary is written.

PARTIAL RECORD PROCESSING

You can perform partial record processing operations on
sequential files with any record type other than R. Use
the CALL GETP statement to read less than a record. Use
the CALL PUTP statement to construct a single record
from selected portions of information.

Reading Partial Records

Partial records in a sequential file are read by executing a
CALL GETP statement. The format is:

CALL GETP(fit,wsa,pt],'SKIP',dx)

The file must be opeh for either input or input/output (the
PD field is set to INPUT or 10). The following restrictions

apply:
e Record type must not be R.

o The 'SKIP' parameter must not be used with U type
records.

e For D and T record types, the first GETP of a record

must encompass the entire fixed base portion of these
records, MNR and HL characters, respectively.

3-20

The first parameter in the partial read request is the name
of the array that contains the FIT. Additional parameters
set the following FIT fields:

WSA Working storage area that is to receive the
partial record.

PTL Partial transfer length, which is the number
of characters to be transferred starting at
the beginning of a record or at the current
position within a record. For Z type records,
the value must be a multiple of 10 characters.

'SKIP' File positioning to the beginning of the next
record before the partial transfer starts. No
FIT fields are set by this request.

DX End-of-data exit subroutine to be executed if
a file boundary is encountered. No data is
transferred when end-of-section, end-of-
partition, or end-of-information is reached.

After a record is read, BAM updates the following FIT
fields:

RL Record length
RC Record count

A series of CALL GETP statements reads a record
sequentially. The first GETP always transfers data from
the beginning of a record. Processing proceeds as follows:

1. BAM sets RL to the number.of characters read.

2. BAM sets the PTL -field to show the number of
characters actually transferred to the working storage
area. The PTL returned is the PTL requested unless
end-of-record is reached first, in which case PTL is
less than that requested.

3. If you omit the SKIP parameter, the next GETP
transfers data beginning at the next unread character
in the record. If you include the SKIP parameter, the
next GETP transfers data beginning at the first
character position in the next record.

4. When end-of-record is encountered, BAM sets the FP

field to 20g and stops transferring data. A subse-
quent GETIg clears the FP field and begins data
transfer from the next record.

Partial records are read into working storage. The
characters from PTL to the next word boundary are
undefined. If a GETP is followed by a GET, BAM skips to
end-of-record and then reads a full record.

When the following partial read request for 7 characters is
executed, the first 10 characters of the record in the file
described by SQFIT are read into working storage area
WSA; characters 8, 9, and 10 are undefined:

CALL GETP(SQFIT,WSA,7,0,ENDEX)

The zero marks the position of the 'SKIP' parameter that is
not being used. If end-of-data is reached during execution
of this statement, control is transferred to subroutine

ENDEX. ’

60495800 C

When the following partial read request is executed, the
file is positioned to the beginning of the next record, and
20 characters of the record are read into working storage
area WSA:

CALL GETP(SQFIT,WSA,20,'SKIP")

S Type Record Considerations

When the length of an S type record is unknown, partial
read processing is accomplished as follows:

e MRL is ignored.

® GETP requests must be issued for PTL characters,
where PTL is the length of the working storage area.

e When the first GETP is executed, the FP field
indicates position in the midst of a logical record. RL
is incremented by the number of characters read.
When some subsequent GETP completes record
retrieval and the FP field value is
(end-of-record), the length of the S record format
becomes known.

You must check the FP field for end-of-record to

determine when the -end of the S type record has been
reached.

Boundary Considerations

Partial read operations do not cross boundaries. For
example, consider two T type records described as follows:

CP=9 Start of count field
Cl=2 Length of count field
HL=20 Length of header portion of record
TL=15 Length of trailer item
Count field value of the first record=1
Count field value of the second record=2
You issue the first statement for the first records
CALL GETP(SQFIT,WSA,20)
BAM determines the number of trailer items in the CL

field to be 1, calculates record length to be 35, sets the RL
fi'eld to 20, and returns the first 20 characters to WSA.

You issue the second statement for the first record:

CALL GETP(SQFIT,WSA,15)

BAM sets the FP field to indicate end-of-record, returns
the remaining 15 characters to WSA, and sets RL to 35.

You issue the first statement for the second record:
CALL GETP(SQFIT,WSA,20)
BAM clears FP, determines the number of trailer items in
the CL_ field to be 2, calculates record length to be 50, sets
RL to 20, and returns the first 20 characters to WSA.
You issue the second statement for the second record:
CALL GETP(SQFIT,WSA,35)
BAM returns only 30 characters to WSA because GETP

does not.cross the record boundary. BAM-sets RL to 50
and PTL to 30.

60495800 C

Writing Partial Records

Partial records in a sequential file are written by executing
a CALL PUTP statement. The format is:

CALL PUTP(fit,wsa,ptl,rl,ex)

The file must be open for either output or input/output (the
PD field is set to QUTPUT or I0). The following
restrictions apply:

e Record type must not be R.

e For D and T record types, control information in the
first part of the record must contain length
information.

The first parameter in the partial write request is the
name of the array that contains the FIT. Additional
parameters set the following FIT fields:

WSA Working storage area from which the partial
record is written to the file.

PTL Partial transfer length, which is the number
of characters in this partial write.

RL Record length, which is the total number of
characters in the record under construction.

EX Error exit subroutine to be executed if an
error occurs.

When a partial record is written, BAM updates the
following FIT fieldss

RL Record length
RC Record count

A series of CALL PUTP statements constructs a single
record from several pieces of information. Each PUTP

causes PTL characters to be written from the beginning of
the working storage area and added to the record currently

under construction. The second partial write of a record
begins after the last character written.

The manner in which a record is terminated depends on the
record type as follows: .

Fand Z The record is terminated when FL is
reached, even if more than FL
characters are requested.

Wand U The record is terminated when RL is
reached.

Dand T The record is terminated when RL
calculated from length information in
the first part of the record is reached.

S _ The record is terminated when RL is set

on the first PUTP and RL is reached, or
when a WEOR call is executed.

When the following statement is executed, the 20
characters in WSA “are written as a portion of a
40-character record under construction for the file
described by NEWFIT:

CALL PUTP(NEWFIT,WSA,20,40)

3-21

Sample Partial Record Processing Program

Program PARTIAL, shown in figure 3-14, reads partial
records from permanent file SQFILE and constructs new
records for file PFILE. The program performs the

following:

Dimensions two arrays for FIT construction, and one
character array for working storage area.

Assigns 10 blanks to BLANK.

Defines the file characteristics of SQFILE and PFILE
through CALL FILESQ statements.

Opens SQFILE for input and PFILE for input/output.
The pd parameter is omitted in the first OPENM call
because input is the default. A warning message
alerts you that the next OPENM specifies additional
parameters.

Stores blanks into the three words of WSA.

Performs a skip request to the beginning of the next

record and a partial read of 14 characters from the
SQFILE record.

Performs a partial write of 14 characters for

construction of a 28-character record.

Closes SQFILE when the file position (FP) field is
equal to end-of-section (10g or B).

SOURCE LISTING

RECORDS FOR FILE PFILE.
ARE THEN PRINTED.

OO AN

PROGRAM PARTIAL
DIMENSION SQFIT(35), PFIT(35)
CHARACTER WSA(3)%x10
CHARACTER BLANK*10
DATA BLANK /' v/
CALL FILESQ@ (SQFIT, 'LFN®, 'SQFILE',
'BT', 'CY,
'RT', 'F', 'FL', 30,
"EFC', 3)
(PFIT, 'LFN', 'PFILE',
BT, 'C',
'RT', 'F', 'FL', 28,
'EFC', 3)
CALL OPENM (SQFIT)
CALL OPENM (PFIT, 'I-0")

WARNING =

10 00 20 J=1,3

20 WSA(J)=BLANK
CALL GETP (SQFIT, WSA, 14, 'SKIP")
IF (IFETCH (SQFIT, 'FP') .EQ. 8) GO TO 40
CALL PUTP (PFIT, WSA, 14, 28)
G0 TO 10
CALL CLOSEM (SQFIT)
CALL ENDFILE (PFIT)
CALL REWND (PFIT)
CALL GET (PFIT, WSA)
IF (IFETCH (PFIT, 'FP') .EQ. 8) GO TO 70
PRINT 65, WSA
FORMAT (1X,2A10,A8)
GO TO0 50
CALL CLOSEM (PFIT)
STOP
END

+
+
+
CALL FILESQ
+
+
+

30
40

50

60
65

70

1 WARNING ERROR IN PARTIAL

QUTPUT

0001 TIMESHAR 0002 ARBITRON
0003 TICKETRO 0004 SYNTONIC
0005 COMMCRED 0006 SVBUREAU
0007 NEWRECRD (0008 LEARNCTR
0009 CYBERSCH 0010 DATASVCS

THIS PROGRAM READS PARTIAL RECORDS FROM PERMANENT
FILE SQFILE AND USES THEM TO CONSTRUCT NEW
THE CONTENTS OF PFILE

NUMBER OF ARGUMENTS IN REFERENCE TO _OPENM IS NOT CONSISTENT

Figure 3-14. Partial Record Processing

® 3-22

60495800 C

e Writes an end-of-partition to PFILE. (For C type
blocks with records other than W, BAM writes an
end-of-section before writing the requested end-of-
partition.)

e Rewinds and prints PFILE.

The printout that follows the source listing shows the
contents of the new file. Each 2B-character record in
PFILE has been constructed from the first 14 characters of
two records in SQFILE.

REDEFINING THE FILE

You can use an existing sequential file to create a new
file. The new file can reflect a different record type.

Writing W Type Records

Program REDEFIN, shown in figure 3-15, reads the
previously created SQFILE; redefines the file with W type
records, and creates a new file named WRECS. The
existing file must be attached and the new file must be
made permanent with appropriate control statements.

The program performs the following:

e Dimensions two arrays for FIT construction, and one
array for working storage area.

e Defines the characteristics of the existing file SQFILE
through the CALL FILESQ statement.

e Defines the characteristics of the new file WRECS
through the CALL FILESQ statement. The record
type parameter could have been omitted since W is the

system default.

e Opens the existing file for input and the new file for
input/output. The pd parameter is omitted in the first
OPENM call because input is the default. A warning
message alerts you that the next OPENM specifies
additional parameters.

e Reads the existing records and writes them to the new
file. The record length (RL) field is required when
writing W type records; the length is specified through
an [FETCH function.

e Closes both files when the file position (FP) field is
not equal to end-of-record.

The NOS TDUMP output lists the ten W type records.
Each record is preceded by a control word.
Reading W Type Records

Program RDWRECS, shown in figure 3-16, reads file
WRECS. The file must be attached.

" The program performs the following:
e Dimensions the FIT and working storage area.

e Defines the characteristics of the file through the
CALL FILESQ statement. ’

e Opens the file for input.

60495800 C

e Reads and prints the records.

e Closes the file when the file position (FP) field is not -
equal to end-of-record.

Notice the absence of the RL parameter, which was
required when the file was written. Because record length
information is maintained in the control word that
precedes a record, the parameter is not required for a read
operation. Any record length included in the read request
would be ignored.

TAPE LABELING

Magnetic tape files are identified to the operating system
by a combination of VSN, REQUEST, and LABEL control
statements. Specific parameters, parameter values, and
positioning requirements are described in the appropriate
operating systemn reference manual. VSN supplies tape
identification; REQUEST handles tape assignments; and
LABEL supplies information for standard tape label
processing.

Tape formats supported by the NOS operating system are:

SI binary
I
s/u

Tape formats supported by the NOS/BE operating system
are:

SI binary
SI coded
S/

BAM handles three classes of magnetic tape files:
standard labeled files, nonstandard labeled files, and

unlabeled files.

STANDARD LABELED FILES

A standard labeled file has tape labels that conform to
ANSI standards. The labels are defined as 80-character
records that precede and follow a file or volume of user
records.

The labels identify the file and the volume on which it
resides. In addition, the labels provide continuity for files
that extend over more than one volume, and allow
positioning to a particular file when several files exist on a
single volume.

An expiration date within the labels protects the tape
against accidental rewriting. If a label has not expired, the
tape cannot be written without explicit operator action on
NOS/BE; on NOS the job aborts. The retention date

parameter should be included on the operating system
LABEL control statement.

Operating system control statements can be used to list

standard labels. LISTLB is available for listing under NQOS;
LISTMF is available for listing under NOS/BE.

3-23

SOURCE LISTING

THIS PROGRAM READS PERMANENT FILE SQFILE, REDEFINES
THE FILE WITH W TYPE RECORDS, AND CREATES A
NEW FILE NAMED WRECS.)

o000

PROGRAM REDEFIN
DIMENSION SQFIT(35), WRECFIT(35), WSA(3)
CALL FILESQ (SQFIT, 'LFN', °'SQFILE',
l}BTl, e,
iRT', 'F', 'MRL', 30,
TWSA', WSA,
TEFC', 3)
CALL FILESQ (WRECFIT, 'LFN', 'WRECS',
'BT', 'CY,
“RT', 'W', 'MRL', 30,
'WSA', WSA,
‘EFC', 3)
CALL OPENM (SQFIT)
CALL OPENM (WRECFIT, 'I-0")
WARNING # NUMBER OF ARGUMENTS IN REFERENCE TO OPENM IS NOT CONSISTENT
10 CALL GET (SQFIT) -
IF C(IFETCH (SQFIT, 'FP') .NE. 16) GO TO 20
CALL PUT (WRECFIT, WSA, IFETCH (S@QFIT, 'RL'))
G0 TO 10
20 CALL-CLOSEM (SQFIT)
CALL CLOSEM (WRECFIT)
STOP
END

-+ o+

4+

1 WARNING ERROR IN REDEFIN

QUTPUT

1 - FILE DUMP - TOUMP, I2WRECS .

F 1R 1W 0- 4000 0000 0000 0000 0003 3333 3334 5524 1115 0523 1001 2255 3337 5035 3450 4243 5534 4243 4433 3355
5 c 00 01 T IM ES HA R 04 /72 17/ 78 178 900

F TR 14¥ 4= 0000 0000 0004 0000 0003 3333 3335 5501 2202 1124 2217 1655 3334 5034 3650 4243 5534 4134 3635 3355
L} [00 02 A RB IT RO N 01 /71 3/ 78 161 32 0

F TR 1W 10- 0000 0000 0004 0000 0003 3333 3336 5524 1103 1305 2422 1755 3344 5033 3450 4243 5534 3742 3643 3355
b [00 03 T I1C-KE TR O 09 /70 1/ 78 1 4647 38 0

F 1R 1W 14~ 0000 0000 0004 0000 0003 3333 3337 5523 3116 2417 1611 0355 3341 5034 3750 4243 5533 3333 3434 4155
b [00 04 S YN TO NI C 06 /71 47/ 78 0 00 11 6

F 1R 14 20~ 0000 0000 0004 0000 0003 3333 3340 5503 1715 1503 2205 0455 3340 5034 3450 4243 5533 3337 4142 3555
o c 00 05 cC onm MC RE D 0s /71 17 78 0 04 67 2

F TR 1W 24~ 0000 0000 0004 0000 0003 3333 3341 5523 2602 2522 0501 2555 3340 5034 3650 4243 5533 3333 3444 4255
1 4 00 06 § VB UR EA UV 05 71 31/ 78 0 00 19 7

30- 0000 0000 0004 0000 0003 3333 3342 5516 0527 2205 0322 0455 3340 5034 3550 4243 5534 3536 3740 4155

F 1R 14
D C 00 07 N EW RE CR D 05 /71 2/ 78 1 23 45 &6
fF 1R 14 34~ 0000 0000 0004 0000 0003 3333 3343 5514 0501 2216 0324 2255 3336 5033 4150 4243 5533 3333 3344 4255
] 4 00 08 L EA RN CT R 03 /70 6/ 78 0 00 09 7
F 1R 1W 40~ 0000 0000 0004 0000 0003 3333 3344 5503 3102 0522 2303 1055 3337 5033 3550 4243 5534 3333 4235 3755
D c 00 09 C YB ER SC H 04 /70 27/ 78 100 72
F 1R 1MW 44~ 0000 0000 0004 0000 0003 3333 3433 5504 0124 0123 2603 2355 3337 5034 4250 4243 5533 3334 4342 3555
] C 00 10 b AT AS ve s 04 71 71/ 78 0 01 87 2
F 1R 14 50~ 5000 0000 0004 0000 0000
! b

_— END OF RECORD —
— END OF INFORMATION —

-= END OF DUMP —

Figure 3-15. Redefining the File

» 3-24 60495800 C

SQURCE LISTING

THIS PROGRAM READS PREVIOUSLY CREATED FILE
WRECS AND PRINTS THE RECORDS.

OO0

PROGRAM RDWRECS
DIMENSION WRECFIT(35), WSA(3)
CALL FILES@ (WRECFIT, 'LFN', 'WRECS',

+ iBTl’ acv’
+ ‘RT', 'W', 'MRL', 30,
+ *EFCTY, 3)

CALL OPENM (WRECFIT)
10 CALL GET (WRECFIT, WSA)
IF (IFETCH (WRECFIT, 'FP') .NE. 16) GO TO 30
20 PRINT 25, WSA .
25 FORMAT (1X,3A10)0
GO TO 10
30 CALL CLOSEM (WRECFIT)
STOP
END

QUTPUT

0001 TIMESHAR 04/21/78 178500
0002 ARBITRON 01/13/78 161320
0003 TICKETRO 09/01/78 147380
0004 SYNTONIC 06/14/78 000116
0005 COMMCRED 05/11/78 004672
0006 SVBUREAU 05/13/78 000197
0007 NEWRECRD 05/12/78 123456
0008 LEARNCTR 03/06/78 000097
0009 CYBERSCH 04/02/78 100724
0010 DATASVCS 04/17/78 001872

Figure 3-16. Reading W Type Records

System Processing of Standard Labels

When a standard labeled file is opened, VOL1 and HDR1
labels are processed by the system. If the file is an input
tape, parameters on the appropriate operating system
control statement identifying the file are compared with

information present on the tape. If the file is an output
tape, parameters on the LABEL control statement are used

to write the labels; default values are supplied for any field
not specified.

When a standard labeled file is closed, the EOF1 trailer

label is written by the system. If the file is continued to
another reel of tape, an EOV1 rather than an EOF1 label is

written at the end of the first reel; VOL1 and HDR1 labels
are written on the second reel; and the file is continued.
An EOF1 label for a multireel file appears at the file end;
each file has only one EOF1 label. A file can have more
than one HDR1 label because the first information for a

file on a reel is the HDR1 label, even if that file is a

continuation from a previous reel.

Two FIT fields apply. to standard labeled files that are
processed by the system:

LCR Label check/creation

LT L.abel type

60495800 C

You can specify the LCR field as a parameter on a FILE §
control statement, CALL FILESQ statement, .or CALL
STOREF statement. You can specify the following values §
for the LCR field:

CHK The existing label is read and checked.

CRT A new label is written.
You must set the LT field to a value; you can set it with a
CALL FILESQ@, CALL STOREF, or a FILE control

statement. You must specify one of the following values
for the LT field:

S ANSI standard label

ANY Any label type

User Processing of Standard Labels

User processing of standard labels is permitted on some
label groups. All processing must be performed by a

COMPASS subroutine called from within a FORTRAN
program. COMPASS macros GETL, PUTL, and CLOSEL

provide for user processing of standard labels. Refer to
the BAM reference manual for details.

Six FIT fields apply to standard labeled files that you
processs

LCR L-abel check/creation

LT l_abel type

uULpP User label processing

LX Label exit

A User label area

LBL Label area length

You can specify the LCR field as a parameter on a FILE
contro! statement, CALL FILESQ statement, or CALL

STOREF statement. You can specify the following values
for the LCR field:

CHK The existing label is read and checked.

CRT A new label is written.

You must set the LT field to a value; you can set it with a
CALL. FILESQ, CALL STOREF, or FILE control
statement. You must specify the following value for the

LT field:

S ANSI standard label

3-25

You must set the ULP field to a value; you can set it with
a CALL FILESQ, CALL STOREF, or FILE control
statement. You must specify one of the following values
for the ULP field:

Vv Volume label processing
File label processing
|} User header and volume labels that can

follow the HDR and VOL1 labels; and user
trailer labels that can follow EOF and EQV

labels
VF Combination of V and F
VU Combination of V and U
FU Combination of F and U

VFU Combination of V, F, and U

You must set the LX field to a value; you can set it with a
CALL FILESQ or CALL STOREF statement. The field
specifies the name (address) of the label routine to receive

cantrol during open-and close processing, in accordance
with the ULP value. :

The LA field indicates the name (address) of the array that
is the label area; when the label is retrieved, it is delivered
to this area. You can set the field with a CALL FILESQ or
CALL STOREF statement; you can also set it with

COMPASS macros GETL. and PUTL.

The LBL field indicates the length in characters of the
label area (1-900). You can set the field with a CALL
FILESQ, CALL STOREF, or FILE control statement; you
can also set it with COMPASS macros GETL and PUTL.

NONSTANDARD LABELED FILES

A nonstandard labeled file has tape labels that do not
conform to ANSI standards. The labels can be either

header or trailer labels or a combination of both., The
delimiting and processing of nonstandard labels is the

responsibility of the user. The system does not process
nonstandard labels.

To process nonstandard labeled tape through BAM on NOS,
you must specify the L.B=KU parameter on the LABEL
‘control statement. On NOS/BE, you must specify the NS
parameter on the REQUEST control statement.

All processing must be performed by a COMPASS
subroutine called from within a FORTRAN program.
COMPASS macros GETL, PUTL, and CLOSEL provide for
user label processing. Refer to the BAM reference manual
for details.

3-26

Six FIT fields apply to nonstandard labeled files:

LCR Label check/creation
LT Label type

uLpP User label processing
LX Label exit

LA User label area

LBL Label area length

You can specify the LCR field as a parameter on a FILE
control statement, CALL FILESQ statement, or CALL

" STOREF statement. You can specify the following values

far the LCR field:

CHK The existing label is read and checked.

CRT A new label is written.

You must set the LT field to a value; you can set it with a
CALL FILESQ, CALL STOREF, or FILE control
statement. You must specify the following value for the
LT field:

NS Nonstandard label

You must set the ULP field to a value; you can set it with
a CALL FILESQ, CALL STOREF, or FILE control

statement. You can specify any of the following values for
the ULP field:

\Y

F The volume, file, and user settings
U are meaningless without standard
VF labels; any can be arbitrarily

vuU selected to indicate user

FU processing.

VFU

You must set the LX field to a value; you can set it with a
CALL FILESQ or CALL STOREF statement. The field

specifies the name (address) of the label routine to receive
control during open and close processing.

The LA field indicates the name (address) of the array that
is the label area; when the label is retrieved, it is delivered
to this area. You can set the field with a CALL FILESQ or
CALL STOREF statement; you can also set it with
COMPASS macros GETL and PUTL.

The LBL field indicates the length in characters of the
label area (1-900). You can set the field with a CALL

FILESQ@, CALL STOREF, or FILE control statement; you
can also set it with COMPASS macros GETL and PUTL..

60495800 C

UNLABELED- FILES

An unlabeled file has no tape labels; that is, no descriptive
records appear at the beginning of the file. The first block
of the file is treated as a data block.

An unlabeled file on an SI or I tape has a system-processed
trailer label (EOF1) so that end-of-information can be
defined. Multivolume processing is performed automati-
cally by the operating system. .

An unlabeled file on an S or L tape has no system trailer
label; end-of-information is undefined. On input, a
tapemark encountered after the end-of-tape reflective
marker signals end-of-volume and the operating system

60495800 C

switches volumes. When reading an unlabeled S or L tape,
BAM cannot detect the end of valid data records because
end-of-information is undefined. Therefore, it is possible
to read past the last valid data block into the undefined
area that precedes the end-of-tape marker. Reading
undefined data or blank tape can produce error conditions.

One FIT field applies to unlabeled files:
LT Label type
The LT field must reflect an unlabeled file; you can set it

with a CALL FILESQ, CALL STOREF, or FILE control
statement. The parameter can be set to UL (unlabeled) or

eliminated to default to unlabeled.

3-27

- WORD ADDRESSABLE FILE PROCESSING

A word addressable file is a mass storage file of records
that are accessed by the number of the first word in each
record. The file is simply a group of logically contiguous
computer words; file boundaries are beginning-of-
information and end-of-information. Blocking concepts,
record keys, and file labels do not apply to this file
organization.

Records are read or written beginning with a specified
word address. Information can be retrieved by one direct
access for ‘an individual item or sequentially for a series of
items by accessing the first item.

CONCEPTS OF PHYSICAL
FILE STRUCTURE

Word addressable files must reside on mass storage. The
first word in a file is considered to have the word
address 1, the tenth word has the word address 10, and so
forth. Each word contains 10 character positions.

No logical boundaries appear between records in a word
addressable file. Each record begins in a new word. If a

record has more than 10 characters, contiguous words are

used as necessary. If the record length is not a multiple of .

10, the rightmost character positions in the last word are
undefined. Only two restrictions are imposed: writing

always begins at the left on a word boundary, and the
system does not check to ensure that words are not

overwritten.

System efficiency is increased if all records are multiples
of 64 words. Performance improvement is recognized
when:

RL=n*64
WA=(m*64)+1

The letters n and m represent integers.

You can write variable length records contiguously, but you
have the burden of finding the word address of the start of
a record to be read. You could define and process record
indexes, but so doing would defeat the single access
advantage of a word addressable file.

BAM allocates storage in fixed units to a word addressable
file; consequently, meaningless data usually follows the

last valid record. Since record terminators do not exist,
you must be familiar with the data in a file.

AVAILABLE RECORD TYPES

Three types of records can exist in word addressable files:
fixed length (F), undefined (U), and control word (W).

DESCRIBING F TYPE RECORDS

F type records require a value in the fixed length (FL) field
of the FIT. You must set the FL field before a read or

write operation. Inclusion of the record length parameter
in a read or write request is ignored when you use fixed

length records.

60495800 C

DESCRIBING U TYPE RECORDS

U type records require a value in the record length (RL)
field of the FIT for a read or write operation, You must
include the RL parameter in each read or write request.
You must set the maximum record length (MRL) field of
the FIT before a read operation.

To illustrate a word addressable file with U type records,
assume that parts for an assembly are numbered 1 through
1000 and each assembly description includes:

. @ A l0-character identifying name

® A S5-character assembly identification
® A 5-character number of parts on hand
e A l0-character manufacturer's code

The part number cannot be the user-defined key because a
30-character entry would overlap the next two word

addresses. A key of three times the part number, however,
effectively produces a table of 1000 three-word entries.

(The first two words in the file are unused when this
calculation is followed.)

To read an entire 30-character entry, the part number is
multiplied by 3 and a read is issued for 30 characters. Any
individual word in the entry could be read by multiplying
the part number by 3; adding O, 1, or 2; and issuing a read
for 10 characters. If a 30-character read was issued after
an addition of 1 or 2, part of the next entry would be read;
consequently, you must be familiar with the data because
no record terminator exists.

The file just described, which can be likened to a single
record or single table, has many uses in internal system
routines. An example would be when a programmer is
building indexes or tree structures in which the location of
data is random, and the amount of data required changes
from read to read.

DESCRIBING W TYPE RECORDS

The word address of a W type record is always the address
of the control word, not the first word of the user data.
This applies to both read and write operations.

You must specify the record length (RL) field of the FIT
for a write operation. You must set the field to the actual
number of characters in the data record with no
adjustment made for the control word. When W type
records are written, the word address specified for the
write request must be adjusted to acknowledge the control
word. For instance, if all user records are 150 characters
and F type records are being written, the word address for
the write could be some multiple of 15. If the same
records were defined as W type, the word address for the
write would need to be a multiple of 16.

You must specify the maximum record length (MRL) field
of the FIT before a read operation. When W type records

are read, the word address specified for the read request
requires no adjustment for the comtrol word. The data

record, without the control word, is returned to you.

4-1

SUMMARY OF RECORD TYPES

Figure 4-1 illustrates word addressable file record types.
Each FIT field that must be set, either by specification or
by default, is included.

WORD ADDRESSABLE FILES
FO=WA
F Type U Type W Type
Records Records Records
RT=F RT=U RT=W (default)
FlL=n . Rl=n RL=n (write
MR L=max only)
(read only) MR L=max
(read only)

Figure 4-1. Word Addressable File Record Type Summary

CREATING A WORD
ADDRESSABLE FILE

A word addressable file is created by writing records to a
file with a defined record type. You can declare file
characteristics through a combination of FILE control
statements, source language statements, and installation
default values. Once the file structure is defined, records
are inserted into the file by the CALL PUT statement.

FIT fields that must be defined on a word addressable file
creation run are as follows:

LFN Logical file name consisting of one to seven
characters and beginning with a letter

FO File organization set to WA
PD Processing direction set to OUTPUT or 1-0
RT Record type and any fields required by the

record type (default is W)

Other optional FIT fields that can be defined on the
creation run and can be changed on a subsequent run are as
follows:

DX End-of-data exit (default is no exit)
EX Error exit (default is no exit)
ERL Trivial error limit (default is no limit)

DFC Dayfile control (default is only fatal errors to
the dayfile)

EFC Error file control (default is no messages to
the error file)

4-2

BFS Buffer size (default is buffer size calculated
by BAM)

FwB First word address of the buffer (default is
buffer address provided by BAM)

When you create a word addressable file, you must define
file characteristics by setting applicable fields in the FIT
before the file is opened. Except as noted in appendix D,
you can specify FIT fields in the FILE control statement,
the CALL FILEWA statement, or the CALL STOREF
statement. After all records have been written, you must
close the file with the CALL CLOSEM statement.

On a file creation run, the only statements you can issue
are those that perform the following: :

e Establish the FIT.
e Open and clase the file.
® Write records.

@ Store and fetch FIT fields.

ESTABLISHING THE FIT

The first statement referencing the word addressable file
must be the CALL FILEWA statement. When this
statement is executed, the FIT is constructed and the
specified values are stored in appropriate FIT fields. The
first parameter in the CALL FILEWA statement is the
name of the array to hold the FIT. The same FIT array
name is the first parameter in every statement accessing
the word addressable file. Refer to section 2, File
Processing Concepts, for a more detailed explanation’ of
the FIT and the CALL FILEWA statement.

OPENING THE FILE

You must open the word addressable file with a CALL
OPENM statement before any records can be written to
the file. The format is:

CALL OPENM(fit,pd)

Open processing includes storing FILE control statement
values in the FIT, processing buffer parameters, supplying
default values for FIT fields not set by the source program,
?pcidchecking the FIT for logical consistency and required
ields.

The first parameter in the open request for file creation is
the name of the array that contains the FIT. The second
parameter must specify 1-O or OUTPUT; this sets the
processing direction (PD) field in the FIT to read/write or
write only.

When the following statement is executed, the file

- identified by the FIT in array WAFIT is cpened for a read

or write operation:

CALL OPENM(WAFIT,T-O)

WRITING RECORDS

Records are written to a word addressable file by
executing a CALL PUT statement. The format is:

CALL PUT(fit,wsa,rl,wa,0,0,ex)

60495800 C

Each record to be written must be established at the
working storage area location. .

The first parameter in the write request for file creation is
the name of the array .that contains the FIT. Other

parameters set FIT fields that BAM uses to write the
record to the file.” The following FIT fields can be set by
the write request:

WSA Working storage area from which the record
is written to the file.

RL Record length, which is required for U and W
type records.

WA Word address, which is the relative address at
which the record is to be written counting
the first word in the file as l. The
parameter can be omitted for a sequential
write.

EX Error exit subroutine to be executed if an
error Occurs.

Fields not specified in the write request default to the
current value in the FIT. After the record is written, BAM

updates the following FIT fields:
RL Record length
WA Word address

The record need not be a multiple of 10 characters. The
contents of the unused character positions in the last word
of the record cannot be guaranteed, however, and they can
change as a record is moved from the working storage area
through the buffer to a mass storage device. Writing
always begins on a word boundary; unused character
positions from a previous write are not filled. The WA
field is set to the word after the last word written.

Writing always begins at the start of the word indicated by
WA, If the specified word address is beyond the end of the
current file, the file is extended as necessary to include

that address.

When the following statement is executed, a record is
added to the file identified by the FIT in array WAFIT:

CALL PUT(WAFIT,WSA,30,64,0,0,ERREXIT)

The array WSA is the working storage area that contains
the record to be written. The record contains 30
characters and is to be written to word address 100g or
64. The two zeros represent parameters that are not
applicable to word addressable files. If an error occurs
during execution of this statement, control is transferred
to subroutine ERREXIT. The WA field is set to 103g.

CLOSING THE FILE

The last program statement referencing the file must be a
CALL CLOSEM statement. The format is:

CALL CLOSEM(fit,cf)

When the statement is executed, any data in the central
memory buffer is written to the flle

The first parameter in the close request is the name of the
array that contains the FIT.

60495800 C

The second parameter sets the close flag (CF) field, which
provides for file positioning and disposition. The following
values can be specified for the CF field:

e R (rewind)

The file is rewound to beginning-of-information and
the open/close flag (OC) field is set to closed. This is
the default setting.

e N (no rewind)

The file is not rewound and the OC field is set to
closed; the file remains at the current position.

e U (unload)

The file is rewound, the OC field is cleared, the file is’
detached from the job, and scratch mass storage space

assigned to the file is released.
e RET (return)

The file is rewound, the OC field is cleared, the file is
detached from the job, and buffer space is released.

e DET (detach)

The file is not rewound, the OC field is cleared, buffer
space is released, and the file is disassociated from
the job.

A close request issued for a file that has never been
opened, or that has been closed but neither released nor
reopened, results in a trivial error. The file is positioned
as specified before the error is issued.

When the CF field is set to R or N and the file is
subsequently reopened FIT verification and FILE control
statement processing are not repeated. When the CF field
is set to U, RET, or DET, FIT verification and FILE control
statement processing are repeated; to resume processing,
the file must be reattached to the job and opened.

To ensure allocation of a new buffer when a file is
reopened in a program, the file must be closed with the CF
field set to DET, and the BFS field must be reset.

When the following statement is executed, the file
identified by the FIT in array WAFIT is rewound, the OC
flag is cleared, buffer space is released, and the file is
disassociated from the job:

CALL CLOSEM(WAFIT,'RET")

SAMPLE CREATION PROGRAM

Program WACREAT, shown in figure 4-2, creates a
permanent word addressable file through direct calls to
BAM. The illustration includes the control statements used
for the NOS and NOS/BE operating systems, the input file,
the source listing, a printout of the contents of the input
file, and an octal dump of the newly created word
addresable file. The program reads a ten-record input file
and stores the records on file WAFILE. The input records
for creating the file exist initially on INPUT.

4-3

CONTROL STATEMENTS

NOS Operating System

Job statement

USER control statement
CHARGE control statement
FTN5.

DEFINE (WAFILE/CT=PU, M=W)
LGO.

TDUMP,I=WAFILE.
CRMEP(LO)

INPUT FILE

ABROPS RAPID CITY SD 421.00
AKOSBC AKRON OH 10468.00
BLTSYN BALTIMORE MD 536.00

CHESRC CHEYENNE WY 7000.00
DASSBC DALLAS TX 98760.00
OKHMPI TULSA 0K 1000.00

ORLSYN ORLANDO FL 4921.00
PRTSBC PORTLAND OR 9274.00
PTBCPO PITTSBURGH PA 793.00
RDUSYN RALEIGH NC 762.00

SQURCE LISTING

AND STORES THE RECORDS ON FILE WAFILE.

OO OO0 00

PROGRAM WACREAT
DIMENSION WAFIT(35), WSA(3)
CALL FILEWA (WAFIT, 'LFN', 'WAFILE',
+ . 'RT', 'F', 'FL', 30,
+ YEFC', 3)
CALL OPENM (WAFIT, 'I-0")
10 READ (*, '(3A10)', END=30) WSA
PRINT 20, WSA
20 FORMAT (1X,3A10)
CALL PUT (WAFIT, WSA)
Go To 10
30 CALL CLOSEM (WAFIT)
‘STOP
END

QUTPUT

ABROPS RAPID CITY SD 421.00
AKOSBC AKRON OH 10468.00
BLTSYN BALTIMORE MD 536.00

CHESRC CHEYENNE WY 7000.00
DASSBC DALLAS TX 98760.00
OKHMPI TULSA oK 1000.00

ORLSYN ORLANDO FL 4921.00
PRTSBC PORTLAND OR 9274.00
PTBCPO PITTSBURGH PA 793.00
RDUSYN RALEIGH NC 762.00

CRMEP(LO)

NOS/BE Operating System

Job statement

ACCOUNT control statement
FTN5.

REQUEST (WAFILE ,*PF)

LGO.

CATALOG (WAFILE, ID=BAMUG)
CRMEP (LO)

THIS PROGRAM CREATES A PERMANENT WORD ADDRESSABLE
FILE (WAFILE) THROUGH DIRECT CALLS TO BAM.
INPUT RECORDS EXIST INITIALLY ON INPUT.
READS THE TEN-RECORD INPUT FILE, PRINTS EACH RECORD,

THE

THE PROGRAM

Figure 4-2. Creating a Word Addressable File (Sheet 1 of 2)

60495800 C

1 - FILE DUMP - TDUMP, I=WAF ILE.
F 1R 1¥ 0- 0102 2217 2023 5522 0120 1104 S503 1124 3155 2306 5555 5555 3735 3457 3333 0113 1723 0203 5501 1322
AB RO PS R AP ID € IT Y SPD 42 1. 00 AK 05 BC A KR
F 1R 14w 4= 1716 5555 5555 5555 1710 5555 3433 3741 4357 3333 0214 2423 3116 5502 0114 2411 1517 2205 5555 1506
oON oH 10 46 B, 00 BL TS YN B AL TI MO RE M D
F 1R 1W 10~ 5555 5555 4036 4157 3333 0310 0523 2203 5503 1005 3105 1616 0555 5555 2731 5555 5542 3333 3357 3333
53 6. 00 CHES RC ¢ HE YE NN £ WY 7 000. 00
F 1R 1w 14~ 0401 2323 0203 5504 0114 1401 2355 5555 5555 2430 5555 4443 4241 3357 3333 1713 1015 2011 5524 2514
DA S5 BC D AL LA S T X 98 76 0. 00 OK HM PI T UL
F 1R 1W 20~ 2301 5555 5555 5555 1713 5555 5534 3333 3357 3333 1722 1423 3116 5517 2214. 0116 0417 5555 5555 0614
S A 0 K 1 00 0. 00 OR LS YN O RL ANODO FL
F 1R 1 W 24~ 5555 5537 4435 3457 3333 2022 2423 0203 5520 1722 2414 0116 0455 5555 1722 5555 5544 3542 3757 3333
4 92 1. 00 PR TS BC P OR TL AN D o R 9 27 4. 00
F 1R 1W 30~ 2024 0203 2017 5520 1124 2423 0225 2207 1055 2001 5555 5555 4244 3657 3333 2204 2523 3116 5522 0114
PT BC PO P IT TS BURGH PA 79 3. 00 RD US YN R AL
F 1R 1% 34- 0511 0710 5555 5555 1603 5555 5555 4241 3557 3333 0000 0000 0OOC 0000 0000 0000 OCCO GO0 000D 000G
EI GH NC 76 2. 00
F 1R 1¥W 40- 000G 0000 0000 COCO 0QDO 0000 00O 0OOG 0000 OO0 000D 0ODO GOOO 0000 G000 0000 0COO 00G0 0000 0000
=~ ABOVE LINE REPEATED ~-
F 1R 14 74~ 0000 0OOOO 0000 0QOC 0OOC 00GO 0COO 000G 0000 0OCO 0CO0 G000 000G 0000 0000 0000 0OCO 0000 0000 0000
-~ END OF INFORWATION --
-~ END OF DUMP -
Figure 4-2. Creating a Word Addressable File {Sheet 2 of 2)
Note the following information about the control e CALL OPENM (WAFIT, T-0%
statements:

e The DEFINE control statement effects permanent file
| storage of WAFILE on NOS. REQUEST and CATALOG
control statements must be substituted for DEFINE
when operation is under NOS/BE.
@ The TDUMP control statement dumps the contents of
the permanent file. This control statement is not
available for operation under NOS/BE.

® The CRMEP control statement processes the error
file. The mnemonic .0 indicates all messages are to
be displayed. The CRMEP control statement is
detailed in section 5.
I Statements in the program are defined as follows:
e DIMENSION WAFIT(35), WSA(3)
This statement allocates a 35-word array named
WAFIT for FIT canstruction and a 3-word working
storage area named WSA.
CALL FILEWA (WAFTT, '"LFN', '"WAFILEY,...)
This statement sets fields in the FIT to describe the

structure of the word addressable file. Four required
parameters are included:

FIT array (WAFIT)

Logical file name (WAFILE)

Record type (fixed)

Fixed record length (30 characters)
One optional parameter is included:

Error file control (3, errors and notes are

to be
written to the error file) :

60495800 C

This statement opens the file described by WAFIT for
reading and writing.

e READ (¥, (3A10), END=30) WSA
PRINT 20, WSA

These statements read the input file into the working
storage area (WSA) and print the ‘contents. If
end-of-file is encountered, control is transferred to a
statement that closes the file.

e CALL PUT (WAFIT, WSA)

This statement writes the record fram the working
storage area to the BAM file. Since the program is
performing a sequential write, the WA parameter is
not required.

e CALL CLOSEM (WAFIT)

This statement writes the buffer to the file and writes
end-af-information.

A printout of the ten-record input file follows the source
listing. Each record contains 30 characters and, therefore,
occupies three words in memory. When this file is
subsequently processed, record word addresses will be
calculated in multiples of three.

The file dump illustrates the internal representation of
WAFILE. Notice the last valid record ends in file storage
word 35 and no record terminator exists. Meaningless data
fills the remaining storage allocation far the file.

PROCESSING A WORD
ADDRESSABLE FILE

After the file creation run, a word addressable file can be
attached, read, updated, and rewound. File processing is
governed by many of the FIT fields set on the file creation
run.

4-5

B You cannot change the following "FIT fields when an
existing file is being processed:

FO File organization
RT Record type
FL Fixed record length (F type records only)

You must set the following FIT fields before the file is
opened unless the default values are to be accepted:

BFS Buffer size
FwB First word address of the buffer

Optional fields that you can set at any time before they
are required by a file processing statement are as follows:

DX End-of-data exit
EX Error exit

ERL Trivial error limit
DFC Dayfile control

EFC Error file control

ESTABLISHING THE FIT

The FIT is established for an existing file in the same
manner as for a new file during the creation run. The
CALL FILEWA statement is required for any program using
the file. All parameters applicable to structure must be
repeated in each program in which the file is processed.
BAM does not make such information a part of the file.

You can use the CALL FILEWA statement to specify all
FIT fields required to define minimum file structure.
These values become part of the FIT during execution, but
can be overwritten by FILE control statement values at the
time the file is opened.

OPENING THE FILE

Before you can access any data records in an existing file,
you must open the file with a CALL OPENM statement.
The format is:

CALL OPENM(fit,pd,of)

Open request parameters are stored in applicable FIT fields
during ‘'open processing. FILE control statement processing
and FIT consistency checking are performed in the same
manner as on a file creation run.

The first parameter in the open request is the name of the
array that contains the FIT. Additional parameters can set
the following FIT fields: '

PD Processing direction

OF Open flag

4-6

The setting of the PD field determines the input/output
statements that can be executed. You can set the PD field
as follows: ’

INPUT Statements that read the file can be
executed (default).

OUTPUT Only statements that write new records
to the file can be executed.
1-0 Any file processing statement related to

input/output can be executed. (If the PD
field is set by any statement other than
the OPEN statement, the characters IO
rather than I-O must be specified.)

A trivial error occurs if execution of a file processing
statement is attempted and the PD field is not set to an
appropriate value for that statement.

The setting of the OF field determines file paositioning.
Since word addressable files can be accessed randomly
according to the WA field setting, file positioning
parameters on an open request are generally not
applicable. The OF field, however, can be set as follows:

R The file is rewound to beginning-of-information
(default).

N The file is not rewound.
When the following statement is executed, the file
described by WAFIT is opened for input:

CALL OPENM(WAFIT)

READING RECORDS

Records in a word addressable file can be read sequentially
or randomly by executing a CALL GET statement. The
format is:

CALL GET(fit,wsa,wa,0,0,rl,ex)
The file must be attached and open for either input or
input/output (the PD field is set to INPUT or 10).
The first parameter in the read request is the.name of the

array that contains the FIT. Additional parameters set the
following FIT fields:

WSA Working storage area that is to receive the
record.
WA Word address, which is the relative address of

the record to be read, counting the first word
in the file as 1, The parameter can be
omitted for a sequential read.

RL Record length, which is required only for U
type records.

EX Error exit subroutine to be executed if an
error occurs.

60495800 C

Fields not specified in the read fequest default to the
current value in the FIT. After the record is read, BAM
updates the following FIT fields:

RL Record length

WA Word address

Beginning at the word address specified by the WA field of
the FIT, the number of characters specified by the RL or
FL field are transferred to the working storage area. When
the read is complete, BAM sets the WA field to the next
unread word. This allows you to read an entire file

sequentially without the necessity of resetting WA once
the initial file position is established.

A sequential read presumes that the file contains
contiguous records. Meaningless data can be returned to
the working storage area if data is not contiguous. If the
file contains W type records, errors are reported if the
word at WA cannot be interpreted as a correctly formatted
W type control word.

For U and W type records, the MRL field of the FIT sets a
maximum that overrides any other length specification for
the data transfer. If the record length for a read request is
greater than MRL, only MRL characters are transferred to
the working storage area; error code 142g is returned to
indicate excess data. If the record length is greater than
the record limit indicated by a W type control word, error
code 143g is returned to indicate insufficient data is
returned; in this instance, fewer than requested characters
are returned.

When the following statement is executed, the record
starting at word address 10g or 8 in the file desecribed by
WAFIT is read into working storage area WSA:

CALL GET(WAFIT,WSA,8,0,0,30,ERREXIT)

The two zeros represent parameters that are not applicable
to word addressable file organization. The record to be

read contains 30 characters. If an error occurs during

execution of this statement, control is transferred to
subroutine ERREXIT.

Program WAREAD, shown in figure 4-3; reads the
previously created file WAFILE. The program performs
the following: :

e Dimensions the FIT and working storage area.

e Defines the file characteristics through the CALL
FILEWA statement.

e Opens the file for input and begins a sequential read.

e Stores a 1 in the WA field to indicate reading is to
begin with the record at word address 1.

® Moves the contents of the WA field to FORTRAN

variable IWA. The WA field is automatically
incremented by BAM after each read.

e Tests IWA for a value greater than 34g or 28. You
calculate this value known to be the address of the
last valid record.

e Reads and prints each record in the file.

® Begins a random read.

60495800 C

e Reads the record starting at word address 20g or 16
by including the word address in the’ CALL GET
statement. ‘A warning message is issued to inform you
that the previous GET call specified fewer parameters.

e Reads the record starting at word address 7 by storing
the word address in the WA field before issuing the
CALL GET statement.

The printout that follows the source listing includes the
word address for the sequential read. Since each record
contains 30 characters and therefore occupies 3 words in
memory, each address is a multiple of 3.

ADDING RECORDS

You can add records to an existing word addressable file
sequentially or randomly by executing a CALL PUT
statement. The file must be attached and open for either
output or input/output. (The PD field is set to OUTPUT or

10.)

You can add a single record by specifying the word address
where it is to be stored. You can add several records
sequentially by specifying the starting word address for the
first record; as subsequent records are written, BAM
increments the word address and stores them accordingly.

Program ADDRECS, shown in figure 4-4, adds five records
to existing file WAFILE. The first input file (TAPE1)
contains four records for a sequential write; the second
input file (TAPE2) contains one record for a random write.
The program performs the following:

e Dimensions the FIT and working storage area.

e Defines the file characteristics through the CALL
FILEWA statement.

e Opens the file for input/output and begins a sequential
write.

e Stores a 42g or 34 in the WA field to indicate
writing is to begin at word address 42g.

e Reads the records in TAPEL into the working storage
area (WSA) and prints the contents.

e Begins a random write.

e Stores a 37g or 31 in the WA field to indicate
writing at word address 37g.

e Reads the record in TAPE2 into the working storage I
area and prints the contents.

e Stores al in the WA field and begins a sequential read.

e Tests IWA for a value greater than 53g or 43. You
calculate this value known to be the address of the
last valid record.

e Reads and prints the file.

The printout that follows the source listing shows the four
new input records SYRACUSE, DAYTON, WARWICK, and
MEMPHIS were written sequentially to word addresses
42g through 53g. Input record RICHMOND was
written randomly to word address 37g.

A file dump is included to illustrate the internal
representation of updated file WAFILE.

4-7

SOURCE LISTING

¢ THIS PROGRAM ILLUSTRATES A SEQUENTIAL AND RANDOM
¢ READ OF PREVIOUSLY CREATED FILE WAFILE.
¢
¢
PROGRAM WAREAD
DIMENSION WAFIT(35), WSA(3)
CALL FILEWA (WAFIT, 'LFN', 'WAFILE',
+ 'RT', 'F', 'FL’, 30,
+ 'EFC', 3)
¢
¢ DO A SEQUENTIAL READ OF WAFILE BEGINNING AT WORD
¢ ADDRESS 1 AND PRINT EACH RECORD WITH ITS WORD ADDRESS.
¢
CALL OPENM (WAFIT)
CALL STOREF (WAFIT, 'WA', 1)
PRINT 5
5 FORMAT (' ',/,' SEQUENTIAL READ',/)
10 IWA=IFETCH (WAFIT, "WA!)
IF (IWA .GT. 28) GO TO 20
CALL GET (WAFIT, WSA)
PRINT 15, WSA, IWA
15 FORMAT (1X,3A10,1X,04)
G0 TO 10
c
€ . DO A RANDOM READ OF THE RECORDS AT WORD ADDRESSES
¢ 16 AND 7 AND PRINT EACH RECORD.
c
20 PRINT 25
25 FORMAT (' ',/,' RANDOM READ',/)
CALL GET (WAFIT, WSA, 16)
WARNING = NUMBER OF ARGUMENTS IN REFERENCE TO GET IS NOT CONSISTENT
PRINT 30, WSA -
30 FORMAT (1X,3A10)
CALL STOREF (WAFIT, 'WA', 7)
CALL GET (WAFIT, WSA)
PRINT 30, WSA
CALL CLOSEM (WAFIT)
STOP
END
1 WARNING ERROR IN WAREAD
OUTPUT

SEQUENTIAL READ

ABROPS RAPID CITY SD 421.00 0001
AKOSBC AKRON OH 10468.00 0004
BLTSYN BALTIMORE MD 536.00 0007
CHESRC CHEYENNE WY 7000.00 0012
DASSBC DALLAS TX 98760.00 0015
OKHMPI TULSA 0K 1000.00 0020
ORLSYN ORLANDO FL 4921.00 0023
PRTSBC PORTLAND OR 9274.00 0026
PTBCPO PITTSBURGH PA 793.00 0031
RDUSYN RALEIGH NC 762.00 0034

RANDOM READ

OKHMPI TULSA 0K 1000.00
BLTSYN BALTIMORE MD 536.00

® 4-8

Figure 4-3. Reading a Word Addressable File

60495800 C

INPUT
SYRSY
DAYFA

WARSY
MEPSB

RIHSB

SOURC

FILES

N SYRACUSE NY 4320 S0

C DAYTON OH 4130.00 }

N WARWICK RI 700.95 TAPE1
C MEMPHIS TN 4800.00

C RICHMOND VA 7830.45 } TAPE2

E LISTING

(e N e Ne NNyl

OO OO0

10

15

IO

20

25
30

35

OO0

£0
&5

55

60

THIS PROGRAM ADDS FIVE RECORDS TO EXISTING FILE
WAFILE. THE FIRST INPUT FILE (TAPE1) CONTAINS FOUR
RECORDS FOR A SEQUENTIAL WRITE. THE SECOND INPUT
FILE (TAPEZ2) CONTAINS ONE RECORD FOR A RANDOM WRITE.

PROGRAM ADDRECS

DIMENSION WAFIT(35), WSA(3)

CALL FILEWA (WAFIT, 'LFN®, 'WAFILE®,
+ 'RT*, 'F', 'FL', 30,
+ 'EFCY, 3)

READ AND PRINT THE RECORDS IN TAPE1 AND WRITE THEM
SEQUENTIALLY TO WAFILE BEGINNING AT WORD ADDRESS 34.

CALL OPENM (WAFIT, 'I-0°)

CALL STOREF (WAFIT, "WA', 34)

PRINT 5

FORMAT (' *,/,' SEQUENTIAL WRITE',/)
READ (1, '(3A10)', END=20) WSA

PRINT 15, WSA

FORMAT (1X,3A10)

CALL PUT (WAFIT, WSA)

GO TO 10

READ AND PRINT THE RECORD IN TAPE2 AND WRITE IT
RANDOMLY TO WAFILE AT WORD ADDRESS 31.

CALL STOREF (WAFIT, 'WA', 31)
PRINT 25

FORMAT (* ',/,' RANDOM WRITE',/)
READ (2, '(3A10)°, END=40) WSA
PRINT 35, WSA

FORMAT (1X,3A10)

CALL PUT (WAFIT, WSA)

60 TO 30

DO A SEQUENTIAL READ OF WAFILE BEGINNING AT WORD
ADDRESS 1 AND PRINT THE FILE.

CALL STOREF (WAFIT, 'WA®', 1)
PRINT 45

FORMAT (* ',/,' SEQUENTIAL READ',/)
IWA=IFETCH(WAFIT, 'WA')

IF (IMA .GT. 43) GO TO 60
CALL GET (WAFIT, WSA)

PRINT 55, WSA, IWA

FORMAT (1X,3A10,1X,04)

60 TO 50

CALL CLOSEM (WAFIT)

END

60495800 C

Figure 4-4. Adding Records to a Word Addressable File (Sheet 1 of 2}

4-9 @

OUTPUT
SEQUENTIAL WRITE

SYRSYN SYRACUSE
DAYFAC DAYTON

WARSYN WARWICK
MEPSBC MEMPHIS

RANDOM WRITE
RIHSBC RICHMOND
SEQUENTIAL READ

ABROPS RAPID CIT
AKOSBC AKRON
BLTSYN BALTIMORE
CHESRC CHEYENNE
DASSBC DALLAS
OKHMPI TULSA
ORLSYN ORLANDO
PRTSBC PORTLAND
PTBCPO PITTSBURG
RDUSYN RALEIGH
RIHSBC RICHMOND
SYRSYN SYRACUSE
DAYFAC DAYTON
WARSYN WARWICK
MEPSBC MEMPHIS

1 - FILE DUMP -

NY 4320 50
OH 4130.00
RI 700.95
TN 4800.00
VA 7830.45
Y sD 421.00
OH 10468.00
MD 536.00
WY 7000.00
TX 98760.00
0K 1000.00
FL 4921.00
OR 9274.00
H PA 793.00
NC 762.00
VA 7830.45
NY 4320 50
OH 4130.00
RI 700.95
TN 4800.00

0001
0004
0007
0012
Q015
0020
0023
0026
0031
0034
0037
0042
0045
0050
0053

TOUMP, I=WAFILE.

F 1R 14 0~ 0102 2217

F 1R 1W o= 1

F 1R 1W 10- 5

AB RO
716 5555

555 5555

F IR 1w 14~ 0401 2323

F TR 14 20- 2

DA SS
301 5555

F 1R 14¥ 24~ 5555 5537

F 1R 1W 30~ 2

F 1R 1w 34~ 0511 070

F 1R 14 40- 5

F 1R 14 545

F 1R 1% 60- 0000 0000

== ABOVE LINE REPEATE

2023 5522
PsS R
5555 5555

4036 4157
53 6.
0203 5504
8c D
5555 5555

4435 3457

92 1.

2017 5520
PO P
5555 5555

4336 3357
83 0.
0103 5504
AC b
5555 5555

4333 3357
80 0.

0120
AP
1710

F TR 1W 74~ 0000 0000 0000 0000 0000

== END OF INFORMATION --

— END OF DUMP ——

0000

1124 3155
IT Y
3741 4357
46 8.
2203 5503
RC ¢
5555 5555

3333 3357
00 0.
0203 5520

[
2207 1055
R6 H
4241 3557
76 2.
3116 5523
YN S
5555 5555

4233 3357

0000 0000

2304

0000

5555 5555 3735 3457
42 .

0214 2423 3116 5502
8L TS YN B
3105 1616 0555 5555
YE NN E
5555 4443 4241 3357
98 76 0.
1722 1423 3116 5517
OR LS YN 0
2414 0116 0455 5555

5555 5555 4244 3657

3.

2211 1023 0203 5522

RI HS BC R

0103 2523 0555 5555

5555 5537 3436 3357
0

1505 2023 0203 5515

0000 0000 0000 0000

3333
o0

0114

0000

0113 1723 0203 5501
AX 0s BC A
2411 1517 2205 5555
TI MO RE
5555 5542 3333 3357
7 00 0.
1713 1015 2011 5524
OK HM P1I T
0116 0417 5555 5555
AN DO
5555 5544 3542 3757
9 27 4.
2204 2523 3116 5522
RD US YN R
1015 1716 0455 5555
HM ON D
5555 5537 3635 3355
4 32 0
2701 2223 3116 5527
WA RS YN L]
2010 1123 5555 5555

0000 0000 0000 0000

0goa

@ 4-10

Figure 4-4. Adding Records to a Word Addressable File (Sheet 2 of 2)

60495800 C

REPLACING A RECORD

You can update a word addressable file by replacing a
record stored at s particular word address. The following
restrictions apply:

e The file must be attached and open for input/output
(PD field set to 10).

® The replacement record must have the same record
length as the record being replaced unless space was
left to add to a record or space was left by a shorter
record. If the replacement record is longer than the
original record, part of the next record will be
overwritten.

A record stored in a particular word address is replaced by
an overwrite that is accomplished by executing a CALL

PUT statement for the same address. The WA field
specifies the address for the overwrite.

Program REPLACE, shown in figure 4-5, replaces the
record stored at word address 31g or 25. The program
performs the following:

e Dimensions the FIT and working storage area.

o Defines the file characteristics through the CALL
FI_LEWA statement.

® Opens the file for input/output.

e Reads the input file into the working storage area
(WSA) and prints the single record.

e Issues a write request for the 30-character record in
WSA to word address 31g or 25.

60495800 C

@ Stores a 1 in the WA field and begins a sequential read.

@ Tests IWA for a value greater than 53g or 43. You
calculate this value known to be the address of the
last valid record.

e Reads and prints the file.

The printout that follows the source listing shows the new
input record ALTOONA has replaced PITTSBURGH at word
address 3lg.

REWINDING THE FILE

You can rewind a word addressable file by executing a
CALL REWND statement. The format is:

CALL REWND(fit)

Since word addressable files can be accessed randomly
according to the WA field setting, a rewind is simply an
alternative to storing a 1 in the WA field.

The only parameter in the rewind request is the name of
the array containing the FIT. If a rewind request is issued
after a write request, file processing is completed before
rewind; information in the central memory buffer is
written to the device.

When the following statement is executed, the file
described by WAFIT is rewound to beginning-of-
information:

CALL REWND(WAFIT)

4-11

c
c
c
[

(s NN e]

10

15

[z N 2]

s Rz Ryl

20

25
30

35
40

AOOSYN

ABROPS
AKOSBC
BLTSYN
CHESRC
DASSBC
OKHMPI
ORLSYN
PRTSBC
AQOSYN
RDUSYN
RIHSBC
SYRSYN
DAYFAC
WARSYN
MEPSBC

+
+

FILE

INPUT

AOOSYN ALTOONA PA (00000.00

SOURCE LISTING

THIS PROGRAM REPLACES THE RECORD AT WORD ADDRESS
31 IN WAFILE WITH A RECORD EXISTING ON FILE INPUT.

PROGRAM REPLACE

DIMENSION WAFIT(35), WSA(3)

CALL FILEWA (WAFIT, 'LFN', 'WAFILE',
'RT*, 'F', 'FL', 30,
‘EFC', 3)

READ AND PRINT REPLACEMENT RECORD

CALL OPENM (WAFIT, 'I-0")

PRINT 5

FORMAT (' ',/,' THE REPLACEMENT RECORD',/)
READ (*, '(3A10)', END=20) WSA

PRINT 15, WSA

FORMAT (1X,3A10)

WRITE REPLACEMENT RECORD IN WORD ADDRESS 31

CALL PUT (WAFIT, WSA, 30, 25)
GO TO 10

READ AND PRINT CONTENTS OF WAFILE

CALL STOREF (WAFIT, ‘WA', 1)
PRINT 25 '
FORMAT (* ',/,' THE UPDATED FILE',/)
IWA=IFETCH (WAFIT, 'WA")

IF (IWA .GT. 43) GO TO 40
CALL GET (WAFIT, WSA)

PRINT 35, WSA, IWA

FORMAT (1X,3A10,1X,04)

60 TO 30

CALL CLOSEM (WAFIT)

END

QUTPUT

THE REPLACEMENT RECORD

ALTOONA PA 00000.00

THE UPDATED FILE

RAPID CITY SD 421.00 0001
AKRON OH 10468.00 0004

BALTIMORE MD 536.00 0007
CHEYENNE WY 7000.00 0012
DALLAS TX 98760.00 0015
TULSA OK 1000.00 0020
ORLANDO FL 4921.00 0023

PORTLAND OR 9274.00 0026
ALTOONA PA 00000.00 0031
RALEIGH NC 762.00 0034
RICHMOND VA 7830.45 0037
SYRACUSE NY 4320 50 0042
DAYTON 04 4130.00 0045
WARWICK RI 700.95 0050
MEMPHIS TN 4800.00 0053

Figure 4-5. Replacing a Record in a Word Addressable File

® 4-12

60495800 C

ERROR PROCESSING

BAM performs various checks to ensure proper file
processing and maintains information in a number of FIT
fields related to error processing. You can set several of
these FIT fields; you can interrogate others that BAM sets.

Error messages can be directed to the dayfile, error file, or
both. The error file is processed through the CRMEP

control statement. A variety of options are available for
error file printing and disposition.

The contents of FIT fields can be captured at various
points during processing and recorded on the error file.
This capability is available through the CALL FITDMP
statement, which can appear anywhere within the source
program.

FIT FIELDS UNDER USER
CONTROL

FIT fields that you can set fall into three general
categories:

Error message control DFC, EFC, ERL
Error options for parity errors EO
Owncode exit processifig DX, EX

These fields are summarized in table 5-1 and described in
the following paragraphs.

TABLE 5-1. ERROR PROCESSING FIT FIELDS UNDER USER CONTROL

ngd Definition Set By Values pﬁm
DFC Dayfile control FILExx 0 fatal messages only (default) N/A
STOREF 1 error messages
FILE control statement 2 notes
3 error messages and notes
EFC Error file control FILExx 0 no entries (default) N/A
STOREF 1 error messages
FILE control statement 2 notes
3 error messages and notes
ERL Trivial error limit FILExx 0 no limit (default) N/A
STOREF n error 1imit where n=1-511
FILE control statement
EO Error option for FILExx T terminate file access (default) 0
parity error proc- STOREF D drop bad data 1
essing FILE control statement A accept bad data 2
' TD terminate and display block 4
with error on error file
i) drop bad data and display 5
block with error on error
file
AD accept bad data and display 6
block with error on error
file
DX End-of-data exit FILExx 0 no routine {default) N/A
STOREF name routine name
© GET (SQ only)
GETP (SQ only)
EX Error exit FILExx 0 no routine (default) N/A
STOREF name routine name :
GET (WA only)
PUT
PUTP (SQ only)
REPLC (SQ only)
TEFC field must be set to 3
60495800 C 5.1

DAYFILE CONTROL, DFC

The DFC field controls the listing of error messages on the
dayfile. The field can be set by the CALL FILExx, CALL
STOREF, or FILE control statement.

Fatal error messages are always written to the dayfile.
The messages. written to the dayfile depend on the setting
of the DFC field as follows:

0 Fatal messages only (default)
1 All error messages to the dayfile
2 Notes to the dayfile

3 Error messages and notes to the dayfile

" ERROR FILE CONTROL, EFC

The EFC field controls the listing of error messages on the
error file. The field can be set by the CALL FILExx,
CALL STOREF, or FILE contro!l statement.

The error file is a special file created with the logical file
name ZZZZZEG. The messages written to the error file
depend on the setting of the EF C field as follows:

0 No messages to the error file (default)
1 Error messages to the error file
2 Notes to the error file

3 Error messages and notes to the error file

TRIVIAL ERROR LIMIT, ERL

Trivial error conditions can interfere with a particular
operation but do not deny further file access. You shouid
not ignore trivial errors on the assumption they are
unimportant. Trivial errors might reveal that the correct
file is not being processed. Trivial errors might also reveal
that an entire job completed normally, but the file was not
created because the file was never opened.

The ERL field places a limit on the number of trivial errors
allowed. When the limit is reached, a fatal error occurs.
The field can be set by the CALL FILExx, CALL STOREF,
or FILE control statement. The default is no limit on
trivial errorr messages.

ERROR OPTION FOR PARITY
ERRORS, EO

The EO field provides several alternatives when a parity
error occurs. The field can be set by the CALL FILExx,
CALL STOREF, or FILE control statement.

The EO field can be set as follows:

T Terminate file processing with a fatal error
(default).

D Drop bad data, seek the next good record, and
pass control te error exit with no useful
information in WSA, ’

A Accept bad data and pass control to error exit at
end of bad data record. .

5-2

When the EFC field is set to 3, the EQ field can be set as

follows:
™ Terminate file processing and display block l
with error on error file.
DD Drop bad data, display block with error on
error file, and position to next good record.
AD Accept bad data and display block with error

on error file. Pass control to error exit at
end of bad data record.

END-OF-DATA EXIT, DX

The DX field enables owncode exit processing when various
end-of-data conditions arise while reading a file. The field
can be set by the CALL FILExx or CALL STOREF
statement. For sequential files only, the field can also be
set by the CALL GET and CALL GETP statements.

Action taken for an end-of-data condition depends on the
setting of the DX field as follows:

1] No end-of-data exit; processing continues
(default).
name Subroutine identified by variable name is to

be executed.

The subroutine must be declared EXTERNAL.

On return from an end-of-data exit subroutine, processing
resumes at the line after the BAM call that resulted in the
DX condition. Table 5-2 lists the conditions that cause
end-of-data exit processing. No end-of-data exit is taken
for sequential files if the suppress buffer flag (SBF) field in
the FIT is set to YES.

" When an end-of-data exit subroutine receives control, the

contents of the working storage area are undefined. A

CALL GET statement that causes an end-of-data exit does
not transfer information to the working storage area.

Within the user subroutine, processing allowed at
end-of-information depends on the processing direction
specified when the file was opened.

e If PD was INPUT, the following calls can be issued:

CLOSEM
REWND
SKIP

e If PD was IO, the following calls can be issued:

CLOSEM
ENDFILE
PUT
PUTP
REWND
SKIP

You must acknowledge physical boundary conditions
existing because of device restrictions, as well as
boundaries written by specific request.

60495800 C

CONDITIONS -CAUSING END-OF-DATA EXIT ‘

TABLE 5-2.
ces FP Field
Condition Setting Comments
Beginning- 0001 For standard
of-infor- labeled tapes,

mation beginning-of-
information is
start of user
data records.

0002 For unlabeled or
nonstandard
labeled tapes,
beginning-of-
information is
load point.

End-of-section
exists as a
result of WEOR
execution. It is
equivalent to a
Tevel 0 7/8/9
card.

End-of- 0010
section

End-of- 0040
partition

End-of-partition
exists as a
result of ENDFILE
or WTMK execution.
It is equivalent
to a tapemark or

a level 17g 7/8/9
card.

End-of -
information
exists as a
result of CLOSEM
FILE execution.
On mass storage,
end-of -
information is
equivalent to a
6/7/8/9 card.

End-of- 0100
information (file close)

Program DXEXAMP, shown in figure 5-1, uses an
end-of-data exit. The main program performs the
following:

e Identifies end-of-data exit subroutine DEXIT. -

e Allocates an array for FIT construction (SQFIT) and
working storage area (WSA) in blank common so that
they can be accessed in a subroutine as well as in the
main program.

e Defines the file characteristics through the CALL
FILESQ statement. The DX field is set to the name of
the end-of-data exit subroutine.

e Opens the file for input.

e Reads the file.

60495800 C

Each time an end-of-data condition is recognized,
subroutine DEXIT is called to print the contents of the FP
field in the FIT.

The printout that follows the source listing indicates
end-of-data was encountered three times: end-of-section
twice, end-of-information once. Figure 3-13 in section 3
includes a file dump of SQFILE, which was the actual file
read by program DXEXAMP. An examination of that file
dump indicates the following steps occurred:

1. Records 1 through 10 were read.

2. End-of-record was encountered and control was given
to end-of-data subroutine DEXIT. DEXIT returned
FP=10g (end-of-section). Note that end-of-section
is BAM terminology and corresponds to an operating
system end-of-record.

3. Records 11 and 12 were read.

4, End-of-record was encountered a.r‘1d DEXIT again
returned FP=10g.

5. End-of-information was encountered and DEXIT
returned FP=100g.

The loop was executed 15 times and control was then
passed to the CALL CLOSEM statement. Each time the
CALL GET statement encountered an end-of-data
condition, control transferred to DEXIT. The RETURN
from DEXIT returned control as if the CALL GET
statement had just executed; however, the working storage
area did not contain a new record. Therefore, the CALL
GET statement had to be executed 15 times to read the 12
records.

ERROR EXIT, EX

The EX field enables owncode exit processing when a fatal
or trivial error occurs during file processing. The field can
be set by the CALL FILExx or CALL STOREF statement.
The field can also be set by the following processing calls:

e GET (WA only)

e PUT

e PUTP (5Q only)

e REPLC (5Q only)

Action taken for an error exit depends on the setting of the
EX field as follows:

0 No error exit; processing continues (default).

name Subroutine identified by variable name is to
be executed.

The subroutine must be decléreJ EXTERNAL.

When an error exit subroutine receives control, the
contents of the working storage area depend on the type of
call and error. When a return is executed in the EX
subroutine, processing resumnes at the line after the BAM
call that resulted in the EX condition.

For sequential files, no error exit is taken for a GET or

PUT if the suppress buffer flag (SBF) field in the FIT is set
to YES.

5-3

SOURCE LISTING

THIS PROGRAM ILLUSTRATES USE OF AN END-OF-DATA EXIT.
THE DX FIELD IDENTIFIES END~OF-DATA EXIT SUBROUTINE

OO0

PROGRAM DXEXAMP
EXTERNAL DEXIT
COMMON SQFIT(35), WSA(3)

CALL OPENM (SQFIT)
00 10 J=1,15

10 CALL GET (SQFIT,WSA)
CALL CLOSEM (SQFIT)
END

SUBROUTINE DEXIT
COMMON SQFIT(35), WSA(3)
N=IFETCH (SQFIT, 'FP")
PRINT 60,N

RETURN
END

QUTPUT

FIT FIELD FP
FIT FIELD FP
FIT FIELD FP

010
010

2

DEXIT, WHICH IS CALLED TO PRINT THE CONTENTS
OF THE FP FIELD EACH TIME AND END-OF-DATA
CONDITION IS ENCOUNTERED ON PERMANENT FILE SQFILE.

CALL FILESQ (SQFIT, 'LFN', 'SQFILE',
+ |BTI’ lcl’ IRTI' IFI’ IFLI’ 30'
+ 'EFC', 3, 'DX', DEXIT)

60 FORMAT(' FIT FIELD FP = ',03)

Figure 5-1. Using an End-of-Data Exit

Program EXEXAMP, shown in figure 5-2, uses an error
exit. The main program performs the following:

e Identifies error exit subroutiqe ERROR,

@ Allocates an array for FIT construction (WAFIT) and
working storage area (WSA) in blank common so that
they can be accessed in a subroutine as well as in the
main program.

® Defines the file characteristics through the CALL
FILEWA statement. The EX field is set to the name
of the erior exit subroutine.

@ Opens the file for input.

@ Issues a read request for the record stored at word
address 300g or 192.

If an error condition is recognized, subroutine ERROR is to
print the contents of the error status (ES) field in the FIT.

Word addressable file WAFILE, which was created in -
section 4, is known to have 15 records with the last record
stored at word address 53g. The message that
immediately follows the source listing indicates the invalid
word address was recognized. The ES field contains error
message code 120g, which signifies an invalid word
address.)

Notice the error message that appears in the job's dayfile.
The DFC parameter in the CALL FILEWA statement was

5-4

set to 3 to indicate error messages and notes were to be
transmitted to the dayfile.

FIT FIELDS UNDER
SYSTEM CONTROL

BAM sets the following FIT fields that you can interrogate: l

Trivial error count ECT
Error status ES

Fatal/nonfatal flag FNF
Parity el"ror flag : PEF
System parity error severity SES

These fields are summarized in table 5-3 and described in
the following paragraphs.

TRIVIAL ERROR COUNT, ECT

The ECT field holds the trivial error count. When the
trivial error limit (ERL) field is set to a value greater than
zero, the ECT field is incremented by BAM whenever a
trivial error occurs. As long as the value of the ECT field
is less than the value of the ERL field, the trivial error

causes control to pass to the error exit, if specified, or to
the in-line code. When the error count is the same as the

trivial error limit (ECT=ERL), a fatal error occurs.

60495800 C

SOURCE LISTING

THIS PROGRAM IDENTIFIES AN ERROR EXIT SUBROUTINE

BY SETTING THE EX FIELD. A READ REQUEST IS

ISSUED FOR THE RECORD STORED AT WORD ADDRESS

192 IN WAFILE. THIS INVALID WORD ADDRESS CAUSES AN ERROR
CONDITION, AND SUBROUTINE ERROR IS CALLED TO

PRINT THE CONTENTS OF THE ES FIELD IN THE FIT.

OO O00

PROGRAM EXEXAMP

EXTERNAL ERROR

COMMON WAFIT(35), WSA(3)

CALL FILEWA (WAFIT, 'LFN', 'WAFILE',

+ "RTY, 'F°, 'DFC', 3, 'FL', 30,
+ *EX*', ERROR)

CALL OPENM (WAFIT)

CALL GET (WAFIT, WSA, 192)

CALL CLOSEM (WAFIT)

END

SUBROUTINE ERROR
COMMON WAFIT (35), WSA (3)
N=IFETCH(WAFIT, 'ES%)
PRINT 10,N

10 FORMAT (' ERROR CODE IS ', 03)
RETURN
END

QUTPUT

ERROR CODE IS 120

NOS DAYFILE

14.58.01.USER

14.58.02.CHARGE

14.58.04.FTNS,LO=-A.

14.58.04. 54400 SCM STORAGE USED.

14.58.064. 0.017 CP SECONDS COMPILATION TIME.
14.58,04.ATTACH, WAFILE.

14.58.04.L60.

14,58.06. RM ERROR 0120 ON LFN WAFILE

14£,58.06. END EXEXAMP
14.58.06. 17500 MAXIMUM EXECUTION FL.
14.58.06. .009 CP SECONDS EXECUTION TIME.

Figure 5-2. Using an Error Exit
'S

ERROR STATUS, ES

FNF is set to 1, the file cannot be processed further; if an
attempt is made to process the file, the job is aborted.
The ES field holds a three-digit octal error code. When a The file can still be closed, however, after most fatal
fatal or trivial error occurs, BAM sets the ES field to the errors. Refer to the discussion of the SES field for
appropriate code. Refer to Program EXEXAMP in information on error severity.

figure 5-2.

PARITY ERROR FLAG, PEF

FATAL/NONFATAL FLAG, FNF
The FNF field holds a value that indicates an error is fatal

or nonfatal (trivial). BAM sets the ES field to 1 to indicate
a fatal error, and to 0 to indicate a nonfatal error. When

60495800 C

The PEF field holds a value that indicates whether or not a
parity error has occurred. BAM sets the PEF field to 1 to
indicate a parity error, and to 0 to indicate no parity

error. When PEF is set to 1, further action is dependent
upon the value of the SES field.

5-5

TABLE 5-3. ERROR PROCESSING FIT FIELDS UNDER SYSTEM CONTROL .

FIT Field Definition IFETCH Return Value
ECT Trivial error count 0 through 511
ES Error status Error code (001 through nnn)
FNF Fatal/nonfatal flag 0 nonfatal
: 1 fatal
PEF Parity error flag 0 no error
1 parity error
SES System parity error severity 1 read parity error level 1
2 read parity error level 2
3 read parity error level 3
4 read parity error level 4
5 write parity error level 1
6 write parity error level 2

SYSTEM PARITY ERROR SEVERITY, SES

The SES field holds a value that indicates the severity of a
system parity error. When a system parity error occurs,
BAM sets the SES field to a value ranging from 1 through
6. Values 1 through 4 indicate read parity errors; values 5
and 6 indicate write parity errors.

Severity is indicated by the returned value as follows:

1 BAM can recover to a record boundary. The
number of bad records and blocks is known.

2 BAM can recover to a record boundary. The
number of bad blocks is known, but not the
number of lost records.

3 BAM can recover to a record boundary. The
number of bad blocks and records is not known.

4 BAM cannot recover; the error is fatal.

5 BAM cannot recover; CALL CLOSEM VOLUME is
recommended.

6 BAM cannot recover; the error is fatal.

PROCESSING THE ERROR FILE

The error file is a local mass storage file that disappears at
job termination. To read the information stored on the
error file, the post error processor must be called by the
CRMEP control statement.

The error file buffer is always flushed when the job
terminates abnormally. At the normal completion of a job
step, however, the buffer is flushed only if all files are
closed. Any messages in the buffer are lost if the buffer is
not flushed.

Parameters in the CRMEP control statement specify the
output file to be used and select the error file information
to be listed on the output file. If no parameters are
specified, all fatal and data manager error messages are
listed on the system file OUTPUT. Data manager error
messages are transmitted to the ES field by the CYBER
Database Control Systemm (CDCS) component of the
DMS-170 data management system. These messages

comprise the 600g category and can appear when the
CDCS interface applies.

5-6

Parameters are specified in two ways: the mnemonic alone
or the mnemonic followed by an equal sign and one or more
options. Table 5-4 lists the various parameters for the
CRMEP control statement and the possible settings for
each parameter. Figure 5-3 shows some examples of the
CRMEP control statement.

CRMEP(LO,SF=WAFILE)
All messages for the file WAFILE are to be listed on
the file OUTPUT.

CRMEP(LO=-D,ON,L=ERRFILE}
All messages except data manager messages and those
with error codes 142 and 143 are written to the
output file ERRFILE.

CRMEP(L.O=N,SN=1000)

Only notes with the number 1000, which is the
number for the FIT dump, are to be listed.

Figure 5-3. CRMEP Control Statement Examples

DUMPING THE FIT

The contents of the FIT can be dumped to the error file as
a note by executing a CALL FITDMP statement. The
format is:

CALL FITDMP(fit,id)

If the error file control (EFC) field is set to 0, it is forced

" to 2; if the field is set to 1, it is forced to 3.

The first parameter in the FIT dump request is the name of
the array that contains the FIT. When more than one FIT

is being dumped to the error file, a 10-character identifier
can be associated with each FIT. The identifier is

specified as the second parameter.

When the following statement is executed, FIT WAFIT is
dumped to the error file as note 1000:

CALL. FITDMP(WAFIT)

60495800 C

TABLE 5-4. CRMEP éONTROL STATEMENT PARAMETERS

Mnemonic Omitted Mnemonic Only Mnemonic and Option
Lo Fatal and data man- A1l messages in the Select (N) or omit (-N) notes.
ager error messages error file are :
are listed. Tisted. Select (F) or omit (-F) fatal messages.
Select (D) or omit (-D) data manager
messages.
Select (T) or omit (-T) trivial messages.
SF Select messages for Select messages for Select messages only for the specified
all files. all files. files.
OF Omit messages for no Omit messages for no Omit messages only for the specified
files. files. files.
SN Select all message Select hardware Select only messages with the specified
numbers . and parity error numbers.)
messages.
ON Omit no message Omit only error Omit messages with the specified numbers.
numbers. numbers 142 and 143.
L Output file is Qutput file is LIST. Output file is the specified file.
OQUTPUT.
RU Error file remains Error file is re- Not applicable.
at EOI after turned/unloaded
processing. after processing.
PW Page width for CRMEP Page width for CRMEP Page width can be between 40 and 160
output file is 72 output file is 72 characters.
characters for con- characters for con-
nected file, 132 for nected file, 132 for
unconnected file. unconnected file.
When the following statement is executed, FIT WAFIT is BFS=101 Buffer length
dumped to the error file as note 1000 and identified by the ;)
name indicated in variable M: DFC=3 Error messages and notes to the dayfile
CALL FITDMP(WAFIT,M) EFC=2 Notes to the error file
Two FIT dumps for the same file in different parts of the EOIWA=101 Word address at EOI
program can be easily differentiated by using this
convention. ES=120 Error cade 120 - invalid word address
Program EXEXAMP, shawn again in figure 5-4, includes a EX=175 Address of error exit routine ERROR '
CALL FITDMP statement to dump the FIT to the error
file, and a CRMEP control statement to print the contents FL=36 Fixed length records of 30 characters
of the error file. The EFC field is omitted, defaults to O,
and is forced to 2. FO=1 Ward addressable file organization
The error file contains note 1000, which is the FIT dump. FwWB=12610 First word address of user buffer I

The contents of each FIT field reflect the value of the
field at the time subroutine ERROR was entered.
Applicable fields and their octal values are as follows:

60455800 C

-LFN=WAFILE Logical file name

5-7

L.ast operation OPENM (GET did not

LOP=1 PD=1 Processing direction of input
transfer data) :
R RT=1 F type records
LT=2 Unlabeled file .
WA=300 Current word address set by GET (the
MRL=36 Maximum record length of 30 read was not successful and WA was
characters not incremented)
0C=1 File opened WSA=11677 Working storage area address
SOURCE LISTING
[THIS PROGRAM USES A CALL FITDMP STATEMENT TO
[+ DUMP THE FIT TO THE ERROR FILE. THE FIT IS
C IDENTIFIED BY THE 10-CHARACTER NAME 'ERROR EXIT'®
c INCLUDED IN THE FITDMP STATEMENT. A CRMEP CONTROL
C STATEMENT PRINTS THE CONTENTS OF THE ERROR FILE.
[
C
PROGRAM EXEXAMP
EXTERNAL ERROR
COMMON WAFIT(35), WSA(3)
CALL FILEWA (WAFIT, 'LFN', 'WAFILE',
+ 'RT', 'F', 'DFC', 3, 'FL', 30,
+ 'EX', ERROR)
CALL OPENM (WAFIT)
CALL GET (WAFIT, WSA, 192)
CALL CLOSEM (WAFIT)
END
SUBROUTINE ERROR
COMMON WAFIT (35), WSA (3)
CALL FITDMP (WAFIT, 'ERROR EXIT")
N=IFETCH(WAFIT, 'ES")
PRINT 1Q,N
10 FORMAT (' ERROR CODE IS ', 03)
RETURN
END
OUTPUT
ERROR CODE IS 120
1 CRMEP (LO)
RM NOTE 1000 ON LFN WAFILE FIT DUMP ERROR EXIT (FIT AT 011634)
0 AsCII 0 E0 00000000 LBL 0 PN
1 BAL 0000000101 EOIWA 0 LCR 00000000 PNO
0 88H 000 ERL 2701061140500 LFN a0 POS
0 8cK 120 ES 000300 L6X 00000000 PTL
0 BFF 000175 EX 00 LL 0000 Ra
000101 BFS 0 EXD 00 LNG 0000000000 RC
0000000300 BN . 0 FF 01 LoP 0 RDR
0BT 00000036 FL 01 LOPS 0 REL
000000 B2F 0000000000 FLM 00000000 LP 00 RKP
0 B8F 0 FNF 2T 0000 RKW
000000 COT 1F0 00 LVL 00000000 RL
% 0 CF 000 FP 000000 LX 00 RMK
00 cL 0 FPB 00000000 MBL 01 RT
0 cH 36 FTS 000000000000 MFN 0 sa
1 CMPLT 012610 FwB Q00 MKL 0 seF
0 CNF 0 FwlI 00000000 MNB 150§
00000000 cP 0 18 00000000 MNR 00 SES
000000 CPA 00000000 HL 00000036 MRL 0 soL
0 ¢l 00000000 HMB 00 MuL 0 SPR
00 oc 000000 HRL 0 NDX 00000000 TL
000000 DCA 00000000 1BL 00 NL 00 TRC
000000 DCT 000 1P 0 NOFCP 0 uLP
3 DFC 120 IRS 1 0c 0 VF
0 OFLG 000000 KA 0 of 00 VNO
0 DKI 000 KL 0 ON 0000000300 WA
000 oP 0 KNE 0 ORG 0 WPN
. 0412 DVT 00 kP 0 OvF 00011677 WSA
000000 DX 0000 KR 00 Pc 000000 XBS
000 ECT o KT 170 00000000000000 XN
2 EFC 000000 LA 0 PEF
0 ERK 00 LAC 000000 PKA

Figure 5-4. Dumping the FIT (Sheet 1 of 2)

60495800 C

NOS DAYFILE

14.58.02.USER

14.58.02 .CHARGE

14.58.02.FTN5,L0=-A. :

14.58.03. 54400 SCM STORAGE USED.

14.58.03. 0.017 CP SECONDS COMPILATION TIME.
14.58.03.ATTACH WAFILE. :
14.58.03.L60.

14.58.05. RM ERROR 0120 ON LFN WAFILE

14,58.05. RM NOTE 1000 ON LFN WAFILE

14.58.06. END EXEXAMP

14.58.06. 20200 MAXIMUM EXECUTION FL.
14.58.06. .011 CP SECONDS EXECUTION TIME.
14.58.06.CRHEP(LO)

Figure 5-4. Dumping the FIT (Sheet 2 of 2)

60495800 C ' 5.9 @

STANDARD CHARACTER SETS . ' A

Control Data operating systems offer the following

variations of a basic character set:
e CDC 64~character set

e CDC é3-character set

e ASCII 64-character set
@ ASCIl 63-character set

Table A-1 shows these character sets. The set in use at a
particular installation is specified when the operating
system is installed or deadstarted.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use).

Under NOS/BE, the alternate mode can be specified by a
26 or 29 punched in columns 79 and 80 of the job statement
or any 7/8/9 card. The specified mode remains in effect

60495800 C°

®

throughout the job unless it is reset by sbecification of the
alternate mode on a subsequent 7/8/9 card.

Under NOS, the alternate mode can be specified by a 26 or
29 punched in columns 79 and 80 of any 6/7/9 card, as
described for a 7/8/9 card. In addition, 026 mode can be
specified by a card with 5/7/9 multipunched in column 1;
029 mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and the

terminal type. Characters shown in the CDC Graphic
column of table A-1 are applicable to BCD terminals;
ASCII graphic characters are applicable to ASCII-CRT and
ASCII-TTY terminals.

Several graphics are not common for all codes. Where
these differences in graphics appear, assignment of

collation positions and translation between codes must be
made. Tables A-2 and A-3 show the CDC and ASCII

character set collating sequences.

B
E

A-2

TABLE A-1. STANDARD CHARACTER SETS

cDC ASCIHI
Display - Hollerith External .

Code Graphic Punch BCD Gsrat? hic Tg;;? (COdT
{octal) (026) Code ubset octal)
oot : {colon) TT 8-2 00 : {coton} T1 8-2 072
01 A 121 61 A 12-1 101
02 B 12-2 62 B 12-2 102
03 (o 12-3 63 C 12-3 103
04 D 12-4 64 D 12-4 104
05 E 126 65 E 125 105
06 F 12-6 66 F 126 106
07 G 12-7 67 G 12-7 107
10 H 128 70 H 128 110
1 | 129 Al i 129 11
12 J 111 41 J 11-1 112
13 K 112 42 K 11-2 113
14 L 11-3 43 L 11-3 114
15 M 11-4 44 M 114 115
16 N 115 45 N 115 116
17 0 11-6 46 0 11-6 117
20 P 17 47 P 17 120
21 Q 118 50 Q 18 121
22 R 119 51 R 119 122
23 S 0-2 22 S 0-2 123
24 T 0-3 23 T 03 124
25 u 04 24 u 04 125
26 \ 05 25 \ 05 126
27 w 0-6 26 w 06 127
30 X 07 27 X 0-7 130
31 Y * 08 30 Y 08 131
32 P4 09 31 z 09 132
33 0 0 12 (¢ 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
a4 -9 9 1 9 9 071
45 + 12 60 + 12-8-6 053
46 ; 11 40 . 1 055
47 11-8-4 54 1184 052
50 / 01 21 / 01 057
51 (0-8-4 34 (12.8:5 050
52) 12-84 74) 11-8-5 051
53 $ 11-8-3 53 3 11-8-3 044
54 = 8-3 13 = 8.6 07%
55 blank no punch 20 blank no punch 040
56 , (comma) 08-3 33 , {comma) 0-8-3 054
57 . (period) 12-8-3 73 . {period) 12-8-3 056
60 = 0-8-6 36 # 8-3 043
61 [8-7 17 C 1282 133
62] 0-8-2 32 b 11-8-2 135
63 %tt 8.6 16 o Tt 0-8-4 045
64 = 8-4 14 " {quote) 8-7 042
65 r 0-8-5 35 _ {underline) 0-8-5 137
66 v 11-0 52 [12-8-7 041
67 A 08-7 37 & 12 046
70 t 1185 55 ' (apostrophe) 85 047
71 } 11-8-6 56 ? 08-7 077
72 < 120 72 < 12-8-4 074

T 73 > 11-8-7 57 > 0-8-6 076
74 < 85 15 @ 84 100
75 > 1285 75 N\ 08-2 134
76 = 12-8-6 76 -~ {circumfiex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; [semicolon) 11-8-6 073

fTwere zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than
two colons,
TIn instaliations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon (8-2 punch).
vield a blank (55g).

The % graphic and related card codes do not exist and translations

60495800 C

TABLE A-2. CDC CHARACTER SET COLLATING SEQUENCE

Collating Collating
Sequence CcDC Display External Sequence CDC Display | External
Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD
00 00 blank 55 20 32 40 H 10 70
01 01 < 74 15 33 41 I 11 71
02 02 % 63 t 16t 3 42 v 66 52
03 03 [61 17 35 43 J 12 41
04 04 — 65 35 36 .44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 t 70 55 39 47 N 16 45
03 10 | 71 56 40 50 0 17 46
09 1 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
11 i3 - 76 76 43 53 R 22 51
12 14 . 57 73 44 54] 62 32
13 15) 52 74 45 B5 S 23 22
14 16 ; 77 77 46 56 T 24 23
15 17 + 45 60 47 57 U 25 24
16 20 $ 53 53 48 60 v 26 25
17 21 * 47 54 49 61 W 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 P4 32 31
21 25 (51 34 53 65 : oo nonet
22 26 = 54 13 54 66 0 33 12
23 27 # 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 81 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 c 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 11

it In instailations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,
External BCD code 16.

60495800 B

A-3

A-4

TABLE A-3. ASCII CHARACTER SET COLLATING SEQUENCE
Collating ASCI'I Display | ASCII Collating ASCI'I Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code
Decimal/Octal | Subset Decimal/Octal Subset
0o 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ’ 70 27 39 47 G 07 47
08 10 (51 28 40 50 H 10 48
09 11) 52 29 41 51 | 11 49
10 12 * 47 2A 42 52 J 12 4A
1 13 + 45 2B 43 53 K 13 4B
12 14 , 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 2E 46 56 N 16 4E
15 17 / 50 2F 47 57 0 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 u 25 55
22 26 6 41 36 54 66 \Y/ 26 56
23 27 7 42 37 .55 67 W 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 : oot 3A 58 72 V4 32 5A
27 33 : 77 3B 59 73 [61 5B
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 -~ 76 5E
K} 37 ? 71 3F 63 77 65 5F

Tln installations using a 63-graphic set, the % graphic does not exist. The : graphic is display

code 63.

60495800 8

SUMMARY OF FORTRAN CALL STATEMENTS

This appendix includes the general formats of FORTRAN

calls to BAM for sequential and word addressable file
organizations. The following conventions are used:

fe Words in uppercase must appear exactly as they are
shown.

I. Words in lowercase are generic terms that represent
the words or symbols supplied by the programmer. In
most instances, the terms are the same as actual
names of FIT fields.

e Subroutines FILExx and STOREF require specifications
of field and value. The word field denotes the name of
a FIT field; it must be a character string in
left-justified format. The word value denotes the
value to be placed in the field; it must be a character
string in left-justified format for symbolic options, an
integer representation for numeric options, or a
program or variable name (for example, owncode exit
and working storage area).

@ Function IFETCH requires a field specification. The
word field denotes the name of a FIT field; it must be
a character string in left-justified format. The word
variable denotes an integer variable in which the value
of the FIT field will be returned.

e Except for FILExx, the order of parameters is fixed so
that all parameters positioned to the left of a desired

option must be specified. A parameter list can be
truncated at any point after the fit; middle

parameters cannot be defaulted. If a parameter is not
applicable to a particular file organization and its
position is needed in a statement, a zero must be

specified as indicated in the formats. If a parameter

is applicsble to the file organization but not applicable
to the record type, a zero must be specified to mark a

needed position.

SEQUENTIAL FILE ORGANIZATION
CALL CLOSEM(fit,cf,type)
CALL ENDFILE(fit)

CALL FILESQ(fit,field,value,...,field,value)

60495800 C

CALL FITDMP(fit,id)

CALL GET(fit,wsa,0,0,0,rl,dx)
CALL GETP(fit,wsa,ptl,'SKIP',dx)
IFETCH(fit, field)

CALL IFETCH(fit,field,variable)
CALL OPENM(fit,pd,of)

CALL PUT(fit,wsa,rl,0,0,0,ex)
CALL PUTP(fit,wsa,ptl,rl,ex)
CALL REPL.C(fit,wsa,0,0,0,0,ex)
CALL REWND(fit)

CALL SKIP(fit,count)

CALL STOREF(fit,field,value)
CALL WEOR(fit,lvl)

CALL WTMK(fit)

WORD ADDRESSABLE FILE
ORGANIZATION

CALL CLOSEM(fit,cf)

CALL FILEWAC(fit,field,value;...,field,value)
CALL FITDMP(fit,id)

CALL GET(fit,wsa,wa,0,0,rl,ex)
FETCH(fit, field)

CALL IFETCH(fit,field,variable)

CALL OPENM(fit,pd,o0f)

CALL PUT(fit,wsa,rl,wa,0,0,ex)

GALL REWND(fit)

CALL STOREF(fit,field,value)

GLOSSARY

Advanced Access Methods (AAM) =
A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Multiple-Index Processor.

Basic Access Methods (BAM) -
A file manager that processes sequential and word
addressable file organizations.

Beginning-of-Information (BOI) -
The start of the first user record in a file. System
information, such as tape labels of sequential files,

can appear before the beginning-of-information.

Block -
A logical or physical grouping of records to make more
efficient use of hardware. Word addressable files are
not blocked. When file organization is sequential, one
of the following block types must be specified by the
programmer: C, I, K, or E.

Boundary -
A file boundary is a physical indication that marks a
logical division within a sequential file. BO! and
individual user records are always recognized; other

boundaries are affected by the record and blocking
type and the file storage device. A word boundary is

the first character pasition in a central memory word.

Character -
A letter, digit, punctuation mark, or mathematical
symbol forming part of one or more of the standard
character sets. Also, a unit of measure used to
specify block length, record length, and so forth.

Close -
A set of terminating operations performed on a file
when .input and output operations are complete., All
files processed by BAM must be closed.

Creation Run -
All processing of a file, from open to close, the first
time the file is written or made into a BAM file.

CRMEP Control Statement -
A control statement that processes the BAM error file.

CYBER Record Manager (CRM) -
A generic term relating to the common products BAM
and AAM.

Default -
A value assumed in the absence of a user-specified
value declaration for the parameter involved. Values
for many defaults are defined by the installation.

End-of-Information (EOI) -
The end of the last user record in a file. Trailer labels
are considered to be past the end-of-information.
End-of-information is undefined-for unlabeled S or L
tapes.

Error File - :
A special file created with the logical file name

ZZ777EG to hold BAM error messages; the file is
processed by the CRMEP control statement.

60495800 C

Field -
A portion of a word or record; a subdivision of
information within a record; also, a generic entry in a
file information table identified by a mnemonic.

Field L.ength -
The area in central memory allocated to a particular
job; the only part of central memory that a job can
directly access. Contrasts with mass storage space or
tapes allocated for a job and on which user files reside.

File -
A logically related set of information; the largest
collection of information that can be addressed by a
file name. It starts at beginning-of-information and
ends at end-of-information. Every file in use by a job
must have a logical file name.

FILE Control Statement -
A control statement that supplies file information
table values after a source language program is
compiled or assembled but before the program is
executed. Basic file characteristics such as
organization, record type, and description can be
specified in the FILE control statement.

File Information Table (FIT) -

A table through which a user program communicates
with BAM. For direct processing through BAM, a user
must initiate establishment of this table. All file
processing executes on the basis of information in this
table. You can set FIT fields directly or use
parameters in a file access call that sets the fields
indirectly. Some product set members set the fields
automatically for you.

1 Tape (Internal) -
A magnretic tape with recording format of physical
records containing the contents of 0 to 512 central
memory words of binary information. I tapes are only
supported under the NOS operating system.

Key -
Information used to identify a record.

Level Number -
An octal number from 0 through 17g that Iis

recorded in a short physical record unit or zero-length
physical record unit marker; the number is used to
form system-logical-record groups within files. Level
number 17g indicates a logical end-of-partition.
Level number 16g is used by checkpoint/restart and
should not otherwise be specified by you. The system
creates system-logical-records with a level number of
0 for mass storage files and SI tapes when you do not
specify otherwise.

l.ogical File Name -~
The name given to a file being used by a job. The
name must be unique for the job and must consist of

one to seven letters or digits, the first of which must
be a letter.

C-1

L Tape (Long Stranger) -
A 7-track or 9-track, labeled or unlabeled magnetic
tape with blocks containing more than 5120
characters. Normally written by or for other than
CYBER 170-compatible systems. '

Macro -
A single instruction which when assembled into
machine code generates several machine code

instructions.

Mass Storage -
A disk pack that can be accessed randomly. Extended
memory is not considered mass storage.

Open -
A set of preparatory operations performed on a file
before input and output can take place; required for
all BAM files.

Owncode -
A routine you can write to process certain conditions.

Control passes automatically to user owncode routines
defined in the FIT for:

DX End-of-data condition
EX Error condition
LX Tape label processing

Partition -

A division internal to a sequential file. A group of
sections beginning with the first record after the end
of the preceding partition and ending with a special
record or condition, dependent on the block and record
type and storage device. Generally, a partition is
greater than a section and less than a file, but it can
be equal to either or both.

Permanent File -
A file on a mass storage permanent file device that
can be retained for longer than a single job. It is
protected against accidental destruction by the system
and can be protected against unauthorized access.

Physical Record -
On magnetic tape, information between interrecord
gaps. It need not contain a fixed amount of data.

Physical Record Unit (PRU) - b
The smallest unit of information that can be
transferred between a peripheral storage device and
central memory. The PRU size is permanently fixed
for all mass storage devices, and SI and I tapes; the
concept does not apply to S/L tapes.

PRU Device -
An SI or I format tape or a mass storage device in
which information has a physical structure governed
by physical record units (PRUs).

Random Access -

: Access method by which any record in a file can be
accessed at any time. Applies only to mass storage
files with an organization other than sequential.
Contrast with Sequential Access.

Record -
The largest collection of information passed between
BAM and a user program in a single read or write

operation. You define the structure and
characteristics of records within a file by declaring a

record format. The beginning and ending points of a
record are implicit in each format.

Rewind -
An operation that
beginning-of-information.

positions a file at

SCOPE 2 -
An operating system on the CONTROL DATA CYBER
70 Model 76 and 7600 Computer Systems; 7000 Record
Manager runs under SCOPE 2.

Section -

A division internal to a sequential file. Recognition of
a section boundary is affected by block type, record
type, and file residence. A section is a group of
records beginning with the first record after the end
of the preceding section and ending with a special
record or condition, dependent on the block and record
type and storage device. Generally, a section is
greater than a record and less than a partition, but it
can be equal to either or both. Sections are not
defined on K and E type blocks.

Sequential Access -
Access methad by which only the record located at the
current file position can be accessed. Contrast with-

Random Access.

Sequential (5Q) File -
A file with records in the physical order in which they
were written. No logical order exists other than the
relative physical record position.

S Tape (Stranger) -
A magnetic tape with recording format of physical
records containing the contents of 512 or fewer
central memory words of information.

SI Tape (System Internal) -
A magnetic tape with recording format of physical
record units containing the contents of 0 to 512
central memory words of binary information or 0 to
128 words of coded information. Coded SI tapes are
not supported under the NOS operating system.

Volume - :
A reel of magnetic tape. A given file can encompass

more than one volume.

Word Address -
The relative location of the first word of a record in a
word addressable file. Specified as the WA field of
the file information table on a call for a read or write

operation.

Word Addressable (WA) File -
A mass storage file containing continuous data or
space for data. - Words within word addressable files
are numbered from 1 to n, each word containing 10
characters. Retrieving or writing of data at any given

word within the file is specified by the word number,
called the word address. -

Working Storage Area -
An area within the user's field length intended for

receipt of data from a file or transmission of data to a
file.

60495800 C

SUMMARY OF FIT FIELDS L

This appendix summarizés the FIT fields that are applicable to the file organizations supported by BAM. Sequential file FIT
fields are listed in table D-1. Word addressable file FIT fields are listed in table D-2.

TABLE D-1. SUMMARY OF FIT FIELDS APPLICABLE TO SEQUENTIAL FILES

FIT Release gﬁgnge FILE IFETCH
Field Meaning Ablgﬁzgle Default |After Notes gggz;?1 Ei%%so SEgﬁ%F Func-
Mnemonic If Any |Crea- ment tion
tion
ASCII [ASCII character set |0,1,2 0 Yes |[Used for terminal files X X X X
on NOS/BE only
BBH Buffer below highest | YES, NO NO Yes X X X X
high address
BFS Buffer size in words {1 thru Provided| Yes |Must be greater than X X X X
131071 by BAM MBL and PRU size
BN Block number X
BT Block type I,C,K,E I No X X X X
CF Close flag R, N, U, R Set by CLOSEM X X X X
RET, DET,
DIs
CL Trailer count field |1 thru 6 0 No RT=T only X X X X
length
CM Conversion mode YES, NO NO No Must be NO for RT=W X X X X
CNF Connect file flag YES, NO NO No Used for terminal files X X X X
cp Trailer count field |0 thru 0 No RT=T only . X X X X
start 1310710
C1 Binary Tength field |YES, NO NO No ~IRT=D/T only X X X X
DFC Dayfile control 0,1,2,3 0 Yes ‘ X X X X
DX End-of-data exit Routine 0 Yes . X X X
name
ECT Trivial error count X
EFC [Error file control |0,1,2,3 0 Yes | - X X X X
EO Error option for T, D, A, T Yes |IFETCH return: X X X X
parity errors 1D, DD, 0=T 4=TD
AD 1=D 5=DD
» 2=A 6=AD
ERL Trivial error limit }0 thru 511{ O Yes 0 allows indefinite X X X | X
number of errors
ES Error status IFETCH return: a : X
3-digit octal
error code
EX Error exit Routine 0 Yes X X X
name

60495800 C . D-1

TABLE D-1. SUMMARY OF FIT FIELDS APPLICABLE TO SEQUENTIAL FILES (Contd)

FIT Release gﬁgnge FILE IFETCH
Field Meaning Abl?ﬁggle Default |After Notes g:gzgf] E;%ESQ Sgg§§F Func-
Mnemonic If Any [Crea- ment tion
tion
FF File flush YES, NO NO Yes |Buffer flush on ab- X X X X
normal termination
FL Record length 1 thru 0 No RT=F/Z only X X X 1 X
1310710
FNF Fatal/nonfatal flag IFETCH -return: X
0 = nonfatal error
1 = fatal error
FO File organization Sq SqQ.. No IFETCH return: O X X X X
Fp File position IFETCH return (octal): X
1 = end of labels
2 = BOI
4 = EQV
10 = EOS
20 = EOR
40 = EOP
100 = EOI
FWB First word address Buffer Provided| Yes X X X
of buffer address by BAM
HL Header length 1 thru 0 No RT=T only X X X X
1310710
LA User 1abel area Label 0 Yes X X X
area
address
LBL Label area length 1 thru 900} O Yes X X X X
LCR Label check/creation | CHK, CRT CRT Yes X X X
LFN Logical file name 1 to7 Required| Yes |Must start with a X X X X
letters letter
or digits
LL Length field length {1 thru 6 0 No RT=D only X X X X
Lop Last operation code IFETCH returns (octal): X
01 = OPENM
02 = CLOSEM
03 = GET/GETP
43 = PUT/PUTP
56 = REPLC
05 = SKIP
47 = WEOR
10 = REWND
63 = WTMK
o 74 = ENDFILE
LP Length field start 10 thru MNR| © No RT=D only X X X X
LT Label type uL, S, UL No X X X X
NS, ANY
LX Label exit Label 0 Yes X X X
routine
address
-2 60495800 C

TABLE D-1. SUMMARY CF FIT FIELDS APPLICABLE TO SEQUENTIAL FILES (Cbntd)

FIT Release gﬁgnge FILE IFETCH
Field Meaning A&l$ﬁ251e Default |After Notes ggg:g?] Ei%%SQ Sgg?EF Func-
Mnemonic ’ If Any |Crea- ment tion
tion
MBL Maximum block length |1 thru 5120; No Required for BT=K/E X X X X
1310710 BFS in
charac-
ters
minus 20
MFN Multifile name 1 to6 Corresponds to the SI X
. letters or M parameter on the
or digits NOS LABEL statement,
and to the M parameter
on the NOS/BE LABEL
statement. Must start
with a letter.
MNB Minimum block length |1 thru MBL] O No BT=K/E only X X X X
MNR Minimum record 0 thru MRL| O No X X X X
length
MRL Maximum record 0 thru 0 Yes |RT=D/R/S/T/U/W only X X X X
Tength 1310710
MUL Multiple of 0 thru 62 2 No BT=K/E only; must be an X X X X
characters per block even number
NOFCP |No FILE control YES, NO NO Yes X X X
statement processing
oc Open/close status IFETCH return (binary): X
00 = never opened
01 = opened
10 = closed
OF Open flag R,N,E R Yes [Set by OPENM X X X X
PC Padding character Any 76 Yes |[Specify in octal X X X X
character display code
PD Processing direction | INPUT, INPUT ‘Yes |Set to I-0 by OPENM; X X X X
OUTPUT, IFETCH return:
10 0 or 1 = INPUT
2 = QUTPUT
3=10
PEF Parity error flag IFETCH return: X
0 = no error
1 = parity error
PNO Multifile position Corresponds to LABEL X
control statement
PTL Partial transfer Set by GETP or PUTP X
Tength
RB Records per block 1 thru 1 No BT=K only X X X X
4095
RC Record count Set by GET and PUT X
RL Record Tength 1 thru MRL| 0 Yes |Set by GET and PUT X X
RMK Record mark Any 62 No RT=R only; must not be X X X X
character character the same as padding
character
60495800 C D-3

TABLE D-1. SUMMARY OF FIT FIELDS APPLICABLE TO SEQUENTIAL FILES (Contd)'

il Allowable | Release gﬁg"ge Controt FILESQ |STOREF | IF ETCH
Field Meaning Values Default [After Notes State- |Call cal7 |Func-
Mnemonic If Any |Crea- ment tion
tion
RT Record type D,F,R,S, W No X X X X
T,U,W,Z
SB Sign overpunch YES, NO NO No RT=D/T only X X X X
length field
SBF Suppress buffer flag |YES, NO NO Yes |SBF=YES suppresses X X X X
. allocation of buffers
and circular buffering.
SES System parity error IFETCH return: X
severity 1 = read level 1
2 = read level 2
3 = read level 3
4 = read level 4
5 = write level 1
6 = write level 2
SPR Suppress read ahead |YES, NO NO Yes |Reset to NO at the end X X X X
of processing
T Trailer length 1 thru 0 No X X X X
131071
uLp User Tabel NO, V, F, NO Yes [IFETCH return (binary): X X X X
processing VF, U, 0=N0
VU, FU, 001 =V
VFU 010 = F
011 = VF
100 = U
101 = VU
110 = FU
111 = VFU
VF Volume close flag U,R,N U X X X X
VNO Volume number X
WSA Working storage area |Memory Required| Yes X X X
Tocation
TABLE D-2. SUMMARY OF FIT FIELDS APPLICABLE TO WORD ADDRESSABLE FILES
FIT Allowable | Release gﬁg"ge Controt | F1Lewa [sTorgr | IFETCH
Field Meaning Values Default |After Notes State- |call Ccall Func-
Mnemonic If Any [Crea- ment tion
tion ’
BBH Buffer below highest |YES, NO NO Yes X X X X
high address
BFS Buffer size in words |1 thru Provided| Yes X X X X
131071 by BAM
CF Close flag R, N, U, R Set by CLOSEM X X X X
RET, DET,
DIS
DFC Dayfile control 0,1,2,3 0 Yes X X X X
D-4 60495800 C

TABLE D-2. SUMMARY OF FIT FIELDS APPLICABLE TO WORD ADDRESSABLE FILES (Contd)

650495800 C

Can
FILE
FIT Release |Change IFETCH
Field Meaning Abl?ﬁ:g]e Default [After Notes gzgggg1 Ei%EWA SggﬁsF Func-
Mnemonic If Any |[Crea- ment tion
tion
DX End-of-data exit Routine 0 Yes X X X
name
ECT Trivial error count X
EFC Error file control 0,1,2,3 0 Yes X X X X
EO Error option for T, D, A, T Yes |IFETCH return: X X X X
parity errors TD, DD, 0=T 4=TD
AD 1=D 5=DD
2=A 6=AD
EOIWA |End-of-information X
word address
ERL Trivial error limit |0 thru 511] O Yes |0 allows indefinite X X X X
number of errors
ES Error status IFETCH return: X
A 3-digit octal
error code
EX Error exit Routine 0 Yes X X X
name
FF File flush YES, NO NO Yes |Buffer flush on ab- X X X X
normal termination
FL Record length 1 thru 0 No RT=F only X X X X
1310710
FNF Fatal/nonfatal flag IFETCH return: X
0 = nonfatal error
1 = fatal error
FO File organization WA Required| No IFETCH return: 1 X X X X
FP File position IFETCH return (octal): X
1 = BOI
20 = EOR
100 = EOI
FWB First word address Buffer Provided| Yes X X X
of buffer address by BAM
LFN Logical file name 1to7 Required| Yes |Must start with a X X X X
letters Tetter
or digits
LOP Last operation code IFETCH return (octal): X
01 = OPENM
- 02 = CLOSEM
03 = GET
43 = PUT
10 = REWND
MRL Max imum record 0 thru 0 Yes |Read protection only X X X X
Tength 1310710 :
NOFCP [No FILE control YES, NO NO Yes X X X
statement processing
D-5

TABLE D-2. SUMMARY OF FIT FIELDé APPLICABLE TO

WORD ADDRESSABLE FILES (Contd)

Can
FILE
FIT : Release |Change IFETCH
Field Meaning A&l?z:21e Default |After Notes gggtzg] E;%EWA SggﬁﬁF Func-
Mnemonic . If Any |Crea- . ment tion
tion
oc Open/close status IFETCH return (binary): X
00 = never opened
01 = opened
10 = closed
OF Open flag R,N R Yes |Set by OPENM X X X X
PD Processing direction | INPUT, INPUT Yes |Set to I-0 by OPENM; X X X X
QUTPUT, IFETCH return:
10 0 or 1 = INPUT
2 = QUTPUT
3=10
RL Record length 1 thru 0 Yes |Set by GET and PUT X X
MRL .
RT Record type F,U,W W No X X X X
SBF Suppress buffer flag |YES, NO NO Yes {SBF=YES suppresses X X X X
allocation of buffers
and circular buffering
WA Word address Memory X X
location
WSA Working storage area |Memory Required] Yes X X X
Tocation
-6 60495800 C

FILE INTERCHANGE

As long as a file can be described adequately to CYBER
Record Manager by file information table values, a
COBOL, COMPASS, FORTRAN, ALGOL, PL/I, FORM, or
Sort/Merge program running under NOS or NOS/BE can be
written to read the following:

e Any file created by CYBER Record Manager.

e Files written by COBOL and COMPASS prior to
availability of CYBER Record Manager.

e Files written by FORTRAN, except random mass
storage files created through WRITMS.

e Any file written by other product set members with
two exceptions: random files with a format such as
that produced by the WRITOUT macro of CPC, and
BASIC binary files.

e Most files produced on other machines.

You can also use CYBER Record Manager to write a file to

be read by other product set members or other machines.
When IBM System/360/370 files are involved, it is
necessary to use the FORM utility or 8-bit subroutines to
convert between the 6-bit codes of CDC and 8-bit codes.
(See the FORM and 8-bit Subroutines reference manuals.)

The remainder of this appendix describes several types of
file interchange:

e File format produced by other products.

e Suggestions for reading tape with unknown or partially
known structure.

CDC FILE FORMATS
The CYBER Record Manager file and record types

resulting from statements in various products are shown in
the following paragraphs.

FORTRAN 5.1 .

A formatted list directed NAMELIST WRITE produces
RT=Z, BT=C.

An unformatted (binary) WRITE produces RT=W, BT=L.
BUFFER IN and BUFFER OUT produce RT=S, except that
files named INPUT, OUTPUT, or PUNCH produce RT=Z.

CM is set to YES for a formatted statement or to NO for
an unformatted statement.

I/0 USING CPC MACROS

RFILE or RFILEC created files have no counterpart in
CYBER Record Manager.

Name/rnumber index files (WRITOUT calling IORW) cannot
be processed by CYBER Record Manager.

60495800 C

WRITOUT calling IOWRITE produces RT=Z, BT=C.

Other macros have no direct counterpart.

COBOL 5.3

For sequential files on any device other than S/L tapes,
block type is always C. For S/L tapes, block type depends
on the BLOCK CONTAINS clause, as shown in table E-1.

TABLE E-1. BLOCK TYPES FOR S/L TAPES
Block

BLOCK CONTAINS Clause Type
Omitted K
BLOCK CONTAINS integer RECORDS K
BLOCK CONTAINS integer TO integer E
RECORDS
BLOCK CONTAINS integer CHARACTERS E
BLOCK CONTAINS integer TO integer E
CHARACTERS

For sequential, indexed sequential, direct access, and
actual key files, record type depends on the RECORD
clause, as shown in table E-2.

For word addressable files, RT is always set to U. For
relative files, RT is always set to F.

FORM 1.1
Any file type except word addressable can be created by
FORM. CYBER Record Manager FIT field default values
are:

FO=5Q

RT=Z
BT=C

ALGOL 5.1

CYBER Record Manager FIT field default values for each
file type are as follows:

e Coded sequential files produce:

FO=5Q, RT=Z, BT=C, FL=137 (paged),
FL=80 (unpaged)

e Binary sequential files produce:
FO=5Q, RT=S, BT=C, MRL=5120
@ Word addressable files produce:

FO=WA, RT=U, MRL=5120

E-1

TABLE E-2. RECORD TYPES RESULTING FROM COBOL RECORDS CLAUSE

Record Description Entry

RECORD Clause
(FD entry) _ 01 Entries of 0l Entries of
same length different lengths

Entry with OCCURS/ Entry with OCCURS/
DEPENDING ON data- DEPENDING ON data-
name in record name not in record

B e——————amtaimit———— — — rame a—
Clause omitted F W

RECORD CONTAINS it F
integer
CHARACTERS

RECORD CONTAINS W W
integer-1 to
integer-2
CHARACTERS

RECORD CONTAINS D D
integer-1 to
integer-2
CHARACTERS
DEPENDING ON
data-name

in record

RECORD CONTAINS W W
integer-1 to
integer-2
CHARACTERS
DEPENDING ON
data-name
outside record

record type.

TTRecord type is Z if file name is INPUT, QUTPUT, or PUNCH.

TFor each RECORD CONTAINS format, an equivalent RECORD VARYING format exists, giving the same respective

READING AN UNKNOWN STRUCTURE e

A tape with an unknown structure often can be read
through the following outlined procedure:

e CYBER Record Manager returns information to the
FIT when a read is executed. Use this information to
process the file.

e Select a file description, depending on the anticipated
size of the physical block. If the tape is an SI tape or
S format tape, maximum block size is 5120 characters.

To read a tape and transfer all data to the working
storage area, describe the tape as RT=S. The first
GET sets the RL field of the FIT to one of the

following:

Number of characters in the tape block read if
the tape is an S or L tape

Size of system-logical-record if the tape is an SI
or I format tape

To read a specific number of characters from a tape
when the blocks are known to be larger, describe the
tape as RT=U, BT=K, RB=1. For the first GET, set RL
to the desired number of characters.

60495800 C

SEQUENTIAL FILE BOUNDARY PROCESSING

Program BOUNDRY, shown in figure F-1, illustrates file
boundary processing concepts. The program creates a
sequential file and writes section and partition boundaries
on the file. Refer to section 3 for information on logical
file structure and a description of the statements used to
write file boundaries.

Input records for BOUNDRY exist initially as three sets of
80-character records on three files. AFILE contains data
A through E, FFILE contains data F through J, and KFILE
contains data K through M. The files are copied to file
TAPE1 with the following operating system copy utilities:

COPYBF,AFILE, TAPEL.
COPYBF,FFILE, TAPE].
COPYBF,KFILE, TAPEL.

After these statements are executed, the three sets of
data records exist on TAPEl and are separated by
operating system end-of-file markers. You must rewind
TAPE]l to beginning-of-information before executing
BOUNDRY.

The program creates sequential file NEWONE from the
records in TAPEl and writes file boundaries between the
sets of data records. It then reopens NEWONE and reads
the records. When a file boundary is read, control
transfers to end-of-data subroutine OWNEND.

Statements in the main program that apply to file boundary
processing are described as follows:

e EXTERNAL OWNEND

This statement identifies end-of-data subroutine
OWNEND, which is specified by subsequently setting
the DX field in the FIT.

e COMMON SQFIT(35), WSA(8)

This statement allocates an array for FIT construction
(SQFIT) and working storage area (WSA) in blank
common so they tan be accessed in a subprogram, as
well as in the main program. ’

e READ (1, (8A10), END=15) WSA

This statement reads the first set of data records from
TAPELl into the working storage area and then
transfers control to a statement that writes a file
boundary to NEWONE.

e CALL WEOR (SQFIT)

This statement writes a section boundary to NEWONE
after the first set of data is read.

e CLOSE(1)
OPEN(1)
READ (1; (8A10), END=25) WSA

These statements read the second set of data records
from TAPEL into the working storage area and then
transfer control to a statement that writes a file
bouridary. “The previous READ encountered an

60495800 C

end-of-file on TAPEl; therefore, a CLOSE and an
OPEN statement must precede this READ so that the
records following the end-of-file can be read.

e CALL ENDFILE (SQFIT)

This statement writes an end-of-partition to NEWONE
after the second set of data is read.

e CLOSE(1)
OPEN(1)
READ (1, (BA10), END=35) WSA

These statements read the third set of data records
from TAPE1 and transfer control to a statement that
closes file NEWONE.

e CALL CLOSEM (SQFIT)

This statement writes the buffer to file NEWONE and
writes an end-of-information.

e CALL OPENM (SQFIT, INPUT', 'R")

This statement opens file NEWONE for reading and
rewinds it to the beginning of the first record. The
warning message that follows this statement tells you
the previous OPENM call specified fewer parameters.

e CALL STOREF (SQFIT, 'DX', OWNEND)

This statement sets the DX field of the FIT so that
subroutine OWNEND is executed each time a file
boundary is read.

The end-of-data subroutine OWNEND has access to the FIT
and the data record. The subroutine tests the file position
(FP) field of the FIT to determine the type of boundary and
then prints an acknowledgment.

Statements that apply to the subroutine are defined as
follows:

e M=IFETCH (SQFIT, FP")

This statement puts the value of the file position field
into the variable M.

e IF(M.EQ.8) GO TO 10
IF (M.EQ. 32) GO TO 20
IF (M. EQ. 64) GO TO 30

These statements test for 10g or 8 (end-of-section),
40g or 32 (end-of-partition), and 1008 or 64
(end-of-informatiqn).

Output from the program follows the source listing. All
messages were generated by the program to monitor
execution.

g

The last record of a section (E, J, M) and the last record of
a partition (J) are duplicated on OUTPUT. This duplication
occurs because a GET call that detects a file boundary
transfers control to OWNEND but does not transfer
information to the working storage area. The RETURN
from OWNEND returns control as if the GET call has just
executed, but the working storage area does not contain a

new record. Therefore, the PRINT statement executed
immediately after return from OWNEND reprints the
contents of the working storage area, which® have not
changed. You can add more statements to the program to
prevent these records from being processed twice. Refer
to the example on adding records to a sequential file in
section 3. '

SOURCE LISTING

G0 TO 10

. PRINT %, ' WEOR

3

INPUT FILE
3BBB
AFILE
TAPE1
FFILE
KFILE

AARAAAAAAAAAAA

BBB BBEBSBBEBEEEEEEE6E865888

cceeecececeececccecccccccccccccccceccccecccccccceccceccccceocccccccccccccccccccccccc
DpDODDDDODDDODDDDDDDDDODDDDDDDDDODDDDDDDDDODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
EE
FFFFFFéFFF
elefelelefelelelelefeleleleledclefele{etelcle]cle{elelefelel e lelelelefefelelclelelefelelcletelcleleelelelelelelcleleclclelelelclefefefelclelelelele]ele] cle)
HHHEHHHHHHHHHHHHA
INTIIIIIIIIIIIIIITIIIIIRIEINIIIIIIIIINIININIINEIINININININIITININIIIINIIIINININIININII
SR ERANNNRANANR R R NNRN RN NANR AN RN NN N A NR NN NN S NRNNNR NN NN NN RN NN FRENR AR EE NN RN

KK

UL L L L LA L L L L B L L L Ll L L L L L Le bbb L L L L LD

MMMEMMMMMMMMMMMMMMMMMMAM

c THIS PROGRAM ILLUSTRATES FILE BOUNDARY PROCESSING CONCEPTS.
C IT CREATES A SEQUENTIAL FILE AND WRITES SECTION AND PARTITION
C BOUNDARIES ON THE FILE.
c
PROGRAM BOUNDRY
IMPLICIT INTEGER (A-2)
EXTERNAL OWNEND
COMMON SQFIT(35), WSA(8)
CALL FILESQ (SQFIT, 'LFN', 'NEWONE',
+ "WSA', WSA,
+ 'RT', 'F', 'BT', 'C', 'FL', 80)
CALL OPENM (SQFIT, 'I-0") .
c
c READ FIRST SET OF RECORDS AND WRITE EOS.
¢

10 READ (1, '(8A10)', END=15) WSA
CALL PUT (SQFIT)

15 CALL WEOR (SQFIT)

WRITTEN FOR END~OF-SECTION'

D F-2

Figure F-1. Processing File Boundaries {Sheet 1 of 3)

60495800 C

READ SECOND SET OF RECORDS AND WRITE EOP.

[RNzl

CLOSE(1)
OPEN(1)
- 20 READ (1, "(8A10)', END=25) WSA
CALL PUT (SQFIT)
Go 10 20
25 CALL ENDFILE (SQFIT)
PRINT *, ' ENDFILE WRITTEN FOR EMD~OF-PARTITION®

(2]

READ THIRD SET OF RECORDS AND EXECUTE CLOSE FOR EOI.

CLOSE(1)
OPEN(1)
30 READ (1, *(BA10)°, END=35) WSA
CALL PUT (SQFIT)
GO T0 30
35 CALL CLOSEM (SQFIT)
PRINT *, ' CLOSEM EXECUTED FOR END-OF-INFORMATION®

OPEN THE FILE, SET UP END-QF-DATA EXIT (OWNEND), AND READ THE FILE.
WHEN EOS, EOP, EOI ARE ENCOUNTERED, OWNEND IS TO PRINT ACKNOWLEDGMENT.

[zNsEeNyl

CALL OPENM (SQFIT, "INPUT', 'R*)
WARNING* NUMBER OF ARGUMENTS IN REFERENCE TO _OPENM IS NOT CONSISTENT
CALL STOREF (SQFIT, 'DX', OWNEND)
40 PRINT #, ' *
CALL GET (SQFIT)
IF (IFETCH (SQFIT, °*FP') .EQ. 64) GO TO 45
PRINT 901, WSA
G0 TO 40
45 CALL CLOSEM (SQ@FIT)
5TOP
901 FORMAT (8A10)
END

1 WARNING ERROR IN BOUNDRY

SUBROUTINE OWNEND
IMPLICIT INTEGER (A-21)
COMMON SQFIT(35), WSA(8)
M=IFETCH (SQFIT, 'FP®)
IF (M .EQ. 8) GO TO 10
IF (M .EQ. 32) GO TO 20
IF (M .EQ,.64) GO TO 30
CALL ABORT

10 PRINT #, ' EOS ENCOUNTERED °®
RETURN

20 PRINT *, ' EOP ENCOUNTERED °®
RETURN

30 PRINT %, ° EOI ENCOUNTERED °
RETURN
END

60495800 C

Figure F-1. Processing Fite Boundaries (Sheet 2 of 3)

F-3

QUTPUT
WEOR WRITTEN FOR END-OF~SECTION
ENDFILE WRITTEN FOR END~OF-PARTITION
CLOSEM EXECUTED FOR END-QOF-INFORMATION -

AA

BR BBEBE8BBEEBEBEBBRBER

CC
DD
EE

EOS ENCOUNTERED .
EE

FFFEFFFFFFFFFFFFFFFFFFFFFFFF
GG
HH
IIIIIII}II
JJ

EOS ENCOUNTERED
JJJ

EOP ENCOUNTERED
JJ

KK

HIIIIIIHIIIIIIIHIIIIIIIIII(IIIlIIHIIlllIIIIIIIllIllllIIIIIIIlIIIIlIIlIllIIlI

MM

EOS ENCOUNTERED
MM

EOI ENCOUNTERED

® F-4

Figure F-1. Processing File Boundaries (Sheet 3 of 3)

60495800 C

INDEX

W

AAM 1-1
Adding records

Sequential files 3-17

Word addressable files 4-7
Advanced Access Methaods (see AAM)
ALGOL E-2
ASCII field D-1

BAM
Defined 1-1
FORTRAN calls 1-3
l.oading 1-2, 1-3
BAMLIB 1-3
Basic Access Methods (see BAM)
BBH field D-1, D-4
BFS field D-1, D-4
Bloacking
C 3-1, 3-6
Definition 3-1
E 3-1, 3-7
I 3-1,3-5
K 3-1, 3-6
Mass storage files 3-1
S tape 3-5
Sl tape 3-1
Summary 3-1; 3-7
BN field 3-9, D-1
BOl 3-7,3-9
Boundaries
BOI 3-7,3-9
C type blocking considerations 3-9
EOl 3-7,3-9
EOP 3-7,3-9
EOS 3-7,3-9
Partial read 3-21
Record 3-7
SamFPle program F-1
SKIP considerations 3-15
Tapemark 3-10
Writing 3-9
BT field D-1

C blocking
Boundary considerations 3-9
Definition 3-1
Describing 3-6
Required FIT fields 3-6
Capsules 1-2
CATALOG control statement 3-12, 4-5
CDCS interface 5-6
CF field D-1, D-4
Character sets A-1
CL field 2-5, D-1
Close processing 2-12, 3-11, 4-3
CLOSEM
Sequential files . 3-11
Word addressable files 4-3
CM field 2-6, D-1
CNF field D-1
COBOL
File interchange E-1
Programs 1-1
COMPASS
Macro calls 1-3, 1-5
Routines 1-1

60495800 C

Control statements
CATALOG 3-12, 4-5
CRMEP 5-6
DEFINE 3-12, 4-5
EXTEND 3-18
FILE 2-2, 2-9
LABEL 3-23
LISTLB 3-23
LISTMF 3-23
REQUEST 3-12, 3-23, 4-5
TDUMP 3-12, 4-5
VSN 3-23
CP field 2-5,D-1
CPC macros E-1
Creation
FIT 2-1
Sequential files 3-10, 3-12
Word addressable files 4-2, 4-3
CRMEP control statement 5-6
Cl field D-1

D type records 2-3
Data manager error messages 5-6
Default values 2-9
DEFINE control statement 3-12, 4-5
DFC field 5-1, D-1, D-4
Direct calls
Applications pragrammer 1-1
Requirements 1-3
Restrictions 1-3
Summarized 1-4
Systems programmer 1-1
Dumping the FIT 5-6
DX field
Defined 2-8
Error processing 5-1
Summary D-1, D-5

E blocking
Definition 3-1
Describing 3-7
Required FIT fields 3-7
ECT field 5-4, D-1, D-5
EFC field 5-1, D-1, D-5
ENDFILE 3-9
End-of-data exit
Causes 5-3
Defined 2-8
DX field 2-8, 5-1
Examples 5-3, F-1
Last record duplication 3-18, F-2
Subroutine format 2-8
Subroutine return 5-2
EO field 5-1, D-1, D-5
EOl 3-7,3-9
EQIWA field D-5
EOP 3-7,3-9
EOS 3-7, 3-9
ERL field 5-1, D-1, D-5
Error exit ’
Defined 2-8
EX field 2-8,5-3
Example 5-4
Subroutine format 2-8

Index-1 @

Error file 5-6
Error messages

CRMEP control statemént 5-6

Data manager 5-6
Error processing
DFC field 5-1
DX field 2-8, 5-1
ECT field 5-4
EFC field 5-1
EO field 5-1
ERL field 5-1
ES field 5-5
EX field 2-8,5-1, 5-3
FNF field 5-5
PEF field 5-5
SES field 5-6
ES field 5-5, D-1, D-5
EX field
Defined 2-8
Error processing 5-1, 5-6
Summary D-1, D-5
EXTEND control statement 3-18
Extending a file 3-18

F type records 2-4, 4-1
Fast Dynamic Loader 1-2
FF field D-2, D-5
File
Boundaries 3-7
Close 2-12
Error 5-6
Extend 3-18
Interchange E-1
Labeled tape 3-23
Open 2-10
Positioning 2-12
Processing 2-1, 2-9, 2-11
Rewind 3-20 ’
Unlabeled tape 3-27
FILE control statement 2-2, 2-9
File Information Table (see FIT)
File organizations 1-2
FILESQ statement 2-1
FILEWA statement 2-1
FIT
Contents 2-1
-~ Creation 2-1
Defined 1-1
Dump 5-6 :
Error related fields 5-1, 5-
Establishment 1-1
Field defaults 2-9
Field summary D-1
Field values 2-2
Length related 2-3
Mnemonics 2-2
Overlapping fields 2-2
FITDMP 5-6 .
FL field
F type records 2-4
Summary D-2, D-5
Z type records 2-6
FNF field 5-5, D-2, D-5
FO field D-2, D-5
FORM E-1 oo
Formats
Statement B-1
Tape 3-1, 3-25
FORTRAN
Direct calls to BAM 1-3
File interchange E-1
Routines 1-1

® Index-2

FP field D-2, D-5
Function, FETCH 2.3
FWB field D-2, D-5

GET
Sequential files 3-15
Word addressable files 4-6

GETP 3-20

HL field 2-5,D-2

I blocking
Definition 3-1
Describing 3-5
I tape 3-1
IFETCH function 2-3
10 3-15, 4-6
IOTEXT 1-3
I-0 3-15,4-6

K blocking
Definition 3-1
Describing 3-6
Required FIT fields 3-6

LA field 3-26, D-2
LABEL control statement 3-23
Label exit

Defined 2-8

LX field 2-8,3-26

OF field 2-9

ULP field 2-9, 3-26
Labeled tape

Nonstandard 3-26

Rewind 3-20

Standard 3-23
LBL field 3-26, D-2
LCR field 3-25, D-2
LFN field 2-9, D-2, D-5
LISTLB control statement 3-23
LISTMF control statement 3-23
LL field 2-4,D-2
Loading 1-2, 1-3
LOP field D-2, D-5
LP field 2-4, D-2
LT field 3-25,D-2
LX field 2-8, 3-26, D-2

Macros
COMPASS 1-3

CPC E-1
Mass storage files
Block types 3-1
Rewind 3-20
MBL field
C type blocks 3-6
E type blocks 3-7
K type blocks 3-6
Summary D-3
MFN field D-3
MNB field
E type blocks 3-7
K type blocks 3-6
Summary D-3
MNR field 3-7, D-3
MRL field
D type records 2-4
R type records 2-4
Read operations 2-11

60495800 C

v

MRL field (Contd)
S type records 2-5
Summary D-3; D-5
T type records 2-5
U type records 2-6
W type records 2-6
MUL field
E type blocks 3-7
K type blocks 3-6
Summary D-3

NOFCP field D-3, D-5
Nonstandard labels 3-26

OC field
Close processing 2-12
Open processing 2-11
Summary D-3, D-6
OF field
Label processing 2-9
Open processing 3-15, 4-6
Summary D-3, D-5
Open processing
OC field 2-11
Steps 2-10
OPENM
Existing sequential file 3-14
Existing word addressable file 4-6
Sequential file creation 3-11
Word addressable file creation 4-2
Overlapping fields 2-2
Owncode processing
End-of-data exit 2-8, 3-9
Error exit 2-8
L.abel exit 2-8

Padding
E type blocks 3-7
K type blocks 3-6
Partial
Processing 3-20, 3-22
Read operations 2-11, 3-20
Write operations 2-11, 3-21
Partition
Definition 3-7, 3-9
EOP 3-7
PC field
E type blocks 3-7
K type blocks 3-6
Summary D-3
PD field 3-11, D-3, D-6
PEF field 5-5, D-3
PNO field D-3
Positioning
By GETP 3-20
By SKIP 3-15
Onclose 2-12
On rewind 3-20
Processing
Sequential files 3-14
Word addressable files 4-5
Program statement 1-3
PTL field 3-20, D-3
PUT
Sequential files 3-11
Word addressable files 4-2
PUTP 3-21

R type records 2-4
RB field 3-6, D-3
RC field D-3

60495800 C

Read operations

Partial records 2-11, 3 20

Sequential files 2-11, 3-15

Word addressable files 2-11, 4-6
Record

Boundary 3-7

Definition 3-7

Numbering conventions 2-3
Record types

D 2-3

F 2-4,4-1

R 2-4

S 2-5,3-21

Summary 2-6, 3-8, 4-2

T 2-
U 2-
w 2

Redefining a sequential file 3-23
Replacing records
Sequential files 3-17
Word addressable files 4-11
REPLC 3-17
REQUEST control statement 3-12, 3-23 4-5

Rewinding
Sequential files 3-20

Word addressable files 4-11
REWND 3-20, 4-11
RL field
D type records 2-4
R type records 2-4
Read operations 2-11
S type records 2-5
Summary D-3, D-6
T type records 2-5
U type records 2-6
W type records 2-6
Z type records 2-6
RMK field 2-4, D-3
RT field D-4, D-6

S tape
Block type 3-5
Structure 3.5

S type records 2-5, 3-21

SB field D-4

SBF field D-4, D-6

Section
Definition 3-7, 3-9
EOS 3-7

Sequential files
Adding records 3-17
Blocking 3-1
Creation 3-10, 3-12
Defined 1-2
Error processing 5-1
Logical structure 3-7
Physical structure 3-1
Positioning on open 3-15
Processing 3-14
Read operations 2-11, 3-15
Redefining 3-23 .
Replacing a record 3-17
Rewinding 3-20
Updating 2-11
Write operations 2-11, 3-11

SES field 5-6, D-4

SI tape 3-1

SKIP 3-15

SKIP parameter 3-20

Skipping records 3-15

© SPR field D-4

Index-3 @

Standard labels
System processing 3-25
User processing 3-25

Statements
CLOSEM 3-11, 4-3
ENDFILE 3-9
FILE control 2-2, 2-9
FILESQ 2-1
FILEWA 2-1
FITDMP 5-6
GET 3-15, 4-6
GETP 3-20
IFETCH 2-3
OPENM 3-11, 3-14, 4-2
Program 1-3
PUT 3-11, 4-2
PUTP 3-21
REPLC 3-17
REWND 3-20, 4-11
SKIP 3-15
STOREF 2-2
Surmmary B-1
WECR 3-9
WTMK 3-10

STOREF 2-2

SYSLIB 1-3

S/ tape 3-5

T type records 2-5
Tape
Formats 3-1, 3-23
Nonstandard labeled 3-26
‘Positioning 3-20
Standard labeled 3-23
Unknown structure E-2
Unlabeled 3-27
Tape files
I 3-1
SI 3-1
S/L 3-5
Tapemark 3-10
TDUMP control statement 3-12, 4-5
Terminating partial records 3-21
TL field 2-5, D-4

U type records

Defined 2-5
Required FIT fields 2-6, 4-1

¥ Index-4

ULP field 2-9, 3-26, D-4

Unknown tape structure E-2

Unlabeled tape
Defined 3-27
Rewind 3-20

Updating files 2-11

VF field D-4
VNO field D-4

VSN control statement 3-23

W type records
Defined 2-6
Reading 3-23

Required FIT fields 2-6, 4-1

Sample program 3-23
Writing 3-23
WA field
Defined 4-1
For writing 4-3
For reading 4-6
Summary D-6
WEOR 3-9
Word address 1-2, 4-1

.Word addressable files

Adding records 4-~7
Creation 4-2,4-3
Defined 1-2

Error processing 5-1
Processing 4-5

Read operations 2-11, 4-6
Replacing a record 4-11

Rewinding 4-11
Updating 2-11

Write operations 2-11, 4-2
Working storage area 1-3, 2-10

Write operations
Boundaries 3-9

Partial records 2-11, 3-21
Sequential files 2-11, 3-11
Word addressable files 2-11, 4-2

WSA field 2-10, D-4, D-6

Z type records 2-6

604956800 C

COMMENT SHEET

MANUAL TITLE: CYBER Record Manager Basic Access Methods
Version 1 User®s Guide '

PUBLICATION NO.: 60495800 REVISION: C

NAME:
COMPANY =

STREET ADDRESS:

CITY: STATE: ’ ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

Please reply No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
‘FOLD ON DOTTED LINES AND TAPE

TAPE TAPE
‘OLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
: UNITED STATES
E] !
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. o]
[
POSTAGE WILL BE PAID BY]
CONTROL DATA CORPORATION L
Publications and Graphics Division
. ’ [
215 Moffett Park Drive
Sunnyvale, California 94086 Lo
oo
[i
i
" oo
]
i
ow B "~ Folp

CUT ALONG LINE

SORPORATE HEADQUARTERS; PO BOX O, MINNEAPOLIS, MINN 55440
SALES OFFICES AND SERVICE CENTERS {N MAJOR CITIES THROUGHOUT THE WORLD

(@5) CONTROL DATA

LITHO IN US.A.

S

