64055C

TR 70-8
NOVEMBER 1970

'MICROPROGRAMMING MANUAL
FOR
INTERPRETER BASED SYSTEMS

Burroughs Corporation
Federal and Special Systems Group
Paoli, Pa. 19301

64055€C

TR 70-8
NOVEMBER 1970

MICROPROGRAMMING MANUAL
FOR
INTERPRETER BASED SYSTEMS

Burroughs Corporation

Federal and Special Systems Group
Paoli, Pa. 19301

The proprietary information contained
in this document is the property of the
Burroughs Corporation and should not
bereleasedto other than those to whom
it is directed, or published without
written authorization of the Burroughs
Federal and Special Systems Group,
Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

ABSTRACT

The Burroughs Interpreter Based Systems emphasize two basic concepts: building
block structure and soft machine architecture through microprogramming. These
two concepts provide great versatility for a wide range of applications. The
microprogrammable building block is an Interpreter. Other building blocks in-
clude main memory and peripheral devices accessed as ports, port select units
for direct connection in a single Interpreter system, or switch interlock modules
for shared connection of ports into multiple Interpreter systems.

The microprogrammer is aided in producing microprograms by a Microtranslator
that translates symbolic instructions written in TRANSLANG into microinstruc-
tions and nanoinstructions for the Interpreter. These characterize an Interpreter
for a specific use such as a computer, I/O processor, disk file controller, com-
munications processor, or a combination of such uses.

This manual describes the structure of TRANSLANG through syntax, semantics,
and examples. ltalso discussesthe Microtranslator program, and the operating
instructions showing how the microprogrammer can exploit the options available
to him. A library of microprograms in symbolic form may be referenced during
translation, giving limited macro capability. The static count of occurrences

of each nanoinstruction during a translation is kept and may be added to a pre-
viously specified table in a collection of defined tables of nanoinstructions. An
Editor is available for nanotable modification.

This manual includes desér‘iptions of register state changes resulting from exe-
cuting the microinstructions and nanoinstructions. Interpreter controls and
timing are explained. Examples of instructions are given that illustrate coding
techniques and conventions. The manual also discusses external operations with
main memory and peripheral devices, and the coordination and safe control of
multiple Interpreters via a switch interlock and global condition bits. Micropro-
gramming reference cards are provided.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those fo whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Section
1
2
3

4
5

Appendix

A

B
C
D

CONTENTS

INTRODUCTION .
TRANSLATOR DESCRIPTION
STRUCTURE OF TRANSLANG

CONVENTIONS IN LANGUAGE DESCRIPTION.

BASIC ELEMENTS .

LITERAL ASSIGNMENT INSTRUCTION

N INSTRUCTION

CONDITION .

EXTERNAL OPERATIONS

LOGIC OPERATIONS

INPUT SELECTS .

ADDER AND SHIFT OPERATORS

DESTINATION OPERATORS.

SUCCESSOR . coe e e

PROGRAM STRUCTU'RE . ..

MICROPROGRAMMING SUMMARY -
TRANSLATOR OPERATING INSTRUCTIONS

AN EDITOR FOR NANOTABLES. . . .

TRANSLANG SYNTAX

RESERVED WORDS AND TERMINAL CHARACTERS .

ERROR MESSAGES .

INTERPRETER INSTRUCTION PHASING
AND CONTROLS

INSTRUCTION PHASING . .
MICROPROGRAM WORD CONTENT .
N-WORD CONTENT

SWITCH INTERLOCK

ADDER OPERATIONS
CODING TECHNIQUES AND CONVENTIONS .

FEDERAL AND SPECIAL SYSTEMS GROUP

Page

—t
]
(R

] 1

W WWwWwwwww W N
1
== 0N P
—

w w
[
—t

o U

3-17
3-20
3-21
3-26
4-1

5-1

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

ILLUSTRATIONS
Figure Page
1-1 Interpreter Block Diagram, . . 1-2
1-2 Microtranslator Block Diagram 1-6
3-1 Program Example 3-24
3-2 Sample Register Content Form 3-25
4-1 Microtranslator Execution Conversation . . ., 4-2
4-2 Source Statements and Nanoinstructions 4-4
4-3 Microprogram Listing 4-6
4-4 Nanoinstruction Usage Statistics e e e e e e e 4-7
D-1 Interpreter Data and Control Flow, D-2
D-2. Example of Phased Execution of Microinstructions. . . . D-4
D-3 Instruction Time Flow and Decision Diagram. D-5
TABLES
Table Page
3-1 Shift Amounts and Their Complements. 3-5
3-2 Set and Reset of Conditions 3-10
3-3 Microprogram Memory Addressing Ce e e 3-21
D-1. Nanomemory Decoding D-10
E-1 Logical Operations, . . . E-2
E-2 Arithmetic Operations E-3
Vi The proprietary information contained in this documentis the property of the Burroughs Corporation and should

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

FEDERAL AND SPECIAL SYSTEMS GROUP

1. INTRODUCTION

The Burroughs Interpreter Based Systems emphasize two basic concepts: building
block structure and soft machine architecture through microprogramming. These
two concepts provide great versatility for a wide range of applications. The
microprogrammable building block is an Interpreter. Other building blocks include
main memory and peripheral devices accessed as ports, port select units for
direct connection in a single Interpreter system, or switch interlock modules for
shared connection of ports into multiple Interpreter systems.

Figure 1-1 is a summary diagram of an Interpreter. The five functional parts
are tabulated below.

MCU Memory Control Unit Registers for memory addressing.

Cu Control Unit Registers for conditional control
and logic commands.

LU Logic Unit Width 1 to 8 bytes; data registers,
adder, any shift amount, multiple
concurrent processing.

MPM Micro Program Memory Microprogram sequences: some
words have literals, others have
nano addresses,

NM Nano Memory Specific controls created for the
microprogrammer.

The Interpreter is described in detail in Appendix D. The method for interaction
between an Interpreter and other building blocks is also described there.

1-1
The proprietaryinformation contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

‘erueAldsuuad ‘1[0ed ‘dnoar) swelsg Teroadg pue Tespaq sySnoaang

Y} JO UOT}RZIJOYINE USHIIM JNOYIIM ‘paysignd Jo

‘pOJOSIIP ST 31 WOYM O} 9SO0U} UBY} JOY}O 0} pIsSEea[dad aq 30U

c-1

pnoys pue uonyrrodao)) sydnoaang ayy jo L3aedoad oyl STIUSWNOOP STY} UT paUTLIU0D uotjrwuaoyut L1ejoradoad ayg,

External
Conditions
{16) - Nano (54) . . Alternate I — Data Input
Address) Microprogram
MICRO - NANO MEMORY : ' Count Register from)
PROGRAM (AMPCR) Memories
MEMORY : and
(MPM) Commands Z Inputs —— ';e”?"e”"
evices -
Type | \ \ CTR/ZEXT/LIT -
Instr. CONTROL UNIT (CU) LOGIC
: 1T (L
SAR 1. Provide Commands UNIT (LU)
- - to LU
Type 1l {Command Reg)
Instr. Commands] Yy Yy VY Q©
2. Specify shift o A1 B |
LIT - amount to A2
AMPCR barrel switch T 7
(SAR) A3 [iB SELECT!]
VMIEMORY CONTROL Upto 8
UNIT (MCU) 4 Gontrol condi « y L it
N . Control condition ogic Uni
1 mgzlsixzi:g testing and setting Dynamic 1 ADDER ‘ | > sections,
[Conditions L) each 8
| | 2 Memory/Device SAR bits wide
Addressing
MPM BR1/BR2/MAR AMPCR/CTR [BARREL SWITCH |
Address 3. Special Functions BR1/BR2/MAR 3
LIT/CTR \
- MR |
& LIT/CTR/AMPCR o
to LU . ’
Global Conditions - oo
Main Memory to Other Interpreters
v

and

Peripheral Addressing Data Output

to Memories and

Peripheral Devices

Figure 1-1. Interpreter Block Diagram

uvoneaodao) sygnoaang

FEDERAL AND SPECIAL SYSTEMS GROUP

This report describes in detail (1) the structure of the language in which micro-
programs are written and (2) the program which translates instructions written
in this language into microinstructions and nanoinstructions that are subsequently
placed into the microprogram memory and nanoinstruction memory respectively
of an Interpreter,

The following definitions of terms are presented to assist in the understanding of
these descriptions:

H-language High level language, alternately referred to as
compiler language or source language, and in-
cludes languages such as ALGOL, COBOL,
FORTRAN, APL and SNOBOLA4.

S-language This language is equivalent to the assembly
(or object) language in conventional machines.

S-instruction A discrete instruction equivalent to a machine
instruction in a conventional machine. An S-
instruction may be simple or complex. In
some applications an S-instruction may be
much more complex than a conventional machine

instruction.
S-program A set of S-instructions which is given a name.
S-memory The memory in which S-programs are stored

for execution. This is generally considered
main memory or data memory.

M-language Microlanguage, the language that is used for
developing microprograms.

M-instruction Microinstruction, a discrete instruction that
performs a set of basic functions in parallel.
One M-instruction occurs every clock. An
M-instruction may contain either a constant
(type II) or an address of an N-instruction
(type I).

M-program Microprogram, a set of M-instructions which
is given a name.

M-memory Microprogram memory, the memory in which
M-programs reside. Alternatively named MPM.,

N-instruction Nanoinstruction, a set of controls addressed
by an M-instruction. These controls cause
parallel logical actions,

N-memory Nanomemory, a decoder or memory which

contains N-instructions.
1-3
The proprietary information contained in this document is the property of the Burroughs Corporation and should '
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

1-4

The general function and interrelationships of these terms are indicated by the
following:

A commercial user of an Interpreter Based System would write a program in an
H-language (e.g., ALGOL) which would then be compiled into an S-language
program, which would then be stored in an S-memory for execution. Each
S-instruction is executed through the use of an M-program. ‘

The M-program provides basically two functions:

1. Interpretation of the S-instruction including the fetching of
the S-instruction. This depends primarily on the format(s)
of the S-instruction.

2. Execution of the indicated S-instruction operation as defined
by a set of M-instructions for that operation.

The N-instructions are addressed by M-instructions. Usually each N-instruction
is addressed by many M-instructions.

Microprogramming is part of the design process for Interpreter Based Systems.
It involves a combination of programming concepts (assignment of value to variables,
conditional execution, looping, hierarchical design) and logic concepts (Boolean
logic functions, time sequencing and concurrent execution subject to partial
ordering of events).

Device controller design is an important microprogramming task. The objective
is to provide all logic functions for device control through microprogramming.
By this means design flexibility is maintained, optional features are easily in-
corporated, and many special hardware controllers (typically one or more per
device) are replaced by common hardware specialized through microprograms.
The opportunity for shared use of one Interpreter among several devices,
dynamically being interleaved as needed, represents a significant potential for
system simplification.

Emulation of an existing processor and/or its I/O channels is another micro-
programming task. The objective is to run programs prepared for the emulated
machine. To do this, the emulated machine registers are mapped into S-memory
and/or the actual registers of an Interpreter. The operation codes accessible to
programs become S-instructions. Other S-instructions may be added for I/O
commands, depending on how much of the 1/O processing is absorbed by the
Interpreter.

Proper processor design for interpreting or executing constructs occurring in a
particular higher level language is another microprogramming task., The design
of the S-language for such processors is open, and opportunities for tradeoffs
exist between primitive S-instructions versus S-language macros or procedures.
One important processor design is for translating source programs. Another is
for producing translator writing systems. A third is for processing complex data
structures on one or more Interpreters. ~

" The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

The Microtranslator is a tool to aid the designer in producing M-programs for the
Burroughs Interpreter Based Systems. The M-programs in the M-memory
associated with a particular Interpreter determine its use. The M-programs are
composed mainly of statements of M-language reserved words. These reserved
words allow for a convenient description of hardware functions. Appendix B con-
tains a complete glossary of the reserved words,

The Microtranslator translates the symbolic M-instructions into an output to be
loaded into the M-memory. A corresponding table of N-instructions is developed
which forms the content of the nanomemory, If a table of N-instructions which is
on a library of tables is chosen as input, this table may be used as the basis of
the M-program and may be expanded as needed by the program.,

A listing of the original symbolic M-instructions as well as an edited representation
of each N-instruction may be requested. Flags will indicate errors in the M-
program that are detected by the translator. Errors detected because of an over-
expanded set of N-instructions used in a program will also be noted.

Statistics will be collected on the use of each N-instruction during a translation.
This information will be supplied to the user upon request. It will give a list of
all the N-instructions and indicate the static count of the occurrences of each of
them during the translation process.

M-programs in symbolic form are being developed. These may be referenced
during translation and like macros become part of the M-program. The INSERT
operation with the name of the function will cause this code to be inserted into the
incoming string.

The Microtranslator is written in ALGOL for the B5500. It is written modularly
with each function set up as a procedure call, The program is divided into two
major sections (see Figure 1-2). The first section parses the language and pro-
duces the input listing and the N-instructions necessary. The second section
reviews the generated M-instructions, inserts label address(es), and produces
the microinstruction and nanoinstruction outputs.

1-5
The proprietary information contained in this document is the property ofthe Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

reruealdsuuad ‘11oerd ‘dnoan swejsdg rerdedg pue [erspoq sySnoaang

oY) JO UOT}IBZIIOYINE USPIJIM JnoOIM ‘paysiignd J0 ‘paloadip ST J1 WOYM O} 250U} UBY} JSY}0 0} pasSEa[ad 9 j0U
pnoys pue uopeiodao) sydnoaang oyp jo L3xedoad ayj ST3UaWMOOp STY} UT pauTejuoo uorgewaoyur £Laejoradoad ay,

9-1

ONE TABLE PER
MACHINE DESCRIPTION

INPUT r\/\/f
LOGIC EXPRESSED STEP1I STEP 2 FILE
TRIEVA :
IN THE SymBoic STRING FILE GENERATION - RETRIEVAL FILE
MICRO LANGUAGE RECOGNITION AND MAINTENANCE FILE NANG
TRANSLANG MICRO - TRANSLATION GENERATION™| TABLES
N- INSTRUCTION ~
LOCATION OF LABELS +
GENERATION EXTENSION
Y +
LIBRAR > STATISTICS
SYMBOLIC COLLECTION
MICRO LANGUAGE M~
IN
TRANSLANG
NrsT -
———E;ROR INSTngr?ONS [N-INSTRUCTION NANCS
LIST v TABLE FROM
- THIS
N lNSLgl:erTION AR

Figure 1-2.

'

'

LIST OF MICROPROGRAMS

CARD OR PAPER TAPE
OUTPUT FILES

Microtranslator Block Diagram

uorjeaodao) sygnoaanyg

FEDERAL AND SPECIAL SYSTEMS GROUP

2. TRANSLATOR DESCRIPTION

«

The translator was developed as a tool to aid the system designer in developing
microprograms in a language using labels and words rather than bits and num-
bers. It allows him to discover what size table and type of N-instructions have
become part of his N-instruction sets and how he might use these sets more
efficiently.

Theoretically, the Interpreter may have 294 different N-instructions. However,
only a small subset of these will be used by any Interpreter. The translator will
indicate the most applicable subset for a particular implementation of an
S-language.

As more microprograms are developed a pattern of frequently used subroutines
or programs will be developed. These may be placed on a library and used by
the translator to be inserted into programs as called. The library programs
may reference other library programs thus developing a nested structure of
programs. Program s may reference labels located at any level more global
than themselves.

The language, TRANSLANG, for the translator has used ALGOL as a model.
However, since the system designer must have complete control of all of the
Interpreter functions, almost all of the language is composed of reserved words.
Reserved words have very specific meaning to the translator and cause specific
N-instructions to be developed. TRANSLANG is free form and each instruction
may be written in almost any order; however, one and only one instruction may
appear on a line or card (72 characters).

2-1
The proprietary information contained in this document is the property ofthe Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation.

When a program is being parsed by the translator, the microprogrammer has the
option of listing the program and/or listing the N-instructions constructed or
neither of these. The syntax errors will always be printed on the teletype. The
programmer has the choice of listing his program on the teletype or on the printer.
A complete set of error messages is given in Appendix C.

As the program is being parsed, atable is developed of the generated N-instructions
as well as an output file for the microinstructions. The table has one entry per
N-instruction and will record each time this instruction was used. Thus, a
statistical record is maintained of the number of times an N-instruction has been
used during processing. The output file is an M-instruction record of the program
a line at a time.

The user is asked what kind of table (description of a decoder) he wants to use for
the N-instructions. His options include using an old table or constructing his own
new table. If the user wants to use an option requiring a previously formed table,
its name is requested. Otherwise a new table is constructed for him.

If an old table is used for a translation, its statistics will be updated by adding
the new statistics to the ones already developed. If a new table is developed, its
statistics will be only those of the present translation. At the completion of the
program, the statistics may be displayed on request. The newly constructed
table or the updated table may be saved for use at a future time.

The final output will be a card or teletype paper tape file containing the M-
instructions and the N-instructions which define it. The paper tape may be used
as input to the APL model, and the punch cards as input to the "D machine. The
M-programs are either pointers to N-instruction addresses or simple literal
assignment statements.

All the tables of N-instructions developed are located in a library file of nano-
tables. The file has a directory indicating the name and location of each table.
These tables may be edited when necessary using the EDITOR/ESOADO program.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

3. STRUCTURE OF TRANSLANG

The TRANSlator LANGuage (TRANSLANG) is an assembler for Interpreter
M-programs. The complete syntax of TRANSLANG is given in Appendix A.
It employs a vocabulary of reserved words and symbols used to develop an
M-program and their corresponding table of N-instructions. Reserved words
and symbols are grouped as defined in this manual to form microinstructions
and programs. The reserved words are summarized in Appendix B.

Each TRANSLANG line corresponds to one microinstruction which is the set of
Interpreter functions performed in parallel at each machine clock. The con-
structs include iterative mechanisms, 1/0, Boolean, logical and computational
operations, control transfers and assignment functions. In order to provide
control points for transfer operations, each instruction may be labeled with a
symbolic M-address.

The INSERT function has been included to allow for the use of a macro library
of previously debugged M-programs.

The semantic meaning of the constructs is expanded in Appendix D. The control
actions and their timing are described, keyed to the TRANSLANG reserved
words.

CONVENTIONS IN LANGUAGE DESCRIPTION

Backus-Naur form (BNF) is used as the metalanguage to define the syntax of
TRANSLANG. The following BNF symbols are used:

1. () Left and Right Broken brackets are used to bracket
the names of syntactic categories.

-1
The proprietary information contained in this document is the property of the Burroughs Corporation and should 3
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

2. = Colon Colon Equal means "is defined as" and
separates the name of the syntactic category from
its definition.

3. l Bar separates alternative definitions of a syntactic
category.

4 { } Left and Right Braces enclose an English language
description of a syntactic unit.

5. Juxtaposition of metalanguage symbols, symbols,

or reserved words is used to indicate catenation.
Any character or symbol in a metalanguage formula which is not a metalanguage

symbol and is not enclosed within matching braces or broken brackets, denotes
itself.

BASIC ELEMENTS

(Letter) ::= ‘(";D EIFIG[HIIIJ[K]L]M]NIO[
PIQ S|T|U|VIW[X][Y |z
(Digit) ::= 01]2]3|4]5|6]|7]8]9

(Hex Digit) ::=

{ Symbol) ::=

(Single Space) ::=

(Space) ::=
(Assignment Op) ::=

{ Character) ::=

{ Comment Character) ::=

(Empty) ::=

(Comment) ::=

(Digity |A|B|C|D|E|F
slel=Tsl=1w " 1]y |

{ One horizontal blank position }

(Single Space) | (Space) !Single Space)

(Letter) | { Digit) | (Single Space) | { Symbol)
(Character) |. |# & |[$][]1] \]|/

{ The null string of characters }

Any sequence of (Comment Characters)
except ;" L;

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Semantics

TRANSLANG uses a character set of 56 characters including (single space), of
which 8 are only used in comments. All letters are upper case.

Spaces — No space may appear between the letters of a reserved word or within
an (Assignment Op); otherwise, they will be interpreted as two or more ele-
ments. Spaces are used as a delimiter to separate reserved words, labels, or
integers. Spaces may appear between any two basic components without affecting
their meaning, where basic components indicate reserved words, symbols, or
labels.

Parentheses — The parentheses are treated as spaces. They are used for the
convenience of the microprogrammer to make code more readable. (E. g.
instruction elements which are irrelevant to the current instruction but are used
only to allow shared use of a nanoinstruction by several M-instructions.)
Parentheses do not imply precedence.

Comments — In order to include explanatory material at various points in a
program, two conventions exist as defined.

n,n

1. COMMENT {any sequence of comment characters except '; } ;

The comment statement acts the same as a ;" and may appear
anywhere a ;" may occur if within a line of program. As multi-
line documentation the ";” terminator indicates that the micro-
translator should resume processing code. Always follow a

comment statement witha ";",

2. % { any sequence of comment characters until end of line }

All comment characters after the % in a line of program are
ignored by the microtranslator.

Comments are for documentation purposes only. They appear only in the
source file, are significant only in listings and do not affect the machine language
generated.

The following printing characters are used for control purposes between the
B 5500 and teletypewriter. They should not be used in comments

<[>17])

The line terminator for all lines from the teletypewriter is the end of line
character:
-

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

3-3

Burroughs Corporation

This control character is equivalent to the end of a card if card input is used to
build a source file. It is not part of the character set processed by the micro-
translator.

.

LITERAL ASSIGNMENT INSTRUCTION

(Literal Assignment) ::= (Literal) =: AMPCR [Literal) =: SAR ,
(Literal) SAR; (Literal) =:(Lit)
(Literal) =:(Lit)y ;(Literal) =: SAR|(Literal) =x(Lit)

(Literal) ::=(Integer) | COMP (Integer) |
(Label) | (Label) -1 "'Comment Character"

(Integer) ::= (Digit) | (Digit) (Integer)

(Label) ::= (Letter) | (Label) (Letter) | (Label) (Digit)
(Lity ::= LIT | SLIT
Semantics

A (Literal Assignment) becomes a type II M-instruction for an Interpreter.
This M-instruction contains the literal value(s) and specifies the receiving

register(s).

Width, bits

AMPCR Alternate Micro Program Count Register 12

SAR Shift Amount Register Least integer not
less than Log
(logic unit bi%
width)

' LIT Literal Register 8

The registers may be individually loaded or both the SAR and the LIT may be
loaded in the same M-instruction. Usually the latter may be used in place of
separate instructions to individually load LIT and to load SAR.

An (Integer) shouldbe non-negative, in the range of the intended receiving register(s).
COMP (Integer), if the receiving register is LIT or AMPCR takes the ones com-
plement of the (Integer), then takes the number of bits indicated above into the
receiving register. An (Integer) for the SAR, or LIT via SLIT receives an encoding
appropriate to the logic unit width. COMP (Integer) , if the receiving register

is SAR or LIT via SLIT creates the appropriate word length complement (see

Table 3-1) prior to encoding. The encoded value is used in the receiving field.

For a SLIT, leading zeros are entered into the more significant end.

The successor of a (Literal Assignment) is implicitly STEP.

3-4 . . .
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Table 3-1. Shift Amounts and Their Complements
(for Logic Unit Widths of 64, 56, 48, 40, 32, 24, 16, and 8 Bits)
Logic Unit Width
64 Bits 56 Bits 48 Bits 40 Bits
- —_ I e
SAR "COMP." SAR "COMP!" SAR "COMP." SAR "coMP."
o 000[000] 000000 o _000] 000 000 [000 0 000[000 000 [000 0 000[000 000 000
1 001 111]111 1 001 111 (110 1 001 111 [101 1 001 111[100
Al AL S
2 010 110 2 010 101 2 010 100 2 010 o011
3 011 101 3 011 100 3 o011 011 3 o011 010
4 100 100 4 100 011 4 100 010 4 100 001
5 101 011 5 101 010 5 101 001 5 001
6 110 010 6 110 001 6 001, * * 6 * 110 =
 E— L
7 111 001 7 001 7 110 7
8 _(LOL £ 4 8 £ ‘ll_g * 8 8
9 110 9 9 9
10 RA 10 10 10 010
11 EB 11 11 11 E 101
12 PO 12 12 010 * * 12
13 EV 13 13 101 13
2o,
14 AE 14 o010, 14 14
15 T | 15 * o1 | x 15 15 o011 * =
16 010 * % 16 16 16 100
17 101 17 17 17
18 b 18 18 011 = * 18
19 19 19 100 19
20 20 20 _ 20
21 21 o11f = * 21 21 o011
22 22 T 100, 22 22
23 | 23 23 23
24 011 f x # 24 24 100 [* * 24
25 100 25 25 011 25 101 [* P
2L 401
26 26 26 26 010,
27 27 27 27
28 28 100, * * 28 28
29 29 011, 29 29
30 30 30 101 [= 30 110 | * *
31 J | 31 31 Jo10 31 001,
32 100 * 32 32 32
33 011 33 33 33
34 - 34 34 34
35 35 101 [* 35 35 111 [= B
36 36 010 36 110 = 36 000
37 37 = 37 001, 37 o
38 38 38 38
39 | 39 39 39
40 101 [% 40 40
41 Q010 41 41
42 42 110 | * % 42 111 [% 32 Bits
43 43 001, 43 000,
44 44 44 SAR "COMP. "
45 45 45
46 46 46 0 000X 00 000X 00
47 47 47 1 o1 111X 11
48 110 = * 48 2 1 10 ™ 10
49 001 49 111 | = 3 11 l o1
50 50 2000 24 Bits 4 001X 00 00
51 51 5 01 110X 11
82 52 SAR "COMP. " 6 l 10 10
53 53 7 11 01
54 54 0 000X 00 000X 00 8 010X 00 00
55 - 55 1 "7 o1 111X 10 9 0 101X 11
56 111 | W 2 10 5~ 01 10 10 T 10
57 000 3 001X 00 | 00 11 11 l o1
58 16 Bits 4 o 110X 10 12 011X 00 00
59 5 10 = o1 13 ™~ o1 100X 11
60 SAR "COMP. " 6 010X 00 [o0 14 l 10 = 10
61 7 o 101X 10 15 11 01
62 0 000 XX0 000 XX0 8 10 T o 16 100X 00 00
63 1 0001 111 9 011X 00 I 00 17 7T ot 011X 11
2 001 0 11 | o 10 7 o1 100X 10 18 10 T 10
3 001 |1 110 |1 1t 1 10 ot 19 1 01
8 Bits 4 010 |0 110 | o 12 100X 00 [o0 20 101X 00 00
5 010 1 101 1 13 7 o 011X 10 21 T o 010X 11
SAR "COMP." 6 011 0 101 0 14 10 = 0 22 l 10 10
7 011 |1 100 |1 15 101X 00 00 23 11 01
0 000 XXX 000 XXX 8 100 | 0 100 |0 16 7 o1 010X 10 24 110X 00 00
100t T o111 9 100 |1 o011 1 17 ‘ 10 T ot 25 7 01 001X 11
2 010 110 10 101 | o oi1 | o 18 110X 00 | oo 26 10 = 10
3 o11 101 1101 |1 010 |1 19 7 o1 001X 10 27 11 l 01
4 100 100 12 110 |0 010 {0 20 l 10 = n 28 111X 00 00
5 101 o011 13 110 |1 001 |1 21 111X 00 | oo 20 7 o1 0002 11
6 110 010 14 111 0 001 0 22 o1 000X 10 30 10 T 10
7 111 001 15 111 1 000 o1 23 $ 10 000X 01 31 11 l 01

The proprietary information contained in this document is the property of the Burroughs Corporation and should

not be released to other than those to whom it is directed,
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

or published, without written authorization of the

FEDERAL AND SPECIAL SYSTEMS GROUP

3-5

Burroughs Corporation

Labels used in a program may be chosen freely except for the reserved words of
TRANSLANG. The reserved words are given in Appendix B. A label must start
with a letter which can be followed by any combination of letters or digits. No
spaces or symbols may appear in a label. A label can be as little as one letter
and as long as 15 letters and digits. The same label may not be used to locate
more than one instruction in the same program. See the INSERT function
description subsequently for allowable nesting of labels when subprograms are
inserted. The normal use of a label with a { Literal Assignment) is as (Label) -1
since control transfers occur to the indicated location +1 (or +2).

A quoted { Comment Character) may be entered as a literal and will be converted
in the right-justified B 5500 internal 6-bit representation with leading zeros.
This is of limited use since the input set of { Comment Characters) is incomplete,
containing only 56 of the possible 64 B 5500 characters. The internal repre-
sentations may be found in the B 5500 Compatible Algol Reference Manual,
Burroughs Form 1038643 9-68.

Examples
5=: SAR % converted for proper logic unit width
COMP 8 =: SAR; 13=: SLIT % in one M-instruction
COMP 0 =: LIT % same as 255=:LIT
START =: AMPCR % JUMP to Start +1; RETN to START + 2
LOOP-1=: AMPCR % JUMP to Loop; RETN to LOOP + 1
N INSTRUCTION
(N Instruction) ::= (Unconditional Part) (Conditional Part)
{ Unconditional Part) ::= (Component List)
{ Component List) ::= (Component) | (Component List) ; { Component) |
(Empty) |
{ Component) ::= (Ext Op) | (Logic Op) | (Successor)

(Conditional Part) ::=(If Clause) { Cond Comp List) (Else Clause)| (If Clause) |
(When Clause) (Cond Comp List) , { Empty)

{Cond Comp List) ::= THEN { Component List)

Semantics

An (N instruction) becomes a Type I M-instruction containing an address to a
nano instruction. If an identical N-instruction already exists the M-address will
point to the single copy of the nano instruction. If the N-instruction is new, the

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

address will be to the next unused nano address. Into this nano location are
entered the operations indicated in the (N Instruction) .

Restrictions
1. At most one (Ext Op) - either unconditional or conditional.
2. At most one (Logic Op) - either unconditional or conditional

3. At most either one unconditional successor, or one conditional
successor in the (Cond Comp List) and possibly one in an (Else Clause).

The (Unconditional Part) is always executed. In the { Conditional Part) if the
condition resulting from the (If Clause) or (When Clause) is true then the
components in the (Cond Comp List) are executed, otherwise only the (Else Clause)
is executed.
Examples (to be subsequently explained)
Unconditional Part, Component List:
SET GC1
MR2
RESET GC, DR2
A2 AND B0O1 =: Al
Al +BIC R =: A2, BEX, LMAR
JUMP
DL1; 0=: A2; SKIP
Conditional Part:
IF AOV THEN Al +1 =: A1 ELSE SKIP
IF NOT ABT THEN SET LC2; SKIP ELSE SAVE
WHEN RDC THEN MR2; BEX, INC
N Instruction:

WHEN RDC THEN BEX

SET LLC1 IF SAI THEN LIT-B-1=:A3, BBE

: 3-7
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

3-8

CONDITION

(If Clause) ::= ' IF (Condition)

(Condition}) ::= {Not) { Cond)

{(Not) ::= NOT ’ (Empty)

{Cond) ::= LST | MST | AOV | ABT | cOV | SAI |RDC | EX1 |
EX2 [EX3 | (Cond Adjust Bit)

{ When Clause) ::= WHEN (Condition)

(Else Clause) :: ELSE (Successor) , { Empty)

Semantics

Each N ins truction performs a test on the Boolean value of one (Cond) or its
complement. The Boolean value of the result is (Condition) . If this value is

true the (Cond Comp List) is executed and the successor from this list is used

to determine the next M-instruction. Otherwise the successor in the (Else Clause)
is used to determine the next M-instruction address. See the subsequent dis-
cussion of successor.

A { When Clause) is a synonym for an (If Clause) with the same (Condition)
and an (Else Clause) of ELSE WAIT. An empty (Else Clause) is equivalent to
ELSE STEP.

In the absence of an (If Clause) or { When Clause) an implied (If Clause) of
IF NOT MST is inserted. This changes no condition bit. It does cause unconditional
initiation of a { Logic Op) and hence completion of the prior { Logic Op)-.

With the exception of the two global condition bits,, testing a condition bit causes
the bit to be reset. The least and most significant bits out of the adder, the
adder overflow, and the adder bit transmit are levels and not condition bits. The
conditions that may be tested (Table 3-2) are the following:

SAI Switch Interlock Accepts Information.

Following memory or device operation, indicates that
connection to the addressed memory or device is completed
through the switch interlock.

RDC Read Complete, or Requested Device Completes

Following memory read or device read by request, indicates
that data will be available for entry to B in the next clock.
Following device write by request, indicates completion.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom. it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Cov Counter Overflow

Following or concurrent with increment counter INC, indicates
" counter is overflowing or has already overflowed from all ones
(255) to all zeros.

LC1 Local Condition 1

Tests and resets local Boolean condition bit LC1.

LC2 Liocal Conditions 2 and 3
L.C3 Same as LC1

GC1] Global Conditions 1 and 2

GC2 Tests but does not reset global condition bit GC1. See the
description of the set and reset operation for further ex-
planation of global condition bits.

INT Inter-Interpreter Interrupt
Tests and resets the local copy of the inter-Interpreter
interrupt.
EX1 External Conditions 1, 2,and 3
EX2 Test and reset interrupts (usually the OR of interrupts
EX3 from several devices) from external devices (local copy).

The following four logic unit conditions are dynamic and indicate the result output
from the adder in the phase 3 commands from the previous instruction which had
logic unit operation, and using the current values of the adder inputs. These
conditions are sustained until execution of another instruction involving the logic
unit, and may be tested by that instruction. A type II instruction loading the LIT
or AMPCR may change the value of an adder input selected in the (X Select) or
(Y Select) and hence change the value of any of these conditions.

AoV Adder Overflow
Results from an adder operation with carry out of the most
significant end of the adder (see above).

LST Least significant

State of the least significant bit of the adder output (see above).

: : 3-9
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Table 3-2. Set and Reset of Conditions

BIT

SET

RESET

AOV
ABT

LST
MST

cov

GC1

GC2

INT

LC1
LC2
LC3

RDC
SAI

EX1
EX2

EX3

Dynamic Adder State - (Overflow)
Dynamic Adder State - (Adder bit transmit)

Dynamic Adder State - (Least Significant Bit
of Adder Output)

Dynamic Adder State - (Most Significant Bit
of Adder O utput)

Overflow when Counter is Incremented

SET GC1 providing no other Interpreter has
GC1 set, or no higher priority Interpreter
is concurrently doing SET GC1

SET GC2 similar to GC1

Set INT executed in any Interpreter

SET 1C1
SET LC2
SET LC3

By memory at completion of memory or
device read

By switch interlock or PSU when data
received from MAR and MIR

By requests from devices
By requests from devices

By requests from devices

Reset by loading
counter or by
testing

RESET GC

RESET GC
Reset by
testing*

Reset by testing
Reset by testing
Reset by testing

Reset by testing

Reset by testing

Reset by testing*®
Reset by testing™

Reset by testing®

#Recomputed each clock time
*Tn local Interpreter only

3-10

The pi‘oprietary information contained in this document is the property of the Burroughs Corporation and should

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

MST Most significant
State of the most significant bit of the adder output (see above).

ABT Adder bit transmit
This condition is true (one) if and only if the adder output
is all ones (see above).

Examples
IF NOT LC1

WHEN SAI

ELSE CALL

EXTERNAL OPERATIONS

(Ext Op) ::= (Mem Dev Op) | (Set Op) ’
(Mem Dev Op) , {Set Op) |
(Set Op) , (Mem Dev Op) | (Empty)

(Mem Dev Op) ::= MRI| MR2 | MW1| MW2 |DL1| DL2 | DRI | DR2 |
DW1 [DW2 | DU1 | DU2 | ASR | ASE

(Set Op) ::= SET (Cond Adjust Bit) | RESET GC

(Cond Adjust Bity ::=INT [LC1 [LC2 | LC3 | GC1 | GC2

Semantics

The external operations are composed of (N Instruction) functions which if
explicity present affect the operations external to the Interpreter logic. An
(Ext Op) may be specified as either conditional or unconditional as it appears
in at most one of the (Unconditional Part) or (Conditional Part) .

The memory or device operations (Mem Dev Op) are used to transfer data between

the Interpreter and main S-memory or a peripheral device. Address source registers

for those operations are the catenation of either BR1 or BR2 with MAR, indicated
respectively by MAR1 or MAR2. The MAR part is less significant. The memory

or device operations are described in detail in Appendix D. Coding conventions

are suggested in Appendix F. The explicit memory or device operations follow.

If none is specified then any memory or device operation in progress is continued

and no new operation is initiated. Address or MIR change may terminate the operation.

. 3-11
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

MR1

" MR2

MwW1

MWwW2

ASR

ASE

DL1

DI.2

DR1

DR2

DW1

DWw2

DU1

DU2

Memory Read 1
Read data from S-memory address specified in MAR1

Memory Read 2
Read data from S-memory address specified in MAR2

Memory Write 1 .
Write data from MIR to S-memory address specified in MAR1

Memory Write 2
Write data from MIR to S-memory address specified in MAR2

Status Request for highest priority locked devices

Status Request for highest priority unlocked device

Device Lock 1 Request *
Reserve the device or memory module named in MAR1 for
use by this Interpreter.

Device Lock 2 Request*
Reserve the device or memory module named in MAR2 for
use by this Interpreter.

Device Read 1
Read data from device named in MAR1

Device Read 2
Read data from device named in MAR2

Device Write 1
Write data from MIR to the device named in MAR1

Device Write 2
Write data from MIR to the device named in MAR2

Device Unlock 1

“Release the locked device named in MAR1

Device Unlock 2 .
Release the locked device named in MAR2

"\Systems with switch interlock use DL1 and DL2; systems with port select

unit use ASR and ASE

3-12

The proprietary information contained in this documentis the property of the Burroughs Corporation and should

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

The set and reset operations are used to set and reset condition bits. The inter-
Interpreter interrupt INT, is used for communication (to signal) all Interpreters

of a multiprocessing system. The global conditions, GCl and GC2, are used as
Boolean semaphores to guarantee mutual exclusion for critical sections of m-programs
and to prevent simultaneous access to shared data. The local condition bits are
Boolean variables local to each Interpreter. The INT and local condition bits are
reset (within the local Interpreter only) by testing. The explicit test and reset
operations follow. If no (Set Op) is present, none is done.

SET INT Interrupt Interpreters

Causes the interrupt bit to be set in all Interpreters. Each
Interpreter resets its own bit by testing it. Setting occurs
after testing should both occur in the same N-instruction.

SET L.C1 Set the first local condition bit

Causes the setting of the LC1 bit in the condition register.
Setting occurs after testing should both occur in the same
N-instruction, Both set and test of L.C1 occur in phase 1.

SET LC2 Set the second local condition bit

Same as for LC1 replacing L.C1 by LC2.
SET LC3 Set third local condition bit

Same as for L.C1 replacing L.C1 by LC3.

SET GC1 Set first global condition bit request

Requests that the GC1 bit in the requesting Interpreter be
set if a GC1 bit is not already set in another Interpreter or
is not being set simultaneously by a higher priority Inter-
preter. For all Interpreters in a multiprocessing system at
most one will have GC1 set. GC1 is set at the end of the
phase after phase 1 if no conflict occurs. A request lasts
for one clock.

SET GC2 Set second global condition bit request
Same as for GCI1 replacing GC1 by GC2.
RESET GC Resets the global condition bits
Causes GC1 and GC2 to be reset in the issuing Interpreter.

The default (Ext Op) is unconditionally continue the prior (Ext Op)- unless
already complete,

_ 3-13
The proprietary information contained in this document is the property of the Burroughs Corporation and should

not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Examples
MR2
SET LC1

DR2, RESET GC

LOGIC OPERATIONS

(Logic Op) ::= (Adder Op) (Inhibit Carry) (Shift Op) (Destination List)
(Adder Op) ::= 0 , 1 ’(Monadic) , (Dyadic) ’ { Empty)
(Monadic) ::= {Not) (X Select) | (N Y Select) |
DEC (X Select)
(Not) ::= NOT ’ (Empty)
(Dyadic) ::= (X Select) (Commut Op) (NY Select)

(Y Select) (Commut Op) (X Select) |

(X Select) { Non Commut Op) (N Y Select)
(X Select) +(NY Select) +1

(X Select) - (NY Select) -1

Semantics

The logical operations are composed of N instruction functions which occur with-
in an Interpreter and affect the logic unit and associated registers.

The logic operations include the selection of adder inputs, the adder operation,

the barrel switch operation, the destination specifications for the adder and BSW
outputs, and the controls for the literal, counter and SAR registers. The monadic
operations are those adder operators for which only one input select is explicit.
The selected value or its ones complement may become the adder input depending
on the (Not) function being (Empty) or NOT. DEC (X Select) is equivalent to

(X Select) -1. The dyadic operations have both an (X Select) and a (Y Select).

The default (Logic Op) is unconditional 0 + 0 =:, This does cause completion of
the prior {(Logic Op) in progress in phase 3.

Examgles ~
0=: CTR
Al AND BO11 =: Al

A2 + NOT CTR IC R =: A2, BEX, CTR, CSAR

3 -14 The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

INPUT SELECTS

(X Select) ::= 0|A1 [A2|A3|CTR|ZEXT |LIT |Z | (Empty)
(Y Select)y ::= 0|1|B|B (M)(CY L) |CTR |ZEXT |LIT| Z | AMPCR
(N Y Select) ::= (Not) (Y Select)
(M) ::= (Gating)
(C)::= { Gating)
(L) ::= { Gating)
{ Gating) ::= oft|T|F
Semantics

There are three A registers which may be used for data storage within an Inter-
preter. Any one of the A registers, or the counter, external source, literal or

the catenation of these (Z) may be selected as input to the adder in the (X Select)
part of the instruction. The B-register is the primary interface for external inputs
from main memory or devices. It also serves as input to the adder. The B-register
can be partitioned when it is selected as input to the adder. The partitions are

as follows:

M Most significant bit of B (left most bit)
C Central bits of B (all but the end bits)
L Least significant bit of B (right most bit)

When selecting the B register as input to the adder, each of the three paris may
be independently specified as being either 0, 1, T, or F. A zero gating will
cause that part to be all zeros. A one gating will cause that part to be all ones.
A T gating will produce the true value of B for that part. An F gating will produce
the one complement value of B for that part. The B register and its gating are
specified without embedded spaces. If no gating is specified when selecting B,
then it is assumed that the true value of B is desired (i.e., BTTT). When the
(Y Select) is CTR, ZEXT, LIT, Z, or AMPCR, the center bits are 0 or T.
When the center bits are specified as 1 or F, the adder operation is used by
TRANSLANG which complements B from that specified. The center bits for the
(Y Select) for AAD or OAD may not be F or 1.

Several registers may become input to the adder from either the (X Select) or the
(Y Select) or both. These include the counter (CTR) to the most significant byte,
an external source (ZEXT) to the center byte(s) where the logic unit is wider than
2 bytes, and the literal (LIT) to the least significant byte. All three of these

may be specified at once (Z). The AMPCR can only be a (Y Select) input into the
least significant 12 bits. The remaining bits of these register inputs are zeros.

The p-roprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

3-15

Burroughs Corporation

Examgle S

‘BTFF
Al
AMPCR

ADDER AND SHIFT OPERATORS

(Commut Op) ::= NOR | NRI | NAN | XOR | NIM | IMP |
EQV| AND | RIM | OR | +

(Non Commut Op) ::= OAD [AAD| -
(Inhibit Carries) ::= IC | (Empty)

(Shift Op) ::= R | L |C | (Empty)

Semantics

Each (Dyadic) contains a (Commut Op) or a(Non Commut Op). The set of
operators in { Commut Op) contain commutative pairs, hence the x and'y inputs
may appear in either order, where x refers to the (X Select) and y refers to the
(Y select) . The (Non Commut Op) are non commutative and must appear in

the order x (Non Commut Op) y. The recommended standard order is xoperator y
which works for all operators.

Operator Name Equivalent* Bitwise
{ Commut Op) : Result#
x NOR y Nor %y X &y
x NRI 'y Not Reverse Imply Xy X <y
xANDy | And Xy X AN Y
xNIMy - NotImply xy X > y
X XORy Exclusive Or C (xy) v (xy) x # y
xEQVy Equivalence xy)v &) | X =y
b'q IMPW y ; . Imply XV y o x <y
x NANy Nand XVy X Ny
x RIM y Reverse Imply XV §r X 2y
xOR y © Or (inclusive) XVy x v y

x + y Add

*In terms of negation (u), logical and (uw), and logical inclusive or (uv w). Pre-
cedence is parentheses before negation before and before or.
#The bitwise result r, for each bit i means: X, operator y; rry

3-16 The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Operator Name Equivalent*

{Non Commut Op)

X -y Subtract x+y+1
x OAD y Or Add x+(xvy).
x AAD y And Add x + (xy)

The carries into 8-bit bytes that normally may propagate during an adder operation
that includes either add or subtract may be inhibited by including IC if byte arith-
metic is desired.

There are four operations causing shifting, one of which is selected each time an
adder operator is used.

R Right end-off shift by amount in SAR, filled with left zeros

L Left end-off shift by word length complement of amount in SAR, filled
with right zeros.

C Circular ’right end-around shift by amount in SAR

(Empty) No shift

Examples
0
NOT LIT
Al+B+1ICR
A2 OR NOT CTR C % same as A2 RIM CTR C
+B+1 % same as 0+ B+ 1 — note B + 1 is invalid syntactically.

DESTINATION OPERATORS

(Destination List) ::=(Asgn) (Dest) |
(Destination List) (Asgn) (Dest)f(Asgn)

(Asgn) ::= , , =
(Dest) ::= A1|A2|A3|MIR|BR1|BR2 |AMPCR |

(InputB) ’ (Input Ctr) [(Input Mar)’ (Input Sar)
(Input BY ::= B|BEX |BAD | BC4 | BCs| BMI| BBE | BBA | BBI
(Input Ctr) ::= CTR | LCTR | INC
(Input Mar) ::= MAR | MAR1 [MAR2 | LMAR
(Input Sar) ::= SAR | CSAR

3-17
The broprietary information contained in this document is the property of the Burroughs Corporatign a'nd should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

Semantics

The destmatlon operators explicitly specify registers in Wthh changes are to
occur at the end of a logic unit operation.

Restrictions:

1. At most one choice from each of (Input B), {Input Ctr), (Input Mar)
and (Input Sar) is permitted.

2. If (Input Ctr) is LCTR then (Input Mar) may not be MAR, MARI or
MAR2.

3. If {(Input Mar) is LMAR then (Input Ctr) may not be CTR.

The principal data source is the barrel switch output. It is the only source for
loading A1, A2, A3, MIR, BR1 and BR2. It provides one source for loading B,
CTR, MAR, SAR and AMPCR. These reserved words are also the register
names. The bits used in these transfers are indicated below:

Destination Barrel Switch Output
Register Source Bits
Al All
A2 All
A3 All
B All
MIR All
BR1 2nd least significant byte
BR2 2nd least significant byte
MAR least significant byte
CTR least significant byte (ones complement)
SAR least significant bits
AMPCR least significant 12 bits

The B, MAR, CTR, SAR and AMPCR registers may have other inputs as well.

B Register — (B)

B The barrel switch output is placed into B.
BEX Data from the external source is placed into B.
. BAD The adder output is placed in the B register (short path
to B).

3-18

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

BC4 The duplicated complement of the 4-bit carries with
) zero fill is placed in the B register. *
BC8 The duplicated complement of the 8-bit carries with
_ zero fill is placed in the B register. *
BMI The MIR content is placed in the B register independent
of any concurrent change to the MIR. ‘
BBE The barrel switch output ORed with the data from the
external source is placed in the B register.
BBA The barrel switch output ORed with the adder output
is placed in the B register. ’
BBI The barrel switch output ORed with the MIR content

is placed in the B register independent of any con-
current change to the MIR.

Memory Address Register — (MAR)
LMAR The literal register content is placed in MAR

Counter — (CTR)

LCTR The ones complement of the literal register content
is placed in CTR
INC Increment Counter by 1

Shift Amount Register — (SAR)
CSAR Complement prior content of SAR

The Alternative Micro Program Count Register AMPCR may during the same
clock receive input from the MPCR if the MPAD CTLS register content was
CALL or SAVE. The MPCR source takes precedence over the AMPCR specifi-
cation as a { Dest).

* Form of BC4 and BC8 adder outputs for each 8-bit group:
The carries out of bits 2, 3,4, 6,7 and 8 are irrelevant.

Bit 1 2 3 4 5 6 T 8
Carries

Out ua - - - v - - =
BC4 o o u u o o Vv v
BCS8 o o W u o o o o

. : 3 - 1 9
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Examples
'=:B
=:CTR
=:Al1, BEX, =:MIR, LLCTR, CSAR % mixed use of , and =:

SUCCESSOR
(Successor) ::= WAIT |[STEP| SKIP| SAVE | CALL | EXEC | JUMP| RETN

Semantics

Each (N instruction) specifies 2 successors explicitly or implicitly, indicating
the control to be used for the next M-instruction selection. A {Successor) in the
{ Unconditional Part) results in the 2 successors being identical. Otherwise one
or two successors may appear in the { Conditional Part) . The eight choices for
each successor are described below and in Table 3-3.

WAIT Repeat the instruction in the microprogram count register (MPCR).
STEP Step to the next instruction in sequence from MPCR.
" SKIP Skip to the second next instruction in sequence from MPCR.

SAVE Step and save current MPCR address in AMPCR.

CALL Transfer control to AMPCR + 1 address, save current MPCR
in AMPCR.

EXEC Execute instruction in AMPCR + 1, proceed as specified in the
executed instruction.

JUMP Transfer control to AMPCR + 1 address.

RETN Transfer control to AMPCR + 2 address.

Any successor not explicitly stated is STEP by default. All successors except
EXEC place the resulting microprogram address in MPCR.

Each (Literal Assignment) instruction has an implicit successor of STEP.

3-20
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Table 3-3. Microprogram -Memory Addressing

Success'or Successor Next Content Next Content
Command M-~instruction of MPCR of AMPCR
Address will be will be

WAIT MPCR MPCR o
STEP MPCR+1 MPCR+1 »
SKIP MPCR+2 MPCR+2 ®
SAVE MPCR+1 MPCR+1 MPCR
CALL AMPCR+1 AMPGR+1 MPCR
EXEC AMPCR+1 MPCR "
JUMP AMPCR+1 AMPCR+1 *
RETN AMPCR+2 AMPCR+2 *

*Not changed by successor specification

The AMPCR normally contains the address of an alternative instruction (usually
label-1). The AMPCR load of the current content of the MPCR from a CALL or
SAVE takes precedence over a (Literal Assignment) into AMPCR in the dynamically
next M-instruction. It also takes precedence over an explicit (Dest) of AMPCR
from the (Logic Op) in progress. In Appendix D see Instruction Phasing and the
comments concerning control N [42].

Examples
WAIT
JUMP

PROGRAM STRUCTURE
(Program) ::= (Program Name Line) (Body) (End Line)
(Program Name Line) ::= PROGRAM (Program Name)’ (Start Address)
(Program Name) ::= (Label)
(Start Address) ::= ADR (Hex Address) | (Empty)
(Hex Address) ::= (Hex Number)

(Hex Number) ::= (Hex Digit) | (Hex Number)(Hex Digit)

3-21

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

(Body) ::= (Comment) | {Line) | {Body) (Line)
. (Line) ::= { Label Constant) | (Start Address) | (Insert) | (Instruction)
(Label Constant) ::= (Label) * (Integer)
(Insert) ::=(Label Part) INSERT (File Name) (Start Address)
(Label Part) ::= (Label) : | (Empty) ‘
(File Name) ::= (Label)

(Instruction) ::= (Label Part)(Literal Assignment) ’
(Label Part) (N Instruction)

(End Line) ::= END ”

Semantics

A file containing a source program must have a (File Name) of 6 or less alpha-
numeric characters. Each record on this file contains 72 data characters (+8
for sequence numbers ignored by the microtranslator). One line of source pro-
gram is written per record.

The first record is the {(Program Name Line). It contains the program internal
name and possibly a starting address for a microprogram. The program internal
name should be the same as the file name. Only the file name has any external
significance. An empty (Start Address) means start with zero for the first
M-instruction of the program. A non-empty start address becomes a hexadecimal
absolute microprogram address. The body of a program contains:one or more
lines. Following the body is the (End Line) containing END. Each successive
line containing an { Instruction) normally becomes the next M-address. Addresses
strictly increase through a program. If a {Start Address) is greater than the next
address in the program sequence, M-instructions composed of all zeros are used

to fill in the locations between the addresses in the output file. A (Start Address)
less than the next address in the program sequence causes an error.

A label is defined for use in two ways. A({ Label Constant) permits a(Label)

to be declared to be an {Integer). Subsequent use of that label is replaced by the
Integer. Use of a (Label Constant) prior to declaration is an error. A label is
also defined upon occurrence in a { Label Part) in which case it serves as a
symbolic reference to a particular line.

An (Insert) is used to allow a user access to his files outside the program file.
When the (Insert) is recognized, the microtranslator extracts from the users
files the source program whose (File Name) is given and inserts it at the
(Start Address) in the(Insert) if present, otherwise in sequence. A (Start
Address) occurring within the body of the inserted program will act as though it

3-22
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

were in the main program file. A (Start Address) in the (Program Name Line)
of the inserted program is ignored. The inserted program takes the multifile ID
name from the program being translated. For example:

BCDADD/JUDY may be inserted into a program named DECVAD/JUDY. There
may be seven levels of nesting. A label may be redefined in an inserted sub-
program. An inserted program may reference a label in the program which
requested it provided the label has not (yet) been defined locally. The most local
current definition of a label is used. If labels are not defined during a subprogram
the translator assumes they are at a more global level. Labels referenced but
never defined result in a warning list of undeclared labels. Caution: Forward
jumps within a subprogram to a label that already exists globally will use the
global label value. Upon completion of an (Insert) of a subprogram, labels

- defined in that inserted subprogram disappear. A subsequent backward jump or
use of a label constant will use the global value, even though the same label was
defined in the subprogram. '

Each instruction results in a microprogram word. Any instruction may be
labeled as a symbolic reference for control transfer. Although transfer to a
(Literal Assignment) is permitted it should be used with caution (see examples 1
and 2 in Appendix F).

Examples

Figure 3-1 shows two programs, the first of which uses the second as a macro.
Figure 3-2 is an illustration of a register state map that is useful in indicating
the expected register contents at label points of programs.

3-23
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom- it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

DECVAD /JH LISTED AT 13:35 AN 70327 BYJUDY
PROGRAM DECVAD 00000100
COMMENT==BCD DECIMAL VECTOR ADD 00000200
THIS ROUTINE SUMS N (0 LEQ N LSS 256) NONNFGATIVE BCD DECIMAL 00000300
INTFGFRS AT S"MEMORY ADDRESSES A3 THROUGH A3+N=i, 00000400
AT ENTRY TO DECVAD: 00000500
1, N HAS BEEN LOADED INTO CTR (CTR CONTAINS 255=N) 00000600
2. AMPCR CONTAINS THE CALL MPAD (MICROPROGRAM ADDRESS) 00000700
3, BRR1 CONTAINS THE S=MACHINE REGISTER BASE, 00000800
THE INSERTED ROUTINE IS USED AS A MACRO. 00000900
AT EXIT FROM DECVAD1 00001000
1. TYHE SUM IS IN A2 00001100
?. IF 'ADDER OVERFLOW? 00001200
2+ THE CTR CONTAINS 256=THE NUMBER REMAINING WHEN AOV OCCURRED 00001300
2.2 THE RETURN IS VIA THE CALLERS MPAD+1 WHICH SHOULD CONTAIN 00001400
"AOVERR=1=3AMPCR" POINTING TO THE CALLFRS ERROR ROUTINE 00001500
3 IF NO ADDER OVERFLOW? . 00008600
3,1 THE SUM IS IN THE S=MACHINF REGISTFR "ACCUM™ IN S=MEMORY 00001700
3,2 THE RETURN IS TO THE CALLERS MPAD+2. 1 00001800
ACCUM*6 ‘ % S=ACCUMULATOR (GLORAL) 00001900
AMPCR=IMIR ¥ CALLFRS RETURN ApDRESS=1 00002000
A3=yMAR2+ INC % INTTIAL WORD 00002100
DONE=1=$ AMPCR - % AVOID ADD IF 0 OR 1 ADDEND00002200
0z3A2 IF NOT COvV THEN MR2 ELSE JUMP ¥ 1STY READ -~ 00002300
WHEN RDC THEN A3+1=1A321MAR2BEXsINC ¥ 2NN ADDRESS» 1ST ADDEND 00002400
B=3A2 IF NOT COV THEN MR23SAVE ELSE JUMP % 2ND READs LOOP=1 ELSE DONE00002500
LOOP!NHEN RDC THEN A3+1=8A3=3MAR2BEXs INC ¥ NEXT ADDRESSsTHIS ADDEND 00002600
B=tAl IF NOT COV THEN MR23SKIP ¥ ADNEND,NEXT READ DR DONE 00002700
DONF=1=3 AMPCR % SETUP FOR JUMP BFLNW 00002800
INSERT BCDADD % IN LINF SINCE NO ADR GIVEN0OO00O02%00
AOVERIRMI ¥ FALL THROUGH ON OVERFLOW 00004000
B=s AMPCR ¥ RESTORE CALLERS ADDRESS=1 00004100
NOT CTR=t 3EXEC ¥ TEST LAST ADDENDS CALLFRS "ANVFRROR=1ztAMPCR" 00004200
IF ABT THEN JUMP % AOV ON LAST ADDENDs NO MR2 IN PROGRESS 00004300
WHEN RDC THEN JUMP ¥ ASSURE RDC RESFT FOR NFXT USE 00004400
DONE1A2=tMIR*BMI ¢ LMAR % SUMes CALLERS ADDRESS'I» 00005000
CACCUM=SLIT ¥ DEFINED LIT USED AROVE 00005100
MW13B=3AMPCR IF SAI % TO S=ACCUMULATOR 00005200
WHEN SAI THEN RETN % ASSURE WRITE ACCFPTEND REFORE NORMAL RETURN 00005300
END ' 00005400
BCDADD /JH LISTED AY ta4s 6 ON 70327 BYJUDY
PROGRAM RCDADD 00003000
COMMENT==SUM THE BCD DECIMAL INTEGERS Af1+A2=3A2, AQV IN LC2} 00003100
BOO1s1SARBC4SIF LC2 THEX ALL THREES T0 B 00003200
Al+R3 1Al ECONVERT TO EXCESS 3 00003300
A2+Rs1t8 $CONVERY TO EXCESS 3 00003400
Al1+R C=1A1+BCUsCSAR %SUMs» NOT CARRIES 00003500

END

3-24

Al=B C=1A231F AQV THEN SET LC23STEP ELSF JUMP %=6 FOR DIGITS/NO CARRY00003600

Figure 3-1.

00003700

Program Example

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Peunsylvania. .

FEDERAL AND SPECIAL SYSTEMS GROUP
PAGE___ OF
48-BIT INTERPRETER REGISTER FORMAT

PROGRAM _ DECVAD LABEL _ LoOP DATE

[+ 4

Ai:
A2:
A3:
B:
MIR: |
CTR: ;umo;
"

BRi: [T,
:

LCY: | LIT:
Lc2: ¥ ““AMPCR:

'F| SAR:

d

MARZ2:|Lasit

Figure 3-2. Sample Register Content Form

The proprietary information contained in this document is the property of the Burroughs Corporation and should 3-25
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs ¥Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

MICROPROGRAMMING SUMMARY -

Each yellow card includes a summary of the syntax described in this section.
A prototype line for an N-instruction is shown. It may be described as follows.

A type I line may have the following ordered parts.

n

1. An optional Label which is terminated by ":" if present

2. A selection of zero or more of Unconditional Ext Op Logic
Op or Unconditional Successor. If more than one, they are
separated by '':'".

3. An optional conditional part consisting of

3.1 A choice of either IF or WHEN. °

3.2 . A condition.

3.3 An optional conditional component list prefixed by THEN.

3.3.1 A selection of zero or more of conditional Ext Op Logic Op
' or True Successor. If more than one, they are separated by ':"..

3.3.2 An optional EL.SE False Successor.

Restrictions that indicate the interdependence of controls are indicated on the
card. Each of Ext Op, Logic Op, and Successor may be independently uncondi-
tional or conditional, but not both. Thus an Unconditional Successor precludes
a True Successor, WHEN or ELSE (except for redundant specification of both
true and false Successors to be the same). A WHEN has an implied ELSE WAIT,
so no other false successor may be specified. '

A possible order for the various component reserved words that can be used to
form the various parts of an N-instruction is shown below the prototype. Al-
though there is no essential order among Ext Op, Logic Op and Successor, that
is the recommended order. Similarly the order is irrelevant within Ext Op
and among multiple destinations., Within such a group, a comma is used as a
separator.. .

The card also shows type II Literal Assignment instruction forms and the
various pseudo-instructions.

The reverse of the card relates the reserved words to the micro- and
nano-controls,

3-26

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Peunnsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

4, TRANSLATOR OPERATING INSTRUCTIONS

The translator is written in compatible ALGOL for the B 5500. It is interactive
and uses a Model 33 or 35 Teletypewriter. The user must have an input file of
type SEQ whose first record is the word PROGRAM followed by the program
name., Figure 4-1 is a sample of the conversation during an execution of the
Microtranslator for the example program DECVAD.
The user will request the translator as follows:

? 2EXECUTE TRANSL/ADOESO NO Charge-Number; END., Comment =
The translator will be initiated by the system and the system prints:

Priority No:TRANSL/ADOESO=Mix-Index BOJ Time FROM Buffer No.
When the translator starts, it requests the input file name:

PRINT FILENAME : FILEID MULTID
The user responds with the input file name and his user code:

Input-File-Name User-Code -

The translator then rzquests the type of listing expected:

LISTING AND NANOS: NONE=0, NANOS=1, PROGRAM=2, BOTH=3

4-1

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

??EXECUTE TRANSL/ADOESO NO 5 ENLD» JULY 11723~

5¢ TRANSL/ALOLSC=01 BOJ 1@2€é FROM 01712
FRINT FILENAME ¢ FILEID MULTIL
DECVAL JH~
LISTING AND NANOS: NONE=@s NANO S=15 PROGRAM=2, BOTH=3
30-
OUTFUT LEVICE:@=TTY» 1=FRIN1EER
10-
REGISTER SIZE: 16=0s24=1,32=2, 40=3,48=4556=55 64=6
1R
NANOTABLE TYFE: NEW=@,0LL=1.
¢~

LPA OUT FRFILES TRANSL/ADOLSC= 1
MICROFROGEAM LISTING? NO=@ » YES=1. .
1~
STATISTICS? NO=¢ s YRS =1 .
1« :
SAVE NANOTABLE: NO=0 »YES=1
@o—
FUNCH NANOS? NO=@. TAFE=1le CAKL=2.
1+~
TURN ON TAFEFUNCH OK
884082411888 2888 %28 2TX88888 TXB84BX388888X8885&C82;X388787X81]
8 L&BX %85 188XB88;5 48X &45 18 188885 4FB 24858884828 428 24C18 1888881
8X%298275 18821888428 28C18 7184818 %15 2C1THXB888 %228 2488885 48881
8 T%282435 1888 1888 428 C4X88XBBB8E %h8X 4888888888 4 8 X8888888888]
184082788885 &o8B 488245 1888 1884548 F888885888888888588888888881]

2888 WBEEWEE 118 12WBE2BE; WBB4WBE; WBB %18 12WBB&LEB TWBBXWBBILBE KUWBBCWEB T]
2818 WBB EWSSFW88 W8 18F88&W8 1 1U8 120QQEE0EEEELOGARALAGEROREEALEAERREEAARAEA]

Figure 4-1. Microtranslator Execution Conversation

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

The user types

0= if no listing at all is desired
1« for a list of nanos only, including inserted programs
2+ for a program list only, including inserted programs
3 = for a list of both the program and the corresponding
nanos generated
The translator asks where to list the information.
OUTPUT DEVICE:0=TTY, 1=PRINTER
The user types

0 = if the output is wanted on the teletsrpewriter

1 == if the output is wanted on the printer
The listing includes all syntax errors. Syntax errors will always be printed on
the teletypewriter. The line numbers on listings refer to the sequence numbers

in the input file (which is a regular card file of type BASIC for R /C (Remote
Card)).

The translator next requests the size of the machine for which the code is
being translated.

REGISTER SIZE: 16=0, 24=1, 32=2, 40=3, 48=4, 56=5, 64=6

The user types the proper integer according to the width of the méchine he
is using.
0~ for a 16-bit machine
1 «— for a 24-bit machine
2 =— for a 32-bit machine
.3 =— for a 40-bit machine
4 « for a 48-bit machine
5 «— for a 56-bit machine

6 = for a 64-bit machine
The next request is

NANOTABLE TYPE: NEW=0, OLD=1,

4-3
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

100
200
300
400
500
600
700
800
900

NECVAD
PROGRAM DECVAD
COMMENT==BCD DECIMAL VECTOR ADD
THIS ROUTINE SUMS N (0 LEQ N LSS 256) NONeNFGATIVE BCD DECIMAL
INTEGERS AT S=MEMORY ADDRESSES A3 THROUGH A3+N'l.
. AT ENTRY TO DECVAD:
1e N HAS BEEN LOADED INTO CTR (CTR CONTAINS 255=N)
2+ AMPCR CONTAINS THE CALL MPAD (MICRNPROGRAM ADDRESS)
3, BR!1 CONTAINS THE S"MACHINE REGISTER BASE,
THE INSERTED ROUTINE IS USED AS A MACRO,

1000 AT EXIT FROM DECVAD3

1100 1, THE SUM IS IN A2
1200 2, IF ADDER OVERFLOW!
1300 201 THE CTR CONTAINS 256=THE NUMBER REMAINING WHEN AOV 0CCURRED
1400 2,2 THE RETURN IS VIA THE CALLERS MPAD+1 WHICH SHOULD CONTAIN
1500 #AOVERR=123 1 AMPCR® POINTING TO THF CALLERS FRROR ROUTINE
1600 3 IF NO ADDER OVERFLOWS
1700 3.1 THE SUM IS IN THE SeMACHINE REGISTFR "ACCUM™ IN S=MEMORY
1800 3,2 THE RETURN IS TO THE CALLERS MPAD+2, }
1900 ACCUM#6 % S=ACCUMULATOR (GLOBAL)
2000 AMPCR=1MIR : % CALLERS RETURN ADDRESS=1
0 2 513 16 22 23 26 41
2100 A3=IMAR2s INC £ INITIAL WORD
1 2 5 13 16 17 18 19 44 45 46 47 .
2200 DONE=1=1AMPCR % AVOID ADD IF O OR 1 ADDEND
2 110 000 0000 0000
2300 0z3A2 IF NOT COV THEN MR2 ELSE JUMP % 1ST READ
3 1 7 13 14 35 53 54
2400 WHEN RDC THEN A3+131A3=1MAR2sBEX»INC § 2ND ADDRESS» 1ST ADDEND

4 1 3 S5 6 13 17 18 19 25 26 36 37 38 44 45 46 47

2500 B=tA2 IF NOT COV THEN MR23SAVE ELSE JUMP % 2ND READJ LOOP=1 ELSE DONE

5 1 7 12 14 21 22 26 35 53 54

2600 LOOPSWHEN RDC THEN A3+1=3A3=IMAR2+BFXs INC ¥ NEXT ADDRESS»THIS ADDEND

6 1 3 5 6 13 17 18 19 25 26 36 37 38 48 45 46 47

2700 =3A1l IF NOT COV THEN MR23SKIP % ADDENDsNEXT RFAD OR DONE

7 1 7 12 13 16 21 22 26 34 53 54

2800 DONE=1=3AMPCR g SETUP FOR JUMP BELOW

8 110 000 0000 0010

2900 INSFRT BCDADD % IN LINE SINCE NO ADR GIVEN
3100 COMMENT==SUM THE BCD DECIMAL INTEGERS Al+A2=1A2, AOV IN LC23
3200 ROO1=3SAReBC43IF LC2 ZHEX ALL THREES TO B

9 3 4 5 13 16 25 26 40 49

3300 Al+B=1A1 ZCONVERT TO EXCESS 3

A 2 51316 17 19 21 22 26 34

3400 A2+B=18 ZCONVERT TO EXCESS 3

B 2 5 13 16 17 18 21 22 26 37 39 40

3500 A1+B C=1A1,BC4sCSAR ZSUM» NOT CARRIES

c 2 5 13 16 17 19 21 22 26 32 33 34 40 50

3600 AleB CagA231F AOV THEN SET LC23STEP FLSE JUMP %=6 FOR DIGITS/NO CARRY

0 2 3 4 5 7 10 13 14 17 19 21 22 26 28 29 30 31 32 33 35

4000 ANVFRIBMI % FALL THROUGH ON OVERFLOW

E 2 S5 13 16 37 38 40

4100 B=1AMPCR % RFESTORE CALLERS ADDRESS=1

F 2 513 16 21 22 26 42

4200 NOT CTR=3 SEXEC % TEST LAST ADDFND3 CALLERS "AOVERROR=1=31AMPCR"

10 2 511 13 14 16 18 19 31

4300 IF ABY THEN JUMP % AOV ON LAST ADDENDs NO MR2 IN PROGRESS

11 2 3 511 16

4400 WHEN RDC THEN JUMP % ASSURE RDC RESET FOR NEXT USE

12 1t 3 511

5000 DONF1A2=tMIReBMIsLMAR % SUMs CALLERS ADDRESS=1»

13 2 5 13 16 17 18 37 38 40 41 4S5

5100 ACCUM= LT % DEFINED LIT USED ABOVE

14 111 000 0000 0110

5200 MW13B=s AMPCR IF SAI $ 70O S=ACCUMULATOR

15 1 4 5 13 16 21 22 26 42 52 53

5300 WHEN SAI THEN RETN % ASSURE WRITE ACCEPTED BEFORE NORMAL RETURN

4-4

16 1 4 511 12 13

Figure 4-2. Source Statements and Nanoinstructions

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

The user types

0 =— if a new nanotable will be created

1 -« if an old nanotable will be used
If an old nanotable is required, its name is requested.
NANOTABLE NAME: XXXXXX
The user must type in the name of his table (e. g.)
Nanotable-File-Id -
Note that the Multifile-Id must be the same as the user code.

The translator will start processing the input file, listing the program and

the generated nanos as requested. Figures 4-2 through 4-4 are printer listings.
Corresponding listings may be obtained on the teletypewriter. Less columns
are available for comments. The sequence numbers are printed first, taking
some of the 72 columns available for lines of source text.

Figure 4-2 shows the source statements with their corresponding nanos. Each
source statement is preceded by its sequence number. (The card image would
have this number in columns 73-80.) Each N-instruction (type I) is also repre-
sented by the corresponding hexadecimal nanoaddress and the bits set to one

(in the range 1 to 55). Each literal assignment (type II) instruction is repre-
sented by its microinstruction. Forward label references have a link to the
prior line number also containing that label reference or zero if the first
reference. (See sequence numbers 2200 and 2800. Backward label references
have the proper location indicated.)

After the possible initial listing, the translator again requests information.
MICROPROGRAM LISTING? NO=0, YES=1,
The user types
0 =—— if no listing is necessary
1 =~ if he wants a listing of his microprogram and corresponding

nanoinstructions. The device to be used for output is the same
device as before,

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

12

13
s
15
16

NANO ADDRESS= 0
2 5 13 16 22 23
NANO ADDRESS= 1
.2 513 16 17 18
AMPCR= 12
NANO ADDRESS= 2
1 7 13 14 35 53
NANO ADDRESSs 3
1 3 5 6 13 17
NANO ADDRESS= 4
1 7 12 14 21 22
NANO ADDRESS= 3
1 3 5 613 17
NANO ADDRESS= S
1 7 12 13.16 21
AMPCR= 12
NANO ADDRESS= 6
.3 4 51316 25
NANO ADDRESS= 7
2 S5 13 16 17 19
NANO ADDRESSs 8
2 5 13 16 17 18
NANO ADDRESS= 9
2 513 16 17 19
NANDO ADDRESS= A
2 3 4 S5 710
NANO ADDRESS= B
2 S5 13 16 37 38
NANO ADDRESS= C
2 5 13 16 21 22
NANO ADDRESS= D
2 S5 11 13 14 16
NANO ADDRESS= E

2 3 51116
NANO ADDRESS= F
1.3 5 1

NANO ADDRESS= 10
2 5 13 16 17 18
LIT= 6

NANO ADDRESS= 11
4 5 13 16 21

mNANQmADDRESS'UIZ

1 4 5 11 12 13

Figure 4-3,

1111 0000000000
26 41
1111 0000000001
19 44 45 46 47
110 00000010010
1111 0000000010
54
1111 0000000011
18 19 25 26 36 37
1111 0000000100
26 35 53 54
1111 0000000011
18 19 25 26 36 37
1111 0000000101
22 26 34 53 54
110 00000010010
1111 0000000110
26 40 49
1111 0000000111
21 22 26 34
1111 0000001000
21 22 26 37 39 40
1111 0000001001
21 22 26 32 33 34
1111 0000001010
13 14 17 19 21 22
1111 0000001011
40
1111 0000001100
26 42
1111 0000001101
18 19 31
1111 0000001110

1111 0000001111

1111 0000010000
37 38 40 41 45
111 00000000110
1111 0000010001
22 26 42 52 53

1111 0000010010

DECVAD

38 44 a5 46 av

38 44 4S5 46 47

40 50

26 28 29 30 31 32 33 35

Microprogram Listing

The proprietary information contained in this documentis the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Figure 4-3 is the listing of the microprogram produced for the example pro-
gram. For each M-instruction is shown the M-address and the content. If
the content is a nanoaddress the hexadecimal address is given followed by the
bit configuration. If the content is a literal assignment, the content is as in-
dicated. Note that the forward label references have been fixed at this time

(lines 2 and 8 now point to DONE-1 in line 12).

unit; consequently only a 14-bit microprogram word was required.

The example used a 16-bit logic

The translator next allows the user to print the nanotable constructed, and its

statistics.

STATISTICS? NO=0, YES=1

The user types

Figure 4-4 illustrates this output.

1 -—

if he wants this output

0 - ‘ otherwise.

microinstructions pointing to this N-instruction.
N-instruction hexadecimal address.

out of the N-instruction, bits 1 through 55.
used twice.

STATISTICS

P s P i s (P g g Pt e B e b b T\ b e pen

TMOODVD>O BNV HWN -

0100100000
0100100000
1000001000
1010110000
1000001000
1000001000
0011100000
0100100000
0100100000
0100100000
0111101001
0100100000
0100100000
0100100000
0110100000
1010100000
0100100000
1001100000
1001100000

The first column indicates the number of
The second column is the

The remaining columns are a binary print-

NANODINSTRUCTIONS

0010010000
0010011110
0011000000
0010001110
0101000000
0110010000
0010010000
0010011010
0010011100
0010011010
0011001010
0010010000
0010010000
1011010110
1000010000
1000000000
0010011100
0010010000
1110000000

0110010000
0000000000
0000000000
0000110000
1100010000
1100010000
0000110000
1100010000
1100010000
1100010000
1100010111
0000000000
1100010000
0000000000
0000000000
0000000000
0000000000
1100010000
0000000000

Note that N-instruction 3 was

DECVAD

0000000000
0000000000
0000100000
0000011100
0000100000
0001000000
0000000001
0001000000
0000001011
0111000001
1110100000
0000001101
0000000000
1000000000

0000000000

0000000000
0000001101
0000000000
0000000000

1000000000
0001111000
0000000000
0001111000
0000000000
0000000000
0000000010
0000000000
0000000000
0000000001
0000000000
0000000000
0100000000
0000000000
0000000000
0000000000
1000100000
0100000000
0000000000

0000
0000
0011
0000
0011
ooil
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0110
0000

END OF STATISTICS

Figure 4-4. Nanoinstructions Using Statistics

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Next the translator asks if the nanotable should be saved.
SAVE NANOTABLE: NO=0 , YES=1
The ﬁsef types
0 — if the nanotable is not to be saved
1= if thé nanotable is to be saved

If the answer is 1 and if the nanotable is an old one, the following question
is asked.

NEW NAME DESIRED: NO=0, YES=1

The user types

0 «- if the old name is to be used

1 «— if a new name is desired

If the old name is still used, the old table will be updated. Otherwise a new
table must be included, and a name for it is requested.

TYPE NANOTABLE NAME: XXXXXX

After the user provides the desired name, the table is saved under this name
for reuse at some future run.

If this file is to be saved for use on the Interpreter or on the APL Interpreter
model, an output file must be generated. The translator requests the type output
needed for running, as follows:

 PUNCH NANOS? NO=0. TAPE=1. CARD=2,
The user types
0 — if n»o’o'utput file is desired

1 «— ifan output file is desired punched on paper tape at the teletype-
~writer terminal as input for the APL Interpreter model. (The
BD:Machine, An APL Model for Micro Instruction Execution in
Interpreter Based Systems, H. W. Bingham, Burroughs TR 70-3,
April 30, 1970.)

2 = if a punched card file is desired which may be loaded directly into
the Interpreter card reader.

At the conclusion of the program the processor time, I/O time, and elapsed
time are printed in 1/60 of a second increments.

4-8
The proprietary information contained in this documentis the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Peunnsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

5. AN EDITOR FOR NANOTABLES

The microtranslator produces tables of nanoinstructions which are kept in a
library. Any one of these tables may be used as the basis of an M-~program and
may be expanded as needed by the program.

Each nanotable is named by its creator and may be used and modified by other
programs. A nanotable name can be up to 6 letters long. It contains the nanos
used by the programs using the table and a count indicating how often each nano
has been used.

A program has been developed to allow a user to modify his own nanotable when
necessary. This is the editor for nanotables. It is written in compatible ALGOL
on the B5500 system. It performs the following functions.

Lists the nanotables in the library directory
Deletes a nanotable from the library
Renames a nanotable

Lists a nanotable

Changes a nano in a nanotable

Deletes a nano in a nanotable

Prints a nano

AEETQEP

OPERATING INSTRUCTIONS
The user will request the editor as follows

?? EXECUTE EDITOR /ADOESO NO Charge-Number; END. Comment -

5-1
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

The Editor will be initiated by the system and the system prints

.Priority No:EDITOR /ADOESO=Mix-Index BOJ Time FROM Buffer No.

The program requests a user option as follows

OPTIONS: @=CHANGE, 1=RENAME, 2=DELETE, 3=LIST, 4=DIRECT, 5=END

The options are as follows

Type
Type
Type
Type
Type
Type
Type

Ilo"
111"
"2"
ll3ll
H4H
H5|l
H9|I

if changes are to be made to a table.

if the table is to be renamed.

if the table is to be deleted.

if the table is to be printed.

if the directory of the library is to be printed.

if the program is to be completed.

if the table is to be printed starting at a given address
until it is completed.

If a 4 is selected the library directory is printed as follows

4 &
D825

N2TETL
STACK
OPTIONS: §=CHANGE, 1=RENAME, 2=DELETE, 3=LIST, 4=DIRECT, 5=END

If the name of a table is to be changed, the directory name of the table is changed
and the old name is deleted from the directory.

1 &«

TABLE NAME:

STACK «

NEW TABLE NAME:
TESTER <«
OPTIONS: @=CHANGE, 1=RENAME, 2=DELETE, 3=LIST, 4=DIRECT, 5=END

4 «

D825
N2TETL
TESTER

A table may be completely deleted from the library as follows:

OPTIONS: §=CHANGE, 1=RENAME, 2=DELETE, 3=LIST, 4=DIRECT, 5=END

2 &«

TABLE NAME:

TESTER «
OPTIONS: §=CHANGE, 1=RENAME, 2=DELETE, 3=LIST, 4=DIRECT, 5=END

4 &«

D825

N2TETL

5-2

The proprietary information contained in this document is the property of the Burroughs Corporation and should

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

A response to options of a '"5" will terminate the Editor routine and cause the
changes made to be recorded in the nanotable library.

5 «
END EDITNT 2. ¢ SEC.

The "'3" and the ""9" options allow a user to list his nanotable. The name of the
table to be listed is requested. The statistics of the nano and the nano address
will be listed together with the numbers of the bits that are set to one in this
nano.

3 «

TABLE NAME:

STACK «

CNT= 4 ¢ 2 5 13 16 3¢ 45 46

CNT= 2 1 2 5 11 12 14 15 3¢ 51 52 53

CNT= 4 2 13 5 6 13 30 38 39 4¢

CNT= 2 3 3 5 12 13 15 16 19 21 23 3¢ 34

CNT= 2 4 3 5 13 16 18 30 45 46

CNT= 2 5 2 5 13 16 18 19 2¢ 21 22 3¢ 31 34 41 51 52
CNT= 2 623 5 6 7 8 9 10 13 16 3¢ 45 46
CNT= 2 7 13 5 6 17 11 12 3¢ 38 39 4¢ 51 52 53
CNT= 2 8 2 5 12 13 15 16 19 21 23 3¢ 34 46 48
CNT= 2 9 2 5 13 16 18 3¢ 46 48

CNT= 2 10 2 5 13 16 18 23 24 30 34 45 46 47

CNT= 2 11 15 6 17 8 9 1¢ 13 16 17 18 3¢ 41
CNT= 2 12 2 5 13 16 3¢ 45 46 51 52 53

CNT= 2 13 2 5 13 16 3¢ 51 52

CNT= 1 14 1 3 5 6 13 18 3¢ 41

OPTIONS: §=CHANGE, 1=RENAME, 2= DELETE, 3=LIST, 4=DIRECT, 5=END

The "0" options allows a user to change the nanos in his nanotable. When a nano-
table is to be changed, the name of the table is requested. The user is asked for
the address of the nano to be changed, and must type in the nano address as
follows:

¢ «

TABLE NAME:

STACK «

ADDRESS OF NANO =

1«

CNT= 2 1 2 5 13 16 3¢ 51 52

OPTIONS: ¢=REPLACE, 1=DELETE, 2=SKIP, 3=END CORRECTIONS

The nano is then typed out and a new choice of options is requested for changing,
deleting, skipping, or ending these corrections.

A "skip' (2) will just cause the request of a new nano address. An ''end corrections"
(3) will cause an exit to the outer set of options.

5-3
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

A "0" or replace option will request the number of ones in the new nano. The bit
positions that are ones must then be typed each followed by a comma (,) as follows:

' 2, 5, 13, 16, 3¢, 51, <« *
%.Do not forget any commas including the ending one.

ADDRESS OF NANO =

13 «

CNT= 2 13 2 5 13 16 3¢ 51 52

OPTIONS: ¢=REPLACE, 1=DELETE, 2=SKIP, 3=END CORRECTIONS
¢ «

HOW MANY NANO POSITIONS ARE ONES?

6 «

TYPE NANO BIT POSITIONS THAT ARE ONES

2, 5, 13, 16, 39, 51, «

ADDRESS OF NANO =

13«

CNT ¢ 13 2 5 13 16 39 51

OPTIONS: ¢=REPLACE, 1=DELETE, 2=SKIP, 3=END CORREC TIONS

3«

OPTIONS: ¢=CHANGE, 1=RENAME, 2=DELETE, 3=LIST, 4=DIRECT, 5=END

5«

The delete option causes a nano to be deleted from the table. If the last nano is
deleted the table just becomes one entry shorter. However, if the nano deleted is
not the last nano in the table, the last nano is put into that address and the table

becomes one entry shorter. Note that programs using this table must be
retranslated.

ADDRESS OF NANO =

14 « ’ ~

CNT= 1 14 1 3 5 6 13 18 3¢ 41

OPTIONS: @=REPLACE, 1=DELETE, 2=SKIP, 3=END CORRECTIONS
1« ,

ADDRESS OF NANO =

14«

ADDRESS TOO LARGE FOR THIS NANOTABLE

5-4
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

APPENDIX A

TRANSLANG SYNTAX

Reference
Page

(Program) ::= (Program Name Line) (Body)(End Line) 3-21
(Program Name Line) ::= PROGRAM (Program Name) (Start Address) 3-21
(Program Name) ::= (Label) 3-21
(Label) ::= (Letter) I (Label) (Letter) ' (Label) (Digit) 3-6
(Letter) 2= A|BICIDIE|F|GIHIIIJIKILIMIN|O|P|Q|R|S|TIU|V|W|

XlYlZ 3-2
(Digit) ::= 0[1]2|3|4|5|6|7|8|9 3-2
(Start Address) ::= ADR (Hex Address) | (Empty) 3-21
(Hex Address) ::= (Hex Number) 3-21
(Hex Number) ::= (Hex Digit) | (Hex Number) (Hex Digit) 3-21
(Hex Digit) ::= (Digity |A|B|C (D |E|F 3-2
(Empty) ::= i The null string of characters} 3-2
(Body) ::=(Comment) l (Line) ‘ (Body)(Line) 3-22
(Comment),::= COMMENT {Any sequence of (Comment Characters)
except ;" }; 3-3
(Comment Character) ::=(Character) | . I#isislirlaiN/ 3-2

The proprietary information contained in this document is the property of the Burroughs Corporation and should A-1

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

{Character) ::= (Letter) , (Digit) ‘ (Single Space) ‘ (Symbol)

(Single Space) ::= {One horizontal blank position}

(Symbol) ::=, | s 1+1=1:1=1% "1 (1)]*

(Assignment Op) ::= =:

(Literal Assignment) ::= (Literal) =:AMPCR|{Literal) =:SAR |
(Literal) =:SAR; (Literal) =: (LIT) |
(Literal) =((LIT) ;{Literal) =:SAR |
(Literal) =: (LIT)

(Literal) ::=(Integer) LCOMP (Integer) ‘ (Label) l (Label) -1 ’
"{Comment Character) "

(Integer) ::= (Digit) | (Digit) (Integer)
(Lit) ::= LIT | SLIT
(N Instruction) ::= (Unconditional Part) (Conditional Part)

(Unconditional Part) ::= (Component List)

{Component List) ::= (Component) l {Component List) ;(Component)‘

(Empty)

{(Component) ::=(Ext Op) ‘ (Logic Op) | {Successor)

(Ext Op) ::= (Mem Dev Op) ‘ (Set Op) ‘ {(Mem Dev Op), (Set Op)'

(Set Op), (Mem Dev Op) | (Empty)

(Mem Dev Op) ::= MR1| MR2| MW1|MW2 |DL1 IDL2|DR1!| DR2|
DW1| DW2|DU1| DU2|ASRIASE

(Set Op) ::= SET (Cond Adjust Bit) | RESET GC

{(Cond Adjust Bit) ::= INT LC1 LC2 LC3 GCl1 GC2

(Logic Op) ::= (Adder Op) (Inhibit Carry) (Shift Op) (Destination List)

(Adder Op) ::= 0| ll(Monadic) | (Dyadic) l (Empty)

(Monadic) ::= (Not) (X Select) | (N Y Select) | DEC (X Select)

Reference

Page
3-2
3-3
3-2

3-2

3-6

3-11

3-11

343
3-11
3-14
3-14

3-14

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom. it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Reference
Page

(Not) ::= NOT |{ Empty) ' . 3-14
(X Select) ::= 0| A1| A2|A3|CTR|ZEXT| LIT| Z | (Empty) 3-15
(N Y Select) ::=(Not) (Y Select) 3-15
(Y Select) ::= 0|1|B|B (M)(C) (L) | CTR| ZEXT|LIT |z | AMPCR 3-15
(M) ::=(Gating) ' 3-15
{C) ::= (Gating) o 3-15
(L) ::=(Gating) 3-15
(Gating) ::= 0| T|F |1 3-15
(Dyadic) ::= (X Select)(Commut:Op){ N Y Select) 3-14

(Y Select) {(Commut Op) (X Select) |

(X Select)(Non Commut Op)(N Y Select)

(X Select) +(NY Select) +1

(X Select) - (NY Select) -1
(Commut Op) ::= NOR|NRI|NAN|XOR|NIM|IMP|EQV| 3-16

AND|RIM|OR|+
(Non Commut Op) ::= OAD|ADD| - 3-17
(Inhibit Carries) ::= IC | (Empty) 3-16
(Shift Op) ::= R | L | C [{ Empty) 3-17
(Destination List) ::= (Asgn)(Dest) | 3-17
(Destination List) (Asgn) (Dest)|(Asgn)
(Asgn) 1= , | =: 3-17
(Dest) ::= A1|A2|A3| MIR | BR1| BR2 | AMPCR | (Input B)| 3-17
(Input Ctr)| (Input Mar) | (Input Sar)

(InputB) ::= B|BEX | BAD | BC4 | BC8 | BMI | BBE | BBA | BBI 3-17
(Input Ctr) ::= CTR|LCTR|INC 3-17
(Input Mar) ::= MAR | MAR1| MAR2 | LMAR 3-17
(Input Sar) ::= SAR | CSAR ' 3-17

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

(Successor) ::= WAIT | STEP | SKIP | SAVE | CALL|EXEC | JUMP | RETN

(Conditional Part) ::= (If Clause)(Cond Comp List)(Else Clause)|
(If Clause) When Clause)(Cond Comp List})|

(Empty)
(If Clause) ::= IF (Condition})
{Condition) ::= (Not) {(Cond)

(Cond) ::= LST | MST | AOV| ABT | COV | SAI|RDC | EX1 | EX2 | EX3 |
{Cond Adjust Bit})

{Cond Comp List) ::= THEN (Component List)
(Else Clause) ::= ELSE (Successor) | (Empty)
(When Clause) ::= WHEN (Condition})

(End Line) ::= END

Reference

Page
3-20

3-6

3-8

3-22

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

APPENDIX B

RESERVED WORDS AND TERMINAL CHARACTERS

.

RESERVED WORDS

The following words are reserved in TRANSLANG and may not be used as labels.

Some entries have usage limitations:

* Obsolete words not contained in Section 3 but are reserved to

support earlier versions of the language.

Words only used in the microtranslator for port select unit
systems. Synonyms producing the same nano-codes are given

for the microtranslator for switch interlock systems.

@ Words only used in the microtranslator for switch interlock
systems. Synonyms producing the same nano-codes are

given for the microtranslator for port select unit systems.

The synonyms do not imply the identical actions.

Reference Page

A * Zero 0 as X Select. Use { Empty).
Ao * - Zero 0 as X Select. Use { Empty).
Al ‘k A1l Register. X Select or destination operator. 3-15,3-17,3-18
A2 A2 Register X Select or destination operator. 3-15,3-17,3-18

The proprietary information contained in this document is the property of the Bur‘roughs Corporation and should
not be rgleased to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

A3
AAD
ABT

ADD *
ADL *
ADR
AMPCR

AND

AOV

ASE #

ASR #

BAD
BBA

BBE

BBI

BC4

BCS8

BEX
BMI
BR1

Reference Pagg

' A3 Register X Select or destination operator. 3-15,3-17,3-18

And Add logic operator: X AAD Y« -X+(XY)

All Bits True or Adder Bit Transmit dynamic
condition from phase 3 of prior M-instruction
doing Adder Op.

Addition logic operator: use X +Y
Add + 1 logic operator: use X+Y +1
Starting address for microsequence.

Alternate Microprogram Count Register Y Select
or destination operator from barrel switch

3-16,3-17

3-8,3-11

3-21

12 LS bits. ' 3-4,3-15,3-17,3-18,3-21

And logical operator: X AND Y« »XY

Adder overflow, dynamic condition of previous
M-instruction using adder, true if addition
results in overflow.

Status request for highest priority unlocked
device. Synonym is DL2.

Status request for highest priority locked
device. Synonym is DL1.

B Register Y Select same as BTTT; or
To B from barrel switch, destination operator.

To B from adder, destination operator.

To B frqm adder OR barrel switch, destination
operator. '

To B from external bus OR barrel switch,
destination operator.

To B from vprior MIR contents OR barrel switch,
destination operator.

To B from adder ''not 4 bit carry' replicated and
shifted,destination operator. '

To B from adder ''not 8 bit carry' replicated and
shifted, destination operator.

To B from external bus, destination operator.
To B from prior MIR contents, destination operator.

To Base Register 1 from barre] switch 2nd LS
Byte, destination operator,

3-16

3-8,3-9

3-11,3-12

3-11,3-12

3-15,3-17,3-18

3-17,3-18

3-17,3-19

3-17,3-19

3-17,3-19

3-17,3-19

3-17,3-19
3-17,3-18
3-17,3-19

3-17,3-18

The proprietéry information contained in this documentis the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Reference Page

BR2 To Base Register 2 from barrel switch 2nd LS

Byte, destination operator. 3-17,3-18
BSW * To B from barrel switch, destination operator;

use B instead.
C Circular shift right the entire adder output.

Operation takes place in barrel switch. 3-15,3-16,3-117
CAD * Character add by carry inhibit between 8 bit

characters (bytes). Use IC instead.
CALL Call a procedure: Use AMPCR + 1 as address,

and new MPCR; old MPCR to AMPCR. Successor. 3-19,3-20, 3-21

COMMENT Allows for the inclusion of documentation on

a listing. \ 3-3
COMP Complement as appropriate for destination of

literal assignment. 3-4
Cov Counter overflow condition bit, reset dominant. 3-8,3-9
CSAR Complement SAR,destination operator, 3-17,3-19,3-20
CTR v To counter from ones complement of barrel

switch LS Byte, destination operator, X or Y

Select: into MS Byte. 3-15,3-17,3-18,3-19
DEC * Decrement by one the specified X select

register; use X select - 1. 3-14
DLl @ Device Lock using BR1/MAR for device idert.

Synonym is ASR. 3-11,3-12
D12 @ Device Lock using BR2/MAR for device ident.

Synonym is ASE. 3-11,3-12
DR1 i Device Read using BR1/MAR for device ident. 3-11,3-12
DR2 - Device Read using BR2/MAR for device ident. 3-11,3-12
DU1 Device Unlock using BR1/MAR for device ident. 3-11,3-12
DU2 Device Unlock using BR2/MAR for device ident. 3-11,3-12
Dw1 Device Write using BR1/MAR for device ident. 3-11,3-12
Dw2 Device Write using BR2/MAR for device ident. 3-11,3-12
ELSE Sequential operator prefix to false successor. 3-8
END Bracket word to end a program. 3-22
EQV Equivalence logical operator: X EQV Y«-XYV XY 3-16
EXEC - Executes out of sequence: Use AMPCR + 1 as address.

Successor, 3-20,3-21

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Peunsylvania.

Burroughs Corporation

EXT *
EX1 @
EX2 @

EX3 @

GC @

GC1

GC2

1C
IF
IMP
INC

INSERT

INT

IRQ #

JUMP

Reference Page

External condition bit externally set, reset
by test. Synonym is EX1,

External condition bit 1 externally set, reset
by test. Synonym is EXT.

External condition bit 2 externally set, reset
by test. Synonym is SRQ.

External condition bit 3 externally set, reset
by test. Synonym is URQ.

False gating of B as part of Y Select.

Global conditions used with RESET to reset both
GC1 and GC2. Synonym is reset GC2.

Global condition bit 1: may be set by SET GC1 if

presently reset in all Interpreters. Tested without
resetting.

Used as RESET GC1, resets GC1l. Synonym is
SET LC3.

Global condition bit 2: may be set by SET GC1 if
presently reset in all Interpreters. Tested
without resetting. :
Used as RESET GC2, resets GC2. Synonym is
RESET GC.

Inhibit carry between bytes.
Starts the conditional part of an instruction.
Imply logical operator: X IMP Ye-XVY

Increment counter destination operator; set COV
when overflowing from all ones to all zeros.

Take a copy of the selected program from the
library file and insert it in the program.

Used as SET INT, interrupts all Interpreters.
Interrupt Interpreters condition bit: set by any
Interpreter, own is reset by testing.

Interrupt from locked but unselected device (can
be status or data interrupt). Synonym is LCS3.

Jump to address in AMPCR + 1 and put that
address in MPCR. Successor. ‘

Left shift end off the entire adder output, right
fill with zeros. Operation takes place in barrel
switch.

3-8,3-9

3-8,3-9

3-0,3-9
3-15

3-11,3-13

3-9, 3-11,
3-13

3-9, 3-11,
3-13

3-16
3-8
3-16

3-17,3-19

3-22

3-9,3-11,3-12

3-20,3-21

3-15,3-16,3-17

The proprietary information contained in this documentis the property of the Burroughs Corporation and should
not be released to other than those to whom. it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

LC1 Local condition bit 1: may be set, or tested

which resets. 3-9,3-11,3-13
Lc2: Local condition bit 2: may be set, or tested

which resets. 3-9,3-11,3-13
LC3 @ Local condition bit 3: may be set, or tested

which resets. Synonym for SET LC3 is

RESET GC1.) 3-9,3-11,3-13
LCTR Ones complement of the literal register

contents will be placed in the counter

and COV reset. Destination operator. 3-17,3-18,3-19
LIiT Literal register: may be loaded by a literal

assignment. May be source for X select or

Y select LS byte, the MAR, and/or CTR. ‘ 3-4,3-15
LMAR Literal register contents will be

placed in MAR. Destination operator. 3-17,3-18,3-19
LST - Least significant bit of adder output, dynamic

condition from phase 3 of previous M-instruction

doing adder op. 3-8,3-9
MAR Memory address register destination operator:

from barrel switch LS Byte. 3-17,3-18,3-19
MAR1 @ Memory address 1 destination operator: same

as BR1, MAR , 3-17,3-18
MAR2 @ Memory address 2 destination operator: same

as BR2, MAR 3-17,3-18
MIR ' Memory Information Register destination operator

from barrel switch., 3-17,3-18
MR1 Read from memory address BR1/MAR mem dev op. 3-11,3-12
MR2 Read from memory address BR2/MAR mem dev op. 3-11,3-12
MST Most significant bit of adder output, dynamic

condition from phase 3 of previous M-instruction

doing adder op. 3-8,3-11
MW1 Write the content of MIR to memory address

BR1/MAR mem dev op. 3-11,3-12
MW2 Write the content of MIR to memory address

BR2/MAR mem dev op. ©3-11,3-12
NAN Not And logical operator: X NAN Y« ->XVY ‘ 3-16
NIM Not Imply logical operator: X NIM Y« XY 3-16
NOR Nor logical operator: X NOR Y« -XY : 3-16
NOT Complement monadic or condition operator NOT X« —X

Complement Y select for commutative operators 3-8,3-14,3-16

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

NRI

OAD

OR
PROGRAM
R

RDC

RESET
RETN

RIM

- RMI #

SAI @

SAVE

SET

SKIP

SLIT

' SRQ #

STEP

SUB #
SUBL #

Reference Page

Not Reverse Imply logical operator:
X NRI Y«-—XVY

Or Add logical operator: X OAD Y-—X + (XVY)
Or logical operator: X OR Y~=—=XVY _
Bracket word beginning a program.

Right shift end off the entire adder output, left
fill with zeros. Operation takes place in barrel
switch. '

Read complete bit: set when external data is
ready for input to B, reset by testing.

Reset the condition bit specified.

Return: use AMPCR + 2 as address and as new
content for MPCR. Successor.

Reverse Imply logical operator: X RIM Y-—=XVY

Ready MIR bit: set externally when data has been
received from MIR. Reset by testing. Synonym
is SAI

Switch Interlock accepts information bit. Set when.

switch interlock accepts information, reset by testing.

Shift Amount Register destination operator from LS

Save the MPCR in AMPCR: use MPCR + 1 as M-

3-16
3-16,3-17
3-16
3-21

3-16,3-17

3-8
3-11,3-13

3-20,3-21
3-16

3-8
3-4,3-17,

- bits of barrel switch or from literal assignment. 3-18,3-19,3-20

address and as next MPCR. Successor. 3-19,3-20,3-21

Set the conditional bit specified: either LCI1,
LC2, (or LC3@),INT, or request setting of
GCl1 or GC2.

Skip the next instruction; use MPCR + 2 as M-
address and as next MPCR., Successor.

Literal assignment in SAR converted form.

Solicited request bit. Set externally, reset by
testing. Synonym is EX2.

Step to next instruction: use MPCR + 1 as M-
address and as next MPCR. Successor.

Subtract logic operator: UseX - Y
Subtract -1 logic operator: Use X - Y - 1

True gating for B register

3-11,3-12

3-20,3-21
3-4

3-20, 3-21

3-15

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Reference Page

THEN Starts the true alternative of conditional

instruction. _ 3-6
URQ # Unsolicited request bit. Set externally, reset

by testing. Synonym is EX3.
WAIT Wait for condition M-address is MPCR; MPCR

and AMPCR unchanged. Successor. 3-20,3-21
WHEN @ Starts a conditional instruction, has an implicit

ELSE WAIT, 3-8
XOR Exclusive Or logical operator: X XOR Y« X YVX Y 3-16
Z CTR in MS Byte, (ZEXT in middle bytes of machine

larger than 2 bytes), LIT in LS Byte as X select

- and/or Y select. 3-15

ZEXT Middle bytes of machine larger than 2 bytes as

X select and/or Y select. 3-15

Some reserved words have been deleted that were defined in the original description
of the microtranslator.
A Microtranslator for the Interpreter Based Systems, S. Zucker,

Burroughs TR 70-1, Revision A, February 10, 1970.

These include:
C ZERO, DLR, DLW, DRF, DUR, DUW, DWT, RMA, SKI,
SK2, TRY1, TRY2, TRY3, TRY4, and TRYS5.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

TERMINAL CHARACTERS

Secondary assignment operator for destination operators. 3-2.
Delimiter. Use is mandatory after a comment statement. 3-2
Terminator of label part of instruction or insert. 3-2
Assignment operator for literal assignments or

destination list. 3-2
Commut operator, 3-2
Non commut operator. 3-2
Label constant separator. . 3-2
Prefix delimiter for redundant part of instruction, 3-2
Suffix delimiter for redundant part of instruction. 3-2
Line terminator and inline comment prefix. 3-3
Bracket about comment character used as a literal. 3-3

Reference Page

The proprietary information contained in this document is the property of the Burrough§ Corporati(?n a‘nd should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

APPENDIX C
ERROR MESSAGES

The first section of the Microtranslator parses the input file, a line at a time, and
produces a listing of the file, N-instructions, and error messages. The error
messages indicate that errors were made in the syntax or semantics of an instruc-
tion. They will be printed out on the teletypewriter in the following format giving
the error number and the line number of the instruction as follows: ‘

*kERROR NUMBER NNN IN LINE L LI %%

Where NNN is the error number and LILL is the sequence number of the instruction
in the input file.

When an error is located in an instruction, the error message is printed on the tele-

type and the next instruction in sequence is passed. If the program is not syntac-
tically correct, the second section of the Microtranslator is not started.

Error Number Definition

Label too large
CTR and MAR Conflict
Duplicate MAR
Duplicate B destination

Missing comma

D W N

‘Missing semicolon

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

Error Number Definition
T . Incorrect destination designator
'8 Symbol undefined
9 Duplicate logical operator
10 Logic operator error)
11 Colon Equal missing or misplaced
12 Duplicate Z select
13 Duplicate A select
14 Duplicate B select
15 B Gating error
16 Duplicate counter operdtions
17 More than one set operation
18 ' Reset error
19 Memory device error
20 Duplicate shift operation
21 Duplicate test condition
22 Duplieate successors
23 _ Successor error
24 Successor after ELSE error
25 Duplicate label
26 Literal used not in a literal assignment instruction
27 ' Condition error
28 Misplaced THEN
29 Misplaced ELSE
30 Misplaced integer
31 Integer too large
32 Too many quoted characters
33 Wrong register for receiving a literal
34 Undefined input mistaken for label, or misspelled

reserved word

35 Address wanted for insert program less than current
address, or misspelled reserved word

36 Reset not followed by proper identifier

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Error Number Definition

37 Set not followed by proper identifier

38 Undeclared label

40 Stack, operation removed, AMPCR goes
directly to adder.

41 NOT error — ''NOT' misused

61 Named insert program not on library

62 No END on file

63 Address error — present address >insert
address

If a nanotable name is requested which has never been saved before, NO SUCH
NANOTABLE is printed and a new name requested.

If a new nanotable is given a name already in use, DUPLICATE NANOTABLE
NAME ERROR is printed and a new name is requested.

If labels have been used in a program without being declared, the following print-
out occurs upon conclusion of the listings.

LAST ADR LABELS NOT FOUND

2 STR
3B SERROR
4 Y10

The address is the hexadec1ma1 micro address of the last instruction using the
label in a program.

The proprietary informationcontained in this document is the property of the Burroughs Corporation and should
not be r:eleased to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom- it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

FEDERAL AND SPECIAL SYSTEMS GROUP

APPENDIX D

INTERPRETER INSTRUCTION PHASING AND CONTROLS

Time phasing of instructions is described in this appendix, both in terms of the
partial order of occurrence of the various events and in terms of a sequence of
instructions. Controls available in the Interpreter that can be generated by
TRANSLANG are reflected in the contents of the words of either the M-memory

or the decoder (N-memory). Figure D-1 illustrates the data and control flow |
among the registers of an Interpreter. The meaning of the content of micro-
program words and nanomemory words is detailed. This appendix concludes

with a description of memory and device operations as used with a switch interlock,

INSTRUCTION PHASING

The execution of a microinstruction requires one or more sequential time periods,
called phase 1, phase 2, and phase 3. The constant interval of time from the end
of one clock pulse to the end of the next is the measure of a phase.

CLOCK) CLOCK CLOCK
PULSE PULSE PULSE
TIME REQUIRED FOR EXECUTING ONE - .
PH MICROINSTRUCTION
(ONE CLOCK DURATION OR PERIOD INCREASING TIME

Some microinstructions only have a phase 1, some have both phase 1 and phase 3,
and some have phase 1, phase 2, and phase 3. Phases of successive micro-
instructions usually overlap, so that phase 1 of a current microinstruction is
being executed while phase 2 or 3 of a prior microinstruction is also being exe-
cuted. This overlapping of microinstruction phases allows starting the execution
of a new microinstruction each time a new 'clock duration'' period starts.

The proprietary informationcontained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

‘erueATdsuusd ‘11084 ‘dnoan sweysLg Teroadg pue TeJopsd sySnoxang

3y JO UOT}BZIJIOUINTE USNIIM JnOUITM ‘paystiqnd JO ‘pa1oalrp ST 31 WOUM O} 950U} UBY} JYJ0 0} PIsed[ad 9q jou
prnoys pue uoryerodio) sysnosang ayj jo L3radord syj ST}USWNOOP STY} UT paUTLIUOD uot ewtojul Lrejeradoad ayy,

¢-a

Address
Micro — ™ Nano Memory (NM)
Program
Address tAemory 11-16 17 8-10,51-54 17-50
cov Set conditions from remote source:
(MPM) 1 1 - SAl RDC EX1 EX2 EX3 iINT
X1 GC1|GC2
1 a1 .
[-» Condition Register | | Set GC Set GC1 or GC2 inhibit from higher
12 4J R priority Interpreters Data from Main Memory
- » Request inhibit to lower priority or Per.ipheral Devices"
Interpreters
Set
Decode .
Type i Local .
— 0
- True/Not True Set INT in ail interpreters
Type Il set Yes
L Do External r—
I Operations
1 Command to Main Al L B g
Memory or Peripheral
Device” A2
LT _f——-\ Y d 1
8 Do Logic es Comi A3 ! Select |
MPAD Unit Operations [[Register 10,1, T,F!
Confrols Destinations (] _ Phase Ii!
Register 3 tnput Clock ™ Cc d:
® 12LSb
MPCR TSB MSB Center Bytes Z 1
12
‘ Complement Dynamic Conditions
. ABT ACV MST LST
AMPCR e Source LS bits
12 Select
' ZEXT External .
‘ i Complement input to Logic Units Shift Amount
2158 wider than 16 bits SAR J
INCR BR1
0, +1, +2 MAR CTR Legend: »
8
BRZ g L Bitwidth | Register
i MR g
Address to Main Memory or Peripheral Device.
Data Flows: top and bottom 9
Control flows: left and right Data to Main Memory or Peripheral Device™
@SUCCESSOR _REGISTER NAMES NOTES
Select incr.
WAIT MPCR 0 MPCR Microprogram Count Register * Communication with Main Memory or Peripheral
STEP MPCR 1 Provided for Type Il and un- AMPCR Alternate Microprogram Count Register Devices is via Port Select Unit or Switching Interlock
less otherwise specified, Type | BR1 Base Register 1
SKIP MPCR 2 BR2 Base Register 2 Abbreviations: LSB = Least Significant Byte
CALL AMPCR 1 Also saves MPCR contents in MAR Memory Address Register MSB = Most Significant Byte
AMPCR (for return) CTR Counter 2 LSB = Second LSB
Jump AMPCR 1 SAR Shift Amount Register 12 LSb = 12 Least Significant bits
RETN AMPCR 2 A1l A1 Register I = Byte width of Logic Unit
EXEC AMPCR 1 Inhibits loading of MPCR A2 A2 Register J = Leastinteger> 3 +logyI
A3 A3 Register
SAVE MPCR 1 Saves MPCR contents in AMPCR

(for looping)

Figure D-1. Interpreter Data and Control Flow

uonexodao) sygnoaang

FEDERAL AND SPECIAL SYSTEMS GROUP

A microinstruction may contain either a constant (type II microinstruction) or the
address of a nanoinstruction (type I microinstruction), For a type II micro-
instruction, phase 1 provides sufficient time to execute the instruction (complete
the STEP successor and literal assignment), and no additional phases are required,
For a type I microinstruction, the events taking place in each of the three phases
are identified below,

Phase 1: Condition test, (conditional) external operation
execution, (conditional) logic operation initiation
after completion of prior logic operation, and
successor microprogram address control.

Phase 2: Holding phase ’for logic operation phase 3 controls,

Phase 3: Completion phase for performing logic unit
operations and changing destination registers
specified in the logic operation,

If a type I microinstruction does not require the initiation of a logic operation
(the condition fails and the logic operation was conditional), the execution is
completed in phase 1. Otherwise phase 3 is initiated at the end of the clock
duration period by loading the command register concurrently with changing
the destination registers for the phase 3 also in process from a prior type I
microinstruction. Registers change state during the time a clock pulse is
actually present (at the end of a clock duration period).

Phase 3 completes the execution of a logic unit operation. The commands for
phase 3 in the command register have two parts: logic specification and destina-
tion specification. The logic specification commands apply continously and are
taken directly from the command register. The destination specification com-
mands are always executed at the same clock pulse time as the phase 1 initiating
a new logic operation.

Phase 2 is a holding phase, the existence of which depends only on subsequent
microinstructions. A one-clock duration period hold is cregted by each sub-
sequent type II microinstruction, or by each type I microinstruction for which

the conditional logic unit operation is not to be executed. A phase 2 is created
from the original phase 3, which is extended into the next clock duration period
as the new phase 3. During phase 2 the original phase 3 logic specification com-
mands continue to apply. Thus the current contents of the selected adder source
registers are used to develop adder outputs. The dynamic conditions AOV, ABT,
MST, and LST from these adder outputs are available to be tested in a concurrent
phase 1,

The phased execution of a sequence of microinstructions is suggested in
Figure D-2, with each microinstruction being symbolically represented by a
capital letter, Subscripts indicate phase. The subscript 3, 2 indicates a
phase 2 that was formerly an "original'' phase 3.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Microinstruction A B C D E F

Type I I I I I I

DO LUOP True True False True True
Phase 1 Al\ Bl\ C1 Dl\ E1 Fl\
Phase 3 or 3,2 'Z3 A3 B3 5——>B3 D3 2——>D3 F3

Clock 0 1 2 3 4 5 6 7

Increasing Time ——»

Figure D-2. Example of Phased Execution of Microinstructions

The phase 3 or 3, 2 in progress is determined by the logic unit operation (LUOP).
As indicated in Figure D-2, the old phase 3 is completed and the next clock
initiates the new phase 3 (microinstructions A, B, D, and F)if the LUOP is true
for type I microinstructions. The old phase 3 is extended (it turned out to be

a phase 2) if LUOP is false (microinstruction C creates a phase 2 for B), or if
it is type II (microinstruction E), creating a phase 2 for D, This latter case
shows how a change by a type II microinstruction can affect the result of a prior
type I microinstruction. The destinations for D do not get their new values until
the end of phase 1 for F at clock 6, and thus are enabled to use register values
that come into existence after clock 5 has expired.

Figure D-3 illustrates instruction phasing and overlap by a time flow and decision
diagram. Time flow is from left to right, representing one full clock duration
period. The bottom section shows phase 1, the activity of the current micro-
instruction. Multiple lines from a box indicate alternatives (not necessarily
mutually exclusive). The top section shows the phase 3 commands of a prior
microinstruction that are in progress. The phase 3 may turn out to have actually
been a hold in phase 2 if the command register does not change, (LUOP was false).

The following events occur in phase 1 in order of ascending numbers., The
sequence is logical and is not st rictly uniform in time increment.

1. Develop microprogram address MPAD, using MPAD CTLS
register content to select either MPCR or AMPCR content,
and

2. Select the proper increment amount (+0, +1 or +2),

3. Read out the addressed microprogram word,

The proprietary information contained in this documentis the property of the]?:ur‘rough.s Corporatifm a'nd should
not be released to other than those to whom. it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

“etueATAsuuag ‘110ed ‘dnoan) swalsAg 1eroadg pue [BIdpag sydnoaang

‘paystiqnd J0
pnoys pue uonredodao) sysnoaang ayj Jo £31adoad ayj STIUSWINOOP STY} UT POUTEIUOD UoTieWIOfuT Laejatadoad oy,

‘POIOBITP ST 31 WOYM O} 9SOU} UBYJ U0 O} pasBalad aq 10U

9y} JO UOTIEZIIOUINE UIPTIM JRNOYITM

Previous Type 1

instruction Do all phase 3]

. n X and Y select
for which the logic commands | g output dvailable
Liggic Op is except destination P
executed

PHASE 3 (OR HELD IN PHASE 2)

Adder output available

Barrél switch output available

'

Change destinations
(only phase 3)

10 11

Condition = true or

Load phiise 3 controls

Logic Op is unconditional

to command register

Condition = t o
nat rue or Initiate Ext Op

Test condition

Sequence 1 2 3
of Events 1 2 3 4 5 6
PHASE 1
C 11t i -
Current :A?M € E;;:;irﬁg‘;zz type 1 Read controls
Instruction address from MPM T from nanomemory

xt Op is unconditional

Condition = true True Successor

=: MPAD controls

Condition = false False Successor

= =: MPAD controls

STEP
=: MPAD controls
type II
. Clock literal(s) to
AMPCR, SAR and/or LIT
L Clock pulse]
* 1
One clock time
| »l
I |
Figure D-3. Instruction Time Flow and Decision Diagram

dNOYO SWILSAS TVID3dS ANV 1v¥Iddd

Burroughs Corporation

4, Decode the word to determine if microinstruction is type II
or type L.

If the microinstruction is type II:
5a. Use low order part of word as literal(s).
1la, STEP successor to MPAD CTLS register.

11b, Clock literal(s) to specified register(s): SAR and/or LIT;
AMPCR. (Note that all register changes occur in step 11.)

If the microinstruction is type I:

5b. Use low order part of word as address to nanomemory.

6. Read nanomemory,

7. Decode result.

8. N [1-4] Select condition to test

9. N [5] True/complement condition bit value =: SC

10a. N [6] Do logic unit operations =: LUOP

10b. N [7] Do external operations =: EXTOP

llc, If EXTOP is true then:
N [8 - 10] enable condition adjust if not 0 0 0, and
N [51 - 55:] enable memory device operation if not 0 0 0 0,

11d., If LUOP is true then:
complete destination part of phase 3 of prior logic unit
operations (bits 34-50) and
N [17 - 50] decode and load command register.

lle. Successor to MPAD CTLS register:
N [11 - 13] if SC is trué; or
N [14 - 16]if SC is false

11f, Reset tested condition if appropriate.

The proprietary information contained in this document is the property of the Burroughs Corporation and should

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

The event sequence in phase 2 or 3 starts as follows, where numbers correspond
to the sequence for phase 1,

la. N [17 - 19] Select X input to adder
1b. N [20 - 26] Select Y input to adder
3a. N [27] Inhibit carry
3b. N [28 - 31] Select and do adder operation
7. At this point the dynamic conditions from the adder are
available for test in the subsequent instruction now in
phase 1 (in its step 8). '
9. N [32 - 33] Select shift direction and do shift.
At the end of phase 3 the following events occur:
1lg, When LUOP is true (step 10a of same phase 1), any or

all of the following independent register changing destination
events may occur while the clock pulse is present.

N [34 - 36] A registers
N [37 - 40] B register
N [41] MIR

N [42] AMPCR
‘N [43] BR1

N [44] BR2

not totally independent, since

N [45 - 46] MAR
they share N [46]

N [46 - 48] CTR
N [49 - 50] SAR

11h. When LUOP is false, this was a phase 2.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

MICROPROGRAM WORD CONTENT

M-word Bits Instruction Literal
12 3 & 5 6 7 8 910 11 12 13 14 15 16 Type Assignment
o #la b sAR g 8808 080 8 & II k=:SAR
1 0|la b SAR LIT II k=:SAR; j=:LIT #
1.1 0 g|* AMPCR I i=:AMPCR
11 10|86 & 4 & | LIT II j=:LIT #
1 1 1 1[* N-ADDRESS v I

Heavy bars indicate possible contraction points for narrower memories,
in which case the bits are moved to the left,.

LR N

indicates unused, 0 supplied by TRANSLANG,

indicates a field that is right justified if the hardware configuration does
not require the entire addressing range, left fill with zeros.

wherever LIT appears may be replaced by SLIT meaning convert

the constant as if it were being loaded into SAR, and left fill with zeros.
required only for logic unit widths greater than 32 bits,

required only for logic unit widths greater than 16 bits.

T o

The M-memory word may have bit length sufficient for the particular Interpreter
hardware configuration. Logic units of 24-bit or 32-bit width need 15-bit M-memory
words; wider logic units need 16-bit M-memory words. The design of the M word
decoding is flexible. It permits selecting bit groups of the following lengths to
form alternatives. One of the columns below will be chosen for each configuration,

Number of
Decoded Bits

2 1 2 1
2 2 2 3
2 3 2 3
3 4 2 3
3 4 3

For the initial 16-bit logic unit configuration, the choices were made as follows:

14 bits
1, 2, 3, 4, 4

M-memory word length-

Decoded bit option

The proprietary information contained in this document is the property of the Burroughs Corporation a.nd should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

N-WORD CONTENT

The assignment of bits and their meaning in the N-decoder or N-memory is
summarized in Table D-1, and is described in detail below. Bit positions in
the memory are indicated by integers in boxes. FEach box surrounds a field of
related bits, The defined alternatives are described, and mnemonics given for

each, The mnemonics that directly correspond to TRANSLANG reserved wo rds
are identical.

Other mnemonics are provided for descriptive references.

LEGEND:

+

-

ADD (twos complement)
SUBTRACT (twos complement)
OR (logical inclusive)

NOT N (ones complement)

-- Don't care, O or 1

=: Assign into

MS Most significant

LS Least significant

2l <

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Table D-1. Nanomemory Decoding

TIMING AND N-MEMORY
GENERAL ACTION BITS SPECIFIC ACTION
DURING PHASE 1
1-4 Condition selection
. 5 Condition test (true/complement)
Conditional Control 6 Conditionally update command register from bits 17-50 of nanomemory
7 Conditionally initiate actions shown below under “‘at end of Phase 1"
AT END OF PHASE 1
(a) Successor Determination 11-16 Microprogram address (MPAD) controls
(b) External Operations 810 Condition adjust (local; global; interrupt Interpreters)
51-54 Request signals for main memory or peripheral device operations
PHASE 2
Optional Holding Phase Dynamic conditions available for test in Phase |
PHASE 3
17-19 Adder input X select
20-26 Adder input Y select
27 Inhibit carries
Adder Operation Commands 28-31 Adder or logic operation
. Dynamic conditions available for test in concurrent phase 1
32-33 Shift (right, left. circular) by amount in SAR
AT END OF PHASE 3
(| 343 Input to A registers (A1, A2, A3) from BSW
37-40 B register input source selection
41 MIR input from BSW
42 AMPCR input from BSW
Destination Specification < 43 BR1 input from BSW
44 BR2 input from BSW
Input clock d
45-46 MAR input from BSW or LIT nput clock commancs
46-48 CTR input from LIT, BSW, or increment CTR
49-50 SAR input from BSW, or complement SAR
\

D-10
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

FEDERAL AND SPECIAL SYSTEMS GROUP

Phase 1 Controls

Controls N [1 - 7] are used directly from the N-memory and are effective before
the end of the first clock (phase 1).

, How How
CONDITION SELECTION Set@ Reset@ Dominant
0 0 0 0 GCl Global condition 1 % itnotset ~ CAJ CAJ S
in another
0 0 0 1 GC2 Global condition 2 Interpreter. CAJ CAJ S
0 01 0 ILC1 Local condition 1 CAJ Test S
0 0 1 1 LC2 Local condition 2 CAJ Test S
0 1 0 0 MST Adder most significant bit* - - -
0 1 0 1 LST Adder least significant bit™ - - -
0 1 1 0O ABT Adder bit transmit - - -
0 1 1.1 AOV Adder overflow - - -
1 0 0 O Ccov Counter overflow Overflow Test R
1 0 0 1 SAI Switch interlock accepts info SWI Test S
1 0 1 0 RDC Read complete SWI Test S
1 0 1 1 LC3 Local condition 3% CAJ Test S
1 1 0 0O EX1 External condition 1 EXT Test S
1 1 0 1 INT Interrupt Interpreters™™* CAJ Test S
1 1 1 ¢ EX2 External condition 2 EXT Test S
1 1 1 1 EX3 External condition 3 EXT Test S

*MST and LST in the hardware are true if the value is 0. The Microtranslator
complements the programmer-specified test for these so the test is as if
the true value were 1, consistent with the other conditions.

“*Set from own or another Interpreter. Testing only resets own Interpreter.

@ CAJ is condition adjust N [8 - 10]
SWI is switch interlock
EXT is external source
Test is by inclusion of the selected condition in a type I microinstruction
Dominant if both set and test:
S is settol
R is resetto 0

#LC3 is RMA in the DC 2000.

D-11

The proprietary informationcontained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorlzatlon of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

D-12

]__5—] COMPLEMENT/TRUE CONDITION TEST

0 NOT Complement value of selected condition =: SC
1 . Value of selected condition =: SC

LOGIC UNIT CONDITIONAL

If LUOP resulting from this control is 0, do not change command register;
otherwise at end of this clock, complete the phase 3 for the prior instruction
in the command register and replace its content from controls N [1 7-50] .

0 Unconditionally TRUE=: LUOP
1 Conditionally SC=: LUOP

EXTERNAL OPERATIONS CONDITIONAL

If EXTOP resulting from this control is 0, do nothing; otherwise in this clock |
initiate any specified memory/device operation N [51 - 54] and adjust any
specified condition N [8 - 10].

0 Unconditionally TRUE=: EXTOP
1 Conditionally =: EXTOP

8 9 10| CONDITION ADJUST

The indicated action takes place at the end of phase 1 if EXTOP has been

determined to be true in this phase 1. Bits are set to true or 1; reset to false
or 0,

No action

SET LC2 Set local condition 2

SET GC2 Set global condition 2 request®

RESET GC Reset global conditions 1 and 2

SET INT Set interrupt Interpreters in all Interpreters including own
SET LC3 Set local condition 3 .

SET GC1 Set global condition 1 request™

SET LC1 Set local condition 1

H R R, OOOO
O Ok OO
O MO MO RO

* A request to set a global condition bit is only honored if no higher priority
Interpreter has its own correspondingly numbered global condition bit set, or
is concurrently requesting to set it. In the second executed inst ruction follow-
ing the request to set the global condition bit, a test of that bit will indicate
(if set) that the request was successful, otherwise that some other Interpreter
is using that global condition. A request lasts for one clock.

The proprietary information contained in this documentis the property of the Burroughs Corporation and should
not be released to other than those to whom- it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

MPAD Controls

The MPAD (microprogram address) is determined by the value in the MPAD
controls register at the start of phase 1. Depending on the value of SC deter-
mined during phase 1, either one of the following two sets of controls is loaded
into the MPAD controls register at the end of phase 1. Concurrently, changes

to the MPCR and AMPCR occur as indicated by the original content (at the start
of phase 1) of the MPAD controls register (and for the AMPCR, possibly a type II
or barrel switch output). MPCR,, is the value in the MPCR before the end of

phase 1. For type II instructions, MPAD becomes 1 + MPCR, and MPCR
becomes MPAD --"STEP",

Registers Changed

11 12 13 at end of Phase 1 14 15 18
A -
r N

TRUE =~ MPAD MPM MPCR - AMPCR FALSE
SUCCESSOR controls address receives receives SUCCESSOR
Used if SC=1 register will be value value Used if SC=0
0 0 o0 WAIT MPCR MPAD 0 0 0
0 0 1 STEP 1+MPCR MPAD 0 0 1
0 1 0 SAVE 1+MPCR MPAD MPCR," 0 1 0
0 1 1 SKIP 2+MPCR MPAD 0o 1 1
1 0 o JUMP 1+AMPCR MPAD 1 0 o
1 0o 1 EXEC 1+AMPCR 1 0 1
1 1 o0 CALL 1+AMPCR MPAD MPCR,* 1 1 o
1 1 1 RETN 2+AMPCR MPAD 1 1 1

*CALL and SAVE overrride any change to the AMPCR from either a type II
instruction or the BSW, The type II overrides the BSW.

: D-13
The proprietary information contained in this document is the property of the Burroughs Corporatign a‘nd should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Phase 3 Controls

Controls N [17 - 50] are partially decoded and stored in the command register at
the end of phase 1 if LUOP is true. Beginning with the next clock (regardless of
whether the microinstruction is type I or type II) the controls N [17 - 3‘3_] become
active causing selection of inputs to the adder, the appropriate adder operation,
and kind of shift. These controls continue in effect over one or more clocks until
next a type I instruction (at the end of its phase 1) changes the command register.
Concurrent with this change, the controls previously in the command register,

N [:34 - 50] are used to specify the desired set of destination registers to receive
new values,

It is thus possible that subsequent type II instructions will cause changes to the
result of the logic unit operation specified in the command register. These
changes may occur if either the literal register or AMPCR is an input to the
adder. These changes may affect the values of the adder dynamic conditions
MST, LST, ABT, or AOV, Also if a shift is specified, a change to the SAR
will change the amount of the shift and thus change the barrel switch output.

17 18 19| ADDER INPUT X SELECT

0 0 0 Zeros

0 0 1 LIT Literal register to LS byte™

0 1 0 ZEXT Z external connection to center bytes™#
0 1 1 CTR Counter to MS byte™

1 0 o Z CTR v ZEXT v LIT #

1 0 1 Al Al register

1 1 0 A2 A2 register

1 1 1 A3 A3 register

* Zeros elsewhere ~
ZEXT only meaningful for logic unit widths greater than 16 bits.

D-14

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

20 21 22 23 24 25 26]
o 0
01
1 0
1 1
o 0 o
1 0 0
0o 0
0o 1
1 0
11
comp 1 0 0 comp
comp 0 0 0 comp
o 0 0 0 1 0 1
o 0 0 1 0 0 0
o 1 0 1 1 0 0
o 1 1 0 1 0 1
6o o 1 1 0 o0 1
o 1 1 1 1 0 1

FEDERAL AND SPECIAL SYSTEMS GROUP

ADDER INPUT Y SELECT

BO -- 0 in MS bit

BT-- B MS bit in MS bit

BF-- B MS bit in MS bit

Bl-- 1 in MS bit

B-0- 0 in center bits

B-T- B in center bits

B--0 0 in LS bit

B--T B LS bit in LS bit

B--F B LS bit in LS bit

B--1 1 in LS bit

B-F- §$

B-1- $

LIT Literal register to LS byte™
ZEXT Z external connection to center bytes™#

CTR Counter to MS byte™

Z CTRV ZEXTVLIT #
AMPCR AMPCR in least 12 bits™
Lo

e
Zeros elsewhere

ZEXT oniy meaningful for logic unit widths greater than 16 bits.

$ Center selection of B gating as F or 1 is achieved by using: the Y complement
operator (see Appendix E) and comp for MS bit and LS bit gating (means 0 for 1,
B for B, and vice versa).
These corrections are done by the Microtranslator.

No complement operators exist for OAD and AAD.

D-15

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Peunsylvania.

Burroughs Corporation

INHIBIT CARRIES

0 Allow carries
1 IC Inhibit carries into bytes*

* The behavior of ABT when carries are inhibited is unpredictable. When the
carries into bytes are inhibited, the 8-bit carries into the B register are the
carries out of a set of 8-bit additions,

28 29 30 31 ADDER OR LOGIC OPERATION (See Appendix E.)

Function Bitwise Logic - Complement™
0 0 0 o0 X+Y ' 12
0 0 0 1 XNORY XY X% Y 2
0 0 1 0 XNRIY Xy X< Y 1
0 0 1 1 X+Y+1 15
0 1 0 0 XNANY XV¥ XAY 8
o 1 0 1 XOAD Y X + (XVY) none
0 1 1 0 XXORY XY)v XY) X#Y 9
0 1 1 1 XNMY XY X>Y 11
1 0 0 0 XIMPY XvyY X< Y 4
1 0 0 1 XEQVY (X YIV(X Y) X =Y 6
1 0 1 0 X AAD Y X+ (XY) none
1 0 1 1 XANDY XY X AY 7
1 1 0 0 X-Y-1 X+Y 0
1 1 0 1 XRMY XVY X2Y 14
1 1 1 0 XORY XV Y XVY 13
1 1 1 1 X-Y X+Y+1 3

* The complement is the decimal equivalent of the operation for which the
Y select is ones complemented.

D-16
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

SHIFT TYPE SELEC TION

The barrel switch (BSW) output is the result of the adder output shifted as
indicated by the shift type selection. The shift uses the current content of the
shift amount register (SAR) at the start of the last clock of phase 3.

No shift LH
R Shift right end off, zero fill to left ~ LH
L Shift left end off, zero fill to right* RH
C Shift right circular, all bits LH v RH

- =0 O
O RO

* Actually a right circular shift of the word-length complement of the SAR content
with zero fill to the right.

Assume that the shift is to be developed by selection from an ordered set of
signals twice the width of the logic unit, with initial value all zeros. Let the two
halves of this set be LH and RH, with LH the more significant. The unshifted
adder output is aligned to LH. A right shift is performed. The amount of the
right shift is that specified in the SAR for R, L, or C; otherwise 0. The resulting
shifted adder output is in general now at some intermediate position of the signal
set. The last column indicates the single width selection from this signal set
used to determine the barrel switch output.

D-17
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Phase 3 Input Clocks

Results as specified in the command register from bits N [:34 - 50] are clocked
into selected registers at the end of phase 3, This occurs at the end of phase 1
of the first successor instruction for which LUOP is set to 1 (true).

34 35 36| A REGISTERS INPUT FROM BARREL SWITCH

0 - - A1l unchanged
1 - - Al BSW to Al
- 0 - A2 unchanged
- 1 - A2 BSW to A2
- - 0 A3 unchanged

- - 1 A3 BSW to A3

|37 38 39 40| BREGISTER INPUT SOURCE SELECTION
0 0 0 o B unchanged
0 0 0 1 BC4 Complement of 4-bit carries
1 0 0 0 BAD Adder (unshifted)
1 0 0 1 BCS8 Complement of 8-bit carries
1 0 1 0 BBA BSW v Adder
1 0 1 1 B BSW
1 1 0 0 BEX External input
1 1 0 1 BMI Memory Information Register (MIR)
1 1 1 0 BBE BSW v External input
1 1 1 1 BBI BSW v MIR

MEMORY INFORMATION REGISTER INPUT

0 . MIR unchanged
1 MIR BSW to MIR

AMPCR INPUT

0 No change from BSW
1 AMPCR BSW least bits to AMPCR™

D-18

* A conflict in loading AMPCR can occur that will prevent this loading from the
BSW, Assume that the phase 3 in progress indicates load AMPCR from BSW,
Also assume that the MPAD controls at the same time indicate SAVE or CALL
(as a result of the phase 1 prior to the one in progress). Then if the current
phase 1 indicates that a new phase 3 should be initiated, the conflict in AMPCR
loading is resolved in favor of the old MPCR.

The proprietary information contained in this documentis the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Ej BR1 INPUT

0 No change

1 BR1 BSW next least byte to BR1
BR2 INPUT

0 ' No change

1 BR2 BSW next least byte to BR2

45-) 46 MAR INPUT

0 - No change

1 0 LMAR LIT to MAR

1 1 MAR BSW least byte to MAR
-
1467 (MAR & COUNTER INPUT SELECT)

0 LIT

1 BSW least byte

46 | 47 48| COUNTER INPUT

- 0 0 No change

0 0 1 LCTR LIT to CTR (ones complement)
1 0 1 CTR BSW least byte to CTR (ones complement)
- 1 0 INC Increment CTR (mod 256)

At the end of phase 3, LCTR and CTR reset the COV condition bit, and INC
sets the COV upon incrementing from HEX FF to HEX 00 unless the concurrent
phase 1 tests COV,

49 50 SAR INPUT

0 0 No change
0 1 CSAR Complement SAR#
1 o0 SAR BSW least bits™

* The number of bits used is the integer not less than logs (logic unit width in
bits).

The complement is determined as follows: let S be the shift amount and W be
the byte width of the logic unit. Then the most significant 3 bits of the
complement are the integer part of S <+ W; and the least significant part is
the remainder of S =~ W, each expressed in binary.

If the phase 3 in progress specifies eventual loading of the SAR from the BSW

while a type II instruction attempts to load the SAR, the result to the SAR is

the result of the type II. D-19
The proprietary information contained in this document is the property of the Burroughs Corporation and should

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

51 52 53 54 MEMORY AND DEVICE OPERATIONS

The indicated action is initiated if EXTOP has been determined to be 1 prior
to the end of this phase 1. '

0 0 0 0 No change
o o o0 1 -- _
0 0 1 0 MR1 Memory read using MAR1 as address
0 0 1 1 MR2 Memory read using MAR2 as address
0o 1 0o O --
0o 1 0o 1 --
o 1 .1 0 MW Memory write from MIR using MAR1 as address
0 1 1 1 MW2 Memory write from MIR using MAR2 as address |
1 o 0o o0 DLl Device lock request using MARI as address
ASR Status request for highest priority locked device
1 0 0 1 D12 Device lock request using MAR2 as address
ASE Status request for highest priority unlocked device
1 0 1 0 DRI Device read using MAR1 as address
1 0 1 1 DR2 Device read using MAR2 as address
1 1 0 0 DUl Device unlock using MAR1 as address
1 1 0o 1 DU2 Device unlock using MAR2 as address
1 1 1 0 Dw1l Device write from MIR using MAR1 as address
1 1 1 1 DwW?2 Device write from MIR using MAR2 as address

sk
Interpreter based systems with a switching interlock use DL1 and DL2,
Interpreter based systems with port select units use ASR and ASE.

Interpreter based systems with a switching interlock use the following condition
bits for synchronization of activity requests with memory and devices (see the
subsequent discussion):

SAI Switch Interlock Accepts Information

RDC Read Complete, or Request of Device Complete (only for
devices read from or written to by Interpreter request)

In order to safely use these conditions they must be reset by testing before they
may be depended upon.

D-20

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

SWITCH INTER LOCK

The switch interlock connects Interpreters with devices and S-memories., Con-
nection with a device is by reservation for exclusive use by an Interpreter and is
maintained until released. Connection with an S-memory module is for the dura-
tion of a single data word exchange, but is maintained until some other module is
requested or some other Interpreter requests that memory module,

The switch interlock is intended to connect many Interpreters to many devices
and to many memory modules. It is important to keep the number of wires in the
crosspoints to a minimum. Consequently, a variety of combinations of serial and
parallel data transmission paths are allowable, The amount of parallelism de-
pends on the bandwidth necessary to complete the transmission in the number of
clocks (usually one) required by the system. The serial transmission rate is
significantly higher than the Interpreter's clock, and hence many bits can be
transferred in one clock time,

For each Interpreter, the switch interlock provides the option of three buffer
shift registers when serial transmission is used.

1. Address data for S-memory (and possibly devices) from the
specified MAR1 or MAR2, (XDA).

2. Output data from the MIR. (XDO).
3. Input data for assembly and subsequent acceptance into the
B register. (XDI). Data in this register may be repeatedly read

non~destructively until the next device or memory operation is
initiated (the last read may be concurrent with the next operation).

Use of Base Registers and Memory Address Register

The format for base registers and memory address registers is determined for
each system configuration. Some field of this information contains a device
memory module number, other fields may include word address or other control
information; for example, word address, or a bit to distinguish a device to be
read on demand or by request.

In the subsequent discussion and examples, the device identification is assumed

to be wholely within a base register so that device requests are insensitive to the
MAR content. This is not a necessary restriction. The limitation to 16 bits for
addressing may be relaxed in larger systems by extending the addressing by
adding additional memory control units. This is not further explored in this
report.

D-21

The proprietaryinformation contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

D-22

Device Operations

The device operations include lock (DL), read (DR), write (DW), and unlock (DU).
Each device operation uses as a device identification some part of the value in
BR1 or BR2 (and possibly in MAR) as indicated in the operation suffix, e. g.,
DL1. This identification is unbuffered by the switch interlock; consequently it
must be maintained until the device operation is completed, or until some other
device or memory action is desired. Any change to the device identification
while a device operation is in progress breaks the selected path to or from the
Interpreter. Unless the normal completion occurs concurrently, the prior device
operation is terminated. Any part of the value in BR1 or BR2 (and MAR) may
pass through the switch interlock to the device as required.

An Interpreter must be locked to the device with which a read or write is issued.
An Interpreter may be locked to several devices. A device can only be locked to
one 'nterpreter at a time. When an Interpreter is finished using a device, it
should be unlocked so that some other Interpreter may access it.

A static priority for Interpreters is assigned to resolve device lock conflicts.
By changing an Interpreter image via changing its M-memory and possibly N-
memory, dynamic priority adjustment is possible among tasks relative to
device access.

Device Groups and 'nterpreter Access Priority for DL and DU

The switch interlock module for device connection contains a group of 8 ports for
connecting devices to up to four Interpreters. System expansion using this mod-
ule may be in number of 'nterpreters, in number of device groups, and/or in
number of parallel connections. DL, DR, DW, and DU are provided for each
port. Each group of 8 ports is independent. Priority order for resolving con-
current requests by 'nterpreters for DL or DU is fixed within each group. This
order may differ from group to group.

Conflicts in DL and DU requests may occur. The DL request from the highest
priority requesting Interpreter is honored over a co-occurring request for the
same device from any lower priority Interpreter. Concurrent DL requests for
different devices in the same group cause the lower priority request to incur a
one clock delay in achieving the DL or DU, and in return of SAI for each higher
priority request. Consequently DL or DU requests from Interpreters other than
the highest priority may be arbitrarily delayed. The earliest confirming SAI
response occurs 2 instructions after issue of the DL or DU. If SAI is true,

then the DL or DU was successful. If SAl is false, then it means that the DL
or DU is not yet successful. The design justification for this potential arbitrary
delay is that DL or DU are infrequent events for which arbitrary delay is of ’
little consequence. '

Provision for conscious control of this timing is provided (and recommended) by
use of global condition bit 2 to protect DL and DU attempts by more than one
Interpreter at a time. See the example using global condition bits in Appendix F.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom. it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

The following discussion assumes that no conflict-causing delay will occur.

Duration of Device Operations

The duration of a DL request depends on its success. If successful the lock
occurs concurrent with the following instruction, at the end of which SAI is set
true. Thus SAI is available for test in the second following instruction. If
false at this time the DL request continues while other work may be in
progress so long as neither the device identification changes nor another mem-
ory or device operation is initiated. When the previously issued DL is suc-
cessful, SAI will be returned.

Device reads or writes are only completed with devices locked to the Inter-
preter issuing the DR or DW. Depending on the device address, a DR or DW
may be on demand or by request.

On Demand. DR and DW provide immediate data exchange. The
duration of DR or DW on demand is one instruction after issue. Con-
firmation of completion may be checked by SAI being true the second
instruction after issue. Tf SAT is false, the device was not locked to
the requesting Interpreter.

By Request. DR and DW provide data exchange when the device is
ready. The duration of DR or DW by request is determined by the
device and is signalled to the requesting Interpreter by the return of
RDC — "Request of device complete'. As with DR and DW on demand,
SAI is returned by the second instruction after issue, and indicates that
the device is locked to the requesting Interpreter.

The duration of DU is one instruction after issue unless conflicts from DL or
DU requests by other Interpreters occur as indicated above. SAI will be re-
turned only if the device had been locked to the requesting Interpreter. SAI
is available for test in the second instruction after issue if no conflicts arise.
Any conflict with other DL or DU in the same group can cause delay.

Device Use Sequence

The sequence of device operations necessary for an Interpreter to use a device
is as follows:

1. A test of "IF SAT" should be included in some instruction to reset it.
This usually can be in the instruction with the unconditional device
operation.

D-23
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

2. Device Lock Request: The data in the indicated base register (and
_possibly MAR) is used as the device identification. On the second
following instruction, SAI may be tested.

2.1 If true, then the device lock was successful.

2.2 If false, then the device lock was unsuccessful. The request
remains in progress while other instructions not changing the
device identification or issuing other memory or device opera-
tion may be executed. The DL request is terminated by the
first of the following actions:

(a) The Interpreter initiates another memory or device
operation.

(b) The Interpreter changes the device identification.

(c) The device becomes available and sets SAI. All co-
occurring actions are valid. Should (a) and (c) co-occur,
SAI refers to the DL in the following instruction and
should be tested. Then in the next instruction thereafter
SAI refers to the new memory or device operation. Should
termination by (b) occur without co-occurrence of (c), the
new device identification applies to the DL still in progress,
and the path for SAI return is diverted to the newly
identified device (if there is one so identified) without
reissue of another DL.

3. Once the desired device is locked to the Interpreter, a sequence of
one or more data exchanges may be initiated using the following.
Assume for simplicity that adequate bandwidth connection is pro-
vided so that data transfer is completed in one clock. Otherwise
add an appropriate number of clock times to the discussion.

4. Device Write: The data in the indicated base register (and possibly
- MAR) is used to specify the device, and the data in the MIR provides
the information to be written to the device. The second instruction
after the device write, SAI may be tested. If true, the Interpreter
is locked to the device, the data in the MIR has been accepted by the
XDO register, and so the MIR may subsequently be changed. If
false, the Interpreter was not locked to the requesting device.

4.1 On Demand: The device is immediately ready to accept input
data from the Interpreter. Consequently the SAI need not be
checked, and the MIR or device identification could even be
changed in the instruction after the DW.

D-24
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERA‘L AND SPECIAL SYSTEMS GROUP

4.2 By Request: The device provides an RDC when it has com-
pleted the requested write. The SAI also indicates that the
MIR data has been accepted in the switch interlock. Similar
to DL, the request continues until the first of the corre-
sponding 3 actions. '

(a) The Interpreter initiates another memory or device
operation,

(b) The Interpreter changes the device identification.

(c) The DW is completed and sets RDC. All co~-occurring
actions are valid. Should (a) and (c) co-occur, SAI refers
to the DW in the following instruction and should be tested.
In the next following instruction SAI then refers to the new
memory or device operation. Should (b) not co-occur
with (c), then the DW in progress is diverted to apply to
the new device identification without reissue of another DL.

4.3 Separate device identifications are required if the same device
is to be read both on demand and by request (some distinguishing
bit).

5. Device Read: The data in the specified base register and MAR is
used to specify the device. The second instruction after the device
read, SAI may be tested. If true, the Interpreter is locked to the
device; otherwise not.

5.1 On Demand: The device output register is assumed immediately
able to be read on demand (possibly some part of the resulting
data indicates validity). The data requested is available for
Interpreter access the clock after Phase 1. Thus BEX or BBE
may be included in the same instruction as the device read.

No conflict or holdup will occur since the Interpreter is locked
to the device. The SAI need not be checked, and the device
identification may be changed in the instruction after the DR
(so long as the address is still not required for a prior mem-
ory operation or device read by request).

5.2 By Request: The device provides a RDC after the device read
request when it has sent the desired data from its output
register. Thus the same instruction that finds RDC true may
include BEX. RDC should be reset by testing prior to use for
device read by request (usually as part of the prior instruction
using BEX).

5.3 Separate device identifications are required if the same device
is to be read both on demand and by request.

The proprietary information contained in this document is the property of the Burrough; Corporatign a‘nd should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

D-26

6. Device Unlock: When use of the device is completed the lock should
be terminated by issuing a device unlock. An SAI is returned if the
issuing Interpreter was locked to the device. An attempt to unlock
a device that is not locked to the Interpreter will not return SAI.
SAI is available for test at earliest the second instruction after the
device unlock.

Memory Operations

The memory operations include read (MR) and write (MW). Each memory opera-
tion uses as a memory address some part of the value in MAR1 and MAR2 (BR1
or BR2 concatenated with MAR). A portion of the address specifies a memory
module, with the rest indicating locations within the module.

Memory Groups and Interpreter Access Priority

The switch interlock module for memory connection contains a group of 8 ports
for connecting memory modules to two Interpreters. System expansion using
this module may be in number of Interpreters, in number of memory groups,
and/or in degree of parallel connections. Each port provides MR and MW.
Each group of 8 ports is independent. Concurrent access to all memories in a
group by different Interpreters is permitted. Interpreters have fixed priority
for access to all modules of a group. The fixed priority order may differ from
group to group.

Conflicts in access to the same module are resolved in favor of the Interpreter
that last accessed the module, otherwise the highest priority requesting Inter-
preter. Once access is granted it continues until that memory operation is
complete. When one access is complete, the highest priority request is honored
from those Interpreters then in contention. The Interpreter completing access
is not able to compete again for one clock. Thus the two highest priority Inter-
preters are assured of access. Lower priority Interpreters may have their
access rate significantly curtailed.

The switch interlock "remembers'' the prior connection of each memory module

to some Interpreter. If the next request is also from the remembered Interpreter,
the new connection is made with less delay, since no priority resolution need

take place. : '

Memory Use Sequence

The sequence of operations necessarytoaccess S-memory is simple in single
Interpreter systems where no conflict in access can exist. In such cases once
the address setup is complete (as is the MIR for write), the memory read

(or write) can be initiated. After a suitable time the data from memory can be
accessed via BEX or BBE. In the presence of conflict potential, the following

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom. it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania. .

FEDERAL AND SPECIAL SYSTEMS GROUP

control sequence should be used. This sequence is recommended for systems
without a switch interlock as well.

1. The S-memory address should be in the selected base register
and MAR.

2. Memory read

2.1 A test of RDC should be included in some prior instruction.
By convention this should be the previous memory read (or
device read or write by request). A test of SAI should be in-
cluded if address register changes are required before the
RDC is returned, or if confirmation of access to the switch
interlock is desired.

2.2 The memory read can occur the instruction after the address
is (unconditionally) loaded into MAR1 or MAR2.

2.3 A SAIl is returned when the switch interlock has accepted the
address and the memory is connected to the requesting Inter-
preter through the switch interlock.

2.4 A group of intervening instructions can be issued, depending
on the relative speeds of the Interpreter clock and the S-
memory. Once SAI is set and tested, these instructions may
change the address registers or even include device read or
write operation on demand.

2.5 A RDC (read complete) signal is returned when data will
become available for entry into the Interpreter the following
clock.

2.6 If no intervening device or memory reads occur, BEX may be
repeated, each time receiving the data in XDI non-destructively.

3. Memory Write
3.1 The data to be written should be in MIR.

3.2 The address should be in the selected base register and
MAR.

3.3 The memory read can occur the instruction after both the
address and data have the desired values.

D-27

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

3.4 Return of SAI indicates that the memory is connected and
therefore the address and data have been accepted in the XDA
and XDO buffer registers respectively, and thus the address
registers and MIR may be subsequently changed.

3.5 It is possible that the memory is still in its memory cycle,
but if so no other access will be granted to that memory module.

D-28
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom- it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

APPENDIX E

ADDER OPERATIONS

The following tables summarize the adder arithmetic and logical operations that
may be specified, andthe opcode choice by TRANSLANG used for N [28-31] .
The detailed interpretation of the N fields is contained in Appendix D,

Notes:
1. The X input to the adder is any one of the set indicated in N [17-19] :
0| LIT | ZEXT | CTR | Z | A1 | A2 | A3

2. The Y input to the adder is any one of the set indicated in N [20-26] unless
noted.

'Bmel | LIT | ZEXT | CTR | AMPCR | z

3. The Z input to the adder includes selection from the LIT, ZEXT, CTR, or
Z subset of the X or Y input set. Monadic use of a Z input is arbitrarily
chosen to be X rather than Y. Dyadic use of a Z input allows a second Z
input as part of the Y input set.

4. In Bmcl, the mcl represents the three gating specifiers, each of which may
independently be specified as 0, T, F or 1, Note that the complement
operator is used if ¢ is F or 1. The normal operator is used if ¢ is either
Oor T.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom. it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Table E-1

LOGICAL OPERATIONS

Adder Op Code, decimal

‘ Operatlon equivalent if ¢ of Bmecl
X Y =Tor0 =Forl

Performs Bitwise Logic Input Input or if Y is not B

X NOR Y XNY XY X Y 1 : 2
X NRI Y X<Y X Y X Y 5 1
Y NIM X Y>X Z Y Z Y

X NAND Y XAY XVv¥ X Y 4 8
X XOR Y X#Y XYVXY X Y 6 9
X NIM Y X>Y XY X Y . 11
Y NRI X Y<X ZY z Y

X IMP Y X<Y XVY X Y g s
Y RIM X Y>X ZVY Z Y

X EQV Y X=Y XYVXY X Y 9 6
X AND Y XAY XY X Y 11 7
X RIM Y X2Y XvY X Y - 14
Y IMP X Y<X ZVY Z Y

XORY XvY XVY X Y 14 13
X X 0 0

Y 0 Y 0 1
Z z 0 0

NOT X X X 0 1

NOT Y b'e 0 Y 12 0
NOT Z Z Z 0 1 ‘

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group. Paoli, Pennsylvania.

o .
peration x
Input
X+Y X
X+Y+1 X
X-1 X
X-Y# X
X-Y-13% X
XOAD Y X
X+(XVY)
XAADY X
X+(XY)

Subtraction is twos complément: X + YFFF + 1

$ Subtraction is ones complement: X + YFFF

Table E-2

ARITHMETIC OPERATIONS

Y

Input

Y

Y

B001

Adder Op Code, decimal
equivalent if ¢ of Bmcl

=Tor0
or if Y is not B

0

3

15

15

12

10

=Forl

12

15

Invalid

Invalid

FEDERAL AND SPECIAL SYSTEMS GROUP

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

APPENDIX F

CODING TECHNIQUES AND CONVENTIONS

.

In the following examples some techniques are suggested to standardize coding
and take advantage of particular instruction sequences. In these examples ——
indicates a position within an instruction where a logic unit operation and/or
external operation can be used for other work.

1. Order of type I and related type II instructions:

Type II (literal assignment) load of AMPCR must precede the type I
(N-instruction) that uses the AMPCR as a source for next microprogram
address (the type I has successor of CALL, EXEC, JUMP, or RETN).

label -1 =: AMPCR _
—a ; JUMP % note the next instruction is at label.

Type II load of SAR, LIT or AMPCR should follow the first instruction
that uses it in a logic op. If the LIT is part of the X or Y Select (or if
AMPCR is part of the Y Select) of the prior N instruction phase 3 in
progress, then the value of the dynamic conditions (MST, LST, AOV,
ABT) can change as a result of the type II.

J: A1+ LIT C =: Al % Al + 6 circular 4 to Al
4 =: SAR; 6 =: LIT % used in J, 4 also possibly in K
K: A1+ LITC =: B % will add 3 or 9 to Al
3 =: LIT % and shift 4 or 12 circular depending on

IFLSTTHEN0=:;SKIP % LST test of Al + 3. Note conditional logic op.
12 =: SAR ; 9 =: LIT % both can affect result from K
B = v % forced Logic Op completes phase 3of K or K+2
The proprietary informationcontained in this document is the property of the Burroughs Corporation and should F-1

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

Label Type I Instructions:

Generally it is bad practice to label and transfer control to a type II
Literal Assignment because of the potential side effect on the phase 3
in progress when the labeled instruction is encountered. When possible
the labeled instruction should have an unconditional (or empty) logic unit
part to ensure that the prior phase 3 is completed.

Select either of two X select sources depending on mask in B:

Al AND B=: MIR % select Al where B has one bits
A2 AND NOT B=: BBI % prior result OR A2 where B has zero bits

Exchange content of two registers without using a temporary register:

Al XOR B=:Al "
Al XOR B=:B % exchange Al and B
Al XOR B=:Al

Exchange B-Register and MIR:
B=:MIR, BMI
Exchange A-RegiSter with B-Register with MIR as temporary:

Al=:MIR
B=:Al, BMI

Test next-to-most significant bit of X input:

Al OAD 0 =: % Al + Al
IF MST THEN C—3 % test of next to most significant bit of Al

Shift masked portions of A-Register left by one:

Mask in B contains ones wherever the source field(s) are located.
Carries are added into field(s) to left of selected field(s).

Al AAD B =:Al
Double value of X input:

Al OAD 0=:Al % Al + Al=A1

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

10. Replicate Character using SLIT:

11.

Let the character to be replicated be internally represented in the range

0 LEQ character LSS 20Yt€S

where bytes is one-eighth the number of bits in a word and is initially in
some one byte of B with the rest zero. Note that the SLIT conversion

provides a 1 only in the third bit fromthe left of whatever the SAR width is.

SET LC1 ; LIT=:A3=:SAR;SAVE

bytes=: SLIT % converted for word width
LOOP: B C=: BBA % 3 times: unshifted OR shifted amount
A3 OAD 0=:A3=:SAR IF LLC1 THEN RETN ELSE CALL
— % B has replicated character
or
bytes=:SLIT % precedes first use
SET I1.C1;LIT=:A3=:SAR;SAVE
LOOP: B C =:BBA % 3 times
A3 OAD 0=:A3=:SAR IF I.C1 THEN JUMP ELSE CALL
— % B has replicated character

Convert literal for shift amount

Assume Al is to be shifted right by 12, or 15 depending on whether A3 MST
is 0 or 1 respectively.

A3=:
IF MST THEN LIT =:SAR
12=:SAR ; 15=:SLIT % by convention after first uses

Al R=: destination list

or
A3=: % unconditional, no shift or LIT input
12=:SAR ; 15=SLIT - % precedes first use
IF MST THEN LIT=:SAR
Al R-=:destination list
or
A3=:
15=:SAR

Al R=: IF MST THEN SKIP
12=:SAR % on average faster

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

Burroughs Corporation

12.

13.

Keep shift amount insensitive to logic unit width:

Shift absolute amounts change with word width. Rather than using a literal
assignment of a width-dependent amount for shift, it is preferable to only
specify width-independent amounts absolutely and create width-dependent
shift amounts using one of the following: Assume that a width-independent
left shift of 5 bits is desired. ’

COMP 5=:SAR % word length complement

or
5=:SAR % right shift amount
CSAR % word length complement

Assume the SAR is loaded as indicated. The word to be shifted contains
the following information in fields of the indicated length, where w is the
word width.

content: i j k
field bit width: 5 w-10 5

SAR Loading Form
5=:SAR COMP 5=:SAR

Shift:
=: 0 i 0 0 i
= k 0 O i k O
= k i j k i

Compare full word numeric between X and Y selects:

The first instruction needn't have a destination. The test is in the second
inst ruction.

Condition to test: Instruction: Test true if:
Al < B , Al -B NOT AOV
A1<B Al -B -1 NOT AOV
Al #B Al EQV B NOT ABT
Al =B Al EQV'B ABT
Al1>B Al - B AOV
Al> B , Al -B -1 AOV

Note that -B is equivalent to +BFFF +1
-B-1 is equivalent to +BFFF

Thus the negative sign assumes that numeric representations are twos com-
plement. Subtractsareactually adds of the twos complements. AOV for subtracts
occurs when the difference has the same sign as the X Select. No AQV occurs

if the difference is the twos complement result.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

14. Test condition with cost of two clocks for jump path and one for fall through:

label-1 =: AMPCR
IF cond THEN 1 ELSE JUMP
15. Test condition with cost of three clocks for jump path and zero for fall
through: -
IF cond THEN SET LC1; .—3 ;SKIP
label-1=:AMPCR
IF LC1 THEN ——— ELSE JUMP

16. Test for exit before loop execution without loading AMPCR inside loop:

Method of leading decisions.
TEST-1=:AMPCR
— CALL % Jump to TEST oefore initial iteration and save head of loop
LOOP: —3 % no change to AMPCR in loop body
TEST: IF cond THEN 3 ;JUMP % Exit by fall through, jump to loop

17. Test two terminal conditions for loop end:

a. Either false for exit
| — ;SAVE
LOOP: C—
IF NOT condition-1 THEN —— ;SKIP
IF condition-2 THEN C—3 ;JUMP

b. Both false for exit
C—1 ;SAVE
LOOP:
IF condition-1 THEN — ;JUMP
IF condition-2 THEN C—— ;JUMP

The proprietaryinformationcontained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

18. Execute two-instruction loop with multiple exits:

AM: IF cond THENC;WAIT ELSE suc % The two instructions are at
M: IF cond THENCJ;EXEC ELSE suc % MPCR =M and AMPCR =AM v
Alternating between AM + 1and M continues so long as each condition is true.

The exit location depends on the else successor, suc, of the instruction first
failing its tested condition.

ELSE Successor WAIT STEP SAVE SKIP JUMP EXEC CALL RETN

Exit Location M M+l M+l M2 AM+HS Avi+l am+1$ Amee

$ CALL or JUMP causes looping to continue at the single instruction loop at
AM+1 with exits depending on its else successor.

AM+1 ELSE Successor: WAIT STEP SAVE SKIP JUMP EXEC CALL RETN

#

Exit Location is CALL: AM+1¥ AM+2 AM+2 AM+3 M+1 M+17 M+l M+2

Exit Location is JUMP: AM+1* AM+2 AM+2 AM+3 AM+1* AM+1™ AM+1$AM+2

St

3k

Continues one instruction loop. (i.e. infinite loop)

: : : .
Executes one instruction out of sequence (may return to one instruction
loop)

$Continues one instruction loop but next ELSE will take control to AM+2

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be'released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

19, Exit subroutine to normal or error exit:

a.

Error return out-of-line:

In main program

L: /] CALL % on subroutine
El1-1 =:AMPCR % error =xit 1 ~
— % normal return

In subroutine:
IF error-cond THEN EXEC ELSE RETN % return if no error
JUMP % error return (to E1)

Single instruction error exit in line:

In main program:

L. —— ;CALL % on subroutine
—3 ;RETN % one line error
— % normal return

In subroutine:
IF error-cond THEN EXEC ELSE RETN

Multiple error exits, one level of indirection per error test:

In main program:

L: — ;CALL

El1-1=:AMPCR %error 1 setup
C— % normal return
El1:E2-1=:AMPCR % Indirect for error 2
— % error 1 code
E2:C % error 2 code

In subroutine:

IF ercond-1 THEN EXEC ELSE RETN % error else normal
IF ercond-2 THEN EXEC ELSE RETN % errors 1 and 2 else 1
JUMP % error 2

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

20. Execute a loop a fixed number of times

a.

b.

c.

Execute loop exactly twice:

C— ;SAVE % last instruction before loop
LOOP: T
— % body of loop no change to AMPCR
C—;CALL % last instruction of lovop

Execute a loop exactly three times:

SET LLCl: ——1 ;SAVE
LOOP: C— % no change to AMPCR or IF LC1
— IF LC1 THEN JUMP ELSE CALL % last instruction

Execute loop exactly n times:

n =:CTR %0%n< 256

TEST-1=:AMPCR

C— L,INC;CALL g omitting INC makes range 0 <n < 256

LOOP: C— % body of loop no change to AMPCR
—/

TEST: IF NOT COV THEN INC; JUMP %entry andlast instruction of loop

21. Decrement CTR by 1:

22,

-CTR C=:CTR % MSbyte to LSbyte
COMP 8=:SAR ‘ % width independent
% - CTR is twos complement; =: CTR is ones complement

Count number of zeros in a word:

Initially the word is in B.

0=:CTR;SAVE % -1 to CTR, ABT =0

LOOP: +B +1 =: MIR IF ABT THEN SKIP
B=:BBI, INC; JUMP % replaces rightmost 0 by 1
— % CTR contains number of zeros

If the number of zeros is generally greater than the number of ones, the
routine would be faster if B were initially ones complemented.

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom. it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

23.

24,

25.

FEDERAL AND SPECIAL SYSTEMS GROUP

Increment counter conditionally or unconditionally effect on COV test

In sequence AA phase 3 of the first INC will attempt to set the COV at the
same time as it is tested in the next instruction. Since COV is reset
dominant it remains reset. In sequence BB the phase 3 which sets the
COV is delayed until the end of phase 1 of the third instruction. The test
causes the COV to be reset but occurs one clock before the set, so the
COV ends up set.

AA: 0=:CTR % counter receives Hex FF, resets COV

INC; IF NOT COV THEN WAIT % increments until overflow (2 times)

0=:B % COV will be reset after this operation and
% counter value will be 1

BB: 0=:CTR % counter receives HEX FF, resets COV

IF NOT COV THEN INC;WAIT % increment until overflow (1 time)

0= B, INC % COV will be set after this operation and

% counter value will be 1

Shift double length end off with zero fill.
a. Shift Al and B together right by the amount in the SAR.
B R=:MIR _
Al L=:BBI % B OR MIR to B
Al R=:Al
b. Shift B and Al together left by the word length complement of SAR.
BL=:MIR
Al R=:BBI
Al L=:A1

Field isolation

Right justify the field of an A input. Justified field has leading zeros.
Input has m bits preceding field f and n bits following it.

Input: |m I f I n
"Result: [m+n zeros | f
NOT 0 R=:B % prepare mask
m =:SAR
Al AND B R=:Al % extract and right justify
n =:SAR

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania,

Burroughs Corporation

26. Execute from table of literal assignments:

Assume a table containing a sequence of literal assignment (type II) instructions
of the same kind. Table address determination is typically:

A3 + AMPCR =:AMPCR % table offset + base below
base -1 =:AMPCR % table base

a. Microprogram memory jump table.

Each table entry is of the form:

label -1=:AMPCR

Call form:
3 EXEC : % puts desired label-1 in AMPCR
—3 ;CALL % transfer to label with possible return

b. Selective mask and/or shift

Each table entry is of the form:

cl =SAR; c2=:LLIT
‘Call form:

Al AND LIT R =: destination-list;EXEC
% EXEC determines SAR and LIT values for the instruction

Lit is used in the 8 LSbits with the others zero.

c. AMPCR as 12 bit literal

Each table entry is of the form:

c3=:AMPCR % 12 bit literal
Call form:

Al OR AMPCR-=: destination-list;EXEC
% EXEC determines AMPCR value for the instruction

AMPCR is used in the 12 LSbits with the others zero.

F-10
The proprietary information contained in this document is the property of the Burroughs Corporation and should
i . not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

27. Generate constants in logic unit:
It is faster to generate many constants rather than read them from S-memory.

a. Generated via B selection with gating for Y Select:

Intent Y Select for Integer Numeric representation
twos complement signed magnitude
-2 -1 -1 +B101 + 1
-1 -1 B101
0 0 0
1 1 1
2 +1+1 ~< +1+1
- -B -B BFTT
not B NOT B
odd B BOOT BOOT
sign B BT00
abs B BOTT
neg B B1TT

b. Generated using the adder:

Hex constant adder op
0303---03 0=:BC8

3333:-°33 | 0=:BC4

¢. Literals from microprogram memory:
cl=:LIT % 8 bit
c2=:AMPCR % 12 bit
Either of these is available for adder input right justified with zeros
in the left hand part. ‘ ‘
d. Byte field arbitrarily positioned, possibly complemented:
LIT C=:Al % ones complement if preceded by NOT
cl=:SAR ; c2=:LIT
— % next logic op completes

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

28.

F-12

e. Special constants by shifting:

"1 C=:destination % 2"=:destination

COMP n =:SAR

1 C=:destination % bit n=:destination N > 0
n=:SAR % starting at left with 1
, .. | ‘ n+l L
NOT 0 R-=:destination : % 2 -1=:destination

COMP n=:SAR
Form Indivisible Operations P and V for Co-operating Sequential Processes:

The routines P and V described below should be used to ensure exclusive
use of shared data or critical sections of code. A lock bit (called a
semaphore) is associated with each shared data or critical section. The
P operation sets this bit and tests its previous value. The V operation
resets the lock bit. The global condition bit GC1 is used to ensure that
P and V are indivisible operations.

These operations are briefly described in the first of the following references.
Extensive use and generalization is contained in the second reference.

Dijkstra, E.W., The Structure of the "THE"-Multiprogramming System
CACM Vol. 11 No. 5 (May 1968) pp. 341-346

, Co-operating Sequential Processes, in Programming

Languages, Genuys, F. Editor, Academic Press 1968, pp 43-112

a. P Operation:

P: SET GC1 WHEN GCl1 % start critical section
MR2;CSAR ' % read semaphore word
WHEN RDC THEN BEX
B C=:B, CSAR % move semaphore to least bit
+B+1 C=:MIR, BMI % set bit if it was reset

IF LLST THEN MWZ2;SKIP ELSE EXEC _

RESET GC; B=:MIR ; JUMP % exit unsuccessfully

WHEN SAI THEN RESET GC ; B=:MIR ; RETN % exit normal
— % normal return point

% Call on P, to test and set specified semaphore.

bit position =:SAR % numbered from left starting at one
P-1=-:AMPCR

word address=:MAR2 ;CALL % call P

failure label -1=:AMPCR %return address for failure

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the

" Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

b.

V:

%

V operation:

SET GC1 WHEN GC1 % start critical section
MR2 ; CSAR % read semaphore word
WHEN RDC THEN BEX

-B C=:B, CSAR

-B-1 C=:MIR, BMI

IF NOT L.ST THEN MW2 ; SKIP ‘
RESET GC ; B=:MIR ; JUMP % exit without rewriting
WHEN SATI THEN RESET GC ; B=:MIR ; JUMP % exit normal

% move semaphore to least bit
% reset bit-if it was set

Call on V, to reset semaphore after critical section completed.
bit position =:SAR

V-1=:AMPCR

word address =:MAR2 ; CALL

29. Use of base registers and MAR:

30.

.

b.

BR1:

an instance of the registers of the higher level machine are stored.

typically points to the base of a 256 word block of memory in which

In

this case BR1 may be viewed as the S-machine register base register.

Any particular register is addressed via BR1 and MAR. Each of these

registers may be named by a label defined to be equal to the particular

. BR2

integer associated with the MAR portion of its address.

ACCUM * 21 % define accumulator to be register 211
LMAR, —— % MAR receives accumulator address

ACCUM=:LIT % accumulator address

BR1 may also be used to contain device identification.

: typically is used with MAR as the general address register for
memory addressing.

B=:MAR2 % causes address entry to BR2, MAR

Load MAR and MIR simultaneously for memory write:

Assume BR1 is the S-machine register base register

B=:MIR, LMAR
S-register number=:LIT % MAR receives this number
MWI1 IF SAI % write uses both MIR and MAR

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

0

F-13

Burroughs Corporation

31. Perform S-memory operations:
a. Memory read:
addr=:MAR2

MR2; C— % SAI will get set. C— cannot be conditional (Logic Op)
C—3 % sufficient i.nterirening instructions
C—3 % to at least match the minimum read

C— % access time may be included

WHEN RDC THEN BEX, C— % leaves RDC reset for next use.

.

b. Alternative memory read:
addr=:MAR2

MR2; 1 IF SAI % resets SAL. C—J cannot be conditional (Logic Op)

— % at least one instruction

WHEN SAI THEN —3 % can change address
—3 % possible as above

WHEN RDC THEN BEX, t— % leaves RDC reset for next use
¢c. Memory write:

addr=:MAR2
data=MIR
MW2; C— ;IF SAI % resets SAI. C— cannot be conditional(Logic Op)
— % at least one instruction
WHEN SAI THEN —3 % the write operation has been completed,
% MAR or MIR may be changed.

The above sequences of code are proposed because:

1. They work on both the SSI and LSI machines (i.e. with port select
units or with switch interlock). '

F-14
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

2. The WHEN instructions should not cause delays when there are no
conflicts.

3. They permit the earliest possible reuse of the MAR and MIR, and
earliest clocking of memory data into B. (It is not necessary to do
the BEX as soon as possible, the external data remains available
until used). (For the switch interlock the external data may be
reaccessed with BEX until another memory or device operation
is executed.)

The alternative memory read should be used when it is desirable to reload
the MAR or MIR before the read is complete.

Note the restriction on forcing the address (and MIR load) to be completed
prior to issuing the MR (or MW). If the logic op were conditionally deter-
mined not to be done, the preceding phase 3 would have been a phase 2
instead, the phase 3 extended and the prior address (or MIR load) would
have been used. An absent <Logic Op> in a line is assumed to be
unconditional.

F-15
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

32. Perform device operations:

a. Lock to device if unlocked, othefwise do other work:
To avoid time uncertainty in completing a lock.
DLK:SET GC2 WHEN GC2 THEN DL1

C— % This instruction rhust be present
IF NOT SAI THEN DU1; EXEC ELSE SKIP |
C— 1% This instruction must be present
RESET GC IF SAI THEN JUMP ELSE RETN
% Call for device lock request, DLK
DLK-1=:AMPCR
ident=:BR1 ; CALL IF SAI
already locked -1=:AMPCR % if locked to other Interpreter
— % locked

Alternatively device lock requests may be protected by semaphore
in which case GC2 is not necessary.

b. Unlock device:
DUL: SET GC2 WHEN GC2 THEN DU1
— % must be present
RESET GC IF SAI THEN EXEC ELSE RETN

C—— JUMP % if not locked to this Interpreter

% Call for device unlock, DUL
DUL-1=:AMPCR
Ident=:BR1 ; CALL IF SAI
not locked-1=:AMPCR % ifnot locked to this Interpreter
— % unlocked.

F-16
The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom- it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

FEDERAL AND SPECIAL SYSTEMS GROUP

c. Device read on demand (transfer time determined by Interpreter):

To a device locked to this Interpreter, taking the data currently in the
device output register.

ident=:BR1

DR1 ; BEX % data requested at end of f)hase 1 is available for
— % end of phase 3.

— % SAI may be tested: true =locked to this Interpreter

% and data read is good.

d. Device read by request (transfer time determined by device):

To a device locked to this Interpreter. -

ident=:BR1

DR1 ; —™

—

— % SAI may be tested : true = locked to this Interpreter

WHEN RDC THEN BEX % leaves RDC reset for next use, the
% waiting time here is device dependent

Instructions between DR1 and RDC test may not include memory or
device operations, else the data path will be broken, no data will return

and RDC will not occur. A change to BRI is only safe after RDC is
true.

e. Device write on demand (transfer time determined by Interpreter)

To a device locked to this Interpreter.

ident=:BR1
data=:MIR
DW1; —3 % include IF SAI if to be used below;
— % no conditional logic op
— % could change MIR or BR1
% could test SAI : true = locked to this Interpreter
The proprietary information contained in this document is the property of the Burroughs Corporation and should F-117

not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

Burroughs Corporation

f. Device write by request (transfer time determined by device) to a
device locked to this Interpreter. '

ident=:BR1

data =:MIR. \

DW1; 3 IF SAI ‘%f 1\10 conditional logic op

— ' % MIR=:EXO

[F SAI THEN 3 ‘% locked to this Interpreter ; can change MIR
WHEN RDC THEN % request on device complefe,

can change BR1 or MIR

g. Device read on demand embedded in memory read:
At least two clocks must exist after SAI 'is returned from a memory read
before the RDC is returned. :
address=:MAR2
MR2; C—1 IF SAI % address to address buffer
ident=:BR1 : % at most one instruction

WHEN SAI THEN DR1;BEX % ident selects input from device to input
% buffer to B

B=:Al | % device input, no conditional logic op, may
% change BR1

— % RDC arrives after prior phase 1
WHEN RDC THEN BEX % memory read result

h. Device write on demand embedded in memory read

address=:MAR2

MR2; C—3 =:MIR IF SAI % address to-address buffer
ident=:BR1 ; “
WHEN SAI THEN DW1 % MIR to output buffer to device

WHEN RDC THEN BEX % memory read result, may change MIR,
% MAR2 or BR1

F-18

The proprietary information contained in this document is the property of the Burroughs Corporation and should
not be released to other than those to whom it is directed, or published, without written authorization of the
Burroughs Federal and Special Systems Group, Paoli, Pennsylvania.

[Label :]

Ext Op
Logic Op

Uncond. Successor

TYPE [(N-INSTRUCTION) LINE PROTOTYPE

*

IF Ext Op
WHEN " Condition THEN Logic Op
. True Successory

*
[ELSE False Successor]] » where

indicates a choice

)

indicates zero or.more repetititions
with ";"" as their infix séparator

with restriction: 12[/Ext Op, Logic Op, Uncond Successor + True Successor | WHEN + ELSE [] indicates optionally present
ie: There is at most one each of Ext Op, Logic Op, Uncond. Successor and True Successor.
If there is an Uncond. Successor there will be no True Successor, WHEN or ELSE,
If there is a WHEN there will be no ELSE,
Ext. Op. Logic Op.
Condition [/ . Dev.Op. | SetOp. | x Select Adder Op, v Select Inhibit Carry | Shift | Destination Successors
(wot] LsT MR1 SET "LC1 0 x [NOT] Bmecl Ic R Al B MIR BR1 CTR SAR.. AMPCR. . WAIT
MST MR2 LC2 Al y B -- L A2 BEX ---.. BR2 LCTR CSAR --- STEP
AOV MW1 LC3 A2 x+y AMPCR C A3 BAD MAR INC -—= SKIP
ABT MW2 INT A3 x+y+1 0 -- -- BC4 MARI --- . SAVE
cov DL1 GC1 CTR X-y 1 BCS8 MAR2 T JUMP
LC1 DL2 GC2 ZEXT x-y-1 CTR BMI - LMAR EXEC
LC2 DR1 RESET GC LIT -xNRIy ZEXT miell BBE === CALL
LC3 DR2 --- Z x NOR y LIT o lolo BBA Type I instructions with SAR or RETN
SAI DW1 —— x NIM y Z 1|11 BBI AMPCR destination should not
RDC DW2 x AND y Tl |1 === start with 0 or 1. .
EX1 DU1 x XOR y FIF|F
EX2 DU2 x EQV y NUMERIC COMPARE OPERATIONS
EX3 ASR x NAN y R
INT ASE xIMPy * Condition: Instruction: Test True If:
GC1 xORy TYPE II (LITERAL ASSIGNMENT) INSTRUCTIONS
X<y X~y NOT AOV
GC2 x RIM y .
x AAD y LIT 37 X_yv-1 Ng’f‘ﬁgg
. . E
BOOLEAN OPERATIONS x OAD y E..lteral =: SAR ,] Literal =: (SLIT) ; t g : Egvg N - ABT
NOT x :
—_— ; . _. x 2 Xx-y AOV
,;§ i3 [Label:] | Literal=: sar 5y I, et
y B
NRI 0001 %y < Label Label [-1] =: AMPCR
NOR 0010 b3 ¥ *
NIM 0100 Xy > Digit -
AND 1000 xy R Letter (Letter Literal
XOR 0101 XyVxy # PSEUDO INSTRUCTIONS [] Label
EQV 1010 xyvxy = COMP :
NAN 0111 XVy ' PROGRAM Program Name Decimal Intege
MP 1011 o : , [ADR Hex Address] :
XVy < [Label] INSERT File Name Label [-1]
OR 1101 XV y v : -
RIM 1110 xVy 2 ADR Hex Address

END
Label

* Decimal Integer

COMMENT Comment

H

MICRO CONTROLS

1234561789 10111213141516

0¢*'_SAR AENENEEN]
1 0|* SAR LIT
110 @[AMPCR
1110[p9¢ ¢l LIT

1.1 1 I{* = NANO ADDRESS

$ Unused _

* Shorter fields are right justified

NANO CONTROLS

Parentheses surround dp{ipn;al lexic units,

provided by default.

Brackets contain DC 2000 mnemonics

? Codes not produced by TRANSLANG.

|

Condition Tested
Result is Boolean cnd. *

0000 GCl

0001 GC2

0010 LC1

6011 LC2

0100 MST

0101 LST

0 1.1 0 ABT

0011 1 A0V

1000 cCoOV

1 001 sa1r [rRmi]
1010 RDC

1 011 LC3|RMA
‘110 0 EX1 (EXT
1101 INT

1110 EX2][SRQ
1111 EX3[URQ

[5] FT Condition Value

0 NOT cnd=:SC

1 - cnd=:SC

[6] Logic Unit Conditional

0 Do Unconditionally

1 Do Conditionally if SC
Ext Op (MDOP/CAJ) Conditional
0 Do Unconditionally

1 Do Conditionally if SC

Succesgor

Condition Adjust -- CAJ

000 --

00 1 SET LC2
010 SET GC2
01 1 RESET GC
1 0 0 SETINT

1 01 SET LC3

1 1 0 - SETGC1
111 SET LC1

Then Part Else Part
Used if SC=1 to MPAD Ctls Used if SC=0
c 0 O WAIT 0o 0 O
0 01 (STEP) 0 0 1
0 10 SAVE 01 0
0 11 SKIP 0 1 1
1 00 JUMP 1 00
1 01 EXEC 1 0 1
1 10 CALL’ 1 1 0
1 11 RETN 111
Adder X Input
o 0 0 (0
0 0 1 LIT
0 1 0 ZEXT [EXT]
0 1 1. CTR
1 00 z
1 0 1 A1
1 1-.0 A2
1 1 1 A3
[20 21 22 23 24 25 26| Adder Y Input
o0 - - - - - BO--
01 - - - - - BT-
$t 0 - - - - - BF--
1t 1 - - - - - Bl--
- - 0 0 0 - - B-0-
- 1 0 © - - B-T-
- - - - - 0 0 B--0
- - - 0 1 B--T
- - - - - 1 0 B--F
- - - - - 1 1 B--1
Comp 1 0 0 Comp B-F-*
Comp O 0 O Comp B-1-x
0o 0 0 0 1 0 1 LIT
0 06 0 1 0 0 0 ZEXT [EXT]
01 0 1 1 0 0 CTR
01 1 0 1 0 1 Z
0 6 1 1 0 0 1! AMPCR
ot 1 1t 1 o 1 [Lo]
Others ?

*Use Adder Operation with Complement Y

INTERPRETER

MICROPROGRAMMING REFERENCE CARD

Inhibit Carries into Bytes MIR Input from BSW
0 -~ Allow 0 -- No Change
1 IC Inhibit 1 MIR
Adder Operation AMPCR Input from BSW
Logic
0 0 0o 0 X + Y _ 0o -- No Change
0 0 0 1 X NOR Y XY 1 AMPCR
0 0 1 0o X NRI Y XY
0o 0 1 1 X+ Y +1 _ - Mem Dev Address Input
0 1 0 0 X NAN Y XvY :
0 1 0 1 X OAD Y X+(XvY) 0o 0. 0 - -- No Change
0 1 1 0 X XOR Y XYvXY - - 1 0 LMAR From LIT
0o 1 1 1 X NIM Y XY - - 1 1 MAR From BSW
1 0 0 0 X IMP Y XvY_ _ -1 0 - BR2 From BSW
1 0 0 1 X EQV Y XYvX¥Y -1 1 1 MAR2 From BSW
1 0 1 0 X AAD Y X+ (XY) 1 - 0 - BR1 From BSW
1 0 1 1 X AND Y XY_ 1 - 1 1 MARl From BSW
i1 1 0 0 X-Y -1 X+Y)
1 1 0 1t X RM Y XvY Counter Input
1 1 1 0 X OR Y XvY
1 1 1 1 X - Y X+Y+1 - 0 0 -- No Change
: 0 0.1 LCTR From LIT*
[32_33] shift Type Selection for BSW 1 0 1 CTR From BSWx
- 1 0 INC +1
0 0 -- No Shift -1 1 ?
0 1 R Right End Off *Ones Complement
1 0 L LeftEndOff
1 1 C Right Circular SAR Input
A Register Input from BSW 0o o - No Change
o 1 CSAR Complement
LY -- No Change 1 0 SAR From BSW
1 - - A.l 1 1 ?
- 1 - A2
- - 1 A3

37 38 39 40| B Register Input Select

e e OO

(1] 0
0 0
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1
Others

51 52 53 54| Mem Dev Op--MDOP

o 0 o0 O - - No Change
: : o 0o 1 o MR1
0 -- No Change 0o 0o 1 1 MR2
1 BC4 Comp 4 Bit Carries o 1 1 o0 MW1
0 BAD Adder 0o 1 1 1 MW2
1 BC8 Comp 8 Bit Carries 1 0 0 ©0 pL1 [ASR
0 BBA BSWy Adder 1 0 o0 1 DL2 EASE]
t1 B BSW 1 0 1 1 DR1
0 BEX External 1 0 1 1 DR2
1 BMI MIR 1 1 0 0 DU1
0 BBE BSW Vv External 11 0 1 DU2
1 BB; BSW v MIR 1 1 1 0 DW1
? 1 1 1 1 DW2
Others ?
Burroughs Corporation
DEFENSE, SPACE AND SPECIAL SYSTEMS GROUP 67088

PAOLI, PENNSYLVANIA 19301

Burroughs Corporation

Federal and Special Systems Group

Paoli, Pennsylvania 19301

Printed in U.S. America

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	G-01
	G-02
	xBack

