© AFAL-TR-73-114

AEROSPACE MULTIPROCESSOR
FINAL REPORT

Robert L., Davis
Sandra Zucker, et al

AD911484

Burroughs Corporation
Defense, Space and Special Systems Group
Advanced Development Organization
Paoli, Pennsylvania 19301

TECHNICAL REPORT AFAL-TR-73-114
June 1978

Distribution limited to U, S, Goverrmeint agencies only; test
and evaluation results reported March 1973, Other requests
for this document must be referred to Air Force Avionics

Laboratory (AAM), Wright-Patterson Air Force Base, Ohio 43433,) D D c

Air Force Avionics Laboratory
Air Force Systems Command
Wright-Patterson Air Force Ease, Ohio 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose
‘other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplicd the said drawings, specifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the holder or any other person
or corporation, or conveying any rights or permissiontc manpfacture, use, or sell any
pateated invention that may in any way be related thereto,

I icczssion tor

{ ¥1IS wute St O}~

168 Bt Scction (Y
UNASECTCED a

T P—

B 'v
! msxmmnummmmn 0SS

T AVAIL amd/or SPECIAL | « SPLGIAL

Bl

Coples of this report should not be returned unless return is required by security
considerations, contractual cbligations, or notice on a specific document,

AEROSPACE MULTIPROCESSOR
FINAL REPORT

Robert L. Davis
Sandra Zucker, et al

Distribution limited to Uy & Government aoetnie= only g test
and evaluation results reported March 1973, Other roquests
for this document must be rotforred to Afr Forve Avioniv e
Laboratory (AAM), Wrisht-Paltoizon Alr Force Baasc, oOhiv 494348,

FOREWORD

This Final Engineering Peport was prepared Ly the
Burroughs Corporation, Defense, Space and Special Systems
Group, Advanced Development Organization, Paoli, Pennsylvania.
The work was accomplished under USAF Project €090 entitled
"Avionics Data Handling Technology”, Task 01 entitled
"Avionics Information Processing” and Contract No. F33615-
70-C~1773 entitled "Aerospace Multiprocessor.”" The work
was administored under the direction of Mr. D. Brewer,

Air Force Avionics Lakoratory, AFAL/AAM, Wright-Patterson
AFB, Ohio.

This report covers work conducted from June 1970 to
March 1972 and was submitted by the authors March 1972,

The autbhors, Mr. Robert Davis and Mrs. Sandra Zucker,
are grateful for the help and contributions cf many of their
associates in the Advanced Development Organizaticn for the
documentation, wiring, machining, kroard laveout and fakbrica-
tion, and artwork generation necessary to huild the multi-
processor and for the help of their associates in Advaiced
Development and Technical Puklicaticons in the writing,
drafting, typing, and proofreading necessary to produce
this report. The authcrs are especially grateful to Messrs.
Peter Molloy and Gilbert Reid for their help irn the fabrica-
tion and debugging cf the rmultiprocesscor; Messrs. Melvin
Brooks and Carl Campbell for their help in writing and de-
bugaing the control and demenstraticn programs; Messrs. Ulbe
Farer and Richard Bradley for the design of the Switch Inter-
lock; and Mr. John T. Lyrch, Director cf Advanced Develcpment
and Messrs. Dewey Brewer and kalph Barrera of the Avicnics
Laboratory (AFAL/AAM) for their patience and support through-
out this pregram.

This technical report has been reviewed and is approved
for publication.

-

&~ /16"/’x
B4, 2R
COZYER S. KLINE
Colonel, USAF

Chief

Syretam By

ioniceg Division
yETtem AVIONnICSE Uivigicn

ABSTRACT

The aerospace multiprocessor described is based upon a modular, building block
approach. An exchange concept that is expandable with the number of processors,
memory modulesg, and device ports, was developed whose path width is a functiun
of the amount of serialization desired in the transmission of data and address
through the exchange. The processors {(called Interpreters) are microprogrammable
utilizing a 2-level microprogram memory structure and were designed for imple-
mentation with large scale integrated circuits, The modularity exhibited in the
Interpreters is in the size of the microprogram memories and in the word length

of the Interpreters from 8 bits through 64 bits in 8-bit increments,

The specific implementation of the exchange for the aerospace multiprocessor is
for five processors, eight memcry modules, and eight device ports with eight
wires each carrying four serial bits of data through the exchange, The processors
each have word lengths of 32 bits with a 512 word X 15 bit firs--level micro-
program memory and a 256 word X 54 bit second-level microprogran. memory.

A simplified control program based upon concepts for a modular executive structure,

and some user type programs were written for demonstration of the aerospace
multiprocessor.

iii

Section

1

1I

1

v

W EDING PAGE BLANK.NOT FIIMED
TABLE OF CONTENTS
Page

INTRODUCTION, . & v v v v v v« v o « o « . 1
INTERPRETER HARDWARE BUILDING BLOCKS , | , 7
Logic Unit (LU)., + « & +v « + o . 8
Control Unit (CU) v ¢ « o« & o + =« 11
Memory Coutrol Unit (MCUY |, .,« .+« . 13
Nanomemory (N Memory;, ., ,+ 13
Microprogram Memory (MPM) |, ., , , 15
Microprogram Memory Considerations ., , , . , ., . 17
Loader (LDR) . . , + + + + & « « . 21
MULTIPROCESSING HARDWARE DESCRIPTION . e . 23
Multiprocessor Interconnection , ., , , . , . . 23
The Switch Interlock , 27
Power Distribution, , ., 35
Clock and Power Control , . ., ., 36
Global and Interrupt Condition Bits , , ., 43
Real Time Clock and the Horns 45
Interpreter Number+ + + « « ¢ . 45
AEROSPACE MULTIPROCESSOR

PACKAGING DESCRIPTION ., 47
Mgachanical Design 4 . . 47
Circuit Configurations . . ., 51
INTERPRETER OPERATION , | ., ., 61

Section

VI

VIL

VIII

TABLE OF CONTENTS (Cont'd)

SWITCH INTERLOCK (SWI) OPERATION . . .

Overuall Switch Interlock Control and Timing , .
Device Operations +« + o« =

Memory Operations
Interfaceto SWI,
Device Interface Operation Examples , , . .

INTERPRETER MICROPROGRAMMING, . . .

TRANSLANG for Microprogrammiag.
Literal Assignment Instruction
Ninstruction . .« ¢ ¢« + &+ o & o o +
Condition e e+ e e e e e 4 & s 4 e s
External Operations +« « + .+ =

Logical Operations., . .+ . .+ .« « « «

Input Seleets .,+ .

Destination Operations
BuUCCeESSOT 4 v e s s e e e
Program Structure e e e 4 e e e w e
Microprogramming Examples

MULTIPROCESSING CONTROL PROGRAM AND
DEMONSTRATION PROGRAMS ., ., ., .

Control Program« . . « .« .
System Loading .,+ .
Task Execuotion and Monitoring , , , . ,

StoM Loader, , ., ,

Demonstration Programs. . ,

Memeory Dump s & 4 e e a s =
Program to ''S" Loader
Plot s e e e e+ a e e e
Mortgage .+« + « « ¢ 4 2 s 4 . . .
Sort e e e e e e e s e e e
. Matrix Multiply and Print ,

Confidence Routines . . « .+ « + « « + .

69
72
78
83
85

89

92
94
95
a8
100
103
106
107
110
111
115

121

121

122
125
127

131

134
134
134
185
135
138

139

TABLE OF CONTENTS (Cont'd)

Appendices Page
1 : Historical Review of Microprogramming 145
114 Final Summary Report ~ Bipolar L.SI 151
hus Adder Operations. + « + « . 183
w TRANSLANG Syntax s e e 4 4 e e e s 187
v TRANSLANG Reserved Words and Terminal

Characters « . .+ « « « + o o s 191

Vi TRANSLANG Error Messages+ . 199
VI Glossary . « « ¢« s e e v x e e e e . 203

References

Form DD 1473

vii

Figure

O O, U A LN

B3 DI DN DD NS DN F bk b bk b b pd et ek
QR WNEFEFOOUJO N WN=O

26
27
28
29
30
31

32
33
34
35

LIST OF ILLUSTRATIONS

Basic Aerospace Multiprocessor

LSI Multi-Interpreter System Block Diagram

Interpreter Block Diagram

Logic Unit Block Diagram

Interpreter Functional Units

Instruction Memory Hierarchy

One Memory vs, Two Memory Implementation

Sample Program Statistics

Memory Cost vs. Memory Speed

Two Memory Cost Savings vs, Cost Factor

Implementation of Loading Functions Block Diagram

Functional Multiprocessor Interconnection Scheme

Physical Multiproces: or Interconnection Scheme

Centralized Multiprocessor System

Distributed Multiprocessing Interpreter System

Implementation of the Switch Interlock

Memory/Device Controls (MDC) Block Diagram

Device Controls (DC) Block Diagram

Memory Control No, 0, Block Diagram

Memory Control Wo. 1, Block Diagram

Ouiput Switch Newwork No. 0, Logic Diagranm

Output Switch Network No. 1, Logic Diagram

Input Switch Network, Logic Diagram

Power Distribution Systera

Implementation of Multipirocessor Clocks

Conflict Resolution Logic for Global Condition Bit GC1

Implementation of Interrupt Controls

Aerospace Multipraocessor Configuration

Submodule Hous ing

Interpreter Module Packaging

Aerospace Multiprocessor Installation at Wright-Patterson
Air Force Base

Multiprocessor Interconnection Scheme

Microprogram Memory, Nanomemory Submooaule Packaging

Loader, Switch Interlock Submedule Packaging

Alternative Packaging Approach Utilizing 16-pin Flat Packs

26

Figure
36

37
38
39
40
41
42

43
44

45
46

48
49
50
51
52
53
54
35
56
51

58
&9
50
61
62
63
64

LIST OF ILLUSTRATIONS (Cont'd)

Alternative Packaging Approach Utilizing 60-pin
Flat Packs

Timing Analysis, Type I Instructions

Instruction Timing

Timing Example

Microprogrem Instruction Sequencing

Switch Interlock, Block Diagram:

Timing Diagram for Device Lock to Devire¢ Previously
Locked to Requesting Interpreter or for Device
Unlock to Device Previouwsly 1 anle sked from Any
Interpreter

Timing Diagram for Device Lock to « Jocked bevice
Unlock to Device Laocked to Tequesting Interpreter

Timing Diagram for Device R:ad or Write from Device
Locked to Requesting Interpreter

Fiming Diagram for Memory Read or Write

SWI/Interface Timing Signals

Memory/ Device Interface with S¥I, Block Diagram

Micreinstruction Types

Detailed Nanobit Assignments

Binary Multiply

Generation of Fibonacci Series

Microtranslator Outnut

S to M Loader

Control Program Flow Diagram

Multiprocessor System Flow Diagram

Memory Map

Load Microprogram Memory frem Main Memory
Fiow Diagram

Task Control Flow Diasram

Example of Memor: Domp Output

Example of Plot Routine Cutput

Example of Mortgage Table Cutput

Exarnple of Sort Rouline Output

Examples of Matrix Print Routine Output

Traditional Digital Computing System Block Diagram

59
62
54
66
68

70

82

114
116
117
118
119
124
126
128

129
130
133
136
137
141
143
146

SECTION 1

INTRODUCTION

This final report describes the results of work performed by the Advanced Develop-
ment Organization of Burroughs Defense, Space and Special Systems Group for the
Air Force Avionics Laboratory, Wright-Patterson Air Force Base under contiract
F33615-70-C-1773. The purpose of this program was to fabricate an aerospace
multiprocessor utilizing large scale integrated circuits with technigues developed
under contract F33615-69-C-1200 by Burroughs for the Avionics Laboratory.

The aerospace multiprocessor is made up of five identical microprogrammable,
LSI processors called Interpreters connected to devices and memory modules by
an exchange called a Switch Interlock. Since the intent of the contracr was to
produce only those parts of a multiprocessing svstem {processors and exchange

as shown in Figure 1) not readily available in "miniaturized’” form, the system

is completed with commercially available memory modules, power supplies, and
devices as shown in Figure 2. In this figure, the items delivered are shown within
the dotted line. The Switch Interlock module comprises the 'network” shown by the
connected lines on the bottom half of Figure 2. The system charucteristics for the
aerospanse multiprocessor are listed in Table L

The remainder of this report consists of seven sections and seven appendices.
Section Il describes the L.SI, microprogrammable processor (czalled an Interpreter),
consisting of three types of logic parts utilizing discretionary-wired L5{ arrays,
two types of microprogram memories and a loader for louding these two memories,
Also included is a discussion of the rationale for splitting the microprogram
memory into two parts, based on work done by Mr. Ernest Trimbur.

2

“Acrospace Multiprocessor

i— e e e m e e -
]
! I R, R, EAR ORLAT] I
! |
{ 5 HR oHE HE 3 :
! |
f AR
I L= |
DEv T IR} otv 2 DEY + l v O |l E L L. wWEW D WEN 1 wEM 3 I [l) wiu ¢ wEn ¥
{ [J! REA B ; [_j [F] (][] Lj I EE : s
— 1 —
soar] aee [wvw 1 [ow : rirairs e (o] ose {Fmr]
|~ — T [e
. i e
R . v
|
| b oae —J PP
l
| (e —
H L e ver
| OfLIVERARLE

AT @ITN RiN B KPY (@R SETCRER § DIS2LAT OF OV TPUT

Figure 2, LSI Multi-Interpreter System Block Diagram

Table I. Aerospace Multiprocessor, System Characteristics Summary

5 Interpreters

32-bit word length

2,5 mHz clock rate

Discretionary Routed TTL, LSI

512 words (expandable to 1024 words) by 15 bits, read/write MPM
256 words by 54 bits, read/write Nanomemory

Volume: 5.75 in, X 5.1 in, X 6 in. without connectors.
5.%5 in. X 5.1 in. X 1€ in. with connectors

Typ. Power: 42 watts for LSI arrays
4 watts for loader at +5 volts dc
44 watts for MPM and Nanomemory

3 Memory Modules

Datacraft DC-38

3-wire, 3D, coincident current core

Read/write, random access

8K words (expandable to 16K words) by 32 bits per module
350 ns access /900 ns cycle

Volume: 19in. X 19 in. X5 1/4in.

Typ. Power: 6A at 117 Vac

1 Switch Interlock

5 Interpreter ports

Serial data interface of 8 wires of 4 serial bits each

8 serial interfaces for memory modules (32 bits wide)

8 serial interfaces for device ports (32 bits wide)

Volume: 5.75 in. X 5.1 in. X 22 in. with connectors

Typ. Power: 72 watts at +5 volts dc

Section III includes a general discussion of multiprocessor interconnection and a
description of the hardware specifically needed for multiprocessing. This hard-
ware includes the exchange for interconnecting processors to memories and devices,
clock and power control, a ''real-time' clock, a time-out counter, and the hard-
ware necessary for one Interpreter to lock other Interpreters out of selected tables
in memory. Also included in this section is a description of the cystem power
distribution.

Section IV describeg the packaging of the multiprocessor for its laboratory environ-
ment and briefly discusses the LSI partitioning and possible future implementations.

Section V is a detailed discussion of the Interpreter operation as a single processor,
centering primarily on the fetching, execution, and sequencing of microprogram
instructions and the condition testing involved in the microprogram instruction's
successor determination.

Section VI is a detailed discussion of the Switch Interlock operation. The conflict
resolution problem in accessing memories and "locking" to devices is discussed
along with the handshaking between the Interpreters and the Switch Interlock in
performing memoryand device operaticns. Detailed timing diagrams are given
for all Switch Interlock operations.

Section VIl describes the microprogramining of the Interpreter and gives the syntax
and semantics and examples for all Interpreter operations.

Section VIII is divided into two parts. The first part describes the simplified control
program used to control the multiprocessor with its associated task tables in
memory and also describes the method for loading either tasks or the control
program into the Interpreter's microprogram memories from "'S" memory. The
second part of this section describes the six programs written to be executed as
user tasks ih the demonstration of the multiprocessor, This section is concluded
with a short discussion of the confidence routines that were used during debugging
of the Interpreters and which could be modified to vun under the operating system
for on-line confidence checks of the Interpreters.

Appendix I is a historical review of microprogramming written by Dr. Earl Reigel.
Appendix Il is a copy of the final report from Texas Instruments, [nc. on the
discretionary-wired LSI used in the Interpreters. Appendices III-VI are details

for the use of TRANSLANG, an assembler for Interpreter microprograms.
Appendix VII is a glossary.

%&m PAGE num.m rmmn ;-

5 —'M_

SECTION II

INTERPRETER HARDWARE BUILDING BLOCKS

The Interpreter is composed of four logic package types: the Logic Unit (T.77},
the Control Unit (CU), the Memory Control Unit {IMCU), and the Loader (LDR).
The microprograms which provide the control functions are contained in two

memories: the Microprogram Memory (MPM) and the Nano program Memory

(Nano or NM). These units and their interconnections are shown in Figure 3.

The unique split memory scheme for microprogram memories allows a signifi-
cant reduction in the number of bits for the microinstruction storage, It should
be noted, however, that a single microprogr-m memory scheme (MPM and

Nano combined) could also have been used, potentially increasing the clock rate
of the system. In addition, the cycle rates of the memories could be altered,

to gain speed or reduce cost, without any redesign of the logic packages. In fact,
a variety of memory organizations (single memory and ditferent split memory
configurations) and memory speeds have been implemented in other Interpreter
based systems, thus providing a range of cost/speed trade-offs.

The LU performs the required shifting, arithmetic, and logic functions as well
as providing a set of scratch pad registers and data interfaces to and {rom the
Switch Interlock (SWI). Of primary importance is the modularity of the LT,
providing expansion of the word length in 8-bits increments from 8 bits through
64 bits using the same functional unit, The word length of the Interpreters
used in the aerospace multiprocessor is 32-bits,

The CU contains a condition register, logic for testing the conditions, a shift
amount register for controlling shift operations in the LU, and part of the control
register used for storage of some of the control signals to be sent to the LU,

je———— CARD READER
LOADER pe—————SWITCHES

!

MPM NANOMEMORY

0 1 n
LI) s
MCU cu LU LU LU
MAIN MEMORY/PERIPHERAL MAIN MEMORY/PERIPHERAL DATA
ADDRESSES n< 7 IN GENERAL

n =3 FOR AEROSPACE
MULTIPROCESSOR

Figure 3, Interpreter Block Diagram

Al
REGISTER
FROM
FROM MCU SWITCHINTERLOCK
(CTR, AMPCR, LIT) {SWI)
— . 1
A2 L a8
REGISTER l ADDER REGISTER
]
BARREL
SWITCH
MIiR
A3
REGISTER

v TO SWITCH INTERLOCK (SW1),
10 cu, Mcy MPM, AND NANOMEMORY

Figure 4. Logic Unit Block Diagram

The MCU provides addressing logic to the Switch Interlock for data accesses,
controls for the selection of microinstructions, literal storage, and counter
operation, This unit is also expandable when larger addressing capability is
required. The Loader (LDR) enables the MPM and Nanomemory to be loaded from
either switches, a card reader, or programmatically from the LU.

LOGIC UNIT (LU)

A functional block diagram of the LU is shown in [Figure 4. The design of the
LU is predicated upon implementation with one LSI gilicon slice per eight bits.
The present 8-bit LU is implemented with two LSI slices.

Registers Al, A2, and A3 are funct’onally identical. FEach temporarily stores
data and serves as a primary input to the adder. Selection gates permit the
contents of any A register to be used as one of the inputs to the adder. Any of
the A regisiers can be loaded with the output of the barrel switch.

The B register is the input buffer (from the Switch Interlock). It serves as the
second input to the adder and can also collect certain side effects or arithmetic
operations. The B register may be loaded with any ot the following (one per
instruction):

1. The barrel switch output

2. The adder output

J. The data from the Switch Interlock

4, The MIR output

5. The carry complements ((rom the adder) of 4~ or 8-bit groups
with selected zeros (for use in decimal arithmetic or character
processing)

6. The barrel gswitch ouiput ORed with the adder output

7. The barrel switch output ORed with the data from the
Switch Interlock

8. The MIR output ORed with 1,2,5, or 6 above.

The output of the B register has true/complement selection gates which are
controlled in three separate sections: the most significant bit, the least signifi-
cant bit, and all the remaining central bits., Each of these parts is controlled
independently and may be either ail zeros, all ones, the true contents or the
complement (ones complement) of the contents of the respective bits of the

B register, The operation of these selection gates affects only the output of the B
register. The contents remain unchanged.

The MIR primarily buffers information being written to main system memory or to
a periphersl device. It is lvaded from the bar:rel switch output and its output may
be sent to the Switch Interlock, to the B register, or to the data input of the MPM
or Nanomemory for programmatic loading,

The adder in the LU is a modified version of a straightforward carry look-ahead
adder such as that discussed by Mau:Sorley1 and others., Therefore, the details
of its operation will not be included,

Inputs to the adder are from selection gates which allow various combinations of
the A, B, and Z inputs. The A input is from the A rcgister output selection gates
and the B input from the B register true/complement selection gates., The 2
input is an external input to the LU and can be:

1. The 8-bil output of the counter of the MCU into the most
significant 8 bits with all other bits being zeros,

2. The 8-bit output of the literal register of the MCU into the
least significant 8 bits with all other bits being zeros.

3. The 12-bit output of the alternate microprogram count
register (AMPCR) right justified into the middle 16 bits and
the (wired) Interpreter number right justified in the re-
maining four bits of the middle 16 bits. All other bits are
ZE€r'os.

4. All zeros,

Using various combinations of inputs to the selection gates, any two of the three
inputs can be added together, or can he added together with an additional "one”
added to the least significant bit. Also, all binary Boolean operations between
the A and B and between the B and 7 adder inputs and most of the binary Boolean
operations between the A and Z adder inputs can be done. '

The barrel switch is a matrix of gates that shifts a parallel input data word any
number of places to the left or right, either end-off or end-around, in one
clock time.

The output of the barrel switch is sent to:

1. The A registers (A1, A2, A3)

2, The B register

10

3. Memory Information Register (MIR)

4, Least significant 16 bits to MCU (registers BR1, BR2, MAR,
AMPCR, LIT, CTR)

5. Least significant 5 bits to shift amocunt register (SAR) in the CU,

CONTROL UNIT (CU)

One CU is required for each Interpreter, The design of the CU is predicated
upon implementation with one LSI silicon slice, but is presently constructed
with two LSI slices, Major sections of this vnit (Figure 5) are: tne shift amnount
register (SAR), the condition register, part of the control register (CR), the
MPM content decoding, and part of the clock control.

The functions of the SAR and its associated logic are;

1. To load shift amounts into the SAR to be used in the shifting
operations. Left end-off shifts require a shift amount equal
to the "word leugth complement'' of the number of positions to
be shifted. ('Word length complement' is defined 2s thie ainount
that will restore the bits of a word to their original position after an
end-around shift of N followed by an end-around of the ''comple-
ment'" of N. For the 52-bit word length in the aerospace multi-
processor, tiis is the 2's complement,)

2. To generate the required controls for the barrel switch shift
operation indicated by th.e controls from the Nanomemory.
3. To generate the ''word length complement' of the SAR contents

and load this value back into the SAR,
The condition register section of the CU performs four major functions:

1. Stores 12 resettable condition bits in the condition registers.
The 12 bi#s of the condition register are used as error
indicators, interrupts, status indicators, and lockout
indicators.

2. Selects 1 of 16 condition bits (12 from the register and
4 generated during theepresent clock time in the Logic Unit)
for use in performing conditional operations.

3., Dccodes bits from the Nanomermory for reseiling, setbing,
or requesting the setting of certain bits in the condition

register,

4, Resolves prinrity between Interpreters in the setting [
global condition (GC) bits.

11

A

MICRO I NANOMEMIRY (54.31T WORDS)]
PACGRAM v ”
(I\ 116 $2-48 /J')‘.'ﬂ“ {110 l:.'_lg.azi.gzﬁ.} 19-24,27,
4 : 34-4}
! (6) . 10 o
T~ MPM Address . N ®
! t6 BIT-WORDS) | fﬁtmi}‘” e [.
T al -
| CON"ROL ! CONTROL
RE Cu !] Condition Rog. i REG, F“'
Adjust |
Microinstructions H 3
Type |: Nano Address ’ ‘ NS J l
Input Ciock Control: far
¢ AMPCR’BR1/BR2/MAR/CTR i CONDITION CONTROL
SAR — [T ReaisTER REG.
Typ 11, Vaive 10 LT ' , L
k AMPCR i
{
I I AOV, MST,
I ! : LST. ABT
! ! trom Adder
I H —
T *
| | ey :
— | |
! ! | CONDITIONAL From
i [mecr i .____._J'z\—-—-_.{ CONTROLS Bacral
5 12 ! L GENERATION Snitch
| ! LU OPE, i
: and EXT [From _
| 1 1 Oper. Condition ' MPM |
! { ’ i ;
! ! r T T | !
\ | i | | \ ' i
‘ ! | |) | !
SELECTION hasan { f | | J i ! !
! | ! i
T | ! t ! ; | .
i H H t { |
: i 1/7 Salect H H H }
INCREMENT i i from CU ! ’
by0. lor2 | . | [
| i
T I i | []
—1 G2 ' : |
MP¥ Address r ! i P Signals Controls 1w*
i 1 * L T for S Memory or | ogic Unit Ciock
Fal) o -~ Dwevices i To conni Conuol Rug, Clock
i :) 8 8)) Reg 11 SWi) Cond. Reg, Aduat
‘ { S Mamory/Peripheral Contrals
' \B N . e From MPAD Contrhs
TA LU {Z INPUT) T e prmm—— N T Bewrel Swinch
Address tor 5 memury miy

and Devicers TO LU [Z INPUT)

Figure 5. Interpreter Functional Units

The control register is a register that stores 38 of the 54 control signals from
the Nanomemory that are used in the LU, CU, and MCU for controlling the
execution pkase of a microinstruction. Twelve of the 38 outputs from the Nano-
memory are stored in the CU. Four of the other 38 Nanomemory outputs are
controls to the Switch Interlock and are stored there. The other 22 of the 38
Nanomemory outputs are stored in a part of the control register physically
located in the Nanomemory.

The MPM content decoding determines (based upon the first four bits of the MPM)
whether the MPM output is to be used as a Type I instruction (Nanomemory
address) or as a Type II instruction (literal). Several decoding options are
available. The particular option chosen is described in the Interpreter Micro-
programming section of this report.

MEMORY CONTROL UNIT (MCU)

One MCU is required for an Interpreter in the aerospace multiprocessor, but a
second MCU could have been added to provide additional memory addressing
capability. The design of the MCU is predicated upon implementation with one
LSI silicon slice, but is presently constructed with two LST slices, This unit has
three major sections (Figure 5):

1. The microprogram address section contains the microprogram
count register (MPCR), the alternate microprogram count
register (AMPCR), the incrementer. the microprogram address
control register, and associated control logic. The output
of the incrementer addresses the MPM for the sequencing
of the microinstructions. The AMPCR contents are also used
as one of the Z inputs to the adder in the LU,

2. The memory/device address section contairs the memory
address register (MAR), base registers one and two {BR1, BR2),
the base rcgister output selection gates, and the associated
control logic.

3. The Z register section contains registers which are two of the
Z inputs to the LU adder: a loadable counter (CTR), the literal
register (LIT), selection gates for the input to the memory
address register and the loadable counter and their associated
control logic.

NANOMEMORY (N MEMORY)

The Interpreter is controlled by the output of the 54-bit wide Nanomemory which
may be implemented with a read/write memory, a read-only memory, wired
logic, or a combination of the three. The present implementation is a 256 -word
by 54-bit read/write semiconductor random access memory using the Fairchild
n?410, a 256~word by 1-~bit package.

13

DATA/ PROGRAM MICROPROGRAM
MEMORY MEMORY
- m2{ né _\7
s2 [a00 L m3 o —
ma{ ni2 e
3 [Sra o]
mi ng :::;’
o m2 [
m3 n8
m5 ni2
o —
e s
7i l mi no
s m2 n6
m3 ni4
Figure 6,

14

NANO
MEMORY

01 QOIQIIGIQII0INNOOT |, .
03101 1100101 140150610, ..
100!00Q01GI 111000130101,
QUQriotio. ..

10180, .

1011000, . .

QQ000. ...

1GOOI 10T,

LO0Q00 i, ..

LIQ2EY " 05000 .

0001000t . |
COOLtOOOIC Y 11 QIG
11Q1000010 (10101018110, .
006011000001 1100000101110,
POIHI0IGO0I0I 0101100110

08

LOGIC FUNCTIONS

Instruction Memory Hierarchy

Each of the 54 bits represents a unique enable line for the gates and flip~flops
within the LU, the CU, and the MCU. Each Nanomemory word represents a
microinstruction that is executed by the simultaneous presentation of a specific
enable pattern for the 54 outputs, represented by corresponding ones and zeros
in its word., The definition of these bits ig presented in the microprogramming
section,

A unique feature of the Interpreter-Based System with its separate Nanomemory
and Microprogram Memory (Figure 5)is that the explicit enable lines for each
mieroinstruction need be stored in the Nanomemory only once (regardless of the
nurmber of times that a specific microinstruction is needed in a program). To
accomplish this saving in memory, the Microprogram Memory (MPM) contains
the address in the Nanomemory where the explicit ones and zeros are stored

that are needed to execute that instruction’ type rather than he full micro-
instruction. Thus, several microprogram sequences which use the same micro-
instruction (e. g., transfer A to B) need only store in the Microprogram Memory
the address of the Nanomemory word containing that microinstruction. Figure 6
illustrates this feature.

MICROPROGRAM MEMORY (MPM)

Each Interpreter requires a source of microprogram instruciions to define the
operation of the Interpireter.

Two possible solutions for providing this source of microprogram instructions
are listed below:

1. A semiconductor MPM, This memory can be a read-only
memory (FROM) if the Interpreter is to be dedicated to the
function defined by the ROM, A read-write memory can be
used for experimental purposes or when the function of the
Interpreter might be changed, such as reconfiguration in a
multiple Interpreter system. In this instance, the system
could afford to wait while the MPM was reloaded from
a remote microprogram store acceszed via the Switch
Interlock,

2. A buffer into a slower-speed, wider-word memory.

In presently deliverable large scale integration form of the Interpreter, the MPM
is also implemented with Fairchild 256-wo. .. bx 1-bit bipolar, nondestructive
readout semiconductor memory packages. belin the MPM and the Nanomemory

can be loaded from an external loader, switches or programmatically from its own
MIR. The basic MPM is expandable in olu:%s f 266 words, and can be expanded
up to 1024 words in the present Interpre srs.

15

91

64

N .
rora. *®
NUMAER
OUF BITS
(x4000}

324

MICRO-PROGRAM

Ay WORDS MEMORY "2y " wORDS

NICRO-
PROGRAM|
MEMORY

|

€ BT

Nfg)® Am XC

(a)

TOTAL NUMBER OF BITS
Vs
NUMBER OF BITS per ADDRESS

[a, =1000)

Ay t8r2

% &, 1256

NpilBr8) e e oy 120

-
1] 24 32 40 L1 L] [1]

C { BITS per ADDRESS)
{c)

Figure 7,

! 'giprs e

80

Nu “an" WORDS

B-1< logaAN< B

NANO - MEMORY

1 _0,/—"‘"

N 48
TOTAL ®
RUMBER
OF BITS
(X 1000Q)

IGT

‘24”"_*/—"::/
// +9)
, “(b)“
Ve
F"" N(.)\“n

- B TS ¢

N(p)* AnXB +ANXC

(b}

TOTAL NUMBER OF BITS

Vs
NUMBER OF MICRO~ADDRESSES
» A, 1024

P [cee4)
.1 /"/—' Ay 2852

Ay €286

g Ay 128

T
2%¢

T L4 LA i L R !
912 768 1024 1280 B3¢ 1792 W40
Ay (NUMBER OF KICRO - ADDRESSES)

(d)

One Memory vs, Two dMemory Implementation

Microprogram Memory Considerations

The potential advantage of dividing what is considered to be the Microprogram
memory into two parts is more graphically illustrated by comparing the total
memory requirements of the two approaches shown in Figure 7.

The total number of bits (N,) in Figure 7 (a) is given by N x C. The total
number of bits (N, ,} in Fi g.uze 7 (b) is given by (A _xB} + A\ x d\fl A plot of the
total number of bits' vs. B and C and a plot of the total number of bits vs. and B

for both approaches are shown in Figures 7 {c) and {(d). M

From these figures, it is obvious that as A approaches A__, one memory is the
proper approach. Two factors affect the x-?lationship between A,, and A ., One
is that literal values {type Il instructions) used for shift smounts, jump addresses
and 8-bit literals, that appear in the Microprogram memory, make no reference
to the Nanomemory. Second, repetitive use of the same nanocinstruction causes
an increase in A without adding words to the Nanomemory. Some <ample pro-
gram statistics are shown in Figure 8. This figure shows, for four sample pro-
grams, the total number of microprogram and nanomemory words, the total num-
ber of bits for both the one and two memory approaches and the percentage and
actual value of the number of bits saved using the two instead of the one memory
approach, In addition, this table shows the comparison among the numbter of
literals {1ype Il instructions), the number of Nanomemory references {(type I instruc-
tions), and the number of Nano memory locations in the four sample programs.

It should be remembered that the two memory approach would require memories
with approximately twice as fast an access time (and hence are more expensive per
bit) because both memories must be accessed sequentially within one clock time,

Memory cost per bit vs. memory cycle time is shown in Figure 9, where the verti-
cal bars indicate the range on these prices which were gathered during January, 1972,
Although the absolute prices have decreased, the relative pricing should still be
valid. Several cost factors (C. F.'s) are shown for memory speeds having a 2:1

ratio. The cost factors are simply the ratio of the pr.ce of the faster memory to that
for the slower memory. The higher cost factor encountered when crossing technology
boundaries should be noted.

The solid lines in Figure 10 show the actual cost savings of the two memory approach
for the four sample programs taking intc account the difference in memory prices
for the two approaches.

Also it is important to realize that many applications require a writable Microprogram
memory, This means that the entire memory in the one memory approach must be
read-write, while with the iwo memory approach, lhe Nanuvinemory could bé read-only
with the Microprogram memory being read-write. (In fact the Nanomemory could

even be partly read-only and partly read-write.) This is shown by the dashed lines

17

81

2 MEMORY TECHNIQUE

PROGRAM STATISTICS TOTAL BITS BIT BREAK DOWN

I A BIT SAVINGS

TASK Ay Rov. | Neat | Niw | Nm Ny

TOTAL [TYPE T (%) TYPET (%) Ny N | ANp | ANg
D-825 EMULATION 3337 | 2224 (67%)| 1113 (33%}| 964 | 2.31 [187k | 108K | 54x | 54K | 79K (42%)] 35x | 44k
8-300 EMULATION 3265 | 1996 (61%)] 1269 (39%)] 624 [3.20 1 183x | 87Kk | 52k | 35k |96k {52%)| 45K | Sik
DISK CONTROLLER 1288 | 910 (71%)| 37 (29%)| 244 | 3.73 | 72| 34| 24k | 1ax | 38k (52%)] 23K | 15K
LANGLAGE DESIGN SYSTEM | 653 | 394 60%)| 265 (40%)| 244 | 1.61 | 37k] 25k | 44x | 14k | 12k (32%)] 2x | 10k

Rav. = AVERAGE REPETITIVE COMMAND FACTOR = TYPE I /Ay

&NI = BIT SAVING DUE TO NON-REPETITIVE STORAGE = 1 xC-[AyxC+IxB]

ANI: : BIT SAVING DUE TO SHORTENED TYPE I WORD LENGTH = T x [C-8]

Figure 8,

Sample Program Statistics

61

COST
{¢ BIT)

.0}

T2
8IPOLAR

MEMORY COST vs MEMORY SPEED

65K < N < 256K

C.F. = 1.25(35-70ns) BIPOLAR

\ C.F. = 1.4 {200-400ns)
\ (crROSS TECHNOLOGY]
Y BIPOLAR ~MOS
T~ \ C.F.= 1.4 {(500~10C0ns)
T en 4 - - t [cross TecHNOLOGY]

‘\ MOS - CORE
\

4.0
N]
€.F.z 4.38 [300-600ns) “a
: 1,25 {400-800ns) e 3D CORE i
l C.F. = 1,46 (600 ~1200ns) l
2.07
X 8!POLAR ROM 45ns
ROF = 6.2
T T T T T 1 T ! \
100 200 300 400 200 600 700 800 900

MEMORY CYCLE TIME (ns)

IF'igure 9. Memory Cost vs, Memory Speed

75% -

TWC
MEMORY
COSsT
SAVINGS
AS PERCENT
OF ONE
MEMORY
COsT

50%

. COSTa

COSTyy)
{x100}

0¢

25°/o -

B 300
DisK

De2s

L.DS

2

RANGE OF ACTUAL
COST) = KN
COST FACTORS te) ta)

Ny CF
o COSY(M:K[N.CF* ROF
iR
-1 ~
I AN
XN
RN
MRS ==-=~ DECODER : ROM
MPM: R/W
ROF = 6

DECODER = R/W
MPM = R/W

—x¢

2.0
coST FACTOR [AS:2]

Figure 10, Two Memory Cost Savinzs vs, Cost Factor

in Figure 10 for the four sample programs using a "read only factor (ROF)" of 6.
This ROF is an estimate of the ratio of the price of read-write memory to that for
read-only memory.

In both cases, the values for a cost factor of 1,0 are the cost savings if memory cost
were constant with respect to memory speed. The abscissa gives the cost factors
required for the two approaches to be equal in cost.
LOADER (LDR)
One LDR is required for each Interpreter. 'The LDR provides clock controls for the
Interpreter and the means for loading the Interpreter's MPM and Nanomemory from
one of three sources:

1. Switches on the MPM/Nanomemory light panels,

2. A card reader assigned to loading,

3. The least significant 16 bits of the MIR of the same Interpreter.
It is possible to load several Interpreters concurrently from their panel switches or
from their MIR's, Concurrent loading intc more than one Interpreter from the card
reader assigned to loading is not permitted,
Figurell is a diagram of the loading functions in the LSI multiprocessor,
Loading from the MIR is under microprogram control and provides the capability for
programmatic overlay of the MPM and Nanomemory from any S memory module or

any device attached to the Switch Interlock. A more detailed description of pro-
grammatic overlay from S memory is given in Sections VI[and VIIIL.

21

A4

LU, CU, MCU

From From
Switches Card Reader
Interface
Ay P
INTERPRETER
i ! A |]
SELECTION [* CONTROIS [*
(16) Inhibit/Force Y- - - v
LDR Step Write Enables
{16} (16) 8) (14)
(15) , ‘ 1
[! |
MPM NANOMEMORY
1-16 i 17-32 | 33-40 [41-54
1 | & r I
MIR Incrementer MAR

Figure 11,

[mplementation of Loading Functions Block Diagram

SECTION I

MULTIPROCESSING HARDWARE DESCRIPTION

MULTIPROCESSOR INTERCONNECTION

A major goal in multiprocessor system design is to increase efficiency by the
sharing of available resources in some optimal manner, The primary resource,
main memory, may be more effectively shared when split into several memory
"modules'. A technique for reducing delays in accessing data in main memory

is allowing concurrent access to different memory modules, With this concurrent
access capability present, an attempt is made to assign tasks and data to memory
modules so as to reduce conflicts between processors attempting to access the
same memory modula, Nevertheless, since some conflicts are unavoidable, a
second technique (reduction of conflict resolution time) is required. These two
techniques are largely a function of the multiprocessor interconnection scheme
which has been discussed by Curtin? and others.+

Figure 12 shows three basic functional interconnection schemes, These are
described in more detailby Curtin,?

The disadvan‘ages of the single bus approach (Figure 12) for many processors are:
1, the obvious bottleneck in information transfer between
processors and memory modules due to both bus con-

tention and memory contention

2, the catastrovhic failure mode due to a single component
failure in the bus,

A solution to the first problem has been to increase the frequency of operation of
the bus.2:?

23

PROC L PROC MEM * o0 MEM

{ l l]

(a) Single Bus Interconnection

PROC L PROC MEM » oo MEM

{b) Multiple Bus Interconnection

PROC A A PROC MEM e MEM

(c) Dedicated Bus Interconnection

Figure 12, Functional Multiprocessor Interconnection Scheme

24

The multiple bus approach is merely an extension of the single bus approach where
all processors contend for use of any available (non-busy) bus, The advantages
are redundancy and allowing an appropriate number of buses (less than the number
of processors) to handle the trafiic between processors and memory meodules.

The third approach utilizes a dedicated bus structure {(one per processor).
Although this approach required more buses, it requires neither the logic nor,
more importantly, the time for resolving priority between processaors requesting
the use of a bus. Proponents of this approach contend that the time penalty for
resolving conflicts for access to a memory module is enough of a price to pay
without having to wait for the availability of a bus.

In a Hughes report,* the authors distinguish the physical differences between two
multiprocessor interconnection schemes, The two approaches (one called multi-
port and the other called matrix switch) are shown in Figure 13.

The Hughes report characterizes the two connection approaches as follows:

"In the multiport approach, the access control logic for each module
is contained within that module, and intercabling is required between
each processor and memory pair. Thus, the total number of inter-
connecting cables is the product of the number of processors and the
number of memories, Each module must be designed to accommodate
the maximumn computer configuration,

"In the matrix switch approach, the same interconnection capability
is achieved by placing the access control logic for each module in a
separate module. The addition of this module to the system is
compensated (for) by reducing the intercables required to the sum
of the processors and memories rather than the product and by not
penalizing the other modules with maximum switching logic,

"There generally is no speed differential between multiport and
matrix arrangements. The major difference lies in the ability to
grow in wiring complexity., Multiprocessors with multiport arrange-
ments are generally wired, at production time, to the maximum
purchased configuration, Future subsystem expansion generally
requires depot level rewiring, This problem generally does not
exist with the matrix arrangement, The maximum capacity is wired
in but the switching logic complement reflects the purchased system,
Subsystem expansion entails purchase of added processor/memory
modules (and necessary cabinetry if required) plus the required
switch matrix logic cards, "

Apparent from the arguments in this report is the desire to reduce the number of
wires interconnecling the processors and memory modules., A way to reduce the
wiring (in addition to the use of the matrix switch) is by using serial transmission
of partial words at a frequency several times that of the processors., This tech-
nique has been used by Meng? and Curtin2 The tradeoff here is between the cost

25

MEM MEM MEM MEM

PROC PROC PROC PROC

(a) Multiport

MEM MEM MEM MEM
—
1 [

MATRIX
SWITCH

-
—

PROC PROC PROC PROC

(b) Matrix Switch

Figure 13, Physical Multiprocessor Interconnection Scheme

26

of the transmitting and receiving shift registers and the extra logic necessary for
timing and control of the serial transmission versus the cost of wiring and logic
for the extra interconnection nodes for a fully parallel transmission path.

Another factor adversely affecting efficiency in a multiprocessing system is a
variation in the amount of computation versus I/O processing that must be dnne.
In previous multiprocessing systems I/O functions and data processing functions
have been performed in physically different hardware modules with devices being
attached only to the I/O controllers (Figure 14). (This technique is typical of
Burroughs D825, B 5500, or B6700), In a multi-interpreter system, however,
processing and I/O contrel functions are all performed by identical Interpreters
whose writable microprogram memory can be reloaded to change their function.
This technique allows a configuration (Figure 15 in which the devices are attached
to the same exchange as the memories and processors,

THE SWITCH INTERLOCK

The Multi-Interpreter interconnection scheme for forming a multiprocessor is
called a "'Switch Interlock': a dedicated bus, matrix switch with an optional
amount of serial transmission,

The Switch Interlock is a set of hardware building blocks that connects Inter-~
preters to devices and memory modules. Connection between Interpreters and
devices is by reservation with the Interpreter having exclusive use of the (locked)
device until specifically released, Connection with a memory module is for the
duration of a single data word exchange, but is maintained until some other
module is requested or some other Interpreter requests that module.

Consistent with the building block philosophy of Interpreter-based systems, the
Switch Interlock is partitioned to permit modular expansion for incremental
numbers of Interpreters, memory modules or device ports and modular selection
of the amount of parallelism in the transfer of address and data through the Switch
Interlock from fully parallel to fully serial. Functionally, the Switch Interlock
consists of: parallel-serial conversion registers for each Interpreter, input and
output selection gates, parallel-serial conversion registers for each memory
module and each device, and associated control logic. Figure 16 cutlines the
implementation of the Switch Interlock and shows the functional logic units that
are repeated for each Interpreter, memory module, and device, The bit expand-
ability of the Switch Interlock is shown by dashed lines between the input/output
switches and the shift registers associated with the memory module, devices,
and Interpreters.

The Switch Interlock in the LSI Multiprocessor handles five Interpreters, eight
memories and eight device ports (more than one device could be attached to each
port), The transmission paths through the Switch Interlock break the 32-bit data
word into 8 wires carrying 4 serial bits each, transmitted with a "high speed"
clock having a frequency five times that of an Interpreter clock.

27

DISPLAY SUBSYSTEM

SENSOR SUBSYSTEM { Radar, Navigation)
COMMUNICATON SUBSYSTEM

) [[0 [

PERIPHERAL SUBSYSTEM {(Lisk, Tops, Printer)

Figure 14. Centralized Multiprocessor System

M M s 0w M 1 1 [1 D D o0
L] *
. SWITCH INTERLOCK °
[] L]
Figure 15, Distributed Multiprocessing Interpreter System

28

r ed GLEN P W S -] wmen iy e | e 1
r . 1 ! B REGISTER I
§ °$" MEMORY I |
| pEvice | | N A l
' : i| memory NTERPRETER |
MEMORY OR DEVICE | I MIR/MAR |
: REGISTER ! ‘ =™ REGISTERS |
J |
LR]
XK} 1 o ae ces s i PN
SHIFT REGISTER SHIFT REGISTER] CONTROL SHIFT REGISTER SHIFT REGISTER
T [} . T Fv 3
' l { € 1 Tt [}
I | |8 OUTPUT SWITCH INPUT SWITCH]
| i —_——— -———
1 L -1‘ : TT
|1 Y oo J 1
! H] by
| S T T T T T - l 1,
b
O .. _ - B
b e e e e e e e e e - e e - e ——— e — - .|
Figure 16, Implementation of the Switch Interlock

o€

FROM OC FROM nC
i ' r 0
LOCK
OR L
UNLOCK STATUS
COMPLETE

FROM ISN's
[t ans,

0CK MEMORY MEMORY DEV

MODULE RETURN RETURN

0K OBTAINED CLOCK £{0CK

OPER STARTED

|

CLOCK

__ﬁ}

HIGH SPEED

ootk a0 SRECTED

CONTROLS CONDITION
ANY
MEM/DEV
op !
MEM/DEYV
OPERATION REGISTER & DECODING
IN/OUT. CARRYOUT]

COUNTER

FROM INTERFHETER _

EXECUTION PRASE CLOCK

LOGIC
START ~
Isrop
_J Roc o HIGH SPEED
SYNCH. CLOCK CONTROL
SAl
1/2 SYNCH OEV OPERATION
SYSTEM r [OR MEM READ
otk _ ¢ MEM WRITE
FROM ' 1 L
INTERPRET
ERPRETER o MEM QPERATION
} DEY
1{ L OFERATION
< ' I
CILEAR TO SAl ¢ /0C RIGH SPFFD nIGH HiGH CONTROLS
Pt 5t 7L0CK SPEED SPEED 0
1] our CLOCK CLOCK MC AND D¢
MEM OSN ! L 10 10
M 19 W TERPR TE 4 MEM DEV
Gk v SN 03N 03N

Figure 17,

Memory/Device Controls (MDC) Block Diagram

PULSE
GENERATION

LOAD
INTERPRETER
OUTPUT
SHIFT
REGISTERS

The six basic modules for the Switch Interlock of the LSI Multiprocessor are
described below,

Memory/Device Contrals {MDC)

The MDC conirols the high-speed clock used for the serial transmission of
data (Figure 17) and is an interface between the Interpreter and the controls
described below {(MC and DC). There is one MDC per Interpreter, Physically,
the MDC's for two Interpreters are contained in one finned 5-~inch by S-~inch by
1/2-inch plate.

Device Controls (DC)

The DC resolves conflicts between Interpreters trying to lock to a device and
checks the iock status of any Interpreter attempting a device operation (Figure 18),
Physically, the DC is contained on two identical finned plates, each plate

capable of handling up to three Interpreters and up to eight devices. System
expansion using this module could be in mimber of Interpreters or in number of
devices.

Memory Controls {MC})

The MC resolves conflicts between Interpreters requesting the use of the same
memary module (Figures 19 and 20), Physically, the MC is contained on two

finned plates. One plate contains the MC for three Interpreters and eight memory
modules and the other plate contains the MC for the other {wo Interpreters and

eight memory modules, plus the "memory-busy' flir-flops. The giobal condition
bit priority resolutionand the interrupt Interpreter logic is also physically located on
this second plate although it is functionally independent. System expansion using

the MC could be in number of Interpreters or in number of memory modules.

Qutput Switch Network (OSN)

The QSN sends data, address, clock, and control from Interpreters to addressed
devices or memory modules (i, e., the OSN is a ""demultiplexer"). Physically,
the OSN is made of two different types of finned plates handling either three or
four wires for up to five interpreters and eight devices or memory modules.
One type of plate handles four data-type paths for five Interpreters and eight
devices or memories. The other type of plate handles two data-type paths

and one clock-type path for five Interpreters and eight devices or memeories.
Logic diagrams of these types of OSN's are shown in Figures 21 and 22.
Each column of logic is for one Interpreter with the inputs trom the Inter-
preter coming in the top. Each row represents one serial transmission path
and the outputs to eight devices or memories coming from the side and bottom
of the drawing, System expansion using these modules could be in number of

31

[

HIGHER
PRIORITY
IN

|

LOCK B URLOCK

REQUESTS FROM ponER,
nnc%unc‘/‘ moc,, ' out

L

PRIORITY RESOLUTION
AND
LOCK/ JNLOCK ENABLE

"DEV OPER"
FRCM

"DEY LOCKED
TO INTS-TO

r
MOCq i »OC,
7 uec,, wote,

n
uDCy MOC, MOC
Uy Yy

)

LOCK CHECK
FOR DEVICE
OPERATION

-~ OPEN

COLLECTOR
TO OTHER
DCs »

SYSTEM
CLOCK i
LOCK
INHIBIT
y
ADDRESS ADDRESS LOCK 0 i b
ENABLE DECODE o 8I1TS .
.
. oy
[o {3) Do
.
.
() "*0r
Yoy iy Ty]
" MASTER 3 ADDR.
OR of all lock bits for each device UNLOCK BITS FROM

Figure 18,

Device Controls {DC) Block Diagram

o

3 INTEAPREFERS

¥ o tEs
|
i
|
! S ADON e con. X
. MO0 ADOR NEM CONN MEM. AEQ - COMPAR MOC ADDR WEM, CONN MER REQ. | COMPARE” Enow ANARLE FROK
o rroM couance erom TRt FROM [mou iy [0 cRNAN L
woc, 9 TO Oth/1ti cLoen oo woe, 4, TDOSKASH cLaon WSy 1 OCy sk
4 1 i L) : | !] g I
- | | : e ! J -] v
| . i .
L __L,m_ | Pd .._L N T N ! i
Lo : acamven | i .
e e iy Aoontes REGITER ;“4 it h«{‘l aoomtas _w"“ onTROLE -+ | .‘ EMON ¥ MOOULE r_ weawren L |
' - i ¢ b
cenron [L \ ' L*r A] o =
0 S . ! [SR
..... —— F“L ! i ; ‘ ‘[! : u.__T_._.__.r‘“—]
‘ ; ! \ i P ;
' - Pt i ¢ -
| : i : 1 ‘ A i ;
] ‘ ‘ I ! : | i
i ; ! : : P ! !
: ‘ : i i) i i }
: t |) | :
i | I [: ADCNERS
H H i i | | l FELECTIOM
| i ! ! o ! L
. : i H i : | i } |
i ! .
\ [- . I i | ! L 4 ! }
PN [, } i |] N S
; i i | ! o
Lo et Lol e
! - RS A - oy) i [| unuv]
i N ' oa b | f I'ves 4
| P ¢ MIGHER PRIGRIT Y i) HIGHER -monnj
s PO PRSP U0 AP SOU S I S VL —1 TO RNAOSN
oren B i | | v
coLIcTon I {
o e ! |
: i bt o e Lo
| _i : J 1 }
‘ S — | ‘ |
i S R S d - 1 v,
1 NN
PRIDRITY RESQLUTION ! FAIORITY RETOLUTIOW . w"‘r
! LL— e

Figure 19,

Memory Control No, 0, Block Diagram

2 INTERPRETERS

1493

PRIONITY RESOLUTION

8 MEMORIES
S COMPARE™
i 400, ADDR MEM. COHN, MEM. REQ. MOO ADOR. WEM. CONN. MEM. REQ.
moc, FROM ENABLE From #ROM ENABLE FROm
To asnise cLock Mocy 1y O OENASH crock voc, |
i i [
! | - |
| I I
1
MEMORY MODULE REGISTER
| eson mooure neowren |, JroorsMoorir B Lo R VS
i
|] el L !
COMPARATOR e T COMPARATOR |
|
I t I
' |
ADDAESS ADORESS |
SELECTION ‘ SELECTION I
i ! |
i
¢ 1 : I
y |
N 'l N i CYCLE COMPLETE
ADOMESS MEMOAY BUSY | ADORESS L MEMORY BUSY [SIGNAL FROM
0ECrDE ‘ ‘ or ! i DECODE l'__“‘ L. P | MEMORY MODULER
' MIGHEN PRIGRITY |, INGHER PR I e,
; — » 7
Ve | [oo : I
X) ! !
A 1 e
aren . ' i
coLLECTOR . | |)
TO . i
e &0 J i
f [
o mnom @4 TO NN - — i ves Loo.
1 ! ,
H
!
!
|

*USED TO SET “MEMDAY BUIY" BI1TS

Figure 20.

Memory Contrel No. 1, Block Diagram

Interpreters or in number of devices or memories, The number of replications
of this plate would also change if the amount of serialization of the data path
were changed,

Input Switeh Network (ISN)

The ISN returns data from addressed devices or memory modules to the Inter-
preters {i.e., the ISN is a "multiplexer'). One finned plate handles five wires
for five Interpreters and up to eight devices or memory modules. A logic dia-
gram for the ISN is shown in Figure 23. As with the OSN, each column of logic
is for one Interpreter with the outputs to the Interpreter coming from the top.
Each row also represents one serial transmission path with the inputs from eight
devices or memories coming in the side of the drawing. System expansion using
this module could be in number of Interpreters or in number of devices or mem-=
ories. The number of replications of this plate would also change if the amount
of serialization of the data path were changed.

Shift Register (SR)

These units are parallel-to-serial shift registers or serial-to-parallel shift
registers that use a high frequency clock for serial transmission of groups of
four data and address bits through the ISN's and OSN's, They are physically
located with the Interpreters, device interfaces, and memory module interfaces.

POWER DISTRIBUTION

Figure 24 shows the details of the power distribution system in the aerospace

multiprocessor. Even though all a-c connections are shown schematically attached

to one line, a load center is mounted inside the cabinet and two phases of a three

phase four wire 120/208 volt 60 Hz input are each connected through the load cen-
_ ter to four strips of electrical outlets mounted inside the cabinet,

As shown, each Interpreter has its own power supply with a connection to the
Switch Interlock for supplying +3 volts to the MDC for that Interpreter., ALl +5 volt
distribution is by heavy gauge wire twisted with its return. All sensing and
connections of return to chassis are done at the point of icad. The system power
supply provides power to the device and memory interfaces, the real time clock,
power control and clock distribution, the light panel, and the Switch Interlock.

The sensing for the system power supply is on the Switch Interlock.

As can be seen, the multiplicity of reference-to-reference connections via the cold

side of the twisted pairs made proper "treeings' of the references before connection
to earth impractical, Therefore freely tying reference to chassis was allowed.

35

In retrospect, the only changes suggested would be providing a better reference-
to-reference connection between each Interpreter and the Switch Interlock, and
removing the reference to chassis connections on the +12 volt, -12 volt, and

+20 volt supplies after insuring a suitable reference to chasais connection at

the loads,

The only grounding problem encountered was on the loader board in the Inter-
preters. This problem was eliminated by installing a wire ground grid on the

board and by providing extra ground pins from the board to the backplane. Of
interest is that no decoupling capacitors exist in the system. Space for decoupling
capacitors has been provided and should be added if noise problems are encountered;
however no such problems have arisen during the fairly extensive testing before

and after delivery.

CLOCK AND POWER CONTROL

From the description of the Switch Interlock, it is clear that two clocks having
different frequencies are needed in the aerospace multiprocessor. During the
design of the aerospace multiprocessor the relationship between the maximuin
shift rate through the Switch Interlock and the maximum speed of the Interpreters
was determined to he at least 4:1, Since four bits are trangmitted serially on
each path through the Switch Interlock and shifting is to be finished within one
Interpreter clock time, a ratio of 5:1 wag selected, However, from the
implementation as shown in I’igure 25, this ratio could be easily changed by
changing the value preset into the counter, The logic appearing in this figure is
all controlled by a central system power supply, which in a failsafe system must
be made redundant,

As shown in the figure, the width of the high-speed clock to the MDC's in the
Switch Interlock is controlled by the width of the master clock coming in from

the pulse generator, and the width of the Interpreters’ clock is controllable by
varying the resistor value on the single shot, The flip-flop control has been

added to the clock for each Interpreter to insure against performing any spurious
memory or device operations while power is either being applied or being shut off

36

GROUND €40, 7 as

GROUND €38,7 3¢

GAOUND L84, rie
ver € .

12wbeRz €1

12ubee: rir
12mM0890 e

GROUND E34.73¢
Ve 3,03

TIMDAR2 K22
1IMEBR| P2e

LIMDBRO s2t

OSN O

OSNO

OSN 00/10

1,00
ew,om e

somnael) DO B

o) G 12 1OMGRR

a0 [GMOSRO

L

" |* = li
TALESW
; es -

1 = <00 074
B34 70, DM

p—0 ¢ 11 1000-1/8

pmeO B33 [QDO 276

L_;@t—:m TOLKOM
= ©w2000-3/7

7400"

H— — — — == F

——Q €3, 3¢ GROUND
~——OC18, 818 Veo

»iv tikBanz

CLEC LT

ir SN0

=

Taasw |
H A4 -

s |G |=

L.‘@[‘:—_—: €36 UBO-0/8
u 54 T1LxDM

PO G 16 1001/

p—em D26 LDI-2S6
=0 D33 LILXOM
<38 NDO-2/1

-0 €3, #3 GROUND

el el 2
W= =
n i
|
¥

74140w
AY i

=]

—-

T
v
o
m

0
-
-
“
@
%
)

|
1
€32 1200-0/4
A P l_ 032 T2LXOM
EN LN CRE s {5 =
TAt4SwW
—0 <3 22001/

1
[T FITFE | JRH | I
,_i] ! i >—] ” { S0 828 1200276
__] l l :@;ii: 0 L2LK0M
1 2 €u 1200-3/7
— %) l Kais 7400"
W 04 GROUND
— |
[o c2 o
e s = 1s |l .-.;:[; ;::E_' orerOM
T4145W . 74145% ‘ T4145W T414 5w
s a2 - ' e B2 - 3 a2 - i A 82 <181300°1/3
SR AREE A ERR R ABABR] BARRN !]

I8

.
b
L
2
H

e (3U0 24

¥ LN
[T BRI Tag

T400's

CM L300-0/%
P 13RO

I3LNOM
0 c» 1300-3/7

Qs1e1300-1/%
O ere [300-2/6

THOG'S

O 3,88 GRAOUND

|2 ey $10 (40O 0/4

g
y
g
3
&
§

O »ar 14D0-2/6
O By 14LKDM
Oced 1400-%/7

p 21 DO/M?0L-3/7

€14 g1/ MeDL-3/7

o1k 02/M80L-3/7

o . il 3'—- " -l-
NE N E]2
Im TN * 2
“ :q- - ;‘_ 4 i‘___j«l
» ET » P:—F—\ i FT
"

01/MODI-3/7

0% DQ/M/DL- 2 /&

€8 D1/MODE-278

S OO/M0L- 1S

—0 "? D6/ MICL-i/3

€0 DY MO0k -1

AT VO/MPOT-O/e

e : 1o 06/mIDL -Q/4

O S 5
L) Ll *
" B
Gl "' 1% % 1y a
kS REL] e
F R = I o
- - [b " 5_1
=1 -
- j " Ill
. - -
A " x
wl X a ; NE
- € -
A3 W39 3
~ F—= =~ H— ~ H—
. b — " b " b—-
- - -
i I
g3 :34¢%
o v 1 'g =
ii i

Figure 21.

% 07/MO01-Q/e

Output Switch Network No, 0, Logic Diagram

37

BI/00 NSO SOOBL TWW €3 - (2

110M

E9P Y IV - Y

S0CPL Juv @8 -

wmo |

OSN ¢

GROUND 819 - #1% O

GROUND LiT-7>7

DO/MTCLA-CLK 184 O
ALK

OSN #! [0OSN 00C/10
|
-
I 1omBang L
Lombam ocm
10MB8R0 oce
s {5 i [I s | ;[:. k|
7442w l__l TAIASW } f rauswv]__
: cs 3] as - 3 e g
LEL l 1ol] T
JJJ JJ
-
I

GAOUND
1 e ‘.c?
) 11eEan; b

!)
! uuGero .
L

-
2 s o v
e
e {3 {o |~ ozﬁli :X;I; U

IR

11snouTo
/MER-C
E——r

lluou."

[d
N BROYT S
JMIER-1

GROUND. S

At
D /M8 CLM-CLX (o8 — ~ —of B2 " Taazw
21l H “ H P s >
; T
’ 3 | I
-
GAOUND CIE-PIe
-
al 0
D2/M8 CLA-ZLE S 08 = - —a B3
LN) -
b H
.
. 3
-
ve.
e
2
Al

Sa/MecLA-cLK e1a ‘;ga_—-—_aﬂ_
[l

L{ Tarasw

B Al -
T -

|

GROUND g12-#18

A2
£4/M3 CLA-CLE K37
ver

o
128ROUT ¢
susER-Y

GROUND

Vii £3-FD

13u08R2 9t O=

130N

13uBBRO te
LY

D3/MZ CRLLR a0 —
L]

it

30

Tas2W
C2

©

»

T
e

2

741450
AZ -

7‘::‘ .

e QAN

e
) ca
- TTT BT

D3/ MS BROUTO/ MSERO
03/ M4 BAOUTO/ MSERO
04/ NS BROYTO/ MIERO
0%/ W2 BROUTO/ MSERO
O/ Wi MMONTO/ MSERCQ
077 WO SROUTO/ MSERO

j—
0O/MT BROUT |
716 WROUT |
Mg BAOUT |
M4 BROUT |,
3 SAOUT I/ W
0%/M3 BROUTH,
T6/Mi BROUT!
DY/ M) BROUT
DG/ NP BROUTD / MSER O
©1/ 96 BROUTO/ NSTR G

ot
LLLI nT abirL P11}

zv

6oBuaDE Y nu"unuuu*
79975 9 _
|
[| I G-
~ L1 — . I ..ﬂ 3 .
- ty i - [§] * - " » - L 1Y N
MEPINL — L.X41273 g oY MTT -¥IDON/LD
ua BEIE HEBERKE L v
0 43 OHGINYT
23 MEUINeT
SHER
e od ¢
[- T
&
= 1
. = “ . "
4 24 = - CIIRAPRRETLY, 1
_ 2 2
v
“a- 1P QNNOWD
_ |
= L - :
T .
- . [— :
| i | b "
- 2y e ~. [2) . = s an
MEYIYL nervl o "
“ T L

8 OwIgnE!
W gnel
VHQANET
[7 TR 1Y

e
HEERFRIRER LR

-«
-

rofs] 3

Ty

— a-0 ONNORD

. (14 kd
nowinl

DR EIE

LD ",
LY314/) Zlve e e g

ﬂ
(1 | !
- _ﬂkw__.ll — ._.m‘ ﬁ.-ul 4
|

-
formeem
r
"
0]
3,
-
o
-

Output Switch Network No. 1, Logic Diagram
38

Figure 22,

3 x 20y % T3
- » - : g
§ 88 ¢ &2 -
bid '9' '_Q
i
d
<
|
+—
L } S il &
chb bbbl L T DN N PN N
2 L) 3] 3 s T’:{ [- —
- S s 2] > 2 e
|n 1 T l‘ — o 10
i PP
LCT Tt TN
(B g s b » ja b b ! s {2 3 }a b3
s 1 as " 5] e . a - >~—
:} ressie :a.J] rarac niw
G I | QY OO § QR O §
Y <
41 Ny
bbb sl PRI EEGRY L
CN] o “ s cu " i] o . ¢
:‘H raine "‘:% raisiw ‘Ll rain. .
. 0 1 T 0 | o 0 8
hd -
. ¢ N
’ s Je b I A RS ENIING v ta by fs [s fia {is s
| - . : » " s - . [
= e ‘ =l . }"““ = .
P4 CHI R | R |
?Lr T
L[1 L LELEELY T ERE
» 2 ' Ll ae \ r— il as 8 —
Y R] = e P 1'3! o S
GO < | |
6 LI 06 d 0oded b
u? k- - 3L 3% 3T % o3 ; <
o o = g ~ = ~ £
£ EEE sy E5E
S S 2 S~ 'S 2 2 = s>
: ii2 § il s

WOTE ISNO! HAYE COMMON GROUNDS AND VOLTAGES THAT
ARE D.FFERENT THAN THE OTHER PACKAGES.

vee - B8
D €23,523

3 vees-3
YAE¥- |

i g

M g

v400¢

<o Tamy CT

laieg-

E..

B

)
s}

at “w
T8ty

L

H O 4

ks ba b 3o

o (3 7 b

. "
113

-fske)-

Taiw
iy

I
rdads e Jo [Top

ar "

TN

1)

[
ol ——

T

O 1Y T4D/NDY-1/S

-

L
fo ba Jo &,
© .

RECR

resisiw

)
v}
g_{

| O

[

TA0/W0I-25%

I30/MOI-2/%

T20/M0I-2,%

Ti0/MBI-2/6

100/M0T-2/6

0 €29 D8/MRD0- 377

O ot8 Da/MIOO-3, T
—rw—() DM DI/ W4DC- W7

O 3+ Q2/M300- 3/7
D1/

MECO- 37

Tassiw

hd
T
i BhbT

. “w
teisw

—

F e

G €2 DO/MTDO-3/7

—ISNOO—

<

T40/M0L -3/7
130,

MOY -3/7

120/MDI-3/7

T 10 MOI-3/T

JO0/NOT-3/7

D7/ WORKSCLK

D7/WORHSTLR CNO

DE/MI RMSCLK

D6/ Ml RHSCLK -GAND
®

08/ W2RHSCLK -GNO
AH SO K

4/ Mg SOLR
D1/ ¥ RHSCL K -GND

0G/UTAHSCLK
OC/M7RHSCLK - GNO

TAD/MRETCLK
TA0/WRE TCLK -GMO

I 30VWRE TCLK
TBO/MRETCLK GWO

1IN /COm

B eas M &1 rq
s

GROUND

3
A

v i

-
a
~
=
*
-

Tam /I

Figure 23.

gﬁ

K2U/MRETCLE
T20/MRETCL K- GND.
LI0/MRETC X
KID/MRETCLK-GND
MRETZLK

10D, MRE TCL 0 3MO

Input Switch Network No. 1, Logic Diagram

40

i

»OLTE

S S . i
. T § T “
: L T T s HEIE
GO T 1 [| |] o Ay_émmwu > ¥
' v O S o 1t -
" oz I
o IR _
SR B I S S e 1 i B
R 3ol
o S e y
; 1. . 34 HE
1_ft . L B i HH
__mwm@\ 1| [aia’ ! .
zs/ = A _ —
h S :f b
Sy Bl] g
Wmmmmo R RN P oy ! - AR o8
WH) e B vl F
ot - mmwm H LS HH
m g0l I o §1f g BT |
[i i £
L gt S :
2 v& m “ f@! vy £ m e
i : o3 [i 2
w__mww@ w_ i} m i £
T m S _I_..__J m W MWV
s 3 mmmm
! 3
mm _“ | Il J- _ DWmm
¥ ode JBT
i

NEUTRAL,

ary
uTv

Figure 24. Power Distribution System

-7 Vee CLOCK

| [=
CIDN O € B A CLR -
CARRY cTup
LOAD {COUNTER) x
>
YO SECTIONS
{ $—— » FOR OTHER
' INTERPRETERS
— — - —— o — e e
CLEAR 1#0 POWER l
[1#0 ON/OFF
PUSH SWITCH
' BUTTON l
l | |
Vee I g; ‘ 1
SINGLE l ‘
{shor ! { l
u
‘ Vee
| l R CLK O {SOLID <
o STATE \ |
| 3 RELAY)
- T |
— I
| TO REMOTE
PROGRAMMING
TERMINALS OF ‘
| I#0 POWER SUPPLY
\ l TO SECTIONS
—+ FOR OTHER
] ‘ INTERPRETERS
* THIS SECTION l u l
DUPLICATED FOR
ALL OTHER I) 8
INTERPRETERS 1#0 I#0 HIGH SPEED
SYSTEM POWER cLock FOR |
' cLOCK ON 1#0's MDC !
* _J

Figure 25, Implementation of Multiprocessor Clocks

41

1#1 POWER ON

1 #2 POWER ON
1# 3 POWER ON
14 4 POWER ON
1 #0 POWER ON
I1#0 6Ci
1# 1 GGl }1__ 1#0 SET
GC! INHIBIT
t#3 co —
1#3 6l 3"!—
1 #4 5Ci
\), 141 SET
I#0 SET GCI GCl INRIBIT
REQUEST L
I1#2sET
I # i)
L#1 SET 601 3,\— p—— e
REQUEST
0—-—1
1# 3 SEY
- GCI INHIBIT
I#2 SET 6CI }
REQUEST
—
1#4SET
GC! INHIBIT
I #3 SET 6ol
REQUEST

Figure 26, Conflict Resolution Logic for Global Condition Bit GC1

42

to an Interpreter. This is done by a front panel switch setting the flip-flop (which
will shut clocks off) and turning the solid state relay on, which will then short
acrogs the resistor on the remote programming terminals of the Interpreter's
power supply, turning the power supply off. When the front panel switch is set to
turn power back on, the solid state relay will turn off, opening up the output of

the relay and turning power back on to the Interpreter. However, if clocks were
applied at this time, they would start during the powering up of the Interpreter and
would continue even though no valid information existed in the Interpreter's Micro-
program and Nano memories,

To avoid this problem, clocks are not restarted until the Clear pushbutton is
pressed on the front panel, which is done in conjunction with pressing the Load
pushbutton for loading the Microprogram and Nano memories from the loader
card reader, Since during loading, a pseudo Type II instruction is forced by the
loader, r> clocks will be present to initiate any memory or device operations
until loading is completed and the microprogram just loaded begins execution.

GLOBAL AND INTERRUPT CONDITION BITS

The two global condition bits in each Interpreter are used by programmatic conven-
tion for locking out other Interpreters during a read-modify-write to system tables
resident in S memory. This is done independently for each of the two condition

bits by not allowing an Interpreter to set its ccndition bit if any Interpreter's
condition bit is already set or if a higher wired priority Interpreter is requesting

to set its conditicn bit at the same time. This was initiaily to he done by chaining
the priority through the Interpreters so that no external logic would be required.
However, if an Interpreter's power were turned off, the chain would be broken and
the same global condition bit in two Interpreters could have been set. To avoid this
problem the global condition bit and the requests to set the global condition bits are
brought from eacl Interpreter to a centralized location. (The Switch Interlock was
chosen, although this logic is totally independent of the Switch Interlock operation,)
In this centralized location, the power-on signals show 1 previously in this cection
are used to allow only signals from powered-on Inter eters to participate in the
conflict resolution. This conflict resolucion logic is , w~ered by the system power
supply and ia turn sends enables baci to the Interpretecs for getting the global
condition bits. This conflict resolution logic is shown for one of the zlobal condition
bits (GCI) in Figure 26, The same logic is repeated for the othcr global cond.ition
bit (GC2).

The Interrupt Interpreters condition bit, zlthough having no priority logic associ-
ated with it, has the similar problem of heving a signal from an Interpreter that
is elther powered down or whose power is undergoing a transition, setting the
Interrupt condition bit in other Interpreters in an uncontrolled manner. To avoid
this. the Interrupt signal and its control coming from each Interpreter are gated
againgt the power-on signal for that Interpreter. These gignals are then all ORed
together and sent back to all Interpreters. This logic (shown in Figure 27) is
also located in the Switch Interlock and is powered by the system power supply.

43

I #1 POWER ON
1#2 POWER ON
I #3 POWER GN
1 # 4 POWER ON

1#0 POWER ON
INTERRUPT
l#o[mrsnnupr CONTROL

INTERRUPT

1 INTERRUPT CONTROL

INTERRUPT

2
g INTERRUPT CONTROL

1#3 INTERRUPT CONTRQL.

[INTERRUPT

1#£4 INTERRUPT
INTERRUPT CONTROL

Figure 27,

-]
]

I
T

&

Implementation of Interrupt Controls

44

INTERRUPT
TO1#0

NTERRUPT
TOL# 4
INTERRUPY
TOI#2
INTERRUPT
TOI#3
INTERRUPT
Tol#4

REAL TIME CLOCK AND THE HORNS

One device (device number zero) has been permanently assigned to a device called
a '""real time'' clock, which is used programmatically to determine the failure of
a task running on an Interpreter. This use is explained more fully in the Multi-
processing Control Program and Demonstration Programs section of this report.
This device is merely a 32-bit counter that is counted up at a rate of once each
256 Interpreter clocks. It is powered by the system power supply and runs
continuously, This device is read just as any other device attached to the Switch
Interlock and must be locked to in order to ve read. Since programmatically this
counter is used as an interval timer, a potential problem exists if the interval

to be timed were started just prior to this device overflowing (once every 240
Interpreter clocks). This can be avoided by forcing the programs to test the value
of the counter to insure it will not be reset during the interval of interest,

Also physically located with the real time clock are five, 4-bit counters, one
associated with each Interpreter. These counters, called horns, if not reset,
will overflow after every 220 interpreter clocks (approximately every 1 second
for a 1 MHz Interpreter clock rate), These counters detect an Interpreter
waiting for a response from a memory or device that has failed. An overflow
from one of these counters will force a one clock time STEP and will set a
condition bit in its associated Interpreter which then can be tested by the
Interpreter. To avoid continual setting of this bit, each counter is reset every
time its associated Interpreter does any memory or device operation. These
operations should occur often in any program except perhaps during internal
Interpreter diagnostics. These diagnostics should not require 220 Interpreter
clocks to run but if they did the horn for the Interpreter may be manuvally
turned off.

INTERPRETER NUMBER

Each Interpreter is logically identical to all other Interpreters. A multiprocessing
control program, however, must have a means of distinguishing between Inter-
preters. This is accomplished by wiring the most significant four bits of the next
to the most significant 8-bit byte of the Z -input to the adder, to the connector to
which the loader cable is attached. Ground and +5 volts are also wired to this
connector. Within the other side of the connector, which is part of the loader
cable, ground and +5 volts are jumperedtothe 4 bits of Z input to appropriately
indicate the Interpreter number, right justified within the 4-bit field.

SECTION IV

AEROSPACE MULTIPROCESSOR PACKAGING DESCRiPTION

MECHANICAL DESIGN

The aerospace multiprocessor is housed in a cabinet consisting of two bays 21
inches wide by 25 1/2 inches deep by 68 inches high (Figure 28). The Inter-
preters, and Switeh Interlock modules are built up of mechanically similar
submodular sections. The S memory module and power supplies are commerically
available rack mounted units.

Each of the modules is made up of several finned aluminum castings (Figure 29)
with massive heat sinks for mounting of the printed wiring boards and direct heat
sinking cf the LSI packages, Modificatinn of the finned aluminum casting allows
direct heat sinking of conventional dual in-line packages for the MPM and
Nanomemories, The 5-inch by 5-inch by 1/2-inch thick submodule houses two LSI
chips, as many as 98, 16-lead flat packs or as many as 45, 16-pin dual-in-line
packages, depending on its function in the system.

Each of the Interpreter modules (Figure 3 and the Switch Interlock module is
packaged complete with its own backplane and I/O connectors to simulate remote
physical distribution of the modules.

To maintain a close physical arrangement with simulated module distribution,

all of the Interpreters are mounted on a common mechanical structure which allows
the multiprocesser to be mounted as a single unit on a shelf extending at right
angles to the front of the two electronics cabinets. as shown in Figure 1. The
multiprocessor is mounted on a swivel to allow direct access to the wire wrapped
backplane during debugging and testing procedures.

47

@O 00

SYSTEM MEMORY

INDICATOR AND
LIGHT CARDS

LIGHT PANEL
SWITCHES
FANS

POWER SUPPLIES

|

Figure 28, Aerospace Multiprocessor Configuration

48

6V

.200

+.0C0 fo-Tvp

1 - 005
-*-t NI ’—L- 4.330%.002 -
+.002 i
! 13]t
D Ly . 138] *
.270 Typ *.005 st ! v r
] 4 Places f g3%
450 1 .04 vEe
4 Flaces
4.660
4,600 Ty,
- p4-— 080 Typ '.005
3 Places
¥
H]
- N
& P
; 3
.
8
|
Lo
Lo
L = uan ‘
s e0n | v i
& Holes ™ Y !
~ .06 Radiue é%% } |
S 8 Placus . | | |
e . | T W
Min. Redtun o L f 3T ¥ -r,— r !
| 2 Dia, i 1 . l" AN IO
Gire. Sew or ' b= gx | Il
P s sE Lid=Z 4 ,
.0 h
—] 450 e JE— W00 a0 — -——?—-————"‘ i g
4,000 ‘ ' °
-, 002 ! E
bra S X 369 depin

4.600 002

1207 C-Sink X 20 Oia.

3
| / I Places
| 1

(XL ER T T
b +a e . o,
- - — - - [— 8§
;:00* - e -
e he P IR o

t_,ﬁ.__

Figure

[N
1.500 + 002 -—v-*—--———~—---——l ™

5.000 £ 007 mim e it e

¥

P 4 kows ot Holes
40 ex. Row oo L0 coud-ry
.00t

[——

0 e
W \4} /;._ b orot 352
o % 43908 . 000 -.09%

e

29. Submodule Housing

S

1
ogo* *Ul

S T

|

.y

<ou
0G0
00'0

i

8

=3

T

b
s

CROSY SPOYTON
5,00 * .
L B « . N 1]
o wlal s o &
Ef:s:sus[:l%

VIN DETAIL, 3 PLACES

LSI
PACKAGE

" oma 300 €

DUAL~IN~- LINE
MEMORY COMPONENTS

5.75"

Figure 30. Interpreter Module Packaging

50

g;gure 3l1is a photograph of the system as installed at Wright-Patterson Air Force
se,

?‘igure 32is a plan view of the Interpreters, Switch Interlock and connectors for
interconnection among the modules.

CIRCUIT CONFIGURATIONS

The L8I multiprocessor system is implemented with the three types of submodules,
The Microprogram and Nano memories in the Interpreter both use Fairchild 93410
ceramic dual-in-line packages, each containing 256 words X 1 bit of memory,
interconnected with a four-layer printed circuit board mounted on the opposite side
from the packages as shown in Figure 33. Since the selection of this package,
Fairchild has introduced the 93415, a 1024 word X 1 bit memory package with
approximately the same power dissipation as the 93410, This more dense memory
package is recommended for future Interpreter systems.

The Loader submodule in the Interpreters and all submodules in the Switch Interlock
use standard 54/7400 series flat packs which are mounted on either two or four
layer printed circuit boards which are then mounted on the two sides of the
aluminum plate submodule as shown in Figure 34, The packing density of the

flat packs is typically between 25-30 per board, since most of these submodules
are pin limited and would have required six to eight layer boards to achieve the
maximum packing density of 49 flat packs per board.

The remainder of the Interpreter logic is implemented wii:h Texas Instruments
discretionary wired, transistor-transistor logic (TTL) using their "N" and "S"
arrays as follows:

8~bit Logic Unit (two Type ''N" slices)

Memory Control Unit (two Type '"N' slices)

Control Unit (two Type "S" slices)
This type of submodule is shown extended above the Interpreter in Figure 30,
A summary of the general characteristics of the individual arrays is given in
Table II. Appendix II is the final report from Texas Instruments Incorporated on
the LSI arrays.
Texas Instruments informed Burroughs in December 1971 that they were discon-
tinuing fabrication of LSI Discretionary Routed Arrays (DRA) after the conclusion
of their present commitments. However, several alternative packaging approaches

exist which could package the Interpreter logic as densely as in the LSI/DRA
approach of Texas Instruments.

51

4

Figure 31,

)
!
i
I
!
i
H
]
H
i

Aerospace Multiprocessor Installation at Wright-Patterson
Air Force Base

€S

ZSETSOF
24,12 EACH

a/n)
A - Signals
3 - Grounds

CONNECTORS
L
PIN

PIN

FROM CLOCK

'rll: :-) ,;VROM DISTRIBUTION AND
hDEY: COUNTER DEVICE

TO & FROM

8 MEM,

MODS.

2 SETS OF

P . 24/12 EACH

dUVAS

2N 0

=

51"

dIYls ‘WYdl

w2

GROU Nm———'—l

SlGNALS——]

(24/12)

(80/15)

(80/15)

T

{74/38)

(43124
)_
rf -—J
- .
B ° 7
- .

[TERM. STRIP]

J
fm——r

SWITCHES
4 LIGHTS

P4
(74/38} (14/38Y
(43/24) (93724
}_ -
- Y _{ I
o 1
- —
- -
{
] TERM. STRIP] TERM. STRIP
' 1
— et
SWITC HES SWITCHES
& LIGHTS & LIGHTS

Figure 32,

1438,

{03/24)
- —{
‘-' -
b— ‘3 -
}_ -
- -
- -

TERM, STRIP

e
SWITCHES
& LIGHTS

Multiprocessor Interconnection Scheme

{MIR, INCR, BR, MAR DISPLAY & CLOCK, LOAD SWITCHES)

~ NANGZ
- —
cu
- o
= | CLU
3 ,mﬂ 10
= -
%] 2
a 1L) W
o ILU
; B MCy
- LOADE;d
¥ -
i MPML
£ MPM2
TERM. STRIE
ln———-—-s. " «——-——-‘
¢y ¥

{

SWITCHES
& LIGHTS

¥S

Figure 33.

Microprogram Memory, Nanomemory Submodule Packaging

gg

Figure 34,

Loader, Switch Interlock Submodule Packaging

Table II, Multiprocessor LSI Array Details

9¢

Number of Cells
Number
T of Test
LSI/ODRA Typical Input Qutput |Exclusive | 3-inp. ! Z.inp. Equivalent Patterne
Name Number Function Power Pins Pins OR NAND | NAND | ANI | FF Gates* Required
LU #1 3013 B Reg., Adder, BSW1 Controls 3.14 67 28 18 93 75 30 8 420 338
LU #2 3014 BSW1, BSW2, A-Reg., MIR 4.10 47 34 16 113 17 26 32 662 207
CU #1 3015 SAR, Clock Controls, Adder Decode 2.82 36 35] 83 0 21 22 389 452
CuU #2 3018 Condition Reg., MPM Contant Decods 2.7 40 15 10 (] 17 6 14 3 786
MCU #1 3017 BR's, MAR, CTR, MPAD Controls 3.52 42 36 11 7t 4 23 38 487 348
MCU #2 3018 MPCR, AMPCR, LIT, INCR. 397 58 M) 86 16 31 36 562 531
N-slice Total Available 60 232 b6 B2 100
(Recommended Ussage)** {18} {70 (17 |(25) | (30)
Sliae Total Availabie 8 26 30 48 58
(Recommendad Useage) (10} {60} (19) {2n (28

®Exclusivit OR = 3 gates; 3-inp NAND = 1 gate; 7-inp. NAND = 1 gate; And-Nor-invert = 7 gates; Fiip-Flop = 6 gates
**Recommended Dasign with up to 30% of sach single circuit type. This due to limitation on routing
capability, not to circuit yield.

Three of the approaches are as follows: .

1.

A flat pack version of the multiprocessor can be produced with the
same volume, weight and power requirements as the LSI version.

The logic provided by two LSI chips can be duplicated with a maxi-
mum of 98, 16-pin flat packs as shown in Figure 35. With the use
of multilayer boards, the 98 flat packs can be interconnected

on the same 5-inch by 5-inch 1/2-inch thick heat sink as used for
two LSI chips.

By utilizing 60«pin hybrid flat packs as produced by TI, it is
possible to package two 8-bit Logic Units on a single heat sink as
shown in Figure 36. The Control Unit and Memory Control Unit
can be packaged together on a single heat sink to provide a reduc-
tion of 1/2 the original volume. This technique would use Shottky
low-power TTL.

A third approach which would give the same volumetric density
as the present LSI model would be to utilize Hughes LSI which

is produced by a proprietary pad-relocation process. The Hughes
chips could be produced as one for one replacement of the LSI
arrays used in the present processor or as a replacement for

the logic on two LSI arrays that are presently mounted on one

of the submodular housings.

57

58

Figure 35. Altevnative Packaging Approach Utilizing 16-pir

Flat Packs

68

Figure 36.

Alternative Packaging Approach Utilizing 60-pin
Flat Packs

(3 e —r—p—

RGO
. WRRCEDIIG PaGE BLANK.NOT FILNED

SR~

SECTICN V

INTERPRETER OPERATION

During each clock period, a microinstruction is read from the MPM. The first
four bits of this microinstruction indiczte which of two types of instruction it is.
If it is a Type ! instruction, the remaining bits of the MPM word specify a Nano-~
memory address to be accessed. The Nancmemory is then initiated and its output,
a set of 54 bits, provides the control functions as indicated in the listing below,

Nano-Bite

1-4 Select a condition.
5 Selects true or complement of condition.
6 Specifies conditional or unconditional LU operation.
7 Specifies conditional or unconditional external
operation (memory or device)
8-10 Specifies set/reset of condition.
11-16 Successor controls (wait, skip, step, etc.),
17-26 Seiects A, B, and Z adder inputs
27 Byte carry control.
28-31 Selects Boolean and basic arithmetic operations.
32-33 Selects shift operation.
34-36 Enables input ‘o A registers.
37-40 Selects input(s) to B register.
41 Enables input to MIR.
42 Enables input to AMPCR.
43-48 Enables and selects input to address registers and
counter (MAR, BR1, BR2, CTR).
49-59 Selects input to SAR.
51-54 Selects external operations {read, write, lock, etc.),

MPM load, or Nanomemory load.

61

29

Dynamic
CLOCK (il Conditions CLOCK (i+1} CLOCK (i+2) CLOCK (i+3)

{from Instruction
FETCH PHASE | i1 EXEC PHASE
COND
Instruction |—»M —»N . TEST
J AND
succ
DET
C.R. ——————[»AIS >ADDER —]»BSW —DEST —
Oynamic
Conditions
(ADV,ABT,MST,LST}
-—1 —————————————— L ————— -J»- ——————— s R G A W T — A Wt e A it i
COND
FETCH PHASE TEST EXEC PHASE
AND
_{ suec
[F>M —=N | cer
Instruction
M - CR. el wAlS —=ADDER et DEST —tig
Dynamic
Conditions
{to Instruction
j+2)

M = MPM ACCESS TIME
N = NANO ACCESS TIME
COND TEST AND SUCC DET. = CONDITION TEST AND SUCCESSOR DETERMINATION

BSW = BARREL SWITCH
DEST = BARREL SWITCH QUTPUT DESTINATIONS;L.E., REGISTERS (B, CTR, ETC.) AND THEIR INPUT LOGIC

C.R. = CONTROL REGISTER AND ASSOCIATED LOGIC
AlS = ADDER INPUT SELECTION FROM COMMAND REGISTER

Figure 37, Timing Analysis, Type I Instructions

If the microinstruction is Type II, the remaining bits of the MPM word are stored
into one or two registers: namely, the SAR, LIT, SAR and LIT, or the AMPCR.
The determination of which registers are to be loaded is specified by the first bits
of the MPM word. The Nanomemory is not accessed during a Type Il operation.

Each Type I microinstruction has two parts {(or phases). The first feiches the
instruction from the MPM and Nanomemory and the second executes the fetched
instruction. Figure 37 illustrates these two basic phases of each Type |
microinstruction.

The fetch phase involves: MPM accessing, Nanomemory accessing, condition
testing, selection of controls for the next instruction (successor) address com-
putation, and, in parallel, loading the control register for the execution of the
microinstruction. A fetch phase occurs for every Type I microinstruction and
requires one clock time. Since it always overlaps the execution phase of a
prior Type I microinstruction (Figure 37}, the performance of each micro-
instruction reouires effectively one clock interval.

The execution phase also requires one clock time and always overlaps the feich
phase of the next Type I instruction. The control signals for the execution phase
are from the output of the control register and have two parts: signals specifying
the logic unit operation (adder input selection, adder function, barrel switch
shifting, etc.) and signals specifying the destination register(s) loading (i.e.
clock enables). Both sets of these controls apply continuously from the start

to the end of the phase; however, the destination registers are not changed
until the occurrence of the clock pulse which signals the end of the execution
phase and which simultaneously reloads the control register for the execution
of a new logic unit operation. The completion of the execution phase (i.e. the
destination register(s) loading), may be delayed or suspended for one or more
clock times.

Suspended execution phase is the name given te an execution phase clock time
whose logic unit operation has been and continues to be performed but whose
destination register loading is postponed for one or more clock periods. This
is accomplished by inhibiting clocks to both the control register and the destina-
tion registers, The register loading part of an execution phase depends on the
subsequent microinstructions which follow the Type I instruction,

This suspended execution phase can cccur for three primary reasons. The first
and most frequent occurrence is when the next instruction from the MPM is a
Type I instruction. This Type Il instruclion is executed during the same clock
time it is fetched and the execution of the Type I instruction in progress is held
in this suspended execution phase until the next clock interval. This allows the
fetch phase of the next microinstruction {if it is 2 Type I} to have an excecution
phase to overlap. This provides condition bits {(generated dynamically during the
execution phase of a microinstruction) that can be tested during the fetch phase of
the next Type I microinstruction.

63

A. Type | followed by Type | for which a logic operation is required:
1. Type | F E
2. Typel F
B. Type | followed by Type i1, followed by Type | for which a logic
operation is required.
1. Typel F SE E
2. Typell i
3. Typel F
C. Type | followed by Type | for which no logic operation is required,
followed by Type | for which a logic operation is required.
1. Typel F SE E
2. Typel F
3. Typel F
Fetch
Execution } Type |
Suspended Execution

Type i

Figure 38, Instruction 1'iming

64

This instruction overlap is more graphically illustrated in Figure 38 where the
horizontal scale is "time'. Example A of Figure 38 shows the case of sequential
Type 1 instructions. Example B of Figure 38 shows the case of a Type I micro-
instruction followed by a Type II, which causes the execution phase of the pre-
ceding microinstruction (a Type I) to be suspended so that the execution will
overlap the fetch phase of the third instruction (also a Type I}). In case the third
instruction had also been a Type II, the execution phase of the first micro-
instruction (the Type I) would have again been suspended. It is important to
realize that since the execution phase of a Type I microinstruction is delayed by
a Type II, the SAR, LIT, or AMPCR registers could be loaded with a value that
would change the result of the operation during ‘he completion of the execution
of the Type I microinstruction.

The second reason for the occurrence of a suspended execution phase is due to
the existence of conditional logic unit operations. A Type I microinstruction
which does not contain a conditional logic operation always has a fetch phase

and an execution phase. However, a Type I microinstruction which does con-
tain a conditional logic operation falls into either of two categories: if the
condition is met, both the fetch phase and- execution phase will be performed;

if the condition is not met, only the fetch phase will be done. However, even
when the execution phase of a conditional Type I microinstruction is ignored,

the fetch phase of the next Type I microinstruction must have an execution phase
to overlap in order to have values for dynamic conditions. This is accomplished
by forcing the prior Type I instruction into a suspended execution phase, which
inhibits clocks from the destination registers and control register, which causes
the execution phase of the current microinstruction to be disregarded. This is
shown in example C of Figure 38. Example C shows a suspended execution phase
occurring when the condition tested in the second microinstruction is not met,
resulting in discarding the execution phase of that second instruction. More
detailed examples explaining the above concepts appear in Figure 39, where CR
refers to the command register, the vertical lines indicate the occurrence of a
clock, and an X appears over clocks which are inhibited from occurring.

The other reason for a suspended execution phase is for use during th2 loading
of the MPM and Nanomemory.

Since microprogram timing is important in the execution of microprograms
on the Interpreter, the following summary of timing concepts must be kept in
mind by the programmer in the creation of microprograms:

1. A fetch phase of a microinstruction is always executed in

parallel with an execution (or suspended execution) phase of
another microinstruction.

65

1. All Type I unconditional instructions
a, Al +B -+ Al
b, A2 +B -= A2
c. A3 +B - A3

d. Al C —= Al;

opCR

b4

PCR

2. All Type I instructions
where both AOV and ABT test true

a. Al +B - Al
b. If AOV then A2 + B-» A2
c. If ABT then A3 + B—# A3

d. Al C-+Al;

»CR
£

A4

AQV TP' >+CR

E

Az

ABT T;_st cpCR

»CR

3. All Type I instructions where
AOV tests false; ABT tests true

a. Al +B =+ Al
b. If AOV then A2 + B—# A2
c. If ABT then A3 + B—#A3

d. Al C-eAl;

a4

»CR
SE

CR Remy

Al

AQV Test
F

X

ABT 'l":uf c+CR

gins @

w'!

d--

CR

4, Type 1 and Type II instructions
Resulting A2 contains least 4 bits
left justified

a. 2—»SAR; 3—»LIT
b. A2 and LIT C—» A2
c. 4-—» SAR; 15— LIT

d., Al C—s Al;

Typell

24

rS

3L

4

CR Remg

A

ling b

Figure 39, Timing Example

66

318

d-

FCR

2. A suspended execution phase occurs primarily due to a successor
that is either a Type II or a Type I microinstruction which containg
a conditional logic unit operation that has not been satisfied.

3. A suspended execution phase of a Type I microinstruction which
consists of both a fetch phase and an execution phase) does not
become completed until the occurrence of another Type [micro-
instruction which also consists of both phases.

4. Any microinstruction which either causes a suspended execution
phase to be initiated or prolongs an existing suspended execution
phase is actually executed in time between the fetch phase and the
execution phase of the affected Type I microinstruction although
it may programmatically follow it.

The sequencing of microinstructions is also important in understanding the
Interpreter operation.

The secuencing of Type I microprogram instructions is controlled by the

following procedure: The MPM addresses the nanomemory which provides
information to the condition testing logic indicating which condition is to he

tested, The condition testing logic provides a True/False signal to the successor
selection logic which selects between the three True and three False successor
bits (also from the Nanomemory). The three selected bits (True/False) provide
eight possible successor command combinations listed below and alse shown

in Figure40. A Type II microinstruction (which does not access the Nanomemory)
has an implicit STEP successor.

Wait Repeat the current instruction

Step Step to the next instruction

Skip Skip the next instruction

Jump Jump to another area of MPM (as specified by AMPCR)
Retn Return from a Micro subroutine

Call Call a Micro subroutine, saving the return address
Save Save the address of the head of a loop

Exec Execute one instruction out of sequence

The particular chosen successor command then provides controls used in the
selection (MPCR/AMPCR) and incrementing logic which generates the next MPM
address. Except for the EXEC command, the MPCR is loaded with this MPM
address.

67

29

MPW:

Address MPM NANO (54)
(15) T T T
Felse b a3
l Nano Address Successor '
or Other
SAR,LITAMPCR CONDITION Controls
True TESTING
DECODE Successor
l
Typelorl 3
From MPM True/False
From SUCCESSOR
! IER Barrel SELECTION [
Switch
MPCR AMPCH
SUCCESSOR COMMANDS
Command Selection Incrament Comment
Y WAIT MPCR Q
SELECT AND e STEP MPCR 1
INCREMENT 0/1/2
sKiIP MPCR 2
JUMP AMPCR 1
RETN AMPCR 2
CALL AMPCR 1 MPCR-+~AMPCR
SAVE MPCR 1 MPCR— AMPCR
EXEC AMPCR 1 Inhibit; MPM
addr — MPCR
Figure 40, Microprogram Instruction Sequencing

SECTION VI

SWITCH INTERLOCK OPERATION

OVERALL SWITCH INTERLOCK CONTROL AND TIMING

Figure 41 is a block diagram of the Switch Interlock (SWI), connecting five Inter-
preters to eight devices and eight memory modules, The transmission paths
through the SWI break the 32-bit data word into 8 wires carrying 4 serial bits each,

Only Interpreters can issue control signals to access memories or devices. A
memory module or device cannot initiate a path through the Switch Interlock, but
it may, however, pvo;lide a signal to the Interpreter to an unused condition bit
via a display register , a device connected to the SWI. Thus, transfer between
devices and memories must be via and under the control of an Interpreter.
Connection with a device-like port is by "reservation" for exclusive use by an
Interpreter and is maintained until released by that Interpreter or in the case of
that Interpreter failing. (A memory could be attached to a device-like port if
locking of an Interpreter to a memory is desired.) Connection with a memory-like
port is for the duration of a single data word exchange. (Note also that a device
could be attached to a memory-like port. To simplify the description however,
these two types of ports will be referred to just as device ports and memory ports
in the following discussion).

*No digplay register is being delivered with the aerospace multiprocessor, but

is an eagily designed device that could take a variety of forms. Basically,

setting any bit in the display register would set the condition hit in the Inter-
preter. When this bit is tested true, the display register would be read, relurning
either the entire register, a masked portion of the register, or possibly the
address of the device with the highest priority interrupt, depending upon the design
of the display register device,

69

0L

MODC L X] MOC
oc MC
(23 Io 1, (z)
ADDRESSES sse Ty YTy [Ty see ase P e
AND 4
ENABLES o sr | SR [sw h SERIE ADDRESSES
AND
~P ~ /)/‘ ENABLES
. » /
: \\ : q NEMONY
DEVICE(S) voe
oo o0 1 21 1
0% MODULE ADDRESSES
n ADORESS . Aogggss .
oSN . To 3, ~|wamomy
DEYICES MEMORIES 7
DATA by DATA
. OSK OSN .
BEVICE(S) o : 10 10 : v MIMORY
T
e 7 | DEVICES MEMORIES
O
n DATA DATA
. ISN ISN
H FROM FROM
oy | DEVICES MEMORIES | M7

NOTE : The widths of the ISN/OSN'a are dependent upon

the number of bits being transmitied seriolly,

Figure 41.

Switch Interlock, Block Diagram

5 {NTERPRETERS
¥ MEMORY MODULES
8 DEVICES

Controls are routed from the Interpreters through the MDC to the MC and the DC
which, in turn, check availability, resolve conflicts, and perform the other functions
that are characteristic of the Switch Interlock. Data and addresses do not pass
through the MDC, but are wired directly to the OSN's.

Events are initiated by the Interpreter for access to memories or devices, The
Interpreter awaits returp signals from the MDC, Upon receipt of these signals,
it proceeds with its program. Lacking such positive return signals, it will either
wait, or retry continuously, depending upon the Interpreter program (and not on
the Switch Interlock). A timeout waiting for a response will be performed by a
counter {called the "HORN"} that will force a STEP in the microprogram after a
preset length of time and will set a condition bit to indicate a failed memory
module or device due to the lack of a response. This counter is reset every time
any memory or device operation is done.

Among the significant signala which are meaningful responses to an Interpreter
and testable as conditions are the following:

Switch Interlock has The MAR and MIR of the Interpreter
Accepted Information (SAD) may be reloaded and a memory or
device has been connected.

Read Complete (RDC) Data is available to be gated into the

or Request of Device B register of the Interpreter or the

Complete (RDC} device written to has accepted its
information.

Horn Overflow (HOV) No memory or device operations have

have been performed for the last 220
Interpreter clock times.

The rationale for this "handshaking' approach is consistent with the overall
Interpreter-based system design which permits the maximum latitude in the
selection of memory and device speeds. Thus the microprogrammer has the
ability (as well as the responsibility) to provide the timing constraints for any
system configuration.

For each Interpreter, the Switch Interlock provides three buffer shift registers.

1. Address data for S memory and devices from the specified
MAR1 or MAR2, (XDA).

2. Output data from the MIR, (XDO),

3. Input data for assembly and subsequent acceptance into the
B register. (XDl). Data in this register may be repeatedly read
non-destructively until the next device or memory operation is
initiated {the last read may be concurrent with the next operation),
provided no intervening instructicn uses a B register input
selection involving the MIR.

71

DEVICE OPERATIONS

The philosophy of device operations is based upon an Interpreter using a device

for a "long" period of time without interruption. This is accomplished by "locking"
an Interpreter to a device. (The reader is reminded that a memory could be
attached to a 'device-like" port.)

The device operations include lock (DL), read (DR}, write {DW), and unlock (DU).
Each device operation uses as a device identification the value of the most gigni-
ficant three bits of BR1 or BR2 as indicated in the operation suffix, e.g., DL1.
This identification is not stored by the Switch Interlock; consequently it must be
maintained until the device operation is completed, or until some other device or
memory action is desired. Any change to the device identificaticn while a device
operation is in progress breaks the selected path to or from the Interpreter. Un-
less the normal completion occurs concurrently, the prior device operation is
terminated. The value in MAR and in the least significant 6 bits of BR1 or BR2
pass through the Switch Interlock to the device as required. A signal indicating
read or write is placed in the most significant bit of the XDA shift register in
place of one of the module address bits which are not needed by the memory
module or device.

The ground-rules for device operations are listed below:

1. An Interpreter must be locked to a device in order to read from
or write to that device.

2. An Interpreter may be locked to several devices at the same
time.

3. A device can only be locked to one Interpreter at a time,

4. When an Interpreter is finished using a device, it should be
unlocked so other Interpreters ceu use it. Devices locked to
to a failed Interpreter are unlocked by turning power off to
the failea Interpreter.

A block diagram of the DC is given in Figure 18 in the Multiprocessor Hardware
Section of this report. One primary purpose of the DC is to resolve conflicts
in device lock (DL) and device unlock (DU) requests that may occur.

The second purpose of the DC is to check to make sure a device is locked to an
Interpreter that is requesting to read from, write to, or unlock from that device,
This is accomplished by the "Lock Check for Device Operation"” in the right

of Figure 18.

72

If an Interpreter igsues a read or write command in an attempt to control a device,
and it has not previously locked the device, it will not be given access to the de-
vice regardless of its (the Interpreter's) priority status, However, as stated
above, if it had previously locked the device, it has explicit priority to that

same device.

Device Lock and Unlock

Timing diagrams for DL and DU operations are shown in Figures 42 and 43. Inboth
cases, controls from the Interpreter (Nanobiigs 51-34) are strobed into the mem/dev
operation register of the MIIC if either the Type [microinstruction is unconditional
or the selected condition is true, independent of whether the next instruction is
Type 1 or Type II. A Device Operation signal and either a L.ock Request or an
Unlock Request are derived from the output of this register and are sent from the
MDC to the DC, concurrent with a 3-bit address being sent to the DC from the
selected base register output of the Interpreter.

For the case of either a DL to a device previously locked to the requesting Inter-
preter or a DU to a device previously unlocked from any Interpreter (shown in
Figure 432), an appropriate status signai is returned from the DC tothe MDC, and
conflict regolution for actually performing the DL cr DU is of no consequence,

In these two cases, the flip-flop in the MDC for synchronizing the SAT signal is
set with the next clock., The actual SAT flip-flop in the Interpreter will then be set
with the second clock and will test true during the fetch phase of the third
instruction following the DL or DT,

However, for the cases ¢ 2 DL to an unlocked device or a DU to a device locked

to the requesting Interpreter (shown in Figure43), conflict resolution is necessary,
The DL request from the highest priority requesting Interpreter is honored over

4 co-occurring requegt for the same device from any lowe:r priority Interpreter.
Concurrent DI or DU requests for different devices may cause the lower priority
request to incur a one clock delay in achieving the DI, or DU and in return ot SAl,
for each higher priority request, Congequently DI, or DU requests from Inierpreters
other than the highest priority may be arbitra ily delayed. The earliest confirming
SAI regponse oceure 3 inst: uctic .~ a‘ter issue of the DL or DU. If SAT is true,

then the DL or DU was successiul, L1 SAi is talse, then it meuns thai the DL

or DU i3 not vet successful, The design justification for this potential arbitrary
deiay is that DL or DU are infrequent events for which asbitrary delay is of

little consequence,

Device Read »1.1 Write

A timing diagram fer DR or DW is skown in Figure 44, As for DL ana WU, controls
from '.e [aterpreter (Nanobits 51-54) are strobed into the mem,;dev opecation
recster of the MDC {f either the Type T micioinstruction is unconditional or the
selected condition is true, independent of whether the next instruction is Type |

or Type 11 Contrels derived from the output of this register will next load th-

ouatput shift reginters of tne Interpreter and wili send a Device Operation signal

73

INT to

MDC ta
DC

INT to
DC

DG to
MIDC

MDC to
INT

Within
INT

NOTE ¢

|

|

__Il Lock Req./Uniock Req.
|

_l_j Dev Op

|
i selected
I3-Mr. Address i base regis-

J | ter or

| EXTOP uatil
l Locked/Unlocked R

PoteTateteteveteds the iadica-,

|
| | e Zted clock. |
i

' | ssat Il
{
I I SAT in INT

(Stays set until tested)

CLK l[U U
]
|

Programmer
muse¢ nok
change
value of

i
|
|

L |
|
:
!
|

(A X IR I IHNND
QXXM II KRN

Levels on diagram indicate validity
or nonvalidity and not necessarily
logic level,

Figure 42, Timing Diagram for Device Lock to Device Previously
Locked to Requesting Interpreter or for Device Unlock to
Device Previously Unlocked from Any Interpreter

= Ty]

INT ta
MDC 1 i
Nandbits ; | |
l Lock Req./Unlock Req. | l !
MDC to v
be ! l I Propran st
- N oprarmer mue
L ll Dev Op. | i @ not change value
; i | of «selocted baso
" \ T e - x registor cv EXTOP
INT to _;-J BBl Addvess | ! &_ untbil inadicated elock.
De i \ | i
DC to ! ! J Lockod Mo loeked | m
MDC ’ = |
! |
. | " ptrtvonn SERNRRNPRIN
MDC Lo f l weat R . ; L
INT ! | \
Withln ' ! i I SAL iu INT,
INT .- (Stays svt ancil tescoed)
NOTE 2 Intevval ol fnteeral
Love bs on diavram indicate number ot o lock
validity o) noavalidity periods, Existy Lf
and not neceessarily higher prioriuy Interprecer(s)
Lagic level, requediing lock o or uslock

rrom ANY deviee, laterval = 0
A
1 no highoer prioritly requests,

Figure 43, Timing Diagram for Device Lock to Unlocked Device!
Unlock to Device Locked to Requesting Interpreter

74

GL

U U L

: . !
vy 5 : . Length of interval is !
L Z‘.’anobits7 i i device dependent | |
! i ! i ! N I
MY o '[)ev -Op : H { m l
™ . 1 : l i Togrammer
INT 1. : C ; == nust not change {
‘Kt v -——-l 3Bt Address . : ! I M valw of sclegted l
‘ : . | t > base register o. |
DC to : 3-8 d Buffere T EXTOP until
. 3-Bit Addressed Bufferzd | i m the indicated [
- ’ } ! l clock. '
I to _ [Locked i | M
MG . . . N) I
, Load QOutput, ! !
e | | Shifr Reglstgrs ! | !
MDC to {

Cutput Shitlt g(,-ristera{

| lClt*ar te Devx e

R N B E N |

E
"
[

;1.;_. CLK to Device I l l i l l ! R_-_IL_H___H_M

OsSxN

MDC to { SSAL '—]

.7 T

INT to Dita/adde. I Bir 3 (Lijﬁlt Th_ 1lau o] . i ! !

| i

L . Il SRDC :L___

Within ' : I SAL (Stavs set untilitested) | !1 RDC

| {Stays set vntil testrd)

read or writs2 I

}

i

. . 1
\ - 11 i cgis -]
interface ror loading output shift registers these signals

i , .
Syachronized respoase from devicd to device {
|
i

are aynchronized

xt ‘
. 4 Initiate I4vice
' '

st Court 4 clocks whiis

Bev.cu shi:ting i1 dak.,

L.osice { -

ty :
1SN : R

i |
i
— . he H.S. clock
Recarn H.E. CLK I 1 , l] l J I i to t
- : Their relation-]
|
|

| ship to the Incer|
[sit 3 [sic 2[Bic 1]bic 0 | preter clock de-

NOTE: lewels on dlarran ind cate v.o [ldicy
¢r ronvalidit, and ne . nece ‘saritv
locir level.

—_— pends upon
""access" time

thru device,

{ISB) (Return pata)

rigure 44, Timing Diagram for Device Read or Write from Device

Locked to Requesting Interpreter

from the MDC to the DC, concurrent with a 3-bit address being sent from the
selected base register of the Interpreter to check the lock status of that device.
After it is confirmed that the device is locked, the DC returns a signal to the
MDC which will cause a clear pulse to be sent to the device interface logic
through the device OSN and will initiate the setting of SAI and the transmission
of high speed clocks to the cutput shift register of the Interpreter and through the
OSN's to the device interface.

For both a DR and DW, the device interface counts four clocks coming into it and
then stops accepting high speed clocks. In the case of a read, the device interface
usually waits for some kind of Data Available signal from the device (such as
"column strobe' from a card reader) which it will use to load its output shift
registers and to allow four high speed clocks which are still arriving from the
OSN to clock these output shift registers and to be returned to the MDC and the
Interpreter with the serial data. The MDC will count four return clocks and

will set a flip-flop in the MDC for synchronizing RDC. This signal is sent from
the MDC to that Interpreter, for setting RDC, which then will test true during
the following clock time. The value in the selected base register must not be
changed during a device read, as shown in the timing diagram.

In the case of a write, the response is very dependent upon the particular device
being interfaced. For the card reader, the next four high speed clocks are turned
around and sent back to the Interpreter (status was chosen to be sent back as

a "bonus"). In the case of the printer, a signal saying the last character was
accepted by the printer is used by the device interface to allow return clocks.

The four return clocks are counted by the MDC and are used as a means of saying
that the device accepted the data sent out by setting .RDC-as for a DR. As in the
case of a device read, the value in the selected base register must not be changed
during a device write.

Device Use Sequence

The sequence of device cperations necessary for an Interpreter to use a device
is as follows:

1, A test of IF SAl should be included in some instruction to reset
it, This usually can be in the instruction with the unconditional
dcvice operation.

2. Device Lock Request: The most significant three bits of the
indicated base register are used as the device identification.
The third following clock time will be the earliest SAI could
have become irue. SAI is then tested,

*Devices such as the real time clock (described in the Multiprocessor Hardware
section) howzaver, do noi require a signal such as Data Available for synchronization
cince ther are already synchronized to the Interpreter clock,

76

2,1 If true, then the device lock was successful,

2.2 If false, then the device lock was unsuccessful. The
request remains in progress while other instructions
not changing the device identification or issuing other
memory or device operations may be executed. The DL
request is terminated by the first of the following actions:

{a) The Interpreter initiates another memory or device
operation,

(b} The Interpreter changes the device identification in
the selected base register,

(¢) The device becomes available and sets SAI. All co-
occurring actions are valid. Should (a) and {c} co-occur
or (b) and (c) co-occur, SAI refers to the DL for the
following two instruction times and should be tested.

In the instructions thereafter, SAI refers to the new
memory or device operation. Should termination by
(b) occur without co-occurrence of (¢), the new device
identification applies to the DL still in progress, and
the path for SAI return is diverted to the newly identi-
fied device (if there is one so identified) without
reissue of another DL,
Once the desired device is locked to the Interpreter,—a -sequence of
one or more data exchanges may be initiated using a device write
or device read.

Device Write: The data in the indicated base register is user

to specify the device, and the data in the MIR provides the
information to be written to the device. The second instruction
after the device write, SAI may be tested., If true, the Inter-
preter is locked to the device, the data in the MIR has been ac~
cepted by the XDO register, and so the MIR 1nay subsequently be
changed, If false, the Interpreter was not locked to the requesting
device.

The device provides four high-speed return clocks to generate an
RDC when it has completed the requested write, Similar to DL,
the request continues until the first of the corresponding 3 actions.

(a)- The Interpreter initiates another memory or device
operation,

(b) The Interpreter changes the device identification,

77

(c) The DW is completed and sets RDC, All co-occurring actions
are valid. Should (a) and (¢) co-occur or (&) and {c) co-
occur, SAI refers to the DW for the following instruction
time and should be tested, In the next following instruction
SAT then refars to the new memory or device operation.
Should (b) not co~-occur with (¢), then the DW in progress
is diverted to apply to the new device identification without
reissue of another DL.

5. Device Read: The data in the gpecified base register is used to
specify the device, The second instruction after the device read,
SAI may be tested. If true, the Interpreter is locked to the
device; otherwise not.

The device provides four high speed return clocks with the
returning data to generate an RDC after the device read. Thus,
the same instruction that finds RDC true may include BEX.
RDC should be reset by testing prior to use for device read
(usually as part of the prior instruction using BEX).

6. Device Unlock: When use of the device is cormpleted, the lock
should be terminated by issuing a device unlock. An SAlis
returned if the issuing Interpreter was locked to the device,

An attempt to unlock a device that is not locked to the Inter-
preter will not return SAI, SAl is available for test at earliest
the third instruction after the device unlock.

MEMORY OPERATIONS

Memory modules normally cannot be locked and are assumed to require minimum
access time and a short "hold" time by any single Interpreter. (The reader is
reminded that a device could be attached to a '"memory-like" port.) Conflicts

in access to the same module are resolved in favor of the highest priority
requesting Interpreter. Once access is granted, it continues until that memory
operation is complete. When one access is complete, the highest priority

request is honored from those Interpreters then in contention.

The memory operations include read (MR) and write (MW), Xach memory opera-
tion uses as a memory address the value in MAR1 and MAR2 (BR1 or BR2 con-~-
catenated with MAR). The most gignificant 3 bits of the address specifies a
memory module with the rest indicating locations within the module,

The MC, shown in Figures 19 and 20 of the Multiprocessor Hardware section of
this report, provides for resclution of conflicts (this is fixed or wired priority)
among contending Interpreters, Once conflicts have been resolved and acc: 4s

has been granted to a memory module by an interpreter, the MC "remembers’ this
connection throughout the memory operation, allowing the selecied base register
to be changed as opposed to requiring the selectecd bage register value to be
maintained as for device opcrations. This register also allows for future

78

modification to the MC to allow ''remembering’ the connection until that Inter-
preter uses a different memory module., This would allow almost a one clock

time faster access to the memory moduie if the next request iz also to the
remembered memory module, gince no priority resolution need take place.

More specifically, when a memory module would be requested by an Interpreter,
the module name would be coempared with the register which would contain the
number of the last module which that [nterpreter accessed, If it would match,

the priority logic would then be bypassed, thus saving time. If it would not,

it would mean that the mernory either had been previously used by another
Interpreter, cor would presently be in contention for by other Interpreters, or would
presenily beinuse by another Interpreter. In this case the requesting Inierpreter
would route its request through the priority logic {(a few gate levels of delay).

When access would be granted, the memory module address would then be clocked
into the register in the part of the MC for the requesting Interpreter by the rnext
Interpreter clock and the register for any uther Interpreter containing that address
would be reset to all zeros.

If locking of a memory module is required for purposes of block transfers or

sitnilar reasons, a memory ig designated as a device and is placed under the
control of the DC in which locking is permitted.

Memory Read and Write

A timing diagram for MR and MW is shown in Figure 45, As for device operations,
controls from the Interpreter (Nanobits 51-54) are strobed into the mem/dev
operation register of the MDC if either the Type I microinstruction is unconditional
or the selected condition is true, independent of whether the next instruction is
Type I or Type II. Controls derived from the output of this register will next

load the outpvt shift registers of the Interpreter and will send a Memory Request
signal from the MDC to the MC, concurrent with a three bit address being sent
from the selected base register of the Interpreter. This initiates the priority logic
in the MC, When the MC ha3s granted access by that Interpreter to the memory
module it was requesting, a signal is returned from the MC to the MDC that will
cause a clear pulse to be sent to the memory interface logic through the memeory
OSN and will initiate the setting of SAI and the transmission of high speed clocks

to the output shift registers of the Interpreter and through the OSN's to the memory
interface.

In the case of a memory write, the counter in the MDC will count four output high
speed clorks and will then stop them,

In the case of a memory read, output high speed clocks are not counted, Instead,
these higi speed ciocks are continually sent to the memory module interface.
This interface will count four clncks coming into it and will then initiate a
memory read., Upon return of a data available signal frem the memory, the
memory interface will loaa its output shift registers and then allow four of

the higl. speed clocks that are still coming through the OSN to clock these output
shif. registers and to be returned to the MDC and the Interpreter with the chifted

79

08

e LI L
NV ot U u
MW ! i ! |
1N.mubits§ |
1

Programmeg nust not start another MEM OPI Lo same
same modu1e until memory busy is reset, "6
!

!
|

M o 71_] Memory Reguest ! ‘—I
W t '

INT Co ! I 3-8it Address !

X i ! (Programmer must uot cHango value of sel(cted Hase register unt{l :his clnckﬂ
MO to i -Bi S5) d ‘
ngu/‘]gw ——J] Bit Address Bufered | ! Length Jf interval dependent J M
| : | upon merjory access time. |
MC to | 1 [_1 Access Granted |
MDC _— ———
! i |
Within ——
“C Memory Busy | I Reset by Cycle Cornplute l
|
l load Quiput ' : I
| 1 | Shift Registers | ! i
MDC to i | { [[mm === = == = — = — e m e e e e — .-.._i
INT i
I s, ek voouepue sk, [[L [T [1 L1 M M |
; : [! i |
| ﬂ Clcar to MEM Interfade |} ' i
MDC to i] t { '
oSN I 4.5. CLK to MEM Theer(ace | | | I I l | ! | I I | l | I I | | | 1! |
IDa { T] l ! ! 1
ta —— i
197 to " adar| _ Gic 3 (15B) foic 2 [ase tfsico]t i ! 1
OSN | { ' i | i l
HDC to I | $SA BE e
_— SSAX — -- - SIGNALS WITHIX THIS ____. SROC |
INT ' i | BOX WILL REMAIN AT I |
! |-—— i l"’*"‘"——“
Within i H {Stays set until tested) SAL ! ﬁ;gggm MEMORY | RDC (s:ay. set until I
INT } T j | Initiate, ’ - i tested.)
} Il | Memory '
—_——— | Read or | Synchranlzed response (data o’vnil- I
At | | Count 4 clocks while \ Write 4 able) from MEM to MEM interface
MEM shifting in Data [for loading output shift regs., |
i r | ! 8 8
Iacerface - | ——— These signals [
1 I v | i I are synchronized
| i iy {Return H.5. Clock l I | l I | I l . to the H.5, Clock. |
MEM —-—— _———— “ Their relationship
e ! [{ to the Interpreter
intarfac i \ I a 5
To ' [[! l I Clock depeads upon
18N - ! ! - h“t 3 2 1 0 “access” time thru |
‘ |) (LSBY (Return vaca) memoty |
! ' R S E m__~__~“_J
¥rom MEM | _m Cycle Complete] 1 Ly-.!.e Comblete I |(Reutl MEM busy)
to MC 7" T Tt

NOTE: lLevels on diagram indicate validity
or rnonvalidity and not necessarily
logi: level.

Figure 45.

Timing Diagram for Memory Read or Write

out data. The MDC will count four of these memory return clocks and will then
stop the high speed output clocks and set RDC indicating that the data has been
shifted into the Interpreter input shift registers and is ready to be strobed into
the B register.

Memory Use Sequence

The sequence of operations necessary to access S memory is simple in single
Interpreter systems where no conflict in access can exist. In such cases once
the address setup is complete (as is the MIR for write), the memory read (or
write) can be initiated. After a suitable time the data from memory can be
accessed via BEX or BBE. In the presence of conflict potential, the following
control sequence should be used. This sequence is recommended for systems
without a Switch Interlock as well,

1. Mermn.ory read

1.1 A test of RDC should be included in some prior instruction in
order to reset RDC. By convention this should be the previous
memory read (or device read or write), A test of SAI also
should be included in some prior instruction in order to reset
SAI if address register changes are required after issuing the
memory read before the RDC is returned, or if confirmation of
access to the switch interlock is desired.

1.2 The address should be in the selected base register and MAR,

1.3 The memory read can then be initiated the instruction after
the address has the desired value.

1.4 An SAl is returned when the Switch Interlock has accepted the
address and the memory is connected to the requesting Inter-
preter through the Switch Interlock.

1.5 A group of intervening instructions can be issued, depending

on the relative speeds of the Interpreter clock and the S memory.

Once SAI is set and tested, these instructions may change the
address registers,

1,6 An RDC (read complete) signal is returned when data is avail-
able for entry into the Interpreter.

1,7 1If no intervening device or memory reads occur and no inter-
vening instructicn used a B register input selection involving
the MIR, BEX may be repeated, each time receiving the data
in XDI non-destructively.

81

(lear
| {Times Measured at 2V Level)

30ns, — — p—230n5. —
i I ! ! f'or Mem
e 330ns. —) :*—70“5.: Ql'ite
itigh Speed) ! ' I N
Clack] \ ‘
1Y ’
! -

60ns ‘ ! For Mem Read or
— :‘— Dev Read or Write
]

Datu Address Complement of

Bit 1 MIR BR-MAR

Bit 3 {(1.sB) Bit 0

Pata Transitions /

(a) Timing of Signals from SWI to Interface

‘1—230ns. -

Return High !
Speed Clock
I

I
: 1 —l lr-w 30ns.
i
— ! | |
S
Farliest t
Aliow able 13it 3 | 13it 1 Bit 0
Return (Ls) : e
Dutt i Complement
s of
: }-— Data Transitions & B-Register
I.arpsar / Data
\HNowahle s
leturn Bit 3 (I.SB) RBit 2 Bit 1 Bit 0
Iara J
(h) Timing of Signals to S\WI from Interface

Figure 46. SWI/Interface Timing Signals

82

2. Memory Write

2.1 A test of SAT should be included in some prior instruction
in order to reset SAL

2.2 The data to be written should be in MIR.

2.3 The address should be in the selected base register
and MAR.

2.4 The memory write can then be initiated the instruction
after both the address and data have the desired values.

2.5 Return of SAI indicates that the memory is connected and
therefore the addre~s and data have been accepted in the
XDA and XDO buffer registers respectively, and thus the
address registers and MIR may be subsequently changed.

INTERFACE TO SWI

The interface to each memory or device port is functionally identical. For the
aerospace multiprocessor, the interface from the SWI to the memory or device
interface congists of a clear line, a high speed clock line, 8 data lines of 4 serial
bits each and 4 address lines of 4 serial bits each. (The most significant bit of the
BR is replaced by a read/write signal in the serial address sent to the memory

or device port.) The interface from the memory or device interface to the SWI
consists of a return high speed clock line and 8 data lines of 4 serial bits each.

The relative timing of these signals at the interface is shown in Figure 46. The
timing in this figure was measured using one Interpreter and memory module

only at the indicated frequency and should not be interpreted as resulting from any
worst case timing analysis. In Figure 46a, the 330 nanosecond delay from clear
to the high speed clock becomes smaller as the frequency of the high speed clock
is increased. The widths of the clear and the 60 nanosecond deiay frorm high speed
clock to data are independent of the frequency or width of the high speed clock.

In Figure 48b, the relationship between data and clock should be independent of
the frequency or width of the high speed clock.

A block diagram of a generalized memory or device interface is shown in Figure
47. The bottom half of the figure shows the accumulation of the serial input data
from the SWI, and the top half of the figure shows the transmission of the serial
output data to the SWI along with the return clock,

a3

Data from Mem or Device

""Data Avail” from
Mem or Device

AVAILABLE
SYNCHRONIZFR

T 1
] |
DEVICE DEFPENDENT LOGIC
s Load
Serial Data ‘ OUTPUT DATA °
to SWI SHIFT REGISTER .
Cik,
Return
H,&.Clk.
ta SW1 Preset
Value
Clk.]
OoUTPUT
Load COQUNTER
DATA
Clear
from SWT-
H. 5, Clk
from SWI
Preset
Value
icad
INPUT
c1c COUNTER

Nerial Acdr,

from SWI

smerial Data

{rom W]

Frgure 47,

INPUT DATA 1
SHIFT REGISTER l

Clk.
INPUT ADDRESS

SHIFT REGINTER
Input

DEVICE DEPENDEXNT LOCIC

DEVICE DEPENDENT LOGIC

i

' |

j .

To Mem or Device

lo Mem or Device

Memory Device Interface with SWI, Block Diagram

84

DEVICE INTERFACE OPERATION EXAMPLES

Line Printer

The printer is device No. 1 {i.e. the most significant three bits of the selected base
register are 001). It is assumed that the appropriate locking to the printer will
have been performed prior to initiating printer operations.

Line Printer Operation

The values of the bits of the MAR accompanying a DW or DR to the printer are
interpreted as follows:

MAR 7 (LSB) unused
MAR 6 { = 0 for forms controls in six LSB's of MIR
= 1 for character in six LSB's of MIR
MAR 5 { = 0 when transferring characters
= 1 when printing or using iorms controls
MAR 0-4 unused

The following sequence will print a full 132 character line followed by a single
space.

Printer/Interpreter Synchronization

To synchrenize the Interpreter with the printer clock, a DR with controls bits 010
in the least significant three bits of the MAR is issued. This operation has no
effect upon the printer, but causes the DDP to return an RDC on the trailing edge
of the next printer clock.

Printer Buffer Loading

133 characters must be transferred intc the print buffer. The last 132 of these
will print from right to left on the line. The first character is totally ignored,
Character transfer is initiated by a DW with control bits 010 in the least signi-
ficant three bits of the MAR., The 6 least significant bits of the MIR which are
present at the end of the Fetch Phase of the instruction containing the DW are
transferred into the printer buffer as a BCL character. After the character has
been accepted by the printer an RDC is returned. In the same clock in which
this RDC is received, a DW containing the next character must be initiated as
described below under "Timing Considerations''. The first DW in the sequence
of 133 should wait for the RDC which is received from the synchronizing DR.

Print Initiation
When the RDC from the 133rd character transfer is received, a DW with control

Lits 100 in the MAR and all zeros in the MiR is issued. This control will cause
the printer to print the buffer.

85

Single Space Initiation

When the RDC from the print is received, a DW with control bits 100 in the MAR,

a one in the least significant bit of the MIR and zeros in all other MIR bits is issued,
This will cause a single space. Other spacing can be done instead by placing

other values in the six least significant bits of the MIR. The format of the MIR for
forms control is as follows,

MIR 31 (LsSB) PSSL ONE for single space
30 PDSL ONE for double spzce
29 FC1lL

Format controls for variable spacing

33 f Ei; (110000 for bottom of form)
o6 FOBL (000100 for top of form)

25 unused

24 unused

Delay for Printing/Spacing

A delay of approximately 150 milliseconds must elapse prior to filling the buffer
for the next line, With this delsy a continuous printing speed of 400 lineg per
minute can be maintained.

Status Information

When RDC is returned from either a DW or DR, a BEX instruction will bring status
information into the B register as follows:

B 31 (LSB) PRRL Ready, ZERO when ready

30 PAML Paper Motion, ZERO when paper in
moticn or print cycle in progress

29 PCYL Cycle, ZEROQO when print cycle in progress

28 EOPL End of Page, ZERO when end of page senced

27 PPEL Parity Error, ZERO for transmission parity
and/or print counter sync error

26 PFCP Final Character Pulse, ZERO after last
character of line

25 unused

24 unused

If the program does not test for the not ready condition and the stop hutton is
pushed, the program will continue to send and receive information from the
1DP although no actual printing will cccur and data will be lnst, To control
printing, the ready level reed only be tested cnce each line prior to filling the
print buffer, since the not ready condition (STOP light on) cannot occur after
. load buffer instruction until the line has been printec.

86

Timing Considerations

Loading of the printer buffer involves the trausfer of a BCL character from an
Interpreter 1o the printer every 10 microseconds. Because the data transferred
should be present on the printer input lines for at least 9 microseconds prior

to its acceptance by the printer (for reliable settling), only 1 microsecond should
elapse between the termination of transfer of one character and the initiation of
transfer of the next, If less than 9 microseconds are allowed for settling, some
bit positions with value 0 will be read incorrectly as 1, thus causing random
incorrect characters to be printed.

The transfer of data from the printer input lines into the printer buffer occurs
every 10 microseconds on the trailing edge of the printer clock pulse. This
clock pulse also causes the status bit to be sent to the SWI from the printer DDP.
After the last of these data bits has been received by the SWI, the return of an
RDC to the Interpreter is initiated. Because of resynchronization delays in the
SWI, this RDC will not be detected by the Interpreter until 2 1/2 clocks later
on the average. The Interpreter must then issue a new DW containing the next
character to be loaded, This character will begin transferring into the DDP at
the end of the clock in which the DW i3 initiated. The transfer will take

4 high-speed clocks to complete, at which time the new character will be pre-
sent on the printer input lines, and will begin settling. The entire process
described here should vccur within 1 microsecond in order that 9 microseconds
will be available for settling.

Card Reader

The card reader is device No, 2 (i, e. the most significant three bits of the
selected base register are 010.) To be used the card reader must be locked
to an Interpreter and the base register must select the card reader, Upon
successful completion of DL, an SAT is returned to the Interpreter.

To start up a card reader it must be sent proper bits in a DW or a DR
instruction, The values of the MAR accompanying the DW are inierpreted
as follows:

Least significant bit: 0 Don't return data to S\WI
1 Return data to SW]

The LSB is normally a 1, the 0 value allows skipping cards or testing card
reader mechanical functions without data or RDC returns to the SWI,

Next to L3R: 0 Return character bits as data
1 Return status bits as data

Third from LSB: 0 Read as BCL
1 Read as Hollerith

This Hollerith reading function is not wired on the present card reader DDP for
the 6 high rows (11, 12, 0,1, 2, 3); only the .ole pattern for the 6 low rows
{4, 5, 6,7, 8, 9) are returned.

Fourth from LSB; 0 Don't operate card reader
' 1 Operate card reader

The 0 value allows checking of DDP functions without the noise of the card reader.

These control bits apply to the DW which they accompany and to all following DR's
for this card reader until changed by another device write, Upon completion of

a DW, data is returned to the Interpreter via the SWIand an RDC oceurs to mark
the end of the data reply for the write. When status is selected as data, the status
returned with the DW (and subsequent DR's, if any) is valid, however the character
returned with the DW is likely to be meaningless, The status bits returned are
these:

LSB: CRL: Ready, ONE for ready
CCL: Present, ONF for duration ~t each caprd
CREL: Error, ONE for reader detected error
CRCL: Start, ONE for START button Not operated
EOF: End of File, ONF for Hopper Not Empty or for EQOF

button Not operated (ZERO for Empty Hopper
and EOI" Button operated,)

Not used: Z.ero
Not used: Zero
MS B: Not used: Zero

Immediately upon receipt of a DW containing bits set to operate it, the card
reader begins to read cards at its maximum rate, Since the DDP for the card
reader has but a 1 column buffer, it is necessary for tlie programn in the Inter-
preter to send a DR instruction for each column, The synchronization of DR's
and column reads in the DDP is as follows: Case 1. The DR arrives at the DDP
before the column read is ready: The DR waits at the DDP until the column
read is ready; then transmits data and return clocks to the Interpreter. If during
this wait another SWI operation is invoked which returns as RDC before the
column read is ready, the DR in the card reader DDP is lost and a new device
read must be sent to the card reader to capture the data of this column., Upon
sending the data of this column, the state of the DDF is set to show no column
read ready. Case 2: The DR arrives at the DDP after the column read is ready.
The DR immediately returns data and return clocks to the Interpreter and sets
the state of the DDP to show no column read ready, I during the actions of this
DR, another SWI operation is invoked which returns an RIIC before the DR is
complete, the DR in the card reader DDP is lost, the card column is lost and
the control sequence of the DDP is confused.

88

SECTION VII

INTERPRETER MICROPROGRAMMING

Microprogramming is that proccdure the designer uses to specify the action,
function, and state of each of the Interpreter logic elements during every clock
time. (A historical background of microprogramming is given in appendix I).

In this sense, microprogramming replaces the function of hardware sequential
logic used to cause the machine to execute an instruction requiring more than one
clock time., Thus, microprogramming is essentially similar to sequential logic
design, However, no logic (hardware) is added in the sequential logic design, but
rather the existing registers, data paths, and control gates are used in a specific
order to bring about the desired logical result.

The pattern of ones and zeros in the Microprogram Memory (MPAL) and nanomemory
(together with the data) determines the operation of the Interpreter. The micropro-
grammer is concerned with the generation of these patterns to provide the desired
control functions, However, instead of actually writing these patterns, the micropro-
grammer is assisted by a microtranslator (or assembler) that allows him to write
microinstructions muemonically, The microtranslator then scans these instructions
and produces the pattern of ones and zeros to be placed into the MPM and Nano-
memories,

Figure 48 indicates how one can learn to microprogram the machine and the sim-

plicity of the microprogram structure, The high degree of parallelism in the Inter-

preter is also evident from the powerful statements that can be expressed. For

example, the following actions may be expressed and performed in one instruction:
test a condition (for either True or False)

set/reset a condition

initiate an external operation (e,g., memory read)

89

086

Twpe | — Use of nano memory {54 bits)

A B
) 7 8-10 5154 1741 4250 1113 14-16
Nanobits () () @) 25)) (3))
*. If Condition then Condition Adjust; External w MCU/CU; True Succ elsa False Succ
GC1/2 Set LC1/2/3 Main A Select Controi for: wait wait
LC1/2/3 Set GC1/2 Memory: 8 Select step step
SAl Set INT Read “Nrite Z Select AMPCR save save
EX1/2 Resst GC Adder Function ggry/2 skip skip
MST Device: Shift Sefsct MAR jump jump
LST Read/Write Destinationls) cog exec exac
ABT L ock/Untock SAR call call
A0V retn rstn
cov Load MPM
INT Load Nano

ROC
*Groups A and B may be executed either conditionatly as shown or unconditionally by being placed before condition tast.
Type || — Loads sny of 3 specified registers (no NBNO MEMOry 8ccess, step successor)
Four variations
k — SAR
k = LIT

k - AMPCR
Ky = SAR; kp- LIT

Figure 48, Microinstruction Types

perform an add operation

shift the result of the add

store the results in a number of registers
increment a counter

complement the shift amount

choose the successor ricroinstruction

It is also possible to perform these operations either conditionally or uncondi-
tionally as suggested in Figure 48, The group A and group B portions (either,
neither, or both) of the microinstruction may be placed before the condition test
portion of the instruction. This will result in that portion (A and/or B} being
performed unconditionally.

The following four microinstruction examples illustrate both the parallelism and
the conditional /unconditional properties of the microinstructions.

(1) If NOT LST then Set L.Cl, M31; Al + B+ 1 C—=A2, MIR, CSAR, INC;
Step else jump

(2) Set LCI, MRI; If NOT LST then Al + B+ 1 C—~A2, MIR, CSAR, INC;
Step else Jump

(3) Al + B+ 1C-A2, MIR, CSAR, INC; If NOT LST then Set LC1, MR1;
Step else Jjump

(4) Set LC1, MR1; A2+ B+ 1 C=A2, MIR, CSAR, INC; If NOT LST then
Step else Jump

In (1) the LST bit is tested and if not true, the local condition 1 (I.C1) is set,
memory read is initiated (MR1), the function Al + B + 1 is performed in the
adder, the adder output is shifted circular and the result stored in both the
A2 and MIR registers, the content of the shift amount register is complemented
(CSAR), the counter is incremented (INC), and the true successor (STED) is
selected. If the LST bit is true, none of these operations are performed and the
false successor (JUMP) is executed.

In (2) the LC1 is set and the memory read is initiated (MR1) unconditionally
(i.e., without considering the LST bit). The remaining functions are conditicnally
performed as in (1),

In (3), the functions A1 + B+ 1 C-A2, MIR, CSAR, INC are performed uncon-
ditionally but set L.C1 and MR1 are performed conditionally,

In (4) the functions Set LC1, MR1, A1+ B+ 1 C - A2, MIR, CSAR, INC are

zll performed unconditionally and only the successors Step and Jump depend uvon
the LST test.

91

TRANSLANG FOR MICROPROGRAMMING

The TRANSlator LLANGuage (TRANSLANG) program is an assembler for Interpreter
microprograms. The complete syntax of TRANSTLANG is given in Appendix IV, It
employs a vocabulary of reserved words and symboils used to develop a micropro-
gram and itg corresponding table of nanoinstructions. Reserved words and symbols
are grouped as defined in this report to form microinstructions and programs. The

reserved words are summarized in Appendix V;

Two versions of TRANSLANG exist for the aerospace multiprocessor. One version
is written in Burroughs Compatibie ALGOL which can run on both Burroughs B 5500
and B 6700 systems, This TRANSLANG is deacribed in this section and in more
detail in Burronghs Microprogramming Manual for Interpreter Based Systems,
TR70-8, The second version is written in FORTRAN for the CDC 6600, and is de~-
scribed in A FORTRAN Microprogram Translator, an Air Force Institute of Tech-
nology thesis GGC/EE/72-2. Tne TRANSLANG syntax and semantics for the
FORTRAN version are the same as that described here and in TR70-8 with the
exceptions listed ir an appendix to the thesis.

Each TRANSLANG line corresponds to one microinstruction which is the set of In-
terpreter functions performed in parallel at each machine clock. The constructs
include iterative mechanisms, I/0, Boolean, logical and computational operations,
control transfers and assignment functions. in order to provide control points for
transfer operations, each instruction may be labeled with a symbolic microaddress,

The INSERT function has been included to allow for the use of a macro library of
previously debugged microprograms,

Conventions in Language Description

Backus-Naur form (BNF) is uscd as the metalanguage to define the syntax of
TRANSLANG, The tollowing BNF symbols are used:

1. () Lett and right broken brackets are used to brucket the
. names of syntactic categories.

2. = Colon colon equal means "is defined as' and separates
the name of the syntactic category from its definition,

3. | Bar separates alternative definitions of a syntactic

ategory.

4, { } Left and right braces enclose an English language
description of a syntactic unit,

92

Any character or symbol in a metalanguage formula which is not a metalanguage
symbol and is not enclosed within matching braces or broken brackets, denotes
itself,

Basic Elements

(Lettery ::= AlslciplElF]claltlsliklLimIN]O
PiQIR|S|TiU|VIW|X]|Y!Z

{Digit) ::= ol1}2|3f4)sj6j7l8}9

(Hex Digit) ::= (Digity) |A|BIC|D|EIF

{Symbol) ::= sl = mi e)

{Single Space) ::= {One horizontal blank position}

(Space) ::= (Single Space) | (Space) (Single Space)

(Assignment Op) ::= =:] =

{Character) ::= {Letter) | ({Digit) ‘ (Single Space) i (Symbol)
{(Comment Character) ::= (Character) | .| # &8 {{]1i\{/
(Empty) ::= {’I‘he null string of characters}

Semantics

TRANSILANG uses a character set of 56 characters including {single space), 8 of
which are only used in comments. All letters are upper case.

Spaces - No space may appear between the letters of a reserved word or within an
{Assignment Op) ; otherwise, they will be interpreted as two or more elements.
Spaces are used as a delimiter to separate reserved words, labels, or integers.
Spaces may appear between any two basic components without affecting their
meaning, where basic components indicate reserved words, symbols, or labels.

Parentheses - The parentheses are treated as spaces. They are used for the con-
venience of the microprocgrammer to make code more readable. (E.g. instruction
elements which are irrelevant to the current instruction but are used only to allow
shared use of a nznoinstruction by several microinstructions,)

Parentheses do not imply precedence.

93

LITERAL ASSIGNMENT INSTRUCTION

(Literal Assignment) ::= (Literal) (Assignment Op) AMPCR|
(Literal) {Assignment Op) SAR|
{Literal) (Assignment Op) SAR;
{Literaly {Assignment Op) LIT |
(Literal) {(Assignment Op) LIT;
(Literal) (Assignment Op) SAR|
{Literal) {Assignment Op) LIT

(Literal) ::= (Integer) | COMP (Integer) | (Label) | (Label) -1

(Integer) ::= (Digit) | (Digit) {Integer)

(Label) ::= (Letter)) (Label) (Letter) |{Label) (Digit)

Semantics
A (Literal Assignment) becomes a type Il microinstruction for an Interpreter.
This microinstruction contains the literal value(s) and specifies the receiving

register(s).

Width, bits

AMPCR Alternate Micro Program Count Register 12
SAR Shift Amount Register 5
LIT Literal Register 8

The registers may be individually loaded or both the SAR and the LIT may be load-
ed in the same microinstruction.

An (Integer) is non-negative and in the range of tte intended receiving register’s),
COMP (Integer) , if the receiving register is LIT or AMPCR, takes the one's ccm-
plement of the (Integer), then takes the number of bits indicated by the width of the
receiving register, COMP {Integer), for SAR, creates the appropriate word length
complement. (This is two's complement for the 32-bit wide LSI Interpreter). The
encoded value is used in the SAR field. The sucessor of a (Literai Assignment) is
implicitly STEP.

Labels used in a program may be chosen freely except for the reserved words of
TRANSLANG. The reserved words are given in Appendix V. A label must start
with a letter which can be followed by any combination of letters or digits. No
spaces or symbols may appear in a label. A label can be as little as one letter and
as leng as 15 letters and digits. The same label may not be used to locate more
than one ingtruction in the same program. See the INSERT function subsequently
described for allowable nesting of labels when subprograms are inserted. The
normal use of a label with a (Literal Assignment) is as (Label) -1 since control
transfers occur to the indicated location +! {or +2 if a return is used).

94

Examgles

5=: SAR % converted for proper logic unit width
COMP 8 =: SAR; 13=: LIT % in one microinstruction

COMP.0 =: LIT % same ag 255=:LIT

START =: AMPCR % JUMPF (o START +1; RETN to START + 2
LOOP-1=: AMPCR % JUMP to LOQP; RETN to LOOP + 1

N INSTRUCTION
{N Instruction) ::= (Unconditional Part} !Conditional Part)
{Unconditional Part) ::= (Component List)

(Component List) ::= (Component) | {Component List) ;{Component) |
(Empty)

{Component) ::= (Ext Op) | {Logic Op)] (Successor>

{Conditional Part) ::= (If Clause) (Cond Comp List) (Else Clause) | (If Llause)[
{When Clause) (Cond Comp List) | (Empty)

(Cond Comp List) ::= THEN(Component List)

Semantics

An (N Instruction) becomes a Type I microinstruction containing an address of a
nano instruction. If an identical nano instruction already exists, the microaddress
will point to the single copy of the nano instruction. If the nano instruction is new,
the address will be to the next unused nano address. The operations indicated

in the <N Instruction > are entered into this nano location.

Restrictions

1. At most one (Ext Op) - either unconditional or conditional.

2. At most one (Logic Op) - either unconditional or conditioral.

3. At most either one unconditional successor, or one conditional
successor in the (Cond Comp List) and one in an (Else Clause) .

The (Unconditional Part) is always executed. In the (Coaditional Part) if the
condition resulting from the (if Clause) or (When Clause) is true then the com-
ponents in the (Cond Comp List) are executed, otherwise only the (Else Clause)
is executed. :

95

Exarmnples (to be subsequently explained)
Unconditional Part, Component List:
SET GC1
MR2
RESET GC, DR2
A2 AND B001 =: Al
Al + BIC R =: A2, BEX, LMAR
JUMP
DL1; 0=: A2; SKIP
Conditional Part:
IF AQV THEN Al +1 =: Al ELSE SKIP
¥ NO’I; ABT THEN SET LC2; SKIP ELSE SAVE
WHEN RDC THEN MR2Z; BEX, INC
N Ingtruction:
WHEN RDC THEN BEX

SET LCI1; IF SAI THEN B ADL LIT = A3, BBE

CONDITION

{If Clause) ::= IF (Conditicn)

{Condition) ::= {Not) {Cond)

{Not} ::= NOT | { Empty)

(Cond) ::= LST | MST | AOV | ABT | cov | sa1| RDC | EX1|
EX2 | HOV | (Cond Adjust Bit)

{When Clause) ::= WHEN { Condition)

/Flse Clause) ::= EILSF (Sucessor)| {Empty)

/Cond Adjust Rity ::= INT | LCL | LC2 | LC3 | GC1| GC2

96

Semantics

Each (N Instruction) performs a test on the Boolean value of one {Cond) or its
complement. The Boolean value of the result is {(Condition) . If this value is

true, the {Cond Comp L.ist) is executed and the sucessor from this list is used

to determine the next microinstruction. Otherwise the successor in the (Else Clause)
is used to determine the next microinstruction address. See the subsequent dis~
cussion of successor.

A {When Clause) is a synonym for an (If Clause) with the same {Condition) and an
{Else Clause) of ELSE WAIT, An empty (Else Clause) is equivalent to ELSE STEP.

In the absence of an (If Clause) or (When Clause), an implied (If Clause) of [F NOT
GC1 is inserted. This changes no condition bit, If does cause unconditional
initiation of a (Logic Op) and hence completion of the prior (Logic Op).

With the exception of the two global condition bits, testing a condition bit causes the
bit to be reset. However, all condition bits are set dominant. Therefore in case a
condition bit is being tested at the same time it is being set, the condition bit will
not be reset. The least and r ast significant bits out of the adder, the adder over-
flow, and the adder bit transmit are levels and not condition bits. The conditions
that may be tested (Table III) are the following:

SAT Switch Interlock Accepts Information

Following memory or device operation, indicates that
connection to the addressed memory or device is completed
through the switch intertock and that the MAR and MIR may
be changed.

RDC Read Complete, or Requested Device Completes

Following memory read or device read, indicates that data
will be available for entry to B in the next clock. Following
device write, indicates completion of write.

COV Counter Overflow

Following or concurrent with increment counter INC, indicates
counter is overflowing or has already overflowed from all ones
(255) to all zeros.

L.CI Local Condition 1

Tests and resets local Boolean condition bit LC1,

LC2 Local Conditions 2 and 3
I.C3) Same as LC1

97

Table [iI. Set and Reset of Conditions

BIT SET RESET

AOV | Dynamic Adder State - (Overflow) #

ABT j Dynamic Adder State - (Adder bit transmit) ¥

LST | Dynamic Adder State - {Least Significant it #

of Adder Output)

AMST | Dynamic Adder State ~ (Most Significant Bit 8

of Adder Output)

COV | Overflow when Counter is Incremented Reset by loading
counter or by
testing

GC1 | SET (1 providing no other Interpreter has RESET ¢C

GC1 set, or no higher priority lnterpreter
is concurrently doing SET GC1

GC2 | SET G(C2 similar to GC1 RESET GC

INT | Set INT executed in any Interpreter Reset by
testing

LC1 | SET 1LC1 Reset by testing

ILC2 | SET 1.C2 Reset by resting

LC3 | SET LC3 Reset by testing

RDC | By memory at completion of memory or nese: by testing

device read

SAI By switch interlock when data Reset Ly testing

received from MAR and MR

EX1 | By requests frorm devices Reset by testing

EXN2 | By requests from devices Reset by lesting

'r()'v’l Horn overflow Reset by testing

4Recomputed each clock time

GC1
GC2

INT

EX1
EX2

HOV

Global Conditions 1 and 2
Tests but does not reset global condition bit GC1, See the
description of the set and reset operation for further ex-

planation of global condition bits.

Inter-Interpreter Interrupt

Tests and resets the local copy of the inter-Interpreter
interrupt,

Extecrnal Conditions 1 and 2

Test and reset interrupts (usually the OR of interrupts
from several devices) from external devices (local copy),
These are presently wired to switches in the aerospace
multiprocessor,

Horn Overflow

'ndicates that no{ Ext Op) has occurred during a period of
220 Interpreter clocks, {approximately 1 second for a 1 MHz
Interpreter clock). This iv used for detection of a failed
memory module or devices and will force a STEP in the
microprogram at the same time this condition bit is set.

The following four logic unit conditions are dynamic and indicate the rasult output
from the adder using the execution phase commands from (ke previous instruction
which had logic unit operation, and using the current values of the adder inputs.
These conditions are sustainec until execution of annther instruction involving the
logic unit, and may be tested by that instruction. A type II instruction loading the
LIT or AMPCR may change the value of an adder input selected in the (Z Select)
and hence change the value of any of these conditions.

AOV

LST

MST

ABT

Adder Overflow

State of the carry out of the most significant Lit of ithe adder.

Least Significant
State of the least significant bit of the adder output.

Most significant

State of the mas t significant bit of the xdder output.

Adder bit transmit

This condition is true (one) if and only if the adder output
is all ones or all zeros depending on the specific operator
performed, (See Appendix III).

99

Examgl_es
IF NOT LC1
WHEN SAI

ELZE CALL

EXTERNAL OPERATIONS

(Ext Op) ::= (Mem Dev Op) | (Set Op) |
{Mem Dev Op) , (Set Op)|
{Set Op) , (Mem Dev Op)| (Empty)

(Mem Dev Op) ::= MR1 | MR2 | Mw1 | Mw2 | pL1 | bL2 | DR1 | DR2 |
DW1 | DW2 | DU1 | DUZ | LDM | LDN

{Set Op) ::= SET (Cond Adjust Bit) | RESET GC

Semantics

The external operations are (N Instruction) functions which, if explicity present,
affect the operations external to the Interpreter logic. An(Ext Op) may be
specified as either conditional or unconditional as it appears in at most one of the
{Unconditional Part) or (Conditional Part) .

The memory or device operations (Mem Dev Op) are used to transfer data between
the Interpreter and S memory or a peripheral device. Address source registers
for those operations are the combination of either BR1 or BR2 with MAR, indicated
respectively by MAR1 or MAR2. The MAR holds the less significant part of the
address. The memory or device operations are described in detail in Section V1.
The explicit memory or device operations follow.

MR1 Memory Read 1
Read data from S memory address specified in MAR1

MR2 Memory Read 2
Read data from S memory address specified in MAR2

MW1 Memory Write 1
Write data from MIR to S memory address specified in NMAR1

MW2 Memory Write 2
Write data fromm MIR to S memory address specified in MAR2

100

LDM Load a microinstruction from the least significant 16
bits of the MIR into a word in microprogram memory
{(MPM) as specified by AMPCR.

L.DN - Load least significant 16 bits of MIR into the nanoword as
specified by the nanoaddress contained in the microprogram
word being specified by AMPCR, The s:llable of the nanoword
loaded is specified by the two bits next to the least significant
bit in the MAR.

DL1 Device Lock 1 Request
Reserve the device or memory module named in MARI for
use by this Interpreter.

DL.2 Device Lock 2 Request
Reserve the device or memory module named in MAR2 for
use by this Interpreter.

DR1 Device Read 1
Read data from device named in MARI

DR2 Device Read 2
Read data from device named in MAR2

PW1 Device Write 1
Write data from MIR to the device named in MAR1

DW2 Device Write 2
Write data from MIR to the device named in MARZ

DUl Device Unlock 1
Release the locked device named in MARL1

DU2 Device Unlock 2
Release the locked device named in MAR2

The set and reset operations are used to set and reset condition bits. The inter-
Interpreter interrupt INT, is used for communication amo=g (to signal} all
Interpreters of the aerospace multiprocessor. The global conditions, GC1 and

GC2, are used as Boolean semaphores to guarantee mutual exclusion for critical
sections of microprograms and to prevent simultaneous access to shared data.

The local condition bits are Boolean variables local to each Interpreter. The INT
and local condition bits are reset (within the local Interpreter only) by testing.

The explicit test and reset operations follow. If no (Set Op) is present, none is done,

101

SET INT

SET LC1

SET LC2

SET LC3

SET GC1

SET GC2

RESET GC

Examples
MR2

SET LC1

Interrupt Interpreters

Causges the interrupt bit to be set in al]l Interpreters,

Each Interpreter resets its own bit by testing it. Setting
occurs after festing should hoth occur in the same
nano-instruction.

Set the first local condition bit

Causes the setting of the L.C1 bit in the condition register.
Setting occurs after testing should both occur in the same
nano-instruction. Both get and test of L.C1 occur during the
fetch phase of a microinstruction.

Set the second local condition bit

Same as for LC1 replacing L.C1 by L.C2.

Set third local condition bit

Same as for LCI replacing LC1 by LC3.

Set first global condition bit requegt

Requests that the GC1 bit in the requesting Interpreter be
set if a GC1 bit is not already set in another Interpreter or
is not requesting to be set simultaneously by a higher
priority Interpreter. For all Interpreters in a multiprocess-
ing system at most one will have GC1 set. GC1 is set at
the end of the phase after the fetch phase if no conflict
occurs., A request lasts for one clock.

Set second global condition bi. request

Same ag for GC1 replacing GC1 by GC2.

Resets the global condition bits

Causes GC1 and GC2 to be resct in the issuing Interpreter.

DR2, RESET GC

102

LOGICAL OPERATIONS

{Logic Op) :: (Adder Op) (Inhibit Carry)(Shift Op)(Destination List)

(Adder Op) = 0]1|(Monadic) | (Dyadic) | (Triadic) | (Empty)

(Monadic) ::= (Not) (A Select) | (Not) (B Select) |
{Not) (Z Select)

(Not) ::= NOT | (Empty)

(Dyadic) ::= (A Select) (Binary Op) (B Select) |

(B Select) (Binary Op) (2 Select) |
(A Select) (AZ Op) (Z Select)

(Binary Op) :i= (AZ Op) | OR | NIM | IMP | NOR

(AZ Op) ::= AND|XOR| EQV | NRI|RIM | NAN|ADD| + | ADL | CAD
{Triadic) ::= (Try Op) (A Select) , (B Select) , (Z Select)

(Try Op) = TRY1 | TRY2 | TRY3 | TRY4 | TRY5

{Shift Op) ::= R| L | C| (Empty)

(Inhibit Carry) ::=IC| (Empty)

.S_emantics

The logical operations include those operations which occur within and affect the
logic unit of the Interpreter. This group of operations may be specified as un-
conditional if placed before the {If Clause) of a conditional instruction and con-
ditional if placed after the (If Clause).

The logic operations include the selection of adder inputs, tiie adder operation,
the barrel switch operation, the destination specifications for the adder and BSW
vutputs and the controls for the literal, counter, and SAR registers.

Each instruction except the (Literal Assignment) contains an idder operation.
If this is missing, the adder operation is assumed to be A + B (where A and B
are zero). These adder operations may use input from one, two, or three
different registers as specified in the (A Select) (B Select) (Z Select) parts of
the instruction.

103

Monadic operators are those operators requiring one register input to the adder.
The value of the selected register or the complement of the value may become the
adder input depending on the (Not) function,

The dyadic operators are those adder operators that may occur between two
registers. These include arithmetic as well as logical operators. The arithmetic
operators may occur with sources selected from any two of the three inputs -~

A, B, and Z.

ADD | + Add the two inputs to the adder.

ADL Add the two inputs to the adder + 1

(fAD Add the two inputs to the adder in groups
of 8 bits. Inhibit carries between 8 bit
bytes.

All logical operators except four may occur between selections from any two
registers (A + B, B+ Z, or A + Z). The four exceptions that may rot occur
between an A and Z sclect are OR, NIM, IMP and NOR.

OR Or X OR Y produces X v Y- -
NIM Not Imply X NIM Y produces XY

IMP Imply X IMP Y produces X v Y
NOR Nor X NOR Y produces X v Y

All other logical operations may occur between any two of the three registers
selected.

AND And X AND Y produces XY
XOR Exclusive Or X XOR Y produces XY v XY
EQV Equivalence X EQV Y produces XY v Xy
NRI Not Reverse X NRI Y produces XY

Imply
RIM Reverse Imply X RIM Y produces X v Y
NAN Not And X NAN Y produces X YorX v Y

X means (ones) complement of X
precedence is complement done before AND done before OR

104

The triadic operators are those operators requiring three inputs to the adder
(i.e., A, B, and Z). These are available in the Interpreter and may be used
with the following notation;

TRYlI" A,B,Z produces A BZ v ABZ

TRYZ2 A, B, Z produces AZvBZ

TRY3 A,B,Z produces Av Bv Z

TRY4 A, B, Z produces AZ v B Z

TRYS A, B,Z produces AZV BZVABZ

There are three shift operations, one of which may be selected each time an adder
operator is used. These operations are R, L, or C.

R Right end off shift by amount in SAR
L Left end off shift by the two's complement of amount in SAR
c Circular shift right end around by amount in SAR

The carry bits may be inhibited, for all operations, between 8-bit bytes. IC
inhibits carries.
Examples
NOT LIT =: A2
A1l ADLBR-=:B
A2 + LIT =: SAR
DEC CTR
TRY1 A2, B110,CTR
0 =:A3
1 =:CTR

A2 + CTRIC R = A2, BEX, CTR, CSAR

105

INPUT SELECTS

(A Select) = Al | A2 A3] 0| (Empty)

(B Select) ::= B| B (M) (C) (L)Y | (Empty)

(y oe (Gating)

(Cy = {Cating)

(L) == (Gating)

(Gating) ::= 0 1iT|F

(Z Select) ::= CTR | LIT | AMPCR | 0 | (Empty)
Semantics

There are three A registers which may be used for data storage within an Inter-
preter. Any one of the A registers may be selected as input to the adder in an
instruction. The B register is the primary interface for external inputs from
main memory or devices. It also serves as input to the adder. The B register
can be partitioned into three parts when it is selected as input to the adder. The
partitions are as follows:

M Mosti significant bit of B (left most bit)
C Central bits of B (all but the end bits)
L Least significant bit of B (right most bit)

When selecting the B register as input to the adder, each of the three parts may be
independently specified as being either 0, 1, T, or I'. A zero gating will cause that
part to be all zeros. A one gating will cause that part to be all ones. A T gating
will produce the true value of B for that part, An F gating will produce the com-
plement value of B for that part. The B register and its gating is specified with-
out embedded spaces. If no gating is specified when selecting B, then it is
assumed that the true value of B is desired (i.e., BTTT).

There are three registers which make up the (Z Select) input to the adder. These
are the counter (CTR), the literal (LIT) and the AMPCR. The counter register
when used as input to the adder, is left justified with zero fill. The literal register,
when used as input to the adder is right justified with zero fill. The AMPCR comes
into the least significant 12 bits of the center 16 bits of the adder. The most
significant 4 bits of the center 16 bits of the adder contain the binary value of the
Interpreter number right justified in the 4-bit field, The rest of the adder i3 zero
filled.

106

Examples

Al +B+1ICR
A2 XOR CTR
BOTT AND LIT

DESTINATION OPERATORS

(Destination List) ::= (Asgn) (Dest)|
{Destination List) (Asgn} (Dest) | (Asgn)

(Asgn) ::= , ==

(Dest) ::= Arlaz]As|mir | BR1 | BR2 | AMPCRI
{Input B) | (Input Ctr) | (Input Mar) | (Input Sar)

(Input B) ::= B!BEX | BAD| BCc4 ! Bcs! BMII BBE| BBA | BBI
BAI|BBAI | B4I| B8I

(Input Ctr) ::= CTR | LCTR | INC

(Input Magy ::= MAR | MAR1| MAR2 | LMAR

{Input Sar) \::= SAR | CSAR

Semantics

The destination operators explicitly specify registers in which changes are to
occur at the end of a logic unit operation.

Restrictions:

1. At most one choice from each of (Input B), (Input Ctr), {Input Mar)
and { Input Sar) is permitted.

2. If {(Input Ctr) is LCTR then (Input Mar) may not be MAR, MARI! or
MARZ.

3. If{Input Mar) is LMAR then { Input Ctr) may not be CTR.

The principal data source is the barrel switch output. It is the only source for
loading Al, AZ, A3, MIR, BR1 and BR2. It provides one source for loading B,

107

CTR, MAR, SAR and AMPCR,

names.

Destination
Registler

At
A2
A3
B

MIR
BR1
BR2

MAR
CTR

SAR

AMPCR

These reserved words are also the register
The bits used in these transfers are indicated below:

Barrel Switch Qutput
Source Bits

All

All

All

All

Al

2nd least significant byte
2nd least significant byte
least significant byte
least significant byte (ones complement)
least significant 5 bits
least significant 12 bits

The B, MAR, CTR, SAR and AMPCR registers may have other inputs as well.

B Register — (B)

B
BEX
BAD

BMI

BC4

BC8

BBE

The barrel switch output is placed into B.

Data from the external source is placed into B.

The adder output is placed in the B register (short path

to B).

The MIR content is placed in the B register independent
of any concurrent change to the MIR. *

The duplicated complement of the 4-bit carries with zero
fill is placed in the B register, **

The duplicated complement of the 8-bit carries with zero
fill is placed in the B register.**

The barrel switch vutput ORed with the data from the
is placed in the B register.

external sourc -

* . . : .
When the MIR is one of the inputs to the B register, the input shift register from
the Switch Interlock into the external input to B will be cleared to all zeros.

*ok
Form of BC4, B4l, BC8, and B8I adder outputs for each 8-bit group:
The carries out of bits 2, 3, 4, €, 7 and 8 are irrelevant.

2 3 45 6 7 8

Bit

Carries

Out

B4I,
B8I,

BC4
BC8

u

1

fe]
ciel
{3
o0

o)
¢ <l

v
(o]

108

BBA The barrel switch output ORed with the adder output is placed
in the B register.

BBI The barrel switch output ORed with the MIR content is placed
in the B register independent of any concurrent change to the
MIR. ™
< *
BAI The adder ORed with the MIR is placed in the B register.
BBAI The BSW ORed *\‘vith the adder ORed with MIR is placed in
the B register.
B4l The duplicated complement of the 4-bit carry ORed with

MIR content is placed in the B register.™

B8I The duplicated complement of the 8-bit carries with zero
fill ORed with MIR content is placed in the B register.™

Memory Address Register - (MAR)
LMAR The literal register content is placed in MAR.

Counter - (CTR)

LCTR The one's complement of the literal register content is
placed in CTR.
INC Increment Counter by 1.

Shift Amount Register - {(SAR)

CSAR Complement (two's complement) prior content of SAR.

The Alternate Micro Program Count Register { AMPCR) may, during the same
clock, receive input from the MPCR if the microprogram address control register
content was CALL or SAVE. The MPCR source takes precedence over the AMPCR
specification as a{ Dest) .

Examples
=: B
=: CTR
=: Al, BEX, = MIR, LCTR, CSAR % mixed use of, =, and =:

*When the MIR is one of the inputs to the B register, the input shift register from
the Switch Interlock into the external input to B will be cleared to all zeros.

109

SUCCESSOR

{Successor) ::= WAIT [STEP|SKIP|SAVE| CALL|EXEC | JUMP|RETN

Semantics

Each (N instruction) specifies 2 successors explicitly or impliciily, indicating

the control to be used for the next microinstruction selection. A (Successor)in the
{ Unconditional Part) results in the 2 successors being identical, Otherwise one
or two successors may appear in the { Conditional Part). The eight choices for
cach successor are described below and in Table IV,

WAIT
STEP
SKIP

SAVE
CALL

EXEC

JUMP
RETN

Repeat the instruction in the microprogruara count register (MPCR).
Step to the next instruction in sequence from MPCR.

Skip to the second next instruction in sejuance from MPCR.

Step and save current MPCR address in AMPCR.

Transfer control! to AMPCR + | address, save current VIPCR
in AMPCR.

Execute instruction in AMPCR + 1, proceed as specified in the
executed instruction.

Transfer control to AMPCR + 1 address.

Transfer control to AMPCR + 2 address.

Any successor not explicitly stated is STEP by default. All successors except
EXEC place the resulting microprogram address in MPCR.

Each (Literal Assignment) instruction has an implicit successor of STEP.

The AMPCR normally contains the address of an alternative instruction (usually
label-1). The AMPCR load of the current content of the MPCR from a CALL or
SAVE takes precedence over a (Literal Assignment) into AMPCR in the dynamically
next microinstruction. Italsotakesprecedence over an axplicit {Dest) of AMPCR
from the (Logic Op) in progress,

Table IV, Microprogram Memory Addressing

Successor Successor Next Content Next Content
Command M-instruction of MPCR of AMPCR
Address wiil be will be
WAIT MPCR MPCR *
STEP MPCR+1 MPCR+1 *
SKIP MPCR+2 MPCR+2 *
SAVE MPCR+1 MPCR+1 MPCR
CALL AMPCR+1 AMPCR+1 MPCR
EXEC AMPCR+1 MPCR *®
JUMP AMPCR+1 AMPCR+1 *
RETN AMPCR+2 AMPCR+2 *
*Not changed by successor specification
Examples
WAIT
JUMP
PROGRAM STRUCTURE
{Program) ::= (Program Name Line) (Body) (End Line)
{Program Name Line)::= PROGRAM /Program Name) (Start Address)
(Program Name) ::= (Label)
(Start Address) ::= ADR (Hex Address) | (Empty)
(Hex Address) ::= {Hex Number)
{Hex Number) ::= (Hex Digit) | (Hex Number) (Hex Digit})
{Body) ::= (Statement)| (Comment) | (Body) (Statement)| (Body) (Comment)
{Statement) ::= (Label Part) (Line) (% Comnieat)
(_Commént) 1= COMMENT {Comment Words) ;
{(Label Part) ::={Label) :|{(Ewnply)

(Line) ::= (Label Constant) | {Start Address) | (Insert) | (Instruction)

(Label Constant) ::= (Label)

* {Integer)

{Insert) ::= INSERT (Label) (Start Address)

{% Comment) ::= % {Comment Words) | (Empty}
{Comment Words) ::= (Comment Character) |
‘ {Comment Words) {Comment Character)

(Instruction) ::= (Label Part) (Literal Assignment) |
{Label Part} (N Instruction)

{End Line) ::= END

Semantics

A file containing a source program must have a {Label) or 6 or less alphanumeric
characters. Each record on this file contains 72 datu characters {plus eight for
sequence numbers, which is optional for the microtranslator). One(Statement) of
source prograrn is written per record.

The first record is the (Program Name Line). It contains the program intr rnal
name and possible a starting address for a microprogram. The program internal
name should be the same as the file name. Only the file name has any external
significance. An empty (Start Address) means start with zero for the first
microinstruction of the program, A non-empty start address becomes a hexidecimal
absolute microprogram address. The body of a program contains one or more
statements. Following the body is the (End Line) containing END. Each successive
statement containing an (Instruction) normally becomes the next microaddress.
Addresses strictly increase through a program. If a(Start Address) is greater
than the next address in the program sequence, microinstructions composed of all
zeros are used to fill in the locations between the addresses in the output file. A
{Start Address) less than the next address in the program sequence causes an error.

A label is defined for use in twc ways. A (Label Constant) permits a {Label) to be
declared to be an {Integer). Subsequent use of that label is replacad bty the Integer.
Use of a {Label Constant) prior to declaration is an error. A label is also defined
upon occurrence in a (Label Part) in which case it serves as a symbolic reference
to a particular line.

An(Insert) is used to allow a user access to his files outside the program file.

When the {Insert) is recognized, the microtranslator extracts from the users files
the source program whose (File Name) is given and inserts it at the (Start Address)
in the (Insert) if present, otherwise in sequence. A {(Start Address) occurring
within the body of the inserted program will act as though it were in the main pro-
gram file. A (Start Address) in the (Program Name Line) of the inserted program
is ignored. The inserted program takes the multifile ID name from the program
being translated. For example:

BCDRADD/AFCRCE may be inserted inte 2 program named DECVAD/AFQORCE. There
may be seven levels of nesting. A label may be redefined in an inserted sub-
program. An inserted program may reference a label in the program which requested

it provided the 1abel has not (yet) been defined locally. The most local current
definition of a label is used. If labels a2re not defined during a subprogram the
translator assumes they are at a more global level. Labels referenced but never
defined result in a warning iist of undeclared labels. Caution: Forward jumps
within a subprogram to a label that already exists globaliy will use the global label
value. Upon completion of an {Insert) of a subprogram, labels defined in that
inserted subprogram disappear. A subsequent backward jump. or use of a label
constant will use the global value, even though the same label was defined in the
subprogram. '

Each instruction results in a microprogram word. Any instruction may be
labeled as a symbolic reference for control transfer. Although transfer to a
(Literal Assignment) is permitted it should be used with caution.

Comments - In order to include explanatory material at various points in a program,
two conventions exist as defined.

1. COMMENT { any sequence of comment characters except ;" };
' /

4

The comment statement acts the same as a ';" and may appear
anygkere a ;" may occur if within a line of program. As multi-

",

line documentation the ";" terminator indicates that the micro-
translator should resume processing code. Always follow a
comment statement with a ;"

2., % {any sequence of comment characters until end of line}

All comment characters after the % in a line of program are
ignored by the microtranslator.

Comments are for documentation purposes only. They appear only in the source
file, are siguificant only in listings and dc not affect the machine language
generated.

PROGRAM READIT
Device *3
SANDY: Device = LIT; COMP 13 = SAR % LIT = 3 and SAR = 19
LIT L = BRI1
" DL1; Al + B001 = Al
INSER1 TESTLK

113

P T T S PR B i e Iy ’n] MR Tnput fronss B5W

o - N Change:

P | e W
el el e . IMPCR tnpat foom RSW
i ‘ “
S ——— | N
i) XN 2 -- No Chasge
A8 R . 1 AMPCR
i l_‘__:—“ 45 Mem Dev Addeess Input
1 R i4s - g
— J) e,
T it e : ¢ s 0 - - No Change
o - L0 LMAR From LIT
- - - 11 Ma From BSW
L Surenaner .. T BE2 From BSW
o .11 1 MARZ From HSW
n ' t - - - BRI From W
' v i to.or Y aam From BSW
. . —r———
.) . - (39147 48 Counter input
! o T 2. -6 0 .- No Change
Cemmeen tre oo LLTR From LT
Mot ae modea. s N . Ceaap aieiun e TR ALLANG 3 enr Gper tinnd, fee Agpendix Lot IR From BSW
: EEE NG .
P L . y)
N1 e : : Sewe Lupe b 0 p ESW Cmes Complement
I B K . p———
"o Do 1 . * » - 45 501 SAR lnpur
. . . "
i : A . . l - [- Ne ¢ hange
st - LSAR Cnmptement
noaotot : g e e e fed ton SAR From HSW
10 — .
[: . (ORI 2 Mem Doy Op- MUOP
H Lo B - .
LN Lot gant erquires bit tw . . a o - No K hunge
Voo o viie teue valar : S b L1 Laas AP
oo . Q T Mem ReAd (BRD)
M : . N . i 1 1 ¢ ftead (BR2)
o . B o ¢ anomemory®
. B 10 Wrise BRIV
Cre el Gamratis s Do 2 E) Wiy (K2
N i Lo Locs ‘BRI
T hremneen ol b [L Taek (D)
t— e 3 1 pos . Hrag (HRTD
PRI o ! ok . Head iR2)
DU : : L . Vriock (BRI
: LI Unlock (RI2)
[od o tan o : Lo Write (RKL!
e TN - : vt . Write (4R 2
" e el " o
' R .
. EN AEpmL drast sienficant Peotags of MIR
R R T A T ; :
. fnenr ey e B - g .
L Mgl 20 e e ey e . .

Figure 49, Detailed Nanobit Assignments

COMMENT The routine TESTLK tests to see if device is
locked to Interpreter.

SANDY - 1 = AMPCR
JUMP;
END;

MICROPROCRAMMING EXAMPLES

The Interpreter microprogramming reference card (Figure 49) specifies the use
of each of the MPM and Nano bits and defines the meaning of the mnemonics found
in the microprogram examples.

Three simple examples demonstrating the microprogramming of the Interpeter
are shown: in Figure 50 - Binary Multiply, Figure 51 - Fibonacci Series
Generation and Figure 53 - "'S" Memory to Micromemory and Nanomemary
Loader (S to M Loader). The comments serve to explain the function of each
microinstruction step. Figure 52 shows the microtranslator output (1 and G
patterns for MPM and Nano) for the Binary Multiply example, The S to M Loader
is described in more detail in the next section.

10.

.

Assumptions
(1) Sign-magnitude number representation
(2) Muttiplier in A3; multiplicand in 8
(3) Double length product required with resulting

most significant part, with sign, in B and least
significant part in A3

A3 XOR B-eif LC1
BoTT— A2; if MST then Set LC1

Comment: Step 1resets LC1. Steps 1 and conditional part of 2
check signs; if different, LC1 is set.

Booo—+B. LCTR

Comment: Steps 2 and 3 transfer muitiplicand (0 sign) to A2
and clear B,

“N""-sLIT; 1—+=SAR

Comment: Steps 3 and 4 load the counter with the number

(N = magnitude length) to be used in terminating the multiply
toop and load the shift amount register with 1,

A3 R—A3: Save

Camment: Begins test at least oit of muitiplier and sets up loop.
LOOP: If not LST then Boy7C—*B skip else step

A2 + BgyyC—*8B

A3 OR ByggR—=A3, INC; if not COV then jump else step

Comment: 6 through 8 - inner loop of multiply (average 2.5
clocks/bit},

If not LC1 then BT —* B, skip else step

ByrT—=8

Comment: If LC1 = 0, the signs were the same, hence force sign bit

of resultinB tobea 0.

END

Figure 50, Binary Multiply

116

Assumptions:
A1l contains starting address for storing of series

A2 contains the number representing the length
of the series to be computed

A1 —« MAR1Y
Comment: Load starting address of series into address register

Boog —= B. MIR

Boo1 —= A3; MW1

Comment: Load initial element of series (0) into A3 and MIR end writs it
into starting address. Load second element of series (1) into B.

A2 —+ CTR;SAVE

Comment: Load counter with length of sasries; the counter will be incremented
for each generation of an element of the series; COV will signify
completion. The SAVE sets up the loop.

LOOP: {f SAl then A1 + 1 —e Al, MAR1, INC, Step alse Wait
Comment: Set up the next address and increment counter

A3 + B —MIR
Comment: Generate new elament in series and place in MIR

B —==A3; BMI, MW1; 1f NOT COV then Jump eise Step
Comment: Write new element into next address
Transfer i — 1 element to A3
Transfer i alement to B
Test counter overflow for completion (go to LOOP, if not done)

END

Figure 51. Generation of Fibonacci Series

117

100
200
300
400
500
600
700
800
900
1000
1100

13

12

13

13

PROGRAM BIMULT;

A3 XOR B=: ;IF LC1;

BoTT = : AZ; IF MST THEN SET LC1;

Bgop = : B.LCTR;

N=:LIT;:1=:8AR;

A3 R = : A3;SAVE:;

LOOP: IF NOT LST THEN Bgyy € =:B,; SKIP ELSE STEP;
A2+BpgrrC =:8B;

A3OR BTpo R = : A3, INC: IF NOT COV THEN JUMP ELSE STEP;
IF NOT LC1 THEN BpTT = : B; SKIP ELSE STEP;

81TT=:8B;

END
NANO ADDRESS= o 0000 00000000000
5 13 16 1?7 18 19 - 21 23 29 30
NANO ADDRESS~ 1 0000 00000000001

5 7 8] 1 13 16 21 23 30 35
NANO ADDRESS= 2 0000 00000000010
16 30 39 48
SAR= 1 LIT=0 a1t 0000100000000
NANO ADDRESS= 3 0000 00000000011
15 17 18 30 33 36
NANO ADDRESS= 4 0000 00000000100
| 6 12 13 16 24 23 30 32 33 39
NANO ADDRESS= 5 0000 00000000101
1 17 21 23 30 22 33 39
NANO ADDRESS= 6 0000 00000000117
11 16 17 18 19 28 30 31 33 36 47
NANO ADDRESS= 7 0000 00000000111
G 12 13 16 21 23 30 39
NANO ADDRESS= 8 0000 00000001000

% 19 20 21 23 30 39

Figure 52. Microtranslator Output

118

PROGRAM STOMLD

OFFSET ® 20 % OFFSET BETWEEN PRIME AND A_TERNATE COPY

% LOAD MPM FRUM 5% ~ AVIONICS SYSTEM

% mwmew= A3: 4-157 LAST AMPCR3 16-312 MEM ADDR} 323 HALF WD

§ mwc-e= A23 l=i6: START ADRI 23-32: PRES AMPCR VALUE
% ====e= | DAD AZ AND A3 FROM OVERLAY TABLE (LIT VALUE)
% ~www—ew BR2:CODE AREA BR1: PwWA OF TASK

STGMS: B L= A3%%
COMP 1=SAR %
% ——— A3 NOW LOADED -#~
A3 L =1 A2y ®
17 =3 SAR 3 OVER-1=LIT %
AZ ADD LIT = A2,AMPCR %

CLEAR A2 12 LST (AMPCR)

SMLOOP: A3 R =: BR2, MAR, B % LOAD AMPCR
1 =¢ SARY 3 =2 LIT % =t CTR FOR NANO
MRZ23LCTRS IF RDC % READ NEXT MEM HALF-wD

IF RDC THEN Blll =:, BEX} SKIP ELSE WAIT %
BMFAIL ~1 =: AMPCR %
IF ABT THEN A3 =: ELSE JUMP % TESY FOR HALF WORD
IF NOT LST THEN 8 R =! B ELSE SKIP %
16 =t SAR %

=: MIRJLCTR %
LDOM$ EXEC ® LOAD MICRO

BR=:B%

11 =: SAR, 31 =13 LIT &

B AND LIT =! 8 % TEST FOR FOLLOWING NANO
BFFF =3¢ %

LDNANG <1 =: AMPCR %,
If NOT ABY THEN B EQV LIT = B ELSE JUMP %

16=LIT % %

STEP % % TEST FOR "“DONE"™

8 %

0 =: AMPCR % JuMP TQ win IF DONE

IF NOT ABT THEN A3 + 8001 =: A3 ELSE JUMP %

SMLOOP ~1 =2 AMPCR %

A2 + BOD1 =% AZ, AMPCR} JUMP %
LUNANO: A2 =: AMPCR %

A3 + BOO1 =: A3 %

A3 R =: B, BR2y MAR &

=! SAR %

MR2% IF RDC »

IF RDC THEN B111 =:» BEXs SKIP ELSE WAIT %

BMFAIL -1 =: AMPCR %

IF ABT THEN A3 =: ELSE JUMP %

IF NOT LST THEN 8 R =3 B ELSE SKIP %

16 = SAR %

CTR R =: MAR %

COMP 9 =3 SAR %

B =: MIRs INC %

LONS EXEC % LOAU NANO

LONANO -1 =: AMPCR %

IF NOT COV THEN JUMP %

SMLOOP = 1 =3 AMPCR %

A3 ADD 8001=a3 » %

A2 ADD BI0l = A2+AMPCRIJUMPR

BMFAIL: A2 k=B % SHIFT OFF MAR PART
16=SARJOFFSET=L!T % AND HALF WORO COUNT
STOM=]1=AMPCR %

8 ADD LIT = B3 JUMP%

OVER:

Figure 53. S to M Loader

119

ASM~0

ASM~0

ASM-2

ASM=3

ASM=4

ASM~S

ASMN-6

ASM=TA

ASM-B

ASM=9

ASM-10

ASM=-1.i

ASM=12
ASH=13
ASM=14
ASM~-15
ASM=16
ASM=17
ASM=-18
ASM—-19
ASM=20
ASM=2]

ASM=-22
ASM=~23
ASM=24
ASM-25
ASM=~2¢
ASM=-28
ASM=-29
ASM=30
ASM=-31

ASM=3¢
ASM=33
ASM= 24
ASM=35
ASM=36
ASM=-37
ASM=38
ASM-39
ASM=4[]
ASM=41]

ASM=4¢
ASM=43
ASM=44
ASM—45
ASM—46
ASM~47
ASM=-48
ASM=4Ge
ASM=4SA
ASM=50
ASM=-51

ASM=52
ASM-53

- — b el =
g Wmmn PAGE BLANK.NOT FILMED

e
i
¥

SECTION VIl

MULTIPROCESSING CONTROL PROGRAM
AND DEMONSTRATION PROGRAMS

CONTROL PROGRAM

The control program for Multi-Interpreter-Systems is a simple yet comprehensive
operating system which is characterized by the following capabilities:

1. Multiprocessing
2. Error recovery

In previous multiprocessing systems, I/O functions and data processing functions
have been performed in physically different hardware modules, I/O modules for
the former and processor modules for the latter. In the Multi-Interpreter System,
however, I/0O control and processing functions are all performed by identical
Interpreters, and any Interpreter can perform any function simply by a reloading
of its microprogram memory. Thus input/output operations become tasks which
are indistinguishable to the control program from data processing tasks except
that they may require the possession of an /O device before they can begin to
run. Whenever an Interpreter is available it looks through the scheduling cards
and runs a task, which may be an I/O task, a processing task, or a task which
combines both processing and I/O functions.

The control program includes an automatic error detection and recovery capability.
All data is stored redundantly to ensure no loss of data should a failure occur.

The control program maintains this redundancy, and does so in such a way that
each task may be restarted should a failure occur while it is running.

121

The plans for the development of a full scale operating system for the Aerospace
Multiprocessor are described in U.S. A. F. Avionics Laboratory Technical Report
AFAL-TR-72-144 (April, 1972), Aerospace Multiprocessor Executive by Sandra
Zucker. A building block technique was developed for this software architecture in
order to accommodate the requirements for changing computer activities as well

ag changing hardwar e modules, The system software was divided into functional
modules that could be linked into a system after each medule had been independently
validated. Descriptions of the executive modules defining scheduling, resource
allocation, error recovery and detection, reconfiguration, and file handling are
included in the report.

The control program delivered with the aerospace multiprocessor is a quick,
efficient, and easy to debug, method of demonstrating the multiprocessor. It is
not a fully automatic operating system with complex functions such as the one
described in the report referenced above.

System Loading

Initially, the tasks in the system are allocated fixed program areas in 8 memory
which are loaded from cards by the Program to ''S" loader. (A description of

the program to ''S'" loader is given later in this section.) All input to

the system is loaded redundantly for error recovery purposes. The programs
include a method for detection and recovery from memory and Interpreter failures.

The location in S memory of the microcode for each of the demonstration tasks
written for the aerospace multiprocessor and the location of the alternate copy of
the microcode for these tasks is shown below.

Location of Alternate Location in
Program Microcode Microcode System Table
Plot 0300 3300 (00)02
Program to S load 0EQN 3E00 (00)03
Mortgage 2000 5100 {00)04
Sort 0600 3600 (00)05
Matrix multiply 2500 5500 (00)08
Matrix print 2800 5800 (00j0A
Memory dump 1000 4000 (00)0C
Control program 0B00 3Bo00 S

122

A system task table is developed in segment 00 (segment is 256 words) which
containg an entry for each task available to the system. This entry contains the
time by which a running task must be completed before the system decides there
is an error. An alternate copy of the gystem table is developed in segment 30
for error recovery purposes. This alternate copy is updated as the primary copy
of the system table is changed.

After the tasks are loaded into S memory, each Interpreter's microprogram and
nanomemories are then loaded with the control program microcode (See Figure 54,
a block diagram of the control program}. The control program in an Interpreter
initially tries to lock to the card reader. If it does not succeed, some other
Interpreter is using the card reader, and it waits until it can lock. Once l1ncked
to the card reader, the control program reads the cards which initiate a task

and places their contents (eight 4-bit hexidecimal characters) into selected words
cf S memory as defined by the card format. Each input card contains the hexi-
decimal characters to be placed in S memory and some contain the address where
these characters are to be stored. A card that does not include an address (''0"
card) assumes that its hexidecimal input will be stored in the next consecutive
address in S memory following the previous input card.

Card Format: LXXX AAAA XXOXIX HHHH HHHH
OXXX 0000 XXXX HHHH HHHH

The "L'" card indicates that AAAA contains the hexidecimal address in S memory
where the hexidecimal characters HHHH HHHH will be stored. The X characters
indicate letters and numbers that are ignored. These may contain anything but an "N''.

The '"0" card indicates that HHHH HHHH will be stored in the next address in S
memory following the previously stored word.

One input card is a control card, specified by an address of 0001, which gives

the task number (which is the location in the system table of the task control word)
of the selected task as well as the starting address in S memory for the micro-
code for that task.

The format for the control cards for the demonstration programs written for the
aerospace multiprocessor are given below, where T indicates the task number
{location of the task entry in the system table) and SS indicates the segment number
for the location of the microcode in S memory for that task.

123

BLOCK DIAGRAM
CONTROL PROGRAM

¥

-

READ DATA AND
PARAMETER CARD;

IF TASK NUMBER EVEN,
RELEASE CARD READER

[GET TIME

!

A

LOCK SYSTEM
TABLE

TASK TIME + RUN UNLOCK
SELECTED TIME — |— SYSTEM
RUNNING TASK TIME TABLE

\ LOAD TASK
TIME > TASK | YES MICROCODE
TIME /—
NO l
RUN
UNLOCK TASK
SYSTEM
TABLE

Figure 54, Control Program Flow Diagram

124

Program L00o" 0001 XXXX T000 S500

Plot L1000 0001 XXXX 2000 0300
Program to S Lo00 6001 XXXX 3000 0E00
Mortgage L000 0001 XXX 4000 2000
Sort L00o 0001 XRXX 5000 0600
Matrix multiply L000 0001 XXXX 8000 2500
Matrix print L0oo 0001 XXXX Aooo 2800
Memory dump Looo 0001 XXXX Ca00 1000

All other input cards are parameter cards for the task and are loaded into a
portion of the work area for that task.

An "N" card is the last card that indicates the end of the selection of a single task.
The "N'" card must contain a single N,

Upon detection of an "N" card the control program stops reading cards and uses
location 01 of the system table to get the task number of the selected task. An
even task number will cause the card reader to be unlocked, freeing it so that
other Interpreters may use it. An odd numbered task requires the card reader

in order to read its own data (e. g., sort cards for the sort task), after which the
card reader will be unlocked. This contention between Interpreters for use of the
card reader and running of tasks is shown in block diagram for the rnultiprocessor
system in Figure 55,

Task Execution and Monito:-irig.

The task number is uged to select the task control word from the task table. The
task table is locked before a task control word may be examined or changed, by
using the global condition bit in the hardware. A task control word of zero defines

a task available for running. Anon zero task control word implies that another
Interpreter is performing the task, or that the task is hung up on another Interpreter.

To check for a task or Interpreter failure, the real time clock is read to obtain

the current time. The current time is checked against the time in the task control
word which is the upper bound time for the running of the task. If the time in the
task control word is less than the time on the real time clock, the task is con-
sidered hung and the Interpreter will treat this task as a task available for running.

125

STARTUP

1

"PROGRAM TO S LOADER"
INTO AN INTERPRETER

USE TO LOAD MICROPROGRAMS
INTO "S'" (MAIN) MEMORY

—_—

LOAD CONTROJ. PROGRAM
INTO ALL INTERPRETERS

(1ST ONE READY WILL LOCK
TO THE CARD READER)

|

READS PARAMETER AND DATA CARDS

REST TRY TO GET CARD READER,

INTERPRETER LOCKED TO CARD READER

IN DUPLICATE INTO 'S" (MAIN) MEMORY.

AT N CARD,INTERPRETER PER-
FORMS TASK INDICATED IN PARA-
METER CARD. RELEASES CARD
READER WHEN FINISHED WITH IT.

SYSTEM

SINGLE
INTERP.

NEXT INTERPRETER RUNNING CONTROL
PROGRAM LOCKS TO CARD READER

AT COMPLETION OF
TASK;CONTROL PROGRAM
IS LOADED INTO
INTERPRETER

Figure 55. Multiprocessor System Flow Diagram

126

When a task is still running, and the titne on the real time clock is less than the
time in the task control word, the global condition bit is reset. Then a new reading
is mae of the real time clock value. The task control word is again tested after
locking the table. This process continues until either the time for running the

task elapses or the task is completed by the Interpreter running it.

When a task is available for running, a maximum run time value is added to the
time read from the real time clock and the sum is placed into the task control word.
The global condition bit is reset (unlocking the table} and the microprogram for the
task is read from S memory into the Interpreter’s microprogram memory. The
tagk is then executed. A task which uses the card reader {(an odd numbered task)
must release the card reader as soon as it has completed getting its data,

When a task has been successfully completed by an Interpreter, it regets its task
control word to zero and loads the control program from S memory to micro-
program memory. To determine the next task, the control program again reads
the cards from the card reader.

All information is stored redundantly in S memory. {(See memory map in Figure 58)
When a memory failure isdetected by anInterpreter, whizh will affect the running ofa
task, the Interpreter will reload its own microprogram memory with the alternate S
memory program. This program is identieal tothe prime micreoprogram except that it
uses the alternate work area and data space as input instead of the prime areas.

The detection of a memory failure during the loading of the prime area of a task
or the control microprogram will cause the loading of the alternate arca of the
required program instead. All cards read using tne control program will be stored
redundantly in S Memory.

S to M iLoader

All tasks as well as the control program contain a subrouting (€ to M loader)
which can load microprogram code from S (main} memcory to nieroprogram

memory and to nanomemory. This subroutine {see Figure 57) is bypassed when
a *ask is initiated. When the task is completed or an error is detected, an address

is placed in the B register and control is transierred to the S to M loader which loads
code into that part of microprogram memory and nanomemory that is not occupied
by the S to M loader. When it detects the end code (ONE in the most significant

bit of the microinstruction and ZERO in rest of it) it stops reading and jumps to

the start of the task just read.

When a task ends, it puts the address of the control program into the 13 register
so that the next.task may be selected and executed. If a task has an error, it puts
the address of its own alternate copy into the B register for restart. [f a task is
too large to completely fit into microprogram memory and nanomemory, at the
con.pietion of the first or intermediate part of the \ask, the address of rhe next
part of the task is put into the B register. The task then passes control to the

S to M loader subroutine for loading the next task or next part of the same task

to he executed. This procedure is shown in Figure 32. The microcode for the

S to M loader is shown in Figure 53 of Section VII of this report.

127

8¢l

Segment
No.

/

MO WP © W30 U B Wt O

il el e e s el el
HITONA@DP OO & WK O

1F¥

Module
0 (Segments 00-1F)

(Module = 8, 192 words; Segment = 256 words)

1 (Segments 20~3F)

2 (Segments 40-5F)

System Table

T

Mortgage Wrrk Area

Plc. Work Area

Sort Work Area

Plot Microcode

Mortgage inmicrocode

Dump Memory Microcode
(Alternate)

Matrix Work Area

Sort Part 1 Microcode

Matrix Multiply
Micrecede

Sort Part 2 Microcode

Matrix Print
Microcode

Control Program Microcode

Matrix Print Work Area

Matrix A Data

Matrix E Data

Program to S Loader
Microcode

Matrix C Data

Data Cards

Input for Sort
{Alternate)

Dump Memory Microcode

Alternate System Table

Alternate Mortgage Work Area

Alternate Plot Work Area

Data Cards
Input for Sort

Alternate Sort Work Area

Plot Micro~ode

Mortgage Microcode
(Alternate)

{Alternate) Alternate Matrix Work Area
. Matrix Multiply
Sort Part 1 Microcode Microcode
(Alternate) (Alternate)
Sort Part 2 Microcode Matrix Print
(Alternate) Microcode
{Alternate

Control Program
Microcode
{Alternate)

Alternate Matrix Print Work Area

Alternate Matrix A

Alternate Matrix B

Program to £ Loader
Microcode (Alternate)

Alternate Matrix C

Figure 56 .

Memory Map

START ADDRESS —
ADDRESS

|

1ST AVAILABLE ADDRESS IN
MPM -+ MICROADDRESS

: !

l S A e | lar) READ ADDRESS - GET
i 0~ STA NEXT MEMORY HALF WORD
l READ OK

INCREMENT ADDRESS
BY HALF WORD

LOAD HALF WORD INTO
MICROADDRESS

FIRST 5 \ /7 FIRST2 O\
BITS OF HALF | NO BITS OF HALF |\ NO
WORD = 07 WORD = 10
\ (NANQ ?) _ END? /

YES YES
3— CTR_] EXIT
L . TO
r LOADED
. MICROCODE
ADD.LESS IN o
MICRO WORD
— NANO

N

READ ADDRESS GET
NEXT HALF WORD

I

INCREMENT ADURESS
BY HALr WORD

FALF WORD -~ NANO - CTR- 1= | _

Figure 57, Load Microprogram Memory irom Main Memory
Flow Diagram

129

YES
TABLE (NANO PART) CTR |— \ CTR< O).___

l

EXECUTE

SPECIFIC TASK

LOAD CONTROL
COMPLETE YES —» PROGRAM AND
0.K.? EXECUTE

YES o LOAD NEXT PART
OF PROGRAM

LOAD ALTERNATE

COPY OF PROGRAM

Figure 58, Task Control Flow Diagram

130

DEMONSTRATION PROGRAMS

All the demonstration programs are microprogrammed and are loaded from S
memory into microprogram and nanomemory in order to be executed. They are
like a single large instruction on a conventional machine. Therefore no inter-
pretation of S memory instructions is necessary in this demonstration.

The demonstration programs were written to be indicative of a specific type of
application as indicated below.

Problem Type Application
Plot Graphic Display

Table Lookup

Mortgage Table Building
Simple Arithmetic

Sort Data Manipulation
Data Processing

Matrix Arithmetic Operaticns
(Many Multiplies)

Dump Debugging Aid
Program to Loading S Memory
"S" loader

All the demonstration tasks which use cata and parameters contain a work area
segment. This work area allows fcr the storing of parameters. temporary work
space, buffers and pointers to data or program areas used by the task. Thus,

the work area for the matrix routine contains pointers to the three matrix areas
as well as the parameters i, j, and k. Changing any of these parameters or
pointers will change what is executed by the task. The locations of the parameters
within the work area for all demonstration programs are shown in Table V.

Memory Dump

The Memory Dump routine prints all the contents of S memory without changing
or disturbing any of the memory locations. Each 32-bit word in S memory is
printed in a format of eight 4~bit hexidecimal characters. The words are grouped
into an address followed by eight words of memory and then printed as a line.

If a line is identical to the previous eight words printed then it is omitted. The
memory dump is a debugging aid used to detect changes in memory. An example
of the output from a memory dump appears in Figure 59.

131

el

Table V.

Demonstration program parameters

Location of

Parameter Description

Program Parameter and Example Parameter Card Format
Plot 0114 Starting angle 0° L000 | 0114 | 0000 | 0000 | 0000
0115 Ending angle 360° 1 ooco | o000 | oooo | 0000 | o168
0116 Delta (degrees between 0000 0000 0000 0000 0001
pts} 10
Mortgage 2014 Principal $22, 500. 00 L.goo 2014 0006 0225 0000
2015 Rate 8.50% 0000 U000 0000 2000 0850
2016 Payment $§ 250. 00 6000 0000 0000 0002 5000
Sort 020A Read card deck Yes =0 Looo 020A 0000 0000 0000
No =1
020C Segment loc. of cards 1000 ozoC 0000 0000 0012
in mem 12
0214 Number of char in key 20 L000 0214 0000 0000 0014
0215 Starting character of)
key 10 06000 0000 0000 0000 000A
0217 Direction of sort
descending = 0 1.000 0217 n000 0000 0000
ascending =1 1.000 06217 0000 0000 0001
Matrix multiply 240C Location matrix A 2C L1000 240C ©000 0000 ogz2C
. . 240D Location matrix B 2D 0000 0000 0000 0000 402D
Matrix print 240F Location matrix C 2K 0000 | 0000 | 0000 | 0000 | 002E
(24 changed to 2B) 2416 J (index) 8 Lo0o | 2416 | o000 | oooo | ooos
2417 I {index) 10 0000 0000 0000 G000 000A
2418 K (index) 12 0000 0000 0000 0000 oooC

el

nAnnA
annR
ann
LRI
n30R
n3ip
ni1A
nazn
NIPR
n130
n134
nNIs0
n3i4A
nisn
nisa
nI60
NA6R
a7n
nirAa
n3An
03RA
n9n
nigA
nAn
N3AR
n3rn
LELL
nIcn
ncH
aIno
NINH
nagn
nN3FA
nFn
0 R
nLnn
0unA
n&ln
a618
nazn
042R
ne3n
na3n
nG4n
NGLA
nasn
L
nagn
nakA
nato
na7TA
naAn
n4AA
0490
nagA
naan
nuaA
nesn
NGRA
nacn
nace
nunn

LWLHGLLELT
aonennnn
nnaannen
nanpanin
0n3ARNNG?
NALF4n]4
nann21As
naNOFTNN
2A0807200
nnalnnge
no93INoHN
PANLDFON
IF0LN00N
21290037
aodoocon
NN3ICBAY 2>
NnIENN0O
n4z0009
AaN7213%
CRGennon
nniRoN4a
TELLE LI
nngs100n
ROOSALON
34000040
nRONR421
ano9>aQs
ano92ans
nNNHAANN
NNARIZFND
GNASNNTA
NeNONRLA
NOOAMNG
QRIFNNAN
nnannnro
4r212804
24105504
naTANNAL
onnaFnon
REANNAOH
gnpannon
10000000
andoNsSOs
249202N0nN
n2ononnn
AANLN0ND
NN92A401
2a820100
0AQ121R8
NNP4PAGY
HARNNONIR
0ANNONAF
10006701
nnoonnnAL
an2c0RqA
nn0erans
NAOTPIAS
ACNANNGg2
ANRYAF DA
NNRIAR]Q
QRANNARA
nn2cnR9s

rnontrann
naonannn
annannnn
reQinnnG
n2anicon
nnanreng
NA2IARCAF
[LEELT TS
DA LYY
AAANASH)
ROANNASNY
NonNALAY
000nN2 RS
003I4NNAL
AN21003A
2a040F 0N
ronsgann
CNRZNARON
NNLS/RANFE
nasnntans
9rC1AF N4
sanannan
NNOONNSH
Q2N0NNRT
NNSKARIG
0NSIARDQ
azpnnonn
azonnnan
NRGGOALA
980K200N
PLO5ANNN
FALLL TR
LY LLYL YA
nnnoanns
2R002A05
nannnnnn
nAnnARNN
annannnn
ONTRAR?)
nATF2RNI
NORINNI 2D
naRLANNG
annnnnnn
nOONNNRA
naANNNZGL
arannnaen
2A050200
ANNNNNSS
ORGSFOON
aFoonnnn
nNaNGLONS
nos2nnns
nnaysanpa
RANONNNL
sA16ONAT
ANNNAAND
NNALr&EOC
fOONANNND
anns2000
0onannan
ABORANNG
1004NNRG

ANNNANAN
a0nnOEND
AnnAN0GN
BARBOANN
21731042
annanpnn
AIQ200NN
&C0FNI90
ANPYZRALD
AN2CHNng
na2F2enA
AN3IP2019
AN3SKCHF
ananannn
ARNA2404
R1005020
RO400ON4LN
ArG0004
anp4snnnn
ANGARRAR
annnnang
RRDI26N4
PAPLANNS
4R1GFANG
nenT92Nn
COnNsgnen
nananeee
20FANNSF
2125004}
NnNanNRGL
AMNAnnNaa
20N3INNHAA
ANKANNNG
4PDNORNA
AfAnONaND
208000773
nRTATARY
noenapnhTa
26040700
RO0DSHANN
ANQINZNN
ANQ202nn
ARATTLNR
nONANGNL
nsnALNINN
ARNGZANG
O20NNARRK
annacnng
BRYZ2ORGH
NRIANNA]
€nno4nyn
LULED LT
IFDHLONNN
nONKONNG
5A210004
TONINNAA
24054000
ANAFIRNG
003C0RAN
anIcnnay
aonoANIN
ANNG159A

Figure 59,

papan-an
nananann
nnnnAnNno
6R1nAA09
NOIFNAZ6
nroana?L
nrannaza
nannnAon
NSO4LANDD
PANLNEDN
PARLOFDD
coos1nn0n
FagarInh
A0FIENCH
VAnNNANRR
nnNAsOR
anopannnae
ARDOCANG
noonnNnas
2ARANING
PI1RAN2LS
R20N0100
an0tnnnn
12000040
ANOANAST
annRERN?
PFCR2ANG
an3n2AnS
ARNFEOANG
NHN9AANG
AA09PANG
PFCE2ANG
AAOEAADN
RA1SNNAE
nROT21AS
4ny1ennona
nnn&nnnn
nNNNAFEGA
RAOMNNANDD
NNGASLRG
AANOFIND
NONNIASA
RENANSND
nFodOnNn
nananeRA
ANANNGNAR
ea0anane
n2080ANN
cananane
ANOONAADG
anarnang
ANGF 4L
nnnnanA?
ARAGGHALR
annannng
QANGHNNG
nann4annd
ANORANNN
OADNFNaAF
ACP06NG
0RNOGART
0A06ARAND

nnnnanna
BREEANCY
annanenn
noaInnnn
angzn *na
RABANONG
ARNG2A04
ANP7IARNS
fananaRa
annnaa>n
a8nnnn3n
NODRANTA
nannnAR2
NHTRANDL
NANTPTIAS
noanannnn
apanaann
PNNAANS
R4OY280R
arnnnasn
BNGRPTFY
f0LFRARCO
nns1ANNG
LY S I
fHaZ4anns
21ASNNSA
arnnanan
RONARNON
LLULLLYIY
20000000
ABNNARLD
Aannnnnn
LLLLET T
ARNGSNL
QALSPNFY
apnonnnn
fneanNnNT?
LELILT Y
NaATrALS
BNTEIRNG
WGEELTTL]
21090RR2>
ANONNANRR
NNRR7CNHA
NOAFNANS
nNAIAC]R
TOIRANGT
LLETYY LT
TOIRPNT?
nanABANN
PAOL2NON
anoannnn
QAN NG
annannnn
"ARAIAND
annnanaIr
ARARNANND
nn3cnnan
NR/RYARRAN
ao0noenn
LERLLT TS
ARRAONNG

LHLL LT
nnonnnnng
nagananns
20007001
arpnz217y
aanNOONA
2N000004
AABCOOND
TAF L0004
nn2aF 804
NG1OF AN,
NANBZADS
060N 3A
ANYILOAN
NNIRGEOF
021R0073F
nneranne
AAGLRANY
BFN0200
POTFORIN
28041000
15040000
RODSANDND

VLTI

LYLIT IR
ACOFNNSP
NOSNOON9
PNFANASE
210662
POFAFNONN
ANAKNNATY
LELTY Y]
NNOAGRADL
NNAAARARA
nn7I2RNG
nnNTe2ALR
7n2100n04
TanFORL |
28048200
7an4a0nn0
NEAARCARN
NNRKTF&F
NNP4180A
2anso2nn
rROSAZNN
AFLQTON
PO181590
15912200
nnarIc2i
ANNCHRD]
naANNAGY
ANBAGDL
nnonno24
NANALODY
aneLannn
ANARACTN
ANNGR2DN
GrNARNDG
NNRIACOR
ANRSYCHA
anoneonn
PANLOONN

Example of Memory Dump Output

neonnnon
feononnn
nannonnn
GRON1021
1n6NAYF
nNAPPACOR
DO2SALRCY
HANO2OSF
Naneenne
1F000000
1IFnannnn
20006000
NONSFADS
noandn3g
anernnnn
ac202a10
0059000
1s9n1000
0RAITNAC
NN4AIR0Y
ANnONBNGS
ANQAZAAS
a000F700
NN4annnNss
nosa3A09
LLULELT L)
PROKAFON
10ASANGH
ARBARN0L
NANTZIRE
QangrNNS
NS5040200
aonnonnn
ANARFACHR
PABSR2ON
SKaANNOD
nanannan
nnTA3G0R
ans0nnNTn
LGUGLIEY]
NODANORY
24050200
10600000
NOANO0AC
0004204
nN2002 RS
noneANnn
nNNN&sa
15910F 00
NOGAACOR
0n244004
NHANTALRA
NNAIGARNY
OOAAAZNA
012C1N20
40040000
RONNTHOA
EELTED Y]
15040000
MnNnGN200
NHORRONOI
RONOONAR

nnpanona
annnnann
nonanann
21730017
21731004
IFB40TNN
»ang100n
ANP2ALAZY
4n2RTING
no?Enpno
fn3lnice
0N34ACTA
20000000
RADGONG?
RCNANTGAS
02009C0n
000N6288
05005001
N04TPR(A
00040000
nonganns
006EROTY
080526402
8009F 10T
00N&0600
TOFBNNSR
LLILL DL
ARDIDANL
A2000000
BATEINEA
d2n000 R
LLLLLLEYY
10852171
RODSA2(N
aonnony?
anpnng7s
ganna 70
15040000
00242405
4RCONANG
TCRINSHE
RONNANAR
GNRIP3IC9
IR1ANSNA
NOAFRANG
GALSFONN
nn4L0000
GRAEAAGN
nongangs
nnnanTon
LESL LT
0093”000
annannnn
nonsannn
ARGANNAG
neaonazy
ORNFONAF
0ANEQRAF
00N00RAF
RANNL 0N
nonanoon
ACRENANG

Program to "$" Loader

The Program to "S" loader reads cards from the card reader in a format generated
by the Translator and places them into S memory. An L card precedes the pro-
gram cards for each microprogram to be loaded to indicate where in S memory
each of the microprograms will be loaded, and an R card is used to indicate the

end of the Program to "'S" Loading function.

L Card 1.000 AAAA
ROOO 0000

where AAAA = starting address in S memory for the microprogram

Each microinstruction is stored into 16 bits of memory. I a microinstruction
points to a nancinstruction which is used for the first time, it will be stored
following the micro in the next 64 bits of memory. All the micro's and nano's
are packed in S memory into 32-bit words, Nanos that are used repeatedly
need be stored in S memory only once.

Microinstruction format

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18
1 0 - - - - - - - - - - - - - iy
1 1 SAR - SAR

0 1 SAR - SAR LIT

0 0 1 - - - AMPCR

0 0 0 1 - - - - LIT

0 0 0 0 - - - NANO ADDRESS

] 0 0o 0 1 - - - NANO ADDRESS

All instructions except a type 1 instruction ignore bit 5. Type 1 instructions use
bit 5 to determine whether a nano must be loaded (bit § = 0) in the nano table or
if it has been used already by a previously defined microinstruction (bit 5 = 1).
A - indicates the bit can be either a 1 or 0 since it is ignored by the loader.

Plot

The plot routine plots the sine curve using (*) and cosine curve using (@) on the

printer, The y axis is horizontal (since the size is fixed) and the x axis is vertical.

Each line is printed with the angle in degrees defining the line on the left and the

symbol of the sine and cosine plots (* and @) in its proper position along the y

axis. The user can specify the starting angle (in degrees), the ending angle, and
delta {increment in degrees beiween points to be plotted).

This is a pseudo-instruction which is used to indicate the end of a program,

134

Starting angle 1000 0114 0060 0000 AAAA
Ending angle L000 0115 0000 0000 AAAA
Delta Lo0o 0116 0000 0000 0DDD

AAAA = angle in hexidecimal
(002D = 459)

DDD = increment in angle for each print line in
hexidecimal (000F = 15°)

An example of the plot output appears in Figure 60.

Mortgage

The mortgage program produces a mortgage table which gives a list of the monthly
payments of a mortgage and the results of each payment. This includes the pay
period number, the amount of interest paid this payment, the amount of this
payment used for amortization, the remaining principal, the accumulated interest,
and the number of years of payment. The user must supply the principal, the
monthly payments and yearly rate as input. These parameters are entered into
the task work area via the control program.

Principal 1006 2014 0000 PPPP PPPP
Rate LO00 2015 000 0000 RRRR
Payment ’ Loo0 2016 - 0000 MMM MMMM

PPPPPPPP = principal in 4-bit decimal digits
(02250000 = $22, 500, 00)

RRRR = yearly ;rate in 4-bit decimal digits
(0850 = 8.50%)

MMMMMMM = monthly payments in 4-bit decimal
digits (0025000 = $250. 00)

An example of the mortgage output appears in Figure 61,

Sort

The Sort routine reads a deck of cards and sorts them according to the starting
character and length of a key defined by the user in the work area., The sort may
be either an ascending or descending sort depending on a parameter. The same
deck of cards may be sorted using different keys and in different directions with-

135

9¢€1

Y OAxICT FonuM -y TO 1 TN STFRS 0F
Y PFARFF 1.0 v R o7 L

W02
S

2]

STNF ANN CNSTNE PLNT

3 .2

*=STMFE R=0AGINF?
. _ X IN OFGAPFES

W1 N i 2 3 6,5 A

o7 .

Figure 60,

Example »f ’lot Routine Qutput

MARTGAGE

PRINCIPAI m € 25,000.00 RATFE T.0f

PERIND TNTERFSY AMORTIZATION
1 < 145,00 € 230.00
2 % 143,47 = 231,33
3 x 142,32 ® 232,63
“ « 160,97 & 234,03
5 .® 139,62 ® 235,38
A € 13R,25 € 236,75
k4 < 134,88 L3 ?3R.1?
a A 135,50 € 239,50
Q < 134,11 € 240,89
10 € 132,71 € 262.29
1 < 131.31 « 243,69
12 L] 1729,R9 € 245.11
13 . 1PR,L46T [266,53
14 € 127,04 . 267,96
15 < 175,40 < 249,40
16 L3 124,16 « 250,84
17 . ® 122,70 « ?252.30
18 A 121,26 - 2%3,.76
1@ € 119,77 € 255,73
20 . 11R.?79 € 256.71
21 < 116,80 L3 PSR, 20
23 « 115,30 ® 269,70
23 < 113.79 < 261,21
26 s 112.28 < 282,72
25 * 1ne,75 € 264,25
26 * 106,72 € 265,78
27 L3 107,58 J 2RT, A2
Faad A3 104,13 * 26R,RT
29 . 104,57 . 270,43
10 < 103,00 « 212,00
31 L] 101,42 € 273,58
32 3 G5, R4 € P785.14
Ek] < Q8,24 3 276,76
kY € 96,64 < 278,36
as = 95,02 - 279,98
36 « Q1,40 < ?R1,60
37 « 91,76 L 283,04
I = 9n.12 - 284,88
19 A ARLGT7 < 286,573
“n < R6.RY " 28R,19
41 < A8, 14 € 289,86
w? « A1.65 « 291,58
43 < RY, 76 < 293,74
b . BN, NA L3 294,96
4 « 78.135 « 206,86
4 < TR AT 3 298,37
47 « 74,90 < 00,10
4R « Ti.16 A 30Y.R4
49 < T1.41 € 303,50
<0 « (5,65 € »05,75
s) © AT.88 < 307,12
52 = R 10 . 108,50
L) « 66,30 « 16,70
54 - 62.50 L3 17,80
€5 < 60,49 < 314,3]
LY . sa.a7 3 114,13
sT « 57.03 ¢ ANT.97
<R < 55.19 € 319,81
<9 « 53433 € ?1.67
“n L] 51.47 « 123.53
61 « 49,59 x 325,41
€2 < W7, « 127,26
63 . 45,81 L 329,19
64 < 47,90 < 331,10
L « 41,98 L3 733,07
L) - “0, 05 « 334,95
€7 < 38,10 € 336,90
L] * 35,15 . JiAa.As
L] < 34,18 « 340 ,A2
70 < 32,21 € 342,79
n L] 3n, 22 J 344,79
12 < ?8.72?2 L VA, TR
I < 26,71 € WP, 79
74 < 26418 . 350,82
75 < 27.1% < 357 .R5
78 « 20,10 < 354,99
77 L3 1R, 04 € 354,96
TR « 15.97 € 159,0%
73 < 11.R0 3 I61.11
an L3 11,40 . 363,70
e * 1.49 « SN
2 < 7.57 3 167,413
A1 < S, 04 « 369,56
A < 1.30 € ITL.70
L1 « .14 « 197,07

Figure 51,

PAYMENTR =€

POINCYOAL

AP AAAAADLAANPAAAAAAAARAAAAARADPAAAARRNRLANARARNAADRAAANAADPANPAARAASAPAAAAARRAARAAAADALEANADAAAAAN

244,770,080
244530 ,87
P44305,99
26.071.96
23.836,58
23+599,83
?l43al,71
234122.21
?2.A81,32
PPer39,01
22,393.34
?2e150,23
21e903,70
21.A5R, 74
2les06,32
714185.50
20.003,70
20,469,064
?04194,2)
204 VAT, S0
19,279,
19,419,560
19.13%R,29
19.095,.87
1R .R3) .47
19,565,684
18,594,737
184029,45
17.759,07
17.4R7.02
1721344
14e33R, 2R
LTS 4
154303, 14
16,103,118
15.0921,5R
15,838,
154253.464
164,064,973
144ATH, 76
14438 AR
16,007,737
13.004,n9
13.8609,1%
13.212,.50
17.014,17
12.414.07
12,212,109
12.,008,40
114703,2%
114795,11
Y1.0R7,29
10,774,587
10.ake, 03
10,149,72
9,833,59
9.615.A7
9,195.a1
AgrTe, 14
Aee50.41
R,225,20
7.697,91
T+chR, 7?2
TV237,.62
£v00b.60
f.SHI L AS
£0212,7%
5+293,90
5.c%3,0R
S,210,29
4 mhS5,51
4,518,719
4,1v69,96
3.219,1°
Yeunh 27
111,37
2.754.41
?.295,1R
24N, 27
1.671,07
Ta308,7T
Q13”,33
SRALTT
197,07
«00

AAABSAAAALAANAAAMASAAAAARAAAARAAAAAAANAARAAAARAAARAAANAAAAAARARARLAARNAAAAARAARAAARAAAAAARABLARNASLENDNALIAADIAARLRAMNAAAMA

375,90
ACCUMULATFD TMYFLFAT

145,00

288,87

420,99

571,95

711.69

ReB,RS

9Aa&, 1
1.122.21
1e25¢,32
1«3R9,07
14520,
1+650,73
1= T7T7TR. 79
1.905, 74
263,34
P« 188,50
3PTR, 20
Pe300,44
2+519.21
P37, SN
3.754,30
2+R69,60
2,9R3,39
FeH95,47
FeP0R,4?
3:315,64
427,37
529,45
636,07
3.737,.02
838,48
934,78
4.N36,52
49133,15
He2PR 1P
4¢321.58
DTN B M 1
4e%NY, 46
4,591,393
L. ATR, TG
473,843
4 R47,33
4,929,009
S:009,15
S.NRT,S0
Sel66.13
S.219,07
8,312,119
5,387, 40
S4453,.25
C.G2 Y, 13
S.587,23
S,651,83
S.716.03
S.7746,72
SeR33,50
SeRIN A2
C.945,8)
Se999,14
AeNSA RY
IS LI 7))
6ela?,93)
£a193,72
4423782
£e270, 40
&e¥]19,R5
feI57,75
Ae391,90
AR.L?PAR DR
&K 40, 30
XYLLNS
KeS1R, 73
AeSh4, 00
€£4569,17
feSQY, P27
AeAl1.37
€ 39,41
RehLS 2R
£ KRQ, D7
AghTI NT
e BRT, TR
feh2R,37
f R9,TT
Re&D7.D7
fv&9R,P1

Example of Mortgage Table Qutput

137

YFaR

R NANSNNANNAANNAPITPIIPPIPIIIP>PPIPDPIANINDANANNANRNNIANNEEE LR E L 8P P E P LQawdadadW@dd dd™ VN AUN VUNVYVY VYN NN Y ot s ot 5ot ot v ot oot ol b oot

out reading the deck in each time. The results of each sort will be printed giving
the original position of the card in the deck.

Read new set of cards LOG0O 020A 0000 0000 0000

Use old set of cards LOO0 020A 0000 0000 0001
> Pointer to sort cards 1.000 020C 0000 0000 00YY

Number of characters in key L000 0214 0000 0c00 00KK
Starting character in key L000 0215 0000 0000 00SS

Direction of sort descending L.000 0217 0000 0000 0000

Direction of sort ascending 1000 0217 0000 0000 0001
YY = segment number for storage of cards to be sorted
KK = number of characters in sort key in hexidecimal (up to 64)
SS = location of starting key in card character of sort

The last card of a deck of cards to be sorted must contain an illegal character {?).
An example of the card input to the sort and the several outputs of the sort, using
different keys and different sort directions, appear in Figure g32.

Matrix Multiply and Print

The Matrix Multiply program allows for the construction of a matrix which is the
product of two given matrices, Each matrix element is an integer (positive or
negative). The dimensions of the matrices may vary and will be defined by
parameters stored in the work area. Pointers to the input matrices and to the
storage area for the output matrix will also be stored in the work area.

The Matrix Multiply program has been written so that more than one Interpreter
may work on the same matrix at the same time, each performing its own unique
set of row calculations. Each of these processes must have its own work area
indicating a starting row position and an entry for the number of processors that
are performing the multiply.

The matrix print routine must start when the matrix multiply has been completed.
This routine will print the input matrices and the resultant matrix on the printer.

The user of the matrix multiply and matrix print procedures must specify param-
eters of both of these routines. These parametiers determine the dimensions and
locations of the matrices to be multiplied:

% -
A 7 Bk * Cik

138

Pointer to matrix A 1000 WWOC 0000 8000 0oYY

B Lo0o WWOD 0000 0000 00YY

C Looo WWOE 0000 0000 00YY
i LGOO0 WW17 0000 0000 00DD
4 LO00QO WWwW16 0000 0000 00DD
k L000 WW18 0000 0000 00DD
WW = segment mumber for work area storage of matrix

multiply {24) and matrix print (2B) in hexidecimal

YY = segment number for location of matrices in hexidecimal
DD = dimension of matrices in hexidecimal

Maximum size of matrix is 256 (aize of segment),
Therefore the maximum dimension size is limited by the fnllowing formulas:

ixj< 2586
jxk <256
ix k<256

Since no more then 16 numbers can fit across the page for the matrix print,
the number of elements in a row should be no more than 16.

iand j< 16

Two examples of the mat rix print output appear in Figure 63.

CONFIDENCE ROUTINES

Four confidence routines, AERO1/KDK, AERO2/KDK, AERO3/KDK, and
AERO4/KDK test internal Interpreter functions. These routines must be loaded
directly into the microprogram memory and are not run under the control pro-
gram. The following assumptions are made in the confidence routines:

A RIM B works

No errors in MPM or Nanomemory that do not appear in instruction 1
which is a dummy instruction used to set as many nano bits as possible.

A+0 and 0+B Work,

AERO1 /KDK exercises the source-destination functions of the Interpreter, the
successor controls, and the condition tests LST, MST, ABT, and AOV. The tests
are designed to test from the simple to more complex. The detection of an error
in the initial tests will cause a wait-wait at the nearest point to the error. Upon
completion of testing of the successor controls all errors will exit to a standard-
error routine,

139

AERO2/KDK exercises the SAR, CTR, and shifting functions. This test may also be
considered as a test of the barrel switch., This test agsumes that the first test
{AERO1 /KDK) runs successfully.

AERO3/KDK exercises the adder and carry logic of the Interpreter. This section
of the code is divided into two parts. Part 1 exercises both A+B and A+B+1 logic.
Part 2 exercises the logic type instructions (NOR, NRI, NAN, XOR, NIM, IMP,
EQV, AND, RIM, OR, A+0, 0+R).

A subsection of Part 2 exercises four instructions (OAD, AAD, A-B and A-B-1) that
exist in the instruction set on other versions of the Interprezer. Thls section of code
exercises no new functions on the LSI Interpreters. . N
Corresponding to each section (or subsection) there is a subroutine which performs
the final comparison of results. The error indication and reporting for each section
is done by calling a standard error routine from the corresponding subroutine.

AERO4/KDK exercises those remaining areas cf the Interpreter not tested in the
previous tests. This test exercises: LC1, LC2, LC3, INT, GC1, GC2, AQV, IC,
CSAR, and B Register inputs: BAD, BBA, BBEI, BC4, BCS8.

AOMD SHRVFYS 2aCikanid)) v e 11:03 ConRgTER SYSTFM STMULATINM

ACR COMM EEHER S INTIS SN | hRIhS Ve THAL MFmORY SRa~Tvun [a TICS
COMD SURVFYS sk [MkY) oM LTI SURVEY ANALYTICAL TIVE Smeinh Morl S
ACH COtav leblstyn v fuig» ALLOCATION COMPUTFY RFSna-Ce s

CORNFLL TAES WL T » ¢ f1iiihy i ADLNOCKY I COMPOTFH SYSTeMS

ACHM COMM 1209 v 7 7ol FAGFDTENCE wlTh SATENCQRL- {80 iafr
TRM SYSTEMS HAVS &l W) w mazu? AvOTTRG DEAN OCS 20 TITASK]NG SYsTFw
ACH COMM HARE R At 4L N At ? b WET TN OF SYSTS ™ O ALK

AF1eS FJCC NENNENG 2 Y fnaiuy TrikASHINGIITS CAUSES anp “=r veEhTIG !
0t SURVEYS DEMNING P U 70:09 VIrTual MEmOwy

at COMM NENMYTS g = RGO FOSTT IO PASER COMPUTTRG Cosenir TCLITNS
ACM COMM BERNS TR [T SHARCF 7i:ue EOLICY OWivEN SCREDULF~ FO™ TS

AOMBD SURVEYS COFFAAlIrLe~]CK 7104 SYSTE * hrantncas

uiT MEMD DEGlES g o~ LR UL Furliler TRFRADS TN TEME Smad s SYSTERS
~OMD SURVEYS HOFFvan | J LRI CPUTERS ANDY PRIve(Y

TRF TRANS KILBURNIF Jaars 0/t OQur LEVEL STORAGF SYSTE

aF1eS SJCC RLEINROCK L 79105 CotTInyum TIme SmacInn QCHEM L TG

AF TS FJCC LAMPSON o w 64:09 DYNAMIC ROOTECTION SIRUCTilbsF =
oR1WCETON LAMPSOR = & 71:03 PrUTECTION

TEFe COMPUTER ARATE JiDUrit© H X ER B WP TIMIZInG PERFORMONCE Nwtim N[00 AGE
aCM COMM DIUKSTrA & GailuY SAHUUTION IN CON CURPENT w0t CUNTHOL
ACM COMM DIJUKST~A F ¢ 64:08 STRUCTUxE THE MOLTIRPROGRAMMING SYSTEM
ACM COMM GRAHAM b\ 64305 PROTECTION INFORYMATION PROCE SSING

nS QYNP POOLE Fiwallb « 69210 MACHINE INDEPENDFNT SNFTwAxE

ACM COMM WANDE LL PRUEHNFW 61305 DYMAMIC STOWAGF ALLOCATION SYSTFMS
rOMp SURVEYS ROSIN S 6930y FLECTRONIC COMPUTF&SIRISTONICAL SliRvEy
rOMo SURVEYS ROSIN K F 69:03 SUPFRVISORY AN MONITNK SYSTEMS

ACM COMM SUTrewLAND | F 63:06 FUTHRES MARKET IN COMDUTER TIMe

~OMo REVIFWS TRIMsLE 5 JR AB:0S TIME SHARING RIRL JTOGRAPMHY

ACM COMM WAITE w M 70807 MOKILE PROGRAMMING SYSTEMISTAGE 2
AATAMATION COR¥aTnH F h3:09 PL/L AS TOOL FOR SYSTFM RPROGRAMMIMNG
TFFe INTNATL CRFECH = A 70:06 IMPLEMENTATION OF ORFQaTING SYSTeEmS
AF10S FJCC CRITCHLOW A& J 63:09 GENERAL IZFO MULTIPROGRAMMING SYSTEMS
AN COMM NERMING » ARINS WOLK s SET MANEL QUNANAM 2r=AuTon
ACH COMM WILKES My ARI01 COMPIYTERS THEN AND NNyW

Figure 62.

(a) Card Input Sequence

Example of Sort Routine Output

140

couNT

XTI B S

COUNT
15
34
32
3z
31
30
29
28
27
2f
25
24
23
22
21
20
i
18
17
16
15
is
13
12
11
10

—_N PN PN O

POSITION

POSLTION
35
4n
v
en
Ze
27
17
29
'

L

3

!

I

14
ib
»
5
1%
7
"

24

I

¢l

la

il

1o

9

Jie

2

33

32

k1Y

13

12

¢

1EFF CuMpiTvw
&Cts COran
COMSE SUSVEYS
saTéexa¥Yiom
IFFF ILTHATL
AF IS g
HCsE Clam

AC~ CHera

AfF [2S §UCC
COMP SURVE ¥S
A0 Clrass

ALY vt

QLW (ghst

AC= Cirpt

acu Com

ACH COM»

Tum SYsTems
COMP SumveEYS
COWNELL THEY
Al Comm

B TeANS

ar IPS FUCC
PRINCE TuN
COMD SuwVE YS
COMP Supdig v8
ACW Cou

0S5 SYHP

atm Comw
AFEPS SJ4CC
CLMP St VE YS
COMP Sipéve ¥S
ACS COtew
COMP wiviEas
AC™ COma

Aaly Clam

ACM (oMM

aCH ChHma
COMY YeyjrwS
A4CH (O
CUOMS S yr ¥S
COMP SuryErs
AF VS SuCC
ACK Cunw

UY 6

A Yt
CUNMS Sty 7S
COAMY Symve 15
2 InCE TN

afF 1PS FilC
InE Thays
ACM LOMW
COmNELL Trts
CUME SuRVL TS
{re SYLTEMS
ACH ChHmm
ACM COMa

NOM UMY

WM COMM

MTT O MEM

agm COmMM
COMP SPYWVE ¥YS
aFIPs FUCC
ACM TOwMis

ACM (s

AF LIPS FUCC
TEEE InTNATL
VATAMATION
COMP SUHVEYS
AC™ COnmey
[ELE CumbuTiR

Figure 62,

S027

FURARARE AR AT AP T AN LA FXKLX LT "

Adir JID MuF S w
rENISTE INSSHARF
CNFFwarMIEL PRICK
Cownain F
CREFCH 3 &
CWITominy &
VIALEY RINFanie g
GFantnG &)
aFuaiaG 0
IWhsinG Py
GENNDS G ob
HENLES U o
UIJKSTEa § o
loksiva £ 4
{wiriAt O
HAMER4AY A N
HAVENGER J W
AGFF=ah
ALY &

£R0NS B Y

K ILAURNIEDRARDS
L AMPESOM K o
LAMMSON H N
BACGUGALL b
MO INMEY)
RIFLSEN N v
Fonty FIwdlTE W
WAKOR L L G HANF W
SLEIRROCK L
SOSIN 2 F

=isim S
SEITHE R ANGD §OF
TRI»LE O e
8]7r wow
wilers @ y

(b} Sort by Author (ascending)

RRARAKAAXAXXRAXAXRAXXARKIARK &2

witres & ¥
wAETF W oM
TNl G UK
SUT-rQp AND | £
»OSEN 5
ey < F
~Lt iRl |
ALY L LI KEIE el
FULE -IWALTE
iRl MW
RULE [P
Ca(fedtal L
L amMeSes;
LA S oy
LREILVEL B A Py T
Iwirs 1
L §
HOFFwLY
Have NOEY
HASK MAaN
GHARAM Q
NIUXSTwa
DRSS THA
DENNES U
NENNES o
1%
P

Eal

Rl 25 g
2=

§ €

DEMNYING
DENNING
NDFNNING By
NALFY FilloamIs J
CHITCHLOW &
CHEECH R A
CORRATO F)

COFP #ANIFLPHICK
=ERNSTE ING SHADRF
ARATE Jiftihaid ™

L]
N
J
J

{c) Sort by Author (desceraing)

141

AGe 1
71:0¢2
7lsan
ARIIOS
70305
LR
TN
w5
a9
Inzay
AHEHY
Aw2 A
Ay
LLHUA
LEH b
£4207
hasof
HQ: 06
71:06
78301
62104
AQIN9
71:03
7O
A3 06
70:04
A3z 10
PR XL
70:05
&4:03
Ayl
AR A
bEIOS
1007
=20}

L H O
ey
ARG
LEFI
LU RS)
LERRR]
TOIUS
/a3 5
LEES TV
Toyym
AGion
ToinS
AR ALK]
A0y
£ U4
7a:al
Tliek
LERR
AREOT
#9117
~E2 0S5
LR
AS109
£S105
R 09
™0: 09
KA 09
SR
#2208
A3:0Q
h:0N&
AQ: 05
71: 06
ry:oe
Aq: 1l

STl 71w PLRFARMALCE Nugu STORANF
POLICY auiyki SCWFRULER FOR TSS
SYSTre OFADLOCKS

B/ AS TON FOR SYSTEM Pon6raussiyg
InPLERENTATION OF OPFUATING SYGTEMS
CREMFLAL TRy i T]Dwﬂ(}-l(_'!l'['.;(. SYS5TF G
VP TAL wrafpy Sz lsut TN s TICS
AN G SFT MODFL PWOLRWAN 3Emay [OR

T ASaINGI T TS CAUGES AMOD PLFYFRTION
VI INAL MR MY

POSITION RAPIe COMPUTING CoMsmnICATNS
FobTuwe Tok iy iR 1[5 SMARING GYaTFwS
SHOTIG) o Can COuR@F T GR3G COMT Y
STCTURE THE & gL TIPLOLLAvMING SYSTEM
PeQTe CTTON T GRMAT [ON PROCESSING
wade Y B TIDN OF SYSTEW DEADNLOCKY

Ay lolnt WAGLOCK »ILTITEL<ING SYSTOw
(akgTERS AND PRIVACY :

BFAGL UG T CORPUTE S SYRTFUS
EAPERIEHCE T FXTENSIALE La~ytihck
Ok LEVEL STHAWAGF YQTew

DYNARLIL CunTFCTINN SIPNCTURFS
PrGTeCTLON

CRmeyTEw Sy=Tir S aTI0H

SUNMYEY Ana ¥ TICAL TIw Shplsh wads g
ALLOCATION CnaniTFe RDESOYRCFS

ABCHIMNE MR BFLNENT SO0F TwAWF

DYRAMIC “TORAGE ALLOBCAYTON SYSTEwg
CONTIMNLm TIME Sraw it SCHe OULT NG
SRe RV ISy ANy BOMTTOR Gy §TF wa
FLCIwenTC CowonTRwS ISISTo2 IO
FuTinekh S waIri T J% COMPHTE~ Tl
TI®E Srasles sl [onEAPRY

i JUE Sonhesus it SYSTEmiGTAS [
COVOyTr wS Tep s, AND W

S sey

Qe ¥

COAINANTE RS Tk nr NN N

MY ILF Pe{e b A0 RYSTEWISTAAF P
[iF S=Ax]fls «fal [GwrawY
FoaTumt S 28wae T I8 CNEGTrw TaF
FLE OO0 Oyt ITEWN IR ISTO] T AL
s by Lot At MO YO Sy S TEIvS

Soamyb v

ComElaat % Tiv SHAL{NG SOmed 1.
DvRANTL STeRar A nTeTTrN SvSTEvsy
watAlmr et NS L L ASE
Lot T e, TR N

AR LA N S UL A ST i ¢ S
Cuaw T e Sy aToe yIvepaflon

DL Te O,

Yrwdvie FEaTrlTIom STRnd Thee o

GO%NE LEVEL ST hwEGE SYvNTEw

rEGE L E L CF e [T B XTeNSERLE Lacaaians
REN SANEINL IS SV AT SIS NS PR N ERUEN
CoMauTr oS anD #Rivacy

AvDINIMG DEANLOCK MOLTITAGK TN SYGIFe
PREVENTTION OF SySTes DEATY ACH
PROTECTION IAF 'RMATIM BROCESSTNG
STWHCTHINE THr ' T[RI0ARame v SYSTE
SOLUTION fn CUn CURRFNMT Aoas CONTREL
FUTuwE TwENDS I TIME SHLSIND SISTEYS
PASITION FAPEN COVPUTING CrudpNICATNS
VIQRTUAL “F MRy

THRAGHINGIITS CAUSLSG A Fut yr NTION
wOWK AT SET MOURL D2OGRAY 4F mayIne
VERTYAL MEMebY SRLaRInG Ia wy TICE
GEREWALTZei) WL TIPINGRAMK LG Sy STrms
1 4PLEMENTATION OF OPFRATING SYSTEM
BLZL AS TODL FOR NYSTEM Riaieavu] s
SYSTe™ DEANLOCKRS

PALICY SRIyFAN SCHEWOGLEY FOWw TC

UM T I [Z 50 OE=F CRMARCE Danw STowaGs

Example of Sort Routine Output

VINPUNE W~ 2

ot e Bt et et
P WD

—
)

= et gt et
O DN

4]

uvNouNN N
I E LN -

(At et
N

wwn
— 32D

W
2N

Wk
e

~

POSITION

12 ACM COMM

2 ACM COMM
34 ACM COMw

11 ACM COMM
71 ACM CMm
I3 ACM COMM
e3 ACM COMM

[} ACM COMM

[} ACM COMM

4 ACM COMM
25 ACM COwm
2h ACM COMM
30 ACM CNMM
35 ACM COMM

33 afFIPS FUYCC

9 AF LIPS FJCC
18 AFTOS FJCC
17 AF LIRS SJCC
o4 COMY wEVIE NS
13 COMP SiwVEYS
10 COMP QURVEYS
15 COMP S vEYS
1 COvE SURVEYS
3 COMP SUsVEYS
27 COMD SURVE Y&
7hH COMP - Stiwyk YS
S COWNE L L THES
31 DATAMATION

7 THw Cyuihmy
20 TEEF COsrtw
37 [Fee INTraft
I (SIS A EN

16 MET MR
’4 NS Symp

19 PRINCE TON

(d) Sert by Journal (ascending)

Figure 62,

MATRTIX A *

MATRIX A

& =17

-19% 6

11 4

~1 -1

1 -11
MATRIX R

"M n

1R =11

7 -21

-3 -5

~14 -16

-19 s
PRODUCT

47 RSE

312 ~187

231 194

-500 101

S5 26

Figure 63,

XXX XX KX R X AL ERXN XX XXXN X

SEHNSTE IN2 SHARPE
DALEY WIDENNIS U
DENNING Py
DERNIS U 8
DIJUKSTRA £ W
DIJKSTRA £ W
GRAHAM B ™
HMARERMAN & N
IRONS & 7
NIFLSFN N R
KANDFLL sKUEHNF
SUTHERLAND T F
walTt w ™
WILKES M ¥
CHITOM Ow
DENNMLIMG P
LAMPSON S
FLF INROCK
Twimsge 6 9
COFFMANTEL PHICK
DBEan NG P oy

HOFF MAN |
MACIMMIGALL ™
MORTNbY oM
wOSTY K OF

WS N S

b7 R

CARSATY ¥

RHAVE MR) W
AxATE JIDIKMNER H
Crwkb(H w8
IR FNwARDC
[T SN B
COOLE RIWATTE w
LAMBGOA B W

[anlit RSN

[

71302
6R:0S
6ROS
€3:05
A5:09
68309
GRS
AYINT
70:01
70:08
ARIOY
ARG
n:07
ARIOL
H3:09
AR:09
69:09
T0:0%
K0S
TYi0h
gy
AYI0A
7099
63104k
w9073
AQI03
Ti:i46
KALOHS
w0 T
LR DY
7n30A
ASL0G
HGI0A
A9:10
71:03%

SORT

POLICY DRIVEN SCHEGULER FOR 7SS
VERTUAL MFMORY SHARING IN MULTICS
WORKING SET MODFEL PROGRAM BEHAVIOR
POSITION PAPER COMPUTING COMMUNICATNS
SOLUTION IN CON CURRENMT PRO6G CONTROL
STRUCTURE THE MULTIPPOGRAMMING SYSTEM
EROTECTION INFORMATION PROCE SSING
BREVFNTION OF SYSTEM DOFADLICK
EXPFRIENCE wITr FXTENSIBLE LANGUAGE
ALLNCATION COMPUTFR RFSOURCES

AYNAMIC STORAGEF A{LOCATION SYSTEMS
FUTURES MARKFT IN COMPUTER 1 IMF
MORILE PROGWAMMINAG SYSTFMISYAGE 2
COMPDITERS THEM AND NOW

GENERAL]ZED MULT [PROGRAMMING SYSTEMS
THRASHING:ITS CalSES AN PREVENTION
NYNAMIC PROTFCTION STPUCTURES
CONTINUHM TIMF SHARTNG SCHEDUL ING
TIMF SHANING AIRL JOGRAPHY

SYSTeM DEANLOCKS

VIRTUAL MEMORY

COMPUITERS AND PRIVACY

COMPYTER SYSTEM SIMLATION

SURVEY ANLLYTICAL TIMF SHRING MODELS
SUPFRVISORY AND MONTITOR SYSTEMS
ELECIRONIC COMPUTFRSIMISTORICAL SUWVEY
NFADLOCK [N COMPUTER SYSTEMS

PL/1 Ay TOOL F0ir SYSTEM PROGEAMMING
AVOINING DEBDLOCK MILTITASKING SYSTEM
OPTIMIZING PERFORMANCE DRUM STORAGE
IMPLEMENTATION OF OPFRATING SYSTEMS
OME LEVFL STORAGE SYSTEM

FOTURE TRENDS TN TME SHARING GYSTEMS
VACHINE ITNOEPFMNDFNT SOF TwaARF
LROTECTIOMN

Ixamples of Sort Routine Cutput (cont'd)

MATRIX R = PRADUICT
-13 -7 -15
17 =-A ~10
-11 5 -h
l 10 2

14 =1 ~-11
2?7 =23 14
-10 -17 3
-7 21 20

9 19 13

17 =24 -20
15 -1 23
-20 21 -72
=817 A10 26
196 =157 -1
393 EL3| 3a2
-16S 664 68

LY

-h
-4
13
1
10 -Q
- ¢
14 . -P?
-R A -15
1 8 -12
-1R -13 12
19 2n 457
184 =130 29
-62 112 76
=224 -63 =75
298 -6k ~-1586

Examples ot Matrix Print Routine QOutput

142

LI

“ATRTY A
MATRTY &
-R

-13

11

A

1

14

-k

-19

-11

2

A

-0

-2

'

-4

1H

MATRTXY R
'S

[
5
-13
-»
2
=17
=11
-]
Z

AW BNYSD

CROMCT

-247
.
196
-265
-7l
330
1n7
<49
=11
-280
-R
K>
=327
-390
CELE
»a

-1?
11
213

17
-12

~-1N
-7

-1?
-1?

-6%
By L]
?1R
o L7
=371
=135
-177
-0712
L)
~159
R
-295
?T0
IR
179
-359

MATRTY A

2OPDN

-7

=-10
-5
-
1n
-1
-10

=6

35
494
k9]
-607
-63
AT
212
315
199
neg
-b41
Y3
-112?
-167
3213
148

]
-3
-f
14
-12
-1
-1
-2
-14
4]

)
-17
12
7

]

0

=R
-10

-7

n

4513
€93
754
-193
-6h
13
-47?
160
T
435
~156
~PAR
240
202
KD
149

Figire 63,

eROPUCT

10
-4

-5
-tn

571
-12n
PR3
735
ELY
PhA
ak
55
~£)
~243
264
3072
-394
-297
-74R

-17

-5
-11
-)
-6

)
-1
-1
-11
17

-6

141
339
~PPP
1%

~ANK
169
-108
-z74
=¥
194
-bbl
4h
2
197
~-191

Examples of Matrix Print Routine Output (cont'd)

17

247
2nAa
106
157
70
-19
-15
219
-7
179
-271
Ala
~13A
-1]19Q
-119
M

-176
1ny
-7
LTS
«-191
~168
-149
10
-P139
~10Y
387
il
snn
730
170
-179

~14
10

-2

-h
1

~1n
"
-1t
14

-2
Jle
~14
~5
-?
12
-13

-y
55
-6

-]
T0Y

=20
133
~10n
LY
-17?
rd)
-11
-1
~168
=3Qn
~1413

=13
11
"

~12
11

-1
14
13
-5
-R

-7

-S4A
-9
-R
J6S
-=7
Q3
P2
174
=303
~-110
23R
-2
~115
~?216
-ah
14R

-7

-5
-y
1
-1

-9
12

-h
-7

-f
11

-7

-2
-2

14
-2

1l
12

PR
361

- 354
=57
280

~132

41

-71?

232
-7
51

~?R3

-p28
172
~4R

5

1

19
180
-321
31
-39
-15%
78
234
Q

276
“114
-2k
-203
-43
41
n

11

.__8
~11
A

-1
-t}
=R
~10
12
-9
17

-
-

-R
~14
-3
1"
-
7
-t
-2
-9
-t
i2
12

1?7
-0
-9

-79
~3ab

=194
149
-]
_ano
~3IR0
a7
277
-y
421
-1R
264
~1R0

0
.9
~14
1
P

Z14
~9
i

[

14
13

11

1
-1
14
~7
1n
-2
-7
-k
-7
-5
14

419
134
q

-G08

2k
62

-320

202
473
S0

-2

-14an
334

~1Th
305

-5
1>
-t

12

14
17
-3
16
16

-1

10

“14

.61
-97
156
136
~339
~77
iR?
=640
-T2
502
239
-69%
197
RQP
=126
~4A?

APPENDIX I
HISTORICAL REVIEW OF MICROPROGRAMMING

Digital computing systems have traditionally been described as being composed
of the five basic units: input, output, memory, arithmetic/logic, and control
{Figure 64). Machine instructions and data are communicated among these units
as indicated by the heavy lines in the figure are generally well known and
understood, The control signals (as indicated by light lines in the figure), are
generaily less well known and understood except by the system designer. These
control signals generated in the controi unit determine the information flow and
timing of the system.

Microprogramming is a term associated with the orderly and systematic approach
to the design of the control unit, The functions of the control unit include:

1. Fetching the next machine instruction to be executed from
memory

2, Decoding the machine instruction and providing each microstep
control

3. Controlling the gating of data paths to perform the specified
operation

4, Changing the machine state to allow fetching of the next
instruction.

The conventional control unit is designed using flip-flops (e.g., registers and
counters) and gating in a relatively irregular ad hoc manner., By contrast the
control unit of a microprogrammable computer is implemented using well
structured memory elements, thus providing a means for well organized and
flexible control.

145

Microprogramming is therefore a technique for implementing the control function
of a digital computing system as sequences of control signals that are organized
on a word basis and stored in a memory unit.

it should be noted that if this memory is alterable, then microprogramming
allows the modification of the system architecture as observed at the machine
language level, Thus, the same hardware may be made to appear as a variety of
system structures; thereby achieving optimum processing capability for each
task to be performed, The ability to alter the microprogram memory is called
dynamic microprogramming as compared to static microprogramming which
uses read only memories.,

As can be seen in the following brief historical review, the concept of micro~
programming was not widely accepted except academically during the 1950's.
The primary reason for this was its high cost of implementation, especially the
cost ¢f control memories. Fromthe mid-1960's to the present there has been
a definite trend toward microprogrammable processors and more recently to
dynamic microprogramming, This effort has been inspired by rapid advances
in technology, especially control memories.

CONTROL

A
ARITHMETIC

a
LOGIC

1

INPUT H MEMORY b OUTPUT

[] HEAVY LINES INDICATE INSTRUCTION & DATA FATHS

] LIGHT LINES INDICATE CONTROL PATHS

Figure 64. Traditional Digital Computing System Block Diagram

146

BRIEF HISTORICAL REVIEW OF MICROPROGRAMMING

1951 Wilkef-}1 objective was ''to provide a systematic
approach and an orderly approach to designing
the control section of any computing system, "
He likened the execution of the individual steps
within a machine instruction to the execution of
the individual instructions in a program; hence
the term microprogramming. This view is
hardware design oriented,

Lincoln Lab (see Van der Poelz) with different
emphasis used the term microprogramming to
describe a system in which the individual bits
in an instruction directly control certain gates
in the processor. The objective here was to
provide the programmer with a larger instruc-
tion repertoire. This view is software design
oriented,

1956/7 Glantz3 and Mercer pointed out that through
microprogram modifications the processor
inst ruction set may be varied.

1958-1960 Blankenbakers, Dinneens, and Kampe7 described
simple computers based on Wilkes model.

1961-1964 Great international interest was shown from
U.S., U.K,, Italy, Japan, Russia, Australia
and France.

Feb., 1964 In Datamationa_12 five articles appeared on
microprogramming with emphasis on how it
might extend the computing capacity of small
machines,

1964 IBM System 360 (Stevensla) demonstrated that
through microprogramming, computers of 4if-
ferent power with conipatible instruction sets
could be provided (vsed read only storage).

1965 Melbourne and Pugmire14 described micropro-

gramming support for compiling and inter-
preting higher level programming languages.

147

1965 McGee and Petersen'® pointed out the advantage
of using an elementary microprogrammed com-
puter as a peripheral controller; i.e., as an
interface between computers and peripheral -

devices,
1§ 17 .
1965-1966 Green ~, and Tucker = described emulation of
one machine on another through microprogram-
ming.
1967 Opler18 coined the term ''firmware" for micro-

programs designed to support software and
suggests the increased usage of microprogram-
ming and describes its advantages,

1967 Hawryszk:‘.ew.,xrcz19 discussed microprogram
support through special instructions for problem
oriented languages.

2
1967 Rose 0 described a microprogrammed graphical
interface computer.

1968 Lawson21 discussed program language oriented
instruction streams,

1969 Wilkes”? and Rosin23 provided surveys of the
microprogramming advances,

There were also announcements of many new
microprogrammed Cf&'ﬂpute!‘b (e. g., Standard
Computer - Rakoczi

1870 Husson25 provided the first textbook on micro-
programming,

1971 Tucker and Flynn26 pointed out advantages of
adapting the machine to the task through
microprogramming.

July 1971 The IEEE Transactions on Computers offered

a gpecial issue on microprogramming.

July 1972 Clapp27 and Jones,. et. al. 28 provide annotated
microprogramming bibliographies.

148

10.

11.

12.

13.

14.

Wilkes, M. V. "The Best Way to design an Automatic Calculation Machine"
Manchester University Computer Inaugural Conference Proceeding (1951),
p. 186.

Van Der Poel, W.L. "Micro~-Programming and Trickology' John Wiley
and Sons, Inc. (1862), Digital Information Processors.

Glantz, H. T. "A Note on Microprogramming" Journal ACM 3, Vol. No. 2,
(1956), p. 77.

Mercer, R.J. "Micro-Programming' Journal ACM 4, Vol, No. 2 (1957),
p. 157.

Blankenbaker, J.V. "Logically Microprogrammed Computers' IRE Prof,
Group on Elec, Com. (December 1358), Vol. EC-7, No. 2, pp. 103-109.

Dineen, G.P., Lebow, L L., et al. '"The Logical Ded gn of CG24" Proc.
E.J.C.C. (December 1958), pp. 91-94.

Kampe, T.W. "The Design of a General-Purpose Microprogram-Controlled
Computer with Elementary Structure' IRE Trans. (June 1960), Vol, EC-9,
No. 2, pp. 208-213.

Beck, L., Keeler, F. ""The C-8401 Data Processor' (February 1264),
Datamation, pp. 33-35.

Boutwell, Jr., O. "The PB 440 Computer' (February 1964), Datamation,
pp. 30-32,

Amdahl, L.D. "Microprogramming and Stored Logic" (February 1964),
Datamation, pp. 24-36.

Hill, R.H. "Stored Logic Programming and Applications" (February 1964),
Datamation, pp. 36-39.

McGee, W.C. "The TRW-133 Computer' (February 1964), Datamation,
pp- 27-29,

Stevens, W.Y. '"The Structure of SYSTE M/360 Part II - System
Implementation'' IBM Systems Journal, Vol. 3, No. 2 (1964) pp. 136-143,

Melbourne, A.J., Pugmire, J.M., et al. '"A Small Computer {or the

Direct Processing of Foriran Statements'' Computer Journ. (England)
(April 1965), Vol, 8, No. 1, pp. 24-27.

149

15,

16.

17.

18.

19.

20.

21,

22.

23.

24,

25.

26.

27,

28,

McGee, W.C. and Peterson, H.E, "Microprogram Control for the
Experimental Sciences' Proc. AFIPS (1965), FJCC Vol. 27, pp. 77-91.

Green, J. "Microprogramming Emulators and Programiming Languages'"
Comm. of ACM (March 1366), Vol. 9, No. 3, pp. 230-232.

Tucker, S.G. "Emulation of Large Systems' Comrmunications of the
ACM (December 1965), Vol, 8, No. 12, pp. 753-761.

Opler, A. "Fourth-Generation Software, the Realignment'' Datamation
(January, 1967), Vol., 13, No, 1, pp. 22-24,

Hawryszkiewycz, [T. "Microprogrammed Control in Problem-Oriented
Languages' IEEE Transactions on Electronic Computers (October 1967),
Vol. EC~16, No. 5, pp. 652-658,

Rose, G.A. "Intergraphic, a Microprogrammed Graphical-Interface
Computer'! IEEE Transactions (December 1967), Vol. EC-16, No. 6,
PpP. 776~784.

Lawson, H. W, ""Programming Language-Oriented Instruction Streams"
IEEE Transactions (1968), C-17, p. 478,

Wilkes, M, V. "The Growth of Interest in Microprogramming - A
Literature Survey' Comp. Surveys, Vol. 1, No. 3 (September 1969),
pp. 139-145.

Rosin, R.F. '"Contemporary Concepts of Microprogramming and Emulation"
Comp. Surveys, Vol. 1, No. 4 (December 1969), pp. 197-212.

Rakoczi, L.L. "The Computer-Within-a-Computer: A Fourth Generation
Concept"” Computer Group News, Vol. 2, No. 8, (March 1969), pp. 14-20.

Husson, S. "Microprogramming: Principles and Practices' Prentice
Hall, Englewood Cliffs, N.J. (1970),

Tucker, A.B. and Flynn, M.J. '"Dynaiuic Microprogramming: Processor
Organization and Programming'' CACM (April 1971), Vol. 14, No. 4,
pp. 240-250.

Clapp, J.A. "'Annotated Microprograming Bibliography'' SIGMICRO
Newsietter, Vol. 3, Issue 2, (July 1972), pp. 3-38.

Jones, L.H., Carvin, K. et al. ""An Annotated Bibliography on Micro-

programming'’ SIGMICRO Newsletter, Vol. 3, Issue 2, (July, 1972),
pp. 39-55.

150

APPENDIX II

FINAL SUMMARY REPORT

" BIPOLAR LSI
FOR

BURROUGHS INTERPRETER
MAY 1972

CONTRACT NO. 82329

PREPARED BY

TEXAS INSTRUMENTS INCORPORATED
P, O, BOX 1443

HOUSTON, TEXAS 77001

FOR

BURROUGHS CORPORATION
DEFENSE, SPACE & SPECIAL SYSTEMS GROUP

PAOLI, PENNSYLVANIA 19301

151

TABLE OF CONTENTS

SECTION p . PAGE
I LARGE SCALE INTEGRATION 1
i LOGIC DRAWINGS 5
1 GENERAL CIRCUIT CHARACTERISTICS 6
v LOGIC SLICES _ 7
A) TYPE "N" 7
1. DATA
2. FIRST LEVEL METAL MASK 8
B) TYPE "§" 9
1. DATA
2. FIRST LEVEL METAL MASK 10
v LOGIC CELL DATA 1n
A) NAND GATE _ 11
B) EXCLUSIVE OR GATE 12
C) AND - NOR - INVERT GATE 13
D) J - K MASTER-SLAVE FLIP-FLOP 14
VI LOGIC CELL PHOTOGRAPHS 16
A) DUAL 3-INPUT NAND GATE 16
B) 7-INPUT NAND GATE 16
C) EXCLUSIVE OR GATE 17
D) AND - NOR - INVERT GATE 17
E) J - K MASTER-SLAVE FLIP-FLOP 18
Vil PACKAGE DATA 19

cont'd ...

152

TABLE OF CONTENTS

{cont'd)

SECTION ' PAGE

Vil ARRAY SUMMARY DATA 20

A) DRA-3013 20

B) DRA-3014 21

C) DRA-3015 22

D) DRA-3016 ' 23

E) DRA-3017 24

F) DRA-3018 25

X1 RETURNED MATERIAL REPORT 26

X RELIABILITY 28

153

LARGE SCALE INTEGRATION

Via Discretionary Routed Arrays

Figurs 1. Multilevel process
from wafer to array test,
all computerized.

Texas instruments is using monolithic discre-
tionary routing technology to produce Large Scale
integrated (LS!} arrays. Large bipolar wafers are
produced containing an intermix of the gates and
flip-flops required to perform logic functions.

More than 16,000 separate components are
diffused into a single 1 1/2-inch-diameter silicon
slice, These components are then connected with
first level metallization into a minimum of 1410
equivalent gates. {See Figure 1.) The slice is then
probed to determine the individual characteristics
of each device on the slice.

Customer logic requirements are fed into
computer-controlied equipment, which has been
developed to generate unique interconnection
masks for each wafer at low cost.

Custom interconnections are then produced
using probe test data and a computer to develop
the discretionary routing masks. Using these auto-
mated techniques, custom arrays can be developed
to fit most logic specifications. Multilevel metal
interconnect technology now makes possible the
production of very complex arrays in a short time.

154

CUSTOM LSI ARRAYS

Custom LS| Arrays are produced by discretionarily interconnecting various circuits or cell types
on the face of an LS| wafer, similar to the interconnection of individual integrated circuits on a PC
board. These are TTL logic circuit types and are similar to T} standard series SN5400 integrated cir-
cuits. The same general logic rules {loading, fan-in, fan-out, logic states, speeds, etc.) that apply to
series SN5400, apply to the LSI circuits. Therefore, to design a system with LS, or to reimplement
an existing one, is a relatively easy, straightforward process.

LSt INTERFACE

There are three basic interface methods that can be achieved with the LS! technology:

1} The first method is to implement a functional bipolar logic requirement with the
standard wafers currently in assignment inventory, shown on page . These types
are currently in production and stocked, waiting for assignment 10 a logic require-
ment. The addition of multitevel metallization converts these slices into functional
arrays.

Partitioning the arrays for the number of circuits and types available on the wafer
and limiting the number of input-outputs, not to exceed 126, is all that is required.
Presently, the time from logic diagram input to completed array is in the range of
30 to 90 days, depending on complexity.

2) The second interface method is impiemented by creating a custom wafer using stan-
dard circuits from our circuits library. This often reduces the total number of arrays
needed in a system, thus reducing the system cost. The highest single cost in the
design of IC’s is the set of diffusion masks used to create the individual circuits.

This high cost has already been absorbed in the design of standard circuits. Step-
ping and repeating these standard circuits around on a wafer to form a custom dis-
tribution or quantity of given circuit types is a relatively low-cost operation. Thus,
a custom wafer containing a unique distribution of circuits for a specific application
provides the interface.

Tl is continuously expanding the present circuits library with new, more complex
circuits. Most of these will be similar, if not identical, to the circuits presently
available as standard Series 5400. Thus, implementing LS1 arrays remains simple.

155

3} The third interface method with LS is a total custom approach. A few thousand
arrays of a single type may justify the expense of 2 custom circuit as well as that of
a unique wafer. General-purpose logic arrays will provide 200- to 800-gate complex-
ity while customized circuits and wafers can provide arrays of 500- to over 2000-gate
complexity on a single monolithic substrate.

ARRAY TESTING

The final phase of creating an LS array is the testing of interconnections and the verification
that the array will perform in accordance with the logic diagram. Because testing an input logic
array with all possible combinations of inputs that can occur is impractical, Tl has develcoed a
“single-fault modeling” approach. Testing for a single type of fault at each node within the logic
network is both practical and effective. This approach assumes that a set of inputs can be defined
that not only will exercise each circuit output but also will test for the output being stuck-at-one
or stuck-at-2ero.

The number of tests required for 2 200- to 400-gate array is in the thousands. But thisisa
~ reasonable number to generate and test with computer programs and computer-controlied test equip-
ment. The equipment is capable of applying 5,000 tests per second to a 156-pin LS| package.

This approach to tests does not require knowledge of the functional capability of a logic array.
Therefore, a logic diagram can be provided, the multilevel interconnection accomplished, and the
completed array tested without the operator knowing what the array does functionally. This gives
the customer confidence that his circuit innovations are protected. In addition, it assures that this
information is treated on a preprietary basis.

ARRAY PACKAGE

A general-purpose package has been developed for housing whole wafers of monolithic semi-
conductor components. The package serves as a suitable container, protects the wafer from handling
and environments, provides for adequate heat transfer, and is capable of mounting and interconnec-
tion into customers’ equipment. A 2 1/8-inch square, alumina-ceramic substrate with thick-film
metallization leads is the package developed through extensive research. It provides 39 leads on
50-mil centers on all 4 sides of the package so that conventional solder or refiow soider techniques
can be used.

156

Normally the wafer is mounted with a special high-temperature epoxy adhesive, providing
typically a 3° C/W gradient between the LS| wafer and the ceramic header. The wafer is connected
ta the gold-plated lead frame with gold wires, using conventional thermocompression techniques.
This resuits in a high-reliability all gold system. The standard package has an epoxy-sealed ceramic
lid, but a hermetically sealed package with Kovar-type lid can be provided.

157

LOGIC DRAWINGS

1. LOGIC UNIT 1
REV, B - 12-14-70
SK-0982-0109
DRA-3013

2, LOGIC UNIT 2
REV, F - 3-4-71
SK-0982-0110
DRA-3014

3. CONTROL UNIT 1
REV. D - 4-16-71
SK-0982-0113
DRA-3015

4. CONTROL UNIT 2
REV, B - 4-26-71
SK-0982-0114
DRA-3016

5. MEMORY CONTROL, UNIT 1
REV. D - 4-16-71
SK-0982-0111
DRA-3017

6. MEMORY CONTROL UNIT 2
REV, C - 4-27-11

SK-0982-0112
DRA-3018

AA - 5/8/72

158

BIPOLAR LSI

GENERAL CIRCUIT CHARACTERISTICS

ahsolute maximum ratings over oparating case temperatura range (unless otherwise noted)

Supply Voltage Vo Short Duration (30 seconds) (see note 1) . . .
input Voltage V; (seenotes1and2)
Operating Case Temperature Range

. = .

.. IV
55V

. —55°C to 125°C

Storage TemperatureRange.—65Ct 150°C

NOTES: 1. Voitages are with respect to network ground terminasl,
2. input signals must be 2er0 or positiva with respect ta network ground terminst.

recommended operating conditions

MIN TYP MAX UNIT
Supply Voltage Veg - - - v - T e e e e 45 5 55 v
electricai characteristics over operating temparature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP* MAX UNIT
V|4 High level input valtage Veg =45V 2 v
Vi, Low level input voitage Vec =45V (¢8:) v
Von High lzvel output voltage Veg =45V, Vioac * 400 uA 24 35 \Y
VoL Low level output voltage Vep =45V, tink = 8 p‘lA 0.22 0.4 v
High level input cuirent Vee =55V, Vi =24V, a0 uA
'™ one normatized ioad Vec =58V, Vig=55V 1 mA
Lavi levet input current '
h ane normaized load Ve =55V, ViL=04V -1.6 mA
Short-cifcuit output current
los** {output in iogic one state} Vee® 55 V 18 =57 mA

Al typical values are at Vcc =5V, TA =-25C

"* Notmore than one oulput should be shorted nt 8 time.

fan-out

All LS| gates and flip-flops are rated for a normalized fan-out of 10. This fan-out should not

include more than 5 externai {outside of packagej { state ioads.

159

LOGIC SLICE - TYPE "N"

Sje

IIQH

:i
=
T 1
ENANAEEEREREEaANIES BR]
L1l 111 IBNRERENAE A
L1l 1 BRSNS WEN R
IS0 ANSERNAREREERENEEER N
1RSSR EANEERE N ISENEERE D]
1 IMERBERE R EBSNENARDI
IRNI JRERNERERRANNI JENE RN
ISNAENRENAA) JHAREERENI
T |EERANERERBERECEEE]
| 1
L 1
"‘I% [+{3 K,K’
. "
RECOMMENDED®
CIRCUIT TYPE TOTAL NO. MAXIMUM USE
3K FLIP-FLOP 100 30
ANMD-NOR-INVERT GATE 82 25
EXCLUSIVE OR GATE 60 18
3INPUT GATE 232 70
7-INFUT GATE 56 7

* RECOMMENDED DESIGN WITH UP TO 30% OF EACH SINGLECIRCUIT TYPE.

160

i CRE K (errmescy i
G N 0 G s o Ml Vi s

RN W I NG Do N

% i g%@%%&iiiiii
QXD (e f-nvl i ey -

I N N W N N i
R RN AN R P I N D O

161

LOGIC SLICE — TYPE S

ll@ll

1 -
L -

41
1
LIt R i1 1] IRBESE A
EESSANENSRA T
IS ‘EERANNEEEREERASUESEERRN
IEENEEREREERERENN)
13 131111 [NN |IERN RN N
. AN BNSERBREEN TSRS
111 1 JIEAEERINEREBREAN
A ERENSEEURDERREEIAN!
RSP 4RBUBEARRESENY B SH N
%
RECOMMENDED
CIRCUIT TYPE TOTAL NO. MAXIMUM USE
#K FLIP-FLOP 58 26
AND-NOR-INVERT GATE 46 21
EXCLUSIVE OR GATE 18 10
" 3INPUT GATE 96 60

7-NPUT GATE 30 19

162

3 B ER R

5 AR R

Ve

TR

o T
oo AR

eor sl Qe

Lo w7 RV DRI DRRTIS ‘ .
i w_ a... o .Iw»%. F A IR ..,..t&« o .- .c..% s

M S R o T e 2 R i
RS R R

I .__ il
nx. W #n_,.

163

NAND GAYTE

LOGIC

B

{]
1y

SCHEMATIC

COMPONENT VALUES SHOWN ARE NOMINAL.

CHARACTERISTICS (Ve =5V, T = 25°C, N = 10)

PARAMETER MIN TYP MAX UNIT
AV PROPAGATION DELAY] 19 ns
POWER DISSIPATION 10 mW
FAN-IN (NORMALIZED) 1 -
FAN-QUY (NORMALIZED) 10 -~

NOTE: FOR MORE GATE INFORMATION SEE SN5400 DATA SHEET.

164

EXCLUSIVE OR GATE
LOGIC

£l

SCHEMATIC

INPUTS QUTPUTS
ABC F1 F2
000 1 0
100 0 1.
010 0 1
110 0 1
00 1 1 0
101 o 1
o1 1 [} 1
T1 0t 0]

il

CHARACTERISTICS (Ve =5V, Ty = 25°C, N = 10)

PARAMETER MIN TYP

MAX

UNIT

AV PROPAGATION DELAY
F1 9
F2 18

POWER DISSIPATION

FAN-IN (NOPWAL.ZED)
ALB
c

FAN-QUT (NORMALIZED) 10

19
3

-h

ns
ng
mwW

165

AND-NOR-INVERT GATE

L L L

:

B
O
!
O

LOGIC
—pp F1
D—-
SCHEMATIC
-0

>

<
2 T
P4l

L/

o
1 ‘'NPUTS

CHARACTERISTICS (Vo =5V, Ty = 25°C, N = 10)

PARAMETER MIN TYP MAX UNIT
AV PROPAGATION DELAY

F1 10 20 ns

F2 19 39 n
POWER DISSIPATION 40 mW
FAN-IN (NORMALIZED) 1 -
FAN-OUT (NORMALIZED) 10 -

166

1.

JK MASTER-SLAVE FLIP-FLOP

LOGIC
TRUTH TABLE
n th+
J YA Q
clof a,
01 1]
1 [4] 1
1114 &,
POSITIVE LOGIC: NOTES: Li=R2-8

LOW INPUT TO PRESET SETS Q YO LOGICAL 1
LOW INPUT TO CLEAR SETS Q TO LOGICAL O
PRESET AND CLEAR ARE INDEPENDENT OF CLOCK

DESCRIPTION

THESE JK FLIP-FLOPS ARE BASED ON THE MASTER-SLAVE
PRINCIPLE AND EACH HAS AND GATE INPUTS FOR ENTRY
INTO THE MASTER SECTION WHICH ARE CONTROLLED BY
THE CLOCK PULSE. THE CLOCK PULSE ALSO REGULATES
THE STATE OF THE COUPLING TRANSISTORS WHICH CON-
NECT THE MASTER AND SLAVE SECTIONS. THE SEQUENCE
OF OPERATION IS AS FOLLOWS:

1. ISOLATE SLAVE FROM MASTER
2. ENTER INFORMATION FROM AND GATE INPUTS
TO MASTER
3. DISABLE AND GATE INPUTS
4. TRANSFER INFORMATION FROM MASTER TO SLAVE.

167

2. K=K1+K2' K3
3. 1, * BIT TIME BEFORE CLOCK PULSE.
4.1, + 1 = BIT TIME AFTER CLOCK PULSE.

CLOCK WAVEFORM

CLEARD

4K MASTER-SLAVE FLIP-FLOP (CONTINUED)
SCHEMATIC

NI

4xi2

AN

'

B

& ® PRESET
S
3 aun arn sk

<£
E &3
x2
x3

250
~OGND

NOTER: COMPONENT VALUES SHOVWN ART NOMINAL .

CHARACTERISTICS (Voo =5V, T4 =25°C, N =10}

PARAMETER MIN TYP MAX UNIT
MAX CLOCK FREQUENCY 15 20 MH2
POWER DISSIPATION 40 mw
FAN-IN (NORMALIZED)
J& K 1 -
PRESET, CLEAR & CLOCK 2 -
FAN-QUT 10 -

NOTE: FOR MORE FLIP-FLOP INFORMATION REFER TO $NS472 DATA SHEET.

168

DUAL 3-INPUT NAND GATE

7-INPUT NAND GATE

169

EXCLUSIVE OR GATE

AND - WCR - INVERT GATE

J - K MASTER-SLAVE FLIiP-FLOP

PACKAGE DATA
PIN LAYOUT

117 116 110 104

TR
il

PACKAGE DIAGRAM

TOP VIEW
LEADS ~RE GOLD PLATED F-15 DIMENSIONS NOMINAL
ALLOY ON 50 MIL CENTERS {IN INCHES)

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE
ANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN
LML TO SUPPLY THE BEST PRODUCT POSSIBLE.

172

m-------—

| PR

BOTTOM VIEW

WEIGHT — 22 GRAMS

DRA-3013 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No, Complexity Complexity Used Available Used

FF 8 6 48 40 88 45
ANI 30 7 210 265 480 55
EXOR 18 3 54 64 90 71
3G 93 1 93 257 372 69
G s 1 5 82 120 68
TOTALS: 164 426 708 1150 61

POWER DISSIPATION - 3,14 WATTS
TOTAL PINS - 801, including 93 I/O PINS
INPUT CONNECTOR PINS - 67

OUTPUT CONNECTOR PINS - 26

AA - 5/8/72

173

DRA-3014 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No, Complexity Complexity Used Available Used
FF 32 6 162 128 352 36
ANI 26 7 182 247 416 59
EXOR 16 3 48 64 80 80
3G 113 1 113 344 452 76
7G 17 1 17 103 136 75
TOTALS: 204 552 886 1436 61
POWER DISSIPATION - 4,10 WATTS
TOTAL PINS - 967, including 81 1/O PINS
INPUT CONNECTOR PINS - 47
OUTPUT CONNECTOR PINS - 34
AA - 5/8/72

174

DRA-3015% SUMMARY

Gate Total Ga.te Pins Pins

Percent
Function Total No. Complexity Complexity Used Available Used
FF 22 6 132 109 242 45
ANI1 21 7 147 128 336 38
EXOR 9 3 27 30 45 66
3G 83 1 83 224 332 67
TOTALS: 135 389 - 491 955 51
POWER DISSIPATION - 2,82 WATTS
TOTAL PINS - 559, including 71 I/O PINS
INPUT CONNECTOR PINS - 36
OQUTPUT CONNECTOR PINS - 35
*NOTE - 2-LEVEL METAL SYSTEM
AA - 5/8/72

175

DRA-3016* SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No, Complexity Complexity Used Available Used
FF 14 6 84 £2 184 40
ANI 25 7 175 T 157 400 39
EXOR 10 3 30 37 50 74
3G 68 1 68 145 272 53
7G 17 1 17 . 85 136 62
TOTALS: 134 374 486 1012 48
POWER DISSIPATION - 2,71 WATTS
TOTAL PINS - 541, including 55 1/O PINS
INPUT CONNECTOR PINS - 40
OUTPUT CONNECTOR PINS - 15
*NGTE - 2-LEVEL METAL SYSTEM
AA - 5/8/72

176

DRA-3017 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No., Complexity Complexity Used Available Jsed
FF 38 6 228 179 418 42
ANI 23 7 161 142 368 38
EXOR 11 3 33 44 55 80
3G 71 1 71 199 284 T0
G 4 1 4 22 32 68
TOTALS: 147 497 586 1157 50
POWER DISSIPATION - 3.52 WATTS
TOTAL PINS - 652, including 77 I/O PINS
INPUT CONNECTOR PINS - 42
OUTPUT CONNECTOR PINS - 35
AA - 5/8/72

177

DRA-3018 SUMMARY

Gate Total Gate Pins Pins Percent
Function Total No. Complexity Complexity Used Available Used
FF 36 6 216 168 396 42
ANI 31 7 217 338 496 68
EXOR 9 3 27 38 45 84
3G 86 1 86 216 344 62
G 16 1 16 87 128 67
TOTALS: 178 562 847 1409 60
PO\X;ER DISSIPATION - 3.97 WATTS
TOTAL PINS ~ 925, including 89 I/O PINS
INPUT CONNECTOR PINS - 55
OUTPUT CONNECTOR PINS - 34
AA - 5/8/72

178

RETURNED MATERIAL REPORT

DRA-3013:

A) SERIAL NO. 34533
1. BADVIAS
2. NOT REPAIRED
B) SERIAL NOQO. 34540
1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED
C) SERIAL NO. 35022
1. UNKNOWN SHORTS
2. SHORTS BAKED OUT AND NOT RETURNED
D) SERIAL NO. 31306

1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED

DRA-3014:

A) SERIAL NO. 35021
1. FIRST TO SECOND METAL SHORT
2. REPAIRED AND RETURNED
B) SERIAL NO, 34007
1. BAD VIAS
2. NOT REPAIRED
C) SERIAL NO. 35208
1. BAD THIRD METAL AND/OR OXIDE STEPS
2. NOT REPAIRED
D) SERIAL NO, 35808

1. NO DEFECTS FOUND

2. POSSIBLE ARRAY TO P.C. BOARD CONNECTION
3. POSSIBLE A.C. SPEED PROBLEM

4, NOT RETURNED

179 cont'd ...

RETURNED MATERIAL REPORT

Page Two

DRA-3014 - cont'd

E) SERIAL NO. 34904

1. SECOND TO THIRD METAL SHORT
2, REPAIRED AND RETURNED

DRA-3015:

A) SERIAL NO, 33307

1. TUNKNOWN SHORTS
2, SHORTS BAKED OUT AND RETURNED

DRA-3016:

A) SERIAL NO, 33311

1. FIRST TO SECOND METAL SHORT
Z. REPAIRED AND RETURNED

DRA-3018:

A) SERIAL NO. 34011

1. SECOND TO THIRD METAL SHORT
2. REPAIRED AND RETURNED

180

RELIABILITY

THE MOST RECENT RELIABILITY STUDY WAS PERFORMED BY
TEXAS INSTRUMENTS INCORPORATED UNDER CONTRACT TO
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, GEORGE

C. MARSHALL SPACE FLIGHT CENTER, MARSHALL SPACE FLIGHT
CENTER. ALABAMA 35812,

RESULTS OF THIS STUDY ARE CONTAINED IN REPORT NUMBER
03-71-27 (FINAL REPORT - PHASE II) "DEVELOPMENT OF QUALITY
STANDARDS FOR BIPOLAR LSI DEVICES", APRIL 1971. CONTRACT
NUMBER IS NAS8-21319, CONTROL NUMBER DCN 1-8-60-00152(IF)
AND S1{1F) AND S2(1F).

181

&

APPENDIX 11

. ADDER OPERATIONS

The following tables summarize the adder arithmetic and logical operations that
may be specified using TRANSLANG. The execution phase controls and the value
determination for the ABT dynamic condition are indicated.

Notes: —

1. A Register Selection: A A1 A2] a3
- AgQ All ZEROS

2. B Register Selection: Any B Register Select option

ONES complement (by TRANSLANG)

of the specified B Register Select

option

0 All ZEROS

1 All ONES

3. Z Register Selection: 4 CTR | LIT |AMPCR
0 All ZEROS
4. Inhibit 8 Bit Carry: 0 Allow carry into bytes
1 Inhibit carry into bytes
5. Adder Operation Ae specified in Microprogramming
) Section

183

ADDER RESULT
OPERATION FORM
A ADD B
A ADD 2 R+S
B ADD Z
A ADL B
A ADL Z R+S+1
B ADL Z
ACADB R+S

WITH-
A CAD Z ki
B CAD Z CARRY

0

1

ADDER RESULT
OPERATION FORM

A

R

Z
NOT A
NOT B R

ARITHMETIC OPERATIONS
REGISTER SELECT

ABT IS
TRUE IF
RESULT 153 ALL

Al 8 28 ice? ADDOP
A B 0 0 2
A .0 7 1
o B Z 9
A ®B 0 0

A o z

0 z 0 8
A B 0 1 2
A 0o oz 1 1
¢ B 0z 1 9
0o o o 0 2
0 o 0 0 3

MONADIC LOGICAL OPERATIONS

REGISTER SELECT

ONES
ONES
ONES

ZEROS
ZEROS
ZEROS

ONES
ONES
ONES

NEVER
NEVER

ABT IS
TRUE IF
RESULT IS ALL

1 2 3 3
A B =z Appop’®
A 0 0 2
0 B 0 2
0 0 Z 1
A o0 o0 15
o B 0 10

™

i2

184

ONES
ONES
ONES

™
=
=8}
&

DYADIC LLOGICAL OPERATIONS
REGISTER SELECT

ADDER RESULT i 3 5 ABT IS TRUE
OPERATION FORM A" B z° ADDOP IF RESULT IS ALL
A AND B A B 0 7 ONES
A AND Z RAS A 1 z 13 ZEROS
B AND Z 0 B z 4 ONES
A NIM B A B b} 7 ONES
ANIM Z~ RAS INVALID
B NIM Z 0 B z 13 ZEROS
A NRI B A B 0 10 ZEROS
A NRI Z RANS A 0 Z ONES
B NRI Z) B z 4 ONES
A NOR B A B i} 10 ZEROS
A NOR Z RANS INVALID
B NOR Z 0 B Z 13 ZEROS
A XOR B ‘A B 0 8 ONES
A XOR 2 (RAS)V(RAS) A 0 Z 4 ONES
B XOR Z 0 B Z 14 ZEROS
A EQV B A B 0 6 ONES
A EQV Z (RASIV(RAS; A 0 z 14 ZEROS
B EQV Z 0 B 2z 14 ZEROS
A NAN B A B 15 ZEROS
A NAN Z RvS 1 z 3 ONES
B NAN Z 0 B z 12 ZEROS
AIMP B A B 0 15 ZEROS
AIMP 2 RvS INVALID
BIMP Z 0 B z 5 ONES

185

DYADIC LOGICAL QPERATIONS (Cont'd)
REGISTER SELEZT

ADDER RESULT ; 2 5 5 ABT IS TRUE
OPERATION FORM A B Z ADDOP IF RESULT IS ALL
AORB A B 0 11 ONES
AOR Z RVS INVALID
BOR Z 0 B Z 5 ONES
A RIM B A B 0 11 ONES
A RIM Z RVS 0 z 12 ZEROS
B RIM Z 0 B z 12 ZEROS

TRIADIC LOGICAL OPERATIONS

ADDER ABT IS TRUE
OPERATION ADDOP® RESULT IF RESULT IS ALL
TRYl A,B,Z 4 B (A XOR 2) ONES

TRY2 A,B,Z 5 AAZYVI(BAZ) ONES

TRY3 A,B,Z 12 AvBvV7Z ZEROS
TRY4 A.B,Z 13 (ANZ)v(BAZ) ZEROS

TRY5S A,B,Z 14 (A vB) EQV Z ZEROS

186

APPENDIX IV
TRANSLANG SYNTAX

Reference

Page

<Program:> ::= <Program Name Line><Body><End Line> 111

<Program Name Line> ;:= PROGRAM <Program Name:-<Start Address- 111

<Program Name> ::= <Label> 111
<l.abel> ::= <Letter™ | <Label><Letter> | <Label><Digit> 94
<Letter> ::= A|BIC|DIE|FlGIHJIKILIM|NIOIP|Q|RIS|ITIUI VW] o3
X|Y|Z
<Digit> ::= 0f1{2(3[4]5/817|819 93
<Start Address> ::= ADR «<ltlex Address™ | vFmpty 111
<Hex Address> ::= <Hex Number~ 111
<Hex Number~ ::= <Hex Digit> | <Hex Number~<Hex Digit: 111
<Hex Digit~ 1= <Digit~ | A | B|{C|D|E|F 93
<Empty~ 1= {T'ne null string of characters} 93
<t .dy> ::= <Comment> |<Statement>| <Body> <Statement: | 111
<Body>»<Commeat
<Comment> ::= COMMENT <Comment Words™> ; 111
<Statement> ::= <Label Part> <Line> <% Comment> 111

187

<Label Part> ::= <Label> : l <Empty>

<Line> ::= <Label Constant> | <Start Address> | <Insert>|<Instruction>
<Label Constant> ::= <Label> * <Integer>

<Insert> ;:= INSERT <Label> <Start Address:-

<% Comment> ::= % <Comment Words> | <Empty>

<Comment Words> ::= <Comment Character> |
<Comment Words:> <Comment Character>

<Comment Character> ::= <Character> |- |#{&[$][]]]\}|/
<Character> ::= <Letter>|<Digit> | <Single Space: | <Symbol>
<Single Space> ::= {One horizontal blank position}

<Symbol» ::=

IR BREI ST

<Instruction> ::= <Label Part- <Literal Assignment> |
<Label Part> <N Instruction>

<Literal Assignment> ::= <Literal> <Assignment Op> AMPCR |
< Literal> <Assignment Op> SAR |
<Literal><Assignment Op> SAR;
<Literal><Assignment Op> LIT|
<Literal><Assignment Op> LIT ;
<Literal- <Assignment Op> SAR/|
<Literal><Assignment Op~ LIT

<Literal> ::= <Integer>| COMP <Integer> | <Label> | <Label> -1

<Integer> ::= <Digit> | «Digit> <Integer>

<Assignment Op> 1= =:| =

<N Instruction> ::= <Unconditional Part> <Conditional Part>

<Unconditional Part: ::= <Component List~

<Component List> ::= <Component> | <Component List> ; <Component:-
<Empty>

<Tompenent: ::= <Ext Op> | <Logic Op> | <Successor>

<Ext Op> ::= <Mem Dev Op> | <Set Op> | < Mem Dev Op> , <Set Op> |
<SetOp> , <Mem Dev Op> | <Empty>

188

Reference

Page
111

111
111
112

112

112
93

23
93

93

112

94
94

94

n3
95

95

| o5

Y5

100

Reference

Page
(Mem Dev Op) ::= MR1l MR2IMW1|MW2{DL1|DL2 |DU1} DU2|DR1| DR2|
_ DW1l bw2l LDMI LDN 100
<Set Op> ::= SET «Cond Adjust Bit> | RESET GC 100
<Cond Adjust Bit> 1= INT] LC1| LC2| LC3 | GC1 | GC2 96

<l.ogic Op> ::= <Adder Op> <Inhibit Carry> <Shift Op> <«<Destination List> 103

<Adder Op> = 0] 1} <Monadic> | «Dyadic.: | <Triadic> | <Empty:- 103
<Monadic> ::= <Not> <A Select> | <Not: <B Select> | <Not:- <Z Select> 103
<Not> ::= NOT!| <Empty> 96

<A Select> ::= 0| Al| A2 | A3 | <Empty: 106
<B Select> := 0|1} B|B «<M> <C>» <L> <Empty> 106
<M> 1= <Gating> 108
<C» 1= <Gating> 106
<L> 1= <QGating> 106
<Gating> = 0| T!F|1 106
<Z Select> ::= CTR | LIT | AMPCR | < Empty~ 196

<Dyadic> ::= <Not> <A Select> <Binary Op> «<Not> <B Select~ |
<Not>~ <B Select> <Binary Op> <Not:> <Z Select~ |

<Not~ <A Select> <Az Op> <Not> <Z Select> 103
<Binary Op> ::= NOR | OR | NIM | IMP | <Az Op=> 103
<Az Op> ::= ANDXKOR|EQV|NRI|RIM|NAN|ADD|+|ADL|CAD 103
< Triadic> ::= <Try Op><A Select>~ , «<B Select~ , <Z Select> 103
<Try Op> ::= TRY1 | TRY2 | TRY3 | TRY4 | TRYS 103
<Inhibit Carries> ::= IC | <Empty> 103
<Shift Op> ::= R! L | C| <Empty> 103

189

<Destination List> ::= <Asgn> <Dest> |
<Destination List> <Asgn> <Dest> | <Asgn>

<Asgn> 1=, | =1 =

<Dest> 1= A1 |A2|A3| MIR | BR1 | BR2| AMPCR | <Input B> |
<Input Ctr> | <Input Mar> | <Input Sar:

<Input B> ::= B|BEX|BAD|BC4|BCs | BMI|BBE |BBA| BBI | BAT]
BBAI| B41|B8I

<Input Ctr> ::= CTR| LCTR|INC
<Input Mar> ::= MAR| MAR1| MAR2 | LMAR
<Input Sar> ::= SAR |CSAR

<Successor> ::= WAIT|STEP|SKIP|SAVE |CALL|EXEC|JUMP|RETN

<Conditional Part> ::= «If Clause> <Cond Comp List <Else Clause: !
<If Clause>|<When Clause> <Cond Comp List: |
<Empty>

<If Clause> ::= IF <Condition>

<Condition> ::= <Not» <Cond:

<Cond> 1= LST|MST|AOV|ABT|COV|SAI|RDC|EX1]|EX2|HOV|
~Cond Adjust Bit>

<Cond Comp List> ::= THEN <«{Component List>

<Else Clause > ::= ELSE <Successor™> | < Empty:

<When Clause> ::= WHEN «<Condition:-

<End Line> ::= END

190

Reference
Page
107

107

107

107
107
107
107

110

a5
96

96

06

112

APPENDIX V

TRANSLANG RESERVED WORDS AND TERMINAL CHARACTERS

RESERVED WORDS
The following words are reserved in TRANSLANG and may not be used as labels.

Reference Page

A Zero (0) as A Select. Use <Empty >. 106
A0 Zero (0) as A Select, Use <Empty >. 106
Al Al Register A Select or destination operator, 106
A2 A2 Register A Select or destination operator. 106
A3 A3 Register A Select or destination operator. 106
ABT Adder Bit Transmit dynamic conditicn from

phase 3 of prior microinstruction doing Adder

Op. 98, 99
ADD Addition logic operator: X ADD Y = X+Y 104
ADL Add + 1 logic operator: X ADL Y = X +Y +1 104
ADR Starting address for microsequence. 111
AMPCR Alternate Microprogram Count Register

Z Select into middle bytes of adder or des-
tination operator from barrel switch 12 LS
bits. 94, 106

AND And logical operator: X AND Y = XY 104

191

AOV

B4l

B8I

BAD
BAI

BEA

BBAI

BBE

BBI

BC4

BC38

BEX
BMI

BR1

BR2

BSW

CAD

Adder overflow, dynamic condition of previous
microinstruction using adder, true if addition

. results in overflow.

B Register Input Select same as BTTT; or to
B from barrel switch; destination operator.

To B from adder 'not 4 bit carry” OR MIR;
destination operator’

To B from adder ''not 8 bit carry' OR MIR;
destination operator.

To B from adder; destination operator.

To B from adder OR MIR; destination
operator.

To B from adder OR barrel switch; destination
operator,

To B from adder OR BSW OR MIR; destination
operator.

To B from external bus OR barrel switch;
destination operator,

To B from prior MIR contents OR barret
switch; destination operator.

To B from adder ''not 4 bit carry’' replicated
and shifted; destination operator.

To B from adder "not 8 bit carry' replicated
and shifted; destination operator.

To B from external bus; destination operator.

To B from prior MIR contents; destination
operator.

To Base Register 1 from barrel switch 2nd LS
byte; destination operator.

To Base Register 2 from barrel switch 2nd LS
byte; destination operator,

To B from barrel switch; destination operator

Circular shift right the entire adder output.
Operation takes place in barrel switch,

Character add by carry inhibit between 8§ bit
characters (bytes). (Canuse IC.) X CAD Y =
X+Y IC

192

Reference Paqe

98, 9¢

106, 108

109

108
108

109

109

169

108

109

108

108
108

108

107

107
107

105

104

Reference Page

CALL Call a procedure: Use AMPCR + 1 as address,

and new MPCR; old MPCR to AMPCR. Successor. 110
COMMENT " Allows for the inclusion of documentation on a

a listing. 111, 113
COMP Complement as appropriate for literal part of

literal assignment. 84
cov Counter over{low condition bit, reset dominant. 98
CSAR Complement SAR, destination operator, 109
CTR To counter from ones complement of barrel

switch LS byte, dectination operator. Input

Select: into MS byte. 106
DL1 Device lock using BR1/MAR for device ident. 101
DL2 Device lock using BRZ/MAR for device ident. 101
DR1 Device read using BR1/MAR for device ident. 101
DR2 Device read using BR2/MAR for device ident, 101
bul Device unlock using BR1/MAR for device ident. 101
DU12 Device unlock using BR2/MAR for device ident. 101
DW1 Device write using BR1/MAR for device ident, 101
DW2 Device write using BR2/ MAR for device ident. 101
ELSE Sequential operator prefix to false successor. 96, 97
END Bracket word to end a program, 112
EQV Equivalence logical operator: X EQV Y =

XYvX¥XY 104
EXEC Executes out of sequence: Use AMPCR + 1 as

address. Successor, 110
EX1 External condition bit 1 exiernally set, reset

by test. 98, 99
EX2 . External condition oit 2 externally set, reset

by test. 98, @9
P False gating of B as part of ¥ Select. iGe
GC Global conditions used with RESET to reset

both GC1 and GC2, Synonym is GC2 or

GC1 with RESET. 98

193

GC1

GC2

HY
Ir
IMP
INC

INSERT

INT

JUMP

LC1

LC2

LC3

LCTR

LDM

LDN
LIT

Global condition bit i: may be set by SET GC1
if presently reset in all Interpreters., Tested
without resetting.

Global condition bit 2: may be set by SET GC1
if presently reset in all Interpreters. Tested
without resetting.

Inhibit carry between bytes,
Starts the conditional part of an instruction.
Imply logical operator: XIMPY =X vY

Increment counter destination operator; set
COV when overflowing from all ones to all
Zeros. |

Take a copy of the selected program from the
library file and insert it in the program.

Used as SET INT, interrupts all Interpreters.
Interrupt Interpreters condition bit: set by any
Interpreter; own is reset by testing.

Jump to address in AMPCR + 1 and put that
address in MPCR., Successor.

Left shift end off the entire adder output, right
fill with zeros. Operation takes place in
barrel switch.

Local condition bit 1: may be set, or tested
which resets.

Local condition bit 2: may be set, or tested
which resets.

Local condition bit 3: may be set, or tested
which resets

Ones complement of the literal regisicr conu-
tents will be placed in the counter. Destination
operator.

L.oad microprogram memory,
Load nanomemory.

Literal register: may be loaded by a literal
assignmoent. Moy be source for Z LS byte,

the MAR and/or CTR,

194

Reference Page

98

98
103
96
104

109

94, 112

101

110

97
97
97
109

101
101

94, 106

LMAR

LST

MAR

MAR1

MAR2

MIR

MR1

MW1

MWw2

NAN
NIM
NOR
NOT

NRI

OR
PROGRAM
R

Literal register contents will be placed in
MAR, Destination operator.

Least significant bit of adder output, dynamic
condition from phase 3 of previous micro-
instruction doing adder op.

Memory address regist er destination operator:
from barrel switch LS byte.

Memory address 1 destination operator: same
as BR1, MAR.

Memeory address 2 destination operator: same
as BR2, MAR

Memory information register destination opera-
tor from barrel switch.

Read from memory address BR1/MAR mem
dev op.

Read from memory address BR2/MAR mem
dev op.

Most significant bit of adder output, dynamic

Reference Page

109

98

109

100

100

107, 108

100

100

condition from phase 3 of previous microinstruction

doing adder op.

Wriie the content of MIR to memory address
BR1/MAR mem dev op.

Write the content of MIR to memory address
BR2/MAR mem dev op.

Not And logical operator: X NANY = Xvy
No: Imply logical operator: X NIM Y = XY
Nor logical operator: X NORY = XY

Complement maonadic or condition operator
Not X =X

Not Reverse Imply logical operator:
X NRI Y=X vY

COR logical operator: XORY =X v Y

- Bracket word beginning a1 program.

Right shift end off the cntirc adder cutput, left
fill with zeros. Operation takes place in
barrel switch.

195

100

100
104
104
104

96, 103

104
104
111

105

RoC

RESET
RETN

SAR

SAVE

SET

SKIP

STEP

T
THEN

TRY1
TRY?2
TRY3
TRY4
TRYS

WAIT

WHEN

XOR

Read complete bit: set when external data is
ready for input to B, reset by testing.

" Reset the Global condition bits, RESET GC.

Return: use AMPCR + 2 as address and as
new content for MPCR, Successor.

Reverse imply logical operator; X RIMY =X v ¥

Switch Interlock accepts information bit. Set
when switch interlock accepts information,
reset by testing.

Shift Amount Register destination operator
from LS bits of barrel switch or from literal
assignment,

97

102

110
104

97

94

Save the MPCR in AMPCR: use MPCR + | as micro-

address and as next MPCR. Successor,

Set the conditional bit specified: either LCI1,
LC2, LC3, INT, GC1 or GC2,

Skip the next instruction; use MPCR + 2 as
microaddress and as next MPCR. Successor.

Step to next instruction: use MPCR + 1 as micrc-
address and as next MPCR. Successor.

True gating for B register.

Starts the true alternative of conditional
instruction,

Triadic Operator: TRY1 A, B, Z=BAZvBAZ
Triadic Operator: TRY2 A, B, Z=AZvBZ

Triadic Operatcr: TRY3J A, B, Z=AvBv Z

Triadic Operator: TRY4 A, B, Z, =A Zv B Z

Triadic Operator: TRY) A, B, Z, =ZAvZB
vARZ

Wait for condition microaddress is MPCR; MPCR
and AMPCR unchanged. Successor.

Starts a conditional instruction, has an implicit
ELSE WAIT.

Exclusive Or logical operater: X XOR Y =
XYvXyY

196

110

102

110

94, 110
106

103, 105
103, 105
103, 105
103, 105
103, 105

110

96

104

TERMINAL CHARACTERS

Reference Page

s Assignment operator for destination operators, 107

H Delimiter, Use is mandatory after a comment statement

and between components in a statement, 94, 113
: Terminator of label part of instruction or insert, 111
= Assignment operator for literal assignments or

destination list, 107
+ Add operator, 103
- Part of assignment in literal assignment statement. 94
* Label constant separator for defines, 112
(Prefix delimiter for redundant part of instruction. 93
} Suffix delimiter for redundant part of instruction. 893
% Line terminator and in-line comment prefix, i13
= Assignment operator for literal assignment or destina-

tion list. 107

137

M
%F_—WM CEDING PAGE BLANK.OT FILGU

. wwm&_

APPENDIX VI
TRANSLANG ERROR MESSAGES

The first section of the Microiranslator parses the input file, a line at a time, and
produces a listing of the file, N-instructions, and error messages. The error
messages indicate that errors were made in the syntax or semantics of an instruc~
tion, They will be printed out in the following format giving the error number and
the line nunmber of the instruction as follows:

oo ERROR NUMBER NNN IN LINE DL L%%%%

where NNN is the error number and LLL is the sequence number of the instruction
in the input file,

Error Number Definition
1 Label too large (more than 15 characters)
2 CTR and MAR Conflict {one receives BSW putput; the other
literal)
3 Duplicate MAR (2 MAR destinations)
4 Duplicate B destination
5 Missing comma
6 Missing semicolon

199

Error Number

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

35

36

Definition

Incorrect destination designator
Symbol undefined

Duplicate logical operator

Logic operator error

Colon equal comma or colon missing or misplaced
Duplicate Z select

Duplicate A select

Duplicate B select

B Gating error

Duplicate counter operations

More than one set operation

Reset error

Memory device error

Duplicate shift operation

Duplicate test condition

Duplicate successors

Successor error

Successor after ELSE error
Duplicate label

Liiteral used not in a literal assignment instruction
(misspelled reserved word)

Condition error

Misplaced THEN

Misplaced ELSE

Misplaced integer

Integer too large

Too many quoted characters

Wrong register for receiving a literal

Undefined input mistaken for label, or misspelled
reserved word

Address wanted for insert program less than current
address, or misspelled reserved word

Reget not followed by proper identifier

200

Error Number Definition

37 Set not followed by proper identifier

38 Undeclared label

39 Wrong type: minus sign used in a type
ore instruction

40 Stack operation removed, AMPCR goes
directly to adder,

41 NOT error — "NOT" misused

61 Named insert program not on library

62 No END on file

63 Address error ~ present address > insert
address

If a nanotable name is requested which has never been saved before, NO SUCH
NANOTABLE is printed and a new name requested.

If a new nanotable is given a name already in use, DUPLICATE NANOTABLE
NAME ERROR is printed and a new name is requested.

If labels have been used in a program without being declared, the following print-
out occurs upon conclusion of the listings.

LLAST ADR LABELS NOT FOUND

2 STR
3B SERROR
4 Y10

The address is the hexidecimal microprogram address of the last instruction
using the label in a program.

201

APPENDIX VII

GLOSSARY

A Registers (Al, A2, A3): Each of the three A registers i
functionally identical. The A registers are used for
temporary data storage within the Logic Unit orf the
Enterpreter and serve as a primary input to the adder.

Adder: The adder in the Logic Unit of the Interpreter, is a
modified version of a straightforward carry lookahead
adder. It is also used for v xecuting logic operations.

Alternate Microprogram Count Register (AMPCR) The
AMPCR is a 12-hit register in the Memory Controf Unit
of the Interpreter. which contains the jump or retum
address for program jumps and subroutin. returns
within a microprogram.

B Register: The B register is the pnmary input interface
between the Logic Unit of the Interpreter and the
Data/Program Memory or Devices (via the Switch Inter-
lock). It also serves as the secondary input to the
adder.

Bamel Switch: The barrel switch is a matrin of gates in the
Logic Unit of the Interpreter, used to shift a parallel
data word any number of places to the right or left in
a single clock time.

Base Register 1 znd 2 (BR1, BR2): The Base Registers are
two 8 bit registers in the Memory Control Unit of the
Interpreter, which usually contains the base address of
a 256-word biock of Data/Program Memory.

Building Block: The primary functional units of the Inter-
preter Based System: Interpreter. Data/Program
Memory and the Switch Interlock.

203

Condition Register (COND): The COND is a 12-bit register
in the Control Unit of the Interpreter and & used to
store various condition bits for use during program
enecution.

Central Processor Unit (CPU):
and contral unit in & conventional computer system.

The primary arithmetic

Condition Select: The condition select is 3 matriy of gates
in the Control Unit of the Interpreter that compares
the results of a computztion or logical operaticn in the
Logic Linit with a preselected result. The result of the
comparison may be used to determing the sequence of

execution of microprogram Instructions.

Control Register (CR): The CR is a 3B-bit register ol the
Interpreier which is used to store contiol signaks from
the Nanomemory that are not used in phase one of 4
clock cycle.

Control Unit {CU): The CU. one of the five major tunc-
tional unity of the Interpreter, !5 used for condition
testing and the storage and distribution of crable
signals received from the Nanomemory .

Counter (CTR): The CTR is an B-bit counter in the Z
register section of the Memory Control Unit of the
Interpreter, used for loop control and other counting
functions.

Data/Program Memaory. The Data/Program Memory. also
called § Memory. provides storage ftor data and pro-
gram (cither microprogram or conventional program in

ion application) an

main memory modules of a conventional computer
system.

Device: As used in the context of Inberpreter-Based Sys
tem, Devices include all the ¢ ional puier
system peripheral cquipments such as disk files, mag-
netic tape units, high speed line prictees, card readers,
ate. and various senscrs usually fownd in special data
processing applications. The functiorn of Devices is to
provide the unique inputfoutput medium for each
system application.

Device Controller: A functional unit designed to interface
and control a specific peripheral desdce (such as a disk
{ile, magnetic tape unit, line prunte:r, etc.) to the
Input/Qutput module of 2 conwentional computer
system.

Device Dependent Port (DDP): The DDP pemmits any
device to be interfaced with a Port Select Usit (PSU)
by providing the specific device eleckrical interface such
as logic level conversion, linc driversrecciver capability,
and timing and synchronizalion when required (as in
the case of disk files, magnetic tape anits, ete.)

Dual-In-Line (DIL.): Describes the pin conngction atrange-
ment of one type of standard intcgrased circuit package.

End-Around Shift: A right shift operakion in which the bit
or bits which would be shifted ouwt of the register arc
reinserted in the more significant cratl.

End-Off Shift: A shift operation in estdher the lefl or right
direction, in which the bit or bits shifted out of the
regisier are lost. Vacated bit posimions may be auto-
matically filled with zeros,

Firmware: In the [nterpreter-Based Syszom, firmware is the
combination of storcd logic in the M and N memorics
of the Interpreter.

Inciementer (INCR): The INCR 15 in thac Memory Control
Unit of the Interpreter and ncrements by zero, one, or
two, the addiess of the next mirtuinstruction to be
executed by the Interpreter.

Input/Output Module (1/0): The 1/O is the interface and
control unit between the CPU amd penpheral input/
outpul devices in A conventional awnputer system.

Interpreter: The Interprefer is the baac building block of
the Interpreter-Based System. Fun:tionally, it is charac-
terized by the combination of macroprogram instruc-
tions stored in its M memory and hardware logw
enabled by a multiplicity of cnabhe signals stured in its
N memory

Interpreter-Based System: A computr opamzation and
<2y, i configuranons

implementation concept tiad prov:
of basic building blocks, the themsghiput wnd Mevibility
for a varicty of data procewing reguirements.

Large Scale Integration (LS1): The implementation of more
than 130 bipolar logical gates in a single integrated vir-
cult chip.

Least Significant Bit (LSB): For 3 number or value re-
presented in binary notation, lhu"‘)it position which
represents the least significant portion of the number.

Litesal Rogister (LIT: An B-bit register in the Z register
section of the Memory Control Unit of the {nterpreter.
which is used for temporary storage of literals from
microinstructions.

Logic Unit (LU): The LU, one of the five major functional
units of the Interpreter, perforn - all of the anthmetic,
Boolean logic, and shifting operations of the Interpreter.

Medium Scale Integration (MSI): The implementation of 20
to 100 bipolar togical gates in a single integrated vircuit
chip.

Memary Address Regis(ct (MAR): The MAR s an 8haut
register in the Memory Control Unit of the Interpreter,
which contains the least sigmificant 8 bus of a memory
or device address.

Memory Control Unit (MCU): The MCU, one of the five
major functional units of the Interpreter, vontrols the
sequence of evecution of mwroinstructions. the ad-
dressing of Data/Program Memory, and the slecton of
Devices.

Memory Information Register (MIR): The MIR is a reenster
in the Logic Umit of the Interpreter which serves ay the
output interface register between the Interpreter and the
Switch Interlock.

Microinstruction:- A single tnstruction stored 1n M emory
of the Intetpieter, sequences of which charactenize the
Interpreter for 3 given microprogrum, A mictomnstrus-
tion may contain an N memory address or a literal.

Mictoprogram Address Control Register (MPAD CNTLY: The
MEAD CNTL, a register in tiw Memary Control Unit of
the Interpreter, controls the loading of the MPCR, the
AMPCR, and vontrols the value of the inctemuent,

Microprogram Addreys Secion (MPAD): The MPAD s 2
collection of registers and coatrols in the Memary Con-
trol Unit of the Interpreter. which addroswses the M
memary for the sequencing of nwrainstructions,

Miceoprogran: Connt Rezister (MPCRY The MPCR, locatad
in the

P2-hat remster that tsadlly vontan the sddsess, i M

Memory Contol Unit of the Latersreeer, o a

memory. of the iwromstructwen currently beins
exceuted by the Interpreter.

204

Microprogram Memory (M Memory): The M memory. one of
the five major functional units of the Interpreter, stores
microinstructions which characterize the Interpreter for
a given application, and may be implemented as a read/
write semiconductor memory.

Microprogtam Memory Buffer (MPB): The MPB buffers
blocks of icroinstructions read from 2 microprogram
source in order to maintain the clock period of the
Interpieter,

Most Significant Bit (MSB): For a number or value repre-
sented in binary notation, that bit position which
represents the most significant portion of the number, or
the sign of the number.

Multiprocessor: A network of computers capable of simul-
tancously exccuting two Or more programs or se
quenves of instructions by means of multiprogramming,
parallel processing. or both.

Nanoinstruction: A angle instruction stored in N memory
of the Interpreter. the contents of which constitute 56
unique sipnals for controiling the hardware logic of the
Interpreter.

Nanomemory (N Memory): The N muemory, onc of the five
major functional units of the Interpreter, stores 56
specific enable signads For the hardware logic within the
Logic Unit, Control Unit. and Memory Control Unit.

Random-Access-Memory (RAM): A memory in which the
time 1o aceess data is independent of its lovation in the
memory, or of the data most recently acvessed in the
memory, By convention, a read/write memory.

Port Select Unit (FSU) The PSU provides control and the
electrical interface between a single Interpreter and
Devices and Data/Program Memory. The PSU is used in
licu of the Switch interlock in system configurations
that requirc only one Interpreter.

205

Random-Access-Memory (RAM)Y: A memory in which the
time to access data is independent uf its location in the
memoty, or of the data most recently accessed in the
memory.

Read-Only Memory (ROM): A memory that stores data
not alterable by program instruction.

Remote/Card: A program subroutine esecuted on a Bur
roughs B 5500 which permits a user to create card
images of TRANSLANG instructions on a disk file,
using a remote terminal of the B 5500.

Shift Amount Register (SAR) The SAR is a 6-bit register
in the Control Unit of the Interpreter and is used to
store the number of positions a word or literal i5 to be
shifted by the barrel switch.

Small Scale Integration (SSI) The implementation of S to
20 logical gates in a single integrated cuwcuit chip.

Switch Interfock (SWI): The SWI provides the interconnec-
tion between Interpreters, Data/Program Memory, and
Devices of an Interpreter-Based System. Its function is
to permit any one of & multiplicity of Interpreters to
access all modules of an ufrav of Data/Program
Memory and/or alt Devices.

Transistor-Transistor-Logic ¢TTL): A family of transistor
circuits used to implement digital logic networks. and
characterized by its high speed. large capacitance drive
cupability and ¢\cellent notse immunity.

TRANSLANG: A computer program designed to convart
Fnglish language statements defining the action ol the
Interpreter for cach machine clock cyvele. into binary
patterns for the M and N memories.

£ Register Section: A collection of registers and selection
gates - the Memory Control Unit of the Interpreter.
which mciude the CTR. LIT, and Input Sclection gates
uwed to control the execution sequence of micro-
instructions.

1.

REFERENCES

Q. L. MacSorley, "High Speed Arithmetic in Binary Computers'' Proceedings
of the IRE (January 1963) pp. 67-91.

W. A. Curtin, "Multiple Computer Systems' Advances in Computers,
Vol, 4 (1963) Ed: F. L. Alt and M., Rubinoff, New York Academic Press,
1963,

R. C. Larkin, "A Minicomputer Multiprocessing System" Proceedings of
Computer Designers Conference; Anahlieim, California (January 1971)
pp. 231-235.

Hughes Aircraft Co., ''Seek Flex Preliminary Design Study, Volume 1:
System Design and Rationale' Ground System Group Report FR71-16-430
(July 23, 1971).

J. D. Meng, "A Serial lnput/Output Scheme for Small Computers' Computer
Design Vol. 9, No. 3 (March 1970) pp. 71-75,

R. G. Buus, "Electrical Interference" Physical Design of Electronic Systems
Vol. I, pp. 416-434, Prentice Hall, 1870,

206

UNCLASSIFIED

M Clasasification
1 N
DOCUMENT CONTROL DATA-R&D l
(Security clesxitication of title, body of abstract and lndonns annolation must be enjered when the ot 1n cl ified.
%. DRI?!"‘YING ACTIVITY {ml. ﬁlﬂlw) 2m, REPOAT SECURITY CLABSIFICATION
Advanced Development Organization UNCLASSIFIED
Burroughs Corporation 2. GrouR
__Defense, Space and Specjal Systems Group

3. REPORT TITLE

AEROSPACE MULTIPROCESSOR FINAL REPORT

4. DESCRIPTIVE NOTES {Type of report and inchiive dates)
Final Report Covers Period June 1970 through May 1, 1973
"5 AU THOR() (Firet name, midde Tnltial, Tast name)
Robert L. Davis
Sandra Zucker

¢ REPORT DATE 7a. TOTAL NO. OF FAGES 75, NO. OF NEFS
June 1973 208 6
B8. CONTRACT OR GRANT ~NO. 88. ORIGINATON'S REPOR T NUMBER(S)
F33615-70-C-1773
s PrOJECT NO. GO0 64161
= Task 01 . ovHEN n:-onr NO(8) (Any other numbers tha! may be sesigred
4 AFAL-TR-73-114

6. DISTRIBUTION STATEMENT Dyistribution limited to U.S. Government agencies only; test and
evaluation results reported March 1973, Other requests for this document must be
&:lficz)rrecl‘d;)ql ﬁir Force Avionics Laboratory (AAM), Wright-Patterson Air Force Base,

1. IUP’LIMINTARV NOTES . 12. BSPONSORING MIL] TARY ACTIVITY
Submitted by the author to Air Force ir Force Avionics Laboratory (AFSC)
Avionics Lzboratory in March 1973 Info, Mgt. Branch, Sys, Avionics Div.
Wright-Patterson AFB, Ohio

13. APSTRACT
The aerospace multiprocessor described is based upon a modular, building block
approach. An exchange concept that is expandable with the number of processors,
memory modules, and device ports, was developed whose path width is a function of
the amount of serialization desired in the transmission of data and address through
the exchange, The processors (called Interpreters) are microprogrammable
utilizing a 2-level microprogram memory structure and were designed for imple-
mentation with large scale integrated circuits. The modularity exhibited in the
Interpreters is in the size of the microprogram memories and in the word length of
the Interpreters from 8 bits through 64 bits in 8-bit increments.

The specific implementation of the exchange for the aercspace multiprocessor is
for five processors, eight memory modules, and eight device ports with eight wires
each carryiug four serial bits of data through the exchange. The processors each
have word lengths of 32 bits with a 512 word X 15 bits first-level microprogram
memory and a 256 vord X 54 bit second-level microprogram memory.

A simplified control program based upon concepts for a modular executive
structure, and some user type programs were written for demonstration of the
aerospace multiprocessor,

REZPLACES OD FORM 1478, | JAN 84, WHICH 18
D ' noVv u‘ 47 CISOLETE FOR ARMY USE,

UNCLASSIFIED
curity Classification

KEY WORDS LMK A LMK B LINK C A}
ROLE wyr ROLE LAJ "ROLE LAS
| Aerospace Multiprocessor

Interpreter

Microprogramming

Multiprocessor

Switching Interlock

S j—
UNCLASSIFIED

Security Classlfication

