/ Burroughs @ 5 _ \

B 7700

INFORMATION PROCESSING
SYSTEMS

REFERENCE MANUAL

k PRICED ITEM j

Printed in U.S. America Feb., 1976 1060233

/ Burroughs @ \

e A
B 7700

INFORMATION PROCESSING
SYSTEMS

REFERENCE MANUAL

Copyright © 1973. 1976, Burroughs Corporation, Detrort, Michigan 48232
AAA430046

\ PRICED ITEM /
N—

Printed in U.S. America Feb., 1976 1060233

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document may be addressed directly to Systems Documentation, Technical
Information Organization, Burroughs Corporation, P.O. Box 203, Paoli, Pa. 19301

Chapter

11

TABLE

Title
INTRODUCTION
DESCRIPTION CF B 7700 SYSTEM

The B 7700 System
Distinguishing Features
System Configuration
Maximum Configaration
Minimum Configuration

SYSTEM ARCHITECTURE
Section 1 - Data Representation

General

Internal Character Codes and
Collating Sequences

Numbers and Numbering Systems
Binary Notation

Hexadecimal and Octal Notation
Number Conversion

Binary to Decimal Conversion
Decimal to Binary Conversion
Decimal to Octal Conversion

Octal to Decimal Conversion
Decimal to Hexadecimal Conversion
Hexadecimal to Decimal Conversion
Operand Formats

Numeric Operands

Logical Operands

String Operands

Section 2 - Polish Notation and Stack

General

Polish Notation

General Rules forr Generation of
Polish String

Evaluating Polish String
Compilation Using Polish Notation
Program Code String

Stack Concepts

General

Base and Limit of Stack
Bi-Directional Data Flow in the Stack
Double Precision Stack Operation
Hardware Implementation
Dynamic Program History
Addressing History

Direct Addressing

Relative Addressing

Stack History

Simple Stack Operation

Interrupt Handling

Multiple Stacks and Re-entrant Code
Level Definition

Re-entrance

Job Splitting

Stack Descriptor

Stack Vector Descriptor

Presence Bit Interrupt

Section 3 — Processor Word Formats

General

Words for Addressing Outside of the
Stack

Presence Bit

Index Bit

Invalid Index

Valid Index

Read-Only Bit

Copy Bit

OF CONTENTS

Page
x1
1-1

ERERH =€ -1-1-1-3-1-153 30 0 Gt

N0 60 1O D9 0O 0D 1O 1D DD b0 DO DO 1O D 1O 0O 10 DO 0O 1D
DS DO DO DO DO DD red b bt b b bk bk b ek e b
=~

Chapter

ITIL

Title

Data Descriptor

String Descriptor

Segment Descriptors

Words for Addressing Within Stacks
Program Control Word

Indirect Reference Word

Stuffed Indirect Reference Word
Words for Storing Stack History
Mark Stack Control Word

Return Control Word

Top of Stack Control Word

Words Used as Special Parameters
Step Index Word

Occurs Index Word

Time of Day Function Word

Section 4 - Input/Output Subsystem
Map Structure

Introduction

Queue-Driven I/0

Error Handling

Deferment of Path Binding
I/O Subsystem Map
Commands and Requests
Map Integrity

Home Address Words

Unit Table

I/O Queue Head and Tail Words
Status Queue Headers
Input/Output Control Block

CENTRAL PROCESSOR MODULE

Section 1 - Functional Description of
Central Processor Module

Operational Concepts of the Central
Processor Module

Use of Divisional Overlap and Local
Buffering

Memory Overlap

Program Buffer

Buffer Word Format

Reading from the Program Buffer
Writing into the Program Buffer
Branching

Eidit Mode Operation

Vector Mode Operation

Program Barrel

Selection Gating Stage

Barrel Shift Stage

Syllable Parity Checking
Frocessing of LT48 Operator
Program Control Unit
Instruction Decode Register
Instruction Execute Register
Preprocessing of Value Call and
Name Call Operators

Address Unit

Execution Unit

General

Input Queues

Operator Queue

EU Data Queue

EU Look-Ahead Data Queue

K and L Queues

PIR and PSR Queue

Lexic Level Queue

Major EU Data Circuits

Page

2-27
2-27
2-28
2-28
2-28
2-29
2-29
2-32
2-32
2-32

2-32
2-33
2-33
2-33

2-36

2-36
2-36
2-37
2-37
2-38
2-38
2-39
2-39
2-39
2-39
2-40
2-40

3-1
3-1

3-3
3-3

3-5
3-5
3-5
3-5
3-5
3-8
3-9

2

[

3-9

3-9
3-10
3-10
3-10
3-11

W W
A A]

—

W W o

[A A

60 G0 W o 0o L o 08 O O
DD s ot b= e ek e e
S O O O © 00 00 00 ~J -3 O

Chapter

TABLE OF CONTENTS (Cont)

Title

Adder

Shift Mechanism

Local Memory

Data Registers

Data Transfer Buses

Major EU Control Circuits

Basic EU Operation

EU Error Detection Methods
Stack Buffer

Stack Buffer Function

Stack Buffer Operation

Fetching the Top Item from the
Stack Buffer

Adding a New Item to the Contents
of the Stack Buffer

Fetching and Storing of Local
Information

Stack Buffer Purge Operation
Associative Memory

ASM Local Operation

ASM Fill Operation

ASM Purge Operation

Storage Unit

Input to Storage Unit Operations
Queue

Storage Unit Operations Queue
Loading the Storage Unit Op Code
Flip-Flops

Loading the Storage Unit Variants
Flip-Flops

Loading the Storage Unit Length
Register

Storage Unit Data Queue
Memory Address Register
Storage Unit Control Logic
Communications Unit

Fault Control Logic

Section 2 - Interrupts

Introduction

Hardware Interrupt System

CPM States and Modes

Control State

Normal State

Fault Control Logic

Fault Condition Register

Fault Mask Register

Interrupt Identification

CPM Fail Register

Control Mode Register

[OM Fail Word

Interrupt Processing

Interrupt Processing in Normal Mode
Interrupt Processing in CMI
Interrupt Processing in CM2
Interrupt Processing in CM3
Control Mode Advancement
Alarm Interrupts

Syllable Dependent Interrupts
(Second Priority) .
Special Interrupts (Third Priority)
External Interrupts (Fourth Priority)
Memory Related Interrupts
Interrupt Descriptions

Alarm Interrupts

Syllable Dependent Interrupts
Special Interrupts

Page

3-20
3-20
3-20
3-22
3-22
3-23
3-25
3-26
3-26
3-26
3-26
3-28

3-28

Chapter

Title

Section 3 - Operators

Introduction

Grouping of Operators

Primary Mode Operators

Arithmetic Operators

Add (ADD) (P)80

Subtract (SUBT) (P)81

Multiply (MULT) (P)82

Extended Multiply (MULX) (P)8F
Divide (DIVD) (P)83

Integer Divide (IDIV) (P)84
Remainder Divide (RDIV) (P)85
Integerize, Truncated (NTIA) (P)86
Integerize, Rounded (NTGR) (P)87
Integerize, Rounded, Double Precision
(NTGD) (V)37

Bit Operators

Bit Set (BSET) (P)96

Dynamic Bit Set (DBST) (P)97

Bit Reset (BRST) (P)9E

Dynamic Bit Reset (DBRS) (P)9F
Change Sign Bit (CHSN) (P)SE
Count Binary One’s (CBON) (V)BB
Leading One Test (LOG2) (V)8B
Branch Operators

Branch Unconditional (BRUN) (P)A2
Branch on True (BRTR) (P)A1
Branch on False (BRFL) (P)AO
Dynamic Branch Unconditional
(DBUN) (P)AA

Dynamic Branch True (DBTR) (P)A9
Dynamic Branch False (DBFL) (P)AS
Step and Branch (STBR) (P)A4
Compare Operators

Compare Characters Greater,
Destructive (CGTD) (P)F2

Compare Characters Greater, Update
(CGTU) (PFA

Compare Characters Greater or
Equal, Destructive (CGED) (P)F1
Compare Characters Greater or
Equal, Update (CGEU) (P)F9
Compare Characters Equal,
Destructive (CEQD) (P)F4

Compare Characters Equal, Update
(CEQU) (P)FC

Compare Characters Less or Equal,
Destructive (CLED) (P)F3

Compare Characters Less or Equal,
Update (CLEU) (P)FB

Compare Characters Less, Destructive
(CLSD) (P)FO

Compare Characters Less, Update
(CLSU) (P)F8

Compare Characters Not Equal,
Destructive (CNED) (P)F5

Compare Characters Not Equal,
Update (CNEU) (P)FD

Enter Edit Mode Operators

Table Enter Edit, Destructive (TEED)
(P)DO

Table Enter Edit, Update (TEEU)
(P)D8

Execute Single Micro, Destructive
(EXSD) (P)D2

Execute Single Micro, Update (EXSU)
(P)DA

Page

3-65
3-65
3-66
3-69
3-69
3-69
3-69
3-69
3-69
3-69
3-69
3-69
3-69

L&
=g

T

~3 =1 =1 =1+-1=1=]-]-]-3-1-]-=3
COO0COCOO0ODDOOoCOOCS S

2o o e oo
] o

WW»IMWW
=1 =1 =1 =} =]
el)

w
N
™

3-72

3-72

3-72

3-72

3-72

3-72

3-72

3-73
3-73

3-73

TABLE OF CONTENTS (Cont)

Title

Execute Single Micro, Single Pointer
Update (EXPU) (P)DD

Enter Vector Mode Operators
Single-Word Vector Mode (VMOS)
(P)EF

Multiple-Word Vector Mode (VMOM)
(PET

Index and Load Operators

Index (INDX) (P,A6

Index and Load Name (NXLN) (P)A5
Index and Load Value (NXLV) (P)AD
Load Transparent (LODT) (V)BC
Input Convert Operators

Input Convert, Destructive (ICVD)
(P)YCA

Input, Convert, Update (ICVU) (P)CB
Literal Call Operators

Lit Call Zero (ZERO) (P)BO

Lit Call One (ONE) (P)B1

Lit Call 8 Bits (I.T8) (P)B2

Lit Call 16 Bits (LT16) (P)B3

Lit Call 48 Bits (LT48) (P)BE

Make Program Control Word (MPCW)
(P)BF

Logical Operators:

Logical and (LAND) (P)90

Logical or (LOR) (P)91

Syllable Dependent Interrupts
(Second Priority)

Special Interrupts (Third Priority)
External Interrupts (Fourth Priority)
Pack, Destructive (PACD) (P)D1
Pack, Update (PACU) (P)D9
Relational Operators

Greater Than (GRTR) (P)SA

Greater Than or Equal (GREQ) (P)89
Equal (EQUL) (P)8C

Less Than or Equal (LSEQ) (P)8B
Less Than (LESS) (P)88

Not Equal (NEQL) (P)8D

Logical Equal (SAME) (P)94

Scale Operators

Scale Left (SCLF) (P)CO

Dynamic Scale Left (DSLF) (P)C1
Scale Right Save (SCRS) (P)C4
Dynamic Scale Right Save (DSRS)
(P)C5

Scale Right Truncate (SCRT) (P)C2
Dynamic Scale Right Truncate
(DSRT) (P)C3

Scale Right Rounded (SCRR) (P)C8
Dynamic Scale Right Rounded
(DSRR) (P)C9

Scale Right Final (SCRF) (P)Cé
Dynamic Scale Right Final (DSRF)
™cT

Stack Operators

Exchange (EXCH) (P)B6

Rotate Stack Down (RSDN) (V)B7
Rotate Stack Up (RSUP) (V)B6
Duplicate Top-Of0Stack (DUPL) (P)B7
Delete Top-Of-Stack (DLET) (P)B5
Push Down Stack Registers (PUSH)
(P)B4

Store Destructive (STOD) (P)B8
Store Non-Destructive (STON) (P)B9
Overwrite Destructive (OVRD) (P)BA

Page

Wwwwww
R M A

00 00 00 00 00 <3 <1 o1 =1 ~1 =1 =3 ~J ~J -3 &1 O
SO0 O S DLV DODODOR N

wwwwwqomwwww

3-80
3-80
3-80
3-81
3-81
3-81
3-31

3-81
3-81
3-81

Title

Overwrite Non-Destructive (OVRN)
(P)BB

Read With Lock (RDLK) (V)BA
String Operators

String Isolate (SISO) (P)D5

String Transfer Operators

Transfer Words, Destructive (TWSD)
(P)D3

Transfer Words, Update (TWSU)
(P)DB

Transfer Words, Overwrite
Destructive (TWOD) (P)D4

Transfer Words, Overwrite Update
(TWOU) (P)DC

Transfer While Greater, Destructive
(TGTD) (P)EZ

Transfer While Greater, Update
(TGTU) (P)EA

Transfer While Greater or Equal,
Destructive (TGED) (P)E1

Transfer While Greater or Equal,
Update (TGEU) (P)E9

Transfer While Equal, Destructive
(TEQD) (P)E4

Transfer While Equal, Update
(TEQU) (P)EC

Transfer While Less or Equal,
Destructive (TLED) (P)ES3

Transfer While Less or Equal,
Update (TLEU) (P)EB

Transfer While Less, Destructive
(TLSD) (PEO

Transfer While Less, Update (TLSU)
(P)ES

Transfer While Not Equal,
Destructive (TNED) (P)E5

Transfer While Not Equal, Update
(TNEU) (P)ED

Transfer While True, Destructive
(TWTD) (V)D3

Transfer While True, Update (TWTU)
(V)DB

Transfer While False, Destructive
(TWFD) (V)D2

Transfer While False, Update (TWFU)
(VDA

Transfer Unconditional, Destructive
(TUND) (P)E6

Transfer Unconditional, Update
(TUNU) (P)EE

Subroutine Operators

Mark Stack (MKST) (P)AE

Insert Mark Stack (IMKS) (P)CF
Name Call (NAMC) (P)40 thru (P)TF
Value Call (VALC) (P)00 thru (P)3F
Evaluate Descriptor (EVAL) (P)AC
Enter (ENTR) (P)AB

Exit (EXIT) (P)A3

Return (RETN) (P)A7

Transfer Operators

Field Transfer (FLTR) (P)98
Dynamic Field Transfer (DFTR) (P)99
Field Isolate (ISOL) (P)9A

Dynamic Field Isolate (DISO) (P)9B
Field Insert (InSR) (P)9C

Dynamic Field Insert (DINS) (P)9D
Type-Transfer Operators

Page

3-81
3-81
3-81
3-82
3-82
3-82
3-82
3-83
3-83
3-83
3-83
3-83
3-83
3-83
3-83
3-83
3-83
3-83
3-83
3-84
3-84
3-84
3-84

3-84

Chapter

vi

TABLE OF CONTENTS (Cont)

Title

Set to Single-Precision, Truncated
(SNGT) (P)CC

Set to Single-Precision, Truncated
(SNGL) (P)YCD

Set to Double-Precision (XTND) (P)CE
Set Double to Two Singles (SPLT)
(V)43

Set Two Singles to a Double (JOIN)
(V)42

Miscellanecous Primary Mode
Operators

Escape to 16-Bit Instruction (VARID)
(P)95

Read and Clear Overflow Flip-Flop
(ROFF) (P)D7

Read True False Flip-Flop (RTFF)
(P)DE

Set External Sign (SXSN) (P)D6
Stuff Environment (STFF) (P)AF
Universal Operators

Conditional Halt (HALT) (U)DF
Invalid Operator (NVLD) (U)FF

No Operation (NOOP) ()FE
Variant Mode Operations

Scan Operators

Scan In (SCNID) (V)4A

Scan While Operators

Scan While Greater, Destructive
(SGTD) (V)F2

Scan While Greater, Update (SGTU)
(WFA

Scan While Greater or Equal,
Destructive (SGED) (V)FL

Scan While Greater or Equal, Update
(SGEU) (V)F9

Scan While Equal, Destructive
(SEQD) (V)F4

Scan While Equal, Update (SEQU)
(VFC

Scan While Less or Equal,
Destructive (SLED) (V)F3

Scan While Less or Equal, Update
(SLEU) (VWFB

Scan While Less, Destructive (SLSD)
(V)FO

Scan While Less, Update (SLSU)
(V)F8

Scan While Not Equal, Destructive
(SNED) (VF'5

Scan While Not Equal, Update
(SNEU) (V)FD

Scan While True, Destructive (SWTD)
(V)D5

Scan While True, Update (SWTU)
(V)DD

Scan While False, Destructive
(SWFD) (V)D4

Scan While False, Update (SWFU)
(V)DC

Tag Field Operators

Set Tag Field (STAG) (V)B4

Read Tag Field (RTAG) (V)B5

Set Internal Timer (SINT) (V)45
(Control State Operator)

Read Processor Identification (WHOI)
(V)4E

Enable External Interrupts (EEXI)
(V)46

3-96
3-96

3-96

3-97
3-97
3-97
3-97
3-97
3-97
3-97
3-97

3-97

3-98
3-98
3-98
3-98
3-98
3-98
3-98
3-98
3-98
3-98

3-98

Chapter

Title

Disable External Interrupts (DEXI)
(V)47

Idle Until Interrupt (IDLE) (V)44
Read Processor Register (RPRR)
(V)B8

Set Processor Register (SPRR) (V)BY
Unpack Operators

Unpack Absolute, Destructive (UABD)
(V)D1

Unpack Absolute, Update (UABU)
(VD9

Unpack Signed, Destructive (USND)
(V)DO

Unpack Signed, Update (USNU) (V)D8
Linked List Lookup (LLLU) (V)BD
Masked Search for Equal (SRCH)
(VBE

Move to Stack (MVST) (MAF
Occurs Index (OCRX) (V)85
Translate (TRNS) (V)D7

Operators Exclusive to the B 7700
Set Memory Inhibits (SINH) (V)AS8
(Control State Op)

Fetch Memory Fail Register (FMFR)
(V)AC (Control State Op)

Ignore Parity (IGPR) (V)48 (Control
State Op)

Pause Until Interrupt (PAUS) (V)84
Interrupt Channel N (INCN) (V)8F
Stop (STOP) (V)BF

Edit Mode Operators

Insert Operators

Insert Unconditional (INSU) (E)DC
Insert Conditional (INSC) (E)DD
Insert Display Sign (INSG) (E)D9
Insert Overpunch (INOP) (E)D8
Move Operators

Move With Insert (MINS) (E)DO
Move With Float (MFLT) (E)D1
Move Characters (MCHR) (E)D7
Skip Operators

Skip Forward Source Characters
(SFSC) (E)D2

Skip Reverse Source Characters
(SRSC) (E)D3

Skip Forward Destination Characters
(SFDC) (E)DA .

Skip Reverse Destination Characters
(SRDC) (E)DB

Reset Float (RSTF) (E)D4

End Float (ENDF) (E)D5

End Edit (ENDE) (E)DE

Universal Operators

No Operation (NOOP) (U)FE
Conditional Halt (HALT) (U)DF
Invalid Operator (NVLD) (U)FF
Vector Mode Operators

Vector Branch (VEBR) (Z)EE
Vector Exit (VXIT) (Z)E6

Vector Stack Operators

Load A (LDA) (Z)E0

Load B (LDB) (Z)EZ

Load C (LDOC) (Z)E4

Load A, Increment (LDAI) (Z)E1
Load B, Increment (LDBI) (Z)E3
Load C, Increment (LDCI) (2)E5
Store A (STA) (Z2)F0

Page

3-98

3-98
3-98

3-99
3-99
3-99

3-99

3-99
3-100
3-100
3-100
3-100
3-100
3-101
3-101
3-101

3-101

3-105

Chapter

v

TABLE OF CONTENTS (Cont)

Title

Store B (STB) (Z)F2

Store C (STC) (Z)FA

Store A, Increment (STAI) (Z)F1
Store B, Increment (STBI) (Z)FB
Store C, Increment (STCI) (Z)F5
Double Load A (DLA) (Z)ES8
Double Load B (DLB) (Z)EA
Double Load C (DLC) (Z)EC
Double Load A, Increment (DLAI)
(Z)E9

Double Load B, Increment (DLBI)
(ZH)EB

Double Load C, ‘ncrement (DLCI)
(ZH)ED

Double Store A (DSA) (Z)F8
Double Store B (DSB) (Z)FA
Double Store C (DSC) (Z)FC
Double Store A, Increment (DSAI)
(Z)F9

Double Store B, Increment (DSBI)
(Z)FB

Double Store C, Inecrement (DSCI)
(Z)FD

Vector Fetch and Store Operators
Vector Fetch (FT'CH) (Z)00 thru (Z)3F
Vector Store (STOR) (Z)40 thru (Z)7F

INPUT/OUTPUT SUBSYSTEM

Section 1 - General Description and
Operation of the Input/Output
Module

Preliminary

Basic IOM Configuration

Control Word Flow

Data Flow

IOM/Peripheral Interface
Configuration

Peripheral Control Interface (PCI)
Disk File Interface (DFI)

Scan Interface (SCI)

Data Communications Processor
Interface (DCI)

IOM/Main and IOM/CPM Interface
Configurations

IOM/MCM Interface

IOM/CPM Interface

IOM Operational Characteristics
IOM Job Map

Home Address Word

Unit Table Word

I10Q Head (IOQH) and 10Q Tail
(I0QT) Tables and Words

I/0 Control Blocks

Fail I/O Control Blocks

Status Queue

IOM Home (HA) Commands

Start I/O (Home Code 0001)

Set Channel Busy/Set Channel
Reserved (Home Code 0010)

Reset Channel Busy/Reset Channel
Reserved (Home Code 0011)

Load Address Commands
DFO/DCP Scan-out Commands (Home
Code 1000)

DFO Scan-out Commands

DCP Scan-out Commands

DFO Scan-in Commands (Home Code
1001)

Page

3-105
3-105
3-105
3-105
3-105
3-105
3-105
3-105
3-105

3-105
3-105

3-105
3-106
3-106
3-106

3-106
3-106
3-106

3-106
3-106

4-1
4-1

Chapter

Title

Synchronous I/O Command (Home
Code 1010)

Interrogate Peripheral Status
Command (Home Code 1011)
Inhibit IOM Command (Home Code
1100)

Activate IOM Command (Home Code
1101)

Load DFO Flags Command (Home
Code 1110)

Automatic Service of Disk Jobs for
Units Under DFO Control
Automatic Disk-Pack Operation
Data Translation

EBCDIC-BCL Exceptions
IOM-Generated Interrupts

Section - 2 Functional Operation of
Input/Output Module Subsections

General

Functional Operation of Translator
Job Service Iniation

Job-Service Termination

Exchange Ring Walk

Automatic Service of Disk Jobs via
DFO Units

Disk-Pack Control

Fail Mode of Operation

Functional Operation of MIU
Functional Components of the MIU
Functional Operation of PCI
Channel Initiation Operation
Channel Service Operation
Memory Operation

Channel Termination Operation
Functional Components of the PCI
Functional Operation of DFI
Channel Initiation Operation
Channel Service Operation
Channel Termination Operation
Functional Components of the DFI
Functional Operation of SCI

Scan Interface

DCP Scan Interface

Section 3 - Peripherals and Control
Word Formats

Standard Result Descriptor
Unit Related Errors
Fail Result Descriptor
Card Punch

Card Punch Control
Operations

BCL (Op 23)

Binary (Op 24)

Card Punch EBCDIC (Op 25)
Test (Op 99)

Punch Check Error
Card Reader Control
BCL (Op 20)

Binary (Op 21)
EBCDIC (Op 22)

Test (Op 99)

Disk File Subsystem
Disk File Exchanges
Exchange Modularity
Disk

Write (Op 50)

4-29
4-29
4-29

4-32

Chapter

viii

TABLE OF CONTENTS (Cont)

Title

Read (Op 51)

Check (Op 52)

Error Termination

Disk-Pack Drive Memory System
Read Binary Address Operation
Sector Address Conversion

Disk Pack

Write (Op Code 50)

Read (Op Code 51)

Initialize (Op Code 56)

Verify (Op Code 57)

Relocate (Op Code 58)

Test (Op Code 99)

Exception Conditions

Single Bit Error Correction (SBE)
Disk-Pack Drive Busy (Time-Out)
(DRB)

Speed Error (1081)

Address Position Error (Verify) (1101)
Transmission Parity Error (1181)
Seek Time-Out (1801)

Seek Error (DSK)

Sector Time-Out (0901)
Write-Lockout (0501)

First Action (0301)

Memory Interface Parity Error (0081)
Control Cleared (0089)

General Information
Multisector-Per-Track (Standard)
Format

Spare Sectors

Line Printer

Printer Control

Space (Op 11)

Skip (Op 11)

Test (Op 99)

Error Termination

Buffered Printer Control No. 2
Magnetic Tape

Tape Subsystem

Tape Exchanges, Free-Standing Units
Magnetic Tape Exchange No. 2
Magnetic Tape Exchange No. 1
Tape Exchange, Cluster Units
Rewind (Op 01)

Read Op 02 (Forward) or Op 03
(Reverse)

Erase (Op 04)

Write (Op 06)

Write Tape Mark (Op 06)

Space (Op 08 (Forward): Op 09
(Reverse)

Test (Op 99)

BCL Alpha Operation (7-Track Tape
with Even Parity)

Exception Conditions

CRC Correction (9-Track, 800 BPI
Only)

Paper Tape Punch

paper Tape Punch Control

Write (Op 48)

Punch Leader (Op 49)

Text (Op 99)

Exception Conditions

Paper Tape Reader

Paper Tape Reader Control
Read (Op 40)

Space Forward (Op 41)

Page

4-39
4-39
4-39
4-40
4-41
4-42
4-42
4-43
4-43
4-43
4-43
4-43
4-43
4-43
4-43
4-43

4-43
4-43
4-43
4-43
4-43
4-43
4-43
4-44
4-44
4-44
4-44
4-44

4-47
4-47
4-47
4-51
4-51
4-51
4-51
4-51
4-561
4-51
4-51
4-51
4-52
4-52
4-54
4-54

4-66
4-55
4-55
4-565
4-56
4-56

Chapter

VI

Title

Space Backward (Op 43)
Rewind (Op 47)

Test (Op 99)

Exception Conditions
Single Line Control
Burroughs Terminal Computer Model
TC500

Read (Op 32)

Write (Op 34)

Test (Op 99)

Single Line Control
MEMORY SUBSYSTEM

GENERAL DESCRIPTION OF THE
MEMORY SUBSYSTEM

Introduction

Memory Capacity

Minimum Memory Size

Maximum Memory Size

MSU Reconfiguration

Address Allocation

Subsystem Allocation

Clock Rate and Read Access Times
Multiple-Word Transfer (Phasing)
MSU Phasing

Memory Operations Timing

Word Formats

MCM Control Word

MCM Fail Word

Memory Address Limits Word
Memory Requestor Inhibits Word
Signal Interface Between Requestor,
MCM, and MSU

Signal Interface Between MCM and
Requestor

Signal Interface Between MCM and
MSU

Definition of MCM Operations
MCM Logic Functions
Priority-Resolution Logic
Data-Transfer-and Control Logic
Error-Detection Logic

MSU Operational Modes

Master Clock and System Distribution

CONTROLS AND INDICATIONS
Section 1 - Operating Controls

Introduction

Console Control Panel
Supervisory Console
Keyboard Control Keys
Disk Load/Card Load

Section 2 - Central Processor Module
Panels

Display Organization

Panel 2 Indicators (Left-Hand Panel)
EU Data Section

Row 1 - Row 21 Display Selection
EU Control Section

String Family

Arithmetic Family

Panel 2 Switches (Left-Hand Panel)
Panel 1 Indicators (Right Panel)
Communications Unit

Storage and Stack Units

Address Unit

Program Control Unit

Page

4-56
4-56
4-56
4-56
4-56
4-56

4-57
4-57
4-57
4-57

5-1

RN N CY CF CF N

]

WWN OO Uk

UlUWC{‘U\Ul
——

Chapter

APPENDIX

A

TABLE OF CONTENTS (Cont)

Title

Panel 1 Switches (Right Hand Panel)
Lamp Test

Panel Operations

Storage Test

Program Buffer Operation

Stack Buffer Operation

Display Buffer Operation

EU Local Storage Operation

Section 3 - Input/Output Module
Panels

Section 4 - Memory Control Module

Rows 1 through 12
Switches and Indicators
MCM Panel Operations

Section 5 — Maintenance Diagnostic
Unit Panels

ORDER OF MAGNITUDE CHART

Page

6-30
6-31
6-31
6-32
6-33
6-34
6-34
6-35

6-36

6-40

6-40
6-45
6-46

6-48

A-1

Chapter

APPENDIX
B

APPENDIX
C

APPENDIX
D

APPENDIX
E

APPENDIX
F

APPENDIX
G

APPENDIX
H

APPENDIX
I

Title Page

HEXADECIMAL ADDITION TABLE B-1

HEXADECIMAL TO DECIMAL C-1
CONVERSION TABLES
DECIMAL - HEXADECIMAL D-1

CONVERSION TABLE

COLLATING INFORMATION E-1
DATA REPRESENTATION F-1
PROCESSOR OPERATORS, BY G-1
HEXADECIMAL CODE

PROCESSOE OPERATORS BY H-1
MNEMONICS

IOM WORD FORMATS I1

LIST OF ILLUSTRATIONS

Title

Frontispiece
B 7700 Exchange
Maximum Configuration of the
B 7700 System
Word Structure
Number Base Graphie Characters
Binary Integers
Binary to Hexadecimal and Octal
Conversion
Relationship of Cectal, Decimal and
Hexadecimal Nurabers
Binary to Decimal Conversion
Decimal to Binary Conversion
Decimal to Octal Conversion
Powers of 8
Octal to Decimal Conversion

Single Precision Operand

Order of Magnitude Chart
Double Precision Operand
Logical Operand

String Operands

Use of String Operand to Store
Signed Number (4259)

Polish Notation Flow Chart
Evaluation of Polish String
Program Word

Top of Stack and Stack Bounds
Register

Stack Buffer and Stack Memory
ALGOL Program with
Lexicographical Structure and
Related Stack Structure

More Advanced ALGOL Program

Page

[N o

.-amrl“
[or =P NG N

t'Q
BS}

Figure Title Page
I1-2-8 Addressing Environment Tree of 2-21
ALGOL Program
11-2-9 Stack History List 2-21
11-2- Stack Cut Back on Procedure Exit 2-22
10
I1-2- Stack Operation 2-23
11
I1-2- Multiple Linked Stacks 2-25
12
11-3-1 Basic Word Format 2-26
11-3-2 Data Descriptor 2-28
11-3-3 String Descriptor 2-29
11-3-4 Segment Descriptor 2-30
11-38-5 Program Control Word 2-30
11-3-6 Indirect Reference Word 2-31
11-8-7 Stuffed Indirect Reference Word 2-32
11-3-8 Mark Stack Control Word 2-33
11-3-9 Return Control Word 2-34
11-8- Top of Stack Control Word 2-34
10
11-3- Step Index Word 2-35
11
II-3- Occurs Index Word 2-35
12
Time-of-Day Function Word 2-35
11-4-1 Asynchronous I/O Operation, 2-36
Simplified Block Diagram
11-4-2 Data Transfer Path Selection 2-37
11-4-3 I/O Subsystem Map, Simplified Block 2-38
Diagram
11-4-4 I/O Subsystem Map Protection 2-39
1I-4-5 IOCB Format, Simplified Diagram 2-40
I11-1- Simplified Block Diagram of Central 3-2
1 Processor Module
1I1-1- Division Overlap 3-4
2
II1-1- Memory Overlap 3-6
3

Figure
II1-1-

4
II1-1-
5
I11-1-
6
I11-1-
7
I11-1-
8
I11-1-
9
1I1-1-
10
III-1-
11
I11-1-
12
I11-1-
13
111-1-

I1I-2-
I11-2-

III-2-
ITI-2-

ITI-2-
I11-3-
I11-3-
I11-3-
I11-3-
111-3-

I11-3-

LIST OF ILLUSTRATIONS (Cont)

Title
Program Buffer Arrangement
Program Buffer Unit
Program Barrel
Program Control Unit
Address Couple Bit Assignment
Address Unit
Execution Unit, Major Data Circuits
Execution Unit, Major Control
Circuits
Stack Buffer and Stack Memory Area
Stack Unit, Block Diagram
Associative Memcory
Storage Unit
Communications Unit
Error Word Format
Fault Contro! Logic
CPM Fail Register
IOM Fail Word
Stack Format
Stack Format Prior to Calling
Interrupt Procedure While in CM1
(Move Stack Operation)
Interrupt Reporting
Stack Format Before Reentering
Interrupt Procedure to Report Stack
Stack Format Before Reentering
Interrupt Procedure to Report Stack
Overflow
Stack Format After Reentering
Interrupt Procedure and Reporting
Stack Overflow
Presence Bit Interrupt Chart
Format of Program Buffer Word
Storage
Program Buffer Word Format
B 7700 CPM Program Operator
Hexadecimal Code Assignments
Step Index Word Format
Vector Table

Flow Chart of Value Call Operator (2
sheets)

Page

3-10
3-11
3-14
3-16
3-21
3-24
3-27
3-30
3-32
3-33
3-37
3-39
3-40
3-44
3-46
3-47

3-48

3-50
3-51

3-52

3-52

3-60
3-65
3-66
3-67
3-71
3-75

3-86

Figure

I11-3-
7
III-3-

8
I11-3-
9
IvV-1-1
IV-1-2

1V-1-3
1V-14

PR
OQOOI\'JI\DII\DN)N)NHH

DARCNRC
RN
GO DD

q
Lo

sigsdgsssssgas
'\

Title

Flow Chart of Evaluate Operator

Flow Chart of Enter Operator (3
sheets)

Flow Chart of Exit and Return (3
sheets)

IOM Basic Block Diagram

Typical Data-Transfer Classifications
and Related IOM Subsections
Typical IOM/Peripheral Configuration
Typical IOM/Main Memory and 10M/
CPM Interface Configurations

IOM Job Map

Home Address Commands
Translator Component Interface
Memory Interface Unit

Peripheral Control Interface

Disk File Interface

Scan Bus Interface

DCI Unit

Disk-Pack Recording Surfaces
Standard Format (2 sheets)

Single Sector for Track Format
Single Line Control Configuration
Read Message Format TC500 and

B 9352

Write Message Format TC500 and

B 9352

B 7700 Memory System Modularity
Diagram

B 7700 Memory Subsystem

Four MSU “Phasing” Address Layout
Two MSU “Phasing” Address Layout
Single MSU Address Layout

Single Word Read or Write Operation,
Timing Diagram

Four Word Read Operation, Timing
Diagram

Four Word Write Operation, Timing
Diagram

Data Word Transfer Between
Requestor and Memory
Requestor-MCU-MSU Interface
Memory Control Module Block
Diagram

Operator Control Console

Console Control Panel

Supervisory Console

Keyboard Format

Cold Start/Halt Load Selection Card
Central Processor Module

Panel 2 (Left-Hand Panel) of CPM
Panel 1 (Right-Hand Panel) of CPM
Overall View of IOM

Left-Hand Panel of IOM
Right-Hand Panel of IOM

Overall View of MCM

Panel of MCM

Maintenance Diagnostic Unit
System Diagnostic Panel

Card Test Panel

Maintenance Panel

Page

3-89
3-90

3-93

o
]
o

.\.
RO
L

1 '
JUOY e e 0 WIS IS L

1
X NS X S H WD WD

W W e W e e e e e e e e W
o]]
v PN (o))
— <o

1

?101?'0!0'
SO U W

A
-1

4
1

o
%

5-9

Table

I1
1I-2-1
II1-2-

II1-2-
I11-2-
Iv-11

IvV-1-2
Iv-1-3

LIST OF TABLES

Title
Central Components of B 7700 System

Description of Stack Operation
B 7700 Interrupt Bit Assignments

CPM Handling of Memory Related
Errors
Processor Internal Interrupts

PCI/PCC Channels
DFI/PCC Channels

I0M HA Operaticns and
Corresponding Home Codes

Page
1-3
2-24
3-42

3-54

Table
IV-1-4

1V-1-5
Iv-21

IV-3-1
I1v-3-2

1v-3-3

Title

Ceneral Translation Specification
Codes

Translation Codes by Device

Unit Table and Active Channel Coded
Decisions

Disk-Pack Subsystem Characteristics
Disk-Pack File Addresses (Burroughs
Multi-Sector Format)

Disk-Pack File Addresses (Single
Sector/Track Format)

Status Vector Cross-Reference

Xi

INTRODUCTION

This system reference manual presents the
technical details about the general architec-
ture, the components, and the subsystems of
the Burroughs B 7700 Information Processing
System, which is the most advanced, the larg-
est, and the most pcwerful member of the
Burroughs family of 700 systems. For a more
general coverage of the hardware and soft-
ware characteristics of the system, refer to
the system characteristics manual.

The chapters of this reference manual are
as follows:

Chapter I, Description of the B 7700 System,
introduces the idea of the interaction of inde-
pendently operating computing, input/output,
and memory modules through an exchange
and a presentation of the range of configura-
tions of the system.

Chapter II, System Architecture, discusses
data representation, Polish notation and stack
concepts, processor corntrol words, and the con-
cepts of the input/output subsystem map.

Chapter III, Central Processor Module, con-
tains a functional description of the operation

40908

of the central processor module, an explana-
tion of hardware interrupts, and a brief de-
seription of each program operator.

Chapter IV, Input/Output Subsystem, con-
tains a general description of the operation of
the input/output module, functional descrip-
tions of the subsections of the input/output
module, and detailed descriptions of the con-
trol words and descriptors associated with
each type of peripheral device that may be in-
cluded in the system.

Chapter V, Memory Subsystem, a general de-
scription of the memory subsystem and details
about both the memory control module and
the memory storage unit.

Chapter VI, Controls and Indicators, con-
tains detailed descriptions of the functions
and uses of the controls and indicators of the
central components of the system.

The term “software”, as used in this manual,
applies to that category of Burroughs Pro-
gram Products defined as “Systems Software.”

Other categories of Burroughs Program
Products are:

Application Program Produects
Program Product Conversion Aids

xiii

///////

—\

BV,

CCCCCCCCCCC
UUUUUUUUUUUUUUUUUUUUUU

00000

CHAPTER 1

DESCRIPTION OF B 7700 SYSTEM

THE B 7700 SYSTEM

The Burroughs B 7700 Information Process-
ing System is a large-scale, truly general-pur-
pose, balanced, flexible, multiprogramming
and multiprocessing computing system that is
suitable for such diverse applications as time
sharing, scientific problem solving, and busi-
ness data processing. Carrying forward ideas
proven successful in the Burroughs B 5700
and B 6700 information processing systems,
the B 7700 is, in fact, completely code
compatible with the B 6700 and affords Bur-
roughs users the opportunity for growth with-
out reprogramming or recompiling.

In other words, object code users’ programs
that can be executed successfully on the
B 6700 can be executed without modification
on the B 7700, and the object code that can be
executed on the B 7700 can be executed with-
out modification on the B 6700. Nevertheless,
the B 7700 is designed to satisfy the increas-
ingly complex data processing needs of the
years to come. The system is able to handle
complex data structures and sophisticated pro-
gram structures dictated both by higher-level
languages now in use and by the requirements
of advanced problems, is able to manage effi-
ciently the massive on-line and archival stor-
age requirements of large data bases, and is
able to accommodate vast networks of data
communications devices.

A very fast, modular parallel processing sys-
tem with exception versatility in configura-
tion, the B 7700 can be tailored to the process-
ing needs of a user by arranging central proc-
essor modules, input/output modules, and
memory modules on a electronic grid, or ex-
change (figure I-1), in a variety of ways de-
pending upon the exact needs of the user. If
the high performance and adaptability of the
B7700 could be attributed to single factor, it
would be to the balance attained by means of
the controlled interaction of independently op-
erating computing, input/output, and memory
modules through the exchange. Thus, the
throughput of the system as a whole is
maximized, and the performance of no single
element of the system is maximized to the ne-
glect or detriment of others.

The key to the efficient balanced use of the
system is the Burroughs master control pro-
gram (MCP)a unique executive software oper-
ating system that automatically makes opti-
mum use of all system resources. It is this op-
erating system that makes multiprogramming

and multiprocessing both functional and prac-
tical by dynamically controlling system re-
sources and by scheduling jobs in the multi-
programming mix. In use, the master control
program allocates system resources to meet
the needs of the programs introduced into the
computer. It continually and automatically
reassigns resources, starts jobs, and monitors
their performance.

Further implications of the modularity and
flexibility of the system are its expandability
(a capacity to add hardware modules without
reprogramming) and its increased reliability
(and thus increased availability to the user.
This reliability is achieved by the use of fail-
soft techniques that (in addition to providing
for error detection and error correction, redun-
dancy of data paths, and independence and re-
dundancy of power supplies) exclude faulty
modules from the system and permit process-
ing to continue (again, without reprogram-
ming) even with a temporarily reduced config-
uration.

Even though it is very large and immensely
complicated, the B 7700 is, nevertheless, com-
prehensible to the persons who use it: pro-
gramming is done only in higher-level, prob-
lem-oriented languages (COBOL, ALGOL,
FORTRAN, PL/1, and ESPOL); the control
language used in entering jobs into the system
is a simple, free-form, English-like language;
and the messages that pass between the sys-
tem and the operator are brief, clear, and easy
to learn.

DISTINGUISHING FEATURES

Although the balanced use of the principal
components of the system as a whole under
the control and coordination of the master
control program is the key to the high
throughput of the B 7700, the high perform-
ance of the system is in large part achieved by
improving the speed of execution of instruc-
tions, by reducing or masking the overhead as-
sociated with references to memory, by freeing
the central processor from concern with input/
output operations, and by employing fail-soft
measures that minimize system degradation.

Because system main-frame hardware has
been designed and built strictly according to
stringent circuit and wiring rules and proven
design and packaging techniques and because
its processing elements incorporate monolithic
integrated circuits, the B 7700 system per-

1-1

forms consistently at high operating frequen-
cies: the central processor module at a clock
rate of 16 megahertz and the remainder of the
system at 8 megahertz.

By combining the following features with
the high internal operating frequencies, the
performance of the system is further en-
hanced.

1. The parallel and independent operation of
the three main sections (program, execution,
and storage) of the central processor module.
This parallelism (coupled with the high clock
rate) makes possible the speeding up of arith-
metic computations and data manipulations
and the overlapping of these computations and
manipulations with memory references.

2. A special high-speed integrated circuit
memory (program, stack, and associative data
buffers). This high-speed local memory permits
multiword transfers between the central proe-
essor and main memory and makes possible
the anticipation of the need for program and
data words. Hence, the time spent waiting for
the completion of transfers to and from
memory is reduced and at times virtually elim-
inated.

3. The four-way interleaving of addresses in
main memory and the capability for phased
multiword transfers of information to and
from memory in groups of up to four words.
Consequently, memory access times for each
user of memory are reduced, and memory is
thus made more accessible to all users.

4. The asynchronous performance of input/
output operations by the input/output module
independent of the central processor, which is
therefore freed to do other useful work.

The three goals of the fail-soft features of
the B 7700 are to keep the system running 100
percent of the time, to minimize system degra-
dation, and to provide the user with tools for
performing his own data recovery. These goals
are achieved by the artful combination of
hardware and software throughout the sys-
tem.

The first goal, to keep running, is achieved
as follows:

1. By the high reliability of system hard-
ware.

2. By the incorporation of error detection
circuits throughout the system.

3. By single-bit error correction of errors in
memory.

4. By recording errors for software analysis.

5. By modular design, by use of separate
power supplies and redundant regulators for
each module, and by use of redundant buses.

6. By the ability of the master control pro-
gram to reconfigure the modules of the system
to exclude temporarily a faulty module.

1-2

7. By automatic instruction retry, if a hard-
ware malfunction occurs during the perform-
ance of an instruction, the master control pro-
gram analyzes the error and writes the appro-
priate entry in the on-line maintenance log.
The processor is reset to its state prior to the
error and the instruction is performed again.

In short, the detection and reporting of er-
rors is done by hardware, analysis of errors is
done by software, and the reconfiguration of
the system is done dynamically by software.
Because of the modularity of power supplies
and the use of redundant regulated supplies
for critical voltages, the impact of a malfune-
tioning dc supply is minimized and does not re-
sult in a catastrophic failure.

The second goal, to minimize system degra-
dation, is achieved by providing diagnostic pro-
grams and equipment for rapidly identifying
and repairing faults and for reestablishing
confidence in a repaired module before it is re-
turned to the user’s system. The diagnostic
programs of the B 7700 system identify a fau-
Ity module. By the use of the maintenance di-
agnostic unit, a fault in any main-frame mod-
ule or in a disk file optimizer is narrowed to a
single clock period and to a flip-flop and its as-
sociated the central processor module, the in-
put/output the card tester on the maintenance
diagnostic unit, the faulty integrated circuit
chip is identified.

The third goal, to provide the user with tools
for performing his own data recovery, is
achieved by the use of such features as instal-
lation allocated disk, protected disk files, dupli-
cated disk files, and fault statements in the
higher-level programming languages used on
the system.

Installation allocated disk allows the user to
specify the physical allocation of his critical
disk files to facilitate the maintenance and re-
construction of these files. Protected disk files
allow a user to gain access to the last portion
of valid data written in a file before an unex-
pected system halt. The use of duplicated disk
files is to avoid the problem of fatal disk file
errors. The master control program maintains
more than one copy of each disk file row, and,
if access cannot be gained to a record, an at-
tempt is made to gain access to a copy of the
record. By use of fault statements, the user
can stipulate actions to be taken by his pro-
grams in the event errors occur.

SYSTEM CONFIGURATION
Physically, the components of the B 7700
system fall into three categories, as follows:

1. Central components of the B 7700 system:
the central processor module, input/output

output module, the memory module, the main-
tenance diagnostic unit, and the operator’s
console (refer to table I-1).

2. Standard Burroughs cabinets that con-
tain peripheral controls and exchanges, the
disk file optimizer, the data communications
processor, and ac power supplies.

3. Standard peripheral devices that are
joined to the central system by means of
standard Burroughs peripheral controls,
adapters, and exchanges and standard remote
devices that are joined to the central system
by means of line adapters and data communi-
cations processor.

The arrangement of these components into a
system and the size of the system depend on
the application and workload of the user. In
the following paragraphs, the range of config-
urations of the B 7700, the maximum
configuration and the minimum configuration,
is described.

Table I-1. Central Components of the B 7700

System
Style No. Description
B 7750 System includes: one central processor (16

MHz with vectors), one input/output
processor with £4 data switching channels,
one maintenance diagnostic unit, one
operator console with dual displays and
control.

B 7760 System includes: two central processors (16
MHz with vectors, two input/output
processors with 24 data switching channels
each, one maintenance diagnostic unit, one
operator console with dual displays and

control.

B 7770 System includes: three central processors
(16MHz with vectors), two input/output
processors with 24 data switching channels
each, one maintenance diagnostic unit, one
operator console with dual displays and
control.

B 7780 System includes; four central processors (16
MHz with vectors), two input/output
processors with 24 data switching channels
each, one maintenance diagnostic unit, one
operator console with dual displays and

control.

B 7001-4 Basic memory module - 1.5 megabytes of 88
ns/byte read access, error-correcting
memory, four-way interleaving that permits

four-word transfers to and from memory.
B 7702
B 7785

Additional central processor.
Additional input/output processor.

MAXIMUM CONFIGURATION

Figure 1I-2 illustrates the theoretical
maximum configuration of the B 7700 system.

As many as eight memory modules may be ar-
ranged on the exchange with a combined total
of up to eight requestors of memory-central
processor modules and input/output modules.
Any single requestor of memory may address
and gain access to the entire contents of high-
speed main memory (1,048,576 words, or
6,291,456 eight-bit bytes). On the maintenance
bus (which services the memory control mod-
ules, central processor modules, input/output
modules, and disk file optimizers) one or two
maintenance diagnostic units may be placed.

At rates of up to 6.75 million bytes per sec-
ond, a single input/output module is capable of
transferring data simultaneously between
main memory and 28 peripheral controls (in-
cluding eight high-speed controls) and between
main memory and as many as four data com-
munications processors. It is also capable of
handling as many as four disk file optimizers
(devices that are used in improving the rate of
transfer of data between main memory and
disk files). At present, the maximum number
of high-speed, medium-speed, and low-speed
peripheral devices that may be attached
through controls and exchanges to a single in-
put/output module or that may be included in
the input/output subsystem of the B 7700 is
255. (Each card reader, pseudoreader, card
punch, line printer, paper tape reader, paper
tape punch, operator’s display terminal, and
free-standing magnetic tape unit; each station
on a magnetic tape cluster; and each electron-
ics unit in a disk file subsystem is considered
a device.) By suitable cross-connection through
exchanges, it is possible to establish pathways
between disk files, disk packs, or magnetic
tape units and more than one input/output
module; hence, these peripheral devices can be
shared by all of the input/output modules in
the system.

Among the peripheral devices available are
disk file and disk pack memory modules that
constitute a virtual memory that in effect
greatly expands the storage capacity of the
main memory of the system; these modules,
which are interfaced with the input/output
module through controls are as follows:

1. Head-per-track disk file modules that are
combined under the control of disk file opti-
mizers to form optimized-access memory
banks capable of storing from 450 million to 8
billion eight-bit bytes of information per input/
output module and whose access time is as low
as 2-to-6 milliseconds.

2. Head-per-track disk file modules that are
combined (without the control of the opti-
mizer) into random-access memory banks of
from 15 million to 16 billion eight-bit bytes per
input/output module and whose average access

1-3

v-i

(1 OR 21

uaG
TAPE

MAINTENANCE
DIAGNOSTIC
uNiT

WAINTENANCE DATA I oATA DATA DATA
MEMORY MODUL. BUS COMMUNICATIONS COMMUNICATIONS TIMMUNICATIONS COMMUNICATIONS
£ (_5' PROCESSOR ! PROCESSOR PROCESSOR PROCE SSOR
usy n:::“ ::u] usu N SCAN BUS
‘-—5‘7
ucwo 1/0
J MODULE
MEMORY MODULE INTERRUBT l
g 8us OFC DFC
" T:L;RIAT:U e pee pee ~— DFO oFe DFO ore
: CENTRAL “ oFe 0F¢
L PROCESSOR SPC| SPC | SFC| 5PC _| DFC oFc -
b MODULE DF PCC OF PCC
.
.
. 2 OF PCC DF PCC Eul
covm | [srelsre 3 Ler| see ;
. PRO 4
DFC OFC .
MODULE DFO F x
. — pCcc pCC BFC PFO ™ orc 20 .
MEMORY MODULE DFC DFC .
EX
Msu | Msu | usu | wsu 3 . ‘ Euz0
(2 OR 4)% [
1/0
MCMT MODULE [
— —;
2 scan sus
.
. LEGEND
wemory <> | | | Ao ___ DATA DATA DATA DATA —_—
BUS oM 1] COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS MSU : MEMORY STORAGE UNIT
&R PROCESSOR PROCESSOR PROCESSOR PROCESSOR MCM = MEMORY CONTROL MODULE
—__Z__ _ Pl PC = PERIPHERAL CONTROL
»* :;:u_n:gu(roo;‘grsm PCC = PERIPHERAL CONTROL CABINET
WORDS) PER B 7700 7 DFO : DISK FILE OPTIMIZER
SYSTEM " {om ! DFC = DISK FILE CONTROL
i OR : DF PCC: DISK FILE PERIPHERAL CONTROL CABINET
1
—t______ 4 EU = ELECTRONICS UNIT
EX : EXCHANGE

40100

Figure 1-2. Maximum Configuration of the B 7700 System

time is 23 or 40 milliseconds.

3. Disk pack memory modules that are com-
bined into random-access memory banks with
a capacity for from 121 million to many bil-
lions of eight-bit bytes of storage per input/
output module and whose average access time
is 30 milliseconds.

In addition to the 255 peripheral devices
that may be included in the input/output sub-
system, there is a vast network of remote ter-
minals, remote controller, and remote comput-
ers that can be accommodated by as many as
1024 remote lines served by the four program-
mable data communications processors that
can be controlled by a single input/output
module. Normally, each line handles a number
of remote devices, and, naturally, systems that
have more than one input/output module can
have more than one data communications net-
work. Theoretically, the maximum number of
data communications processors that could be
included in a B 7700 system is 28. (However,
currently, the software can only handle a max-
imum of eight.)

MINIMUM CONFIGURATION
The smallest possible B 7700 system is com-

posed of the central components listed below.

Central Components Qty
Central processor module (CPM)
Input/output module (IOM)
Memory module
Memory control module (MCM)
Memory storage cabinet (MSC)
Memory storage unit (MSU)

W DD e e e

Maintenance diagnostic unit (MDU) and its
associated magnetic tape unit

Operator’s console 1

In addition to these central components, the
minimum configuration must contain a disk
file memory subsystem at least large enough
to hold the master control program, a card
reader, a line printer, a magnetic tape unit,
peripheral controls, and ac power cabinets. In
practice, other peripheral devices and their
controls are used with this minimum
configuration.

Naturally, this minimum system lacks the
redundancy and power of larger configura-
tions. First (lacking redundancy of main-frame
modules), this configuration does not take
complete advantage of the fail-soft features
possible with the B 7700 and second (because
each memory control module controls but two
storage units), only two-ward transfers, not
four-word transfers, to and from memory are
possible.

1-5

CHAPTER 11

SYSTEM ARCHITECTURE

SECTION 1
DATA REPRESENTATION

GENERAL

The basic information structure used in the
B 7700 Information Processing System is the
word. Each word contzins 48 information bits,
three tag bits, and one parity bit. (See figure
11-1-1.) The information bits may be used to
store character values, logical values, or nu-
meric values. The tag bits are control bits
which identify the type of information con-
tained in the information field. The tag bits
are inaccessible to normal state (user) pro-
grams. The parity bit is used to check for cor-
rect information transfer between the CPM or
IOM and main memory.

PARITYT

| 51 47| 43| 390 35 31 27 23 19 15 11 1 3

50| 46| 42/ 38| 34| 30| 26| 22 18 14| 10| 6] 2

TAG |
FIELD 49| 45| 41] 37| 33| 29| 25! 21 17| 13] 9| 5| 1

48] 44| 40| 36| 32| 28] 24| 20| 16| 12| 8| 4] o

~
INFORMATION FIELD
40930

Figure 1l1-1-1. Word Structure

INTERNAL CHARACTER CODES AND
COLLATING SEQUENCES

Extended Binary Coded Decimal Inter-
change Code (EBCDIC) is the primary internal
character code of the B 7700. EBCDIC is an
eight-bit alphanumeric code containing four
zone bits and four numeric bits. Other internal
codes which may be used include the American
Standard Code for Information Interchange
(ASCII), and the Burroughs Common Lan-
guage Code (BCL). ASCII is the primary data
communication code; BCL is used to interface
with peripheral units. Numeric EBCDIC and
BCL codes may be packed into four-bit digits
by internal commands which delete the zones
and compress the numeric portion of the char-
acters. In general, characters are collated ac-
cording to their internal binary value. Charac-
ter codes and collating sequences are provided
in the appendices.

NUMBERS AND NUMBERING SYSTEMS

The B 7700 is a digital computer; that is, val-
ues are stored internally in binary digits (bits).
Data displayed in registers and printed forms
may be in octal or hexadecimal format. Gener-
ally, we think in terms of, and manually per-
form arithmetic with, decimal numbers. Thus,
an understanding of all of these numbering
systems is desirable.

The decimal system is based on the ten dig-
its 0,1, 2, 3,4,5,6,7,8, and 9, and upon the
powers of ten. The binary system is based up-
on the two digits 0 and 1, and the powers of
two. Two raised to the third power (23) is 8, the
base of the octal system. Two raised to the
fourth power (24) is 16, the base of the
hexadecimal system. The set of digits for each
number system is shown in figure II-1-2.

The digits 0 through 9 and the alphabetic
characters A through F comprise the 16-char-
acter requirement for the hexadecimal num-
bering system. The letter A is assigned a value
of 10. B equals 11, ete., to F, which equals 15.

DEC IMAL 01234567891011 12131415
BINARY 01

OCTAL 012345¢7

DEC IMAL 0123456789

HEXADEC IMAL 0123456789A 8B ¢ D E F

40951

Figure 11-1-2. Number Base Graphic Characters

BINARY NOTATION

Because a binary digit may have only one of
two values, it can be represented by a flip-flop
or a bit. A number in internal binary represen-
tation is then a series of bits which are either
on or off. When a bit is on (1), its position de-
termines the value. Consider an example of
five bits.

The least significant bit, if on (1), has a val-
ue of 29 or 1; the next most significant bit to

2-1

20 =
0 = off bit
I = on bit

value of position = 2“ 23 22 21 20

..0 0 0 0 1

..0 0 0 1

o
]

..0 0 0 1

40952

= 244234224214

0 +0 +0 +#0 + 1 = decimal 1
0 +0 +0 +2 + 0 = decimal 2

0 +0 +0 +2 + 1 = decimal 3

1 =16 +8 + 4+ 2+ 1 =decimal 31

Figure 11-1-3. Binary Integers

the left of the binary point has the value of 21,
or 2; the third bit (count from right to left) has
the value of 22, or 4; etc. In this way, any inte-
ger can be represented in binary form. Figure
1I-1-3 illustrates some integers. Fractions in
binary are much the same as integers. Here,
though, the powers are negative powers with
the first power to the right of the binary point
having the value of 2-1, or 1/2; the second bit
has the value of 2-2, or 1/4; the third bit 2-3,
or 1/8; the fourth bit, 2-4, or 1/16; etc. It is ap-
parent that while some fractions are repre-
sented correctly, others can only be
approximated. However, the degree of error is
very small when a sufficient number of bits
are used.

HEXADECIMAL AND OCTAL NOTATION

Since binary words are cumbersome to dis-
play, the more efficient methods of
hexadecimal and octal notation are used. The
hexadecimal representation of a binary word
is obtained by dividing the bits into groups of
four with each group assigned a successive
power of 16. A binary-to-octal conversion is ob-
tained by dividing the bits into groups of three
and assigning successive powers of 8 to each
group (figure II-1-4).

The relationship between octal, decimal and
hexadecimal is shown in figure II-1-5 using
the decimal number 1013, (equivalent to 1765
and 35, where the subscript 8, 10, of 16 in-
dicates the base).

2-2

1765 = 1 x8 +7x82 +6x8 +5x80 =
1 x512 +7x6k +6x8 +5x =

512 + 448 + 48 + 5 - 1o|310
101315= 1 x103 +0x 102+ 1 x 10 +3x10 =

I x 1000 + 0 x 100+ 1 x 10 + 3 x 1
1000 + O + 10 + 3 -IOIB]O

3F56 = 0x 163 +3 x 162 + F x 161 + 5 x 160 =

0 x 4096 + 3 x 256 + F x 16 + 5 x 1
0 + 768 + 240 + 5

101
3‘IO

40954

Figure 11-1-5. Relationship of Octal, Decimal, and

Hexadecimal Numbers

NUMBER CONVERSION

BINARY TO DECIMAL CONVERSION

INTEGRAL

This conversion is effected by adding togeth-
er thg value of each bit that is on. In this way,
the binary number 11010011 would be equal to:

1x27+1x26+0x25+1x24+0x23+0x22+1x21+1x20=
1x27+1x26+ 0 +1x2%+ 0*0+1x21+1x20=

128 + 64 + 16 + 2 + 1 21110

€-¢

Nxi§* Nxi6> Nei6’ Nx16' Nxie’ Nxlg Nxig?

> 8 8 8 8 8 8 8
4 4 4 4 4 4 4
HEXADECIMAL 2 2 2 2 2 2 2
I I 1] 1 i I
¥ Y
BINARY 324 |262 [131 |65 |32 |16
288 | 144 | 072 | 536 | 768 | 384 | 8192 [4096]2048|i024 | 512 [256 | 128 | 64 | 32 | 16 [8 a 2 vl iz e ie | e | isse | isealises [i/256

s -
Nx8 Nxg* N8> Nxg? Nx8' . Nx8° Nxg™ Nx8
a 4 4 a a 4 4 a
2 2 2 2 2 2 2 2

OCTAL

131 |65 32 16
BINARY 8192 | 40962048 (1024 | 512 | 256 | 128 64 32 13 8 4 2 1 /o /4 /8 { /16 | 1/32] /64
072 | 536 | 768 | 384

40953

Figure 11-1-4. Binary to Hexadecimal and Octal Conversion

A second method of effecting a binary-to-
decimal conversion is the ‘‘double dabble”
method. In this procedure, the high-order bit
is doubled (multiplied by 2) and then added to
the next lower-order bit. This sum is then dou-
bled and again added to the next lower bit.
This process is continued until the entire bina-
ry number has been expended (figure II-1-6A).
The correct result is obtained after the low-or-
der bit (units) has been added.

FRACTIONAL

The above process will work for integral
numbers and for the integral part of frac-
tional numbers, but it will not work for the
fractional part of fractional numbers. To con-
vert binary fractions to decimal fractions, divi-
sion is used. As was previously stated, the bits
to the right of the binary point have the de-
creasing values of 2-1, 2-2 2-3, 2-4 etc., or, as
fractions 1/2, 1/4, 1/8, 1/16, etc., respectively.

To find the decimal equivalent of a binary
fraction, the lowest order significant bit is tak-
en as the integer 1 and divided by 2. The next
higher-order bit is then added into the units
position of the resulting quotient, and the divi-
sion is repeated. This is repeated until the bi-
nary point is reached. The result is complete
when the bit to the immediate right of the bi-
nary point has been added into the units posi-
tion and the result divided by 2. This process
is shown in figure II-1-6B.

BINARY | O | | | = DECIMAL 23
! ‘
x2
2+40:=2
x2
441 :5
x 2
—_—
1041 =11
X
9
22+ 1 =23

40985

DECIMAL TO BINARY CONVERSION

INTEGRAL

Decimal to binary conversion may be ef-
fected in several ways. If the powers of 2 are
known, then the binary equivalent can be
found by subtracting from the number the
largest power of 2, which is smaller than the
decimal number, and then recording a bit for
that power of two. The largest power of 2,
which is smaller than the result of the preced-
ing subtraction, is then found, subtracted, and
the corresponding binary bit recorded. In ef-
fect, this is the reverse of the first method of
converting from binary to decimal.

A second method of conversion is done by
successive division. The decimal number to be
converted is divided by 2 and the quotient and
remainder are noted. The remainder will al-
ways be either 0 or 1. Then the quotient is di-
vided by 2, resulting in another quotient and
remainder. This is repeated until the quotient
is 0. The remainder, resulting from the first
division, is the low order bit; the last remain-
der is the high order bit. This process is valid
for the integral part of a number (figure II-1-
TA).

FRACTIONAL

The fractional part of a number may be con-
verted in a method similar to the preceding
method of division. The fraction is multiplied

8125
2/1.625
it

625

2

1.25
i
.25
2/0.5
i}
2/1 jO

BINARY .1 1O} = DECIMAL 8125

Figure 1I-1-6. Binary to Decimal Conversion

2-4

36 WITHA REMAINDER OF 1
DEC IMAL
18 WITH REMAINDER OF 0 ————

WITH REMAINDER OF 0

WITH REMAINDER OF 1

WITH REMAINDER OF 0

WITH REMAINDER OF 0

0 WITH REMAINDER OF

1
i

DECIMAL 73 = BINARY 1001001

®

40956

.8125
x2
r————————1.6250

.6250

1.2500

.2500

0.5000

.5000

[————1.0000

DECIMAL .8125 = BINARY .1 1 0 1

Figure 11-1-7. Decimal to Binary Conversion

by 2 and, if the result is greater than 1, the 1
is recorded in the binary string as a 1 bit. If
the product remains less than 1, the binary bit
is 0. The fractional part of the product is car-
ried down and again multiplied by 2. This is
repeated until the fractional part is equal to 0,
or the required degree of accuracy is attained
This process is shown in figure 1I-1-7B.

DECIMAL TO OCTAL CONVERSION

INTEGRAL

To convert a decimal number to its octal
form, the powers of eight may be used. An-
other method is to divide the number by eight.

66 WITH REMAINDER OF 3 ——m-——

8 WITH REMAINDER OF 2

1 WITH REMAINDER OF 0

0 WITH REMAINDER OF 1

DECIMAL 531 = OCTAL

®

1023

40957

The remainder is the low-order octal digit. The
quotient is then again divided by eight, and
the remainder resulting is the next higher-or-
der octal digit. This process is repeated until
the quotient is zero. This method is used for
the integral part of numbers (figure II-1-8A).
FRACTIONAL

When a fractional part of the number is to
be converted, multiplication is used. Here, the
fraction is multiplied by eight and the integral
portion formed is the first octal digit to the
right of the octal point. This process is re-
peated until either the fraction is zero, or the
desired degree of accuracy is attained. This
conversion is shown in figure II-1-8B.

k39453125
x8
———3.515625000

.515625
x8
4.,125000
.125
x8
r——————l.ooo
DECIMAL .439453125 = .3 4 1 |N OCTAL

Figure 11-1-8. Decimal to Octal Conversion

2-5

8" n g™"
1 0 1.0
8 1 0.125
64 2 0.015625
512 3 0.001953125
4096 L 0.000244140625
32768 5 0.000030517578125
262144 € 0.000003814697265625
2097152 7 0.000000476837158203125
16777216 8 0.000000059604644775390625
134217728 9 0.000000007450580596923828125
1073741824 10 0.000000000931322574615478515625
8589934592 1N 0.000000000116415321826934814453125
68719476736 12 0.000000000014551915228366851806640625
549755813888 13 0.000000000001818989493545856475830078125

40958

Figure 11-1-9. Powers of 8

OCTAL TO DECIMAL CONVERSION

OCTADE

In octal to decimal or decimal to octal con-
versions, if the powers of 8 are known, then
the procedure is much the same as the corre-
sponding subtraction method of binary. The
difference is the digital multiplier which will
have a value of from 0 through 7 in octal.
Each octal digit will be referred to as an oc-
tade. The values of the octades are shown in
figure II1-1-9.

INTEGRAL

On the conversion from octal to decimal, a
method very similar to “double dabble” may
be used. Here, the higher-order octade is mul-
tiplied by 8 and then added to the next lower
octade. This sum is then multiplied by 8 and
again added to the next lower octade. This is
continued until the first octade to the left of
the octal point is reached. After the units oc-
tade has been added, the result should be com-
plete (figure II-1-10A).

FRACTIONAL

The above method is valid for the integral
part of a number, but for the fractional part
of a number, the following must be used. The
lowest order octade is considered to be an inte-
ger. As such, it is divided by 8. The next high-
er octade is then added to this quotient in the

2-6

OCTAL 2672:=

iy L‘

176+7 = 183
x8

1464 +2 = 1466

DECIMAL 1466

,439453125

> ‘M?i ¥

5I5625
4. |25

tt

125
| 000

OCTAL .34+ DECIMAL 439453125

Figure 11-1-10. Octal to Decimal Conversion

units position and the sum is again divided by
8. This continues until the first octade to the
right of the octal point has been added and the
result divided by 8. (See figure 1I-1-10B.)

DECIMAL TO HEXADECIMAL CONVERSION

To convert an integral or a fractional
decimal number to its hexadecimal form, the
powers of 16 may be used. Methods similar to
those used for conversion to octal representa-
tion may also be used, with the multiplication
or division being by 16 rather than eight; how-
ever, such methods are very cumbersome. The
simplest method is to convert the decimal
number to a binary number as described ear-
lier, and then convert the binary number to its
hexadecimal representation (each four binary
digits are used to form one hexadecimal digit).

HEXADECIMAL TO DECIMAL CONVERSION

The simplest method for converting integral
or fractional hexadecimal numbers to their
decimal equivalent is to first convert the
hexadecimal number to its binary equivalent
(each hexadecimal digit is used to from four
binary digits) and then convert the resulting
binary number to its decimal representation
as described earlier.

OPERAND FORMATS

Operands are the words of information that
are worked with when processing. An operand
may be used to store numeric values (a numer-
ic operand), logical values (a logical operand),
or character values (a string operand). Most
operands are one word in length, and are iden-
tified by a tag field of zero. Double precision
operands, which are used to store numbers in
which many significant digits of accuracy are
needed, are two words in length and are iden-
tified by a tag field of two. Thus, the tag field
of an operand indicates the size of the operand
(one or two words).

NUMERIC OPERANDS

Numeric operands are used to store numeric
values (numbers) in floating point format. A
numeric operand may be single or double pre-
cision.

When the tag bits of a memory word (bits 50,
49, 48) are 0 (000), they denote a single-preci-
sion operand. When the tag bits are 2 (010),
ie., bit 49 set, they denote a double precision
operand.

SINGLE PRECISION OPERANDS

All numeric operands are expressed in float-
ing point form, where each riumeric operand
has both a mantissa and an exponent. This

form may be related to power of ten notation
where 13297. is the mantissa and -3, the expo-
nent in a representation of the number 13.297
(13297. x 10-%). The mantissa of a single preci-
sion operand is comprised of 39 bits which
make up 13 octades. The mantissa of a single
precision numeric operand is considered to be
an integer and is treated as such; i.e., the bi-
nary point is considered to be to the right of
the least significant octade. The exponent of
the number is represented by 6 bits (bits 44
through 39) which form two octades. Bit num-
ber 45 is the sign of the exponent. When 45 is
off, the exponent is positive; when on,
negative. Bit 46 is the sign of the mantissa,
which is the overall sign of the operand.

The structure of a single precision operand
is shown in figure II-1-11. Because the expo-
nent is an octal scale factor, the single preci-
sion operand is shown in both hexadecimal
and octal representation.

EXPONENT FIELD

The exponent is a binary number which,
with its sign, is an octal scale factor for the
mantissa. That is, the binary point in the man-
tissa must be shifted left three binary places
(the mantissa must be shifted right three bi-
nary places) for each increase by one in the
value of the exponent. The exponent is used
for automatic scaling of operands when arith-
metic, comparison and integer operations are
being performed. The range of the exponent is
from +63 to -63 for single-precision operands.

SINGLE PRECISION OPERAND (OCTAL REPRESENTATION)

Q EXPOj I
ATy 44] ai) 38| 35] 32) 29| 26! 231 20 17, 14 It 8| S 2
NEINT
049 MS 43] 40y 370 34 3l 28 ZMQ -‘I-S S§A13 10 7 4 |
szl 391 36l 33| 3¢l 27| 24l 210 18l sl 2] ol el 3 0o
Binary
SINGLE PRECISION OPERAND (HEXADECIMAL REPRESENTATION) Point

- 1E
471 X43] 39] 35| 31] 19| 151 11 7 3

_ 27 23
M |P MANTISSA
50 46]Q42| 38] 34| 30| 26 22| 18] 14| 10| 6| o

49) 45JF41f 37| 33} 29| 25/ 21| 17| 13 9 5 1

48] 44| T40] 36[32| 28 24 20| 16| 12 8| 4 o

Binary
Point

TAG 50:3 000
47:1 Not used

M 46:1 Sign of Mantissa.
1 = Negative, 0 = Positive.
E 45:1 Sign of exponent.
1 = Negative, 0 = Positive.
EXPONENT 44:6 Exponent.
MANTISSA 38:39 Mantissa.

Figure H-1-11. Single Precision Operand

2-7

MANTISSA FIELD

The mantissa is the significant part of the
operand. The magnitude of the operand is ob-
tained by multiplying the value contained in
the mantissa by eight raised to the value of
the exponent sign and exponent as follows:

V=+Mx8xE

where:
V = Value of number
+ M = Mantissa with sign
+ E = Exponent with sign

The order of number magnitude in the 39 bit
mantissa, as decimal numbers and powers of
base 16, 8, and 2 is shown in figure II-1-12.

DOUBLE PRECISION OPERANDS
Double precision operands are identified by a
tag field of two, indicating that the operand is
one of a pair of two words (figure II-1-13).
The first word of the double precision oper-
and is identical to the single precision oper-
and.

The integral part of the mantissa is con-
tained in the mantissa field of the first word.
The fractional part of the mantissa is con-
tained in the mantissa extension field of the
second word.

The 15-bit exponent of a double precision op-
erand is formed by the concatenation of the

REGISTER DECIMAL
61T se7| DECIMAL REC I PROCAL HEX. | OCTAL | BINARY

0 1]1.0 160 | 89 20

] 2]0.5

2 51 0.25]
3 810.125 g 23

A 161 0.0625 16

5 32 [0.03125

4 64 [0.015625 52 2677
7 128 [0.0078125

8 256 | 0.00390625 162]
9 512 [0.001953125 83 22

70 1024 | 0.0009765625

T 2048 | 0.00048828125 , o
12 096 | 0.000245140625 162 | 8 7

13 8192 | 0.0001220703125

14 16384 | 0.00006103515625 5 15
15 32768 | 0.000030517578125 8 7

16 65536 | 0.0000152587890625 16k

17 131072 | 0.00000762939453125 ¢ 8]
18 262144 | 0.000003814697265625 8 7

19 525288 | 0.0000019073486328125
20 1048576 | 0.0000009536 7431640625 16° —
21 2097152 | 0.000000476837158203125 g/ 221
22 4194304 | 0.0000002384185791015625
23 8388608 | 0.00000011920928955078125]]
2k 16777216 | 0.000000059604644775390625 6518 22
25 33554532 | 0.0000000293023223876953125
26 67108864 | 0.00000001490116119384765625 5 7
27 134217728 | 0.000000007450580596923828125 8 2
28 268435456 | 0.0000000037252902984619140625 16/
29 536870912 | 0.00000000186264514923095703125 o o—
30 707374182k | 0.000000000931322574615478515625 8 23

3] 2147483648 [0. 0000000004656612873077392578125 8

32 4294967296 | 0.0000000002328306k365386962890625 16]
33 8589934592 | 0.000000000116415321826934814453125 g!! 233
3l 7717986918k | 0.0000000000582076609134674072265625

35 34359738368 | 0.00000000002910383045673370361328125 .]
36 68719476736 | 0.000000000014551915228366851806640625 763 8!2 T 336
37 737438953472 | 0.00000000000727595761%1834259033203125

38 2748779069LL | 0.00000000000363797880709171295166015625

* 549755813887 13 39—
39 549755813888 | 0.000000000001818989403545856475830078125 8 2°-

40961

* FIRST 32 BITS SET. (MAXIMUM INTEGER VALUE ALLOWED).

Figure I1-1-12. Order of Magnitude Chart

DOUBLE PRECISION OPERAND (OCTAL REPRESENTATION)

FIRST WORD SECOND WORD
[-
Qo 4 E?ﬁ 2: 35'_35 32| 29 26f 23 20f 17} el ul 8] s| 2 ch E)'*RS ﬂl}u 38 7| iaf] 8 5| 2
¥ TN ¢
39) M"'\faEs "a0] 37| 34] 31 %E\QlegSle (Msﬁ of 7| & las N"Ntz q0] 37 34 |e(L»'s pl) of 7| 4f
q ‘\
Q &p;gl aelzal zol 2zl 2al 20l sl sl 2l ol el a3l o O [M$R 6l_33 _J_J

Binary
Point

DOUBLE PRECISION OPERAND (HEXADECIMAL REPRESENTATION)

FIRST WORD SECOND WCRD
E E I
47X 43| 39] 35 31 27 23] 19| 15 11 7 3 X47| 43| 38] 35 311 27 23] 19] 15 11 7 3
0 M |PL MANTISSA o_iP MANT(ISSA
50 46 OS 38| 34 30 26| 22| 18] 14{ 10 6 2 50 046 M42 38 34 30{ 26 22] 18] 14| 10 6 2
NP (MSP) I LES (LSP)
49] 45)E 41] 37 33 29| 25| 21| 17| 13 9 5 1 49[E 45" 41) 37] 33 29| 25| 21| 17] 13 9 5 1
N 0 IN
48] 44/ T40] 36 32 28 24| 20 16 12| 8 4 0 48] T44| 40f 36{ 32 28| 24 20| 16| 12 8 4 0
First Word Birfary Second Word
Point
Field Bits D2scription Field Bits Description
TAG 50:3 010 TAG 50: 3 olo
47:1 Not used EXPONENT MSP 47:9 Most significant portion of exponent.
M 46:1 1 = negative, 0 = positive. MANTISSA LSP 38:39 Least significant portion of mantissa.
E 45:1 Sign o” exponent.
1 = nejative, 0 = positive.
EXPONENT LSP 44:6 Least significant portion of exponent.
MANT I SSA MSP 38:39 Most significant portion of mantissa.

40962

Figure 11-1-13. Double-Precision Operand

o

O

0

o

()

O |0 (0] o) o)
47| 43| 39 35 31 27{ 23 19| 15 11 17 3|
O |0 |O |O O|0O |0 |0.|10 0|0
()50 o46 42(38| 34| 30/ 26| 22| 18] 14| 10 6 2
O |[o |0 |O|O (O |O |O |0 |0 |00 _|O
49_‘454_41 371 33 29| 25| 21| 17| 13 9 5 1
O |0 [0 [0 |0.|O (O |0 |0 O |0 |T,
as| “44| 40| 36| 32| 28| 24| 20 16012 8l = 4 /FOI
Field Bits Qfgcrigtigﬂ
TAG 50:3 000
L47:47 All zeroes.
T/F 0:1 True/false bit.
1 = True, 0 = False
40963
Figure 1l1-1-14. Logical Operand

2-9

exponent extension with the exponent. The ex-
ponent extension is more significant than the
exponent.

NUMBER RANGES AND NORMALIZATION

To add and subtract two numeric operands
on the B 7700, the exponents of the two oper-
ands must be equal. The B 7700 equalizes the
exponents of the two operands automatically;
this equalization may require that one of the
operands be ‘“normalized.” Normalization oc-
curs if the exponent difference of the two op-
erands is greater than the number of leading
zero (octal) digits in the mantissa of the oper-
and with the larger exponent. In such cases,
the larger operand is normalized, and the
mantissa of the smaller operand is then
shifted right until the exponents are equal.

A normalized number is a number which has
the smallest exponent with which the number
can be expressed without losing the most sig-
nificant digit of the number. A number is nor-
malized by shifting the mantissa to the left,
(moving the binary point right) in three-bit in-
crements until the number of leading zeroes in
the mantissa is less than three. For each
three-bit shift to the left (of the mantissa), the
exponent is decreased by one.

Because of automatic normalization by the
CPM, the range of numbers which are useable
on the B 7700 includes both normalized and
unnormalized numbers. In general, normalized
numbers are those which the system may use
for arithmetic, and unnormalized numbers are
those which the system may store.

The largest and smallest numbers representable as normalized and unnormalized operands

are:
The largest single precision integer

or
g13-1

00077777TTTTITNT
4.31359146673x10°8

The largest single precision number
or

(813-1)x863
077777TTTTTTIIT
302231454903657293676543

The largest double precision integer
or
826-1

(first word) 01b7777777777777

54975581388710

\l decimal

‘ octal
decimal

} octal
decimal

|

‘ octal

(second word) 0007777771777

The largest double precision number
or

(1-8-26) x 832780
(first word) O777777777777777 s

1.948828382050280791124469x1(029603

(decimal

octal

(second word) 7777777777777

The smallest positive unnormalized single
precision number

1.27447352891x10-57

or l decimal
8_63 >
1770000000000001 ’ octal
The smallest positive normalized single 8.7581154020x10-47
precision number
or decimal
8_51 }
1771000000000000) octal

The smallest positive normalized double
precision number
or

(first word) 1771000000000000 .

1.93854585713758583355640x10-2958!

1 decimal

‘ octal

(second word) 7770000000000000

The number sets are symmetrical with respect to zero. The negative number corresponding
to any valid positive number may also be expressed. From the ranges above, one can see that
a single precision integer must always have an exponrent of zero.

LOGICAL OPERANDS

Logical operands (figure II-1-14) have one of
two values: true (on) or false (off). Logical val-
ues are the result of Boolean operations or re-
lational operations. Relational operators gen-
erate a logical value as the result of an alge-
braic comparison of two arithmetic expres-
sions. Bit 0 contains the logical value. Rela-
tional operators set bit 0, where conditional
operators use bit 0 for the decision.

NOTE

Logical operators (LAND, LOR,
LNOT, and LEQV) cause a logical
operation to be performed on each
bit of the two operands and the re-
sults of these operations (48 single
precision values or 96 double preci-
sion values) are left in the top-of-
stack operand. Logical operators
may operate on logical, string, or
numeric operands.

STRING OPERANDS

A string operand is a single word operand
(identified by a tag of zero) which is used to
store characters. Character representation
may be 8-bit (EBCDIC), 7-bit (USASCII), 6-bit
(BCL), or 4-bit (packed BCD) characters. Gen-
erally, a string of characters is stored in one
or more string operands in memory as an ar-
ray or table. Such arrays or tables are ad-
dressed by means of string descriptors. The
format of string operands for storage of 8-bit,
7-bit, 6-bit, and 4-bit characters is shown in
figure II-1-15.

String operands may also be used to store
signed numeric characters in 8-bit, 6-bit, and
4-bit formats. Each string operand can store
one signed numeric number consisting of six 8-
bit characters, eight 6-bit characters, or 11 4-
bit characters. Eight-bit and 6-bit characters
are divided into a zone portion and a number
portion. The number portion consists of the
four least significant bits of each character;
the remaining bits form the zone. When 8-bit
or 6-bit signed numeric characters are stored
in a string operand, the sign of the characters
is stored in the zone bits of the least
significant character. When 4-bit signed nu-
meric characters are stored in a string oper-
and, the sign of the characters is stored as the
most significant character of the operand. Ta-
ble I1I-1-1 shows the bit configurations for neg-
ative and positive signs in 8-bit, 6-bit, and 4-bit
formats. Figure 11-1-16 illustrates the manner
in which a signed number (-4259) is stored in
8-bit bit, 6-bit, and 4-bit code.

8-BIT BYTES (EBCDIC CODE)

1 2 3 4 5 6
N N N N N
47 43I 39| 35] 311 27} 23| 19} 15 11 7 3
50] 46| 42] 38/ 34 30/ 26] =22 18] 14! 10 6 2
49] 45| 413 37 33} 29/ 25] 21 17 13 9 5 1
48] 44| 40] 36| 32] 28| 24} 20| 1 12l 8] 4 0
——
MOST SIGNIF ICANT LEAST SIGNIFICANT
CHARACTER CHARACTER
7-BIT CHARACTERS (USASCI1 CODE)
| 2 3 4 5 6
4 a3} 3ol 39 sy 21 23 1o 1s] 1} o s
50 46/ 42| 38| 3 30| 26f] 22/ 18 14| 10 6l 2
49) 45 41 37/ 33 29 251 21| 17 13 9 5 1
48] 44] 40| 36| 3 28] 24] 20/ 1 12 8 4 0
——
MOST SIGN{FICANT LEAST SIGNIFICANT
CHARACTER CHARACTER
(BITS 47,39,31,23,15,AND 7 ARE NOT USED)
6-BIT CHARACTERS (BCL CODE)
MOST SIGNIFICANT
CHARACTER
|) 7
RN N,
47! 43] 399 35 3 27] 23] 19F 1§ 11 7 3
0]
50] 46| 42) 38 34 3 26] 22[18] 1 10 6 2
49] 45| 41| 37 33] 29| 25| 21 17 13 9 5 1
481 44| 40 3d 3& 28] 24] 20] 16 Aggk 8 4 0
N—— ___\/_._/ ___\/___/
2 4 6 8
LEAST SIGNIFICANT
CHARACTER
4-BIT DIGITS (PACKED BCD)
| 2 4 [7 8 9 10 1 12
N ol ol (NN
47) 43| 391 351 31 27 23] 19] 150 11 7 3'
50] 46] 42] 38 34 30 26f 22] 18] 14} 10 6 2
49] 45] 41) 37 33] 29| 25] 21 17} 13 9 5 1
()48 441 40) 36] 32 28] 241 201 1 12 8 4 0

A d
MOST SIGNIFICANT
CHARACTER

40964

LEAST SIGNIFICANT
CHARACTER

Figure 1I-1-15. String Operands

8-B1T BYTES (EBCDIC CODE)
1 2 3 4

1 10 |t |0 |1 IO
47| 43 39| 33 31 27| 23

i 10 {1 |0 |t {1t I
s0] 46| 4| 38| 34 30 26| 22

{ (o |t o |t _jo |1
49| as| a1] 37| 33 29 “a5| 21

i |0 |1 10
48| 44| “40] 36| 32| 28] "24] 20| 16| 12| 8

0
19 15 11 7] 3

1
18] 14 10 6

1
17] 13

o =] O] O

6-BIT CHARACTERS (BCL CODE)

A A R A IR 2 R)
ofoflojojo oo |t |0 |]O O
a7| “a3] 39] 35| 31| 27| 23] 19] 15 11} 7] 3
oo oo [o. |0 _|O [t | 1 |10
so 46] 42| 38| 34| 30| 26 22| 18] 14 10| 6] 2
0 |0 fo |0 |o_lO_|O O 1 |0 (O
a9] 45| “a1] 37| 33] 29| "25] 21] 17} 13 "9} 5[1
O [0 |0 |0 |0 |0 _|O OO0 |t |1
48| 44| 0] “36] 32| 28] 24 "20] 16] 12] 8] 4] ©
O 00O OOO - 4 25 9
40965

Figure 1I-1-16. Use of String Operand to Store Signed Number (-4259)

Table 11-1-1. Sign Configurations Of String Operands

Size Sign Location Negative Positive
8-bit Zone, least significant 1101 Any bit configuration other than the negative bit
character configurations
6-bit Zone, least significant 10 Any bit configuration other than the negative bit
character configurations
4-bit Most significant digit 1101 Any bit configuration other than the negative bit
configurations

2-12

SECTION 2

POLISH NOTATION AND STACK

GENERAL.

To facilitate the understanding of the
B 7700 stack concept, a method of
mathematical notation known as Polish nota-
tion must be understood. A problem that ex-
ists with most forms of mathematical notation
is clarifying the boundaries of specific terms.
This has been eliminated with the use of pa-
rentheses, brackets, and braces. However, with
3 complex equation, it becomes necessary to
duplicate the use of the few types of delimit-
ers that exist. It might be noted that it is com-
mon to encounter mathematical equations
such as Y = 5Z + 7/2Z and Y = (6Z + T)2Z.
Two equations express different functions of
Z, but one could easily be used when the other
was intended. From this it can be seen that an
error in notation can change the whole prob-
lem, because the parentheses have definite
meaning.

Polish notation is an arithmetical or logical
notational system using only operands and op-
erators arranged in a sequence or string which
eliminates the necessity of factor boundaries.
The B 7700 compilers translate source state-
ments to Polish strings, and convert these Po-

Name
A Variable

An Operator
-Separator

—Arithmetic or Boolean operator and last entered
delimiter list symbol was:

a. an operator of lower priority.

b. a left bracket “ [7 or paren “(”.
¢. a separator.

d. nothing (delimiter list empty).

-An Arithmetiec or Boolean operator and last entered
delimiter list symbol was: an operator of priority equal
to or greater than the symbol in the source.

_A right bracket “ 1” or parenthesis “)”

lish strings to a series of machine instructions
(program operators).

POLISH NOTATION

The essential difference between Polish no-
tation and conventional notation is that
operators are written to the right of operands
instead of between them. For example, the
conventional B + C would be written B C + in
Polish notation. Looking at the example, A =
7 (B + C), it would be written in Polish nota-
tion as follows:

ATBC+*=

Any expression written in Polish notation is
called a Polish string. In order to fully under-
stand this concept, the rule for evaluating a
Polish string should be known.

GENERAL RULES FOR GENERATION OF
POLISH STRING

Figure II-2-1 is a flow chart for generation
of a Polish string. In general, the rules for
generation of a Polish string may be stated as
follows. If the source of expression is:

Action

Place variable in string being built and examine next
symbol.

Place in delimiter list and examine next symbol.

Place operator in the delimiter list and examine next
source symbol.

Remove the operator from the delimiter list and place
in the string being built. Then compare the next symbol
in the delimiter list against the source expression
symbol.

Pull out from delimiter list or until corresponding left
bracket or parenthesis.

145

EXPRESS 10N

VARIABLE

BRACKET

NO

OPERATOR

Y

PLACE SYMBOL
IN THE POLISH
NOTATION STRING
AND
PROCEED

DELETE
SYMBOL

YES
REPLACE -
VES YES ARITHMETIC
gt MENT OR
OPERATOR BOOLEAN
LAST ENTERED DEL IMITER
LIST SYMBOL IS
YES 1. LOWER PRIORITY
Y 2. LEFT BRACKET
3. SEPARATOR
PLACE L. LIST EMPTY
SYMBOL IN
DELIMITER LIST |je————
AND
PROCEED
LAST ENTERED
REMOVE
LAss ENTERED DELIMITER LIST
SYMBOL 1S:
DELIMITER LIST 1. = PRIORITY
‘ SYMBOL 2. > PRIORITY

REMOVE
LAST ENTERED
DELIMITER LIST
SYMBOL

tod

POLISH NOTATION STRING

40966 [—

Figure 1I-2-1.

- — — — — — —]

EXPRESSION

REMOVE LAST ENTERED
DELIMITER LIST SYMBOLS
AND PLACE INTO POLISH
NOTATION STRING UNTIL
LIST IS EMPTY

Polish Notation Flow Chart

EVALUATING POLISH STRING

The following procedure may be used to
evaluate a Polish string.
a. Scan the string from left to right.
b. Remember the operands and the order in
which they occur.
¢. When an operator is encountered do the
following:
1) Take the two operands which were last
encountered.
2) Operate upon them according to the
type of operator encountered.
3) Eliminate these two operands from fur-
ther consideration.
4) Remember the result of (2) and consider
it as the last operand encountered.
Following this procedure through the Polish
string ATBC+* = would evaluate to A as-
suming the value 7 (B + C) (figure II-2-2).

NOTE
Because replacement operators
vary depending upon the language
used, g== , =, and := may be used
interchangeably in discussing Po-
lish strings.

PROGRAM CODE STRING

When & program is compiled, the source lan-
guage statements are converted into a string
of machine language operators. These
operators are assembled into a Polish notation
string and are referred to as the program code
string. Each machine instruction in the string
normally consists of one to three 8-bit sylla-
bles. The instructions are packed consecutively
into program words. (See figure II-2-3.) An ar-
ray of program words, which can be any
length, is called a program code segment. The
compiler usually divides the generated code
string into two or more program segments.
The number of segments depend on the struec-
ture of the source program. Program segments
are normally stored on disk files. When a pro-
gram is executed, program segments are made
present in memory as needed. Because pro-
gram segments are not modified during execu-
tion, a single copy of a program segment in
memory may be used for several concurrent
executions of the same program; thus, the pro-
gram code string is often described as “re-en-
trant”.

Step Symbol Symbol Operands Being Remembered and Their Order of Operation Results
Being Type Occurrence (1 or 2) Before Operation Taking Place Operation
Examined
a B Operand
C Operand 1B
+ Add 0 B +C B + 0
Operator 1B
d 7 Operand 1B + 0
X Multiply 217 7x B + C) Tx @B + 0
Operator 1B + 0
f A Operand 1 7B + C)
g = Replace 2A A&TB +C A=17B + 0
Operator 1 7B + O

Figure 11-2-2. Evaluation of Polish String A7BC +* =

COMPILATION USING POLISH NOTATION

Polish notation is used as the base for the
B 7700 ALGOL compilation algorithm. An
ALGOL arithmetic or Boolean expression or
assignment statement may be translated to
Polish notation in much the same way as the
arithmetic (or algebraic) expression that al-
ready has been considered. In compiler trans-
lation, the source expression is examined one
symbol at a time with a left to right scan and
is combined into logical entities. As each
logical entity is examined, a specific procedure
is followed so that the Polish notation expres-
sion is constructed in its finalized form with
one scan of the source expression.

For each program segment, there is a single
segment descriptor, which defines the length
and location of the program segment. The seg-
ment descriptors are stored in a special stack
known as the segment dictionary.

Each job is associated with an unique job
stack and with a segmented dictionary stack
which may be shared by several jobs. (In addi-
tion, the MCP has its own stack and segment
dictionary.) Within the job stack, a Program
Control Word is provided for each point of en-
try into a segment of code. The PCW provides
an index, not only into the segment dictionary
to locate the proper segment descriptor, but
also into the program segment itself to locate

2-15

SYLLABLE
SYLL&BLE L

N

SYLLABLE SYLLABLE
S;YLLZABLE 3 syLLABLE 9
4

47! 43] 39| 35] 31 271 23] 19§ 15 11} 7 3I

Io
50| 46| 42| 38| 34] 30/ 26 22| 18] 14/ 10} 6 2

'49 45| 41) 37| 33] 29| 25 21| 171 13 9 5 1

48] 44| 40| 36| 32] 28] 24| 20| 16 12 8] 4 0

Description

Tag field. Value of three indicates
that this word is non-modifiable

(except by Overwrite operators).

47:8 Syllable
39:8 Syllable
31:8 Syllable
23:8 Syliable
15:8 Syllable
7:8 Syllable

Field Bits
Tag 50:3

T WO

Figure 11-2-3. Program Word

the proper program word and syllable. The for-
mats of the segment descriptor and the PCW
are described in detail in section 3 of this
chapter.

STACK CONCEPTS

The constants and variables of a program
are assigned locations within the ‘“stack” of
the program when it is compiled. The stack
can be thought of as analogous to a physical
stack where the last item placed on the stack
is the top of the stack. When items are re-
moved (one at a time) from the stack, the item
on the top of the stack is the first item to be
removed. The item at the bottom of the stack
remains at the bottom of the stack until all
other items have been removed from the
stack. The stack not only provides an easily
manageable means for keeping a dynamic hi-
story of the program as it is being processed,
but also lends itself to the use of program code
strings based on Polish notation.

GENERAL

A job is activated by having a processor as-
sign to the job stack. Two top-of-stack loca-
tions (A and B) are linked to the job’s stack
(figure I1I-2-4). This linkage is established by
the stack-pointer register (S), which contains
the memory address of the last word placed in

2-16

the stack. The two top-of-stack locations (A
and B) extend the stack to provide quick ac-
cess for data manipulation.

Data are brought into the stack through the
top-of-stack locations in such a manner that
the last operand placed into the stack is the
first to be extracted. Total capacity of the top-
of-stack locations (A and B) is two operands.
Loading a third operand into the top-of-stack
locations causes the first operand to be pushed
from the top-of-stack locations into the stack.
The stack-pointer register (S) is incremented
by 1 before a word is placed into the stack and
is decremented by 1 after a word is withdrawn
from the stack and placed in the Top-of-Stack
locations. As a result, the S register continual-
ly points to the last word placed into the job’s
stack.

BASE AND LIMIT OF STACK

A job’s stack is bounded, for memory protec-
tion, by two registers: the Base-of-Stack regis-
ter (BOSR) and the Limit-of-Stack register
(LLOSR). The contents of BOSR define the base
of the stack, and the contents of LOSR define
the upper limit of the stack. The job is inter-
rupted if the S register is set to the value, con-
tained in either LOSR or BOSR.

l CPM IC MEMORY

‘ TOP OF STACK ’

LOCATIONS
_____ . |
P S
| 3 U B |
————— -t
~ ~
WORD ntx
STACK AREA
ASSIGNED
R
TO PROGRAM 1 TOS WORD
STACK AREA
CURRENTLY | =™
IN USE -
l WORD n
~ STACK
MEMORY
40969 AREA

Figure 11-2-4. Top of Stack and Stack Bounds

Register

BI-DIRECTIONAL DATA FILLOW IN THE STACK

The contents of the top-of-stack locations are
maintained automatically by the processor to
meet the requirements of the current
operator. If the current operator requires data
transfer into the stack, the top-of-stack loca-
tions receive the incoming data, and the sur-
plus contents, if any, of the top-of-stack loca-
tions, are pushed into the stack. Words are
brought out of the stack into the top-of-stack
locations. These words are used by operators
which require the presence of data in the top-
of-stack locations. These operators, however,
do not explicitly move data into the stack.

DOUBLE PRECISION STACK OPERATION

Each top-of-stack location (A and B) can ac-
commodate two memory words. For single pre-
cision operations, location A will contain one
single precision operand and location B will
contain the other single precision operand.
However, calling a double precision operand
into either top-of-stack location (A or B) will
cause both halves of the double precision oper-
and to be loaded into the A or B location. The
first word is loaded into the top-of-stack loca-
tion and its tag bits are checked. If the value
of the tag bits indicates double precision, the
second half of the operand is loaded into the
second half of the top-of-stack location.

Double precision operands revert to single
words when they are pushed down into the
stack (the most significant half of the operand
is pushed down first). The process is reversed
when a double precision operand is returned
from the stack to the top-of-stack locations.
That is, the least significant half of the double
precision operand is popped up first and the
tag is discovered to have a value of two, caus-
ing the most significant half of the operand to
also be popped into the top-of-stack.

HARDWARE IMPLEMENTATION

The B 7700 stack implementation includes a
32-word stack buffer, which permits a portion
of an active stack to be contained in IC
memory locations within the CPM. This stack
buffer (see figure 1I-2-5) may contain informa-
tion which has not yet been written to core
memory, as well as copies of words which are
resident in core memory. The stack buffer per-
mits a portion of the stack to be held local
within the CPM, to provide quick access for
stack manipulation by the execution unit of
the CPM.

In addition to the portion of the stack held
local in the stack buffer, certain other data
from the stack may be contained in a local
memory within the CPM. This local memory,

the associative memory, is used to capture
data fetched by program unit look ahead
which is not resident in the stack buffer.
Although an active stack may be contained
partly in the stack buffer within the CPM and
partly in core memory, the stack buffer is
purged whenever the stack becomes inactive
(when a move-to-stack operation takes place).
This purging of the stack buffer causes the
unique data within the stack buffer to be cop-
ied to core memory. Thus, for practical pur-
poses, this section discusses the stack as if it
exists solely within core memory. A detailed
description of the stack buffer and the associa-
tive memory may be found in chapter III.

DYNAMIC PROGRAM HISTORY

One very important aspect of the B 7700 is
the retention of the dynamic history for the
program being processed. Two lists of program
history are maintained in the B 7700 stack,
the addressing environment list and the stack
history list.

Both of these lists are dynamie, varying as
the job proceeds along different program
paths with varying sets of data. The two lists
grow and contract in accordance with the pro-
cedural depth of the program. Both of these
lists are generated automatically by the
B 7700 hardware. Before further stack discus-
sion can be considered, addressing history and
stack history must be discussed.

ADDRESSING HISTORY

The B 7700 CPM provides two methods for
addressing data. Direct addressing is provided
by descriptors, which contain the address (core
or disk) of the data. Descriptors are used to
address data which are located outside of the
stack area of the job. Relative addressing is
provided by the Indirect Reference Word
(IRW) and the Stuffed Indirect Reference
Word (SIRW). The IEW and SIRW address
components are both relative address compo-
nents. The IRW addresses within the immedi-
ate environment of the job relative to one of
32 CPM display registers. The SIRW addresses
beyond the immediate environment of the cur-
rent procedure, the addressing being relative
to the base of some job stack. Addressing
across stacks is accomplished with an SIRW.

DIRECT ADDRESSING

In general, the descriptor describes and lo-
cates data associated with a given job. String
descriptors and data descriptors are used to
fetch data to the stack or to store data from
the stack into an array located outside the

2-17

TOP—OF - STACK LOCATIONS

INPUT/OUTPUT
PATH OF DATA
TO/FROM STACK

2-18

MAIN MEMORY

I LOSR l

—————— -: ‘
------ -
|
______ J
——®= T0S WORD A T
STACK
BUFFER
AREA
CURRENTLY STACK
IN USE AREA
ASSIGNED
TO
PROGRAM
STACK
BUFFER
STACK STACK
MEMORY AREA
AREA CURRENTLY
IN USE
-

l BOSR I

Figure 11-2-5. Stack Buffer and Stack Memory Area

stack area of the job. The address contained in
one of these descriptors is the absolute ad-
dress of an array in either system main
memory or in the backup disk file, as indicated
by the setting of a single bit called the pres-
ence bit. Another bit, called the presence bit.
Another bit, called the double-precision bit, is
used to identify the referenced data as single
precision or double precision. The formats of
string and data descriptors, and detailed dis-
cussions of each, are presented in section 3 of
this chapter.

RELATIVE-ADDRESSING

Analyzing the structure of an ALGOL pro-
gram results in a better understanding of the
relative-addressing procedures used in the
B 7700 stack. The addressing environment of
an ALGOL procedure is established
automatically as the program is structured by
the programmer and is referred to as the lexi-
cographical ordering of the procedural blocks.
At compile time, the lexicographical ordering
is used to form address couples. An address
counle consists of two items:

1. The lexicographical addressing level (LL)
of the variable,

2. An index value (I) used to locate the spe-
cific variable within its addressing level.

40971

The lexicographical ordering of the program
remains static as the program is executed,
thereby allowing variables to be referenced
via address couples as the program is
executed.

The lexicographical structure of a very sim-
ple ALGOL program is illustrated in figure II-
2-6. When executed, this program would call
procedure C (LL=38) from the outer block of
the program (LL=2), and, in turn, procedure C
would call procedure D (LL=4). The stack
structure is illustrated as it would exist as
procedure D was being executed. It can be
seen that, as the outer block of the program
was entered, and again as each procedure was
entered, a Mark Stack Control Word (MSCW)
was placed in the stack. The MSCW (described
in detail in section 3 of this chapter) denotes
the base of each lexicographical addressing
level.

DISPLAY REGISTERS

Each MSCW provides a point in the stack
relative to which the variables for the associ-
ated addressing level may be referenced. The
B 7700 CPM unit contains 32 display registers
(D[0] through D for [31]).As shown, the
base of each addressing level is addressed by

~o ~Y
r BEGIN LEXICOGRAPHICAL LEVEL2 [S J]—={TOS WORD i 1
REAL VI; LL=2,1=2
REAL v2; LL=2,1=3)
F
PROCEDURE C; LL=2,1=4 ~ ~ PROCEDURE D
— BEGIN —— —— LEXICOGRAPHICAL LEVEL 3
REAL V4; tL=3,1=2 L
PROCEDURE D; LL=3,1:3
MSCW é
BESIN LEXICOGRAPHICAL LEVEL 4 | oo
-
REAL VS, LL=4,1=2 b (31 T i
Ve iz 4
V5 1= 8 ~
V2 1= va,
PROCEDURE C
PCW-D
END; ofs] | va
o[3] F
D; o(2] -\- MSCW é
—— END; o(1] ~ ~
o[o] PCW-C
¢; V2
i OUTER PROGRAM BLOCK
L— END; vi
MSCW /
~J "~

Figure 11-2-6. ALGOL Program With Lexicographical Structure and Related Stack Structure

one of these registers. The local variables of
the outer block or of the procedures are ad-
dressed relative to the D registers. The D reg-
isters are updated at each procedure entry or
exit.

ABSOLUTE ADDRESS CONVERSION

Each variable is indirectly addressed by an
address couple containing a lexicographical
level and an index value. The address couple is
converted into an absolute memory address
when the variable is referenced. The lexicogra-
phical level portion of the address couple se-
lects the D register which contains the abso-
lute memory address of the MSCW for the en-
vironment (lexicographical level) in which the
variable is located. The index value of the ad-
dress couple is added to the contents of the D
register to generate the absolute memory ad-
dress of the desired variable.

ADDRESSING ENVIRONMENT

Thus far we have considered a very simple
program in which each procedure has a differ-
ent lexicographical addressing level. General-

— BEGIN —
REAL V3;
PROCEDURE B;

BEGIN
V3 := 3,
VI = V3
END;

L— END;

'— END;

C3
L-END;

2-20

—~BEGIN LEXICOGRAPHICAL LEVEL 2
REAL Vi; LL=2,I22
REAL V23 LL=2,1I=3
PROCEDURE A; LL=2,1:=4

LEXICOGRAPHICAL LEVEL 3
LL=3,I=2
LL=3,1=3

LEXICOGRAPHICAL LEVEL 4

PROCEDURE C; LL=2,1=5
— BEGIN — LEXICOGRAPHICAL LEVEL 3
REAL V4; LL= 3, 1=2
PROCEDURE D LtL= 3,I=3
BEGIN LEXICOGRAPHICAL LEVEL 4
REAL V5; LL=4,T=2
V4 = 4
V86 ;= 8;
Ay
V2 = V4,
END;

ly, however, many procedures of a program
may have the same lexicographical addressing
level; however, no two procedures of a pro-
gram may have the same addressing environ-
ment. Consider the more advanced exemplary
program shown in figure II-2-7.

This program consists of an outer block
(LL=2), two procedures which have a lexico-
graphical addressing level of three (procedures
A and C), and two procedures which have a le-
xicographical level of four (procedures B and
D). The addressing environment of the pro-
gram is maintained automatically by linking
the MSCWSs together in accordance with the le-
xicographical structure of the program. This
linkage is composed of the stack number
(STACK NO.) and displacement (DISP) fields
of the MSCW, and is inserted into the MSCW
when the procedure is entered. A tree-struc-
tured addressing environment list is formed
by linking the MSCW to the MSCW at the pre-
ceding lexicographical level to the procedure
being entered. This tree-structured list indi-
cates the addressing environment of the proce-
dures.

ADDRESS
STACK Ean'c;NTMENT
MEMORY
~ AREA
[s [Tos wo -
~ ~ PROCEDURE B
l'—_l—__—}—\- MSCW —l DISP }_ R
~J ﬁ:
PCW-B
V3
l PROCEDURE A
Mscw | [DisP L —
D REGISTERS (f | A
L SO
~ ~ V5 PROCEDURE D
o(s] MSCW
0 5: ~
D[4] PCW-D
o(3] v4 PROCEDURE C
D[2] —
o[] MSCW —
o[o] ~
PCW-C
PCW-A
v2 OUTER PROG BLOCK
Vi
MSCW nll —
~Y

Figure 11-2-7. More Advanced ALGOL Program

Comparing the addressing tree in figure II-
2-8 with the exemplary program, one can see
that when procedure B is being executed, the
addressing environment includes only the var-
iables in procedures B and A and the outer
block; variables declared in procedure C and D
are not addressable by procedure B. Thus, one
can see that the address couples assigned to
the variables in a program need not be unique.
This is true because if there is no procedure
which can address both of any two variables,
then the two variables may have identical ad-
dress couples. This addressing scheme is prac-
tical because two variables which have the
same address couples will be contained within
two different addressing environments.

PROCEDURE 8 PROCEDUR: D

~—— LEXICOGRAPHICAL LEVEL 4

PROCEDURE A
~——— =——— LEXICOGRAPHICAL LEVEL 3

OUTER PROGRAM BLOCK

—— —— -—— LEXICOGRAPHICAL LEVEL 2

40973

Figure 11-2-8. Addressing Environment Tree of

ALGOL Program
ADDRESSING ENVIRONMENT LIST

There is a unique set of MSCWs which the D
registers must address during the execution of
any particular procedure. The D registers
must be changed, upon procedure entry or ex-
it, to address the correct MSCWs. The process
of changing the D registers is referred to as
display update. The list of MSCWs which the D
registers address is is the addressing environ-
ment list, and the areas of the stack which can
be addressed relative to the settings of the D
registers are the addressing environment.

STACK HISTORY

The B 7700 stack provides an easily manage-
able means for keeping line control informa-
tion (program history) necessary for procedure
entry and exit. The stack history list is a list
of Mark Stack Control Words, linked together
by their DF fields (figure I1I1-2-9).

An MSCW is inserted into the stack as a pro-
cedure is entered and is removed as that pro-
cedure is exited. Therefore, the stack history
list grows and contracts with the procedural
depth of the program. Mark Stack Control
Words identify the portion of the stack related
to each procedure. When the procedure is en-

tered, its parameters and local variables are
entered in the stack following the MSCW.
When the procedure is executed its
parameters and local variables are referenced
by addressing relative to the MSCW.

~ ~

53— Toswomo
STACK

PROCEDURE B A HISTORY

E_‘l—[T LIST
Mscw |~ [OF }——

~

PROCEDURE A’

MSCw_|TT(CoF_I-

~ ~

k>. B i 2
'/

PROCEDURE ¢ ~
D mscw |~ [ToF I
OUTER PROG BLOCK ~~ ~
k\ MSCw |""[DF }——
40974 ~ ~

Figure 11-2-9. Stack History List

Each MSCW is linked to the prior MSCW
through the contents of its DF field in order to
identify the point in the stack where the prior
procedure began. When a procedure is exited,
its portion of the stack is discarded. This ac-
tion is achieved by setting the stack-pointer
register (S) to address the memory location
preceding the most recent MSCW (figure II-2-
10). This topmost MSCW, addressed by another
register (F), is deleted from the stack-history
list by changing F to address the prior MSCwW,
placing this MSCW at the head of the stack hi-
story.

SIMPLE STACK OPERATION

All program information must be in the sys-
tem before it can be used. Input areas are allo-
cated for information entering the system and
output areas are set aside for information
exiting the system; array and table areas are
also allocated to store certain types of data.
Thus data is stored in several different areas:
the input/output areas, data tables (arrays),
and the stack. Since all word is done in the
top-of-stack locations, all information or data
is transferred to the top-of-stack locations and
the stack itself.

At this point, an ALGOL assignment state-
ment and the Polish notation equivalent will
be related to the stack concept of operation.
The example is Z:=Y + 2x(W+V), where :=

2-21

~ ~ DISCARDED STACK
PORTION HISTORY
TOS WORD| OF STACK LIST
[_MsCw | ~— -
~ ~~ PROCEDURE "A"
| MgCw | — -
i 7’ PROCEDURE "D"
PROCEDURE "C"
OUTER BLOCK
wigew | — —_—

40978 ~ ~ L

Figure 11-2-10. Stack Cut Back on Procedure Exit

means “is replaced by.” In terms of a comput-
er program, this assignment statement indi-
cates that the value resulting from the
evaluation of the arithmetic expression is to
be stored in the location representing the
variable Z.

When Z:=Y + 2x(W+V) is translated to Po-
lish notation, the result is ZY2WV+ x +:=.
Each element of the example expression
causes a certain type of syllable to be included
in the machine language program when the
source problem is compiled. The following is a
detailed description of each element of the ex-
ample, the type of syllable compiled, and the
resulting operation (see figure II-2-11 and ta-
ble II-2-1).

In the example statement, Z is to be the re-
cipient of a value, so the address of Z must be
placed in the stack. This is accomplished by a
Name Call (NAMC) syllable which places an
Indirect Reference Word (IRW) in the stack.
The IRW contains the address of Z in the form
of an ‘“address couple” that references the
memory location reserved in the stack for the
variable Z.

Since Y is to be added to a quantity, Y is
brought into the top of the stack as an oper-
and. This is accomplished with a Value Call
(VALQC) syllable that references Y. The value 2
is then brought to the stack, with an eight-bit
literal syllable (LT8). Since W and V are to be
added, the respective variables are brought to
the stack with Value Call syllables. The ADD

2-22

operator adds the two top operands and places
the sum in the top of stack. This example as-
sumes, for simplicity, single-precision operands
not requiring use of additional top-of-stack lo-
cations which are used in double-precision op-
erations.

The multiply operator (MULT) is the next
symbol encountered in the Polish string; when
executed, it places the product “2x(W+V)” in
the top of the stack. The next symbol, ADD,
when executed, leaves the final result
“Y+2x(W+V)” in the top of the stack.

The store syllable (STOD) completes the
execution of the statement Z:=Y + 2x(W+V).
The store operation examines the two top-of-
stack operands looking for an IRW or Data De-
scriptor. In this example, the IRW addresses
the location where the computed value of Z is
to be stored. The stack is empty at the comple-
tion of this statement.

Thus, the Polish string ZY2WV + x+:= is
used to produce the following code string:

NAMC (2)
VALC (Y)
LT8 2
VALC (W)
VALC (V)
ADD
MULT
ADD
STOD

When this code string is executed on the
B 7700, the value of the expression
Y+2x(W+V) is stored in the stack location re-
served for the variable Z.

INTERRUPT HANDLING

In the B 7700, hardware interrupts are
treated as hardware-originated procedure
calls. When the hardware detects an interrupt
condition, the CPM causes a MSCW to be
placed in the stack, then places in the stack an
IRW addressing the interrupt handling proce-
dure, places two parameters in the stack to
identify and describe the interrupt condition,
and then causes the interrupt handling proce-
dure to be entered. When the interrupt han-
dling procedure is entered, the D registers are
updated to make all legitimate variables ad-
dressable. Similarly, upon return from the in-
terrupt handling procedure, the D registers
are again updated to make all of the variables
of the former procedure addressable again. A
detailed description of interrupt handling is
provided in chapter III.

€e-C

TOP OF STACK
LOCATIONS

STACK
AREA

40976

ALGOL STATEMENT Z = Y + 2 X (wW+v)

POLISH STRING NOTATION Z Y 2 v + X i\\

N

NAMC vm.g LT8 VAI{C VALC ADD MULT ADD STOD
z Y 2 w v
INV IRW 2 —1 Y - 2 W v - (W+V) 2x(W+V) Y+2x(WHV) INV
INV INV IRW 2 Y 2 w INV INV INV INV
W 2 B 2 2 2 2
Sy Y Sl v Y Y
5 1rRw z IRW Z IRW 2 IRW 2 IRw z |3e{ IRW 2 -—] IRW 2
F3 S-» z B 2 Z Z 2z z Z z -JS_, Y+2(W+V)
Y Y Y P Y Y Y Y Y Y Y
w w w w w w w w w w
v v v v v v v v Y v
A A S A s A A A A Ay A R A R |
1 T 1 TT] T 1T T T T
| 1 I || | | |
SYLLABLE TYPES
VALC VALUE CALL STOD STORE DESTRUCTIVE
NAMC NAME CALL ADD ADD
LT8 LITERAL (8 BIT) MULT MULTIPLY

Figure 11-2-11. Stack Operation

Table 11-2-1. Description of Stack Operation

Function of Syliable During Running of the Program

Stack location of program variables illustrated.

Build an indirect reference word that contains the address of Z

and place it in the top of the stack.

Place the value of Y in the top of the stack.

Place a 2 in the top of the stack.

Place the value of W in the top of the stack.

Place the value of V in the top of the stack.

Add the two top words in the stack and place the result in the

A location as the top of the stack operand.

Multiply the two top-of-stack operands. The product is left in

the A location as the top of the stack operand.

Add the two top words in the stack and leave the result in the

A location as the top of the stack operand.

Execution Polish Syllable Type
Sequence Notation Compiled
Element
0 _ -
1 Z Name call for Z.
2 Y Value call for Y.
3 2 Literal 2.
4 w Value call for W.
5 \% Value call for V.
6 + Operator add.
7 X Operator multiply.
8 + Operator add.
9 = Operator store

destructive.

Store an item into memory. The address in which to store is
indicated by an indirect reference word or a data descriptor.

The address can be above or below the item stored.

MULTIPLE STACKS AND RE-ENTRANT CODE

The B 7700 stack mechanism provides a fa-
cility for handling several active stacks, which
are organized in a tree structure. The trunk of
this tree structure is a stack containing MCP
global quantities.

LEVEL DEFINITION

As the MCP is requested to run an execution
of a program, a level-1 branch of the stack is
created. This level-1 branch is a separate stack
which contains only the descriptors pointing to
the executable code and the read-only data
segments for the program. Emerging from this
level-1 branch is a level-2 branch, containing
the variables and data for this job. Starting
from the job’s stack and tracing downward
through the tree structure, one finds first the
stack containing the variables and data for
the job (at level 2), the segment descriptor to
be executed (at level 1), and the MCP’s stack
at the trunk (level 0).

RE-ENTRANCE

A subsequent request to run another execu-
tion of an already-running program. Thus two
jobs which are different executions of the
same program have a common node, at level-
1, describing the executable code. It is in this
way that program code is re-entrant and
shared. This results simply from the proper
tree-structured organization of the various
stacks within the machine. All programs

2-24

within the system are re-entrant, including all
user programs as well as the compilers and
the MCP.

JOB-SPLITTING

The B 7700 stack mechanism also provides
the facility for a single job to split itself into
two independent jobs. A common use of this
facility occurs when there is a point in a job
where two relatively large independent proc-
esses must be performed. This splitting can be
used to make full use of a multiprocessor con-
figuration, or to reduce elapsed time by multi-
programing the independent processes.

A split of this type establishes a new limb of
the tree-structured stack, with the two inde-
pendent jobs sharing that part of the stack
which was created before the split was re-
quested. The process is recursively defined
and can happen repeatedly at any level.

STACK DESCRIPTOR

Stack branches are located by an array of
descriptors, the stack vector array (figure I1-2-
12). There is a data descriptor in this array for
every stack branch. This data descriptor, the
stack descriptor, describes the length of the
memory area assigned to a stack branch and
its location in either main memory or disk.

A stack number is assigned to each stack
branch. The stack number is the index value
of the stack descriptor in the stack vector ar-
ray.

STACK VECTOR DESCRIPTOR

The array size of the stack vector and its lo-
cation in memory is described by the stack
vector descriptor, located in a reserved posi-
tion of the trunk of the stack (figure 1I1-2-12).
All references to stack branches are made
through the stack vector descriptor, indexed
by the stack number.

PRESENCE BIT INTERRUPT

A Presence Bit Interrupt results when an
addressed stack is not present in memory. This
Presence Bit Interrupt facility permits stack
overlays and recalls under dynamic conditions.
Idle or inactive stacks may be moved from
main memory to disk as the need arises and,
when a stack is subsequently referenced, a
Presence Bit Interrupt is generated to cause
the MCP to recall the nonpresent stack from
disk.

STACK STACK STACK STACK STACK

VECTOR NO.n NO. 4 NO. 3 NO. 2
nv ~o I‘ri ne ~y (e d g L o s od
MSCW MSCW [*—
~ L o ~
DDn-} |—= TOSCW MSCw MSCW
LY ~ - N MSCw ~ "~
DDS TOSCW ~ t MSCw
DD4 TOoSCw v T
DD3 PROC. 1D
DD2 SEGMENT
STACK DESCRIPTORS
oDI ~p TRUNK ~ A
DDO S0 DISPLAY
R R
o0 k- sTack EGISTERS
" |, VECTOR 03I
DESCRIPTOR
MSCW
™~
- [4 [oL.]
[_sosr | TOSCW D4
D3
D2
DI
40977 DO

Figure 11-2-12. Multiple Linked Stacks

SECTION 3

PROCESSOR WORD FORMATS

GENERAL

The basic information structure of the
B 7700 is the word. As transferred between
CPMs or IOMs and core memory, a word con-
sists of 52 bits (see figure II-3-1), and is consid-
ered in three parts: a parity bit, which is used
to maintain overall parity for the word being
transferred; a 3-bit tag field, which indicates
the type of information contained within the
word, and a 48-bit information field, which
contains the actual information.

The tag field not only serves to identify the
type of information contained in the word but
also can be thought of as an extension of the
operator being executed against the word. For
example, because the tag field indicates to the
arithmetic unit whether the operation involves
single precision or double precision operands, a
single instruction (ADD) serves both types of
operations. In similar fashion, if the sum ob-
tained was a double precision number (requir-
ing two memory words of storage), and the re-
ceiving memory word indicates that a single
precision operand was resident there, the CPM
will round the sum to single precision and
then store it.

The tag field also prevents the user from
writing over program code or read-only data
areas, and prevents him from reading (as
data) program code, processor control words,
and uninitialized operands.

Consider the bit assignments for the tag
field, as illustrated. One can see that words
which have bit 48 set, such as IRW’s, SIRW’s,
Segment Descriptors, MSCW’s, RCW’s, Data
Descriptors, and Program Control Words,
should not be alterable by the user. The CPM
will not allow such words to be modified except
by use of the overwrite operators. Words that
are used for stack control, MSCW’s, RCW’s,
and PCW’s, have bits 49 and 48 of the tag field
set. The CPM will not allow such words to be
interpreted as operands.

The information field may be used to store
data (logical operands, string operands, nu-
meric operands), to store program code (pro-
gram word), to address data or code outside of
the stack (data descriptor, string descriptor,
segment descriptor), to address within stacks
(indirect reference word, stuffed indirect ref-
erence word, stuffed indirect reference word,
program control word), to store information re-

2-25

2-26

(PARITY
' 51 47| 43} 39| 35 31 27| 23| 19/ 15 11 7 3
sol 46| 42| 38 34/ 30 26| 22| 18} 14 10 6 2
49) 45| 41| 37 33 29| 25| 21| 17 13 9 5 1
481 44| 40| 36 32| 28] 24| 20 16| 12 8 4 0
Field Bits Description
Parity 51:1 Parity bit. 0dd parity for the 52 bit word.
Tag 50:3 Value of this field indicates the usage of the
information field, as described below.
Tag Value Iinformation Field Usage
0 Single Precision Operand, Logical
Operand, String Operand, Occurs
Index Word, Time of Day Function Word
1 Indirect Reference Word, Stuffed
Indirect Reference Word
2 Double Precision Operand
3 Mark Stack Control Word, Return
Control Word, Top of Stack Control
Word, Program Word, Segment
Descriptor
4 Step Index Word
5 Data Descriptor, String Descriptor
6 Uninitialized Operand
7 Program Control Word
{NFORMATION 47:48 Use of this field depends on the value of the
tag field.
40978

Figure 11-3-1. Basic Word Format

garding stack history (mark stack control
word, return control word, top of stack control
word), or to provide a parameter for use with
certain operators (step index word, and occurs
index word. Data words (operands) and pro-
gram words were described in the previous
sections of this chapter. The other various
processor words are described in this section.

WORDS FOR ADDRESSING OUTSIDE OF THE
STACK

There are three types of descriptors which
are used for addressing data or code which is
not resident in the stack. The type of descrip-
tor is directly related to the data or code being
referenced. Thus, a segment descriptor will al-
ways address a segment of program code (con-
tained in program words), a string descriptor
will always address a string operands), and a
data descriptor will address an array of word
operands.

The ADDRESS field in each of these de-
scriptors is 20 bits in length; this field con-
tains the absolute address of an array in ei-
ther system main memory or in the backup
disk file, as indicated by setting of the Pres-
ence bit (P). The referenced data is in main
memory when the presence bit is set.

PRESENCE BIT

A Presence Bit Interrupt occurs when the
job references data by means of a descriptor
in which the P-bit is equal to 0; i.e., the data
is located in a disk file, rather than in main
memory. The Master Control Program (MCP)
recognizes the Presence Bit Interrupt and
transfers data from disk file storage to main
memory. After the data transfer to main mem-
ory is completed, the MCP marks the descrip-
tor present by setting the P-bit to 1, and
places the new main memory address into the
address field of the descriptor. The inter-
rupted job is then reactivated.

INDEX BIT

A Data Descriptor describes either an entire
array of data words, cr a particular element
within an array of data words. If the descrip-
tor describes the entire array, the Index bit (I-
bit) in the descriptor is 0, indicating that the
descriptor has not yet been indexed. The
length field of the descriptor defines the
length of the data array.

INVALID INDEX

A particular element of an array is de-
scribed by indexing an array descriptor. Mem-
ory protection is ensured during indexing op-

erations by performing a comparison between
the length field of the descriptor and the index
value. An Invalid Index Interrupt results if
the index value exceeds the length of the
memory area defined by the descriptor, or if
the index is less than 0.

VALID INDEX

If the index value is valid, the length field of
the descriptor is replaced by the index value,
and the I-bit in the descriptor is set to 1 to in-
dicate that indexing has taken place. The ad-
dress and index fields are added together to
generate the absolute machine address when-
ever an indexed Data Descriptor in which the
P-bit is set is used to fetch or store data.

The Double-Precision bit (D) is used to iden-
tify the referenced data as single-or double-
precision and directly affects the indexing op-
eration. The D-bit equal to 1 signifies double-
precision and causes the index value to be dou-
bled before indexing.

READ-ONLY BIT

The Read-Only bit (R) specifies that the
memory area described by the Data Descriptor
is read-only area. If the R-bit of a descriptor
is set to 1, and the area referenced by that de-
scriptor is used for storage purposes, an inter-
rupt results.

COPY BIT

The Copy bit (C) identifies a descriptor as a
copy of a master descriptor and is related to
the presence-bit action. The copy bit links mul-
tiple copies of an absent descriptor (i.e., the
presence bit is off) to the one master descrip-
tor. The copy bit mechanism is invoked when
a copy is made in the stack. If it is a copy of
the original, absent descriptor, the processor
sets the copy bit to 1 and inserts the address
of the master descriptor into the address field.
Thus, multiple copies of absent data descrip-
tors all point back to the master descriptor.

DATA DESCRIPTOR

Data descriptors refer to data areas, includ-
ing input/output buffer areas. The data de-
scriptor defines an area of memory starting at
the base address contained in the descriptor.
The size of the memory area in operands is
contained in the length field of the descriptor.
Data descriptors may directly reference any
memory word address from 0 through
1,048,576. The structure of the data descriptor
is illustrated in figure II-3-2.

STRING DESCRIPTOR

String descriptors refer to strings of 4-bit
digits, 6-bit or 7-bit characters, or 8-bit bytes.

2-27

47} 43] 39| 35 31 271 23] 197 15 11 [3
l 50 C46 042 38 34 30| 26| 22} 18} 14 10 6 2
o.11..lo INDE (MEMORY OR
49] *+ 45141 37! 33 29| 25| 21] 17| 13 9 5 1
l 48 S44 D40 36| 32 28| 24| 20] 16y 12 8 4 0
Field Bits Description
Tag 50:3 Tag field. Value of five.

P 47:1 Presence bit. Indicates the presence or absence of data in main memory. A 0 causes a
presence bit interrupt whenever the descriptor is used by a processor to obtain non-present
data. A 1 indicates that the data described is in main memory.

C 46:1 Copy bit. A 0 indicates that this is the original descriptor for the particular data area. A 1
indicates that this descriptor is a copy of the original descriptor.

1 45:1 Indexed bit. A 0 indicates that an indexing operation is required before the descriptor may be
used to obtain data. A 1 indicates that indexing has already taken place and the index value
is stored in bit positions 39:20 (Length or Index).

S 44:1 Segmented bit. A 0 indicates that the data is not segmented. A 1 indicates that the data is
divided into segments.

R 43:1 Read-only bit. A 0 indicates that the data may be referenced for reading or writing. A 1
indicates that the data can only be referenced for reading.

42:2 Size field, must be 0 to indicate a data descriptor.

D 40:1 Double-precision bit. A 0 indicates single-precision operands, a 1 indicates double-precision

operands.

Length 39:20 This field contains either the length (in operands) of the memory area (if bit 45 = 0) or an

or Index index value (if bit 45 = 1). If bit 45 equals 0, the descriptor has not been indexed. This field
is used for size checking during the indexing operation. If bit 45 equals 1, the descriptor has
been indexed. For a double-precision operation, the index is doubled after index size checking,
and the result is stored in the index field.

Address 19:20 This field contains either a main memory or disk address. If the presence bit (bit 47) equals 1,

(Memory this field contains the memory address of data. If the presence bit equals 0 and the copy bit

or Disk) (bit 46) equals 0, this field contains the disk address of the data. If the presence bit equals 0

and the copy bit equal 1, this field contains the memory address of the original descriptor.

Figure 11-3-2. Data Descriptor

The string descriptor defines an area of
memory starting at the base address con-
tained in the descriptor. The size of the
memory area in characters is contained in the
length field of the descriptor. The structure of
the String Descriptor is illustrated in figure
11-3-3.

SEGMENT DESCRIPTORS

Segment descriptors refer to areas of pro-
gram code. The descriptor defines an area of
memory starting at the base address con-
tained in the descriptor. The size of the
memory area in program words is contained in
the length field of the descriptor. The struec-
ture of the segment descriptor is illustrated in
figure I1I1-3-4.

2-28

WORDS FOR ADDRESSING WITHIN STACKS

There are three types of words which are
used for addressing data or descriptors which
are resident within a stack. A Program Con-
trol Word is used, at the time of procedure en-
try, to locate a segment descriptor (and the
proper word and syllable of code) for the pro-
cedure. An Indirect Reference Word is used to
address within the current addressing envi-
ronment of a procedure. A Stuffed Indirect
Reference Word is used to address outside the
current addressing environment of a proce-
dure.

PROGRAM CONTROL WORD

The Program Control Word (PCW), and the
MSCW are used during entry into a procedure.
The organization of the PCW is illustrated in
figure II-3-56 and contains the following:

STRING DESCRIPTOR (NON- INDEXED)

P IR
47F 43] 39! 35 31 270 231 19 15 11 7 3
I |C LEINGTH ADDRESS
50f 46j.42] 38| 34 30| 26/ 22| 18] 14/ 10 6 2
J
O |1 (MEMORY OR
491 45]-,41] 37| 33 291 25 21 Tl 13 9 5 1
| = DISK
48] 44| 40} 36| 32 28| 24 20] 16| 12 8) 4 0
STRING DESCRIPTOR (INDEXED)
— —
PR 51
47 43]% 3 35 31 27| 23] 19 15| 11 7 3
I |C Y WORD ADDRESS
50] 46] . 42 34 30 26/ 221 18] 14| 10 6 2
9
[0 |1 T INDEX (MVEMORY OR
49] 45] 541 IE 33, 29f 25| 21} 17 13 9 5 1
L y
I IS X DISK)
48] 44| 40 32 28] 24 20} 16| 12 8 4 0
Field Bits Description
Tag 50:3 Tag field. Value of five.
P 47:1 Presence bit. A 0 causes a presence bit interrupt if the descriptor is used to access data. A 1
indicates the data is present in main memory.
C 46:1 Copy bit. A 0 indicates that this is the original descriptor for the particular data area. A 1
indicates that this descriptor is a copy of the original descriptor.
1 45:1 Indexed bit. A 0 indicates indexing is required. A 1 indicates that indexing has taken place
and the word and character index are in the WORD INDEX and BYTE INDEX fields.
S 44:1 Segmented bit. A 0 indicates that the data area is not segmented. A 1 indicates that the data
is segmented.
R 43:1 Read only bit. A 0 indicates that the data may be referenced for reading or writing. A 1
indicates that the data can be read only.
SZ 42:3 Size field. 100 indicates character size of 8-bit bytes, 101 indicates 7-bit ASCII characters, 011
indicates 6-bit characters, and 010 indicates 4-bit digits.

Length 39:20 Bits 39:20, contain either the length of the memory area (bit 45=0) or an index value (bit
45=1). When bit 45 equals 0, this field contains the length of the area in digits, characters or
bytes.

Byte 39:4 Byte index (Bit 45=1).

Index

Word 35:16 Word Index (Bit 45=1).

Index

Address 19:20 This field contains either a main memory or a disk address. If the presence bit (bit 47) is 1,

(Memory the field contains a memory address of the data. If both the presence bit and the copy bit (bit

or Disk) 46) are equal to 0, the field contains the disk address of the non-present data. If the presence

bit is 0 and the copy bit is 1, the field contains the memory address of the original descriptor.

Figure 11-3-3. String Descriptor

INDIRECT REFERENCE WORD

Referencing a variable within the current

addressing environment of a procedure is ac-
complished through the address couple in the
Indirect Reference Word (IRW). References
are relative to the D register specified by the
address couple. The format of the IRW is
shown in figure II-3-6.

STUFFED INDIRECT REFERENCE WORD

Reference to variables outside the current
environment is accomplished by a Stuffed In-
direct Reference Word. This addressing is
relative to the base of the stack in which the
variable is located.

The SIRW contains the stack number, the lo-
cation (DISP) of the MSCW, and the index to

2-29

Field
Tag

Length

Address
(Memory
or Disk)

Field
Tag

Stack
Number

PSR
PIR

LL

SD
Index

2-30

39 351 31 27 23] 19| 15 11 7 3

LEINGTH ADDRESS
38) 34 30 26| 22| 18/ 14/ 10

gME ORY OR

371 331 29| 25| 21 7 13 9 5 1

DISK)
36l 32| 28 24| 20| 16| 12] 8

Bits
50:3
47:1
46:1

45:4
39:20
19:20

Description
Tag field. Value equals three.
Presence bit. A 0 indicates that the segment is absent from main memory.

Copy bit. A 0 indicates that this is the original segment descriptor. A 1 indicates that this is
a copy of the original segment descriptor.

Not used. Unused bits may be either 0 or 1.
The length of the program segment in words.

This field contains either the main memory address or the disk file address. If the presence

bit (bit 47 equals 1, the field contains the main memory address of the program segment. If

both the presence bit and the copy bit (bit 46) equal 0, the field contains the disk address of
the non-present program segment. If the presence bit equals 0 and the copy bit equals 1, the
field contains the absolute memory address of the original program segment descriptor.

Figure 11-3-4. Segment Descriptor

P N
43| 39| 350 31 27| 23 ‘19 15 11] 7| 3

D
42| 38| 34 30 26| 22| 18 14 10| 6] 2

50 %
I STA(%K R PI;RS

O/l INDEX
13" 9

49] 45| 4 371 33} 29 211 17 5 1
48] 44 4§F 36] 32| 28| 24| 20} 16f 12 8 4 Q'

Bits Description

50:3 Tag field. Value equals seven.

47:2 Not used.

45:10 The number of the stack which contains the PCW.

35:3 The program syllable (0-5) within the word located by PIR.

32:13 Index to the Program Base Register. Locates a word within the code segment.

19:1 Normal state (0) or control state (1).

18:5 The level of the procedure being entered.

13:14 The segment descriptor index. Bits 12 through 0 specify the value to be added to either D-

register 0 or 1. When bit 13 equals 0, D-register 0 is selected; when bit 13 equals 1, D-register
1 is selected. The sum of the contents of the display register and the index locates a segment
descriptor.

Figure 11-3-5. Program Control Word

Field Bits
Tag 50:3
47:1
46:1
45:32

Address 13:14
Couple

11 7 3

4 10 6| 2
~
\DDRESS
9] 5] 1
N
TOUPLE
8 4 0
Description
Tag field. Value equals one.
Not used
Environment bit. Must equal zero for an IRW. (1 = SIRW).
Not used.

Selects D Register (According to current program level as indicated by rLL) and provides index
value (see below).

PROGRAM LEVEL PROGRAM LEVEL PROGRAM LEVEL
0-1 0-3 0-7
4
11 71 3 111 71 4 11} 7| 3
INDEX INDEX 10 INDEX 9
1(FIELD 2 1cFlELD——2 FIELD
1 12-0 1 11-0 1 10-0
131 9 5 1 13 9 o 1 13 9] 5| 1
2 ' 2 ?I
12] 8 4| o 12 8 4] o 12 8 4/ 0
PROGRAM LEVEL PRCGRAM LEVEL
0-15 0-31
4 4
111 7| 3 1] 171 3
8 INDEX 8 INDEX
10 FIELD —2 10 FlELD-gJ
1 9-0 ‘ 1 |16 8-0
131 9] 5 1 13 5/ 1
2 2
12l 8 4| o 120 8 4| o
NOTE: THE BIT ORDER OF THE LL FIELD IS INVERTED.
40983

Figure 11-3-6. Indirect Reference Word

2-31

the variable relative to the MSCW. The abso-
lute memory location of the variable is formed
by adding the contents of DISP and index to
the base address of the referenced stack from
the stack descriptor. The contents of the SIRW
(with the exception of index) are dynamic and
are accumulated as the program is executed.
The stack number and DISP fields are entered
into the SIRW by the Stuff Environment
(STFF) operator. The bit format of the SIRW
is shown in figure 11-3-7.

WORDS FOR STORING STACK HISTORY

Certain words can be thought of as words
used for storing stack history. These words,
used for procedure entry and exit, as well as
for storing the stack state for inactive stacks,
include the Mark Stack Control Word, the Re-
turn Control Word, and the Top Of Stack Con-
trol Word.

MARK STACK CONTROL WORD

The Mark Stack Control Word (MSCW), to-
gether with the Return Control Word (RCW),
provides a linking mechanism for the history
of previous control-register settings through
the stack.

The MSCW is placed in the stack by the
Mark Stack operator. The MSCW is organized
as illustrated in figure II-3-8.

RETURN CONTROL WORD

The Return Control Word (RCW) and the
MSCW are used for subroutine handling. The
Return Control Word stores the environment
to which the subroutine will return. The or-
ganization of the RCW is illustrated in figure
11-3-9.

TOP OF STACK CONTROL WORD

The Top Of Stack Control Word (TOSCW)
contains all information needed to restore the
operating environment when a stack (or proc-
ess) is activated. When a stack is active, the
first word of the stack is a single precision op-
erand containing the processor ID (a number,
0 through 7). When the stack is made inactive,
the processor ID is changed to a TOSCW, con-
taining the status of various processor flip-
flops necessary to restore the stack’s environ-
ment when it is again activated. The TOSCW
is created by the Move Stack (MVST) operator.
The TOSCW is illustrated in figure I1I-3-10.

WORDS USED AS SPECIAL PARAMETERS

Certain control words are used only as a pa-
rameter to a single operator. Among these are
the Step Index Word, used with the Step and
Branch operator; the Occurs Index Word, used
with the Occurs Index operator; and the Read
Time Of Day Function Word, used with the
Scan In operator.

48] 44| 40| 36] 32 28 24 8 4
Field Bits Description
Tag 50:3 Tag field. Value equals one.
47:1 Not used.
46:1 Environment bit. Must be a one (0=1RW).
Stack No. 45:10 The number of the stack containing the referenced word.
Displace- 35:16 This number, added to the stack base address, addresses an MSCW.
ment
19:6 Not used.
14:1 Must be 0.
Index 12:18 This number, added to the address of the MSCW, addresses the referenced word.
Field

2-32

35 31 27

DISPULACE
30 26

7
INDE]
10, 6

34
MEINT
33 29 25

RIEL
5

Figure 11-3-7. Stuffed Indirect Reference Word

07) 43|N3g| 351 31| 27 23] 19| 15| 11| 7| 3

O IE [7.|U DISPLACE - LL |
50] «6f) 42)M38] 34 30 26 22| 18] 14 10/ 6| 2
1B MENT e
49] 45/Ca1)=37) 33 29| 25| 21] 17] 13 9| 5| 1

ol
48] 44| 40|R36] 32 28 24| 20| 16| 12| 8 4| o

Description

Different-stack bit. A 0 indicates that the stack-number field refers to the current stack. A 1

Environment bit. A 0 indicates an inactive MSCW, generated directly by the Mark Stack

operator. The procedure entry has not been performed. A 1 denotes an active MSCW generated
upon entry into a procedure, at which time the environment fields (stack number, displacement,

Stack-number field. Contains the number of the stack from which the PCW was obtained at

Displacement field. When added to the stack base address, locates the MSCW of the prior

Value bit. A 0 indicates that the MSCW was generated during any operation that will be

restarted from the beginning. A 1 indicates that the operator must continue after the Exit or

LL field. Denotes the lexicographical level at which the program will run when the procedure

Field Bits
Tag 50:3 Tag field. Value equals three.
DS 47:1
indicates that the stack-number field refers to a different stack.
E 46:1
value, and LL fields) are stored into the MSCW.
Stack 45:10
Number procedure-entry.
Displace- 35:16
ment lexicographic level.
v 19:1
Return ‘which refers to this MSCW (e.g., an accidental entry by a Value Call).
LL 18:5
is entered.
DF 13:14

the previous “F” register setting).

Denotes the stack history. This field is used to locate, in the stack, the preceding MSCW (.e.,

Figure 11-3-8. Mark Stack Control Word

STEP INDEX WORD

The Step Index Word (SIW) is used as a pa-
rameter to the Step and Branch operator, to
increase the efficiency of this operator in
iteration loops. When the Step and Branch op-
erator is invoked, the SIW addressed by the
IRW in the top of stack location is located. The
increment field is added to the current value
field. If the current value field is then greater
than the final value field, PIR and PSR are
set from the next two syllables in the program
code string and the branch is made. If the cur-
rent value field is not greater than the final
value field, PIR and PSR are advanced three
syllables, the SIW is replaced in memory, and
the iteration loop continues. The format of the
SIW is illustrated in figure II-3-11.

OCCURS INDEX WORD

The Occurs Index Word (OIW) is used to in-
dex a field within an array. COBOL permits
arrays to be constructed of a series of fields of
a specified character size (through use of the
OCCURS clause). This series of fields may not

necessarily begin at a word boundary, because
the array may be one of several items subordi-
nated under a group item. The OCRX
operator, together with an OIW in the A loca-
tion and an index value in the B location, is
used to calculate a new index value which is
left in the top of the stack. The original index
value is an integer which indicates the
relative position of the desired field within the
array. The new index value is the displace-
ment (in characters) of the desired field from
the first character of the array. The character
size (specified in a descriptor) and the index
value (left in the top of stack) can then be
used to address the desired field. The format
of the OIW is shown in figure I1I-3-12.

TIME OF DAY FUNCTION WORD

This word is used as a parameter to the
Scan In operator, to specify that the time of
day is to be interrogated by the MCP. The for-
mat of the Time of Day Function Word is
shown in figure II-3-13.

2-33

Field
Tag
ES

TFOF

PQRS,
PQR5

PSR
PIR
N
LL

SD
Index

Field
Tag
ES
OF

DSF

LL
DFF

2-34

N
31 27| 23| 19| 15 11| 7| 3

LiL
30, 26| 22| 18 14 10

6| 2
PIR O/1|SD |INDEX
25| 21] 17| 13 9| 5[1

28| 24| 20] 16] 12 8 4 0

Bits
50:3
47:1
46:1
45:1
44:1
43:1

40:1
39:1

35:3
32:13
19:1
18:5
13:14

Description
Tag field. Value of three.
External Sign flip-flop.
Overflow flip-flop.
True/False flip-flop.
Float flip-flop.
True/False flip-flop occupied flip-flop.

Special hardware bits. These bits are used for controlling display update operations in the
processor.

Program syllable of the operator to be executed after return from the subroutine.
PIR setting of the operator to be executed next in the calling routine.

Normal state (0) or control state (1) procedure.

Level of the calling procedure when the RCW was generated (at procedure entry).

Segment descriptor index. Bits 12 through 0 specify the value to be added to either D-register
0 or 1. When bit 18 = 0, D-register is selected; when bit 13 = 1, D register 1 is selected. The
sum of the contents of the selected display register and the index locates a segment
descriptor.

Figure 11-3-9. Return Control Word

ES|
47 o3| 19| 15| 11 7] 3

OF LiL DFF
46

50 22] 18 14] 10 6 2
T
49] 45 21} 171 13 9 5 1
| |F
48] 44 20] 16] 12 8 4 0
Bits Description
50:3 Tag field. Value equals three.
47:1 External sign flip-flop.
46:1 Overflow flip-flop.
45:1 True/False flip-flop.
44:1 Float flip-flop.
43:8 Not used.
35:16 Delta S-register field. The value of S-register displacement above BOSR.
19:1 Normal-control state flip-flop. 0 = normal; 1 = control state.
18:5 Lexicographic level.
13:14 Delta F-register field. The value of F-register displacement below the S-register.

Figure 11-3-10. Top of Stack Control Word

47] 43| 39] 35| 31| 27 23 O'19 15(11] 7 3
50 ‘!IGITIC‘QI -38 34 F.‘!NAZI?S 22 0‘18 IELNIR(!:!ENF
M

ENT VALUE o) VALUE
41 29[25| 21) 17| 13 9] 5| 1

49f 45 371 33

48] 44| 40| 36] 32| 28] 24 20] 16} 12 8| 4 0

Field Bits Description
Tag 50:3 Tag field. Value equals four.

Increment 47:12 Increment: value to be added to current value field.
Final 35:16 Final value: value used to terminate the iteration loop.
Value

19:4 Must be 0 for S1W.

Current 15:16 Current value or count. The branch is made if this field is greater than the final value field.
Value

Figure 11-3-11. Step Index Word

47 43| 39| 3 311 27 23 19 15 11 7 3
| ENIGTH SIZE OFESET
50] 46] 42| 38/ 34 30 26| 22 18 14| 10 6 2

49] 45| 41] 37 33 29| 25| 21] 17] 13} 9 5 1

0

48] 44| 40| 36] 32} 28/ 24| 20 16i 12 8| 4 0}

Field Bits Description
Tag 50:3 Tag field. Value equals zero.

Length 47:16 The length, in characters, of each field in the array.
Size 31:16 The size, in fields, of the array.

Offset 15:16 The number of characters preceding the first field of the array.
Figure 11-3-12. Occurs Index Word

O |0 [0 |0
190 15| 11 7 3
O |0 |1 |0
18] 14 10 6 2
O [0 |t |O
17 13 9 5 1
O |0 |0 |0
4 16| 12| 8 4| o
Field Bits Description
Tag 50:3 Tag field. Value equal zero.

47:28 Not used.

19:13 Must equal zero.
6:2 Must equal three.
4:5 Must equal zero.

Figure 11-3-13. Time-of-Day Function Word
2-35

SECTION 4

INPUT/OUTPUT SUBSYSTEM MAP STRUCTURE

INTRODUCTION

The B 7700 Input/Output Modules (IOM) op-
erate in parallel with the Central Processor
Modules (CPM). The purpose of the IOM is to
control all data transfers between main
memory and peripheral devices, or between
two peripheral devices, so that the CPM is re-
leased from I/O operations at the earliest pos-
sible moment. In brief, the IOM controls not
only the selection of I/O requests from lists of
such requests in main memory, but also path
selection to the desired devices, the initiation
of requests on the appropriate device, the
transfer of data as specified by the requests,
and the construction of a list of completed re-
quests in main memory. The CPM, on the
other hand, builds the I/O request, places it in
the appropriate list in main memory, notifies
the IOM of the presence of the request (if this
is the only request for the device), and then is
free to continue with other processing. Rou-
tinely, the CPM checks memory for the pres-
ence of completed I/O requests and processes
the completed requests.

Each IOM is, in effect, a separate computer
with its own local memory, logie, arithmetic,
and communication capabilities. This inde-
pendent processing capability permits the IOM
to perform routine input-output tasks without
interrupting the CPM. Thus the IOM can con-
trol transfers of data between peripheral stor-
age devices and main memory or other storage
devices without direct supervision of the CPM.
In fact, parallelism within the IOM permits it
to initiate, service, and terminate data trans-
fers for several users while the CPM is proc-
essing data for yet another user.

QUEUE-DRIVEN 170

To allow the IOMs to properly select paths
to the devices and to service I/O requests, cer-
tain structures are created by software when
the system is initialized. These structures,
which provide a mechanism to allow the CPMs
to queue I/O requests, allow each IOM to be
aware of the requests, of the devices it can
service, and of the order of priority of devices
served by an exchange. These structures are
referred to as the I/O Subsystem Map, and
hence this type of I/O is often reffered to as
“map” 1I/0 or “queue-driven” I/O. Because the
use of the map allows the IOM to process

2-36

many I/O operations in parallel, independent
of CPM, I/O performed using the map is also
known as asynchronous I/O. The IOM may
also operate synchronously to process one I/0O
request at a time; however, such synchronous
operation is used only for special applications
such as system initialization and is not fur-
ther discussed in this section.

The operation of asynchronous I/O is illus-
trated in simplified form in figure I11-4-1. When
the I/O subsystem map is initialized the CPM
places information about each peripheral de-
vice and the paths to it into a table in
memory. During operation, the I/O subsystem
map is accessed by both the CPM and IOM as
I/O requests are built (by the CPM) and proc-
essed (by the IOM). In essence, the CPM builds
I/O requests and places them in queues of
such requests in main memory. Each request
specifies the desired I/O operation and the de-
vice on which the operation is to be performed.
The IOM extracts requests from these queues
on a first-in first-out basis, processes each re-
quest, and places the completed requests into
a queue in main memory.

Periodically, the CPM extracts the completed
requests from the queue in main memory and
takes the necessary action to check them.

— =

I MEMORY l

INFORMAT i ON
CPM {ABOUT DEVICES
| AND PATHS

PERIPHERAL
DEVICES

QUEUES OF 1/0 REQUESTS
TO BE PROCESSED BY I0M

QUEUE OF COMPLETED /0 REQUESTS I|
TO BE PROCESSED BY CPM

Figure 11-4-1. Asynchronous /0 Operation,
Simplified Block Diagram

Once the IOM is notified (by the CPM) of the
presence of an I/O request in one of the input
queues, all requests in that queue will be proc-
essed by the IOM independent of CPM actions
until the queue becomes empty. The CPM may
place additional requests into a queue while
the IOM is processing a request from the
queue. Thus, once the IOM starts processing a
queue, the CPM may process other programs,
queue new I/O requests, and perform computa-
tions; effectively masking out the IOM trans-
fer times.

ERROR HANDLING

From time to time conditions may arise
which prevent I/O operations from being ac-
complished successfully. A printer may run
out of paper, a card punch may be out of
cards, or a device may for some reason not be
ready. The design of the I/O subsystem map
allows the IOMs to continue to process re-
quests for other devices even though an error
is detected on a particular device. When the
error is recognized by an IOM, processing of
further requests for the particular device is
suspenended, the I/O request is marked as
containing an error, and that marked request
is linked into the queue of completed requests.
The CPM is not interrupted to handle the er-
ror; however, when the CPM does process the
queue of completed requests it will recognize
and process the error. When the error has
been processed, the CPM can again cause the
IOM to process requests for the device on
which the error was detected.

If such a strategy were to be applied to the
handling of all input/output errors a
catastrophic situation might arise. If, say, the
IOM itself were the source of the error, it is
conceivable that it could then process all (or
many) I/O requests erroneously. However, in
such cases the B 7700 IOM stops all processing
of I/0 requests (for all devices) and immediate-
ly interrupts the CPM. In short, I/O errors as-
sociated with a particular device cause proc-
essing of further requests for the device to be
halted but allow the processing of requests for
other devices by the IOM to continue. I/O er-
rors which can be asscciated only with an IOM
and not with a particular device cause the
IOM involved to stop all processing of requests
(other IOMs are not affected) and causes the
system to be interrupted so that the IOM er-
ror may be processed. Provision is also made
to allow the software to request that the sys-
tem be interrupted when a particular 1/O re-
quest is completed.

DEFERMENT OF PATH BINDING

The I/O subsystem map allows the IOM to
select the transfer path for a device as the
path becomes available. This dynamic path se-
lection is logically similar to the call routing of
a long distance telephone network; that is, the
route of the call is selected based on the loca-
tions of the correspondents and the available
paths. The user need only be concerned about
the type of device to be used (card reader,
magnetic tape, disk file, etc.); the MCP will as-
sociate the logical file with a physical device
when the program is executed, and the IOM,
when it initiates each transfer of data, will se-
lect an available transfer path to the device.

Maximum I/O throughput can be realized
only if the binding of the data path between
an IOM and a device is delayed until the de-
vice is ready to initiate the job. As shown in
figure I1-4-2, if device 4 is to be initiated, the
path required to connect CPM 1 with device 4
involves selecting between two IOM’s and be-
tween two channels within each IOM. (The pe-
ripheral controls have been excluded from this
figure because they do not affect the concepts

DEVICE
#1

EXCHANGE
P DEVICE

#2
10 ‘\\\\\\
A1
DEVICE

g #3

-

o g
-

\\

W

CPM
1 EXCHANGE

",‘ll #2

»
~ ‘\
™ DEVICE

#h

10M
#2

DEVICE
#5

DEVICE

o av avavew PATH(S) TO DEVICE #4 I3

FROM CPM#1

Figure lI-4-2. Data Transfer Path Selection

2-37

being described. For purposes of this discus-
sion the peripheral controls may be thought of
simply as extensions of the IOMs.) If the path
to device 4 were to be preselected program-
matically, a situation could develop in which
the device is free but the preselected path is
not. Thus, execution of the request would be
unnecessarily delayed if in fact an alternate
path to the device was available.

To delay binding the path programmatically
generally would require that the CPM which
initiated the job be involved in the operation
until the request is actually initiated on the
specified device. The I/O subsystem map, how-
ever, allows the IOM’s to manage selection
and binding of paths, allowing the CPM’s to be
free to do other processing. Thus, because the
IOM processes I/O requests without CPM in-
tervention, and because the IOM selects data
paths at the time of execution, the total sys-
tem time required to accomplish an I/O
operation is limited to the amount of time re-
quired for a CPM to build an I/O request and
place it in memory.

I/0 SUBSYSTEM MAP

As shown in figure II-4-3, the I/O subsystem
map is made up of four major software struc-
tures in main memory. These four software
structures are addressed by registers within
the IOM: the Home Address words are ad-
dressed by the HA register; the Unit Table is
addressed by the UT register; the Queue Head
and Queue Tail words table is addressed by
the QH register; and the Status Queue Header
is addressed by the SQ register. The IOM uses
the Queue Head word for the appropriate de-
vice to locate the I/O request. Thus, the IOM
can locate any element of the map as neces-
sary. Of course, since the map is constructed
by the MCP, it too is aware of the location of
each element of the map.

COMMANDS AND REQUESTS

Before further discussion of the I/O subsys-
tem map can take place, the difference be-
tween an I/O command and an I/O request
must be made clear. An I/O command is an or-

10M MEMORY

SQ

QH

ut

HA

UNIT
TABLE

(ONE WORD
FOR EACH
DEVICE)

HOME
ADDRESS
WORDS

(ONE GROUP
FOR EACH
10M)

STATUS
QUEUE
HEADERS

(ONE WORD
FOR EACH
10M)

QUEUE HEAD
WORDS

(ONE WORD
FOR EACH £ £
DEVICE)

v ¢

WORD n TO FIRST 10CB 1IN TO LAST {0CB IN

QUEUE OF COMPLETED QUEUE OF COMPLETED

—

1/0 REQUESTS FOR
THIS I0M

1/0 REQUESTS FOR
THIS (OM

P

QUEUE TAIL
WORDS TO FIRST 10CB IN
QUEUE OF 1/0
REQUESTS FOR

DEVICE n

(ONE WORD
FOR EACH
DEVICE)

TO LAST 10CB
IN QUEUE OF

WORD n+256

1/0 REQUESTS
y FOR DEVICE n

40997

Figure 11-4-3. 1/0 Subsystem Map, Simplified Block Diagram

2-38

der to an IOM which can cause one operation
or many operations for one device to be initi-
ated by the IOM. Although there are special I/
O commands which control but a single 1/O op-
eration, the I/O command most often associ-
ated with asynchronous I/O is the Start 10
command, which causes the IOM to process 1/
O requests from a queue of such requests until
the queue is empty. Each I/O request contains
information describing a single input or out-
put operation that is used not only by the IOM
but also by the peripheral control and even
the device itself. Each I/O request is made up
of several words and is known as an I/O Con-
trol Block (IOCB). The IOCB is discussed in de-
tail later in this section; I/O commands are de-
scribed in Chapter IV.

MAP INTEGRITY

Because the I/O subsystem may be accessed
and modified by all CPM’s and IOM’s in the I/
O subsystem, the integrity of the map is pro-
tected by special lock bits and lock words. This
system of locks prevents conflicts between the
IOM’s and CPM’s which use and modify the
map. As shown in figure II-4-4, the system
consists of three types of locks; a lock bit and
a lock word for each group of Home Address
words, and a lock bit for each Unit Table word.

The software lock word prevents two or
more CPM’s from attempting to build I/O com-
mands in the Home Address words simultane-

CP1 cPH

‘ !

HOME ADDRESS
LOCK EtT

HOME ADDRESS
SOFTWARE
LOCK WORD

UNIT TABLE
WORD LOCK
BIT (ONE PER
DEVICE)

PROTECTS PROTECTS
HOME ADDRESS HOME ADDRESS -
WORDS WHILE WORDS AFTER PROTECTS 1/0
THE CPM COMMAND 1S QUEUE
BUILDS A BUILT

COMMAND

10M 10M

Figure 11-4-4. 1/0 Subsystem Map Protection

ously. This word must be unlocked before a
CPM can access the Home Address words; the
CPM will immediately lock this word when it
gains access.

The Home Address lock bit prevents a com-
mand from being altered once it has been
placed in the Home Address words for execu-
tion. The CPM locks this bit when a command
is placed in the Home Address words.

In response to a channel interrupt, the IOM
exchanges the contents of HA word with zero,
decodes the home command, and executes the
operation. When a CPM gains access to an HA
block via the software lock-word, the CPM
does not insert a HA command into the Home
Address word until the HA lock bit is un-
locked.

The lock bit in each Unit Table word pro-
tects the I0 queues so that access to an I/O
queue is not granted to more than one IOM or
CPM at a time. The I/O queue can only be ac-
cessed when the lock bit is unlocked. Each
IOM or CPM locks the bit when it is using the
I/O queue and unlocks the bit when it is fin-
ished.

HOME ADDRESS WORDS

For each IOM there exists a unique set of
Home Address words in memory. The basic
purpose of the Home Address words is to pro-
vide a location into which CPM’s can store an
I/0 command until an IOM is ready to execute
the command. The most generally used com-
mand is Start I0, which is used to initiate the
processing of a queue of I/O requests for a de-
vice by an IOM. Other commands allow the
IOM to perform special functions, such as
loading into the IOM the addresses of the
structures in the I/O map or performing syn-
chronous I/O operations. Other words in the
Home Address words are used as software lock
words and, in certain cases, to store result de-
sceriptors for completed I/O operations.

UNIT TABLE

For each device in the I/O subsystem there
is one word in the Unit Table. This word is
used both by the MCP and the IOM, and con-
tains a lock bit which prevents conflicts of
interest. This word indicates the path or paths
to the unit, and provides other information
needed by the IOM.

I/C QUEUE HEAD AND TAIL WORDS

For each device in the I/O subsystem there
is one Queue Head word and one Queue Tail
word. These words contain the address of the
first IOCB and the last IOCB, respectively, in
the queue of I/O requests for the unit. If there

2-39

are no IOCB’s to be processed for the unit,
these words will be empty.

STATUS QUEUE HEADERS

For each IOM there is a Status Queue
Header. Fields in the Status Queue Header
contain the addresses of the first and last
IOCB in a queue of completed IOCB’s. Thus,
the Status Queue Header allows each IOM to
maintain a single queue of completed I/O re-
quests. Periodically, the MCP checks these
completed requests.

INPUT/OUTPUT CONTROL BLOCK

An Input/Output Control Block (IOCB) con-
tains the information needed by the IOM to
perform one I/O operation on a device. I/O
Control Blocks (see figure 1I-4-5) contain infor-
mation needed to link queues of IQCB’s to-
gether, to describe the I/O operation to be per-
formed, to locate the data buffer to be used
for the operation, and in the case of completed
IOCB’s, to store the result descriptor describ-
ing the completed operation. A generalized il-
lustration of an IOCB is shown in figure II-4-
5.

2-40

FORWARD LINK —— TO NEXT 10CB N QUEUE

SIDE LINK ——® T0 SIDE LINKED 10CB (IF ANY)

AREA DESCRIPTOR ——® TO FIRST DATA WORD OF BUFFER

10CW
THESE TWO WORDS DESCRIBE THE
OPERATION TO BE PERFORMED.

coL

RESULT DESCRIPTOR DESCRIBES THE COMPLETED OPERATION.
(ERROR-FREE OR TYPE OF ERROR)

WORDS
FOR 4
SOFTWARE r
USE

—

Figure 1I-4-5. I0CB Format, Simplified

CHAPTER III

CENTRAL PROCESSOR MODULE

SECTION 1

FUNCTIONAL DESCRIPTION OF THE CENTRAL PROCESSOR MODULE

The B 7700 Central Processor Module,
which is a highly parallel machine and com-
pletely program-compatible with the B 6700
Processing System, consists of three major
functional sections that are operationally inde-
pendent:

a. The program section, which performs in-
struction decoding operations of object code
strings and address calculations of absolute
addresses.

b. The execution section, which performs all
arithmetic and logical data manipulation oper-
ations.

c. The storage section, which performs all
storage related functions.

Figure III-1-1 is a simplified block diagram
showing the general interconnections and data
flow between the three sections. Communica-
tions between the sections is established by
operations queues.

The program section consists of the program
buffer and barrel, program control unit, the
fault control logic and the address unit. The
program section is responsible for extracting
each instruction from the program code string
and initiating processing of the instructions,
and for the update of the program index and
program syllable registers. The program sec-
tion also controls and responds to the fault in-
terrupt system. The primary responsibility of
the program section is to separate the object
code string into operations which are then
placed in the appropriate queues for execution
section. A few instructions are executed en-
tirely by the program section, such as an un-
conditional branch, and others are executed in
part, such as the address calculation portion of
Value Call.

The execution section consists of the execu-
tion unit and the execution unit input queues.
The execution section is responsible for all
data and control manipulations. The execution
section performs all arithmetic and logical op-
erations as well as stack related control func-
tions. The execution section is driven in an or-

derly manner tfrom a first in first out list of
operations placed in its operator queue by the
program section.

The storage section consists of the storage
unit, the stack buffer unit, the associative
memory and the communications unit. The
storage section is responsible for all storage
related functions. Some of the storage sec-
tion’s duties are implied such as maintaining
the stack buffer, but most operations are ex-
plicit in that they result directly from the
processing of program code. Implicit
operations for the storage section are placed
in the input queue of the storage unit by the
program section or in the storage output regis-
ter by the execution section. It is the responsi-
bility of the storage section to determine if an
address reference points to local storage or to
main memory, in which case, a main memory
cycle is necessary.

These major sections are subdivided into
units which operate relatively independently.
The operation of each of the units of the CPM
is described separately. First some of the basic
operational concepts of the CPM are presented
to aid in understanding the physical and con-
ceptual design of the Central Processor Mod-
ule.

In general, the program operators in the
program code string are fetched from memory
in multi-word segments and placed in the pro-
gram buffer. The operators are extracted one
at a time by the program control unit and
each is separated into one or more miecro oper-
ators, which are queued for processing by the
execution unit. When possible the program
control unit determines what data will be re-
quired for execution of the micro operators
and requests this data from the storage unit.

For literal values, which are contained in
the code string, the program control unit ex-
tracts the data and forwards it directly to the
execution unit. Therefore, as the execution
unit processes the micro operators, the re-
quired data is usually available, allowing the
execution unit to perform the required proe-

3-1

3-2

PROGRAM SECTION EXECUTION SECTION

COMMUNICATIONS
UNIT

e]
| I |
l et ch)‘m;TOL - l |
LOGIC |
I A ADDRESS I I
| COMPUTATION |
UNIT
| T | |
| L“f—‘l |
I |
I o] ool evecuron ||
I UNIT | QUEUES I
I ¥ \
B R & _
| I m
| | { |
| |
l PROGRAM BARREL ST%T«A.‘iE |
| ALIGNMENT | QUEUE SELECT l
I 00D EVEN | |
| L ORAG ASSOCIATIVE STACK
|| poenay | | mesa | Tuwr corren | | oorren ||
| I (ASM) l
| | A
| | = |
r— = |
| |
|

STORAGE SECTION
MAIN MEMORY

40140

Figure Ill-1-1. Simplified Block Diagram of Central Processor Module

essing without delay. Results derived by the
execution unit may either be stored in one of
the local memory areas or may be sent
through the storage unit and the communica-
tions unit to main memory. By using this pipe-
line technique, relatively high-speed process-
ing has been achieved without compromising
equipment reliability.

To further increase processing speed, exten-
sive use has been made of buffer memory
areas contained within the processor. These lo-
cal memory areas are used to store program
code, a portion of the active program stack,
and referenced variakbles. The following exam-
ple shows how these local memory areas in-
crease processing speed by eliminating many
memory references.

OPERATIONAL CONCEPTS OF THE CENTRAL
PROCESSOR MODULE

The B 7700 Central Processor Module (CPM)
is designed as a pipeline processing unit;
therefore each processing station may be oper-
ating simultaneously on a different task. As
any instruction is passed through the process-
ing pipeline, successive operations are per-
formed by the various processing stations un-
til the instruction is fully executed.

USE OF DIVISION OVERLAP AND LOCAL
BUFFERING

Figure III-1-2 shows a simple statement
along with its compiler generated code and
traces each operator as it is encountered in
each of the major processing units.

The sequence begins as the first Value Call
arrives at the program control unit. This unit
selects the appropriate display register and
calculates the absolute address.

The address and operator are placed in the
input queue of the storage unit. At the same
time, the operator is placed in the input queue
of the execution unit. The execution unit then
begins to wait for the return of the value.
Next, the program control unit processes the
Name Call. Detection of the Name Call alerts
the program control unit to look at the next
instruction to set the context of the Name
Call.

The appearance of the Index allows the
Name Call to be concatenated with the Index
operator. The address calculation is performed
and the address and operator are placed in the
storage unit’s queue. A micro operator indicat-
ing a concatenated Name Call is placed in the
execution unit queue. The Index operator is
now placed in the execution queue.

The second Value Call is then processed by
the program unit and the address and
operator are placed in the queues. During this
time, the storage unit has been busy with the
first Value Call. The program control unit now
has the second Name Call and has finished its
concatenation investigation and subsequence
address calculation. It then places the address
and operator in the storage unit queue and
passes another pseudo operator to the execu-
tion unit. The storage unit just prior to this
has completed the first Value Call, which was
found in the stack-buffer area of the proces-
sor, and has passed the operand to the waiting
execution unit. The storage unit now goes to
the next item in its queue, the first Name Call
reference.

The execution unit investigates the control
information of the first Value Call and places
it in the top-of-stack location. The execution
unit is now waiting for the Name Call refer-
ence which will be found local in the stack buf-
fer and thus will be transferred by the storage
unit. At the same time, the program control
unit has placed the Index Load Value in the
execution unit queue. The storage unit finds
the first Name Call reference to be local in the
stack buffer and places it in the execution unit
queue. The execution unit now begins the In-
dex function and the storage unit goes on to
the second Value Call and then on to the sec-
ond Name Call.

The execution unit subsequently accepts
both of these calls through its queue and be-
gins the computation involved with the Index
Load Value instruction. When the execution
unit supplies to the storage unit the address
for the fetch, the memory reference is initi-
ated, if the data to be fetched is not in loecal
memory, and the execution unit holds until
the return of the value. Upon return of the
value, the execution unit places the data in
the storage unit. These units remain in syne
until the store is completed.

The program control unit has, at this point,
proceeded to the Branch instruction, but prior
to this, a temporary hold was placed on the pi-
peline, because the Index Load Value operator
has caused the execution unit queue to go full.
The hold was released as soon as a slot became
available and the program control unit went
on to the branch.

The branch point is calculated and presented
to the program buffer control for local test. If
the branch point is within the portion of pro-
gram code held in the program buffer, the lo-
cal pointers are readjusted and processing con-
tinues. If the code at the branch address is not
available in the program buffer, then a main
memory reference is initiated by the storage
control unit.

3-3

STATEMENT
Al ce]

COMPILER CODE
VALC; NAMC; INDX; VALC; NAMC; NXLV; STOD;

PROGRAM UNIT

vIN]I|VvIN|N]S B8
ala|n|alalx]|T[* R
LimlolL{mlLlo ¥ % WAIT - EXECUTION UNIT INPUT QUEUE IS FULL
clcixlclclvlo N
EXECUTION UNIT % WAIT FOR STORAGE UNIT COMPLETION
% V]ix|N I VI|N N N S 7$>
A Al N [afa x X T T
L Ml 0 LM L L 0 0
c cl x lcle v v 0 ()
STORAGE UNIT
v N v N N s
A A A A X T
L M L M L o
c c c c v D

Figure 111-1-2. Division Overlap

3-4

MEMORY OVERLAP

In the preceding example, all reference data
were found in the local buffers. However, the
pipeline processing technique is efficient even
when none of the required data is found local.
This efficiency is illustrated by the following
example.

As shown in figure III-1-3, the program con-
trol unit progresses without interruption
through the entire sequence of code. All three
Value Calls are found to require main memory
fetches. The execution unit expends much of
its time waiting for the first two Value Calls
to be transferred into its queue by the storage
unit. The third Value Call, however, complete-
ly masks the multiply time. Although average
time was used for multiply in the diagram, a
maximum multiply would still conclude before
the third Value Call arrived at the execution
unit queue. The program control unit again
took advantage of concatenating the Name
Call and thus reduced the time necessary for
the execution unit’s portion of the store. The
Branch instruction was again completed long
before the execution unit reached this point in
the program.

PROGRAM BUFFER

The program buffer provides local storage
for up to 32 words of the executing program’s
object code. The algorithm for loading the buf-
fer is based on anticipation rather than wait-
ing until all code in the buffer has been proec-
essed, so that full advantage is taken of the
natural idle time on the main memory bus. Be-
cause an average of 3.5 instructions
(operators) are contained in each program
word, program loops are often entirely con-
tained within the buffer. Therefore, in many
cases, branching may take place without a
main memory reference for the new program
word. (A branch which may be made with no
main memory reference is referred to as a “lo-
cal branch.”

In addition, by fetching the code for the pro-
gram buffer in multi-word blocks, the number
of memory accesses required is significantly
reduced.

As shown in figure III-1-4, the IC-memory
storage area of the program buffer is ar-
ranged in four blocks, with eight 60-bit words
in each block. Each eight-word block is further
divided into odd and even segments. For exam-
ple in block 0, words 0, 2, 4, and 6 constitute
the even segment, and words 1, 8, 5, and 7 con-
stitute the odd segment.

BUFFER WORD FORMAT

When fetched into the CPM, each word of
object code consists of six eight-bit syllables, a
tag of 011 (which identifies the word as con-
taining object code), and an odd parity bit. Be-
cause operators vary in length and because
they are packed in main memory without re-
gard for memory word boundaries, to ensure
operator integrity, separate parity bits are
generated on each syllable of the program
code prior to entry of the word into the buffer.
The parity is checked as the syllables are used.

The 60-bit program buffer word consists of
six. eight-bit syllables of code, six syllable
parity bits, three tag bits, an overall parity
bit, and two error-check bits. (The error bits
are always set to zero unless the program buf-
fer word is overwritten by an error word from
the communications unit.)

READING FROM THE PROGRAM BUFFER

To read a location in any of the local
memory areas in the processor, it is necessary
only to enter the address into the appropriate
read pointer register. (Refer to figure III-1-5.)
The decoding logic then selects the addressed
word and gates the contents of the location to
the storage area output as long as the read
pointer contents remain unchanged. Thus the
contents of the addressed location are always
available on the output, and the output can be
used as needed.

In the program buffer, two words, one from
an odd segment and the other from an even
segment, are addressed simultaneously. This is
accomplished by using two read pointers. The
program odd buffer (POB) is the read pointer
for the odd segments, and the program even
buffer (PEB) is the read pointer for the even
segments.

The two words read simultaneously from the
buffer storage come from consecutive ad-
dresses in main memory. One of the words
contains the beginning of or all of the next op-
erator to be preprocessed, and the other word
is the word which was fetched from the next-
higher memory address. The second word may
or may not contain syllables of the desired op-
erator as the operators are of variable length
and are not restricted to memory word bound-
aries.

WRITING INTO THE PROGRAM BUFFER

When a word of code is ready for entry into
the buffer storage, it is written into the buffer
word location (word 0 thru 31) pointed at by

3-5

9-€

STATEMENT
L:=I@U +K

COMPILER

VALC;, VALC;

MULT; VALC; ADD; NAMC; STOD;

PROGRAM UNIT

orrp<

vivimlv|aln]s 8
alalulaflolalr R
LL L|L p|lm|o U
clelrlc clo N
EXECUTION UNIT % WAIT FOR STORAGE UNIT COMPLETION
*]vl v M *
* A —- A v
|L| L L
c c T
STORAGE UNIT
—- W
v v v
A A A
L L L
] c ¢ c

40142

Figure ill-1-3. Memory Overiap

oo»
OTpz

(= Re R 7]

3%

K<)

2%

COo+4wv

&«

[« Mo B 10

48 BITS + PARITY

OUTPUT

f

48 BITS + PARITY

OUTPUT

t

EVEN 0DD
0 0 0 1
0 2 0 3
BLOCK 0 BLOCK 0
0 4 0 5
0 6 o 7
0 8 0 9
0 1 1
BLOCK 1 BLOCK 1
1 2 1 3
14 1 5
1 6 |
1 8 1 9
BLOCK 2 BLOCK 2
2 0 2 1
2 2 2 3
2 4 2 5
BLOCK 3 26 27 BLOCK 3
2 8 2 9
3 0 301
PROGRAM BUFFER FORMAT
OVERALL PARITY SYLLABLE PARITY
é%%gg 3 BITS|OA 8 BITS 8 BITS 8 BITS 8 BITS 3 BITS 8 BITS
CODE | TAG |P SYLL O SYLL | SYLL 2 SYLL 3 SYLL 4 SYLL 5
al01 PROGRAM BUFFER WORD FORMAT

Figure llI-1-4. Program Buffer Arrangement

3-7

the five-bit program write pointer (PWP). (See
figure III-1-5.)

The two high-order bits are decoded to select
an eight-word block, and the three low-order
bits are decoded to select a word location
within the block. The actual write cycle is
initiated by triggering a single-shot circuit.
Each time a valid data word is written into
the buffer storage, the count in the program
write pointer is increased by 1.

The absolute memory address of the next
word to be placed in the program buffer is
held in the program upper register (PUR).

The program lower register (PLR) contains
the absolute memory address of the first word
of the block that has been in the program buf-
fer for the longest time. When the CPM is
started, the buffer is filled from word 0 thru
31. Thereafter, each word fetched normally
overwrites the oldest word resident in the buf-
fer.

When the processing of the last two words of
program code in the buffer begins, the pro-
gram-buffer logic requests the communica-
tions unit to fetch the next eight words of code
from main memory. The PLR contents are
then increased by eight.

The branch pointer (BR) identifies with two
bits which block of the buffer contains the
word whose address is in the PLR. The BR is
counted up each time the PLR address is
changed.

BRANCHING

Whenever a branch is executed, the branch
address is entered into the program address
register (PAR). Then the PAR contents are
compared with the contents of the PU and PL
to determine if the branch is local. If the
branch address is between the PU and PL ad-
dresses, the code is in the program buffer.

For local branches, the read pointers are up-
dated by determining the offset of the branch
address from the PLR setting. This offset, to-
gether with the BR contents, can then be used
to provide the block and word address of the
code in the buffer.

If the branch is not local, excluding branch
on true (BRTR) and dynamic branch true
(DBTR), the program buffer is declared empty
and the address in PAR is transferred to the
PUR and PLR, then to the communications
unit as the address for the eight-word fetch.

ADDRESS

TO BARREL SELECTION GATES

UNIT SYLLABLE COUNT -
LOCAL | READ POINTER
SET PEB POB INCREMENT -
LOGIC
PROGRAM
l l CONTROL
1
READ
BLOCK O DECODES BLOCK 0
. BLOCK 1 BLOCK |
PAR COMPARATOR WRITE BUFFER -
DECODES [I STATUS
BLOCK 2 BLOCK 2
PUR PLR BR
1 BLOCK 3 PWP BLOCK 3
0-2
INCR YIRITE POINTER EDIT NOT EDIT
INCREMENT
PWE PWP
3-4 3-4
PROGRAM CODE REQUEST CODE

COMMUNICATIONS UNIT

4li02

Figure llI-1-5. Program Buffer Unit

3-8

After the eight-word fetch is received from
memory, the PU contents are increased by a
count of eight. The next branch address is
then compared with the new PU and PL ad-
dresses.

For BRTR and DBTR operators, a check for
loop (CFL) is made to determine if the branch
is local in the next 4-word code block prior to
the actual fetch from memory. To do this, the
hardware increases the PU contents by 4 and
compares the PAR contents with the contents
of the PU and PL.

If the branch address is between the PU
and PL addresses, the program buffer is de-
clared empty and the address in PU is re-
turned to the previous setting, then trans-
ferred to the communications unit as the ad-
dress for the eight-word fetch. Thus, the last
block of code is saved so that branching back
can be performed locally in the program buf-
fer.

If the branch is not local in the four-word
code block, the hardware performs the branch
operation as explained in the previous
paragraph. The CFL condition is released
when the next change in direction occurs, or
when an enter, exit, or a return is processed.

EDIT MODE OPERATION

The operation of the program buffer is al-
tered during table edit mode. When the proces-
sor executes a Table Enter Edit operator, it in
effect branches to a block of code referred to
as an edit table. An edit table consists of a se-
ries of special operators used to edit data. One
pass is made thru the table each time the ta-
ble is used. The last operator in the table is an
End Edit operator. At the completion of the
table pass, the processor returns to the
operator following the Table Enter Edit
operator in the program code string.

Some of the program code string is main-
tained in the buffer during the table pass to
facilitate an orderly return after the edit
mode operators have been processed. There-
fore, during edit mode, two blocks of the buf-
fer are used for edit operators and two blocks
are assigned for keeping a portion of the pro-
gram code. The program write edit pointer
(PWE) flip-flops replace the two high-order
bits of the PWP during edit mode operation.
These PWE bits are then counted in a manner
that allows only the two blocks assigned to the
edit operators to be loaded during edit mode.
The two high-order bits of PWP remain un-
changed and are used to reestablish the write
pointer address on completion of edit mode.

On entry into edit mode, the PL address is
adjusted to account for the blocks of program
code which will be overwritten by edit
operators, then the updated PL address is

saved. On exit from edit mode, the PL address
is reentered into PLR. Then the PL address,
together with the block (BK) count, is used to
set up the PU address. (The block counter
shows how many blocks of program code were
in the buffer prior to entry into edit mode.)

VECTOR MODE OPERATION

Another change in operation occurs when
the processor encounters vector mode
operators. Vector mode operators facilitate the
repetitive execution of an operator or a group
of operators on all items in an array or a
group of arrays. When the vector mode
operators appear in a single word of code, the
logic simply forces an automatic one-word
branch backwards until all items have been
processed. When the vector mode operators ex-
tend beyond the boundaries of a program
word, advantage is taken of the automatic lo-
cal-branch-point detection.

PROGRAM BARREL

The program barrel, shown in figure III-1-6,
is a shifting mechanism used for aligning and
extracting the program operators from the
two words of code read from the program buf-
fer. The program barrel consists of one selec-
tion stage and one shift stage. The selection
state receives as an input the two program
words which are being read from the program
buffer.

SELECTION GATING STAGE

The selection gates align the two words read
from the program buffer so that the word in
which the beginning (most-significant portion)
of the next operator appears is placed in the
more-significant word position, and the other
word in the less-significant word position.
When the odd-even flip-flop (OEF) is set, the
odd word is placed as more significant. When
OEF is reset, the even word is placed as more
significant. The OEF flip-flop is complemented
each time the last syllable of a word is proc-
essed.

Only the eight most-significant syllables of
the two words are provided as an output from
the selection gates. The four least-significant
syllables of the word in the less-significant po-
sition are not required for decoding the
operator and are stripped off at this point. The
eight output syllables include at least the
most-significant syllable of the next operator
to be processed and the two syllables which
follow the most-significant syllable. All
operators can be decoded from this informa-
tion.

3-9

23 0

IDR IDP
!
24 BITS 3 BITS
OUTPUT OUTPUT
BSR PARITY
L BARREL SHIFT STAGE DECODES —] SELECTION
A
64 BITS [
OUTPUT
[’ BARREL SELECTION STAGE
96 BITS 12 PARITY
INPUT (12 ODD-EVEN CONTROLS BITS, ONE
SYLLABLES FOR EACH
OF CODE) SYLLABLE
[47 PROGRAM BUFFER]

41100

Figure 1li-1-6. Program Barrel

BARREL SHIFT STAGE

The shift stage is used to extract the most-
significant syllable of the next operator and
the two following syllables. These three sylla-
bles are then forwarded as the input to the in-
struction decode register (IDR). In effect, the
three syllables are left justified and then ex-
tracted. The three syllables required are se-
lected by decoding the contents of the barrel
select register (BSR). The contents of BSR
provide the syllable position of the beginning
of the operator being extracted. The BSR
count is increased by one when the 24 bits are
extracted.

As soon as the operator has been decoded,
the BSR count is advanced further if the oper-
ator contains more than one syllable. Each
time a BSR count cycle (from 0 thru 5) is com-
pleted, the end of a program word has been
reached. Then the OEF flip-flop is comple-
mented. When a branch occurs, both the BSR
and OEF are force-loaded to properly identify
the location of the new code in the program
buffer. The BSR is located in the program con-
trol unit and is updated under control of that
unit.

SYLLABLE PARITY CHECKING

Separate gating is provided to extract from
the program barrel the syllable parity bits as-
sociated with the three selected syllables of

3-10

program code (see figure I111-1-6). The 12 parity
bits from the two words read from the pro-
gram buffer are applied to the parity gating,
which uses the OEF and BSR contents to se-
lect the three desired bits. These parity bits
are loaded into the IDR parity register (IDP),
at the same time as the operator syllables are
loaded into the IDR.

PROCESSING OF LT48 OPERATOR

Most of the operators consist of three or less
syllables. However the LT48 operator has a
one-syllable operator code in one program code
word and a 48-bit literal value contained in the
following program word. The execution of this
operator consists of placing the 48-bit literal
value on the top of the stack. Because only 24
bits are output from the barrel, the 48-bit lit-
eral value is not available at the barrel out-
put. However, the LT48 operator code is
passed thru the barrel, and the 48-bit literal
value is available at the program buffer out-
put. Therefore the value is passed to the
execution unit directly from the program buf-
fer output. This is accomplished by applying
both the odd-word and even-word outputs from
the program buffer to the execution unit’s
data input register (the EWR), then comple-
menting OEF and using the result to select
the literal value for loading into the EWR.
Then, so that the next two words of program
code are selected during the following

operation, the BSR is reset to 0 and OEF is
complemented once more.

PROGRAM CONTROL UNIT

The primary tasks of the program control
unit (PCU) are to decode the program
operators and to partition the object code into

a series of micro operators which are placed in
the appropriate queues for execution. Figure
III-1-7 is a simplified block diagram of the
PCU and shows the important operational flow
and control interconnections.

Two major registers in the PCU are directly
in the operator pipeline and constitute two of
the processing stations in the pipeline; these

ouR R PIR/PSR
QUEUE
]
TO SU ~<——-q DECODE Eﬁi—‘éi“
T0 EU,AU 1]]
T 23 0 21 0
RES IDUE
GENERATOR 'ER usT PC es
LL h)) A
QUEUE CONCATENATED
y - OPERATOR
- CONTROLS
MASK \
[
o= LLu
r OPERATOR | UNIT
(DECODE REQUESTS
AU ~
LL
21 0
SYLLABLE _
CONTROL PN NS
fFROM
TER,
T n lAU 8
A MASK 5 0 e
[
PARITY
CHECK BSR
23 0
IDR IDP
Y 4 7
PROGRAM BARREL
41103

Figure Ill-1-7. Program Control Unit

3-11

are the instruction decode register (IDR) and
the instruction execute register (IER). The
IDR is the preprocessing or “look-ahead” sta-
tion of the PCU. The IER holds the operator
when it is being divided into micro operators
and is the major execute register of the PCU.

INSTRUCTION DECODE REGISTER

As a “look-ahead” station, the IDR is used to
decode the program operator and to set up
conditions for PCU execution of the operator
in the IER. The operator remains in the IDR
until the PCU processing of the preceding op-
erator is complete, then the operator in the
IDR is passed on to the IER and the following
operator is loaded into the IDR. The 24-bit
IDR is loaded with the output of the program
barrel and, by its decodes, in conjunction with
the IER decodes, controls the output of the
program barrel.

The processing functions of the IDR include
the initiation of stack adjustments to provide
the proper configuration of operands in the ex-
ecution unit at the start of each operator, re-
questing access to other units within the CPM
when the operator decode indicates that com-
munication with other units is required, exam-
ination of the operator following each Name
Call operator to determine if the Name Call
and the following operator can be
concatenated, and initiation of the appropriate
timing sequence for IER execution of the op-
erator.

REGISTERS ASSOCIATED WITH THE IDR

The control registers associated with the
IDR are the instruction decode parity (IDP)
register, the program index next (PN) register,
the next syllable (NS) register, and the barrel
select (BS) register. The IDP register contains
the three syllable parity bits associated with
the syllables contained in the IDR and is used
in checking IDR parity.

The PN and NS registers contain the pro-
gram index and syllable counts for the
operator contained in the IDR. The program
index value, when added to the contents of the
program base register (PBR), provides the ab-
solute main memory address of the program
operator. The syllable count identifies the
starting syllable position in the memory word
of that operator.

The barrel select register, which identifies
the syllable position of the first syllable of the
next operator to be placed in the IDR, is up-
dated in accordance with the decodes from the
IDR and the IER. The contents of the barrel
select register controls the output of the pro-
gram barrel as previously described.

3-12

IDR DECODES

Decoding of the operator in the IDR provides
two types of decode signals: control decodes,
which are used for updating the contents of
the registers associated with the IDR, and op-
erational decodes, which are used in the pre-
processing of the operator in the IDR.

CONTROL DECODES

When processing of a new segment of pro-
gram code string begins, the contents of the
program base register, which is maintained in
the address memory area of the address unit,
are updated to provide the base address for
the code segment being executed. The memory
address of each operator in the segment is
maintained as an index to this base. This pro-
gram index and the associated syllable count
are passed along with the operator in the CPM
pipeline until the execution of the operator is
complete.

If some interrupt is encountered in the pipe-
line, the memory address of the operator is
thus available for re-execution or error report-
ing purposes. The program index and syllable
counts are established in the PN and NS regis-
ters. The contents of these registers are up-
dated by IDR and IER decodes as part of the
preprocessing of each operator. The syllable
count in the NS register is updated along with
the BS register contents. Each time an NS
register cycle, which is a count from 0 thru 5,
is completed, the PN count is increased by 1.

The control decode signals from the IDR are
also used to update the contents of the BS reg-
ister. The BS register contents are then used
to control the alignment of the next operator
coming out of the program barrel. The con-
tents of the BS register are upcounted by 1
each time the IDR is loaded. For monosyllabic
operators, no additional update is required.

For multi-syllable operators which will be
held in the IER for only one machine cycle,
additional updating occurs at the beginning of
the next machine cycle. However, for those op-
erators which will be held in the IER for sev-
eral cycles, additional updating occurs at
various times, but always quickly enough so
that the next operator may be in the IDR for
at least one machine cycle before transfer to
the IER.

OPERATIONAL DECODES

The operational decodes of the IDR contents
are used primarily for stack adjustments, for
concatenation investigation, and for gaining
access to other units as required.

To facilitate the issuing of micro-operators
which provide for the proper operand

configuration in the execution unit at the be-
ginning of each program operator, the PCU
must predict what top-of-stack operands will
be left in the execution unit at the completion
of each operator. This prediction is maintained
in the stack-A-operand (SKA) and stack-B-op-
erand (SKB) flip-flops in the PCU. When an
operator is in the IDR, the control logic deter-
mines what the initial operand configuration
for that operator must be. If the contents of
SKA and SKB indicate that the top-of-stack
operands in the EU will not be in the proper
configuration, then IDR Operational decodes
are passed to the IER which inserts stack-ad-
justment micro operators as required.

The purpose of the NAMC operator is to
place an IRW on the top of the stack. How-
ever, if the operator following the NAMC re-
quires that the address couple in the IRW be
evaluated to derive the memory address, the
NAMC operator is coricatenated with the fol-
lowing operator, so that the address couple in
the code string can be converted directly to an
address. The concatenation occurs whenever
NAMC is followed by an Enter operator, any
index operator, DBUN, LOAD, LODT, or store
operator. The IDR operational decodes are
used to detect when concatenation may occur.

Because the NAMC operator contains two
syllables, the third syllable in the IDR with
the NAMC operator is the operator code of the
next operator in the code string. When conca-
tenation is possible, the operational-decode sig-
nals set a control flip-flop to denote the action.

The IDR decodes are also used for access re-
quests. If the decoding of the operator in the
IDR shows that a fetch or store operation is
required for execution of the operator, the
IDR requests use of the storage unit, so that
when the operator is in the IER, the PCU may
queue a request for the required operation. In
a similar manner, if data is to be provided di-
rectly by the PCU to the execution unit along
with the micro operators, or if variant infor-
mation is to be loaded into the K and L
queues, the IDR decode signals request use of
the execution write register (EWR) for the
PCU.

INSTRUCTION EXECUTE REGISTER

The 24-bit instruction execute register is the
main PCU processing register. The IER is
loaded from the IDR each time the IER com-
pletes the PCU processing sequence of the cur-
rent operator. As the next operator is loaded
into the IER and deccded, the IER issues any
required stack-adjustment micro operators to
the execution unit. Then the IER issues the
required micro operator sequence to the EU.

All micro operators issued are placed in the
OW register in the PCU. The contents of the
OWR are then written into the execution unit
operator queue or, if the execution unit is
waiting for work, are passed directly to the ex-
ecution unit. The micro-operator codes issued
to the execution unit are eight bits in length.
Simple program operators require a series of
micro-operators to complete the operator func-
tions. In many cases, the operator code of the
program operator is issued directly to the
execution unit as a micro operator.

The primary timing control signals for PCU
processing are developed by a down-counter,
which is preset to the proper configuration
from IDR decodes. During processing, the IER
decodes issue a micro operator on each ma-
chine cycle. Issued along with each micro oper-
ator are variant codes and, in the case of li-
terals, data. Variant information and data pro-
vided by the PCU are loaded into the EWR
and then queued for EU use. Often the vari-
ant information supplied to the execution unit
is taken directly from the second and third syl-
lables of multisyllable operators. When a micro
operator requires a fetch or store of data for
execution, the IER decodes cause the address
to be queued for storage unit action.

When the last micro operator of a program
operator sequence is issued by the IER, the
PCU sets a special bit in the OW register
which informs the execution unit that this mi-
cro operator completes a program operator se-
quence.

Many of the micro operators issued by the
PCU can be executed in only one machine cy-
cle, others require multiple cycles for execu-
tion. When micro operators requiring several
machine cycles are executed, the execution
unit operator queue may become full. In such
cases, PCU operation is suspended until space
is available.

As previously stated, the program index and
syllable information remains with the operator
throughout the execution of the operator. To
accomplish this, the contents of the PN and
NS registers are transferred into the PC (pro-
gram current) and CS (current syllable) regis-
ters at the same time as the associated pro-
gram operator is transferred from the IDR to
the IER. Then, each time a micro operator is
issued, the contents of the PC and CS registers
are queued along with the micro operator for
execution unit use.

PREPROCESSING OF VALUE CALL AND NAME
CALL OPERATORS

The Value Call and Name Call operators are
the most frequently used operators in the

3-13

B 7700 operator set. Therefore, special process-
ing features are provided to facilitate one-cy-
cle execution of these operators.

The two-syllable Value Call instruction
(VALC) requires that the 14-bit address couple
in the instruction be evaluated to provide an
absolute address from which data are fetched
and placed on the top of the stack for EU use.

The two-syllable Name Call instruction
(NAMCO) indicates that the address couple in
the instruction may be used to form an IRW,
which is then placed on top of the stack. How-
ever, if the NAMC operator is followed by an
operator which would require evaluation of
the address couple to derive an absolute ad-
dress, then the NAMC is concatenated with
the following operator and the address couple
is evaluated immediately. NAMC is
concatenated when the next operator in the
program code string is any of the following:
ENTR, INDX, NXLN, NXLV, STOD, STON,
OVRD, OVRN, DBUN, LOAD, and LODT. If a
NAMC cannot be concatenated, an IRW con-
taining the address couple is placed on the top
of the stack for EU use.

The 14-bit address couple in the NAMC and
VALC instructions consists of a lexicographic-
level field (LL) and an index field (I). As
shown in figure III-1-8, the length of each of
these fields varies with the current lexic level
of the active program. The LL field ranges

from one to five bits in length and contains
only as many bits as are required to define the
current lexic level. The remaining bits are the
index field. (The bits of the LL field are in in-
verse order so that the least-significant bit of
the field is located in the most-significant bit
position of the address couple.)

To facilitate preprocessing of VALC and
NAMC, the PCU presupposes that every oper-
ator in the code string is either a NAMC which
can be concatenated or a VALC. Therefore, as
each operator is loaded into the IDR, it is as-
sumed to contain an address couple which
must be converted into an absolute address. If
subsequent decoding reveals that no address-
couple conversion is required, or that there is
no address couple in the operator, the conver-
sion is terminated with no loss in processing
speed.

When any operator is transferred from the
program barrel to the IDR, bits 21:5 of the
barrel output, which contain all possible bits
of the LL field of the address couple (if the op-
erator is a VALC or a NAMC), are gated with
a lexic-level mask in addition to being entered
intact into the IDR. The lexic-level mask gates
the LL field bits of the address couple and in-
hibits any bits which are part of the index
field. The lexic-level mask is set up by decod-
ing the current program lexicographic level,

OPERATOR FORMAT

V AL C N A MC
0
154 11 i 3 151 11 7 3
|
14} 10 6 2 1 10 6 2
ADDRESS ADDRESS
13 9l 5| 1 13(9] 5 1
COUPLE COUPLE
12 8 4 0 12 8 4 0
BIT ASSIGNMENT
CURRENT CURRENT CURRENT CURRENT CURRENT
LEXICOGRAPHIC LEXICOGRAPHIC LEXICOGRAPHIC LEX1COGRAPHIC LEXICOGRAPHIC
LEVEL LEVEL LEVEL LEVEL LEVEL
9-1 2-3 b7 8-15 16-31
(W (W (W
I T T
Ch L
LL[INDEX LL| INDEX LL| INDEX L [LL] INDEX
3l FIELD FIELD 3 FIELD FIELD
Lhl 1i-0 L 10-0 thl 9-0 th| 8-0

MOTE: LL indicates bit is part of lexic level field.

41104

Figure I1l-1-8. Address Couple Bit Assignment

which is maintained in the lexic level (LL) reg-
ister. The output of the LL mask, then, is the
bits of the LL field if the operator is a NAMC
or a VALC. In any event, these bits are loaded
into the five LS bits of the program read
pointer in the address unit.

If no request for use of the AU is pending,
the contents of the display register addressed
by PRP are read out of the address memory
area and entered into the display read regis-
ter. The LL field, now in PRP, is also written
into the lexic level write register (LLW) for
possible later use.

By this time, the decoding of the operator,
now in the IDR, is complete. If the operator is
either a VALC or NAMC, it contains an ad-
dress couple and the LL field is not trans-
ferred to the IER with the rest of the
operator, but is stripped out of the operator
code by use of the lexic-level mask. Therefore
when a NAMC or VALC operator is trans-
ferred into the IER, bits 20:13 of the IER (the
largest possible index field) contain only index
bits from the address couple. These bits are
now applied directly to the address-adder se-
lection gates in the address unit for use as one
of the inputs to the adder. The other input is
the base address now contained in the display
read register. Therefore, the adder output is
the absolute memory address described by the
address couple.

For a Value Call, the output of the address
adder is gated into the input register of the
storage unit, along with the PCU request for
a fetch and the EU-data-queue address re-
served for the requested data. This informa-
tion is then queued for storage-unit process-
ing. The same operation is performed for a
concatenated Name Call which requires a
fetch operation. (NAMC concatenated with an
index-type or Enter operator requires a fetch
operation.) For a name call-store combination,
the address and a request for a store are
queued for storage-unit, action, but the store is
not performed until the EU supplies the data
to be stored.

For an unconcatenated Name Call, the out-
put of the address adder is ignored, and an
IRW is built in the EWR. The address couple
for the IRW is formed by combining the index
value in the IER with the LL field, which was
saved for this purpose in the LLW register.

ADDRESS UNIT

The address unit (AU) contains the logic nec-
essary for the calculation of absolute ad-
dresses, both directly as in Value Call and in-
directly as in pointer update for string
operators. As shown in figure III-1-9, the func-

tional parts of the address unit are the display
write (DW) register, the display read (DR) reg-
ister, the address adder, the address-storage
area, and the read and write pointers (PRP,
ERP, and DWP) for the AU local storage. The
address unit is not directly in the processing
pipeline and is therefore not queue driven. It
is an autonomous unit only to the extent that
a write cycle into the address-storage area
need only be initiated and not completely con-
trolled by the initiating unit.

The local address-storage area comprises 48
locations, each location having 20 bits for stor-
age of an absolute address and two bits for
storage of address residue. The local storage
contains the 32 display registers used in
relative addressing within the active program
stack. Each display register in use contains
the absolute address of the MSCW for a differ-
ent lexicographical level. The display registers
are numbered in order from D0 thru D31; the
DO register contains the MSCW address for le-
xicographic level 0, the D1 register contains
the MSCW address for lexicographic level 1,
ete. To address within any level, the appropri-
ate D register contents are read, and then the
displacement of the desired item from the
MSCW is added to the MSCW address to pro-
vide an absolute address for the required item.

The remaining 16 locations of the storage
area provide storage for certain index, base
and miscellaneous registers. The registers
maintained in these locations are as follows:

Register Register Name
Mnemonic
SIR Source Index Register

DIR Destination Index Register
TIR Table Index Register

BOSR Base of Stack Register

S1LS Scratch (Space Local Storage)

PBR Program Base Register
SBR Source Base Register

DBR Destination Base Register
TBR Table Base Register

SNR Stack Number Register
FDR Program Dictionary Register

S2LS Scratch (Spare Local Storage)
ADZ Alternate DO register

APIR Alternate Program Index Register
ALL1 All I’s Register

LD1 Last D[1] used as SD1 base

All the contents of the address storage are
addressable by the SPRR and RPRR
operators. (A total of 64 registers are address-
able by these operators, 48 of which are in the
AU address storage area. Those registers
which are addressable but which are not con-
tained in the AU address storage are also ad-
dressed by use of the read and write decode

3-15

9l-€

ADDER
AU CONTROL
LOGIC RESIDUE CHECK
-———————————

TO ADDRESSABLE
REGISTERS NOT
IN AU STORAGE

EXECUTION UNIT,
PROGRAM CONTROL UNIT, STACK UNIT OR

STORAGE UNIT

[

:

ADDER

a§— CONTROLS

) [} f

4 ?
WRITE
DECODE
\ I
PRIORITY READ

SELECT ! DECODE

—

WRITE READ READ
POINTER POINTER POINTER
(owp) (ERP) (PRP)

EXECUTION UNIT
OR PCU CONTROL

41105

PROGRAM

UNIT

REGISTER (DW)

R —

READ
ER
R REGISTER R SﬁﬁggTION l@——————— CONTROLS
(DR)
} [} *
[]
.
® DISPLAY
[]
. PROGRAM
. CONTROL
> UNIT
3 I
J INDEX,
. BASE,
AND
° MISCELLANEOUS
o REG I STERS AU CifTROL
— RES | DUE
*- o CHECK
WRITE

]

EXECUTION UNIT,

STORAGE UNIT, VALUES l

Figure 111-1-9. Address Unit

circuits of the address unit.)

The display write (DW) register, buffers in-
formation being written into the address-stor-
age area so that the controlling logic can re-
lease immediately instead of waiting for the
storage cycle to complete. Residue of the ad-
dress being written is checked when the ad-
dress is contained in the DW Register. The DW
register is also used as one of the two adder
inputs. In addition, it serves as an accumula-
tor when more than one adder cycle is re-
quired. For example, in string processing, two
adder cycles are required when adding the in-
dex, a constant, and a base to derive an ad-
dress.

All writing into the storage area is con-
trolled by either the EU or PCU, but the DW
register may be loaded by the EU, or PCU
when its contents are to be used as an adder
input. The DW register contents are written
into the storage only when a write decode se-
lects a storage location and a write strobe is
generated by the AU control logic.

The DW register can be loaded in true or
complement form so the adder may be used for
addition or subtraction. Subtraction is used
when performing limit comparisons.

The display read (DR) register is the output
register of the address-storage area. The DR
register contents are always an input to the
address adder. The DR register is always
loaded with any information read from the ad-
dress-storage area. When a limit comparison is
required prior to a write cycle, the DR can be
used to buffer the contents of the limit regis-
ter so that the write cycle may be initiated
while the add cycle for the limit comparison is
in progress.

For write operations, the hexadecimal ad-
dress of the addressable register is entered di-
rectly into the six-bit display write pointer.
The write-decode circuitry then selects the ap-
propriate storage location and the write cycle
commences. For addressable registers not con-
tained in the address-storage area, the decode
logic selects the appropriate data paths to fa-
cilitate updating the addressable register.

There are two read pointers, the PRP which
is used exclusively by the PCU, and the ERP
which is used exclusively by the EU. Because
either the EU or the PCU may request a read
operation by loading the appropriate read
pointer, priority-selection logic is required to
resolve access conflicts. In general the PCU
has priority, but must release the AU after
one cycle. The EU has priority when the PCU
is in a hold condition and can maintain control
of the AU until it has finished any required
operations.

Access to the AU is granted by the control
logic. Like the write pointer, the read pointers
are loaded with any address of an addressable
register. If the address is in AU local storage,
aread cycle ocecurs and the contents of the ad-
dressed register is subsequently loaded into
the DR register. When an addressable register
not in local storage is read, the contents of the
register are gated to the execution unit by the
read-decode logic.

The two-input address adder adds the con-
tents of the DR register to the contents of ei-
ther the DW register or a value (such as a dis-
placement for Value Call) inserted directly
through the selection logic from the PCU.

The adder output may be routed to the EWR
in the EU; to the F, S, or LOSR in the stack
buffer; to the MAR or SIR in the storage unit;
to the PA or PIR in the PCU, or to the DW
register for use in a subsequent adder cycle.

The AU control logic monitors the output of
the adder to detect adder overflow, all 0 bit re-
sults, or the results of adder comparison.

The AU control logic provides the timing
and control signals necessary for operation of
the AU. The basic operations performed by the
AU include a read cycle, a quick-write cycle,
and a read-add-write cycle.

The read operation is performed in two ma-
chine cycles. During the first cycle, the con-
tents of the addressed location are read, and
during the second cycle the information is
routed thru the adder, combined with any
other input selected to the adder, and the re-
sult is routed to the appropriate destination.
For example, in address calculation for Value
Call, the appropriate D register is read, the
displacement is added to the contents of the D
register, and the result is sent to the SIR to be
queued for SU action.

The quick-write cycle is used by the EU to
update information in an addressable register.
The two-cycle operation consists of a load cycle
and a write cycle.

The read-add-write cycle is used to modify
the contents of an address-storage location
when the modification is based on the current
contents of the location. The operation is per-
formed in three cycles.

EXECUTION UNIT

GENERAL

The execution unit (EU) is the final stop in
the processing pipeline. The great majority of
instructions are not completed until the execu-
tion unit has processed the instruction. The
execution unit is the only unit in the processor
which operates on value data. It also has some
control word formation and address calcula-

3-17

tion responsibilities. This unit includes storage
for the two top of stack operands, A and B,
and may temporarily store parts of character
strings on which it is operating. The pipeline
processing technique is implemented further
in the EU. There exists within the EU, three
distinct processing stations: an operator level,
a command level, and a store level.

INPUT QUEUES

The execution unit like the program control
unit is queue driven. All operations and
operator associated data are placed into the
queues of the execution unit by the program
control unit. The value data inputs are sup-
plied by the storage unit or the communica-
tions unit. Since the queues are implemented
by memory chips, simultaneous read and write
can take place. The purpose of each of the var-
ious EU input queues is described in the fol-
lowing paragraphs.

OPERATOR QUEUE

The operator queue (QQ) is the storage area
for micro operators pending EU processing.
The use of the queue allows the PCU and the
EU to operate independently. Information to
be written into the operator queue is placed in
the order-code-write register (OWR). The PCU
loads the OWR, then initiates the write cycle.
The micro operator and control information in
the OWR are then written into the address se-
lected by the contents of the operator-queue
write pointer (OQW). Following the write, the
OQW count is advanced. The operator queue
contains eight 12-bit locations; each location is
loaded with the following information:

a. Bits 0 thru 7 contain the micro operator
code.

b. Bit 8 (END) is set if this micro operator is
the last in a program operator sequence.

e. Bit 9 (RPT) is the report bit, which when
set, directs the EU to notify the PCU when ex-
ecution of the micro operator is complete.

D. Bit 10 (ESB) when set, indicates that the
B operand location will contain data at the
start of the micro operator execution.

e. Bit 11 (ESA) when set, indicates that the
A operand location will contain data at the
start of the micro-operator execution.

The operator queue is read only by the EU.
The contents of the operator-queue read point-
er (OQR) provide the queue address for the
read operation. The read address is updated
when the EU is executing the last routine of
the previous micro operator if the queue is not
empty, no hold condition exists, and the EU is
not generating a micro operator. When the ad-
dress is updated, the new information becomes
immediately available at the output of
operator queue. When the output of the

3-18

operator queue is to be used, the micro-
operator information is entered into the EU
operator registers.

EU DATA QUEUE

The EU data queue (DQ) is an eight-word IC
local storage area organized as four two-word
groups. The purpose of the data queue is to
buffer data generated by the PCU preproces-
sing (look-ahead) logic. Literals, Value Calls,
and concatenated operators cause space to be
reserved, and, in the case of literals, data to be
entered. Each of the four group locations has
a validity bit associated with it. When the data
from a look-ahead fetch becomes available, the
storage unit places it in the reserved data-
queue location, and sets the associated group
validity bit. The second word of each group is
loaded with the second-half (least-significant
portion) of double-precision operands, or, in
the case of a non-present data descriptor, with
the absolute address from which the descrip-
tor was fetched. For single-precision words
other than non-present data descriptors, the
second word location in the group is left emp-
ty.
Writing into the data queue is performed by
the PCU, the storage unit, or the communica-
tions unit. Reading from the data queue is
performed by the EU only.

DATA QUEUE WRITE OPERATION

The input register for the EU data queue is
the EU write register (EWR). When a write cy-
cle is initiated, the contents of EWR are en-
tered into the address selected by the write
pointer (DQW) and flip-flop WLSQ. The data
group to be loaded is selected by decoding the
contents of DQW, and WLSQ selects which of
the two word locations in the group is to be
loaded. (The first word of the two word group
is loaded when WLSQ is reset.)

The PCU keeps track of the next group to be
filled by use of the data queue assignment
(DA) counter. When the PCU encounters a lit-
eral value, it loads the value into EWR, trans-
fers the DA count into DQW, initiates the
write cycle, and then advances the count in
DA.

When an operator requires data not con-
tained in the program code string, the PCU
posts in the storage unit operations queue a
request for the data together with the main
memory address of the data and the contents
of the DA counter. Then the PCU advances
the DA count, thus reserving space for the re-
quested data. When the storage unit or the
communications unit obtains the requested
data, the word is entered through the EWR
into the reserved data-queue location.

In order that the EU may know when a
group location has been loaded and whether a

single precision operand has been written into
the group location, there are separate data-
queue-valid (DQV) and queue-single-precision
(QSP) flip-flops associated with each data-
queue group location.

When a look-ahead fetch is performed by ei-
ther the SU or Comm Unit, the QRL (queue
read lookhead) flip-flop is set. Excluding cer-
tain conditions, the QRL, when set, allows the
EU to perform an early evaluation of the tag
information in the EWR while writing the
EWR contents into the data queue. (The
evaluation of tag information determines what
action should be taken to process the fetched
item.) An early tag evaluation can not be per-
formed when an item in the EWR is identified
as a non-present descriptor, DP operand, or
has a tag of 2, 4, 6, or 7.

DATA QUEUE READ OPERATION

The EU reads the information from the data
queue in the same order in which the PCU re-
served the group locations. Read addressing
for the data queue is accomplished by decod-
ing the contents of the data-queue-read (DQR)
pointer, which selects the group to be read,
and of flip-flop RLSQ, which identifies which
of the two words in the group is to be read.
The contents of the word location selected by
DQR and RLSQ are available on the queue
output lines. To use the information, the EU
simply gates the information onto the T bus.
The EU will not attempt to use the informa-
tion until the associated DQV bit is set.

EU LOOK-AHEAD DATA QUEUE

The control information provided with each
group written into the EU data queue is also
entered into an EU look-ahead data queue (EL
queue). This control information includes a
copy of bits 45 thru 50 of the data being en-
tered into the data queue and a bit which indi-
cates if the associated data-queue word is in
integer form.

The look-ahead information is addressed by
the data-queue read pointer, but the address
decoding is such that the look-ahead informa-
tion is available at the EL queue output when
the preceding data-queue group is being ad-
dressed. The look-ahead information is also
used to determine what commands should be
called to process the associated operands.

K AND L QUEUES

The K queue (KQ) and the L queue (LQ),
which are used in conjunction with the
operator queue, contain coded variant infor-
mation for use in execution of the related mi-
cro operator. The K and L queues each contain
eight 10-bit locations. The operator variant
codes are eight bits in length, and in the other
two bits of each location residue is maintained
on the variant code. Usually the variant infor-

mation supplied with a micro operator is taken
directly from the second or third syllable of
the program operator in the IER. Such
variables could be used to identify the length
of a selected field or a bit location in a word.
In other cases, the variant information is gen-
erated by the PCU to alter or further define
the related micro operator.

Addressing of the K and L queues for both
read and write operations is accomplished by
use of the operator queue read and write
pointers. Therefore, each time an entry is
made into the operator queue, an entry is also
made into the K and L queues although this
information may be all 0 bits. Likewise, when
an operator-queue location is addressed by the
read pointer, the associated locations in K and
L are also addressed.

The first 16 bits of EWR are used as the in-
put register for the K and L variant informa-
tion. The variant-residue (VNR) register in the
PCU supplies the residue for K, but the
residue for L is written directly into the queue
from the PCU residue generator.

The outputs of the K and L queues are en-
tered into the K and L registers in the EU.
Like the operator register, the K and L regis-
ters may be loaded directly from the PCU if
the queue is empty.

PIR AND PSR QUEUE

The PIR and PSR queue (PQ) contains the
PIR and PSR values associated with the micro
operators in the operator queue. (The PIR and
PSR, together with the contents of PBR, iden-
tify the absolute address and starting syllable
position of the associated program operator.)
The PIR queue is loaded with the contents of
the program current and current syllable reg-
isters. The PIR queue is written into at the
same time as is the operator queue and uses
the same write pointer (OQW) for addressing.

A separate read pointer PQR is used for the
PIR queue. The PQR is counted in a manner
which causes the PIR and PSR information as-
sociated with each micro operator to be avail-
able at the output of the PIR queue when the
micro operator is at the store level of execu-
tion in the EU.

Usually the output of the PIR queue is not
used. However, when the EU starts interrupt
processing, the output of the PIR queue may
be gated into the PN and NS registers to pro-
vide the PSR and PIR values associated with
the program operator being re-executed.

LEXIC LEVEL QUEUE

This queue (LLQ) contains either the lexico-
graphical addressing level of a particular oper-
ator in the operator queue or the value which
was in the PCU display read pointer (PRP)

when the associated micro operator was in the
IDR.

3-19

The current lexicographical level is written
into the queue any time the PCU processing
sequence for an operator includes timing
count Phase 9 (PH9). The PRP read pointer
value is entered into the queue when either a
Name Call (NAMC) or Value Call (VALC) oper-
ator is processed by the PCU. For all other op-
erators, no entry is made in the queue.

The information in the LL queue is then
available at the output of the queue for use by
the EU during the execution of the related mi-
cro operators.

Writing into the LL queue is accomplished
by use of the operator queue write pointer
(OQW), and reading from the queue is accom-
plished by use of the PIR queue read pointer
loaded into the IDR. (PQR).

MAJOR EU DATA CIRCUITS

As shown in figure 11I-1-10, the EU contains
five full-word data registers, three data buses,
local storage areas, and adder and shifting
mechanisms. These data circuits are described
in the following paragraphs.

ADDER

The most obvious major item required by the
execution unit is a fast adder. The adder used
comprises a single-carry-save adder which
drives a carry-propagate adder. The adder
fully propagates all carries each time it is
used, employing a high-speed carry look-ahead
technique.

To accommodate all single-precision mantis-
sas, the mantissa portion of the adder is 39
bits wide with an extension for multiply and
divide. This portion of the adder has three in-
puts. During multiply, two of the inputs are
used to insert selected multiples of the multi-
plicand, and the third input inserts the accu-
mulated product. By this method, six bits of
the multiplier are calculated on each adder
pass. The separate, seven-bit exponent adder
is included to facilitate single-precision, float-
ing-point arithmetic.

The adder is also used to perform double-
precision arithmetic. This is accomplished by
buffering the double-precision operands and
intermediate results in the local EU memory
area.

The adder provides an efficient means for
executing logical operations. The single-sum
and single-carry outputs, which are developed
for ea.n bit position by the first stage of the
adder, are selectively gated to derive the
logical AND, OR, and EXCLUSIVE OR func-
tions.

The adder output is checked for residue or
continuity errors. If either input to the adder
is invalid, a continuity error occurs. If the sum

3-20

is incorrect, a residue error is detected.
Separate residue is maintained on the expo-
nent and mantissa during floating point arith-
metic operations.

SHIFT MECHANISM

The barrel switch is a 48 bit wide, end-
around shifting mechanism. It is capable of
shifting by any number of bits from 0 to 47, to
the left. The barrel output is gated with en-
abling logic, which allows any number of bits
from 0 thru 48, out of the barrel, from the left
or the right.

The barrel has three shift stages. The first
stage shifts the input data by multiples of 12,
the second stage shifts the input by multiples
of 3, and the third stage shifts the input by
multiples of 1. The multiples are selected by
the contents of the shift register in which two
bits are used to define the selected multiple
for each shift stage. The shift amount, coded
in successive bit values of 1, 2, 3, 6, 12, and 24,
may be entered into the shift register in either
true or complement form. When this amount is
loaded in complement form, a right shift effec-
tively occurs; when loaded in true form, a left
shift is executed.

The barrel output gating enables a field of
any selected length or the entire word to be
extracted from the barrel. The allow register
contents determine the number of bits to be
extracted at the barrel output. Additional gat-
ing allows this field to be selected either right
or left justified.

If either the allow register or the shift regis-
ter was not loaded when the barrel is used, the
output of the barrel is declared invalid and a
continuity error is subsequently detected. Res-
idue is maintained on the contents of both the
shift and allow registers. A residue error in
the contents of these registers results in the
detection of an EU residue error. Residue is
also maintained on the data transferred
through the barrel. If the barrel output has a
residue error, an EU residue error condition is
detected.

LOCAL MEMORY

The execution unit also includes a local mem-
ory for storage of the top of stack operands,
character strings and intermediate results.
Memory chips are again used for this purpose.
Parity is maintained on each word in the oper-
and storage, except for DP arithmetic, and the
parity is checked each time a word is read
from local storage. The local memory is split
into two parts in order to be able to read two

CU PCU 35U
Y PC.U. CU AU SU e
QUEUE
WRITE v IR I | CONTROL
} EWR ‘
WRITE QUEUE
DECODES READ
L ' i
DATA
QUEUE READ
] DECODES
S BUS T BUS
! Tttt
[sTack
BUFFER X BUS
0——’
OPERAND AUXILIARY
STORAGE BARREL LOGICALS ADDERS XL
)
[sTack
BUFFER,
SU,AU
c D E F 6

40147

Figure I111-1-10. Execution Unit, Major Data Circuits

3-21

words simultaneously. The larger part is called
the operand storage; the smaller part is called
the auxiliary storage. The memory space is al-
located as follows:

Operand Storage (52 bits wide)

1. A/B space 0: Two alternate double-preci-
sion locations.

2. A/B space 1: Two alternate double-preci-
sion locations.

3. R space: Four words.

4. W space: Four words, which is some-
times used as two alternate locations of two
words each.

Auxiliary Storage (49 bits wide)

1. H: one word.
2. J: one word.
3. Bad C: one word.

The time required to cycle the memory chips
is comparable to the time required to
propagate the worst case carry through the
adder, so the memory fits neatly into the over-
all timing scheme. To maintain the fastest pos-
sible single precision execution times, single-
precision operands are buffered in the adder
and barrel input registers rather than in oper-
and storage.

The purpose for having alternate locations
for A and B is to be able to form a new A or
B without destroying the original input oper-
ands. This is desirable for diagnostics and er-
ror recovery. Two values for the A and B oper-
ands are maintained in storage during the ex-
ecution of each program operator. The con-
tents of the A and B operands at the start of
the operator are held unchanged in the initial
allocation area, while the current allocation
area is successively loaded with the current
values of the operands. When the final result
of the program operator is obtained, the allo-
cation is interchanged, so that the final copies
of the current operands are designated as the
initial configuration for the next program op-
erator.

The adjustment of the memory allocation is
controlled by use of the EU allocation flip-
flops. These allocation flip-flops also facilitate
rapid execution of stack related operators.

When three top-of-stack operands must be
maintained in the EU, as during execution of
the Rotate Stack operator, the W storage area
is used to maintain the third top-of-stack item.

DATA REGISTERS
The execution unit includes five full-word
data registers (C, D, E, F, and G registers).

3-22

The A and B words of the B 7700 are imple-
mented in the EU operand storage, as previ-
ously described. Intercommunication between
the data registers is carried out by the use of
three data transfer buses (T bus, S bus, and X
bus).

There is one register which loads the oper-
and storage, and which is the EU output regis-
ter for communication with the rest of the
processor. This register is the C register. All
data error checking, as well as parity and
residue generation is accomplished when a
data word is in the C register.

The D register is the only barrel input regis-
ter. Any data entered in the D register is im-
mediately shifted by the barrel and allowed
out of the barrel, in accordance with the con-
tents of the shift and allow registers. Because
the D register is the only barrel input no selec-
tion gating is necessary.

Because the adder is used often, it is espe-
cially important that the delay between the
registers and the adder be minimized. This is
accomplished by transferring the contents of
the adder-input registers into the adder with
no selection gating. Therefore certain regis-
ters, namely the E, F and G registers, are ded-
jcated as adder input registers, and actual
adder selection is accomplished at the input to
these registers. The E register has special sig-
nificance in that it is the accumulator, while
the F and G registers supply new inputs. The
E and F registers also have six-bit exponent
fields which are inputs to the exponent adder.

Unless the contents of these data registers
are specifically “held”, the contents must be
transferred during every machine cycle or the
word will be marked invalid. Therefore to
maintain validity of the A and B operands
when they are not being used for processing,
the E register and T bus are often assigned to
keeping the A operand valid, while the F regis-
ter and the S bus are assigned to keeping B
valid.

DATA TRANSFER BUSES

Placing the outputs of the adder, the barrel,
the registers, and the operand storage onto
buses which go to the registers (which in turn
are the inputs to the adder, barrel and oper-
and storage) is the fastest way to transfer
data without using excessive amounts of hard-
ware. The data transfer buses, which consist
of multiple input OR gates, are designed to
match the stack type features of the simple
operators and the micro operators. This ap-
proach led to the implementation of two major
data transfer buses, one serving as the top
element of the “bus stack” and the other serv-
ing as the second element. In simple

operations on single precision data, the A op-
erand is on the T (top) bus, and the B operand
is on the S (second) bus. During complex oper-
ations, data segments will be moved onto the
T and S buses as inpuats for micro operators
commands.

The processing requirements of simple and
micro operators suggest particular data paths
for the buses. In particular, each bus must go
to those registers which give the bus access to
the adder, the barrel, the operand storage, and
areas external to the execution unit. Inputs to
the stack go to the top position so the operand
input (for Value Calls, Literals, etc.) from the
data queue or queue input goes to the T bus
only.

Arithmetic results are left in the top posi-
tion, so the adder output goes only to the T
bus. The extension of the stack (stack buffer)
goes to the S only to handle stepping up (‘“pop-
ping””) the stack. When executing a monadic
operator with both A and B full initially, it is
desirable to load B back onto the S bus at the
end of the operator, so the operand storage
output is routed to the S bus. However, it is
also desirable that the inputs to the “bus
stack” for micro operators go to the top posi-
tion so the operand storage also goes to the T
bus. Field results are left in the top position,
so the barrel output is applied to the T bus.
Certain other paths to the buses are available
in order to hold operands on the buses or to fa-
cilitate particular algorithms.

Various special paths from the buses to the
registers exist to speed up multiply and divide
and these special paths are also useful for
scale left and scale right. There is one other
special path, called the X (auxiliary) bus,
which is not part of the “bus stack”. The X
bus is used during multiply and other extend-
ed arithmetic calculations to speed up these
computations. During multiply, the X bus
transfers to the adder registers a quantity
equal to three times the multiplicand.

MAJOR EU CONTROL CIRCUITS

Figure I1I-1-11 shows the major EU control
circuits. These circuits include the operator
and command registers; the K, L, and R regis-
ters; A, B, and W control registers, and the A,
B, R, and W pointer registers.

The A and B control registers are used to
maintain ready access to the control informa-
tion provided with the A and B operands. Such
information includes the tag bits, the sign bits,
and a bit which indicates if the related data is
in integer form. When three top-of-stack oper-
ands are maintained in the EU, the W control
register is used for the control bits of the third
operand. If during execution of an operator,

the control information may be altered, the
contents of these control registers are de-
clared invalid until the updated information
can be loaded from the C register. The regis-
ters are initially loaded as the data becomes
available to the EU.

The pointer registers (AP, BP, RP, and WP)
are used for addressing a particular segment
of a word contained in the EU local storage.
To extract part of a word from EU local stor-
age, the pointer contents are decoded to pro-
vide a word address and a digit location within
the word. The word portion is used for reading
the proper word from operand storage and the
digit information is used in setting up the
shift and allow registers so that the desired
segment can be extracted by use of the barrel.
For repeated operations, the contents of the
pointer register is updated by use of a special
adder, and the updated contents are then
loaded back into the pointer for use on the
next cycle.

The K and L registers receive the variant in-
formation from the K and L queue, or, for dy-
namic field operators, from the C register. The
information in K and 1. may be decoded or, for
field operators, may be routed thru the K-L
adder, to provide information for extraction of
a desired field. The output of the K-L adder is
K-L+1, therefore in field and bit operators
when K contains the starting bit, and L con-
tains the length, the K-L adder output gives
the shift amount required to right justify the
desired field in the barrel, and the L register
contents provide the input for the allow regis-
ter.

When the K register contains the scale value
for scale operators, the amount in K is trans-
ferred through the K-L adder to the R regis-
ter. The R register is a repetition counter. For
scale operators, after each cycle, the count in
R is decreased by use of the subtract logic and
the difference is loaded back into R until the
operation is complete. The R register also
serves to check the binary value of the K-L
adder output. (Effectively, this conversion con-
sists of dividing the binary input by three,
then placing the remainder as the two least
significant bits of the quotient.) The conver-
sion of K-L and L values are loaded into SH
and AL.

The remaining major control registers, the
operator registers and the command registers
are the primary control registers of the EU.
The operator registers are used to decode the
micro operators and the command registers
are used to generate the data transfer signals

3-23

UPDATE

ADDER

OUTPUT SELECTION

- TO SHIFT & ALLOVW

¢—————— TO T BUS

A PNTR B8 PNTR R PNTR W PNTR CUBTRACT
A
- TO SHIFT
INPUT SELECTION
R REGISTER
T ;
CREG
W CONTROL A CONTROL B CONTROL
REG I STER REGISTER REGISTER K-L ADDER
[) [T0 [T0
SHIFT ALLOW
C REG STACK
BUFFER
K REGISTER L REGISTER
| A T T
CREG CREG
DQ ELQ
[|
KQ La
EWR
T0
CONTROL
DECOD ING
ARITHMET IC ARITHHET IC 0§E§A¥SR STRING
OPERATOR REG COMMAND RER COMMAND
OWR » 0
| conTrROL woRD | conTroL woRD = o:gszroa WORD
OPERATOR REG COMMAND Pon COMMAND
41111 Al

3-24

Figure 1ll-1-11. Execution Unit, Major Control Circuits

for execution of the micro operators. The use
of these registers is described in the following
paragraphs.

BASIC EU OPERATION

As previously described, the EU does not op-
erate on basic program code (program
operators), but rather it executes micro
operators forwarded to it by the PCU. One or
more micro operators are executed in complet-
ing each program operator. The major advan-
tage in this method is that many program op-
erators are quite similar in execution, so that
the same micro operator may be issued for a
group of program operators.

The micro operators are grouped by function
into four families: the arithmetic family, the
string family, the control word family, and the
word family. To simplify micro operator decod-
ing, separate operator and command registers
and separate timing counters are provided for
each micro-operator family. The fifth and
sixth bits of each eight-bit micro-operator code
identify the family to which the micro
operator is assigned.

When a micro operator is read from the op-
erator queue, it is entered simultaneously into
each of the four operator registers. However,
the fifth and sixth bits of the eight-bit micro-
operator code are not loaded into the operator
registers, but are decoded to enable the use of
only the appropriate operator register. At this
point, the timing counter for the selected
family is also enabled. The micro operator is
decoded, and the first of a sequence of
operator commands is generated. One coded
command is entered into the appropriate com-
mand register at each count of the timing
counter. Each command is held in the com-
mand register for only one machine cycle, dur-
ing which the command is decoded.

The use of command registers allows groups
of sub-commands to be generated as efficient-
ly as possible. The sub-commands are data
transfer and control signals. The command
register generation of these data transfer sig-
nals determines the use of the data registers
and data bus networks in the EU. The signal
which loads a command into the command reg-
ister is also used to route the information
from the data buses to the data registers.

On the next effective clock, the command de-
code causes the necessary transfers of the
data units thru the selected logic (such as the
adder or the barrel shifting mechanism) to the
data buses. Because the command registers
are loaded with a new command on each effec-
tive clock, on a given clock, one command is
loading the buses while the next command is

selecting the buses to the registers. The only
requirement for compatibility between the two
commands is that the resulting bus configura-
tion of the first command is compatible to the
input bus requirements of the next command.
(The “bus configuration” refers only to the
presence or absence of data on each bus.)

For example, if data in the E and F regis-
ters were to be added by one command and the
next command required that the sum be
routed thru the barrel shifting mechanism,
then the command decode of the first would
generate a data transfer signal which would
route the adder output to the T bus, while the
signal which loads the second command would
simultaneously cause the contents of the T
bus to be routed to the barrel input register (D
register).

The next effective clock would then load the
second command, while the sum on the T bus
would go to both the D register for use in the
second command and, automatically, to the C
register for error checking and for storage of
a copy of the result of the add operation. This
automatic routing of the results of each com-
mand to the C register is the “store-level” ac-
tion required for each command.

When the contents of the C register are to
be transferred (unloaded) to a location other
than EU local storage (such as transfer to the
SU, the AU, or some EU register), the transfer
is controlled by a coded store-level command
entered into the store (ST) register.

The execution of each micro operation en-
tails the processing of a series of one or more
commands. However, although the enabled
command register is loaded with a new com-
mand on each effective clock, not all of these
commands are issued by the decode of the mi-
cro operator in the operator register.

Each command register is allowed to reload
itself with successive commands when a
natural unit of actions requires a certain se-
quence of commands. Such a sequence of com-
mands is called a routine. At the end of the
routine, the operator register is allowed to
load the command register and the timing
count is advanced. The command load for the
last command of a routine generates a final-
command signal, which enables the operator-
register output and the timing count.

For each micro operator, when the last com-
mand generated by the operator-register de-
code logic is loaded to the command register,
the operator-level signal, final routine, is pro-
duced. When the final-routine signal has been
generated, the operator register is loaded with
the next micro operator from the operator
queue.

3-25

The last micro operator of each program op-
erator is specially tagged by the PCU. When
this micro operator has been fully executed,
the EU prepares for the next program
operator. This preparation consists of checking
for interrupts and of switching the allocation
of the EU local storage areas so that the final
stored results of this program operator are
designated as the initial A and B configura-
tion of the next program operator. During
execution of this next program operator, this
initial operand configuration will be saved,
while the current A and B operands are repea-
tedly entered into the alternate A and B stor-
age locations. This initial configuration must
be maintained for possible use in error recov-
ery and diagnostics.

EU ERROR DETECTION METHODS

Three error-detection systems are used in
the EU, namely, parity checks, residue checks,
and continuity checks. Parity is used to detect
errors in EU local storage and in data received
from other units. Mod 3 residue is used to de-
tect errors anywhere in the EU data paths
and data registers, but not in either the EU lo-
cal storage or most control registers. Also, the
residue logic checks addresses sent to the EU
from the AU or SU. In addition, residue is the
primary means for detecting errors caused by
an extra data transfer signal. Continuity
checking, the use of a validity bit which indi-
cates if the current contents of a register are
valid, is used to detect missing, and sometimes
extra, data transfer signals for the most com-
monly used EU data paths.

The implementation of these methods pro-
duced the following results:

a. The EU continuity logic provides a consi-
derable check on the sequence of operators
and control bits sent to the EU by the PCU.

b. The EU residue system detects errors in
arithmetic operations, field and bit extractions
and insertions, and barrel shift operations.

¢. The EU parity logic detects data storage
and transfer errors involving the EWR, the
EU local storage, the associative memory, and
the stack buffer.

d. Continuity and residue checks detect most
errors involving the generation of subcom-
mands and data transfer signals.

STACK BUFFER

The stack is an area of memory assigned to
a job to provide storage for basic program and
data references. The stack also provides tem-
porary storage of data and job history. When
a job is activated, a linkage between its stack
and the top-of-stack operands (A and B) is es-

3-26

tablished by the stack pointer register (3),
which contains the memory address of the last
word pushed into the top of the stack. The
stack buffer serves to extend the stack
memory area into processor local IC memory
and to provide quick access for stack
manipulation by the execution unit. (See fig-
ure I11-1-12))

STACK BUFFER FUNCTION

The primary purpose of the stack buffer is
to hold, locally, a portion of the stack environ-
ment. New stack items are entered into the
stack buffer from the EU in such a manner
that the last item placed in the stack is the
first to be extracted. After the two top-of-
stack positions in the EU are filled, loading a
third operand onto the top of the stack causes
the first to be pushed into the stack buffer. As
entries are pushed into the stack buffer, and
saturation is attained, a segment of buffer en-
tries is autonomously moved into main
memory so that the stack buffer maintains the
top area of the stack memory area. Any stack
adjustment to main memory is always accom-
plished in multi-word segments in order to
take full advantage of the phased memory sys-
tem. Thus, the stack buffer tends to capture
the current addressing environment of the ex-
ecuting program stack.

In the B 7700 processing system the stack
buffer can be directly addressed, within limits,
as if it were actually an area of main memory.
The direct addressing of the stack buffer is
transparent to the programmer. Therefore,
knowledge of this action is not necessary for
the programmer.

STACK BUFFER OPERATION

As shown in figure III-1-13, the major
elements of the Stack Unit include the stack
buffer, stack link (KL) register, stack vulnera-
bility (KV) register, limit, local; and vulnerabil-
ity comparators, stack length (KLN) register,
subtractor, and associated stack controls.

The stack buffer is a 32-word local storage
area consisting of four 8-word segments. Each
storage word in the stack buffer consists of 54
bits. These bits comprise 48 bits of informa-
tion, three tag bits, a parity bit, and two mem-
ory error bits. The memory-error bits are de-
fined as follows:

SBS3 SB52
0 1 No error.
1 1 1 bit error during a fill operation.
1 0 Error other than a 1 bit error during

a fill operation.

EXECUTION UNIT

— — — — — /7 "

LOCAL STORAGE

MAIN MEMORY

I | LOSR
| TOP OF] | ‘ ’
STACK COMPUTE 1
OPERANDS |—| HARDWARE | - I
| (A AND B) |
INPUT/QUTPUT |
PATH OF DATA
TO/FROM STACK l
| S REG.
SREG. |—-e TOSWORD ’ -——J T
STACK
BUFFER
AREA
CURRENTLY STACK
IN USE AREA
ASSIGNED
TO
KLREG. [———®= PROGRAM
STACK |
BUFFER I
l STACK STACK
MEMORY AREA
| AREA CURRENTLY
IN USE
LEGEND FOR STACK BUFFER l
REGISTERS ‘
KL BUFFER ADDRESS OF OLDEST I
STACK BUFFER ENTRY [-—
S ADDRESS OF THE TOP ITEM IN THE J
STACK BUFFER | v
BOSR

Figure 1ll-1-12, Stack Buffer and Stack Memory Area

3-27

The buffer may contain from 0 to 32 words
of the active stack. All valid contents of the
buffer have contiguous main-memory ad-
dresses. The main-memory addresses for the
contents of the stack buffer are indicated by
three 20-bit registers: the S register, the stack
link register, and the stack vulnerability regis-
ter.

The stack register (S register) holds the ad-
dress of the top item in the stack buffer. Also
functions as the stack buffer read/write point-
er for POP/PUSH operations.

The stack link register (KL) contains the ad-
dress for the bottom (or oldest) item in the
stack buffer. In addition, the KL register pro-
vides memory address information for Comm
Unit functions as the stack buffer read point-
er during empty operations, and as the stack
buffer write pointer during fill operations.

The third register, the stack vulnerability
register (KV) along with four top of stack vul-
nerability flip-flops (TKV0 thru TKV3) are
used to identify fetched buffer locations be-
tween S and KV (S > MAR > KV). The purpose
of this logic is to detect when the EU pops
stack buffer contents that were previously
fetched and placed in the EU data queue by
the Storage Unit. This condition will occur
during certain program applications.

Any time the Storage Unit fetches an ad-
dress between S and KV, the TKV flip-flop cor-
responding to the relative address (0 thru 3)
above the address in the KV register is set. If
the EU executes a pop out of an address iden-
tified by a set TKV, the stack buffer sends sig-
nal KRSN.1 to the EU. As a result, the EU
notifies the PCU of change of direction, a clear
queue is issued by the PCU, the Storage Unit
fetch is again executed, and the instruction,
which follows the instruction calling the fetch,
is issued to the EU by the PCU.

Initially KV is set to S-4 during the return
or Set Processor Register “S” operation. In all
following operations, any change of S contents
results in a corresponding change of KV con-
tents. Consequently, the contents of KV al-
ways remain at S-4.

Any set TKV flip-flop is cleared if four con-
secutive pushes into the stack occur before a
pop is executed. All set TKV flip-flops are re-
set if a return/SPRR, store, or push condition
occurs.

In local return or local SPRR operation, the
subtractor subtracts the contents of KLR from
the least significant bits in the MAR, then
adds to the difference the count of one. The
result is placed in KLN to identify the new
stack length.

3-28

The memory copies present (MCP) flip-flop,
when set, informs the Storage Unit to store to
main memory even though a store or overwr-
ite is found local in the stack buffer. MCP is
set anytime a fill operation is required before
executing an EU pop operation. MCP is reset
when a word is pushed into the top of the
stack buffer.

The 5-least significant bits of the S register,
MAR register, and KL register are decoded to
select stack-buffer word locations, which range
from 0 thru 31. When storing to or fetching
from the top of the stack buffer, the S register
is selected as the pointer into the stack buffer.
MAR register is selected as the pointer source
for the Storage Unit, KL register is selected as
the pointer source for the Comm related oper-
ations; fill, empty and purge.

FETCHING THE TOP ITEM FROM THE STACK
BUFFER

When the top item in the active stack is re-
quired in the EU for use as the A or B oper-
and (an action referred to as a “pop” of data
from the stack), a main-memory fetch is not
required unless the stack buffer is empty.

If the stack buffer is not empty, the top item
in the buffer is read from the buffer and
transferred to the EU, and the contents of
both the S register and the KV register are de-
creased by 1. At the same time, the stack buf-
fer checks to ensure that the address in S is
not less than the address in F. If S is less than
F, then stack underflow is detected. (F con-
tains the address of the top MSCW in the ac-
tive stack.)

If the stack buffer is empty and a “pop” is
required, first the address in KL is decreased
by 4. The KL address is passed to COMM and
used to fetch the top four words of the active
stack from main memory. The contents of KL
are used as a buffer address then counted up
as each word is received. After the four words
have been entered into the stack buffer, the
contents of KL are decreased by four so that
it again points to the bottom word in the buf-
fer. (This action is called a “fill” operation.)
With the required information now in the
stack buffer, the “pop” described in the pre-
ceding paragraph occurs.

ADDING A NEW ITEM TO THE CONTENTS OF THE
STACK BUFFER

When the A or B operand in the EU must be
placed in the active stack to establish the
proper operand configuration for execution of
the next operator, the operand is transferred
into the stack buffer. Because this operand is
added to the top of the active stack. the

operation is referred to as a “push” of data
into the stack. A “push” of data from the EU
into the buffer will not cause a store to main
memory unless the stack buffer is full.

If a “push” is required when the stack buf-
fer is not full, the S register contents are in-
creased by 1, then the operand to be added to
the stack is transferred from the EU to the
stack buffer and written into the stack-buffer
location identified by the contents of the five
least-significant bits of the S register.

If the MCP flip-flop is set, the KLN register
is preset to 1 so that the first push is effec-
tively into an empty stack. Also, the contents
of the S register (S + 1) are loaded into KL to
indicate that only one location is valid in the
stack buffer.

If the stack buffer is full and a push is to be
performed, four buffer words are stored to
main memory, and then the data in the EU
may be placed in the stack buffer. (This
operation is referred to as an ‘“empty”
operation.)

This is accomplished by requesting COMM to
perform an overwrite of the four oldest words
into memory. The KL address is passed to
COMM and used as the start address for the
overwrite. Because KL register functions as
the read pointer for the stack buffer, COMM
increases KL contents by 1 as each word is
transferred to memory. At the same time, the
contents of KLN are decreased by 1. After the
“empty” operation, the push of new entries
into the stack buffer from the EU may pro-
ceed as described in the preceding paragraph.

Each time a push is to be performed, the
stack buffer. compares the contents of the S
register to the contents of the limit of stack
register (LOSR). The LOSR contains the ad-
dress of the highest usable location in the ac-
tive program stack. If S equals LOSR, a stack
overflow interrupt is generated.

FETCHING AND STORING OF LOCAL INFORMATION

The stack buffer maintains up to 32 words of
the top items in the active stack. The storage
unit can fetch from or store to any point in
the buffer that is within the local addressing
environment. Therefore fetch requests made
by the EU for any of the items “captured” lo-
cally in the stack buffer can be fulfilled with-
out a main memory access. When updated in-
formation is stored to an address which is lo-
cal, the store operation is performed to the
stack buffer.

However, if the contents of MA are equal to
KL, or the MCP is set, the information is also
stored to memory because it may be the least
significant half of a double precision word.
The local addressing environment includes all
items between S and KL.

For local stores or overwrites, the selected
SU data queue information is simply written
into the stack buffer location pointed to by the
least significant 5 bits of the MAR.

For local fetches, the selected buffer infor-
mation is simple transferred to the EWR reg-
ister. At the same time, a comparator deter-
mines if MAR is greater than KV and if S reg-
ister is greater or equal to MAR. If both of
these conditions are met, the operation is not
a vector mode fetch, and the two least
significant bits of MAR are set to some binary
count of 0 thru 3, one of four TKV flip-flops is
set. This identifies that the fetch was obtained
from one of the top four locations in the stack
buffer.

STACK BUFFER PURGE OPERATION

A store to main memory is initiated when
the stack buffer is purged. A purge causes all
buffer words with main memory addresses be-
tween S and KL to be stored to memory. After
a purge operation, the stack buffer is marked
empty. A stack-buffer purge occurs each time
an SPRR63, SPRR52, RDLK, MVST or SLMT
operator is executed.

If RDLK or SLMT is preceded by FMFR,
stack purging will not occur.

ASSOCIATIVE MEMORY

The associative memory (ASM) is a general
data buffer, implemented to provide fast ac-
cess to frequently used variables and descrip-
tors which are outside the area contained in
the stack buffer.

The ASM is loaded with any item fetched
from main memory except those items fetched
during execution of the masked search for
equal, linked list lookup, or fetch memory fail
register or any operators preceded by a fetch
main memory reference operator. As shown in
figure III-1-14, the major elements of the ASM
include the following:

a. Data Array - Consists of 1024 words, each
word of which contains 48 data bits, three tag
bits, a data valid bit, and an error bit. The
1024 words are divided into 64 blocks (0 thru
63), each block of which contains four four-
word groups.

b. Address Array - Consists of 256 address
words, each address word of which contains 12
most significant bits of main memory address
plus 2 bits of residue. The 256 address words
are divided into 64 blocks (0 thru 63), each
block of which contains four address words.

c. Priority List Array - Consists of 64 (0
thru 63) priority words, one word for each one
of the 64 address array blocks. Each priority
word contains three two-bit priority codes.
These priority codes identify the oldest ad-

3-29

0€-€

]
FROM ' v !
‘l OVERFLOW ADDER | STORAGE UNIT | EXECUTION UNIT [STORAGE
LOSR=MAR AND X (. 1 1! DATA
UNDERFLOW i 1 C.REG | [EWR 11 QUEUE
F>S DETECTION
L — —_ - — J
POP/
PUSH
LIMIT LOSR — S REG
COMPARATOR | READ DATA
f STACK .WRITE DATA
{ BUFFER
J F REG @8 KL REG 32 WORDS MAR KL-REG
MAR M L) 1
] 54 BITS
S-REG SUBTRACTOR
S=MARKV
KV REG hg——| N— — LOCAL
RETURN/
SPRR
VULN FILL
COMPARATOR EMPTY/ KLN
PURGE]
r—— v - - - B D
MAR s reG | |
S=MARSKL CA REG INPUT REG CLN
' |
| |
LOCAL | COMM UNIT |
COMPARATOR L o 1
* MEMORY TO STORAGE UNIT
KL-REG FILL COPIES PRESENT TO ST "
MAR OPERATION &= AND STACK UNIT
S-REG CONTROL LOGIC
PUSH
OPERATION ™

Figure 1lI-1-13. Stack Unit, Block Diagram

dresses within an address array block as fol-
lows:

Priority Code Definition
Bits
b and 4 Third oldest (or second newest) address
word.
3 and 2 Second oldest address word.
1and 0 Oldest address word.

NOTE
The newest address is derived
from decoding Priority List regis-
ter output into a two-bit code (7
and 6).

d. Priority List Register — Displays the word
in the Priority List Array selected by memory
address currently available in the ASM.

e. Address Residue Decoder — Subtracts the
residue of bits 0 and 1 from residue bits 20 and
21 of the current memory address in the ASM.
The resultant residue, along with the new ad-
dress, is stored in the proper address array lo-
cation and is also sent to the address compara-
tor.

f. Address Comparator - Compares the 12
most significant bits of the current memory
address and the associated residue with each
one of the four address words (plus their
residue) stored in the selected address array
block. If any address word compares with cur-
rent memory address, the comparator develops
a two-bit code to identify that address word
and a signal which informs the SU or CU that
information was found locally in the ASM.

g. Priority List Shifter - Shifts the three
two-bit codes of the PL register right or left
by multiples of two bits. The output of the
shifter is then written back into the addressed
word location of the priority list array. The
conditions for shifting the three two-bit
priority codes are as follows:

1. When an address word in the address
array block is designated as the newest
address by a priority code, all codes to
the left of the code identifying the new-
est address are shifted right by two
bits.

For example:

NEW Decode of PL PL5,4 PL3,2 PL1,0

0,1 Reg. PL7,6
00 11 10 01 00 (orig.
state)
00 11 10 01 (next
state)

2. When an address word in the address
array block is designated as the oldest
address by a priority code, all codes to
the right of the code identifying the old-
est address are shifted left by two bits.

For example:

NEW Decode of PL PL5,4 PL3,2 PL1,0

0,1 Reg. PL7,6
11 01 11 10 00 (orig.
state)
01 10 00 11 (next
state)

h. Selection Logic - Selects two-bit code
from address comparator when storage unit
has control of ASM or when CU is performing
stack empty operation or entering an error
word into the ASM. Selects bits 0 and 1 of pri-
ority register when CU is performing a fill op-
eration in the ASM.

ASM LOCAL OPERATION

On all local feteh, store, and overwrite
operations, a check is made under control of
the storage unit to determine if the requested
information is currently contained in the asso-
ciative memory. As shown in figure III-1-14,
the contents of the MAR are presented to the
data array, address array, and address compa-
rator through the address selection and ad-
dress decoder logic. The control circuitry of
the ASM reads the four addresses in the ad-
dress array block which is selected by address
bits 2 thru 7, then the comparator circuit com-
pares these addresses with address bits 8 thru
19, and the 2 bit residue decode.

If a compare exists within the four ad-
dresses, the address groups is declared local
and a two-bit code, identifying this group, is
passed onto the data array logic. In effect, the
two-bit code provides the enabling controls for
reading from or writing into the corresponding
four-word group in the data array.

Other enabling controls are provided by the
two least significant bits of address. These bits
select the word location (0, 1, 2, or 3) within
the four-word group. For local fetches, the
data word is simply read out to the EWR in
the execution unit. For local stores and over-
writes, the data from the storage data queue
is strobed into the proper word location of the
ASM. Note that protected stores are detected
on the store to ASM operations. In the event
that a protected write is found in the ASM,
the store to ASM operation is terminated.

The decode of memory address bits 2 thru 7
selects one of the 64 priority array locations.

3-31

UPDATED DATA FROM SDQ
ADDRESS NEW DATA FROM CU
SELECTION
AND DECODE WRITE STROBE DATA DATATOEWR
LOGIC | ARRAY -
—a| (1024X54)
0 -
1
2
PURGE
WRITE STROBE ADDRESS | READ 4 ADDRESSES + RES
———————®={ ARRAY
FROM - (255X19)
CA AND
MAR
REGISTERS 7 STORED
8 IN ADDRESS A COMPARISON
ARRAY RESIDUE | COMPARISON o,
ADDRESS
comparaTor [25T
.
.
ADDRESS i
19 RESIDUE
E" DECODER SU & CU CONTROLS SELECTION |NEWO,1
——— ——————
2 PRIORITY LOGIC
LIST REG.)
o PLO,PL1 (OLDEST ADDRESS) i
R -
PRIORITY !
WRITE STROBE LsT - 2> | PLo—pLs PRIORITY |
ARRAY . £ : . LIST
PURGE (64X6) 3 PURGE SHIFTER
4 SU & CU CONTROLS
5
- PL6,PL7 T
DECODE | (NEWEST ADDRESS)

Figure 1ll-1-14. Associative Memory

The priority word in that location is then read
out to the priority list register and passed onto
the priority list shifter. Here, after the
memory address is designated the newest ad-
dress, the order of the three two-bit priority
codes is updated to designate the three oldest
addresses with the selected address array
block. The new order of address codes is then
written back into the addressed location of the
array.

ASM FILL OPERATION

The ASM fill operation begins by decoding
address bits 2 thru 7 from the CA register. As
in the ASM local operations, the decode of
these bits selects one of the 64 block locations
in the data array, one of the 64 block locations
in the address array, and one of the 64 priority
list array locations. The priority word in that
location is read out to the priority list register.
Then on command from the CU, the oldest ad-
dress location, as defined by bits 0 and 1 in the
priority list register, is invalidated by writing
zeros into the associated address residue bit

3-32

locations. As the new address is written in, the
data word received by CU is subsequently
written into the data array location referenced
by the oldest address word and the two LSB’s
of address in the CA register. The two LSB’s
of address in the CA register are counted up
so that next data word can be placed into
proper ASM location. Upon completion of the
fill operation, correct residue is generated and
written into the associated residue bit loca-
tions of the address word.

ASM PURGE OPERATION

The hardware can invalidate all information
in the ASM and initialize all locations in the
priority list array when necessary such as
when entering the MCP for reallocation. To
purge the ASM, 0’s are written into all address
residue bits. To initialize the priority list ar-
ray, binary codes of 00, 10, and 01 are written
into bit locations 0, 1; 2, 3; and 4, 5, respective-
ly, of each word in the array.

STORAGE UNIT

The storage unit (SU) controls the initiation
of memory fetches other than program code
fetches, stack fills and empties, and of all
store operations. The actual operations with
main memory are performed by the communi-
cations unit, but the storage unit assembles
the memory address znd control information
and for stores supplies the data to the commu-

PCU (OP. CODES)

nications unit. As part of its functions, the SU
controls the checking of the stack buffer and
associative memory local addresses to deter-
mine if the required operation is to be per-
formed locally.

The storage unit is capable of performing
overlapping operations. Such overlap occurs
whenever a main-memory fetch is initiated.
While the communications unit is fetching the
requested information, the storage unit can go
on to the next entry in its operations queue. If

AU EU

l

SIR
— —_—
ORPEE(E‘|21E:|)?N ADDRESS STORAGE
3 —
DATA QUEUE

STORAGE UNIT
— OPERATIONS QUEUE —
- —
EU
OP. l
CODES
FROM EU
EU * | '
OP CODE VARIANTS LENGTH
FLIP-FLOPS FLIP-FLOPS REGISTER MAR| ADDRESS
l l l TOEY

STORAGE UNIT
CONTROL LOGIC

TO COMM UNIT
STACK BUFFER
AND ASM

'

CONTROLS TO COMM UNIT,

EU, SB, AND ASM

Figure lil-1-15. Storage Unit

3-33

that operation references an item that is local
in the stack buffer or the associative memory,
then the local reference is completed in paral-
lel with the main memory reference. The over-
lap is not restricted to one operation. The stor-
age unit is free to process operations from its
queue until another main-memory reference is
required.

The block diagram of the storage unit, fig-
ure I1I-1-15, shows the general flow of infor-
mation through the unit. In preprocessing the
operators in the program code string, the PCU
determines if a fetch or write-type operation is
required for the execution of the operator.

Only fetch-type operations, such as Value
Calls or Name Calls concatenated with an in-
dex-type or enter operator, are initiated by the
PCU. If such an operation is required, the
PCU operation codes are passed directly to the
SU variant flip-flops and length register. At
the same time, the memory address for this
operation is calculated by the AU and passed
directly to the MA register. For write-type op-
erations (stores, overwrites, and certain
string-type operations which execute write op-
erations) the PCU enters a wait bit into the
operations queue.

If the store or overwrite is concatenated
with a Name Call, the memory address is
loaded in SIR and then queued with the wait
bit. If the address information is not available,
the wait bit is queued without an address, and
the address is supplied during execution by
the EU. If the operation queue is empty when
a PCU job is available and the EU is not re-
questing the SU, in addition to being written
into the queue, the job is passed directly to the
variants flip-flops and length register, and the
address, if available, is passed to the MA reg-
ister. The storage unit data queue is used to
hold the information for store-type operations.
The information to be stored is always sup-
plied by the EU.

INPUT TO STORAGE UNIT OPERATIONS
QUEUE

The 6-bit input operation register and stor-
age input register (SI) serve as the write regis-
ters for the storage unit operations queue. The
PCU loads the 6-bit input operation register,
then initiates the write cycle. The types of in-
formation which can be loaded into this regis-
ter include the following:

1. 1WT - Wait bit is set whenever a store or
overwrite operation is to be performed.

2. 1IMR - Memory reference bit is set when-
ever a fetch is preceded by a FMMR (force
main memory reference) operation.

3-34

3. 1QL0 & 1QL1 - Two bits which identify
the EU-data queue address for fetch
operations.

4. 1LD - Look for double precision bit is set
whenever a single word fetch or certain vector
mode single word fetches are performed.

5. 1L2 - Length two bit is set whenever a
fetch of the MSCW and RCW is required as
the result of the PCU preprocessing a return
or exit operator. This bit is also set when a
two word vector mode fetch is required.

The contents of the SI register include a 20-
bit memory address field and two bits of
residue on the address. The memory address
and residue are loaded by the AU when avail-
able.

STORAGE UNIT OPERATIONS QUEUE

The storage unit operations queue is a local
storage area containing eight locations. The
operations in the SI register are written into
successive locations in the queue, and subse-
quently read from the queue and processed by
the SU in the order in which they were
queued. The queue address for writing into
the queue is provided by the storage
operations write pointer (SQW). The pointer is
counted up after each write operation. A read
pointer (SQR) provides the location in the
queue of the next word to be read from the
queue.

LOADING THE STORAGE UNIT OP CODE
FLIP-FLOPS

The OP code flip-flops are the primary con-
trol flip-flops for EU-initiated jobs. The con-
tents of these flip-flops identify the SU
operation currently requested by the EU. The
operations are defined as follows:

OPERATION SRW STY SPT SFB SIL SML
Fetch 0 0 0 0 0 0
Fetch Memory 0 1 0 0 0 0
Fail Register
Overwrite 1 0 0 0 0 0
Single Word Store 1 0 1 1 0 0
Multiple Word 1 1 1 0 0 0
Store
Read with Lock* 1 0 0 1 0 0
Requestor Inhibits 1 0 0 0 1 0
Load*

Memory Limits 1 0 0 0 0 1
Load*

*This operation is performed as an overwrite-type
operation by the SU.

LOADING THE STORAGE UNIT VARIANTS
FLIP-FLOPS

There are seven variants flip-flops which
contain additional control information for the
operation currently being performed by the
SU. These flip-flops are loaded from either the

queue, input operation flip-flops, PCU, or the
EU. The type of information loaded into the
variants flip-flops includes the following:

1. SBY - Bypass operations queue. SBY flip-
flop is set by all EU-initiated jobs, except
those cases involving certain store and
overwrite operations. This flip-flop is only set
by stores arising from tracing through a chain
of IRW’s or linked descriptors. This flip-flop is
not set when an overwrite is issued to the SU
as a result of the EU processing the step and
branch operator.

2. SEW - Request use of the EWR in the
EU. SEW flip-flop is set by all EU-initiated
jobs, except overwrite operations not within a
string operator.

3. SQLO and SQL1 -- Two bits which identify
the EU-data queue address for PCU fetch op-
erations.

4. S4A - 4 word ASM. S4A flip-flop is set by
all operations, except Masked Search For
Equal, Linked List Lookup, fetch of MSCW,
RCW for Exit and Return, and operators pre-
ceded by FMMR.

5. SMR - Memory reference. SMR flip-flop is
set whenever the SU receives a PCU or EU-in-
itiated job as the result of executing a pro-
gram operator preceded by FMMR.

6. SL.LD - Look for double precision. SLD flip-
flop is set whenever EU-initiated IRW fetches
(excluding those issued by the enter or
evaluate operator) and load transparent fetch-
es are performed. This flip-flop is also set
whenever PCU-initiated single word fetches
and certain vector mode single word fetches
are performed.

LOADING THE STORAGE UNIT LENGTH
REGISTER

The length register is a 3-bit register which
contains the number of words to be stored or
fetched for PCU or EU-initiated operations.
All operations have a length of 1 or 2, except
certain jobs issued by string and edit
operators. String and edit fetches can have a
length of 4, string stcres have a length of 4,
and string overwrites have a length of 4, ex-
cept for the last overwrite which can have any
length (up to 4 words).

STORAGE UNIT DATA QUEUE

The storage unit data queue contains four
52-bit word locations. A separate write pointer
(SDW) and read pointer (SDR) are used for ad-
dressing in the SU data queue. Writing into
the queue is performed only by the EU. Infor-
mation is read from the queue under control
of the SU. The information taken from the
queue is usually passed to the communications
unit for storage in main memory, but is also
sent to the associative memory and stack buf-

fer when the store is to an address which is lo-
cal.

Because the EU must determine that the
store was completed successfully before addi-
tional operators can be executed, the SU data
queue contains the data for only one store op-
eration at a time. The queue is four words
long so that it may hold the data for any mul-
ti-word store operation.

MEMORY ADDRESS REGISTER

The MA register, which contains the
memory address for the current operation, is
loaded from the queue, from the EU, from the
Al, or directly from the SI register. The ad-
dress in the MA register is sent to the stack
buffer and associative memory to allow these
units to determine if the address is local, and
is forwarded to the communications unit for
use in main memory operations.

For multi-word operations, the starting ad-
dress is forwarded to the CU, then the address
in the MAR is counted up so that a check for
local addresses may be performed on each ad-
dress involved in the multi-word operation.

STORAGE UNIT CONTROL LOGIC

The timing and controls for SU operations
are provided by this portion of the SU. The op-
erations include special fetches, read with lock
functions, single or multi-word fetches, pro-
tected stores, or overwrites. At the start of
any operation, the control logic obtains access
to the ASM, and, if necessary the SB and the
EWR. Then the CU is started if an EU-ini-
tialed fetch is to be performed, and a check is
made to determine if the address is local in
the SB or ASM. The CU is not required during
overwrite and stores if the address is local in
the SB, the stack does not contain memory
copies, and the MA is not equal to KL (oldest
entry in stack buffer). If MA equals KL, the
information in location referenced by KL is
stored to main memory because it may be the
least-significant half of a double precision
word. If, during a local store operation, a pro-
tected write is discovered in that location, the
CU and SU operations are terminated. Also,
the CU operation is terminated if a protected
write is found in main memory.

For single-word fetch operations, if the in-
formation is locally available in the SB or
ASM, the information is transferred to the
EWR in the EU and the CU operation is termi-
nated. However, the CU performs a residue
check on the address even though the address
is local. If both SB and ASM contain the infor-
mation, only SB information is transferred to
the EWR. A check is performed to determine
if information in EWR is a double precision op-

3-35

erand (tag 2) or is a nonpresent descriptor (bit
47 set). If a tag 2 is found, a local check of
next address is performed for second half of
the double precision operand. If non-present
descriptor is found, the memory address from
which the descriptor was fetched is sent to the
EU-data queue.

For multi-word fetch operations, if all of the
information is available only in the stack buf-
fer (above KL) or ASM, the CU operation is
terminated. If some of the information is
available only in the stack buffer or ASM, the
portion in main memory is fetched, then the
portion in the stack buffer or ASM, if not cop-
ied in stack buffer, is fetched.

For store and overwrite operations queued
by the PCU, a wait bit is set in the operation
code. When the operation is performed, this
wait bit causes the control logic to hold the op-
eration until the required data has been en-
tered into the SU data queue. If the address is
not provided from the queue, the SU also
waits until the MA is loaded by the EU or the
AU. When the information is available, the
control logic enables the read lines of the SU
data queue and disables the write lines of the
queue until the operation is complete. For sin-
gle word and multi-word store operations, if
address is local, the SU changes the store to
an overwrite operation and sends the informa-
tion found in local storage to the EWR. There
a check is made to determine if information
being replaced in local storage has protect bit
on (bit 48) before the local store is completed.
If the protect bit is on, the write into local
storage is not performed, and the CU
operation is terminated. If a store is preceded
by a FMMR instruction, the local storage
words are not examined for protect bit be-
cause the words in the equivalent memory ad-
dresses are more current than those in local
storage. Thus, it becomes necessary to use
memory flashback to determine if any of the
memory words are protected. If the memory
addresses do not contain protected words, the
SU changes the store to an overwrite
operation and then proceeds to complete the
local storage operation. If a protected word is
sensed, the memory returns the failsoft com-
mand, which, in turn terminates the local
store and CU operations.

On completion of any store or overwrite op-
eration, the control logic resets the SU data
queue pointers to zero and enables the write
lines when CU has completed its portion of the
operation.

3-36

COMMUNICATIONS UNIT

The communications unit (CU) provides the
interface between the CPM and main memory.
All main memory accesses are performed by
this unit. Requests for memory operations are
made to the CU by the program buffer, the
storage unit, and the stack buffer. Informa-
tion fetched by the CU from memory is for-
warded to the execution unit, the stack buffer,
the associative memory, or, for program code,
to the program buffer.

Access to the CU is granted to the request-
ing CPM units on a priority basis. First
priority is given to the stack buffer, because
the EU is waiting for the results of any re-
quest made by the stack buffer. The stack buf-
fer requests are made when performing a
stack-buffer fill, empty, or purge operation.
The storage unit has second priority as the
EU may be waiting for the results of an SU
request. The program buffer requests have
third priority as these requests are made in
anticipation of the actual need for additional
program code.

The major logic elements of the CU, as
shown in figure III-1-16, include input (IN)
and output (OP) registers, the communications
address (CA) register, the communications
length (CLN) register, the cancel length regis-
ter, the start address flip-flops the remember-
suspend (RS) register, the fail (FR) register,
and the control logic.

For all memory operations, the absolute
memory address is contained in the CA regis-
ter and the number of words to be fetched or
stored is in the CLN register. During the oper-
ation, both the address and the word count are
adjusted for each word fetched or stored. In
addition to holding the absolute memory ad-
dress and word count of an operation, the CU
is also supplied with a start address and can-
cel length count whenever the CU is servicing
a storage unit fetch operation. This combined
information informs the CU on what portion
of a multi-word fetech from memory is sent to
the EU. This condition arises as the result of
the storage unit locating one or more words in
local storage and the remaining words in main
memory. Thus only those non-local words re-
maining in memory are sent to the EU even
though the entire fetch from memory is loaded
into the ASM. The other portion of the fetch
was previously supplied to the EU during the
local fetch operation. In most cases, the stor-
age unit fetch is accompanied by an ASM load
operation and thus a four-word fetch is re-
quired from memory.

STA3T STACK

ADDRESS CONTROLS BUFFER su PB
FLIP-FILOPS TO REQUESTOR REQUEST REQUEST REQUEST
MAR BIT 0 ——————gmd SAQ i ‘ ‘ ‘
TO CU
COMPARATOR H® CONTROL .
MAR BIT 1 SA1 (SA = CA) . PRIORITY CONTROL
SU REQUEST j
CA BITS
0 AND 1* -
cu
TIMING RECEIVERS
COAF:II'[R)OL -8 ORIVERS
N
- REMEMBER-SUSPEND
REGISTER *{
MEMORY
STACK Pcu FAULT SIGNALS CONTROLS
Mf CONTOLS comrms FROM CPM UNITS
COMMUNICATIONS o FAIL
ADDRESS REGISTER REGISTER
- RESIDUE
COMMUNICATIONS CHECK
STORAGE LENGTH REGISTER
UNIT
STACK BUFFER _3 |
5CU (8-WORD FETCH)
o CANCEL
°T85,ATGE—— LENGTH el COMPARATOR fest——¢
REGISTER
* PARITY
TO CU CONTROL —
(CLN s CCL) CHECK-GENERATE
STACK BUFFER
SU DATA QUEUE _____‘ * * l

INPUT REGISTER OUTPUT REGISTER

TO EWR *

AND ASM ‘

TO
STACK T0] ‘
BUFFER PROGRAM
BUFFER
RECEIVERS-
DRIVERS
“CA BITS 0 AND 1 ARE SET
TO ZERO FOR ALL ASM OPERATIONS
MEMORY

Figure Ill-1-16. Communications Unit

3-37

Program code is fetched in eight-word
blocks, which requires two four-word fetches.
If, at the end of the first four-word fetch of
program code, assuming an MSU configura-
tion, a higher priority request has been made
for CU use, the current memory address and
word length are transferred to the remember-
suspend register for temporary storage. Then
the second four-word fetch is delayed until af-
ter the higher-priority request has been serv-
iced. When no other requests are pending, the
RS register contents are loaded back into the
CA and CLN registers and the fetching of code
is resumed.

When aeccess to main memory is required,
the CU control logic compares the six most-sig-
nificant bits of the address in the CA register
with the limits established for each MCM, and
selects the appropriate module. Then, the
starting address and other control information
for the operation are sent to the selected mod-
ule in a memory control word. The control
word is assembled in the input register, then
transferred to the output register and is sent
to the addressed memory control module. The
receipt of the control word is acknowledged by
the MCM.

For fetch operations, the MCM notifies the
CU that access has been granted by sending
an ACK signal. A Data Present (DAP) signal
along with the data is then sent to the CU.
The data is received by the IN register and is
subsequently forwarded to the program buf-
fer, the stack buffer, the associative memory,
or the EWR, as appropriate.

If a memory related error is detected by the
CU during a fetch or flashback operation, the
word, which is involved at the time of the fail-
ure is replaced by an error word. This error
word, which is a copy of the control word, is
contained in the OP register, then transferred
with other related information into IN, and IN
sends the error word to the location that is to
receive the expected memory word. (See figure
I11-1-17 for format of the error word.)

3-38

Data for store operations is received by the
CU from either the SU data queue or the
stack buffer. Data for store operations is buf-
fered in the IN register until the CU gains
memory access. Following the transfer of the
control word and the acknowledgement of the
receipt of this word, the selected MCM will in-
form the CU of access by sending a send-data
signal to the CU. On obtaining access, the CU
transfers the data into the output register and
the word is then sent to the selected MCM.

The fail register (FR) is used to provide in-
formation concerning processor internal and
memory related error conditions. When an er-
ror condition is detected, a bit assigned to des-
ignate that condition is set in the FR register.
Detailed discussion of the FR register is pro-
vided in Section 2 Interrupts of this manual.

FAULT CONTROL LOGIC

The fault contro] logic is mechanized in such
a way as to aid in general maintenance and er-
ror recovery under the guidance of the MCP.
Error recovery is aided by a system of multi-
ple levels of control mode coupled with al-
ternate stack and display zero capabilities.
The fault condition register records system in-
terrupts and conditions the processor to take
the necessary action in order to handle these
interrupts (see figure III-1-18). This register
records both operator dependent and operator
independent interrupts. The program index
and program syllable counts on operator de-
pendent interrupts are adjusted to allow re-ex-
ecution of the interrupted operator. The
operator independent interrupts are processed
at the conclusion of the operator being
executed at the time of the interrupt.

The interrupt system allows for special
“complete” communication and for recording
single-bit errors and two-bit errors from main
memory. It also allows for the sensing and re-
cording of special errors internal to the main
memory and Central Processor.

50 49 43 47 46 45 44 43 42 4140 33 38 37 36 17 16 1514 11 10 5 0
P T P T) P T Ir
3
A R|T|s |R R|M|N|P [F [C M, Ll e A Mi WCRD L
R /|y lp [o]|r|t |L|A]A|L |t |5 IADDRESSS| S R S ILENGTHIS
| wiele|Tlelc|cim|R|I |N|B" '8l l B 8
T E|C |E T ! ‘ D T | X
Y C | i U Y !)

| T ' ! E | !
L /
Y v
OP CODES ERROR CODES PARITY
(SEE NOTE BELOW) CORRECTION

BITS
OP CODES OPERATION
47 46 45 44 43 42 41
0o« 1 0 ©0 0 0 SINGLE DATA WORD FETCH
6 ¢ 0 0 0 0 0 N-LENGTH DATA WORD FETCH
0 1 1 0 0 0 0 FAILREGISTER FETCH
1 o 1 0 1 0 0 SINGLE-WORD OVERWRITE WITH FLASHBACK
1 0 1 1 6 0 0 SINGLE-WORDPROTECTED WRITE
1 o 1 1 1 0 0 SINGLE-WORD PROTECTED WRITE WITH FLASHBACK
1 ¢ 0 0 0 0 0 N-LENGTHOVERWRITE
1 d 1 0 0 0 0 SINGLE-WORDOVERWRITE
1 1 0 1 0 0 0 N-WORDPROTECTED WRITE
1 0 1 0o o 1 0 LOAD REQUESTOR INHIBITS
1 C 1 o o o0 1 LOAD MEMORY LIMITS

ERROF: CODES

4

0

1

29

o

1

QO

¢

38

0

0

0

37

0 NO-ACCESS-TO-MEMORY OR INVALID CHANNEL

0 WRONG PARITY ON
INCOMING MEMORY TRANSFERS

0 FAIL 1 INTERRUPT

1 COMM INTERNAL (RESIDUE
ERROR IN CA)

Figure 11l-1-17. Error Word Format

3-39

ov-¢

E.U.

ST

MODE

E.U.

MASK LOGIC

INTERVAL
TIMER
] I
FAULT SENSE
AND
RESPONSE
CONTROL
MASK LOGIC
E.U.
FAULT CONDITION FAULT MASK
‘ !

FAULT MASK

FAULT CONDITION

}

}

RECEIVERS

IOM ERROR INTERRUPTS

40145

Figure 111-1-18. Fault Control Logic

A

\

RECEIVERS

!

CHANNEL INTERRUPTS

SECTION 2

INTERRUPTS

INTRODUCTION

An interrupt is a means of diverting a proc-
essor temporarily from the job which it is
doing if certain predetermined conditions oc-
cur, so that some higher priority job may be
done immediately. Interrupts are processed by
the interrupt handling mechanism of the MCP.
When the interrupt has been processed, the
MCP will (if eonditions permit) reactivate the
interrupted process.

The interrupt handling mechanism of the
MCP deals with two classes of interrupts:
hardware interrupts and software interrupts.
Hardware interrupts are generated
automatically by the 13 7700 system (when in-
terrupt conditions occur) and are processed by
the MCP interrupt procedure. Software inter-
rupts are programmatically defined, and are
used both by the MCP and by object programs
for communication between processes. This
discussion deals only with hardware inter-
rupts.

HARDWARE INTERRUPT SYSTEM

The B 7700 hardware interrupt system is a
primary interface between the MCP and the
hardware. Interrupt conditions may be detect-
ed by the Central Processor Module (CPM), the
Input/Output Module (IOM); or the Memory
Control Module (MCM). When detected, inter-
rupt conditions are processed by the Fault
Control Logic of the CPM. Normally, the CPM
prepares the stack for procedure entry, places
the necessary parameters in the stack, and
causes an entry into the MCP interrupt proce-
dure.

CPM STATES AND MODES

The CPM operates in either of two states:
control state, used only by the MCP; or normal
state, used both by user programs and by the
MCP. Normal state is always used when
executing user programs. Control state is used
when executing certain portions of the MCP,
including the MCP interrupt handling proce-
dure. In the control state, external interrupts
and interval timer interrupts are inhibited (ex-
cept during an IDLE or PAUS instruction)
and the CPM may execute privileged instruc-
tions which it may not execute in normal
state.

In addition to the two states, the CPM can
be in any one of five interrupt handling
modes: Normal Mode (Control Mode 0), Control
Mode 1 (CM1), Control Mode 2 (CM2), Control
Mode 3 (CM3), and Control Mode 4. The CPM
operates in normal mode until an interrupt
condition is detected. The first three control
modes allow for recursive attempts to enter
MCP interrupt handling procedures by the
fault control logic of the CPM. The CPM halts
in Control Mode 4 if these attempts are not
successful. The CPM will return to Normal
Mode if an interrupt condition is handled suec-
cessfully in CM1, CM2, or CM3.

There is no direct connection between the
states of operation and the modes of operation
of the CPM. The CPM may be in control state
or in normal state while in any control mode.
In a system which contains more than one
CPM, any or all of the CPM s may operate in
control state or normal state, as well as in any
of the interrupt modes. The CPM states are
described below; the interrupt modes are fur-
ther described in the discussion of interrupt
processing.

CONTROL. STATE

Entry into control state (from normal state)
occurs when the MCP enters or returns to a
control state procedure (an MCP SAVE proce-
dure), or when the CPM executes a Disable
External Interrupts operator (DEXI). (Control
state procedures have bit 19, the N bit, of the
PCW set.) While the CPM is operating in con-
trol state the reporting of external interrupts
to the MCP interrupt handling routine is dis-
abled. Additionally, the CPM may execute cer-
tain privileged operators while in control state
which may not be executed in normal state.
When the CPM is operating in control state,
the normal control state flip-flop (PST) and
the inhibit interrupt flip-flop (IIH) are both
set (except during an IDLE instruction).

The interrupts which are inhibited while in
control state include the Channel interrupts,
the IOM Error interrupts, the Interval Timer
interrupt, and the Memory Fail 2 interrupts.
Although the processing of these interrupts is
inhibited, the appropriate bit in the CPM In-
terrupt (Fault) register will be set if one of
these interrupts is detected, and the interrupt
will be processed when the CPM enables Ex-

3-41

ternal interrupts either by returning to nor-
mal state or by executing an IDLE or PAUS
operator.

The Egg Timer interrupt, although an exter-
nal interrupt in priority, is not inhibited in
control state.

The operators which are enabled only when
the CPM is in control state include Set Inter-
val Timer (SINT), Inhibit Parity (IGPR), Set
Memory Inhibits (SINH), and Set Memory
Limits (SMLT).

NORMAL STATE

Return to normal state (from control state)
occurs whenever the MCP initiates or returns
to a normal state procedure (non-SAVE proce-
dure), or when the CPM executes an Enable
External Interrupt operator (EEXI). (normal
state procedures have bit 19, the N bit, of the
PCW reset). When the CPM is operating in
normal state, the processor state flip-flop
(PST) and the inhibit interrupt flip-flop (IT1H)
are both reset. When a CPM returns to normal
state after servicing an interrupt, it does not
necessarily return to the program which was
executing when the interrupt was detected.
The selection of the job to be run is a function
of the MCP.

FAULT CONTROL LOGIC

The fault control logic of the CPM contains
four registers which are used to record and
process hardware interrupts: the Fault Condi-

tion, Fault Mask, Fail, and Control Mode regis-
ters. The Fault Condition register is used to
indicate the detection of one or more interrupt
conditions (one bit for each condition). The
Fault Mask register is used to inhibit (mask
out) the processing of one or more interrupt
conditions. (The Fault Condition register may
be read in such a way as to obtain only inter-
rupt conditions which are not masked out;
thus indicating an interrupt condition which
must be processed by the MCP.) The Fail reg-
ister further identifies errors which are inter-
nal to the CPM and CPM-MCM interface er-
rors. The Control Mode register is used to
identify the interrupt mode (Normal, Control
Mode 1, Control Mode 2, and Control Mode 3)
in which the CPM is operating.

In addition to the CPM registers, a Memory
Fail Register in each Memory Control Module
(MCM) is used to give detailed information
about memory-related failures concerning that
MCM. (Discussion of the MCM fail register is
given in Chapter V of this manual.) For IOM
error interrupts, detailed information about
the IOM failure is given in an IOM Fail Word.

FAULT CONDITION REGISTER

The Fault Condition register contains one
bit for each of the possible interrupt condi-
tions (see table III-2-1). The low order bits of
the register are associated with interrupts
which have the highest priority for being proc-
essed by the CPM; the high order bits are as-

Table 111-2-1. B 7700 Interrupt Bit Assignments

Interrupt Fauit Fault Mask Interrupt ident. (P1)
Condition Register (Bit)
Register (Bit)
(Bit)
Alarm (First Priority)
Loop 0 N 0
Memory Parity 1 (o] 1
Memory Fail 1 2 N 2
Invalid Address (No Access) 3 E 3 Plus Bit 25
Stack Underflow 4 4
Invalid Program Word 5 5
Processor Internal 6 6
Syllable (Second Priority)
Memory Protect 9 0
Invalid Operand 10 1
Divide By Zero 11 2
Exponent Overflow 12 N 3
Exponent Underflow 13 0 4 Plus Bit 24 or
N Bit 23 (See Note)
E 1.)
Invalid Index 14 5
Integer Overflow 15 6
Bottom Of Stack 16 7
Presence Bit 17 8
Sequence Error 18 9
Segmented Array 19 10
Programmed Operator 20 None
Privileged Instruction 21 11

3-42

Table 1l1-2-1. B 7700 Interrupt Bit Assignments (Cont)

Interrupt Fault
Condition
Register
(Bit)
Special
Stack Overflow (Third Priority) 24
Interval Timer (Fifth Priority) 23
External (Fourth Priority)
Channel 0 26
Channel 1 27
Channel 2 28
Channel 3 29
Channel 4 30
Channel 5 31
Channel 6 32
Channel 7 33
IOM Error 0 34
IOM Error 1 35
IOM Error 2 36
IOM Error 3 37
IOM Error 4 38
IOM Error 5 39
IOM Error 6 40
IOM Error 7 41
Memory Fail 2 42
Egg Timer None
NOTE 1:

Fault Mask Interrupt Ident. (P1)
Register (Bit)
(Bit)
24 1
23 0 Plus Bit 22
26 0
27 1
28 2
29 3
30 4
31 5
32 6
33 7 Plus Bit 21
34 8
35 9
36 10
37 11
38 12
39 13
40 14
41 15
42 16
None None

On syllable interrupts ID Bit 24 indicates class 1 interrupt (PIR, PSR, PDR, PBR have
not been modified, ID Bit 23 indicates class 2 (PIR, PSR, PDR, and PBR are undefined).

sociated with interrupts which have the lowest
priority. When interrupt conditions are detect-
ed, the bits associated with those conditions
are set in the Fault Condition register.

Normally, the Fault Condition register is set
by the interrupt condition. As each interrupt
condition is processed, the bits in the register
are selectively reset. Programmatic control of
the Fault Condition register is accomplished
by use of the Set Processor Register (SPRR)
and Read Processor Register (RRRR)
operators. The RPRR operator causes the con-
tents of the register to be placed in the stack,
and the register itself to be reset. The SPRR
operator causes an inclusive OR setting of the
register; that is, bits are set, but bits which al-
ready are set are not reset.

FAULT MASK REGISTER

The Fault Mask register allows the process-
ing of certain interrupts to be inhibited or de-
ferred. Alarm interrupts, Syllable interrupts,
and the Egg Timer interrupt may not be
masked. The Special interrupts and the other
External interrupts have a corresponding bit
in the Fault Condition and Fault Mask regis-
ters (see table III-2-1). An interrupt condition
will only be recognized by the CPM if the
Fault Mask register bit for that condition is
set (logical one). If the Fault Mask bit is reset
for an interrupt condition, that interrupt bit
will still be recorded in the Fault Condition

register but will go unnoticed by the fault con-
trol logic. If the mask configuration is later
changed, then interrupts (including those
resident in the Fault Condition register when
the mask is changed) which are now unmasked
will be recognized and processed. In this way,
processing of selected interrupts can be de-
ferred.

The Fault Mask register may only be set
programmatically. The Read Processor Regis-
ter operator causes a simple read of the regis-
ter (without reset); the Set Processor Register
operator causes a simple set of the register
(each bit is set either to logical one or to
logical zero).

INTERRUPT IDENTIFICATION

Each interrupt condition reported to the
MCP is identified by a unique literal value,
known as interrupt parameter P1 (see table
IIT-2-1). this parameter is passed to the MCP
interrupt procedure by the fault control logic
to identify the condition which is to be proc-
essed. The P1 parameter is derived from the
contents of the Fault Condition and Fault
Mask registers through a series of gates. In-
terrupt conditions reported in the Fault Condi-
tion register which are not masked out by the
Fault Mask register are used to make up the
P1 parameter.

Normally, this parameter is read and placed
into the stack by the fault control logic, al-

3-43

though it may be read into the stack program-
matically. In either case, the resultant action
is as follows. The value of P1 is read into the
stack and the bits which were set in P1 are re-
set in the Fault Condition register. In a partic-
ular P1 parameter, all interrupts of a
particular priority level which are not masked
out are reported, but only one priority level is
reported on each read. The priority level re-
ported will be the highest priority level for
which there is at least one bit set in the Fault
Condition register which is not masked out. If
the value of the P1 parameter is read pro-
grammatically (using the Read Processor Reg-
ister operator), and if there are no unmasked
interrupts to report, a word of all zeros is read
into the stack. (The fault control logic will
read P1 only when there is an unmasked inter-
rupt to report).

CPM FAIL REGISTER

The CPM fail register (see figure III-2-1)
provides specific information about processor
internal interrupts. The type of processor in-
ternal interrupts is identified by one of seven
bits in the CPM fail register. These bits are
EU Continuity Error (EUC), EU Residue Er-
ror (EUR), EU Parity Error (EUP), PCU Error
(PER), Adder Residue Error (ADD), Input
Register Parity (INP) and CU Residue Error
(CRS). Usually only one of these bits is set for
a given internal error. However, it is conceiv-
able to have a CRS error occur during a mem-
ory fetch operation and then to have it re-

placed in the CPM fail register by another fail-
ure in a subsequent processor operation. It
can be determined that a CRS error occurred
during a fetch and was the cause of the proc-
essor interrupt by observing that P2 interrupt
parameter contains a CU error word in which
bit 37 is on. (Refer to figure III-1-17 for error
word format.)

The CPM fail register contains several bits
which are useful in analyzing CU detected er-
rors. Whenever the CU detects an error, the
CU loads the Memory Control Module number,
the most significant 6 bits of memory address,
and the most basic type of operation informa-
tion into the CPM fail register. The no-access-
to-memory errors are detected by the CU, and
include Wrong Channel Number (WCN) and
Memory Time Out (MTO). The Single-bit error
bit (F2) is set if one bit core error occurs dur-
ing any memory operation. When the CPM fail
register is read by using the Read Processor
Register operator, the CPM fail register is
cleared.

When an alarm interrupt occurs during a
store or overwrite type operation in the Com-
munications Unit, the CPM interrupts immedi-
ately. Thus, the information in the CU and
memory portions of the CPM fail register is al-
ways current provided OP=1. However, the CU
may detect more than one error on fetch oper-
ations before the CPM fail register is read be-
cause the CU errors do not necessarily result
in interrupts until an attempt is made to proc-
ess the memory word involved at the time of

26 25 24 23 22 21 2019 18 17 16 15 14 13 12 11 10 9 4 3 0
I {M]JE|JEJE]P WICCMFSSO
NIEJUJU|UIE CNRSTZUKP MADS MCM NO.
R{S|C|R]PI|R N|P|]S|E]|O
Field Bit Error
[BN 3:4 Box Number (MCM No.)
\ MADS 9:6 Memory Address (most significant 6 bits)
MEMORY - oP 10 Operation (1=Store/0=Fetch)
SK 11 1=Stack Operation/0=Not Stack Oper.
SU 12 1=8U Oper./0=Not SU Oper.
~ F2 13 Single-Bit Error
MTO 14 Memory Time Out
COMM. CSE 15 Comm Single Error
CRS 16 CU Residue Error
UNIT INP 17 Input Register Parity on data from CPM
WCN 18 Wrong Channel No
ADD 19 Adder Residue Error
PER 21 PCU Error
/ EUP 22 EU Parity Error
> EUR 23 EU Residue Error
EXECUTION EUC 24 EU Continuity Error
UNIT MES 25 Probable Inconsistent State
INR 26 Interrupt probably not caused by operator indicated by RCW

Figure 111-2-1. CPM Fail Register

3-44

failure. In some cases, the memory word is
never used because a conditional branch is
taken or because it is an unused portion of a
two- or four-word fetch.

Whern information regarding a CU-detected
error is loaded with an empty CPM fail regis-
ter, the Communications Single Error (CSE)
bit is set. If a subsequent CU error occurs be-
fore the fail register is cleared, the CU will
overwrite the previous information in the fail
register and reset CSE. Thus, CSE reset in the
fail register indicates that the CU and
memory information may not correspond to

The INR and MES bits in the CPM fail reg-
ister indicate whether all information neces-
sary to retry an operation has been preserved
by the EU when an alarm interrupt occurs. If
an alarm interrupt occurs, such as Processor
Internal, and the MCP finds both INR and
MES bits reset, instruction retry will be at-
tempted.

CONTROL MODE REGISTER

The Control Mode register indicates the in-
terrupt mode in which the CPM is operating.
The use of interrupt modes provides for recur-
sive entries into the fault control logic. The
progression to higher interrupt modes is con-
trolled automatically by the hardware. In ad-
dition, programmatic control of the Control
Mode register may be accomplished by use of
the Read Processor Register and Set Processor
Register operators.

The Control Mode register contains three
bits which display the interrupt modes of the
CPM: the CM1 bit, the CM2 bit, and the CM3
bit. In Normal Mode, none of these bits are
set. In Control Mode 1, only the CM1 bit is set.
In Control Mode 2, only the CM2 bit is set. In
Control Mode 3, the CM1 and CM2 bits are
both set. In Control Mode 4, only the CM3 bit
is set. The CPM will be halted with the last in-
terrupt displayed in the Fault Condition regis-
ter and the HSI flip-flop set if an interrupt is
detected in CM3.

The CPM operates in Normal Mode while not
attempting to process an interrupt. When an
interrupt condition is detected, the CPM ad-
vances to CM1 and attempts to call the proce-
dure pointed to by D [0] +3 (the MCP inter-
rupt procedure) from the stack of the user pro-
gram. If an interrupt is detected while in CM1,
the CPM advances to CM2, changes the stack

environment by moving to an alternate stack
(determined by indexing the stack vector by
the CPM number), and attempts to call the
MCP interrupt procedure again. If an inter-
rupt condition is detected in CM2, the CPM ad-
vances to CM3, changes the entire environ-
ment by setting D [0] to the value in the ADZ
register, moves to the proper alternate stack
in the new environment, and attempts to enter
the interrupt handler at the new D [0] +3.

If still another interrupt is detected
while in CM3, it is obvious that a recursive in-
terrupt processing situation exists, and the
CPM advances to CM4 and halts. If the CPM
succeeds in entering the MCP interrupt proce-
dure, the Control Mode register is reset to
Normal Mode programmatically.

IOM FAIL WORD

The IOM Fail word (figure I1I-2-2) is a 48-bit
word which contains information regarding er-
rors which cannot be associated with a partic-
ular channel or device. (Such errors cause an
IOM Error interrupt). When an IOM Error in-
terrupt occurs, an IOM Fail Word is built by
the fail mode logic within the IOM translator
and placed in the result descriptor word of the
“Fail IOCB”. The Fail I0CB is associated with
Unit Designate Number 0. The Fail IOCB is
delinked from the queue of Fail IOCB’s and
linked into the queue of completed IOCB’s (de-
fined by the Status Queue Header) in the
same manner as a normal I/O termination.

INTERRUPT PROCESSING

All interrupt conditions which are reported
in the Fault Condition Register and which are
not masked out by the Fault Mask register are
accumulated into a general signal to alert the
fault control logic of the CPM to the fact that
one or more interrupts require processing.
When an interrupt requires processing the
CPM will advance the Control Mode register
(in most cases from Normal Mode to CM1) and
will attempt to enter the MCP interrupt proce-
dure.

INTERRUPT PROCESSING IN NORMAL MODE

After advancing the Control Mode register
from Normal Mode to CM1, the CPM will at-
tempt to perform the following sequence of op-
erations:

a. Read and save the P1 parameter.

b. Place a Mark Stack Control Word (MSCW)
into the stack.

3-45

E3 ACE |DAE|SNE| SM
471 43] 391 35 3l 271 23 19 IS|1BE 7 3
M|EM C IME2| up [NAQE[TOE |SNM| HM
sof 46| 42| 38| 34]H30] 26] 22| 8]RSE|TOE| 6| 2
A[DDR| IMEI] (=]0) |sun|sse [Rwi
49] as| a4 37] 33] 29] 25] 21| 7] BE 9] 5 |
N ME |-QSE T™M[EXC
48] 44| 40| 36] 32j028] 24| 20] 16| HEA 8l 4 o
Field Bits Error
EXC 0 Exception Bit
MODE WHEN ERROR (See bits 2 to 6)
OCCURRED
HM 2 Home Address Mode
SM 3 Start Mode
T™ 4 Terminate Mode
RWM 5 Ring Walk Mode
SNM 6 Scan Mode
SNE 7 (See bits 9 to 14 or bits 10 to 14)
SCAN ERRORS (If SNE bit 7=1)
SBE 9 Scan Bus Parity Error
TOE 10 Time Out Error (Scan Bus)
DAE 11 Disk Address Error
QSE 12 DFO Stack Parity Error
SUN 13 Storage Unit Not Available
NAQE 14 No Access to DFO Exchange
NON-SCAN ERRORS (If SNE bit 7=0)
TOE 10 Time Out Error (Data Service)
IBE 11 Initiate Busy Channel
HAE 12 Home Address Illegal Command
BE 13 Buffer Register Parity Error
RSE 14 Residue Error (Memory Address)
ACE 15 Active Channel Stack Parity Error
CH NO 21:5 Channel No. (If ACE bit 15=1)
MEM ADDR 47:20 Memory Address of 10CB (If ACE bit 15=0)
ME 16 Memory Error (see bits 25 to 27)
ME1, ME2, ME3 27:3 Memory Error Code (If ME bit 16=1)
UD 24:8 Unit Designate (=0)

Figure 111-2-2. IOM Fail Word

c. Place an Indirect Reference Word (IRW)
into the stack. The IRW references a reserved
location (D [0] + 3) in the MCP stack. (When
in Control Mode 3, the IRW references a re-
served location (D [0] + 3) in the Alternate
D [0] stack.)

d. Place the P1 parameter into the stack.

e. Place a second parameter into the stack
(the P2 parameter), giving further information
about the interrupt.

f. Execute an Enter operator. The fault con-
trol logic expects to find a Program Control
Word (PCW) at D[0] + 3; however, an SIRW,
an IRW or an IRW chain which points to a
PCW are possible conditions.

The two interrupt parameters (P1 and P2)
that are inserted into the stack supply infor-
mation describing the interrupt condition. The

3-46

P1 parameter provides information concerning
the type of interrupt, the interrupt priority
level, and the interrupt class. The P2
parameter supplies supplementary informa-
tion about the interrupt condition, such as a
memory address (memory related interrupts)
or a copy of the non-present descriptor (pres-
ence bit interrupts), ete. If P2 is not used by
the interrupt condition being reported, P2 will
be set to zero.

When the interrupt procedure of the MCP is
entered, the IRW in the stack (step c¢ above) is
overwritten with a Return Control Word
(RCW) by the ENTER operator. As with any
procedure entry, this RCW points to the point
in the code string to which control is to be re-
turned following execution of the procedure.

Figure I11-2-3 depicts the stack format just

r P2
o OBJECT PROGRAM CODE ,
OBJECT IRW D[O]+3 —_— [I ﬂ I l l I l l] I l l 2
PROGRAM < cw °
STACK PBR PIR PSR
OBJECT
PROGRAM
_ DATA
Lsosa PROCESSOR ID
> >

INTERRUPT HANDLING PROCEDURE CODE

~

(sesoese. brol | | [[[[T TTTTT]
4
MCP <
STACK
PCW —
-
RCW
D[o]]——-o» MSCW
STACK FORMAT PRIOR TO CALLING THE INTERRUPT PROCEDURE.
7‘ 7#
a P2
P1 INTERRUPTED OBJECT PROGRAM CODE .
OBUECT 1
PROGRAM RCW —‘r I .
STACK eow ?
.
PROCESSOR ID
INTERRUPT HANDLING PROCEDURE CODE R
I <
IT' ’1' ‘ l ' 4
MCP PBR
STACK PIR
PSR
o[o]]——--u MSCW

STACK FORMAT AFTER ENTERING THE INTERRUPT PROCEDURE

Figure 111-2-3. Stack Format

3-47

prior to and just after entering the interrupt
procedure.

INTERRUPT PROCESSING IN CMI

When an interrupt is detected while in CM1,
the CPM advances to CM2 and attempts to en-
ter the MCP interrupt procedure from its al-
ternate stack. The new stack is found by using
the processor number as an index into the
Stack Vector Array. (This array is pointed to
by the Stack Vector Descriptor, located at D [
0] + 2.) The index into the Stack Vector Array
results in a data descriptor, which points to
the base of the stack for the new stack. Al-
ternate stacks are established by the MCP at
the time of system initialization.

The Bottom Of Stack Register (BOSR) is set
to the base address of the new stack, which
contains the Top Of Stack Control Word
(TOSCW) for the new stack. A modified move-
to-stack operation then causes the TOSCW for
the old stack, the old BOSR setting, and the
old SNR register (stack number) setting to be
placed in the top of the new stack. After these
parameters have been placed, the stack is
marked, the IRW and the P1 and P2
parameters are placed in the stack, and the
MCP interrupt procedure is entered. The stack
structure just prior to entering the MCP inter-
rupt procedure is shown in figure I11I-2-4.

INTERRUPT PROCESSING IN CM2

At system initialization time, the MCP
establishes a special CM3 operating environ-
ment at the top of memory. This environment
includes an abbreviated D [0] stack with its
own stack vector and an interrupt handler.
The main memory address of this alternate D
[0] stack is loaded into the ADZ register of
all CPM’s. When a CPM detects an interrupt
while in CM2, the CPM advances to CM3, and
changes to the CM3 environment by setting
the D [0] register to the value in ADZ. The
CPM then attempts to move to its alternate
stack in the new stack vector (at ADZ+2) and
enter the new interrupt handler at ADZ+3, as
deseribed in the previous paragraphs.

INTERRUPT PROCESSING IN CM3

If an interrupt is detected while in CMS3, it
is obvious that a recursive interrupt condition
exists. In such cases the CPM is halted in
CM4, the most recent interrupt is identified in
the Fault Condition Register, the HSI flip-flop
is set, and the CM3 bit is set.

3-48

P2
oLD PI OBJECT PROGRAM COOE

)
STACK RCW —‘{] I Ll T] 1 ll,%_l_}
MSCW ! e8R ! PiR osR
~ ~
PROCESSOR 1D

P2

P

IRW
MSCw

NEW | OLD SNR
STACK f— —— =]
OLD BOSR

OLD TOSCW

& ~
E_ PROCESSOR ID

INTERRUPT HANDLING PROCEDURE CODE

[seemsn‘rozscmpmn—-{ TTT T T T I TI1] l;t

~ v

MCP

STACK &

L
v

<

pCw (D[0]+3) |
STACK VECTOR(D[0]+2)
RCW
p[0) — MSCW

Figure 111-2-4. Stack Format Prior to Calling
Interrupt Procedure While in CM1 (Move Stack

Operation)

CONTROL MODE ADVANCEMENT

Figure III-2-5 illustrates the priority scheme
for reporting interrupts, the conditions for ad-
vancing the Control Mode register, and the in-
terrupt conditions which may be left in the
Fault Condition register for later servicing. In
case 1, the Fault Condition register contains
an Alarm interrupt (first priority) a Stack
Overflow interrupt (third priority), and may
also contain Syllable interrupts (second
priority), Interval Timer interrupts (fifth pri-
ority), and External interrupts (fourth
priority). The Alarm interrupt causes the Con-
trol Mode register to be advanced (from Nor-
mal to CM1, CM1 to CM2, CM2 to CM3, or from
CM3 to CM4), the P1 parameter reports the
Alarm interrupt, and the External interrupts
are still contained in the Fault Condition reg-
ister (all other interrupts are cleared from the
register).

Case 2 shows all priorities of interrupts ex-
cept Alarm interrupts present in the Fault
Condition Register. The resultant action is

similar to case one, in that the highest priority
interrupt (Syllable) is serviced first. P1 reports
the Syllable interrupt, the Control Mode regis-
ter is advanced, and the Stack Overflow and
External interrupts are still contained in the
Fault Condition register (in this case the In-
terval Timer interrupt is also left in the Fault
Condition register).

Following entry into the software interrupt
procedure, the Stack Overflow interrupt is re-
ported by another P1, the Control Mode regis-
ter is advanced, the Interval Timer interrupt
is cleared from the Fault Condition register,
and the External interrupts are left for later
servicing. The stack structure for either case
one or case two is shown in figures 111-2-6 and
I11-2-7.

Case 3 of figure I1I-2-5 shows a Syllable in-
terrupt (second priority), an Interval Timer in-
terrupt (fifth priority), and an External inter-
rupt (fourth priority) all present in the Fault
Jondition register. In this case, the highest
priority interrupt present (Syllable) is reported
in P1, the Control Mode register is advanced,
and the Interval Timer and External Inter-
rupts are left for later servicing.(The external
interrupt is serviced first.)

Case 4 shows a Stack Overflow interrupt, an
Interval Timer interrupt, and an External in-
terrupt present in the Fault Condition regis-
ter. The Stack Overflow interrupt is reported
in P1, the Interval Timer interrupt is cleared
from the register, and the External interrupt
is left for later servicing.

Case § shows servicing of an External inter-
rupt, leaving an Interval Timer interrupt for
later servicing. Case six shows servicing of an
Interval Timer interrupt. Notice that these
two cases can only occur when the CPM is in
Normal State. (When the CPM advances to
CM1 and the MCP interrupt procedure is en-
tered, the CPM operates in Control State and
the recognition of Interval Timer and Exter-
nal interrupts is inhibited.)

ALARM INTERRUPTS (FIRST PRIORITY)

Detection of an Alarm interrupt causes an
immediate entry (or reentry) into the fault
control logic. The Control Mode register is ad-
vanced and a P1 parameter is formed which
identifies all Alarm interrupts which are pres-
ent in the Fault Condition register. Syllable
Dependent interrupts, Stack Overflow Inter-
rupts, and Interval Timer interrupts (if pres-
ent) are cleared from the Fault Condition reg-
ister and the interval timer is disarmed. The
MCP interrupt procedure is entered.

SYLLABLE DEPENDENT INTERRUPTS (SECOND
PRIORITY)

Detection of a Syllable Dependent interrupt
(if no Alarm interrupts are present) causes an
immediate entry (or reentry) into the fault

control logic. The Control Mode register is ad-
vanced and a P1 parameter is formed which
identifies all Syllable Dependent interrupts
which are present. The MCP interrupt proce-
dure is entered.

SPECIAL INTERRUPTS

STACK OVERFLOW (THIRD PRIORITY).
All Stack Overflow interrupts are processed by
the fault control logic and causes advance of
the Control Mode register. All Stack Overflow
interrupts do cause a P1 parameter reporting
the interrupt to be formed. Interval Timer in-
terrupts (if unmasked) are cleared from the
Fault Condition register and the Interval Tim-
er is disarmed. The MCP interrupt procedure
is entered.

INTERVAL Timer (fifth priority). Interval
Timer interrupts are cleared (and the interval
timer is disarmed) when an Alarm or Stack
Overflow, interrupts is reported. All uncleared
Interval Timer interrupts cause entry into the
fault control logic if the mask is set and either
is in normal state or if executing an IDLE in
Control state. The Control Mode register is ad-
vanced to CM1 (from Normal). (Interval Timer
interrupts are inhibited when the CPM is in
Control State.) The MCP interrupt procedure
is entered.

EXTERNAL INTERRUPTS (FOURTH PRIORITY)

Although External interrupts can occur at
any time, these interrupts, with the exception
of the Egg Timer interrupts, are inhibited
when the CPM is in Control State. If an Exter-
nal interrupt occurs when the CPM is in Nor-
mal State, the Control Mode register is ad-
vanced to CM1, a P1 parameter describing the
external interrupts is formed, the Interval
Timer is disarmed, and the MCP interrupt pro-
cedure is entered.

MEMORY RELATED INTERRUPTS

Memory related interrupts include Memory
Parity errors (MPAR) which are discovered by
the Communications Unit), Memory Fail 1
(MF1) errors (which are discovered by the
MCM and reported to the requestor), invalid
address errors (which are detected by the
Communications Unit in its interface with the
MCM’s as an NAM) and Processor Internal er-
rors (PINT) (which are discovered by the Com-
munications Unit in its interface with the
other units of the CPM). It should be noted
that PINT interrupt can also be set by other
units in the CPM. These four types of errors
are differentiated in the P1 interrupt
parameter. Memory Fail 1 interrupts from all
MCM’s are combined into a single alarm inter-
rupt, represented by bit 2 in the Fault Control
register and the Interrupt ID; the identifica-

3-49

0S-€

FAULT CONDITION REGISTER CONTROL MODES REPORTED FAULT CONDITION REGISTER

(BEFORE REPORTING INTERRUPT) REGISTER IN (AFTER REPORTING INTERRUPT)

T E S S A N Cc C Cc PARAMETER E I S S A

N X T Y L [o] M M M P X N T Y L

T T A L A R 1 3 T T A L A

1 3 E Cc L R M E E Cc L R

R R K A M A R R K A M

v N B L N \' B

A A 0 L A A [+ L

L L v E L L v E

E E

T R T R

! F | F

M L M L

E o € o}

R w R w

0
o | ¢ |) 1| cm1 | cm2 | cm3 ALARM ¢ CASE ONE
o | ¢ | | o |cmi |cmz | cms3 SYLLABLE ¢ O | case Two
cM2 | CM3 | % STACK OVERFLOW) 0

¢ ¢) | o) CM1 | CM2 | CM3 SYLLABLE ¢ o} CASE THREE
o | ¢ | o | o |cm |cm2 |cems | % STACK OVERFLOW ¢ 0 | CASE FOUR
¢ | + | o | of o Jom |} - | - EXTERNAL) o | case FIve
| o | o o | o |om | - - INTERVAL TIMER 0 o | cAsE six

% PROCESSOR HALTS
¢ MAY BE A ONE OR A ZERO

40354

Figure 111-2-5. interrupt Reporting

FIRST INTERRUPT REPORTED (ALARM OR SYLLABLE DEPENDENT)
'T ~n
P2
SECOND INTERRUPT REPORTED (STACK OVERFLOW)
P1
IRW
MSCW
P2
P1
INTERRUPTED OBJECT
RCW — — d —— _ _»
OBUECT PROGRAM CODE
PROGRAM MSCwW
STACK *
LOSR
OBJECT L
PROGRAM
DATA
~ ~
Ly LY
PROC. ID

SEGMENT DESGRIPTOR | — —{ — — | INTERRUPT HANDLING
MCP ~N ~
STACK 4 T PIR, PBR, PSR POINT TO FIRST
SYLLABLE OF INTERRUPT
HANDLING CODE
PCW —
RCW
p[o] —> MSCW

Figure 11i-2-6. Stack Format Before Reentering Interrupt Procedure to Report Stack Overflow

3-51

-~ T

P2

Pl

RCW

—— FIRST INTERRUPT REPORTED (ALARM OR SYLLABLE DEPENDENT)

} SECOND INTERRUPY REPORTED (STACK OVERFLOW)

MSCwW

P2
P1

0BUECT RCw I
PROGRAM
STACK

MSCW

— —®THIS RCW POINTS TO FIRST SYLLABLE
OF INTERRUPT HANDLING CODE

INTERRUPTED CBJECT
—_ - PROGRAM CODE

OBJECT
PROGRAM
DATA

14
-
&

PROC ID.

I |

MCP :v -r
STACK

PCW

RCW
) [o}————o MSCW

40364

LOSR

SEGMENT DESCRIPTOR |— —

INTERRUPT HANDLING
PROCECURE CODE

PIR, PBR, PSR

Figure IlI-2-7. Stack Format After Reentering Interrupt Procedure and Reporting Stack Overflow

tion of which MCM was involved is given in
the P2 parameter or in the CPM fail register,
depending on the type of CU operation being
performed. Wrong Channel Number and Mem-
ory Time Out error indications in the CPM fail
register are combined into a single alarm in-
terrupt, represented by bit 3 (Invalid Address)
in the Fault Control register and the Inter-
rupt ID. Likewise, CU residue (address residue
error in CA register) and Bad Parity to CU er-
ror indications in the CPM Fail register are
combined into a single alarm interrupt, repre-
sented by bit 6 (Processor Internal) in the
Fault Control register and the Interrupt ID.

Explanatory information about these errors
may be found either in P2 parameter or in the
CPM Fail register. If P2 is not used, it will be
set to zero. Details regarding the handling of
these interrupts are provided in table III-2-2.

3-52

Memory Fail 2 interrupts (single bit errors,
corrected) are also combined into a single in-
terrupt in the CPM Fault Condition and Fault
Mask registers. The identification of the MCM
involved is given in the CPM Fail register.
Since the error is corrected, the corrected data
can be and is used.

INTERRUPT DESCRIPTIONS

Interrupts which can occur in the CPM are
described in the following paragraphs. The in-
terrupts are described in order of their
priority. Alarm interrupts are described first,
Syllable Dependent interrupts second, Special
interrupts third, and External interrupts last.

ALARM INTERRUPTS

Alarm interrupts are caused by conditions
which were not expected by the CPM. They in-
form the system of some detrimental change
in environment. In most cases, Alarm inter-

Table 1lI-2-2. CPM Handling of Memory
Related Errors

Source of

Request for
Memory Access
Storage Unit
fetch (inecludes
flashback)

Alarm Interrupts (MPE, MF1, IAE,
PINT)

The indication of the error (or error
word) is queued in place of the
result of the access (whether in the
EWR, EU data queue, or the
associative memory). When the EU
attempts to use the error word, the
alarm irterrupt occurs. The error
word is placed in R1 location of the
EU local storage as the P2
parameter.

The alarm interrupt occurs
immediately. There is no P2
parameter; rather the explanatory
information (including the identity of
the involved MCM) is contained in
the CPM Fail register.

Stack Buffer The errcr word is stored in the stack

fill buffer and the alarm interrupt does
not occur until the execution unit
attempts to use this word. The error
word is placed in R1 location of the
EU loca. storage as the P2
parameter.

Storage Unit
write (no
flashback)

Stack Buffer
empty or purge

The alarm interrupt occurs
immediately. The reason for this is
that stack-to-memory transfers are
initiated only when the Execution
Unit purges the stack buffer or
when the Execution Unit attempts to
push new information into the stack
and the stack is full; hence, a stack
empty operation is required. In
either case, the Execution Unit is
waiting for the memory access and
cannot complete the current operator
until the memory access is completed
or, as in the error cases, aborted.

The errcr word is queued in the
buffer and not reported until the
Program Control Unit attempts to
process the code string involved. The
error wcrd is then passed onto the
Executicn Unit as the P2 parameter.
rupts result from hardware failures. The
Alarm interrupts cannot be inhibited, and al-
ways cause entry into the fault control logic.
The fault control logic terminates the current
operator, clears the top of stack registers, pre-
pares the stack (MSCW, IRW, P1, P2), and
causes the MCP interrupt procedure to be en-
tered. When an Alarm interrupt is cleared
from the Fault Condition register, all Syllable
Dependent interrupts present in the register
are cleared. The Alarm interrupts are:

Program Buffer
fetch

Loop

Memory Parity

Memory Fail 1

Invalid Address (no access)
Stack Underflow

Invalid Program Word
Processor Internal

Alarm interrupts generally result in termi-
nation of the process involved. Exceptions are
(1) during a halt load when the MCP uses an
alarm interrupt (invalid address) to determine
the amount of memory available, and (2) when
instruction retry by the MCP is successful af-
ter a Processor Internal interrupt.

LOOP

This interrupt occurs when the CPM has ex-
pended two or in some cases up to five seconds
in the execution of one operator. This inter-
rupt can be caused either by a hardware fail-
ure or by bad data. Should this interrupt oec-
cur, PIR may not be accurate.

PARAMETER P2

ZERO

PARAMETER PI 25 0 BIT

\

¢

Loop Interrupt Parameters
MEMORY PARITY

This interrupt occurs if the CPM receives a
memory word with an even number of 1’s.
Should this interrupt occur, PIR points to the
word containing the operator which initiated
the interrupt. Supplementary information de-
scribing the error will be contained in the
CPM Fail register (see “Memory Related In-
terrupts”).

PARAMETER P2

MCM CONTROL WORD-IF ZERO
SEE CPM FA1L REGISTER

Mi R
PARAMETER PI 25 \ BIT

>

3

Memory Parity Interrupt Parameters

3-53

MEMORY FAIL 1

This interrupt occurs if any of the following
errors occur:

a. Data Word parity error

b. Illegal operation code

c. Address is for a different Memory Module
than requested

d. Data strobe error

e. Internal control error

f. Multiple bit data error

In all of the above cases, supplementary in-
formation describing the error will be con-
tained in the MCM Fail register (see “Memory
Related Interrupts”).

PARAMETER P2

MCM CONTROL WORD -IF ZERO
SEE CPM FAIL REGISTER

PARAMETER Pl ,g 2 BIT

i

Memory Fail 1 Interrupt Parameters

INVALID ADDRESS

This interrupt occurs when the CPM at-
tempts to access a memory address which is
not available to the system. The Memory Mod-
ule may not exist or it may be inoperative.
Supplementary information is placed in the
CPM Fail register (see “Memory Related In-
terrupts”).

PARAMETER P2

MCM CONTROL WORD-IF ZERO
SEE CPM FAIL REGISTER

PARAMETER PI o5 3 BIT

|

Invalid Address Interrupt Parameters

3-54

STACK UNDERFLOW

This interrupt occurs if the CPM attempts to
move the top of stack (S register setting) to an
address less than the address of the most re-
cent MSCW (F register setting) during a stack
adjustment. This could occur as a result either
of a compiler error or if a hardware control
failure in executing MKST, EXIT, or MVST
(all of which change F setting and could calcu-
late an incorrect address).

PARAMETER P2

ZERO

PARAMETER Pl 25 4 B8IT

i

Stack Underflow Interrupt Parameters

INVALID PROGRAM WORD

This interrupt occurs under any of the fol-
lowing conditions:

a. An attempt is made to execute a program
word which does not have a tag of three (or
tag of 0 if in Edit mode

b. The Variant code (Escape to 16-bit In-
struction, VARI) is detected as the second syl-
lable of a Variant operator.

c. An attempt is made to execute an
operator which is considered illegal in Edit
mode or Vector mode.

PARAMETER P2

ZERO

PARAMETER Pl 25 5 BIT

Invalid Program Word Interrupt Parameters

PROCESSOR INTERNAL

This interrupt occurs whenever an internal
logic failure is detected within the CPM. The
CPM Fail register will provide additional in-
formation regarding the failure (see table III-
2-3). For further information regarding
memory related Processor Internal interrupts,
see “Memory Related Interrupts”.

PARAMETER P2

MCM CONTROL WORD-IF ZERO
SEE CPM FAIL REGISTER

PARAMETER PI

25 6 BIT

Processor Internal Interrupt Parameters

Table 11l-2-3. Processor Internal Interrupts

Fail Register
Indication

Execution Unit
Continuity (EUC)

Execution Unit
Residue (EUR)

Possible Error Source

EU data transfers

Inconsistent execution of EU
algorithm

PCU provided incorrect sequence
of micro-operators or wrong stack
count (AFUL, BFUL) to the
Execution Unit

C, L, E, F, or G register

Main or exponent adder, barrel,
auxiliary storage, T or S or X
bus, or residue generator

Extra transfer signal in the use
of one of the above elements

Address or PIR from AU storage,
display buffer, or EWR to the
Execution Unit

Residue control logic (use of
ABC, BOC, BLU, and EWF
registers)

Residue error in SH, AL, or R
register

Leading zeros residue encoder
K or L registers, or K/L Queue

Binary divide quotient look-head
logic

Table 11I-2-3. Processor Internal Interrupts

Fail Register
Indication

Execution Unit
Parity (EUP)

Program Control
Unit Error (PER)

Adder Residue
(ADD)

Input Register
Parity on data
from CPM (INP)

(Cont.)

Possible Error Source

Associative memory
EU local storage
Stack buffer
Program buffer

EU data queue

EWR, T bus, S bus, C register, or
EU parity generator

Parity error in program buffer

Instruction execute register
residue error in PIR Q

SSR or AU storage (APIR or
TIR location)

AU adder
PA, PL, PU registers
Display read register

S register (for MKST, MVST, and
RPRR S operations or when
select address couple (SAC) flip-
flop (1-8-42) is set.)

F register (for MKST, ENTR,
MVST, and RPRR F operations.)

LOSR (for RPRR, LOSR, and
MOV operations)

Display buffer

Display read register

Display write register

AU adder

Display write residue checker

Execution Unit 20 bit residue
generator

Parity error in storage data
queue

Input register
Output register
CU parity generator

Parity error in stack buffer (for
empty or purge operations)

3-55

Table 111-2-3. Processor Internal interrupts
(Cont.)

Fail Register Possible Error Source
indication
CU Address Storage Unit related failure:

Residue (CRS)

AU storage

Display read register

AU adder

Storage input register

Storage operator queue
Execution Unit 20 bit residue
generator

Memory address register

CU address register or residue
checker

Stack Buffer related failure:

Stack link register
CU address register or residue
checker

Program buffer related failure:
AU storage location (PBR or

TBR)

Display read register

AU adder

PA register

PU register

CU address register or residue
generator

Remember suspend register

SYLLABLE DEPENDENT INTERRUPTS

Syllable Dependent interrupts generally re-
sult from programming errors. These inter-
rupts cannot be inhibited, and always cause
entry into the fault control logic. The fault
control logic terminates the current operator,
prepares the stack (MSCW, IRW, P1, P2), and
causes the MCP interrupt procedure to be en-
tered. The contents of the top of stack regis-
ters may or may not be saved, depending upon
the type of interrupt.

Syllable Dependent interrupts are divided
into two classes. Class 1 interrupts (identified
by the setting of bit 24 of parameter P1) are
those interrupts in which the values of PIR,
PSR, PBR, and PDR have not been modified
by the operator. Class 2 interrupts (identified
by the setting of bit 23 of parameter P1) are
those interrupts in which the value of PIR,
PSR, PBR, and PDR have been changed. Thus,
class 1 interrupts permit the operator to be
reexecuted; class 2 interrupts prohibit the op-
erator from being reexecuted.

Most Syllable Dependent interrupts occur as
class 1 interrupts. The only Syllable Depend-
ent interrupts which can occur as class 2 inter-

3-56

rupts are the Invalid Index, Bottom Of Stack,
and Sequence Error interrupts. The Syllable
Dependent interrupts are:

Bottom Of Stack
Presence Bit
Sequence Error
Segmented Array
Programmed Operator
Privileged Instruction

Memory Protect
Invalid Operand
Divide By Zero
Exponent Overflow
Exponent Underflow
Invalid Index
Integer Overflow

MEMORY PROTECT

This interrupt occurs when:

a. a store, overwrite, read/lock, or string
transfer operation is attempted using a data
descriptor that has the read only bit (bit 43)
set. The operation is terminated before the
memory access. The data descriptor is used as
the P2 parameter, except for string transfer.

b. a store operation is attempted into a word
in memory that has a tag field representing a
PCW, RCW, MSCW, or segment descriptor (tag
= 3, 7). The memory write is discontinued
when bit 48 is detected in the code word being
referenced. The flashback is used as the P2 pa-
rameter.

PARAMETER P2

DATA DESCRIPTOR WITH BIT 43 SET, OR MEMORY
WORD WITH THREE TAGS, OR NUMBER OF ITEMS
BELOW THE MSCW NEEDED TO GET THE DATA
DESCRIPTOR

PARAMETER Pl o4 0 BIT

Memory Protect Interrupt Parameters

INVALID OPERAND

This interrupt occurs when the CPM at-
tempts to execute a valid operator on data
which is invalid for that operator or attempts
to execute the invalid operator NVLD. Each
operator executes checks to insure that control
words and data meet the necessary require-
ments of the operator. Should this interrupt

occur, PIR and PSR are left pointing to the
current syllable.

PARAMETER P2

INVALID DATA, OR ZERO

PARAMETER PI 24 | 8IT

|
|

Invalid Operand Interrupt Parameters

DIVIDE BY ZERO

This interrupt occurs when a division
operation is attempted with the divisor (con-
tained in the A register) equal to zero. Should
this interrupt ocecur, PIR and PSR point to the
initiating operator, and the divisor and divi-
dend will be left on the top of the stack (below
the MSCW, RCW, P1, and P2).

PARAMETER P2

ZEFO

PARAMETER Pl 4 2 BT

J

Divide By Zero Interrupt Parameters

EXPONENT OVERFLOW

This interrupt occurs when the capacity of a
positive sign exponent field is exceeded for ei-
ther single or double precision arithmetic re-
sults. Should this interrupt occur, PIR and
PSR point to the initiating operator.

PARAMETER P2

ZERO

PARAMETER PI 04 3 BIT

I

Exponent Overflow Interrupt Parameters

EXPONENT UNDERFLOW

This interrupt occurs when the capacity of a
negative sign exponent field is exceeded for ei-
ther single or double precision arithmetic re-
sults. Should this interrupt occur, PIR and
PSR point to the initiating operator.

PARAMETER P2

ZERO

PARAMETER PI
4 BIT

Exponent Underflow Interrupt Parameters

INVALID INDEX

This interrupt occurs if an attempt is made
to index a descriptor by an amount which is
less than zero or which is greater than or
equal to the upper bound (length) in any of the
following operaticns:

a. Occurs Index

b. Linked List Lookup
c. Index
d. Move Stack
e. Display Update
f. VALC
g. Stuffed IRW (pseudo operator)
h. Index and Load Name
i. Index and Load Value

3-57

If this interrupt occurs, the operation is ter-
minated prematurely. The input operands will
be left on the top of the stack (below the
MSCW, RCW, P1, and P2). Except for Display
Update, all operations in the list above will
cause PIR and PSR to point to the initiating
operator. The interrupt occurs as a class 2 in-
terrupt (bit 23 = 1) if an attempt was made to
index the Stack Vector Array descriptor (D[0
1 + 2) during a display update operation using
a stack number which is greater than or equal
to the length field of the Stack Vector Array
descriptor.

Note+ Bit 23 and bit 24 may not both be set
simultaneously.

PARAMETER P2

DATA DESCRIPTOR, MSCW, OR SIRW

PARAMETER Pl 5403 5 BIT

T

Note: Bit 23 and Bit 24 may not be set si-
multaneously.

Invalid Index Interrupt Parameters
INTEGER OVERFLOW

This interrupt occurs upon detection of the
attempted use of an operand which exceeds
the maximum integer value (2%-1) by an oper-
ator which requires an integer. The following
is a partial list of operators which may cause
this interrupt to occur:

a. Integer Divide

b. Integerize Truncate

c. Integerize Rounded

d. Occurs Index

PARAMETER P2

ZERO

PARAMETER PI 24 6 BIT

|

Integer Overflow Interrupt Parameters

3-58

BOTTOM OF STACK

This interrupt occurs if a Return operator or
an Exit operator causes the program stack to
be cut back to its base. (The F register points
to the MSCW located at the BOSR setting plus
1.) The P2 parameter will be a copy of the
MSCW being cut back.

This interrupt occurs as a class 2 interrupt
(bit 23 = 1).

PARAMETER P2

MSCW BEING CUT BACK

PARAMETER PI 23 7 BIT

Bottom Of Stack Interrupt Parameters

PRESENCE BIT

This interrupt occurs when an attempt is
made to access a word or group of words which
are not present in main memory. All operators
that access memory with descriptors may be
interrupted with this interrupt. The interrupt
occurs if an attempt is made to reference
memory through a descriptor which has the
presence bit (bit 47) reset, indicating that the
descriptor points to words which are not pres-
ent in main memory. There are two classes of
presence bit interrupt conditions; data depend-
ent and procedure dependent.

DATA DEPENDENT. Data dependent pres-
ence bit interrupt conditions occur when the
CPM is seeking data from within its current
addressing environment. In all cases except
Value Call, recovery is achieved by re-execu-
ting the operator upon return from the MCP
interrupt procedure. The MCP interrupt proce-
dure makes the absent words present before
return is made to the interrupted program. To
permit this reexecution, the PIR and PSR set-
tings for the current operator are saved in the
RCW. Value Call always sets this RT bit for
data dependent interrupts; however, Value
Call never sets this RT bit for procedure de-

pendent interrupts. Value Call or pseudo value
call will always turn on the VS bit (bit 39) and
cause the V bit in the MSCW to be turned on.
Figure III-2-8 illustrates the PIR, PSR, Exit/
Return, RT, VS, and RE bit relationships in
the various presence bit interrupt conditions.

ACCIDENTAL ENTRY. Procedures which
have been entered accidentally during the
VALC operator also require special
consideration for the manipulation of PIR and
PSR settings for the RCW. The VALC operator
is completed after the return operator
mechanism when returning from an acciden-
tally entered procedure. A pseudo value call
operator provides the facility to continue
searching an IRW or data descriptor chain un-
til an operand is located. The pseudo value call
operator is activated at the end of a normal
return operator if the V bit of the MSCW had
been set. The V-bit is set when either a VALC
or pseudo value call operator enters a proce-
dure accidentally. If a not present segment de-
scriptor causes an interrupt during a return
from an accidental entry of value call, a pseu-
do RT bit (Bit 45) is turned on in P1 so the
presence bit procedure will finish with a re-
turn instead of an exit if the VS (Bit 39) is also
on. The RT bit and pseudo RT bit are used by
the software to execute the proper code. The V
bit is used by the hardware to change the re-
turn into a pseudo value call so the IRW or
data descriptor chain may be chased.

PIR and PSR values, pointing to the next
operator syllable, are inserted into the RCW
for VALC while the PIR and PSR values from
the old RCW are inserted into the RCW for a
value call pseudo operator.

All other operators which may incur acciden-
tal entries are restarted; therefore, the PIR
and PSR settings which point to the current
operator syllable are saved in the RCW. The V-
bit is set to zero.

PROCEDURE DEPENDENT. Procedure de-
pendent interrupts occur when the CPM is at-
tempting to enter a new addressing environ-
ment, or attempting tc return to an old ad-
dressing environment. These interrupts occur
during display update, and also when trying to
process a non-present segment descriptor. Re-
covery is achieved by the Exit operator or the
Return operator after the MCP interrupt pro-
cedure has made the referenced environment
present. Because the CPM has not yet fetched
the first operator of the new procedure when
this interrupt occurs, the PIR and PSR set-
tings from the PCW (for entry) or the RCW
(for return) are stored in the RCW which is
made when the MCP interrupt procedure is

entered. Thus, when the reference environ-
ment is made present, the entry or return is to
the referenced environment.

PROGRAM RESTART. Following a Presence
Bit interrupt, a program may be restarted ei-
ther by executing a Return operator or an Ex-
it operator. The Return operator must return
either an IRW or a Data Descriptor. The RT
bit of the P1 parameter (bit 46) indicates to
the MCP interrupt procedure whether to per-
form an Exit operator (bit 46 is reset) or a Re-
turn operator (bit 46 is set) when returning to
the interrupted procedure.

PARAMETER P2. During the execution of
certain string operators, if a Presence Bit in-
terrupt occurs the P2 parameter may contain
a number which indicates the number of items
below the MSCW which are needed by the
string operator.

PARAMETER P2

SEGMENT DESCRIPTOR, OR DATA
DESCRIPTOR, OR IRW, OR NUMBER
OF ITEMS BELOW THE MSCW THAT

ARE NEEDED BY THE STRING OPERATOR

PARAMETER Pl 54 8 BIT

)

Presence Bit Interrupt Parameters

SEQUENCE ERROR

This interrupt occurs if an indirect reference
encounters an invalid condition or reference
sequence. Generally, this interrupt is caused
either by a hardware error or a systems soft-
ware error, and the MCP will terminate the
program which generated the interrupt. The
interrupt can occur as a class 2 interrupt (bit
23 = 1) only under the following conditions:

a. When a word other than a Segment De-
scriptor is fetched relative to the PDR during
the final algorithm for the Enter, Exit, or Re-
turn operators.

b. When the F register points to a word
which is not an MSCW at the beginning of
execution of the Exit or Return operators.

¢. When tracing back through the DF links
of an MSCW chain (DF locates the preceding
MSCW in the stack) during an Exit, Return, or
Move Stack operation and a word which is not
an MSCW is fetched.

3-59

09-¢

40994

All Operators Except RETN and VALC
All Operators Except ENTR, VALC, or IRWL

PRESENCE BIT Py PRESENCE BIT ID RETURNING PIR, PSR B . o
PZ i OPERATOR NEW RCW SOFTWARE FUNCTION
INTERRUPT CONDITIONS RT (46) | vs (39) | RE (45)
Data Stack Vector DD pESC (4)* 0 0 0 EXIT S, (8) | Locate Not Present D.D.
Dependent or Stack D.D. By the IRW. If neces-
During Reference iRw (1) o 0 0 EXIT Sn (8) | sary, make the D.D.
Through Stuffed present and return an
I RW iRW (2) 1 ! 0 RETURN Sat 2 (8) | IRW where noted
{RW (3) 1 0 0 EXIT s, (8)
Data Descriptor DESC (2) 1] 0 RETURN Spt 2 (8) | Search Stack for copies
(copy) of Not Present D.D.
Make MOM and copies
DESC (7) 1 0 0 RETURN S, (8) | presert, return present
(copy) D.D. where noted
Procedure | Stack Vector DD DESC (6) 0 0 0 EXIT From RCW | Search Stack for copies
Dependent | or Stack D.D. (copy) or PCW of Not Present D.D.
During Display Make MOM and copies
Update DESC (5) 0 0 1 EXIT present, Return D.D.
(copy) where noted
DESC (2) 0 1 0 EXIT
(copy)
Segment Desc DESC (2) 0 1 0 EXIT From RCW | Locate S.D. (MOM) via
(copy) or PCW copy in Pp AD Field Of
Copy Points to MOM
DESC (6) 0 0 0 EXIT
(copy
DESC (5) 0 1¥% 1 RETURN
(copy)
1. Enter or IRWL
2. VALC
3. All Operators Except VALC, ENTR, MVST, RETN, IRWL *Fetch new stack desc thru IRW only.
L. mysT **]f RVLC (V-bit 1n the MSCW is on).
5. RETN
6.
7.
8.

S indicates that PIR and PSR point to current operator syllable.

Figure I111-2-8. Presence Bit Interrupt Chart

d. When a word which is not a Segment De-
scriptor is fetched relative to the PDR during
a Dynamic Branch operator execution.

PARAMETER P2

ZERO

PARAMETER PI 2423 9 BIT

¢fe

Sequence Error Interrupt Parameters

SEGMENTED ARRAY

This interrupt occurs when a string operator
attempts to index beyond the end of the cur-
rent segment of a segmented array. Arrays in
main memory may be segmented into groups
of 256 words each, bounded on both ends by
memory links. The memory link words are cre-
ated by the MCP with the memory protect bit
(bit 48) set. During string operations, each
word read from memory is checked to see if bit
48 is set. If such a word is referenced, the Seg-
mented Array interrupt will occur. The P2 pa-
rameter will indicate how many words (in the
stack below the MSCW, RCW, P1, and P2) are
needed to restart the operation after the new
segment of the array has been made available
in main memory.

PARAMETER P2

NUMBER OF ITEMS BELOW THE
MSCW NEEDED TO RESTART OPERATION

PARAMETER PI
ETER P 24 1IC BIT

{

Segmented Array Interrupt Parameters

PROGRAMMED OPERATOR

This interrupt occurs if the CPM attempts to
execute an operator code which is not cur-
rently assigned. The Programmed Operator in-
terrupt acts as a communicate operator to the
MCP, and allows the MCP to simulate the ac-
tion of the operator programmatically, if de-
sired. All unassigned operator codes cause this
interrupt. (None of the unassigned operator
codes cause Loop, Invalid Program, or Invalid
Operand interrupts. Scan In Time Of Day
Clock is an assigned operator: any other
variation of Scan In causes the Invalid Oper-
and interrupt.)

PARAMETER P2

ZERO

PARAMETER Pl 54 BIT

Programmed Operator Interrupt Parameters

PRIVILEGED INSTRUCTION

This interrupt occurs if an attempt is made
to execute a Control State operator while the
CPM is in Normal State. The Control State op-
erators are:

a. Set Interval Timer (SINT)

b. Inhibit Parity (IGPR)

¢. Set Memory Inhibits (SINH)

d. Set Memory Limits (SMLT)

PARAMETER P2

ZERO

PARAMETER Pl . || BIT

o

\

/

Privileged Instruction Interrupt Parameters

3-61

SPECIAL INTERRUPTS

Special interrupts take third priority for
processing. There are just two Special inter-
rupts: Stack Overflow and Interval Timer.

STACK OVERFLOW

This interrupt occurs when the Stack Con-
troller senses the use of the highest address
allotted for the stack of the program (the S
register and the Limit of Stack register
(LOSR) point to the same address). The MCP
interrupt procedure may either allocate a larg-
er stack area, or it may terminate the pro-
gram. If the current operator has not been
completely executed, PIR and PSR are
changed to point to the operator.

PARAMETER P2

ZERO

PARAMETER PI 22 | BIT

I

Stack Overflow Interrupt Parameters
INTERVAL TIMER

This interrupt occurs if the value in the
hardware interval timer is zero and the inter-
val timer is armed. The timer is armed and an
initial value is stored by the Set Interval Tim-
er operator (SINT). The count in the timer is
decreased every 512 microseconds until the
count reaches zero or until the timer is reset.
If the timer is still armed when the count
reaches zero, the interrupt occurs. The
maximum interval to which the timer can be
set is one second. This interrupt is used by the
MCP to insure that no process can control a
CPM for more than one second without giving
the MCP a chance to regain control of the
CPM.

PARAMETER P2

ZERO

PARAMETER P 22 0 BIT

Interval Timer Interrupt Parameters

3-62

EXTERNAL INTERRUPTS

External interrupts are used to inform the
MCP of changes in external environment, and
also to permit communications between re-
questor modules (CPM or IOM). Normally,
these interrupts result in the momentary in-
terruption of a program while the interrupt is
handled or recorded by the MCP. Following
the handling of the interrupt, the program is
continued. The External interrupts are:

Channel (0 thru 7)
IOM Error (0 thru 7)
Memory Fail 2

Egg Timer

CHANNEL INTERRUPT

This interrupt may be generated by any of
the eight possible requestor modules (CPM or
IOM). The interrupt identification (parameter
P1) indicates the source of the interrupt. This
interrupt may be generated to indicate an ex-
pected event (such as IO Complete) or it may
be generated by the Interrupt Channel N op-
erator (which allows any CPM to interrupt any
requestor module).

PARAMETER P2

ZERO

PARAMETER PI 21 765432108IT

0101000 0i0]|d

CHANNEL 7 I
CHANNEL 6
CHANNEL 5
CHANNEL 4
CHANNEL 3
CHANNEL 2
CHANNEL |
CHANNEL O

Channel Interrupt (0-7) Parameters

IOM ERROR INTERRUPT

This interrupt may be generated by any of
the IO modules in the system. The interrupt
identification (parameter P1) indicates the
channel (0 thru 7) to which the IOM is con-
nected. This interrupt is used to report errors
detected by an IOM which are not device re-
lated. If possible, the IOM will link a dummy
IOCB into the status queue (RESULTQ). The

dummy IOCB will contain a Result Descriptor
which will further describe the error. Other-
wise, the Fail Result Descriptor will be placed
at Home Address (HA) + 5.

PARAMETER P2

ZERO
PARAMETER Pl) 1531211109 8 BIT
e
01¢(010,0{0]|0(0
IOM ERROR 7 =] I
I0M ERROR 6
IOM ERROR 5

IOM ERROR 4
IOM ERROR 3
IOM ERROR 2
IOM ERROR |
IOM ERROR O

—

IOM ERROR (0-7) Interrupt Parameters

MEMORY FAIL 2

This interrupt occurs if a Memory Control
Module detects and corrects a single-bit error.
It is transmitted from the MCM (with the cor-
rected data) to the requestor module (CPM or
IOM). The MCM Fail register contains the ab-
- solute address and the bit number of the word
in error. The identification of the MCM in-
volved is contained in the CPM Fail register.

PARAMETER P2

ZERO

PARAMETER PI 21 16 BIT

Memory Fail 2 Interrupt Parameters

EGG TIMER INTERRUPT

This interrupt occurs if the Egg flip-flop in
the CPM is not reset every 8 to 16 seconds by
the MCP. This interrupt is used by the MCP to
prevent the CPM from looping while in the
control state.

PARAMETER P2

ZERO

PARAMETER P1 21 BIT

Egg Timer Interrupt Parameters

3-63

(THIS PAGE INTENTIONALLY LEFT BLANK)

3-64

SECTION 3
OPERATORS

INTRODUCTION

Operators are machine language code gener-
ated by the compiler and stored by the master
control program in memory in the area allo-
cated to program segments. (Program seg-
ments contain no data and are not modified by
the processor as the program is executed.) Pro-
gram segments are sequences of instructions
which are moved by the program control unit
as 52-bit words from memory into the program
buffer. Parity is checked on all 52-bits of each
program word as it is brought to the program
buffer.

The program buffer, a 32-word, 60-bit IC
memory within the processor, locally main-
tains enough code to keep the processor busy
at all times. The buffer may contain 8, 16, 24,
or 32 program words. A request is generated
to replenish the buffer by fetching 8 words at
a time whenever the read pointer is within
two words of the writer pointer.

The buffer is interleaved so that it alter-
nately stores all odd-address words from mem-
ory in one division of the buffer and stores all
even-address words in the other division.

Each division consists of four segments each
of which contains four words as shown in Fig-
ure III-3-1.

Each program word consists of 48 bits, 3 tag
bits, and an overall parity bit. Since informa-
tion will be extracted from the program buffer
in syllable form there is no way to check over-
all parity. Therefore, as the program word is
parsed into six 8-bit syllables while being
loaded into the program buffer, parity is also
generated on each syllable of the word and
stored in the buffer with each word. The
parity of each syllable can thus be checked
and the integrity of the program word main-
tained. Figure 111-3-2 illustrates the format of
the program buffer word.

Since the B 7700 allows operators to overlap
word boundaries, the program buffer is read

EVEN DIVISION ODD DIVISION
Word Address 00 Word Address 0l
o o
£ |Word Address 02 § Word Address 03
]
£ £
& |Word Address 04 @ |Word Address 05
w v
Word Address 06 Word Address 07
Word Address 08 Word Address 09
2 |Word Address 10 t |Word Address 11
] o
£
& [Word Address 12 g |Word Address 13
v (%]
Word Address 14 Word Address 15
Word Address 16 Word Address 17
o~ ~
£ |Word Address 18 # |Word Address 19
Q L
& [Word Address 20 & [Word Address 21
o o
W w
Word Address 22 Word Address 23
Word Address 24 Word Address 25
o~ ~
= |Word Address 26 w |Word Address 27
3 I}
§5 Word Address 28 ?’n Word Address 29
(%) w
Word Address 30 Word Address 31

Figure 111-3-1. Format of Program Buffer Word

Storage

out serially. Two words are read out of the
buffer at the same time, one even address (in-
dicated by the PEB pointer) and one odd (indi-
cated by the POB pointer). These pointers to-
gether with the odd/even flip-flops (OEA,
OEB, and OEC) then select which of the two
words will be left-justified in the barrel switch
of the program unit. (These pointers may also
be adjusted to facilitate a local branch or en-
try into an edit table.) The syllables will then
be processed left to right in sequence.

An instruction may be either a Value Call, a
Name Call, or an operator. The two high-order
bits (e.g., bits 7 and 6 in Figure I11-3-2) of each
instruction determine the type of instruction
to be executed.

Instruction Decode Table

Instruction Identification (Bits 7
Type & 6)
Value Call 00
Name Call 01
Operator 1x

No. of Function
Syllables
2 Brings an operand into the stack
2 Brings an IRW into the stack
1 to 12 Performs the specified operation

3-65

SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE
0 1 2 3 4 5
tacloa plls Plu7 43 [[s P|39 35 [|S P|31 27 [ls p|23 19 l|spPlis 11]ispl7 3
b6 42 38 34 30 26 22 18 14 10 6 2
IS 37 33 29 25 21 17 13 9 5 !
Ly 40 36 32 28 24 20 16 12 8] 0

4105!

Figure 1l1-3-2. Program Buffer Word Format

Value Call is a two-syllable instruction that
brings an operand from memory into the top-
of-stack. A concatenation of the two Value Call
syllables gives a 14-bit address couple. If the
referenced memory location is an indirect ref-
erence word or a data descriptor, additional
memory accesses are made until the operand
is located. The operand is then placed in the
top-of-stack register. The operand may be ei-
ther single-precision or double-precision, caus-
ing either one or two words to be loaded into
the stack.

Name Call builds an indirect reference word
in the stack. Stack adjustment takes place so
that the top-of-stack is empty. The six low-or-
der bits of the first syllable for this operator
are concatenated with the eight bits of the fol-
lowing syllable to form a 14-bit address couple.
The address couple is placed, right-justified
into the top-of-stack; the remainder of the top-
of-stack register is set to zero. The tag field is
set to 001 and the register is marked full.

Operators vary from 1 to 12 syllables in
length. The first syllable of each operator indi-
cates the number of additional syllables form-
ing the operator.

Operators work on data as either full words
(48 data bits plus 3 tag bits) or as strings of
data characters. Word operators work with op-
erands (single-or double-precision) in the top of
the stack.

String operators are used for transferring,
comparing, scanning, and translating strings
of digits, characters, or bytes. In addition, a
set of micro-operators (EDIT Mode operators)
provides a means of formatting data for input/
output. String operators and edit mode
operators use source and destination pointers
located in the stack to set hardware registers.

In some of the string operators the source
pointer may not be used. In this case, an oper-
and may be in the stack; its characters are cir-
culated as it is being used. String operators

3-66

have an optional update function, producing
updated source and destination pointers and
counts.

If both the source and destination desecrip-
tors have size fields equal to zero, the size reg-
isters indicate 8-bit character size. When both
a source and destination are required and the
size field of one is equal to zero and the other
is not, then the size field of the non-zero de-
seriptor is used.

If neither size field is equal to zero and the
size fields are not equal and the operator is
not Translate or Transfer Words, the invalid-
operand interrupt is set and the operator is
terminated. The size field is considered equal
to zero when the source is an operand.

In the B 7700 Systems operands may be
used to represent either numeric or logical in-
formation. An operand may be a single-preci-
sion (SP) operand or double-precision (DP) op-
erand. Memory word tag bits (bits 50, 49, and
48), when 000, designate an SP operand and,
when 010, designate a DP operand.

Logical operands may be either true (ON) or
false (OFF). Logical values are the result of
Boolean operations or relational operations.
Relation operators generate a logical value as
the result of an algebraic comparison of two
arithmetic expressions. Bit 0 contains the
logical value. Relational operators set bit 0,
and conditional operators use bit 0 for the de-
cision. Logical (Boolean) operators consider
each bit from 47 to 0 as an individual logical
value and operate on the whole operand.

GROUPING OF OPERATORS

Operators may be identified by name, mne-
monic, or hexadecimal code. In this document
to facilitate reference to the description of the
operators, the operators are listed in the ap-
pendix in two ways: alphabetically by mne-
monic, and sequentially by hexadecimal code.

In each case the page number of the operator
description is given.

When describing operators, considerable re-
dundancy is eliminated by grouping operators
with similar functions and only describing
their differences. Also, for convenience of the
user, operators used for related manipulations
(e.g., arithmetic operators i.e. ADD, SUBT,
MULT, DIVD, etc.) are described sequentially.

As shown in Figure III-3-8 all central proc-
essor program operators are grouped into one
of four modes: primary (P), variant (V), edit

(E), or vector (Z). Several operators are classed
as universal (U) because they can operate in
any mode. (The letters in the above parenthe-
ses are used in this document as a mode-iden-
tifier prefix before the hexadecimal code asso-
ciated with each operator; e.g., (P) 80 indicates
a primary mode operator and 80 is the
hexadecimal code for the ADD operator.) In
this document, the operator descriptions are
grouped by mode and preceding each group of
descriptions for each mode there is a listing
giving the order of specific operator descrip-
tions.

2nd —> PRIMARY MODE (P) xx
0 1 2 3 4 5 6 7 8 9 A 8 c D E F
st 03 | VALC | VALC | VALC | VALC | VALC | VALC | VALC | VALC [VALC | VALC | VALC | VALC | vaLc | vate | vate | vale | o3
4-7 | NAMC | NAMC | NAMC | NAMC | NAMC | NAMC | NAMC [NAMC | NAMC | NAMC | NAMC | NAMC | NAMC | NAMC | NAMC | NAMC | 4.7
8 | ADD | SUBT | MULT | DIVD | IDIV | RDIV | NTIA | NTGR | LESS | GREQ | GRTR | LSEQ | EQUL | NEQL | CHSN | muLx | 8
9 | LAND | LOR | LNOT | LEQV | SAME | VARI | BSET | DBST | FLTR | DFTR | ISOL | DISO | INSR | DINS | BRST | DBRS | 9
‘A | BRFL | BRTR | BRUN | EXIT | STBR | NXLN | INDX | RETN | DBFL | DBTR | DBUN | ENTR | EVAL | NXLV | MKST | STFF | A
B | ZERO | ONE | LT8 LT16 | PUSH | DLET | EXCH | DUPL [STOD | STON | OVAD | OVRN | LODT | LOAD | LT48 | MPcw | B
C | SCLF | DSLF | SCRT | DSRT | SCRS | DSRS | SCRF | DSRF |SCRR | DSRR | ICVD | ICVU | SNGT | SNGL | XTND | iMkS | ¢
D | TEED | PACD | EXSD | TWSD | TWOD | SISO | SXSN | ROFF | TEEU | PACU | EXSU | TWSU | TWOU | EXPU | RTFF | HALT | D
E | TLSD | TGED | TGTD | TLED | TEQD | TNED | TUND | VMOM | TLSU | TGEU | TGTU | TLEU | TEQU | TNEU | Tunu | vmos | E
F | CLSD | CGED | CGTD | CLED | CEQD | CNED FMMR | CLSU | CGEU | CGTU | CLEU | CEQU | CNEU | NOOP | NVLD | F
VARIANT MODE (V)xx
0 1 2 3 4 5 6 7 8 9 A B c] E F
4 JOIN | SPLT | IDLE | SINT | EEXI | DEXI | IGPR SCNI PTPA | WHOI 4
8 PAUS | OCRX NTGD | MIN MAX | LOG2 DADD INCN | 8
A UPKL PAKL | RODI | PAKR | SINH | UPKR | SLMT | SZTN | FMFR ROD2 | MVST | A
B STAG | RTAG | RSUP | RSON | RPRR | SPRR | RDLK | CBON | LODT | LLLU | SRCH | STOP | B
D | USND | UABD | TWFD | TWTD | SWFD | SWTD TRNS | USNU | UABU | TWFU | TWTU | SWFU | SWTU | RDEF | HALT | D
E 3
F | SLSD | SGED | SGTD | SLED | SEQD | SNED SLSU | SGEU { SGTU | SLEU | SEQU | SNEU | NOOP | NLVD | F
EDIT MODE (E) xx
0 1 2 3 4 5 6 7 8 9 A 8 c D E F
D | MINS | MFLT | SFSC | SRSC | RSTF | ENDF | MVNU | MCHR | INOP | INSG | SFDC | SRDC | INSU | INSC | ENDE | HALT | D
F $8sZ NOOP | NLVD | F
VECTOR MODE (2) xx
0 1 2 3 4 5 6 7 8 9 A B c] E F
03 | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | FTCH | 03
47 | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | STOR | 47
E | LDA | LDAt | LDB | LDBI [LDC | LDCI | VXIT [vMOM| DLA | DLAI | DLB | DLBI | DLC |oLcl | VEBR | vmos | E
F | STA | STAL | STB | STBI | STC | STCI OSA | DSAI | DSB | DSBI [OSC | DSCI | NOOP | NVLD | F

Figure 111-3-3. B 7700 CPM Program Operator Hexadecimal Code Assignments

3-67

The most frequently used operators are
called primary mode operators. Each of the
other modes is entered by first executing cer-
tain operators in primary mode. The
“operator” portion of the primary mode
operators begins with the first syllable and
may extend for several syllables.

Primary mode operators are described in
this document in the following groups: arith-
metic, bit, branch, compare, enter edit mode,
enter vector mode, index and load, input con-
vert, literal call, logical, pack, relational, scale,
stack, store, string, string transfer, subrou-
tine, transfer, type-transfer, miscellaneous,
and universal. (In several cases a variant
mode operator is conveniently described with a
group of primary mode operators.)

Variant mode operators are less frequently
used than primary mode operators and extend
the number of hexadecimal codes available to
identify the operators. Variant mode operators
require two syllables. The first syllable of a
variant mode operator has the hexadecimal
code 95 which is the primary mode operator
called Escape to 16-Bit Instruction (the mne-
monic for this operator is VARI). The second
syllable then gives the actual variant mode op-
eration to be performed. The variant mode op-
erators are described in this document in the
following groups: scan, scan while, tag field,
unpack, miscellaneous, operators exclusive to
the B 7700, and universal operators.

Edit mode operators perform edit functions
(such as insert, move, and skip) on strings of
data being prepared for output. The Edit mode
is entered from the primary mode via one of
the enter edit operators (EXSD, EXSU, EXPU,
TEED, or TEEU). Subsequent edit operators
follow as either single micro operators in the
program string or as edit operators in a
separate table which is executed as a program
string. In edit mode the program buffer
memory is reduced to 16 words (total available
area) for processing the edit operators; the
other 16 words contain the primary program
syllables.

The basic B 7700 architecture avoids index
registers in order to facilitate block or proce-
dure entries. Although this improves the ma-
chine’s overall performance, it does impede
processes of an iterative nature such as the
ordinary handling of arrays. The B 7700 over-
comes this difficulty with vector mode
operation (a variation of string operator edit
mode) which permits successive accesses to the
elements of an array by using the source, des-
tination, and table pointer areas of the IC
memory as index registers and by improved
loop control. Vector mode hardware provides

3-68

additional register capabilities and permits op-
erators to be generated by the compilers to ef-
fect improved handling of vectors.

Vector mode is entered from primary mode
by using either of two operators: a Single
Word Vector Mode (VMOS) entry or Multiple-
Word Vector Mode (VMOM) entry. The two en-
ter vector operators assign addresses to the in-
dex registers and perform either a VMOS or a
VMOM operation. Single-Word Vector Mode
forces an automatic one-word branch back-
ward while the processor is in vector mode.
The Multiple-Word Vector Mode uses the auto-
matic local branch point detection. The
operators Vector Branch and Vector Exit are
used only in the Multiple-Word Vector Mode
and provide control of program iterations and
exiting. Twenty-four vector stack operators
link the top of stack with the word addressed
by a specific IC register, thus enabling direct,
indexable transfers between memory and the
top of stack. Forty operators are permitted for
vector and matrix manipulations.

In vector mode certain limitations must be
considered; for example, the processor is in
control state and cannot be interrupted to
service other needs. The arrays manipulated
by vector mode cannot be segmented and must
be present in their entirety while in vector
mode. Therefore, the use of vector mode in a
general multiprocessing environment must
necessarily be restricted; nevertheless, it pro-
vides a powerful tool for a particular class of
problems.

Detection of an invalid operator condition
terminates the operator, and an invalid
operator interrupt is set in the processor inter-
rupt register. The processor will proceed to
process the interrupt whether it is in normal
state or control state.

Invalid instructions are detected by the fol-
lowing methods:

1. Testing for unassigned operator codes. In
the B 7700 all unassigned operators cause a
programmed operator interrupt.

2. Testing for any value other than 011 in
bit positions 50, 49, and 48 of any program
word (an attempt to execute something which
is not code). This results in an invalid program
word interrupt except when in table mode
which allows a tag 0 or a tag 3.

3. Testing for an invalid operator function;
for example, an attempt to dial to a non-exi-
stent bit. This results in an invalid operand in-
terrupt.

Bit 48 of each word in main memory is a
memory protect bit. This bit is ON in all pro-
gram words, indirect reference words, data de-
scriptors, program descriptors, main memory
storage links, and processor-generated control
words.

Except for stack pushdowns and the overwr-
ite operators an attempt by a processor to
write into a location when the contents of that
location has the memory protect bit set will
cause a memory-protect interrupt to be set in
the processor interrupt register. The overwrite
operators will overwrite whatever is in the ad-
dressed area. When the string or edit
operators attempt to access the source or des-
tination areas they will get a segment array
interrupt but when they attempt to access a
table they will get a memory-protect interrupt.

PRIMARY MODE OPERATORS

Primary mode operaftors may consist of as
many as seven syllables but the first syllable
defines the operation.

ARITHMETIC OPERATORS

Dyadic arithmetic operators require two op-
erands in the top-of-stack storage. These oper-
ands are combined by the arithmetic process
specified and are replaced with the resulting
operand. Both operands may be either single-
precision, double-precision, or intermixed
types. The specified arithmetic process adapts
automatically to the environment: a single-
precision process is invoked if both operands
are of the single-precision type and a double-
precision process is invoked if either operand
is of the double-precision type. Each double-
precision operand occupies two words. The sec-
ond word of the operand is an extension of the
first word of the operand, i.e., the mantissa of
the first word of the operand may be an inte-
ger but the mantissa of the second word is al-
ways a fraction.

Add, subtract, multiply, and integer divide
operations with two integer operands yield an
integer result if no overflow occurs. If one or
both operands are noninteger or if the result
overflows, the result is noninteger.

ADD (ADD) (P)80

The Add operator causes the two top-of-stack
operands to be added algebraically and the
sum to be left in the top-of-stack.

SUBTRACT (SUBT) (P)81

The Subtract operator causes the top-of-
stack operand to be algebraically subtracted
from the second operand in the stack and the
result to be left in the top-of-stack.

MULTIPLY (MULT) (P)82

The Multiply operator causes the two top-of-
stack operands to be algebraically multiplied
and the product to be left in the top-of-stack.

EXTENDED MULTIPLY (MULX) (P)8F

The Extended Multiply operator causes the
two top-of-stack operands to be algebraically
multiplied and a double-precision product to be
left in the top-of-stack.

DIVIDE (DIVD) (P)83

The Divide operator causes the second oper-
and in the stack to be algebraically divided by
the top-of-stack operand the quotient to be left
in the top-of-stack. If the mantissa of the sec-
ond operand in the stack is zero, the exponent
and quotient are set to zero. If the top-of-stack
mantissa is zero, the divide-by-zero interrupt
is set. In either case the operation is termi-
nated.

INTEGER DIVIDE (IDIV) (P)84

The Integer Divide operator causes the sec-
ond operand in the stack to be algebraically di-
vided by the top-of-stack operand and the inte-
ger part of the quotient to be left in the top-
of-stack in integer form. If the mantissa of the
second operand in the stack is zero, the expo-
nent and quotient are set to zero. If the top-
of-stack mantissa is zero, the divide-by-zero in-
terrupt is set. In either case the operation is
terminated.

REMAINDER DIVIDE (RDIV) (P)85

The Remainder Divide operator causes the
second operand in the stack to be algebraically
divided by the top-of-stack operand to develop
an integer quotient. The remainder of this di-
vision is left in the top-of-stack. If this remain-
der is an integral value, it is in the form of an
integer. If the mantissa of the second operand
in the stack is zero, the exponent and quotient
are set to zero. If the top-of-stack mantissa is
zero, the divide-by-zero interrupt is set. In ei-
ther case the operation is terminated.

INTEGERIZE, TRUNCATED (NTIA) (P)86

The Integerize (Truncated) operator converts
the top-of-stack operand to an integer without
rounding. If the operand cannot be inte-
gerized, i.e., the exponent is greater than the
number of leading zeros in the operand. The
integer-overflow interrupt is set and the oper-
ation is terminated.

INTEGERIZE, ROUNDED (NTGR) (P)87

The Integerize (Rounded) operator converts
the top-of-stack operand to an integer with
rounding. Rounding takes place if the absolute
value of the fraction is greater than 4. If the
operand cannot be integerized, i.e., the expo-
nent is greater than the number of leading
zeros in the operand or a non-integer results
from the rounding operation, the integer-over-
flow interrupt is set and the operation is ter-
minated.

3-69

INTEGERIZE ROUNDED, DOUBLE PRECISION (NTGD)
(V)87

The Integerize (Rounded, Double Precision)
operator converts the top-of-stack operand to a
double-precision integer (exponent +13) with
rounding.

BIT OPERATORS

Bit operators set or reset bits in the top-of-
stack or in the second item in the stack.

BIT SET (BSET) (P)96

The Bit Set operator sets a bit in the top-of-
stack. The bit set corresponds to the value of
the bit specified by the second syllable of the
operator. If the program syllable defining the
bit to be set has a value greater than 47, the
invalid-operand interrupt is set and the
operation is terminated.

DYNAMIC BIT SET (DBST) (P)97

The Dynamic Bit set operator sets a bit in
the second item in the stack. The bit set corre-
sponds to the value of the bit specified by the
top-of-stack operand. If the word in the top-of-
stack is not an operand an invalid-operand in-
terrupt is set and the operation is terminated.
The word is integerized before it is used as a
bit number. If after being integerized the op-
erand is less than zero or greater than 47, an
invalid-operand interrupt is set and the
operation is terminated.

BIT RESET (BRST) (P)9E

The Bit Reset operator resets a bit in the
top-of-stack. The bit reset corresponds to the
bit specified by the second syllable of the pro-
gram operator. If the program syllable defin-
ing the bit to be reset has a value greater
than 47, an invalid-operand interrupt is set
and the operation is terminated.

DYNAMIC BIT RESET (DBRS) (P)9F

The Dynamic Bit Reset operator resets a bit
in the second item in the stack. The reset bit
corresponds to the value of the bit specified by
the top-of-stack operand. If the word in the
top-of-stack is not an operand an invalid-oper-
and interrupt is set and the operation is termi-
nated. The word is integerized before it is used
as a bit number. If, after being integerized,
the operand is less than zero or greater than
47, an invalid-operand interrupt is set and the
operation is terminated.

CHANGE SIGN BIT (CHSN) (P)SE

The Change Sign Bit operator complements
(changes from 1 to 0 or from 0 to 1) the sign
bit (bit 46) of the top-of-stack operand.

3-70

COUNT BINARY ONE’S (CBON) (V)BB

The Count Binary One’s operator counts the
number of binary ones in the information part
of the word in the top-of-stack and places this
count in the top-of-stack.

LEADING ONE TEST (LOG2) (V)8B

The Leading One Test operator locates the
most significant information bit of the word in
the top-of-stack. The number of that bit plus
one is placed in the top-of-stack. If a one bit is
not located, a zero is placed in the top-of-stack.

BRANCH OPERATORS

Branch instructions function to break the
normal sequence of serial instruction fetches.
Branching may be either relative to the base
address of the current program segment or to
a location in some other program segment.
Branch operators may be conditional or uncon-
ditional. Branch addresses are always checked
for possible residency in the local program
buffer.

BRANCH UNCONDITIONAL (BRUN) (P)A2

The Branch Unconditional operator replaces
the contents of the program index register
(PIR) and the program syllable register (PSR)
with the next two syllables from the program
string. The two syllables following the actual
operator syllable provide the new PIR and
PSR settings: the three high-order bits are
placed in the PSR and the next 13 low-order
bits are placed in the PIR.

BRANCH ON TRUE (BRTR) (P)A1l

If the low-order bit of the top-of-stack word
is a one, the Branch on True operator replaces
the contents of the program index register and
the program syllable register with the next
two syllable positions and the program contin-
ues in sequence. Otherwise, the PIR and PSR
are advanced three syllable positions and the
program string continues in sequence.

BRANCH ON FALSE (BRFL) (P)AO

If the low-order bit of the top-of-stack word
is a zero, the Branch on False operator re-
places the contents of the program index reg-
ister and the program syllable register with
the next two syllables from the program
string. Otherwise, PIR and PSR are advanced
three syllable positions and the program
string continues in sequence.

DYNAMIC BRANCH UNCONDITIONAL (DBUN) (P)AA

If the top-of-stack word is either a program
control word or an indirect reference to a
PCW, the Dynamic Branch Unconditional op-
erator branches to the specified syllable of the
program segment.

If the top-of-stack word is an operand, the
program index register and program syllable
register are set according to the contents of
this operand as follows: The operand is made
into an integer. If it is negative or if it is
greater than 16384 the invalid-index interrupt
is set and the operation is terminated. If bit
zero of the operand is zero, PSR is set to zero;
otherwise, if bit zero of the operand is one,
PSR is set to three. The next higher-order 13
bits are placed in the PIR.

DYNAMIC BRANCH TRUE (DBTR) (P)A9

If the low-order bit of the second word in the
stack is a one and the top-of-stack word is a
program control word {PCW) or an indirect ref-
erence to a PCW, the Dynamic Branch True
operator will cause a branch to the specified
syllable in the program segment. Otherwise, a
one is added to the PIR and PSR and the pro-
gram continues in secuence.

If the low-order bit of the second word in the
stack is a one and the top-of-stack word is an
operand, PIR/PSR are replaced from this oper-
and as in the DBUN operator. Otherwise, PIR
and PSR are advanced and the program string
continues in sequence.

DYNAMIC BRANCH FALSE (DBFL) (P)A8

If the low-order bit of the second word in the
stack is a zero, and the top-of-stack word is a
program control word or an indirect reference
to a PCW, the Dynamic Branch False operator
causes a branch to the specified syllable of the
program segment. Otherwise, the PIR/PSR are
continued in sequence.

If the low-order bit of the second word in the
stack is a zero and the top-of-stack word is an
operand, PIR/PSR are replaced from this oper-
and as in the DBUN operator. Otherwise, PIR
and PSR are advanced and the program string
is continued in sequence.

STEP AND BRANCH (STBR) (P)A4

The Step and Branch operator is initiated
with a reference to either a step index word
(SIW) or an operand in the top-of-stack. The
target item may be reached through a chain of
indirect reference words, indexed data descrip-
tors, and/or accidental entries. The format of
the SIW is shown in figure I1I-3-4.

[f the target item is an SIW, the increment
field of the SIW is added to the current-value
field of the SIW, and the SIW is replaced in
memory. If the current-value field after
adding the increment is less than or equal to
the final-value field, then PIR and PSR are
advanced three syllable positions, the program
string is continued in sequence, and an oper-
and representing a Boolean value “true” (bit 0
ON) is left in the top-of-stack. If the current-
value field is greater than the final-value
field, the program takes the branch by replac-
ing PIR and PSR with the next two syllables
from the program string. If the branch is tak-
en, no Boolean is left in the top-of-stack.

[f the target item is an operand, the operand
will be left in the second stack position, the
top-of-stack will be set to zero, representing a
Boolean value “false,”” and PIR and PSR will
be advanced to the next operator.

If the target item is other than an operand
or SIW, the invalid-operand interrupt is set.

COMPARE OPERATORS

The compare operators perform the specified
compare of two strings of data. The tru/false
flip-flop is conditioned by the results of the
compare.

COMPARE CHARACTERS GREATER, DESTRUCTIVE
(CGTD) (P)F2

The Compare Characters Greater Destruc-
tive operator makes a character-by-character
comparison of two strings of data until it finds
an unequal pair. (All comparisons are by the
binary character position in the collating se-

o)

FINAL
31 27

CUR lEN{T

41 39| 35 15 11 3
I MENT VALUE VALUE
50] 46| 42| 38/ 34| 30 26 14 10[6 2
0 FIEL FIELD FIEILD
49| 45| "41] 37 33 29| 25 13 9 5 1
048 44| 40| 3¢ 32 28 12l 8 4 0

41053

Figure 111-3-4. Step Index Word Format

3-71

quence.) If the characters in the B string (des-
tination) are greater than the characters in
the A string (source), then the true/false flip-
flop is set to one; otherwise, the true/false flip-
flop is set to zero. If the repeat count is less
than or equal to zero, the true/false flip-flop is
reset.

The top-of-stack is an operand which
specifies the number of characters to be com-
pared. The second item in the stack is an oper-
and or descriptor pointing at the source char-
acter string against which comparisons are to
be made. The third item in the stack is a de-
scriptor pointing to the character string to be
compared. If either of the data strings has the
memory protect bit ON (bit 48=1), the seg-
mented array interrupt is set, and the
operation is terminated.

((;’())FM;’ARE CHARACTERS GREATER, UPDATE (CGTU)

The Compare Characters Greater, Update op-
erator performs a Compare Characters Great-
er, Destruction operation except that the ac-
cesses to memory continue until the repeat
count is exhausted. At the completion of the
operation, the source and destination pointers
are updated.

COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE (CGED) (P)F1

The Compare Characters Greater or Equal,
Destructive operator performs a Compare
Characters Greater, Destructive operation ex-
cept that the true/false flip-flop is set to true
if the destination is greater than or equal to
the source.

COMPARE CHARACTERS GREATER OR EQUAL,
UPDATE (CGEU) (P)F9

The Compare Characters Greater or Equal,
Update operator performs a Compare Charac-
ters Greater or Equal, Destructive operation
except that memory accesses continue until
the repeat count is exhausted. At the comple-
tion of the operation, the source and destina-
tion pointers are updated.

COMPARE CHARACTERS EQUAL, DESTRUCTIVE
(CEQD) (P)F4

The Compare Characters Equal, Destructive
operator performs a Compare Characters
Greater, Destructive operation except that the
true/false flip-flop is set to true if the source
is equal to the destination.

%())PMCPARE CHARACTERS EQUAL, UPDATE (CEQU)
(

The Compare Characters Equal, Update op-
erator performs a Compare Characters Equal,
Destructive operation except that memory ac-
cesses continue until the repeat count is ex-

3-72

hausted. At the completion of the operation,
the source and destination pointers are up-
dated.

COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE (CLED) (P)F3

The Compare Characters Less or Equal, De-
structive operator performs a Compare Char-
acters Greater, Destructive operation except
that the true/false flip-flop is set to true if the
destination is less than or equal to the source.

COMPARE CHARACTERS LESS OR EQUAL, UPDATE
(CLEU) (P)FB

The Compare Characters Less or Equal, Up-
date operator performs a Compare Less or
Equal, Destructive operation except that mem-
ory accesses continue until the repeat count is
exhausted. At the completion of the operation,
the source and destination pointers are up-
dated.

%OFMPARE CHARACTERS LESS, DESTRUCTIVE (CLSD)
(PFO

The Compare Characters Less, Destructive
operator performs a Compare Characters
Greater, Destructive operation except that the
true/false flip-flop is set to true if the destina-
tion is less than the source.

COMPARE CHARACTERS LESS, UPDATE (CLSU) (P)F8

The Compare Characters Less, Update oper-
ator performs a Compare Characters Less, De-
structive operation except that memory ac-
cesses continue until the repeat count is ex-
hausted. At the completion of the operation,
the source and destination pointers are up-
dated.

COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE
(CNED) (P)F5

The Compare Characters Not Equal, De-
structive operator performs a Compare Char-
acters Greater, Destructive operation except
that the true/false flip-flop is set to true if the
source is not equal to the destination.

COMPARE CHARACTERS NOT EQUAL, UPDATE
(CNEU) (P)FD

The Compare Characters Not Equal, Update
operator performs a Compare Characters Not
Equal, Destructive operation except that mem-
ory accesses continue until the repeat count is
exhausted. At the completion of the operation,
the source and destination pointers are up-
dated.

ENTER EDIT MODE OPERATORS

Enter edit mode operators provide the
means for transition from primary mode oper-
ation to edit mode operation. The edit mode
operators in a program string are entered via
the Execute Single Micro or Single Pointer.

The edit mode operators may also be in a table
and in which case they are entered by the Ta-
ble Enter Edit operator. (See also the descrip-
tions under “Edit Mode Operators.”)

TABLE ENTER EDIT, DESTRUCTIVE (TEED) (P)D0
The Table Enter Edit, Destructive operator
is used to control edit micro instructions which
are contained in memory as a table rather
than as part of the rnormal program string.
This operator causes characters to be trans-
ferred from the source string to the destina-

The transfer is under control of the string of
edit micro-operators which are located by the
table pointer.

The top-of-stack word (a descriptor) is the ta-
ble pointer, the second word (a single-precision
operand or descriptor) in the stack is the
source pointer, and the third word in the stack
(a descriptor) is the destination pointer. If the
first word in the stack is not a descriptor, the
invalid-operand interrupt is set and the
operation is terminated. If the second item in
the stack is a single-precision operand, it is a
source string. If the third item in the stack is
not a descriptor, the invalid-operand interrupt
is set and the operation is terminated. In table
mode, the micro-operator words can be tagged
as single-word operands (tag-0).

TABLE ENTER EDIT, UPDATE (TEEU) (P)D8

The Table Enter Edit, Update operator per-
forms a Table Enter Edit Destructive
operation. At the completion of the operation,
the source pointer and destination pointer are
updated.

g)))(g()UTE SINGLE MICRO, DESTRUCTIVE (EXSD)
2

The Execute Single Micro, Destructive oper-
ator transfers characters from the source
string to the destination string under the con-
trol of the single micro-operator which follows
this operator syllable. The first item in the
stack is a single-precision operand that defines
the field length and is used as a micro-
operator repeat field. The second item in the
stack is the source pointer, the third item in
the stack is the destination pointer.

EXECUTE SINGLE MICRO, UPDATE (EXSU) (P)DA
The Execute Single Micro, Update operator
performs an Execute Single Micro, Destructive
operation. At the completion of the operation,
the source pointer and destination pointer are
updated.
EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE
(EXPU) (P)DD
The Execute Single Micro, Single Pointer
Update operator performs an Execute Single

Micro, Destructive operation. At the comple-
tion of the operation, the pointer is updated.

The top-of-stack operand is used as a micro-
operator repeat field. The second item in the
stack is used to set both the source and desti-
nation pointers. Only the destination pointer is
updated.

ENTER VECTOR MODE OPERATORS

The enter vector mode operators provide the
means of transition from primary mode to vec-
tor mode. Either one of two operators are
available to enter vector mode: for operations
using instructions in only one program word,
operator VMOS is used; for operations involv-
ing instructions in more than one program
word, operator VMOM is used. (See also the
descriptions under ‘“Vector Mode Operators.”)

Vector mode hardware provides increased ef-
ficiency in the ordinary handling of arrays
that frequently dominates a FORTRAN or an
ALGOL program. For example, when process-
ing the following FORTRAN DO loop:

DO 10I =1, 100
A = BA + CD
10 CONTINUE

Each trip through the loop (for each value of
I) requires a descriptor for each of the three
arrays and the value of I with which to index
each descriptor. This means six memory ac-
cesses, in addition to code fetching and execu-
tion.

To example above (the FORTRAN DO loop)
can be expressed in ESPOL as follows:
D0 VECTORMODE ([1,1,1]
A[*]1 B[*1,C[*1, for 100)

BEGIN

A=B+C;
INCREMENT A,B,C;
END;

The example has specified three increment
values, three beginning addresses, a length (or
number of iterations), and the operations to be
performed on the array elements in each itera-
tion. From this information the compiler gen-
erates the following:

1. Primary mode code to place the seven pa-
rameters in the stack.

2. The enter vector mode operator.

3. Vector mode code to perform the
operations on the array elements.

3-73

Before entering vector mode, the values to
be stored in the IC memory registers must be
placed in the stack. They are arranged in the
stack in the following order (from the top-of-
stack down):

Pointer C (descriptor)
Length (optional) (operand)
Pointer A (descriptor)
Pointer B (descriptor)
Pointer C increment (operand)
Pointer A increment (operand)
Pointer B increment (operand)

zero. Then vector mode is exited and normal
operation continues with the next word of code
in sequence. It should be noted that in the vec-
tor mode hardware, the VMOM operator sub-
tracts 1 from the length and then compares,
whereas the multiple-word (VOMS) operator
first compares the length and then subtracts.

When the entry to vector mode is the
(VMOM) operator, any code that follows it is
executed under vector mode rules. The vector
mode operators explained below are used only
in coniunction with the VMOM operator.

The seven parameters are inserted in the local buffer as follows:

TBR(33) «——Pointer C [19:20] (+ Pointer C [35:16] if I = 1)
S2LS(37)4¢——LENGTH [19:20] (or 220-1)

SBR(31) ¢— Pointer A [19:20] (+ Pointer A [39:20] if I
DBR(32)¢——Pointer B [19:20] (+ Pointer B [39:20] if I

1)
1)

TIR(28)4¢——Pointer C increment [19:20]
SIR(21)¢——Pointer A increment [19:20]
DIR(22)¢—DPointer B increment [19:20]

I is the indexed bit, bit 45, in the descriptor.
(See figure I1-3-5.)

The enter vector mode operator may be ter-
minated by one of the following interrupts:

a. INVALID OP: Pointer A, B or C not
tagged as a data descriptor or Pointer A or B
has bit 44=1.

b. MEMORY PROTECT: Pointer A is read
only (bit 43=1).

c. PRESENCE BIT: Pointer A, B or C has
bit 47=0.

Length specifies the number of iterations
through the code to be executed while in vec-
tor mode, usually the number of elements in
the arrays being manipulated. The presence of
a length value in the stack is indicated by bit
44=1 in Pointer C. If bit 44=0, a default length
of 220-1 is stored in the length register. Bit 44
(segmented bit) must be OFF in Pointer A and
Pointer B. (The scftware ascertains that bit 44
is OFF in Pointer C before using it to indicate
the presence of a length value.)

If the entry to vector mode is the single-
word vector mode (VMOS) operator, the single
word of code following that entry is executed
a number of times equal to the length
parameter. Each time the word is executed
length is decremented by one until it becomes

3-74

a. Vector Branch (VEBR) is a three-syllable
operator. The two syllables following the oper-
ator name contain the branch address. The
Vector Branch operator examines length. If it
is greater than zero, length is decremented by
one, the next two program syllables containing
the branch address are skipped, and the pro-
gram is resumed at the following syllable. If
the examined length is zero, vector mode is
exited, and normal operation commences with
the program word located by the branch ad-
dress.

b. Vector Exit (VXIT) operator causes the
program to return to normal operation.

There are 24 Vector Stack operators (with a
common syllable format) which are used to
move operands between the top-of-stack and
absolute memory addresses pointed to by de-
scriptors. Variations of this syllable provide
the capabilities of storing or loading the top-
of-stack with a single — or double-precision op-
erand and choosing whether or not to incre-
ment the pointer. If the memory address is
protected, the following recovery procedure is
followed:

a. If a store operation, vector mode is termi-
nated with a Memory Protect Interrupt.

b. If a load operation, then:

(1) If the length parameter was passed to
the vector mode, vector mode is termi-
nated with a Memory Protect Inter-
rupt.

(2) If no length parameter was passed to
the vector mode, vector mode is termi-
nated but no interrupt is set. The stack

POINTER C

LENGTH
(OPTIONAL)

POINTER A

POINTER B

POINTER C
INCREMENT

POINTER A
INCREMENT

POINTER B
INCREMENT

4 4 3 2 0
876543210 2 4 8
; L
X111 * »
101 g z XXXX INITIAL INDEX LOC = 33
XXXX IF I =1 (BIT 45) BASE
Loc-=37
. LENGTH (C DESC
BIT 44 = 1)
P sz
101 e Xj1{0O]X INITIAL INDEX * LOC = 31
S IFt=1(BIT 45) BASE
: £l sz
101 |EIX|'OfA INITIAL INDEX * LOC = 32
s ! D IF1=1(BIT 45) INDEX
LoC =23
XX X
X INDEX
xxX | % LOC = 21
INDEX
XXX | x LOC = 22
INDEX

** || 35 THEN BASE - 33
II- 45 THEN BASE + C [356:16] - 33

* |- 45 THEN BASE -~ 31 or 32
| 45 AND
SZ = 0 THEN BASE + [39:20] - 31 or 32

0" SZ #0THEN BASE + [35:16) = 31 or 32

READ (POINTER B ONLY) MUST BE 0 ELSE MEMORY PROTECT

Figure Il1-3-5. Vector Table

3-75

is then cut back as defined by the oper-

ator that sensed the Memory Protect

condition (refer to RA and RB below).

The word for which a protect is sensed is not
marked present in the stack.

The format of the vector operator syllable is
defined as follows:

a. If a length is not passed when vector
mode is entered, the format is as follows:

IOLSIRA RB|D |A1] A0 |I

where 0, the high-order bit, must be OFF (0).

b. When a length is passed, the format is as
follows;

1111 {LS|D|A1|A0|I

where the three high-order bits must be ON
.

In either format:

Bit Description

D Double-precision bit. If D=0, load or store a
single-precision operand. If D=1, load or store a
double-precision operand.

RA If a memory protect interrupt is sensed and no
length is passed to the vector mode and RA=0,
the top-of-stack word is deleted. If RA=1, the top-
of-stack word is not deleted.

RB Same as the RA bit except that it governs the
action taken on the second word of the stack.

LS Bit is OFF (0) for a top-of-stack load operator and
ON (1) for a top-of-stack store operator.

Al, Selects the IC memory address register.
A0

Al A0

0 0 Load from Pointer A
0 1 Load from Pointer B
1 0 Load from Pointer C

1 When I equals 1, the pointer used for the memory
address is increased by its corresponding pointer
increment following the load or store operator.
When I equals 0, the pointer increment is
inhibited.

The Vector Stack operators are described
under “Vector Mode Operators.”

Two other operators (WTCH and STOR) are
used to load/store the top-of-stack from/to rel-
ative memory addresses designated by an ad-
dress couple. They are enabled only when a
length is passed by the vector mode entry.
(The operators FTCH and STOR are described
under “Vector Mode Operators.”)

3-76

A memory protect interrupt occurs during
Vector Mode if a protected word (bit 48 set) is
sensed as a result of processing VALC, NAME,

or stack vector operator.)
External interrupts are disabled during Vec-

tor Mode. Exponent underflow interrupts are
inhibited for arthmetic operators, and in lieu
of the interrupt, an answer of zero is returned
and the TFFF is turned ON.

No facilities are provided for recovery from
interrupts that occur while in vector mode. P1
is returned with bit 19=1.

SINGLE-WORD VECTOR MODE (VMOS) (P)EF

The Single-Word Vector Mode operator is the
primary mode operator used to access vector
mode to perform on a vector those operations
defined by one program word. VMOS extracts
the seven parameters (described above) from
the stack, inserts them in their IC address,
and, after skipping up to five syllables, repea-
tedly executes the next complete word of pro-
gram code from the program register. VMOS is
inhibited from accessing additional program
code, thus causing vector mode exit.

If the descriptor in the top-of-stack has bit
44 ON, then the second item in the stack is the
length operand and it gives the iteration re-
peat count; otherwise, the default repeat
count of 1,048,575 is used.

Each of the three descriptors (pointers) rep-
resents a full or partial array of operands
which will be operated on repeatedly by the
same word of code.

MULTIPLE-WORD VECTOR MODE (VMOM) (P)E7

The Multiple-Word Vector Mode operator
provides access to the vector mode operators
for multiple program words. The VMOM
operator performs a VMOS operation supple-
mented by operator Vecor Branch which leads
to additional program word loops. The special
vector exit operator VXIT returns the pro-
gram to normal operation.

INDEX AND LOAD OPERATORS

The index and load operators provide the
means to index the top-of-stack word and the
means to load an operand or descriptor into
the top-of-stack.

INDEX (INDX) (P)A6

The two top-of-stack items are a descriptor
(or indirect reference to a descriptor) and an
operand. The operand is used to index the de-
scriptor. The Index operator places the inte-
gerized value of the second item in the stack
into the 20-bit length/index field of the de-
scriptor in the top-of-stack. The descriptor is
marked indexed (i.e., bit 45 is set to “one”).

If the word in the top-of-stack is an operand,
the top-of-stack operand is exchanged with the
second-item operand. If the word in the top-of-
stack is neither a descriptor nor an indirect
reference word pointirg to a descriptor, the in-
valid-operand interrupt is set and the
operation is terminated.

If the indexing value is negative or greater
than or equal to the length field of the de-
scriptor, the invalid-index interrupt is set and
the operation is terminated.

If the descriptor represents an array which
is segmented, the index is partitioned into two
portions by dividing it by the proper divisor
determined by the type of data referenced by
the descriptor, (D.P. word-128, S.P. word-256, 4-
bit digit-3072, 6-bit character-2048, or 8-bit
byte-1536). The quotient is used as an index to
the given descriptor to fetch the array-row de-
scriptor. The remainder is used to index the
row descriptor.

If the double-precision bit (bit 40) in the de-
scriptor is “one”, the index value in the second
item is doubled. The balance of the operation
is as described in the first paragraph of this
operator.

INDEX AND LOAD NAME (NXLN) (P)A5

The Index and Load Name operator per-
forms an Index operation. After the word in
the top-of-stack is indexed, the data descriptor
pointed to by this word is brought to the top-
of-stack, the copy bit (bit 46) of the data de-
scriptor is set to “one’’, and the top-of-stack is
marked full.

If the presence bit (bit 47) is OFF, the ad-
dress of the original descriptor is placed in the
address field of the stack copy. If the word ac-
cessed by the indexed word in the top-of-stack
is not a data descriptor, the invalid-operand
interrupt is set and the operation is termi-
nated. If the data descriptor accessed by the
indexed word in the top-of-stack has the index
bit (bit 45) set to “one”, the invalid-operand in-
terrupt is set and the operation is terminated.

INDEX AND LOAD VALUE (NXLV) (P)AD

The Index and Load Value operator per-
forms an Index operation. After the word in
the top-of-stack is indexed, the operand
pointed to by this descriptor is brought to the
top-of-stack. The top-of-stack is marked full.

If the word accessec is other than an oper-
and the invalid-operand interrupt is set and
the operator is terminated.

LOAD (LOAD) (P)BD

The Load operator places the word addressed
by the indirect reference word or by the in-
dexed data descriptor in the top-of-stack.

If at the start of this operator the top-of-
stack contains other than a data descriptor or
an indirect reference word pointing at a data
descriptor, the invalid-operand interrupt is set
and the operation is terminated.

If the word pointed at by the data descriptor
is another data descriptor, that descriptor is
marked as a copy (copy bit [bit 46[is set to
“one”) and if the presence bit (bit 47) is OFF,
the address of the original data descriptor is
placed in the field defined by bits 19:20 of the
copy in the stack.

LOAD TRANSPARENT (LODT) (V)BC

If the top-of-stack word is a data descriptor
or an indirect reference word, the Load Trans-
parent operator performs a Load operation;
otherwise, the word addressed by the 20 least-
significant bits of the top-of-stack word is
loaded to the top-of-stack. Copy-bit action does
not occur.

INPUT CONVERT OPERATORS

The input convert operators convert the var-
ious character sets (digit, BLC, EBCDIC, or
ASCII) to operands for arithmetic operations.

INPUT CONVERT, DESTRUCTIVE (ICVD) (P)CA

The Input Convert, Destructive operator con-
verts 4-bit digit, or 6-bit BCL, or 8-bit EBCDIC
(or ASCII) to an operand for internal arithme-
tic operations.

The first item in the stack is an operand
that is integerized to form the repeat field.
The second item in the stack is a descriptor
used as a source pointer.

The specified number of characters are
transferred from the source string to the top-
of-stack. Only the numeric portion of the char-
acter is transferred. The transferred string is
converted to a double-precision operand if the
length is greater than 12. If a double-precision
operand is produced, the true/false flip-flop is
set to false; otherwise, it is set to true. The
sign bit of the operand is set negative if the
zone of the last character transferred is 10 2
(for six-bit characters) or 1101
characters). At the completion of the operator
the second item in the stack is marked full.
The tag field is set to indicate a single - or
double-precision operand.

INPUT, CONVERT, UPDATE (ICVU) (P)CB

The Input Convert, Update operator per-
forms an Input Convert, Destructive
operation. At the completion of the operation,
the source pointer is updated.

LITERAL CALL OPERATORS

The literal call operators place defined-value
operands in the top-of-stack.

3-77

2 (for eight-bi

LIT CALL ZERO (ZERO) (P)B0

The Lit Call Zero operator places in the top-
of-stack a single-precision operand with a val-
ue of zero.

LIT CALL ONE (ONE) (P)B1

The Lit Call One operator places in the top-
of-stack a single-precision operand with a val-
ue of one.

LIT CALL 8 BITS (LT8) (P)B2

The Lit Call 8 Bits operator places in the
top-of-stack a single-precision operand equal in
value to the second syllable of this operator.

LIT CALL 16 BITS (LT16) (P)B3

The Lit Call 16 Bits operator places in the
top-of-stack a single-precision operand equal in
value to the second and third syllables of this
operator.

LIT CALL 48 BITS (LT48) (P)BE

The Lit Call 48 Bits operator places in the
top-of-stack a single-precision operand equal in
value to the next program word.

NOTE
Since the literal is synchronized by
word, this operator can be 7-12 syl-
lables long. Any unused syllables
are filled in with the invalid
operator code.

MAKE PROGRAM CONTROL WORD (MPCW) (P)BF

The Make Program Control Word operator
performs a Lit Call 48 Bits operation except
that the tag field is set to 111 to indicate a
program control word and the stack number
field of the PCW is inserted from the stack
number register.

LOGICAL OPERATORS

Logical operators operate on the two top-of-
stack operands bit for bit from bit 47 thru bit
0 to obtain logical values (48 logical values for
single-precision operands and 96 for double-
precision operands) which are left as the top-
of-stack operand. If only one of the operands
associated with LAND, LOR, LNOT, or LEQV
is a double-precision operand, then the other
operand will be extended with zeros. Logical
operators may be used to operate on logical,
string, or numeric operands.

LOGICAL AND (LAND) (P)90

The Logical And operator logically AND’s
each bit (except tag bits) of the two top-of-
stack operands leaving the result in the top-of-
stack. Each bit of the top-of-stack operand is
set to one where a one appears in the corre-
sponding bit positions of the two top-of-stack
operands; the other information bits in the

3-78

top-of-stack operand are set to zero. The tag of
the second operand is undisturbed except for a
double-precision operand in the top-of-stack, in
which case the second operand is made double
precision and the tag field is changed accord-
ingly. AND is defined as follows:

Operand A Operand B A AND B
0 0 0
0 1 0
1 0 0
1 1 1
NOTE

The tag field is set equal to the
second item in the stack.

LOGICAL OR (LOR) (P)91

The Logical Or operator logically OR’s each
bit (except tag bits) of the two top-of-stack op-
erands leaving the result in the top-of-stack.
OR is defined as follows:

Operand A Operand B AORB
0 0 0
0 1 1
1 0 1
1 1 1
NOTE

The tag field is set equal to the
second item in the stack.

LOGICAL NEGATE (LNOT) (P)92

The Logical Negate operator complements
each bit position (except tag bits) of the top-of-
stack operand.

LOGICAL EQUIVALENCE (LEQV) (P)93

The Logical Equivalence operator compares
the corresponding bits of the two items in the
top-of-stack (except the tag bits). The two
items are replaced by a single item with a tag
field equal to the tag field of the second item
in the stack and by a one in each bit position
where the corresponding bits of the two top-of-
stack items were equal.

PACK OPERATORS

PACK, DESTRUCTIVE (PACD) (P)D1

The Pack, Destructive operator packs data
(as addressed by the source pointer) right-jus-
tified into the top-of-stack in 4-bit (digit) for-
mat.

The top-of-stack operand defines the length/
repeat field (in digits) to be packed. The source
pointer is the second item in the stack. The
specified number of digits are transferred

from the source to the top-of-stack (dropping
the zones when required). If the digit length
transferred is less than 13 the tag field in the
top-of-stack is set to a single-precision oper-
and; otherwise, the tag field is set to a double-
precision operand.

If the length is not less than 25 an invalid-
operand interrupt is set and the operation is
terminated. If the source data has the memory
protect bit (bit 48) set to “one,” the segmented-
array interrupt is set and the operation is ter-
minated.

If the sign of the source data is negative,
the true/false flip-flop is set to “one;” other-
wise, the flip-flop is reset. Sign conventions
are as follows:

Data Bit Sign Location Neg. Sign
Format Zone Bit
Config.

4-bit Most significant digit 1101

6-bit Least significant character 10

8-bit Least significant byte 1101

(EBCDIC)
8-bit Least significant byte 1111 (ASCII)

PACK, UPDATE (PACU) (P)D9

The Pack, Update operator performs a Pack,
Destructive operation. At the completion of
the operation, the source pointer is updated.

RELATIONAL OPERATORS

The relational operators perform algebraic
comparisons on the two top-of-stack operands.
The operands are removed from the stack and
the result of the comparison is a logical oper-
and which is placed in the top-of-stack. The re-
sult is a single-precision operand with the
least significant bit set to one if the relation is
true or a single-precision operand with all in-
formation bits set to zero if the relation is
false.

GREATER THAN (GRTR) (P)8A

If the second operand in the stack is greater-
than the top-of-stack operand, the Greater
Than operator replaces the two operands with
a single-precision operand which has the least-
significant bit set to one.

If the second operand in the stack is not
greater than the top-of-stack operand, the two
operands are replaced with a single-precision
operand which has all information bits set to
zero.

GREATER THAN OR EQUAL (GREQ (P)89

If the second operand in the stack is greater
than or equal to the top-of-stack operand, the
Greater Than or Equal operator replaces the
two operands with a single-precision operand
which has the least-significant bit set to one.

If the second operand in the stack is not great-
er than or equal to the top-of-stack operand,
the two operands are replaced with a single-
precision operand which has all information
bits set to zero.

EQUAL (EQUL) (P)8C

If the second operand in the stack is algebra-
ically equal to the top-of-stack operand, the
Equal operator replaces the two operands with
a single-precision operand which has the least-
significant bit set to “one”. If the second oper-
and in the stack is not equal to the top-of-
stack operand, the two operands are replaced
with a single-precision operand which has all
information bits set to zero.

LESS THAN OR EQUAL (LSEQ) (P)SB

If the second operand in the stack is less
than or equal to the top-of-stack operand, the
Less Than or Equal operator replaces the two
operands with a single-precision operand
which has the least significant bit set the
“one”. If the second operand in the stack is
not less than or equal to the top-of-stack oper-
and, the two operands are replaced with a sin-
gle-precision operand which has all informa-
tion bits set to zero.

LESS THAN (LESS) (P)88

If the second operand in the stack is less
than the top-of-stack operand, the Less Than
operator replaces the two operands with a sin-
gle-precision operand which has the least-sig-
nificant bit set to “one”’. If the second operand
in the stack is not less than the top-of-stack
operand, the two operands are replaced with a
single-precision operand which has all infor-
mation bits set to zero.

NOT EQUAL (NEQL) (P)8D

If the second operand in the stack is not
equal to the top-of-stack operand, the Not
Equal operator replaces the two operands with
a single-precision operand with the least sig-
nificant bit set to “one”. If the second operand
in the stack is equal to the top-of-stack oper-
and, the two operands are replaced with a sin-
gle-precision operand which has all informa-
tion bits set to zero.

LOGICAL EQUAL (SAME) (P)94

The Logical Equal operator compares all bits
(including tag bits) of the two items (operands,
control words, descriptors, etc.) in the top-of-
stack. If all bits are equal, a single-precision
operand (with the least significant bit set to
one and all other information bits set to zero)
is stored in the top-of-stack; otherwise, a sin-
gle-precision operand with all information bits
set to zero is stored in the top-of-stack.

3-79

SCALE OPERATORS

Some higher level languages such as COBOL
and PL-I require integer arithmetic. The
Scale-Left operators provide a means of align-
ing the decimal points prior to performing
arithmetic operations. The Scale-Right
operators provide a means of converting bina-
ry arithmetic to decimal arithmetic.

SCALE LEFT (SCLF) (P)CO0

The Scale Left operator shifts the operand in
the top-of-stack for decimal point alignment.
The operand in the top-of-stack is first con-
verted to an integer and then multiplied by 10
raised to the power specified by the scale fac-
tor. The scale factor is obtained from the sec-
ond syllable (i.e., the program syllable fol-
lowing the operator syllable).

If scaling of a single-precision operand
would result in overflow, the single-precision
operand is converted to a double-precision in-
teger. For the Scale operators, a double-preci-
sion integer is defined as a double-precision
operand with an exponent equal to 13 (octal).
If scaling of the operand results in an expo-
nent greater than 13 (double-precision oper-
and), the overflow flip-flop is set to “one”.

DYNAMIC SCALE LEFT (DSLF) (P)C1

The Dynamic Scale Left operator performs a
Scale Left operation except that the scale fac-
tor is obtained from the top-of-stack operand
and the operand to be scaled is the second op-
erand in the stack. The operand in the top-of-
stack is converted to an integer before scaling
takes place.

SCALE RIGHT SAVE (SCRS) (P)C4

The Scale Right Save operator shifts the top-
of-stack operand to the right for conversion
from a binary to a decimal numbering system.
The operand in the top-of-stack is converted to
an integer and divided by 10 raised to the
power specified by the scale factor. The scale
factor is obtained from the second syllable. If
the scale factor is greater than 12, the invalid-
operand interrupt is set and the operation is
terminated.

The quotient resulting from the division is
left in the top-of-stack. The second operand in
the stack is the remainder which is converted
to decimal (4-bit digits) and left justified.

DYNAMIC SCALE RIGHT SAVE (DSRS) (P)C5

The Dynamic Scale Right Save operator per-
forms a Scale Right Save operation except
that the scale factor is obtained from the top-
of-stack operand and the operand to be scaled
is the second item in the stack. The top-of-
stack operand is converted to an integer be-
fore scaling takes place.

3-80

SCALE RIGHT TRUNCATE (SCRT) (P)C2

The Scale Right Truncate operator performs
a Scale Right Save operation except that the
remainder resulting from the division is de-
leted from the stack.

DYNAMIC SCALE RIGHT TRUNCATE (DSRT) (P)C3
The Dynamic Scale Right Truncate operator
performs a Scale Right Truncate operation ex-
cept that the scale factor is obtained from the
top-of-stack operand and the operand to be
scaled is the second operand in the stack.

SCALE RIGHT ROUNDED (SCRR) (P)C8

The Scale Right Rounded operator performs
a Scale Right Save operation except that the
remainder resulting from the division is de-
leted from the stack. If the most significant
digit of the remainder is greater than or equal
to five the quotient from the division is
rounded by adding “one” to it.

DYNAMIC SCALE RIGHT ROUNDED (DSRR) (P)C9
The Dynamic Scale Right Rounded operator
performs a Scale Right Rounded operation ex-
cept that the scale factor is obtained from the
top-of-stack operand and the operand to be
scaled is the second operand in the stack.

SCALE RIGHT FINAL (SCRF) (P)Cé

The Scale Right Final operator performs a
Scale Right Save operation except that the
quotient is deleted from the stack and the sign
of the quotient is copied into the external sign
flip-flop. If the quotient was not equal to zero
at the conclusion of the operation, the over-
flow flip-flop is set.

DYNAMIC SCALE RIGHT FINAL (DSRF) (P)C7

The Dynamic Scale Right Final operator per-
forms a Scale Right Final operation except
that the scale factor is obtained from the top-
of-stack operand and the operand to be scaled
is the second item in the stack.

STACK OPERATORS

The stack operators are used to adjust the
relative positions of the top items in the stack
and to copy or delete the top of stack item.

EXCHANGE (EXCH) (P)B6
The Exchange operator causes the two top-
of-stack items to be exchanged.

ROTATE STACK DOWN (RSDN) (V)B7
The Rotate Stack Down operator rotates the
three top-of-stack words as follows:

Before Rotation After Rotation

Word 1 Word 2
Word 2 Word 3
Word 3 Word 1

ROTATE STACK UP (RSUP) (V)B6
The Rotate Stack Up operator rotates the
three top-of-stack words as follows:

Before Rotation After Rotation

Word 1 Word 3
Word 2 Word 1
Word 3 Word 2

DUPLICATE TOP-OF-STACK. (DUPL) (P)B7
The Duplicate Top-of-Stack operator dupli-
cates the item in the top-of-stack.

DELETE TOP-OF-STACK (DLET) (P)B5
The Delete Top-of-Stack operator deletes the
top-of-stack item.

PUSH DOWN STACK REGISTERS (PUSH) (P)B4

The Push Down Stack Registers operator
pushes down the top-of-stack items and stack
buffer contents into memory.

STORE DESTRUCTIVE (STOD) (P)B8

The Store Destructive operator stores the
second item in the stack into memory. The ad-
dress into which the item is to be stored is in-
dicated by an indirect reference word or in-
dexed data descriptor in the top-of-stack. If
the top-of-stack item is an operand, the two
top-of-stack items are exchanged so that the
address item is in the top-of-stack and the
item to be stored is in the second position. Af-
ter the item is stored, both the item and its ad-
dress are deleted from the stack.

If the word addressed by the indirect refer-
ence word is another indirect reference word
or indexed data descriptor, or the word ad-
dressed by the data descriptor is another in-
dexed data descriptor, the store operation will
not occur to that location, but will be retried
using the address indicated by that word. This
chaining of address items will continue until a
“target” location is reached; however, once a
data descriptor has been encountered, an indi-
rect reference word or PCW is not allowed, and
once a stuffed indirect reference word has
been encountered, a normal IRW is not al-
lowed. Either of these conditions will cause an
invalid-operand interrupt.

If the word addressed by the indirect refer-
ence word is a program control word, acciden-
tal procedure entry occurs. The spontaneously
generated RCW causes STOD to be reexecuted
upon return from the procedure.

If a data descriptor used as an address item
has the read-only bit (bit 43) ON, or if the ad-
dressed word has the rnemory protect bit (bit
48) ON and is not a data descriptor, IRW, or
PCW, the memory-protect interrupt is set and
the operation is terminated.

If the presence bit in the data descriptor is
zero, the presence-bit interrupt is set. After
the data has been made present, the operation
is restarted.

STORE NON-DESTRUCTIVE (STON) (P)B9

The Store Non-Destructive operator per-
forms a Store Destructive operation, except
that only the address item is deleted from the
stack. The item which was stored is left in the
top-of-stack.

OVERWRITE DESTRUCTIVE (OVRD) (P)BA

The Overwrite Destructive operator per-
forms a Store Destructive operation, except
that the addressed location will be overwritten
regardless of its contents. Chaining of address
items, memory protection checks, or accidental
procedure entry do not occur.

OVERWRITE NON-DESTRUCTIVE (OVRN) (P)BB

The Overwrite Non-Destructive operator per-
forms a Store Non-Destructive operation, ex-
cept that the addressed location will be over-
written regardless of its contents. Chaining of
address items, memory protection checks, or
accidental procedure entry do not occur.

READ WITH LOCK (RDLK) (V)BA

The Read With Lock operator is a variant of
the Overwrite Non-Destructive operator. The
word in the top-of-stack and the specified word
in memory are interchanged after all local

STRING OPERATORS

The string operators are used for transfer-
ring, comparing, scanning, and translating
strings of data. In addition, a set of micro-op-
erators provide a means of formatting data for
input/output.

The string operators use a repeat value and
source and destination pointers which are lo-
cated in the stack. For most string operators,
the repeat value range is from 0 to 220-1. If
the repeat value is < 0, the string operator
checks for valid inputs and terminates. If the
string operator is an update type operator, the
normal updated descriptors are produced.

The source for the string operator can either
be a pointer into an array or a single or double
precision operand. If the sourece is an operand,
the source character size is determined by ei-
ther the string operator or the destination
character size. The first source character to be
used by the string operator is the left most
character in the most significant word of the
operand.

3-81

As the string operator acts upon each char-
acter in the operand, the operand is rotated
left by one character so that the next charac-
ter to be used is always the left most charac-
ter in the rotated source operand. For update
type string operators, the operand is placed
back into the stack in its rotated form. The
source and destination pointers can be:

a. An unindexed data descriptor.

b. An indexed data descriptor.

¢. An unindexed string descriptor.

d. An indexed string descriptor.

When one descriptor (source or destination)
is a data descriptor and the other is a string
descriptor, the data descriptor is converted to
a string descriptor of the same type.

If both descriptors are data descriptors or
there is only one descriptor and it is a data de-
scriptor, then the conversion is made to 8-bit
character string descriptors. Note that the in-
dex field used by the string operators is the
same as that found in the original descriptors.

If string descriptors, except for the translate
and transfer word operators, contain different
character sizes, the invalid-operand interrupt
is caused.

If string operators contain an update vari-
ant, the indexed string descriptors pointing to
the next character in the array to be used are
left in the stack.

STRING ISOLATE (SISO) (P)D5

The String Isolate operator transfers from
the source string to the top-of-stack the num-
ber of bytes specified by the repeat field. This
string is right-justified and filled with leading
Zeros.

At the start of the operation, the top-of-
stack operand specifies the length of the byte
string and the second item in the stack is an
operand or a descriptor used as the source

3-82

pointer. If the number of bytes exceeds one
word (6 bytes or 48 bits), the tag of the result
is set to double precision. If the number of bits
is greater than 96, an invalid operand inter-
rupt is set and the operation is terminated. If
the source data has the memory-protect bit
(bit 48) set to “one”, the segmented-array in-
terrupt is set and the operation is terminated.

STRING TRANSFER OPERATORS

String transfer operators give the system
the ability to transfer characters or words
from one location in memory to another loca-
tion in memory. The source and destination
pointers are set from string descriptors in the
stack.

TRANSFER WORDS, DESTRUCTIVE (TWSD) (P)D3

The Transfer Words, Destructive operator
transfers the number of words specified by the
top-of-stack operand and from the source
string to the destination string. The first oper-
and is integerized and is used as the count or
repeat field. The second item in the stack (a
string descriptor or operand) is the source
pointer; i.e., it points at the source string. The
third item in the stack (a string descriptor) is
the destination pointer which is used to pro-
vide the address of the destination string. The
number of words specified by the repeat field
are transferred from the source to the destina-
tion. If the memory protect bit is ON during
execution of the Transfer Words operator,
then the segmented-array interrupt is set and
the operation is terminated.

TRANSFER WORDS, UPDATE (TWSU) (P)DB

The Transfer Words, Update operator per-
forms a Transfer Words, Destructive
operation. At the completion of the operation

the source and destination pointers are up-
dated to point to the memory location where
the transfer ended. If either pointer was a
data descriptor, then an indexed data descrip-
tor is updated.

TRANSFER WORDS, OVERWRITE DESTRUCTIVE
(TWOD) (P)D4

The Transfer Words, Overwrite Destructive
operator performs a Transfer Words, Destruc-
tive operation bypassing the memory-protec-
tion checks.

’(l‘]%ﬁl(‘fSFER WORDS, OVERWRITE UPDATE (TWOU)

The Transfer Words, Overwrite Update oper-
ator performs a Transfer Words, Update oper-
ation bypassing the memory-protection checks.

TRANSFER WHILE GREATER, DESTRUCTIVE (TGTD)
(P)E2

The Transfer While Greater, Destructive op-
erator transfers the number of characters
specified by the second operand (bits 19:20) in
the stack or while the source character is
greater than a delimiter. The top-of-stack op-
erand is the delimiter. The third item in the
stack is the source pointer, and the fourth
item is the destination pointer.

If the second item in the stack is a descrip-
tor, it is used as a source pointer. This means
that no repeat field was given and the default
field length is 1,048,575.

If either the source or destination word has
the memory protect bit ON (bit 48 = 1), the
segmented-array interrupt is set and the oper-
ation is terminated.

All comparisons are binary (EBCDIC collat-
ing sequence). When the source pointer is an
operand, it must be a single-precision operand
or an invalid-operand interrupt is set and the
operation is terminated. The source character
is compared with the delimiter. If the
comparison is true, the true/false flip-flop is
set to “one”; if the comparison fails, the true/
false flip-flop is set to zero.

TRANSFER WHILE GREATER, UPDATE (TGTU) (P)EA

The Transfer While Greater, Update
operator performs a Transfer While Greater,
Destructive operation. At the completion of
the operation, the source and destination
pointers are updated to point at the next char-
acter in the source and destination strings, re-
spectively. At the completion of the operation,
a count of the number of characters not trans-
ferred is placed on the top-of-stack. If all the
characters specified by the length field are
transferred, the true/false flip-flop is set to
true; otherwise, the true/false flip-flop is set to
false.

[f the operation is terminated because the
relationship is not met, the source pointer
points to the character which stopped the
transfer.

TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE (TGED) (P)E1

The Transfer While Greater or Equal
operator performs a Transfer While Greater,
Destructive operation while the source charac-
ter is greater than or equal to the delimiter.

TRANSFER WHILE GREATER OR EQUAL, UPDATE
(TGEVU) (P)E9

The Transfer While Greater or Equal, Up-
date operator performs a Transfer While
Greater Than or Equal operation. At the com-
pletion of the operation, the source and desti-
nation pointers and the count are updated.

gé}fSFER WHILE EQUAL, DESTRUCTIVE (TEQD)

The Transfer While Equal, Destructive oper-
ator performs a Transfer While Greater or
Equal, Destructive operation while the source
character is equal to the delimiter.

TRANSFER WHILE EQUAL, UPDATE (TEQU) (P)EC

The Transfer While Equal, Update operator
performs a Transfer While Equal, Destructive
operation. At the completion of the operation,
the source and destination pointers and the
count are updated.

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE
(TLED) (P)E3

The Transfer While Less or Equal, Destruc-
tive operator performs a Transfer While
Greater or Equal, Destructive operation while
the source character is less than or equal to
the delimiter.

TP};LANSFER WHILE LESS OR EQUAL, UPDATE (TLEU)
(P)EB

The Transfer While Less or Equal, Update
operator performs a Transfer While Less or
Equal, Destructive operation. At the comple-
tion of the operation, the source and destina-
tion pointers and the count are updated.

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD) (P)EO
The Transfer While Less, Destructive
operator performs a Transfer While Less or
Equal, Destructive operation while the source
character is less than the delimiter.

TRANSFER WHILE LESS, UPDATE (TLSU) (P)ES

The Transfer While Less, Update operator
performs a Transfer While Less, Destructive
operation. At the completion of the operation,
the source and destination pointers and the
count are updated.

3-83

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE
(TNED) (P)E5

The Transfer While Not Equal, Destructive
operator performs a Transfer While Greater or
Equal, Destructive operation while the source
character is not equal to the delimiter.

TRANSFER WHILE NOT EQUAL, UPDATE (TNEU)
(P)ED

The Transfer While Not Equal, Update oper-
ator performs a Transfer While Not Equal De-
structive operation. At the completion of the
operation, the source and destination pointers
and the count are updated.

T(‘%II\)NSFER WHILE TRUE, DESTRUCTIVE (TWTD)
3

The Transfer While True, Destructive
operator transfers characters from the source
string to the destination string for the number
of characters specified by the length operand
while the stated relationship is met. If the re-
lationship is not met the transfer is termi-
nated at that point. The relationship is deter-
mined by using the source character to index
a bit in the table. If the bit indexed is a “one”
the relationship is true. An all zero’s character
indexes to the most significant bit of the table.

The operator uses the top four words in the
stack as follows: The top-of-stack word is a ta-
ble pointer to specific addresses in the table;
the second word in the stack provides the
length of the string to be transferred or, if it
is a descriptor, it is used as a source pointer
since no repeat field was given and the default
field length is set at 1,048,5675; the third word
in the stack is an operand or a descriptor
which gives the address of the source string or
is a single-precision operand which is the
source string; the fourth word in the stack is
a descriptor pointing at the destination string.

The table is indexed as follows to obtain the
decision bit: The source character is expanded
to eight bits, if necessary, by appending two or
four leading-zero bits. The three high-order
bits of the source character select a word from
the table, indexing the table pointer. The re-
maining five bits of the expanded source char-
acter select a word from the table, indexing
the table pointer. The remaining five bits of
the expanded source character select (by their
value) a bit from this word.

At the completion of the operation, a count
of the number of characters not transferred is
placed on the top of stack.

If all the characters specified by the length
field are transferred, the true/false flip-flop is
set to true; otherwise, the true/false flip-flop is
set to false.

3-84

The table format is as follows:

Source Size Table Length Bits/Word
4 1 word (31:16)
6 2 words (31:32)
8 8 words (31:32)

TRANSFER WHILE TRUE, UPDATE (TWTU) (V)DB

The Transfer While True, Update operator
performs a Transfer While True, Destructive
operation. At the completion of the operation,
the source destination pointers and the count
are updated. If all the characters specified by
the length field are transferred, the true/false
flip-flop is set to ‘“one” (true); otherwise it is
set to zero.

'(l;’R)ﬁNSFER WHILE FALSE, DESTRUCTIVE (TWFD)
2

The Transfer While False, Destructive
operator performs the Transfer While True op-
eration except that the relationship is true if
the bit found by indexing into the table is a
Zero.

TRANSFER WHILE FALSE, UPDATE (TWFU) (V)DA

The Transfer While False, Update operator
performs a Transfer While False, Destructive
operation. At the completion of the operation,
the source and destination pointers and the
count are updated.

TI%;;NSFER UNCONDITIONAL, DESTRUCTIVE (TUND)
(P)E6

The Transfer Unconditional, Destructive op-
erator transfers from the source to the desti-
nation the number of characters specified by
the top-of-stack operand. If the top-of-stack
item is a descriptor, it is used as a source
pointer. Since no repeat field was given, the
field length is set by default at 1,048,575. The
second item in the stack is the destination
pointer. If all characters specified by the
length field are transferred, the true/false
flip-flop is set to “one” (true) by this operand;
otherwise, the flip-flop is set to zero (false).

TRANSFER UNCONDITIONAL, UPDATE (TUNU) (P)EE

The Transfer Unconditional, Update
operator performs a Transfer Unconditional,
Destructive operation. At the completion of
the operation, the source and destination
pointers are updated.

SUBROUTINE OPERATORS

Subroutine operators are those operators
which can move the program operation across
machine architecture such as from stack to
stack, or from subroutine to subroutine, etec.

Any subroutine operator which can ‘“chain”
indirect reference words (IRW’s) or stuffed in-
direct reference words (SIRW’s) can obtain ac-
cidental procedure entry if a program control
word (PCW) is pointed to by the IRW or SIRW
last in the chain.

MARK STACK (MKST) (P)AE

The Mark Stack operator inserts a mark into
the stack which is to be subsequently used by
an Enter operator. The mark is placed in the
top-of-stack in the form of a mark stack con-
trol word. The F register is set to the location
of the MSCW.

The Mark Stack operator is normally used
when an entry to a procedure is anticipated.
The normal sequence of events to enter a pro-
cedure is (1) mark the stack; (2) insert an indi-
rect reference to a program control word; (3)
insert parameters, if any are to be passed to
the procedure; and then (4) execute an Enter
operator, which will in turn, cause an entry
into the program segment located by the pro-
gram control word.

INSERT MARK STACK (IMKS) (P)CF

The Insert Mark Stack operator inserts a
mark stack control word in the current stack
below the two top-of-stack items.

NAME CALL (NAMC) (P)40 THRU (P)7F

Name Call builds an indirect reference word
in the top-of-stack. The six low-order bits of
the first syllable and the eight bits of the sec-
ond syllable form a 14-bit address couple. This
address couple is placed in the top-of-stack
with the tag field set to 001.

In the B 7700, if the Name Call is followed
by a ENTR, INDX, NXLN, NXLV, STOD,
STON, OVRD, OVRN, DBUN, LOAD, or LODT
operator, the IRW is not placed in the stack.
Instead, the referenced memory address is cal-
culated and, if appropriate, the memory access
is initiated by the program control unit. The
following operator is ser.t to the execution unit
along with an indication that the operator has
been started. Since the address computation
and, in some cases, the memory fetch, is com-
plete by the time the operator reaches the
execution unit, a considerable time savings is
realized.

VALUE CALL (VALC) (PY00 THRU (P)3F

Value Call is a two-syllable instruction that
brings an operand from memory into the top-
of-stack. A concatenation of the two Value Call
syllable gives a 14-bit address couple. If the
referenced memory location contains an indi-
rect reference word or a data descriptor, addi-
tional memory accesses are made until the
“target” operand is located. The operand is

then placed in the top-of-stack. The operand
may be either single-precision or double-preci-
sion, causing either one or two words to be
loaded into the top-of-stack. (Figures III-3-6 is
simplified flow charts of the Value Call
operator.)

If the word accessed is an indexed data de-
scriptor, the word addressed by the data de-
scriptor is brought to the top-of-stack. If the
word accessed is a non-indexed word data de-
scriptor, the descriptor is indexed using the
second word in the stack as the index value,
and the word addressed by the non-indexed
data descriptor is brought to the top-of-stack.
If the double-precision bit (bit 40) in the data
descriptor is set, the second half of the double-
precision operand is placed in the second half
of the top-of-stack location.

If the presence bit in the data descriptor is
zero, the presence-bit interrupt is set. After
the data has been made present, the operation
is restarted.

If a data descriptor does not address an op-
erand, step index word, or a word descriptor or
indexed string descriptor, an invalid-operand
interrupt is set and the operation is termi-
nated.

If the word accessed by the Value Call is an
indirect reference word (IRW), the word ad-
dressed by the IRW is brought to the top-of-
stack.

If the word accessed is a program control
word (PCW), an accidental entry into the sub-
routine addressed by the PCW is initiated. A
mark stack control word and return control
word are placed in the stack and an entry is
made into the subprogram. Upon completion of
the subprogram, a return operation will re-en-
ter the Value Call operator flow.

If the target operand is a step index word
(tag = 4) instead of an operand, the current-
value field (bits 15:16) of the SIW will be
placed in the top-of-stack with the tag set to
zero.

The “chaining” of memory accesses contin-
ues until a target operand is reached; how-
ever, once a data descriptor has been encoun-
tered, an indirect reference word or PCW is
not allowed, and once a stuffed indirect refer-
ence word has been encountered, a normal
IRW is not allowed. Either of these conditions
will cause an invalid-operand interrupt.

EVALUATE DESCRIPTOR (EVAL) (P)AC

The Evaluate Descriptor operator loads into
the top of stack a data descriptor or an indi-
rect reference word which points to the refer-
enced operand. This operand may be refer-
enced through a chain of indirect reference
words or descriptors. (Figure I1I-3-7 is a sim-

3-85

VALUE CALL

PCU EVALUATES
ADDRESS

COUPLE IN VALC
OPERATOR AND
PRE-FETCHES
FIRST REFERENCE
FOR EU

STUFFED

NEITHER

OPERAND

OBTAIN WORD

ADDRESS
BY IRW

EXTRACT IS

CURRENT VALUE OPERAND YES

FIELD FROM SINGLE

SIRW AND SAVE PRECISION

IT IN AO (EU

LOCAL STORAGE)

SAVE SECOND
WORD IN A1
(EU LOCAL
STORAGE)
ACCIDENTAL
ENTRY (CALL
ON A
PROCEDURE)
OPERATION
COMPLETED

1S
THIS AN
OPERAND

YES

Figure 111-3-6. Flow Chart of Value Call Operator (Sheet 1 of 2)

3-86

SH1
DESC

1S
TARGET
A DESC

SH1
SIRW

< SNR # NO
1S STK. NO. FROM - .
vES THIS DESC. SIRW BOSR - T
INDEXED
YES l
OBTAIN STACK OBTAIN WORD
YES VECTOR DESC. Qe%%sssseglsp
AT DO + 2 N
BFULL > (SIRW) + INDEX
L (SIRW)

FETCH STACK
POP INDEX DESC. FROM
(FETCH STACK) LOCATION DEFINED

- BY STACK VECTOR

BASE + STK. NO.

(SIRW)
IS
ITEM
INB AN
OPIZRAND
STK. NO.
< > LENGTH INVALID
FIELD FROM INDEX
STACK VECTOR INT.
INDEX DESC.
DESZRIPTOR
NO

"

OBTAIN WORD
OBTA N WORD ADDRESSED BY
ADDRESSED BY BOS (STK. DESC.)
DESC (BASE + + DISP (SIFW) +
INDEX) INDEX (SIRW)

1S
DESCRIPTOR
SEGMENTED

INVALID
OPERAND
INDEX

IS YES INVALID
THIS WORD OPERAND
AN NIRW INT.

N IS
° WORD AN
OPERAND

1S

DESCRIPTOR
DOUBLE

PRECISION

SAVE SECOND
WORD IN A1
(EU LOCAL
STORAGE)

[2

» OPERATION
COMPLETED

Figure 111-3-6. Flow Chart of Value Call Operator (Sheet 2 of 2)

3-87

plified flow chart of the Evaluate Descriptor
operator.)

A descriptor is left in the stack if the oper-
and was referenced by a descriptor. If only in-
direct reference words are used, multiple
memory accesses are made until the operand
is located. A stuffed indirect reference word
pointing to the operand is left in the stack.

An invalid-operator interrupt is set and the
operation is terminated if the top-of-stack
word is not a descriptor or an indirect refer-
ence word at the start of the Evaluate
operator.

ENTER (ENTR) (P)AB

The Enter operator causes an entry into a
procedure from a calling procedure. (The se-
quence of events to enter a procedure is: (1)
mark the stack; (2) insert an indirect reference
to a program control word; (3) insert
parameter(s), if any are to be passed to the
procedure; and, (4) execute an Enter operator.)
The Enter operator causes entry into the pro-
gram segment located by the program control
word. A return control word is stored at stack
location F+1. (Figure I11-3-8 is a flow chart of
the Enter operator.)

EXIT (EXIT) (P)A3

The EXIT operator causes a called procedure
to return to a calling procedure and is used
when the called procedure is not required to
return a result. The Exit operator returns all
control registers to the position they were in
prior to the calling procedure, saves the bot-
tom of stack register (BOSR), and cuts back
the stack. (Figure I11-3-9 is a flow chart of the
Exit operator.)

RETURN (RETN) (P)A7

The Return operator causes a called proce-
dure to return to a calling procedure (as in
EXIT) but is used when the called procedure is
required to return a result. An operand or
name in the top-of-stack is returned to the
calling procedure. If a name is returned and
the V bit (bit 19) in the MSCW is ON, the name
is evaluated to yield an operand as in VALC
(since the V-bit indicates that the RETN is to
VALC which caused accidental entry). (See fig-
ure III-3-9.)

TRANSFER OPERATORS

The transfer operators transfer any field of
bits from one word in the stack to any field of
another word in the stack.

NOTE
For all transfer operators the val-
ues specified in the stack must be
non-negative.

3-88

FIELD TRANSFER (FLTR) (P)98

The Field Transfer operator uses the three
syllables following it to establish the pointers
used in the field transfer. Stack adjustment
takes place so that the two top-of-stack loca-
tions are full. The contents of the field in the
top-of-stack, starting at the bit position ad-
dressed by the third syllable of FLTR, is
transferred into a field of corresponding
length in the second location in the stack. The
field in the second location in the stack starts
at the bit position indicated by the second syl-
lable of FLTR and proceeds toward the low-or-
der-bit positions. When the number of bits
specified by the fourth syllable of FLTR has
been transferred the top-of-stack word and the
operation is complete.

If the second or third syllables of the
operator are found to be greater than 47 or
the fourth syllable is greater than 48, the in-
valid operand interrupt is set and the
operation is terminated.

DYNAMIC FIELD TRANSFER (DFTR) (P)99

The Dynamic Field Transfer operator causes
a Field Transfer operation using the top-of-
stack operand to specify the field length, using
the second operand in the stack to specify the
starting-bit position of the field from which
the transfer will be made, and using the third
operand in the stack to indicate the starting
bit of the field to which the transfer will be
made.

As each of these operands is used to estab-
lish a pointer for the transfer, it is first inte-
gerized and checked for being greater than 47
or 48, as above, then is deleted from the stack.
The fourth and fifth stack operands become
the two top-of-stack operands, and the trans-
fer takes place as in the FLTR operator.

FIELD ISOLATE (ISOL) (P)%A

The Field Isolate operator isolates a field in
the top-of-stack word. The second syllable of
the operator specifies the starting bit. The
third syllable specifies the length of the field
in bits. The isolated field is right-justified with
all other information bits set to zero. The tag
bits are not changed.

DYNAMIC FIELD ISOLATE (DISO) (P)9B

The Dynamic Field Isolate operator performs
a Field Isolate operation using the top-of-stack
operand to specify the length of the field to be
isolated and using the second operand in the
stack to specify the starting bit. These oper-
ands are then deleted from the stack and the
Field Isolate operation is performed on the
next operand.

IS

1S
THIS

THIS
A
NORMAL
IRW

NO AN NO TTS NO
OPERAND DESCRIPTOR
ORA
SIW
YES
NO NO 1S
— SAVE THE l— T >
IRW IN THE INDEXED

TOP-OF-STACK

OBTAIN WORD
ADDRESSED BY
IRW

:

IS

OPERATION ITA
COMPLETE L STRING >
YES DESCRIPTOR

OBTAIN WORD
ADDRESSED BY
SIRW

ARE THE
STACK NUMBERS
THE SAME

I|_.EAVE THE DESCRIPTOR
IN THE

TOP-OF-STACK

I

OPERATION
COMPLETE

OBTAIN STACK
VECTOR DESCRIPTOR

AT DO+ 2

I

FETCH STACK
DESCRIPTOR
FROM LOCATION
DEFINED BY
STACK VECTOR
BASE + STK. NO.

(SIRW)
STK. NO. ’
SLENGTH FIELDN_ NO INVALID
FROM STACK INDEX
VECTOR INTERRUPT
DESC.
YES e

OBTAIN WORD
ADDRESSED BY

BOS (STACK DESC))
+ DISP (SIRW) +
INDEX (SIRW)

Figure 111-3-7. Flow Chart of Evaluate Operator

INVALID
OPERAND
INTERRUPT

3-89

CONCATENATED
ENTR

TARGET OF NAMC
IS LOADED INTO
A (PREFETCHED
BY PCU)

MSCW GOES TO B

NON-
CONCATENATED
ENTR

PUSH A AND B
(IF NECESSARY)

:

MSCW ADDRESSED
BY F IS LOADED
INTO A (WAS
PRE-FETCHED

BY PCU)

.

IRW ADDRESSED
BY F+11S
LOADED INTO A
(IRW PRE-FETCHED
BY PCU)

MSCW GOES TO B

v

FETCH TARGET
OF IRW

J

FETCH TARGET
OF IRW

INVALID
OPERAND
INT.

SAVE PCW IN A
AND W

SAVE OLD SDI
IN TIR

PCW
REFERENCED
BY SIRW

Figure 111-3-8. Flow Chart of Enter Operator (Sheet 1 of 3)

YES

FETCH SEGMENT
DESCRIPTOR
FROM LOCATION
DEFINED BY

DO or D1 + SDI
(PCW)

UPDATE
DISPLAY
PERFORMED

NO

SET PQR6

SET PQRS5

* YES

PCW LL
= LL >

NO

SET PQR5
(RCW40-RCW39)

(RCW40-RCW39)

i

DISTRIBUTE PCW:
SDI -~ PDR
PIR - APIR
PSR~ SSR

v

EXTRACT
PROGRAM BASE
ADDR. FROM DESC
AND PLACE IT
INTO PBR

.

FETCH CODE
FROM LOCATION
DEFINED BY
NEW PBR + APIR

UPDATE
DISPLAY
PERFORMED

F-D(LL) = DF NO
AND PQR6&
SET

YES

SET PQR5

&

MAKE RCW FROM
PRESENT REGISTER
SETTINGS:

LL- RCW 18:5
PST~ RCW 19:1
DSF+~ RCW13:1
PQR5+ RCW39 1
PQR6 - RCW40: 1
OLD SD1(INTIR)

-~ RCwW12:13

>&

YES

LAST D1 (AU37)
-~ LDt (AU3B)
SET LDt

l'_

OBTAIN MSCw
FROM A

v

PCW (STK. NO.)~ MSCW(45:10)

DISPLAY-BOS~ MSCW(35:16)

PCW(LL)~ MSCW(18:5)
RVLC - MSCW(19:1)

Figure 111-3-8. Flow Chart of Enter Operator (Sheet 2 of 3)

4

WRITE F INTO
D(LL) (DISPLAY
OFF LL BEING
ENTERED)

+

OVERWRITE
MSCW BACK
INTO F LOCATION

v

OVERWRITE
RCW AT F +1

!

OPERATION
COMPLETED

3-91

OBTAIN LAST SIRW
IN CHAIN FROM EU
LOCAL STORAGE
AND EXTRACT

DISP
v

SAVE OLD COPY
OF D1 IN AU37

lk

CALCULATE ADDR.
OF MSCw
BOS(STK.NO.) + DISP

ABORT FETCH
(UPDATE

nd DISPLAY
COMPLETED)

YES
DOES LL=0
NO
FETCH MSCW
DECREMENT LL
BY1
YES CALCULATED

ADDR. SAME AS
OLD D(LL) WHICH
IS VALID

SET PQR6

RESTORE LL
AND OBTAIN
PCW FROM
EU LOCAL
STORAGE
RESET PQR6
YES
RESET PQR5
NO
SET PQRS

f

EXTRACT AND
SAVE BOS FROM
STACK DESCRIPTOR
EXTRACT DISP
FROM MSCW

STK. NO.
'>2LENGTH FIELD
FROM STACK
VECTOR
DESC.

FETCH STACK
DESCRIPTOR

FROM LOCATION
DEFINED BY STACK
VECTOR BASE

+ STK. NO. (MSCW)

?

EXTRACT DISP
FROM MSCW

OBTAIN STACK
VECTOR DESC.
AT+ D0 +2

I

1S
THIS FOR
DIFFERENT
STACK

YES

Figure 111-3-8. Flow Chart of Enter Operator (Sheet 3 of 3)

3-92

—
EXIT OR
RETURN

I_/

FETCH MSCw
AND RCW AT
D(LL)

SAVE MSCW IN A

v

DISTRIBUTE RCW
SET UP REG TO
RETURN CALLING
PROCEDURE
SAVE CLRRENT
SDI IN TIR

RCW(40:1) NO
S(ET >—

YES

SET ESDF

FETCH SEG. DESC.
FROM LOCATION
DEFINED BY DO

OR D1(RCW + SDIRCW)

RCW(39:1) NO
SET

9

SET ESDIF

FETCH S=G. DESC.
FROM LCCATION
DEFINED BY

.LD1 CONTENTS +
SDI (RCW)

NO
ék »
YES

EXTRACT PROG.
BASE ADDRESS
FROM DESC. AND
PLACE IT INTO

PBR
!L
FETCH CODE
FROM LOCATION (APIR CONTAINS
DEFINED BY PIR OF RCW)

NEW PBR + APIR

i

CUT BACK STACK
D(OLDLL)~F (OLD LL IS THE VALUE
D(OLDLL)-1+ S IN THE LLW REGISTER)
SAVE D(OLDLL)IN H

PQR6
AND PQR5
SET AND
LLSOLDLL

YYES

SET EQR1
(FETCH OF MSCW
IS NOT NECESSARY)

I

NO
LL<OLD LL ﬁ

YES

SET EQRO

1S
THIS BOTTOM BOTTOM
OF STACK OF STACK
(BOS =F-1) INTERRUPT

READ A

SEQ.
ERROR
INTERRUPT

Figure 111-3-9. Flow Chart of Exit and Return Operator (Sheet 1 of 3)

3-93

EXTRACT DF
FIELD FROM
MSCw

.

CALCULATE
ADDRESS (H-DF)
OF NEWEST
MARK IN STACK
AND PLACE IT ON
T BUS AND IN

F REGISTER

1S
ADDRESS
LESS THAN
BOSR

EQR1 SET

EQRO SET

NO

I8

FETCH MSCW
AND SAVE
ADDRESS IN H

‘

MARK ADD~ DLL

DOES
THE MSCW'S
LLFIELD =
LL

MSCW AND YES

HAS IT BEEN
ENTERED

EXTRACT DF
FIELD FROM
MSCwW

MARK ADD~- DLL

OPERATION
COMPLETED

YES

'

CALCULATE
ADDRESS
(H-DF) OF NEXT
MARK IN STACK
AND PLACE IT
ON THE T BUS

1S
ADDRESS
LESS THAN
BOSOR

UNDERFLOW

Figure 111-3-9. Flow Chart of Exit and Return Operator (Sheet 2 of 3)

3-94

1S
THIS FOR
A DIFFERENT
STACK

YES

ESDF SET

NO

FETCH MSCW

DISP
STK.NO.
> LENGTH
YEo/ FIELD FROM
s STACK VECTOR
DOES
th=0 > DESC.

DECREMENT
LL BY 1
- 's
ABORT FETCH | ygg CALCULATED
(UPDATE ADDRES SAME
DISPLAY AS OLD D(LL)
COMPLETED) WHICH IS
VALID

OBTAIN SEG.
DESC.
ADDRESSED BY
DO OR D1(RCW) +

PDR

FETCH CODE
FROM LOCATION
DEFINED BY

SEC. DESC BASE +
APIR

Figure 111-3-9. Flow Chart of Exit and Return Operator (Sheet 3 of 3)

DOES
MSCW'S

LL:\L?

>

OBTAIN STACK
VECTOR DESC.
AT DO+ 2

EXTRACT DISP
FROM MSCW l
FETCH STACK
DESCRIPTOR
FROM LOCATION
CALCULATE DEFINED BY
ADDRESS OF MSCW g;g%fi é?ETﬁg(MSCW)
BOS(STK.NO.) + NO.

EXTRACT AND
SAVE BOS FROM
STACK DESC.

SH3

WAS
YES VALUE BIT YES
——_ RETURN OF MSCW
EQUAL TO
1
NO NO
RESUME
EXECUTION OF
INTERRUPTED
OPERATION VALC OPERATOR
COMPLETED

3-95

FIELD INSERT (INSR) (P)3C

The Field Insert operator inserts a field
from the top-of-stack into the second word.
Stack adjustment assures that the top two po-
sitions are occupied. The right-justified field in
the top-of-stack is inserted into the second
word starting at the position specified by the
second syllable of the Field Insert operator.
The third syllable specifies the length of the
field to be inserted. The top-of-stack word is
deleted after the field is inserted in the second
word.

DYNAMIC FIELD INSERT (DINS) (P)9D

The Dynamic Field Insert operator performs
a Field Insert operation, transferring a field
from the top operand in the stack into the
fourth operand in the stack. The second oper-
and in the stack specifies the length of the
field to be inserted, and the third operand in
the stack specifies the starting bit of the field.

TYPE-TRANSFER OPERATORS

Type-Transfer operators are used to
manipulate operand relative to single-preci-
sion or double-precision operands.

(SIF;%CTO SINGLE-PRECISION, TRUNCATED (SNGT)

The Set to Single-Precision, Truncated
operator sets the top-of-stack operand to a sin-
gle-precision operand without rounding.

SET TO SINGLE-PRECISION ROUNDED (SNGL) (P)CD
The Set to Single-Precision, Rounded

operator sets the top-of-stack operand to a sin-

gle-precision operand with rounding.

SET TO DOUBLE-PRECISION (XTND) (P)CE

The Set Double-Precision operator sets the
top-of-stack operand to a double-precision op-
erand.

SET DOUBLE TO TWO SINGLES (SPLT) (V)43

The Set Double to Two Singles operator
splits a double-precision operand into two sin-
gle-precision operands.

SET TWO SINGLES TO A DOUBLE (JOIN) (V)42

The Set Two Singles to a Double operator
joins two single-precision operands to form one
double-precision operand.

MISCELLANEOUS PRIMARY MODE
OPERATORS
Miscellaneous primary mode operators are

those operators which cannot be readily de-
scribed or grouped with other operators.

ESCAPE TO 16-BIT INSTRUCTION (VARD (P)95
The Escape to 16-Bit Instruction operator
provides transition from the primary mode op-

3-96

erators to the variant mode operators, i.e., the
first syllable (VARI) indicates that the actual
operator is in the second syllable. (Interrupts
are not allowed between the VARI syllable
and the following syllable.)

:}’I;]AD AND CLEAR OVERFLOW FLIP-FLOP (ROFF)
D7

The Read and Clear Overflow Flip-Flop oper-
ator places a single-precision operand in the
top-of-stack with the least-significant bit set
equal to the overflow flip-flop. The overflow
flip-flop is reset.

READ TRUE FALSE FLIP-FLOP (RTFF) (P)DE

The Read True False Flip-Flop operator
places a single-precision operand in the top-of-
stack with the least significant bit set equal to
the true/false flip-flop.

SET EXTERNAL SIGN (SXSN) (P)Dé6

The Set External Sign operator places the
operand sign bit of the top-of-stack word into
the external sign flip-flop.

STUFF ENVIRONMENT (STFF) (P)AF

The Stuff Environment operator places the
current stack number and displacement into
the stack number field and displacement field
of the top-of-stack IRW. Bit 46 is set to indi-
cate that it is now a stuffed indirect reference
word.

UNIVERSAL OPERATORS

The operators NOOP, HALT, and NVLD are
universal except that they cannot follow oper-
ators EXSU, EXSD, EXPU, and EXPD; in
these cases a Loop Timeout will occur.

CONDITIONAL HALT (HALT) (U)DF

The Conditional Halt operator halts the proc-
essor if the conditional halt switch is in the
ON position; if the conditional halt switch is
OFF, the operator is treated as a NOOP.

INVALID OPERATOR (NVLD) (U)FF
The Invalid Operator sets the invalid-
operator interrupt.

NO OPERATION (NOOP) (U)FE

No operation occurs when the No Operation
operator is encountered except that the PSR
and PIR are advanced to point at the next op-
erator.

VARIANT MODE OPERATORS

Variant mode operators is the name used to
describe those primary mode operators which
are less frequently used. There is no function-
al significance to the category “variant mode.”
Variant mode operation extends the number of
operation codes. Variant mode operators re-

quire two syllables: the first syllable is the Es-
cape to 16 Bit Instruction (VAR1) operator:
The syllable following VARI is the actual oper-
ation and the syllable pointer is positioned be-
yond the two syllables.

Variant mode codes VEQO thru VEF are de-
tected and cause a programmed operator in-
terrupt. All other unassigned variant mode
codes cause no action and result in a loop tim-
er interrupt.

Variant mode operations are both word-and
string-oriented operators.

SCAN OPERATORS

SCAN IN (SCND (VMA

The Scan-In operator uses the 20 low-order
bits of the top-of-stack word as the address of
the Time of Day (TOD) register and reads the
TOD contents to the top-of-stack. Other vari-
ants, which are valid in the:B 6700, produce an
invalid operand interrupt in the B 7700. The
B 7700 MCP causes the correct B 7700 code to
be executed to handle the interrupt.

SCAN WHILE OPERATORS

SCAN WHILE GREATER, DESTRUCTIVE (SGTD) (V)F2

The Scan While Greater, Destructive
operator scans the number of characters
specified by the second operand in the stack or
while the source character is greater than a
delimiter. The top-of-stack operand is the de-
limiter. The third item in the stack is the
source pointer. If the second item in the stack
is a descriptor, it is used as a source pointer
and the length of the character string is set to
1,048,675. All comparisons are binary. When
the source is an operand, it must be a single-
precision operand.

At the completion of this operator if all the
characters have been scanned the true/false
flip-flop is set to one. If the scan was stopped
by the delimiter test before the end of the
string the true/false flip-flop is set to zero.

SCAN WHILE GREATER, UPDATE (SGTU) (V)FA

The Scan While Greater, Update operator
performs a Scan While Greater, Destructive
operation. At the completion of the operation,
the source pointer and count are updated. At
the completion of the operation, a count of the
number of characters not scanned is placed in
the top-of-stack. If all the characters specified
by the length field are scanned, the true/false
flip-flop is set to true; orherwise, the true/false
flip-flop is set to false. The source pointer lo-
cates the character which stopped the scan.

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE
(SGED) (V)FL

The Scan While Greater or Equal, Destruec-
tive operator performs a Scan While Greater,
Destructive operation while the source charac-
ter is greater than or equal to the delimiter.

(SVC)$N WHILE GREATER OR EQUAL, UPDATE (SGEU)
9

The Scan While Greater or Equal, Update op-
erator performs a Scan While Greater Than or
Equal, Destructive operation. At the comple-
tion of the operation, the source pointer and
count are updated.

SCAN WHILE EQUAL, DESTRUCTIVE (SEQD) (V)F4

The Scan While Equal, Destructive operator
performs a Scan While Greater, Destructive
operation while the source character is equal
to the delimiter.

SCAN WHILE EQUAL, UPDATE (SEQU) (V)FC

The Scan While Equal, Update operator per-
forms a Scan While Equal, Destructive
operation. At the completion of the operation,
the source pointer and count are updated.

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE
(SLED) (V)F3

The Scan While Less or Equal, Destructive
operator performs a Scan While Greater, De-
structive operation while the source character
is less than or equal to the delimiter.

(S;g?g WHILE LESS OR EQUAL, UPDATE (SLEU)

The Scan While Less or Equal, Update oper-
ator performs a Scan While Less or Equal, De-
structive operation. At the completion of the
operation, the source pointer and count are
updated.

SCAN WHILE LESS, DESTRUCTIVE (SLSD) (V)F0

The Scan While Less, Destructive operator
performs a Scan While Greater, Destructive
operation while the source character is less
than the delimiter.

SCAN WHILE LESS, UPDATE (SLSU) (V)F8

The Scan While Less, Update operator per-
forms a Scan While Less, Destructive
operation. At the completion of the operation,
the source pointer and count are updated.

(S\?)%'N WHILE NOT EQUAL, DESTRUCTIVE (SNED)
5

The Scan While Not Equal, Destructive oper-
ator performs a Scan While Greater, Destruc-
tive operation while the source character is
not equal to the delimiter.

3-97

SCAN WHILE NOT EQUAL, UPDATE (SNEU) (V)FD

The Scan While Not Equal, Update operator
performs a Scan While Not Equal, Destructive
operation. At the completion, the source point-
er and count are updated.

SCAN WHILE TRUE, DESTRUCTIVE (SWTD) (V)D5

The Scan While True, Destructive operator
uses each source character as an index into a
table to locate a bit in the table. In order to in-
dex the table the source character is expanded
to eight bits (if necessary) by appending two or
four leading-zero bits. The three high-order
bits of these eight select a word from the ta-
ble, indexing the table pointer. The remaining
five bits of the expanded source character se-
lect a bit from this word by their value. If the
bit located is a one, the relationship is true
and the scan continues. An all zero’s character
indexes to the most significant bit of the table.

The top-of-stack word is a table pointer. The
second item in the stack specifies the number
of characters to be scanned or, if it is a de-
scriptor, it is used as a source pointer and the
length of the character string is set at
1,048,575. The third item in the stack is the
source pointer. If all the characters specified
by the length field are scanned, the true/false
flip-flop is set to true; otherwise, the true/false
flip-flop is set to false. At the completion of
the operation, a count of the number of char-
acters not scanned is placed on the top of
stack. The table format is as follows:

Source Size Table Length Bits/Word
4 1 word (31:16)
6 2 words (31:32)
8 8 words (31:32)

SCAN WHILE TRUE, UPDATE (SWTU) (V)DD

The Scan While True, Update operator per-
forms a Scan While True, Destructive
operation. At the completion of the operation,
the source pointer and count are updated.

SCAN WHILE FALSE, DESTRUCTIVE (SWFD) (V)D4
The Scan While False, Destructive operator
performs a Scan While True, Destructive oper-
ation except that the relationship is true if the
bit found by indexing into the table is a zero.

SCAN WHILE FALSE, UPDATE (SWFU) (V)DC

The Scan While False, Update operator per-
forms a Scan While False, Destructive
operation. At the completion of the operation,
the source pointer and count are updated.

3-98

TAG FIELD OPERATORS

SET TAG FIELD (STAG) (V)B4

The Set Tag Field operator sets the tag field
(bits 50:3) of the second word in the stack to
the contents of bits 2:3 of the top-of-stack
word.

READ TAG FIELD (RTAG) (V)B5

The Read Tag Field operator replaces the
top-of-stack word with a single-precision oper-
and with bits 2:3 equal to the tag field of the
original top-of-stack word.

SET INTERVAL TIMER (SINT) (V)45 (CONTROL STATE
OPERATOR)

The Set Interval Timer operator integerizes
the top-of-stack operand. If the operand can-
not be integerized, an integer-overflow inter-
rupt is set and the operation is terminated.
The value of the 11 low-order bits of the top-
of-stack operand is used to set the interval
timer associated with the processor which is
executing this operator. Once set, the interval
timer will start to decrement once each 512 mi-
croseconds. The associated processor is inter-
rupted when the value has been counted to
zero if the timer is still armed.

The interval timer is disarmed whenever the
associated processor is interrupted by an ex-
ternal interrupt.

READ PROCESSOR IDENTIFICATION (WHOI) (V4E

The Read Processor Identification operator
places a single-precision operand with a value
equal to the processor’s number on the top-of-
stack.

ENABLE EXTERNAL INTERRUPTS (EEXD (V)46

The Enable External Interrupts operator al-
lows this processor to respond to external in-
terrupts.

DISABLE EXTERNAL INTERRUPTS (DEXI) (V)47

The Disable External Interrupts operator
prohibits this processor from responding to ex-
ternal interrupts.

IDLE UNTIL INTERRUPT (IDLE) (V)44

The Idle Until Interrupt operator suspends
program execution by this processor. External
interrupts are allowed, and the processor will
enter its interrupt-handling routine upon re-
ceipt of an interrupt.

READ PROCESSOR REGISTER (RPRR) (V)B8
The Read Processor Register operator reads
into the top-of-stack the contents of one of the

eight base registers, or one of the eight index
registers, or one of the 32 D registers. Register
address assignments are as follows:

Add. Add. Reg.
(dec.) (hex) Name

Register Usage

0-31 0-1F Display Registers

32 20 PIR Program Index

33 21 SIR* Source Index

34 22 DIR* Destination Index

35 23 TIR* Table Index

36 24 LOSR Limit of Stack

37 25 BOSR* Base of Stack

38 26 F Most Recent MSCW Address

39 27 S1LS* Scratch (Spare Local Storage)

40 28 ID Interrupt Identifier

41 29 SCAN* MDP Control Register

42 2A IMR Interrupt Mask Register

43 2B Spare

44 2C IFR Interrupt Fault Register

45 2D Spare

46 2E INT Interval Timer

47 2F TOD Time of Day

48 30 PBR* Program Base Register

49 31 SBR* Source Base Register

50 32 DBR* Destination Base Register

51 33 TBR* Table Base Register

52 34 S Top of Stack Address

53 35 SNR* Current Stack Vector Index

54 36 PDR* Current Segment Descriptor
Irdex

55 37 S2LS* Scratch (Spare Local Storage)

56 38 ADZ* Alternate [D0] Register

57 39 APIR* Alternate Program Index

58 3A ALL1* All ones

59 3B LD1* Last D[1] used as SD1
base.

60 3C PFR Processor Fail Register

61 3D PMR Processor Mode Register

62 3E PGAM Purge Associative Memory

63 3F PGKA Purge Stack and Associative

Memory

*Local Memory Register

An invalid-operator interrupt is set and the
operation is terminated if the top-of-stack
word is not a descriptor or an indirect refer-
ence word at the start of the Evaluate
operator.

SET PROCESSOR REGISTER (SPRR) (V)B9

The Set Processor Register operator sets the
processor register addressed by the second
word in the stack to the value contained in the
top-of-stack word. On every SPRR the con-
tents of the stack buffer are purged and
stored in main memory.

UNPACK OPERATORS

UNPACK ABSOLUTE, DESTRUCTIVE (UABD) (V)D1

The Unpack Absolute, Destructive operator
unpacks a string of left-justified digits from
the second operand in the stack. The top-of-
stack operand defines the string length (in 4-
bit digits) of the second operand in the stack.
The specified number of digits are transferred
from the second operand to the destination.
The third item in the stack is a string descrip-
tor destination pointer. Zone fill in the desti-
nation is as follows:

1. If the destination bit format is 8-bit
ASCII, the digits are transferred to the desti-
nation string with the leading-zone bits set to
0011.

2. If the destination bit format is 6-bit BCL,
the digits are transferred to the destination
with the two leading-zone bits set to zero.

3. If the destination bit format is 8-bit EBC-
DIC, the digits are transferred to the destina-
tion string with the four leading-zone bits set
to one.

4. If the destination character size is 0, it is
set to 6 and the digits are transferred to the
destination string with the two leading-zone
bits set to zero (BCL).

UNPACK ABSOLUTE, UPDATE (UABU) (V)D9

The Unpack Absolute, Update operator per-
forms an Unpack Absolute, Destructive
operation. At the completion of the operation
the destination pointer is updated.

UNPACK SIGNED, DESTRUCTIVE (USND) (V)D0

The Unpack Signed, Destructive operator
performs an Unpack Absolute, Destruction op-
eration except that the external sign is consid-
ered.

If the external sign flip-flop is ON (indicat-
ing negative data) then a zone of 10 is inserted
in the last 6-bit character or a zone of 1101 is
inserted in the last 8-bit byte. For 8-bit ASCII
formatted data the negative sign is indicated
in the least-significant byte by a zone of 1111.
If the data format of the destination is 4 bits,
the first digit position of the destination string
is set to 1101 if the external sign flip-flop is
ON; if the external sign flip-flop is OFF the
first digit of the destination string is set to
1100.

3-99

UNPACK SIGNED, UPDATE (USNU) (V)D8

The Unpack Signed, Update operator per-
forms an Unpack Signed, Destructive
operation. At the completion of the operation
the destination pointer is updated.

LINKED LIST LOOKUP (LLLU) (V)BD

The Linked List Lookup operator searches a
linked list of words.

This operator expects the third stack entry
(bits 27:28) to contain an argument, the second
stack entry to contain a non-indexed data de-
scriptor, and the top-of-stack to contain an op-
erand index value pointing into a linked-list of
words. The argument is not required to be an
integer, but only the right-most 28 bits are sig-
nificant after the argument has been inte-
gerized as required. The base address, size
field, and argument are saved throughout the
operator.

The word addressed by the base plus the in-
dex value is read into local storage. Bits 47:28
are compared to the argument value. If the ar-
gument of the linked-list word is less than the
argument value, this process is repeated using
the link as the new index. If the linked-list ar-
gument is greater than or equal to the argu-
ment value, the operation is complete. At com-
pletion the top-of-stack register contains an in-
dex which points to the link that points to the
satisfying argument.

If the value of the link portion of the linked-
list word is equal to zero, the top-of-stack reg-
ister is set to minus one (-1) and marked full
as the operation is completed.

If the index value in the linked-list word is
greater than the length value from the de-
seriptor, an invalid-index interrupt is set and
the operation is terminated.

When the first word in the stack at the start
of this operator is not an operand an invalid-
operand interrupt is set and the operation is
terminated.

If the data descriptor has been indexed, the
invalid-operand interrupt is set and the
operation is terminated.

MASKED SEARCH FOR EQUAL (SRCH) (V)BE

The Masked Search for Equal operator
searches a data word list for a word identical
to the third word in the stack. At the be-
ginning of this operator, the top word in the
stack contains a data descriptor, the second
word in the stack contains a 51-bit mask, and
the third word in the stack contains a 51-bit
argument value. If the descriptor is not pres-
ent, the presence-bit interrupt is set and the
operator is exited. Otherwise, if the descriptor
is indexable (i.e., bit 45 equals zero), the in-
dexed bit (bit 45) is turned ON and the length/
index field value is decreased by 1.

3-100

The descriptor points to a word which is
then fetched into the processor. This word is
ANDed with the mask and a test is made to
determine whether the result is identical to
the argument.

When an equal compare is made, the second
stack register is marked empty; the top-of-
stack contains an index which gives the ad-
dress of the last word inspected.

When a not-equal compare is made, the in-
dex value is decreased by one and the
operation is repeated (except when the index
value is zero). When the index value is zero,
the top-of-stack register is set to -1 and
marked full, the second stack register is
marked empty, and the operator is exited.

MOVE TO STACK (MVST) (VW)AF

The Move to Stack operator causes the proc-
essor’s environment (or addressing space) to
terminate and to be moved from the current
stack to the program stack specified by the op-
erand in the top of stack.

The operator builds a top-of-stack control
word and places it at the base of the current
stack as addressed by the base-of-stack regis-
ter.

The operand in the B register is integerized
and checked for invalid index against the
stack vector. The value in the B register is
added to the address field of the stack vector
descriptor (at D[0[+2), to address the descrip-
tor for the new stack.

The data descriptor for the requested stack
is accessed. If its presence bit is ON, the ad-
dress field is placed into the base-of-stack reg-
ister. The top-of-stack control word is brought
up and the stack is marked ‘“active” by storing
the processor ID at the base of the stack. The
TSCW is distributed and the D registers are
updated.

If during the integerization the operand in
the B register is too large, the integer-over-
flow interrupt is set and the operation is ter-
minated. The stack buffer is purged on every
execution of MVST.

If the index value is less than zero or great-
er than the length field of the data descriptor
for the stack vector array, an invalid index in-
terrupt is set and the operation is terminated.

OCCURS INDEX (OCRX) (V)85

'The. Occurs Index operator is used to index a
field in an array. This operator requires an Oc-

curs Index Word (OIW) in the top-of-stack and
an index value (operand) in the second stack
position. The format of the IOW is shown be-
low.

47| 43| 39 35I 31 27/ 23[19] 15 11 1 3

| ENGTH S
50| 46 42| 38 34 30 2

O
22| 18] 14 10 6| 2

pguad

48] 44| 40| 36| 32| 28/ 24| 20| 14 12| 8 4| o

41062

The operator creates a new index value from
the OIW and the operand in the following
manner;

The operand is integerized. If the resulting
index is greater than the maximum integer
value (5649,755,813,887), the integer overflow in-
terrupt is set and the cperation is terminated.
If either the OIW or the index has a value of
zero, or if the index is less than zero or great-
er than the SIZE field of the OIW, the invalid
index interrupt is set and the operation is ter-
minated.

The LENGTH field of the OIW is multiplied
by the index value *15:161 minus 1, and that
value is added to the OFFSET field of the
IOW, resulting in the new index value. The
two original top-of-stack items are deleted and
the new index value is left in the top-of-stack.

In the IOW the “length” field gives the num-
ber of characters in a field; the “size” field
gives the number of fields in the array; the
“offset” field indicates the beginning of the
first character position in the first field of the
first word.

TRANSLATE (TRNS) (V)D7

The Translate operator transfers from the
source to the destination the number of char-
acters specified by the second item in the
stack while performing the following transla-
tion.

The translation uses a table containing the
translated characters. The word in the top-of-
stack is a descriptor that addresses the trans-
lation table. The second operand in the stack
specifies the length of the string. The third
word in the stack is a descriptor addressing
the source string (or an operand which is the
source string). The fourth word in the stack is
a descriptor addressing the destination string.
Source and destination are updated at the end
of the operation.

Translation occurs as follows: The specified
string character is used as index into the table
to locate a character. An all zeroes character

locates the most significant character in the
table. The located character is transferred to
the destination string.

The least significant 32 bits of each table
word provide four 8-bit characters. Table sizes
are as follows:

a. 4-bit digits provide a 4-word table length.

b. 6-bit characters provide a 16-word table
length.

c. 8-bit bytes provide a 64-word table length.

OPERATORS EXCLUSIVE TO THE B 7700

SET MEMORY INHIBITS (SINH A8 (CONTROL
STATE OP) ¢ y (VA8 ¢ ©

The Set Memory Inhibits operator transfers
the inhibit settings in the second stack regis-
ter to the memory module specified in the top
stack register. The two top-of-stack registers
are marked empty. (All tags are legal.) The
memory module number is given in the top-of-
stack (bits 3:4). The inhibit field setting is giv-
en in the second item in the stack (bits 7:8).

S]IE’T MEMORY LIMITS (SLMT) (V)AA (CONTROL STATE
OP)

The Set Memory Limits operator transfers
the limits and availability settings in the sec-
ond stack register to the memory module spec-
ified in the top-of-stack register. The two top-
of-stack registers are then marked empty. (All
tags are legal.) The limits specify the range of
addresses (in 16K increments) behind the mod-
ule and the availability setting specifies which
stack(s) (of a possible four) are to be used. (All
tags are legal) The top-of-stack gives the
memory module number (bits 3:4). The second
item in the stack gives module availability
(bits 3:4) and memory addressing limits: upper
limit (bits 15:6) and lower limit (bits 9:6).
FETCH MEMORY FAIL REGISTER (FMFR) (VW)AC
(CONTROL STATE OP)

The Fetch Memory Fail Register operator
fetches the contents of the fail register from
the memory module specified in the top-of-
stack (bits 3:4). The contents of the fail regis-
ter are placed in the top-of-stack.

IGNORE PARITY (IGPR) (V)48 (CONTROL STATE OP)
The Ignore Parity operator is used for confi-
dence checking and requires the processor to
be in the control state. In control mode 0,
words entering the CPM are checked for cor-
rect parity but the IGPR operator sets the IGP
flip-flop which inhibits transmission of parity
error messages for those words with incorrect
parity. Likewise, IGPR inhibits correct parity
generation before storage for those words de-
tected in the CPM with incorrect parity.
Parity error interrupts and new parity gen-
eration will be inhibited with the CPM in con-

3-101

trol mode 0 by IGPR until any one of the fol-
lowing occurs:

1. Some other interrupt causes the CPM to
move to control mode 1.

2. Another IGPR is decoded while the CPM
is in a control mode greater than zero.

3. Or the CPM returns to normal state.

Any one of the above conditions cause the
IGP flip-flop to be reset and the CPM to resu-
me parity error interrupts and generation of
new parity.

PAUSE UNTIL INTERRUPT (PAUS) (V)84

The Pause Until Interrupt operator suspends
program execution until an external interrupt
or an interval timer interrupt occurs. If the
processor is operating in control state, the op-
eration continues in sequence; to clear the in-
terrupt the INT. I.D. must be read. If the
processor is operating in normal state, the in-
terrupt is handled as in IDLE.

INTERRUPT CHANNEL N (INCN) (V)8F

The Interrupt Channel N operator sends sig-
nals to the channel or channels specified by
the top-of-stack. The top-of-stack is then
marked empty. Bit 0 interrupts channel 0; bit
1 interrupts channel 1; etc.

STOP (STOP) (V)BF

The STOP operator causes an unconditional
halt of the central processor. The STOP
operator is primarily used for diagnostic pur-
poses. The processor may be restarted by pres-
sing and releasing the START button on the
processor control panel.

EDIT MODE OPERATORS

Edit Mode operators perform editing func-
tions on strings of data. Edit functions are
normally involved in preparing information
for output. These operators include Insert,
Move, and Skip, in the form of micro-operators
in either the program string or in a separate
table. In the program string, they are single
micro-operators and are entered by use of the
Execute Single Micro or Single Pointer
operators. (See the ‘‘Enter Edit Mode
Operator” descriptions.) If the micro-operators
are in a table, the table becomes the program
string that is to be executed. This table is en-
tered by means of the Table Enter Edit
operators, and is exited through the End Edit
micro-operator.

If the source or destination data has the
memory protect bit (bit 48) equal to one, the
segmented-array interrupt is set and the cur-
rent micro-operator is terminated.

3-102

INSERT OPERATORS

INSERT UNCONDITIONAL (INSU) (E)DC

The Insert Unconditional micro-operator
places an insert character into the destination
string for the number of times specified by the
repeat value. When this operator is entered by
a Table Enter Edit operator, the repeat is in
the syllable following the micro-operator sylla-
ble, and the insert character is in the next syl-
lable (the third syllable).

When this operator is entered via an
Execute Single Micro Instruction operator, the
repeat field is in the top-of-stack operand and
the insert character is the second syllable. The
operator length is then two syllables.

INSERT CONDITIONAL (INSC) (E)DD

The Insert Conditional operator inserts the
character defined by the third syllable into the
destination string if the float toggle is OFF. If
the float toggle is ON, the character defined
by the fourth syllable is inserted into the des-
tination string. The insertion is repeated the
number of times specified by the second sylla-
ble when this operator is entered by the Table
Enter Edit operation.

When this operator is entered via an
Execute Single Micro Instruction operator, the
repeat field is the top-of-stack operand. The
operator length is then three syllables.

INSERT DISPLAY SIGN (INSG) (E)D9

The Insert Display Sign operator inserts the
character defined by the second syllable into
the destination string if the external sign flip-
flop is set; otherwise, the character defined by
the third syllable is inserted.

INSERT OVERPUNCH (INOP) (E)D8

The Insert Overpunch micro-operator places
a sign overpunch in the destination string
character. If the external sign flip-flop is re-
set, the operator skips one destination string
character. If the external sign flip-flop is set,
the zone bits of the destination character are
set to 10 for 6-bit data and to 1101 for 8-bit
EBCDIC data; the destination pointer is then
advanced one character. The zone bits for 8-bit
ASCII data are set to 1111.

MOVE OPERATORS

MOVE WITH INSERT (MINS) (E)D0

The Move With Insert micro-operator per-
forms a Move Numeric Unconditional or an In-
sert operation under control of the float flip-
flop.

If the float flip-flop is set, a Move Numeric
Unconditional operation is performed. If the
float flip-flop is reset and the source character

numeric is zero, the character defined by the
third syllable is transferred to the destination
string. If the float flip-flop is reset and the
source character numeric is not zero, then the
float flip-flop is set and a Move Numeric Un-
conditional is performed.

The number of characters transferred from
the source string to the destination string is
defined by the repeat value. In Table Edit
mode the second syllable is the repeat value
and the third syllable is the character to be in-
serted under control of the float flip-flop. In
Execute Single Micro mode the repeat field
value is in the word in the top-of-stack and the
insert character is in the syllable following the
micro-operator syllable.

MOVE WITH FLOAT (MFLT) (E)D1

If the float flip-flop is set, the Move with
Float operator causes & Move Numeric Uncon-
ditional operation to be performed.

If the float flip-flop is reset and the source
character numeric is zero, then the character
defined by the third syllable is transferred to
the destination string.

If the float flip-flop is reset and the source
character numeric is riot zero, then the float
flip-flop is set. If the external sign flip-flop is
set, the character defined by the fourth sylla-
ble (the second insert character) is transferred
to the destination string; otherwise, the char-
acter defined by the fifth syllable (the third
character) is transferred. Then a Move Nu-
meric Unconditional operator is performed.

In Table Edit mode, the above operation is
repeated for the number of characters
specified by the second syllable; the third,
fourth, and fifth syllables are the insert char-
acters.

When this operand is entered via an Execute
Single Micro instruction, the repeat field is the
top-of-stack operand. The operand length is
then four syllables, three of which contain in-
sert characters.

MOVE CHARACTERS (MCHR) (E)D7

The Move Characters operator transfers the
number of characters specified by the second
syllable from the source string to the destina-
tion string, if the operator is entered this by
the Table Enter Edit, Destructive operator.

When this operator is entered via an
Execute Single Micro Destructive instruction,
the number of characters transferred is
specified by the top-of-stack operand. The op-
erator length is then one syllable.

MOVE NUMERIC UNCONDITIONAL (MVNU) (E)Dé
The Move Numeric Unconditional operator
transfers from the source string to the desti-

nation string the number of characters
specified by the second syllable. The zones are
not transferred but are set to 00 for 6-bit data,
to 1111 for 8-bit EBCDIC data, and to 0011 for
8-bit ASCII data.

When this operator is entered via an
Execute Single Micro instruction, the number
of characters transferred is specified by the
top-of-stack operand. The operator length is
then one syllable.

SKIP OPERATORS

SKIP FORWARD SOURCE CHARACTERS (SFSC) (E)D2

The Skip Forward Source Characters
operator causes a skip forward for the number
of source characters specified by the syllable
following the micro-operator’s syllable, if the
entry to this operator is by the execution of
the Table Enter Edit operator. When this op-
erator is entered via an Execute Single Micro,
Destructive instruction, the number of charac-
ters skipped is specified by the top-of-stack op-
erand. The operator length is then one sylla-
ble.

SKIP REVERSE SOURCE CHARACTERS (SRSC) (E)D3
The Skip Reverse Source Characters

operator decrements the source pointer regis-

ter for a skip in reverse for the number of

source characters specified by the second syl-
lable.

(Ség{)l;FORWARD DESTINATION CHARACTERS (SFDC)

The Skip Forward Destination Characters
operator causes a skip forward for the number
of destination characters specified by the sec-
ond syllable.

(SElgi)I;;REVERSE DESTINATION CHARACTERS (SRDC)

The Skip Reverse Destination Character op-
erator causes a skip in reverse for the number
of destination characters specified by the sec-
ond syllable.

RESET FLOAT (RSTF) (E)D4

The Reset Float micro-operator sets the float
flip-flop to zero.

END FLOAT (ENDF) (E)D5

The End Float operator transfers to the des-
tination string the character defined by the
second syllable if the float flip-flop is reset
and the external sign flip-flop is set.

_If the float flip-flop is reset and the external
sign flip-flop is reset, the character defined by
t_he third syllable is transferred to the destina-
tion string.

If the float flip-flop is set, the End Float op-
erator is treated as a NO-OP.

3-103

END EDIT (ENDE) (E)DE

The End Edit operator terminates the execu-
tion of this string of edit micro-operators in
Table Enter Edit mode. The micro program
string must end with the End Edit operator.

UNIVERSAL OPERATORS

NO OPERATION (NOOP) (U)FE

No operation takes place when the NOOP op-
erator is encountered. The program index reg-
ister (PIR) and the program syllable register
(PSR) are advanced to the next syllable. This
operator is valid in Variant Mode and Edit
Mode but is not valid in Single Micro mode.

CONDITIONAL HALT (HALT) (U)DF

This operator halts the processor if the con-
ditional halt switch is in the ON position. If
the conditional halt switch is OFF, the
operator is treated as a NOOP. This operator
is valid in Variant Mode and Edit Mode but is
not valid in Single Micro mode.

INVALID OPERATOR (NVLD) (U)FF
This operator sets the invalid operand inter-
rupt.

VECTOR MODE OPERATORS

Certain scientific and mathematical analysis
involves manipulation of vectors and matrices.
Programming wise a vector is a string of num-
bers which may be a row, a column, or a
diagonal in an array of numbers. Operations
may be performed on each item in the vector,
on multiple vectors, between vectors, on a ma-
trix of numbers within the array, between ma-
trices, etc. Seventy-seven operators are avail-
able for vector (arithmetic, logical, relational,
etc.) manipulations. (The two operators (VMOS
and VMOM) used to enter vector mode
operation are described in the primary mode
section of this document.)

In vector mode, the source, destination, and
table pointer areas are used as index registers.
Absolute addresses and their corresponding in-
crements of items in the vector are extracted
from the stack by VMOS or VMOM and placed
in the index registers. The stack initially con-
tains three descriptors and three or four oper-
ands: If bit 44 of the descriptor in the top of
erand and is stored as the repeat count; other-
wise, a default repeat of 1,048,575 is used.
Each of the three descriptors represents a full
or partial array of operands to be operated up-
on by the repetition of the word of code.

Vector mode operation is entered via the
VMOS operator for a single-word vector mode

operation or via the VMOM operator for multi-

3-104

ple-word vector mode operations. The enter
vector operators extract three absolute ad-
dresses, their corresponding increment, and an
optional length from the stack and place them
as index registers in the pointer areas of the
IC memory. Vector stack operators load, store,
or increment the top-of-stack with a single-
precision or a double-precision operand for sin-
gle program word loops or for multiple pro-
gram word loops.

The number of program iterations is indi-
cated by “length.” Following the enter vector
mode instruction, up to five syllables are ig-
nored and the next full program word is
fetched into the P register. If a repeat (length)
is specified, this word will be executed that
number of times. (If the repeat is not given,
the execution is controlled by the operator it-
self.) In VMOM the number of program
operators accessed is controlled by the
operators Vector Branch and Vector Exit.
Only those operators listed below (by mnemon-
ic) may be used to manipulate vectors or ma-
trices in vector mode.

Operator Type Mnemonics of Operators Permitted In

Vector Mode

Arithmetic ADD DIVD IDIV MULT MULX NTGD
NTGR NTIA RDIV SUBT
Bit BRST BSET CBON CHSN DBRS

DBST LOG2

Literal Call ONE LTS8 LT16 LT48 MPCW ZERO

Logical LAND LEQV LNOT LOR

Relational EQUL GREQ GRTR LESS LSEQ
NEQL SAME

Scale DSLF DSRF DSRR DSRS DSRT SCLF
SCRF SCRS SCRT

Stack DLET DUPL EXCH PUSH RSDN
RSUP

Type Transfer JOIN SNGL SNGT SPLT XTND

Transfer DFTR DISO DINS FLTR INSR ISOL

Branch BRFL BRTR BRUN

Unpack LLLU

Tag Field OCRX RPRR RTAG SINT SPRR STAG
WHOI

Index Load LODT

Universal HALT

Miscellaneous ROFF RTFF SXSN VARI

Primary Mode

Operators DADD FMFR IGPR INCN MAX MIN
Exclusive to PAKL PAKR RDEF RODZ2 ROD1
the B 7700 UPKL UPKR

VECTOR BRANCH (VEBR) (2)EE

Vector Branch is a three-syllable operator.
The two syllables following the operator name
contain the branch address. Vector Branch ex-
amines length. If it is greater than zero,

length is decremented by one, the next two
program syllables containing the branch ad-
dress are skipped, and the program is resumed
at the following syllable. If the examined
length is zero, vector mode is exited, and nor-
mal operation commences with the program
word located by the branch address.

VECTOR EXIT (VXIT) (Z)E6

The Vector Exit operator causes the pro-
gram to return to normal operation.

VECTOR STACK OPERATORS

Vector stack operators store or load the top
of stack from absolute memory addresses with
a single-precision or double-precision operand,
and, if specified, increment the loading or stor-
ing address.

LOAD A (LDA) (Z)E0

The stack is adjusted (0,2) and the single-pre-
cision word selected by Pointer A is loaded
into the top of stack.

LOAD B (LDB) (Z)E2

The stack is adjusted (0,2) and the single-pre-
cision word selected by Pointer B is loaded
into the top of stack.

LOAD C (LDC) (Z)E4

The stack is adjusted (0,2) and the single-pre-
cision word selected by Pointer C is loaded into
the top of stack.

LOAD A, INCREMENT (LDAID (Z)El

The stack is adjusted (0,2) and the single-pre-
cision word selected by Pointer A is loaded
into the top of stack. Pointer A is increased by
its increment following the transfer.

LOAD B, INCREMENT (LDBI) (Z)E3

The stack is adjusted (0,2) and the single-pre-
cision word selected by Pointer B is loaded
into the top of stack. Pointer B is increased by
its increment following the transfer.

LOAD C, INCREMENT (LDCI) (Z)E5

The stack is adjusted (0,2) and the single-pre-
cision word selected by Pointer C is loaded into
the top of stack. Pointer C is increased by its
increment following the transfer.

STORE A (STA) (Z)F0

The stack is adjusted (1,2) and the single-pre-
cision word in the top of stack is stored in the
location given by Pointer A.

STORE B (STB) (Z)F2

The stack is adjusted (1,2) and the single-pre-
cision word in the top of stack is stored in the
location given by Pointer B.

STORE C (STC) (Z)F4

The stack is adjusted (1,2) and the single-pre-
cision word in the top of stack is stored in the
location given by Pointer C.

STORE A, INCREMENT (STAD (Z)F1

The stack is adjusted (1,2) and the single-pre-
cision word in the top of stack is stored in the
location given by Pointer A. Pointer A is in-
;reased by its increment following the trans-
er.

STORE B, INCREMENT (STBI) (Z)F3

The stack is adjusted (1,2) and the single-pre-
cision word in the top of stack is stored in the
location given by Pointer B. Pointer B is in-
Ereased by its increment following the trans-
er.

STORE C, INCREMENT (STCI) (Z)F5

The stack is adjusted (1,2) and the single-pre-
cision word in the top of stack is stored in the
location given by Pointer C. Pointer C is in-
creased by its increment following the trans-
fer.

DOUBLE LOAD A (DLA) (Z)E8

The stack is adjusted (0,2) and the double-
precision word selected by Pointer A is loaded
into the top of stack.

DOUBLE LOAD B (DLB) (Z)EA

The stack is adjusted (0,2) and the double-
precision word selected by Pointer B is loaded
into the top of stack.

DOUBLE LOAD C (DLC) (Z)EC

The stack is adjusted (0,2) and the double-
precision word selected by Pointer C is loaded
into the top of stack.

DOUBLE LOAD A, INCREMENT (DLAID (Z)E9

The stack is adjusted (0,2) and the double-
precision word selected by Pointer A is loaded
into the top of stack. Pointer A is increased by
its increment following the transfer.

DOUBLE LOAD B, INCREMENT (DLBI) (Z)EB

The stack is adjusted (0,2) and the double-
precision word selected by Pointer B is loaded
into the top of stack. Pointer B is increased by
its increment following the transfer.

DOUBLE LOAD C, INCREMENT (DLCI) (Z)ED

The stack is adjusted (0,2) and the double-
precision word selected by Pointer C is loaded
into the top of stack. Pointer C is increased by
its increment following the transfer.

DOUBLE STORE A (DSA) (Z)F8

The stack is adjusted (1,2) and the double-
precision word in the top of stack is stored in
the location given by Pointer A.

3-105

DOUBLE STORE B (DSB) (Z)FA

The stack is adjusted (1,2) and the double-
precision word in the top of stack is stored in
the location given by Pointer B.

DOUBLE STORE C (DSC) (Z)FC

The stack is adjusted (1,2) and the double-
precision word in the top of stack is stored in
the location given by Pointer C.

DOUBLE STORE A, INCREMENT (DSAD (Z)F9

The stack is adjusted (1,2) and the double-
precision word in the top of stack is stored in
the location given by Pointer A. Pointer A is
increased by its increment following the trans-
fer.

DOUBLE STORE B, INCREMENT (DSBID) (Z)FB

The stack is adjusted (1,2) and the double-
precision word in the top of stack is stored in
the location given by Pointer B. Pointer B is
increased by its increment following the trans-
fer.

DOUBLE STORE C, INCREMENT (DSCI) (Z)FD

The stack is adjusted (1,2) and the double-
precision word in the top of stack is stored in
the location given by Pointer C. Pointer C is
increased by its increment following the trans-
fer.

VECTOR FETCH AND STORE OPERATORS

The Vector Fetch and Vector Store operators
are used in conjunction with addresses
relative to a Mark Stack Control Word (only
when a “length” is passed) to load or store op-
erands to or from the top-of-stack. The oper-
ands are moved to or from the memory loca-
tion indicated by the normal address-couple
decoding convention (as in Value Call) unless
the memory location is protected. (An attempt
to access a protected memory location causes a
vector mode exit and a memory protect inter-
rupt.) A single-precision operand is placed in
the top-of-stack position designated A0. A dou-
ble-precision operand uses both the ®s and the ®q

osition of the top-of-stack; the least
significant half of the mantissa is placed in
the®q position.

3-106

The format of the Vector Fetch and Vector
operators is:

0|LS next syllable
I 1
address couple
where, if

LS=0 then load (FTCH operator) or when
LS=1 then store (STOR operator).

Certain precautions must be exercised in
using the Fetch and Store operaters. It must
be assured that:

a. Words being loaded or stored are oper-
ands.

b. The precision of the operand to be stored
agrees with that of the receiving location.

¢. The address couple does not reference a
lexicographical level which is higher than the
level in which the address couple is now.

VECTOR FETCH (FTCH) (Z)00 THRU (Z)3F

The Vector Fetch operator loads into the top-
of-stack the operand referenced by this ad-
dress couple of this operator. The address cou-
ple is formed by the concatenation of the siz
low-order bits of the first syllable of this oper-
ator with the eight bits of the second syllable
of this operator. The address couple (in the
stack) references a memory storage location
relative to an MSCW. The operand may be sin-
gle precision or double precision, thus, one or
two words will be loaded, respectively.

After the operand is brought to the top-of-
stack, the top-of-stack is marked full.

VECTOR STORE (STOR) (Z)40 THRU (2)7F

The Vector Store operator stores single-pre-
cision or double-precision operands from the
top-of-stack into a memory area relative to an
MSCW. The least significant six bits of the
first syllable of the STOR operator are concat-
enated with the eight bits of the second sylla-
ble of the STOR operator to form an address
couple which links the storage area with the
MSCW.

After the operand is stored, the operand and
its address are deleted from the stack.

CHAPTER IV

INPUT/OUTPUT SUBSYSTEM

SECTION 1

GENERAL DESCRIPTION AND OPERATION OF THE INPUT/OUTPUT
MODULE

PRELIMINARY

The B 7700 Input/Qutput Module, is de-
signed to serve as a buffer and control unit for
all B 7700-system input and output data trans-
fers. The IOM services requestors from a
queue of requests constructed by the Central
Processing Module (CPM) and stored in the
Memory Storage Unit (MSU).

The IOM is informed, via an interrupt from
the CPM, of the presence of a service request
in the MSU. Once informed, the IOM controls
the desired input/output operation in its en-
tirety; thus, the CPM time required to initiate
an I/O operation is only that needed to con-
struct a request, queue it in the MSU, and in-
terrupt the IOM.

BASIC IOM CONFIGURATION

As illustrated in figure IV-1-1, the IOM con-
sists of six major subsections. Each subsection
is totally independent of the other subsections,
and operates asynchronously with them.

CONTROL WORD FLOW

All control word flow between main memory
and up to 255 system peripherals is via (1) an
IOM subsection called the Memory Interface
Unit (MIU), (2) an IOM control subsection
called the Translator (XLATOR), and (3) one of
four IOM subsections, each of which is uni-
quely buffered to match the class of data
transfer assigned to it. The XLATOR subsec-
tion routes control of a given job request to
one of these subsections dependent upon data
class (batch, high speed, data communications,
or real-time interactive).

DATA FLOW

All data flow between main memory and the
peripherals is via the appropriate data-trans-
fer subsection and/or the MIU; the XLATOR
is not involved and is free for control of addi-
tional job requests. When a data transfer is
complete, however, the XLATOR is given con-
trol over job termination, and control flow to
main memory is via the appropriate data-
transfer subsection, the XLATOR, and the
MIU.

DATA XFER
SUBSECT |ONS
—i
DATA MEMORY BATCH M
T0/FROM AND CONTROL INTERFACE DATA ™
SYSTEM MEMORY +— SUBSECTION
(LEVEL-1 MEMORY) (Miv) HIGH SPEED |je—s
™ DATA AND CONTROL
CONTROL . TO/FROM UP TO 255
PERIPHERALS
DATA .,
: RO COMMUN I CAT I ONS (LEVEL-3 MEMORY)
TO/FROM INTERRUPTs | CONTROL CONTROL
CENTRAL PROCESSING 4 sl SUBSECTION
MODULE (TRANSLATOR)
REAL-TIME [,
_ INTERACT IVE
/

Figure IV-1-1. IOM Basic Block Diagram

4-1

IOM/PERIPHERAL INTERFACE CONFIGURATION

Figure IV-1-2 illustrates typical peripheral
devices which may be assigned to each data-
transfer class; also illustrated are the data-
transfer subsection names which are hence-
forth referred to. The following is a brief de-
scription of the interface capability of each
subsection, and its physical relationship to
typical peripheral equipment. The descriptions
are presented in reference to figure IV-1-3,
which illustrates the interface capability pro-
vided when two maximum-configuratipn In-
put/Output Modules and appropriate ex-
changes are used. It should be noted that a
maximum of 28 peripheral controllers (exclud-
ing DFO’s and DCP’s) may be connected to a
single IOM.

PERIPHERAL CONTROL INTERFACE (PCD

The PCI of a single IOM consists of either
one or two interface sections, dependent upon
user requirements. Each section has 10-chan-
nel interface capability, for a total maximum
capacity of 20 channels per IOM.

The controls serviced by a PCI are housed in
one or two peripheral control cabinets (PCC’s).
Each PCI/PCC cabinet services one IOM and
has a 10-channel interface capability. Up to
five of these channels can be assigned to large
controllers, but the remaining channels must
be assigned to small controllers. Table IV-1-1
lists the various controllers which may be
housed in PCI/PCC cabinets.

Any combination of small controls may be
housed in the PCI/PCC cabinet. The large con-
trols (SLC and MTC) may be connected to the
peripheral units directly, or, in the case of the
MTC only, via exchanges. Any unused chan-
nels in the PCC cabinet are left empty.

The PCI multiplexes all 20 channels by gen-
erating overlapping l-micro-second data-serv-
ice cycles and by use of “windows” in a self-
contained local memory. In the typical config-
uration illustrated in figure IV-1-3, the use of
two IOMs and appropriate exchanges (4X16)
allows access by either IOM of 64 magnetic
tape units. IOM number 1 is illustrated as
having access to an additional non-exchange
magnetic tape unit, and both IOM’s are illus-
trated as having access to SPO units via Sin-
gle Line Controls (SLO).

DISK FILE INTERFACE (DFI)

The DFI of a single IOM consists of either
one or two interface sections, dependent upon
user requirements. Each section has an inter-
face capability of four channels, for a total
disk-file-channel capability of eight channels
per IOM.

4-2

Each DFI four-channel section services a
single DFI/PCC cabinet. This cabinet contains
only large channels (four maximum), which
are dedicated to either disk files or disk packs.
The channels may be connected to the periph-
erals either directly or via exchanges. In the
typical configuration illustrated in figure IV-1-
3, the use of two maximum DFI-configuration
IOMs (eight channels per IOM, four each disk
file and disk pack) and appropriate exchanges
(2X20 for disk file, 2X16 for disk pack) allows
access by either IOM of 80 disk file electronics
units (400 disk file storage units) and 64 disk
packs. Table IV-1-2 lists the controllers which
may be housed in the DFI/PCC cabinet.

SCAN INTERFACE (SCD

The SCI consists of two sections: a DFO scan
interface and a DCP scan interface. The DFO
scan interface provides scan-in and scan-out
control for up to four DFO’s via a scan bus. If
a second IOM is used, the DFO scan bus is
shared by the two IOM’s (see figure IV-1-3).

The DCP scan interface provides scan-out
control only, and may communicate with up to
four DCP’s via a scan bus. The SCI is not used
for DCP scan-in functions, which are initiated
by the DCP. For these functions, the DCP com-
municates with main memory directly via the
MIU. The DCP scan bus is not shared by a sec-
ond IOM.

l%)%’lif)\ COMMUNICATIONS PROCESSOR INTERFACE
(

The DCI provides the data and control inter-
face for IOM-initiated scan-out operations, and
the data interface only for DCP-initiated scan-
in operations. Interface is provided in each
IOM for up to four DCP’s. As illustrated in fig-
ure IV-1-3, the use of two IOM’s in a system
allows interface with eight DCP’s.

IOM/MAIN AND IOM/CPM INTERFACE
CONFIGURATIONS

Figure IV-1-4 illustrates a typical interface
configuration between the IOM’s, MCM’s, and
CPM’s of a typical system. The following is a
brief description of the interface capability of
the IOM/MIU subsection with main memory
and the IOM/XLATOR subsection with system
CPM’s.

IOM/MCM INTERFACE

As illustrated in figure IV-1-4, the MIU con-
tains eight interface areas. Each interface
area is dedicated to a distinct Memory Control
Module (MCM), and is connected to it via a
unique memory bus. The bussed IOM/MCM in-
terface is referred to as a memory/user pair.

10M
DATA TRANSFER 4
SUBSECTIONS

BATCH

LINE PRINTER LINE PRINTER
CONTROL (LPC) (Lp)
CARD PUNCH

CARD PUNCH
UNIT CONTROL UNIT (PU)

(puc)

CARD READER

CARD READER

-
%
%
(,
(»
f’
-
-
PERIPHERAL -
CONTROL *
INTERFACE (20 MAX)
(rci)
DISK FILE *
INTERFACE ————
(0F1) (8 MAX)
SCAN .
INTERFACE
(scr) (4 MAX)
DATA
COMMUN I CAT IONS *
INTERFACE
(oc1) (4 MAX)

* PERIPHERAL CONTROL (PC) BUS

*% SCAN BUS

40802

Figure IV-1-2. Typical Data-Transfer Classifications and Related I0M Subsections

CONTROL
(cre) (cR)
SINGLE LINE OPERATORS
CONTROL CONSOLE AND
(sLc) DISPLAY (SPO)
MAGNETIC MAGNETIC
TAPE CONTROL TAPE UNIT
(MTC) (MTU)
BAPER TAPE PAPER TAPE
PUNCH CONTROL PUNCH
(PTPC) (pTP)
PAPER TAPE PAPER TAPE
READER CONTROL READER
(PTRC) (PTR)
HIGH SPEED
——
DISK PACK DRIVE DISK PACK
CONTROLLER DRIVE
(ppPDC) (opp)
DISK FILE
CONTROL
(DFC)
DISK FILE DISK FILE
ELECTRONICS STORAGE UNIT
UNIT (DFEU) (DFSU)
REAL TIME INTERACTIVE
DISK FILE
OPTIMIZER
(DFO)
~
DATA COMMUNICATJONS
DATA COMM.
PROCESSOR
(ocP)

v-v

2x20
EXCH

2X20
EXCH

2x20
EXCH

DFC oPOC
DFC DPDC
DFC DPOC
OFC oPOC
DFC DPDC
OFC DPOC
DFC DPOC
DFC 0PDC

0F0 SCAN BUS
| 10M 1 (PARTIAL)
hen Tag | ofo 1o
F A CH
' s P
e 8 N ¢
! i
oc1 10
T Bl oo
220) l 3E I W | oce
EXCH o
SCAN BUS
=P

10M 2 (PARTIAL)

» [

»

DB
ocp e
(114 CH
s P
3 4
hen |8 1 1 o
F
i Bl cn
AH | A DFO
DFO SCAN BUS |

* ANY SMALL CONTROL

Figure 1V-1-3. Typical IOM/Peripheral Configuration

PO
1

hx16
EXCH

hx1é

__ EXCH

SPO
8

NTU
1

5

x
-3
=

HTU

_ ol
=

i

MTU

MTU

— o~
=

Size Model
L B 7381-11

L B 7381-12

L B 7381-14

S B 7240 with
B 9943

S B 7120 and
B 9926

S B 7220 and
B 9928
L B 7381-15

L B 7381-16

L B 7391-3
L B 7391-4
L B73931
L B 7393-2
L B 7393-3

L B 7393-5

S B 7110

S B 7212 and
B 7610

Model

B 7877
v

B 7380-1

Single Dual-Drive

Table IV-1-1. PCI/PCC Channels

Peripheral Controls

Type
18/36 KB, NRZ, 9 Ch.
MTC
36/72 KB, PE, 9 Ch. MTC

18/36 KB, NRZ, 9 Ch.,
Dual MTC with 2x8
Exchange

Printer Control Printer
Memory

Paper Tape Reader
Control and Input Code
Translator

Paper Tape Punch and
Output Code Translator

36/72 KB, PE, 9 Ch., Dual
MTC with 2x8 Exch.

18/36 KB, 36/72 KB, NRZ/

PE, 9 HC., Dual MTC with
2x8 Exem.

72 KC, 200/556/800 BPI, 7

Ch MTC

96 KC, 200/556/800 BPI, 7

Ch MTC

72 KB, 800 BPI, 9 Ch.
MTC

144/240 KB, 1600 BPI, 9
Ch. MTC

96 KB, 800 BPI, 9 Ch.
MTC

320/400 KB, 1600 BPI, 9
Ch. MTC

SINGLE LINE
CONTROL-1 (SLC-1)

Single Line Control-2
(SLC-2)

Card Reader Control

Card Punch Control and
BCL-BCL Code Translator

Table 1V-1-2

Peripheral Controis
Type
Disk File Control

Control, D:sk Pack

B 7380-2

Dual Dual Drive

Control, D:sk Pack

B 7383-1

Single Dual-Drive

Control, Disk Pack

B 7383-2

Dual Dual-Drive

Control, Disk Pack

Peripheral Units

18/36 KB, 9 Ch. NRZ Clusters (800 BPI, 2, 3, or 4 Station)
36/72 KB, 9 Cu. PE Clusters (1600 BPI, 2, 3, or 4 Station)
18/36 KB, 9 Ch., NRZ Clusters (800 BPI, 2, 3, or 4 Station)
300/400 LLPM, 120/132 Print Position Printers

860 LPM, 120 Print Pos; 7256 LPM, OCR “A” and “B”
Numeric & Std; 1100 LPM, 120 Print Position; 900 LPM,
OCR “A” and “B” Numeric and $td Printers

Paper Tape Reader, 500-1000 CPS
Paper Tape Punch, 100 CPS
36/72 KB, 9 Ch. PE Clusters (1600 BPI, 2, 3, or 4 Station)

18/36 KB, 9 Ch. NRZ/PE Clusters (800/1600 BPI, 2, 3, or 4
Station; 36/72 KB, 9 Ch. NRZ/PE Clusters (800/1600 BPI, 2,
3, or 4 Station)

18/50/72 KC, 7 Ch. (200/556/800 BPI) MTU

24/66/96 KC, 7 Ch. (200/556/700 BPI) MTU

72 KB, 9 Ch., 800 BPI MTU

144 KB, 9 Ch,, 1600 BPI MTU

96 KB, 9 Ch., 800 BFI MTU

240 KB, 9 Ch,, 1600 BPI, MTU

Burroughs Terminal Computer TC500; Burroughs Input and

Display Terminal B 9352

Burroughs Terminal Computer TC500; Input and Display
Terminal B 9352; Input and Display System B 9351

800 and 1400 CPM Card Readers
300 CPM Card Punch

. DFI/PCC Channels

Peripheral Units

IC-3 and IC-4 Disk Files

Single Data Access, Dual Drive Disk Packs, 121 Megabyte
Simultaneous Data Access, Dual Drive Disk Packs, 121 Megabyte
Single Data Access, Dual Drive Disk Packs, 242 Megabyte

Simultaneous Data Access, Dual Drive Disk Packs, 242 Megabyte

Similarly the Central Processing Module
(CPM) also contains eight MCM interface
areas. Each CPM interface area is dedicated to
a distinct MCM and is connected to it via a
unique memory bus. The bussed CPM/MCM in-
terface is also referred to as a memory/user
pair.

The interface capability of an MCM is eight
memory busses, each of which is connected to
one and only one IOM or CPM. Therefore, the
maximum combined number of CPM’s and
IOM’s which may be bussed to an MCM is lim-
ited to eight.

The maximum number of MCMs which may
be contained in a B 7700 system is also limited
to eight. This limitation is imposed by the
eight MCM-dedicated interface areas of each
IOM and CPM in the system.

The typical memory-bus configuration illus-
trated in figure IV-1-4 indicates the use of two
IOM’s, two CPM’s, and two MCM’s. This con-
figuration provides a total of eight memory/
user pairs (MCM 0 to users 0 thru 3 and MCM1
to users 0 thru 3). The maximum number of
Memory Storage Units (MSU) with which an
MCM can communicate (four) is also illus-
trated. Each of these MCM’s can access
262,144 words of memory (4 MSU’s of 65,536
words each). Each IOM or CPM, when con-
nected as illustrated on figure IV-1-4, can
therefore access 524,288 words of memory.

IOM/CPM INTERFACE

The interface between the IOM’s and CPM’s
of a B 7700 system consists only of an inter-
rupt bus. The XLATOR section of an IOM is
informed by the CPM of job requests via the
bus, and the XLATOR informs the CPM of
non-channel-related IOM errors via the bus. In
addition, the XLATOR uses the bus to inform
the CPM of (1) I/O job completion when so re-
quested by software, and (2) status change by
a single-line control device.

The interrupt bus is common to all IOM’s
and CPM’s in a system, as is illustrated in fig-
ure IV-1-4.

IOM OPERATIONAL CHARACTERISTICS

The IOM is designed to operate asynchro-
nously with the CPM in the initiation, service,
and termination of input/output transfers by
use of a “job map” which is stored in level-1
memory. The “job map” consists basically of
five software-constructed elements which de-
fine the job request, the peripheral device, and
the IOM channel.

In general the map elements inform the
CPM of its IOM/Peripheral resources and their
status. When necessary, the CPM alters the

4-6

queued job requests of the “job map” to the
extent of its interest and interrupts the IOM
to request service. The IOM then accesses the
“job map” to determine the input/output job
and initiate it. Since the “job map” is a shared
resource of the IOM and CPM, the IOM trans-
fer times are masked by the continual process-
ing and queueing of new requests by the CPM;
thus maximum system throughput is attained
with a minimum of CPM time.

The IOM also manages path selection to the
requested device (instead of the programmatic
preselection of the path which is generally
used). This path management eliminates the
occurrence of situations whereby (1) the re-
quested device is free, (2) the preselected path
is not, and (3) an alternate path exists but can-
not be used due to the programmatic preselec-
tion. These situations generally require in-
volvement of the CPM until the preselected
path is free and the job is initiated, which ef-
fectively reduces the parallelism of the CPM
and IOM. Since the IOM manages the path se-
lection in the B 7700 system, CPM involvement
regarding job initiation ends when an inter-
rupt is sent to the IOM. The IOM then initi-
ates the job request when the requested de-
vice and any path to that device is available.

The design of the IOM incorporates exten-
sive error-detection logic which monitors the
flow of control words and data between the
IOM and other main-frame modules, within
the IOM module itself, and between the IOM
module and peripheral devices. Particular em-
phasis is placed upon preserving the integrity
of all memory operations. In general, the er-
ror-detection hardware consists of: parity
check and generate circuitry; residue check
circuitry; circuitry to detect illegal commands,
conditions, and control states; and timeout cir-
cuitry for memory transfers, scan bus
operations, and internal IOM transfers.

IOM JOB MAP

The job map which an IOM accesses from
main memory consists of the following five
software-constructed elements:

a. Home Address Words (HA)

b. Unit Table Word (UT)

c. I/O Queue (1I0Q)

d. I/0 Control Block (I0CB)

e. Status Queue (SQ)

The following four level-1 addresses, which
are loaded into the IOM XLATOR at initialize
time, enable the IOM to service the job map:

a. Home Address

b. UT Base Address

c. I0Q Header (IOQH) Address

d. SQ Header (SQH) Address

MCM USER 0,

NO. 10M 1 (PARTIAL)
MEM BUS
0
MEM BUS 1
2
3
MIU XLATOR
4
5
6
7
MSC MCM
M| MMM] NO.
slsls|s MEM BUS 5
ulufuju MEM BUS]
0 2
) 3 USER 2,
CPM —
2 4
!
MCM 0 3 5
4 6
w
5 7 2
'_
é MCM, a
7 NO. x
MEM BUS i
USER 0 =
NO. MEM BUS] =
MSC 2 | UseR 3,
Ml MIM| M 3 CPM ¢
s|s|s|s y 2
vjululu 5
0 6
1 7
2 MCM USER 1,
MCM 1 3 NO. 10OM 2 (PARTIAL)
MEM BUS
L 0
MEM 8US
5 1
6 2
7 3
USER L MIU XLATOR
NO. 5
40504 6
7

Figure 1V-1-4. Typical IOM/Main Memory and IOM/CPM Interface Configurations

By use of these stored addresses and the
contents of previously-fetched map elements,
job requests originally constructed by the
CPM are reconstructed in the IOM and are
serviced.

The following basic description of each map
element and the sequence in which the job
map is serviced is presented in reference to
figure IV-1-5. For detailed formats of all words
discussed, refer to the appendix of IOM word
HOME ADDRESS WORD

The 51-bit home address word (HA word) is
the first map element fetched by the IOM
when interrupted by the CPM. It is fetched by
use of the pre-loaded home address stored in
the IOM XLATOR, and contains information
which desecribes the basic command and, as ap-
plicable, information which describes the de-
vice or channel to be used.

The command to be performed is defined by
a code within the HA word, called the home
code. In some instances further definition of
the command is provided by additional bits of
the HA word. Based on the command decoded,
the logic of the IOM is conditioned to perform
one of 20 possible control operations. The com-
mands are described under the heading IOM
COMMANDS later in this section.

Only one of the 20 commands, the Start 1/0
command, requires immediate further access
of other map elements; however, some scan-
out commands require access of a second 51-
bit HA word. The Start I)O command is the ba-
sic command used to initiate service of new
job requests, whereas the remaining com-
mands are provided for either cold start/halt
load, scan out control, configuration determin-
ation, or diagnostic purposes.

A home address (HA) word which contains a
Start I/O home code also contains a unit desig-
nate (UD) number. This number specifies the
device to be used for the operation, and is part
of the information needed to access the re-
maining map elements.

UNIT TABLE WORD

The unit table (UT) word is the next map
element fetched by the IOM in response of a
Start I/O command. The fetch is performed by
use of the UT address preloaded in the IOM
XLATOR and the UD number derived from
the HA word. The preloaded address serves as
a locator for the unit table, and the UD num-
ber serves as an index to a particular word of
the unit table.

The unit table consists of 256 words, which
are numbered 0 thru 255. Word 0 is reserved
for use as a fail UT word, and is accessed
when an error occurs which cannot be associ-
ated with a specific job request. In this in-

4-8

stance, a special UD number (000), called a fail
UD number, serves as an index to UT word 0.
Each of the remaining 255 UT words is as-
signed to a unique device, and contains infor-
mation which defines the device and its as-
signment within the system.

The device-type and assignment information
specifically indicates (1) whether the device is
a disk-pack or a magnetic tape unit (2) if the
device is a disk file, whether it is under DFO
control, (3) whether the device is connected to
an exchange, (4) the lowest IOM channel to
which the device is connected.

For a device connected to an exchange, the
UT word contains additional information for
use in IOM device/path management. The de-
vices connected to an exchange are described
by a linked list of UD numbers in the next
unit on exchange (NUD) fields of their UT
words. The number (modulo 4) of the last
(highest) IOM channel on the exchange
(LCEX) is also indicated. The description of
the exchange is complete because (1) all IOM’s
on an exchange must use the same channels,
(2) channels on an exchange must be
consecutive, and (3) the largest exchanges
serve a maximum of four channels. A bit
(called the “job bit” or JB) is set if a job re-
quest for an exchange device must be delayed
because a path is not currently available.

10Q HEAD (I0QH) AND 10Q TAIL (I0QT) TABLES AND
WORDS

The I/O Queue (I0Q), which is constructed by
the CPM in main memory, contains linked job
requests (I/O Control Blocks) for each device
of the system. The extent of the linked job re-
quests for each device is defined by words
which indicate the main memory addresses of
the first and last of the requests. These words
are called the I/O Queue Head (IOQH) word
and the I/O Queue Tail (I0QT) word, respec-
tively.

The I0QH words for all devices (255 words)
are stored in a table called the I/O Queue
Head table; similarly, the I0QT words for the
devices (also of 256 words) are stored in a table
called the IOQT table, which immediately fol-
lows lows the IOQH table in memory.

The I0QH and 10QT tables contain one spe-
cial word each (word 0) which is reserved for
use by the IOM to report errors that cannot be
associated with a specific job request. These
words are pointers to a list of the fail I/O Con-
trol Blocks (fail IOCB’s) reserved for failure-
reporting by the IOM’s of the system (later de-
seribed).

The IOQT table is the element accessed by
the CPM to queue additional requests for a de-
vice. The IOM also accesses this element when
a sidelink operation to another device is

6-v

IOM(n)

[sToreo HoMe mooress |

l STORED UNIT TABLE ADDRESS]'—

L

[sTorep 104 TABLE ADDRESS }

[storeo sq HEADER ADDRESS |

40808

' QUEUE OF
FAIL 10CB'S
FAIL
| —01 NL] NOT USED 1 R0
#{ HOME ADDRESS WORD) Ty NOTES :
I NL l NOT USED l RD
I 1. DERIVED FROM HA WORD
. a £, BU, 10CW, AND CDL WORDS NOT SHOWN
' SELECT UT WD 0 UNIT TABLE 1 3. NULL(0) PRIOR TO SIDELINK; SIDELINK
UD NUMBER FAIL UT WD " woT UsED FAIL ADDRESS AFTER SIDELINK
00 RD L. DASHED LINES INDICATE POINTERS AFTER
UT Wb, DEVICE | SIDELINK
——
[A50 U0 | seieet o1 w0 0 [P ————— \im YA
NUMBER NOT USED []
NOTE 1 I UT WD, DEVICE 255 (vuLL) RD
1/0 QUEUE HEAD TABLE
ADD FINAL I SELECT 10QH WD 0
UD NUMBER FAIL 10QH WD
o I Lo woRo 1/0 QUEVE
DEVICE ! 1/0 QueuE (DEVICE ? 10CB'S)
ADD UD SELECT 10QH WORD n | o (DEVICE 254 10CB'S) ¢
NUMBER > T
10QH WORD, o I st l NOTE 2 I aD I NL | S l NOTE 2 I RD]
ROTE | | DEVICE 254 L (0 ()
| 10QH WORD, J
! DEVICE 255 9
[_—‘ NL St SL
N
‘ SELECT 1oqT wp o /O QUEVE TAIL TABLE (NOTE 3)| {0) I"m‘ 2 l RO] N (o) |MTEZ| RO
LECT |
‘226 q FAIL 10QT WD -]
‘ 10QT WoRD, (NOTE 4}
DEVICE | r--o "1 I f;)] NOTE 2! RD ! N ! st !norz 2 ! RD !
e f @ | o |
I SELECT 10QT WD n ! 4 J
> 10QT WORD, _;
| 1 DEVICE 25k [—=—=~-——f—-~=
10QT WORD, NL SL
I _DEVICE 255 o 05 |t [ere s] ‘"jl
| STATUS QUEUE,
10M(n)
| :{ N I i) I NOTE 21 no—l
10M(n) STATUS
QUEUE HEADER
TERMINATED
| N | I] | | :f‘ztn I :‘I‘étn] N | ?'5) I NOTE 2 l RD I 10CB'S, ALL
| 1 DEVICES
, s 1
| \ S
N L
T e])

Figure 1V-1-5. IOM Job Map

specified. This access is required so that the si-
delink operation indicated in the job-request
queue of one device may be linked to the
queue of job requests for the device desig-
nated for the sidelink operation. The I10QT
word for the sidelink device is altered to re-
flect the main memory address of the sidelink
job, which becomes the last job queued.

The IOQH table is the element accessed by
the IOM in order to service job requests. The
IOQH word for a device indicates the main
memory address of the first job request for
that device. Memory addresses of additional
jobs for the device are indicated by the next
link (NL) word in each job request, thus
linking all job requests for a given device.

As is indicated in figure IV-1-4, the last job
request for a device is recognized by the IOM
when the next link field of a request is found
to contain zeroes (null).

The I0QH word is fetched by use of (1) the
IOQH table base address (stored in the XLA-
TOR), and (2) the UD number (derived from
the previously-fetched HA word). The UD
number indicates which device is to be initi-
ated, and therefore which IOQH word of the
IOQH table should be fetched. The UD number
is thus an index to the IOQH table.

When a non-request-related error is detected
by the IOM and access to the fail IOQH word
(word 0) is required, the word is fetched by use
of the fail UD number (000) and the IOQH
base address. The memory address of the first
available fail IOCB, which is contained in the
fail IOQH word, is used to fetch the fail IOCB.
The NL field contained in the fetched fail
IOCB is then used to update the memory ad-
dress of the fail IOQH word, so that if a sec-
ond failure is detected, the next fail IOCB of
the queue of fail IOCB’s can be accessed. The
fail IOQT word, which defines the last IOCB in
the queue of ten fail IOCB’s, is used only by
software; it is not accessed by the IOM.

When a sidelink operation requires a fetch
of the I0QT word for a device, 256 is added to
the IOQH word address (the I0QT-word ad-
dress for a device designated for a sidelink op-
eration equals the IOQH table base address
plus the UD number of the device plus 256).

I/0 CONTROL BLOCKS

The job requests for each device are stored
in map elements called I/O Control Blocks
Each I/O Control Block (I0CB) contains words
which are fetched sequentially starting with
the memory address obtained from either (1)
the IOQH word if the job request is the first
for the device, (2) the next link (NL) field of
the job request (I0OCB) in process if the job is
other than the first for that device, or (3) the
side link field of the job request (IOCB) in

4-10

process, if a sidelink (SL) to another device is
indicated. The six IOCB words fetched by the
IOM are as follows:

a. Next Link (NL) Word

b. Side Link (SL) Word

c. Buffer Descriptor (BD) Word

d. I/O Control Word (IOCW)

e. Channel Designate Level (CDL) Word

f. Result Descriptor (RD) Word

As previously indicated, the NL word con-
tains the address of the next IOCB for a de-
vice, and is the means whereby job requests
for a device are linked within the 10Q. When
this word contains all zeroes (null), it indicates
the request being serviced is the last currently
enqueued for the device.

The SL word is used to indicate that a side-
link operation (the service of a job request by
a device other than that presently being serv-
iced, without intervention by the CPM) is re-
quired. The SL word contains the memory ad-
dress of the sidelink job (IOCB), which is
started immediately if no other jobs are
queued for the designated sidelink device. If
other jobs are queued for the device, the side-
link job is linked to the queue of job requests
by insertion of the sidelink memory address in
both the IOQT word for the sidelink device
and the NL field of the last IOCB previously
queued for that device.

The BD word contains the address of the
first data location in memory, and the length
of the memory area in words.

The IOCW contains the control information
necessary to perform the input/output
operation, such as read or write, whether code
translation is necessary, backward/forward
(tape), frame length (6 or 8 bit), etc. The con-
tents of the IOCW and the BD word are used
to format the first job word sent to the se-
lected IOM channel.

The CDL word is used to format the second
job word sent to the selected IOM channel.
This word generally contains information such
as the OP code, the device number, the device
variant, and for disk, the segment address.

The RD word is used for storage of the ter-
mination status of each request. The RD word
is built by the IOM, which then links the ter-
minated request (terminated IOCB) into the
status queue.

FAIL I/O CONTROL BLOCKS

A queue of special IOCB’s, which are not re-
lated to job requests, is also built in memory.
These IOCB’s, which are called fail IOCB’s,
are used by the IOM’s of the system to report-
ing errors which cannot be associated with a
specific request. The fail IOCB’s contain the
same six words as job-request IOCB’s; how-

ever, only the next link word and the result
descriptor word have significance.

The result descriptor word is used for stor-
age of a fail result descriptor. The IOM builds
the fail result descriptor, inserts it in the fail
IOCB RD word, and links the fail IOCB into
the status queue.

STATUS QUEUE

The Status Queue (SQ) is a queue of (1) all
job-request related IOCB’s which have been
serviced and terminated, and (2) any fail
IOCB’s which have been generated by the
IOM. When job-request. IOCB’s are terminated
(or fail IOCB’s are generated) and the neces-
sary result descriptor information has been
stored in the RD word of the IOCB, the IOCB
is unlinked from the job I0Q (or fail I0Q) and
is linked into the status queue. The linked
IOCB’s in the status queue represent a mix of
terminated IOCB’s for all devices and any fail
IOCB’s.

The SQ for the system consists of queues of
linked IOCB’s, one queue for each IOM on the
system. The number of queues is dependent on
the number of IOM’s in the system.

The mechanism by means of which the sta-
tus queue is accessed is the SQH address
stored in the IOM XLATOR at initialize time.
This address is unique for each IOM used, and
serves as a pointer to a word in memory which
defines the queue of linked IOCB’s associated
with a particular IOM. This word is called the
status queue header (SQH) word.

When a request is terminated, the SQ ad-
dress of an IOM is used to fetch the SQH
word, which contains the following basic infor-
mation:

. Null (empty) state of SQ
. Head field

Tail field

. Status-Change-Vector bit
. CPM-Interrupt bit

CPM Number

The null state of the SQ is checked to deter-
mine whether it contains any terminated
I0CB’s. If the SQ is null (empty), no linkage of
the current terminated IOCB to previously-
terminated IOCB’s in the SQ is required. Con-
versely, if the SQ is not null (contains one or
more I0OCB’s or fail IOCB’s), the current ter-
minated IOCB must be linked to the queue of
terminated IOCB’s in the SQ.

o a0 o

The head field of the SQH word contains the
base address of the first terminated IOCB of
the SQ. The tail field of the SQH contains the
base address of the last terminated IOCB of
the SQ, except when the SQ is null or contains
only one terminated IOCB. If the SQ is null
the tail field is not used; if the SQ contains
only one IOCB, the tail field contains the same
address as the head field.

A terminated IOCB is linked to previously
terminated IOCB’s stored in the SQ by insert-
ing its base address in the next link (NL) word
of the terminated IOCB indicated by the SQH
tail field. The address in the tail field of the
SQH is then replaced with the base address of
the currently-terminated IOCB, so that link
capability is present when another request is
terminated.

If the CPM interrupt bit is on in the SQH
word, or the interrupt bit is on in the NL word
of a terminated IOCB, a channel interrupt is
sent to the CPM specified in SQH when the
terminated IOCB is linked into SQ. An IOM er-
ror interrupt is always sent to the designated
CPM when a fail IOCB is linked into the SQ.

When an SPO or a DCP requests an input
operation, the status-change vector bit in SQH
is set; and a channel interrupt is always sent
to designated CPM.

IOM HOME (HA) COMMANDS

There are 20 home commands which the
IOM can be directed to perform. When the
IOM receives an interrupt from the CPM, it in-
dicates that a home command has been con-
structed by the CPM and placed in memory.
The home address stored in the IOM is then
used to fetch the HA word. A code within HA
word 1, which is called the Home Code, is then
decoded to determine which command or com-
mand group is to be performed.

Table IV-1-3 lists the valid home codes, and
the commands and/or command groups defined

Table IV-1-3. IOM HA Operations and
Corresponding Home Codes

Home IOM Operation

Code

0000 Illegal
0001 Start I/0
0010 Set Channel Busy/Set Channel
Reserved
0011 Reset Channel Busy/Reset
Channel Reserved
0100 Load Home Address
0101 Load Unit Table Address
0110 Load I0Q Head Table Address
0111 Load SQ Header Address
1000 DFO/DCP Scan-out Commands:
DFO:
Clear the Stack
Store Control Word
Request
DCP:
Initialize
Halt
Set Attention
1001 DFO Scan-In Operations:
Queued Control Word
Top of Stack
Report
1010 Synchronous 1/0
1011 Interrogate Peripheral Status
1100 Inhibit IOM
1101 Activate IOM
1110 Load DFO Flags
1111 Illegal

by them. As indicated, scan commands are de-
fined by the home code as only scan-in or scan-
out groups; determination of type of scan-in or
scan-out, and whether DFO or DCP, is defined
by other portions of HA word 1. Similarly,
channel busy/channel reserved commands are
resolved by other portions of HA word 1. HA
word 2 is not used for all commands; when
used, it contains information to further define
the command.

The following brief command descriptions
are presented in reference to figure IV-1-6,
which depicts the basic contents of the HA
words for each command. Detailed formats of
the HA word for each command are given in
the appendix of IOM word formats.

START I/0 (HOME CODE 0001)

The Start I/O command is the basic com-
mand used to initiate input/output servicing of
a new job request for a device. The device is
defined by a unit designate number contained
in bits 28 thru 35 of HA word 1, HA word 2 is
not used. This command need only be given
once in order to service all queued requests for
the designated device.

SET CHANNEL BUSY/SET CHANNEL
RESERVED (HOME CODE 0010)

Home code 0010 may represent one of two
commands, dependent upon the state of bit 39
of HA word 1. If bit 39 is a “0”, the Set Chan-
nel Busy command has been received; if bit 39
is a “1”, the Set Channel Reserved command
has been received. Both commands are for ex-
change channels; the channel number is de-
fined by bits 23 thru 27 of HA word 1. HA
word 2 is not used.

The Set Channel Busy and Set Channel Re-
served command are used primarily for diag-
nostic purposes. A start I/O command for an
UD, which has the reserved channel bit (RC)
set in its UT word, must use a channel that
has been set to reserved; otherwise, a reserved
channel will not be used. An I/O operation can
not use a channel that has been set to busy.
Once either command has been received, the
specified channel remains busy (or reserved)
until a counter command is received.

RESET CHANNEL BUSY/RESET CHANNEL
RESERVED (HOME CODE 0011)

Home code 0011 may also represent one of
two commands, dependent upon the state of
bit 39 of the HA word (“0” defines the Reset
Channel Busy command; “1” defines the Reset
Channel Reserved command). These com-

mands are the counter commands to the Set
Channel Busy/Set Channel Reserved com-
mand.

LOAD ADDRESS COMMANDS

Load home address (home code 0100); load
unit table address (home code 0101); load 10Q
head table address (home code 0110); load SQ
header address (0111).

The commands are normally used to load
fixed addresses into the IOM XLATOR at
initialize time; however, they may also be used
to establish new base addresses at any time
after initialization. The address to be loaded
by each command is contained in bits 0 thru 19
of HA word 1; HA word 2 is not used.

DFO/DCP SCAN-OUT COMMANDS (HOME
CODE 1000)

Home Code 1000 specifies a scan-out com-
mand for either a DFO or a DCP; the specific
device for which the scan-out command is in-
tended, as well as the specific type of scan-out
command, is defined by other bits of HA word
1.

Whether the scan-out command is for a DFO
or a DCP is dependent upon bits 19 thru 16 of
HA word 1. A bit configuration of 1001 indi-
cates the command is for a DFO, whereas a bit
configuration of 1100 indicates the command is
for a DCP.

DFO SCAN-OUT COMMANDS
There are two specific scan-out commands
for DFQ’s. The command type is determined
by the configuration of bits 4 and 5 of HA
word 1 as follows:
a. Bit 4 = 0, bit 5
b. Bit 4 = 1, bit 5
Request

1: Clear the Stack
0: Store Control Word

The Clear the Stack Command is used to
erase the DFO queuer stack and to reset any
DFO error flip-flop previously set. The unit
number of a Disk File Eleetronies Unit
(DFEU) is contained in bits 8 thru 15 of HA
word 1. This unit number is used with bit 7
(the exchange select bit) to define either the
DFO with which the DFEU is directly con-
nected or the DFO with which the DFEU is in-
directly connected. HA word 2 is not used for
the Clear the Stack command.

The Store Control Word Request command is
used to request storage of a control word in
the DFO queuer stack. The DFO is defined by
bit 7 and bits 8 thru 15 of HA word 1, as de-
scribed for the Clear the Stack command. A
fetch of HA word 2 is required to implement
this command. Bits 28 thru 47 of HA word 2

WORD 1 FORMAT

WORD 2 FORMAT

P L P
a|TAG|2 HOME A
R K CODE A
51 50 4847 43 4039 35 2827 23 19 47
ILLEGAL 0000
START I/0 0001 UNIT DESIG
SET CHANNEL BUSY oo10|o0 CH, NO.
RELEASE CHANNEL 00101 CH, NO,
RESET CHANNEL BUSY oo11|o0 CH. NO.
RESERVE CHANNEL 00111 CH. NC.
LOAD H. A, 0100 HOME ADDRESS
LOAD U, T. 0101 UNIT TABLE ADDRESS
LOAD Q. H. 0110 QUEUE HEAD TABLE ADDRESS
LOADS. Q. 0111 STATUS QUEUE HEADER ADDRESS
43 40 19 16 15 876543 1
SCAN OUT DFO - CLEAR STACK 1000 1001} UNITNO. Pl 10 4
SCAN OUT DFO -STORE CW REQST. 1001 UNIT NO. P 01 IOCB ADDRESS DISK ADDRESS
SCAN OUT DCP-INITIALIZE 1000 1100 000 %%P l INSTRUCTION BASE ADDRESS
DCP 19
SCAN OUT DCP-HALT 1100 010 |wo.
RE
SCAN OUT DCP-SET ATTENTION 1100 100 O 47 40 7
SCAN IN DFO-QUEUED CW 1001 1001| UNITNO Pl 01 10CB ADDRESS
SCAN IN DFO-TOP OF STACK 1001; UNITNC., P{ 10 3 fOCB ADDRESS
SCAN IN DFO-REPORT 1001 11 v PR2 |V \v;
47 37 32
43 4039 36 27 23 19
SYNCHRONOUS 1/0 1010 I CH,. NO'I 10CB ADDRESS
INTERROGATE PERIPHERAL STATUS {101 1 l N I ! ! [STATUS BITS
INHIBIT 1OM 1100 29 47 32
ACTIVATE |OM 1101
LOAD DFO FLAGS 1110]|FLAGS
JLLEGAL 1111

$ SENT TO IOM

RECEIVED FROM IOM

|

Figure IV-1-6. Home Address Commands

memory, and bits 0 thru 25 contain the disk
address to be used.

DCP SCAN-OUT COMMANDS

There are three specific scan-out commands
for the DCP; the command type is determined
by bits 5, 6, and 7 of HA word 1 as follows:

a. Bits 5, 6, and 7 = 0: Initialize

b. Bits 5 = 0, bit 6 = 1, bit 7 = 0: Halt

c. Bits 5 and 6 = 0, bit 7 = 1: Set Attention

The DCP for which the command is intended
is indicated by a DCP number contained in
bits 1 thru 3 of HA word 1.

The Initialize command requires access by
the IOM of HA word 2, which contains an in-
struction base address (bits 0 thru 19). HA
word 2 is not used for the Halt and Set Atten-
tion commands.

The Initialize and Halt commands cause
psuedo fault interrupts to occur within the
DCP. In the case of the Initialize command,
the interrupt causes the 20-bit instruction
base address to be loaded into the DCP
scratch-pad memory. The interrupt generated
by the Halt command stops DCP operations. In
either case, stop actions which would normally
occur within the DCP due to fault interrupt
occurrence are inhibited.

The Set Attention command is used to notify
the DCP that attention to the B 7700 system is
required.

DFO SCAN-IN COMMANDS (HOME CODE 1001)

Home code 1001 specifies that the command
to be performed is one of three DFO scan-in
commands. The specific command is defined by
the configuration of bits 4 and 5 of HA word
1 as follows:

a. Bit4 = 1, bit 5 = 0: Queued Control Word

b. Bit 4 = 0, bit 5 = 1: Top of Stack

c. Bit 4 = 1, bit 5 = 1: Report

The desired DFO is addressed by use of a
DFEU number and exchange-select bit as in
DFO scan-out commands. This information
however, is not used for the Report commands.

HA word 2 is not accessed to further define
command parameters. However, it is later
used for storage of the scan-in word received
via the scan information lines, and is the
mechanism by means of which the CPM is no-
tified of the location and status of the scan
data.

The Queued Control Word command is used
to request an optimized control word from the
queuer stack of the DFO. The Top of Stack
command is used to request DFO transmission
of the control word located at the top of the
DFO queuer stack.

The report command is used to request a re-
port from the DFO, which defines the DFEU’s
connected to all DFO primary and secondary
parts. The report is stored in HA word 2. Four
fields in the report stored in HA word 2 are
used to define the DFEU’s which are con-
nected to the four DFO ports (two primary and
two secondary). Each field consists of (1) a bit
(valid) which indicates whether an EU/DFO
bus is connected to the port, and therefore
whether the field is valid, and (2) four bits
which represent the most significant bits of
the unit number of the lowest-numbered
DFEU connected to the port. A maximum of
40 DFEU’s may be connected to a DFO (20 di-
rect and 20 indirect). Since the DFO provides
four ports, a maximum of 10 DFEU’s are con-
nected to a port, and the four bits are suffi-
cient to define thern.

The report returned and stored in HA word
2 also contains information which defines the
capacity of the DFO queuer stack. The infor-
mation is reported in bits 22 thru 27 of HA
word 2.

SYNCHRONOUS 1/0 COMMAND (HOME CODE
1010)

The Synchronous I/O command provides a
means of servicing a single job request during
initialization. Only HA word 1 of the job map,
which contains the IOCB base address (bits 0
thru 19), is accessed; no queue mechanisms are
used. When the single job request is termi-
nated, the result descriptor information is
stored in HA word 5, and a channel interrupt
is sent to the CPM.

INTERROGATE PERIPHERAL STATUS
COMMAND (HOME CODE 1011)

The Interrogate Peripheral Status command
is used to determine the ready status of all de-
vices assigned to a particular status vector.
The status vector to be interrogated is indi-
cated by bits 9 thru 12 of HA word 1.

HA word 2 is not accessed for command de-
termination, but is later used for storage of
the returned status information. The status
information, which is returned in bits 1 thru
32 of HA word 2, provides indication of the
ready status of up to 32 devices on a vector.
Bit 0 of HA word 2 (ATTN) notifies the CPM
that the status word has been returned.

INHIBIT IOM COMMAND (HOME CODE 1100)

The Inhibit IOM command is used to inhibit
all automatic IOM functions, such as data-
path management, DFO scan-in and scan-out
functions, chaining of linked and side-linked

job requests and ringwalk. If linked job re-
quests for ringwalk devices are being serviced
when the command is received, chaining stops
after the IOCBs in progress on each channel
are completed.

The content of HA word 1 consists only of
the home code; HA word 2 is not accessed.

ACTIVATE IOM COMMAND (HOME CODE 1101)

The Activate IOM command is used to re-
store automatic functions of the IOM after the
Inhibit TOM command has been given. The
command consists only of the home code in HA
word 1; HA word 2 is not used.

LOAD DFO FLAGS COMMAND (HOME CODE
1110)

The Load DFO Flags command is used to
mask out one or more DFO’s connected to an
IOM. The HA word in which the Load DFO
Flags command is received contains four flag
bits, one for each DFO which may be con-
nected to an IOM. These bits (36 thru 39) are
referred to as the DFO ON/OFF flags for DFO
numbers 0 thru 3, respectively. When an OFF
flag (0) is detected, scan-in and scan-out
operations with the associated DFO are inhi-
bited.

AUTOMATIC SERVICE OF DISK JOBS FOR
UNITS UNDER DFO CONTROL

In B 7700 disk file subsystems where the
disk jobs are not optimized, the service of mul-
tiple job requests for disk units on a common
exchange involves an inherent delay between
service of each job request. This delay is par-
tially due to the manner in which the jobs
must be linked under the queue of IOCB’s for
each Disk File Electronics Unit (EU); that is,
without regard to the relationship of the disk
starting address specified by each job request
and the current disk position (relative to the
head), since the current disk position is un-
known.

In B 7700 disk file subsystems where Disk
File Optimizers are used, the inherent delay
between the service of multiple job requests is
reduced. The job requests are linked under the
queues of IOCB’s for the DFOQ’s, rather than
under the queues of IJCB’s for the EU’s as in
a non-optimized system. Upon receipt of a
Start I/O HA command, the UT word is
fetched. If the DFO bit is set, the job requests
are automatically scanned out to the DFO job
stack when possible. The DFO’s constantly
monitor the disk addresses specified by the job
requests in the stack and compare them with
the current disk position relative to the head.
This information is used to maintain a job-
stack pointer which indicates the current opti-
mum job request relative to disk/head position.
This current optimum job request is referred
to as a queued contrcl word.

The DFO’s communicate with the IOM via a
common scan bus and individual status lines.
The status lines transfer information regard-
ing the capability of the individual DFOQO’s to
receive job requests from the IOM over the
scan bus. In addition, the status lines transfer
levels which indicate the availability of
queued control words which require service.
The SCI section of the IOM scans these status
lines to determine whether queued control
words are available from any DFO. If the sta-
tus lines of any DFO indicate the availability
of queued control words, the SCI section of the
IOM determines whether a disk channel is
available on the exchange to which the DFO is
connected. If so, a scan address word is for-
matted by the Xlator and SCI sections of the
IOM, and is then sent over the scan bus to all
DFO’s. The contents of the scan address word
sent over the scan bus identify the exchange
and the DFO on that exchange which has indi-
cated availability of queued control words. The
scan address word on the scan bus is recog-
nized only by the identified DFO, and there-
fore is, in essence, an acknowledge to that
DFO.

In response to the scan address word re-
ceived, the identified DFO transfers a scan in-
formation word over the scan bus to the IOM.
This word contains a complete memory link
address, which is used by the IOM to further
access the IOM job map for the identified job.
The map access performed provides informa-
tion which identifies the EU which is to con-
trol the disk job, whether that EU is available,
and whether the previously-available disk
channel is still available. If all conditions are
met, the job is initiated and data are trans-
ferred between the DFI section of the IOM
and the specified EU. Upon completion of the
data transfer, the disk job is terminated in the
normal manner. If the identified EU is not
available or if the disk channel is not avail-
able, the disk job is relinked under the queue
of IOCB’s for the DFOQ. It is then later trans-
ferred again to that DFO for reoptimizing and
another attempt at job initialization.

AUTOMATIC DISK-PACK OPERATION

The IOM has provisions to automatically re-
initiate a type 225 Disk Pack Unit after the
unit has completed a seek operation. This type
of unit, when issued a conditional I/O com-
mand requiring head positioning (seek), must
be issued the same command after the seek
has been completed in order to accomplish
data transfer. The IOM performs this function
by examining all device result descriptors re-
ceived from Disk Pack units.

4-15

DATA TRANSLATION

The PCI section of the IOM has the
capability of translating data from one repre-
sentation code to another during an I/O
operation. The data types actually encoun-
tered are device dependent, and the transla-
tion to be performed (if any) is determined for
each individual job request by standard con-
trol bits in the IOCW. The IOCW bits used to
specify code translations are:

Bit 46 - ASCII on for any translation having
ASCII input or output.

Bit 44 - READ - (READ = 1, WRITE = 0)

Bit 42 - TRANSLATE

Bit 41 - FRAME LENGTH (8 bit characters
= 1, 6 bit characters = 0)

All possible combinations of these code bits
are listed in detail in table IV-1-4 and the spe-
cific translation codes used by software for
each peripheral devices are given in table IV-
1-5.

EBCDIC-BCL EXCEPTIONS

Bi-directional translation of corresponding
EBCDIC graphies to/from corresponding BCL
graphics are provided with the following ex-

ceptions:
a. EBCDIC to BCL (output translator)
EBCDIC BCL
PZ +
MZ x (times)
Corresponding Corresponding graphic
graphics
Non-corresponding (See Note)
graphics
NOTE:

The following graphics are printed depend-
ent upon whether the printer is equipped for
EBCDIC or BCL:

0111 11C1 0101 0110 1101 0100 1111

!

{Vertical bar)

-

EBCDIC Printer (Apostrophe) (Logical not) (Underscore)

BCL Printer > >
= -4 v —_

b. BCL to EBCDIC translator (input trans-
lator)

BCL EBCDIC
X (times) Mz
Corresponding Corresponding
graphics graphics

IOM-GENERATED INTERRUPTS

The IOM generates the following two inter-
rupts and sends them over individual lines to
each central processor:

1. Channel Interrupt

2. IOM Error Interrupt

An IOM interrupts exactly one processor;
the CPM to be interrupted is determined by
the CPM field (bits 44-42) of SQH.

There are three conditions under which the
IOM generates an interrupt to a CPM:

a. IO Complete — On job request termination
a channel interrupt is generated when bit 40
of the IOCB NL word is set or when bit 40 of
the Status Queue Header is set. These bits are
set by software; bit 40 in SQH is reset by the
IOM after an interrupt is generated. Unless
requested by software, an interrupt is not set
for “exception conditions” (peripheral parity
error, end of tape, ete.). The only action taken
for an ‘“exception condition” is that the next
request job, if there is more than one request
job queued, is not started and bit 0 of the UT
word is set.

Table IV-1-4. General Translation Specification Codes

Translation

R T FL A

44 42 41 46

0 0 0 0 Write 6-bit bytes with no translation

0 0 0 1 (Illegal Code)

0 0 1 0 Write 8-bit bytes with no translation

0 0 1 1 Write EBCDIC from ASCII

0 1 0 0 Write BCL External from BCL Internal
0 1 0 1 Write BCL External from ASCII

0 1 1 0 Write BCL External from EBCDIC

0 1 1 1 Write ASCII from EBCDIC

1 0 0 0 Read 6-bit bytes with no translation

1 0 0 1 (Illegal Code)

1 0 1 0 Read 8-bit bytes with no translation

1 0 1 1 Read EBCDIC into ASCII

1 1 0 0 Read BCL External into BCL Internal
1 1 0 1 Read BCL External into ASCII (See Note 1)
1 1 1 0 Read BCL External into EBCDIC

1 1 1 1 Read ASCII into EBCDIC
Note 1:

In these combinations the frame length bit should be “1”. However, due to encoding considerations, it is necessary
to use this code and alter the FL decode to cover these cases.

4-16

b. Status Changes - When the “inquiry re-
quest” line for a Single Line Control device
changes from “off” to “on” state, or when a
DCP requests CPM attention, the IOM sets the
proper bit in its status change vector (status
vector 8). If this is the first such change since
the vector was last interrogated by software,
the IOM sets bit 45 in SQH to request soft-

ware to read the status change vector and
generates a channel interrupt. (Bit 45 in SQH
is reset by software.)

c. IOM Errors - An IOM error interrupt is
generated for any error not related to a specif-
ic job request (for example, a memory parity
error on the Home Address word). The gener-
ated fail result descriptor is placed in a

dummy IOCB from unit 0.

Table IV-1-5. Translation Codes by Device

CODE SPECIFIER
Device

Card Reader

Card Punch

Line Printer

Train Printer

© HO HHFHROOD HHOOOOOOOOOOD HiEHKMKMKEMEMH OCO00COOD COOCO COOCOOD H ik M- g]

©C OO0 OHOOHDC HOFRFHFEHOOMHKFHMHOD HEHMHMHMOOO HHEHMHEHOOD® IHMHMO O MHMROC r—u—u—aooos—l
H oHE R R OOFHROOOHHHROOHD RHROOKHKRD HHOOHKHSD HOOO HHOOHO p-aoo»-»-‘oﬂ"'_"
[=

P.T. Reader
0
1
0
1
0
1
P.T. Punch 0
0
0
1
1]
1
1
7 TR. TAPE 0
0
1
0
0
0
9 Tr. Tape 0
1
1
0
1
1
SLC 0
0
Disk Pack anc Disk 0
(See Note 1)
0 1 0

Note 1:

Description

Read binary data (6-bit to 6-bit)

Read EBCDIC data (8-bit to 8-bit)
Read EBCDIC into ASCII

Read BCL Extetnal into BCL Internal
Read BCL External into ASCII

Read BCL External into EBCDIC

Punch binary (6-bit to 6-bit)

Punch EBCDIC (8-bit to 8-bit)

Punch BCL External from BCL Internal
Punch BCL External from ASCII

Punch BCL External from EBCDIC
Punch EBCDIC from ASCII

Write BCL External (6-bit to 6-bit)
Write BCL External from BCL Internal
Write BCL External from ASCII

Write BCL External from EBCDIC

Write with no translation (6-bit to 6-bit)
Write with no translation (8-bit to 8-bit)
Write EBCDIC from ASCII

Write BCL External from BCL Internal
Write BCL External from ASCII

Write BCL External from EBCDIC
Write ASCII from EBCDIC

Read binary (6-bit to 6-bit)

Read EBCDIC or Read ASCM (8-bit to 8-bit)

Read EBCDIC into ASCII

Read BCL External into BCL Internal
Read BCL External into ASCII

Read BCL External into EBCDIC
Read ASCII into EBCDIC

Punch binary (6-bit to 6-bit)

Punch EBCDIC or Punch ASCII (8-bit to 8-bit)

Punch BCL External from BCL Internal
Punch BCL External from ASCII
Punch BCL External from EBCDIC
Punch ASCII from EBCDIC

Punch EBCDIC from ASCII

Write with no translation (6-bit to 6-bit)
Write BCL External from BCL Internal
Write BCL External from ASCII

Write BCL External from EBCDIC
Read with no translation (6-bit to 6-bit)
Read BCL External into BCL Internal

Write with no translation (8-bit to 8-bit)
Write ASCII from EBCDIC

Write EBCDIC from ASCII

Read with no translation (8-bit to 8-bit)
Read EBCDIC into ASCII

Read ASCII into EBCDIC

Write EBCDIC or Write ASCII (8-bit to 8-bit)
Read EBCDIC or Read ASCII (8-bit to 8-bit)

Write with no translation (8-bit to 8-bit)

Read with no translation (8-bit to 8-bit)

The DFI section of the IOM has no hardware translation capabilities.

SECTION 2

FUNCTIONAL OPERATION OF INPUT/OUTPUT MODULE
SUBSECTIONS

GENERAL

This section contains a brief description of
the operation of each of the IOM subsections
described in section 1 of this chapter. For the
formats of the words discussed, refer to the
appendix of IOM word formats in this manual.

FUNCTIONAL OPERATION OF TRANSLATOR

The translator (figure IV-2-1) is a special-
purpose processor capable of performing spe-
cific hardwired microsequences. It is the mech-
anism of the IOM that services I/O requests,
generates the request descriptors required to
initiate peripheral devices, and reports job ter-
mination and failure status conditions to the
Central Processor. The operation of the trans-
lator is keyed to respond to certain declared
flag conditions.

JOB SERVICE INITIATION

In response to an interrupt from the Central
Processor, the IOM unlock-fetches the word in
memory referenced by the 20-bit Home Ad-
dress stored in the HA location of the lower
stack. The HA-word control fields define the
control codes and function details for the re-
quest as described in Section 1 of this chapter.
When the Start I/O command is decoded, the
Unit Designate (U