S -:,.;_*NGUAGE REFERENCE MANUJ"tL

(REI.ATIVE TO MARK II 6 llEl.EkSEl

Dorhn

saoovss-n 6 |

foe

B swa / 3 T’““

LANGUAGE REFERENCE MANUAL iy

S (nsunvs TO MARK 1.6 RELEASE)

 sme0 -

~ Prinfed in US. America . 75 . 50009536

THIS MANUAL CONTAINS A TOTAL OF 288 PAGES, AS LISTED BELOW:

ii blank
iti thru vil

viii blank . .
1-1 thru 1-10 . .
2-1 thru 2-3

2-4 blank . . .
1 thru 3-16 .. .
1 thru 4-2 . .
1 thru 5-187
188 blank . .

3
A
5
5~

Issue

Original

Original

Original
0r|gipal;
Original”

Original
Original
Original
Original
Original
Original
Original
Original

RTINS

'Page.No.
6-1 thru 6-19 . . .

6~20 blank

A-1 thru A-4 ., . .
B-1. thru B=§ . . .

'B-6 blank

C-1 thru €-2 . . .
D=1 thru D-7
D-8 blank

E-1 thru E-§ . . .

E-6 blank
index-1 thru Index-ll

" Index-12 blank . .

“lssue

Original
Original
Original
Original

- Original

Original
Original
Originatl
Original
Original
Original
Original .

COPYRIGHT (®) 1970, 1971, 1975 BURROUGHS CORPORATION

Burroughs believes that the information described in this
manual is accurate and- reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of

- the use of this material. The information contained herein is

subject to charge. Revisions may be issued to advise of such

‘changes and/or addmons

5000953

«

(«

 PREFACE

This document provides refercnce data for the experienced progammer who is familiar with the B 6700/ ~ -
B 7700 Network Definition Language (NDL) and the B 6700/B 7700 Data Communications System

This reference manual is divided into the following six chapters and ﬂve appendlxes

~® Chapter 1, INTRODUCTION, descnbes where the NDL Manual fits into the existing Data
Commumcatrons System documentation, and deﬁnes the scope of NDL.

® Chapter 2, NDL SYNTAX CONVENTIONS, explams the syntactical notation used in deﬁmng, the
Network Definition Language.

e Chapter 3, LANGUAGE COMPONENTS, describes the elements that form the most prnmltrve
structures of the language.

@ Chaptcer 4, SOURCE PROGRAM STRUCTURE, describes the basic structure of an NDL program.
® Chapter 5, DEFINITIONS, describes the various definitions that make up an NDL program.
o (‘hapter 6, VAR!ABLES describes the program variables available to the NDL programmer.

® Appendix A, RESERVED WORDS, is a list of “words” that’ have been set asrde for specific
~ purposes within the Network Definition Language. .

© Appendix B, TRANSMISSION CODES provrdes useful data transmlssron code tables

L] Appendrx C, SOURCE INPUT FORMAT AND CODING FORM descnbes the input format and
coding form to be used by the programmer

® Appendix D, COMPILE-TIME OPTIONS describes the comprler optrons avarlable to the user.

. ® Appendix E, COMPILER SOURCE AND OBJECT FILES describes how compller commumcatlon
is handled through various input and output files.

The information in the following documents pertams to and supplements the matenal presented in this
-reference manual _

Title . ‘ ‘ : - Form No

‘B 6700/B 7700 Data ‘Communications Functional Descrrptron : o 5000060
B 6700/B 7700 DCALGOL Reference Manual : , 5000052
B 6700 Input/Output Subsystem Informatlon Manual ' 'v . ' 5000185

ifii -

(¢

Chapter

_ LANGUAGE COMPONENTS

‘Language Components AT S e e e e T e e

NDL Program Unit .
' DEFINITIONS

" TABLE OF CONTENTS

'PREFACE IR U TP VR SPTURE USSP §

INTRODUCTION @ven... S TS PURRUUPP Y PORUEERS B

General ... e e e e e e -1

Scopeof NDL S R T UL DRI SRR DRSPS B
Useof NDL O A A9 R (R BN

Message Control System (MCS) e T R S S A }=5 o

Data Comm Controller (DC(‘) e e e T T
NDL Compiler ..ot e P SRS & I

DCP Interaction With the Mam System O P B P L A
DCP Tables e T

NDLSYNTAXCONVENTIONS e e AR e T

Syntax Conventlons e IR T R e _
Key Words T S U NS A ST ST PRPE S 2-2
Syntactic Variables . . . ' T CE N S A e SRR o
Construct Termmator e e e A B T P S L)

~ Identifier P D DU SR SRS
Integer. S ' CeaTad R i .3
Label ceesen .,......k.'.'.:...;..,..";._.;,;».~'.“...._-....>.‘,.:;.".’v.':.b. ;".;u.'.....'...:.._".'.._.. 3-9

“'Remark - R e e e 310

3

CCRATACKET o .v vt it e e e e D i el P o
: 3
3

o o o 6 5 o 8 s s e s sse 0 i s e e s e e s e e e s ee s 80 00 0 e e 0 s 80

CUSPHCE. e e e e e e 31
~ String e 3512
. System Identifier P L PO T

TALLY Number

"Time " A TN A e i e, 315
o Toggle Number P R T R RERRLNP 3-16

SOURCE PROGRAM STRUCT URE ,

TS T T T T R R R e I I SR L T

CONSTANT DEFINITION
CONTROL DEFINITION
Assignment Statement
BREAKStatement B S LTI SR I SR R
CODE Statement -: . A , ‘ e
 Compound StAtEMENt vsu s vre s et et e
. CONTINUE Statement S S IS SO ORI SO
 DELAY SEatement .,o..uuyissseveiinisaidenaei il
ERROR Switch Statement PR SN ERA A S Ferde

-»n...‘-h-o-....o.-:--’:..v.vc-..-o..'..t;.‘-,.a'-..

T T T S T R O T R I T B]

TABLE OF CONTENTS (Cont) ‘
Chapter Page
5 DEFINITIONS (Cont)
FINISH Statement P P N S A 5-16
FORK Statement S Y 5-17
GO TO Statement R S e S 5-18
IDLE Statement e i et e e 5-20
IF Statement e e e 5-21
INCREMENT Statement et e e 5-23
 INITIALIZE Statement e PR 5-24
- INITIATE Statement PN [T S 5--25
PAUSE Statement P TN et e e e 5-28
RECEIVE Statement e asheeee it et eE ey 5-29°
SHIFT Statement TN A S 5-39 .
SUM Statement P e e ba g T T 5-40
TRANSMIT Statement e T S T 5-42
WAIT Statement o it ie et v e nnaneenannin, 5-44
DCP DEFINITION e eeeea e SN I S - L 3
- DCP EXCHANGE Statement -:........ Ciereiraeduan ee e e Yoo, S5-46
- DCP MEMORY Size Statement R T] B
DCPTERMINALStatement O R
FILEDEFINITION eeideades . 5256
"FILE FAMILY Statement R R ST P, |
LINE DEFINITION e P L e et eieeaes.. 558
LINE ADAPTER Class Statement O 1L
LINE ADDRESS Statement S . &
LINE ANSWER Statement ~............ PR e b iaanenad P Li.. 5-63
LINE DEFAULT Statement T
'LINE ENDOFNUMBER Statement — ...:...........c0etsue.n. e eveeseee.. 5-65-
LINE MAXSTATIONS Statementc0cviiieivinevennneenin. 5-66
LINE MODEM Statement:c.ciinieeunennnennn. e, 567 .
LINE PHONE Statement. .. . e i et el e PR eereie.. 568
- LINE'STATION Statement P e reeenan eievi.. 5-69
 LINE TYPE Statement P e it eieieaie.. 5270
MCS DEFINITION S e, e ieediieei.. 5273
MODEMDEFINITION e B AU Ceieisieaes 5-74
" MODEMADAPTERStatement eee b apeed s aes R S . e £
MODEM LOSSOFCARRIER Statement it e D i
MODEM NOISEDELAY- Statement P e [
'MODEM TRANSMITDELAY Statement P e eeesiseae.. 5-80
REQUEST DEFINITION e, . 5-81
Assignment Statement - e e e iiese e, 583
~ BACKSPACE Statement e i e e, 5-85
- BREAK Statement e e eana e et 586
. CODE Statement - P S0 L PP e A
- Compound Statement .~0.eiiheeie i iianeiaaean. 5—88
- CONTINUE Statement e, D i iee.. 5-89

DELAY Statement O P . . Y

| TABLE OF CONTENTS (Cont)
Chapter o ’ | Page

5 DEFINITIONS (Cont)

FETCH Statement e 504

FINISH Statement i, 5-95
FORK Statement B R A . 5-96
GETSPACE Statement - R B S S O S ... 5-97
GOTO Statement 0. iviiiiiiiiiiiiaiiiie... 508
IF Statement i e ean e P S S eeeee. 52100
INCREMENT Statement R O RSP e e e eeeieeeael. 52102
INITIALIZE Statement e e heeen. 5104
INITIATE Statement e EEERTERY e, et it 5106
PAUSE Statement T see. 5108 .
- RECEIVE Statement e Vil e e e 5100
SHIFT Statement G B 5121
STORE Statement P 5122
SUM Statement F e A PP I e 52124
TERMINATE Statement B iee e SRR DU Ve 5-126
TRANSMIT Statement - I I e 8130
WAIT Statement e e R - 5-133
STATION DEFINITION | e R e 5-134
STATION ADAPTER Statement e e P e 52136
- STATION ADDRESS Statement ~ L0 5138
STATION CONTROL Character Statement ceeerieeiaadee 52139
STATION DEFAULT Statementcc0iunn.. e 5-140
STATION ENABLEINPUT Statement eeeeeee 5141
“ STATION FREQUENCY Statement e eyt . 5-142
STATION INITIALIZE Statement e SPP e e e 5-143
"~ STATION LOGICALACK Statement RS IRVETRER e aaeae e 5-144
STATION MCS Statement P R, eaiaeias 5-145
STATION MODEM Statementc...: S T 5-146
STATION MYUSE Statement Ve e e e e e 52147
STATION PAGE Statement P AP e e 52148
" STATION PHONE Statement S Seerereaned ey e e 5149
- STATION RETRY Statement e i il 52150
STATIONTERMINALTYpe Statement e N IR T S B
STATION WIDTH Statement e e e aee s E e 52152
‘TERMINAL DEFINITION ittt 5-153
TERMINAL ADAPTER Statement e e e e et e e 5 —156
TERMINAL ADDRESS Size Statement e s 5187
TERMINAL BACKSPACE Character Statement e S 5158
TERMINAL BUFFER Size Statement et 5159
TERMINAL CARRIAGE Character Statement e il s 52160
TERMINAL CLEAR Character Statement R I PR ceeeese 52161
TERMINAL CODE Statement e O 5162
- TERMINAL CONTROL Statement i e PR RN 5-163
TERMINAL DEFAULT Statement Y P
TERMINAL DUPLEX Statement e e ce T "".° e e s . '5-166
TERMINAL END Character Statement e 5167
'TERMINAL HOME Character Statement =u...eeuneensait e oo, 5168

TABLE OF CONTENTS (Cont)
Chnpter
5 DEFINITIONS (Cont)

TERMINAL Ililegal Character Staten1ent eeaedae Ceiven i e

TERMINAL INHIBITSYNC Statement -coununninioinnnnnn.

TERMINAL Inter-Character Delay Statement A
-TERMINAL LINEDELETE Character Statement -~ een i isndieeans

TERMINAL LINEFEED Character Statement S Gaeesens P
TERMINAL MAXINPUT Statement e e Veeeis

TERMINAL PAGE Statement
TERMINAL PARITY Statement
TERMINAL REQUEST Statement ~
TERMINAL SCREEN Statement »

TERMINAL TIMEOUT Statement - R R VST

TERMINAL TRANSMISSION Number Length Statement T, .

TERMINAL TURNAROUND Statement ~ T
TERMINAL WIDTH Statement iivnnnnnnns efesnevees.

TERMINAL WRU Character Statement R
TRANSLATETABLE DEFINITION ~ feeeraeesinaad

6 VARIABLES oo.cooiiisiiniii e

GENETAl ot i e e e e

Function of Variables T P
Scope of Variables i iev e e,

Description of Variables A e e

Appendix

Compile-Time Options o iiiiiineeninidddeeeininnnnennn
Compller Source and Object Flles b e eeseaes Ceesses e

moaw»

Index e S e e i

LIST OF ILLUSTRATIONS

‘ Figure ' - - : Tltle

N bt et et s
|
H WK -

NDL Sphere of Influence R

—1 Adapter Clusters Exchange e e e e e e
D-1 Option Control Card "......... e R A
E-1 NDL Compilation System i diiii i

S Reserved WOrds ...t et e e e
Transmission Codes el R P
Source Input Format and Codmg Form. - e e e,

B 6700/B 7700 Data Communications System Documentatxon Hlerarchy ced. -
Network Characteristics:ttt iveineeennnan T, e '

Transfer of Control Within the DCP. T

5
s
g

U U
O\ D W —

[« T R, RV, RV RV, N,

|

e3]

—

" LIST OF TABLES ~

- Title S , ~ Page
Relational Operatorsttt e et . 522
Allowable Combinations for {receive statement) 5-38
Available Linc Adapters R S PP, 5--61
Table of {communication type numberds e P 5-77
Relational Operators e PP R e 5-101
Allowable Combinations for {receive statement} S, S 5-118
Table of Variables e e e e e Wi - 6-4
NDL Compiler Files e e e eiee e E—-4

vii/viii

-

1. INTRODUCTION

GENERAL

This document is one of several documents concerning the B 6700/B 7700 Data Communications System.
The hierarchy of these documents is illustrated in figure 1-1. Note that information contained in the

B 6700/B 7700 Data Communications Functional Description, form ne. 5000060, and B 6700 Input/
Output Subsystem Information Manual, form no. 85, is prerequisite to this document, '

SCOPE OF NDL

The Network Definition Language (NDL) source program describes a dgta cbmmunications network physi-

_cally, logically, and functionally. Physical components of a data communications network include the hard-.

ware specifications and capabilities of the various elements which compr‘{se the network. The logical charac-
teristics of a network are the associations among the various components of a data communications subsystemn
(user programs, Message. Control Systems, etc.), application-oriented charakteristics (page size and width,
special-purpose characters, etc.), and the symbolic names used to reference physical elements within the -
network. Figure 1-2 illustrates the physical and logical characteristics in thehr relation to the network ele- -
ments. Figure 1-3 illustrates the sphere of influence of a NDL source programon the logical and physical
components of a Data Communications System. The area enclosed by the broken line is the “global sphere
of influence.” The shaded area indicates the “local sphere of influence.” The Sx{ostindicate the flow of
information. - R o N B

NDL also specifies the functional behavior of the network or the way in which eac)k data communications

line is to be controlled. These specifications consist of individual routines, allowing\the NDL programmer to
implement the protocol required to meet the physical characteristics and applicationy of the types of term-
inals that have been defined. The routines are compiled into a set of instructions whith the Data Communica-
tions Processor (DCP) executes to perform the functions described by the NDL program. ‘

The NDL sourc’eprogrém is transformed into two files ‘contaiﬁing’ the information requited to operate the
defined network: - ' , S . ’ S

i}

a. The Network IhformatiOn'File (NIF), containing the :ldgical and physical specjﬁcaﬁons o_f the network.

b. The DCP Code File (DCPCODE), containing the Data Communication Processor (DCP) hardware
instructions for operating_t_he network . AR TR o IENE - ‘

USE OF NDL

Once the data communications hardware has been installed on'a B 6700/B 7700 system, several software
systems are required to generate and operate the data communications network. These packages, illustrated
in figure 1-3, consist of one or more Message Control Systems (MCS), the Data Comm Controller (DCC), and
the NDL compiler. The purpose, function, and use of each of these software items are described in the follow-
ing paragraphs. : ot S A '

- AyoIeIsl} uolE) AW WeSAS w:oﬁauw.:sEEoU eieq oo,n L 9/00L9 g "1-] 2InSig

(T00-185000S)
AL
HONTYHATE
- dANVD
- (S190008) - (Z500008)
- TVONVI ~ IVONVA
 SNOILVYAdO - IONTIAATA
 ANVD 1091v0d
(6120005) (00£000s) || (81£000S) (L6L000S) d (£56000S) - (6¥90005)
TVONVI TVANVIN IVANVIN © 7IVANVIH TVANVI IVOANVIN
NOLLVWO:ANI ||NOLLVWOANI|| NOILYWOANI - || =~ JFONTUHATY | IONTTIAATY GONTYAATT |
{3AIND S.9ISN NSOW|| WALSAS AMd |{FOVNONVTIANVD| [yasnaivin-vivayasnlf 1aNn §|aovnoNvi 1091V
1(900-1850005) (¥8EFSOI) : | _ ,
Qv TVIINVI) ,_.<:z<%mw¢m.owrzom§. :
JONTIAATYH | BoNTadamd | | T e
dda doda , "
~ (090000S)
NOLLJRIOSAd TVNOLLONNA
SNOILVOINNWWOD VLVd

1-2

Logical

Network Physical -
Elements Characteristics Characteristics
DCPs - Memory size - Set of terminals controlled by each DCP
Reconfiguration capabilities o ' ' ‘
, Physical location (address) s v
LINEs Transmission speed , .Statlon ll.ne assignments
Type of line and connection Automatic answer capability
Physical delays N
MODEMs Transmission speed and type Symbolic name
Contmuous vs. controlled carrier .
‘ N ' - ~Symbolic name -
STATIONs R Tcrmmalvcharact'enstws L}(;gmal attnbutcs E A
R ' Assoc;ated Message C‘ontrol Systcm
TERMINALS Transmnssnon code, speed and type : [‘ ransmission numbers R

Panty

Special characters -

Figure 1-2. Network ‘Ch,aracteri‘s't'ii:s '

)

duanjuj jo axoyds TN “€-1 2IndIg

d4G00

daa

SOISNIYLNI
O/

| NVYDOodd

- 10drd0

4
/.

YATIINOD
TGN

T

WVID0ud
J0dNO0S TAN

L\L

CYIL!
NOLLVINHOANI
MAOMLAN

e

Message Control System (MCS)

An MCS is a special purpose DCALGOL program which may be a Burroughs-supplied MCS (SYSTEM/CANDE.,
SYSTEM/RIJE, or SYSTEM/DIAGNOSTICMCS), or a uscr-written program. The primary function of an

MCS is, as its name implies, to control the flow of data communications messages between the terminal and
the main system. Information from the DCP, such as terminal input and status information, is forwarded to
the MCS via the DCC. Messages from the MCS to the DCP, such as terminal output or network changes, are
performed by the MCS invoking an intrinsic function called DCWRITE. This intrinsic, as well as the format

of all MCS and DCP messages, is described in the B 6700/B 7700 DCALGOL. Reference Manual, form no.
5000052, Each station wluch is defined by the NDL source program must have one, and only one, c,ontrol-
ling MCS.

Data Comm Controller (PCC)-

The DCC is the basic interface between the DCP and the main system. It exists as a subset of the basic
B 6700/B 7700 Master Control Program (MCP) and operates as an independent task or stack, onc such task -
for each active DCP.

“Before s defined data communications network may be utilized, the DCPs which corhprise the network must
be initialized. As each DCP is initialized, the portion of the NDL-defmed network which utilizes that DCP
becomes active.

Once initialized, each DCC stack transfers messages between the associa'ted DCP andvthe proper MCS.
NDL Compiler |

Whereas the DCC and an MCS are requuéd to operate a data communications network, the NDL compiler
is used to generate the tables and DCP code which, to a large extent, control the ‘way in which the network
functions.

The NDL source program, then, must supply the NDL compiler with information which will allow the com-
piler to produce the proper NIF and DCPCODE files to operate all of the Data Comm Processors and their
sub-components within the network. (In figure 1-3, the shaded areas indicate the areas of the data communi-
cations subsystem which are influenced by the NDL source program.) Although an NDL program may con-
tain up to 11 discrete sections, it functionally consists of two interdependent pieces of information: the
network description and the DCP programs. :

NETWORK DESCRIPTION

The NDL programmer uses various sections of the NDL source program to describe the lbgical and physical
characteristics of the network. The information supplied in those sections is used, in part, to supply the DCC
with the proper tables and DCP code that are used to operate the network.

The NDL compiler performs consistency checks across the various definitions to ensure that the defined
network is logically structured. For example, a line must not be associated with a particular modem if the
defined speed range and transmission type of the modem do not permit a proper interface to the line. Simil-
arly, a terminal defined to operate in an asynchronous mode must not be assocmted with a line which uses a
synchronous adapter

All of the information supplied by the NDL definitions is recorded within the NIF file. This enables an MCS

or user program to gain access to many of the logical characteristics of the network, as well as permlttmfz
dynamic reconfiguration of the network by an MCS

1-5

These definitions are also used to modify or include special areas of DCP code which are network dependent.
For example, the DCP code for transmitting or receiving characters on a synchronous line is differeut from
such codc for transmitting or receiving on an asynchronous line. In addition, if any dial-out type lines are
defined within the network, extra code must be generated for performing dial-out functions. Thus, the NDL
compiler “tailors™ the resultant DCPCODE file to fit all the requirements of the defined network. :

DCP PROGRAMS

Once a data communications network is logically and physically defined, the functional operation of each
linc and station within the nctwork must be described. These descriptions, called CONTROL definitions

and REQUEST definitions, are individual programs which arc executed by the DCP when required to perform
the necessary line discipline. Each line must have one associated CONTROL definition, and each termmal
may have one or more associated REQUEST definitions.

The CONTROL and REQUEST definitions consist of NDL statements which the compiler transforms into

the DCP instructions to be executed when performing a particular network function. A RECEIVE REQUEST
definition is invoked when input from a terminal is to be processed, and a TRANSMIT REQUEST definition
is executed when output to « terminal has been requested by an MCS or user program. The line CONTROL
definition is utilized to determine when and for which of the stations on the line a REQUEST defmmon is

to be executed.

Since an NDL source program must handle many lines, the DCP must share its processing capabilities among
the lines it services. Due to the fact that the data cominunications subsystem operates in a real-time environ-
ment, few nctwork functions, if any, require the dedicated use of the DCP for an extended length of time.

A RECEIVE REQUEST, for example, usually spends most of the time waiting for a character to be sent from
a terminal. Likewise, 1 TRANSMIT REQUEST cun only operate as fast as the line speed permits. Thus, while
-a REQUEST definition is waiting for an external event, or interrupt, from a line, the DCP is fre¢ to continue
execution of a REQUEST or CONTROL definition for another line.

The allocation of the DCP for the servicing of its many lines is one of the duties of the basic DCP operating
system and the CONTROL definitions. - Figure 1-4 illustrates the means by which the control of the DCP
is transferred between the operating system and the CONTROL and REQUEST definitions.

Line Control

Each CONTROL definition, or “Line Control Procedure,” must perform two functions. First, it must select
which station on the line is to receive attention next, and second, it must decide what particular function is
to be performed for that station. If the function to be performed is an output request, control is transferred
to the TRANSMIT REQUEST for the station. If the function is an mput operation, the station’s RECEIVE
REQUEST is executed. Network functions which do not involve the reception or transmission of messages,
such as status or network changes, are performed by invoking a common subprogram, or macro, within the
DCP operating system itself.

Request Definitions -

For each type of terminal which is capable of output, a TRANSMIT REQUEST must be named within the
terminal definition. Likewisc, if a terminal has input capabilities, a RECEIVE REQUEST must be supplied
and named. Typically, many stations may share the same REQUEST definitions, just as many lines may
utilize the same CONTROL definition. In some cases, more than one set of REQUEST definitions may be
desired, and defined, for a station.

1-6

A . Initiate Request | :
(l)) cp . "DCP Initialization Line - Terminal
perating + - Control Terminate Request Request
System Procedure i . Routine
T
|
|
|
I
DCP - | o
Common : , i
Macros < ' '

Figure 1-4.. Transfer of Control Within the DCP

The functions of a REQUEST definition may be as simple or as complex as the application of the station
dictates. One of the basic design goals of the DCP is to free the main system from the burden of performing
basic terminal receptions and transmissions. However, by the proper application and coding of the CONTROL
and REQUEST statements in NDL, a significant amount of intelligent message processing may be performed
by the DCP, thereby allowing more of the main system’s resources to be free to perform other work,

The NDL programmer must keep in mind, however, that the DCP runs at a finite rate, and that it is
operating in real-time. Thus, if too much time is spent processing a message, other lines may fail to be
serviced quickly enough to avoid transmission errors. Several NDL statements are provided to “break up”
long strings of NDL code to ensure that the DCP may properly service all of its lines.

When a REQUEST dcfinition has terminated the processing of an input or output function. it usually branches
back to the beginning of the CONTROL definition. The CONTROL definition then selects the next station
to be serviced and the process continues.

Thus, the functioning DCP can be visualized as a small multiprogramming system, where each line has its own
program and operating environment and runs asynchronously and independently of the other lines. The
CONTROL definition and its associated REQUEST definitions form the “main program” for each line, and
the common DCP macros are “‘sub-programs.’

DCP lNTERACTION WITH THE MAIN SYSTEM

Although the DCP is a self-contained and asynchronous device with respect to the main system, it is not an
autonomous unit, and requires the active participation of the main system and its resources to-properly func-
tion. In particular, main memory storage space is required to contain tables and messages. In addition, the
DCP requires the allocation of a pool of message areas in main memory for the gathenng of input from term-
inals and reporting of error conditions. :

DCP Tables

The NDL compiler constructs a series of tables which reflect the physical and logical characteristics of the
network as defined by the NDL source program. The DCP uses these tables for the storage of status informa-
tion, and for.determining what types of functions are to be performed for each of the many different lines
and stations which the DCP controls.

The compiler places a disk image of these tables within the DCPCODE file along with the DCP cbde itself.
When the DCP is initialized, the tables are loaded into' main memory by the DCC, which also provides the

1-7

DCP with a reference to the tables. If several DCPs exist which share hardware-cxchanged adaptcer clusters,
two DCPs may utilize the same set of tables if the network description indicates this mode of operation. In .
the casc where a DCP is not “‘exchanged” in this manner, cach DCP uses its own unique set of tables.

Each set of tables can be divided into two sets of information. Each line has a table, and each station has a
table. The DCP uses a ““linc descriptor” to reference each line table. The descriptors for all lines controlled
by the DCP are stored within a vector, which is then indexed by the physical line adapter address. Each line
descriptor contains information concerning the status of the line (not ready, connected, busy, etc.), physical
characteristics of the line (dial-out, switched, etc.), logical characteristics (automatic answer, etc.), and a -
reference to the CONTROL definition which is used for the line. In addition, the line descriptor contams
the memory address of the-actual line table.

Each line table contains additional information describing the logical and physical characteristics of the line.
Much of the information in the line table can be referenced and/or modified directly by the NDL CONTROL
and REQUEST definitions. Other information is reserved for use by the DCP operating system.

Immediately following the line information in the line table is a vector of station descriptors, one such
descriptor for each station which can exist on the line. Similar to the line descriptor, each station descriptor
addresses a table of information for a particular station. The DCP references the proper station tabie by

indexing into the line table by the proper relative station address, or “‘station index,” and using the addressed '

station descriptor to reference the proper station table. When a line CONTROL Procedure “selects” a station
for the purposes of initiating 4 REQUEST definition, it.is actually selecting the proper station table for use.
Just as the line table contains a reference to the proper CONTROL definition to execute, the station table

contains references to the appropriate TRANSMIT and RECEIVE REQUEST definitions. It should now be

apparent that each station assigned to a particular line must utilize the same Line Control Procedure, since -
the stations on the line all share a4 common line descriptor and line table. However, each statlon may have a
different set of REQUEST definitions, since these routines are statlon oriented.

Although each station table is of a fixed size, the line tables will vary in size directly proportional to the
number of stations which can potentially exist on the line. The NDL source program specifically defines
the maximum number of stations for each line,as well as which stations are assigned to what line. Not all
station descriptors may be utilized for a given line, i.e., the number of real stations on a line at any given
moment may be less than the true capacity of the line. A line may be declared with such “holes” when the
NDL program is compiled, or a line may be reconfigured into such a state by an MCS. In some cases, a line
may exist with no stations at all. At no time, however, may more stations be assigned to a line than the max-
imum number defined by the NDL program. Thus, it is the requirement of the DCP operating system and/or
the CONTROL definitions to ensure that a selected station actually exists, or is valid, as defined by the cur-

" rent state of the network. ‘

Just as a line may have no valid stations, it is possible and often desirable to define “spare” stations which
have no line assignment. . Such stations cannot be referenced or utilized by the DCP until they are logically
assigned to a line by a reconfiguration request. Again, any such reconfiguration request will be disallowed
by the DCC if the characteristics of the station conflict with those of the line to which it is being assigned,
or with the stations which already exist on that line. Also, since the size of the line table cannot be altered,
there must exist a ‘“hole” or unused position on the line for the station.

Alternatively, an existing station may be subtracted from a line, thereby leaving a “hole,” and either left
in limbo with no line assignment, or moved to fill an existing “hole” on another line. Thus, stations which -
have special characteristics for a particular application may be logically moved about within the network
while the data communications system is operating and without the further use of the NDL compiler.

DCP MESSAGE MAINTENANCE

With one exception, all functions performed by the DCP are the direct result of a DCP request message being
sent to the DCP, usually by an MCS. In the case of terminal output, for example, a “‘write request” is sent

to the DCP, which then invokes the action described within the request message itself by means of the. appro-.
priate station’s TRANSMIT REQUEST definition. If spontaneous input from a terminal is to be received,
there is normally no MCS request message associated with the input operation. When a station operates in
this mode, the terminal is described as being *“‘cnabled for input,” or simply, “enabled.”

The process of gathering “enabled input messages,” i.e., spontaneous input messages, is controiled by the
CONTROL definition, and, of course, by the RECEIVE REQUEST defined for the terminal. In addition,
the “‘enabled” state of a station is initially defined for each station, and may be dynamically changed by the-
controlling MCS.

When a station is enabled, and the RECEIVE REQUEST is invoked, the DCP must then acquire a message
area in main memory in which to store the received message text. Such an area, which is called an “enable
input space,” is obtained by a DCP macro called GETSPACE. Since the DCP cannot directly participate in
the main system memory management functions, a pool of such “enable input™ spaces is maintained by the
DCC." This pool of messages, sometimes referred to as the “available space pool,” consists of a set of queues,
each of which contains a linked list of available message arcas of the same size. The NDL compiler computes
the size of the enable input space required for each terminai based on the defined WIDTH, MAXINPUT, and
BUFFERSIZE statements within the terminal definition. All terminals of a given size are assigned the use of
the same queue. In order to reduce the number of different queues requlred the NDL compller rounds each
terminal’s input size up to a multiple of 16 words.

The available space areas are used for several purposes other than terminal cnabled input. Error messages
from the DCP and “‘switched line status’ result messages are also spontancous in nature and require an enable
input space. In addition, it is possible for an NDL Request definition to invoke the GETSPACE macro and
simply store the contents of variables in the obtained message space in order to communicate with the con-
trolling MCS. o :

When the DCP 'GET.SPACE macro is invoked, an area which is greater than or equal to the required message
size is delinked from a message queue and assigned to the station. If no suitably sized areas exist within the
space pool, a “no space” condition results, and the RECEIVE REQUEST must abort reception of input.

The number of messages assigned to each queue is mmally defined by the NDL compller By default, two
areas are assigned to each size queue, although the NDL program may spec1fy an altemate allotment ona
terminal by terminal basis. . :

The DCC has the responsibility of maintaining the available space pool so that GETSPACE may always ob-
tain a message area. As each available space area is returned to the DCC by the DCP in the normal course of
completing an input operation, the queue from which the area was obtained is restored so that it contains

the same number of areas as defined by the NDL compiler. Circumstances may arise, however, where all of
the areas within a queue have been exhausted, but none of the areas has yet been returned to the DCC so that
the queue can be replenished. In such an event, the DCP sets a global ““space alarm” flag which is sensed by
the DCC and causes it to immediately examine and replenish all of the available space queues. In addition,
the DCC will then increase the target number of messages in each totally depleted queue, in order to reduce
the possibility of future space alarms. During extended periods of DCP inactivity, the DCC will attempt to
reduce the number of messages in each queue down toward the originally defined target value.

The DCC attempts to maintain the available space pool within the constraints specified by the NDL compiler.
However, some networks may require more than the default number of message areas for some tciminals ,
if too many “no space” conditions occur. In such an event, the NDL program should specify a larger number ,
of message areas for the affected terminals. Since the behavior of a network is difficult to predict under all

circumstances, the NDL programmer will have to directly observe the effects of different message space spec-

ifications, and adjust the specifications so that the network operates efficiently without requiring excessive
memory resources. , ’

1-10

 NDL Syntax Conventions
SYN7...X CONVENTIONS

2. NDL SYNTAX CONVENTIONS

SYNTAX CONVENTIONS

The syntax diagram is the method used to depict the Network Definition Language syntax. This method
affords a very concise and lucid exposition of syntax, including defaults, aiternatives, and iterations; it is
rigorous without being cumbersome. There are few formal rules to remember: the basic rule is that any
path traced along the forward directions of the arrows produces a syntactically valid command. The
following examples illustrate the technique:

ER:]ETHE—TBOAT &~ DOWN 1o - : > STREAM.
YOUR LGENTLYj ']: . h :y 4 .
THE ow-r», MILL o

Valid constructs from this syntax diagram include:

ROW THE BOAT DOWN-STREAM. ==

ROW, ROW, ROW YOUR BOAT GENTLY DOWN THE STREAM.
ROW, ROW, ROW, ROW THE BOAT DOWN THE OLD STREAM.
ROW YOUR BOAT DOWN THE OLD, MILL STREAM.

ROW THE BOAT DOWN THE OLD, MILL STREAM.

The following convention is used to control iterations of options or constructs:

2\

. - e
ACROSS THE ————— v +BIG : - » MISSOURI
= WIDE — — j . - o
—————» MUDDY _ o :

The “bridge” over the “2” can be crossed a maximum of two times, so a maximum of two commas (and
three adjectives) can appear. Valid productions include:

ACROSS THE BIG MISSOURI
ACROSS THE BIG, WIDE MISSOURI =
ACROSS THE BIG, WIDE, MUDDY MISSOURI

From the above example, it should be noted that the number of iterations is controlled by the “number”
in the feed-back loop. When the “number” is not shown, there is no limit to the iterations. For example,

NDL Syntax Conventions
SYNTAX CONVENTIONS
Continued

ACROSS THE ! o BIG — ' ' 5 & MISSOURI
= WIDE :}
b MUDDY

would include the following valid combinations: |

ACROSS THE BIG BIG WIDE WIDE MISSOUREV
ACRQOSS THE BIG MISSOURI v :
ACROSS THE MUDDY MUDDY MUDDY MUDDY MISSOURI

If a comma were included in the above example, valid combinations would be as follows:

ACROSS THE BIG, BIG, MUDDY MISSOURI
ACROSS THE BIG, WIDE, WIDE, MUDDY MISSOURI

Key Words

Boldface symbols and uppercasé letters in syntax diagrams indicate symbols and words which appear
literally in the instruction. ‘ .

Syntactic Variables

In the syntax diagrams, left and right broken brackets (‘() are used to contain syﬁtactic variables that
represent information to be supplied by the programmer. A particular variable may represent a single
character, a simple construct (such as an integer or text string), or a relatively complicated construct.

The following is an example of a syntactic variable that appears in a syntax diagram.

DEFAULT > = & default line identifiery—— _ o

Braces ({. }) are used to enclose syntactic variable expressions defined by the meaning of the English -
language expression contained within the braces. For example, the following syntactic variable expression

ADAPTER > & {(integer) value of 1 thru 8 } — R

would include the following valid constructs: -

ADAPTER = 1.
ADAPTER = 6.
ADAPTER = 8.

Construct Terminator

Most constructs in the Network Definition Language must be 't‘erminated by a period (.). This is illustrated
in the syntax diagrams as follows:

The period is part of the syntax and must appear following the construct.’

2-2

(C

(C

NDL Syntax Conventions
SYNTAY. CONVENTIONS
Contiuied

N/ | |
Some constructs, however,

do not require a terminator, and can be followed by another construct. This is
illustrated as follows: - , .

— o

The vertical bar (|) is hot part of the syntax, but merely indicates the termination of the construct.

Tve

2-3/2-4

Language Corhporients' '

LANGUACE COMPONENTS
3. LANGUAGE COMPONENTS
LANGUAGE COMPONENTS
Syntéx . :
& (bit number) I —
= (bit variable) — :
——————u{byte variable -
& (character) rs
————»-(identifier) —
= (integer) >
e (label) -
= (NDL program unit}-———-——-———-‘-—
b (remark) —
&= (reserved word) —
' —————-———n» (space) ‘ -
——————(string) >
p——— (system identifier) - -
e (tally number) — -
—— (time) -
L& (toggle number) o
Examples
A
450
6110
IF
“B6700”
SYSTEM/CANDE
30MILLI
Semantics

(bit variable)s, (bit number)s and (byte vanable) 5 are all described in chapter 6.
A complete list of the (reserved word)s is contained in appendix A.

(NDL program unit) is described in chapter 4. _

All other {language component)s - are described in this chaptelr.v

3-1

Language,b Components

CHARACTER
N/
CHARACTER _,
Syntax _ : - 4
o (digif) —— S ' =
= {hexadecimal character) ' SR
———————&=(letter) —
& (single character)

Examples

0

Q

A

GGZ”

Semantics ‘ o _
In all instances, a (character). is an entity whose exact form depends on the context of its usage. The
normal inference is that of an 8-bit EBCDIC character. _ g ’ ' ‘
(letter)s and (digif) s are usually used to create (identiﬁer) s and (strihg) s.
Wherever (single character) occurs in the NDL syntax, an 8-bit character is needed. It is unique in that it -/
may be formed using two { hexadecimal character)s. o o o R
N/

3-2

DIGIT
Syntax

Language Components .

THARACTER
\(e‘o!gf f) .

{one of the EBCDIC characters, 0 through 9, inclusive}
Examples

1]
5
9

Semantics

Whenever the item of (digzt) appears in the NDL syntax, one of the 10 numeric EBCDIC characters from

0 through 9 is requlred

Language Compdnents
CHARACTER
{hexadecimal character)

HEXADECIMAL CHARACTER
- Syntax
- (digit) —I : *I
— A L ’
— B .
& C =
&= D u
> E o
»F —)
Examplés
0o
5
9
A
C
F —
Semantics o ' ‘ - o - .
{ hexadecimal character) s are defined as consisting of the characters in the decimal digit set plus the char- S
acters A,B,C,D, E,F. (hexadecimal character)s are generally used to define program values in terms of
the hexadecimal (radix 16) number system, where A is equivalent to 10 in the decimal system, B is equival-
ent to 11 in the decimal system, etc. o :

3-4

Language ch;mp‘onev‘nts‘
CHARACTER
(leticr)

LETTER
Syntax

{one of the EBCDICcharactexs,Athroughl mcluswe§ : — TSN ’ _ " |

Examples

A

Q
Z

Semantics

Whenever the item of (letter) appears in the NDL syntax, one of the 26 alphabetxc EBCDIC charactets e
- from A through Z is requlred o v _

Language Components
CHARACTER

{single character)

SINGLE CHARACTER
Syntax ' . ‘ ‘ .

~————¥—>“—>{uny EBCDIC character except the quote,("')}' — —— , H

—— 4= hexadecimal character) — hexadecimal character) 4=

Examples

“A” »
- 4“FF~

Semantics

The primary purpose of having a syntactical item of (Singlé chdracter) in NDL is for use in those places of
syntax requiring an 8-bit character, which can be any co‘mbination of bits from “all off” through “all on.”

For ease of programming and recognition of usage, the NDL programmer may use elther normal EBCDIC _

graphic characters or (hexadecimal character)s to create the needed bit pattem

1

(C)

- Language C_ompohe,nts: R
| IDENTIFIER

IDENTIFIER
Syntax

(letter) v " - : - A - 3 ﬂ

‘ﬂ>(letter‘) .‘ = —
> (digit) ' 1

Examples

A

Qv

X3

B6700
MINIMIZER

Semantics

(identi ﬁér} s have no intrinsic meaning. They are used to give symbolic names to various definitionsin -
- NDL. ~ ’ ‘ :

An (identifiery must start with a (lettery , which can be followed by any combination of (letterys and |
(digit)s. : : - o - . | .

The maximum length of an (identiﬁer}' is 17 characters.

3-7

Language Components
INTEGER

INTEGER
Syntax

——L—fl-l\—-b (digit)

Examples

0

37

511
12345678901

* Semantics

An (integer) is a positive whole number; i.e., fractions or fractional parts exponents, etc. are not allowed.
The maximum (integer) allowed is 99999999999

3-8

A

(),_

' Languaée Comj)onents
LABEL

LABEL
Syntax ‘ : : . , . : ‘ ‘
(integer) » _ . R N —]
Examples
0
22

123
99999999999

Semantics

A (label) is used to indicate where “execution can branch” within a given (céntrol definition) or request
definition). ' _ , -

(label)s are “local” in scope; that is, each (labe‘l) must be uniqué only within a giveh {control de’ﬁnition)

or {request definition). For example, the (labet) 22 could appear more than once in an NDL programso
“long as it does not appear more than once in the same (cpntrol definition) or (request definition). -~

3-9

Languagg Components
REMARK

REMARK

Syntax

% > {EBCDIC characters }
Example '
% THIS IS A REMARK

Semantics

‘ (remark)s can appear anywhere in the source program. When the compilér encounters the petcehf sign

- (%), it skips immediately to the next source record before continuing the compilaiion process.

3-10

O

Language Components

SPACE

SPACE
Syntax

——-L—{] EBCDIC graphic sbace, hexadecimal 40}'

Semantics |
. L . ew : ‘ .
The NDL compiler looks at a contiguous sequence of <space> § in a source program as a single (space)- :

—

(except when contained in a (string)). Therefore, wherever a single space is allowed, the programmer can

use multiple (spdce)s'to improve readability of the program.

Language Components

STRING
STRING
Syntax
l —8 ¢ { - {: any EBCDIC character except the quote (”)} et

- 4 —— e + » (hexadecimal -chardcter).(héxadeéimal chardcter) B -

Examples

“THIS IS A STRING”
“AND” “SO” “IS” *THIS”
“AND SO” 4“C9E2” “THIS”
4“C2F6FTFOF0”

“%*+?/@ (BIG B)”

Semantics

Only {hexadecimal character) (4-bit) and EBCDIC character (8-bit) (string) s can be constructed.

EBCDIC character (string) s are restricted in that they cannot contain the quote (™) character.

The maximum allowed length of a (s‘tring) is 1A28 8-bit characters (1024 bits).

(C

SYSTEM IDENTIFIER
Syntax

Language Componcnts
SYSTEM IDENTIFIER

/ -~

Examples

A

B6700
SITE/MCS
SYSTEM/RJE/DOWNTOWN
X/Y/ZEBRA ’

’

Semantics

o (identifier) : v 1 — . 4»-!

{system iden tifier)s have no intrinsic meaning. They are used to give symbolic names to various definitions
in NDL. A {system identiﬁer) is different from an (1dentiﬁer) in that it is usually used to reference items
belonging to the system and not simply to the NDL program. ' _

A maximum of 14 '(identiﬁer)s, each separatéd by a slash (/), is allowed.

3-13

Language Components

TALLY NUMBER

TALLY NUMBER
Syntax

Examples

0
1
2

Semantics

{tally number) is required to designate one of the three (byteﬁariable) TALLYs; for example,
TALLY][O]. ' S ‘

3-14

(C

Language Components
TIME

TIME
Syntax

= 0 - *’l
L (integer) —————==MIN :
——— SEC
> MILLI
———= MICRO

Examples

0

5 MIN

30 SEC
200 MILLI
9 MICRO

Semantics

(nme) is used to express or define an increment of time. MIN denotes mmutes, SEC denotes seconds,
MILLI denotes milliseconds, and MICRO denotes microseconds.

The maximum amount of time that can be speciﬁed is 6 minutes 42 seconds.

3-15

Language Components

TOGGLE NUMBER
TOGGLE NUMBER
Syntax
&0
-1 ik
—) -3~
-3 - >
-4 b
-5 >
6 - >
» 7 -
ExamplesA '
0
4
7
Semantics

{ toggle number) is required to designate one of the eight (bz_’t variable) TOGs. For exa'm"plé', TOG[S] .

(O

O

Source Program Structure

NDL PROGRAM UNIT
N~ 4. SOURCE PROGRAM STRUCTURE
NDL PROGRAM UNIT . -
Syntax T :
‘ : »-(co-nstant definition)
——o~ (MCS definition)
—t iranslatetablg definition)
@—L—-—> {control definition) » :
j - L (request definition) —i> {modem definition y ——
{terminal definition) -JL (station definition) -J-J—»(line deﬁﬁition) _4,‘.‘,@
@——-L {DCP deﬁnition) S — ' —b'
—L { file deﬁﬁition)’ —
QS

Source Program Structure
NDL PROGRAM UNIT

Continued

Examples

CONSTANT ...
MCS...

TRANSLATETABLE . .

CONTROL. ..
REQUEST . ..
MODEM . ..
TERMINAL . ..
STATION . ..
LINE . ..
DCP...

FILE . ..

Semantics

The NDL source program is divided into 11 program sections orde
must include the control and request sections (in any order),
sections. Each section is described in detail in chapter 5 of t

red as shown. An NDL program
‘and the terminal, station, line, and DCP
is manual.

(C

DEFINITIONS

5. DEFINITIONS

Deﬁnitions
DEFINITIONS

The NDL definitions, which comprise the 11 program sections of the source program Str‘uctﬁre shown in -

Section 4, are listed in alphabetical order and described in the same order:

CONSTANT
CONTROL
DCP

FILE

LINE

MCS
MODEM
REQUEST
STATION
TERMINAL

TR M QA0 o

TRANSLATETABLE

Definitions

CONSTANT
CONSTANT DEFINITION
Syntax
- Py q - . N ‘
CONSTANT L(constant identifier)—->=J—l:(constant identifier)— —
‘ Lo (string) . |
Examples

CONSTANT NUL = 4-00".
CONSTANT SOH = 401", STX = 4“02".
CONSTANT C1 =SOH 400" STX, C2 = “123”4“F4",

Semantics

The {constant definition) equates cach of one or more (identiﬁer)s with a string). Once that equation is
madc, any subsequent appearance of the {constant i(lenti_/ier> is syntactically and semantically equivalent
to the (string). A ~

If a {constant identiﬁer) appcars after the equal sign, it must have been defined previously in the prbgram.
Supplementary Examples |
Examples of Valid {constant dcﬁnirion>s g
Example 1) .
CONSTANT GREETING = “WELCOME TO B 6700 TIME SHARING.”.

This example equates the (string) f‘WELCOME TO B 6700 TIME SHARING.” to the (constant identifier)
GREETING. . : - ' ‘

Example 2

CONSTANT | |)
CR ~ =4“0D", % A CARRIAGE RETURN
LF '=4%“25", % A LINE FEED

- CRANDLF - =CRLF, % A CARRIAGE RETURN AND A LINE FEED
DELETELINE = “DELETED” CR LF. % THE STRING “DELETED”,
% A CARRIAGE RETURN, AND
- % A LINE FEED.

This example references other (constant identifiers)s to define a (constant identifier). (String)s and
(constant identifier) s may be interspersed to define a (constant identiﬁer}. '

Examples of Invalid { constant definition)s
Example 1 '
CONSTANT BADCNST = 4123,

The above (constant deﬁnition) would cause a syntax error to be generated, because the (string> is not
properly formed. The length of the <string> must be a multiple of eight bits.

5--2

(C

Definitions
CONSTANT
- Continued

Example 2
CRANDLF = CRLF, % LINE 1
CR = 4“0D”, % LINE 2
LF = 4“25”. %LINE3

This example would cause a syntax error to be generated, because the (constant idmtiﬁe'r)s LF and CR are
referred to in line 1, but not declared until line 2 and line 3. A (constant identifier) must be declared
before any reference to that {constant identifier) can be made.

Definitions
CONTROL

CONTROL DEFINITION
Syntilx

CONTROL — control identi fier —e> ;é_

—e (error switch statement)

5-4

L(Iabel)—c» : —j

 }—e=(initialize statement y ——u»

—s= (transmit statement) ———s

o= (assignment statement’ —
—-(break statement) —
o (code statement P =
——-n»(compound statement y ——e
|- (continue statement) ———e
e (delay. statement y ————m
- finish statement) ——————a-
| (fork statement ———
- {go 10 slatmmvii_) ——
—s- (idle statement’y ~——s
> {if statement Y ———— e

> (increment statement » —
—s= (initiate statement) ————
- (receive statement) ———m

_,(shift statement) — |

e (sumb Statement) —

, L (wait staterhent} —_——

s { pause statement) ————ul -

N—

Definitions
CONTROL
Continued

Examples

CONTROL CONTENTION:
INITIATE REQUEST.
INITIATE ENABLEINPUT.
IDLE.

CONTROL POLL: ‘
5: IF STATION GTR 0 THEN
BEGIN
10: - STATION = STATION -- 1.
INITIATE REQUEST.
INITIATE ENABLEINPUT.
END. '

ELSE
BEGIN -
STATION = MAXSTATIONS.
GO TO 10.
~END.
GOTOS. -

Semuantics

A (mmm»l definiriony is an algorithm that describes the allocation of the use ol a logical line to the
stations assigned to that line. 1t is the {coiutrol definition) that decides if and when a station’s Receive
Request or Transmit Request should be initiated.

A single {control dcfim_’tion} must control the logical line resource for all of the stations on a half-duplex
line. In the case of full duplex. one <mntml deﬁ'nition) must control the primary line, and onc additional
{control definition) can be designated to control the auxiliary line. (One (control definition) could be
designated as the control for both the primary and auxiliary lines. If a {contro! iicfinition) is not desig-
nated as the control for an auxiliary line, then a default equivalent to an { idle statement) is-used.) The
programmer, however, cannot directly define a particular (control definition) for a logical line inits =~
(line definition). Instead, for each (terminal definition), a single {control definition y must be defined.
(Two (control definition)s can be named if the {terminal duplex statement) specifies DUPLEX=TRUE.)
Next, in each (station definition), a {terminal deﬁnition) must be defined for the station (by means of
the (station terminal statement)). Finally, each (station definition) is assigned to a logical line (in the
line station statement} of the (line definition)). This last association must be such that each station (i.e.
station definition)) assigned to the logical line references (indirectly through its (terminal definition))

’

the same (control definition) s as every other station assigned to the line. »

A {control definition) fo1 a given line can deal only with one station at a time. All statements executed
apply to and affect only one station assigned to the line. '[he_(control definiti(')n)vchooses the station

with which it wishes to deal by setting the value of the (byte variable) STATION to the chosen station’s
station index. ' : o o S '

{control identifier) has the same syntactic form as{identifier).
The statements in a {control definition) are executed sequentially. In some cases; however, it is desirable

to alter the order of execution of statements within the procedure. A {control statement) preceded

by a (Iabel} is one means of accomplishing this. The (go to statement) is used to transfer control to a
(labelyed {control statement). - ' ' :

5-5

Definitions
CONTROL
Assignment Statement

ASSIGNMENT STATEMENT

Syntax .

FORM 1 - LOGICAL ASSIGNMIENT N |
(assignable bit variabie) - = o (bit variable) . - .
> TRUE

‘ FALSE
FORM 2 - VALUE ASSIGNMENT S

(ussignable byte variable) -we= T—>{byte variable) - ' > .

—- (integer) t + . (byte vafiable) —_—
—>(single character - - (integer} ———-—-——

(singlé character) —e»

—e=(translatetable identifier) —- (~e-(byte variable) —w-) —

i { receive “address” statement } _ -

Examples

TOG [0] = TRUE.

TOG [1] = TOG [0].

LINE (BUSY) = FALSE.
RETRY = STATION (TALLY).
STATION = MAXSTATIONS.

TALLY [0] = STATION (FREQUENCY)-TALLY [1].
CHARACTER = TRAN STABLEID (CHARACTER). %
STATION = RECEIVE ADDRESS (TRANSMIT) [ADDERR:999].

Semantiqc. :
FORM 1

This form causes the value on the right side of the equal sign to replace the current value of (assigriable
bit variable). : e ,

FORM 2

Value assignment causes a calculated value on the right of the equal sign to be stored in the (assignable
byte variable). Arithmetic calculations are done in modulo 255 arithmetic.

(assignable byte variabley = (translatetable identifiery ({byte variable)).

This construct is the means to invoke user-defined character translation. User-defined translation is
effected by threc areas of the NDL source program.

a. Ina {rranslatetable definitiony the programmer must define the contents of a translation
table and associate a (translatetable identiﬁer) with it.

5-6

Deﬁnitions
- CONTROL
Assignment Statemen?! — Continued

b. Inthe terminal deﬁm’tion} of a terminal type that requires special character translation
the programmer should suppress automatic character translation by using either of the
following forms of {terminal code statement) :

CODE = BINARY.
or
CODE = EBCDIC.

c. Ina{control deﬁnitioh) or (req'm'st definition), the programmer invokes the translation
by using this option of the value assighment. Any <b’ytc variable) can be dcsignatcd as
containing the character to be translated.

The (translatetable-identiﬁer) identifies the translation table to be used. An.:(assignable byte variable)
is designated to the left of the equal sign, identifying where the resulting translated character is to be
stored. . »

If N is the {source size) (defined in the (translatetable definition)), then the N low-order bits of the
(byte variable) are used as an index into the translation table. The eight-bit character thus indexed is
stored in the (assignable byte variable). ' : A '

(assignable byte variable) = {receive “address” statement}.

This construct attempts to RECEIVE the address characters of a terminal, . ~d store in (assignable byte .
varigble’) the station index of a station whose address characters are equal to those received. The
{receive “address” statement } is the same as described in the semantics of the RECEIVE ADDRESS
option of the (receive-statemem). The optional syntax in the {receive “address,”stat’ement}' invokes
the same actions as described in the (receive statement) semantics except for ADDERR. Any action
specified for ADDERR is taken if no valid station assigned to the line is found with address characters
equal to those received. : : Lo :

5-=7

Definitions
CONTROL
Break Statement

(C

BREAK STATEMENT
Syntax

BREAK ——=(> o s & NULL——
L»(brcak time}-—j ' b= delay time)-

Examples

BREAK (*,NULL). .
BREAK (200 MILLI, 3 SEC).
BREAK (*, 3 SEC).

BREAK (100 MILLI, NULL).

Semantics

The (brcak statement) causes binary zeros to be transmitted on the line, thus changing the state of the
line to-a “spacing” condition for a specified time. :

(break time) specifies the {fime) to break. An asterisk indicates that a standard break of 2 character
times should be used. ' : S

{delay ‘time) specifies the {timé) to delay subsequent to the break and prior to when control : -
continues. , , o ‘ Ao o ‘ </

"’

- Definitions
CONTROL
Cude Statement

CODE STATEMENT

Syntax

CODE — = — ASCII —
——BINARY . ? - ' .. '

Semantics |

CODE=ASCII invokes the ASCII-to-EBCDIC translation for received data and the EBCDIC-to-ASCII
translation for transmitted data. : ‘

CODE=BINARY inhibits any character translation on data transmitted or receii'ed. -
Pragmatics .

The (code statement) allows a programmer to either invoke or inhibit on a logical line the DCP ASClI-to-
EBCDIC character code translation for input, and the EBCDIC-to-ASCII character code translation for
output. Any (wrminal deﬁnition) that names, in its terminal control SIatement),'a (control dcﬁnition)
that utilizes the (code ,statement}, must define ASCII(BINARY) as its character code in the ,(terminal
code statement). (Refer to the (terminal code statemem) in this chapter.)

Once that translation has been invoked on a logical line, the translation continues until such time that it is
inhibited. If translation is inhibited, translation will be inhibited on that line until invoked again by execu-
tion of CODE = ASCIL, or if control is transferred to a (request definition) which executes one of the
following: CODE=ASCII, TERMINATE NORMAL, TERMINATE LOGICALACK, TERMINATE '
LOGICALACK(RETURN), TERMINATE ERROR, TERMINATE ENABLFINPUT, or (while executing a
Receive Request) TERMINATE NOINPUT. o ' - '

Definitions
CONTROL
Compound Statement

COMPOUND STATEMENT
Syntax

BEGIN l —s-(control statement) » - END - - .

Examples

BEGIN 7% EXAMPLE 1
INITIATE TRANSMIT.

TRANSMIT EOT.

FINISH TRANSMIT.

END.

IF STATION (VALID) THEN
IF STATION (READY) THEN : :
-~ BEGIN - % EXAMPLE 2
INITIATE TRANSMIT.
TRANSMIT “ON THE AIR”.
FINISH TRANSMIT. :
END.

Semantics

The {compound slutwnc'nt) groups several statements together to form a logical sequence. To execute

more than onc statement when the condition of an (ifstatemenl) is satisfied, a {compound statement) ,
must be used. v . -

(C

‘ Definitions
CONTROL

Continuc Statcment

CONTINUE ST/\TEMENT
Syntax

CONTINUE —— — — .

Semantics

The (continue statement) can appear in only those {control definition) s and {request definition)s
written to communicate with full duplex terminal types. This statement causes the co-line to resume
processing, if, and only if, it had been suspended by a (wait statement) or a {receive statement) witha -
CONTINUE option specified. If the co-line had not been suspended, this statement acts as a no-op. The .

{continue statement) has no effect upon the line on which it was executed.
Pragmatics

Refer to the (fork statement) pragmatics.

Definitions
CONTROL
Delay Statement | o’

DELAY STATEMENT
Syntax

DELAY — (: —-(delay time) - >) ' —_— .

Example
DELAY (10 MICRO).
Semantics

The {delay Statement) provides a means to delay a specified period of time before control proceeds to the
next statement. The {control definition) is suspended in a “sleep” state for the {delay time) specified.

Pragmatics

The “sleep” state induced by the {delay statement} allows the DCP to service Cluster Attention Needed
(CAN) interrupts for other logical lines. - ‘ :

Definitions
CONTROL

Error Switch Statement

ERROR SWITCH STATEMENT

Syntax
) -
ERROR— [—» (switch number —] = /o= BREAK , ™ . (_Iabc/'} -b.d
—1\->-BUFOVFL———— ABORT-
| T\e | OSSOFCARRIER— NULL
T\ PARITY ————=
—fl\">STbPBlT.————h-
T\ TIMEOUT —————~
Examples

ERROR [0] = BREAK:0,BUFOVFL:NULL,LOSSOFCARRIER:ABORT
PARITY:999, STOPBIT:999, TIMEOUT:NULL.

ERROR [1] = BREAK:NULL.
ERROR [99] = BUFOVF»L NULL.
Semantics '

The (c rror switch statemenl) is a non-executable statement that allows the programmer to definc a
set of default actions that are to be taken in a {receive statement) if the- specrﬁed errors occur.

(switch number) has the syntactic form of (integer).

BREAK

The BREAK option variations cause actions as described if a break, that is, at least 2 character-times of -
a spacing line condition, is detected by the adapter cluster while receiving:

BREAK:NULL causes no action. Execution proceeds as if the break did not occur.
BREAK: {label) o setz TRU)E the {bit variable) BREAK[RECEIVE], and branches control
, to (label
BREAK:ABORT ~ sets TRUE the {pit variable) BREAK[RECEIVE] and executes an
, ~ implicit TERMINATE ERROR.
BUFOVFL

The BUFOVFL option variations cause actions as described if the DCP is unable to sérv1ce a cluster
Attention Needed (CAN) interrupt before the Adapter Cluster receives another character (thus destroying
the previous character):

BUFOVFL:NULL causes no actlon Executlon proceeds as if the error condmon drd not

- occur.
BUFOVFL: (label‘> sets TRUE the bit variable) BUFOVFL, and branches control to {iabe. >.
BUFOVFL:ABORT sets TRUE the { hit varzabl«} BUFOVFL and executes an implicit

TERMINATE ERROR
5-13

Defintions
CONTROL

Error Switch Statement - Continued

LOSSOFCARRIER

The LOSSOFCARRIER option variations causc actions as described if a loss of carrier is detected while
rceeiving. i

LOSSOFCARRIER:NULL causcs 10 action. Execution proceeds as if the error

- did not occur. : .
LOSSOFCARRIER: {/ubel) sets TRUE the {bit variable) LOSSOFCARRIER, and
_ branches control to {label). '
LOSSOFCARRIER: ABORT sets TRUE the {it variablc) LOSSOFCARRIER, and

executes an implicit TERMINATE ERROR.

There is one exception to the actions described above. If a loss of carrier is detected while receiving, and
if the terminal is modem-connect, and if the terminal’s (station definition’) references a (mndem
deﬁnition) that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit disconnect
is done, regardless of the action associated with LOSSOFCARRIER in the {error switch statementy.

PARITY

The PARITY option variations cause actions as described if a parity bit error is detected by the adapter
cluster: .

PARITY:NULL ' causes no action. Execution proceeds as if the error did
, not occur. ‘ '
PARITY: {lubel) sets< TRUE the {bir rariable) PARITY, and branches control
to {label). '
PARITY:ABORT scts TRUE the {hir variable) PARITY, and executes a
TERMINATE ERROR. -
STOPBIT

The STOPBIT option variations cause the described actions if a stop bit error is detected by the adap’tér
cluster: ' '

STOPBIT:NULL causes no action. Execution proceeds as if the error did

not occur. , '
STOPBIT: {/abel) - setz 'TRU>E the {bit variabley STOPBIT, and branches control
) = to {label). y : ‘ -
STOPBIT:ABORT sets TRUE the (In’t variable) STOPBIT, and executesa
' TERMINATE ERROR.
TIMEOUT | |

The TIMEOUT option variations cause the actions described if the time required to receive a character
exceeds the {rimeout time). The {timeout time) is defined in the {terminal timeout statementy,
but can be overridden by including the ({timeout time)) or (NULL) syntax options in the {receive
statementy. - _ :

TIMEOUT:NULL - causes no action. Execution proceeds as if the error did
: not occur. Dot o
TIMEOUT: { lubel’ sets TRUE the {bit variable) TIMEOUT, and branches
control to {label). o
TIMEOUT:ABORT sets TRUE the (it variable) TIMEOUT, and executes a

TERMINATE ERROR.

5—-14

()

De‘ﬁnitions
CONTROL _
Error Switch Statem: ¢ — Continued

'Pragmatics

An (error switch statement) must be associated with a {receive statement) by means of a {switch number)
reference before any of the default actions will be invoked. The (error switch statement) can appear in a
(con_trol deﬁnition) as many times as the programmer deems convenient providing the following '
restriction is observed: Within a given (control definition), {error switch statement)s must have a

unique {switch numbery, and all Serror switch statement) s must precede all executable statements in the
procedure. ' ' :

Definitions
CONTROL

Finish Statement

FINISH STATEMENT

Syntax

FINISH ——— TRANSMIT

,, — . -
I—»(-—————-—~—a» NULL r) 1
b——=(delay time) : '

Examples

FINISH TRANSMIT.
FINISH TRANSMIT (NULL).
FINISH TRANSMIT (3 SEC).

Semantics

The purpose of the (finish statement} is to take a line out of the transmit ready state and prepare the line
to receive information. The adapter cluster delays a period of time long enough for the last character
TRANSMITted to be transmitted, plus 2 milliseconds, before the line is put in a receive ready state, Al-
though the (finish statement) puts the line in a reccive ready state, the cluster hardware invokes a delay
that inhibits any data from being received for 25 milliseconds. An INITIATE RECEIVE construct should
precede any subsequent (receive statement) , to override the 25 miliisecond hardware delay.

The {delay time) option allows the programmer to specily a software delay of {timc} before execution
continues in the {control definition).

For example, the statement
FINISH TRANSMIT (3 SEC).
1s equivalent to

FINISH TRANSMIT.
DELAY (3 SEC).

The FINISH TRANSMIT (NULL) construct is equivalent to FINISH TRANSMIT.

5-16

Definitions
CONTROL

i"»rk Statement

FORK STATEMENT
Syntax

FORK — —a-(lubel) - -

Example
FORK 10.
Semantics

The {Jork statcment) is.allowed in only those (control cle]inition)s and (request definifion)s that are
written to communicate with full duplex terminal types. This statement can be executed in the

(control definition) or (réquest clej'inition) ol the auxiliary line or the primary line. The execution of this
statement causes the co-line control, if not busy, to branch to and begin executing code in the { control
deﬁnition) that executes the FORK at the (lubel specified, whilc control on the FORKing line executes
an implicit PAUSE (i.c., a {pause statement)) and continucs executing in parallel. The co-line is determined
busy or not busy by testing the BUSY bit (i.c., LINE(BUSY) or AUX(LINE(BUSY)), whichever is appro-
priate). If the co-line is busy, the { fork statement} acts as a no-op.

Pragmatics

Synchronization problems can occur between the primary and auxiliary lines as a result of the (fork
statement) executing the implicit PAUSE. The implicit PAUSE yiclds use of the DCP, to allow processing to
proceed on other lines. Thus, processing on the co-line is actually started before the FORKing line exits

the { fork statement}. As a result, the programmer must, by some means (e.g., by setting and testing line
TOGs), effect the synchronization of the lines. This is especially critical if the code contains (wait
sfatement)s and { continué statement)s. The following example illustrates how full duplex lines could
“hang™ as a result of poor synchronization.

FORK 10.
WAIT.

10: CONTINUE.
WAIT.

Assume that the primary line executes the FORK 10. At that point, the primary line temporarily yields
use of the DCP to other lines. The auxiliary line starts up and executes the CONTINUE. Since primary
control is still at the {fork statement) and is not in a (wait statement) , the auxiliary line CONTINUE acts
as a no-op. Next, the auxiliary line executes the WAIT. When the primary line is given use of the pro-
cessor again, it executes its WAIT. At this point, the primary and auxiliary lines are “hung,” each WAITing
for a CONTINUE from its co-line. '

Definitions \
CONTROL

Go To Statement

GO TO STATEMENT

Syntax
GO — » (label) T,
I—oTO —T , » —
s (byte variabley— g %- - (label) =)
L]

Examples

GO 10.

GO TO 10.

GO TO TOGS, (0, 1, 2, 3).
GO TO STATION (5,9, 12).

Semantics

The (go to statement)y alters the path of control, that is, the sequential flow of statement execution, within
a (eontrol definitiony.

GO TO (label)
This form of the (go ‘o statement) unconditionally transfers control to the (label) specified.
GO TO (byte variable) . . .

This form of the (go to statement provides a convenient means of dynamically selecting one or more
Wabel)s to which control could branch. The (label to branch to is sclected by using the (byte variable)
as an index value. If N represents the number of {lubel)s in the (go to statement), then the {label)s are
numbered 0 to N-1. The (label) corresponding to the index value is the (label) to which control
branches. If the index value is greater than N-1, then control continues at the statement following the
(80 10 statement. :

Supplementary Example

GO TO STATION (5, 9, 12).
% EXECUTION CONTINUES HERE IF STATION > 2.

5: TOG [0] = TRUE.
9: TOG [1] = TRUE.

12: TOG [2] = TRUE.

«

 Definitions
3 ~ renTROL
Go To Statement Af“ontinue.d '

This example illustrates the “GO TO {byte variable) . . .” option of the {go to statement). The value of -
STATION determines the next statement to be executed. If the value of STATION is §, control branches
to the (label)y S: if the value of STATION is 1, control branches to { labe! Y9; and if the vaiue of STATION

is 2, gonitrol branches to (label) 12. If the value of STATION is greater than 2, control continues at the
next sequential statement.

. s i
Deﬁni tions ’ . n"“f“" L BV s W ,.»Z\«M“

. ime” o
_ CONTROL , "~ "~

Idle Statement

IDLE STATEMENT
Syntax

IDLE . > -

Semantics

The execution of the (idle statement)y causes a logical line to be suspended in an idle state. Specifically,
IDLE causes the LINE(BUSY) (bit variable) to be set FALSE, the line to be suspended in a “sleeping” and
“ready” status, and all subsequent inbound data to be discarded.

Pragmatics

The (idle statement) suspends the execution of a {control definition) for a logical line. Normally, this
statement should be executed only when there are no outbound messages queued for any stations on the
line and none of the stations on the line are ENABLED for input (or possibly, if the programmer wants any
available inbound data discarded). Consider the following example of the contention-type (control
definition) taken from the Burroughs SYMBOL/SOURCENDL program.

CONTROL CONTENTION:

INITIATE REQUEST.
INITEATE ENABLEINPUT.
IDLE.

In this example, IDLE is executed only after it lms‘ been determined (by means of INITIATE REQUEST
and INITIATE ENABLEINPUT) that the station is not QUEUED and not ENABLED for input.

(€

Once a line is in an idle state, the line remains in an idle state until one of the following circumstances
oceurs:

a. If the line TYPE is DIALIN and the line becomes connected (as a result of ANSWER = TRUE
in the (Iine deﬁnition) , a DIALOUT (TYPE = 98) DCWRITE from the MCS, or an ANSWER THE
PHONE (TYPE = 100) DCWRITE from the MCS), the {control definition) is initiated for the
line. .

b. If any of the following station-oriented DCWRITE:s are executed for any station assigned to the
line, then the {control definition) is initiated for the line.

ENABLE INPUT (TYPE = 35)

DISABLE INPUT (TYPE = 36)

SET CHARACTERS (TYPE = 39)

SET TRANSMISSION NUMBER (TYPE = 40)
SET/RESET LOGICALACK (TYPE = 43)
NULL STATION REQUEST (TYPE = 48)
SET/RESET SEQUENCE MODE (TYPE = 49)

¢. If a WRITE request or a READ request is found in the DCP’s Request Queue (placed there as a
result of the MCS executing a WRITE (TYPE = 33) DCWRITE or a READ-ONCE ONLY
(TYPE = 34) DCWRITE, or the 1/O intrinsics) for a station on the line, then the appropriate =
(request definition)y is initiated for the line. <

N AW~

Definitions

CONTROL
If Statément
IF STATEMENT
Syntax
IF TRUL & THEN — - -
LNOTJ - FALSE — ‘ L-(('omml .vmmnem)—T LELSE-.Q'(mrmI sratemem)j
Lo pit variabley-s ‘ | '
- (hvte variahled —T LSS — (pyte variable) y
ro-integery———um Lom LEQ -0 [e-(integer) —_—
o= (single charactery-sd LomEQL -w La(single charactery o
e NEQ -»
Lo GEQ]
- GTR -
Examples
IF TRUE THEN.
IF TOG[0] THEN TOG[0] = FALSE.
IF TALLY[O0] LSS TALLY[1] THEN TALLY[0] = TALLY[1].

IF CHARACTER = 4“FF” THEN
INITIATE BREAK.

ELSE ,
BEGIN : -
CHARACTER = 400”.
GO TO 0. »

IF STATION(READY) THEN
IF STATION(QUEUED) THEN
LINE (TOG[0]) = TRUE.
ELSE
GO TO 10.

ELSE IDLE.

Semantics

The (if statement} causes a condition (i.e., a Boolean expression) to be evaluated. The subsequent path of
program control depends on whether the condition is evaluated as TRUE or FALSE.

If the condition is TRUE, the (control statement) following the THEN, if present, is executed. Program
control then resumes at a statement that follows the (if statement}. .

If the condition is FALSE, the {control statement) following the ELSE is executed or, if the ELSE

{rontrol statement) is omitted, program control resumes at the {control statement) following the
<rf statemenl). : .

5-21

Definitions
CONTROL
If Statement — Continued

- The {control stateinent) can be any legal {control statement). including the (if statement) and

{compound statement) . The meanings of the relational operators are contained in table 5-1. The follow-

ing diagrams illustrate the {if statement) semantics.

TRUE
IF {condition } THEN (control statement) { control statement)
FALSE
TRUE
IF {condition } THEN (control statement) ELSE (control statement) (control statement)
FALSE |
Table 5-1. Relational Operators |
RELATIONAL OPERATOR : MEANING | SYNONYMS
LSS - - Less than <and LS
LEQ ' ' ~ Less than or equal to LE
EQL ' Equal to = and EQ
NEQ Not equal to NE
GEQ | Greater than or equal to GE
GTR : Greater than >at1d GT

5-22

(.

(&

Definitions
CONTROL
Increinent Statement

INCREMENT STATEMENT -
Syntax '
INCREMENT ——#= SEQUENCE - ' : ‘ T.,
L[' —=NULL]
L»SEQERR—-—D: ——j -,—-——-b-(label)—J
Examples
INCREMENT SEQUENCE.

INCREMENT SEQUENCE [SEQERR: NULL].
INCREMENT SEQUENCE [NULL].
INCREMENT SEQUENCE [999].

Semantics

The (increment statement) causes the sequence number stored in the DCP Station Table to be increased by
the value of the increment (also stored in the DCP Station Table), providing that the station is in sequence
mode: otherwise, this statement is a nosop. : ‘

When using the INCREMENT SEQUENCE construct, provision should be made for taking action if the
increment caused the sequence number to exceed (oyerflow) the size of the sequence number field. The
programmer can take such action by including the opional syntax. Failure to include overflow action
results in an implicit TERMINATE ERROR if an over{low occurs. '

The SEQERR:NULL and NULL options are semantically equivaleht. These options set the SEQERR
(bit variable) TRUE, and control continues at the next jequential instruction.

The SEQERR:(I&beI) and <1abel> options are semantically equivalent. They cause the SEQERR (bir
variable} to be set TRUE, and control to branch to (label '

/\:

Regardless of whether error action is specified or not, an overflow of the sequence number field destroyé :
the contents of that field. ' :

Pragmatics
SEQUENCE MODE

A station is considered to be in sequence mode whenever its SE\UENCE (bit variable) toggle is TRUE.
SEQUENCE can be set TRUE only as a result of the controlling \ICS executing the SET/RESET
SEQUENCE MODE (TYPE = 49) DCWRITE. In addition, the T \PE 49 DCWRITE also stores the starting
sequence number and increment in the appropriate fields of the L'\CP Station Table. '

Sequence mode can be used for any application that the NDL prog\'mmer may see fit. Its use, however,
requires common conventions between the NDL programmer and t1\: MCS programmer. Burroughs has
utilized sequence mode constructs in two (request definitiony s of S\MBOL/SOURCENDL: .
READTELETYPE and WRITETELETYPE. Both require the coopera\on of SYSTEM/CANDE to effect
the execution of those statements. The reader is referred to those (req est deﬁnition)s as an example of a
particular application that Burroughs has implemented. Other statemenl, relative to sequence mode are the
(transmit statement) (TRANSMIT SEQUENCE construct) and the (sto'r stater‘nent) (STORE SEQUENCE

construct).

5-23

Definitions
CONTROL

Initialize Statement

INITIALIZE STATEMENT
Syntax

INITIALIZE & BCC J > -

L & CRC

Examples

INITIALIZE BCC.
INITIALIZE CRC.
INITIALIZE RETRY.

Semantics
INITIALIZE BCC

The INITIALIZE BCC construct causes the {byte variabley BCC to be initialized for purposes of
accumulating a Block Check Character. The value to which BCC is initialized is dependent upon the
horizontal parity defined for the station’s associated (terminal deﬁnition) (in the (terminal parity
statement)). If horizontal parity is defined as HORIZONTAL:ODD, then BCC is initialized to all ones
(i.c., 4“FF”). If defined as HORIZONTAL:EVEN, then INITIALIZE BCC initializes BCC to all zeroes
(i.c., 400™).

INITIALIZE CRC

The INITIALIZE CRC construct initializes CRC to the initial value required for calculating the

Cyclic Redundancy Check. Any ({terminal definition) referencing a (control definitionry (in the (terminal
control statement)) that contains this instruction must define the horizontal parity (in the (terminal parity
statement)) as HORIZONTAL:CRC(16); otherwise a syntax error is generated.

INITIALIZE RETRY

The INITIALIZE RETRY construct causes the value stored in DCP INITIAL RETRY to be stored in DCP
RETRY. '

5-24

((

Deﬁnitions
CONTROL

Initiaic Statement

INITIATE STATEMENT
Syntax

INITIATE———» RECEIVE

| | T
l—ac»(s NULL &) ?
= (delay time) —?

{
s TRANSMIT

= REQUEST

i
1

= ENABLEINPUT

. BR,‘EAK ,

| \

Examples ‘ (

INITIATE RECEIVE, |)
INITIATE TRANSMIT (3 SEC). }
INITIATE REQUEST (NULL).
INITIATE ENABLEINPUT,
INITIATE BREAK.

</ Semantics {l // i
: i |
~ INITIATE RECEIVE | /1 |

{
/ b .
The INITIATE RECEIVE const Jét, causes t'}e adapter cluster to initiate a receive delay‘calcmated for the
station. After the delay, the ha lwarg isrealy to receive information. , ‘ '

] .
The amount of time delayed, i/ ferred sto as the Initiate Receive delay, is unique to each station and is cal-
culated at compile-time for ¢/Ct stati/n. The algorithm that the compiler uses to calculate the Initiate
Receive delay is described) the foll(/wing three paragraphs.
i .
a. If the (modem /*finition r{ferenced in the (station definition) (in the (station modem statement)

defines the my.em NOISEDELAY as being greater than zZero, then the Initiate Receive delay is

2 millisecong’ less than the ¢combined (time)s defined in the (modem noisedelay statement) and

the {modey’ transmitdelay statement). .

b. If the m/iem NOISEDELAY is defined as zero and the modem TRANSMITDELAY is defined as
being l¢'s than 7 milliseconds, then the Initiate Receive delay is zero. :

. If thynodem NOISEDELAY is defined as zero and the modem TRANSMITDELAY is defined as
beiy qqual to or greater than 7 milliseconds, then the Initiate Receive delay is the lesser of
15 /illiseconds or (1.5 milliseconds + modem TRANSMITDELAY).

The NUf - option or the (delay time) option can be used to override the calculated Initiate Receive delay.

NULJ./ 1rqediately readies the hardware so that it can receive information. {delay time) specifies a (time}
ed in place of the Initiate Receive delay. :

/ \ I 5-25

Definitions
CONTROL

Initiate Statement — Continued

Pragmatics

An INITIATE RECEIVE instruction should precede the first (reccive statemem} following a transmission.
If it does not, therc is a possibility that exccution of the (receive statement} will be delayed for a period
of time of up to 25 milliscconds. The cause of the 25-millisccond delay is described under the semantics
of the {finish statement) . B

INITIATE TRANSMIT

The INITIATE TRANSMIT construct causes the Adapter Cluster to be put in a transmit state after a cal-
culated delay. The amount of time delayed is referred to as the Initiate Transmit Delay, and is unique to
each station. It is derived by taking the greater of the NOISEDELAY (time) specified for the modem con-
figured at the system end, or the TURNARCUND (time) specified by the station’s associated <terminal
deﬁnition) . This construct must be executed prior te any attempt to transmit information.

The NULL option or the (delay time } option can be used to override the calculated Initiate Transmit
delay. NULL causes the adapter cluster to be put in a transmit state immediately. {delay time} specifies
a (time) to be used in place of the Initiate Transmit delay.

INITIATE REQUEST

The INITIATE REQUEST construct conditionally initiates the next function as indicated by the message

at the head of the Station Queue. The initiation of the function is conditional, subject to the following:
the station must be valid, ready, and queued. Specifically, STATION(VALID), STATION(READY), and
STATION(QUEUED) must be TRUE; otherwise, the instruction acts as a no-op.

The specific function invoked by this construct is dependent upon the type of message at the head of the
Station Queuc. Most commonly the message is a WRITE (TYPE=33) DCWRITE, thus causing the Transmit
Request for the station to be entered. A READ-ONCE ONLY (TYPE=34) DCWRITE message at the head
of the Station Queue would cause control to enter the Receive Request for the station. Other messages
(unrelated to input or output) invoke their specific function and then transfer control to the beginning of
the {control deﬁnition). For example, a SET SEQUENCE MODE (TYPE=49) DCWRITE message wouid
cause control to enter the subroutine of the DCP that handles setting sequence mode and, when finished,
control would be transferred to the beginning of the (control deﬁm'tion}. :

The (delay time) option allows the programmer to specify that an implicit < delay statement) for the

(tz’me) specified, be executed before initiation of the next function from the Station Queue. For example,

the statement
INITIATE REQUEST (3 SEC).
is equivalent to
IF STATION(VALID) THEN
IF STATION(READY) THEN
IF STATION(QUEUED) THEN
BEGIN
DELAY(3 SEC).
INITIATE REQUEST.
END.

The INITIATE REQUEST (NULL) construct is equivalent to INITIATE REQUEST.
5-26

(¢

(C

Definitions
CONTROL
Initiate Statement — Contin'ue‘d

INITIATE ENABLEINPUT

The INITIATE ENABLEINPUT construct conditionally transfers control to the receive request app.r()priutc
for the station (that is, the station referenced by the by variable) named STATION). The transfer of
control is conditional, subject to the following: the station must be valid, ready, and enabled for input.
More specifically, STATION(VALID), STATION(READY), AND STATION(ENABLED), must be TRUE:

otherwise, the instruction acts as a no-op.

The NDL programmer can initially enable a station for input by means of the (station enableinput
statement). Additionally, after DCP initialization, the station’s MCS can enable or disable the station for
input by means of the TYPES 35 and 36 DCWRITEs.

(NULL) and ({delay time)) allow the programmer to. specify that an implicit {delay statemergt), for time
specified, be executed before the transfer of control. (delay time) has the syntactic form of time). For
example, the statement

INITIATE ENABLEINPUT (3 SEC).
is equivalent to: '
IF STATION(VALID) THEN
IF STATION(READY) ' THEN
IF STATION(ENABLED) THEN

BEGIN

DELAY (3 SEC). o
INITIATE ENABLEINPUT.
END.

The (NULL) option specifies zero delay.
INITIATE BREAK '

The INITIATE BREAK construct causes binary zeroes to be transmitted on the line, thus changing the
state of the line to a “spacing” condition. The line remains in the spacing condition until some subsequent
construct causes the adapter cluster to change the state of the line. Constructs that would change the
line’s state are INITIATE TRANSMIT, INITIATE RECEIVE, FINISH TRANSMIT, BREAK, and IDLE.

5-27

Definitions
CONTROL
Pause Statement

PAUSE STATEMENT
Syntax

Semantics

The {pause statement) suspends a (control defi mtwn) in a “sleep” state for a minimum period of time
(200 microseconds for the B 6358 Model II DCP, and 6 microseconds for the B 6350 Model I DCP) to allow
the DCP to service other lines. It is recommended that a (pause statement) be used in any kind of loop
that would tie up processor time and thereby prevent the servicing of other lines. The failure to do so
results in a high number of timeout faults. , :

Pragmatics

Instances may occur in which the DCP requires an even greater period of “sleep” to service other lines.
Repeated timeout faults, despite utilization of the (pause statement) are indications of such conditions.
A greater period of “sleep” time can be effected by means of a (delay statement) with the (tlme) speci-
fied greater than “sleep” time effected by the (pause statement)

5-28

s

Deﬁnitions‘
CONTROL

Receive Statement

Y,
RECEIVE STATEMENT
Syntax
RECEIVE L — - ——— o=
(o NULL —— L ADDRISS e
X Frv |
LamZttncont time. L([é./ l\EERROR o[- /swtich numbei :DI - —[1_5 j-
‘ R O '
Lo BCC Lo~ ADDERR ‘ -
-~ CHARACTER— -~ BCCERR ——————o»] {abel)
-~ CRC - & BREAK ——————p>] NULL
> TRAN o= BUFOVFL ———| ABORT:
Lo {stringy = CONTINUE —————~]
&~ CONTROL ~——————3>]
Lo~ CRCERR —————]
Lo END ————— o
o= FORMATERR ~—&-
- LOSSOFCARRIER -+~
Lo~ PARITY ————— |
) v - STOPBIT ——————
N L&~ TIMEQUT ————>
- TRANERR — ———
e WRUJ o - el
Le- (single charactery .. .ol
Examples
RECEIVE.
RECEIVE CHARACTER.
RECEIVE (3 SEC) ADDRESS (RECEIVE) [0, ADDERR:10].
RECEIVE (NULL) | '
PARITY:999, _
LOSS OF CARRIER:999,
END,
WRU:NULL
RECEIVE CRC [ERROR [1]','CRCERR:IO] .
N\
j -

Definitions
CONTROL

Receive Statement - Continued

Semantics

The (receivc statemcnt} causces the adapter cluster to attempt to reccive information from the apgropriate
logical line.

The following two syntax items define a maximum amount of time that the adapter cluster should wait for
receipt of the first character, and then cach subsequent character, if applicable, before assuming that the
terminal has “timed out.” If neither of these options is included, the (timeout timey defined (in the
(terminal timeout statement)) for the station’s <terminal deﬁnition) is implicitly used as the (timeout
timéy in this statement.

(NULL)
This option specifies that the adapter cluster should wait an infinite amount of time.
({timeout timey)

The (timeout timey defines a {timé) that the adapter cluster should wait for a character. If this (fime) is
exceeded before receipt of a character, and the TIMEQUT syntax appears, then the action specified for
TIMEOUT is taken (refer to TIMEOUT). If the (timeout time) is exceeded and TIMEOUT syntax does not
appear, an implicit TERMINATE ERROR is executed. '

The following syntax options define the nature of the information to be received, the amount of informa-
tion to be received, and how the information is to be handled. If these options are omitted, it is semanti-
cally equivalent to specifying CHARACTER (i.e., “RECEIVE.” is semantically equivalent to “RECEIVE

CHARACTER.”) N '

ADDRESS

The proper number of address characters (as defined by the station’s (terminal definition) in the (terminal
address size statement)) are received and checked for agreement against the actual address characters
defined in the (Station address statement). 1f the address characters do not correspond, an address error
condition results . If the ADDERR syntax appears then the specified action is taken; otherwise, an implicit
TERMINATE ERROR is executed. (Refer to the ADDERR semantics.)

ADDRESS (RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be used when an address
pair is defined in the {station address statement) and the programmer needs to check for the proper
receive address. ' : S

ADDRESS (TRANSMIT)

This option is equivalent to ADDRESS, excebt that ADDRESS (TRANSMIT) must be used when an address
pair is defined in the (station address statement) and the programmer needs to check for the proper
transmit address. ' : ’

BCC

One character is received and checked against the {byte variabley BCC. If the character received and BCC
are not equal, a Block Check Character error condition results. If the BCCERR syntax appears, then speci-
fied action is taken; otherwise an implicit TERMINATE ERROR is executed.

Presumably, if the RECEIVE BCC instruction appears, the programmer has defined horizontal parity in the
{terminal parity statement} , and the accumulated Block Check Character is contained in BCC.

5-30 _ | S

O

(()

Definitions
CONTROL
Receive Statement — Continued

CHARACTER
One character is reccived and stored in CHARACTER.
CRC

Two characters are received. The first character is checked against CRC[0], and the second compared
against CRC[1]. If the characters received and CRC are not equal, a Cyclic Redundancy Check error
condition results. If the CRCERR syntax appears, then specified action is taken; otherwise an implicit
TERMINATE ERROR is executed. o '

Presumably, if the RECEIVE CRC construct appears, the programmer has defined horizontal parity R
HOR]ZONTAL:CRC(16) in the (terminal parity statemerit}, and the Cyclic Redundancy Check is contained
in CRC[0] and CRCJ[1]. : ’ ‘ .

TRAN

The proper number of transmission number characters (as defined by the station’s associated {terminal
deﬁnitz'on> in the {terminal transmission number length statement)) are received and checked for agree-
ment with the Receive Transmission Number maintained in the DCP Station Table. If the characters
received and the Receive Transmission Number are not equal, a transmission number error results. If the
TRANERR syntax option appears, then specified action is taken: otherwise, an implicit TERMINATE
ERROR is executed. : : ’

(string)

The number of characters as indicated by the length of the (string) are received and checked against those
characters in the (string}. If the (string) and the characters received are not equal, then a format error
condition results. If the FORMATERR 'syntax option appears, then that action is taken; otherwise an im-
plicit TERMINATE ERROR is executed. . : :

The following syntax options specify actions to be taken upoﬁ either the receipt of de‘finéd characters or
occurrences of specific error conditions: : : o
ERROR[{switch number)]

‘Associates a previously defined Error Switch with the (receive statement). This allows the programmer to
associate a set of previously defined error actions with the (re'ce_ive s'tatement) , thus reducing the amount

of coding required for each (receive statement). BREAK, BUFOVFL, LOSSOFCARRIER, PARITY, .
STOPBIT, and TIMEOUT syntax options are not allowed if the ERROR([(switch number)] syntax appears -
in the (receive statement). Refer to the {error switch statement) for more information.

{switch number)

Semantically equivalent to ERROR] (switch‘ numb'ef} 1.

5-31

5-32

Definitions

CONTROL
Receive Statement — Continued —
" ADDERR
The ADDERR option variations ¢ cause the lollownm actions il" an address error is detected whm attempting
to receive the address characters of a terminal: :
ADDERR sets TRUE the ADDERR (bit variable) and branches control to the next
sequential statement.
ADDERR:NULL - causes no action. Execution proceeds as if the error condition did not
occur.
ADDERR: {label) sets TRUE the ADDERR (bit varzable) and branches control to (label)
ADDERR:ABORT Not allowed.
BCCERR '
The BCCERR option variations cause the following actions if the character received is not equal to the
data stored in BCC.
BCCERR sets TRUE the (bit varzable) BCCERR and branches control to the next
, scquential statement.
BCCERR:NULL causes no action. Lxecu tion proceeds as if the error condition did not
occur.,
BCCERR: {label) sets TRUE the (bit yariab’le) BCCERR and branches control to (Iabel). o’
BCCERR:ABORT Not allowed. et
BREAK
The BREAK option variations cause the following actions if a break, that is, at least two character-times
of a spacing line condition, is detected by the adapter cluster while receiving:
BREAK scts TRUE the (bit variablc) BREAK[RECEIVE], and branches control
, to the next sequential statumnt , .
BREAK:NULL causes no action. Execution proceeds as if the break did not occur.
BREAK: (label) sets TRUE the (bit varzable) BREAK [RECEIVE] and branches control
} to (label} -
BREAK:ABORT sets TRUE the {bit variable} BREAK[RECEIVE], and executes an
implicit TERMINATE ERROR.

BUFOVFL

" Definitions
CONTROL

Receive Statemen: - Continued

The BUFOVFL option variations cause the following actions if the DCP is unable to service a Cluster
Attention Needed (CAN) interrupt before the adapter cluster receives another character (thus destroy-

ing the previous character):
BUFOVFL

BUFOVFL:NULL
BUFOVFL: (label)
BUFOVFL:ABORT

CONTINUE

sets TRUE the (bit variabley BUFOVFL, and branches control to the next

“sequential statement.

causes no, action. Executlon proceeds as 1f the error condition did nct
occur.

- sets T>RUE the {bit varzable) BUFOVFL, and branches control to
" (label

sets TRUE the (hzt variable) BUFOVFL and executes an 1mphc1t |

. TERMINATE hRROR

This option is allowed only in (receive statement)s of (conrrol defi nmon)s and (request defi mtzon)s :
that are written to communicate with full duplex terminal types. CONTINUE syntax causes action as
described below if the co-line executes a {continue statement) before all 1nformatlon specified by the

(receive statemen £ is recelved
CONTINUE
CONTINUE:NULL

CONTINUE: (label)
CONTINUE:ABORT
CONTROL

branches control to the next sequentlal statement

 causes no action. Execution proceeds as if the (contmue statemenr} had

not been executed.
branches control to‘;(label}».,

Not allowed.

The CONTROL option variations cause the following acl’ons if the control character of the station (as
defined in the. (s tation control character s'tafement)) is'reeived:

CONTROL
CONTROL:NULL
CONTROL: (labely

CONTROL:ABORT

 sets TRUE the <blt variabléy
~asif the character was not the statlon s control character.

“sets TRUE the (bit varial\ley CONTROLF LAG and branches control

to the next sequential statyment.

CONTROLFLAG and execution continues

Zets TRUE the (bzt varzable} CONTROLFLAG and branches control to
label).

Not allowed.

©5-33

i

Definitions
CONTROL

Receive Statement — Continued

CRCERR

The following C“RCERR option variations cause the following actions if the first character received docs
not equal CRC|[0], or the second character received does not equal CRC[1]. (This item is-appropriate
only for the RECEIVE CRC form of the (receive staloment)' refer to the CRC option.)

CRCERR sets TRUE the {bit variable) CRCERR and branches control to the next
sequential statement.

CRCERR:NULL causes no action. Execution proce"e‘ds as if the error did not occur.
CRCERR:(label) sets TRUE the <blt varzable) CRCERR, and branches control to (label).
CRCERR:ABORT Not allowed ST '

END - o -

The END option varratlons cause the following actions if the "nd” character of the station (as deﬁned”

by the (terminal end character statement) in the (termmal definition) associated with the statron)
is received: . :

END . ~ causes control to branch to the next sequermal statement

END:NULL causes no action. Executnon proceeds as xf the character was’ not the
' ‘ “cnd” character. - , ~ :
END:(label) branches control to (label).
. END:ABORT Not allowed. '
FORMATERR

The following variations of the FORMATERR optron cause. the followmg actions 1f the characters received
are not equal to those in the (strmg) (this item is appropriate only for the RECEIVE (string) construct of
the (receive statement)): _

FORMATERR - : sets TRUE the {bit varzable) FORMATERR and
- ’ S branches control to the next sequential statement

FORMATERR:NULL .' : . causes no action. Execution proceeds as 1f_ the
v : " error did not ocCcur.

'FORMATERR: (label) =~ = " sets TRUE the {bit variable) FORMATERR, and
' ' o - branches control to (label). :

FORMATERR:ABORT ~ =~ notallowed.

5-34

Det'mitiens
CONTROL

 Receive Statement — Continued

LOSSOFCARRIER

The LOSSOFCARRIER option variations cause the following actions if a loss of carrier is detected while
receiving. »
LOSSOFCARRIER sets TRUE the (bit vanable) LOSSOFCARRIER and branches
control to the next sequential statement.

LOSSOFCARRIER:NULL - causes no action. Execution proceeds as if the error did not
.. occur. . _

LOSSOFCARRIER:(label) ~ sets TRUE the {bit variable) LOSSOFCARRIER, and branches
- control to {label). ,

LOSSOFCARRIER:ABORT sets TRUE the {bit variable _LOSSOFCARRIER, and executes
an implicit TERMINATE ERROR.

There is one exception to the actions described above. If a loss of carrier is detected while receiving,
and if the terminal is modem-connect, and if the terminal’s (station dejuunon} references a {modem
defi mtton} that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit dis-
connect is done, regardless of the action specified.

PARITY

The PARITY optlon variations cause the followmg actions if a parity bit error is detected by the adapter
cluster:

PARITY | . sets. TRUE the (bit varzable) PARITY and branches control to the
o . next sequentlal statement.- .
PARITY:NULL - causes no action. Execution proceeds as if the error did not occur.
PARITY : {label) sets TRUE the (bit variable) PARITY, and branches control to
- label). |
PARITY:ABORT sets TRUE the (bit variable) PARITY, and executes a
: , TERMINATE ERROR _
STOPBIT .

The STOPBIT option vanatxons cause the descnbed actlons if a stop bit error is detected by the adapter
cluster: ‘

STOPBIT sets TRUE the (bzt varzable} and branches control to the next

sequential statement. ‘ o
STOPBIT:NULL causes no action. Executlon proceeds as 1f the error did not occur.
STOPBIT: (label) - sets TRUE the {bit vanable) STOPBIT, and branches control to
. (label).
STOPBIT:ABORT © sets TRUE the (bif varzable} STOPBIT, and executes a -
' TERMINATE ERROR.

5-35

Definitions

CONTROL

Receive Statement - Continued

TIMEOUT

The TIMEOUT option variations cause the actions described if the time required to receive a character
exceeds the {timeout time). The (timeout time) is defined in the {terminal timeout statement) , but
can be overridden by including the ({timeout time)) or (NULL) syntax options in the (receive
statement) . '

TIMEOUT sets the (bit vqriahle} TIMEOUT, and branches control to the
next sequential statement.

TIMECUT:NULL causes no action. Exccution prqcceds as if the error did not occur. -
TIMEOUT: (label) sets TRUE the (bit variable) TIMEOUT, and branches control to
(label). ‘
TIMEOUT: ABORT sets TRUE the (bit variable) TIMEOUT, and executes a
TERMINATE ERROR. '
TRANERR o

The TRANERR option variations cause the described actions if the characters received and the
Receive Transmission Number stored in the Station Table are not equal (this item is allowed only in
the RECEIVE TRAN construct of the (receive statement)): :

TRANERR sets TRUE the { bit variabley TRANERR, and branches control
to the next sequential statement.

TRANERR:NULL causes no action. Execution proceeds as if the error did not occur.

TRANERR: (label) sets TRUE the (bit variabley TRANERR, and branches control to
(lubel). .
TRANERR:ABORT not allowed.
WRU ’ '

The WRU option causcs the following actions if the WRU character of the station is received (the
{station WRU character statemenr) defines the WRU character):

WRU scts TRUE the WRU (bit variable), and branches control to the -
next sequential statement.
WRU:NULL sets TRUE the WRU (bit variable), and execution proceeds as if
: the character received was not the WRU character.
WRU: {label) 2ets TI>{UE‘the {bit variable) WRU, and branches control to -
label). ' :

WRU:ABORT not allowed.

5-36

(C)

\".vin_l.'lv character)

Definitions A
CONTROL
Receive Statement -- Continued

The <..\‘ing1¢' charactery syntax causes the following actions if a character reccived is equal to the (single

character) :
{single character)
{single character) :NULL

(single character) : {label)

{single character) :ABORT not allowed.

branches control to the next sequential statement.

causes no action. Execution proceeds as if the character received
was not equal to the (single character).

branches control to (labely.

The allowable combinations of the (receive statement) syntax options are defined in table 5-2. The (NULL}
and ((timeout. time)) options are allowed in any form of the (receive statementy. Allowed combinaticns
of the other syntax options are denoted by a “X” in the appropriate columns and rows.

Supplementary Examples
Statement
RECEIVE (3 SEC) [TIMEOUT:10].

RECEIVE ADDRESS [ADDERR:99].

RECEIVE CHARACTER [CONTINUE: 10
CONTROL.:20,
TIMEOUT:30,
“*7:40],

£

Explanation

Causes the adapter cluster to attempt to receive a -
character. If the character is not received within
3 seconds, the (bit variable) TIMEOUT is sct
TRUE and control branches to 10.

If the character(s) reccived do not equal those
defined in the (station address statement), the
hit variablcy ADDERR is sct TRUF, and control
branches to 99.

This statement would only be allowed in a
{control definition) or {request definition)y that is
written to communicate with full duplex terminal
types because it contains the CONTINUE option.

CONTINUE: 10 would cause a branch to 10 if the
co-line {control definition) executes a {continue
statement) before a character is received. :

CONTROL:20 would set CONTROLFLAC TRUE
and branch to 20 if the character received is the

* station’s control character.
: TIMEOUT:30 would set TIMEOUT TRUE and

branch to 30 if a character is not received within
the (timeout time) defined in the {terminal
timeout statement).

“x7.40 would cause a branch to 40 if the character
received is the asterisk character.

5=37

Definitions
CONTROL

Receive Statement — Continued

Statement

RECEIVE[ERROR]|

011

Explandtion

An attempt is made to receive one character and
store it in CHARACTER. If any errors described
in the associated {error switch statement) occur
while receiving, then the action defined in that
(error switch statement) is taken.

RECEIVE][0] ~ Same as above.
Table 5—2. Allowable Combinations for (receive st_atemént)
B
_ E @
. &
SIS "5 - & S
& b= f 4 <
x % v 2z g F £ 5z g 38 S
H o < ©0 = B m E ? = & @ £ 5 3
2 3B 585828 822 =2z 3
S B E 288 8B&EL 9 5 F R 2
ADDRESS X X X X X X X X
ADDRESS(RECEIVE) X X X X X X X X
ADDRESS(TRANSMIT) | X X X X X X X X
BCC X X X X X X X X
CHARACTER X X X X X X X X X X X
CRC X X X X X X X X
(string) X X X X X X X X
TRAN X X X X X X X X

5-38

(¢

-Definitions

CONTROL
Shift Statement
SHIFT STATEMENT
Syntax
o= DOWN
Semantics

The <shz'ft statement) is to be used in a (control definitiony that communicates with stations using the
Baudot (5-bit) character code set. (The character code st is defined in the {ferminal code statement) of
the associated {terminal definition)). :

SHIFT UP indicates that received characters are to be translated to their respective uppercase graphics
(usually referred to as FIGS).

SHIFT DOWN indicates that receive characters are to be translated to their respective lowercase graphics
(usually referred to as LTRS). '

If the station does not use Baudot code, the (shift statement) acts as a no-op.
Pragmatics

In the Baudot character code set, most bit patterns have two graphic representations: one is referred to as
FIGS (the uppercase graphic), and the other as LTRS (the lowercase graphic).

When transmitting to a terminal that uses Baudot code, the terminal prints LTRS until it receives a specially
designated character indicating that it should shift to printing FIGS. The terminal continues printing the
FIGS until it receives a specially designated character indicating that it should resume printing the LTRS.

When the information is received from a terminal that uses Baudot, the same conventions hold true; that is,
the terminal communicates whether FIGS or LTRS follow by the transmission of a designated character.
The terminal initially transmits LTRS.

5-39

Definitions
CONTROL
Sum Statement

SUM STATEMENT

Syntax '
SM — /
- BCC ’ fom
——= CHARACTER — - -
& RETRY— - - -
> TALLY [———s=tally numbery——s] -
L& (single character) : >
Examples
SUM AL
SUM CHARACTER.
SUM ‘GAQ’.

SUM TALLY [1].

Semantics

The purpose of the (sum statement) is to affect the calculation of the horizontal parity check (whether that

be a Block Check Character or a Cyclic Redundancy Check). The specific effect cf the (sum Statement() is .
dependent upon two factors: the SUMmed item, and whether the station’s {terminal deﬁnition} for which
{ontrol definitiony is running, defines horizontal parity as CRC(16). ‘

Following is a description of the effect that cach form of the {sum sfatement) has on the calculation of the
horizontal parity check. Any reference to CRC means CRC[0] and CRC[1] collectively.

SUM
Semantically cquivalent to SUM CHARACTER.
SUM Al

If the horizontal parity check is a Block Check Character or is undefined, the contents of Al are exclusively
OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of Al and CRC, and the result is stored in CRC.

SUM BCC

If the horizontal parity check is a Block Check Character or is undefined, then the contents of BCC are
exclusively OR-ed with itself, and the result is stored in BCC. (The result in BCC would be zero in this
case.)

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of CRC|0] and CRC, and the result is stored in CRC.

5-40

e

" Deﬁnitions S
CONTROL ‘
Sum Statement — Continued

SUM CHARACTER

If the horizontal parity check is a Block Check Character or is undefined, the contents of CHARACTER are
exclusively OR-ed with the contents of BCC, and the result is stored in BCC. -

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorxthm is
computed with the contents of CHARACTER and CRC, and the result is stored i in CRC.

SUM RETRY

If the horizontal parity check is a Block Check Character or is undeﬁned, the contents of RETRY are exclu-
sively OR-ed with the contents of BCC, and the result stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of RETRY and CRC, and the result is stored in CRC. Co ,

SUM TALLY [{tally number)]

If the horizontal parity check is a Block Check Character or is undefined, the contents of TALLY [(rally
number}] are exclusnvely OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic RedUndancy Check, the (‘yclnc Redundancy Check a!gonthm is
computed with the contents of TALLY | (tally number)] and the result is stored in CRC.

SUM (single character)

If the horizontal parity check is a Block Check Character or is undeﬁned the (smgle character) is exclu-
sively OR-cd with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check, the Cyclic
Redundancy Check algorithm is computed with the (single character) and. CRC and the result is stored in
CRC.

541

Definitions -
- CONTROL
Transmit Statement

TRANSMIT STATEMENT
Syntax |
TRANSMIT S— I T » , .
Lo~ ADDRESS — L—[_—bBREAK o >]j |
L(RECEIVE—)—1 , L: {label)
| [:fRANSM!T | | _]:NULL'
L BCC ' : —
Lo~ CHARACTER .
e CRC -
- SEQUENCE -
Lo~ TRAN o
- (String) —
Examples _
TRANSMIT, | |

TRANSMIT CHARACTER |BREAK:NULL}. -
TRANSMIT SOH STX 4“00”|BREAK:10].
TRANSMIT TRAN. , ,
TRANSMIT ADDRESS (TRANSMIT) |[BREAK].

Semantics

The (transmit statemenl) causes the adapter cluster to transmit information to a terminal. The following
group of syntax options specifies the information to be transmitted. All options except CHARACTER
use the (byte variable) CHARACTER as a temporary storage area; thus, any information contained in

CHARACTER before execution of the (transmit statement) shall be destroyed by the (tra‘nsmit statement);

If none of the first group of options is chosen, it is semantically equivalent to specifying CHARACTER
(i.e., “TRANSMIT.” is equivalent to “TRANSMIT CHARACTER.”).

ADDRESS

The proper number of characters (as §peciﬁed by the station’s associated (terminal definition) in the
(terminal address size stqtement)) are taken from the address field in the Station Table and transmitted.

. ADDRESS (RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be used when an
address pair is defined in the (station address statement) and the programmer wants to transmit the
receive address. : : :

5-42

(o

()

sDefinitions
?CONTROL
Transmit Statement — Cori_tinﬁed ,

ADDRESS (TRANSMIT)

This option is equivalent to ADDRESS, except that ADDRESS (TRANSMIT) must be used when an
address pair is defined in the (statton address statement) and the programmer wants the transmit address
transmitted. ,

BCC .

The BCC option causes the contents of the {pyte variabley BCC to be transmitted.
CHARACTER | o

The CHARACTER causes the contents of the (bﬁte variable) CHARACTER to be transmitted.
CRC '

This option causes two bytes to be transmitted; the contents of CRC {0] are transmltted flrst followed
by CRC [1]. If the station’s associated (¢ termmal defi mtzon) does not define horizontal parity as
CRC ([16]), the use of this (opnon) causes a syntax error to be generated at complle time.

SEQUENCE

The SEQUENCE option causes the character representation of the value stored in the Sequence field
of the Station Table to be transmitted if the station is in sequence r mode (G.e., this <blt vanable) SEQUENCE
is TRUE); otherwise, the {transmit statement) isa no-op. _

TRAN

The proper number of transmlssnon number chdracters (as defmed by the station’s associated (terminal
definition) in the (termmal transmission number length statement)) are extmetcd from the Transmit
Transmission Number field in the-Station Table and then lransmlttul :

(sum,q}

Each character of: the {string) is transmitted.

The BREAK syntax allows the programmer to speufy action if a “break” is received from thc termmal
while the adapter cluster is still transmitting. If this option is omitted and a break occurs, an implicit -
TERMINATE ERROR is executed. The following describes the actions of the three syntactical forms:

BREAK sets TRUE the <blt variable) BREAK [TRANSMIT] and causes:
: a branch of control to the next statement.
BREAK: {{abel) ' sets TRUE the <blt varzable) BREAK (TRANSMIT] and causes

a branch of control to {label) .

BREAK:NULL_ ~ causes no action. Execution proceeds as if the break did not occur.

5-43

Definitions
CONTROL
Wait Statement

WAIT STATEMENT
Syntax

WAIT » : s . -

o (——= (wait time) - - =) T

s ><Ialu>l>"—-~———-1

Examples

WAIT.
WAIT (3 SEC).
WAIT (5 MILLIL:6).

Semantics

The wait statement) is only allowed in { control definition)s that are written to communicate with-
full duplex terminal types. Execution of this statement causes the (control definition) to be suspended

until the co-line executes a {continue statement). The optional syntax effects the statement as described

below:

(wait time) defines the maximum amount of {fime) that the {control
: definition) should be suspending waiting for the <continue :
statementg. If {wait time) is excceded and the co-line has -
not exccuted a {continue statement}. execution resumes at
the next sequential statement.

(wait time): {lubel) same as above except exeeution resumes at {ubel) it a
: {continue statement) is not executed within {wait time).

Pragmatics

Refer to the (fork statement) pragmatics.

5-44

(@

)

Definitions

DCP

DCP DEFINITION
Syntax
DCP ——————= {DCP number)——- : —— ‘ —s (DCP exchange statement) L]
| {DCP memory siz'e-.statement')
(D_CP' terminal stdtemert’t) ’
Example ¢
DCP 1: :
MEMORY = 8196 :
EXCHANGE = 2.
TERMINAL = SOMETERMINALNAME
Semantics

The {DCP definition) is the means s by which the programmer defines attributes of each Data Communi-
cations Processor (DCP) in the Data Commumcatlons System e :

The (DCP number) identifies the DCP and must correspond to an address (rangmg from 0 through 7)
wired into each DCP by the field engineer. The attributes of the DCP are defined subsequently by means
of (DCP statement)s. A maximum of eight DCP defmrtlons may appear in the NDL source program

Each (DCP statement) is described subsequently. -

5-45

Definitions

DCP
DCP Exchange Statement .
. e d
DCP EXCHANGE STATEMENT | '
Syntax '
EXCHANGE — = —-(DCPnumber): . ‘ — —-
Example
EXCHANGE = 4.
Semantics
The {DCP exchange statement) specifies that the DCP shares hardware-exchanged adapter clusters with
another DCP. {DCP number) defines the other DCP. o :
This statement is required in a‘ﬁy (DCP definition) referenced by a (DbcpP exchange Statement) in another
{DCP definition), or in any { DCP definition) that does not have lines defined for it in the (line definition
section of the source program. : o i : :
Pragmatics o ‘ : :
The maximum number of DCPs that can share a set of adapter clusters is 2. The definitions of both DCPs
that share adapter clusters must contain a (DCP exchange statement) naming the { DCP number) of the
DCP with which it shares the adapter clusters. For éxample, if DCP 1 and DCP 2 share adapter clusters, - o
then the definition of DCP 1 must contain the statement ’ o ' _ w
EXCHANGE = 2. | | S
and the definition of DCP 2 mtlst‘ contain the statement
EXCHANGE = 1.) |
If a DCP shares adapter clusters with ano_thclf DCP, then any adapter cluster connected to either of the
'DCPs must be shared by both. A DCP is not allowed to share only a portion of its adapter clusters. = -
LINE SECTION REQUIREMENTS _ o | o , s
If two DCPs share adapter clusters, it is required that the {line definition) s for each DCP be given addresses
(by means of a {line address statement)) such that both DCPs do not have lines defined on the same
cluster. . o '
The following program segment would cause the compiler to generate a syntax error because both DCPs
have lines defined on adapter cluster 0. ' : . .
N/

5—46

-

Definifions.
A ~pcp o _
'_ DCP Exchange Statement — Continued

LINE LIOO

 ADDRESS = 1:0:0 % ADDRESS = <DCP>'=<ADAPTER~"CLUSTER}:‘(LIN'E}L" -

LINE L201:
- ADDRESS = 2:0: 1.

DCP 1: o ‘
MEMORY = 8192. ©
EXCHANGE = 2.

DCP2: .
MEMORY = 8192.
EXCHANGE = 1. -

MCS RECONFIGURATION

Thc EXCHANGE CLUSTERS (TYI’E 179) DC‘WR[TE f unctlon allows a Message Control Systcm to
transfer control of any or all adapter clusters, that are exchanged by two DCPs, from the DCP that cur-
rently controls. the designated adapter clusters to the DCP with which it is exchanged. This aspect of the
reconfiguration feature. may be invoked in order. to provide an installation with the abxllty to effect
“load-leveling” between two DCPs that share hardware-exchanged adapter clusters or to transfer all of
the work load of a DCP'to its partner if the DCP malfunctions.” For more information regardmg recon-

~ figuration, refer to thc B 6700/B 7700 DCALGOL Reference Manual form no. 5000052 ' .

Supplementary Examplc

The following is a program segment descnbmg the data commumc.ltlons system lllustratcd in ﬁgun 5-1.
This example illustrates how the (line definition) and {DCP definition) sections can be written to
describe a data commumcatnons system in whxch two DCPs share hardwarc-exchanged adapter clusters D

547

Definitions
DCP
DCP Exchange Statement — Continued "'

%STATION DEFINITION SECTION. -
STATION DEFAULT ALLSTATIONS:

STATION STAI:

DEFAULT = ALLSTATIONS..
TERMINAL= TTY. »‘

STATION STA2:

DEFAULT = ALLSTATIONS. .
TERMINAL = TTY.

STATION STA3:

DEFAULT = ALLSTATIONS.
TERMINAL = TTY.

STATION STA4: , |
- DEFAULT = ALLSTATIONS.
TERMINAL = TTY.

STATION STAS: o
DEFAULT = ALLSTATIONS.
TERMINAL = TTY. :

STATION STA6:

DEFAULT = ALLSTATIONS.

TERMINAL = TTY.

% ,
%LINE DEFINITION SECTION. \ .
% : , ‘ o

%% %% %o %06 To %0 %% % %6 To LINES FORDCPO %%%%%%%%%%%%%%%%%%%%%%% -

LINE L000: ,
ADDRESS = 0:0:0.
ADAPTER = 1(DIRECT).
STATION = STAL. |

“LINE L0O1: |
ADDRESS = 0:0:1.
ADAPTER = 1(DIRECT).
STATION = STA2.

5-48

(()

(c

 Definitions
' DCP Exchange Statement — Continued '

LINE L020:
ADDRESS = 0:2:0.
ADAPTER = 1(DIRECT).
STATION. = STAS.
LINE L021:
ADDRESS = 0:2
" ADAPTER = l(DlRECT)
STATION = STA6. |
TSI TR " . LINES FOR DCP 1 %%%%%%%%%%%%%%%%%%%% 4
' LINE L110:
ADDRESS = 1:1:0, -
ADAPTER = 1(DIRECT).
STATION = STA3.
LINEL11L: |
ADDRESS = L:1:1.
ADAPTER = I(DIRECT).
STATION = STA4.
% . . 4 :
e %DCP DEFINITION SECTION.
'DCPO: R
-~ MEMORY . = 8192. .
EXCHANGE =1.
DCPl |
MEMORY =8192. =
EXCHANGE = 0.
N’

5-49

Definitions
DCP
DCP Exchange Statement — Continued

| ADAPTER - TELETYPE
DCPs : - CLUSTERS LINES TERMINAL STATIONs
| /0/// “STAI‘”
- CLUSTER :
. e J “ST Azn
DCP O
—/0/ .“STAs”
CLUSTER |
1
o 4 “STA4”
DCP 1
| /./0/ “STAS”
CLUSTER L '
2 ' -
T~
, . “STA6”

~Figure 5-1. Adapter Clusters Exchahge

5-50

(

e

 Definitions . -
~ bcp
DCP Memory Size Statement

DCP MEMORY SIZE STATEMENT
Syntax

MEMORY— >= »(integer) — SN —— -

Examples

MEMORY
MEMORY

Semantics

4096.
0.

wu

The {DCP memory size statement)-defines the number of words of local memory in the DCP being
defined. ’ ‘ ' L :
A zero value for (integer) indicates that the DCP has no local memory and that all code generated for

the DCP shall reside in main system memory. A non-zero value for (integer) that is less than the amount
of local memory required, as determined by the compiler, results in a compile-time error.

5-51

Definitions
A - DCP
DCP Terminal Statement

DCP TERMINAL STATEMENT
Syntax

> -

TERMINAL —»= ——L(termmal tdenttjter) _j
I—— (—= MSGSPACE — = —--<mteger>—-)

Examples

TERMINAL = TELETYPE

TERMINAL = M33, TD800 (MSGSPACE = 5), TELETYPE (MSGSPACE 2).
Semantics

The purpose of the (DCP terminal statement) is twofold Each aspect of this statement is discussed in
the subsequent two paragraphs. .

The primary purposc of the (DCP terminal statemem) is to provide the means of spe(nfymg wmch
terminal types in the data communications network that the DCP must be able to control. Only those
terminal types specified in this statement will have the object code required to control them included

in the object code generated for the DCP. It this statement is omitted from a DCP definition, the com-
piler includes the object code required to control all terminal types in the data communications network.

The sccond purpose of the { DCP terminal statemem) is to provide a means of specifying the initial
number of message spaces allotted for cach termmal type controlled by the DCP.

The {terminal identifier) must name a termlndl type defined by a (fermmal clefmztton) and specifies
a terminal type for which the DCP must have access to the controlling code.

The (MSGSPACE = (mteger)) option specifies the number of message spaces initially allotted for the
terminal type. If this option is omitted, two message spaces are allotted by dcfault

Pragmatics

Note that if any terminal typc is not named in the (DCP terminal statement) , the data communications
network may not be reconfigured (by means of a reconfiguration. DCWRITE in an MCS) such that it adds
that terminal type to those terminal types controlled by the DCP Refer to the supplementary example
that follows.

Supplementary Example

The program scgment below illustrates the prag,matlcs A statlon whose termmal type is SCREENDEVICE
cannot be added on the spare line L003 of DCP 1, because DCP 1 does not have the code avallable to
control SCREFNDEVICE

5-52

O

(¢

%
%

V4

REQUEST READTTY:

REQUEST WRITETTY:

Definitions
DCP
- DCP Terminal Statement - Continued

%CONTROL & REQUEST DEFINITION SECTION.

~ (The object code generated from these state- l
ments is required to control TTY termmal ’

types.

REQUEST READSCREENDEVICE:

REQUEST WRITESCREENDEVICE: |

ments is required to control SCREENDEVICE

- The object code generated from these state- ;
terminal types

%TERMINAL DEFINITION SECTION.

%

TERMINAL DEFAULT DEFAULTLIST:

BLOCK
SCREEN o
TURNAROUND
ICTDELAY
TRANSMISSION
DUPLEX
TIMEOUT
ADDRESS
PAGE

CODE '
INHIBITSYNC
BUFFER
MAXINPUT
WIDTH
PARITY
ADAPTER

WRU

END :
BACKSPACE
CONTROL

FALSE.
FALSE.
0.
0.

0.
FALSE."
3 SEC.

- 0.

0.
ASC67. -
FALSE.‘ ‘
NULL.
80.

72.

NULL.

4.
ENQ. o
ETX(DYNAMIC).

BS(DYNAMIC).
'CONTENTION.

5-53

Definitions

DCP

DCP Terminal Statement — Continucd

TERMINAL TTY:

DEFAULT
REQUEST

non

DEFAULTLIST.

WRITETTY :TRANSMIT,READTTY :RECEIVE. <

TERMINAL SCREENDEVICE:

T

DEFAULT
SCREEN
REQUEST

o n

DEFAULTLIST.
TRUE.

WRITESCREENDEVICE:TRANSMIT,READSCREENDEVICE: <—

RECEIVE.

%STATION DEFINITION SECTION.

T

5--54

STATION DEFAULT ALLSTATIONS:

ENABLEINPUT
LOGICALACK

MCS

CONTROL

RETRY
MYUSE

STATION STALl:

DEFAULT
TERMINAL

STATION STA2:

DEFAULT
TERMINAL

STATION STA3:

DEFAULT
TERMINAL

STATION STA4:

DEFAULT
TERMINAL

STATION STAS:

DEFAULT
TERMINAL

STATION STAGé6:

DEFAULT
TERMINAL

BT I L T T 1

nou

TRUE.
FALSE. ‘

SYSTEM/CANDE.
QM.

15.
‘OUTPUT,INPUT.

ALLSTATIONS.
TTY.

ALLSTATIONS.
TTY.

ALLSTATIONS.
TTY.

ALLSTATIONS.
SCREENDEVICE.

ALLSTATIONS.

SCREENDEVICE.

ALLSTATIONS.

SCREENDEVICE.

@

These statements specify the {request
definitions) required to control the -
defined terminal type. The object code
generated by the procedures named here
must be accessible by a DCP that has the
terminal type attached to any of its lines.

A (line definition’) naming any of these
stations must be a {line definition for
DCP 0. DCP 1 does not have access to
code required to control terminals
associated with these stations.

" A {line definition) naming any of these
stations must be a (line definition) for
DCP 1. DCP 0 does not have access to
code required to control terminals
associated with these stations.

)
(()

7%LINE DEFINITION SECTION.
Voo V%7610 % 6% W7 %' %% LINES FOR DCP 0

LINE L000:
ADDRESS = 0:0:0.
ADAPTER - = 1(DIRECT).
STATION = STAL =

LINE L0O1:
ADDRESS = 0:0:1. -
ADAPTER = 1(DIRECT).
STATION = STA2.

LINE L002:
ADDRESS = 0:0:2.
ADAPTER = 1(DIRECT). |
STATION = STA3. |

LINE L003: % THIS IS A SPARE LINE
ADDRESS = 0:0:3.
MAXSTATIONS = 1.

%% T6%6% %% %% %% %%% LINES FOR DCP 1

LINE L100:
ADDRESS = 1:0:0.
ADAPTER = 1(DIRECT).
STATION = STA4.

LINE L101:
ADDRESS. = 1.0:1.
ADAPTER = 1(DIRECT).
STATION = STAS.

LINE L102:
ADDRESS = 1:0:2.
ADAPTER = 1(DIRECT).
STATION = STA6.

%

%DCP DEFINITION SECTION.

%

DCP 0:
MEMORY = 8192.
TERMINAL = TTY.

DCP 1:
MEMORY = 8192.
TERMINAL = SCREENDEVICE.

'07

Definitions
DCp

DCP Terminal Statement ~ Continued

0707167090 ToToToTeTe Te Vo To%6 7670 To %o %e %' Je

The (line station statement) of any {line
definition)y for DCP 0 must name a station
that has a TTY terminal typc associated with
it. DCP 0 does not have access to code
required to control SCREENDEVICE ter-
minal types.

VT T To T T T T T T T T T T ToT6To %%

The (Iine station statement) of any (line
definitiony for DCP 1 must name a station
that has a SCREENDEVICE terminal type
associated with it. DCP | does not have
access to code required to control TTY
terminal types.

EN

has access to control code for TTY terminal

{ The effect of this statement is that this DCP }
types only.

has access to control code for SCREEN-

{ The effect of this statement is that this DCP
DEVICE terminal types only.

5-55

Definitions
FILE

FILE DEFINITION
Syatax

FILE o file identifier) > &= (file family statement) —-—b‘

Example

FILE NETWORK: FAMiLY = STATIONIDI1, STATION ID2, FILEID1.
Semantics

The (file definition} provides the means to define a data communications file and specify the stations
assoctated with that file. The (file identifier) is the cxternal name (TITLE) of the file, and has the syntacti-
cal form of a (system identifiery.

A single-station file is a file that has one station associated with it. A single-station file can, but need not,
be formally defined in a (ﬁle definition} . The reason that a single-station file does not need to be defined
is that cach station is itself a file. The external name (TITLE) of such a file would be the (station identi-

fier) of the station.

A multi-station file is, as the name implies, a file that has more than one station associated with it. Multi--
station files must be defined in (/'ile definition) s. . ~

Pragmatics -
A general discussion of data communication files and their peculiarities can be found in chapter 2 of the S
B 6700 Input/Output Subsystem Information Manual, form no. 5000185, under the heading “DATA

COMM FILES.” The information contained in that discussion is a prerequisite to understanding the

significance of ()"ilc dej"inition) s. Chapter 3 of the saume manual contains a table that lists all file attributes

and provides an explanation of cach attribute. Attributes relative to data communication files are found

by examining the “KIND” column of the table for the key word ‘‘Datacom.” The information found

in the explanation of cach data communications-relative attribute is also a prerequisite.

A detailed discussion of data communications object job 1/0 can be found in appendix B of the B 6700/

B 7700 DCALCOL Reference Manual, form no. 5000052, under the semantics of STATION ASSIGNMENT
TO FILE (TYPE = 64). The information found there is not considered a prerequisite; however, it does
contribute toward a deeper understanding of data communications files and data communications object
job 1/0. : ‘ ' ‘

5-56

Definitions
FILE
File Famiiy Statement

FILE FAMILY STATEMENT
Syntax
> @ . |
FAMILY o = é —a=(file i&erztiﬁer} : -
& (station identiﬁer> __j |
Example

FAMILY = STATIONIDI1, STATIONID2, FILEID1. -
Semantics ’

The (file Jamily statemem) defines the stations associated with a data communications file. If a (file
identifier) is named, all of the stations associated with the file named will also be associated with the
file being defined. Any duplication of an (identzjﬁcr} ina (file family statement) is ignored.

Supplementary Example

The following example is the (/'ile dcﬁnitibn} section of a hypothetical NDL prbgrain. Assume that the
stations STATION1, STATION2, STATION3, STATION4, STATIONS, STATIONG, STATION7, and
STATIONS have been defined in the (station definition) section. : o

TTYS is the (idenvifier) of this
FILE TTYS: ' file. The FAMILYS]ZE is 3.
FAMILY = STATION1, STATION2, STATION3. | STATIONI, STATION2, and
' STATIONS3 are the stations
associated with this file.

CRTS also has a FAMILYSIZE
FILE CRTS: of 3. The stations associated
FAMILY = STATION4, STATIONS, STATIONG. with the file are STATION4,
: _ ' - | STATIONS, and STATIONG.

'EXECUTIVES has a FAMILY-
. } SIZE of 5. The stations
FILE EXECUTIVES: ‘ associated with the file are
FAMILY = STATION1, CRTS, STATION6, STATION 7. STATION1, STATION4, ‘
: .| STATIONS, STATIONSG, and
\ STATION7.

! . (THE/ENTIRE/NETWORK has
(a FAMILYSIZE of 8. The
stations associated with THE/
< ENTIRE/NETWORK are
) STATION1, STATION?2,
STATION3, STATION4,
STATIONS, STATIONG,
STATION7, and STATIONS.

-~

S . o : 5-57

Definitions
LINE

LINE DEFINITION
Syntax

LINE q » (line identificr) : i———--»(Iinc adapter class statement —T
L,. DEFAULT e (default line idenliﬁer}j L - {line address statement y —————————ie
}——= (line answer statement) ————————=s>-
p———a=(line default statement) —_— e
—-—-—» (line endofnumber statement Y ——d
L& (line maxstations ktatement) —
p——== (line modem statement) —_—
{——=(line phone statement) ——————e»

L (line station statement) s>

Lo (line type statement) —————————u»

Examples .

LINE TTYDIALIN:

TYPE = DIALIN.
ADAPTER = 1 (MODEM).
MODEM = TTYMODEM.
ANSWER = TRUE.
PHONE = 2139686521.
ADDRESS = 0:0:0.
STATION = TTYSTATION.
MAXSTATIONS = 1.

LINE DEFAULT LINEDEFAULTLIST1:
ADAPTER = 1 (MODEM).
ANSWER = TRUE.
ENDOFNUMBER = FALSE.
MAXSTATIONS = 1.

TYPE = DIALIN.
MODEM = TTYMODEM.
Semantics

(line identifier) and {default line identifier) both have the same syntactical form as (identifier).

Each form of the (line deﬁm’tion) syntax is described subsequently.

5-58

(C)

Definitions
 LINE

Continued

LINE {ine identifier) : . . .
This form of the (linc definition) defines the attributces of a logical line in the data communication

network. Linc attributes are defined in one of the following ways: '

Each attribute is defined explicitly by means of a (line staiement} in the {line definition.
LZach attribute is defined implicitly by an explicit reference to a set of default attribute values.
Some of the line attributes are defined implicitly as in b, and the remainder are defined

oTe

explictly as in a.

Some (line statement)s must be defined for each (line definition); others do not. Some of the statements
may or may not require definition, depending upon the appearance of other statements. The semantics
portion of each (line statement) states, among other things, whether the attribute must be defined and

its effect upon the requirements of other attribute definitions. -

To define the attributes of a line as described in item a above, this syntax form must be used.

To define the attributes of a line as described in items b and c above, this syntax form, the following
syntax form, and the (Iine default statement} must be used in conjunction (this is described under the
following syntax form). i ' :

UINE DEFAULT {default line identiﬁer} DL

This syntax form is referred to as a Default (I,im' definition). Its purpose is to decrease the number of
source statements required to define all of the logical lincs in the data communications system. This is
accomplished in the following manner. Attributes common to several logical lines are defined by means

of a Default (line definition) . Associated with each Default (line deﬁnit_ion} is a (default line identiﬁer), :
Subsequent to the Default /ine definition), any (line definitiony that has those attributes in common can
reference the {default line identifier), instead of repeating the list. (A {default line identifier) is

referenced by means of a {line default statement).) The NDL compiler uses the last definition of a line
attribute, and therefore the programmer can reference a Default ,‘(Iine' deﬁhition} and change any

attributes by redefining them in the (line definition). : -

In appearance, the Default {line definition)) is similiar to the (line definition). The differences are that
the reserved word DEFAULT follows the reserved word LINE, and that there are no statements that are -
required to be defined in a Default (line definition). - : : -

- 5-59

Definitions
LINE |
Line Adapter Class Statement ' ' .

LINE ADAPTER CLASS STATEMENT
Syntax

ADAPTER ——» = ——b{(integcr> value of 1 thru 8} - : > .

}—o(MODEM)

L—= (DIRECT)
Examples |
ADAPTER
ADAPTER

5.
4 (MODEM).

Semantics

The {line adapter class statement) identifics the Adapter Class of the line adapter for the logical line and,
optionally, names the connection type (i.e., modem connect or direct connect).

The Adapter Class must be compatible with the ({'onz/mmic'alimz type numbez} specified in the (s'latiun

adapter statemenl} of any station assigned to the line. (Note that all stations assigned to a linc must

have the same <i'()l”l”lllli('(l’i()” type numlmr} defined.) Table 5-3 lists the compatible Adapter Classes

for cach (mmmzmication tvpe nmnbcr). For example, a line having stations assigned to it that define .
a {communication type munhvr} of 4 can name as an Adapter Class either 1,2, 3,4, or § (refer to

table 5-3). On the other hand, a line having stations assigned to it that defines 15 as the <commurzicati(m o N/
type number) can name only S as an Adapter Class. ‘ : -

If the connection type is named in the statement, it is considered by the compiler as documentation

only. The compiler determines whether the line adapter or a modem-connect line adapter, by the presence
or abscnce of a (/iuc modem smwnwm) for the (line dejiuition). A syntax crror is generated, however,

if DIRECT is named and a (Iinc modcm .vtatcmcn/} is present.

Pragmatics
LINE ADAPTEERS AND ADAPTER CLASSES

There arc 13 available line adapters. Three of the 13 are special-purpose line adapters; they are used
for Touch-Tone® telcphone input, Audio-Response lines, and Automatic Calling Units (ACU). The
remaining 10 are general-purpose line adapters.

The 13 available line adapters are divided into eight “Adapter Classes.” The Touch-T one® , Audio-
Responsc, and ACU line adapters comprise Adapter Classes 6, 7, and 8, respectively. The 10 general- -
purposc line adapters comprise Adapter Classes 1 through 5. Adapter Classes 1 through 5 differ primarily
m the maximum transmission speed at which the line adapters may be operated. Adapter Classes |
through 5 each consist of two line adapters, one being a “direct connect,” and the other being a “modem
connect.” The direct connect has a terminal attached to it by means of a two-wire or four-wire direct
connection. The modem connect has a terminal attached to it through modems using an RS232+

defined interface. Refer to table 5-3 for the Adapter Class and the use of each line adapter.

TA technical specification published by the Electronic Industries Association establishing the interface e/
requirements between modems and terminals or computers. : : '

5-60

Definitions
LINE

Line Adapter Class Statemert — Continued

Table 5-3. Available Line Adapters

MARKETING
NUMBER*

CONNECTION

USE

CLASS

B 6650-1

B 6650-1

B 6650-2

B 6650-2

B 6650-3

B 6650-3

B 66504

B 66504

B 6650-5

B 6650-5

B 6650-6
B 6650-7
B 6650-8

Direct

Modem

Direct

Modem

Direct

Modem

Direct
Modem
Direct

Modem

Two-wire direct connect, asynchronous
bit-serial transmission up to a maxi-
mum line speed of 600 BPS, simplex or
half-duplex. ‘

Modem-connected with 100-Series type
modem using RS232-defined interface,
asynchronous bit-serial transmission

up to a maximum line speed of 600
BPS, simplex or half-duplex. (Two
required for full duplex.)

Same as B 6650-1D, cxcept maximum
line specd is 1800 BPS.

Same as B 6650-1M, except with 202-
Series type modem and up to a maxi-
mum line speed of 1800 BPS.

Same as B 6650-1D, except maximum
line speed is 2400 BPS.

Modem-connected with 202-Series (asyn-
chronous) or 201-Series (synchronous)
modem using RS232-defined interface,
bit-serial transmission up to a maxi-
mum line speed of 2400 BPS, simplex

or half-duplex. (Two required for

full duplex.)

Same as B 6650-1D, except maximum
line speed is 4800 BPS. :

Same as B 6650-3M, except maximum
line speed is 4800 BPS.

Same as B 6650-1D, except maximum
line speed is 9600 BPS.

Same as B 6650-3M, except maximum
line speed is 9600 BPS.

For Touch-Tone® telephone input.
For Audio-Response line.

For Automatic Calling Unit (ACU).

*The above marketing numbers refer to B 6700 line adapters. B 7700 line adapters have similar
numbers, the difference being a leading 7 instead of a 6;¢.g., B 6650-1 for B 6700, and B 7650-1 for
B 7700. In this table only, a distinction is made between modem-connected line adapters and direct-
connected line adapters by affixing either a D (for direct-connected) or an M (for modem-connected)

to the field marketing numbers (under the “Use” column) which require that distinction.

5-61

Definitions
LINE
Ling Address Statement

LINE ADDRESS STATEMENT
Syntax

ADDRESS ~#~=—~(DCP numbery-o~ : —-{adapter cluster numbery—w- : —~(line adapter numbery——s= -

Example
ADDRESS = 2:0:15.

The above example would appear in the (lim' dv]iui/ion} of the line at the 15th line adapter position in
adapter cluster number O of DCP number 2.

Semantics

The (line address statemem) identifies the DCP number, the adapter cluster number, and the line
adapter number of the defined logical line. If two DCPs share hardware-exchanged adapter clusters

(as dcfined by the {DCP exclange statement) in a (DCP definition), then the (DCP number) defined in
this statement is the DCP initially expected to service the adapter cluster of which the line is a part. This
statement, which is required, must be defined explicitly in each (line definition).

()

5-62

Deﬁ‘nitionsv .
LINE

Line Answer Statement

LINE ANSWLER STATEMENT

Syntax

ANSWER — = - TRUE ? ' . -
i FALSE

Semantics

The {line answer statement) defines whether or not (TRUE or FALSE, respectiVely) the DCP is to
automatically answer an incoming call. This statement is required if the <line type statemem} in the
{ line definitiony defines the line configuration as DIALIN only, or DIALIN and DIALOUT.

1f ANSWER = FALSE, an incoming call causes the following actions to be taken by the DCP. A SWITCHED
STATUS RESULT (CLASS = 7) message is sent to the MCS of the station that is the first entry in the

Line Table for that line. (Unless an MCS has reconfigured the line so that it changes the first entry, the first
entry in the Line Table will be the entry for the first station listed in the (line station statement) of

the (line de,/'inition).) The message has a bit set in it that indicates the line is in a “ringing” status.
Presumably, upon notification of a line in a ringing status, the MCS programmer instructs the DCP to
‘answer the phone, or it takes appropriate action to clear the line. '

If ANSWER = TRUE, an incoming call causes the DCP to take the following actions. A SWITCHED STATUS
RESULT (CLASS = 7) message is sent to the controlling MCS of the station that is the first cntry in the
Line Table for that line. In this case the message has a bit set indicating that there has been an incoming
call, and that the DCP is in the process of answering the call.

An MCS may change the value of ANSWER af ter DCP initialization, by means of a SET/RESET
AUTO-ANSWER (TYPE = 102) DCWRITE. '

5-63

Definitions
LINE
Line Default Statement

LINE DEFAULT STATEMENT

Syntax

DEFAULT — = ———w-(default line identifier) -
Example

DEFAULT = DFLTLIST1.

Semantics

The (line default statement) allows the programmer to specify the (default line identiﬁer} of a set of)
default line attributes to be used for a (line deﬁnition) whose description is incomplete. It is advantageous
to group attributes that several lines have in common under a Default (line definition) and list the remain-
ing attributes under cach individual { line deﬁnition} . The compiler will then refer to the Default

< line definition} to complete the '(Iine deﬁnition}. The (line default statement} is not required to appear
in a (line definition) ; however, a (Iine definitiony must define all required attributes if a (lz‘ne default
statement) does not appear. ‘ '

The (line default statement} can appearina (line deﬁnition) or a Default (line deﬂ'n_ition}. Thus,
{line default statement)s can be “nested” to combine the attributes of one or more Default (line
definitions)s. ' . -

5-64

(O

Definitions
LINE
Line Endofnumb:r Statement

LINE ENDOFNUMBER STATEMENT

Syntax

ENDOFNUMBER—— = &TRUE , - .
L FALSI-:—————j | |

Semantics

The (Iine endofnumber statement} applies only to (line deﬁnition)s that specify the Automatic Calling
Unit (ACU) Adapter Classin its (/ine adapter class statement) (e.g., ADAPTER = 8). This statement is
required for those (Iine deﬁnition) s, and specifies whether or not (TRUE or FALSE, respectively) the
ACU has an “‘end of number” option.

5-65

Definitions
_ LINE
Line Maxstations Statement

N’/
LINE MAXSTATIONS STATEMENT
Syntax
MAXSTATIONS - = = integer) - -
Example

MAXSTATIONS = 25.
Semantics

The < line maxstations statwnenl} specifies the number of stations that may be assigned to the defined line.
If this statement does not appcar for a line having assigned stations (the (Yine station statemem) lists all
stations initially assigned to a linc), it is assumed that MAXSTATIONS is the number of stations explicitly
specified as assigned to the linc in the {line station statement). The ¢ integer} specified must not equal 0,
exceed 255, or be less than the number of stations listed in the (Iine station statement) (if the (line station
statement) is defined). '

Pragmatics

This statement informs the compiler of the maximum number of station descriptors required in the Line

Table of the DCP’s table structure. By defining MAXSTATIONS to be greater than the number of stations
listed in the (line station stalemen/) , an MCS may reconfigure more stations onto the line at some point .
in time after DCP initialization. For information regarding reconfiguration, refer to the B 6700/B 7700 S
DCALGOL Reference Manual, form number 5000052 '

5—-66

Definitions
LINE

Line Modem Statement

LINE MODEM STATEMENT

Syntax

MODEM = ' - (modem identifier) — -

Example
MODEM =BELL103A.
Semantics

The (h'ne modem statemenl} specifies the modem type that exists on the system end of the physical line.
(The {station moden statement) in a {station definition) specifies the modem type connected to the line
on the terminal end.)

Pragmatics

The compiler refercnces other portions of the program with this statement, checking for consistency. If,
for exumple, the {modem definition) of the (m()dem identiﬁer) specified in this statement lists any
{communication type number) s in its (modem adapter statemenl} that are not compatible with the
Adapter Class specified in the (line adapter class statement> of the (line definition), then a syntax crror
is generated. Another situation that causes a syntax error to be generated is if the compiler discovers that
the modem type specified in this statement is not compatible, in respect to the {communication type
numbery, with the modem type specified in the (stan.'(m deﬁnition) of a station assigned to the line.

5-67

Definitions
LINE

Line Phone Statement

LINE PHONE STATEMENT

Syntax

PHONE -= - (integer)

Example
PHONE = 12136572385.
Semantics

The (Iine phone stalcmenl} , implemented for documentation purposes only, documents the telephone
number of a DIALIN type line. This statement is optional in-a (lin’e definitioa}.

(W

Definitions
LINE

Line Station Statement

LINE STATION STATEMENT

Syntax

é)
STATION o = - (station identifier) : > -
Examples

STATION = RJEL.
STATION = DAKOTA/KID, BIDS.

Semantics

The ([ine station statement} is the means by which the NDL programmer associates one or more stations
with a line. A station that is associated with a particular line is said to be “assigned” to that line.

This stdtexmnt is required in those (lzne definition) s that specify DUPLEX .in the {line type statemert)
In all other variations of (lzne type statement) this statement is optional.

If more than one station is named, cach station must have the same {communication type number)
defined in its respective <9tatt(m adapter statement) . :

5-69

Definitions
LINE
Line Type Statement

LINE TYPE STATEMENT
Syntax
» g
TYPE —& = L /T DIALIN — _ S——
T\ DIALOUT ——& : —&(line identifier
b/ T\— DUPLEX ——=& : —=(/ine identifier
Examples

TYPE = DIALIN.

TYPE = DIALOUT:ACULINE.

TYPE = DUPLEX:AUXLINE.

TYPE = DIALIN. DIALOUT:AUTOCALL, DUPLEX:SUPERVISORY.

Semantics

The (Iine type statement)y provides the compiler with specific information concerning special logical line
configurations. This statement is required for <line definition} s whose line utilize either dial-in, dial-out,
or full duplex hardware facilitics.

DIALIN

This form identifies the line as a dial-in line. A line that may be dialed from a remote site is a'_dial-in line.
The appropriate {line type statementy for this configuration would be: : :

TYPE=DIALIN.

A logical line defined in this manner must include the {line answer statementy and the {line modem
statementy. The (line definitiony tor such a line could appear as follows:

LINE DIALUPLINE:

TYPE = DIALIN.

ADDRESS = 0:0:0.

MODEM = TTYI103A.

STATION = DIALUPSTATION.

ANSWER = TRUE.

ADAPTER = 1(MODEM).
DIALOUT

This form identifics the line as a dial-out line. A dial-out line is defined as a line that can become connected
to a remote site as a result ot a Message Control System issuing a DIALOUT (TYPE = 98) DCWRITE to the
line (thereby causing an Automatic Calling Unit (ACU) to dial the phone number of the remote site). The
TYPE=DIALOUT: (line identifiery syntax of the statement specifies such a configuration. The {Jine
identifiery names the {ine definitiony that defines the associated ACU. The following example illustrates
how the {line cleﬁni!ion/\, s could appear for a dial-out configuration.

LINE DIALOUTLINE:

TYPE = DIALOUT:ACULINE.
ADDRESS = 0:0:1.

MODEM = TTY103A.
ADAPTER = (MODEM).

5-70

(O

Definitions.
LINE

Line Typc Statement - Continued

LINE ACULINE
FNDOFNUMBER
ADDRLESS
ADAPTER

s =
=2
9

—

[

*

The {line definition) for the dial-out line must include a {line modem statement) and cannot include a
(line station statementy . The {ine definitiony for the ACU must include a {line endofnumber statement) ,
and it must define an address (in the line address stalwnml}) that is on the same adapter cluster as the
associated dial-out line.

DUPLEX

This form identifies the line as the primary of a line pair, for purposes of simultaneous transmission and
receptions. The (line identifiery names the auxiliary line’s (Iine definition) . The line referenced as the
auxiliary cannot contain a (line type statenwnt) nora <[ine station statement> . o

The following is an example of how full duplex primary and auxiliary lines could be defined.

LINE DUPLEXPRIMARY:

TYPE = DUPLEX:DUPLEXAUXILIARY.
ADDRESS = 0:0:5.

MODEM = SUPERMODEM.

STATION = MODEL37.

ADAPTER = 1.

" LINE DUPLEXAUXILIARY:
ADDRESS = 0:0:6.
ADAPTER =1.

Pragmatics

COMBINED CONFIGURATIONS _

A dial-in/dial-out line is characterized by both the ability to be dialed from a remote site, and the ability
to become connected to a remote site as a result of a Message Control System issuing a DIALOUT

(TYPE = 98) DCWRITE. This type of configuration requires the DIALIN and DIALOUT: (line identiﬁer)

options to appear in the {line type statement). The following example illustrates how a dial-in and dial-out
{ine definitiony could appear:

LINE IOLINE:

TYPE = DIALIN,DIALOUT:AUTOCALLUNIT.
ADDRESS = 0:1:0. |
MODEM = TTY103A.
STATION = REMOTETTY.
ANSWER = TRUE.
ADAPTER = 1(MODEM).

LINE AUTOCALLUNIT:
ENDOFNUMBER = FALSE
ADDRESS = 0:1:1.
ADAPTER = 8.

5-71

Definitions
LINE

Line Type Statcment - Continued

The full duplex syntax could be combined with the diak-in and dial-out syntax as foilows:

5-72

LINE IODUPLEX:
TYPE
ADDRESS
MODEM
STATION
ANSWER
ADAPTER

LINE AUXLINE:
ADDRESS
ADAPTER

LINE AUTOCALLUNIT:
ENDOFNUMBER
ADDRESS
ADAPTER

[T | I | | B

nowon

DIALIN.DIALOUT:AUTOCA LLUNIT,[)UPLEX:AUXLINE.
0:2:0. i
SUPERMODEM.

REMOTEDUPLEXDEVICE.

TRUE.

1(MODEM).

0:2:1.
1(MODEM).

z’(\

' Definitions
MCS

MCS DEFINITION
Syntax

K

MCS——— { MCS identifier) > : - CONTROL & = | # TRUE ——

Examples

MCS SYSTEM/CANDE:CONTROL = FALSE.
MCS SYSTEM/DIAGNOSTICMCS:CONTROL = TRUE.

Semantics

The purpose of the (MCS definition) is twofold: First, the (MCS definition) adds the (MCS identifier) to
the list (contained in the Network Information File) of valid Message Control System (MCS) programs; and
second, the (MCS deﬁnition) specifies whether or not (CONTROL = TRUE, or CONTROL = FALSE,
respectively) the named MCS is allowed to'execute a limited set of DCWRITE functions that perform DCP
diagnostic functions in addition to the standard DCWRITLEs. {(MCS identifier) has the syntactic form of a
(system identifier) . . S

Pragmatics

A list of valid MCSs is maintained in the Network Information File in order to restrict unauthorized
DCALGOL programs from becoming an MCS. (A DCALGOL program becomes an MCS when it success-
fully executes an INITIALIZE PRIMARY QUEUE (TYPE = 0) DCWRITE.) The MCS declaration is one
means of adding a name of an MCS to that list. (One other means is the (station MCS stat‘ement) in

a (station definitiony.)

The diagnostic DCWRITE functions allow an ‘MCS to perform on-line tests of components in the Data
Communications System. Those DCWRITEs that may be utilized in an MCS when CONTROL = TRUE
have DCWRITE TYPE numbers greater than 159." ' :

5-73

Definitions

MODEM
et
MODEM DEFINITION
Syntax
MODEM ———>» (modem identifier > — };-—o{modcm adapter statement) —h{
- (modem lossofcarrier statement)
EF. (modem noisedelay statement)
—a-(modem transmitdeldy statement}
Example
MODEM MABELL103A:

ADAPTER = 4.

LOSSOFCARRIER = DISCONNECT.

NOISEDELAY = 0.

TRANSMITDELAY =0. '
Semantics ‘ o \:i
The {modem definition) defines the attributes of a modem type in the data communications system.

The (nodem identifier) names the (modem definition) , and has the syntactic form of (identifier). The

\modem statement s are described subsequently.
N’
'\o”:

- Definitions
MODEM
Modem Adapter Statement

MODEM ADAPTER STATEMENT

Syntax
>
ADAPTER —- \'J('/)I)IIHIHII'(‘llli()ll 1ype sanber)
(=s=Ccommunication (ype mumber) — —=(Contmunication Lype number)=)j

Examples

ADAPTER = 1,2,34..

ADAPTER = 10.

ADAPTER = (2.3),(4.,5),6,7.
Semantics

The ﬁmodvm adapter statement) defines one or more combinations of character format, synchronous/ -
asynchronous communication, and line speed (in the case of asynchronous communications) with which the
modem is compatible. This is done by supplying one or more (communication type number) s (or number
pairs). , '

Table 5-4 lists the allowed {communication type number)s and the characteristics associated with cach.
For example, the statement ’ '

ADAPTER = 4,
defines an 11-bit character format, asynchronous communication, at a‘line speed of 110 bits per second.

If the modem is to be used in a full duplex mode, and the primary and auxiliary lines have different
characteristics, then one or more (communication type number) pairs must be supplied. For example, the
statement ' : ' ‘ ’

ADAPTER = (11,6).

defines for the primary line a 10-bit character fonhét, synchronous communication, at a speed of 1800 bits
per second. The characteristics associated with the auxiliary line are the same as for the primary line,
except that the auxiliary line runs at a line speed of 150 bits per second.

Pragmatics ,
COMMUNICATION TYPE NUMBERS

A (communication type number) is an integer that has associated with it a set of attributes that define
three line characteristics. Those characteristics are the format of the characters transmitted (start informa-
tion, data information, parity information, and stop information), whether the line is to be driven
synchronously or asynchronously, and the speed of the transmissions (in the case of asynchronous
communications). Table 5-4 lists the allowed {communication type number)ys and the line characteristics
associated with each. : ‘

Most of the electronics that directly control a line are located in the adapter cluster that contains the line
adapter for that line (rather than being located in the line adapter itself). The adapter cluster is somewhat
general purpose in its design in that it can run at various line speeds and handle various character formats.
The DCP can cause the adapter cluster to function in a suitably special-purpose way (with respect to a
single line) by supplying it a number derived from the (communication type numb.er).’ .

Definitions
_ MODEM - _ _ ‘\ _ A
Modem Adapter Statement — Continued ’ e

There arc three areas in an NDL program that require the pi-bgrammer to supply one or more '(éommunica- -
tion type number)s: : :

a. Inthe (modcm adapter statement} of each (mmlvm 'dcfiliiti(m) ,
b. Inthe {erminal adapter statement)y for each (terminal definition) , and

c. Inthe (station adapter statement) for each (station definition) .

As it encounters each area, the NDL compiler cross-checks to determine if the areas are compatible in their
description. If inconsistencies in component compatibility arise, syntax errors are generated. . Restrictions
are described in the (terminal adapter statemnent) and (station adapter statement) semantics.

EXPLANATION OF TABLE 5-4

Table 5-4 lists the allowed {communication type number)s in the column labeled “COMM. TYPE NUM.”
To the right of each {(communication type number) are the three line characteristics associated with it,
under the columns labeled “SPEED (BPS),” “CHARACTER FORMAT,” and “SYNCHRONOUS OR
ASYNCHRONOUS.” The rightmost column, labeled “COMPATIBLE ADAPTER CLASSES,” is
referenced and described in the (Jine definition) section of this chapter. - :

5-76

- Modem Adéptcr Statement -~ Continued

o Det‘initidns
MODEM

Table 5-4. Table of {comnunication type mzmlrer)s

CHARACTER FORMAT

COMM. CHAR. SYNCHRONOUS COMPATIBLE |
TYPE | SPEED | SIZE | START | DATA | PARITY | STopP ~ OR ADAPTER CLASSES
NUM. (BPS) | (BITS) | INFO. | INFO. INFO. INFO.| ASYNCHRONOUS | 1 23456 7 8
! 455 | 15 1 5.0 — 1.5 ASYNC. XXX XX
2 56.9 7.5 1 5.0 _ 1.5 ASYNC. XXXXX -
3 750 75 1 5.0 — 1.5 ASYNC. XXXXX
4 1100 | 11.0 1 7.0 1 2 ASYNC. XX XXX
5 1345 | 9.0 1 6.0 1 1 ASYNC. . XXXXX
6 150.0 | 10.0 1 7.0 1 1 ASYNC. XX XXX
7 300.0 | 100 1 7.0 1 1 'ASYNC. XXX XX
8 600.0 | 10.0 1 7.0 1 1 ASYNC. XX XXX
9 12000 | 100 1 7.0 1 1 ASYNC. X XXX
10 12000 | 6.0 1 40 —_ 1 ASYNC. X XXX
11 1800.0 | 10.0 1 7.0 1 1 ASYNC. X XXX
12 24000 | 10.0 1 7.0 1 1 ASYNC. X X X
13 3600.0 | 10.0 1 7.0 1 1 ASYNC. X X
14 4800.0 | 10.0 1 7.0 1 1 ASYNC, X X
15 9600.0 | 10.0 1 7.0 1 1 ASYNC. X
16 2000.0 7.0 — 6.0 1 —— "~ SYNC. X X X
17 20000 | 8.0 — 7.0 1 _ SYNC. XXX
18 20000 | 9.0 _— 8.0 1 —_ SYNC. "X X X
19 24000 | 7.0 — 6.0 1 — SYNC. X X X
20 2400.0 8.0 —_— 7.0 1 _ SYNC. X XX
21 24000 | 9.0 —_ 8.0 1 _— 'SYNC. - X X X
22 4800.0 7.0 —_— 6.0 1 — SYNC. X X
23 48000 | 8.0 — 7.0 1 _ SYNC. XX
24 48000 | 9.0 — 8.0 1 —_ SYNC.. X X
25 9600.0 7.0 — 6.0 1 _— SYNC. X
26 9600.0 8.0 - 7.0 1 — SYNC. X
27 9600.0 | 9.0 — 80 1 - SYNC. X
28 400 | 4.0 - 40 —_ _ - SYNC.
29 16.0 8.0 — 10 1 = SYNC.
30 400 | 4.0 _— 4.0 —_— _ SYNC.

Definitions
MODEM

Modem Lossofcarrier Statement

MODEM LOSSOFCARRIER STATEMENT

Syntax

LOSSOFCARRIER > = & DISCONNECT - -

Pragmatics

Certain modems (Western Electric (Bell System) 103 series modemis, and possibly others) maintain con-
tinuous carrier in both directions while the line is properly connected. As such, CF (Carrier Detected)
and CB (Clear to Send) are maintained TRUE while connected. Additionally, if each modem is equipped
with both the Initiate Disconnect and the Respond to Disconnect options, each modem employs the
“long space disconnect” convention. This convention allows one modem to determine if the other is
disconnecting, and itsclf go “‘on-hook™ and drop CC (Data Set Ready).

Two problems arise, however, when only one such modcemn is configured at the system end, and the
terminal is interfaced with an acoustic coupler at the terminal end. At the time of making a connection,
establishment of carrier is difficult. In fact, the system modem may detect carrier from the coupler while
the telephone receiver is near the coupler and before the receiver is properly seated. In this case, CF and
CB are raised prematurely, and if the system takes this as a cue to begin transmission of a greeting, the
two signals (the data transmitted from the system, and carricr from the acoustic coupler) interact with
cach other, and the system modem detects loss of carrier. At the time of terminating a call, if the terminal
initiates the disconncect and has no “long space disconnect™ facility, or if the terminal operator does not
use it, the system modem detects only loss of carrier. In this case, the system modem drops CF and CB,
the modem remains “‘oft-hook™ and maintains CC (Data Sct Ready). Thereafter, any incoming calls
would recceive a “busy’’ signal. :

The {modem lossofcarrier statement) is implemented for such a configuration. If this statement is
included in the definition of a modem, special logic is invoked, m addition to the normal logic, when
dealing with that modem typc.

In the case of the system calling out, normal logic waits for CC to be raised by the modem. If CC is raised -

within 25 seconds, the line is immediately rcleased as connected. A timeout of 25 seconds causes CD
(Data Terminal Ready) to be dropped, the modem goes *‘on-hook,” and the line reverts to a disconnected
state. The special logic is invoked after CC is found TRUE. With the 25-second timeout in effect, the
special logic then waits until CF and CB are both raised by the modem. After CF and CB are detected,
the logic then delays approximately 5 seconds before notifying the system that the line is connected.

This gives the terminal operator sufficient time to place the receiver in the acoustic coupler.

In the case of a terminal-initiated disconnect, that condition is detected in the normal logic by either the
“long space disconnect’ adapter cluster interrupt or by a CC (Data Set Ready) FALSE condition. In
addition to the normal log.,xc the special logic also interprets CF FALSE or CB FALSE as a termmal—
initiated disconnect.

5-78

((\ -

N’

Definitions
MODEM

Modem Noised v lay Statement

MODEM NOISEDELAY STATEMENT

Syntax
NOISEDELAY — = & (delay time) sald
Examples
NOISEDELAY = 0.
NOISEDELAY = 200 MILLI.
Semantics

The (modem noisedelay statement) defines the amount of time that should be delayed when the modem
enters a Clear to Send (CB) status to avoid receiving ‘“‘noise” on the line. (delay time) must be expressed -
as (time) , and affects the amount of time delayed after an INITIATE RECEIVE or INITIATE TRANSMIT
construct is executed and before the next statement is executed in a (control deﬁnition} or (request
definition) . The (delay time) defined in this statement is used in a compiler algorithm that calculates the
delay. The compiler algorithm is discussed in the semantics of the INITIATE RECEIVE and INITIATE
TRANSMIT constructs under the (initiate statement). This statement must appear in each {modem
definition) .

L 5-79

Definitions
MODEM

Modem Transmitdelay Statement

MODEM TRANSMITDELAY STATEMENT

Syntax
TRANSMITD.ELAY - = e (delay time) - — -
Examples
TRANSMITDELAY = 0.
TRANSMITDELAY = 150 MICRO.
Semantics

The (modem transmitdelay statement) defines the amount of time required for the modem to switch to

a Clear to Send (CB) state after receiving a Request to Send (CA). (deluy time) must be expressed as

(time) and affects the amount of time delayed after an INITIATE RECEIVE or INITIATE TRANSMIT
construct is exceuted and before the next statement is executed in a (‘control definition) ot (request
dL’_ﬁflifi()H). The \’dclay time} defined in this statcment is used in a compiler algorithm that calculates the
delay. ‘The compiler algorithm is discussed in the semantics of the INITIATE RECEIVE and INITIATE
TRANSMIT constructs of the (initiatc statement). This statement must appear in cach (modem definition) .

5-80

Definitions
REQUEST

REQUEST DEFINITION
Syntax

REQUEST —»-(request identifier) —ue: -%--——» {error switch statement

é &= {assignment stateme)zt) —
‘ L(Iabel} - —-j

= (backspace statement) —]
o (break statément) e —
- (code sfatement) —
- |~ {compound ?tatement —
—e- (coniinue statement ——go
- (delay statement) S
—=(fetch stateméht) -———-—m-
—o-(finish statementy — gl
= ﬁ)rk statement y —————om
=< get&pac'e statement --—-a:-
—aQ{go to statement) ————a»
- if siatement) —_—
—= (increment statement) —a
e (initialize siatemént) —
o initiate ‘stdtément) —
—-»(pausé statement> —
- (receive state'ment} —_—
—= (shift statement) — -
—= (store statement) ———»
o= (sum statement) ————>
- (terminate statément) —_—

—= (transmit statement) ——um

L (wait statement) —_—
' ' 5-81

Definitions
REQUEST

Continued

Example
REQUEST READTTY:

INITIATE RECEIVE.
RECEIVE TEXT [END].
TERMINATE NORMAL.

Semantics

(request definition) s, sometimes referred to as Requests, are coded line disciplines (protocols) that are
used in communicating with the various terminal types in the data communications network. A (request
definiti(m) must be coded for each capability of a terminal type; if it is possible for a terminal type to
send input to the system and receive output from the system, then two (request definition) s must be
specified for that terminal type in its (terminal definition). The input (request definition) is generally
referred to as the “Receive Request,” and the output (rcquest definitiony the “Transmit Request.” (The
specific {request definition) to be used for each of these capabilities is specified by the (terminal

request statement).

When there is a message to be sent to a particular station on a line, the (control deﬁnition) initiates

the Transmit Request specificd for the (rerminal deﬁnition) associated with the station. The Transmit
Request procedure handles the transmission of the message. 1f the transmission of the message is successtul,
the Transmit Request is terminated, and a branch of control is made back to the (control definition} for
the initiation of the next Request.

If the terminal associated with a station is allowed to input data, the (control definition} designated for
that line normally initiates the Receive Request specified for the terminal type. 1f the terminal has
information to transmit, the Receive Request procedure obtains a message space in which to store the
received text, receives and stores the text, and then terminates in a manner that forwards the message to
the MCS. If the terminal has nothing to transmit, the Receive Request procedure usually notes that there
was no input, and terminates. In either case, upon termination, control returns to the {control definition
for the initiation of the next Request.

(request identifier) has the syntactic form of (identifier).

Statements in (request definition) s are executed sequentially. Insome cases, however, it is desirable

to alter the order of execution of statements within the procedure. A (request statement) preceded by a

élabel is one means of accomplishing this. The <go to statement} is used to transfer control to a
labelYed {request statement). ~

A (request statement) must be appropriate for the type of Request in which it appears. That is, some
<request statement)s are allowed only in Receive Requests, some are allowed only in Transmit Requests,
and some are allowed in cither type. Subsequently, the semantics portion of each statement defines,
among other things, in which type of (request definition) the statement can appear. '

5-82

(¢

Definitions
REQUEST
Assignment Statement

ASSIGNMENT STATEMENT
Syntax
FORM 1 LOGICAL ASSIGNMENT

(ussignable bit variable) o = = (bit variable) . : — o
TRUE

FALSE -
FORM 2 — VALUE ASSIGNMENT

{ussignable byte variable)—~ = —x—s=(byte vanabIe/ . : I &
. —(_integer)ﬂ t+ - { byte variable y——>-
—><s1ng1e character) - { integer Ym————sn

(single character y—e=1

—-(translatetable identifier)—w= (—»={ byte variable)—s=) —s>

. {recei ve “address”’ statement} ' >

Examples

TOG [0] = TRUE.

TOG |1] = TOG [0].

LINE (BUSY) = FALSE. .

RETRY = STATION (TALLY). :

TALLY [0] = STATION (FREQUENCY) — TALLY [1].

CHARACTER = TRANSTABLEID (CHARACTER).

STATION (TALLY) = RECEIVE ADDRESS (TRANSMIT) [ADDERR:999].

Semantics
FORM 1

This form causes the value on the right side of the equal sign to réplace the current value of (asszgnable
bit variable).

FORM 2

Value assignment causes a calculated value on the right of the equal sign to be stored in the (ass:gnable
byte variable). Arithmetic calculations are done in modulo 255 arithmetic.

(assignable byte variable) = (translatetable identifier) ({byte vanable)).

This construct is the means to invoke user-defined character translation. User-defined translation is
effected by three areas of the NDL source program.

a. In a (translatetable definition), the programmer must define the contents of a translation
table and associate a (translatetable identifier) with it.

5-83

Definitions
REQUEST

Assignment Statement - Continued

b. In the {rerminal definitiony of a terminal type that requires special character translation,
the programmer should suppress automatic character translation by using either of the
following forms of the {terminal code statement): ’

CODE = BINARY.

or
CODE = EBCDIC.

c. Ina {control definitiony or {request definitiony , the programmer invokes the translation
by using this option ol the value assignment. Any (byte variable) can be designated as con-
taining the character to be translated.

The {translatetable identifier) identifies the translation table to be used. An (assignablc byte
variable) is designated to the left of the cqual sign, identifying where the resulting translated
character is to be stored.

If N is the {source size) (defined in the {translatetable definition)), then the N low-order bits
of the {byre variabley arc used as an index into the translation table. The eight-bit character
thus indexed is stored in the (assignable byte Variable>.

{assignable byte variable) = {receive “address”statement}.

This construct attempts to RECEIVE the address characters of a terminal, and store in (assignable byte
variable) the station index of a station whose address characters are equal to those received. The {receive
“address” statement} is the same as described in the semantics of the RECEIVE ADDRESS construct

of the {receive statement The optional syntax in the {rcccivc “address” statement } invokes the same
actions as described in the {receive statement)y semantics except for ADDERR. Any action specified for
ADDERR is taken if no valid station assigned to the line is found with address characters equal to those
received. : :

5-84

()

Definitions
REQUEST

Backspace Statement

BACKSPACE STATEMENT
Syntax

BACKSPACE : ~ ‘ o -

Semantics

The (backspace statement) causes the message text pointer to be moved backwards one character. This
statement can only appear in a Receive Request. The (backspace statement) may be executed repeatedly;
however, the message text pointer will never be stepped back so far that it points into the message header.

5-85

Definitions
REQUEST

Break Statement

BREAK STATEMENT
Syntax

BREAK -+ (

- * -y = NULL: =) - .
l——«»(break tiine) ——j ' < (delay time) _j '

Examples

BREAK (¥, NULL). :
BREAK (200 MILLI, 3 SEC).
BREAK (¥, 3 SEC).

BREAK (100 MILLI, NULL).

Semantics

The (break statement} causes binary zeroes to be transmitted on the line, thus changing the state of the
line to a “spacing” condition for a specified time.

The break time) specifies the {time) to break. An asterisk indicates that a standard break of 2 character
times should be used.

The {delay time) specifies the {time) to delay subsequent to the break and prior to when control
continues. :

5-86

(€

Definitions
REQUEST
Cede Statement

CODE STATEMENT

Syntax

CODE = & ASCII j & .
L—»- BINARY

Semantics

CODE=ASCII invokes the ASCII-to-EBCDIC translation for received data and the EBCDIC-to-ASCII
translation for transmitted data.

CODE=BINARY inhibits any character translation on data transmitted or received.
Pragmatics

The {code statement) allows a programmer to either invoke or inhibit on a logical linc the DCP ASCII-
to-EBCDIC character code translation for input, and the EBCDIC-to-ASCII character code translation
for output. Any (termmal defmmon) that names, in its (termmal control statement} (control
definition) that utilizes the {code statement) . must define ASCII (BINARY) as its character code in
the (terminal code statement). (Refer to the <termmal code statement) in this chapter)

Once that translation has been invoked on a line, the translation continues until such time that it is
inhibited. If translation is inhibited, translation will be inhibited on that line until invoked again by any
of the following constructs: CODE=ASCII, TERMINATE NORMAL, TERMINATE LOGICALACK,
TERMINATE LOGICALACK(RETURN), TERMINATE ERROR, TERMINATE ENABLEINPUT or
(while executing a Receive Request) TERMINATE NOINPUT

5-87

Dcfinitions
REQUEST

Compound Statement) i .

COMPOUND STATEMENT

Svatax

BEGIN l &= FCGUOST .s‘lu(cnlt’:lf} & END _—
Example '

BEGIN

INITIATE TRANSMIT.
TRANSMIT TEXT.
FINISH TRANSMIT.
END.

Semantics

The (cmnpound staten’zent} groups several statements together to form a logical sequence. To execute
more than one statement when the condition of an (if statement) is satisfied, a (compound statement
must be used. : : :

()

R

5--88

Definitions
REQUEST
Continue Statement

CONTINUE STATEMENT
Syntax

CONTINUE ‘ - . I -

Semantics

The {continue statement) can appear in only those (request definition) s and {control definition) s
written to communicate with full duplex terminal types. This statement causes the co-line to resume
processing, if, and only if, it had been suspended by a <wait statement}, ora (rec'e’ive s_tatement) witha
CONTINUE option specified. If the co-line had not been suspended, this statement acts as a no-op. The
{continue statement) has no effect upon the line on which it was executed. e

Pragmatics

Refer to the {fork statement) pragmatics.

5-89

Definitions
REQUEST
Delay Statement

DELAY STATEMENT
Syntax

DELAY > (' w=(delay time) —) —

Examples

DELAY (3 SEC).
DELAY (0).

Semantics

The (delay st‘atement) provices a means to delay a specified period of time before control proceeds to the
next statement. The {request definition) is suspended in a “sleep” state for the {delay time) specified.

Pragmatics
The *‘sleep” state induced by the {delay statement) allows the DCP to service other logical lines.

5-90

‘(\

' Deﬁnitions
REQUEST ‘
Error Switch Statement

ERROR SWITCH STATEMENT
Syntax
‘) -

ERROR —s [—& { switch number S —am] —em = § /I\-‘D-BREAK ‘,,; o (label Lo .
L/ T\>-BUFOVFL—————= ~=-ABORT
—/1\--LOSSOFCARRIER—> NULL
—/ 1\~ PARITY ———*
1\ STOPBIT—————{
T\ TIMEQUT ————>-

Examples

ERROR [0] = BREAK: 0, BUFOVFL: NULL, LOSSOFCARRIER: ABORT, PARITY: 999,
STOPBIT: 999. TIMEOUT: NULL. ' '

"ERROR | 1] = BREAK: NULL.

'ERROR |99] = BUFOVFL: NULL.

Semantics

Tie (crrnr switch statement) is a non-executable statement that allows thic programmer to define a sct of
default actions that are to be taken in a (receive statem_wu} if the specificd errors occur. (switch ;zumber)
has the syntactic form of (irztc'ger>, The semantics of each option is described subsequently. ‘

BREAK

The BREAK option variations cause the folldwing actions if a break, that is, at least two character-times of
a spacing line condition, is detected by the adapter cluster while receiving:

BREAK: NULL causes no action. Execution proceeds as if the break did not occur. -

BREAK: (label) sets TRUE the (hit variablcy BREAK [RECEIVE], and branches
control to (label). , .
BREAK: ABORT . sets TRUE the (bit variable) BREAK [RECEIVE], and executes an
‘ ~ implicit TERMINATE ERROR. ‘ ‘
BUFOVFL
The BUFOVFL option variations cause the following actions if the DCP is unable to service a Cluster
Attention Needed (CAN) interrupt before the adapter cluster receives another character (thus destroying
the previous character): : ' -
BUFOVFL: NULL causes no action. Execution proceeds as if the error conditions did not
' occur. : . ,
BUFOVFL: (label) ' s.<ets TRUE the (bit variabley BUFOVFL, and branches control to
label). . .

5-91

Definitions
. REQUEST
Error Switch Statement — Continued

BUFOVFL: ABORT sets TRUE the (bit variabley BUFOVFL, and executes an implicit
TERMINATE ERROR. o

LOSSOFCARRIER

The LOSSOFCARRIER option variations causc the following actions if a loss of carrier is detected while
receiving.

i ’)
LOSSOFCARRIER: NULL causes no action. Execution proceeds as if the error did not occur.

LOSSOFCARRIER: (label) scts TRUE the {bit variable) LOSSOFCARRIER, and branches -
control to {label) . . . ‘

LOSSOFCARRIER: ABORT scts TRUE the {bit variable) LOSSOFCARRIER, and cxecufcs an
implicit TERMINATE ERROR.

There is one exception to the actions described in the above. If a loss of carrier is detected while receiving,
and if the terminal is modem-connect, and if the terminal’s (station definition) references a {modem
definition) that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit disconnect is
done. regardless of the action associated with LOSSOFCARRIER in the {error action statement) .

PARITY

The PARITY option variations cause the following actions if a parity bit error is detected by the adaptér
cluster: ' '

PARITY: NULL causes no action. Exccution proceeds as if the crror did not occur.

PARITY: <labcl> . sets TRUE the (bit v‘ariable) PARITY, and branches control to
(label) . - -
PARITY: ABORT scts TRUE the (bit variable) PARITY, and executcs a TERMINATE
- ERROR. : _
STOPBIT

The STOPBIT option variations cause the following actions if a stop bit error is detected by the adapter
cluster:

STOPBIT: NULL causes no action. Execution proceeds as if the error did-not occur.

STOPBIT: (label) sets TRUE the {bit variabley STOPBIT, and branches control to
(label) . | | |
STOPBIT: ABORT sets TRUE the {bit variabley STOPBIT, and executes a TERMINATE
ERROR. ' : ,
TIMEOUT |

The TIMEOUT option variations of the TIMEOUT syntax shown below cause the actions described if the
time required to receive a character cxceeds the (timeout time) . The (timeout time) is defined in the
terminal timeout statement) , but can be overridden by including the (timeout time)) or (NULL)
syntax options in the receive statement . ‘

TIMEOUT: NULL causes no action. Execution proceeds as if the error did not occur.
TIMEOUT: (label) szts TR>UE the (bit variable) TIMEOUT, and branches control to
label) .

o) ‘Definitions
: | B ~° REQUEST
| - o | Error Switch Statement — Continued
o TIMEOUT: ABORT sets TRUE the (bit variable) TIMEOUT, and executes a TERMINATE
v - ERROR.
Pragmatics

An (error switch statement) must be associated with a (receive statement) by means of a {switch number)
refercnce before any of the default actions are invoked. The (error switch statemem) can appear in a ,
(request definition) as many times as the programmer deems convenient, providing the followii.g restric-
tion is adhered to: within a given {request definitior.), {error switch statement)s must have a uniqu-
(switch number} , and all (error switch statemem} s must precede all executable statements,in the
procedure. _ ' :

5-93

Definitions
- REQUEST
Fetch Statement

FETCH STATEMENT
Syntax
FETCH » it ©
.L[' — v s label) —— ;]_1
| LENDOFBUFFER—-—:] L #NULLj |
Examples
FETCH.

FETCH [10]. .
~ FETCH [ENDOFBUFFER:NULL].

Semantics’

The execution of the (fetch&tdtement) loads into CHARACTER, the character pointed to by the message
text pointer and updates the pointer to point forward one character position.

When using the (fetch statement)’, provision should be made for taking action if the end-of-the-text buffer
is encountered. The programmer can specify this action by including the optional syntax shown in the
syntax diagram. : : '

NULL specifies that no action should be taken. , _
(labely specifies that control should branch to {label) if the end of buffer is encountered.

If the end of buffer is encoun.tered‘and no action is specified, an implicif TERMINATE ‘ERROR is
executed. '

For program documentation, the ENDOFBUFFER syntax can be added to the error action
specification. ,

Supplementary Example

INITIATE TRANSMIT.

3: FETCH [ENDOFBUFFER:5].
TRANSMIT CHAR.
GO TO 3. |

5: FINISH TRANSMIT.

5-94

()

L)

Definitions.
REQUEST
Finish Statement

FINISH STATEMENT
Syntax

FINISH ——#TRANSMIT — ' .
| L,(_—--—-——-‘ NULL

= (delay time }——j

Examples

FINISH TRANSMIT. -
FINISH TRANSMIT (NULL).
FINISH TRANSMIT (3 SEC).

Semantics

The purpose of the {ﬁnish statement} is to take a line out of the transmit ready state and prepare the line
to receiveé information. The adapter cluster delays a period of time long enough for the last character '
TRANSMITted to be transmitted, plus 2 milliseconds, before the line is put in a receive ready state. Al-
though the ('finish statement) puts the line in a receive ready state, the cluster hardware invokes a delay
that inhibits any data from being received for 25 milliseconds. An INITIATE RECEIVE construct should
precede any subsequent {recetve statement) to override the 25-mllhsecond hardware delay

The {delay ttme} optxon allows the programmer to specify a software delay of (nme) before execution
proceeds in the (control defil mtton)))

For example, the statement
'FINISH TRANSMIT (3 SEC).
is equivalent to

FINISH TRANSMIT.
DELAY (3 SEC).

The FINISH TRANSMIT (NULL) form is equivalent to FINISH TRANSMIT.

5-95

Dcfinitions
REQUEST
Fork Statement

FORK STATEMENT
Syntax.

FORK ’ ' o(label Y - ' —

Example
FORK 10.
Semantics

. The (fork statement) is allowed in only those {control definition)s and (request definitionys :
that are written to communicate with full duplex terminal types. This statement can be executed in the
{rontrol definition) or (request definition) of the auxiliary line or the primary linc. The execution of
this statement causes the co-line control. if not busy, to branch to and begin executing code in the (req'uest
definition) that executes the FORK at the <Iabel> specificd, while control on the FORKing line exccutes
an implicit PAUSE (i.c.. a (pause statement)) and continues executing in parallel. The co-line is deter-
mined busy or not busy by testing the BUSY bit (i.c.. LINE(BUSY) or AUX(LINE(BUSY)), whichever is
appropriate). If the co-line is busy. the (fork sfatement} acts as a4 no-op. '

Pragmatics o
Synchronization problems can occur between the primary and auxiliary lines as a result of the (fork : \\..‘}’/
statemenr) executing the implicit PAUSE. The implicit PAUSE vyields use of the DCP, to allow processing to ‘
to-proceed on other lines. Thus. processing on the co-line is actually started before the FORKing line ‘
exits the < fork statement). As a result, the programmer must, by some means (e.g., by setting and testing

line TOGs). effect the synchronization of the lines. This is especially critical if the code contains <wait
statement)s and (continue statemem}s. The following example illustrates how full duplex lines could

*hang™ as a result of poor synchronization. ’ -

FORK 10.
WAIT.

10 CONTINUE.
WAIT.

Assume that the primary line executes the FORK 10. At that point, the primary line temporarily yields

use of the DCP to other lines. The auxiliary line starts up and executes the CONTINUE. Since primary

control is still at the (fork statement) and is not in a (wait statement), the auxiliary line CONTINUE acts

as a no-op. Next. the auxiliary line executes the WAIT. When the primary line gets use of the processor

again, it executes its WAIT. At this point, the primary and auxiliary lines are “hung”; each WAITing fora -
CONTINUE from its co-line. , ' -

5-96

Definitions
' REQUEST
Getspace Statement

GETSPACE STATEMENT
Syntax

GETSPACE - > label) —] -

Example
GETSPACE [10]
Semantics

The (getspace statement} provides the means for a Receive Request to explicitly acquire a message space
for input. The message space (if obtained) is linked into the head of the Station Queue, thereby setting
STATION (QUEUED) to TRUE. If there is no message space available at the time the '(getSpace
statement) is executed, control branches to the (Iabel}. If a message spacz has already. been acquired, this
instruction acts as a no-op. This statement is also treated as a no-op if it appears.in a Transmit Request.

- 5-97

Definitions
REQUEST
Go To Statement

GO TO STATEMENT
Syntax

T PR

(byte variable) - —»(label) >)
L. |

Examples

GO 10.
GO TO 10.

GO TO TOGS, (0,1,2,3).
GO TO STATION (5,9,12).

Semantics

The <go to statement} alters the path of control, that is, the sequential flow of statement executioh,
within a {request definition).

GO TO (label) ,
This form of the (go to statement) unconditionally transfers cpntrol to the (Idbél) specified.
GO TO (byte variablc)y . . . |

This form of the {go to statement} provides a convenient means of dynamically selecting one or more
{label) s to which control could branch. The {label) to branch to is selected by using the {byte variable)
as an index value. If N represents the number of {label)s in the {go to statement), then the (label)s are

numbered 0 to N-1. The (label) corresponding to the index value is the (label) to which control branches.

If the index value is greater than N-1, then control continues at the statement following the <go to
statemen t) .

Supplementary Example

GO TO STATION (5,9,12).
% EXECUTION CONTINUES HERE IF STATION >2.

5: TOG 0] = TRUE.
9: TOG [1] = TRUE.

12: TOG [2] = TRUE.

5-98

»{label) A -

(C)

«

(C

‘ Deﬁ_nitiohs
. REQUEST
- Go To Statement — Continued

This example illustrates the GO TO {byte variable) construct of the {go to statement). The value of
STATION determines the next statement to be executed. If the value of STATION is 0, control branches
to the {label) S; if the value of STATION is 1, control branches to ¢ label) 9; and if the value of STATION -
is 2, control branches to {label) 12. If the value of STATION is greater than 2, control continues at the
next sequential statement. : o

- Definitions

~ } REQUEST
~ If Statement
{JF STATEMENT S~
' ;:. yntax
IF ~r>TRUE ' +THEN ' -
‘) _
LNOTJ L&~ FALSE —o=| , L(rcqm'st .\'ta'lwm'nl‘)—1 L ELSE -»=(request .étatémvnt)j
bemm(bit variahleye . ' . V
b (D te variable) = LSS I »(hyie :'ariaftlt'} 1
o (integer) ——— 1o~ LEQ -.‘E(integer)—-——-fl
b (single character-s= Lo~ EQL - {single character)-s
-»NEQ#- N
> GEQ+
Lo~ GTR -+
Examples
IF TRUE THEN. '
IF TOG [0] THEN TOG 0] = FALSE. = - . , ' R
IF TALLY [0] LSS TALLY [1] THEN TALLY [0] = TALLY [1]. _ -
IF CHARACTER = 4“FF* THEN R - S v) : e
INITIATE BREAK. S ,
ELSE '
BEGIN
CHAR = 4“00”.
GO TOO. :
END. ’
Semantics ' ‘ _
The (if statement) causes a condition (i.e., a Boolean expr’eésib’n) to be evaluated. The subséqu'ent path
of program control depends on whether the condition is evaluated as TRUE or FALSE. -
If the condition is TRUE, the request statement) "following the »THEN‘, if present, is executed. Program
control then resumes at the statement that follows the {if statement). S
If the condition is FALSE, the (request statement) following the ELSE is executed or, if the ELSE
request statement) is omitted, program control resumes at the (request statement) following the
tfstatement). ' v TR - o
The (request statement} can be any legal (reque&t'statem_ént‘)', including the (t‘f statement) and
{compound statement). , o i : :
‘The me;anihgs of the relational operators are contained in table 5-5. -
The following diagrams illustrate the above semantics. -

5100

-

((

The following diagrams illustrate the above semantics.

Definitions
REQUEST
If Statement — Continued

TRUE
IF {condition } THEN (request statement) { request statement)
| FALSE ’
TRUE
IF { condition } THEN (request statement) ELSE (request statement) . {request statement)
FALSE | | -
Table 5-5. Relational Operators
RELATIONAL OPERATOR MEANING SYNONYMS
~ LSS Lesé than < and LS
LEQ Less than or LE
» equal to '
EQL & Equal to = anh EQ
NEQ No_t equal to " NE
GEQ Greater than ~ GE
‘orequal to .
i GTR Greater than > and GT

5-101

~ Definitions ' e
REQUEST

Increment Statement

INCREMENT STATEMENT

Syntax
INCREMENT 'ETRAN v P
SEQUENCE - ' ,
L [' &= NULL j]
L SEQERR—»: —j ' »-{label)
Examples
INCREMENT TRAN.

INCREMENT SEQUENCE [SEQERR:10].
INCREMENT SEQUENCE [NULL].

Semantics
INCREMENT TRAN

This construct of the {increment statementy is only allowed in those {request definition) s in the
{terminal request statementy s of {terminal definition) s that contain a- {terminal trensmission number
length statement’) defining the transmission number length as nonzero and non-NULL.

INCREMENT TRAN causcs | to be added to the receive transmission number stored in the Station
Table when it is exccuted in a Receive Request, and causes 1 to be added to the transmit transmission
number stored in the Station Table when it is executed in a Transmit Request.

The transmission numbers are stored and incremented in EBCDIC.

If INCREMENT TRAN causes the transmission number to exceed (overflow) the size of the transmission
number field, the carry is truncated and the result will be zeros (i.e., EBCDIC zeros) in that field.

INCREMENT SEQUENCE

This construct causes the sequence number stored in the DCP Station Table to be increased by the value
of the increment (also stored in the DCP Station Table), providing that the station is in “sequence
mode”; otherwise, this statement is a no-op.

When using the INCREMENT SEQUENCE construct, provision should be made for taking action if the
increment caused the sequence number to exceed (overflow) the size of the sequence number field. The
programmer can take such action by including the optional syntax. Failure to inciude overflow action
results in an implicit TERMINATE ERROR if an overflow occurs. ‘

SEQERR:NULL and NULL are semantically equivalent. These options set the SEQERR (bit variable
TRUE, and control continues at the next sequential.instruction. ‘

'SEQERR: {label)) and {label)are semantically equivalent. They cause the SEQERR (bit variable) to be
set TRUE, and control to branch to {label).

Regardless of whether error action is specified or not, an overflow of the sequence number field destroys
the contents of that field. » : : '

5-102

Definitions |
REQUEST

Increment Statement — Continued

Pragmatics

A station is considered to be in sequence mode whenever its SEQUENCE (bir variable) is TRUE. :
SEQUENCE can be sct TRUE only as a result of the Message Control System (MCS) executing the SET/
RESET SEQUENCE MODE (TYPE = 49) DCWRITE. In addition, the TYPE 49 DCWRITE also stores
the starting scquence number and increment in the appropriate ficlds of the DCP Station Table.

Sequence mode can be used for any application that the NDL programmer may see fit. Its use, however,
requires common conventions between the NDL programmer and the MCS programmer. Burroughs

has utilized sequence mode constructs in two {request deﬁnition)s of SYMBOL/SOURCENDL:

~ READTELETYPE and WRITETELETYPE. Both require the cooperation of SYSTEM/CANDE to effect
the execution of those statements. The reader is referred to those (request definition)s as an example
of a particular application that Burroughs has implemented. 4 ' '

5-103

Definitions
REQUEST

Initialize Statement

(-

INITIALIZE STATEMENT
Syntax
INITIALIZE - BCC -) —
= CRC - —
L = RETRY : ' : -
| = TEXT -
| >TRAN— —— — -
‘ > <
& TALLY —» [——=(tally number) >] j
L —»TOG [»-(toggle number e |
Examples A
INITIALIZE BCC.
INITIALIZE CRC.
INITIALIZE RETRY.
. e/
Semantics . —~
INITIALIZE BCC
This construct causcs the (byte variable) BCC to be initialized for purposes of accumulating a Block Check
Character. The value to which BCC is initialized is dependent upon the horizontal parity defined for the
station’s associated (terminal definition) (in the (rerminal definition parity statemem‘)). If horizontal
parity is defined as HORIZONTAL:ODD, then BCC is initialized to all ones (i.e., 4“FF”). If defined as
HORIZONTAL:EVEN, then INITIALIZE BCC initializes BCC to all zeros (i.e., 4“00).
INITIALIZE CRC
This instruction initializes CRC to the initial value required for calculating the Cyclic Redundancy Check.
Any (terminal definitiorz} referencing a (request deﬁnition)‘ (in the (terminal request statement>)
that contains this instruction must define the horizontal parity (in the {terminal parity statement)) as
HORIZONTAL:CRC(16); otherwise a syntax error is generated.
INITIALIZE RETRY
This instruction causes the value stored in DCP INITIALRETRY to be stored DCP RETRY.
INITIALIZE TEXT '
The function of this form is to initialize the message text pointer to zero. When initialized to zero, the
message text pointer points to the _first text character of the message. ' ‘

5-104

Deﬁnitiohs
REQUEST

Initialize Statement - Continued

INITIALIZE TRAN

This form causes zeroes (i.e., EBCDIC zeroes, 4“FOFOF0”) to be stored in the appropriate Transmission’
Number fields of the Station Table. In a Receive Request, zeroes are stored in the Receive Transmission
Number field; in a Transmit Request, zeroes are stored in the Transmit Transmission Number field. .

INITIALIZE TALLY [(tally number)]

This form causes the specified station TALLY to be initialized from the appropriate message header field
if a message is present; otherwise the specified TALLY is initialized to zero.

INITIALIZE TOG | (toggle number |

This form causes the specified station TOGGLE to be initialized from the appropriate message field it
a message is present; otherwise the specified TOGGLE is initialized FALSE. o

5-105

Definitions
REQUEST

Initiate Statement

INITIATE STATEMENT
Syntax

INITIATE — RECEIVE : AS— : 1 .
- -———»TRANSMIT————j | L’»(—_—»NULL — |

~>-)
- (delay time}-J

——== BREAK

. Examples

INITIATE RECEIVE.
INITIATE TRANSMIT (3 SEC).
INITIATE BREAK.

Semantics
INITIATE RECEIVE

The INITIATE RECELVE construct causes the adapter cluster to initiate a receive delay calculated for the
station. After the delay, the hardware is ready to receive information. - . ' S

The amount of time'delayed, referred to as the Initiate Receive delay, is uniqﬂe to each station and is '
calculated at compile-time for each station. The algorithm that the compiler uses to calculate the Initiate
Receive delay is described in the following three paragraphs. \ g

a. If the (modem definition) referenced in the (station definition) (in the (station modem statemen)
defines the modem NOISEDELAY as being greater than zero, then the Initiate Receive delay is
2 milliseconds less than the combined {time)s defined in the {modem noisedelay statemert) and
the < modem transmitdelay statement}.

b. If the modem NOISEDELAY is defined as zero and the modem TRANSMITDELAY is defined as
being less than 7 milliseconds, then the Initiate Receive delay is zero. : -

c. If the modem NOISEDELAY is defined as zero and the modem TRANSMITDELAY is defined as
being equal to or greater than 7 milliseconds, then the Initiate Receive delay is the lesser of 15
milliseconds or - ' :

(1.5 milliseconds

+ modem TRANSMITDELAY)
2 o

‘The NULL option or the {delay time) option can be used to override ihe calculated Initiate Receive delay.
NULL immecdiately readies the hardware so that it can receive information. (delqy time} specifies a (time}
to be used in place of the Initiate Receive delay. : ,

Pragmatics l - ‘

An INITIATE RECEIVE instruction should precede the first {receive statement) following a transmission.
If it does not, there is a possibility that execution of the { receive statement} will be delayed for a period -
of time of up to 25 milliseconds. The cause of the 25-millisecond delay is described under the semantics
of the (finish statement). :

5-106

e © Definitions
. ' " REQUEST

Initiste Transmit

INITIATE TRANSMIT

The INITIATE TRANSMITconstruct causes the adapter cluster to be put in a transmit state after a calcu-
lated delay. The amount of time delayed is referred to as the Initiate Transmit Delay, and is unique to
each station. It is derived by taking the greater of the NOISEDELAY (time) specified for the modem
configured at the system end, or the TURNAROUND (time) specified by the station’s {terminal

definition) .

This construct must be executed ptior to any attempt to TRANSMIT.

The NULL option or the {delay time)) option can be used to override the calcul_éted Initiate Transmit
delay. NULL causes the adapter cluster to be put in a transmit state immediately. (delay,time) specifies
a (time) to be used in place of the Initiate Transmit delay. - _ ,

INITIATE BREAK

The INITIATE BREAK construct causes binary zeroes to be transmitted on the line, thius changing the
state of the line to a “spacing” condition. The line remains in the spacing condition until some subsequent .
instruction causes the adapter: cluster to change the state of the line. Constructs that would change the
line’s state are INITIATE TRANSMIT, INITIATE RECEIVE, FINISH TRANSMIT, BREAK and IDLE.

5-107

Definitions
REQUEST

Pause Statement

PAUSE STATEMENT.
Syntax

PAUSE

Semantics

The <pause statement) suspends the (request definition} in a “sleep” state for a minimum period of

time (200 microseconds for the B 6358 Model II DCP, and 6 microseconds for the B 6350 Model 1 DCP)’

to allow the DCP to service other lines. It is recommended that a (pause statement) be used in any kind
of loop that would tie up processor time and thereby prevent the servicing of other lines. The failure to
do so results in a high number of timeout faults. '

'Pragmatics

Instances may occur in which the DCP requires an even greater period of “sleep” to service other lines.

Repeated timeout faults, despite utilization of the </Jause statemenr), are indications of such conditions.

A greater period of “sleep’™ time can be cffected by means of a (delay Statel‘nem>, with the (dela,v rifnv)
specificd greater than *sleep” time cffected by the (pause statcmt’nt).

5--108

(

(¢

RECEIVE STATEMENT
Syntax .

RECEIVET— == = = = =ppe-
E(- NULL - - -~ j

[‘ T’
imeout time):

Examples
RECEIVE.

e BCC

L

-DAI)I)RFSS-E -
(CE

RECEIVE
TRANSMI

- CHARACTER

HCRC -

= TEXT

- TRAN

Lo (string)

RECEIVE CHARACTER.
RECEIVE (3 SEC) ADDRESS (RECEIVE) [0, ADDERR:10].

RECEIVE (NULL) [

L
RECEIVE CRC [ERROR [1], CRCERR:10].

PARITY:999,
LOSSOFCARRIER:999,
BACKSPACE:NULL,

END,

WRU:NULL

- WRU————————

Definitions |
REQUEST

Receive Statement

1 ‘ B
L[Irf\[hkkon-»[-—(mmh numbery-m| —— —1.]

(switch her)

= ADDERR
+-»=BACKSPACE ﬁ
- BCCERR —————=~

= BREAK ————————=

e~ BUFOVFL————

|+~ CONTROL ~——=

& CRCERR —————
- END e

=~ ENDOFBUFFER —]
Lo~ LINEDELETE ——

- LOSSOFCARRIER

e~ PARITY —————

e TRANERR

—

> CONTINUE ———=]

-~ FORMATERR —{

- STOPBIT ————

-»TIMEOUT——"-—F"

Lo (single ¢'haracter)—b'l

RECEIVE “LITERAL STRING” [FORMATERR:NULL].

RECEIVE EOT SOH.

RECEIVE TEXT [END:10].

(Iabel)
- NULL
ABOR

5-109

Definitions
REQUEST

Receive Statement — Continued

Semantics

The {receive slatenwm) causes the adapter cluster to attempt to receive information from the appropriate

logical line.

The following two syntax items define a maximum amount of time that the adapter cluster should wait
for receipt of the first character, and then cach subsequent character, if applicable, before assuming that
the terminal has “timed out.” If neither of these options is included, the gn‘nwuut thirey defined

(in the (terminal timeout stutcrmmt)) for the station’s associated terminal type is implicitly used as

the {timeout time) in this statement. ' :

(NULL) ,
This option specifies that the édapter cluster should wait an infinite arﬁo_uht of time.
({timeout time)) ' ' ' ‘

The {timeout time) defines a (time). that the adapter cluster should wait for a character. If this (time)
is exceeded before receipt of a character, and the TIMEOQUT syntax appears, then the action specified for
TIMEOUT is taken (refer to TIMEOUT). If the {timeout time) is exceeded and TIMEOUT syntax

does not appear, an implicit TERMINATE ERROR is executed. . ' '

The following syntax options define the nature of the information to be received, the amount of
information to be received, and how the information is to be handled. If none of the options are used, it
is semantically equivalent to specifying CHARACTER (e.g., “RECEIVE.” is semantically equivalent to
“RECEIVE CHARACTER.™). - e

 ADDRESS

The proper number of address characters (as defined by the station’s associated (termihal definition)

in the (wrminal address size statemcnt)) are received and checked for agreement against the actual -

address characters defined in the (station address statement)y. If the address characters do not correspond,
an address error condition results; if the ADDERR syntax appears, then the specified action is taken. Other-
wise an implicit TERMINATE ERROR is executed. (Refer to the ADDERR semantics.)

ADDRESS (RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be used when an address
pair is defined in the (station address statement) and the programmer needs to check for the proper
receive address. ' ' ‘ R

ADDRESS (TRANSMIT)

This option is equivalent to ADDRESS, except that ADDRESS (TRANSMIT) must be used when an |
address pair is defined in the {station address statement) and the programmer needs to check for the proper
transmit address. ’ ' SRR _

BCC

‘One character is received énd checked against the (byte variable) BCC. If the character received and
BCC are not equal, a Block Check Character error condition results; if the BCCERR syntax appears,
then the specified action is taken. Otherwise an implicit TERMINATE ERROR is executed. =

Presumably, if tlie 'RECEIVE BCC construct appears, the ‘pro”gvramnier has defined hdfizontal' parity in
the (terminal parity statement) , and the accumulated Block Check Character is contained in BCC.

5-110

v

(¢

~ Definitions -
~ REQUEST

Receive Statement - Cbn_tinued

CHARACTER
One ch‘z-u'uctcr is reccived and stored in CHARACT ER.
CRC |

Two characters are received. The first character is checked against CRC [0], and the second compared
against CRC [1]. If the characters reccived and CRC arc not cqual, a Cyclic Redundancy Check error
condition results: if the CRCERR syntax appears, then specified action is taken. Otherwise an implicit
TERMINATE ERROR is executed. ' :

Presumably, if.the RECEIVE CRC instruction appears, the programmier has defined hotizontal parity
as HORIZONTAL:CRC(16) in the (terminal parity statement), and the Cyclic Redundancy Check is -
contained in CRC [0] and CRC [1]. ‘ o - ’ '

TEXT

Characters are received into CHARACTER and stored in the text portion of the message space obtained
until cither a syntax option results in a branch from the (receive sfatément) , or a non-recoverable error,
such as a disconnect, occurs. If the occurrence of a particular character results in a branch outside of the
{receive statement) (as specified by a syntax option), then that character is not stored but remains in
CHARACTER. - : ‘ ' ' : '

The RECEIVE TEXT ‘construct i's, in‘effect, the same'as the following loop:

|: RECEIVE CHARACTER.
STORI) CHARACTER.
GOTO1.

In ncarly all cases, the (receive statement) should contain optional s_yntax to avoid the “endless’ loop
and an eventual implicit TERMINATE ERROR as a result of a timeout, end-of-buffer condition, etc.

TRAN

The proper number of transmission number characters (as defined by the station’s associated (terminal
definition) in the (terminal transmission number length statement)) are received and checked for agree-
ment with the Receive Transmission Number maintained in the DCP Station Table. If the characters
received and the Receive Transmission Number are not equal, a transmission number efror results." If the
TRANERR syntax appears, then specified action is taken; otherwise an implicit TERMINATE ERROR
is executed. o S : o

(string)

The number of characters as indicated by the length of the (s}trjing) are received and checked against thos¢
characters in tie (string). If the (string) and the characters received are not equal, then a format error

- condition results. If the FORMATERR syntax option appears, then that action is taken; otherwise an

implicit TERMINATE ERROR is executed.

The following syntax o'p_tions>s‘peci_fy actions to be taken upon either_flie receipt of définéd charactérs
or occurrences of specific error conditions. e Ll - ‘ '

5111

Definitions -
REQUEST __
Receive Statement — Continued

ERROR [{switch number) |

This syntax option associatcs a previously defined Error Switch with the (rercive statt’menf}. This allows
the programmer to associate a set of previously defined crror actions with the (I'(’(‘(’il"(’ statementy , thus
reducing the amount of coding required for each {receive statementy. BREAK, BUFOVFL,
LOSSOFCARRIER, PARITY, STOPBIT, and TIMEQUT syntax options are not allowed if the ERROR
[(switch number}] syntax appears in the (receive statenwnt}. Refer to the (error switch statement)

for more information. o

(switch number)
Semantically equivalent to ERROR [(Switch riumber)‘].
ADDERR ‘

The ADDERR option variations cause the following actions if an address error is detected when an attempt
is made to receive a terminal’s address characters: : ‘

sets TRUE the ADDERR (bit variable) and

ADDERR
‘ branches control to the next sequential
: statement. - ‘
ADDERR:NULL ‘ causes no action. Execution proceeds as if the
' ' o - error condition did not occur.

ADDERR: {label) " sots TRUE the ADDERR (it variable) and

- . “branches control to {label). '
ADDERR:ABORT . not allowed.

BACKSPACE |

The following BACKSPACE option variations causc the following actions if the terminal’s backspace
character (as defined by the (terminal backspace character statemenl)) is received:

BACKSPACE ‘ ' ‘moves the message text pointer backwards one
: character position, and branches control to the -
next sequential statement.

BACKSPACE:NULL , | ' moves the :messa’ge‘te‘xt pointer backwards one
_character. Control remains within the (receive
statement) if of the form RECEIVE TEXT.

BACKSPACE: (label) ' moves the message text pointer backwards one
, . character, and branches control to (Iabel). :
BACKSPACE:ABORT " notallowed. -
BCCERR '

The following B_CCERR option variations cause the following actions if the character received is not equal to
the data stored in BCC. ' : - :

BCCERR | - " sets TRUE the {bit variable, BCCERR, and
, ’ ' branches control to the next sequential
' statement. '
BCCERR:NULL ' - " causes no action. Execution proceeds as if the

error condition did not occur.

5-112

BCCERR: (label)

BCCERR:ABORT
BREAK

Dcﬁ"nitions
: REQ!JEST
Receive Statement - Contmued

sets TRUE the (btt variable) BCCERR and
branches control to {label).

not. allowed

The BREAK option variations cause the following actions as if a break, that is, at least two character-trmes
ofa spacmg line condltton, is detected by the adapter cluster whlle receiving:

BREAK

BREAK:NULL
- BREAK: (label)

' BREAK:ABORT

. BUFOVFL

sets TRUE the {bit varmble) BREAK

- [RECEIVEI and branches control to the ncxt

sequcntlal statement.

' causes no actlon Exccutlon proceeds as if the

break did not occur.

‘sets TRUE the (bzt varzable) BREAK

[RECEIVE], and brariches control to {label).

sets TRUE the (bit variabley BREAK
[RECEIVE], and executes an. nnphc:t

' TERMINATE ERROR

The following variations of the BUFOVFL option cause the followmg.actlons if the DCP is unable to service

destroying the previous character)
BUFOVFL
BUFOVFL:NULL
BUFOVFL: (label)
' BUFOVFL:ABORT

CONTINUE

~ a Cluster Attention Needed (CAN) mterrupt before the Adapter Cluster receives another character (thus

sets TRUE the (blt varmble) BUFOVFL, and

- branches control to- the next sequential
o statement

causes no action. Execution proceeds as 1f the

- error condition did not occur.

sets TRUE the (it variable) BUFOVFL,and
branches control to (label).

sets TRUE the it variable) BUFOVFL, and

- executes an 1mphc1t TERMINATE ERROR

This ltem is allowed only in (recewe statement)s of (control def nztzon)s and (request defi mtxon}s that are
written to communicate with full duplex terminal types. CONTINUE syntax causes action as described -
below if the co-line executes a (con tinue statement} before all mformatlon specxﬁed by the (recezve

statement) is received.
CONTINUE

CONTINUE:NULL

CONTINUE:. (label)
CONTINUE:ABORT

" not allowed..

branches control to the next sequentlal
statement :

causes no actlon Executxon proceeds as if the

- {continue statement) had not been executed

 branches control to (Iabel)

o 5-113 -

Definitions
REQUEST

Receive Statement — Continued

CONTROL

The following variations of the CONTROL option cause the following actions il the control character of -
the station (as defined in the {station control character statentent)) is received: :

CONTROL

CONTROL:NULL

CONTROL: (label)

CONTROL:ABORT
CRCERR

The following variations of the CRCERR option cause the following actions if the first character received |

scts TRUL the (it variabley CONTROLFLAG,
and branches control to the next sequentlal
statement

sets TRUE the {bit vanable) CONTROL FLAG,
and execution continues if the character was
not the station’s control character.

sets TRUE the (bit vanable) CONTROLFLAG,
and branches control to (label).

not allowed.

~ does not equal CRC [0], or the second character received does not equal CRC [1]. :
(This item is appropriate only for the RECEIVE CRC construct of the (receive statement) refer to the

CRC option.)
CRCERR

CRCERR:NULL
'CRCERR: label)

CRCERR:ABORT
END ’

scts TRUE the {bit variahlc) CRCERR,I and
branchee-con‘trol"to’th‘encxt ‘ecquential statement.

_cause no action. Execution proceede as rl the

error dld not occurr:

sets TRUE the (pit varzable) CRCERR and
__ branches control to (Iabel)

not allowed.

The following variations of the END option cause the followmg actlons if the “end” character of the

station (as defined by the

with the station).is receive

END
END:NULL

END: (label)
END:ABORT

5-114

étermmal end character statement) in the (termmal defi mtzon) associated

'causes control to branch to the next sequentml '
statement ,

- causes no.action.- Executron proceeds as 1f the
_'character was not the “end” character

- branches control to (Iabel)

not allowed.

(O

Definitions
- REQUEST ,
Receive ‘Statement'— Continued

ENDOFBUFFER

This syntax item is allowed in the RECElVE TEXT contruct of lhe (r('uwo stateme nty. The variations of
the ENDOFBUFFER option shown below cause lhc following actions if cither of the following comhllons
arises:

a. There is no message space and an attcmpt is made to storc information into_ a message
space (the store function is an implicit action of the RECEIVE TEXT construct), or

b. The number of characters stored in the message exceeds the maximum allowed (the
maximum is defined by either the (termmal maxmput statement} or the (termznal
buffer size statement)). .

'ENDOFBUFFER , : - sets TRUE the <blt variable) ENDOFBUFF ER
’ ‘ ' and branches control to the next sequent1a1
_ o statement. - o

ENDOFBUFFER:NULL causes no action. Pxecutlon proceeds asif the
' ‘ . error did not occur. . o
ENDOFBUFFER: (label) sets TRUE the <blt variablc) ENDOFBUFF ER,

o L ‘and branches eontrol to (label). .
ENDOFBUFFER:ABORT ~ not allowed. |

FORMATERR

The following vanatlons of the FORMATERR optlon cause thc tollowmg, actrons rf the chamcters received
are not cqual to thosc in the (strmg) (this item is appropnatc only for the RECE]VE (strmg) construct
of the (receive statement}): , .

FORMATERR ' ' ' . sets TRUE the (bzr varzable) FORMATERR
o and branches control to the next sequentlal

. _ statement . ,

FORMATERR:NULL ~ causes no action. Executlon proceeds as if the
: : error did not occur.
FORMATERR: (label) sets TRUE the (bzt vanable) FORMATERR,
- and branches control to (label)
FORMATERR: ABORT . | | not allowed. '
LINEDELETE - | |

The following variations of the LINE DELETE option cause the following actions if the station’s
linedelete character is received (the LINEDELETE character is deﬁned by the (termmal Imedelete
character statement)): : , . :

N I
NS

LINEDELETE TR "'altersvthe’value of the message text poi‘nter,to _
. - . " point to the first character position in the message
text, and branches contro] to the next sequential
statement. ‘ :

LINEDELETE:NULL : s . 'alters the value of the message text pomter to-
' S o . point to the first character position in the message
text, and execution proceeds as if the character
Was not the lmedelete character : :

5-115

Definitions
REQUEST
Receive Statement — Continued

LINEDELETE: (label) ' alters the value of the message text pointer to
, , point to the first character position in the message
_ o _text, and branches control to {label).
LINEDELETE:ABORT notallowed.
LOSSOFCARRIER | |

The tol!owmg variations of the LOSSOFCARRIER syntax cause the lollowmg actlons if a loss of carrier
is detectcd while rccelvmg

LOSSOFCARRIER | sets TRUE the (bit variable) LOSSOFCARRIER,
: . . : and branches control to the next sequential
: o statement. .
LOSSOFCARRIER:NULL ’ ~ causes no action. EXecution proceeds as if the
o o error did not occur.
LOSSOFCARRIER: (label) . -~ sets TRUE the {bit variable) LOSSOFCARRIER
, - ' and branches control to (label).
LOSSOFCARRIER:ABORT ' . sets TRUE the (bzt variable) LOSSOFCARRIER

and executes an implicit TERMINATE ERROR

There is one exception to the actions described above. If a loss of carrier is detected while receiving, and

if the terminal is modem-connect, and if the terminal’s (statlon defi mtlon) references a (modem defzmtzon)
that contains the construct LOSSOFCARRIER—DISCONNECI‘ then an implicit disconnect is done,
regardless of the action specified.

PARITY

The following variations of the PARITY option cause the following actions if a parity bit error is detected
by the adapter cluster: . ‘ . '

PARITY | sets TRUE the (pit variable) PARITY, and
’ : ‘ branches control to the next sequential state-
ment. . '
PARITY:NULL . causes no action. . Execution proceeds as if the
error did not occur.
PARITY: (label) ' ' sets TRUE the {bit variable) PARlTY and
’ _ branches control to (label).
PARITY:ABORT . sets TRUE the (bit variabley PARITY, and

, executes a TERMINATE ERROR.
STOPBIT " o o

The following variations of the PARITY optlon cause the described actions if a stop bit error is detected
by the adapter cluster:

STOPBIT ' - sets TRUE the (blt varzable} and branches control
» ' to the next sequential statement.

STOPBIT:NULL e : ‘ causes no action. Executlon proceeds as 1f the
- error did not occur. .

5-116

N/

. e 3 . o B Definitions
' ~ REQUEST
Receive S_tatement -- Continued

STOPBIT: (label) _ sets TRUE the {pit variabic) STOPBIT, and
| : . branches control to {fabel).
STOPBIT:ABORT | sets TRUE the {bit variabley STOPBIT, and

. executes a TERMINATE ERROR.

TIMEOUT = | |

The variations of thé'TlMEOUT syntax shown below cause the actions descrihed if the time required to
receive a character exceeds the (tzmeout time) The (tzmeout ttme) is defined in the (terminal timeout

Statement) , but can be overndden by including the ({timeout time))or (NULL) syntax options in the
(receive statement) . ,

TIMEOUT : | ~ setsthe (bit variable) TIMEOUT and branches
' e control to the next sequential statement.

TIMEOUT:NULL , | © causes no action. Execution procecds as if the .
N -~ error did not occur.
TIMEOUT: (label) . setsTRUE the (pit vartable) TIMEOUT, and
o -+ branches control to (label).
TIMEOUT:ABORT - © sets TRUE the (bit variable) TIMEOUT and
‘ ' , o executesaTERMINATE ERROR ‘
TRANERR

The followmg variations of the TRANERR optron cause the descnbed actions if the characters received
and the Reccive Transmission Number stored in the Station Table are not equ.r! (thrs item rs allowed only
in the RECEIVE TRAN construct of the (recewe statement)) L

TRANERR R o sets TRUE the (bit vanable) TRANERR and .
' o ‘branches control to. the next sequentral state-
_ R - ment. . _
TRANERR:NULL o e : causes no action. Executron proceeds as if the
. . - errordid notoccur. . , _
TRANERR: (label) S ~ sets TRUE the (pit vartable) TRANERR and
o - branches control to \.abel) :
- TRANERR: ABORT o ~ notallowed.

The follbwrng vanatrons of the WRU syntax cause the fdllomng actrans if the WRU character of the
station is received (the (station WRU chamcter statement) defines the WRU character)

WRU & o ' - sets TRUE the WRU (bit vanable) and branches '

D ...~5 . control to the next sequential statement.
WRU:NULL " sets TRUE the WRU (pir vanable) and execution

S - .- proceeds as if the character received was not the
. : _ , ~ WRU character. .

WRU: (abel) = o . sets TRUE the (pit vanable} WRU and branches

' R S ' control to (Iabel
WRU:ABORT R not allowed. |

5-117

Definitions
REQUEST
_Receivé Statement — Continued

(single charac ter)

The following variations of the (single character) syntax cause the following actions if a character received
is equal to the single character : : o

(single character) | - branches control to the next sequential state-
: . ment.
{single character):NULL ' ' ~ causes no action. Execution proceeds as if the
o - - character received was not equal to the (single
, character) . ' C
(single character):{label) ~ branches control to (Iabel). :
(single charactery :ABORT ~ not allowed.

The allowablé combinations of the (receiize &tatenient) syntax options are defined in table 5—6 below.
The (NULL) and ({timeout time)) options are allowed in any construct of the (receive statement).
Allowed combinations of the other syntax options are denoted by a “X” in the appropriate columns
and rows. : o . ’

Table 5-6. Allowable Combinations for (receivé statement)

. o
g T i
-4 8
R 2 , -
gégggégg E%E%EE§E i
2 G £ Z a 28 E § 2
agagasasaéagsss 2§
'ADDRESS X X X X X X X X
ADDRESS(RECEIVE) X X XX X X X X
ADDRESS(TRANSMIT) X X X X : X X X X
BCC | XXXX X X X X
CHARACTER] X XXXX' X, XXXXX XX
CRC o XXX X XX XX
TEXT | S X XXXX XX XXXXX XX
TRAN X X X B XX XXX~
(string) X XX X XXXX

5-118

(-

Supplementary Examples
Statcment
RECEIVE (3 SEC) [TIMEOUT:10].

RECEIVE ADDRESS [ADDERR:99].

RECEIVE CHARACTER [CONTINUE:10,
CONTROL:20,
TIMEOUT:30,
. 5_4*09:40] .

RECEIVE [ERROR[0]].
RECEIVE [0].

RECEIVE (1 SEC) TEXT [LINEDELETE:NULL,
CONTROL:NULL].

Definitions i |
REQUEST :

Receive Statement - Continued

Explanation

Causes the adapter cluster to attempt to receive a
character. If the character is not received within
3 scconds, the (bit variable) TIMEOUT is set
TRUE and control branches to 10.

If the character(s) received do not cqual those
defined in the (station address statement) | the
(bit variable) ADDERR is set TRUE. and control
branches to 99. o :

This statement would only be allowed in a
{control definition) or (request definition) that
is written to communicate with full duplex
terminal types, because it contains the CONTINUE
item. .

CONTINUE:10 would cause a branch to 10 if the
co-line (control definition) executes a (continue
statement) before a character is recc_iv_cd.

CONTROL:20 would set CONTROLFLAG'T-RUE

“and branch to 20 if the character received is the

station’s control character.

TIMEOUT:30 would sct TIMEOUT TRUE and
branch to 30 if a character is not received within
the {timeout timeg defined in the {terminal
timeout statement) .

«%»:40 would cause a branch to 40 if the
character received is the asterisk character.

An attempt is made to reccive one character and
store it in CHARACTER, If any errors described
in the associated {error switch statement) occur
while receiving, then the action defined in that
{error switch statement) is taken.

- An attempt is made to receive onc character and

store it in CHARACTER. If any errors described
in the associated {error switch statement} occur
while receiving, then the action defined in that
{error switch statement) is taken.

LINEDELETE:NULL causes the message text
pointer to be set to the first character position if
the linedelete character (as defined in the
(terminal linedelete character statement) is
received, and characters continue to. be received
and stored in the message text beginning at the
first character position.

5-119

Definitions
REQUEST

Receive Statement — Continued

Statement

5-120

Explanation

CONTROL:NULL causes the (bit variabley
CONTROLFLAG to be set TRUE if the control -
character of the station (defined in the (station

control character statement)) is received, and o

characters continue to be received.

‘Definitions

- REQUEST
Shift Statement
SHIFT STATEMENT
Syntax
L —up 1 - " ¥ -
Semantics

The (shift statement) is to be used in a (control definition) that communicates with stations using the
Baudot (5-bit) character code set. (The character code set is defined in the (termmal code statement}
of the associated (termmal defi mtzon)) _

SHIFT UP indicates that received characters are to be translated to their respective uppercase graphics
(usually referred to as FIGS).

SHIFT DOWN indicates that received characters are to be translated to their respective lowercase graphics
(usually referred to as LTRS).

If the station does not use Baudot code, the (s'hift statemcnt} acts as a no-op.

Pragmatics

In the Baudot character code set, most bit patterns have two graphic représentations; one is referred to
as FIGS (the uppercase graphic), and the otheras LTRS (the lowercase graphic).

PR

When transmitting to a terminal that uses Baudot code, the terminal prints LTRS until 1t recelves a
specially designated character indicating that it should shift to printing FIGS. The terminal continues
printing the FIGS until it receives a specially designated character indicating that it should resume printing
the LTRS. ’

When information is received from a terminal that uses Bauddt the same conventions hold true; that is,
the terminal communicates whether FIGS or LTRS follow, by the transm1ss1on ofa des1gnated character
The terminal initially transmits LTRS.

5-121

Definitions
REQUEST
Store Statement

STORE STATEMENT
Syntax

STORE

| » CHARACTER- l—-» [_j —NULL j] —
—»-(string) L ENDOFBUFFER-»: l—-—(label)

> SEQUENCE —e
>
TALLY — [——=tally number) —] —
TOG — »(toggle’numbery.—_——-] J
Examples
STORE.

STORE CHARACTER [ENDOFBUFFER:20].
STORE “ABC” [NULL].

STORE SEQUENCE.

STORE TALLY [0].

STORE TOG [0], TOG [1], TALLY [0].

Semantics

STORE '

This form is semantically equivalent to the STORE CHARACTER construct.
STORE CHARACTER |

This form causcs the data contained in CHARACTER to be stored in the message space. If no message:
space is associated with the (request deﬁnition) , then an implicit <getspace statement) is executed.
The data is stored in the character position pointed to by the message text pointer, and the text pointer
is updated after the STORE to point to the next forward character position.

It is possible to encounter the end-of-the-text buffer when using this instruction. It is recommended that
the optional syntax be included whenever using this statement. The optional syntax specifies action to be
taken if the end of buffer is encountered. The NULL option specifies that the only action that should be
taken is to set ENDOFBUFFER to TRUE. The (Iabel} option specifies that the only action that should be
tered, control should branch to (label) and also set ENDOFBUFFER TRUE. The ENDOFBUFFER: part
can be included for documentation. An implicit TERMINATE ERROR is executed if no end-of-buffer
action is specified. :

STORE (string)

This form causes (stririg) to be stored in the message space. If no message space is currently associated
with the (request definition) ,an implicit (getspace instruction) is executed. The {string) is stored

in the message space beginning at the character position pointed to by the message text pointer, and the
text pointer is updated after the STORE to point to the first character position following the (string) .

5-122

Deﬁ_hitipns' o
REQUEST
Store Statement — Cohtiriued'

This instruction uses CHARACTER as a temporary storage area to store each chatacter of (strmg) Thus, .
any data in CHARACTER prior to a STORE (strmg) instruction will be destroyed. :

It is possible to encounter the end-of-the-text buffer when using this instruction. Therefdrc itis
recommended that this instruction include the optional syntax. Refer to the STORE CHARACTER
construct for the semantics of this syntax. '

STORE SEQUENCE

Providing the station is in scquence mode (i.e., SEQUENCE is TRUE), the STORE SEQUENCE

construct causes the current value of the sequence number to be stored in message word [5].[26:27]

is a binary integer, and message word [5].[27.1] is set TRUE to indicate its presence. If the station

is not in sequence mode (i.c., SEQUENCE is FALSE), then the instruction is a no-op. If no message space
is present at the time of the STORE then an implicit (getspace mstructzon) is executed ﬁrst

STORE TALLY [(tally number)]

This form causes the TALLY specified to be stored in the message space header. If no message space is
present, an implicit (getspace statement) is executed just prior to the store operation.

STORE TOG [(toggle number) |

This form causes the TOGGLE specified to be stored in the message space header. If no message space
is present, an implicit (getspace statement) is executed just prior to the store operation.

Pragmatics

The dppllutlon of the STORE TALLY and STORE TOG constructs rests solcly with the programmer.

Since the message space is usually returned to a Message Control System (MCS), some mutual

convention could be cstablished between the NDL programmer and thc MCS programmer as to the meamng
of the contents of the TALLYs and TOGGLEs.

5-123

Definitions
REQUEST

Sum Statement

SUM STATEMENT
Syntax

SUM

—& Al

—— BCC

——= CHARACTER

—— RETRY

L »TALLY : - [»-(tally number) —

$ I B B B

L (single character)

Examples

SUM Al

SUM CHARACTER.
SUM “A™.

SUM TALLY [1].

Semantics

The purpose of the ﬂs(um statement) is to affect the calculation of the horizontal parity check (whether
that be a Block Check Character or a Cyclic Redundancy Check). The specific effect of the (sum state-
ment) is dependent upon two factors: The SUMmed item, and whether the station’s (terminal
definition)y , for which (request definition) is running, defines horizontal parity as CRC(16). Following
is a description of the effect that each form of the (sum statement) has on the calculation of the
horizontal parity check.

SUM
Semantically cquivalent to SUM CHARACTER.
SUM AL

If the horizontal parity check is a Block Check Character or is undefined, the contents of Al are
exclusively OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
- computed with the contents of Al and CRC, and the result is stored in CRC.

SUM BCC

If the horizontal parity check is a Block Check Character or is undefined, then the contents of BCC
are cxclusively OR-ed with itself, and the result is stored in BCC. (The result in BCC would be zero
in this case.) '

If the horizontal parity chieck is.a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of CRC[0] and CRC, and the result is stored in CRC. .

Definitions
 ReousT
Sum Statement — Continued

SUM CHARACTER

If the horizontal parity check is a Block Check Character or is undefined, the contents of CHARACTER
are exclusively OR-ed with the contents of BCC, and the result is stored in BCC. '

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algor.i»tlim' is
computed with the contents of CHARACTER and CRC, and the result is stored in CRC. '

SUM RETRY |

If the horizontal parity check is a Block Check Character or is undefined, the contents of RETRY are
exclusively OR-ed with the contents of BCC, and the result stored in BCC. C

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm _is
computed with the contents of RETRY and CRC, and the result is stored in CRC. BT '

SUM TALLY [(tally number)]

If the horizontal parity check is a Block Check Character or is undefined, the contents of TALLY ,
[(tally number)] are exclusively OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of TALLY [(tally number)] and CRC, and the result is stored in CRC.

SUM (single chaiacter)

If the horizontal parity check is a Block Check Character or is 'undct‘inéd;_ the <sih§lé, char‘acter} _i§
exclusively OR-¢d with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check; the Cyclic Redundancy Check algofithrh is
computed with the (single character) and CRC, and the resultis stored in-CRC. B

5-125

T R R e TR

Definitions
REQUEST

Terminate Statement

TERMINATE STATEMENT
Syntax

TERMINATE

- BLOCK

L= ENABLEINPUT

——= ERROR

> LOGICALACK

| = (RETURN)

———=s> NOINPUT

L ' B | IR i éﬂ.

——=> NORMAL

Examples

TERMINATE NORMAL.

TERMINATE LOGICALACK. |

TERMINATE LOGICALACK(RETURN). . | SR —
TERMINATE. | R

Semantics
Fach form of the (t('rminate statenu’nt) is described in the following paragraphs.
TERMINATE

This construct causes control to branch from a (request deﬁnition) and to begin executing the appropriate
(contml deﬁnition). Any message that may be queued is left in the Station Queue (regardless of whether
the message is incoming or outgoing) and STATION(QUEUED) is untouched. ' '

TERMINATE BLOCK
In a Receive Request, this construct causes the following actions:

a. an implicit {getspace instruction) is executed (in case the {request definition) may have been
terminated without ever having acquired a message space);

b. the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate
message fields; :

C. the_“More-Blocks-to—Follow” bit (programmatically referenced by BLOCK) in the messége :
(message word [0].[29:11]) is set TRUE; ”

d. the message is delinked from the Station Queue and linked into the DCP Result Queue; and

e. control continues at the next sequential statement.
In a Transmit Request, the TERMINATE BLOCK construct causes the following:

a. the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate
message fields;

(@

5-126

Definitions
REQUEST .
Terminate Statement — Cbntiﬁ_ﬁued .

b. the message is linked into the DCP Result Queue: and

¢. the {request definition) is continued at the next sequential statement if STATION(QUEUED)
is TRUE; otherwise, the (request definition) is suspended and put in a “sleep” statc until
STATION(QUEUED) becomes TRUE.

TERMINATE ENABLEINPUT
This construct is allowed in Transmit Requests only.

This instruction causes the following actions:

a. the STATION(ENABLED) bit is tested; if STATION(ENABLED) is FALSE, then this instruc-
tion acts as a no-op; otherwise, steps b through d are executed;

b. the Error Flag ficld, Last Flag Set ficld, and DCP RETRY are stored into the appropnate
message ficlds;

¢. the message is linked into the DCP Result Queue; and
d. control lcaves the Transmit Request and the station’s Receive Request is entered.
TERMINATE ERROR

This construct serves to inform the station’s MCS of an unsuccessful attempt to complete a Receive or
Transmit Request. This instruction inhibits the initiation of any new functions for the station.

The result of the TERM]NATE ERROR construct is as follows: -
a. STATION(READY) bit variable isset FALSE;

b. a minimum-size message space is obtained, filled with error information for the MCS, and linked
into the DCP Result Queue (its destination being the MCS); and -

c. the line is idle until the MCS takes some action.

Additionally, if the TERMINATEing (reque.st dejzmtzon} was a Receive Request, any message space that
may have been acquired to store a RECEIVEd message is discarded.

The error message sent to the MCS contains the following information:
MSGI[0].[47:8] = 99.
| [39:8] = AC Register contents.
[31:8] = Al Register contents.
[23:24] = Logical Station Number.
MSG[1].[47:8]

Result Byte Index

[39:6] = Line status prior to TERMINATE ERROR.
[33:1] = LINE(TOG[1]). |
[32:1] = LINE(TOG[O0]).

[31:8] = Last Flag Set in MSG[1].[23:24]

[23:24] = Error Flag field.

- 5-127

Definitions
REQUEST

Terminate Statcment — Continued

MSGL 211478 = CHARACTER.

[39:10] = Last DCP “Sleep™ address.

MSG4].123:24] = Original DCWRITE TYPE. (Contains the original contents of MSG[0].[47:24] -

prior to presentation of the message to the DCP.)

Refer to appendix E, “The Error Result Message,” in the B 6700/B 7700 DCALGOL Reference Manual, |
form number 5000052, for more information regarding this message. :

TERMINATE LOGICALACK

This construct is allowed in Receive Requests only. This instruction tests the LOGICALACK bit in the
Station Table. (The semantics of the {station logicalack statement) describe how the LOGICALACK bit
is sct.) If LOGICALACK is FALSE, the instruction acts as a no-op and control continues at the next
scquential statement. 1f LOGICALACK is TRUE, the following occurs:

a. an implicil <Q('I.Y/)Ll(‘(' statement) is executed (in case the (request definition} is terminating
without ever having acquired any message space); .

b, the ACKNOWLEDGEREADY bit in the Line Table is set (the consequences of this action are
described subsequently):

¢, the “Message to be ACKNOWLEDGED” bit is set in the Lrror Flag Field;

d. the Error Flag Field, Last I lag Set F icld, and DCP RETRY are stored into the appropriate
message fields; :

e, the message is delinked from the Station Queue and linked into the DCP Result Queue;

f. the line is put in a “‘sleep™ state until the station’s MCS responds to the message with an
ACKNOWLEDGE (TYPE = 44) DCWRITE; and :

g upon receipt of the ACKNOWLEDGE, the Receive Request is aliowed to‘ continue at the
next secquential statement. o

The ACKNOWLEDGEREADY bit is inaccessible to the NDL programmer, and it exists for each logical
line in its Linc Table. The only time that this bit will be TRUE is when a station’s LOGICALACK bit is
TRUE and its Reccive Request has exccuted the TERMINATE LOGICALACK construct or the
TERMINATE LOGICALACK(RETURN) construct. Once TRUE, the ACKNOWLEDGEREADY bit will
not be set FALSE, and the request definition) will not be allowed to continue until the MCS executes
the ACKNOWLEDGE (TYPE = 44) DCWRITE. '

TERMINATE LOGICALACK(RETURN)

This construct is allowed in Receive Requests only. This instruction tests the LOGICALACK bit in the
Station Table. (The semantics of the (sration logicalack statement) describe how this bit gets set.) If this
bit is found TRUE, this statement functions exactly as does TERMINATE LOGICALACK; refer to that
form for semantics. 1f LOGICALACK is FALSE, the following occurs: ‘

a. an implicit {getspace statemen 1) is executed (in case the (request deﬁnition) is terminating
without ever having acquired a message space);

b. the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate message
ficlds;

¢. the message is delin ked from the Station Queue and linked into the DCP Result Queue; and

d. control continues at the next sequential instruction in the (request deﬁnition).

()

Dcﬁnitions :
REQUEST

Terminate Statement — Continued

TERMINATE NOINPUT

It exceuted in a Transmit Request, this form is semantically equivalent to the TERMINATE construct (refer
to that construct for semantics). When executed in a Reccive Request, the following occurs:

a. any message space that may have been acquired is discarded,;

b. LINE(BUSY) is set FALSE; and _

c. control branches to the appropriate (coﬁ trol deﬁnition).
TERMINATE NORMAL

The purpose of this construct is to signal the satisfactory completion of a (reque‘sr deﬁnition)f If executed
in a Reccive Request, the following occurs: .

a. an implicit {getspace statement) is executed (in case the (request cl€ﬁrzitior1> is terminating
without having ever acquired a message space); ' '

b. the Error Flag field, Last Flag Set field, and DCP ENTRY are stored into the appr.opriate
message ficlds:

¢. the message space is delinked from the Station Queuc and linked to the DCP Result Qucue;
d. LINE(BUSY) is sct FALSE; and ' .

¢. control branches from the (rcque.s'l d('ﬁllili()11> and (providing the DCP does not take advantage
' of LINE(BUSY) set FALSE to initiate a {request definition’y) the appropriate {control
definition) is entered. ,

If TERMINATE NORMAL is exccuted in a Transmit Request, the following occurs:

a. the Error Flag ficld, Last Flag Set ficld, and DCP RETRY are stored into the appropriate message
ficlds; ~ ‘

b. the message is linked into the DCP Result Queuc;
LINE(BUSY) is sct FALSE; and

c

d. control branches from the {request definitiony and (providing the DCP does not take advantage
of LINE BUSY) set FALSE to initiate a {request definitiony the appropriate {control definitiony
is entered.

In the Transmit Request case, the message linked to the DCP Result Queue is @ result message (specifically,
2 GOOD RESULTS (CLASS = 5) Message). The intended destination is the MCS; however, the MCS has
the option of whether to accept GOOD RESULTS Messages or to have the DCC discard them.

(C

5-129

Dcfinitions
REQUEST

Transmit Statement

TRANSMIT STATEMENT

Syntax N
TRANSMIT ¥ .
>~ ADDRESS ' = L[—»BREAK‘ ..]j
l——»(RECEIVE)j ~ L: (label Y-+
]:TRANSMlj ENULL -
Le- BCC . -
= CHARACTER =
L& CRC —— ' >
s SEQUENCE . -
Lo TEXT >
- TRAN -
Lo (string : : —
Exampies
TRANSMIT.

TRANSMIT CHARACTER [BREAK:NULL].
TRANSMIT SOH STX 400 [BREAK:10].
TRANSMIT TRAN.

TRANSMIT ADDRESS(TRANSMIT)[BREAK].
TRANSMIT TEXT|BREAK]. '
TRANSMIT “LITERAL STRING”.

Semantics

The (transmit statement) causes the adapter cluster to transmit information to:a terminal. The following

group of syntax options specifics the information to be transmitted. All options, except CHARACTER, use

the (byte variabley CHARACTER as a temporary storage area; thus, any information contained in

CHARACTER before execution of the (transmir statement} shall be destroyed by the {transmit statement}.

If none of the first group of options are chosen, it is semantically equivalent to specifying CHARACTER
(i.c., TRANSMIT is equivalent to TRANSMIT CHARACTER). : . ‘

ADDRESS

The proper number of characters (as specified by the station’s {rerminal definition) in the (terminal
address size statement) are taken from the Address field in the Station Table and transmitted.

ADDRESS(RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS(RECEIVE) must be used when an address
pair is defined in the <station address statement) and the programmer wants to transmit the receive address.

5--130

((

(C

Deﬁniti_ohé.'_“ }
REQUEST - -
Transmit Statement — Continued

ADDRESS(TRANSMIT)

This option is cquivalent to ADDRESS, except that ADDRESS(TRANSM]T) must be used whén an
address pair is defined in the {station address statement) and the programmer wants the transmit address
transmitted. . A

BCC

The BCC option causes the content of the (byte variabley BCC to be transmitted.
CHARACTER |

The CHARACTER option causes the content of the {byte variable) CHARACTER to be transm_itted. »
CRC

This option causes two bytes to be transmitted; CRC[O] is transmitted first, followed by CRC|1 I LI the
station’s (terminal deﬁnition) does not define horizontal parity as CRC(16), the use of this option causes
a syntax error to be gencrated at compile time.

SEQUENCE

This option causes the character represehtation of the value stored in the Sequence field of the Station -
Table to be transmitted if the station is in sequence mode (i.e., the (bit variabley SEQUENCE is TRUE):
otherwise, the {fransmit statement) is a no-op. ' - o

TEXT

This option extracts characters, one at a time, from the associated message, using CHARACTER as a
temporary storage area, and transmits the characters until the end of the text buffer is encountered. At that
point, control branches to the next statement. The TRANSMIT TEXT construct is, in effect, the same as
the following loop: ' '

I: FETCH |ENDOFBUFFER:2].
TRANSMIT CHARACTER.
GOTO1.

This option can only be used with the <transmit statemént) in Transmit Requests.
TRAN

The proper number of transmission number characters (as defined by the station’s (termirial definition)
in the (terminal transmission number length statement)) are extracted from the Transmit Transmission
Number field in the Station Table and then transmitted. ' o ' o

{string) , o _
Fach character of {string) , using CHARACTER as a temporary storage area, is transmitted.

5-131

Definitions
REQUEST
Transmit Statemerit — Continued

The BREAK option allows the programmer to specify action if a “break” is received from the terminal

while the adapter cluster is still transmitting. If this option is omitted and a break occurs, an implicit

TERMINATE ERROR instruction is cxecuted. The following describes the actions of the three syntactlcal

lorms:
BREAK - sets TRUE the {bit varidblc) BREAK|TRANSMIT] and causes a b"ranch’ of
control to the next statcment.
BREAK: {label) scts TRUE the g/m variable) BREAK[TRANSM!T] and causes a branch of
control to {label _ .

BREAK:NULL. causes no action. Execution proceeds as if the break did not occur.

5-132

(C

Definitions - .-
REQUEST =

Wait Statément

WAIT STATEMENT
Syntax

WAIT ' . -
L —(— {wait time) :) T '
—: —»(label}———j o
Examples |

WAIT. ,
WAIT (3 SEC).
WAIT (5 MILLIL:6).

Semantics

The {wait statement)y is only allowed in (request definitionys that are written to communicate with full
duplex terminal types. Execution of this statement causes the (request definition) to be suspended until
the co-line cxecutes a {continue statement). The optional syntax effects the statement as described below.

{wait time) defines the maximum amount of (fime) that the {request definition) should
be suspending waiting for the {continue statementy. If {wait time) is
exceeded and the co-line has not executed a {continue statement) , execution
resumes at the next sequential statement.

(wait timéy:label) - same as above except exccution resumes at (label) if a {continuc
statementy is not executed within {wait time) .

Pragmatics

Refer to the (fork statément) pragmatics.

- 5-133

Definitions
STATION

STATION DEFINITION

Syntax

STATION L

DEFAULT —» (default station identifier)

Examples

STATION KMET:
ENABLEINPUT = FALSE.
MCS = SYSTEM/CANDE.
CONTROL = 4“6F".
RETRY = 15.
LOGICALACK = FALSE.
MYUSE = INPUT, OUTPUT.
TERMINAL = TELETYPE.

STATION DEFAULT STADFLT2:
CONTROL = “9™, - ‘
MCS = SYSTEM/CANDE.
ADAPTER =4, |

= STADFLT1.

5-134

DEFAULT

| (station myuse statement) et

—a-(station identifier) :L(station adapter stalement)-———;

Lo=-(station address statement>-;-———b
o= (station control character statement -

L (station default statement) ———————ia

.u-(sta.ti(‘m frequency statement) ————=a
Lo (stdtion initialize statement) ————8=
Lo (station logicalack statement}-—-—,—-—r
- (station MCS statement) ———————>

- (station modem statement D ——

- (station page $tateMent) ——————
Lo (station phone statement) —————s=

> (station retry statement) PUR——

Lo (station width statement) ~————

o (station enableinput statement)--——_— o

o (station terminal type statement) —w

O

N".,;'_Djei:_'initio‘ns. R
~ STATION

o Continded |

Semantics

station identifiery and {default station identifiery have the syntactical form of a {system identifier).
Each syntactical form of the {station definition) is described subsequently. B R

STATION (station identifiery: . . .

This form of the (station definitiony defines the attributes of a station. The attributes must be defined in

“once of the following ways:

a. Each attribute is explicitly defined by mcans of a (slation stdtement}.

b. Each attribute is defined implicitly by means of an explicit reference to a set of previously -
defined default attribute valucs. » ST

c. Some of the attributes are defined implicitly as in b, and the remainder are defihed.explicitly as
in a. : :

Some of the station attributes must be defined for each station; others do not. Some of the statements
may or may not be required, depending upon the appearance of other statements. The semantics portion
of cach (station statemenr) statcs, among other things, whether the attribute must be defined and its
cffect upon the requirements of other <s1ation statement}s. : ‘ '

To define the attributes of a station as described in item a above, only this syntax form is used. -

To define the attributes of a station as described in items b and ¢ above, this syntax form, the following
syntax form, and the (station default statemcnt) must be used in conjunction (this is described under the
following syntax form). : S ' ' - '

STATION DEFAULT {default station identifier): . ..

This form is referred to as a Default (station identifier). lts purpose is to decrease the number of source’
statements required to define all of the stations. This is accomplished in the following manner. Attributes
common to several stations are defined by means of a Default (station deﬁnition}. Associated witheach
Default (station definition) is a {default station identifier) . Subsequent to the Default station
(1('_/illilillll>, any (smli(m dcﬁuition) can reference the <dcﬁrull station identiﬁer), instead of repeating
the list. A {default station identifiery is referenced by means of a (station default statementy. The NDL
compiler uses the last definition of a station attribute, and therefore the programmer can reference a
Default {station definition) and change any attributes by redefining them in the {station definition}.

In appearance, the Default {station definition) is similar to the {station definition) . The Adi'f_f'er.ences are
that the reserved word DEFAULT follows the reserved word STATION, and that there are no statements
that are required to appear in a Default (station deﬁnition). . . o

- 5-135

Definitions
STATION
Station Adapter Statement

STATION ADAPTER STATEMENT

Syntax

ADAPTER —» = (communication type number) - : — — j’ '

(-»-({communication type number y-w-» =(communication type number)+)

Examples

ADAPTER = 4.
ADAPTER = (11,6).

Semuantics

The <\'I(lfi(m adapter statement)y defines a combination of character format, synchronous/asynchronous
communication, and line speed (in the case of synchronous communications) that the DCP must use to
communicate with the terminal associated with the station. This is done by supplying a (comm_unicati‘on
1npe numbery (or number pair). Table 5-4 lists the allowed (communication type m’mzber)s and the
characteristics associated with each. : -

IFor example,

ADAPTER = 4.

This statement defines an 11-bit character format, asynchronous communication, at a line speed of 110 bits

per sceond.

[f the station’s associated terminal type utilizes full duplex (i.e., the (terminal duplex statement} speéifiés
DUPLEX=TRUE), and the primary and the auxiliary lines have different characteristics, then a
Leonumunication type munbery pair must be supplied. ' '

For example,
ADAPTER = (11,6).

This statement defines for the primary line a 10-bit character format, asynchronous communicétion, ata
speed of 1800 bits per second. The characteristics associated with the auxiliary line are the same except
that it runs at a linc speed of 150 bits per second. ' '

The statement: .
ADAPTER = (6.6).

is semantically equivalent to:
ADAPTER =6.

The (('ommunicarimz type number} (or number pair) defined in this statement must be one of those
listed in the {rerminal adapter statement)y of the station’s associated (terminal definitiony. The (station
adapter statement) is required unless the {terminal adapter statement) lists only one {communication type
numbery (or number pair), in which case, the (station adapter statementy may be omitted and the
{terminal adapter statement) specification is used. :

s’/

Definitions. -~
o ~ STATION
Station Adapter Statement '-»"C'_or_lj'tihuedv‘
Supplementary Examples

The following program fragments illustrate valid ddépter statement specificétions. -

Example 1
MODEM AMODEM:
ADAPTER=1,2,3,4,5,6,7,8,9,10.

TERMINAL ATERMINAL:
ADAPTER=6,7,89,11,12,13,14,15.

STATION ASTATION:

ADAPTER=7.
MODEM=AMODEM.
TERMINAL=ATERMINAL.

Example 2
MODEM DUPLEXMODEM:

ADAPTER=6, (11,6), (12,6), 12.

TERMINAL DUPLEXTERMINAL:
ADAPTER=6, (11,6). '

STATION DUPLEXSTATION:
ADAPTER=(11,6).

MODEM=DUPLEXMODEM. ,
TERMINAL=DUPLEXTERMINAL.

L 5-137

Definitions
STATION'
Station Address Statement

STATION ADDRESS STATEMENT

| Syntax ,
ADDRESS —& = —————8= (string) — . ‘ T - >
| et (e ’(sm’ng}n-—-»_b ——yb.(string} . >) |
Examples
ADDRESS = 4“01”.
ADDRESS = (40001”°,401”).
ADDRESS = “A”.
Semantics

The {station address statementy defines the actual address characters.of the station’s terminal that are:
required for operations such as polling and selecting. The number of characters in the {string) (s) must be
equal to the number defined in the (terminal address size statement) of the associated terminal. This
statement is not allowed in Default (station definitions). -

ADDRESS = (string). , |
" This form of the statement is used when the récéiv‘e address and the transmit address are t‘h,e;sa,me.
ADDRESS = ((stringy, (stringy). | '

This form of the statement must be used if thexecei‘véaddress and the transmit address differ. The first
{string) defines the receive address chakacters, and the second {string). defines the transmit address
characters. A : = -

Pragmatics -

The address characters of a station can be chéhged-és a result of the Message Control System (MCS)
executing a SET CHARACTERS (TYPE = 39) DCWRITE.. :

5-138

-

o/

Dcﬁnitioﬁs

STATION
Station Control Characwr Statement
N ,

STATION CONTROL CHARACTER STATEMENT

Syntax
CONTROL - = — ‘ a_»(single character) .
Example
CONTROL = “77,
Semantics

The {station control character statement) defines the control character of the station. The control
character can be recognized by the DCP when RECEIVE(in a message text from the station, and any
action to be taken can be specified by the programmer using the CONTROL syntax m the (recezve
statement).

(}c

(

5-139

Definitions
STATION
Station Default Statement

STATION DEFAULT STATEMENT
Syntax '

L}

DEFAULT - »(default station identifier) — ' — .
Examp}e

DEFAULT = STADFLTI.
Semantics

The (srati()n default statement) allows the programmer to specify the (default station identifier) of aset’
of previously defined default station attributes to be used for a (stationdeﬁnition} whose description is
incomplete. It is advantagcous to group common attributes under a Default (station definition) and list -
the remaining attributes under each individual (station deﬁnition> .. The compiler will then refer to the
Default {station definition) to complete the {station definitiony. The (station default statement) is not -
required to appear in cach (station deﬁnition) ; however, a (statimz definition) must define all required =
‘attributes locally if a ¢ ration default .\'raremc_m> does not appear.

The (station default statementy can appear in a {station definition) or a Default (station definition).
Supplementary Example ' | | '

The following is an example of how a Default {station definition) can be used in conjunction with a
{station definition). o . . » :

STATION DEFAULT STADFLT:

MCS = SYSTEM/CANDE.

CONTROL = o, |

RETRY = 15. : : - : C o
LOGICALACK = FALSE. {Default {station definition)}
MYUSE - = INPUT, OUTPUT. ' o

TERMINAL = TELETYPE.

ENABLEINPUT = TRUE. '

STATION TESTSTATION: (station default statement) references
DEFAULT = STADFLT. = : ‘Default (station definition) above to
MODEM = MABELL103A. complete the station definitiony.
MCS = SYSTEM/DIAGNOTICMCS. ‘ |
ADAPTER = 4.

5-140

~—

'ENABLEINPUT = FALSE.

STATION
Station Fnableinput Statemen

STATION ENABLEINPUT STATEMENT

Syntax

ENABLEINPUT -- »TRUE — .
= FALSE ————j

Semantics

The (station enableinput statement) defines the initial state of the station’s “enabled” bit (program-
matically referred to as STATION(ENABLED)). This statement must be defined in each <station~‘ v
definition). ' : oo - e

ENABLEINPUT = TRUE.

This construct causes the “enabled” bit to be initially TRUE after DCP injtializatic;n, and the station is |

said to be “enabled for input,” or simply “enabled.”

This construct causes the f‘enabledy” bit to be initially FALSE after DCP initialization, and the station is
said to be “disabled for input,” or “disabled.” A S : ' :

Pragmatics

Whether a station is cnabled or disabled for input can directly affect the exccution sequence of instructions
in the {control definitiony and {equest definition) (s) designated for that station. Specifically, if the
station is disabled for input, control will never branch to the Receive Request for that station as a result

of cither an INITIATE ENABLEINPUT or a TERMINATE ENABLEINPUT construct. Refer to the
INITIATE ENABLEINPUT and TERMINATE ENABLEINPUT constructs for more detailed information.

The MCS of the station may chanée’the state Sf the_ “enab]cb ” bit, after DCP iﬁitiaiization, by means of the
ENABLE -INPUT (TYPE = 35) DCWRITE or the DISABLE INPUT v(TYPE: =36) DCWRITE.

R S

- '5_141

Definitions
STATION

Station Frequency Statement

STATION FREQUENCY STATEMENT
Syntax

FREQUENCY -—— -»-(integer) ——

Example
FREQUENCY = 10.
Semantics

The (tation frequency statementy defines the initial value of the {byte variable) programmatically
referred to as STATION (FREQUENCY). The {control definitiony specificd for the station can reference
the (bylv rariahlc) and use the value stored there in any way that the programmer sees fit; however, the
intended use of the variable is to influence in some way the rate at which a polled station is polled. In the
polling {ontrol definitiony provided by Burroughs Corporation in SYMBOL/SOURCENDL,
FREQUENCY specifics a relative polling rate: 0 means poll at the highest rate, 1 means to poll at a slower
fate, 2 means to poll at a still lower rate, etc.

The (iulvge;} must not exceed a value of 255.

The MCS of the defined station can change the value of STATION(FREQUENCY) by means of an ENABLE
INPUT (TYPE = 35) DCWRITE. A '

5-142

INITIALIZE -i-»‘TOG T [—»=(toggle numbery—s] — = ETRUE —
- TOGS | | J »FALSE—

Definitions
STATION

Station lnitiéliic’3 Statement

STATION INITIALIZE STATEMENT
Syntax

) -

Lo TALLY -+ [=(tally numbery—s] —s=[=(bit number)v»]

- TOGS > = E{in teger) ~ ‘
Le-TALLY - [-»=(tally number)—s-] -1 | (single chamcter)—-J
Examples |

INITIALIZE TOGS = 4“FF”.

INITIALIZE TOG|0| = TRUE,
TALLY[1] =25,
TALLY[O] [7] = TRUE. -

INITIALIZE TALLY|[O] =*?”. ‘

Semantics

The /station initialize statement) provides the means to define initial values for the station TOGGLE:s and
TALLYs. Any initial values defined for station TOGGLEs and TALLYSs are stored in the TOGGLEs and
TALLYs at DCP initialization time only. ' ' ' ‘ :

5-143

4 Definitions ’
'STATION
Station Logicalack Statement

STATION LOGICALACK STATEMENT ’
Syntax
LOGICALACK = . +TRUE : .
b= FALSE —————j .
Semantics o
The {station logicalack statement) defines the initial state of a bit, referred to as the Logicalack bit, in the
Station Table. TRUE or FALSE can be specified, indicating the initial state as on or off, respectively. If the
LOGICALACK bit is on, special action is taken if the Receive Request executes either the TERMINATE
LOGICALACK or TERMINATE LOGICALACK(RETURN) constructs of the (terminate statement.
This statement is required in {station (/(’ﬁlliti()ll> s. v
The MCS of the station can change the value of the Logicalack bit after DCP initialization by means of the
SET/RESET LOGICALACK (TYPE = 43) DCWRITE. : " :
et
e/

5-144

o Definitions
- STATION
Station MCS Statement '

' STATION MCS STATEMENT
Syntax
MCS >-- & (MCS identifier) ——
Examples
MCS = SYSTEM/RIJE.
MCS = SYSTEM/APL.
MCS = UTILITY/MCS.
Semantics
The {station MCS statemen(y defines the Message Control System (MCS) that is responsible for handling
messages to and from the station. If the MCS named is not an MCS defined in a (MCS deﬁnition) ,itis
added to the list of valid MCS programs to be contained in the Network Information File, and the MCS will
not be allowed to execute diagnostic DCWRITEs. Refer to the semantics of the (MCS deﬁnin’on} for
information regarding the diagnostic DCWRITEs. This statement is required in (station definition)s.

5-145

Definitions
STATION
Station Modem Statement

STATION MODEM STATEMENT

Syntax

MODEM = & (modem identifier) } — -

Example
MODEM = BELL20I.
Semantics

The (slumm modem xtu/wmwl) applics to a station that has associated with it a terminal type that must
communicate with the Data Communications System through the use of a modem. This statement .
associates the modem type (i.c., a {nodem dc,linirian)) uscd for that purposc with the station. If this
statement is omitted from the {station definitiony , and the {line definitiony for the line to which the
station is assigned (if, in fact, the station is assigned to a line) does not contain a {line modem statementy
then the compiler assumes a direct conncction between the terminal and the line adapter. '

The Zmaodem identifiery must name a {noden definition)y that is compatible with the defined station

attributes. To be more specific, the {communication type number) specified in the {station adapter

slufwncul) (orin the (terminal adapter statement) of the station’s (terminal definitiony if no station

adapier statement) appears) must be one of the (commum‘cati()n type number) s listed in the (modem

adapter statementy of the modem named. - ‘

After DCP initialization, the MCS of the station may change the {modem definitiony associated with the N
station. by means of the MOVE/ADD/SUBTRACT STATION (TY PE = 130) DCWRITE.

5-146

Detinitions -
- ~ STATION
‘ Stution Myuse Statement

- STATION MYUSE STATEMENT

Syntax

MYUSE ——» = -= INPUT - - -
—a OUTPUT
e INPUT — > = OUTPUT
e OUTPUT ——& » ————== INPUT

Semantics

The Qvtation myuse statement) defines to what extent an object job can use the station as in input
or output device. : ’ .

MY USE=INPUT specifies that an object job can use the station as an input file only.
MY USE=OUTPUT spccifies that an object can use the station as an output file only.

MY USE=INPUT,OUTPUT or MYUSE=OUTPUT,INPUT specifies that an object job can usc the station as
an input and/or output file. .

A {terminal request statemeni must be defined by the station’s {terminal definitiony for handling input
and/or output capabilitics as specified in the (station myuse statementy. Thus, if the station is to send
\o’ input to, and receive output from, an objcct job, the station’s (termina/ definitiony must specify a Transmit
N— Request and a Receive Request. . : ‘

Note that the (statton myuse statemcnt) restricts the use of the station by object jobs only. The MCS
can communicate with the station to the cxtent specified in the (rerminal request statement) of the
station’s (ferminal definition) . That is, regardless of what is specified in the (station myuse statement)
the MCS can receive information from, or send information to, a station, provided that the station’s
{terminal dvfiniti(m) specified a Receive and Transmit Request. ' :

The station MYUSF. attribute can be interrogated by an object job through reference to the MYUSE
file attribute. For further information, refer to the B 6700 Input/Output Subsystem Information Manual,
form number 500018S. : R S ’ :

5-147

Definitions
STATION

Station Page Statement

STATION PAGE STATEMENT

Syntax
PAGE = —»-(integer) _ >
Examples
PAGE =12.
PAGE = 0.
Semantics

The {station page statement) defines the number of logical lines per logical page. The (integer} specified
must be less than or cqual to the number of lines specified in the (terminal page statement) of the
station’s (terminal definitiony (unlcss that number is zero, indicating pagination is arbitrary). If a
(station page statement) is not included in the (station definition) , the station’s {terminal definition) :
specifications for pugination arc used. '

An object job may obtain the PAGE value of a station, if the station is attached to a file, and that file

is open, by interrogating the PAGESIZE file attribute and supplying the File Relative Station Number
(FRSN). Refer to the PAGESIZE attribute in the B 6700 Input/Output Subsystem Information Manual,
form number 5000185, for more information. o _ - '

5--148

A Defmitibns
STATION
Stanon Phonc Statement

-
STATION PHONE STATEMENT
Syntax
PHONE - = —— (integer : _ - — -
Example
PHONE = 12136572385.
Semantics
The (stanon phone statement) is nnplemented for documentation purposes only. This statement
documents the telephone number that the system would have to dial to reach the station’s termmal
S’
L —
| —

' 5-149

Dgﬁnitions
» STATION
Station Retry Statement
STATION RETRY STATEMENT
Syntax '

RETRY el = - { integer)

Example
RETRY =3.

Semantics

The (station retry statement) defines a default value for DCP
{pvte variable) for more information. S

INITIAL RETRY. Refer to the RETRY

5--150

Definitions "~

i e . STATION -~
} ; L : ~ Station Terminal Type?Statemént

3~srATunw11nuunwAL1nnnssrAIEmnﬂvr

Syntax
TERMINAL —= +=(terminal identifier) —— i -
Examples
TERMINAL = APLTERM.
TERMINAL = TTY.
Semantics

The (statton terminal type statement) associates a terminal type with the station. Thxs statement is ’
required in a (station definition) . :

After DCP initialization, the MCS of the station can change the tenmnal type associated with the station
by means of the MOVE/ADD/SUBTRACT STATION (TYPE = 130) DCWRITE.

o

5-ast

. ‘Detinitions . PO R A VoL T T e
oA ® bs‘AﬂON . Lot -

¥

Statjon Width Statement

STATION WIDTH STATEMENT
Syntax
WIDTH — = - (integer) — , el +
Examples
WIDTH = 72.
WIDTH = 132.
Semantics
The (station width statemem) defines the number of characters in a logical display line of output on the
station’s terminal. If this statcment is not included in a (station definition) , then the WIDTH defined
for the station’s {ferminal definition) is the default station WIDTH.. ‘ '
An object job can interrogate a station’s WIDTH by testing the value of the WIDTH file attribute. Refer
to the B 6700 Input/Output Subsystem Information Manual, form number 5000185, for further
information. _ -
s/~
-’

5-152

~ Definitions

. TERMINAL
TERMINAL DEFINITION
Syntax
TERMINALE< rerminal identifier - o) a=(terminal adapter statement !
DEFAULT— (default terminal idwui]i('r)J e (terminal address size statement) _ 2
’ ...(terminal “buffer size statement) v

-—(termindl backspace character statement) e

e~ (terminal carriage character statementy———————

Le-(tcrminal clear character statement): o

-c-(terrizinal code character statement) o5
: L (torminal c'(;rilrol srate:'nwnr) =
-»(terhzinal default statementy— e
-—(lcrmind duplex statement’) o
-o-(leﬁninal end character statementy— o

: " o Lo-(terminal home character statement

-»(Iermind illegal character .\'latcmém) .
-»(ler)nin'al‘ inhibitsync statemetit) e
Le(terminal inter-character delay statement) ———uod

- (terminal linedelete character stateMent}—f—-a-r

- (terminal linefeed clzar(icter Statement Yot

Lo (términal maxinput statement ' TS

e (terminal page statenicnt) S
o

o= (terminal parity statement

¥

o~ (terminal request statement)

e (terminal screen statement)

o (terminal timeout statement) .

o (terminal transmission number length statementy—s]

o (terminal turnaround statement’) -

-} {terminal width statement’)

L (terminal wru character statemeht)--——'——-—‘

5-153

Definitions ~ . | T - - o
TERMINAL - | S
Continued |

Exambles ‘
TERMINAL TTY:

CODE
PARITY
SCREEN
BUFFER
DUPLEX
ADDRESS
WIDTH
MAXINPUT
TIMEOUT
REQUEST

ASC67.

NULL.

FALSE.

NULL.

FALSE.

NULL.

72.

72.

300 SEC.

RECEIVE: READTTY,
TRANSMIT: WRITETTY.
CONTROL CONTENTIONDEVICE.

TERMINAL DEFAULT DEFAULTLIST1:

CODE ASCé67.
PARITY NULL.
SCREEN FALSE.
BUFFER NULL.

Semantics

Wowownnnunnn

{terminal identifier) and (defau(r terminal identifiery each have tl}e syntactic form of {identifiery. N
Each construct of the terminal definition) is described subsequently.
TERMINAL (terminal identifier) : ... '

This form of the (terminal deﬁ'nition) syntax defines the attributes of a terminal type in the data
communications network. Most terminal attributes are hardware-dependent. The attributes of the
terminal type are defined in onc of the following ways:

a. Each attribute is defined cxplicitly by means of a {terminal attribute statement) in the
(terminal definition) . ' '

b. Fach attribute is defined implicitly by an explicit reference to a set of previously defined '
default attribute values. . :

¢. Some of the attributes are defined implicitly as in b, and the remainder are defined explicitly
as in a. : :

Some of the (rerminal statement)s must be defined for each (terminal definition); others do not.

Some of the statements may or may not be required, depending upon the appearance of other state-
ments. The semantics portion of each (rerminal attribute statement) states, among other things, -
whether the attribute must be defined and its effect upon the requirement of other attribute definitions.

To define the attributes of a TERMINAL as described in item a above, this syntéx form must be used.

’!‘o deﬁne the attributes of a terminal type as described in items b and ¢ above, this syntax form, the
following syntax form, and the (terminal default st‘atement} must be used in conjunction (this is described
under the following syntax form). ’ ' : '
N’

~

5154

!
Definitions

TERMINAL
Continued
TERMINAL DEFAULT (default terminal identifier) : . . .
This form is referred to as a Default (tc’rminal dt:finition). o .

Its purpose is to decrease the number of source statements required to define all of the terminal types in
the data communications system. This is accomplished in the following manner. Attributes common to
several terminal types are defined by means of a Default {terminal definition) . Associated with each
Default {terminal definition) ‘is a (default terminal identifiery. Subsequent to the Default {terminal
deﬁnition} , any germinal definition) that has those attributes in common may reference the (\defauiz
terminal identifier) , instead of repeating the list. (A (default terminal identiﬁ'er) is referenced by means
of a (terminal default statement)) The NDL compiler uses the last definition of a terminal attribute, and
thercfore the programmer can reference a Default (cerminal deﬁnition) and change any attributes by
redefining them in the (terminal definitinn). .

In appearance, the Default {terminal definition) is similar to the (terminal definition). The differences
are that the reserved word DEFAULT follows the reserved word TERMINAL, and that no statements are
required to appear in a Default {terminal definition).

Supplementary Example

Below is an example of how a Default (terminal definition) can be used in conjunction with a
{terminal definition) . ,

DEFAULTLIST! is the { default }
: ' ‘ terminal identifier)-of this Default
TERMINAL DEFAULT DEFAULTLIST!: (terminal deﬁnition). The set of default

. , , l attributes that follows is referenced by g
CODE = ASC67. I | this name.
PARITY = NULL. \ {(terminal statement) s define the default }
SCREEN = FALSE. attributes associated with DEFAULTLIST1.
BUFFER = NULL. ‘

Above, DEFAULTLIST] has associated with 1t four attributes. Any subsequent (terminal deﬁnition)
in a source program can reference these default attributes by the appearance of a (terminal default
statement) in the (terminal definition). The (terminal default statement) has the form:

DEFAULT ———& = —w- {default terminal identifier) o -

where the (default terminal identifiér> must name a previously defined Default (terminal definition).
More information regarding the use of Default (terminal definition) s in conjunction with (terminal
default statement)s can be found in the (terminal default statemenf) semantics.

Below. TTY uses the {terminal default statement) to reference DEFAULTLIST1. DEFAULTLISTI
contains the attribute information required to complete the (terminal definition) TTY. .

TERMINAL TTY: . “This { terminal default statement}
DEFAULT = DEFAULTLIST].+— { references the Default { terminal
DUPLEX = FALSE. definition) defined previously.
ADDRESS = NULL.

WIDTH = 72.

MAXINPUT = 72.

TIMEOUT = 300 SEC. o

CONTROL = CONTENTIONDEVICE. : -
REQUEST = RECEIVE: READTTY, TRANSMIT: WRITETTY.

5-155

Defintions
TERMINAL
Terminal Adapter Statement

TERMINAL ADAPTER STATEMENT

Syntax
Y e
ADAPTER —= Q('ummuui('a[)'(m type number)
(—n»(mmmunication type number) == —&=(communication type number)=)—j
Examples
ADAPTER =4,

ADAPTER = (6,10), (10,6).
ADAPTER =5, (5,6), 6.

Semantics

The {terminal adapter statemem) defines one or more combinations of character format, synchronous/
asynchronous communication, and line speed (in the case of asynchronous communications), with which
the terminal type is compatiole. This is done by supplying one or more {communication type number) s
(or number pairs). Table 5-4 lists the allowed {communication type number) s and the characteristics

associated with each.

If the terminal type is to be operated in a full duplex mode, and the primary and the auxiliafy lines have
different characteristics, then a (communication type number} pair must be supplied.

If the terminal is to be modem-connected (i.e., con
then at least onc of the {communication type num

nected to the system through the use of modems),
ber) s (or number pairs) must be compatible with those

numbers listed for the connecting modem in the (modem adapter statement).

5-156

-

—~

Ny

Definitions |
TERMINAL
Terminal Address Size Stétement

“_

TERMINAL ADDRESS SIZE STATEMENT

Syntax
ADDRESS —= — & NULL — f -
L {receive address size) —
‘ L » == (transmit address size) -j L (DIFFERENT) j
Examples ‘ _ :
ADDRESS =2, '

ADDRESS = 2 (DIFFERENT).
ADDRESS = 3, 2 (DIFFERENT).
ADDRESS =2,3. .

Semantics

The {terminal address size statement) defines the number of address characters that the terminal type
transmits and receives. The number of address characters must not be confused with the actual address
characters used in polling and sclecting; the (station address statement) defines the actual address char-
acters. This attribute must be defined when actual address characters are defined in the (station
address statement) of a (station definition) that references the {terminal definition). :

(receive address size) and (transmit address size? must be integers greater than zero and less than 4.
The (receive address size) _defines the number o ‘address characters the terminal expects to receive, and
-t the (transmit address size) defines the number of address characters that the terminal transmits. If the
o transmit address size) is not defined, it is assumed the (transmit address size} is equal in length to the
receive address size). The (receive address size) and the (ransmit address size) for a given terminal
must concur with the length of the character (séring)(s) defined as the actual address characters in the
<station address statement) of any (station deﬁnition} which references the (terminal defim‘tion) ;
otherwise, a syntax error resuits.

The (DIFFERENT) option must be used if the (receive address) and the (transmit addressy , as defined
in the (station address statement) , are not identical.

- 5-157

Definitions
TERMINAL

Terminal Backspace Character Statement

TERMINAL BACKSPACE CHARACTER STATEMENT
Syntax

BACKSPACE &= s~ (single character) —— '
| - | l-—w (DYNAMIC) —j

Examples .

BACKSPACE =4“16".
BACKSPACE = “ > (DYNAMIC).

Semantics

The {terminal backspace character statement} defines the backspace character of the terminal type
{i.e., the character that the terminal type would transmit to indicate that the previous character should
be deleted). If defined, the backspace character can be recognized by the DCP when RECEIVEd (ifra
{ receive statement)), and any action to be taken can be specified by the programmer (using the
BACKSPACE syntax). o L

(DYNAMIC) indicates that the controlling MCS of a station referencing the (terminal definition) is
allowed to change the backspace character for the station by means of a SET CHARACTERS (TYPE=39)
DCWRITE. : _ . ,

5-158

Defintions
TERMINAL
. Terminal Buffer Size Statement

TERMINAL BUFFER SIZE STATEMENT
Syntax

BUFFER — = —1——& NULL i : ' ‘ &

L (in teger)

Examples

BUFFER = NULL.
BUFFER = 960.

Semantics

The (terminal buffer size statement) applies to buffered devices and defines the size, in characters,
of the terminal type buffer. If the terminal type is an unbuffered device, the form: ‘

BUFFER = NULL.

can be used, or the statement may be omitted; additionélly, if the device is unbuffered, the (terminal
maxinput statement) must be defined for the {terminal definition) . ‘

5-159

Deﬁniﬁons
TERMINAL
Terminal Carriage Character Statement

N’
TERMINAL CARRIAGE CHARACTER STATEMENT .
Syntax
CARRIAGE > = — & (single character — » >
Example
CARRIAGE = 4“0D".
Semantics
This statement is implemented for program documentation purposes only. This statement provides a
means of documenting the carriage return character of a terminal type. The documentation of this
character is optional in a (terminal definition) . :
e
W'v

5--160

Definitions
TERMINAL
Terminal Clear Character Statement

TERMINAL CLEAR CHARACTER STATEMENT
Syntax

"CLEAR e = e~ (single character) —.

Example
CLEAR =4“11".
Semantics

This statement is implemented for program documentation purposes only. It provides a means to
document the clear character of a terminal type. The documentation of this character is optional in a

{terminal definition) .

5-161

Definiti.ons
TERMINAL

Terminal Code Statcment

TERMINAL CODE STATEMENT

Syntax

CODE ——& = — 77— ASCII (BINARY)

> ASC67

L ASC68

——s BAUDOT

———= BCD

= BINARY

——= EBCDIC

R N O A I

L& PTTC6I
Semantics

The <t('rminal code statementy specifies the character code translation required for the DCP to
communicate with the terminal type. The internal code of the DCP is EBCDIC, and the DCP translates
from EBCDIC to the code specified for transmissions, and from the code specified to EBCDIC for
receptions.

BINARY and EBCDIC specify (hat translation is not required.
ASC67 and ASC68 specily the standard software translation tables for the ASCII character code.

ASCH (BINARY) allows a {control definition) ot {request definition) to switch back and forth between
ASCII code translation and no translation. The (ode statement) in a {request definition) or

<c'(mtrol definition) cffects the switch back and forth. The application of this featurc is to allow a
(request definitiong or (conrml de_/'initi(m) {o enter a “transparent” mode in Binary Synchronous
communications procedurces.

BAUDOT, BCD, BCL, and PTTC6l specifications are all indicative of the translation they invoke. For
example, BAUDOT invokes the Baudot character code set, PTTCél invokes PTTC/6, etc.

" Pragmatics
For special applications a programmer can define and invoke non-standard character codes by: -
a. defining a translation table in a (translatetable definitioﬁ);
b. specifying BINARY or EBCDIC in the (rerminal code statement) ; and

¢. invoking the translation in a {control dej'inition) or (réquest definition) by means of the
appropriate option of the (assignment statement}. _

Refer to the (translatetable definitiony in this chapter for more information.

5-162

Defi nit“io,ns"‘»
TERMINAL

Terminal Control Statement

TERMINAL CONTROL STATEMENT
Syntax

CONTROL —» = —== (control identifier)
L s —e= (control identifier) ——j

Examples

CONTROL = CONTENTION.
CONTROL = PRIMARYCONTROL,
AUXILIARYCONTROL.

Semantics

The {terminal control statement) specifics the {control definition)(s) responsible for allocation of the
logical line(s) to which a terminal type is associated. This attribute must be defined for all {terminal
definitions). : '

Terminal types that do not utilize full duplex, reverse channel, or voice response features require that only
one (amrrol identij'icr} be named.

Terminal types that utilize full duplex, reverse channel, or voice response features (i.e., DUPLEX = TRUE)
may optionally specify a second (control iclentiﬁer). The first (control identiﬂer) names the {control
deﬁnition) for the primary line, and the second ‘control identiﬁer) names the (control definition) for
the auxiliary line. If only one (contml identiﬁer‘) is specified, it is assumed to be the (control definition)

for the primary line, and the default equivalent of an (idle slatemcnt) is used for auxiliary line control.

5-163

Definitions
TERMINAL

Terminal Default Statement

TERMINAL DEFAULT STATEMENT

Syntax

DEFAULT — = o (default terminal identifier) >

I‘xample
DEFAULT = TTYDFLT.
Semantics

The (rerminal default statementy allows the programmer to specify the (default terminal identifier)
of a sct of default terminal attributes previously defined to be used for a (terminal deﬁnition}
whose description is incomplete. It is advantageous to group common attributes under a Default
{terminal d(’finition> and list the remaining attributes under each individual (terminal definition> .
The compiler will then refer to the Detault {rerminal definition) to complete the (terminal
definitiony. The {terminal default statement) is not required to appear in (terminal definitions) .
however, a {ferminal definitiony must define all required attributes if a (terminal default statement)
does not appear.

The (ferminal default statement)y can appear in a (terminal definitiony or a Default {terminal
definitiony . : '

Suppliemeantary Example

The following example illustrates how (rcrminal default statement}s may be “nested” to combinc the
attributes of one or more Defaull (terminal l/('ﬂlliti()ll)b‘. '

‘The cffect of referencing GENERALDEFAULT within the Default (ferminal definitiqn) TTYDEFAULT
is that the attributes associated with TTYDEFAULT are cquivalent to all attributes as defined by
GENERALDEFAULT plus the attributes explicitly defined in TTYDEFAULT.

If a <termina1 definition) or Default (terminal definition) references a Default (terminal deﬁnition),
the compiler docs not compare the two definitions for contradictory statements. 1f contradictory state-
ments exist within the two definitions, the last value defined for the attribute takes precedence. In the
example, TTY?2 defines the value of the PAGE attribute as 66, and the Default (terminal definition)
that TTY2 references defines the value of the PAGE attribute as 0. The compiler uses 66 as the value
of the PAGE attribute for TTY2. - ”

5-164

g)

TERMINAL DEFAULT GENERALDEFAULT:

Definitions -
_ TERMINAL
Terminal iﬁefault Statement — Continued

TURNAROUND = 0.

ICTDELAY = 0.]
TRANSMISSION = 0. ~a———Default (termingl definition)y
ADDRESS = 0. : '
PAGE = 0.

BUFFER = 0.

TERMINAL DEFAULT TTYDEFAULT:

DEFAULT = GENERALDEFAULT. -y {terminal default statement) references:
BLOCK = FALSE. above Default (rerminal definition)s.
SCREEN = FALSE. : '

PARITY = NULL. " ‘

SYNCS = FALSE. ~a———)efault {terminal definition)
TIMEOUT = 3 SEC. : '

MAXINPUT = T2.

WIDTH = 72.

ADAPTER = 4. ’

CODE = ASC67.

TERMINAL TTY1: ‘_ S
DEFAULT = TTYDEFAULT. g<terminal default statement) references
DUPLEX = FALSE. ' , above Default (terminal definition)s.
WRU = ENQ. - '

END = ETX (DYNAMIC).

BACKSPACE = BS (DYNAMIC). .

CONTROL = CONTEND. L ' L
REQUEST = WRITETTY: TRANSMIT, READTTY: RECEIVE.

TERMINAL TTY2: '

DEFAULT = TTYDEFAULT. : {(terminal default statement)y references
DUPLEX = FALSE. ' ‘ above Default {terminal definition)s.
WRU = 498",
BACKSPACE = 4“97".
CONTROL = SPECIALCNTRL. o
REQUEST [1] = READER: RECEIVE, WRITER: TRANSMIT.
IP}EQUEST [2] = READPPT: RECEIVE, WRITEPPT: TRANSMIT.
GE = 66.

5-165

Definitions o . L e
TERMINAL
Terminal Duplex Statement | S

TERMINAL DUPLEX STATEMENT

Syntax

DUPLEX - = » TRUE -
L—-»FALSE ' . ?

Semantics |

The {terminal duplex statement) defines whether or not (TRUE or FALSE, respectively) the terminal
type utilizes full duplex, reverse channel, or voice response features. If DUPLEX = TRUE, then the (line
definition) for any linc that has this terminal type assigned must contain the (line type statement) con-
structs that specify full duplex. This attribute must be defined for each (terminal deﬁnjition). '

5--166

<(€>'

(C

Definitions |
TERMINAL
Terminal End Character Statement

TERMINAL END CHARACTER STATEMENT
Sylil:nx

END > = & { single character) l
' l—"’ (DYNAMIC)

Examples

END =4%“0D",
END = “&” (DYNAMIC).

Semantics

The (tt'rmmal end character statement) defines the ¢ end character of the terminal type (i.c., the character
that the terminal type would transmit to indicate an end-of-text). If defined, the “end” chamctcr can be
recognized by the DCP when RECEIVE (in a (receive starwnenl}) and any action to be taken can be
specified by the programmer (usmv the END syntax).

(DYNAMIC) indicates that the Mcssugc Control System of a station rcfcrcncing the (tcrminul dc(ﬁflitim))
is allowed to change the character for the station by means ol a SET CHARACTERS (TYPE=39)
DCWRITE.

5-167

Definitions -
TERMINAL
Terminal Home Character Statement

TERMINAL HOME CHARACTER STATEMENT
Syntax

HOME > = - single character) .

Example
HOME = 40C”.

Semantics

This statement is implemented for program documentation purposes only. It provides a means of docu-

menting the home character of the terminal type. The documentation of this character in a {terminal
definition) is optional. '

5-168

O

Definitions .

o - TERMINAL
, - Terminal Illegal Character Statement
o TERMINAL ILLEGAL CHARACTER STATEMENT
Syntax
ILLEGALCHR — = & (single character) ——e
Example

iLLEGALCHR = 4“FF”.
Semantics

The {terminal illegal character statement) is implemented for documentation purposés oniy. The docu-
mentation of this character is not required in a (ferminal definition). ' '

5-169

Definitions
TERMINAL
Terminal Inhibitsync Statement

TERMINAL INHIBITSYNC STATEMENT
Syntax

INHIBITSYNC - = & TRUE - -
& FALSE ————-1 '

Semantics

The <icrmmal inhibitsync statement} affects only terminal types that specify any of the (commumcatton
type number}s 17 through 27 in its (termmal adapter staterment y. This statement has no affect upon, and
need not be defined for, terminal types that do not specify any of those <commumcatzou type number)s

If INHIBITSYNC = FALSE, then the following occurs during a synchronous transmission. The trans-
mission begins with the transmission of four sync characters by the adapter cluster. As the fourth sync
character is being transmitted, the first character of the message is requested from the DCP. The DCP
should respond to this request by supplying the first character of the transmission. As each supplied
character is transmitted, the adapter cluster requests another character. If the DCP is unable to respond in
time to the request, the adapter cluster transmits a sync character; this process is called “sync filling.”
Sync filling is repeated as necessary until the DCP responds with another character or the DCP directs the
adapter cluster to “finish transmit” for the line. :

When INHIBITSYNC = FALSE during a synchronous reception, the following occurs. At the beginning of

the reception, bit patterns from the line are examined by the adapter cluster and the bits discarded until a A
sync character is recognized. The recognition of a sync character establishes that the next bit to be ~—’
received by the adapter cluster is the first bit of the next character. The sync character is discarded,

instead of being made availablc to the DCP. All characters in the transmission that are not sync characters

are madc available to the DCP. The DCP may then fetch these characters. Any sync characters received in

the transmission are discarded.

If INHIBITSYNC = TRUE , then the following occurs during a synchronous transmission. All actions occur
that would occur if INHIBITSYNC = FALSE. In addition, if a sync fill is required, a “sync fill interrupt”
occurs so that the DCP can determine when one or more undesired sync characters have been inserted into
the transmission. ‘System software responds to the interrupt by executing a TERMINATE ERROR. The
controlling MCS is notified of all such situations so that corrective action (MAKE LINE READY (TYPE =
96) DCWRITE, for example) can be taken.

When INHIBITSYNC = TRUE during a synchronous reception, the following occurs. At the beginning of
the reception, bit patterns from the line are examined by the adapter cluster and the bits discarded until a
sync character is recognized. The recognized sync character is discarded, as is the next character if it is
also a sync character. Thereafter, all subsequent characters (sync characters or otherwise) are made avail-
able to the DCP as data.

The reserved word SYNCS is a synonym for INHIBITSYNC.

e

5-170

Definitions
TERMINAL
Terminal Inter-Character Delay Statement

s

TERMINAL INTER-CHARACTER DELAY STATEMENT
Syntax

ICTDELAY > = —e={ delay time) —

Examples

ICTDELAY =0.
ICTDELAY = 200 MILLI.

Semantics

The {erminal inter-character delay statement) provides the uscr a means to insert a timed delay between
cach character transmitted to the terminal type. The {delay time) specified defines the interval of (time)
between the transmission of the start of one character to the start of the next character. If the time speci-
fied is less than the time required to transmit a character, this statement has no effect. This attribute must
be defined for all <tem1inal (Ieﬁnin’(m> s. :

°

Supplementary Example

A Model 33 TELETYPE can receive characters at a maximum rate of one character every 100 milliseconds. If.
for some reason, the programmer needs to insert a 100-millisecond delay between each character trans-
mitted to the terminal, this can be.donc by specifying: ’ ‘

ICTDELAY = 200 MILLI,
4

(C

5-171

: _Deﬁnitio‘né - : ' v . -
TERMINAL « T
" Terminal Lincdelcte Character Statemicnt '

TERMINAL LINEDELETE CHARACTER STATEMENT

Syntax

— -

LINEDELETE - —a (single character) -
. . s Le»(DYNAMIC)—J -]

Examples

LINEDELETE = 4“07".
LINEDELETE = 4“A0".

Semantics

The {ferminal linedelete character statement) defines the linedelete character of the terminal type. If
defined, the linedelete character can be recognized by the DCP when RECEIVEd (in a (receive statement)),
and any action to be taken can be specified by the programmer’ (using the LINEDELETE syntax).

(DYNAMIC) indicates that the Message Control System of a station referencing the {terminal definition)
is allowed to change the character for the station by means of a SET CHARACT ERS (TYPE=39)
DCWRITE. ; o

5-172

(c

Definitions
TERMINAL
Termmal Lmefecd Character Statement'

TE RMINAL LINEFEED CHARACTER STATEMENT

Sym.tx |
LINEFEED > = - (single character) — - R
Example :
 LINEFEED = 425”.

Semantics

This statement is provided for program documentation only. It documents the lmefeed character of the
terminal type. The documentation of this character ina (termmal def” inition is optlonal

5-173

Definitions
TERMINAL
Terminal Maxinput Statement

TERMINAL MAXINPUT STATEMENT
Syntax '

MAXINPUT — = 2 {integer) . — ———

Example

MAXINPUT = 72.
Semantics

The {erminal maxinput statementy applics to unbuffered terminals and defines the maximum size text, in
characters, that a terminal is allowed o transmit in onc message. This attribute must be defined in all
{terminal definition)s in which the (terminal buffer size statement) is not defined or is defined as ‘
BUFFER = NULL. This statement applies only to unbuffered devices; it is meaningless to define maxin-
put if the {terminal buffer size statement) is defined as non-NULL. -

5-174

O

(C

TERMINAL PAGE STATEMENT
Syntax

Detinitions
TERMINAL -
Terminal Page Statement-

PAGE — = —» (integer)

Examples

PAGE=0.
PAGE = 12.

Semantics

The {terminal page statement) defines the maximum number of output lines per page as restricted by the
hardware of the terminal. There are, for example, devices that can only print/display a defined number of

lines before some type of carriage/cursor control information must be supplied.
defined has no such restrictions, then

PAGE = 0.

If the terminal type being

should be specified, thus indicating that pagination is arbitrary. This attribute must be defined for all

(rerminal definition)s.

5-175

Definitions
TERMINAL

Terminal Parity Statcment

TERMINAL PARITY STATEMENT

Syntax
PARITY —&= 14— NULL , ‘ ‘ —
y | l
-+ VERTICAL ——= : -—=EVEN '
| 1-»(')1)1)-—-—j - f
T\-= HORIZONTAL > : 1+ EVEN —
| - (0 —p)-j '[:om) |
.1
—— %:*cncus)—;—
Examples

PARITY = NULL.

PARITY = VERTICAL:ODD.

PARITY = HORIZONTAL:CRC(16). _

PARITY = VERTICAL:ODD, HORIZONTAL(0):EVEN.

Semantics

The (terminal parity statement) _dcﬁncs the tybe of parity checking and generation to be performed by the
DCP when communicating with the terminal type. If the form: :

PARITY=NULL.

is used, parity is not checked or generated.

The VERTICAL option refers to the vertical parity bit of a character, and can be defined as ODD or EVEN.

The HORIZONTAL option specifies the type of horizontal parity. If horizontal parity is a Block Check
"Character, then ODD or EVEN must be specified. If horizontal parity is a Cyclic Redundancy Check, then
CRC(16) must be specified. S

The 0 or 1 option defines the function of the vertical parity bit of the Block Check Character. If this bit is
a parity bit for the Block Check Character, then this option must be omitted or defined as 0 (zero). If
undefined, the option is assumed to be 0 (zero). If the bit is to be considered as a horizontal parity bit of
all high-order bits in the message, then this option must be defined as 1.

5-176

e et Definitions
| o TERMINAL
Terminal Request_ ;Statement :

TERMINAL REQUEST STATEMENT

Syntax

REQUEST = - 5= ‘ (rcqucsl idcntijicr)-—:-bRECE]'VE‘-—f@ .
_ L[-.{(inlcgcr) value of 1 thru 6}-»]-1 - = (request identificr)—: -o:‘!"RANSM‘l‘T -
Examples

REQUEST = READTTY:RECEIVE. :
REQUEST = WRITETTY :TRANSMIT, READTTY :RECEIVE.
' REQUEST(2] = TTYTAPEIN:RECEIVE, TTYTAPEOUT:TRANSMIT.

Semantics

The {terminal request statement) specifies a {request identifier), or a pair of (request identifier)s, that
designates the {request definition) to handle input from (the RECEIVE option) and/or output to (the -
TRANSMIT option) the terminal type. The (request deﬁnition) that handles input is commonly referred

to as the Receive Request, and the {request definition) that handles output is commonly referred to as the .
Transmit Request. This statement must appear in each {terminal definition), and cannot appear in a
Default {erminal definition). o - :

The {{integer) value of 1 through 6} allows the specification of up to six pairs of Transmit and Receive
Requests for the same device. Normally, these Request pairs differ for some application-dependent .
reasons. Only one pair of {request definitions can be the controlling {request definition)s at any instant
of time. The (request definition)s in control of the terminal type immediately after DCP initialization
has an {(integer) value of 1 through 6 } of 1; they retain control until the Message Control System (MCS)
of a station associated with the terminal type executes a SET APPLICATION NUMBER (TYPE = 38)
DCWRITE. S : . S ~ :

5-171

Tenhmal'smenisg'temént, s o

TERMINAL SCREEN STATEMENT |

Syntax S | - |
SCREEN - —=TRUE -
| | o _—f——qFALSE———J

Semantics

The {terminal screen statement) defines whether or not (TRUE or FALSE, respéctively) the terminal type
is a screen (i.e., CRT) device. This attribute must be defined in each (terminal definition).

5-178

TIMEOUT > =

. Definitions

&

o Tetminal Ti'}nebuf 'Stagenien_t-

TERMINAL TIMEOUT STATEMENT
Syhtax ‘

—e(timeout ﬁme)
Example 4 . |
TIMEOUT = 3 SEC.

Semantics ' B _ -
The (terminal timeout statement) defines the intefvél of ’,(vtime) thbat "thé adapter cluster should_' fvﬁ?éit from
the receipt of one character to the start of the next (in a {reccive statement ») before assuming that the

terminal has “timed out.” The action taken upon a timeout condition can be specified in a {receive
statement) by means of the TIMEOUT syntax. . o ‘ ' I S

5-179

CteRMNAL

Definitions
TERMINAL
Terminal Transmission Number Length Statement

TERMINAL TRANSMISSION NUMBER LENGTH STATEMENT

Syntax
TRANSMISSION — = - —~NULL —
—a- 0 J
-] —
> -
> 3 — —p
Semantics

The (terminal transmission number length statement) defines the number of characters that the terminal
transmits and receives as the message transmission number. The 0 and NULL options are semantically
cquivalent and specify that no transmission number is used. ‘A non-NULL transmission number length
must be specified if a {control definition) or {request definition) that references the item TRAN is

defined for the terminal type. This statement may be omitted from a {terminal definition) if the terminal
does not transmit or receive transmission numbers. o '

5-180

f

e/

Definitions
TERMINAL
Terminal Turnaround Statement

TERMINAL TURNAROUND STATEMENT
Syntax

TURNAROUND > = -»(time) — — .
Examples | IR

TURNAROUND = 0. -
‘TURNAROUND = 200 MILLI.

Semantics . .
The (terminal turnaround statement) defines the time required for the terminal to shift from transmitting

~ data to receiving data. The {time) defined is a parameter of a compiler algorithm for calculating the

initiate transmit delay. Refer to the semantics of the {control definition) or {request definition)
(initiate statement)in this chapter for more information. This attribute must be defined for each
(terminal definitiony. : ’ -

5-181

Definitions
TERMINAL
Terminal Width Statement

TERMINAL WIDTH STATEMENT
Syntax

WIDTH o = - integer) — — —-

Example
WIDTH = 80.
Semantics

The {tenninal width statement) defines the width, in characters, of a display line of output on the terminal
type. The {integer) must be greater than O and less than 256; additionally, the value of the (integer) must
be less than or equal to the size defined in the {terminal buffer size statement), if present. It isnot
required that the {terminal width staterent) appear in a (terminal definition). If the (terminal width
statement) is not defined in the {terminal definition), then the buffer size value is substituted for this
value, if present; otherwise, the value of MAXINPUT is substituted by default. '

5-182

-l

(

(C

o wg&?ﬁeﬁhitions S

o gesemwt T TERMINAL - o
PR i cer : o -
”*N .. " ‘Terminal WRU Character Statement’

L IRt - ,«*‘") .
TERMINAL WRU CHARACTER STATEMENT o
Syntax * | | | -
WRU . - = —o (single ch‘aracter). o — ' — ‘ ~b .

TS o | '_l—-.a--(lmsmmc)-.J
" Examples
WRU = 42D" (DYNAMIC).
WRU = “7". |
Semantics

The {terminal WRU character statement) defines the WRU character for the terminal type (i.e., the
character the terminal type would transmit to request a response from the DCP). If defined, the WRU
character can be recognized by the DCP when RECEIVEA (in a (receive statemen t)), and any action to be_
taken can be specified by the programmer (using the WRU syntax). o _

(DYNAMIC) indicates that the Messagé Control System of -a station referencing the (termiﬁal definition)
is allowed to change the character for ghe station by means of the SET CHARACTERS (TYPE=39)
DCWRITE. o R R

'5.—183

Definitions o 4 o ' o
TRANSLATETABLE | |

TRANSLATETABLE DEFINITION
Syntax
1 i I G TR onree cinp Y o i » ingle ¢ \ ‘l.
TRANSLATETABLE {translatetable identificr j—=(source size)—-(—byw=(string)—=TOQ —(single character)) .
' = SOUPCC)=t TQ) e (CS LENGHON)t
o~ EBCDIC —#=TO —=(standard character sety=e
- (standard character set y=a=TQ—s= EBCDIC —=
e (translate tablc ideriti]ivr)——-—'—-—o; v
Examples

TRANSLATETABLE ~ ATABLE 8(“STRING” TO “X").
TRANSLATETABLE ~ BTABLE ~ 8(4“000102" TO 4“AABBCC”).
TRANSLATETABLE ~ CTABLE 7(4028208" TO 4"AACCDD").
TRANSLATETABLE ~ DTABLE 7(4“00” TO 4“AA™),
~ ETABLE &(DTABLE, 4°01" TO 4“BB").
TRANSLATETABLE ~ FTABLE - §(400" TO 4“AA™), -
GTABLE 8(EBCDIC TO BCLFTABLE,

4‘_501” TO 4‘6BB”)‘

TRANSLATETABLE TRANID 7(“1” TO 401",
3 “29’ To 46‘0279. ‘ .
“34” TO 40304,
4“F5F6™ TO 40607”).

Semantics

The {iranslatetable definition) allows the definition of tables that may be used in {control defi initiony s
or {request definition)s to translate characters of one character set to those of another character set.

Translation tables nced to be defined in an NDL program only if non-standard character sets must be

dealt with in the Data Communications System. Terminals that transmit and receive a standard character
set do not require a translation table definition: instead, the character set is merely named in the {termmal
code statement of the {terminal definition). The character sets that do not require a (translatetable
definition . are ASCll BAUDOT, BCD, BCL, EBCDIC, and PTTC/6.

The {translatetable identifi er) that follows the key word TRANSLATETABLE names the translatlon table, .
and must be in the syntactic form of an {identifiery.

(source size) defines the character size, in bits, of characters to be translated (source size) must be an
Zinteger) greater than 0 and less than 9.

TRANSLATION TABLE STRUCTURE

Each clement of the translation table consists of elght bits. IfN represents the {source size) , then the size
of the table is 2 raised to the Nth power. The elements of the table are selected by an index that ranges
from O through 2 to the Nth power minus 1.

At exccution time, translation is done in the followmg manner. The bmary weight of the low-order
N bits of the character to be translated is used as an index into the Speclﬁed translatlon table. The element
of the table thus indexed is the translated result : Lo .

--184

Definitions
" Continued

INSERTING DATA INTO THE TRANSLATION TABLE

Every translation table has a default base in which each clement in the table is 0 (all bits off). Data can be

placed into the translation table by various specifications within the parenthescs. If more than one }
specification appears for a given translation table, each succceding specification overrides, within its scope,
previous spcecifications. ' . - '

{string) TO (single chc‘zrac‘tcr)

This form inserts data into the translation table in the following manner. Each eight-bit characterin the
{string) is examined from left to right. If a character in the {string) is numerically greater than the size
of the table, no entry is placed in the translation table; otherwise, the (single character) is stored in the
clement of the table whose index is the binary weight of the N low-order bits of the (string) character
(where N is the {source size) specified). ' ' S

' (sourc@ TO ((]c?stirzatiorz)

{source) and {destinationy must be (stringy s of equal fength. This form of specification inserts data into
the translation table in the following manner. Translation is based upon corresponding characters in ’
qsource) and {destination) , starting from left and procéeding to right. The first character of {source)
corresponds to the first character of (destination) , the: second character of {sourcc) corresponds to the
second character of (déstinatiqm) , etc. If a character in (sourc'e) is numerically greater than the size of the
table, then no entry is placed in the translation table; otherwise, the corresponding character in o
{destinationy is stored in the element of the table whose index is the binary weight of the N low-order bits
of the corresponding character in (wmr('() :

- {standard character sefy TO EBCDIC and EBCDIC TO (stan_ddrd character set)

This form specifies a standard system software translation table from the NDL compiler that is to be
copied into the translation table. The {standard character set)s that may. be specified are EBCDIC,
ASC67, and BCL. These forms provide a way of obtaining a legitimate base apon which additional
specifications can be made. L L - o

{translatetable identifier)

This form of specification indicates»that the contents of a prévioﬁsly’defméd traﬁsiation table is td be
copied into the translation table. ‘The {translatetable identifier) must be the (t_’dentiﬁer} of a previously
defined translation table, This form provides a means of obtaining a legitimate base upon which additional

specifications can be made.
Pragmatics

Those tables, and only those tables, that are used by a DCP reside in the local memory of that DCP (unless
a DCP does not have local memory, in which case they reside in main system memory). Memory for
translation tables is allocated in blocks of 256 words, regardless of the space required for those tables.
Tables are densely packed and all elements are used before another block of 256 words is allocated. Unless
consideration is given to the translation requirements of devices in the data communications system while in
the planning and programming stages, translation tables can be very costly in terms of local memory.
Although it is beyond the scope of this manual to describe the planning of a data communications system,
this fact should not escape the NDL programmer.. B e R

- 5-185

TRANSLATETABLE

Definitions

. TRANSLATE'I‘ABLE
Continued
Supplementary Examples
' Exainplé 1 : T
TRANSLATETABLE ATABLE 8(“STRING” TO *X"). |
Character to be Translated o &g_sglt_
us‘n ssx”
60‘[9’ . 66x’9
. - 6&R99 .] 2 GGX’Q
» “l”) “X”)
“‘N” : 66x’9
“G” 6$x”

ATABLE is a translation table containing 256 elements. The (soui'ce size) , 8 in this example, deter-
mines the table sizc. All characters from (source) arc translated to the (single character) .

Example 2 ; .o
TRANSLATETABLE BTABL_E 8(4“000102"' TO 4“_AABBCC”')’.
Character.fo be Trénslated - Result
Coa00” . O 4UAA”
4&‘01'1 . v N 4CGBB” LN
46602” . . 466CC99
403" o . : : 400"

BTABLE contains 256 clements. Characters from (souicc)Q4“000102”, are translated to the
corresponding characters in the '(dcstination}, 4“AABBCC”. The character 403 is translated to
400" because there is no specification in {source) for 403”. L E

Example 3
TRANSLATETABLE CTABLE 7(4“028203” TO 4“AACCDD”).
" Character to be Translated - ~ Result
401" . . S } 400"
v 46602” .) 4“AA”
482" .) e : 4“AA”
4<0B” ' 4“DD”

In this example, the translation table CT. ABLE contains 128 elements. The character 401 is
translated to a 4°°00” character, because 401" is unspecified in the (source). The character 482" is
translated to the character 4“AA” because only the low-order seven bits of 482" are used to index ‘
the translation table. - o . -

TRANSLATETABLE DTABLE 8(4“00” TO 4“AA™).

ETABLE 8(DTABLE, 4“01” TO 4“BB").

The above {translatetable definition) defines two translation tables: DTABLE and ETABLE. All
clements in DTABLE contain 400", except the element indexed by the character 400”; that element
contains 4“AA”. ETABLE specifies DTABLE as a base, and then modifies that base with a subsequent
specification. . T

Example 4

5-186

(C

(€

Definitions
TRANSLATETABLE -

f‘ontmued

Example 5

TRANSLATETABLE FTABLE 8(400” TO 4“AA”™).
GTABLE 8(EBCDIC TO BCL, FTABLE, 4“01” TO 4“BB”).

GTABLE is defined to contain 256 elements, and specifies the standard EBCDIC-to-BCL translation
table upon which subsequent specifications modify. FTABLE also contains 256 elements and
appears as a specification in GTABLE. Since each succeeding specification overrides w1thm its scope
any previous specification, FTABLE in effect overlays all elements. The result is the same as if only
the following had appeared:

TRANSLATETABLE FTABLE 8(400” TO 4“AA”),
GTABLE 8(FTABLE, 401” TO 4“BB”).

The above example points out that any table appearing as a specification indicates all elements of that
table, not just those elements explicitly defined. The example is not intended to 1llustrate an accept-
able programming practice.

5-187/5-188

_;‘: »Va'ljiabl'es :
- VARIABLES

—a

6. VARIABLES
GENERAL

“The NDL compiler does not allow a programmer to declare and use program variables, as do other language

compilers such as ALGOL, PL/I, and COBOL. Instead, the NDL programmer can use only predefined
program variables. : . Lo

The {bit variable)s and {byte variable)s are the two types of variables the programmer can use, The {bit
varigble)s are one-bit variables that can only assume logical values (i.e., TRUE or FALSE). The (byt_e
variable) s are all eight-bit variables, and can assume integer values from O through 255, except for the IR
variable, which is a 10-bit variable. The IR variable is included as a (byte variable) as a matter of
convenience. ' ' :

Individual bits of a {byte variable) can be referenced and used like a {bit variable) , if referenced in the
form illustratcd below. ‘ o

~ { byte variable) > [o { bit number) —] — -]

where {bit number) is an {integer) not greater than the number of bits contained in the variable minus 1.
For cxample, bit S of IR is referenced as IR[5].
FUNCTION OF VARIABLES
Functionally, variables fall into one of three general categories:

a. Variables that are available to the programmer for gén’cral information stofage.

b. Variables that can be used for system/station communication.

¢. Variables that contain control information.
General information variables can be used within their séopc by the prbgrammer for data storage, calcula-
tions, etc. Additionally, some variables in this category could (by convention) be used as communication
paths between (request deﬁnition}s executing on a given line. (The use of a given variable for this appli-
cation is restricted by the scope of that variable.) : : '
Variables whose intended function is communication to and from the main system and stations are gener-
ally contained in the message header of a message sent to the main system from a station, or sent to the
station from the main system. Messages from the main system to a station are originated either by the MCS

or by an application program (via the 1/O Intrinsics).

The format of message variables within a message headéris described in detail in the B 6700/B 7700

DCALGOL Reference Manual. Generally, message variables are contained in five fields of the message header:

a. Message Toggles (word [1]1.[39:8]) -
" b. Message Tallys (word [3].[23:24])

Variables

Continued

¢. Message Error Flags (word [1] . [23:24])
d. Variant “Carriage Control” (word [0] . [39:16])
c Message Retry Count kword_lZl .147:81)
Message Toggles and Mcessage Tallys provide stbragc arca in the header for some of the siation general infor-

mation variables. The meaning of values stored in these fields must be established by mutual convention be-
tween the MCS writer and the NDL programmer.

Message Error Flags are used for the station to communicate to an MCS that some exceptional event has
occurred in a (request deﬁ'nition} or {control definition}. These variablcs reference bits in the message
header of “result” messages rcturned to the MCS as a result of execution of a {terminate statement).

Carriage Control is valid for Transmit Requests, and provides information regérding the kind of carriage
control to be performed by a Transmit Request. These variables reference bits or bytes in the message
header of WRITE (TYPE=33) DCWRITE messages. '

The Message Retry Count is described under RETRY in this chapter.

Variables whose function is to contain control information are used by both the DCP operating system and
the programmer. Generally, these variables provide information to control the logic paths of (control
definition)s, (request definition) s, and the DCP operating system. .

SCOPE OF VARIABLES

The scope of the variables in NDL is Jcscribcd as being:
a. Station-oricnted.
b. Line-oriented.
c. Global.

Station-oriented variables exist for each station in the network. TALLY [0] is an cxample of a station-
oriented (byte variable); thus, cach station has its own TALLY [0]. The variables of a given station arc

% 66

visible to a line only while STATION is set to that station’s “‘station index.”

Line-oriented variables exist for each line on a DCP. The variables of a givén line are visible to every station
assigned to that line. MAXSTATIONS is an example of a line-oriented variable. Each line on a DCP has its
own MAXSTATIONS, and every station assigned to a given line can access the MAXSTATIONS variable of
that line. ' . :

A global variable is a variable that is visible to all stations on a DCP.
DESCRIPTION OF VARIABLES

The remainder of this chapter contains descriptions of each {bit variable) and {byte variable). The variables
(listed in table 6—1) are described in alphabetical order. The name of the variable precedes a summary of the

variable characteristics, followed by a detailed description of the variable.

N’

~—"

(C

o fV_a‘rj_i_abl.esf | "

'Cbniihued

The summary of the variable characteristics includes the places in the source program that the variable can

be interrogated or altered, and the size, in bits, of the variable. In the summary, the word “Intérrogate”
indicates that the programmer can interrogate the variable. The word “Alter” indicates that the programmer
can use the (bit variable >N {byte variable) as an {assignable bit variable) | {assignable byte variable). The
corresponding letters “C”, “T”, and “R’ in the summary refer to (control definition), Transmit Request,
and Receive Request, respectively. The last item to appear in the summary is the size, in bits, of the variable.
If no size is defined, then the size of the variable is one bit.

For example. the summary:

EXAMPLE1
lntcrrogatev, CTR, 8

can be expanded as follows:

EXAMPLET1is an 8-bit variable. It can be
interrogated in a {control definition).
Transmit Request, or Receive Request.

The summary:

EXAMPLE2 :
Interrogate/Alter, CTR/TR

can be cxpanded as Tollows:

EXAMPLE? is a (bit variable). It can be’
interrogated in a {control definition)
Transmit Request, or Receive Request.
Additionally, EXAMPLE2 can be altcred
(i.e., appcear as an (assignable bit variable})
in a Transmit Request or Receive Request,
but not in a {control definition).

Table 6—1 contains the summaries of cach variable for quick reference. '

6-3

Variables

Continucd
Table 6--1. Table of Variables
- SIZE N NS
NAME (in bits) INTERROGATE | - ALTER
ADDERR CTR CTR
Al 8 CTR CTR
AUX (LINE (BUSY)) CTR. CTR
AUX (LINE (QUEUED)) | CTR CTR
AUX (LINE (TALLY [{0or 1}]° 8 CTR ' CIR
AUX (LINE (TOG [{0or 1}] - CTR CTR
BCC 8 CTR ' CTR
BCCERR TR TR
BLOCK T _
BLOCKFED T —_
BREAK |RECEIVE] CTR . CTR
BREAK [TRANSMIT)| © CTR CIR
BUFOVFL - CTR CTR .
CARRIAGE T —
CHARACTER 8 CTR CTR
CONTROLFLAG o . TR TR
CRC o - CTR CTR
CRC [{0or 1}] 8 . CIR CTR
CRCERR - "~ TR TR
DISCONNECT TR - TR
ENDOFBUFFER "~ TR TR
FORMATERR TR TR
INHIBITSYNC o " CTR CIR
LINE (BUSY) R : CTR CTR
LINE (QUEUED) - CIR ' CIR
LINE (TALLY [{0 or 1}] - 8 . 'CIR CTR
LINE (TOG [{0 or 1 }] S ' CTR CTR
LINEFEED s T —_
LOSSOFCARRIER i - CTR CTR
MAXSTATIONS 8 - CIR S—
NAKFLAG g TR TR

6--

((

((

=z * Variables

“Continued
Table 6—1, Table of Variables (Cont)
SIZE P
NAME ~ (in bits) INTERROGATE 'ALTER
NAKONSELECT TR TR
NOSPACE CTR —e
PAGE T ——
PAPERMOTION T -
PARITY CTR CTR
RETRY 8 CTR CTR
SEQERR TR " TR,
SEQUENCE CTR CTR
SKIP T —
SKIPCONTROL 8 T —
SPACE B T .
STATION o -8 c . c
STATION (ENABLED) | CTR —
STATION (FREQUENCY) 8 CTR —
STATION (QUEUED) CTR ——
STATION (READY) o CTR —
STATION (TALLY) -8 CTR . CTR
STATION (VALID) CTR S
STOPBIT CTR CTR
SYNCS CTR - CTR
TAB T o
TALLY [{tally number)) 8 CTR ~ CTR
TIMEOUT L CTR _CTR.
TOG [(toggle number)) CTR - CTR
TOGS 8 CTR - CTR
TRANERR ' TR TR
WRUFLAG TR TR

6-5

Variables

Continued
N
ADDERR '
Interrogate/Alter, CTR/CTR
ADDERR references bit 8 in the Error Flag Ficld of 4 message header, and normally indicates that an- ddd'i'ess‘
character error has occurred while executing a (receive statement) Refer to the ADDRESS optlon of the
(receive statement).
Al
Interrogate/Alter, CTR/CTR, 8
This variable addresscs a volatile register and should not be used for data storage. Its main purpose is to _
allow access to the untranslated byte just received rather than to the translated byte in CHARACTER,
particularly when executing the {sum statemem)
AUX(LINE(BUSY))
Interrogate/Alter, CTR/CTR
AUX(LINE(BUSY)) is used to allow or inhibit the mtcrruptlon of the execution of a (control defi mtton}
or {request dejmmon) on the auxiliary line of a full duplex linc pair. - If this bit is TRUE, it indicates to the
DCP operating system that the linc is engaged in functions that must not be interrupted. If FALSE, it mdp .
cates to the DCP operating system that the linc can be mterrupted to initiate another function. W

AUX(LINE(BUSY)) is line-oriented, but may be altered only by the auxlhary line. Both the auxiliary and e
primary line may interrogate this bit.

A {control defi nition) or (request definition) will be interrupted when AUX(LINE(BUSY)) is FALSE if
the primary line executes a (fork statement). (Note that an interruption causes control to leave a {control
definition) or <request defi mtwn} and that control is not returned to the point where the mterruptnon '
occurred.) AUX(LINE(BUSY)) is set TRUE by system software when:

a. The primary line executes a (fork statement) and AUX(LINE(BUSY)) is FALSE or
b. The auxiliary line (control defi mtton) is entered, or
¢. The auxiliary line enters a Receive or Transmlt Request.

If AUX(LINE(BUSY)) is TRUE when the pnmary line executes a. {fork statement) the (fork statement)
will act as a no-op.

(

(C

* Variables

" Continued

AUX(LINE(QUEUED))
Interrogate/Alter, CTR/CTR

This is a line-oriented (bit variable) that refers to the queucd status of the auxiliary line of a full duplex line
pair. The bit is set by the DCP operating system if and when an input message space is explicitly acquired
by executing a {getspace statement) on the auxiliary line. o ' '

AUX(LINE(TALLY[{0 or 1 }]))
Interrogate/Alter, CTR/CTR, 8

These are line-oriented (byte variable}s for the auXiliary,h’ne of a full duplex line pair, and can be used for
any purpose by the NDL programmer. They can be accessed by either the primary or auxiliary line at any
time. : ' o o : ’)

AUX(LINE(TOG [{0 or 1}]))
Interrogate/Alter, CTR/CTR

-These are line-oriented (bit variab‘le)s for the auxiliary line of a full duplex-pair; and may be used for any
purposc by the NDL programmer. They may be accessed by either the primary. or au_xih'ary_ line at any time.

BCC
Interrogate/Alter, CTR/CTR, 8

BCC is used by system software for the purpose of accumulating a Block Check Character when a station
(terminal definition) defines horizontal parity as ODD or EVEN in the (terminal parity Statement). '

Block Check Character accumulation is an automatic function, if appropriate, of the (receive statement)
and < transmit statement}. Block Check Character accumulation is based upon execusive-OR logic, that is,
as characters are received or transmitted, they are exclusively OR-ed with the contents of BCC. It is the .
responsibility of the programmer to initialize BCC when appropriate. (Refer to the {initialize statement)
under (request definition) or {control definition).) ' ' '

If a station ('terminal definition) does not define horizontal parity, BCC can be used as a temporary data
storage area. It should be pointed out, however, that the value in BCC is destroyed by most constructs of

the (terminate statement). Furthermore, since the intended purpose of BCC is to contain parity information,
BCC and CRC[0] address the same data space. BCC cannot be used if a terminal uses Cyclic Redundancy
Check. : ' '

When accumulating a Block Check Character, a convenient means to eliminate a speciﬁc character from the
value accumulated in BCC is the (sum statement). ' ' :

Variables

Continued

BCCERR

Interrogate/Alter, CTR/CTR

BCCERR refers to bit 7 in the Error Flag Ficld of a result message, and conventionally indicates thata
horizontal parity (BCC) error occurred while executing a (receive statement). Refer to the semantics of the:
BCC option of the (receive statement). - -
BLOCK

Interrogate, T

This bit references bit 29 in W()r(l zero of a message header. If TR‘UE,"tliis bit indicates that more blocks.(or
messages) of a blocked transmission are to follow. Use of this bit implies a convention between the MCS and
the NDL programmer for the purposes of providing blocked transmissions.

BLOCK is set TRUE implicitly as a result of execution of a TERMINATE BLOCK construct in a Receive
Request. ’ : . -
BLOCKED

Interrogate, T '

A synonym for BLOCK. Refer to BLOCK. o N
BREAK [RECEIVE]

Interrogate/Alter, CTR/CTR

This {bit variable} refers to bit 3 in the Error Flag Field of a message, and normally indicates that a break ‘
condition was sensed in a (receive statement). Refer to the semantics of the BREAK option of the (receive
statement). o IR ' S
Note that if this bit is TRUE in a message to be returnéd to _the"MCS, the message is retuméd as a STATION
EVENT (CLASS=1) message. Refer to the B-6700/B 7700 DCALGOL Language Reference Manual for more
information regarding this message,. ‘
BREAK[TRANSMIT] .

Interrogate/Alter, CTR/CTR

This { bit variable) refers to bit 5 in the Error Flag Field of a message, and normally indicates that a break . .
condition was sensed while executing a transmit statement). Refer to the semantics of the BREAK option
of the (transmit statement). : . :

Note that if this bit is TRUE in a message to be returned to the MCS, the message 'is returned as a STATION
EVENT (CLASS=I) message. Refer to the B 6700/B 7700 DCALGOL Language Reference Manual for more

information regarding this message.

R

6-8

 Variables

_‘ - Continued

BUFOVFL
Interrogate/Alter, CTR/CTR

This {bit variable) rcfers to bit 2 in the Error Flag Field of a message, and normally indicates that a cluster
buffer overflow condition occurred while executing a (receive statement). Refer to the semantics under the
BUFOVFL option of the {receive statement). o : S

CARRIAGE
Interrogate, T

CARRIAGE is a carriage confrol variable, and is used to indicate if a carriage return is desired at the comple-
tion of the text transmission. . AT

CARRIAGE is TRUE if message word [0] . [25:1] is zero.

This bit can be set by the 1/O Intrinsics for a data communications file, or by the MCS.

CHARACTER : :
Interrogate/Alter, CTR/CTR, 8

CHARACTER is a linc-oriented (byte variable).

CHARACTER contains the last character TRANSMITted or RECEIVEd on the line, unless otherwise altered
by a (fetch statement) or an (assignment statement). - - - :

CONTROLFLAG
Interrogate/Alter, CTR/CTR

This <bit variable) refers to bit 12 in the Error Flag Field of a message, and normally indicates that the
station defined contrql character was received. Refer to the CONTROL option of the (rece’ive statement).

Note that if this bit is on in a message to be returned to an MCS, and the first character of the message is the
control character of the station, the message is returned as a STATION EVENT (CLASS=1). Refer to the
B 6700/B 7700 DCALGOL Language Reference Manual for more information regarding this message.

CRC
Interrogate/Alter, CTR/CTR

In < request definition)s and (control deﬁnition‘)s that use the Cyclic Redundancy Check, system software
tests the status of the (bit variable} CRC before the execution of any (receive statement) or {transmit
statement). If CRC is TRUE, the byte (or bytes) transmitted or received are calculated into the Cyclic
Redundancy Check stored in the (byte variable) s CRC[0] and CRCJ[1]. If CRC is FALSE, bytes transmit-
ted or received do not affect the Cyclic Redundancy Check. : _

Variables

Continued
CRC[{00r 1}]
lnterrogate/Alter, CTR/CTR, 8
System software uses the (byte variable}s CRC[0] and CRC[l] as a concatenated 16-bit information field
to contain Cyclic Redundancy Check information for those stations whose (termtnal def”mtton)s define .
horizontal parity as CRC(16). If the {bit variable) CRC is TRUE, Cyclic Redundancy Check calculation is
done using CRC[0] and CRC[1] as a 16-bit field, and the characters TRANSMI’I‘ted or RECEIVEJ. If CRC
is FALSE, Cyclic Redundancy Check calculation is inhibited. ‘ ‘ _
If a station (terminal definition) does not define horizontal panty, then CRC[O] and CRC[l] can be used
as a temporary storage area. It should be pointed out, however, that the values in CRC[0] and CRC{1] are
destroyed by most constructs of the (terminate statement) Additionally, since the intended purpose of
these variables is storage of parity information, CRC[0] and BCC address the same byte. ‘CRC[0]
cannot be used for temporary data storage if the (control deﬁnition} or (request deﬁnitton) uses BCC for
Block Check Character accumulation. _ '
CRCERR =

Interrogate/Alter, CTR/CTR
CRCERR references bit 7 in the Error Flag Field ofa result message, and conventionally indicates that an
error in the Cyclic Redundancy Check occurred while executmg a (recezve statement} Refer to the seman-
tics of the CRC option of the (receive statement). . .

: e’

DISCONNECT
Interrogate/Alter, TR/TR
DISCONNECT references bit 12 in the Error Flag Field of a message, and mdlcates that a dxsconnect occur- .
red on the line while executing a (request deﬁmtion} - A
ENDOFBUFFER - L
Interrogate/Alter TR/TR -
ENDOFBUFFER referenees b1t 17in the Error Flag Freld of a result message and is. eonventronally used by o
a (request definition) to indicate when an overflow of the text buffer: has occurred Refer to the semantres k
of the ENDOFBUFFER option of the {receive statement) L - <
FORMATERR B
Interrogate/Alter, TR/TR _ S
This bit references blt 10 in the Error Flag Field of a result message, and is conventxonally used to mdxcate .
that a format error occurred while executmg a {receive statement) Refer to the RECEIVE (strmg) construct S
of the (receive statement). o ‘ TR , _ SN

(c

 Variables

f':v‘,,'Cc'mtyihuedv

INHIBITSYNC
Interrogate/Alter, CTR/CTR

INHIBITSYNC is a line-oriented variable that causes actions as described under the {terminal inhibitsync
Statement). : S .

IR

" Interrogate, CTR, 10-bit

" IR addresses the 10-bit Input Register of the adapter cluster. This register contains hardware related control

and data information for a line adapter. , . _

IR can be interrogated using a {bir number) specification. (bit number)s for IR range from zero through 9.
For example, IR[0] addresses bit number zero of the Input Register. ' A

Refer to the Burroughs Data Communications Processor Reference Manual or the DCP Reference Card for
the meaning of the bits in IR, ” R

LINE(BUSY)
Interrogate/Alter, CTR/CTR

LINE(BUSY) is a line-oriented control information bit, and is used to allow or inhibit the interruption of
the execution of a {control definition) or (request definition) on a single line. In the case of a full duplex '
line pair, LINE(BUSY) refers to the primary line. If this bit is TRUE, it indicates to the DCP operating
system that the line is engaged in functions that must not be interrupted.. If FALSE, it indicates to the DCP
operating system that the line can be interrupted to initiate another function.- LINE(BUSY) can be altered
only by the primary line of a full duplex line pair. o » D

A {control definition) or {request definition) is interrupted when LINE(BUSY) is FALSE if the DCP re-
ceives in its Request Queue a station-oriented DCWRITE message, and STATION(QUEUED) is FALSE for
that station. If the message is a READ - ONCE ONLY (TYPE=34), STATION is set to that station index,
and control is transferred to the Receive Request for that station. If the message is a WRITE (TYPE=33)
DCWRITE message, STATION is set to that station index, and control is transferred to the Transmit Request:
for that station. If the message TYPE is neither of the above, the function associated with the message is '
executed and control resumes at the beginning of the line {control definition) , witn the value of STATION
equal to the index of the station for which the function was initiated. (Note that an interruption causes con-
trol to leave a {control definition) or (request definition), and that control is not returned to the point where
the interruption occurred.) - o R 4

Variables

Continued
| -/

LINE(BUSY) is sct TRUE by system software when:

a. The (eontrol definition) is entered,

b. A (reqzwsr definition) is entered, or

c. The line is the primary of a full duplex line pair, LINE(BUSY) is F ALSE and the auxiliary line ex-

ecutes a fork statement . ‘

Note that if LINE(BUSY) is TRUE when the auxiliary line of a full duplex lme pair executes a (fork state-
ment), the (fork statement) acts as a no-op. _
LINE(QUEUED)
Interrogate/Alter, CTR/CTR
LINE(QUEUED) is a line-oriented variable used to indicate whether or not (TRUE or FALSE, respectively)
a message has been queued for any station on the line. It is set TRUE by system software when a message
is inscrted into an empty Station Queue of a station assigned to the line. It is the programmer’s responsibil-
xty to set it FALSE when appropriate.
LINE(TALLY ({0 or 1}1) o o o
lnterro;,ate/Alter CTR/CTR, 8 : - . .
LINE(TALLY [{ Oorl }]) are lme—oriented vanables for data storagc, etc., available to the- programmer
An MCS may dynamically alter the lme talhes by performmg a SET/RBSET LINE TOG/TALLY (TYPE—IO3)
DCWRITE request.
LINE(TOG[{0 or 1}])
Interrogate/Alter CTR/CTR A A _
LINE(TOG [{ Oorl }]) are hne-onented vanables for general mformatlon storage etc., avallable to the pro-
grammer.
An MCS may dynamically alter the hne toggles by performmg a SET/RESBT LINE TOG/TALLY (TYPE—IOS)
DCWRITE request.
LINEFEED
Interrogate, T _ .
LINEFEED is a carriage control variable and is TRUE when message word [0] . [24:1] is zero. If TRUE,
LINEFEED indicates that a new line is required at the completion of the text transmxssmn This bxt can be \«’

set by the l/O Intrinsics for a data commumcatnons ﬁle or by the MCS o . o

6--12

(«

' ,Vafiables '

. Continued

LOSSOFCARRIER
Interrogate/Alter, CTR/CTR

LOSSOFCARRIER references bit 18 in the Error Flag Field of a result message, and is conventionally used
to indicate thut a loss of carrier occurred while executing a (receive statement). Refer to the
LOSSOFCARRIER option of the (receive statement). '

MAXSTATIONS
Interrogate, CTR, 8

MAXSTATIONS is a line-oriented {byte variable) whose value is the maximum number of stations that can
be assigned to the line. :

MAXSTATIONS is initialized to the value defined in the (line maxstations statement) of the {line defini-
tion). If the (line maxstations statement) does not appear in a (line definitiony, théen MAXSTATIONS is
initialized to the number of stations listed in the (line station statement). If neither statement appears,
MAXSTATIONS is zero. :

Within a (control definition), the valid range of values which may be assigned to the (byte variable} STATION
is between zero.and MAXSTATIONS -1, inclusive. ' , ' o

NAKFLAG
Interrogate/Alter, TR/TR

NAKFLAG references bit 11 in the Error Flag Field of a result message, and convéntionally indicates that a
transmission was NAKed by the terminal. This bit is not set by system software, and its use is at the option
of the programmer. , ~ '

NAKONSELECT
Interrogate/Alter, TR/TR

NAKONSELECT references bit 16 of the Error Flag Field bf a result message, and is cohventionally used to
indicate that a Transmit Request was NAKed when it attempted to select the terminal. - This bit is not set by
system software, and its use is at the option of the programmer.

NOSPACE
Interrogate, CTR

NOSPACE is a global variable that, when TRUE, indicates that a “no space” condition exists in the available

space pool. NOSPACE is set by system software when the condition exists, and reset when the condition no
longer exists. ' : : ' -

6—-13

Variables

Continued

PAGE T e/
Interrogate, T

PAGE is a carriage control variable, and conventionally indicates whether a new page is required for the out-
put device. For example, on a screen device, PAGE = TRUE could indicate to the Transmit Request that a
home/clear sequence should be transmitted before or after the text is transmitted to the terminal. Refer to
PAPERMOTION. ' o

PAGE is set TRUE is message word |0].126:1} = L.

PAPERMOTION
Interrogate, T

PAPERMOTION is a carriage control variable that is conventionally used to indicate whether carriage cohtrol
is desired before or after the message text is transmitted. If message word [0] Jq30:11=1, PAPERMOTION

is set TRUE, and carriage control should be done before the text is transmitted; otherwise, carriage control
after the text is transmitted. :

PARITY :
Interrogate/Alter, CTR/CTR

—

PARITY references bit 6 of the Error Flag Ficld ina result message, and indicates that a vertical parity error ™

was detected when exceuting a {receive statementy. Refer to the PARITY option of the {receive statement). -

RETRY
Intcrrogate/ Alter, CTR/CTR, 8

RETRY isa station-oriented variable, and is referred to as DCP RETRY.

The purpose of DCP RETRY is to record the number of attempts a (request deﬁ.nition} has made to com-
municate with a terminal but failed as the result of some abnormal condition. Conventionally, the NDL
programmer decrements RETRY (i.e., DCP RETRY) by one for each unsuccessful attempt at an operation -
until RETRY equals zcro, then exccutes a TERMINATE ERROR. :

When a {request definition) is initiated by the DCP, DCP RETRY is implicitly set to an initial value called
DCP INITIAL RETRY. The default value of DCP INITIAL RETRY is specified by the NDL program in the
(station retry statement,.

By using the Message Retry Field in the message header (message word (21.147:8]), the MCS can control
the value assigned to DCP INITIAL RETRY, and therefore, is the initial value of DCP RETRY. If the
Message Retry Field is 255, the value specified in the (station retry statement) assigned to DCP INITIAL
RETRY, otherwise the value of the Message Retry Field is assigned to DCP INITIAL RETRY. The NDL
program can restore the value of DCP RETRY to the value of DCP INITIAL RETRY at any time by ex-
ccuting the INITIALIZE RETRY construct.

All forms of the {terminate statement) which result in a message being returned to an MCS cause the /T
current value of DCP RETRY to be stored in the Message Retry Field of the result message.

6-14

Variables

Continued

SEQERR
Interrogate/Alter, TR/TR

SEQERR refcrences bit 14 in the Error Flag Ficld of a result message, and conventionally indicates that a
sequence number overflow occurred as the result of the execution of an INCREMENT SEQUENCE con-
struct. Refer to the {increment statement). . _ , o

SEQUENCE .
interrogate/Alter, CTR/CTR

SEQUENCE is a station-oriented bit that indicates whether or not (TRUE or FALSE, respectively) a
(request definition) is to perform automatic sequencing. SEQUENCE is controlled by a SET/RESET
SEQUENCE MODE (TYPE=49) DCWRITE from the MCS. SEQUENCE can be set FALSE by the NDL
program but can be set TRUE only by the controlling MCS. 'SEQUENCE can be set TRUE only if the
{request definition) for a terminal employs sequence number constructs such as TRANSMIT SEQUENCE,
INCREMENT SEQUENCE, and STORE SEQUENCE. Use of automatic sequencing is the option and res-
ponsibility of the NDL programmer. . ' : ,

SKIP
Interrogate/T

SKIP is a carriage control variable. SKIP is used in conjunction with SKIPCONTROL to indicate a “skip to
channel N”” on an output device. If message word [0].[27:1] = 1, SKIP is set TRUE and SKIPCONTROL
contains the channel number to skip to. Both SKIP and SKIPCONTROL can be set by the 1/O Intrinsics
for a data communications file, or by the MCS. ' '

SKIPCONTROL
Interrogate, T, 8

SKIPCONTROL is used in conjunction with the {bit variable)s SKIP and SPACE. If SKIP is TRUE, then
SKIPCONTROL applies to SKIP. If SPACE is TRUE, SKIPCONTROL applies to SPACE. If neither are
TRUE, SKIPCONTROL is undefined. Both SKIP and SPACE should not be TRUE concurrently. For a
description of the function of this byte, refer to SPACE and SKIP. SKIPCONTROL is transferred to the
Transmit Request in the message header of a WRITE (TYPE=33) DCWRITE in message word [01.[39:8],
and can be set by the I/O Intrinsics for a data communications file, or by the MCS. N : _—

SPACE

~ Interrogate, T

SPACE is a carriage control variable. SPACE is used in conjunction with SKIPCONTROL to indicate the
number of vertical lines to skip. If message word [0].[28:1} =1, SPACE is set TRUE and SKIPCONTROL
indicates the number of lines to skip. SPACE and SKIPCONTROL can be set by the I/O Intrinsics for a
data communications file, or by the MCS. : , _

Variables

Continued o

STATION
Interrogate/Alter, C/C, 8

STATION is a linc-oriented (byte variable) used in a {control definition) of a multi-station line to select a:
particular station with which the {control definition) wishes to interact. That is, to access the variables of
a particular station. or INITIATE the Receive Request or Transmit Request of a station, the station index

value associated with the station must be stored in STATION. ' '

A station index value is associated with cach station that is assigned to a logical line. At DCP initialization
time, station index values are assigned sequentially, beginning at zero, to cach station on a given line in the
order that the stations were named in the (line station statement) of the (line definition). =~

After DCP initialization, an MCS can cause a station to be logically added to a line. When this occurs, a
gtation index value becomes associated with the station. An MCS can also cause the logical removal of a
station from a line. After such action, the station index value that was associated with the station no longer -
references a valid station. Thus, after DCP initialization, “holes™ can exist in the sequence of valid station
index values for a given line. A station index value can be “tested” to determine if it references a valid sta-.
tion by interrogating the STATION(VALID) {bit variable). ‘ o

There is a maximum valid station index value associated with each line. That value is determined either by
the (line maxstations statement) or by the {line station statement). (Refer to the (line maxstations state-
mem} for more information.) This value can be obtained in a {control definition) by interrogating- '
MAXSTATIONS. : ‘ - .

STATION(ENABLED)
Interrogate, CTR

This is a station-oricnted {bit variabley which refers to the “enabled” state of a station. When this variable
is TRUE, the station is enabled for input, and the station Reccive Request can be invoked. If
STATION(ENABLED) is FALSE, the station is disabled for input, and attempts to invoke the Receive Re-
quest will be disallowed. » o

The setting of STATION(ENABLED) is initially defired by the (station enableinput statement) in the -
station definition, and may be altered by.an MCS via the ENABLE INPUT (T YPE=35) and DISABLE INPUT
(TYPE=36) DCWRITE. oo , o .

STATION(FREQUENCY) |
Interrogate, CTR. 8

STATION(FREQUENCY) is a station-oriented {byte variable), and is cohventionally used to contain a
relative polling frequency for polled stations. The initial value for STATION(FREQUENCY) is supplied by
the (station frequency statement) for a station. It can be altered by an MCS via the ENABLE INPUT -
(TYPE=35) DCWRITE. Refer to the (station frequency statement}. o

6-16

. . Variébles ,.

_ Continued

STATION(QUEUED)
Interrogate, CTR, 8

STAT[ON(QUEUED) is a station-oriented variable that indicates whether or not (TRUE or FALSE, :éspec~

tively) therc are any messages (output or enableinput) in the station queue. Note that if this variable is
FALSE. the execution of an INITIATE REQUEST construct acts as a no-op. R

STATION(READY) |
Interrogate, CTR

If STATION(READY) is TRUE, the station associated with the station index stored in STATION is logi-
cally ready. No function (e.g., 2 Transmit Request or Receive Request) can be INITIATEQ for the station
if it is not ready. Stations can become not-ready as the result of the execution of a TERMINATE'ERROR
in one of its (request definition)s or as the result of the MCS executing a MAKE STATION NOT-READY
(TYPE=37) DCWRITE. S o o

STATION(TALLY)

Interrogate/Alter, CTR/CTR, 8

STATION(TALLY) is a station-oriented {byte variable) and is a general purpose variable which may be
used by the NDL program for data storage. The initial value of STATION(TALLY) is zero. Note that
STATION(TALLY) differs from TALLY [(tally number)] in that it cannot be directly STOREd ina
message header. : - . : .

STATION(VALID)
Interrogate, € '

The STATION(VALID) bit indicates whether or not (TRUE or FALSE, respectively) there is valid station
associated with the station index value stored in STATION. Refer to the (byte variable) STATION.

STOPBIT - |
Interrogate/Alter, CTR/CTR .

STOPBIT references bit 1 in the Error Flag Field of a result mes’sége, and convé’nti'o’_nélly. indicates that a

stop bit error was detected while executing a {receive statement). Refer to.the STOPBIT option of the
{receive statement). S o .

SYNCS
Interrogate/Alter, CTR/CTR

SYNCS is 4 synonym foi' INHIBITSYNC. Refer to the IN_HIBITSYNC description.

Variables

Continued
N
TAB
Interrogate, T
TAB is a carriage control variable, and is conventionally used to indicate tabulation for the terminal. Thls
bit is not set by 1/O Intrinsics, and its usc implics some established convention between the MCS and the NDL
programmer. TAB is sct TRUE if message word [0].(30:1} = 1. ~ ;
TALLY [{rally number)|
Interrogate/Alter, CTR/CTR, 8 ‘
TALLY [0]. TALLY [1],and TALLY [2] are general purpose statioh—oriented (byte variable)s. They can
be used for storage of 8-bit quantities such as counters, characters, etc. When the DCP is initialized, the
TALLY:s are initially zero unless a value is specified in a (station initialize statemeni} TALLYs may be
initialized dircctly from a message header (message word [3].[23:24]) by utilizing the INITIALIZE
TALLY {[{tally number)| construct, thereby cnabling an MCS to supply additional information to the DCP.
The DCP can likewisc transfer the value of a TALLY back to an MCS in a result message by utilizing the
(store statement). Once a TALLY has been assigned a value, that TALLY retains that value until explncntly
. altercd by the NDL program. . : '
TIMEOUT ‘ _ ' } . : o
Interrogate/Alter, CTR/CTR ’ | ‘ ‘ o . W

TIMEOUT refcrences bit 0 (zero) of the Error Flag Field in a result message, and conventionally ihdlcatcs.
that a timeout occurred while executing a (recewe statemem} Refer to the TIMEOUT option of the
(receive statement). :

TOG [(toggle number)|
Interrogate/Alter, CTR/CTR

TOG [0] through TOG [7] are general purpose statxon-onented (bzt varzable)s often referred to as toggles.
They can be used for storage of logical values (TRUE and FALSE). When the DCP s initialized, the value of
the toggles is sct to the value specified in the (station initialize statement) , or, if such initialization is not
specified, the initial value will be FALSE. Toggles can be assigned a value directly from a message header
(message word [1].[39:8]) by utilizing the INITIALIZE TOG [{toggle number)] construct. Toggles can
be stored into a result message by utilizing the {m)re statement) Once a toggle has been assxgned a value
that toggle retains that value until cxphcxtly altered by the NDL program.

TOGS
Interrogate/Alter, CTR/(‘TR 8

TOGS addresses the eight (bit variable)s TOG[O] through TOG [7]. For example, TOGS = : 4“FF” sets S

TOG[0] through TOG [7] TRUE. TOG [0] is considered the low-order bit, and TOG [7] the hlgh-order </
bit. o o : ~

6-18

0

(C

- S »}v‘Conti‘nged

TRANERR
Intcrrogate/Alter, CTR/CTR

TRANERR rcferences bit 9 in the Error Flag Field of a result message, and is convéntibhaliy used to indi-
cate that a transmission number error occurred. Refer to the TRAN option of the (receive statement).

WRUFLAG : -
Interrogate/Alter, CTR/CTR

WRUFLAG references bit 13 in the Error Flag Field of a result message. If this bit is TRUE upon termina-
tion of a (request definition) , the result message is returned to the MCS as a STATION EVENT (CLASS = 1)
message. Refer to the B 6700/B 7700 DCALGOL Language Reference Manual for more information regard-
ing this message. _ o ' _

6-19/6-20

(C

(C

(C

N

APPENDIX A. RESERVED WORDS

The following is a complete list of reserved words used in the Network Definition Language. These words
have special meaning to the compiler and cannot be used as (identifierys or in any manner other than their
defined meaning. Any synonym of a reserved word is shown adjacent to the word, in parentheses.

ABORT
ADAPTER
ADAPTOR
ADDERR
ADDRESS
Al

ALTERNATE

ANSWER
ASCI
ASC63
ASC67
ASC68

AUX
AUXILIARY
BACKSPACE
BAUDOT
BCC
BCCERR
BCD

BCL

BEGIN
BINARY
BKSP
BLKN
BLKNERR
BLOCK

(ADAPTOR)
(ADAPTER)

(AUXILIARY)
(AUX)
(BKSP)

(CRCERR)

(BACKSPACE)

(BLOCKED)

BLOCKED
BREAK
BUFFER
BUFOVFL
BUSY
CARRIAGE
CHAR
CHARACTER
CLEAR

CLUSTERS
' CODE

CONNECTION
CONSTANT
CONTINUE
CONTROL
CRC

‘CRCERR

DCP
DEFAULT
DEFINE
DELAY
DIALIN
DIALOUT -
DIFFERENT
DIRECT

- DISCONNECT

(BLOCK)

(CHARACTER)
(CHAR)

(BCCERR)

DOWN

DUPLEX

DYNAMIC

EBCDIC

ELSE

ENABLED

ENABLEINPUT

END

ENDOFBUFFER
ENDOFNUMBER

EQ (EQL)
EQL (EQ)
ERROR

EVEN

EXCHANGE

FALSE

FAMILY

FETCH

FILE

FINISH

FOR

FORK

FORMAT

FORMATERR
FREQUENCY

GE (GEQ)
GEQ (GE)
GETSPACE '

GO

GT (GTR)
GTR (GT)
HOME '

"RESERVED WORDS (Cont)

HORIZONTAL
ICTDELAY
IDLE

iF
ILLEGALCHR

INCREMENT |
INHIBITSYNC (SYNCS)

INITIALIZE
INITIATE
INPUT

iR

LD (LINEDELETE)

LE (LEQ)
LEQ - (LE)
LINE

LINEDELETE (LD)
LINEFEED

LOGICALACK

LOGIN

~ LOSSOFCARRIER

LS - (LSS)
LSS : (LS)

~ MAXINPUT

MAXSTATIONS
MCS -
MEMORY

MICRO

MILLI
MIN -

. MODE
. MODEM
~ MSGSPACE

MYUSE
NAKFLAG
NAKONSELECT
NE

NEQ

NOINPUT
NOISEDELAY
NORMAL

NOSPACE

NOT
NULL

oDD

OUTPUT
PAGE
PAPERMOTION
PARITY
PASSIVE
PAUSE
PHONE
PTTC6l
QUEUED

READY

RECEIVE
REMOTE
REQUEST
RETRY
RETURN
SCREEN
SEC

‘SECURITY

SEQERR
SEQUENCE

(NEQ)

(NE)

RESERVED WORDS (Cont)

SHIFT
SKIP
SKIPCONTROL

- SPACE
)

STAN DARD
STATION
STOPBIT
STORE

sumM
- SYNCS

TAB
TALLY
TASK

- TERMINAL
* TERMINATE

TEXT

THEN
TIMELIMIT
TIMEOUT

" TO

TOG
TOGS

'TRAN

TRANERR

(INHIBITSYNC)

TRANSLATETABLE

'TRANSLATOR
TRANSMISSION
 TRANSMIT
TRANSMITDELAY

TRUE

TURNAROUND

TYPE
up

USER

VALID

WAIT

'RESERVED WORDS (Cont)’

WIDTH
WRAPAROUND
WRU

. WRUFLAG

©

.'((‘>

(C

(C

(c

APPENDIX B. TRANSMISSION CODES

BAUDOT CODE
B\ | O 0 1 i
R 8 = 0 0 1
s » 0 ‘
bl4|b3|b2[b1 [~ Column 5 | 2 3
‘ ‘ ‘ ‘ Row ¢ |
ofofo]o 0 Bk | T | BLK'| 5
oo o 1 E z 3 "
o o [1]o 2 LF L LF o[22
ofoji 1| 3 A W - 2
o1 [ofo 4 SPACE H SPACE | DIAMOND
1o fo] 5 s Y | BELL 6
o[[i]o 6 l P | 8 0
o1 1] 7 u Q 7 1
1{ofo]o 8 | crR 0 CR | 9
1o Jo |1 9 D B s [5/8—
oo 10m| & [l 3
1o |1 |1 1@ | 9 fres | | Fies
1|1 fo fo 12(C) | N Mo |78 :
1|1 o |1 1300) [F x (AT 7
1 {1 o 14(E) | ¢ v |1/8~]3/8—
T p b ose] ko |12 | LTRs

4

DATA REPRESENTATION

EBCDIC BCL EBCDIC DECIMAL EBCDIC BCL BCL BCL USASCIHI
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARDCODE OCTAL INTERNAL EXTERNAL CARD CODE X3.4-1967
Blank 40 0100 0000 64 No Punches 60 11 0000 01 0000 No Punches 010 0000
{ ' 4A 0100 1010 74 12 8 2 33 01 1011 11 1100 12 8 4 101 1011
4B 01001011 75 12 8 3 32 01 1010 111011 12 8 3 0101110
< 4C 0100 1100 76 12 8 4 36 011110 111110 12 8 6 0111100
(4D 01001101 77 12 8 5 35 01 1101 11 1101 12 8 5 010 1000
+ 4E 01001110 78 12 8 6 11 1010 010 1011
| < 4F 01001111 79 12 8 7 37 011111 111111 12 8 7 111 1100
& -50 0101 0000 80 12 : 34 011100 11 0000 12 0100110
] 5A 01011010 90 11 8 2 76 111110 011110 0 8 6 101 1101
$ 5B 01011011 91 11 8 3 52 101010 10 1011 11 8 3 0100100
* 5C 01011100 92 11 8 4 53 10 1011 10 1100 11 8 4 0101010
) 5D otol 1101 93 11 8 3 55 101101 - 101101 11 8 5 0101001
; _ SE 01011110 94 11 8 6 56 101110 101110 11 8 6 0111011

—_ < SF 01011111 95 1 8 7 57 101111 101111 1 8 7
- 60 01100000 96 1 : - 54 101100 10 6000 11 101 1111
/| 61 0110 0001 97 0 1 61 11 0001 01 0001 0 1 0101111
6B - 01101011 107 0 8 3 72 111010 ‘01 1011 0 8 3 0101100
% 6C 01101100 = 108 0 8 4 73 1riornr 01 1100 0 8 4 0100101
_— # 6D ol1101101 .- 109 0 8 5 74 111100 01 1010 0 8 2 0101101
> 6E 01101110 110 -0 8 6 16 0601110 001110 8 6 orr 1110
? 6F 01101111 11 o 8 7 14 00 1100 00 0000 * OI1 t111
.7A ol111010 - 122 8 2 15 001101 - 00 1101 & 5 0111010
: 7B 0111 1011 123 8 3 12 001010 - 00 1011 8 3 0100011
@ 7C 01111100 124 8 4 13 001011 00 1100 8 4 '100 0000
’ > 7D 01111101 . 125 8 5§ 17 001111 001111 8 7 0100111
= 7E 01111110 126 8 6 75 111101 01 1101 0 8 S5 Otllicl
" 7F 01111111 127 8 7 717 it 01 1111 0 8 7 0100010

D

(C . ((c

DATA REPRESENTATION (Cont)

EBCDIC BCL EBCDIC DECIMAL EBCDIC BCL BCL BCL USASCII
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARDCODE OCTAL INTERNAL EXTERNAL CARD CODE X3.4-1967
(+)PZ + CO 11000000 192 12 0 20 010000 111010 12 0
A Cl 11000001 193 12 -1 21 01 0001 11 0001 12 1 100 0001
B C2 11000010 194 12 2 22 010010 110010 12 2 1000010
C C3 11000011 195 12 3 23 010011 110011 12 3 1000011
D C4 11000100 196 12 4 24 010100 110100 12 4 1000100
E C5 11000101 197 12 5 25 010101 11 0101 125 100 0101
F C6 11000110 198 12 6 26 010110 110110 12 6 1000110
G Cc7 11000111 199 12 7 27 010111 110111 12 7 1000111
H C8 1100 1000 200 12 8 30 011000 11 1000 12 8 1001000
I ~C9 1100 1001 201 12 9 31 011001 111001 12 9 1001001
(M X DO 11010000 208 1 o 40 100000 10 1010 11 0 0100001
J DI 11010001 ~ 209 11 1 41 100001 100001 11 100 1010
K D2 11010010. 210 12 42 100010 10 0010 11 2 1001011
L D3 11010011 211 11 3 43 10 0011 10 0011 11 3 100 1100
M D4 11010100 - 212 114 44 100100 100100 11 4 1001101
N DS 11010101 =~ 213 - 11 5 45 100101 10 0101 1 s 100 1110
0 D6 11010110 = 214 11 6 46 100110 100110 11 6 100411
P D7 11010111 215~ 11 7 47 100i11 100111 7 101 0000
Q D8 11011000 - - 216 11 8 50 101000° 101000 11 8 101 0001
R D9 . 11011001 . 217 1 9 51 10 1001 10 1001 11 9 1010010
¢ EO 11100000 224 -~ 0 8 2 ’ 00 0000 '
S E2 11100010 ~ 226 =~ 0 2 62 110010 - 010010 0 2 101 0011
T E3 11100011 - 227 0 3 63 11 0011 01 0011 0 3 101 0100
U E4 11100100 228 0 4 64 110100 01 0100 0 4 1010101
vV ES 11100101 229 0 5 65 110101 01 0101 0 s 1010110
w E6 11100110 230 0 6 66 110110 010110 0 6 1010111
X E7 11100111 231 0 7 67 110111 010111 0 7 101 1000
Y E8 11101000 232 0 8 70 111000 01 1000 0 8 101 1001
z E9 11101001 - 233 0 9 71 111001 01 1001 0 9 101 1010
0 FO 11110000 240 0 00 000000 001010 0 011 0000
1 s FI 11110001 241 1 01 000001 00 000! 1 011 0001
2 S CF2 11110010 242 2 02 000010 00 0010 2 0110010
3 . F3 11110011 243 3 03 000011 000160~ 3 0110100
4 4 04 000100 000100 = 4 - 0110100

F4 11110100 244

DATA REPRESENTATION (Coat) v

EBCDIC BCL EBCDIC DECIMAL EBCDIC BCL BCL BCL USASCII

GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARD CODE OCTAL INTERNAL EXTERNAL CARD CODE X3.4-1967
5 F5 11110101 245 5 0s 000101 00 0101 5 011 0!0!_
6 Fo 11110110 246 6 06 0oo110 000110 6 0110110
7 F7 11110111 - 247 7 07 000111 000111 7 Ol10ilg
8 F8 11111000 - 248 8 10 00 1000 00 1000 8 011 1000
-9 F9 11111001 249 9 11 00 1001 00 1001 9 011 100t -
NOTES ‘
1. EBCDIC 0100 1110 also translates to BCL 11 1010. - . 4.The remaining 189 EBCDIC codes are translated to BCL -
, : 00 0000 (?code).
2. EBCDIC 1100 1111 is translated to BCL 00 0000 with an , ' ,
- additional flag bit on the most-significant bit line (8th bit). This 5. The EBCDIC graphics and BCL graphics are the same except as
function is used by the unbuffered printer to stop scanning. ’ follows: '
3. EBCDIC 1110 0000 is translated to BCL 00 0000 with an addi- . BCL v 'EBCDIC
tional flag bit on the next to most significant bit line (8th bit). -
- As the print drums have 64 graphics and spaces, this signal can be : > ' ' (single quote)
used to print the 64th graphic. The 64th graphic is a “CR” for ‘ : ,
BCL drums and a “¢” for EBCDIC drums. o ~ X (multiply) !
< — (not)
L ~—— (underscore)
- R G

(¢ | (C

9—-4d/s—4

PTTC/6 CODE
b, - | 0 ! ! R 1
BN\\bg > 0 0 ! 1 0 0 1 1
' tN\>5 — > 0 0] 0]
bh|b3| b2| b1} < Column »
VLS Row\. 0 l 2 3 b 5 6 7
o0fofojo 0 SPACE @ - SPACE DELTA | BACK/ | <
0foo 1 i 1 / j a > QUES J A
oo |o 2 2 s k b) S K B
oo |11 3 3 t L c ; T L c
o 1 4 P - m d | sBLANK | U M D
o[5 5 e (v N E
1o I == 6 K f W 0 F
o LT | 7 7 b g " X p G
o]o|o 8 8 y q k Yo Q H
Jofoh | 9 9 z i i [F: R |
oftfo| wm| o | # | wm | ez] |cRPMRK | GAMMA | sq. RT
o [r] e | =% ., $ - SEGMARK | V.BAR
v rjofo] 120c)] en BY "RFS | PF | PN BY RES PF
pfrfofr | 30 | Rs LF NL HT RS LF NL HT
1 hije | wwE) | uce EOR BS LC uc EOB BS Le
P 15(F) | EoT PRE I DEL | EOT PRF . CDEL

(C

APPENDIX C. SOURCE INPUT FORMAT AND CODING FORM

SOURCE INPUT FORMAT

An NDL source program is’ represented by a set of ordered external records. The external records could
come from cards, tape, disk, remote device, or a combination of these. The source information on any
given record must be divided into two areas. Character positions 1 — 72 are assumed to contain elements

of the Network Definition Language (described in sections 2 through 6 of this manual) for compilation by
the compiler. Character positions 73 through 80 are assumed to contain information regarding the sequence
of the input record; specifically, this area is for sequence numbers. Sequence numbers are optional. .

There is no fixed format for source information in character positions 1 through 72. This information can
appear in a free format form, with the following exceptions: elements contained on the card must comply -
with any syntactical restrictions, and syntactical items cannot be continued from record to the next. For

~ example, the reserved word TERMINAL cannot begin on one source record and continue on the next.

CODING FORM

To facilitate keypunching, as well as to provide the prqgi'amxner'with a suggested format to follow in
writing his source program, printed'programmingfoms are often used. An example of such a form appears
on the following page. ' -

D

CODING FORM

PROGRAM ID

COST CENTER

leace

OF

45

PROGRAMMER

loare

SEQUENCE NO.

65 70 73

80

2
P
P
et d

P

P
. | -

Al...Ll/ L

=
9

SOURCE PROGRAM CODE

LL..A/.

SQURCE PROGRAM
SEQUENCE NUMBERS

(columns 1-72)

(The sequence numbers
in columns 73-80 cre
not executed, but ore re-
produced on the scurce
printout.)

M SN BN S

n_.l._A...A—.

o b b .

P S

| -

|

M PR

NN S

A b
U S
Al ol
b
Aot
Pt
ddd
Ak
Aa 2
oA 4

R |

i

e |
£

"

1 5

10

15

20

25

30.

35

40

45

50

58

. 65 70 73

SYMBOLS TO USE

FOR DIGIT ONE, I FOR LETTER i, O FOR DIGIT ZERO, ¢ FOR

LETTER O, X FOR LETTER

X, ® FOR MULTIFLY OPERATOR

{

(C

(C

APPENDIX D. COMPILE-TIME OPTIONS |

COMPILER CONTROL STATEMENTS

The user is provided with the compile-time ability to control the manner in which the compxler processes
the source input that it accepts. The user can specify the manner in which the compiler is to receive the
source input, the consequences of certain syntax errors, and the form of the generated compiler output.
The compiler control statement is the medium by which these constraints are communicated to the
compiler. Such statements are entered into the compiler by cards in the same manner as source language
statements. Compiler control statements, entered as input to the compiler via option control cards, can
occur at any point in the compiler input files and must contain only compiler control information. -

An option control card is identificd by the appearance of a dollar sign ($) in the first or second column of
the card. If the $ is placed in card column 2, the option control card image is placed in the updated
symbolic file (NEWTAPE) if such a file is generated. Compilation control information is punched in the
succeeding columns through column 72, with an eight-digit sequence number in columns 73 through 80.
All blanks in columns 73 through 80 represent the lowest-value sequence number. An option control card
with no other compiler information causes the card image in the secondary input file that has the same
sequence number to be ignored.

The basic element of compiler control information is the compiler option, which can be invoked by the
appea‘rancc of its name on an option control card. Two mutually exclusive states are associated with the
majority of these options: SET and RESET; various compiler functions are dependent upon the states of
such options. Default states are assigned to these compiler options, and the desired state of such an option
can be specified on an option control card. ‘Such option control cards can also contain arguments associated
with the option. The balance of compiler options are parameter options w1th which no states are associated.
The functions performed by these latter options are initiated by .the appearance on an option control card
of the appropriate option name and any related arguments

OPTION CONTROL CARDS

Syntax

s

pOP
RESET
SET

o COD_E

o DCPLIST —

Le- DUMP

{e~ERRLIST

o LIMIT ——— = (in teger)

o= LIST

o= LISTP

»MERGE

la-NDLMACRO

- NEW

Lo~ NEWSEQERR —

= NOWARN

= PAGE

> SEQ. '
l-—(base} J L+, o (increment) —J

= SEQERR

o SINGLE

s~ SUMMARY

SRRy H;HH«,H. HLI

> SYNTAX

> VERSION ‘-——-b(version i_ncr’ement)-& . -»={cycle increment)
+ : L

. »=(patch number}-}

!

le-Grersion incrementys- - -o-+-=(cycle increment}I

+
. -»={patch number)J .

e VOID

Lo VOIDT
-5

R

T g

N enaas”

(C

(¢

Semantics

The purpose of a compiler control statement is the ‘nsngnmcnt‘of a desired value or state (SET or RESET)
to an indicatcd compiler option(s). Such a control statcment must begin with either an explicit or an

implicit option action. An explicit option action is defined as one of the following mnemonics: SET
RESET, or POP.

An implicit option action is indicated when a compiler control statement contains only the names of
options and no explicit option action. In the latter case, all options named in the compiler control state-
ment are assigned the state SET, and all other options are assigned the state RESET.

If a compiler control statement begins with the option action SET, the options following the option action
are assigned the state SET; the states of all other options are unchanged. If the compiler control statement
begins with the option action RESET, the options following the option action are assigned the state RESET;
the states of all other options are unchanged. If the specified option action is POP, then the options have
not been changed previously from their default states. The states of all other options are unchanged. The -
following statements are examples of compller control statements emp]oymg the SET, RESET, and POP
option actions. :

$ SET LIST SINGLE

$ RESET VOID

$ POP NEW NEWSEQERR
$ SET SEQ 0+100

An option that has a default state of RESET is initially assigned a 48-bit stack word filled with zeros; an
option that has a default state of SET is initially assigned a 48-bit stack word with a 1 on top and zeros in
the remaining positions. The top stack position denotes the state of the option at any time. Each SET
option action causes the stacks allocated to the designated standard options to be pushed down one bit
and a 1 to be placed at the top of each of these stacks. Each RESET causes the appropriate option stacks
to be pushed down one bit and a O to be placed at the tops of these stacks. POP causes the stacks corre-
ponding to the des1gnated options to be POPped up one bit, causing the associated options to revert to
their immediate previous states. Since the size of these option stacks is 48 bits, a maximum history of 48
states can be recorded. When an option control card appears that has a standard option name and an
implicit option action, the resultant action is identical to that which would have reseulted had all 48 bits of
each standard option stack been RESET and followed by an explicit SET performed on each indicated
option. For example, after the appearance of an option control card containing:

$ SINGLE

the history stack for the SINGLE option contains a 1 in the top stack position and all zeros in the following
positions. The history stack for each of the other compiler options would then contain all zeros. A com-
piler control statement that applies to compiler options begins with an explicit or implicit option action
and contains a list of options to which the option action is to apply. This statement ends when the next
implicit option action is encountered on the compller control card or when a percent sign is encountered
on the compiler control card or when a percent sign is encountered or column 72 of the card is reached.
The compiler options affected by the compller control card retain the indicated states for all input cards -
with sequence numbers greater than the sequence number on the compiler control card ‘that has the
control statement, or the physically succeeding input cards for a deck in which all sequence numbers are
blank, until another compller control card is encountered that alters the option states. The following
ﬂlustratlon (figure D-1) is an example of a card that has compller control statements employing option
actions: _

/S SET SINGLE LIST SEQ 10 + 5 RESET SEQERR 00001070

Figure D-1. Option Control Card

Thc option control card assigns thc state SET to thc options SINGLE, LIST ‘and SEQ, with the sequencing
arguments of’ 10 and +5. It also assigns the state RESET to the optlon SEQERR The card has the
sequence numhm 00001070 in columns 73 through 80 ‘

OPTIONS .

The compiler recognizes the following identifiers as valid compiler option names:
CODE : ’ NOWARN
DCPLIST _ PAGE
DUMP SEQ
ERRLIST - SEQERR
LIMIT ‘ SINGLE
LIST ' _ SUMMARY
LISTP - SYNTAX
MERGE : VERSION
NDLMACRO - 'VOID
NEW ' yoiDT
NEWSIEQERR ‘ $

The uommlcx optlons are dnscussed alphabetloally in the followmg paragraphs The default state of each
option is indicated in parentheses following the option name; the functlon performed by the option is
discussed in the paragraph accompanying the same.

If an option control card is empty, it has no effect on other options; however, if there is a card image on
the symbolic file with the same sequence number as the empty option control card, the i 1mage on the
symbolic file is dcleted :

The compiler options are as follows:
CODE (RLSET)
The code option causes the pnntout to contain the compller-generated object code.

DCPLIST (RESET)

If SET, lists code addresses of each source statement on the LINE file. (There will be two separate hsts
addresses if used for two DCPs, three for three DCPs, etc.)

DUMP (RESET)

If SET, causes a “raw dump”’ listing of NIF on the LINE file.
D-4.

(¢

ERRLIST (RESET)

The ERRLIST option causes syntax error information for CANDE to be written on the ERRORFILE file. -
When a compilation error is detected in the source input, an error message is written in the ERRORFILE
file. This option is provided primarily for use when the compiler is called from a remote terminal by the
CANDE language, but it can be used regardless of the manner in which the compiler is called. When the
compiler is called from CANDE, the default state of the ERRLIST option is SET and ERRORFILE is
automatically equated to the remote device involved. ' : o

LIMIT (cannot be SET or RESET)

The integer parameter allows the user to control combiler error terminations. The proper format for the
LIMIT option is as follows: : _

LIMIT (integer)

Compilation is terminated if the number of errors detected by the compiler equals or exceeds the (z‘ﬁ teger)‘
If no LIMIT statement appears, a default error limit of 150 is assigned unless the compilation is initiated
through CANDE, in which case the default error is 10. S

LIST (SET: RESET for CANDE)

The LIST option causes a printout to be generated on the compiler output LINE file. The contents of

such printouts are specified in the preceding paragraphs describing compiler features. If the LIST option
is RESET, only syntax error messages and compilation information are listed. - : C

LISTP (RESET)

When SET, the LISTP option causes patches and input records from the compiler CARD file to be
included on the printout while records from the compiler TAPE file are excluded. This option is effective
only if the LIST option is RESET. If the LIST option is SET, the state of LISTP is ignored. Therefore,
the LISTP or the LIST option causes a printout to be generated when SET. S R

MERGE (RESET)

When SET, the MERGE compiler option causes primary input, CARD file, to be merged with secondary
input, TAPE file, to form the total input to the compiler. If matching sequence. numbers occur, the
primary input overrides. If the MERGE option is RESET, only primary input is used and secondary input
is totally ignored. Therefore, the total input to the compiler when the MERGE option is SET consists of
all card images from the CARD file, and all card images from the TAPE file that do not have sequence
numbers that can be found on cards in the CARD file. . o . ,

NDLMACRO (RESET) |

If SET, the NDL MACRO interface code will be printed folloWing,each stafement within a (request
definition’) or {control deﬁnitiqn) . : o »

NEW (RESET) .
When the state of the NEW option is SET,‘ the merged input from the CARD a,nd TAPE files is placed on

the updated symbolic output file NEWTAPE. This file is coded.in EBCDIC and is structured in 15-word
records and 450-word blocks. Therefore, it can later be used as input to the compiler through the TAPE
file. All option control cards in the merged CARD and TAPE file input are placed on the NEWTAPE file

when NEW is SET and only if the initial $ sign on these cards is in card column 2.

The NEW option can be SET and RESET as necessary by option control cards appearing at any point in
the input file. Such option control cards can also be placed on the NEWTAPE file if the $ signs on these
cards are in column 2. _ 4

‘D=5

The NEWTARPE file is created despite the occurrence of syntax errors in the source input. This file can be
used as a secondary input for a later compilation.

The NEWTAPE file can be labePequated so that, for example, the output goes to magnetic tape.
NEWSEQERR (RESET) ' '

The NEWSEQERR option causes sequence crrors on the NEWTAPE file to be flagged. If sequence errors
occur and thc NEWSEQERR option is SET, the NEWTAPE file is not locked, and the message NEWTAPE
NOT LOCKED {nwnher of crrors} NEWTAPE SEQUENCE ERRORS is printed on the printout.
NEWTAPE, NIF, and DCPCODE files are not locked.

NOWARN (RESET) |
When SET, suppresses any compiler warnings from appearing on the LINE file.
PAGE (cannot be SET or RESET)

The PAGE compiler option must appear on a option card without an option action preceding 1t. When a
PAGE option card appears, the printout is spaced to the top of the next page, but only if the LIST optnon
is SET.

SEQ (RESET)
The proper format of the SEQ option is as follows:A
SEQ (pase) +{increment)

If the SEQ option is SET, the printout and the new secondary source language file, NEWTAPE, contain
new sequence numbers as defined by the (pas) and (increment). 1f the (bas¢) and (mcremenl) are
unspecified, a base of 0 and increment of 10 are assumed

This option has effect only when the LIST and/or NEW optlons are also SET. The sequence numbers that
appear on the card images in these files when the SEQ option is RESET are 1dentlca1 to the sequence '
numbers on the corresponding.cards in the input file. . ‘

Example

(s SEQ 100 + 100 T | 00005000

This compiler control card specifies that, when the state of the SEQ optlon is SET sequencmg begins with
the sequence number 00000100 and proceeds in increments of 100

SEQERR (RESET)
The SEQERR option causes sequence errors on the TAPE file to be flagged. If sequence eﬁors occur and

the SEQERR option is SET, DCPCODE and NIF files are not locked, and the message CODE FILE NOT
LOCKED {number of errors} TAPE SEQUENCE ERRORS is prmted on the prmtout

D—-6

SINGLE (RESET)

The SINGLE option causes the printout to be single-spaced. When the SINGLE option is RESET, the
printout is double-spaced. (Note that double-spacing is default.)

SUMMARY (RESET)

If SET, lists on the LINE file the memory space allocations for user translation tables and te_rxﬂinal »
message space allocations for each DCP. e ' ‘

SYNTAX (RESET)

When SET, the source program is checked for syntax errors only. DCPCODE and NIF files are not
generated. : :

VERSION (SET, RESET, and POP are ignored by the compiler)

The VERSION compiler option allows the user to specify an initial version number for a source program,
to replace an existing version number, or to append an existing version number.

Examples

$ VERSION 25.010.010
$ VERSION +01.4+001.010

When compiling with the NEW compiler option SET and a VERSION compiler card appears in the symbolic,
and if the patch deck contains a VERSION compiler option, the new symbolic is updated to the version,
cycle, and patch number on the last VERSION compiler card in the patch deck. The sequence number
must be less than the one in the symbolic. ' .

VOID (RESET)

If the VOID option is SET, all input, other than $ cards, from the TAPE and the CARD files is ignored by
the compiler until the VOID option is RESET or POPped into a RESET state. The ignored input is
neither listed nor included in the updated symbolic file regardless of the states of the LIST and NEW
options. The VOID option can be RESET, once it is SET, only by a option control card in the CARD file.

VOIDT (RESET)

If the VOIDT option is SET, all secondary input, other than $ cards, from the TAPE file is ignored by the
compiler until the VOIDT option is RESET or POPped into a RESET state. Therefore, while the VOIDT
option is SET, only primary input is compiled. The ignored input is neither listed nor included in the
updated symbolic file regardless of the states of the LIST and NEW options. The VOID option can be
RESET, once it is SET, only by an option control card in the CARD file. :

$ (RESET)

When SET, the dollar sign ($) option causes the printout of all subsequent {option control card) images
when the LIST option is SET. This option appears as $SETS or $ $. :

D-7/D-8

APPENDIX E. COMPILER SOURCE AND OBJECT FILES

COMPILER FILES

Compiler communication is handled through various input and output files (figure E-1). Cards, disk, or
magnetic tape can be specified as source language input media. Input must be in the input format defined
in the preceding scctions. The compiler has the capability of merging, on the basis of sequence numbers,
input from cards, tape, or disk. When inputs are being merged, indications of text insertions or replace-
ments can be made to appear on the printout. In addition to the printout, the compiler can also generate
updated symbolic files. These files can be created in addition to the compiler-generated output code file.

Input Files

The primary compiler input file is a card file with the internal name CARD; the secondary input file is a
serial disk file with the internal name TAPE. ‘The presence of the primary file (CARD) is required for each
compilation; the presence of the secondary file (TAPE) is optional for each compilation. When two card
images, one from the CARD file and the other the TAPE file have the same sequence number, the former
is primary and is compiled, and the latter is ignored. This is the standard mode of handling source language
input. File CARD can be either BCL-coded with 10-word records or EBCDIC-coded with 14-word records
and can be either blocked or unblocked. File TAPE can be BCL-coded with 10-word records and 150-word
blocks, or EBCDIC-coded with a 14- or 15-word record and 420- or 450-word blocks. Both the CARD file
and the TAPE file can be label-equated (via the FILE system control card) to change the TITLE and

KIND of the file. The TAPE file is used as input only when the MERGE compiler option is SET.

OPTIONAL UPDATED
—— SYMBOLICFILE |
|(SYMBOL/SOURCENDL)
":“}“x;ﬁ , - DCP CODE FILE
- - | .d .
(NDLSOURCE) R - A g [t entifier) | DCPCODE)
- NETWORK
: 7 NDL »| INFORMATION
™1 COMPILER | FILE
({identifier) INIF)
OPTIONAL | : | | | OPTIONALLINE
SECONDARY ' | | L——| PRINTER LISTING
INPUT FILE - | (LINE)
SYMBOL/SOURCENDL)| | | _,__/
. o [opTioNAL ERROR
COMPILER INPUT FILES | L 1o 4
(SOURCE LANGUAGE | | MESSAGE LISTING
INPUT AND COMPILER : (ERRORFILE)
CONTROL STATEMENTS) o
COMPILER-GENERATED
OUTPUT FILES
Figure E-1. NDL Compilation System
Output Files |

Output files produced by the compiler consist of the DCP code file, the Network Information File, an
updated symbolic file, a line printer printout, and an error message file. The DCP code file has the internal
name DCPCODE and is saved on disk after the compilation unless the COMPILE system control card
specifies compilation for syntax only, or unless syntax errors are detected in the source language input by
the compiler. If compilation for library is specified, then the DCPCODE and NIF files are saved on disk.
The title of the saved DCP code file is identical to the program name (identifier) appeanng on the
COMPILE system control card with the suffix of /DCPCODE.

The title of the saved Network Information File is identical to the program name . (zdentzf er) appearmg on
the COMPILE system control card with the suffix of /NIF.

The updated symbolic file is, by default, a disk file generated only if the compiler option NEW is SET.
This file contains the compilation source input or a selected portion of this input as specified by the state
of the NEW compiler option. It can be used as the TAPE file for a succeeding compilation. This output -
file has the internal file name NEWTAPE and contains EBCDIC-coded 15-word records in 450-word
blocks.

The line printer printout is an optional print file that is created unless the compiler option LIST is
RESET. (The LIST option is SET by default unless the compilation is initiated through CANDE.)' The
file has the internal name LINE, consists of 22-word EBCDIC-coded records, and contains the. following
information: ' ‘

Source and compiler control statements used-as input to the compiler.
Error mcssages and error count. ' '
Number of input card images scanned.

Elapsed compilation time. ,

Processing time required for compilation. '

Total number of words of DCP code generated. ,

Number of disk segments required for the DCP code file.

Title of the generated code file.

PR e a0 op

Depending upon the specified setting of the LIST and CODE compiler options, the line printer printout
can contain more (or less) information than the basic items listed above. Card images from the CARD file
are denoted on the printout by a C after the card contents. Card images from the TAPE file are denoted by
a T in this location. A P denotes a patch of a TAPE card image. :

The output error-message file with the internal file name and assigned title of ERRORFILE is an optional

line printer file that is created when the ERRLIST compiler option is SET. This file is normally employed
for compilations initiated through CANDE, in which case ERRLIST is SET by default and the ERROR-
FILE file is assigned to the remote device involved. The ERRORFILE file can also be used for compila-
tions initiated through the card reader. This file is assigned EBCDIC-coded 12-word records that result in a
line width of 72 characters, allowing the file to be used as output to a remote terminal or card punch
without truncation of text. When a syntax error is detected, an error message 1s written following the line
of text. The error message consists of an explanatory message and indicates the probable cause of the
error. ‘ = :

Compiler File Table

Table E-1, NDL Compiler Files, lists the extcrnal name of the file (i.e., the name one would label-equate to),
the internal name of the file (i.c., the name used when the file is declared within the compiler), the

purpose served by the file, the default KIND of the file, the code used to store file data, the default record
size (MAXRECSIZE) and block size (BLOCKSIZE) of the file, and a brief commentary on the specific -

file. The attributes of any of these files can be changed by the use of FILE system control cards directed to .
the compiler. X : : — - : : :

v—d

Table E-1. NDL Compiler Files

EXTERNAL NAME

INTERNAL
NAME

PURPOSE

KIND

CODE

SIZE

RECORD

- BLOCK
SIZE

COMMENTS

NDLSOURCE

CARD

Input Card
File

CARD

READER |

EBCDIC

BCL

14 Words

10 Words

N

Blocked
or
Unblocked

Required for each compilation. Primary
compiler input file; may be label-
equated to change file attributes.
CANDE file is equated to this file auto-
matically for compilations initiated
through CANDE. Default title is
NDLSOURCE.

BUFFERS = 2.

FILETYPE= 8.

SYMBOL/SOURCENDL

TAPE

Input Disk
File

DISK

EBCDIC

BCL

140115
. Words

. 10 Words

420 or 450
Words

150 Words

Optional file; need not be present for
each compilation. Secondary compiler

" input file; selected as input by SETting

MERGE compiler option. Can be label-
equated to change file attributes as
desired. The default title is
SYMBOL/SOURCENDL.

" FILETYPE= 8.

(identifier)/DCPCODE

'DCPCODE

DCP Code
File

 DISK. -

- ngad.ecimal ;

30 Words |

420 Words

Generated DCP code file. Saved or dis-

carded and assigned a title as indicated "
" by compilation method. For CANDE '

compilations, the title becomes:
OBJECT/{identifier)[DCPCODE.

SYMBOL/SOURCENDL

NEWTAPE

Updated' B

Symbolic
Output
File

DISK .

EBCDIC

| ISIWords

450 Words

| Optional output file produced when -

NEW compiler option is SET. This file
contains portions of the source input
and is label-equatable. It is suitable for

" use as a TAPE file for a later

compilation.
BUFFERS -
AREASIZE
AREAS A

= 1000.

20.

o~

[e,

¢

Table E-1. NDL Compiler Files (Cont)
INTERNAL RECORD | BLOCK
EXTERNAL NAME NAME PURPOSE KIND CODE SIZE SIZE COMMENTS
(identiﬁer)lNlF NIF Network DISK 30 Words {420 Words | Generated Network Information
Information File (NIF). Saved or discarded and
File assigned a title as indicated by compila-
: tion method. For CANDE compilations
the title becomes:
OBJECT identifier)/NIF.
LINE LINE Line Printer | LINE . EBCDIC -22 Words | 22 Words Optional and label-equatable file.
s Printout PRINTER o L Produced when the compiler option
: or REMOTE LIST is SET.
ERRORFILE =~ . | ERROR- Error LINE - | EBCDIC 12 Words | 12 Words Optional error listing file produced
T - FILE - | Listing PRINTER | . Y - when ERRLIST compiler is SET.
~..~ -} Output . ' : Contains card images and error mes-
sages. Automatically provided for

File

| CANDE input.

(C

Item . Page
ADAPTERciiiiineiienan e S 5-60, 5-75,5-136, 5-156
N30 0L T A A S T LT 5-32,5-112,6-6
ADDRESSovovveerimacccnnnnnnennnner 5-30, 542,562, 5-110, 5-130, 5-138, 5-157
(address size SIGIEMENL) vvnsnnsnssnnsense st s 5-157
7N S 5-40, 5-124,6-6
ANSWER R T EEEE L LR SV 5-63
assignable bit varigble) T R 5-6,5-83,6-3
assignablebytevariable)............................’ e 5.6,5-83,6-3
éassignment SIGIEMENEY .o eevevveneeeeennane s et verie..15-6,5-83
AUX(LINE(BUSY)) 6-6
AUX(LINE(QUEUED))ccconveee 6-—7
AUX(LINE(TALLY[{0 0or I}1)) ovvvennnnnnerennrs B R ELER R 67
AUX(LINE(TOG{{0 0r 1}1)) -+ evevvncnenee RO PP PP RPRTS 67
available line adaptersceeeaaeeeene T R e R
BACKSPACE R R R R e e ... 5-85,5-112, 5-158
{backspace statement) D L .5~85
Baudot letters and figurescoeoaenee PP REEE e e 5-39
BOC e 5230, 5-40, 5-43, 67
e o1 -3 S A 5-32, 5-112,6-8
bit number) ... eeieoos e eneainees A e 6-1
Bit VArIGbIE) oo v i B Iy 6-1,6-3
BLOCK . . e veeeeesaeannenn e e et rr 2 n T 5-126,6-8
TS < o) T A oo 5—126,6—8
BREAK . o oveevenenannenseesnenassssnssaen st s i in it 5-8,5-13,5-32
break statement 5-8,5-86
break time) 5-8, 5—86
UFFER .. .ovveennnn e eiee. 5-159
BUFOVFL S 5-13,5-33,5-91, 5-113,6-9
(pyte variable)c..oiiaeiiinaaiiaes IR R RE L ‘6—1,6-3
CARRIAGE e 5—-160, 69
CHARACTER e 5-31,5-41,5-42, 5-43,5-111,5-122, 5-125,5-130, 5-131, 6—9
(CRAPActer)cconnneensnnnesne e I PR R 3-2
digity e O R R e 3-3
exadecimal CRAFACIETY .« o« v vvnnseeersannnnn s sses s s e aeneen 34
T2 S L EEEEL AL LR R 3-5
single charactery —........- S P PR e 3-6
character translation Chieeens . 5-6,5-9,5-83,5-87, 5-162, 5184
CLEAR .« vvvvennnnnenns e IR RO 5-161
[0) 1) T R 5-47,5—9,5—87,5—162
{code SIGIRTHENEY v e et eeae e e e e e s 5-9,5-87
‘coding formiieenen s B RS C-2
(communication type e S . 5-15,5-171,5-156,5-170
compilation system Ceeeaeaneses E-2
compile-time optionsoeeeeee T R R R e R .. D-1
compiler control statements PP e [P D-1
compilerﬁletable............................". SRR R E-3

INDEX (Cont)

Item Page
B 1L o 11 R R Rl E-1
{cOmpPOUnd Stement)c..eeuiiieiaiaiee e 5-10, 5-88
condijtional statements '
{if statement) ... 5-21, 5-100
“GO TO byte vanable) “construct e 5-18,5-98
CONSTANT iiiiiiiiinrinnenneeannns e s eseeeeeesebunersetesbeenavess e 5-2
constant definifiOn)euu ittt e .. 52
constant identifier i i i e [
constructterminatorcciiiiiiii i eaeeen e seenneroasnnaacaans 2-2
CONTINUE iiiiiiiiiiiiiitieninannnnas e 5-11, 5-33, 5-89, 5-113
(continue Statement)oeiiiiiiiiiiiiiaain. e reeenecarens 5-11,5-89
CONTROL ... it i ittt it ietnrenssnnaaanansenas 5-33,5-63,5-114, S 139
control definition)coiiiiiiiiiinns L S 5-4
controlidentiﬁer) S PP 5-163
control statement) s . '
(assignmenty. e b et ee e ises e iara e .. 5-6
BREAK ..ottt et et 5-8
00))) T 5-9
COMPOUNd . .. oiti i i e i et eeieaaee e e 510
CONTINUE ittt et iteneineeeaaeennnecanoeennesosnneennonenans 5-11
9] 08 7. /0 T R 5-12
ERROR SWItCH ... oottt ittt iieieeieeeeeaaseeeeerenssnsnnsnannnannaas, 9—13
FINISH .. i i ittt ieiateeneneoeonneasineionassoesescnoacnansns 5-16
FORK .. ittt ittt it itetetnteeatossesenssonsnsesassonanedocsssosianns 5-17
0 i 0 S R R 5-18
10.) I8 R R R R 5-20
-1 3 R TR R 5-21
INCREMENT ...t iiiiaeeeeninnnnns O . 5-23
INITIALIZE [P P e ree e e .. 5-24
INITIATE ... ittt e ttrenteonnseoanssssanasonnns Cereseene [.. 525
XL 01 B 5-28
RECEIVE ... i itiiieieeinetnorvassaansssensassansiosnnscsnascannanss 5-29
123 & 1 1 S O R R R 5-39
0] 1] (R 540
TRANSMIT ... ittt ittt iiieeaooessasnassesasssssasssnacsennssns 542
WAL . .. i ittt ittt iieeeetonoesaanosssnnsseanassocannssnnassennssns 544
CONTROLFLAGcciiiiennnnnen e sasenesecessiscseiibonsiesannoeranon - 6-9
CRC PR PN 5-31,5-43,5-104, 5-111,5-131,6-9,6-10
CRCERR ... i i et itieetineenasosanseeosssesnisronassenaens 5-34, 5 114,6-9
DataCommControllerciiutiiuiiiiirerrnrennanncsoeanscsns wirenasiaseses 1-5
data communication files ittt - D L

FAMILY ..ottt ittt ittt eenennaseesessssensnananssesonssonnsns ... 5-55
datarepresentationiuiittiiiiiii ittt e ettt e B-2
DCP defiMition).o oot ettt ettt e et aaa e Ve.i... 545
DCP exchange statement) S P 5-46
DCP memory size Statement).covuuuns S P - 5-51
DCPRUMBEFY . . . o v ee e e e eee e ee e s et eeenaeasasnnnnsenanneneeanaseeeens ... 560

Index -2

N~/ _
INDEX (Cont)
Item S ' : . Page
DCP PrOgramsovvueetnioneennonnscncronsanes Ceeereennresans e e vee. 16
{DCP statement)s ’ S
' EXCHANGEt iiiiiiiiiiininiines e eae e e v e 5—46
MEMORY . . oo ooooosoe oo e el 528
CTERMINAL o oo 552
"DCPTablescovviiiiiiiinennienninannns P S 1-7
(DCP terminal StGeMeNt)ouiuiuneuesoreinsoensessiveoniiiaeanis Vev.. 552
DEFAULT N ‘..5—645 1355 140, 5-155, 5-164
default line identifier)cveeeeeivonneennenns e eetieeieereneeeee . 559,564
default Station identifier)eeeneneencersinscionnerenenesssnsnesaenes 5—135
default terminal Identifier)coeeeeueneoneneninnearaneeneneaeineanins 5-155
Defmmons.........._ e eieeecesteee i e S - .
: CONSTANT A e eeeraetenaaesosnonananaans ee 52
CONTROL ... ovvoommsoniiiin, ORI R RER .54
DCP v.ovonnnns R e O P 545
FILE ittt iinenns Ceeseeccasesensesarasssenesireen Ceeen. ' 5-56
LINE ... ittt iiintieesnananns N Ceesrccsnsersessabenai st esee 5-58
MCS e Ceveresan e Ceeenaes crereais 5-73
MODEM.........cociividiininnnnnnen Ceeeceecetbereciasereseisans B e
REQUEST........cciiivvernnnnes I S Ceeeeaesee cire s e e, 5-81
\%} STATION .. .ovuiirnieeneeiinenrasoeenns e e einaeenaie 5-134
TERMINALovoeveennnnnns. v vevrane ORI . 5-153
DELAY cassaisacssaskasnes it s cihveiesien e Cesasaicanas 5-12,5-90
delay statement) Cereeneeaaes e reraie e i e aseesees 5—12,5-90
{delay time) I S AT 5-—8 5-19, 5-90, 5-171
DIALIN,'.v.-,‘o.....‘o_-..‘.'..-‘..A.‘.‘ ‘....-....‘...-..--»._ 5*70
DIALOUT ..ot iitteiiveneeenennenenssosasensnisaenoss s eeeeneaieereerieess 53=T70
QAIGIE)Y oot R N vives 33
DISCONNECT Ceeesesans Ceecesas eeiimas e Cierecesrinteienan be e ntn .69
DUPLEXtiitiietenevirennssnssesssnsasnsseasasasassnssnsA5~70, 5-—71 5——l66
"ENABLEINPUTccitiiiiniinivneinennncannnns eeeeeen e e ieee s 5-—127,5 l4lv'
END . .ooinneesoe s e e e e 5-33,5-114, 5-167
- ENDOFBUFFER e eeetrecsctitessersieneestaassanens ‘ ,.'...’;..,t...S 115 6-10
ENDOFNUMBER .. .- v oo L 5.
"ERRORoittititirnrtneenenenasensasrsssssnanissnnss 5=13, 5—31 5--91 5—-112 5-127
(errorswitchstatement) A AP R O e —13 5-91
EXCHANGE S SRR OUREURIS e ieiiiis. 5246,
o 'FAMILY Reeesvereteanans it eenada e s eaeaisev e e as 557
FETCH ...t iiiiiiieninincanssnacnnsensns Ce e seneestsansitesenneunie 5-94
fetchstatemem) B R e d 504
file definition)ccocoiinnn. T L)
 {file family statement)iiiiieniiianns e iheeeteneees veesens e L. 5w5T
. S fileidentifier)iiiieiiiiiiee e e ewin 5--56 5~57~
- © " {file statement) S : o S RIS '
\ 2 FAMILY ...ovonneninneannannns i iieese U SO S . 5257

flles -ogoo-o-;ooi oooooo seseeae “ono-‘o’ou.o“‘ovo-."o.ooo-,n'ooo‘-o"c v e -.o“.'o".c.oo'm‘,l.":b :-.o'ﬁfr"'.iro oé." 5“56 S

B .?I;ndex:-S

INDEX (Cont)
Item . Page
{finish SIAIEMENE)oooe it it 5-16,5-95
FINISH T RANSMIT ittt ititiaiiiensresenans e -5-16, 5-95
FORK ... ittt et ittt te et eesereeetetatieneseanstiansaoans 5-17,5-96
(fork statementy e evrenaoseesoninnssansansttossnansanss eeeiaie.. 5-17,5-96
FORMATERR ... it iittietteintranosssiansenasesonsessnanss 5-115,6-10
FREQUENCY T - e .22
full duplex constructs, executable
continue statement) e resaaeste b ittt e eeanis 5-11,5-89
fOrk Statement)t it e eee e e e 5-17,5-96
Wait SLGLEMENL) . o o v e ev e innnnsennn ettt eeeaae e e e 544, 5-132
GETSPACE - ... e oottt e e e e e ettt et R 5-97
(getspace statement) @t et et et e aeae e e s e et aaeanaaes 5-97
0110, 0 J P v... 5-18,5-98
(go to statement) R S e e e ieeeraseeee e eieans 5-18,5-98
(hexadecimal ChAracter)couieiiiineinii i S 3-4
HOME iiiiiiiiiiiinnnnens ettt enereeonsoesnnsanns R 5-168 -
HORIZONTAL....‘........'.V.. .. veo. 5-24,5-176
(horizontal parity variant)ol e e e 5-176
ICTDELAY R e et S end 5-171
(identifier)ccoiiiviiiiiiiiii i e I e 3-7
IDLE........covivinn, PN e cesidscnatesaisanns iee.. 520
(idlestatement) t e s sennssienecnnseasnnseniavisantassneanertasuseasaaees e 5-20
IF0. R siecireanesass S 5-21, 5-100
{if statement) cearonnainnes e eaeaee e, 5-21, 5-100
ILLEGALCHR e sasebasensessesesasetnsans e peeeerenieenens eheerees eee. 5169
(increment statement) e FUPUT A S 5-23,5-102
INHIBITSYNCttt iiieeteiiaeneennnns e R 5-170,6-11
INITIALIZEcc0e0ienn.. e e 1 5-24,5-104
(initialize statement) e e et e e e e e e 5-24,5-104
INITIATEc0ueen Cee et eseea eereeeeea..5-25,5-106
initiate receive delay tevemiesenieanseseiiantssrsneraseaasens e 5-25,5-106
(initiate statement) et S A 5-25,5-106
initiate transmitdelay e e ireseteeesenreena. 5—26, 5-107
input files, compiler it i i i i it e e E-1
input format, SOUTCEccvvuevunnnniroreeeneennnnnnnns J T &
(mteger} e e eeeraeieeieaanerennaas v eirieeieeiieseeaenee.. 3-8
IR ...t e eeciitennetienanaenenes e N eeeeenaaanns ... 6-10
Gy A £0) (s - T T R R R R R 2-2
{abel)oooneeieiii i e e 3-9
language components C e s e s eaasecsseeesareearaeaceseranstaaasonessnas ey 3-1
{lettery iiiiiiiiiann. PSP R S 3-5
LINE iiiiiiiienenan e e s et S 5-58
line adapters and adapter Classesoveveierienenecnseaansnnanaraon PR 5—60

Index—4

(C -

N’

;-
INDEX (Cont)
Item : - . Page
glineadaptercIassstatement) e 560
line address SIQIEMENLY ... oovuvenenan s e asas et v...t 5-46,5-60
HNE COMETOL .+ v e e oe e eeeeeecnasnonsnasssseanssnscnsssassnescnes T 1-6.
fine default SIQLEMENLY .. oo ev e e et e e at s 564
line defiRition)iuernet e S 5-58, 5--64
line endofnumber statement) B R XL ART RS 5-65
line IdENBfIErY . ..veovnrueneneneenenveonennes e N e 5-58,5-59, 5-71
line maxstations statement) AR teeseses 564
line MOAEM SEALEMENLYo v e e e ettt 567
line PRONE SLALEMENLY). -+« « .o s e s tsen e s as s s et ses st 568
line section requirementsc.cooeiaeeenes AP e s eeasnasss ... 546
(line statement) s - -
ADAPTER . . ittt iaeneeeeeteiiarsnasssssneaasnestcasesonseeareersersses 5-60
ADDRESS . . .o otit it et e 5-62
ANSWER ..o tvitisiineneeeanensvaascsossnsssaasssssansanesreesnseeescosess 5-63
2] 51 -\ 0. 0 AUPATA A R R R 5-64
ENDOFNUMBER oitiitetitiniernaer s sannesenanaaonescrnserenrene 565
MAXSTATIONS .\ oovtiiieeeeeenneeanaeeaasesosssnsenstsansencsessonseres 5-66
MODEM. . oot eeetneenneenacasesnssaessosssasdasssednnssberosunercneinns 5-67
0 (0):) O R R R L 5-68
STATION o v oo v oo oo e et e e a e SRR 569
5 ¢ o DT R R e 5-70
line station statement) e e e, 569
line type statement) N e e esn s 5-70
LINEDELETEc.ccvieneennnnn e eeseeaaaaeee cihesseensens wees.. 5-115,5-172
LINEBUSY).......covvnnesn FAPIPI R R R R ve.. 611
LINE(QUEUED) e e A R R R R e 6-12
LINE(TALLY ({007 T}1) - .o v oiiiianieie ittt s 6-12
LINE(TOGI{0 07 1}1) .+ttt 6-12
LINEFEEDiitiiiiinttintannennesinsasancsnonns R ... 612
logical assignment0n F T 5-6,5-83
LOGICALACKcciiieiiiiennns SRR R eee.. 5128, 5-144
LOSSOFCARRIERciiiiiiuininnnnanennns ... 5-14,5-35,5-18,5-92,5-116,6-13
MAXINPUT .ttt iarenenacnecnnenassnsssassassoesssesanssensessrasceoeesss; 5-174
MAXSTATIONS e e eennen RS S 566, 6-13
MEMORYcciiiiiiitiinennncannns e et eeteaieae i Z.. 5-51
{MCS definition)c.ocoveuiiianns J O R e ieaeee 5-173
MCS FECONFIGUIALION . . .« e v v v e enenernraansesansnsnecesosnenanasesc: R
Message Control System.cooveeruneeennnnnnnes it reesesseeesedenseenennes 1-5
MODEMccveiinivnnens R e 5-67, 5-74, 5-146
modem adapter SAIEMENLYveiaueeneeionmnuennsencs JT O .. 5-75
modem definition) B ORI Meeiies 5-74
modem identifier) e e e e ... 5-67,5-74
modem loSSOfcarrier StAtEMENt)oovuenrurousancaasaees PR e iiieaia... 578
modem noisedelay statement) e reeensaarier e R e 5-79
MOdem SIQIEMENEY ... ' vrioennaenn i ean e e erieeesiaes 5-175

INDEX (Cont)
Item , ' : ' - Page
{modem statement) s . ' o - -
ADAPTER it i it et i e SR . A
LOSSOFCARRIER ...ttt ttiiiettiiiae e aaaaseeeianinaaeeennssnacesennns - 5-78
NOISEDELAY IR e D feeiieananens. 579
TRANSMITDELAYo viiieinnnnen et imeeesee... 580
(modemtransmttdelaystatemem) T R R R R 5-80
MYUSE .+« v v v e e e e ee et e e e e eee e e aeeheanay e e iviee... 5147
NAKFLAG.cvvvneennns e e e DU e 6-13
NAKONSELECTttt iiiiiiaieaaanes O P 6-13
NDLprogramunit.............c.covviennnnn F R R R [P, .. 41
NDL syntax convention...........cooeveseineennn P e e 2-1
NOINPUT . . oo veeeeee e e e e i e e . 5129
NOISEDELAY S S S S S A 5-79
NORMAL S P e P 5-129
NOSPACE e s e v e >'.....‘..‘ e e e e v...'........s..}.,.'.... 6—-13
object files P [g P [E~1
options, compiler [T S e e e e Piardaneiedan D4
output files ...l P P FIT N I AR E--2
PAGE.vunn.. e, e PP e 5--148,5-175,6-14
PAPERMOTION e e 6-14
PARITY . ..ot iie i ianeens ST RR 5 14 S-—35 5-92,5~-116, 5- 176,614
PAUSEccovvinnnnn e ettt . 5-29,5-108
{pause statement) O P g ‘....‘.f....'._...'....5-—295 —-108
PHONE cieeeeennnnnnn S S PP in.. 5-68,5-149
RECEIVE ettt PP eeeeen.. 5-29,5-109
(receive address size) P e eieei.... 5-155
Receive Request. P e S T T R PP 5-82
receive statement) 5—29 5—-37 5—38 5-109,5-118
receive statement), allowable combmahons e J . SRR RTINS 5-118
relatlonaloperators e eaeee S 5-22
SYNnonyms e ereeneeaai e e 5-22
{remark)iiieiieiiien e PR eeeiee..... 3210
REQUEST e i ety I S e . 5177
request definition) et e eerae e i s e, 16,581
request identifiery ... i e..ieiiiieiiiiiiiii s R '.'........‘;.i.,....-5-4—82,5-177
request SIQEEMENL)ve.eiseenecosens e R e e e civevie.. 5-82,5-177
request statementdys oo
PRI 111113 1| S A AT P R Vi 5-83
BACKSPACE............ AR P NN cieeeena P O SR 5-85
BREAK........;'..........":'..."...‘ eeees ee e ece e ,.".;....; 5—-86
CODEc..... O N PP OR N e 5-87
COMPOUNd . ..o ottt it iie ittt S ie.... 5-88
CONTINUE e i eeeane VI e 5-89 <

DELAY e e it e e ie et et 5-90

Index—6

(C

(C

| INDEX (Cont)

Item ' - Page
({request statement)s (Cont) . ' . o
ERRORooooriniiienaaanaanannnnl ST S e, 591
FETCH. e e eeauneeian e seanassenany Peaesee e 5-94
FINISH . i i ie i we e heaeiannnneneesns Wi de it e e e e 5--95
FORK . i i i i i i it i e e et e e e 5-96
GETSPACE, B S S e 5-97
oL 1o T T S f .
P e, e, 5100
INCREMENT. e, i eenaen e e, 52102
INITIALIZE e e [et e e eeeseese. 5104
INITIATE i e e e A 5-106
PAUSEccevee.. e, e e e a e ieriaeae 5-108
RECEIVE e S S e .. 5-109
SHIFToooennnns A DU et eicanans S .. 5-121
STOREciiiiirvnnnn. aeeden R BRI f ieeneanene 5-122
QUM L e e e e et e et e et 5-124
TERMINATE. .. i i i i i it ieeaeiaaraeenanennonaenasees 5-126
TRANSMIT . .. i i e i i s it s e niens hesteesnteiena 5-130
L A g S S S §-133
Requests : T
‘Receive Request. e e T e . 5-82
Transmit Request......... AFseneiireeans T e .4
reserved words e e bea s S e A-1
RETRY e e e de e o e .1.;. .. 5--41 5 104 5-125,5-150,6—14
scope o . N ' : ' ERE - o
Of NDL i il i e et cie e eaneens 4 -1
of variables. o i i o i . A 6—1
SCREEN......,,'._...’,....,...‘...Q....,".”ij'..‘..,_.'....1..‘....> Y ¢ R ... 5-178
SEQERR fees e e, PO S i e 6-15
SEQUENCE T PN e 5-23, 5-4‘ 5 103, 5~ 123, 5-131
sequence mode e, eshaedaasaneens EEE PR R 5-23, 5-103
SHIFT 1‘ 5-39
(Shift statement)i.i.i i i e e A SO 5-39,5-121
SKIP SR P e 615
SKIPCONTROL.uee s o b e s o e e 615
source files.............. e SR L D . R E-1
source input format S N S SES S SERN P ' - C=1
source program stmctute , - } R A B S . 4-1
(source size) T A LA SN N eeeveaan.. 5184
SPACE............. e e e e e e e e i R e e e e 6=15
Space) .. e e e iR e .. 311
statements Do o ,
control statement)
DCP statement) , e ceen .
file statement) }. 5
line statement) e PR S P SO AR ey 5

modem statement)

JINDEX (Cont)

ltem ' ' _ ’ Page
statements (Cont) , : S S .
FOQUESE SIQEEMENTY ..o vttt it v eeeieeses. 5837
SEQLION SEAEEMENLEY oo o v e evassaoannsusenoonsnasosssnnns e vee... 5-134
terminalstatement) e e e e e s i, 5183
STATION ..o 5-5 569, 5~x34 5_135,6-16
station adapter statementg e ieenenn e S i e 5-136
station address statement) = hee e e eniea e e eteaeieea .. 5136
station control character statement) S e e s reanens s wdeeane. 5-139
station default SEAIEMENTY o.oeueeeenneeerinivesen iveieeraseeeesenes e .. 5-140
station definition)c..0. N b seeesereeeeraoennians aeeeeas e ieeen. 5-134
station enableinput StAtement)o..uianns T PRI 5-141
station frequency statementy PP S P e eenae s i 5—-142
stattonzdentzfer) R P AP UC AR APO PRSP e buie... 5135
station inifialize statement) eeeens e JR A PP viee.. 5143
station logicalack Statement)ieiiveiiiiiiinannas e ... 5-144
station MCS SIQtement) o.eeeueeenneennn. O S 5-145
station modem statement) e S e e SR Vi i e 5146
SEQLION MYUSe SIQLEMENEY« uuneunneonnionansssne o viaisaseeeneine heede... 5-147
station page statement) b i e R U U ST 5-148
station phone statement) —................. S SRR e Ceveeeen.. 5149
station retry statement) e eeeaiasrabaaaees civieie.i.. 5150
station statement)s ' R .
ADAPTER........ DRI SEST RTINS e iiiaiiie... 5136
ADDRESS AR, . 52138
CONTROL. e 5139
DEFAULT.......... i e 5140
ENABLEINPUT. . oo ovoaness eneeannns . O RO 5141
FREQUENCY...... »..-'...'...'.~....‘..ﬂl_._;.._.y......- A.."".'...: iedhetasens 5-142
INITIALIZE - o« v oo on s v et e vt s e . 5-143
LOGICALACK T N I s 4e
MCS e Cveebeans P " eV
MODEM............. et eme e e
MYUSEccoiiaiiiann .
PAGE . ..o i s itee s seeeed i s e
PHONE P
RETRY
TERMINAL e
WIDTH0.o:

station terminal type statemem)
station width statement) ... i s ..
STATION(ENABLED) . RN i
STATION(FREQUENCY) cieeeses
STATION(QUEUED). . i eenes

STATION(READY) e

STATION(TALLY).......... e : ‘

STATION(VALID) R : .

)L ¢ P U U 5 14 5-35,5-92,5-114, 6-17
STORE S PRI B TR T T TR S 122

(C

INDEX (Cont)
Item : " Page
Store Statementyoo. e R N e L. 5122
SEFINGY e e e ettt e e e e S el 312
L0 .Y S R R .5-40,5-124,5-125
SUM SEAEEMENLY o oo e e in i nn e aens e e eens e ieseieeeen s e 5-40,5-124
switch number O R 5--31
SYNCS ...ttt it ittt ieanaannns R R R 5-170,6—17
syntactic variables e eaa e e 2-2
syntax conventions T R P 2-1
key words P [2-—2
syntactic variablesooiiiiieanen et e S 22
construct terminator 22
(system FAENBFIErY .« oo et e et 3-13
TAB e e e et R ... 6-18
TALLY,.......;.5—41,5-—-105,5—123,5—-125,5-—~143,6~]8
{tally number) —................ A L 3-14, 5-41
TERMINAL ..ottt ittt asacasca s et 5-151,5-154,5-155
terminal adapter statement) e e e 5-156,5-170
terminal address size statementyonnn e et e 5-157
terminal backspace character SIALEMENEY .« v vt e 5-158
terminal buffer size statement)oooene e e, . 5-159,5-174
terminal carriage character statement) e PP, . 5-160
terminal clear character statement) — PP 5-161
terminal code statement, R R 5-162
terminal CONtrOl SIAIEMENLEY oo v v e et ie et e e aa et e ... 5--163
TERMlNALDEFAULT...'. 5-154,5-165
terminal default statement) —ooeaeennn T S S PP 5-154, 5-164
terminal definition) — e e 5153
terminal duplex statement) AU PR e 5-166
terminal end character statement) — PPN e - 5-167
terminal home character statement) e SRR 5-168
terminal identifier) e e S 5-52,5-154
terminal illegal character statement) —oeonn CVdieeieene e AR ... 5-169
terminal inhibitsync statement) — oo aaeetns e 5-170
terminal inter-character delay statement) — e 5-171
terminal linedelete character statement} e ve.. 5172
terminal linefeed character statement) e S A 5-173
terminal maxinput Statement) —eneenn e J 5-174
terminal page SIGIEMENE)vuenenonns S 5-175
terminal parity Statement) —oieeeeeenen e R R R 5-176
terminal request statement) B R AP AP, 5-177
terminal screen statement) S O e e 5-178
terminal statement R e 5-153
1OPMNG] STGLEMENEYS « « v v vt e vttt anae s s s sttt 5-153
ADAPTER.ottt e APPSR I 5—-156
ADDRESS . .+ v v oot e it .. 5157
BACKSPACE 5-158

BUFFER e PR EOU fee.. 5159

" INDEX (Cont)

Item ‘ s - Page
(terminal statement)s (Cont)............... e e et s i bs s ettt ia st n e 5-153
CARRIAGE Pt et e te e eaae st ae e ettt 5-160
CLEAR e N ieeenseenarecesueseatenoanne ereesseseatenas 5-161
CODEcoovveeinninnns e e e . B 5-162
CONTROL P e el Ceear e e e 5-163
DEFAULT i i i e i ettt s et e e e 5-164
DUPLEX ... e e e i i e e 5-166
0 5-167
HOME P U 5-168
ILLEGALCHR 0viiiiiiennannn, PSS S 5—-169
INHIBITSYNC e i es ey e ... 5-170
ICTDELAY e e e eieaas e i hasssaenenie. 5-171
LINEDELETE ittt e ieedea e e eeieean 5-172
LINEFEED i i i i i et et i et cen i enn ey 5-173
MAXINPUT . ..o i e e e e e et e e e 5-174
PAGE. . . e e e e e e 5-175
PARITY . o e e e e e e e e 5-176
REQUEST . .o i i i i i it e e e i e e 5-177
SCREEN i e e e s e e e e et e e e 5-178
TIMEOUT RN S T TR N A T T 5-179
TRANSMISSION. e e enieeeeaanad.. 5180
TURNAROUND. T e e e e 5-181
WIDTH R R S - e L4
WRU L e e e 5-183
terminal timeoutstatement) S S eeail 5179
terminal transmission number length statement) L e e 5-180
termmalturnaroundstatement) P ettt 5-181
terminal width statement) e e R P 5-182
terminal wru characterstatement} D N TR S SRR e 5-183
TERMINATE P PP el e ... 5-126
{terminate statement) e e e e e e e 5-126
TEXTcoviiia.. e T R PP . 5-111,5-131
{time) R T S P 3-15
TIMEOUT et 5— 14 5—-30 5—36 5-—92 5 110, 5 117 5-179, 6-18
{timeout time) e e i e e e v e oo, 5110
TOG.......... I P P e 5 105 5- 123 5-143,6-18
{toggle numbery R S S TP SN .. 3-16,5-123
TRAN e siere e [A 5—31 5-43,5-104,5-111, 5-131
TRANERR............ e S S R A ...'.».'.5-36 5— 117 6-19
(translatetable definition) B N T SRR PO 5-184
translation, character. ST e e 5—6 5—9 5—-83 5—87 5-162,5-184
translation tablestructure, P AP S 5-184
datainsertion............... e U T - R
TRANSLATETABLE e e e besereriraas e 5-184
(translatetable identifier)cc.oii i, PR e 5—6,5-184
TRANSMISSIONottt e e reeeses Meeeeiei.... 5-180
transmission codes e e eseesaan. T S Ceesana e B-1
TRANSMIT e e e i e e e e e e P S 5-42,5-130
Index—10

¢ @
INDEX (Cont)
Item , N Page
{transmit address SEZE) weeeeen et e e e L., 5157
A STIIE ROQUESE < v v s e e eeeemnmme e ems s s s s s g T 582
(transmit SIQtEMENt) ..o oooenieeese R RPPPPRPE PR 5-42,5-130
TURNAROUNDvvviinierranenenees T ELEEEEE LR 5-181
TYPE.ccvveeennns o R 5--70
166 OF NDL. « o+ e+ e e e e eeee e e e s T 1-1
ValUE ASSIIMENE « .« e e e e e e sneensnsnesn s s e te s st 5-6,5-83
TeADIES e e e 61
byte variable)coeecneeeniaseets P R RPI s 6—1,6-3
bit variable)- [T SUUUUP S LIRS 6-1,6-3
desCripion Of covvenrennrmnr ey T R R FUR 6-2
function of . . v .o vveerenanecees e T ... 61
scopeof- ee e SPIPRTA S 61
VERTICAL iieiiiimeeeenneees e I 5-176
TN v (P eene R b eeesseen 5-44,5-133
éwait P) R SRR T e 5-44,5-133
L R SRR PR 5-44,5-133
WIDTH P R R R R e eee e ..5-152,5-182
WRU &\ ooeeeeaneenne s eane s e 5-36,5-117,5-183

WRUFLAGcoccenonscnnncns e e B R 6-19

~ Index—11/ Index—12

Burroughs Corporation Publications Remcrks Form

B 6700/8 7700 NDL LANGUAGE REFERENCE MANUAL'

Form No. 5000953, Janvary 1975

Commenti

From: b,°'°

Name
Title
Coﬁpany
Address

suf] peysoq Buojy pjoj

Fold, Staple, And Mail

N
Postage : S
B will Be Paid

i Postage Stamp 5

Necessary
Moiled in the

Wi United States

by |5
) Addressee

BUSINESS REPLY MAIL
First Class Permit No. 1009; El Monte, CA. 91731

Burroughs Corporation

P. O. Box 142
El Monte, CA. 91734

atin: Publications Department

Technical information Organization

Fold, Staple, And Mail

