
Burroughs

B 6700/B 7700

APL/700

USER REFERENCE MANUAL

Printed in U.S. America

Burroughs Corporation
Detroit, Michigan 48232

$3.00

1 April 1974 5000813

COPYRIGHT CD 1974 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con­
sequences arising out of the use of this material. The infor­
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

PROPRIETARY INFORMATION - NOT FOR PUBLICATION

The information contained in this document is proprietary
to Burroughs Corporation and is not to be reproduced· or dis­
closed without written release from the Patent Division of
Burroughs Corporation.

THIS DOCUMENT IS THE PROPERTY OF AND SHALL BE RETURNED
TO BURROUGHS CORPORATION, BURROUGHS PLACE, DETROIT, MICHIGAN
48232.

Section

1

2

3

Table of Contents

Title

INTRODUCTION • •

APL/700 SYSTEM DESCRIPTION
General • •
Properties and Features • •
Use Requirements •••• ••
APL/700 Interactive Environment •
Data Elements and Objects • • •
Usage Modes • •• •• • •
Components of APL Language

Constants and Variables •
Functions • • •

•
•

• •

• •
•

• •
Primitive Functions and Operators
User Defined Functions. •• •

Control Structures.. • •
Workspaces, Library, and Files

Self Protection • •
• •

•
Security and Sharing • • • •

• •

•

INTERACTING WITH APL/700 • • • • • • •

THE

General • •• • •
Accessing the System • • • •

APL Terminal Keyboard Configurations.
APL Character/Symbol Set.
Functional Keys/Bars.

Basic Implementation Operations •
Typing Rules/Conventions • •
Sign-on Procedure •• ••••
Transaction Procedure • • •
Sign-Off Procedure • • •
Recovery Operations. • •
Transaction Editing.. •

Correcting In-Process Typing

•

•
• •
• •

Errors •• • • • •
Transaction Editing Procedure •
Examples of Attention Key

Applications •

•
•
•
•
•
•

Input/Output Communication Functions.

APL/700 LANGUAGE • • • • • •
General • • • • • • • •
Language Elements • • • • • • • • •

Data Elements • • • • • •
Order of Execution • • • •

Page'

vii

1-1
1-2
1-2
1-3
1-4
1-6
1-7
1-7
1-7
1-8
1-8
1-9
1-10
1-10
1-11

2-1
2-1
2-1
2-2
2-2
2-4
2-4
2-4
2-7
2-9
2-10
2-11
2-12

2-12
2-12

2-14
2-1.5

3-1
3-1
3-1
3-1
3-3

iii

Section

3

4

5

6

iv

Table of Contents (cont)

Title

Primitive Functions and Operators •
Ass~gnment Primitive Function.
Selection Primitive Function
Dyadic and Monadic Scalar Primi-

tive Functions
Extension of Dyadic Scalar and

Monadic Scalar Functions to
Arrays

Structure Primitive Functions ••
Mixed Primitive Functions •
Set Primitive Functions •
Identities for Scalar Dyadic

Functions •
Compound Operators
Format Functions

FUNCTION DEFINITION, EDITING, AND EXECUTION •
Function Definition and Editing. •
Defined Function Execution
Execution Control •

SYSTEM COMMANDS •
General •
System Command Format • • • •
System Command Categories • •

Terminal Controls •
Clear Workspace Controls
Session Controls
Library Controls
Name Displays. •
Erase Names •
Run State • • •
Group Commands

•

• • •

SYSTEM VARIABLES AND SYSTEM FUNCTIONS •
General •
System Variables •
Function Transformations • •
Name Functions
Debugging Aids
Execution Controls • • •
Special Character Sets
Status Enquiries •
I-Bar Primitive Functions •

•

•

• •

. .

Page

3-5
3-6
3-7

3-8

3-9
3-10
3-13
3-15

3-15
3-16
3-18

4-1
4-1
4-4
4-5

5-1
5-1
5-1
5-1
5-2
5-3
5-5
5-8
5-9
5-9
5-10
5-11

6-1
6-1
6-2
6-4
6-5
6-6
6-8
6-9
6-10
6-11

Section

7

8

APPENDICES

A

B

Table of Contents (cont)

Title

FILE SYSTEM OPERATORS • General
File
File
File
File

Name • • • • • • • • • • • •
Components • • • • • • • • • •
Limits • • • • •
Opening, Active/Inactive Status

Notes • • • • • • • • •
File System Primitive Operators •

File Create, Change Password, Re-
name and Destroy • • • • • • • • •

File Component Null, Write and Read.
File Component Pop and Append • • •
File Component Reverse and Rotate • •
File Component Take and Drop • • •
File Component Compress and Expand
File Existence and Query • • •
File Component Map • •
File Hold, Free, Preempt • • • • • •
File System Interrogate • . .

ERROR REPORTS AND INTERPRETATION
General • • • • • • • • • •
Error Report Formats
Types and Forms of Errors • •

. . .
Syntax Error • • • •
Definition Error •••

. . .
. .

Domain Error
Type Error
Value Error
Rank Error

Glossary of Terms, Abbreviations, and
Acronyms ••••••••••••••••

Summary of Transaction, Typing, and Attention
Conventions • • • • •

Page

7-1
7-1
7-1
7-1
7-1
7-2
7-2
7-2

7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12

8-1
8-1
8-1
8-2
8-3
8-3
8-4
8-4
8-4
8-4

A-l

B-1

v

Figure

1-1

2-1

2-2

Table

2-1

2-2

3-1

4-1

8-1

vi

List of Illustrations

Title

Transaction Cycle • • • • • • • • • • •

APL/Terminal, Typical 44-Character/Key­
board Configuration • • • • • • • • •

APL Terminal, 47-Character/Keyboard

Page

• • • 1-3

• • • 2-3

Configuration ••• • • • • • • • • • • • •• 2-3

List of Tables

Title

Forming Overstrike Symbols •••• • • • • •

Input/Output Communication Functions • • • •

Examples of Data Element Forms •• • • • • •

Function Definition and Editing • • • • • • •

Error Reports • • • • • • • • • • • • • • • •

Page

2-5

2-16

3-5

4-2

8-5

INTRODUCTION

This publication is a user reference manual for the Burroughs APL/700
System, which is a general-purpose system for processing information in
a time-sharing, interactive environment. APL (A Programming Language)
is a language for describing procedures in the processing of informa­
tion and is very concise, consistent, and powerful. Because APL is
similar in many respects to algebraic notation and contains many use­
ful functions not expressible concisely with conventional symbols, it
is very effective for describing algorithms (problem-solving proced­
ures). The Burroughs APL/700 System incorporates all of the features
of existing APL systems, but it has many additional features and en­
hancements that make it more versatile and powerful. Some of the
salient features and enhancements are:

Extended function capability
Improved interaction
Formatting capability
Extended func·tion editing
Enhanced system control
Comprehensive error reporting

The purpose of this manual is to provide sufficient reference data and
instructions to assist users in the application and use of the Bur­
roughs APL/700 System. The intent of the presentation is to enable
the user to take best advantage of the APL/700 capabilities and to
achieve maximum effectiveness in his application.

vii/viii

SECTION 1

APL/700 SYSTEM DESCRIPTION

GENERAL.

APL/700 is an interactive tool for problem solvers. Its purpose is to
provide a means for the person formulating the problem to get results
quickly. The user works through a terminal. Entry of probleM
formulation and data can be intermixed. I~ntered information and
returned results are displayed for immediate review. This type of use
is appropriate for applications where user contribution to solution
is important. Some characteristics of effective uses include value in
timely solution, experimentation, asking what if questions. 'These
contrast with traditional bulk data processing, where ~assive outputs
are prepared in hope that somewhere therein can be extrac1:ed the
answers to any potential questions •

•
The problem formulation can often be in terms of an immediately
executed APL expression for which direct response is provided.
APL/700 has many powerful primitive functions built-in and available
for this use. These apply consistently to simplELor structured data.
Uniform, parallel processing of all elements in a cata structure
permits significant processes to be concisely expressed, with
irrelevant detail suppressed.

Entered data or the results of conputations can be retained in
variables. User defined functions can be used to capture for~ulateti
problem solutions. User defined functions are composed from
constants, variables, the primitive functions, and other user definec.
functions. Captured functions and data can be savcc for subsequent
use. A file system is available to extend the a~ount of data
available for retention, retrieval and processing.

APL is being successfully used for many applications including:

Financial analysis and forcasting
Statistical analysis
Administrative reporting
l~thematical analysis
Text processing
f4ailbox message distribution
Reservation control systems
Computer aided instruction
Graphing and data plotting
Simulation

The common property of these applications is their use of direct input
and immediate display response. Traditional computation-bound
applications are not candidates for 1.PL, at least in that form. Often
recasting these traditional jobs into APL provides a more satisfactory
solution for the user with the problem.

1-1

PROPERTIES AND FEATURES.

APL/700 may be characterized as:

accessible immediate response for "trivial" requests

inobtrusive problems quickly solved at user's pace

concise powerful primitives on data structures

simple consistent, few rules

readable define functions in few lines

forgiving easy error correction, good recovery

secure protection for private or shared work

habit forming accomplishments eagerly shared among users

Features that make APL/700 an effective interactive syst~m include:

built-in APL functions for processing data

immediate expression execution in calculator mode

progressive expression development by augmenting prior entry

data entry in calculator or input modes

user function creation in function definition and editing mode

file operators for accessing extensive data

formatting functions for report preparation

system functions and commands to query and alter environment

keyboard input and display controls

USE REQUIRP.MENTS.

The requirements to use APL are simple:

a terminal with APL characters

an account on an APL/700 system

The above are presumed available. Note that tyeing skill is not on
the above list. APL is so concise that typing ~s not a significant
barrier for most problem statements. Since the reader is encouraged
to learn APL on a terminal, keyboard familiarity develops with use.
The user quickly learn to experiment: When in doubt, try it!

1-2

APL/700 INTERACTIVE ENVIRONMENT .•

The user of APL/700 apparently receive-s access to a central processor
always ready for his exclusive use. This is achieved for many users
concurrently, since the amount of computer resources required for
servicing anyone user is usually a small fraction of that available.

A transaction is the alternating cycle starting with a user phase
followed by a processor phase. The user phase starts with the
terminal ready for user typing, continues through user typing an entry
requiring service and completes with typing return (RETN). The
processor phase starts by receiving the RETN, continues with servicing
the request, possibly generating output, and finally restoring the
terminal ready for next user entry.

Phase

Keyboard

Typical Time
Span, Seconds

Terminal

Types

1---- Request ----I .. H
RETN - APL/700

Processor
Response

Unlock Keyboard

User

Entry RETN

Processor

Process (Output)

Unlocked Locked

1 to 30 o to 1 o to 6

FIGURE 1-1. TRANSACTION CYCLE

So long as the time in the user phase or receiving output is
essentially all the transaction cycle, the user is satisfied that he
has the entire processor. It is always waiting for him, and he works
at his own pace. APL/700 achieves this by scheduling "short" requests
(taking no more than a fraction of a second of processing to complete)
for almost immediate service. "Involved" requests (that a user might
expect to take a while) are scheduled for processing that can be
interrupted as necessary to service short requests from other users.

The benefits from sharing the
concurrently include:

APL processor among many users

Immediate response for short transactions,
Work smoothing among many irregular demands for service,
Powerful processor available when needed,
Cost spread across users as resources are used,
"Think time" need not be penalized,
Data files for data accumulation and shared access.

1-3

D.hTP-. ELEHENTS AND OBJECTS.

Data objects are the units for processing. A data object has the
properties of type, shape, and value.

The type of a data object is one of the following:

character
numeric

any APL characters
any value representable as a number

The numeric data type is further restricted to integer, having integer
values only~ and Boolean, having values 0 or 1 only.

A data object may be a scalar, in which it has a single element
without shape (a geometric point). A data object may be an array, in
vlhich case it has a number of dimensions, with a length or number of
elements along each dimension. If there is only one dimension, the
array is referred to as a vector. The sha~e of a data object is the
vector indicating the lengths along the dlmensions. The right most
element of the shape vector is the number of columns. A two
dimensional array is referred to as a matrix. The shape of a matrix
is the number of rows, then the number of columns. Any dimension may
have length 0 or 1. The result of processing such objects requires
special attention. The rank of an object is the number of dimensions.

The size of an object is the number of elements it contains. The size
is er:iP'tY if the length of any dimension is zero. The size of a scalar
is one, as is the size of a one element array of any rank. A
character string is a scalar or vector of character type.

The value of a data object is the array of values of the individual
elements.

Any array data object may be characterized as:

rank n

rectangular

homogeneous

dense

1-4

n dimensions

all planes across a dimension have the same shape

all elements are the same type

all elements are present, and represented the
saMe way

The geometric view of an array is often useful. A plane is a slice of
a shaped object that is orthogonal to a given dimension of that
object. A plane across the k-th dimension of an n-dimensional object
is a (n-1)-dimensional object with all but the k-th dimension of the
original retained. Thus a plane of a vector is a scalar element, and
a plane of a matrix is a row or column. A vector along a dimension is
parallel to that dimension's axis. A plane across a dimension is
orthogonal (at 'right angles') to that dimension.

A face of an array is the first or the last plane across any
dimension. A corner of an array is any n-diroensional sub-array having
n of its faces that are sub-faces of an n-dimensional array.

Each element in an array can be referenced by its coordinates, an
ordered list of scalar indices, one for each dimension from first to
last. An index refers to the ordinal position along a dimension of
a plane across that dimension. The index position indicates the
position of a plane relative to a dimension of an array. Index
position j of a plane selects the j-th plane along a given dimension.
The index domain for a coordinate is the set of integers starting from
the origin and including one member for each plane across that
dimension. For any dimension of an array, any numeric data object can
be used that contains only integers in the index domain for that
dimension. A semicolon separates index objects referring to
successive dimensions. Any dimension without explicit index objects
is equivalent to all planes across that dimension. The index sequence
is the conventional order of the sets of indices of the elements of an
array, whereby the last dimension steps through its values most
rapidly. (As [1:1] [1:2] [2:1] [2:2]).

1-5

USAGE NODES.

The user of APL may select one of the following modes for use at any
time.

Calculator Mode.

immediate execution of entered expressions

progressive expression development

assignment of values to variables

calling defined functions

prompt: indent five spaces

Function Execution ~ode.

execution of user defined functions

prompt: keyboard locked

Data Entry Mode.

numeric, in response to default prompt 0:

character, in response to optional user generated prompt

Function Definition and Editinq Mode.

development of user defined functions

convenient line editing

establishment of automatic debugging aids

prompt: [n] at left margin for line n of open function

1-6

COMPONENTS OF APL LANGUAGE.

The APL user makes use of the following kinds of components:

constants and variables
primitive functions
user defined functions
control structures

CONSTANTS AND VARIABLES.

A constant is a data object without a name. Constants can appear as
part of user defined functions or entered as part of calculator mode
expressions.

A variable has a name that gains its meaning from assignment of a data
structure. The variable name is used in APL expressions as reference
for the associated data structure. Each subsequent assignment to the
same name changes the data structure associated with it.

Constants and variables can be used as arguments to functions in APL
expressions.

FUNCTIONS.

Functions perform processing following particular defined rules. Many
primitive functions of general utility are built-in to APL. Other
functions can be created by the user for his problem solving. These
are called defined functions. They make use of primitive functions
or other defined functions.

A function accepts arguments and generally returns a value, resulting
from following the processing rule for that function as applied to the
argument values.

A function is defined for a domain of values for each of its arguments
and produces a result in the range of values. For example the
relational function "less than", as used in

A "less than" B

has numeric domain for arguments A and B and the values true and
false as the range of values for the result.

In APL, "less than" is expressed by the symbol '<', and the values
true and false by the Booleans 1 and 0 respectively.

1-7

Primitive Functions and Operators.

Complete families of primitive functions are provided for numeric type
data objects:

arithmetic
relations
logical
higher functions
random numbers

Additional function families exist that apply to both numeric or
character data types:

structure building and changing
mixed type
sets
indexing
assignment
formatting

A group of operators exist which use primitive functions as compcnents
that operate with data objects.

A file system provides convenient access to extensive data using a set
of file operators.

A set of system functions permit
environment within which APL is used.

querying and altering the

A similar set of system commands can be used only in calculator mode.

User Defined Functions.

user defined functions nay be created by combining
functions, operators, constants, variables, other
ounctuation, and control structures to perform more
than can be done by single primitive functions.

built-in primitive
defined functions,
complex processing

A user defined function can have arguments. Arguments provide values
for use during execution.

l\ user defined function may return a result from execution. If so,
the user defined function can be used similarly to primitive functions
to compose expressions.

1-8

CONTROL STRUCTURES.

The APL control structures control order of execution. Primitive
functions apply "in parallel" to all elements of the structures.
Functions are elaborated right to left within expressions. Lines are
normally executed in sequence within user defined functions. Non­
sequential execution is achieved by explicit transfer to a line number
(which may be computed). A user-defined functions may be called, in
which case control is passed to the called function. Subsequently
control is returned to the caller after the point of call. The
completed function may return a value. Functions may be called
recursively.

There are no formal conditional or iterative control structures for
user defined functions. These are generally subsumed within
processing on data structures. When required, the conditional and
iterative control structures are synthesized by explicit control
transfers.

1-9

WORKSPACES, LIBRARY AND FILES.

Each user account has an active workspace. The active workspace is
the fixed size area of storage in which a user conducts his
transactions. At first sign-on this workspace is unnamed and clear.
After some transactions, there may be some variables having values and
some user defined functions having continuing use.

A user can name the active workspace and save a copy of it in his
library. Library workspaces are inactive, in that they are not
currently being workeo upon. A library workspace can be reactivated.
The number of workspaces in the user library is limited to the quota
established by the installation for that account. All workspaces have
the same size, determined by the installation.

Within a workspace are all
temporary storage required
APL/700 defined functions
capability in a workspace.

retained variables, defined functions, and
during processing. The conciseness of

permits a surprisin~ly large processing

Each account may also have a quota of files. Each file has a name anCi
a set of numbered components. Each component is either null (havin~
no content) or contains an APL/7QO data object. Data objects can
readily be exchanged with the active workspace. This increases th~
amount of data that can be processed by functions in a workspace.

SELF PROTECTION.

The active workspace contains current work. Whenever desired, a copy
of that workspace can be saved for subsequent resumption at the point
of saving.

Function definition changes or experimental computation can be done,
then either kept if good, or discarded by returning to the formerly
saved version.

The active workspace is retained in the event of unexpected
disconnection caused by either the terminal, the communications link,
or the main system. Upon next sian-on for the account, recovery
occurs automatically to within the last (incompletely) entered
transaction if in entry phase1 or to the last line processed if in
processor phase.

The commands having irrecoverable effects tend to be separated and
protected against accidental misuse. For example, the user can ERASE
names of variables, functions or groups1 but must DROP a workspace.

1-10

SECURITY AND SHARING.

Protecting an account, its workspaces and files from other users is
often important to a user. Locks and passwords provide these
capabilities. Selective sharing' of workspaces and files among
accounts is often desirable. A user can grant access privileges to
those he wishes, and deny privileges to all others.

A function can be lockeq so that it cannot be opened for examination
by any workspace other than where it was locked.

A user account name is unique, assigned by the installation. It is
not considered private, but only a means for identifying the account
when signed on the system, and for other users to reference the
inactive workspaces and files retained for it.

The account user can add a distinct password to any account, workspace
or file name. Password use can provide a degree of security to the
name there locked, since the assigner of that password controls its
dissemination. The password is not publicly known within the
installation. A password can be changed at any time. Passwords and
changes thereto are entered through the terminal. If hard copy is
printed, a blot can be used to obscure by overprinting the area in
which the password appears. Of course, no security is provided
against tapping the communications line connecting the terminal with
the APL system unless special communications security means are taken.

A user cannot alter the
can only obtain a copy
account owner has told
password if any).

original of a workspace in another account~ he
of it in his active workspace, assuming the

him the account name and workspace name (and

A user can alter any file in the APL file system, if he knows the
owning account/file name (and password if any). Thus to control the
allowable file alteration in shared file applications, the owner
should provide a file access function through which all accesses are
made. In this function, the file password can be secured from
disclosure and necessary access conditions can be checked. This
function can itself be locked, denying the user the ability to examine
its content. Thus, the file name and password need never appear in
visible form to the user.

A file can be shared among several users. The capability to update a
file component safely is provided through reserving the file for
exclusive use during the update operation.

1-11/1-12

SECTION 2

INTERACTING WITH APL/700

GENERAL.

The APL/700 environment consists of a very distinctive conversational
interface, where the user intimately interacts with the system in per­
forming transactions or generating, executing, and debugging a program.
During the process of execution, the user may at any time stop the pro­
cessing and have available all of the local variables and other envir­
onmental factors for examination and modification. Because the user
is able to follow the processing in such detail, he has a very effec­
tive debugging tool. The APL/700 user environment consists of an
available library, workspace properties (such as print width, print
precision, index, origin, and workspace name), accounting information,
and other parameters. The user ~~ control of these factors and may
query them. By virtue of the system interactivity, the user has a
large number of tools by which he may edit his transaction upon entry
or upon reentry. The order in which an entry is typed is not relevant,
but the final image of that entry is the logical entry that is sent to
the system.

APL/700 is heavily oriented to problem solving; thus, a user can rap­
idly and efficiently form programs and interact with them. Because of
the simple syntax of APL/700, users other than programmers may success­
fully use it. The reliability engineer, for example, who knows his
application well but knows little about programming, need not communi­
cate his application to another person, who then performs the program­
ming chore. He can directly approach the computer by means of a
terminal using the APL/700 language. APL/700 reduces the problem
solution turn-around time considerably. In addition to mathematical
computations, APL can also be used for modeling of complex systems or
for simulation, text editing, algorithm development, probability pre­
dictions, and forecasting. Moreover, APL/700 provides a vehicle for
the development of application packages, such as circuit analysis pro­
grams and linear programming techniques.

ACCESSING THE SYSTEM.

The user interface with APL/700 is through a communications terminal
with the special APL typeface and keyboard configuration and with
provisions for direct or acoustic-coupling teleprocessing communica­
tions with the system Data Communications Processor. The APL/700
System is compatible with all standard hard-copy and video APL-type
terminals.

2-1

This section describes the configuration and operation features of the
typical APL-type terminal. Application reference data and detailed
procedures are given for some of the general operations required, such
as sign-on, sign-off, and editing procedures. The instructions pre­
sented in this section and throughout the manual assume the use of the
typical APL terminal configuration (as described herein) and an acous­
tically coupled telephone interface with the Data Communications Pro­
cessor.

APL TERMINAL KEYBOARD CONFIGURATIONS.

Figure 2-1 shows the configuration of the most commonly available APL
terminal keyboard, which has 44 character/symbol keys, 9 functional
keys/bars, and a power on-off switch. Recently produced APL terminals
contain 47 character/symbol keys as shown in Figure 2-2.

APL CHARACTER/SYMBOL SET. The APL character/symbol set consists of
the 26 uppercase alphabetic characters, numerals 0 thru 9, standard
punctuation/mathematical symbols, and a number of special APL function
symbols not used on standard typewriters. Also note that the conven­
tional symbols are not in the standard typewriter keyboard locations.

NOTE

The following APL character-set are
described for typical (standard)
APL terminals. Character formats
for other terminals vary somewhat
in form. For example, all charac­
ters on some units are upright and
not condensed.

Alphabetic characters are in the uppercase, italic, and condensed
(higher than Wide) form as follows:

A neD E F G II I J K L M N 0 P Q R STU V W X Y Z

A full set of underscored alphabetic characters may also be used.

Numerals are in the upright and condensed form as follows:

1 2 3 4 567 8 9 0

Function symbols are in the normal, not-condensed, and upright form
(except for Greek letters) as follows:

< ~ = ~ > ~ V A - T ? W € P

CI. r L 'iJ /:}. 0 , 0 () C :J nul. T \ / • •

2-2

(

l LOCK

SET (OFF

Figure 2-1. APL Terminal, Typical 44-Character/Symbol Keyboard Con­
figuration

'--_---J [ATTN]

;:=.==:....:::::: r--.,..~..;;;.;;;;,r=--...---v---v--v---v---v---v---v-----..r::"""", [RE_N 1 00
LOCK

SET OFF

----------)

Figure 2-2. APL Terminal, 47-Character/Symbol Keyboard Configuration

2-3

Additional operator characters and symbols are formed for use by APL/
700 by overstriking the characters and symbols as follows

I $ ~ * ¥ f ~ e ¢ ~ • ~, ., ~ A

~ ~ ~ M ~ M B<~ ~ ~ ~ ffi ffi ~ ~ ~ ~ ~

NOTE

The order in which characters are
overstruck is not important. Over­
strike "$" is not necessary on those
47-key configurations having the
dollar ($) sign.

Table 2-1 shows how the special overstrike characters and symbols are
f'ormed.

FUNCTIONAL KEYS/BARS. The APL terminal keyboard has special keys and
bars for the tab, shift, space, carriage-return, backspace, attention,
margin-release, and clear-set functions. Some terminals also have in­
dex or 1ine-f'eed keys. In addition to the power on-off switch, some
terminals may be equipped with a communicate-local function switch.
The "communicate" position of this switch must be used when operating
in the APL/700 system.

BASIC IMPLEMENTATION OPERATIONS.

The basic operations required to implement the APL/700 involve sign­
on, transaction, and sign-off procedures. Recovery and editing pro­
cedures are also perf'ormed on an as-required basis.

TYPING RULES/CONVENTIONS.

Except for different character/symbol key locations and certain special
£'unctions and rules, typing at the APL keyboard is done in the conven­
tional manner. The f'ollowing rules/conventions apply:

Function

user/System
Typing

2-4

Rule/Convention

A user can type only when the keyboard is un­
locked, whereas the APL/700 system locks when
processing user inputs or displaying respon­
ses.

Operator typing is distinguished from system
typing (on hard or video copy) by indenta­
tion in most transactions. (User copy is
automatically indented five spaces, by system
"prompt", while system copy normally starts
at the 1ef't margin.)

Table 2-1

Forming Overstrike Symbols

pverstrike Formed By Overstrike Formed By
pharacter Dverstrlklng With Character ·Overstrlking With

$ S / lfI t 0

r - / /lJ / 0

\ - \ l\J \ 0 .
e - 0 tJ 0 0

~ \ 0 &1 -+ 0

• * 0 ~ + 0

<I> I 0 [?J > 0

• I fJ. !<J < 0

l' I V 121 V n
~ - !J. Illl fJ. 0

IV V F3 0

""
.... v ~ v [1

'fit
" ~ " 0

A 0 n m + 0

~ 0 .1 It! + 0
., 0 T ~ 0 0

:r .1 T Eil = 0
, ,

[!] · . , [1

2-5

Function

Return

Entry Length

Shift (upper-lower
characters/symbols)

Spacing

Backspacing

Tabs

Line Feed

Attention/Interrupt
(or Break)

Text Comment (Lamp)
Symbol (fil)

2-6

Rule/Convention

Pressing the return (RTN or RETURN) key sig­
nals the system that a user entry is complete
and ready for processing. (The carrier is
returned to the left margin and the keyboard
is locked.)

Each user entry should fit on a single type
line.

Pressing any character/symbol key normally
inserts the lower character/symbol on that
key into text at position of cursor. Simul­
taneous pressing of SHIFT key inserts the
upper symbol on key. (A shift lock can also
be used.)

Momentarily pressing the space bar positions
the cursor one space to right; holding space
bar on some terminals causes repetitive spac­
ing.

NOTE

Extra spaces will not usu­
ally affect transaction
processing.

Pressing backspace (BACK SPACE) key positions
cursor one space to left. On some terminals,
repetitive backspacing is accomplished by
pressing and holding backspace key.

Pressing tab key positions cursor rightward to
next tab stop (if set). In application, the
tabs should be set to constant intervals (such
as five Characters).

Pressing line-feed key discards text above
and to right of current position of cursor.

The attention (ATTN) key provides for initia­
tion of special processing. It's uses in­
clude: (l) correction of immediate entry error
restating and adjusting of prior entry, and (2)
execution suspension or abortion.

If it is desired to enter notations or com­
ments without system response (niladic), pre­
fix the comment text with the lamp symbol.

Function

Overstrikes

Visual Fidelity

Local/Communicate
Mode

Rule/Convention

Overstriking characters to form special sym­
bol operators may be performed in accordance
with Table 2-1. (Either character is typed
first, the carrier is backspaced once, and
then the other character is typed.) Over­
striking with an "X" or other character for
character/text deletions is not allowed.

It is not necessary to type complete line
text or characters in order; entries are in­
terpreted by the system only after the return
function is completed. That is, the time se­
quence in which the operator presses the
various keys doesn't matter; the system in­
terprets the entry as it is viewed on the
paper or display.

The terminal must be in the remote, communi­
cate mode to use the APL/700 system. The
local mode may be used for off-line typing.
(Switching between local and communicate modes
may generate an extra transmitted character,
often a "9".)

Other convenience keys, not always available on all terminals are as
follows:

Linefeed

Repeat

SIGN-ON PROCEDURE.

Acts like attention key, but does not provide
a prompt for in-line editing.

Provides repeated, automatic typing of any
other character/symbol.

Perform the following procedure to activate the APL terminal and sign
on to the APL/700 system:

NOTE

The following procedure assumes
the use of an acoustic coupler­
telephone communications inter­
face. Minor variations to the
procedure may be required for the
various terminals.

1. Turn on terminal and acoustic coupler power.

2-7

2-8

2. Lift handset from telephone cradle, dial allocated computer
telephone number, and listen for high-pitched tone.

3. When tone is received from computer, place handset in acous­
tic coupler cradle. (Position handset so that cord end is in
coupler receiver marked CORD.)

4. Wait for sign-on response from computer; press return, atten­
tion, or break key if necessary. A typical response is as
follows:

ON-LInE TO APL/700; YOU ARE: ll3163 (LSN:6).

Where: N3l63 and (LSN: 6) are variable telephone number
and Logical Station Number, respectively.

If necessary, repeat pressing ATTN key until response is
received.

5. When above response is received, type following entry:

\APL

6. Wait for system "prompt" (cursor types five-space indenta­
tion); then type following system command entry:

Where: Acct is user account identification.

Example:

Pa~s~ord is optional entry for a previously
locked account; omit entry if account is unlocked.

)ON RJS [BIGBE]

7. Press return (RTN) key and wait for system sign-on response,
which has the following typical format:

FRIDAY 74/02/01 11.51 AM [V25041 ~120 TOO S006J

Where: V2504l is the release version of APL/700 being
used.

W120 is the terminal width (numbers of characters
per line) assumed for the user account.

TOO is the terminal tab interval assumed for the
account.

S006 is the number of the port to which terminal
is connected (used for communications purposes).

8. Wait for system prompt (five-space indention).

When a system prompt is received, the sign-on procedure is completed,
the keyboard is unlocked, and the system is ready to process a user
transaction entry. (The system provides the user with a block of its
internal storage facilities called an active workspace.)

TRANSACTION PROCEDURE.

When the system sign-on process is completed, the user may perform a
series of transactions (cycles consisting of user entry and system
response) as follows:

1. Make certain that APL system has initiated cycle by typing a
prompt (usually a five-space indention) and unlocking key­
board.

2. Using character/symbol keys and shift bar(s), type in de­
sired entry. For example, if it is desired to set a work­
space name, type the following:

)WSID Na~e

Where: Name is desired workspace identifier.

Example:)WSID WKSPOI

3. When transaction entry is typed, press return (RETURN) key to
signal system and initiate processing.

4. Wait for system to complete transaction (indicated by return­
ing a typed response at left margin). (Response can be a
statement, transaction result, or error message.)

NOTE

If an error message is received,
perform the appropriate action/
correction and reenter the de-
sired transaction specification.
(Refer to Section 8 for error­
message descriptions and to the
paragraphs describing editing and
recovery procedures in this section.)

When the transaction is completed with a valid system response (print­
out or display), a five-space prompt is returned and the keyboard is
unlocked to enable the next transaction entry. Repeat steps 2 through
4 for each subsequent transaction.

2-9

SIGN-OFF PROCEDURE.

When all user transactions are completed, or it is necessary to tem­
porarily interrupt operations at the terminal, perform the following
procedure to sign off from the system:

2-10

1. Make certain that a prompt (five-space indention) has been
been typed and the keyboard is unlocked.

2. Type one of the following sign-off commands:

)OFF [Q12l2c~/~e~12c~]
or

)COFF [Oldlock/Newlock]

Where:)OFF is system sign-off command. (Work sesssion
is terminated and active workspace is discarded.)
If it is desired to save active workspace for
continued use during the next session, enter
")COFF". [Q12l2c~~e~12ck] is optional entry
specifying account locks Tpasswords), if used.

NOTE

Q12l2c~ is lock (password)
presently used on account.
!e~12c~ is new lock assigned
during sign-on process. If
it is not desired to change
lock, or there is no lock on
account, omit entire Q12l2c~
!e~12ck entry. Leave !e~12c~
entry blank to remove lock
from account.

)COFF [BIGBE/PAOLI]

3. Press return key and wait for the following system sign-off
statement (typical):

)OFF
THURSDAY 74/01/17 02.42 PM
CONNECTBD 00.55.48 '1'0 DAT'£' 02.06.20
CPU TIMB 00.00.02 TO DA'1'E 00.00.09
IN APL-NCS

Where: This response reflects the type, time and date
of sign-off; the four other numerical responses
reflect time (hours, minutes, and seconds) spent
on current session, plus total time to date for
both connection and CPU usage. IN APL-MCS is
version of message control system.

4. Remove telephone handset from acoustic coupler and return
handset to telephone cradle.

5. Turn off terminal and coupler power as required.

RECOVERY OPERATIONS.

The APL/700 system provides automatic recovery from temporary work­
session interruptions, accidental disconnections, or system malfunc­
tions. When a user signs off from the system for a temporary work­
session interruption (by using the ")COFF" command) the active work­
space is returned when the next session is signed on.

When the active workspace is saved from a session and the account is
signed on by using the previously described sign-on procedure, the
system responds with the normal sign-on display with an additional
statement as follows:

WS Name CONTINUED FROM Time Date - - --
Where: Name is identifier of saved workspace.

Time and Date indicate time and date that pre­
vious work session was suspended.

Example:
)ON RJS

WEDNESDAY 74/01/30 11.18 AM [V2S041 W130 TOS S018J
CONTINUED FROM 74/01/30 11.02.33

It is possible that an accidental disconnection or system malfunction
will occur during any work session. In either case, the system will
automatically save the active workspace and provide a "CONTINUED" mes­
sage when the account is again signed on.

If the execution of a program was interrupted, then the word "EXECU­
TION" will appear between the active workspace name and "CONTINUED".
The program execution will continue until the line being executed is
completed; then the function name and line number are printed, followed
by an asterisk or star (*) symbol to indicate that the function is sus­
pended. The system then types an input prompt (five spaces) and waits
for a transaction entry.

If a function was being defined when a work session is interrupted,
the word "DEFINITION" will appear between the workspace name and the
word "CONTINUED" in the message. A function definition prompt is then
returned to enable continuation of the function definition. An acci­
dental interruption that occurs while an entry is being composed re­
sults in the loss of that entry attempt.

2-11

TRANSACTION EDITING.

There are a number of variations in performing transaction editing in
the APL/700 system. The procedures required for editing depend on the
mode of operation, on the state of the keyboard (locked or unlocked),
on whether an "attention" entry is initial or non-initial, and on the
type of editing required.

CORRECTING IN-PROCESS TYPING ERRORS. If a typing error is noticed be­
fore the transaction text entry is completed and the return (RETURN)
key is pressed, the error is corrected as follows:

1. Using BACKSPACE and space keys, position cursor at the left­
most character that is in error.

2. Press attention (ATTN or BREAK) key and observe that system
types inverted caret (V) under character backspaced to in
previous step and then feeds paper up one line. (This action
effectively erases the errored character and every character
to the right.) The INDEX key (when supplied on some termin­
als) can be used for this attention application; however the
inverted caret is not viewed.

3. When system response is completed, resume typing correct en­
try and the remainder of transaction entry.

Example: Suppose that the system command ")ON ACCTI
[KEYLOAD]" is typed, where "KEYLOAD" was in­
tended to be "KEYLOCK". The resultant system
response and correction is as follows:

)ON ACCTI [KEYLOAD]
V
CK]

The corrected entry ")ON ACCTI [KEYLOCK]" is
now entered by the carriage-return function.

TRANSACTION EDITING PROCEDURE. APL/700 has provisions for retrieving
the most recently entered transaction and modifying it. This may be
desired as part of a normal evolution of a computational expression,
or in response to an error message or wrong result. The procedure
for applying transaction editing is as follows:

2-12

1. Make certain that cursor is at five-space indention position,
then press attention key.

2. Observe that previously entered transaction is displayed and
that carrier returns to left margin.

3· Type edit symbols below corresponding displayed characters
as follows (space cursor accordingly):

"/"

" " •

The foreslash causes deletion of character above it.

Each period segments display into another phrase,
starting with the character above the period. (The
first phrase starts at the left of the line.)

4. Terminate edit line by pressing attention (E£! return).

5. Observe that first phrase is displayed (up to the first per­
iod of the edit line, or the entire remaining phrase if no
period is used).

6. Alter or augment displayed phrase by normal typing.

7. Enter another attention at the right-most position to display
the next phrase.

8. Repeat steps 6 and 7 unt~l entry is complete. A transaction
entry is completed by either entering a return (or an atten­
tion when no more phrases exist).

Editing a line of a defined function involves the use of
steps 3 through 8 of the above procedure.

Any transaction-entered character not recognized by APL/700 results
in a "CHARACTER ERROR" report. An example of this and subsequent
editing is as follows:

'THIS IX A BXD LINE.'
*** CHARACTER ERROR ***

'THIS DO A BOD LINE.'
II. IIII

'THIS IS A LINE.'
v
FIXED LINE. '

THIS IS A FIXED LINE.

All invalid characters are replaced by the squat quad (0) symbol,
and the cursor returns to the left margin. Editing can now be per­
formed by starting at step 3 of the transaction editing procedure.
If the attention key is pressed initially, a "twitch" prompt (three
spaces and three backspaces) is returned.

If the return key is pressed during the above procedures, the entry
is completed whether or not the immediate-edit procedure was completed.
If the return key is pressed too soon, an appropriate error message
is returned.

2-13

Entering any character other than a space, slash, or period below a
line re-displayed for editing results in the following error message:

EDIT ERROR

Pressing the attention key permits the reinitiation of the transaction
editing sequence.

The use of the attention key for in-process typing corrections does
not conflict with the applications described above. That is, for in­
process typing, the cursor is not at the rightmost entry position when
the attention key is pressed.

EXAMPLES OF ATTENTION KEY APPLICATIONS. The following examples sum­
marize the use of the attention key in transaction editing procedures.
In the presentation, the left column indicates user entries, system
responses, and the use of the attention, return, space, backspace, and
edit functions. The right column contains annotations reflecting the
various user and system actions.

NOTE

In the following examples:

® indicates the return function.
@ indicates the attention function.

----- indicates user spacing.
indicates user backspacing.

Example Comments

'THIS IE A BXD LINE.' ®

*** CHARACTER ERROR ***
'THIS 00 A BOD LINE. '

@-----

----- I I . IIII ® 'THIS IS A LINE.'
-----@ @

......
v
FIXED LINE.'

THIS IS A FIXED LINE.

2-14

User transaction entry.

System response to invalid overstrikes
not recognized as APL characters.

User-entered attention to extend cur­
sor to left margin.

User spaces to edit "IS", enters
attention to accept remaining phrase
(editing by "II/I"), backspaces to be­
ginning of "LINE", enters another

® attention, retypes new phrase, and
then enters a return to display the
complete edited line.

Example

@

'THIS IS A FIXED LINE.'

-----. ®

'THIS IS A ®
*** SYNTAX ERROR ***

v
'THIS IS A

@ @
REPAIR. t

----- ®
,~ryf{IS IS A REPAIR. t

Comments

User enters attention for immediate
editing of previous transaction entry.

System responds with display.

User spaces to "F", types an edit
period, and then enters a return.

System responds with first phrase, but
user erroneously forgot remaining
phrase and entered a return.

Two attentions positions cursor at
end of phrase, and remaining phrase is
eQtered with a return to complete the
editing procedure.

INPUT/OUTPUT COMMUNICATION FUNCTIONS.

APL/700 provides implicit input and output forms. Thus, user-typed
entries are accepted as inputs; results not explicitly ~ssigned to a
variable are returned by the system as outputs to the user display.

The system also has specialized forms of input and output primitive
functions related to communications between the system and the termi­
nal. For example, there are times within a user defined procedure
(function) where a value input from the user is required for evalua­
tion to continue the operation/calculation. In this case, the evalu­
ated-input function is embedded~where needed in the defined function
and results in an evaluated-input prompt to the user when that point
is reached during execution.

Table 2-2 lists the format and definition of the various input/output
communication functions. The quad (0) and quad-prime (~) symbols
are used, along with value-producing expressions in these applications.

2-15

TABLE 2-2

INPUT/OUTPUT COMMUNICATION FUNCTIONS

1===1
1 NAME 1 FORM 1 DEFINITION 1
1=================1==============1==1 1 MIXED OUTPUT 1 ~l;~l;~~; .•. 1 THE EXPRESSIONS ~I ARE SEPARATELY EVALUATED RIGHT TO LEFT 1
1 1 1 THEN THE RESULTS ARE OUTPUT. IF ALL THE EXPRESSIONS 1
1 1 1 RETURN VECTORS AND SCALARS THEY ARE OUTPUT ON THE SAME 1
1 1 1 LINE WITH NO SPACES BETWEEN THE END OF THE OUTPUT OF 1
1 1 lONE EXPRESSION AND THE BEGINNING OF THE OUTPUT OF THE 1
1 1 1 NEXT. MATRICES AND TENSORS ARE OUTPUT ON SEPARATE LINES. 1
1-----------------1--------------1--1 1 EVALUATED INPUT 1 n 1 THE QUAD ('n') IS A PSEUDO-VARIABLE. WHEN IT IS USED 1
1 1 1 WHERE A VALUE IS NEEDED THE PROMPT '0: 'POLLOWED BY 1
1 1 1 A LINEFEED IS SENT. THE USER MAY THEN ENTER ANY VALUE 1
1 1 1 PRODUCING EXPRESSION. THE EXPRESSION WILL BE EVALUATED 1
1 1 1 AND THE VALUE PRODUCED WILL BE USED IN PLACE OF THE QUAD. 1
1 1 1 AN ESCAPE MAY BE MADE FROM EVALUATED INPUT BY ENTERING AN 1
1 1 1 ABORT. '+'. THIS HAS THE SAME EFFECT AS IF THE ABORT WERE 1
1-----------------1--------------1 EXECUTED IN THE FUNCTION AT THAT POINT. 1
1 OUTPUT 1 o+g 1 WHEN THE QUAD IS USED TO THE LEFT OF THE REPLACEMENT 1
1 liTHE VALUE BEING ASSIGNED TO IT IS OUTPUT. AS USUAL 1
1 1 1 WITH ASSIGNMENT IT MAY BE IMBEDDED AS PART OF A LARGER 1
1 1 1 EXPRESSION. 1
-----------------1--------------1--1

CHARACTER INPUT 1 ~ 1 QUAD-PRIME ('~') IS A VARIABLE SHARED WITH THE APL 1
1 1 PROCESSOR, I.E. IT MAY BE LOCALIZED IN A DEFINED FUNCTION. 1
1 1 WHEN QUAD-PRIME IS USED WHERE A VALUE IS REQUIRED THE USER 1
1 1 DEPINED PROMPT IS OUTPUT AND THE KEYBOARD IS UNLOCKED. 1
liTHE USER THEN ENTERS ANY STRING. THE QUAD-PRIME IS THEN 1
1 1 REPLACED BY THE INPUT STRING PREFIXED WITH AS MANY BLANKS I
liAS THERE ARE CHARACTERS IN THE PROMPT. AN ESCAPE MAY BE 1
1 1 MADE FROM CHARACTER INPUT BY ENTERING. (0. ~dQK~EdC~. u. 1
1 1 ~d~K~EdC~. T) AS THE FIRST INPUT ENTERED. THIS HAS THE 1

-----------------1--------------1 SAME EFPECT AS ABORT POR EVALUATED INPUT. I
SET PROMPT 1 ~+~ 1 WHEN THE QUAD-PRIME APPEARS TO THE LEFT OF THE ASSIGNMENT I

liTHE VALUE ASSIGNED TO QUAD-PRIME IS THE PROMPT USED FOR 1
1 1 ALL FUTURE QUAD-PRIME INPUT REQUESTS UNTIL THE PROMPT 1
1 1 IS CHANGED. TlIE DEFAULT PROMPT IS THE EMPTY STRING(' I). 1

1 1 1 ONLY CHARACTER STRINGS MAY BE ASSIGNED TO QUAD-PRIME. 1
1-----------------1--------------1--1 1 IMPLJCIT OUTPUT 1 ~ 1 IF g IS A VALUE PRODUCING EXPRESSION AND THE LAST FUNCTJON 1
1 1 1 EXECUTED WAS NOT AN ASSIGNMENT PRIMITIVE THEN THE VAWE 1
1 1 1 PRODUCED BY THE EXPRESSION WILL BE OUTPUT. 1
1===1

2-16

SECTION 3

THE'APL/700 LANGUAGE

GENERAL.

The language of APL/700 is composed of an exceedingly simple syntax,
together with very powerful primitive functions that apply to data
structures. Data structures in APL/700 may range from simple elements
to arrays. The primitive functions address these data elements in a
parallel fashion, so that iteration is unnecessary. APL/700 has a
large number of functions which may transform values or structures, or
both. Furthermore, the user may define his own set of functions that
are syntactically equivalent to the primitive functions of the lan­
guage and that operate on the data structures in the same manner as
these primitive operators. APL/700 has a distinctive symbol set in­
stead of reserved words. The rules for composing expressions from
these symbols are also simple, thus the notation for APL/700 is very
concise and non-ambiguous. In the APL/700 language, the allocation of
memory to a variable is done at the moment of assignment interpretation
so that no previous declaration as to size, shape, or type is required.

LANGUAGE ELEMENTS.

APL/700 is used by entering statements or expressions which employ
primitive functions, primitive operators, or defined functions inter­
mixed with data objects. Primitive functions and operators are sup­
plied by the APL/700 system, whereas defined functions are created and
supplied by the user through the use of the function-definition process.
User-defined functions can be niladic, monadic, or dyadic (no arguments,
one argument, or two arguments, respectively) functions which do or do
not return explicit results.

This section describes the primitive functions and operators and their
applications. Section 4 provides a complete description of defined
functions and associated definition, editing, and diagnostic opera­
tions. Elementary information concerning language data elements and
order of expression execution is provided in the following paragraphs.

DATA ELEMENTS.

A data object or datum in APL/700 is defined in terms of its type,
shape, rank, and value. The ~ of a datum is either numeric (Boolean,
integer, or real), or character {any of the APL characters).

The shape of a datum is a vector with elements indicating the size of
(number of elements along) each dimension.

3-1

The rank of a datum is a (one element) vector indicating the number of
dimensions. Aliowable ranks are 0, 1, 2, ••••• (through) 15. Names
used to refer to rank structures are as follows:

Rank Name

0 Scalar
1 Vector
2 Matrix
Any (1-15) Array

Rank can be viewed in geometric terms: scalars as points, vectors as
line segments, matrices as rectangles, rank-3 objects as rectangular
solids, and so forth.

The general datum is an array characterized as follows:

a. Homogeneous (single type).

b. N-dimensional (rank N).

c. Rectangular. (All sub-arrays across a dimension have the
same shape.)

d. Dense. (All elements have values, as contrasted with sparse
in which some means is provided to indicate the coordinates
of significant values.)

Table 3-1 shows examples of the various forms of data elements.

Note that the display of negative numeric data uses the II-II symbol
to the apper left of the number. This symbol is distinct from the
subtract or negation symbol (-) in primitive fUnction applications.
For example:

o

Also note that an exponential or "scientific" representation is pro­
vided to reflect the significant digits and the power of 10 multiple.
For example:

-387E3 is equivalent to -387000
1.2E-3 is equivalent to 0.0012

Functions can be applied to arrays, subarrays, or individual elements
of an array. Indexing is used to specify operation on subarrays or
elements thereof. For example, in the following structure, element 13
has an index of [1;3J.

3-2

11
21

12
22

13
23

Index [;2J with an "empty" prefix, is used to specify the entire di­
mension of column 2 in the above example. That is, all rows of col­
umn 2 in the above example. That is, all rows of column 2 are speci­
fied to yield a vector result of "12 22". Refer to the Indices ref­
erence sheet for additional information.

ORDER OF EXECUTION.

When primitive functions or user value-returning functions are combined
with variables or constants to form a compound expression, it is im­
portant to make their order of execution clear. Because APL has so
many functions, an attempt to establish precedence in determining the
order of execution would result in unwarranted complexity. Instead,
the following three general rules apply:

a. A function is evaluated only when the values of the quantities
it requires for its evaluation (also referred to as arguments
or parameters) are known.

b'. The order of evaluating value producing functions in a com­
pound expression is right 1£ left.

c. Parenthesis are used in·the conventional mathematical way to
alter the order of execution.

Thus, a monadic function is evaluated when the value of its (right)
argument is determined. A dyadic function is evaluated when both of
its arguments (left and right) are determined. Because an argument
can itself be an e~pression or a defined function, t~e process of de­
termining the value of the expression or function is referred to as
elaboration.

The order of argument elaboration for a dyadic function is generally
unimportant; the order is usually right to left. An exception to this
is where the right argument is a simple variable name. If elaboration
of the left argument changes the value of the right argument, a sur­
prising result occurs.

ORDER OF EXECUTION EXAMPLES. In the following example formats, "V"
represents a value, "m" represents a monadic function, and "d" repre­
sents a dyadic function. Each elaboration of a value-producing func­
tion replaces the function and its argument(s) with a value. Each
elaboration of an expression within parenthesis replaces it with a
value.

VdVdV
Vd(VdV)

2 1

VdmV
Vd(mV)

2 1

!ExpressiOn)
Equivalent expression)
Order of elaboration)

!ExpressiOn)
Equivalent expression)
Order of elaboration)

3-3

(VdV)dV
1 2

(Expression)
(Order of elaboration)

m(m(VdV)dmV)dVdmV
8 6 4 5 '3 7 2 '1

(Expression)
(Order of elaboration)

Note that is is not necessary to enclose right arguments within paren­
thesis; however extra parenthesls do not have any adverse effect.
Some numerical representations to illustrate the order of execution are
as follows:

3-4

Expression

3x5+2
21

2
1-2-3

5x-2
10

5x 2
10

Equivalent

3 x (5+2)
21

2
1-(2-3)

5 x (-2)
10

5 x (-2)
10

Table 3-1

Examples of Data Object Forms

Numeric
'j

Character

! Value Rank Shape Structure Value Rank Shape
(Example) (Example)

1 0 (Empty) SCALAR A 0 (Empty)
, -_ .. - -- - ------ ------- ------ - -- 2.5 0 3 1 3 VECTOR Anll13$ 1 6

-------- '---

11 12 13 MATRIX TEXT 2 2 4
21 22 23 2 2 3 TYPE

- ----, -- - - .-- ----- -----.-----

111 112 3 3 3 2 ARRAY ABeD 4 2 3 1 4
121 122 I

1
131 132 . ! EFGH

!
211 212 I IJKL ,
221 222 : 1

231 232 I I MNOP
I

, ,
I

311 312 I I QRST
321 322 I il

I,

331 332 1 UVWX
! II 'I

\

--j---- - -

PRIMITIVE FUNCTIONS AND OPERATORS.

APL/700 provides a set of statement or expression forming functions
called standard or primitive because they are immediately available
to the user for application. That is, once primitive functions are
entered with specified arguments, a single result is obtained. These
primitive functions and operators are grouped into the following
application/function categories:

a. Assignment and selection functions.
b. Scalar monadic and dyadic functions.
c. Structure functions.
d. Mixed functions.
e. Set functions.
f. Compound operators.
g. Format functions.

This section contains a description of the form and application of
each category.

3-5

ASSIGNMENT
FUNCTIONS

•••••• -:=:.:======:=====:=-====================:====:====================================1
1

ASSIGNMENT PRIMITIVE FUNCTIONS 1
1

a •• =.a=:==:_.=====_.==================:===:=:==1

A VARIABLE IS A NAME WHOSE CURRENT MEANING IS NOT A LABEL. PUNCTION. OR GROUP. A
NAME MUST BEGIN WITH A LETTER(A-Z. 4-1. A. OR A) AND MAl BE FOLLOWED BI ANI
NUMBER OF ADDITIONAL LETTERS. DIGITS(O-9). OR UNDERSCORES(_). A VARIABLE IS GIVEN
A VALUE BI THE REPLACEMENT FUNCTION. THE REMAINING ASSIGNMENT PRIMITIVES REQUIRE
THE VARIABLE HAVE A VALUE. A VARIABLE MAl BE ASSIGNED ANI APL DATA STRUCTURE OF ANI
TIPE. INSERTION MAl ONLI INSERT VALUES OF THE SAME TIPE. WHEN THE REPLACEMENT
PRIMITIVE IS USED ANI PREVIOUS VALUE THE VARIABLE HAD IS PORGOTTEN AND THE NEW
VALUE IS ASSIGNED.

1
1
1
1
1
1
1
1
1
1

•••••••••••• :::==================:-:=====:======:=:=::===================================1
NAME 1 FORM 1 DEFINITION 1

···=================1=========1==1
REPLACBMENT 1 f+i I!:: MUST BE A VALID VARIABLE NAME. THE VALUE I BECOMES THE 1

1 1 VALUE ASSOCIATED WITH E. REPLACEMENT MAl BE IMBEDDED 1
1 IN AN EXPRESSION. THE RESULT RETURNED BI REPLACEMENT 1

IllS THE VALUE ASSIGNED TO E. I.E. F.:. 1
1-------------------- ---------1--1 1 INSERTION f[~J+, 1 E MUST BE A VARIABLE THAT HAS BEEN PREVIOUSLI ASSIGNED A 1
1 1 VALUE. ~ IS A SUBSCRIPT LIsr FOR E. THE SPECIFIED 1
1 1 ELEMENTS OF f ARE ASSIGNED THE CORRESPONDING VALUES 1
1 FROM I. IF , IS A SCALAR THEN ALL SPECIFIED ELEMENTS 1
1 ARE ASSIGNED THE SAME VALUE. THE RESULT OF INSERTION 1
1 IS THE VALUES INSERTED. I.E. ,. 1
1-------------------- --------- --I 1 MODIFI E.+i OPERATES IN THE SAME MANNER AS IF E+f., HAD BEEN 1
1 WRITTEN. MAl NOT BE USED WITH SISTEM VARIABLES • • IS ANY 1
1 SCALAR DYADIC FUNCTION. THE RESULT OF MODIFY IS 1
1 THE VALUE ASSIGNED TO f. I.E. f.F.:. 1
1-------------------- --------- ~---I 1 MODIFIED INSERTION 1 f[kJ.+F.: OPERA rES IN THE SAME MANNER AS IP !::[~J+E[kJ.F.: HAD BEEN 1
1 1 WRITTEN • • IS ANY SCALAR DIADIC FUNCTION. CAN SAVE 1
1 1 COMPUTER TIME IF THE SUBSCRIPT LIST ~ IS COMPLICATED. 1
liTHE RESULT OF MODIFIED INSERTION IS THE VALUES 1
1 1 INSERTED, I.E. l[~J.1 1
1===1

3-6

SELECTION
FUNCTION

1==1
1 1
1 SELECTION PRIMITIVE FUNCTION 1

I

1
==1

FORM: f[~l;~l; ••. ;~K]
WHERE:
f IS A VARIABLE, CONSTANT OR PARENTHESIZED VALUE PRODUCING
EXPRESSION.
~l IS ANY VALUE PRODUCING APL EXPRESSION OR MAY BE EMPTY.
K MUST BE EQUAL TO THE RANK OF f OR THERE MUST BE 1 LESS THAN THE
RANK OF l SEMICOLONS.

RESULT:
IF EACH ~l IS A SCALAR THEN THE RESULT IS A SCALAR- THE SELECTED
ELEMENT OF l. TO UNDERSTAND THE SELECTION PRIMITIVE CONSIDER A
FUNCTION E WHICH WHEN GIVEN TWO SCALARS FORMS AN ORDERED PAIR AND
GIVEN A SCALAR AND AN (N-1)-TUPLE FORMS AN ORDERED N-TUPLE. THEN
THE N-TUPLE MAY BE USED TO SPECIFY AN ELEMENT OF AN N DIMENSIONAL
ARRAY. APL DOES NOT REQUIRE ~I BE A SCALAR. CONSIDER E AS THE
FUNCTION IN AN OUTER PRODUCT, I.E. THE RESULT OF 4o .E R IS A
STRUCTURE CONTAINING ALL POSSIBLE ORDERED PAIRS WHOSE FIRST
ELEMENT IS FROM 4 AND WHOSE SECOND ELEMENT IS FROM R. THE OUTER
PRODUCT IS FORMED IN THE NORMAL WAY. LET EACH SEMICOLON IN THE LIST
BE REPLACED BY o.E AND FORM THE STRUCTURE OF ORDERED N-TUPLES. THEN
SELECTION TAKES THE STRUCTURE OF ORDERED N-TUPLES AND REPLACES EACH
N-TUPLE BY THE ELEMENT IT SELECTS FROM THE STRUCTURE IT IS INDEXING.
~I MAY BE EMPTY IN WHICH CASE THE SUBSCRIPT IS TAKEN TO BE \(pl)[I]
WHERE l IS THE STRUCTURE BEING INDEXED AND 1 IS THE NUMBER OF
THE DIMENSION FOR WHICH'THE SUBSCRIPT WAS OMITTED.
SELECTION MAY APPEAR ON THE LEFT OF THE REPLACEMENT. ONLY THE
SELECTED VALUES OF THE VARIABLE ARE REPLACED. THE STRUCTURE TO THE
RIGHT OF THE REPLACEMENT ARROW MUST HAVE THE SAME SHAPE AS THE
STRUCTURE OF ORDERED N-TUPLES OR MAY BE A SCALAR. THE SELECTED
ELEMENTS ARE ASSIGNED THE VALUES. IF THE SAME ELEMENT IS SELECTED
MORE THAN ONCE FOR REPLACEMENT THE RESULT IS UNDEFINED.

EXAMPLES:
LET 11 12 13 14

21 22 23 24 +~ M 1 2 3 4 5 +~ V
31 32 33 34

THEN 22 +~ M[2;2] 3 ++ V[3]
24 34 +~ M[2 3;4] 1 3 5 ++ V[1 3 5]
11 13 5 4 3 2 1 +~ V[5 4 3 2 1]
21 23 +~ M[;1 3) 1 2 3 4 5 ++ V[]
31 33

31 32 33 34 ++ M[3;]
14 14 1 2 2 1 4 +~ V[1 2 2 1 4]
24 24 +~ M[;4 4]
34 34

I
I
I
I
I
I

1==

3-7

W
I
00

1:=====:=====:============:====:===================:===:==========:==:==================1
I I <I> I I
I DYADIC SCALAR PRIMITIVE FUNCTIONS ,1 <I> Ii I I ft'ONADIC SCALAR PRIMITIVE FUNCTIONS 8 Ii I
I I 8 I I
=== ===1==============================:================:== ::=========1

DEFINITION OR EXAMPLE IIAME I flAM!': I DEFINITION OR EXAMPLE I
== ============ ===1============ 1==1
1.5 •• 2+3.5 5.5 •• 2+3.5 1.5 •• 2+-3.5 ADD + I IDENTITY I 0+1i •• +Ii 3.5 •• +3.5 -3.5 •• +-3.5 I

-- ------------ ---1------------1--1
1.5 •• 2-3.5 1.5 •• 3.5-2 5.5.· 2--3.5 SUBTRACT I - I NEGATE I O-Ii •• -Ii -3.5 •• -3.5 3.5 •• --3.5 I

-- ------------1---1------------1--1
5 •• 4xl.25 3 •• 6x-.5 0 •• Ox-.09 MULTIPLY I x I SIGNUM I SIGN OF Ii: 1 •• x7.2 0 •• xO -1 •• x-3 I

--1------------1---1------------ 1--
1.76 3.52t2 -5 •• 10t-2 4 •• 12t3 DIVIDE t I RECIPROCAL I ltfi •• tli .5 ••• 2 -2 •• '-.5

-- ------------ --- 1------------1--
1,1 RAISED TO THE POflER Ii: 9 •• 3*2 parvER * I E:XP()IlENTI.1L1 (2.71828 •••)*1i
I 1024 •• 2*10 2 •• 4*.5 -3 •• -27*('3) I I 4 •• *1.386294361... 20.0855 ••••• *3
1-- ------------ ---1------------1--
I (81i)tQ>d.+ LOGARITIlM OFli FORBAS8,1 •• ,18fi I LOGARITHM 18 I NATURAL I (2.17828 •••)81i !!.++*8!!..+<I>*!!.
I 1.87506 ••. +. 10<1>75 3 ++ 288 I I I LOGARITHM 1.386294361. .• ++ 84 -.693147 •.• ++ 8.5
1--1------------1---1------------ --

LARGER OF ,1 AND fi ++ Mfi I l'AXIIIU11 I r I CEILING SMALLEST IIiTEGER 1I0T LESS THAll f!. ++ rf!.
7 ++ 3r7 6.01.+ 6.01r6.01 -3 ++ -3r-7 I I I 4 ++ r3.141 -3 ++ r-3.141 101 ++ rl0l

--1------------1---1------------ --
SMALLER OF A AIID B ++ ALB I 11111114U/.1 I L FL()OR I LARGEST INTEGER IIOT GREATER THAN Ii ++ Lf!.
3 ++ 317 6.01 +: 6.01l6.01 7 ++ 3L-7 I 3 ++ L3.141 -4 ++ l-3.141 101 ++ Ll01

-- ------------1--- ------------ --
3 5 113
S •• 015
S ++ 141s
.14 ++ 113.14

1i-,1xllit,1 AlB FOR ,1.0
f!. ++ dl~ FOR ,1=0

4 ++

RESIDUl? I !1Acr1ITUDE ABSOLUTE VALUE OF Ii ++ lif
9 . 5 ++ I 9 . !} 9 . S ++ I - 9 . S a ++ 10

I
I

--1
6 ++ 2!4 (!f!.)t(!4)x!fi-4 FOR ,1sf!. CO}.1BI NAT ION FACTORIAl, li x !f!.-l ++ !f!. FOR f!.~1. f!. AN INTEGER;

GAMMA(Ii+1) +. !f!. FOR liON-INTEGER f!.
1 ++!O I

o ++ 9!3 1 ++ s!s a d!fi FOR 4>f!.
10 ++ 3!-3 4.9346 ... +~ 1.1!4.5

I
I
I 1 I

6 ++ !3
39915800 ++ !11 2.68344 .•. ++ !2.3
3.3283 ... ++ !-2.3

--1------------1---1------------ --
(1-li*2)*.S 001i (1-li*2)*.S Ooli I CIRCULAR 1 a I PI TIMES li x3 .14159 ... Of!. 6.283185 ... ++ 02

ARCSIIi fi lafi SIn fi lofi I 1 I
ARCCOS Ii 201i COS li 2 0 li 1 I I
ARCTAN Ii 3 0 li TAli Ii 3 0 li I I 1

1+li*2)*.5 40fi (1+B*2)*.5 4 0 li I I I
ARCSINli Ii 5 of!. -Slim B 50 li I I I
ARCCOSli li 501i COSli ~ 50li 1 1 I
ARCTANli B 70B TANH B 70B 1 1 I I

-----------:-------:------------:------:--------1------------1---1------------1--
0<1>0 0<1>1 1<1>0 1<1>1 BOOLEAN DOlJAII! (0 OR 1) I I - /lOT I a ++ -1 1 ++ -0 BOOLEAN DOMAIN (0 OR 1)

a 0 a 1 1 AND 1 A I

a 1 OR I v
1 I IIAND I ~
1 a a 0 I NOR I ..

--1------------1--- ------------ --
1 0<1>0 1<1>0 0"1 1<1>1 3<1>4 3<1>3 4 .. 3 1 I I
I a 0 1 a 1 a 0 I LE:SS I < I

1 0 1 INOT GREATER 1 I
o 0 1 E:QUAL I I
1 1 1 NOT LESS I ~ 1

o 0 1 GREAT>:R I > I

I

o 1 1 0 1 0 1 1 NOT EQUAl, 1 • I 1 I
===1

DYADIC AND
MONADIC FUNCTIONS
(cont)

===

EXTENSION OF DYADIC SCALAR PRIMITIVE FUNCTIONS AND MONADIC SCALAR PRIMITIVE FUNCTIONS TO ARRAYS

===

'.' IS ANY MONADIC SCALAR PRIMITIVE FUNCTION. '.' IS ANY DYADIC SCALAR PRIMITIVE FUNCTION • . ~
THE RESULT OF A MONADIC SCALAR PRIMITIVE FUNCTION APPLIED TO AN ARRAY IS AN ARRAY OF THE SAME
SHAPE. ELEMENTS OF THE RESULT ARE THE RESULT OF APPLYING '.' TO THE CORRESPONDING ELEMENTS OF ~.

IF d AND ~ ARE ARRAYS OF THE SAME SHAPE THEN AN ELEMENT OF THE RESULT IS THE RESULT OF APPLYING
'.' TO THE CORRESPONDING ELEMENTS IN 4 AND ~. THE RESULT HAS THE SAME SHAPE AS 4. IF EITHER 4
OR B IS AN ARRAY CONTAINING ONLY ONE ELEMENT OR IS A SCALAR THEN AN ELEMENT OF THE RESULT IS
THE-RESULT OF APPLYING '.' BETWEEN THE ONE ELEMENT AND THE CORRESPONDING ELEMENT OF THE OTHER
ARRAY. THE RESULT HAS THE SAME SHAPE AS THE ARRA¥ NOT CONTAINING THE ONE ELEMENT. IF BOTH ARRAYS
CONTAIN ONE ELEMENT THEN THE RESULT IS A ONE ELEMENT ARRAY WITH RANK EQUAL TO THE LARGER OF THE
RANKS OF 4 AND ~.

4·[KJ~

4 AND ~ ARE ARRAYS WITH ONE OF RANK ONE GREATER THAN THE OTHER. THE SHAPES OF 4 AND ~ MUST BE THE
SAME IF THE K TH DIMENSION OF THE ONE OF "GREATER RANK IS ELIMINATED. THE RESULT HAS THE SAME
SHAPE AS THE ARRAY OF LARGER RANK. ELEMENTS OF THE RESULT ARE FORMED BY APPLYING '.' BETWEEN THE
CORRESPONDING ELEMENT OF THE ARRAY OF LARGER RANK AND THE ELEMENT OF THE ARRAY OF LESSER RANK
WITH THE SAME INDICES EXCEPT FOR THE K TH WHICH IS NOT USED. THE SAME ELEMENT OF THE ARRAY OF
LESSER RANK IS APPLIED TO ALL ELEMENTS OF A VECTOR ON THE K TH DIMENSION OF THE ARRAY OF LARGER
RANK. THE '[KJ' MAY BE ELIDED IF K IS EQUAL TO THE RANK OF THE LARGER ARRAY (IN ORIGIN 1).

I
===1

3-9

Iv.)
I
I-'
o 1·······························==========================::===:=:=::=:==::::::::=:=====:=:=====:=====:=:=======================:

I STRUCTURE PRrMITIVp. FUNCTIONS I
I I
1·····=====··==========······==============================::==:=:===:::::::::::===:==::=:::===:::==::==:=::====================1
I THE RIGHT ARGUMENT OF ANY STRUCTURE PRIMITIVE FUNCTIONS MAY HE A THE FOLLOWING VARIABLES ARE USED IN THE EXAMPLES, I
I CHARACTER STRUCTURE. SINCE CATENATE AND LAMINATF. JOIN TWO STRUCTURES. 111 112 113 114 I
I IF THP. RIGHT ARGUMENT IS A CHARACTER STRUCTURE THE LEFT ARGUMENT MUST 1 2 3 4 5 ++ V 121 122 123 124 I
I ALSO BE A CHARACTER STRUCTURE. ALL OTHER STRUCTURE PRIMITIVF. FUNCTIONS 131 132 133 134 I
I OPERATE IN THP. SAME MANNER ON CHARACTER STRUCTURP.S AS ON NUMERIC ++ T I
I STRUCTURES. FILL FOR TAKE AND EXPAND IS BLANKS IF THE RIGHT ARGUMENT 11 12 13 14 211 212 213 214 I
I IS A CHARACTER STRUCTURE. 21 22 23 24 ++ M 221 222 223 224 I
I 31 32 33 34 231 232 233 234 I
1···=== ••••••••••• 1 I NAME 1 FORM 1 DEFINITION 1 EXAMPLES 1
1··········1====·===1===============·=========================·==·=·==============1===================================.= ••••••••
I RESHAPE 1 4p~ I THE STRUCTURE H IS MADE INTO THE SHAPE SPECIFIED BY 4. I 5 5 5 ++ 3p5
I I I IF ~ HAS LESS ELEMENTS THAN ARE NEEDED THE ELEMENTS OF ~ 1.1 ++ lpV
I I I ARE REUSED UNTIL ENOUGH ELEMENTS ARE OBTAINED. IF ~ HAS MOREl 2.5 ++ (,0)p2.5 8.6 3.1
I I I ELEMENTS THAN ARE NEEDED THE EXCESS ARE IGNORED. I 1 2
I I I .4 ++ p4p~ I 3 4 ++ 3 2p V
I I I I 5 1

1----------1--------1---1---1 RAVEL 1 .~ 1 THE STRUCTURE ~ IS RESliAPED INTO A VECTOR. 1 11 12 13 14 21 22 23 24 31 32 33 34 ++ .M 1 I 1 .~ ++ (x/p~)p~ 1 lp8.6 ++ .8.6

1----------1--------1---1---
I CATENATE 1 4.~ I THE STRUCTURES 4 AND ~ AR~ JOINED TOGETHER 1 1 2 3 4 5 1 2 3 4 5 ++ V.V
1 liTO FORM A NEW STRUCTURE. THE STRUCTURES ARF. 1 7 1 2 3 4 5 ++ 7. V
I I 1 JOINED ALONG THF. LAST DIMP.NSION. A SCALAR IS 1 7 11 12 13 14
1 1 1 EXTP.NDED TO FORM A PLANP. ACROSS THF. DIMENSION IT IS 1 8 21 22 23 24 ++ 7 8 9.M
1 1 1 BEING JOINED TO. 1 9 21 22 23 24
I 1 1 1 11 12 13 14 1
1 1 1 1 21 22 23 24 1 ++ M.l
1 1 1 1 31 32 33 34 1 1
1 1--------1---1---1 1 1 4.[K]~ I LIKE 4.~ BUT THE STRUCTURF.S ARE JOINED ON TliE 1 11 12 13 14 1 1 11K TH DIMENSION. 1 21 22 23 24 ++ M.[l]7 8 9 10 1
1 1 1 I 31 32 33 34 1
1 1 1 1 7 8 9 10 1
1----------1--------1---1---1

LAMINATE 1 4.[K]~ I THE STRUCTURES 4 AND ~ ARE JOINED ALONG A NF.W 1 1 100 I
1 DIMENSION. K MUST PF. NON-INTF.GRAL AND BETWEE~ THF. NUMBERS 1 2 200 ++ 1 3.[1.5]100 200 300 1
I OF THE DIMENSIONS BETWEEN WHICH THE NEW DIMENSION IS 1 3 300 I
I FORMED. A SCALAR IS EXTENDED TO THF. SHAPE OF THE OTliER 1 1 2 3 4 5 I
1 OBJECT. 1 8 8 8 8 8 ++ V.[.476]8 I

---------- --------1---1---
REVERSE ~~ 1 ~ f~~rQH' THE ORDER OF THE ELEMENTS IN ~ IS REVERSED. 1 5 4 3 2 1 ++ ~V

1 ~ 4HH4l' THE VECTORS ON THE LAST DIMENSION OF ~ 1 14 13 12 11
I ARE REVERSED. 1 24 23 22 21 ++ ~M
1 1 34 33 32 31
1 ~ ~~4~4a: NO ACTION OCCURS WHEN ~ IS A SCALAR. 1 1.5 ++ ~1.5

--------1---1---
~[K]~ 1 SAME AS ~~ BUT VECTORS ON THE K TH DIMENSION 31 32 33 34

1 ARE REVERSED. 21 22 23 24 ++ ,[l]M
1 I 11 12 13 14

1--------1--- ---
1 9~ 1 9~ ++ ~[1]~ 31 32 33 34
1 1 REVERSAL ALONG THE FIRST DIMENSION. 21 22 23 24 ++ 93 3pM
1 1 11 12 13 14 I
1--------1--- ---1
1 9[K]~ 1 9[K]~ ++ ~[l+(pp~)-K]~ 14 13 12 11 1

1 1 1 REVERSAL ALONG THE K TH FROM LAST DIMENSION. 24 23 22 21 ++ 9[1]M I

1 1 1 34 33 32 31 :
1----------1--------1--- ---

1----------1--------1---1---1
1 ROTATE 1 4~~ 1 ~ IlkXQH: THE ELEMENTS OF THE VECTOR ARE ROTATED TO 1 3 4 5 1 2 ++ 2~V 1
1 liTHE LEFT CYCLICALLY (p~) 14 POSITIONS. 1 4 5 1 2 3 ++ -2~V 1
1 1 1 ~ 4HH41: VECTORS ON THE LAST DIMENSION OF ~ 1 14 11 12 13 1
1 1 1 ARE ROTATED BY THE AMOUNT SPECIFIED BY THE 21 22 23 24 ++ 1 0 l~M 1
1 1 1 CORRESPONDING ELEMENT IN 4. 4 MUST BE AN ARRAY 32 33 34 31 1
1 1 1 OF RANK ONE LESS THAN THE RANK OF ~ AND SHAPE 12 13 14 11 1
1 1 1 SAME AS ~ LESS THE LAST ELEMENT. 4 MAY BE A SCALAR IN 22 23 24 21 ++ 5~M 1
1 1 1 WHICH CASE IT SPECIFIES THE ROTATION FOR ALL VECTORS. 32 33 34 31 1
1 1 1 ~ ~k4~4H: NO OPERATION IS PERFORMED IF ~ IS A SCALAR. 5 ++ -8~5 1
1 1--------1--- ---1
1 1 4~[K]~ 1 LIKE 4~~ BUT VECTORS ON THE K TH DIMENSION ARE 31 12 23 34 1
1 1 1 ROTATED. 11 22 33 14 ++ -4 -3 -2 -l~[l]M 1
1 1 1 21 32 13 24

1--------1--- ---
1 4e~ 1 4e~ ++ 4~[1]~ 21 22 23 24
1 1 ROTATION ON THE FIRST DIMENSION. 1 31 32 33 34 ++ 1eM
1 1 11 12 13 14
1--------1--- ---
1 4e[K]~ 1 4e[K]~ ++ 4~[1+(pp~)-K]~ 12 13 14 11
1 1 ROTATION ON THE K TH FROM LAST DIMENSION. 23 24 21 22 ++ 1 2 -le[l]M
1 1 34 31 32 33

----------1--------1--- ---
TRANSPOSE 1 ~~ 1 ~ ~k4~4B: THE RESULT IS ~ AS A 1 • 1 MATRIX. 1 lp-6.3 ++ _-6.3

1 1 ~ IlkXQH: THE RESULT IS ~ AS A COLUMN VECTOR(A -1
1 1 p~ • 1 MATRIX). 0 _-1 0 1

1 1
1 ~ 4HH4l: THE RESULT IS ~ WITH THE DIMENSIONS 11 21 31
1 REVERSED. 12 22 32 ++ ~M

1 1 (.\Pp~)~~ ++ ~~ FOR 2Spp~ 13 23 33 1
1 1 14 24 34 1
1---------- --------1--- ---1
1 PERMUTE 4~~ 1 THE DIMENSIONS OF ~ ARE PERMUTED AS SPECIFIED 11 21 31
1 1 BY 4. THE I TH DIMENSION OF ~ IS THE 4[I] DIMENSION 12 22 32 ++ 2 l~M ++ ~M
1 1 OF THE RESULT. SEVERAL DIMENSIONS OF ~ MAY BE MAPPED 13 23 33
1 1 INTO A SINGLE DIMENSION OF THE RESULT TO OBTAIN A 14 24 34
1 1 DIAGONAL CROSS SECTION OF ~. IF 4 IS THE SAME AS 11 22 33 ++ 1 l~M
1 1 \Pp~ THEN THE RESULT WILL BE ~. 111 121 131 ++ 1 2 l_T
1 1 212 222 232
1 1 1 1 1 2 3 4 5 ++ l~V
1----------1--------1---1---
1 COMPRESS 1 4/~ 1 ~ IlkXQH: 4 MUST BE A LOGICAL VECTOR WHOSE LENGTH IS 1 1 2 4 ++ 1 1 0 1 O/V
1 1 1 IS THE SAME AS THE LENGTH OF ~. THE RESULT HAS LENGTH 1 2 3 5 ++ 0 1 1 0 l/V
1 1 1 +/4. THE ELEMENTS OF THE RESULT ARE TAKEN FROM ~ EVERYWHERE 1
1 1 1 A 1 APPEARS IN 4. 4 MAY BE A SCALAR IN WHICH CASE THE RESULT 1 1 2 3 4 5 ++ l/V
1 1 1 IS ~ IF 4 IS 1 AND THE EMPTI VECTOR IF 4 IS o. 1 \0 ++ o/V
1 1 1 ~ 4HH41' VECTORS ON THE LAST DIMENSION OF ~ ARE COMPRESSED 1 12 13
1 1 1 BI 4. 1 22 23 ++ 0 1 1 O/M
1 1 1 1 32 33
1 1 1 ~ ~k~4H: ~ IS EXTENDED TO THE LENGTH OF THE VECTOR 4 AND 1 5 5 5 5 ++ 1 0 1 1 0 0 1/5
1 1 1 THEN COMPRESSED BY 4. 1 -4.5 -4.5 ++ 0 1 0 0 1 0 0 Or4.5 1
1 I--------I------------------~--1---1
1 1 4/[K]~ 1 LIKE 4/~ BUT VECTORS ON THE K TH DIMENSION 1 11 12 13 14 1
1 1 1 ARE COMPRESSED. 1 31 32 33 34 ++ 1 0 l/[l]M 1
1 1--------1---1---1
1 1 4f~ 1 4f~ ++ 4/[1]~ 1 21 22 23 24 1
1 1 1 COMPRESS ON THE FIRST DIMENSION. 1 31 32 33 34 ++ 0 1 lfM 1
1 1--------1---1---1
1 1 4f[K]~ 1 4f(K]~ ++ 4/(l+(pp~)-K]~ 1 11 12 1
1 1 1 COMPRESS ON THE K TH FROM LAST DIMENSION. 1 21 22 ++ 1 1 0 of[l]M 1
1 1 1 1 31 32 1
1----------1--------1---1---1

1----------1--------1---1---1
I EXPAND I 4\1 I I II'faB: 4 NUST BE A LOGICAL VECTOR SUCH THAT +/4 IS THE I 0 1 2 0 3 ~ 5 0 ++ 0 1 1 0 1 1 1 O\V I
1 I I SANE AS THE LENGTH OF I. THE RESULT HAS THE SANE LENGTH AS I I
I 1 1 4 flHERE SUCCESSIVE ELENEN'lS OF lI. ARE USI!:D flHERE EACH 1 I 1
1 1 I APPEARS IN 4 AND FILL IS INSERTED flHERE EACH 0 APPEARS. I 1
I 1 I I 4dd4Z: VECTORS ON THE LAST DINENSION OF 4 ARE I 11 0 12 13 0 1~ I
I I I EXPANDED B1 4. I 21 0 22 23 0 2~ 1 0 1 1 0 l\N I
I I I 31 0 32 33 0 311 I
I 1 I ~"1.4BI I IS EXTENDED TO LENG'lH +/4 AND THEN 1 I
1 I EXPANDED B1 4. I 0 0 0 0 7 7 7 0 0 0 0 0 1 1 1 0\7 1
I --------1---1---1 1 4\[Kll 1 LIKE 4\1 BUT VECTORS ON THE K TH DIMENSION I 11 12 13 1~ I
I I ARE EXPANDED. I 0 0 0 0 1
1 I I 21 22 23 2~ ++ 1 0 1 0 l\[l)N 1
I I I 0 0 0 0 I
I I I 31 32 33 3~ I
I --------1---1---1
I 4~1 I 4~1 ++ 4\[111 I 0 0 0 0 I
I I EXPANSION ON THE FIRST DIMENSION. I 11 12 13 1~ I
I I I 21 22 23 2~ ++ 0 1 1 0 l~N I
I I I 0 0 0 0 1
I I I 31 32 33 3~ I
I --------1---1---1
I 4~[Kll I 4~[Kll ++ 4\[1+(ppl)-Kll I 0 11 0 12 0 13 1~ 1
I I EXPANSION ON THE K TH FROM LAS'l DIMENSION. I 0 21 0 22 0 23 211 ++ 0 1 0 1 0 1 l~[l)N
I I 1 I 0 31 0 32 0 33 34

1----------1--------1---1---I TAKE I 4tl 1 I 1"faB: 'lHE RESULT IS THE FIRST(LAST) 14 ELEMENTS OF I 1 2 3 ++ 3tV
I 1 I I IF 4 IS POSITIVE(NEGATIVE). IF 14 IS GREATER I 3 4 5 -3tV
1 1 1 THAN THE LENGTH OF 1 THEN FILL IS ADDED AT THE I 1 2 3 4 5 0 0 ++ 7tV
I 1 I END(BEGINNING) OF I. 1 0 0 1 2 3 4 5 +. -7tV
I 1 1 1 4BB4Z: 4 MUST BE A VECTOR flHOSE LENGTH IS EQUAL TO THE I 11 12 13 1 1 1 RANK OF I. THE RESUL'l OF TAKE IS A CORNER OF THE ARRAY. I 21 22 23 .+ 3 3tM
1 1 1 I 31 32 33
1 I 1 100000
1 1 1 100000
1 I 1 I 11 12 13 1~ 0 5tM
1 1 1 I 21 22 23 24 0
1 I 1 I 31 32 33 34 0
1 1 1 1 ~'41.4B: I flILL BE MADE INTO A ONE ELI!:MENT OBJECT filTH RANK I 0 3
1 liTHE SANE AS THE LENGTH OF 4 THEN 'lHE TAKE IS DONE ON IT. I 0 0 ++ 2 2t-3 1
1----------1--------1---1---1 1 DROP 1 4+1 1 1 1"Xad:THE RESULT IS 1 filTH THE FIRST(LAST) 14 I 4 5 ++ 3+V 1
I 1 I ELEMENTS OF 1 REMOVED IF 4 IS POSITIVE(NEGA'lIVE). I 1 2 ++ -3+V I
I I I IF 14 IS GREATER OR EQUAL TO THE LENGTH OF I THE I 10 ++ 7+V 1
I I 1 RESULT IS AN EMPT1 VECTOR. I 10 -7+V I
I I 1 1 4BB4Z: 4 MUST BE A VECTOR flHOSE LENGTH IS EQUAL TO THE I 11 12 I
1 1 1 RANK OF I. 'lHE RESUL'l OF DROP IS A CORNER OF THE ARRAY. I 21 22 ++ 0 2+M I
I I 1 I 31 32 I
I I I 1 ~'41.4B: 1 flILL BE MADE INTO A ONI!: ELEMEN'l OBJECT filTH RANK I 1 1 lp8 ~+ 0 0 0+8 I
I I I THE SANE AS 'lHE LENGTH OF 4 THI!:N 'lHE DROP IS DONE ON IT. I 0 1 0 lp 1.75 ++ 5 0 1 0+-1.75 1
1==-== ===================================~================== =============-======1

J== •• ===~===========================2================= ======::==========:=::==::==:=:=::============::::==:======::=========:==:}

I MIXED PRIMITIVE FUNCTIONS I
1=== =================================~==================== ===-================1 I NAIIE I FORM 1 DEFINITION 1 EXAMPLE I
1====-==========1======1==1============================:==:_.:===:==
1 SHAPE 1 p~ 1 SHAPE PRODUCES A VECTOR WHICH IS THE SHAPE OF THE 1 ,5 ++ p-2 -1 0 1 2
1 1 1 ARGUMENT. 1 2 3 .. ++ p2 3 IIp,2''
1 1 1,4++p4p~ I,O++p'A'
1---------------1------1--1---
1 INDICES I'~ 1 ~ IIUST BE A NON-NEGATIVE INTEGER SCALAR. THE RESULT 1 1 2 3 .. 5 ++ ,5
1 1 1 IS A VECTOR OF LENGTH ~ OF THE FIRST ~ INTEGERS 1 ,1 ++ ,1
1 I 1 STARTING AT THE INDEX ORIGIN. 1 OpO ++ ,0
1 1 1 ,0 ++ THE EMPTI NUMERIC VECTOR. ,N ++ (,N-1),N IN ORIGIN 1.1
1--------------- ------1--1---
1 INDEX 4'~ I 4 MUST BE A VECTOR. THE RESULT IS A STRUCTURE WITH THE 1 3 ++ .. 7 10 22,10
1 1 SAllE SHAPE AS ~. EACH ELEMENT OF THE RESULT IS THE 1 2 1 3 ++ 'ABCABCDE','ABAC'

1 INDEX IN 4 OF THE THE FIRST OCCURENCE OF THE 1
1 CORRESPONDING ELEMENT IN ~. IF THE ELEMENT DOES NOT OCCUR I II 2 .. 1 ++ 1 0 1\10 0 16 1
I IN 4 THE RESULT IS 1+p4(IN ORIGIN 1, p4 IN ORIGIN 0). II + 'ABC',l 2 3

--------------- ------1-- ---QUOTE .~ 1 THE RESULT IS A CHARACTER STRUCTURE WITH THE SAME
1 SHAPE AS ~ EXCEPT THE LAST DIMENSION IS EXPANDED.
1 THE RESULT IS A CHARACTER REPRESENTATION OF ~.

'1 2 3' ++ .1 2 3
'APL' ++ .'APL'

--------------- ------1-- ---
PORMAT 4.~ 1 SEE FORMAT CHART.

--------------- ------1-- ---
EXECUTE *~ 1 ~ MUST BE A CHARACTER STRING WHICH IS A VALID APL EXPRESSION.

I THE RESULT OF EXECUTE IS THE RESULT PRODUCED FROM THE
1 EVALUATION OF THE EXPRESSION IF IT PRODUCES A RESULT. ,
1 IF THE EXPRESSION DOES NOT PRODUCE A RESULT EXECUTE MUST

1 I BE THE LEFTMOST OPERATOR IN THE STATEMENT.

4 + '2+2'
1 2 3 .. 5 ++ *',5'
'APL' + • • "'APL'tt
- -1 0 1 2 ++ *.-2 1 0 1 2

---------------1------1--- ---
REPRESENTATION 1 4T~ 1 ~ ~'4~4B: IF 4 IS A VECTOR THE RESULT IS A VECTOR THE 1 1 0 1 ++ 2 2 2T5

1 1 SAME LENGTH AS 4. THE RESULT CONTAINS THE REPRESENTATION OF 1 0
1 1 ~ IN THE NUMBER SYSTEM 4. IF 4 IS AN ARRAY THEN THE RESULT 1 1
IllS THE REPRESENTATION OF ~ IN THE NUMBER SYSTEMS 1 0
1 1 SPECIFIED Bl VECTORS ON THE FIRST DIMENSION OF 4. 1 1
1 1 ~ 4BHdl: THE RESULT WILL BE A STRUCTURE WITH SHAPE (p4),p~ 1 1
1 I WHERE VECTORS ON THE FIRST DIMENSION OF THE RESULT ARE THE 1 0
1 1 REPRESENTATION OF A SCALAR IN ~ IN THE NUMBER SYSTEM 1 0

26 23 ++ 2 .. 60 60T1583
o
3 ++(3 2p" S)T17
2
1
1
1

o 0
1 0 ++ 2 2 2T" 7 3 0
1 0

1 1 SPECIFIED Bl A VECTOR ON THE FIRST DIMENSION OF d. 1
I 1 PUNCTIONS IN A MANNER SIMILAR TO OUTER PRODUCT. I 1

---------------1------1--1---1
BASE-VALUE 1 41~ 1 ~ r~~rQB: IF 4 IS A VECTOR THEN THE-RESULT IS A SCALAR 1 5 ++ 2 2 211 0 1 1

1 1 WHICH IS THE BASE 10 VALUE OF THE VECTOR IN THE NUMBER SISTEM 1583 ++ 24 60 6010 26 23 1
1 I SPECIFIED BY 4. 4 MAY BE A SCALAR IN WHICH CASE IT IS 15 2U 1 1 1 1
1 1 EXTENDED TO THE LENGTH OF ~. IF d IS AN ARRAY THE RESULT HAS 22 30 38 ++ (3 2p5 5 7 7 9 9)1" 2 I
1 1 SHAPE -1+p4 AND CONTAINS THE REPRESENTATION IN BASE 10 I
1 1 OF ~ IN THE NUMBER SYSTEM SPECIFIED Bl A VECTOR ON THE LAST I

: I ~I~~~~i~NT~; ~ESULT IS AN ARRAY WITH SHAPE (-1+p4).1+p~. .. 6 ++ 2 2 213 2pl 1 0 1 0 0 :
liTHE RESULT IS SCALARS WHICH ARE THE BASE 10 REPRESENTATION 1
1 1 OF VECTORS ON THE FIRST DIMENSION OF ~ IN THE NUMBER SISTEMS 1
1 1 SPECIFIED Bl VECTORS ON THE LAST DIMENSION OF 4. 1

1 1 1 FUNCTIONS IN A MANNER SIMILAR TO INNER PRODUCT. I
1---------------1------1-- ---1

1---------------1------1--1---1
1 ARRAY-INVERSE 1 !illl IllMUSTBEAMATRIXWITHNO 13.5-1.50.5
1 1 1 IfORE COLUMNS THAN ROWS. THE RESULT IS THE INVERSE OR 1 -4 2 1 ++ \ll3 3p (4p 1),2 3 -2 -1 2
1 1 1 GENERALIZED INVERSE OF THE MATRIX IF IT EXISTS. 1 1.5 0.5 0.5
1---------------1------1--1---
1 ARRAY-QUOTIENT 1 4\ll1l 1 11 MUST BE A MATRIX WITH NO 1 -1 1 ++ 0 -1\ll2 2p1 1 2
1 1 1 MORE COLUMNS THAN ROWS. 4 IS EITHER A VECTOR WITH LENGTH 1
1 1 1 EQUAL TO THE NUMBER OF ROWS IN 11 OR A MATRIX WITH THE SAME 1
1 1 1 NUMBER OF ROWS AS 11. THE RESULT IS THE SOLUTION TO THE SYSTEM I
1 1 1 OF LINEAR EQUATIONS WITH COEFFICIENT MATRIX 11 AND RIGHT HAND I
1 1 1 SIDE(S) 4 IF IT EXISTS. WHEN 11 HAS MORE ROWS THAN COLUMNS 1
1 liTHE RESULT IS A LEAST SQUARES FIT FOR THE SYSTEM. 1
1---------------1------1-- 1---
1 GRADE-UP 1 411 1 11 MUST BE A NUIIERIC VECTOR. THE RESULT IS A SET OF INDICES 1 2 5 4 1 3 ++ 48 0 9 5 0
I 1 1 THAT CAN BE USED TO ORDER 11 IN ASCENDING ORDER. 1
1---------------1------1--1---1
1 GRADE-DOWN 1 '11 1 11 MUST BE A NUMERIC VECTOR. THE RESULT IS A SET OF INDICES I 3 1 4 2 5 ++ '8 0 9 5 0 1
1 1 1 THAT CAN BE USED TO ORDER 11 IN DESCENDING ORDER. 1 1
1---------------1------1--1---1
1 ROLL 1 ?11 1 11 MUST CONTAIN POSITIVE INTEGERS. THE RESULT IS A STRUCTURE 1 1 1 ++ ?1 1 1
1 1 1 LIKE 11 WITH EACH ELEPENT A RANDOM CHOICE FROM 1 1
1 II,S WHERE S IS THE CORRESPONDING ELEMENT OF 11. 1 1
1---------------1------1--1---1
1 DEAL 1 4?11 1 4 AND 11 MUST BE NOli-NEGATIVE INTEGERS WITH 4 NOT GREATER 1 ,1 1?1 1
1 1 1 THAN 11. THE RESULT IS A VECTOR OF LENGTH 4 THE ELEMENTS 1 ,0 ++ 0?10 1
1 1 1 OF THE RESULT ARE A RANDOM SELECTION WITHOUT REPLACEMENT 1 1
1 1 1 PROM '11. 1 1
1===============1======1==1===1

SET FUNCTIONS

••••••••••••••••••••••••••••••••••• == •• === ••••••• =: ••••••• ==.= •••••••••• = •••••

•••••••••••••• •••
NAII8 • •••••••••••••• •••

118I1B811SIIIP •

UNION u

IN'r8RSEC'rION "

8ZC'LUSION

SUBSEr c:

SUP8RS8!l !)

•••••••••••••••••••••••••••••• ==_: ••••••••••••• =:=a=:=._===

•• = ••
4cl ++ y/4 •••• 1 1 0 1 1 ++ 1 2 3 1c1 3 5
1 ++ 10c10 20 30 0 ++ 10c40 50 60
o 1 1 ++ "Ol'c'COUN'rBl' 0 1 0 0 0 0 1 ++ 'COUN'rRl'c'BOl'

4ul ++ A r.rC!lOR OF DIsrINCr ELEN8NrS PROII 4 OR I
1 2 3 4 5 6 ++ 1 2 3u4 5 6 1 2 3 4 5 ++ 1 2 3 4u2 3 4 5
'BOICUN'rR' ++ 'BOl'u'COUNrRl' 1 2 3 ++ 1 1 2u1 3 3
'COUN'rRIB' ++ 'COUNrRl'u'BOl' 'IIANG8r' ++ 'NANAGEIIENr'u"

4"1 ++ A r.rC'rOR OP DIS'rINcr ELEIIENrs IN BorB 4 AND I
2 3 ++ 1 2 3n2 3 4 'BAll' ++ 'BAllRl'n'IIAll'rBA'
'APL' ++ 'APPLI8D'n'PLAN'

--------------------_ .. ------------------------------------
4-1 ++ A v.rC'rOR ,OF DIsrINcr 8L8118Nrs IT 4 Bur Nor IN I
.1 ++ 1 2 3-2 3 4 .'B' ++ 'BOl'-'COUNrBl'
'rNC' ++ 'PLArONIC'-' PAOLI' 'IIISP' ++ 'IIISSISSIPPI'-' ,

4c:1 ++ A/.4cl 1 ++ 1 2c:4 3 2 1
o ++ 1 2c:2 3 4 5 1 ++ 'PAOLI'c:'PLArONIC'

--.----------------
4:)1 ++ A/.lc4 1 ++ 2 2 3 3 4 4:)2 3 4
o ++ 2 2 4 4 6 6:)2 3 4 0 ++ 'PAOLI':)'PLArONIC' •••••••••••••••••••••••••••••••••••• ==.= ••••••••••••••••••••••••••••••••••••••

3-15

1===
I
1 COMPOUND OPERATORS
1

1===
1 NAME I FORM I DEFINITION 1 EXAMPLES
1==============1=========1=============,===1====================================
I REDUCTION I ./~ I ~ YEQXQE: SCALAR RESULT IS FORMED BY EXECUTING THE APL I 6 ++ +/1 2 3
1 I I EXPRESSION FORMED BY PLACING. BETWEEN THE ELEMENTS OF THE I 1.4 ++ -/2.3 5.6 4.7
I I I VECTOR. I
I I I IF ~ IS AN EMPTY VECTOR THE RESULT IS THE IDENTITY ELEMENT FOR 1"1 ++ X/10 4.31 ••• E68 r/10
I I I • IF IT EXISTS. I
I I I ~ dEEdI: RESULT IS FORMED BY REDUCING VECTORS ON THE LAST I 1.5 4.8 7.875 ++ 0/3 3P19
I I I DIMENSION OF THE ARRAY. THE RESULT HAS RANK 1 LESS THAN THE I
I I I RANK OF THE ARGUMENT. THE SHAPE OF THE RESULT IS THE SAME AS THEI
I I I SHAPE OF THE ARGUMENT LESS THE LAST DIMENSION. I
1 I I ~ ~Qd~4E: THE RESULT IS THE SCALAR ~. ~ MUST BE IN THE DOMAIN I 5 ++ */5
I I I OF •• I

I 1---------1---1------------------------------------1
I I ./[K]~ I LIKE. BUT VECTORS ON THE K TH DIMENSION ARE REDUCED. I 1.75 3.2 4.5 ++ 0/[1]3 3P19 I

I 1---------1---1------------------------------------1
I I .f~ I .f~ ++ ./[1]~ I 1.75 3.2 4.5 ++ of3 3P19 I
I I I REDUCTION ON THE FIRST DIMENSION. I 6 ++ +f1 2 3 1

1---------1---1------------------------------------1
I .f[K]~ I .f[K]~ ++ ./[l+(pp~)-K]~ REDUCTION ON K TH FROM LAST DIMENSION. I 1.5 4.8 7.875 ++ +f[l]3 3P19 I

--------------1---------1---1------------------------------------1
SCAN I .\~ I ~ YEQrQE: RESULT IS A VECTOR OF THE SAME LENGTH WHOSE 1 1 3 6 ++ +\1 2 3 1

, I I TH ELEMENT IS ./ItB. 1 2.3 -3.3 1.4 ++ -\2.3 5.6 4.7
I I ~ 4EE4I: RESULT IS FORMED BY REPLACING VECTORS ON I 1 0.5 1. 5
I I THE LAST DIMENSION OF B BY THE. SCAN OF THE VECTOR 1 4 0.8 4.8 ++ +\3 3P19
I I IN ~. - 1 7 0.875 7.875
I I ~ ~Qd~4E: THE RESULT IS THE SCALAR ~. ~ MUST BE IN THE DOMAIN 1 1 ++ A\l
I I OF •• 1
1---------1---1------------------------------------
I .\[K]~ I LIKE .\ BUT VECTORS ON THE K TH DIMENSION I 1 2 3
I I ARE SCANNED. I 0.25 0.4 0.5 ++ 0\[1]3 3P19
I I I 1.75 3.2 4.5
1---------1---1------------------------------------
I .~~ I.~ ++ .\[11~ I
I 1 SCAN ON THE FIRST DIIIENSION. I 0.25 0.4 0.5 ++ +~3 3P19
I I I 1.75 3.2 4.5 I

1---------1---1------------------------------------1
I .~[Kl~ I .~[K]~ ++.\[l+(pp~)-Kl~ I 1 0.5 1.5 I
I I SCAN ON THE K TH FROM LAST DIMENSION. I 4 0.8 4.8 ++ +~[113 3P19 1

1 I I I 7 0.875 7.875 1

1--------------1---------1---1------------------------------------1
I INNER PRODUCT 1 d •.• ~ I ELEMENTS OF THE RESULT ARE FORMED BY TAKING CONFORMING VECTORS I 32 ++ 1 2 3+.x4 5 6 1
1 liON THE LAST DIMENSION OF 4 AND THE FIRST DIMENSION OF ~ APPLYING 1 1 ++ 1 0 lV.A1 1 0 1
1 1 1 • BETWEEN THEM AND REDUCING THE RESULT BY •• Ml+.xM2 IS THE 1 5 6 7 8 ++ (2 3P16)-.r3 4Pl12 1
1 I 1 LINEAR ALGEBRA MATRIX PRODUCT FOR MATRICES Ml AND M2. 1 8 8 8 8 I
1--------------1---------1---1------------------------------------1
1 OUTER PRODUCT 1 40 •• ~ 1 THE RESULT IS THE OPERATOR. APPLIED BETWEEN ALL I 4 5 1
1 1 1 PAIRS OF ELEMENTS SELECTED FROM 4 AND ~. THE RESULT HAS 1 B 10 ++ 1 2 3 o .x4 5 1
1 I I SHAPE (p4).p~. 1 12 15 1
I I 1 1 0 1 1
I I 1 I 1 1 ++ 0 lo.VO 1 1

1==============1=========1===1====================================1
1 1
I • AND. ARE ANY DYADIC SCALAR PRIMITIVE FUNCTIONS. I
I K IS A DIMENSION NUMBER OF ~. 1

1 I
1===1

t==

IDEN1I1IES POR SCALAR DYADIC FUNC1IONS

==

1HE RESUL1 OP REDUC1ION OP AN EMP1Y VEC10R IS
1HE IDEN1I1Y(IF I1 EXIS1S) FOR 1HE FUNCTION.
REDUC1ION OF A DIMENSION OF LENG1H ZERO ~ILL
PRODUCE AN ARRAY CONTAINING 1HE IDEN1ITY FOR
1HE FUNC1ION. INNER PRODUC1 AND BASE VALUE ARE
DEFINED IN 1ERMS OF REDUCTION AND CAN CREA1E
ARRAYS CONTAINING THE IDEN1ITY. 1HE IDEN1I1IES
FOR 1RE SCALAR DYADIC FUNC1IONS ARE LIS1ED
BELO~ ALONG ~ITR ~RETRER.1RE IDENTITY IS A
LEFT IDENTITY, RIGHT IDENTITY, OR 1~0-SIDED
IDEN1I1Y.

===a======
• IDEN1IT1 I LEFT, RIGR1, OR BOTR

===== ===================t======================
+ 0 B01R

0 RIGHT
x 1 BOPH
+ 1 RIGHT

* 1 RIGRP
• NONE
r -4.31359146674E68 B01R
L 4.31359146674E68 B01R
I 0 LEF1
• 1 LEF1 •
0 NONE
A 1 B01R
v 0 B01R
tIf NONE
¥ NONE
< 0 LEF1
$ 1 LEP1
= 1 B01R
~ 1 RIGH1
> 0 RIGR1
It 0 B01R

==

COMPOUND
OPERATORS
(CONT.)

3-17

FORMAT
FUNCTIONS

FORMAT FUNCTIONS.

Formatted character data structures can be produced using the format
primitive-functions. The monadic form provides a default format.
The dyadic forms permit explicit specification of the desired format.
The discussion common to all forms or comparing forms is contained
here; detailed differences are described on subsequent pages.

Forms:

y E
V y N
C y E
C y(L)

Where:

Default format
Numeric explicit format
Character explicit format
Character explicit formatted list

E is a data object of numeric or character type
N is a numeric data object
V is a numeric vector defining the edit format
C is a character string defining the edit format
L is a list of APL data objects, separated by
semicolons; each object is of type character or
numeric.

Actions/Results:

Shape:

The result is a character data object that represents
the data objects(s) of the right argument, formatted as
specified •

.
The default and numeric explicit forms preserve all
dimensions except the last dimension and expand it if E
is numeric. E may be a vector, matrix or general
array.

Each character explicit form accepts as arguments only
scalar, vector, or array data objects and results in a
character matrix having at least one row, and gen­
erally the maximum number of rows of any matrix in
the list.

Conditions/Options:

3-18

All formatting is constrained by the)WIDTH setting.

For explicit formatting, the numeric form is more
efficient where appropriate than the character form.
The character form however, has many more capabilities.

FORMAT SYNTAX DIAGRAMS.

FORMAT
FUNCTIONS
(CONT.)

The syntax of the format functions is displayed using syntax diagrams.
This method shows the syntax clearly and concisely, including by
connectivity the allowable constructs: defaults, alternatives, and
iterations. It is rigorous without being cumbersome.

The rules for interpreting these diagrams are simple:

syntactic units are set off by spaces and separated by lines,

any path traced along a forward direction of the arrows will
produce a syntactically valid command,

iteration is achieved by a leftward pathJ

limited iteration is shown by a "bridge" covering a number
indicating the maximum number~of traversals of the bridge7

a vertical bar is a bidirectional path.

Format:

--+0----------------------------
+
0-- Numeric Format Vector --­
+
0- Character Format Vector

Where: E is character or numeric
data object

Numeric Format Vector:

--+0-- Width +0- Dec Digits -+0-+
+ + I
+ 0------ 0 -----+0
+ + I
+ 0- Dec Digits -+0
+ +
0+-------------------------0

• ---- Data Object -----+0-+
+

• --- Numeric Array ----+~
+

• --0------- E ---------+0
+ +
0- (+0- E +0-) ---+0

+
-0

FIXED POINT

INTEGER

FLOATING POINT

3-19

FORMAT
FUNCTIONS
t CONT.)

Character Format Vector:

--+0---+0-------- Clause -------+0---+0--+
t I I .j.

t 0---- B. (Clause) -----+0 .j.

t t .j. .j.

t 0+---------- • ----------0 .j.

t .j.

0+--------------- ; ---------------0
Where: B. is clause replicator

Clause:

--+0------------- Phrase ------------+0--+
t .j.

0+-------------- • ----------------0

Phrase:

--+0---+0------------- <~> ---------------------------------------+0-+
.j. t
o B. +0---------------------------+0 T +0 Q --------------------+0

3-20

t
0-----------------------+0
t t

0------+0----------+0+0 o X +0 fi --------------------+0
.j. t
0 *<~> +0 - +0 <Q.> +0

.j. .j.

0 0 +0 .j.

.j. .j.

0 + +0 .j.

t .j. .j.

0+/2\0+-----0

Where: Q. is string

B. is replicator

Q is column

fi is width

II is dec digits

t
0------- A +0 fi --------------------+0
.j.

.j.

.j.

.j.------- E
.j.

.j. t .j.

0 L +0 .j.

.j.

0 B +0 0 I

0 C +0

0 Z +0
t .j.

0+/3\0

t
0---+0------------------+0
t t t

+0 R +0 .ll +-------------+0
t
t
t

0---+0----+0+0-------- __ +0
t t .j. t

+0 R------.:+o 0 - +0 <~> +0
.j.

0 0 +0 .j.

.j.

0 + +0 .j.

t .j. .j.

0+/2\0+-----0

FORMAT
FUNCTIONS
(CONT.)

DEFAULT FORM~TTING.

Default formatting is a monadic mixed primitive function that results in
a character data structure.

Form:

Where: E is a data object

Actions/Results:

The result is a character data structure.

If E is of character type, the result is identically E.

, If E is of numeric type, the result is formed as follows:

conditions/Options:

Every element of E is rounded according to the
current print precision to get the specified
number of signi~icant fractional digits (integers
are not truncated) and trailing fractional zeros
are ignored and then converted to characters.

If E is scalar, one blank is prefixed.

If E is vector, the result is also a vector. This
result is the ravel of an array formed containing
the character representation of each element.
Sufficient columns are provided that at least one
blank precedes each non-blank, and all decimal
points are aligned.

If E is an array, the result is also an array
except that the last dimension is expanded in the
same manner as if the array were raveled.

The length of the last dimension of the result is an
integer multiple of the length of the last dimension of
E.

For some element(s) there will be only one preceding
blank. Others may have more than one blank.

Print precision limits the printed numbers.

Exponential notation is used for all output if any
element has either an integer part too big to be exactly
expressed, or only a fractional part and the exponential
notation would be shorter by 3 or more characters
than the numeric notation.

3-21

FORMAT
FUNCTIONS
(CONT.)

Default Formatting Examples:

3-22

.0 11 2222 -3333 0.4444
o 11 2222

.~O 11 2222 3333 0.4444
o

11
2222

-3333
0.11-11-11-11-

.' APL'
APL

3333 0.11-11-411-

FORMAT
FUNCTIONS
(CONT.)

NUMERIC EXPLICIT FORMATTING.

The numeric explicit format mixed primitive function provides
efficient formatting of a numeric data object of any rank and
produces a character data object.

Form:

v ... N

~7here: v is numeric format vector
N is numeric data object to be formatted

Actions/Results:

The numeric data object N is represented as a character
data object. The shape of the result is the same as N,
except that the last dimension is determined by the
format v.

The format
a positive
U specify
formatted.

V must be a vector of length 2xM ~""here M is
integer. Successive pairs of elements from

how successive columns of N are to be

If W is the first and D is the second member of a pair,
an element on the last dimension of N is formatted as
follows:

D > 0
D = 0
D < 0

PN.D
IW
EW.D

If M is less than the last dimension of N, then the
format V is cyclically reused.

r,onditions/Options:

A field width inadequate to allow representation of the
number is filled with '*'.

3-23

FORMAT
FUNCTIONS
(CONT.)

Numeric Vector Formatting Examples:

10 3~0 123 0.0125 -1234.5678
0.000 123.000 0.012 -1234.568

10 3.~0 123 0.0125 1234.5678
0.000

123.000
0.012

1234.568

5 0 5 0 8 4 12 3.0 123 0.0125 -12345.678
o 123 0.0125 -1.235E4

5 0 8 3.2 2 2p111 112 121 122 211 212 221 222
111 112.000

3-24

121 122.000

211 212.000
221 222.000

5 0 5 2. 3 5.12 8 27.3456 -5~1 3 5.12 827.35

8 -1.~-53.8 -0.0000345 0 12345678 4.0E-15 -2.5E-25
-5.4E1

-3.4E-5
o
1.2E7

4.0E-15
-2.5E-25

5

FORMAT
FUNCTIONS
(CONT.)

CHARACTER EXPLICIT FORMATTING.

The character explicit format dyadic mixed primitive function provides
the most general formatting capability.

Forms:

C y E
C yeLl

Where:

Character explicit format
Character explicit formatted list

C is a character string specifying the format.
E is a data object of rank at most 2.
L is a list of data objects separated by semicolons.

There is no type or shape conformability requirement between list
members •

. Actions/Results:

The result is a character
the right arguments
specification.

data matrix, that represents
according to the format

The method is to create a character structure of
appropriate shape filled with blanks. Then, into
appropriate positions non-blank characters are inserted
according to the format string as applied to
corresponding portions of the right argument.

The number of rows in the result is the maximum of the
number of rows in matrices that comprise the right
argument. If only scalars or vectors appear in the
right argument, then a matrix with one row results.

Conditions/Options:

The maximum rank of any data object in L is 2.

Separate formatting for each row of output takes place.

The fields in the result for any matrices with less
rows than the maximum, are displayed with blanks.

Character Format Syntax Chart:

The format character string f has many options. It should conform to
the following syntax. The leftmost entry is the syntactic unit being
defined in terms of one of the alternatives, if any, to the right of
'is'. Upper or lower case letters in this type font represent

3-25

FORMAT
FUNCTIONS
(CONT.)

syntactic units further defined. Letters or characters in the APL
font represent themselves. 'text' represents any APL text. Blanks
are ignored except within 'text'. Character representations of
integers are used for r, M, Wand D.

3-26

f is s or S7S7 • • • IS format
s is 9 or g,g, • • • ,g or empty segment
9 is c or r(c) group
r is optional clause replicator, replicator

default is infinite
c is p or p,p, • • • ,p clause
p is one of: phrase

M JAW
M J E W.D

M L Q F W.D R
MLQIWR

MXW

character object formatting
floating point numeric formatting
fixed point numeric formatting
integer numeric formatting
skip W characters forward

M T N

<text>

tab to N characters from start of formatl
(may be used to back up for replacement)
literal text for each row I
may not contain the '>' character

M is

W is

D is

L is
B is
R is
C is

5 is

o
+

optional phrase replicator
default is 1
optional total field width
default is 1
optional number of places to right
of decimal point, default is 0
B or C or B C or empty
*<text>
C or empty
5 <text > or S<text> S<text>
or S<text> S<text> S<text>
one or more of:

insert 'text' in field if negative
insert 'text' in field if zero
insert 'text' in field if positive

J is L or empty, default is right
justify in field

Q is zero or more of:

L left justify in field
B skip if zero
C insert commas
Z leading zero insert

N is columns to right of start of format

phrase replicator

field width

decimal places

left decorator
background for field
right decorator
conditional text

sign selector

sign selectors

j~stifier left

qualifier

next column

Character Format Semantics:

FORMAT
FUNCTIONS
(CONT.)

The prior syntax chart provides named syntactic elements for semantic
description only. The terminal forms (shown in APL font) are the same
as in the syntax diagram.

Any data object that provides a part of the right argument is
generally the result returned from evaluation of an APL expression.
In the following discussion, the general case is that a data object is
treated as a matrix. A vector or scalar is treated as a matrix with
only one row.

The form using a parenthesized list containing data objects separated
by semicolons imposes no conformability or type restriction on
adjacent data list members. The formatted result will have as many
rows as there are in the data object having the most rows. The
corresponding fields for objects with less fields will be blank. Each
semicolon represents a synchronizing point with a semicolon in the
corresponding format.

Each format segment applies in
member. The format segments
until the entire data list has
is empty, default formatting is

order to the corresponding data list
are cyclically reused if necessary,
been formatted. If the format segment
used to format that data object.

Each format group applies in order to the corresponding columns of any
one data list member. The format group is cyclically reused if
necessary, until all columns of the data list member are formatted.

Within the format group an integer clause replicator can be used to
limit replication. Without the replicator the clause is assumed to
replicate cyclically as often as necessary.

A format clause is a series of phrases separated by commas.

Each phrase specifies the field width, and the content for that field
resulting from either conversion of a data object or a iiteral text.

A The character object formatting phrase
the columns of the object if W is greater
choice of left or right justification.

permits expansion between
than 1. It also permits

E The floating ~oint numeric formatting phrase provides results in
scientific notat~on: mantissa E exponent, e.g., -3.2E-2 or 9.73E21.

Default columns for non-negative signs are elided. This format can be
explicitly justified left, or right by default.

F The fixed point numeric formatting phrase provides fixed, aligned
format with a specified number of decimal places. This phrase permits
qualifiers and left or right decorators.

I The integer numeric formatting phrase provides integer results with
qualifiers and left or right decorators.

3-27

FORMAT
FUNCTIONS
(CONT.)

Any numeric formatting phrase for which the field width is too small
gives '*' for the entire field in the row in which the data element
was out of range.

X The skip formatting phrase provides rightward skip over the
indicated number of columns. The replicator is not needed. Instead,
using the default replicator of 1, the width can be the product of
replicator times width. The columns are skipped, not blanked, to
allow any prior content to .remain.

T The tab formatting phrase allows absolute repositioning to any
result column starting from the leftmost as column O. Any subsequent
formatting phrase will overwrite any prior contents.

A <text> phrase allows the indicated text to be unconditionally
included in every row of the result. The text cannot contain the ' ,
character.

R The integer phrase replicator specifies the number of uses of the
phrase before moving to the next phrase in the clause.

W The total field width for character or numeric
should include sufficient columns for the entire
range of values including signs and decorations.

phrase formatting
anticipated result

D The decimal places for fixed point and floating point numeric
formatting permit specified precision result display. Rounding occurs
as part of formatting.

Left and/or Right Decorators can be applied to fixed point or integer
formattinq.
- 0 + The sign selectors alter the result depending on the signum of
each individual data element. These prefixes to explicit text can be
applied separately, or in pairs. In anyone formatting phrase, only
one occurrence of each sign selector should occur on each side. The
same sign selector may appear in the left and right decorators. A I_I

selector removes the sign from any negative element.

*<text> A field background can be specified. It is initally inserted
in the field, then partially replaced.

that do not require the
background is specified,

Left justification can be
case excess columns to the

L The default justification of phrases
specified width is to the right. Unless
excess columns to the left are blanked.
explicitly specified instead, in which
right are blanked.

L B C Z Qualifiers alter the field content for integer and
point formatting. They include left justification~ skipping
numeric result and decimal point) if the element value is
insertion of leading zeros to fill the field1 and insertion of
to set off positive powers of 1000 for large numeric results.

3-28

fixed
(the

zero:
commas

Character Vector Formatting Examples:

Numeric data objects

D+NV+-1230 4.55 0 0.465 60.525
1230 4.55 0 -0.465 60.525

O+NM+-0.05 25 o • x 410 1 0.025
-2.050El -S.000E-2 -1.2S0E-3

1.025E4 2.500El 6.250E-l

Floating Point

'El0.2'YNV
1.23E3 4.55EO

'E9.4.E6.0.El0.2'yNM
1.0250E4 3.El 6.25E-l

'E6.1'Y-0.12 0.12

'E7.1'Y-0.12 0.12
-1. 2E-l 1. 2E-l

Fixed Point

'Fl0.2'Y~NV
1230.00

4.55
0.00

-0.47
60.53

'Fl0.2'YNV
1230.00 4.55 0.00-0.4760.53

'F7.2.F6.1.F8.4'YNM
20.50 0.0 -0.0013

******* 25.0 0.6250

Integer

'I6'YNV
1230 5 0 0 61

'I5.I2'YNM
21 0 0

1025025 1

6.05El

FORMAT
FUNCTIONS
(CONT.)

3-29

FORMAT
FUNCTIONS
(CONT.)

3-30

Phrase Replicator

'2I3.2I5.3I2'. 1 2 3 4 5 6 7 8 9
1 2 3 4 5 678 9

Justify Left

'LI5'.~-1 2 34 567
1

2
34
567

Background

'*<0>I5'.-1 0 2
000 10000000002

'*</ \>I5'.1 23 456
/ \/1/ \23/ 456

Sign Selectors

32

'+<P>0<Z>-<N>I5'.-1 0 2
M1 ZO P2

'+0< >-«>I5+0< >-<»'.~-1 0 2
(1)
o
2

'+< >0<
1

o
541

35

Blank Zero Field

1

5

Comma Insert

'CI10'.1234567
1,234,567

'CF12.4'.1234.5678
1,234.5678

Zero Insert Left

001
023
456

'ZI3'.~1 23 456

Combined

'*<0>ZBI5'.~1 23 456 0 987
00001
00023
-0456
00000

00987

'ZBCI7'.1 0 2345 1
000,001 002,345-00,001

'BCI5'.~-1 0 234 5678
1

234
5,678

Character

'A2'.2 4p'GOODWORK'
GOO D
W 0 R K

'A1,A2,A3,A4'",'OPEN'
OPE N

, LA 2 t • I LEFT t
L EFT

FORMAT
FUNCTIONS
(CONT.)

3-31

FORMAT
FUNCTIONS
(CONT.)

3-32

Tab and Skip

'I15,TO,I5,X20,I5'.25 50 75
50 25 75

'I15,TO,I5,I25'.25 50 75
50 75

Text

1\0
101 0

-25\0

Combined

'I5;X4,2Al'.(56;'AB')
5 6 AB

'I5;X4,A2'.(100;~'AB')
100 A
100 B

'I5;X4,Al'.(.100;~'AB')
100 A

B

'I5;A5;P5.1 '.(~1
1 P 1.1 2.2

10 I 4.4 5.5
100 N

E

10 100;~tPINE';2 3pl.1 x l 2 3 456)
3.3
6.6

'LI5,2(LI3,P7.2,X4),I3'.3 5 15.72 17 23.15 3
3 5 15.72 17 23.15 -3

SECTION 4

FUNCTION DEFINITION, EDITING, AND EXECUTION

FUNCTION DEFINITION AND EDITING.

Table 4-1 summarizes the function definition, opening, and closing
commands and the full set of function editing commands. The defini­
tion of a function is started by typing the del (V) symbol, which
initiates entry into the function definition mode from the calculator
mode. (Entry of the del symbol to initiate the definition mode may
only be done while in the calculator mode.) The del symbol is then
followed by the function specification header, which consists of two
parts: (1) the function template, and (2) the local names (variables)
list.

The function template may be entered in six different forms, depend­
ing on whether the function does or does not return a result and
whether the function is niladic (no arguments), monadic (one argu­
ment), or dyadic (two arguments). The six forms of templates are as
follows:

NILADIC MONADIC DYADIC

RErURNS RESULr 1 H+f 1 H+f ~ 1 E+4 ~ ~ 1
1--------------1--------------1--------------1 NO RESULr ! _______ ~ ______ ! ______ ~_~ _____ ! _____ 4_~_~ ____ 1

Where:

R is a dummy variable whose value is used as the
value of the function when the function execution
is completed.

B is a dummy variable that is initialized to the
value of the right argument when execution of the
function is started.

A is a dummy variable that is initialized to the
value of the left argument when execution of the
function is initiated.

F is the function name.

E, ~, and A must be distinct names.

4-1

Table 4-1

Function Definition and Editing

•••••••••••••• =.=.==.===.========================-===1
1 ACTION 1 1 NEXT I

COMMAND I SYMBOL 1 FORM ACTION 1 PROMPT 1
===================1=========1=================== ==1========1

DEFINE 1 V 1 VB DEFINE NEW FUNCTION. HEAD OF WHICH IS 1 [1] I
1 1 9.; INITIATE EDITING THEREON. 1 I

-------------------1---------1------------------- --1--------1
OPEN 1 V 1 VE INITIATE EDITING OF PREVIOUSLY DEFINED 1 [Z] 1

1 I FUNCTION. E. 1 1
OPEN (LOCKED) 1 • I.E 1 1

-------------------1---------1------------------- --1 1
CLOSE I V 1 V TERMINATE FUNCTION EDITING. 1 1

1 (MAY FOLLOW ANY COMMAND EXCEPT EDIT) 1 1
CLOSE (LOCKED) • I. 1 1

=================== =========1=================== ==1========1
REPLACE 1 [d]X TEXT OF LINE ~ IS REPLACED BY X. 1 [Z] 1

1 (IF d = Z. SAME AS APPEND-AFTER) 1 1
------------------- ---------1------------------- --1 I I APPEND-BEFORE t 1 [t]X TEXT OF NEW FIRST LINE IS X. 1 1

1------------------- ---------1------------------- ----------------------------------,----- 1 I APPEND-AFTER + 1 [+]X 1 TEXT OF NEW LAST LINE IS X. 1
1------------------- ---------1-------------------1-- --------1 1 INSERT-BEFORE t 1 [td]X 1 TEXT OF NEW LINE. TO BE INSERTED [t~+l] 1
I 1 1 BEFORE LINE d. IS X. I
1------------------- ---------1-------------------1-- --------1 I INSERT-AFTER 1 + 1 [fA]X 1 TEXT OF NEW LINE. TO BE INSERTED [+4+1] 1
1 1 1 1 AFTER LINE d. IS X. 1
1===================1=========1===================1== ========1 1 FULL-EDIT 1 £ 1 [£4] 1 INITIATE EDIT OF LINE d. RULES SAME AS [Z] 1
1 1 1 1 FOR TRANSACTION EDIT. I
1-------------------1---------1-------------------1-- 1 I PREFIX-EDIT 1 a 1 [ad] 1 SIMILAR TO FULL-EDIT EXCEPT SINGLE 1
1 1 1 1 INSERTION BEFORE TEXT OF LINE d IS I
1 1 1 1 ASSUMED. I
1-------------------1---------1-------------------1-- 1 1 DIRECT-PREFIX 1 a 1 [ad]X 1 THE TEXT X IS INSERTED BEFORE THE 1
1 1 1 . 1 TEXT OF LINE d. 1
1-------------------1---------1-------------------1--1 I I SUFFIX-EDIT 1 w 1 [wA] 1 SIMILAR TO FULL-EDIT EXCEPT SINGLE 1 1
1 1 1 - I INSERTION AFTER TEXT OF LINE ~ IS I 1
1 1 1 1 ASSUMED. 1 1
1-------------------1---------1-------------------1--1 1 1 DIRECT-SUFFIX 1 w 1 [wd]X 1 THE TEXT X IS INSERTED AFTER THE 1 1
1 1 1 1 TEXT OF LINE ~ 1 1
1-------------------1---------1-------------------1--1 I 1 IMMEDIATE-EDIT 1 1 [tAl 1 UPON TERMINATION OF DEFINITION MODE. 1 1
1 I 1 - 1 TEXT OF d BECOMES THE 'MOST RECENT APL 1 1
1 1 1 1 EXPRESSION' AVAILABLE FOR EDIT. 1 1
1===================1=========1===================1==1========1

4-2

Table 4-1 (cont)

Function Definition and Editing

1=================== =========1=================== ==1========1
1 DELETE 1 DELETE THE ~ SELECTED LINES WITHIN 1 [~-~] 1
1 1 RANGE R (DELETE ON LINE ZERO DELETES 1 1
1 1 LOCAL NAMES LIST). 1 1
1=================== =========1= ==1========1
1 DISPLAY-LINES 0 1 FORM OF DISPLAY: 1 [Z] 1
1 1 UNQUALIFIED: HEAD - VH H = HEAD OF FUNCTION 1 - 1
1 1 SELECTS EVERY BODY - UlJ X Ii. = LINE NUMBER 1 1
1 1 LINE WITHIN THE TAIL - V X = LINE TEXT 1 1
1------------------- ---------1- INCLUSIVE RANGE - --1 1
1 DISPLAY-TEXT ~ 1 B. FORM OF DISPLAY: 1 1
1 1 HEAD - VH H = HEAD OF FUNCTION 1 1
1 1 FORM RANGE BODY - X X = LINE TEXT 1 1
1 1 --------1-------- TAIL - vii
1------------------- ---------1-[0] o-X - --1 1 1 DISPLAY-CONTROLS Ii! 1 [oA] A FORM OF DISPLAY: 1 1
1 1 [,1.0] A-X HEAD - vQ E Q CONTROLS SET 1 1
1 1 [Ao~] A-~ BODY - [Ii.] Q E T - TRACE 1 1
1 1 TAIL - V r - STOP 1 1
1 1 1 QUALIFIED: n - STATISTICS 1 1
1 1 1 SELECTS ONLY P = PROCESSOR UNITS 1 1
1-------------------1---------1- LINES WITHIN THE- -------------------:--------------------1 1
1 DISPLAY-NUMBERS 1 ? 1 INCLUSIVE RANGE FORM OF DISPLAY: VECTOR OF NUMBERS 1
1===================1=========1= B WHICH CONTAIN == ========1
1 SET-TRACE 1 T 1 NAME~. FORM OF DISPLAY (DURING EXECUTION): [~] 1
1 1 1 E[li.]K(~)Z E FUNCTION NAME 1
1 CLEAR-TRACE 1 ~ 1 FORM 1 RANGE Ii. = LINE NUMBER 1
1 1 --------1-------- LINE [0] TRACES K TYPE OF VALUE 1
1 1 [(o~)] 1 o-X FUNCTION RETURN. N - NUMERICAL 1
1 1 [(o~>A] 1 ,i B - BOOLEAN 1
1 1 [,i(oK>] 1 ,i-X C - CHARACTER 1
1 1 [A(oK>~] 1 .!-~ §. = SHAPE OF VALUE 1
1 1 Y = VALUE 1
1------------------- ---------1- - -- 1
1 SET-STOP rio = ACTION SYMBOL FORM OF DISPLAY (DURING EXECUTION): 1
1 1 E(Ii.]* E = FUNCTION NAME 1
1 CLEAR-STOP l 1 ,i.~ ADDRESS(LINE Ii. = LINE NUMBER 1
1 1 NUMBER. LINE [0] STOPS 1
1 1 LABEL OR BEFORE RETURN. 1
1------------------- ---------1- LABEL + - -- 1 1 SET-MONITOR n 1 INTEGER. INITIATE COLLECTION OF STATIS'TICS. 1
1 1 1
1 CLEAR-MONITOR u 1 1 LINE [0] COUNTS THE NUMBER OF TIMES 1
1 liTHE FUNCTION IS EXECUTED. 1
1===1

4-3

The local names (variables) list is separated from the function tem­
plate by a semicolon (;) and consists of a distinct set of names
themselves separated by semicolons. System variables may be included
in the local names list. Local names have meanings only while the
function is active; that is, while the function is being executed.
As soon as the execution of a function is terminated, the meaning of
all local names disappears. The dummy variables for the result and
argument(s) must be distinct from all other local names. The function
specification is considered line 0 of the function, although not
identified as such in the display.

After the user types the function specification and enters it by use
of the carriage-return function, the system responds by typing the
identifier for line 1 [1 J and indents five spaces to prompt the
user to enter the first line of the function. A user entry at this
point is interpreted as the definition of line 1 of the function/
program. After the first line is successfully entered by a carriage­
return function, the next prompt is [2 J. This operation is re­
peated for each subsequent line to be entered.

Definition editing commands (table 4-1) may be entered any time the
function definition is open (immediatel after a rom t). The
function is terminated (closed after all lines are completed by
typing another del (V), either at the end of the last line entered
or after the last prompt is returned. If the del is entered at the
end of an entry, it is not considered part of that entry.

Entries to a function may contain a label. The syntax of a function
entry is:

FE is LS
LS is ID:LS or S

Function Entry
Labeled Statement

Where: ID is a string starting with a letter, under­
scored letter, del, underscored del, and is
followed by any number of additional letters
or underscored letters, numbers, dels, under­
scored dels, or underscores (_).

S is an expression or comment.

DEFINED FUNCTION EXECUTION.

The execution of a function begins when the function is first called,
either from the calculator mode or from another function. From the
instant execution of a function begins until the execution of the
function is completed, the function is active. An active function
may be suspended or pendant. A pendant function is one which is
awaiting completion of a function it called. A suspended function
in one which is currently executing or one whose execution was
stopped for some reason other than a call to another function.

4-4

Execution of a function may be halted abnormally by an error, a stop
on a line, or when the user presses the attention key.

The command ')SI is used to display the state indicator. The state
indicator is a list of all suspended and pendant functions. The
display of the state indicator has the following form: 'F[N]'; where
F is the function name and N is the line on which the function is
;uspended or pendant. If the function is suspended a star (*) will
appear in the state indicator display; for example, IF[6] *' indicates
F is suspended on line 6.

While execution of a function is suspended, the user may examine and
modify the contents of local variables, modify the suspended function,
continue execution, or abort execution of the suspended function. A
pendant function cannot be modified. No local names may be added or
deleted from a suspended function. To continue execution of the sus­
pended function, the user types I~NI, where N is the line in the
function on which execution is to be continued. N is usually the
line on which execution was stopped, but need not be. To abort execu­
tion of a function the user types ,-+ I. The system responds by
typing the name and line number of the next suspended function in the
state indicator. If no more functions are suspended, no response is
given to the abort.

It is good practice to eliminate all suspensions soon after they
occur, as suspended and pendant functions take up space in the work­
space. The user should avoid executing a function from the beginning
after execution is stopped. If it is impossible to continue execution
of a function after it is stopped the abort should be entered before
execution of the function is begun again.

EXECUTION CONTROL.

The normal flow of execution of the lines in a defined function is
sequential; that is the execution starts with line 1 and then pro­
ceeds to line 2 when line 1 is completed, and, so forth. This
sequence may be altered by two user-implemented functions: branching
and aborting.

One way of altering the normal flow of defined function execution is
by use of the branch primitive operator in the following form:

Where: V is any scalar or vector-valued expression.

There are many situations in which it is desirable to branch to some
other line of a defined function other than the next one in sequence.
For example, after a particular sequence of lines has been executed,
it might be desirable to repeat them with a different set of values.
It may also be desirable to repeat just one line, or all lines
starting with a particular line.

The branch primitive shown above produces no result other than alter­
ing the sequence of execution. The branch operation may appear only
at a point where no value is needed; that is, as the left-most func­
tion on a line, or the left-most function in a string to be evaluated
where no result is required. The next line to be executed is the one
specified by the scalar value or the first element of the vector.
If there is no such line in the function, then execution of the

4-5

function is terminated and control is reestablished at the point
where the function was called. If the specified vector has no first
element, then control passes to the next line. Because function
editing may cause line numbers to change, labels may be used to
prevent the necessity of changing branches every time a line is added
or deleted. A label is any valid identifier which prefixes a line
and is separated from the statement by a colon(I:I). A label is con­
sidered to be a local constant having the value of the line number it
appears on. The name of a label must be distinct from all other
local names.

A branch entered while the system is in the calculator mode causes
execution of the last suspended function to be continued at the line
specified.

The formats for the various methods of branching are as follows:

+L
+(~)/L
+(1+xK)~Ll.L2.L1
+(Ll.L2.L1 •...)[IJ
+1+x26
+0

Where:

GO 10 L
IP ~ 1HEN GO 10 L
BRANCH ON SIGN OF l(- Ll. 0 L2. + L1)
GO 10 LI
BRANCH 1 LINES PORWARD(BACKWARD IP 1<0)
RE1URN

L. Ll. L2 •... ARE LABELS OR LINE NUMBERS.
~ IS A BOOLEAN EXPRESSION OR CONDI1ION.
g IS ANY SCALAR VALUED EXPRESSION.
I IS A SCALAR IN1EGER VARIABLE OR CONS1AN1.

It is also possible to abort execution of all functions up to and
including the calculator mode entry that initiated the first function
call leading to the suspension. The abort primitive entry from is
the right arrow (~).

The abort function produces no result, but aborts the execution of
all functions up to and including the calculator mode entry which
initiated the first function call leading to the current suspension.
Abort may be executed in calculator mode or as part of a function.

4-6

SECTION 5

SYSTEM COMMANDS

GENERAL.

APL/700 has a set of special instructions called system commands.
These commands concern such practical matters as signing onto and off
of the system, saving workspaces, setting default control values,
copying workspaces, functions, or variables, and controlling terminal
functions. These operations are only initiated in calculator mode;
they can not appear as part of a user defined function. A system
command is executed immediately after being entered (if possible).

SYSTEM COMMAND FORMAT.

The conventions used to
allow ready recognition
optional parts.

Representation

)
[] () /

COMMAND
Variable
Variable
n
n

describe the system
of the fixed and

Meaning

System command prefix

commands are chosen to
variable, necessary and

Separators -- matching pairs for [] and ()
Upper-case is required literal word
Initial Capitals
Underscore is optional variable name,
Number
optional number

The optional phrases or numbers change the meaning of the basic
command. A command without an optional part is often an inquiry. The
optional part provides a value or name for more detailed
specification.

SYSTEM COMMAND CATEGORIES.

The system commands are grouped under the following categories:

Session Controls
Terminal Controls
Clear Workspace Controls
Library Controls
Name Displays
Run State
Group Commands

5-1

)BLOT
) WIDTH
)TABS

) BLOT obscure area

Blot provides multiple overprinting of an 18 character area, then
backspaces to the-prompt position to obscure subsequent display of a
sensitive entry such as the Password on the account.

TERMINAL CONTROLS.

An account can be used from any terminal. The line width and tab
setting must be specified.

)WIDTH n maximum characters in display line.

The number of characters n is in the inclusive range 30 to 130. If n
is not specified, the result is the current width.

)WIDTH 65
WAS 120

) WIDTH
IS 65

)TABS £ physical tab interval

The inteaer n is the number of characters between physical tab
settings: This single interval should match the tabs as actually set
on the terminal. If n is not 0, then output with "white space" will
automatically use tabs to minimize the time to reach a position on the
display.

5-2

)TABS 5
WAS 0

)TABS
IS 5

CLEAR WORKSPACE CONTROLS.

)CLEAR
)SYMS
) ORIGIN

Workspace controls provide the default SYMS, ORIGIN, DIGITS, SEED, and
FUZZ for a clear workspace that is suited to the normal desires of the
account user.

) CLEAR !!. clears workspace

The clear command without n destroys the prior
replaces it with a clear workspace having no
default attributes hereafter described. If n is
to the number of symbols reserved for the symbol
may be in the inclusive range 16 to 1024.

) CLEAR
CLEAR WS

) CLEAR 300
WAS 256

active workspace and
names in it and the
specified, it refers
table. This number

The response indicates the number of symbols in the prior active
workspace. It does not change the default number, which is controlled
by }SYMS.

The following commands return current values or allow the establishing
of new default values for clear workspace attributes. The examples
illustrate the installation provided default values and samples of
changes to them.

} SYI-1S n default symbol table size

The default symbol table size for a clear workspace is set to n, in
the inclusive range 16 through 1024. Since the space consumed in the
workspace is 6 bytes per entry in the symbol table it should be
controlled in space limited applications.

)SYMS
IS 256

)SYMS 400
WAS 256

) ORIGIN n default ordinal index origin

Origin affects
default index
function DIO.

primitive functions that
origin can be overridden

)ORIGIN
IS 1

)ORIGIN 0
WAS 1

use ordinal numbering. The
by the index origin system

5-3

)DIGITS
)SEED
)FUZZ

)DIGITS n default print precision

The default number of significant digits displayed in either
fractional or exponential form is established in a clear workspace by
the value of n. This must be an integer from 1 through 12 inclusive.
The default digits can be overridden by the system function OPP, print
precision.

)DIGITS
IS 10

)DIGITS 4
WAS 10

) SEED ~ default random number seed

The quasi random number generator used in the roll and deal primitive
function is pre-set to the default value of Seed. This permits
repeated execution to receive the same supplied random values of an
algorithm if desired. The value of n is a non-negative integer: 0
through 549755813887 (the largest integer). The seed is the starting
value for the random link. The random link changes with each use of
roll or deal and can be changed by the system function ORL , random
link.

) SEED
IS 0

)SEED 377
~SO

)FUZZ ~ default comparison tolerance

The comparison tolerance by which two approximate representations of a
number are considered equal is established in a clear workspace by
)FUZZ n. The allowable range for E is 0 through 1. The default fuzz
may be overridden by the system function OCT comparison tolerance.

See that description for details.

5-4

)FUZZ
IS lE-l0

)FUZZ 1E-1
WAS 1E-10

SESSION CONTROLS.

)ON
)COFF
)OFF

Session controls are used to initiate and terminate a work session.

)COFF
) OFF

signs on account
signs off to continue
signs off

)ON logs the account on the APL/700 system and initiates work. If any
continuation workspace exists, it is reactivated at the point at which
it was interrupted.

)COFF logs the account off, retaining the active workspace for
reactivation at next)ON for that account.

)OFF logs the account off and discards the active workspace, so at
next)ON for that account, the user will have a clear workspace.

Both)OFF and)COFF return date and time, then the amount of CPU
(processor) time and elapsed time used. These amounts are given both
for the session and cumulative for the installation accounting period.
Units are hours, minutes, and seconds.

The Accountname is assigned by the installation. It is considered to
be public knowledge.

The optional Password permits a user to protect his own account from
unauthorized use. The Password can be initially set by the
installation, or by the user at any sign off. Once set, a Password
must be used for any successful sign-on. Until removed either
Oldpassword or Newpassword may be empty. The forms for adjusting the
password at signoff are:

[/Newpassword]
[Oldpassword/Newpassword]
[Oldpassword/]

establishes password
changes password
removes password

An Accountname may have 1 to 6 characters; a Password 1 to 12. These
characters are alphanumeric (excluding the APL underscore alphabet).

)ON BUR103
)COFF[/SESAME]
)ON BUR103[SESAME]
)OFF BUR103 [SESAME/AL23814]

5-5

)LOAD
)COPY
)PCOPY
)SAVE

) LOAD Workspacename load copy of workspace

A copy of the specified workspace becomes the active workspace. The
Wsid of the loaded workspace (not the Account or Password) becomes the
name of the active workspace.

) COpy

)LOAD TEXTEDIT
)LOAD MYWORK[MYLOCK]
)LOAD (LIB) NEWS

Workspacename Namelist replace copy

Copy into the present active workspace from the library workspace
identified by vJorkspacename. If Namelist is present, copy only the
names in it that are present in that workspace. If Namelist is
absent, copy all functions, variables and groups in the workspace. A
copied object will replace a prior object of the same name in the
active workspace.

) COpy TEXTEDIT
) COpy NEW [VERSION] FORECAST SCHEDULE

)PCOpy workspacename Namelist protect copy

Same as) COpy except that any name in Namelist already existing in the
active workspace will not be copied.

)PCOPY (LIB)NEWS SCllEDULE INDEX

)COPY and)PCOPY are more expensive conmands than)LOAD.

) SAVE ~'Jsid [Password] save workspace

A copy of the active workspace can be saved in the account library of
the user. If Wsid is present, that name is the one used for
subsequent library reference; if absent, the prior active workspace
identifier is used. This will replace a former like-named workspace.
If the Password is present, subsequent)LOAD or)COPY of that library
workspace must supply the password.

)SAVE NEW [VERSION]

5-6

)DROP

)DROP Wsid [Password] drop account library workspace

1'. workspace in the account library can be destroyed by using) DROP.
The password is required if the workspace is locked. A workspace can
not be dropped from any other account.

)DROP NEW[VERSIONJ

5-7

)FILES
)LIB

LIBRARY CONTROLS.

The library of an account includes named files and workspaces.
Commands to interrogate the names and to totally or selectively access
workspaces are provided. File access is done through primitive file
system operators.

) FILES display account file names

The names of files owned by the account are returned. Only the public
part of the name is displayed1 any password on a file is omitted.

) FILES
DATAFILE
DOCUMENT

)UB display account library names

The identifiers of workspaces in the account library (but not their
passwords) are displayed.

)LIB
NEW
TEXTEDIT

The form for referencing workspaces in the following)LOAD,)COPY, and
)PCOPY commands is:

workspacenarne is (Account) Wsid [Password]

The Wsid is the identifier by which the workspace is known. It must
start with a letter followed by 0 to 11 letters or digits.

The Account portion is the owning account1 the account library in
which the workspace resides. It may be elided if it is in the user's
own account.

The Password is used only if the workspace is locked. The password is
also a name starting with a letter and followed by 0 to 11 letters or
digits.

5-8

NM1E DISPLAYS.

)FNS
)VARS
)GRPS
)WSID
)ERASE

The following system commands display classes of names currently in
the symbol table:

)FNS Name
) VARS Name
)GRPS Name

display function names
display variable names
display group names

If name is absent, the entire class is displayed in alphabetical
order. If Name is present, only the members of the class starting
with (or after) Name are displayed. The display result can not be
used as an APL data object. The system function DNL, name list,
should be used for that purpose.

)WSID Name workspace name

The workspace name provides a reference for the workspace when saved
in the account library. The clear workspace is unnamed.

)WSID
IS UNNAMED WS

)WSID NEW
WAS UNNAMED WS

)'flSID
IS NET"

ERASE NAMES.

)ERASE Nameset erase name list

Names of functions, variables and primary names of group names in
Nameset are erased from the workspace. The names in Nameset are
entered, separated by spaces. Function names can not be erased while
the state indicator is non-empty. Notice is given for non-existent or
non-erasable members of its nameset. See discussion in Group commands
following:

)ERASE W X y Z
NOT Y
NOT Z

5-9

)SI
)RESET

RUN STATE.

The run state is the record of user defined functions in process,
suspended, or pending completion of other called functions.

) SI state indicator

The result is the stack indicating the run state of suspended and
pending functions. The first line (if non-empty), is the most
recently suspended function. Below are pending functions (awaiting
completion of functions above) and earlier suspended function.

Each line gives function name, bracketed
execution is pending or suspended, and, an
functions only.

)SI
RUN[l]*
MAIN[S]
RUN[4]*
TEST[6]*

line number
asterisk for

at which
suspended

A function can appear more than once in the state indicator. In line
5, MAIN called RUN. MAIN is pending completion of RUN. More than one
suspended function can appear. A function can reappear (independent
restarts, or recursive calls are permitted) •

Usually the state indicator should be emptied of unnecessary entries,
as space is consumed and global names may be shielded by local labels,
variables or arguments of functions in the state indicator.

The suspended function at the top of the state indicator may be
restarted by entering ~N,where N is a line number. The suspended
function and any pending on it may be aborted by entering~. Response
is a line showing the next suspended function if any.

RUN[4]*
)SI

RUN[4]*
TEST[6]*

) RESET state indicator reset

The entire run state can be cleared using)RESET. The resulting state
indicator is reset:

5-10

)RESET
)SI

GROUP COMMANDS.

)ATTACH
)DETACH
)GRP

A group of names can be formed and named for collective reference
including)ERASE or)COPY.

)ATTACH Groupname Nameset group association

The Groupname is the referent for the group. The Nameset provides the
names that are associated with the group, and thereby, with each
other. Normally, names in a Nameset match names of variables,
functions or other groups. Names in the Nameset need not have any
current meaning.

If Nameset is not present, the effect is to reserve Groupname, as a
group, for subsequent attachment of a nameset. If the group Groupname
already exists, the effect is to unite Nameset with the nameset
already associated with Groupname (no name will be duplicated).

A group name included in Nameset causes the elements of that group's
nameset to be implicitly included"in the group.

If the Groupname is included in its own Nameset, then actions on the
group apply also to the Groupname.

)ATTACH GROUP1 FNAME VNAME GROUP1
)ATTACH GROUP2 GROUP1 GROUP2 HOW

)DETACH Groupname Nameset group disassociation

The names in Nameset are detached from the group Groupname. If
Nameset is absent, then the group Groupname ceases to exist.

Detach doesn't affect the existence of the names (other than
Groupname). This is contrasted with)ERASE which eliminates the named
objects.

)DETACH GROUP2

)GRP Groupname display group association

The names directly attached to Groupname are displayed in the order
they were attached.

5-11

A group can contain in its Nameset its own name. If so, an action on
the group nameset affects the group as well. A group (say G) can
contain names of other groups. If so, an action on group G will
replace each named group in its Nameset by that group's nameset. Any
one group will only be replaced once. A second occurrence of a group
name means the name itself rather than replacement. More than two
occurrences of a group are ignored. The primary definitions of names
in a Nameset are the unique names after substituting for first
occurrence of any Groupname its Nameset, and retaining the Groupname
on its second occurence.

) CLEAR
CLEAR WS

ABC

)ATTACH A B
)ATTACH B B C
)ATTACH CAD
)GRPS

)ERASE A
NOT D

)GRPS
C

)GRPC
A D

The illustrations at the right show
the nameset tree for group A after
substitution of group namesets1 and
the resulting prinary definitions.
Note that the primary definitions
include groups A and B, and
undcfineQ name D.

5-12

A

I
B
I ~B

C
I~D

A
nameset tree

A

/1"
A D B

primary
definitions

SECTION 6

SYSTEM VARIABLES AND SYSTEM FUNCTIONS

GENERAL.

The system variables provided within each workspace of the APL
processor specially tailor the processing to the application of that
workspace.

The s~stem functions are provided to permit the user to perform many
funct10ns that query or alter the run environment of the account or to
query the total environment of the APL system.

The classes of system functions include:

Function transformations
Name functions
Debugging aids
Execution controls
Special character sets
Status inquiries
I-bar primitive functions

6-1

SYSTEM VARIABLES.

System variables are provided in a workspace and used by the APL
processor to specialize its behavior for that workspace. These
variables may be made local to a defined function. Values in
limited ranges may be assigned to these variables.

System Name . Purpose Default Value Range
Variable in clear WS for n

OCT n Compari- relative tolerance used 1E-10 0 THRU
son in comparison with the
Toler- primitive functions:
ance

nuc~rl<S=~>¢€l(DYADIC)

OIO n Index origin for ordinal
Origin counting applies to the

primitive functions:
1 o OR 1

1.V?[]~

Opp n Print The precision with
Precision which fractional or

1

scientific notation 10 1 THRU 12
numbers are rounded and INTEGER
printed, or formatted
with monadic "

ORL n Random Starting value for
Link random number generator 131131704506 0 TO 1+2*39

6-2

The comparison tolerance is a relative tolerance used in comparisons.
It helps resolve the problem of the finite precision with which
numbers are represented within the computer. In a dyadic function the
comparison tolerance is relative to the left argument. For example:

A=B++DCT~I(A-B)tA
A<B++DCT~(B-A)tA

The comparison tolerance is also used for domain checking
domain of the function is non-continuous, e.g., integer
domain.

where the
or Boolean

The index origin affects the denumeration of elements and the
coordinates in an array.

origin

o
1

denumeration begins with

o
1

The index origin affects the following:

~ permute (dyadic left argument)
1 indices (monadic), index (dyadic)
., grade up, grade down
? roll (monadic), deal (dyadic)

subscripts on arrays [bracketed]
coordinate selector [bracketed]
laminator [bracketed]
file component selector [bracketed]

The print precision affects the result of all numeric outputs in
fractional or exponential form. No more than 0 PP significant digits
are displayed. Rounding is envoked first. Integers are displayed
with full precision so long as their magnitude is less than (2*39)-1.
Also, print precision affects the character object result of default
formatting using ~.

The random link affects the result of the roll and deal functions.
The random link is used as the seed to the random number generator.
Each time the random number generator is used the seed is used to
determine the next value(s) delivered. Each use delivers a result and
changes the seed. Given the same seed and same range, the random
number generator will generate the same random numbers (and return the
same new seed).

6-3

FUNCTION TRANSFORMATIONS.

System Name
Function

OCR N Canonic
Representation

DVR N Vector
Representation

DFX C Fix

Result

Character matrix. Each row
is line of function N.
First row is function
header. Line numbers and
opening and closing dels
are omitted.

Character vector with each
line of function N
terminated by return
character after the last
non-blank.

Defined function. Function
name will be that from
first line of C. If that
name is local to function,
the fixed function is also
local. If an explicit
result is required, it is
the name of the function.

Remarks

N is name of
unlocked de­
fined function.
If not, result
has shape 0 O.

N is name of
unlocked de­
fined function.
If not, result
is empty
vector.

C is either
character
vector or
matrix in form
from canonic or
vector rep­
resentation.

Canonic Representation of a function is useful for user-written
function editing routines where line rearrangement, function merging
or separation is desired. Note that the shape of the result is number
of lines (including header) by length of longest line. Thus this form
generally takes more space than vector representation, particulary if
the line lenghts differ.

The Vector Representation is usually the more compact representation,
and is the preferred form for storing functions as file components.

A Fix of a character representation returns the function in unexecuted
form. This form takes the same space as a)COPY7 slightly more than
after first execution.

If the defined function name resulting from a Fix is local to some
function in the calling sequence resulting in executing the Fix, then
the fixed function is local to that function. Of course, that name at
the time of the Fix must not be assigned a meaning. The definition of
the fixed function disappears upon exit of the function to which the
fixed function is local.

6-4

NAME FUNCTIONS.

Name system functions work with a string or matrix of names.

System Name Result
Function

ONL N

AONL N

ONC C

DEX C

Name List Matrix of names of
objects of specified
kinds in the current
environment. Names
are alphabetized, left
justified, one per
row.

Selective
Name List

Name
Classifi­
cation

Expunge

Like Name List except
only includes names
starting with a char­
acter in String A.

Vector of integers
indicating in the
current environment
for corresponding
name in character
string or matrix C.

If required, the
result is a Boolean
vector with ones
everyplace the
corresponding name
from C was expunged.

Remarks

N is numeric scalar or
vector selecting
object kinds:

1 labels
2 variables
3 functions
4 other (groups)

A is chosen from letters,
underscored letters, A
and A.

Result value meanings:
o no associated object
1 label
2 variable
3 function
4 other (group)

Objects corresponding
to names in character
vector or matrix C
are expunged. The
objects must not be
labels, groups or
executing, suspended or
pendent functions.

A character
contain only
name per row.

string argument to name
one name. A character

classification or
array argument must

expunge must
contain one

The most local occurrence of a name in the current environment
determines its kind. More global occurrences may be shielded by a
local occurrence as a local name or label in a function currently in
execution, pending or suspended in the state indicator. The more
global meaning returns upon exit from the function to which the name
is local.

Expunge may be used to eliminate current meanings for objects from the
current environment so long as they are not labels or functions
currently in execution, pending or suspended. Unlike) ERASE, local
variables or functions not in the state indicator can be expunged.

6-5

DEBUGGING AIDS.

The following system functions are oriented to lines of unlocked user­
defined functions.

Monadic
All lines

oST F

oSS F

OSM F

oRT F

DRS F

oRM F

oQT F

oQS F

oQM F

OMV F

Where

Name

Set Trace

Set Stop

Set Monitor

Reset Trace

Reset Stop

Reset Monitor

Query Trace

Query Stop

Query Monitor

Monitor Values

Dyadic
Specified
Lines

N oST F

N oSS F

N oSS F

N ORTF

N DRS F

NORM F

N oMV F

Result

L

L

L

L

L

L

B

B

B

v

F is character vector name of unlocked user-defined
function

N is numeric vector of line numbers
L is numeric vector of lines with property (set, reset);

this result is returned only if required.
B is Boolean vector, 1 if property set, 0 if reset

one element per line including header.
V is vector of numeric monitored values accumulated

during executions since set.

6-6

The monadic forms apply to all lines including the header line O.
dyadic forms apply only to altering the current setting for
numbers in the left argument.

The
line

During function execution the effects of the aids are as follows on
encountering a line in which set:

header line 0 body line

Trace result returned by function result

stop suspend prior to return

Monitor increment number of calls

The trace result forms are:

Function-name [Line-number]

Function-name [Line-number]

suspend prior to execution

increment CPU time in
line execution

Type (Shape) Value

The first form occurs if no result is possible; otherwise, the second
form occurs.

The type is C for character or N for numeric. The Shape is a numeric
vector; the Value is the normal displayed value.

The stop result form is:

Function-name [Line-number]*

The monitor values are internally accumulated to more precision than
they are displayed. The ceiling of the accumulated number of
milliseconds is displayed. A time of 0 is shown only for unmonitored
lines or monitored lines that have not been executed. Thus,
monitoring all lines over a period of execution is an effective way to
determine if some program path has reached each line, and also the
time spent in each line.

If a line contains a calIon another function, any time spent in that
called function would be accumulated there, instead of in the calling
line.

6-7

EXECUTION CONTROLS.

The normal execution can be altered using the following system
functions.

System Name
Function

oDL D Delay

OED S Edit

B OED S Phrase Edit

oER S Error

Result

Optional actual
delay D

edited line after
editing

edited line after
editing string S
according to
Boolean vector B

error message S dis­
played, no other
explicit result

Remarks

in seconds

uses normal line
editing on string S

ones in Bare
phrase terminators

use in locked function

The specified Delay amount D is an integer indicating m~n~mum desired
execution pause before resumption. The actual delay, returned if
required, also includes time awaiting an APL processor once the
specified delay has occurred.

Each Edit function accepts a character string as right argument. This
string may not include any of the following characters: linefeed,
return, backspace, tab or null. The monadic form displays the string
and returns to the left margin for entry of a line of edit characters
applied to the characters above: " for delete, '.' for phrase end
before, and spaces for no change. The next line displays the first
phrase for editing. The ATTN causes entry of the next phrase, etc.
The dyadic form uses the Boolean left argument (of same length as the
string) with each one indicating a phrase end. This avoids the line
of entered edit characters.

The Error message is displayed, an error indication prompt is given,
and execution is suspended. This is principally useful in a locked
function. In that case, the error message results in the suspension
point indicator being in the line of the calling function containing
the call, rather than in the line containing the error message.

6-8

SPECIAL CHARACTER SETS.

The special character sets below are niladic value returning system
functions.

System Name Result Remarks
Function

Backspace scalar backspace character in same line

Linefeed scalar linefeed character no return

DB

OL

DR Return scalar carrier return character includes line feed

OT

ON

OA

OD

T~ scalar t~ character to next physical tab

Null scalar null character no effect on display

Alphabet

Digits

character vector 'ABC ••• Z'

character vector,'0123QS6789'

These characters are processed internally to APL just as any other
elements of a character data object. The only special properties of
the first five are associated with output processing for terminal
display.

The Backspace character can be used to create overstruck output
characters not in the allowed character set. It can not be used to
move to the left of the start of the display line.

The Return character causes completion of an output line, just as the
RETN key does for input. It includes both line feed and cursor return
to the left margin.

The Linefeed character can be used for advancing the display line
while the cursor is positioned into a line with return.

In cases where the cursor is at the left margin, the Linefeed and
Return have the same external effect.

The Tab character can be used to prepare output with irregular
terminal physical tab settings. In this use, the normal APL editing
to insert tabs in output for display should be disabled. The t~
interval should be set to 0 by)TABS o.
The Null character takes one unit of transmission time when
the display, but has no visual effect on the normal static
Its principal use will be with non-standard display devices
plotters that may require time to complete a prior command.

sent to
display.

such as

6-9

STATUS INQUIRIES.

The status inquiries below are
functions.

niladic value returning system

System Name
Function

OPT Print tabs

oPW Print width

oWI Workspace ID

DAN Account name

oAI Accounting
Information

oLC Line count

oTS Time Stamp

oUL User load

oWA Working area

DNA Name area

oLA Library area

oFA File area

Result Remarks

uniform tab interval assumed set by)Tab~ £
for terminal

maximum characters per set by)Width n
display line

character vector:)WSID
workspace identifier

character vector: X29~~oAN
account identifier

computer time, connect in milliseconds
time this session

numeric vector: includes x27~~oLC
line on which line count
occurs, then other line numbers of
functions in the state indicator

numeric vector: year,
month, day, hour, minute,
second, millisecond

number of user accounts
on APL

bytes remaining,
bytes in use in workspace

slots remaining, slots
assigned in name table

workspace slots remaining,
workspaces in)LIB

File slots remaining,
files in)FILES

Example
1974 12 31
23 59 59 999

X23~~oUL

The use of the above status inquiries are generally preferable to the
related I-bar primitives. The sum reductions of the last two area
inquiries provides the quotas established by the installation for the
account. The sum reduction of Name Area is the number of symbols in
the name table, set by)SYMS n for the clear workspace default, or
)CLEAR n for a particular workspace.

6-10

I-BAR PRIMITIVE FUNCTIONS.

The set of monadic primitive functions defined in early APL systems
for querying the environment have the form:

where N is an integer between 20 and 33, excluding 28.

These primitives are redundant, having been replaced by the system
functions. Since they may exist in old APL programs, they are
described here. Note that replacements may have different units, or
may be vector instead of scalar.

Time units below are sixtieths of a second for I-bar results:

Primitive Result

I20

I21

I22

I23

I24

I25

I26

I27

I29

I30

I31

Scalar time of day

Scalar CPU time used this session

Scalar bytes remaining unused in the
workspace

Scalar number of users currently signed on

Scalar time of day at start of the work
session

Scalar date in form ~~nnYY where M,n,Y are
digits representing month, day, and year
respectively

Scalar first element of I27

Vector of line numbers in state indicator.
First element is line being executed, or the
one last suspended. The next element is the
line which called the first, or the prior
suspension, etc.

Character vector
identification.

containing account

Scalar positions used in name table

Scalar positions available in name table

I32 Scalar CPU time remaining before use quota is
exhausted; if 0, then no quota exists.

I33 Scalar workspaces remaining unused

Approximate
Replacement

3.j.OTS

ltOAI

ltOWA

OUL

1001.10011¢3tO~S

ltOLC

OLC

DAN

l.j.DNA

ltONA

ltOLA

6-11

Note that there is no I-bar 28, keyboard unlocked time)implemented on
some other APL implementations. This time is not available in APL/700
since the actual times for keyboard unlocking (after completion of
transaction processing and any display information) and for acceptance
of data from a terminal are queued and not known to the APL processor.
A high approximation to this time is the difference between the
connect time and CPU time this session. It should be reduced by the
time for transmitting display information, and the queueing time
awaiting an APL processor. Neither of these times are available in
APL/700.

6-12

SECTION 7

FILE SYSTEM OPERATORS

GENERAL.

The APL/700 System includes a filing system which provides users with
effective and convenient means to retain and access APL data objects
outside the workspace. Defined functions can be represented as data
objects and subsequently can be fixed back into the functions. Thus,
a user can work with more data or functions than will fit in a
workspace at one time.

FILE NAME.

Each file has a name unique among the file names of the account.

File Name is (Acct) Name [Password]

where File Name and optional Password are strings of 1 to 12
alphanumeric characters starting with a letter.

The optional Acct is the account name required if the file is owned by
another account. The Acct is a string of 1 to' 6 alphanumeric
characters.

FILE COMPONENTS.

At any time a file has a number of components. These are numbered
starting with the index origin. Any component may be null, or may
contain a value. A component can contain any APL data object created
in a workspace and subsequently assigned to the file component. Each
component is independent, and can have any type, rank or size. In
particular, some components can be user created directories to the
file. A null component is one that has no value (this is different
from containing an empty vector as a value).

FILE LIMITS.

Any file has a maximum of 1000 component slots. The installation
allocates to an account a maximum number of files, and a maximum
number of bytes per file. There is a system imposed maximum number of
files that can be concurrently opened by anyone user.

7-1

FILE OPENING, ACTIVE AND INACTIVE STATUS.

A file may be open in one or more accounts. A file has active status
if any account has the file open, otherwise, the file is inactive.

A file is opened for an account when first any file operation is
executed other than create, rename, destroy, or file existence test.
A file remains open until either explicit release, or account sign­
off.

NOTES.

The file system operators for APL version 2.6 are being extended in
utility for version 2.7.

File updating integrity over system failure has been improved. The
period over which an update transaction occurs may be extensive. Any
transaction entries while the user has the file held are provisional.
They become permanent only when a file free is'executed as part of a
user-defined function. Any return to calculator mode before the free
occurs removes the provisional transaction. This capability protects
the file from being partially updated.

Some file operators return the file name if required. This permits a
sequence of file operations to be executed in the same line of a
defined function.

Additional operators are provided including file rename, file reverse,
file compress, file expand, file release, and some additional queries.

One restriction is added. A file can not contain more than 1000
components.

FILE SYSTEM PRIMITIVE OPERATORS.

A group of primitive operators is provided for file management. Each
file operator is denoted by overstriking the quad (box) symbol with
another symbol. The resulting operator has generally similar meaning
to the APL primitive functions using the same second symbol.

Many of the file operators have both monadic and dyadic forms. The
right argument of each is the File Name, symbolically represented as
'F'.

7-2

FILE CREATE, CHANGE PASSWORD, RENAME AND DESTROY. ~ CREATE FILE

A file can be created or destroyed, and its pass­
word or name can be changed.

~ CHANGE PASSWORD
~ RENAME FILE
fill DESTROY FILE

Forms:

~ F
~ [O/N] F

G ~ F
rYI F

Where: F
G
0
N

is
is
is
is

Actions/Results:

Create:

Change
Password:

Rename
File:

Destroy:

create file
Change password on file
Rename file to become G.
Destroy file

own
new
old
new

account File Name, may include password
File Name for own account
password for file F, empty if none previously
password for file F, empty if none desired

Creates file with name File Name and no components.
If required, the file name is returned.
Does not open file.

Changes password on existing file.
If required, the file name is returned.

Renames file F to become G. Does not open file.

The file File Name owned by this account is destroyed
if it exists and is not currently held by any other
user.
If required, returns 1 if successful, 0 otherwise.

Conditions/Options:

Create:

Change
Password:

Rename
File:

File name must not already exist in account.

Only the file owner can change the password. This
can only be done when the file is not held by
another account.

Add password if 0 is empty.
Change password if 0 and N are not empty.
Delete password if N is empty.

A file can only be renamed if inactive.

Destroy: The File Name including lock if any must be provided.
A file of another account cannot be destroyed.

Examples:

Il:J'NEWFILENAME'
Il:J'LOCKEDFILE[KEY] ,
~'NEWFILENAME[/KEY1]'
0'LOCKEDFILE[KEY] ,

7-3

ffi NULL COMPONENT
ffi WRITE COMPONENT
E3 READ COMPONENT

FILE COMPONENT NULL, WRITE AND READ.

specific file components can be set null, written into or read.

Forms:

ffi [K] F NULL component K of file F
A ffi [K] F WRITE A to component K of file F

E3 [K] F READ component K of file F

Where: F is File Name
K is component number
A is any APL data object

Actions/Results:

NULL: Destroys prior value of component K.
If required, returns File Name.

WRITE: Replaces prior value of component K by value A.
If required, returns File Name.

READ: Returns the non-null value of component K.

Conditions/Options:

NULL:

1;"7RITE:

READ:

K must be an existing component number.

K must be either an existing component number
greater than the prior last component number.
latter case, an append to the end is done
(This append is not available in 2.6 release).

The component must be non-null.

Examples:

7-4

ffi[3] ' FILENAME'
2 5ffi[2] 'FILENAME'
'SMITH'ffi[3] 'FILENAME'
E3[2] , FILENAME'

2 5 S[3]'FILENAME'
SMITH

or one
In the

instead.

~ READ AND POP FIRST
~ APPEND BEFORE
~ READ AND POP LAST
~ APPEND AFTER

FILE COMPONENT POP AND APPEND.

The file components may be treated as a stack or a queue. A component
may be appended to either end. The component at either end may be
read and removed (popped).

Forms:

@ F
~ F

A ~ F
A ~ F

Read and pop first component of File
Read and pop last component of File
Append component before components of File
Append component after components of File

Where: F is File Name
A is any ~~L data object

Actions/Results:

Pop: The result returned is the indicated first (last)
component. That component must be non-null.
The popped component is removed from the file. If
first, the component numbers of the old components
are decreased by 1.

Append: The data object is appended before (after) the
existing file components. If before, the component
numbers of the old components are increased by 1.

Examples:

If required, the file name is returned.

'JONES'~ 'PERSONS'
'SMITH'~'PERSONS'
(2 2 p 1 1 4 7) ~'FILENAME'
~ 'PERSONS'

JONES
~'FILENAME'

1 1
4 7

7-5

~ REVERSE ORDER
~ ROTATE CIRCULAR

FILE Cm·1PONENT REVERSE AND ROTATE.

The component order may be reversed or circularly rotated. Like the
primitive reverse and rotate functions.

Form:

~ F
I ~ F

Where:

Reverse component order in file
Rotate circularly the components in file

F is File Name
I is integer

Actions/Results:

Reverse: The component order of File F is reversed~
i.e., the first changes with the last,
the second changes with the second last, etc.
If required, the File Name is returned.

Rotate: The components of file F are rotated circularly by an
amount I.
If I is negative, this is effectively a right rotate.
If required, the File Name is returned.

Conditions/Options:

Reverse: Not available in 2.6 release.

Rotate: I is effectively the (number of components) residue
of I. I=1 causes the first component to become the
last, the second component to become the first, etc.

Examples:

7-6

fJ 'FILENAME ,
2f;;l'FILE[LOCKJ'
-3fJ'FILENAME'

ffi TAKE COMPONENTS
m DROP COMPONENTS

FILE COMPONENT TAKE AND DROP.

The remaining file components may be the result of taking or dropping
components from either end. These are like the primitive take and
drop except that they are destructive of components dropped or not
taken.

Form:

I IFl F
I m F

Take I components from File
Drop I components from File

Where: F is File Name
I is integer magnitudes 1000

I>O applies to components from start of file
I<O applies to components from end of file

Actions/Results:

Take:

Drop:

The resulting file F has I components.
If required, the file name is returned.

The resulting file F has I components dropped.
If required, the file name is returned.

Conditions/Options:

Take:

Drop:

Examples:

If the magnitude of I exceeds the number of components
previously in the file, sufficient null components are
appended to the file at the appropriate end:

before if I<O
after if I>O

A minimum of 0 components remain.

Sffi'FILENAME'
-2 3f]' FILENAME'
2flP FILENAME'

7-7

~ COMPRESS COMPONENTS
~ EXPAND COMPONENTS

FILE COMPONENT COMPRESS AND EXPAND.

The ordered set of 'file components can be expanded or compressed.
These operators are similar to the primitive expand and compress
functions.

Forms:

B 0 F
B ~ F

Where:

Compress components of File
Expand components of File

F is File Name
B is Boolean vector

Actions/Results:

Compress: The result is an ordered component set selected
in order fram the components previously in F,
wherever a 1 exists in the Boolean B.
The components o~ the original file are destroyed
wherever a 0 exists in B.
If required, the file name is returned.

Expand: The result is an expanded, ordered component set
preserving the order of the original components
within which null components are inserted wherever
zeros exist in Boolean B.
If required, the file name is returned.

Conditions/Options:

Compress: The length of B must be the same as the number of
components in the original file F. (pB)=3~F

Expand: The number of ones in B must be the same as the number
of components in the original file F. (+/B)=3~F

Examples:

1 1 0 1 ~'FILENAME'
1 0 1 0 1 ~'FILENAME'

7-8

~ FILE EXISTENCE
~ QUERY FILE ATTRIBUTE

FILE EXISTENCE AND QUERY.

The existence and attributes of a file can be determined.

Forms:

~ F
I ~ F

Where:

Actions/Results:

Test existence of file
Query attribute of file

F is File Name
I is integer

Existence: Result is Boolean: 1 if file named F exists, 0
otherwise. Does not open file.

Query: I Result
1 Current size of file in bytes.
2 Maximum size of file in bytes.
3 Number of components in file, including nulls.
4* Boolean, 1 if any modification since file was last

organized.
5* Number of accounts with file open.
6* Cycle number 'of last reorganization.
7* Last update time stamp.

Conditions/Options:

Query: The options marked with * are not implemented in 2.6
release.

Examples:

1

o

14

2 Maximum size of file is an installation option.
3 Maximum number of components is 1000.
5 Whenever the number of accounts with file open goes

to 0, the file is reorganized if it has been
modified.

6 Reorganization causes merging of the update file
into the main file. The reorganized'file
is compact and in indexed sequential form. The file
becomes temporarily unavailable during reorgan­
ization. Reorganization is initiated any time the
file becomes inactive.

7 The time stamp is a 7 element vector - year, month
day, hour, minute, second, millisecond - indicating
time of last modification to the file.

~'FILENAME'

~'NOSUCH'

3~'FILENAME'

7-9

!3 COMPONENT MAP

FILE COMPONENT MAP.

The components of a file that are null and non-null can be determined.

Form:

El F Determine map of file

Where: F is File Name

Actions/Results:

Example:

100

7-10

The result is a Boolean vector with length
the number of components. In component order,
the resulting element is 0 if the corresponding
component is null; 1 if the corresponding component
is non-null.

~'FILE'
1 2 3 4 ~'FILE'
3 Ifl'FILE'
El'FILE'

FILE HOLD, FREE, PREEMPT.

~ HOLD FILE
~ FREE FILE
B PREEMPT HOLD

In file use shared among several accounts, exclusive use can be
achieved for critical up-dates.

Forms:

~F
~F
BF

Where:

Hold file for exclusive use
Free hold on file
Premptively hold file

F is File Name

Actions/Results:

Hold: If the file is not currently being held,
a hold is placed on the file which prevents any other
account from accessing it.

Free:

If already held by another account, hold causes a wait
until freed.
If required, the file name is returned.

A held file is freed from exclusive use.
If required, the file name is returned.

Preempt: The account owning the file can preemptively break an
existing hold by some other account and place its
own hold on the file.
This causes any up-date in progress by the other
account to be discarded.
If required, the file name is returned.

Conditions/ Options:

Hold:

Free:

A hold only persists while execution continues in a
defined function. Any return to calculator mode
(or file destroy while held) breaks the hold.

In version 2.6, actual file up-dates take place as
indicated by the file operations.
In version 2.7, the actual file up-dates take place
provisionally into the up-date file.
They are accepted as up-dates when the free occurs.
Any interruption before the free voids the provisional
entries.

Examples:

~'(OTHER)FILE'
~'(OTHER)FILE'

A'PILE'

7-11

~ FILE SYSTEM INTERROGATE

FILE SYSTEM INTERROGATE.

Usage properties of the file system can be determined.

Form:

~ I Interrogate file system

Where: I is integer

Actions/Results:

I

1
2

Returns current number of accounts using files.
Returns current total number of files that are active.

Conditions/Options:

Neither number may exceed installation set maxima.

Examples:

5

11

7-12

SECTION 8

ERROR REPORTS AND INTERPRETATION

GENERAL.

The APL/700 System has a comprehensive error-reporting capability that
aids users in determining the cause of errors and resultant corrective
action. This capability is one of the advantages of the conversation­
al, interactive APL/700 environment in that it enables the user to ex­
periment very easily by the trial-and-error method. However, the user
should be careful not to incorractly generalize or misinterpret the
results of his experimentation.

This section provides descriptions of the various types and forms of
errors and provides sufficient background information to aid the user
in experimentation or interpreting and correcting errors.. A complete
listing of APL/700 error reports is contained in Table 8-1.

ERROR REPORT FORMATS.

When an instruction/command is entered into the APL/700 System, the
computer attempts to execute it. If the computer cannot complete the
execution process required, it stops and returns an error message to
the user terminal. Each error message consists o~ up to three output
lines, as applicable. The first line is always a typed report identi­
fying the error in the following format:

ERROR REPORT

If an error occurs during a definition mode, the message also contains
a second line which restates the instruction in the form that the sys­
tem reads it. The third line contains a caret symbol (A) marking the
point in the instruction at which the operation encountered trouble and
could not continue. For example, if the length of a vector argument is
incorrectly stated for an operation using one or more vector arguments,
the entry and error message format is as follows:

8 6 7+5 3

LENGTH ERROR

8 6 7+5 3
A

The one variation to the above format is in the case of the "CHARACTER
ERROR" report, where an invalid overstrike was typed to form an invalid
character (such as overstriking x with +). The squat quad (0) symbol

8-1

("[,, overstruck with "J") is used instead of the caret to mark this
error.

The "Report" column of Table 8-1 lists, in alphabetical order, all of
the possible error reports provided by APL/700. Each report is dis­
played in the exact form shown in the column, except that it is suf­
fixed and prefixed by asterisks (stars) as noted previously. The
"Definitipn" column of Table 8-1 lists the system interpretation of
the cause'for each report. Where applicable, relevant statements are
provided to aid in corrective action.

TYPES AND FORMS OF ERRORS.

There are several types of errors comprising the complement of error
reports: the limit type, the file type, and the trtie error type. A
limit type error occurs when the user tries to do something which ex­
ceeds the capacity of the computer or the capability of APL/700.' For
example, a "SPACE LIMIT" report occurs when the user attempts to use
more space than is available in his active workspace. As shown in
Table 8-1, a large number of possible errors relate to file system op­
erations. For example, a "FILE USERS LIMIT" report occurs when the
maximum number of file users are currently using the file system and
an additional request cannot be accepted. A "FILE LOCKED" report is
returned when the user enters an incorrect lock or no lock in a locked
firr.e reference.

Many errors may result from true user or transmission errors, such
as syntax or context errors. These may be caused by a user typing mis­
take or a system malfunction. When an instruction is entered by a
user, first the computer has to read it, then it has to execute it.
Two types of errors may cause the camputer to read the instruction in­
correctly, or not read it at all. One is a transmission error, which
may be caused by electrical faults or noisy transmission lines. The
other is a character error, which may arise when the input doesn't re­
fer to an allowable APL character, even though the transmission is
technically adequate.

User errors are caused by various reasons. The user may misunderstand
the proper use of an operation, try to carry out a sequence of instruc­
tions in the wrong order, or have forgotten what value is associated
with a variable. A great many errors are simply mistypings. The com­
puter, of course has no way of knowing what the user intended; it ex­
ecutes the instructions, to the best of its ability, until it encoun­
ters something that it cannot execute. Then it reports the trouble
~hat it has encountered. The system classification of the error is
the system interpretation of the error; it cannot guess how the error
departs from what the user intended. For example, if the user mis­
spells the name of a variable, the computer may read this as a refer­
ence to some other variable, and it will report an error only if the
value of that other variable makes the instruction impossible to exe­
cute. Thus, the computer can't stop and report the spelling error,
even if it is the true cause of the error.

8-2

Similarly, if the user types a parenthesis in the wrong location, or
omits a required entry, the computer can only report what problem it
encountered as it tried to execute the instruction. Thus~ while the
computer reports the type of error it has found, it can't tell the
user what he should have typed. This has to be determined by the user
alone.

Normally, when the computer finds an error in an instruction, the in­
struction has to be edited or reentered. The value of an intermediate
expression within the instruction is not saved~ unless the instruction
specifically directs that it should be stored as the value of a named
variable. This arises only when there is a specification arrow fur­
ther to the right (and hence executed earlier) than the caret that in­
dicates where the trouble is. If the result of an intermediate step
has been stored, only the part of the instruction that appears to its
left has to be reentered.

The following paragraphs elaborate on some of the more common errors
that may be encountered.

SYNTAX ERROR.

When the user enters an expression "'Whose syntax is invalid, the "SYN­
TAX ERROR" message is reported. Some examples of invalid syntax en­
tries are as follows:

a. Two variable names are juxtaposed (placed side-by-side) with,
no indication of the operation that is to be performed on
them.

b. An operator symbol is used with no indication of a value on
which it is to operate.

c. A parenthesis or bracket is opened but not closed, or closed
but; not opened.

d. A defined function is used in a way that is inqonsistent with
the syntax specified in its header.

DEFINITION ERROR.

When the user enters an instruction employing the del (V) symbol im­
properly, a "DEFINITION ERROR" message i.s reported. Some of the in­
correct usages of the definition mode are as follows:

a. The del (V) symbol is not the first character in the instruc­
tion, nor within quotes.

b. An attempt was made to reopen the definition of a function
whose name appears in the state indicator other than on top,
or to alter the header line of the suspended function on top
of the state indicator. In this case, check the state indi­
cator by entering ")SI". Reset the state indicator by enter­
ing ")RESET".

8-3

c. An attempt was made to start a new definition for a ~ction
whose header contains a result, an argument, or a local vari­
able when a definition for a ~ction of that name exists in
the workspace.

d. While in the definition mode, a defective request was entered
to edit a line of the function.

DOMAIN ERROR.

When an instruction entry asks an APL operator to operate on a value
outside the domain that the operator can handle, a "DOMAIN ERROR" mes­
sage is reported. A domain error ~ill also occur if an attempt is
made to divide by zero.

TYPE ERROR.

A "TYPE ERROR" message will be reported if the type of entry is incor­
rect for the operation being performed. That is, if an attempt is
made to do arithmetic on a value which is not a number, or to catenate
a literal character object with a numeric object, or to insert charac­
ter elements into a numeric array, or to insert numeric elements into
a character array.

VALUE ERROR.

When a "VALUE ERROR" message is reported, it indicates that the user­
entered instruction refers to a name for which no value can be found
in the designated workspace. This may arise because the user failed
to assign a value to that name to make it a variable, or because he
misspelled the name so that the computer does not recognize it, or
failed to define a function of that name. In this case, the situation
may be corrected by entering a value for the missing variable, or cor­
recting the misspelled name.

Value errors may also arise if an attempt is made to make use of the
result of a defined ~ction, but the function definition fails to pro­
vide one. This can be remedied by rewriting the function definition
so as to provide an explicit result, or (if it already has one) by
making sure that the body of the definition in fact specifies a value
for the result before execution of the function is complete.

RANK ERROR.

The rank of a variable is the number of dimensions it has. A "RANK
ERROR" message is reported if an entered instruction uses variables of
different rank for a function which requires that the ranks be matched,
or a variable whose rank is too large for the particular function.
While the scalar functions extend to arrays of any rank, a number of
the other functions, such as monadic 1, or the left aFgument of ~, can
take arguments only of rank 1 or rank O.

8-4

Report

ACCOUNT ACTIVE

ACCT-NAME ERROR

BUFFER LIMIT

CHARACTER ERROR

CONTEXT ERROR

Table 8-1

Error Reports

Definition

An attempt was made to sign on an account
that is already signed on to APL.

A reference was made to a nonexistent account;
or the name was improperly formed.

An attempt was made to execute a string longer
than the buffer, or an attempt was made to set
the prompt to be a string longer than the
buffer. The buffer length is 130 characters.

An invalid overstrike was entered. The loca­
tions of the invalid overstrikes are indicated
by the squat quad (0) symbol.

A name was used out of context with its current
definition.

CONTROL ERROR A parameter to a command was incorrect.

DEFINITION ERROR An attempt was made to define a new function
with a name that already exists, or the func­
tion header was improperly 'formed. (Refer to
Section 4.)

DIMENSION ERROR The dimension specified does not exist. (This
occurs with a function which operates on one
of several dimensions.)

DOMAIN ERROR The argument of a function was outside the
range of acceptable values for that argument
to the function.

DUP-NAME ERROR . An attempt was made to give a local name multi-
ple definitions of different classifications.

EDIT ERROR Something other than a' ,'I', or '.' edit­
ing control symbol was typed beneath a line
when in the line edit mode.

FILE ACTIVE LIMIT The user has the maximum number of active files
permitted; no more requests to make more files
active can be accepted.

FILE ALREADY EXISTS An attempt was made to create a file that al­
ready exists.

8-5

Report

FILE ERROR

FILE INDEX ERROR

FILE LOCKED

FILE-NAME ERROR

FILE NONCE ERROR

FILE NONEXISTENT

FILE QUOTA LIMIT

FILE SPACE LIMIT

FILE SYSTEM ERROR

FILE SYSTEM LIMIT

FILE UNAVAILABLE

FILE USERS LIMIT

FILE VALUE ERROR

8-6

Table 8-1 (cont)

Error Reports

Definition

Execution of APL was halted, or a line-drop
occurred while a file operation was in process.

An attempt was made to read or write a com­
ponent of a file that does not exist in the
file.

No password, or an incorrect password, was
used in a file reference.

An attempt was made to use an improperly
formed name as a file name.

The file operation referenced is not presently
implemented.

The referenced file does not exist.

An attempt was made to create more files than
the account is permitted.

The area reserved for the file has been ex­
hausted.

An unexpected execution error occurred in the
file system. (This should be reported to the
system manager; all relevant output should
be saved.)

The maximum number of files allowed to be
active are currently active; no more requests
that activate a new file can be accepted at
present.

The referenced file is unavailable at this
time.

The maximum allowable number of file users
are currently using the file system; no more
file users can be accepted at this time.

An attempt was made to access a null component
of a file. The file operation was comp1eted.~

Report

FORMAT ERROR

GRP-NAME ERROR

INDEX ERROR

INTEGER LIMIT

INTERRUPT ERROR

LENGTH ERROR

NAME ERROR

NONCE ERROR

NO SHARES

NUMBER LIMIT

PASSWORD ERROR

RANK ERROR

RANK LIMIT

Table 8-1 (cont)

Error Reports

Definition

The left argument to the format operator is
not a valid format.

A reference was made to a nonexistent group.

An index into an array was out of the array
bounds.

A number larger than the largest integer that
may be represented by the machine was used
where an integer was needed. (The magnitude
of the largest integer is 549755813887, or
-1+2*39.)

An error was forced at a non-suspendable point
by striking'the attention key twice.

The length of a vector is incorrect for an
operation using one or more vector arguments.

An argument to a system function requiring a
name was given an improperly formed name, or
a name with incorrect meaning was given.

An attempt was made to use a feature that is
not presently implemented.

The shared variable facility is not available
at this time.

The result of a computation is a number greater
than the largest number that the machine can
represent. (The magnitude of this number is
4.3l359l46674E68.)

An incorrect password was used.

The rank of an object is incorrect for the
operation being done.

An attempt was made to create a structure
whose rank was greater than the maximum allow­
able. (Data structures may not exceed rank
16.)

8-7

Report

SHAPE ERROR

SHARE QUOTA LIMIT

SHARE SPACE LIMIT

SIGN-ON ERROR

SIZE ERROR

SPACE LIMIT

STATE ERROR

SYMBOLS LIMIT

SYNTAX ERROR

SYSTEM LIMIT

TIME-QUOTA LIMIT

TYPE ERROR

WS-NAME ERROR

8-8

Table 8-1 (cont)

Error Reports

Definition

The shapes of objects are incompatible for the
operation to be performed.

An attempt was made to share more variables
than the processor is permitted to share.

An attempt was made to use more shared variable
space than the processor is permitted.

An incorrect sign-on entry was made.

A one-element object was needed for an opera­
tion, but it was not found.

An attempt was made to use more space than is
available in the active workspace.

A edit request was made on a function which
would cause the state indicator to be incorrect
if the edit were performed.

An attempt was made to create more symbols than
there is space for in the symbol table. (Un­
less otherwise specified by the user, there is
space for 256 symbols.)

The syntax of the APL expression entry is in­
correct.

APL encountered an unexpected error during
execution. (This problem should be reported
to the system manager; all relevant output
should be saved.)

This error occurs once an account has exceeded
its computer usage quota. The user session is
then terminated, and the quota. must be in­
creased before the account may use APL again.

The type of entry structure is incorrect for
the operation being done.

A reference was made to a nonexistent work­
space, or the name was improperly formed.

Table 8-1 (cont)

Error Reports

Report Definition

WS-QUOTA LIMIT A I) SAVE' could not be executed because the
account has used all available workspace slots.
Some workspaces must be dropped, or the work-
space quota for the account must be increased.

VALUE ERROR An attempt was made to use name (variable) to
which no value has been ·specified.

8-9/8-10

APPENDIX A

GLOSSARY
OF

TERMS, ABBREVIATIONS, AND ACRONYMS

Appendix A

Glossary

The following is a glossary of terms, abbreviations, and acronyms
used in APL/700.

Term,
Abbreviation,
or Acronym

Across (relative
to datum di­
mension)

Along (relative
to datum di­
mension)

APL

Argument

Array

Array Index

Array Origin

Calculator mode

Comment (APL)

Definition

An orientation of a plane relative to the di­
mensions of a datum. Planes are said to be
"across" a dimension when they are orthogonal
(at right angles) to that dimension. A speci­
fic plane orthogonal to a dimension is some­
times referred to as being the i-th plane
"across" that dimension, that is, the i-th
plane encountered travelling "along" a vector
parallel to the axis of that dimension.

An orientation of a vector, relative to the
dimensions of a datum. Vectors can be con­
sidered to be "along" a dimension when they
are parallel to the axis of that dimension.

A Programming Language. An interactive pro­
gramming language for describing procedures
in a time-sharing environment.

A datum (or list) supplied to a function or
procedure.

A datum having shape. An array may be a vec­
tor, a matrix, or an n-dimensional object and
may have one or more elements or no elements.

The index (number location) of an element in
an array, relative to the origin (usually 0
or 1) of that array.

The sub-array selected by holding two or more
indices at the origin value.

Normal mode of APL/700 System, in which in­
structions are executed.

Any niladic text prefixed by the lamp symbol
(61).

A-l

Appendix A

Glossary

Term,
Abbreviation,
or Aoronym

Component

Coordinate

Corner

Datum

Defined
Function

Definition
Mode

Dimension

Dyadic
Function

Element

Empty

Expression
(APL)

Face

File

Fill

Function

A-2

Definition

Any "element" of a list. An APL value is any
character or numeric form (scalar, vector, ma­
trix, or an element of any number of dimensions).

The entire set of plane indices for a particular
point (in a matrix or array), ordered from the
first to the last dimension.

Any n-dimensional sub-array having a number (n)
of its faces that are sub-faces of an n­
dimensional array.

A single data object. It may be a scalar or an
array, but not a list.

A procedure or program made up of steps contain­
ing APL statements and operations and used to
perform a dis~rete function, such as averaging.

Mode in which user defines functions (programs)
and stores them for future use.

One of the independent axes of a shape. Dimen­
sions are numbered from 1 to n for an n­
dimensional object (origin 1) or 0 to n-1
(origin 0).

A function dealing with two arguments (left and
<right).

A single scalar object located by a set of co­
ordinates in an array.

A size-zero datum.

A niladic, monadic, or dyadic procedure; a
value-producing expression; or a mixed output.

The first or last plane "across" any dimension.

A workspace extension with components containing
data objects.

Objects used to expand the size of a datum.
Blanks (spaces) are used 10r charact~r objects;
zeroes (OlS) are used for numeric objects.

A value-producing operation on zero, one, or
two arguments.

Term,
Abbreviation,
or Acronym

Identifier

Index

Index
Position

Index
Sequence

Iteration

Lamp Symbol ~

LSN

Library

Matrix

MCS

Monadic
Function

Niladic
Function

n-Dimensional

Appendix A

Glossary

Definition

A string starting with a letter, an underscored
letter, or a delta (Ll) or underscored delta (Ll)
and followed by any number of additional letters,
deltas, or underscores.

An integer specifying the position of a scalar
element along a dimension of an array.

The position of a plane relative to a dimension
of datum. Index position "i" of a plane selects
the i-th plane along a given dimension.

The conventional order of the sets of indices
of the elements of an array, whereby the last
dimension steps through its values most rapidly.
(As [1;1;lJ[1;1;2J[1;1;3J[1;2;lJ[1;2;2J[1;2;3J
etc.)

A single execution of repetitive program steps
or a loop.

A prefix to denote comment (niladic text).

Logical Station Number (identifying number for
each terminal station in network).

Inactive workspaces stored for later use.

A rank-2 datum (two dimensions).

Message Qontro1 System (data communications
control system).

A function dealing wi.th only one argument
(always right argument).

A function dealing with no argument; produces
no result.

A rank-n datum.
dimensions.)

(A datum having more than two

A-3

Appendix A

Glossary

Term,
Abbreviation,
or Acronym

Pendant
Function

Plane

Position

Prompt (system)

Rank

Scalar

Shape

Shared Variable

Size

Statement
(APL)

String

Surrogate

Suspended
Function

A-4

Definition

A function that is awaiting completion of an­
other function that it called.

Any "slice" of a shaped object that is ortho­
gonal to a given dimension of that object. A
plane "across" the K-th dimension of an n­
dimensional object is a (n-1)-dimensiona1 object
with all but the K-th dimension of the original
retained. Thus a "plane" of a vector is a
scalar element, and a "plane" of a matrix is a
row or column.

An index (location integer) to a list.

A response (from the APL/700 System) that is
normally a five-space indentation on the term­
inal. The terminal is unlocked to accept user
entries.

The number of dimensions of a datum. Scalars
are rank 0, vectors are rank 1, matrices are
rank 2, and n-dimensional arrays are rank n.

A single data object without shape; that is, a
rank-O datum which may be eitber a number or
character.

A vector specifying the number of planes along
each dimension of a datum.

A system variable that is shared among users
and systems.

The number of elements in an array.

An APL expression or comment.

A scalar or vector of characters.

A substitute, or secondary name as applied to
shared-variable handling.

A function which is currently being executed or
whose execution was stopped for some reason
other than a call to another function.

Appendix A

Glossary

Term,
Abbreviations,
or Acronym

System
Variable

Text

Transaction

Type

Vector

Vector Index

Vector Origin

Workspaces
(active/stored)

Definition

A variable used by APL/700 to specialize proces­
sing within a workspace (index origin, print
position, comparison tolerance, and random link).

Any string of characters.

Cycle consisting of user entry, APL processing,
and display of output, as required.

Either character or numeric.

A rank-l datum.

The index which selects each element in a vector
or one index of the indices of an array which
selects each element of a vector in an array which
is described by varying the given index as the
other indices remain constant.

A sub-array selected by holding one vector index
at the origin value.

Allocated blocks of disk and main memory storage
for users to perform current transactions/opera­
tions and save data.

A-5/A-6

tIl
I
I-'

...........
tIl
I
N

, •••• ===.== •••••• ==== •• ===== •• ==.==========.== ••• ==.=.c •• c=::===:: •••• :=:=::: •• ::==.====:: ••• ::= •••• ::: •• = •• ==.== •• == •• =_.1
I I I
I ~RANSACrION CICLE I ~RANSAC~ION EDI~ I
I I I
J ••••••• = •••••• :=: ••••• = •• == •••••••••• =========:::=:=========1=== ••• ==·.· •• ·=.======1
I 1. SlS~EN INI~IA~ES CICLE Bl ~lPING OU~ PROMP~ AND I 1. SlS~EN EITHER (1) TIPES OU~ ~EXT. RETURNS. AND UNLOCKS I
I UNLOCKING KEIBOARD. I KEIBOARD. OR (2) EXDEN~S CURSOR. AND UNLOCKS KBIBOARD. I
I 2. USER SPECIPIES ~RANSACTION Bl ~lPING IN TEX~. I 2. USER ~lPBS IN EDI~ CON~ROLS.
I 3. SlS~EN COMPLE~ES rRANSACTION BI IN~ERPRE~ING ENT-Rl. I INI~IAL INPU~ OF --
I ~lPING OUT APPROPRIA~E DATA OR ERROR MESSAGE. I 4tXIIXlQI SIS~EM ASSUMES MODIFICATION A~ END OP
I AND RETURNING TO STEP 1. I TEX~. POSITIONS CURSOR TO COLUMN
1====.=_= ••• ==.=.===.=.=.==== ••• ====.==========_ •• ===========1 IMNEDIATLI ~O RIGHT OF TEX~. UNLOCKS
I I KEIBOARD AND PROCEEDS A~ S~EP ...
I TIPING RULES I O~HERWISE INPUT OF --
I I ' I' UNDER CHARAC~ER OP ~EX~ 'DELE~ES'.
I==··====s.===.==========.===================================1 '.' UNDER CHARACTER OF TEX~ 'INSER~S'.
I KEI I ACTION r 3. SIS~EN TIPES OU~ REVISED ~EX~. S~OPPING BEPORE NEX~
1==============1=======.=====================================1 INSER~ION POIN~. AND UNLOCKS KEIBOARD.
I ~i4H4~fIH I INSERT CHARACTER INTO TEX~ AT POSITION ,,,. USER ADDS ~O. MODIFIES. OR COMPLETBS CURRENf ENTRI Bl
I I 01' CURSOR. I USUAL rIPING RULES.
I ~f4'1 I POSITION CURSOR ONE SPACE TO RIGH~. I INPUT OF --
I ~4~K~f4~r I POSI~ION CURSOR ONE SPACE fO LEF~. I 4txrlXlQI PROCBEDS AT S~EP 3 I1' CURSOR ~O RIGHT
I X4~ I POSI~ION CURSOR RIGHTWARD ~O NEX~ fAB STOP. I OF CURREN~ TEXT AND MORE ORIGINAL TEXf
I 'lllllrQ I DISCARD ~EX~ ABOVE AND TO RIGHT OF CURSOR. I REMAINS.
I BIX~BI t fERNINATE USER ENTRI PORTION 01' TRANSAC~ION.I I
1 ••• ===.====.=.==.==================================.=== •• :::=::a:_::_:_=:====_.:==::_.=:::= •••• _:== •• =_:::_ ••••• = •••••••• 1

1 ••••••••• == •••• = •• ======= •••• ==== •••• == ••• ====.======c==.::::====.==: ••• ===:===.=._ ••• _.==:= •••••• =:==== ••••• == •• =====··.1
I I
I ATTENTION CONVENTIONS I
I I
1====.===:==========:=:=:.::=:=:: •••• :_===::=:====:::=:=::=========: •• ············=·1
I KEnJOARD 14UllflQII I
I S~A~E INPUT IS ACfION (SEE TRANSACfION EDI~ FOR OVERRIDING USES) I
, ••• = •••• ==
I UNLOCKBD
I
I
I
I
I
I
I
I
I
I
I
I
1----------I LOCKED
I
I
I
I
I
I

==:r======
INITIAL

NON­
INITIAL

a=.a •• c:=:= •• =.=:==:==:._=:==:===========_====:=:==: •• ===:=.:._:== ••• =: •••••• =:=:=_=::=._._ •••• _.=._
MODE I PROMPT I AFTER VALID ENTRI I AFTER ERRONEOUS BNTRI

--------------1--------------1---1------------------------
EXECUTION I FIVE SPACES I EDI~ MOST RECENT APL EXPRESSION THIS LEVEL. I EDIT ERRONEOUS ENTRI.

--------------1--------------1---1
DEFINI~ION I [...] I EDIT MOS~ RECENT DEFINI~ION MODE ENTRI. I

--------------1--------------1---1 o I 01 'l 3-~f I UNLOCK KEIBOARD. I
--------------1--------------1---1

~ I USER DEFINED I UNLOCK KEYBOARD. I
SlSTEM 'l!lfIIQ~. TIPES 'v'. 'llllll~~. AND UNLOCKS KEYBOARD.
ACTION SANi AS 'llllll~ FOR TIPING RULES.

N.A. I SEQUENfIALLl INPU~ 4XXILXlQI~ MEAN:
I
I
I
I
I

I I

DURING EXECUTION OF AN APL EXPRESSION I O~HERWISE

--1--~---FIRST SUSPEND EXECUTION AND I ABORT QUEUED OU~PUT.
ABORf QUEUED OUTPUT. I

SECOND KILL ACTION. I
I·····a ••••• =====.===.==.=== •• =======a.==:=======.==========:=:==:====::==:=:========:=:=:==:===:==:====:=======:=::=::==:

U)

I
~
0
'lj

I-:J
~
Z
U)

>
0
I-:J
H
0
Z ..

>
~ '"d

'"d
'"d M
H ~ ~ H :x:
> tIl

~
>
~
M
Z
I-:J
H
0
Z
0
0

~
~
H
0

B1

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02

