REFERENCE
GUIDE

BORLAND

TURBO C

Borland’s No-Nonsense License Statement!

This software is protected by both United States copyright law and international treaty provisions.
Therefore, you must treat this software just like a book, with the following single exception. Borland
International authorizes you to make archival copies of the software for the sole purpose of backing-
up our software and protecting your investment from loss.

By saying, “just like a book,” Borland means, for example, that this software may be used by any number
of people and may be freely moved from one computer location to another, so long as there is no
possibility of it being used at one location while it’s being used at another. Just like a book that can’t
be read by two different people in two different places at the same time, neither can the software be
used by two different people in two different places at the same time (unless, of course, Borland’s
copyright has been violated).

Programs that you write and compile using the Turbo C language compiler may be used, given away
or sold without additional license or fees, as long as all copies of such programs bear a copyright notice.
By “copyright notice” we mean either your own copyright notice or, if you prefer, the statement,
“Created using Turbo C, Copyright © Borland 1987, 1988.” Included in the Turbo C diskettes are several
support files that contain encoded hardware and font information used by the standard graphics library
(GRAPHICS .LIB). These files, which can be listed by typing DIR *.CHR and DIR *.BG], are proprietary
to Borland International. You may use these files with the programs you create with Turbo C for your
own personal use. In addition, to the extent the programs you write and compile using the Turbo C
language compiler make use of these support files, you may distribute these support files in combination
with such programs, provided that you do not use, give away, or sell the support files separately, and
all copies of such programs bear a copyright notice.

The sample programs included on the Turbo C diskettes provide a demonstration of how to use the
various features of Turbo C. They are intended for educational purposes only. Borland International
grants you (the registered owner of Turbo C) the right to edit or modify these sample programs for
your own use, but you may not give away or sell them, alone or as part of any program, in executable,
object or source code form. You may, however, incorporate miscellaneous sample program routines into
your programs, as long as your resulting programs do not substantially duplicate all or part of a sample
program in appearance or functionality and all copies of such programs bear a copyright notice.

Limited Warranty

With respect to the physical diskette and physical documentation enclosed herein, Borland
International, Inc. (“Borland”) warrants the same to be free of defects in materials and workmanship for
a period of 60 days from the date of purchase. In the event of notification within the warranty period
of defects in material or workmanship, Borland will replace the defective diskette or documentation. If
you need to return a product, call the Borland Customer Service Department to obtain a return
authorization number. The remedy for breach of this warranty shall be limited to replacement and shall
not encompass any other damages, including but not limited to loss of profit, and special, incidental, -
consequential, or other similar claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including
but not limited to implied warranties of merchantability and fitness for a particular purpose with
respect to defects in the diskette and documentation, and the program license granted herein in
particular, and without limiting operation of the program license with respect to any particular
application, use, or purpose. In no event shall Borland be liable for any loss of profit or any other
commercial damage, including but not limited to special, incidental, consequential or other damages.

: Governing Law
This statement shall be construed, interpreted, and governed by the laws of the state of California. Use,
duplication, or disclosure by the U.S. Government of the computer software and documentation in this
package shall be subject to the restricted rights under DFARS 52.227-7013 applicable to commercial
computer software.

First Edition
Printed in U.S.A.
987654321

Turbo C°

Reference Guide

Version 2.0

Copyright® 1988
All rights reserved

Borland International

1800 Green Hills Road

P.O. Box 660001

Scotts Valley, CA 95066-0001

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.
Copyright® 1988 Borland International.

Printed in the US.A.
10987654321

This manual was produced with
Sprint® The Professional Word Processor

Table of Contents

Introduction

VolumeIl: The Reference Guide . ..o v i iiii it iie it ieiinieneannns
Typographic Conventionscoooiiiinia, PP
Borland’s No-Nonsense License Statementceviniiiiiinnan...
Acknowledgments i e e
How to Contact Borlandcciiiiiiiiiirin it iiiinnannrnnnn

Chapter 1 Using Turbo C Library Routines
InThis Chapter «...ovuittiiiii ittt
The Library Routine Lookup Sectionooooiiiii it
Why You Might Want to Access the Turbo C Run-Time Library Source
COdE o
TheTurbo CInclude Filesooiiiiiiiiiiiiiiiiiiiii e,
Library Routines by Categorycooiiiiiiiii ...
Themain Function oo i i
The Argumentstomainottt
An Example Program Using argc, argvandenv
Wildcard Command-Line Argumentstomain...................
When You Compile Using —p (Pascal Calling Conventions)
The ValuemainReturns ...,
Global Variablesc.c.iiiiriiiiiiiiiiiii i,
LATGC ottt e e e
7
daylight ... e
Airectvideo «....ounee e e
B 7
o
errno, _doserrno, sys_errlist, SYS_Nerrooeieeiiinieiinnnienns

fmode ..o e e e

7
B 7. 7 A

HIMEZONE « o oo ettt it et ettt ettt ten e eneeneenenannnnnnns
(7747171 7712
B 23 o/

Chapter 2 The Turbo C Library 33

J 300 0Tl w03 (1 T- ¥ o « L= NS P 33
2 o0 '« S PO 35
- o1 J AP e 35
absread i i i i it ettt 36
P o1 12 & L =TSO 37
access et e et ae ettt ettt e, 37
U Y- SN 39
F21 01T o 4 1< 's « KRS USRI 39
= ¢ o PP 40
T Lol 01 ¢ 1< T 43
-3 5 AU 44
T T <) o OO 45
2 = o PP 46
P> 2§ o VAP 46
o <o X A 47
o 48
atoi...... ettt te ettt ettt et et e, 49
- (o) 50
bar e ettt ee ettt e e 50
02D o T RN 51
o T (o T J U 52
DAOSPLr i e e e 53
3 (o -0/) o ¢ S 54
3 (o= b 13 <3 57
biosequip . .vii i e e 60
bIOSKeY « i e e 61
bIOSMEMOTY . \vvt et e e 63
biosprint ... e e 64
o3 1073 o ' o 1= 64
23 < 65
o 2-T= ¢ o « 66
(o1 o Z GO 67
173 1 (o T 68
1<) 69
00 <] - 69
4T b o 71

Lol (' o Vo o R 71
CRAMOA .. e e i i e e i e, 72
Tol 13 U/ A 73
5 o (<O 74
B4 =T ¢ 75
F (== oo (37 U < 75

(o (=1 ¢ < o S OO U et 76

ClearvieWPOTt .. v v e 76
o) (o o) <3NP 77
(&) (o Y=< 1 78
o) (o 1= NP 78
closegraph e 79
L] =70) P 79
L) =Y 80
o3 X (oY £ /2 80
[0) =) 1< SN 82
oo - T 82
[0 Y- o O 83
(4005115 o 2 83
CPTINtf L. e e 85
PG+ttt e et e e 85
(o ¢ <Y | S O 86
i (<7) AP 87
[0 ¢ <7 L 4 =\ 1" 88
CreatteImP .. i e 89
=T U AP 90
0 0o o L= GNP PPN 91
a5 o) <A 91
delay .« ovi i e 93
o =) 1 (=R 93
detectgraph ... e 94
L6 BT o 5o o< AU 96
L B ET= Y o) (S 96
L 97
6 (0113 £ <3 o o P 98
A0S OUIIX + vttt ittt it ittt e ettt eeen e eaeeensnsaeanaeanenns 98
Arawpoly ..ot e 99
QUD 100
AUPZ . e e 101
< o074 (AN 101
BIPSE . e e s 102
=3 4 | R 103

123 4T o) (= O A 105
<o OO 105
3 = o4 106
(=2 | PP 109
5 X O 110
2 o 110
=Y oA P 111

-0 et | [Y 111

20 (a0 (=) (<5 { P 112
1 6 3 (=< 113
=0 0 0 4 1 1 (o 113
20 o (=71) (oY J AP 115
o) (- NP 116
a0 [Y=1=Y) | P 116
ey 72 (PP 117
(0 16) o) (Y 117
=T) 119
<) o 40 N 120
33101 « TSP 120
(= 121
fgetchar ... 121
=01 oo 122
= U 122
filelengthot i e e e 123
5123 « Lo J 123
fillellpse .« e i e e 124
110 124
findfirstoiiiiiinii., ettt ettt e, 125
4T B 0 T=) < o A 127
3 oYY 531 5 127
110 03 129
530 T 17)) 129
95T o IR 130
MmMerge ..o e 130
9113 o) 3 S 132
fopen . 134
3 S)) L 136
Apreset .. e 136
fprintf ... e e e 137
) S 2l 138
fpute (e 138
fputchar ... e e e 139
BPUES o e e 139
(=7 U I 140
5 < 140
5 =152 04 1<) ¢ R 141
freopen ... 141
5 (=5 o SRRSO 142
o= o AP 143
1<) AP 144

fstatcooiiiiiii,
Ak 146
fnme .. 147
M oot 148
Ble 149
geninterrupt,.“_“”““:::: 149
T 150
et L 150
Belaspeeltatio 1 ovosv s 151
Botbkeolor oo 152
Bk 1L 153
SECR v e 153
1L 154
SR v v e 154
B i 155
oo L 155
setewd P 156
ke 157
setdefaultpalette 158
e ToICle o 159
e 159
 rmvermamme || 160
GOEAER + - e e e ee e 160
ot 161
BRIEIY oo 161
Y 163
setillpattern 163
oty | 164
i B 165
 mmohode ||| 167
BBTpmode o 168
B mematiogs . L 169
BEHIAXCOLOT «« + -+ e e e e 170
BEMAEOIOr oo 172
e 172
BRHTAX o1vsvrsr s 173
i O 173
 madenmng L 174
GELPALEHE + v e e 175
GOLPALEHESIZE - o+ v e e e 175
BEIpAletiesae oo ovsu st 177
ey 11 178
... 178

(=3 - R R R 179
getteXt o e 180
gettextinfo e 181
gettextsettingsoooiiiiiiiii i e 182
gethime ... e e e 183
o <ot 184
getVerify ..o e 185
getviewsettings i e 186
=00 P 187
= o 187
-0 188
BMEME .. e e e 188
GO OXY e et et 190
graphdefaults ...ttt e 191
3 21 o 113 0 {03 0 1 1~ 191
_graphfreememttt e 192
24 C: o) 1§l 1155 ¢ o 193
graphresult e e 194
harderr ... e 196
hardresume ... 198
hardretn oo e e 198
highvideoo 199
Ry POt e 199
IMAGESIZE i iiieir ittt i i e 200
Indtgraph . .ovv i e 201
11 o103 o 205
INPOrtb .. e 206
1153 53 T 206
installuserdriverc.c.iviiiiiiiiiiii i i 207
installuserfont ... 209
N8O . oo e e e 209
IEBOX « oot i e e 211
INEAOS oot 212
INEAOSX + et e 213
(1 215
10T o 216
IsalnUM . .u e e e s 218
salpha .. e e 218
T - o0 219
I8atty o e 219
IsCntr] L e e 220
ISAIgIE oo e e e 220

vi

...................... 221
isgraphcooiiiiiiiiiii i

.................. 221
SIOWEL oorerisss s =
1sprmt =
EPURCE crrerrrrrrsersrninssnnssssstisni s -
i o
SUPPE ++e s o
ISXGIE e o
MOA . overesrr s o
FDRIE v 2
N 2
labs 26
OEXP - o
1div o
AN 228
[RE . jissrrr s o
IREFEL oxrssnrriin s o
IREIO - rrrressr s o
DGRIHME oo -
K e o
(0B et o
DBID -t -
O 2
JOWWIAEO o S o
IO e ol
__lrotr 2
AR o
K- 238
T P
TRIIOC -+ ssrs =
OBIREIT o -
TAERCIT e "
DX L "
N "
BOCIICNE < -
memcmp o
DOCIICPY ¢ nt st "
BOCDCIOP s ”
DOCMMOVE -+ s st st s "
TIOTISEL 1 250
T f1T o
mkdir -
MICED cossrsissis s i
mKEemMpP ..o e e

Do 4 0o 5 U PN 252

¢ L0 3Te E- 252
o410 1= (<) S P 253
INOVELEXE & ottt ettt it i i it i e 253
INOVEEO utiiiiiint ettt eanaratonosennanannnessasnnenennsns 254
b0 10k 0 41<) ¢ o RN 254
1003 0 017 (e (=10 P 255
40011010 ¢ 255
0 2= 4 256
03 o <5 4 257
L0 0 o 259
outportb ... e 259
0D 15 < PN 260
oL EXEXY « v e e 261
o= €53 3 11 o 261
PEEK Lot e i e 262
PeeKD L e e e 262
1535 ¢ 263
plesliceoiiii i e 264
o0 < 265
POKED L e e 265
POIY et e i e 266
POW ettt it ettt et 266
POWI0 Lo e e e 267
Printf .. 267
£ L 279
putch (. 280
putchar ... 280
PUEEIIV Lt i e e ittt e 281
putimage . ..o e 281
putpixel e 282
PUES o i et e et 283
PUtteXt . . e e i 283
PUEW i it e 284
0) 284
¢ 1P 286
=« T L 287
randbrd ... i e 288
TAnADWE ..o e 288
2= 4 1o [0} o U 289
€= B a6 (03 031 -/ 290
0 €7 U« 290
(= Lo 291

=021 (oo U 292

TeCtANgle ..\t i i e 293
registerbgidriver 293
registerbgifont 294
TEIMOVE &t ttiinneeennnnnneeeanuenesnnosesesssneseessnnnensanns 295
D=5 455 0T 296
TeStOrecTtmOde . oo ov vt e e 296
()4 (s P 297
b3+ 4 16 b S P 297

(] 3 298

4015 (O 299
SDIK L e e e 299
o2 0¥ 300
searchpath i i 310
o (0 311
segread it e 312
setactivepageo e 312
setallpalette 313
setaspectratio 315
SetbKCOIOr « v e 315
SEtblOCK .. e 316
setbuf 317
SEECDIK . o e 318
SEECOLOT .« .\ttt e e 318
setdate ... e 320
Setdisk ... e 320
setdta .. v i 321
setfillpattern i 321
setfillstylevvvnii i i e e 322
setftimeooeiii 323
setgraphbufsize i i 324
setgraphmode ... e 325
<111 41 « S 325
setlinestyleo 326
<] w0 113 o o 328
SEtMOAE .. e 328
setpalette . ..o e 329
setrgbpalette 330
settextjustify ... 331
settextstyleo i 332
settime e 334
setusercharsizeo 334
setvbuf ... 336

SetVerify ... e e 338
SEtVIEWPOIt ..ttt i e s 339
SetVISUAlPAZE .\ttt e e e 339
Setwritemode ... e 340
) 2 0T) 341
)¢ L 347
01 347
) <] o 348
1) < | PP 348
0706 0T 350
) -1 | F 352
SPIINEE Lo i e 357
T4 o P 357
) 21 (o PP 358
T Dy Y PO 358
] U 359
B <= a6 13 PN 361
T 4 4 361
70 13 o) 362
] 3 4o 1 S 362
1 ¢ o b 362
7o (oo o T 363
] 3 41 0 11 o H 364
0 04 o) 364
] ¢ ot) ¢ 365
SEAUD ..t e e 365

]9 L) o 365
15 () v () 366
SEICMD oo e e 367
] o L) o T 367
SEIWT L e e 368
Strncat ... e e i i e 368
70 9 170 1) o 368
SHNCMPL .o e e 369
18 9 T4 o) 370
SHMICID i e 370
] ¢ 417 < 371
Strpbrk ... 371
SHIChr o e e 372
] 0 9 1 = 372
] v - 372
13 1 2 373

35 4 (o Yo PSR 374
Y 4 (o)< AP 375
Y5 o o) S A 376
Y5 o o1 A SO 377
] 4 o) 378
L2) o PO 378
1 L2+ o P 379
7= + A 379
= 41 4 L 380
17 1 O 380
[(24 2 L4 o o 381
textbackground ... 383
20t (o) (o) o e 384
textheighto i i 386
S0 45 0.4 o e [< S 386
texXtWId R o e it e 388
£ o' U< NG PR 388
tmpfileo e 389
EMPRAM .. i e 389
0 T2 X LU 390
(0 (8)0 U PPN 390
o) Lo 7= A 391
L0 o3 o =) 391
L1010 o] o =) o 392
[97271 SO 392
101 (o - O 394
LB 4= <o PN 394
ungetch ... 395
LE 01 bq 1 ¢ Lo TN A 395
L0 40 < 396
L0 01 (6 ToJ S 396
V@ tee v oo aenenennnneneneeenneaenenenensoeensnenenenenenananas 397
VEPHINtS L. e e 399
T4 £-ToF: Y (1 400
VPIINtE o e 401
7707 ¢ 402
VSPIINEL i e e 403
£ 1T o7= Y (1 P 404
R0 T3 ¢ =< 405
Wherey i e 405
BT § 1o U0 17 406

A4 o (< 406

Appendix A The Turbo C Interactive Editor

540 e A5 ot 1o) o AU OO PP
TurboIn, TUrbo Out ... i it i it i e it tieeecneannas
The Edit Window Status Linecccviiiiiiiniiininenennns

Editor Commands . ..vvviereiiniin it eterieenneeeieneeeneanns
Basic Cursor MovementCommandscveiveennennnennnnn.
Quick Cursor Movement Commandsccovvevnunnenennenn.
Insert and Delete Commandsovviviiinrrinreneneennennn.
Block Commands . .vvvveiinriniie ittt itnenereaenraaenna
Miscellaneous Editing Commandscoiiiiiiinat,

The Turbo C Editor Vs. WordStarccvveeiiiiin i iiieinnnnn.

Appendix B Compiler Error Messages

Fatal Errors . .ot iiiii ittt it c e i
25 0 ¢ o) ¢
Warmingso i e e

Appendix C TCC Command-Line Options
Turning Options Onand Offo,
1 241
Compiler Optionscooviiiiiiiiiiiiii i
Memory Modelo e
fdefines ... i
Code Generation Optionscoiiiiiiiiiiiiiii ...
Optimization Options ...t
Source Code Optionscoiiiiiiiiiiiiiiiiiiiiiinin...
Error-Reporting Options ...,
Segment-Naming Controlccoviiiiiiiiiiiiii ..
Compilation Control Optonsc.cevviiiiiiiiieniiennn...
Linker Optomnsoout i e
Environment Optionsooviiiiiiiiiiiiii i
Implicit vs. User-specified Library Filesoooiual.
The Include and Library File-Search Algorithms
Using -L and -1 in Configuration Files
An Example WithNotesoooiiiiiiiiiiiiiiiiiiii.,

Appendix D Turbo C Utilities

CPP: The Turbo C Preprocessor Utilitycooviini...
CPP as a Macro Preprocessoro.eviueeiiinniennneennnenne.
AnExample ...

The Standalone MAKE Utilityooviiiiiiiiiiiiiiiinne,
AQuick Exampleoiiiiiiiii e

xil

Creating a Makefile P 466

UsingaMakefile ...t 467
Stepping Through ...t 467
Creating Makefilesccoiiiiiiiiiiiiiiiiiiiiiiii e, 468
Components of a Makefile ... 469
COMMENES .. vtittiitt i it inerneeaeennaeannses 469
ExpHcitRulesovineeiiiiiii it e 470
Special Considerationsc.cooiiiiiiiiiiiiannn, 471
Examplesvveiiiiiiiiiiiii it 471
ImplicitRulescoovviiii e 472
Special Considerationsoooiiiiiiiiiiiiiann, 475
EXamplesvviieiiiiiiiiiiii e 475
Command Listsoooiiiiiiiiiiiiiiiiii i 476
Prefix «ovvvvii it i i e e 476
Command bodyovvviiieiiiiiiiiiiii i 477
Examplescoviiiiiiiiiii e 478
MaCIOS « oottt e e e e 478
Defining Macrosc.oiiiiiiiiiiiiiiiiiiiiiie, 479

UsiNg Macros «.ovvvvnnee it iana 480
Special Considerationscoiiiiiiiiiiiianan, 480
Predefined Macroscciiiiiiiiiiiiiiiniiann, 480
Directivescovviiiiiiii i e e 483
File-Inclusion Directiveccoiiiiiiiiiiiiiian... 483
Conditional Execution Directives 484

Error Detection Directive ..., 486
Macro Undefinition Directive ..., 487

Using MAKEottt 487
Command-Line Syntaxt iannn. 487
A Note About Stopping MAKEccoiiiiieiiiann, 488
The BUILTINSMAKHFile ...t 488
How MAKE Searches for BUILTINS.MAK and Makefiles 489
MAKE Command-line Optionscovviviieinniian... 489
MAKE Error Messagesovvveernniueeniieenniineenaniannns 490
Fatal Error Messagesvvviieenniiiiiiiiiiiiieeneinnnns 490
2) o T 491
The TOUCHUtilityoovviv v 493
Turbo Linkeuii e 493
Invoking TLINKoiii e 493
Using Response Filescooiiiiiiiiiiiiiiiian... 495
Using TLINK with TutboCModules 496
Initialization Modules oot 497
Librariesoviiiiiiiiiii it e 497
Using TLINKwithTCC ... 498

TLINKOPHONS ..ovviiiiiiiii ittt 499

The /x, /m, /sOptONSvvviniiiiiiiiii it 499
The /1OPHON « v vvvi e 501
The /iOPHON . oo 501
The /MOPHON «\vvii i i it 501
The /cOpHON . ..vvnt it 501
The /AOpHON .. ovviiii i e 502
The /eOptON . ..oovvi i i e 502
The /tOpHON ... ovvtt e e 503
The /VOPHON «.vvrt it 503
The /3OPHON . .vvvitiiiii ittt 503
Restrictionsovvviiiii i 504
Error Messagesoouviviiitiniiieeiineniiieiiiieennen, 504
Fatal EIrors . ..ottt 504
Nonfatal Errors ..o 507
Warningsooneei e 507
TLIB: The Turbo Librarian ...t 508
The Advantages of Using Object Module Libraries 509
The Components of a TLIB Command Line 509
The OperationListcciiiiiiiiiiiiiiiiant, 510
Fileand ModuleNamescciiiiiiiiiiiiiien... 511
TLIBOperationsc.oviiieiiinniiiiineiniiineennnnns 511
CreatingalLibraryo 512
Using Response Filesoooiiiiiiiiiiiiii i, 513
Creating an Extended Dictionary: The /EOption 513
Advanced Operation: The /COptioncooviiiiinan... 514
Examplesoiiuiiiiiii i e e 514
GREP: A File-Search Utilitycooiiiiiiiiiiiii i, 515
The GREPOpPHONSvvviiiiiiii ittt i 515
Orderof Precedencecovuiiiiiiiiiiineiiniiiinnn.. 517
TheSearch Stringcooiiiiiiiiiiiiiiiiii i, 517
Operators in Regular Expressionscoooviieinen.. 518
The File Specificationcoiiiiiiiiiiiiiiiiii i, 519
Examples withNotesccoviiiiiiiiiiiiiiiiiiiiiiiiiiee 519
BGIOBJ: Conversion Utility for Graphics Drivers and Fonts 522
Adding the New .OBJ Files to GRAPHICS.LIB 523
Registering the Driversand Fontscooiiiiiias, 523
The /FopHOnoovti e 525
Advanced BGIOB] Features covveneentineiiieiieanaanannn 526
OBJXREF: The Object Module Cross-Reference Utility 528
The OBJXREFCommand Lineccciiiiiriniininnnnnn.. 529
The OBJXREF Command-Line Optionsoooae. 530
Control Optionsc.ovviiiiii i 530

xiv

Report Optionsovvviiiiiiiiiiii i,
Response Filesoooiiuiiiii i
FreeformResponse Filescooiiiiiiiiiiiia.t
Project Filesuiiiiiii i e
Linker Response Files,
The /0Commandouviutiiiiiiiiiiie i iaananen
The /NCommandccoiiiiiiiiiiiiiiiiii i,
Sample OBJXREF Reportsoviiiiiiiiiiniiiinieenennen.,
Report by Public Names (/RP)ooiiiiiiieiinenan..
Reportby Module (/RM)oovvinii it
Report by Reference (/RR) (Default)cooviiiinnn.
Report by External References (/RX) ...t
Report of Module Sizes (/RS) ...t
Report by Class Type (/RC) ...oovviiiiiiii i
Report of Unreferenced Symbol Names (/RU)
Verbose Reporting (/RV) ..o viiiiiiiii i
Examples of How to Use OBJXREFccooviiiiinnnnn..
OBJXREF Error Messages and Warningsooiiuinn..
Error Messagesovviiinnneinen it
Warnings ... oot e

Appendix E Language Syntax Summary

Lexical Grammar ... ovvuiie ittt iiiineiianaeneens
B Le) S (U P
Keywords . ..vevniieiiiiiiiiii i e
(o T=3 0N ¥ 315 o J N
(@003 111 - (-
String Literals oot
OPEratorsovvnit ittt i i e
Punctuatorscoiiiiiiiii i i e

Phrase Structure Grammarecuiieiiiiiieiieeireeeeenens
EXPressionsoeuiiiieiteiie ittt
Declarations «.vvv e titnt i i e e e e e
15102103 0 o =3 1 TN
External Definitionscciiiiiiiiiiiiiiiiii i,

Preprocessing Directives i

Appendix F TCINST: Customizing Turbo C
Running TCINSTou i e
The TCINST InstallationMenucoovvviiiiiiii e
The CompileMenu ...t
TheProject Menucoooviiiiiiiiiiiiiiii i
Project Namecoviiiiiiiiiii it eeannnas
The Break MakeOnMenu ...,

Auto Dependenciesovuiiiiiniiiii i 559

Clear Project ..o vviie ittt iaas 559
The Options Menuouitiiiiiiiiiiiiiiiiiiieeieannns 559
The Compiler Menuoovviiiiiiiiiiiiiiiiiiinneinnn, 559
Model .. e e e e e 559
Defines ...uvttiiiiiiiiii i i e e 559

The Code GenerationMenuc.ooviiiiiiiianniinns 559

The OptimizationMenu ..., 560
TheSource Menu.....ovvviiiiiiii ittt 560

The Errors MeNnU . ..vvvviiiiiiiiiiiiiiiiiiiiiiiiinnnnn 560
TheNamesMenucooiiiiiiiiiiiiiiii i, 561
TheLinker Menuovuitiiiiiiiiii it eanann 561
MapFHile ... i e e s 561
Initialize Segments il 561
Default Librariescoiveiiiiiiiiiiiiiiiiiiiriieennns 561
Graphics Libraryocoiiiiiiiiiiiiii i 562
Warn Duplicate Symbolscccovviiiiiiiiiiiiiiins, 562
StackWarningccoiiiiiiiiiiii i 562
Case-SensitiveLink ... 562

The EnvironmentMenuoooiviiiiiiiiiiiii i, 562
Message Trackingcooiiiiiiiiiiiiiiiiiiiiiinn, 562
Keep Messages .. .ovvviii i 563
Config AutoSavecoiiiiiiiiiiiiiiiiiiiiiiiii, 563
EditAutoSaveooiiniiiiiii i 563
Backup Source Files ..., 563
Zoomed Windowsovvvviiiiniiiiii it 563
FullGraphicsSavecccoiiiiiiiiiiiiiiiiiiinin, 563
TheScreenSizeMenu ..., 563

The Options for EditorMenucoooiiiiiiiiann, 564

The Directories Menuc.oooiiiiiiiiiiiiii i 565
Include Directoriesccooiiiiiiiiiiiiiii i, 565
Library Directoriescccoiiiiiiiiiiiiiiiiiinan. 566
Output Directory «..ovvvri ittt 566
TurboCDirectoryoovviiii i 566
PickFileNameoooiiiiiiiiiiiiii i, 566
Argumentsuiiiiii i e e 567
TheDebugMenu......covviiiiiiiiiiiii it iiiiineiinen 567
Source Debuggingcooiiiiiiiiii 567
Display SwWappingoviiiiiiiiiii i 567
The Editor Commands Optionoooviiiiiiiiiiiia., 567
Allowed Keystrokesooviiiiiiiiiiiiiiinnennnnnn 571
The Mode for Display Menuooiiiiiiiiiiiiiinneinnnen, 572
TheSetColors Menucoiiiiiiiiiiiiiiiiiiiiiiiiinenn, 573

ReSIZE WINAOWS .« vttt it ittt ittt tt ettt eeieienannenns 574

Quitting the Programottt 574
Appendix G MicroCalc 577
About MICroCale v v v it ittt i e e e e et 577
How to Compile and Run MicroCalc..........ooviiiiiiiiiiiiiie, 578

With TC EXE ittt ittt ittt ittt et et et ieneeneeneennn 578

With TCC EXE .ottt i ittt ittt ettt et et et et 578
How touse MicroCall ...vvviiiiinni ittt inirenernnannnennnns 579
The MicroCalc Parser . vvv ittt et i it it ettt eieneenennrnnns 582
Index 583

xvii

List of Figures

Figure F.1: The TCINST Installation Menu

xviii

..........................

List of Tables

Table A.l: Summary of Editor Commandsccoovieenon.e. 412
Table C.1: Correlation of Command-Line Options and Menu Selections .444

Xix

This is the second volume of documentation in the Turbo C package. This
volume, the Turbo C Reference Guide, contains definitions of all the Turbo C
library routines, common variables, and common defined types, along with
example program code to illustrate how to use many of these routines,
variables, and types.

If you are new to C programming, you should first read the other book in
your Turbo C package—the Turbo C User’s Guide. In that book you'll find
instructions on how to install Turbo C on your system, an overview of
Turbo C’s window and menu system, and tutorial-style chapters designed
to get you started programming in Turbo C. The user’s guide also
summarizes Turbo C’s implementation of the C language and discusses
some advanced programming techniques. For those of you who are Turbo
Pascal and Turbo Prolog programmers, the user’s guide provides
information to help you integrate your understanding of those languages
with your new knowledge of C.

You should refer to the “Introduction” in the User’s Guide for information
on the Turbo C implementation, a summary of the contents of Volume I,
and a short bibliography.

Volume II: The Reference Guide

The Turbo C Reference Guide is written for experienced C programmers; it
provides implementation-specific details about the language and the run-
time environment. In addition, it provides definitions for each of the Turbo
C functions, listed in alphabetical order.

Introduction 1

These are the chapters and appendixes in the programmer’s reference
guide:

Chapter 1: Using Turbo C Library Routines summarizes Turbo C’s input/
output (I/0) support, lists and describes the #include (h) files, and lists the
Turbo C library routines by category. Then it explains the Turbo C main
function and its arguments, and concludes with a lookup section describing
each of the Turbo C global variables.

Chapter 2: The Turbo C Library is an alphabetical reference of all Turbo C
library functions. For each function it gives the function prototype, the
include file(s) containing the prototype, an operative description of what
the function does, return values, portability information, and a list of
related functions.

Appendix A: The Turbo C Interactive Editor gives a more thorough
explanation of the editor commands—for those who need more infor-
mation than that given in Chapter 5 of the Turbo C User’s Guide.

Appendix B: Compiler Error Messages lists and explains each of the error
messages and summarizes the possible or probable causes of the problem
that generated the message.

Appendix C: Options describes each of the Turbo C user-selectable
compiler options. :

Appendix D: Turbo C Utilities discusses the standalone MAKE utility, the
CPP preprocessor, the Turbo Linker TLINK, TLIB the Turbo Librarian, the
file-searching utility GREP, BGIOB], a conversion utility for graphics
drivers and fonts, and the object module cross-referencer OBJXREF.

Appendix E: Language Syntax Summary uses modified Backus-Naur
Forms to detail the syntax of all Turbo C constructs.

Appendix F: Customizing Turbo C guides you through the customization
program (TCINST), which lets you customize your keyboard, modify
default values, change your screen colors, resize your Turbo C windows,
and more.

Appendix G: MicroCalc introduces the spreadsheet program included
with your Turbo C package and gives directions for compiling and running
the program.

2 Turbo C Reference Guide

Typographic Conventions

All typefaces used in this manual were produced by Borland’s Sprint: The
Professional Word Processor on an Apple LaserWriter Plus. Their special
uses are as follows:

Monospaced type This typeface represents text as it appears on the screen or
in your program and anything you must type (such as
command-line options).

[] Square brackets in text or DOS command lines enclose
optional input or data that depends on your system, which
should not be typed verbatim.

<> Angle brackets in the function reference section enclose the
names of include files.

Boldface Turbo C function names (such as printf) are shown in
boldface when mentioned within text (but not in program
examples). This typeface represents Turbo C keywords
(such as char, switch, near, and cdecl).

Italics Italics indicate variable names (identifiers) within sections
of text and to emphasize certain words (especially new
terms).

Keycaps This special t?:peface indicates a key on your keyboard. It is
often used when describing a particular key you should

type; for example, “Press ES¢ to cancel a menu.”

Borland’s No-Nonsense License Statement

This software is protected by both United States Copyright Law and
International Treaty provisions. Therefore, you must treat this software just
like a book with the following single exception: Borland International
authorizes you to make archival copies of Turbo C for the sole purpose of
backing up your software and protecting your investment from loss.

By saying, “just like a book,” Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another, so long as there is no possibility of
its being used at one location while it's being used at another. Just like a
book that can’t be read by two different people in two different places at
the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland’s
copyright has been violated.)

Infroduction 3

Acknowledgments

In this manual, we refer to several products:

m Turbo Pascal, Turbo Prolog and Sprint: The Professional Word Processor
are registered trademarks of Borland International, Inc.

m WordStar is a trademark of MicroPro, Inc.

m IBM PC, XT, and AT are trademarks of International Business Machines,
Inc.

m MS-DOS is a registered trademark of Microsoft Corporation.
m UNIX is a registered trademark of American Telephone and Telegraph.

How to Contact Borland

The best way to contact Borland is to log on to Borland’s Forum on
CompuServe: Type G0 BOR from the main CompuServe menu and choose
“Borland Programming Forum B (Turbo Prolog & Turbo C)” from the
Borland main menu. Leave your questions or comments there for the
support staff to process.

If you prefer, write a letter detailing your comments and send it to:

Technical Support Department
Borland International
1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95066-0001, USA

You can also telephone our Technical Support department at (408) 438-8400.
Please have the following information handy before you call:

m product name and version number
& computer make and model number
m operating system and version number

4 Turbo C Reference Guide

Using Turbo C Library Routines

Turbo C comes equipped with over 450 library routines—functions and
macros that you call from within your C programs to perform a wide
variety of tasks, including low- and high-level I/0O, string and file
manipulation, memory allocation, process control, data conversion,
mathematical calculations, and much more.

Turbo C’s routines are contained in the library files (Cx.LIB, MATHx.LIB,
and GRAPHICS.LIB). Because Turbo C supports six distinct memory
models, each model except the tiny model has its own library file and math
file, containing versions of the routines written for that particular model.
(The tiny model shares the small library and math files.)

Turbo C supports the draft ANSI C standard which, among other things,
allows function prototypes to be given for the routines in your C programs.
All of Turbo C’s library routines are declared with prototypes in one or
more header files (these are the .h or “include” files that were copied from
the distribution disks into your INCLUDE directory during installation).

In This Chapter

This first part of the Turbo C Reference Guide provides an overview of the
Turbo C library routines and include files.

Chapter 1, Using Turbo C Library Roufines 5

In this chapter, we

m explain why you might want to obtain the source code for the Turbo C
runtime library

m list and describe the include files

describe the arguments to function main, and its return value

msummarize the different categories of tasks performed by the library
routines

m describe (in lookup fashion) common global variables implemented in
many of the library routines

The Library Routine Lookup Section

The second part of this reference guide is an alphabetical lookup; it
contains a description of each of the Turbo C routines.

A few of the routines are grouped by “family” (the exec... and spawn...
functions that create, load, and run programs, for example) because they
perform similar or related tasks.

Otherwise, we have included an individual entry in the lookup for every
routine. For instance, if you want to look up information about the free
routine, you would look under free; there you would find a listing for free
that

m summarizes what free does

m gives the syntax for calling free

g tells you which header file(s) contains the prototype for free

B gives a detailed description of how free is implemented and how it
relates to the other memory-allocation routines

n lists other language compilers that include similar functions

& refers you to related Turbo C functions

m if appropriate, gives an example of how the function is used, or refers
you to a function entry where there is such an example

The last part of this reference guide contains several appendices designed
to give you detailed reference and usage information about some of Turbo
C’s special features:

m the Turbo C Interactive Editor
u Turbo C compiler error messages

b Turbo C Reference Guide

m the TCC command-line options

o the Turbo C standalone utilities

m the Turbo C language syntax summary

m TCINST, the Turbo C customization program
o MicroCalc, a sample spreadsheet application

Why You Might Want to Access the Turbo C
Run-Time Library Source Code

The Turbo C run-time library contains over 300 functions, covering a broad
range of areas: low-level control of your IBM PC, interfacing with DOS,
input/output, process management, string and memory manipulations,
math, sorting and searching, and so on. There are several good reasons
why you may wish to obtain the source code for these functions:

o You may find that a particular Turbo C function you want to write is
similar to, but not the same as, a function in the library. With access to
the run-time library source code, you can tailor the library function to
your own needs, and avoid having to write a separate function of your
own.

B Sometimes, when you are debugging code, you may wish to know more
about the internals of a library function. Having the source code to the
run-time library would be of great help in this situation.

o When you can’t figure out what a library function is really supposed to
do, it’s useful to be able to take a quick look at that function’s source
code.

o You may dislike the underscore convention on C symbols, and wish you
had a version of the libraries without leading underscores. Again, access
to the source code to the run-time library will let you eliminate leading
underscores.

o You can also learn a lot from studying tight, professionally written
library source code.

For all these reasons, and more, you will want to have access to the Turbo C
run-time library source code. Because Borland believes strongly in the
concepts of “open architecture,” we have made the Turbo C run-time
library source code available for licensing. All you have to do is fill out the
order form distributed with this documentation, include your payment,
and we'll ship you the Turbo C run-time library source code.

Chapfter 1, Using Turbo C Library Routines 7

The Turbo C Include Files

Header files provide function prototype declarations for library functions.
Data types and symbolic constants used with the library functions are also
defined in them, along with global

variables defined by Turbo C and by the library functions. The Turbo C
library follows the ANSI C draft standard on names of header files and
their contents. Header files defined by ANSI C are marked with an asterisk

(*) in the list below.

alloc.h Declares memory management functions (allocation,
deallocation, etc.).

assert.h* Defines the assert debugging macro.

bios.h Declares various functions used in calling IBM-PC ROM
BIOS routines.

conio.h Declares various functions used in calling the DOS console
I/0 routines.

ctype.h* Contains information used by the character classification
and character conversion macros (such as isalpha and
toascii).

dirh Contains structures, macros, and functions for working
with directories and path names.

dos.h Defines various constants and gives declarations needed
for DOS and 8086-specific calls.

errno.h* Defines constant mnemonics for the error codes.

fentlh Defines symbolic constants used in connection with the
library routine open.

float.h* Contains parameters for floating-point routines.

graphics.h Declares prototypes for the graphics functions.

io.h Contains structures and declarations for low-level input/
output routines.

limits.h* Contains environmental parameters, information about
compile-time limitations, and ranges of integral quantities.

math.h* Declares prototypes for the math functions; also defines the
macro HUGE_VAL, and declares the exception structure
used by the matherr and _matherr routines.

8 Turbo C Reference Guide

mem.h
process.h
setjmp.h*
share.h
signal.h*
stdargs.h*

stddef.h*
stdio.h*

stdlib.h*
string.h*
sys\stat.h

sys\timeb.h

sys\types.h
time.h*

values.h

Declares the memory-manipulation functions. (Many of
these are also defined in string.h.)

Contains structures and declarations for spawn... and
exec... functions.

Defines a type jmp_buf used by the longjmp and setjmp
functions and declares the routines longjmp and setjmp.

Defines parameters used in functions that make use of file-
sharing.

Defines constants and declarations for use by the signal
and raise functions.

Defines macros used for reading the argument list in
functions declared to accept a variable number of argu-
ments (such as vprintf, vscanf, etc.).

Defines several common data types and macros.

Defines types and macros needed for the Standard I/0O
Package defined in Kernighan and Ritchie and extended
under UNIX System V. Defines the standard 1/0 pre-
defined streams stdin, stdout, stdprn, and stderr, and de-
clares stream-level I/O routines.

Declares several commonly used routines: conversion
routines, search/sort routines, and other miscellany.

Declares several string-manipulation and memory-
manipulation routines.

Defines symbolic constants used for opening and creating
files.

Declares the function ftime and the structure timeb that
ftime returns.

Declares the type time_t used with time functions.

Defines a structure filled in by the time-conversion routines
asctime, localtime, and gmtime, and a type used by the
routines ctime, difftime, gmtime, localtime, and stime;
also provides prototypes for these routines.

Defines important constants, including machine depen-
dencies; provided for UNIX System V compatibility.

Chapter 1, Using Turbo C Library Routines 9

Library Routines by Category

The Turbo C library routines perform a variety of tasks. In this section, we
list the routines, along with the include files in which they are declared,
under several general categories of task performed. For complete
information about any of the functions below, see the function entry in
Chapter 2 of this manual.

Classification Routines

These routines classify ASCII characters as letters, control characters,
punctuation, uppercase, etc.

isalnum (ctype.h) isdigit (ctype.h) ispunct (ctype.h)
isalpha {ctype.h) isgraph {ctype.h) isspace (ctype.h)
isascii (ctype.h) islower {ctype.h) isupper (ctype.h)
isentrl (ctype.h) isprint (ctype.h) isxdigit (ctype.h)

Conversion Routines

These routines convert characters and strings from alpha to different
numeric representations (floating-point, integers, longs) and vice versa, and
from uppercase to lowercase and vice versa.

atof (stdlib.h) itoa (stdlib.h) toascii (ctype.h)

atoi {stdlib.h) ltoa {stdlib.h) tolower (ctype.h)

atol (stdlib.h) strtod (stdlib.h) _toupper (ctype.h)

acvt (stdlib.h) strtol (stdlib.h) toupper {ctype.h)

fevt (stdlib.h) strtoul {stdlib.h) ultoa (stdlib.h)
gevt (stdlib.h) _tolower (ctype.h)

Directory Control Routines

These routines manipulate directories and path names.

chdir {dir.h) getcurdir (dir.h) mktemp (dir.h)
findfirst (dir.h) getewd {(dir.h) rmdir (dir.h)
findnext (dir.h) getdisk (dir.h) searchpath (dir.h)
famerge {dir.h) mkdir (dir.h) setdisk (dir.h)
fnsplit (dir.h)

Diagnostic Routines
These routines provide built-in troubleshooting capability.

assert {assert.h) matherr (math.h) perror (errno.h)

10 Turbo C Reference Guide

Graphics Routines

These routines let you create onscreen graphics with text.

arc
bar

bar3d

circle
cleardevica
clearviewport
closegraph
detectgraph
drawpoly
ellipsae
fillellipse
fillpoly
floodfill
gatarccoords
getaspectratio
getbkcolor
getcolor
getdefaultpalette
getdrivername
getfillpattern
gatfillsettings
getgraphmode
getimage
getlinesaettings
gaetmaxcolor
getmaxmode
getmaxx
getmaxy
getmodename
getmoderange
getpalette
getpalettesize
getpizel
gettextsettings
getviewsettings
getx

gety
graphdefaults
grapherrormsg
_graphfreemem
_graphgetmen

Chapter 1, Using Turbo C Library Routines

{graphics.
{graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
{(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
{graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
{(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
{graphics.
(graphics.

h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h}
h)
h)
h)
h}
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h}
h)
h)
h)
h)
h)
h)
h)
h}
h)
h)
h)

graphresult
imagesiza
initgraph
installuserdriver
installuserfont
line

linerel

lineto

moverel

movato

outtext
outtaxtxy
pieslice
putimage
putpizel
rectangle
ragisterbgidriver
registerbgifont
rastorecrtmode
sector
setactivepage
satallpalette
setaspactratio
satbkcolor
setcolor
setfillpattern
setfillstyle
setgraphbufsize
setgraphmode
satlinestyle
satpalette
satrgbpalette
settextjustify
saettextstyle
setusercharsize
setviewport
satvisualpage
setwritemode
textheight
textwidth

(graphics.
(graphics.
(graphics.
{graphics.

(graphics.
(graphics.
(graphics.
{graphics.
(graphics.
{graphics.
(graphics.
.h)
{graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
{graphics.
{graphics.
(graphics.
(graphics.
(graphics.
{graphics.
(graphics.
(graphics.
(graphics.
{graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
(graphics.
{graphics.

(graphics

h)
h)
h)
h)

h)
h)
h)
h)
h)
h)
h)

h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)

11

Input/Output Routines
These routines provide stream-level and DOS-level I/0O capability.

access
cgets
_chmod
chmod
chsize
clearerr
close
_closa
cprintf
cputs
creat
_creat
creatnew
creattemp
cscanf
dup

dup2

aof
fclose
fcloseall
fdopen
faof
farror
fflush
fgatec
fgatchar
fgetpos
fgets
filelength
fileno
flushall
fopen
fprintf

12

(io.h)
(conio.
(io.h)
(io.h)
(io.h)
(stdio.
(io.h}
(io.h)
(conio.
(conio.
(io.h)
(io.h)
{io.h)
(io.h)
{conio.
{io.h)
(io.h)
(io.h)
(stdio.
(stdio.
(stdio.
(stdio.
(stdio.
{stdio.
(stdio.
(stdio.
(stdio.
(stdio.
(io.h}
(stdio.
(stdio.
(stdio.
{stdio.

h)

h}

h)
h}

h)

h)
h)
h}
h)
h)
h)
h)
h)
h)
h)

h)
h)
h)
h)

fpute
fputchar
fputs
fread
freopen
fscanf
fsack
fsatpos
fstat
ftell
fwrite
gete
getch
getchar
gatche
getftime
getpass
gets
getw
gsignal
ioctl
isatty
kbhit
lock
lgeek
_open
open
perror
printf
pute
putch
putchar
puts

(stdio.h) putw
(stdio.h) _read
(stdio.h) read
(stdio.h) remove
(stdio.h) rename
(stdio.h) rewind
(stdio.h) scanf
(stdio.h) setbuf
(sys\stat.h) setftime
(stdio.h) setmoda
(stdio.h) setvbuf
(stdio.h) sopen
(conio.h) sprintf
(stdio.h) sscanf
{conio.h) stat
(io.h) _strerror
(conio.h)

(stdio.h) strerror
(stdio.h) tell
(signal.h) tmpfile
(io.h) tmpnam
(io.h) ungetc
(conio.h) ungetch
(io.h) unlock
(io.h) viprintf
(io.h) viscanf
(io.h) vprintf
(stdio.h) vscanf
(stdio.h) vsprintf
(stdio.h) vsscanf
(conio.h) _write
(stdio.h) write
(stdio.h)

(stdio.h)
{io.h)
{io.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
{io.h)
(io.h)
(stdio.h)
{io.h)
{stdio.h)
(stdio.h)
(sys\stat.h)
(string.h,
stdio.h)
(stdio.h)
(io.h)
(stdio.h)
(stdio.h)
(stdio.h)
{conio.h)
(io.h)
{stdio.h)
(stdio.h)
(stdio.h)
{stdio.h)
(stdio.h)
(io.h)
{io.h)
(io.h)

Turbo C Reference Guide

Interface Routines (DOS, 8086, BIOS)

These routines provide DOS, BIOS and machine-specific

capabilities.

absread (dos.h) geninterrupt (dos.h)
abswrite (dos.h) getcbrk (dos.h)
bdos (dos.h) getdfrea (dos.h)
bdosptr (dos.h) getdta (dos.h)
bioscom {bios.h) getfat {dos.h)
biosdisk (bios.h) getfatd (dos.h)
biosequip (bios.h) getpsp (dos.h)
bioskay (bios.h) gatvact {dos.h)
biocsmemory (bios.h) gatverify (dos.h)
biosprint {bios.h) harderx (dos.h)
biostima (bios.h) hardresume (dos.h)
country (dos.h) hardretn {dos.h)
ctrlbrk (dos.h) inport {(dos.h)
disable (dos.h) inportb (dos.h)
dosexterr (dos.h) int86 {dos.h)
anabla {dos.h) int86x {dos.h)
FP_OFF {dos.h) intdos {dos.h)
FP_SEG (dos.h) intdosx (dos.h}
fraemem (dos.h) intr (dos.h)

Manipulation Routines

keep

MK FP
outport
outportb
parsfom
peek
paekb
poke
pokeb
randbrd
randbwr
sagread
satcbrk
satdta
satvect
sotverify
sleep
unlink

(dos.
(dos.
(dos.
(dos.
(dos.
(dos.
{dos.
(dos.
(dos.
(dos.
(dos.
{dos.
(dos.
(dos.
(dos.
{dos.
(dos.
(dos.

h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)

These routines handle strings and blocks of memory: copying, comparing,

converting, and searching.

memccpy (mem.h, string.h) strchr (string.
memchr (mem.h, string.h) strcmp (string.
memcmp (mem.h, string.h) stricmpi (string.
memcpy {mem.h, string.h) strepy (string.
memicmp (mem.h, string.h) strespn (string.
memmovae (mem.h, string.h) strdup (string.
memset {mem.h, string.h} strerror (string.
movedata (mem.h, string.h) stricmp (string.
movmen (mem.h, string.h) strlen (string.
satmem {mem. h) strlwr (string.
stpepy (string.h) strncat (string.
strcat {string.h) strncmp (string.

Chapfter 1, Using Turbo C Library Routines

h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)
h)

strnempi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrav
strset
strspn
strstr
strtok
strupr

{string.h)
{string.h)
(string.h)
(string.h)
(string.h)
(string.h)
{string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)

13

Math Routines

These routines perform mathematical calculations and conversions.

abs {stdlib,h) fevt (stdlib.h) poly
acos (math.h) floor {math.h) pow
asin {math.h) fmod (math.h) powlo
atan {math.h) _fpreset (float.h) rand
atan2 (math.h) frexp (math.,h) random
atof {stdlib.h, gevt (stdlib.h) randomize
math.h) hypot {math.h) _rotl
atol (stdlib.h) itoa (stdlib.h) _rotr
atol {stdlib.h) labs (stdlib.h) sin
cabs (math.h) ldexp (math.h) sinh
ceil (math.h) ldiv (math) sqrt
_clear8? (float.h) log (math.h) srand
_control8? (float.h) logl0 (math.h) _status8?
cos {math.h) _1rotl (stdlib,h) strtod
cosh (math.h) _lrotr (stdlib.h) strtol
div (math.h) ltoa (stdlib.h) strtoul
acvt (stdlib.h) _matherr (math.h) tan
axp {math.h) matherr (math.h) tanh
fabs {math.h) modf (math.h) ultoa

Memory Allocation Routines

(math.h)
{math.h)
{math.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
{math.h)
(math.h)
(math.h)
(stdlib.h)
(float.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
{math.h)
(math.h)
(stdlib.h)

These routines provide dynamic memory allocation in the small-data and

large-data models.

allocmem (dos.h) farmalloc {alloc.h)

brk (alloc.h) farrealloc (alloc.h)

calloc (alloc.h) free (alloc.h, stdlib.h)
coreleft (alloc.h, stdlib.h) malloc (alloc.h, stdlib.h)
farcalloc (alloc.h) realloc (alloc.h, stdlib.h)
farcoreleft (alloc.h) sbrk {alloc.h)

farfrea {alloc.h) setblock (dos.h)

Miscellaneous Routines

These routines provide nonlocal goto capabilities and sound effects.

delay {dos.h) setjmp (setjmp.h)
longjmp (setjmp.h) sound (dos.h)
nosound {dos.h)

14 Turbo C Reference Guide

Process Control Routines

These routines invoke and terminate new processes from within another.

abort
axacl
axacle
axaclp
axaclpa
axecv
axacva
axacvp
exacvpa
_exit
axit

{process.
(process.
(process.
(process.
(process.
{process.
{process.
{process.
{process.
(process.
(process.

Standard Routines

h)
h)
h)
h)
h)
h)
h}
h}
h)
h)
h)

These are standard routines.

abort
abs
atexit
atof
atoi
atol
bsearch
calloc
acvt
_exit
axit

(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib,h)
{stdlib.h)
(stdlib.h)
{stdlib.h)

fevt
fraa
gevt
gatenv
itoa
labs
1find
lsearch
ltoa
malloc

Text Window Display Routines

raisa
signal
spawnl
spawnla
spawnlp
spawnlpa
spawnv
spawnva
spawnvp
spawnvpa
system

(stdlib.
(stdlib.
(stdlib.
{stdlib.
(stdlib.
(stdlib.
(stdlib.
(stdlib.
(stdlib.,
(stdlib.

These routines output text to the screen.

clreol
clrscr
delline
gettaxt
gettextinfo
gotoxy
highvideo

{conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)

insline
lowvidao
movataxt
nornvideo
puttext
textattr

(conio.
(conio.
(conio.
{conio,
(conio.
(conio.

Chapter 1, Using Turbo C Library Routines

h)
h)
h)
h)
h)
h)
h}
h)
h)
h)

h)
h)
h)
h)
h)
h)

(signal.h)
(signal.h)

{process

(process.
(process.
(process.
(process.
(process.
(process.
.h)

{process

(process.

putenv
qsort
rand
realloc
srand
strtod
strtol
swab
system
ultoa

textbackground

textcolor
textmode
wherax
wheray
window

.h)

h}
h
h
h
h
h

h)

(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
{stdlib.h)
(stdlib.h)

{conio.h)
(conio.h)
{conio.h)
{conio.h)
(conio.h)
(conio.h)

15

Time and Date Routines

These are time conversion and time manipulation routines.

asctime (time.h) getdate (dos.h) settime (dos.h)
ctima (time.h) gettime (dos.h) stime {time.h)
difftime (time.h) gntime (time.h) time (time.h)
dostounix {dos.h) localtime (time.h) tzset (time.h)
ftime (sys\timeb.h) setdate (dos.h) unixtodos (dos.h)

Variable Argument List Routines

These routines are for use when accessing variable argument
lists (such as with vprintf, etc).

va_arg (stdarg.h) va_end (stdarg.h) va_start (stdarg.h)

16 Turbo C Reference Guide

The main Function

Every C program must have a main function; where you place it is a matter
of preference. Some programmers place main at the beginning of the file,
others at the very end. But regardless of its location, the following points
about main always apply.

The Arguments to main

Three parameters (arguments) are passed to main by the Turbo C startup
routine: argc, argv, and env.

oargc, an integer, is the number of command-line arguments passed to
main.
o argv is an array of pointers to strings.
o Under 3.x versions of DOS, argvl[0] is defined as the full path name of
the program being run.
“o Under versions of DOS before 3.0, argv[0] points to the null string ("").

o argu[1] points to the first string typed on the DOS command line after
the program name.

o argv[2] points to the second string typed after the program name.
o argvlargc — 1] points to the last argument passed to main.
o argvlargc] contains NULL.
nenv is also an array of pointers to strings. Each element of env[] holds a
string of the form ENVVAR=value.
o ENVVAR is the name of an environment variable, such as PATH or 87.
o value is the value to which an ENVVAR is set, such as C:\D0S; C:\TURBOC (for
PATH) or YES (for 87).

The Turbo C startup routine always passes these three arguments to main;
you have the option of whether to declare them in your program. If you
declare some (or all) of these arguments to main, they are made available
as local variables to your main routine.

Note, however, that if you do declare any of these parameters, you must
declare them exactly in the order given: argc, argv, env.

Chapter 1, Using Turbo C Library Routines 17

For example, the following are all valid declarations of main’s arguments:

main{)

main({int argc) /* legal but very unlikely */
main{int argc, char * argv(])

main(int argc, char * argv[], char * env(])

Note: The declaration main(int argc) is legal, but it’s very unlikely that you
would use argc in your program without also using the elements of argv.

Another Note: The argument env is also available via the global variable
environ. Refer to the environ lookup entry (in this chapter) and the putenv
and getenv lookup entries (in Chapter 2 of this manual) for more
information. argc and argv are also available via the global variables _argc
and _argo.

An Example Program Using argc, argv and env

Here is an example program, ARGS.EXE, that demonstrates a simple way
of using these arguments passed to main.
/* Program ARGS.C */

$include <stdio.h>
#include <stdlib.h>

void main{int argc, char *argv(], char *env[])

{
int i;
printf{"The value of argc is %d \n\n",argc);
printf("These are the %d command-line arguments passed to main:\n\n",argc);

for (i = 0; i <= argc; i++)
printf(" argv(%d]l: %s\n", i, argv[il);

printf("\nThe environment string(s) on this system are:\n\n");

for (i = 0; env[i] != NULL; i++)
printf(" env[%d]: %s\n", i, env[il);

}

Suppose you run ARGS.EXE at the DOS prompt with the following com-
mand line:

c:> args first arqument "argument with blanks" 3 4 "last but one" stop!

Note that you can pass arguments with embedded blanks by surrounding
them with double quotes, as shown by "argument with blanks" and "last but
one" in this example command line.

18 Turbo C Reference Guide

The output of ARGS.EXE (assuming that the environment variables are set
as shown here) would then be like this:

The value of argc is 7

These are the 7 command-line arquments passed to main:
argv[0]: C:\TURBOC\TESTARGS.EXE

argv(l]: first argument

argv([2]: arqument with blanks

argv(3]: 3

argv[4]: 4

argv(5]: last but one

argv(6]: stop!

argv(7]: (null)

The environment string(s) on this system are:
env{0]: COMSPEC=C:\COMMAND.COM

env[l]: PROMPT=$p $g

env(2]: PATH=C:\SPRINT;C:\DOS;C:\TURBOC

Note: The maximum combined length of the command-line arguments
passed to main (including the space between adjacent arguments and the
name of the program itself) is 128 characters; this is a DOS limit.

Wildcard Command-Line Arguments to main

Command-line arguments containing wildcard characters can be expanded
to all the matching file names, much the same way DOS expands wildcards
when used with commands like COPY. All you have to do to get wildcard
expansion is to link your program with the WILDARGS.OB] object file,
which is included with Turbo C.

Once WILDARGS.OBJ is linked into your program code, you can send
wildcard arguments of the type *.* to your main function. The argument
will be expanded (in the argv array) to all files matching the wildcard mask.
The maximum size of the argv array will vary, depending on the amount of
memory available in your heap.

If no matching files are found, the argument is passed unchanged. (That is,
a string consisting of the wildcard mask is passed to main.)

Arguments enclosed in quotes ("...") are not expanded.

An Example: The following commands will compile the file ARGS.C and
link it with the wildcard expansion module WILDARGS.OB]J, then run the
resulting executable file ARGS.EXE:

Chapter 1, Using Turbo C Library Routines 19

tcc args wildargs.obj
args C:\TC\INCLUDE*.H "*.C"

When ARGS.EXE is run, the first argument is expanded to the names of all
the *.H files in the C:\TC\INCLUDE directory. Note that the expanded
argument strings include the entire path (for example, C:\TC\INCLUDE\
ALLOC.H). The argument *.C will not be expanded, as it is enclosed in
quotes.

In the Integrated Environment (TC.EXE), you simply specify a project file
on the project menu, which contains the following lines:

ARGS
WILDARGS.0BJ

Then use the Options/Args option to set the command-line parameters.

Note: If you prefer the wildcard expansion to be the default so that you
won’t have to link your program explicitly with WILDARGS.OB]J, you can
modify your standard C?.LIB library files to have WILDARGS.OB]J linked
automatically. In order to accomplish that, you have to remove SETARGV
from the libraries, and add WILDARGS. The following commands will
invoke the Turbo librarian to modify all the standard library files
(assuming the current directory contains the standard C libraries, and
WILDARGS.OB)):

tlib c¢s -setargv +wildargs
tlib cc =-setargv +wildargs
tlib cm -setargv +wildargs
tlib cl -setargv +wildargs
tlib ch -setargv +wildargs

When You Compile Using —p (Pascal Calling
Conuventions)

If you compile your program using Pascal calling conventions (described in
detail in Chapter 12 of the Turbo C User’s Guide), you must remember to
explicitly declare main as a C type.

You do this with the cdecl keyword, like this:

cdecl main(int argc, char * argv[], char * envpl[])

20 Turbo C Reference Guide

The Value main Returns

The value returned by main is the status code of the program: an int. If,
however, your program uses the routine exit (or _exit) to terminate, the
value returned by main is the argument passed to the call to exit (or to
_exit).

For example, if your program contains the call
exit (1)
the status is 1.

If you are using the Integrated Environment version of Turbo C (TC.EXE)
to run your program, you can display the return value from main by
selecting the Get Info item on the Compile menu (Alt-C, G).

Chapfter 1, Using Turbo C Library Routines 21

Global Variables

_argc
Function Keeps a count of command-line arguments.
Syntax extern int _argc;

Declared in

Remarks

dos.h

_argc has the value of argc passed to main when the
program starts.

_argo

Function
Syntax
Declared in

Remarks

An array of pointers to command-line arguments.
extern char *_argvl[];
dos.h

_argv points to an array containing the original
command-line arguments (the elements of argv[]) passed
to main when the program starts.

daylight

Function
Syntax
Declared in

Remarks

22

Indicates whether Daylight Savings Time is in effect.
extern int daylight;
time.h

daylight is used by the time-and-date functions. It is set
by the tzset, ftime, and localtime functions to 1 for
Daylight Savings Time, 0 for Standard Time.

Turbo C Reference Guide

directvideo

directvideo

Function Flag that controls video output.

Syntax extern int directvideo;

Declared in conio.h

Remarks directvideo controls whether your program’s console

output (from cputs, for example) goes directly to the
video RAM (directvideo = 1) or goes via ROM BIOS calls
(directvideo = 0).

The default value is directvideo = 1 (console output goes
directly to video RAM). In order to use directvideo = 1,
your system’s video hardware must be identical to IBM
display adapters. Setting directvideo = 0 allows your
console output to work on any system that is IBM
BIOS-compatible.

_8087

Function
Syntax
Declared in

Remarks

Coprocessor chip flag.
extern int _8087;
dos.h

The _8087 variable is set to a nonzero value (1, 2, or 3) if
the startup code autodetection logic detects a floating-
point coprocessor (an 8087, 80287, or 80387,
respectively). The _8087 variable is set to 0 otherwise.

The autodetection logic can be overridden by setting the
87 environment variable to YES or NO. (The commands are
SET 87=YES and SET 87=NQ; it is essential that there be no
spaces before or after the equal sign.) In this case, the
_8087 variable will reflect the override, and be set to 1 or
0.

Refer to Chapter 12 in the Turbo C User’s Guide for more
information about the 87 environment variable.

You must have floating-point code in your program for
the _8087 variable to be defined properly.

Chapter 1, Using Turbo C Library Routines 23

environ

environ

Function Accesses DOS environment variables.

Syntax extern char * environ| J;

Declared in dos.h '

Remarks environ is an array of pointers to strings; it is used to

access and alter the DOS environment variables. Each
string is of the form

envvar = varvalue

where envvar is the name of an environment variable
(such as pATH), and varvalue is the string value to which
envvar is set (such as C:\BIN;C:\D0S). The string varvalue
may be empty.

When a program begins execution, the DOS envi-
ronment settings are passed directly to the program.
Note that env, the third argument to main, is equal to
the initial setting of environ.

The environ array can be accessed by getenv; however,
the putenv function is the only routine that should be
used to add, change or delete the environ array entries.
This is because modification can resize and relocate the
process environment array, but environ is automatically
adjusted so that it always points to the array.

errno, _doserrno, sys_errlist, sys_nerr

Function

Syntax

Declared in

Remarks

24

Enable perror to print error messages.

extern int errno;

extern int _doserrno;
extern char * sys_errlist] |;
extern int sys_nerr;

errno.h, stdlib.h (errno, _doserrno, sys_errlist, sys_nerr)
dos.h (_doserrno)

errno, sys_errlist, and sys_nerr are used by perror to print
error messages when certain library routines fail to

Turbo C Reference Guide

errno, _doserrno, sys_errlist, sys_nerr

accomplish their appointed tasks. _doserrno is a variable
that maps many DOS error codes to errno; however,
perror does not use _doserrno directly.

_doserrno: When a DOS system call results in an error,
_doserrno is set to the actual DOS error code. errno is a
parallel error variable inherited from UNIX.

errno: When an error in a system call occurs, errno is set
to indicate the type of error. Sometimes errno and
_doserrno are equivalent. At other times, errno does not
contain the actual DOS error code, which is contained in
_doserrno. Still other errors might occur that set only
errno, not _doserrno.

sys_errlist: To provide more control over message
formatting, the array of message strings is provided in
sys_errlist. errno can be used as an index into the array to
find the string corresponding to the error number. The
string does not include any newline character.

sys_nerr: This variable is defined as the number of error
message strings in sys_errlist.

The following table gives mnemonics and their mean-
ings for the values stored in sys_errlist.

Chapter 1, Using Turbo C Library Routines 25

errno, _doserrno, sys_errlist, sys_nerr

Mnemonic Meaning

E2BIG Arg list too long

EACCES Permission denied
EBADF Bad file number
ECONTR Memory blocks destroyed
ECURDIR Attempt to remove CurDir
EDOM Domain error

EEXIST File already exists
EINVACC Invalid access code
EINVAL Invalid argument
EINVDAT Invalid data

EINVDRV Invalid drive specified
EINVENV Invalid environment
EINVFMT Invalid format

EINVFNC Invalid function number
EINVMEM Invalid memory block address
EMFILE Too many open files
ENMFILE No more files

ENODEV No such device

ENOENT No such file or directory
ENOEXEC Exec format error
ENOFILE No such file or directory
ENOMEM Not enough memory
ENOPATH Path not found
ENOTSAM Not same device
ERANGE Result out of range
EXDEV Cross-device link

EZERO Error 0

The following list gives mnemonics for the actual DOS
error codes to which _doserrno can be set. (This value of
_doserrno may or may not be mapped (through errno) to
an equivalent error message string in sys_errlist.

26

Turbo C Reference Guide

ermo, _doserrno, sys_errlist, sys_nerr

Mnemonic DOS error code
EINVAL Bad function
E2BIG Bad environ
EACCES Access denied
EACCES Bad access
EACCES Is current dir
EBADF Bad handle
EFAULT Reserved
EINVAL Bad data
EMFILE Too many open
ENOENT No such file or directory
ENOEXEC Bad format
ENOMEM Mcb destroyed
ENOMEM Out of memory
ENOMEM Bad block
EXDEV Bad drive
EXDEV Not same device

Refer to the Microsoft MS-DOS Programmer’s Reference
Manual for more information about DOS error return
codes.

_fmode

Function
Syntax
Declared in

Remarks

Determines default file-translation mode.
extern int _frmode;
fentlh

_fmode determines in which mode (text or binary) files
will be opened and translated. The value of _fmode is
O_TEXT by default, which specifies that files will be
read in text mode. If _fmode is set to O_BINARY, the files
are opened and read in binary mode. (O_TEXT and
O_BINARY are defined in fentl.h.)

In text mode, on input carriage-return/linefeed (CR/LF)
combinations are translated to a single linefeed character

Chapter 1, Using Turbo C Library Routines 27

_fmode

(LF). On output, the reverse is true: LF characters are
translated to CR/LF combinations.

In binary mode, no such translation occurs.

You can override the default mode as set by _fmode by
specifying a t (for text mode) or b (for binary mode) in
the argument fype in the library routines fopen, fdopen,
and freopen. Also, in the routine open, the argument
access can include either O_BINARY or O_TEXT, which
will explicitly define the file being opened (given by the
open pathname argument) to be in either binary or text
mode.

_heaplen

Function
Syntax
Declared in

Remarks

28

Holds the length of the near heap.
extern unsigned _heaplen;
dos.h

_heaplen specifies the size of the near heap in the small
data models (tiny, small, and medium). _heaplen does
not exist in the large data models (compact, large, and
huge), as they do not have a near heap.

In the small and medium models, the data segment size
is computed as follows:

data segment [small,medium] = global data + heap + stack
where the size of the stack can be adjusted with _stklen.

If _heaplen is set to 0, the program allocates 64K bytes for
the data segment, and the effective heap size is

64K - (global data + stack) bytes

By default, _heaplen equals 0, so you’ll get a 64K data
segment unless you specify a particular _heaplen value.

In the tiny model, everything (including code) is in the
same segment, so the data segment computations are
adjusted to include the code plus 256 bytes for the
Program Segment Prefix.

data segment[tiny] = 256 + code + global data +

Turbo C Reference Guide

_heaplen

heap + stack

If _heaplen equals 0 in the tiny model, the effective heap
size is obtained by subtracting the PSP, code, global
data, and stack from 64K.

In the compact and large models, there is no near heap,
so the data segment is simply

data segment [compact,large] = global data + stack

In the huge model, the stack is a separate segment, and
each module has its own data segment.

_osmajor, _

osminor

Function

Syntax

Declared in

Remarks

Contain the major and minor DOS version numbers.

extern unsigned char _osmajor;
extern unsigned char _osminor;

dos.h

The major and minor version numbers are available
individually through _osmajor and _osminor. _osmajor is
the major version number, and _osminor is the minor
version number. For example, if you are running DOS
version 3.2, _osmajor will be 3, and _osminor will be 20.

These variables can be useful when you want to write
modules that will run on DOS versions 2.x and 3.x.
Some library routines behave differently depending on
the DOS version number, while others only work under
DOS 3.x. (For example, refer to _open, creatnew, and
ioctl in the lookup section of this Reference Guide.)

_psp

Syntax
Declared in

Remarks

extern unsigned int _psp;
dos.h

_psp contains the segment address of the program
segment prefix (PSP) for the current program. The PSP is

Chapter 1, Using Turbo C Library Routfines 20

-psp

a DOS process descriptor; it contains initial DOS infor-
mation about the program.

Refer to the Microsoft MS-DOS Programmer’s Reference
Manual for more information on the PSP.

_stklen

Function
Syntax
Declared in

Remarks

See also

30

Holds size of the stack.

extern unsigned _stklen;
dos.h

_stklen specifies the size of the stack for all six memory
models. The minimum stack size allowed is 128 words;
if you give a smaller value, _stklen is automatically
adjusted to the minimum. The default stack size is 4K.

In the small and medium models, the data segment size
is computed as follows:

data segment [small,medium] = global data +
heap + stack

where the size of the heap can be adjusted with _heaplen.

In the tiny model, everything (including code) is in the
same segment, so the data segment computations are
adjusted to include the code plus 256 bytes for the
Program Segment Prefix.

data segment[tiny] = 256 + code + global data
+ heap + stack

In the compact and large models, there is no near heap,
so the data segment is simply

data segment [compact,large] = global data + stack

In the huge model, the stack is a separate segment, and
each module has its own data segment.

_heaplen

Turbo C Reference Guide

fimezone

timezone

Function Contains difference in seconds between local time and
GMT.

Syntax extern long timezone;

Declared in time.h

Remarks timezone is used by the time-and-date functions.
This variable is calculated by the tzset function; it is
assigned a long value that is the difference, in seconds,
between the current local time and Greenwich Mean
Time.

tzname

Function Array of pointers to time zone names.

Syntax extern char * tzname|[2]

Declared in time.h

Remarks The global variable tzname is an array of pointers to
strings containing abbreviations for time zone names.
tzname[Q] points to a three-character string with the
value of the time zone name from the TZ environment
string. The global variable tzname[1] points to a three-
character string with the value of the daylight savings
time zone name from the TZ environment string. If no
daylight savings name is present, tzname[1] points to a
null string.

_version

Function Contains the DOS version number.

Syntax extern unsigned int _version;

Declared in dos.h

Chapter 1, Using Turbo C Library Routines 31

_version

Remarks _version contains the DOS version number, with the
major version number in the low byte and the minor
version number in the high byte. (For DOS version x.y,
the x is the major version number, and y is the minor.)

32 Turbo C Reference Guide

The Turbo C Library

This chapter contains a detailed description of each of the functions in the

Turbo C library.

The following sample library look-up entry explains how to use this
portion of the Turbo C Reference Guide to reference the Turbo C library

functions.

function name

Function

Syntax

Prototype in

Summary of what function does.
#include <headerh>

(The header file(s) containing the prototype for function
or definitions of constants, enumerated types, etc., used
by the function; it is listed only if it must be #included in
the routine calling function.)

function(modifier parameter(,...]);

(The declaration syntax for function; parameter names

are italicized. The [,...] indicates that other parameters
and their modifiers may follow.)
headerh

Chapter 2, The Turbo C Library 33

function name

Remarks

Return value

Portability

See also

Example

34

(Header file(s) containing the prototype for function.
The prototype of some functions is contained in more
than one header file; in cases such as this, each of the
files is listed.)

This describes what function does, the parameters it
takes, and any details you need to use function and the
related routines listed.

The value that function returns (if any) is given here. If
function sets the global variable errno, that value is also
listed.

The system(s) and language(s) that function is available
for are listed here. These may include UNIX, IBM PC’s
and compatibles, and the ANSI C standard.

Routines related to function that you might wish to read
about are listed here. Note: If a routine name contains an
ellipsis (funcname..., ...funcname, func...name), it
indicates that you should refer to a family of functions
(for example, exec...).

Some entries include a sample program demonstrating
how function is used.

Turbo C Reference Guide

function name

abort
Function Abnormally terminates a process.
Syntax void abort(void);

Prototype in
Remarks
Return value
Portability

See also

stdlib.h, process.h

abort writes a termination message (abnormal program
termination) on stderr and aborts the program via a call
to _exit with exit code 3.

abort returns the exit code 3 to the parent process or to
DOS.

abort is available on UNIX systems and is compatible
with ANSI C.

assert, atexit, exit, _exit, raise, signal, spawn...

abs

Function

Syntax

Prototype in

Remarks

Return value

Returns the absolute value of an integer.

#include <math.h>
int abs(int x);

math.h, stdlib.h

abs returns the absolute value of the integer argument x.
If abs is called when stdlib.h has been included, it will
be treated as a macro that expands to inline code.

If you want to use the abs function instead of the macro,
include

#undef abs
in your program, after the #include <stdlib.h>.

abs returns an integer in the range of 0 to 32,767, with
the exception that an argument of -32,768 is returned as
-32,768.

Chapter 2, The Turbo C Library 35

absread

Portability abs is available on UNIX systems and is compatible with
ANSIC.
See also cabs, fabs, labs
absread
Function Reads absolute disk sectors.
Syntax int absread(int drive, int nsects,
int Isect, void *buffer);
Prototype in dos.h
Remarks absread reads specific disk sectors. It ignores the logical

Return value

Portability

See also

36

structure of a disk and pays no attention to files, FATs,
or directories.

absread reads specific disk sectors via DOS interrupt
0x25.

drive = drive number to read (0 = A, 1=B, etc.)

nsects = number of sectors to read
Isect = beginning logical sector number
buffer = memory address where the data is to be

read

The number of sectors to read is limited to the amount
of memory in the segment above buffer. Thus, 64K is the
largest amount of memory that can be read in a single
call to absread.

If it is successful, absread returns 0.

On error, the routine returns -1 and sets errno to the
value of the AX register returned by the system call. See
the DOS documentation for the interpretation of errno.

absread is unique to DOS.

abswrite, biosdisk

Turbo C Reference Guide

abswrite

abswrite
Function Writes absolute disk sectors.
Syntax int abswrite(int drive, int nsects, int Isect, void *buffer);

Prototype in

dos.h

Remarks abswrite writes specific disk sectors. It ignores the
logical structure of a disk and pays no attention to files,
FATs, or directories.
Note: If it is used improperly, abswrite can overwrite
files, directories, and FATs.
abswrite writes specific disk sectors via DOS interrupt
0x26.
drive = drive number to write to (0 = A, 1= B, etc.)
nsects = number of sectors to write to
Isect = beginning logical sector number
buffer = memory address where the data is to be
written
The number of sectors to write to is limited to the
amount of memory in the segment above buffer. Thus,
64K is the largest amount of memory that can be read in
a single call to abswrite.
Return value If it is successful, abswrite returns 0.
On error, the routine returns ~1 and sets errno to the
value of the AX register refurned by the system call. See
the DOS documentation for the interpretation of errno.
Portability abswrite is unique to DOS.
See also absread, biosdisk
access
Function Determines accessibility of a file.
Syntax int access(const char *filename, int amode);

Prototype in

io.h

Chapfter 2, The Turbo C Library 37

access

Remarks

Return value

Portability
See also

Example

38

access checks the file named by filename to determine if it
exists, and whether it can be read, written to, or
executed.

The list of amode values is as follows:

06 Check for read and write permission.
04 Check for read permission.

02 Check for write permission.

01 Execute (ignored).

00 Check for existence of file.

Note: Under DOS, all existing files have read access
(amode equals 04), so 00 and 04 give the same result. In
the same vein, amode values of 06 and 02 are equivalent
because under DOS write access implies read access.

If filename refers to a directory, access simply determines
whether the directory exists.

If the requested access is allowed, access returns 0;
otherwise, it returns a value of -1, and errno is set to one
of the following:

ENOENT Path or file name not found
EACCES Permission denied

access is available on UNIX systems.
chmod, fstat, stat

#include <stdio.h>
#include <io.h>

/* Returns 1 if file name exists, else 0 */
int file exists(char *filename)
{

return (access(filename, 0) == 0);

}

main()
{
printf("Does NOTEXIST.FIL exist: %s\n",
file exists("NOTEXIST.FIL") 2 "YES" : "NO");
}

Program output
Does NOTEXIST.FIL exist: NO

Turbo C Reference Guide

acos

acos
Function Calculates the arc cosine.
Syntax #include <math.h>

Prototype in

Remarks

Return value

double acos(double x);
math.h

acos returns the arc cosine of the input value. Argu-
ments to acos must be in the range -1 to 1. Arguments
outside that range will cause acos to return 0 and set
errno to

EDOM Domain error
acos returns a value in the range 0 to pi.

Error-handling for this routine can be modified through
the function matherr.

Portability acos is available on UNIX systems and is compatible
with ANSIC.

See also asin, atan, atan2, cos, cosh, matherr, sin, sinh, tan, tanh

allocmem

Function Allocates DOS memory segment.

Syntax int allocmem(unsigned size, unsigned *segp);

Prototype in dos.h

Remarks allocmem uses the DOS system call 0x48 to allocate a

block of free memory and returns the segment address
of the allocated block.

size is the desired size in paragraphs (a paragraph is 16
bytes). segp is a pointer to a word that will be assigned
the segment address of the newly allocated block. No
assignment is made to the word pointed to by segp if not
enough room is available.

All allocated blocks are paragraph-aligned.

Chapter 2, The Turbo C Library 39

allocmem

Return value

Portability
See also

allocmem returns -1 on success. In the event of error, a
number (the size in paragraphs of the largest available
block) is returned.

An error return from allocmem will set _doserrno and
will set the global variable errno to

ENOMEM Not enough memory
allocmem is unique to DOS.

coreleft, freemem, malloc, setblock

arc

Function

Synfax

Prototype in

Remarks

40

Draws a circular arc.

#include <graphics.h>
void far arc(int x, int y, int stangle,
int endangle, int radius);

graphics.h

arc draws a circular arc in the current drawing color
centered at (x,y) with a radius given by radius. The arc
travels from stangle to endangle. If stangle equals 0 and
endangle equals 360, the call to arc will draw a complete
circle.

The angle for arc is reckoned counterclockwise, with 0
degrees at 3 o’clock, 90 degrees at 12 o’clock, etc.

Note: The linestyle parameter does not affect arcs, circles,
ellipses, or pieslices. Only the thickness parameter is
used.

Note: If you are using a CGA in high resolution mode or
a monochrome graphics adapter, the examples in this
book that show how to use graphics functions may not
produce the expected results. If your system runs on a
CGA or monochrome adapter, pass the value 1 to those
functions (setcolor, setfillstyle, and setlinestyle, for
example) that alter the fill or drawing color, instead of a
symbolic color constant (defined in graphics.h). See the
second example given here on how to use the arc, circle,

Turbo C Reference Guide

Return value
Portability

See also

Example

arc

ellipse, getarccoords, getaspectratio, and pieslice
functions with a CGA or monochrome adapter.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

circle, ellipse, fillellipse, getarccoords, sector
Graphics functions on an EGA or VGA adapter

$include <graphics.h>
#include <conio.h>

main{()

{

/* Will request autodetection */

int graphdriver = DETECT, graphmode;
struct arccoordstype arcinfo;

int xasp, yasp;

leng xlong;

/* Initialize graphics */

initgraph (sgraphdriver, &graphmode, "");

/* Draw a 90 degree arc with radius of 50 */
arc(150, 150, 0, 89, 50);

/* Get the coordinates of the arc and connect ends */

getarccoords (&arcinfo);

line(arcinfo.xstart, arcinfo.ystart, arcinfo.xend,
arcinfo.yend);

/* Draw a circle */
circle(150, 150, 100);

/* Draw an ellipse inside the circle */
ellipse(150, 150, 0, 359, 100, 50);

/* Draw and fill a pieslice */

/* white outline */

setcolor (WHITE);
setfillstyle(SOLID_FILL, LIGHTRED) ;
pieslice(100, 100, 0, 135, 49);
setfillstyle(SOLID_FILL, LIGHTBLUE) ;
pieslice(100, 100, 135, 225, 49);
setfillstyle(SOLID FILL, WHITE);
pieslice (100, 100, 225, 360, 49};

/* Draw a "square" rectangle */
getaspectratio(sxasp, &yasp);
xlong = (100L * (long)yasp) / (long)xasp;

Chapter 2, The Turbo C Library 41

arc

rectangle(0, 0, {int)xlong, 100);
getch();
closegraph(};

}

Example 2 Graphics functions on a CGA or monochrome graphics
adapter.

finclude <graphics.h>
finclude <conio.h>

main()

{
int graphdriver = DETECT, graphmode;

struct arccoordstype arcinfo;
int Xasp, yasp;
long xlong;

initgraph(&graphdriver, &graphmode, "");

/* Draw a 90 degree arc with radius of 50 */
arc{ 100, 120, 0, 89, 50);

/* Get the coordinates of the arc and connect ends */

getarccoords(& arcinfo);

line(arcinfo.xstart, arcinfo.ystart, arcinfo.xend,
arcinfo.yend);

/* Draw a circle */
circle{ 100, 120, 80);

/* Draw an ellipse inside the circle */
ellipse(100, 120, 0, 359, 80, 20);

/* Draw and fill a pieslice */
setfillstyle(HATCH FILL, 1);
pieslice(200, 50, 0, 134, 49);
setfillstyle(SLASH FILL, 1);
pieslice(200, 50, 135, 225, 49);
setfillstyle(WIDE DOT FILL, 1);
pieslice{ 200, 50, 225, 360, 49);

/* Draw a "square" rectangle */
getaspectratio(& xasp, & yasp);

xlong = (50L * (long) yasp)} / (long) xasp;
rectangle{ 0, 0, (int) xlong, 50);

getch();

closegraph();

42 Turbo C Reference Guide

asclime

asctime
Function Converts date and time. to ASCII
Syntax #include <time.h>

Prototype in

Remarks

Return value

Portability
See also

Example

char *asctime(const struct tm *tblock);
time.h

asctime converts a time stored as a structure in *tblock to
a 26-character string of the same form as the ctime
string:

Sun Sep 16 01:03:52 1973\n\0

asctime returns a pointer to the character string
containing the date and time. This string is a static
variable that is overwritten with each call to asctime.

asctime is available on UNIX systems and is compatible
with ANSIC.

ctime, difftime, ftime, gmtime, localtime, stime, time,
tzset

#include <stdio.h>
#include <time.h>

main()
{

struct tm *tm_now;

time t secs_now;

char *str now;

/* get time in seconds */

time(ssecs now);

/* make it a string */

str_now = ctime(&secs now);

printf("The number of seconds since"
"Jan 1, 1970 is %1d\n", secs_now);

printf("In other words, the current time"
"is %s\n", str now);

/* make it a structure */

tm_now = localtime(&secs_now);

printf("From the structure: day %d"
"%02d-%02d-%02d %02d:%02d:%02d\n",
tm_now->tm yday, tm now->tm mon,
tm_now->tm_mday, tm_now->tm year,
tm_now->tm hour, tm now->tm min,
tm_now->tm sec);

Chapter 2, The Turbo C Library 43

asclime

/* from structure to string */

str_now = asctime(tm now);

printf("Once more, the current time is"
"%s\n", str now);

}
Program output

The number of seconds since Jan 1, 1970 is 315594553.
In other words, the current time is Tue Jan 01 12:09:12 1980

From the structure: day 0 00-01-80 12:09:13
Once more, the current time is Tue Jan 01 12:09:12 1980

asin

Function Calculates the arc sine.

Syntax #include <math.h>
double asin(double x);

Prototype in math.h

Remarks asin returns the arc sine of the input value. Arguments
to asin must be in the range -1 to 1. Arguments outside
that range will cause asin to return 0 and set errno to

EDOM Domain error

Return value asin returns a value in the range —pi/2 to pi/2.
Error-handling for this routine can be modified through
the function matherr.

Portability asin is available on UNIX systems and is compatible
with ANSIC.

See also acos, atan, atan2, cos, cosh, matherr, sin, sinh, tan, tanh

44 Turbo C Reference Guide

assert

assert
Function Tests a condition and possibly aborts.
Syntax #include <assert.h>

Prototype in

Remarks

Return value
Portability

See also

Example

#include <stdio.h>
void assert(int test);

assert.h

assert is a macro that expands to an if statement; if fest
evaluates to zero, assert prints a message on stderr and
aborts the program (via a call to abort).

assert prints this message:
Assertion failed: <test>, file <filename>, line <linenum>

The filename and linenum listed in the message are the
source file name and line number where the assert
macro appears.

If you place the #define NDEBUG directive (“no de-
bugging”) in the source code before the #include
<assert.h> directive, the effect is to comment out the
assert statement.

None.

assert is available on some UNIX systems, including
Systems III and V, and is compatible with ANSI C.

abort

/* ASSERTST.C: Add an item to a list,
verify that the item is not NULL */

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

struct ITEM {
int key;
int value;

}

main()
{

additem(NULL) ;
}

Chapter 2, The Turbo C Library 45

assert

void additem{struct ITEM *itemptr) {
assert (itemptr != NULL); /* this is line 12 */
/* ... add the item ... */

}

Program output

Assertion failed: itemptr != NULL,
file C:\TURBOC\ASSERTST.C, line 12

atan
Function Calculates the arc tangent.
Syntax #include <math.h>

Prototype in

double atan(double x);
math.h

Remarks atan calculates the arc tangent of the input value.

Return value atan returns a value in the range —pi/2 to pi/2.
Error-handling for this routine can be modified through
the function matherr.

Portability atan is available on UNIX systems and is compatible
with ANSIC. :

See also acos, asin, atan2, cos, cosh, matherr, sin, sinh, tan, tanh

atan2

Function Calculates the arc tangent of y/x.

Syntax #include <math.h>
double atan2(double y, double x);

Prototype in math.h

Remarks atan2 returns the arc tangent of y/x and will produce
correct results even when the resulting angle is near pi/2
or —pi/2 (x near 0).

If both x and y are set to 0, the function sets errno to
EDOM.
46 Turbo C Reference Guide

Return value

atan2

atan2 returns a value in the range —pi to pi.

Error-handling for this routine can be modified through
the function matherr.

Portability atan2 is available on UNIX systems and is compatible
with ANSI C.

See also acos, asin, atan, cos, cosh, matherr, sin, sinh, tan, tanh

atexit

Function Registers termination function.

Syntax #include <stdlib.h>
int atexit(atexit_t func)

Prototype in stdlib.h

Remarks

Return value

Portability
See also

Example

atexit registers the function pointed to by func as an exit
function. Upon normal termination of the program, exit
calls (*func)() just before returning to the operating
system. The called function is of type atexit_t, which is
defined in a typedef in stdlib.h.

Each call to atexit registers another exit function. Up to
32 functions can be registered. They are executed on a
last-in, first-out basis (that is, the last function registered
is the first to be executed).

atexit returns 0 on success and nonzero on failure (no
space left to register the function).

atexit is compatible with ANSI C.
abort, _exit, exit, spawn...

#include <stdlib.h>
#include <stdio.h>

atexit_t exit fnl(void)
{

printf("Exit Function 1 called\n");
}

atexit_t exit fn2(void)
{
printf("Exit Function 2 called\n");

Chapter 2, The Turbo C Library 47

atexit

}

main{)
{

/* post exit fnl */

atexit (exit_fnl);

/* post exit fn2 */

atexit (exit_fn2);

printf("Main quitting ...\n");
}

Program output

Main quitting ...
Exit Function 2 called
Exit Function 1 called

atof
Function Converts a string to a floating-point number.
Syntax #include <math.h>

Prototype in

Remarks

48

double atof(const char *s);
math.h, stdlib.h

atof converts a string pointed to by s to double; this
function recognizes the character representation of a
floating-point number, made up of the following:

m an optional string of tabs and spaces
m an optional sign .
ma string of digits and an optional decimal point (the
digits can be on both sides of the decimal point)
man optional e or E followed by an optional signed
integer
The characters must match this generic format:
[ws] [sn] [ddd] [.] [ddd] (fmt[sn]ddd]

atof also recognizes +INF and -INF for plus and minus
infinity, and +INAN and ~-NAN for Not-a-Number.

In this function, the first unrecognized character ends
the conversion.

Turbo C Reference Guide

Return value

atof

atof returns the converted value of the input string. If
the string cannot be converted to a number of the
corresponding type (double), the return value is 0.

If there is an overflow, atof returns plus or minus
HUGE_VAL, and matherr is not called.

Portability atof is available on UNIX systems and is compatible
with ANSIC.

See also atoi, atol, ecvt, fcvt, gevt, strtod

atoi

Function Converts a string to an integer.

Syntax int atoi(const char *s);

Prototype in stdlib.h

Remarks atoi converts a string pointed to by s to int; atoi recog-

Return value

Portability

See also

nizes, in the following order,

o an optional string of tabs and spaces
o an optional sign
n a string of digits

The characters must match this generic format:
[ws] [sn] [ddd]

In this function, the first unrecognized character ends
the conversion.

There are no provisions for overflow in atoi.

atoi returns the converted value of the input string. If
the string cannot be converted to a number of the
corresponding type (int), the return value is 0.

atoi is available on UNIX systems and is compatible
with ANSI C.

atof, atol, ecvt, fcvt, gevt

Chapter 2, The Turbo C Library ' 49

atol

atol
Function Converts a string to a long.
Syntax long atol(const char *s);
Prototype in stdlib.h
Remarks atol converts the string pointed to by s to long. atol
recognizes, in the following order,
m an optional string of tabs and spaces
m an optional sign
m a string of digits
The characters must match this generic format:
[ws] [sn] {ddd}
In this function, the first unrecognized character ends
the conversion.
There are no provisions for overflow in atol.
Return value atol returns the converted value of the input string. If
the string cannot be converted to a number of the
corresponding type (long), the return value is 0.
Portability atol is available on UNIX systems and is compatible
with ANSIC.
See also atof, atoi, ecvt, fcvt, gevt, strtol, strtoul
bar
Function Draws a two-dimensional bar.
Syntax #include <graphics.h>
void far bar(int left, int top, int right, int bottom);
Prototype in graphics.h
#include <conio.h>
Remarks bar draws a filled-in, rectangular, two-dimensional bar.
The bar is filled using the current fill pattern and fill
color. bar does not outline the bar; to draw an outlined
two-dimensional bar, use bar3d with depth equal to 0.
50 Turbo C Reference Guide

Return value
Portability

See also

Example

bar

The upper left and lower right corners of the rectangle
are given by (left, top) and (right, bottom), respectively.
The coordinates refer to pixels.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

bar3d, rectangle, setcolor, setfillstyle

$include <graphics.h>

main ()

{
/* Will request autodetection */
int graphdriver = DETECT, graphmode;
/* Initialize graphics */
initgraph(&graphdriver, &graphmode, "");
setfillstyle(SOLID FILL, MAGENTA);
bar3d (100, 10, 200, 100, 5, 1);
setfillstyle (HATCH_FILL, RED);
bar (30, 30, 80, 80);

getche();
closegraph{);

bar3d

Function

Syntax

Prototype in

Remarks

Draws a 3-D bar.

#include <graphics.h>
void far bar3d(int left, int top, int right,
int bottom, int depth, int topflag);

graphics.h

bar3d draws a three-dimensional rectangular bar, then
fills it in using the current fill pattern and fill color. The
three-dimensional outline of the bar is drawn in the
current line style and color. The bar’s depth, in pixels, is
given by depth. The topflag parameter governs whether a
three-dimensional top is put on the bar. If topflag is
nonzero, a top is put on; otherwise, no top is put on the
bar (making it possible to stack several bars on top of
one another).

Chapter 2, The Turbo C Library 51

bar3d

Return value

The upper left and lower right corners of the rectangle
are given by (left, top) and (right, bottom), respectively.

To calculate a typical depth for bar3d, take 25% of the
width of the bar, like this:

bar3d(left,top,right,bottom, (right-left)/4,1);

None.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also bar, rectangle, setcolor, setfillstyle, setlinestyle

Example See bar

bdos

Function DOS system call.

Syntax int bdos(int dosfun, unsigned dosdx, unsigned dosal);

Prototype in dos.h

Remarks bdos provides direct access to many of the DOS system
calls. See the MS-DOS Programmer’s Reference Manual for
details of each system call.
Those system calls that require an integer argument use
bdos.
In the large data models (compact, large, and huge), it is
important to use bdosptr instead of bdos for system
calls that require a pointer as the call argument.
dosfun is defined in the MS-DOS Programmer’s Reference
Manual.
dosdx is the value of register DX.
dosal is the value of register AL.

Return value The return value of bdos is the value of AX set by the
system call.

Portability bdos is unique to DOS.

See also bdosptr, geninterrupt, int86, int86x, intdos, intdosx

52 Turbo C Reference Guide

Example

bdos

#include <stdio.h>
#include <dos.h>

/* Get current drive as 'A’/, ‘B!, ... */
char current drive{void)
{
char curdrive;
/* Get current disk as 0, 1,...*/
curdrive = bdos(0x19,0,0);
return('A’ + curdrive);

}

main ()

{

printf("The current drive is %c:\n", current drive(});

}
Program output

The current drive is C:

bdosptr

Function

Syntax

Prototype in

Remarks

DOS system call.

int bdosptr(int dosfun, void *argument,
unsigned dosal);

dos.h

bdosptr provides direct access to many of the DOS
system calls. See the MS-DOS Programmer’s Reference
Manual for details of each system call.

Those system calls that require a pointer argument use
bdosptr.

In the large data models (compact, large, and huge), it is
important to use bdosptﬁ for system calls that require a
pointer as the call argument.

dosfun is defined in the MS-DOS Programmer’s Reference
Manual.

In the small data models, the argument parameter to
bdosptr specifies DX; in the large data models, it gives
the DS:DX values to be used by the system call.

Chapfter 2, The Turbo C Library 53

bdosptr

dosal is the value of register AL.

Return value The return value of bdosptr is the value of AX on
success, or —1 on failure. On failure, errno and _doserrno
are set.

Portability bdosptr is unique to DOS.

See also bdos; geninterrupt, int86, int86x, intdos, intdosx

Example See harderr

bioscom

Function Performs serial I/0O.

Syntax int bioscom(int cmd, char abyte, int port);

Prototype in bios.h

Remarks bioscom performs various RS-232 communications over

54

the I/0 port given in port.

A port value of 0 corresponds to COM1, 1 corresponds to
COM2, and so forth.

The value of cmd can be one of the following;:

0 Sets the communications parameters to the value
in abyte.

1 Sends the character in abyte out over the
communications line.

2 Receives a character from the communications line.

3 Returns the current status of the communications
port.

abyte is a combination of the following bits (one value is
selected from each of the groups):

0x02 7 data bits
0x03 8 data bits

0x00 1 stop bit
0x04 2 stop bits

0x00 No parity

Turbo C Reference Guide

Return value

bioscom

0x08 Odd parity
0x18 Even parity

0x00 110 baud
0x20 150 baud
0x40 300 baud
0x60 600 baud
0x80 1200 baud
0xA0 2400 baud
0xC0 4800 baud
OxE0 9600 baud

For example, a value of OxEB (0xEO | 0x08 | 0x00 | 0x03)
for abyte sets the communications port to 9600 baud, odd
parity, 1 stop bit, and 8 data bits. bioscom uses the BIOS
0x14 interrupt.

For all values of ¢md, bioscom returns a 16-bit integer of
which the upper 8 bits are status bits and the lower 8
bits vary, depending on the value of cmd. The upper bits
of the return value are defined as follows:

Bit 15 Time out

Bit 14 Transmit shift register empty
Bit 13 Transmit holding register empty
Bit12 Break detect

Bit11 Framing error

Bit 10 Parity error

Bit 9 Overrun error

Bit 8 Data ready

If the abyte value could not be sent, bit 15 is set.
Otherwise, the remaining upper and lower bits are
appropriately set.

With a cmd value of 2, the byte read is in the lower bits
of the return value if there was no error. If an error
occurred, at least one of the upper bits is set. If no upper
bits are set, the byte was received without error.

With a cmd value of 0 or 3, the return value has the
upper bits set as defined, and the lower bits are defined
as follows:

Chapter 2, The Turbo C Library 55

bioscom

Bit7 Received line signal detect

Bit6 Ring indicator

Bit5 Data set ready

Bit4 Clear to send

Bit3 Change in receive line signal detector
Bit2 Trailing edge ring detector '
Bit1 Change in data set ready

Bit0 Changein clear to send

Portability bioscom works with IBM PCs and compatibles only.

Example /* bioscom example - Dumb Terminal Demo */

#include <bios.h>
#include <conio.h>

#define COM1 0

§define DATA READY 0x100

/* 1200 baud, 7 bits, 1 stop, no parity */
$define SETTINGS (0x80]0x02|0x00][0x00)

main{()
{

int register in, out, status;
bioscom(0, SETTINGS, COM1);
cprintf(”... BIOSCOM [ESC] to exit ...\n");

while (1)
{
status = bioscom(3, 0, COM1);
1f (status & DATA READY)
if ((out = bioscom(2, 0, COM1) & Ox7F) != 0
putch(out);
if (kbhit())
{
if ((in = getch()) == ’\x1B’)
return(0);
bioscom(1l, in, COM1);

56 Turbo C Reference Guide

biosdisk

biosdisk

Function

Syntax

Prototype in

Remarks

BIOS disk services.

int biosdisk(int cmd, int drive, int head, int track,
int sector, int nsects, void *buffer);

bios.h

biosdisk uses interrupt 0x13 to issue disk operations
directly to the BIOS.

drive is a number that specifies which disk drive is to be
used: 0 for the first floppy disk drive, 1 for the second
floppy disk drive, 2 for the third, etc. For hard disk
drives, a drive value of 0x80 specifies the first drive, 0x81
specifies the second, 0x82 the third, and so forth.

For hard disks, the physical drive is specified, not the
disk partition. If necessary, the application program
must interpret the partition table information itself.

cmd indicates the operation to perform. Depending on
the value of cmd, the other parameters may or may not
be needed.

Here are the possible values for cmd for the IBM PC, XT,
AT, or PS/2, or any compatible system:

Chapter 2, The Turbo C Library 57

biosdisk

58

Resets disk system, forcing the drive controller
to do a hard reset. All other parameters are
ignored.

Returns the status of the last disk operation. All
other parameters are ignored.

Reads one or more disk sectors into memory.
The starting sector to read is given by head, track,
and sector. The number of sectors is given by
nsects. The data is read, 512 bytes per sector, into
buffer.

Writes one or more disk sectors from memory.
The starting sector to write is given by head,
track, and sector. The number of sectors is given
by nsects. The data is written, 512 bytes per
sector, from buffer.

Verifies one or more sectors. The starting sector
is given by head, track, and sector. The number of
sectors is given by nsects.

Formats a track. The track is specified by head
and frack. buffer points to a table of sector
headers to be written on the named track. See
the Technical Reference Manual for the IBM PC for
a description of this table and the format
operation.

Turbo C Reference Guide

biosdisk

The following c¢md values are allowed only for the XT,
AT, PS/2, and compatibles:

6
7
8

9
10

11

12
13
14
15
16
17
18
19
20

Note: biosdisk operates below the level of files, on raw
sectors, and it can destroy file contents and directories

Formats a track and sets bad sector flags.
Formats the drive beginning at a specific track.

Returns the current drive parameters. The drive
information is returned in buffer in the first 4
bytes.

Initializes drive-pair characteristics.

Does a long read, which reads 512 plus 4 extra
bytes per sector.

Does a long write, which writes 512 plus 4 extra
bytes per sector.

Does a disk seek.

Alternates disk reset.

Reads sector buffer.

Writes sector buffer.

Tests whether the named drive is ready.
Recalibrates the drive.

Controller RAM diagnostic.

Drive diagnostic.

Controller internal diagnostic.

on a hard disk.
Return value biosdisk returns a status byte composed of the
following bits:
0x00 Operation successful.
0x01 Bad command.
0x02 Address mark not found.
0x03 Attempt to write to write-protected disk.
0x04 Sector not found.
0x05 Reset failed (hard disk).
0x06 Disk changed since last operation.
0x07 Drive parameter activity failed.

Chapter 2, The Turbo C Library 59

biosdisk

0x08 DMA overrun.

0x09 Attempt to DMA across 64K boundary.
0x0A Bad sector detected.

0x0B Bad track detected.

0x0C Unsupported track.

0x10 Bad CRC/ECC on disk read.

0x11 CRC/ECC corrected data error.

0x20 Controller has failed.

0x40 Seek operation failed.

0x80 Attachment failed to respond.

O0xAA Drive not ready (hard disk only).

0xBB Undefined error occurred (hard disk only).
0xCC Write fault occurred.

0xEO Status error.

OxFF Sense operation failed.

Note that 0x11 is not an error because the data is correct.
The value is returned anyway to give the application an
opportunity to decide for itself.

Portability biosdisk works with IBM PCs and compatibles only.

See also absread, abswrite

biosequip

Function Checks equipment.

Syntax int biosequip(void);

Prototype in bios.h

Remarks biosequip returns an integer describing the equipment
connected to the system. BIOS interrupt 0x11 is used for
this.

Return value The return value is interpreted as a collection of bit-

60

sized fields. The IBM PC values follow:

Bits 14-15 Number of parallel printers installed
Bit 13 Serial printer attached
Bit 12 Game I/0 attached

Turbo C Reference Guide

Portability

biosequip

Bits 9-11 Number of send ports

Bit 8 Not DMA
0 = Machine has DMA.
1 = Machine does not have DMA;
for example, PC Jr.

Bits 67 Number of disks

00 =1 drive

01 = 2 drives

10 = 3 drives

11 = 4 drives, only if bit 0 is 1

Bit 5 Initial
Bit 4 Video mode

00 = Unused

01 = 40x25 BW with color card
10 = 80x25 BW with color card
11 = 80x25 BW with mono card

Bits 2-3 Motherboard RAM size
Bit 2 RAM size

00 =16K

01=32K

10 =48K

11 = 64K
Bit1 Floating-point coprocessor
Bit 0 Boot from disk

biosequip works with IBM PCs and compatibles only.

bioskey

Function
Syntax
Prototype in

Remarks

Keyboard interface, using BIOS services directly.
int bioskey(int cmd);
bios.h

bioskey performs various keyboard operations using
BIOS interrupt 0x16. The parameter cmd determines the
exact operation.

Chapter 2, The Turbo C Library 61

bioskey

Return value

Portability

Example

62

The value returned by bioskey depends on the task it
performs, determined by the value of cmd:

cmd Task Performed by bioskey

0 If the lower 8 bits are nonzero, bioskey returns
the ASCII character for the next keystroke
waiting in the queue or the next key struck at
the keyboard. If the lower 8 bits are zero, the
upper 8 bits are the extended keyboard codes
defined in the Technical Reference Manual for the
IBM PC.

1 This tests whether a keystroke is available to
be read. A return value of zero means no key is
available. Otherwise, the value of the next
keystroke is returned. The keystroke itself is
kept to be returned by the next call to bioskey
that has a crmd value of zero.

2 Requests the current shift key status. The value
is composed from ORing the following values
together:

Bit7 0x80 Insert on

Bit 6 0x40 Caps on

Bit5 0x20 Num Lock on

Bit 4 0x10 Scroll Lock on

Bit 3 0x08 Alt pressed

Bit 2 0x04 Ctrl pressed

Bit 1 0x02 Left Shift pressed
Bit 0 0x01 Right Shift pressed

bioskey works with IBM PCs and compatibles only.

$include <stdio.h>
$include <bios.h>
$include <ctype.h>

fdefine RIGHT 0x0001
#define LEFT 0x0002
fdefine CTRL 0x0004
fdefine ALT 0x0008

main ()

{

Turbo C Reference Guide

bioskey

int key; int modifiers;

/* Function 1 returns 0 until a key is struck. Wait
for an input by repeatedly checking for a key. */
while(bioskey (1) == 0) ;

/* Now use function 0 to get the return value of
the key. */

key = bioskey(0};

printf("Key Pressed was ");

/* Use function 2 to determine if shift keys were used */
modifiers = bioskey(2);
if (modifiers) ({
printf("[");
if (modifiers & RIGHT) printf("RIGHT ");
if {modifiers & LEFT) printf("LEFT ");
if (modifiers & CTRL) printf("CTRL ");
if (modifiers & ALT)} printf("ALT ");
printf("] ");
}

if (isalnum(key & OXFF))
printf{"*%c’\n", key);

else
print£("$#02x\n", key);

Program output

Key Pressed was [LEFT] 'T/

biosmemory
Function Returns memory size.
Syntax int biosmemory(void);

Prototype in bios.h

Remarks biosmemory returns the size of RAM memory using
BIOS interrupt 0x12. This does not include display
adapter memory, extended memory, or expanded
memory.

Return value biosmemory returns the size of RAM memory in 1K
blocks.

Chapter 2, The Turbo C Library ’ 63

biosprint

Portability biosmemory works with IBM PCs and compatibles only.

biosprint

Function Printer I/O using BIOS services directly.

Syntax int biosprint(int cmd, int abyte, int port);

Prototype in bios.h

Remarks biosprint performs various printer functions on the
printer identified by the parameter port, using BIOS
interrupt 0x17.

A port value of 0 corresponds to LPT1; a port value of 1
corresponds to LPT2; and so on.
The value of cmd can be one of the following:
0 Prints the character in abyte.
1 Initializes the printer port.
2 Reads the printer status.
The value of abyte can be 0 to 255.

Return value The value returned from any of these operations is the
current printer status composed by ORing these bit
values together:

Bit 0 0x01 Device time out
Bit 3 0x08 I/0 error

Bit 4 0x10 Selected

Bit 5 0x20 Out of paper
Bit 6 0x40 Acknowledge
Bit 7 0x80 Not busy

Portability biosprint works with IBM PCs and compatibles only.

biostime

Function reads or sets the BIOS timer

Syntax long biostime(int cmd, long newtime);

Prototype in bios.h

64 Turbo C Reference Guide

Remarks

Return value

Portability

biostime

biostime either reads or sets the BIOS timer. This is a
timer counting ticks since midnight at a rate of roughly
18.2 ticks per second. biostime uses BIOS interrupt
Ox1A. :

If cmd equals 0, biostime returns the current value of the
timer. If cmd equals 1, the timer is set to the long value in
newtime.

When biostime reads the BIOS timer (cmd = 0), it returns
the timer’s current value.

biostime works with IBM PCs and compatibles only.

brk

Function
Syntax
Prototype in

Remarks

Return value

Portability
See also

Changes data-segment space allocation.
int brk(void *addr);
alloc.h

brk is used to change dynamically the amount of space
allocated to the calling program’s data segment. The
change is made by resetting the program’s break value,
which is the address of the first location beyond the end
of the data segment. The amount of allocated space
increases as the break value increases.

brk sets the break value to addr and changes the
allocated space accordingly.

This function will fail without making any change in the
allocated space if such a change would allocate more
space than is allowable.

Upon successful completion, brk returns a value of 0.

On failure, this function returns a value of -1 and errno
is set to

ENOMEM Not enough memory
brk is available on UNIX systems.

coreleft, sbrk

Chapter 2, The Turbo C Library 65

bsearch

bsearch
Function Binary search of an array.
Syntax #include <stdlib.h>
void *bsearch(const void *key, const void *base,
size_t nelem, size_t width,
int (*femp)(const void *, const void *));
Prototype in stdlib.h
Remarks bsearch searches a table (array) of nelem elements in
memory, and returns the address of the first entry in the
table that matches the search key. If no match is found,
bsearch returns 0.
The type size_t is defined as an unsigned integer.
m nelem gives the number of elements in the table.
m width specifies the number of bytes in each table entry.
The comparison routine *fcmp is called with two argu-
ments: elem] and elem2. Each argument points to an item
to be compared. The comparison function compares
each of the pointed-to items (*eleml and *elem2), and
returns an integer based on the results of the
comparison.
For bsearch, the *fcmp return value is
< 0 if *eleml < *elem2
== 0 if *eleml == *elem2
> 0 if *eleml > *elem2
Typically, elem1 is the argument key, and elem2 is a
pointer to an element in the table being searched.
Return value bsearch returns the address of the first entry in the table
that matches the search key. If no match is found,
bsearch returns 0.
Portability bsearch is available on UNIX systems and is compatible
with ANSI C.
See also Ifind, Isearch, qsort
Example #include <stdio.h>
#include <stdlib.h>
66 Turbo C Reference Guide

fdefine NELEMS(arr) (sizeof(arr) / sizeof(arr[0]1))
int numarray(} = { 123, 145, 512, 627, 800, 993 };

int numeric{int *pl, int *p2)
{

return(*pl -~ *p2);
}

/* Return 1 if key is in the table, 0 if not */
int lookup(int key)
{

int *itemptr;

/* bsearch() returns a pointer to the
item that is found */
itemptr = (int *)
bsearch(&key, numarray, NELEMS(numarray),
sizeof (int), numeric);
return (itemptr != NULL);
}

main()
{

printf("Is 512 in table? ");

printf{"%s\n", lookup(512) ? "YES" : "NO");
}

Program output
Is 512 in table? YES

bsearch

cabs
Function Absolute value of complex number.
Syntax #include <math.h>
double cabs(struct complex z);
Prototype in math.h
Remarks cabs is a macro that calculates the absolute value of z, a

complex number. z is a structure with type complex; the

structure is defined in math.h as

struct complex {
double x, y;
)i

where x is the real part and y is the imaginary part.

Chapter 2, The Turbo C Library

67

cabs

Return value

Calling cabs is equivalent to calling sqrt with the real
and imaginary components of z, as shown here:

sqrt(z.x * z.x + z.y * z.y)

If you want to use the function instead of the macro,
include

#undef cabs
in your program.

cabs returns the absolute value of z, a double. On
overflow, cabs returns HUGE_VAL and sets errno to

ERANGE Result out of range

Error-handling for cabs can be modified through the
function matherr.

Portability cabs is available on UNIX systems.
See also abs, fabs, labs, matherr
calloc
Function Allocates main memory.
Syntax #include <stdlib.h>

void *calloc(size_t nitems, size_t size);
Prototype in stdlib.h, alloc.h

Remarks

68

calloc provides access to the C memory heap. The heap
is available for dynamic allocation of variable-sized
blocks of memory. Many data structures, such as trees
and lists, naturally employ heap memory allocation.

All the space between the end of the data segment and
the top of the program stack is available for use in the
small data models (tiny, small, and medium), except for
a 256-byte margin immediately before the top of the
stack. This margin is intended to allow the application
some room to grow on the stack, plus a small amount
needed by DOS.

Turbo C Reference Guide

calloc

In the large data models (compact, large, and huge), all
space beyond the program stack to the end of physical
memory is available for the heap.

calloc allocates a block of size nitems X size. The block is
cleared to 0.

Return value calloc returns a pointer to the newly allocated block. If
not enough space exists for the new block, or nitems or
size is 0, calloc returns NULL.

Portability calloc is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

See also farcalloc, free, malloc, realloc

ceil

Function Rounds up.

Syntax #include <math.h>
double ceil(double x);

Prototype in math.h

Remarks ceil finds the smallest integer not less than x.

Return value ceil returns the integer found (as a double).

Portability ceil is available on UNIX systems and is compatible with
ANSIC.

See also floor, fmod

cgets

Function Reads string from console.

Syntax char *cgets(char *str);

Prototype in

Remarks

conio.h

cgets reads a string of characters from the console,
storing the string (and the string length) in the location
pointed to by str.

Chapter 2, The Turbo C Library | 69

cgets

Return value
Portability

See also

Example

70

cgets reads characters until it encounters a CR/LF
combination, or until the maximum allowable number
of characters have been read. If cgets reads a CR/LF
combination, it replaces the combination with a \0 (null
terminator) before storing the string.

Before cgets is called, str[0] should be set to the
maximum length of the string to be read. On return,
str{1] is set to the number of characters actually read.
The characters read start at str[2] and end with a null
terminator. Thus, str must be at least str[0] plus 2 bytes
long.

On success, cgets returns a pointer to str[2]. There is no
error return.

This function works only with IBM PCs and compatibles
equipped with supplied graphics display adapters.

fgets, getch, getche, gets

$include <stdio.h>
#include <conio.h>

main()
{
char buffer([82];
char *p;
buffer[0] = 80; /* There's space for 80 characters */
p = cgets (buffer);
printf("/ncgets got %d characters: \"%s\"\n",
buffer{l], p):
printf("The returned pointer is %p,
buffer(2] is at %p\n", p, &buffer)
buffer[0] = 5 /* Leave space for 5 chars only */
p = cgets(buffer);
printf("/ncgets got %d characters: \"%s\"\n",
buffer{l], p):
printf("The returned pointer is %p, buffer[2} is at %p\n",
p, &buffer)
}

Program output

abcdfghijkim

cgets got 12 characters: "abcdfghijklm"

The returned pointer is FEF6, buffer{2] is at FEF6
abcd

cgets got 4 characters: "abcd"

Turbo C Reference Guide

chdir

the returned pointer is FEF6, buffer(2] is at FEF6

chdir

Function
Syntax
Prototype in

Remarks

Return value

Portability

See also

Changes current directory.
int chdir(const char *path);
dirh

chdir causes the directory specified by path to become
the current working directory. path must specify an
existing directory.

A drive can also be specified in the path argument, such
as

chdir{"a:\\turboc")

but this changes only the current directory on that drive;
it doesn’t change the active drive.

Upon successful completion, chdir returns a value of 0.
Otherwise, it returns a value of -1, and errno is set to

ENOENT

chdir is available on UNIX systems.

Path or file name not found

getcurdir, getewd, mkdir, rmdir, system

_chmod

Function

Syntax

Prototype in

Remarks

Changes file access mode.

#include <dos.h>
#include <io.h>
int _chmod(const char *path, int func [, int attribl);

io.h

The _chmod function may either fetch or set the DOS
file attributes. If func is 0, the function returns the
current DOS attributes for the file. If func is 1, the
attribute is set to attrib.

Chapter 2, The Turbo C Library 71

_chmod

Return value

attrib can be cne of the following symbolic constants
(defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, _chmod returns the file
attribute word; otherwise, it returns a value of -1.

In the event of an error, errno is set to one of the
following;:

ENOENT Path or file name not found
EACCES Permission denied

Portability _chmod is unique to DOS.
See also chmod, _creat
chmod
Function Changes file access mode.
Syntax #include <sys\stat.h>
int chmod(const char *path, int amode);
Prototype in io.h
Remarks chmod sets the file-access permissions of the file given
by filename according to the mask given by amode.
filename points to a string; *filename is the first character
of that string.
amode can contain one or both of the symbolic constants
S_IWRITE and S_IREAD (defined in sys\stat.h).
Value of amode Access Permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD |S_IWRITE Permission to read and write
72 Turbo C Reference Guide

Return value

Portability
See also

Example

chmod

Upon successfully changing the file-access mode, chmod
returns 0. Otherwise, chmod returns a value of -1.

In the event of an error, errno is set to one of the
following:

ENOENT Path or file name not found
EACCES Permission denied

chmeod is available on UNIX systems.
access, _chmod, fstat, open, sopen, stat

$include <stdio.h>
$include <sys\stat.h>
$include <io.h>

void make_read only(char *filename)
{
int stat;
stat = chmod(filename, S IREAD);
if (stat)
printf("couldn’t make %s
"read-only\n", filename};
else
printf{"made %s read-only\n", filename);
}

main{)
{
make read only("NOTEXIST.FIL");
make_read_only ("MYFILE.FIL");
}

Program output

Couldn’t make NOTEXIST.FIL read-only
made MYFILE,FIL read-only

chsize

Function
Syntax
Prototype in

Changes file size.
int chsize(int handle, long size);

io.h

Chapter 2, The Turbo C Library 73

chsize

Remarks

Return value

chsize changes the size of the file associated with handle.
It can truncate or extend the file, depending on the value
of size compared to the file’s original size.

The mode in which you open the file must allow
writing.
If chsize extends the file, it will append null characters

(\0). If it truncates the file, all data beyond the new end-
of-file indicator is lost.

On success, chsize returns 0. On failure, it returns -1
and errno is set to one of the following:

EACCESS Permission denied
EBADF Bad file number
ENOSPC UNIX—not DOS

Portability chsize is unique to DOS.

See also close, _creat, creat, open

circle

Function Draws a circle of the
given radius at (x,y).

Syntax #include <graphics.h>

Prototype in

Remarks

Return value
Portability

74

void far circle(int x, int y, int radius);
graphics.h

circle draws a circle in the current drawing color with its
center at (x,y) and the radius given by radius.

Note: The linestyle parameter does not affect arcs, circles,
ellipses, or pieslices. Only the thickness parameter is
used.

If your circles are not perfectly round, adjust the aspect
ratio.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

Turbo C Reference Guide

circle

See also arc, ellipse, fillellipse, getaspectratio, sector,
setaspectratio

Examples See arc

_clear87

Function Clears floating-point status word.

Syntax unsigned int _clear87 (void);

Prototype in float.h

Remarks _clear87 clears the floating-point status word, which is a
combination of the 8087/80287 status word and other
conditions detected by the 8087/80287 exception
handler.

Return value The bits in the value returned indicate the floating-point
status before it was cleared. For information on the
status word, refer to the constants defined in float.h.

See also _control87, _fpreset, _status87
Example See _control87
cleardevice

Function Clears the graphics screen.
Syntax #include <graphics.h>

void far cleardevice(void);
Prototype in graphics.h

Remarks cleardevice erases (that is, fills with the current
background color) the entire graphics screen and moves
the CP (current position) to home (0,0).

Return value None.

Portability This function works only with IBM PC’s and
compatibles equipped with supported graphics display
adapters.

See also clearviewport

Chapter 2, The Turbo C Library 75

clearerr

clearerr
Function Resets error indication.
Syntax #include <stdio.h>

Prototype in

void clearerr(FILE *stream);
stdio.h

Remarks clearerr resets the named stream'’s error and end-of-file
indicators to 0. Once the error indicator is set, stream
operations will continue to return error status until a call
is made to clearerr or rewind.

The end-of-file indicator is reset with each input
operation. 4

Return value None.

Portability clearerr is available on UNIX systems and is compatible
with ANSIC.

See also eof, feof, ferror, perror, rewind

clearviewport

Function Clears the current viewport.

Syntax #include <graphics.h>
void far clearviewport(void);

Prototype in graphics.h

Remarks clearviewport erases the viewport and moves the CP

' (current position) to home (0,0) relative to the viewport.

Return value None.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also cleardevice, getviewsettings, setviewport

Example #include <graphics.h>
main ()

{
/* will request autodetection */
76 Turbo C Reference Guide

clearviewpornt

int graphdriver = DETECT, graphmode;

setviewport (30, 30, 130, 130, 0);

outtextxy {10, 10, "Hit any key to clear viewport ...");
/* get a key */

getch();
/* clear viewport when key is hit */

clearviewport();

closegraph();

clock

Function

Syntax

Prototype in

Remarks

Return value

Portability

Example

Determines processor time

#include <time.h>
clock_t clock(void);

time.h

clock can be used to determine the time interval
between two events.

To determine the time in seconds, the value returned by
clock should be divided by the value of the macro
CLK_TCK.

The clock function returns the processor time elapsed
since the beginning of the program invocation. If the
processor time is not available or its value cannot be
represented, the function returns the value —1.

clock is compatible with ANSI C.

#include <time.h>
#include <stdio.h>

void main{)

{

clock t start, end;
start = clock();
/* Code to be timed goes here */

end = clock{);
printf("The time was: %f\n", (end - start) / CLK_TCK);
)

Chapter 2, The Turbo C Library 77

_close

_close

Function Closes a file.

Syntax int _close(int handle);

Prototype in io.h

Remarks _close closes the file associated with handle. handle is a

Return value

file handle obtained from a _creat, creat, creatnew,
creattemp, dup, dup2, _open, or open call.

Note: This function does not write a Cir-Z character at
the end of the file. If you want to terminate the file with
a Ctrl-Z, you must explicitly output one.

Upon successful completion, _close returns 0. Other-
wise, it returns a value of -1.

_close fails if handle is not the handle of a valid, open
file, and errno is set to

EBADF Bad file number

Portability _close is unique to DOS.

See also close, _creat, open, read, write

close

Function Closes a file.

Syntax int close(int handle);

Prototype in io.h

Remarks close closes the file associated with handle, a file handle

Return value

78

obtained from a _creat, creat, creatnew, creattemp, dup,
dup2, _open, or open call.

Note: This function does not write a Ctrl-Z character at
the end of the file. If you want to terminate the file with
a Ctrl-Z, you must explicitly output one.

Upon successful completion, close returns 0. Otherwise,
a value of -1 is returned.

Turbo C Reference Guide

Portability

See also

close

close fails if handle is not the handle of a valid, open file,
and errno is set to

EBADF

close is available on UNIX systems.

Bad file number

chsize, _close, creat, creatnew, dup, fclose, open, sopen

closegraph

Function Shuts down the graphics system.

Syntax #include <graphics.h>
void far closegraph(void);

Prototype in graphics.h

Remarks closegraph deallocates all memory allocated by the
graphics system, then restores the screen to the mode it
was in before you called initgraph. (The graphics system
deallocates memory, such as the drivers, fonts, and an
internal buffer, through a call to _graphfreemem.)

Return value None.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also initgraph, setgraphbufsize

clreol

Function Clears to end of line in text window.

Syntax void clreol(void);

Prototype in

Remarks

Return value

Portability

conio.h

clreol clears all characters from the cursor position to the
end of the line within the current text window, without
moving the cursor.

None.

clreol works with IBM PCs and compatibles only.

Chapter 2, The Turbo C Library 79

cirscr

See also clrscr, delline, window

clrscr

Function Clears the text mode window.

Syntax void clrscr(void);

Prototype in conio.h

Remarks clrser clears the current text window and places the

Return value
Portability

See also

cursor in the upper left-hand corner (at position 1,1).
None.
clrscr works with IBM PCs and compatibles only.

clreol, delline, window

_control87

Function

Syntax

Prototype in

Remarks

80

Manipulates the floating-point control word.

unsigned int _control87(unsigned int new,
unsigned int mask);

float.h

—control87 retrieves or changes the floating-point
control word.

The floating-point control word is an unsigned int that,
bit by bit, specifies certain modes in the floating-point
package, namely, the precision, infinity, and rounding
modes. Changing these modes allows you to mask or
unmask floating-point exceptions.

_control87 matches the bits in mask to the bits in new. If a
mask bit equals 1, the corresponding bit in new contains
the new value for the same bit in the floating-point
control word, and _control87 sets that bit in the control
word to the new value.

Here’s a simple illustration:

Turbo C Reference Guide

_control87

Original control word: 0100 0011 0110 0011

mask 1000 0001 0100 1111
new 1110 1001 0000 0101
Changing bits lxxx xxx1 xOxx 0101

If mask equals 0, _control87 returns the floating-point
control word without altering it.

Return value The bits in the value returned reflect the new floating-
point control word. For a complete definition of the bits
returned by _control87, see the header file float.h.

See also _clear87, _fpreset, signal, _status87
Example /* _control87 example */

$#include <math.h>
#include <float.h>
$include <stdio.h>

#define CW _NEW (CW DEFAULT | EM ZERODIVIDE | EM_OVERFLOW)
#define MASK ALL (OxFFFF)

main()
{
float a, b, c;

_control87(CH_NEW|EM INVALID, MASK ALL);

1.0;
0.0;
a/b;

if(status87() & SW_ZERODIVIDE)

{
fprintf(stderr, "DIVISION BY ZERO.\n");
_clear87();
return{l);

}

0O o o
noan

Chapter 2, The Turbo C Library 81

coreleft

coreleft
Function Returns a measure of unused RAM memory.
Syntax In the tiny, small, and medium models:
unsigned coreleft(void);
In the compact, large, and huge models:
unsigned long coreleft(void);
Prototype in alloc.h
Remarks coreleft returns a measure of RAM memory not in use.

Return value

It gives a different measurement value, depending on
whether the memory model is of the small data group or
the large data group.

In the large data models, coreleft returns the
amount of unused memory between the heap and the
stack.

Portability coreleft is unique to DOS.
In the small data memory models, coreleft returns the
amount of unused memory between the stack and the
data segment minus 256 bytes.

See also allocmem, brk, farcoreleft, malloc

cos

Function Calculates the cosine.

Syntax #include <math.h>
double cos(double x);

Prototype in math.h

Remarks cos returns the cosine of the input value. The angle is
specified in radians.

Return value cos returns a value in the range -1 to 1.
Error-handling for this routine can be modified through
the function matherr.

82 Turbo C Reference Guide

Ccos

Portability cos is available on UNIX systems and is compatible with
ANSIC.

See also acos, asin, atan, atan2, cosh, matherr, sin, sinh, tan,
tanh

cosh

Function Calculates the hyperbolic cosine.

Syntax #include <math.h>
double cosh(double x);

Prototype in math.h

Remarks cosh computes the hyperbolic cosine for a real argu-
ment.

Return value cosh returns the hyperbolic cosine of the argument.
When the correct value would create an overflow, cosh
returns the value HUGE_VAL with the appropriate sign,
and errno is set to ERANGE.

Error-handling for cosh can be modified through the
function matherr.

Portability cosh is available on UNIX systems and is compatible
with ANSIC.

See also acos, asin, atan, atan2, cos, matherr, sin, sinh, tan, tanh

country

Function Returns country-dependent information.

Syntax #include <dos.h>
struct country *country(int xcode, struct country *cp);

Prototype in dos.h

Remarks country specifies how certain country-dependent data,

such as dates, times, and currency, will be formatted.
The values set by this function depend on the DOS
version being used.

Chapter 2, The Turbo C Library 83

country

Return value

Portability

84

If cp has a value of -1, the current country is set to the
value of xcode, which must be nonzero. Otherwise, the
country structure pointed to by cp is filled with the
country-dependent information of the current country
(if xcode is set to 0), or the country given by xcode.

The structure country is defined as follows:

struct country {

int co_date; /* date format */
char co_curr(5]; /* currency symbol */
char co_thsep([2]; /* thousands separator */
char co_desepl(2]; /* decimal separator */
char co dtsep[2]; /* date separator */
char co_tmsep(2]; /* time separator */
char co_currstyle; /* currency style */
char co digits; /* significant digits in currency */
char co_time; /* time format */
long co_case; /* case map */
char co_dasep(2]; /* data separator */
char co_fill[10]; /* filler */

Vi ,
The date format in co_date is

m 0 for the U.S. style of month, day, year
m 1 for the European style of day, month, year
m 2 for the Japanese style of year, month, day

Currency display style is given by co_currstyle, as
follows:

0 Currency symbol precedes value with no spaces
between the symbol and the number.

1 Currency symbol follows value with no spaces
between the number and the symbol.

2 Currency symbol precedes value with a space
after the symbol.

3 Currency symbol follows the number with a
space before the symbol.

On success, country returns the pointer argument cp. On
error it returns NULL.

country is available only with DOS version 3.0 and
greater.

Turbo C Reference Guide

cprintf

cprintf

Function Writes formatted output to the screen.

Syntax int cprintf(const char *format[, argument, ...]);

Prototype in conio.h

Remarks cprintf accepts a series of arguments, applies to each a
format specification contained in the format string
pointed to by format, and outputs the formatted data
directly to the screen, to the current text window. There
must be the same number of format specifications as
arguments.
See printf for a description of the information included
in a format specification. Unlike fprintf and printf,
cprintf does not translate linefeed characters (\n) into
carriage-return/linefeed character pairs (\r\n).

Return value cprintf returns the number of characters output.

Portability cprintf works with IBM PCs and compatibles only.

See also directvideo (variable), fprintf, printf, putch, sprintf,
vprintf

Example See printf

cputs

Function Writes a string to the screen.

Syntax int cputs(const char *str);

Prototype in conjo.h

Remarks cputs writes the null-terminated string str to the current
text window. It does not append a newline character.
The string is written directly to screen memory by way
of a BIOS call, depending on the value of directvideo.
Unlike puts, cputs does not translate linefeed characters
(\n) into carriage-return/linefeed character pairs (\r\n).

Return value cputs returns the last character printed.

Chapter 2, The Turbo C Library 85

cputs

Portability
See also

cputs works with IBM PCs and compatibles only.
directvideo (variable), putch, puts

_creat

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

86

Creates a new file or rewrites an existing one.

#include <dos.h>
int _creat(const char *path, int attrib);

io.h

_creat accepts attribute, a DOS attribute word. Any
attribute bits can be set in this call. The file is always
opened in binary mode. Upon successful file creation,

the file pointer is set to the beginning of the file. The file
is opened for both reading and writing.

If the file already exists, its size is reset to 0. (This is
essentially the same as deleting the file and creating a
new file with the same name.)

The attribute argument to _creat can be one of the
following constants (defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, _creat returns the new file
handle, a nonnegative integer; otherwise, it returns —1.

In the event of error, errno is set to one of the following:

ENOENT Path or file name not found
EMFILE Too many open files
EACCES Permission denied

_creat is unique to DOS.

_chmod, chsize, _close, close, creat, creatnew,
creattemp

Turbo C Reference Guide

creat

creat
Function Creates a new file or rewrites an existing one.
Syntax #include <sys\stat.h>
int creat(const char *path, int amode);
Prototype in io.h
Remarks creat creates a new file or prepares to rewrite an existing

Return value

file given by path. amode applies only to newly created
files.

A file created with creat is always created in the trans-
lation mode specified by the global variable _fmode
(O_TEXT or O_BINARY).

If the file exists and the write attribute is set, creat
truncates the file to a length of 0 bytes, leaving the file
attributes unchanged. If the existing file has the read-
only attribute set, the creat call fails, and the file remains
unchanged.

The creat call examines only the S_IWRITE bit of the
access-mode word amode. If that bit is 1, the file is
writable. If the bit is 0, the file is marked as read-only.
All other DOS attributes are set to 0.

amode can be one of the following (defined in sys\stat.h):

Value of amode Access Permission
S_IWRITE Permission to write
S IREAD Permission to read

S_IREAD |S_IWRITE Permission to read and write

Note: In DOS, write permission implies read permission.

Upon successful completion, creat returns the new file
handle, a nonnegative integer; otherwise, it returns 1.

In the event of error, errno is set to one of the following:

Chapter 2, The Turbo C Library 87

creat

ENOENT Path or file name not found
EMFILE Too many open files
EACCES Permission denied
Portability creat is available on UNIX systems.
See also chmod, chsize, close, _creat, creatnew, creattemp, dup,
dup2, _fmode (variable), fopen, open, sopen, write
creatnew
Function Creates a new file.
Syntax #include <dos.h>

Prototype in

Remarks

Return value

Portability

See also

88

int creatnew(const char *path, int attrib);
io.h

creatnew is identical to _creat, with the exception that, if
the file exists, the creatnew call returns an error and
leaves the file untouched.

The mode argument to creatnew can be one of the
following constants (defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, creat returns the new file
handle, a nonnegative integer; otherwise, it returns -1.

In the event of error, errno is set to one of the following:

EEXIST File already exists
ENOENT Path or file name not found
EMFILE Too many open files
EACCES Permission denied

creatnew is unique to DOS 3.0 and will not work on
earlier DOS versions.

close, _creat, creat, creattemp, dup, _fmode (variable),
open

Turbo C Reference Guide

creattemp

creattemp

Function
Syntax

Prototype in

Remarks

Return value

Portability

See also

Creates a unique file in the directory associated with the
path name.

#include <dos.h>
int creattemp(char *path, int attrib);

io.h

A file created with creattemp is always created in the
translation mode specified by the global variable _fmode
(O_TEXT or O_BINARY).

path is a path name ending with a backslash (\). A
unique file name is selected in the directory given by
path. The newly created file name is stored in the path
string supplied. path should be long enough to hold the
resulting file name. The file is not automatically deleted
when the program terminates.

creattemp accepts amode, a DOS attribute word. Any
attribute bits can be set in this call. The file is always
opened in binary mode. Upon successful file creation,
the file pointer is set to the beginning of the file. The file
is opened for both reading and writing

The amode argument to creattemp can be one of the
following constants (defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, the new file handle, a non-
negative integer, is returned; otherwise, a -1 is returned.

In the event of error, errno is set to one of the following:

ENOENT Path or file name not found
EMFILE Too many open files
EACCES Permission denied

creattemp is unique to DOS 3.0 and will not work on
earlier versions.

close, _creat, creat, creatnew, dup, _fmode (variable),
open

Chapter 2, The Turbo C Library 89

cscanf

cscanf

Function Scans and formats input from the console.

Syntax int cscanf(char *formatl, address, ...1);

Prototype in conio.h

Remarks cscanf scans a series of input fields, one character at a

Return value

Portability

See also

90

time, reading directly from the console. Then each field
is formatted according to a format specification passed
to cscanf in the format string pointed to by format.
Finally, cscanf stores the formatted input at an address
passed to it as an argument following format, and echoes
the input directly to the screen. There must be the same
number of format specifications and addresses as there
are input fields.

See scanf for a description of the information included
in a format specification.

cscanf might stop scanning a particular field before it
reaches the normal end-of-field (whitespace) character,
or it may terminate entirely, for a number of reasons. See
scanf for a discussion of possible causes.

cscanf returns the number of input fields successfully
scanned, converted and stored; the return value does
not include scanned fields that were not stored. If no
fields were stored, the return value is 0.

If cscanf attempts to read at end-of-file, the return value
is EOF.

cscanf is available on UNIX systems and is defined in
Kernighan and Ritchie.

fscanf, getche, scanf, sscanf

Turbo C Reference Guide

ctime

ctime
Function Converts date and time to a string.
Syntax #include <time.h>

Prototype in

Remarks

Return value

Portability

See also

Example

char *ctime(const time_t *time);
time.h

ctime converts a time value pointed to by time (the value
returned by the function time) into a 26-character string
in the following form, terminating with a newline
character and a null character:

Mon Nov 21 11:31:54 1983\n\0
All the fields have constant width.

The global long variable timezone should be set to the
difference in seconds between GMT and local standard
time (in PST, timezone is 8 X 60 x 60). The global variable
daylight is nonzero if and only if the standard USA
Daylight Savings time conversion should be applied.

ctime returns a pointer to the character string containing
the date and time. The return value points to static data
that is overwritten with each call to ctime.

ctime is available on UNIX systems and is compatible
with ANSIC.

asctime, daylight (variable), difftime, ftime, getdate,
gmtime, localtime, settime, time, timezone (variable),
tzset

See asctime

ctrlbrk

Function
Syntax
Prototype in

Sets control-break handler.
void ctribrk(int (*handler)(void));
dos.h

Chapter 2, The Turbo C Library 91

ctribrk

Remarks

Return value
Portability
See also

Example

92

ctrlbrk sets a new control-break handler function
pointed to by handler. The interrupt vector 0x23 is
modified to call the named function.

ctrlbrk establishes a DOS interrupt handler that calls the
named function; the named function is not called
directly.

The handler function can perform any number of
operations and system calls. The handler does not have
to return; it can use longjmp to return to an arbitrary
point in the program. The handler function returns 0 to
abort the current program; any other value will cause
the program to resume execution.

ctrlbrk returns nothing.
ctrlbrk is unique to DOS.
getcbrk, signal

$include <stdio.h>
$include <dos.h>

$define ABORT 0
int c_break({void)
{
printf("Control-Break hit.
Program aborting ...\n");
return (ABORT) ;
}

main{()
{
ctrlbrk(c_break);
/* infinite loop */
for (:1)
{
printf("Looping ...\n");
}
)

Program output

Looping ...

Looping ...

Looping ...

~C

Control-Break hit, Program aborting ...

Turbo C Reference Guide

delay

delay

Function
Syntax
Prototype in

Remarks

Return value

Suspends execution for an interval (milliseconds).
void delay(unsigned milliseconds);
dos.h

With a call to delay, the current program is suspended
from execution for the number of milliseconds specified
by the argument milliseconds. The exact time may vary
somewhat in different operating environments.

None.

Portability This function works only with IBM PCs and com-
patibles.
See also nosound, sleep, sound
Example /* Emits a 440 Hz tone for 500 milliseconds */
#include <dos.h>
main()
{
sound (440) ;
delay (500) ;
nosound(} ;
}
delline
Function Deletes line in text window.
Syntax void delline(void);

Prototype in

Remarks

Return value

Portability

conio.h

delline deletes the line containing the cursor and moves
all lines below it one line up. delline operates within the
currently active text window.

None.

This function works only with IBM PCs and com-
patibles.

Chapter 2, The Turbo C Library 93

detectgraph

See also

clreol, clrscr, insline, window

detectgraph

Function

Syntax

Prototype in

Remarks

94

Determines graphics driver and graphics mode to use by
checking the hardware.

#include <graphics.h>
void far detectgraph(int far *graphdriver
int far *graphmode);

graphics.h

detectgraph detects your system’s graphics adapter and
chooses the mode that provides the highest resolution
for that adapter. If no graphics hardware was detected,
*graphdriver is set to -2, and graphresult will also return
2.

*graphdriver is an integer that specifies the graphics
driver to be used. You can give it a value using a con-
stant of the graphics_drivers enumeration type, defined in
graphics.h and listed in the following table.

graphics_drivers
constant Numeric value

DETECT 0 (requests autodetection)
CGA

MCGA

EGA

EGA64
EGAMONO
IBM8514
HERCMONO
ATT400

VGA

PC3270

S OWOONNU B WN =

o

*graphmode is an integer that specifies the initial graphics
mode (unless *graphdriver equals DETECT, in which case

Turbo C Reference Guide

detectgraph

*graphmode is set to the highest resolution available for
the detected driver). You can give *graphmode a value
using a constant of the graphics_modes enumeration type,
defined in graphics.h and listed in the following table.

Graphics Column
driver graphics_modes Value xRow Palette Pages
CGA CGACO 0 320x200 CO 1
CGAC1 1 320200 C1 1
CGAC2 2 320x200 C2 1
CGAC3 3 320200 C3 1
CGAHI 4 640x200 2 color 1
MCGA MCGACO 0 320x200 CO 1
MCGAC1 1 320x200 C1 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMED 4 640x200 2 color 1
MCGAHI 5 640x480 2 color 1
EGA EGALO 0 640x200 16 color 4
EGAHI 1 640x350 16 color 2
EGA64 EGA64LO 0 640x200 16 color 1
EGA64HI 1 640x350 4 color 1
EGA- EGAMONOHI 3 640x350 2color 1*
MONO EGAMONOHI 3 640x350 2 color 2%*
HERC HERCMONOHI 0 720x348 2 color 2
ATT400 ATT400C0O 0 320x200 CO 1
ATT400C1 1 320x200 C1 1
ATT400C2 2 320x200 2 1
ATT400C3 3 320x200 C3 1
ATT400MED 4 640x200 2 color 1
ATT400HI 5 640x400 2color 1
VGA VGALO 0 640x200 16 color 2
VGAMED 1 640x350 16 color 2
VGAHI 2 640x480 16 color 1
PC3270 PC3270HI 0 720x350 2color 1
IBM8514 IBM8514HI 0 640x480 256 color
IBM8514LO 0 1024x768 256 color

* 64K on EGAMONO card
** 256K on EGAMONO card

Chapter 2, The Turbo C Library

95

detecigraph

Note: The main reason to call detectgraph directly is to
override the graphics mode that detectgraph recom-
mends to initgraph.

Return value None.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also graphresult, initgraph

difftime

Function Computes the difference between two times.

Syntax #include <time.h>
double difftime(time_t time2, time_t timel);

Prototype in time.h

Remarks difftime calculates the elapsed time, in seconds, from

Return value

Portability

See also

timel to time2.

The global long variable timezone contains the difference
in seconds between GMT and local standard time (in
PST, timezone is 8 x 60 X 60. The global variable daylight is
nonzero only if the standard U.S. Daylight Savings Time
conversion should be applied.

difftime returns the result of its calculation as a double.

difftime is available on UNIX systems and is compatible
with ANSI C.

asctime, ctime, daylight (variable), time, timezone
(variable)

disable

Function

Syntax

Prototype in

96

Disables interrupts.

#include <dos.h>
void disable(void);

dos.h

Turbo C Reference Guide

Remarks

Return value

disable

disable is designed to provide a programmer with
flexible hardware interrupt control.

The disable macro disables interrupts. Only the NMI
interrupt will still be allowed from any external device.

None.

Portability This macro is unique to the 8086 architecture.
See also enable, getvect
div
Function Divides two integers, returning quotient and remainder.
Syntax #include <stdlib.h>
div_t div(int numer, int denom);
Prototype in stdlib.h
Remarks div divides two integers and returns both the quotient
and the remainder as a div_t type. numer and denom are
the numerator and denominator, respectively. The div_t
type is a structure of integers defined (with typedef) in
stdlib.h as follows:
typedef struct {
int quot; /* quotient */
int rem; /* remainder */
} div_t;
Return value div returns a structure whose elements are quot (the
quotient) and rem (the remainder).
Portability div is compatible with ANSI C.
See also 1div
Example #include <stdlib.h>
div t x;
main ()

{
x = div(10,3);
printf("10 div 3 = %d remainder %d\n", x.quot, x.rem);

}

Chapter 2, The Turbo C Library 97

dosexterr

Program output

10 div 3 = 3 remainder 1

dosexterr
Function Gets extended DOS error information.
Syntax #include <dos.h>
int dosexterr(struct DOSERROR *eblkp);
Prototype in dos.h
Remarks This function fills in the DOSERROR structure pointed
to by eblkp with extended error information after a DOS
call has failed. The structure is defined as follows:
struct DOSERROR {
int exterror; /* extended error */
char class; /* error class */
char action; /* action */
char locus; /* error locus */
}i
The values in this structure are obtained via DOS call
0x59. An exterror value of 0 indicates that the prior DOS
call did not result in an error.
Return value dosexterr returns the value exterror.
Portability dosexterr is unique to DOS 3.0 and will not work on
earlier releases.
dostounix
Function Converts date and time to UNIX time format.
Syntax #include <dos.h>
long dostounix(struct date *d, struct time *#);
Prototype in dos.h
Remarks dostounix converts a date and time as returned from
getdate and gettime into UNIX time format. 4 points to
98 Turbo C Reference Guide

Return value

Portability
See also

dostounix

a date structure, and t points to a time structure
containing valid DOS date and time information.

UNIX version of current date and time parameters:
number of seconds since 00:00:00 on January 1, 1970
(GMT).

dostounix is unique to DOS.

unixtodos

drawpoly

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

Example

Draws the outline of a polygon.

#include <graphics.h>
void far drawpoly(int numpoints, int far *polypoints);

graphics.h

drawpoly draws +a polygon with numpoints points,
using the current line style and color.

polypoints points to a sequence of (numpoints x 2)
integers. Each pair of integers gives the x and y
coordinates of a point on the polygon.

Note: In order to draw a closed figure with n vertices,
you must pass n + 1 coordinates to drawpoly where the
nth coordinate is equal to the Oth.

If an error occurs while the polygon is being drawn,
graphresult will return a value of -6.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

fillpoly, floodfill, graphresult, setwritemode

#include <graphics.h>
#include <conio.h>

main ()
{
/* Will request autodetection */
int graphdriver = DETECT, graphmode;
int triangle[] = (50,100, 100,100, 150,150, 50,100};
int rhombus{] {50,10, 90,50, 50,90, 10,50};

o

Chapter 2, The Turbo C Library 99

drawpoly

/* Initialize graphics */

initgraph(&graphdriver, &graphmode, "");

/* Draw a triangle */

drawpoly (sizeof(triangle)/(2*sizeof (int)), triangle);

/* Draw and fill a rhombus */
fillpoly(sizeof{rhombus)/(2*sizeof (int)}, rhombus);
getche();

closegraph{();

dup

Function
Syntax
Prototype in

Remarks

Return value

Portability

See also

100

Duplicates a file handle.

int dup(int handle);

io.h

dup creates a new file handle that has the following in
common with the original file handle:

m same open file or device

m same file pointer (that is, changing the file pointer of
one changes the other)

m same access mode (read, write, read / write)

handle is a file handle obtained from a _creat, creat,
_open, open, dup, or dup2 call.

Upon successful completion, dup returns the new file
handle, a nonnegative integer; otherwise, dup returns
-1.

In the event of error, errno is set to one of the following:

EMFILE Too many open files
EBADF Bad file number

dup is available on all UNIX systems.

_close, close, _creat, creat, creatnew, creattemp, dup2,
fopen, _open, open

Turbo C Reference Guide

dup?2

dup2

Function

Syntax
Prototype in

Remarks

Return value

Duplicates a file handle (oldhandle) onto an existing file
handle (newhandle).

int dup2(int oldhandle, int newhandle);

io.h

dup2 creates a new file handle that has the following in
common with the original file handle:

@ same open file or device

o same file pointer (that is, changing the file pointer of
one changes the other)

o same access mode (read, write, read / write)

dup2 creates a new handle with the value of newhandle.
If the file associated with newhandle is open when dup2
is called, the file is closed.

newhandle and oldhandle are file handles obtained from a
creat, open, dup, or dup2 call.

dup?2 returns 0 on successful completion, -1 otherwise.

In the event of error, errno is set to one of the following:

EMFILE Too many open files
EBADF Bad file number
Portability dup2 is available on some UNIX systems, but not
System IIL
See also _close, close, _creat, creat, creatnew, creattemp, dup,
fopen, _open, open
ecvt
Function Converts a floating-point number to a string.
Syntax char *ecvt(double value, int ndig, int *dec, int *sign);
Prototype in stdlib.h

Chapfter 2, The Turbo C Library 101

ecvt

Remarks

Return value

Portability

See also

ecvt converts value to a null-terminated string of ndig
digits, starting with the leftmost significant digit, and
returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is
stored indirectly through dec (a negative value for dec
means that the decimal lies to the left of the returned
digits). There is no decimal point in the string itself. If
the sign of value is negative, the word pointed to by sign
is nonzero; otherwise, it is 0. The low-order digit is
rounded.

The return value of ecvt points to static data for the
string of digits whose content is overwritten by each call
to ecvt.

ecvt is available on UNIX.

atof, atoi, atol, fcvt, gevt, printf

ellipse

Function

Syntax

Prototype in

Remarks

Return value

102

Draws an elliptical arc.

#include <graphics.h>
void far ellipse(int x, int y, int stangle,
int endangle, int xradius, int yradius);

graphics.h

ellipse draws an elliptical arc in the current drawing
color with its center at (x,y) and the horizontal and
vertical axes given by xradius and yradius, respectively.
The ellipse travels from stangle to endangle. If stangle
equals 0 and endangle equals 360, the call to ellipse will
draw a complete ellipse.

The angle for ellipse is reckoned counterclockwise, with
0 degrees at 3 o’clock, 90 degrees at 12 o’clock, and so
on.

Note: The linestyle parameter does not affect arcs, circles,
ellipses, or pieslices. Only the thickness parameter is
used.

None.

Turbo C Reference Guide

ellipse

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also arc, circle, fillellipse, getaspectratio, sector,
setaspectratio

Examples See arc

__emit_ _

Function Inserts literal values directly into code.

Syntax void _ _emit_ _(argument, ...);

Prototype in dos.h

Description _ _emit_ _ is an inline function that allows you to insert

literal values directly into object code as it is compiling.
It is used to generate machine language instructions
without using inline assembly language or an assembler.
It can be used in the integrated development
environment, which inline assembly code cannot.

Generally the arguments of an _ _emit_ _ call are
single-byte machine instructions. However, because of
the capabilities of this function, more complex
instructions, complete with references to C variables,
can be constructed.

Warning! This function should only be used by
programmers who feel comfortable with the machine
language of the 80x86 processor family. You can use this
function to place arbitrary bytes in the instruction code
of a function; if any of these bytes are incorrect, the
program will misbehave and may easily crash your
machine. Turbo C does not attempt to analyze your calls
for correctness in any way. If you encode instructions
that change machine registers or memory, Turbo C will
not be aware of it and may not properly preserve
registers, as it would in many cases with inline assembly
language (for example, it recognizes the usage of SI and
DI registers in inline instructions). You are completely
on your own with this function.

Chapter 2, The Turbo C Library 103

__emit_ _

Return value

104

You must pass at least one argument to _ _emit_ _; any
number may be given. The arguments to this function
are not treated like any other function call arguments in
the language. An argument passed to _ _emit_ _ will not
be converted in any way.

There are special restrictions on the form of the
arguments to _ _emit_ _. They must be in the form of
expressions that can be used to initialize a static object.
This means that integer and floating point constants and
the addresses of static objects may be used. The values
of such expressions are written to the object code at the
point of the call, exactly as if they were being used to
initialize data. The address of an auto or parameter
variable, plus or minus a constant offset, may also be
used. For these arguments, the offset of the variable
from BP is stored.

The number of bytes placed in the object code is
determined from the type of the argument, except in the
following cases: '

If a signed integer constant (i.e. 0x90) appears that fits
within the range of 0 to 255, it is treated as if it were a
character.

B If the address of an auto or parameter variable is used,
a byte is written if the offset of the variable from BP is
between —-128 and 127; otherwise a word is written.

Simple bytes written as follows:
emit(0x90);

If you want a word written, but the value you are
passing is under 255, simply cast it to unsigned, as
follows:

_ _emit {0xB8, (unsigned)17);
or
_ _emit _{0xB8, 17u);

Two- or four-byte address values can be forced by
casting an address to void near * or void far *
respectively.

None.

Turbo C Reference Guide

enable

Portability __emit_ _is unique to Intel 80x86 processors.

enable

Function Enables hardware interrupts.

Syntax #include <dos.h>
void enable(void);

Prototype in dos.h

Remarks enable is designed to provide a programmer with
flexible hardware interrupt control.

The enable macro enables interrupts, allowing any
device interrupts to occur.

Return value None.

Portability enable is unique to the 80 x 86 architecture.

See also disable, getvect

eof

Function Checks for end-of-file.

Syntax int eof(int handle);

Prototype in io.h

Remarks eof determines whether the file associated with handle
has reached end-of-file.

Return value If the current position is end-of-file, eof returns the
value 1; otherwise, it returns 0. A return value of -1
indicates an error; errno is set to

EBADF Bad file number

See also clearerr, feof, ferror, perror

Chapter 2, The Turbo C Library 105

exec...

exec LN
Function Loads and runs other programs.
Syntax int execl(char *path, char *arg0,

Prototype in

Remarks

106

*argl, ..., *argn, NULL);
int execle(char *path, char *arg0,
*argl, ..., *argn, NULL, char **env);
int execlp(char *path, char *arg0,
*argl, ..., *argn, NULL);
int execlpe(char *path, char *arg0,
*argl, ..., *argn, NULL, char **env);

int execv(char *path, char *argvl[]);

int execve(char *path, char *argv[], char **env);
int execvp(char *path, char *argv[]);

int execvpe(char *path, char *argv[], char **env);

process.h

The functions in the exec... family load and run
(execute) other programs, known as child processes.
When an exec... call is successful, the child process
overlays the parent process. There must be sufficient
memory available for loading and executing the child
process.

path is the file name of the called child process. The
exec... functions search for path using the standard DOS
search algorithm:

m If no explicit extension is given, the functions will
search for the file as given. If the file is not found, they
will add .COM and search again. If that search is not
successful, they will add .EXE and search one last
time.

mIf an explicit extension or a period is given, the
functions will search for the file exactly as given.

m If the file name has a period but no extension, the
functions will look for a file with no extension.

The suffixes I, v, p, and e added to the exec... “family
name” specify that the named function will operate with
certain capabilities.

Turbo C Reference Guide

exec...

p The function will search for the file in those
directories specified by the DOS PATH environment
variable (without the p suffix, the function searches
only the current working directory). If the path
parameter does not contain an explicit directory, the
function will search first the current directory, then
the directories set with the DOS PATH environment
variable.

I The argument pointers (arg0, argl, ..., argn) are
passed as separate arguments. Typically, thel

suffix is used when you know in advance the number of

arguments to be passed.

v The argument pointers (argv[0]

...,arg[n]) are passed as an array of pointers. Typically,
the v suffix is used when a variable number of
arguments is to be passed.

e The argument env may be passed to the child process,
allowing you to alter the environment for the child
process. Without the e suffix, child processes inherit
the environment of the parent process.

Each function in the exec... family must have one of the
two argument-specifying suffixes (either I or v). The path
search and environment inheritance suffixes (p and e) are
optional.

For example:

mexecl is an exec... function that takes separate
arguments, searches only the root or current directory
for the child, and passes on the parent’s environment
to the child.

B execvpe is an exec... function that takes an array of
argument pointers, incorporates PATH in its search
for the child process, and accepts the env argument for
altering the child’s environment.

The exec... functions must pass at least one argument to
the child process (arg0 or argv[0]); this argument is, by
convention, a copy of path. (Using a different value for
this Oth argument won’t produce an error.)

Chapter 2, The Turbo C Library 107

exec...

Return value

Portability
See also

Example

108

Under DOS 3.x, path is available for the child process;
under earlier versions, the child process cannot use the
passed value of the Oth argument (arg0 or argv[0]).

When the I suffix is used, arg0 usually points to path, and
argl, ..., argn point to character strings that form the
new list of arguments. A mandatory NULL following
argn marks the end of the list.

When the e suffix is used, you pass a list of new en-
vironment settings through the argument env. This
environment argument is an array of character pointers.
Each element points to a null-terminated character
string of the form

envvar = value

where envvar is the name of an environment variable,
and value is the string value to which envvar is set. The
last element in env is NULL. When env is NULL, the
child inherits the parents’ environment settings.

The combined length of arg0 + argl + ... + argn (or of
argvl[0] + argvl[1] + ... + argn[n]), including space
characters that separate the arguments, must be less
than 128 bytes. Null terminators are not counted.

When an exec... function call is made, any open files
remain open in the child process.

If successful, the exec... functions return no value. On
error, the exec... functions return -1, and errno is set to
one of the following:

E2BIG Arg list too long

EACCES Permission denied

EMFILE Too many open files
ENOENT Path or file name not found
ENOEXEC Exec format error
ENOMEM Not enough core

exec... is unique to DOS.

abort, atexit, _exit, exit, _fpreset, searchpath, spawn...,
system

finclude <stdio.h>
#include <process.h>

Turbo C Reference Guide

exec...

main ()
{
int stat;

printf("About to exec child with argl arg2 ...\n");
stat = execl("CHILD.EXE", "CHILD.EXE", "arql®, "arg2",
NULL) ;

/* execl will return only if it cannot run CHILD */
printf("execl error = %d\n", stat);
exit(1);

}

/¥ CHILD.C */
#include <stdic.h>

main(int argc, char *argv(])
{

int i;

printf{"Child running ...\n"};

/* print out its arguments */

for (i=0; i<argc; i+4)

printf("arqvi%d]: %s\n", i, argv{il);

}

Program output

About to exec child with arql arg2 ...
Child running ...

argv(0]: CHILD.EXE

argv(l]: argl

argv{2]: arq2

_exit
Function Terminates program.
Syntax void _exit(int status);

Prototype in process.h, stdlib.h

Remarks _exit terminates execution without closing any files,
flushing any output, or calling any exit functions.

status is provided for the calling process as the exit
status of the process. Typically a value of 0 is used to
indicate a normal exit, and a nonzero value indicates
some error.

Chapter 2, The Turbo C Library - 109

_exit

Return value

None.

Portability _exit is available on UNIX systems.

See also abort, atexit, exec..., exit, spawn...

exit

Function Terminates program.

Syntax void exit(int status);

Prototype in process.h, stdlib.h

Remarks exit terminates the calling process. Before termination,

Return value

all files are closed, buffered output (waiting to be
output) is written, and any registered “exit functions”
(posted with atexit) are called.

status is provided for the calling process as the exit
status of the process. Typically a value of 0 is used to
indicate a normal exit, and a nonzero value indicates
some error.

None.

Portability exit is available on UNIX systems and is compatible
with ANSIC.

See also abort, atexit, exec..., _exit, keep, signal, spawn...

exp

Function Calculates the exponential e to the x*" power.

Syntax #include <math.h>

Prototype in
Remarks

Return value

110

double exp(double x);

math.h

exp calculates the exponential function e*.
exp returns e*.

Sometimes the arguments passed to exp produce results
that overflow or are incalculable. When the correct value

Turbo C Reference Guide

Portability

See also

exp

overflows, exp returns the value HUGE_VAL. Results of
excessively large magnitude can cause errno to be set to

ERANGE Result out of range
On underflow, exp returns 0.0, and errno is not changed.

Error-handling for exp can be modified through the
function matherr.

exp is available on UNIX systems and is compatible with
ANSIC.

frexp, 1dexp, log, log10, matherr, pow, pow10, sqrt

fabs

Function Returns the absolute value of a floating-point number.

Syntax #include <math.h>
double fabs(double x);

Prototype in math.h

Remarks fabs calculates the absolute value of x, a double.

Return value fabs returns the absolute value of x. There is no return
on error.

Portability fabs is available on UNIX systems and is compatible
with ANSIC.

See also abs, cabs, labs

farcalloc

Function Allocates memory from the far heap.

Syntax void far *farcalloc(unsigned long nunits,

Prototype in

Remarks

unsigned long unitsz);
alloc.h

farcalloc allocates memory from the far heap for an
array containing nunits elements, each unitsz bytes long.

For allocating from the far heap, note that

Chapter 2, The Turbo C Library 111

farcalloc

Return value

m All available RAM can be allocated.
m Blocks larger than 64K can be allocated.
m Far pointers are used to access the allocated blocks.

In the compact, large, and huge memory models,
farcalloc is similar, though not identical, to calloc. It
takes unsigned long parameters, while calloc takes
unsigned parameters.

A tiny model program cannot make use of farcalloc if it
is to be converted to a .COM file.

farcalloc returns a pointer to the newly allocated block,
or NULL if not enough space exists for the new block.

Portability farcalloc is unique to DOS.

See also calloc, farcoreleft, farfree, malloc

farcoreleft

Function Returns measure of unused memory in far heap.

Syntax unsigned long farcoreleft(void);

Prototype in alloc.h

Remarks farcoreleft returns a measure of the amount of unused
memory in the far heap beyond the highest allocated
block.

A tiny model program cannot make use of farcoreleft if
it is to be converted to a .COM file.

Return value farcoreleft returns the total amount of space left in the
far heap, between the highest allocated block and the
end of memory.

Portability farcoreleft is unique to DOS.

See also coreleft, farcalloc, farmalloc

Example See farmalloc

112

Turbo C Reference Guide

farfree

farfree

Function Frees a block from far heap.

Syntax void farfree(void far * block);

Prototype in alloc.h

Remarks farfree releases a block of memory previously allocated
from the far heap.
A tiny model program cannot make use of farfree if it is
to be converted to a .COM file.
In the small and medium memory models, blocks
allocated by farmalloc can not be freed via normal free,
and blocks allocated via malloc cannot be freed via
farfree. In these models, the two heaps are completely
distinct.

Return value None.

Portability farfree is unique to DOS.

See also farcalloc, farmalloc

Example see farmalloc

farmalloc

Function Allocates from far heap.

Syntax void far *farmalloc(unsigned long nbytes);

Prototype in alloc.h

Remarks

farmalloc allocates a block of memory nbytes bytes long
from the far heap. .

For allocating from the far heap, note that

m All available RAM can be allocated.
m Blocks larger than 64K can be allocated.
m Far pointers are used to access the allocated blocks.

In the compact, large, and huge memory models,
farmalloc is similar, though not identical, to malloc. It

Chapter 2, The Turbo C Library 113

farmalloc

Return value

Portability
See also

Example

114

takes unsigned long parameters, while malloc takes
unsigned parameters.

A tiny model program cannot make use of farmalloc if it
is to be converted to a .COM file.

farmalloc returns a pointer to the newly allocated block,
or NULL if not enough space exists for the new block.

farmalloc is unique to DOS.
farcalloc, farcoreleft, farfree, farrealloc, malloc

/* Far Memory Management
farcoreleft - gets the amount of core memory left

farmalloc - allocates space on the far heap
farrealloc - adjusts allocated block in far heap
farfree - frees far heap */

$include <stdio.h>
$include <alloc.h>

main ()

{
char far * block;
long size = 65000;

/* Find out what’s out there */
printf("%lu bytes free\n", farcoreleft());

/* Get a piece of it */

block = farmalloc(size);

if (block == NULL)

{
printf("failed to allocate\n");
exit(1);

}

printf("%lu bytes allocated, ",size);

printf("$lu bytes free\n", farcoreleft());

/* Shrink the block */

size /= 2;

block = farrealloc{block, size);

printf("block now reallocated to %lu bytes, ",size);
printf("%lu bytes free\n", farcoreleft());

/* Let it go entirely */

printf("Free the block\n");

farfree(block);

printf("block now freed, ");

printf{"%lu bytes free\n", farcoreleft());
} /* End of main */

Turbo C Reference Guide

farmalloc

Program output

359616 bytes free

65000 bytes allocated, 294608 bytes free

block now reallocated to 32500 bytes, 262100 bytes free
Free the block

Block now freed, 359616 bytes free

farrealloc

Function Adjusts allocated block in far heap.

Syntax void far *farrealloc(void far *oldblock,

unsigned long nbytes);

Prototype in alloc.h

Remarks farrealloc adjusts the size of the allocated block to
nbytes, copying the contents to a new location, if
necessary.

For allocating from the far heap, note that

g All available RAM can be allocated.

m Blocks larger than 64K can be allocated.

m Far pointers are used to access the allocated blocks.

A tiny model program cannot make use of farrealloc if it
is to be converted to a .COM file.

Return value farrealloc returns the address of the reallocated block,
which may be different than the address of the original
block. If the block cannot be reallocated, farrealloc
returns NULL.

Portability farrealloc is unique to DOS.

See also farmallog, realloc

Example See farmalloc

Chapter 2, The Turbo C Library 116

fclose

fclose

Function Closes a stream.

Syntax #include <stdio.h>
int fclose(FILE *stream);

Prototype in stdio.h

Remarks fclose closes the named stream. Generally, all buffers
associated with the stream are flushed before closing.
System-allocated buffers are freed upon closing. Buffers
assigned with setbuf or setvbuf are not automatically
freed.

Return value fclose returns 0 on success. It returns EOF if any errors
were detected.

Portability fclose is available on UNIX systems and is compatible
with ANSI C.

See also close, fcloseall, fdopen, fflush, flushall, fopen, freopen

Example See fopen

fcloseall

Function Closes open streams.

Syntax int fcloseall(void);

Prototype in stdio.h

Remarks fcloseall closes all open streams except stdin, stdout,
stdprn, stderr, and stdaux.

Return value fcloseall returns the total number of streams it closed. It
returns EOF if any errors were detected.

Portability fcloseall is available on UNIX systems.

See also fclose, fdopen, flushall, fopen, freopen

116 Turbo C Reference Guide

fevt

fevt
Function Converts a floating-point number to a string.
Syntax #include <stdlib.h>

Prototype in

Remarks

Return value

Portability
See also

char *fevt(double value, int ndig,
int *dec, int *sign);

stdlib.h

fevt converts value to a null-terminated string of ndig
digits, starting with the leftmost significant digit, and
returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is
stored indirectly through dec (a negative value for dec
means to the left of the returned digits). There is no
decimal point in the string itself. If the sign of value is
negative, the word pointed to by sign is nonzero; other-
wise, it is 0.

The correct digit has been rounded for the number of
digits specified by ndig.

The return value of fcvt points to static data whose
content is overwritten by each call to fevt.

fcvt is available on UNIX.

atof, atoi, atol, ecvt, gcvt

fdopen

Function

Syntax

Prototype in

Remarks

Associates a stream with a file handle.

#include <stdio.h>
FILE *fdopen(int handle, char *type);

stdio.h

fdopen associates a stream with a file handle obtained
from creat, dup, dup2, or open. The type of stream must
match the mode of the open handle.

The type string used in a call to fdopen is one of the
following values:

Chapter 2, The Turbo C Library 17

fdopen

Return value

Portability
See also

Example

118

r Open for reading only.
w Create for writing.

a Append; open for writing at end-of-file or create
for writing if the file does not exist.

r+ Open an existing file for update (reading and
writing).

w+ Create a new file for update.

a+ Open for append; open (or create if the file does
not exist) for update at the end of the file.

To specify that a given file is being opened or created in
text mode, append a ¢ to the value of the type string (r¢,
w+t, etc.); similarly, to specify binary mode, append a b
to the type string (wb, a+b, etc.).

If a t or b is not given in the type string, the mode is
governed by the global variable _fmode. If _fmode is set to
O_BINARY, files will be opened in binary mode. If
_fmode is set to O_TEXT, they will be opened in text
mode. These O_... constants are defined in fentlh.

When a file is opened for update, both input and output
can be done on the resulting stream. However, output
cannot be directly followed by input without an inter-
vening fseek or rewind, and input cannot be directly
followed by output without an intervening fseek,
rewind, or an input that encounters end-of-file.

On successful completion, fdopen returns a pointer to
the newly opened stream. In the event of error, it returns
NULL.

fdopen is available on UNIX systems.
fclose, fopen, freopen, open

#include <stdio.h>
finclude <fentl.h>
/* Needed to define the mode used in open */

main ()

{
int handle;
FILE *stream;

/* Open a file */

Turbo C Reference Guide

fdopen

handle = open("MYFILE.TXT", O CREAT);

/* Now turn it into a stream */
stream = fdopen{handle, "w");
if (stream == NULL)
printf("fdopen failed\n");
else
{
fprintf(stream, "Hello, world\n");
fclose(stream);

feof

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Detects end-of-file on a stream.

#include <stdio.h>
int feof(FILE *stream);

stdio.h

feof is a macro that tests the given stream for an end-of-
file indicator. Once the indicator is set, read operations
on the file return the indicator until rewind is called or
the file is closed. [

The end-of-file indicator is reset with each input
operation. }

feof returns nonzero if an end-of-file indicator was
detected on the last input operation on the named
stream and 0 if end-of-file has not been reached.

feof is available on UNIX systems and is compatible
with ANSIC.

clearerr, eof, ferror, perror

Chapter 2, The Turbo C Library 119

ferror

ferror
Function Detects errors on stream.
Syntax #include <stdio.h>
int ferror(FILE *stream);
Prototype in stdio.h
Remarks ferror is a macro that tests the given stream for a read or

Return value
Portability

See also

write error. If the stream’s error indicator has been set, it
remains set until clearerr or rewind is called, or until the
stream is closed.

ferror returns nonzero if an error was detected on the
named stream.

ferror is available on UNIX systems and is compatible
with ANSI C.

clearerr, eof, feof, fopen, gets, perror

fflush

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

120

Flushes a stream.

#include <stdio.h>
int fflush(FILE *stream);

stdio.h

If the given stream is open for output, fflush writes the
buffered output for stream to the associated file.

If stream is open for input, fflush clears the buffer
contents.

The stream remains open after fflush has executed.
fflush has no effect on an unbuffered stream.

fflush returns 0 on success. It returns EOF if any errors
were detected.

fflush is available on UNIX systems and is compatible
with ANSI C.

fclose, flushall, setbuf, setvbuf

Turbo C Reference Guide

fgetc

fgetc

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Gets character from stream.

#include <stdio.h>
int fgetc(FILE *stream);

stdio.h

fgetc returns the next character on the named input
stream.

On success, fgetc returns the character read, after
converting it to an int without sign extension. On end-
of-file or error, it returns EOF.

fgetc is available on UNIX systems and is compatible
with ANSIC.

fgetchar, fputc, getc, getch, getchar, getche, ungetc,
ungetch

fgetchar

Function
Syntax
Prototype in

Remarks

Return value

Portability

See also

Gets character from stdin.
int fgetchar(void);
stdio.h

fgetchar returns the next character from stdin. It is
defined as fgetc(stdin).

On success, fgetchar returns the character read, after
converting it to an int without sign extension. On end-
of-file or error, it returns EOF. Because EOF is a
legitimate value for fgetchar to return, feof and ferror
should be used to detect end-of-file or error.

fgetchar is available on UNIX systems.
fgetc, fputchar, getchar

Chapter 2, The Turbo C Library 121

fgetpos

fgetpos

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Gets the current file pointer.

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

stdio.h

fgetpos stores the position of the file pointer associated
with the given stream in the location pointed to by pos.

The type fpos_t is defined in stdio.h as
typedef long fpos_t;

On success, fgetpos returns 0. On failure, it returns a
nonzero value and sets errno to EBADF or EINVAL.

fgetpos is compatible with ANSI C.
fseek, fsetpos, ftell, tell

fgets

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

122

Gets a string from a stream.

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

stdio.h

fgets reads characters from stream into the string s. The
function stops reading when it reads either n - 1
characters or a newline character, whichever comes first.
fgets does not place the newline character in the string.
The last character read into s is followed by a null
character.

On success, fgets returns the string pointed to by s; it
returns NULL on end-of-file or error.

fgets is available on UNIX systems and is compatible
with ANSI C. It is also defined in Kernighan and Ritchie.

cgets, fputs, gets

Turbo C Reference Guide

filelength

filelength

Function Gets file size in bytes.

Syntax #include <io.h>
long filelength(int handle);

Prototype in io.h

Remarks filelength returns the length (in bytes) of the file asso-
ciated with handle.

Return value On success, filelength returns a long value, the file
length in bytes. On error, it returns -1, and errno is set to

EBADF Bad file number

See also fopen, lseek, open

fileno

Function Gets file handle.

Syntax #include <stdio.h>
int fileno(FILE *stream);

Prototype in stdio.h

Remarks fileno is a macro that returns the file handle for the
given stream. If stream has more than one handle, fileno
returns the handle assigned to the stream when it was
first opened.

Return value fileno returns the integer file handle associated with
stream.

Portability fileno is available on UNIX systems.

See also fdopen, fopen, freopen

Chapter 2, The Turbo C Library

123

fillellipse

fillellipse

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

Draws and fills an ellipse.

#include <graphics.h>
void far fillellipse(int x, int y, int xradius,
int yradius);
graphics.h
Draws an ellipse using (x,y) as a center point and xradius

and yradius as the horizontal and vertical axes, and fills
it with the current fill color, and fill pattern.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

arc, circle, ellipse, getaspectratio, pieslice,
setaspectratio

fillpoly

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

124

Draws and fills a polygon.

#include <graphics.h>
void far fillpoly(int numpoints, int far *polypoints);

graphics.h

fillpoly draws the outline of a polygon with numpoints
points in the current line style and color (just as
drawpoly does), then fills the polygon using the current
fill pattern and fill color.

polypoints points to a sequence of (numpoints x 2)
integers. Each pair of integers gives the x and y
coordinates of a point on the polygon.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

drawpoly, floodfill, graphresult, setfillstyle

Turbo C Reference Guide

findfirst

findfirst

Function

Syntax

Prototype in

Remarks

Searches a disk directory.

#include <dirh>

#include <dos.h>

int findfirst(const char *pathname,
struct ffblk *ffblk, int attrib);

dirh

findfirst begins a search of a disk directory by using the
DOS system call Ox4E.

pathname is a string with an optional drive specifier,
path, and file name of the file to be found. The file name
portion can contain wildcard match characters (such as ?
or *). If a matching file is found, the ffblk structure is
filled with the file-directory information.

The format of the structure ffblk is as follows:

struct ffblk {

char ff reserved(21]; /* reserved by DOS */
char £f attrib; /* attribute found */
int ff ftime; /* file time */
int ff fdate; /* file date */
long ff fsize; /* file size */
char ff name[13]; /* found file name */

b

attrib is a DOS file-attribute byte used in selecting
eligible files for the search. attrib can be one of the
following constants defined in dos.h:

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory
FA_ARCH Archive

For more detailed information about these attributes,
refer to the DOS Programmer’s Reference Manual.

Note that findfirst sets the DOS disk-transfer address
(DTA) to the address of the ffblk.

Chapter 2, The Turbo C Library 125

findfirst

Return value

Portability
See also

Example

126

If you need this DTA value, you should save it and
restore it (using getdta and setdta) after each call to

findfirst.

findfirst returns 0 on successfully finding a file matching
the search pathname. When no more files can be found,
or if there is some error in the file name, -1 is returned,
and the global variable errno is set to one of the

following:

ENOENT Path or file name not found

ENMFILE No more files
findfirst is unique to DOS.
findnext

#include <stdio.h>
$include <dir.h>

main()
{
struct ffblk ffblk;
int done;
printf("Directory listing of *.*\n");
done = findfirst("*.*",gffblk,0);
while (!done)
{
printf(" %s\n", ffblk.ff name);
done = findnext (&ffblk);
}
}

Program output

Directory listing of *.*
FINDFRST.C

FINDFRST.0BJ
FINDFRST.MAP
FINDFRST.EXE

Turbo C Reference Guide

findnext

findnext
Function Continues findfirst search.
Syntax #include <dirh>

Prototype in

Remarks

Return value

Portability
See also

Example

int findnext(struct ffblk *ffblk);
dirh

findnext is used to fetch subsequent files that match the
pathname given in findfirst. ffblk is the same block filled
in by the findfirst call. This block contains necessary
information for continuing the search. One file name for
each call to findnext will be returned until no more files
are found in the directory matching the pathnarme.

Note that findnext sets the DOS disk-transfer address
(DTA) to the address of ffblk.

If you need this DTA value, you should save it and
restore it (using getdta and setdta) after each call to
findnext.

findnext returns 0 on successfully finding a file
matching the search pathname. When no more files can
be found, or if there is some error in the file name, -1 is
returned, and the global variable errno is set to one of the
following;:

ENOENT Path or file name not found
ENMFILE No more files

findnext is unique to DOS.

findfirst

See findfirst

floodfill

Function

Syntax

Prototype in

Flood-fills a bounded region.

#include <graphics.h>
void far floodfill(int x, int y, int border);

graphics.h

Chapter 2. The Turbo C Library 127

floodfill

Remarks

Return value
Portability

See also

Example

128

floodfill fills an enclosed area on bitmap devices. (x,y) is
a “seed point” within the enclosed area to be filled. The
area bounded by the color border is flooded with the
current fill pattern and fill color. If the seed point is
within an enclosed area, the inside will be filled. If the
seed is outside the enclosed area, the exterior will be
filled.

Use fillpoly instead of floodfill whenever possible so
that you can maintain code compatibility with future
versions.

Note: floodfill does not work with the IBM-8514 driver.

If an error occurs while flooding a region, graphresult
will return a value of -7. '

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

drawpoly, fillpoly, graphresult, setcolor, setfillstyle
#include <graphics.h>

main()
{
/* Will request autodetection */
int graphdriver = DETECT, graphmode;

/* Initialize graphics */
initgraph{&graphdriver, &graphmode, "");

/* Draw a bar, then flood-fill the side and top */
setcolor (WHITE);

setfillstyle(RATCH FILL, LIGHTMAGENTA);

bar3d(10, 10, 100, 100, 10, 1);
setfillstyle(SOLID_FILL, LIGHTGREEN) ;

/* Fill the side */

floodfil1(102, 50, WHITE);

/* Fill the top */

floodfill (50, 8, WHITE);

closegraph();

Turbo C Reference Guide

floor

floor

Function Rounds down.

Syntax #include <math.h>
double floor(double x);

Prototype in math.h

Remarks floor finds the largest integer not greater than x.

Return value floor returns the integer found (as a double).

Portability floor is available on UNIX systems and is compatible
with ANSIC.

See also ceil, fmod

flushall

Function
Syntax
Prototype in

Remarks

Return value

Portability
See also

Flushes all streams.
int flushall(void);
stdio.h

flushall clears all buffers associated with open input
streams, and writes all buffers associated with open
output streams to their respective files. Any read
operation following flushall reads new data into the
buffers from the input files.

Streams stay open after flushall has executed.

flushall returns an integer, the number of open input
and output streams.

flushall is available on UNIX systems.

fclose, fcloseall, fflush

Chapter 2, The Turbo C Library 129

fmod

fmod

Function Calculates x modulo y, the remainder of x/v.
Syntax #include <math.h>
double fmod(double x, double y);
Prototype in math.h
Remarks fmod calculates x modulo y (the remainder f where
x =iy + f for some integeriand 0 < f < y).
Return value fmod returns the remainder f, where x = iy + f (as
described).
Portability fmod is compatible with ANSIC.
See also ciel, floor, modf
fnmerge
Function Builds a path from component parts.
Syntax #include <dirh>
void fnmerge(char *path, const char *drive,
const char *dir, const char *name,
const char *ext);
Prototype in dirh
Remarks fnmerge makes a path name from its components. The
new path name is
X:\DIR\SUBDIR\NAME.EXT
where
drive = X:
dir = \DIR\SURDIR\
name = NAME
ext = EXT
fnmerge assumes there is enough space in path for the
constructed path name. The maximum constructed
length is MAXPATH. MAXPATH is defined in dirh.
130 Turbo C Reference Guide

Return value
Portability
See also

Example

fnmerge

fnmerge and fnsplit are invertible; if you split a given
path with fnsplit, then merge the resultant components
with fnmerge, you end up with path.

None.
fnmerge is available on DOS systems only.
fnsplit

#include <stdio.h>
$include <dir.h>

char drive[MAXDRIVE];
char dir(MAXDIR};
char file[MAXFILE];
char ext [MAXEXT];

main()
{
char s{MAXPATH], t({MAXPATH];
int flag;
for (i)
{
/* Print input prompt while */
printf("> ");
/* There is more input */
if (!gets(s)) break;
if (lgets[0]) break;
flag = fnsplit(s,drive,dir, file,ext);

/* Print the components */
printf("drive: %s, dir: %s, file: %s, ext: %s, ",
drive, dir, file, ext);

printf("flags: ");

if (flag & DRIVE)
printf(":");

if (flag & DIRECTORY)
printf("d");

if (flag & FILENAME)
printf("£");

if (flag & EXTENSION)
printf("e");
printf{"\n");

/* Glue the parts back together and
_compare to original */
fomerge(t,drive,dir, file,ext);
/* Shouldn’t happen! */
if (strcmp(t,s) != 0}
printf(" --> strings are different!"};

Chapter 2, The Turbo C Library 131

fnmerge

}
Program output

> C:\TURBOC\FN.C
drive: C:, dir: \TURBOC\, file: FN, ext: .C,
flags: :dfe
> FILE.C
drive: , dir: , file: FILE, ext: .C, flags: fe
> \TURBOC\SUBDIR\NOEXT.
drive: , dir: \TURBOC\SUBDIR\, file: NOEXT,
ext: ., flags: dfe
> C:MYFILE
drive: C:, dir: , file: MYFILE, ext: , flags: :f

fnsplit

Function

Syntax

Prototype in

Remarks

132

Splits a full path name into its components.

#include <dirh>
int fnsplit(const char *path, char *drive, char *dir,
char *name, char *ext);

dirh

fnsplit takes a file’s full path name (path) as a string in
the form

X:\DIR\SUBDIR\NAME,EXT

and splits path into its four components. It then stores
those components in the strings pointed to by drive, dir,
name, and ext. (All five components must be passed, but
any of them can be a null, which means the corre-
sponding component will be parsed but not stored.)

The maximum sizes for these strings are given by the
constants MAXDRIVE, MAXDIR, MAXPATH,
MAXNAME, and MAXEXT (defined in dirh), and each
size includes space for the null-terminator.

Turbo C Reference Guide

Return value

Portability
See also

Example

tnsplit

Constant (Max) String

MAXPATH (80) path

MAXDRIVE 3) drive; includes colon (:)

MAXDIR (66) dir; includes leading and
trailing backslashes (\)

MAXFILE 9 name

MAXEXT (5) ext; includes leading dot (.)

fnsplit assumes that there is enough space to store each
non-NULL component.

When fnsplit splits path, it treats the punctuation as
follows:

o drive includes the colon (C:, A:, etc.).

o dir includes the leading and trailing backslashes
(\turboc\include\, \source\, etc.).

o name includes the file name.

o ext includes the dot preceding the extension (.C, .EXE,
ete.).

fnmerge and fnsplit are invertible; if you split a given
path with fnsplit, then merge the resultant components
with fnmerge, you end up with path.

fnsplit returns an integer (composed of five flags,
defined in dirh) indicating which of the full path name
components were present in path; these flags and the
components they represent are

EXTENSION An extension

FILENAME A file name

DIRECTORY A directory (and possibly
subdirectories)

DRIVE A drive specification (see dir.h)

WILDCARDS Wildcards (* or ?)

fnsplit is available on DOS systems only.
fnmerge

See fnmerge

Chapter 2, The Turbo C Library 133

fopen

fopen
Function Opens a stream.
Syntax #include <stdio.h>
4 FILE *fopen(const char *filename, const char *mode);
Prototype in stdio.h
Remarks fopen opens the file named by filename and associates a

134

stream with it. fopen returns a pointer to be used to
identify the stream in subsequent operations.

The mode string used in calls to fopen is one of the
following values:

v Open for reading only.
w Create for writing.

a Append; open for writing at end-of-file or create
for writing if the file does not exist.

r+ Open an existing file for update (reading and
writing).

w+ Create a new file for update.

a+ Open for append; open (or create if the file does
not exist) for update at the end of the file.

To specify that a given file is being opened or created in
text mode, you can append a t to the mode string (rt, w+t,
etc.). Similarly, to specify binary mode, you can append
a b to the mode string (wb, a+b, etc.). fopen also allows
the t or b to be inserted between the letter and the +
character in the mode string; for example, rt+ is equi-
valent to r-+t.

If a t or b is not given in the mode string, the mode is
governed by the global variable _fmode. If _fmode is set to
O_BINARY, files will be opened in binary mode. If
_fmode is set to O_TEXT, they will be opened in text
mode. These O _... constants are defined in fentlh.

When a file is opened for update, both input and output
can be done on the resulting stream. However, output
cannot be followed directly by input without an

Turbo C Reference Guide

fopen

intervening fseek or rewind, and input cannot be
directly followed by output without an intervening
fseek, rewind, or an input that encounters end-of-file.

Return value On successful completion, fopen returns a pointer to the
newly opened stream. In the event of error, it returns
NULL.

Portability fopen is available on UNIX systems and is compatible
with ANSI C. It is defined by Kernighan and Ritchie.

See also creat, dup, fclose, fdopen, ferror, _fmode (variable),

fopen, fread, freopen, fseek, fwrite, open, rewind,
setbuf, setmode

Example /* Program to create a backup of the AUTOEXEC.BAT file */
#include <stdio.h>

main ()
{
FILE *in, *out;
if ((in = fopen("\\AUTOEXEC.BAT", "rt")) == NULL
{
fprint (stderr, "Cannot open input file.\n");
return (1);

}

if ({out = fopen("\\AUTOEXEC.BAK", "wt")) == NULL)
{
fprint (stderr, "Cannot open output file.\n");
return (1);

}

while (!feof(in))
fputc (fgetc{in), out);

fclose(in);
fclose{out);

Chapter 2, The Turbo C Library 135

FP_OFF

FP_OFF

Function

Syntax

Prototype in

Remarks

Return value

Gets a far address offset.

#include <dos.h>
unsigned FP_OFF(farpointer);

dos.h

The FP_OFF macro can be used to get the offset of the
far pointer farpointer.

FP_OFF returns an unsigned integer value representing
an offset value.

See also FP_SEG, MK_FP, movedata, segread
Example $include <stdio.h>
#include <dos.h>
main ()
{
char far *ptr;
unsigned seq, off;
ptr = MK_FP(OXBOO0,0);
seq = FP_SEG(ptr);
off = FP_OFF(ptr);
printf("far ptr %$Fp, segment %04x,"
"offset %$04x\n", ptr,seq,off);
}
Program output
far ptr B000:0000, segment b000, offset 0000
_fpreset
Function Reinitializes floating-point math package.
Syntax void _fpreset(void);
Prototype in float.h
Remarks _fpreset reinitializes the floating-point math package.
This function is usually used in conjunction with system
_ or the exec... or spawn... functions.
136 Turbo C Reference Guide

Return value
See also

_fpreset

Note: Under DOS versions prior to 2.0 and 3.0, if an
8087/80287 coprocessor is used in a program, a child
process (executed by system or by an exec... or spawn...
function) might alter the parent process’s floating-point
state.

If you use an 8087/80287, take the following pre-
cautions:

m Do not call system, or an exec... or spawn... function,
while a floating-point expression is being evaluated.

m Call _fpreset to reset the floating-point state after
using system, exec..., or spawn... if there is any
chance that the child process performed a floating-
point operation with the 8087/80287.

None.

_clear87, _control87, exec..., spawn..., _status87, system

fprintf

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

Writes formatted output to a stream.
#include <stdio.h>

int fprintf(FILE *stream,
const char *format[, argument, ...]);

stdio.h

fprintf accepts a series of arguments, applies to each a
format specification contained in the format string
pointed to by format, and outputs the formatted data to a
stream. There must be the same number of format
specifications as arguments.

See printf for a description of the information included
in a format specification.

fprintf returns the number of bytes output. In the event
of error, it returns EOF.

fprintf is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

cprintf, fscanf, printf, putc, sprintf

Chapter 2, The Turbo C Library 137

FP_SEG

Example

See printf

FP_SEG

Function

Syntax

Prototype in

Remarks
Return value

See also

Example

Gets far address segment.

#include <dos.h>
unsigned FP_SEG(farpointer);

dos.h

FP_SEG is a macro that gets the segment value of the far
pointer farpointer.

FP_SEG returns an unsigned integer representing a
segment value.

FP_OFF, MK_FP
See FP_OFF

fputc

Function

Syntax

Prototype in
Remarks

Return value
Portability

See also

138

Puts a character on a stream.

#include <stdio.h>
int fputc(int ¢, FILE *stream);

stdio.h
fputc outputs character c to the named stream.

On success, fputc returns the character c¢. On error, it
returns EOF.

fputc is available on UNIX systems and is compatible
with ANSIC.

fgetc, putc

Turbo C Reference Guide

foutchar

fputchar
Function Outputs a character on stdout.
Syntax #include <stdio.h>

Prototype in

Remarks

Return value

int fputchar(int c);
stdio.h

fputchar outputs character ¢ to stdout. fputchar(c) is the
same as fputc(c, stdout).

On success, fputchar returns the character ¢. On error, it
returns EOF.

Portability fputc is available on UNIX systems.
See also fgetchar, putchar

fputs

Function Outputs a string on a stream.
Syntax #include <stdio.h>

Prototype in

Remarks

Return value
Portability

See also

int fputs(const char *s, FILE *stream);
stdio.h

fputs copies the null-terminated string s to the given
output stream; it does not append a newline character,
and the terminating null character is not copied.

On successful completion, fputs returns the last char-
acter written. Otherwise, it returns a value of EOF.

fputs is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

fgets, gets, puts

Chapter 2, The Turbo C Library 139

fread

fread

Function Reads data from a stream.

Syntax #include <stdio.h>
size_t fread(void *ptr, size_t size, size_t n,

FILE *stream);

Prototype in stdio.h

Remarks fread reads n items of data, each of length size bytes,
from the given input stream, into a block pointed to by
ptr.
The total number of bytes read is (n X size).

Return value On successful completion, fread returns the number of
items (not bytes) actually read. It returns a short count
(possibly 0) on end-of-file or error.

Portability fread is available on all UNIX systems and is compatible
with ANSI C.

See also fopen, fwrite, printf, read

free

Function Frees allocated block.

Syntax void free(void *block);

Prototype in stdlib.h, alloc.h

Remarks free deallocates a memory block allocated by a previous
call to calloc, malloc, or realloc.

Return value None.

Portability free is available on UNIX systems and is compatible
with ANSIC. '

See also calloc, freemem, malloc, realloc, strdup

140 Turbo C Reference Guide

freemem

freemem
Function Frees a previously allocated DOS memory block.
Syntax int freemem(unsigned segx);

Prototype in

Remarks

Return value

dos.h

freemem frees a memory block allocated by a previous
call to allocmem. segx is the segment address of that
block.

freemem returns 0 on success. In the event of error, it
returns -1, and errno is set to

ENOMEM Insufficient memory

See also allocmem, free
freopen
Function Replaces a stream.
Syntax #include <stdio.h>
FILE *freopen(const char *filename, const char *mode,
FILE *stream);
Prototype in stdio.h
Remarks freopen substitutes the named file in place of the open

stream. 1t closes stream, regardless of whether the open
succeeds. freopen is useful for changing the file attached
to stdin, stdout, or stderr.

The mode string used in calls to fopen is one of the
following values:

v Open for reading only.
w Create for writing.

a Append; open for writing at end-of-file or create
for writing if the file does not exist.

r+ Open an existing file for update (reading and
writing). ‘

Chapter 2, The Turbo C Library 141

freopen

Return value
Portability

See also

Example

w+ Create a new file for update.

a+ Open for append; open (or create if the file does
not exist) for update at the end of the file.

To specify that a given file is being opened or created in
text mode, you can append a ¢ to the mode string (rt, w+t,
etc.); similarly, to specify binary mode, you can append
a b to the mode string (wb, a+b, etc.).

If a t or b is not given in the mode string, the mode is
governed by the global variable _fmode. If _fmode is set to
O_BINARY, files will be opened in binary mode. If
_fmode is set to O_TEXT, they will be opened in text
mode. These O_... constants are defined in fentlh.

When a file is opened for update, both input and output
can be done on the resulting stream. However, output
cannot be directly followed by input without an
intervening fseek or rewind, and input cannot be
directly followed by output without an intervening
fseek, rewind, or an input that encounters end-of-file.

On successful completion, freopen returns the argument
stream. In the event of error, it returns NULL.

freopen is available on UNIX systems and is compatible
with ANSI C.

fclose, fdopen, fopen, open, setmode

See fopen

frexp

Function

Syntax

Prototype in

Remarks

142

Splits a double number into mantissa and exponent.

#include <math.h>
double frexp(double x, int *exponent);

math.h

frexp calculates the mantissa m (a double greater than
or equal to 0.5, and less than 1) and the integer value n
such that x (the original double value) equals m x 2".
frexp stores n in the integer that exponent points to.

Turbo C Reference Guide

Return value

Portability

See also

frexp

frexp returns the mantissa m.

Error-handling for frexp can be modified through the
function matherr.

frexp is available on UNIX systems and is compatible
with ANSI C.

exp, ldexp

fscanf

Function

Syntax

Prototype in

Remarks

Return value

Portability

Scans and formats input from a stream.

#include <stdio.h>
int fscanf(FILE *stream,
const char *format[, address, ...]);

stdio.h

fscanf scans a series of input fields, one character at a
time, reading from a stream. Then each field is
formatted according to a format specification passed to
fscanf in the format string pointed to by format. Finally,
fscanf stores the formatted input at an address passed to
it as an argument following format. There must be the
same number of format specifications and addresses as
there are input fields.

See scanf for a description of the information included
in a format specification.

fscanf may stop scanning a particular field before it
reaches the normal end-of-field (whitespace) character,
or it may terminate entirely, for a number of reasons. See
scanf for a discussion of possible causes.

fscanf returns the number of input fields successfully
scanned, converted, and stored; the return value does
not include scanned fields that were not stored.

If fscanf attempts to read at end-of-file, the return value
is EOF. If no fields were stored, the return value is 0.

fscanf is available on UNIX systems and is defined in
Kernighan and Ritchie. It is compatible with ANSI C.

Chapter 2, The Turbo C Library 143

fseek

See also

atof, cscanf, fprintf, printf, scanf, sscanf, vfscanf,
vscanf, vsscanf

fseek

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

144

Repositions a file pointer on a stream.

#include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

stdio.h

fseek sets the file pointer associated with stream to a
new position that is offset bytes beyond the file location
given by whence. For text fode streams, offset should be 0
or a value returned by ftell.

‘whence must be one of the values 0, 1, or 2, which

represent three symbolic constants (defined in stdio.h)
as follows:

whence File Location

SEEK_SET (1)) File beginning

SEEK_CUR (1) Current file pointer position
SEEK_END) End-of-file

fseek discards any character pushed back using ungetc.

fseek is used with stream I/O. For file handle 1/0, use
Iseek.

After fseek, the next operation on an update file can be
either input or output.

fseek returns 0 if the pointer is successfully moved and
returns a nonzero value on failure.

fseek is available on all UNIX systems and is compatible
with ANSIC.

fgetpos, fopen, fsetpos, ftell, Iseek, rewind, setbuf, tell

Turbo C Reference Guide

Example

fseek

$include <stdio.h>
/* Returns the number of bytes in file stream */
long filesize(FILE *stream)
{
long curpos, length;
curpocs = ftell(stream);
fseek (stream, OL, SEEK END);
length = ftell(stream);
fseek(stream, curpos, SEEK SET);
return(length);
)

main ()
{
FILE *stream;
stream = fopen("MYFILE.TXT", "r");
printf("filesize of MYFILE,TXT is $1d"
"bytes\n", filesize(stream));
}

Program output
filesize of MYFILE.TXT is 15 bytes

fsetpos

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Positions the file pointer of a stream.

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

stdio.h

fsetpos sets the file pointer associated with stream to a
new position. The new position is the value obtained by
a previous call to fgetpos on that stream. It also clears
the end-of-file indicator on the file that stream points to
and undoes any effects of ungetc on that file. After a call
to fsetpos, the next operation on the file can be input or
output.

On success fsetpos returns 0. On failure it returns a
nonzero value, and sets errno to a nonzero value.

fsetpos is compatible with ANSI C.
fgetpos, fseek, ftell

Chapter 2, The Turbo C Library 145

fstat

fstat

Function

Syntax

Prototype in

Remarks

146

Gets open file information.

#include <sys\stat.h>
int fstat(int handle, struct stat *statbuf);

sys\stat.h

fstat stores information in the stat structure about the
open file or directory associated with handle.

statbuf points to the stat structure (defined in sys\stat.h).
That structure contains the following fields:

st_mode Bit mask giving information about the
open file’s mode

st_dev Drive number of disk containing the file,
or file handle if the file is on a device

st_rdev Same as st_dev
st_nlink Set to the integer constant 1
st_size Size of the open file in bytes

st_atime Most recent time the open file was
modified

st_mtime Same as st_atime
st_ctime Same as st_atime

The stat structure contains three more fields not
mentioned here. They contain values that are not
meaningful under DOS.

The bit mask that gives information about the mode of
the open file includes the following bits.

One of the following bits will be set:
S_IFCHR Set if handle refers to a device.

S_IFREG Set if an ordihary file is referred to by
handle.

One or both of the following bits will be set:

Turbo C Reference Guide

Return value

See also

fstat

S_IWRITE Set if user has permission to write to

file.
S_IREAD Set if user has permission to read to file.

The bit mask also includes the read /write bits; these are
set according to the file’s permission mode.

fstat returns 0 if it has successfully retrieved the
information about the open file. On error (failure to get
the information), it returns —~1 and sets errno to

EBADF Bad file handle

access, chmod, stat

ftell

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

Example

Returns the current file pointer.

#include <stdio.h>
long int ftell(FILE *stream);

stdio.h

ftell returns the current file pointer for stream. The offset
is measured in bytes from the beginning of the file.

The value returned by ftell can be used in a subsequent
call to fseek.

ftell returns the current file pointer position on success.
It returns —1L on error, and sets errno to a positive value.

ftell is available on all UNIX systems and is compatible
with ANSIC.

fgetpos, fseek, fsetpos, Iseek, rewind, tell

See fseek

Chapter 2. The Turbo C Library 147

fiime

ftime

Function

Syntax

Prototype in

Remarks

Return value
Portability
See also

Example

148

Stores current time in timeb structure.

#include <sys\timeb.h>
void ftime(struct timeb *buf)

sys\timeb.h

ftime determines the current time and fills in the fields
in the timeb structure pointed to by buf. The timeb
structure contains four fields: time, millitm, timezone, and

dstflag.

m The time field provides the time in seconds since
00:00:00 Greenwich Mean Time (GMT), January 1,
1970.

m The millitm field is the fractional part of a second in
milliseconds.

m The timezone field is the difference in minutes between
GMT and the local time. This value is computed going
west from GMT. ftime gets this field from the global
variable timezone, which is set by the tzset function.

m The dstflag field is set to 0 if daylight savings time is
not in effect for the local time zone, and to a nonzero
value if daylight savings time is in effect for the local
time zone. This field will be set to nonzero only if the
global variable daylight (set by the tzset function) is
nonzero, indicating that daylight savings is in effect
for the given date and time.

Note: ftime will call tzset. It isn’t necessary to call tzset
explicitly when you use ftime.

None.
ftime is available on UNIX System V systems.
asctime, ctime, gmtime, localtime, stime, time, tzset

$include <stdio.h>
#include <sys\timeb.h>

main()
{
struct timeb buf;

ftime(ebuf};

Turbo C Reference Guide

ftime

printf("%1ld Seconds since 1-1-70 GMT\n", buf.time};

printf{"plus %d milliseconds\n", buf.millitm);

printf("%d Minutes from GMT\n", buf.timezone);

printf("Daylight savings %s in effect\n”,
buf.dstflag 2 "is" : "is not"};

fwrite

Function Writes to a stream.

Syntax #include <stdio.h>
size_t fwrite(const void *ptr, size_t size,

size_t n, FILE *stream);

Prototype in stdio.h

Remarks fwrite appends n items of data, each of length size bytes,
to the given output file. The data written begins at ptr.
The total number of bytes written is (1 X size).
ptr in the declarations is a pointer to any object.

Return value On successful completion, fwrite returns the number of
items (not bytes) actually written. It returns a short
count on error.

Portability fwrite is available on all UNIX systems and is com-
patible with ANSI C.

See also fopen, fread

gevt

Function Converts floating-point number to a string.

Syntax #include <dos.h>
char *gcvt(double value, int ndec, char *buf);

Prototype in stdlib.h

Remarks gevt converts value to a null-terminated ASCII string and

stores the string in buf. It produces ndec significant digits
in Fortran F-format, if possible; otherwise, it returns the

Chapter 2, The Turbo C Library 149

gevt

Return value

value in the printf E-format (ready for printing). It may
suppress trailing zeros.

gevt returns the address of the string pointed to by buf.

Portability gevt is available on UNIX.
See also ecvt, fcvt
geninterrupt
Function Generates a software interrupt.
Syntax #include <dos.h>
void geninterrupt(int intr_num);
Prototype in dos.h
Remarks The geninterrupt macro triggers a software. trap for the

Return value

interrupt given by intr_num. The state of all registers
after the call depends on the interrupt called.

None.

Portability geninterrupt is unique to the 8086 architecture.
See also bdos, bdosptr, getvect, int86, int86x, intdos, intdosx,
intr
getarccoords
Function Gets coordinates of the last call to arc.
Syntax #include <graphics.h>
void far getarccoords(struct arccoordstype
far *arccoords);
Prototype in graphics.h
Remarks getarccoords fills in the arccoordstype structure pointed
to by arccoords with information about the last call to arc.
The arccoordstype structure is defined in graphics.h as
follows:
struct arccoordstype {
int x, y;
150 Turbo C Reference Guide

Return value

getarccoords

int xstart, ystart, xend, yend;

1N

The members of this structure are used to specify the
center point (x,y), the starting position (xstart, ystart),
and the ending position (xend, yend) of the arc. These
values are useful if you need to make a line meet at the
end of an arc.

None.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also are, fillellipse, sector

Examples See arc

getaspectratio

Function Retrieves the current graphics mode’s aspect ratio.

Syntax #include <graphics.h>

Prototype in

Remarks

Return value
Portability
See also

Examples

void far getaspectratio(int far *xasp, int far *yasp);
graphics.h

The y aspect factor, *yasp, is normalized to 10,000; on all
graphics adapters except the VGA, *xasp (the x aspect
factor) is less than *yasp because the pixels are taller than
they are wide. On the VGA, which has “square” pixels,
*xasp equals *yasp. In general, the relationship between
*yasp and *xasp can be stated as

*yasp = 10,000

*xasp <= 10,000

getaspectratio gets the values in *xasp and *yasp.
None.
A similar routine exists in Turbo Pascal 4.0.

arc, circle, ellipse, fillellipse, pieslice, sector,
setaspectratio

See arc

Chapter 2, The Turbo C Library 151

getbkcolor

getbkcolor

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

162

Returns the current background color.

#include <graphics.h>
int far getbkcolor(void);

graphics.h

getbkcolor returns the current background color. (See
the table under setbkcolor for details.)

getbkcolor returns the current background color.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getcolor, getmaxcolor, getpalette, setbkcolor

#include <graphics.h>
#include <conio.h>
#include <dos.h>

main ()
{
/* will request autodetection */
int graphdriver = DETECT, graphmode;
int svcolor;
/* initialize graphics */
initgraph{&graphdriver, &graphmode, "");
/* save current bkcolor */
svcolor = getbkcolor();
/* change bkcolor */
setbkcolor {svcolor * 1);
/* wait 5 seconds */
delay (5000) ;
/* restore old bkcolor */
setbkcolor (svcolor);
getche();
closegraph();

Turbo C Reference Guide

geic

getc

Function Gets character from stream.

Syntax #include <stdio.h>
int getc(FILE *stream);

Prototype in stdio.h

Remarks getc is a macro that returns the next character on the
given input stream and increments the stream’s file
pointer to point to the next character.

Return value On success, getc returns the character read, after
converting it to an int without sign extension. On end-
of-file or error, it returns EOF.

Portability getc is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

See also fgetc, getch, getchar, getche, gets, putc, putchar, ungetc

getcbrk

Function Gets control-break setting.

Syntax int getcbrk(void);

Prototype in dos.h

Remarks getcbrk uses the DOS system call 0x33 to return the
current setting of control-break checking.

Return value getcbrk returns O if control-break checking is off, or 1 if
checking is on.

Portability getcbrk is unique to DOS.

See also ctrlbrk, setcbrk

Chapter 2, The Turbo C Library 153

getch

getch

Function
Syntax
Prototype in

Remarks

Return value

Gets character from keyboard, does not echo to screen.
int getch(void);

conio.h

getch reads a single character directly from the console,

without echoing to the screen. getch uses stdin.

getch returns the character read from the keyboard.

Portability getch is unique to DOS.

See also cgets, fgetc, getc, getchar, getche, getpass, kbhit, putch,
ungetch

getchar

Function Gets character from stdin.

Syntax #include <stdio.h>
int getchar(void);

Prototype in stdio.h

Remarks getchar is a macro that returns the next character on the
named input stream stdin. It is defined to be getc(stdin).

Return value On success, getchar returns the character read, after
converting it to an int without sign extension. On end-
of-file or error, it returns EOF.

Portability getchar is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

See also fgetc, fgetchar, getc, getch, getche, putc, putchar,
ungetc

154 Turbo C Reference Guide

getche

getche

Function
Syntax
Prototype in

Gets character from the console, echoes to screen.
int getche(void);

conio.h

Remarks getche reads a single character from the console and
echoes it to the current text window, using direct video
or BIOS.

Return value getche returns the character read from the keyboard.

Portability getche is unique to DOS.

See also cgets, cscanf, fgetc, getc, getch, getchar, kbhit, putch,
ungetch

getcolor

Function Returns the current drawing color.

Syntax #include <graphics.h>

Prototype in
Remarks

Return value
Portability

See also

Example

int far getcolor(void);
graphics.h
getcolor returns the current drawing color.

The drawing color is the value to which pixels are set
when lines, etc., are drawn. For example, in CGACO0
mode, the palette contains four colors: the background
color, light green, light red, and yellow. In this mode, if
getcolor returns 1, the current drawing color is light
green.

getcolor returns the current drawing color.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getbkcolor, getmaxcolor, getpalette, setcolor
#include <graphics.h>

#include <conio.h>

Chapter 2, The Turbo C Library 155

getcolor

main()

{
/* will request autodetection */
int graphdriver = DETECT, graphmode;
int svcolor;
/* initialize graphics */
initgraph(&graphdriver, &graphmode, "");
/* save current drawing color */
svcolor = getcolor();
/* set drawing color to color stored in palette entry #3 */
setcolor(3);
/* small colored circle */
circle (100, 100, 5);
/* restore old drawing color */
setcolor(sveolor) ;
getche();
closegraph() ;

getcurdir
Function Gets current directory for specified drive.
Syntax int getcurdir(int drive, char *directory);

Prototype in dirh

Remarks getcurdir gets the name of the current working directory
for the drive indicated by drive.

drive specifies a drive number (0 for default, 1 for A,
etc.).

directory points to an area of memory of length MAXDIR
where the null-terminated directory name will be
placed. The name does not contain the drive
specification and does not begin with a backslash.

Return value getcurdir returns 0 on success or -1 in the event of error.
Portability getcurdir is unique to DOS.

See also chdir, getcwd, getdisk, mkdir, rmdir

Example #include <dir.h>

#include <stdio.h>
#include <string.h>

156 Turbo C Reference Guide

getcurdir

char *current directory(char *path)
{
strepy (path, "X:\\");
path[0] = "A’ + getdisk();
getcurdir (0, path+3);
return(path);
}

main ()
{
char curdir[MAXPATH];
current directory({curdir);
printf("The current directory is %s\n", curdir);

}
Program output

The current directory is C:\TURBOC

getcwd
Function Gets current working directory.
Syntax #include <dirh>

Prototype in

Remarks

Return value

char *getcwd(char *buf, int buflen);
dirh

getcwd gets the full path name of the current working
directory up to buflen bytes long, including the drive,
and stores it in buf. If the full path name length
(including the null-terminator) is longer than buflen
bytes, an error occurs.

If buf is NULL, a buffer buflen bytes long will be
allocated for you with malloc. You can later free the
allocated buffer by passing the return value of getcwd to
the function free.

getcwd returns the following values:

m If buf is not NULL on input, getcwd returns buf on
success, NULL on error.

m If buf is NULL on input, getewd returns a pointer to
the allocated buffer.

Chapter 2, The Turbo C Library 157

getcwd

In the event of an error return, the global variable errno
is set to one of the following:

ENODEV No such device
ENOMEM Not enough core

ERANGE Result out of range
Portability getcwd is unique to DOS.
See also chdir, getcurdir, getdisk, mkdir, rmdir
getdate
Function Gets system date.
Syntax #include <dos.h>

Prototype in

Remarks

Return value
Portability
See also

Example

158

void getdate(struct date *datep);
dos.h

getdate fills in the date structure (pointed to by datep)
with the system’s current date.

The date structure is defined as follows:

struct date {
int da_year;
char da_day;
char da_mon;

)i

/* current year */
/* day of the month */
/* month (1 = Jan) */

None.
getdate is unique to DOS.
ctime, gettime, setdate, settime

#include <stdio.h>
$include <dos.h>

main ()
{
struct date today;
struct time now;
getdate(&today);
printf{"Today’s date is %d/%d/%d\n",
today.da mon, today.da day,
today.da_year});
gettime (&now);

Turbo C Reference Guide

geldate

printf("The time is %$02d:%02d:%02d.%02d\n",
now.ti hour, now.ti min, now.ti sec,
now.ti hund);

}
Program output

Today’s date is 1/1/1980
The time is 17:08:22.42

getdefaultpalette

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Returns the palette definition structure.

#include <graphics.h>
void far *far getdefaultpalette(void);

graphics.h

getdefaultpalette finds the palettetype structure that
contains the palette initialized by the driver during
initgraph.

getdefaultpalette returns a pointer to the default palette
set up by the current driver when that driver was
initialized.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getpalette, initgraph

getdfree

Function

Syntax

Prototype in

Remarks

Gets disk free space.

#include <dos.h>
void getdfree(unsigned char drive,
struct dfree *dtable);

dos.h

getdfree accepts a drive specifier in drive (0 for default, 1
for A, etc.) and fills in the dfree structure pointed to by
dtable with disk characteristics.

Chapter 2, The Turbo C Library 159

getdfree

Return value

Portability
See also

The dfree structure is defined as follows:

struct dfree {

* unsigned df avail;
unsigned df total;
unsigned df bsec;
unsigned df sclus;

i

/* available clusters */
/* total clusters */

/* bytes per sector */

/* sectors per cluster */

getdfree returns no value. In the event of an error,
df_sclus in the dfree structure is set to —1.

getdfree is unique to DOS.
getfat, getfatd

getdisk

Function Gets current drive number.

Syntax int getdisk(void);

Prototype in dirh

Remarks getdisk gets the current drive number. It returns an
integer: 0 for A, 1 for B, 2 for C, etc. (equivalent to DOS
function 0x19).

Return value getdisk returns the current drive number.

Portability getdisk is unique to DOS.

See also getcurdir, getcwd, setdisk

Example See getcurdrive

getdrivername

Function Returns a pointer to a string containing the name of the
current graphics driver.

Syntax #include <graphics.h>
char *far getdrivername(void);

Prototype in graphics.h

160 Turbo C Reference Guide

getdiivername

Remarks After a call to initgraph, getdrivername returns the
name of the driver that is currently loaded.

Return value getdrivename returns a pointer to a string with the
name of the currently loaded graphics driver.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also initgraph

getdta

Function Gets disk-transfer address.

Syntax char far *getdta(void);

Prototype in dos.h

Remarks getdta returns the current setting of the disk-transfer
address (DTA).
In the small and medium memory models, it is assumed
that the segment is the current data segment. If C is used
exclusively, this will be the case, but assembly routines
can set the disk transfer address to any hardware
address.
In the compact, large, or huge memory models, the
address returned by getdta is the correct hardware
address and can be located outside the program.

Return value getdta returns a far pointer to the current disk-transfer
address.

Portability getdta is unique to DOS.

See also fcb (structure), setdta

getenv

Function Gets a string from environment.

Syntax char *getenv(const char *name);

Prototype in stdlib.h

Chapter 2, The Turbo C Library 161

getenv

Remarks

Return value

Portability

See also

Example

162

getenv returns the value of a specified variable. The
variable name can be in either uppercase or lowercase,
but it must not include the equal sign (=) character. If the
specified environment variable does not exist, getenv
returns an empty string.

On success, getenv returns the value associated with
name. If the specified name is not defined in the
environment, getenv returns an empty string.

Note: Environment entries must not be changed directly.
If you want to change an environment value, you must
use the putenv function.

getenv is available on UNIX systems and is compatible
with ANSIC.

environ (variable), getpsp, putenv

#include <stdio.h>
#include <stdlib.h>

main()
{

char *path, *dummy = NULL;

path = getenv("PATH");

dummy = getenv("DUMMY");

printf ("PATH = %s\n", path);

printf("old value of DUMMY: %s\n",

(dummy == NULL) ? "*none*" : dummy);

putenv ("DUMMY=TURBOC") ;

dummy = getenv("DUMMY");

printf("new value of DUMMY: %s\n", dummy);
}

Program output

PATH = C:\BIN;C:\BIN\DOS;C:\
old value of DUMMY: *none*
new value of DUMMY: TURBOC

Turbo C Reference Guide

geffat

getfat
Function Gets file-allocation table information for given drive.
Syntax #include <dos.h>

Prototype in

Remarks

Return value
Portability

See also

void getfat(unsigned char drive,
struct fatinfo *dtable);

dos.h

getfat gets information from the file-allocation table for
the drive specified by drive (0 for default, 1 for A, 2 for B,
etc.). dtable points to the fatinfo structure to be filled in.

The fatinfo structure filled in by getfat is defined as
follows:

struct fatinfo {
char fi sclus;
char fi_ fatid;
int fi nclus;
int fi bysec;

/* sectors per cluster */
/* the FAT id byte */
/* number of clusters */
/* bytes per sector */
Vi

None.
getfat is unique to DOS.
getdfree, getfatd

getfatd

Function

Syntax

Prototype in

Remarks

Gets file-allocation table information.

#include <dos.h>
void getfatd(struct fatinfo *dtable);

dos.h

getfatd gets information from the file-allocation table of
the default drive. dtable points to the fatinfo structure to
be filled in.

The fatinfo structure filled in by getfatd is defined as
follows:

struct fatinfo {

Chapter 2, The Turbo C Library 163

getfatd

char fi sclus;

char fi fatid;

int fi nclus;

int fi bysec;
}i

/* sectors per cluster */
/* the FAT id byte */
/* number of clusters */
/* bytes per sector */

Return value None.

Portability getfatd is unique to DOS.

See also getdfree, getfat

getfillpattern

Function Copies a user-defined fill pattern into memory.
Syntax [#include <graphics.h>

Prototype in

Remarks

Return value

Portability

See also

164

void far getfillpattern(char far *pattern);
graphics.h '

getfillpattern copies the user-defined fill pattern, as set
by setfillpattern, into the 8-byte area pointed to by
pattern.

pattern is a pointer to a sequence of 8 bytes, with each
byte corresponding to 8 pixels in the pattern. Whenever
a bit in a pattern byte is set to 1, the corresponding pixel
will be plotted. For example, the following user-defined
fill pattern represents a checkerboard:

char checkboard(8] = {
0xAA, 0x55, OxAA, 0x55, OxAA, 0x55, OxAA, 0x55
)i

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getfillsettings, setfillpattern

Turbo C Reference Guide

geffillsettings

getfillsettings
Function Gets information about current fill pattern and color.
Syntax #include <graphics.h>
void far getfillsettings(struct fillsettingstype
far *fillinfo);
Prototype in graphics.h
Remarks getfillsettings fills in the fillsettingstype structure

pointed to by fillinfo with information about the current
fill pattern and fill color. The fillsettingstype structure is
defined in graphics.h as follows:

struct fillsettingstype {
int pattern; /* current fill pattern */
int color; /* current fill color */
}i

The functions bar, bar3d, fillpoly, floodfill, and pieslice
all fill an area with the current fill pattern in the current
fill color. There are 11 predefined fill pattern styles (such
as solid, cross-hatch, dotted, etc.). Symbolic names for
the predefined patterns are provided by the enumerated
type fill_patterns in graphics.h (see the following table).
In addition, you can define your own fill pattern.

If pattern equals 12 (USER_FILL), then a user-defined fill
pattern is being used; otherwise, pattern gives the
number of a predefined pattern.

The enumerated type fill_patterns, defined in graphics.h,
gives names for the predefined fill patterns, plus an
indicator for a user-defined pattern.

Chapter 2, The Turbo C Library 165

geffillsettings

Return value
Portability

See also

Example

166

Name Value Description
EMPTY_FILL 0 fill with background color
SOLID_FILL 1 solid fill

LINE_FILL 2 fill with —
LTSLASH_FILL 3 fillwith ///
SLASH_FILL 4 fill with ///, thick lines
BKSLASH_FILL 5 fill with \\\, thick lines
LTBKSLASH_FILL 6 fill with \\\
HATCH_FILL 7 light hatch fill
XHATCH_FILL 8 heavy cross-hatch fill
INTERLEAVE_FILL 9 interleaving line fill

WIDE_DOT_FILL 10 widely spaced dot fill
CLOSE_DOT _FILL 11 closely spaced dot fill
USER_FILL 12 user-defined fill pattern

All but EMPTY_FILL fill with the current fill color;
EMPTY_FILL uses the current background color.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getfillpattern, setfillpattern, setfillstyle

#include <graphics.h>
#include <conio.h>

main ()

{
/* will request autodetection */
int graphdriver = DETECT, graphmode;
struct fillsettingstype save;
char savepattern(8];
char gray50(] = { Oxaa, 0x55, Oxaa, 0x55, Oxaa,

0x55, Oxaa, 0x55 };

/* initialize graphics */
initqraph(&graphdriver, &graphmode, "");
/* retrieve current settings */
getfillsettings{&save);
/* if user-defined pattern */
if (save.pattern == USER FILL)
/* then save user fill pattern */
getfillpattern (savepattern);

Turbo C Reference Guide

geffillsettings

/* change fill style */
setfillstyle(SIASH_FILL, BLUE);
/* draw slash-filled blue bar */
bar (0, 0, 100, 100);
/* custom fill pattern */
setfillpattern(gray50, YELLOW);
/* draw customized yellow bar */
bar (100, 100, 200, 200);
/* if user-defined pattern */
if (save.pattern == USER FILL)
/* then restore user fill pattern */
setfillpattern(savepattern, save.color);
else
/* restore old style */
setfillstyle(save.pattern, save.color);
getche();
closegraph() ;

getftime
Function Gets file date and time.
Syntax #include <io.h>

Prototype in

Remarks

Return value

int getftime(int handle, struct ftime *ftimep);
io.h

getftime retrieves the file time and date for the disk file
associated with the open handle. The ftime structure
pointed to by ftimep is filled in with the file’s time and
date.

The ftime structure is defined as follows:

struct ftime {

unsigned ft tsec: 5; /* two seconds */
unsigned ft min: 6; /* minutes */
unsigned ft hour: 5; /* hours */
unsigned ft_day: 5; /* days */
unsigned ft month: 4; /* months */
unsigned ft year: 7; /* year - 1980*/

}i

getftime returns 0 on success.

Chapter 2, The Turbo C Library 167

geiftime

Portability

See also

In the event of an error return, -1 is returned, and the

‘global variable errno is set to one of the following:

EINVENC Invalid function number
EBADF Bad file number

getftime is unique to DOS.

open, setftime

getgraphmode

Function

Syntax

Prototype in

Remarks

Return value
Portability

See also

Example

168

Returns the current graphics mode.

#include <graphics.h>
int far getgraphmode(void);

graphics.h

Your program must make a successful call to initgraph
before calling getgraphmode.

The enumeration graphics_mode, defined in graphics.h,
gives names for the predefined graphics modes. For a
table listing these enumeration values, refer to the
description for initgraph.

getgraphmode returns the graphics mode set by
initgraph or setgraphmode.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getmoderange, restorecrtmode, setgraphmode

int cmode;
/* save current mode */
cmode = getgraphmode();
/* switch to text */
restorecrtmode() ;
printf("Now in text mode - press"
"any key to go back to graphics ...");
getch();
/* back to graphics */
setgraphmode (cmode) ;

Turbo C Reference Guide

getimage

getimage
Function Saves a bit image of the specified region into memory.
Syntax #include <graphics.h>

Prototype in

Remarks

Return value
Portability

See also

Example

void far getimage(int left, int top, int right,
int bottom, void far *bitmap);

graphics.h
getimage copies an image from the screen to memory.

left, top, right, and bottom define the area of the screen to
which the rectangle is to be copied. bitmap points to the
area in memory where the bit image is stored. The first
two words of this area are used for the width and height
of the rectangle; the remainder holds the image itself.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

imagesize, putimage, putpixel

#include <alloc.h>
#include <graphics.h>

main ()

{
/* will request autodetection */
int graphdriver = DETECT, graphmode;
void * buffer;
unsigned size;
/* initialize graphics */
initgraph(&égraphdriver, &graphmode, "");
size = imagesize(0,0,20,10);
/* get memory for image */
buffer = malloc (size);
/* save bits */
getimage{0,0,20,10,buffer);

/. ¥/

/* restore bits */
putimage (0,0, buffer,COPY PUT);
/* free buffer */
free(buffer);

closegraph();

Chapter 2, The Turbo C Library 169

getlinesettings

getlinesettings
Function Gets the current line style, pattern, and thickness.
Syntax #include <graphics.h>
void far getlinesettings(struct linesettingstype
far *lineinfo);
Prototype in graphics.h

Remarks

170

getlinesettings fills a linesettingstype structure pointed
to by lineinfo with information about the current line
style, pattern, and thickness.

The linesettingstype structure is defined in graphics.h
as follows:

struct linesettingstype {
int linestyle;
unsigned upattern;
int thickness;

}i

linestyle specifies in which style subsequent lines will be
drawn (such as solid, dotted, centered, dashed). The
enumeration line_styles, defined in graphics.h, gives
names to these operators:

Name Value Description
SOLID_LINE 0 solid line
DOTTED_LINE 1 dotted line
CENTER_LINE 2 centered line
DASHED_LINE 3 dashed line
USERBIT_LINE 4 user-defined line style

thickness specifies whether the width of subsequent lines
drawn will be normal or thick.

Turbo C Reference Guide

Return value
Portability

See also

Example

getlinesettings

Name Value Description
NORM_WIDTH 1 1 pixel wide
THICK_WIDTH 3 3 pixels wide

upattern is a 16-bit pattern that applies only if linestyle is
USERBIT_LINE (4). In that case, whenever a bit in the
pattern word is 1, the corresponding pixel in the line is
drawn in the current drawing color. For example, a solid
line corresponds to a upattern of OXFFFF (all pixels
drawn), while a dashed line can correspond to a upattern
of 0x3333 or OxOFOF. If the linestyle parameter to
setlinestyle is not USERBIT_LINE (!=4), the upattern
parameter must still be supplied, but it is ignored.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

setlinestyle

#include <graphics.h>
$include <conio.h>

main{)

{
/* will request autodetection */
int graphdriver = DETECT, graphmode;
struct linesettingstype saveline;
/* initialize graphics */
initgraph{&graphdriver, &graphmode, "");
/* save current line style */
getlinesettings(gsaveline};
setlinestyle(SOLID LINE, O, THICK WIDTH);
/* draw a little thick box */
rectangle(10, 10, 17, 15);
/* restore old line settings */
setlinestyle(saveline.linestyle, saveline.upattern,

saveline.thickness);

getche();
closegraph{};

Chapter 2, The Turbo C Library 171

getmaxcolor

getmaxcolor

Function Returns maximum color value that can be passed to the
setcolor function.

Syntax #include <graphics.h>

int far getmaxcolor(void);
Prototype in graphics.h

Remarks getmaxcolor returns the highest valid color value for the
current graphics driver and mode that can be passed to
setcolor.

For example, on a 256K EGA, getmaxcolor will always
return 15, which means that any call to setcolor with a
value from 0 to 15 is valid. On a CGA in high-resolution
mode, or on a Hercules monochrome adapter,
getmaxcolor returns a value of 1 because these adapters
only support draw colors of 0 or 1.

Return value getmaxcolor returns the highest available color value.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also getbkcolor, getcolor, getpalette, getpalettesize, setcolor

getmaxmode

Function Returns the maximum mode number for the current
driver.

Syntax #include <graphics.h>

int far getmaxmode(void);
Prototype in graphics.h

Remarks getmaxmode lets you find out the maximum mode
number for the currently loaded driver, directly from the
driver. This gives it an advantage over getmoderange,
which works for Borland drivers only. The minimum
mode is 0.

172 Turbo C Reference Guide

Return value

getmaxmode

getmaxmode returns the maximum mode number for
the current driver. '

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also getmodename, getmoderange

getmaxx

Function Returns maximum x screen coordinate.

Syntax #include <graphics.h>
int far getmaxx(void);

Prototype in graphics.h

Remarks getmaxx returns the maximum (screen-relative) x value
for the current graphics driver and mode.
For example, on a CGA in 320x200 mode, getmaxx
returns 319. getmaxx is invaluable for centering,
determining the boundaries of a region on the screen,
and so on.

Return value getmaxx returns the maximum x screen coordinate.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also getmaxy, getx

Example printf{"The screen resolution is %d pixels by %d pixels.\n",

getmaxx{)+1, getmaxy()+1);

getmaxy

Function Returns maximum y screen coordinate.

Syntax #include <graphics.h>
int far getmaxy(void);

Prototype in graphics.h

Remarks getmaxy returns the maximum (screen-relative) y value

for the current graphics driver and mode.

Chapter 2, The Turbo C Library 173

getmaxy

For example, on a CGA in 320x200 mode, getmaxy
returns 199. getmaxy is invaluable for centering,
determining the boundaries of a region on the screen,
and so on. :

Return value getmaxy returns the maximum y screen coordinate.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also getmaxx, getx

Example See getmaxx

getmodename

Function Returns a pointer to a string containing the name of a
specified graphics mode.

Syntax #include <graphics.h>

Prototype in

Remarks

Return value
Portability

See also

174

char *far getmodename(int mode_number);
graphics.h

getmodename accepts a graphics mode number as input
and returns a string containing the name of the
corresponding graphics mode. The mode names are
imbedded in each driver. The return values (“320 x 200
CGA P1,” “640 x 200 CGA”, etc.) are useful for building
menus or displaying status.

getmodename returns a pointer to a string with the
name of the graphics mode.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getmaxmode, getmoderange

Turbo C Reference Guide

getmoderange

getmoderange
Function Gets the range of modes for a given graphics driver.
Syntax #include <graphics.h>
void far getmoderange(int graphdriver, int far *lomode,
int far *himode);
Prototype in graphics.h

Remarks

Return value
Portability

See also

Example

getmoderange gets the range of valid graphics modes
for the given graphics driver, graphdriver. The lowest
permissible mode value is returned in *lomode and the
highest permissible value in *himode. If graphdriver
specifies an invalid graphics driver, both *lomode and
*himode are set to —1. If the value of graphdriver is -1, the
currently loaded driver modes will be given.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getgraphmode, getmaxmode, getmodename, initgraph,
setgraphmode

#include <graphics.h>

main{)

{
int lo, hi;

getmoderange (CGA, &lo, &hi);
printf ("CGA supports modes %d through %d\n", lo, hi};

getpalette

Function

Syntax

Prototype in

Gets information about the current palette.

#include <graphics.h>
void far getpalette(struct palettetype far *palette);

graphics.h

Chapter 2, The Turbo C Library 175

getpalette

Remarks

Return value
Portability

See also

Example

176

getpalette fills the palettetype structure pointed to by
palette with information about the current palette’s size
and colors.

The MAXCOLORS constant and the palettetype
structure used by getpalette are defined in graphics.h as
follows:

$define MAXCOLORS 15

struct palettetype {

unsigned char size;

signed char colors[MAXCOLORS + 1];
Vi

size gives the number of colors in the palette for the
current graphics driver in the current mode.

colors is an array of size bytes containing the actual raw
color numbers for each entry in the palette.

Note: getpalette cannot be used with the IBM-8514
driver.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getbkcolor, getcolor, getdefaultpalette, getmaxcolor,
setallpalette, setpalette

$include <graphics.h>
#include <stdlib.h>
#include <conio.h>

main ()
{
/* will request autodetection */
int graphdriver = DETECT, graphmode;
struct palettetype palette;
int color;
/* initialize graphics */
initgraph(&graphdriver, &graphmode, "");
/* get current palette */
getpalette(spalette);
for(color=0; color<palette.size; color++)
{
/* draw some colorful bars */
setfillstyle(SOLID_FILL, color);

Turbo C Reference Guide

getpalette

bar(20*{color-1), 0, 20*color, 20);
}

/* only if more than 1 color */
if (palette.size > 1)
{
/* switch colors randomly */
do
setpalette(random{palette.size),
random(palette.size));
/* until a key is hit */
while(!kbhit());
/* discard keystroke */
getch(};
}

/* restore original palette */
setallpalette({spalette);

closegraph ()¢

}

getpalettesize

Function Returns size of palette color lookup table.

Syntax #include <graphics.h>
int far getpalettesize(void);

Prototype in graphics.h

Remarks getpalettesize is used to determine how many palette
entries can be set for the current graphics mode. For
example, the EGA in color mode will return 16.

Return value getpalettesize returns the number of palette entries in

‘ the current palette.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also setpalette, setallpalette

Chapter 2, The Turbo C Library 177

getpass

getpass

Function Reads a password.

Syntax char *getpass(const char *prompt);

Prototype in conio.h

Remarks getpass reads a password from the system console, after
prompting with the null-terminated string prompt and
disabling the echo. A pointer is returned to a null-
terminated string of up to eight characters (not counting
the null-terminator).

Return value The return value is a pointer to a static string, which is
overwritten with each call.

Portability getpass is available on UNIX systems.

See also getch

getpixel

Function Gets the color of a specified pixel.

Syntax #include <graphics.h>
unsigned far getpixel(int x, int y);

Prototype in graphics.h

Remarks getpixel gets the color of the pixel located at (x,y).

Return value

Portability

See also

Example

178

getpixel returns the color of the given pixel.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getimage, putpixel
finclude <graphics.h>
#include <conio.h>

main()

{
/* will request autodetection */
int graphdriver = DETECT, graphmode;
int i, color, max;

Turbo C Reference Guide

getpixel

/* initialize graphics */
initgraph (¢graphdriver, &graphmede, "*);
max = getmaxcolor() + 1;

/* Change color of pixels in a diagonal line */
for (i=1; i<200; i++) {
color = getpixel(i,i);
putpixel(i, i, (color * i) % max);
}
getche{);
closegraph();

getpsp

Function Gets the program segment prefix.

Syntax unsigned getpsp(void);

Prototype in dos.h

Remarks getpsp gets the segment address of the program
segment prefix (PSP) using DOS call 0x62.
This call exists only in DOS 3.x. For versions of DOS 2.x
and 3.x, the global variable _psp set by the start-up code
can be used instead.

Return value getpsp returns the segment address of the PSP.

Portability getpsp is unique to DOS 3.x and is not available under
earlier versions of DOS.

See also getenv, _psp (variable)

gets

Function Gets a string from stdin.

Syntax char *gets(char *s);

Prototype in stdio.h

Remarks gets collects a string of characters, terminated by a

carriage return, from the standard input stream stdin,

Chapter 2, The Turbo C Library 179

gets

Return value

and puts it into s. The carriage return is replaced by a
null character (\0) in s.

Unlike scanf, gets allows input strings to contain some
whitespace characters (spaces, tabs). gets returns when
it encounters a carriage return; everything up to the
carriage return is copied into s.

gets, on success, returns the string argument s; it returns
NULL on end-of-file or error.

Portability gets is available on UNIX systems and is compatible
with ANSIC.
See also cgets, ferror, fgets, fputs, getc, puts
Example finclude <stdio.h>
main()
{
char buff([133};
puts("Enter a string: ");
if (gets(buff) != NULL)
printf("String = '%s’\n", buff);
}
gettext
Function Copies text from text mode screen to memory.
Syntax int gettext(int left, int top, int right, int bottom,
void *destin);
Prototype in conio.h
Remarks gettext stores the contents of an onscreen text rectangle
defined by left, top, right, and bottom, into the area of
memory pointed to by destin.
All coordinates are absolute screen coordinates, not
window-relative. The upper left corner is (1,1).
gettext reads the contents of the rectangle into memory
sequentially from left to right and top to bottom.
Each position onscreen takes 2 bytes of memory: The
first byte is the character in the cell, and the second is the
180 Turbo C Reference Guide

gettext

cell’s video attribute. The space required for a rectangle

w columns wide by h rows high is defined as

bytes = (h rows) X (w columns) X 2

Return value gettext returns 1 if the operation succeeds. It returns 0 if
it fails (for example, if you gave coordinates outside the
range of the current screen mode).

Portability gettext works only on IBM PCs and BIOS-compatible
systems.

See also movetext, puttext

Example char buf[20%10%2];

/* save rectangle */
gettext(1,1,20,10,buf);
I* oo/

/* restore screen */
puttext{l,1,buf);

gettextinfo

Function Gets text mode video information.

Syntax #include <conio.h>
void gettextinfo(struct text_info *r);

Prototype in conio.h

Remarks gettextinfo fills in the text_info structure pointed to by r

with the current text video information.

The text_info structure is defined in conio.h as follows:

struct text info {

unsigned char winleft; /* left window coordinate */
unsigned char wintop; /* top window coordinate */
unsigned char winright; /* right window coordinate */

unsigned char winbottom; /* bottom window coordinate */

unsigned char attribute;
unsigned char normattr;

/* text attribute */
/* normal attribute */

unsigned char currmode; /* BW40, BW80, C40, or C80 */

unsigned char screenheight;
unsigned char screenwidth;

/* bottom - top */
/* right - left */

unsigned char curx; /* x coordinate in current window */

Chapter 2, The Turbo C Library

181

gettextinfo

unsigned char cury; /* y coordinate in current window */

}i

Return value gettextinfo returns nothing; the results are returned in
the structure pointed to by r.
Portability gettextinfo works only with IBM PCs and compatibles.
See also textattr, textbackground, textcolor, textmode, wherex,
wherey, window
Example #include <conio.h>
struct text info initial info;
main ()
{
gettextinfo(sinitial info);
VAN Y
/* Restore text mode to original value */
textmode{initial info.currmode);
} o
gettextsettings
Function Gets information about the current graphics text font.
Syntax #include <graphics.h>

Prototype in

Remarks

182

void far gettextsettings(struct textsettingstype
far *texttypeinfo);

graphics.h

gettextsettings fills the textsettingstype structure
pointed to by fextinfo with information about the current
text font, direction, size, and justification.

The textsettingstype structure used by gettextsettings is
defined in graphics.h as follows:

struct textsettingstype {
int font; :
int direction;
int charsize;
int horiz;
int vert;

Turbo C Reference Guide

Return value
Portability

See also

Example

gettexisettings

See settextstyle for a description of these fields.
None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

outtext, outtextxy, settextjustify, settextstyle,
setusercharsize, textheight, textwidth

#include <graphics.h>
$include <conio.h>

main()

{
/* will request autodetection */
int graphdriver = DETECT, graphmode;
struct textsettingstype oldtext;
/* initlalize graphics */
initgraph(&graphdriver, &graphmode, "");
/* get current settings */
gettextsettings(&oldtext);

/* Switch to horizontal, upper left-justified,
Gothic font, scaled by a factor of 5 */

settextjustify (LEFT TEXT, TOP_TEXT);
settextstyle (GOTHIC FONT, HORIZ DIR, 5);
outtext ("Gothic Text");

/* Restore previous settings */

settextjustify (oldtext.horiz, oldtext.vert);

settextstyle{oldtext.font, oldtext.direction,
oldtext.charsize);

getche();

closegraph();

gettime

Function

Syntax

Prototype in

Gets system time.

#include <dos.h>
void gettime(struct time *timep);

dos.h

Chapter 2, The Turbo C Library 183

geltime

Remarks gettime fills in the time structure pointed to by timep
with the system’s current time.
The time structure is defined as follows:
struct time {
unsigned char ti min; /* minutes */
unsigned char ti_hour; /* hours */
unsigned char ti_hund; /* hundredths of seconds */
unsigned char ti_sec; /* seconds */
i
Return value None.
Portability gettime is unique to DOS.
See also getdate, setdate, settime, stime, time
Example See getdate
getvect
entry
Function Gets interrupt vector.
Syntax void interrupt(*getvect(int interruptno)) ();
Prototype in dos.h
Remarks Every processor of the 8086 family includes a set of

Return value

Portability
See also

Example

184

interrupt vectors, numbered 0 to 255. The 4-byte value in
each vector is actually an address, which is the location
of an interrupt function.

getvect reads the value of the interrupt vector given by
interruptno and returns that value as a (far) pointer to an
interrupt function. The value of interruptno can be from 0
to 255.

getvect returns the current 4-byte value stored in
the interrupt vector named by interruptno.

getvect is unique to DOS.
disable, enable, geninterrupt, setvect

#include <stdio.h>
$include <dos.h>

Turbo C Reference Guide

getvect

/* getvect example */

void interrupt (*oldfunc){);
int looping = 1;

/* get_out - this is our new interrupt routine */

void interrupt get out{()

{
/* restore to original interrupt routine */
setvect (5, 0ldfunc);
looping = 0;

}

/* capture prtscr - installs a new interrupt for
<Shift><PrtSec> */

/* arquments : func -- new interrupt function pointer */

void capture prtscr{void interrupt (*func)())
{
/* save the old interrupt */
oldfunc = getvect(5);
/* install our interrupt handler */
setvect (5, func);

)

void main ()

{

puts("Press <Shift><Prt Sc> to terminate");
/* capture the print screen interrupt */
capture prtscr{get out);

/* do nothing */
while (looping);

puts ("Success");

getverify

Function Returns the state of the DOS verify flag.

Syntax int getverify(void);

Prototype in dos.h

Remarks getverify gets the current state of the verify flag.

Chapter 2, The Turbo C Library 185

getverify

Return value

The verify flag controls output to the disk. When verify
is off, writes are not verified; when verify is on, all disk
writes are verified to insure proper writing of the data.

getverify returns the current state of the verify flag,
either O or 1.

A return of 0 = verify flag off.
A return of 1 = verify flag on.

Portability getverify is unique to DOS.
See also setverify
getviewsettings
Function Gets information about the current viewport.
Syntax #include <graphics.h>
void far getviewsettings(struct viewporttype
far *viewport);
Prototype in graphics.h
Remarks getviewsettings fills the viewporttype structure pointed
to by viewport with information about the current
viewport.
The viewporttype structure used by getviewport is
defined in graphics.h as follows:
struct viewporttype {
int left, top, right, bottom;
int clipflag;
b
Return value None.
Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.
See also clearviewport, getx, gety, setviewport
Example struct viewporttype view;
/* get current setting */
getviewsettings (&view);
/* if clipping not on */
if (lview.clip)
186 Turbo C Reference Guide

getviewsettings

/* turn it on */
setviewport {(view.left,view.top,view.right,view.bottom,1);

getw
Function Gets integer from stream.
Syntax #include <stdio.h>
int getw(FILE *stream);
Prototype in stdio.h
Remarks getw returns the next integer in the named input stream.

Return value

It assumes no special alignment in the file.

getw should not be used when the stream is opened in
text mode.

getw returns the next integer on the input stream. On
end-of-file or error, getw returns EOF. Because EOF is a
legitimate value for getw to return, feof or ferror should
be used to detect end-of-file or error.

Portability getw is available on UNIX systems.
See also putw
getx
Function Returns the current graphics position’s x coordinate.
Syntax #include <graphics.h>
int far getx(void);
Prototype in graphics.h
Remarks getx finds the current graphics position’s x coordinate.

Return value

Portability

See also

The value is viewport-relative.
gebx returns the x coordinate of the current position.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getmaxx, getmaxy, getviewsettings, gety

Chapter 2, The Turbo C Library 187

gelx

Example

int oldx, oldy;

/* Save current position */
oldx = getx();

oldy = gety();

/* draw a blob at {100,100] */
circle(100, 100, 2);
moveto(99,100) ;

linerel (2,0);

/* back to the old position */
moveto{oldx, oldy); '

gety

Function Returns the current graphics position’s y coordinate.

Syntax #include <graphics.h>
int far gety(void);

Prototype in graphics.h

Remarks gety returns the current graphics position’s y coordinate.
The value is viewport-relative.

Return value gety returns the y coordinate of the current position.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also getx, getviewsettings

Example See getx

gmtime

Function Converts date and time to Greenwich Mean Time
(GMT).

Syntax #linclude <time.h>
struct tm *gmtime(const time_t *timer);

Prototype in time.h

Remarks gmtime accepts the address of a value returned by time

188

and returns a pointer to the structure of type tm con-

Turbo C Reference Guide

Return value

Portability

See also

Example

gmtime

taining the broken-down time. gmtime converts directly
to GMT.

The global long variable timezone should be set to the
difference in seconds between GMT and local standard
time (in PST, timezone is 8 X 60 x 60). The global variable
daylight should be set to nonzero only if the standard U.S.
Daylight Savings time conversion should be applied.

The tm structure declaration from the time.h include file
is
struct tm |{

int tm_sec;
int tm min;
int tm_hour;
int tm mday;
int tm mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

)i

These quantities give the time on a 24-hour clock, day of
month (1-31), month (0-11), weekday (Sunday equals 0),
year — 1900, day of year (0-365), and a flag that is
nonzero if daylight savings time is in effect.

gmtime returns a pointer to the structure containing the
broken down time. This structure is a static that is over-
written with each call.

gmtime is available on UNIX systems and is compatible
with ANSI C.

asctime, ctime, ftime, localtime, stime, time, tzset

#include <stdio.h>
#include <stdlib.h>
$include <time.h>

main()

{
struct tm *timeptr;
time t Secsnow;

timezone = 8 * 60 * 60;
/* get seconds since 00:00:00, 1~1-70 */
time(&secsnow);

Chapter 2, The Turbo C Library 189

gmtime

/* convert to GMT */

timeptr = gmtime(&secsnow);

printf("The date is %d-%d-19%02d\n",
(timeptr -> tm mon) + 1, timeptr -> tm mday,
timeptr -> tm year);

printf("Greenwich Mean Time is %02d:%02d:%02d\n\n",
timeptr -> tm_hour, timeptr -> tm min,
timeptr -> tm sec);

Program output

The date is 2-2-1988
Greenwich Mean Time is 20:44:36

gotoxy

Function
Syntax
Prototype in

Remarks

Return value
Portability

See also

Example

190

Positions cursor in text window.
void gotoxy(int x, int y);
conio.h

gotoxy moves the cursor to the given position in the
current text window. If the coordinates are in any way
invalid, the call to gotoxy is ignored. An example of this
is a call to gotoxy(40,30) when (35,25) is the bottom right
position in the window.

None.

gotoxy works with IBM PCs and compatibles only. A
corresponding function exists in Turbo Pascal.

wherex, wherey, window

gotoxy (10,20) ; /* position cursor at col 10, row 20 */

Turbo C Reference Guide

graphdefaults

graphdefaults

Function

Syntax

Prototype in

Remarks

Return value

Resets all graphics settings to their defaults.

#include <graphics.h>
void far graphdefaults(void);
graphics.h

graphdefaults resets all graphics settings to their de-
faults:

@ sets the viewport to the entire screen
m moves the current position to (0,0)

o sets the default palette colors, background color, and
drawing color

o sets the default fill style and pattern
o sets the default text font and justification

None.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also initgraph

grapherrormsg

Function Returns a pointer to an error message string.

Syntax #include <graphics.h>

Prototype in

Remarks

Return value

char * far grapherrormsg(int errorcode);
graphics.h

grapherrormsg returns a pointer to the error message
string associated with errorcode, the value returned by
graphresult.

Refer to the entry for errno in Chapter 1 for a list of error
messages and mnemonics.

grapherrormsg returns a pointer to an error message
string.

Chapter 2, The Turbo C Library 2191

grapherrormsg

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also graphresult

_graphfreemem

Function User hook into graphics memory deallocation.

Syntax #include <graphics.h>

Prototype in

Remarks

Return value
Portability

See also

Example

192

void far _graphfreemem(void far *ptr, unsigned size);
graphics.h

The graphics library calls _graphfreemem to release
memory previously allocated through _graphgetmem.
You can choose to control the graphics library memory
management by simply defining your own version of
_graphfreemem (you must declare it exactly as shown
in the declaration). The default version of this routine
merely calls free.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

_graphgetmem, setgraphbufsize

/* Example of user-defined graph management routines */
#include <graphics.h>

$include <stdio.h>

$include <conio.h>

#include <process.h>

#include <alloc.h>

main{()
{
int errorcode;
int graphdriver;
int graphmode;
graphdriver = DETECT;
initgraph(&graphdriver, &graphmode, "c:\\");
errorcode = graphresult();
if (errorcode != grOk)
{

printf("graphics error: %s\n",grapherrormsg(errorcode));

Turbo C Reference Guide

_graphfreemem

exit(1);
}

settextstyle (GOTHIC FONT, HORIZ DIR, 4);
outtextxy(100, 100, "BGI TEST");
getche();
closegraph();

}

void far * far _graphgetmem(unsigned size) {
printf(" graphgetmem called [size=%d] -- hit any"
"key",size);
getch(); printf("\n");
/* use "far" heap */
return(farmalloc(size));

)

void far graphfreemem(void far *ptr, unsigned size) {
printf(" graphfreemem called [size=%d] -- hit any"”
"key",size);
getch(); printf("\n");
/* "size" not used */
farfree(ptr);

_graphgetmem

Function

Syntax

Prototype in

Remarks

Return value
Portability

User hook into graphics memory allocation.

#include <graphics.h>
void far * far _graphgetmem(unsigned size);

graphics.h

Routines in the graphics library (not the user program)
normally call _graphgetmem to allocate memory for
internal buffers, graphics drivers, and character sets. You

~can choose to control the memory management of the

graphics library by defining your own version of
_graphgetmem (you must declare it exactly as shown in
the declaration). The default version of this routine
merely calls malloc.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

Chapter 2, The Turbo C Library 193

_graphgetmem

See also _graphfreemem, initgraph, setgraphbufsize

Example See _graphfreemem

graphresult

Function Returns an error code for the last unsuccessful graphics
operation.

Syntax #include <graphics.h>
int far graphresult(void);

Prototype in graphics.h

Remarks graphresult returns the error code for the last graphics
operation that reported an error and resets the error
level to grOk.
The following table lists the error codes returned by
graphresult. The enumerated type graph_errors defines
the errors in this table. graph_errors is declared in
graphics.h.

194 Turbo C Reference Guide

graphresult

Error graphics_errors Corresponding
code constant error message string
0 grok No error
-1 grNolnitGraph (BGI) graphics not
installed (use initgraph)
-2 grNotDetected Graphics hardware not
detected
-3 grFileNotFound Device driver file not
found
—4 grinvalidDriver Invalid device driver file
-5 griNoLoadMem Not enough memory to
load driver
-6 grNoScanMem Out of memory in scan
fill
-7 grNoFloodMem Out of memory in flood
fill
-8 grFontNotFound Font file not found
-9 grNoFontMem Not enough memory to
load font
-10 grinvalidMode Invalid graphics mode
for selected driver
-1 grError Graphics error
-12 grlOerror Graphics I/O error
-13 grinvalidFont Invalid font file
-14 grlnvalidFontNum Invalid font number
-15 grinvalidDeviceNum Invalid device number
-18 grinvalidVersionnum Invalid version number

Note that the variable maintained by graphresult is reset
to 0 after graphresult has been called. Therefore, you
should store the value of graphresult into a temporary
variable and then test it.

Return value

graphresult will return the current graphics error

number, an integer in the range —15 to 0; grapherrormsg
returns a pointer to a string associated with the value
returned by graphresult.

Portability

This function works only with IBM PCs and compatibles

equipped with supported graphics display adapters.

Chapter 2, The Turbo C Library

195

graphresult

See also

detectgraph, drawpoly, fillpoly, floodfill,
grapherrormsg, initgraph, pieslice, registerbgidriver,
registerbgifont, setallpalette, setcolor, setfillstyle,
setgraphmode, setlinestyle, setpalette, settextjustify,
settextstyle, setusercharsize, setviewport, setvisualpage

harderr

Function
Syntax
Prototype in

Remarks

196

Establishes a hardware error handler.
void harderr(int (*handler)());
dos.h

harderr establishes a hardware error handler for the
current program. This error handler is invoked
whenever an interrupt 0x24 occurs. (See the MS-DOS
Programmer’s Reference Manual for a discussion of the
interrupt.)

The function pointed to by handler will be called when
such an interrupt occurs. The handler function will be
called with the following arguments:

handler(int errval, int ax, int bp, int si);

errval is the error code set in the DI register by DOS. ax,
bp, and si are the values DOS sets for the AX, BP, and SI
registers, respectively.

m ax indicates whether a disk error or other device error
was encountered. If ax is non-negative, a disk error
was encountered; otherwise, the error was a device
error. For a disk error, ax ANDed with OxO0FF will
give the failing drive number (1 equals A, 2 equals B,
and so on).

m bp and si together point to the device driver header of
the failing driver. bp contains the segment address,
and si the offset.

The function pointed to by handler is not called directly.
harderr establishes a DOS interrupt handler that calls
the function.

Turbo C Reference Guide

Return value
Portability
See also

Example

harderr

peek and peekb can be used to retrieve device
information from this driver header.

The driver header cannot be altered via poke or pokeb.

The handler can issue DOS calls 1 through 0xC; any
other DOS call will corrupt DOS. In particular, any of
the C standard 1/0O or UNIX-emulation I/0O calls cannot
be used.

The handler must return 0 for ignore, 1 for retry, and 2
for abort.

None.

‘harderr is unique to DOS.

hardresume, hardretn, peek, poke

#include <stdio.h>
#include <dos.h>

$define DISPLAY STRING 0x09
#define IGNORE 0
#define RETRY 1
#define ABORT 2

int handler(int errval, int ax, int bp, int si)
{
char msq[25]; int drive;
/* device error */
if (ax < 0)
{
/* Can only use DOS functions 0 - 0x0C */
bdosptr (DISPLAY STRING, "device error$", 0);
hardretn(-1); /* return to calling program */
)
drive = (ax & OxO0FF);
sprintf{msqg, "disk error on drive %c$", ‘A’ + drive);
bdosptr(DISPLAY STRING, msg, 0);
return (ABORT) ; /* abort calling program */
}

main ()
{
harderr(handler);
printf("Make sure there is no disk in drive A:\n");
printf("Press a key when ready...\n");
getch();
printf("Attempting to access A:\n");
fopen ("A:ANY.FIL","1");

Chapfter 2, The Turbo C Library 197

harderr

}
Program output

Make sure there is no disk in drive A:
Press a key when ready...

Attempting to access A:

disk error on drive A

hardresume

Function Hardware error handler.

Syntax void hardresume(int axret);

Prototype in dos.h

Remarks The error handler established by harderr can call

Return value

hardresume to return to DOS. The return value of the
rescode (result code) of hardresume contains an abort (2),
retry (1), or ignore (0) indicator. The abort is accom-
plished by invoking DOS interrupt 0x23, the control-
break interrupt.

The handler must return O for ignore, 1 for retry, and 2
for abort.

None.

198

Portability hardresume is unique to DOS.

See also harderr, hardretn

hardretn

Function Hardware error handler.

Syntax void hardretn(int retn);

Prototype in dos.h

Remarks The error handler established by harderr can return

directly to the application program by calling hardretn.

Turbo C Reference Guide

Return value
Portability
See also

Example

hardrein

The handler must return 0 for ignore, 1 for retry, or 2 for
abort.

None.
hardretn is unique to DOS.
harderr, hardresume

See harderr

highvideo

Function
Syntax
Prototype in

Remarks

Return value
Portability

See also

Selects high-intensity characters.
void highvideo(void);
conio.h

highvideo selects high-intensity characters by setting
the high-intensity bit of the currently selected fore-
ground color.

This function does not affect any characters currently on
the screen, but does affect those displayed by functions
(such as cprintf) that perform direct video, text mode
output after highvideo is called.

None.

highvideo works with IBM PCs and compatibles only. A
corresponding function exists in Turbo Pascal.

lowvideo, normvideo, textattr, textcolor

hypot

Function

Syntax

Prototype in

Remarks

Calculates hypotenuse of a right triangle.

#include <math.h>
double hypot(double x, double y);

math.h
hypot calculates the value z where

2Z2=x*+y?andz>=0

Chapter 2, The Turbo C Library 199

hypot

This is equivalent to the length of the hypotenuse of a
right triangle, if the lengths of the two sides are x and y.

Return value On success, hypot returns z, a double. On error (such as

an overflow), hypot sets errno to
ERANGE Result out of range

and returns the value HUGE_VAL.
Error-handling for hypot can be modified through the
function matherr.

Portability hypot is available on UNIX systems.

imagesize

Function Returns the number of bytes required to store a bit
image.

Syntax #include <graphics.h>

Prototype in

Remarks

Return value
Portability

See also

200

unsigned far imagesize(int left, int top,
int right, int bottom);

graphics.h

imagesize determines the size of the memory area
required to store a bit image. If the size required for the
selected image is greater than or equal to 64K-1 bytes,
imagesize returns OxFFFF (-1).

imagesize returns the size of the required memory area
in bytes.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getimage, putimage

Turbo C Reference Guide

initgraph

initgraph

Function Initializes the graphics system.
Syntax #include <graphics.h>

Prototype in

Remarks

void far initgraph(int far *graphdriver,
int far *graphmode,
char far *pathtodriver);

graphics.h

initgraph initializes the graphics system by loading a
graphics driver from disk (or validating a registered
driver), and putting the system into graphics mode.

To start the graphics system, you first call the initgraph
function. initgraph loads the graphics driver and puts
the system into graphics mode. You can tell initgraph to
use a particular graphics driver and mode, or to
autodetect the attached video adapter at run time and
pick the corresponding driver.

If you tell initgraph to autodetect, it calls detectgraph to
select a graphics driver and mode. initgraph also resets
all graphics settings to their defaults (current position,
palette, color, viewport, and so on) and resets
graphresult to 0.

Normally, initgraph loads a graphics driver by
allocating memory for the driver (through
_graphgetmem), then loading the appropriate .BGI file
from disk. As an alternative to this dynamic loading
scheme, you can link a graphics driver file (or several of
them) directly into your executable program file. See
Appendix D for more information on BGIOB].

pathtodriver specifies the directory path where initgraph
will look for the graphics drivers. initgraph first looks in
the path specified in pathtodriver, then (if they're not
there) in the current directory. Accordingly, if
pathtodriver is NULL, the driver files (*.BGI) must be in
the current directory. This is also the path settextstyle
will search for the stroked character font (*.CHR) files.

*graphdriver is an integer that specifies the graphics
driver to be used. You can give it a value using a con-

Chapter 2, The Turbo C Library 201

initgraph

202

stant of the graphics_drivers enumeration type, defined in
graphics.h and listed in the following table.

graphics_drivers
constant Numeric value

DETECT 0 (requests autodetection)
CGA

MCGA

EGA

EGA64
EGAMONO
1BM8514
HERCMONO
ATT400

VGA

PC3270

QOO NONU R VNP

—

*graphmode is an integer that specifies the initial graphics
mode (unless *graphdriver equals DETECT, in which case
*graphmode is set by initgraph to the highest resolution
available for the detected driver). You can give
*graphmode a value using a constant of the graphics_modes
enumeration type, defined in graphics.h and listed in the
following table.

Turbo C Reference Guide

initgraph

Graphics Column
driver graphics_modes Value xRow Palette Pages

CGA CGACO 320200 €O
CGAC1 320x200 C1
CGAC2 320x200 C2
CGAC3 320x200 C3
CGAHI 640x200 2 color
MCGA MCGACO 320x200 €O
MCGAC1 320200 Ci1
MCGAC2 320x200 C2
MCGAC3 320x200 C3
MCGAMED 640x200 2 color
MCGAHI 640x480 2 color
EGA EGALO 640x200 16 color
EGAHI 640x350 16 color
EGA64 EGA64LO 640x200 16 color
EGA64HI 640x350 4 color

*

EGA- EGAMONOHI
MONO EGAMONOHI

HERC HERCMONOHI

640x350 2 color
640x350 2 color

720x348 2 color

OO © MR O UBWNRFR O © WW RO RO GO =RL O W= O
IR TR L T QS g Gy U Sy N NO U GV S Gy NG YOV N G G U UG UV O U U G

ATT400 ATT400C0 320x200 CO
ATT400C1 320x200 C1
ATT400C2 320x200 C2
ATT400C3 320200 C3
ATT400MED 640x200 2 color
ATT400HI 640x400 2 color

VGA VGALO 640x200 16 color
VGAMED 640x350 16 color
VGAHI 640x480 16 color

PC3270 PC3270HI 720x350 2 color

IBM85141BM8514HI1 640x480 256 color
IBM8514LO 1024x768 256 color

* 64K on EGAMONO card

** 256K on EGAMONO card

Note: graphdriver and graphmode must be set to valid
values from the tables above, or you will get unpre-
dictable results. The exception is graphdriver = DETECT.

Chapfter 2, The Turbo C Library 203

initgraph

Return value

Portability

See also

Example

204

In the previous table, the Palette listings C0, C1, C2, and
C3 refer to the four predefined four-color palettes
available on CGA (and compatible) systems. You can
select the background color (entry #0) in each of these
palettes, but the other colors are fixed. These palettes are
described in greater detail in Chapter 8 of the Turbo C
User’s Guide (under “Color Control”) and summarized
in the following table.

Color assigned to pixel value

Palette
number 1 2 3
0 LIGHTGREEN LIGHTRED YELLOW
1 LIGHTCYAN LIGHTMAGENTA WHITE
2 GREEN RED BROWN
3 CYAN MAGENTA LIGHTGRAY

After a call to initgraph, *graphdriver is set to the current
graphics driver, and *graphmode is set to the current
graphics mode.

initgraph always sets the internal error code; on success,
it sets the code to 0. If an error occurred, *graphdriver is
set to -2, -3, -4, or -5, and graphresult returns the same
value, as listed here:

-2 cannot detect a graphics card

-3 cannot find driver file

—4 invalid driver

-5 insufficient memory to load driver

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

closegraph, detectgraph, getdefaultpalette,
getdrivername, getmoderange, graphdefaults,
_graphgetmem, graphresult, installuserdriver,
registerbgidriver, registerbgifont, restorecrtmode,
setgraphbufsize, setgraphmode

$include <graphics.h>
#include <stdio.h>
#include <conio.h>
tinclude <process.h>

Turbo C Reference Guide

initgraph

main ()
{
int g driver, g_mode, g _error;
detectgraph(4g_driver, &g_mode);
if (g_driver < 0)
{
printf("No graphics hardware detected !\n");
exit(1);
}

printf("Detected graphics driver #%d,"
"mode #%d\n",q driver,g_mode);
getch();
if (g_mode == EGAHI)
/* override mode if EGA detected */
g _mode = EGALO;
initgraph(&g driver, &g mode, "");
g_error = graphresult();

if (g error < 0)
{
printf("initgraph error: %s.\n",
grapherrormsg{g_error));
exit(1);
}

bar (0, 0, getmaxx()/2, getmaxy{));
getch();

closegraph{);

inport

Function Reads a word from a hardware port.

Syntax #include <dos.h>
int inport(int portid);

Prototype in ‘dosh

Remarks inport reads a word from the input port specified by
portid.

Return value inport returns the value read.

Portability inport is unique to the 8086 family.

See also inportb, outport, outportb

Chapter 2, The Turbo C Library 205

inportb

inportb

Function Reads a byte from a hardware port.

Syntax unsigned char inportb(int portid);

Prototype in dos.h

Remarks inportb is a macro that reads a byte from the input port

Return value

specified by portid.

If inportb is called when dos.h has been included, it will
be treated as a macro that expands to inline code.

If you don’t include dos.h, or if you do include dos.h
and #undef the macro inportb, you will get the inportb
function.

inportb returns the value read.

Portability inportb is unique to the 8086 family.

See also inport, outport, outportb

insline

Function Inserts a blank line in the text window.

Syntax void insline(void);

Prototype in conio.h

Remarks insline inserts an empty line in the text window at the

Return value

Portability

See also

206

cursor position using the current text background color.
All lines below the empty one move down one line and
the bottom line scrolls off the bottom of the window.

insline is used in text mode.
None.

insline works with IBM PCs and compatibles only; a
corresponding function exists in Turbo Pascal.

delline, window

Turbo C Reference Guide

installuserdriver

installuserdriver

Function

Syntax

Prototype in

Remarks

Installs a vendor-added device driver to the BGI device
driver table.

#include <graphics.h>
int far installuserdriver(char far *name,
int huge (*detect)(void));

graphics.h

installuserdriver allows you to add a vendor-added
device driver to the BGI internal table. The name
parameter is the name of the new device driver (.BGI)
file, and the detect parameter is a pointer to an optional
autodetect function that may accompany the new driver.
This autodetect function takes no parameters and
returns an integer value.

There are two ways to use this vendor-supplied driver.
Let’s assume you have a new video card called the
Spiffy Graphics Array (SGA) and that the SGA
manufacturer provided you with a BGI device driver
(SGA.BGI). The easiest way to use this driver is to install
it by calling installuserdriver and then passing the
return value (the assigned driver number) directly to
initgraph.

The other, more general way to use this driver is to link
in an autodetect function that will be called by initgraph
as part of its hardware-detection logic (presumably, the
manufacturer of the SGA gave you this autodetect
function). When you install the driver (by calling
installuserdriver), you pass the address of this function,
along with the device driver’s file name.

After you install the device driver file name and the
SGA autodetect function, you call initgraph and let it go
through its normal autodetection process. Before
initgraph calls its built-in autodetection function
(detectgraph), it first calls the SGA autodetect function.
If the SGA autodetect function doesn’t find the SGA
hardware, it returns a value of -11 (grError) and
initgraph proceeds with its normal hardware detection
logic (which may include calling any other vendor-

Chapter 2, The Turbo C Library 207

installuserdriver

Return value

Portability

See also

Example

208

supplied autodetection functions in the order in which
they were “installed”). If, however, the autodetect
function determines that an SGA is present, it returns a
non-negative mode number; then initgraph locates and
loads SGA.BGI, puts the hardware into the default
graphics mode recommended by the autodetect
function, and finally returns control to your program.

Up to ten drivers can be installed at one time.

The value returned by installuserdriver is the driver
number parameter you would pass to initgraph in order
to select the newly installed driver manually.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

initgraph, registerbgidriver
$include <stdio.h>

#include <stdlib.h>
#include <graphics.h>

int Driver, Mode;

int huge detectSGA(void) /* Autodetection logic */
{

int found, defaultmode;

/* Detect hardware as needed...

found =
*/
if('found } return(grError); /* If not present, give
error */
/* Determine default graphics mode...
defaultmode = */
return(defaultmode);
}
main()
{
Driver = installuserdriver{ "SGA", detectSGA);
if(grOk != graphresult()){ /* Is table full? */
printf{ "Error installing user driver SGA.\n");

exit{(1);

Turbo C Reference Guide

installuserdriver

Driver = DETECT; /* Do autodetection */
initgraph(&Driver, &Mode, ""); /* Detection is overridden

x/
if(grOk != graphresult{()) exit(1);

outtext{ "User Installed Drivers Supported");

getchar() ;
closegraph{();

installuserfont

Function
Syntax

Prototype in

Remarks

Return value

Loads a font file (.CHR) that is not built into the BGI
system.

#include <graphics.h>
int far installuserfont(char far *name);

graphics.h
name is a path name to a font file containing a stroked
font. Up to twenty fonts can be installed at one time.

installuserfont returns a font ID number that can then
be passed to settextstyle to select the corresponding
font. If the internal font table is full, a value of -11
(grError) will be returned.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.
See also settextstyle
int86
Function General 8086 software interrupt.
Syntax #include <dos.h>
int int86(int intno, union REGS *inregs,
union REGS *outregs);
Prototype in dos.h

Chapter 2, The Turbo C Library 209

int86

Remarks

Return value

Portability

See also

Example

210

int86 executes an 8086 software interrupt specified by
the argument intno. Before executing the software
interrupt, it copies register values from inregs into the
registers.

After the software interrupt returns, int86 copies the
current register values to outregs, copies the status of the
carry flag to the x.cflag field in outregs, and copies the
value of the 8086 flags register to the x.flags field in
outregs. If the carry flag is set, it usually indicates that an
error has occurred.

Note that inregs can point to the same structure that
outregs points to.

int86 returns the value of AX after completion of the
software interrupt. If the carry flag is set (outregs ->
x.cflag != 0), indicating an error, this function sets
_doserrno to the error code.

int86 is unique to the 8086 family of processors.

bdos, bdosptr, geninterrupt, int86x, intdos, intdosx,
intr

$include <dos.h>
$define VIDEO 0x10

/* Positions cursor at line y, column x */
void gotoxy(int x, int y)
{

union REGS regs;

regs.h.ah = 2; /* set cursor position */
regs.h.dh = y;
regs.h.dl = x;
regs.h.bh = 0; /* video page 0 */

int86 (VIDEO, ®s, ®s);

Turbo C Reference Guide

int86x

int86x
Function General 8086 software interrupt interface.
Syntax #include <dos.h>
int int86x(int intno, union REGS *inregs,

union REGS *outregs,

struct SREGS *segregs);
Prototype in dos.h
Remarks int86x executes an 8086 software interrupt specified by

Return value

Portability

the argument intno. Before executing the software
interrupt, it copies register values from inregs into the
registers.

In addition, int86x copies the segregs -> x.ds and
segregs -> x.es values into the corresponding registers
before executing the software interrupt. This feature
allows programs that use far pointers or a large data
memory model to specify which segment is to be used
for the software interrupt.

After the software interrupt returns, int86x copies the
current register values to outregs, the status of the carry
flag to the x.cflag field in outregs, and the value of the
8086 flags register to the x.flags field in outregs. In
addition, int86x restores DS and sets the segregs -> es
and segregs -> ds fields to the values of the corres-
ponding segment registers. If the carry flag is set, it
usually indicates that an error has occurred.

int86x allows you to invoke an 8086 software interrupt
that takes a value of DS different from the default data
segment, and /or that takes an argument in ES.

Note that inregs can point to the same structure that
outregs points to.

int86x returns the value of AX after completion of the
software interrupt. If the carry flag is set (outregs ->
x.cflag != 0), indicating an error, this function sets
_doserrno to the error code.

int86x is unique to the 8086 family of processors.

Chapter 2, The Turbo C Library 211

intdos

See also bdos, bdosptr, geninterrupt, intdos, intdosx, int86, intr,
segread
intdos
Function General DOS interrupt interface.
Syntax #include <dos.h>
int intdos(union REGS *inregs,
union REGS *outregs);
Prototype in dos.h
Remarks intdos executes DOS interrupt 0x21 to invoke a specified

Return value

Portability
See also

Example

212

DOS function. The value of inregs -> h.al specifies the
DOS function to be invoked.

After the interrupt 0x21 returns, intdos copies the
current register values to outregs, copies the status of the
carry flag to the x.cflag field in outregs, and copies the
value of the 8086 flags register to the x.flags field in
outregs. If the carry flag is set, it indicates that an error
has occurred.

Note that inregs can point to the same structure that
outregs points to.

intdos returns the value of AX after completion of the
DOS function call. If the carry flag is set (outregs ->
x.cflag != 0), indicating an error, it sets _doserrno to the
error code.

intdos is unique to DOS.
bdos, geninterrupt, int86, int86x, intdosx, intr

$include <stdio.h>
$include <dos.h>

/* Deletes file name; returns 0 on success,
nonzero error code on failure */

int delete file(char near *filename)

{
union REGS regs;
int ret;
regs.h.ah = 0x4l; /* delete file */
regs.x.dx = (unsigned) filename;

Turbo C Reference Guide

intdos

ret = intdos(®s, ®s);

/* 1f carry flag is set, there was an error */
return(regs.x.cflag ? ret : 0);

}

main()
{
int err;
err = delete_file("NOTEXIST.$$%");
printf("Able to delete NOTEXIST.$$$: %s\n",
{lerr) ? "YES" : "NO");
}

Program output
Able to delete NOTEXIST.$$$: NO

intdosx
Function General DOS interrupt interface.
Syntax #include <dos.h>
int intdosx(union REGS *inregs, union REGS *outregs,
struct SREGS *segregs);
Prototype in dos.h
Remarks intdosx executes DOS interrupt 0x21 to invoke a

specified DOS function. The value of inregs -> h.al
specifies the DOS function to be invoked.

In addition, intdosx copies the segregs -> x.ds and
segregs -> x.es values into the corresponding registers
before invoking the DOS function. This feature allows
programs that use far pointers or a large data memory
model to specify which segment is to be used for the
function execution.

After the interrupt 0x21 returns, intdosx copies the
current register values to outregs, copies the status of the
carry flag to the x.cflag field in outregs, and copies the
value of the 8086 flags register to the x.flags field in
outregs. In addition, intdosx sets the segregs -> es and
segregs -> ds fields to the values of the corresponding
segment registers and then restores DS. If the carry flag
is set, it indicates that an error occurred.

Chapter 2, The Turbo C Library 213

intdosx

Return value

Portability
See also

Example

214

intdosx allows you to invoke a DOS function that takes
a value of DS different from the default data segment,
and/or that takes an argument in ES.

Note that inregs can point to the same structure that
outregs points to.

intdosx returns the value of AX after completion of the
DOS function call. If the carry flag is set (outregs =>
x.cflag != 0), indicating an error, it sets _doserrno to the
error code.

intdosx is unique to DOS.
bdos, geninterrupt, int86, int86x, intdos, intr, segread

#include <stdio.h>
#include <dos.h>

/* Deletes file name; returns 0 on success,
nonzero error code on failure */

int delete file(char far *filename)

{
union REGS regs; struct SREGS sregs;

int ret;
regs.h.ah = 0x41; /* delete file */
regs.x.dx = FP_OFF (filename);

sregs.ds = FP_SEG(filename);
ret = intdosx(®s, ®s, &sregs);

/* 1f carry flag is set, there was an error */
return(regs.x.cflag ? ret : 0);

}

main ()
{
int err;
err = delete file("NOTEXIST.$$$");
printf("Able to delete NOTEXIST.$$$: %s\n",
(lerr) 2 "YES" : "NO"};
}

Program output

Able to delete NOTEXIST.S$$$: NO

Turbo C Reference Guide

intr

intr

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Alternate 8086 software interrupt interface.

#include <dos.h>
void intr(int intno, struct REGPACK *preg);

dos.h

The intr function is an alternate interface for executing
software interrupts. It generates an 8086 software
interrupt specified by the argument intno.

intr copies register values from the REGPACK structure
*preg into the registers before executing the software
interrupt. After the software interrupt completes, intr
copies the current register values into *preg, including
the flags.

The arguments passed to intr are as follows:
intno the interrupt number to be executed
preg the address of a structure containing

(a) the input registers before the call
(b) the value of the registers after the
interrupt call

The REGPACK structure (defined in dos.h) has the
following format:

struct REGPACK

{

unsigned r_ ax, r bx, r cx, r_dx;

unsigned r bp, r si, r di, r ds, r_es, r_flags;
)i

No value is returned. The REGPACK structure *preg
contains the value of the registers after the interrupt call.

intr is unique to the 8086 family of processors.

geninterrupt, int86, int86x, intdos, intdosx

Chapter 2, The Turbo C Library 215

ioctl

ioctl
Function Controls I/0 device.
Syntax int ioctl(int handle, int func

Prototype in

Remarks

216

[, void *argdx, int argex]);
io.h
This is a direct inte_rface to the DOS call 0x44 (IOCTL).

The exact function depends on the value of func, as
follows:

0 Get device information.

1 Setdevice information (in argdx).

2 Read argcx bytes into the address pointed to by
argdx.

3 Write argcx bytes from the address pointed to by
argdx.

4 Same as 2 except handle is treated as a drive
number (0 equals default, 1 equals A, and so on).

5 Same as 3 except handle is a drive number (0
equals default, 1 equals A, and so on).

6 Get input status.

7 Get output status.

8 Test removability; DOS 3.0 only.

11 Set sharing conflict retry count; DOS 3.0 only.

ioctl can be used to get information about device
channels.

Regular files can also be used, but only func values 0, 6,
and 7 are defined for them. All other calls return an
EINVAL error for files.

See the documentation for system call 0x44 in the MS-
DOS Programmer’s Reference Manual for detailed in-
formation on argument or return values.

The arguments argdx and argcx are optional.

ioctl provides a direct interface to DOS device drivers
for special functions. As a result, the exact behavior of
this function will vary across different vendors’ hard-
ware and in different devices. Also, several vendors do

Turbo C Reference Guide

Return value

Portability

Example

ioctl

not follow the interfaces described here. Refer to the
vendor BIOS documentation for exact use of ioctl.

For func 0 or 1, the return value is the device
information (DX of the IOCTL call).

For func values of 2 through 5, the return value is the
number of bytes actually transferred.

For func values of 6 or 7, the return value is the device
status.

In any event, if an error is detected, a value of -1 is
returned, and errno is set to one of the following:

EINVAL Invalid argument
EBADF Bad file number
EINVDAT Invalid data

ioctl is available on UNIX systems, but not with these
parameters or functionality. UNIX version 7 and System
HII differ from each other in their use of ioctl. ioctl calls
are not portable to UNIX and are rarely portable across
DOS machines.

DOS 3.0 extends ioctl with func values of 8 and 11.

#include <stdio.h>
$include <ic.h>
#include <dir.h>

main()

{
int stat;

/* Use function 8 to determine if the default
drive is removable */
stat = ioctl{(0, 8, 0, 0);
printf("Drive %c %s changeable\n", getdisk{) + 'A’,
(stat == Q) ? "is" : "is not");

}
Program output

Drive C is not changeable

Chapfter 2, The Turbo C Library 217

isalnum

isalnum
Function Character classification macro.
Syntax #include <ctype.h>
int isalnum(int ¢);
Prototype in ctype.h
Remarks isalnum is a macro that classifies ASCII-coded integer

Return value

Portability

values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

isalnum returns nonzero if c is a letter (A-Z or a-z) or a
digit (0-9).

isalnum is available on UNIX machines.

isalpha

Function

Syntax

Prototype in

Remarks

Return value

Portability

218

Character classification macro.

#include <ctype.h>
int isalpha(int c);

ctype.h

isalpha is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or ¢ is EOF.

isalpha returns nonzero if c is a letter (A-Z or 4-2).

isalpha is available on UNIX machines and is com-
patible with ANSI C. It is defined in Kernighan and
Ritchie.

Turbo C Reference Guide

isascii

isascii
Function Character classification macro.
Syntax #include <ctype.h>
int isascii(int ¢);
Prototype in ctype.h
Remarks isascii is a macro that classifies ASCII-coded integer

Return value

Portability

values by table lookup. It is a predicate returning
nonzero for true and 0 for false.

isascii is defined on all integer values.

isascii returns nonzero if the low order byte of c is in the
range 0-127 (0x00-0x7F).

isascii is available on UNIX machines.

isatty

Function
Syntax
Prototype in

Remarks

Return value

Checks for device type.

int isatty(int handle);

io.h

isatty determines whether handle is associated with any
one of the following character devices:

@ a terminal
B a console

® a printer

m a serial port

If the device is a character device isatty returns a non-
zero integer. If it is not such a device, isatty returns 0.

Chapter 2, The Turbo C Library 219

iscntr

iscntrl

Function Character classification macro.

Syntax #include <ctype.h>
int isentrl(int c);

Prototype in ctype.h

Remarks iscntrl is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and O for false. It is defined only when

" isascii(c) is true or c is EOF.

Return value isentrl returns nonzero if ¢ is a delete character or
ordinary control character (0x7F or 0x00-0Ox1F).

Portability iscntrl is available on UNIX machines and is compatible
with ANSIC.

isdigit

Function Character classification macro.

Syntax #include <ctype.h>
int isdigit(int ¢);

Prototype in ctype.h

Remarks isdigit is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or ¢ is EOF.

Return value isdigit returns nonzero if c is a digit ('0’-'9’).

Portability isdigit is available on UNIX machines and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

220 Turbo C Reference Guide

isgraph

isgraph

Function Character classification macro.

Syntax #include <ctype.h>
int isgraph(int c);

Prototype in ctype.h

Remarks isgraph is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or ¢ is EOF.

Return value isgraph returns nonzero if ¢ is a printing character, like
isprint, except that a space character is excluded.

Portability isgraph is available on UNIX machines and is com-
patible with ANSI C.

islower

Function Character classification macro.

Syntax #include <ctype.h>
int islower(int c);

Prototype in ctype.h

Remarks islower is a macro that classifies ASCII-coded integer

Return value

Portability

values by table lookup. It is a predicate returning
nonzero for true and O for false. It is defined only when
isascii(c) is true or c is EOF.

islower returns nonzero if ¢ is a lowercase letter (4-z).

islower is available on UNIX machines and is com-
patible with ANSI C. It is defined in Kernighan and
Ritchie.

Chapter 2, The Turbo C Library 221

isprint

isprint
Function Character classification macro.
Syntax #include <ctype.h>
int isprint(int ¢);
Prototype in ctype.h
Remarks isprint is a macro that classifies ASCII-coded integer

Return value

values by table lookup. It is a predicate returning
nonzero for true and O for false. It is defined only when
isascii(c) is true or c is EOF.

isprint returns nonzero if ¢ is a printing character (0x20
- Ox7E).

Portability isprint is available on UNIX machines and is compatible
with ANSIC.

ispunct

Function Character classification macro.

Syntax #include <ctype.h>

Prototype in

Remarks

Return value

Portability

222

int ispunct(int c);
ctype.h

ispunct is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or ¢ is EOF.

ispunct returns nonzero if ¢ is a punctuation character
(iscntrl or isspace).

ispunct is available on UNIX machines and is com-
patible with ANSI C.

Turbo C Reference Guide

isspace

isspace
Function Character classification macro.
Syntax #include <ctype.h>
int isspace(int c);
Prototype in ctype.h
Remarks isspace is a macro that classifies ASCII-coded integer

Return value

values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or ¢ is EOF.

isspace returns nonzero if c is a space, tab, carriage
return, newline, vertical tab, or formfeed (0x09-0x0D,
0x20).

Portability isspace is available on UNIX machines and is com-
patible with ANSI C. It is defined in Kernighan and
Ritchie.

isupper

Function Character classification macro.

Syntax #include <ctype.h>
int isupper(int ¢);

Prototype in ctype.h

Remarks isupper is a macro that classifies ASClI-coded integer

Return value

Portability

values by table lookup. It is a predicate returning
nonzero for true and O for false. It is defined only when
isascii(c) is true or ¢ is EOF.

isupper returns nonzero if ¢ is an uppercase letter (A-Z).

isupper is available on UNIX machines and is com-
patible with ANSI C. It is defined in Kernighan and
Ritchie.

Chapter 2, The Turbo C Library 223

isxdigit

isxdigit
Function Character classification macro.
Syntax #include <ctype.h>
int isxdigit(int c);
Prototype in ctype.h
Remarks isxdigit is a macro that classifies ASCII-coded integer

Return value

values by table lookup. It is a predicate returning
nonzero for true and O for false. It is defined only when
isascii(c) is true or ¢ is EOF.

isxdigit returns nonzero if c is a hexadecimal digit (0-9,
A-F, a-f).

Portability isxdigit is available on UNIX machines and is com-
patible with ANSI C.

itoa

Function Converts an integer to a string.

Syntax char *itoa(int value, char *string, int radix);

Prototype in stdlib.h

Remarks This function converts value to a null-terminated string

Return value
See also

224

and stores the result in string. With itoa, value is an
integer.

radix specifies the base to be used in converting value; it
must be between 2 and 36, inclusive. If value is negative
and radix is 10, the first character of string is the minus
sign (-).

Note: The space allocated for string must be large
enough to hold the returned string, including the ter-
minating null character (\0). itoa can return up to 17
bytes.

itoa returns a pointer to string. There is no error return.

1toa, ultoa

Turbo C Reference Guide

kbhit

kbhit

Function
Syntax
Prototype in

Remarks

Return value

See also

Checks for currently available keystrokes.
int kbhit(void);
conio.h

kbhit checks to see if a keystroke is currently available.
Any available keystrokes can be retrieved with getch or
getche.

If a keystroke is available, kbhit returns a nonzero
value. If not, it returns 0.

getch, getche

keep

Function
Syntax
Prototype in

Remarks

Return value
Portability

See also

Exits and remains resident.
void keep(unsigned char status, unsigned size);
dos.h

keep returns to DOS with the exit status in status. The
current program remains resident, however. The
program is set to size paragraphs in length, and the
remainder of the memory of the program is freed.

keep can be used when installing a TSR program. keep
uses DOS function 0x31.

Nore.
keep is unique to DOS.

abort, exit

Chapter 2, The Turbo C Library 225

labs

labs

Function

Syntax

Prototype in
Remarks

Return value
Portability

See also

Gives long absolute value.

#include <math.h>
long int labs(long int x);

math.h, stdlib.h
labs computes the absolute value of the parameter x.

On success, labs returns the absolute value of x. There is
no error return.

labs is available on UNIX systems and is compatible
with ANSI C.

abs, cabs, fabs

ldexp

Function

Syntax

Prototype in
Remarks
Return value

Portability

See also

226

Calculates x x 287,

#include <math.h>
double ldexp(double x, int exp);

math.h
ldexp calculates the double value x x 267,
On success, ldexp returns the value it calculated, x x 2.

Error-handling for ldexp can be modified through the
function matherr.

ldexp is available on UNIX systems and is compatible
with ANSI C.

exp, frexp, modf

Turbo C Reference Guide

Idiv

1div

Function

Syntax

Prototype in

Remarks

Return value

Portability
See also

Example

Divides two longs, returns quotient and remainder.

#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

stdlib.h

1div divides two longs and returns both the quotient
and the remainder as an Ildiv_t type. numer and denom
are the numerator and denominator, respectively. The
Idiv_t type is a structure of longs defined (with typedef)
in stdlib.h as follows:

typedef struct {

long int quot; /* quotient */
long int rem; /* remainder */
b ldiv_t;

Idiv returns a structure whose elements are quot (the
quotient) and rem (the remainder).

ldiv is compatible with ANSI C.
div

#include <stdlib.h>

ldiv_t 1x;

main()
{
1x = 1div(100000L, 30000L);
printf("100000 div 30000 = %$1d remainder %ld\n",
1x.quot, lx.rem);

Chapter 2, The Turbo C Library 227

Ifind

Ifind

Function

Syntax

Prototype in

Remarks

Return value

Performs a linear search.

#include <stdlib.h>

void *lfind(const void *key, const void *base,
size_t *num, size_t width,
int (*femp)(const void *, const void *));

stdlib.h

Ifind makes a linear search for the value of key in an
array of sequential records. It uses a user-defined
comparison routine (fcrmp).

The array is described as having *num records that are
width bytes wide, and begins at the memory location
pointed to by base.

Ifind returns the address of the first entry in the table
that matches the search key. If no match is found, lfind
returns NULL. The comparison routine must return 0 if
*eleml == *elem2, and nonzero otherwise (eleml and
elem?2 are its two parameters).

See also bsearch, Isearch

line

Function Draws a line between two specified points.

Syntax #include <graphics.h>
void far line(int x1, int y1, int x2, int y2);

Prototype in graphics.h

Remarks line draws a line in the current color, using the current
line style and thickness, between the two points
specified, (x1,yI) and (x2,y2), without updating the
current position (CP).

Return value None.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

228 Turbo C Reference Guide

linerel

See also linerel, lineto, setcolor, setlinestyle, setwritemode

linerel

Function Draws a line a relative distance from the current
position (CP).

Syntax #include <graphics.h>

Prototype in

Remarks

Return value

void far linerel(int dx, int dy);
graphics.h

linerel draws a line from the CP to a point that is a
relative distance (dx,dy) from the CP. The CP is ad-
vanced by (dx,dy).

None.

Portability This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

See also line, lineto, setcolor, setlinestyle, setwritemode

lineto

Function Draws a line from the current position (CP) to (x,y).

Syntax #include <graphics.h>

Prototype in

Remarks

Return value

Portability

See also

void far lineto(int x, int y);
graphics.h

lineto draws a line from the CP to (x,y), then moves the
CP to (x,y).

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

line, linerel, setcolor, setlinestyle, setvisualpage,
setwritemode

Chapter 2, The Turbo C Library 229

localtime

localtime
Function Converts date and time to a structure.
Syntax #include <time.h>
struct tm *localtime(const time_t *timer);
Prototype in time.h
Remarks localtime accepts the address of a value returned by

Return value

Portability
See also

230

time and returns a pointer to the structure of type tm
containing the broken-down time. It corrects for the time
zone and possible daylight savings time.

The global long variable timezone should be set to the
difference in seconds between GMT and local standard
time (in PST, timezone is 8 x 60 x 60). The global variable
daylight should be set to nonzero only if the standard U.S.
Daylight Savings time conversion should be applied.

The tm structure declaration from the time.h include file
follows:

struct tm {
int tm_sec;
int tm min;
int tm_hour;
int tm mday;
int tm mon;
int tm year;
int tm_wday;
int tm yday;
int tm isdst;

Vi

These quantities give the time on a 24-hour clock, day of
month (1-31), month (0-11), weekday (Sunday equals 0),
year — 1900, day of year (0-365), and a flag that is
nonzero if daylight savings time is in effect.

localtime returns a pointef to the structure containing
the broken-down time. This structure is a static that is
overwritten with each call.

localtime is available on UNIX systems, and it is com-
patible with ANSI C.

asctime, ctime, ftime, gmtime, stime, time, tzset

Turbo C Reference Guide

Example

localtime

#include <stdio.h>
#include <stdlib.h>
$include <time.h>

main ()

{
struct tm *timeptr;
time t Secsnow;

timezone = 8 * 60 * 60;
time(&secsnow);
timeptr = localtime{&secsnow);
printf("The date is %d-%d-19%02d\n",
({timeptr -> tm mon) + 1), timeptr -> tm mday,
timeptr -> tm year);
printf{"Local time is %02d:%02d:%02d\n",
timeptr -> tm hour, timeptr -> tm min,
timeptr -> tm sec);

}
Program output

The date is 2-2-88
Local time is 12:44:36

lock

Function
Syntax
Prototype in

Remarks

Return value
Portability

See also

Sets file-sharing locks.
int lock(int handle, long offset, long length);
io.h

lock provides an interface to the DOS 3.x file-sharing
mechanism.

lock can be placed on arbitrary, non-overlapping regions
of any file. A program attempting to read or write into a
locked region will retry the operation three times. If all
three retries fail, the call fails with an error.

lock returns 0 on success, —1 on error.

lock is unique to DOS 3.x. Older versions of DOS do not
support it.

open, sopen, unlock

Chapter 2, The Turbo C Library 231

log

Function

Syntax

Prototype in
Remarks

Return value

Calculates the natural logarithm of x.

#include <math.h>
double log(double x);

math.h
log calculates the natural logarithm of x.
On success, log returns the value calculated, In(x).

If the argument x passed to log is less than or equal to 0,
errno is set to

EDOM

When this error occurs, log returns the value negative
HUGE_VAL.

Error-handling for log can be modified through the
function matherr.

Domain error

Portability log is available on UNIX systems and is compatible with
ANSIC.

See also exp, log10, sqrt

log10

Function Calculates log 1¢(x).

Syntax #include <math.h>
double log10(double x);

Prototype in math.h

Remarks log10 calculates the base 10 logarithm of x.

Return value On success, log10 returns the value calculated, log;q(x).

232

If the argument x passed to log10 is less than or equal to

0, errno is set to

EDOM Domain error

Turbo C Reference Guide

Portability

See also

log10

When this error occurs, logl10 returns the value negative
HUGE_VAL.

Error-handling for log10 can be modified through the
function matherr.

log10 is available on UNIX systems and is compatible
with ANSI C.

exp, log

longjmp

Function

Syntax

Prototype in

Remarks

Performs nonlocal goto.

#include <setjmp.h>
void longjmp(jmp_buf jmpb, int retval);

setjmp.h
A call to longjmp restores the task state captured by the
last call to setjump with the argument jmpb. It then

returns in such a way that setjmp appears to have
returned with the value retval.

A task state is

m all segment registers (CS, DS, ES, SS)
m register variables (SI, DI)

m stack pointer (SP)

m frame base pointer (BP)

@ flags

A task state is complete enough that setjmp and
longjmp can be used to implement co-routines. These
routines are useful for dealing with errors and
exceptions encountered in a low-level subroutine of a
program.

setjmp must be called before longjmp. The routine that
called setjmp and set up jmpb must still be active and
cannot have returned before the longjmp is called. If
this happens, the results are unpredictable.

longjmp cannot pass the value 0; if 0 is passed in retval,
longjmp will substitute 1.

Chapter 2, The Turbo C Library 233

longjmp -

Return value
Portability

See also

Example

None.

longjmp is available on UNIX systems and is compatible
with ANSIC.

setjmp, signal

#include <stdio.h>
finclude <setjmp.h>

jmp_buf jumper;

main()
{

int value;

value = setjmp(jumper);

if {value != Q)

{
printf("Longjmp with value %d\n", value);
exit (value);

}

printf("About to call subroutine ... \n");

subroutine();

}

subroutine()
{

longjmp (jumper,1);
}

Program output

About to call subroutine .
Longjmp with value 1

lowvideo

Function
Syntax
Prototype in

Remarks

234

Selects low-intensity characters.
void lowvideo(void);
conio.h

lowvideo selects low-intensity characters by clearing the
high-intensity bit of the currently selected foreground
color.

This function does not affect any characters currently on
the screen, only those displayed by functions that

Turbo C Reference Guide

lowvideo

perform text mode, direct console output after this
function is called.

Chapter 2, The Turbo C Library 235

Return value None.

Portability lowvideo works with IBM PCs and compatibles only. A
corresponding function exists in Turbo Pascal.

See also highvideo, normvideo, textattr, textcolor

_Irotl

Function Rotates an unsigned long integer value to the left.

Syntax unsigned long _lrotl(unsigned long val, int count);

Prototype in stdlib.h

Remarks _Irotl rotates the given val to the left count bits; val is an
unsigned long.

Return value _Irotl returns the value of val left-rotated count bits.

See also _rotr

_Irotr

Function Rotates an unsigned long integer value to the right.

Syntax unsigned long _lrotr(unsigned long val, int count);

Prototype in stdlib.h

Remarks _Irotr rotates the given val to the right count bits; val is
an unsigned long.

Return value _Irotr returns the value of val right-rotated count bits.

See also _rotl

Isearch

Isearch
Function Performs a linear search.
Syntax #include <stdlib.h>

Prototype in

Remarks

Return value

236

void *Isearch(const void *key, void *base,
size_t *num, size_t width,
int (*femp)(const void *,
const void *}));

stdlib.h

Isearch searches a table for information. Because this is a
linear search, the table enfries do not need to be sorted
before a call to 1search. If the item that key points to is
not in the table, Isearch appends that item to the table.

m base points to the base (Oth element) of the search
table.

B num points to an integer containing the number of
entries in the table.

width contains the number of bytes in each entry.

m key points to the item to be searched for (the search
key).

The argument fcmp points to a user-written comparison
routine, which compares two items and returns a value
based on the comparison.

To search the table, 1search makes repeated calls to the
routine whose address is passed in femp.

On each call to the comparison routine, Isearch passes
two arguments: key, a pointer to the item being searched
for; and elem, a pointer to the element of base being
compared.

femp is free to interpret the search key and the table
entries in any way.

Isearch returns the address of the first entry in the table
that matches the search key.

If the search key is not identical to *elem, fcmp returns a
nonzero integer. If the search key is identical to *elem,
femp returns 0.

Turbo C Reference Guide

Isearch

Portability Isearch is available on UNIX systems.
See also bsearch, lfind, gsort
Example finclude <stdlib.h>
finclude <stdio.h>
#include <string.h> /* for strcmp declaration */

/* Initialize number of colors */
char *colors[10] = { "Red", "Blue", "Green" };
int ncolors = 3;

int colorscmp(char **argl, char **arg2)
{
return(stremp (*argl, *arg?));

}

int addelem{char *color)
{
int oldn = ncolors;
lsearch(scolor, colors, (size t *)gcolors,
sizeof(char *), colorscmp);
return{ncolors == oldn);

}

main ()
{
int i;
char *key = "Purple";
if (addelem(key)
printf("%s already in colors table\n", key);
else
printf{"$s added to colors table,"
"now %d colors\n", key, ncolors);
printf("The colors:\n");
for (i = 0; i < ncolors; it++)
printf("%$s\n", colors[i]);

}
Program output

Purple added to colors table,
now 4 colors

Chapter 2, The Turbo C Library 237

Iseek

Iseek

Function

Syntax

Prototype in

Remarks

Return value

Moves file pointer.

#include <io.h>
long Iseek(int handle, long offset, int fromwhere);

jio.h

Iseek sets the file pointer associated with handle to a new
position offset bytes beyond the file location given by
fromwhere. 1t is a good idea to set fromwhere using one of
three symbolic constants (defined in io.h) instead of a
specific number. The constants are as follows:

fromwhere File Location

SEEK_SET (1)) file beginning

SEEK_CUR (1) current file pointer position
SEEK_END (2) end-of-file

Iseek returns the offset of the pointer’s new position,
measured in bytes from the file beginning. lseek returns
-1L on error, and errno is set to one of the following:

EBADF
EINVAL

On devices incapable of seeking (such as terminals and
printers), the return value is undefined.

Bad file number
Invalid argument

Portability Iseek is available on all UNIX systems.
See also filelength, fseek, ftell, sopen, _write, write
Itoa
Function Converts a long to a string.
Syntax #include <stdlib.h>
char’*ltoa(long value, char *string, int radix);
Prototype in stdlib.h
238 Turbo C Reference Guide

Remarks

Return value
See also

ltoa

Itoa converts value to a null-terminated string and stores
the result in string. value is a long integer.

radix specifies the base to be used in converting value; it
must be between 2 and 36, inclusive. If value is negative
and radix is 10, the first character of string is the minus
sign ().

Note: The space allocated for string must be large
enough to hold the returned string, including the
terminating null character (\0). ltoa can return up to 33
bytes.

Itoa returns a pointer to string. There is no error return.

itoa, ultoa

malloc

Function

Syntax

Prototype in

Remarks

Allocates main memory.

#include <stdlib.h> or #include<alloc.h>
void *malloc(size_t size);

stdlib.h, alloc.h

malloc allocates a block of size bytes from the C memory
heap. It allows a program to allocate memory explicitly,
as it is needed and in the exact amounts needed.

The heap is used for dynamic allocation of variable-
sized blocks of memory. Many data structures such as
trees and lists naturally employ heap memory
allocation.

All the space between the end of the data segment and
the top of the program stack is available for use in the
small data models, except for a 256-byte margin
immediately before the top of the stack. This margin is
intended to allow the application some room to grow
the stack, in addition to a small amount needed by DOS.

In the large data models, all the space beyond the
program stack to the end of physical memory is
available for the heap.

Chapter 2, The Turbo C Library 239

malloc

Return value

Portability
See also

Example

240

On success, malloc returns a pointer to the newly
allocated block of memory. If not enough space exists for
the new block, it returns null. The contents of the block
are left unchanged. If the argument size == 0, malloc
returns null.

malloc is available on UNIX systems and is compatible
with ANSIC.

allocmem, calloc, coreleft, farcalloc, farmalloc, free,
realloc

$include <stdio.h>
#include <stdlib.h>

typedef struct {
VARV

} OBJECT;

OBJECT *NewObject ()

{

return ({OBJECT *) malloc(sizeof(OBJECT}));
}

void FreeObject (OBJECT *obj)
{

free{obj);
}

main ()
{
OBJECT *obj;
obj = NewObject();
if (obj == NULL) {
printf("failed to create a new object\n");
exit(1);
}
VAN
FreeObject (obj);

Turbo C Reference Guide

_matherr

_matherr
Function Floating-point error handling.
Syntax #include <math.h>
double _matherr(_mexcep why, char *fun,

double *arglp, double *arg2p,

double retval);
Prototype in math.h
Remarks _matherr serves as a focal point for error-handling in all

The Turbo C Library

math library functions; it calls matherr and processes the
return value from matherr. _matherr should never be
called directly by user programs. Instead, the math
library error-handling can be customized by replacing
the library matherr.

Whenever an error occurs in one of the math library
routines, _matherr is called with several arguments.
_matherr does four things:

o It uses its arguments to fill out an exception structure.

olt calls matherr with e, a pointer to the exception
structure, to
see if matherr can resolve the error.

m It examines the return value from matherr as follows:

If matherr returns 0 (indicating that matherr was not
able to resolve the error), _matherr sets errno and
prints an error message.

If matherr returns nonzero (indicating that matherr
was able to resolve the error), _matherr is silent; it
does not set errno or print any messages.

m It returns e -> refval to the original caller. Note that
matherr might modify e -> retval to specify the value it
wants propagated back to the original caller.

When _matherr sets errno (based on a 0 return from
matherr), it maps the kind of error that occurred (from
the fype field in the exception structure) onto an errno
value of either EDOM or ERANGE.

241

_matherr

Return value

_matherr returns the value e -> refval. This value is
initially the value of the input parameter refval passed to
_matherr and might be modified by matherr.

For math function results with a magnitude greater than
MAXDOUBLE, refval defaults to the macro HUGE_VAL
of appropriate sign before being passed to _matherr. For
math function results with a magnitude less than
MINDOUBLE, retval is set to 0, then passed to _matherr.
In both of these extremes, if matherr does not modify e
-> retval, _matherr sets errno to

ERANGE Result out of range

See also matherr

matherr

Function User-modifiable math error handler.
Syntax #include <math.h>

Prototype in

Remarks

242

int matherr(struct exception *e);
math.h

matherr is called by the _matherr routine to handle
errors generated by the math library.

matherr serves as a user hook (a function that can be
customized by the user) that you can replace by writing
your own math error-handling routine—see the follow-
ing example of a user-defined matherr implementation.

matherr is useful for trapping domain and range errors
caused by the math functions. It does not trap floating-
point exceptions such as division by zero. See signal for
trapping such errors.

You can define your own matherr routine to be a custom
error-handler (such as one that catches and resolves
certain types of errors); this customized function will
override the default version in the C library. The
customized matherr should return 0 if it fails to resolve
the error, or nonzero if the error is resolved. When

Turbo C Reference Guide

matherr

matherr returns nonzero, no error message is printed,
and errno is not changed.

This is the exception structure (defined in math.h):

struct exception {

int type;

char *Function;

double argl, arg2, retval;
}i

The members of the exception structure are shown in
the following table.

Member What It Is (or Represents)

type The type of mathematical error that occurred;
an enum type defined in the typedef _mexcep
(see definition after this list).

name A pointer to a null-terminated string holding
the name of the math library function that
resulted in an error.

argl, The arguments (passed to the function

arg2 name points to) that caused the error; if only
one argument was passed to the function, it is
stored in argl.

retval The default return value for matherr; you can
modify this value.

The typedef _mexcep, also defined in math.h, enu-
merates the following symbolic constants representing
possible mathematical errors:

The Turbo C Library 243

matherr

Return value

244

Symbolic

Constant Mathematical Error

DOMAIN Argument was not in domain of function
(such as log(-1)).

SING Argument would result in a singularity

(such as pow(0, -2)).

OVERFLOW Argument would produce a function
result greater than MAXDOUBLE (such
as exp(1000)).

UNDERFLOW Argument would produce a function
result less than MINDOUBLE (such as
exp(-1000)).

TLOSS Argument would produce function result
with total loss of significant digits (such
as sin(10e70)).

The symbolic constants MAXDOUBLE and
MINDOUBLE are defined in values.h.

The source code to the default matherr is on the Turbo C
distribution disks.

Note that _matherr is not meant to be modified. The
matherr function is more widely found in C run-time
libraries and thus is recommended for portable pro-
gramming.

The UNIX-style matherr default behavior (printing a
message and terminating) is not ANSI compatible. If
you desire a UNIX-style version of matherr, use
MATHERR.C provided on the Turbo C distribution
disks.

The default return value for matherr is 1 if the error is
UNDERFLOW or TLOSS, 0 otherwise. matherr can also
modify e -> retval, which propagates through _matherr
back to the original caller.

When matherr returns 0 (indicating that it was not able
to resolve the error), _matherr sets errno and prints an
error message. (See _matherr for details.)

Turbo C Reference Guide

Portability

See also

Example

matherr

When matherr returns nonzero (indicating that it was
able to resolve the error), errno is not set and no
messages are printed.

matherr is available on many C compilers, but it is not
compatible with ANSI C. A UNIX-style matherr that
prints a message and terminates is provided in
MATHERR.C on the Turbo C distribution disks.

_matherr

/* This is a user-defined matherr function that
catches negative arquments passed to sqrt and
converts them to nonnegative values before sqrt
processes them. */

#include<math.h>
#include<string.h>

int matherr(struct exception *a)
{
if {a => type == DOMAIN)
{
if(strcmp{a -> name, "sqrt") == 0)
{
a -> retval = sqrt (-{a -> argl));
return (1);
}
}

return (0);

max

Function

Syntax

Prototype in

Remarks

Return value

The Turbo C Library

Returns the larger of two values.

#include <stdlib.h>
(type) max(a, b);

stdlib.h

This macro compares two values and returns the larger
of the two. Both arguments and the function declaration
must be of the same type.

max returns the larger of two values.

245

max

Example #include <stdlib.h>
main ()
{
int x = 5;
int y = 6;
int z;
z = (int)max(x, y);
printf("The larger number is %d\n", z);
!
Program output
The larger number is 6
memccpy
Function Copies a block of n bytes.
Syntax #include <mem.h>
void *memccpy(void *dest, const void *src,
intc, size_t n);
Prototype in string.h, mem.h
Remarks memccpy copies a block of n bytes from src to dest. The

Return value

Portability
See also

246

copying stops as soon as either of the following occurs:

m The character c is first copied into dest.
m 7 bytes have been copied into dest.

memeccpy returns a pointer to the byte in dest
immediately following c, if ¢ was copied; otherwise,
memccpy returns null.

memccpy is available on UNIX System V systems.

memcpy, memmove, memset

Turbo C Reference Guide

memchr

memchr
Function Searches n bytes for character c.
Syntax #include <mem.h>
void *memchr(const void *s, int ¢, size_t n);
Prototype in string.h, mem.h
Remarks memchr searches the first n bytes of the block pointed to
by s for character c.
Return value On success, memchr returns a pointer to the first occur-
rence of ¢ in s; otherwise, it returns null.
Portability memchr is available on UNIX System V systems and is
compatible with ANSI C.
memcmp
Fun<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>