
®

BORLAND

TURBO C®
Borland's No-Nonsense License Statement!

This software is protected by both United States copyright law and international treaty provisions.
Therefore, you must treat this software just like a book, with the following single exception. Borland
International authorizes you to make archival copies of the software for the sole purpose of backing­
up our software and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this software may be used by any number
of people and may be freely moved from one computer location to another, so long as there is no
possibility of it being used at one location while it's being used at another. Just like a book that can't
be read by two different people in two different places at the same time, neither can the software be
used by two different people in two different places at the same time (unless, of course, Borland's
copyright has been violated).

Programs that you write and compile using the Turbo C language compiler may be used, given away
or sold without additional license or fees, as long as all copies of such programs bear a copyright notice.
By "copyright notice" we mean either your own copyright notice or, if you prefer, the statement,
"Created using Turbo C, Copyright © Borland 1987, 1988." Included in the Turbo C diskettes are several
support files that contain encoded hardware and font information used by the standard graphics library
(GRAPHICS.LIB). These files, which can be listed by typing DIR * .CHR and DIR * .BGI, are proprietary
to Borland International. You may use these files with the programs you create with Turbo C for your
own personal use. In addition, to the extent the programs you write and compile using the Turbo C
language compiler make use of these support files, you may distribute these support files in combination
with such programs, provided that you do not use, give away, or sell the support files separately, and
all copies of such programs bear a copyright notice.

The sample programs included on the Turbo C diskettes provide a demonstration of how to use the
various features of Turbo C. They are intended for educational purposes only. Borland International
grants you (the registered owner of Turbo C) the right to edit or modify these sample programs for
your own use, but you may not give away or sell them, alone or as part of any program, in executable,
object or source code form. You may, however, incorporate miscellaneous sample program routines into
your programs, as long as your resulting programs do not substantially duplicate all or part of a sample
program in appearance or functionality and all copies of such programs bear a copyright notice.

Limited Warranty
With respect to the physical diskette and physical documentation enclosed herein, Borland
International, Inc. ("Borland") warrants the same to be free of defects in materials and workmanship for
a period of 60 days from the date of purchase. In the event of notification within the warranty period
of defects in material or workmanship, Borland will replace the defective diskette or documentation. If
you need to return a product, call the Borland Customer Service Department to obtain a return
authorization number. The remedy for breach of this warranty shall be limited to replacement and shall
not encompass any other damages, including but not limited to loss of profit, and special, incidental, .
consequential, or other similar claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including
but· not limited to implied warranties of merchantability and fitness for a particular purpose with
respect to defects in the diskette and documentation, and the program license granted herein in
particular, and without limiting operation of the program license with respect to any particular
application, use, or purpose. In no event shall Borland be liable for any loss of profit or any other
commercial damage, including but not limited to special, incidental, consequential or other damages.

Governing Law
This statement shall be construed, interpreted, and governed by the laws of the state of California. Use,
duplication, or disclosure by the U.S. Government of the computer software and documentation in this
package shall be subject to the restricted rights under DFARS 52.227-7013 applicable to commercial
computer software.

First Edition
Printed in U.S.A.
987654321

Turbo C®

Reference Guide

Version 2.0

Copyrigh til:> 1988
All rights reserved

Borland International
1800 Green Hills Road

P.O. Box 660001
Scotts Valley, CA 95066-0001

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks or registered

trademarks of their respective holders.
Copyright4=' 1988 Borland International.

Printed in the U.S.A.

10987654321

This manual was produced with
Sprin~ The Professional Word Processor

Table of Contents

Introduction 1
Volume II: The Reference Guide .. 1
Typographic Conventions .. 3
Borland's No-Nonsense License Statement 3
Acknowledgments ... 4
How to Contact Borland .. 4

Chapter 1 Using Turbo C Library Routines 5
In This Chapter .. 5
The Library Routine Lookup Section .. 6
Why You Might Want to Access the Turbo C Run-Time Library Source
Code ... 7
The Turbo C Include Files ... 8
Library Routines by Category 10
The main Function .. 17

The Arguments to main .. 17
An Example Program Using argc, argv and env 18
Wildcard Command-Line Arguments to main 19

When You Compile Using -p (Pascal Calling Conventions) 20
The Value main Returns .. 21

Global Variables .. 22
_argc .. 22
_argv .. 22
daylight .. 22
directvideo .. 23
_8087 .. 23
environ 24
errno, _doserrno, sys_errlist, sys_nerr 24
Jrnode ... 27
_heaplen 28
_osmajor, _osminor ... 29
-psp .. 29
_stklen ... 30
timezone .. 31
tzname ... 31
_version .. 31

Chapter 2 The Turbo C Library 33
function name .. 33
abort .. 35
abs .. 35
absread .. 36
abswrite ... 37
access ~ ... 37
acos ... 39
allocmem .. 39
arc .. 40
asctime .. 43
asin ... 44
assert .. 45
atan ... 46
atan2 .. 46
atexit .. 47
atof .. 48
atoi .. 49
atol .. 50
bar .. 50
bar3d .. 51
bdos ... 52
bdosptr .. 53
bioscom .. 54
biosdisk .. 57
biosequip .. 60
bioskey .. 61
biosmemory .. 63
bios print 64
biostime ... 64
brk .. 65
bsearch .. 66
cabs ... 67
calloc .. 68
ceil .. 69
cgets ... 69
chdir .. 71
_chmod .. 71
chmod ... 72
chsize .. 73
circle .. 74
_clear87 .. 75
cleardevice ... 75

ii

clearerr .. 76
clearviewport .. 76
clock .. 77
_close .. 78
close ... 78
closegraph ... 79
clreol .. 79
clrscr .. 80
_control87 .. 80
coreleft .. 82
cos .. 82
cosh ... 83
country .. 83
cprintf ... 85
cputs .. 85
_creat .. 86
creat ... 87
creatnew ... 88
creattemp .. 89
cscanf .. 90
ctime .. 91
ctrlbrk ... 91
delay .. 93
delline ... 93
detectgraph .. 94
difftime .. 96
disable ... 96
div .. 97
dosexterr .. 98
dostounix .. 98
dra wpoly .. 99
dup .. 100
dup2 ... 101
ecvt .. 101
ellipse .. 102
__ emit __ ... 103
enable .. 105
eof ... 105
exec ... 106
_exit .. 109
exit ... 110
exp ... 110
fabs .. 111

iii

farcalloc .. 111
farcoreleft 112
farfree .. 113
farmalloc 113
farrealloc .. 115
fclose ... 116
fcloseall .. 116
fcvt ... 117
fdopen .. 117
feof ... 119
ferror ... 120
fflush ... 120
fgetc .. 121
fgetchar .. 121
fgetpos ... 122
fgets .. 122
filelength .. 123
fileno ... 123
fillellipse 124
fillpoly .. 124
find first '. .. 125
findnext ... 127
floodfill 127
floor .. 129
flushall ... 129
fmod ... 130
fnmerge .. 130
fnsplit .. 132
fopen ... 134
FP_OFF ... 136
_fpreset .. 136
fprintf ... r. • • • • • •• 137
FP_SEG ... 138
fputc ... 138
fputchar .. 139
fputs ... 139
fread ... 140
free ... 140
freemem .. 141
freopen ... 141
frexp ... 142
fscanf ... 143
fseek ... 144

Iv

fsetpos .. 145
fstat .. 146
ftell. .. 147
ftime ... 148
£Write ... 149
gcvt .. 149
geninterrupt .. 150
getarccoords ... 150
getaspectratio .. 151
getbkcolor .. 152
getc .. 153
getcbr k ... 153
getch ... 154
getchar ... 154
getche .. 155
getcolor .. 155
getcurdir 156
getcwd ... 157
getda te ... 158
getdefaultpalette ... 159
getdfree .. 159
getdisk ... 160
getdrivername .. 160
getdta .. 161
getenv .. 161
getfat ... 163
getfatd .. 163
getfi1lpattern .. 164
getfillsettings .. 165
getftime .. 167
getgraphmode ... 168
getimage .. 169
getlinesettings ... 170
getmaxcolor 172
getmaxmode .. 172
getmaxx .. 173
getmaxy .. 173
getmodename ... 174
getmoderange ... 175
getpalette ... 175

. getpalettesize .. 177
getpass ... 178
getpixel .. 178

v

getpsp .. 179
gets .. 179
gettext .. 180
gettextinfo .. 181
gettextsettings ... 182
gettime ... 183
getvect .. 184
getverify .. 185
getviewsettings .. 186
getw .. 187
getx .' ... 187
gety , .. 188
gmtime ... 188
gotoxy .. 190
graphdefaults .. 191
grapherrormsg .. 191
...graphfreemem .. 192
-Sl'a phgetmem .. 193
graph result .. 194
harderr ... 196
hardresume ... 198
hardretn .. 198
highvideo ... 199
hypot ... 199
imagesize ... 200
initgra ph .. 201
inport .. 205
inportb ... 206
insline .. 206
installuserdriver ... 207
installuserfont ... 209
int86 .. 209
int86x ... 211
intdos .. 212
intdosx ... 213
intr ... 215
ioctl .. 216
isalnum .. 218
isalpha .. 218
isascii ... 219
isatty ... 219
iscntrl .. 220
is digit .. 220

vi

isgraph ... 221
islower ... 221
isprint .. 222
ispunct ... 222
isspace .. 223
isupper ... 223
isxdigit ... 224
itoa ... 224
kbhit ... 225
keep .. 225
labs .. 226
ldexp ... 226
ldiv .. 227
lfind .. 228
line ... 228
linerel .. 229
lineto ... 229
localtime .. 230
lock .. 231
log ... 232
log10 ... 232
longjmp .. 233
lowvideo .. 234
_Irotl .. ~ 235
_lrotr ... 235
lsearch .. 236
lseek .. 238
Itoa ... 238
malloc .. 239
_matherr .. 241
ma therr .. 242
max .. 245
memccpy ... 246
memchr ... 247
memcmp .. 247
memcpy .. 248
memicmp ... 248
memmove .. 249
memset ... 249
min .. 250
mkdir .. 250
MK_FP ... 251
mktemp ... 251

vii

modf ... 252
movedata ... ~ .. 252
moverel .. 253
movetext .. 253
moveto ... 254
movrnem .. 254
normvideo .. 255
nosound .. 255
_open ... 256
open .. 257
outport ... 259
outportb .. 259
outtext .. 260
outtextxy .. 261
parsfnm .. 261
peek .. 262
peekb ... 262
perror .. 263
pieslice ... 264
poke .. 265
pokeb ... 265
poly .. 266
pow .. 266
pow10 .. 267
printf ... 267
putc .. 279
putch ... 280
putchar ... 280
putenv .. 281
putimage .. 281
putpixel .. 282
puts .. 283
puttext • .. 283
putw ... 284
qsort ... 284
raise .. 286
rand .. 287
randbrd ... 288
randbwr .. 288
random ... 289
randomize .. 290
_read ... 290
read .. 291

viii

realloc .. 292
rectangle .. 293
registerbgidriver ... 293
registerbgifont 294
remove ... 295
rename ... 296
restorecrtmode .. 296
rewind .. 297
rmdir ... 297
_rotl ; .. 298
_rotr ... 299
sbrk .. 299
scanf ... 300
searchpath .. 310
sector ... 311
segread ... 312
setactivepage .. 312
setallpalette ... 313
setaspectratio .. 315
setbkcolor ... 315
setblock ... 316
setbuf ... 317
setcbrk .. 318
setcolor ... 318
setdate .. 320
setdisk .. 320
setdta ... 321
setfillpattem ... 321
setfillstyle 322
setftime .. 323
setgraphbufsize .. 324
setgra phmode ... 325
setjmp .. 325
setlinestyle .. 326
setmem ... 328
setmode .. 328
setpalette .. 329
setrgbpalette .. 330
settextjustify .. 331
settextstyle .. 332
settime .. 334
setusercharsize .. 334
setvbuf ... 336

ix

setvect .. 338
setverify .. 338
setviewport ... 339
setvisualpage .. 339
setwritemode .. 340
signal ... 341
sin ... 347
sinh .. 347
sleep ... 348
sopen ... 348
sound .. 350
spawn ... 352
sprintf 357
sqrt ... 357
srand ... 358
sscanf ... 358
stat ... 359
_status87 .. 361
stime ... 361
stpcpy .. 362
strcat ... 362
strchr ... 362
strcmp .. 363
strcmpi ... 364
strcpy .. 364
strcspn .. 365
strdup .. 365
_strerror .. ,..... 365
s trerror ... 366
stricmp ... 367
strlen ... 367
strlwr .. ~ 368
strncat 368
strncmp .. 368
strncmpi .. 369
strncpy ... 370
strnicmp .. 370
strnset .. 371
strpbrk ... 371
strrchr .. 372
strrev ... 372
strset ... 372
strspn .. 373

x

strstr .. .
strtod .. .
strtok .. .
strtol .. .
strtoul
stTtlpr
swab .. .
system
tan .. .
tanh
tell .. .
textattr
textbackground
textcolor
textheight .. .
textmode
textwidth .. .
time
tmpfile
tmpnam
toascii
_tolower
tolower .. .
_toupper
toupper .. .
tzset
ultoa .. .
ungetc
ungetch .. .
unixtodos .. .
unlink
unlock
va_
vfprintf .. .
vfscanf
vprintf
vscanf
vsprintf .. .
vsscanf .. .
wherex .. .
wherey .. .
window .. .

xi

373
374
375
376
377
378
378
379
379
380
380
381
383
384
386
386
388
388
389
389
390
390
391
391
392
392
394
394
395
395
396
396
397
399
400
401
402
403
404
405
405
406
406

write ... 407

Appendix A The Turbo C Interactive Editor 409
Introduction ... 409

Turbo In, Turbo Out 409
The Edit Window Status Line 410

Editor Commands .. 411
Basic Cursor Movement Commands 413
Quick Cursor Movement Commands 414
Insert and Delete Commands 415
Block Commands .. 416
Miscellaneous Editing Commands 417

The Turbo C Editor Vs. WordStar 421

Appendix B Compiler Error Messages 423
Fatal Errors .. 424
Errors .. 424
Warnings .. 437

Appendix C TCC Command-Line Options 443
Turning Options On and Off .. 445
Syntax .. 445
Compiler Options .. 446

Memory Model .. 447
#defines .. 447
Code Generation Options 448
Optimization Options. .. 449
Source Code Options ... 452
Error-Reporting Options 452
Segment-Naming Control 454
Compilation Control Options 455

Linker Options .. 455
Environment Options 455

Implicit vs. User-specified Library Files 457
The Include and Library File-Search Algorithms 457

Using -L and -I in Configuration Files 458
An Example With Notes .. 458

Appendix D Turbo C Utilities 461
CPP: The Turbo C Preprocessor Utility 461

CPP as a Macro Preprocessor 462
An Example 463

The Standalone MAKE Utility. .. 463
A Quick Example .. 464

xii

Crea ting a Makefile '. .. 466
U sing a Makefile ... 467
Stepping Through 467

Creating Makefiles ... 468
Components of a Makefile 469

Comments .. 469
Explicit Rules 470

Special Considerations 471
Examples ... 471

Implicit Rules .. 472
Special Considerations 475
Examples ... 475

Command Lists .. 476
Prefix ... 476
Command body. .. 477
Examples ... 478

Macros .. 478
Defining Macros 479
Using Macros .. 480
Special Considerations 480
Predefined Macros 480

Directives ... 483
File-Inclusion Directive 483
Conditional Execution Directives 484
Error Detection Directive .. 486
Macro Undefinition Directive 487

Using MAKE .. 487
Command-Line Syntax 487
A Note About Stopping MAKE 488
The BUlL TINS.MAK File .. 488
How MAKE Searches for BUlL TINS.MAK and Makefiles 489
MAKE Command-line Options 489

MAKE Error Messages .. 490
Fatal Error Messages .. 490
Errors .. 491
The TOUCH Utility. .. 493

Turbo Link 493
Invoking TLINK ... 493

Using Response Files 495
Using TLINK with Turbo C Modules 496

Initialization Modules 497
Libraries .. 497

Using TLINK with TCC 498

xiii

TLINK Options .. 499
The / x, / m, / s Options 499
The /1 Option .. 501
The /i Option. .. 501
The /n Option ... 501
The /c Option ... 501
The / d Option ... 502
The / e Option ... 502
The / t Option. .. 503
The /v Option ... 503
The /3 Option ... 503
Restrictions .. 504

Error Messages .. 504
Fatal Errors .. 504
N onfa tal Errors .. 507
Warnings. .. 507

TLIB: The Turbo Librarian .. 508
The Advantages of Using Object Module Libraries 509
The Components of a TLIB Command Line 509

The Operation List ... 510
File and Module Names .. 511
TLIB Operations ... 511

Creating a Library .. 512
Using Response Files ... 513
Creating an Extended Dictionary: The /E Option 513
Advanced Operation: The /C Option 514
Examples ... 514

GREP: A File-Search Utility .. 515
The GREP Options ... 515

Order of Precedence 517
The Search String .. 517

Operators in Regular Expressions 518
The File Specification ... 519
Examples with Notes ... 519

BGIOBJ: Conversion Utility for Graphics Drivers and Fonts 522
Adding the New .OBJ Files to GRAPHICS.LIB 523
Registering the Drivers and Fonts 523
The /F option. .. 525
Ad vanced BGIOBJ Features. .. 526

OBJXREF: The Object Module Cross-Reference Utility. 528
The OBJXREF Command Line 529

The OBJXREF Command-Line Options. .. 530
Con trol Options .. 530

xiv

Report Options .. 530
Response Files ... 531

Freeform Response Files 531
Project Files ... 532
Linker Response Files .. 532
The /0 Command .. 532
The /N Command .. 533

Sample OBJXREF Reports 533
Report by Public Names (/RP) 534
Report by Module (/RM) .. 534
Report by Reference (/RR) (Default) 535
Report by External References (/RX) 535
Report of Module Sizes (IRS) 536
Report by Class Type (/RC) 536
Report of Unreferenced Symbol Names (/RU) 537
Verbose Reporting (/RV) 537

Examples of How to Use OBJXREF 537
OBJXREF Error Messages and Warnings .. 539

Error Messages .. 539
Warnings .. 539

Appendix E Language Syntax Summary 541
Lexical Grammar ... 541

Tokens .. 541
Keywords .. 542
Identifiers ... 542
Constants ... 542
String Literals .. 544
Operators ... 545
Punctua tors ... 545

Phrase Structure Grammar 545
Expressions ... 545
Declara tions 548
Statements .. 551
External Definitions .. 552

Preprocessing Directives .. 552

Appendix F TCINST: Customizing Turbo C 555
Running TCINST .. 556
The TCINST Installation Menu .. 557

The Compile Menu .. 558
The Project Menu .. 558

Project Name .. 558
The Break Make On Menu. .. 558

Auto Dependencies ... 559
Clear Project .. 559

The Options Menu ... 559
The Compiler Menu .. 559

Model .. 559
Defines ... 559
The Code Generation Menu 559
The Optimiza tion Menu .. 560
The Source Menu. .. 560
The Errors Menu 560
The Names Menu .. 561

The Linker Menu ... 561
Map File .. 561
Initialize Segments 561
Default Libraries ... 561
Graphics Library ... 562
Warn Duplicate Symbols 562
Stack Warning ... 562
Case-Sensitive Link .. 562

The Environment Menu .. 562
Message Tracking .. 562
Keep Messages. .. 563
Config Auto Save .. 563
Edit Auto Save ... 563
Backup Source Files 563
Zoomed Windows. .. 563
Full Graphics Save 563
The Screen Size Menu. .. 563
The Options for Editor Menu 564

The Directories Menu .. 565
Include Directories 565
Library Directories 566
Output Directory ... 566
Turbo C Directory .. 566
Pick File Name .. 566

Arguments .. 567
The Debug Menu. .. 567

Source Debugging .. 567
Display Swapping .. 567

The Editor Commands Option 567
Allowed Keystrokes .. 571

The Mode for Display Menu .. 572
The Set Colors Menu ... 573

xvi

Resize Windows ... 574
Quitting the Program ... 574

Appendix G MicroCa1c 577
About MicroCalc .. 577
How to Compile and Run MicroCa1c .. 578

With TC.EXE .. 578
With TCC.EXE .. 578

How to use MicroCa1c .. 579
The MicroCa1c Parser 582

Index 583

xvii

List of Figures

Figure F.1: The TCINST Installation Menu 557

xviii

List of Tables

Table Aol: Summary of Editor Commands412
Table Col: Correlation of Command-Line Options and Menu Selections .444

xix

N T R o D u c T o N

This is the second volume of documentation in the Turbo C package. This
volume, the Turbo C Reference Guide, contains definitions of all the Turbo C
library routines, common variables, and common defined types, along with
example program code to illustrate how to use many of these routines,
variables, and types.

If you are new to C programming, you should first read the other book in
your Turbo C package-the Turbo C User's Guide. In that book you'll find
instructions on how to install Turbo C on your system, an overview of
Turbo C's window and menu system, and tutorial-style chapters designed
to get you started programming in Turbo C. The user's guide also
summarizes Turbo C's implementation of the C language and discusses
some advanced programming techniques. For those of you who are Turbo
Pascal and Turbo Prolog programmers, the user's guide provides
information to help you integrate your understanding of those languages
with your new knowledge of C.

You should refer to the UIntroduction" in the User's Guide for information
on the Turbo C implementation, a summary of the contents of Volume I,
and a short bibliography.

Volume II: The Reference Guide

The Turbo C Reference Guide is written for experienced C programmers; it
provides implementation-specific details about the language and the run­
time environment. In addition, it provides definitions for each of the Turbo
C functions, listed in alphabetical order.

Introduction

These are the chapters and appendixes in the programmer's reference
guide:

Chapter 1: Using Turbo C Library Routines summarizes Turbo C's input/
output (I/O) support, lists and describes the #include (.h) files, and lists the
Turbo C library routines by category. Then it explains the Turbo C main
function and its arguments, and concludes with a lookup section describing
each of the Turbo C global variables.

Chapter 2: The Turbo C Library is an alphabetical reference of all Turbo C
library functions. For each function it gives the function prototype, the
include file(s) containing the prototype, an operative description of what
the function does, return values, portability information, and a list of
related functions.

Appendix A: The Turbo C Interactive Editor gives a more thorough
explanation of the editor commands-for those who need more infor­
mation than that given in Chapter 5 of the Turbo C User's Guide.

Appendix B: Compiler Error Messages lists and explains each of the error
messages and summarizes the possible or probable causes of the problem
that generated the message.

Appendix C: Options describes each of the Turbo C user-selectable
compiler options.

Appendix D: Turbo C Utilities discusses the standalone MAKE utility, the
CPP preprocessor, the Turbo Linker TLINK, TLIB the Turbo Librarian, the
file-searching utility GREP, BGIOBl, a conversion utility for graphics
drivers and fonts, and the object module cross-referencer OBJXREF.

Appendix E: Language Syntax Summary uses modified Backus-Naur
Forms to detail the syntax of all Turbo C constructs.

Appendix F: Customizing Turbo C guides you through the customization
program (TCINST), which lets you customize your keyboard, modify
default values, change your screen colors, resize your Turbo C windows,
and more.

Appendix G: MicroCalc introduces the spreadsheet program included
with your Turbo C package and gives directions for compiling and running
the program.

2 Turbo C Reference Guide

Typographic Conventions

All typefaces used in this manual were produced by Borland's Sprint: The
Professional Word Processor on an Apple LaserWriter Plus. Their special
uses are as follows:

Monospaced type This typeface represents text as it appears on the screen or
in your program and anything you must type (such as
command-lIne options).

[1 Square brackets in text or DOS command lines enclose
optional input or data that depends on your system, which
snould notoe typed verbatim.

<>

Boldface

Italics

Keycaps

Angle brackets in the function reference section enclose the
names of include files.

Turbo C function names (such as printf) are shown in
boldface when mentioned within text (but not in program
examples). This typeface represents Turbo C keywords
(such as char, switch, near, and cdec1).

Italics indicate variable names (identifiers) within sections
of text and to emphasize certain words (especially new
terms).

This special typeface indicates a key on your keyboard. It is
often used when describing a particular key you should
type; for example, "Press Esc to cancel a menu."

Borland's No-Nonsense License Statement

This software is protected by both United States Copyright Law and
International Treaty provisions. Therefore, you must treat this software just
like a book with the following single exception: Borland International
authorizes you to make archival copies of Turbo C for the sole purpose of
backing up your software and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another, so long as there is no possibility of
its being used at one location while it's being used at another. Just like a
book that can't be read by two different people in two different places at
the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland's
copyright has been violated.)

Introduction 3

Acknowledgments

In this manual, we refer to several products:

• Turbo Pascal, Turbo Prolog and Sprint: The Professional Word Processor
are registered trademarks of Borland International, Inc.

• WordStar is a trademark of MicroPro, Inc.
• IBM PC, XT, and AT are trademarks of International Business Machines,

Inc.

• MS-DOS is a registered trademark of Microsoft Corporation.
• UNIX is a registered trademark of American Telephone and Telegraph.

How to Contact Borland

The best way to contact Borland is to log on to Borland's Forum on
CompuServe: Type GO BOR from the main CompuServe menu and choose
"Borland Programming Forum B (Turbo Prolog & Turbo C)" from the
Borland main menu. Leave your questions or comments there for the
support staff to process.

If you prefer, write a letter detailing your comments and send it to:

Technical Support Department
Borland International
1800 Green Hills Road

P.O. Box 660001
Scotts Valley, CA 95066-0001, USA

You can also telephone our Technical Support department at (408) 438-8400.
Please have the following information handy before you call:

• product name and version number
;; computer make and model number
• operating system and version number

4 Turbo C Reference Guide

c H A p T E R

1

Using Turbo C Library Routines

Turbo C comes equipped with over 450 library routines-functions and
macros that you call from within your C programs to perform a wide
variety of tasks, including low- and high-level I/O, string and file
manipulation, memory allocation, process control, data conversion,
mathematical calculations, and much more.

Turbo C's routines are contained in the library files (Cx.LIB, MATHx.LIB,
and GRAPHICS.LIB). Because Turbo C supports six distinct memory
models, each model except the tiny model has its own library file and math
file, containing versions of the routines written for that particular model.
(The tiny model shares the small library and math files.)

Turbo C supports the draft ANSI C standard which, among other things,
allows function prototypes to be given for the routines in your C programs.
All of Turbo C's library routines are declared with prototypes in one or
more header files (these are the .h or "include" files that were copied from
the distribution disks into your INCLUDE directory during installation).

In This Chapter

This first part of the Turbo C Reference Guide provides an overview of the
Turbo C library routines and include files.

Chapter 7, Using Turbo C Ubrary Routines 5

In this chapter, we

• explain why you might want to obtain the source code for the Turbo C
runtime library

• list and describe the include files
II describe the arguments to function main, and its return value

• summarize the different categories of tasks performed by the library
routines

• describe (in lookup fashion) common global variables implemented in
many of the library routines

The Library Routine Lookup Section

The second part of this reference guide is an alphabetical lookup; it
contains a description of each of the Turbo C routines.

A few of the routines are grouped by "family" (the exec ... and spawn ...
functions that create, load, and run programs, for example) because they
perform similar or related tasks.

Otherwise, we have included an individual entry in the lookup for every
routine. For instance, if you want to look up information about the free
routine, you would look under free; there you would find a listing for free
that

II summarizes what free does
II gives the syntax for calling free
EI tells you which header file(s) contains the prototype for free

II gives a detailed description of how free is implemented and how it
relates to the other memory-allocation routines

IS lists other language compilers that include similar functions
c refers you to related Turbo C functions

II if appropriate, gives an example of how the function is used, or refers
you to a function entry where there is such an example

The last part of this reference guide contains several appendices designed
to give you detailed reference and usage information about some of Turbo
C's special features:

• the Turbo C Interactive Editor
• Turbo C compiler error messages

6 Turbo C Reference Guide

III the TCC command-line options
III the Turbo C standalone utilities

II the Turbo C language syntax summary
II TCINST, the Turbo C customization program

II MicroCalc, a sample spreadsheet application

Why You Might Want to Access the Turbo C
Run-Time Library Source Code

The Turbo C run-time library contains over 300 functions, covering a broad
range of areas: low-level control of your IBM PC, interfacing with DOS,
input/output, process management, string and memory manipulations,
rna th, sorting and searching, and so on. There are several good reasons
why you may wish to obtain the source code for these functions:

C You may find that a particular Turbo C function you want to write is
similar to, but not the same as, a function in the library. With access to
the run-time library source code, you can tailor the library function to
your own needs, and avoid having to write a separate function of your
own.

II Sometimes, when you are debugging code, you may wish to know more
about the internals of a library function. Having the source code to the
run-time library would be of great help in this situation.

D When you can't figure out what a library function is really supposed to
do, it's useful to be able to take a quick look at that function's source
code.

Il You may dislike the underscore convention on C symbols, and wish you
had a version of the libraries without leading underscores. Again, access
to the source code to the run-time library will let you eliminate leading
underscores.

[] You can also learn a lot from studying tight, professionally written
library source code.

For all these reasons, and more, you will want to have access to the Turbo C
run-time library source code. Because Borland believes strongly in the
concepts of "open architecture," we have made the Turbo C run-time
library source code available for licensing. All you have to do is fill out the
order form distributed with this documentation, include your payment,
and we'll ship you the Turbo C run-time library source code.

Chapter 7, Using Turbo C library Routines 7

The Turbo C Include Files

Header files provide function prototype declarations for library functions.
Data types and symbolic constants used with the library functions are also
defined in them, along with global
variables defined by Turbo C and by the library functions. The Turbo C
library follows the ANSI C draft standard on names of header files and
their contents. Header files defined by ANSI C are marked with an asterisk
(*) in the list below.

alloc.h

assert.h*

bios.h

conio.h

ctype.h*

dir.h

dos.h

errno.h*

fcntl.h

float.h*

graphics.h

io.h

limits.h*

math.h*

8

Declares memory management functions (allocation,
deallocation, etc.).

Defines the assert debugging macro.

Declares various functions used in calling IBM-PC ROM
BIOS routines.

Declares various functions used in calling the DOS console
I/O routines.

Contains information used by the character classification
and character conversion macros (such as isalpha and
toascii).

Contains structures, macros, and functions for working
with directories and path names.

Defines various constants and gives declarations needed
for DOS and 8086-specific calls.

Defines constant mnemonics for the error codes.

Defines symbolic constants used in connection with the
library routine open.

Contains parameters for floating-point routines.

Declares prototypes for the graphics functions.

Contains structures and declarations for low-level input/
output routines.

Contains environmental parameters, information about
compile-time limitations, and ranges of integral quantities.

Declares prototypes for the math functions; also defines the
macro HUGE_VAL, and declares the exception structure
used by the matherr and _matherr routines.

Turbo C Reference Guide

mem.h

process.h

seljmp.h*

share.h

signa1.h*

stdargs.h*

stddef.h*

stdio.h*

stdlib.h*

string.h*

sys\stat.h

sys\timeb.h

sys \ types.h

time.h*

values.h

Declares the memory-manipulation functions. (Many of
these are also defined in string.h.)

Contains structures and declarations for spawn ... and
exec ... functions.

Defines a type jmp_buf used by the longjmp and setjmp
functions and declares the routines longjmp and setjmp.

Defines parameters used in functions that make use of file­
sharing.

Defines constants and declarations for use by the signal
and raise functions.

Defines macros used for reading the argument list in
functions declared to accept a variable number of argu­
ments (such as vprintf, vscanf, etc.).

Defines several common data types and macros.

Defines types and macros needed for the Standard I/O
Package defined in Kernighan and Ritchie and extended
under UNIX System V. Defines the standard I/O pre­
defined streams stdin, stdout, stdprn, and stderr, and de­
clares stream-level I/O routines.

Declares several commonly used routines: conversion
routines, search/ sort routines, and other miscellany.

Declares several string-manipulation and memory­
manipulation routines.

Defines symbolic constants used for opening and creating
files.

Declares the function ftime and the structure timeb that
ftime returns.

Declares the type time_t used with time functions.

Defines a structure filled in by the time-conversion routines
asctime, localtime, and gmtime, and a type used by the
routines ctime, difftime, gmtime, localtime, and stime;
also provides prototypes for these routines.

Defines important constants, including machine depen­
dencies; provided for UNIX System V compatibility.

Chapter 7, Using Turbo C Ubrary Routines 9

Library Routines by Category

The Turbo C library routines perform a variety of tasks. In this section, we
list the routines, along with the include files in which they are declared,
under several general categories of task performed. For complete
information about any of the functions below, see the function entry in
Chapter 2 of this manual.

Classification Routines

These routines classify ASCII characters as letters, control characters,
punctuation, uppercase, etc.

isalnum
isalpha
isascii
iscntrl

(ctype .h)
(ctype.h)
(ctype.h)
(ctype.h)

Conversion Routines

isdigit
isgraph
is lower
isprint

(ctype. h)
(ctype. h)
(ctype. h)
(ctype.h)

ispunct
isspace
isupper
isxdigit

(ctype. h)
(ctype.h)
(ctype.h)
(ctype.h)

These routines convert characters and strings from alpha to different
numeric representations (floating-point, integers, longs) and vice versa, and
from uppercase to lowercase and vice versa.

atof (stdlib. h) itoa (stdlib.h) toascii (ctype. h)
atoi (stdlib.h) ltoa (stdlib. h) tolower (ctype.h)
atol (stdlib.h) strtod (stdlib.h) _toupper (ctype.h)
ecvt (stdlib.h) strtol (stdlib.h) toupper (ctype.h)
fcvt (stdlib.h) strtoul (stdlib. h) ultoa (stdlib.h)
gcvt (stdlib.h) to lower (ctype.h)

Directory Control Routines

These routines manipulate directories and path names.

chdir (dir.h) getcurdir (dir.h) mktemp (dir. h)
findfirst (dir.h) getcwd (dir.h) rmdir (dir .h)
findnext (dir.h) getdisk (dir.h) searchpath (dir .h)
fnmerge (dir .h) mkdir (dir. h) setdisk (dir.h)
fnsplit (dir.h)

Diagnostic Routines

These routines provide built-in troubleshooting capability.

assert (assert.h) matharr (math.h) parr or (errno.h)

10 Turbo C Reference Guide

Graphics Routines

These routines let you create onscreen graphics with text.

arc (graphics .h) graphresult (graphics.h)
bar (graphics.h) imagesize (graphics.h)
bar3d (graphics .h) initgraph (graphics. h)
circle (graphics.h) installuserdriver (graphics.h)
cleardevica (graphics.h) insta11userfont
clearviewport (graphics. h) line (graphics.h)
closegraph (graphics.h) linerel (graphics.h)
detect graph (graphics.h) lineto (graphics.h)
drawpoly (graphics.h) moverel (graphics.h)
ellipse (graphics.h) moveto (graphics.h)
fi11ellipse (graphics.h) out text (graphics.h)
fi11poly (graphics.h) outtextxy (graphics.h)
£1oodfi11 (graphics .h) pies lice (graphics. h)
getarccoords (graphics .h) put image (graphics.h)
getaspectratio (graphics. h) putpixel (graphics. h)
gatbkcolor (graphics.h) rectangle (graphics.h)
getcolor (graphics.h) registerbgidriver (graphics. h)
getdefaultpalette (graphics.h) registerbgifont (graphics. h)
getdrivernama (graphics. h) restorecrtmode (graphics. h)
get fil lpattern (graphics. h) sector (graphics.h)
gatfillsattings (graphics. h) sotactivepaga (graphics .h)
getgraphmode (graphics.h) seta11palette (graphics. h)
get image (graphics .h) setaspectratio (graphics .h)
getlinesettings (graphics. h) setbkcolor (graphics. h)
getmaxcolor (graphics. h) aetcolor (graphics. h)
getmaxmoda (graphics.h) aetfillpattern (graphics .h)
getmaxx (graphics .h) setfillstyla (graphics. h)
getmaxy (graphics.h) setgraphbufsize (graphics. h)
getmodename (graphics.h) setgraphmode (graphics.h)
getmoderange (graphics.h) setlinestyle (graphics. h)
getpa1ette (graphics .h) setpalette (graphics.h)
getpalettesize (graphics. h) setrgbpalette (graphics. h)
getpixel (graphics. h) settextjustify (graphics. h)
gettextsettings (graphics. h) settextstyle (graphics. h)
getviewsettings (graphics. h) setusercharsize (graphics .h)
gatx (graphics.h) set viewport (graphics .h)
gety (graphics.h) setvisualpage (graphics. h)
graphdefaults (graphics. h) satwritemode (graphics. h)
grapharrormsg (graphics. h) textheight (graphics .h)
_graphfreemem (graphics.h) textwidth (graphics.h)
_graphgebnem (graphics .h)

Chapter 7, Using Turbo C library Routines 11

Input/Output Routines

These routines provide stream-level and DOS-level I/O capability.

access (io.h) fputc (stdio.h) putw (stdio.h)
cgets (conio.h) fputchar (stdio.h) read (io.h)

chmod (io.h) fputs (stdio.h) read (io.h)
chmod (io.h) fread (stdio.h) remove (stdio.h)
chsize (io.h) freopen (stdio.h) rename (stdio.h)
clearerr (stdio.h) fscanf (stdio.h) rewind (stdio.h)
close (io.h) fseek (stdio.h) scanf (stdio.h)
close (io.h) fsetpos (stdio.h) setbuf (stdio.h)

cprintf (conio.h) fstat (sys\stat.h) setftime (io.h)
cputs (conio.h) ftell (stdio.h) setmode (io.h)
creat (io.h) fwrite (stdio. h) setvbuf (stdio.h)
creat (io.h) getc (stdio.h) sopen (io.h)

creatnew (io.h) getch (conio.h) sprintf (stdio.h)
creattemp (io.h) get char (stdio.h) sscanf (stdio.h)
cscanf (conio.h) getche (conio.h) stat (sys\stat.h)
dup (io.h) getftime (io.h) strerror (string.h ,
dup2 (io.h) getpass (conio.h) stdio.h)
eof (io.h) gets (stdio.h) strerror (stdio.h)
fclose (stdio.h) getw (stdio.h) tell (io.h)
fcloseall (stdio.h) gsignal (signal.h) tmpfile (stdio.h)
fdopen (stdio.h) ioctl (io.h) tmpnam (stdio.h)
feof (stdio.h) batty (io.h) ungetc (stdio. h)
ferror (stdio.h) kbhit (conio.h) ungetch (conio.h)
fflush (stdio. h) lock (io.h) unlock (io.h)
fgetc (stdio.h) lseek (io.h) vfprintf (stdio.h)
fgetchar (stdio.h) _open (io.h) vfscanf (stdio.h)
fgetpos (stdio.h) open (io.h) vprintf (stdio.h)
fgets (stdio.h) perror (stdio.h) vscanf (stdio.h)
filelength (io.h) printf (stdio.h) vsprintf (stdio.h)
fileno (stdio.h) putc (stdio.h) vsscanf (io.h)
flushall (stdio.h) putch (conio.h) write (io.h)
fopen (stdio.h) put char (stdio.h) write (io.h)
fprintf (stdio.h) puts (stdio.h)

12 Turbo C Reference Guide

Interface Routines (DOS, 8086, BIOS)

These routines provide DOS, BIOS and machine-specific
capabilities.

absread (dos.h) geninterrupt (dos.h) keep (dos.h)

abswrito (dos.h) getcbrk (dos.h) MK FP (dos .h)

bdos (dos.h) getdfreo (dos.h) outport (dos.h)

bdosptr (dos.h) getdta (dos .h) outportb (dos.h)

bioscom (bios.h) got fat (dos.h) parsfnm (dos.h)

biosdisk (bios .h) gotfatd (dos.h) peek (dos.h)

bios equip (bios .h) getpsp (dos.h) peokb (dos.h)

bioskey (bios .h) getvect (dos.h) poke (dos.h)

biosmamory (bios.h) getvorify (dos.h) pokeb (dos.h)

biosprint (bios .h) harderr (dos.h) randbrd (dos.h)

biostima (bios .h) hardresume (dos.h) randbwr (dos.h)

country (dos.h) hardretn (dos.h) segroad (dos.h)

ctrlbrk (dos.h) inport (dos.h) setcbrk (dos.h)

disable (dos.h) inportb (dos .h) setdta (dos .h)

dosoxterr (dos.h) int86 (dos.h) sotvect (dos.h)

enable (dos.h) int86x (dos.h) sotverify (dos.h)

FP OFF (dos.h) intdos (dos.h) sloep (dos.h)

FP SEG (dos.h) intdosx (dos.h) unlink (dos.h)

freomam (dos.h) intr (dos .h)

Manipulation Routines

These routines handle strings and blocks of memory: copying, comparing,
converting, and searching.

mamccpy (mem.h, string. h) strchr (string.h) strncmpi (string .h)

memchr (mem.h, string.h) strcmp (string.h) strncpy (string .h)

memcmp (mem.h, string.h) stricmpi (string.h) strnicmp (string .h)

mamcpy (mem.h, string. h) strcpy (string .h) strnset (string.h)

memicmp (mem.h, string. h) strcspn (string.h) strpbrk (string.h)

mommove (mem.h, string .h) strdup (string.h) strrchr (string.h)

memset (mem.h, string.h) strorror (string.h) strrev (string .h)

movadata (mem.h, string. h) stricmp (string.h) strset (string .h)

movmem (mem.h, string.h) strlon (string.h) strspn (string .h)

setmem (mem.h) strlwr (string.h) strstr (string .h)

stpcpy (string.h) strncat (string.h) strtok (string .h)
strcat (string.h) strncmp (string.h) strupr (string .h)

Chapter 7, Using Turbo C Ubrary Routines 13

Math Routines

These routines perform mathematical calculations and conversions.

abs (stdlib.h) fcvt (stdlib.h) poly (math.h)
acos (math.h) floor (math.h) pow (math.h)
asin (math.h) fmod (math.h) powlO (math.h)
atan (math.h) _fpreset (float.h) rand (stdlib.h)
atan2 (math.h) frexp (math.h) randan (stdlib.h)
atof (stdlib.h , gcvt (stdlib.h) randomize (stdlib.h)

math.h) hypot (math.h) rotl (stdlib.h)
atoi (stdlib.h) itoa (stdlib.h) rotr (stdlib.h)
atol (stdlib. h) labs (stdlib.h) sin (math.h)
cabs (math.h) ldexp (math.h) sinh (math.h)
ceil (math.h) ldiv (math) sqrt (math.h)
clear87 (float.h) log (math.h) srand (stdlib.h)
contro187 (float. h) 10g10 (math.h) status87 (float. h)

cos (math.h) lrotl (stdlib.h) strtod (stdlib.h) -cosh (math.h) lrotr (stdlib.h) strtol (stdlib.h)
div (math.h) ltoa (stdlib.h) strtoul (stdlib. h)
ecvt (stdlib.h) _matherr (math.h) tan (math.h)
exp (math.h) matherr (math.h) tanh (math.h)
fabs (math.h) modf (math.h) ultoa (stdlib.h)

Memory Allocation Routines

These routines provide dynamic memory allocation in the small-data and
large-da ta models.

allocmem (dos.h) farmalloc (alloe.h)
brk (alloe.h) farrealloc (alloe. h)
calloc (alloe.h) free (alloe. hi stdlib.h)
coreleft (alloe.h , stdlib.h) malloc (alloe.h , stdlib. h)
farcalloc (alloe.h) realloc (alloe.h , stdlib.h)
farcoreleft (alloe.h) sbrk (alloe.h)
farfree (alloe.h) setblock (dos.h)

Miscellaneous Routines

These routines provide nonlocal goto capabilities and sound effects.

delay
longjmp
nosound

14

(dos.h)
(setjmp.h)
(dos.h)

setjmp
sound

(setjmp.h)
(dos.h)

Turbo C Reference Guide

Process Control Routines

These routines invoke and terminate new processes from within another.

abort (process. h) raise (signal. h)
execl (process. h) signal (signal.h)
execle (process. h) spawnl (process .h)
exoclp (process.h) spawnlo (proces s . h)
oxoclpo (process. h) spawnlp (process .h)
oxecv (process. h) spawnlpo (process. h)
oxocvo (process.h) spawnv (process. h)
oxocvp (process.h) spawnvo (process. h)
oxocvpo (process.h) spawnvp (process. h)
oxit (process.h) spawnvpe (process. h)

oxit (process.h) system (proces s . h)

Standard Routines

These are standard routines.

abort (stdlib.h) fcvt (stdlib.h) putonv (stdlib.h)
abs (stdlib. h) frao (stdlib.h) qsort (stdlib.h)
atoxit (stdlib. h) gcvt (stdlib.h) rand (stdlib.h)
atof (stdlib.h) gotonv (stdlib.h) roalloc (stdlib.h)
atoi (stdlib.h) itoa (stdlib.h) srand (stdlib.h)
atol (stdlib.h) labs (stdlib.h) strtod (stdlib.h)
bsoarch (stdlib.h) Hind (stdlib.h) strtol (stdlib.h)
calloc (stdlib.h) lsoarch (stdlib.h) swab (stdlib.h)
ecvt (stdlib. h) ltoa (stdlib.h) system (stdlib.h)
oxit (stdlib.h) malloc (stdlib.h) ultoa (stdlib .h)

oxit (stdlib. h)

Text Window Display Routines

These routines output text to the screen.

clrool (conio.h) inslino (conio.h) toxtbackground (conio.h)
clrscr (conio.h) lowvidoo (conio.h) toxtcolor (conio.h)
dollinG (conio.h) movotoxt (conia.h) toxtmode (conia.h)
got ton (conia.h) normvidoo (canio.h) whorox (canio.h)
gottoxtinfo (cania.h) puttoxt (cania.h) whorey (conia.h)
gotoxy (conio.h) toxtattr (conia.h) window (cania.h)
highvidoo (conia.h)

Chapter 7, Using Turbo C Ubrary Routines 15

Time and Date Routines

These are time conversion and time manipulation routines.

asctime (time.h) getdate (dos.h) settime
ctima (time.h) gettime (dos.h) stime
difftime (time.h) gmtime (time.h) time
dostounix (dos.h) local time (time.h) tzset
ftima (sys\timeb.h) setdate (dos.h) unixtodos

Variable Argument List Routines

These routines are for use when accessing variable argument
lists (such as with vprintf, etc).

(stdarg .h) va end (stdarg .h) va start

(dos.h)
(time.h)
(time. h)
(time.h)
(dos.h)

(stdarg.h)

16 Turbo C Reference Guide

The main Function

Every C program must have a main function; where you place it is a matter
of preference. Some programmers place main at the beginning of the file,
others at the very end. But regardless of its location, the following points
about main always apply.

The Arguments to main

Three parameters (arguments) are passed to main by the Turbo C startup
routine: argc, argo, and env.

e argc, an integer, is the number of command-line arguments passed to
main.

e argo is an array of pointers to strings.

o Under 3.x versions of DOS, argv[O] is defined as the full path name of
the program being run.

o Under versions of DOS before 3.0, argv[O] points to the null string ("").

o argv[l] points to the first string typed on the DOS command line after
the program name.

o argv[2] points to the second string typed after the program name.
o argv[argc -1] points to the last argument passed to main.
o argv[argc] contains NULL.

e env is also an array of pointers to strings. Each element of envIl holds a
string of the form ENVVAR=value.

o ENVVAR is the name of an environment variable, such as PATH or 87.

oval ue is the value to which an ENVVAR is set, such as c: \DOS; c: \ TURBOC (for
PATH) or YES (for 87).

The Turbo C startup routine always passes these three arguments to main;
you have the option of whether to declare them in your program. If you
declare some (or all) of these arguments to main, they are made available
as local variables to your main routine.

Note, however, that if you do declare any of these parameters, you must
declare them exactly in the order given: argc, argo, env.

Chapter 7, Using Turbo C Library Routines 17

For example, the following are all valid declarations of main's arguments:

main ()
main (int argc) /* legal but very unlikely */
main(int argc, char * argv[])
main(int argc, char * argv[], char * env[])

Note: The declaration main (int argc) is legal, but it's very unlikely that you
would use argc in your program without also using the elements of argv.

Another Note: The argument env is also available via the global variable
environ. Refer to the environ lookup entry (in this chapter) and the putenv
and getenv lookup entries (in Chapter 2 of this manual) for more
information. argc and argv are also available via the global variables _argc
and_argv.

An Example Program Using argc, argv and env

Here is an example program, ARGS.EXE, that demonstrates a simple way
of using these arguments passed to main.

finclude <stdio.h>
#include <stdlib.h>

/* Program ARGS.C */

void main (int argc, char *argv[], char *env[])
(

int i;

printf("The value of argc is %d \n\n",argc);
printf("These are the %d command-line arguments passed to main:\n\n",argc);

for (i = 0; i <= argci itt)
printf(" argv[%d]: %s\n", i, argv[i])i

printf("\nThe environment string(s) on this system are:\n\n");

for (i = 0; env[i] != NULLi itt)
printf(" env[%d]: %s\n", i, env[i])i

Suppose you run ARGS.EXE at the DOS prompt with the following com­
mand line:

c:> args first_argument "argument with blanks" 3 4 "last but one" stop!

Note that you can pass arguments with embedded blanks by surrounding
them with double quotes, as shown by "argument with blanks" and "last but
one" in this example command line.

18 Turbo C Reference Guide

The output of ARGS.EXE (assuming that the environment variables are set
as shown here) would then be like this:

The value of argc is 7

These are the 7 command-line arguments passed to main:
argv[O]: C:\TURBOC\TESTARGS.EXE
argv[l]: first_argument
argv[2]: argument with blanks
argv[3]: 3
argv[4]: 4
argv[5]: last but one
argv[6]: stop!
argv[7]: (null)

The environment string(s) on this system are:
env[O]: COMSPEC=C:\COMMAND.COM
env[l]: PROMPT=$p $g
env[2]: PATH=C:\SPRINTiC:\DOSiC:\TURBOC

Note: The maximum combined length of the command-line arguments
passed to main (including the space between adjacent arguments and the
name of the program itself) is 128 characters; this is a DOS limit.

Wildcard Command-Line Arguments to main

Command-line arguments containing wildcard characters can be expanded
to all the matching file names, much the same way DOS expands wildcards
when used with commands like COPY. All you have to do to get wildcard
expansion is to link your program with the WILDARGS.OBJ object file,
which is included with Turbo C.

Once WILDARGS.OBJ is linked into your program code, you can send
wildcard arguments of the type *. * to your main function. The argument
will be expanded (in the argv array) to all files matching the wildcard mask.
The maximum size of the argv array will vary, depending on the amount of
memory available in your heap.

If no matching files are found, the argument is passed unchanged. (That is,
a string consisting of the wildcard mask is passed to main.)

Arguments enclosed in quotes (" ... ") are not expanded.

An Example: The following commands will compile the file ARGS.C and
link it with the wildcard expansion module WILDARGS.OBJ, then run the
resulting executable file ARGS.EXE:

Chapter 7, Using Turbo C Ubrary Routines 19

tee args wildargs.obj

args C:\TC\INCLUDE*.H "*.e"

When ARGS.EXE is run, the first argument is expanded to the names of all
the *.H files in the C:\ TC\INCLUDE directory. Note that the expanded
argument strings include the entire path (for example, C: \ TC\INCLUDE\
ALLOC.H). The argument *.C will not be expanded, as it is enclosed in
quotes.

In the Integrated Environment (TC.EXE), you simply specify a project file
on the project menu, which contains the following lines:

ARGS
WILDARGS .OBJ

Then use the Options/ Args option to set the command-line parameters.

Note: If you prefer the wildcard expansion to be the default so that you
won't have to link your program explicitly with WILDARGS.OB], you can
modify your standard C?LIB library files to have WILDARGS.OB] linked
automatically. In order to accomplish that, you have to remove SETARGV
from the libraries, and add WILDARGS. The following commands will
invoke the Turbo librarian to modify all the standard library files
(assuming the current directory contains the standard C libraries, and
WILDARGS.OBJ):

tlib cs -setargv +wildargs
tlib cc -setargv +wildargs
tlib em -setargv +wildargs
tlib cl -setargv +wildargs
tlib ch -setargv +wildargs

When You Compile Using -p (Pascal Calling
Conventions)

If you compile your program using Pascal calling conventions (described in
detail in Chapter 12 of the Turbo C User's Guide), you must remember to
explicitly declare main as a C type.
You do this with the cdecl keyword, like this:

cdecl main(int argc, char * argv[), char * envp[)l

20 Turbo C Reference Guide

The Value main Returns

The value returned by main is the status code of the program: an into If,
however, your program uses the routine exit (or _exit) to terminate, the
value returned by main is the argument passed to the call to exit (or to
_exit).

For example, if your program contains the call

exit (1)

the status is 1.

If you are using the Integrated Environment version of Turbo C (TC.EXE)
to run your program, you can display the return value from main by
selecting the Get Info item on the Compile menu (AIt-C, G).

Chapter 7, Using Turbo C Ubrary Routines 21

Global Variables

Function

Syntax

Declared in

Remarks

Function

Syntax

Declared in

Remarks

daylight
Function

Syntax

Declared in

Remarks

22

Keeps a count of command-line arguments.

extern int _argc;

dos.h

_argc has the value of argc passed to main when the
program sta~ts.

An array of pointers to command-line arguments.

extern char * _argv[J;

dos.h

_argv points to an array containing the original
command-line arguments (the elements of argvn) passed
to main when the program starts.

Indicates whether Daylight Savings Time is in effect.

extern int daylight;

time.h

daylight is used by the time-and-date functions. It is set
by the tzset, ftime, and localtime functions to 1 for
Daylight Savings Time, 0 for Standard Time.

Turbo C Reference Guide

directvideo
Function

Syntax

Declared in

Remarks

Function

Syntax

Declared in

Remarks

Flag that controls video output.

extern int directvideo;

conio.h

directvideo

directvideo controls whether your program's console
output (from cputs, for example) goes directly to the
video RAM (directvideo = 1) or goes via ROM BIOS calls
(directvideo = 0).

The default value is directvideo = 1 (console output goes
directly to video RAM). In order to use directvideo = I,
your system's video hardware must be identical to IBM
display adapters. Setting directvideo = 0 allows your
console output to work on any system that is IBM
BIOS-compa tible.

Coprocessor chip flag.

extern int _8087;

dos.h

The _8087 variable is set to a nonzero value 0, 2, or 3) if
the startup code autodetection logic detects a floating­
point coprocessor (an 8087, 80287, or 80387,
respectively). The _8087 variable is set to 0 otherwise.

The autodetection logic can be overridden by setting the
87 environment variable to YES or NO. (The commands are
SET 87=YES and SET 87=NO; it is essential that there be no
spaces before or after the equal sign.) In this case, the
_8087 variable will reflect the override, and be set to 1 or
O.

Refer to Chapter 12 in the Turbo C User's Guide for more
information about the 87 environment variable.

You must have floating-point code in your program for
the _8087 variable to be defined properly.

Chapter 7, USing Turbo C Ubrary Routines 23

environ

. envtron
Function

Syntax

Declared in

Remarks

Accesses DOS environment variables.

extern char * environ[];

dos.h

environ is an array of pointers to strings; it is used to
access and alter the DOS environment variables. Each
string is of the form

envvar = varval ue

where envvar is the name of an environment variable
(such as PATH), and varvalue is the string value to which
envvar is set (such as c: \BIN; c: \DOS). The string varvalue
may be empty.

When a program begins execution, the DOS envi­
ronment settings are passed directly to the program.
Note that env, the third argument to main, is equal to
the initial setting of environ.

The environ array can be accessed by getenv; however,
the putenv function is the only routine that should be
used to add, change or delete the environ array entries.
This is because modification can resize and relocate the
process environment array, but environ is automatically
adjusted so that it always points to the array.

errno, _doserrno, sys_errlist, sys_nerr
Function

Syntax

Declared in

Remarks

24

Enable perror to print error messages.

extern int errno;
extern int _doserrno;
extern char * sys_errlist[];
extern int sys_nerr;

errno.h, stdlib.h (errno, _doserrno, sys_errlist, sys_nerr)
dos.h (_doserrno)

errno, sys_errlist, and sys_nerr are used by perror to print
error messages when certain library routines fail to

Turbo C Reference Guide

errno, _doserrno, sys_errlist, sys_nerr

accomplish their appointed tasks. _doserrno is a variable
that maps many DOS error codes to errno; however,
perror does not use _doserrno directly.

_doserrno: When a DOS system call results in an error,
_doserrno is set to the actual DOS error code. errno is a
parallel error variable inherited from UNIX.

errno: When an error in a system call occurs, errno is set
to indicate the type of error. Sometimes errno and
_doserrno are equivalent. At other times, errno does not
contain the actual DOS error code, which is contained in
_doserrno. Still other errors might occur that set only
errno, not _doserrno.

sys_errlist: To provide more control over message
formatting, the array of message strings is provided in
sys_errlist. errno can be used as an index into the array to
find the string corresponding to the error number. The
string does not include any newline character.

sys_nerr: This variable is defined as the number of error
message strings in sys_errlist.

The following table gives mnemonics and their mean­
ings for the values stored in sys_errlist.

Chapter 7, Using Turbo C Ubrary Routines 25

errno, _doserrno, sys_errlist, sys_nerr

26

Mnemonic

E2BIG
EACCES
EBADF
ECONTR
ECURDIR
EDOM
EEXIST
EINVACC
EINVAL
EINVDAT
EINVDRV
EINVENV
EINVFMT
EINVFNC
EINVMEM
EMFILE
ENMFILE
ENODEV
ENOENT
ENOEXEC
ENOFILE
ENOMEM
ENOPATH
ENOTSAM
ERANGE
EXDEV
EZERO

Meaning

Arg list too long
Permission denied
Bad file number
Memory blocks destroyed
Attempt to remove CurDir
Domain error
File already exists
Invalid access code
Invalid argument
Invalid data
Invalid drive specified
Invalid environment
Invalid format
Invalid function number
Invalid memory block address
Too many open files
No more files
No such device
No such file or directory
Exec format error
No such file or directory
Not enough memory
Path not found
Not same device
Result out of range
Cross-device link
Error 0

The following list gives mnemonics for the actual DOS
error codes to which _doserrno can be set. (This value of
_doserrno mayor may not be mapped (through errno) to
an equivalent error message string in sys_errlist.

Turbo C Reference Guide

Jmode
Function

Syntax

Declared in

Remarks

Mnemonic

EINVAL
E2BIG
EACCES
EACCES
EACCES
EBADF
EFAULT
EINVAL
EMFILE
ENOENT
ENOEXEC
ENOMEM
ENOMEM
ENOMEM
EXDEV
EXDEV

errno, _doserrno, sys_errlist, sys_nerr

DOS error code

Bad function
Bad environ
Access denied
Bad access
Is current dir
Bad handle
Reserved
Bad data
Too many open
No such file or directory
Bad format
Mcb destroyed
Out of memory
Bad block
Bad drive
Not same device

Refer to the Microsoft MS-DOS Programmer's Reference
Manual for more information about DOS error return
codes.

Determines default file-translation mode.

extern int Jmode;

fcntl.h

Jmode determines in which mode (text or binary) files
will be opened and translated. The value of Jmode is
a_TEXT by default, which specifies that files will be
read in text mode. If Jmode is set to a_BINARY, the files
are opened and read in binary mode. (a_TEXT and
a_BINARY are defined in fcntl.h.)

In text mode, on input carriage-return/linefeed (CR/LF)
combinations are translated to a single linefeed character

Chapter 7 I Using Turbo C Ubrary Routines 27

_heaplen
Function

Syntax

Declared in

Remarks

28

(LF). On output, the reverse is true: LF characters are
translated to CR/LF combinations.

In binary mode, no such translation occurs.

You can override the default mode as set by Jmode by
specifying a t (for text mode) or b (for binary mode) in
the argument type in the library routines fopen, fdopen,
and freopen. Also, in the routine open, the argument
access can include either a_BINARY or a_TEXT, which
will explicitly define the file being opened (given by the
open pathname argument) to be in either binary or text
mode.

Holds the length of the near heap.

extern unsigned _heaplen;

dos.h

_heap len specifies the size of the near heap in the small
data models (tiny, small, and medium). _heaplen does
not exist in the large data models (compact, large, and
huge), as they do not have a near heap.

In the small and medium models, the data segment size
is computed as follows:

data segment [small,medium] = global data + heap + stack

where the size of the stack can be adjusted with _stklen.

If _heaplen is set to 0, the program allocates 64K bytes for
the data segment, and the effective heap size is

64K - (global data + stack) bytes

By default, _heaplen equals 0, so you'll get a 64K data
segment unless you specify a particular _heaplen value.

In the tiny model, everything (including code) is in the
same segment, so the data segment computations are
adjusted to include the code plus 256 bytes for the
Program Segment Prefix.

data segment[tiny] = 256 + code + global data +

Turbo C Reference Guide

_heap/en

heap + stack

If _heaplen equals 0 in the tiny model, the effective heap
size is obtained by subtracting the PSP, code, global
data, and stack from 64K.

In the compact and large models, there is no near heap,
so the data segment is simply

data segment [compact, large] = global data + stack

In the huge model, the stack is a separate segment, and
each module has its own data segment.

_osmajor,_osminor
Function

Syntax

Declared in

Remarks

-psp
Syntax

Declared in

Remarks

Contain the major and minor DOS version numbers.

extern unsigned char _osmajor;
extern unsigned char _osminor;

dos.h

The major and minor version numbers are available
individually through _osmajor and _osminor. _osmajor is
the major version number, and _osminor is the minor
version number. For example, if you are running DOS
version 3.2, _os major will be 3, and _osminor will be 20.

These variables can be useful when you want to write
modules that will run on DOS versions 2.x and 3.x.
Some library routines behave differently depending on
the DOS version number, while others only work under
DOS 3.x. (For example, refer to _open, creatnew, and
ioctl in the lookup section of this Reference Guide.)

extern unsigned int -psp;

dos.h

_psp contains the segment address of the program
segment prefix (PSP) for the current program. The PSP is

Chapter 7, Using Turbo C Ubrary Routines 29

_stklen
Function

Syntax

Declared in

Remarks

See also

30

a DOS process descriptor; it contains initial DOS infor­
mation about the program.

Refer to the Microsoft MS-DOS Programmer's Reference
Manual for more information on the PSP.

Holds size of the stack.

extern unsigned _stkTen;

dos.h

_stklen specifies the size of the stack for all six memory
models. The minimum stack size allowed is 128 words;
if you give a smaller value, _stkTen is automatically
adjusted to the minimum. The default stack size is 4K.

In the small and medium models, the data segment size
is computed as follows:

data segment [small,mediumj = global data +
heap + stack

where the size of the heap can be adjusted with _heapTen.

In the tiny model, everything (including code) is in the
same segment, so the data segment computations are
adjusted to include the code plus 256 bytes for the
Program Segment Prefix.

data segment[tinyj = 256 + code + global data
+ heap + stack

In the compact and large models, there is no near heap,
so the data segment is simply

data segment [compact,largej = global data + stack

In the huge model, the stack is a separate segment, and
each module has its own data segment.

_heap Ten

Turbo C Reference Guide

timezone
Function

Syntax

Declared in

Remarks

tzname
Function

Syntax

Declared in

Remarks

. _VerSl0n
Function

Syntax

Declared in

fimezone

Contains difference in seconds between local time and
GMT.

extern long timezone;

time.h

timezone is used by the time-and-date functions.

This variable is ca1cula ted by the tzset function; it is
assigned a long value that is the difference, in seconds,
between the current local time and Greenwich Mean
Time.

Array of pointers to time zone names.

extern char * tzname[2]

time.h

The global variable tzname is an array of pointers to
strings containing abbreviations for time zone names.
tzname[O] points to a three-character string with the
value of the time zone name from the TZ environment
string. The global variable tzname[l] paints to a three­
character string with the value of the daylight savings
time zone name from the TZ environment string. If no
daylight savings name is present, tzname[1] points to a
null string .

Contains the DOS version number.

extern unsigned int _version;

dos.h

Chapter 1, Using Turbo C Ubrary Routines 31

_version

Remarks

32

_version contains the DOS version number, with the
major version number in the low byte and the minor
version number in the high byte. (For DOS version x.y,
the x is the major version number, and y is the minor.)

Turbo C Reference Guide

c H A p T E R

2

The Turbo C Library

This chapter contains a detailed description of each of the functions in the
Turbo C library.

The following sample library look-up entry explains how to use this
portion of the Turbo C Reference Guide to reference the Turbo C library
functions.

function name
Function

Syntax

Prototype in

Summary of what function does.

#include <header h>

(The header file(s) containing the prototype for function
or definitions of constants, enumerated types, etc., used
by the function; it is listed only if it must be #included in
the routine calling function.}

function(rnodifier parameter[, ... J);

(The declaration syntax for function; parameter names
are italicized. The [, ... J indicates that other parameters
and their modifiers may follow.)

header.h

Chapter 2, The Turbo C Ubrary 33

function name

Remarks

Return value

Portability

See also

Example

34

(Header file(s) containing the prototype for function.
The prototype of some functions is contained in more
than one header file; in cases such as this, each of the
files is listed.)

This describes what function does, the parameters it
takes, and any details you need to use function and the
related routines listed.

The value that function returns (if any) is given here. If
function sets the global variable errno, that value is also
listed.

The system(s) and language(s) that function is available
for are listed here. These may include UNIX, IBM PC's
and compatibles, and the ANSI C standard.

Routines related to function that you might wish to read
about are listed here. Note: If a routine name contains an
ellipsis (funcname ... , ... funcname, func ... name), it
indicates that you should refer to a family of functions
(for example, exec ...).

Some entries include a sample program demonstrating
how function is used.

Turbo C Reference Guide

abort
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

abs
Function

Syntax

Prototype in

Remarks

Return value

Abnormally terminates a process.

void abort(void)i

stdlib.h, process.h

function name

abort writes a termination message (Abnormal program
termination) on stderr and aborts the program via a call
to _exit with exit code 3.

abort returns the exit code 3 to the parent process or to
DOS.

abort is available on UNIX systems and is compatible
withANSIC.

assert, atexit, exit, _exit, raise, signal, spawn ...

Returns the absolute value of an integer.

#include <math.h>
int abs(int X)i

math.h, stdlib.h

abs returns the absolute value of the integer argument x.
If abs is called when stdlib.h has been included, it will
be treated as a macro that expands to inline code.

If you want to use the abs function instead of the macro,
include

#undef abs

in your program, after the #include <stdlib.h>.

abs returns an integer in the range of 0 to 32,767, with
the exception that an argument of -32,768 is returned as
-32,768.

Chapter 2, The Turbo C Ubrary 35

absread

Portability

See also

absread
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

36

abs is available on UNIX systems and is compatible with
ANSIC.

cabs, fabs, labs

Reads absolute disk sectors.

int absread(int drive, int nsects,
int lsect, void *buffer);

dos.h

absread reads specific disk sectors. It ignores the logical
structure of a disk and pays no attention to files, FATs,
or directories.

absread reads specific disk sectors via DOS interrupt
Ox25.

drive =
nsects
lsect
buffer

dri ve number to read (0 = A, 1 = B, etc.)
number of sectors to read
beginning logical sector number
memory address where the data is to be
read

The number of sectors to read is limited to the amount
of memory in the segment above buffer. Thus, 64K is the
largest amount of memory that can be read in a single
call to absread.

If it is successful, absread returns O.

On error, the routine returns -1 and sets errno to the
value of the AX register returned by the system call. See
the DOS documentation for the interpretation of errno.

absread is unique to DOS.

abswrite, bios disk

Turbo C Reference Guide

abswrite
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

access
Function

Syntax

Prototype in

abswrite

Writes absolute disk sectors.

int abswrite(int drive, int nsects, int Isect, void *buffer);

dos.h

abswrite writes specific disk sectors. It ignores the
logical structure of a disk and pays no attention to files,
FATs, or directories.

Note: If it is used improperly, abswrite can overwrite
files, directories, and FATs.

abswrite writes specific disk sectors via DOS interrupt
0x26.

drive
nsects
Isect
buffer

= drive number to write to (0 = A, 1 = B, etc.)
number of sectors to write to
beginning logical sector number

= memory address where the data is to be
written

The number of sectors to write to is limited to the
amount of memory in the segment above buffer. Thus,
64K is the largest amount of memory that can be read in
a single call to abswrite.

If it is successful, abswrite returns O.

On error, the routine returns -1 and sets errno to the
value of the AX register returned by the system call. See
the DOS documentation for the interpretation of errno.

abswrite is unique to DOS.

absread, biosdisk

Determines accessibility of a file.

int access(const char *filename, int amode);

io.h

Chapter 2, The Turbo C Ubrary 37

access

Remarks

Return value

Portability

See also

Example

38

access checks the file named by filename to determine if it
exists, and whether it can be read, written to, or
executed.

The list of amode values is as follows:

06 Check for read and write permission.
04 Check for read permission.
02 Check for write permission.
01 Execute (ignored).
00 Check for existence of file.

Note: Under DOS, all existing files have read access
(am ode equals 04), so 00 and 04 give the same result. In
the same vein, amode values of 06 and 02 are equivalent
because under DOS write access implies read access.

If filename refers to a directory, access simply determines
whether the directory exists.

If the requested access is allowed, access returns 0;
otherwise, it returns a value of -1, and errno is set to one
of the following:

ENOENT Path or file name not found
EACCES Permission denied

access is available on UNIX systems.

chmod, fstat, stat

#include <stdie.h>
#include <ie.h>

/* Returns I if file name exists, else 0 */
int file_exists(char *filename)
{

return (access (filename, 0) == 0);

main ()
(

printf("Does NOTEXIST.FIL exist: %s\n",
file_exists ("NOTEXIST.FIL") ? "YES" "NO");

Program output

Does NOTEXIST.FIL exist: NO

Turbo C Reference Guide

acos
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

allocmem
Function

Syntax

Prototype in

Remarks

Calculates the arc cosine.

#include <math.h>
double acos(double x);

math.h

acos

acos returns the arc cosine of the input value. Argu­
ments to acos must be in the range -1 to 1. Arguments
outside that range will cause acos to return a and set
errno to

EDOM Domain error

acos returns a value in the range 0 to pi.

Error-handling for this routine can be modified through
the function matherr.

acos is available on UNIX systems and is compatible
withANSIC.

asin, atan, atan2, cos, cosh, matherr, sin, sinh, tan, tanh

Alloca tes DOS memory segment.

int allocmem(unsigned size, unsigned *segp);

dos.h

allocmem uses the DOS system call Ox48 to allocate a
block of free memory and returns the segment address
of the allocated block.

size is the desired size in paragraphs (a paragraph is 16
bytes). segp is a pointer to a word that will be assigned
the segment address of the newly allocated block. No
assignment is made to the word pointed to by segp if not
enough room is available.

All allocated blocks are paragraph-aligned.

Chapter 2, The Turbo C Library 39

allocmem

Return value

Portability

See also

arc

Function

Syntax

Prototype in

Remarks

40

allocmem returns -1 on success. In the event of error, a
number (the size in paragraphs of the largest available
block) is returned.

An error return· from allocmem will set _doserrno and
will set the global variable errno to

ENOMEM Not enough memory

allocmem is unique to DOS.

coreleft, freemem, malloc, setblock

Draws a circular arc.

#include <gra phics.h>
void far arc(int x, int y, int stangle,

int endangle, int radius);

graphics.h

arc draws a circular arc in the current drawing color
centered at (x,y) with a radius given by radius. The arc
travels from stangle to endangle. If stangle equals 0 and
endangle equals 360, the call to arc will draw a complete
circle.

The angle for arc is reckoned counterclockwise, with 0
degrees at 3 o'clock, 90 degrees at 12 o'clock, etc.

Note: The linestyle parameter does not affect arcs, circles,
ellipses, or pieslices. Only the thickness parameter is
used.

Note: If you are using a eGA in high resolution mode or
a monochrome graphics adapter, the examples in this
book that show how to use graphics functions may not
produce the expected results. If your system runs on a
eGA or monochrome adapter, pass the value 1 to those
functions (setcolor, setfillstyle, and setlinestyle, for
example) that alter the fill or drawing color, instead of a
symbolic color constant (defined in graphics.h). See the
second example given here on how to use the arc, circle,

Turbo C Reference Guide

Return value

Portability

See also

Example

arc

ellipse, getarccoords, getaspectratio, and pieslice
functions with a CGA or monochrome adapter.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

circle, ellipse, fillellipse, getarccoords, sector

Graphics functions on an EGA or VGA adapter

#include <graphics.h>
iinclude <conio.h>

main ()
(

/* Will request autodetection */
int graphdriver = DETECT, graphmode;
struct arccoordstype arcinfo;
int xasp, yasp;
long xIong;

/* Initialize graphics */
initgraph(&graphdriver, &graphmode, 1111);

/* Draw a 90 degree arc with radius of 50 */
arc(l50, 150, 0, 89, 50);

/* Get the coordinates of the arc and connect ends */
getarccoords(&arcinfo);
line(arcinfo.xstart, arcinfo.ystart, arcinfo.xend,

arcinfo. yend) ;

/* Draw a circle */
circle(150, 150, 100);

/* Draw an ellipse inside the circle */
ellipse(150, 150, 0, 359, 100, 50);

/* Draw and fill a pieslice */
/* white outline */
setcolor(WHITE);
setfillstyle(SOLID_FILL, LIGHTRED);
pieslice (l00, 100, 0, 135, 49);
setfillstyle(SOLID_FILL, LIGHTBLUE);
pies lice (l00, 100, 135, 225, 49);
setfillstyle(SOLID_FILL, WHITE);
pies lice (l00, 100, 225, 360, 49);

/* Draw a "square" rectangle */
getaspectratio(&xasp, &yasp);
xIong = (100L * (long)yasp) / (long)xasp;

Chapter 2, The Turbo C Ubrary 41

arc

Example 2

42

rectangle (0, 0, (int) xIong, 100);
getch ();
closegraph();

Gra phics functions on a eGA or monochrome graphics
adapter.

iinclude <graphics.h>
iinclude <conio.h>

main ()
{

int graphdriver = DETECT, graphroode;

struct arccoordstype arcinfo;
int xasp, yasp;
long xIong;

ini tgraph (&graphdri ver, &graphmode, 1111);

/* Draw a 90 degree arc with radius of 50 */
arc (100, 120, 0, 89, 50);

/* Get the coordinates of the arc and connect ends */
getarccoords(& arcinfo);
line(arcinfo.xstart, arcinfo.ystart, arcinfo.xend,

arcinfo. yend);

/* Draw a circle */
circle(100, 120, 80);

/* Draw an ellipse inside the circle */
ellipse (100, 120, 0, 359, 80, 20);

/* Draw and fill a pieslice */
setfillstyle(HATCH_FILL, 1);
pieslice(200, 50, 0, 134, 49);
setfillstyle(SLASH_FILL, 1);
pieslice(200, 50, 135, 225, 49);
setfillstyle(WIDE_DOT_FILL, 1);
pies lice (200, 50, 225, 360, 49);

/* Draw a "square" rectangle */
getaspectratio(& xasp, & yasp);
xIong = (SOL * (long) yasp) / (long) xasp;
rectangle (0, 0, (int) xIong, 50);
getch();
closegraph () ;

Turbo C Reference Guide

asctime
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

Converts date and time. to ASCII

#inc1ude <time.h>
char *asctime(const struct tm *tblock);

time.h

asctime

asctime converts a time stored as a structure in *tblock to
a 26-character string of the same form as the dime
string:

Sun Sep 16 01:03:52 1973\n\0

asctime returns a pointer to the character string
containing the date and time. This string is a static
variable that is overwritten with each call to asctime.

asctime is available on UNIX systems and is compatible
with ANSIC.

ctime, difftime, £time, gmtime, localtime, stime, time,
tzset

iinclude <stdio.h>
#include <time.h>

main ()
(

struct tm *tm_now;
time_t sees_now;
char *str_now;
1* get time in seconds *1
time(&secS_now)i
1* make it a string *1
str_now = ctime(&secs_now)i
printf(nThe number of seconds sincen

nJan 1, 1970 is %ld\n", secs_now);
printf("In other words, the current time"

"is %s\n", str_now);
1* make it a structure *1
tm_now = localtime(&secS_now)i
printf(IIFrom the structure: day %d"

"%02d-%02d-%02d %02d:%02d:%02d\nn,
tm_now->tm_yday, tm_now->tm_mon,
tm_now->tm_mday, tm_now->tm_year,
tm_now->tm_hour, tm_now->tm_min,
tm_now->tm_sec) ;

Chapter 2, The Turbo C Ubrary 43

asctime

asin
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

44

/* from structure to string */
str_now = asctime(tm_now);
printf("Once more, the current time is"

"%s\n", str_now)i

Program output

The number of seconds since Jan 1, 1970 is 315594553.
In other words, the current time is Tue Jan 01 12:09:12 1980

From the structure: day 0 00-01-80 12:09:13
Once more, the current time is Tue Jan 01 12:09:12 1980

Calculates the arc sine.

#inc1ude <math.h>
double asin(double x);

math.h

asin returns the arc sine of the input value. Arguments
to as in must be in the range -1 to 1. Arguments outside
that range will cause asin to return 0 and set errno to

EDOM Domain error

asin returns a value in the range -pi/2 to pi/2.

Error-handling for this routine can be modified through
the function matherr.

asin is available on UNIX systems and is compatible
with ANSle.

acos, atan, atan2, cos, cosh, math err, sin, sinh, tan, tanh

Turbo C Reference Guide

assert
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

Tests a condition and possibly aborts.

#include <assert.h>
#include <stdio.h>
void assert(int test);

assert.h

assert

assert is a macro that expands to an if statement; if test
evaluates to zero, assert prints a message on stderr and
aborts the program (via a call to abort).

assert prints this message:

Assertion failed: <test>, file <filename>, line <linenum>

The filename and linenum listed in the message are the
source file name and line number where the assert
macro appears.

If you place the #define NDEBUG directive ("no de­
bugging") in the source code before the # incl ude
<assert. h> directive, the effect is to comment out the
assert statement.

None.

assert is available on some UNIX systems, including
Systems III and V, and is compatible with ANSI C.

abort

/* ASSERTST.C: Add an item to a list,
verify that the item is not NULL */

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

struct ITEM {
int key;
int value;

main ()
(

additem{NULL);

Chapter 2, The Turbo C Ubrary 45

assert

atan
Function

Syntax

Prototype in

Remarks .

Return value

Portability

See also

atan2
Function

Syntax

Prototype in

Remarks

46

void additem(struct ITEM *itemptr)
assert(itemptr != NULL);
/* ..• add the item •.• */

Program output

Assertion failed: itemptr != NULL,
file C:\TURBOC\ASSERTST.C, line 12

Calculates the arc tangent.

#inc1ude <math.h>
double atan(double x);

math.h

/* this is line 12 */

atan calculates the arc tangent of the input value.

atan returns a value in the range -pi/2 to pi/2.

Error-handling for this routine can be modified through
the function matherr.

atan is available on UNIX systems and is compatible
withANSIC.

acos, asin, atan2, cos, cosh, matherr, sin, sinh, tan, tanh

Calculates the arc tangent of y / x.

#inc1ude <math.h>
double atan2(double y, double x);

math.h

atan2 returns the arc tangent of y / x and will produce
correct results even when the resulting angle is near pi/2
or -pi/2 (x near 0).

If both x and yare set to 0, the function sets errno to
EDOM.

Turbo C Reference Guide

Return value

Portability

See also

atexit
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

atan2

atan2 returns a value in the range -pi to pi.

Error-handling for this routine can be modified through
the function matherr.

atan2 is available on UNIX systems and is compatible
withANSIC.

acos, asin, atan, cos, cosh, matherr, sin, sinh, tan, tanh

Registers termination function.

#inc1ude <stdlib.h>
int atexit(atexit_t func)

stdlib.h

atexit registers the function pointed to by func as an exit
function. Upon normal termination of the program, exit
calls (*func)O just before returning to the operating
system. The called function is of type atexit_t, which is
defined in a typede£ in stdlib.h.

Each call to atexit registers another exit function. Up to
32 functions can be registered. They are executed on a
last-in, first-out basis (that is, the last function registered
is the first to be executed).

atexit returns 0 on success and nonzero on failure (no
space left to register the function).

at exit is compatible with ANSI C.

abort, _exit, exit, spawn ...

#include <stdlib.h>
#include <stdio.h>

atexit_t exit_fnl(void)
(

printf("Exit Function 1 called\n");

atexit_t exit_fn2(void)
(

printf(IIExit Function 2 called\n");

Chapter 2, The Turbo C Library 47

otexit

atof
Function

Syntax

Prototype in

Remarks

48

main ()
(

/* post exit_fnl */
atexit(exit_fnl);
/* post exit_fn2 */
atexit(exit_fn2);
printf("Main quitting ••• \n");

Program output

Main quitting •..
Exit Function 2 called
Exit Function 1 called

Converts a string to a floating-point number.

#inc1ude <math.h>
double atof(const char *5);

math.h, stdlib.h

atof converts a string pointed to by 5 to double; this
function recognizes the character representation of a
floating-point number, made up of the following:

• an optional string of tabs and spaces
• an optional sign
• a string of digits and an optional decimal point (the

digits can be on both sides of the decimal point)
• an optional e or E followed by an optional signed

integer

The characters must match this generic format:

[ws] [sn] [ddd] [.] [ddd] [fmt[sn]ddd]

at of also recognizes + INF and -INF for plus and minus
infinity, and +NAN and -NAN for Not-a-Number.

In this function, the first unrecognized character ends
the conversion.

Turbo C Reference Guide

Return value

Portability

See also

atoi
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

atof

atof returns the converted value of the input string. If
the string cannot be converted to a number of the
corresponding type (double), the return value is O.

If there is an overflow, atof returns plus or minus
HUGE_VAL, and matherr is not called.

atof is available on UNIX systems and is compatible
with ANSIC.

atoi, atol, eevt, fevt, gevt, strtod

Converts a string to an integer.

int atoi(const char *s);

stdlib.h

atoi converts a string pointed to by s to int; atoi recog­
nizes, in the following order,

Il an optional string of tabs and spaces
t1 an optional sign
[] a string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

In this function, the first unrecognized character ends
the con version.

There are no provisions for overflow in atoi.

atoi returns the converted value of the input string. If
the string cannot be converted to a number of the
corresponding type (inO, the return value is O.

atoi is available on UNIX systems and is compatible
with ANSIC.

atof, atol, eevt, fevt, gevt

Chapter 2, The Turbo C library 49

etol

atol
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

bar
Function

Syntax

Prototype in

Remarks

50

Converts a string to a long.

long atol(const char *5);

stdlib.h

atol converts the string pointed to by 5 to long. atol
recognizes, in the following order,

• an optional string of tabs and spaces
• an optional sign
• a string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

In this function, the first unrecognized character ends
the conversion.

There are no provisions for overflow in atol.

atol returns the converted value of the input string. If
the string cannot be converted to a number of the
corresponding type (long), the return value is O.

atol is available on UNIX systems and is compatible
with ANSIC.

atof, atoi, ecvt, fcvt, gcvt, strtol, strtoul

Draws a two-dimensional bar.

#inc1ude <graphics.h>
void far bar(int left, int top, int right, int bottom);

graphics.h
#inc1ude <conio.h>

bar draws a filled-in, rectangular, two-dimensional bar.
The bar is filled using the current fill pattern and fill
color. bar does not outline the bar; to draw an outlined
two-dimensional bar, use bar3d with depth equal to O.

Turbo C Reference Guide

Return value

Portability

See also

Example

bar3d
Function

Syntax

Prototype in

Remarks

bar

The upper left and lower right comers of the rectangle
are given by (left, top) and (right, bottom), respectively.
The coordinates refer to pixels.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

bar3d, rectangle, setcolor, setfillstyle

'include <graphics.h>
main ()
(

/* Will request autodetection */
int graphdriver = DETECT, graphmode;
/* Initialize graphics */
initgraph(&graphdriver, &graphmode, 1111);

setfillstyle(SOLID_FILL, MAGENTA);
bar3d (100, 10, 200, 100, 5, 1);
setfillstyle(HATCH_FILL, RED);
bar(30, 30, 80, 80);

getche();
closegraph();

Draws a 3-D bar.

#include <graphics.h>
void far bar3d(int left, int top, int right,

int bottom, int depth, int topflag};

graphics.h

bar3d draws a three-dimensional rectangular bar, then
fills it in using the current fill pattern and fill color. The
three-dimensional outline of the bar is drawn in the
current line style and color. The bar's depth, in pixels, is
given by depth. The top flag parameter governs whether a
three-dimensional top is put on the bar. If topflag is
nonzero, a top is put on; otherwise, no top is put on the
bar (making it possible to stack several bars on top of
one another).

Chapter 2, The Turbo C Ubrary 51

bar3d

Return value

Portability

See also

Example

bdos
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

52

The upper left and lower right comers of the rectangle
are given by (left, top) and (right, bottom), respectively.

To calculate a typical depth for bar3d, take 25% of the
width of the bar, like this:

bar3d{left,top,right,bottom, (right-left) /4,1);

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

bar, rectangle, setcolor, setfillstyle, setlinestyle

See bar

DOS system call.

int bdos(int dosfun, unsigned dosdx, unsigned dosal)i

dos.h

bdos provides direct access to many of the DOS system
calls. See the MS-DOS Programmer's Reference Manual for
details of each system call.

Those system calls that require an integer argument use
bdos.

In the large data models (compact, large, and huge), it is
important to use bdosptr instead of bdos for system
calls that require a pointer as the call argument.

dosfun is defined in the MS-DOS Programmer's Reference
Manual.

dosdx is the value of register DX.

dosal is the value of register AL.

The return value of bdos is the value of AX set by the
system call.

bdos is unique to DOS.

bdosptr, geninterrupt, int86, int86x, intdos, intdosx

Turbo C Reference Guide

Example

bdosptr
Function

Syntax

Prototype in

Remarks

tinclude <stdio.h>
iinclude <dos.h>

1* Get current drive as 'A', 'B', ... *1
char current_drive (void)
(

char curdrivei
1* Get current disk as 0, 1, ... *1
curdrive = bdos(Ox19,0,0);
return('A' + curdrive);

main ()
{

bdos

printf("The current drive is %c:\n", current_drive())i

Program ou tpu t

The current drive is C:

DOS system call.

int bdosptr(int dosfun, void *argument,
unsigned dosal)i

dos.h

bdosptr provides direct access to many of the DOS
system calls. See the MS-DOS Programmer's Reference
Manual for details of each system call.

Those system calls that require a pOinter argument use
bdosptr.

In the large data models (compact, large, and huge), it is
important to use bdospi:f for system calls that require a
pointer as the call argument.

dosfun is defined in the MS-DOS Programmer's Reference
Manual.

In the small data models, the argument parameter to
bdosptr specifies DXi in the large data models, it gives
the DS: DX values to be used by the system call.

Chapter 2, The Turbo C library 53

bdosptr

Return value

Portability

See also

Example

bioscom
Function

Syntax

Prototype in

Remarks

54

dosal is the value of register AL.

The return value of bdosptr is the value of AX on
success, Or -1 on failure. On failure, errno and _doserrno
are set.

bdosptr is unique to DOS.

bdos, geninterrupt, int86, int86x, intdos, intdosx

See harderr

Perfonns serial I/O.

int bioscom(int cmd, char abyte, int port);

bios.h

bioscom perfonns various RS-232 communications over
the I/O port given in port.

A port value of 0 corresponds to COM1, 1 corresponds to
COM2, and so forth.

The value of cmd can be one of the following:

o Sets the communications parameters to the value
in abyte.

1 Sends the character in abyte out over the
communications line.

2 Receives a character from the communications line.

3 Returns the current status of the communications
port.

abyte is a combination of the following bits (one value is
selected from each of the groups):

Ox02 7 data bits
Ox03 8 data bits

OxOO
Ox04

OxOO

1 stop bit
2 stop bits

No parity

Turbo C Reference Guide

Return value

Ox08 Odd parity
Ox18 Even parity

OxOO 110 baud
0x20 150 baud
Ox40 300 baud
Ox60 600 baud
Ox80 1200 baud
OxAO 2400 baud
oxeo 4800 baud
OxEO 9600 baud

bioscom

For example, a value of OxEB (OxEO I Ox081 OxOO I Ox03)
for abyte sets the communications port to 9600 baud, odd
parity, 1 stop bit, and 8 data bits. bioscom uses the BIOS
Ox14 interrupt.

For all values of cmd, bioscom returns a 16-bit integer of
which the upper 8 bits are status bits and the lower 8
bits vary, depending on the value of cmd. The upper bits
of the return value are defined as follows:

Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8

Time out
Transmit shift register empty
Transmit holding register empty
Break detect
Framing error
Parity error
Overrun error
Data ready

If the abyte value could not be sent, bit 15 is set.
Otherwise, the remaining upper and lower bits are
appropriately set.

With a cmd value of 2, the byte read is in the lower bits
of the return value if there was no error. If an error
occurred, at least one of the upper bits is set. If no upper
bits are set, the byte was received without error.

With a cmd value of 0 or 3, the return value has the
upper bits set as defined, and the lower bits are defined
as follows:

Chapter 2, The Turbo C Ubrary 55

bioscom

Portability

Example

56

Bit 7 Received line signal detect
Bit 6 Ring indicator
Bit 5 Data set ready
Bit 4 Clear to send
Bit 3 Change in receive line signal detector
Bit 2 Trailing edge ring detector
Bit 1 Change in data set ready
Bit 0 Change in clear to send

bioscom works with IBM PCs and compatibles only.

/* bioscom example - Dumb Terminal Demo */

tinclude <bios.h>
tinclude <conio.h>

fdefine COM! 0
fdefine DATA READY Ox!OO
/* !200 baud, 7 bits, ! stop, no parity */
fdefine SETTINGS (Ox80/0x02/0xOO/OxOO)

main ()
{

int register in, out, status;

bioscom(O, SETTINGS, COM!);

cprintf(" ••. BrOSCOM [ESC] to exit ••• \n");

while (1)
{

status = bioscom(3, 0, COM!);
if (status & DATA_READY)

if ((out = bioscom(2, 0, COM!) & Ox7F) != 0)
putch(out);

if (kbhit ())
{

if ((in = getch()) == '\xIB')
return(O);

bioscom(l, in, COMI);

Turbo C Reference Guide

biosdisk
Function

Syntax

Prototype in

Remarks

BIOS disk services.

int biosdisk(int cmd, int drive, int head, int track,
int sector, int nsects, void *buffer);

bios.h

biosdisk

biosdisk uses interrupt Ox13 to issue disk operations
directly to the BIOS.

drive is a number that specifies which disk drive is to be
used: 0 for the first floppy disk drive, 1 for the second
floppy disk drive, 2 for the third, etc. For hard disk
drives, a drive value of Ox80 specifies the first drive, Ox81
specifies the second, Ox82 the third, and so forth.

For hard disks, the physical drive is specified, not the
disk partition. If necessary, the application program
must interpret the partition table information itself.

cmd indicates the operation to perform. Depending on
the value of cmd, the other parameters mayor may not
be needed.

Here are the possible values for cmd for the IBM PC, XT,
AT, or PS/2, or any compatible system:

Chapter 2, The Turbo C Ubrary 57

biosdisk

o Resets disk system, forcing the drive controller
to do a hard reset: All other parameters are
ignored.

1 Returns the status of the last disk operation. All
other parameters are ignored.

2' Reads one or more disk sectors into memory.
The starting sector to read is given by head, track,
and sector. The number of sectors is given by
nsects. The data is read, 512 bytes per sector, into
buffer.

3 Writes one or more disk sectors from memory.
The starting sector to write is given by head,
track, and sector. The number of sectors is given
by nsects. The data is written, 512 bytes per
sector, from buffer.

4 Verifies one or more sectors. The starting sector
is given by head, track, and sector. The number of
sectors is given by nsects.

5 Formats a track. The track is specified by head
and track. buffer points to a table of sector
headers to be written on the named track. See
the Technical Reference Manual for the IBM PC for
a description of this table and the format
operation.

58 Turbo C Reference Guide

Return value

biosdisk

The following cmd values are allowed only for the XT,
AT, PS/2, and compatibles:

6 Fonnats a track and sets bad sector flags.

7 Fonnats the drive beginning at a specific track.

8 Returns the current drive parameters. The drive
infonnation is returned in buffer in the first 4
bytes.

9 Initializes drive-pair characteristics.

10 Does a long read, which reads 512 plus 4 extra
bytes per sector.

11 Does a long write, which writes 512 plus 4 extra
bytes per sector.

12 Does a disk seek.

13 Alternates disk reset.

14 Reads sector buffer.

15 Writes sector buffer.

16 Tests whether the named drive is ready.

17 Recalibrates the drive.

18 Controller RAM diagnostic.

19 Drive diagnostic.

20 Controller internal diagnostic.

Note: biosdisk operates below the level of files, on raw
sectors, and it can destroy file contents and directories
on a hard disk.

bios disk returns a status byte composed of the
following bits:

OxOO Opera tion successful.
Ox01 Bad command.
Ox02 Address mark not found.
Ox03 Attempt to write to write-protected disk.
Ox04 Sector not found.
Ox05 Reset failed (hard disk).
Ox06 Disk changed since last operation.
Ox07 Drive parameter activity failed.

Chapter 2, The Turbo C library 59

biosdisk

Portability

See also

biosequip
Function

Syntax

Prototype in

Remarks

Return value

60

Ox08
Ox09
OxOA
OxOB
OxOC
OxlO
Ox1l
0x20
Ox40
Ox80
OxAA
OxBB
OxCC
OxEO
OxFF

DMA overrun.
Attempt to DMA across 64K boundary.
Bad sector detected.
Bad track detected.
Unsupported track.
Bad CRC/ECC on disk read.
CRC/ECC corrected data error.
Controller has failed.
Seek operation failed.
Attachment failed to respond.
Drive not ready (hard disk only).
Undefined error occurred (hard disk only).
Write fault occurred.
Status error.
Sense operation failed.

Note that Ox11 is not an error because the data is correct.
The value is returned anyway to give the application an
opportunity to decide for itself.

bios disk works with IBM PCs and compatibles only.

absread, abswrite

Checks equipment.

int biosequip(void);

bios.h

biosequip returns an integer describing the equipment
connected to the system. BIOS interrupt OxI1 is used for
this.

The return value is interpreted as a collection of bit­
sized fields. The IBM PC values follow:

Bits 14-15 Number of parallel printers installed
Bit 13 Serial printer attached
Bit 12 Game I/O attached

Turbo C Reference Guide

Portability

bioskey
Function

Syntax

Prototype in

Remarks

biosequip

Bits 9-11 Number of send ports

Bit 8 NotDMA
o = Machine has DMA.
1 = Machine does not have DMA;
for example, PC Jr.

Bits 6-7 Number of disks

00 = 1 drive
01 = 2 drives
10 = 3 drives
11 = 4 drives, only if bit 0 is 1

Bit 5 Initial
Bit 4 Video mode

00 = Unused
01 = 40x25 BW with color card
10 = 80x25 BW with color card
11 = 80x25 BW with mono card

Bits 2-3 Motherboard RAM size
Bit 2 RAM size

00 = 16K
01 = 32K
10 = 48K
11 = 64K

Bit 1 Flo a ting-poin t coprocessor
Bit 0 Boot from disk

biosequip works with IBM PCs and compatibles only.

Keyboard interface, using BIOS services directly.

int bioskey(int cmd);

bios.h

bioskey performs various keyboard operations using
BIOS interrupt Ox16. The parameter cmd determines the
exact operation.

Chapter 2, The Turbo C Ubrary 61

bioskey

Return value

Portability

Example

62

The value returned by bioskey depends on the task it
performs, determined by the value of cmd:

cmd Task Performed by bioskey

o If the lower 8 bits are nonzero, bioskey returns
the ASCII character for the next keystroke
waiting in the queue or the next key struck at
the keyboard. If the lower 8 bits are zero, the
upper 8 bits are the extended keyboard codes
defined in the Technical Reference Manual for the
IBM PC.

1 This tests whether a keystroke is available to
be read. A return value of zero means no key is
available. Otherwise, the value of the next
keystroke is returned. The keystroke itself is
kept to be returned by the next call to bioskey
that has a cmd value of zero.

2 Requests the current shift key status. The value
is composed from ORing the following values
together:

Bit 7 Ox80 Insert on
Bit 6 Ox40 Gaps on
Bit 5 Ox20 Num Lock on
Bit 4 OxlO Scroll Lock on
Bit 3 Ox08 Alt pressed
Bit 2 Ox04 Gtrl pressed
Bit 1 Ox02 Left Shift pressed
Bit 0 OxOl Right Shift pressed

bioskey works with IBM PCs and compatibles only.

iinclude <stdio.h>
iinclude <bios.h>
iinclude <ctype.h>

idefine RIGHT OxOOOl
idefine LEFT Ox0002
idefine CTRL Ox0004
idefine ALT Ox0008

main ()

Turbo C Reference Guide

bioskey

int key; int modifiers;

1* Function 1 returns 0 until a key is struck. Wait
for an input by repeatedly checking for a key. *1

while(bioskey(l) == 0) ;

1* Now use function 0 to get the return value of
the key. *1

key = bioskey(O);
printf ("Key Pressed was ");

1* Use function 2 to determine if shift keys were used *1
modifiers = bioskey(2);
if (modifiers) {

printf("[");
if (modifiers & RIGHT) printf(IIRIGHT ");
if (modifiers & LEFT) printf("LEFT ");
if (modifiers & CTRL) printf ("CTRL ");
if (modifiers & ALT) printf("ALT ");
printf("] ");

if (isalnum(key & OxFF))
printf("'%c'\n",key);

else
printf(I%102x\n",key);

Program output

Key Pressed was [LEFT] 'T'

biosmemory
Function

Syntax

Prototype in

Remarks

Return value

Returns memory size.

int biosmemory(void);

bios.h

biosmemory returns the size of RAM memory using
BIOS interrupt Ox12. This does not include display
adapter memory, extended memory, or expanded
memory.

biosmemory returns the size of RAM memory in lK
blocks.

Chapter 2, The Turbo C Ubrary 63

biosprint

Portability

biosprint
Function

Syntax

Prototype in

Remarks

Return value

Portability

biostime
Function

Syntax

Prototype in

64

biosmemory works with IBM PCs and compatibles only.

Printer I/O using BIOS services directly.

int biosprint(int cmd, int abyte, int port);

bios.h

biosprint performs various printer functions on the
printer identified by the parameter port, using BIOS
interrupt Ox17.

A port value of 0 corresponds to LPTl; a port value of 1
corresponds to LPT2; and so on.

The value of cmd can be one of the following:

o Prints the character in abyte.
1 Initializes the printer port.
2 Reads the printer status.

The value of abyte can be 0 to 255.

The value returned from any of these operations is the
current printer status composed by DRing these bit
values together:

Bit 0 OxOl
Bit 3 Ox08
Bit 4 OxlO
Bit 5 Ox20
Bit 6 Ox40
Bit 7 Ox80

Device time out
I/O error
Selected
Out of paper
Acknowledge
Not busy

biosprint works with IBM PCs and compatibles only.

reads or sets the BIOS timer

long biostime(int cmd, long newtime);

bios.h

Turbo C Reference Guide

Remarks

Return value

Portability

brk
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

biostime

biostime either reads or sets the BIOS timer. This is a
timer counting ticks since midnight at a rate of roughly
18.2 ticks per second. biostime uses BIOS interrupt
Ox1A.

If cmd equals 0, bios time returns the current value of the
timer. If cmd equals 1, the timer is set to the long value in
newtime.

When biostime reads the BIOS timer (cmd = 0), it returns
the timer's current value.

biostime works with IBM PCs and compatibles only.

Changes data-segment space allocation.

int brk(void *addr);

alloc.h

brk is used to change dynamically the amount of space
allocated to the calling program's data segment. The
change is made by resetting the program's break value,
which is the address of the first location beyond the end
of the data segment. The amount of allocated space
increases as the break value increases.

brk sets the break value to addr and changes the
allocated space accordingly.

This function will fail without making any change in the
allocated space if such a change would allocate more
space than is allowable.

Upon successful completion, brk returns a value of O.

On failure, this function returns a value of -1 and errno
is set to

ENOMEM Not enough memory

brk is available on UNIX systems.

coreleft, s brk

Chapter 2, The Turbo C Ubrary 65

bsearch

bsearch
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

66

Binary search of an array.

#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nelem, size_t width,
int (*fcmp)(const void *, const void *»;

stdlib.h

bsearch searches a table (array) of nelem elements in
memory, and returns the address of the first entry in the
table that matches the search key. If no match is found,
bsearch returns O.

The type size_t is defined as an unsigned integer .

• nelem gives the number of elements in the table .
• width specifies the number of bytes in each table entry.

The comparison routine *fcmp is called with two argu­
ments: eleml and elem2. Each argument points to an item
to be compared. The comparison function compares
each of the pointed-to items (*eleml and *elem2), and
returns an integer based on the results of the
comparison.

For bsearch, the *fcmp return value is

< 0 if *eleml < *elem2
-- 0 if *eleml == *elem2
> 0 if *eleml > *elem2

Typically, eleml is the argument key, and elem2 is a
pointer to an element in the table being searched.

bsearch returns the address of the first entry in the table
tha t rna tches the search key. If no match is found,
bsearch returns O.

bsearch is available on UNIX systems and is compatible
withANSIC.

Hind, lsearch, qsort

finclude <stdio.h>
finclude <stdlib.h>

Turbo C Reference Guide

cabs
Function

Syntax

Prototype in

Remarks

idefine NELEMS(arr) (sizeof(arr) / sizeof(arr[O]))

int numarray[] = { 123, 145, 512, 627, 800, 993 };

int numeric(int *p1, int *p2)
{

return(*p1 - *p2);

/* Return 1 if key is in the table, 0 if not */
int lookup(int key)
{

int *itemptr;

/* bsearch() returns a pointer to the
item that is found */

itemptr = (int *)
bsearch(&key, numarray, NELEMS(nurnarray),

sizeof(int), numeric);
return (itemptr != NULL);

main ()
{

printf("Is 512 in table? H);
printf ("%s\n", lookup (512) "YES" "NO") ;

Program output

Is 512 in table? YES

Absolute value of complex number.

#inc1ude <math.h>
double cabs(struct complex z);

math.h

bsearch

cabs is a macro that calculates the absolute value of z, a
complex number. z is a structure with type complex; the
structure is defined in math.h as

struct complex {
double x, Yi

} ;

where x is the real part and y is the imaginary part.

Chapter 2, The Turbo C Ubrary 67

cabs

Return value

Portability

See also

calloc
Function

Syntax

Prototype in

Remarks

68

Calling cabs is equivalent to calling sqrt with the real
and imaginary components of z, as shown here:

sqrt(z.x * z.x + z.y * z.y)

If you want to use the function instead of the macro,
include

#undef cabs

in your program.

cabs returns the absolute value of z, a double. On
overflow, cabs returns HUGE_VAL and sets errno to

ERANGE Result out of range

Error-handling for cabs can be modified through the
function matherr.

cabs is available on UNIX systems.

abs, fabs, labs, matherr

Allocates main memory.

#include <stdlib.h>
void *calloc(size_t nitems, size_t size);

stdlib.h, alloc.h

calloc provides access to the C memory heap. The heap
is available for dynamic allocation of variable-sized
blocks of memory. Many data structures, such as trees
and lists, naturally employ heap memory allocation.

All the space between the end of the data segment and
the top of the program stack is available for use in the
small data models (tiny, small, and medium), except for
a 256-byte margin immediately before the top of the
stack. This margin is intended to allow the application
some room to grow on the stack, plus a small amount
needed by DOS.

Turbo C Reference Guide

Return value

Portability

See also

ceil
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

cgets
Function

Syntax

Prototype in

Remarks

calloc

In the large data models (compact, large, and huge), all
space beyond the program stack to the end of physical
memory is available for the heap.

canoc allocates a block of size nitems x size. The block is
cleared to O.

canoc returns a pointer to the newly allocated block. If
not enough space exists for the new block, or nitems or
size is 0, canoc returns NULL.

canoc is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

farcalloc, free, manoc, reanoc

Rounds up.

#include <math.h>
double ceil(double x);

math.h

ceil finds the smallest integer not less than x.

ceil returns the integer found (as a double).

ceil is available on UNIX systems and is compatible with
ANSIC.

floor, fmod

Reads string from console.

char *cgets(char *str);

conio.h

cgets reads a string of characters from the console,
storing the string (and the string length) in the location
pointed to by str.

Chapter 2, The Turbo C library 69

cgets

Return value

Portability

See also

Example

70

cgets reads characters until it encounters a CR/LF
combination, or until the maximum allowable number
of characters have been read. If cgets reads a CR/LF
combination, it replaces the combination with a \0 (null
terminator) before storing the string.

Before cgets is called, str[O] should be set to the
maximum length of the string to be read. On return,
str[1] is set to the number of characters actually read.
The characters read start at str[2] and end with a null
terminator. Thus, str must be at least str[O] plus 2 bytes
long.

On success, cgets returns a pointer to str[2]. There is no
error return.

This function works only with IBM PCs and compatibles
equipped with supplied graphics display adapters.

fgets, getch, getche, gets

iinclude <stdio.h>
*include <conio.h>

main ()
(

char buffer[82];
char *p;
buffer [0] = 80; /* There's space for 80 characters */
p = cgets(buffer);
printf("/ncgets got %d characters: \"%s\"\n",

buffer[l], p);
printf("The returned pointer is %p,

buffer[2] is at %p\n", p, &buffer)
buffer[O] = 5 /* Leave space for 5 chars only */
p = cgets(buffer);
printf("/ncgets got %d characters: \"%s\"\n",

buffer[l], pI;
printf("The returned pointer is %p, buffer [2] is at %p\n",

p, &buffer)

Program output

abcdfghijklm
cgets got 12 characters: "abcdfghijklm"
The returned pointer is FEF6, buffer[2] is at FEF6
abed
cgets got 4 characters: "abed"

Turbo C Reference Guide

chdir
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Function

Syntax

Prototype in

Remarks

the returned pointer is FEF6, buffer[2] is at FEF6

Changes current directory.

int chdir(const char *path);

dir.h

chdir

chdir causes the directory specified by path to become
the current working directory. path must specify an
existing directory.

A drive can also be specified in the path argument, such
as

chdir("a:\\turboc")

but this changes only the current directory on that drive;
it doesn't change the active drive.

Upon successful completion, chdir returns a value of O.
Otherwise, it returns a value of -1, and errno is set to

ENOENT Path or file name not found

chdir is available on UNIX systems.

getcurdir, getcwd, mkdir, rmdir, system

Changes file access mode.

#inc1ude <dos.h>
#inc1ude <io.h>
int _chmod(const char *path, int func [, int attrib]);

io.h

The _chmod function may either fetch or set the DOS
file attributes. If tunc is 0, the function returns the
current DOS attributes for the file. If tunc is 1, the
attribute is set to attrib.

Chapter 2, The Turbo C Ubrary 71

Return value

Portability

See also

chmod
Function

Syntax

Prototype in

Remarks

72

attrib can be one of the following symbolic constants
(defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, _chmod returns the file
attribute word; otherwise, it returns a value of -1.

In the event of an error, errno is set to one of the
following:

ENOENT
EACCES

Pa th or file name not found
Permission denied

_chmod is unique to DOS.

chmod, _creat

Changes file access mode.

#inc1ude <sys\stat.h>
int chmod(const char *path, int amode);

io.h

chmod sets the file-access permissions of the file given
by filename according to the mask given by amode.
filename points to a string; *filename is the first character
of that string.

amode can contain one or both of the symbolic constants
S_IWRITE and S_IREAD (defined in sys \stat.h).

Value of amode

S_IWRITE
S_IREAD
S_IREAD I S_IWRITE

Access Permission

Permission to write
Permission to read
Permission to read and write

Turbo C Reference Guide

Return value

Portability

See also

Example

chsize
Function

Syntax

Prototype in

chmod

Upon successfully changing the file-access mode, chmod
returns O. Otherwise, chmod returns a value of -1.

In the event of an error, errno is set to one of the
following:

ENOENT Path or file name not found
EACCES Permission denied

chmod is available on UNIX systems.

access, _chmod, fstat, open, sop en, stat

#include <stdio.h>
#include <sys\stat.h>
#include <io.h>

void make_read_only(char *filename)
{

int stat;
stat = chmod(filename, S_IREAD);
if (stat)

printf("couldn't make %s
"read-only\n", filename);

else

main()
{

printf("made %s read-only\n", filename);

make_read_only("NOTEXIST.FIL");
makeJead _only ("MYFILE.FIL") ; .

Program output

Couldn't make NOTEXIST.FIL read-only
made MYFILE.FIL read-only

Changes file size.

int chsize(int handle, long size);

io.h

Chapter 2, The Turbo C Ubrary 73

chsize

Remarks

Return value

Portability

See also

circle
Function

Syntax

Prototype in

Remarks

Return value

Portability

74

chsize changes the size of the file associated with handle.
It can truncate or extend the file, depending on the value
of size compared to the file's original size.

The mode in which you open the file must allow
writing.

If chsize extends the file, it will append null characters
(\0). If it truncates the file, all data beyond the new end­
of-file indicator is lost.

On success, chsize returns O. On failure, it returns -1
and errno is set to one of the following:

EACCESS
EBADF
ENOSPC

Permission denied
Bad file number
UNIX-not DOS

chsize is unique to DOS.

close, _creat, creat, open

Draws a circle of the
given radius at (x,y).

#include <graphics.h>
void far circle(int x, int y, int radius);

graphics.h

circle draws a circle in the current drawing color with its
center at (x,y) and the radius given by radius.

Note: The linestyle parameter does not affect arcs, circles,
ellipses, or pieslices. Only the thickness parameter is
used.

If your circles are not perfectly round, adjust the aspect
ratio.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

Turbo C Reference Guide

See also

Examples

_clear87
Function

Syntax

Prototype in

Remarks

Return value

See also

Example

cleardevice
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

arc, ellipse, fillellipse, getaspectratio, sector,
setaspectratio

See arc

Clears floating-point status word.

unsigned int _clear87 (void);

float.h

circle

_clear87 clears the floating-point status word, which is a
combination of the 8087/80287 status word and other
conditions detected by the 8087/80287 exception
handler.

The bits in the value returned indicate the floating-point
status before it was cleared. For information on the
status word, refer to the constants defined in float.h.

_controI87, _fpreset, _status87

See _control87

Clears the graphics screen.

#include <graphics.h>
void far cleardevice(void);

graphics.h

cleardevice erases (that is, fills with the current
background color) the entire graphics screen and moves
the CP (current position) to home (0,0).

None.

This function works only with IBM PC's and
compatibles equipped with supported graphics display
adapters.

clearviewport

Chapter 2, The Turbo C Ubrary 75

clearerr

clearerr
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Resets error indication.

#inc1ude <stdio.h>
void c1earerr(FILE *stream);

stdio.h

clearerr resets the named stream's error and end-of-file
indicators to o. Once the error indicator is set, stream
operations will continue to return error status until a call
is made to clearerr or rewind.

The end-of-file indicator is reset with each input
operation.

None.

clearerr is available on UNIX systems and is compatible
withANSIC.

eof, feof, ferror, perror, rewind

clearviewport
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

76

Clears the current viewport.

#inc1ude <graphics.h>
void far c1earviewport(void);

graphics.h

clearviewport erases the viewport and moves the CP
(current position) to home (0,0) relative to the viewport.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

cleardevice, getviewsettings, setviewport

tinclude <graphics.h>

main ()
{

/* will request autodetection */

Turbo C Reference Guide

clock
Function

Syntax

Prototype in

Remarks

Return value

Portability

Example

int graphdriver = DETECT, graphmode;
setviewport(30, 30, 130, 130, 0);

clearviewporf

outtextxy (10, 10, "Hit any key to clear viewport ... ") ;

/ * get a key * /
getch();

/* clear viewport when key is hit */
clearviewport();
closegraph () ;

Detennines processor time

#include <time.h>
c1ock_t c1ock(void);

time.h

clock can be used to determine the time interval
between two events.

To detennine the time in seconds, the value returned by
clock should be divided by the value of the macro
CLK_TCK.

The clock function returns the processor time elapsed
since the beginning of the program invocation. If the
processor time is not available or its value cannot be
represented, the function returns the value -1.

clock is compatible with ANSI C.

*include <time.h>
linclude <stdio.h>

void main ()
{

clock_t start, end;

start = clock () ;

/* Code to be timed goes here */

end = clock();
printf("The time was: %f\n", (end - start) / CLK_TCK);

Chapter 2, The Turbo C Ubrary 77

_close

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

close
Function

Syntax

Prototype in

Remarks

Return value

78

Closes a file.

int _close(int handle);

io.h

_close closes the file associated with handle. handle is a
file handle obtained from a _creat, creat, creatnew,
creattemp, dup, dup2, _open, or open call.

Note: This function does not write a Ctrl-Z character at
the end of the file. If you want to terminate the file with
a Ctrl-Z, you must explicitly output one.

Upon successful completion, _close returns O. Other­
wise, it returns a value of -1.

_close fails if handle is not the handle of a valid, open
file, and errno is set to

EBADF Bad file number

_close is unique to DOS.

close, _creat, open, read, write

Closes a file.

int close(int handle);

io.h

close closes the file associated with handle, a file handle
obtained from a _creat, creat, creatnew, creattemp, dup,
dup2, _open, or open call.

Note: This function does not write a Ctrl-Z character at
the end of the file. If you want to terminate the file with
a Ctrl-Z, you must explicitly output one.

Upon successful completion, close returns O. Otherwise,
a value of -1 is returned.

Turbo C Reference Guide

Portability

See also

closegraph
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

cIreoI
Function

Syntax

Prototype in

Remarks

Return value

Portability

close

close fails if handle is not the handle of a valid, open file,
and errno is set to

EBADF Bad file number

close is available on UNIX systems.

chsize, _close, creat, creatnew, dup, fclose, open, sopen

Shuts down the graphics system.

#include <graphics.h>
void far closegraph(void);

graphics.h

closegraph deallocates all memory allocated by the
graphics system, then restores the screen to the mode it
was in before you called initgraph. (The graphics system
deallocates memory, such as the drivers, fonts, and an
internal buffer, through a call to ~raphfreemem.)

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

initgraph, setgraphbufsize

Clears to end of line in text window.

void clreol(void);

conio.h

clreol clears all characters from the cursor position to the
end of the line within the current text window, without
moving the cursor.

None.

clreol works with IBM PCs and compatibles only.

Chapter 2, The Turbo C Ubrary 79

clrscr

See also

clrscr
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

_control87
Function

Syntax

Prototype in

Remarks

80

clrser, delline, window

Clears the text mode window.

void clrscr(void);

conio.h

drscr clears the current text window and places the
cursor in the upper left-hand comer (at position 1,1).

None.

clrser works with IBM PCs and compatibles only.

dreol, delline, window

Manipulates the floating-point control word.

unsigned int _controI87(unsigned int new,
unsigned int mask);

float.h

_contro187 retrieves or changes the floating-point
control word.

The floating-point control word is an unsigned int that,
bit by bit, specifies certain modes in the floating-point
package, namely, the precision, infinity, and rounding
modes. Changing these modes allows you to mask or
unmask floating-point exceptions.

_control87 matches the bits in mask to the bits in new. If a
mask bit equals 1, the corresponding bit in new contains
the new value for the same bit in the floating-paint
control word, and _control87 sets that bit in the control
word to the new value.

Here's a simple illustration:

Turbo C Reference Guide

Return value

See also

Example

_controlS7

Original control word: 0100 0011 0110 0011

mask 1000 0001 0100 1111
new 1110 1001 0000 0101

Changing bits 1 xxx xxxI xOxx 0101

If mask equals 0, _contro187 returns the floating-point
control word without altering it.

The bits in the value returned reflect the new floa ting­
point control word. For a complete definition of the bits
returned by _controI87, see the header file float.h.

_dear87, _fpreset, signal, _status87

/* _contro187 example */

tinclude <math.h>
tinclude <float.h>
iinclude <stdio.h>

#define CW_NEW (CW_DEFAULT EM ZERODIVIDE EM_OVERFLOW)
idefine MASK_ALL (OxFFFF)

main ()
(

float a, b, c;

_contro187{CW_NEWIEM_INVALID, MASK_ALL);

a = 1.0;
b = 0.0;
c = alb;

if{_status87() & SW_ZERODIVIDE)
{

fprintf (stderr, "DIVISION BY ZERO. \n");
_clear87();
return (1) ;

Chapter 2, The Turbo C Ubrary 81

coreleft

coreleft
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

cos
Function

Syntax

Prototype in

Remarks

Return value

82

Returns a measure of unused RAM memory.

In the tiny, small, and medium models:
unsigned coreleft(void);

In the compact, large, and huge models:
unsigned long coreleft(void);

alloc.h

coreleft returns a measure of RAM memory not in use.
It gives a different measurement value, depending on
whether the memory model is of the small data group or
the large data group.

In the large data models, coreleft returns the
amount of unused memory between the heap and the
stack.

coreleft is unique to DOS.

In the small data memory models, coreleft returns the
amount of unused memory between the stack and the
data segment minus 256 bytes.

allocmem, brk, farcoreleft, malloc

Calculates the cosine.

#inc1ude <math.h>
double cos (double x);

math.h

cos returns the cosine of the input value. The angle is
specified in radians.

cos returns a value in the range -1 to 1.

Error-handling for this routine can be modified through
the function matherr.

Turbo C Reference Guide

Portability

See also

cosh
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

country
Function

Syntax

Prototype in

Remarks

cos

cos is available on UNIX systems and is compatible with
ANSIC.

acos, asin, atan, atan2, cosh, matherr, sin, sinh, tan,
tanh

Calculates the hyperbolic cosine.

#include <math.h>
double cosh(double x);

math.h

cosh computes the hyperbolic cosine for a real argu­
ment.

cosh returns the hyperbolic cosine of the argument.

When the correct value would create an overflow, cosh
returns the value HUGE_VAL with the appropriate sign,
and errno is set to ERANGE.

Error-handling for cosh can be modified through the
function math err.

cosh is available on UNIX systems and is compatible
with ANSIC.

acos, asin, atan, atan2, cos, matherr, sin, sinh, tan, tanh

Returns country-dependent information.

#include <dos.h>
struct country *country(int xcode, struct country *cp);

dos.h

country specifies how certain country-dependent data,
such as dates, times, and currency, will be formatted.
The values set by this function depend on the DOS
version being used.

Chapter 2, The Turbo C Ubrary 83

country

Return value

Portability

84

If cp has a value of -1, the current country is set to the
value of xcode, which must be nonzero. Otherwise, the
country structure pointed to by cp is filled with the
country-dependent information of the current country
(if xcode is set to 0), or the country given by xcode.

The structure country is defined as follows:

struct country (

} ;

int co_date;
char co_curr[S];
char co_thsep[2];
char co_desep[2];
char co_dtsep[2];
char co_tmsep[2);
char co_currstyle;
char co_digits;
char co_time;
long co_case;
char co_dasep[2);
char co_fill[lO);

1* date format *1
1* currency symbol *1

1* thousands separator *1
1* decimal separator *1

1* date separator *1
1* time separator *1
1* currency style *1

1* significant digits in currency *1
1* time format *1

1* case map *1
1* data separator *1

1* filler *1

The date format in co_date is

.0 for the U.S. style of month, day, year
• 1 for the European style of day, month, year
.2 for the Japanese style of year, month, day

Currency display style is given by co_currstyle, as
follows:

o Currency symbol precedes value with no spaces
between the symbol and the number.

1 Currency symbol follows value with no spaces
between the number and the symbol.

2 Currency symbol precedes value with a space
after the symbol.

3 Currency symbol follows the number with a
space before the symbol.

On success, country returns the pointer argument cpo On
error it returns NULL.

country is available only with DOS version 3.0 and
greater.

Turbo C Reference Guide

cprintf
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

cputs
Function

Syntax

Prototype in

Remarks

Return value

Writes formatted output to the screen.

int cprintf(const char *format[, argument, ...]);

conio.h

cprintf

cprintf accepts a series of arguments, applies to each a
format specification contained in the format string
pointed to by format, and outputs the formatted data
directly to the screen, to the current text window. There
must be the same number of format specifications as
arguments.

See printf for a description of the information included
in a format specification. Unlike fprintf and printf,
cprintf does not translate linefeed characters (\n) into
carriage-return/linefeed character pairs (\r\n).

cprintf returns the number of characters output.

cprintf works with IBM pes and compatibles only.

directvideo (variable), fprintf, printf, putch, sprintf,
vprintf

See printf

Writes a string to the screen.

int cputs(const char *str);

conio.h

cputs writes the null-terminated string str to the current
text window. It does not append a newline character.

The string is written directly to screen memory by way
of a BIOS call, depending on the value of directvideo.

Unlike puts, cputs does not translate linefeed characters
(\n) into carriage-return/linefeed character pairs (\r\n).

cputs returns the last character printed.

Chapter 2, The Turbo C library 85

cputs

Portability

See also

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

86

cputs works with IBM PCs and compatibles only.

directvideo (variable), putch, puts

Creates a new file or rewrites an existing one.

#inc1ude <dos.h>
int _creat(const char *path, int attrib);

io.h

_creat accepts attribute, a DOS attribute word. Any
attribute bits can be set in this call. The file is always
opened in binary mode. Upon successful file creation,
the file pointer is set to the beginning of the file. The file
is opened for both reading an~ writing.

If the file already exists, its size is reset to O. (This is
essentially the same as deleting the file and creating a
new file with the same name.)

The attribute argument to _creat can be one of the
following constants (defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, _creat returns the new file
handle, a nonnegative integer; otherwise, it returns-l.

In the event of error, errno is set to one of the following:

ENOENT Path or file name not found
EMFILE Too many open files
EACCES Permission denied

_creat is unique to DOS.

_chmod, chsize, _close, close, creat, creatnew,
creattemp

Turbo C Reference Guide

creat
Function

Syntax

Prototype in

Remarks

Return value

creat

Creates a new file or rewrites an existing one.

#include <sys\stat.h>
int creat(const char *path, int amode);

io.h

creat creates a new file or prepares to rewrite an existing
file given by path. amode applies only to newly created
files.

A file created with creat is always created in the trans­
la tion mode specified by the global variable _fmode
(a_TEXT or a_BINARY).

If the file exists and the write attribute is set, creat
truncates the file to a length of 0 bytes, leaving the file
attributes unchanged. If the existing file has the read­
only attribute set, the creat call fails, and the file remains
unchanged.

The creat call examines only the S_IWRITE bit of the
access-mode word amode. If that bit is 1, the file is
writable. If the bit is 0, the file is marked as read-only.
All other DOS attributes are set to O.

amode can be one of the following (defined in sys \stat.h):

Value of amode

S_IWRITE
S_IREAD
S_IREAD I S_IWRITE

Access Permission

Permission to write
Permission to read
Permission to read and write

Note: In DOS, write permission implies read permission.

Upon successful completion, creat returns the new file
handle, a nonnegative integer; otherwise, it returns -1.

In the event of error, errno is set to one of the following:

Chapter 2, The Turbo C Ubrary 87

creat

Portability

See also

creatnew
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

88

ENOENT
EMFILE
EACCES

Path or file name not found
Too many open files
Permission denied

creat is available on UNIX systems.

chmod, chsize, close, _creat, creatnew, creattemp, dup,
dup2, Jmode (variable), fopen, open, sopen, write

Creates a new file.

#inc1ude <dos.h>
int creatnew(const char *path, int attrib);

io.h

creatnew is identical to _creat, with the exception that, if
the file exists, the creatnew call returns an error and
leaves the file untouched.

The mode argument to creatnew can be one of the
following constants (defined in dos.h):

FA_RDONL Y Read -only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, creat returns the new file
handle, a nonnegative integer; otherwise, it returns-l.

In the event of error, errno is set to one of the following:

EEXIST File already exists
ENOENT Path or file name not found
EMFILE Too many open files
EACCES Permission denied

creatnew is unique to DOS 3.0 and will not work on
earlier DOS versions.

close, _creat, creat, creattemp, dup, Jmode (variable),
open

Turbo C Reference Guide

creattemp
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

creattemp

Creates a unique file in the directory associated with the
path name.

#inc1ude <dos.h>
int creattemp(char *path, int attrib);

io.h

A file created with creattemp is always created in the
translation mode specified by the global variable Jmode
(O_TEXTor O_BINARY).

path is a path name ending with a backslash (\). A
unique file name is selected in the directory given by
path. The newly created file name is stored in the path
string supplied. path should be long enough to hold the
resulting file name. The file is not automatically deleted
when the program terminates.

creattemp accepts amode, a DOS attribute word. Any
attribute bits can be set in this call. The file is always
opened in binary mode. Upon successful file creation,
the file pointer is set to the beginning of the file. The file
is opened for both reading and writing

The amode argument to creattemp can be one of the
following constants (defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, the new file handle, a non­
negative integer, is returned; otherwise, a -1 is returned.

In the even t of error, errno is set to one of the following:

ENOENT Path or file name not found
EMFILE Too many open files
EACCES Permission denied

creattemp is unique to DOS 3.0 and will not work on
earlier versions.

close, _creat, creat, creatnew, dup, Jmode (variable),
open

Chapter 2, The Turbo C Ubrary 89

cscanf

cscanf
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

90

Scans and fonnats input from the console.

int cscanf(char *format[, address, ... 1);

conio.h

eseanf scans a series of input fields, one character at a
time, reading directly from the console. Then each field
is fonnatted according to a format specification passed
to eseanf in the format string pointed to by format.
Finally, eseanf stores the formatted input at an address
passed to it as an argument following format, and echoes
the input directly to the screen. There must be the same
number of fonnat specifications and addresses as there
are input fields.

See seanf for a description of the infonnation included
in a fonnat specification.

eseanf might stop scanning a particular field before it
reaches the normal end-of-field (whitespace) character,
or it may tenninate entirely, for a number of reasons. See
seanf for a discussion of possible causes.

eseanf returns the number of input fields successfully
scanned, converted and stored; the return value does
not include scanned fields that were not stored. If no
fields were stored, the return value is O.

If eseanf attempts to read at end-of-file , the return value
is EOF.

eseanf is available on UNIX systems and is defined in
Kernighan and Ritchie.

fseanf,getche, seanf, sseanf

Turbo C Reference Guide

ctime
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

ctrlbrk
Function

Syntax

Prototype in

Converts date and time to a string.

#include <time.h>
char *ctime(const time_t *time);

time.h

ctime

ctime converts a time value pointed to by time (the value
returned by the function time) into a 26-character string
in the following form, terminating with a newline
character and a null character:

Man Nov 21 11:31:54 1983\n\O

All the fields have constant width.

The global long variable timezone should be set to the
difference in seconds between GMT and local standard
time (in PST, timezone is 8 x 60 x 60). The global variable
daylight is nonzero if and only if the standard USA
Daylight Savings time conversion should be applied.

ctime returns a pointer to the character string containing
the date and time. The return value points to static data
that is overwritten with each call to ctime.

ctime is available on UNIX systems and is compatible
withANSIC.

asctime, daylight (variable), difftime, £time, getdate,
gmtime, localtime, settime, time, timezone (variable),
tzset

See asctime

Sets control-break handler.

void ctrlbrk(int (*handler)(void»;

dos.h

Chapter 2, The Turbo C Ubrary 91

ctrlbrk

Remarks

Return value

Portability

See also

Example

ctrlbrk sets a new control-break handler function
pointed to by handler. The interrupt vector Ox23 is
modified to call the named function.

ctrlbrk establishes a DOS interrupt handler that calls the
named function; the named function is not called
directly.

The handler function can perform any number of
operations and system calls. The handler does not have
to return; it can use longjmp to return to an arbitrary
point in the program. The handler function returns 0 to
abort the current program; any other value will cause
the program to resume execution.

ctrlbrk returns nothing.

ctrlbrk is unique to DOS.

getcbrk, signal

tinclude <stdio.h>
tinclude <dos.h>

'define ABORT 0
int c_break(void)
(

printf(UControl-Break hit.
Program aborting ••• \nU);

return(ABORT);

main ()
(

ctrlbrk(c_break);
/* infinite loop */
for (;;)
(

printf(ULooping ••. \nU);

Program output

Looping ...
Looping •..
Looping ...
"C
Control-Break hit. Program aborting ...

92 Turbo C Reference Guide

delay
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

delline
Function

Syntax

Prototype in

Remarks

Return value

Portability

Suspends execution for an interval (milliseconds).

void delay(unsigned milliseconds);

dos.h

delay

With a call to delay, the current program is suspended
from execution for the number of milliseconds specified
by the argument milliseconds. The exact time may vary
somewhat in different operating environments.

None.

This function works only with IBM PCs and com­
patibles.

nosound, sleep, sound

1* Emits a 440 Hz tone for 500 milliseconds *1
#include <dos.h>

main ()
(

sound(440)i
delay(500)i
nosound()i

Deletes line in text window.

void delline(void);

conio.h

delline deletes the line containing the cursor and moves
all tines below it one tine up. delline operates within the
currently active text window.

None.

This function works only with IBM PCs and com­
patibles.

Chapter 2, The Turbo C Ubrary 93

detectgraph

See also dreol, clrscr, ins line, window

detectgraph
Function

Syntax

Prototype in

Remarks

94

Determines graphics driver and graphics mode to use by
checking the hard ware.

#inc1ude <graphics.h>
void far detectgraph(int far *graphdriver

int far *graphmode);

graphics.h

detectgraph detects your system's graphics adapter and
chooses the mode that provides the highest resolution
for that adapter. If no graphics hardware was detected,
*graphdriver is set to -2, and graphresult will also return
-2.

*graphdriver is an integer that specifies the graphics
driver to be used. You can give it a value using a con­
stant of the graphics_drivers enumeration type, defined in
graphics.h and listed in the following table.

graphics_drivers
constant

DETECT
CGA
MCGA
EGA
EGA64
EGAMONO
IBM8514
HE RCMONO
ATT400
VGA
PC3270

Numeric value

o (requests autodetection)
1
2
3
4
5
6
7
8
9

10

*graphmode is an integer that specifies the initial graphics
mode (unless *graphdriver equals DETECT, in which case

Turbo C Reference Guide

detectgraph

*graphmode is set to the highest resolution available for
the detected driver). You can give *graphmode a value
using a constant of the graphics_modes enumeration type,
defined in graphics.h and listed in the following table.

Graphics Column
driver graphics_modes Value x Row Palette Pages

CGA CGACO 0 320x200 CO 1
CGAC1 1 320x200 C1 1
CGAC2 2 320x200 C2 1
CGAC3 3 320x200 C3 1
CGAHI 4 640x200 2 color 1

MCGA MCGACO 0 320x200 CO 1
MCGAC1 1 320x200 C1 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMED 4 640x200 2 color 1
MCGAHI 5 640x480 2 color 1

EGA EGALO 0 640x200 16 color 4
EGAHI 1 640x350 16 color 2

EGA64 EGA64LO 0 640x200 16 color 1
EGA64HI 1 640x350 4 color 1

EGA- EGAMONOHI 3 640x350 2 color 1*
MONO EGAMONOHI 3 640x350 2 color 2**

HERC HERCMONOHI 0 720x348 2 color 2

AIT400 AIT400CO 0 320x200 CO 1
AIT400C1 1 320x200 C1 1
AIT400C2 2 320x200 C2 1
AIT400C3 3 320x200 C3 1
AIT400MED 4 640x200 2 color 1
AIT400HI 5 640x400 2 color 1

VGA VGALO 0 640x200 16 color 2
VGAMED 1 640x350 16 color 2
VGAHI 2 640x480 16 color 1

PC3270 PC3270HI 0 720x350 2 color 1

IBM8514 IBM8514HI 0 640x480 256 color
IBM8514LO 0 1024x768 256 color

.. 64Kon EGAMONO card
.... 256K on EGAMONO card

Chapter 2, The Turbo C Ubrary 95

detectgraph

Return value

Portability

See also

difftime
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

disable
Function

Syntax

Prototype in

96

Note: The main reason to call detectgraph directly is to
override the graphics mode that detectgraph recom­
mends to initgraph.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

graphresult, initgraph

Computes the difference between two times.

#include <time.h>
double difftime(time_t time2, time_t time1);

time.h

difftime calculates the elapsed time, in seconds, from
timel to time2.

The global long variable timezone contains the difference
in seconds between GMT and local standard time (in
PST, timezone is 8 x 60 x 60. The global variable daylight is
nonzero only if the standard U.S. Daylight Savings Time
conversion should be applied.

difftime returns the result of its calculation as a double.

difftime is available on UNIX systems and is compatible
with ANSIC.

asctime, dime, daylight (variable), time, timezone
(variable)

Disables interrupts.

#include <dos.h>
void disable(void);

dos.h

Turbo C Reference Guide

Remarks

Return value

Portability

See also

div
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

disable

disable is designed to provide a programmer with
flexible hardware interrupt control.

The disable macro disables interrupts. Only the NMI
interrupt will still be allowed from any external device.

None.

This macro is unique to the 8086 architecture.

enable, getvect

Divides two integers, returning quotient and remainder.

#inc1ude <stdlib.h>
div _t div(int numer, int denom);

stdlib.h

div divides two integers and returns both the quotient
and the remainder as a div _t type. numer and denom are
the numerator and denominator, respectively. The div_t
type is a structure of integers defined (with typedef) in
stdlib.h as follows:

typedef struct
int quot;
int rem;

div_t;

1* quotient *1
1* remainder *1

div returns a structure whose elements are quot (the
quotient) and rem (the remainder).

div is compatible with ANSI C.

ldiv

#include <stdlib.h>
div_t x;

main ()
{

x = div(lO,3);
printf("lO div 3 = %d remainder %d\n", x.quot, x.rem);

Chapter 2, The Turbo C Ubrary 97

dosexterr

dosexterr
Function

Syntax

Prototype in

Remarks

Return value

Portability

dostounix
Function

Syntax

Prototype in

Remarks

98

Program output

10 div 3 = 3 remainder 1

Gets extended DOS error infonna tion.

#inc1ude <dos.h>
int dosexterr(struct DOSERROR *eblkp);

dos.h

This function fills in the DOSERROR structure pointed
to by eblkp with extended error infonnation after a DOS
call has failed. The structure is defined as follows:

struct DOSERROR {
int ext error;
char class;
char action;
char locus;

} ;

/* extended error */
/* error class */

/* action */
/* error locus */

The values in this structure are obtained via DOS call
Ox59. An exterror value of 0 indicates that the prior DOS
call did not result in an error.

dosexterr returns the value exterror.

dosexterr is unique to DOS 3.0 and will not work on
earlier releases.

Converts date and time to UNIX time fonnat.

#inc1ude <dos.h>
long dostounix(struct date *d, struct time *0;

dos.h

dostounix converts a date and time as returned from
getdate and gettime into UNIX time fonnat. d points to

Turbo C Reference Guide

Return value

Portability

See also

drawpoly
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

dostounix

a date structure, and t points to a time structure
containing valid DOS date and time information.

UNIX version of current date and time parameters:
number of seconds since 00:00:00 on January 1, 1970
(GMT).

dos tounix is unique to DOS.

unixtodos

Draws the outline of a polygon.

#include <graphics.h>
void far drawpoly(int numpoints, int far *polypoints);

graphics.h

drawpoly draws +a polygon with numpoints points,
using the current line style and color.

polypoints points to a sequence of (numpoints x 2)
integers. Each pair of integers gives the x and y
coordinates of a point on the polygon.

Note: In order to draw a closed figure with n vertices,
you must pass n + 1 coordinates to drawpoly where the
nth coordinate is equal to the Oth.

If an error occurs while the polygon is being drawn,
graphresult will return a value of -6.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

fillpoly, floodfill, graphresult, setwritemode

finclude <graphics.h>
iinclude <conio.h>

main ()
{

/* Will request autodetection */
int graphdriver = DETECT, graphmode;
int triangle! 1 = {50,100, 100,100, 150,150, 50,100};
int rhombus! 1 = {50,10, 90,50, 50,90, 10,50};

Chapter 2, The Turbo C Ubrary 99

drawpoly

dup
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

100

/* Initialize graphics */
initgraph(&graphdriver, &graphmode, 1111);

/* Draw a triangle */
drawpoly(sizeof(triangle)/(2*sizeof(int)), triangle);

/* Draw and fill a rhombus */
fillpoly(sizeof(rhombus)/(2*sizeof(int)), rhombus);
getche () ;
closegraph();

Duplicates a file handle.

int dup(int handle);

io.h

dup creates a new file handle that has the following in
common with the original file handle:

• same open file or device
• same file pointer (that is, changing the file pointer of

one changes the other)

• same access mode (read, write, read/write)

handle is a file handle obtained from a _creat, creat,
_open, open, dup, or dup2 call.

Upon successful completion, dup returns the new file
handle, a nonnegative integer; otherwise, dup returns
-1.

In the event of error, errno is set to one of the following:

EMFILE Too many open files
EBADF Bad file number

dup is available on all UNIX systems.

_close, close, _creat, creat, creatnew, creattemp, dup2,
fopen,_open, open

Turbo C Reference Guide

dup2
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

ecvt
Function

Syntax

Prototype in

dup2

Duplicates a file handle (oldhandle) onto an existing file
handle (newhandle).

int dup2(int oldhandle, int newhandle);

io.h

dup2 creates a new file handle that has the following in
common with the original file handle:

D same open file or device

I!l same file pointer (that is, changing the file pointer of
one changes the other)

D same access mode (read, write, read/ write)

dup2 creates a new handle with the value of newhandle.
If the file associated with newhandle is open when dup2
is called, the file is closed.

newhandle and oldhandle are file handles obtained from a
creat, open, dup, or dup2 call.

dup2 returns 0 on successful completion, -1 otherwise.

In the event of error, errno is set to one of the following:

EMFILE Too many open files
EBADF Bad file number

dup2 is available on some UNIX systems, but not
System III.

_close, close,_creat, creat, creatnew, creattemp, dup,
fopen,_open, open

Converts a floating-point number to a string.

char *ecvt(double value, int ndig, int *dec, int *sign);

stdlib.h

Chapter 2, The Turbo C Ubrary 101

ecvt

Remarks

Return value

Portability

See also

ellipse
Function

Syntax

Prototype in

Remarks

Return value

102

ecvt converts value to a null-terminated string of ndig
digits, starting with the leftmost significant digit, and
returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is
stored indirectly through dec (a negative value for dec
means that the decimal lies to the left of the returned
digits). There is no decimal point in the string itself. If
the sign of value is negative, the word pointed to by sign
is nonzero; otherwise, it is O. The low-order digit is
rounded.

The return value of ecvt points to static data for the
string of digits whose content is overwritten by each call
to ecvt.

ecvt is available on UNIX.

atof, atoi, atol, fcvt, gcvt, printf

Draws an elliptical arc.

#include <graphics.h>
void far ellipse(int x, int y, int stangle,

int endangle, int xradius, int yradius);

graphics.h

ellipse draws an elliptical arc in the current drawing
color with its center at (x,y) and the horizontal and
vertical axes given by xradius and yradius, respectively.
The ellipse travels from stangle to endangle. If stangle
equals 0 and endangle equals 360, the call to ellipse will
draw a complete ellipse.

The angle for ellipse is reckoned counterclockwise, with
o degrees at 3 o'clock, 90 degrees at 12 o'clock, and so
on.

Note: The linestyle parameter does not affect arcs, circles,
ellipses, or pieslices. Only the thickness parameter is
used.

None.

Turbo C Reference Guide

Portability

See also

Examples

Function

Syntax

Prototype in

Description

ellipse

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

arc, circle, fillellipse, getaspectratio, sector,
setasp ectratio

See arc

Inserts literal values directly into code.

void __ emit __ (argument, ...);

dos.h

__ ernie _ is an inline function that allows you to insert
literal values directly into object code as it is compiling.
It is used to generate machine language instructions
without using inline assembly language or an assembler.
It can be used in the in tegra ted development
environment, which inline assembly code cannot.

Generally the arguments of an __ ernit __ call are
single-byte machine instructions. However, because of
the capabilities of this function, more complex
instructions, complete with references to e variables,
can be constructed.

Warning! This function should only be used by
programmers who feel comfortable with the machine
language of the 80x86 processor family. You can use this
function to place arbitrary bytes in the instruction code
of a function; if any of these bytes are incorrect, the
program will misbehave and may easily crash your
machine. Turbo e does not attempt to analyze your calls
for correctness in any way. If you encode instructions
that change machine registers or memory, Turbo e will
not be aware of it and may not properly preserve
registers, as it would in many cases with inline assembly
language (for example, it recognizes the usage of SI and
DI registers in inline instructions). You are completely
on your own with this function.

Chapter 2, The Turbo C Ubrary 103

Return value

104

You must pass at least one argument to __ emit_ ~ any
number may be given. The arguments to this function
are not treated like any other function call arguments in
the language. An argument passed to __ emit __ will not
be converted in any way.

There are special restrictions on the form of the
arguments to __ emit __ . They must be in the form of
expressions that can be used to initialize a static object.
This means that integer and floating point constants and
the addresses of static objects may be used. The values
of such expressions are written to the object code at the
point of the call, exactly as if they were being used to
initialize data. The address of an auto or parameter
variable, plus or minus a constant offset, may also be
used. For these arguments, the offset of the variable
from BP is stored.

The number of bytes placed in the object code is
determined from the type of the argument, except in the
following cases: .

EI If a signed integer constant (Le. Ox90) appears that fits
within the range of 0 to 255, it is treated as if it were a
character.

II If the address of an auto or parameter variable is used,
a byte is written if the offset of the variable from BP is
between -128 and 127; otherwise a word is written.

Simple bytes written as follows:

emit (Ox90) ;

If you want a word written, but the value you are
passing is under 255, simply cast it to unsigned, as
follows:

emit (OxB8, (unsigned) 17);

or

emit (OxB8, 17u);

Two- or four-byte address values can be forced by
casting an address to void near * or void far *
respectively.

None.

Turbo C Reference Guide

Portability

enable
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

eof
Function

Syntax

Prototype in

Remarks

Return value

See also

__ emit __ is unique to Intel 80x86 processors.

Enables hard ware interrupts.

#inc1ude <dos.h>
void enable(void);

dos.h

enable

enable is designed to provide a programmer with
flexible hardware interrupt control.

The enable macro enables interrupts, allowing any
device interrupts to occur.

None.

enable is unique to the 80 x 86 architecture.

disable, getvect

Checks for end-of-file.

int eof(int handle);

io.h

eof determines whether the file associated with handle
has reached end-of-file.

If the current position is end-of-file, eof returns the
value 1; otherwise, it returns O. A return value of -1
indica tes an error; errno is set to

EBADF Bad file number

clearerr, feof, ferror, perror

Chapter 2, The Turbo C Ubrary 105

exec ...

exec ...
Function

Syntax

Prototype in

Remarks

106

Loads and runs other programs.

int exec1(char *path, char *argO,
*argl, ... , *argn, NULL);

int exec1e(char *path, char *argO,
*argl, ... , *argn, NULL, char **env);

int exec1p(char *path, char *argO,
*argl, ... , *argn, NULL);

int exec1pe(char *path, char *argO,
*argl, ... , *argn, NULL, char **env);

int execv(char *path, char *argv[J);
int execve(char *path, char *argv[], char **env);
int execvp(char *path, char *argv[]);
int execvpe(char *path, char *argv[], char **env)i

process.h

The functions in the exec ... family load and run
(execute) other programs, known as child processes.
When an exec ... call is successful, the child process
overlays the parent process. There must be sufficient
memory available for loading and executing the child
process.

path is the file name of the called child process. The
exec ... functions search for path using the standard DOS
search algorithm:

• If no explicit extension is given, the functions will
search for the file as given. If the file is not found, they
will add .COM and search again. If that search is not
successful, they will add .EXE and search one last
time.

• If an explicit extension or a period is given, the
functions will search for the file exactly as given.

• If the file name has a period but no extension, the
functions will look for a file with no extension.

The suffixes I, v, p, and e added to the exec ... "family
name" specify that the named function will operate with
certain capabilities.

Turbo C Reference Guide

exec ...

p The function will search for the file in those
directories specified by the DOS PATH environment
variable (without the p suffix, the function searches
only the current working directory). If the path
parameter does not contain an explicit directory, the
function will search first the current directory, then
the directories set with the DOS PATH environment
variable.

The argument pointers (argO, argl, ... , argn) are
passed as separate arguments. Typically, the 1

suffix is used when you know in advance the number of
arguments to be passed.

v The argument pointers (argvW]
... , arg[nJ) are passed as an array of pointers. Typically,
the v suffix is used when a variable number of
arguments is to be passed.

e The argument env may be passed to the child process,
allowing you to alter the environment for the child
process. Without the e suffix, child processes inherit
the environment of the parent process.

Each function in the exec ... family must have one of the
two argument-specifying suffixes (either 1 or v). The path
search and environment inheritance suffixes (p and e) are
optional.

For example:

• execl is an exec ... function that takes separate
arguments, searches only the root or current directory
for the child, and passes on the parent's environment
to the child .

• execvpe is an exec ... function that takes an array of
argument pointers, incorporates PATH in its search
for the child process, and accepts the env argument for
altering the child's environment.

The exec ... functions must pass at least one argument to
the child process (argO or argvW]); this argument is, by
convention, a copy of path. (Using a different value for
this Oth argument won't produce an error.)

Chapter 2, The Turbo C Ubrary 107

exec ...

Return value

Portability

See also

Example

108

Under DOS 3.x, path is available for the child process;
under earlier versions, the child process cannot use the
passed value of the Oth argument (argO or argv[O)).

When the 1 suffix is used, argO usually points to path, and
argl, ... , argn point to character strings that form the
new list of arguments. A mandatory NULL following
argn marks the end of the list.

When the e suffix is used, you pass a list of new en­
vironmen t settings through the argumen t env. This
environment argument is an array of character pointers.
Each element points to a null-terminated character
string of the form

envvar = value

where envvar is the name of an environment variable,
and value is the string value to which envvar is set. The
last element in env is NULL. When env is NULL, the
child inherits the parents' environment settings.

The combined length of argO + argl + ... + argn (or of
argv[O] + argv[l] + ... + argn[nJ), including space
characters that separate the arguments, must be less
than 128 bytes. Null terminators are not counted.

When an exec ... function call is made, any open files
remain open in the child process.

If successful, the exec ... functions return no value. On
error, the exec ... functions return -1, and errno is set to
one of the following:

E2BIG Arg list too long
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found
ENOEXEC Exec format error
ENOMEM Not enough core

exec ... is unique to DOS.

abort, atexit, _exit, exit, _fpreset, searchpath, spawn ... ,
system

tinclude <stdio.h>
tinclude <process.h>

Turbo C Reference Guide

_exit
Function

Syntax

Prototype in

Remarks

main ()
{

int stat;

exec ...

printf ("About to exec child with argl arg2 ... \n") ;
stat = execl(ICHILD.EXE", "CHILD.EXE", "argl", "arg2",

NULL) ;

1* execl will return only if it cannot run CHILD *1
printf("execl error = %d\n", stat);
exit(1);

1* CHILD.C *1
#include <stdio.h>

main(int argc, char *argv[])
{

int i;

printf("Child running ..• \n");
1* print out its arguments *1
for (i=O; i<argc; iff)

printf("argv[%d]: %s\n", i, argv[i]);

Program output

About to exec child with argl arg2
Child running ..•
argv[O]: CHILD.EXE
argv[l]: argl
argv[2]: arg2

Terminates program.

void _exit(int status);

pr,?cess.h, stdlib.h

_exit terminates execution without closing any files,
flushing any output, or calling any exit functions.

status is provided for the calling process as the exit
status of the process. Typically a value of a is used to
indicate a normal exit, and a nonzero value indicates
some error.

Chapter 2, The Turbo C Ubrary 109

Return value

Portability

See also

exit
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

exp
Function

Syntax

Prototype in

Remarks

Return value

110

None.

_exit is available on UNIX systems.

abort, atexit, exec ... , exit, spawn ...

Tennina tes program.

void exit(int status);

process.h, stdlib.h

exit tenninates the calling process. Before termination,
all files are closed, buffered output (waiting to be
output) is written, and any registered "exit functions"
(posted with atexit) are called.

status is provided for the calling process as the exit
status of the process. Typically a value of 0 is used to
indicate a normal exit, and a nonzero value indicates
some error.

None.

exit is available on UNIX systems and is compatible
with ANSIC.

abort, atexit, exec ... , _exit, keep, signal, spawn ...

Calculates the exponential e to the xth power.

#include <math.h>
double exp(double x);

math.h

exp calculates the exponential function eX.

exp returns eX.

Sometimes the arguments passed to exp produce results
that overflow or are incalculable. When the correct value

Turbo C Reference Guide

Portability

See also

fabs
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

farcalloc
Function

Syntax

Prototype in

Remarks

exp

overflows, exp returns the value HUGE_VAL. Results of
excessively large magnitude can cause err no to be set to

ERANGE Result out of range

On underflow, exp returns 0.0, and errno is not changed.

Error-handling for exp can be modified through the
function matherr.

exp is available on UNIX systems and is compatible with
ANSIC.

frexp, ldexp, log, loglO, matherr, pow, powlO, sqrt

Returns the absolute value of a floating-point number.

#include <math.h>
double fabs(double x);

math.h

fabs calculates the absolute value of x, a double.

fabs returns the absolute value of x. There is no return
on error.

fabs is available on UNIX systems and is compatible
with ANSIC.

abs, cabs, labs

Allocates memory from the far heap.

void far *farcalloc(unsigned long nunits,
unsigned long unitsz);

alloc.h

farcalloc allocates memory from the far heap for an
array containing nunits elements, each unitsz bytes long.

For allocating from the far heap, note that

Chapter 2, The Turbo C Ubrary 111

farcalloc

Return value

Portability

See also

farcoreleft
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

112

a All available RAM can be allocated .
• Blocks larger than 64K can be allocated .
• Far pointers are used to access the allocated blocks.

In the compact, large, and huge memory models,
farcalloc is similar, though not identical, to calloc. It
takes unsigned long parameters, while calloc takes
unsigned parameters.

A tiny model program cannot make use of farcalloc if it
is to be converted to a .COM file.

farcalloc returns a pointer to the newly allocated block,
or NULL if not enough space exists for the new block.

farcalloc is unique to DOS.

calloc, farcoreleft, farfree, malloc

Returns measure of unused memory in far heap.

unsigned long farcoreleft(void);

alloc.h

farcoreleft returns a measure of the amount of unused
memory in the far heap beyond the highest allocated
block.

A tiny model program cannot make use of farcoreleft if
it is to be converted to a .COM file.

farcoreleft returns the total amount of space left in the
far heap, between the highest allocated block and the
end of memory.

fare ore left is unique to DOS.

coreleft, farcalloc, farmalloc

See farmalloc

Turbo C Reference Guide

farfree
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

farmalloc
Function

Syntax

Prototype in

Remarks

Frees a block from far heap.

void farfree(void far * block);

alloc.h

farfree

farfree releases a block of memory previously allocated
from the far heap.

A tiny model program cannot make use of farfree if it is
to be converted to a .COM file.

In the small and medium memory models, blocks
allocated by farmanoc can not be freed via normal free,
and blocks allocated via malloc cannot be freed via
farfree. In these models, the two heaps are completely
distinct.

None.

farfree is unique to DOS.

farcalloc,farmalloc

see farmanoc

Allocates from far heap.

void far *farmalloc(unsigned long nbytes);

alloc.h

farmanoc allocates a block of memory nbytes bytes long
from the far heap.

For allocating from the far heap, note that

• All available RAM can be allocated.
• Blocks larger than 64K can be allocated.
• Far pointers are used to access the allocated blocks.

In the compact, large, and huge memory models,
farmanoc is similar, though not identical, to manoc. It

Chapter 2, The Turbo C Ubrary 113

farmalloc

Return value

Portability

See also

Example

114

takes unsigned long parameters, while malloc takes
unsigned parameters.

A tiny model program cannot make use of farmalloc if it
is to be converted to a .COM file.

farmalloc returns a pointer to the newly allocated block,
or NULL if not enough space exists for the new block.

farmalloc is unique to DOS.

farcalloc, farcoreleft, farfree, farrealloc, malloc

1* Far Memory Management
farcoreleft - gets the amount of core memory left
farmalloc - allocates space on the far heap
farrealloc - adjusts allocated block in far heap
farfree - frees far heap *1

'include <stdio.h>
'include <alloc.h>

main ()
(

char far * block;
long size = 65000;

1* Find out what's out there *1
printf("%lu bytes free\n", farcoreleft());

1* Get a piece of it *1
block = farmalloc(size);
if (block == NULL)
(

printf("failed to allocate\n");
exit(l);

printf("%lu bytes allocated, ",size);
printf("%lu bytes free\n", farcoreleft());

1* Shrink the block *1
size 1= 2;
block = farrealloc(block, size);
printf("block now reallocated to %lu bytes, ",size);
printf("%lu bytes free\n", farcoreleft());

1* Let it go entirely *1
printf("Free the block\n");
farfree(block);
printf ("block now freed, ");
printf("%lu bytes free\n", farcoreleft());

1* End of main *1

Turbo C Reference Guide

farrealloc
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

Program output

359616 bytes free
65000 bytes allocated, 294608 bytes free

farmalloc

block now reallocated to 32500 bytes, 262100 bytes free
Free the block
Block now freed, 359616 bytes free

Adjusts allocated block in far heap.

void far *farreallodvoid far *oldblock,
unsigned long nbytes);

alloc.h

farrealloc adjusts the size of the allocated block to
nbytes, copying the contents to a new location, if
necessary.

For allocating from the far heap, note that

II All available RAM can be allocated .
• Blocks larger than 64K can be allocated .
• Far pointers are used to access the allocated blocks.

A tiny model program cannot make use of farrealloc if it
is to be converted to a .COM file.

farrealloc returns the address of the reallocated block,
which may be different than the address of the original
block. If the block cannot be reallocated, farrealloc
returns NULL.

farrealloc is unique to DOS.

farmalloc, realloc

See farmalloc

Chapter 2, The Turbo C library 115

fclose

fclose
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

fcloseall
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

116

Closes a stream.

#include <stdio.h>
int fclose(FILE *stream);

stdio.h

fdose closes the named stream. Generally, all buffers
associated with the stream are flushed before closing.
System-allocated buffers are freed upon closing. Buffers
assigned with setbuf or setvbuf are not automatically
freed.

fdose returns 0 on success. It returns EOF if any errors
were detected.

fdose is available on UNIX systems and is compatible
with ANSIC.

close, fdoseall, fdopen, fflush, flushall, fop en, freopen

See fopen

Closes open streams.

int fcloseall(void);

stdio.h

fcloseall closes all open streams except stdin, stdout,
stdprn, stderr, and stdaux.

fdoseall returns the total number of streams it closed. It
returns EOF if any errors were detected.

fdoseall is available on UNIX systems.

fdose, fdopen, flushall, fop en, freopen

Turbo C Reference Guide

fcvt
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

fdopen
Function

Syntax

Prototype in

Remarks

Converts a floating-point number to a string.

#inc1ude <stdlib.h>
char *fcvt(double value, int ndig,

int *dec, int *sign);

stdlib.h

fcvt

fcvt converts value to a null-terminated string of ndig
digits, starting with the leftmost significant digit, and
returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is
stored indirectly through dec (a negative value for dec
means to the left of the returned digits). There is no
decimal point in the string itself. If the sign of value is
negative, the word pointed to by sign is nonzero; other­
wise, it is O.

The correct digit has been rounded for the number of
digits specified by ndig.

The return value of fcvt points to static data whose
content is overwritten by each call to fcvt.

fcvt is available on UNIX.

atof, atoi, atol, ecvt, gcvt

Associates a stream with a file handle.

#inc1ude <stdio.h>
FILE *fdopen(int handle, char *type);

stdio.h

fdopen associates a stream with a file handle obtained
from creat, dup, dup2, or open. The type of stream must
match the mode of the open handle.

The type string used in a call to fdopen is one of the
following values:

Chapter 2, The Turbo C Ubrary 117

fdopen

Return value

Portability

See also

Example

118

r Open for reading only.

w Create for writing.

a Append; open for writing at end-of-file or create
for writing if the file does not exist.

r+ Open an existing file for update (reading and
writing).

w+ Create a new file for update.

a+' Open for append; open (or create if the file does
not exist) for update at the end of the file.

To specify that a given file is being opened or created in
text mode, append a t to the value of the type string (rt,
w+t, etc.); similarly, to specify binary mode, append a b
to the type string (wb, a+b, etc.).

If a t or b is not given in the type string, the mode is
governed by the global variable Jmode. If Jmode is set to
a_BINARY, files will be opened in binary mode. If
Jmode is set to a_TEXT, they will be opened in text
mode. These 0_ ... constants are defined in fcntl.h.

When a file is opened for update, both input and output
can be done on the resulting stream. However, output
cannot be directly followed by input without an inter­
vening fseek or rewind, and input cannot be directly
followed by output without an intervening fseek,
rewind, or an input that encounters end-of-file.

On successful completion, fdopen returns a pointer to
the newly opened stream. In the event of error, it returns
NULL.

fdopen is available on UNIX systems.

fdose, fop en, freopen, open

*include <stdio.h>
*include <fcntl.h>
/* Needed to define the mode used in open */

main ()
{

int handle;
FILE * stream;

/* Open a file */

Turbo C Reference Guide

feof
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

handle = open(IMYFILE.TXT", O_CREAT);

1* Now turn it into a stream *1
stream = fdopen(handle, "W");
if (stream == NULL)

printf("fdopen failed\n");
else

fprintf(stream, "Hello, world\n");
fclose (stream) ;

Detects end-of-file on a stream.

#inc1ude <stdio.h>
int feof(FILE *stream);

stdio.h

fdopen

feof is a macro that tests the given stream for an end-of­
file indicator. Once the indicator is set, read operations
on the file return the indicator until rewind is called or
the file is closed.

The end-of-file indica tor is reset with each input
operation.

feof returns nonzero if an end-of-file indicator was
detected on the last input operation on the named
stream and 0 if end-of-file has not been reached.

feof is available on UNIX systems and is compatible
withANSIC.

clearerr, eof, ferror, perror

Chapter 2, The Turbo C Ubrary 119

ferror

ferror
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

fflush
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

120

Detects errors on stream.

#inc1ude <stdio.h>
int ferror(FILE *stream);

stdio.h

ferror is a macro that tests the given stream for a read or
write error. If the stream's error indicator has been set, it
remains set until dearerr or rewind is called, or until the
stream is closed.

ferror returns nonzero if an error was detected on the
named stream.

ferror is available on UNIX systems and is compatible
with ANSI C.

dearerr, eof, feof, fopen, gets, perror

Flushes a stream.

#inc1ude <stdio.h>
int fflush(FILE *stream);

stdio.h

If the given stream is open for output, fflush writes the
buffered output for stream to the associated file.

If stream is open for input, fflush clears the buffer
contents.

The stream remains open after fflush has executed.
fflush has no effect on an unbuffered stream.

fflush returns 0 on success. It returns EOF if any errors
were detected.

fflush is available on UNIX systems and is compatible
withANSIC.

fdose, flushall, setbuf, setvbuf

Turbo C Reference Guide

fgetc
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

fgetchar
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Gets character from stream.

#inc1ude <stdio.h>
int fgetc(FILE *stream);

stdio.h

fgetc

fgetc returns the next character on the named input
stream.

On success, fgetc returns the character read, after
converting it to an int without sign extension. On end­
of-file or error, it returns EOF.

fgetc is available on UNIX systems and is compatible
with ANSI C.

fgetchar, fputc, getc, getch, getchar, getche, ungetc,
ungetch

Gets character from stdin.

int fgetchar(void);

stdio.h

fgetchar returns the next character from stdin. It is
defined as !getc(stdin).

On success, fgetchar returns the character read, after
converting it to an int without sign extension. On end­
of-file or error, it returns EOF. Because EOF is a
legitimate value for fgetchar to return, feof and ferror
should be used to detect end-of-file or error.

fgetchar is available on UNIX systems.

fgetc, fputchar, getchar

Chapter 2, The Turbo C Ubrary 121

fgetpos

fgetpos
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

fgets
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

122

Gets the current file pointer.

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

stdio.h

fgetpos stores the position of the file pointer associated
with the given stream in the location pointed to by pos.

The type fpos_t is defined in stdio.h as

typedef long fpos_t;

On success, fgetpos returns O. On failure, it returns a
nonzero value and sets errno to EBADF or EINV AL.

fgetpos is compatible with ANSI C.

fseek, fsetpos, £tell, tell

Gets a string from a stream.

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

stdio.h

fgets reads characters from stream into the string s. The
function stops reading when it reads either n - 1
characters or a newline character, whichever comes first.
fgets does not place the newline character in the string.
The last character read into s is followed by a null
character.

On success, fgets returns the string pointed to by s; it
returns NULL on end-of-file or error.

fgets is available on UNIX systems and is compatible
with ANSI C. It is also defined in Kernighan and Ritchie.

cgets, £puts, gets

Turbo C Reference Guide

filelength
Function

Syntax

Prototype in

Remarks

Return value

See also

fileno
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Gets file size in bytes.

#include <io.h>
long filelength(int handle);

io.h

filelength

filelength returns the length (in bytes) of the file asso­
ciated with handle.

On success, filelength returns a long value, the file
length in bytes. On error, it returns -I, and errno is set to

EBADF Bad file number

fop en, lseek, open

Gets file handle.

#include <stdio.h>
int fileno(FILE *stream);

stdio.h

fileno is a macro that returns the file handle for the
given stream. If stream has more than one handle, fileno
returns the handle assigned to the stream when it was
first opened.

fileno returns the integer file handle associated with
stream.

fileno is available on UNIX systems.

fdopen, fopen, £reopen

Chapter 2, The Turbo C Ubrary 123

fillellipse

fillellipse
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

fillpoly
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

124

Draws and fills an ellipse.

#inc1ude <graphics.h>
void far fillellipse(int x, int y, int xradius,

int yradius);

graphics.h

Draws an ellipse using (x,y) as a center point and xradius
and yradius as the horizontal and vertical axes, and fills
it with the current fill color, and fill pattern.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

arc, circle, ellipse, getaspectratio, pieslice,
setaspectratio

Draws and fills a polygon.

#inc1ude <graphics.h>
void far fillpoly(int numpoints, int far *polypoints);

graphics.h

fillpoly draws the outline of a polygon with numpoints
points in the current line style and color (just as
drawpoly does), then fills the polygon using the current
fill pattern and fill color.

polypoints points to a sequence of (numpoints x 2)
integers. Each pair of integers gives the x and y
coordinates of a point on the polygon.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

drawpoly, floodfill, graphresult, setfillstyle

Turbo C Reference GuIde

findfirst
Function

Syntax

Prototype in

Remarks

Searches a disk directory.

#include <dir h>
#include <dos.h>

findfirst

int findfirst(const char *pathname,
struct ffulk *ffblk, int attrib);

dir.h

findfirst begins a search of a disk directory by using the
DOS system call Ox4E.

pathname is a string with an optional drive specifier,
path, and file name of the file to be found. The file name
portion can contain wildcard match characters (such as ?
or *). If a matching file is found, the ffblk structure is
filled with the file-directory in fo rma tion.

The format of the structure ffblk is as follows:

struct ffblk {

I;

char ff_reserved[21];
char ff _attrib;
int ff_ftime;
int ff_fdate;
long ff_fsize;
char ff_name[13];

/* reserved by DOS */
/* attribute found */

/* file time * /
/* file date * /
/* file size * /

/* found file name */

attrib is a DOS file-attribute byte used in selecting
eligible files for the search. attrib can be one of the
following constants defined in dos.h:

FA_RDONLY
FA_HIDDEN
FA_SYSTEM
FA_LABEL
FA_DIREC
FA_ARCH

Read-only attribute
Hidden file
System file
Volume label
Directory
Archive

For more detailed information about these attributes,
refer to the DOS Programmer's Reference Manual.

Note that findfirst sets the DOS disk-transfer address
(DTA) to the address of the ffblk.

Chapter 2, The Turbo C Ubrary 125

findfirsf

Return value

Portability

See also

Example

126

If you need this DTA value, you should save it and
restore it (using getdta and setdta) after each call to
findfirst.

findfirst returns 0 on successfully finding a file matching
the search path name. When no more files can be found,
or if there is some error in the file name, -1 is returned,
and the global variable errno is set to one of the
following:

ENOENT Path or file name not found
ENMFILE No more files

findfirst is unique to DOS.

findnext

tinclude <stdio.h>
#include <dir.h>

main()
{

struct ffblk ffblk;
int done;
printf("Directory listing of *.*\n");
done = findfirst("*.*",&ffblk,O);
while (! done)
{

printf (" %s \n", ffblk. ff _name) ;
done = findnext(&ffblk);

Program output

Directory listing of *.*
FINDFRST.C
FINDFRST.OBJ
FINDFRST.MAP
FINDFRST. EXE

Turbo C Reference Guide

find next
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

floodfill
Function

Syntax

Prototype in

Continues findfirst search.

#inc1ude <dir h>
int findnext(struct ffblk *ffblk);

dir.h

findnext

findnext is used to fetch subsequent files that match the
pathname given in findfirst. ffblk is the same block filled
in by the findfirst call. This block contains necessary
information for continuing the search. One file name for
each call to findnext will be returned until no more files
are found in the directory matching the path name.

Note that find next sets the DOS disk-transfer address
(DTA) to the address of ffblk.

If you need this DTA value, you should save it and
restore it (using getdta and setdta) after each call to
findnext.

findnext returns 0 on successfully finding a file
matching the search pathname. When no more files can
be found, or if there is some error in the file name, -1 is
returned, and the global variable errno is set to one of the
following:

ENOENT Path or file name not found
ENMFILE No more files

findnext is unique to DOS.

findfirst

See findfirst

Flood-fills a bounded region.

#include <graphics.h>
void far floodfill(int x, int y, int border);

graphics.h

Chapter 2, The Turbo C Library 127

floodfill

Remarks

Return value

Portability

See also

Example

128

floodfill fills an enclosed area on bitmap devices. (x,y) is
a "seed point" within the enclosed area to be filled. The
area bounded by the color border is flooded with the
current fill pattern and fill color. If the seed point is
within an enclosed area, the inside will be filled. If the
seed is outside the enclosed area, the exterior will be
filled.

Use fillpoly instead of floodfill whenever possible so
that you can maintain code compatibility with future
versions.

Note: floodfill does not work with the IBM-8S14 driver.

If an error occurs while flooding a region, graphresult
will return a value of -7.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

drawpoly, fillpoly, graphresult, setcolor, setfillstyle

linclude <graphics.h>

main ()
(

/* Will request autodetection */
int graphdriver = DETECT, graphmode;

/* Initialize graphics */
initgraph(&graphdriver, &graphmode, 1111);

/* Draw a bar, then flood-fill the side and top */
setcolor(WHITE);
setfillstyle(HATCH_FILL, LIGHTMAGENTA);
bar3d (10, 10, 100, 100, 10, 1);
setfillstyle(SOLID_FILL, LIGHTGREEN);
/* Fill the side */
floodfill(102, 50, WHITE);
/* Fill the top */
floodfill(50, 8, WHITE);

closegraph () ;

Turbo C Reference Guide

floor
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

flush all
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Rounds down.

#include <math.h>
double floor(double x);

math.h

floor finds the largest integer not greater than x.

floor returns the integer found (as a double).

floor

floor is available on UNIX systems and is compatible
withANSIC.

ceil, fmod

Flushes all streams.

int flushall(void);

stdio.h

flushall clears all buffers associated with open input
streams, and writes all buffers associated with open
output streams to their respective files. Any read
operation following flushall reads new data into the
buffers from the input files.

Streams stay open after flushall has executed.

flush all returns an integer, the number of open input
and output streams.

flushall is available on UNIX systems.

fclose, fcloseall, fflush

Chapter 2, The Turbo C Ubrary 129

fmod

fmod
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

fnmerge
Function

Syntax

Prototype in

Remarks

130

Calculates x modulo y, the remainder of x/yo

#include <math.h>
double fmod(double x, double y);

math.h

fmod calculates x modulo y (the remainder I where
x = iy + I for some integer i and 0 ~I < y).

fmod returns the remainder I, where x = iy + I (as
described) .

fmod is compatible with ANSI C.

ciel, floor, modf

Builds a path from component parts.

#include <dir h>
void fnmerge(char *path, const char *drive,

const char *dir, const char *name,
const char *ext);

dir.h

fnmerge makes a path name from its components. The
new path name is

X:\DIR\SUBDIR\NAME.EXT

where

drive = x:
dir = \DIR\SUBDIR\
name = NAME

ext = .EXT

fnmerge assumes there is enough space in path for the
constructed path name. The maximum constructed
length is MAXP ATH. MAXP ATH is defined in dir.h.

Turbo C Reference Guide

Return value

Portability

See also

Example

fnmerge

fnmerge and fnsplit are invertible; if you split a given
path with fnsplit, then merge the resultant components
with fnmerge, you end up with path.

None.

fnmerge is available on DOS systems only.

fnsplit

tinclude <stdio.h>
tinclude <dir.h>

char drive[MAXDRIVE);
char dir[MAXDIR);
char file[MAXFILE);
char ext[MAXEXT);

main ()
(

char s[MAXPATH), t[MAXPATH);
int flag;
for (;;)
(

1* Print input prompt while *1
printf(lI) ");
1* There is more input *1
if (!gets(s)) break;
if (!gets[O)) break;
flag = fnsplit(s,drive,dir,file,ext);

1* Print the components *1
printf(lIdrive: %s, dir: %s, file: %s, ext: %s, ",

drive, dir, file, ext);
printf(lIflags: ");
if (flag & DRIVE)

printf(":");
if (flag & DIRECTORY)

printf("d") ;
if (flag & FILENAME)

printf ("f");
if (flag & EXTENSION)

printf ("e") ;
printf("\n");

1* Glue the parts back together and
compare to original *1

fnmerge(t,drive,dir,file,ext);
1* Shouldn't happen! *1
if (strcmp(t,s) != 0)

printf(" --) strings are different!");

Chapter 2, The Turbo C Ubrary 131

fnmerge

fnsplit
Function

Syntax

Prototype in

Remarks

132

Program output

> C:\TURBOC\FN.C
drive: C:, dir: \TURBOC\, file: FN, ext: .C,
flags: :dfe

> FILE.C
drive: , dir: , file: FILE, ext: .C, flags: fe

> \TURBOC\SUBDIR\NOEXT.
drive: , dir: \TURBOC\SUBDIR\, file: NOEXT,
ext: ., flags: dfe

> C:MYFILE
drive: C:, dir: , file: MYFILE, ext: , flags: :f

Splits a full path name into its components.

#include <dir h>
int fnsplit(const char *path, char *drive, char *dir,

char *name, char *ext);

dir.h

fnsplit takes a file's full path name (path) as a string in
the form

X:\DIR\SUBDIR\NAME.EXT

and splits path into its four components. It then stores
those components in the strings pointed to by drive, dir,
name, and ext. (All five components must be passed, but
any of them can be a null, which means the corre­
sponding component will be parsed but not stored.)

The maximum sizes for these strings are given by the
constan ts MAXDRIVE, MAXDIR, MAXP ATH,
MAXNAME, and MAXEXT (defined in dir.h), and each
size includes space for the null-terminator.

Turbo C Reference Guide

Return value

Portability

See also

Example

fnsplit

Constant (Max) String

MAXPATH (80) path
MAXDRIVE (3) drive; includes colon (:)
MAXDIR (66) dir; includes leading and

trailing backslashes (\)
MAXFILE (9) name
MAXEXT (5) ext; includes leading dot (.)

fnsplit assumes that there is enough space to store each
non-NULL component.

When fnsplit splits path, it treats the punctuation as
follows:

D drive includes the colon (C:, A:, etc.).
D dir includes the leading and trailing backslashes

(\turboc\include\, \source\, etc.).
D name includes the file name.

D ext includes the dot preceding the extension (.C, .EXE,
etc.).

fnmerge and fnsplit are invertible; if you split a given
path with fnsplit, then merge the resultant components
with fnmerge, you end up with path.

fnsplit returns an integer (composed of five flags,
defined in dir.h) indicating which of the full path name
components were present in path; these flags and the
components they represent are

EXTENSION
FILENAME
DIRECTORY

DRIVE
WILDCARDS

An extension
A filename
A directory (and possibly
subdirectories)
A drive specification (see dir.h)
Wildcards (* or ?)

fnsplit is available on DOS systems only.

fnmerge

See fnmerge

Chapter 2, The Turbo C Ubrary 133

topen

fopen
Function

Syntax

Prototype in

Remarks

134

Opens a stream.

#inc1ude <stdio.h>
FILE *fopen(const char *filename, canst char *mode);

stdio.h

fopen opens the file named by filename and associates a
stream with it. fopen returns a pointer to be used to
identify the stream in subsequent operations.

The mode string used in calls to fopen is one of the
following values:

r Open for reading only.

w Create for writing.

a Append; open for writing at end-of-file or create
for writing if the file does not exist.

r+ Open an existing file for update (reading and
writing).

w+ Create a new file for update.

a+ Open for append; open (or create if the file does
not exist) for update at the end of the file.

To specify that a given file is being opened or created in
text mode, you can append a t to the mode string (rt, w+t,
etc.). Similarly, to specify binary mode, you can append
a b to the mode string (wb, a+b, etc.). fopen also allows
the t or b to be inserted between the letter and the +
character in the mode string; for example, rt+ is equi­
valent to r+t.

If a t or b is not given in the mode string, the mode is
governed by the global variable Jmode. If Jmode is set to
O_BINARY, files will be opened in binary mode. If
fmode is set to 0 TEXT, they will be opened in text
mode. These 0_ ... constants are defined in fcntl.h.

When a file is opened for update, both input and output
can be done on the resulting stream. However, output
cannot be followed directly by input without an

Turbo C Reference Guide

Return value

Portability

See also

Example

fopen

intervening fseek or rewind, and input cannot be
directly followed by output without an intervening
fseek, rewind, or an input that encounters end-of-file.

On successful completion, fopen returns a pointer to the
newly opened stream. In the event of error, it returns
NULL.

fopen is available on UNIX systems and is compatible
with ANSI C. It is defined by Kernighan and Ritchie.

creat, dup, fdose, fdopen, ferror, Jmode (variable),
fop en, fread, £reopen, fseek, fwrite, open, rewind,
setbuf, setmode

1* Program to create a backup of the AUTOEXEC.BAT file *1

iinclude <stdio.h>

main ()
{

FILE tin, tout;

if ((in = fopen(I\\AUTOEXEC.BAT", "rt")) == NULL)
(

fprint(stderr, "Cannot open input file.\n");
return (1);

if ((out = fopen(I\\AUTOEXEC.BAK", "wt")) == NULL)
{

fprint (stderr, "Cannot open output file. \n") ;
return (1);

while (!feof(in))
fputc(fgetc(in), out);

fdose (in) ;
fclose(out);

Chapter 2, The Turbo C Ubrary 135

Function

Syntax

Prototype in

Remarks

Return value

See also

Example

_fpreset
Function

Syntax

Prototype in

Remarks

136

Gets a far address offset.

#include <dos.h>
unsigned FP _OFF(farpointer);

dos.h

The FP _OFF macro can be used to get the offset of the
far pointer farpointer.

FP _OFF returns an unsigned integer value representing
an offset value.

FP _SEC, MK_FP, movedata, segread

~include <stdio.h>
~include <dos.h>

main ()
{

char far *ptr;
unsigned seg, off;
ptr = MK_FP(OxBOOO,O);
seg = FP_SEG(ptr);
off = FP_OFF(ptr);
printf("far ptr %Fp, segment %04x,"

"offset %04x\n", ptr,seg,off);

Program output

far ptr BOOO:OOOO, segment bOOO, offset 0000

Reinitializes floating-point math package.

void _fpreset(void);

£loat.h

_fpreset reinitializes the floating-point math package.
This function is usually used in conjunction with system
or the exec ... or spawn ... functions.

Turbo C Reference Guide

Return value

See also

fprintf
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

_fpreset

Note: Under DOS versions prior to 2.0 and 3.0, if an
8087/80287 coprocessor is used in a program, a child
process (executed by system or by an exec ... or spawn ...
function) might alter the parent process's floating-point
state.

If you use an 8087/80287, take the following pre­
cautions:

• Do not call system, or an exec ... or spawn ... function,
while a floating-point expression is being evaluated .

• Call _fpreset to reset the floating-point state after
using system, exec ... , or spawn ... if there is any
chance that the child process performed a floating­
point operation with the 8087/80287.

None.

_clearS7, _controlS7, exec ... , spawn ... , _status87, system

Writes formatted output to a stream.

#include <stdio.h>

int fprintf(FILE *stream,
const char *format[, argument, ... J);

stdio.h

fprintf accepts a series of arguments, applies to each a
format specification contained in the format string
pointed to by format, and outputs the formatted data to a
stream. There must be the same number of format
specifications as arguments.

See printf for a description of the information included
in a format specification.

fprintf returns the number of bytes output. In the event
of error, it returns EOF.

fprintf is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

cprintf, fscanf, printf, putc, sprintf

Chapter 2, The Turbo C Ubrary 137

Example

Function

Syntax

Prototype in

Remarks

Return value

See also

Example

fpute
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

138

See printf

Gets far address segment.

#include <dos.h>
unsigned FP _SEG(farpointer);

dos.h

FP _SEG is a macro that gets the segment value of the far
pointer farpointer.

FP _SEG returns an unsigned integer representing a
segment value.

FP_OFF, MK_FP

See FP_OFF

Puts a character on a stream.

#include <stdio.h>
int fputc(int c, FILE *stream);

stdio.h

fputc outputs character c to the named stream.

On success, fputc returns the character c. On error, it
returns EOF.

fputc is available on UNIX systems and is compatible
with ANSI C.

fgetc, putc

Turbo C Reference Guide

fputchar
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

fputs
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Outputs a character on stdout.

#include <stdio.h>
int fputchar(int c);

stdio.h

fputchor

fputchar outputs character c to stdout. fputchar(c) is the
same as fputc(c, stdout).

On success, fputchar returns the character c. On error, it
returns EOF.

fpu tc is available on UNIX systems.

fgetchar, putchar

Outputs a string on a stream.

#include <stdio.h>
int fputs(const char *s, FILE *stream);

stdio.h

fputs copies the null-terminated string s to the given
output stream; it does not append a newline character,
and the terminating null character is not copied.

On successful completion, fputs returns the last char­
acter written. Otherwise, it returns a value of EOF.

fputs is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

fgets, gets, puts

Chapter 2, The Turbo C Ubrary 139

fread

fread
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

free
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

140

Reads data from a stream.

#inc1ude <stdio.h>
size_t fread(void *ptr, size_t size, size_t n,

FILE *stream);

stdio.h

fread reads n items of data, each of length size bytes,
from the given input stream, into a block pointed to by
ptr.

The total number of bytes read is (n x size).

On successful completion, fread returns the number of
items (not bytes) actually read. It returns a short count
(possibly 0) on end-of-file or error.

fread is available on all UNIX systems and is compatible
with ANSIC.

fop en, £Write, printf, read

Frees allocated block.

void free(void *block);

stdlib.h, alloc.h

free deallocates a memory block allocated by a previous
call to calloc, malloc, or realloc.

None.

free is available on UNIX systems and is compatible
withANSIC.

calloc, freemem, malloc, realloc, strdup

Turbo C Reference Guide

freemem
Function

Syntax

Prototype in

Remarks

Return value

See also

freopen
Function

Syntax

Prototype in

Remarks

freemem

Frees a previously allocated DOS memory block.

int freemem(unsigned segx);

dos.h

freemem frees a memory block allocated by a previous
call to allocmem. segx is the segment address of that
block.

freemem returns 0 on success. In the event of error, it
returns -I, and errno is set to

ENOMEM Insufficient memory

allocmem, free

Replaces a stream.

#include <stdio.h>
FILE *freopen(const char *filename, const char *mode,

FILE *stream);

stdio.h

freopen substitutes the named file in place of the open
stream. It closes stream, regardless of whether the open
succeeds. freopen is useful for changing the file attached
to stdin, stdout, or stderr.

The mode string used in calls to fopen is one of the
following values:

r Open for reading only.

w Create for writing.

a Append; open for writing at end-of-file or create
for writing if the file does not exist.

r+ Open an existing file for update (reading and
writing).

Chapter 2, The Turbo C Ubrary 141

freopen

Return value

Portability

See also

Example

frexp
Function

Syntax

Prototype in

Remarks

142

w+ Create a new file for update.

a+ Open for append; open (or create if the file does
not exist) for update at the end of the file.

To specify that a given file is bei.J;lg opened or created in
text mode, you can append a t to the mode string (rt, w+t,
etc.); similarly, to specify binary mode, you can append
a b to the mode string (wb, a+b, etc.).

If a t or b is not given in the mode string, the mode is
governed by the global variable Jmode. If Jmode is set to
O_BINARY, files will be opened in binary mode. If
[mode is set to 0 TEXT, they will be opened in text
mode. These 0_ ... constants are defined in fcnt1.h.

When a file is opened for update, both input and output
can be done on the resulting stream. However, output
cannot be directly followed by input without an
intervening fseek or rewind, and input cannot be
directly followed by output without an intervening
fseek, rewind, or an input that encounters end-of-file.

On successful completion, freopen returns the argument
stream. In the event of error, it returns NULL.

freopen is available on UNIX systems and is compatible
with ANSIC.

fdose, fdopen, fopen, open, setmode

See fopen

Splits a double number into mantissa and exponent.

#inc1ude <math.h>
double frexp(double x, int *exponent);

math.h

frexp calculates the mantissa m (a double greater than
or equal to 0.5, and less than 1) and the integer value n
such that x (the original double value) equals m x 2n.
frexp stores n in the integer that exponent points to.

Turbo C Reference Guide

Return value

Portability

See also

fscanf
Function

Syntax

Prototype in

Remarks

Return value

Portability

frexp

frexp returns the mantissa m.

Error-handling for frexp can be modified through the
function matherr.

frexp is available on UNIX systems and is compatible
withANSIC.

exp,ldexp

Scans and formats input from a stream.

#include <stdio.h>
int fscanf(FILE *stream,

const char *format[, address, ... J);

stdio.h

fscanf scans a series of input fields, one character at a
time, reading from a stream. Then each field is
formatted according to a format specification passed to
fscanf in the format string pointed to by format. Finally,
fscanf stores the formatted input at an address passed to
it as an argument following format. There must be the
same number of format specifications and addresses as
there are input fields.

See scanf for a description of the information included
in a format specification.

fscanf may stop scanning a particular field before it
reaches the normal end-of-field (whitespace) character,
or it may terminate entirely, for a number of reasons. See
scanf for a discussion of possible causes.

fscanf returns the number of input fields successfully
scanned, converted, and stored; the return value does
not include scanned fields that were not stored.

If fscanf attempts to read at end-of-file, the return value
is EOP. If no fields were stored, the return value is O.

fscanf is available on UNIX systems and is defined in
Kernighan and Ritchie. It is compatible with ANSI C.

Chapter 21 The Turbo C Ubrary 143

fseek

See also

fseek
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

144

atof, cscanf, fprintf, printf, scanf, sscanf, vfscanf,
vscanf, vsscanf

Repositions a file pointer on a stream.

#include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

stdio.h

fseek sets the file pointer associated with stream to a
new position that is offset bytes beyond the file location
given by whence. For text fode streams, offset should be 0
or a value returned by ftell.

'whence must be one of the values 0, 1, or 2, which
represent three symbolic constants (defined in stdio.h)
as follows:

whence

SEEK_SET
SEEK_CUR
SEEK_END

(0)
(1)
(2)

File Location

File beginning
Current file pointer position
End-of-file

fseek discards any character pushed back using ungetc.

fseek is used with stream I/O. For file handle I/O, use
lseek.

After fseek, the next operation on an update file can be
either input or output.

fseek returns 0 if the pointer is successfully moved and
returns a nonzero value on failure.

fseek is available on all UNIX systems and is compatible
with ANSIC.

fgetpos, fopen, fsetpos, ftell, lseek, rewind, setbuf, tell

Turbo C Reference Guide

Example

fsetpos
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

tinclude <stdio.h>
/* Returns the number of bytes in file stream */
long filesize(FILE *stream)
(

long curpos,length;
curpos = ftell(stream);
fseek(stream, OL, SEEK_END);
length = ftell(stream);
fseek(stream, curpos, SEEK_SET);
return(length);

main ()
(

FILE *stream;
stream = fopen("MYFILE.TXT", "r");
printf(IIfilesize of MYFILE.TXT is %ld"

"bytes\n", filesize(stream));

Program output

filesize of MYFILE.TXT is 15 bytes

Positions the file pointer of a stream.

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

stdio.h

fseek

fsetpos sets the file pointer associated with stream to a
new position. The new position is the value obtained by
a previous call to fgetpos on that stream. It also clears
the end-of-file indicator on the file that stream points to
and undoes any effects of ungetc on that file. After a call
to fsetpos, the next operation on the file can be input or
output.

On success fsetpos returns O. On failure it returns a
nonzero value, and sets errno to a nonzero value.

fsetpos is compatible with ANSI C.

fgetpos, fseek, £tell

Chapter 2, The Turbo C Ubrary 145

fstat

fstat
Function

Syntax

Prototype in

Remarks

146

Gets open file information.

#include <sys\stat.h>
int fstat(int handle, struct stat *statbuf);

sys\stat.h

fstat stores information in the stat structure about the
open file or directory associated with handle.

statbut points to the stat structure (defined in sys \stat.h).
That structure contains the following fields:

st_mode Bit mask giving information about the
open file's mode

st_dev Drive number of disk containing the file,
or file handle if the file is on a device

sCrdev Same as sCdev

sCnlink Set to the integer constant 1

st_size Size of the open file in bytes

st_atime Most recent time the open file was
modified

sCmtime Same as st_atime

sCctime Same as st_atime

The stat structure contains three more fields not
mentioned here. They contain values that are not
meaningful under DOS.

The bit mask that gives information about the mode of
the open file includes the following bits.

One of the following bits will be set:

S_IFCHR Set if handle refers to a device.

Set if an ordinary file is referred to by
handle.

One or both of the following bits will be set:

Turbo C Reference Guide

Return value

See also

ftell
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

fstat

S_IWRITE Set if user has permission to write to
file.

S_IREAD Set if user has permission to read to file.

The bit mask also includes the read/write bits; these are
set according to the file's permission mode.

fstat returns 0 if it has successfully retrieved the
information about the open file. On error (failure to get
the information), it returns -1 and sets errno to

EBADF Bad file handle

access, chmod, stat

Returns the current file pointer.

#include <stdio.h>
long int ftell(FILE *stream);

stdio.h

£tell returns the current file pointer for stream. The offset
is measured in bytes from the beginning of the file.

The value returned by £tell can be used in a subsequent
call to fseek.

£tell returns the current file pointer position on success.
It returns -lL on error, and sets errno to a positive value.

ftell is available on all UNIX systems and is compatible
withANSIC.

fgetpos, fseek, fsetpos, lseek, rewind, tell

See fseek

Chapter 2, The Turbo C Ubrary 147

ftime

ftime
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

148

Stores current time in timeb structure.

#include <sys \ timeb.h>
void ftime(struct timeb *buf>

sys\timeb.h

ftime determines the current time and fills in the fields
in the timeb structure pointed to by bUf. The timeb
structure contains four fields: time, millitm, timezone, and
dstflag·

• The time field provides the time in seconds since
00:00:00 Greenwich Mean Time (GMT), January 1,
1970.

• The millitm field is the fractional part of a second in
milliseconds.

• The timezone field is the difference in minutes between
GMT and the local time. This value is computed going
west from GMT. ftime gets this field from the global
variable timezone, which is set by the tzset function.

• The dstflag field is set to 0 if daylight savings time is
not in effect for the local time zone, and to a nonzero
value if daylight savings time is in effect for the local
time zone. This field will be set to nonzero only if the
global variable daylight (set by the tzset function) is
nonzero, indicating that daylight savings is in effect
for the given date and time.

Note: ftime will call tzset. It isn't necessary to call tzset
explicitly when you use ftime.

None.

ftime is available on UNIX System V systems.

asctime, ctime, gmtime, localtime, stime, time, tzset

tinclude <stdio.h>
tinclude <sys\timeb.h>

main ()
{

struct timeb buf;

ftime(&buf) ;

Turbo C Reference Guide

fwrite
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

gcvt
Function

Syntax

Prototype in

Remarks

printf("%ld Seconds since 1-1-70 GMT\n", buLtime);
printf(lIplus %d milliseconds\n", buf.millitm);
printf(lI%d Minutes from GMT\n", buf.timezone);
printf(IIOaylight savings %s in effect\n",

buf.dstflag? "is" : "is not");

Writes to a stream.

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size,

size_t n, FILE *stream);

stdio.h

ftime

fwrite appends n items of data, each of length size bytes,
to the given output file. The data written begins at ptr.

The total number of bytes written is (n x size).

ptr in the declarations is a pointer to any object.

On successful completion, fwritereturns the number of
items (not bytes) actually written. It returns a short
count on error.

fwrite is available on all UNIX systems and is com­
pa tible with ANSI C.

fop en, fread

Converts floating-point number to a string.

#include <dos.h>
char *gcvt(double value, int ndec, char *buj);

stdlib.h

gcvt converts value to a null-terminated ASCII string and
stores the string in buf. It produces ndec significant digits
in Fortran F-format, if possible; otherwise, it returns the

Chapter 2, The Turbo C Ubrary 149

gcvt

Return value

Portability

See also

value in the printf E-format (ready for printing). It may
suppress trailing zeros.

gcvt returns the address of the string pointed to by buf.

gcvt is available on UNIX.

ecvt, fcvt

geninterrupt
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Generates a software interrupt.

#include <dos.h>
void geninterrupt(int intr _num);

dos.h

The geninterrupt macro triggers a software trap for the
interrupt given by intr _num.~ The state of all registers
after the call depends on the interrupt called.

None.

geninterrupt is unique to the 8086 architecture.

bdos, bdosptr, getvect, int86, int86x, intdos, intdosx,
intr

getarccoords
Function

Syntax

Prototype in

Remarks

150

Gets coordinates of the last call to arc.

#include <graphics.h>
void far getarccoords(struct arccoordstype

far *arccoords);

graphics.h

getarccoords fills in the arccoordstype structure pointed
to byarccoords with information about the last call to arc.
The arccoordstype structure is defined in graphics.h as
follows:

struct arccoordstype
int x, Yi

Turbo C Reference Guide

Return value

Portability

See also

Examples

getarccoords

int xstart, ystart, xend, yend;
} ;

The members of this structure are used to specify the
center point (x,y), the starting position (xstart, ystart),
and the ending position (xend, yend) of the arc. These
values are useful if you need to make a line meet at the
end of an arc.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

arc, fillellipse, sector

See arc

getaspectratio
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Examples

Retrieves the current graphics mode's aspect ratio.

#inc1ude <graphics.h>
void far getaspectratio(int far *xasp, int far *yasp);

graphics.h

The y aspect factor, *yasp, is normalized to 10,000; on all
graphics adapters except the VGA, *xasp (the x aspect
factor) is less than *yasp because the pixels are taller than
they are wide. On the VGA, which has "square" pixels,
*xasp equals *yasp. In general, the relationship between
*yasp and *xasp can be stated as

*yasp = 10,000
*xasp <= 10,000

getaspectratio gets the values in *xasp and *yasp.

None.

A similar routine exists in Turbo Pascal 4.0.

arc, circle, ellipse, fillellipse, pieslice, sector,
setasp ectratio

See arc

Chapter 2, The Turbo C Ubrary 151

getbkcolor

getbkcolor
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

152

Returns the current background color.

#inc1ude <gra phics.h>
int far getbkcolor(void);

graphics.h

getbkcolor returns the current background color. (See
the table under setbkcolor for details.)

getbkcolor returns the current background color.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getcolor, getmaxcolor, getpalette, setbkcolor

tinclude <graphics.h>
~include <conio.h>
#include <dos.h>

main ()
(

1* will request autodetection *1
int graphdriver = DETECT, graphmode;
int svcolor;
1* initialize graphics *1
initgraph(&graphdriver, &graphmode, 1111);

1* save current bkcolor *1
svcolor = getbkcolor();
1* change bkcolor *1
setbkcolor(svcolor AI);
1* wait S seconds *1
delay(SOOO);
1* restore old bkcolor *1
setbkcolor(svcolor);
getche () ;
closegraph();

Turbo C Reference Guide

getc
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getcbrk
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Gets character from stream.

#inc1ude <stdio.h>
int getc(FILE *stream);

stdio.h

getc

getc is a macro that returns the next character on the
given input stream and increments the stream's file
pointer to point to the next character.

On success, getc returns the character read, after
converting it to an int without sign extension. On end­
of-file or error, it returns EOF.

getc is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

fgetc, getch, getchar, getche, gets, putc, putchar, ungetc

Gets control-break setting.

int getcbrk(void);

dos.h

getcbrk uses the DOS system call Ox33 to return the
current setting of control-break checking.

getcbrk returns 0 if control-break checking is off, or 1 if
checking is on.

getcbrk is unique to DOS.

ctrlbrk, setcbrk

Chapter 2, The Turbo C Ubrary 153

getch

getch
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getchar
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

154

Gets character from keyboard, does not echo to screen.

int getch(void);

conio.h

getch reads a single character directly from the console,
without echoing to the screen. getch uses stdin.

getch returns the character read from the keyboard.

getch is unique to DOS.

cgets, fgetc, getc, getchar, getche, getpass, kbhit, putch,
ungetch

Gets character from stdin.

#inc1ude <stdio.h>
int getchar(void);

stdio.h

getchar is a macro that returns the next character on the
named input stream stdin. It is defined to be getc(stdin).

On success, getchar returns the character read, after
converting it to an int without sign extension. On end­
of-file or error, it returns EOF.

getchar is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

fgetc, fgetchar, getc, getch, getche, putc, putchar,
ungetc

Turbo C Reference Guide

getche
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getcolor
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

getche

Gets character from the console, echoes to screen.

int getche(void);

conio.h

getche reads a single character from the console and
echoes it to the current text window, using direct video
or BIOS.

getche returns the character read from the keyboard.

getche is unique to DOS.

cgets, cscanf, fgetc, getc, getch, getchar, kbhit, putch,
ungetch

Returns the current drawing color.

#include <graphics.h>
int far getcolor(void);

graphics.h

getcolor returns the current drawing color.

The drawing color is the value to which pixels are set
when lines, etc., are drawn. For example, in CGACO
mode, the palette contains four colors: the background
color, light green, light red, and yellow. In this mode, if
getcolor returns I, the current drawing color is light
green.

getcolor returns the current drawing color.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getbkcolor, getmaxcolor, getpalette, setcolor

*include <graphics.h>

*include <conio.h>

Chapter 2, The Turbo C Ubrary 155

getcolor

getcurdir
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

156

main ()
{

/* will request autodetection */
int graphdriver = DETECT, graphmode;
int svcolor;
/* initialize graphics */
initgraph (&graphdriver, &graphmode, '"');
/* save current drawing color */
svcolor = getcolor();
/* set drawing color to color stored in palette entry ~3 */
setcolor(3);
/* small colored circle */
circle (100, 100, '5);
/* restore old drawing color */
setcolor(svco1orli
getche () ;
closegraph();

Gets current directory for specified drive.

int getcurdir(int drive, char *directory);

dir.h

getcurdir gets the name of the current working directory
for the drive indicated by drive.

drive specifies a drive number (0 for default, 1 for A,
etc.).

directory points to an area of memory of length MAXDIR
where the null-terminated directory name will be
placed. The name does not contain the drive
specification and does not begin with a backslash.

getcurdir returns 0 on success or -1 in the even t of error.

getcurdir is unique to DOS.

chdir, getcwd, getdisk, mkdir, rmdir

~include <dir.h>
tinclude <stdio.h>
~include <string.h>

Turbo C Reference Guide

getcwd
Function

Syntax

Prototype in

Remarks

Return value

char *current_directory(char *path)
{

strcpy (path, "X: \\ ") i

path[O] = 'A' + getdisk()i
getcurdir(O, path+3)i
return (path) i

main ()
{

char curdir[MAXPATH]i
current_directory(curdir)i
printf("The current directory is %s\n", curdir)i

Program output

The current directory is C:\TURBOC

Gets current working directory.

#include <dir h>
char *getcwd(char *but, int buflen);

dir.h

getcurdir

getcwd gets the full path name of the current working
directory up to buflen bytes long, including the drive,
and stores it in but. If the full path name length
(including the null-terminator) is longer than buflen
bytes, an error occurs.

If but is NULL, a buffer buflen bytes long will be
allocated for you with malloc. You can later free the
allocated buffer by passing the return value of getcwd to
the function free.

getcwd returns the following values:

• If but is not NULL on input, getcwd returns but on
success, NULL on error.

a If but is NULL on input, getcwd returns a pointer to
the allocated buffer.

Chapter 2, The Turbo C Ubrary 157

getcwd

Portability

See also

getdate
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

158

In the event of an error return, the global variable errno
is set to one of the following:

ENODEV
ENOMEM
ERANGE

No such device
Not enough core
Result out of range

getcwd is unique to DOS.

chdir, getcurdir, getdisk, mkdir, rmdir

Gets system date.

#inc1ude <dos.h>
void getdate(struct date *datep);

dos.h

getdate fills in the date structure (pointed to by datep)
with the system's current date.

The date structure is defined as follows:

struct date {
int da_year;
char da_day;
char da_mon;

} ;

None.

getdate is unique to DOS.

ctime, gettime, setdate, settime

iinclude <stdio.h>
iinclude <dos.h>

main ()
{

struct date today;
struct time now;
getdate (&today) ;
printf("Today's date is %d/%d/%d\n",

today.da_mon, today.da_day,
today.da_year)i

gettime(&now) ;

/* current year */
/* day of the month */
/* month (1 = Jan) */

Turbo C Reference Guide

printf(IIThe time is %02d:%02d:%02d.%02d\n ll
,

now.ti_hour, now.ti_min, now.ti_sec,
now.ti_hund)i

Program output

Today's date is 1/1/1980
The time is 17:08:22.42

getdate

getdefaultpalette
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getdfree
Function

Syntax

Prototype in

Remarks

Returns the palette definition structure.

#include <graphics.h>
void far *far getdefaultpalette(void);

graphics.h

getdefaultpalette finds the palettetype structure that
contains the palette initialized by the driver during
initgraph.

getdefaultpalette returns a pointer to the default palette
set up by the current driver when that driver was
initialized.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getpalette, initgraph

Gets disk free space.

#include <dos.h>
void getdfree(unsigned char drive,

struct dfree *dtable);

dos.h

getdfree accepts a drive specifier in drive (0 for default, 1
for A, etc.) and fills in the dfree structure pointed to by
dtable with disk characteristics.

Chapter 2, The Turbo C Library 159

getdfree

Return value

Portability

See also

getdisk
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

(

The dfree structure is defined as follows:

struct dfree {
unsigned df_avail;
unsigned df_total;
unsigned df_bsec;
unsigned df_sclus;

} ;

/* available clusters */
/* total clusters */

/* bytes per sector */
/* sectors per cluster */

getdfree returns no value. In the event of an error,
df_sclus in the dfree structure is set to -l.

getdfree is unique to DOS.

getfat, getfatd

Gets current drive number.

int getdisk(void);

dir.h

getdisk gets the current drive number. It returns an
integer: 0 for A, 1 for B, 2 for C, etc. (equivalent to DOS
function Ox19).

getdisk returns the current drive number.

getdisk is unique to DOS.

getcurdir, getcwd, setdisk

See getcurdrive

getdrivername
Function

Syntax

Prototype in

160

Returns a pointer to a string containing the name of the
current graphics driver.

#inc1ude <graphics.h>
char *far getdrivername(void);

graphics.h
/'

Turbo C Reference Guide

Remarks

Return value

Portability

See also

getdta
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getenv
Function

Syntax

Prototype in

getdrivername

After a call to initgraph, getdrivername returns the
name of the driver that is currently loaded.

getdrivename returns a pointer to a string with the
name of the currently loaded graphics driver.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

initgraph

Gets disk-transfer address.

char far *getdta(void);

dos.h

getdta returns the current setting of the disk-transfer
address (DTA).

In the small and medium memory models, it is assumed
that the segment is the current data segment. If C is used
exclusively, this will be the case, but assembly routines
can set the disk transfer address to any hard ware
address.

In the compact, large, or huge memory models, the
address returned by getdta is the correct hardware
address and can be located outside the program.

getdta returns a far pointer to the current disk-transfer
address.

getdta is unique to DOS.

fcb (structure), setdta

Gets a string from environment.

char *getenv(const char *name);

stdlib.h

Chapter 2, The Turbo C Ubrary 161

getenv

Remarks

Return value

Portability

See also

Example

162

getenv returns the value of a specified variable. The
variable name can be in either uppercase or lowercase,
but it must not include the equal sign (=) character. If the
specified environment variable does not exist, getenv
returns an empty string.

On success, getenv returns the value associated with
name. If the specified name is not defined in the
environment, getenv returns an empty string.

Note: Environment entries must not be changed directly.
If you want to change an environment value, you must
use the putenv function.

getenv is available on UNIX systems and is compatible
with ANSIC.

environ (variable), getpsp, putenv

tinclude <stdio.h>
tinclude <stdlib.h>

main ()
(

char *path, *dummy = NULL;
path = getenv{IPATH");
dummy = getenv{IDUMMY");
printf ("PATH = %s\n", path);
printf {"old value of DUMMY: %s \n II ,

(dummy == NULL) ? "*none*" : dummy);
putenv{IDUMMY=TURBOC");
dummy = getenv{IDUMMY");
printf{lInew value of DUMMY: %s\n", dummy);

Program output

PATH = C:\BIN;C:\BIN\DOS;C:\
old value of DUMMY: *none*
new value of DUMMY: TURBOC

Turbo C Reference Guide

getfat
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getfatd
Function

Syntax

Prototype in

Remarks

getfat

Gets file-allocation table information for given drive.

#inc1ude <dos.h>
void getfat(unsigned char drive,

struct fatinfo *dtable);

dos.h

getfat gets information from the file-allocation table for
the drive specified by drive (0 for default, 1 for A, 2 for B,
etc.). dtable points to the fatinfo structure to be filled in.

The fatinfo structure filled in by getfat is defined as
follows:

struct fatinfo {
char fi_sclus;
char fiJatid;
int fi_nelus;
int fi_bysec;

} ;

None.

getfat is unique to DOS.

getdfree, getfatd

1* sectors per cluster *1
1* the FAT id byte *1

1* number of clusters *1
1* bytes per sector *1

Gets file-allocation table information.

#inc1ude <dos.h>
void getfatd(struct fatinfo *dtable);

dos.h

getfatd gets information from the file-allocation table of
the default drive. dtable points to the fatinfo structure to
be filled in.

The fatinfo structure filled in by getfatd is defined as
follows:

struct fatinfo {

Chapter 2, The Turbo C Ubrary 163

getfatd

Return value

Portability

See also

} ;

char fi_selus;
char fi _ fatid;
int fi_nelus;
int fi_bysec;

None.

getfatd is unique to DOS.

getdfree, getfat

1* sectors per cluster *1
1* the FAT id byte *1

1* number of clusters *1
1* bytes per sector *1

getfillpattern
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

164

Copies a user-defined fill pa ttern in to memory.

[#inc1ude <graphics.h>
void far getfillpattern(char far *pattern);

graphics.h

getfillpattern copies the user-defined fill pattern, as set
by setfillpattern, into the 8-byte area pointed to by
pattern.

pattern is a pointer to a sequence of 8 bytes, with each
byte corresponding to 8 pixels in the pattern. Whenever
a bit in a pattern byte is set to 1, the corresponding pixel
will be plotted. For example, the following user-defined
fill pattern represents a checkerboard:

char checkboard[8] = {

OxAA, Ox55, OxAA, Ox55, OxAA, Ox55, OxAA, Ox 55
} ;

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getfillsettings, setfillpattern

Turbo C Reference Guide

getfillsettings

getfillsettings
Function

Syntax

Prototype in

Remarks

Gets information about current fill pattern and color.

#include <graphics.h>
void far getfillsettings(struct fillsettingstype

far *fillinfo);

graphics.h

getfillsettings fills in the fillsettingstype structure
pointed to by fillinfo with information about the current
fill pattern and fill color. The fillsettingstype structure is
defined in graphics.h as follows:

struct fillsettingstype
int pattern;
int color;

} ;

/* current fill pattern */
/* current fill color */

The functions bar, bar3d, fillpoly, floodfill, and pieslice
all fill an area with the current fill pattern in the current
fill color. There are 11 predefined fill pattern styles (such
as solid, cross-hatch, dotted, etc.). Symbolic names for
the predefined patterns are provided by the enumerated
type filCpatterns in graphics.h (see the following table).
In addition, you can define your own fill pattern.

If pattern equals 12 (USER_FILL), then a user-defined fill
pattern is being used; otherwise, pattern gives the
number of a predefined pattern.

The enumerated type filCpatterns, defined in graphics.h,
gives names for the predefined fill patterns, plus an
indicator for a user-defined pattern.

Chapter 2, The Turbo C Ubrary 165

getfillsettings

Return value

Portability

See also

Example

166

Name Value Description

EMPTY_FILL 0
SOLID_FILL 1
LINE_FILL 2
LTSLASH_FILL 3
SLASH_FILL 4
BKSLASH_FILL 5
LTBKSLASH_FILL 6
HATCH_FILL 7
XHATCH_FILL 8
INTERLEAVE_FILL 9
WIDE_DOT_FILL 10
CLOSE_DOT_FILL 11
USER_FILL 12

fill with background color
solid fill
fill with-­
fill with / / /
fill with / / /, thick lines
fill with \ \ \, thick lines
fill with \ \ \
light hatch fill
heavy cross-hatch fill
interleaving line fill
widely spaced dot fill
closely spaced dot fill
user-defined fill pa ttem

All but EMPTY _FILL fill with the current fill color;
EMPTY_FILL uses the current background color.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getfillpattern, setfillpattern, setfillstyle

#include <graphics.h>
#include <conio.h>

main ()
{

/* will request autodetection */
int graphdriver = DETECT, graphmode;
struct fillsettingstype save;
char savepattern[8];
char gray50[] = { Oxaa, Ox55, Oxaa, Ox55, Oxaa,

Ox55, Oxaa, Ox55 };
/* initialize graphics */
initgraph(&graphdriver, &graphmode, 1111);

/* retrieve current settings */
getfillsettings(&save);
/* if user-defined pattern */
if (save.pattern == USER_FILL)
/* then save user fill pattern */
getfillpattern(savepattern);

Turbo C Reference Guide

getftime
Function

Syntax

Prototype in

Remarks

Return value

/* change fill style */
setfillstyle(SLASH_FILL, BLUE);
/* draw slash-filled blue bar */
bar(O, 0, 100, 100);
/* custom fill pattern */
setfillpattern(gray50, YELLOW);
/* draw customized yellow bar */
bar (lOa, 100, 200, 200);
/* if user-defined pattern */
if (save.pattern == USER_FILL)

getfillsettings

/* then restore user fill pattern */
setfillpattern(savepattern, save.color);

else
/* restore old style */
setfillstyle(save.pattern, save.color);

getche () ;
closegraph();

Gets file date and time.

#inc1ude <io.h>
int getftime(int handle, struct ftime */timep);

io.h

getftime retrieves the file time and date for the disk file
associated with the open handle. The ftime structure
pointed to by ftimep is filled in with the file's time and
date.

The ftime structure is defined as follows:

struct £time {

);

unsigned ft_tsec: 5;
unsigned ft_min: 6;
unsigned ft_hour: 5;
unsigned ft_day: 5;
unsigned ft_month: 4;
unsigned ft_year: 7;

getftime returns 0 on success.

/* two seconds */
/* minutes */

/* hours */
/* days */

/* months */
/* year - 1980*/

Chapter 2, The Turbo C Library 167

getftime

Portability

See also

In the event of an error return, -1 is returned, and the
global variable err no is set to one of the following:

EINVFNC Invalid function number
EBADF Bad file number

getftime is unique to DOS.

open, setftime

getgraphmode
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

168

Returns the current graphics mode.

#inc1ude <graphics.h>
int far getgraphmode(void);

graphics.h

Your program must make a successful call to initgraph
before calling getgraphmode.

The enumeration graphics_mode, defined in graphics.h,
gives names for the predefined graphics modes. For a
table listing these enumeration values, refer to the
description for initgraph.

getgraphmode returns the graphics mode set by
initgraph or setgraphmode.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getmoderange, restorecrtmode, setgraphmode

int cmode;
/* save current mode */
cmode = getgraphmode();
/* switch to text */
restorecrtmode();
printf("Now in text mode - press"

"any key to go back to graphics ... ");
getch();
/* back to graphics */
setgraphmode(cmode);

Turbo C Reference Guide

getimage
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

getimage

Saves a bit image of the specified region into memory.

#include <graphics.h>
void far getimage(int left, int top, int right,

int bottom, void far *bitmap);

graphics.h

getimage copies an image from the screen to memory.

left, top, right, and bottom define the area of the screen to
which the rectangle is to be copied. bitmap points to the
area in memory where the bit image is stored. The first
two words of this area are used for the width and height
of the rectangle; the remainder holds the image itself.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

image size, putimage, putpixel

iinclude <alloc.h>
iinclude <graphics.h>

main ()
(

/* will request autodetection */
int graphdriver = DETECT, graphmode;
void * buffer;
unsigned size;
/* initialize graphics */
initgraph(&graphdriver, &graphmode, 1111);

size = imagesize(O,O,20,lO);
/* get memory for image */
buffer = malloc (size);
/* save bits */
getimage(O,O,20,lO,buffer);

/* */

/* restore bits */
putimage(O,O,buffer,COPY_PUT);
/* free buffer */
free(buffer);

closegraph();

Chapter 2, The Turbo C Ubrary 169

getlinesettings

getlinesettings
Function

Syntax

Prototype in

Remarks

170

Gets the current line style, pattern, and thickness.

#inc1ude <graphics.h>
void far getlinesettings(struct linesettingstype

far *lineinfo);

graphics.h

getlinesettings fills a linesettingstype structure pointed
to by lineinfo with information about the current line
style, pattern, and thickness.

The linesettingstype structure is defined in graphics.h
as follows:

struct linesettingstype
int linestyle;
unsigned upattern;
int thickness;

} ;

linestyle specifies in which style subsequent lines will be
drawn (such as solid, dotted, centered, dashed). The
enumeration line_styles, defined in graphics.h, gives
names to these opera tors:

Name Value Description

SOLID_LINE 0 solid line
DOITED _LINE 1 dotted line
CENTER_LINE 2 centered line
DASHED_LINE 3 dashed line
USERBIT_LINE 4 user-defined line style

thickness specifies whether the width of subsequent lines
drawn will be normal or thick.

Turbo C Reference Guide

Return value

Portability

See also

Example

Name

NORM_WIDTH
THICK_WIDTH

Value

1
3

getlinesettings

Description

1 pixel wide
3 pixels wide

upattern is a 16-bit pattern that applies only if linestyle is
USERBIT_LINE (4). In that case, whenever a bit in the
pattern word is 1, the corresponding pixel in the line is
drawn in the current drawing color. For example, a solid
line corresponds to a upattern of OxFFFF (all pixels
drawn), while a dashed line can correspond to a upattern
of Ox3333or OxOFOF. If the linestyle parameter to
setlinestyle is not USERBIT_LINE (!=4), the upattern
parameter must still be supplied, but it is ignored.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

setlinestyle

tinclude <graphics.h>
tinclude <conio.h>

main ()
(

/* will request autodetection */
int graphdriver = DETECT, graphmode;
struct linesettingstype saveline;
/* initialize graphics */
initgraph(&graphdriver, &graphmode, 1111);

/* save current line style */
getlinesettings(&saveline);
setlinestyle(SOLID_LINE, 0, THICK_WIDTH);
/* draw a little thick box */
rectangle(lO, 10, 17, 15);
/* restore old line settings */
setlinestyle(saveline.linestyle, saveline.upattern,

getche () ;
closegraph();

saveline.thickness);

Chapter 2, The Turbo C Ubrary 171

getmaxcolor

getmaxcolor
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Returns maximum color value that can be passed to the
setcolor function.

#inc1ude <graphics.h>
int far getmaxcolor(void);

graphics.h

getmaxcolor returns the highest valid color value for the
current graphics driver and mode that can be passed to
setcolor.

For example, on a 256K EGA, getmaxcolor will always
return 15, which means that any call to setcolor with a
value from 0 to 15 is valid. On a CGA in high-resolution
mode, or on a Hercules monochrome ada pter,
getmaxcolor returns a value of 1 because these adapters
only support draw colors of 0 or 1.

getmaxcolor returns the highest available color value.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getbkcolor, getcolor, getpalette, getpalettesize, setcolor

getmaxmode
Function

Syntax

Prototype in

Remarks

172

Returns the maximum mode number for the current
driver.

#inc1ude <graphics.h>
int far getmaxmode(void);

graphics.h

getmaxmode lets you find out the maximum mode
number for the currently loaded driver, directly from the
driver. This gives it an advantage over getmoderange,
which works for Borland drivers only. The minimum
mode is O.

Turbo C Reference Guide

Return value

Portability

See also

getmaxx
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

getmaxy
Function

Syntax

Prototype in

Remarks

getmaxmode

getmaxmode returns the maximum mode number for
the current driver.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getmodename, getmoderange

Returns maximum x screen coordinate.

#inc1ude <graphics.h>
int far getmaxx(void);

graphics.h

getmaxx returns the maximum (screen-relative) x value
for the current graphics driver and mode.

For example, on a eGA in 320x200 mode, getmaxx
returns 319. getmaxx is invaluable for centering,
determining the boundaries of a region on the screen,
and so on.

getmaxx returns the maximum x screen coordinate.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getmaxy, getx

printf("The screen resolution is %d pixels by %d pixels.\n",
getrnaxx() +1, getrnaxy()+l);

Returns maximum y screen coordinate.

#inc1ude <graphics.h>
int far getmaxy(void);

graphics.h

getmaxy returns the maximum (screen-relative) y value
for the current graphics driver and mode.

Chapter 2, The Turbo C Ubrary 173

getmaxy

Return value

Portability

See also

Example

For example, on a eGA in 320x200 mode, getmaxy
returns 199. getmaxy is invaluable for centering,
determining the boundaries of a region on the screen,
and so on.

getmaxy returns the maximum y screen coordinate.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getmaxx, getx

See getmaxx

getmodename
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

174

Returns a pointer to a string containing the name of a
specified graphics mode.

#inc1ude <graphics.h>
char *far getmodename(int mode_number);

graphics.h

getmodename accepts a graphics mode number as input
and returns a string containing the name of the
corresponding graphics mode. The mode names are
imbedded in each driver. The return values (1/320 x 200
eGA P1," 1/640 x 200 eGA", etc.) are useful for building
menus or displaying status.

getmodename returns a pointer to a string with the
name of the graphics mode.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getmaxmode, getmoderange

Turbo C Reference Guide

getmoderange

getmoderange
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

getpalette
Function

Syntax

Prototype in

Gets the range of modes for a given graphics driver.

#inc1ude <graphics.h>
void far getmoderange(int graphdriver, int far *lomode,

int far *himode);

graphics.h

getmoderange gets the range of valid graphics modes
for the given graphics driver, graphdriver. The lowest
permissible mode value is returned in *lomode and the
highest permissible value in *himode. If graph driver
specifies an invalid graphics driver, both *lomode and
*himode are set to -1. If the value of graph driver is -I, the
currently loaded driver modes will be given.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getgraphmode, getmaxmode, getmodename, initgraph,
setgraphmode

#inc1ude <graphics.h>

main ()
(

int 10, hi;

getmoderange(CGA, &10, &hi);
printf("CGA supports modes %d through %d\n", 10, hi);

Gets information about the current palette.

#inc1ude <graphics.h>
void far getpalette(struct palettetype far *palette);

graphics.h

Chapter 2, The Turbo C Ubrary 175

getpalette

Remarks

Return value

Portability

See also

Example

176

getpalette fills the palettetype structure pointed to by
palette with information about the current palette's size
and colors.

The MAXCOLORS constant and the palettetype
structure used by getpalette are defined in graphics.h as
follows:

idefine MAXCOLORS 15

struct palettetype {
unsigned char size;
signed char colors[MAXCOLORS + 1];

} ;

size gives the number of colors in the palette for the
current graphics driver in the current mode.

colors is an array of size bytes containing the actual raw
color numbers for each entry in the palette.

Note: getpalette cannot be used with the IBM-8S14
driver.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getbkcolor, getcolor, getdefaultpalette, getmaxcolor,
setallpalette, setpalette

finclude <graphics.h>
iinclude <stdlib.h>
*include <conio.h>

main ()
(

/* will request autodetection */
int graphdriver = DETECT, graphmode;
struct palettetype palette;
int color;
/* initialize graphics */
initgraph(&graphdriver, &graphmode, 1111);

/* get current palette */
getpalette(&palette);
for(color=O; color<palette.size; color++)
(

/* draw some colorful bars */
setfillstyle(SOLID_FILL, color);

Turbo C Reference Guide

bar(20*(color-1), 0, 20*color, 20);

/* only if more than 1 color */
if (palette. size > 1)
{

/* switch colors randomly */
do

setpalette(random(palette.size),
random(palette.size));

/* until a key is hit */
while (! kbhit ()) ;
/* discard keystroke */
getch();

/* restore original palette */
setallpalette(&palette);

closegraph () ;

getpalette

getpalettesize
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Returns size of palette color lookup table.

#include <graphics.h>
int far getpalettesize(void);

graphics.h

getpalettesize is used to determine how many palette
entries can be set for the current graphics mode. For
example, the EGA in color mode will return 16.

getpalettesize returns the number of palette entries in
the current palette.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

setpalette, setallpalette

Chapter 2, The Turbo C Ubrary 177

getpass

getpass
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getpixel
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

178

Reads a password.

char *getpass(const char *prompt);

conio.h

getpass reads a password from the system console, after
prompting with the null-terminated string prompt and
disabling the echo. A pointer is returned to a null­
terminated string of up to eight characters (not counting
the null-terminator).

The return value is a pointer to a static string, which is
overwritten with each call.

getpass is available on UNIX systems.

getch

Gets the color of a specified pixel.

#include <gra phics.h>
unsigned far getpixel(int x, int y);

graphics.h

getpixel gets the color of the pixel located at (x,y).

getpixel returns the color of the given pixel.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getimage, putpixel

~include <graphics.h>
iinclude <conio.h>

main ()
{

1* will request autodetection *1
int graphdriver = DETECT, graphmode;
int i, color, maXi

Turbo C Reference Guide

getpsp
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

gets
Function

Syntax

Prototype in

Remarks

1* initialize graphics *1
initgraph(&graphdriver, &graphmode, 1111);

max = getmaxcolor() t 1;

1* Change color of pixels in a diagonal line *1
for (i=l; i<200; itt) (

color = getpixel(i,i);
putpixel (i, i, (color" i) % max);

getche () ;
closegraph () ;

Gets the program segment prefix.

unsigned getpsp(void);

dos.h

getpixel

getpsp gets the segment address of the program
segment prefix (PSP) using DOS call Ox62.
This call exists only in DOS 3.x. For versions of DOS 2.x
and 3.x, the global variable -psp set by the start-up code
can be used instead.

getpsp returns the segment address of the PSP.

getpsp is unique to DOS 3.x and is not available under
earlier versions of DOS.

getenv, -psp (variable)

Gets a string from stdin.

char *gets(char *s);

stdio.h

gets collects a string of characters, terminated by a
carriage return, from the standard input stream stdin,

Chapter 2, The Turbo C Ubrary 179

gets

Return value

Portability

See also

Example

gettext
Function

Syntax

Prototype in

Remarks

180

and puts it into s. The carriage return is replaced by a
null character (\0) in s.

Unlike scanf, gets allows input strings to contain some
whitespace characters (spaces, tabs). gets returns when
it encounters a carriage return; everything up to the
carriage return is copied into s.

gets, on success, returns the string argument s; it returns
NULL on end-of-file or error.

gets is available on UNIX systems and is compatible
with ANSIC.

cgets, ferror, fgets, fputs, getc, puts

iinclude <stdio.h>

main ()
(

char buff[133];

puts("Enter a string: H);
if (gets (buff) != NULL)

printf("String = '%s'\n", buff);

Copies text from text mode screen to memory.

int gettext(int left, int top, int right, int bottom,
void *destin);

conio.h

gettext stores the contents of an onscreen text rectangle
defined by left, top, right, and bottom, into the area of
memory pointed to by destin.

All coordinates are absolute screen coordinates, not
window-relative. The upper left comer is (1,1).

gettext reads the contents of the rectangle into memory
sequentially from left to right and top to bottom.

Each position onscreen takes 2 bytes of memory: The
first byte is the character in the cell, and the second is the

Turbo C Reference Guide

Return value

Portability

See also

Example

gettextinfo
Function

Syntax

Prototype in

Remarks

gettext

cell's video attribute. The space required for a rectangle
w columns wide by h rows high is defined as

bytes = (h rows) x (w columns) x 2

gettext returns 1 if the operation succeeds. It returns 0 if
it fails (for example, if you gave coordinates outside the
range of the current screen mode).

gettext works only on IBM pes and BIOS-compatible
systems.

movetext, puttext

char buf[20*10*2];
1* save rectangle *1
gettext(1,1,20,10,buf);

1* ... *1

1* restore screen *1
puttext(l,l,buf);

Gets text mode video information.

#include <conio.h>
void gettextinfo(struct text_info *r)i

conio.h

gettextinfo fills in the text_info structure pointed to by r
with the current text video information.

The texCinfo structure is defined in conio.h as follows:

struct text_info {
unsigned char winleft; 1* left window coordinate *1
unsigned char wintop; 1* top window coordinate *1
unsigned char winright; 1* right window coordinate *1
unsigned char winbottom; 1* bottom window coordinate *1
unsigned char attribute; 1* text attribute *1
unsigned char normattr; 1* normal attribute *1
unsigned char currmode; 1* BW40, BW80, C40, or e80 *1
unsigned char screenheight; 1* bottom - top *1
unsigned char screenwidth; 1* right - left *1
unsigned char curx; 1* x coordinate in current window *1

Chapter 2, The Turbo C library 181

getfextinfo

Return value

Portability

See also

Example

unsigned char cury; /* y coordinate in current window */
} ;

gettextinfo returns nothing; the results are returned in
the structure pointed to by r.

gettextinfo works only with IBM pes and compatibles.

textattr, textbackground, textcolor, textmode, wherex,
wherey, window

linclude <conio.h>
struct text_info initial_info;

main ()
(

gettextinfo(&initial_info);

/* ... */

/* Restore text mode to original value */
textmode(initial_info.currmode);

gettextsettings
Function

Syntax

Prototype in

Remarks

182

Gets information about the current graphics text font.

#inc1ude <graphics.h>
void far gettextsettings(struct textsettingstype

far *texttypeinfo);

graphics.h

gettextsettings fills the textsettingstype structure
pointed to by textinfo with information about the current
text font, direction, size, and justification.

The textsettingstype structure used by gettextsettings is
defined in graphics.h as follows:

struct textsettingstype
int font;

} ;

int direction;
int charsize;
int horiz;
int vert;

Turbo C Reference Guide

Return value

Portability

See also

Example

gettime
Function

Syntax

Prototype in

geHextsettings

See settextstyle for a description of these fields.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

outtext, outtextxy, settextjustify, settextstyle,
setusercharsize, textheight, textwidth

*include <graphics.h>
#include <conio.h>

main ()
{

/* will request autodetection */
int graphdriver = DETECT, graphmodei
struct textsettingstype oldtexti
/* initialize graphics */
initgraph(&graphdriver, &graphmode, 1111) i
/* get current settings */
gettextsettings(&oldtext)i

/* Switch to horizontal, upper left-justified,
Gothic font, scaled by a factor of 5 */

settextjustify(LEFT_TEXT, TOP_TEXT);
settextstyle(GOTHIC_FONT, HORIZ_DIR, 5);
outtext("Gothic Text");

/* Restore previous settings */

settextjustify(oldtext.horiz, oldtext.vert)i
settextstyle(oldtext.font, oldtext.direction,

getche () ;
closegraph () i

oldtext.charsize)i

Gets system time.

#include <dos.h>
void gettime(struct time *timep);

dos.h

Chapter 2, The Turbo C Ubrary 183

gettime

Remarks

Return value

Portability

See also

Example

getvect
entry
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

184

gettime fills in the time structure pointed to by timep
with the system's current time.

The time structure is defined as follows:

struct time {

} ;

unsigned char ti_min;
unsigned char ti_hour;
unsigned char ti_hund;
unsigned char ti_sec;

None.

gettime is unique to DOS.

/* minutes */
/* hours */

/* hundredths of seconds */
/* seconds */

getdate, setdate, settime, stime, time

See getdate

Gets interrupt vector.

void interrupt(*getvect(int interruptno» ();

dos.h

Every processor of the 8086 family includes a set of
interrupt vectors, numbered 0 to 255. The 4-byte value in
each vector is actually an address, which is the location
of an interrupt function.

getvect reads the value of the interrupt vector given by
interruptno and returns that value as a (far) pointer to an
interrupt function. The value of interruptno can be from 0
to 255.

getvect returns the current 4-byte value stored in
the interrupt vector named by interruptno.

getvect is unique to DOS.

disable, enable, geninterrupt, setvect

#include <stdio.h>
#include <dos.h>

Turbo C Reference Guide

getverify
Function

Syntax

Prototype in

Remarks

1* getvect example *1

void interrupt (*oldfunc) ();
int looping = 1;

1* get_out - this is our new interrupt routine *1

void interrupt get_out()
(

1* restore to original interrupt routine *1
setvect(5,oldfunc);
looping = 0;

1* capture_prtscr - installs a new interrupt for
<Shift><PrtSc> *1

getvect

1* arguments: func -- new interrupt function pointer *1

void capture_prtscr(void interrupt (*func) ())
(

1* save the old interrupt *1
oldfunc = getvect(5);
1* install our interrupt handler *1
setvect(5,func);

void main ()
(

puts(IIPress <Shift><Prt Sc> to terminate");
1* capture the print screen interrupt *1
capture_prtscr(get_out);

1* do nothing *1
while (looping);

puts ("Success");

Returns the state of the DOS verify flag.

int getverify(void);

dos.h

getverify gets the current state of the verify flag.

Chapter 2, The Turbo C Ubrary 185

getverify

Return value

Portability

See also

The verify flag controls output to the disk. When verify
is off, writes are not verified; when verify is on, all disk
writes are verified to insure proper writing of the data.

getverify returns the current state of the verify flag,
either 0 or 1.

A return of 0 = verify flag off.
A return of 1 = verify flag on.

getverify is unique to DOS.

setverify

getviewsettings
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

186

Gets information about the current viewport.

#inc1ude <graphics.h>
void far getviewsettings(struct viewporttype

far *viewport);

graphics.h

getviewsettings fills the viewporttype structure pointed
to by viewport with information about the current
viewport.

The viewporttype structure used by getviewport is
defined in graphics.h as follows:

struct viewporttype {

} ;

int left, top, right, bottom;
int cl ipflag;

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

clearviewport, getx, gety, setviewport

struct viewporttype view;

1* get current setting *1
getviewsettings(&view) ;
1* if clipping not on *1
if (!view.clip)

Turbo C Reference Guide

getw
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getx
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

getviewsettings

1* turn it on *1
setviewport(view.left,view.top,view.right,view.bottoffi,1);

Gets integer from stream.

#inc1ude <stdio.h>
int getw(FILE *stream);

stdio.h

getw returns the next integer in the named input stream.
It assumes no special alignment in the file.

getw should not be used when the stream is opened in
text mode.

getw returns the next integer on the input stream. On
end-of-file or error, getw returns EOF. Because EOF is a
legitimate value for getw to return, feof or ferror should
be used to detect end-of-file or error.

getw is available on UNIX systems.

putw

Returns the current graphics position's x coordinate.

#include <graphics.h>
int far getx(vo~d);

graphics.h

getx finds the current graphics position's x coordinate.
The value is viewport-relative.

getx returns the x coordinate of the current position.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getmaxx, getmaxy, getviewsettings, gety

Chapter 2, The Turbo C Ubrary 187

getx

Example

gety
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

gmtime
Function

Syntax

Prototype in

Remarks

188

int oldx, oldy;

/* Save current position */
oldx = getx();
oldy = gety () ;
/* draw a blob at [100,100] */
circle(100, 100, 2);
moveto(99,100);
linerel (2, 0) ;
/* back to the old position */
moveto(oldx, oldy);

Returns the current graphics position's y coordinate.

#inc1ude <gra phics.h>
int far gety(void);

graphics.h

gety returns the current graphics position's y coordinate.
The value is viewport-relative.

gety returns the y coordinate of the current position.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getx, getviewsettings

See getx

Converts date and time to Greenwich Mean Time
(GMT).

#inc1ude <time.h>
struct tm *gmtime(const time_t *timer);

time.h

gmtime accepts the address of a value returned by time
and returns a pointer to the structure of type tm con-

Turbo C Reference Guide

Return value

Portability

See also

Example

gmtime

taining the broken-down time. gmtime converts directly
to GMT.

The global long variable timezone should be set to the
difference in seconds between GMT and local standard
time (in PST, timezone is 8 x 60 x 60). The global variable
daylight should be set to nonzero only if the standard U.S.
Daylight Savings time conversion should be applied.

The tm structure declaration from the time.h include file
is

struct tm {

I;

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

These quantities give the time on a 24-hour clock, day of
month (1-31), month (0-11), weekday (Sunday equals 0),
year - 1900, day of year (0-365), and a flag that is
nonzero if daylight savings time is in effect.

gmtime returns a pointer to the structure containing the
broken down time. This structure is a static that is over­
written with each call.

gmtime is available on UNIX systems and is compatible
withANSIC.

asctime, ctime, Hime, localtime, stime, time, tzset

iinclude <stdio.h>
iinclude <stdlib.h>
tinclude <time.h>

main ()
(

struct tm
time t

*timeptr;
secsnow;

timezone = 8 * 60 * 60;
/* get seconds since 00:00:00, 1-1-70 */
time(&secsnow);

Chapter 2, The Turbo C Ubrary 189

gmtime

gotoxy
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

190

/* convert to GMT */
timeptr = gmtime(&secsnow);
printf("The date is %d-%d-19%02d\n",

(timeptr -> tm_mon) + 1, timeptr -> tm_mday,
timeptr -> tm_year);

printf("Greenwich Mean Time is %02d:%02d:%02d\n\n",
timeptr -> tm_hour, timeptr -> tm_min,
timeptr -> tm_sec);

Program output

The date is 2-2-1988
Greenwich Mean Time is 20:44:36

Positions cursor in text window.

void gotoxy(int x, int Y)i

conio.h

gotoxy moves the cursor to the given position in the
current text window. If the coordinates are in any way
invalid, the call to gotoxy is ignored. An example of this
is a call to gotoxy(40,30) when (35,25) is the bottom right
position in the window.

None.

gotoxy works with IBM pes and compatibles only. A
corresponding function exists in Turbo Pascal.

wherex, wherey, window

gotoxy(10,20); /* position cursor at col 10, row 20 */

Turbo C Reference Guide

graphdefaults

graphde£aults
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Resets all graphics settings to their defaults.

#include <graphics.h>
void far graphdefaults(void);

graphics.h

graphde£aults resets all graphics settings to their de­
faults:

EI sets the viewport to the entire screen
13 moves the current position to (0,0)
tI sets the default palette colors, background color, and

dra wing color
t'I sets the default fill style and pattern
tI sets the default text font and justification

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

initgraph

grapherrormsg
Function

Syntax

Prototype in

Remarks

Return value

Returns a pointer to an error message string.

#include <graphics.h>
char * far grapherrormsg(int errorcode);

graphics.h

grapherrormsg returns a pointer to the error message
string associated with errorcode, the value returned by
graphresult.

Refer to the entry for errno in Chapter 1 for a list of error
messages and mnemonics.

grapherrormsg returns a pointer to an error message
string.

Chapter 2, The Turbo C Ubrary

grapherrormsg

Portability

See also

This ~nction works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

graphresult

_graphfreemem
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

192

User hook into graphics memory deallocation.

#include <graphics.h>
void far ~raphfreemem(void far *ptr, unsigned size};

graphics.h

The graphics library calls _graphfreemem to release
memory previously allocated through ~raphgetmem.
You can choose to control the graphics library memory
management by simply defining your own version of
~raphfreemem (you must declare it exactly as shown
in the declaration). The default version of this routine
merely calls free.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

~raphgetmem, setgraph bufsize

1* Example of user-defined graph management routines */
Jinclude <graphics.h>
Jinclude <stdio.h>
#include <conio.h>
#include <process.h>
finclude <alloe.h>

main ()
{

int erroreode;
int graphdriveri
int graphmode;
graphdriver = DETECT;
initgraph(&graphdriver, &graphmode, "e:\\");
errorcode = graphresult()i
if (erroreode != grOk)
{

printf("graphics error: %s\n",grapherrormsg(errorcode))i

Turbo C Reference Guide

exit (1);

settextstyle(GOTHIC_FONT, HORIZ_DIR, 4);
outtextxy(100, 100, "BGI TEST");
getche() ;
closegraph () ;

_graphfreemem

void far * far _graphgetmem(unsigned size)
printf(lI_graphgetmem called [size=%dl -- hit any"

"key",size);
getch(); printf("\n");
1* use "far" heap *1
return(farmalloc(size));

void far _graphfreemem(void far *ptr, unsigned size) {
printf(lI_graphfreemem called [size=%dl -- hit any"

"key",size);
getch (); printf (" \n ") ;
1* "size" not used *1
farfree(ptr);

_graphgetmem
Function

Syntax

Prototype in

Remarks

Return value

Portability

User hook into graphics memory allocation.

#include <graphics.h>
void far * far ~raphgetmem(unsigned size);

graphics.h

Routines in the graphics library (not the user program)
normally call _graphgetmem to allocate memory for
internal buffers, graphics drivers, and character sets. You

. can choose to control the memory management of the
gra phics library by defining your own version of
~raphgetmem (you must declare it exactly as shown in
the declaration). The default version of this routine
merely calls malloc.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

Chapter 2, The Turbo C Library 193

_9raphgetmem

See also

Example

-8raphfreemem, initgraph, setgraphbufsize

See -8raphfreemem

graphresult
Function

Syntax

Prototype in

Remarks

194

Returns an error code for the last unsuccessful graphics
operation.

#inc1ude <gra phics.h>
int far graphresult(void);

graphics.h

graphresult returns the error code for the last graphics
operation that reported an error and resets the error
level to grOk.

The following table lists the error codes returned by
graphresult. The enumerated type graph_errors defines
the errors in this table. graph_errors is declared in
graphics.h.

Turbo C Reference Guide

Return value

Portability

graphresult

Error graphics _errors Corresponding
code constant error message string

0 grOk No error
-1 grNolnitGraph (BGI) graphics not

installed (use initgraph)
-2 grN otDetected Gra phics hard ware not

detected
-3 grFileNotFound Device driver file not

found
-4 grlnvalidDriver Invalid device driver file
-5 grNoLoadMem Not enough memory to

load driver
-6 grNoScanMem Out of memory in scan

fill
-7 grNoFloodMem Out of memory in flood

fill
-8 grFontNotFound Font file not found
-9 grNoFontMem Not enough memory to

load font
-10 grlnvalidMode Invalid graphics mode

for selected driver
-11 grError Graphics error
-12 grIOerror Graphics I/O error
-13 grIn validFont Invalid font file
-14 grIn validFontNum Invalid font number
-15 grlnvalidDeviceNum Invalid device number
-18 grlnvalidVersionnum Invalid version number

Note that the variable maintained by graphresult is reset
to 0 after graphresult has been called. Therefore, you
should store the value of graphresult into a temporary
variable and then test it.

graphresult will return the current graphics error
number, an integer in the range -15 to 0; grapherrormsg
returns a pointer to a string associated with the value
returned by graphresult.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

Chapter 2, The Turbo C Ubrary 195

graph result

See also

harderr
Function

Syntax

Prototype in

Remarks

196

detectgraph, drawpoly, fillpoly, floodfill,
grapherrormsg, initgraph, pieslice, registerbgidriver,
registerbgifont, setallpalette, setcolor, setfillstyle,
setgraphmode, setlinestyle, setpalette, settextjustify,
settextstyle, setusercharsize, setviewport, setvisualpage

Establishes a hardware error handler.

void harderr(int (*handler)O);

dos.h

harderr establishes a hardware error handler for the
current program. This error handler is invoked
whenever an interrupt Ox24 occurs. (See the MS-DOS
Programmer's Reference Manual for a discussion of the
interrupt.)

The function pointed to by handler will be called when
such an interrupt occurs. The handler function will be
called with the following arguments:

handler(int errval, int ax, int bp, int si);

errval is the error code set in the D1 register by DOS. ax,
bp, and si are the values DOS sets for the AX, BP, and S1
registers, respectively .

• ax indicates whether a disk error or other device error
was encountered. If ax is non-negative, a disk error
was encountered; otherwise, the error was a device
error. For a disk error, ax ANDed with OxOOFF will
give the failing drive number (1 equals A, 2 equals B,
and so on) .

• bp and si together point to the device driver header of
the failing driver. bp contains the segment address,
and si the offset.

The function pointed to by handler is not called directly.
harderr establishes a DOS interrupt handler that calls
the function.

Turbo C Reference Guide

Return value

Portability

See also

Example

harderr

peek and peekb can be used to retrieve device
information from this driver header.

The driver header cannot be altered via poke or pokeb.

The handler can issue DOS calls 1 through OxC; any
other DOS call will corrupt DOS. In particular, any of
the C standard I/O or UNIX-emulation I/O calls cannot
be used.

The handler must return a for ignore, 1 for retry, and 2
for abort.

None.

hard err is unique to DOS.

hardresume, hardretn, peek, poke

#include <stdio.h>
#include <dos.h>

#define DISPLAY STRING Ox09
#define IGNORE 0
#define RETRY 1
#define ABORT 2

int handler(int errval, int ax, int bp, int si)
{

char msg[25]; int drive;
/* device error */
if (ax < 0)
(

/* Can only use DOS functions 0 - OxOC */
bdosptr(DISPLAY_STRING, "device errorS", 0);
hardretn(-l); /* return to calling program */

drive = (ax & OxOOFF);
sprintf(msg, "disk error on drive %c$", 'A' + drive);
bdosptr(DISPLAY_STRING, msg, 0);
return(ABORT); 1* abort calling program */

main ()
{

harderr(handler);
printf("Make sure there is no disk in drive A:\n");
printf("Press a key when ready ••. \n");
getch();
printf("Attempting to access A:\n");
fopen("A:ANY.FIL","r") ;

Chapter 2, The Turbo C Ubrary 197

harderr

Program output

Make sure there is no disk in drive A:
Press a key when ready ...
Attempting to access A:
disk error on drive A

hardresume

Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

hardretn

Function

Syntax

Prototype in

Remarks

198

Hard ware error handler.

void hardresume(int axret);

dos.h

The error handler established by hard err can call
hardresume to return to DOS. The return value of the
rescode (result code) of hardresume contains an abort (2),
retry (1), or ignore (0) indicator. The abort is accom­
plished by invoking DOS interrupt Ox23, the control­
break interrupt.

The handler must return 0 for ignore, 1 for retry, and 2
for abort.

None.

hardresume is unique to DOS.

hard err, hardretn

Hardware error handler.

void hardretn(int retn);

dos.h

The error handler established by harderr can return
directly to the application program by calling hardretn.

Turbo C Reference Guide

Return value

Portability

See also

Example

highvideo
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

hypot
Function

Syntax

Prototype in

Remarks

hardretn

The handler must return a for ignore, 1 for retry, or 2 for
abort.

None.

hardretn is unique to DOS.

hard err, hardresume

See harderr

Selects high-intensity characters.

void highvideo(void);

conio.h

highvideo selects high-intensity characters by setting
the high-intensity bit of the currently selected fore­
ground color.

This function does not affect any characters currently on
the screen, but does affect those displayed by functions
(such as cprintf) that perform direct video, text mode
output after highvideo is called.

None.

highvideo works with IBM pes and compatibles only. A
corresponding function exists in Turbo Pascal.

lowvideo, norm video, textattr, textcolor

Calculates hypotenuse of a right triangle.

#include <math.h>
double hypot(double x, double y);

math.h

hypot calculates the value z where

z2 = x2 + y2 and z >= a

Chapter 2, The Turbo C Ubrary 199

hypot

Return value

Portability

. . Imageslze
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

200

This is equivalent to the length of the hypotenuse of a
right triangle, if the lengths of the two sides are x and y.

On success, hypot returns z, a double. On error (such as
an overflow), hypot sets errno to

ERANGE Result out of range

and returns the value HUGE_VAL.

Error-handling for hypot can be modified through the
function matherr. .

hypot is available on UNIX systems.

Returns the number of bytes required to store a bit
image.

#inc1ude <gra phics.h>
unsigned far imagesize(int left, int top,

int right, int bottom);

graphics.h

imagesize determines the size of the memory area
required to store a bit image. If the size required for the
selected image is greater than or equal to 64K-1 bytes,
imagesize returns OxFFFF (-1).

imagesize returns the size of the required memory area
in bytes.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getimage, putimage

Turbo C Reference Guide

initgraph
Function

Syntax

Prototype in

Remarks

Initializes the graphics system.

#inc1ude <graphics.h>
void far initgraph(int far *graphdriver,

int far *graphmode,
char far *pathtodriver);

graphics.h

initgraph

initgraph initializes the graphics system by loading a
graphics driver from disk (or validating a registered
driver), and putting the system into graphics mode.

To start the graphics system, you first call the initgraph
function. initgraph loads the graphics driver and puts
the system into graphics mode. You can tell initgraph to
use a particular graphics driver and mode, or to
autodetect the attached video adapter at run time and
pick the corresponding driver.

If you tell initgraph to auto detect, it calls detectgraph to
select a graphics driver and mode. initgraph also resets
all graphics settings to their defaults (current position,
palette, color, viewport, and so on) and resets
graphresult to O.

Normally, initgraph loads a graphics driver by
allocating memory for the driver (through
-sraphgetmem), then loading the appropriate .BGI file
from disk. As an alternative to this dynamic loading
scheme, you can link a graphics driver file (or several of
them) directly into your executable program file. See
Appendix D for more informa tion on BGIGB].

pathtodriver specifies the directory path where initgraph
will look for the graphics drivers. initgraph first looks in
the path specified in pathtodriver, then (if they're not
there) in the current directory. Accordingly, if
pathtodriver is NULL, the driver files (*.BGl) must be in
the current directory. This is also the path settextstyle
will search for the stroked character font (* .CHR) files.

*graphdriver is an integer that specifies the graphics
driver to be used. You can give it a value using a con-

Chapter 2, The Turbo C Ubrary 201

initgraph

202

stant of the graphics_drivers enumeration type, defined in
graphics.h and listed in the following table.

graphics_drivers
constant

DETECT
CGA
MCGA
EGA
EGA64
EGAMONO
IBM8514
HERCMONO
ATT400
VGA
PC3270

Numeric value

o (requests autodetection)
1
2
3
4
5
6
7
8
9

10

*graphmode is an integer that specifies the initial graphics
mode (unless *graphdriver equals DETECT, in which case
*graphmode is set by initgraph to the highest resolution
available for the detected driver). You can give
*graphmode a value using a constant of the graphics_modes
enumeration type, defined in graphics.h and listed in the
following table.

Turbo C Reference Guide

initgraph

Graphics Column
driver graphics_modes Value x Row Palette Pages

CGA CGACO 0 320x200 CO 1
CGACI 1 320x200 Cl 1
CGAC2 2 320x200 C2 1
CGAC3 3 320x200 C3 1
CGAHI 4 640x200 2 color 1

MCGA MCGACO 0 320x200 CO 1
MCGACI 1 320x200 Cl 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMED 4 640x200 2 color 1
MCGAHI 5 640x480 2 color 1

EGA EGALO 0 640x200 16 color 4
EGAHI 1 640x350 16 color 2

EGA64 EGA64LO 0 640x200 16 color 1
EGA64HI 1 640x350 4 color 1

EGA- EGAMONOHI 3 640x350 2 color 1*
MONO EGAMONOHI 3 640x350 2 color 2**

HERC HERCMONOHI 0 720x348 2 color 2

ATI400 ATI 400CO 0 320x200 CO 1
ATI400Cl 1 320x200 Cl 1
ATI400C2 2 320x200 C2 1
ATI400C3 3 320x200 C3 1
ATI400MED 4 640x200 2 color 1
ATI400HI 5 640x400 2 color 1

VGA VGALO 0 640x200 16 color 2
VGAMED 1 640x350 16 color 2
VGAHI 2 640x480 16 color 1

PC3270 PC3270HI 0 720x350 2 color 1

IBM8514 IBM8514HI 0 640x480 256 color
IBM8514LO 0 1024x768 256 color

* MKonEGAMONOcMd
** 256K on EGAMONO card

Note: graphdriver and graphmode must be set to valid
values from the tables above, or you will get unpre-
dictable results. The exception is graphdriver = DETECT.

Chapter 2, The Turbo C Ubrary 203

initgraph

Return value

Portability

See also

Example

204

In the previous table, the Palette listings CO, Cl, C2, and
C3 refer to the four predefined four-color palettes
available on CGA (and compatible) systems. You can
select the background color (entry #0) in each of these
palettes, but the other colors are fixed. These palettes are
described in greater detail in Chapter 8 of the Turbo C
User's Guide (under "Color Control") and summarized
in the following table.

Color assigned to pixel value
Palette
number 1 2 3

0 LIGHTGREEN LIGHTRED YELLOW
1 LIGHTCYAN LIGHTMAGENTA WHITE
2 GREEN RED BROWN
3 CYAN MAGENTA LIGHTGRAY

After a call to initgraph, *graphdriver is set to the current
graphics driver, and *graphmode is set to the current
graphics mode.

initgraph always sets the internal error code; on success,
it sets the code to O. If an error occurred, *graphdriver is
set to -2, -3, -4, or -5, and graphresult returns the same
value, as listed here:

-2 cannot detect a graphics card
-3 cannot find driver file
-4 invalid driver
-5 insufficient memory to load driver

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

closegraph, detectgraph, getdefaultpalette,
getdrivername, getmoderange, graphdefaults,
~raphgetmem, graphresult, installuserdriver,
registerbgidriver, registerbgifont, restorecrtmode,
setgraphbufsize, setgraphmode

tinclude <graphics.h>
tinclude <stdio.h>
tinclude <conio.h>
iinclude <process.h>

Turbo C Reference Guide

inport
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

main ()
{

int g_driver, g_mode, g_errori
detectgraph(&g_driver, &g_mode)i
if (g_driver < 0)
{

printf(IINo graphics hardware detected !\n")i
exit(l)i

printf("Detected graphics driver Itd,"
"mode I%d\n",g_driver,gyode)i

getch()i
if (g_mode == EGAHI)

/* override mode if EGA detected */
g_mode = EGALOi

initgraph (&g_ driver, &g_mode, 1111) i

g_error = graphresult()i

if (g_ error < 0)
{

printf("initgraph error: %s.\n",
grapherrormsg(g_error))i

exit(1)i

bar(O, 0, getmaxx()/2, getmaxY())i
getch()i

closegraph()i

Reads a word from a hard ware port.

#inc1ude <dos.h>
in t in port(in t partid);

dos.h

initgraph

inport reads a word from the input port specified by
partido

inport returns the value read.

inport is unique to the 8086 family.

inportb, outport, outportb

Chapter 2, The Turbo C Ubrary 205

inportb

inportb
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

insline
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

206

Reads a byte from a hard ware port.

unsigned char inportb(int portid);

dos.h

inportb is a macro that reads a byte from the input port
specified by portid.

If inportb is called when dos.h has been included, it will
be treated as a macro that expands to inline code.

If you don't include dos.h, or if you do include dos.h
and #undef the macro inportb, you will get the inportb
function.

inportb returns the value read.

inportb is unique to the 8086 family.

inport, outport, outportb

Inserts a blank line in the text window.

void insline(void);

conio.h

insline inserts an empty line in the text window at the
cursor position using the current text background color.
All lines below the empty one move down one line and
the bottom line scrolls off the bottom of the window.

ins line is used in text mode.

None.

ins line works with IBM pes and compatibles only; a
corresponding function exists in Turbo Pascal.

delline, window

Turbo C Reference Guide

installuserdriver

ins tall us erdri ver
Function

Syntax

Prototype in

Remarks

Installs a vendor-added device driver to the BGI device
driver table.

#include <graphics.h>
int far installuserdriver(char far *name,

int huge (*detect)(void»;

graphics.h

installuserdriver allows you to add a vendor-added
device driver to the BGI internal table. The name
parameter is the name of the new device driver (.BGI)
file, and the detect parameter is a pointer to an optional
autodetect function that may accompany the new driver.
This autodetect function takes no parameters and
returns an integer value.

There are two ways to use this vendor-supplied driver.
Let's assume you have a new video card called the
Spiffy Graphics Array (SGA) and that the SGA
manufacturer provided you with a BGI device driver
(SGA.BGI). The easiest way to use this driver is to install
it by calling installuserdriver and then passing the
return value (the assigned driver number) directly to
initgraph.

The other, more general way to use this driver is to link
in an autodetect function that will be called by initgraph
as part of its hardware-detection logic (presumably, the
manufacturer of the SGA gave you this auto detect
function). When you install the driver (by calling
installuserdriver), you pass the address of this function,
along with the device driver's file name.

After you install the device driver file name and the
SGA auto detect function, you call initgraph and let it go
through its normal autodetection process. Before
initgraph calls its built-in auto detection function
(detectgraph), it first calls the SGA autodetect function.
If the SGA autodetect function doesn't find the SGA
hardware, it returns a value of -11 (grError) and
initgraph proceeds with its normal hardware detection
logic (which may include calling any other vendor-

Chapter 2, The Turbo C Ubrary 207

installuserdriver

Return value

Portability

See also

Example

208

supplied autodetection functions in the order in which
they were "installed"}. If, however, the autodetect
function determines that an SGA is present, it returns a
non-negative mode number; then initgraph locates and
loads SGA.BGI, puts the hardware into the default
graphics mode recommended by the autodetect
function, and finally returns control to your program.

Up to ten drivers can be installed at one time.

The value returned by installuserdriver is the driver
number parameter you would pass to initgraph in order
to select the newly installed driver manually.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

initgraph, registerbgidriver

iinclude <stdio.h>
iinclude <stdlib.h>
#include <graphics.h>

int Driver, Mode;

int huge detectSGA(void)
(

int found, defaultmode;

1* Detect hardware as needed •.•

found = •••.•
*1

if(!found) return (grError);

1* Determine default graphics mode .•.

defaultmode = *f

return (defaultmode);

main ()
(

1* Autodetection logic *1

1* If not present, give
error *1

Driver = installuserdriver("SGA", detectSGA);

if(grOk != graphresult()) (1* Is table full? *1
printf("Error installing user driver SGA. \n");
exit (1);

Turbo C Reference Guide

installuserdriver

Driver = DETECT; /* Do autodetection */
initgraph(&Driver, &Mode, 1111); /* Detection is overridden

if(grOk != graphresult()) exit(1);

outtext(IIUser Installed Drivers Supported II);

getchar();
c1osegraph();

*/

installuserfont
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

int86
Function

Syntax

Prototype in

Loads a font file (.CHR) that is not built into the BGI
system.

#inc1ude <graphics.h>
int far installuserfont(char far *name);

graphics.h

name is a path name to a font file containing a stroked
font. Up to twenty fonts can be installed at one time.

installuserfont returns a font ID number that can then
be passed to settextstyle to select the corresponding
font. If the internal font table is full, a value of -11
(grError) will be returned.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

settextstyle

General 8086 software interrupt.

#inc1ude <dos.h>
int int86(int intno, union REGS *inregs,

union REGS *outregs);

dos.h

Chapter 2, The Turbo C Ubrary 209

int86

Remarks

Return value

Portability

See also

Example

210

int86 executes an 8086 software interrupt specified by
the argument intno. Before executing the software
interrupt, it copies register values from inregs into the
registers.

After the software interrupt returns, int86 copies the
current register values to outregs, copies the status of the
carry flag to the x.cflag field in outregs, and copies the
value of the 8086 flags register to the x.flags field in
outregs. If the carry flag is set, it usually indicates that an
error has occurred.

Note that inregs can point to the same structure that
outregs points to.

int86 returns the value of AX after completion of the
software interrupt. If the carry flag is set (out regs -)
x.cflag != 0), indicating an error, this function sets
_doserrno to the error code.

int86 is unique to the 8086 family of processors.

bdos, bdosptr, geninterrupt, int86x, intdos, intdosx,
intr

linclude <dos.h>

#define VIDEO OxlO

/* Positions cursor at line y, column x */
void gotoxy(int x, int y)
{

union REGS regs;
regs.h.ah = 2;
regs.h.dh = y;
regs.h.dl = x;
regs.h.bh = 0;
int86 (VIDEO, ®s, ®s);

/* set cursor position */

/* video page 0 */

Turbo C Reference Guide

int86x
Function

Syntax

Prototype in

Remarks

Return value

Portability

General 8086 software interrupt interface.

#include <dos.h>
int int86x(int intno, union REGS *inregs,

union REGS *outregs,
struct SREGS *segregs);

dos.h

int86x

int86x executes an 8086 software interrupt specified by
the argument intno. Before executing the software
interrupt, it copies register values from inregs into the
registers.

In addition, int86x copies the segregs -> x.ds and
segregs -> x.es values into the corresponding registers
before executing the software interrupt. This feature
allows programs that use far pointers or a large data
memory model to specify which segment is to be used
for the software interrupt.

After the software interrupt returns, int86x copies the
current register values to outregs, the status of the carry
flag to the x.cflag field in outregs, and the value of the
8086 flags register to the x.flags field in outregs. In
addition, int86x restores DS and sets the segregs -> es
and segregs -> ds fields to the values of the corres­
ponding segment registers. If the carry flag is set, it
usually indicates that an error has occurred.

int86x allows you to invoke an 8086 software interrupt
that takes a value of DS different from the default data
segment, and/or that takes an argument in ES.

Note that inregs can point to the same structure that
outregs points to.

int86x returns the value of AX after completion of the
software interrupt. If the carry flag is set (outregs ->
x. cflag ! = 0), indicating an error, this function sets
_doserrno to the error code.

int86x is unique to the 8086 family of processors.

Chapter 2, The Turbo C Ubrary 211

intdos

See also

intdos
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

212

bdos, bdosptr, geninterrupt, intdos, intdosx, int86, intr,
segread

General DOS interrupt interface.

#include <dos.h>
int intdos(union REGS *inregs,

union REGS *outregs);

dos.h

intdos executes DOS interrupt Ox21 to invoke a specified
DOS function. The value of inregs -> h.al specifies the
DOS function to be invoked.

After the interrupt Ox21 returns, intdos copies the
current register values to outregs, copies the status of the
carry flag to the x.cflag field in outregs, and copies the
value of the 8086 flags register to the x.flags field in
outregs. If the carry flag is set, it indicates that an error
has occurred.

Note that inregs can point to the same structure that
outregs points to.

intdos returns the value of AX after completion of the
DOS function call. If the carry flag is set (outregs -)
x.cflag != 0), indicating an error, it sets _doserrno to the
error code.

intdos is unique to DOS.

bdos, geninterrupt, int86, int86x, intdosx, intr

finclude <stdio.h>
finclude <dos.h>

/* Deletes file name; returns 0 on success,
nonzero error code on failure */

int delete_file(char near *filename)
{

union REGS regs;
int ret;
regs.h.ah = Ox41; /* delete file */
regs.x.dx = (unsigned) filename;

Turbo C Reference Guide

intdosx
Function

Syntax

Prototype in

Remarks

ret = intdos(®s, ®s);

/* If carry flag is set, there was an error */
return(regs.x.cflag ? ret: 0);

main ()
{

int err;
err = delete_file ("NOTEXIST.$$$") ;
printf("Able to delete NOTEXIST.$$$: %s\n",

(! err) ? "YES" : II NO II) ;

Program output

Able to delete NOTEXIST.$$$: NO

General DOS interrupt interface.

#inc1ude <dos.h>

intdos

int intdosx(union REGS *inregs, union REGS *outregs,
struct SREGS *segregs);

dos.h

intdosx executes DOS interrupt Ox21 to invoke a
specified DOS function. The value of inregs -> h.al
specifies the DOS function to be invoked.

In addition, intdosx copies the segregs -> x.ds and
segregs -> x.es values into the corresponding registers
before invoking the DOS function. This feature allows
programs that use far pointers or a large data memory
model to specify which segment is to be used for the
function execution.

After the interrupt Ox21 returns, intdosx copies the
current register values to outregs, copies the status of the
carry flag to the x.cflag field in outregs, and copies the
value of the 8086 flags register to the x.flags field in
outregs. In addition, intdosx sets the segregs -> es and
segregs -> ds fields to the values of the corresponding
segment registers and then restores DS. If the carry flag
is set, it indicates that an error occurred.

Chapter 2, The Turbo C Ubrary 213

intdosx

Return value

Portability

See also

Example

214

intdosx allows you to invoke a DOS function that takes
a value of DS different from the default data segment,
and/or that takes an argument in ES.

Note that inregs can point to the same structure that
outregs points to.

intdosx returns the value of AX after completion of the
DOS function call. If the carry flag is set (out regs ->
x. cflag ! = 0), indicating an error, it sets _doserrno to the
error code.

intdosx is unique to DOS.

bdos, geninterrupt, int86, int86x, intdos, intr, segread

jinclude <stdio.h>
jinclude <dos.h>

/* Deletes file name; returns 0 on success,
nonzero error code on failure */

int delete_file(char far *filename)
{

union REGS regs; struct SREGS sregs;
int ret;
regs.h.ah = Ox41; /* delete file */
regs.x.dx = FP_OFF(filename);
sregs.ds = FP_SEG(filename);
ret = intdosx(®s, ®s, &sregs);

/* If carry flag is set, there was an error */
return(regs.x.cflag ? ret: 0);

main ()
{

int err;
err = delete_file ("NOTEXIST.$$$") ;
printf("Able to delete NOTEXIST.$$$: %s\n",

(!err) ? "YES" : "NO");

Program output

Able to delete NOTEXIST.$$$: NO

Turbo C Reference Guide

intr
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Alternate 8086 software interrupt interface.

#include <dos.h>
void intr(int intno, struct REGP ACK *preg);

dos.h

intr

The intr function is an alternate interface for executing
software interrupts. It generates an 8086 software
interrupt specified by the argument intno.

intr copies register values from the REGP ACK structure
*preg into the registers before executing the software
interrupt. After the software interrupt completes, intr
copies the current register values into *preg, including
the flags.

The arguments passed to intr are as follows:

intno the interrupt number to be executed

preg the address of a structure containing

(a) the input registers before the call
(b) the value of the registers after the

in terru pt call

The REGP ACK structure (defined in dos.h) has the
following format:

stIUCt REGPACK
{

unsigned I_ax, I_bx, I_CX, I_dx;
unsigned I_bp, I_si, I_di, I_ds, I_es, I_flags;

};

No value is returned. The REGPACK structure *preg
contains the value of the registers after the interrupt call.

intr is unique to the 8086 family of processors.

geninterrupt, int86, int86x, intdos, intdosx

Chapter 2, The Turbo C Ubrary 215

ioctl

ioctl
Function

Syntax

Prototype in

Remarks

216

Controls I/O device.

int ioct1(int handle, int func
[, void *argdx, int argcxD;

io.h

This is a direct interface to the DOS call Ox44 (lOCTL).

The exact function depends on the value of func, as
follows:

o Get device in forma tion.
1 Set device information (in argdx).
2 Read argcx bytes into the address pointed to by

argdx.
3 Write argcx bytes from the address pointed to by

argdx.
4 Same as 2 except handle is treated as a drive

number (0 equals default, 1 equals A, and so on).
5 Same as 3 except handle is a drive number (0

equals default, 1 equals A, and so on).
6 Get input status.
7 Get output status.
8 Test removability; DOS 3.0 only.
11 Set sharing conflict retry count; DOS 3.0 only.

ioctl can be used to get information about device
channels.
Regular files can also be used, but only func values 0, 6,
and 7 are defined for them. All other calls return an
EINV AL error for files.

See the documentation for system call Ox44 in the MS­
DOS Programmer's Reference Manual for detailed in­
formation on argument or return values.

The arguments argdx and argcx are optional.

ioctl provides a direct interface to DOS device drivers
for special functions. As a result, the exact behavior of
this function will vary across different vendors' hard­
ware and in different devices. Also, several vendors do

Turbo C Reference Guide

Return value

Portability

Example

ioctl

not follow the interfaces described here. Refer to the
vendor BIOS documentation for exact use of ioctl.

For June 0 or I, the return value is the device
information (DX of theIOCTL call).

For June values of 2 through 5, the return value is the
number of bytes actually transferred.

For June values of 6 or 7, the return value is the device
status.

In any event, if an error is detected, a value of -1 is
returned, and errno is set to one of the following:

EINVAL
EBADF
EINVDAT

Invalid argument
Bad file number
Invalid data

ioetl is available on UNIX systems, but not with these
parameters or functionality. UNIX version 7 and System
III differ from each other in their use of ioetl. ioetl calls
are not portable to UNIX and are rarely portable across
DOS machines.

DOS 3.0 extends ioetl with June values of 8 and 11.

iinclude <stdio.h>
*include <io.h>
#include <dir.h>

main ()
(

int stat;

1* Use function 8 to determine if the default
drive is removable *1

stat = ioctl(O, 8, 0, 0);
printf("Drive %c %s changeable\n", getdisk() + 'A',

(stat == 0) ? "is" : "is not");

Program output

Drive C is not changeable

Chapter 2, The Turbo C Ubrary 217

isalnum

isalnum
Function

Syntax

Prototype in

Remarks

Return value

Portability

isalpha
Function

Syntax

Prototype in

Remarks

Return value

Portability

218

Character classification macro.

#include <ctype.h>
int isalnum(int c);

ctype.h

isalnum is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or cis EOF.

isalnum returns nonzero if c is a letter (A-Z or a-z) or a
digit (0-9).

isalnum is available on UNIX machines.

Character classification macro.

#include <ctype.h>
int isalpha(int c);

ctype.h

isalpha is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

isalpha returns nonzero if c is a letter (A-Z or a-z).

isalpha is available on UNIX machines and is com­
patible with ANSI C. It is defined in Kernighan and
Ritchie.

Turbo C Reference Guide

isascii
Function

Syntax

Prototype in

Remarks

Return value

Portability

isatty
Function

Syntax

Prototype in

Remarks

Return value

Character classification macro.

#include <ctype.h>
int isascii(int c);

ctype.h

isascii

isascii is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false.

isascii is defined on all integer values.

isascii returns nonzero if the low order byte of c is in the
range 0-127 (OxOO-Ox7F).

isascii is available on UNIX machines.

Checks for device type.

int isatty(int handle);

io.h

isatty determines whether handle is associated with any
one of the following character devices:

• a terminal
• a console
• a printer
• a serial port

If the device is a character device isatty returns a non­
zero integer. If it is not such a device, isatty returns O.

Chapter 2, The Turbo C Ubrary 219

iscntrl

iscntrl
Function

Syntax

Prototype in

Remarks

Return value

Portability

isdigit
Function

Syntax

Prototype in

Remarks

Return value

Portability

220

Character classification macro.

#include <ctype.h>
int iscntrl(int c);

ctype.h

iscntrl is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

iscntrl returns nonzero if c is a delete character or
ordinary control character (Ox7F or OxOO-OxlF).

iscntrl is available on UNIX machines and is compatible
with ANSIC.

Character classification macro.

#include <ctype.h>
int isdigit(int c);

ctype.h

isdigit is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOP.

isdigit returns nonzero if c is a digit ('0'-'9').

isdigit is available on UNIX machines and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

Turbo C Reference Guide

is graph
Function

Syntax:

Prototype in

Remarks

Return value

Portability

is lower
Function

Syntax:

Prototype in

Remarks

Return value

Portability

Character classification macro.

#include <ctype.h>
int isgraph(int c);

ctype.h

isgroph

isgraph is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

isgraph returns nonzero if c is a printing character, like
isprint, except that a space character is excluded.

isgraph is available on UNIX machines and is com­
patible with ANSI C.

Character classification macro.

#include <ctype.h>
int islower(int c);

ctype.h

is lower is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

islower returns nonzero if c is a lowercase letter (a-z).

islower is available on UNIX machines and is com­
patible with ANSI C. It is defined in Kernighan and
Ritchie.

Chapter 2, The Turbo C Ubrary 221

isprint

isprint
Function

Syntax

Prototype in

Remarks

Return value

Portability

ispunct
Function

Syntax

Prototype in

Remarks

Return value

Portability

222

Character classification macro.

#include <ctype.h>
int isprint(int c);

ctype.h

isprint is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

isprint returns nonzero if c is a printing character (Ox20
-Ox7E).

isprint is available on UNIX machines and is compatible
withANSIC.

Character classification macro.

#include <ctype.h>
int ispunct(int c);

ctype.h

ispunct is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

ispunct returns nonzero if c is a punctuation character
(iscntrl or isspace).

ispunct is available on UNIX machines and is com­
patible with ANSI C.

Turbo C Reference Guide

isspace
Function

Syntax

Prototype in

Remarks

Return value

Portability

isupper
Function

Syntax

Prototype in

Remarks

Return value

Portability

Character classification macro.

#include <ctype.h>
int isspace(int c);

ctype.h

isspace

isspace is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

isspace returns nonzero if c is a space, tab, carriage
return, newline, vertical tab, or formfeed (Ox09-0xOD,
Ox20).

isspace is available on UNIX machines and is com­
pa tible with ANSI C. It is defined in Kernighan and
Ritchie.

Character classification macro.

#include <ctype.h>
int isupper(int c);

ctype.h

isupper is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or c is EOF.

isupper returns nonzero if c is an uppercase letter (A-Z).

isupper is available on UNIX machines and is com­
patible with ANSI C. It is defined in Kernighan and
Ritchie.

Chapter 2, The Turbo C Ubrary 223

isxdigit

isxdigit
Function

Syntax

Prototype in

Remarks

Return value

Portability

itoa
Function

Syntax

Prototype in

Remarks

Return value

See also

224

Character classification macro.

#include <ctype.h>
int isxdigit(int c);

ctype.h

isxdigit is a macro that classifies ASCII-coded integer
values by table lookup. It is a predicate returning
nonzero for true and 0 for false. It is defined only when
isascii(c) is true or cis EOF.

isxdigit returns nonzero if c is a hexadecimal digit (0-9,
A-F, a-f).

isxdigit is available on UNIX machines and is com­
patible with ANSI C.

Converts an integer to a string.

char *itoa(int value, char *string, int radix);

stdlib.h

This function converts value to a null-terminated string
and stores the result in string. With itoa, value is an
integer.

radix specifies the base to be used in converting value; it
must be between 2 and 36, inclusive. If value is negative
and radix is 10, the first character of string is the minus
sign (-).

Note: The space allocated for string must be large
enough to hold the returned string, including the ter­
minating null character (\0). itoa can return up to 17
bytes.

itoa returns a pointer to string. There is no error return.

ltoa, ultoa

Turbo C Reference Guide

kbhit
Function

Syntax

Prototype in

Remarks

Return value

See also

keep
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Checks for currently available keystrokes.

int kbhit(void);

conio.h

kbhit

kbhit checks to see if a keystroke is currently available.
Any available keystrokes can be retrieved with getch or
getche.

If a keystroke is available, kbhit returns a nonzero
value. If not, it returns o.
getch, getche

Exits and remains resident.

void keep(unsigned char status, unsigned size);

dos.h

keep returns to DOS with the exit status in status. The
current program remains resident, however. The
program is set to size paragraphs in length, and the
remainder of the memory of the program is freed.

keep can be used when installing a TSR program. keep
uses DOS function Ox31.

None.

keep is unique to DOS.

abort, exit

Chapter 2, The Turbo C Ubrary 225

labs

labs
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

ldexp
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

226

Gives long absolute value.

#include <math.h>
long int labs(long int x);

math.h, stdlib.h

labs computes the absolute value of the parameter x.

On success, labs returns the absolute value of x. There is
no error return.

labs is available on UNIX systems and is compatible
withANSIC.

abs, cabs, fabs

Calculates x x 2eXP.

#include <math.h>
double ldexp(double x, int exp);

math.h

ldexp calculates the double value x x 2eXP.

On success, ldexp returns the value it calculated, x x 2eXP.

Error-handling for ldexp can be modified through the
function matherr.

ldexp is available on UNIX systems and is compatible
withANSIC.

exp, frexp, modf

Turbo C Reference Guide

ldiv
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

Divides two longs, returns quotient and remainder.

#inc1ude <stdlib.h>
ldiv _t ldiv(long int numer, long int denom};

stdlib.h

Idiv

ldiv divides two longs and returns both the quotient
and the remainder as an Idiv_t type. numer and denom
are the numerator and denominator, respectively. The
Idiv_t type is a structure of longs defined (with typede£)
in stdlib.h as follows:

typedef struct {
long int quot;
long int rem;

ldiv_t;

1* quotient *1
1* remainder *1

ldiv returns a structure whose elements are quat (the
quotient) and rem (the remainder).

ldiv is compatible with ANSI C.

div

#include <stdlib.h>
ldiv_t lx;

main ()
(

lx = ldiv(lOOOOOL, 30000L);
printf("lOOOOO div 30000 = %ld remainder %ld\n",

lx.quot, lx.rem);

Chapter 2, The Turbo C Ubrary 227

Ifind

lfind
Function

Syntax

Prototype in

Remarks

Return value

See also

line
Function

Syntax

Prototype in

Remarks

Return value

Portability

228

Perfonns a linear search.

#include <stdlib.h>
void *lfind(const void *key, const void *base,

size_t *num, size_t width,
int (*fcmp)(const void *, const void *»;

stdlib.h

Hind makes a linear search for the value of key in an
array of sequential records. It uses a user-defined
comparison routine <temp).

The array is described as having *num records that are
width bytes wide, and begins at the memory location
pointed to by base.

Hind returns the address of the first entry in the table
that matches the search key. If no match is found, Hind
returns NULL. The comparison routine must return 0 if
*eleml == *elem2, and nonzero otherwise (eleml and
elem2 are its two parameters).

bsearch, lsearch

Draws a line between two specified points.

#include <graphics.h>
void far line(int xl, int yl, int x2, int y2);

graphics.h

line draws a line in the current color, using the current
line style and thickness, between the two points
specified, (xl,yl) and (x2,y2), without updating the
current position (CP).

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

Turbo C Reference Guide

See also

linerel
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

lineto
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

linerel

linerel, line to, setcolor, setlinestyle, setwritemode

Draws a line a relative distance from the current
position (CP).

#inc1ude <graphics.h>
void far linerel(int dx, int dy);

graphics.h

linerel draws a line from the CP to a point that is a
relative distance (dx,dy) from the CP. The CP is ad­
vanced by (dx,dy).

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

line, lineto, setcolor, setlinestyle, setwritemode

Draws a line from the current position (CP) to (x,y).

#inc1ude <graphics.h>
void far lineto(int x, int y);

graphics.h

lineto draws a line from the CP to (x,y), then moves the
CP to (x,y).

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

line, linerel, setcolor, setlinestyle, setvisualpage,
setwritemode

Chapter 2, The Turbo C library 229

localtime

localtime
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

230

Converts date and time to a structure.

#include <time.h>
struct tm *localtime(const time_t *timer);

time.h

localtime accepts the address of a value returned by
time and returns a pointer to the structure of type tm
containing the broken-down time. It corrects for the time
zone and possible daylight savings time.

The global long variable timezone should be set to the
difference in seconds between GMT and local standard
time (in PST, timezone is 8 x 60 x 60). The global variable
daylight should be set to nonzero only if the standard U.S.
Daylight Savings time conversion should be applied.

The tm structure declaration from the time.h include file
follows:

struct tm {

I;

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

These quantities give the time on a 24-hour clock, day of
month (1-31), month (0-11), weekday (Sunday equals 0),
year - 1900, day of year (0-365), and a flag that is
nonzero if daylight savings time is in effect.

localtime returns a pointer to the structure containing
the broken-down time. This structure is a static that is
overwritten with each call.

localtime is available on UNIX systems, and it is com­
pa tible with ANSI C.

asctime, ctime, Hime, gmtime, stime, time, tzset

Turbo C Reference Guide

Example

lock
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

#include <stdio.h>
tinclude <stdlib.h>
#include <time.h>

main ()
{

struct tm
time t

*timeptr;
sees now;

timezone = 8 * 60 * 60;
time{&secsnow);
timeptr = localtime{&secsnow);
printf{"The date is %d-%d-19%02d\n",

localtime

((timeptr -> tm_mon) + 1), timeptr -> tm_mday,
timeptr -> tm_year);

printf{"Local time is %02d:%02d:%02d\n",
timeptr -> tm_hour, timeptr -> tm_min,
timeptr -> tm_sec);

Program output

The date is 2-2-88
Local time is 12:44:36

Sets file-sharing locks.

int lock(int handle, long offset, long length);

io.h

lock provides an interface to the DOS 3.x file-sharing
mechanism.

lock can be placed on arbitrary, non-overlapping regions
of any file. A program attempting to read or write into a
locked region will retry the operation three times. If all
three retries fail, the call fails with an error.

lock returns 0 on success, -Ion error.

lock is unique to DOS 3.x. Older versions of DOS do not
support it.

open, sopen, unlock

Chapter 2, The Turbo C Ubrary 231

log

log
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

loglO
Function

Syntax

Prototype in

Remarks

Return value

232

Calculates the natural logarithm of x.

#inc1ude <math.h>
double log(double x);

math.h

log calculates the natural logarithm of x.

On success, log returns the value calculated, In(x).

If the argument x passed to log is less than or equal to 0,
errno is set to

EDaM Domain error

When this error occurs, log returns the value negative
HUGE_VAL.

Error-handling for log can be modified through the
function matherr.

log is available on UNIX systems and is compatible with
ANSIC.

exp, loglO, sqrt

Calculates log lO(X).

#inc1ude <math.h>
double log10(double x);

math.h

loglO calculates the base 10 logarithm of x.

On success, loglO returns the value calculated, lOg10(X).

If the argument x passed to loglO is less than or equal to
. 0, errno is set to

EDaM Domain error

Turbo C Reference Guide

Portability

See also

longjmp
Function

Syntax

Prototype in

Remarks

log10

When this error occurs, loglO returns the value negative
HUGE_VAL.

Error-handling for loglO can be modified through the
function matherr.

loglO is available on UNIX systems and is compatible
with ANSI C.

exp,log

Performs nonlocal goto.

#inc1ude <setjmp.h>
void longjmp(jmp_buf jmpb, int retval);

setjmp.h

A call to longjmp restores the task state captured by the
last call to set jump with the argument jmpb. It then
returns in such a way that setjmp appears to have
returned with the value retval.

A task state is

.. all segment registers (CS, DS, ES, 55)
II register variables (51, DI)
• stack pointer (SP)
• frame base pointer (BP)
.. flags

A task state is complete enough that setjmp and
longjmp can be used to implement co-routines. These
routines are useful for dealing with errors and
exceptions encountered in a low-level subroutine of a
program.

setjmp must be called before longjmp. The routine that
called setjmp and set up jmpb must still be active and
cannot have returned before the longjmp is called. If
this happens, the results are unpredictable.

longjmp cannot pass the value 0; if 0 is passed in retval,
longjmp will substitute 1.

Chapter 2, The Turbo C Ubrary 233

longjmp

Return value

Portability

See also

Example

lowvideo
Function

Syntax

Prototype in

Remarks

234

None.

longjmp is available on UNIX systems and is compatible
withANSIC.

setjmp, signal

#include <stdio.h>
#include <setjmp.h>

jmp_buf jumper;

main ()
(

int value;

value = setjmp(jumper);
if (value != 0)
(

printf(IILongjmp with value %d\n", value);
exit(value);

printf (IlAbout to call subroutine ... \n");
subroutine () ;

subroutine ()
(

longjmp(jumper,l);

Program output

About to call subroutine
Longjmp with value 1

Selects low-intensity characters.

void lowvideo(void);

conio.h

lowvideo selects low-intensity characters by clearing the
high-intensity bit of the currently selected foreground
color.

This function does not affect any characters currently on
the screen, only those displayed by functions that

Turbo C Reference Guide

Return value

Portability

See also

_Irotl
.Function

Syntax

Prototype in

Remarks

Return value

See also

_Irotr

Function

Syntax

Prototype in

Remarks

Return value

See also

lowvideo

perform text mode, direct console output after this
function is called.

None.

lowvideo works with IBM pes and compatibles only. A
corresponding function exists in Turbo Pascal.

highvideo, normvideo, textattr, textcolor

Rotates an unsigned long integer value to the left.

unsigned long _lrotl(unsigned long val, int count);

stdlib.h

_Irotl rotates the given val to the left count bits; val is an
unsigned long.

_Irotl returns the value of val left-rotated count bits.

_rotr

Rotates an unsigned long integer value to the right.

unsigned long _lrotr(unsigned long val, int count);

stdlib.h

_Irotr rotates the given val to the right count bits; val is
an unsigned long.

_Irotr returns the value of val right-rotated count bits.

_rotl

Chapter 2, The Turbo C Ubrary 235

Isearch

lsearch
Function

Syntax

Prototype in

Remarks

Return value

236

Performs a linear search.

#include <stdlib.h>
void *lsearch(const void *key, void *base,

size_t *num, size_t width,
int (*fcmp)(const void *,
const void *»;

stdlib.h

lsearch searches a table for information. Because this is a
linear search, the table entries do not need to be sorted
before a call to lsearch. If the item that key points to is
not in the table, lsearch appends that item to the table.

• base points to the base (Oth element) of the search
table.

II num points to an integer containing the number of
entries in the table.

• width contains the number of bytes in each entry.
• key points to the item to be searched for (the search

key).

The argument fcmp points to a user-written comparison
routine, which compares two items and returns a value
based on the comparison.

To search the table, lsearch makes repeated calls to the
routine whose address is passed in fcmp.

On each call to the comparison routine, lsearch passes
two arguments: key, a pointer to the item being searched
for; and elem, a pointer to the element of base being
compared.

fcmp is free to interpret the search key and the table
entries in any way.

lsearch returns the address of the first entry in the table
that matches the search key.

If the search key is not identical to *elem, fcmp returns a
nonzero integer. If the search key is identical to *elem,
fcmp returns O.

Turbo C Reference Guide

Portability

See also

Example

lsearch is available on UNIX systems.

bsearch, Hind, qsort

iinclude <stdlib.h>
iinclude <stdio.h>

Isearch

#include <string.h> /* for strcmp declaration */

/* Initialize number of colors */
char *colors[lOl = { II Red" , "Blue", "Green" };
int ncolors = 3;

int colorscmp(char **argl, char **arg2)
{

return (strcmp(*argl, *arg2));

int addelem(char *color)
{

int oldn = ncolors;
lsearch (&color, colors, (size _ t *) &colors,

sizeof(char *), colorscmp);
return(ncolors == oldn);

main ()
{

int ii
char *key = "Purple";

if (addelem(key))
printf(lI%s already in colors table\n", key);

else
printf(lI%s added to colors table,"

"now %d colors\n", key, ncolors);
printf("The colors:\n");
for (i = 0; i < ncolors; itt)

printf("%s\n", colors[il);

Program output

Purple added to colors table,
now 4 colors

Chapter 2, The Turbo C Ubrary 237

Iseek

lseek
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

ltoa
Function

Syntax

Prototype in

238

Moves file pointer.

#include <io.h>
long lseek(int handle, long offset, int fromwhere);

io.h

lseek sets the file pointer associated with handle to a new
position offset bytes beyond the file location given by
from where. It is a good idea to set fromwhere using one of
three symbolic constants (defined in io.h) instead of a
specific number. The constants are as follows:

fromwhere

SEEK_SET
SEEK_CUR
SEEK_END

(0)
(1)
(2)

File Location

file beginning
current file pointer position
end-of-file

lseek returns the offset of the pointer's new position,
measured in bytes from the file beginning. lseek returns
-1 L on error, and errno is set to one of the following:

EBADF Bad file number
EINV AL Invalid argument

On devices incapable of seeking (such as terminals and
printers), the return value is undefined.

lseek is available on all UNIX systems.

filelength, fseek, £tell, sopen, _write, write

Converts a long to a string.

#include <stdlib.h>
char *1toa(1ong value, char *string, int radix);

stdlib.h

Turbo C Reference Guide

Remarks

Return value

See also

malloc
Function

Syntax

Prototype in

Remarks

Iloa

ltoa converts value to a null-terminated string and stores
the result in string. value is a long integer.

radix specifies the base to be used in converting value; it
must be between 2 and 36, inclusive. If value is negative
and radix is 10, the first character of string is the minus
sign (-).

Note: The space allocated for string must be large
enough to hold the returned string, including the
terminating null character (\0). ltoa can return up to 33
bytes.

ltoa returns a pointer to string. There is no error return.

itoa, ultoa

Allocates main memory.

#include <stdlib.h> or #include<alloc.h>
void *malloc(size_t size);

stdlib.h, alloc.h

malloc allocates a block of size bytes from the C memory
heap. It allows a program to allocate memory explicitly,
as it is needed and in the exact amounts needed.

The heap is used for dynamic allocation of variable­
sized blocks of memory. Many data structures such as
trees and lists na turally employ heap memory
alloca tion.

All the space between the end of the data segment and
the top of the program stack is available for use in the
small data models, except for a 256-byte margin
immediately before the top of the stack. This margin is
intended to allow the application some room to grow
the stack, in addition to a small amount needed by DOS.

In the large data models, all the space beyond the
program stack to the end of physical memory is
available for the heap.

Chapter 2, The Turbo C Ubrary 239

malloc

Return value

Portability

See also

Example

240

On success, malloc returns a pointer to the newly
allocated block of memory. If not enough space exists for
the new block, it returns null. The contents of the block
are left unchanged. If the argument size == 0, malloc
returns null.

malloc is available on UNIX systems and is compatible
with ANSIC.

allocmem, calloc, coreleft, farcalloc, farmalloc, free,
realloc

~include <stdio.h>
~include <stdlib.h>

typedef struct
1* ... *1

} OBJECTi

OBJECT *NewObject()
{

return ((OBJECT *) malloc(sizeof(OBJECT)))i

void FreeObject(OBJECT *obj)
{

free(obj)i

main ()
{

OBJECT *obji
obj = NewObject()i
if (obj == NULL) {

printf("failed to create a new object\n")i
exit (l) ;

1* ... *1
FreeObject(obj)i

Turbo C Reference Guide

_matherr
Function

Syntax

Prototype in

Remarks

The Turbo C Library

Floating-point error handling.

#inc1ude <math.h>
double _matherrCmexcep why, char *fun,

double *arglp, double *arg2p,
double retval);

math.h

_motherr

_matherr serves as a focal point for error-handling in all
math library functions; it calls matherr and processes the
return value from matherr. _matherr should never be
called directly by user programs. Instead, the math
library error-handling can be customized by replacing
the library matherr.

Whenever an error occurs in one of the math library
routines, _matherr is called with several arguments.
_matherr does four things:

rJ It uses its arguments to fill out an exception structure.

Il It calls matherr with e, a pointer to the exception
structure, to
see if matherr can resolve the error.

III It examines the return value from matherr as follows:

If matherr returns 0 (indicating that matherr was not
able to resolve the error), _matherr sets errno and
prints an error message.
If matherr returns nonzero (indicating that matherr
was able to resolve the error), _matherr is silent; it
does not set errno or print any messages.

EI It returns e -> retval to the original caller. Note that
matherr might modify e -> retval to specify the value it
wants propagated back to the original caller.

When _matherr sets errno (based on a 0 return from
matherr), it maps the kind of error that occurred (from
the type field in the exception structure) onto an errno
value of either EDOM or ERANGE.

241

_matherr

Return value

See also

matherr
Function

Syntax

Prototype in

Remarks

242

_matherr returns the value e -> retval. This value is
initially the value of the input parameter retval passed to
_matherr and might be modified by matherr.

For math function results with a magnitude greater than
MAXDOUBLE, retval defaults to the macro HUGE_VAL
of appropriate sign before being passed to _matherr. For
math function results with a magnitude less than
MINDOUBLE, retval is set to 0, then passed to _matherr.
In both of these extremes, if matherr does not modify e
-> retval, _matherr sets errno to

ERANGE Result out of range

matherr

User-modifiable math error handler.

#inc1ude <math.h>
int matherr(struct exception *e);

math.h

matherr is called by the _matherr routine to handle
errors generated by the math library.

matherr serves as a user hook (a function that can be
customized by the user) that you can replace by writing
your own math error-handling routine-see the follow­
ing example of a user-defined matherr implementation.

matherr is useful for trapping domain and range errors
caused by the math functions. It does not trap floating­
point exceptions such as division by zero. See signal for
trapping such errors.

You can define your own matherr routine to be a custom
error-handler (such as one that catches and resolves
certain types of errors); this customized function will
override the default version in the C library. The
customized matherr should return 0 if it fails to resolve
the error, or nonzero if the error is resolved. When

Turbo C Reference Guide

The Turbo C Ubrary

matherr

matherr returns nonzero, no error message is printed,
and errno is not changed.

This is the exception structure (defined in math.h):

struct exception {
int type;
char *Function;
double argl, arg2, retval;

I;

The members of the exception structure are shown in
the following table.

Member

type

name

argl,
arg2

retval

What It Is (or Represents)

The type of mathematical error that occurred;
an enum type defined in the typedef _mexcep
(see definition after this list).

A pointer to a null-terminated string holding
the name of the math library function that
resulted in an error.

The arguments (passed to the function
name points to) that caused the error; if only
one argument was passed to the function, it is
stored in argl.

The default return value for matherr; you can
modify this value.

The typede£ _mexcep, also defined in math.h, enu­
merates the following symbolic constants representing
possible mathematical errors:

243

matherr

Return value

244

Symbolic
Constant Mathematical Error

DOMAIN Argument was not in domain of function
(such as log(-l».

SING Argument would result in a singularity
(such as pow(O, -2».

OVERFLOW Argument would produce a function
result greater than MAXDOUBLE (such
as exp(1000».

UNDERFLOW Argument would produce a function
result less than MINDOUBLE (such as
exp(-1000».

TLOSS Argument would produce function result
with total loss of significant digits (such
as sin(10e70».

The symbolic constants MAXDOUBLE and
MINDOUBLE are defined in values.h.

The source code to the default matherr is on the Turbo C
distribution disks.

Note that _matherr is not meant to be modified. The
matherr function is more widely found in C run-time
libraries and thus is recommended for portable pro­
gramming.

The UNIX-style matherr default behavior (printing a
message and terminating) is not ANSI compatible. If
you desire a UNIX-style version of matherr, use
MATHERR.C provided on the Turbo C distribution
disks.

The default return value for matherr is 1 if the error is
UNDERFLOW or TLOSS, 0 otherwise. matherr can also
modify e -> relval, which propagates through _matherr
back to the original caller.

When matherr returns 0 (indicating that it was not able
to resolve the error), _matherr sets errno and prints an
error message. (See _matherr for details.)

Turbo C Reference Guide

Portability

See also

Example

max

matherr

When matherr returns nonzero (indicating that it was
able to resolve the error), errno is not set and no
messages are printed.

matherr is available on many C compilers, but it is not
compatible with ANSI C. A UNIX-style matherr that
prints a message and terminates is provided in
MATHERR.C on the Turbo C distribution disks.

_matherr

/* This is a user-defined matherr function that
catches negative arguments passed to sqrt and
converts them to nonnegative values before sqrt
processes them. */

*include<math.h>
*include<string.h>

int matherr(struct exception *a)
{

if (a -> type == DOMAIN)
(

if (strcmp (a -> name, "sqrt") == 0)
{

a -> retval = sqrt (-(a -> argl));
return (1);

return (0);

Function Returns the larger of two values.

Syntax #include <stdlib.h>
(type) max (a, b);

Prototype in stdlib.h

Remarks This macro compares two values and returns the larger
of the two. Both arguments and the function declaration
must be of the same type.

Return value max returns the larger of two values.

The Turbo C Ubrary 245

max

Example

memccpy
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

246

#include <stdlib.h>

main ()
{

int x = 5;
int y = 6;
int Z;

z = (int)max(x, y);

printf("The larger number is %d\n", z);

Program output

The larger number is 6

Copies a block of n bytes.

#inc1ude <mem.h>
void *memccpy(void *dest, const void *src,

int c, size_t n);

string.h, mem.h

memccpy copies a block of n bytes from src to dest. The
copying stops as soon as either of the following occurs:

• The character c is first copied into dest .
• n bytes have been copied into dest.

memccpy returns a poin ter to the byte in dest
immediately following c, if c was copied; otherwise,
memccpy returns null.

memccpy is available on UNIX System V systems.

memcpy, memmove, memset

Turbo C Reference Guide

memchr
Function

Syntax

Prototype in

Remarks

Return value

Portability

memcmp
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Searches n bytes for character c.

#inc1ude <mem.h>
void *memchr(const void *5, int c, size_t n);

string.h, mem.h

memchr

memchr searches the first n bytes of the block pointed to
by 5 for character c.

On success, memchr returns a pointer to the first occur­
rence of c in 5; otherwise, it returns null.

memchr is available on UNIX System V systems and is
compatible with ANSI C.

Compares two blocks for a length of exactly n bytes.

#inc1ude <mem.h>
int memcmp(const void *51,

const void *52, size_t n);

string.h, mem.h

memcmp compares the first n bytes of the blocks 51 and
52, as unsigned chars.

memcmp returns a value

< 0 if 51 is less than 52
= 0 if 51 is the same as 52
> 0 if 51 is greater than 52

Since it compares bytes as unsigned chars, for example,

memcmp(l\xFF", l\x7F", 1)

returns a value than O.

memcmp is available on UNIX System V systems and is
compa tible with ANSI C.

memicmp

Chapter 2, The Turbo C Library 247

memcpy

memcpy
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

memicmp
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

248

Copies a block of n bytes.

#inc1ude <mem.h>
void *memcpy(void *dest,

const void *5re, size_t n);

string.h, mem.h

memcpy copies a block of n bytes from 5re to dest. If 5re
and dest overlap, the behavior of memcpy is undefined.

memcpy returns dest.

memcpy is available on UNIX System V systems and is
compa tible with ANSI C.

memccpy, memmove, memset, movedata, movrnem

Compares n bytes of two character arrays, ignoring case.

#inc1ude <mem.h>
int memicmp(const void *51,

const void *52, size_t n);

string.h, mem.h

memicmp compares the first n bytes of the blocks 51 and
52, ignoring character case (upper or lower).

memicmp returns a value

< 0 if 51 is less than 52
= 0 if 51 is the same as 52
> 0 if 51 is greater than 52

memicmp is available on UNIX System V systems.

memcmp

Turbo C Reference Guide

memmove
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

memset
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Copies a block of n bytes.

#inc1ude <mem.h>
void *memmove(void *dest, canst void *src,

size_t n);

string.h, mem.h

memmove

memmove copies a block of n bytes from src to dest.
Even when the source and destination blocks overlap,
bytes in the overlapping locations are copied correctly.

memmove returns dest.

memmove is available on UNIX System V systems and
is compatible with ANSI C.

memccpy, memcpy, movmem

Sets n bytes of block of memory to byte c.

#inc1ude <mem.h>
void *memset(void *s, int c, size_t n);

string.h, mem.h

memset sets the first n bytes of the array s to the
character c.

memset returns s.

memset is available on UNIX System V systems and is
compatible with ANSI C.

memccpy, memcpy, setmem

Chapter 2, The Turbo C Ubrary 249

min

min
Function

Syntax

Prototype in

Remarks

Return value

See also

Example

mkdir
Function

Syntax

Prototype in

Remarks

Return value

250

Returns the smaller of two values.

#include <stdlib.h>
(type) min (a, b);

stdlib.h

This macro compares two values and returns the smaller
of the two. Both arguments and the function declaration
must be of the same type.

min returns the smaller of two values.

max

#include <stdlib.h>

main ()
{

int x = 5;
int y = 6;
int Z;

z = (int)min(x, y);
printf (liThe smaller number is %d\n", z);

Program output

The smaller number is 5

Crea tes a directory.

int mkdir(const char *path);

dir.h

mkdir creates a new directory from the given path name
path.

mkdir returns the value 0 if the new directory was
created.

A return value of -1 indicates an error, and errno is set to
one of the following values:

Turbo C Reference Guide

See also

Function

Syntax

Prototype in

Remarks

Return value

See also

Example

mktemp
Function

Syntax

Prototype in

Remarks

Return value

EACCES
ENOENT

Permission denied
No such file or directory

chdir, getcurdir, getcwd, rmdir

Makes a far pointer.

#inc1ude <dos.h>
void far * MK_FP(unsigned seg, unsigned 0fs);

dos.h

mkdir

MK_FP is a macro that makes a far pointer from its
component segment (seg) and offset (015) parts.

MK_FP returns a far pointer.

FP _OFF, FP _SEG, movedata, segread

See FP_OFF

Makes a unique file name.

char *mktemp(char *template);

dir.h

mktemp replaces the string pointed to by template with a
unique file name and returns template.

The template should be a null-terminated string with six
trailing X's. These X's are replaced with a unique
collection of letters plus a period, so that there are two
letters, a period, and three suffix letters in the new file
name.

Starting with AA.AAA, the new file name is assigned by
looking up the name on the disk and avoiding pre­
existing names of the same format.

If template is well-formed, mktemp returns the address
of the template string. Otherwise, it returns null.

Chapter 2, The Turbo C Ubrary 251

modI

Portability

modf
Function

Syntax

Prototype in

Remarks

Return value

See also

movedata
Function

Syntax

Prototype in

Remarks

Return value

See also

Example

252

mktemp is available on UNIX systems.

Splits into integer and fraction parts.

#include <math.h>
double modf(double x, double *ipart);

math.h

modf breaks the double x into two parts: the integer and
the fraction. It stores the integer in ipart and returns the
fraction.

modf returns the fractional part of x.

fmod,ldexp

Copies n bytes.

void movedata(unsigned srcseg,
unsigned srcoff, unsigned dstseg,
unsigned dstoff, size_t n);

mem.h, string.h

movedata copies n bytes from the source address
(srcseg:srcoff> to the destination address (dstseg:dstoff>.

movedata is a means of moving blocks of data that is
independent of memory model.

None.

FP _OFF, memcpy, MK_FP, movmem, segread

finclude <mem.h>

Idefine MONO BASE OxBOOO

1* Saves the contents of the monochrome screen in buffer */
void save_mono_screen(char near *buffer)
{

movedata(MONO_BASE, 0, _DS, (unsigned) buffer, 80*25*2);

Turbo C Reference Guide

moverel
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

move text
Function

Syntax

Prototype in

Remarks

main ()
(

char buf[80*25*2]i
save_mono_screen(buf)i

movedata

Moves the current position (CP) a relative distance.

#include <graphics.h>
void far moverel(int dx, int dy);

graphics.h

movere I moves the current position (CP) dx pixels in the
x direction and dy pixels in the y direction.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

move to

Copies text onscreen from one rectangle to another.

int movetext(int left, int top,

conio.h

int right, int bottom,
int destleft, int desttop);

movetext copies the contents of the on screen rectangle
defined by left, top, right, and bottom to a new rectangle
of the same dimensions. The new rectangle's upper left
corner is position (destleft, desttop).

All coordinates are absolute screen coordinates.
Rectangles that overlap are moved correctly.

Chapter 2, The Turbo C Ubrary 253

movetext

Return value

Portability

See also

Example

move to
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

movmem
Function

Syntax

Prototype in

254

move text is a text mode function performing direct
video output.

movetext returns nonzero if the operation succeeded. If
the operation failed (for example, if you gave coordi­
nates outside the range of the current screen mode),
move text returns O.

move text can be used on IBM PCs and BIOS-compatible
systems.

gettext, pu ttext

1* Copy the contents of the old rectangle, whose
upper left corner is (5, 15) and whose lower right
corner is (20, 25), to a new rectangle whose upper
left corner is (10, 20). *1

movetext(5, 15, 20, 25, 10, 20);

Moves the current position (CP) to (x,y).

#include <graphics.h>
void far moveto(int x, int y);

graphics.h

move to moves the current position (CP) to viewport
position (x,y).

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

moverel

Copies a block of length bytes.

void movrnem(void *src, void *dest, unsigned length);

mem.h

Turbo C Reference Guide

Remarks

Return value

See also

normvideo
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

nosound
Function

Syntax

Prototype in

Remarks

Return value

movmem

movmem copies a block of length bytes from src to dest.
Even if the source and destination blocks overlap, the
copy direction is chosen so that the data is always
copied correctly.

None.

memcpy, memmove, movedata

Selects normal-intensity characters.

void normvideo(void);

conio.h

normvideo selects normal characters by returning the
text attribute (foreground and background) to the value
it had when the program started.

This function does not affect any characters currently on
the screen, only those displayed by functions (such as
cprintf) performing direct console output functions after
normvideo is called.

None.

normvideo works with IBM PCs and compatibles only;
a corresponding function exists in Turbo Pascal.

highvideo, lowvideo, textattr, textcolor

Turns PC speaker off.

void nosound(void);

dos.h

Turns the speaker off after it has been turned on by a
call to sound.

None.

Chapter 2, The Turbo C Ubrary 255

See also

Function

Syntax

Prototype in

Remarks

Return value

256

delay, sound

Opens a file for reading or writing.

#include <fcntl.h>
int _open(const char *filename, int oflags);

io.h

_open opens the file specified by filename, then prepares
it for reading and/or writing as determined by the value
of oflags. The file is opened in the mode specified by
Jmode.

For _open, the value of oflags in DOS 2.x is limited to
O_RDONLY, O_WRONLY, and O_RDWR. For DOS 3.x,
the following additional values can also be used:

• 0 _NOINHERIT is included if the file is not to be
passed to child programs .

• O_DENYALL allows only the current handle to have
access to the file .

• O_DENYWRITE allows only reads from any other
open to the file .

• O_DENYREAD allows only writes from any other
open to the file .

• O_DENYNONE allows other shared opens to the file.

These 0_ ... symbolic constants are defined in fcntl.h.

Only one of the 0 _DENY xxx values can be included in a
single _open under DOS 3.x. These file-sharing attri­
butes are in addition to any locking performed on the
files.

The maximum number of simultaneously open files is a
system configuration parameter.

On successful completion, _open returns a nonnegative
integer (the file handle). The file pointer, which marks
the current position in the file, is set to the beginning of

Turbo C Reference Guide

Portability

See also

open
Function

Syntax

Prototype in

Remarks

the file. On error, _open returns -1 and errno is set to one
of the following:

ENOENT Path or file not found
EMFILE Too many open files
EACCES Permission denied
EINV ACC Invalid access code

_open is unique to DOS.

open,_read,sopen

Opens a file for reading or writing.

#inc1ude <fcntl.h>
#inc1ude<sys \stat.h>
int open(const char *path, int access

[, unsigned mode]);

io.h

open opens the file specified by path, then prepares it for
reading and/or writing as determined by the value of
access.

To create a file in a particular mode, you can either
assign to Jmode or call open with the O_CREAT and
O_TRUNC options ORed with the translation mode
desired. For example, the call

open ("xmp" , O_CREAT IO_TRUNC 10_BINARY, S_IREADl

will create a binary-mode, read-only file named XMP,
truncating its length to 0 bytes if it already existed.

For open, access is constructed by bitwise DRing flags
from the following two lists. Only one flag from the first
list can be used; the remaining flags can be used in any
logical combination.

List 1: Read/Write Flags

O_RDONLY Open for reading only.
O_WRONLY Open for writing only. ° _RDWR Open for reading and writing.

Chapter 2, The Turbo C Ubrary 257

open

Return value

258

List 2: Other Access Flags

O_NDELAY Not used; for UNIX compatibility.
a_APPEND If set, the file pointer will be set to the

end of the file prior to each write.
O_CREAT If the file exists, this flag has no effect.

If the file does not exist, the file is
created, and the bits of mode are used
to set the file attribute bits, as in
chmod.
If the file exists, its length is truncated
to O. The file attributes remain
unchanged.
Used only with 0_ CREAT. If the file
already exists, an error is returned.
This flag can be given to explicitly
open the file in binary mode.
This flag can be given to explicitly
open the file in text mode.

These 0_ ... symbolic constants are defined in fcntl.h.

If neither a_BINARY nor a_TEXT is given, the file is
opened in the translation mode set by the global variable
Jmode.

If the O_CREAT flag is used in constructing access, you
need to supply the mode argument to open, from the
following symbolic constants defined in sys \stat.h.

Value of mode

S_IWRITE
S_IREAD
S_IREAD I 5_1 WRITE

Access Permission

permission to write
permission to read
permission to read and write

On successful completion, open returns a nonnegative
integer (the file handle). The file pointer, which marks
the current position in the file, is set to the beginning of
the file. On error, open returns -1 and errno is set to one
of the following:

Turbo C Reference Guide

Portability

See also

outport
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

outportb
Function

Syntax

Prototype in

Remarks I"

ENOENT
EMFILE
EACCES
EINVACC

No such file or directory
Too many open files
Permission denied
Invalid access code

open

open is available on UNIX systems. On UNIX version 7,
the a_type mnemonics are not defined. UNIX System III
uses all of the a_type mnemonics except a_BINARY.

chmod, chsize, close, creat, creatnew, creattemp, dup,
dup2, £dopen, filelength, £open, £reopen, get£time,
lock, _open, read, sopen, _write

Outputs a word to a hard ware port.

void outport(int portid, int value);

dos.h

outport writes the word given by value to the output
port specified by portid.

None.

outport is unique to the 8086 family.

inport, inportb, outportb

Outputs a byte to a hard ware port.

#inc1ude <dos.h>
void outportb(int portid,

unsigned char value);

dos.h

outportb is a macro that writes the byte given by value to
the output port specified by portid.

If outportb is called when dos.h has been included, it
will be treated as a macro that expands to in line code.

Chapter 2, The Turbo C Ubrary 259

outportb

Return value

Portability

See also

outtext
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

260

If you don't include dos.h, or if you do include dos.h
and #undef the macro outportb, you will get the
outportb function.

None.

outportb is unique to the 8086 family.

inport, inportb, outport

Displays a string in the viewport.

#include <graphics.h>
void far outtext(char far *textstring);

graphics.h

outtext displays a text string in the viewport, using the
current justification settings and the current font,
direction, and size.

outtext outputs textstring at the CPo If the horizontal text
justification is LEFT_TEXT and the text direction is
HORIZ_DIR, the CP's x coordinate is advanced by
textwidth(textstring). Otherwise, the CP remains
unchanged.

To maintain code compatibility when using several
fonts, use textwidth and textheight to determine the
dimensions of the string.

Note: If a string is printed with the default font using
outtext, any part of the string that extends outside the
current viewport will be truncated.

Note: outtext is for use in graphics mode; it will not
work in text mode.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

gettextsettings, outtextxy, settextjustify, textheight,
textwidth

Turbo C Reference Guide

outtextxy
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

parsfnm
Function

Syntax

Prototype in

Remarks

Displays a string at a specified location.

#inc1ude <graphics.h>
void far outtextxy(int x, int y,

char far *textstring);

graphics.h

ouHextxy

outtextxy displays a text string in the viewport at the
given position (x, y), using the current justification
settings and the current font, direction, and size.

To maintain code compatibility when using several
fonts, use textwidth and textheight to determine the
dimensions of the string.

Note: If a string is printed with the default font using
outtext or outtextxy, any part of the string that extends
outside the current viewport will be truncated.

Note: outtext is for use in graphics mode; it will not
work in text mode.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

gettextsettings, outtext, textheight, textwidth

Parses file name.

#inc1ude <dos.h>
char *parsfnm(const char *emdline,

struct fcb *feb, int opt);

dos.h

parsfnm parses a string pointed to by emdline for a file
name. The string is normally a command line. The file
name is placed in an FeB as a drive, file name, and
extension. The FeB is pointed to by feb.

Chapter 2, The Turbo C Ubrary 261

parsfnm

Return value

Portability

peek
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

peekb
Function

Syntax

Prototype in

262

The opt parameter is the value documented for AL in the
DOS parse system call. See the MS-DOS Programmer's
Reference Manual under system call Ox29 for a description
of the parsing operations performed on the file name.

On success, parsfnm returns a pointer to the next byte
after the end of the file name. If there is any error in
parsing the file name, parsfnm returns NULL.

parsfnm is unique to DOS.

Returns the word at memory location specified by
segment:offset.

int peek(unsigned segment, unsigned offset);

dos.h

peek returns the word at the memory location
segment:offset.

If peek is called when dos.h has been included, it will be
treated as a macro that expands to inline code. If you
don't include dos.h, or if you do include it and #undef
peek, you will get the function rather than the macro.

peek returns the word of data stored at the memory
location segment:offset.

peek is unique to the 8086 family.

harderr, peekb, poke

Returns the byte of memory specified by segment:offset.

#inc1ude <dos.h>
char peekb(unsigned segment, unsigned offset);

dos.h

Turbo C Reference Guide

Remarks

Return value

Portability

See also

perror
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

peekb

peekb returns the byte at the memory location ad­
dressed by segment:offset.

If peekb is called when dos.h has been included, it will
be treated as a macro that expands to inline code. If you
don't include dos.h, or if you do include it and #undef
peekb, you will get the function rather than the macro.

peekb returns the byte of information stored at the
memory location segment:offset.

peekb is unique to the 8086 family.

peek, pokeb

Prints a system error message.

void perror(const char *s);

stdio.h

perror prints to the stderr stream (normally the console)
the system error message for the last library routine that
produced the error.

First the argument s is printed, then a colon, then the
message corresponding to the current value of errno, and
finally a newline. The convention is to pass the file name
of the program as the argument string.

The array of error message strings is accessed through
sys_errlist. errno can be used as an index into the array to
find the string corresponding to the error number. None
of the strings includes a newline character.

sys_nerr contains the number of entries in the array.

Refer to errno, sys_errlist, and sys_nerr in the "Global
Variables" section of Chapter 1 for more information.

None.

perror is available on UNIX systems and is compatible
with ANSI C.

clearerr, eof, _strerror, strerror

Chapter 2, The Turbo C Ubrary 263

pieslice

pieslice
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Examples

264

Draws and fills in pie slice.

#include <graphics.h>
void far pieslice(int x, int y, int stangle,

int endangle, int radius);

graphics.h

pieslice draws and fills a pie slice centered at (x,y) with
a radius given by radius. The slice travels from stangle to
endangle. The slice is outlined in the current drawing
color and then filled using the current fill pattern and fill
color.

The angles for pieslice are given in degrees. They are
measured counterclockwise, with 0 degrees at 3 o'clock,
90 degrees at 12 o'clock, and so on.

Note: If you are using a eGA or monochrome adapter,
the examples in this book of how to use graphics
functions may not produce the expected results. If your
system runs on a eGA or monochrome adapter, use the
value 1 (one) instead of the symbolic color constant, and
consult the second example under arc on how to use the
pieslice function.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

fillellipse, filCpatterns (enumerated type), graphresult,
sector, setfillstyle

See arc

Turbo C Reference Guide

poke
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

pokeb
Function

Syntax

Prototype in

Remarks

Return value

Portability

poke

Stores an integer value at a memory location given by
segment:offset.

void poke(unsigned segment, unsigned offset, int value);

dos.h

poke stores the integer value at the memory location
segment:offset.

If this routine is called when dos.h has been included, it
will be treated as a macro that expands to inline code. If
you don't include dos.h, or if you do include it and
#undef poke, you will get the function rather than the
macro.

None.

poke is unique to the 8086 family.

harderr, peek, pokeb

Stores a byte value at memory location segment:offset.

#include <dos.h>
void pokeb(unsigned segment,

unsigned offset, char value);

dos.h

pokeb stores the byte value at the memory location
segment:offset.

If this routine is called when dos.h has been included, it
will be treated as a macro that expands to inline code. If
you don't include dos.h, or if you do include it and
#undef pokeb, you will get the function rather than the
macro.

None.

poke b is unique to the 8086 family.

Chapter 2, The Turbo C Ubrary 265

poly

See also

poly
Function

Syntax

Prototype in

Remarks

Return value

Portability

pow
Function

Syntax

Prototype in

Remarks

Return value

266

peekb,poke

Generates a polynomial from arguments.

#inc1ude <math.h>
double poly(double x, int degree,

double coeffs[]);

math.h

poly generates a polynomial in x, of degree degree, with
coefficients coeffs[ol, coeffs[11, ... , coeffs[degreel. For
example, if n = 4, the generated polynomial is

coeffs[4]x4 + coeffs[3]x3 + coeffs[2]x2 + coeffs[1]x +
coeffs[O]

poly returns the value of the polynomial as evaluated
for the given x.

poly is available on UNIX systems.

Calculates x to the power of y.

#inc1ude <math.h>
double pow(double x, double y);

math.h

pow calculates xY•

On success, pow returns the value calculated, xY.

Sometimes the arguments passed to pow produce
results that overflow or are incalculable. When the
correct value would overflow, pow returns the value
HUGE_VAL. Results of excessively large magnitude can
cause errno to be set to

ERANGE Result out of range

errno is set to

Turbo C Reference Guide

Portability

See also

powlO
Function

Syntax

Prototype in

Remarks

Return value

Portablity

See also

printf
Fun'ction

Syntax

Prototype in

pow

EDOM Domain error

if the argument x passed to pow is less than or equal to
0, and y is not a whole number. When this error occurs,
pow returns the value negative HUGE_VAL.

If the arguments x and y passed to pow are both 0, pow
returns 1.

Error-handling for pow can be modified through the
function matherr.

pow is available on UNIX systems and is compatible
with ANSIC.

exp, powlO, sqrt

Calculates 10 to the power of p.

#include <math.h>
double powlO(int p);

math.h

powlO computes lOP.

On success, powlO returns the value calculated, lOP.

The result is actually calculated to long double accuracy.
All arguments are valid, though some may cause an
underflow or overflow.

Available on UNIX systems.

exp, pow

Writes formatted output to stdout.

int printf(const char *format[, argument, ... J);

stdio.h

Chapter 2, The Turbo C Ubrary 267

printf

Remarks

268

printf accepts a series of arguments, applies to each a
format specification contained in the format string given
by format, and outputs the formatted data to stdout.
There must be the same number of format specifications
as arguments.

The Format String

The format string, present in each of the ... printf
function calls, controls how each function will convert,
format, and print its arguments. There must be enough
arguments for the format; if there are not, the results
will be unpredictable and likely disastrous. Excess
arguments (more than required by the format) are
merely ignored.

The format string is a character string that contains two
types of objects-plain characters and conversion specifi­
cations.

• The plain characters are simply copied verba tim to the
output stream.

• The conversion specifications fetch arguments from
the argument list and apply formatting to them.

Format Specifications

... printf format specifications have the following form:

% [flags] [width] [.prec] [FINlhlllL] type

Each conversion specification begins with the percent
character (%). After the % come the following, in this
order:

• an optional sequence of flag characters [flags]

• an optional width specifier [width]

• an optional precision specifier [.prec]

• an optional input-size modifier [F I Nih III L]

• the conversion type character [type]

Turbo C Reference Guide

printf

Optional Format String Components

These are the general aspects of output formatting controlled by the
optional characters, specifiers, and modifiers in the format string:

Character or
Specifier

flags

width

precision

size

What It Controls or Specifies

output justification, numeric signs, decimal points,
trailing zeroes, octal and hex prefixes

minimum number of characters to print, padding
with blanks or zeroes

maximum number of characters to print; for
integers, minimum number of digits to print

override default size of argument:

N = near pointer
F = far pointer
h = short int
I = long
L = long double

Chapter 2, The Turbo C Ubrary 269

prinff

... printf Conversion Type Characters

The following table lists the ... printf conversion type characters, the type of
input argument accepted by each, and in what format the output will
appear.

The information in this table of type characters is based on the assumption
that no flag characters, width specifiers, precision specifiers, or input-size
modifiers were included in the format specification. To see how the
addition of the optional characters and specifiers affects the ... printf
output, refer to the tables following this one.

Type
Character

d
i
0

u

x

X

f

e

g

E

G

270

Input Argument Format of Output

Numerics

integer signed decimal int
integer signed decimal int
integer unsigned octal int
integer unsigned decimal int

integer unsigned hexadecimal int
(with a, b, c, d, e, f>

integer unsigned hexadecimal int
(with A, B, C, D, E, F)

floating point signed value of the form [-]dddd.dddd

floating point signed value of the form [-]d.dddd
e [+/-]ddd

floating point signed value in either e or f form,
based on given value and precision

Trailing zeroes and the decimal point
are printed only if necessary.

floating point same as e, but with E for exponent

floating point same as g, but with E for exponent if
e format used

Turbo C Reference Guide

printf

Type
Character Input Argument Format of Output

c

s

%

n

p

character

string pointer

none

pointer to int

pointer

Chapter 2, The Turbo C Ubrary

Characters

Pointers

Single character.

Prints characters until a null­
terminator is hit or precision is
reached.

The % character is printed.

Stores (in the location pointed to by
the input argument) a count of the
characters written so far.

Prints the input argument as a
pointer:

far pointers are printed as
XXXX:YYYY
near pointers are printed as YYYY
(offset only)

271

prinff

Conventions

Certain conventions accompany some of these specifications, as sum­
marized in the following table.

Characters

e orE

f

gorG

xorX

Conventions

,The argument is converted to match the style
[-J d.ddd ... e[+/-Jddd where:

• One digit precedes the decimal point.
• The number of digits after the decimal

poin t is equal to the precision.
• The exponent always contains at least two digits.

The argument is converted to decimal notation in the
style [-J ddd.ddd ... , where the number of digits after
the decimal poin t is equal to the precision (if a
nonzero precision was given).

The argument is printed in style e, E or f, with the
precision specifying the number of significant digits.
Trailing zeroes are removed from the result, and a
decimal point appears only if necessary.

The argument is printed in style e or f (with some
restraints) if g is the conversion character, and in style
E if the character is G. Style e is used only if the
exponent that results from the conversion is either

(a) greater than the precision or
(b) less than -4

For x conversions, the letters a, b, c, d, e, and fwill
appear in the output; for X conversions, the letters A,
B, C, D, E, and F will appear.

Note: Infinite floating-point numbers are printed as +INF and -INF. An
IEEE Not-a-Number is printed as +NAN or -NAN.

272 Turbo C Reference Guide

printf

Flag Characters

The flag characters are minus (-), plus (+), sharp (#), and blank (). They can
appear in any order and combination.

Flag

+

blank

What It Specifies

Left-justifies the result, pads on the right with blanks. If not
given, right-justifies result, pads on left with zeroes or blanks.

Signed conversion results always begin with a plus (+) or
minus (-) sign.

If value is nonnegative, the output begins with a blank
instead of a plus; negative values still begin with a minus.

Specifies that arg is to be converted using an "alternate form."
See the following table.

Note: Plus (+) takes precedence over blank () if both are given.

Alternate Forms

If the # flag is used with a con version character, it has the following effect
on the argument (arg) being converted:

Conversion
Character

c,s,d,j,u

o
xorX

e, E, or f

gorG

How # Affects arg

No effect.

o will be prepended to a nonzero argo
Ox (or OX) will be prepended to argo

The result will always contain a decimal point even if
no digits follow the point. Normally, a decimal point
appears in these results only if a digit follows it.

Same as e and E, with the addition that trailing zeroes
will not be removed.

Chapter 2, The Turbo C Ubrary 273

printf

Width Specifiers

The width specifier sets the minimum field width for an output value.

Width is specified in one of two ways: directly, through a decimal digit
string, or indirectly, through an asterisk (*). If you use an asterisk for the
width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.

In no case does a nonexistent or small field width cause truncation of a
field. If the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result.

Width
Specifier

n

On

*

274

How Output Width Is Affected

At least n characters are printed. If the output value has
less than n characters, the output is padded with blanks
(right-padded if - flag given, left-padded otherwise).

At least n characters are printed. If the output value has
less than n characters, it is filled on the left with zeroes.

The argument list supplies the width specifier, which must
precede the actual argument being formatted.

Turbo C Reference Guide

printf

Precision Specifiers

Precision specification always begins with a period (.), to separate it from
any preceding width specifier. Then, like width, precision is specified either
directly, through a decimal digit string, or indirectly, through an asterisk
(*). If you use an asterisk for the precision specifier, the next argument in
the call (treated as an int) specifies the precision.

If you use asterisks for the width or the precision, or for both, the width
argument must immediately follow the specifiers, followed by the precision
argument, then the argument for the data to be converted.

Precision
Specifier How Output Precision Is Affected

(none given) Precision set to default:

.0

.n

default = 1 for d, i, 0, U, x, X types
default = 6 for e, E, f types
default = all significant digits for g, G types
default = print to first null character for s types;

no effect on c types

For d, i, 0, U, x types, precision set to default;
for e, E, f types, no decimal point is printed.

n characters or n decimal places are printed. If the
output value has more than n characters, the output
might be truncated or rounded. (Whether or not this
happens depends on the type character.)

* The argument list supplies the precision specifier, which
must precede the actual argument being formatted.

Note: If an explicit precision of zero is specified, and the format
specification for the field is one of the integer formats (that is, d, i, 0, U, x),
and the value to be printed is 0, no numeric characters will be output for
that field (that is, the field will be blank).

Chapter 2, The Turbo C Ubrary 275

printf

Conversion
Character

276

d
i
o
u
x
X

e
E
f

g
G

c

s

How Precision Specification (.n)
Affects Conversion

.n specifies that at least n digits
will be printed. If the input argument
has less than n digits, the output
value is left-padded with zeroes.
If the input argument has more than n
digits, the output value is not truncated.

.n specifies that n characters will be
be printed after the decimal point, and
the last digit printed is rounded.

.n specifies that at most n significant
digits will be printed.

.n has no effect on the output.

.n specifies that no more than n characters
will be printed.

Turbo C Reference Guide

printf

Input-Size Modifier

The input-size modifier character (F, N, h, I, or L) gives the size of the
subsequent input argument:

F = far pointer
N = near pointer
h = short int
1 = long
L = long double

The input-size modifiers (F, N, h, I, and L) affect how the ... printf functions
interpret the data type of the corresponding input argument argo F and N
apply only to input args that are pointers (%p, %s, and %n). h, L, and L
apply to input args that are numeric (integers and floating-point).

Both F and N reinterpret the input argo Normally, the arg for a %p, %s, or
%n conversion is a pointer of the default size for the memory model. F says
"interpret arg as a far pointer." N says "interpret arg as a near pointer."

Both h, I, and L override the default size of the numeric data input args: 1
and L apply to integer (d, i, 0, U, x, X) and floating-point (e, E, /' g, and G)
types, while h applies to integer types only. Neither h nor 1 affect character
(c, s) or pointer (p, n) types.

Input-Size
Modifier

F

N

h

I

L

Return value

Portability

How arg Is Interpreted

arg is read as a far pointer.

arg is read as a near pointer. N cannot be used with
any conversion in huge model.

arg is interpreted as a short int for d, i, 0, U, X, or X.

arg is interpreted as a long int for d, i, 0, U, X, or X;
arg is interpreted as a double for e, E, /' g, or G.

arg is interpreted as a long double for e, E, /' g, or G.

printf returns the number of bytes output. In the event
of error, printf returns EOF.

printf is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

Chapter 2, The Turbo C Ubrary 277

prinff

See also

Example

278

cprintf, ecvt, fprintf, fread, fscanf, putc, puts, putw,
scanf, sprintf, vprintf, vsprintf

~define I 555
~define R 5.5

main ()
(

int i,j,k,l;
char buf[7];
char *prefix = bUf;
char tp[20];
printf("prefix 6d 60 8x

"10.2f\n");
strcpy (prefix, "%");
for (i=0;i<2;i++)
{

for (j=0;j<2;j++)
for (k=0;k<2;k++)

for (1=0;1<2;1++)
(

if (i==O) strcat(prefix,"-");
if (j==O) strcat(prefix,"+");
if (k==O) strcat(prefix,"I");
if (1==0) strcat(prefix,"O");
printf("%5s I",prefix);
strcpy(tp,prefix);
strcat{tp,"6d I");
printf (tp, I) ;
strcpy (tp, 1111) ;

strcpy(tp,prefix);
strcat(tp,"60 I");
printf (tp, I) ;
strcpy(tp,"");
strcpy(tp,prefix);
strcat(tp,"8x I");
printf(tp,I);
strcpy(tp,"");
strcpy(tp,prefix);
strcat(tp,"10.2e I");
printf (tp, R) ;

10.2e

Turbo C Reference Guide

putc
Function

Syntax

Prototype in

Remarks

Return value

Portability

strcpy(tp,prefix)i
strcat(tp,"10.2f I");

printf (tp, R) ;
printf (" \n");
strcpy(prefix,"%")i

Program output

prefix 6d 60 8x 10.2e
%-HO 1+555 101053 IOx22b 1+5.50e+00
%-tj 1+555 101053 IOx22b 1+5.50e+00
%-+0 +555 11053 122b 1+5.50e+00

%-+ +555 11053 122b 1+5.50e+00
%-*0 555 101053 IOx22b 15.50e+00

%-* 555 101053 IOx22b 15.50e+00
%-0 555 11053 122b 15.50e+00

%- 555 11053 122b 15.50e+00
%HO +00555 1001053 IOxOO022b 1+05.50e+00

%+* +555 I 01053 I Ox22b I +5.50e+00
%+0 +00555 1001053 10000022b 1+05.50e+00

%+ +555 I 1053 I 22b I +5.50e+00
%#0 000555 1001053 IOxOO022b 1005.50e+00

%# 555 I 01053 I Ox22b I 5.50e+00
%0 000555 1001053 10000022b 1005.50e+00
% 555 I 1053 I 22b I 5.50e+00

Outputs a character to a stream.

#include <stdio.h>
int putc(int c, FILE *stream);

stdio.h

printf

10.2f
1+5.50
1+5.50
1+5.50
1+5.50
15.50
15.50
15.50
15.50
1+000005.50
I +5.50
1+000005.50
I +5.50
10000005.50
I 5.50
10000005.50
I 5.50

pute is a macro that outputs the character c to the stream
given by stream.

On success, pute returns the character printed, c. On
error, pute returns EOF.

pute is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

Chapter 2, The Turbo C Ubrary 279

putch

See also

putch
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

putchar
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

280

fprintf, fputc, fputch, getc, getchar, printf, putch,
putchar

Outputs character to screen.

int putch(int c);

conio.h

putch outputs the character c to the current text
window. It is a text mode function performing direct
video output to the console. putch does not translate
line feed characters (\n) into hard return-linefeed pairs.

On success, putch returns the character printed, c. On
error, it returns EOF.

putch works with IBM PCs and compatibles only.

cprintf, cputs, getch, getche, putc, putchar

Outputs character on stdout.

#include <stdio.h>
int putchar(int c);

stdio.h

putchar(c) is a macro defined to be putc (c, stdout).

On success, putchar returns the character c. On error,
putchar returns EOF.

putchar is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

fputchar, getc, getchar, putc, putch, puts

Turbo C Reference Guide

putenv
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

putimage
Function

Syntax

Prototype in

Remarks

Adds string to current environment.

int putenv(const char *name);

stdlib.h

putenv

putenv accepts the string name and adds it to the
environment of the current process. For example,

putenv("PATH=C:\FOO");

putenv can also be used to modify or delete an existing
name. Delete an existing entry by making the variable
value empty (for example, MYVAR=).

putenv can be used only to modify the current
program's environment. Once the program ends, the old
environment is restored.

On success, putenv returns 0; on failure,-1.

putenv is available on UNIX systems.

getenv

See getenv

Outputs a bit image onto the screen.

#include <gra phics.h>
void far putimage(int left, int top,

void far *bitmap, int op);

graphics.h

putimage puts the bit image previously saved with
getimage back onto the screen, with the upper left
corner of the image placed at (le/t, top). bitmap points to
the area in memory where the source image is stored.

The op parameter to putimage specifies a combination
operator that controls how the color for each destination

Chapter 2, The Turbo C Ubrary 281

putimage

Return value

Portability

See also

Example

putpixel
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

282

pixel on screen is computed, based on the pixel already
onscreen and the corresponding source pixel in memory.

The enumeration putimage_aps, as defined in graphics.h,
gives names to these operators.

Name

COPY_PUT
XOR_PUT
OR_PUT
AND_PUT
NOT_PUT

Value

o
1
2
3
4

Description

copy
exclusive or
inclusive or
and
copy the inverse of the source

In other words, COPY_PUT will copy the source bitmap
image onto the screen, XOR_PUT will XOR the source
image with that already onscreen, OR_PUT will OR the
source image with that onscreen, and so on.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getimage, imagesize, putpixel, setvisualpage

See getimage

Plots a pixel at a specified point.

#inc1ude <gra phics.h>
void far putpixel(int x, int y, int color);

graphics.h

putpixel plots a point in the color defined by color at
(x,y).

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getpixel, putimage

Turbo C Reference Guide

puts
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

puttext
Function

Syntax

Prototype in

Remarks

Return value

Outputs a string to the stdout stream.

int puts(const char *s);

stdio.h

puts

puts copies the null-terminated string s to the standard
output stream stdout and appends a newline character.

On successful completion, puts returns a nonnegative
value. Otherwise, it returns a value of EOF.

puts is available on UNIX systems and is compatible
with ANSIC.

cputs, fputs, gets, printf, putchar

Copies text from memory to text mode screen.

int puttext(int left, int top, int right,
int bottom, void *source);

conio.h

puttext writes the contents of the memory area pointed
to by source out to the onscreen rectangle defined by left,
top, right, and bottom.

All coordinates are absolute screen coordinates, not
window-relative. The upper left comer is (1,1).

puttext places the contents of a memory area into the
defined rectangle sequentially from left to right and top
to bottom.

puttext is a text mode function performing direct video
output.

puttext returns a nonzero value if the operation
succeeds; it returns a if it fails (for example, if you gave
coordinates outside the range of the current screen
mode).

Chapter 2, The Turbo C Ubrary 283

puttext

Portability

See also

putw
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

qsort
Function

Syntax

Prototype in

Remarks

284

puttext works only on IBM pes and BIOS-compatible
systems.

gettext, movetext, window

Puts an integer on a stream.

#inc1ude <stdio.h>
int putw(int w, FILE *stream)i

stdio.h

putw outputs the integer w to the given stream. putw
neither expects nor causes special alignment in the file.

On success, putw returns the integer w. On error, putw
returns EOF.

Since EOF is a legitimate integer, ferror should be used
to detect errors with putw.

putw is available on UNIX systems.

getw, printf

Sorts using the quicksort algorithm.

void qsort(void *base, size_t nelem,
size_t width, int (*femp)
(const void *, const void *))i

stdlib.h

qsort is an implementation of the "median of three"
variant of the quicksort algorithm. qsort sorts the entries
in a table by repeatedly calling the user-defined
comparison function pointed to by femp .

• base points to the base (Oth element) of the table to be
sorted .

• nelem is the number of entries in the table.

Turbo C Reference Guide

Return value

Portability

See also

Example

qsort

• width is the size of each entry in the table, in bytes.

*fcmp, the comparison function, accepts two arguments,
eleml and elem2, each a pointer to an entry in the table.
The comparison function compares each of the pointed­
to items (*eleml and *elem2), and returns an integer
based on the result of the comparison.

If the item temp returns

*eleml < *elem2
*eleml = = *elem2
*eleml > *elem2

an integer < 0
o
an integer> 0

In the comparison, the less-than symbol «) means that
the left element should appear before the right element
in the final, sorted sequence. Similarly, the greater-than
(» symbol means that the left element should appear
after the right element in the final, sorted sequence.

None.

qsort is available on UNIX systems and is compatible
withANSIC.

bsearch, lsearch

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
char list[5] [4] = { "cat", "car", "cab", "cap", "can" };

main ()
{

int x;

qsort(&list, 5, sizeof(list[O]), strcmp);
for (x = 0; x < 5; x++)

printf("%s\n", list[x]);

Program output

cab
can
cap
car
cat

Chapter 2, The Turbo C Ubrary 285

raise

raise
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

286

Sends a software signal to the executing program.

#include <signal.h>
int raise(int sig);

signal.h

raise sends a signal of type sig to the program. If the
program has installed a signal handler for the signal
type specified by sig, that handler will be executed. If no
handler has been installed, the default action for that
signal type will be taken.

The signal types currently defined in signal.h are

Signal

SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

Meaning

abnormal termination (*)

bad floating point operation
illegal instruction (#)
control break interrupt
invalid access to storage (#)
request for program
termination (*)

Signal types marked with a (*) aren't generated by DOS
or Turbo C during normal operation. However, they can
be generated with raise. Signals marked by (#) can't be
generated asynchronously on 8088 or 8086 processors
but can be generated on some other processors (see
signal for details).

raise returns 0 if successful, nonzero otherwise.

raise is available on UNIX systems, and is compatible
with ANSIC.

abort, signal

jinclude <signal.h>
main ()
{

int a, b, c;

Turbo C Reference Guide

rand
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

a == 10;
b == 0;
if (b ==== 0)
1* Preempt divide by zero error *1

raise(SIGFPE) ;
c == a I bi

Random number genera tor.

int rand(void);

stdlib.h

raise

rand uses a multiplicative congruential random number
generator with period 232 to return successive pseudo­
random numbers in the range from a to RAND_MAX.
The symbolic constant RAND_MAX is defined in
stdlib.h; its value is 215 ±1.

rand returns the generated pseudo-random number.

rand is available on UNIX systems and is compatible
with ANSIC.

random, randomize, srand

*include <time.h>
*include <stdio.h>
#include <stdlib.h>

main ()
1* prints 5 random numbers from 0 to 32767 *1
{

int i;
1* start at a random place *1
srand(time(NULL) % 37);
for (i==O; i<5; itt)

printf("%d\n", rand())i

Chapter 2, The Turbo C Ubrary 287

randbrd

randbrd
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

randbwr
Function

Syntax

Prototype in

288

Random block read.

#inc1ude <dos.h>
int randbrd(struct fcb *feb, int rent);

dos.h

randbrd reads rent number of records using the open
file control block (FeB) pointed to by feb. The records are
read into memory at the current disk transfer address.
They are read from the disk record indica ted in the
random record field of the FeB. This is accomplished by
calling DOS system call Ox27.

The actual number of records read can be determined by
examining the random record field of the FeB. The
random record field will be advanced by the number of
records actually read.

The following values are returned, depending on the
result of the randbrd operation:

o All records are read.
1 End-of-file is reached and the last record read is

complete.
2 Reading records would have wrapped around

address OxFFFF (as many records as possible are
read).

3 End-of-file is reached with the last record
incomplete.

randbrd is unique to DOS.

getdta, randbwr, setdta

Random block write.

#inc1ude <dos.h>
int randbwr(struct fcb *feb, int rent);

dos.h

Turbo C Reference Guide

Remarks

Return value

Portability

See also

random
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

randbwr

randbwr writes rent number of records to disk using the
open file control block (FCB) pointed to by feb. This is
accomplished using DOS system call DOS Ox28. If rent is
0, the file is truncated to the length indicated by the
random record field.

The actual number of records written can be determined
by examining the random record field of the FCB. The
random record field will be advanced by the number of
records actually written.

The following values are returned, depending upon the
result of the randbwr operation:

o All records are written.
1 There is not enough disk space to write the

records (no records are written).
2 Writing records would have wrapped around

address OxFFFF (as many records as possible are
written).

randbwr is unique to DOS.

randbrd

Random number generator.

#include <stdlib.h>
int random(int num);

stdlib.h

random returns a random number between 0 and
(num-l). random(num) is a macro defined as (randO %
(num». Both num and the random number returned are
integers.

random returns a number between 0 and (num-l).

A corresponding function exists in Turbo Pascal.

rand, randomize, srand

finclude <stdlib.h>
iinclude <time.h>

Chapter 2, The Turbo C Ubrary 289

random

randomize
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Function

Syntax

Prototype in

Remarks

290

1* prints a random number in the range 0-99 *1
main ()
(

int n;
randomize () ;
1* selects a random number between 1 and 20 *1
n = random(20) + 1;
while (n-- > 0)

printf("%d ", random (100));
printf ("\n") ;

Initializes random number generator.

#include <stdlib.h>
#include <time.h>
void randomize(void);

stdlib.h

randomize initializes the random number genera tor
with a random value. Because randomize is imple­
mented as a macro that calls the time function proto­
typed in time.h, we recommend that you also include
time.h when you are using this routine.

None.

A corresponding function exists in Turbo Pascal.

rand, random, srand

Reads from file.

int _read(int handle, void *buf, unsigned len);

io.h

_read attempts to read len bytes from the file associated
with handle into the buffer pointed to by buf. _read is a
direct call to the DOS read system call.

Turbo C Reference Guide

Return value

Portability

See also

read
Function

Syntax

Prototype in

Remarks

When a file is opened in text mode, _read does not
remove carriage returns.

handle is a file handle obtained from a creat, open, dup,
or dup2 call.

On disk files, _read begins reading at the current file
pointer. When the reading is complete, it increments the
file pointer by the number of bytes read. On devices, the
bytes are read directly from the device.

The maximum number of bytes that _read can read is
65534, since 65535 (OxFFFF) is the same as -1, the error
return indica tor.

On successful completion, _read returns a positive
integer indicating the number of bytes placed in the
buffer. On end-of-file, _read returns zero. On error, it
returns -1, and errno is set to one of the following:

EACCES
EBADF

Permission denied
Bad file number

_read is unique to DOS.

_open, read, _write

Reads from file.

int read(int handle, void *buf, unsigned len);

io.h

read attempts to read len bytes from the file associated
with handle into the buffer pointed to by buf.

For a file opened in text mode, read removes carriage
returns and reports end-of-file when it reaches the end
of the file.

handle is a file handle obtained from a creat, open, dup,
or dup2 call.

On disk files, read begins reading at the current file
pointer. When the reading is complete, it increments the

Chapter 2, The Turbo C Ubrary 291

read

Return value

Portability

See also

realloc
Function

Syntax

Prototype in

Remarks

Return value

292

file pointer by the number of bytes read. On devices, the
bytes are read directly from the device.

The maximum number of bytes that read can read is
65534, since 65535 (OxFFFF) is the same as -1, the error
return indicator.

On successful completion, read returns an integer
indicating the number of bytes placed in the buffer. If
the file was opened in text mode, read does not count
carriage returns or Ctrl-Z characters in the number of
bytes read.

On end-of-file, read returns O. On error, read returns -1
and sets errno to one of the following:

EACCES
EBADF

Permission denied
Bad file number

read is available on UNIX systems.

open, _read, write

Realloca tes main memory.

#include <stdlib.h>
void *realloc(void *block, size_t size);

stdlib.h, alloc.h

realloc attempts to shrink or expand the previously
allocated block to size bytes. The block argument points
to a memory block previously obtained by calling
malloc, calloc, or realloc. If block is a null pointer, realloc
works just like malloc.

realloc adjusts the size of the allocated block to size,
copying the contents to a new location if necessary.

realloc returns the address of the reallocated block,
which may be different than the address of the original
block. If the block cannot be reallocated, or size == 0,
realloc returns NULL.

Turbo C Reference Guide

Portability

See also

Example

rectangle
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

realloc

realloc is available on UNIX systems and is compatible
with ANSIC.

calloc, farrealloc, free, malloc

Seemalloc

Draws a rectangle.

#inc1ude <graphics.h>
void far rectangle(int left, int top,

int right, int bottom);

graphics.h

rectangle draws a rectangle in the current line style,
thickness, and drawing color.

(left,top) is the upper left corner of the rectangle, and
(right/bottom) is its lower right comer.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

bar, bar3d, setcolor, setlinestyle

int i;

for (i = 0; i < 10; itt)
rectangle(20-2*i,20-2*i,10*(it2),10*(it2));

registerbgidriver
Function

Syntax

Prototype in

Registers a user-loaded or linked-in graphics driver code
with the graphics system.

#inc1ude <graphics.h>
int registerbgidriver(void (*driver)(void»;

graphics.h

Chapter 2, The Turbo C Ubrary 293

registerbgidriver

Remarks

Return value

Portability

See also

Example

registerbgidriver enables a user to load a driver file and
"register" the driver. Once its memory location has been
passed to registerbgidriver, initgraph will use the
registered driver. A user-registered driver can be loaded
from disk onto the heap, or converted to an .OBJ file
(using BINOBJ.EXE) and linked into the .EXE.

Calling registerbgidriver informs the' graphics system
that the driver pointed to by driver was included at link
time. This routine checks the linked-in code for the
specified driver; if the code is valid, it registers the code
in internal tables. Linked-in drivers are discussed in
detail in Appendix D.

By using the name of a linked-in driver in a call to
registerbgidriver, you also tell the compiler (and linker)
to link in the object file with that public name.

registerbgidriver returns a negative graphics error code
if the specified driver or font is invalid. Otherwise,
registerbgidriver returns the driver number.

If you register a user-supplied driver, you must pass the
result of registerbgidriver to initgraph as the drive
number to be used.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

graphresult, initgraph, installuserdriver,
registerbgifont

/* Register the EGA/VGA driver */
if (registerbgidriver(EGAVGA_driver) < 0) exit(l);

registerbgifont
Function

Syntax

Prototype in

Remarks

294

Registers linked-in stroked font code.

#include <graphics.h>
int registerbgifont(void (*/ont)(void»;

graphics.h

Calling registerbigfont informs the graphics system that
the font pointed to by font was included at link time.

Turbo C Reference Guide

Return value

Portability

See also

Example

remove
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

registerbgifont

This routine checks the linked-in code for the specified
font; if the code is valid, it registers the code in internal
tables. Linked-in fonts are discussed in detail in
Appendix D.

By using the name of a linked-in font in a call to
registerbgifont, you also tell the compiler (and linker) to
link in the object file with that public name.

If you register a user-supplied font, you must pass the
result of registerbgifont to settextstyle as the font
number to be used.

registerbgifont returns a negative graphics error code if
the specified font is invalid. Otherwise, registerbgifont
returns the font number of the registered font.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

graphresult, initgraph, installuserdriver,
registerbgidriver, settextstyle

/* Register the gothic font */
if (registerbgifont(gothic_font) != GOTHIC_FONT) exit(l);

Removes a file.

#include <stdio.h>
int remove(const char *filename);

stdio.h

remove deletes the file specified by filename. It is a macro
that simply translates its call to a call to unlink.

On successful completion, remove returns O. On error, it
returns -I, and errno is set to one of the following:

ENOENT No such file or directory
EACCES Permission denied

remove is available on UNIX systems and is compatible
with ANSIC.

unlink

Chapter 2, The Turbo C Ubrary 295

rename

rename
Function

Syntax

Prototype in

Remarks

Return value

Portability

Renames a file.

int rename(const char *oldname, const char *newname);

stdio.h

rename changes the name of a file from oldname to
newname. If a drive specifier is given in newname, the
specifier must be the same as that given in oldname.

Directories in oldname and newname need not be the
same, so rename can be used to move a file from one
directory to another. Wildcards are not allowed.

On successfully renaming the file, rename returns O. In
the event of error, -1 is returned, and errno is set to one
of the following:

ENOENT No such file or directory
EACCES Permission denied
ENOTSAM Not same device

rename is compatible with ANSI C.

restorecrtmode
Function

Syntax

Prototype in

Remarks

Return value

296

Restores the screen mode to its pre-initgraph setting.

#include <graphics.h>
void far restorecrtmode(void);

graphics.h

restorecrtmode restores the original video mode
detected by initgraph.

This function can be used in conjunction with
setgraphmode to switch back and forth between text
and graphics modes. textmode should not be used for
this purpose; it is used only when the screen is in text
mode, to change to a different text mode.

None.

Turbo C Reference Guide

Portability

See also

rewind
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

rmdir
Function

Syntax

Prototype in

Remarks

restorecrtmode

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getgraphmode, initgraph, setgraphmode

Repositions a file pointer to the beginning of a stream.

#include <stdio.h>
void rewind(FILE *stream);

stdio.h

rewind(stream) is equivalent to fseek(stream, OL,
SEEK_SET), except that rewind clears the end-of-file and
error indicators, while fseek only clears the end-of-file
indicator.

After rewind, the next operation on an update file can
be either input or output.

None.

rewind is available on all UNIX systems, and it is com­
patible with ANSI C.

fopen, fseek, Hell

See fseek

Removes a DOS file directory.

int rmdir(const char *path);

dir.h

rmdir deletes the directory whose path is given by path.
The directory named by path

.. must be empty

.. must not be the current working directory
• must not be the root directory

Chapter 2, The Turbo C Ubrary 297

rmdir

Return value

See also

Function

Syntax

Prototype in

Remarks

Return value

See also

Example

298

rmdir returns 0 if the directory is successfully deleted. A
return value of -1 indicates an error, and errno is set to
one of the following values:

EACCES
ENOENT

Permission denied
Path or file function not found

chdir, getcurdir, getcwd, mkdir

Bit-rotates an unsigned integer value to the left.

unsigned _rot1(unsigned value, int count);

stdlib.h

_rotl rotates the given value to the left count bits. The
value rotated is an unsigned integer.

_rotl returns the value of value left-rotated count bits.

_Irotl

iinclude <stdlib.h>

main ()
{

printf("rotate OxABCD 4 bits left = %04X\n",
_rotl(OxABCD, 4));

printf("rotate OxABCD 4 bits right = %04X\n",
_rotr(OxABCD, 4));

printf("rotate Ox55555555 1 bit left = %08lX\n",
lrotl(Ox55555555L, 1));

printf ("rotate OxAAAAAAAA 1 bit right = %08lX\n",
_lrotr(OxAAAAAAAAL,1));

Program Output

rotate OxABCD 4 bits left = BCDA
rotate OxABCD 4 bits right = DABC
rotate Ox55555555 1 bit left = AAAAAAAA
rotate OxAAAAAAAA 1 bit right = 55555555

Turbo C Reference Guide

Function

Syntax

Prototype in

Remarks

Return value

See also

sbrk
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Bit-rotates an unsigned integer value to the right.

unsigned _rotr(unsigned value, int count);

stdlib.h

_rotr rotates the given value to the right count bits. The
value rotated is an unsigned integer.

_rotr returns the value of value right-rotated count bits.

_lrotr

Changes data segment space allocation.

void *sbrk(int incr);

alloc.h

sbrk adds incr bytes to the break value and changes the
allocated space accordingly. incr can be negative, in
which case the amount of allocated space is decreased.

sbrk will fail without making any change in the
allocated space if such a change would result in more
space being allocated than is allowable.

Upon successful completion, sbrk returns the old break
value. On failure, sbrk returns a value of -I, and errno is
set to

ENOMEM Not enough core

sbrk is available on UNIX systems.

brk

Chapter 2, The Turbo C Library 299

scant

scanf
Function

Syntax

Prototype in

Remarks

300

Scans and fonnats input from the stdin stream.

int scanf(const char *format[, address, ... J);

stdio.h

scanf scans a series of input fields, one character at a
time, reading from the stdin stream. Then each field is
forma tted according to a fonna t specific a tion passed to
scanf in the format string pointed to by format. Finally,
scanf stores the fonnatted input at an address passed to
it as an argument following format. There must be the
same number of fonnat specifications and addresses as
there are in put fields.

Turbo C Reference Guide

scanf

The Format String

The format string present in scanf and the related
functions cscanf, fscanf, sscanf, vscanf, vfscanf, and
vsscanf controls how each function will scan, convert,
and store its input fields. There must be enough address
arguments for the given format specifications; if not, the
results are unpredictable, and likely disastrous. Excess
address arguments (more than required by the format)
are merely ignored.

The format string is a character string that contains three
types of objects: whitespace characters, non-whitespace
characters, and format specifications.

t:I The whitespace characters are blank (), tab (\t) or
newline (\n). If a ... scanf function encounters a
whitespace character in the format string, it will read,
but not store, all consecutive whitespace characters up
to the next non-whitespace character in the input.

t:I The non-whitespace characters are all other ASCII
characters except the percent sign (%). If a ... scanf
function encounters a non-whitespace character in the
format string, it will read, but not store, a matching
non-whitespace character.

EJ The format specifications direct the ... scanf functions
to read and convert characters from the input field
into specific types of values, then store them in the
locations given by the address arguments.

Trailing whitespace is left unread (including a newline),
unless explicitly matched in the format string.

Format Specifications

... scanf format specifications have the following form:

% [*] [width] [FIN] [hllIL] type_character

Chapter 2, The Turbo C Library 301

scant

Each format specification begins with the percent
character (%). After the % come the following, in this
order:

• an optional assignment-suppression character [*]

• an optional width specifier [width]
• an optional pointer size modifier [F IN]

• an optional argument-type modifier [h III L]

• the type character

Optional Format String Components

These are the general aspects of input formatting controlled by the optional
characters and specifiers in the ... scanf format string:

Character or
Specifier

*
width

size

argument
type

302

What It Controls or Specifies

Suppresses assignment of the next input field.

Maximum number of characters to read; fewer
characters might be read if the ... scanf function
encounters a whitespace or unconvertible
character.

Overrides default size of address argument.

N = near poin ter
F = far pointer

Overrides default type of address
argument.

h = short int
1 = long int (if the type character specifies an

integer conversion)
1 = double (if the type character specifies a

floating-point conversion)
L = long double (valid only with floating-point

conversions)

Turbo C Reference Guide

scant

... scanf Type Characters

The following table lists the ... scan£ type characters, the type of input
expected by each, and in what format the input will be stored.

The information in this table is based on the assumption that no optional
characters, specifiers, or modifiers (*, width, or size) were included in the
format specification. To see how the addition of the optional elements
affects the ... scan£ input, refer to the tables following this one.

Type
Character Expected Input Type of Argument

Numerics

d Decimal integer Pointer to int (int *arg)
0 Decimal integer Pointer to long (long *arg)

0 Octal integer Pointer to int (int *arg)
0 Octal integer Pointer to long (long *arg)

Decimal, octal, Pointer to int (int *arg)
or hexadecimal
integer

Decimal, octal, Pointer to long (long *arg)
or hexadecimal
integer

u Unsigned Pointer to unsigned int
decimal integer (unsigned int *arg)

U Unsigned Pointer to unsigned long
decimal integer (unsigned long *arg)

x Hexadecimal Pointer to int (int *arg)
integer

X Hexadecimal Pointer to long
integer (long *arg)

e Floating Pointer to float (float *arg)
E Floating Pointer to float (float *arg)

f Floating Pointer to float (float *arg)

g Floating Pointer to float (float *arg)
G Floating Pointer to float (float *arg)

Chapter 2, The Turbo C Ubrary 303

scanf

Type
Character Expected Input

s

c

%

n

p

Character
string

Character

% character

Hexadecimal
form Y¥YY:ZZZZ
orZZZZ

Type of Argument

Characters

Pointer to array of
characters (char arg[])

Pointer to character (char *arg) if a field
width W is given along with the c-type
character (such as %5c).

Pointer to array of W characters (char
arg[WD

No conversion is done; the % character is
stored.

Pointers

Pointer to int (int *arg).
The number of characters read successfully,
up to the %n, is stored in this int.

Pointer to an object (far* or near*)

%p conversions default to the pointer size
native to the memory model.

Input Fields

Anyone of the following is an input field:

• all characters up to (but not including) the next whitespace character
• all characters up to the first one that cannot be converted under the

current format specification (such as an 8 or 9 under octal format)
• up to n characters, where n is the specified field width

Conventions

Certain conventions accompany some of these format specifications, as
summarized here.

% c conversion
This specification reads the next character, including a whitespace char­
acter. To skip one whites pace character and read the next non-whitespace
character, use % Is.

304 Turbo C Reference Guide

scant

% W c conversion (W = width specification)
The address argument is a pointer to an array of characters; the array
consists of Welements (char arg[W]).

% s conversion
The address argument is a pointer to an array of characters (char arg[]).

The array size must be at least (n+ 1) bytes, where n equals the length of
string s (in characters). A space or newline terminates the input field. A
null-terminator is automatically appended to the string and stored as the
last element in the array.

% [search_set] conversion
The set of characters surrounded by square brackets can be substituted for
the s-type character. The address argument is a pointer to an array of
characters (char arg[]).

These square brackets surround a set of characters that define a search set of
possible characters making up the string (the input field).

If the first character in the brackets is a caret (1\), the search set is inverted to
include all ASCII characters except those between the square brackets.
(Normally, a caret will be included in the inverted search set unless
explicitly listed somewhere after the first caret.)

The input field is a string not delimited by whitespace. The ... scanf
function reads the corresponding input field up to the first character it
reaches that does not appear in the search set (or in the inverted search set).
Two examples of this type of conversion are

% [abed]

% ["abed]

Searches for any of the characters a, b, c, and d in the input
field.
Searches for any characters except a, b, c, and d in the input
field.

You can also use a range facility shortcut to define a range of characters
(numerics or letters) in the search set. For example, to catch all decimal
digits, you could define the search set by using

%[0123456789)

or you could use the shortcut to define the same search set by using

%[0-9)

Chapter 2, The Turbo C Ubrary 305

scant

To catch alphanumerics, you could use the following shortcuts:

%[A-Z]

% [O-9A-Za-z]

% [A-FT-Z]

Catches all uppercase letters.
Catches all decimal digits and all letters (uppercase
and lowercase).
Catches all uppercase letters from A through F and
from T through Z.

The rules covering these search set ranges are straightforward:

• The character prior to the hyphen (-) must be lexically less than the one
after it.

• The hyphen must not be the first nor the last character in the set. (If it is
first or last, it is considered to just be the hyphen character, not a range
definer.)

• The characters on either side of the hyphen must be the ends of the range
and not part of some other range.

Here are some examples where the hyphen just means the hyphen
character, not a range between two ends:

% [- + * /] The four arithmetic opera tions
% [z-a] The characters z, -, and a
% [+O-9-A-Z] The characters + and -, and the ranges 0 through 9

and A through Z
% [+O-9A-Z-] Also the characters + and -, and the ranges 0 through

9 and A through Z
% ["-O-9+A-Z] All characters except + and -, and those in the ranges

o through 9 and A through Z

%e, %E. %f, %g, and %G (floating-point) conversions
Floating-point numbers in the input field must conform to
the following generic format:

[+/-J ddddddddd [.J dddd [E I eJ [+/-J ddd

where [item] indicates that item is optional, and ddd represents decimal,
octal, or hexadecimal digits.

In addition, +INF, -INF, +NAN, and -NAN are recognized as floating­
point numbers. Note that the sign and capitalization are required.

%d, %i, %0, %x, %D, %1, %0, %X, %c, %n conversions
A pointer to unsigned character, unsigned integer, or unsigned long can
be used in any conversion where a pointer to a character, integer, or long is
allowed.

306 Turbo C Reference Guide

scanf

Assignment-Suppression Character

The assignment-suppression character is an asterisk (*); it is not to be
confused with the C indirection (pointer) operator (also an asterisk).

If the asterisk follows the percent sign (%) in a format specification, the next
input field will be scanned but will not be assigned to the next address
argument. The suppressed input data is assumed to be of the type specified
by the type character that follows the asterisk character.

The success of literal matches and suppressed assignments is not directly
determinable.

Width Specifiers

The width specifier (n), a decimal integer, controls the maximum number of
characters that will be read from the current input field.

If the input field contains fewer than n characters, the ... scanf function
reads all the characters in the field, then proceeds with the next field and
format specification.

If a whitespace or nonconvertible character occurs before width characters
are read, the characters up to that character are read, converted, and stored,
then the function attends to the next format specification.

A nonconvertible character is one that cannot be converted according to the
given format (such as an 8 or 9 when the format is octal, or a J or K when
the format is hexadecimal or decimal).

Width
Specifier

n

How Width of Stored Input Is Affected

Up to n characters will be read, converted, and stored in
the current address argument.

Chapter 2, The Turbo C Ubrary 307

scanf

Input-Size and Argument-Type Modifiers .

The input-size modifiers (N and F) and argument-type modifiers (h, I, and
L) affect how the ... scanf functions interpret the corresponding address
argument arg£IJ.

F and N override the default or declared size of argo

h, I, and L indicate which type (version) of the following input data is to be
used (h = short, 1 = long, L = long double). The input data will be
converted to the specified version, and the arg for that input data should
point to an object of the corresponding size (short object for %h, long or
double object for %1, and long double object for %L).

Modifier How Conversion Is Affected

308

F

N

h

Overrides default or declared size; arg interpreted as far
pointer.

Overrides default or declared size; arg interpreted as near
pointer. Cannot be used with any conversion in huge
model.

For d, i, 0, U, x types: convert input to short int, store in
short object.

For D, 1,0, U, X types: has no effect.

For e, I, C,5, n, p types: has no effect.

1 For d, i, 0, U, x types: convert input to long int, store in long
object.

L

For e, I, g types: convert input to double, store in double
object.

For D, 1,0, U, X types: has no effect.

For c, 5, n, p types: has no effect.

For e, I, g types: convert input to a long double, store in
long double object. L has no effect on other formats.

Turbo C Reference Guide

scanf

When scanf Stops Scanning

scanf may stop scanning a particular field before
reaching the normal field-end character (whitespace), or
may terminate entirely, for a variety of reasons.

scanf will stop scanning and storing the current field
and proceed to the next input field if any of the
following occurs:

• An assignment-suppression character (*) appears after
the percent character in the format specification; the
current input field is scanned but not stored.

JI width characters have been read (width = width
specification, a positive decimal integer in the format
specification).

D The next character read cannot be converted under the
current format (for example, an A when the format is
decimal).

m The next character in the input field does not appear
in the search set (or does appear in an inverted search
set).

When scanf stops scanning the current input field for
one of these reasons, the next character is assumed to be
unread and to be the first character of the following
input field, or the first character in a subsequent read
operation on the input.

scanf will terminate under the following circumstances:

• The next character in the input field conflicts with
a corresponding non-whites pace character in the
format string.

• The next character in the input field is EOF.

• The format string has been exhausted.

If a character sequence that is not part of a format
specification occurs in the format string, it must match
the current sequence of characters in the input field;
scanf will scan, but not store, the matched characters.
When a conflicting character occurs, it remains in the
input field as if it were never read.

Chapter 2, The Turbo C Ubrary 309

scant

Return value

Portability

See also

searchpath
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

310

scanf returns the number of input fields successfully
scanned, converted and stored; the return value does
not include scanned fields that were not stored.

If scanf attempts to read at end-of-file, the return value
is EOP.

If no fields were stored, the return value is O.

scanf is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

cscanf, fscanf, printf, sscanf, vfscanf, vscanf, vsscanf

Searches the DOS pa th for a file.

char *searchpath(const char *file);

dir.h

searchpath attempts to locate file, searching along the
DOS path, which is the PATH= ••• string in the environ­
ment. A pointer to the complete path-name string is
returned as the function value.

searchpath searches for the file in the current directory
of the current drive first. If the file is not found there, the
PATH environment variable is fetched, and each
directory in the path is searched in turn until the file is
found or the path is exhausted.

When the file is located, a string is returned containing
the full path name. This string can be used in a call to
access the file (for example, with fopen or exec ...).

The string returned is located in a static buffer and is
overwritten on each subsequent call to searchpath.

searchpath returns a pointer to a file name string if the
file is successfully located; otherwise, searchpath returns
null.

searchpath is unique to DOS.

exec. 0 0, spawn ... , system

Turbo C Reference Guide

Example

sector
Function

Syntax

Prototype in

Remarks

Return value

Portability

iinclude <stdio.h>
#include <dir.h>

main ()
(

char *p;
p = searchpath("TLINK.EXE");
printf("Search for TLINK.EXE : %s\n", pI;
p = searchpath{"NOTEXIST.FIL");
printf("Search for NOTEXIST.FIL : %s\n", p);

Program output

Search for TLINK.EXE : C:\BIN\TLINK.EXE
Search for NOTEXIST.FIL : (null)

Draws and fills an elliptical pie slice.

#include <graphics.h>
void far sector(int x, int y,

graphics.h

int stangle, int endangle,
int xradius, int yradius);

search path

Draws and fills an elliptical pie slice using (x,y) as the
center point, xradius and yradius as the horizontal and
vertical radii, respectively, and drawing from stangle to
endangle. The pie slice is outlined using the current color,
and filled using the pattern and color defined by
setfillstyle or setfillpattern.

The angles for sector are given in degrees. They are
measured counterclockwise with 0 degrees at 3 o'clock,
90 degrees at 12 o'clock, and so on.

If an error occurs while the pie slice is filling,
graphresult will return a value of -6 (grNoScanMem).

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

Chapter 2, The Turbo C library 311

segread

See also

segread
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

arc, circle, ellipse, getarccoords, getaspectratio, pieslice,
setfillpattern, setfillstyle, setgraphbufsize

Reads segment registers.

#include <dos.h>
void segread(struct SREGS *segp);

dos.h

segread places the current values of the segment
registers into the structure pointed to by segp.

This call is intended for use with intdosx and int86x.

None.

segread is unique to the 8086 fa mil y of processors.

FP _OFF, int86 intdos, MK_FP, movedata

setactivepage
Function

Syntax

Prototype in

Remarks

Return value

Portability

312

Sets active page for graphics output.

#include <gra phics.h>
void far setactivepage(int page);

graphics.h

setactivepage makes page the active graphics page. All
subsequent graphics output will be directed to that
graphics page.

The active graphics page mayor may not be the one you
see onscreen, depending on how many graphics pages
are available on your system. Only the EGA, VGA, and
Hercules graphics cards support multiple pages.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

Turbo C Reference Guide

See also

Example

setvisualpage

cleardevice();
/* make page 0 (blank) visible */
setvisualpage(O);
/* use page 1 for output */
setactivepage(l);
/* draw a bar in page 1 */
bar(50, 50, 150, 150);
/* show page 1 (with bar) */
setvisualpage(l);

setactivepage

setall palette
Function

Syntax

Prototype in

Remarks

Changes all palette colors as specified.

#inc1ude <graphics.h>
void far setallpalette(struct palettetype

far *palette);

graphics.h

setallpalette sets the current palette to the values given
in the palettetype structure pointed to by palette.

You can partially (or completely) change the colors in
the EGA/VGA palette with setallpalette.

The MAXCOLORS constant and the palettetype struc­
ture used by setallpalette are defined in graphics.h as
follows:

idefine MAXCOLORS 15

struct palettetype {
unsigned char size;
signed char colors[MAXCOLORS + 1];

} ;

size gives the number of colors in the palette for the
current graphics driver in the current mode.

colors is an array of size bytes containing the actual raw
color numbers for each entry in the palette. If an element
of colors is -1, the palette color for that entry is not
changed.

Chapter 2, The Turbo C Ubrary 313

setclipaleHe

Return value

Portability

See also

314

The elements in the colors array used by setallpalette can
be represented by symbolic constants defined in
graphics.h.

Actual Color Table

eGA EGANGA

Name Value Name Value

BLACK 0 EGA_BLACK 0
BLUE 1 EGA_BLUE 1
GREEN 2 EGA_GREEN 2
CYAN 3 EGA_CYAN 3
RED 4 EGA_RED 4
MAGENTA 5 EGA_MAGENTA 5
BROWN 6 EGA_LIGHTGRAY 7
LIGHTGRAY 7 EGA_BROWN 20
DARKGRAY 8 EGA_DARKGRAY 56
LIGHTBLUE 9 EGA_LIGHTBLUE 57
LIGHTGREEN 10 EGA_LIGHTGREEN 58
LIGHTCYAN 11 EGA_LIGHTCYAN 59
LIGHTRED 12 EGA_LIGHTRED 60
LIGHTMAGENTA 13 EGA_LIGHTMAGENTA 61
YELLOW 14 EGA_YELLOW 62
WHITE 15 EGA_WHITE 63

Note that valid colors depend on the current graphics
driver and current graphics mode.

Changes made to the palette are seen immediately on
the screen. Each time a palette color is changed, all
occurrences of that color on the screen will change to the
new color value.

Note: setallpalette cannot be used with the IBM-8S14
driver.

If invalid input is passed to setallpalette, graphresult
will return -11 (grError), and the current palette remains
unchanged.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getpalette, graphresult, setbkcolor, setcolor, setpalette

Turbo C Reference Guide

setospectratio

setaspectratio
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

setbkcolor
Function

Syntax

Prototype in

Remarks

Changes the default aspect ratio correction factor.

#include <graphics.h>
void far setaspectratio(int xasp, int yasp);

graphics.h

setaspectratio is used to change the default aspect ratio
of the graphics system. The aspect ratio is used by the
graphics system to make sure that circles are drawn
round. If circles appear elliptical, the monitor is not
aligned properly. This can be corrected in the hard ware
by realigning the monitor, or it can be changed in the
software by using setaspectratio to set the aspect ratio.
To obtain the current aspect ratio from the system, call
getaspectratio.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

circle, getaspectratio

Sets the current background color using the palette.

#include <graphics.h>
void far setbkcolor(int color);

graphics.h

setbkcolor sets the background to the color specified by
color. The argument color can be a name or a number, as
listed in the following table.

Chapter 2, The Turbo C Ubrary 315

setbkcolor

Return value

Portability

See also

setblock
Function

Syntax

Prototype in

316

Number Name Number Name

0 BLACK 8 DARKGRAY
1 BLUE 9 LlGHTBLUE
2 GREEN 10 LlGHTGREEN
3 CYAN 11 LlGHTCYAN
4 RED 12 LlGHTRED
5 MAGENTA 13 LlGHTMAGENTA
6 BROWN 14 YELLOW
7 LlGHTGRAY 15 WHITE

Note: These symbolic names are defined in graphics.h.

For example, if you want to set the background color to
blue, you can call

setbkco!or(BLUE) /* or */ setbkco!or(l)

On CGA and EGA systems, setbkcolor changes the
background color by changing the first entry in the
palette.

Note: If you use an EGA or a VGA and you change the
palette colors with setpalette or setallpalette, the
defined symbolic constants might not give you the
correct color. This is because the parameter to setbkcolor
indicates the entry number in the current palette rather
than a specific color (unless the parameter passed is 0,
which always sets the background color to black).

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getbkcolor, setallpalette, setcolor, setpalette

Modifies the size of a previously alloca ted block.

int setblock(unsigned segx, unsigned newsize);

dos.h

Turbo C Reference Guide

Remarks

Return value

Portability

See also

setbuf
Function

Syntax

Prototype in

Remarks

setblock

setblock modifies the size of a memory segment. segx is
the segment address returned by a previous call to
allocmem. newsize is the new, requested size in
paragraphs.

setblock returns -1 on success. In the event of error, it
returns the size of the largest possible block (in
paragraphs), and _doserrno is set.

setblock is unique to DOS.

allocmem

Assigns buffering to a stream.

#inc1ude <stdio.h>
void setbuf(FILE *stream, char *bui>;

stdio.h

setbuf causes the buffer buf to be used for I/O buffering
instead of an automatically allocated buffer. It is used
after stream has been opened.

If bufis null, I/O will be unbuffered; otherwise, it will be
fully buffered. The buffer must be BUFSIZ bytes long
(specified in stdio.h).

stdin and stdout are unbuffered if they are not redirected;
otherwise, they are fully buffered. setbuf can be used to
change the buffering style being used.

Unbuffered means that characters written to a stream are
immediately output to the file or device, while buffered
means that the characters are accumulated and written
as a block.

setbuf will produce unpredictable results unless it is
called immediately after opening stream or after a call to
fseek. Calling setbuf after stream has been unbuffered is
legal and will not cause problems.

A common cause for error is to allocate the buffer as an
automatic (local) variable and then fail to close the file

Chapter 2, The Turbo C Ubrary 317

setbuf

Return value

Portability

See also

Example

setcbrk
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

setcolor
Function

Syntax

Prototype in

Remarks

318

before returning from the function where the buffer was
declared.

None.

setbuf is available on UNIX systems and is compatible
with ANSIC.

fflush, fop en, fseek, setvbuf

See setvbuf

Sets control-break setting.

int setcbrk(int cbrkvalue);

dos.h

setcbrk uses the DOS system call Ox33 to set control­
break checking on or off.

value = 0 Turns checking off (check only during I/O
to console, printer, or communications
devices).

value = 1 Turns checking on (check at every system
call).

setcbrk returns cbrkvalue, the value passed.

setcbrk is unique to DOS.

getcbrk

Sets the current drawing color using the palette.

#include <gra phics.h>
void far setcolor(int color);

graphics.h

setcolor sets the current drawing color to color, which
can range from 0 to getmaxcolor.

Turbo C Reference Guide

Return value

Portability

See also

seleotor

The current drawing color is the value to which pixels
are set when lines, etc., are drawn. The following tables
show the drawing colors available for the CGA and
EGA, respectively.

Palette Constant assigned to color number (pixel value)
Number 1 2 3

o CGA_LlGHfGREEN CGA_LlGHfRED CGA_ YELLOW
1 CGA_LlGHfCYAN CGA_LlGHfMAGENfA CGA_Wl-llTE
2 CGA GREEN CGA_RED CGA BROWN
3 CGA=CYAN CGA_MAGENfA CG A=LlG HfGRAY

Numeric
Value

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Symbolic Name

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LlGHfGRAY
DARK GRAY
LlGHfBLUE
LlGHfGREEN
LlGHfCYAN
LlGHfRED
LlGHfMAGENfA
YELLOW
Wl-llTE

You select a drawing color by passing either the color
number itself or the equivalent symbolic name to
setcolor. For example, in CGACO mode, the palette
contains four colors: the background color, light green,
light red, and yellow. In this mode, either setcolor(3) or
setcolor(CGA_YELLOW) selects a drawing color of
yellow.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getcolor, getmaxcolor, setallpalette, setbkcolor,
setpalette

Chapter 2, The Turbo C Ubrary 319

setdate

setdate
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

setdisk
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

320

Sets DOS date.

#inc1ude <dos.h>
void setdate(struct date *datep);

dos.h

setdate sets the system date (month, day, and year) to
that in the date structure pointed to by datep.

The date structure is defined as follows:

struct date {
int da_year;
char da_day;
char da_mon;

} ;

None.

setdate is unique to DOS.

getdate, gettime, settime

See getdate

Sets current disk drive.

int setdisk(int drive);

dir.h

/* current year */
/* day of the month */
/* month (1 = Jan) */

setdisk sets the current drive to the one associated with
drive: 0 for A, 1 for B, 2 for C, and so on (equivalent to
DOS call OxOE).

setdisk returns the total number of drives available.

setdisk is unique to DOS.

getdisk

Turbo C Reference Guide

setdta
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Sets disk transfer address.

void setdta(char far *dta);

dos.h

setdta

setdta changes the current setting of the DOS disk
transfer address (DTA) to the value given by dta.

None.

setdta is unique to DOS.

getdta

s etfill pattern
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Selects a user-defined fill pattern.

#inc1ude <graphics.h>
void far setfillpattern(char far *upattern, int color);

graphics.h

setfillpattern is like setfillstyle, except that you use it to
set a user-defined 8x8 pa ttern rather than a predefined
pattern.

upattern is a pointer to a sequence of 8 bytes, with each
byte corresponding to 8 pixels in the pattern. Whenever
a bit in a pattern byte is set to I, the corresponding pixel
will be plotted.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

getfillpattern, getfillsettings, sector, setfillstyle

Chapter 2, The Turbo C Ubrary 321

setfillstyle

setfillstyle
Function

Syntax

Prototype in

Remarks

Return value

Portability

322

Sets the fill pattern and color.

#inc1ude <graphics.h>
void far setfillstyle(int pattern, int color);

graphics.h

setfillstyle sets the current fill pattern and fill color. To
set a user-defined fill pattern, do not give a pattern of 12
(USER_FILL) to setfillstyle; instead, call setfillpattern.

The enumeration fi1Cpatterns, defined in graphics.h,
gives names for the predefined fill patterns, plus an
indicator for a user-defined pattern.

Name Value

EMPTY_FILL 0
SOLID_FILL 1
LINE_FILL 2
LTSLASH_FILL 3
SLASH_FILL 4
BKSLASH_FILL 5
LTBKSLASH_FILL 6
HATCH_FILL 7
XHATCH_FILL 8
INTERLEAVE_FILL 9
WIDE_DDT_FILL 10
CLOSE_DDT_FILL 11
USER_FILL 12

Description

fill with background color
solid fill
fill with­
fill with / / /
fill with / / /, thick lines
fill with \ \ \, thick lines
fill with \ \ \
light hatch fill
heavy cross-hatch fill
interleaving line fill
widely spaced dot fill
closely spaced dot fill
user-defined fill pattern

All but EMPTY_FILL fill with the current fill color;
EMPTY_FILL uses the current background color.

If invalid input is passed to setfillstyle, graphresult will
return -11 (grError), and the current fill pattern and fill
color will remain unchanged.

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

Turbo C Reference Guide

See also

setftime
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

setftime

bar, bar3d, fillpoly, floodfill, getfillsettings,
graphresult, pieslice, sector, setfillpattern

Sets file date and time.

#include <io .h>
int setftime(int handle, struct ftime *ftimep);

io.h

setftime sets the file date and time of the disk file
associated with the open handle to the date and time in
the ftime structure pointed to by ftimep.

The £time structure is defined as follows:

struct ftime {

} ;

unsigned ft_tsec: 5;
unsigned ft_min: 6;
unsigned ft_hour: 5;
unsigned ft_day: 5;
unsigned ft_month: 4;
unsigned ft_year: 7;

setftime returns 0 on success.

/* two seconds */
1* minutes */

/* hours */
/* days */

/* months */
/* year - 1980*/

In the event of an error, -1 is returned, and the global
variable err no is set to one of the following:

EINVFNC
EBADF

Invalid function number
Bad file number

setftime is unique to DOS.

getftime

See getdate

Chapter 2, The Turbo C Ubrary 323

setgraphbufsize

setgraphbufsize
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

324

Changes the size of the internal graphics buffer.

#include <graphics.h>
unsigned far setgraphbufsize(unsigned bu/size);

graphics.h

Some of the graphics routines (such as £loodfill) use a
memory buffer that is allocated when initgraph is
called, and released when closegraph is called. The
default size of this buffer, which is allocated by
~raphgetmem, is 4096 bytes.

You might want to make this buffer smaller (to save
memory space) or bigger (if, for example, a call to
£loodfill produces error -7: Out of flood memory).
setgraphbufsize tells initgraph how much memory to
allocate for this internal graphics buffer when it calls
~raphgetmem.

Note: You must call setgraphbufsize before calling
initgraph. Once initgraph has been called, all calls to
setgraphbufsize are ignored until after the next call to
closegraph. '

setgraphbufsize returns the previous size of the internal
buffer.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

closegraph, ~raphfreemem, ~raphgetmem, initgraph,
sector

int cbsize;
/* get current size */
cbsize = setgraphbufsize(lOOO);
/* restore size */
setgraphbufsize(cbsize);
printf("The graphics buffer is currently %u bytes.",

cbsize);

Turbo C Reference Guide

setgraphmode

setgraphmode
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

setjmp
Function

Syntax

Prototype in

Remarks

Sets the system to graphics mode, clears the screen.

#include <graphics.h>
void far setgraphmode(int mode);

graphics.h

setgraphmode selects a graphics mode different than the
default one set by initgraph. mode must be a valid mode
for the current device driver. setgraphmode clears the
screen and resets all graphics settings to their defaults
(CP, palette, color, viewport, and so on). You can use
setgraphmode in conjunction with restorecrtmode to
switch back and forth between text and graphics modes.

If you give setgraphmode an invalid mode for the
current device driver, graphresult will return a value of
-10 (grIn validMode).

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getgraphmode, getmoderange, graphresult, initgraph,
restorecrtmode

Sets up for nonlocal goto.

#include <setjmp.h>
int setjmp(jmp_buf jmpb);

setjmp.h

setjmp captures the complete task state in jmpb and
returns O.

A later call to longjmp with jmpb restores the captured
task state and returns in such a way that setjmp appears
to have returned with the value val.

A task state is

Chapter 2, The Turbo C Ubrary 325

setjmp

Return value

Portability

See also

Example

setlinestyle
Function

Syntax

Prototype in

Remarks

326

• all segment registers (C5, D5, E5, 55)
• register variables (51, DI)
• stack pointer (5P)
• frame base pointer (BP)

• flags
A task state is complete enough that setjmp can be used
to implement co-routines.

setjmp must be called before longjmp. The routine that
calls setjmp and sets up jmpb must still be active and
cannot have returned before the longjmp is called. If it
has returned, the results are unpredictable.

setjmp is useful for dealing with errors and exceptions
encountered in a low-level subroutine of a program.

setjmp returns 0 when it is initially called.

setjmp is available on UNIX systems and is compatible
with AN5IC.

longjmp, signal

5ee longjmp

5ets the current line width and style.

#include <graphics.h>
void far setlinestyle(int linestyle, unsigned upattern,

int thickness);

graphics.h

setlinestyle sets the style for all lines drawn by line,
line to, rectangle, drawpoly, etc.

The linesettingstype structure is defined in graphics.h as
follows:

struct linesettingstype {
int linestyle;
unsigned upattern;
int thickness;

} ;

Turbo C Reference Guide

Return value

Portability

setlinestyle

linestyle specifies in which of several styles subsequent
lines will be drawn (such as solid, dotted, cen tered,
dashed). The enumeration line_styles, defined in
graphics.h, gives names to these operators:

Name Value Description

SOLID_LINE 0 solid line
DOTIED _LINE 1 dotted line
CENTER_LINE 2 centered line
DASHED_LINE 3 dashed line
USERBIT _LINE 4 user-defined line style

thickness specifies whether the width of subsequent lines
drawn will be normal or thick.

Name Value

NORM_WIDTH 1
THICK_WIDTH 3

Description

1 pixel wide
3 pixels wide

upattern is a 16-bit pattern that applies only if linestyle is
USERBIT_LINE (4). In that case, whenever a bit in the
pattern word is 1, the corresponding pixel in the line is
drawn in the current drawing color. For example, a solid
line corresponds to a upattern of OxFFFF (all pixels
drawn), while a dashed line can correspond to a upattern
of Ox3333 or OxOFOF. If the linestyle parameter to
setlinestyle is not USERBIT_LINE (!=4), the upattern
parameter must still be supplied, but it is ignored.

Note: The linestyle parameter does not affect arcs, circles,
ellipses, or pieslices. Only the thickness parameter is
used.

If invalid input is passed to setlinestyle, graphresult
will return -11, and the current line style will remain
unchanged.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

Chapter 2, The Turbo C library 327

setmem

See also

setmem
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

setmode
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

328

bar3d, getlinesettings, graphresult, line, linerel, lineto,
rectangle

Assigns a value to a range of memory.

void setmem(void *dest, unsigned length, char value};

mem.h

setmem sets a block of length bytes, pointed to by dest, to
the byte value.

None.

setmem is unique to the 8086 family.

memset, strset

Sets mode of open file.

#inc1ude <fcntl.h>
int setmode(int handle, int am ode};

io.h

setmode sets the mode of the open file associated with
handle to either binary or text. The argument am ode must
have a value of either a_BINARY or a_TEXT, never
both. (These symbolic constants are defined in fcntl.h.)

setmode returns 0 if successful. On error it returns -1
and sets errno to

EINVAL Invalid argument

setmode is available on UNIX systems.

_creat, creat,_open, open

Turbo C Reference Guide

setpalette
Function

Syntax

Prototype in

Remarks

Changes one palette color.

#include <graphics.h>
void far setpalette(int colornum, int color);

graphics.h

setpalette

setpalette changes the colornum entry in the palette to
color. For example, setpalette(O,5) changes the first color
in the current palette (the background color) to actual
color number 5. If size is the number of entries in the
current palette, colornum can range between ° and (size-
1).

You can partially (or completely) change the colors in
the EGA/VGA palette with setpalette. On a CGA, you
can only change the first entry in the palette (colornum
equals 0, the background color) with a call to setpalette.

The color parameter passed to setpalette can be
represented by symbolic constants defined in graphics.h.

Actual Color Table

eGA EGA/VGA

Name Value Name Value

BLACK 0 EGA_BLACK 0
BLUE 1 EGA_BLUE 1
GREEN 2 EGA_GREEN 2
CYAN 3 EGA_CYAN 3
RED 4 EGA_RED 4
MAGENTA 5 EGA_MAGENTA 5
BROWN 6 EGA_LIGHTGRAY 7
LIGHTGRAY 7 EGA_BROWN 20
DARKGRAY 8 EGA_DARKGRAY 56
LIGHTBLUE 9 EGA_LIGHTBLUE 57
LIGHTGREEN 10 EGA_LIGHTGREEN 58
LIGHTCYAN 11 EGA_LIGHTCYAN 59
LIGHTRED 12 EGA_LIGHTRED 60
LIGHTMAGENTA 13 EGA_LIGHTMAGENTA 61
YELLOW 14 EGA_YELLOW 62
WHITE 15 EGA_WHITE 63

Chapter 2, The Turbo C Ubrary 329

setpalette

Return value

Portability

See also

Note that valid colors depend on the current graphics
driver and current graphics mode.

Changes made to the palette are seen immediately on
the screen. Each time a palette color is changed, all
occurrences of that color on the screen will change to the
new color value.

Note: setpalette cannot be used with the IBM-8514
driver; use setrgbpalette instead.

If invalid input is passed to setpalette, graphresult will
return -11, and the current palette remains unchanged.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

getpalette, graphresult, setallpalette, setbkcolor,
setcolor, setrgbpalette

setrgbpalette
Function

Syntax

Prototype in

Remarks

330

Allows user to define colors for the IBM8514.

#include <gra phics.h>
void far setrgbpalette(int colo mum, int red,

int green, int blue);

graphics.h

setrgbpalette can be used with the IBM8514 and VGA
drivers.

colornum defines the palette entry to be loaded, while
red, green, and blue define the component colors of the
palette entry.

For the IBM8514 display, (and the VGA in 256K color
mode), colornum is in the range 0 to 255. For the
remaining modes of the VGA, colornum is in the range 0
to 15. Only the lower byte of red, green, or blue is used,
and out of each byte, only the 6 most significant bits are
loaded in the palette.

Note: For compatibility with other IBM graphics adap­
ters, the BGI driver defines the first 16 palette entries of

Turbo C Reference Guide

Return value

Portability

See also

setrgbpalette

the IBM8514 to the default colors of the EGA/VGA.
These values can be used as is, or they can be changed
using setrgbpalette.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

setpalette

settextjustify
Function

Syntax

Prototype in

Remarks

Sets text justification for graphics functions.

#include <gra phics.h>
void far settextjustify(int horiz, int vert);

graphics.h

Text output after a call to settextjustify will be justified
around the CP horizontally and vertically, as specified.
The default justification settings are LEFT_TEXT (for
horizontal) and TOP_TEXT (for vertical). The enumer­
ation text just in graphics.h provides names for the horiz
and vert settings passed to settextjustify.

Name Value Description

LEFT_TEXT 0 horiz
CENTER_TEXT 1 horiz and vert
RIGHT_TEXT 2 horiz
BOTTOM_TEXT 0 vert
TOP_TEXT 2 vert

If horiz is equal to LEFT_TEXT and direction equals
HORIZ_DIR, the CP's x component is advanced after a
call to outtext(string) by textwidth(string).

settextjustify affects text written with ou ttext, and
cannot be used with text mode and stream functions.

Chapter 2, The Turbo C Ubrary 331

seHexfjusfify

Return value

Portability

See also

settextstyle
Function

Syntax

Prototype in

Remarks

332

If invalid input is passed to settextjustify, graphresult
will return -11, and the current text justification remains
unchanged.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

gettextsettings, graphresult, outtext, settextstyle

Sets the current text characteristics for graphics output.

#inc1ude <graphics.h>
void far settextstyle(int font, int direction,

int charsize);

graphics.h

settextstyle sets the text font, the direction in which text
is displayed, and the size of the characters. A call to
settextstyle affects all text output by outtext and
outtextxy.

The parameters font, direction, and charsize passed to
settextstyle are described in the following:

font: one 8x8 bit-mapped font and several "stroked"
fonts are available. The 8x8 bit-mapped font is the
default. The enumeration font_names, defined in
graphics.h, provides names for these different font
settings (see following table).

Name Value Description

DEFAULT_FONT a 8x8 bit-mapped font
TRIPLEX_FONT 1 stroked triplex font
SMALL_FONT 2 stroked small font
SANSSERIF _FONT 3 stroked sans-serif font
GOTHIC_FONT 4 stroked gothic font

The default bit-mapped font is built into the graphics
system. Stroked fonts are stored in *.CHR disk files, and
only one at a time is kept in memory. Therefore, when

Turbo C Reference Guide

Return value

Portability

setfextstyle

you select a stroked font (different from the last selected
stroked font), the corresponding *.CHR file must be
loaded from disk. To avoid this loading when several
stroked fonts are used, you can link font files into your
program. Do this by converting them into object files
with the BGIOB] utility, then registering them through
registerbgifont, as described in Appendix D of this
manual.

direction: font directions supported are horizontal text
(left to right) and vertical text (rotated 90 degrees
counterclockwise). The default direction is HORIZ_DIR.

Name

HORIZ_DIR
VERT_DIR

Value Description

o left to right
1 bottom to top

charsize: the size of each character can be magnified
using the charsize factor. If charsize is nonzero, it can
affect bit-mapped or stroked characters. A charsize value
of 0 can be used only with stroked fonts.

IJ If charsize equals 1, outtext and outtextxy will display
characters from the 8x8 bit-mapped font in an 8x8
pixel rectangle on the screen.

IJ If charsize equals 2, these output functions will display
characters from the 8x8 bit-mapped font in a 16x16
pixel rectangle, and so on (up to a limit of ten times
the normal size).

[] When charsize equals 0, the output functions outtext
and outtextxy magnify the stroked font text using
either the default character magnification factor (4), or
the user-defined character size given by
setusercharsize.

Always use textheight and textwidth to determine the
actual dimensions of the text.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

Chapter 2, The Turbo C Ubrary 333

seHime

See also

settime
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

gettextsettings, graphresult, installuserfont,
settextjustify, setusercharsize, textheight, textwidth

Sets system time.

#inc1ude <dos.h>
void settime(struct time *timep);

dos.h

settime sets the system time to the values in the time
structure pointed to by timep.

The time structure is defined as follows:

struct time {
1* minutes *1

1* hours *1
unsigned char ti_mini
unsigned char ti_houri
unsigned char ti_hundi
unsigned char ti_sec;

1* hundredths of seconds *1
1* seconds *1

} i

None.

settime is unique to DOS.

ctime, getdate, gettime, setdate, time

setusercharsize
Function

Syntax

Prototype in

Remarks

334

Allows the user to vary the character width and height
for stroked fonts.

#include <graphics.h>
void far setusercharsize(int multx, int divx,

int multy, int divy);

graphics.h

setusercharsize gives you finer control over the size of
text from stroked fonts used with graphics functions.
The values set by setusercharsize are active only if
charsize equals 0, as set by a previous call to settextstyle.

Turbo C Reference Guide

Return value

Portability

See also

Example

setusercharsize

With setusercharsize, you specify factors by which the
width and height are scaled. The default width is scaled
by multx: divx, and the default height is scaled by multy :
divy. For example, to make text twice as wide and 50%
taller than the default, set

multx = 2; divx = 1;
multy = 3; divy = 2;

None.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

gettextsettings, graphresult, settextstyle

#include <graphics.h>
#include <conio.h>

main()
(

1* will request autodetection *1
int graphdriver = DETECT, graphmode;
char *title = "TEXT in a BOX";
1* initialize graphics *1
initgraph(&graphdriver, &graphmode, "");

1* Draw a rectangle and fit a text string inside *1
settextjustify(CENTER_TEXT, CENTER_TEXT);
setusercharsize(l,l,l,l);
settextstyle(TRIPLEX_FONT, HORIZ_DIR, USER_CHAR_SIZE);
setusercharsize(200, textwidth(title), 100,

textheight(title));
rectangle(O, 0, 200, 100);
outtextxy(100, 50, title);
getche () ;
closegraph();

Chapter 2, The Turbo C Ubrary 335

setvbuf

setvbuf
Function

Syntax

Prototype in

Remarks

336

Assigns buffering to a stream.

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int type,

size_t size);

stdio.h

setvbu£ causes the buffer buf to be used for I/O
buffering instead of an automatically allocated buffer. It
is used after the given stream is opened.

If buf is null, a buffer will be allocated using maUoe; the
buffer will use size as the amount allocated. The size
parameter specifies the buffer size and must be greater
than zero.

Note: The parameter size is limited to a maximum of
32767.

stdin and stdout are unbuffered if they are not redirected;
otherwise, they are fully buffered.

Unbuffered means that characters written to a stream are
immediately output to the file or device, while buffered
means that the characters are accumulated and written
as a block.

The type parameter is one of the following:

_IOFBF The file is fully buffered. When a buffer is
empty, the next input operation will
attempt to fill the entire buffer. On output,
the buffer will be completely filled before
any data is written to the file.

_IOLBF The file is line buffered. When a buffer is
empty, the next input operation will still
attempt to fill the entire buffer. On output,
however, the buffer will be flushed
whenever a newline character is written to
the file.

_IONBF The file is unbuffered. The buf and size
parameters are ignored. Each input

Turbo C Reference Guide

Return value

Portability

See also

Example

setvbuf

operation will read directly from the file,
and each output operation will
immediately write the data to the file.

A common cause for error is to allocate the buffer as an
automatic (local) variable and then fail to close the file
before returning from the function where the buffer was
declared.

setvbuf returns 0 on success. It returns nonzero if an
invalid value is given for type or size, or if there is not
enough space to allocate a buffer.

setvbuf is available on UNIX systems and is compatible
withANSIC.

fflush, fop en, setbuf

linclude <stdio.h>

main ()
(

FILE *input, *output;
char bufr[512];
input = fopen("file.in", "r");
output = fopen("file.out", "w"l;

1* Set up the input stream for minimal disk access,
using our own character buffer *1

if (setvbuf(input, bufr, _IOFBF, 512) != 0)
printf("failed to set up buffer for input file\n");

else
printf("buffer set up for input file\n") i

1* Set up the output stream for line buffering using
space that will be obtained through an indirect
call to malloc *1

if (setvbuf(output, NULL
, _IOLBF, 132) != 0)

}]

printf("failed to set up buffer for output file\n");
else

printf("buffer set up for output file\n");

/* Perform file I/O here * /

/* Close files * /
fclose(input);
fclose(output);

Chapter 2, The Turbo C Ubrary 337

setvect

setvect
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

setverify
Function

Syntax

Prototype in

Remarks

338

Sets interrupt vector entry.

void setvect(int interruptno,
void interrupt (*isr) (»;

dos.h

Every processor of the 8086 family includes a set of
interrupt vectors, numbered 0 to 255. The 4-byte value in
each vector is actually an address, which is the location
of an interrupt function.

setvect sets the value of the interrupt vector named by
interruptno to a new value, isr, which is a far pointer
containing the address of a new interrupt function. The
address of a C routine can only be passed to isr if that
routine is declared to be an interrupt routine.

Note: If you use the prototypes declared in dos.h, you
can simply pass the address of an interrupt function to
setvect in any memory model.

None.

setvect is unique to the 8086 family of processors.

getvect

Sets the state of the verify flag in DOS.

void setverify(int value);

dos.h

setverify sets the current state of the verify flag to value.

• A value of 0 = verify flag off .
• A value of 1 = verify flag on.

The verify flag controls output to the disk. When verify
is off, writes are not verified; when verify is on, all disk
writes are verified to ensure proper writing of the data.

Turbo C Reference Guide

Return value

Portability

See also

None.

setverify is unique to DOS.

getverify

setverify

setviewport
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Sets the current viewport for graphics output.

#include <graphics.h>
void far setviewport(int left, int top, int right,

int bottom, int clip);

graphics.h

setviewport establishes a new viewport for graphics
output.

The viewport's corners are given in absolute screen
coordinates by (left,top) and (right,bottom). The current
position (CP) is moved to (0,0) in the new window.

The parameter clip determines whether drawings are
clipped (truncated) at the current viewport boundaries.
If clip is nonzero, all drawings will be clipped to the
curren t viewport.

If invalid input is passed to setviewport, graphresult
returns -II, and the current view settings remain un­
changed.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

clearviewport, getviewsettings, graphresult

setvisualpage
Function

Syntax

Prototype in

Sets the visual graphics page number.

#include <gra phics.h>
void far setvisualpage(int page);

graphics.h

Chapter 2, The Turbo C Ubrary 339

setvisualpage

Remarks

Return value

Portability

See also

Example

setvisualpage makes page the visual graphics page.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

graphresult, setactivepage

See setactivepage

setwritemode
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

340

Sets the writing mode for line drawing in graphics
mode.

#inc1ude <gra phics.h>
void far setwritemode(int mode);

graphics.h

The following constants are defined:

COPY PUT = 0
XOR PUT = 1

/* MOV */
/* XOR */

Each constant corresponds to a binary operation
between each byte in the line and the corresponding
bytes on the screen. COPY_PUT uses the assembly
language MOV instruction, overwriting with the line
whatever is on the screen. XOR_PUT uses the XOR
command to combine the line with the screen. Two
successive XOR commands will erase the line and
restore the screen to its original appearance.

Note: setwritemode currently works only with line,
linerel, lineto, rectangle, and drawpoly.

None.

This function works only with IBM PCs and compatibles
equipped with supported graphics display adapters.

drawpoly, line, linerel, line to, putimage

Turbo C Reference Guide

signal
Function

Syntax

Prototype in

Remarks

Specifies signal-handling actions.

#inc1ude <signal.h>
void (*signal(int sig, void (*func)

(int sig[, int subcode]))(int);

signal.h

signal

signal determines how receipt of signal number sig will
subsequently be treated. You can install a user-specified
handler routine or use one of the two predefined
handlers in signal.h.

The two predefined handlers follow:

Function Pointer Meaning

Terminates the program.
Ignore this type signal.

A third predefined handler, defined in signal.h, is
SIG_ERR. It is used to indicate an error return from
signal.

The signal types and their defaults are as follows:

Chapter 2, The Turbo C Ubrary 341

signal

342

Signal Type Meaning

SIGABRT Abnormal termination. Default action is
equivalent to calling _exit(3).

SIGFPE Arithmetic error caused by division by
0, invalid operation, and the like.
Default action is equivalent to calling
_exit(1).

SIGILL Illegal operation. Default action is
equivalent to calling _exit(1).

SIGINT CTRL-C interrupt. Default action is to
do an INT 23H.

SIGSEGV Illegal storage access. Default action is
equivalent to calling _exit(1).

SIGTERM Request for program termination. De­
fault action is equivalent to calling
_exit(1).

signal.h defines a type called sig_atomic_t, the largest
integer type the processor can load or store atomically in
the presence of asynchronous interrupts (for the 8086
family, this is a 16-bit word; that is, a Turbo C integer).

When a signal is generated by the raise function or by
an external event, the following happens:

1. If a user-specified handler has been installed for the
signal, the action for that signal type is set to
SIG_DFL.

2. The user-specified function is called with the signal
type as the parameter.

User-specified handler functions can terminate by a
return or by a call to abort, _exit, exit, or longjmp.

Turbo C implements an extension to ANSI C when the
signal type is SIGFPE, SIGSEGV, or SIGILL. The user­
specified handler function is called with one or two
extra parameters. If SIGFPE, SIGSEGV, or SIGILL has

Turbo C Reference Guide

signal

been raised as the result of an explicit call to the raise
function, the user-specified handler is called with one
extra parameter, an integer specifying that the handler is
being explicitly invoked. The explicit activation values
for SIGFPE, SIGSEGV and SIGILL are as follows (see
declarations in float.h):

Signal Type

SIGFPE
SIGSEGV
SIGILL

Activation Value

FPE_EXPLICITGEN
SEGV _EXPLICITGEN
ILL_EXPLICITGEN

If SIGFPE is raised because of a floating-point exception,
the user handler is called with one extra parameter that
specifies the FPE_xxx type of the signal. If SIGSEGV,
SIGILL or the integer-related variants of SIGFPE signals
(FPE_INTOVFLOW or FPE_INTDIVO) are raised as the
result of a processor exception, the user handler is called
with two extra parameters:

1. The SIGFPE, SIGSEGV or SIGILL exception type (see
float.h for all these types). This first parameter is the
usual ANSI signal type.

2. An integer pointer into the stack of the interrupt
handler that called the user-specified handler. This
pointer points to a list of the processor registers
saved when the exception occured. The registers are
in the same order as the parameters to an interrupt
function; that is, BP, DI, SI, DS, ES, DX, ex, BX, AX,
IP, CS, FLAGS. To have a register value changed
when the handler returns, change one of the
locations in this list. For example, to have a new SI
value on return, do something like this:

((int)list_pointer + 2) = new_S1_value;

In this way the handler can examine and make any
adjustments to the registers that you want. (See
Example 2 for a demonstration.)

The following SIGFPE type signals can occur (or be
generated). They correspond to the exceptions that the

Chapter 2, The· Turbo C Ubrary 343

signal

344

80x87 is capable of detecting, as well as the "INTEGER
DIVIDE BY ZERO" and the "INTERRUPT ON
OVERFLOW" on the main CPU. The declarations for
these are in float.h.

SIGFPE Signal

FPE_INTOVFLOW
FPE_INTDIVO
FPE_INV ALID
FPE_ZERODIVIDE
FPE_OVERFLOW
FPE_UNDERFLOW
FPE_INEXACT
FPE_EXPLICITGEN

Meaning

INTO executed with OF flag set.
Integer divide by zero.
Invalid operation.
Division by zero.
Numeric overflow.
Numeric underflow.
Precision.
User program executed
raise(SIGFPE).

N ole: The FPE_INTOVFLOW and FPE_INTDIVO signals
are generated by integer operations, and the others are
generated by floating-point operations. Whether the
floating-point exceptions are generated depends on the
coprocessor control word, which can be modified with
_contro187. Denormal exceptions are handled by Turbo
C and not passed to a signal handler.

The following SIGSEGV type signals can occur:

SIGSEGV Signal Meaning

SEGV _BOUND Bound constraint exception.
SEGV _EXPLICITGEN raise(SIGSEGV) was executed.

Note: The 8088 and 8086 processors don't have a bound
instruction. The 186, 286, 386, and NEC V series
processors do have this instruction. So, on the 8088 and
8086 processors, the 5EGV _BOUND type of SIGSEGV
signal won't occur. Turbo C doesn't generate bound
instructions, but they can be used in inline code and
seperately compiled assembler routines that are linked
in.

Turbo C Reference Guide

Return value

Portability

See also

Example

signal

The following SIGILL type signals can occur:

SIGILL Signal

ILL_EXECUTION
ILL_EXPLICITGEN

Meaning

Illegal operation attempted.
raise(SIGILL) was executed.

Note: The 8088, 8086, NEC V20, and NEC V30
processors don't have an illegal operation exception. The
186, 286, 386, NEC V 40, and NEC VSO processors do
have this exception type. So, on 8088, 8086, NEC V20,
and NEC V30 processors the ILL_EXECUTION type of
SIGILL won't occur.

Note: When the signal type is SIGFPE, SIGSEGV, or
SIGILL, a return from a signal handler is generally not
advisable because the state of the 8087 is corrupt, the
results of an integer division are wrong, an operation
that shouldn't have overflowed did, a bound instruction
failed, or an illegal operation was attempted. The only
time a return is reasonable is when the handler alters the
registers so that a reasonable return context exists or the
signal type indicates that the signal was generated
explicitly (for example, FPE_EXPLICITGEN,
SEGV _EXPLICITGEN, or ILL_EXPLICITGEN).
Generally in this case you would print an error message
and terminate the program via _exit, exit, or abort. If a
return is executed under any other conditions, the
program's action will probably be unpredictable upon
resuming.

If the call succeeds, signal returns a pointer to the
previous handler routine for the specified signal type. If
the call fails, signal returns SIG_ERR, and the external
variable errno is set to EINVAL.

signal is compatible with ANSI C.

abort, _controI87, ctrlbrk, exit, longjmp, raise, setjmp

/* This example installs a signal handler routine to be run
when a Ctrl-Break is hit. */

*include <stdio.h>
#include <signal.h>

Chapter 2, The Turbo C Ubrary 345

signal

Example 2

346

void Catcher(int sig)
{

printf("\nNow in break routine\n");
exit(l);

main ()
{

signal (SIGINT, Catcher);
for (;;)

printf("\nIn main() program\n");

/* This example installs a signal handler routine for SIGFPE,
catches an integer overflow condition, makes an adjustment
to AX register, and returns. */

#pragma inline
iinclude <stdio.h>
iinclude <signal.h>

void Catcher(int sig, int type, int *reglist)
{

printf("Caught it!\n");
(reglist + 8) = 3; / make return AX = 3 */

main()
{

signal(SIGFPE, Catcher);
asm mov ax,07FFFH
asm
asm

inc
into

ax
/* AX = 32767 */
/* cause overflow */
/* activate handler */

/* The handler set AX to 3 on return. If that hadn't
happened, there would have been another exception when
the next 'into' was executed after the 'dec'
instruction. */

asm
asm

dec
into

ax /* no overflow now */
/* doesn't activate */

Turbo C Reference Guide

sin
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

sinh
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Calculates sine.

#inc1ude <math.h>
double sin (double x);

math.h

sin

sin computes the sine of the input value. Angles are
specified in radians.

Error-handling for this routine can be modified through
the function math err.

sin returns the sine of the input value.

sin is available on UNIX systems and is compatible with
ANSIC.

acos, asin, atan, atan2, cos, cosh, tan, tanh

Calculates hyperbolic sine.

#inc1ude <math.h>
double sinh(double x);

math.h

sinh computes the hyperbolic sine for a real argument.

Error-handling for sinh can be modified through the
function matherr.

sinh returns the hyperbolic sine of x.

When the correct value would overflow, sinh returns the
value HUGE_VAL of appropriate sign.

sinh is available on UNIX systems and is compatible
with ANSIC.

acos, asin, atan, atan2, cos, cosh, sin, tan, tanh

Chapter 2, The Turbo C Ubrary 347

sleep

sleep
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

sopen
Function

Syntax

Prototype in

Remarks

348

Suspends execution for an interval (seconds).

void sleep(unsigned seconds);

dos.h

With a call to sleep, the current program is suspended
from execution for the number of seconds specified by
the argument seconds. The interval is only accurate to the
nearest hundredth of a second or the accuracy of the
DOS clock, whichever is less accura teo

None.

sleep is available on UNIX systems.

delay

Opens a shared file.

#include <fcntl.h>
#include <sys\stat.h>
#include <share.h>
#include <io.h>
int sopen(char *path, int access,

int shflag, int mode);

io.h

sopen opens the file given by path and prepares it for
shared reading and/or writing, as determined by access,
shfLag, and mode.

sopen is a macro defined as

open (path, (access) I (shflag), mode)

For sopen, access is constructed by ORing flags bitwise
from the following two lists. Only one flag from the first
list can be used; the remaining flags can be used in any
logical combination.

Turbo C Reference Guide

sopen

List 1: Read/Write Flags

O_RDONLY
O_WRONLY
O_RDWR

Open for reading only.
Open for writing only.
Open for reading and writing.

List 2: Other Access Flags

O_NDELAY
a_APPEND

Not used; for UNIX compa tibility.
If set, the file pointer will be set to the
end of the file prior to each write.
If the file exists, this flag has no effect. If
the file does not exist, the file is created,
and the bits of mode are used to set the
file attribute bits, as in chmod.
If the file exists, its length is truncated to
O. The file attributes remain unchanged.
Used only with O_CREAT. If the file
already exists, an error is returned.
This flag can be given to explicitly open
the file in binary mode.
This flag can be given to explicitly open
the file in text mode.

These 0_". symbolic constants are defined in fcntl.h.

If neither a_BINARY nor a_TEXT is given, the file is
opened in the translation mode set by the global variable
Jmode.

If the 0_ CREAT flag is used in constructing access, you
need to supply the mode argument to sopen, from the
following symbolic constants defined in sys \stat.h.

Value of permiss

S_IWRITE
S_IREAD
S_IREAD I S_IWRITE

Access Permission

permission to write
permission to read
permission to read / write

shflag specifies the type of file-sharing allowed on the file
path. Symbolic constants for shflag are defined in share.h.

Chapter 2, The Turbo C Ubrary 349

sopen

Return value

Portability

See also

sound
Function

Syntax

Prototype in

Remarks

Portability

350

Value of shflag

SH_COMPAT
SH_DENYRW
SH_DENYWR
SH_DENYRD
SH_DENYNONE
SH_DENYNO

What It Does

sets compa tibility mode
denies read and write access
denies write access
denies read access
permits read/write access
permits read/write access

On successful completion, sopen returns a non-negative
integer (the file handle), and the file pointer (that marks
the current position in the file) is set to the beginning of
the file. On error, it returns -1, and errno is set to one of
the following:

ENOENT Path or file function not found
EMFILE Too many open files
EACCES Permission denied
EINV ACC Invalid access code

sop en is available on UNIX systems. On UNIX version
7, the O_type mnemonics are not defined. UNIX System
III uses all the O_type mnemonics except O_BINARY.

chmod, close, creat, lock, lseek, _open, open, unlock,
unmask

Turns PC speaker on at specified frequency.

void sound(unsigned frequency);

dos.h

sound turns on the PC's speaker at a given frequency.
frequency specifies the frequency of the sound in Hertz
(cycles per second). To turn the speaker off after a call to
sound, call the function nosound.

sound works with IBM PCs and compatibles only. A
corresponding function exists in Turbo Pascal.

Turbo C Reference Guide

See also

Example

sound

delay, nosound

/* Emits a 7-Hz tone for 10 seconds.
True story: 7 Hz is the resonant frequency of a chicken's
skull cavity. This was determined empirically in Australia,
where a new factory generating 7-Hz tones was located too
close to a chicken ranch: When the factory started up,
all the chickens died.

Your PC may not be able to emit a 7-Hz tone. */

main ()
{

sound(7li
delay(10000li
nosound(li

Chapter 2, The Turbo C Library 351

spawn ...

spawn ...
Function

Syntax

Prototype in

Remarks

352

Creates and runs child processes.

#inc1ude <process.h>
#inc1ude <stdio.h>
int spawnl(int mode, char *path,

char *argO, argl, ... , argn, NULL);

int spawnle(int mode, char *path,
char *argO, argl, ... , argn, NULL, char
*envp[]);

int spawnlp(int mode, char *path,
char *argO, argl, ... , argn, NULL);

int spawnlpe(int mode, char *path,
char *argO, argl, ... , argn, NULL, char
*envp[]);

int spawnv(int mode, char *path, char *argv[]);
int spawnve(int mode, char *path,

char *argv[], char *envp[]);

int spawnvp(int mode, char *path, char *argv[]);
int spawnvpe(int mode, char *path,

char *argv[], char *envp[]);

process.h

The functions in the spawn ... family create and run
(execute) other files, known as child processes. There must
be sufficient memory available for loading and execu­
ting a child process.

The value of mode determines what action the calling
function (the parent process) will take after the spawn
call. The possible values of mode are

Turbo C Reference Guide

spawn ...

P _WAIT Puts parent process lion hold" until
child process completes execution.

P _NOWAIT Continues to run parent process
while child process runs.

P _OVERLAY Overlays child process in memory
location formerly occupied by parent.
Same as an exec ... call.

Note: P _NOWAIT is currently not available; using it will
generate an error value.

path is the file name of the called child process. The
spawn ... function calls search for path using the
standard DOS search algorithm:

• No extension or no period: Search for exact file name;
if not successful, add .EXE and search again.

• Extension given: Search only for exact file name.
• Period given: Search only for file name with no

extension.

• If path does not contain an explicit directory, spawn ...
functions that have the p suffix will search the current
directory, then the directories set with the DOS P A1H
environment variable.

The suffixes 1, v, p, and e added to the spawn ... IIfamily
name" specify that the named function will operate with
certain capabilities.

p The function will search for the file in those
directories specified by the PATH environment
variable. Without the p suffix, the function will search
only the current working directory.

1 The argument pointers argO, argl, ... , argn are passed
as separate arguments. Typically, the 1 suffix is used
when you know in advance the number of arguments
to be passed.

v The argument pointers argvlO}, ... , arg[n] are passed
as an array of pointers. Typically, the v suffix is used
when a variable number of arguments is to be passed.

e The argument envp can be passed to the child process,
allowing you to alter the environment for the child

Chapter2, The Turbo C Ubrary 353

spawn ...

354

process. Without the e suffix, child processes inherit
the environment of the parent process.

Each function in the spawn ... family must have one of
the two argument-specifying suffixes (either 1 or v). The
path search and environment inheritance suffixes. (p and e)
are optional.

For example:

• spawnl takes separate arguments, searches only the
current directory for the child, and passes on the
parent's environment to the child .

• spawnvpe takes an array of argument pointers,
incorporates PATH in its search for the child process,
and accepts the envp argument for altering the child's
environment.

The spawn ... functions must pass at least one argument
to the child process (argO or argv[O]): This argument is,
by convention, a copy of path. (Using a different value
for this Oth argument won't produce an error.)

Under DOS 3.x, path is available for the child process;
under earlier versions, the child process cannot use the
passed value of the Oth argument (argO or argv[OJ).

When the 1 suffix is used, argO usually points to path, and
argl, "'" argn point to character strings that form the
new list of arguments. A mandatory null following argn
marks the end of the list.

When the e suffix is used, you pass a list of new
environment settings through the argument envp. This
environment argument is an array of character pointers.
Each element points to a null-terminated character
string of the form

envvar = value

where envvar is the name of an environment variable,
and value is the string value to which envvar is set. The
last element in envp[] is null. When envp is null, the child
inherits the parents' environment settings.

The combined length of argO + argl + ... + argn (or of
argv[o1 + argvl11 + ." + argv[nJ), including space char-

Turbo C Reference Guide

Return value

See also

Example

spawn ...

acters that separate the arguments, must be < 128 bytes.
Null-terminators are not counted.

When a spawn ... function call is made, any open files
remain open in the child process.

On a successful execution, the spawn ... functions return
the child process's exit status (0 for a normal termina­
tion). If the child specifically calls exit with a non-zero
argument, its exit status can be set to a non-zero value.

On error, the spawn ... functions return -1, and errno is
set to one of the following:

E2BIG Arg list too long
EINV AL Invalid argument
ENOENT Path or file name not found
ENOEXEC Exec format error
ENOMEM Not enough core

abort, atexit, _exit, exit, exec ... , _fpreset, searchpath,
system

/* This program is SPAWNFAM.C.

/* To run this example, you must first compile CHILD.C to an
.EXE file. */

#include <stdio.h>
#include <process.h>

status (int val)
{

if (val == -1)

printf("failed to start child process\n");
else

if (val> 0) printf("child terminated abnorrnally\n");

main ()
{

/* NOTE: These environment strings should be changed
to work on your computer. */

/* create an environment string */
char *envp[] = {"PATH=C:\\",

"DUMMY=YES" ,
} ;

/* create a pathname */
char *pathname = "C:\\CHILDREN\\CHILD.EXE";

Chapter 2, The Turbo C Ubrary 355

spawn ...

356

/* create an argument string */
char *args[] = {"CHILD.EXE",

"1st",
"2nd" ,

NULL
};

printf("SPAWNL:\n") ;
status(spawnl(P_WAIT, pathname,args[O], args[l], NULL));

printf("\nSPAWNV:\n");
status (spawnv(P_WAIT, pathname, args));

printf ("\nSPAWNLE: \n") ;
status(spawnle(P_WAIT, pathname,

args[O], args[l], NULL, envp));

printf ("\nSPAWNVPE: \n");
status(spawnvpe(P_WAIT, pathname, args, envp));

/* This is CHILD.C -- the child process for SPAWNFAM.C. */

iinclude <stdio.h>
iinclude <stdlib.h>

main(int argc, char *argv[])
(

int i;
char *path, *dummy;

path = getenv("PATH");
dummy = getenv("DUMMY");

for (i = 0; i < argc; itt)
printf("argv[%d] %s\n", i, argv[i]);

if (path)
printf("PATH = %s\n", path);

if (dummy)
printf("DUMMY = %s\n", dummy);

/* return to parent with error code 0 */
exit(O);

Turbo C Reference Guide

sprintf
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

sqrt
Function

Syntax

Prototyp e in

Remarks

Writes formatted output to a string.

int sprintf(char *buffer,
const char *formatL argument, ... J);

stdio.h

sprintf

sprintf accepts a series of arguments, applies to each a
format specification contained in the format string
pointed to by format, and outputs the formatted data to a
string.

sprintf applies the first format specification to the first
argument, the second to the second, and so on. There
must be the same number of format specifications as
arguments.

See printf for a description of the information included
in a format specification.

sprintf returns the number of bytes output. sprintf does
not include the terminating null byte in the count. In the
event of error, sprintf returns EOF.

sprintf is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

fprintf, printf

See printf

Calculates the positive square root of input value.

#include <math.h>
double sqrHdouble x);

math.h

sqrt calculates the positive square root of the input
value.

Chapter 2, The Turbo C library 357

sqrt

Return value

Portability

See also

srand
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

sscanf
Function

Syntax

Prototype in

358

Error-handling for sqrt can be modified through the
function matherr.

On success, sqrt returns the value ca1cula ted, the
positive square root of x.

If x is nega ti ve, errno is set to

EDaM Domain error

and sqrt returns o.
sqrt is available on UNIX systems and is compatible
with ANSIC.

exp, log, pow

Initializes random-number generator.

void srand(unsigned seed);

stdlib.h

The random-number generator is reinitialized by calling
srand with an argument value of 1. It can be set to a new
starting point by calling srand with a given seed number.

None.

srand is available on UNIX systems and is compatible
with ANSI C.

rand, random, randomize

See rand

Scans and formats input from a string.

int sscanf(const char *buffer,
const char *format[, address, ... J);

stdio.h

Turbo C Reference Guide

Remarks

Return value

Portability

See also

stat
Function

Syntax

Prototype in

Remarks

sscanf

sscanf scans a series of input fields, one character at a
time, reading from a string. Then each field is formatted
according to a format specification passed to sscanf in
the format string pointed to by format. Finally, sscanf
stores the formatted input at an address passed to it as
an argument following format. There must be the same
number of format specifications and addresses as there
are input fields.

See scanf for a description of the information included
in a format specification.

sscanf may stop scanning a particular field before it
reaches the normal end-of-field (whitespace) character,
or it may terminate entirely, for a number of reasons. See
scanf for a discussion of possible causes.

sscanf returns the number of input fields successfully
scanned, converted, and stored; the return value does
not include scanned fields that were not stored.

If sscanf attempts to read at end-of-string, the return
value is EOF.

If no fields were stored, the return value is O.

sscanf is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

fscanf, scanf

Gets information about an open file.

#include <sys\stat.h>
int stat(char *path, struct stat *statbuj)

sys\stat.h

stat stores information about a given file or directory in
the stat structure.

statbufpoints to the stat structure (defined in sys\stat.h).
That structure contains the following fields:

Chapter 2, The Turbo C Ubrary 359

stat

Return value

See also

360

st_mode bit mask giving information about the file's
mode

st_dev drive number of disk containing the file

st_rdev same as sCdev

st_nlink set to the integer constant 1

st_size size of the file, in bytes

st_atime most recent time the file was modified

sCmtime same as st_atime

sCctime same as sCatime

The stat structure contains three additional fields not
mentioned here; they contain values that are not
meaningful under DOS.

The bit mask that gives information about the mode of
the file includes the following bits.

One of the following bits will be set:

S_IFREG Set if an ordinary file is specified by
path.

S_IFDIR Set if path specifies a directory.

One or both of the following bits will be set:

S_IWRITE Set if user has permission to write to
file.

S_IREAD Set if user has permission to read to file.

The bit mask contains user-execute bits; these are set
according to the open file's extension. The bit mask also
includes the read/write bits; these are set according to
the file's permission mode.

stat returns 0 if it successfully retrieves the information
about the file. On error (failure to get the information),
stat returns -1 and sets errno to

ENOENT File or pa th not found

access, chmod, fstat, stat

Turbo C Reference Guide

_status87
Function

Syntax

Prototype in

Remarks

Return value

See also

Example

stime
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Gets floating-point status.

unsigned int _status87(void);

float.h

_stotusB7

_status87 gets the floating-point status word, which is a
combination of the 8087/80287 status word and other
conditions detected by the 8087/80287 exception
handler.

The bits in the return value give the floa ting-point
status. See float.h for a complete definition of the bits
returned by _status87.

_c1ear87,_controI87, _fpreset

See _control87

Sets system date and time.

#include <time.h>
int stime(time_t *tp);

time.h

stime sets the system time and date. tp points to the
value of the time as measured in seconds from 00:00:00
GMT, January I, 1970.

s time returns a value of O.

stime is available on UNIX systems.

asctime, ftime, gettime, gmtime, localtime, time, tzset

Chapter 2, The Turbo C Ubrary 361

stpcpy

stpepy
Function

Syntax

Prototype in

Remarks

Return value

Portability

streat
Function

Syntax

Prototype in

Remarks

Return value

Portability

strehr
Function

Syntax

Prototype in

Remarks

362

Copies one string into another.

char *stpcpy(char *dest, const char *src);

string.h

stpcpy copies the string src to dest, stopping after the
terminating null character has been reached.

stpcpy returns dest + strlen(src).

stpcpy is available on UNIX systems.

Appends one string to another.

char *strcat(char *dest, const char *src);

string.h

strcat appends a copy of src to the end of dest. The length
of the resulting string is strlen(dest) + strlen(src).

strcat returns a pointer to the concatenated strings.

strcat is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

Scans a string for the first occurrence of a given
character.

char *strchr(const char *s, int c);

string.h

strchr scans a string in the forward direction, looking for
a specific character. strchr finds the first occurrence of
the character c in the string s.

Turbo C Reference Guide

Return value

Portability

strcmp
Function

Syntax

Prototype in

Remarks

Return value

Portability

strchr

The null-terminator is considered to be part of the
string, so that, for example,

strchr(strs,O)

returns a pointer to the terminating null character of the
string strs.

strchr returns a pointer to the first occurrence of the
character c in s; if c does not occur in s, strchr returns
null.

strchr is available on UNIX systems and is compatible
with ANSI C.

Compares one string to another.

int strcmp(const char *51, const char *s2);

string.h

strcmp performs an unsigned comparison of 51 to s2,
starting with the first character in each string and
continuing with subsequent characters until the corres­
ponding characters differ or until the end of the strings
is reached.

strcmp returns a value that is

< 0 if sl is less than s2
== 0 if sl is the same as s2
> 0 if sl is greater than s2

strcmp is available on UNIX systems and is compatible
with ANSIC.

Chapter 2, The Turbo C Library 363

strcmpi

strcmpi
Function

Syntax

Prototype in

Remarks

Return value

strcpy
Function

Syntax

Prototype in

Remarks

Return value

Portability

364

Compares one string to another, without case sensitivity.

#inc1ude <string.h>
int strcmpi(const char *51, canst char *52);

string.h

strcmpi performs an unsigned comparison of 51 to 52,
without case sensitivity (same as stricmp-implemented
as a macro).

It returns a value « 0, 0, or > 0) based on the result of
comparing 51 (or part of it) to 52 (or part of it).

The routine strcmpi is the same, respectively, as stricmp.
strcmpi is implemented via a macro in string.h and
translates calls from strcmpi to stricmp. Therefore, in
order to use strcmpi, you must #include the header file
string.h for the macro to be available. This macro is
provided for compatibility with other C compilers.

strcmpi returns an int value that is

< 0 if 51 is less than 52
== 0 if 51 is the same as 52
> 0 if 51 is greater than 52

Copies one string into another.

char* strcpy(char *dest, canst char *5rc);

string.h

copies string 5rc to de5t, stopping after the terminating
null character has been moved.

strcpy returns dest.

strcpy is available on UNIX systems and is compatible
with ANSI C.

Turbo C Reference Guide

strcspn
Function

Syntax

Prototype in

Return value

Portability

strdup
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

_strerror
Function

Syntax

Prototype in

sfrcspn

Scans a string for the initial segment not containing any
subset of a given set of characters.

#include <string.h>
size_t strcspn(const char *51, const char *52);

string.h

strcspn returns the length of the initial segment of string
51 that consists entirely of characters not from string 52.

strcspn is available on UNIX systems and is compatible
withANSIC.

Copies a string into a newly-created location.

char *strdup(const char *5);

string.h

strdup makes a duplicate of string 5, obtaining space
with a call to malIoc. The allocated space is (strlen(5)
+ 1) bytes long. The user is responsible for freeing the
space allocated by strdup when it is no longer needed.

strdup returns a pointer to the storage location
containing the duplicated string, or returns null if space
could not be allocated.

strdup is available on UNIX systems.

free

Returns a pointer to an error message string.

char *_strerror(const char *s);

string.h, stdio.h

Chapter 2, The Turbo C Library 365

_strerror

Remarks

Return value

See also

strerror
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

366

_strerror allows you to generate customized error
messages; it returns a pointer to a null-terminated string
containing an error message .

• If s is null, the return value points to the most recently
genera ted error message .

• If s is not null, the return value contains s (your
customized error message), a colon, a space, the
most-recently generated system error message, and a
newline. s should be 94 characters or less.

_strerror is the same as strerror in version 1.0 of Turbo
c.
_strerror returns a pointer to a constructed error string.
The error message string is constructed in a static buffer
that is overwritten with each call to _strerror.

perror, strerror

Returns a pointer to an error message string.

char *strerror(int errnum);

stdio.h, string.h

strerror takes an int parameter errnum, an error number,
and returns a pointer to an error message string
associated with errnum.

strerror returns a pointer to a constructed error string.
The error message string is constructed in a static buffer
that is overwritten with each call to strerror.

strerror is compatible with ANSI C.

perror, _strerror

Turbo C Reference Guide

stricmp
Function

Syntax

Prototype in

Remarks

Return value

strlen
Function

Syntax

Prototype in

Remarks

Return value

Portability

stricmp

Compares one string to another, without case sensitivity.

int stricmp(const char *51, const char *52);

string.h

stricmp performs an unsigned comparison of 51 to 52,
starting with the first character in each string and
continuing with subsequent characters until the
corresponding characters differ or until the end of the
strings is reached. The comparison is not case sensitive.

It returns a value « 0, 0, or > 0) based on the result of
comparing 51 (or part of it) to 52 (or part of it).

The routines stricmp and strcmpi are the same; strcmpi
is implemented via a macro in string.h that translates
calls from strcmpi to stricmp. Therefore, in order to use
strcmpi, you must include the header file string.h for the
macro to be available.

stricmp returns an int value that is

< 0 if 51 is less than 52
== 0 if 51 is the same as 52
> 0 if 51 is greater than 52

Calculates the length of a string.

#include <string.h>
size_t strlen(const char *5);

string.h

strlen calculates the length of 5.

strlen returns the number of characters in 5, not
counting the null-terminating character.

strlen is available on UNIX systems and is compatible
with ANSI C.

Chapter 2, The Turbo C Ubrary 367

strlwr

strlwr
Function

Syntax

Prototype in

Remarks

Return value

See also

strncat
Function

Syntax

Prototype in

Remarks

Return value

Portability

strncmp
Function

Syntax

Prototype in

368

Converts uppercase letters in a string to lowercase.

char *strlwr(char *5);

string.h

strlwr converts uppercase letters (A-Z) in string 5 to
lowercase (a-z). No other characters are changed.

strlwr returns a pointer to the string 5.

strupr

Appends a portion of one string to another.

#inc1ude <string.h>
char* stmcat(char *dest, const char *src,

size_t maxlen);

string.h

strncat copies at most maxlen characters of src to the end
of dest and then appends a null character. The maximum
length of the resulting string is strlen(dest) + maxlen.

strncat returns dest.

strncat is available on UNIX systems and is compatible
withANSIC.

Compares a portion of one string to a portion of another.

#inc1ude <string.h>
int strncmp(const char *sl, const char *s2,

size_t maxlen);

string.h

Turbo C Reference Guide

Remarks

Return value

Portability

strncmpi
Function

Syntax

Prototype in

Remarks

strncmp

strncmp makes the same unsigned comparison as
strcmp, but looks at no more than maxlen characters. It
starts with the first character in each string and
continues with subsequent characters until the corres­
ponding characters differ or until it has examined maxlen
characters.

strncmp returns a an int value based on the result of
comparing 51 (or part of it) to 52 (or part of it).

< 0 if 51 is less than 52
== 0 if 51 is the same as 52
> 0 if 51 is greater than 52

strncmp is available on UNIX systems and is compatible
with ANSIC.

Compares a portion of one string to a portion of another,
without case sensitivity.

#include <string.h>
int strncmpi(const char *51,

canst char *52, size_t n);

string.h

strncmpi performs a signed comparison of 51 to 52, for a
maximum length of n bytes, starting with the first
character in each string and continuing with subsequent
characters until the corresponding characters differ or
until n characters have been examined. The comparison
is not case sensitive. (strncmpi is the same as
strnicmp-implemented as a macro). It returns a value
« 0, 0, or > 0) based on the result of comparing 51 (or
part of it) to 52 (or part of it).

The routines strnicmp and strncmpi are the same;
strncmpi is implemented via a macro in string.h that
translates calls from strncmpi to strnicmp. Therefore, in
order to use strncmpi, you must include the header file
string.h for the macro to be available. This macro is
provided for compatibility with other C compilers.

Chapter 2, The Turbo C Ubrary 369

strncmpi

Return value

strncpy
Function

Syntax

Prototype in

Remarks

Return value

Portability

strnicmp
Function

Syntax

Prototype in

Remarks

370

strncmpi returns an int value that is

< 0 if 51 is less than 52
== 0 if 51 is the same as 52
> 0 if 51 is greater than 52

Copies a given number of bytes from one string into
another, truncating or padding as necessary.

#include <stdio.h>
char *strncpy(char *de5t, const char *5rc,

size_t maxlen);

string.h

strncpy copies up to maxlen characters from 5rc into dest,
truncating or null-padding dest. The target string, dest,
might not be null-terminated if the length of 5rc is
maxlen or more.

strncpy returns dest.

strncpy is available on UNIX systems and is compatible
withANSIC.

Compares a portion of one string to a portion of another,
without case sensitivity.

#include <string.h>
int strnicmp(const char *51, const char *52,

size_t maxlen);

string.h

strnicmp performs a signed comparison of 51 to 52, for a
maximum length of maxlen bytes, starting with the first
character in each string and continuing with subsequent
characters until the corresponding characters differ or
until the end of the strings is reached. The comparison is
not case sensitive.

Turbo C Reference Guide

Return value

strnset
Function

Syntax

Prototype in

Remarks

Return value

strpbrk
Function

Syntax

Prototype in

Remarks

Return value

Portability

strnicmp

It returns a value « 0, 0, or > 0) based on the result of
comparing 51 (or part of it) to 52 (or part of it).

strnicmp returns an int value that is

< 0 if 51 is less than 52
== 0 if 51 is the same as 52
> 0 if 51 is greater than 52

Sets a specified number of characters in a string to a
given character.

#include <s tring.h>
char *strnset(char *5, int ch, size_t n);

string.h

strnset copies the character ch into the first n bytes of the
string 5 . If n > strlen(5), then strlen(5) replaces n. It stops
when n characters have been set, or when a null
character is found.

strnset returns 5.

Scans a string for the first occurrence of any character
from a given set.

char *strpbrk(const char *51, canst char *52);

string.h

strpbrk scans a string, 51, for the first occurrence of any
character appearing in 52.

strpbrk returns a pointer to the first occurrence of any of
the characters in 52. If none of the 52 characters occurs in
51, it returns null.

strpbrk is available on UNIX systems and is compatible
with ANSIC.

Chapter 2, The Turbo C Ubrary 371

strrchr

strrchr
Function

Syntax

Prototype in

Remarks

Return value

Portability

strrev
Function

Syntax

Prototype in

Remarks

Return value

strset
Function

Syntax

Prototype in

Remarks

372

Scans a string for the last occurrence of a given character.

char *strrchr(const char *s, int c);

string.h

strrchr scans a string in the reverse direction, looking for
a specific character. strrchr finds the last occurrence of
the character c in the string s. The null-terminator is
considered to be part of the string.

strrchr returns a pointer to the last occurrence of the
character c. If c does not occur in s, strrchr returns null.

strrchr is available on UNIX systems and is compatible
with ANSI C.

Reverses a string.

char *strrev(char *s);

string.h

strrev changes all characters in a string to reverse order,
except the terminating null character. (For example, it
would change string\O to gnirts\O.)

strrev returns a pointer to the reversed string. There is
no error return.

Sets all characters in a string to a given character.

char *strset(char *s, int ch);

string.h

strset sets all characters in the string s to the character ch.
It quits when the terminating null character is found.

Turbo C Reference Guide

Return value

See also

strspn
Function

Syntax

Prototype in

Remarks

Return value

Portability

strstr
Function

Syntax

Prototype in

Remarks

Return value

Portability

strset

strset returns s.

setmem

Scans a string for the first segment that is a subset of a
given set of characters.

#inc1ude <string.h>
size_t strspn(const char *sl, canst char *s2);

string.h

strspn finds the initial segment of string sl that consists
entirely of characters from string s2.

strspn returns the length of the initial segment of sl that
consists entirely of characters from s2.

strspn is available on UNIX systems and is compatible
with ANSI C.

Scans a string for the occurrence of a given substring.

char *strstr(const char *sl, canst char *s2);

string.h

strstr scans sl for the first occurrence of the substring s2.

strstr returns a pointer to the element in sl where s2
begins (points to s2 in sl). If s2 does not occur in sl,
strstr returns null.

strstr is available on UNIX systems and is compatible
with ANSI C.

Chapter 2, The Turbo C Library 373

strtod

strtod
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

374

Converts a string to a double value.

#include <stdlib.h>
double strtod(const char *5, char **endptr);

stdlib.h

strtod converts a character string, 5, to a double value. 5

is a sequence of characters that can be interpreted as a
double value; the characters must match this generic
format:

[ws] [sn] [ddd] [.J [dddJ [fmt[snJdddJ

where

[ws] = optional whitespace
[5n] = optional sign (+ or-)
[ddd] = optional digits
[fmt] = optional e or E
[.] = optional decimal point

strtod also recognizes +INF and -INF for plus and
minus infinity, and +NAN and -NAN for Not-a­
Number.

For example, here are some character strings that strtod
can convert to double:

+ 1231.1981 e-1
502.85E2
+ 2010.952

strtod stops reading the string at the first character that
cannot be interpreted as an appropriate part of a double
value.

If endptr is not null, strtod sets *endptr to point to the
character that stopped the scan (*endptr = &Stopper).

strtoq returns the value of s as a double. In case of
overflow, it returns HUGE_VAL.

strtod is available on UNIX systems and is compatible
with ANSI C.

atof

Turbo C Reference Guide

strtok
Function

Syntax

Prototype in

Remarks

Return value

Portability

Example

strtok

Searches one string for tokens, which are separated by
delimiters defined in a second string.

char *strtok(char *51, const char *52);

string.h

strtok considers the string 51 to consist of a sequence of
zero or more text tokens, separated by spans of one or
more characters from the separator string 52.

The first call to strtok returns a pointer to the first
character of the first token in 51 and writes a null
character into 51 immediately following the returned
token. Subsequent calls with null for the first argument
will work through the string 51 in this way, until no
tokens remain.

The separator string, 52, may be different from call to
call.

strtok returns a pointer to the token found in 51. A null
pointer is returned when there are no more tokens.

strtok is available on UNIX systems and is compatible
with ANSIC.

/* strtok - This example demonstrates the use of strtok
to parse dates. Note that in order to parse dates of
varying formats (for example, 12/3/87; Dec.12,1987;
January 15, 1988; 12-FEB-88, etc.), you must specify
the delimiter string to contain either a period, space,
comma, minus, or slash. Notice in the output that the
delimiters are not returned. */

#inc1ude <stdio.h>
tinclude <string.h>

main ()
{

char *ptr;
ptr = strtok (IFEB.14,1988", II ,-/");

while (ptr != NULL)
{

printf (lIptr = %s\n", ptr);
ptr = strtok (NULL, ". , _/");

Chapter 2, The Turbo C Ubrary 375

strtok

strtol
Function

Syntax

Prototype in

Remarks

376

Program output

ptr = FEB
ptr = 14
ptr = 1988

Converts a string to a long value.

long strtol(const char *s, char **endptr, int radix);

stdlib.h

strtol converts a character string, s, to a long integer
value. s is a sequence of characters tha t can be
interpreted as a long value; the characters must match
this generic format:

[ws] [sn] [0] [x] [ddd]

where

[wsJ = optional whitespace
[snl = optional sign (+ or-)
[OJ = optional zero (0)
[xJ = optional x or X
[dddJ = optional digits

strtol stops reading the string at the first character it
doesn't recognize.

If radix is between 2 and 36, the long integer is expressed
in base radix. If radix is 0, the first few characters of s
determine the base of the value being converted.

First Second
Character Character String Interpreted As

0 1-7 octal
0 xorX hexadecimal

1-9 decimal

Turbo C Reference Guide

Return value

Portability

See also

strtoul
Function

Syntax

Prototype in

Remarks

strtol

If radix is 1, it is considered to be an invalid value. If
radix is less than 0 or greater than 36, it is considered to
be an invalid value.

Any invalid value for radix causes the result to be 0 and
sets the next character pointer *endptr to the starting
string poin ter.

If the value in s is meant to be interpreted as octal, any
character other than 0 to 7 will be unrecognized.

If the value in s is meant to be interpreted as decimal,
any character other than 0 to 9 will be unrecognized.

If the value in s is meant to be interpreted as a number
in any other base, then only the numerals and letters
used to represent numbers in that base will be
recognized. (For example, if radix equals 5, only 0 to 4
will be recognized; if radix equals 20, only 0 to 9 and A to
J will be recognized.)

If endptr is not null, strtol sets *endptr to point to the
character that stopped the scan (*endptr = &Stopper).

strtol returns the value of the converted string, or 0 on
error.

strtol is available on UNIX systems and is compatible
with ANSI C.

atoi, atol, strtoul

Converts a string to an unsigned long in the given
radix.

unsigned long strtoul(const char *s,
char **endptr, int radix);

stdlib.h

strtoul operates the same as strtol, except that it con­
verts a string, str, to an unsigned long value (whereas
strtol converts to a long). Refer to the entry for strtol for
more information.

Chapter 2, The Turbo C Ubrary 377

strtoul

Return value

Portability

See also

strupr
Function

Syntax

Prototype in

Remarks

Return value

See also

swab
Function

Syntax

Prototype in

Remarks

Return value

Portability

378

strtoul returns the converted value, an unsigned long,
or 0 on error.

strtoul is compatible with ANSI C.

atol, strtol

Converts lowercase letters in a string to uppercase.

char *strupr(char *s);

string.h

strupr converts lowercase letters (a-z) in string s to
uppercase (A-Z). No other characters are changed.

s tru pr returns s.

strlwr

Swaps bytes.

void swab(char *from, char *to, int nbytes);

stdlib.h

swab copies nbytes bytes from the from string to the to
string. Adjacent even- and odd-byte positions are
swapped. This is useful for moving data from one
machine to another machine with a different byte order.
nbytes should be even.

None.

swab is available on UNIX systems.

Turbo C Reference Guide

system
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

tan
Function

Syntax

Prototype in

Remarks

Return value

Issues a DOS command.

int system(const char *command);

stdlib.h, process.h

system

system invokes the DOS COMMAND. COM file to
execute a DOS command, batch file, or other program
named by the string command, from inside an executing
C program.

To be located and executed, the program must be in the
current directory or in one of the directories listed in the
PATH string in the environment.

The COMSPEC environment variable is used to find the
COMMAND. COM file, so that file does not need to be in
the current directory.

system returns 0 on success, -Ion failure.

system is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

exec ... , _fpreset, searchpath, spawn ...

Calculates the tangent.

#include <math.h>
double tan(double x);

math.h

tan calculates the tangent. Angles are specified in ra­
dians.

Error-handling for this routine can be modified through
the function matherr.

tan returns the tangent of x, any value for valid angles.
For angles close to pi/2 or -pi/2, tan returns 0 and errno
is set to

Chapter 2, The Turbo C Ubrary 379

tan

Portability

See also

tanh
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

tell
Function

Syntax

Prototype in

Remarks

Return value

Portability

380

ERANGE Result out of range

tan is available on UNIX systems and is compatible with
ANSIC.

acos, asin, atan, atan2, cos, cosh, sin, sinh, tanh

Calculates the hyperbolic tangent.

#inc1ude <math.h>
double tanh(double x);

math.h

tanh computes the hyperbolic tangent for real argu­
ments.

Error-handling for tanh can be modified through the
function matherr.

tanh returns the hyperbolic tangent of x.

tanh is available on UNIX systems and is compatible
with ANSIC.

acos, asin, atan, atan2, cos, cosh, sin, sinh, tan

Gets current position of file pointer.

long tell(int handle);

io.h

tell gets the current position of the file pointer associ­
ated with handle and expresses it as the number of bytes
from the beginning of the file.

tell returns the current file pointer position. A return of
-1 (long) indica tes an error, and errno is set to

EBADF Bad file number

tell is available on all UNIX systems.

Turbo C Reference Guide

See also

textattr
Function

Syntax

Prototype in

Remarks

fgetpos, fseek, ftell, lseek

Sets text attributes.

void textattr(int newattr);

conio.h

textaHr

textattr lets you set both the foreground and back­
ground colors in a single call. (Normally, you set the
attributes with textcolor and textbackground.)

This function does not affect any characters currently on
the screen; it only affects those displayed by functions
(such as cprintf) performing text mode, direct video
output after this function is called.

The color information is encoded in the newattr
parameter as follows:

7 6 5 4 321 0

In this 8-bit newattr parameter,

ffff is the 4-bit foreground color (0 to 15).
bbb is the 3-bit background color (0 to 7).
B is the blink-enable bit.

If the blink-enable bit is on, the character will blink. This
can be accomplished by adding the constant BLINK to
the attribute.

If you use the symbolic color constants defined in
conio.h for creating text attributes with textattr, note the
following limitations on the color you select for the
background:

Chapter 2, The Turbo C Library 381

textattr

Return value

Portability

See also

Example

382

• You can only select one of the first eight colors for the
background .

• You must shift the selected background color left by 4
bits to move it into the correct bit positions.

These symbolic constants are listed in the table below:

Symbolic Numeric Foreground or
constant value background?

BLACK 0 both
BLUE 1 both
GREEN 2 both
CYAN 3 both
RED 4 both
MAGENTA 5 both
BROWN 6 both
LIGHTGRAY 7 both
DARKGRAY 8 foreground only
LIGHTBLUE 9 foreground only
LIGHTGREEN 10 foreground only
LIGHTCYAN 11 foreground only
LIGHTRED 12 foreground only
LIGHTMAGENTA 13 foreground only
YELLOW 14 foreground only
WHITE 15 foreground only
BLINK 128 foreground only

None.

textattr works only on IBM PCs and compatible systems.

gettextinfo, highvideo, lowvideo, normvideo,
textbackground, textcolor

1* Select blinking yellow characters on a blue background *1
textattr(YELLOW + (BLUE«4) + BLINK);
cputs("Hello, world");

Turbo C Reference Guide

textbackground

textbackground
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

Selects new text background color.

void textbackground(int newcolor);

conio.h

textbackground selects the background text color.
The background color of all characters subsequently
written by functions performing text mode, direct video
output will be in the color given by newcolor, an integer
from 0 to 7. You can give the color using one of the
symbolic constants defined in conio.h. If you use these
constants, you must include conio.h.

This function does not affect any characters currently on
the screen, but only those displayed using direct console
output (such as cprintf) after textbackground has been
called.

The following table lists the allowable colors (as
symbolic constants) and their numeric values:

None.

Symbolic Constant

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LIGHTGRAY

Numeric Value

o
1
2
3
4
5
6
7

textbackground works with IBM PCs and compatibles
only. A corresponding function exists in Turbo Pascal.

gettextinfo, textattr, textcolor

/* makes a magenta background */

Chapter 2, The Turbo C Ubrary 383

fexfcolor

textcolor
Function

Syntax

Prototype in

Remarks

384

textbackground(MAGENTA);

Selects new character color in text mode.

#include <conio.h>
void textcolor(int newcolor);

conio.h

textcolor selects the foreground character color. The
foreground color of all characters subsequently written
by the console output functions will be the color given
by newcolor. You can give the color using a symbolic
constant defined in conio.h. If you use these constants,
you must include conio.h.

This function does not affect any characters currently on
the screen, but only those displayed using direct console
output (such as cprintf) after textcolor has been called.

The following table lists the allowable colors (as
symbolic constants) and their numeric values:

Turbo C Reference Guide

Return value

Portability

See also

Symbolic Constant

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LIGHTGRAY
DARKGRAY
LIGHTBLUE
LIGHTGREEN
LIGHTCYAN
LIGHTRED
LIGHTMAGENTA
YELLOW
WHITE
BLINK

textcolor

Numeric Va lue

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

128

You can make the characters blink by adding 128 to the
foreground color. The predefined constant BLINK exists
for this purpose. For example,

textcolor(CYAN + BLINK);

Note: Some monitors do not recognize the intensity
signal used to create the eight "light" colors (8-15). On
such monitors, the light colors will be displayed as their
"dark" equivalents (0-7). Also, systems that do not
display in color may treat these numbers as shades of
one color, special patterns, or special attributes (such as
underlined, bold, italics, and so on). Exactly what you'll
see on such systems depends upon your own hardware.

None.

textcolor works with IBM PCs and compatibles only. A
corresponding function exists in Turbo Pascal.

gettextinfo, highvideo, lowvideo, normvideo, textattr,
textbackground

Chapter 2, The Turbo C Ubrary 385

textheight

textheight
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

textmode
Function

Syntax

Prototype in

Remarks

386

Returns the height of a string in pixels.

#include <graphics.h>
int far textheight(char far *textstring);

graphics.h

The graphics function textheight takes the current font
size and multiplication factor, and determines the height
of textstring in pixels.

This function is useful for adjusting the spacing between
lines, computing viewport heights, sizing a title to make
it fit on a graph or in a box, and so on.

For example, with the 8x8 bit-mapped font and a
multiplication factor of 1 (set by settextstyle), the string
TurboC is 8 pixels high.

It is important to use textheight to compute the height
of strings, instead of doing the computations manually.
By using this function, no source code modifications
have to be made when different fonts are selected.

textheight returns the text height in pixels.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

gettextsettings, outtext, outtextxy, setteststyle,
textwidth

Puts screen in text mode.

void textmode(int newmode);

conio.h

textmode selects a specific text mode.

You can give the text mode (the argument newmode) by
using a symbolic constant from the enumeration type

Turbo C Reference Guide

Return value

Portability

See also

textmode

text_modes (defined in conio.h). If you use these
constants, you must include conio.h.

The text_modes type constants, their numeric values, and
the modes they specify are given in the following table.

Symbolic
constant

LASTMODE
BW40
C40
BW80
C80
MONO

Numeric
value Text mode

-1 previous text mode
o black & white, 40 columns
1 color, 40 columns
2 black & white, 80 columns
3 color, 80 columns
7 monochrome, 80 columns

When textmode is called, the curren~ window is reset to
the entire screen, and the current text attributes are reset
to normal, corresponding to a call to norm video.

Specifying LAST MODE to textmode causes the most
recently selected text mode to be reselected. This feature
is really only useful when you want to return to text
mode after using a graphics mode.

textmode should be used only when the screen is in the
text mode (presumably to change to a different text
mode). This is the only context in which textmode
should be used. When the screen is in graphics mode,
you should use restorecrtmode instead to escape
temporarily to text mode.

None.

textmode works with IBM pes and compatibles only. A
corresponding function exists in Turbo Pascal.

gettextinfo, window

Chapter 2, The Turbo C Ubrary 387

textwidth

textwidth
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

time
Function

Syntax

Prototype in

Remarks

Return value

388

Returns the width of a string in pixels.

#inc1ude <graphics.h>
int far textwidth(char far *textstring);

graphics.h

The graphics function textwidth takes the string length,
current font size, and multiplication factor, and
determines the width of textstring in pixels.

This function is useful for computing viewport widths,
sizing a title to make it fit on a graph or in a box, and so
on.

It is important to use textwidth to compute the width of
strings, instead of doing the computations manually.
When you use this function, no source code modifica­
tions have to be made when different fonts are selected.

textwidth returns the text width in pixels.

This function works only with IBM pes and compatibles
equipped with supported graphics display adapters.

gettextsettings, outtext, outtextxy, settextstyle,
textheight

Gets time of day.

#include <time.h>
time_t time(time_t *timer);

time.h

time gives the current time, in seconds, elapsed since
00:00:00 GMT, January 1, 1970, and stores that value in
the location pointed to by timer, provided that timer is
not a null pointer.

time returns the elapsed time in seconds, as described.

Turbo C Reference Guide

Portability

See also

tmpfile
Function

Syntax

Prototype in

Remarks

Return value

Portability

tmpnam
Function

Syntax

Prototype in

Remarks

time

time is available on UNIX systems and is compatible
withANSIC.

asctime, ctime, difftime, Hime, gettime, gmtime,
localtime, settime, stime, tzset

Opens a "scratch" file in binary mode.

#include <stdio.h>
FILE *tmpfile(void);

stdio.h

tmpfile creates a temporary binary file and opens it for
update (w + b). The file is automatically removed when
it's closed or when your program terminates.

tmpfile returns a pointer to the stream of the temporary
file created. If the file can't be created, tmpfile returns
null.

tmpfile is available on UNIX systems and is compatible
with ANSIC.

Creates a unique file name.

char *tmpnam(char *s);

stdio.h

tmpnam creates a unique file name, which can safely be
used as the name of a temporary file. tmpnam generates
a different string each time you call it, up to TMP _MAX
times. TMP _MAX is defined in stdio.h as 65535.

The parameter to tmpnam, s, is either null or a pointer
to an array of at least L_tmpnam characters. L_tmpnam is
defined in stdio.h. If s is null, tmpnam leaves the
generated temporary file name in an internal static
object and returns a pointer to that object. If s is not null,

Chapter 2, The Turbo C Ubrary 389

tmpnam

Return value

Portability

toascii
Function

Syntax

Prototype in

Remarks

Return value

Portability

_tolower
Function

Syntax

Prototype in

Remarks

390

tmpnam places its result in the pointed-to array, which
must be at least L_tmpnam characters long, and returns s.

Note: If you do create such a temporary file with
tmpnam, it is your responsibility to delete the file name
(for example, with a call to remove). It is not deleted
automa tically.

If s is null, tmpnam returns a pointer to an internal static
object. Otherwise, tmpnam returns s.

tmpnam is available on UNIX systems and is compatible
withANSIC.

Translates characters to ASCII format.

int toascii(int C)i

ctype.h

toascii is a macro that converts the integer C to ASCII by
clearing all but the lower 7 bits; this gives a value in the
range 0 to 127.

toascii returns the converted value of c.

toascii is available on UNIX systems.

Translates characters to lowercase.

#include <ctype.h>
int _tolower(int ch);

ctype.h

_tolower is a macro that does the same conversion as
tolower, except that it should be used only when ch is
known to be uppercase (A-Z).

To use _tolower, you must include ctype.h.

Turbo C Reference Guide

Return value

Portability

to lower
Function

Syntax

Prototype in

Remarks

Return value

Portability

_toupper
Function

Syntax

Prototype in

Remarks

Return value

Portability

_tolower

_tolower returns the converted value of ch if it is upper­
case; otherwise, the result is undefined.

_tolower is available on UNIX systems.

Translates characters to lowercase.

int tolower(int ch);

ctype.h

tolower is a function that converts an integer ch (in the
range EOF to 255) to its lowercase (a-z) value (if it was
uppercase (A-Z); all others are left unchanged.

to lower returns the converted value of ch if it is upper­
case; all others it returns unchanged.

tolower is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

Translates characters to uppercase.

#include <ctype.h>
int _toupper(int ch);

ctype.h

_toupper is a macro that does the same conversion as
toupper, except that it should be used only when ch is
known to be lowercase (a-z).

To use _toupper, you must include ctype.h.

_toupper returns the converted value of ch if it is lower­
case; otherwise, the result is undefined.

_toupper is available on UNIX systems.

Chapter 2, The Turbo C library 391

foupper

toupper
Function

Syntax

Prototype in

Remarks

Return value

Portability

tzset
Function

Syntax

Prototype in

Remarks

392

Translates characters to uppercase.

int toupper(int ch);

ctype.h

toupper is a function that converts an integer ch (in the
range EOF to 255) to its uppercase value (A-Z) (if it was
lowercase (a-z); all others are left unchanged.

toupper returns the converted value of ch if it is lower­
case; it returns all others unchanged.

toupper is available on UNIX systems and is compatible
with ANSI C. It is defined in Kernighan and Ritchie.

Sets value of global variables daylight, timezone, and
tzname.

#include <time.h>
void tzset(void)

time.h

tzset sets the daylight, timezone, and tzname
global variables based on the environment variable TZ.
The library functions £time and localtime use these
global variables to correct Greenwich Mean Time (GMT)
to whatever the local time zone is. The format of the TZ
environment string is as follows:

TZ = zzz[+/-]d[d] [111]

zzz is a three-character string representing the name of
the current time zone. All three characters are required.
For example, the string "PST" could be used to represent
Pacific Standard Time.

[+/-]d[d] is a required field containing an optionally
signed number with 1 or more digits. This number is the
local time zone's difference from GMT in hours. Positive

Turbo C Reference Guide

Return value

Portability

See also

Example

tzset

numbers adjust westward from GMT. Negative num­
bers adjust eastward from GMT. For example, the
number 5 = EST, +8 = PST, and -1 = Continental Europe.
This number is used in the calculation of the global
variable timezone. timezone is the difference in seconds
between GMT and the local time zone.

III is an optional three-character field that represents the
local time zone daylight savings time. For example, the
string "PDT" could be used to represent Pacific Daylight
Savings Time. If this field is present, it will cause the
daylight global variable to be set nonzero. If this field is
absent, daylight will be set to zero.

If the TZ environment string isn't present or isn't in the
above form, a default TZ = "EST5EDT" is presumed for
the purposes of assigning values to the global variables
daylight, timezone, and tzname.

The global variable tzname[O] points to a three-character
string with the value of the time zone name from the TZ
environment string. The global variable tzname[1] points
to a three-character string with the value of the daylight
savings time zone name from the TZ environment
string. If no daylight savings name is present, tzname[l]
points to a null string.

None.

tzset is available on UNIX and XENIX systems.

asctime, ctime, £time, gmtime, localtime, stime, time

#include <time.h>
iinclude <stdlib.h>

main ()
{

time_t tdi
1* Pacific daylight savings *1
putenv(ITZ=PST8PDT") i

tzset();
1* get current time I date *1
time (&td) i

printf("Current time = %s\n", asctime(localtime(&td)))i

Chapter 2, The Turbo C Ubrary 393

ulloa

ultoa
Function

Syntax

Prototype in

Remarks

Return value

See also

ungetc
Function

Syntax

Prototype in

Remarks

394

Converts an unsigned long to a string.

char *ultoa(unsigned long value,
char *string, int radix);

stdlib.h

ultoa converts value to a null-terminated string and
stores the result in string. value is an unsigned long.

radix specifies the base to be used in converting value; it
must be between 2 and 36, inclusive. ultoa performs no
overflow-checking, and if value is negative and radix
equals 10, it does not set the minus sign.

Note: The space allocated for string must be large
enough to hold the returned string, including the
terminating null character (\0). ultoa can return up to 33
bytes.

ultoa returns string. There is no error return.

itoa, ltoa

Pushes a character back into input stream.

#inc1ude <stdio.h>
int ungetc(int c, FILE *stream);

stdio.h

ungetc pushes the character c back onto the named
input stream, which must be open for reading. This
character will be returned on the next call to getc or
fread for that stream. One character may be pushed back
in all situations. A second call to ungetc without a call to
getc will force the previous character to be forgotten. A
call to fflush, fseek, fsetpos, or rewind erases all
memory of any pushed -back characters.

Turbo C Reference Guide

Return value

Portability

See also

ungetch
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

unixtodos
Function

Syntax

Prototype in

Remarks

Return value

Portability

ungetc

On success, ungetc returns the character pushed back; it
returns EOF if the operation fails.

ungetc is available on UNIX systems and is compatible
with ANSIC.

fgetc, getc, getchar

Pushes a character back to the keyboard buffer.

int ungetch(int ch);

conio.h

ungetch pushes the character ch back to the console,
causing ch to be the next character read. The ungetch
function fails if it is called more than once before the
next read.

ungetch returns the character ch if it is successful. A
return value of EOF indicates an error.

ungetch is available on UNIX systems.

getch, getche

Converts date and time to DOS format.

#include <dos.h>
void unixtodos(long time, struct date *d,

struct time *t);

dos.h

unixtodos converts the UNIX-format time given in time
to DOS format and fills in the date and time structures
pOinted to by d and t.

None.

unixtodos is unique to DOS.

Chapter 2, The Turbo C Ubrary 395

unlink

See also

unlink
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

unlock
Function

Syntax

Prototype in

Remarks

Return value

396

dostounix

Deletes a file.

int unlink(const char *filename);

dos.h, io.h, stdio.h

unlink deletes a file specified by filename. Any DOS
drive, path, and file name can be used as a filename.
Wildcards are not allowed.

Read-only files cannot be deleted by this call. To remove
read-only files, first use chmod or _chmod to change the
read-only attribute.

On successful completion, unlink returns O. On error, it
returns -I, and errno is set to one of the following
values:

ENOENT Path or file name not found
EACCES Permission denied

unlink is available on UNIX systems.

chmod, remove

Releases file-sharing locks.

int unlock(int handle, long offset, long length);

io.h

unlock provides an interface to the DOS 3.x file-sharing
mechanism.

unlock removes a lock previously placed with a call to
lock. To avoid error, all locks must be removed before a
file is closed. A program must release all locks before
completing.

unlock returns 0 on success, -Ion error.

Turbo C Reference Guide

Portability

See also

Function

Syntax

Prototype in

Remarks

unlock

unlock is unique to DOS 3.x. Older versions of DOS do
not support this call.

lock, sopen

Implement a variable argument list.

#include <stdarg.h>
void va_start(va_list param, lastfix);
type va_arg(va_list param, type);
void va_end(va_list param);

stdarg.h

Some C functions, such as vfprintf and vprintf, take
variable argument lists in addition to taking a number of
fixed (known) parameters. The va_ ... macros provide a
portable way to access these argument lists. They are
used for stepping through a list of arguments when the
called function does not know the number and types of
the argumen ts being passed.

The header file stdarg.h declares one type (va_Ust), and
three macros (va_start, va_arg, and va_end).

va_list

This array holds information needed by va_arg and
va_end. When a called function takes a variable argu­
ment list, it declares a variable param of type va_list.

va_start

This routine (implemented as a macro) sets param to
point to the first of the variable arguments being passed
to the function. va_start must be used before the first call
to va_arg or va_end.

va_start takes two parameters: param and lastfix. (param
is explained under va_list in the preceding paragraph;
lastfix is the name of the last fixed parameter being
passed to the called function.)

va_arg

Chapter 2, The Turbo C Ubrary 397

Return value

Portability

See also

Example

398

This routine (also implemented as a macro) expands to
an expression that has the same type and value as the
next argument being passed (one of the variable
arguments). The variable param to va_arg should be the
same param that va_start initialized.

The first time va_arg is used, it returns the first
argument in the list. Each successive time va_arg is
used, it returns the next argument in the list. It does this
by first de-referencing param, and then incrementing
param to point to the following item. va_arg uses the type
to both perform the de-reference and to locate the
following item. Each successive time va_arg is invoked,
it modifies param to point to the next argument in the
list.

va_end

This macro helps the called function perform a normal
return. va_end might modify param in such a way that it
cannot be used unless va_start is re-called. va_end
should be called after va_arg has read all the arguments;
failure to do so might cause strange, undefined behavior
in your program.

va_start and va_end return no values; va_arg returns the
current argument in the list (the one that param is
pointing to).

va_arg, va_start, and va_end are available on UNIX
systems.

v ... printf, v ... scanf

iinclude <stdio.h>
iinclude <stdarg.h>

/* calculate sum of a 0 terminated list */

void sum(char *msg, ••.)
(

int total = Oi
va_list ap;
int arg;

va_start(ap, msg);
while ((arg = va_arg(ap,int)) != 0)
(

total t= argi

Turbo C Reference Guide

Example 2

vfprintf
Function

Syntax

Prototype in

printf(msg, total);

main()
(

sum("The total of 1+2+3+4 is %d\n", 1,2,3,4,0);

Program output

The total of 1+2+3+4 is 10

#include <stdio.h>
#include <stdarg.h>

void error(char *format, ...)
(

va_list argptr;

printf("error: H);
va_start (argptr, format);
vprintf(format, argptr);
va_end(argptr);

main ()
(

int value = -1;

error("this is just an error message\n");
error ("invalid value %d encountered\n", value);

Program output

error: this is just an error message
error: invalid value -1 encountered

Writes formatted output to a stream.

#include <stdio.h>
int vfprintf(FILE *stream, const char *format,

va_list arglist);

stdio.h

Chapter 2, The Turbo C Library 399

vfprintf

Remarks

Return value

Portability

See also

Example

vfscanf
Function

Syntax

Prototype in

Remarks

400

The v ... printf functions are known as alternate entry
points for the ... printf functions. They behave exactly
like their ... printf counterparts, but they accept a
pointer to a list of arguments instead of an argument list.

vfprintf accepts a pointer to a series of arguments,
applies to each argument a format specification
contained in the format string pointed to by format, and
outputs the formatted data to a stream. There must be
the same number of format specifications as arguments.

See printf for a description of the information included
in a forma t specification.

vfprintf returns the number of bytes output. In the
event of error, vfprintf returns EOF.

vfprintf is available on UNIX System V, and it is
compa tible with ANSI C.

printf, va_ ...

See printf

Scans and formats input from a stream.

#include <stdio.h>
int vfscanf(FILE *stream, const char *format,

va_list arglist);

stdio.h

The v ... seanf functions are known as alternate entry
points for the ... seanf functions. They behave exactly like
their ... seanf counterparts, but they accept a pointer to a
list of arguments instead of an argument list.

vfseanf scans a series of input fields, one character at a
time, reading from a stream. Then each field is
forma tted according to a format specification passed to
vfseanf in the format string pointed to by format. Finally,
vfseanf stores the formatted input at an address passed
to it as an argument following format. There must be the

Turbo C Reference Guide

Return value

Portability

See also

vprintf
Function

Syntax

Prototype in

Remarks

vfseanf

same number of format specifications and addresses as
there are in put fields.

See scanf for a description of the information included
in a format specification.

vfscanf may stop scanning a particular field before it
reaches the normal end-of-field (whitespace) character,
or it may terminate entirely, for a number of reasons. See
scanf for a discussion of possible causes.

vfscanf returns the number of input fields successfully
scanned, converted, and stored; the return value does
not include scanned fields that were not stored. If no
fields were stored, the return value is O.

If vfscanf attempts to read at end-of-file, the return
value is EOF.

vfscanf is available on UNIX system V.

fscanf, scanf, va_ ...

Writes formatted output to stdout.

#include <stdarg.h>
int vprintf(const char *format, va_list arglist);

stdio.h

The v ... printf functions are known as alternate entry
points for the ... printf functions. They behave exactly
like their ... printf counterparts, but they accept a
pointer to a list of arguments instead of an argument list.

vprintf accepts a pointer to a series of arguments,
applies to each a format specification contained in the
format string pointed to by format, and outputs the
formatted data to stdout. There must be the same
number of format specifications as arguments.

See printf for a description of the information included
in a format specification.

Chapter 2, The Turbo C Ubrary 401

vprintf

Return value

Portability

See also

Example

vscanf
Function

Syntax

Prototype in

Remarks

Return value

402

vprint returns the number of bytes output. In the event
of error, vprint returns EOF.

vprintf is available on UNIX System V and is compatible
with ANSIC.

printf, va_ ...

See printf

Scans and formats input from stdin.

#inc1ude <stdarg.h>
int vscanf(const char *format, va_list arglist);

stdio.h

The v ... seanf functions are known as alternate entry
points for the ... seanf functions. They behave exactly like
their ... seanf counterparts, but they accept a pointer to a
list of arguments instead of an argument list.

vseanf scans a series of input fields, one character at a
time, reading from stdin. Then each field is formatted
according to a format specification passed to vseanf in
the format string pointed to by format. Finally, vseanf
stores the formatted input at an address passed to it as
an argument following format. There must be the same
number of format specifications and addresses as there
are input fields.

See seanf for a description of the information included
in a format specification.

vseanf may stop scanning a particular field before it
reaches the normal end-of-field (whitespace) character,
or it may terminate entirely, for a number of reasons. See
seanf for a discussion of possible causes.

vseanf returns the number of input fields successfully
scanned, converted, and stored; the return value does
not include scanned fields that were not stored. If no
fields were stored, the return value is O.

Turbo C Reference Guide

Portability

See also

vsprintf
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

vscanf

If vscanf attempts to read at end-of-file, the return value
is EOF.

vscanf is available on UNIX system V.

fscanf, scanf, va_ ...

Writes formatted output to a string.

#include <stdarg.h>
int vsprintf(char *buffer, const char *format,

va_list arglist);

stdio.h

The v ... printf functions are known as alternate entry
points for the ... printf functions. They behave exactly
like their ... printf counterparts, but they accept a
pointer to a list of arguments instead of an argument list.

vsprintf accepts a pointer to a series of arguments,
applies to each a format specification contained in the
format string pointed to by format, and outputs the
formatted data to a string. There must be the same
number of format specifications as arguments.

See printf for a description of the information included
in a format specification.

vsprintf returns the number of bytes output. In the
event of error, vsprintf returns EOF.

vsprintf is available on UNIX System V and is com­
pa tible with ANSI C.

prin tf, va_ ...

See printf

Chapter 2, The Turbo C Library 403

vsscanf

vsscanf
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

404

Scans and formats input from a stream.

#include <stdarg.h>
int vsscanf(const char *buffer, const char *format,

va_list arglist);

stdio.h

The v ... scanf functions are known as alternate entry
points for the ... scanf functions. They behave exactly like
their o .. scanf counterparts, but they accept a pointer to a
list of arguments instead of an argument list.

vsscanf scans a series of input fields, one character at a
time, reading from a stream. Then each field is
forma tted according to a forma t specific a tion passed to
vsscanf in the format string pointed to by format. Finally,
vsscanf stores the formatted input at an address passed
to it as an argument following format. There must be the
same number of format specifications and addresses as
there are input fields.

See scanf for a description of the information included
in a format specification.

vsscanf may stop scanning a particular field before it
reaches the normal end-of-field (whitespace) character,
or it may terminate entirely, for a number of reasons. See
scanf for a discussion of possible causes.

vsscanf returns the number of input fields successfully
scanned, converted, and stored; the return value does
not include scanned fields that were not stored. If no
fields were stored, the return value is O.

If vsscanf attempts to read at end-of-string, the return
value is EOF.

vsscanf is available on UNIX system V.

fscanf, scanf, va_o ..

Turbo C Reference Guide

wherex
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

wherey
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

Example

Gives horizontal cursor position within window.

int wherex(void);

conio.h

wherex

wherex returns the x-coordinate of the current cursor
position (within the current text window).

wherex returns an integer in the range 1 to 80.

wherex works with IBM PCs and compatibles only. A
corresponding function exists in Turbo Pascal.

gettextin£o, gotoxy, wherey

printf("The cursor is at (%d,%d)\n", wherex(),wherey());

Gives vertical cursor position within window.

int wherey(void);

conio.h

wherey returns the y-coordinate of the current cursor
position (within the current text window).

wherey returns an integer in the range 1 to 25.

wherey works with IBM PCs and compatibles only. A
corresponding function exists in Turbo Pascal.

gettextinfo, gotoxy, wherex

See where x

Chapter 2, The Turbo C Ubrary 405

window

window
Function

Syntax

Prototype in

Remarks

Return value

Portability

See also

_write
Function

Syntax

Prototype in

Remarks

406

Defines active text mode window.

void window{int left, int top, int right, int bottom);

conio.h

window defines a text window on the screen. If the
coordinates are in any way invalid, the call to window is
ignored.

left and top are the screen coordinates of the upper left
corner of the window.

right and bottom are the screen coordinates of the lower
right corner.

The minimum size of the text window is 1 column by 1
line. The default window ~s full screen, with these
coordinates:

80-column mode: 1, 1,80,25
40-column mode: 1, 1,40,25

None.

window works with IBM pes and compa tibles only. A
corresponding function exists in Turbo Pascal.

dreol, clrscr, delline, gettextinfo, gotoxy, insline,
puttext, textmode

Writes to a file.

int _write{int handle, void *buf, unsigned len);

io.h

This function attempts to write len bytes from the buffer
pointed to by buf to the file associated with handle.

The maximum number of bytes that _write can write is
65534, since 65535 (OxFFFF) is the same as -1, which is
the error return indicator for _write.

Turbo C Reference Guide

Return value

Portability

See also

write
Function

Syntax

Prototype in

Remarks

_write does not translate a linefeed character (LF) to a
CR/LF pair, since all its files are binary files.

If the number of bytes actually written is less than that
requested, the condition should be considered an error
and probably indicates a full disk.

For disk files, writing always proceeds from the current
file pointer. On devices, bytes are directly sent to the
device.

For files opened with the 0 _APPEND option, the file
pointer is not positioned to EOF by _write before
writing the data.

_write returns the number of bytes written. In case of
error, _write returns -1 and sets the global variable errno
to one of the following:

EACCES
EBADF

Permission denied
Bad file number

_write is unique to DOS.

lseek, _read, write

Writes to a file.

int write(int handle, void *buf, unsigned len);

io.h

write writes a buffer of data to the file or device named
by the given handle. handle is a file handle obtained from
a creat, open, dup, or dup2 call.

This function attempts to write len bytes from the buffer
pointed to by buf to the file associated with handle.
Except when write is used to write to a text file, the
number of bytes written to the file will be no more than
the number requested.

The maximum number of bytes that write can write is
65534, since 65535 (OxFFFF) is the same as -1, which is
the error return indica tor for write.

Chapter 2, The Turbo C Ubrary 407

write

Return value

Portability

See also

408

On text files, when write sees a linefeed (LF) character, it
outputs a CR/LF pair.

If the number of bytes actually written is less than that
requested, the condition should be considered an error
and probably indicates a full disk.

For disks or disk files, writing always proceeds from the
current file pointer. For devices, bytes are sent directly to
the device.

For files opened with the 0 _APPEND option, the file
pointer is positioned to EOF by write before writing the
data.

write returns the number of bytes written. A write to a
text file does not count generated carriage returns. In
case of error, write returns -1 and sets the global vari­
able errno to one of the following:

EACCES Permission denied
EBADF Bad file number

write is available on UNIX systems.

creat, lseek, open, read, _write

Turbo C Reference Guide

A p p E N D x

A

The Turbo C Interactive Editor

Introduction

Turbo C's built-in editor is specifically designed for creating program
source text. If you are familiar with the Turbo Pascal or SideKick editor or
MicroPro's WordS tar program, you already know how to use the Turbo C
editor, since its commands are almost identical to those of these editors. A
section at the end of this appendix summarizes the few differences between
Turbo C's editor commands and WordStar's commands.

The TC Editor has expanded memory support on systems running EMM
(Extended Memory Manager) drivers conforming to the 3.2 (and above)
Lotus/Intel/Microsoft Expanded Memory Specification. At startup, Turbo
C determines whether it can use EMS memory; if it can, it automatically
places the Editor's buffer in expanded memory. This frees about 64K of
RAM memory for compiling and running your programs. If you happen
not to want Turbo C to use available EMS memory that it finds, you can
disable this feature at the TCINST Options/Environment/Options for
Editor menu.

Turbo In, Turbo Out

To invoke the editor, choose Edit from Turbo C's main menu. The Edit
window becomes the active window; the Edit window's title is highlighted
and the cursor, a flashing underbar that marks the point at which text will
be entered, is positioned in the Edit window.

Appendix A, The Turbo C Interactive Editor 409

To enter text, type as though you were using a typewriter. To end a line,
press the Enter key.

To invoke the main menu from within the editor, press F10 (the data in the
Edit window remains onscreen).

The Edit Window Status Line

The status line in the top bar of the Edit window gives you information
about the file you are editing, where in the file the cursor is located, and
which editing modes are activated:

Line Col Insert Indent Tab Fill Unindent * X:FILENAME.EXT

410 Turbo C Reference Guide

Line

Col

Insert

Indent

Tab

Fill

Unindent

*

X:FILENAME.EXT

Shows which file line number contains the cursor.

Shows which file column number contains the cursor.

Tells you that the editor is in Insert mode; characters
entered on the keyboard are inserted at the cursor
position, and text in front of the cursor moves to the
right.

Use the Ins key or Ctrl-V to toggle the editor between
Insert mode and Overwrite mode.

In Overwrite mode, text entered at the keyboard
overwrites characters under the cursor, instead of
inserting them before existing text.

Indicates the autoindent feature is On. You toggle it
Off and On with the command Ctrl-O I.

Indicates whether or not you can insert tabs. Use
Ctrl-O T to toggle this On or Off.

When tab mode is On, Optimal fill mode will cause
the editor to fill the beginning of each line optimally
with tabs and spaces. This option is toggled with
Ctrl-O F.

When Unindent mode is On, the backspace key will
outdent one level whenever the cursor is on the first
nonblank character of a line or on a blank line. This
option is toggled with Ctrl-O U.

The asterisk appears before the file name whenever
the file has been modified and has not yet been saved.

Indicates the drive (X:), name (FILENAME), and
extension (.EXT) of the file you are editing. If you
have not specified a file name yet, the file name and
extension displayed is NONAME.C, Turbo C's
default file name.

Editor Commands

The editor provides approximately 50 commands to move the cursor
around, page through the text, find and replace strings, and so on. These
commands can be grouped into five main categories:

Appendix A, The Turbo C Interactive Editor 411

• basic cursor movement commands
• quick cursor movement commands[quick cursor movement commands

(TC editor)}
• insert and delete commands
• block commands
• miscellaneous commands

Table A.1 summarizes the commands. Each entry in the table consists of a
command definition, followed by the default keystrokes used to activate
the command. In the pages after Table A.1, we further explain the actions of
each editor command.

Table A.l : Summary of Editor Commands

Basic Cursor Movement Commands
Character left
Character right
Word left
Word right
Lineup
Line down
Scroll up
Scroll down
Page up
Page down

Quick Cursor Movement Commands
Beginning of line
EnCl of line
Top of window
Bottom of window
Beginning of file
EnCl of file
Beginning of block
End of block
Last cursor position

Insert and Delete Commands
Insert mode On/Off
Insert line
Delete line
Delete to end of line
Delete character left of cursor
Delete character under cursor
Delete word right of cursor

Block Commands
Mark block-begin
Mark block-ena
Mark single word

412

Ctrl-S or Left
Ctr/-D or Right

Ctr/-A
Ctrl-F

Ctrl-E or Up
Ctrl-X or Down

Ctrl-W
Ctrl-Z

Ctrl-R or PgUp
Ctrl-C or PgDn

Ctrl-Q S or Home
Ctrl-Q 0 or End

Ctrl-Q E
Ctrl-Q X

Ctrl-Q R or Ctrl-PgUp
Ctrl-Q C or Ctrl-pgDn

Ctrl-Q B
Ctr/-Q K
Ctrl-Q P

Ctrl-V or Ins
Ctrl-N
Ctrl-Y

Ctrl-Q Y
Ctrl-H or Backspace

Ctrl-G or Del
Ctrl-T

Ctrl-K B
Ctrl-K K
Ctrl-K T

Turbo C Reference Guide

Table A.l: Summary of Editor Commands (continued)

Copy block
Delete block
Hide/ display block
Move block
Read block from disk
Write block to disk
Indent block
Outdent block

Miscellaneous Commands
Abort operation
Autoindent On/Off
Can trol character prefix
Fill mode
Find
Find and replace
Find place marker
ToggIe menus/ active window
Loaa file
Optimal fill mode
Pair matching
Print file
Quit edit, no save
Repeat last find
Restore line
Sa ve and edit
Set place marker
Tab
Tab mode
Unindent mode

Ctrl-K C
Ctrl-K Y
Ctrl-K H
Ctrl-K V
Ctrl-K R
Ctrl-K W

Ctrl-K I
Ctrl-K U

Ctrl-U
Ctrl-O I

Ctrl-P
Ctrl-O F
Ctrl-Q F
Ctrl-Q A

Ctrl-Q 0, Clrl-Q 1, Ctrl-Q 2, etc.
F10
F3

Ctrl-O F
Ctrl-Q [, Ctrl-Q J

Ctrl-K P
Ctrl-K 0 or Ctrl-K Q

Ctrl-L
Clrl-Q L

Ctrl-K S or F2
Ctrl-K 0, Ctrl-K 1, Ctrl-K 2, etc.

Clrl-Ior Tab
Clrl-O T
Clrl-O U

Basic Cursor Movement Commands

The editor uses control-key commands to move the cursor up, down, back,
and forth on the screen. To control cursor movement in the part of your file
currently onscreen, use the following sequences:

Appendix A, The Turbo C Interactive Editor 413

Keystroke

Ctrl-A
Ctrl-S
Ctrl-D
Ctrl-F
Ctrl-E
Ctrl-R or PgUp
Ctrl-X
Ctrl-C or PgDn
Ctrl-W
Ctrl-Z

Action

Moves to first letter in word to left of cursor
Moves to first position to left of cursor
Moves to first position to right of cursor
Moves to first letter in word to right of cursor
Moves up one line
Scrolls screen and cursor up one full screen
Moves down one line
Scrolls screen and cursor down one full screen
Scrolls screen down one line; cursor stays in line
Scrolls screen up one line; cursor stays in line

Quick Cursor Movement Commands

The editor also provides eight commands to move the cursor quickly to the
extreme ends of lines, to the beginning and end of the file, and to the last
cursor position.

Keystroke

Ctrl-Q S or Home

Ctrl-Q 0 or End

Ctrl-Q E

Action

Moves to first column of the current line

Moves to the end of the current line

Moves to the top of the screen
Ctrl-Q X Moves to the bottom of the screen

Ctrl-Q R or Ctrl-PgUp
Ctrl-Q C or Ctrl-pgDn

Moves to the first character in the file
Moves to the last character in the file

The Ctrl-Q prefix with a B, K, or P character allows you to jump to certain
special points in a document.

Ctrl-Q B Moves the cursor to the block-begin marker set with Ctrl-K B.

Ctrl-Q K

Ctrl-Q P

414

The command works even if the block is not displayed (see
uHide/ display block" under uBlock Commands") or if the
block-end marker is not set.

Moves the cursor to the block-end marker set with Ctrl-K K.
The command works even if the block is not displayed (see
uHide/ display block") or the block-begin marker is not set.

Moves to the last position of the cursor before the last
command. This command is particularly useful after a Find
or Find/Replace operation has been executed, and you'd
like to return to the last position before its execution.

Turbo C Reference Guide

Insert and Delete Commands

To write a program, you need to know more than just how to move the
cursor around. You also need to be able to insert and delete text. The
following commands insert and delete characters, words, and lines.

Insert mode Onlff Ctrl-Vor Ins
When entering text, you can choose between two basic entry modes: Insert
mode and Overwrite mode. You can switch between these modes with the
Insert mode toggle, Ctr/-Vor Ins. The current mode is displayed in the status
line at the top of the screen.

Insert mode is the Turbo C editor's default; this lets you insert new
characters into old text. Text to the right of the cursor simply moves to the
right as you enter new text.

Use Overwrite mode to replace old text with new; any characters entered
replace existing characters under the cursor.

Delete character left of cursor/Unindent Ctrl-H or Backspace
Moves one character to the left and deletes the character positioned there.
Any characters to the right of the cursor move one position to the left. You
can use this command to remove line breaks.

If the cursor is on the first nonblank character of a line or on a blank line,
and if Unindent mode is toggled on (Ctrl-O W, this command will move the
cursor and any characters to the right of it out one level of indentation.

Delete character under cursor Ctrl-G or Del
Deletes the character under the cursor and moves any characters to the
right of the cursor one position to the left.

Delete word right of cursor Ctrl-T
Deletes the word to the right of the cursor. A word is defined as a sequence
of characters delimited by one of the following characters:

space < > , ; . () [] 1\ I * + _ / $

This command works across line breaks, and may be used to remove them.

fusertliM CM~

Inserts a line break at the cursor position.

Delete line Ctrl-Y
Deletes the line containing the cursor and moves any lines below one line
up. There's no way to restore a deleted line, so use this command with care.

Delete to end of line Ctrl-Q Y

Appendix A, The Turbo C Interactive Editor 415

Deletes all text from the cursor position to the end of the line.

Block Commands

The block commands also require a control-character command sequence.
A block of text is any amount of text, from a single character to hundreds of
lines, that has been surrounded with special block-marker characters. There
can be only one block in a document at a time.

You mark a block by placing a block-begin marker on the first character and
a block-end marker on the last character of the desired portion of text. Once
marked, you can copy, move, or delete the block, or write it to a file.

Mark block-begin Ctrl-K B
Marks the beginning of a block. The marker itself is not visible, and the
block itself only becomes visible if a block-end marker is set. Marked text (a
block) is displayed in a different intensity, background, or color, depending
on the kind of adapter you have.

Mark block-end Ctrl-K K
Marks the end of a block. The marker itself is invisible, and the block itself
becomes visible only if a block-begin marker is also set.

Mark single word Ctrl-K T
Marks a single word as a block, replacing the
block-begin/block-end sequence. If the cursor is placed within a word, then
the word will be marked. If it is not within a word, then the word to the left
of the cursor will be marked.

Copy block Ctrl-K C
Copies a previously marked block to the current cursor position. The
original block is unchanged, and the markers are placed around the new
copy of the block. If no block is marked or the cursor is within the marked
block, nothing happens.

Delete block Ctrl-K Y
Deletes a previously marked block. There is no provision to restore a
deleted block, so be careful with this command.

Hide/display block Ctrl-K H
Causes the visual marking of a block to be alternately switched off and on.
The block manipulation commands (copy, move, delete, and write to a file)
work only when the block is displayed. Block-related cursor movements
(jump to beginning/end of block) work whether the block is hidden or
displayed.

416 Turbo C Reference Guide

Move block Clr/-K V
Moves a previously marked block from its original position to the cursor
position. The block disappears from its original position, and the markers
remain around the block at its new position. If no block is marked, nothing
happens.

Read block from disk Clr/-K R
Reads a disk file into the current text at the cursor position, exactly as if it
were a block. The text read is then marked as a block.

When you issue this command, Turbo C's editor prompts you for the name
of the file to read. You can use DOS wildcards to select a file to read; a
directory appears in a small window onscreen. The file specified may be
any legal file name. If you specify no file type (.C, .TXT, .BAK, etc.) the
editor assumes you meant .C. To read a file that lacks an extension, append
a period to the file name.

Write block to disk Clr/-K W
Writes a previously marked block to a file. The block is left unchanged in
the current file, and the markers remain in place. If no block is marked,
nothing happens.

When you issue this command, Turbo C's editor prompts you for the name
of the file to write to. To select a file to overwrite, use DOS wildcards; a
directory appears in a small window onscreen. If the file specified already
exists, the editor issues a warning and prompts for verification before
overwriting the existing file. You can give the file any legal name (the
default extension is .C). To write a file that lacks an extension, append a
period to the file name.

Miscellaneous Editing Commands

This section describes commands that do not fall into any of the categories
already covered. These commands are listed in alphabetical order.

Abort operation Ctr/-U
Lets you abort any command in process whenever it pauses for input, such
as when Find/Replace asks Replace YIN?, or when you are entering a search
string.

Autoindent On/Off Ctr/-O /
Provides automatic indenting of successive lines. When Autoindent is
active, the cursor does not return to column one when you press Enler;
instead, it returns to the starting column of the line you just terminated.

Appendix A, The Turbo C Interactive Editor 417

When you want to change the indentation, use the space bar or Tab, and Left
arrow or Backspace to select the new column. When Autoindent is On, the
message Indent shows up in the status line; when Off, the message
disappears. Autoindent is On by default.

Control character prefix Gtr/-P
Allows you to enter control characters into the file by prefixing the desired
control character with a Gtr/-P; that is, first press Gtr/-P, then press the desired
control character. Control characters will appear as low-intensity capital
letters on the screen (or inverse, depending on your screen setup).

Find Gtr/-Q F
Lets you search for a string of up to 30 characters. When you enter this
command, the status line is cleared, and the editor prompts you for a
search string. Enter the string you are looking for and then press Enter.
The search string may contain any characters, including control characters.
You enter control characters into the search string with the Gtr/-P prefix. For
example, enter a Gtr/-Tby holding down the Gtr/key as you press P, and then
press T. You may include a line break in a search string by specifying Gtr/-M J
(hard return/linefeed). Note that Gtr/-A has special meaning: It matches any
character and may be used as a wildcard in search strings.

You may edit search strings with the character left, character right, word
left, and word right commands. Word right recalls the previous search
string, which you may then edit. To abort (quit) the search operation, use
the abort command (Gtf/-iJ).

When you specify the search string, Turbo C's editor asks for search
options. The following options are available:

B Searches backward from the current cursor position toward the
beginning of the text.

L Performs a local search of the marked block.

n Where n equals a number, finds the nth occurrence of the search
string, counted from the current cursor position.

U Ignores uppercase/lowercase distinctions.

W Searches for whole words only, skipping matching patterns
embedded in other words.

418 Turbo C Reference Guide

Examples of Find Options:

W Searches for whole words only. The search string term will match
term, for example, but not terminal.

BU Searches backward and ignores uppercase/lowercase differences.
Block matches both blockhead and BLOCKADE, and so on.

125 Finds the 125th occurrence of the search string.

You can end the list of find options (if any) by pressing Enter; the search
starts. If the text contains a target matching the search string, the editor
positions the cursor on the target. The search operation may be repeated by
the Repeat last find command (Gtrl-D.

Find and replace Gtrl-Q A
This operation works identically to the Find command, except that you can
replace the "found" string with any other string of up to 30 characters.
Note that Gtrl-A only functions as a wildcard in the Find string; it has no
special meaning in the Replace string.

When you specify the search string, the editor asks you to enter the string
that will replace the search string. Enter up to 30 characters; control
character entry and editing is performed as with the Find command. If you
just press Enter, the editor replaces the target with nothing, effectively
deleting it.

Your choice of options are the same as those in the Find command with the
addition of the following:

N Replaces without asking; does not ask for confirmation of each
occurrence of the search string.

n Replaces the next n cases of the search string. If the G option is
used, the search starts at the top of the file; otherwise it starts at
the current cursor position.

Examples of Find and Replace Options:

N10 Finds the next ten occurrences of the search string and replaces
each without asking.

GW Finds and replaces whole words in the entire text, ignoring
uppercase/lowercase. It prompts for a replacement string.

GNU Finds (throughout the file) uppercase and lowercase small,
antelope-like creatures and replaces them without asking.

Again, you can end the option list (if any) by pressing Enter; the Find/
Replace operation starts. When the editor finds the item (and if the N

Appendix A, The Turbo C Interactive Editor 419

option is not specified), it then positions the cursor at one end of the item,
and asks Replace (yiN)? in the prompt line at the top of the screen. You may
abort the Find/Replace operation at this point with the Abort command
(Ctr/-U). You can repeat the Find/Replace operation with the Repeat last find
command (Ctrl-L).

Find p lace marker Ctrl-Q 0, Ctrl-Q 1, Ctrl-Q 2, Ctrl-Q 3
Finds up to four place markers (0-3), one at a time, in text. Move the cursor
to any previously set marker by pressing Ctrl-Q and the marker number, n.

Load file F3
Lets you edit an existing file or create a new file.

Optimal fill On/Off Ctrl-O F
When Tab mode is On, Optimal fill mode will cause the editor to fill the
beginning of each line optimally with tabs and spaces.

Pair matching Ctrl-Q [or Ctrl-Q J
Locates the mate to a paired delimiter marked by the cursor. Ctr/-Q [searches
forward from a left delimiter, Ctrl-Q J searches backward from a right
delimiter. The delimiters recognized by these two commands are

{ } < > () [l /* * / II II "

Print file Ctrl-K P
Expands tabs (replaces tabs with the appropriate number of spaces), then
prints the marked block. If no block is marked, prints the whole file.

Quit edit, no save Ctrl-K 0 or Ctr/-K Q
Quits the editor and returns you to the main menu. You can save the edited
file on disk either explicitly with the main menu's Save option under the
Files command or manually while in the editor (Ctrl-K S or F2).

Repeat last find Ctrl-L
Repeats the latest Find or Find/Replace operation as if all information had
been reentered.

Restore line Ctrl-Q L
Lets you undo changes made to a line, as long as you have not left the line.
The line is restored to its original state regardless of any changes you have
made.

Save file Ctrl-K S or F2
Sa ves the file and remains in the editor.

Set place marker Ctrl-K 0, Ctrl-K 1, Ctrl-K 2, Ctrl-K 3
You can mark up to four places in text; press Ctrl-K, followed by a single
digit n (0-3). After marking your location, you can work elsewhere in the

420 Turbo C Reference Guide

file and then easily return to the marked location by using the Ctrl-Q n
command.

Tab Clrl-Ior Tab
Inserts a tab or spaces, depending on the Tab mode setting. Default setting
for tabs is eight columns apart in the Turbo C editor, but this can be
changed using the Options/Environment/Tab size menu option or
TCINST.

Tab OniOff Clrl-O T
With Tab mode On, a tab is placed in the text using a fixed tab
stop which defaults to 8. (To change tab size, use the Options/
Environment/Tab size menu setting.) If you toggle Tab mode Off, it spaces
to the beginning of the first letter of each word in the previous line.

Unindent OniOff Clrl-O U
When Unindent mode is toggled On, the backspace key will outdent one
level whenever the cursor is on the first nonblank character of a line or on a
blank line.

The Turbo C Editor V s. WordStar

A few of the Turbo C editor's commands are slightly different from
WordStar. Also, although the Turbo C editor contains only a subset of
WordStar's commands, several features not found in WordStar have been
added to enhance program source-code editing. These differences are
discussed here, in alphabetical order.

Autoindent:
The Turbo C editor's Clrl-O I command toggles Autoindent mode On and
Off.

Cursor movement:
Turbo C's cursor movement controls-Clrl-S, Clrl-D, Clrl-E, and Clrl-X-move
freely around on the screen without jumping to column one on empty lines.
This does not mean that the screen is full of blanks; on the contrary, all
trailing blanks are automatically removed. This way of moving the cursor
is especially useful for program editing, for example, when matching
indented statements.

Delete to left:
The WordS tar sequence Clrl-Q Del, delete from cursor position to beginning
of line, is not supported.

Appendix A, The Turbo C Interactive Editor 421

Mark word as block:
Turbo C allows you to mark a single word as a block using Gtrl-K T. This is
more convenient than WordStar's two-step process of separately marking
the beginning and the end of the word.

Movement across line breaks:
Gtrl-S and Gtrl-D do not work across line breaks. To move from one line to
another you must use Gtrl-E, Gtrl-X, GIrl-A, or GIrl-F.

Quit edit:
Turbo C's Gtrl-K 0 does not resemble WordStar's Glrl-K 0 (quit edit)
command. In Turbo C, the changed text is not abandoned-it is left in
memory, ready to be compiled and saved.

Undo:
Turbo C's Gtrl-O L command restores a line to its pre-edit contents as long as
the cursor has not left the line.

Updating disk file:
Since editing in Turbo C is done entirely in memory, the Gtrl-K 0 command
does not change the file on disk as it does in WordStar. You must explicitly
update the disk file with the Save option within the File menu or by using
Glrl-K S or F2 within the editor.

422 Turbo C Reference Guide

A p p E N D x

B

Compiler Error Messages

The Turbo C compiler diagnostic messages fall into three classes: fatals,
errors, and warnings.

Fatal errors are rare and probably indicate an internal compiler error. When
a fatal error occurs, compilation immediately stops. You must take
appropriate action and then restart compilation.

Errors indicate program syntax errors, disk or memory access errors, and
command line errors. The compiler will complete the current phase of the
compilation and then stop. The compiler attempts to find as many real
errors in the source program as possible during each phase (preprocessing,
parsing, optimizing and code-generating).

Warnings do not prevent the compilation from finishing. They indicate
conditions which are suspicious, but which are legitimate as part of the
language. The compiler will also produce warnings if you use machine­
dependent constructs in your source files.

The compiler prints messages with the message class first, then the source
file name and line number where the compiler detected the condition, and
finally the text of the message itself.

In the following lists, messages are presented alphabetically within
message class. With each message, a probable cause and remedy are
provided.

You should be aware of one detail about line numbers in error messages:
the compiler only generates messages as they are detected. Because C does
not force any restrictions on placing statements on a line of text, the true

Appendix 8, Compiler Error Messages 423

cause of the error may be one or more lines before the line number
mentioned. In the following message list, we have indicated those
messages which often appear (to the compiler) to be on lines after the real
cause.

Fatal Errors

Bad call of inline function
You have used an inline function taken from a macro definition, but have
called it incorrectly. An inline function is one that begins and ends with a
double underscore (__).

Irreducible expression tree
This is a sign of some form of compiler error. Some expression on the
indicated line of the source file has caused the code generator to be
unable to generate code. Whatever the offending expression is, it should
be avoided. You should notify Borland International if the compiler ever
encounters this error.

Register allocation failure
This is a sign of some form of compiler error. Some expression on the
indicated line of the source file was so complicated that the code
genera tor could not generate code for it. You should simplify the
offending expression, and if this fails to solve the problem, the
expression should be avoided. Notify Borland International if the
compiler encounters this error.

Errors

#operator not followed by macro argument name
In a macro definition, the # may' be used to indicate stringizing a macro
argument. The # must be followed by a macro argument name.

JXXXXXXXX' not an argument
Your source file declared the named identifier as a function argument
but the identifier was not in the function argument list.

Ambiguous symbol JXXXXXXXX'
The named structure field occurs in more than one structure with
different offsets, types, or both. The variable or expression used to refer
to the field is not a structure containing the field. Cast the structure to
the correct type, or correct the field name if it is wrong.

424 Turbo C Reference Guide

Argument # missing name
A parameter name has been left out in a function prototype used to
define a function. If the function is defined with a prototype, the proto­
type must include the parameter names.

Argument list syntax error
Arguments to a function call must be separated by spaces and closed
with a right parenthesis. Your source file contained an argument
followed by a character other than comma or right parenthesis.

Array bounds missing]
Your source file declared an array in which the array bounds were not
termina ted by a righ t bracket.

Array size too large
The declared array would be too large to fit in the available memory of
the processor.

Assembler statement too long
Inline assembly sta tements may not be longer than 480 bytes.

Bad configuration file
The TURBOC.CFG file contains uncommented text that is not a proper
command option. Configuration file command options must begin with
a dash (-).

Bad file name format in include directive
Include file names must be surrounded by quotes (llfilename.h") or angle
brackets «fi1ename.h». The file name was missing the opening quote or
angle bracket. If a macro was used, the resulting expansion text is
incorrect; that is, not surrounded by quote marks.

Bad ifdef directive syntax
An #ifdef directive must contain a single identifier (and nothing else) as
the body of the directive.

Bad ifndef directive syntax
An #ifndef directive must contain a single identifier (and nothing else) as
the body of the directive.

Bad undef directive syntax
An #undef directive must contain a single identifier (and nothing else) as
the body of the directive.

Bit field size syntax
A bitfield must be defined by a constant expression between 1 and 16
bits in width.

Appendix 8, Compiler Error Messages 425

Call of non-function
The function being called is declared as a non-function. This is
commonly caused by incorrectly declaring the function or misspelling
the function name.

Cannot modify a const object
This indicates an illegal operation on an object declared to be const, such
as an assignment to the object.

Case outside of switch
The compiler encountered a case statement outside a switch statement.
This is often caused by mismatched curly braces.

Case statement missing:
A case statement must have a constant expression followed by a colon.
The expression in the case statement either was missing a colon or had
some extra symbol before the colon.

Cast syntax error
A cast contains some incorrect symbol.

Character constant too long
Character constants may only be one or two characters long.

Compound statement missing}
The compiler reached the end of the source file and found no closing
brace. This is most commonly caused by mismatched braces.

Conflicting type modifiers
This occurs when a declaration is given that includes, for example, both
near and far keywords on the same pointer. Only one addressing
modifier may be given for a single pointer, and only one language
modifier (cdecl, pascal, or interrupt) may be given on a function.

Constant expression required
Arrays must be declared with constant size. This error is commonly
caused by misspelling a #define constant.

Could not find file 'XXXXXXXX.XXX'
The compiler is unable to find the file supplied on the command line.

Declaration missing;
Your source file contained a struct or union field declaration that was
not followed by a semicolon.

Declaration needs type or storage class
A declaration must include at least a type or a storage class. This means
a statement like the following is not legal:

426 Turbo C Reference Guide

i, j;

Declaration syntax error
Your source file contained a declaration that was missing some symbol
or had some extra symbol added to it.

Default outside of switch
The compiler encountered a default statement outside a switch
statement. This is most commonly caused by mismatched curly braces.

Define directive needs an identifier
The first non-whitespace character after a #define must be an identifier.
The compiler found some other character.

Division by zero
Your source file contained a divide or remainder in a constant expression
with a zero divisor.

Do statement must have while
Your source file contained a do statement that was missing the closing
while keyword.

Do-while statement missing (
In a do statement, the compiler found no left parenthesis after the while
keyword.

Do-while statement missing)
In a do statement, the compiler found no right parenthesis after the test
expression.

Do-while statement missing;
In a do statement test expression, the compiler found no semicolon after
the right parenthesis.

Duplicate case
Each case of a switch statement must have a unique constant expression
value.

Enum syntax error
An enum declaration did not contain a properly formed list of
identifiers.

Enumeration constant syntax error
The expression given for an enum value was not a constant.

Error Directive: XXXX
This message is issued when an terror directive is processed in the
source file. The text of the directive is displayed in the message.

Appendix B, Compiler Error Messages 427

Error writing output file
This error most often occurs when the work disk is full. It could also
indicate a faulty disk. If the disk is full, try deleting unneeded files and
restarting the compilation.

Expression syntax
This is a catch-all error message when the compiler parses an expression
and encounters some serious error. This is most commonly caused by
two consecutive operators, mismatched or missing parentheses, or a
missing semicolon on the previous statement.

Extra parameter in call
A call to a function, via a pointer defined with a prototype, had too
many arguments given.

Extra parameter in call to XXXXXXXX
A call to the named function (which was defined with a prototype) had
too many arguments given in the call.

File name too long
The file name given in an #include directive was too long for the
compiler to process. File names in DOS must be no more than 64
characters long.

For statement missing (
In a for statement, the compiler found no left parenthesis after the for
keyword.

For statement missing)
In a for statement, the compiler found no right parenthesis after the
control expressions.

For statement missing;
In a for statement, the compiler found no semicolon after one of the
expressions.

Function call missing)
The function call argument list had some sort of syntax error, such as a
missing or mismatched right parenthesis.

Function definition out of place
A function definition may not be placed inside another function. Any
declaration inside a function that looks like the beginning of a function
with an argument list is considered a function definition.

Function doesn't take a variable number of arguments
Your source file used the va_start macro inside a function that does not
accept a variable number of arguments.

428 Turbo C Reference Guide

Goto statement missing label
The goto keyword must be followed by an identifier.

If statement missing (
In an if statement, the compiler found no left parenthesis after the if
keyword.

If statement missing)
In an if statement, the compiler found no right parenthesis after the test
expression.

Illegal character 'e' (OxXX)
The compiler encountered some invalid character in the input file. The
hexadecimal value of the offending character is printed.

Illegal initialization
Initializations must be either constant expressions, or else the address of
a global extern or static variable plus or minus a constant.

Illegal octal digit
The compiler found an octal constant containing a non-octal digit (8 or
9).

Illegal pointer subtraction
This is caused by attempting to subtract a pointer from a non-pointer.

Illegal structure operation
Structures may only be used with dot (.), address-of (&) or assignment
(=) operators, or be passed to or from a function as parameters. The
compiler encountered a structure being used with some other operator.

Illegal use of floating point
Floating point operands are not allowed in shift, bitwise boolean,
conditional (? :), indirection (*), or certain other operators. The compiler
found a floating-point operand with one of these prohibited operators.

Illegal use of pointer
Pointers can only be used with addition, subtraction, assignment,
comparison, indirection (*) or arrow (~). Your source file used a pointer
with some other operator.

Improper use of a typedef symbol
Your source file used a typedef symbol where a variable should appear
in an expression. Check for the declaration of the symbol and possible
misspellings.

Appendix B, Compiler Error Messages 429

Inline assembly not allowed
Your source file contains inline assembly language statements and you
are compiling it from within the Integrated Environment. You must use
the Tee command to compile this source file.

Incompatible storage class
Your source file used the extern keyword on a function definition. Only
static (or no storage class at all) is allowed.

Incompatible type conversion
Your source file attempted to convert one type to another, but the two
types were not convertible. This includes converting a function to or
from a non-function, converting a structure or array to or from a scalar
type, or converting a floating-point value to or from pointer type.

Incorrect command-line argument: XXXXXXXX
The compiler did not recognize the command-line parameter as legal.

Incorrect configuration file argument: XXXXXXXX
The compiler did not recognize the configuration file parameter as legal;
check for a preceding dash ("_").

Incorrect number format
The compiler encountered a decimal point in a hexadecimal number.

Incorrect use of default
The compiler found no colon after the default keyword.

Initializer syntax error
An initializer has a missing or extra operator, mismatched parentheses,
or is otherwise malformed.

Invalid indirection
The indirection operator (*) requires a non-void pointer as the operand.

Invalid macro argument separator
In a macro definition, arguments must be separated by commas. The
compiler encountered some other character after an argument name.

Invalid pointer addition
Your source file attempted to add two pointers together.

Invalid use of arrow
An identifier must immediately follow an arrow operator (~).

Invalid use of dot
An identifier must immediately follow a period operator (.).

430 Turbo C Reference Guide

Lvalue required
The left hand side of an assignment operator must be an addressable
expression. These include numeric or pointer variables, structure field
references or indirection through a pointer, or a subscripted array
element.

Macro argument syntax error
An argument in a macro definition must be an identifier. The compiler
encountered some non-identifier character where an argument was
expected.

Macro expansion too long
A macro may not expand to more than 4096 characters. This error often
occurs if a macro recursively expands itself. A macro cannot legally
expand to itself.

May compile only one file when an output file name is given
You have supplied an -0 command-line option, which allows only one
output file name. The first file is compiled but the other files are ignored.

Mismatched number of parameters in definition
The parameters in a definition do not match the information supplied in
the function prototype.

Misplaced break
The compiler encountered a break statement outside a switch or looping
construct.

Misplaced continue
The compiler encountered a continue statement outside a looping
construct.

Misplaced decimal point
The compiler encountered a decimal point in a floating point constant as
part of the exponent.

Misplaced else
The compiler encountered an else statement without a matching if
statement. An extra else statement could cause this message, but it could
also be caused by an extra semicolon, missing curly braces, or some
syntax error in a previous if statement.

Misplaced elif directive
The compiler encountered an #elif directive without any matching #if,
#ifdef or #ifndef directive.

Appendix 8, Compiler Error Messages 431

Misplaced else directive
The compiler encountered an #else directive without any matching #if,
#ifdef or #ifndef directive.

Misplaced end if directive
The compiler encountered an #endif directive without any matching #if,
#ifdef or #ifndef directive.

Must be addressable
An ampersand (&) has been applied to an object that is not addressable,
such as a register variable.

Must take address of memory location
Your source file used the address-of operator (&) with an expression
which cannot be used that way; for example, a register variable.

No file name ending
The file name in an #include statement was missing the correct closing
quote or angle bracket.

No file names given
The Turbo C compile command (TCC) contained no file names. You
have to specify a source file name.

Non-portable pointer assignment
Your source file assigned a pointer to a non-pointer, or vice versa.
Assigning a constant zero to a pointer is allowed as a special case. You
should use a cast to suppress this error message if the comparison is
proper.

Non-portable pointer comparison
Your source file made a comparison between a pointer and a non-pointer
other than the constant zero. You should use a cast to suppress this error
message if the comparison is proper.

Non-portable return type conversion
The expression in a return statement was not the same type as the
function declaration. With one exception, this is only triggered if the
function or the return expression is a pointer. The exception to this is that
a function returning a pointer may return a constant zero. The zero will
be converted to an appropriate pointer value.

Not an allowed type
Your source file declared some sort of forbidden type; for example, a
function returning a function or array.

Out of memory

432 Turbo C Reference Guide

The total working storage is exhausted. Compile the file on a machine
with more memory. If you already have 640K, you may have to simplify
the source file.

Pointer required on left side of ~
Nothing but a pointer is allowed on the left side of the arrow (~).

Redec1aration of JXXXXXXXX'
The named identifier was previously declared.

Size of structure or array not known
Some expression (such as a sizeof or storage declaration) occurred with
an undefined structure or an array of empty length. Structures may be
referenced before they are defined as long as their size is not needed.
Arrays may be declared with empty length if the declaration does not
reserve storage or if the declaration is followed by an initializer giving
the length.

Statement missing;
The compiler encountered an expression statement without a semicolon
following it.

Structure or union syntax error
The compiler encountered the struct or union keyword without an
identifier or opening curly brace following it.

Structure size too large
Your source file declared a structure which reserved too much storage to
fit in the memory available.

Subscripting missing]
The compiler encountered a subscripting expression which was missing
its closing bracket. This could be caused by a missing or extra operator,
or mismatched parentheses.

Switch statement missing (
In a switch statement, the compiler found no left parenthesis after the
switch keyword.

Switch statement missing)
In a switch statement, the compiler found no right parenthesis after the
test expression.

Too few parameters in call
A call to a function with a prototype (via a function pointer) had too few
arguments. Prototypes require that all parameters be given.

Too few parameters in call to JXXXXXXXX'

Appendix B. Compiler Error Messages 433

A call to the named function (declared using a prototype) had too few
arguments.

Too many cases
A switch statement is limited to 257 cases.

Too many decimal points
The compiler encountered a floating point constant with more than one
decimal point.

Too many default cases
The compiler encountered more than one default statement in a single
switch.

Too many exponents
The compiler encountered more than one exponent in a floating point
constant.

Too many initializers
The compiler encountered more initializers than were allowed by the
declaration being initialized.

Too many storage classes in declaration
A declaration may never have more than one storage class.

Too many types in declaration
A declaration may never have more than one of the basic types: char, int,
float, double, struct, union, enum or typedef-name.

Too much auto memory in function
The current function declared more automatic storage than there is room
for in the available memory.

Too much code defined in file
The combined size of the functions in the current source file exceeds 64K
bytes. You may have to remove unneeded code, or split up the source
file.

Too much global data defined in file
The sum of the global data declarations exceeds 64K bytes. Check the
declarations for any array that may be too large. Also consider reorgan­
izing the program if all the declarations are needed.

Two consecutive dots
Because an ellipsis contains three dots (. ..), and a decimal point or
member selection operator uses one dot (.), there is no way two dots can
legally occur in a C program.

434 Turbo C Reference Guide

Type mismatch in parameter #
The function called, via a function pointer, was declared with a
prototype; the given parameter #N (counting left-to-right from 1) could
not be converted to the declared parameter type.

Type mismatch in parameter # in call to 'XXXXXXXX'
Your source file declared the named function with a prototype, and the
given parameter #N (counting left-to-right from 1) could not be
converted to the declared parameter type.

Type mismatch in parameter 'XXXXXXXX'
Your source file declared the function called via a function pointer with a
prototype, and the named parameter could not be converted to the
declared parameter type.

Type mismatch in parameter 'XXXXXXXX' in call to 'YYYYYYYY'
Your source file declared the named function with a prototype, and the
named parameter could not be converted to the declared parameter
type.

Type mismatch in redeclaration of 'XXX'
Your source file redeclared a variable with a different type than was
originally declared for the variable. This can occur if a function is called
and subsequently declared to return something other than an integer. If
this has happened, you must declare the function before the first call to
it.

Unable to create output file 'XXXXXXXXX.XXX'
This error occurs if the work disk is full or write protected. If the disk is
full, try deleting unneeded files and restarting the compilation. If the
disk is write protected, move the source files to a writable disk and
restart the compilation.

Unable to create turboc.lnk
The compiler cannot create the temporary file TURBOC.$LN because it
cannot access the disk or the disk is full.

Unable to execute command 'XXXXXXXX'
TLINK or TASM cannot be found, or possibly the disk is bad.

Unable to open include file 'XXXXXXXXX.XXX'
The compiler could not find the named file. This could also be caused if
an #include file included itself, or if you do not have FILES set in
CONFIG.SYS on your root directory (try FILES=20). Check whether the
named file exists.

Unable to open input file 'XXXXXXXXx.XXX'

Appendix 8, Compiler Error Messages 435

This error occurs if the source file cannot be found. Check the spelling of
the name and whether the file is on the proper disk or directory.

Undefined label'XXXXXXXX'
The named label has a goto in the function, but no label definition.

Undefined structure 'XXXXXXXX'
Your source file used the named structure on some line before where the
error is indicated (probably on a pointer to a structure) but had no
definition for the structure. This is probably caused by a misspelled
structure name or a missing declaration.

Undefined symbol'XXXXXXXX'
The named identifier has no declaration. This could be caused by a
misspelling either at this point or at the declaration. This could also be
caused if there was an error in the declaration of the identifier.

Unexpected end of file in comment started on line #
The source file ended in the middle of a comment. This is normally
caused by a missing close of comment (* I).

Unexpected end of file in conditional started on line #
The source file ended before the compiler encountered #endif. The #endif
either was missing or misspelled.

Unknown preprocessor directive: 'XXX'
The compiler encountered a # character at the beginning of a line, and
the directive name following was not one of these: define, undef, line, if,
ifdef, ifndef, include, else or endif.

Unterminated character constant
The compiler encountered an unmatched apostrophe.

Unterminated string
The compiler encountered an unmatched quote character.

Unterminated string or character constant
The compiler found no terminating quote after the beginning of a string
or character constant.

User break
You typed a etr/-Break while compiling or linking in the Integrated
Environment. (This is not an error, just a confirmation.)

While statement missing (
In a while statement, the compiler found no left parenthesis after the
while keyword.

436 Turbo C Reference Guide

While statement missing)
In a while statement, the compiler found no right parenthesis after the
test expression.

Wrong number of arguments in call of 'XXXXXXXX'
Your source file called the named macro with an incorrect number of
arguments.

Warnings

'XXXXXXXX' declared but never used
Your source file declared the named variable as part of the block just
ending, but the variable was never used. The warning is indicated when
the compiler encounters the closing curly brace of the compound
statement or function. The declaration of the variable occurs at the
beginning of the compound statement or function.

'XXXXXXXX' is assigned a value which is never used
The variable appears in an assignment, but is never used anywhere else
in the function just ending. The warning is indicated only when the
compiler encounters the closing curly brace.

'XXXXXXXX' not part of structure
The named field was not part of the structure on the left hand side of the
dot (.) or arrow (~), or else the left hand side was not a structure (for a
dot) or pointer to structure (for an arrow).

Ambiguous operators need parentheses
This warning is displayed whenever two shift, relational or bitwise­
boolean operators are used together without parentheses. Also, an
addition or subtraction operator that appears unparenthesized with a
shift operator will produce this warning. Programmers frequently
confuse the precedence of these operators, since the precedence assigned
to them is somewhat counter-intuitive.

Both return and return of a value used
This warning is issued when the compiler encounters a return statement
that disagrees with some previous return statement in the function. It is
almost certainly an error for a function to return a value in only some of
the return statements.

Call to function with no prototype
This message is given if the "Prototypes required" warning is enabled
and you call a function without first giving a prototype for that function.

Appendix B, Compiler Error Messages 437

Call to function IXXXX' with no prototype
This message is given if the "Prototypes required" warning is enabled
and you call function XXXX without first giving a prototype for that
function.

Code has no effect
This warning is issued when the compiler encounters a statement with
some operators which have no effect. For example the statement

a + b;

has no effect on either variable. The operation is unnecessary and
probably indicates a bug.

Constant is long
The compiler encountered either a decimal constant greater than 32767
or an octal (or hexadecimal) constant greater than 65535 without a letter 1
or L following it. The constant is treated as a long.

Constant out of range in comparison
Your source file includes a comparison involving a constant sub­
expression that was outside the range allowed by the other sub­
expression's type. For example, comparing an unsigned quantity to -1
makes no sense. To get an unsigned constant greater than 32767 (in
decimal), you should either cast the constant to unsigned (for example,
(unsigned)65535) or append a letter u or U to the constant (for example,
65535u).

Conversion may lose significant digits
For an assignment operator or some other circumstance, your source file
requires a conversion from long or unsigned long to int or unsigned int
type. On some machines, since int type and long type variables have the
same size, this kind of conversion may alter the behavior of a program
being ported.

Whenever this message is issued, the compiler will still generate code to
do the comparison. If this code ends up always giving the same result,
such as comparing a char expression to 4000, the code will still perform
the test. This also means that comparing an unsigned expression to -1
will do something useful, since an unsigned can have the same bit
pa ttem as a -1 on the 8086.

Function should return a value
Your source file declared the current function to return some type other
than int or void, but the compiler encountered a return with no value.
This is usually some sort of error. int functions are exempt, since in old

438 Turbo C Reference Guide

versions of C there was no void type to indicate functions which return
nothing.

Hexadecimal or octal constant too large
In a string literal or character constant, you used a hexadecimal or octal
escape sequence with a value exceeding 255, for example, \ 777 or \x1234.

Mixing pointers to signed and unsigned char
You converted a char pointer to an unsigned char pointer, or vice versa,
without using an explicit cast. (Strictly speaking, this is incorrect, but on
the 8086, it is often harmless.)

No declaration for function JXXXXXXXX'
This message is given if the "Declaration required" warning is enabled
and you call a function without first declaring that function. The
declaration can be either classic or modern (prototype) style.

Non-portable pointer assignment
Your source file assigned a pointer to a non-pointer, or vice versa.
Assigning a constant zero to a pointer is allowed as a special case. You
should use a cast to suppress this warning if the comparison is proper.

Non-portable pointer comparison
Your source file compared a pointer to a non-pointer other than the
constant zero. You should use a cast to suppress this warning if the
comparison is proper.

Non-portable return type conversion
The expression in a return statement was not the same type as the
function declaration. With one exception, this is only triggered if the
function or the return expression is a pointer. The exception to this is that
a function returning a pOinter may return a constant zero. The zero will
be converted to an appropriate pointer value.

Parameter JXXXXXXXX' is never used
The named parameter, declared in the function, was never used in the
body of the function. This mayor may not be an error and is often
caused by misspelling the parameter. This warning can also occur if the
identifier is redeclared as an automatic (local) variable in the body of the
function. The parameter is masked by the automatic variable and
remains unused.

Appendix 8, Compiler Error Messages 439

Possible use of IXXXXXXXX' before definition
Your source file used the named variable in an expression before it was
assigned a value. The compiler uses a simple scan of the program to
determine this condition. If the use of a variable occurs physically before
any assignment, this warning will be generated. Of course, the actual
flow of the program may assign the value before the program uses it.

Possibly incorrect assignment
This warning is generated when the compiler encounters an assignment
operator as the main operator of a conditional expression (Le. part of an
if, while or do-while statement). More often than not, this is a
typographical error for the equality operator. If you wish to suppress this
warning, enclose the assignment in parentheses and compare the whole
thing to zero explicitly. Thus,

if (a = b) ..•

should be rewritten as

if ((a = b) ! = 0) •••

Redefinition of IXXXXXXXX' is not identical
Your source file redefined the named macro using text that was not
exactly the same as the first definition of the macro. The new text
replaces the old.

Restarting compile using assembly
The compiler encountered an asm with no accompanying -B command
line option or #pragma inline statement. The compile restarts using
assembly language capabilities.

Structure passed by value
If "Structure passed by value" warning is enabled, this warning is
generated anytime a structure is passed by value as an argument. It is a
frequent programming mistake to leave an address-of operator (&) off a
structure when passing it as an argument. Because structures can be
passed by value, this omission is acceptable. This warning provides a
way for the compiler to warn you of this mistake.

Superfluous & with function or array
An address-of operator (&) is not needed with an array name or function
name; any such operators are discarded.

Suspicious pointer conversion
The compiler encountered some conversion of a pointer which caused
the pointer to point to a different type. You should use a cast to suppress
this warning if the conversion is proper.

440 Turbo C Reference Guide

Undefined structure 'XXXXXXXX'
The named structure was used in the source file, probably on a pointer
to a structure, but had no definition in the source file. This is probably
caused by a misspelled structure name or a missing declaration.

Unknown assembler instruction
The compiler encountered an inline assembly statement with a
disallowed opcode. Check the spelling of the opcode. Also check the list
of allowed opcodes to see if the instruction is acceptable.

Unreachable Code
A break, continue, goto or return statement was not followed by a label
or the end of a loop or function. The compiler checks while, do and for
loops with a constant test condition, and attempts to recognize loops
which cannot fall through.

Void functions may not return a value
Your source file declared the current function as returning void, but the
compiler encountered a return statement with a value. The value of the
return statement will be ignored.

Zero length structure
Your source file declared a structure whose total size was zero. Any use
of this structure would be an error.

Appendix B, Compiler Error Messages 441

442 Turbo C Reference Guide

A p p E N D x

c

Tce Command-Line Options

This appendix lists each of the Turbo C compile-time, command-line
options in alphabetical order under option type, and describes what each
option does. The options are broken down into three general types:

III compiler options
II linker options
• environment options

Within the compiler options, there are several categories of options; these
specify

II memory model
II #defines (macro definitions)
1.1 code generation options
.. optimization options
• source code options
• error-reporting options
II segment-naming control

To see an on-screen listing of all the TCC (command-line Turbo C) options,
type tee Enter at the DOS prompt (when you're in the TURBOC directory).
Most of the command-line options have counterparts in the Turbo C
Integrated Development Environment (TC) Options menus (and a few
other menus). See Table Col for a correlation of the TC menu selections and
the TCC command-line options.

Appendix C, TCC Command-Line Options 443

Table C.l: Correlation of Command-Line Options and Menu Selections

Command-Line Switch Menu Selection

-A
-a
-a- **
-B
-C
-c
-Dname
-Dname=string
-d
-d- **
-Efilename
-efilename
-f **
-f-
-f87
-G
-g#
-fpathname
-i#

=~
-K- **
-k **
-Lpathname
-Ix
-M
-mc
-mh
-ml
-mm
-ms **
-mt
-N
-npathname
-0
-ofilename
-p
-p- **
-r
-S
-Uname
-u **
-v
-w
-w-
-wxxx

-w-xxx

=~
-zAname

444

O/C/Source/ ANSI keywords only ... On
O/C/Code generation/ Alignment ... Word
O/C/Code generation/ Alignment ... Byte
(Not available)
O/C/Source/Nested comments ... On
Compile/Compile to OBJ
O/C/Defines
O/C/Defines
O/C/Code generation/Merge duplicate strings ... On
O/C/Code generation/Merge duplicate strings ... Off
(Not available)
(Not available)
O/C/Code generation/Floating point ... Emulation
O/C/Code generation/Floating point ... None
O/C/Code generation/Floating point ... 8087
O/C/Optimlzation/Optimize for ... Speed
O/C/Errors/Warnings: stop after ... #
O/D/Include directories
O/C/S/Identifier length ... #
O/C/Errors/Errors: stop after ... #
O/C/Code generation/Default char type ... Unsigned
O/C/Code generation/Default char type ... Signed
O/C/Code generation/Standard stack-frame ... On
O/D/Library directory
(Not available)
OIL/Map file
O/C/Model. .. Compact
O/C/Model...Huge
O/C/Model. .. Large
0/ C/Model. .. Meaium
O/C/Model. .. Small
O/C/Model... Tiny
O/C/Code generation/Test stack overflow ... On
O/D/Output directory
O/C/OptImization/Jump optimization ... On
(Not available)
O/C/Code generation/Calling convention ... Pascal
O/C/Code generation/Calling convention ... C
O/C/Optimization/Use register variables ... On
(Not available)
(Not available)
O/C/Code generation/Generate underbars ... On
DebugfSource debugging ... On
O/C/Errors/Display warnings ... On
O/C/Errors/Display' warnings ... Off
O/C/Errors/Portabllity warnings, ANSI violations,
Common errors, or Less common errors ... On
O/C/Errors/Portability warnings, ANSI violations,
Common errors, or Less common errors ... Off
O/C/Code generation/Line numbers ... On
a /C/ Optimization/Register optimization ... On
a /C/~ames/Code/Class

Turbo C Reference Guide

Table C.l: Correlation of Command-Line Options and Menu Selections (continued)

-zBname
-zCname
-zDname
-zGname
-zPname
-zRname
-zSname
-zTname
-1
-1- **

0/ = Options

O/C/Names/BSS/Class
O/C/Names/Code/Segment
O/C/Names/BSS/Segment
O/C/Names/BSS/Group
0/ C/Names/Code/ Group
O/C/Names/Data/Segment
O/C/Names/Data/Group
O/C/Names/Data/Class
O/C/Code generation ... 80186/80286
O/C/Code generation ... 8088/8086

C/ = Compiler E/ = Environment ** = Default

Turning Options On and Off

You select command-line options by entering a dash (-) immediately
followed by the option letter (like this, - r). To tum an option Off, add a
second dash after the option letter. For example, -A turns the ANSI
keywords option On and -A- turns the option Off.

This feature is useful for disabling or enabling individual switches on the
command line, thereby overriding the corresponding settings in the
configura tion file.

Syntax

You select Turbo C compiler options on the DOS command line, with the
following syntax:

tee [option option •.. J filename filename ...

Turbo C compiles files according to the following set of rules:

filename. asm Invoke TASM to assemble to .OBI
filename.obj Include as object at link time
filename . lib Include as library at link time
filename Compile filename.c
filename. c Compile filename.c
filename.xyz Compile filename.xyz

For example, given the following command line

tee -a -f -c -0 -z -emyexe oldfilel.e oldfile2 nextfile.e

Appendix C, TCC Command-Line Options 445

TCC will compile OLDFILE1.C, OLDFILE2.C, and NEXTFILE.C to .OBI,
producing an executable program file named MYEXE.EXE with the word
alignment (-a), floating-point emulation (-0, nested comments (-c), jump
optimization (-0), and register optimization (-z) options selected.

TCC will invoke TASM if you give it an .ASM file on the command line or if
a .C file contains inline assembly. The switches TCC gives to TASM are

/rnx /D_mdl

where mdl is one of: tiny, small, medium, compact, large, or huge. The /rnx
switch tells TASM to assemble with case-sensitivity on.

Compiler Options

Turbo C's command-line compiler options can be broken down into eight
logical groups. These groups, and the ties that bind them, are as follows:

• Memory model options allow you to specify under which memory model
Turbo C will compile your program. (The models are tiny, small,
medium, compact, large, and huge.)

• #defines (macro definitions) allow you to define macros (also known as
manifest or symbolic constants) on the command line. The default
definition is the single space character. A numeric value, or a string may
also be specified; these options also allow you to undefine previously
defined macros.

• Code generation options govern characteristics of the generated code to
be used at run time, such as the floating-point mode, calling convention,
char type, or CPU instructions.

• Optimization options allow you to specify how the object code is to be
optimized; for size or speed, with or without the use of register variables,
and with or without redundant load operations.

• Source code options cause the compiler to recognize (or ignore) certain
features of the source code; implementation-specific (non-ANSI) key­
words, nested comments, and identifier lengths.

• Error-reporting options allow you to tailor which warning messages the
compiler will report, and the maximum number of warnings (and errors)
that can occur before the compilation stops.

• Segment-naming control options allows you to rename segments and to
reassign their groups and classes.

• Compilation control options allow you to direct the compiler to

446 Turbo C Reference Guide

o compile to assembly code (rather than to an object module)
• compile a source file that contains inline assembly
o compile without linking

Memory Model

-me Compile using compact memory model.

-mh Compile using huge memory model.

-ml Compile using large memory model.

-mm Compile using medium memory model.

-ms Compile using small memory model (the default).

-mt Compile using tiny memory model. Generates almost the same
code as the small memory model, but uses COT.OBJ in any link
performed to produce a tiny model program.

For details about the Turbo C memory models, refer to Chapter 12 in the
Turbo C User's Guide.

#defines

-Dxxx Defines the named identifier xxx to the string consisting of
the single space character.

-Dxxx=string Defines the named identifier xxx to the string string after
the equal sign. string cannot contain any spaces or tabs.

-Uxxx Undefines any previous definitions of the named identifier
xxx.

Turbo C allows you to make multiple #define entries on the command line
in any of the following ways:

EI You can include multiple entries after a single -0 option, separating
entries with a semicolon (this is known as "ganging" options):

tee -Dxxx;yyy=l;zzz=NO rnyfile.e

II You can place more than one -0 option on the command line:
tee -Dxxx -Dyyy=l -Dzzz=NO rnyfile.e

II You can mix ganged and multiple -0 listings:
tee -Dxxx -Dyyy=l;zzz=NO rnyfile.e

Appendix C, TCC Command-Line Options 447

Code Generation Options

-1 Causes Turbo C to generate extended 80186 instructions. This option
is also used to generate 80286 programs running in the real mode,
such as with the IBM PCI AT under DOS.

-a Forces integer size items to be aligned on a machine-word boundary.
Extra bytes will be inserted in a structure to ensure member
alignment. Automatic and global variables will be aligned properly.
char and unsigned char variables and fields may be placed at any
address; all others must be placed at an even numbered address. (Off
by default, allowing bytewise alignment.)

-d Merges literal strings when one string matches another; this produces
smaller programs. (Off by default.)

-f87 Generates floating-point operations using inline 8087 instructions
rather than using calls to 8087 emulation library routines. Specifies
that a floating-point processor will be available at run time, so
programs compiled with this option will not run on a machine that
does not have a floating-point chip. (As currently implemented, this
switch affects only which libraries are linked.)

-f Emulates 8087 calls at run time if the run-time system does not have
an 8087; if it does have one, calls the 8087 for floating-point
calculations (the default).

-f- Specifies that the program contains no floating-point calculations, so
no floating-point libraries will be linked at the link step.

-K Causes the compiler to treat all char declarations as if they were
unsigned char type. This allows for compatibility with other
compilers that treat char declarations as unsigned. By default, char
declarations are signed.

-k Generates a standard stack frame, which is useful when using a
debugger to trace back through the stack of called subroutines. The
default is On.

-N Generates stack overflow logic at the entry of each function: This will
cause a stack overflow message to appear when a stack overflow is
detected. This is costly in both program size and speed but is
provided as an option because stack overflows can be very difficult to
detect. If an overflow is detected, the message "Stack overflow!" is
printed and the program exits with an exit code of 1.

448 Turbo C Reference Guide

-p Forces the compiler to generate all subroutine calls and all functions
using the Pascal parameter-passing sequence. The resulting function
calls are smaller and faster. Functions must pass the correct number
and type of arguments, unlike normal C usage which permits a
variable number of function arguments. You can use the cdecl
statement to override this option and specifically declare functions to
be C-type.

-u With -u selected, when you declare an identifier, Turbo C
automatically sticks an underscore (_) on the front before saving that
identifier in the object module.

Turbo C treats Pascal-type identifiers (those modified by the pascal
keyword) differently-they are uppercase and are not prefixed with
an underscore.

Underscores for C identifiers are optional, but On by default. You can
turn them Off with -u-. However, if you are using the standard Turbo
C libraries, you will then encounter problems unless you rebuild the
libraries. (To do this, you will need the Turbo C run-time library
source code; refer to Chapter1 of this manual and contact Borland
International for more information.)

See Chapter 12, uAdvanced Programming in Turbo C" in the Turbo C
User's Guide for details about underscores.

Note: Unless you are an expert, don't use -u-.

-y Includes line numbers in the object file for use by a symbolic
debugger. This increases the size of the object file but will not affect
size or speed of the executable program.

This option is only useful in concert with a symbolic debugger that
can use the information.

-v Tells the compiler to include debug information in the .OB} file so that
the file(s} being compiled can be debugged with either the TC
integrated debugger or the standalone debugger. The compiler also
passes this switch on to the linker so it can include the debug
information in the .EXE file.

Optimization Options

-G Causes the compiler to bias its optimization in favor of speed over
size.

Appendix C, TCC Command-Line Options 449

-0 Optimizes by eliminating redundant jumps, and reorganizing loops
and switch statements.

-r- Suppresses the use of register variables.

When you are using the -r- option or the Ole/Optimization/Use
register variables Off, the compiler will not use register variables, and
it also will not preserve and respect register variables (SI,DI) from any
caller. For that reason, you should not have code that uses register
variables call code which has been compiled with -r-.

On the other hand, if you are interfacing with existing assembly­
language code that does not preserve SI,DI, the -r- option will allow
you to call that code from Turbo C.

Note: Unless you are an expert, don't use -r-.

-r Enables the use of register variables (the default).

-z Suppresses redundant load operations by remembering the contents

450

of registers and reusing them as often as possible.

Note: You should exercise caution when using this option, because the
compiler cannot detect if a register has been invalidated indirectly by
a pointer.

For example, if a variable A is loaded into register DX, it is retained. If
A is later assigned a value, the value of DX is reset to indicate that its
contents are no longer current. Unfortunately, if the value of A is
modified indirectly (by assigning through a pointer that points to A),
Turbo C will not catch this and will continue to remember that DX
contains the (now obsolete) value of A.

The -z optimization is designed to suppress register loads when the
value being loaded is already in a register. This can eliminate whole
instructions and also convert instructions from referring to memory
locations to using registers instead.

The following artificial sequence illustrates both the benefits and the
drawbacks of this optimization, and demonstrates why you need to
exercise caution when using -z.

Turbo C Reference Guide

func()
{

CCode Optimized Assembler

int A, *P, B;

A = 4; MOV A,4

B = A; MOV AX,A
MOV B,AX

P = &A; LEA BX,A
MOV P,BX

*p = B + 5; MOV DX,AX
ADD DX,5
MOV [BX],DX

printf("%d\n", Al; PUSH AX

Note first that on the statement *P = B + 5, the code generated uses a
move from AX to DX first. Without the -z optimization, the move
would be from B, generating a longer and slower instruction.

Second, the assignment into *P recognizes that P is already in BX, so a
move from P to BX after the add instruction has been eliminated.
These improvements are harmless and generally useful.

The call to printf, however, is not correct. Turbo C sees that AX
contains the value of A, and so pushes the contents of the register
rather than the contents of the memory location. The printf will then
display a value of 4 rather than the correct value of 9. The indirect
assignmen t through P has hidden the change to A.

If the statement *p = B + 5 had been written as A = B + 5, Turbo C
would recognize a change in value.

The contents of registers are forgotten whenever a function call is
made or when a point is reached where a jump could go (such as a
label, a case statement, or the beginning or end of a loop). Because of
this limit and the small number of registers in the 8086 family of
processors, most programs using this optimization will never behave
incorrectly.

Appendix C, TCC Command-Line Options 451

Source Code Options

-A Compiles ANSI-compatible code: Any of the Turbo C extension
keywords are ignored and may be used as normal identifiers. These
keywords include:

near far huge cdecl

asm pascal

_ds

interrupt

and the register pseudo-variables, such as _AX, _BX, _51, etc.

-C Allows nesting of comments. Comments may not normally be nested.

-i# Causes the compiler to recognize only the first # characters of identi-
fiers. All identifiers, whether variables, preprocessor macro names, or
structure member names, are treated as distinct only if their first #
characters are distinct.

By default, Turbo C uses 32 characters per identifier. Other systems,
including UNIX, ignore characters beyond the first 8. If you are
porting to these other environments, you may wish to compile your
code with a smaller number of significant characters. Compiling in
this manner will help you see if there are any name conflicts in long
identifiers when they are truncated to a shorter significant length.

Error-Reporting Options

-g#

-j#

-wxxx

452

Stops compiling after # messages (warning and error messages
combined).

Stops compiling after # error messages.

Enables the warning message indicated by xxx. The option
-w-xxx suppresses the warning message indicated by xxx. See
Appendix B of this manual for a detailed explanation of these
warning messages. The possible values for -wxxx are as follows:

Turbo C Reference Guide

ANSI Violations

-wbig*
-wdup*
-wret*
-wstr*
-wstu*
-wsus*
-wvoi*
-wzst*

Common Errors

Hexadecimal or octal constant too large.
Redefinition of 'xxxxxxxx' is not identical.
Both return and return of a value used.
'xxxxxxxx' not part of structure.
Undefined structure 'XXXXXXXX'.
Suspicious pointer conversion.
Void functions may not return a value.
Zero length structure.

-waus*
-wdef*
-weff*

'XXX.XXXX)(' is assigned a value tha t is never used.
Possible use of 'xxxxxxxx' before definition.
Code has no effect.

-wpar*
-wpia*
-wrch*
-wrvl

Less Common Errors

Parameter 'xxxxxxxx' is never used.
Possibly incorrect assignment.
Unreachable code.
Function should return a value.

-wamb Ambiguous opera tors need parentheses.
-wamp Superfluous & with function or array.
-wnod No declaration for function 'XXX.XXXX)('.

-wpro Call to function with no prototype.
-wstv Structure passed by value.
-wuse 'xxxxxxxx' declared but never used.

Portability Warnings

-wapt* Non-portable pointer assignment.
-wcln Constant is long.
-wcpt* Non-portable pointer comparison.
-wrng* Constant out of range in comparison.
-wrpt* Non-portable return type conversion.
-wsig Conversion may lose significant digits.
-wucp Mixing pointers to signed and unsigned char.

* On by default. All others are off by default.

Appendix C, TCC Command-Line Options 453

Segment-Naming Control

-zAname Changes the name of the code segment class to name. By
default, the code segment is assigned to class CODE.

-zBname Changes the name of the uninitialized data segment class to
name. By default, the uninitialized data segments are assigned
to class BSS.

-zCname Changes the name of the code segment to name. By default,
the code segment is named _TEXT, except for the medium,
large and huge models, where the name is filename_TEXT.
(filename here is the source file name.)

-zDname Changes the name of the uninitialized data segment to name.
By default, the uninitialized data segment is named _BSS,
except in the huge model, where no uninitialized data seg­
ment is generated.

-zGname Changes the name of the un initialized data segment group to
name. By default, the data group is named DGROUP, except
in the huge model, where there is no data group.

-zPname Causes any output files to be generated with a code group for
the code segment named name.

-zRname Sets the name of the initialized data segment]] to name. By
default, the initialized data segment is named _DATA except
in the huge model, where the segment is named
filename_DATA.

-zSname Changes the name of the initialized data segment group to
name. By default, the data group is named DGROUP, except
in the huge model, where there is no data group.

-zTname Sets the name of the initialized data segment class to name. By
default the initialized data segment class is named DATA.

-zX* Uses the default name for X: for example, -zA* assigns the
default class name CODE to the code segment.

Note: Do not use these switches unless you have a good understanding of
segmentation on the 8086 processor. Under normal circumstances, you will
not need to specify segment names.

454 Turbo C Reference Guide

Compilation Control Options

-B Compiles and calls the assembler to process inline assembly
code.

Note that this option is not available in the Integrated Environment
(TC.EXE).

-c Compiles and assembles the named .C and .ASM files, but
does not execute a link command.

-ofilename Compiles the named file to the specified filename.OBI.

-5 Compiles the named source files and produces assembly
language output files (.ASM), but does not assemble.

Note that this option is not available in the Integrated Environment
(TC.EXE).

-Efilename Uses filename as the name of the assembler to use. By default,
TASM is used.

Linker Options

-efilename Derives the executable program's name from filename by
adding the file extension .EXE (the program name will then be
FILENAME.EXE). filename must immediately follow the -e,
with no intervening whitespace. Without this option, the
linker derives the .EXE file's name from the name of the first
source or object file in the file name list.

-M Forces the linker to produce a full link map. The default is to
produce no link map.

-Ix Passes option x to the linker. The switch -l-x suppresses
option x. More than one option can appear after the -1. See
the section on TLINK in Appendix D for a list of options.

Environment Options

-Idirectory Searches directory, the drive specifier or path name of a sub­
directory, for include files (in addition to searching the
standard places). A drive specifier is a single letter, either
uppercase or lowercase, followed by a colon (:). A directory is

Appendix C, TCC Command-Line Options 455

any valid path name of a directory file. Multiple -I directory
options can be given.

-Ldirectory Forces the linker to get the COx.OBI start-up object file and the
Turbo C library files (Cx.LIB, MATHx.LIB, EMU.LIB, and
FP87.LIB) from the named directory. By default, the linker
looks for them in the current directory.

-llXXX Places any .OBI or .ASM files created by the compiler in the
directory or drive named by the path xxx.

Turbo C is able to search multiple directories for include and library files.
This means that the syntax for the library directories (-1) and include
directories (-1) command-line options, like that of the #define option (-0),
allows multiple listings of a given option.

Here is the syntax for these options:

Library directories: - 1dirname [i di rname i ...]

Include directories: -1dirname[idirname; ...]

The parameter dirname used with -1 and - I can be any directory path name.

You can enter these multiple directories on the command line in the
following ways:

• You can "gang" multiple entries with a single -1 or - I option, separating
ganged entries with a semicolon, like this:

tee -1dirnamel;dirname2;dirname3 -1inel;ine2;ine3 myfile.e

• You can place more than one of each option on the command line, like
this:

tee -1dirnamel -1dirname2 -1dirname3 -linel -line2 -line3 myfile.e

• You can mix ganged and multiple listings, like this:
tee -1dirnamel;dirname2 -1dirname3 -linel;ine2 -line3 myfile.e

If you list multiple -1 or -I options on the command line, the result is
cumulative: The compiler will search all the directories listed, or define the
specified constants, in order from left to right.

Note: The integrated environment (TC.EXE) also supports multiple library
directories (under the Options/Directories/Include directories and the
Options/Directories/Library directories menu items), using the "ganged
entry" syntax.

456 Turbo C Reference Guide

Implicit vs. User-specified Library Files

Turbo C recognizes two types of library files: implicit and user-specified (also
known as explicit library files).

• Implicit library files are the ones Turbo C automatically links in. These
are the Cx.LIB files, EMU.LIB or FP87.LIB, MATHx.LIB, and the start-up
object files (COx.OBJ).

• User-specified library files are the ones you explicitly list on the
command line or in a project file; these are file names with an .LIB
extension.

The Include and Library File-Search
Algorithms

The Turbo C include file search algorithms search for the # include files
listed in your source code in the following way:

• If you put an #include <somefile.h> statement in your source code, Turbo
C will search for SOMEFILE.H only in the specified include directories.

• If, on the other hand, you put an #include "somefile.h" statement in your
code, Turbo C will search for SOMEFILE.H first in the current directory;
if it does not find the header file there, it will then search in the include
directories specified in the command line.

The library file search algorithms are similar to those for include files:

• Implicit libraries: Turbo C searches for implicit libraries only in the
specified library directories; this is similar to the search algorithm for
#include <somefile.h>.

• Explicit libraries: Where Turbo C searches for explicit (user-specified)
libraries depends in part on how you list the library file name .

• If you list an explicit library file name with no drive or directory (like
this: mylib.lib), Turbo C will search for that library in the current
directory first. Then (if the first search was unsuccessful), it will look in
the specified library directories; this is similar to the search algorithm
for #include "somefile.h" .

• If you list a user-specified library with drive and/or directory
information (like this: c:mystuff\mylib1.lib), Turbo C will search only
in the location you explicitly listed as part 'of the library path name,
and not in the specified library directories.

Appendix C, TCC Command-Line Options 457

The library-search algorithms in Turbo C version 2.0 are upwardly
compatible with those of earlier versions, which means that your code
written under earlier versions will work without problems in version 2.0.

Using -L and -1 in Configuration Files

If you do not understand how to use TURBOC.CFG (the command-line
configuration file) with TCC.EXE, refer to the section liThe TURBOC.CFG
File" in Chapter 3 of the Turbo C User's Guide.

The -Land - I options you list on the command line take priority over those
in the configuration file. The section on liThe TURBOC.CFG File" in
Chapter 3 of the Turbo C User's Guide describes how this works.

An Example With Notes

Here is an example of using a TCC command line that incorporates
multiple library directories (-L) and include directories (-I) options.

1. Your current drive is C: and your current directory is C:\ TURBOC,
where TCC.EXE resides. Your A drive's current position is A:\
ASTROLIB.

2. Your include files (.H or "header" files) are located in C:\ TURBOC\
INCLUDE.

3. Your startup files (COT.OBI, COS.OBJ, ... , COH.OBJ) are in C: \ TURBOC.
4. Your standard Turbo C library files (CS.LIB, CM.LIB, ... , MATHS.LIB,

MATHM.LIB, ... , EMU. LIB, FP87.LIB, etc.) are in C: \ TURBOC\LIB.

5. Your custom library files for star systems (which you created and
manage with TLIB) are in C: \ TURBOC\STARLIB. One of these libraries
is PARX.LIB.

6. Your third-party-generated library files for quasars are in the A drive in
\ASTROLIB. One of these libraries is WARP.LIB.

Under this configuration you enter the following TCC command line:

tee -rom -Llib;starlib -linelude orion umaj parx.lib a:\astrolib\warp.lib

TCC will compile ORION.C and UMAJ.C to .OBJ files, then link them with
the medium model start-up code (COM.OBJ), the medium model libraries
(CM.LIB, MATHM.LIB), the standard floating-point emulation library

458 Turbo C Reference Guide

(EMU.LIB), and the user-specified libraries (PARX.LIB and WARP.LIB),
producing an executable file named ORION.EXE.

The compiler will search C:\ TURBOC\INCLUDE for the include files in
your source code.

It will search for the startup code in C:\ TURBOC (then stop because they're
there); it will search for the standard libraries in C:\ TURBOC\LIB (search
ends because they're there).

When it searches for the user-specified library P ARX.LIB, the compiler first
looks in the current directory, C:\ TURBOC. Not finding the library there,
the compiler then searches the library directories in order: first C: \
TURBOC\LIB, then C:\TURBOC\STARLIB (where it locates PARX.LIB).

For the library WARP.LIB, an explicit path is given (A:\ASTROLIB\
WARP.LIB), so the compiler only looks there.

Appendix C, TCC Command-Line Options 459

460 Turbo C Reference Guide

A p p E N D x

D

Turbo C Utilities

Your Turbo C package supplies much more than just two versions of the
fastest C compiler available. It also provides seven powerful standalone
utilities. You can use these standalone utilities with your Turbo C files as
well as with your other modules.

These highly useful adjuncts to Turbo Care

13 CPP (the Turbo C Preprocessor)

Il MAKE (including the TOUCH utility; the standalone program manager

11 TLINK (the Turbo Linker)

El TLIB (the Turbo Librarian)

J:I GREP (a file-search utility)

I!l BGIOBJ (a conversion utility for graphics drivers and fonts)

El OBJXREF (an object module cross-referencer)

This appendix explains what each utility is and illustrates, with code and
command-line examples, how to use them.

CPP: The Turbo C Preprocessor Utility

The CPP preprocessor produces a listing file of a C source program in
which include files and define macros have been expanded. It is not needed
for nonnal compilations of C programs at all.

Appendix D, Turbo C Utilities 461

Often, when the compiler reports an error inside a macro or an include file,
you can get more information about what the error is if you can see the
results of the macro expansions or the include files. In many multi-pass
compilers, a separate pass performs this work, and the results of the pass
can be examined.

Since Turbo C uses an integrated single-pass compiler, CPP supplies the
first-pass functionality found in other compilers. In addition, you can use
CPP as a macro preprocessor.

You use CPP just as you would use TCC, the standalone compiler. CPP
reads the same TURBOC.CFG file for default options, and accepts the same
command-line options as TCC.

The TCC options that don't pertain to CPP are simply ignored by CPP. To
see the list of arguments handled by CPP, type

cpp

at the DOS prompt.

With one exception, the file names listed on the CPP command line are
treated like they are in TCC, with wildcards allowed. The exception to this
is that all files are treated as C source files. There is no special treatment for
.OBI, .LIB, or .ASM files.

For each file processed by CPP, the output is written to a file in the current
directory (or the output directory named by the -n option) with the same
name as the source name but with an extension of .1.

This output file is a text file containing each line of the source file and any
include files. Any preprocessing directive lines have been removed, along
with any conditional text lines excluded from the compile. Unless you use a
command-line option to specify otherwise, text lines are prefixed with the
file name and line number of the source or include file the line came from.
Within a text line, any macros are replaced with their expansion text.

The resulting output of CPP cannot be compiled because of the file name
and line number prefix a ttached to each source line.

CPP as a Macro Preprocessor

The -P option to CPP tells it to prefix each line with the source file name
and line number. If -P- is given, however, CPP omits this line number
informa tion. With this option turned off, CPP can be used as a macro
preprocessor; the resulting .I file can then be compiled with TC or TCC.

462 Turbo C Reference Guide

An Example

The following simple program illustrates how CPP preprocesses a file, first
with -P selected, then with -P-.

Source file: HELLO}OE.C

/* This is an example of the output of CPP */
#define NAME "Joe Smith"
#define BEGIN {
#define END }

main ()
BEGIN

printf("%s\n", NAME);
END

Command Line Used to Invoke CPP as a Preprocessor:

cpp hellojoe.c

Output:

hellojoe.c 2:
hellojoe.c 3:
hellojoe.c 4:
hellojoe.c 6: main()
hellojoe.c 7: (
hellojoe.c 8: printf("%s\n","Joe Smith");
hellojoe.c 9:

Command Line Used to Invoke CPP as a Macro Preprocessor:

cpp -P- hellojoe.c

Output:

main()
{

printf("%s\n","Joe Smith");

The Standalone MAKE Utility

Turbo C's MAKE utility is an intelligent program manager that-given the
proper instructions-does all the work necessary to keep your programs
up-to-date. When you run MAKE, it performs the following tasks for you:

Appendix 0, Turbo C Utilities 463

• Reads a special MAKE FILE that you have created. This MAKEFILE tells
it which .OB] and library files have to be linked to create your executable
(.EXE) file, and which source and header files have to be compiled to
create each .OB] file.

• Checks the time and date of each .OB] file with the time and date of the
source and header files it depends on. If any of these is later than the .OB]
file, MAKE knows that the file has been modified and that the .OB] file
must be recompiled.

• Calls TCC to recompile the .OBI file.
• Once all the .OB] file dependencies have been checked, checks the date

and time of each of the .OB] files against the date and time of your
executable file.

• If any of the .OBI files is later than the .EXE file, calls TLINK, the Turbo
Linker, to recreate the .EXE file.

In fact, MAKE can do far more than keep your programs current. It can
make backups, pull files out of different subdirectories, and even
automatically run your programs should the data files that they use be
modified. As you use MAKE more and more, you'll see new and different
ways it can help you to manage your program development.

MAKE is a standalone utility; it is different from Project-Make, which is
part of the Integrated Environment.

In this section we describe how to use standalone MAKE with TCC and
TLINK.

A Quick Example

Let's start off with an example to illustrate MAKE's
usefulness. Suppose you're writing some programs to help you display
information about nearby star systems. You have one
program-GETSTARS-that reads in a text file listing star systems, does
some processing on it, then produces a binary data file with the resulting
information in it.

GETSTARS uses certain definitions, stored in STARDEFS.H, and certain
routines, stored in STARLIB.C (and declared in STARLIB.H). In addition,
the program GETSTARS itself is broken up into three files:

• GSPARSE.C
• GSCOMP.C
• GETSTARS.C

464 Turbo C Reference Guide

The first two files, GSP ARSE and GSCOMP, have corresponding header
files (GSPARSE.H and GSCOMP.H). The third file, GETSTARS.C has the
main body of the program. Of the three files, only GSCOMP.C and
GETSTARS.C make use of the STARLIB routines.

Here are the custom header files (other than the Turbo C headers that
declare standard run-time library routines) needed by each .C file:

.C File Custom Header File(s)

STARLIB.C
GSPARSE.C
GSCOMP.C
GETSTARS.C

None
STARDEFS.H
STARDEFS.H,STARLIB.H
STARDEFS.H,STARLIB.H,GSPARSE.H,GSCOMP.H

To produce GETSTARS.EXE (assuming a medium data model), you would
enter the following command lines:

tee -e -rom -f starlib
tee -e -rom -f gsparse
tee -e -rom -f gseomp
tee -e -rom -f getstars
tlink lib\eOm starlib gsparse gseomp getstars,

getstars, getstars, lib\emu lib\mathm lib\em

Note: DOS requires that the TLINK command line all fit on one line: we
show it here as two lines simply because the margins aren't wide enough to
fit it all in one line.

Looking at the preceding information, you can see some file dependencies.

II GSP ARSE, GSCOMP, and GETSTARS all depend on STARDEFS.H; in
other words~ if you make any changes to STARDEFS.H, then you'll have
to recompile all three.

II Likewise, any changes to STARLIB.H will require GSCOMP and
GETSTARS to be recompiled.

II Changes to GSPARSE.H means GETSTARS will have to be recompiled;
the same is true of GSCOMP.H.

II Of course, any changes to any source code file (STARLIB.C, GSPARSE.C,
etc.) means that file must be recompiled.

II Finally, if any recompiling is done, then the link has to be done again.

Quite a bit to keep track of, isn't it? What happens if you make a change to
STARLIB.H, recompile GETSTARS.C, but forget to recompile GSCOMP.C?
You could make a .BAT file to do the four compilations and the one linkage
given above, but you'd have to do them every time you made a change.
Let's see how MAKE can simplify things for you.

Appendix 0, Turbo C Utilities 465

Creating a Makefile

A makefile is just a combination of two lists: file dependencies and the
commands needed to satisfy them.

As an example, let's create a make file for your program GETSTARS. It will
look like this:

For example, let's take the lists given, combine them, massage
them a little, and produce the following:

getstars.exe: getstars.obj gseomp.obj gsparse.obj starlib.obj
tlink lib\eOm starlib gsparse gseomp getstars, getstars, \

getstars, lib\emu lib\mathm lib\em

getstars.obj: getstars.c stardefs.h starlib.h gseomp.h gsparse.h
tee -e -mm -f getstars.e

gseomp.obj: gseomp.e stardefs.h starlib.h
tee -e -mm -f gseomp.e

gsparse.obj: gsparse.e stardefs.h
tee -e -mm -f gsparse.e

starlib.obj: starlib.e
tee -e -mm -f starlib.e

This just restates what was said in the previous section, but with the order
reversed somewhat. Here's how MAKE interprets this file:

• The file GETSTARS.EXE depends on four files: GETSTARS.OBJ,
GSCOMP.OBJ, GSPARSE.OBJ, and STARLIB.OBJ. If any of those four
change, then GETSTARS.EXE must be relinked. How? By using the
TLINK command.

• The file GETSTARS.OBJ depends on five files: GETSTARS.C,
STARDEFS.H, STARLIB.H, GSCOMP.H, and GSP ARSE.H. If any of those
files change, then GETSTARS.OBJ must be recompiled by using the TCC
command given.

• The file GSCOMP .OBJ depends on three files-GSCOMP .C,
STARDEFS.H, and STARLIB.H-and if any of those three change,
GSCOMP.OBJ must be recompiled using the TCC command given.

• The file GSP ARSE.OBJ depends on two files-GSP ARSE.OBJ and
STARDEFS.H-and, again, must be recompiled using the TCC command
given if either of those files change.

• The file STARLIB.OBJ depends on only one file-STARLIB.C-and must
be recompiled via TCC if STARLIB.C changes.

466 Turbo C Reference Guide

What do you do with this? Type it into a file, which (for now) we'll call
MAKEFILE. You're then ready to use MAKE.EXE.

Note: We have made all the rules in this example explicit in order to make
the concept of dependencies clear. In most cases, you won't have to type in
so much information about a program. Implicit rules and
autodependencies can eliminate a lot of work in creating a MAKEFILE. See
the sections below for more about these features.

Using a Makefile

Assuming you've created MAKE FILE as described above-and, of course,
assuming that the various source code and header files exist-then all you
have to do is type the command:

make

Simple, wasn't it? MAKE looks for MAKEFILE (you can call it something
else; we'll talk about that later) and reads in the first line, describing the
dependencies of GETSTARS.EXE. It checks to see if GETSTARS.EXE exists
and is up-to-date.

This requires that it check the same thing about each of the files upon
which GETSTARS.EXE depends: GETSTARS.OBJ, GSCOMP .OBJ,
GSPARSE.OBI, and STARLIROBI. Each of those files depends, in turn, on
other files, which must also be checked. The various calls to Tee are made
as needed to update the .OBI files, ending with the execution of the TLINK
command (if necessary) to create an up-to-date version of GETSTARS.EXE.

What if GETSTARS.EXE and all the .OBI files already exist? In that case,
MAKE compares the time and date of the last modification of each .OBI file
with the time and date of its dependencies. If any of the dependency files
are more recent than the .OBI file, MAKE knows that changes have been
made since the last time the .OBI file was created and executes the TCC
command.

If MAKE does update any of the .OBI files, then when it compares the time
and date of GETSTARS.EXE with them, it sees that it must execute the
TLINK command to make an updated version of GETSTARS.EXE.

Stepping Through

Here's a step-by-step example to help clarify the previous description.
Suppose that GETSTARS.EXE and all the .OBI files exist, and that

Appendix 0, Turbo C Utilities 467

GETSTARS.EXE is more recent than any of the .OBJ files, and, likewise,
each .OBJ file is more recent than any of its dependencies.

If you then enter the command

make

nothing happens, since there is no need to update anything.

Now, suppose that you modify STARLIB.C and STARLIB.H, changing, say,
the value of some constant. When you enter the command

make

MAKE sees that STARLIB.C is more recent than STARLIB.OBJ, so it issues
the command

tee -e -mm -f starlib.e

It then sees that STARLIB.H is more recent than GSCOMP.OBJ, so it issues
the command

tee -e -mm -f gseomp.e

STARLIB.H is also more recent than GETSTARS.OBJ, so the next command
is

tee -e -mm -f getstars.e

Finally, because of these three commands, the files STARLIB.OBJ,
GSCOMP.OBJ, and GETSTARS.OBJ are all more recent than
GETSTARS.EXE, so the final command issued by MAKE is

tlink lib\cOm starlib gsparse gscomp getstars, getstars,
getstars, lib\ernu lib\mathm lib\cm

which links everything together and creates a new version of the file
GETSTARS.EXE. (Note that this TLINK command line must actually be one
line.)

You have a good idea of the basics of MAKE: what it's for, how to create a
makefile, and how MAKE interprets that file. Let's now look at MAKE in
more detail.

Creating Makefiles

A makefile contains the definitions and relationships needed to help MAKE
keep your program(s) up-to-date. You can create as many makefiles as you
want and name them whatever you want; MAKEFILE is just the default

468 Turbo C Reference Guide

name that MAKE looks for if you don't specify a makefile when you run
MAKE.

You create a makefile with any ASCII text editor, such as Turbo C's built-in
interactive editor. All rules, definitions, and directives end with a newline;
if a line is too long (such as the TLINK command in the previous example),
you can continue it to the next line by placing a backslash (\) as the last
character on the line.

Whitespace-blanks and tabs-is used to separate adjacent identifiers (such
as dependencies) and to indent commands within a rule.

Components of a Makefile

Creating a makefile is almost like writing a program, with definitions,
commands, and directives. Here's a list of the constructs allowed in a
makefile:

IJ comments

c explicit rules

Il implicit rules

m macro definitions

II directives: file inclusion directives, conditional execution directives, error
detection directives, macro undefinition directives

Let's look at each of these in more detail.

Comments

Comments begin with a pound sign (#) character; the rest of the line
following the # is ignored by MAKE. Comments can be placed anywhere
and never have to start in a particular column.

A backslash (\) will not continue a comment onto the next line; instead, you
must use a # on each line. In fact, you cannot use a backslash as a continua­
tion character in a line that has a comment. If it precedes the #, it is no
longer the last character on the line; if it follows the #, then it is part of the
comment itself.

Appendix 0, Turbo C Utilities 469

Here are some examples of comments in a makefile:

makefile for GETSTARS.EXE
does complete project maintenance
getstars.exe: getstars.obj gscomp.obj gsparse.obj starlib.obj
* can't put a comment at the end of the next line

tlink lib\cOm starlib gsparse gscomp getstars, getstars,\
getstars, lib\emu lib\mathm lib\cm

legal comment
can't put a comment between the next two lines

getstars.obj: getstars.c stardefs.h starlib.h gscomp.h gsparse.h
tcc -c -mm -f getstars.c # you can put a comment here

Explicit Rules

You are already familiar with explicit rules, since those are what you used
in the makefile example given earlier. Explicit rules take the form

target [target ..•): [source source ...)
[command)
[command)

where target is the file to be updated, source is a file upon which target
depends, and command is any valid DOS command (including invocation of
.BAT files and execution of .COM and .EXE files).

Explicit rules define one or more target names, zero or more source files,
and an optional list of commands to be perfonned. Target and source file
names listed in explicit rules can contain nonnal DOS drive and directory
specifications, but they cannot contain wildcards.

Syntax here is important. target must be at the start of a line (in column 1),
and the source file(s) must be preceded by at least one space or tab, after
the colon. Each command must be indented, (must be preceded by at least
one blank or tab). As mentioned before, the backslash (\) can be used as a
continuation character if the list of source files or a given command is too
long for one line. Finally, both the source files and the commands are
optional; it is possible to have an explicit rule consisting only of target
[target .. .J followed by a colon.

The idea behind an explicit rule is that the command or commands listed
will create or update target, usually using the source files. When MAKE
encounters an explicit rule, it first checks to see if any of the source files are
themselves target files elsewhere in the makefile. If so, those rules are
evaluated first.

470 Turbo C Reference Guide

Once all the source files have been created or updated based on other
explicit (or implicit) rules, MAKE checks to see if target exists. If not, each
command is invoked in the order given. If target does exist, its time and date
of last modification are compared against the time and date for each source.
If any source has been modified more recently than target, the list of
commands is executed.

A given file name can occur on the left side of an explicit rule only once in a
given execution of MAKE.

Each command line in an explicit rule begins with whitespace. MAKE
considers all lines following an explicit rule to be part of the command list
for that rule, up to the next line that begins in column 1 (without any
preceding whitespace) or to the end of the file. Blank lines are ignored.

Special Considerations

An explicit rule with no command lines following it is trea ted a little
differently than an explicit rule with command lines.

e If an explicit rule exists for a target with commands, the only files that the
target depends on are the ones listed in the explicit rule.

e If an explicit rule has no commands, the targets depend on the files given
in the explicit rule, and they also depend on any file that matches an
implicit rule for the target(s).

See the following section for a discussion of implicit rules.

Examples

Here are some examples of explicit rules:

myprog.obj: myprog.e
tee -e myprog.e

prog2.obj : prog2.e inelude\stdio.h
tee -e -K prog2.e

prog.exe: myprog.e prog2.e inelude\stdio.h
tee -e myprog.e
tee -e -K prog2.e
tlink lib\eOs myprog prog2, prog, , lib\es

e The first explicit rule states that MYPROG.OBJ depends upon
MYPROG.C, and that MYPROG.OBJ is created by executing the given
TCC command.

II Similarly, the second rule states that PROG2.0BJ depends upon

Appendix D, Turbo C Utilities 471

PROG2.C and STDIO.H (in the INCLUDE subdirectory) and is created
by the given TCC command.

II The last rule states that PROG.EXE depends on MYPROG.C, PROG2.C,
and STDIO.H, and that should any of the three change, PROG.EXE can
be rebuilt by the series of commands given. However, this may create
unnecessary work, because, even if only MYPROG.C changes, PROG2.C
will still be recompiled. This occurs because all of the commands under a
rule will be executed as soon as that rule's target is out of date .

• If you place the explicit rule

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, prog, , lib\cs

as the first rule in a makefile and follow it with the rules given (for
MYPROG.OBI and PROG2.0BJ), only those files that need to be recom­
piled will be.

With explicit rules you must change your MAKEFILE every time you add
or remove an include file in one of your C or assembly source files. MAKE
works with TC, TCC, and TASM to eliminate this extra work. MAKE's-a
command-line option will trigger an auto dependency check.

TCC, TC, and TASM write include file information into the .OBI files they
create. When MAKE does an autodependency check, it reads the time and
date information in the .OBI file; all include files used to build the .OBI file
are then checked for time and date against the .OBI file information.

For example, consider the following MAKEFILE:

.c.obj:
tcc -c $*

Let's then assume that the following source file, called foo.c, has been
compiled with TCC (version 2.0 or later):

'include <stdio.h>
'include "dcl.h"

void foo () {}

Then, if MAKE is invoked with the following command line

make -a foo.obj

it will check the time and date of foo.c, and also of stdio.h and dcl.h.

Implicit Rules

MAKE allows you to define implicit rules as well. Implicit

472 Turbo C Reference Guide

rules are generalizations of explicit rules. What do we mean by
that?

Here's an example that illustrates the relationship between the two types of
rules. Consider this explicit rule from the previous sample program:

starlib.obj: starlib.e
tee -e -mm -f starlib.e

This rule is a common one, because it follows a general principle: an .OBJ
file is dependent on the .C file with the same file name and is created by
executing TCC. In fact, you might have a makefile where you have several
(or even several dozen) explicit rules following this same format.

By redefining the explicit rule as an implicit rule, you can eliminate all the
explicit rules of the same form. As an implicit rule, it would look like this:

.e.obj:
tee -e -mm -f $<

This rule means, "any file ending with .OBJ depends on the file with the
same name that ends in .C, and the .OBI file is created using the command

tee -e -mm -f $<

where $< represents the file's name with the source (.C) extension." (The
symbol $< is a special macro and is discussed in the next section; it will be
replaced by the full name of the appropriate .C source file each time the
command executes.)

The syntax for an implicit rule is:

. source_extension. target_extension:
{command}
{command}

where, as before, the commands are optional and must be
indented.

The source_extension (which must begin with its period (.) in column 1) is
the extension of the source file; that is, it applies to any file having the
format

fname.source extension

Appendix D, Turbo C Utilities 473

Likewise, the target_extension refers to the the file

tname.target_extension

where fname is the same for both files. In other words, this implicit rule
replaces all explicit rules having the format:

tname.target_extension: tname.source extension
{command}
{command}

for any fname.

Implicit rules are used if no explicit rule for a given target can be found, or
if an explicit rule with no commands exists for the target.

The extension of the file name in question is used to determine which
implicit rule to use. The implicit rule is applied if a file is found with the
same name as the target, but with the mentioned source extension.

For example, suppose you had a makefile (named MAKEFILE) whose
contents were

.e.obj:
tee -e -ms -f $<

If you had a C program named RATIO.C that you wanted to compile to
RATIO.OB], you could use the command

make ratio.obj

MAKE would take RATIO.OB] to be the target. Since there is no explicit
rule for creating RATIO.OB}, MAKE applies the implicit rule and generates
the command

tee -e -ms -f ratio.e

which, of course, does the compile step necessary to create RATIO.OBJ.

Implicit rules are also used if an explicit rule is given with no commands.
Suppose, as mentioned before, you had the following implicit rule at the
start of your makefile:

.e.obj:
tee -e -rom -f $<

You could then rewrite the last several explicit rules as follows:

getstars.obj: stardefs.h starlib.h gseomp.h gsparse.h
gseomp.obj: stardefs.h starlib.h
gsparse.obj: stardefs.h

474 Turbo C Reference Guide

Since you don't have explicit information on how to create these .OBI files,
MAKE applies the implicit rule defined earlier. And since STARLIB.OBI
depends only on STARLIB.C, that rule was dropped altogether from this
list; MAKE automatically applies it.

If you enable auto dependency checking in MAKE, you can remove all the
rules that have .OBI files as targets in the example above. With
autodepencenies enabled and implicit rules, your MAKEFILE now looks
like this:

.e.obj:
tee -e -mm -f $<

getstars.exe: getstars.obj gseomp.obj gsparse.obj starlib.obj

tlink lib\eOm starlib gsparse gseomp getstars, getstars,\
getstars, lib\emu lib\mathm\ lib\em

Several implicit rules can be written with the same target extension, but
only one such rule can apply at a time. If more than one implicit rule exists
for a given target extension, each rule is checked in the order the rules
appear in the makefile, until a match is found for the source extension, or
until MAKE has checked all applicable rules.

MAKE uses the first implicit rule that discovers a file with the source
extension. Even if the commands of that rule fail, no more implicit rules are
checked.

All lines following an implicit rule are considered to be part of the
command list for the rule, up to the next line that begins without white­
space or to the end of the file. Blank lines are ignored. The syntax for a
command line is provided later in the section "Using MAKE."

Special Considerations

Unlike explicit rules, MAKE does not know the full file name with an
implicit rule. For that reason, special macros are provided with MAKE that
allow you to include the name of the file being built by the rule in the
commands to be executed. (See the discussion of macro definitions in this
section for details.)

Appendix 0, Turbo C Utilities 475

Examples

Here are some examples of implicit rules:

.c.obj:
tcc -c $<

.asrn.obj:
tasrn $* /rnxi

In the first implicit rule example, the target files are .OBJ files and their
source files are .C files. This example has one command line in the
command list; command-line syntax is covered later in this section.

The second example directs MAKE to assemble a given file from its .ASM
source file, using TASM with the /mx option.

Command Lists

We've talked about both explicit and implicit rules, and how they can have
lists of commands. Let's talk about those commands and your options in
setting them up.

Commands in a command list must be indented-that is, preceded by at
least one blank or tab-and take the form

[prefix ..• 1 command_body

Each command line in a command list consists of an (optional) list of
prefixes, followed by a single command body.

Prefix

The prefixes allowed in a command modify the treatment of these
commands by MAKE. The prefix is either the at (@) symbol or a dash (-)
followed immediately by a number.

476 Turbo C Reference Guide

@ Prevents MAKE from displaying the command before executing
it. The display is hidden even if the -s option is not given on the
MAKE command line. This prefix applies only to the command
on which it appears.

-num Affects how MAKE treats exit codes. If a number (num) is
provided, then MAKE will abort processing only if the exit
status exceeds the number given. In this example, MAKE will
abort only if the exit status exceeds 4:

-4 myprog sample.x

If no -num prefix is given, MAKE checks the exit status for the
command. If the status is nonzero, MAKE will stop and delete
the current target file. (See ...

With a dash, but no number, MAKE will not check the exit status
at all. Regardless of what the exit status was, MAKE will
continue.

Command body

The command body is treated exactly as it would be if it were entered as a
line to COMMAND.COM, with the exception that redirection and pipes are
not supported.

MAKE executes the following built-in commands by invoking a copy of
COMMAND.COM to perform them:

break cd chdir cIs copy
ctty date del dir echo
erase md mkdir path prompt
rem ren rename set time
type ver verify vol

MAKE searches for any other command name using the DOS search
algorithm:

II The current directory is searched first, followed by each directory in the
path.

II In each directory, first a file with the extension .COM is checked, then a
.EXE, and finally a .BAT.

iii If a .BAT file is found, a copy of COMMAND.COM is invoked to execute
the batch file.

Obviously, if an extension is supplied in the command line, MAKE searches
only for that extension.

Appendix 0, Turbo C Utilities 477

Examples

This command will cause COMMAND.COM to execute the command:

cd c:\include

This command will be searched for using the full search algorithm:

tlink lib\cOs x y,z,z,lib\cs

This command will be searched for using only the .COM extension:

rnyprog.com geo.xyz

This command will be executed using the explicit file name provided:

c:\rnyprogs\fil.exe -r

Macros

Often certain commands, file names, or options are used again and again in
your makefile. In the example at the start of this appendix, all the TCC
commands used the switch -mm, which means to compile to the medium
memory model; likewise, the TLINK command used the files COM.OBJ,
MATHM.LIB, and CM.LIB. Suppose you wanted to switch to the large
memory model; what would you do? You could go through and change all
the -mm options to -ml, and rename the appropriate files in the TLINK
command. Or, you could define a macro.

A macro is a name that represents some string of characters. A macro
definition gives a macro name and the expansion text; thereafter, when
MAKE encounters the macro name, it replaces the name with the
expansion text.

478 Turbo C Reference Guide

Suppose you defined the following macro at the start of your makefile:

MDL = m

You've defined the macro MOL, which is now equivalent to the string m. You
could now rewrite the makefile as follows:

MOL = m

getstars.exe: getstars.obj gseomp.obj gsparse.obj starlib.obj
tlink lib\eO$(MOL) starlib gsparse gseomp getstars, \

getstars, getstars, lib\emu lib\math$(MDL) lib\e$(MDL)

getstars.obj: getstars.e stardefs.h starlib.h gseomp.h gsparse.h
tee -e -m$(MDL) getstars.e

gseomp.obj: gseomp.e stardefs.h starlib.h
tee -e -m$(MDL) gseomp.e

gsparse.obj: gsparse.e stardefs.h
tee -e -m$(MDL) gsparse.e

starlib.obj: starlib.e
tee -e -m$(MDL) starlib.e

Everywhere a model is specified, you use the macro invocation $ (MOL).
When you run MAKE, $ (MOL) is replaced with its expansion text, m. The
result is the same set of commands you had before.

So, what have you gained? Flexibility. By changing the first line to

MDL = 1

you've changed all the commands to use the large memory model. In fact,
if you leave out the first line altogether, you can specify which memory
model you want each time you run MAKE, using the -0 (Define) option:

make -OMDL = 1

This tells MAKE to treat MOL as a macro with the expansion text 1.

Defining Macros

Macro definitions take the form

macro_name=expansion text

where macro_name is the name of the macro. macro_name should be a string
of letters and digits with no whitespace in it, although you can have
whitespace between macro_name and the equals sign (=). The expansion text

Appendix 0, Turbo C Utilities 479

is any arbitrary string containing letters, digits, whitespace, and
punctuation; it is ended by newline.

If macro_name has previously been defined, either by a macro definition in
the makefile or by the -0 option on the MAKE command line, the new
definition replaces the old.

Case is significant in macros; that is, the macro names mdl, Mdl, and MOL are
all differen t.

Using Macros

Macros are invoked in your makefile with the forma t

$ (macro_name)

The parentheses are required for all invocations, even if the macro name is
just one character long, with the exception of three special predefined
macros that we'll talk about in just a minute. This con­
struct-$ (macro_name)-is known as a macro invocation.

When MAKE encounters a macro invocation, it replaces the invocation
with the macro's expansion text. If the macro is not defined, MAKE
replaces it with the null string.

Special Considerations

Macros in macros: Macros cannot be invoked on the left (macro_name) side
of a macro definition. They can be used on the right (expansion text) side,
but they are not expanded until the macro being defined is invoked. In
other words, when a macro invocation is expanded, any macros embedded
in its expansion text are also expanded.

Macros in rules: Macro invocations are expanded immediately in rule
lines.

Macros in directives: Macro invocations are expanded immediately in !if
and !elif directives. If the macro being invoked in an !if or !elif directive
is not currently defined, it is expanded to the value 0 (FALSE).

Macros in commands: Macro invocations in commands are expanded
when the command is executed.

Predefined Macros

480 Turbo C Reference Guide

MAKE comes with several special macros built in: $d, $*, $<, $:, $., and $&.
The first is a defined test macro, used in the conditional directives ! if and
! elif; the others are file name macros, used in explicit and implicit rules. In
addition, the current SET environment strings are automatically loaded as
macros, and the macro _MAKE_ is defined to be 1 (one).

Defined Test Macro ($d) The defined test macro $d expands to 1 if the
given macro name is defined, or to 0 if it is not. The content of the macro's
expansion text does not matter. This special macro is allowed only in ! if
and ! elif directives.

For example, suppose you want to modify your makefile so that if you
don't specify a memory model, it'll use the medium one. You could put this
at the start of your makefile:

! if ! $d (MDL)
MDL=m
!endif

if MDL is not defined
define it to m (MEDIUM)

If you invoke MAKE with the command line

make -DMDL=l

then MDL is defined as 1. If, however, you just invoke MAKE by itself:

make

then MDL is defined as ffi, your "default" memory model.

Various File N arne Macros
The various file name macros work in similar ways, expanding to some
variation of the full path name of the file being built.

Base File Name Macro ($*)
The base file name macro is allowed in the commands for an explicit or an
implicit rule. This macro ($ *) expands to the file name being built,
excluding any extension, like this:

File name is A:\P\TESTFILE.C
$* expands to A:\P\TESTFILE

For example, you could modify the explicit GETSTARS.EXE rule already
given to look like this:

getstars.exe: getstars.obj gscomp.obj gsparse.obj starlib.obj
tlink lib\cO$(MDL) starlib gsparse gscomp $*, $*, $*, \

lib\emu lib\math$(MDL) lib\c$(MDL)

Appendix D, Turbo C Utilities 481

When the command in this rule is executed, the macro $ * is replaced by the
target file name (sans extension), getstars. For implicit rules, this macro is
very useful.

For example, an implicit rule for TCC might look like this (assuming that
the macro MOL has been or will be defined, and that you are not using
floating-point routines):

.e.obj:
tee -e -m$(MDL) $*

Full File Name Macro ($<)
The full file name macro ($<) is also used in the commands for an explicit or
implicit rule. In an explicit rule, $< expands to the full target file name
(including extension), like this:

File name is A:\P\TESTFILE.C
$< expands to A:\P\TESTFILE.C

For example, the rule

starlib.obj: starlib.e
copy $< \oldobjs
tee -e $*

will copy STARLIB.OBJ to the directory \OLDOBJS before compiling
STARLIB.C.

In an implicit rule, $< takes on the file name plus the source extension. For
example, the previous implicit rule

.e.obj:
tee -e $*.e

can be rewritten as

.e.obj:
tee -e $<

File Name Path Macro ($:)
This macro expands to the path name (without the file name),like this:

File name is A:\P\TESTFILE.C
$: expands to A:\P\

File Name and Extension Macro ($.)
This macro expands to the file name, with extension but without the path
name, like this:

File name is A:\P\TESTFILE.C
$. expands to TESTFILE.C

482 Turbo C Reference Guide

File Name Only Macro ($&)
This macro expands to the file name only, without path or extension, like
this:

File name is A:\P\TESTFILE.C
$& expands to TESTFILE

Directives

Turbo C's MAKE allows something that other versions of MAKE don't:
directives similiar to those allowed for C itself. You can use these directives
to include other makefiles, to make the rules and commands conditional, to
print out error messages, and to "undefine" macros.

Directives in a makefile begin with an exclamation point (!) as the first
character of the line, unlike C preprocessor statements, which begin with
the pound sign (#). Here is the complete list of MAKE directives:

!include
!if
!else
!elif
!endif
!error
!undef

File-Inclusion Directive

A file-inclusion directive (!include) specifies a file to be included into the
makefile for interpretation at the point of the directive. It takes the
following form:

!include " filename"

These directives can be nested to any depth. If an include directive attempts
to include a file that has already been included in some outer level of
nesting (so that a nesting loop is about to start), the inner include directive
is rejected as an error.

How do you use this directive? Suppose you created the file MODEL.MAC
which contained the following:

! if ! $d (MDL)
MDL=m
!endif

Appendix D, Turbo C Utilities 483

You could then make use of this conditional macro definition in any
makefile by including the directive

!include "MODEL.MAC"

When MAKE encounters the! include directive, it opens the specified file
and reads the contents as if they were in the makefile itself.

Conditional Execution Directives

Conditional execution directives (! if, ! elif, ! else, and ! endif) give the
programmer a measure of flexibility in constructing makefiles. Rules and
macros can be made conditional, so that a command-line macro definition
(using the -D option) can enable or disable sections of the makefile.

The format of these directives parallels that of the C preprocessor:

!if expression
[lines 1
!endif

!if expression
[lines 1
!else
[lines 1
!endif

!if expression
[lines 1
!elif expression
[lines 1
!endif

Note: [lines] can be any of the following statement types:

macro definition
explici t _rule
implicit_rule
include directive
if_group
error directive .
undef directive

The conditional directives form a group, with at least an ! if directive
beginning the group and an ! endif directive closing the group .

• One ! else directive can appear in the group .

• ! elif directives can appear between the! if and any! else directives.

484 Turbo C Reference Guide

a Rules, macros, and other directives can appear between the various
conditional directives in any number. Note that complete rules, with their
commands, cannot be split across conditional directives.

13 Conditional directive groups can be nested to any depth.

Any rules, commands, or directives must be complete within a single
source file.

Any ! if directives must have matching ! endif directives within the same
source file. Thus the following include file is illegal, regardless of what is
contained in any file that might include it, because it does not have a
matching! end if directive:

!if $(FILE_COUNT) > 5
some rules

!else
other rules

<end-of-file>

Expressions Allowed in Conditional Directives

The expression allowed in an ! if or an ! elif directive uses a C-like syntax.
The expression is evaluated as a simple 32-bit signed integer expression.

Numbers can be entered as decimal, octal, or hexadecimal constants. For
example, these are legal constants in an expression:

4536 # decimal constant
0677 # octal constant
Ox23aF # hexadecimal constant

An expression can use any of the following unary operators:

negation
bit complement
logical not

An expression can use any of the following binary operators:

Appendix 0, Turbo C Utilities 485

+ addition
subtraction

* multiplication
/ division
% remainder
» right shift
« left shift
& bitwise and
I bitwise or

1\ bitwise exclusive or
&& logical and
I I logical or
> greater than
< less than
>= grea ter than or equal
<= less than or equal

equality
!= inequality

An expression can contain the following ternary operator:

? : The operand before the? is treated as a test.

If the value of that operand is nonzero, then the second operand
(the part between the? and :) is the result. If the value of the first
operand is zero, the value of the result is the value of the third
operand (the part after the :).

Parentheses can be used to group operands in an expression. In the absence
of parentheses, binary operators are grouped according to the same
precedence given in the C language.

As in C, for operators of equal precedence, grouping is from left to right,
except for the ternary operator (? :), which is right to left.

Macros can be invoked within an expression, and the special macro $d () is
recognized. After all macros have been expanded, the expression must
have proper syntax. Any words in the expanded expression are treated as
errors.

Error Detection Directive

The error detection directive (! error) causes MAKE to stop and print a fatal
diagnostic containing the text after! error. It takes the format

! error any_ text

486 Turbo C Reference Guide

This directive is designed to be included in conditional directives to allow a
user-defined abortion condition. For example, you could insert the
following code in front of the first explicit rule:

! if ! $d (MDL)
j if MDL is not defined
!error MDL not defined
!endif

If you reach this spot without having defined MDL, then MAKE will stop
with this error message:

Fatal makefile 5: Error directive: MDL not defined

Macro Undefinition Directive

The macro un definition directive (! undef) causes any definition for the
named macro to be forgotten. If the macro is currently undefined, this
directive has no effect. The syntax is:

!undef macro name

Using MAKE

You now know a lot about how to write makefiles; now's the time to learn
how to use them with MAKE.

Command-Line Syntax

The simplest way to use MAKE is to type the command

make

at the DOS prompt. MAKE then looks for MAKEFILE; if it can't find it, it
looks for MAKEFILE.MAK; if it can't find that, it halts with an error
message.

Wha t if you wan t to use a file with a name other than MAKE FILE or
MAKEFILE.MAK? You give MAKE the file (-f) option, like this:

make -fstars.mak

The general syntax for MAKE is

make option option ..• target target

Appendix 0, Turbo C Utilities 487

where option is a MAKE option (discussed later), and target is the name of a
target file to be handled by explicit rules.

Here are the syntax rules:

• The word make is followed by a space, then a list of make options.

• Each make option must be separated from its adjacent options by a space.
Options can be placed in any order, and any number of these options can
be entered (as long as there is room in the command line).

• After the list of make options comes a space, then an optional list of
targets.

• Each target must also be separated from its adjacent targets by a space.
MAKE evaluates the target files in the order listed, recompiling their
constituents as necessary.

If the command line does not include any target names, MAKE uses the
first target file mentioned in an explicit rule. If one or more targets are
mentioned on the command line, they will be built as necessary.

Here are some more examples of MAKE command lines:

make -n -fstars.mak
make -s
make -linclude -DMDL = c

A Note About Stopping MAKE

MAKE will stop if any command it has executed is aborted via a control­
break. Thus, a Ctrl·C will stop the currently executing command and MAKE
as well.

The BUlL TINS.MAK File

You will often find that there are MAKE macros and rules (usually implicit
ones) that you use again and again. There are three ways of handling them.
First, you can put them in every makefile you create. Second, you can put
them all in one file and use the ! include directive in each makefile you
create. Third, you can put them all in a file named BUILTINS.MAK.

Each time you run MAKE, it looks for a file named BUILTINS.MAK; if it
finds the file, MAKE reads it in before handling MAKEFILE (or whichever
makefile you want it to process).

488 Turbo C Reference Guide

The BUILTINS.MAK file is intended for any rules (usually implicit rules) or
macros that will be commonly used in files anywhere on your computer.

There is no requirement that any BUlL TINS.MAK file exist. If MAKE finds
a BUlL TINS.MAK file, it interprets that file first. If MAKE cannot find a
BUILTINS.MAK file, it proceeds directly to interpreting MAKEFILE (or
whatever makefile you specify).

How MAKE Searches for BUlL TINS.MAK and
Makefiles

The first place MAKE searches for BUlL TINS.MAK is the current directory.
If it's not there, and if you're running under DOS 3.0 or higher, MAKE will
then search the Turbo C directory, where MAKE.EXE resides. You should
place the BUlL TINS.MAK file in the same directory as the MAKE.EXE file.

MAKE always searches for the makefile in the current directory only. This
file contains the rules for the particular executable program file being built.
The two files have identical syntax rules.

MAKE also searches for any! include files in the current directory. If you
use the - I (Include) option, it will also search in the directory specified with
the - I option.

MAKE Command-line Options

We've alluded to several of the MAKE command-line options; now we'll
present a complete list of them. Note that case (upper or lower) is
significant; the option -d is not a valid substitution for -D.

-a Generates an autodependency check.

-Didentifier Defines the named identifier to the string consisting of
the single character 1.

-Diden=string Defines the named identifier iden to the string after the
equal sign. The string cannot contain any spaces or
tabs.

-Idirectory MAKE will search for include files in the indicated
directory (as well as in the current directory).

-Uidentifier Undefines any previous definitions of the named
identifier.

Appendix 0, Turbo C Utilities 489

-s

-n

-ffilename

-? or-h

Normally, MAKE prints each command as it is about to
be executed. With the -s option, no commands are
printed before execution.

Causes MAKE to print the commands, but not actually
perform them. This is useful for debugging a makefile.

Uses filename as the MAKE file. If filename does not
exist, and no extension is given, tries filename.mak.

Print help message.

MAKE Error Messages

MAKE diagnostic messages fall into two classes: fatal errors and errors.
When a fatal error occurs, compilation immediately stops. You must take
appropriate action and then restart the compilation. Errors indicate some
sort of syntax or semantic error in the source makefile. MAKE completes
interpreting the makefile and then stops.

Fatal Error Messages

XXXXXXXX does not exist - don't know how to make it
This message is issued when MAKE encounters a nonexistent file name
in the build sequence, and no rule exists that would allow the file name
to be built.

Error directive: XXXX

This message is issued when MAKE processes an ~error directive in the
source file. The text of the directive is displayed in the message.

Incorrect command-line argument: XXX

This error occurs if MAKE is executed with incorrect command-line
arguments.

Not enough memory

This error occurs when the total working storage has been exhausted.
You should perform your make on a machine with more memory. If you
already have 640K in your machine, you may have to simplify the source
file.

Unable to execute command

490 Turbo C Reference Guide

This message is issued because a command failed to execute. This could
be because the command file could not be found, or because it was
misspelled, or less likely because the command itself exists but has been
corrupted.

Unable to open makefile

This message is issued when the current directory does not contain a file
named MAKEFILE and there is no MAKEFILE.MAK.

Errors

Bad file name format in include statement

Include file names must be surrounded by quotes or angle brackets. The
file name was missing the opening quote or angle bracket.

Bad undef statement syntax

An ! undef statement must contain a single identifier and nothing else as
the body of the statement.

Character constant too long

Character constants can be only one or two characters long.

Command arguments too long

The arguments to a command executed by MAKE were more than 127
characters-a limit imposed by DOS.

Command syntax error
This message occurs if:

m The first rule line of the makefile contained any leading whitespace.
1'/1 An implicit rule did not consist of . ext. ext:.

D An explicit rule did not contain a name before the: character.

B A macro definition did not contain a name before the = character.

Division by zero

A divide or remainder in an ! if statement has a zero divisor.

Expression syntax error in ! if statement

The expression in an ! if statement is badly formed-it contains a
mismatched parenthesis, an extra or missing operator, or a missing or
extra constant.

Appendix 0, Turbo C Utilities 491

File name too long

The file name given in an ! include directive was too long for the
compiler to process. File names in DOS must be no more than 64
characters long.

Illegal character in constant expression X

MAKE encountered some character not allowed in a constant
expression. If the character is a letter, this probably indicates a
misspelled identifier.

Illegal octal digit

An octal constant was found containing a digit of 8 or 9.

Macro expansion too long

A macro cannot expand to more than 4096 characters. This error often
occurs if a macro recursively expands itself. A macro cannot legally
expand to itself.

Misplaced elif statement

An ! elif directive was encountered without any matching! if directive.

Misplaced else statement

An ! else directive was encountered without any matching! if directive.

Misplaced endif statement

An ! endif directive was encountered without any matching! if directive.

No file name ending
The file name in an include statement was missing the correct closing
quote or angle bracket.

Redefinition of target XXXXXXXX

The named file occurs on the left-hand side of more than one explicit
rule.

Unable to open include file XXXXXXXXX.XXX

The named file could not be found. This could also be caused if an
include file included itself. Check whether the named file exists.

Unexpected end of file in conditional started on line #

The source file ended before MAKE encountered an ! endif. The ! endif
was either missing or misspelled.

492 Turbo C Reference Guide

Unknown preprocessor statement

A ! character was encountered at the beginning of a line, and the
statement name following was not error, undef, if, elif, include, else, or
endif.

The TOUCH Utility

There are times when you want to force a particular target file to be
recompiled or rebuilt, even though no changes have been made to its
sources. One way to do this is to use the TOUCH utility included with
Turbo C. TOUCH changes the date and time of one or more files to the
current date and time, making it "newer" than the files that depend on it.

To force a target file to be rebuilt, touch one of the files that target depends
on. To touch a file (or files), enter

touch filename [filename ... 1

at the DOS prompt. TOUCH will then update the file's creation date(s).

Once you do this, you can invoke MAKE to rebuild the touched target
file(s). (You can use the DOS wildcards * and ? with TOUCH.)

Turbo Link

In the Turbo C Integrated Development Environment (TC) the linker is
built in. For the command-line version of Turbo C (TCC), the linker is
invoked as a separate program. This separate program, TLINK, can also be
used as a standalone linker.

TLINK is lean and mean; while it lacks some of the bells and whistles of
other linkers, it is extremely fast and compact.

By default, TCC calls TLINK when compilation is successful; TLINK then
combines object modules and library files to produce the executable file.

In this section, we describe how to use TLINK as a standalone linker.

Invoking TLINK

You can invoke TLINK at the DOS command line by typing tlink with or
without parameters.

Appendix 0, Turbo C Utilities 493

When it is invoked without parameters, TLINK displays a summary of
parameters and options that looks like this:

Turbo Link Version 2.0 Copyright (c) 1987, 1988 Borland International
The syntax is: TLINK objfiles, exefile, mapfile, libfiles
@xxxx indicates use response file xxxx
Options: 1m = map file with publics

Ix = no map file at all
Ii = initialize all segments
II = include source line numbers
Is = detailed map of segments
In = no default libraries
Id = warn if duplicate symbols in libraries
Ic = lower case significant in symbols
13 = enable 32-bit processing
Iv = include full symbolic debug information
Ie = ignore Extended Dictionary
It = generate COM file

In TLINK's summary display, the line

The syntax is: TLINK objfiles, exefile, mapfile, libfiles

specifies that you supply file names in the given order, separating the file
types with commas.

For example, if you supply the command line

tlink Ic mainline wd In tx,fin,mfin,lib\comm lib\support

TLINK will interpret it to mean that

• Case is significant during linking (j C).

• The .OBJ files to be linked are MAINLINE.OBJ, WD.OBJ, LN.OBJ, and
TX.OBJ.

• The executable program name will be FIN.EXE .
.. The map file is MFIN.MAP .

.. The library files to be linked in are COMM.LIB and
SUPPORT. LIB, both of which are in subdirectory LIB.

TLINK appends extensions to file names that have none:

II .OBJ for object files
• .EXE for executable files
• .MAP for ma p files
• .LIB for library files

494 Turbo C Reference Guide

Be aware that where no .EXE file name is specified, TLINK derives the
name of the executable file by appending .EXE to the first object file name
listed. If for example, you had not specified FIN as the .EXE file name in the
previous example, TLINK would have created MAINLINE.EXE as your
executable file.

Note that when the It option is used, the executable file extension defaults
to .COM rather than .EXE.

TLINK always generates a map file, unless you explicitly direct it not to by
including the I x option on the command line.

IJ If you give the 1m option, the map file includes publics.

IJ If you give the Is option, the map file is a detailed segment map.

These are the rules TLINK follows when determining the name of the map
file.

IJ If no .MAP file is specified, TLINK derives the map file name by adding a
.MAP extension to the .EXE file name. (The .EXE file name can be given
on the command line or in the response file; if no .EXE name is given,
TLINK will derive it from the name of the first .OBI file.)

c If a map file name is specified in the command line (or in the response
file), TLINK adds the .MAP extension to the given name.

Note that even if you specify a map file name, if the Ix option is specified
then no map file will be created at all.

Using Response Files

TLINK lets you supply the various parameters on the command line, in a
response file, or in any combination of the two.

A response file is just a text file that contains the options and/or file names
that you would usually type in after the name TLINK on your command
line.

Unlike the command line, however, a response file can be continued onto
several lines of text. You can break a long list of object or library files into
several lines by ending one line with a plus character (+) and continuing
the list on the next line.

You can also start each of the four components on separate lines: object
files, executable file, map file, libraries. When you do this, you must leave
out the comma used to separate components.

Appendix 0, Turbo C Utilities 495

To illustrate these features, suppose that you rewrote the previous
command-line example as a response file, FINRESP, like this:

Ie mainline wdt
In tx, fin
mfin
Iib\eomm Iib\support

You would then enter your TLINK command as:

tlink @finresp

Note that you must precede the file name with an "at" character (@) to
indicate that the next name is a response file.

Alternately, you may break your link command into multiple response
files. For example, you can break the previous command line into the
following two response files:

File Name

LISTOBJS

LISTLIBS

Contents

mainlinet
wd+
In tx
Iib\eomm+
lib \support

You would then enter the TLINK command as:

tlink Ie @listobjs,fin,mfin,@listlibs

Using TLINK with Turbo C Modules

Turbo C supports six different memory models: tiny, small, compact,
medium, large, and huge. When you create an executable Turbo C file
using TLINK, you must include the initialization module and libraries for
the memory model being used.

The general format for linking Turbo C programs with TLINK is

tlink COx <myobjs>, <eKe>, [map],<mylibs> [emulfp87 mathx] Cx

where these <filenames> represent the following:

496 Turbo C Reference Guide

<myobj5>
<exe>
[map]
<mylib5>

= the .OBJ files you want linked
the name to be given the executable file

= the name to be given the map file (optional)
= the library files you want included at link time

The other file names on this general TLINK command line represent Turbo
C files, as follows:

COx initialization module for memory model t, 5, C, m, I, or h
emu I fp87 the floating-point libraries (choose one)
mathx = math library for memory model 5, C, m, I, or h
Cx run-time library for memory model 5, C, m, I, or h

Note: If you are using the tiny model, and you want TLINK to produce a
.COM file, you must also specify the It option.

Initialization Modules

The initialization modules have the name COx.OBJ, where x is a single letter
corresponding to the model: t, 5, C, m, I, h. Failure to link in the appropriate
initialization module usually results in a long list of error messages telling
you that certain identifiers are unresolved and/or that no stack has been
created.

The initialization module must also appear as the first object file in the list.
The initialization module arranges the order of the various segments of the
program. If it is not first, the program segments may not be placed in
memory properly, causing some frustrating program bugs.

Be sure that you give an explicit .EXE file name on the TLINK command
line. Otherwise, your program name will be COx.EXE-probably not what
you wanted!

Libraries

After your own libraries, the libraries of the corresponding memory model
must also be included in the link command. These libraries must appear in
a specific order; a floating-point library with the appropriate math library
(these are optional), and the corresponding run-time library. We discuss
those libraries in that order here.

If you are using any Turbo C graphics functions, you must link in
graphics.lib. The graphics library is independent of memory models.

Appendix 0, Turbo C Utilities 497

If your Turbo C program uses any flo~ting-point, you must include a
floating-point library (EMU.LIB or FP87.LIB) plus a math library
(MATHx.LIB) in the link command.

Turbo C's two floating-point libraries are independent of the program's
memory model.

• If you want to include floating-point emulation logic so that the program
will work both on machines with and without a math coprocessor (8087
or 80287) chip, you must use EMU.LIB .

• If you know that the program will always be run on a machine with a
math coprocessor chip, the FP87.LIB library will produce a smaller and
somewhat faster executable program.

The math libraries have the name MATHx.LIB, where x is a single letter
corresponding to the model: 5, C, m, I, h (the tiny and small models share the
library MATHS.LIB).

You can always include the emulator and math libraries in a link command
line. If your program does no floating-point work, nothing from those
libraries will be added to your executable program file. However, if you
know there is no floating-point work in your program, you can save time in
your links by excluding those libraries from the command line.

You must always include the C run-time library for the program's memory
model. The C run-time libraries have the name Cx.LIB, where x is a single
letter corresponding to the model, as before.

Note: If you are using floating-point operations, you must include the math
and emulator libraries before the C run-time library. Failure to do this could
result in a failed link.

Using TLINK with TCC

You can also use TCC, the standalone Turbo C compiler, as a ufront end" to
TLINK that will invoke TLINK with the correct startup file, libraries, and
executable-program name.

To do this, you give file names on the TCC command line with explicit .OBJ
and .LIB extensions. For example, given the following TCC command line

tee -rnx rnainfile.obj subl.obj rnylib.lib

TCC will invoke TLINK with the files COx.OBJ, EMU.LIB, MATHx.LIB and
Cx.LIB (initialization module, default 8087 emulation library, math library
and run-time library for memory model x). TLINK will link these along

498 Turbo C Reference Guide

with your own modules MAINLINE.OBJ and SUB1.0BJ, and your own
library MYLIB.LIB.

Note: When TCC invokes TLINK, it always uses the Ie (case-sensitive link)
option (unless it is overridden with -i-c).

TLINK Options

TLINK options can occur anywhere on the command line. The options
consist of a slash U) followed by the option-specifying letter (m, x, i, 1,5, n,
d, c, 3, v, e, or t).

If you have more than one option, spaces are not significant (lml c is the
same as 1m I c), and you can have them appear in different places on the
command line. The following sections describe each of the options.

The lx, 1m, Is Options

By default, TLINK always creates a map of the executable file. This default
map includes only the list of the segments in the program, the program
start address, and any warning or error messages produced during the link.

If you want to create a more complete map, the 1m option will add a list of
public symbols to the map file, sorted in increasing address order,. This
kind of map file is useful in debugging. Many debuggers, such as SYMDEB,
can use the list of public symbols to allow you to refer to symbolic
addresses when you are debugging.

Appendix 0, Turbo C Utilities 499

The Is option creates a map file with segments, public symbols and the
program start address just like the 1m option did, but also adds a detailed
segment map. The following is an example of a detailed segment map:

[Detailed map of segments]

Address Length Class Segment Name Group Module Alignment/
(Bytes) Combining

0000:0000 OE5B C=CODE S=SYMB TEXT G= (none) M=SYMB.C ACBP=28
00E5:000B 2735 C=CODE S=QUAL_TEXT G=(none) M=QUAL.C ACBP=28
0359:0000 002B C=CODE S=SCOPY TEXT G= (none) M=SCOPY ACBP=28
035B:000B 003A C=CODE S=LRSH TEXT G= (none) M=LRSH ACBP=20
035F:0005 0083 C=CODE S=PADA TEXT G=(none) M=PADA ACBP=20
0367:0008 005B C=CODE S=PADD TEXT G=(none) M=PADD ACBP=20
036D:0003 0025 C=CODE S=PSBP TEXT G= (none) M=PSBP ACBP=20
036F:0008 05CE C=CODE S=BRK TEXT G= (none) M=BRK ACBP=28
03CC:0006 066F C=CODE S=FLOAT TEXT G= (none) M=FLOAT ACBP=20
0433:0006 OOOB C=DATA S= DATA G=DGROUP M=SYMB.C ACBP=48
0433:0012 00D3 C=DATA S= DATA G=DGROUP M=QUAL.C ACBP=48
0433:00E6 OOOE C=DATA S= DATA G=DGROUP M=BRK ACBP=48
0442:0004 0004 C=BSS S= BSS G=DGROUP M=SYMB.C ACBP=48
0442:0008 0002 C=BSS S= BSS G=DGROUP M=QUAL.C ACBP=48
0442:000A OOOE C=BSS S= BSS G=DGROUP M=BRK ACBP=48

For each segment in each module, this map includes the address, length in
bytes, class, segment name, group, module, and ACBP information.

If the same segment appears in more than one module, each module will
appear as a separate line (for example, SYMB.C). Most of the information in
the detailed segment map is self-explanatory, except for the ACBP field.

The ACBP field encodes the A (alignment), C (combining), and B (big)
attributes into a set of four bit fields, as defined by Intel. TLINK uses only
three of the fields, the A, C, and B fields. The ACBP value in the map is
printed in hexadecimal: The following values of the fields must be OR'ed
together to arrive at the ACBP value printed.

500 Turbo C Reference Guide

Field Value Description

The A field 00 An absolute segment.
(alignment) 20 A byte aligned segment.

40 A word aligned segment.
60 A paragraph aligned segment.
80 A page aligned segment.
AO An unnamed absolute portion of storage.

The C field 00 May not be combined.
(combination) 08 A public combining segment.

The B field 00 Segment less than 64K
(big) 02 Segment exactly 64K

The II Option

The 11 option creates a section in the .MAP file for source code line
numbers. To use it, you must have created the .OBI files by compiling with
the -y (Line numbers ... On) option. If you tell TLINK to create no map at all
(using the Ix option), this option will have no effect.

The Ii Option

The Ii option causes uninitialized trailing segments to be output into the
executable file even if the segments do not contain data records. Note that
this is not normally necessary.

The In Option

The In option causes the linker to ignore default libraries specified by some
compilers. This option is necessary if the default libraries are in another
directory, because TLINK does not support searching for libraries. You may
want to use this option when linking modules written in another language.

Appendix 0, Turbo C Utilities 501

The Ie Option

The I e option forces the case to be significan t in public and external
symbols. For example, by default, TLINK regards fred, Fred, and FRED as
equal; the Ie option makes them different.

The Id Option

Normally, TLINK will not warn you if a symbol appears in more than one
library file. If the symbol must be included in the program, TLINK will use
the copy of that symbol in the first file on the command line in which it is
found. Since this is a commonly used feature, TLINK does not normally
warn about the duplicate symbols. The following hypothetical situation
illustrates how you might want to use this feature.

Suppose you have two libraries: one called SUPPORT.LIB, and a supple­
mental one called DEBUGSUP.LIB. Suppose also that DEBUGSUP.LIB
contains duplicates of some of the routines in SUPPORT.LIB (but the
duplicate routines in DEBUGSUP.LIB include slightly different
functionality, such as debugging versions of the routines). If you include
DEBUGSUP.LIB first in the link command, you will get the debugging
routines and not the routines in SUPPORT. LIB.

If you are not using this feature or are not sure which routines are
duplicated, you may include the Id option. This will force TLINK to list all
symbols duplicated in libraries, even if those symbols are not going to be
used in the program.

The Id option also forces TLINK to warn about symbols that appear both in
an .OBI and a .LIB file. In this case, since the symbol that appears in the first
(left-most) file listed on the command line is the one linked in, the symbol
in the .OBI file is the one that will be used.

With Turbo C, the distributed libraries you would use in any given link
command do not contain any duplicated symbols. Thus while EMU.LIB
and FP87.LIB (or CS.LIB and CL.LIB) obviously have duplicate symbols,
they would never rightfully be used together in a single link. There are no
symbols duplicated between EMU.LIB, MATHS.LIB, and CS.LIB, for
example.

502 Turbo C Reference Guide

The Ie Option

The library files that are shipped with Turbo C all contain an Extended
Dictionary with information that enables TLINK to link faster with those
libraries. This Extended Dictionary can also be added to any other library
file using the IE option with TLIB (see the section on TLIB below).

Although linking with libraries that contain an Extended Dictionary is
faster, there are two reasons you might want to use the Ie switch, which
disables the use of the Extended Dictionary:

II A program may need slightly more memory to link when an Extended
Dictionary is used.

II TLINK will ignore any debugging information contained in a library that
has an Extended Dictionary, unless I e is used.

The It Option

If you compiled your file in the tiny memory model and link it with this
switch toggled on, TLINK will generate a .COM file instead of the usual
.EXE file.

When It is used, the default extension for the executable file is .COM.

Note: .COM files may not exceed 64K in size, may not have any segment­
relative fixups, may not define a stack segment, and must have a starting
address equal to 0:100H. When an extension other than .COM is used for
the executable file (.BIN, for example), the starting address may be either
0:0 or 0:100H.

The Iv Option

The Iv option directs TLINK to include debugging information in the
executable file.

The 13 Option

The /3 option should be used when one or more of the object modules
linked has been produced by TASM or a compatible asembler, and contains
32-bit code for the 80386 processor. This option increases the memory
requirements of TLINK and slows down linking, so it should be used only
w hen necessary.

Appendix 0, Turbo C Utilities 503

Restrictions

As we said earlier, TLINK is lean and mean; it does not have an excessive
supply of options. Following are the only serious restrictions to TLINK:

• Overlays are not supported.
• Cornmon variables are only partly supported: A public must be supplied

to resolve them.

• You can have a maximum of about 4000 logical segments.

• Segments that are of the same name and class should either all be able to
be combined, or not. (Only assembler programmers might encounter this
as a problem.)

• Code compiled in Microsoft C or Microsoft Fortran often cannot be
linked with TLINK. This is because Microsoft languages have
undocumented object record formats in their .OB] files, which TLINK
does not support.

TLINK is designed to be used with Turbo C (both the Integrated
Environment and command-line versions), as well as with TASM, Turbo
Prolog, and other compilers; however, it is not a general replacement for
MS Link.

Error Messages

TLINK has three types of errors: fatal errors, nonfatal errors, and warnings.

• A fatal error causes TLINK to stop immediately; the .EXE file is deleted.
• A nonfatal error does not delete .EXE or .MAP files, but you shouldn't try

to execute the .EXE file.

• Warnings are just that: warnings of conditions that you probably want to
fix. When warnings occur, .EXE and .MAP files are still created.

The following generic names and values appear in the error messages listed
in this section. When you get an error message, the appropriate name or
value is substituted.

<sname> symbol name
<mname> module name
<fname> file name
<lsegname> logical segment name
XXXXh a 4-digit hexadecimal number, followed by 'h'

504 Turbo C Reference Guide

Fatal Errors

When fatal errors happen, TLINK stops and deletes the .EXE file.

XXXXXXXX.XXX: bad object file
An ill-formed object file was encountered. This is most commonly caused
by naming a source file or by naming an object file that was not completely
built. This can occur if the machine was rebooted during a compile, or if a
compiler did not delete its output object file when a Ctr/-Brk was struck.

XXXXXXXX.XXX: unable to open file
This occurs if the named file does not exist or is misspelled.

Bad character in parameters
One of the following characters was encountered in the command line or in
a response file:

I/*<=>?[] I

or any control character other than horizontal tab, line feed, carriage return,
or Ctrl-Z.

msdos error, ax = XXXXh
This occurs if a DOS call returned an unexpected error. The ax value
printed is the resulting error code. This could indicate a TLINK internal
error or a DOS error. The only DOS calls TLINK makes where this error
could occur are read, write, seek, and close.

Not enough memory
There was not enough memory to complete the link process. Try removing
any terminate-and-stay-resident applications currently loaded, or reduce
the size of any RAM disk currently active. Then run TLINK again.

<lsegname>: segment/group exceeds 64K
This message will occur if too much data was defined for a given data or
code segment, when segments of the same name in different source files are
combined. This message also occurs if a group exceeds 64K bytes when the
segments of the group are combined.

Undefined symbol name
The function name was called, that does not exist in the current file or any
other module or library that is being linked in. The symbol name must
ma tch identically the name of a defined function.

Invalid group definition
This message will generally occur only if a compiler produced a flawed
object file. If this occurs in a file created by Turbo C, try recompiling the
file. If the problem persists, contact Borland International.

Appendix 0, Turbo C Utl'lities 505

Invalid segment definition
This message will generally occur only if a compiler produced a flawed
object file. If this occurs in a file created by Turbo C, try recompiling the
file. If the problem persists, contact Borland International.

Unknown option
A slash character (I) was encountered on the command line or in a
response file without being followed by one of the allowed options.

Write failed, disk full?
This occurs if TLINK could not write all of the data it attempted to write.
This is almost certainly caused by the disk being full.

Relocation table full
The file being linked contains more base fixups than the standard DOS
relocation table can hold (base fixups are created mostly by calls to far
functions).

32-bit record encountered in module XXXX: use "/3" option
This message will occur when an object file that contains special 32-bit
records is encountered, and the 13 option has not been used. Simply restart
TLINK with the 13 option.

Invalid entry point offset
This message occurs only when modules with 32-bit records are linked. It
means that the initial program entry point offset exceeds the DOS limit of
64K.

Invalid initial stack offset
This message occurs only when modules with 32-bit records are linked. It
means that the initial stack pointer value exceeds the DOS limit of 64K.

Base fixup offset overflow
This message occurs only when modules with 32-bit records are linked. It
means that the offset of a base fixup exceeds the DOS limit of 64K.

Cannot generate COM file: invalid initial entry point address'
The It option has been used, but the program starting address is not equal
to lOOH, which is required with .COM files.

Cannot generate COM file: segment-relocatable items present
The It option has been used, but the progam contains segment-relative
fixups, which are not allowed with .COM files.

Cannot generate COM file: program exceeds 64K
The I t option has been used, but the total program size exceeds the .COM
file limit.

506 Turbo C Reference Guide

Cannot generate COM file: stack segment present
The It option has been used, but the program declares a stack segment,
which is not allowed with .COM files.

Nonfatal Errors

TLINK has only two nonfatal errors. As mentioned, when a nonfatal error
occurs, the .EXE and .MAP files are not deleted. However, these same
errors are treated as fatal errors under the Integrated Environment. Here
are the error messages:

XXX is unresolved in module YYY
The named symbol is referenced in the given module but is not defined
anywhere in the set of object files and libraries included in the link. Check
the spelling of the symbol for correctness. You will usually see this error
from TLINK for Turbo C symbols if you did not properly match a symbol's
declarations of pascal and cdecl type in different source files, or if you have
omitted the name of an .OBJ file your program needs.

Fixup overflow in module XXXX, at <lsegname>:xxxxh, target = <sname>
This indicates an incorrect data or code reference in an object
file that TLINK must fix up at link time.

This message is most often caused by a mismatch of memory models. A
near call to a function in a different code segment is the most likely cause.
This error can also result if you generate a near call to a data variable or a
data reference to a function. In either case the symbol named as the target in
the error message is the referenced variable or function. The reference is in
the named module, so look in the source file of that module for the
offending reference.

If this technique does not identify the cause of the failure, or if you are
programming in assembly language or some other high-level language
besides Turbo C, there may be other possible causes for this message. Even
in Turbo C, this message could be generated if you are using different
segment or group names than the default values for a given memory
model.

Warnings

TLINK has only three warnings. The first two deal with duplicate
definitions of symbols; the third, applicable to tiny model programs,
indicates that no stack has been defined. Here are the messages:

Appendix 0, Turbo C Utilities 507

Warning: XXX is duplicated in module YYY
The named symbol is defined twice in the named module. This could
happen in Turbo C object files, for example, if two different pascal names
were spelled using different cases in a source file.

Warning: XXX defined in module YYY is duplicated in module ZZZ
The named symbol is defined in each of the named modules. This could
happen if a given object file is named twice in the command line, or if one
of the two copies of the symbol were misspelled.

Warning: no stack
This warning is issued if no stack segment is defined in any of the object
files or in any of the libraries included in the link. This is a normal message
for the tiny memory model in Turbo C, or for any application program that
will be converted to a .COM file. For other programs, this indicates an error.

If a Turbo C program produces this message for any but the tiny memory
model, check the COx startup object files to be sure they are correct.

TLIB: The Turbo Librarian

TLIB is Borland's Turbo Librarian: It is a utility that manages libraries of
individual .OBI (object module) files. A library is a very convenient way of
dealing with a collection of object modules as a single unit.

The libraries included with Turbo C were built with TLIB. You can use TLIB
to build your own libraries, or to modify the Turbo C libraries, your own
libraries, libraries furnished by other programmers, or commercial libraries
you have purchased. You can use TLIB to

• create a new library from a group of object modules
• add·object modules or other libraries to an existing library

• remove object modules from an existing library
• replace object modules from an existing library

• extract object modules from an existing library

• list the contents of a new or existing library

When it modifies an existing library, TLIB always creates a copy of the
original1ibrary with a .BAK extension.

TLIB can also create (and include in the library file) an Extended
Dictionary, which may be used to speed up linking. See the section on the /
E option for details.

508 Turbo C Reference Guide

Although TLIB is not essential to creating executable programs with Turbo
C, it is a useful programmer productivity tool. You will find TLIB
indispensable for large development projects. If you work with object
module libraries developed by others, you can use TLIB to maintain those
libraries when necessary.

The Advantages of Using Object Module Libraries

When you program in C, you often create a collection of useful C functions,
like the functions in the C run-time library. Because of C's modularity, you
are likely to split those functions into many separately compiled source
files. You use only a subset of functions from the entire collection in any
particular program. It can become quite tedious, however, to figure out
exactly which files you are using. If you always include all the source files,
on the other hand, your program becomes extremely large and unwieldy.

An object module library solves the problem of managing a collection of C
functions. When you link your program with a library, the linker scans the
library and automatically selects only those modules needed for the current
program. In addition, a library consumes less disk space than a collection of
object module files, especially if each of the object files is small. A library
also speeds up the action of the linker, because it only opens a single file,
instead of one file for each object module.

The Components of a TLIB Command Line

You run TLIB by typing a TLIB command line at the DOS prompt. To get a
summary ofTLIB's usage, just type TLIB Enter.

The TLIB command line takes the following general form, where items
listed in square brackets ([like this]) are optional:

tlib libname [/C] [IE] [operations] [, listfile]

This section summarizes each of these command-line components; the
following sections provide details about using TLIB. For examples of how
to use TLIB, refer to the "Examples" section below.

Appendix 0, Turbo C Utilities 509

Component Description

tlib The command name that invokes TLIB.

libname The DOS path name of the library you want to create or
manage. Every TLIB command must be given a libname.
Wildcards are not allowed. TLIB assumes an extension
of .LIB if none is given. We recommend that you do not
use an extension other than .LIB, since both TCC and
TC's project-make facility require the .LIB extension in
order to recognize library files.

Note that if the named library does not exist and there
are add operations, TLIB creates the library.

IC The case-sensitive flag. This option is not normally used;
see "Ad vanced Operation: The I C Option" for a
detailed explanation.

IE Create Extended Dictionary; see "Creating an Extended
Dictionary: The IE Option" for a detailed explanation.

operations The list of operations TLIB performs. Operations may
appear in any order. If you only want to examine the
contents of the library, you don't have to give any
operations at all.

listfile The name of the file listing library contents. The listfile
name (if given) must be preceded by a comma. If you do
not give a file name, no listing is produced. The listing is
an alphabetical list of each module, followed by an
alphabetical list of each public symbol defined in that
module.The default extension for the listfile is .LST.

You may direct the listing to the screen by using the
listfile name CON, or to the printer by using the name
PRN.

The Operation List

The operation list describes what actions you want TLIB to do. It consists of
a sequence of operations given one after the other. Each operation consists
of a one- or two-character action symbol followed by a file or module name.

510 Turbo C Reference Guide

White space may be used around either the action symbol or the file or
module name, but it cannot appear in the middle of a two-character action
or in a name.

You can put as many operations as you like on the command line, up to the
DOS-imposed line-length limit of 127 characters. The order of the
operations is not important. TLIB always applies the operations in a specific
order:

1. All extract operations are done first.

2. All remove operations are done next.

3. All add operations are done last.

Replacing a module means first removing it, then adding the replacement
module.

File and Module Names

When TLIB adds an object module file to a library, the file is simply called a
module. TLIB finds the name of a module by taking the given file name and
stripping any drive, path, and extension information from it. (Typically,
drive, path, and extension are not given.)

Note that TLIB always assumes reasonable defaults. For example, to add a
module that has an .OBJ extension from the current directory, you only
need to supply the module name, not the path and .OBJ extension.

Wildcards are never allowed in file or module names.

TLIB Operations

TLIB recognizes three action symbols (-, +, *), which you can use singly or
combined in pairs for a total of five distinct operations. For operations that
use a pair of characters, the order of the characters in not important. The
action symbols and what they do are listed here:

Appendix 0, Turbo C Utilities S11

Action
Symbol Name Description

+ Add TLIB adds the named file to the library. If the file has
no extension given, TLIB assumes an extension of
.OBJ. If the file is itself a library (with a .LIB
extension), then the operation adds all of the
modules in the named library to the target library.

If a module being added already exists, TLIB
displays a message and does not add the new
module.

Remove TLIB removes the named module from the library. If
the module does not exist in the library, TLIB
displays a message.

* Extract TLIB creates the named file by copying the corre-
sponding module from the library to the file. If the
module does not exist, TLIB displays a message and
does not create a file. If the named file already exists,
it is overwritten.

-+ Replace TLIB replaces the named module with the corre-
spond-

+- ing file. This is just a shorthand for a remove
followed by anadd operation.

-* Extract & TLIB copies the named module to the corresponding
*- Remove file name and then removes it from the library. This

is just a shorthand for an extract followed by a
remove operation.

A remove operation only needs a module name, but TLIB allows you to
enter a full path name with drive and extension included. However,
everything but the module name is ignored.

It is not possible to rename modules in a library. To rename a module, you
first must extract and remove it, rename the file just created, and, finally,
add it back into the library.

512 Turbo C Reference Guide

Creating a Library

To create a library, you simply add modules to a library that does not yet
exist.

Using Response Files

When you are dealing with a large number of operations, or if you find
yourself repea ting certain sets of operations over and over, you will
probably want to start using response files. A response file is simply an
ASCII text file (which can be created with the Turbo C editor) that contains
all or part of a TLIB command. Using response files, you can build TLIB
commands larger than would fit on one DOS command line.

To use a response file pathname, specify @<pathname> at any position on the
TLIB command line.

a More than one line of text can make up a response file; you use the "and"
character (&) at the end of a line to indicate that another line follows.

tI You don't need to put the entire TLIB command in the response file; the
file can provide a portion of the TLIB command line, and you can type in
the rest.

El You can use more than one response file in a single TLIB command line.

See "Examples" for a sample response file and a TLIB command line
incorpora ting it.

Creating an Extended Dictionary: The IE Option

To speed up linking with large library files (such as the standard Cx.LIB
library), you can direct TLIB to create an Extended Dictionary and append it
to the library file. This dictionary contains, in a very compact form,
information that is not included in the standard library dictionary. This
information enables TLINK to process library files faster, especially when
they are located on a floppy disk or a slow hard disk. All the libraries on
the Turbo C distribution disks contain the Extended Dictionary.

To create an Extended Dictionary for a library that is being modified, just
use the IE option when you invoke TLIB to add remove, or replace modules
in the library. To create an Extended Dictionary for an existing library that
you don't want to modify, use the IE option and ask TLIB to remove a non­
existent module from the library. TLIB will display a warning that the

Appendix 0, Turbo C utilities 513

specified module was not found in the library, but it will also create an
Extended Dictionary for the specified library. For example, enter

tlib IE mylib -bogus

Advanced Operation: The Ie Option

When you add a module to a library, TLIB maintains a dictionary of all
public symbols defined in the modules of the library. All symbols in the
library must be distinct. If you try to add to the library a module that
would cause a duplicate symbol, TLIB will display a message and not add
the module.

Normally, when TLIB checks for duplicate symbols in the library,
uppercase and lowercase letters are not considered as distinct. For example,
the symbols lookup and LOOKUP are treated as duplicates. Since C does
treat uppercase and lowercase letters as distinct, you should use the Ie
option to add a module to a library that includes a symbol differing only in
case from one already in the library. The Ie option forces TLIB to accept a
module with symbols in it that differ only in case from symbols already in
the library.

It may seem odd that, without the Ie option, TLIB rejects symbols that
differ only in case, especially since C is a case-sensitive language. The
reason is that some linkers fail to distinguish between symbols in a library
that differ only in case.

TLINK has no problem distinguishing uppercase and lowercase symbols,
and it will properly accept a library containing symbols that differ only in
case. As long as you use the library only with TLINK, you can use the TLIB
Ie option without any problems.

However, if you want to use the library with other linkers (or allow other
people to use the library with other linkers), for your own protection you
should not use the Ie option.

Examples

Here are some simple examples demonstrating the different things you can
do with TLIB.

1. To create a library named MYLIB.LIB with modules X.OBJ, Y.OBl, and
Z.OBJ, type

514 Turbo C Reference Guide

tlib mylib +x +y +z

2. To create a library as in #1 and get a listing in MYLIB.LST too, type
tlib mylib +x +y +z, mylib.lst

3. To get a listing in CS.LST of an existing library CS.LIB, type
tlib cs, cs.lst

4. To replace module X.OBJ with a new copy, add A.OBJ and delete Z.OBJ
from MYLIB.LIB, type

tlib mylib -+x +a -z

5. To extract module Y.OBJ from MYLIB.LIB and get a listing in
MYLIB.LST, type

tlib mylib *y, mylib.lst

6. To create a new library named ALPHA, with modules A.OBJ, B.OBJ, ... ,
G.OBJ using a response file:
First create a text file, ALPHA.RSP, with

+a.obj +b.obj +c.obj &
+d.obj +e.obj +f.obj &
+g.obj

Then use the TLIB command, which produces a listing file named
ALPHA.LST:

tlib alpha @alpha.rsp, alpha. 1st

GREP: A File-Search Utility

GREP is a powerful search utility tha t can search for text in several files at
once.
The general command-line syntax for GREP is:

grep [options] searchstring [filespec .••]

For example, if you want to see in which source files you call the
setupmodem function, you can use GREP to search the contents of all the
.C files in your directory to look for the string setupmodem, like this:

grep setupmodem *.c

The GREP Options

In the command line, options are one or more single characters preceded by
a dash symbol (-). Each individual character is a switch that you can turn

Appendix 0, Turbo C Utilities 515

on or off: Type the plus symbol (t) after a character to tum the option on, or
type a dash (-) after the character to turn the option off.

The default is on (the t is implied); for example, -r means the same thing as
-rt. You can list multiple options individually (like this: -i -d -1) or you
can combine them (like this: -ild or -il -d, etc.); they're all the same to
GREP.

Here is a list of the option characters used with GREP and their meanings:

-c Count only: Only a count of matching lines is printed. For each file
that contains at least one matching line, GREP prints the file name
and a count of the number of matching lines. Matching lines are
not printed.

-d Directories: For eachfilespec specified on the command line, GREP
searches for all files that match the file specification, both in the
directory specified and in all subdirectories below the specified
directory. If you give a filespec without a path, GREP assumes the
files are in the current directory.

-i Ignore case: GREP ignores upper Ilowercase differences (case
folding). GREP treats all letters a-z as being identical to the
corresponding letters A-Z in all situations.

-1 List match files: Only the name of each file containing a match is
printed. After GREP finds a match, it prints the file name and
processing immediately moves on to the next file.

-n Numbers: Each matching line that GREP prints is preceded by its
line number.

-0 UNIX output format: Changes the output format of matching lines to
support more easily the UNIX style of command-line piping. All
lines of output are preceded by the name of the file that contained
the matching line.

-r Regular expression search: The text defined by searchstring is treated
as a regular expression instead of as a literal string.

-u Update options: GREP will combine the options given on the
command line with its default options and write these to the
GREP.COM file as the new defaults. (In other words, GREP is self­
configuring.) This option allows you to tailor the default option
settings to your own taste.

516 Turbo C Reference Guide

-v Non-match: Only non-matching lines are printed. Only lines that do
not contain the search string are considered to be non-matching
lines.

-w 'WJrd search: Text found which matches the regular expression will
be considered a match only if the character immediately preceding
and following cannot be part of a word. The default word character
set includes A-Z, 9-0, and the underscore C). An alternate form of
this option allows you to specify the set of legal word characters. Its
form is -w [set], where set is any valid regular expression set
definition. If alphabetic characters are used to define the set, the set
will automatically be defined to contain both the upper and lower
case values for each letter in the set, regardless of how it is typed,
even if the search is case-sensitive. If the -w option is used in
combina tion with the -u option, the new set of legal characters is
saved as the default set.

-z Verbose: GREP prints the file name of every file searched. Each
matching line is preceded by its line number. A count of matching
lines in each file is given, even if the count is zero.

Order of Precedence

Remember that each of GREP's options is a switch: its state reflects the way
you last set it. At any given time, each option can only be on or off. Each
occurrence of a given option on the command line overrides its previous
definition. For example, you might type in the following command line:

grep -r -i- -d -i -r- main(my*.c

Given this command line, GREP will run with the -d option on, the - i
option on, and the - r option off.

You can install your preferred default setting for each option in GREP.COM
with the -u option. For example, if you want GREP to always do a verbose
search (-z on), you can install it with the following command:

grep -u -z

The Search String

The value of searchstring defines the pattern GREP will search for. A search
string can be either a regular expression or a literal string. In a regular
expression, certain characters have special meanings: they are operators

Appendix 0, Turbo C Utilities 517

that govern the search. In a literal string, there are no operators: each
character is treated literally.

You can enclose the search string in quotation marks to prevent spaces and
tabs from being treated as delimiters. Matches will not cross line
boundaries (a match must be contained in a single line).

An expression is either a single character or a set of characters enclosed in
brackets. A concatenation of regular expressions is a regular expression.

Operators in Regular Expressions

When you use the -r option, the search string is treated as a regular
expression (not a literal expression), and the following characters take on
special meanings:

" A circumflex at the start of the expression matches the start of a
line.

$

*

+

[]

\

A dollar sign at the end of the expression matches the end of a line.

A period rna tches any character.

An expression followed by an asterisk wildcard matches zero or
more occurrences of that expression. For example: in fo*, the *

operates on the expression 0; it matches f, fo, foo, etc. <t followed by
zero or more os), but doesn't match fa.

An expression followed by a plus sign matches one or more
occurrences of that expression: fo+ matches fo, foo, etc., but not f.

A string enclosed in brackets matches any character in that string,
but no others. If the first character in the string is a circumflex (,,),
the expression matches any character except the characters in the
string. For example, [xyz] matches x, y, or z, while ["xyz] matches a
and b, but not x, y, or z. You can specify a range of characters with
two characters separated by a dash (-). These can be combined to
form expressions (like [a-bd-z?] to match? and any lowercase letter
except c).

The backs lash escape character tells GREP to seach for the literal
character that follows it. For example, \. matches a period instead
of "any character."

Note: Four of the previously-described characters ($, ., *, and +) do not
have any special meaning when used within a bracketed set. In addition,

518 Turbo C Reference Guide

the character" is only treated specially if it immediately follows the
beginning of the set definition (that is, immediately after the [).

Any ordinary character not mentioned in the preceding list matches that
character (> matches >, # matches #, and so on).

The File Specification

The third item in the GREP command line is filespec, the file specification; it
tells GREP which files (or groups of files) to search. filespec can be an
explicit file name, or a "generic" file name incorporating the DOS ? and *
wildcards. In addition, you can enter a path (drive and directory informa­
tion) as part of filespec. If you give filespec without a path, GREP only
searches the current directory.

If you don't specify any file specifications, input to GREP must be specified
by redirecting stdin or by piping.

Examples with Notes

The following examples assume that all of GREP's options default to off:

Example 1

Command line: grep main (*.c

Matches: main ()
mymain(

Does not match: mymainfunc ()
MAIN(i: integer);

Files Searched: *.C in current directory.

Note: By default, the search is case-sensitive.

Example 2

Command line: grep -r ["a-zJmain\ * (*.c

Matches: main (i: integer)
main(i,j:integer)
if (main ()) halt;

Does not match: mymain ()
MAIN(i:integer);

Appendix 0, Turbo C Utilities 519

Files Searched: *.C in current directory.

Note: The search string here tells GREP to search for the word main with
no preceding lowercase letters (["a - z]), followed by zero or more
occurrences of blank spaces (\ *), then a left parenthesis.

Since spaces and tabs are normally considered to be command-line
delimiters, you must quote them if you want to include them as part of a
regular expression. In this case, the space after main is quoted with the
backslash escape character. You could also accomplish this by placing the
space in double quotes (["a-z]main" "*).

Example 3

Command line: grep -ri [a-cJ:\\data\.fil *.c *.inc

Matches: A:\data.fil

c: \Data. Fil
B:\DATA.FIL

Does not match: d:\data.fil

a:data.fil

Files Searched: *.C and *.INC in current directory.

Note: Because the backslash and period characters (\ and.) usually have
special meaning in path and file names, if you want to search for them,
you must place the backslash escape character immediately in front of
them.

Example 4

Command line: grep -ri ["a-zJword["a-zJ * .doc

Matches: every new word must be on a new line.

MY WORD!

word--smallest unit of speech.
In the beginning there was the WORD, and the WORD

Does not match: Each file has at least 2000 words.

He misspells toward as toword.

Files Searched: *.DOC in the current directory.

Note: This format basically defines how to search for a given word.

520 Turbo C Reference Guide

Example 5

Command line: grep -iw word *.doc

Matches: every new word must be on a new li ne However,
MY WORD!
word: smallest unit of speech which conveys meaning.
In the beginning there was the WORD, and the WORD

Does not match: each document contains at least 2000 words!
He seems to continually misspell "toward" as "toword."

Files searched: *.doc in the current directory.

Note: This fonnat defines a basic uword" search.

Example 6

Command line: grep "search string with spaces" * .doc * .asm
a:\work\myfile.*

Matches: This is a search string with spaces in it.

Does not match: THIS IS A SEARCH STRING WITH SPACES IN IT.
This is a search string with many spaces in it.

Files Searched: *.DOC and *.ASM in the current directory, and
MYFILE.* in a directory called \ WORK on drive A:.

Note: This is an example of how to search for a string with embedded
spaces.

Example 7

Command line: grep -rd"[,.:?'\"]"$ *.doc

Matches: He said hi to me.
Where are you going?
Happening in anticipation of a unique situation,
Examples include the following:
"Many men smoke, but fu man chu."

Does not match: He said "Hi" to me
Where are you going? I'm headed to the beach this

Files Searched: *.DOC in the root directory and all its subdirectories
on the current drive.

Note: This example searches for the characters, .:?' and If at the end of a
line. Notice that the double quote within the range is preceded by an
escape character so it is treated as a nonnal character instead of as the
ending quote for the string. Also, notice how the $ character appears

Appendix 0, Turbo C Utilities 521

outside of the quoted string. This demonstrates how regular expressions
can be concatenated to form a longer expression.

ExampleS

Command line: grep -ild II the II * .doc

Matches:

or grep -i -1 -d II the II * .doc
or grep -il -d II the II \ * .doc

Anyway, this is the time we have
do you think? The main reason we are

Does not match: He said IIHill to me just when I
Where are you going? I'll bet you're headed to

Files Searched: *.DOC in the root directory and all its subdirectories
on the current drive.

Note: This example ignores case and just prints the names of any files
that contain at least one match. The three command-line examples show
different ways of specifying multiple options.

Example 9

Command line: grep -w[=] = *.c

Matches: i = 5;
j=5;
i += j;

Does not match: if (i == t) j++;

1* == *1

Files searched: *.c in the current directory.

Note: This example redefines the current set of legal characters for a
word as the assignment operator (=) only, then does a word search. It
matches C assignment statements, but not equality tests.

BGIOBJ: Conversion Utility for Graphics
Drivers and Fonts

BGIOB] is a utility you can use to convert graphics driver files and
character sets (stroked font files) to object (.OB]) files. Once they're
converted, you can link them into your program, making them part of the
executable file. This is offered in addition to the graphics package's

522 Turbo C Reference Guide

dynamic loading scheme, in which your program loads graphics drivers
and character sets (stroked fonts) from disk at execution time.

Linking drivers and fonts directly into your program is advantageous
because the executable file contains all (or most) of the drivers and/or fonts
it might need, and doesn't need to access the driver and font files on disk
when running. However, linking the drivers and fonts into your executable
file increases its size.

To convert a driver or font file to a linkable object file, use the BGIOBI.EXE
utility. This is the simplified syntax:

BGIOBJ <source file>

where <source file> is the driver or font file to be converted to an object file.
The object file created has the same file name as the source file, with the
extension .OBI; for example, EGAVGA.BGI yields EGAVGA.OBJ,
SANS.CHR gives SANS. OBI, etc.

Adding the New .OB! Files to GRAPHICS.LIB

You should add the driver and font object modules to GRAPHICS. LIB, so
the linker can locate them when it links in the graphics routines. If you
don't add these new object modules to GRAPHICS.LIB, you'll have to add
them to the list of files in the TC project (.PRJ) file, on the TCC command
line, or on the TLINK command line. To add these object modules to
GRAPHICS.LIB, invoke the Turbo Librarian (TLIB) with the following
command line:

tlib graphics + <object file name> [+ <object file name> ... 1

where <object file name> is the name of the object file created by
BGIOBI.EXE (such as CGA, EGA VGA, GOTH, etc.); the .OBI extension is
implied, so you don't need to include it. You can add several files with one
command line to save time; see the example in the following section.

Registering the Drivers and Fonts

After adding the driver and font object modules to GRAPHICS.LIB, you
have to register all the drivers and fonts that you want linked in; you do this
by calling registerbgidriver and registerbgifont in your program (before
calling initgraph). This informs the graphics system of the presence of

Appendix D, Turbo C Utilities 523

those files, and ensures that they will be linked in when the executable file
is created by the linker.

The registering routines each take one parameter; a symbolic name defined
in GRAPHICS.H. Each registering routine returns a non-negative value if
the driver or font is successfully registered.

The following table is a complete list of drivers and fonts included with
Turbo C. It shows the names to be used with registerbgidriver and
registerbgifont.

Driver file
(*.BGI)

CGA
EGAVGA
HERC
ATI
PC3270
IBM8514

An Example

registerbgidriver
Symbolic name

CGA_driver
EGA VGA_driver
Here_driver
ATI_driver
PC3270_driver
IBM8514_driver

Font file
(*.CHR)

TRIP
LITI
SANS
GOTH

regis terb gifon t
Symbolic name

triplex_font
small_font
sansserifjont
gothic_font

Here's a complete example. Suppose you want to convert the files for the
CGA graphics driver, the gothic font, and the triplex font to object modules,
then link them into your program.

1. Convert the binary files to object files using BGIOBI.EXE, as shown in
the following separate command lines:

bgiobj ega
bgiobj trip
bgiobj goth

This creates three files: CGA.OBI, TRIP.OBI, and GOTH.OBI.

2. You can add these object files to GRAPHICS. LIB with this TLIB
command line:

tlib graphics +cga +trip +goth

3. If you don't add the object files to GRAPHICS. LIB, you must add the
object file names CGA.OBI, TRIP.OBI, and GOTH.OBI to your project
list (if you are using Turbo C's integrated environment), or to the TCC
command line. For example, the TCC command line would look like
this:

tcc niftgraf graphics.lib cga.obj trip.obj goth.obj

4. You register these files in your graphics program like this:

524 Turbo C Reference Guide

/* Header file declares CGA_driver, triplex_font, and gothic_font */
#include <graphics.h>

/* Register and check for errors (one never knows) */

if (registerbgidriver(CGA_driver) < 0) exit(l);
if (registerbgifont(triplex_font) < 0) exit(l);
if (registerbgifont(gothic_font) < 0) exit(l);

/* •.. */

initgraph(....); /* initgraph should be called after registering */

/* ... */

If you ever get a linker error Segment exceeds 64k after linking in some
drivers and/or fonts, refer to the following section.

The IF option

This section explains what steps to take if you get the linker error Segment
exceeds 64k (or a similar error) after linking in several driver and/or font
files (especially with small and compact model programs).

By default, the files created by BGrOBJ.EXE all use the same segment
(called _TEXT). This can cause problems if your program links in many
drivers and/or fonts, or when you're using the small or compact memory
model.

To solve this problem, you can convert one or more of the drivers or fonts
with the BGrOBJ /F option. This option directs BGrOBJ to use a segment
name of the form <filename> _TEXT, so that the default segment is not
overburdened by all the linked-in drivers and fonts (and, in small and
compact model programs, all the program code). For example, the
following two BGrOBJ command lines direct BGrOBJ to use segment names
of the form EGAVGA_TEXT and SANS_TEXT.

bgiobj /F egavga
bgiobj /F sans

When you select the /F option, BGrOBJ also appends F to the target object
file (EGA VGAF.OBJ, SANSF.OBJ, etc.), and appends Jar to the name that
will be used with registerfarbgidriver and registerfarbgifont. (For
example, EGAVGA_driver becomes EGA VGA_driver Jar.) For files created
with /F, you must use these far registering routines instead of the regular
registerbgidriver and registerbgifont. For example,

if (registerfarbgidriver(EGAVGA_driver_far) < 0) exit(l);
if (registerfarbgifont(sansserif_font_far) < 0) exit(l);

Appendix 0, Turbo C Utilities 525

Advanced BGIOBJ Features

This section explains some of BGIOBl's advanced features, and the routines
registerfarbgidriver and registerfarbgifont. Only experienced users should
use these features.

This is the full syntax of the BGIOB} .EXE utility:

BGIOBJ [IF] <source> <destination> <public name> <seg-name> <seg-class>

Component

IF or-F

<source>

<destination>

<public name>

<seg-name>

<seg-class>

Description

This option instructs BGIOB}.EXE to use a segment
name other than _TEXT (the default), and to change
the public name and destination file name. (See the
previous section for a detailed discussion of IF.)

This is the driver or font file to be converted. If the file
is not one of the driver/font files shipped with Turbo
C, you should specify a full file name (including
extension).

This is the name of the object file to be produced. The
default destination file name is <source>.OB}, or
<source> F.OB} if you use the IF option.

This is the name tha t will be used in the program in a
call to registerbgidriver or registerbgifont (or their
respective far versions) to link in the object module.

The public name is the external name used by the
linker, so it should be the name used in the program,
prefixed with an underscore. If your program uses
Pascal calling conventions, use only uppercase letters,
and do not add an underscore.

This is an optional segment name; the default is
_TEXT (or <filename> _TEXT if IF is specified)

This is an optional segment class; the default is
CODE.

All parameters except <source> are optional. If you need to specify an
optional parameter, all the parameters preceding it must also be specified.

526 Turbo C Reference Guide

If you choose to use your own public name(s), you have to add
declaration(s) to your program, using one of the following forms:

void public_name(void);

extern int far public_name[];

1* if IF not used, default segment name used *1

1* if IF used, or segment name not _TEXT *1

In these declarations, public_name matches the <public name> you used when
converting with BGIOBJ. The GRAPHICS.H header file contains
declarations of the default driver and font public names; if you use those
default public names you don't have to declare them as just described.

After these declarations, you have to register all the drivers and fonts in
your program. If you don't use the IF option and don't change the default
segment name, you should register drivers and fonts through
registerbgidriver and registerbgifont; otherwise use registerfarbgidriver
and registerfarbgifont.

Here is an example of a program that loads a font file into memory:

1* example of loading a font file into memory *1

#include <graphics.h>
#include <io.h>
#include <fcntl.h>
#include <stdio.h>
#include <conio.h>
#include <std1ib.h>
#include <process.h>
#include <alloc.h>

main ()
{

void
int

*gothic_fontp;
handle;

unsigned fsize;

1* points to the font buffer in memory *1
1* file handle used for 1/0 *1

1* size of file (and buffer) *1

int errorcode;
int graphdriver;
int graphmode;

1* open font file *1
handle = open("GOTH.CHR", O_RDONLYIO_BINARY);
if (handle == -1)
{

printf("unable to open font file 'GOTH.CHR'\n");
exit (1) ;

1* find out size of the file *1
fsize = filelength(handle);

1* allocate buffer *1

Appendix 0, Turbo C Utilities 527

gothic_fontp = malloc(fsize);
if (gothic_fontp == NULL)
(

printf(IIunable to allocate memory for font file 'GOTH.CHR'\n");
exit (1) ;

1* read font into memory *1
if (read(handle, gothic_fontp, fsize) != fsize)
(

printf("unable to read font file 'GOTH.CHR'\n");
exit (1) ;

1* close font file *1
close(handle);

1* register font *1
if (registerfarbgifont(gothic_fontp) != GOTHIC_FONT)
(

printf("unable to register font file 'GOTH.CHR'\n");
exit (1) ;

1* detect and initialize graphix *1
graphdriver = DETECT;
initgraph(&graphdriver, &graphmode, " .• ");
errorcode = graphresult();
if (errorcode != grOk)
(

printf("graphics error: %s\n",grapherrormsg(errorcode));
exit(l);

settextjustify(CENTER_TEXT, CENTER_TEXT);
settextstyle(GOTHIC_FONT, HORIZ_DIR, 4);
outtextxy(getmaxx() I 2, getmaxy() I 2, "Borland Graphics Interface (BGI)");

1* hit a key to terminate *1
getch();

1* shut down graphics system *1
closegraph();
return(O);

OBJXREF: The Object Module Cross­
Reference Utility

OBJXREF is a utility that examines a list of object files and library files and
produces reports on their contents. One type of report lists definitions of

528 Turbo C Reference Guide

public names and references to them. The other type lists the segment sizes
defined by object modules.

There are two categories of public names, global variables and function names.
The TESTl.C and TEST2.C files in the section "Sample OBJXREF Reports"
illustrate definitions of public names and external references to them.

Object modules are object (.OBD files produced by TC, TCC or TASM. A
library (.LIB) file contains multiple object modules. An object module
generated by TC is given the same name as the .C source file it was
compiled from. This is also true for TCC, unless a different output file name
is specifically indicated with the -0 TCC command-line option.

The OB1XREF Command Line

The OBJXREF command line consists of the word OBJXREF, followed by a
series of command-line options and a list of object and library file names,
separated by a space or tab character. The syntax is as follows:

OBJXREF < options> filename < filename ... >

The command-line options determine the kind of reports that OBJXREF
will generate and the amount of detail that OBJXREF will provide. They are
discussed in more detail in the section "The OBJXREF Command-Line
Options" below.

Each option begins with a forward slash (/) followed by a one- or two­
character option name.

Object files and library files may be specified either on the command line or
in a response file. On the command line, file names are separated by a space
or a tab. All object modules specified as .OBJ files are included in reports.
Like TLINK, however, OBJXREF includes only those modules from .LIB
files which contain a public name referenced by an .OBJ file or by a
previously included module from a .LIB file.

As a general rule, you should list all the .OBJ and .LIB files that are needed
if the program is to link correctly, including the startup .OBJ file and one or
more C libraries.

File names may include a drive and directory path. The DOS? and *
wildcard characters may be used to identify more than one file. File names
may refer to .OBJ object files or to .LIB library files. (If no file extension is
given, the .OBJ extension is assumed.)

Options and file names may occur in any order in the command line.

Appendix 0, Turbo C Utilities 529

OBJXREF reports are written to the DOS standard output. The default is the
screen. The reports may be sent to a printer (as with >LPT1:) or to a file (as
with> Istfile) with the DOS redirection character (».

Entering OBJXREF with no file names or options produces a summary of
available options.

The OBJXREF Command-Line Options

OBJXREF command-line options fall into two categories: control options and
report options.

Control Options

Control options modify the default behavior of OBJXREF (the default is
that none of these options are enabled).

II Ignore case differences in public names. Use this option if you use
TLINK without the Ie option (which makes case differences
significant.)

IF Include Full library. All object modules in specified .LIB files are
included even if no public names they contain are referenced by an
object module being processed by OBJXREF. This provides
information on the entire contents of a library file. (See example 4 in
the section "OBJXREF Examples.")

N Verbose output. Lists names of files read and displays totals of public
names, modules, segments, and classes.

/Z Include Zero Length Segment Definitions. Object modules may define
a segment without allocating any space in it. Listing these zero length
segment definitions normally makes the module size reports harder to
use but it can be valuable if you are trying to remove all definitions of
a segment.

Report Options

Report options govern what sort of report is generated, and the amount of
detail that OBJXREF provides.

IRC Report by Class Type: Module sizes ordered by class type of
segment

530 Turbo C Reference Guide

IRM Report by Module: Public names ordered by defining module

IRP Report by Public Names: Public names in order with defining
module name

IRR Report by Reference: Public name definitions and references
ordered by name. (This is the default if no report option is
specified.)

IRS Report of Module Sizes: Module sizes ordered by segment name

IRU Report of Unreferenced Symbol Names: Unreferenced public
names ordered by defining module

IRV Verbose Reporting: OBJXREF produces a report of every type

IRX Report by External Reference: External references ordered by
referencing module name

Public names defined in .C files appear in reports with a leading
underscore in the reports unless the -u- option was specified when the file
was compiled. (main appears as _main.)

Response Files

The command line is limited by DOS to a maximum of 128 characters. If
your list of options and file names will exceed this limit, you must place
your file names in a response file.

A response file is a text file that you make with an text editor. Since you
may already have prepared a list of the files that make up your program for
other Turbo C programs, OBJXREF recognizes several response file types.

Response files are called from the command line using one of the following
options. The response file name must follow the option without an
intervening space (/Lresp, not /L resp).

More than one response file can be specified on the command line, and
additional .OBJ and .LIB file names may precede or follow them.

Free£orm Response Files

You can create a freeform response file with a text editor. Just list the names
of all .OBJ and .LIB files needed to make your .EXE file.

Appendix 0, Turbo C Utilities 531

To use freeform files with OBJXREF, type in each file name on the
command line, preceded by a @, and separate it from other command line
entries with a space or tab:

@filename @filename ...

Note: Any file name that is listed in the response file without an extension
is assumed to be a .OBJ file.

Proj ect Files

You can also use project files of the type generated by TC as response files.
In the command line, precede the project file name with Ip.

/Pfilename

If the file name does not include an explicit extension, a .PRJ extension is
assumed.

File names in the project file with a .C extension or no extension are
interpreted as specifying the corresponding .OBJ file. You need not remove
file dependencies specified inside parentheses; they are ignored by
OBJXREF.

Note: By itself, the list of files in a .PRJ file does not specify a complete
program-you must also specify a startup file (COx.OBJ) and one or more
Turbo C library files (mathx.lib, emu.lib, and Cx.lib, for example). In
addition, you may need to use the 10 command to specify the directory
where OBJXREF is to look for your .OBJ files.

Linker Response Files

Files in TLINK response file forma t can also be used by OBJXREF. A linker
response file called from the command line is preceded by /L:

/Lfilename

To see how to use one of these files, refer to Example 2 in the section
"Examples of How to Use OBJXREF."

532 Turbo C Reference Guide

The /0 Command

If you want OBJXREF to look for .OBJ files in a directory other than the
current one, include the directory name on the command line, prefixed
with /0:

IOmyobjdir

The /N Command

You can limit the modules, segments, classes, or public names that
OBJXREF reports on by entering the appropriate name on the command
line prefixed with the IN command. For example,

OBJXREF <filelist> IRM INca

tells OBJXREF to generate a report listing information only for the module
named CO.

Sample OBIXREF Reports

Suppose you have two source files in your Turbo C directory, and wish to
generate OBJXREF reports on the object files compiled from them. The
source files are called TESTl.C and TEST2.C, and they look like this:

1* testl. c *1
int il;
extern int i2;
static int i3;
extern void look(void);

void main (void)
{

int i4;

look () ;

Appendix 0, Turbo C Utilities

1* defines il *1
1* refers to i2 *1

1* not a public name *1
1* refers to look *1

1* defines main *1

1* not a public name *1

1* refers to look *1

533

/* test2.c */
#include <process.h>
extern int il;
int i2;

void look (void)
{

exit (il);

/* refers to i1 */
/* defines i2 */

/* defines look */

/* refers to exit ... */
/* and to i1 */

The object modules compiled from them are TESTl.OBJ and TEST2.0BJ.
You can tell OBJXREF what kind of report to generate about these .OBJ files
by entering the file names on the command line, followed by a /R and a
second letter denoting report type.

Note: The examples below show only fragments of the output.

Report by Public Names (/RP)

A report by public names lists each of the public names defined in the
object modules being reported on, followed by the name of the module in
which it is defined.

If you enter this on the command line:

OBJXREF /RP test1 test2

OBJXREF will generate a report that looks like this:

SYMBOL
il
i2
look
main

Report by Module (/RM)

DEFINED IN
TEST1
TEST2
TEST2
TEST1

A report by module lists each object module being reported on, followed by
a list of the public names defined in it.

If you enter this on the command line:

OBJXREF /RM test1 test2

534 Turbo C Reference Guide

OBJXREF will generate a report that looks like this:

MODULE: TEST1 defines the following symbols:
pUblic: _i1
public: _main

MODULE: TEST2 defines the following symbols:
public: _ i2
pUblic: _look

Report by Reference (lRR) (Default)

A report by reference lists each public name with the defining module in
parentheses on the same line. Modules that refer to this public name are
listed on following lines indented from the left margin.

If you enter this on the command line:

OBJXREF /RR co test1 test2 CS.LIB

OBJXREF will generate a report that looks like this:

_exit (EXIT)
CO
TEST2

i1 (TEST1)
TEST2

i2 (TEST2)
look (TEST2)

TESTl
_main (TEST1)

co

Report by External References (lRX)

A report by external references lists each module followed by a list of
external references it contains.

If you enter this on the command line:

OBJXREF /RX co test1 test2 CS.LIB

Appendix 0, Turbo C Utilities 535

OBJXREF will generate a report that looks like this:

MODULE: co references the following symbols:
main

MODULE: TESTl references the following symbols:
i2
look

-
MODULE: TEST2 references the following symbols:

exit
il

Report of Module Sizes (IRS)

A report by sizes lists segment names followed by a list of modules that
define the segment. Sizes in bytes are given in decimal and hexadecimal
notation. The word unitialized appears where no initial values are
assigned to any of the symbols defined in the segment. Segments defined at
absolute addresses in a .ASM file are flagged Abs to the left of the segment
size.

If you enter this on the command line:

OBJXREF IRS testl test2

OBJXREF will generate a report tha t looks like this:

TESTl TEXT
6 (00006h) TESTl
6 (00006h) total

TEST2 TEXT

BSS

10 (OOOOAh) TEST2
10 (OOOOAh) total

4 (00004h) TEST1, uninitialized
2 (00002h) TEST2, uninitialized
6 (00006h) total

Report by Class Type (lRC)

A report by class type lists segment size definitions by segment class. The
CODE class contains instructions, DATA class contains initialized data and
BSS class contains unitialized data. Segments which do not have a class
type will be listed under the notation No class type.

If you enter this on the command line:

536 Turbo C Reference Guide

OBJXREF IRC CO test1 test2 CS.LIB

OBJXREF will generate a report that looks like this:

BSS

CODE

DATA

(00004h) TEST1
2 (00002h) TEST2

132 (00084h) total

6 (00006h) TESTl
10 (OOOOAh) TEST2
16 (00010h) total

143 (0008Fh) CO
143 (0008Fh) total

Report of Unreferenced Symbol Names (fRU)

A report of unreferenced symbol names lists modules that define public
names not referenced in other modules. Such a symbol is either:

(J referenced only from within the defining module, and does not need to
be defined as a public symbol (in that case, if the module is in C, the
keyword static should be added to the definition; if the module is in
TASM, just remove the public definition).

II never used (therefore, it can be deleted to save code or data space

If you enter this on the command line:

OBJXREF IRU test1 test2

OBJXREF will generate a report that looks like this:

MODULE: TEST2 defines the unreferenced symbol i2.

Verbose Reporting (fRV)

If you enter IRV on the command line, one report of each type will be
generated.

Appendix 0, Turbo C Utilities 537

Examples of How to Use OBJXREF

These examples assume that the application files are in the current
directory of the default drive and that the Turbo C startup files (COx.OB])
and the library files are in the \ TURBOC\LIB directory.

Example 1

Example 2

Example 3

Example 4

538

C>OBJXREF \turboc\lib\cOl test 1 test2 \turboc\lib\cl.lib

In addition to the TEST1.0BJ and TEST2.0BJ files, the
Turbo C startup file \ TURBOC\LIB\COL.OBJ and the
library file \ TURBOC\LIB\CL.LIB are specified. Since
no report type is specified, the resulting report is the
default report by reference, listing public names and the
modules that reference them.

C>OBJXREF IRV ILtestl.arf

The TLINK response file TESTl.ARF contains the same
list of files as the command line in Example 1. The IRV
option is specified, so a report of every type will be
generated. TEST1.ARF contains

\turboc\lib\cOl
testl test2
testl.exe
testl.rnap
\turboc\lib\cl

C>OBJXREF IRe B:cOs IPtestl @libs

The TC project file TEST1.PRJ specifies TEST1.0BJ and
TEST2.0BJ. The response file @ libs specifies libraries on
a disk in the B drive. TEST1.PRJ contains

testl
test2.c

The file LIBS contains

b:rnaths.lib b:ernu.lib b:cs.lib

The startup and library files specified depend on the
memory model and floating point options used in
compilation. The IRe causes a report of class type to be
output.

C>OBJXREF IF IRV \turboc\lib\cs.lib

Turbo C Reference Guide

This example reports on all the modules in the Turbo C
library file CS.LIB; OBJXREF can produce useful reports
even when the files specified do not make a complete
program. The IF causes all modules in CS.LIB file to be
included in the report.

OBJXREF Error Messages and Warnings

OBJXREF generates two sorts of diagnostic messages, error messages and
warnings.

Error Messages

Out of memory
OBJXREF performs its cross referencing in RAM memory and may
run out of memory even if TLINK is able to link the same list
of files successfully. When this happens, OBJXREF aborts. Remove memory
resident programs to get more space or add more RAM memory.

Warnings

WARNING: Unable to open input file rrrr
The input file rrrr could not be located or opened. OBJXREF proceeds to the
next file.

WARNING: Unknown option - 0000

The option name 0000 is not recognized by OBJXREF. OBJXREF ignores the
option.

WARNING: Unresolved symbol nnnn in module mmmm
The public name nnnn referenced in module mmmm is not defined in
any of the .OBJ or .LIB files specified. OBJXREF flags the symbol in any
reports it genera tes as being referenced but not defined.

WARNING: Invalid file specification ffff
Some part of the file name ffffis invalid. OBJXREF proceeds to the next file.

WARNING: No files matching ffff
The file named ffff listed on the command line or in a response file could
not be located or opened. OBJXREF skips to the next file.

WARNING: Symbol nnnn defined in mmmml duplicated in mmmm2

Appendix 0, Turbo C Utilities 539

Public name nnnn is defined in modules mmmml and mmmm2. OBJXREF
ignores the second definition.

540 Turbo C Reference Guide

A p p E N D x

E

Language Syntax Summary

This appendix uses a modified Backus-Naur form to summarize the syntax
for Turbo C constructs. These constructs are arranged categorically, as
follows:

13 Lexical Grammar: tokens, keywords, identifiers, constants, string literals,
opera tors and punctuators

• Phrase Structure Grammar: expressions, declarations, statements, external
definitions

II Preprocessing Directives

Optional elements in a construct are enclosed in <angle brackets>.

Lexical Grammar

Tokens

token:
keyword
identifier
constant
string-literal
operator
punctuator

Appendix E Language Syntax Summary 541

Keywords

keyword: one of the following

asm
auto
break
case
cdecl
char
const
continue
default

Identifiers

identifier:
nondigit

do
double
else
enum
extern
far
float
for

identifier nondigit
identifier digit

nondigit: one of the following

goto return union
huge short unsigned
if signed void
int sizeof volatile
interrupt static while
long strud - cs
near switch ds -
pascal typedef - es
register - ss

abc d e f g h i j k I mn 0 p q r stu v w x y z_ $
ABC D E F G H I J K L MN a P Q R STU V W x y Z

digit: one of the following
o 1 2 345 678 9

Constants

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant:
fractional-constant <exponent-part> <floating-suffix>
digit-sequence exponent-part <floating-suffix>

fractional-cons tan t:
<digit-sequence> . digit-sequence
digit-sequence.

542 Turbo C Reference Guide

exponent-part:
e <sign> digit-sequence
E <sign> digit-sequence

sign: one of the following
+-

digit:..sequence:
digit
digit-sequence digit

floating-suffix: one of the following
f 1 F L

integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

decimal-cons tan t:
nonzero-digit
decimal-constant digit

octal-cons tan t:
o
octal-constant octal-digit

hexadecimal-cons tan t:
o x hexadecimal-digit
o X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of the following
1 234 5 6 789

octal-digit: one of the following
o 1 2 345 6 7

hexadecimal-digit: one of the following
o 1 2 3 456 789
abcdef
ABCDEF

in teger-suffix:
unsigned -suffix <long-suffix>
long-suffix <unsigned-suffix>

unsigned-suffix: one of the following
uU

Appendix E Language Syntax Summary 543

long-suffix: one of the following
I L

enumeration-constant:
identifier

character-constant:
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any character in the source character set except
the single-quote ('), backslash (\), or newline character

escape-sequ ence

escape-sequence: one of the following

\' \b \v \xhh
\ /I \f \0 \xhhh
\? \n \00 \Xh
\ \ \r \000 \Xhh
\a \t \xh \Xhhh

String Literals

string-literal:
/I <s-char-sequence> /I

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any character in the source character set except
the double-quote ("), backslash (\), or newline () character

escape-sequence

544 Turbo C Reference Guide

Operators

operator: one of the following

I1 0 -> ++
& * +
sizeof / % « »
> <= >=
" I && II ? :
*= /= %= +=
»= &= "= 1=

Punctuators

punctuator: one of the following

I] () { } *

Phrase Structure Grammar

Expressions

primary-expression:
identifier
constant
pseudo-variable
string-literal
(expression)

pseud o-variab Ie:

pos tfix-expression:
primary-expression

_51 _E5
_DI _55
_BP _C5
_5P _D5

postfix-expression I expression]
postfix-expression «argument-expression-list»
postfix-expression . identifier

Appendix E, Language Syntax Summary

<

«=

545

postfix-expression - > identifier
postfix-expression ++
postfix-expression --

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

unary-expression:
pos tfix -expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of the following
& * + - !

cast-expression:
unary-expression
(type-name) cast-expression

multiplicative-expression:
cas t-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

additive-expression:
mu ltiplicative-expr ession
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
ad di tive-expression
shift-expression < < additive-expression
shift-expression > > additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

546 Turbo C Reference Guide

equality-expression:
relational-expression
equality expression = = relational-expression
equality expression ! = relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

excl usive-O R -expression:
AND-expression
exclusive-O R -expression " AND-expression

inclusive-O R -expression:
excl usive-O R -expression
inclusive-OR-expression 1 exclusive-OR-expression

logical-AND-expression:
inclusive-O R -expression
logical-AND-expression && inclusive-OR-expression

logical-OR -expression:
logical-AND-expression
logical-OR-expression 1 1 logical-AND-expression

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of the following

*= /=
< <= »= &=

expression:
assignment-expression

%=
"=

+=
1=

expression , assignment-expression

constant-expression:
conditional-expression

Appendix E, Language Syntax Summary 547

Declarations

declaration:
declaration-specifiers <init-declarator-list>

declaration-specifiers:
storage-class-specifier <declaration-specifiers>
type-specifier <declaration-specifiers>

init-declarator-lis t:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

storage-class-specifier:
typedef
extern
static
auto
register

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
const
volatile
struct-or-union-specifier
enum-specifier
typedef-name

struct-or-union-specifier:
struct-or-union <identifier> { struct-declaration-list }
struct-or-union identifier

struct-or-union:

548 Turbo C Reference Guide

struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
type-specifier-list struct-declarator-list;

type-specifier-list:
type-specifier
type-specifier-list type-specifier

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
<declarator> : constant-expression

enum-specifier:
enum <identifier> { enumerator-list }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

declarator:
<pointer> direct-declarator
<modifier-list>

direct-declarator:
identifier
(declarator)
direct-declarator [<constant-expression>
direct-declarator (parameter-type-list)
direct-declarator (<identifier-list»

pointer:
* <type-specifier-list>
* <type-specifier-list> pointer

Appendix E Language Syntax Summary 549

modifier-list:
modifier
modifier-list modifier

modifier:
cdecl
pascal
interrupt
near
far
huge

parameter-type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers <abstract-declarator>

identifier-list:
identifier
identifier-list , iden tifier

type-name:
type-specified -I is t <abs tract -declara tor>

abstract-declarator:
pointer
<pointer> <direct-abstract-declarator>
<modifier-list>

direct-abstract-declarator:
(abstract-declarator)
<direct-abstract-declarator> [<constant-expression>]
<direct-abstract-declarator> (<parameter-type-list>)

typedel-name:
identifier

initializer:
assignment-expression
(initializer-list }
{ initializer-list , }

550 Turbo C Reference Guide

initializer-list:
initializer
initializer-list , initializer

Statements

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement

asm-statement
asm tokens newline
asm tokens;

labeled -s ta temen t:
identifier : statement
case constant-expression : statement
default : statement

compound-statement:
{ <declaration-list> <statement-list> }

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

expressio n -s tatemen t:
<expression> ;

selection-statemen t:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression);

Appendix E, Language Syntax Summary 551

for «expression> ; <expression> ; <expression» statement

jump-statement
goto identifier;
continue;
break;
return <expression>;

External Definitions

file:
external-definition
file external-definition

external-definition:
function-definition
declaration

asm-statement
asm tokens newline
asm tokens;

function-definition:
<declaration-specifiers> declarator <declaration-list> compound-statement

Preprocessing Directives

preprocessing-file:
group

group:
group-part
group group-part

group-part:
<pp-tokens> newline
if-section
con trol-line

if-section:
if-group <elif-groups> <else-group> endif-line

if-group:
#if constant-expression newline <group>

552 Turbo C Reference Guide

#ifdef identifier newline <group>
#ifndef identifier newline <group>

elif-groups:
elif-group
elif-groups elif-group

elif-group:
#eiif constant-expression newline <group>

else-group:
#eise newline <group>

endif-line:
#endif newline

con trol-line:
#include
#define
#define
#undef
#line
#error
#pragma
#pragma
#pragma

action:
+

ab breviation:
amb

amp

apt

aus

big

cin

cpt

lparen:

pp-tokens newline
identifier replacement-list newline
identifier lparen <identifier-list» replacement-list newline
identifier newline
pp-tokens newline
<pp-tokens> newline
<pp-tokens> newline
warn action abbreviation newline
inline newline
newline

def rch stu

dup ret stv

eff rng sus

mod rpt ucp

par rvi use

pia sig voi

pro str zst

the left-parenthesis character without preceding white space

Appendix E, Language Syntax Summary 553

replacement-list:
<pp-tokens>

pp-tokens:
preprocessi n g-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within an # include directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except the new line
greater than (>) character

newline:
the newline character

554 Turbo C Reference Guide

A p p E N D x

F

TCINST: Customizing Turbo C

TCINST is the Turbo C customization program; you use it to customize
TC.EXE, the integrated development environment version of Turbo C.
Through TCINST, you can change various default settings in the TC
operating environment, such as the screen size, editing modes, menu
colors, and default directories. TCINST lets you change the environment in
which you operate Turbo C: It directly modifies certain default values
within your copy of TC.EXE.

With TCINST, you can do any of the following:

iii specify default primary file and project names

• set up paths to the directories where your include, library, configuration,
Help, pick, and output files are located

• choose default settings for the integrated debugger
• customize the editor command keys
• set up Turbo C's editor defaults and on-screen appearance

• set up the default video display mode

• change screen colors
• resize Turbo C's Edit and Message windows

Turbo C comes ready to run: You do not need to run TCINST if you don't
want to. You can install the files from the distribution disks onto your
working floppies or hard disk, as described in Chapter 1 of the Turbo C
User's Guide, then run Turbo C. However, if you do want to change the
defaults already set in TC.EXE, TCINST provides you with a handy means

Appendix F, TCINST: Customizing Turbo C 555

of doing it. All you have to do is run TCINST, then choose items from the
TCINST menu system.

Note: These menus are very similar to the menus in the TC integrated
development environment. For detailed information on the features refer to
Chapter 5 in the Turbo C User's Guide, which discusses the TC menu system
in depth.

Note: Any option that you install with TCINST that also appears as a menu
option in TC.EXE will be overridden whenever you load a configuration
file that contains a different setting for that option, or when you change the
setting via the menu system of the integrated development environment.

Running TCINST

The syntax for TCINST is

teinst [option] [pathname]

Both pathname and option are optional. If pathname is not supplied, TCINST
looks for TC.EXE in the current directory. Otherwise, it uses the given path
name.

[option] lets you specify whether you want to run TCINST in color (type in
/ c) or in black and white (type in Ib). Normally, TCINST comes up in color
if it detects a color adapter in a color mode. You can override this default if,
for instance, you are using a composite monitor with a color adapter, by
using the Ib option.

Note: You can use one version of TCINST to customize several different
copies of Turbo C on your system. These various copies of TC.EXE can
have different executable program names; all you need to do is invoke
TCINST and give a path name to the copy of TC.EXE you're customizing;
for example,

tcinst te.exe
teinst .• \ •• \bwte.exe
teinst Ie e:\borland\eolorte.exe

In this way, you can customize the different copies of Turbo C on your
system to use different editor command keys, different menu colors, and so
on.

556 Turbo C Reference Guide

The TCINST Installation Menu

The first menu to appear on the screen is the TCINST installation menu.

Installation Menu

lijiliiUI.r mt
ProJect
Options
Debug
Editor conrnands
Mode for di spl ay
Set colors
Resize windows
Quit/save

Turbo C Installation Program 2.0

Figure F.l: The TCINST Installation Menu

Il The Compile option lets you specify a default name for the primary C file
to be compiled.
Choosing Project lets you assign a default name for your project file, and
also to set various defaults for compiling your project.

IJ The Options command gives you access to default settings for a great
many features, including memory model, degree of optimization, display
of error messages, linker and environment settings, and path names to
the directories holding header and library files.

e Debug lets you set the Source Debugging and Display Swapping
defaults for the integrated debugger.

1:1 You can use the Editor commands option to reconfigure (customize) the
interactive editor's keystroke commands.

13 With Mode for Display, you can specify the video display mode that TC
will operate in, and whether yours is a Usnowy" video adapter.

CI You can customize the colors of almost every part of TC's integrated
environment through the Set Colors menu.

Appendix F, TCINST: Customizing Turbo C 557

• The Resize Windows option allows you to change the sizes of the Edit
and Message/Watch windows .

• The Quit/Save option lets you save the changes you have made to the
integrated development environment, and returns you to system level.

To choose a menu item, just press the key for the highlighted capital letter
of the given option. For instance, press S to choose the Set Colors option.
Or use the Up and Down arrow keys to move the highlight bar to your
choice, then press Enter.

Pressing Esc (more than once if necessary) returns you from a submenu to
the main installation menu.

The Compile Menu

The Compile menu contains only one option, Primary File. If you choose it,
a prompt box appears in which you can type the default name for the
source file that is to be compiled and linked in the event that YQu are doing
a one-file program that includes multiple header files. This option is useful
if you will frequently be compiling one particular primary file.

The Project Menu

The choices in the Project menu allow you to set a default name for your
project file, and to specify default settings for features responsible for
compiling and linking your project.

Project Name

When you choose this option, a prompt box appears in which you type the
default name for your project file. The .PRJ extension will be supplied
automa tically.

The Break Make On Menu

This menu lets you specify the default condition for stopping a make: if the
file has Warnings, Errors, or Fatal errors, or before Linking.

558 Turbo C Reference Guide

Auto Dependencies

This option lets you set the default for the Auto Dependencies toggle to On
or Off.

Clear Project

This option cancels a previously set project name, so that, for example, you
can specify a different one.

The Options Menu

In the Options menu you can set defaults for various features that
determine how the integrated environment works.

The Compiler Menu

The options in the Compiler menu allow you to set defaults for particular
hardware configurations, memory models, code optimizations, diagnostic
message control, and macro definitions.

Model

The choices let you choose the default memory model (method of memory
addressing) that TC will use. The options are Tiny, Small, Compact,
Medium, Large, and Huge. Refer to Chapter 12 in the Turbo C User's Guide
for more information about these memory models.

Defines

When you choose this option, a prompt box appears in which you can enter
macro definitions that will be available by default to TC.

The Code Generation Menu

The items in this menu let you set defaults for how the compiler will
compile your source code.

Calling Convention: Set to either C or Pascal calling sequence.

Appendix F, TCINST: Customizing Turbo C 559

Instruction Set: Set to either 8088/8086 or 80186/80286.

Floating Point: Set to 8087/80287, Emulation, or None.

Default Char Type: Set to Signed or Unsigned.

Alignment: Set to word-aligning or byte-aligning.

Generate Underbars: Set On or Off.

Merge Duplicate Strings: Set On or Off.

Standard Stack Frame: Set On or Off. Note: If you are going to be
running your program with the integrated debugger, this option should
be turned On.

Test Stack Overflow: Set On or Off.

Line Numbers: Set On or Off.

OBJ Debug Information: Set On or Off

The Optimization Menu

The options in this menu let you set defaults for code optimization when
your code is compiled.

Optimize For: Set to Size or Speed.

Use Register Variables: Set On or Off.

Register Optimization: Set On or Off.

Jump Optimization: Set On or Off. Note: If you are going to be running
your program with the integrated debugger, this option should be
turned Off.

The Source Menu

With this menu you can set defaults for identifier length in characters,
whether or not TC will recognize nested comments, and whether TC will
recognize extension keywords, or ANSI keywords only.

The Errors Menu

Use this menu to

• set the default number of errors or warnings after which your code will
stop compiling (0 to 255).

560 Turbo C Reference Guide

II turn On or Off the display for chosen warning messages .
.. choose error/warning messages to be displayed (toggle them On/Off).

These are of four types, each with its own menu:

• Portability Warnings

• ANSI Violations

• Common Errors
• Less Common Errors

The Names Menu

With the items in this menu, you can set the default segment, group, and
class names for Code, Data, and BBS sections. When you choose one of
these items, the asterisk (*) on the next menu that appears tells the compiler
to use the default names.

Don't change this option unless you are an expert and have read Chapter 12 in the
Turbo C User's Guide on advanced programming techniques.

The Linker Menu

The Linker menu lets you set defaults for how your program will be linked
to various library routines. Refer to Appendix D for more information
about these settings.

Map File

This option determines the default type for the map file. The choices are
Off, Segments, Publics, or Detailed.

Initialize Segments

Set On or Off. If this toggle is set to On, the linker will initialize
uninitialized segments.

Default Libraries

Set On or Off. When you're linking with modules that have been created by
a compiler other than Turbo C, the other compiler may have placed a list of
default libraries in the object file. If this option is on, the linker will try to
find any undefined routines in these libraries, as well as in the default

Appendix F, TCINST: Customizing Turbo C 561

libraries supplied by Turbo C. If this option is set to Off, only the default
libraries supplied by Turbo C will be searched; any defaults in .OBI files
will be ignored.

Graphics Library

Controls whether the linker links in BGI graphics library functions.
Defaults to On; set it Off to prevent the linker from searching
GRAPHICS. LIB.

Warn Duplicate Symbols

Sets On or Off the linker warning for duplicate symbols in object and
library files.

Stack Warning

Sets On or Off the No stack specified message generated by the linker.

Case-Sensitive Link

Sets On or Off case sensitivity during linking. The usual setting is On, since
C is a case-sensitive language.

The Environment Menu

With the items in the Environment menu, you can set defaults for various
features of the TC working environment.

Look at the Quick-Ref line for directions on how to choose these options.
You can change the operating environment defaults to suit your preferences
(and your monitor), then save them as part of Turbo C. Of course, you'll
still be able to change these settings from inside Turbo C's editor (or from
the Options/Environment menu).

Message Tracking

This option determines the range of syntax error tracking available to you
after your program has compiled. Set it to either Current file, All files, or
Off.

562 Turbo C Reference Guide

Keep Messages

Set On or Off. This option determines whether error messages from earlier
compiles are saved in the Message window or deleted.

Config Auto Save

Set On or Off. When this option is set to On, TC automatically saves the
current configuration to the configuration file whenever you run your
program, shell to DOS, or exit the integrated environment, if you haven't
loaded, retrieved, or saved a configuration file.

Edit Auto Save

Set On or Off. If On, this feature automatically saves your source file
whenever you run your program or shell to DOS, if you have modified it
since the last save.

Backup Source Files

Set On or Off. If you choose On, Turbo C will automatically create a backup
of your source file whenever you do a save.

Zoomed Windows

Set On or Off. When this option is set to On, the active window (Edit or
Message/Watch) is zoomed on startup to fill the whole screen; when it is
set to Off, both windows are visible by default.

Full Graphics Save

In order to save graphics screens, TC reserves 8K of memory as a buffer for
the palettes. If you are going to be using only text screens, you can make
this memory available to TC by turning Full Graphics Save to Off. This
option is available only through TCINST, not through the integrated
development environment, since the buffer must be reserved when TC
load's.

The Screen Size Menu

The Screen Size menu allows you to specify whether your default
integrated environment screen will display 25 lines or 43/50 lines.

Appendix F, TCINST: Customizing Turbo C 563

.25 Lines

This is the standard PC display: 25 lines by 80 columns. This is the only
screen size available to systems with a Monochrome Display Adapter
(MDA) or Color Graphics Adapter (eGA) .

• 43/50 Lines

If your PC is equipped with an EGA or VGA, choose 43/50 lines to make
your screen display 43 lines by 80 columns (for an EGA) or 50 lines by 80
columns (for a VGA).

The Options for Editor Menu

This menu lets you set defaults for various features of the integrated
development environment's Editor.

Insert Mode: Toggle On or Off. With Insert Mode set to On, the editor
inserts anything you enter from the keyboard at the cursor position, and
pushes existing text to the right of the cursor even further right. Toggling
Insert Mode Off allows you to overwrite text a t the cursor.

Autoindent Mode: Toggle On or Off. With Autoindent Mode set to On,
the cursor returns to the starting column of the previous line when you
press Enter. When Autoindent Mode is toggled Off, the cursor always
returns to column one.

Use Tabs: Toggle On or Off. With Use Tabs set to On, when you press the
Tab key, the editor places a tab character (Clrl-I) in the text, using the tab
size specified with Tab Size. With Use Tabs Off, when you press the Tab
key, the editor inserts enough space characters to align the cursor with
the first letter of each word in the previous line.

Optimal Fill: Toggle On or Off. Optimal fill mode has no effect unless
Tab Mode is also set to On. When both these modes are enabled, the
beginning of every autoindented and unindented line is filled optimally
with tabs and spaces. This produces lines with a minimum number of
characters.

Backspace Unindents: Toggle On or Off. When it is set to On, this feature
outdents the cursor; that is, it aligns the cursor with the first nonblank
character in the first outdented line above the current or immediately
preceding nonblank line.

Tab Size: When you choose this option, a prompt box appears in which
you can enter the number of spaces you want to tab over at each tab
command.

564 Turbo C Reference Guide

Editor Buffer Size: If you normally write programs using small files, you
can free extra memory for debugging by using a smaller editor buffer.
You can size the editor buffer to any size between 20000 and 65534 bytes.

Make Use of EMS Memory: If your machine is equipped with 64K of
EMS memory, the Editor will automatically use it for its text buffer. This
will free 64K of RAM for compiling, linking, and running your
programs. Default is On; tum this toggle to Off to prevent the Editor
from using EMS memory.

The Directories Menu

With Directories, you can specify a path to each of the TC.EXE default
directories. These are the directories Turbo C searches when looking for an
alternate configuration file, the Help file, the include and library files, and
the directory where it will place your program output.

When you choose Turbo C Directories, TCINST brings up a submenu. The
items on this submenu are

EI Include Directories
13 Library Directories
• Output Directory
• Turbo C Directory
• Pick File Name

You enter names for each of these just as you do for the corresponding
menu items in TC.EXE. If you are not certain of each item's syntax, refer
first to Chapter 5 in the Turbo C User's Guide.

After typing a path name (or names) for any of the Directories menu items,
press Enter to accept. When you exit the program, TCINST prompts you on
whether you want to save the changes. Once you save the Turbo C
Directories paths, the locations are written to disk and become part of
TC.EXE's default settings.

Include Directories

This option lets you specify default directories in which the Turbo C
standard include (header) files are stored. A prompt box appears in which
you can enter the directory names.

You can enter multiple directories in Include Directories. You must separate
the directory path names with a semicolon (;), and you can enter a maxi-

Appendix F, TCINST: Customizing Turbo C 565

mum of 127 characters with either menu item. You can enter absolute or
rela ti ve path names.

An Example:

c:\turboc\libi c:\turboc\mylibsi a:newturbo\mathlibsi a: •• \vidlibs

Library Directories

Use the Library Directories option to specify default directories for the
Turbo C start-up object files (COx.OBD and run-time library files (.LIB). A
prompt box appears in which you can enter the directory names.

As with Include Directories, you can enter multiple directories in Library
Directories. You must separate the directory path names with a semicolon
(;), and you can enter a maximum of 127 characters with either menu item.
You can enter absolute or relative path names.

Output Directory

Use this option to name the default directory where the compiler will store
the .OBJ, .EXE, and .MAP files it creates.

The Output Directory menu item takes one directory path name; it accepts
a maximum of 64 characters.

Turbo C Directory

This option lets you specify the name of the directory where TC looks for
the Help file and TCCONFIG.TC (the default configuration file) if they
aren't in the current directory.

The Turbo C Directory menu items each take one directory path name;
each item accepts a maximum of 64 characters.

Pick File Name

When you choose this menu item, a prompt box pops up. In it, you type the
path name of the pick file you want Turbo C to load or create.

566 Turbo C Reference Guide

Arguments

This setting allows you to set default command-line arguments that will be
passed to your running programs, exactly as if you had typed them on the
DOS command line (redirection is not supported). It is only necessary to
give the arguments here; the program name is omitted.

The Debug Menu

The items in the Debug menu let you set certain default settings for the
Turbo C integrated debugger.

Source Debugging

Selects debugging. When you compile your program with this toggle On,
you can debug it using either the integrated debugger or the standalone
debugger. When it is set to Standalone, only the standalone debugger can
be used. When it is set to None, no debugging information is placed in the
.EXE file.

Display Swapping

This option allows you to set the default level of Display Swapping to
Smart, Always, or None.

When you run your program in debug mode with the default setting
Smart, the Debugger looks at the code being executed to see whether the
code will affect the screen (that is, output to the screen). If the code outputs
to the screen (or if it calls a function), the screen is swapped from the Editor
screen to the Execution screen long enough for output to take place, then is
swapped back. Otherwise, no swapping occurs. The Always setting causes
the screen to be swapped every time a statement executes. The None setting
causes the debugger not to swap the screen at all.

The Editor Commands Option

Turbo C's interactive editor provides many editing functions, including
commands for

• cursor movement

Appendix F, TCINST: Customizing Turbo C 567

• text insertion and deletion
• block and file mani pula tion
• string search (plus search-and-replace)

These editing commands are assigned to certain keys (or key combina­
tions): They are explained in detail in Appendix A of this volume.

When you choose Editor commands from TCINST's main installation
menu, the Install Editor screen comes up, displaying three columns of text.

• The first column (on the left) describes all the functions available in TC's
interactive editor.

• The second column lists the Primary keystrokes: what keys or special key
combinations you press to invoke a particular editor command.

• The third column lists the Secondary keystrokes: These are optional
alternate keystrokes you can also press to invoke the same editor
command.

Note: Secondary keystrokes always take precedence over primary
keystrokes.

The bottom lines of text in the Ins tall Editor screen summarize the keys you
use to choose entries in the Primary and Secondary columns.

568 Turbo C Reference Guide

Key Legend What It Does

Left, Right choose Chooses the editor command you
Up and Down want to rekey.
arrow keys

Page Up and page Scrolls up or down one full
Page Down screen page.
arrow keys

Enter modify Enters the keystroke-modifying
mode.

R restore factory defaults Resets all editor commands to the
factory default keystrokes.

Esc exit Leaves the Install Editor screen
and returns to the main TCINST
installation menu.

F4 Key Modes Toggles between the three key-
stroke combinations: WordS tar-
like, Ignore case, and Verbatim.

After you press Enter to enter the modify mode, a pop-up window lists the
current defined keystrokes for the chosen command, and the bottom lines
of text in the Install Editor screen summarize the keys you use to change
those keystrokes.

Appendix F, TCINST: Customizing Turbo C 569

Key Legend What It Does

Backspace backspace Deletes keystroke to left of cursor.

Enter accept Accepts newly defined keystrokes for
the chosen editor command.

Esc abandon changes Abandons changes to the current
choice, restoring the command's
original keystrokes, and returns to
the Install Editor screen (ready to
choose another editor command).

F2 restore Abandons changes to current choice,
restoring the command's original
keystrokes, but keeps the current
command chosen for redefinition.

F3 clear Clears current choice's keystroke
definition, but keeps the current
command chosen for re-definition.

F4 Key Modes Toggles between the three keystroke
combinations: WordStar-like, Ignore
case, and Verbatim.

Note: To enter the keys F2, F3, or F4 as part of an editor command key
sequence, first press the backquote (') key, then the appropriate function
key.

Keystroke combinations come in three flavors: Wordstar-like, Ignore case,
and Verbatim. These are listed on the bottom line of the screen; the
highlighted one is the flavor of the current choice. In all cases, the first
character of the combination must be a special key or a control character.
The combination flavor governs how the subsequent characters are
handled .

• WordS tar-like: In this mode, if you type a letter or one of the following
characters:

[]\"-

.. it is automatically entered as a control-character combination. For
example,

Typing a or A or GIrl A yields <Glr/-A>

570 Turbo C Reference Guide

Typing yor Yor Glrl Y

Typing [

yields <Glrl-Y>

yields <Glrl-[>

Thus, if you customize an editor command to be < Glrl A > < Glrl B > in
WordStar-like mode, you can type any of the following in the TC editor
to activate that command:

< Glrl A > < Glrl B >
< Glrl A> B
< Glrl A> b

• Ignore case: In this mode, all alpha (letter) keys you enter are converted
to their uppercase equivalents. When you type a letter in this mode, it is
not automatically entered as a control-character combination; if a
keystroke is to be a control-letter combination, you must hold down the
Glrl key while typing the letter. For example, in this mode, <Glrl-A> Band
<Glrl-A> b are the same, but differ from <Glrl A> <Glrl B>.

II Verbatim: If you type a letter in this mode, it is entered exactly as you
type it. So, for example, <Glrl A> <Glrl B>, <Glrl A> B , and <Glrl A> b are all
distinct.

Allowed Keystrokes

Although TCINST provides you with almost boundless flexibility in
customizing the Turbo C editor commands to your own tastes, there are a
few rules governing the keystroke sequences you can define. Some of the
rules apply to any keystroke definition, while others come into effect only
in certain keystroke modes.

1. You can enter a maximum of six keystrokes for any given editor
command. Certain key combinations are equivalent to two keystrokes:
These include All (any valid key); the cursor-movement keys (Up, Page Down,
Del, and so on); and all function keys or function key combinations (F4,
Shift-F7, Aft-FB, and so on.

2. The first keystroke must be a character that is non-alphanumeric and
non-punctuation: that is, it must be a control key or a special key.

3. To enter the Esc key as a command keystroke, type Glrl [.

4. To enter the Backspace key as a command keystroke, type Glrl H.

5. To enter the Enlerkey as a command keystroke, type Glrl M.

6. The Turbo C predefined Help function keys (F1 and AIt-F1) can't be
reassigned as Turbo C editor command keys. Any other function key
can, however. If you enter a Turbo C hot key as part of an editor

Appendix F, TCINST: Customizing Turbo C 571

command key sequence, TCINST will issue a warning that you are
overriding a hot key in the editor and verify that you want to override
that key. Chapter 5 of the Turbo C User's Guide contains a complete list of
Turbo C's predefined hot keys.

The Mode for Display Menu

Normally, Turbo C correctly detects your system's video mode. You should
only change the Mode for Display menu if one of the following holds true:

• You want to choose a mode other than the current video mode.
• You have a Color Graphics Adapter that doesn't "snow."
• You think Turbo C is incorrectly detecting your hardware.
• You have a laptop or a system with a composite screen (which acts like a

CGA with only one color). For this situation, choose Black and White.

Press M to choose Mode for Display from the installation menu. A pop-up
menu appears; from this menu, you can choose the screen mode Turbo C
will use during operation. Your options include Default, Color, Black and
White, or Monochrome. These are fairly intuitive.

Default By default, Turbo C always operates in the mode that is active
when you load it.

Color Turbo C uses 80-column color mode if a color adapter is detected, no
matter what mode is active when you load TC.EXE, and switches back to
the previously active mode when you exit.

Black and White Turbo C uses 80-column black-and-white mode if a color
adapter is detected, no matter what mode is active, and switches back to
the previously active mode when you exit. Use this with laptops and
composite monitors.

Monochrome Turbo C uses monochrome mode if a monochrome adapter is
detected, no matter what mode is active.

When you choose one of the first three options, the program conducts a
video test on your screen; refer to the Quick-Ref line for instructions on
what to do. When you press any key,
a window comes up with the query

Was there Snow on the screen?

572 Turbo C Reference Guide

You can choose

II Yes, the screen was "snowy"
r:I No, always tum off snow checking
1\1 Maybe, always check the hardware

Look at the Quick-Ref line for more about Maybe. Press Esc to return to the
main installation menu.

The Set Colors Menu

Pressing 8 from the main installation menu allows you to make extensive
changes to the colors of your version of Turbo C. After you press 8, a menu
with these options appears:

£I Customize colors
III Default color set
iii Turquoise color set
E:I Magenta color set

Because there are nearly 50 different screen items that you can color­
customize, you will probably find it easier to choose a preset set of colors to
your liking.

There are three preset color sets to choose from. Press D, T, or M, and scroll
through the colors for the Turbo C screen items using the PgUp and PgDn
keys. If none of the preset color sets is to your liking, you can design your
own.

To make custom colors, press C for Customize colors. Now you have a
choice of 12 types of items that can be color-customized in Turbo C; some
of these are text items, some are screen lines and boxes. Choose one of these
items by pressing a letter A through L.

Once you choose a screen item to color-customize, you will see a pop-up
menu and a viewport. The viewport is an example of the screen item you
chose, while the pop-up menu displays the components of that choice. The
viewport also reflects the change in colors as you scroll through the color
palette.

For example, if you choose H to customize the colors of Turbo C's error
boxes, you'll see a new pop-up menu with the four different parts of an
error box: its Title, Border, Normal Text, and Highlighted Text.

Appendix F, TCINST: Customizing Turbo C 573

You can now choose one of the components from the pop-up menu. Type
the appropriate highlighted letter, and you're treated to a color palette for
the item you chose. Using the arrow keys, choose a color to your liking
from the palette. Watch the viewport to see how the item looks in that color.
Press Enter to record your choice.

Repeat this procedure for every screen item you want to color-customize.
When you are finished, press Esc until you are back at the main installation
menu.

Note: Turbo C maintains three internal color tables: one each for color,
black and white, and monochrome. TCINST allows you to change only one
of these three sets of colors at a time, based upon your current video mode.
For example, if you want to change to the black-and-white color table, you
set your Mode for Display to Black and White, and then set the attributes
for black-and-white mode.

Resize Windows

This option allows you to set the maximum size of Turbo C's Message/
Watch window. Press R to choose Resize Windows from the main instal­
la tion menu.

Using the Up arrow and Down arrow keys, you can move the bar dividing the
Edit window from the Message/Watch window. Neither window can be
smaller than one line. When you have resized the window to your liking,
press Enter. The dividing bar operates as a ratio of how large the Edit
window will be in relation to the Message/Watch window. This applies
whether the line mode is 25 lines or 43/50 lines.

You can discard your changes and return to the Installation menu by
pressing Esc.

Quitting the Program

Once you have made all desired changes, choose Quit/Save at the main
installa tion menu. The message

Save changes to TC.EXE? (YIN)

appears at the bottom of the screen.

574 Turbo C Reference Guide

• If you press Y (for Yes), all the changes you have made are permanently
installed into Turbo C. (You can always run TCINST again if you want to
change them.)

• If you press N (for No), your changes are ignored and you are returned to
the operating system prompt without Turbo C's defaults or startup
appearance being changed.

If you decide you want to restore the original Turbo C factory defaults,
simply copy TC.EXE from your master disk onto your work disk. You can
also restore the Editor commands by choosing the E option at the TCINST
main menu, then press R (for Restore Factory Defaults) and Esc.

Appendix F, TCINST: Customizing Turbo C 575

576 Turbo C Reference Guide

A p p E N D x

G

MicroCalc

MicroCalc, written in Turbo C, is a spreadsheet program. Its source code
files and an object file are provided with your TURBO C system as an
example program. The spreadsheet program is an electronic piece of paper
on which you can enter text, numbers and formulas, and have MicroCalc
do calculations on them automatically.

About MicroCalc

Since MicroCalc is only a demonstration program, it has its limitations
(which you may have fun eliminating):

• You cannot copy formulas from one cell to another.
• You cannot copy text or values from one cell to another.
• Cells that are summed must be in the same column or row.

In spite of its limitations, MicroCalc does provide some interesting features.
Among these are the following:

• writing directly to video memory for maximum display speed

• full set of rna thema tical functions
• built-in line editor for text and formula editing

• ability to enter text across cells

In addition to these, MicroCa1c offers many of the usual features of a
spreadsheet program; you can do all of the following:

Appendix G I MicroCa/c 577

• Load a spreadsheet from the disk.

• Save a spreadsheet on the disk.
• Automatically recalculate after each entry (can be disabled).

• Print the spreadsheet on the printer.
• Clear the current spreadsheet.

• Delete columns and rows.

• Set a column's width.
• Insert blank columns and rows between existing ones.

How to Compile and Run MicroCalc

Compiling MicroCalc is easy. All you need to do is copy all the MC*.* files
from your distribution disk to your TURBOC directory (where TC.EXE
and/ or TCC.EXE reside). You can compile and run MicroCalc with either
version of Turbo C. In both cases, compiling under a large data model
(compact, large, or huge) will give you much more memory for your
spreadsheets.

With TC.EXE

After you have set the INCLUDE and LIB directories in the Options/
Directories menu, do the following:

1. Run TC.EXE.

2. In the Project menu, specify the project name "MCALC.PRJ."
3. From the Run menu, choose the Run option.

With TCC.EXE

Compile from DOS with the following command line:

TCC mcalc mcparser mcdisply mcinput mcommand mcutil

Note: You must also specify the INCLUDE and LIB directories with the -I

and -L command-line options, respectively.

578 Turbo C Reference Guide

How to use MicroCalc

Once you have compiled MicroCa1c, you can run it in one of two ways.

If you compiled with the Run/Run command from TC, MicroCa1c will
come up on your screen; when you exit, you will return to Turbo C.

If you want to run MCALC.EXE from the DOS command line, just type
MCALC. (If you already have a spreadsheet file, you can automatically
load it by typing

MCALC <your_file>

at the DOS prompt.)

This is an example of what you will see once MicroCa1c is loaded:

A B C D E F
I 22.00
2 1.00
3 2.00

3.00
S 28.00

20
AS Formula
AI+A2+A3+A4

G

The MicroCalc screen is divided into cells. A cell is a space on the
spreadsheet where a column and row intersect. The column name and the
row number are the cell coordinates. By default, each column is 10 characters
wide; you can change this to a maximum of 77 characters (each).

The columns are named A-Z and AA-CV; the rows are numbered 1-100.
This gives a total of 10000 cells. You can change these limits by modifying
the constants MAXROWS and MAXCOLS in the header file MCALC.H.

A cell may contain a value, a formula or some text; these are known as cell
types. The type of the cell and its coordinates are shown in the bottom left
corner of the screen:

AS Formula Cell AS contains a formula.

Al Text Cell Al contains text.

A2 Value Cell A2 contains a value and no cell references.

In this example, the line AS Formula shows that the active cell is cell AS and
that it contains a formula. The last line, Al +A2+A3+A4, says the active cell

Appendix G, MicroCalc 579

contains the sum of Al through A4. These two lines mean that the numbers
in cells AI, A2, A3 and A4 should be added and the result placed in cell AS.

The formula can be abbreviated to Al :A4, meaning "add all cells from Al to
A4."

The following are examples of valid cell formulas:

Al + (B2-C7) Subtract cell C7 from B2 and add the result to cell Al

AI:A23 The sum of cells: Al,A2,A3 .. A23

The fonnulas may be as complicated as you want; for example,

SIN(AI)*COS(A2)/((1.2*A8)+LOG(ABS(A8)+8.9E-3))+(Cl:C5)

To enter data in any cell, move the cursor to that cell and enter the data.
MicroCa1c automatically detennines if the cell's type is value, formula, or
text.

+,-,*,/
"

ABS
ACOS
ASIN
ATAN
COS
COSH
EXP
LOG
LOGIO
POWlO
ROUND
SIN
SINH
SQR
SQRT
TAN
TANH
TRUNC

580

Standard MicroCalc Functions and Operators

addition, subtraction, multiplication, division
raises a number to a power (e.g., 2"3 = 8)
returns the sum of a group of cells
(for example, AI:A4 = A1+A2+A3+A4)
absolute value
arc cosine
arc sine
arc tangent
cosine
hyperbolic cosine
exponential function
logarithm
base 10 logarithm
raise argument to the 10th power
round to the nearest whole number
sine
hyperbolic sine
square
square root
tangent
hyperbolic tangent
return the whole part of a number

Turbo C Reference Guide

Standard MicroCalc Commands

I Brings up the main menu

ISL Loads a spreadsheet
ISS Saves the current spreadsheet
ISP Prints the current spreadsheet
ISC Clears the current spreadsheet

IF Formats a group of cells
10 Deletes the current cell
IG Moves the cursor to a selected cell

ICI Inserts a column
ICD Deletes the current column
ICW Changes the width of the current column

IRI Inserts a row
IRD Deletes the current row

IE Edits the current cell

IUR Recalculates the formulas in the spreadsheet
IUF Toggles the display of the text of formulas in cells instead of the

value of the formulas

IA
10
Del
Home
End

Toggles AutoCalc on/off
Quits from MicroCalc
Deletes the current cell
Moves to cell Al
Moves to the rightmost column and bottom row of the
spreadsheet

PgUp, PgDn Moves up or down a full screen

F2 Allows you to edit the data in the current cell.

While you're editing, the following commands work:

Esc Disregards changes made to the data.
Left arrow, Right arrow Moves to the left and right.
Up arrow, Down arrow, Enter Enters the input, then returns to the current cell.
Home Moves to the start of the input.
End Moves to the end of the input.
Del Deletes the character under the cursor.
Ins Changes between Insert! Overwrite mode.

Appendix G, MicroCa/c 581

Backspace Deletes the character to the left of the cursor.

The MicroCalc Parser

This information is provided in case you want to modify the MicroCalc
parser (for instance, you might want to add a function that takes two
parameters). The state and "goto" information for the parser was created
using the UNIX YACC utility. The input to YACC was as follows:

%token CONST CELL FUNC
%%
e : e 't' t

t : t ' *, f

f : x''', f

x '-' u

u CELL ':' CELL

o : CELL

%%

582

I e '-' t
I t

It' I' f
I f

I x

I u

I 0

, (' e ')'
CONST
FUNC ' (' e ')'

Turbo C Reference Guide

Index

Index 583

8087/80287 coprocessor
exception handler 75
floating-point problems with 137
status word 75

8087/80287 exception handler 361
8087/80287 status word 361
_8087 (global variable) 23
80186 instructions, extended 448
43/50 line screen setting 564
8087 coprocessor

calls, emulation of 448
floating-point emulation library
routines 448
instructions, inline 448

8086 interrupt vectors 184, 338
__ emit __ (function) 103
25 line screen setting 564
80x86 processors 105
_argc (global variable) 22
_argv (global variable) 22
.ASM files 455
_chmod (function) 71
_clear87 (function) 75
_close (function) 78
_control87 (function) 80
_creat (function) 86
#defines command-line options 446,

447
ganging 447

_doserrno (global variable) 24
.EXE file

user-selected name for 455
_exit (function) 109
Jm0de (global variable) 27
_fpreset (function) 136
-sraphfreemem (function) 192
-sraphgetmem (function) 193
_heaplen (global variable) 28
_lrotl (function) 235
_lrotr (function) 235
_matherr (function) 241
_open (function) 256
_osmajor (global variable) 29
_osminor (global variable) 29
-psp (global variable) 29
_read (function) 290

584

_rotl (function) 298
_rotr (function) 299
_status87 (function) 361
_stlden (global variable) 30
_strerror (function) 365
_tolower (function) 390
_toupper (function) 391
_version (global variable) 31
_write (function) 406

A
abort (function) 35
abort operation command (TC

editor) 417
abs (function) 35
absolute disk sectors 36, 37
absolute value

complex number 67
floating-point number 111
integer 35
long integer 226

absread (function) 36
abswrite (function) 37
access

flags 349
mode 359

changing 71, 72
read/write 38,72,87,89, 147, 257,

258,360
access (function) 37
acos (function) 39
action symbols, TUB 511
active page 312
active window 409
address, mailing, Borland 4
address segment, of far pointer 138,

251
addresses

passed to __ emit 104
Alignment option, TCINST 560
alloc.h 8
allocation, memory 39

data segment 65
changing 299

dynamic 68, 140, 239, 292
far heap 111, 113
graphics memory 193

Turbo C Reference Guide

heap 68, 140, 239, 292
allocmem (function) 39
allowed keystrokes 571
ANSI C standard 5
ANSI-compatible code 452
ANSI violations 453
ANSI Violations menu, TCINST 561
arc (function) 40
arc cosine 39
arc sine 44
arc tangent 46
argc (argument to main) 17
Args option, TCINST 567
argument list, variable 449
argv (argument to main) 17
ASCII, conversion to 43, 390
asctime (function) 43
asin (function) 44
aspect ratio 151

correction factor 315
assembly code

inline 455
output files 455

assert (function) 45
assert.h 8
assertion 45
atan2 (function) 46
atan (function) 46
atexit (function) 47
atof (function) 48
atoi (function) 49
atol (function) 50
attribute bits 86, 89, 258
attribute word 72, 86, 89
attributes, text 381
Autodependencies option, TCINST

559
autodetection 160, 207
Autoindent mode 411, 564
Autoindent Mode option, TCINST

564
Autoindent On/Off command (TC

editor) 417
automatic recalculation, MicroCalc

578

Index

B
background color 152, 191

setting 315
backspace command (TC editor) 415
Backspace Unindents option, TCINST

564
Backup Source Files option, TCINST

563
Backus-Naur form 541
bar

three-dimensional 51
two-dimensional 50

bar (function) 50
bar3d (function) 51
base 10 logarithm 232
base file name macro 481
basic cursor movement commands

(TC editor) 412,413
baud rate 55
BBS segment

class, renaming 561
group, renaming 561
renaming 561

bdos (function) 52
bdosptr (function) 53
BGIOB] (graphics converter) 201,461,

522
/F option 525
advanced features 526
command-line syntax 523,526
components 526
example 524

binary mode 27, 87, 89, 118, 134, 142,
328

binary search 66
bios.h 8
BIOS interrupts

Oxl160
Ox1263
Ox1357
Ox1661
Ox1764
OxlA 65

BI as timer 64
bioscom (function) 54
biosdisk (function) 57

585

biosequip (function) 60
bioskey (function) 61
bios memory (function) 63
biosprint (function) 64
bios time (function) 64
bit image

memory required to store 200

BUlL TINS.MAK 488
byte aligning 560
bytes

C

copying 252
reading from hardware ports 206
swapping 378
writing to hardware ports 259

saving to memory 169
writing to screen 281

bit mask 146, 360 C calling sequence 559
bit rotation C usage 449

long integer 235 COx.OB} start-up object file 456
unsigned integer 298, 299 cabs (function) 67

blank columns and rows, inserting, MicroCa1c Calling Convention option, TCINST
578 559

blink-enable bit 381
blocks 416

adjusting size of 316
in far heap 115
in heap 292

commands 412, 416
copying 246, 248, 249, 254
initializing 249,328
markers 414,416
searching, for character 247

Borland
CompuServe Forum 4
mailing address 4
technical support 4

Break Make On menu, TCINST 558
break value 65, 299
brk (function) 65
bsearch (function) 66
buffered stream 317, 336
buffering

file 336
stream 317, 336

buffers
clearing 129
flushed when stream closed 116
freeing 116
graphics, internal 324
keyboard, pushing character to 395
writing to ouput streams 129

built-in DOS commands, executed by MAKE
477

586

calling sequences 559
calloc (function) 68
carry flag 210, 211, 212, 213
case sensitive flag, TUB 510, 514
Case-Sensitive Link option, TCINST

562
case sensitivity in TUNK 502
cdecl statement 449
ceil (function) 69
cells 579

formulas in, examples 580
types 579

CGA graphics problems 40, 264
cgets (function) 69
char treated as type unsigned 448
characters

color, setting 381, 384
device 219
lowercasing 390, 391
magnification, user-defined 334
pushing

to input stream 394
to keyboard buffer 395

reading
from console 154, 155
from stdin 121, 154
from stream 121, 153

searching
in block 247
in string 362

sets 522
linking 522

Turbo C Reference Guide

size 333
uppercasing 391, 392
writing

to screen 280
to stdout 139, 280
to stream 138, 279

chdir (function) 71
checking

current driver 160
device type 219
end-of-file lOS, 119, 291
keystroke 225

child process 106, 352
chmod (function) 72
choosing menu items, TCINST 558
chsize (function) 73
circle (function) 74
Clear Project option, TCINST 559
cleardevice (function) 75
clearerr (function) 76
clearing

screen 80, 325
to end-of-line 79

clearviewport (function) 76
clock (function) 77
close (function) 78
closegraph (function) 79
clreol (function) 79
clrscr (function) 80
co-routines 233, 326
code generation command-line

options 446, 448
Code Generation menu, TCINST 559
code segment

class, renaming 454, 561
group, renaming 561
renaming 454, 561

color table, palette 314,315,329
colors

background 152, 191
setting 315

character, setting 381, 384
drawing 155, 191, 264, 293, 311

setting 318
fill 50, 51, 124, 128, 264, 311

information on, returning 165

Index

setting 322
text background, setting 381, 383
value, maximum 172

column width, setting, MicroCalc 578
COMMAND.COM 379

invoked by MAKE 477
command line

arguments 567
compiler options

#defines 447
code generation 446, 448
compilation control 446, 455
error-reporting 446,452
macro definition 446,447
memory model 446, 447
optimization 446, 449
segment-naming control 446,
454
source code 446

configuration files 458
error 423
options 443, 446

CPP462
environment 455
GREP 515

default settings 517
order of precedence 517

linker 455
MAKE 488, 489
syntax of 445
table 443
TLIB509
toggling 445

switches, enabling and disabling
445

syntax
BGIOB] 523, 526
CPP 462
GREP 515
MAKE 487
OB]XREF 529,532,533,538

wildcards in 529
TLIB509
TLINK494

Turbo C See also TCC

587

command list (MAKE)
command body 476, 477
prefixes 476

commands See also menu commands
Interactive Editor 411
macros expanded in 480
MicroCalc 581

comments
makefile 469
nested 452

common errors 453
Common Errors menu, TCINST 561
comparison function, user-defined

284
compilation 447

control command-line options 446,
455
rules governing 445

Compile menu, TCINST 557,558
compiler

command-line options 446
#defines 446, 447
code generation 446, 448
compilation control 446, 455
error-reporting 446, 452
macro definition 446, 447
memory model 446, 447
optimization 446, 449
segment-naming control 446,
454
source code 446

diagnostic messages 423
Compiler menu, TCINST 559
CompuServe Forum, Borland 4
COMSPEC environment variable 379
conditional execution directive 484

syntax 484
conditional execution directives 469
Config Auto Save option, TCINST

563
configuration

current, saved automatically 563
configuration files

command-line 458
TCC462

overriding 445

588

TCINST overridden by 556
conio.h 8
console I/O 90, 154, 155
constants 542

manifest 446
symbolic 446

constructs, Turbo C, syntax 541
continuation character 469
control-break

handler 91
interrupt 198
setting 318

returning 153
control characters 418
control word, floating-point 80
conversion

date-time 43, 91
to DOS format 395
to Greenwich Mean Time 188
to structure 230
to UNIX format 98

double to integer and mantissa 252
double to mantissa and exponent

142
floating-point to string 101, 117,

149
integer to string 224
long integer to string 238
lowercase to uppercase 378, 391,

392
specifications (printf) 268
string

to double 374
to floating-point 48
to integer 49
to long integer 50, 376
to unsigned long integer 377

to ASCII 43, 390
unsigned long integer to string 394
uppercase to lowercase 368,390,

391
coordinates

arc, returning 150
screen, maximum 173

coprocessor, 8087 /
80287, floating-point problems 137

Turbo C Reference Guide

copy block command (TC editor) 416
corel eft (function) 82
correction factor of aspect ratio 315
cos (function) 82
cosh (function) 83
cosine 82
cosine, hyperbolic 83
country (function) 83
country-dependent data 83
CP 187, lE8, 191,228,229,325,331,

339
moving 253, 254

CPP (preprocessor) 461
command-line options 462
command-line syntax 462

cprintf (function) 85
cputs (function) 85
creat (function) 87
creatnew (function) 88
creattemp (function) 89
cscanf (function) 90
ctime (function) 91
ctrlbrk (function) 91
ctype.h 8
currency symbols 84
current position (graphics) 187, 188,

191,228,229,325,331,339
moving 253, 254

cursor 409
position in text window, returning
405
positioning in text window 190

customization program (TCINST)
555

Customize colors menu, TCINST 573
customizing

keystroke commands 557
multiple versions of Turbo C 556
TC.EXE 555

Cx.LIB 456

D
data bits 55
data segment 28, 68, 82, 239

allocation 65
changing 299

class, renaming 454, 561

Index

group, renaming 454, 561
renaming 454, 561

date
file 167, 323
system 43, 91, 98, 148, 188, 230, 395

returning 158
setting 320, 361

date-time conversion 43, 91, 98, 188,
230,395

daylight (global variable) 22
Debug menu, TCINST 557, 567
debugger, symbolic 449
debugging information, in .EXE or OBJ

file 449
declarations 548
Default Char Type option, TCINST

560
Default color set menu, TCINST 573
default graphics settings 191
Default Libraries option, TCINST 562
defined test macro 481
Defines option, TCINST 559
delay (function) 93
delete block command (Te editor)

416
delete character command (TC

editor) 415
delete line command (TC editor) 415
delete to EOL command (TC editor)

416
deletion

file 396
line 93

delline (function) 93
dependencies, file 465

checked by MAKE 467
detectgraph (function) 94
detection

error, on stream 120
graphics adapter 94, 201

device
channels 216
character 219
driver table 207
drivers

DOS 216

589

vendor added 207
errors 196
type checking 219

diagnostic messages
compiler 423

difftime (function) 96
dir.h 8
directives 469, 483

conditional execution 469, 484
syntax 484

error detection 469, 486
syntax 486

file-inclusion 469, 483
macro undefinition 469, 487

syntax 487
macros in 480
nested 483, 485

Directories menu 456
TCINST 565

directory
creating 250
deleting 297
disk, search of 125, 127
working 353

changing 71
returning 156, 157

directvideo (global variable) 23
disable (function) 96
disabling

command-line switches 445
interrupts 97
warning messages 452

disk
directory, search of 125, 127
drive, setting 320
errors 196

access 423
1/057
operations sent to BIOS 57
sectors

absolute 36, 37
reading/writing 36, 37, 58

space, returning 159
writes, verifying 186, 338

disk-transfer address, DOS 125, 127,
288

590

returning 161
setting 321

Display Swapping option, TCINST
567

div (function) 97
division, integer 97

long 227
DOS

commands 379
device drivers 216
disk-transfer address 125, 127, 288

returning 161
setting 321

environment
adding data to 281
returning data from 161

error codes 25
error information, extended 98
functions

Ox19160
Ox31225

interrupt functions 184,338
interrupt handlers 92, 196
interrupt interface 212, 213
interrupts

Ox21 212,213
Ox23 92, 198
Ox24196
0x2536
Ox2637

memory, memory freeing in 141
path, searching for file 310
search algorithm 106, 477
system calls 52, 53, 197, 290

Ox27288
Ox28289
0x29262
Ox33 153,318
Ox44216
Ox4839
Ox5998
Ox62179
Ox4E 125

version numbers 29
dos.h 8
dosexterr (function) 98

Turbo C Reference Guide

dostounix (function) 98
drawing color 155, 191,264, 293, 311

setting 318
drawpoly (function) 99
drive number, returning current 160
driver, current, name of 160
DTA 125, 127, 288

returning 161
setting 321

dup2 (function) 101
dup (function) 100
duplicate symbols, TLINK warning

502
dynamic memory allocation 68,140,

239,292

E
echoing to screen 155
ecvt (function) 101
Edit Auto Save option, TCINST 563
Edit window 409

status line 410
Editor commands (TC) 411

abort operation 417
Autoindent On/Off 417
backspace 415
basic cursor movement 412,413
block 412, 416
copy block 416
delete block 416
delete character 415
delete line 415
delete to EOL 416
delete word 415
find place marker 420
hide/ display block 416
insert and delete 412, 415
insert control character 418
insert line 415
Insert mode On/Off 415
load file 420
mark block-begin 416
mark block-end 416
mark single word 416
move block 417
Optimal fill On/ Off 420
outdent 415

Index

pair matching 420
print file 420
quick cursor movement 412,414
quit-no save 420
read block 417
repeat last search 420
restore line 420
save file 420
search 418

backward 418
examples 419
local 418
not case sensitive 418
nth occurrence 418
whole word 418

search and replace 419
examples 419
global 419
next n occurrences 419

set place marker 421
tab 421
tab On/Off 421
table of 412
unindent On/Off 421
write block 417

Editor commands option, TCINST
557,567

editors
MicroCa1c 577
Sidekick 409
Turbo C Interactive 409
Turbo Pascal 409

ellipse 124
ellipse (function) 102
elliptical arc 102
elliptical pie slice 311
EMU.LIB 456
emulation

option See -f emulation option
emulation of 8087 calls 448
enable (function) 105
enabling

command -line switches 445
interrupts 105
warning messages 452

end-of-file checking 105, 119, 291

591

end-of-line, clearing to 79
env (argument to main) 17
environ (global variable) 18,24
environment

DOS
adding data to 281
returning data from 161

variables 24
COM SPEC 379
PATH 107,353

environment command-line options
455

Environment menu, TCINST 562
eof (function) 105
errno (global variable) 24
errno.h 8
error handlers

floating-point 241
hard ware 196, 198
user-modifiable math 242

error-reporting command -line
options 446, 452

errors
codes 25

graphics, returning 194
mnemonics 8, 25, 26

command line 423
common 453
detection, on stream 120
detection directives 469

syntax 486
disk access 423
fata1423
information, extended DOS 98
less common 453
locked file 231
MAKE 491
memory access 423
messages 24, 424

592

com piler 423
fatal 424
graphics, returning 191, 194
MAKE 490
OBJXREF539
pointer to, returning 365,366
system, returning 263

TC compiler 561
read/write 120
syntax 423

Errors menu, TCINST 560
exception handlers, 8087/80287361
exception handlers, 8087 /

80287 coprocessor 75
exceptions, floating-point 80
exec ... (function) 106
execution, suspending 93, 348
exit (function) 110
exit codes 35
exit function 47
exit status 110, 225
exp (function) 110
expansion, macro 461, 462
explicit library files 457
explicit rule 469, 470

command list 476
examples 471
executed by MAKE 470
source files in 470
syntax 470
target file in 470

exponent 142
exponential 110
expressions 545
extended 80186 instructions 448
Extended Dictionary 503,508,513

creating 513
flag, TUB 510

extended error information, DOS 98
extension keywords, Turbo C 452
extensions, file, supplied by TUNK

494
external definitions 552

F
fabs (function) 111
far heap

allocation of memory from 111,
113
measure of unused memory in 112
memory freeing in 113
reallocation of memory in 115

far pointer
address segment of 251

Turbo C Reference Guide

returning 138
creation 251
offset of 251

returning 136
to block in far heap 112, 113, 115

farcalloc (function) 111
farcoreleft (function) 112
farfree (function) 113
farmalloc (function) 113
farrealloc (function) 115
fatal errors 423

MAKE 490
messages 424
TLINK 504, 505

FCB 288, 289
fclose (function) 116
fcloseall (function) 116
fcntl.h 8
fcvt (function) 117
fdopen (function) 117
features, MicroCalc 577
feof (function) 119
ferror (function) 120
fflush (function) 120
fgetc (function) 121
fgetchar (function) 121
fgetpos (function) 122
fgets (function) 122
figures, flood-filling 127
file-access permissions 72, 360
file-allocation table 163
file handles 78, 100, 101, 258

duplication of 100, 101
linking to stream 117
returning 123

file-inclusion directive 483
file overwrite command (TC editor)

417
file-sharing 396

attributes 256
locks 231, 396

filelength (function) 123
fileno (function) 123
files

access, read/write 38, 72,87,89,
147, 257, 258, 360

Index

accessibility, determining 37
attribute bits 86, 89, 258
attribute word 72, 86, 89
attributes 71, 72, 87, 258
binary 389
buffering 336
closing 78, 116, 141
control block 288, 289
creation of 86, 87, 88, 89
date 167, 323
date and time of 167, 323
deleting 295, 396
dependencies 465

checked by MAKE 467
graphics driver 201
I/O 121, 122, 137, 138, 139, 140,

143, 149, 153, 187,290,291,336,
399,400,406,407

inclusion directive 469
information on, returning 146, 359
library 529
linker response+, used by OBJXREF

538
linker response, used by OBJXREF

532
linking file handles to 117
name

parsing 261
unique, generating 251, 389

name and extension macro 482
name macros 481
name only macro 483
name path macro 482
object 529
opening 134, 141, 256, 257

for update 118, 134, 142, 389
overwriting 87
pointer

initializing 297
read/write 238
resetting 144, 291
returning 122, 147,380
setting 145, 258

project
used by OBJXREF 532, 538

reading from 290, 291

593

renaming 296
replacing 141
response 529, 531

freeform 531, 538
linker 532, 538

rewriting 86, 87
scratch 389
searcher (GREP) 461, 515
size of

changing 73
returning 123

specifications, GREP 519
time 167, 323
translation 27

fill colors 50, 51, 124, 128,264, 311
information on, returning 165
setting 322

Fill mode 411
fill patterns 50, 51, 124, 128, 191,264,

311
information on, returning 165
predefined 165
setting 322
user-defined 164, 165,321,322

fill style 191
fillellipse (function) 124
filling a figure 127
fillpoly (function) 124
find place marker command (TC

editor) 420
findfirst (function) 125
findnext (function) 127
flags

access 349
read/write 348

float.h 8
floating-point

chip 448
control word 80
conversion 101, 117, 149
error handling 241
exceptions 80
libraries 448
math package 136
operations 448
status word 75

594

Floating Point option, TCINST 560
floating-point status word 361
floodfill (function) 127
flooding a figure 127
floor (function) 129
flushall (function) 129
flushing, stream 120,129
fmod (function) 130
fnmerge (function) 130
fnsplit (function) 132
fonts

adding to graphics library 523
bit-mapped 333
files, converting to .OB] 523
included with Turbo C 524
linked-in 295
linking 522
registering 523
stroked 209, 333, 334

fopen (function) 134
format specifications 85, 90, 137, 143,

268,300,301,357,359,400,401,
402,403,404
argument-type modifiers 302, 308
assignment-suppression character
302, 307, 309
conversion type characters 268,
269
flag characters 268, 272

alternate forms 273
inappropriate character in 309
input-size modifiers 268, 276
precision specifier 268, 274
size modifiers 302, 308
type characters 302, 303
width specifier 268,274, 302,307,

309
format string 85, 90, 137, 143, 268,

300,301, 357, 359, 400, 401, 402,
403,404
conventions 304
input fields 304
range facility shortcut 305
using hyphen to set range 306

FP87.LIB 456
FP _OFF (function) 136

Turbo C Reference Guide

FP _SEG (function) 138
fprintf (function) 137
fputc (function) 138
fputchar (function) 139
fputs (function) 139
frame base pointer 233, 326
fread (function) 140
free (function) 140
freemem (function) 141
freopen (function) 141
frexp (function) 142
fscanf (function) 143
fseek (function) 144
fsetpos (function) 145
fstat (function) 146
ftell (function) 147
ftime (function) 148
full file name macro 482
full link map 455
functions, MicroCalc 577, 580
fwrite (function) 149

G
ganging

#defines command-line options
447
include command-line options 456
library command-line options 456
macro definition command -line
options 447

gcvt (function) 149
Generate Underbars option, TeINST

560
geninterrupt (function) 150
getarccoords (function) 150
getaspectratio (function) 151
getbkcolor (function) 152
getc (function) 153
getcbrk (function) 153
getch (function) 154
getchar (function) 154
getche (function) 155
getcolor (function) 155
getcurdir (function) 156
getcwd (function) 157
getdate (function) 158
getdefaultpalette (function) 159

Index

getdfree (function) 159
getdisk (function) 160
getdrivername (function) 160
getdta (function) 161
getenv (function) 161
getfat (function) 163
getfatd (function) 163
getfillpattern (function) 164
getfillsettings (function) 165
getftime (function) 167
getgraphmode (function) 168
getimage (function) 169
getlinesettings (function) 170
getmaxcolor (function) 172
getmaxmode (function) 172
getmaxx (function) 173
getmaxy (function) 173
getmodename (function) 174
getmoderange (function) 175
getpalette (function) 175
getpalettesize (function) 177
getpass (function) 178
getpixel (function) 178
getpsp (function) 179
gets (function) 179
gettext (function) 180
gettextinfo (function) 181
gettextsettings (function) 182
gettime (function) 183
getvect (function) 184
getverify (function) 185
getviewsettings (function) 186
getw (function) 187
getx (function) 187
gety (function) 188
global time variables, setting 392
global variables 22

_808723
_argc 22
_argo 22
_doserrno 24
Jmode27
_heaplen 28
_osmajor 29
_osminor 29
-psp 29

595

_stklen 30
_version 31
daylight 22
direct video 23
environ 24
ermo 24
sys_errlist 24
sys_nerr 24
timezone 31
tzname 31

GMT 31, 148,392
gmtime (function) 188
goto, nonlocal 92, 233, 325
gotoxy (function) 190
graphdefaults (function) 191
grapherrormsg (function) 191
graphics

adapters 94
buffer

internal 324
converter (BGIOB]) 461,522
drivers 94, 201, 522

adding to graphics library 523
code 293
converting to .OBJ 523
file 201
included with Turbo C 524
linking 522
modes, range of 175
registering 523

error codes, returning 194
error messages 194
I/O 312,339
library 192
memory

allocation of memory from 193
memory freeing in 192

mode 94, 201, 296, 325, See screen
operating mode, See operating
mode of screen
current, returning 168

modes
name of 174

screens, clearing 75
settings, default 191

596

system
closing down 79
initializing 201

text font 191
information on, returning 182

graphics.h 8
GRAPHICS.H header file 527
graphresult (function) 194
Greenwich Mean Time 31,96,148,

188,392
GREP (file searcher) 461,515

command-line options 515
default settings 517
order of precedence 517

command-line syntax 515
examples 519
file specifications 519
operators in regular expressions

518
search string 517

whitespace in 520
GREP.COM 517

H
handlers 341

error 196, 198, 241, 242
exception 75
interrupt 343
signal 286, 341, 345

user-specified 341
handles, file 78, 100, 101,258

duplication of 100, 101
linking to stream 117
returning 123

harderr (function) 196
hardresume (function) 198
hardretn (function) 198
hardware

error handlers 196, 198
information, returning 60
interrupts 105
ports 205, 206, 259

header files 34
GRAPHICS.H 527
MCALC.H579

Turbo C Reference Guide

heap 82
allocation of memory from 68, 140,
239,292
length 28
memory freeing in 140
reallocation of memory in 292

heap, far
allocation of memory from 111,
113
measure of unused memory in 112
memory freeing in 113
reallocation of memory in 115

hide/display block command (TC
editor) 416

high intensity 199
bit, setting 199

highvideo (function) 199
hotkeys, TC 412
hyperbolic cosine 83
hyperbolic sine 347
hyperbolic tangent 380
hypot (function) 199
hypotenuse 199

I
I/O

console 90, 154, 155
disk 57
file 121, 122, 137, 138, 139, 140, 143,
149, 153, 187, 290, 291, 336, 399,
400,406,407
graphics 312, 339
port 54, 205, 206, 259
screen 85, 280
stream 118, 121, 134, 137, 138, 139,
140, 143, 149, 153, 154, 179, 187,
267,279,280,283,284,300,317,
336,399,400,401,402,404

terminated 309
string 69, 85, 122, 139, 179, 260,

261,283,357,358,403
identifiers 542

Pascal-type 449
significant length of 452

imagesize (function) 200
implicit library files 457
implicit rule 469,473

Index

command list 476
examples 473, 474, 475
source extension 473
syntax 473
target extension 473

include command-line options
ganging 456
multiple listings 456

include directories 456
multiple 458

Include Directories option, TCINST
565

Include directories setting 456
include files 5, 8

search algorithms 457
user-specified

search fo r 455
indicator

end-of-file 76
error 76

infinity, floating-point 80
initgraph (function) 201
initialization modules, used with TLINK

496,497
Initialize Segments option, TCINST

561
initialized data segment

class, renaming 454
group, renaming 454
renaming 454

inline 8087 instructions 448
inline assembly code 455, See

assembly code, inline
inport (function) 205
inportb (function) 206
input fields

not scanned 309
scanned but not stored 309

insert control character command
(TC editor) 418

insert line command (TC editor) 415
Insert mode 411, 564
Insert mode On/Off command (TC

editor) 415
Insert Mode option, TCINST 564
insline (function) 206

597

Install Editor screen 568, 569
Installation menu, TCINST 557
installuserdriver (function) 207
installuserfont (function) 209
Instruction Set option, TCINST 560
instruction sets 560
int86 (function) 209
int86x (function) 211
intdos (function) 212
intdosx (function) 213
integers

aligned on word boundary 448
conversion 224
division 97

long 227
reading from stream 187
writing to stream 284

integrated debugger 560, 567
intensity

high 199
low 234
normal 255

interactive editor, Turbo C 409
internal graphics buffer 324
interrupt control 97, 150
interrupt functions, DOS 184, 338
interrupt handlers 343

DOS 196
interrupt vectors 92

8086 184, 338
returning 184
setting 338

interrupts
disabling 97
enabling 105
hardware 105
software 150, 210, 211, 215

intr (function) 215
invoking

MicroCalc 579
TCINST 556

io.h8
ioctl (function) 216
isalnum (function) 218
isalpha (function) 218

598

isascii (function) 219
isatty (function) 219
iscntrl (function) 220
isdigit (function) 220
isgraph (function) 221
islower (function) 221
isprint (function) 222
ispunct (function) 222
isspace (function) 223
isupper (function) 223
isxdigit (function) 224
itoa (function) 224

J
Jump Optimization option, TCINST

560

K
kbhit (function) 225
keep (function) 225
Keep Messages option, TCINST 563
keyboard operations 61
Keystroke commands

Ignore case 570
Verbatim 570
WordStar-like 570

keystroke commands
customizing 557,567,568,570
Ignore case 571
Verbatim 571
WordStar-like 570

keystrokes
allowed 571
checking 225

keywords 542
extension in Turbo C 452

L
labs (function) 226
ldexp (function) 226
ldiv (function) 227
less common errors 453
Less Common Errors menu, TCINST

561
lexical grammar 541
Hind (function) 228
librarian (TUB) 461,508

Turbo C Reference Guide

libraries
command-line options

ganging 456
multiple listings 456

default 562
default, ignored by TUNK 501
directories 456

multiple 458
entry headings 33
files 5

explicit 457
implicit 457
search algorithms 457
Turbo C456
user-specified 457
user-specified search for 456

floating-point 448
name, TUB 509
object file 508
routines

8087 floating-point emulation
448

Turbo C
floating point 498
math 498
rebuilding 449
run-time 498
used with TLINK 496, 497

Library Directories option, TCINST
566

Library directories setting 456
library files 529
library routines 5
License statement 3
limits.h 8
line (function) 228
line numbers, in object files 449
Line Numbers option, TCINST 560
linear search 228, 236
linerel (function) 229
lines

blank, inserting 206
deletion of 93
drawing

between points 228

Index

from CP 229
relative to CP 229

pattern of 170
style of 170, 293, 326
thickness of 170,293,326

lineto (function) 229
link map, full 455
linked-in font 295
linked-in graphics drivers code 293
linker (TUNK) 461, 493
linker command-line options 455
linker error: segment exceeds 64K

525
Linker menu, TCINST 561
linker response files

used by OBJXREF 532, 538
linking

character sets 522
fonts 522
graphics drivers 522

list file, TUB 510
listing file, preprocessor 462

compiling 462
examples 463
used in debugging 462

literal strings 517
merging 448

load file command (TC editor) 420
load operations

redundant, suppressing 450
localtime (function) 230
lock (function) 231
locks, file-sharing 231, 396
log10 (function) 232
log (function) 232
logarithm

base 10 232
natural 232

long integer conversion 238, 394
longjmp (function) 233
low intensity 234
lowvideo (function) 234
lsearch (function) 236
lseek (function) 238
ltoa (function) 238

599

M
machine language instructions

inserted into object code 103
macros

base file name 481
defined test 481
definition 478
definitions

command-line options 446, 447
example 478
in makefile 469
syntax 479

expansion 461, 462
file name 481
file name and extension 482
file name only 483
file name path 482
full file name 482
macros in 480
predefined 481
preprocessor 462
undefinition directive 487

syntax 487
undefinition directives 469

macros. definitions
options

ganging 447
macros, definitions, default 559
Magenta color set menu, TCINST 573
main (function) 17

arguments passed to 17
declaring 17
example 18

command-line arguments 19
wildcard expansion 19

compiled with Pascal calling
conventions 20

declared as C type 20
value returned by 21

main menu 409
MAKE (program manager) 461, 463

BUlL TINS.MAK file 488
command-line examples 488
command-line options 488, 489
command-line syntax 487
command -line target files 488

600

error messages 490
errors 491
examples 464, 467
fatal errors 490
file updating by 470
makefile search algorithm 489
terminating execution of 488
TOUCH utility 493
using TCC and TLINK with 464

makefile 466
base file name macro 481
command lists 476

command body 476, 477
prefixes 476

commands, macros expanded in
480

comments 469
exam pIes 469

components 469
conditional execution directive

469,484
syntax 484

continuation character 469
creating 466, 469
defined test macro 481
directives 469, 483

macros in 480
error detection directive 469 486

syntax 486 '
explicit rules 469, 470

command lists 476
examples 471
executed by MAKE 470
source files in 470
syntax 470
target file in 470

file inclusion directive 469
file-inclusion directives 483
file name and extension macro 482
file name macros 481
file name only macro 483
file name path macro 482
full file name macro 482
implicit rules 469, 473

command lists 476
examples 473,474,475

Turbo C Reference Guide

source extension 473
syntax 473
target extension 473

interpreted by MAKE 466
macro definitions 469, 478

example 478
syntax 479

macro invocation 480
macro undefinition directive 469,

487
syntax 487

macros, macros in 480
predefined macros 481
SET environment strings 481
using 467

makes, default conditions for stopping
558

malloc (function) 239
manifest constants 446
mantissa 142,252
map

of executable file, generated by TLINK
499

map file 561
generated by TLINK 495

Map File option, TCINST 561
mark block-begin command (TC

editor) 416
mark block-end command (TC

editor) 416
mark word command (TC editor) 416
marked text 416
math error handler, user-modifiable

242
math.h8
math package, floating-point 136
matherr (function) 242
MATHx.LIB 456
max (function) 245
maximum color value 172
MCALC.H, header file 579
mem.h8
memccpy (function) 246
memchr (function) 247
memcmp (function) 247
memcpy (function) 248

Index

memicmp (function) 248
memmove (function) 249
memory

access error 423
address specified

returning byte from 262
returning word from 262
storing byte at 265
storing integer at 265

addressing 559
allocation of 39

data segment 65
data segment, changing 299
dynamic 68, 140,239,292
far heap 111, 113
graphics memory 193
heap 68, 140,239,292

bit image, saving to 169
copying 246, 248, 249, 254

in small and medium memory
models 252

freeing
in DOS memory 141
in far heap 113
in graphics memory 192
in heap 140
in small and medium memory
models 113

initializing 249
management of graphics library

192
measure of unused, returning 82

in far heap 112
models 5
reallocation of

far heap 115
heap 292

screen segment, copying to 180
memory model command-line

options 446, 447
memory models 559
memset (function) 249
menu items, TCINST, choosing 558
menu options, TCINST

Alignment 560
Args567

601

Auto Dependencies 559
Autoindent Mode 564
Backspace Unindents 564
Backup Source Files 563
Calling Convention 559
Case-Sensitive Link 562
Clear Project 559
Config A uto Save 563
Debug 567
Default Char Type 560
Default Libraries 562
Defines 559
Display Swapping 567
Edit Auto Save 563
Editor commands 557, 567
Floating Point 560
Generate Underbars 560
Include Directories 565
Initialize Segments 561
Insert Mode 564
Instruction Set 560
Jump Optimization 560
Keep Messages 563
Library Directories 566
Line Numbers 560
Map File 561
Merge Duplicate Strings 560
Message Tracking 562
Model 559
Optimal Fill 564
Optimize For 560
Output Directory 566
Pick File Name 566
Primary File 558
Project Name 558
Quit/Save 558, 574
Register Optimization 560
Resize Windows 558, 574
Stack Warning 562
Standard Stack Frame 560
Tab Size 564
Test Stack Overflow 560
Turbo C Directory 566
Use Register Variables 560
Use Tabs 564
VGA/EGA Save Fonts 563

602

Warn Duplicate Symbols 562
Zoomed Windows 563

menu settings
Tab size 421

menu system
TC, TCINST overridden by 556
TCINST 556

menus
Directories 456
main 409
Optimization 450
Options 443, 456
TCINST

ANSI Violations 561
Break Make On 558
Code Generation 559
Common Errors 561
Com pile 557, 558
Com piler 559
Customize colors 573
Debug 557
Default color set 573
Directories 565
Environment 562
Errors 560
excaping out of 558
Installation 557
Less Common Errors 561
Linker 561
Magenta color set 573
Mode for Display 557,572
Names 561
Optimization 560
Options 557, 559
Options for Editor 564
Portability Warnings 561
Project 557, 558
Screen Size 563
Set Colors 557, 573
Source 560
Turquoise color set 573

Merge Duplicate Strings option, TCINST
560

merging, path 130
Message Tracking option, TCINST

562

Turbo C Reference Guide

MicroCa1c 577
commands 581
compiling 578
entering data 580
features 577

automatic recalculation 578
inserting blank columns and
rows 578
line editor 577
math functions 577
parser 582
setting column width 578

functions 580
invoking 579
operators 580
sample screen 579

min (function) 250
MK_FP (function) 251
mkdir (function) 250
mktemp (function) 251
mnemonics, error code 8, 25, 26
Mode for Display menu, TCINST

557,572
Model option, TCINST 559
modes

access 359
changing 71, 72

binary 27,87,89, 118, 134, 142, 328
current graphics, returning 168
file-translation 87,89
graphics 94, 201, 296, 325
graphics, name of 174
maximum number, for current driver

172
range of, on graphics driver 175
screen, restoring 296
text 27,87,89, 118, 134, 142, 180,

181,283,291,325,328,386
modf (function) 252
module names, TUB 511
modules, object 529
modulo 130
monochrome adapter graphics

problems 40,264
move block command (TC editor)

417

Index

movedata (function) 252
moverel (function) 253
move text (function) 253
moveto (function) 254
movmem (function) 254
multi-file programs, managing 465
multiple directories, include and library

458
multiple listings

#defines command-line options
447
include command-line options 456
library command-line options 456
macro definition command-line
options 447

N
names, public 529
Names menu, TCINST 561
natural logarithm 232
nested comments 452
nested directives 483, 485
NMI interrupt 97
nonfatal errors, TUNK 504, 507
nonlocal goto 92, 233, 325
normvideo (function) 255
nosound (function) 255
numbers, pseudo-random 287

o
object files 529

directories, searched by OBJXREF
533
libraries 508

advantages of using 509
creating 512
managed by TUB 508

line numbers in 449
object module cross-referencer

(OBJXREF) 461,528
command-line options 529,530,
532,533

control options 530, 539
file type 532, 538
report options 530, 533

error messages 539
examples using 538

603

reports
exam pIes 533
options 530
outputting 530

response files 531
summary of available options 530
warnings 539

object modules 529
OBJXREF (object module cross-

referencer) 528
offset, of far pointer 136, 251
open (function) 257
operation list, TLIB 510
operators 545

GREP518
MicroCalc 580

Optimal fill mode 411
Optimal fill OnlOff command (TC

editor) 420
Optimal Fill option, TCINST 564
optimization command-line options

446,449
Optimization menu 450

TCINST560
Optimize For option, TCINST 560
options

command-line 443, 446
linker 455
syntax of 445
table 443
toggling 445

compiler 446
Options for Editor menu, TCINSr

564
Options menu 443, 456

rCINSr 557,559
outdent command (IC editor) 415
outport (function) 259
outportb (function) 259
Output Directory option, reINSr

566
output files, assembly code 455
outtext (function) 260
outtextxy (function) 261
Overwrite mode 411

604

p
page, active 312
page numbers, visual 339
pair matching command (IC editor)

420
palettes 191, 204, 315, 318, 325

changing colors of 313,329
color table 314,315,329
default 159
definition structure 159
information on, returning 159, 175
size of, returning 177
user-defined, for the IBM8514 330

parameter-passing sequence, Pascal
449

parent process 106, 352
parity 55
parser, MicroCalc 582
parsfnm (function) 261
Pascal See Turbo Pascal

calling conventions
com piling main with 20

calling sequence 559
identifiers of type 449
parameter-passing sequence 449

password 178
PATH environment variable 107, 353
path merging 130
path splitting 132
patterns, fil150, 51, 124, 128, 191, 264,

311
information on, returning 165
setting 322
user-defined 164, 322

PC speaker 255,350
peek (function) 262
peekb (function) 262
permissions, file-access 72, 360
perror (function) 24, 263
phrase structure grammar 541 545
Pick File Name option, TCINST 566
pie slice 264

elliptical 311
pieslice (function) 264
pipes 477, 519

Turbo C Reference Guide

pixel color
plotting 282
returning 178

poke (function) 265
pokeb (function) 265
poly (function) 266
polygon 99,124
polynomial equation 266
port I/O 54,205,206,259
portability 34

warnings 453
Portability Warnings menu, TCINST

561
powl0 (function) 267
pow (function) 266
powers

calculating ten to 267
calculating values to 266

precision, floating-point 80
predefined macros 481
preprocessing directives 541, 552
preprocessor (CPP) 461

listing file 462
com piling 462
exam pIes 463
used in debugging 462

macro 462
Primary File option, TCINST 558
print file command (TC editor) 420
printer functions 64
printf (function) 267
process.h 9
program manager (MAKE) 461, 463
program segment prefix 29, 179
program termination 109, 110
project files

used by OBJXREF 532, 538
Project-Make 464
Project menu, TCINST 557,558
Project Name option, TCINST 558
Prolog See Turbo Prolog
prototype 34
pseudo-random numbers 287
pseudo-variables, register 452
PSP 29,179
public names 529

Index

punctuators 545
putc (function) 279
putch (function) 280
putchar (function) 280
putenv (function) 281
putimage (function) 281
putpixel (function) 282
puts (function) 283
puttext (function) 283
putw (function) 284

Q
qsort (function) 284
quick cursor movement commands

(TC editor) 412, 414
Quick Reference Line See also

Quick-Ref Line
quicksort algorithm 284
quit-no save command (TC editor)

420
Quit/Save option, TCINST 558, 574
quotient 97, 227

R
raise (function) 286
RAM

measure of unused, returning 82
resident program 225
size of, returning 63

rand (function) 287
randbrd (function) 288
randbwr (function) 288
random (function) 289
random block read 288
random block write 288
random number generator 287, 289

initializing 290, 358
random record field 288, 289
randomize (function) 290
range facility shortcut 305
read (function) 291
read access 38, 72,87,89, 147, 258,

360
read block command (TC editor) 417
read error 120
read/ write flags 348
realloc (function) 292

605

reallocation, memory
far heap 115
heap 292

rebuilding Turbo C libraries 449
rectangle 293
rectangle (function) 293
redirection 477, 567
Register Optimization option, TCINST

560
register pseudo-variables 452
register variables 233, 326, 450

suppressed 450
toggle 450

registerbgidriver (function) 293, 523,
525,527

registerbgifont (function) 294,523,
525,527

registerfarbgidriver (function) 525,
526,527

registerfarbgifont (function) 525, 526,
527

registering routines 524
REGP ACK structure 215
regular expressions 517

GREP, operators in 518
remainder 97, 130, 227
remove (function) 295
rename (function) 296
repeat last search command (TC

editor) 420
reports (OB]XREF)

by class type 530,536,538
by external reference 531, 535
by module 530,534
by public names 531, 534
by reference 531, 535, 538
default type 531, 538
examples 533
of module sizes 531, 536
of unreferenced symbol names
531,537
options 530
verbose reporting 531,537,538,
539

Resize Windows option, TCINST 558,
574

606

response files 529
formats 531
freeform 531, 538
TUB 513
TUNK495

restore line command (TC editor) 420
restorecrtmode (function) 296
restoring screen 283
restrictions, TUNK 504
rewind (function) 297
rmdir (function) 297
rotation, bit

long integer 235
unsigned integer 298, 299

rounding
down 129
up 69

rounding, modes, floating-point 80
RS-232 communications 54
rule

explicit 469, 470
command list 476
examples 471
executed by MAKE 470
source files in 470
syntax 470
target file in 470

implicit 469, 473
command list 476
example 473
examples 474,475
source extension 473
syntax 473
target extension 473

run-time library

S

functions by category 10
source code, licensing 7

save file command (TC editor) 420
saving screen 180
sbrk (function) 299
scanf (function) 300
Screen Size menu, TCINST 563
screens

clearing 80, 325
coordinates, maximum 173

Turbo C Reference Guide

echoing to 155
I/O 85, 280
MicroCa1c 579
mode, restoring 296
restoring 283
saving 180
segment, copying to memory 180
settings

43/50 Line Display 564
25 Line Display 564

search and replace command (TC
editor) 419
examples 419
next n occurrences 419

search command (TC editor) 418
backward 418
examples 419
local 418
not case sensitive 418
nth occurrence 418
whole word 418

search key 236
searches

algorithms
DOS 106
include files 457
library file 457

binary 66
block, for character 247
DOS path, for file 310
linear 228, 236
string

for character 362
for tokens 375

string, GREP 517
w hitespace in 520

searching and appending 236
search path (function) 310
sector (function) 311
seed number 358
segment-naming control command-

line options 446, 454
segread (function) 312
sequential records 228
Set Colors menu, TCINST 557, 573
SET environment strings 481

Index

set place marker command (TC
editor) 421

setactivepage (function) 312
setallpalette (function) 313
setaspectratio (function) 315
setbkcolor (function) 315
setblock (function) 316
setbuf (function) 317
setcbrk (function) 318
setcolor (function) 318
setdate (function) 320
setdisk (function) 320
setdta (function) 321
setfillpattern (function) 321
setfillstyle (function) 322
setftime (function) 323
setgraphbufsize (function) 324
setgraphmode (function) 325
setjmp (function) 325
setjmp.h 9
setlinestyle (function) 326
setmem (function) 328
setmode (function) 328
setpalette (function) 329
setrgbpalette (function) 330
settextjustify (function) 331
settextstyle (function) 332
settime (function) 334
settings See also menu settings
settings, graphics, default 191
setusercharsize (function) 334
setvbuf (function) 336
setvect (function) 338
setverify (function) 338
setviewport (function) 339
setvisualpage (function) 339
setwritemode (function) 340
share.h 9
shortcuts See hot keys
signal (function) 341
signal.h 9
signal handlers 286, 341, 345

user-specified 341
signals, software 286
sin (function) 347
sine 347

607

sine, hyperbolic 347
sinh (function) 347
size

character 333
file, changing 73
palette, returning 177

sleep (function) 348
smart screen swapping 567
software

interrupts ISO, 210, 211
interface 209,211

signal 286
software interrupts 215

interface 215
sopen (function) 348
sort, quick 284
sound (function) 350
source code, run-time library, licensing

7
source code command-line options

446
source files 470

backed up automatically 563
extension 473
saved automatically 563
separately compiled 509

Source menu, TCINST 560
space on disk, returning 159
spawn ... (function) 352
speaker, PC 255, 350
splitting, path 132
spreadsheet 577
sprintf (function) 357
sqrt (function) 357
square root 357
srand (function) 358
sscanf (function) 358
stack 68, 82, 239

length 30
overflow logic 448
overflow message 448
pointer 233, 326

stack, frame, standard 448
Stack Warning option, TCINST 562
standalone utilities 461

file searcher (GREP) 461, 515

608

graphics converter (BGIOBD 461,
522
librarian (TUB) 461, 508
linker (TLINK) 461,493
object module cross-referencer
(OB]XREF) 461, 528
preprocessor (CPP) 461
program manager (MAKE) 461,
463

standard stack frame 448
Standard Stack Frame option, TCINST

560
stat (function) 359
stat structure 146, 359
statements 551
status bits 55
status byte 59
status line, Edit window 410
status word

8087/80287361
8087/80287 coprocessor 75
floating-point 75, 361

stdargs.h 9
stdaux 116
stddef.h 9
stderr 9, 116, 141
stdin 9, 116, 121, 141, 179, 300, 402
stdio.h 9
stdlib.h 9
stdout 9, 116, 139, 141, 267, 280, 283,

401
stdprn 9, 116
stime (function) 361
stop bit 55
stpcpy (function) 362
strcat (function) 362
strchr (function) 362
strcmp (function) 363
strcmpi (function) 364
strcpy (function) 364
strcspn (function) 365
strdup (function) 365
streams

buffered 317, 336
closing 116, 141
flushing 120, 129

Turbo C Reference Guide

I/O 118, 121, 134, 137, 138, 139,
140, 143, 149, 153, 154, 179, 187,
267,279,280,283,284,300,317,
336,399,400,401,402,404

terminated 309
input, pushing character to 394
linking file handles to 117
opening 134, 141
replacing 141
unbuffered 317,336

strerror (function) 366
stricm p (function) 367
string.h 9
string 1/ 0 403
strings

appending 362, 368
comparison 247, 363, 368

ignoring case 248, 364, 367, 369,
370

conversion 48, 49, 50,374,376,377
copying 362, 364, 365, 370
date-time 91
height, returning 386
I/O 69, 85, 122, 139, 179, 260, 261,

283, 357, 358
initializing 371, 372
length, calculating 367
literals 544
lowercasing 368
reversing 372
scanning

for character in set 371
for characters not in set 365
for last occurrence of character
372
for segment in set 373
for substring 373

searching
for character 362
for tokens 375

uppercasing 378
width, returning 388

strings, merging, literal 448
strlen (function) 367
strlwr (function) 368
strncat (function) 368

Index

strncm p (function) 368
strncm pi (function) 369
strncpy (function) 370
strnicmp (function) 370
strnset (function) 371.
stroked fonts 209, 334, 522

code, linked-in 294
strpbrk (function) 371
strrchr (function) 372
strrev (function) 372
strset (function) 372
strspn (function) 373
strstr (function) 373
strtod (function) 374
strtok (function) 375
strtol (function) 376
strtoul (function) 377
strupr (function) 378
style, fill 191
suffixes

exec ... 106
spawn ... 353

suppressing load operations 450
suspending execution 93, 348
swab (function) 378
symbolic constants 446
symbolic debugger 449
syntax

command -line
BGIOBJ 523, 526
CPP462
GREP515
MAKE 487
TLIB509
TLINK494

errors 423
tracking 562

explicit rule 470
implicit rule 473

sys_errlist (global variable) 24
sys_nerr (global variable) 24
sys \stat.h 9
sys\timeb.h 9
sys\types.h 9
system

date 43,91,98, 148, 188, 230, 395

609

returning 158
setting 320, 361

time 43, 91, 98, 148, 188, 230, 395
returning 183
setting 334, 361

system (function) 379

T
tab command (TC editor) 421
Tab mode 411
tab On/Off command (TC editor) 421
Tab size menu setting 421
Tab Size option, TCINST 564
tan (function) 379
tangent 379
tangent, hyperbolic 380
tanh (function) 380
target files 470

extension 473
MAKE command-line 488

task state 233
TASM 445, 446,455
TC See also Turbo C integrated

development environment
TC.EXE, customizing 555
TCC See also command-line Turbo C
TCC configuration file 462
TCC linker (TLINK) 493, 498
TCINST 555, 556

black and white option 556
color option 556
invoking 556
menu system 556
overridden by configuration file
556
overridden by TC menu system
556

technical support, Borland 4
tell (function) 380
template 251
termination

function 47
program 109, 110

Test Stack Overflow option, TCINST
560

text
attributes 381

610

background color, setting 381, 383
characteristics 332
copying

from one screen rectangle to
another 253
to memory 180
to screen 283

entering in Edit window 410
fonts, graphics 191, 332

information on, returning 182
justifying 331
marked 416
mode 27, 87, 89, 118, 134, 142, 180,

283, 291, 325, 328, 386, See
screen operating mode, See
operating mode of screen
vi~eo information, returning 181
wmdows,defining 406

textattr (function) 381
textbackground (function) 383
textcolor (function) 384
textheight (function) 386
textmode (function) 386
textwidth (function) 388
time

elapsed
calculation of 77, 96
returning 77, 388

file 167, 323
system 43, 91, 98, 148, 188, 230, 395

returning 183
setting 334, 361

time (function) 388
time.h 9
timezone (global variable) 31
TLIB (librarian) 461,508

action symbols 511
case sensitive flag 510,514
command-line options 509
command-line syntax 509
examples 514
Extended Dictionary 508, 513
Extended Dictionary flag 510
library name 509
list file 510
module names 511

Turbo C Reference Guide

operation list 510
operations 511

order of 511
response files 513

TLINK (linker) 461
called by MAKE 467
case sensitivity 502
command-line syntax 494
error messages 504
executable file map generated by
499
Extended Dictionary 503
fatal errors 504, 505
file extensions supplied by 494
generating .COM files 503
invoking 493
linker for TCC 498
map file generated by 495
nonfatal errors 504, 507
options 499
response files 495

example 496
restrictions 504
used with Turbo C modules 496
warnings 504, 507

tmpfile (function) 389
tmpnam (function) 389
toascii (function) 390
toggles See also menu toggles
tokens 541

searching in string 375
tolower (function) 391
TOUCH utility 461, 493
toupper (function) 392
trailing segments, uninitialized 501
translation mode 87, 89
TSR program 225
Turbo Assembler 445
Turbo C

constructs
constants 542
declarations 548
expressions 545
external definitions 552
identifiers 542
keywords 542

Index

lexical grammar 541
operators 545
phrase structure grammar 541,
545
preprocessing directives 541, 552
punctuators 545
statements 551
string literals 544
syntax 541
tokens 541

customization program (TCINST)
555

extension keywords 452
integrated development

environment See also TC
library files 456

Turbo C Directory option, TCINST
566

TURBOC.CFG 458, 462
Turquoise color set menu, TCINST

573
tzname (global variable) 31
tzset (function) 392

U
ultoa (function) 394
unbuffered stream 317, 336
underscore 449
ungetc (function) 394
ungetch (function) 395
Unindent mode 411, 415,564
unindent On/Off command (TC

editor) 421
uninitialized data segment

class, renaming 454
group, renaming 454
renaming 454

UNIX, porting Turbo C files to 452
UNIX format, conversion to 405
unixtodos (function) 395
unlink (function) 396
unlock (function) 396
updating, file, by MAKE 470
Use Register Variables option, TCINST

560
Use Tabs option, TCINST 564

611

user-defined comparison function
284

user-defined fill pattern 164, 321, 322
user-loaded graphics driver code 293
user-modifiable math error handler

242
user-specified library files 457
user-specified signal handlers 341
utilities, standalone 461, See

standalone utilities

V
va ... (function) 397
values.h 9
variable argument list 397, 449
variables

global 22, 529
global time, setting 392
register 450

vectors, interrupt 92
8086 184, 338
returning 184
setting 338

vendor-added device driver 207
verify flag, disk 186, 338
vfprintf (function) 399
vfseanf (function) 400
VGAI

EGA Save Fonts option, TCINSf
563

video information, text mode 181
viewport 76, 191,325,573

displaying string in 260, 261
returning infonnation on 186
setting for graphics output 339

vprintf (function) 401
vscanf (function) 402
vsprintf (function) 403
vsscanf (function) 404

W
Wlrn Duplicate Symbols option, TCINSf

562
warnings 423, 437

enabling and disabling 452
TC compiler 561

612

TLINK 504, 507
wherex (function) 405
wherey (function) 405
WILDARGS.OBJ 19
wildcards 417

expansion 19
by default 20
from integrated environment 20

used by CPP 462
wildcards, in OBJXREF command line

529
window (function) 406
windows

active 409
Edit 409
text mode, defining 406
zooming 563

word aligning 560
of integers 448

words
reading from hardware ports 205
writing to hard ware ports 259

WordStar 409, 421
commands 409
Editor commands not in 421

working directory 107, 353
changing 71
returning 156, 157

write (function) 407
write access 38, 72, 87, 89, 147,258,

360
write block command (TC editor) 417
write error 120

X
x aspect factor 151
x coordinate 187

maximum 173
y
y aspect factor 151
y coordinate 188

maximum 173

Z
Zoomed Windows option, TCINST

563

Turbo C Reference Guide

Operator Precedence Table Escape Sequences

Operator Level Name \a Bell
\b Backspace

[] Array \f Form feed
() Function \n New line
-> Member

\r Carriage return Member
\t Horizontal tab

2 Logical negation \v Vertical tab
Complement \' Single quote

++ Increment \" Double quote
Decrement \\ Backslash Arithmetic negation

(type) Type cast \nnn Octal value
* Indirection \xnn Hex value
& Address of
sizeof Size of object

3 Multiplication
Color Table for Text Mode &

Division EGA/VGA Graphics Mode
% Remainder

COLOR VALUE

+ 4 Addition
Subtraction BLACK 0

BLUE 1
« 5 Left shift GREEN 2
» Right shift CYAN 3

< 6 Less than RED 4

<= Less than or equal to MAGENTA 5
> Greater than BROWN 6
>= Greater than or equal to L1GHTGRAY 7

DARKGRAY 8
7 Equal to L1GHTBLUE 9 != Not equal

L1GHTGREEN 10
& 8 Bitwise AND L1GHTCYAN 11

9 Bitwise XOR L1GHTRED 12
I 10 Bitwise OR L1GHTMAGENTA 13
&& 11 Logical AND YELLOW 14
II 12 Logical OR

WHITE 15 ?: 13 Conditional
14 Assignment
15 Multiple expressions

Formatted lID Table Turbo C Hot Keys

Syntax: printf % [flags] [width] [precision] [mod] type Key(s) Function
scanf % [flags] [width] [mod] type

F1 Brings up a Help window with information
~ Field printf scant Description about your current position

F2 Saves the file currently in the Editor
flags Left-justify result F3 Lets you load a file (an input box will appear)

+ Always prefix with + or - F4 Runs program to line the cursor is on
space Prefix with a blank if non-negative FS Zooms and unzooms the active window
Alternate form conversion F6 Switches active windows

Suppresses assignment of F7 Runs program in debug mode, tracing into
next field functions

I width n Prints at least n characters, FB Runs program in debug mode, stepping over
pad with blanks function calls

On Prints at least n characters, F9 Performs a "make"
pad with zeroes F10 Toggles between the menus and the active
Next argument specifies width window

n Maximum number of characters Ctrl-F1 Calls up context help on functions (TC Editor

I precision (default)
that will be read only)
= 1 for d,i,o,u,x,X types Ctrl-F2 Resets running program
= 6 for e,E,f, types Ctrl-F3 Brings up call stack

.0 No decimal point for e,E,f types Ctrl-F4 Evaluates an expression

.n n decimal places or characters Ctrl-F7 Adds a watch expression
are printed Ctrl-FB Toggles breakpoints On and Off
Next argument specifies width Ctrl-F9 Runs program

mod F F Argument is a far pointer Shift-F10 Displays the version screen
N N Argument is a near painter Alt-F1 Brings up the last help screen you referenced
h h short int for d,i,o,u,x,X types Alt-F3 Lets you pick a file to load
I I long int for d,i,o,u,x,X types Alt-FS Switches between main TC screen and saved

double for e,E,f,g,G types output screen
L L long int for d,i,o,u,x,X types Alt-F6 Switches contents of active window

long double for e,E,f,g,G types Alt-F7 Takes you to previous error
type c c Single character Alt-FB Takes you to next error

d d signed decimal int AIt-F9 Compiles to .OBJ the file loaded in the TC
0 signed long decimal int Editor

e,E e,E signed exponential Alt-B Takes you to the Break/Watch menu
f f signed floating point Alt-C Takes you to the Compile menu
g,G g,G same as e or f based on value Alt-D Takes you to the Debug menu

and precision Alt-E Puts you in the Editor
signed decimal int Alt-F Takes you to the File menu
signed decimal, octal or hex int Alt-O Takes you to the Options menu
signed decimal, octal or hex Alt-P Takes you to the Project menu
long int Alt-R Takes you to the Run menu

n n pointer to int Alt-X Quits TC and returns you to DOS
a a unsigned octal int

0 unsigned octal long int
p p pointer
s s string painter
u u unsigned decimal int

U unsigned decimal long int
x,X x unsigned hex int

X unsigned hex long int

BORLAND

BORLAND INTERNATIONAL, INC , 1800 GREEN HILLS ROAD, PO BOX 660001 , SCOTTS VALLEY, CA 95066-0001

®

PART # 14MN-COM-02-20 BOR 0873

'REFERENCE ;
GUIDE, .
" ,.

