
REFERENCE GUIDE

BORLAND

Windows API Guide

Reference

Volume 2

Version 3.0
for the MS-DOS and PC-DOS
Operating Systems

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

Copyright © 1991 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
109876543

c o N T

Introduction 1
Document conventions 2

Part 3 General reference

Chapter 7 Data types and structures 7
Data types 7
Data structures 9
BITMAP 10

Bitmap data structure 10
BITMAPCOREHEADER 11

Device-independent bitmap format
information 11

BITMAPCOREINFO 12
Device-independent bitmap
informa tion 12

BITMAPFILEHEADER 14
Bitmap file information 14

BITMAPINFO .. 14
~evice-i~dependent bitmap
InformatIOn 14

BITMAPINFOHEADER 16
Device-independent bitmap format
information 16

CLIENTCREATESTRUCT 20
MDI client window creation structure . 20

COLORREF 20
Color specification 20
Palette-relative rgb 21

COMP AREITEMSTRUCT 22
Owner-draw item-sorting information. 22

COMSTAT 23
Communication device status 23

CREATESTRUCT 24
Window-creation structure 24

E N T s

DCB 25
Communications device control block . 25

DELETEITEMSTRUCT 28
Deleted owner-draw list-box item 28

DEVMODE 29
Printer driver initialization
information 29

DLGTEMPLATE 32
Dialog template. 32
Header data structure 32
Font-information data structure 34

DRA WITEMSTRUCT 36
Owner-draw control drawing
information 36

HANDLETABLE 38
Window-handle table 38

LOGBRUSH .. 38
Logical-brush attribute information .. 38

LOGFONT 40
Logical-font descriptor 40

LOGP ALETTE 43
Logical color palette information 43

LOGPEN 44
Logical-pen attribute information 44

MDICREATESTRUCT 45
Mdi child window creation structure . 45

MEASUREITEMSTRUCT 46
Owner-draw control dimensions 46

MENUITEMTEMPLATE 47
Menu-itemtemplate 47

METAFILEPICT 49
Metafile picture structure 49

MSG 50
Message data structure 50

MULTIKEYHELP 50

Windows help key word table
structure .. 50

OFSTRUCT 51
Open-file structure 51

P AINTSTRUCT .. 52
WINDOWS paint information 52

P ALETTEENTRY 52
Logical palette color entry 52

POINT 54
Point data structure 54

RECT 54
Rectangle data structure 54

RGBQUAD 55
Rgb color structure 55

RGBTRIPLE .. 55
Rgb color structure 55

TEXTMETRIC 56
Basic font metrics 56

WNDCLASS 58
Window class data structure 58

Chapter 8 Resource script
statements 61

Single-line statements 61
User-defined resources 63
Rcdata statement 64
Stringtable statement 65
Accelerators statement 67
Menu statement 68

Item-definition statements 70
MENUITEM 70
POPUP 71
MENUITEMSEPARATOR 73

DIALOG statement. 73
Dialog option statements 75
STYLE 75
CAPTION 77
MENU 78
CLASS 78
FONT 79
Dialog control statements 79
LTEXT 80
RTEXT 81

ii

CTEXT 82
CHECKBOX 83
PUSHBUTTON 84
LISTBOX 85
GROUPBOX 86
DEFPUSHBUTTON 87
RADIOBUTTON 88
EDITTEXT .. 89
COMBO BOX .. 91
ICON 92
SCROLL BAR .. 93
CONTROL 94

Directives. .. 103
#include statement 103
#define statement 103
#Undef statement 104
#ifdef statement 104
#ifndef statement 105
#if statement 105
#elif statement 106
#else statement 106
#endif statement 107

Chapter 9 File formats 109
Bitmap file formats 109
Icon resource file format 110
Cursor resource file format 111
Clipboard file format 113
Metafile format 113

Metafile header 114
Metafile records 115

Typical metafile record 116
Function-specific records. 116
AnimatePalette record 3.0 117
BitBlt record (prior to 3.0) 117
BitBlt record 3.0 118
CreateBrushIndirect record. 118
CreateFontIndirect record 119
CreatePalette record 3.0 119
CreatePatternBrush record (prior to
3.0) 119
CreatePatternBrush record 3.0 120
CreatePenIndirect record 121

Create region record 121
DeleteObject 3.0 122
DrawText record 122
Escape record 122
ExtTextOut record 123
Polygon record 124
Poly Polygon record 124
Polyline record 125
SelectClipRegion 125
SelectObject 125
SelectPalette record 3.0 126
SetDIBitsToDevice record 3.0 126
SetPaletteEntries record 3.0 127
StretchBlt record (prior to 3.0) 127
StretchBlt record 3.0 128
StretchDIBits record 3.0 129
TextOut record 130

Sample metafile program output 130
Summary 132

Chapter 10 Module-definition
statements 133

CODE 134
DATA 134
DESCRIPTION 135
EXETYPE 136
EXPORTS 136
HEAPSIZE .. 137
IMPORTS 138
LIBRARY 139
NAME 139
SEGMENTS 140
STACKSIZE 141
STUB 141

Chapter 11 Binary and ternary raster-
operation codes 143

Binary raster operations 143
Ternary raster operations 146

Chapter 12 Printer escapes 153
ABORTDOC 153
BANDINFO 154
BEGIN_PATH 156

iii

CLIP _TO_PATH 157
DEVICE DATA 158
DRAFTMODE 158
DRAWPATTERNRECT 158
ENABLEDUPLEX 160
ENABLEP AIRKERNING 160
ENABLERELATIVEWIDTHS 161
ENDDOC 162
END_PATH 162
ENUMPAPERBINS 164
ENUMPAPERMETRICS 165
EPSPRINTING 166
EXT_DEVICE_CAPS 166
EXTTEXTOUT 168
FLUSHOUTPUT 169
GETCOLORTABLE 169
GETEXTENDEDTEXTMETRICS 170
GETEXTENTT ABLE 173
GETFACENAME 174
GETPAIRKERNTABLE 174
GETPHYSPAGESIZE 176
GETPRINTINGOFFSET 176
GETSCALINGFACTOR 176
GETSETP APERBINS 177
GETSETPAPERMETRICS 178
GETSETP APERORIENT 179
GETSETSCREENPARAMS 180
GETTECHNOLOGY 181
GETTRACKKERNTABLE 181
GETVECTORBRUSHSIZE 182
GETVECTORPENSIZE 183
MFCOMMENT .. 183
NEWFRAME 184
NEXTBAND 184
PASSTHROUGH 185
QUERYESCSUPPORT 186
RESTORE_CTM 186
SAVE_CTM 187
SELECTP APERSOURCE 188
SETABORTPROC 188
SETALLJUSTV ALUES 189
SET_ARC_DIRECTION 190
SET_BACKGROUND_COLOR 191

SET_BOUNDS. .. 191 Using shared memory objects 208
SET_CLIP_BOX 192 Using clipboard formats 208
SETCOLORTABLE 193 U sing the System topic 208
SETCOPYCOUNT 194 DDE message directory 209
SETKERNTRACK 195 WM_DDE_ACK 209
SETLINECAP 196 WM_DDE_ADVISE 211
SETLINE]OIN 196 WM_DDE_DATA 213
SET_MIRROR_MODE 197 WM_DDE_EXECUTE 214
SETMITERLIMIT 198 WM_DDE_INITIATE 216
SET_POLY_MODE 199 WM_DDE_POKE 217
SET_SCREEN_ANGLE 201 WM_DDE_REQUEST 218
SET_SPREAD 201 WM_DDE_TERMINATE 219
STARTDOC .. 202 WM_DDE_UNADVISE 219
TRANSFORM_CTM 203

Appendix A Virtual-key codes 221
Chapter 13 Windows DDE protocol

definition 205
Using the DDE message set 206

Appendix B RC diagnostic
messages 225

Synchronizing the DDE conversation .. 206 Index 235
Using atoms 207

iv

T A B L E s

8.1: Window styles 75 11.2: Operation Indexes for PSo and
8.2: Control classes 94 DPSoo 146
8.3: Control styles 96 11.3: Raster-operation codes 147
9.1: Bit mask results 112 12.1: Meaning of BANDINFOSTRUCT
9.2: GDI functions and values 115 fields 155
11.1: Operation indexes for DPo and 13.1: DOE messages 206

DPan 144

v

vi

N T

Introduction

R o D u c T o N

This manual gives the Windows-application developer general as well as
detailed information about Windows functions, messages, data types,
Resource Compiler statements, assembly language macros, and file
formats. This manual provides detailed descriptions of each component
of the Windows application program interface (API) for readers who
already have a basic understanding of Windows programming.

This manual is divided into two volumes. Volume 1 contains reference
information describing the Windows functions and messages.

Volume 2 contains reference material for other components of the
Windows API. It contains the following nine chapters and five
appendixes:

Chapter 7, "Data types and structures," contains a table of data types and
an alphabetical list of structures found in Windows.

Chapter 8, "Resource script statements," describes the statements that
define resources which the Resource Compiler adds to an application's
executable file. The statements are arranged according to functional
groups.

Chapter 9, II File formats, II describes the formats of five types of files:
bitmap files, icon resource files, cursor resource files, clipboard files, and
metafiles. Each description gives the general file structure and
information about specific parts of the file.

Chapter 10, "Module-definition statements, II describes the statements
contained in the module-definition file that defines the application's
contents and system requirements for the LINK program.

Chapter 11, II Binary and ternary raster-operation codes, II describes the
raster operations used for line output and those used for bitmap output.

Chapter 12, "Printer escapes," lists the printer escapes that are available
in Windows.

Chapter 13, "Windows DDE protocol definition," contains an alphabetical
listing and description of the Windows messages that comprise the
Windows Dynamic Data Exchange protocol.

Appendix A, "Virtual-key codes," lists the symbolic names and
hexadecimal values of Windows virtual-key codes and includes a brief
description of each key.

Appendix B, "RC Diagnostic messages," contains a listing of Resource
Compiler error messages and provides a brief description of each
message.

Document conventions

2

Throughout this manual, the term ''~OS'' refers to both MS-DOS® and
PC-DOS, except when noting features that are unique to one or the other.

The following document conventions are used throughout this manual:

Convention

Bold text

()

Italic text

Monospaced type

Description

Bold letters indicate a specific term or punctuation mark
intended to be used literally: language key words or
functions (such as EXETYPE or CreateWindow), DOS
commands, and command-line options (such as /Zi). You
must type these terms and punctuation marks exactly as
shown. However, the use of uppercase or lowercase letters
is not always significant. For instance, you can invoke the
linker by typing either LINK, link, or Link at the DOS
prompt.

In syntax statements, parentheses enclose one or more
parameters that you pass to a function.

Words in italics indicate a placeholder; you are expected to
provide the actual value. For example, the following
syntax for the SetCursorPos function indicates that you
must substitute values for the X and Y coordinates,
separated by a comma:

SetCursorPos(X, Y)

Code examples are displayed in a nonproportional
typeface.

Vertical ellipses in program examples
indicate that a portion of the program is omitted.

Ellipses following an item indicate that more items having
the same form may appear. In the following example, the

Software development kit

Introduction

[[]]

{ }

horizontal ellipses indicate that you can specify more than
one breakaddress for the 9 command:

9 [[=startaddress]] [[breakaddress]] ...

Double brackets enclose optional fields or parameters in
command lines and syntax statements. In the following
example, option and executable-file are optional parameters
of the RC command:

RC [[option]] filename [[executable-file]]

A vertical bar indicates that you may enter one of the
entries shown on either side of the bar. The following
command-line syntax illustrates the use of a vertical bar:

DB [[address I range]]

The bar indicates that following the DB (dump bytes)
command, you can specify either an address or a range.

Curly braces indicate that you must specify one of the
enclosed items.

SMALL CAPITAL LETTERS Small capital letters indicate the names of keys and key
sequences, such as:

3.0

ALT + SPACEBAR

The Microsoft Windows version number indicates that a
function, message, or data structure is compatible only
with the specified version and later versions.

3

4 Software development kit

p A R T

3

General reference

Part 3 provides general reference information on components of
the Windows application programming interface that are in
addition to the functions and messages described in the preceding
parts.

5

6 Software development kit

c H

Data types

A p T E R

7

Data types and structures

This chapter describes the data types and structures used by Microsoft
Windows functions and messages. It contains two parts: a table of data
types and a list of Windows data structures, each arranged alphabetically.

The data types in the following list are key words that define the size and
meaning of parameters and return values associated with Windows
functions. This list contains character, integer, and Boolean types, pointer
types, and handles. The character, integer, and Boolean types are common
to most C compilers. Most of the pointer-type names begin with either a P
prefix (for short pointers) or an LP prefix (for long pointers). A short
pointer accesses data within the current data segment; a long pointer
contains a 32-bit segment/offset value. A Windows application uses a
handle to refer to a resource that has been loaded into memory. Windows
provides access to these resources through internally maintained tables
that contain individual entries for each handle. Each entry in the handle
table contains the address of the resource and a means of identifying the
resource type. The Windows data types are defined in the following list:

Data type

BOOl
BYTE
char

Description

16-bit Boolean value.
Unsigned 8-bit integer.
ASCII character or a signed 8-bit integer.

Chapter 7, Data types and structures 7

8

DWORD

FAR

FARPROC

GLOBALHANDLE

HANDLE

HBITMAP

HBRUSH

HCURSOR

HOC

HFONT

HICON

HMENU

HPALETTE

HPEN

HRGN

HSTR

int
LOCALHANDLE

long
LONG
LPBITMAP
LPBITMAPCOREHEADER

LPBITMAPCOREINFO

LPBITMAPFILEHEADER

LPBITMAPINFO
LPBITMAPINFOHEADER

LPCOMPAREITEMSTRUCT

LPCREATESTRUCT

Unsigned 32-bit integer or a segment/offset
address.
Data-type attribute that can be used to create a
long pointer.
Long pointer to a function obtained by calling the
MakeProclnstance function.
Handle to global memory. It is a 16-bit index to a
block of memory allocated from the system's
global heap.
General handle. It represents a 16-bit index to a
table entry that identifies program data.
Handle to a physical bitmap. It is a 16-bit index to
GDl's physical drawing objects.
Handle to a physical brush. It is a 16-bit index to
GDl's physical drawing objects.
Handle to a cursor resource. It is a 16-bit index to a
resource-table entry.
Handle to a display context. It is a 16-bit index to
GDl's device-context tables.
Handle to a physical font. It is a 16-bit index to
GDl's physical drawing objects.
Handle to an icon resource. It is a 16-bit index to a
resource-table entry.
Handle to a menu resource. It is a 16-bit index to a
resource-table entry.
Handle to a logical palette. It is a 16-bit index to
GDl's physical drawing objects.
Handle to a physical pen. It is a 16-bit index to
GDl's physical drawing objects.
Handle to a physical region. It is a 16-bit index to
GDl's physical drawing objects.
Handle to a string resource. It is a 16-bit index to a
resource-table entry.
Signed 16-bit integer.
Handle to local memory. It is a 16-bit index to a
block of memory allocated from the application's
local heap.
Signed 32-bit integer.
Signed 32-bit integer.
Long pointer to a BITMAP data structure.
Long pointer to a BITMAPCOREHEADER data
structure.
Long pointer to a BITMAPCOREINFO data
structure.
Long pointer to a BITMAPFILEHEADER data
structure.
Long pointer to a BITMAPINFO data structure.
Long pointer to a BITMAPINFOHEADER data
structure.
Long pointer to a COMPAREITEMSTRUCT data
structure.
Long pointer to a CREATESTRUCT data structure.

Software development kit

LPDELETEITEMSTRUCT

LPDRAWITEMSTRUCT

LPHANDLETABLE
LPINT
LPLOGBRUSH
LPLOGFONT
LPLOGPALETIE
LPLOGPEN
LPMEASURBTEMSTRUCT

LPMETAFILEPICT
LPMSG
LPOFSTRUCT
LPPAINTSTRUCT
LPPALETIEENTRY
LPPOINT
LPRECT
LPRESOURCELIST

LPSTR
LPTEXTMETRIC
LPVOID
LPWNDCLASS
NEAR

NPSTR
PINT
PSTR
PWORD
short
void

WORD

Data structures

Long pointer to a DELETEITEMSTRUCT data
structure.
Long pointer to a DRAWITEMSTRUCT data
structure.
Long pointer to a HANDLETABLE data structure.
Long pointer to a signed 16-bit integer.
Long pointer to a LOGBRUSH data structure.
Long pointer to a LOGFONT data structure.
Long pointer to a LOGPALETIe data structure.
Long pointer to a LOG PEN data structure.
Long pointer to a MEASUREITEMSTRUCT data
structure.
Long pointer to a METAFILEPICT data structure.
Long pointer to a MSG data structure.
Long pointer to an OFSTRUCT data structure.
Long pointer to a PAINTSTRUCT data structure.
Long pointer to a PALETIEENTRY data structure.
Long pointer to a POINT data structure.
Long pointer to a RECT data structure.
Long pointer to one or more RESOURCESTRUCT
data structures.
Long pointer to a character string.
Long pointer to a TEXTMETRIC data structure.
Long pointer to an undefined data type.
Long pointer to a WNDCLASS data structure.
Data-type attribute that can be used to create a
short pointer.
Near pointer to a character string.
Pointer to a signed 16-bit integer.
Pointer to a character string.
Pointer to an unsigned 16-bit integer.
Signed 16-bit integer.
Empty value. It is used with a function to specify
no return value.
Unsigned 16-bit integer.

This section lists data structures that are used by Windows. The data
structures are presented in alphabetical order. The structure definition is
given, followed by a description of each field.

Chapter 7, Data types and structures 9

BITMAP

BITMAP

10

Bitmap
data

structure
The BITMAP structure defines the height, width, color format, and bit
values of a logical bitmap.

typedef struct tagBITMAP TBitmap = record

short bmType; bmType: Integer;
bmWidth: Integer;
bmHeight: Integer;
bmWidthBytes: Integer;
bmPlanes: Byte;
bmBitsPixel: Byte;
bmBits: Pointer;

short bmWidth;
short bmHeight;
short bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
LPSTR bmBits;

BITMAP; end;

The BITMAP structure has the following fields:

Field

bmType

bmWidth

bmHeight

bmWidthBytes

bmPlanes
bmBitsPixel

bmBits

Description

Specifies the bitmap type. For logical bitmaps, the bmType
field must be zero.
Specifies the width of the bitmap (in pixels). The width must
be greater than zero.
Specifies the height of the bitmap (in raster lines). The height
must be greater than zero.
Specifies the number of bytes in each raster line. This value
must be an even number since the graphics device interface
(GDI) assumes that the bit values of a bitmap form an array of
integer (two-byte) values. In other words, bmWidthBytes 8
must be the next multiple of 16 greater than or equal to the
bmWidth field.
Points to the number of color planes in the bitmap.
Points to the number of adjacent color bits on each plane
needed to define a pixel.
Points to the location of the bit values for the bitmap. The
bmBits field must be a long pointer to an array of character
(one-byte) values.

Comments The currently used bitmap formats are monochrome and color. The
monochrome bitmap uses a one-bit, one-plane format. Each scan is a
multiple of 16 bits.

Scans are organized as follows for a monochrome bitmap of height n:

Scan 0
Scan 1

Software development kit

Scan n-2
Scan n-l

BITMAP

The pixels on a monochrome device are either black or white. If the
corresponding bit in the bitmap is 1, the pixel is turned on (white); if the
corresponding bit in the bitmap is zero, the pixel is turned off (black).

All devices that have the RC_BITBLT bit set in the device capabilities
support bitmaps.

Each device has its own unique color format. In order to transfer a bitmap
from one device to another, use GetDIBits and SetDIBits.

See also The CreateBitmaplndirect and GetObject functions in Chapter 4,
"Functions directory," in Reference, Volume 1.

BITMAPCOREHEADER 3.0

Device­
independent

bitmap
format

information

The BITMAPCOREHEADER structure contains information about the
dimensions and color format of a device-independent bitmap that is
compatible with Microsoft OS/2 Presentation Manager versions 1.1 and
1.2 bitmaps.

typedef struct tagBITMAPCOREHEADER {
DWORD bcSize;

TBitmapCoreHeader = record
bcSize: Longint;{ used to get to

color table } WORD bcWidth;
WORD bcHeight;
WORD bcPlanes;
WORD bcBitCount;

} BITMAPCOREHEADER;

bcWidth: Word;
bcHeight: Word;
bcP lanes: Word;
bcBitCount: Word;

end;

The BITMAPCOREHEADER structure has the following fields:

Field

bcSize

bcWidth
bcHeight
bcPlanes

bcBitCount

Description

Specifies the number of bytes required by the BITMAp·
COREHEADER structure.
Specifies the width of the bitmap in pixels.
Specifies the height of the bitmap in pixels.
Specifies the number of planes for the target device and must be
set to 1.
Specifies the number of bits per pixel. This value must be I, 4, 8,
or 24.

Chapter 7, Data types and structures 11

BITMAPCOREHEADER

Comments The BITMAPCOREINFO data structure combines the
BITMAPCOREHEADER structure and a color table to provide a complete
definition of the dimensions and colors of a device-independent bitmap.
See the description of the BITMAPCOREINFO data structure for more
information about specifying a device-independent bitmap.

An application should use the information stored in the bcSize field to
locate the color table in a BITMAPCOREINFO data structure with a
method such as the following:

pColor = ((LPSTR) pBitmapCoreInfo + (WORD) (pBitmapCoreInfo
-» bcSize))

BITMAPCOREINFO 3.0

Device­
independent

bitmap
information

The BITMAPCOREINFO structure fully defines the dimensions and color
information for a device-independent bitmap that is compatible with
Microsoft OS/2 Presentation Manager versions 1.1 and 1.2 bitmaps.

typedef struct _BITMAPCOREINFO {
BITMAPCOREHEADER bmciHeader;
RGBTRIPLE

TBitmapCoreInfo = record
bmciHeader: TBitmapCoreHeader;
bmciColors: array[O .. O] of

TRGBTriple; bmciColors [] ;
} BI TMAP CORE INFO; end;

The BITMAPCOREINFO structure contains the following fields:

Field

bmciHeader

bmciColors

Description

Specifies a BITMAPCOREHEADER data structure that
contains information about the dimensions and color format
of a device-independent bitmap.
Specifies an array of RGBTRIPLE data structures that define
the colors in the bitmap.

Comments An OS/2 Presentation Manager device-independent bitmap consists of
two distinct parts: a BITMAPCOREINFO data structure that describes the
dimensions and colors of the bitmap, and an array of bytes which define
the pixels of the bitmap. The bits in the array are packed together, but
each scan line must be zero-padded to end on a LONG boundary. Segment
boundaries can appear anywhere in the bitmap, however. The origin of
the bitmap is the lower-left corner.

12 Software development kit

BITMAPCOREINFO

The bcBitCount field of the BITMAPCOREHEADER structure determines
the number of bits which define each pixel and the maximum number of
colors in the bitmap. This field may be set to any of the following values:

Value

1

4

.8

24

Description

The bitmap is monochrome, and the bmciColors field must contain
two entries. Each bit in the bitmap array represents a pixel. If the bit is
clear, the pixel is displayed with the color of the first entry in the
bmciColors table; if the bit is set, the pixel has the color of the second
entry in the table.
The bitmap has a maximum of 16 colors, and the bmciColors field
contains 16 entries. Each pixel in the bitmap is represented by a four­
bit index into the color table. For example, if the first byte in the
bitmap is Ox1F, then the byte represents two pixels. The first pixel
contains the color in the second table entry, and the second pixel
contains the color in the 16th table entry.
The bitmap has a maximum of 256 colors, and the bmciColors field
contains 256 entries. In this case, each byte in the array represents a
single pixel.
The bitmap has a maximum of 224 colors. The bmciColors field is
NULL, and each three bytes in the bitmap array represents the relative
intensities oired, green, and blue, respectively, of a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use device-independent bitmaps, the
bmciColors field can be an array of 16-bit unsigned integers that specify
an index into the currently realized logical palette instead of explicit RGB
values. In this case, an application using the bitmap must call device­
independent bitmap functions with the wUsage parameter set to
DIB_PAL_COLORS.

_ The bmciColors field should not contain palette indexes if the bitmap is to
be stored in a file or transferred to another application. Unless the
application uses the bitmap exclusively and under its complete control,
the bitmap color table should contain explicit RGB values.

Chapter 7, Data types and structures 13

BITMAPFILEHEADER

BITMAPFILEHEADER 3.0

Bitmap file
information

Comments

BITMAPINFO

Device­
independent

bitmap
information

14

The BITMAPFILEHEADER data structure contains information about the
type, size, and layout of a device-independent bitmap (DIB) file.

typedef struct tagBITMAPFILEHEADER {
WORD bfType;

TBitrnapFileHeader = record
bfType: Word;

DWORD bfSize;
WORD bfReservedl;
WORD bfReserved2;
DWORD bfOffBits;

bfSize: Longint;
bfReservedl: Word;
bfReserved2: Word;
bfOffBits: Longint;

} BITMAPFILEHEADER; end;

The BITMAPFILEHEADER data structure contains the following fields:

Field Description

Specifies the type of file. It must be BM.
Specifies the size in DWORDs of the file.
Is reserved and must be set to zero.
Is reserved and must be set to zero.

bfType
bfSize
bfReserved1
bfReserved2
bfOffBits Specifies in bytes the offset from the BITMAPFILEHEADER of

the actual bitmap in the file.

A BITMAPINFO or BITMAPCOREINFO data structure immediately follows
the BITMAPFILEHEADER structure in the DIB file.

3.0

The BITMAPINFO structure fully defines the dimensions and color
information for a Windows 3.0 device-independent bitmap.

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER brniHeader;
RGBQUAD brniColors[l];

} BITMAP INFO;

TBitrnapInfo = record
brniHeader: TBitrnapInfoHeader;
brniColors: array[O .. O] of TRGBQuad;

end;

The BITMAPINFO structure contains the following fields:

Software development kit

Field

bmiHeader

bmiColors

BITMAPINFO

Description

Specifies a BITMAPINFOHEADER data structure that contains
information about the dimensions and color format of a device­
independent bitmap.
Specifies an array of RGBQUAD data structures that define the
colors in the bitmap.

Comments A Windows 3.0 device-independent bitmap consists of two distinct parts:
a BITMAPINFO data structure that describes the dimensions and colors of
the bitmap, and an array of bytes that define the pixels of the bitmap. The
bits in the array are packed together, but each scan line must be zero­
padded to end on a LONG boundary. Segment boundaries can appear
anywhere in the bitmap, however. The origin of the bitmap is the lower­
left corner.

The biBitCount field of the BITMAPINFOHEADER structure determines
the number of bits which define each pixel and the maximum number of
colors in the bitmap. This field may be set to any of the following values:

Value

1

4

8

24

Description

The bitmap is monochrome, and the bmiColors field must contain two
entries. Each bit in the bitmap array represents a pixel. If the bit is
clear, the pixel is displayed with the color of the first entry in the
bmiColors table; if the bit is set, the pixel has the color of the second
entry in the table.
The bitmap has a maximum of 16 colors, and the bmiColors field
contains up to 16 entries. Each pixel in the bitmap is represented by a
four-bit index into the color table. For example, if the first byte in the
bitmap is Ox1F, then the byte represents two pixels. The first pixel
contains the color in the second table entry, and the second pixel
contains the color in the 16th table entry.
The bitmap has a maximum of 256 colors, and the bmiColors field
contains up to 256 entries. In this case, each byte in the array
represents a single pixel.
The bitmap has a maximum of 224 colors. The bmiColors field is
NULL, and each three bytes in the bitmap array represents the relative
intensities of red, green, and blue, respectively, of a pixel.

The biClrUsed field of the BITMAPINFOHEADER structure specifies the
number of color indexes in the color table actually used by the bitmap. If
the biClrUsed field is set to 0, the bitmap uses the maximum number of
colors corresponding to the value of the biBitCount field.

The colors in the bmiColors table should appear in order of importance.

Alternatively, for functions that use device-independent bitmaps, the
bmiColors field can be an array of 16-bit unsigned integers that specify an

Chapter 7, Data types and structures 15

BITMAPINFO

index into the currently realized logical palette instead of explicit RGB
values. In this case, an application using the bitmap must call device­
independent bitmap functions with the wUsage parameter set to
DIB_PAL_COLORS.

.. The bmiColors field should not contain palette indices if the bitmap is to
be stored in a file or transferred to another application. Unless the
application uses the bitmap exclusively and under its complete control,
the bitmap color table should contain explicit RGB values.

BITMAPINFOHEADER 3.0

Device­
independent

bitmap
format

information

16

The BITMAPINFOHEADER structure contains information about the
dimensions and color format of a Windows 3.0 device-independent
bitmap.

typedef struct tagBITMAPINFOHEADER{
DWORD biSize;

TBitmaplnfoHeader = record
biSize: Longint;

DWORD biWidth; biWidth: Longint;
biHeight: Longint;
biPlanes: Word;
biBitCount: Word;
biCompression: Longint;
biSizelmage: Longint;
biXPelsPerMeter: Longint;
biYPelsPerMeter: Longint;
biClrUsed: Longint;
biClrlmportant: Longint;

DWORD biHeight;
WORD biPlanes;
WORD biB it Count
DWORD biCompression;
DWORD biSizelmage;
DWORD biXPelsPerMeter;
DWORD biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrlmportant;

BITMAPINFOHEADER; end;

The BITMAPINFOHEADER structure has the following fields:

Field

biSize

biWidth
biHeight
biPlanes

biBitCount

Description

Specifies the number of bytes required by the BITMAp·
INFOHEADER structure.
Specifies the width of the bitmap in pixels.
Specifies the height of the bitmap in pixels.
Specifies the number of planes for the target device and must
be set to 1.
Specifies the number of bits per pixel. This value must be 1,4,
8, or 24.

Software development kit

biCompression

biSizelmage
biXPelsPerMeter

biYPelsPerMeter

biClrUsed

biClrlmportant

BITMAPINFOHEADER

Specifies the type of compression for a compressed bitmap. It
can be one of the following values:.

Value Description
BCRGB Specifies that the bitmap is not compressed.
BCRLE8 Specifies a run-length encoded format for

bitmaps with 8 bits per pixel. The compression
format is a two-byte format consisting of a
count byte followed by a byte containing a
color index. See the following "Comments"
section for more information.

BCRLE4 Specifies a run-length encoded format for
bitmaps with 4 bits per pixel. The compression
format is a two-byte format consisting of a
count byte followed by two word-length color
indexes. See the following "Comments"
section for more information.

Specifies the size in bytes of the image.
Specifies the horizontal resolution in pixels per meter of the
target device for the bitmap. An application can use this
value to select a bitmap from a resource group that best
matches the characteristics of the current device.
Specifies the vertical resolution in pixels per meter of the
target device for the bitmap.
Specifies the number of color indexes in the color table
actually used by the bitmap. If this value is 0, the bitmap uses
the maximum number of colors corresponding to the value of
the biBitCount field. See the description of the BITMAPINFO
data structure earlier in this chapter for more information on
the maximum sizes of the color table. If biClrUsed is nonzero,
then the biClrUsed field specifies the actual number of colors
which the graphics engine or device driver will access if the
biBitCount field is less than 24. If the biBitCount field is set to
24, the biClrUsed field specifies the size of the reference color
table used to optimize performance of Windows color
palettes. If the bitmap is a "packed" bitmap (that is, a bitmap
in which the bitmap array immediately follows the
BITMAP FINO header and which is referenced by a single
pointer), the biClrUsed field must be set to 0 or to the actual
size of the color table.
Specifies the number of color indexes that are considered
important for displaying the bitmap. If this value is 0, then all
colors are important.

Comments The BITMAPINFO data structure combines the BITMAPINFOHEADER
structure and a color table to provide a complete definition of the
dimensions and colors of a Windows 3.0 device-independent bitmap. See
the description of the BITMAPINFO data structure for more information
about specifying a Windows 3.0 device-independent bitmap.

Chapter 7, Data types and structures 17

BITMAPINFOHEADER

18

An application should use the information stored in the biSize field to
locate the color table in a BITMAPINFO data structure with a method such
as the following:

pCo1or = ((LPSTR) pBitmaplnfo + (WORD) (pBitmaplnfo -» biSize))

Bitmap compression formats

Windows supports formats for compressing bitmaps that define their
colors with 8 bits per pixel and with 4 bits per pixel. Compression reduces
the disk and memory storage required for the bitmap. The following
paragraphs describe these formats.

When the biCompression field is set to BCRLE8, the bitmap is
compressed using a run-length encoding format for an 8-bit bitmap. This
format may be compressed in either of two modes:

II Encoded
1'1 Absolute

Both modes can occur anywhere throughout a single bitmap.

Encoded mode consists of two bytes: the first byte specifies the number of
consecutive pixels to be drawn using the color index contained in the
second byte. In addition, the first byte of the pair can be set to zero to
indicate an escape that denotes an end of line, end of bitmap, or a delta.
The interpretation of the escape depends on the value of the second byte
of the pair. The following list shows the meaning of the second byte:

Second Byte
Of Escape Meaning

a End of line.
1 End of bitmap.
2 Delta. The two bytes following the escape contain unsigned

values indicating the horizontal and vertical offset of the next
pixel from the current position.

Absolute mode is signalled by the first byte set to zero and the second
byte set to a value between 03H and FFH. In absolute mode, the second
byte represents the number of bytes which follow, each of which contains
the color index of a single pixel. When the second byte is set to 2 or less,
the escape has the same meaning as in encoded mode. In absolute mode,
each run must be aligned on a word boundary.

The following example shows the hexadecimal values of an 8-bit
compressed bitmap:

03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01

Software development kit

BITMAPINFOHEADER

02 78 00 00 09 IE 00 01

This bitmap would expand as follows (two-digit values represent a color
index for a single pixel):

04 04 04
06 06 06 06 06
45 56 67
78 78
move current position 5 right and 1 down
78 78
end of line
IE IE IE IE IE IE IE IE IE
end of RLE bitmap

When the biCompression field is set to BI_RLE4, the bitmap is
compressed using a run-length encoding format for a 4-bit bitmap, which
also uses encoded and absolute modes. In encoded mode, the first byte of
the pair contains the number of pixels to be drawn using the color indexes
in the second byte. The second byte contains two color indexes, one in its
high-order nibble (that is, its low-order four bits) and one in its low-order
nibble. The first of the pixels is drawn using the color specified by the
high-order nibble, the second is drawn using the color in the low-order
nibble, the third is drawn with the color in the high-order nibble, and so
on, until all the pixels specified by the first byte have been drawn.

In absolute mode, the first byte contains zero, the second byte contains the
number of color indexes that follow, and subsequent bytes contain color
indexes in their high- and low-order nibbles, one color index for each
pixel. In absolute mode, each run must be aligned on a word boundary.
The end-of-line, end-of-bitmap, and delta escapes also apply to BCRLE4.

The following example shows the hexadecimal values of a 4-bit
compressed bitmap:

03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01
04 78 00 00 09 IE 00 01

This bitmap would expand as follows (single-digit values represent a
color index for a single pixel):

040
06060
455 667
787 8
move current position 5 right and 1 down
787 8
end of line
1 E 1 E 1 E 1 E 1
end of RLE bitmap

Chapter 7, Data types and structures 19

CLiENTCREATESTRUCT

CLiENTCREATESTRUCT 3.0

MDI client
window
creation
structure

COLORREF

Color

The CLiENTCREATESTRUCT data structure contains information about
the menu and first multiple document interface (MDI) child window of an
MDI client window. An application passes a long pointer to this structure
as the IpParam parameter of the CreateWindow function when creating an
MDI client window.

typedef struct tagCLIENTCREATESTRUCT
{

TClientCreateStruct = record
hWindowMenu: THandle;
idFirstChild: Word; HMENU hWindowMenu;

WORD idFirstChild; end;
} CLIENTCREATESTRUCT;

The CLiENTCREATESTRUCT structure contains the following fields:

Field

hWindowMenu

idFirstChild

Description

Is the menu handle of the application's Window menu. An
application can retrieve this handle from the MDI frame
window's menu using the GetSubMenu function.
Is the child window ID of the first MDI child window
created. Windows increments the ID for each additional MDI
child window that the application creates, and reassigns
identifiers when the application destroys a window to keep
the range of identifiers continuous. These identifiers are used
in WM_ COMMAND messages to the application's MDI
frame window when a child window is selected from the
Window menu, and should not conflict with any other
command identifiers.

specification A COLORREF color value is a long integer that specifies a color. GDI
functions that require a color (such as CreatePen and FloodFiII) accept a
COLORREF value as a parameter. Depending on how an application uses
the COLORREF value, the value has three distinct forms. It may specify
any of the following:

• Explicit values for red, green, and blue (RGB)
• An index into a logical color palette
• A palette-relative RGB value

20 Software development kit

COLORREF

TColorRef = Longint;

ExpJict RGB When specifying an explicit RGB value, the COLORREF value has the
following hexadecimal form:

OxOObbggrr

The low-order byte contains a value for the relative intensity of red; the
second byte contains a value for green, and the third byte contains a value
for blue. The high-order byte must be zero. The maximum value for a
single byte is FF (hexadecimal). The following list illustrates the
hexadecimal values that produce the indicated colors.

Value

OxOOOOOOFF
OxOOOOFFOO
OxOOFFOOOO
OxOOOOOOOO
OxOOFFFFFF
Ox00808080

Color

Pure red
Pure green
Pure blue
Black
White
Medium gray

The RGB macro accepts values for red, green, and blue, and returns an
explicit RGB COLORREF value.

PaleHe index When specifying an index into a logical color palette, the COLORREF
value has the following hexadecimal form:

Palette-

Ox0100iiii

The two low-order bytes consist of a 16-bit integer specifying an index
into a logical palette. The third byte is not used and must be zero. The
fourth (high-order) byte must be set to l.

For example, the hexadecimal value Ox01000000 specifies the color in the
palette entry of index 0; Ox0100000C specifies the color in the entry of
index 12, and so on.

The PALETTEINDEX macro accepts an integer representing an index into
a logical palette and returns a palette-index COLORREF value.

relative rgb When specifying a palette-relative RGB value, the COLORREF value has
the following hexadecimal form:

Ox02bbggrr

As with an explicit RGB, the three low-order bytes contain values for red,
green, and blue; the high-order byte must be set to 2.

Chapter 7, Data types and structures 21

COLORREF

For output devices that support logical palettes, Windows matches a
palette-relative RGB value to the nearest color in the logical palette of the
device context, as though the application had specified an index to that
palette entry. If an output device does not support a system palette, then
Windows uses the palette-relative RGB as though it were an explict RGB
COLOR REF value.

The PALETTERGB macro accepts values for red, green, and blue, and
returns a palette-relative RGB COLORREF value.

Comments Before passing a palette-index or palette-relative RGB COLORREF value
to a function that also requires a device-context parameter, an application
that uses its own palette must select its palette into the device context (by
calling the SelectPalette function) and realize the palette (by calling
RealizePalette). This ensures that the function will use the correct palette­
entry color. For functions that create an object (such as CreatePen), the
application must select and realize the palette before selecting the object
for the device context.

COMPAREITEMSTRUCT 3.0

Owner­
draw item­

sorting
information

22

The COMPAREITEMSTRUCT structure supplies the identifiers and
application-supplied data for two items in a sorted owner-draw combo
box or list box.

Whenever an application adds a new item to an owner-draw combo or list
box created with the CBS_SORT or LBS_SORT style, Windows sends the
owner a WM_ COMP ARE ITEM message. The IParam parameter of the
message contains a long pointer to a COMPAREITEMSTRUCT data
structure. When the owner receives the message, the owner compares the
two items and returns a value indicating which item sorts before the other.
For more information, see the description of the WM_COMPAREITEM
message in Chapter 6, "Messages directory," in Reference, Volume 1.

typedef struct tagCOMPAREITEMSTRUCT
WORD CtlType;
WORD CtlID;
HWND hwndItem;
WORD itemID1;
DWORD itemDatal;
WORD i temID2;
DWORD itemData2;

COMPAREITEMSTRUCT;

TCompareltemStruct = record
CtlType: Word;
CtlID: Word;
hwndItem: HWnd;
itemID1: Word;
itemDatal: Longint;
itemID2: Word;
itemData2: Longint;

end;

Software development kit

CO MSTAT

Communi­
cation
device

status

COMPAREITEMSTRUCT

The COMPAREITEMSTRUCT structure has the following fields:

Field

CtlType

CtIID
hwndltem
itemlD1

itemData1

itemlD2

itemData2

Description

Is ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo
box).
Is the control ID for the list box or combo box.
Is the window handle of the control.
Is the index of the first item in the list box or combo box being
compared.
Is application-supplied data for the first item being
compared. This value was passed as the IParam parameter of
the message that added the item to the combo or list box.
Is the index of the second item in the list box or combo box
being compared.
Is application-supplied data for the second item being
compared. This value was passed as the IParam parameter of
the message that added the item to the combo or list box.

The COMSTAT structure contains information about a communications
device.

typedef struct tagCOMSTAT
BYTE fCtsHold: 1;
BYTE fDsrHold: 1;
BYTE fRlsdHold: 1;
BYTE fXoffHold: 1;
BYTE fXoffSent: 1;
BYTE fEof: 1;
BYTE fTxim: 1;
WORD cblnQue;
WORD cbOutQue;

COMSTAT;

TComStat = record
Flags: Byte;
cblnQue: Word;
cbOutQue: Word;

end;

The COMSTAT structure has the following fields:

Field Description

fCtsHold: 1 Specifies whether transmission is waiting for the clear-to­
send (CTS) signal to be sent.

fDsrHold: 1 Specifies whether transmission is waiting for the data-set­
ready (DSR) signal to be sent.

fRlsdHold: 1 Specifies whether transmission is waiting for the receive­
line-signal-detect (RLSD) signal to be sent.

Chapter 7, Data types and structures 23

CO MSTAT

fXoffHold: 1

fXoffSent: 1

fEof: 1
fTxim: 1
cblnQue
cbOutQue

Specifies whether transmission is waiting as a result of the
XoffChar character being received.
Specifies whether transmission is waiting as a result of the
XoffChar character being transmitted. Transmission halts
when the XoffChar character is transmitted and used by
systems that take the next character as XON, regardless of the
actual character. ' '
Specifies whether the EofChar character has been received.
Specifies whether a character is waiting to be transmitted.
Specifies the number of characters in the receive queue.
Specifies the number of characters in the transmit queue.

See also The GetCommError function in Chapter 4, "Functions directory," in
Reference, Volume 1.

CREATESTRUCT

24

Window­
creation
structure

The CREATESTRUCT structure defines the initialization parameters
passed to an application's window function.

typedef struet tagCREATESTRUCT
LPSTR lpCreateParams;
HANDLE hInstanee;
HANDLE hMenu;
HWND hwndParent;
int ey;
int ex;
int y;
int x;
long style;
LPSTR lpszName;
LPSTR lpszClass;
long ExStyle;

CREATESTRUCT;

TCreateStruet = record
lpCreateParams: PChar;
hInstanee: THandle;
hMenu: THandle;
hwndParent: HWnd;
ey: Integer;
ex: Integer;
y: Integer;
x: Integer;
style: LongInt;
lpszName: PChar;
lpszClass: PChar;
dwExStyle: Longint;

end;

The CREATESTRUCT structure has the follpwing fields:

Field

IpCreateParams
hlnstance

hMenu
hwndParent

cy

Description

Points to data to be used for creating the window.
Identifies the module-instance handle of the module that
owns the new window.
Identifies the menu to be used by the new window.
Identifies the window that owns the new window. This field
is NULL if the new window is a top-level window.
Specifies the height of the new window.

Software development kit

DCB

Communi­
cations
device
control

block

ex
y

x

CREATESTRUCT

Specifies the width of the new window.
Specifies the y-coordinate of the upper-left corner of the new
window. Coordinates are relative to the parent window if the
new window is a child window. Otherwise, the coordinates
are relative to the screen origin.
Specifies the x-coordinate of the upper-left corner of the new
window. Coordinates are relative to the parent window if the
new window is a child window. Otherwise, the coordinates
are relative to the screen origin.

style
IpszName

Specifies the new window's style.
Points to a null-terminated character string that specifies the
new window's name.

IpszClass Points to a null-terminated character string that specifies the
new window's class name.

ExStyle Specifies extended style for the new window.

The DeB structure defines the control setting for a serial communications
device.

typedef struct tagDCB
BYTE Id;
WORD BaudRate;
BYTE ByteSize;
BYTE Parity;
BYTE StopBits;
WORD RlsTimeout;
WORD CtsTimeout;
WORD DsrTimeout;

BYTE fBinary: 1;
BYTE fRtsDisable:
BYTE fParity: 1;
BYTE fOutxCtsFlow:
BYTE fOutxDsrFlow:
BYTE fDummy: 2;
BYTE fDtrDisable:

BYTE fOutX: 1;
BYTE fInX: 1;
BYTE fpeChar: 1;
BYTE fNull: 1;
BYTE fChEvt: 1;
BYTE fDtrflow: 1;
BYTE fRtsflow: 1;

1;

1 ;
1;

1;

TDCB = record
Id: Byte;
BaudRate: Word;
ByteSize: Byte;
Parity: Byte;
StopBits: Byte;
RlsTimeout: Word;
CtsTimeout: Word;
DsrTimeout: Word;
Flags: Word;
XonChar: Char;
XoffChar: Char;
XonLim: Word;
XoffLim: Word;
PeChar: Char;
EofChar: Char;
EvtChar: Char;
TxDelay: Word;

end;

Chapter 7, Data types and structures 25

DeB

26

BYTE fDumrny2: 1;

char XonChar;
char XoffChar;
WORD XonLim;
WORD XoffLim;
char PeChar;
char EofChar;
char EvtChar;
WORD TxDelay;

DCB;

The DeB structure has the following fields:

Field

Id

BaudRate

ByteSize

Parity

StopBits

RlsTimeout

CtsTimeout

DsrTimeout

fBinary: 1

fRtsDisable: 1

Description

Specifies the communication device. This value is set by the
device driver. If the most significant bit is set, then the DCB
structure is for a parallel device.
Specifies the baud rate at which the communications device
operates.
Specifies the number of bits in the characters transmitted and
received. The ByteSize field can be any number from 4 to 8.
Specifies the parity scheme to be used. The Parity field can be
anyone of the following values:

Value Meaning
EVENP ARITY Even
MARKPARITY Mark
NOPARITY No parity
ODDPARITY Odd
SP ACEP ARITY Space

Specifies the number of stop bits to be used. The StopBits
field can be anyone of the following values:

Value Meaning
ONESTOPBIT 1 stop bit
ONE5STOPBITS 1.5 stop bits
TWOSTOPBITS 2 stop bits

Specifies the maximum amount of time (in milliseconds) the
device should wait for the receive-line-signal-detect (RLSD)
signal. (RLSD is also known as the carrier detect (CD) signal.)
Specifies the maximum amount of time (in milliseconds) the
device should wait for the c1ear-to-send (CTS) signal.
Specifies the maximum amount of time (in milliseconds) the
device should wait for the data-set-ready (DSR) signal.
Specifies binary mode. In nonbinary mode, the EofChar
character is recognized on input and remembered as the end
of data.
Specifies whether or not the request-to-send (RTS) signal is
disabled. If the fRtsDisable field is set, RTS is not used and

Software development kit

fParity: 1

fOutxCtsFlow: 1

fOutxDsrFlow: 1

fDummy: 2
fDtrDisable: 1

fOutX: 1

flnX: 1

fPeChar: 1

fNull: 1
fChEvt: 1

fDtrflow: 1

fRtsflow: 1

fdummy2: 1
XonChar

XoffChar

XonLim

XoffLim

Chapter 7, Data types and structures

DeB

remains low. If fRtsDisable is clear, RTS is sent when the
device is opened and turned off when the device is closed.
Specifies whether parity checking is enabled. If the fParity
field is set, parity checking is performed and errors are
reported.
Specifies that clear-to-send (CTS) signal is to be monitored for
output flow control. If the fOutxCtsFlow field is set and CTS
is turned off, output is suspended until CTS is again sent.
Specifies that the data-set-ready (DSR) signal is to be
monitored for output flow control. If the fOutxDsrFlow field
is set and DSR is turned off, output is suspended until DSR is
again sent.
Reserved.
Specifies whether the data-terminal-ready (DTR) signal is
disabled. If the fDtrDisable field is set, DTR is not used and
remains low. If fDtrDisable is clear, DTR is sent when the
device is opened and turned off when the device is closed.
Specifies that XON jXOFF flow control is used during
transmission. If the fOutX field is set, transmission stops
when the XoffChar character is received, and starts again
when the XonChar character is received.
Specifies that XON jXOFF flow control is used during
reception. If the flnX field is set, the XonChar character is sent
when the receive queue comes within XoffLim characters of
being full, and the XonChar character is sent when the
receive queue comes within XonLim characters of being
empty.
Specifies that characters received with parity errors are to be
replaced with the character specified by the fPeChar field.
The fParity field must be set for the replacement to occur.
Specifies that received null characters are to be discarded.
Specifies that reception of the EvtChar character is to be
flagged as an event.
Specifies that the data-terminal-ready (DTR) signal is to be
used for receive flow control. If the fDtrflow field is set, DTR
is turned off when the receive queue comes within XoffLim
characters of being full, and sent when the receive queue
comes within XonLim characters of being empty.
Specifies that the ready-to-send (RTS) signal is to be used for
receive flow control. If the fRtsflow field is set, RTS is turned
off when the receive queue comes within XoffLim characters
of being full, and sent when the receive queue comes within
XonLim characters of being empty.
Reserved.
Specifies the value of the XON character for both
transmission and reception.
Specifies the value of the XOFF character for both
transmission and reception.
Specifies the minimum number of characters allowed in the
receive queue before the XON character is sent.
Specifies the maximum number of characters allowed in the
receive queue before the XOFF character is sent. The XoffLim

27

DeB

PeChar

EofChar

EvtChar
TxDelay

value is subtracted from the size of the receive queue (in
bytes) to calculate the maximum number of characters
allowed.
Specifies the value of the character used to replace characters
received with a parity error.
Specifies the value of the character used to signal the end of
data.
Specifies the value of the character used to signal an event.
Not currently used.

See also The BuildCommDCB, GetCommState, and SetCommState functions in
Chapter 4, "Functions directory," in Reference, Volume 1.

DELETEITEMSTRUCT 3.0

Deleted
owner-draw
list-box item

28

The DELETEITEMSTRUCT structure describes a deleted owner-draw list­
box or combo-box item. When an item is removed from the list box or
combo box, or when the list box or combo box is destroyed, Windows
sends the WM_DELETEITEM message to the owner for each deleted item;
the IParam parameter of the message contains a pointer to this structure.

typedef struct tagDELETEITEMSTRUCT
{

TDeleteltemStruct = record
CtlType: Word;

WORD CtlType
WORD CtlID;
WORD itemID;
HWND hwndltem;
DWORD itemData;
DELETEITEMSTRUCT;

CtlID: Word;
itemID: Word;
hwndItem: HWnd;
itemData: Longint;

end;

The DELETEITEMSTRUCT structure has the following fields:

Field

CtlType

CtllD
itemlD

hwndltem
item Data

Description

Is ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).
Is the control ID for the list box or combo box.
Is the index of the item in the list box or combo box being
removed.
Is the window handle of the control.
Contains the value passed to the control in the IParam parameter
of the LB _INSERTSTRING, LB_ADDSTRING,
CB_INSERTSTRING, or CB_ADDSTRING message when the
item was added to the list box.

Software development kit

DEVMODE

Printer driver
initialization
information

DEVMODE

3.0

The DEVMODE data structure contains information about the device
initialization and environment of a printer driver. An application passes
this structure to the DeviceCapabilities and ExtDeviceMode functions.

typedef struct _devicemode { TDevMode = record
dmDeviceName: char dmDeviceName[32];

WORD dmSpecVersion;
WORD dmDriverVersion;
WORD
WORD
DWORD
short
short
short
short
short
short
short
short
short
short
BYTE

dmSize;
dmDriverExtra;
dmFields;
dmOrientation;
dmPaperSize;
dmPaperLength;
dmPaperWidth;
dmScale;
dmCopies;
dmDefaultSource;
dmPrintQuality;
dmColor;
dmDuplex;

array[O .. cchDeviceName-l] of Char;
dmSpecVersion: Word;
dmDriverVersion: Word;
dmSize: Word;
dmDriverExtra: Word;
dmFields: LongInt;
dmOrientation: Integer;
dmPaperSize: Integer;
dmPaperLength: Integer;
dmPaperWidth: Integer;
dmScale: Integer;
dmCopies: Integer;
dmDefaultSource: Integer;
dmPrintQuality: Integer;
dmColor: Integer;
dmDuplex: Integer;

dmDriverData[dmDriverExtra];
} DEVMODE;

end;

The DEVMODE structure contains the following fields:

Field

dmDeviceName

dmSpecVersion

dmDriverVersion

dmSize

Description

Specifies the name of the device the driver supports; for
example, "PCL/HP LaserJet" in the case of PCL/HP®
LaserJet®. This string is unique among device drivers.
Specifies the version number of the initialization data
specification upon which the structure is based. The
version number follows the Windows version number and
is currently Ox300.
Specifies the printer driver version number assigned by
the printer driver developer.
Specifies the size in bytes of the DEVMODE structure
except the dmDriverData (device-specific) field. If an
application manipulates only the driver-independent
portion of the data, it can use this field to determine the
length of the structure without having to account for
different versions.

Chapter 7, Data types and structures 29

DEVMODE

dmDriverExtra

dmFields

dmOrientation

dmPaperSize

dm PaperLength

dmPaperWidth

dmScale

dmCopies

dmDefaultSource

30

Contains the size of the dmDriverData field and is the
length of the device-specific data in the DEVMODE
structure. If an application does not use device-specific
information, it should set this field to zero.
Is a bitfield that specifies which of the remaining fields in
the DEVMODE structure have been initialized. Bit 0
(defined as DM_ORIENTATION) corresponds to
dmOrientation; bit 1 (defined as DM_P APERSIZE)
specifies dmPaperSize, and so on. A printer driver
supports only those fields that are appropriate for the
printer technology.
Selects the orientation of the paper. It can be either
DMORIENT _PORTRAIT (1) or
DMORIENT _LANDSCAPE (2).
Selects the size of the paper to print on. This field may be
set to zero if the length and width of the paper are both set
by the dmPaperLength and dmPaperWidth fields.
Otherwise, the dmPaperSize field can be set to one of the
following predefined values:

Value Meaning
DMPAPER_LETTER B/2-by-ll-inch paper
DMPAPER_LEGAL B/2-by-14-inch paper
DMPAPER_A4 210-by-297-millimeter paper
DMPAPER_CSHEET 17-by-22-inch paper
DMP APER_DSHEET 22-by-34-inch paper
DMPAPER_ESHEET 34-by-44-inch paper
DMPAPER_ENV _9 3/B-by-B/B-inch #9 envelope
DMPAPER_ENV _10 4/B-by-9/5-inch #10 envelope
DMPAPER_ENV _11 4/2-by-1O/B-inch #11 envelope
DMPAPER_ENV_12 4/4-by-ll-inch#12 envelope
DMPAPER_ENV _14 5-by-11/2-inch #14 envelope

Overrides the length of the paper specified by the
dmPaperSize field, either for custom paper sizes or for
devices such as dot-matrix printers which can print on a
page of arbitrary length. These values, along with all other
values which specify a physical length, are in tenths of a
millimeter.
Overrides the width of the paper specified by the
dmPaperSize field.
Scales the printed output. The apparent page size is scaled
by a factor of dmScale/lOO from the physical page size. A
letter-size paper with a dmScale value of 50 would appear
to be 17 by 22 inches, and output text and graphics would
be correspondingly half their normal height and width.
Selects the number of copies printed if the device supports
multiple-page copies.
Specifies the paper bin from which the paper is fed by
default. The application can override this selection by
using the GETSETPAPERBINS escape. Possible bins
include the following:

Software development kit

dmPrintQuality

dmColor

dmDuplex

dmDriverData[]

IJ DMBIN_DEF AULT

IJ DMBIN_UPPER

IJ DMBIN_LOWER

IJ DMBIN_MANUAL

IJ DMBIN_TRACTOR

IJ DMBIN_ENVELOPE

DEVMODE

There is also a range of values reserved for device-specific
bins. The GETSETP APERBINS and ENUMP APERBINS
escapes use these indexes to be consistent with
initialization information.
Specifies the printer resolution. There are four predefined
device-independent values:

IJ DMRES_HIGH (-4)

IJ DMRES_MEDIUM (-3)

IJ DMRES_LOW (-2)

IJ DMRES_DRAFT (-1)

If a positive value is given, it specifies the number of dots
per inch (DP!) and is therefore device dependent.
Switches between color and monochrome on color
printers. Possible values are:

IJ DMCOLOR_COLOR (1)

IJ DMCOLOR_MONOCHROME (2).

Selects duplex or double-sided printing for printers
capable of duplex printing. Values for this field include:

IJ DMDUP_SIMPLEX (1)

IJ DMDUP _HORIZONTAL (2)

IJ DMDUP _VERTICAL (3).

Contains device-specific data defined by the device driver.

Comments Only drivers fully updated for Windows version 3.0 and which export the
ExtDeviceMode function use the DEVMODE data structure.

Chapter 7, Data types and structures 31

DLGTEMPLATE

DLGTEMPLATE

32

Dialog
template

Header
data

structure

The DLGTEMPLATE defines the contents of a dialog box. This structure is
divided into three distinct parts:

Part Description

Header Data
Structure
Font-Information
Data Structure
List of Items

Contains a general description of the dialog box.

Defines the font with which text is drawn in the
dialog box. This part is optional.
Describes the parts that compose the dialog box.

The CreateDialoglndirect, CreateDialoglndirectParam, DialogBoxlndirect,
and DialogBoxlndirectParam functions use this structure.

The DLGTEMPLATE header is shown here:

typedef struct {
long dtStyle;
BYTE dtltemCount;
int dtX;
int dtY;
int dtCX;
int dtCY;
char dtMenuName[];
char dtClassName[];
char dtCaptionText[];

DLGTEMPLATE;

The DLGTEMPLATE header has the following fields:

Field

dtStyle

Description

Specifies the style of the dialog box. This field may be any or
all of these values:

Value
DS_LOCALEDIT

Meaning
Specifies that text storage for edit
controls will be allocated in the
application's local data segment.
This allows the use of the
EM_ GETHANDLE and
EM_SETHANDLE messages. If

Software development kit

DS_MODALFRAME

DS_ABSALIGN

DS_NOIDLEMSG

DLGTEMPLATE

this style is not specified, edit­
control data is located in a
separate global data block.
Specifies a system-modal dialog
box.
Specifies a dialog box with a
modal dialog-box border. This
style can be combined with the
WS_CAPTION and
WS_SYSMENU style flags to
create a dialog box with a title bar
and System menu.
Indicates that dtX and dtY are
relative to the screen origin, not to
the owner of the dialog box.
Specifies that a font other than the
system font is to be used to draw
text in the dialog box. If this flag is
set, the FONTINFO data structure
described in the following
paragraphs must immediately
follow the DLGTEMPLATE header.
When Windows creates a dialog
box with this attribute, Windows
sends the WM_SETFONT
message to the dialog-box
window prior to creating the
controls.
Specifies that Windows will not
send the WM_ENTERIDLE
message to the owner of the
dialog box while the dialog box is
displayed.

dtitemCount Specifies the number of items in the dialog box. A dialog box
can contain up to 255 controls.

dtX Specifies the x-coordinate of the upper-left corner of the
dialog box in units of /4 of the current dialog base width
unit. The dialog base units are computed from the height and
width of the current system font; the GetDialogBaseUnits
function returns the current dialog base units in pixels.
Unless DS_ABSALIGN is set in the dtStyle field, this value is
relative to the origin of the parent window's client area.

dtY Specifies the y-coordinate of the upper-left corner of the
dialog box in units of /8 of the current dialog base height
unit. Unless DS_ABSALIGN is set in the dtStyle field, this
value is relative to the origin of the parent window's client
area.

dtCX Specifies the width of the dialog box in units of /4 of the
dialog base width unit.

dtCY Specifies the height of the dialog box in units of /8 of the
dialog base height unit.

Chapter 7, Data types and structures 33

DLGTEMPLATE

dtMenuName[]

dtClassName[]

dtCaptionText[]

Specifies a null-terminated string that specifies the name of
the dialog box's menu. If this field is NULL, the dialog-box
window does not have a menu.
Specifies a null-terminated string that supplies the name of
the dialog box's class. If dtClassName[] is zero, it creates a
dialog box with the standard dialog-box style. If an
application specifies a class name, it should provide a dialog
procedure that processes each dialog-box message directly or
calls the DefDlgProc function to process the message. Also,
the application must register the class with the cbWndExtra
field of the WNDCLASS data structure set to
DLGWINDOWEXTRA.
Specifies a null-terminated string that supplies the caption for
the dialog box. .

Font­
information

data
structure

The FONTINFO data structure contains information about the point size
and face name of the font which Windows is to use to draw text in the
dialog box.

34

PointSize;
typedef struct{

short int
char

FONTINFO;
szTypeFace[); /* A null-terminated string */

The FONTINFO structure has the following fields:

Field Description

PointSize
szTypeFace

Specifies the size of the typeface in points.
Specifies the name of the typeface; for example, "Courier".

Comments The font specified must have been previously loaded, either from
WIN.INI or explicitly by calling the LoadFont function.

Item list The item list consists of one or more DLGITEMTEMPLATE data structures,
one for each control in the dialog box. The first such structure
immediately follows the FONTINFO structure or the header at the first
byte after the terminating null character in the szTypeFace field or the
dtCaptionText[] field. The following shows the format of the
DLGITEMTEMPLATE structure.

typedef struct {
int dtilX;
int dtilY;
int dtilCX;
int dtilCY;
int dtilID;

Software development kit

DLGTEMPLATE

long dtilStyle;
char dtilClass[];
char dtilText[];
BYTE dtilInfo;
PTR dtilData;

DLGITEMTEMPLATE

The DLGITEMTEMPLATE data structure has the following fields:

Field

dtilX

dtilY

dtilCX

dtilCY

dtillD
dtilStyle
dtilClass[]

dtiiText[]
dtillnfo

dtiiData

Description

Specifies the x-coordinate of the upper-left corner of the dialog­
box item in units of /4 of the current dialog base width unit,
relative to the origin of the dialog box. The dialog base units are
computed from the height and width of the current system font.
The GetDialogBaseUnits function returns the current dialog base
units in pixels.
Specifies the y-coordinate of the upper-left corner of the dialog­
box item in units of /8 of the current dialog base height unit. This
value is relative to the origin of the dialog box.
Specifies the width-extent of the dialog-box item in units of /4 of
the current dialog base width unit. Dialog base units are
computed from the height and width of the current system font.
The GetDialogBaseUnits function returns the current dialog base
units.
Specifies the height of the dialog-box item in units of /8 of the
dialog base height unit.
Specifies the dialog-box item identification number.
Specifies the style of the dialog-box item.
A null-terminated string that specifies the control's class. It may
be one of the following class names:

cBUTTON
cEDIT
cSTATIC
cLISTBOX
cSCROLLBAR
cCOMBOBOX

Specifies the text for the item; it is a null-terminated string.
Specifies the number of bytes of additional data that follows this
item description and precedes the next item description.
Specifies additional data which the CreateWindow function
receives through the IpCreateParams field of the
CREATESTRUCT data structure. This field is zero length if dtillnfo
is zero.

Chapter 7, Data types and structures 35

DRAWITEMSTRUCT

DRAWITEMSTRUCT 3.0

Owner­
draw

control
drawing

information

36

The DRAWITEMSTRUCT structure provides information the owner needs
to determine how to paint an owner-draw control. The owner of the
owner-draw control receives a pointer to this structure as the IParam
parameter of the WM_DRA WITEM message.

typedef struct tagDRAWITEMSTRUCT
{

TDrawltemStruct = record
CtlType: Word;

WORD CtlType;
WORD CtlID;
WORD itemID;
WORD itemAction;
WORD itemState;
HWND hwndItem;
HDC hDC;
RECT rcItem;

CtlID: Word;
itemID: Word;
itemAction: Word;
itemState: Word;
hwndItem: HWnd;
hDC: HDC;
rcItem: TRect;
itemData: Longint;

DWORD itemData;
DRAWITEMSTRUCT;

end;

The DRAWITEMSTRUCT structure has the following fields:

Field

CtiType

CtllD

itemlD

itemAction

Description

Is the control type. The values for control types are as follows:

Value
ODT_BUTTON
ODT _ COMBOBOX

ODT_LISTBOX
ODT_MENU

Meaning
Owner-draw button.
Owner-draw combo
box.
Owner-draw list box.
Owner-draw menu.

Is the control ID for a combo box, list box or button. This field is
not used for a menu.
Is the menu-item ID for a menu or the index of the item in a list
box or combo box. For an empty list box or combo box, this field
can be -1. This allows the application to draw only the focus
rectangle at the coordinates specified by the rcltem field even
though there are no items in the control. This indicates to the
user whether the list box or combo box has input focus. The
setting of the bits in the itemAction field determines whether the
rectangle is to be drawn as though the list box or combo box has
input focus.
Defines the drawing action required. This will be one or more of
the following bits:

Software development kit

itemState

hwndltem

hDC

rcltem

itemData

Chapter 7, Data types and structures

Value
ODA_DRA WENTIRE

DRAWITEMSTRUCT

Description
This bit is set when the entire control
needs to be drawn.
This bit is set when the control gains or
loses input focus. The itemState field
should be checked to determine
whether the control has focus.
This bit is set when only the selection
status has changed. The itemState field
should be checked to determine the new
selection state.

Specifies the visual state of the item after the current drawing
action takes place. That is, if a menu item is to be grayed, the
state flag ODS_GRAYED will be set. The state flags are:

Value
ODS_CHECKED

ODS_FOCUS
ODS_GRAYED

Description
This bit is set if the menu item is to be
checked. This bit is used only in a menu.
This bit is set if the item is to be drawn
as disabled.
This bit is set if the item has input focus.
This bit is set if the item is to be grayed.
This bit is used only in a menu.
This bit is set if the item's status is
selected.

For combo boxes, list boxes and buttons, this field specifies the
window handle of the control; for menus, it contains the handle
of the menu (HMENU) containing the item.
Identifies a device context; this device context must be used
when performing drawing operations on the control.
Is a rectangle in the device context specified by the hDC field
that defines the boundaries of the control to be drawn. Windows
automatically clips anything the owner draws in the device
context for combo boxes, list boxes, and buttons, but does not
clip menu items. When drawing menu items, the owner must
ensure that the owner does not draw outside the boundaries of
the rectangle defined by the rcltem field.
For a combo box or list box, this field contains the value that was
passed to the list box in the IParam parameter of one of the the
following messages:

Il CB ADD STRING
Il CB-INSERTSTRING
tI LB-ADDSTRING
c LB)NSERTSTRING

For a menu, this field contains the DWORD value passed as the
IpNewItem parameter of the InsertMenu which inserted the menu
item. Its contents are undefined for buttons.

37

HANDLETABLE

HANDLETABLE

Window­
handle

table

LOGBRUSH

Logical­
brush

attribute
information

38

The HANDLETABLE structure is an array of handles, each of which
identifies a GDI object.

HANDLE objectHandle[l] THan dIeT able = record
objectHandle: array[O .. O] of

THandle;
end;

The HANDLETABLE structure has the following field:

Field Description

objectHandle[1] Identifies an array of handles.

The LOGBRUSH structure defines the style, color, and pattern of a
physical brush to be created by using the CreateBrushlndirect function.

typedef struct tagLOGBRUSH
WORD IbStyle;
COLORREF IbColor;
short int IbHatch;

LOGBRUSH;

TLogBrush = record
IbStyle: Word;
IbColor: Longint;
IbHatch: Integer;

end;

The LOG BRUSH structure has the following fields:

Field

IbStyle

Description

Specifies the brush style. The IbStyle field can be anyone of the
following styles:

Style
BS_DIBPATTERN

BS_HATCHED
BS_HOLLOW

Meaning
Specifies a pattern brush defined by a
device-independent bitmap (DIB)
specification.
Specifies a hatched brush.
Specifies a hollow brush.

Software development kit

IbColor

IbHatch

BS_PATTERN

BS_SOLID

LOGBRUSH

Specifies a pattern brush defined by a
memory bitmap.
Specifies a solid brush.

Specifies the color in which the brush is to be drawn. If IbStyle is
BS_HOLLOW or BS_PATTERN, IbColor is ignored. If IpStyle is
BS_DIBPATTERN, the low-order word of IbColor specifies whether
the bmiColors fields of the BITMAPINFO data structure contain
explicit RGB values or indexes into the currently realized logical
palette. The IbColor field must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table consists of an array of 16-bit

indexes into the currently realized logical
palette.

DIB_RGB_COLORS The color table contains literal RGB values.

Specifies a hatch style. The meaning depends on the brush style. If
IbStyle is BS_DIBPATTERN, the IbHatch field contains a handle to
a packed DIB. To obtain this handle, an application calls the
GlobalAlioc function to allocate a block of global memory and then
fills the memory with the packed DIB. A packed DIB consists of a
BITMAPINFO data structure immediately followed by the array of
bytes which define the pixels of the bitmap. If IbStyle is
BS_HATCHED, the IbHatch field specifies the orientation of the
lines used to create the hatch. It can be anyone of the following
values:

Value
HS_BDIAGONAL
HS_CROSS
HS_DIAGCROSS
HS_FDIAGONAL
HS_HORIZONTAL
HS_ VERTICAL

Meaning
45-degree upward hatch (left to right)
Horizontal and vertical crosshatch
45-degree crosshatch
45-degree downward hatch (left to right)
Horizontal hatch
Vertical hatch

If IbStyle is BS_PATTERN, IbHatch must be a handle to the bitmap
that defines the pattern.
If IbStyle is BS_SOLID or BS_HOLLOW, IbHatch is ignored.

See also The CreateBrushlndirect function in Chapter 4, "Functions directory," in
Reference, Volume 1.

Chapter 7, Data types and structures 39

LOGFONT

LOGFONT

Logical-font
descriptor

40

The LOG FONT structure defines the attributes of a font, a drawing object
used to write text on a display surface.

typedef struct tagLOGFONT
short int IfHeight;
short int IfWidth;

TLogFont = record
IfHeight: Integer;
IfWidth: Integer;

short int IfEscapement;
short int IfOrientation;
short int IfWeight;
BYTE IfItalic;
BYTE IfUnderline;
BYTE IfStrikeOut;
BYTE IfCharSet;
BYTE IfOutPrecision;
BYTE IfClipPrecision;
BYTE IfQuality;
BYTE IfPitchAndFamily;
BYTE IfFaceName[LF_FACESIZE];

LOGFONT;

IfEscapement: Integer;
IfOrientation: Integer;
IfWeight: Integer;
lfIt ali c : Byte;
IfUnderline: Byte;
IfStrikeOut: Byte;
lfCharSet: Byte;
IfOutPrecision: Byte;
IfClipPrecision: Byte;
lfQuality: Byte;
IfPitchAndFamily: Byte;
IfFaceName: array[O .. 1f_FaceSize -

1] of Byte;
end;

The LOGFONT structure has the following fields:

Field

If Height

If Width

If Escapement

Description

Specifies the average height of the font (in user units). The
height of a font can be specified in the following three ways.
If the If Height field is greater than zero, it is transformed
into device units and matched against the cell height of the
available fonts. If If Height is zero, a reasonable default size
is used. If If Height is less than zero, it is transformed into
device units and the absolute value is matched against the
character height of the available fonts. To ensure
compatibility with the font-scaling engine of future versions
of Windows, If Height should be less than zero. Setting the
high-order bit indicates that the font height does not take
internal leading into consideration. This corresponds to the
standard typographical EM height.
Specifies the average width of characters in the font (in
device units). If the If Width field is zero, the aspect ratio of
the device is matched against the digitization aspect ratio of
the available fonts for the closest match by absolute value of
the difference.
Specifies the angle (in tenths of degrees) between the
escapement vector and the x-axis of the display surface. The
escapement vector is the line through the origins of the first

Software development kit

If Orientation

If Weight

Ifltalic
If Underline
If StrikeOut
IfCharSet

IfOutPrecision

IfClipPrecision

IfQuality

Chapter 7, Data types and structures

LOGFONT

and last characters on a line. The angle is measured
counterclockwise from the x-axis.
Specifies the angle (in tenths of degrees) between the
baseline of a character and the x-axis. The angle is measured
counterclockwise from the x-axis.
Specifies the font weight (in inked pixels per 1000).
Although the If Weight field can be any integer value from 0
to 1000, the common values are as follows:

Il 400 Normal
11700 Bold

These values are approximate; the actual appearance
depends on the font face. If If Weight is zero, a default
weight is used.
Specifies an italic font if set to nonzero.
Specifies an underlined font if set to nonzero.
Specifies a strikeout font if set to nonzero.
Specifies the font's character set. The three values are
predefined:

Il ANSI CHARSET
IJ OEM-CHARSET
Il SYMBOL_CHARSET

The OEM character set is system-dependent. Fonts with
other character sets may exist in the system. If an
application uses a font with an unknown character set, it
should not attempt to translate or interpret strings that are
to be rendered with that font. Instead, the strings should be
passed directly to the output device driver.
Specifies the font's output precision, which defines how
closely the output must match the requested font's height,
width, character orientation, escapement, and pitch. The
default setting is OUT_DEFAULT_PRECIS.
Specifies the font's clipping precision, which defines how to
clip characters that are partially outside the clipping region.
The default setting is CLIP _DEFAULT_PRECIS.
Specifies the font's output quality, which defines how
carefully CDI must attempt to match the logical-font
attributes to those of an actual physical font. It can be any
one of the following values:

Value Meaning
DEFAULT_QUALITY Appearance of the font does not

matter.
DRAFT_QUALITY Appearance of the font is less

important than when
PROOF_QUALITY is used. For CDI
fonts, scaling is enabled, which
means that more font sizes are
available, but the quality may be
lower. Bold, italic, underline, and
strikeout fonts are synthesized if
necessary.

41

LOGFONT

IfPitchAndFamily

42

PROOF_QUALITY Character quality of the font is
more important than exact
matching of the logical-font
attributes. For GDI fonts, scaling is
disabled and the font closest in size
is chosen. Although the chosen font
size may not be mapped exactly
when PROOF_QUALITY is used,
the quality of the font is high and
there is no distortion of appearance.
Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

Specifies the font pitch and family. The two low-order bits
specify the pitch of the font and can be anyone of the
following values:

• DEFAULT PITCH
• FIXED PITCH
• VARIABLE_PITCH

The four high-order bits of the field specify the font family
and can be anyone of the following values:

• FF DECORATIVE
• FF-DONTCARE
.FF-MODERN
.FF-ROMAN
.FF-SCRIPT
.FF=SWISS

The proper value can be obtained by using the Boolean OR
operator to join one pitch constant with one family constant.
Font families describe the look of a font in a general way.
They are intended for specifying fonts when the exact
typeface desired is not available. The values for font
families are as follows:

Value
FF _DECORATIVE

FF _DONTCARE
FF_MODERN

Meaning
Novelty fonts. Old English, for
example.
Don't care or don't know.
Fonts with constant stroke width
(fixed-pitch), with or without serifs.
Fixed-pitch fonts are usually
modern. Pica, Elite, and Courier, for
example.
Fonts with variable stroke width
(proportionally spaced) and with
serifs. Times Roman, Palatino, and
Century Schoolbook, for example.
Fonts designed to look like
handwriting. Script and Cursive,
for example.
Fonts with variable stroke width
(proportionally spaced) and

Software development kit

IfFaceName

LOGFONT

without serifs. Helvetica and Swiss,
for example.

Specifies the font's typeface. It must be a null-terminated
character string. If IfFaceName is NULL, GDI uses a default
typeface.

See also The CreateFontlndirect function in Chapter 4, "Functions directory," in
Reference, Volume 1.

LOGPALETIE 3.0

Logical
color The LOGPALETTE data structure defines a logical color palette.

palette
information

typedef struct
{

WORD palVersion;

TLogPalette = record
palVersion: Word;
palNumEntries: Word;
palPalEntry: array[O .. 0] of WORD palNumEntries;

PALETTEENTRY palPalEntry[];
} LOGPALETTE;

TPaletteEntry;
end;

The LOG PALETTE structure has the following fields:

Field

palVersion

palNumEntries
palPalEntry []

Description

Specifies the Windows version number for the structure
(currently Ox300).
Specifies the number of palette color entries.
Specifies an array of PALETTE ENTRY data structures that
define the color and usage of each entry in the logical
palette.

Comments The colors in the palette entry table should appear in order of importance.
This is because entries earlier in the logical palette are most likely to be
placed in the system palette.

This data structure is passed as a parameter to the CreatePalette function.

Chapter 7, Data types and structures 43

LOGPEN

LOGPEN

Logical-pen
attribute

information
The LOG PEN structure defines the style, width, and color of a pen, a
drawing object used to draw lines and borders. The CreatePenlndirect
function uses the LOGPEN structure.

typedef struct tagLOGPEN { TLogPen = record
lopnStyle: Word;
lopnWidth: TPoint;
lopnColor: Longint;

WORD lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

LOGPEN; end;

The LOG PEN structure has the following fields:

Field

lopnStyle

lopnWidth

lopnColor

Description

Specifies the pen type, which can be anyone of the following
values:

Constant Name
PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT
PS_NULL
PS_INSIDEFRAME

Value
o
1
2
3
4
5
6

Result

If the width of the pen is greater than 1 and the pen style is
PS_INSIDEFRAME, the line is drawn inside the frame of all
primitives except polygons and poly lines; the pen is drawn with a
logical (dithered) color if the pen color does not match an available
RGB value. The PS_INSIDEFRAME style is identical to PS_SOLID
if the pen width is less than or equal to 1.

Specifies the pen width (in logical units). If the lopnWidth field is
zero, the pen is one pixel wide on raster devices.

Specifies the pen color.

Comments The y value in the POINT structure for lopnWidth is not used.

See also The CreatePenlndirect function in Chapter 4, "Functions directory," in
Reference, Volume 1.

44 Software development kit

MDICREATESTRUCT

MDICREATESTRUCT 3.0

Mdi child
window
creation
structure

The MDICREATESTRUCT data structure contains information about the
class, title, owner, location, and size of a multiple document interface
(MDI) child window.

typedef struet tagMDICREATESTRUCT
{

TMDICreateStruet = record
szClass: PChar;
szTitle: PChar; LPSTR szClass;

LPSTR szTitle; hOwner: THandle;
HANDLE hOwner; x, y: Integer;
int x; ex, ey: Integer;
int y; style: LongInt;
int ex; lParam: Longlnt;
int eYi end;
LONG style;
LONG lParam;
MDICREATESTRUCT;

The MDICREATESTRUCT structure contains the following fields:

Field

szClass

szTitle

hOwner

x

y

cx

cy

style

Description

Contains a long pointer to the application-defined class of the
MDI child window.
Contains a long pointer to the window title of the MDI child
window.
Is the instance handle of the application creating the MDI child
window.
Specifies the initial position of the left side of the MDI child
window. If set to CW_USEDEFAULT, the MDI child window is
assigned a default horizontal position.
Specifies the initial position of the top edge of the MDI child
window. If set to CW_USEDEFAULT, the MDI child window is
assigned a default vertical position.
Specifies the initial width of the MDI child window. If set to
CW _ USEDEFAUL T, the MDI child window is assigned a default
width.
Specifies the initial height of the MDI child window. If set to
CW_USEDEFAULT, the MDI child window is assigned a default
height.
Specifies additional styles for the MDI child window. The style
field may be set to one or more of the following values:

Chapter 7, Data types and structures 45

MDICREATESTRUCT

IParam

Value
WS_MINIMIZE

Meaning
The MDI child window is created in a
minimized state.
The MDI child window is created in a
maximized state.
The MDI child window is created with a
horizontal scroll bar.
The MDI child window is created with a
vertical scroll bar.

Is an application-defined 32-bit value.

Comments When the MOl child window is created, Windows sends the
WM_ CREATE message to the window. The IParam parameter of the
WM_CREATE message contains a pointer to a CREATESTRUCT data
structure. The IpCreateParams field of the CREATESTRUCT structure
contains a pointer to the MDICREATESTRUCT data structure passed with
the WM_MOICREATE message that created the MOl child window.

M EASU REITEMSTRUCT 3.0

Owner­
draw

control
dimensions

46

The MEASUREITEMSTRUCT data structure informs Windows of the
dimensions of an owner-draw control. This allows Windows to process
user interaction with the control correctly. The owner of an owner-draw
control receives a pointer to this structure as the IParam parameter of an
WM_MEASUREITEM message. The owner-draw control sends this
message to its owner window when the control is created; the owner then
fills in the appropriate fields in the structure for the control and returns.
This structure is common to all owner-draw controls.

The MEASUREITEMSTRUCT structure has the following format:

typedef struct tagMEASUREITEMSTRUCT
{

WORD CtlType;
WORD CUID;
WORD itemID;
WORD itemWidth;
WORD itemHeight;
DWORD itemData

) MEASUREITEMSTRUCT;

TMeasureltemStruct = record
CUType: Word;
CUID: Word;
itemID: Word;
itemWidth: Word;
itemHeight: Word;
itemData: Longint;

end;

The MEASUREITEMSTRUCT structure contains the following fields:

Software development kit

Field

CtlType

CtliD

itemlD

itemWidth

itemHeight

item Data

MEASUREITEMSTRUCT

Description

Is the control type. The values for control types are as follows:

Value Meaning
ODT_BUTTON Owner-draw button.
ODT_COMBOBOX Owner-draw combo box.
ODT_LISTBOX Owner-draw list box.
ODT_MENU Owner-draw menu.

Is the control ID for a combo box, list box, or button. This field is
not used for a menu.
Is the menu-item ID for a menu or the list-box item ID for a
variable-height combo box or list box. This field is not used for a
fixed-height combo box or list box, or for a button.
Specifies the width of a menu item. The owner of the owner­
draw menu item must fill this field before returning from the
message.
Specifies the height of an individual item in a list box or a menu.
Before returning from the message, the owner of the owner­
draw combo box, list box, or menu item must fill out this field.
Contains the value that was passed to the combo box or list box
in the IParam parameter of one of the following messages:

c CB ADD STRING
c CB-INSERTSTRING
c LB -ADD STRING
EJ LB)NSERTSTRING

Contains the DWORD value passed as the IpNewItem parameter
of the AppendMenu, InsertMenu, or ModifyMenu function that
added or modified the menu item. Its contents are undefined for
buttons.

Comments Failure to fill out the proper fields in the MEASUREITEM structure will
cause improper operation of the control.

MENUITEMTEMPLATE

Menu-
itemtemplate A complete menu template consists of a header and one or more menu­

item lists. The following shows the structure of the menu-template
header:

typedef struct {
WORD versionNumber;
WORD offset;

MENUITEMTEMPLATEHEADER;

TMenulternTernplateHeader = record
versionNurnber: Word;
offset: Word;

end;

The menu-template header contains the following fields:

Chapter 7, Data types and structures 47

MENUITEMTEMPLATE

Field

versionNumber
offset

Description

Specifies the version number. Should be zero.
Specifies the offset from the header in bytes where the
menu-item list begins.

One or more MENUITEMTEMPLATE structures are combined to form the
menu-item list.

typedef struct
WORD mtOption;
WORD mtID;
char mtString;

MENUITEMTEMPLATE;

The MENUITEMTEMPLATE structure has the following fields:

Field

mtOption

mtiD

mtString

Description

Specifies a mask of one or more predefined menu options that
specify the appearance of the menu item. The menu options are as
follows:

Value
MF_CHECKED
MF_END

Meaning
Item has a checkmark next to it.
Item must be specified for the last item in
a pop-up menu or a static menu.
Item is initially inactive and drawn with a
gray effect.

MF _HELP Item has a vertical separator to its left.
MF _MENUBARBREAK

MF _MENUBREAK
MF_OWNERDRAW

Item is placed in a new column. The old
and new columns are separated by a bar.
Item is placed in a new column.
The owner of the menu is responsible for
drawing all visual aspects of the menu
item, including highlighted, checked and
inactive states. This option is not valid for
a top-level menu item.
Item displays a sub list of menu items
when selected.

Specifies an identification code for a nonpop-up menu item. The
MENUITEMTEMPLATE data structure for a pop-up menu item
does not contain the mtiD field.
Specifies a null-terminated character string that contains the name
of the menu item.

See also The LoadMenulndirect function in Chapter 4, "Functions directory," in
Reference, Volume 1.

48 Software development kit

METAFILEPICT

Metafile
picture

structure

METAFILEPICT

The METAFILEPICT structure defines the metafile picture format used for
exchanging metafile data through the clipboard.

typedef struct tagMETAFILEPICT TMetaFilePict = record
mrn: Integer; int mrn;

int xExt, yExt; xExt: Integer;

HANDLE hMF; yExt: Integer;

} METAFILEPICT; hMF: THandlei
end;

The METAFILEPICT structure has the following fields:

Field

mm
xExt

yExt

hMF

Description

Specifies the mapping mode in which the picture is drawn.
Specifies the size of the metafile picture for all modes except the
MM_ISOTROPIC and MM_ANISOTROPIC modes. The x-extent
specifies the width of the rectangle within which the picture is
drawn. The coordinates are in units that correspond to the
mapping mode.
Specifies the size of the metafile picture for all modes except the
MM_ISOTROPIC and MM_ANISOTROPIC modes. The y-extent
specifies the height of the rectangle within which the picture is
drawn. The coordinates are in units that correspond to the
mapping mode.
For MM_ISOTROPIC and MM_ANISOTROPIC modes, which can
be scaled, the xExt and yExt fields contain an optional suggested
size in MM_HIMETRIC units. For MM_ANISOTROPIC pictures,
xExt and yExt can be zero when no suggested size is supplied. For
MM_ISOTROPIC pictures, an aspect ratio must be supplied even
when no suggested size is given. (If a suggested size is given, the
aspect ratio is implied by the size.) To give an aspect ratio without
implying a suggested size, set xExt and yExt to negative values
whose ratio is the appropriate aspect ratio. The magnitude of the
negative xExt and yExt values will be ignored; only the ratio will
be used.
Identifies a memory metafile.

Chapter 7, Data types and structures 49

MSG

MSG

Message
data The MSG structure contains information from the Windows application

structure queue.

MULTIKEYHELP

Windows
help key

word table
structure

50

typedef struct tagMSG { TMsg = record
hwnd: HWnd;
message: Word;
wParam: Word;
lParam: LongInt;
time: Longint;
pt: TPoint;

HWND hwnd;
WORD message;
WORD wParam;
LONG lParam;
DWORD time;
POINT pt;

} MSG; end;

The MSG structure has the following fields:

Field

hwnd
message
wParam

IParam

time
pt

Description

Identifies the window that receives the message.
Specifies the message number.
Specifies additional information about the message. The exact
meaning depends on the message value.
Specifies additional information about the message. The exact
meaning depends on the message value.
Specifies the time at which the message was posted.
Specifies the position of the cursor (in screen coordinates) when
the message was posted.

The MUL TIKEYHELP structure specifies a key-word table and an
associated key word to be used by the Windows Help application.

typedef struct tagMULTIKEYHELP
WORD mkSize;
BYTE mkKeylist;
BYTE szKeyphrase[];

} MULTIKEYHELP;

TMultiKeyHelp = record
mkSize: Word;
mkKeyList: Byte;
szKeyPhrase: array[O .. O] of Byte;

end;

The MUL TIKEYHELP data structure contains the following fields:

Software development kit

OFSTRUCT

Open-file
structure

Field

mkSize

mkKeylist

szKeyphrase[]

MULTIKEYHELP

Description

Specifies the length of the MULTIKEYHELP structure (in
bytes).
Contains a single character that identifies the key-word
table to be searched.
Contains a null-terminated text string that specifies the
key word to be located in the key-word table.

The OFSTRUCT structure contains file information which results from
opening that file.

typedef struct tagOFSTRUCT
BYTE cBytes;

TOFStruct = record
cBytes: Byte;
fFixedDisk: Byte;
nErrCode: Word;

BYTE fFixedDisk;
WORD nErrCode;
BYTE reserved[4];
BYTE szPathName[120];

reserved: array[O .. 3] of Byte;
sZPathName: array[O .. 127] of Char;

OFSTRUCT; end;

The OFSTRUCT structure has the following fields:

Field

cBytes
fFixedDisk

nErrCode

reserved[4]
szPathName[120]

Description

Specifies the length of the OFSTRUCT structure (in bytes).
Specifies whether the file is on a fixed disk. The fFixedDisk
field is nonzero if the file is on a fixed disk.
Specifies the DOS error code if the Open File function
returns -1 (that is, Open File failed).
Reserved field. Four bytes reserved for future use.
Specifies 120 bytes that contain the pathname of the file.
This string consists of characters from the OEM character
set.

Chapter 7, Data types and structures 51

PAINTSTRUCT

PAINTSTRUCT

WINDOWS
paint

information

PALETTEENTRY

52

Logical
palette

color entry

The PAINTSTRUCT structure contains information for an application. This
information can be used to paint the client area of a window owned by
that application.

typedef struet tagPAINTSTRUCT
HDC hde;
BaaL fErase;
RECT rePaint;
BaaL fRestore;
BaaL fIneUpdate;
BYTE rgbReserved[16];

PAINTSTRUCT;

TPaintStruet = record
hde: HDC;
fErase: Bool;
rePaint: TReet;
fRestore: Bool;
flneUpdate: Bool;
rgbReserved: array[O .. l5] of Byte;

end;

The PAINTSTRUCT structure has the following fields:

Field Description

hdc
fErase

Identifies the display context to be used for painting.
Specifies whether the background has been redrawn. It
has been redrawn if nonzero.

rePaint

fRestore
flncUpdate
rgbReserved[16]

Specifies the upper-left and lower-right corners of the
rectangle in which the painting is requested.
Reserved field. It is used internally by Windows.
Reserved field. It is used internally by Windows.
Reserved field. A reserved block of memory used
internally by Windows.

The PALETTE ENTRY data structure specifies the color and usage of an
entry in a logical color palette. A logical palette is defined by a
LOGPALETTE data structure.

typedef struet
{

BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;
) PALETTEENTRY;

TPaletteEntry = record
peRed: Byte;
peGreen: Byte;
peBlue: Byte;
peFlags: Byte;

end;

3.0

Software development kit

PALETIEENTRY

The PALETTE ENTRY structure contains the following fields:

Field

peRed
peGreen
peBlue
peFlags

Description

Specifies the intensity of red for the palette entry color.
Specifies the intensity of green for the palette entry color.
Specifies the intensity of blue for the palette entry color.
Specifies how the palette entry is to be used. The peFlags field
may be set to NULL or one of these values:

Flag Meaning
PC_EXPLICIT Specifies that the low-order word of the

logical palette entry designates a hardware
palette index. This flag allows the
application to show the contents of the
display-device palette.

PC_NOCOLLAPSE Specifies that the color will be placed in an
unused entry in the system palette instead
of being matched to an existing color in the
system palette. If there are no unused
entries in the system palette, the color is
matched normally. Once this color is in the
system palette, colors in other logical
palettes can be matched to this color.

PC_RESERVED Specifies that the logical palette entry will
be used for palette animation; this prevents
other windows from matching colors to
this palette entry since the color will
frequently change. If an unused system­
palette entry is available, this color is
placed in that entry. Otherwise, the color
will not be available for animation.

Chapter 7, Data types and structures 53

POINT

POINT

Point data
structure The POINT structure defines the x- and y-coordinates of a point.

typedef struct tagPOINT
int x;
int y;

POINT;

TPoint = record
x: Integer;
y: Integer;

end;

The POINT structure has the following fields:

Field

x
y

Description

Specifies the x-coordinate of a point.
Specifies the y-coordinate of a point.

See also The ChiidWindowFromPoint, PtlnRect, and WindowFromPoint functions
in Chapter 4, "Functions directory," in Reference, Volume 1.

RECT

Rectangle
data

structure
The RECT structure defines the coordinates of the upper-left and lower­
right corners of a rectangle.

typedef struct tagRECT
int left;

TRect = record
left: Integer;
top: Integer;
right: Integer;
bottom: -Integer;

int top;
int right;
int bottom;

RECT; end;

The RECT structure has the following fields:

Field

left
top
right
bottom

Description

Specifies the x-coordinate of the upper-left corner of a rectangle.
Specifies the y-coordinate of the upper-left corner of a rectangle.
Specifies the x-coordinate of the lower-right corner of a rectangle.
Specifies the y-coordinate of the lower-right corner of a rectangle.

Comments The width of the rectangle defined by the RECT structure must not exceed
32,768 units.

54 Software development kit

RGBQUAD

Rgb color
structure

RGBTRIPLE

Rgb color
structure

RGBQUAD

The RGBQUAD data structure describes a color consisting of relative
intensities of red, green, and blue. The bmiColors field of the
BITMAPINFO data structure consists of an array of RGBQUAD data
structures.

typedef struct tagRGBQUAD TRGBQuad = record
rgbBlue: Byte;
rgbGreen: Byte;
rgbRed: Byte;
rgbReserved: Byte;

BYTE rgbBlue;
BYTE
BYTE
BYTE

RGBQUAD;

rgbGreen;
rgbRed;
rgbReserved;

end;

The RGBQUAD structure contains the following fields:

Field

rgbBlue
rgbGreen
rgbRed
rgbReserved

Description

Specifies the intensity of blue in the color.
Specifies the intensity of green in the color.
Specifies the intensity of red in the color.
Is not used and must be set to zero.

3.0

3.0

The RGBTRIPLE data structure describes a color consisting of relative
intensities of red, green, and blue. The bmciColors field of the
BITMAPCOREINFO data structure consists of an array of RGBTRIPLE data
structures.

typedef struct tagRGBTRIPLE TRGBTriple = record
rgbtBlue: Byte;
rgbtGreen: Byte;
rgbtRed: Byte;

BYTE rgbtBlue;
BYTE rgbtGreen;
BYTE rgbtRed;

RGBTRIPLE; end;

The RGBTRIPLE structure contains the following fields:

Field

rgbtBlue
rgbtGreen
rgbtRed

Description

Specifies the intensity of blue in the color.
Specifies the intensity of green in the color.
Specifies the intensity of red in the color.

Chapter 7, Data types and structures 55

TEXTMETRIC

TEXTMETRIC

56

Basic font
metrics The TEXTMETRIC structure contains basic information about a physical

font. All sizes are given in logical units; that is, they depend on the current
mapping mode of the display context.

typedef struct tagTEXTMETRIC
short int tmHeight;

TTextMetric = record
tmHeight: Integer;

short int tmAscent;
short int tmDescent;
short int tmInternalLeading;
short int tmExternalLeading;
short int tmAveCharWidth;
short int tmMaxCharWidth;
short int tmWeight;
BYTE tmItalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmLastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
short int tmOverhang;
short int tmDigitizedAspectX;
short int tmDigitizedAspectY;

TEXTMETRIC;

tmAscent: Integer;
tmDescent: Integer;
tmInternalLeading: Integer;
tmExternalLeading: Integer;
tmAveCharWidth: Integer;
tmMaxCharWidth: Integer;
tmWeight: Integer;
tmItalic: Byte;
tmUnderlined: Byte;
tmStruckOut: Byte;
tmFirstChar: Byte;
tmLastChar: Byte;
tmDefaultChar: Byte;
tmBreakChar: Byte;
tmPitchAndFamily: Byte;
tmCharSet: Byte;
tmOverhang: Integer;
tmDigitizedAspectX: Integer;
tmDigitizedAspectY: Integer;

end;

The TEXTMETRIC structure has the following fields:

Field

tmHeight
tmAscent

tmDescent

tmlnternalLeading

tmExternalLeading

Description

Specifies the height (ascent + descent) of characters.
Specifies the ascent (units above the baseline) of
characters.
Specifies the descent (units below the baseline) of
characters.
Specifies the amount of leading (space) inside the bounds
set by the tmHeight field. Accent marks and other foreign
characters may occur in this area. The designer may set
this field to zero.
Specifies the amount of extra leading (space) that the
application adds between rows. Since this area is outside
the font, it contains no marks and will not be altered by
text output calls in either OPAQUE or TRANSPARENT
mode. The designer may set this field to zero.

Software development kit

tmAveCharWidth

tm MaxCharWidth
tmWeight
tmltalic
tmUnderlined
tmStruckOut
tmFirstChar
tmLastChar
tmDefaultChar

tmBreakChar

tmPitchAndFamily

tmCharSet
tmOverhang

tmDigitizedAspectX

tm DigitizedAspectY

TEXTMETRIC

Specifies the average width of characters in the font
(loosely defined as the width of the letter x). This value
does not include overhang required for bold or italic
characters.
Specifies the width of the widest character in the font.
Specifies the weight of the font.
Specifies an italic font if it is nonzero.
Specifies an underlined font if it is nonzero.
Specifies a struckout font if it is nonzero.
Specifies the value of the first character defined in the font.
Specifies the value of the last character defined in the font.
Specifies the value of the character that will be substituted
for characters that are not in the font.
Specifies the value of the character that will be used to
define word breaks for text justification.
Specifies the pitch and family of the selected font. The
low-order bit specifies the pitch of the font. If it is 1, the
font is variable pitch. If it is 0, the font is fixed pitch. The
four high-order bits designate the font family. The
tmPitchAndFamily field can be combined with the
hexadecimal value OxFO by using the bitwise AND
operator, and then be compared with the font family
names for an identical match. For a description of the font
families, see the LOGFONT structure, earlier in this
chapter.
Specifies the character set of the font.
Specifies the per-string extra width that may be added to
some synthesized fonts. When synthesizing some
attributes, such as bold or italic, CDI or a device may have
to add width to a string on both a per-character and per­
string basis. For example, CDI makes a string bold by
expanding the intra character spacing and overstriking by
an offset value; it italicizes a font by skewing the string. In
either case, there is an overhang past the basic string. For
bold strings, the overhang is the distance by which the
overstrike is offset. For italic strings, the overhang is the
amount the top of the font is skewed past the bottom of
the font. The tmOverhang field allows the application to
determine how much of the character width returned by a
GetTextExtent function call on a single character is the
actual character width and how much is the per-string
extra width. The actual width is the extent minus the
overhang.
Specifies the horizontal aspect of the device for which the
font was designed.
Specifies the vertical aspect of the device for which the
font was designed. The ratio of the tmDigitizedAspectX
and tmDigitizedAspectY fields is the aspect ratio of the
device for which the font was designed.

See also The GetDeviceCaps and GetTextMetrics functions in Chapter 4,
"Functions directory," in Reference, Volume 1.

Chapter 7, Data types and structures 57

WNDCLASS

WNDCLASS

58

Window
class data

structure
THE WNDCLass structure contains the class attributes that are
registered by the RegisterClass function.

typedef struct tagWNDCLASS TWndClass = record
style: Word;
lpfnWndProc: TFarProc;
cbClsExtra: Integer;
cbWndExtra: Integer;
hInstance: THandle;
hIcon: HIcon;

WORD .style;
long (FAR PASCAL

*lpfnWndProc) () ;
int cbClsExtra;
int cbWndExtra;
HANDLE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPSTR lpszMenuName;
LPSTR lpszClassName;

WNDCLASS;

hCursor: HCursor;
hbrBackground: HBrush;
lpszMenuName: PChar;
lpszClassName: PChar;

end;

The WNDCLASS structure has the following fields:

Field

style

Description

Specifies the class style. These styles can be combined by using
the bitwise OR operator. The style field can be any
combination of the following values:

Value Meaning
CS_BYTEALIGNCLIENT Aligns a window's client area on

the byte boundary (in the x
direction) .

CS_BYTEALIGNWINDOW Aligns a window on the byte
boundary (in the x direction).

CS_CLASSDC Gives the window class its own
display context (shared by
instances).

CS_DBLCLKS Sends double-click messages to a
window.

CS_GLOBALCLASS Specifies that the window class
is an application global class. An
application global class is
created by an application or
library and is available to all
applications. The class is
destroyed when the application
or library that created the class
terminates; it is essential,

Software development kit

IpfnWndProc
cbClsExtra

cbWndExtra

Chapter 7, Data types and structures

WNDCLASS

therefore, that all windows
created with the application
global class be closed before this
occurs.

CS_HREDRAW Redraws the entire window if
the horizontal size changes.

CS_NOCLOSE Inhibits the close option on the
System menu.

CS_OWNDC Gives each window instance its
own display context. Note that
although the CS_OWNDC style
is convenient, it must be used
with discretion because each
display context occupies
approximately 800 bytes of
memory.

CS_PARENTDC Gives the parent window's
display context to the window
class.

CS_SAVEBITS Saves the portion of the screen
image that is obscured by a
window; Windows uses the
saved bitmap to re-create a
screen image when the window
is removed. Windows displays
the bitmap at its original location
and does not send WM_PAINT
messages to windows which had
been obscured by the window if
the memory used by the bitmap
has not been discarded and if
other screen actions have not
invalidated the stored image. An
application should set this bit
only for small windows that are
displayed briefly and then
removed before much other
screen activity takes place.
Setting this bit for a window
increases the amount of time
required to display the window
due to the time required to
allocate memory to store the
bitmap.

CS_ VREDRAW Redraws the entire window if
the vertical size changes.

Points to the window function.
Specifies the number of bytes to allocate following the
window-class structure.
Specifies the number of bytes to allocate following the window
instance. If an application is using the WNDCLASS structure to

59

WNDCLASS

register a dialog box created with the CLASS directive in the
.RC script file, it must set this field to DLGWINDOWEXTRA.

hlnstance Identifies the class module. The hlnstance field must be an
instance handle and must not be NULL.

hlcon Identifies the class icon. The hlcon field must be a handle to an
icon resource. If hlcon is NULL, the application must draw an
icon whenever the user minimizes the application's window.

hCursor Identifies the class cursor. The hCursor field must be a handle
to a cursor resource. If hCursor is NULL, the application must
explicitly set the cursor shape whenever the mouse moves into
the application's window.

hbrBackground Identifies the class background brush. The hbrBackground
field can be either a handle to the physical brush that is to be
used for painting the background, or it can be a color value. If
a color value is given, it must be one of the standard system
colors listed below, and the value 1 must be added to the
chosen color (for example, COLOR_BACKGROUND + 1
specifies the system background color). If a color value is
given, it must be converted to one of these HBRUSH types:

• COLOR ACTIVEBORDER
• COLOR - ACTIVE CAPTION
• COLOR-APPWORKSPACE
ID COLOR-BACKGROUND
• COLOR-BTNFACE
• COLOR-BTNSHADOW
• COLOR-BTNTEXT
• COLOR-CAPTIONTEXT
• COLOR - GRAYTEXT
• COLOR-HIGHLIGHT
• COLOR-HIGHLIGHTTEXT
• COLOR-INACTIVEBORDER
• COLOR-INACTIVECAPTION
• COLOR-MENU
• COLOR -MENUTEXT
• COLOR-SCROLLBAR
• COLOR-WINDOW
• COLOR-WINDOWFRAME
• COLOR=WINDOWTEXT

When hbrBackground is NULL, the application must paint its
own background whenever it is requested to paint in its client
area. The application can determine when the background
needs painting by processing the WM_ERASEBKGND
message or by testing the fErase field of the PAINTSTRUCT
structure filled by the BeginPaint function.

IpszMenuName Points to a null-terminated character string that specifies the
resource name of the class menu (as the name appears in the
resource file). If an integer is used to identify the menu, the
MAKEINTRESOURCE macro can be used. If the
IpszMenuName field is NULL, windows belonging to this class
have no default menu.

IpszClassName Points to a null-terminated character string that specifies the
name of the window class.

60 Software development kit

c H A p T E R

8

Resource script statements

This chapter describes the statements that define resources that the
Microsoft Windows Resource Compiler (RC) adds to an application's
executable file. See Tools for information on running the Resource
Compiler.

This chapter describes resource script statements in the following
categories:

1:1 Single-line statements
I:J User-defined resources
£I RCDATA statement
El STRINGTABLE statement
EI ACCELERATORS statement
El Menu statements
1:1 Dialog statements
r:I Directives

Single-line statements

The single-line statements define resources that are contained in a single
file, such as cursors, icons, and fonts. The statements associate the
filename of the resource with an identifying name or number. The
resource is added to the executable file when the application is created,
and can be extracted during execution by referring to the name or
number.

Chapter 8, Resource script statements 61

62

The following is the general form for all single-line statements:

nameID resource-type [[load-option]] [[mem-option]] filename

The nameID field specifies either a unique name or an integer value
identifying the resource. For a font resource, nameID must be a number; it
cannot be a name.

The resource-type field specifies one of the following key words, which
identify the type of resource to be loaded:

Keyword

CURSOR

ICON

BITMAP

FONT

Resource Type

Specifies a bitmap that defines the shape of the cursor on
the display screen.
Specifies a bitmap that defines the shape of the icon to be
used for a given application.
Specifies a custom bitmap that an application is going to
use in its screen display or as an item in a menu.
Specifies a file that contains a font.

The optional load-option field takes a key word that specifies when the
resource is to be loaded. The key word must be one of the following:

Option

PRELOAD
LOADONCALL

Description

Resource is loaded immediately.
Resource is loaded when called. This is the default option.

.. Icon and cursor resources can contain more than one image. If the
resource is marked as PRELOAD, Windows loads all images in the
resource when the application executes.

The optional mem-option field takes the following key word or key words,
which specify whether the resource is fixed or moveable and whether it is
discardable:

Option

FIXED
MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.
Resource can be moved if necessary in order to compact
memory.
Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

The filename field is an ASCII string that specifies the DOS filename of the
file that contains the resource. A full pathname must be given if the file is
not in the current working directory.

Software development kit

The following example demonstrates the correct usage for a single-line
statement:

cursor CURSOR point.cur
cursor CURSOR DISCARDABLE point.cur
10 CURSOR custom. cur

desk ICON desk.ico
desk ICON DISCARDABLE desk.ico
11 ICON custom.ico

disk BITMAP disk.bmp
disk BITMAP DISCARDABLE disk.bmp
12 BITMAP custom.bmp

5 FONT CMROMAN.FNT

User-defined resources

An application can also define its own resource. The resource can be any
data that the application intends to use. A user-defined resource
statement has the following form:

nameID typeID [[load-option]] [[mem-option]] {[[filename]] I
[[BEGIN
raw-data
END]]}

The nameID field specifies either a unique name or an integer value that
identifies the resource.

The typeID field specifies either a unique name or an integer value that
identifies the resource type. If a number is given, it must be greater than
255. The numbers 1 through 255 are reserved for existing and future
predefined resource types.

The optional load-option field takes a key word that specifies when the
resource is to be loaded. The key word must be one of the following:

Option Description

Resource is loaded immediately. PRELOAD
LOADONCALL Resource is loaded when called. This is the default option.

The optional mem-option field takes the following key word or key words,
which specify whether the resource is fixed or moveable and whether it is
discardable:

Chapter 8, Resource script statements 63

Option

FIXED
MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.
Resource can be moved if necessary in order to compact
memory. This is the default option.
Resource can be discarded if it is no longer needed.

The optional filename field is an ASCII string that specifies the DOS
filename of the file that contains the resource. A full pathname must be
given if the file is not in the current working directory. Do not use the
filename field if you supply raw data between the optional BEGIN and END
statements.

The raw-data field specifies one or more integers and strings. Integers can
be in decimal, octal, or hexadecimal format. Do not use raw-data field and
the BEGIN and END statements if you specify a filename.

The following example demonstrates the correct usage for user-defined
statements:

array MYRES data.res
14 300 custom. res
18 MYRES2
BEGIN

"Here is a data string\O", 1* A string. Note: explicitly
null-terminated *1

END

1024, 1* int * I
Ox029a,
00733,
"\07"

1* hex int *1
1* octal int *1
1* octal byte *1

Rcdota statement

64

Syntax nameID RCDATA [[load-option]] [[mem-option]]
BEGIN
raw-data
END

The RCDATA statement defines a raw data resource for an application.
Raw data resources permit the inclusion of binary data directly in the
executable file.

The nameID field specifies either a unique name or an integer value that
identifies the resource.

Software development kit

The optional load-option field takes a key word that specifies when the
resource is to be loaded. It must be one of the following:

Option Description

Resource is loaded immediately. PRELOAD
LOADONCALL Resource is loaded when called. This is the default option.

The optional mem-option field takes the following key word or key words,
which specify whether the resource is fixed or moveable and whether it is
discardable:

Option

FIXED
MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.
Resource can be moved if necessary in order to compact
memory.
Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

The raw-data field specifies one or more integers and strings. Integers can
be in decimal, octal, or hexadecimal format.

The following example demonstrates the correct usage for the RCDAT A
statement:

resname RCDATA
BEGIN

"Here is a data string\O", 1* A string. Note: explicitly
null-terminated *1

1024, 1* int *1

END

Ox029a,
00733,
"\07"

Stringtable statement

1* hex int *1
1* octal int *1
1* octal byte *1

Syntax stringtable [[load-option]] [[mem-option]]
BEGIN
stringID string
END

The STRINGTABLE statement defines one or more string resources for an
application. String resources are simply null-terminated ASCII strings that

Chapter 8, Resource script statements 65

66

can be loaded when needed from the executable file, using the LoadString
function.

The optional load-option field takes a key word that specifies when the
resource is to be loaded. It must be one of the following:

Option

PRELOAD
LOADONCALL

Description

Resource is loaded immediately.
Resource is loaded when called. This is the default option.

The optional mem-option field takes the following key word or key words,
which specify whether the resource is fixed or moveable and whether or
not it is discardable:

Option

FIXED
MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.
Resource can be moved if necessary in order to compact
memory.
Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

The stringID field specifies an integer value that identifies the resource.

The string field specifies one or more ASCII strings, enclosed in double
quotation marks. The string must be no longer than 255 characters and
must occupy a single line in the source file. To add a carriage return to the
string, use this character sequence: \012. For example, "Line one\012Line
two" would define a string that would be displayed as follows:

Line one
Line two

Grouping strings in separate segments allows all related strings to be read
in at one time and discarded together. When possible, an application
should make the table moveable and discardable. The Resource Compiler
allocates 16 strings per segment and uses the identifier value to determine
which segment is to contain the string. Strings with the same upper 12 bits
in their identifiers are placed in the same segment.

The following example demonstrates the correct usage of the
STRINGTABLE statement:

#define IDS HELLO
#define IDS GOODBYE 2

STRINGTABLE
BEGIN

Software development kit

IDS_HELLO, "Hello"
IDS_GOODBYE, "Goodbye"

END

Accelerators statement

Syntax acctablename ACCELERATORS
BEGIN
event, idvalue, [[type]] [[NOINVERT]] [[ALT]] [[SHIFT]] [[CONTROL]]

END

The ACCELERATORS statement defines one or more accelerators for an
application. An accelerator is a key stroke defined by the application to
give the user a quick way to perform a task. The TranslateAccelerator
function is used to translate accelerator messages from the application
queue into WM_COMMAND or WM_SYSCOMMAND messages.

The acctablename field specifies either a unique name or an integer value
that identifies the resource.

The event field specifies the key stroke to be used as an accelerator. It can
be anyone of the following:

Character Description

"char" A single ASCII character enclosed in double quotes. The
character can be preceded by a caret ("), meaning that
the character is a control character.

ASCII character

Virtual key character

An integer value representing an ASCII character. The
type field must be ASCII.
An integer value representing a virtual key. The virtual
key for alphanumeric keys can be specified by placing
the uppercase letter or number in double quotation
marks (for example, "9" or "C"). The type field must be
VIRTKEY.

The idvalue field specifies an integer value that identifies the accelerator.

The type field is required only when event is an ASCII character or a
virtual key character. The type field specifies either ASCII or VIRTKEY; the
integer value of event is interpreted accordingly. When VIRTKEY is
specified and the event field contains a string, the event field must be
uppercase.

Chapter 8, Resource script statements 67

The NOINVERT option, if given, means that no top-level menu item is
highlighted when the accelerator is used. This is useful when defining
accelerators for actions such as scrolling that do not correspond to a menu
item. If NOINVERT is omitted, a top-level menu item will be highlighted
(if possible) when the accelerator is used.

The AL T option, if given, causes the accelerator to be activated only if the
ALT key is down.

The SHIFT option, if given, causes the accelerator to be activated only if
the SHIFT key is down.

The CONTROL option, if given, defines the character as a control character
(the accelerator is only activated if the CONTROL key is down). This has the
same effect as using a caret (A) before the accelerator character in the event
field.

The AL T, SHIFT, and CONTROL options apply only to virtual keys.

The following example demonstrates the correct usage of accelerator keys:

1 ACCELERATORS
BEGIN

""C", IDDCLEAR
"K", IDDCLEAR
"k", IDDELLIPSE, ALT
98, IDDRECT, ASCII
66,
"g",
"G",

IDDSTAR,
IDDRECT
IDDSTAR
IDDCLEAR,

ASCII

VIRTKEY

control C
shift K
alt K

b
B (shift b)
g

; G (shift G)
VKJ1,
VKJ1,
VKJ1,

IDDSTAR, CONTROL, VIRTKEY
IDDELLIPSE, SHIFT, VIRTKEY

VK_Fl, IDDRECT, ALT, VIRTKEY

;Fl
control Fl
shift Fl
alt Fl

VK_F2, IDDCLEAR, ALT, SHIFT, VIRTKEY ; alt shift F2
VK_F2, IDDSTAR, CONTROL, SHIFT, VIRTKEY ; ctrl shift F2
VK_F2, IDDRECT, ALT, CONTROL, VIRTKEY; alt control F2

END

Menu statement

68

Syntax menuID MENU [[load-option]] [[mem-option]]
BEGIN
item-definitions
END

Software development kit

The MENU statement defines the contents of a menu resource. A menu
resource is a collection of information that defines the appearance and
function of an application menu. A menu is a special input tool that lets a
user select commands from a list of command names.

The menuID field specifies a name or number used to identify the menu
resource.

The optional load-option field takes a key word that specifies when the
resource is to be loaded. It must be one of the following:

Option Description

Resource is loaded immediately. PRELOAD
LOADONCALL Resource is loaded when called. This is the default option.

The optional mem-option field takes the following key word or key words,
which specify whether the resource is fixed or moveable and whether it is
discardable:

Option Description

FIXED
MOVEABLE
D1SCARDABLE

Resource remains at a fixed memory location.
Resource can be moved to compact memory.
Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

The item-definition field specifies special resource statements that define
the items in the menu. These statements are defined in the following
sections. The following is an example of a complete MENU statement:

sample MENU
BEGIN

END

MENUITEM "&SouP", 100
MENUITEM "S&alad", 101
POPUP "&Entree"
BEGIN

END

MENUITEM "&Fish", 200
MENUITEM "&Chicken", 201, CHECKED
POPUP "&Beef"
BEGIN

END

MENUITEM "&Steak", 301
MENUITEM "&Prime Rib", 302

MENUITEM "&Dessert", 103

Chapter 8, Resource script statements 69

Item-
definition The MENUITEM and POPUP statements are used in the item-definition

statements section of a menu statement to define the names and attributes of the
actual menu items. Any number of statements can be given; each defines a
unique item. The order of the statements defines the order of the menu
items.

70

MENUITEM

The MENUITEM and POPUP statements can be used only within an item­
definition section of a MENU statement.

Syntax MENUITEM text, result, [[optioniist]]

This optional statement defines a menu item.

The text field takes an ASCII string, enclosed in double quotation marks,
that specifies the name of the menu item.

The string can contain the escape characters \t and \a. The \t character
inserts a tab in the string and is used to align text in columns. Tab
characters should be used only in pop-up menus, not in menu bars. (See
the following section for information on pop-up menus.) The \a character
aligns all text that follows it flush right to the menu bar or pop-up menu.

To insert a double quotation mark (") in the string, use two double
quotation marks ("").

To add a mnemonic to the text string, place the ampersand (&) ahead of
the letter that will be the mnemonic. This will cause the letter to appear
underlined in the control and to function as the mnemonic. To use the
ampersand as a character in a string, insert two ampersands (&&).

The result field takes an integer value that specifies the result generated
when the user selects the menu item. Menu-item results are always
integers; when the user clicks the menu-item name, the result is sent to the
window that owns the menu.

The optional optioniist field takes one or more predefined menu options,
separated by commas or spaces, that specify the appearance of the menu
item. The menu options are as follows:

Software development kit

POPUP

Option

CHECKED
GRAYED

HELP
INACTIVE
MENUBARBREAK

MENU BREAK

Description

Item has a checkmark next to it.
Item name is initially inactive and appears on the menu in
gray or a lightened shade of the menu-text color.
Item has a vertical separator to its left.
Item name is displayed, but it cannot be selected.
Same as MF _MENUBREAK except that for pop-up menus,
it separates the new column from the old column with a
vertical line.
Places the menu item on a new line for static menu-bar
items. For pop-up menus, places the menu item in a new
column, with no dividing line between the columns.

The INACTIVE and GRAYED options cannot be used together.

The following example demonstrates the correct usage of the MENUITEM
statement:

MENUITEM "&Alpha", 1, CHECKED, GRAYED
MENUITEM "&Beta", 2

Syntax POPUP text, [[optionlist]]
BEGIN
item-definitions
END

This statement marks the beginning of the definition of a pop-up menu. A
pop-up menu (which is also known as a drop-down menu) is a special
menu item that displays a sublist of menu items when it is selected.

The text field takes an ASCII string, enclosed in double quotation marks,
that specifies the name of the pop-up menu.

The optional option list field takes one or more predefined menu options
that specify the appearance of the menu item. The menu options are as
follows:

Option

CHECKED

Description

Item has a checkmark next to it. This option is not valid
for a top-level pop-up menu.

GRAYED Item name is initially inactive and appears on the menu in
gray or a lightened shade of the menu-text color.

INACTIVE Item name is displayed, but it cannot be selected.

Chapter 8, Resource script statements 71

72

MENUBARBREAK Same as MF _MENUBREAK except that for pop-up menus,
it separates the new column from the old column with a
vertical line.

MENUBREAK Places the menu item on a new line for static menu-bar
items. For pop-up menus, places the menu item in a new
column, with no dividing line between the columns.

The options can be combined using the bitwise OR operator. The
INACTIVE and GRAYED options cannot be used together.

The item-definitions field can specify any number of MENUITEM or POPUP
statements. As a result, any pop-up menu item can display another pop­
up menu.

The following example demonstrates the correct usage of the POPUP
statement:

chern MENU
BEGIN

POPUP "&Elements"
BEGIN

END

MENUITEM "&Oxygen", 200
MENUITEM "&Carbon", 201, CHECKED
MENUITEM "&Hydrogen", 202
MENUITEM "&Sulfur", 203
MENUITEM "Ch&lorine", 204

POPUP "&Compounds"
BEGIN

END

END

POPUP "&Sugars"
BEGIN

END

MENUITEM "&Glucose", 301
MENUITEM "&Sucrose", 302, CHECKED
MENUITEM "&Lactose", 303, MENUBREAK
MENUITEM "&Fructose", 304

POPUP "&Acids"
BEGIN

END

"&Hydrochloric", 401
"&Sulfuric", 402

Software development kit

MENUITEM
SEPARATOR

Syntax MENUITEM SEPARATOR

This special form of the MENUITEM statement creates an inactive menu
item that serves as a dividing bar between two active menu items in a
pop-up menu.

The following demonstrates the correct usage of the MENUITEM
SEPARATOR statement:

MENUITEM "&Roman", 206
MENUITEM SEPARATOR
MENUITEM "&20 Point", 301

DIALOG statement

The DIALOG statement defines a template that can be used by an
application to create dialog boxes.

Syntax nameID DIALOG [[load-option]] [[mem-option]] x, y, width, height
[[option-statemen ts]]
BEGIN
control-statements
END

This statement marks the beginning of a DIALOG template. It defines the
name of the dialog box, the memory and load options, the box's starting
location on the display screen, and the box's width and height.

The nameID field specifies either a unique name or an integer value that
identifies the resource.

The optional load-option field takes a key word that specifies when the
resource is to be loaded. It must be one of the following:

Option Description

Resource is loaded immediately. PRELOAD
LOADONCALL Resource is loaded when called. This is the default option.

The optional mem-option field takes the following key word or key words, which
specify whether the resource is fixed or moveable and whether it is discardable:

FIXED Resource remains at a fixed memory location.

Chapter 8, Resource script statements 73

MOVEABLE

DISCARDABLE

Resource can be moved if necessary in order to compact
memory. This is the default option.
Resource can be discarded if no longer needed.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the dialog box. The horizontal units are 1/4 of
the dialog base width unit; the vertical units are 1/8 of the dialog base
height unit. The current dialog base units are computed from the height
and width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The exact meaning of the
coordinates depends on the style defined by the STYLE option statement.
For child-style dialog boxes, the coordinates are relative to the origin of
the parent window, unless the dialog box has the style DS_ABSALIGN; in
that case, the coordinates are relative to the origin of the display screen.

The width and height fields take integer values that specify the width and
height of the box. The width units are 1/4 of the dialog base width unit;
the height units are 1/8 of the dialog base height unit.

The option and control statements are described in the following sections.

The following demonstrates the correct usage of the DIALOG statement:

#include "WINDOWS.H"
errmess DIALOG 10, 10, 300, 110
STYLE WS_POPUP/WS_BORDER
CAPTION "Error!"
BEGIN

END

CTEXT "Select One:", 1, 10, 10, 280, 12
RADIOBUTTON "&Retry", 2, 75, 30, 60, 12
RADIOBUTTON "&Abort", 3, 75, 50, 60, 12
RADIOBUTTON "&Ignore", 4, 75, 80, 60, 12

Comments Do not use the WS_ CHILD style with a modal dialog box. The DialogBox
function always disables the parent/owner of the newly-created dialog
box. When a parent window is disabled, its child windows are implicitly
disabled. Since the parent window of the child-style dialog box is
disabled, the child-style dialog box is too.

1£ a dialog box has the DS_ABSALIGN style, the dialog coordinates for its
upper-left corner are relative to the screen origin instead of to the upper­
left corner of the parent window. You would typically use this style when
you wanted the dialog box to start in a specific part of the display no
matter where the parent window may be on the screen.

74 Software development kit

Dialog
option

statements

STYLE

The name DIALOG can also be used as the class-name parameter to the
CreateWindow function in order to create a window with dialog-box
attributes.

The dialog option statements, given in the option-statements section of the
DIALOG statement, define special attributes of the dialog box, such as its
style, caption, and menu. The option statements are optional. If the
application does not supply a particular option statement, the dialog box
is given default attributes for that option. Dialog option statements
include the following:

[] STYLE
[] CAPTION
[] MENU
[] CLASS
[] FONT

The option statements are discussed individually in the following
sections.

Syntax STYLE style

This optional statement defines the window style of the dialog box. The
window style specifies whether the box is a pop-up or a child window.
The default style has the following attributes:

WS_POPUP
WS_BORDER
WS_SYSMENU

The style field takes an integer value or predefined name that specifies the
window style. It can be any of the window styles defined in Table 8.1,
"Window styles."

Comments If the predefined names are used, the #include directive must be used so
that the WINDOWS.H file will be included in the resource script.

Table 8.1
Window styles Style Meaning

DS_LOCALEDIT Specifies that edit controls in the dialog box will use

Chapter 8, Resource script statements

memory in the application's data segment. By default, all
edit controls in dialog boxes use memory outside the

75

76

Table 8.1: Window styles (continued)

DS_MODALFRAME

DS_SYSMODAL
WS_BORDER
WS_CAPTION

WS_CHILDWINDOW
WS_CLlPCHILDREN

WS_DISABLED
WS_DLGFRAME

WS_HSCROLL
WS_ICONIC

WS_MAXIMIZE
WS_MAXIMIZEBOX
WS_MINIMIZE
WS_MINIMIZEBOX

application's data segment. This feature can be
suppressed by adding the DS_LOCALEDIT flag to the
STYLE command for the dialog box. If this flag is not
used, EM_GETHANDLE and EM_SETHANDLE
messages must not be used since the storage for the
control is not in the application's data segment. This
feature does not affect edit controls created outside of
dialog boxes.
Creates a dialog box with a modal dialog-box frame that
can be combined with a title bar and system menu by
specifying the WS_CAPTION and WS_SYSMENU styles.
Suppresses WM_ENTERIDLE messages that Windows
would otherwise send to the owner of the dialog box
while the dialog box is displayed.
Creates a system-modal dialog box.
Creates a window that has a border.
Creates a window that has a title bar (implies
WS_BORDER).
Creates a child window. It cannot be used with
WS_POPUP.
Creates a child window that has the style WS_CHILD.
Excludes the area occupied by child windows when
drawing within the parent window. Used when creating
the parent window.
Clips child windows relative to each other; that is, when
a particular child window receives a WP _PAINT
message, this style clips all other top-level child
windows out of the region of the child window to be
updated. (If WS_CLlPSIBLlNGS is not given and child
windows overlap, it is possible, when drawing in the
client area of a child window, to draw in the client area
of a neighboring child window.) For use with
WS_CHILD only.
Creates a window that is initially disabled.
Creates a window with a modal dialog-box frame but no
title.
Specifies the first control of a group of controls in which
the user can move from one control to the next by using
the arrow keys. All controls defined with the
WS_GROUP style after the first control belong to the
same group. The next control with the WS_GROUP style
ends the style group and starts the next group (i.e., one
group ends where the next begins). This style is valid
only for controls.
Creates a window that has a horizontal scroll bar.
Creates a window that is initially iconic. For use with
WS_OVERLAPPED only.
Creates a window of maximum size.
Creates a window that has a Maximize box.
Creates a window of minimum size.
Creates a window that has a Minimize box.

Software development kit

CAPTION

Table 8.1: Window styles (continued)

WS_OVERLAPPED Creates an overlapped window. An overlapped window
has a caption and a border.

WS_OVERLAPPEDWINDOW
Creates an overlapped window having the
WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles.

WS_POPUP Creates a pop-up window. It cannot be used with
WS_CHILD.

WS_POPUPWINDOW Creates a pop-up window that has the styles
WS_POPUP, WS_BORDER, and WS_SYSMENU. The
WS_CAPTION style must be combined with the
WS_POPUPWINDOW style to make the system menu
visible.

WS_SIZEBOX Creates a window that has a size box. Used only for
windows with a title bar or with vertical and horizontal
scroll bars.

WS_SYSMENU Creates a window that has a System-menu box in its title
bar. Used only for windows with title bars. If used with a
child window, this style creates a Close box instead of a
System-menu box.

WS_TABSTOP Specifies one of any number of controls through which
the user can move by using the TAB key. The TAB key
moves the user to the next control specified by the
WS_TABSTOP style. This style is valid only for controls.

WS_THICKFRAME Creates a window with a thick frame that can be used to
size the window.

WS_ VISIBLE Creates a window that is initially visible. This applies to
overlapping and pop-up windows. For overlapping
windows, the y parameter is used as a ShowWindow
function parameter.

WS_ VSCROLL Creates a window that has a vertical scroll bar.

Syntax CAPTION caption text

This optional statement defines the dialog box's title. The title appears in
the box's caption bar (if it has one).

The default caption is empty.

The caption text field specifies an ASCII character string enclosed in double
quotation marks.

The following example demonstrates the correct usage of the CAPTION
statement:

CAPTION "Error!"

Chapter 8, Resource script statements 77

MENU

Syntax MENU menu name

CLASS

This optional statement defines the dialog box's menu. If no statement is
given, the dialog box has no menu.

The menuname field specifies the resource name or number of the menu to
be used.

The following example demonstrates the correct usage of the MENU
statement:

MENU errrnenu

Syntax CLASS class

This optional statement defines the class of the dialog box. If no statement
is given, the Windows standard dialog class will be used as the default.

The class field specifies an integer or a string, enclosed in double quotation
marks, that identifies the class of the dialog box. If the window procedure
for the class does not process a message sent to it, it must call the
DefDlgProc function to ensure that all messages are handled properly for
the dialog box. A private class can use DefDlgProc as the default window
procedure. The class must be registered with the cbWndExtra field of the
WNDCLASS data structure set to DLGWINDOWEXTRA.

The following example demonstrates the correct usage of the CLASS
statement:

CLASS "rnyclass"

Comments The CLASS statement should be used with special cases, since it overrides
the normal processing of a dialog box. The CLASS statement converts a
dialog box to a window of the specified class; depending on the class, this
could give undesirable results. Do not use the predefined control class
names with this statement.

78 Software development kit

FONT

Syntax FONT pointsize, typeface

Dialog
control

statements

This optional statement defines the font with which Windows will draw
text in the dialog box. The font must have been previously loaded, either
from WIN.lNI or by calling LoadFont.

The pointsize field is an integer that specifies the size in points of the font.

The typeface field specifies an ASCII character string enclosed in double
quotation marks that specifies the name of the typeface. This name must
be identical to the name defined in the [fonts] section of WIN.lNI.

The following example demonstrates the correct usage of the FONT
statement:

FONT 12, "Helv"

The dialog control statements, given in the control-statements section of the
DIALOG statement, define the attributes of the control windows that
appear in the dialog box. A dialog box is empty unless one or more
control statements are given. Control statements include the following:

El LTEXT
cRTEXT
13 CTEXT
cCHECKBOX
m PUSHBUTTON
c LlSTBOX
aGROUPBOX
D DEFPUSHBUTTON
El RADIOBUTTON
cEDITTEXT
cCOMBOBOX
clCON
aSCROLLBAR
a CONTROL

The control statements are discussed individually in the following
sections. For more information on control classes and styles, see Tables
8.2, "Control classes," and 8.3, "Control styles."

Chapter 8, Resource script statements 79

80

LTEXT

Syntax LTEXT text, id, x, y, width, height, [[stylell

This statement defines a flush-left text control. It creates a simple rectangle
that displays the given text flush-left in the rectangle. The text is
formatted before it is displayed. Words that would extend past the end of
a line are automatically wrapped to the beginning of the next line.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

II WS_TABSTOP
.WS_GROUP

These styles are described in Table 8.1, "Window styles." Styles can be
combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

The default style for LTEXT is SS_LEFT and WS_GROUP.

The following example demonstrates the correct usage of the L TEXT
statement:

Software development kit

LTEXT "Enter Name:", 3, 10, 10, 40, 10

RTEXT

Syntax RTEXT text, id, x, y, width, height, [[style]]

This statement defines a flush-right text control. It creates a simple
rectangle that displays the given text flush-right in the rectangle. The text
is formatted before it is displayed. Words that would extend past the end
of a line are automatically wrapped to the beginning of the next line.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialog8aseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

c WS_TABSTOP
cWS_GROUP

These styles are described in Table 8.1, "Window styles." Styles can be
combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

The default style for RTEXT is SS_RIGHT and WS_GROUP.

The following example demonstrates the correct usage of the RTEXT
statement:

Chapter 8, Resource script statements 81

82

RTEXT "Number of Messages", 4, 30, 50, 100, 10

CTEXT

Syntax CTEXT text, id, x, y, width, height, [[style]]

This statement defines a centered text control. It creates a simple rectangle
that displays the given text centered in the rectangle. The text is formatted
before it is displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next line.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

.WS_TABSTOP

.WS_GROUP

These styles are described in Table 8.1, "Window styles." Styles can be
combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

The default style for CTEXTis SS_CENTER and WS_GROUP.

The following example demonstrates the correct usage of the CTEXT
statement:

Software development kit

CTEXT "Title", 3, 10, 50, 40, 10

CHECKBOX

Syntax CHECKBOX text, id, x, y, width, height, [[style]]

This statement defines a check-box control belonging to the BUTTON
class. It creates a small rectangle (check box) that is highlighted when
clicked. The given text is displayed just to the right of the check box. The
control highlights the rectangle when the user clicks the mouse in it, and
removes the highlight on the next click.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

cWS_TABSTOP
cWS_GROUP

These styles are described in Table 8.1, "Window styles."

In addition to these styles, the style field may contain any combination (or
none) of the BUTTON-class styles described in Table 8.3, "Control styles."
Styles can be combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

Chapter 8, Resource script statements 83

84

PUSHBunON

The default style for CHECKBOX is BS_CHECKBOX and WS_TABSTOP.

The following example demonstrates the correct usage of the CHECKBOX
statement:

CHECKBOX "Arabic", 3, 10, 10, 40, 10

Syntax PUSHBUTTON text, id, x, y, width, height, [[style]]

This statement defines a push-button control belonging to the BUTTON
class. It creates a rectangle containing the given text. The control sends a
message to its parent whenever the user clicks the mouse inside the
rectangle.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

.WS_TABSTOP
• WS_DISABLED
.WS_GROUP

These styles are described in Table 8.1, "Window styles."

Software development kit

In addition to these styles, the style field may contain any combination (or
none) of the BUTTON-class styles described in Table 8.3, "Control styles."
Styles can be combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

LlSTBOX

The default style for PUSHBUTTON is BS_PUSHBUTTON and
WS_TABSTOP.

The following example demonstrates the correct usage of the
PUSHBUTTON statement:

PUSHBUTTON "ON", 7, 10, 10, 20, 10

Syntax LISTBOX id, x, y, width, height, [[style]]

This statement defines a list box belonging to the LISTBOX class. It creates
a rectangle that contains a list of strings (such as filenames) from which
the user can make selections.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

cWS_BORDER
cWS_VSCROLL

These styles are described in Table 8.1, "Window styles."

Chapter 8, Resource script statements 85

86

In addition to these styles, the style field may contain any combination (or
none) of the LISTBOX-class styles described in Table 8.3, "Control styles."
Styles can be combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

GROUPBOX

The default style for LlSTBOX is LBS_NOTIFY, WS_ VSCROLL, and
WS_BORDER.

For information on the recommended keys for use in list-box controls, see
the System Application Architecture, Common User Access: Advanced Interface
Design Guide.

The following example demonstrates the correct usage of the LlSTBOX
statement:

LISTBOX 666, la, la, 50, 54

Syntax GROUPBOX text, id, x, y, width, height, [[style]]

This statement defines a group box belonging to the BUTTON class. It
creates a rectangle that groups other controls together. The controls are
grouped by drawing a border around them and displaying the given text
in the upper-left corner.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. Selecting the mnemonic moves the input focus
to the next control in the group, in the order set in the resource file. To use
the ampersand as a character in a string, insert two ampersands (&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

Software development kit

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

[J WS_TABSTOP
[J WS _DISABLED

These styles are described in Table 8.1, "Window styles."

In addition to these styles, the style field may contain any combination (or
none) of the BUTTON-class styles described in Table 8.3, "Control styles."
Styles can be combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

DEFPUSHBunON

The default style for GROUPBOX is BS_GROUPBOX and WS_TABSTOP.

The following example demonstrates the correct usage of the GROUPBOX
statement:

GROUP BOX "output", 42, 10, 10, 30, 50

Syntax DEFPUSHBUTTON text, id, x, y, width, height, [[style]]

This statement defines a default push-button control that belongs to the
BUTTON class. It creates a small rectangle with a bold outline that
represents the default response for the user. The given text is displayed
inside the button. The control highlights the button in the usual way when
the user clicks the mouse in it and sends a message to its parent window.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and

Chapter 8, Resource script statements 87

width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

.. WS_ TABSTOP

.WS_GROUP
• WS_DISABLED

These styles are described in Table 8.1, "Window styles."

In addition to these styles, the style field may contain any combination (or
none) of the BUTTON-class styles described in Table 8.3, "Control styles."
Styles can be combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

The default style for DEFPUSHBUTTON is BS_DEFPUSHBUTTON and
WS_TABSTOP.

The following example demonstrates the correct usage of the
DEFPUSHBUTTON statement:

DEFPUSHBUTTON "ON", 7, 10, 10, 20, 10

RADIOBunON

88

Syntax RADIOBUTTON text, id, x, y, width, height, [[style]]

This statement defines a radio-button control belonging to the BUTTON
class. It creates a small circle that has the given text displayed just to its
right. The control highlights the button when the user clicks the mouse in
it and sends a message to its parent window. The control removes the
highlight and sends a message on the next click.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&).

Software development kit

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system tont. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

cWS_TABSTOP
c WS_GROUP.
c WS_DISABLED

These styles are described in Table 8.1, "Window styles."

In addition to these styles, the style field may contain any combination (or
none) of the BUTTON-class styles described in Table 8.3, "Control styles."
Styles can be combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

EDITIEXT

The default style for RADIOBUTTON is BS_RADIOBUTTON and
WS_TABSTOP.

The following example demonstrates the correct usage of the
RADIOBUTTON statement:

RADIOBUTTON "AM 10l", 10, 10, 10, 40, 10

Syntax EDITTEXT id, x, y, width, height, [[stylell

This statement defines an EDIT control belonging to the EDIT class. It
creates a rectangular region in which the user can enter and edit text. The
control displays a cursor when the user clicks the mouse in it. The user
can then use the keyboard to enter text or edit the existing text. Editing
keys include the BACKSPACE and DELETE keys. The user can also use the

Chapter 8, Resource script statements 89

90

mouse to select characters to be deleted, or to select the place to insert new
characters.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

IlIWS_TABSTOP
IIWS_GROUP
m WS_ VSCROLL
• WS_HSCROLL
.. WS_DISABLED

These styles are described in Table 8.1, "Window styles."

In addition to these styles, the style field may contain any combination (or
none) of the EDIT-class styles described in Table 8.3, "Control styles."
Styles can be combined using the bitwise OR operator. The EDIT-class
styles must not conflict with each other.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

The default style for EDITTEXT is WS_TABSTOP, ES_LEFT, and
WS_BORDER.

Keyboard use is predefined for edit controls. Predefined keys are listed in
the System Application Architecture, Common User Access: Advanced Interface
Design Guide.

The following example demonstrates the correct usage of the EDITTEXT
statement:

EDITTEXT 3, 10, 10, 100, 10

Software development kit

COMBOBOX

Syntax COMBOBOX id, x, y, width, height, [[style]]

This statement defines a combo box belonging to the COMBOBOX class.
A combo box consists of either a static text field or edit field combined
with a list box. The list box can be displayed at all times or pulled down
by the user. If the combo box contains a static text field, the text field
always displays the selection (if any) in the list-box portion of the combo
box. If it uses an edit field, the user can type in the desired selection; the
list box highlights the first item (if any) which matches what the user has
entered in the edit field. The user can then select the item highiighted in
the list box to complete the choice. In addition, the combo box can be
owner-draw and of fixed or variable height.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

cWS_TABSTOP
cWS_GROUP
c WS_ VSCROLL
cWS_DISABLED

These styles are described in Table 8.1, "Window styles."

In addition to these styles, the style field may contain any combination (or
none) of the combo-box styles described in Table 8.3, "Control styles."
Styles can be combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

Chapter 8, Resource script statements 91

92

ICON

The default style for COMBOBOX is WS_TABSTOP and CBS_SIMPLE.

The following example demonstrates the correct usage of the COMBOBOX
statement:

COMBOBOX 777, 10, 10, 50, 54, CBS SIMPLE WS VSCROLL WS TABS TOP

Syntax ICON text, id, x, y, width, height, [[style]]

This statement defines an icon control belonging to the STATIC class. It
creates an icon displayed in the dialog box.

The text field specifies the name of an icon (not a filename) defined
elsewhere in the resource file.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

For the ICON statement, the width and height fields are ignored; the icon
automatically sizes itself.

The optional style field allows only the SS_ICON style.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

The default style for ICON is SS_ICON.

The following example demonstrates the correct usage of the ICON
statement:

ICON "rnyicon" 901, 30, 30

Software development kit

SCROLLBAR

Syntax SCROLLBAR id, x, y, width, height, [[style]]

This statement defines a scroll-bar control belonging to the SCROLLBAR
class. It is a rectangle that contains a scroll thumb and has direction
arrows at both ends. The scroll-bar control sends a notification message to
its parent whenever the user clicks the mouse in the control. The parent is
responsible for updating the thumb position. Scroll-bar controls can be
positioned anywhere in a window and used whenever needed to provide
scrolling input.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the location of the
upper-left corner of the control in dialog units relative to the origin of the
dialog box. The horizontal units are 1/4 of the dialog base width unit; the
vertical units are 1/8 of the dialog base height unit. The current dialog
base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in
pixels.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the
following styles:

cWS_TABSTOP
cWS_GROUP
c WS_DISABLED

These styles are described in Table 8.1, "Window styles."

In addition to these styles, the style field may contain any combination (or
none) of the SCROLLBAR-class styles described in Table 8.3, "Control
styles." Styles can be combined using the bitwise OR operator.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.
The default style for SCROLLBAR is SBS_HORZ.

The following example demonstrates the correct usage of the
SCROLLBAR statement:

Chapter 8, Resource script statements 93

94

SCROLLBAR 999, 25, 30, 10, 100

CONTROL

Syntax CONTROL text, id, class, style, x, y, width, height

This statement defines a user-defined control window.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks.

The id field takes a unique integer value that identifies the control.

The class field takes a predefined name, character string, or integer value
that defines the class. This can be anyone of the control classes; for a list
of the control classes, see Table 8.2, "Control classes." If the value is a
predefined name supplied by the application, it must be an ASCII string
enclosed in double quotation marks.

The style field takes a predefined name or integer value that specifies the
style of the given control. The exact meaning of style depends on the class
value. Tables 8.2, "Control classes," and 8.3, "Control styles," list the
control classes and corresponding styles.

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The horizontal units are 1/4 of the
dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. The current dialog base units are computed from the height and
width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1/4 of the dialog base width
unit; the height units are 1/8 of the dialog base height unit.

Comments The x, y, width, and height fields can use the addition operator (+) for
relative positioning. For example, "15 + 6" can be used for the x field.

Table 8.2 describes the six control classes:

Table 8.2
Control classes Class Description

BUTTON A button control is a small rectangular child window that

represents a "button" that the user can turn on or off by
clicking it with the mouse. Button controls can be used alone or
in groups, and can either be labeled or appear without text.

Software development kit

Table 8.2: Control classes (continued)

Button controls typically change appearance when the user
clicks them.

COMBOBOX Combo-box controls consist of a selection field similar to an
edit control plus a list box. The list box may be displayed at all
times or may be dropped down when the user selects a "pop
box" next to the selection field.
Depending on the style of the combo box, the user can or
cannot edit the contents of the selection field. If the list box is
visible, typing characters into the selection box will cause the
first list box entry which matches the characters typed to be
highlighted. Conversely, selecting an item in the list box
displays the selected text in the selection field.

EDIT An edit control is a rectangular child window in which the
user can enter text from the keyboard. The user selects the
control, and gives it the input focus, by clicking the mouse
inside it or pressing the TAB key. The user can enter text when
the control displays a flashing caret. The mouse can be used to
move the cursor and select characters to be replaced, or to
position the cursor for inserting characters. The BACKSPACE key
can be used to delete characters.
Edit controls use the fixed-pitch font and display ANSI
characters. They expand tab characters into as many space
characters as are required to move the cursor to the next tab
stop. Tab stops are assumed to be at every eighth character
position.

LISTBOX List-box controls consist of a list of character strings. The
control is used whenever an application needs to present a list
of names, such as filenames, that the user can view and select.
The user can select a string by pointing to the string with the
mouse and clicking a mouse button. When a string is selected,
it is highlighted, and a notification message is passed to the
parent window. A scroll bar can be used with a list-box control
to scroll lists that are too long or too wide for the control
window.

SCROLLBAR A scroll-bar control is a rectangle that contains a scroll thumb
and has direction arrows at both ends. The scroll bar sends a
notification message to its parent whenever the user clicks the
mouse in the controL The parent is responsible for updating
the thumb position, if necessary. Scroll-bar controls have the
same appearance and function as the scroll bars used in
ordinary windows. But unlike scroll bars, scroll-bar controls
can be positioned anywhere within a window and used
whenever needed to provide scrolling input for a window.
The scroll-bar class also includes size-box controls. A size-box
control is a small rectangle that the user can expand to change
the size of the window.

STATIC Static controls are simple text fields, boxes, and rectangles that
can be used to label, box, or separate other controls. Static
controls take no input and provide no output.

Chapter 8, Resource script statements 95

96

Table 8.3 describes the control styles for each of the control classes:

Table 8.3
Control styles Style ---

Description

BUTTON class

BS_PUSHBUTTON

BS_DEFPUSHBUTTON

BS_AUTOCHECKBOX

BS_RADIOBUTTON

BS_AUTORADIOBUTTON

BS_LEFTTEXT

BS_AUT03STATE

BS_OWNERDRAW

A small elliptical button containing the given
text. The control sends a message to its parent
whenever the user clicks the mouse inside the
rectangle.
A small elliptical button with a bold border.
This button represents the default user
response. Any text is displayed within the
button. Windows sends a message to the
parent window when the user clicks the
mouse in this button.
A small rectangular button that can be
checked; its border becomes bold when the
user clicks the mouse in it. Any text appears to
the right of the button.
Identical to BS_CHECKBOX except that the
button automatically toggles its state
whenever the user clicks it.
A small circular button whose border becomes
bold when the user clicks the mouse in it. In
addition, to make the border bold, Windows
sends a message to the button's parent
notifying it that a click occurred. On the next
click, Windows makes the border normal
again and sends another message.
Identical to BS_RADIOBUTTON except that
when the button is checked, the application is
notified with BN_CLICKED, and all other
radio buttons in the group are unchecked.
Text appears on the left side of the radio
button or check-box button. Use this style
with BS_CHECKBOX, BS_3STATE, or
BS_RADIOBUTTON styles.
Identical to BS_CHECKBOX except that a
button can be grayed as well as checked or
unchecked. The grayed state is typically used
to show that a check box has been disabled.
Identical to BS_3STATE except that the button
automatically toggles its state when the user
clicks it.
A rectangle into which other buttons are
grouped. Any text is displayed in the
rectangle's upper-left corner.
An owner-draw button. The parent window is
notified when the button is clicked.
Notification includes a request to paint, invert,
and disable the button.

Software development kit

Table 8.3: Control styles (continued)

COMBOBOX class

CBS_DROPDOWNLIST

CBS_OWNERDRA WFIXED

CBS_OWNERDRA WV ARIABLE

CBS_AUTOHSCROLL

CBS_SORT
CBS_HASSTRINGS

CBS_OEMCONVERT

EDIT class

ES_LEFf
ES_CENTER

ES_RIGHT

Chapter 8, Resource script statements

Displays the list box at all times. The current
selection in the list box is displayed in the edit
control.
Is similar to CBS_SIMPLE, except that the list
box is not displayed unless the user selects an
icon next to the selection field.
Is similar to CBS_DROPDOWN, except that
the edit control is replaced by a static text item
which displays the current selection in the list
box.
Specifies a fixed-height owner-draw combo
box. The owner of the list box is responsible
for drawing its contents; the items in the list
box are all the same height.
Specifies a variable-height owner-draw combo
box. The owner of the list box is responsible
for drawing its contents; the items in the list
box can have different heights.
Scrolls the text in the edit control to the right
when the user types a character at the end of
the line. If this style is not set, only text which
fits within the rectangular boundary is
allowed.
Sorts strings entered into the list box.
Specifies an owner-draw combo box that
contains items consisting of strings. The
combo box maintains the memory and
pointers for the strings so that the application
can use the LB _ GETTEXT message to retrieve
the text for a particular item.
Text entered in the combo box edit control is
converted from the ANSI character set to the
OEM character set and then back to ANSI.
This ensures proper character conversion
when the application calls the AnsiToOem
function to convert an ANSI string in the
combo box to OEM characters. This style is
most useful for combo boxes that contain
filenames and applies only to combo boxes
created with the CBS_SIMPLE or
CBS_DROPDOWN styles.

Flush-left text.
Centered text. This style is valid in multiline
edit controls only.
Flush-right text. This style is valid in multiline
edit controls only.

97

Table 8.3: Control styles (continued)

ES_MUL TILINE

ES_AUTOVSCROLL

ES_AUTOHSCROLL

98

Lowercase edit control. An edit control with
this style converts all characters to lowercase
as they are typed into the edit control.
Uppercase edit control. An edit control with
this style converts all characters to uppercase
as they are typed into the edit control.
Password edit control. An edit control with
this style displays all characters as an asterisk
(*) as they are typed into the edit control. An
application can use the
EM_SETP ASSWORDCHAR message to
change the character that is displayed.
Multiple-line edit control. (The default is
single-line.) If the ES_AUTOVSCROLL style is
specified, the edit control shows as many lines
as possible and scrolls vertically when the
user presses the ENTER key. (This is actually
the carriage-return character, which the edit
control expands to a carriagereturn/line-feed
combination. A line feed is not treated the
same as a carriage return.) If
ES_AUTOVSCROLL is not given, the edit
control shows as many lines as possible and
beeps if the user presses ENTER when no more
lines can be displayed.
If the ES_AUTOHSCROLL style is specified,
the multiple-line edit control automatically
scrolls horizontally when the caret goes past
the right edge of the control. To start a new
line, the user must press the ENTER key. If
ES_AUTO-HSCROLL is not given, the control
automatically wraps words to the beginning
of the next line when necessary; a new line is
also started if the user presses ENTER. The
position of the word wrap is determined by
the window size. If the window size changes,
the word wrap position changes, and the text
is redisplayed.
Multiple-line edit controls can have scroll
bars. An edit control with scroll bars processes
its own scroll-bar messages. Edit controls
without scroll bars scroll as described above,
and process any scroll messages sent by the
parent window.
Text is automatically scrolled up one page
when the user presses the ENTER key on the
last line.
Text is automatically scrolled to the right by
10 characters when the user types a character
at the end of the line. When the user presses

Software development kit

Table 8.3: Control styles (continued)

ES_NOHIDESEL

ES_OEMCONVERT

LISTBOX class

LBS _EXTENDEDSEL

LBS _HASSTRINGS

LBS _MULTIPLESEL

LBS_MULTICOLUMN

LBS_NOINTEGRALHEIGHT

LBS_SORT

LBS_NOREDRAW

Chapter 8, Resource script statements

the ENTER key, the control scrolls all text back
to position O.
Normally, an edit control hides the selection
when the control loses the input focus, and
inverts the selection when the control receives
the input focus. Specifying ES_NOHIDESEL
overrides this default action.
Text entered in the edit control is converted
from the ANSI character set to the OEM
character set and then back to ANSI. This
ensures proper character conversion when the
application calls the AnsiToOem function to
convert an ANSI string in the edit control to
OEM characters. This style is most useful for
edit controls that contain filenames.

Strings in the list box are sorted alphabetically
and the parent window receives an input
message whenever the user clicks or double­
clicks a string. The list box contains borders on
all sides.
The user can select multiple items using the
mouse with the SHIFT and/or the CONTROL key
or special key combinations.
An owner-draw list box contains items
consisting of strings. The list box maintains
the memory and pointers for the strings so the
application can use the LB_GETTEXT message
to retrieve the text for a particular item.
The parent receives an input message
whenever the user clicks or double-clicks a
string.
The string selection is toggled each time the
user clicks or double-clicks the string. Any
number of strings can be selected.
The list box contains multiple columns. The
list box can be scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets the
width of the columns.
The size of the list box is exactly the size
specified by the application when it created
the list box. Normally, Windows sizes a list
box so that the list box does not display partial
items.
The strings in the list box are sorted
alphabetically.
The list-box display is not updated when
changes are made. This style can be changed

99

100

Table 8.3: Control styles (continued)

at any time by sending a WM_SETREDRA W
message.

LBS_OWNERDRAWFIXED The owner of the list box is responsible for
drawing its contents; the items in the list box
are all the same height.

LBS_OWNERDRAWVARIABLE The owner of the list box is responsible for
drawing its contents; the items in the list box
are variable in height.

LBS_USETABSTOPS The list box is able to recognize and expand
tab characters when drawing its strings. The
default tab positions are set at every 32 dialog
units. (A dialog unit is a horizontal or vertical
distance. One horizontal dialog unit is equal
to 1/4 of the current dialog base width unit.
The dialog base units are computed from the
height and width of the current system font.
The GetDialogBaseUnits function returns the
size of the dialog base units in pixels.)

LBS_ WANTKEYBOARDINPUT The owner of the list box receives

SCROLLBAR class

SBS_RIGHTALIGN

WM_ VKEYTOITEM or WM_CHARTOITEM
messages whenever the user presses a key
when the list box has input focus. This allows
an application to perform special processing
on the keyboard input.

Vertical scroll bar. If neither
SBS_RIGHTALIGN nor SBS_LEFTALIGN is
specified, the scroll bar has the height, width,
and position given in the CreateWindow
function.
Used with SBS_ VERT. The right edge of the
scroll bar is aligned with the right edge of the
rectangle specified by the x, y, width, and
height values given in the CreateWindow
function. The scroll bar has the default width
for system scroll bars.
Used with SBS_ VERT. The left edge of the
scroll bar is aligned with the left edge of the
rectangle specified by the x, y, width, and
height values given in the CreateWindow
function. The scroll bar has the default width
for system scroll bars.
Horizontal scroll bar. If neither
SBS_BOTTOMALIGN nor SBS_TOPALIGN is
specified, the scroll bar has the height, width,
and position given in the CreateWindow
function.
Used with SBS_HORZ. The top edge of the
scroll bar is aligned with the top edge of the

Software development kit

Table 8.3: Control styles (continued)

rectangle specified by the x, y, width, and
height values given in the CreateWindow
function. The scroll bar has the default height
for system scroll bars.

SBS_BOTTOMALIGN Used with SBS_HORZ. The bottom edge of
the scroll bar is aligned with the bottom edge
of the rectangle specified by the x, y, width,
and height values given in the CreateWindow
function. The scroll bar has the default height
for system scroll bars.

SBS _SIZEBOX Size box. If neither
SBS_SIZEBOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFfALIGN is specified,
the size box has the height, width, and
position given in the CreateWindow function.

SBS_SIZEBOXTOPLEFfALIGN Used with SBS_SIZEBOX. The top-left corner
of the size box is aligned with the top-left
corner of the rectangle specified by the x, y,
width, and height values given in the
CreateWindow function. The size box has the
default size for system size boxes.

SBS_SIZEBOXBOTTOMRIGHTALIGN

STATIC class

55_CENTER

55_RIGHT

SS_LEFTNOWORDWRAP

Chapter 8, Resource script statements

Used with SBS_SIZEBOX. The bottom-right
corner of the size box is aligned with the
bottom-right corner of the rectangle specified
by the x, y, width, and height values given in
the CreateWindow function. The size box has
the default size for system size boxes.

A simple rectangle displaying the given text
flush left in the rectangle. The text is formatted
before it is displayed. Words that would
extend past the end of a line are automatically
wrapped to the beginning of the next line.
A simple rectangle displaying the given text
centered in the rectangle. The text is formatted
before it is displayed. Words that would
extend past the end of a line are automatically
wrapped to the beginning of the next line.
A simple rectangle displaying the given text
flush right in the rectangle. The text is
formatted before it is displayed. Words that
would extend past the end of a line are
automatically wrapped to the beginning of the
next line.
A simple rectangle displaying the given text
flush left in the rectangle. Tabs are expanded,
but words are not wrapped. Text that extends
past the end of a line is clipped.

101

Table 8.3: Control styles (continued)

SS_SIMPLE

SS_GRAYRECT

SS _ WHITERECT

SS_BLACKFRAME

SS_GRAYFRAME

SS_ WHITE FRAME

SS_ USERITEM

102

Designates a simple rectangle and displays a
single line of text flush-left in the rectangle.
The line of text cannot be shortened or altered
in any way. (The control's parent window or
dialog box must not process the
WM_ CTLCOLOR message.)
Unless this style is specified, windows will
interpret any "&" characters in the control's
text to be accelerator prefix characters. In this
case, the "&" is removed and the next
character in the string is underlined. If a static
control is to contain text where this feature is
not wanted, SS_NOPREFIX may be added.
This static-control style may be included with
any of the defined static controls.
You can combine SS_NOPREFIX with other
styles by using the bitwise OR operator. This is
most often used when filenames or other
strings that may contain an "&" need to be
displayed in a static control in a dialog box.
An icon displayed in the dialog box. The given
text is the name of an icon (not a filename)
defined elsewhere in the resource file. For the
ICON statement, the width and height
parameters in the CreateWindow function are
ignored; the icon automatically sizes itself.
A rectangle filled with the color used to draw
window frames. This color is black in the
default Windows color scheme.
A rectangle filled with the color used to fill the
screen background. This color is gray in the
default Windows color scheme.
A rectangle filled with the color used to fill
window backgrounds. This color is white in
the default Windows color scheme.
Box with a frame drawn with the same color
as window frames. This color is black in the
default Windows color scheme.
Box with a frame drawn with the same color
as the screen background (desktop). This color
is gray in the default Windows color scheme.
Box with a frame drawn with the same color
as window backgrounds. This color is white in
the default Windows color scheme.
User-defined item.

Software development kit

Directives

#include
statement

The resource directives are special statements that define actions to be
performed on the script file before it is compiled. The directives can assign
values to names, include the contents of files, and control compilation of
the script file.

The resource directives are identical to the directives used in the C
programming language.

Syntax #include filename

#define
statement

This directive copies the contents of the file specified by filename into your
resource script before the Resource Compiler processes the script. It
replaces the rcinclude directive of versions prior to Windows 3.0.

The filename field is an ASCII string that specifies the DOS filename of the
file to be included, using the same syntax as the C-Ianguage preprocessor
#include directive. A forward slash U) can be used instead of a backslash
(for example, "root/ sub"). If the filename has the .H or .C extension, only
the preprocessor directives in the file are processed. Otherwise, this
directive processes the entire contents of the file.

The following example demonstrates the correct usage of the #include
statement:

#include "WINDOWS.H"

PenSelect MENU

BEGIN
Menuitem "&Black pen", BLACK PEN

END

Syntax #define name value

This directive assigns the given value to name. All subsequent occurrences
of name are replaced by value.

The value field takes any integer value, character string, or line of text.

Chapter 8, Resource script statements 103

#undef
statement

The following example demonstrates the correct usage of the #define
statement:

#define
#define

nonzero
USERCLASS "MyControlClass"

Syntax #Undef name

#ifdef
statement

This directive removes the current definition of name. All subsequent
occurrences of name are processed without replacement.

The following example demonstrates the correct usage of the #undef
statement:

#undef
#undef

nonzero
USERCLASS

Syntax #ifdef name

104

This directive carries out conditional compilation of the resource file by
checking the specified name. If name has been defined using a #define
directive, #ifdef directs the Resource Compiler to continue with the
statement immediately after #ifdef. If name has not been defined, #ifdef
directs the compiler to skip all statements up to the next #endif directive.

The following example demonstrates the correct usage of the#ifdef
statement:

#ifdef Debug
errbox BITMAP errbox.bmp
#endif

Software development kit

#ifndef
statement

Syntax #ifndef name

#if
statement

This directive carries out conditional compilation of the resource file by
checking the specified name. If name has not been defined or if its
definition has been removed using the #undef directive, #ifndef directs the
Resource Compiler to continue processing statements up to the next
#endif, #el5e, or #elif directive, and then to skip to the statement after
#endif. If name is defined, #ifndef directs the compiler to skip to the next
#endif, #el5e, or #elif directive.

The following example demonstrates the correct usage of the #ifndef
statement:

#ifndef Optimize
errbox BITMAP errbox.bmp
#endif

Syntax #if constant-expression

This directive carries out conditional compilation of the resource file by
checking the specified constant-expression. If constant-expression is nonzero,
#if directs the Resource Compiler to continue processing statements up to
the next #endif, #el5e, or #elif directive, then skip to the statement after
#endif. If constant-expression is zero, #if directs the compiler to skip to the
next #endif, #el5e, or #elif directive.

The constant-expression field specifies a defined name, an integer constant,
or an expression consisting of names, integers, and arithmetical and
relational operators.

The following example demonstrates the correct usage of the #if
statement:

#if version<3
errbox BITMAP errbox.bmp
#endif

Chapter 8, Resource script statements 105

#elif
statement

Syntax #elif constant-expression

#else
statement

This directive marks an optional clause of a conditional compilation block
defined by an #ifdef, #ifndef, or #if directive. The #elif directive carries out
conditional compilation of the resource file by checking the specified
constant-expression. If constant-expression is nonzero, #elif directs the
Resource Compiler to continue processing statements up to the next
#endif, #else, or #elif directive, then skip to the statement after #endif. If
constant-expression is zero, #elif directs the compiler to skip to the next
#endif, #else, or #elif directive. Any number of #elif directives can be used
in a conditional block.

The constant-expression field specifies a defined name, an integer constant,
or an expression consisting of names, integers, and arithmetical and
relational operators.

The following demonstrates the correct usage of the #elif statement:

#if Version<3
errbox BITMAP errbox.bmp
#elif Version<7
errbox BITMAP userbox.bmp
#endif

Syntax #else

106

This directive marks an optional clause of a conditional compilation block
defined by an #ifdef, #ifndef, or #if directive. The #else directive must be
the last directive before #endif.

The following example demonstrates the correct usage of the #else
statement:

#ifdef Debug
errbox BITMAP errbox.bmp
#else
errbox BITMAP userbox.bmp
#endif

Software development kit

#endif
statement

Syntax #endif

This directive marks the end of a conditional compilation block defined by
an #if or #ifdef directive. One #if or #endif is required for each #ifdef
directive.

Chapter 8, Resource script statements 107

108 Software development kit

c H A p T E R

9

File formats

This chapter describes the file formats used to create, execute, and supply
data to Microsoft Windows applications. These files include the following:

[J Bitmap files
[J Icon resource files
m Cursor resource files
m Clipboard files
[J Metafiles

Bitmap file formats

Windows version 3.0 bitmap files store a bitmap in a device-independent
format which allows Windows to display the bitmap on any device. In
this case, the term "device independent" means that the bitmap specifies
pixel color in a form independent of the method used by any particular
device to represent color. The assumed file extension of a Windows
device-independent bitmap file is .BMP.

Each bitmap file contains a BITMAPFILEHEADER data structure
immediately followed by a single, device-independent bitmap (DIB)
consisting of a BITMAPINFO data structure and an array of bytes that
defines the bitmap bits.

Windows version 3.0 also reads bitmap files in the format read by
Microsoft OS/2 Presentation Manager version 1.2. These files consist of a
BITMAPFILEHEADER data structure immediately followed by a

Chapter 9, File formats 109

BITMAPCOREINFO data structure. Following this data structure is an
array of bytes that defines the bitmap bits.

See Chapter 7, "Data types and structures," for information on the
BITMAPFILEHEADER, BITMAPCOREINFO and BITMAPINFO data
structures.

Icon resource file format

110

An icon resource file (with the .rCO file extension) can be device
independent both for color and resolution.

Icon resource files can contain multiple device-independent bitmaps
defining the icon image, one for each targeted display-device resolution.
Windows detects the resolution of the current display and matches it
against the x and y pixel-size values specified for each version of the
image. If Windows determines that there is an exact match between an
icon image and the current device, then it uses the matching image;
otherwise, it selects the closest match and stretches the image to the
proper size.

If an icon resource file contains more than one image for a particular
resolution, Windows uses the icon image that most closely matches the
color capabilities of the current display device. If no image exists which
exactly matches the device capabilities, Windows selects the image which
has the greatest number of colors without exceeding the number of
display-device colors. If all images exceed the color capabilities of the
current display device, then Windows uses the icon image with the least
number of colors.

The icon resource file contains a header structure at the beginning of the
file which identifies the type and number of icon images contained in the
file. The following shows the format of this header:

Field

icoReserved
icoResourceType

icoResourceCount

Type/Description

WORD Is reserved and must be set to O.
WORD Specifies the type of resource contained in the file.
For an icon resource, this field must be 1.
WORD Specifies the number of images contained in the
file.

The resource directory follows this header. The resource directory consists
of one or more arrays of resource descriptors. The icoResorceCount
specifies the number of arrays. This list shows the format of the array:

Software development kit

Field

Width

Height

ColorCount

Reserved
Reserved
Reserved
icoDIBSize

icoDIBOffset

Type/Description

BYTE Specifies the width in pixels of this form of the icon
image. Acceptable values are 16, 32, or 64.
BYTE Specifies the height in pixels of this form of the icon
image. Acceptable values are 16, 32, or 64.
BYTE Specifies the number of colors in this form of the
icon image. Acceptable values are 2,8, or 16.
BYTE Reserved for future use.
WORD Reserved for future use.
WORD Reserved for future use.
DWORD Specifies in bytes the size of the pixel array for
this form of the icon image.
DWORD Specifies the offset in bytes from the beginning of
the file to the device-independent bitmap for this form.

Icons can be in color. To achieve transparency, the DIB for each icon will
consist of two parts:

1. A color bitmap which supplies the XOR mask for the icon.

2. A monochrome bitmap which provides the AND mask that defines the
transparent portion of the icon.

The monochrome bitmap does not contain a DIB header, but instead
immediately follows the color bitmap. It must have the same pixel height
as the color bitmap.

Cursor resource file format

Like icon resource files, cursor resource files (with the .CUR file extension)
may contain multiple images to match targeted display-device resolu­
tions. In the case of cursors, Windows determines the best match for a
particular display-device driver by examining the width and height of the
cursor images.

The cursor resource file contains a header structure at the beginning of the
file which identifies the type and number of resources in the file. The
following shows the format of this header:

Field

curReserved
curResourceType

curResourceCount

Chapter 9, File formats

Type/Description

WORD Is reserved and must be set to O.
WORD Specifies the type of resource contained in the file.
For a cursor resource, this field must be 2.
WORD Specifies the number of resources contained in the
file.

111

Table 9.1
Bit mask results

112

The resource directory follows this header. The resource directory consists
of one or more arrays of resource descriptors. The curResorceCount
specifies the number of arrays. The following shows the format of the
array:

Field

curWidth

curHeight

ColorCount

Reserved
curXHotspot

curYHotspot

curDIBSize

curDIBOffset

Type/Description

BYTE Specifies the width in pixels of this form of the
cursor image.
BYTE Specifies the height in pixels of this form of the
cursor image.
BYTE Specifies the number of colors in this form of the
icon image. Acceptable values are 2, 8, or 16.
BYTE Is reserved and must be set to O.
WORD Specifies in pixels the horizontal position of the
hotspot.
WORD Specifies in pixels the vertical position of the
hotspot.
DWORD Specifies in bytes the size of the pixel array for
this form of the cursor image.
DWORD Specifies in bytes the offset to the device­
independent bitmap for this form. The offset is from the
beginning of the file.

Cursors are monochrome. The bitmap for a cursor consists of two parts;
the first half is the XOR mask specifying the visible image, and the second
half is the AND mask specifying the transparent portion of the cursor
image. The two parts must be of equal width and height. By combining
the values in corresponding mask bits, Windows determines whether a
pixel is black, white, inverted, or transparent.

Table 9.1 shows what values are necessary to produce the corresponding
colors, inversions, or transparencies:

Bit Value Bit Value Bit Value Bit Value

AND mask a a 1 1
XORmask 0 1 0 1
Resultant Pixel Black White Transparent Inverted

Software development kit

Clipboard file format

The Windows clipboard saves and reads clipboard data in files with the
.CLP extension. A clipboard-data file contains a value that identifies it as a
clipboard-data file, one or more data structures defining the format, size,
and location of the clipboard data, and one or more blocks of the actual
data.

The clipboard-data file begins with a header consisting of two fields. The
following describes these fields:

Field

Fi leldentifier

FormatCount

Type/Description

WORD Identifies the file as a clipboard-data file. This field
must be set to CLP _ID.
WORD Specifies the number of clipboard formats
contained in the file.

This header is followed by one or more data structures, each of which
identifies the format, size, and offset of a block of clipboard data. The
following shows the fields of this data structure:

Field

FormatlD

LenData
Off Data

Name

Type/Description

WORD Specifies the clipboard-format ID of the clipboard
data. See the description of the SetClipboardData function
in Chapter 4, "Functions directory," in Reference, Volume 1,
for information on clipboard formats.
DWORD Specifies in bytes the length of the clipboard data.
DWORD Specifies in bytes the offset of the clipboard-data
block. The offset is from the beginning of the file.
Is a 79-character array that specifies the format name for a
private clipboard format.

The first block of clipboard data follows the last of these structures. For
bitmaps and metafiles, the bits follow immediately after the bitmap
header and the METAFILEPICT data structures.

Metafile format

A metafile consists of a collection of graphics device interface (GDl)
function calls that create specific images on a device. Metafiles provide
convenient storage for images that appear repeatedly in applications, and
also allow you to use the clipboard to cut and paste images from one
application to another.

Chapter 9, File formats 113

114

Metafiles store images as a series of GDI function calls. After storing the
function calls, applications playa metafile to generate an image on a
device.

When an object is created during playback, GDI adds the handle of the
object to the first available entry in the metafile handle table. GDI clears
the table entry corresponding to the object when it is deleted during
playback, allowing the table entry to be reused when another object is
created.

_ Functions described in this section are discussed in greater detail in
Chapter 4, "Functions directory," in Reference, Volume 1.

Metafile

The metafile itself consists of two parts: a header and a list of records. The
header contains a description of the size (in words) of the metafile and the
number of drawing objects it uses. The list of records contains the GDI
functions. The drawing objects can be pens, brushes, or bitmaps.

header The following structured list shows the format of the metafile header:

struct{
WORD mtTypei
WORD mtHeaderSizei
WORD mtVersioni
DWORD mtSizei
WORD mtNoObjectsi
DWORD mtMaxRecordi
WORD mtNoParametersi

}

The metafile header contains the following fields:

Field

mtType

mtHeaderSize
mtVersion

mtSize
mtNoObjects

Description

Specifies whether the metafile is in memory or recorded in
a disk file. It is one of these two values:

Value
1
2

Meaning
Metafile is in memory
Metafile is in a disk file

Specifies the size in words of the metafile header.
Specifies the Windows version number. The version
number for Windows version 3.0 is Ox300.
Specifies the size in words of the file.
Specifies the maximum number of objects that exist in the
metafile at the same time.

Software development kit

mtMaxRecord

mtNoParameters

Metafile

Specifies the size in words of the largest record in the
metafile.
Is not used.

records A series of records follows the metafile header. Metafile records describe
CDI functions. CDI stores most of the CDI functions that an application
can use to create metafiles in similar, typical records. "Typical metafile
record," later in this section, shows the format of the typical metafile
record. Table 9.2, "CDI functions and values," lists the functions which
CDI records in typical records, along with their respective function
numbers.

Table 9.2
GDI functions and

values

The remainder of the functions contain more complex structures in their
records. "Function-specific records," later in this section, describes the
records for these functions.

In some cases, there are two versions of a metafile record. One version
represents the record created by versions of Windows prior to version 3.0,
while the second version represents the record created by Windows
versions 3.0 and later. Windows 3.0 plays all metafile versions, but stores
only 3.0 versions. Windows versions prior to 3.0 will not play metafiles
recorded by Windows 3.0.

Function

Arc
Chord
Ellipse
ExcludeClipRect
FloodFiII
IntersectClipRect
LineTo
MoveTo
OffsetClipRgn
OffsetViewportOrg
OffsetWindowOrg
PatBlt
Pie
RealizePalette (3.0 and later)

Rectangle
ResizePalette (3.0 and later)

RestoreDC
RoundRect
SaveDC
ScaleViewportExt

Value

Ox0817
Ox0830
Ox0418
Ox0415
Ox0419
Ox0416
Ox0213
Ox0214
Ox0220
Ox0211
Ox020F
Ox061D
Ox081A

Ox0035
Ox041B

Ox0l39
Ox0127
Ox061C
OxOOlE
Ox0412

Chapter 9, File formats 115

116

Table 9.2: GDI functions and values (continued)

ScaleWindowExt
SetBkColor
SetBkMode
SetMapMode
SetMapperFlags
SetPixel
SetPolyFiIIMode
SetROP2
SetStretchBltMode
SetTextAlign
SetTextCharExtra
SetTextColor
SetTextJustification
SetViewportExt
SetViewportOrg
SetWindowExt
SetWindowOrg

Typical metafile record

Ox0400
Ox020l
OxOl02
OxOl03
Ox0231
Ox041F
OxOl06
OxOl04
OxOl07
Ox0l2E
OxOl08
Ox0209
Ox020A
Ox020E
Ox020D
Ox020C
Ox020B

The following structured list shows the format of a typical metafile record:

struct{
DWORD rdSizei
WORD rdFunctioni
WORD rdParm[) i

}

A typical metafile record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the size in words of the record.
Specifies the function number.
Is an array of words containing the function parameters, in the
reverse order in which they are passed to the function.

Function-specific records

Some metafile records contain data structures in the parameter field. This
section contains definitions for these records.

Software development kit

AnimatePalette record 3.0

The AnimatePalette record has the following format:

struct {
DWORD rdSizei
WORD rdFunctioni
WORD rdParm[]i

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number Ox0436.
Contains the following elements:

Element Description
start First entry to be animated.
numentries Number of entries to be animated.
entries P ALETTEENTRY blocks.

BitBlt record (prior to 3.0)

The BitBlt record stored by Windows versions prior to 3.0 contains a
device-dependent bitmap which may not be suitable for playback on all
devices. The following is the format of this record:

struct {
DWORD rdSizei
WORD rdFunctioni
WORD rdParm[] i
}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Chapter 9, File formats

Description

Specifies the record size in words.
Specifies the function number Ox0922 .
Contains the following elements:

Element Description
raster op High word of the raster operation.
SY The y-coordinate of the source origin.
SX The x-coordinate of the source origin.
DYE Destination y-extent.
DXE Destination x-extent.
DY The y-coordinate of destination origin.
DX The x-coordinate of destination origin.

117

118

bmWidth
bmHeight
bm WidthBytes
bmPlanes
bmBitsPixel
bits

Width of bitmap (in pixels)
Height of bitmap (in raster lines)
Number of bytes in each raster line.
Number of color planes in the bitmap.
Number of adjacent color bits.
Actual device-dependent bitmap bits.

BitBlt record 3.0

The BitBlt record stored by Windows versions 3.0 and later contains a
device-independent bitmap suitable for playback on any device. The
following is the format of this record:

struct {
DWORD rdSize;
WORD rdFunctioni
WORD rdParm[];
}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number Ox0940.
Contains the following elements:

Element Description
raster op High word of the raster operation.
SY The y-coordinate of the source origin.
SX The x-coordinate of the source origin.
DYE The y-extent of the destination.
DXE The x-extent of the destination.
DY The y-coordinate of destination origin.
DX The x-coordinate of destination origin.
BitmapInfo BITMAPINFO data structure.
bits Actual device-independent bitmap bits.

CreateBrushlndirect record

The CreateBrushlndirect record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
LOGBRUSH rdParm;

This record contains the following fields:

Software development kit

Field

rdSize
rdFunction
rdParm

Description

Specifies the record size in words.
Specifies the function number Ox02FC.
Specifies the logical brush.

CreateFontlndirect record

The CreateFontlndirect record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
LOGFONT rdParm;

This record contains the following fields:

Field

rdSize
rdFunction
rdParm

Description

Specifies the record size in words.
Specifies the function number Ox02FB.
Specifies the logical font.

CreatePalette record 3.0

The CreatePalette record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
LOGPALETTE rdParm;

This record contains the following fields:

Field

rdSize
rdFunction
rdParm

Description

Specifies the record size in words.
Specifies the function number OxOOF7.
Specifies the logical palette.

CreatePatternBrush record (prior to 3.0)

The CreatePatternBrush record stored by Windows versions prior to 3.0
contains a device-dependent bitmap which may not be suitable for
playback on all devices. The following is the format of this record:

Chapter 9, File formats 119

120

struct {
DWORD rdSize;
WORD rdFuDctioD;
WORD rdParm [l ;

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number OxOlF9.
Contains the following elements:

Element Description
bm Width Bitmap width.
bmHeight Bitmap height.
bm WidthBytes Bytes per raster line.
bmPlanes Number of color planes.
bmBitsPixel Number of adjacent color bits that define

bmBits
bits

a pixel.
Pointer to bit values.
Actual bits of pattern.

CreatePatternBrush record 3.0

The CreatePatternBrush record stored by Windows versions 3.0 and later
contains a device-independent bitmap suitable for playback on all devices.
The following is the format of this record:

struct {
DWORD rdSize;
WORD rdFuDctioD;
WORD rdParm [1 ;

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number Ox0l42.
Contains the following elements:

Element Description
type Bitmap type. This field may be either of these

two values:
• BS_PATTERN-Brush is defined by a

device-dependent bitmap through a call to
the CreatePatternBrush function.

Software development kit

a BS_DIBPATTERN-Brush is defined by a
device-independent bitmap through a call to
the CreateDIBPatternBrush function.

Usage Specifies whether the bmiColors[] field of the
BITMAPINFO data structure contains explicit
RGB values or indexes into the currently
realized logical palette. This field must be one
of the following values:

BitmapInfo
bits

CreatePenlndirect record

m DIB_RGB_COLORS-The color table
contains literal RGB values.

II DIB_PAL_COLORS--The color table
consists of an array of indexes into the
currently realized logical palette.

BITMAPINFO data structure.
Actual device-independent bitmap bits.

The format and field descriptions of the CreatePenlndirect record follow:

struct {

}

DWORD rdSize;
WORD rdFunction;
LOGPEN rdParrn;

Field

rdSize
rdFunction
rdParm

Description

Specifies the record size in words.
Specifies the function number Ox02FA.
Specifies the logical pen.

Create region record

The format and field descriptions of the Create Region record follow:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParrn[];

Field

rdSize
rdFunction
rdParm[]

Chapter 9, File formats

Description

Specifies the record size in words.
Specifies the function number Ox06FF.
Specifies the region to be created.

121

122

DeleteObject 3.0

The DeleteObject record has the following format:

struct {
DWORD rdSizei
WORD rdFunctioni
WORD rdParrni

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm

Description

Specifies the record size in words.
Specifies the function number OxOlFO.
Specifies the handle-table index of the object to be deleted.

DrawText record

The DrawText record has the following format:

struct{
DWORD rdSizei
WORD rdFunctioni
WORD rdParrn[]i

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Escape record

Description

Specifies the record size in words.
Specifies the function number Ox062F.
Contains the following elements:

Element Description
format Method of formatting.
count Number of bytes in the string.
rectangle Rectangular structure defining area where

text is to be defined.
string Byte array containing the string. The array

is ((count + 1) »» 1) words long.

The format and field descriptions of the Escape record follow:

struct {
DWORD rdSizei

Software development kit

WORD rdFunction;
WORD rdParm [] ;

}

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number Ox0626.
Contains the following elements:

Element Description
escape number Number identifying individual escape.
count Number of bytes of information.
input data Variable length field. The field is

((count+1)j »» 1) words long.

ExtTextOut record

The ExtTextOut record has the following format:

struct{
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number OxOA32.
Contains the following elements:

Element Description
y Logical y-value of string's starting point.
x Logical x-value of string's starting point.
count Length of the string.
options Rectangle type.
rectangle RECT structure defining the ExtTextOut

rectangle if options element is nonzero;
nonexistent if options element equals zero

string Byte array containing the string. The array is
((count + 1) »» 1) words long.

Chapter 9, File formats

dxarray Optional word array of intercharacter
distances.

123

124

Polygon record

The Polygon record has the following format:

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParrn[];

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number Ox0324.
Contains the following elements:

Element Description
count Number of points.
list of points List of individual points.

PolyPolygon record

The PolyPolygon record has the following format:

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParrn[];

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number Ox0538.
Contains the following elements:

Element Description
count Total number of points.
list of polygon counts List of number of points for each

polygon.
list of points List of individual points.

Software development kit

Polyline record

The Polyline record has the following format:

struct {
DWORD rdSize;
WeiRD rdFunctionj
WORD rdParm[] j

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number Ox0325.
Contains the following elements:

Element Description
count Number of points.
list of points List of individual points.

SelectClipRegion

The SelectClipRegion record has the following format:

struct{

}

DWORD rdSizej
WORD rdFunctionj
WORD rdParmj

This record contains the following fields:

Field

rdSize
rdFunction
rdParm

SelectObject

Description

Specifies the record size in words.
Specifies the function number Ox012C.
Specifies the handle-table index of the region being selected.

The SelectObject record has the following format:

Chapter 9, File formats

struct{

}

DWORD rdSizej
WORD rdFunctionj
WORD rdParmj

125

126

This record contains the following fields:

Field

rdSize
rdFunction
rdParm

Description

Specifies the record size in words.
Specifies the function number Ox012D.
Specifies the handle-table index of the object being selected.

SelectPalette record 3.0

The SelectPalette record has the following format:

struct{

}

DWORD rdSizei
WORD rdFullctiolli
WORD rdParmi

This record contains the following fields:

Field

rdSize
rdFunction
rdParm

Description

Specifies the record size in words.
Specifies the function number Ox0234.
Specifies the handle-table index of the logical palette being
selected.

SetDIBitsToDevice record 3.0

The SetDIBitsToDevice record has the following format:

struct {

}

DWORD rdSizei
WORD rdFullctiolli
WORD rdParm [1 i

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number OxOD33.
Contains the following elements:

Element Description
wUsage Flag indicating whether the bitmap color

table contains RGB values or indexes into
the currently realized logical palette

numscans Number of scan lines in the bitmap.

Software development kit

First scan line in the bitmap. startscan
srcY The y-coordinate of the origin of the source

in the bitmap.
srcX The x-coordinate of the origin of the source

in the bitmap.
extY
extX
destY

destX

Bitmaplnfo
bits

Height of the source in the bitmap.
Width of the source in the bitmap.
The y-coordinate of the origin of the
destination rectangle.
The x-coordinate of the origin of the
destination rectangle.
BITMAPINFO data structure.
Actual device-independent bitmap bits.

setPaletteEntries record 3.0

The SetPaletteEntries record has the following format:

struct {
DWORD rdSizei
WORD rdFunction;
WORD rdParm[]i

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number Ox0037.
Contains the following elements:

Element Description
start First entry to be set in the palette.
numentries Number of entries to be set in the palette.
entries P ALETTEENTRY blocks.

Stretch Bit record (prior to 3.0)

The StretchBlt record stored by Windows versions prior to 3.0 contains a
device-dependent bitmap which may not be suitable for playback on all
devices. The following is the format of this record:

struct {

}

DWORD rdSizei
WORD rdFunctioni
WORD rdParm[] i

This record contains the following fields:

Chapter 9, File formats 127

128

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number OxOB23.
Contains the following elements:

Element Description
raster op Low word of the raster operation.
raster op High word of the raster operation.
SYE The y-extent of the source.
SXE The x-extent of the source.
SY The y-coordinate of the source origin.
SX The x-coordinate of the source origin.
DYE The y-extent of the destination.
DXE The x-extent of the destination.
DY The y-coordinate of destination origin.
DX The x-coordinate of destination origin.
bm Width Width of the bitmap in pixels.
bmHeight Height of the bitmap in raster lines.
bm WidthBytes Number of bytes in each raster line.
bmPlanes Number of color planes in the bitmap.
bmBitsPixel Number of adjacent color bits.
bits Actual bitmap bits.

Stretch Bit record 3.0

The Stretch Bit record stored by Windows versions 3.0 and later contains a
device-independent bitmap suitable for playback on all devices. The
following is the format of this record:

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

}

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Description

Specifies the record size in words.
Specifies the function number OxOB41.
Contains the following elements:

Element Description
raster op Low word of the raster operation.
raster op High word of the raster operation.
SYE The y-extent of the source.
SXE The x-extent of the source.
SY The y-coordinate of the source origin.
SX The x-coordinate of the source origin.

Software development kit

DYE
DXE
DY
DX
Bitmaplnfo
bits

StretchDIBits record 3.0

The y-extent of the destination.
The x-extent of the destination.
The y-coordinate of destination origip.
The x-coordinate of destination origin.
BITMAPINFO data structure.
Actual device-independent bitmap bits.

The StretchDIBits record has the following format:

struct {

}

DWORD rdSizei
WORD rdFullctiolli
WORD rdParm[] i

This record contains the following fields:

Field

rdSize
rdFunction
rdParm[]

Chapter 9, File formats

Description

Specifies the record size in words.
Specifies the function number OxOF43.
Contains the following elements:

Element
dwRop
wUsage

srcYExt
srcXExt
srcY

srcX

dstYExt
dstXExt
dstY

dstX

BitmapInfo
bits

Description
Raster operation to be performed.
Flag indicating whether the bitmap color
table contains RGB values or indexes into
the currently realized logical palette
Height of the source in the bitmap.
Width of the source in the bitmap.
The y-coordinate of the origin of the source
in the bitmap.
The x-coordinate of the origin of the source
in the bitmap.
Height of the destination rectangle.
Width of the destination rectangle.
The y-coordinate of the origin of the
destination rectangle.
The x-coordinate of the origin of the
destination re~tangle.
BITMAPINFO data structure.
Actual device-independent bitmap bits.

129

130

Sample
metafile

program
output

TextOut record

The TextOut record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field Description

rdSize
rdFunction
rdParm[]

Specifies the record size in words.
Specifies the function number Ox0521.
Contains the following elements:

Element Description
count The string's length.
string The actual string.
y-value Logical y-coordinate of string's starting point.
x-value Logical x-coordinate of string's starting point.

This section shows the metafile created by a sample program.

The following sample program creates a small metafile in which a purple
rectangle with a green border is drawn, and the words "Hello People" are
written in the rectangle.

MakeAMetaFile(hDC)
HDC hDC;
{

HPEN hMetaGreenPen;
HBRUSH hMetaVioletBrush;
HDC hDCMeta;
HANDLE hMeta;

/* create the metafile with output going to the disk
*/
hDCMeta = CreateMetaFile ((LPSTR) "sample .met") ;

hMetaGreenPen = CreatePen(O, 0, (DWORD) OxOOOOFFOO);
SelectObject(hDCMeta, hMetaGreenPen);

hMetaVioletBrush = CreateSolidBrush((DWORD)
OxOOFFOOFF);
SelectObject(hDCMeta, hMetaVioletBrush);

Rectangle (hDCMeta, 0, 0, 150, 70);

Software development kit

TextOut(hDCMeta, 10, 10, (LPSTR) "Hello People", 12);

1* we are done with the metafile *1
hMeta = CloseMetaFile(hDCMeta);

1* play the metafile that we just created *1
PlayMetaFile(hDC, hMeta);
}

The resulting binary file SAMPLE.MET looks like this:

0001 mtType ... disk metafile
0009 mtSize ...
0100 mtVersion
0000 0036 mtSize
0002 mtNoObjects
0000 OOOC mtMaxrecord
0000 mtNoParameters

0000 0008 rdSize
02FA rdFunction (CreatePen function call)
0000 0000 0000 0000 FFOO rdParm (LOGPEN structure defining pen)

0000 0004
012D
0000

0000 0007

rdSize
rdFunction (SelectObject)
rdParm (index to object #0 ... the above pen)

rdSize
02FC rdFunction (CreateBrush)
0000 DOFF DOFF 0000 rdParm (LOGBRUSH structure defining the brush)

0000 0004
012D
0001

rdSize
rdFunction (SelectObject)
rdParm (index to object #1 ... the brush)

0000 0007 rdSize
041B rdFunction (Rectangle)
0046 0096 0000 0000 rdParm (parameters sent to Rectangle .. . in reverse order)

Chapter 9, File formats

0000 OOOC
0521
rdParm
OOOC
string

rdSize
rdFunction (TextOut)

count

48 65 6C 6C 6F 20 50 65 6F 70 6C 65 "Hello People"
OOOA y-value
OOOA x-value

131

Summary

132

Windows files store information required to create Windows applications
as well as data needed by the Windows system and Windows applications
during execution. For more information on topics related to Windows
files, see the following:

Topic

Metafile functions

Reference

Reference, Volume 1: Chapter I, "Window
manager interface functions," and Chapter 4,
"Functions directory"

Software development kit

c H A p T E R

10

Module-definition statements

This chapter describes the statements contained in the module-definition
file that defines the application's contents and system requirements for the
LINK program. LINK links compiled source files with Microsoft Windows
and other libraries to create an executable Windows application. For
information on running LINK, see Tools.

The module-definition file contains one or more of the following module
sta tements:

Statement

CODE
DATA
DESCRIPTION
EXETYPE
EXPORTS
HEAPSIZE
IMPORTS
LIBRARY
NAME
SEGMENTS
STACKSIZE
STUB

Description

Code-segment attributes
Data-segment attributes
One-line description of the module
.EXE header type (Windows or OS/2)
Exported functions
Size of local heap in bytes
Imported functions
Dynamic-link library name
Module name
Additional code segment
Size of local stack in bytes
Old-style executable

This chapter describes these statements, their syntax, required and
optional parameters, and usage.

Chapter 70, Module-definition statements 133

CODE

CODE

Syntax CODE [[FIXED I MOVEABLE]] [[DISCARDABLE]] [[\PRELOAD I
LOADONCALL]]

This statement defines the attributes of the standard code segment. The
standard code segment is the application segment having the name
_TEXT and belonging to the class CODE. In C applications, the standard
data segment is created automatically if no specific segment name is
included in the C-Compiler command line.

The FIXED. option, if included, means that the segment remains at a fixed
memory location; the MOVEABLE option means that the segment can be
moved, if necessary, in order to compact memory.

The DISCARDABLE option, if included, means that the segment can be
discarded if it is no longer needed.

The PRELOAD option, if included, means that the segment is loaded
when the module is first loaded; the LOADONCALL option means that the
segment is loaded when it is called. The Resource Compiler may override
this option. See Tools for more information.

Comments There are no default attributes for code segments. The .DEF file should
always explicitly define code-segment attributes.

DATA

134

If conflicting options are included in the same statement, LINK uses the
overriding option to determine the segment attributes. The following list
shows which options override which:

MOVEABLE overrides FIXED.

PRELOAD overrides LOADONCALL.

Example CODE MOVEABLE LOADONCALL

In this example, the loader forces all fixed and moveable (but not
discardable) code segments to be loaded. Libraries cannot have code that
is moveable but not discardable.

Syntax Data [[NONE I SINGLE I MULTIPLE]] [[FIXED I MOVEABLE]]

This statement defines the attributes of the standard data segment. The
standard data segment is all application segments belonging to the group

Software development kit

DGROUP and the class DATA. In C applications, the standard data
segment is created automatically. The data is always preloaded.

DATA

The NONE option, if included, means that there is no data segment. To be
effective, this option should be the only attribute of the segment. This
option is available only for libraries.

The SINGLE option, if included, means that a single segment is shared by
all instances of the module, and is valid only for libraries.
The MULTIPLE option means that one segment exists for each instance,
and is only valid for applications.

NONE, SINGLE, and MULTIPLE are mutually exclusive.

The FIXED option, if included, means that the segment remains at a fixed
memory location. The MOVEABLE option means that the segment can be
moved if necessary, in order to compact memory.

Comments There are no default attributes for data segments. The .DEF file should
always explicitly define data-segment attributes.

Data segments are always preloaded.

If conflicting options are included in the same statement, LINK uses the
overriding option to determine the segment attributes. The following list
shows which options override which:

MULTIPLE overrides NONE.

SINGLE overrides NONE.

MOVEABLE overrides FIXED.

Example DATA MOVEABLE SINGLE

DESCRIPTION

This example tells LINK that this module has a single, moveable data
segment.

Syntax DESCRIPTION 'text'

This statement inserts text into the application's module. It is useful for
embedding source-control or copyright information

Parameters text Specifies one or more ASCII characters. The string must be
enclosed in single quotation marks.

Chapter 70, Module-definition statements 135

DESCRIPTION

Exannple DESCRIPTION 'Microsoft Windows Template Application'

This example embeds the text "Microsoft Windows Template Application"
in the application module.

EXENPE

Syntax EXETYPE headertype

This statement specifies the default executable-file (.EXE) header type
(Windows or OS/2). It is required for every Windows application.

Paranneters headertype Determines the header type. When linking an application
intended for the Windows environment, you must set this
parameter to the value "WINDOWS". For an MS OS/2
application, set this parameter to the value "OS/2".

Exannple EXETYPE WINDOWS

EXPORTS

136

Syntax EXPORTS exportname [[ordinal-option]] [[\res-option]] [[data-option]]
[[parameter-option]]

This statement defines the names and attributes of the functions to be
exported to other applications. The EXPORTS key word marks the
beginning of the definitions. It can be followed by any number of export
definitions, each on a separate line.

Parannefers exportname Specifies one or more ASCII characters that define the
function name. It has the following form:

<entryname>=[[internalname]]

where the entryname parameter specifies the name to be used
by other applications to access the exported function, and
internalname is an optional parameter that defines the actual
name of the function if entryname is not the actual name.

ordinal-option Defines the function's ordinal value. It has the following
form:

@ordinal

Software development kit

Example

HEAPSIZE

res-option

EXPORTS

where ordinal takes an integer value that specifies the
function's ordinal value. The ordinal value defines the
location of the function's name in the application's string
table. (When exporting functions from libraries, it is better to
use an ordinal rather than a name; using ordinals conserves
space.)

Is the optional key word RESIDENTNAME, which specifies
that the function's name must be resident at all times.

data-option Is the optional key word NODATA, which specifies that the
function is not bound to a specific data segment. When
invoked, the function uses the current data segment.

parameter-op tion

EXPORTS

Is an optional integer value that specifies the number of
words the function expects to be passed as parameters.

SampleRead=read2bin @l 8
StringIn=strl @2 4
CharTest NODATA

This example exports the functions SampleRead, StringIn and CharT est so
that other applications, or Windows itself, can call them.

Syntax HEAP SIZE bytes

This statement defines the number of bytes needed by the application for
its local heap. An application uses the local heap whenever it allocates
local memory

The default heap size is zero. The minimum size is 256 bytes. For an
application, the size of the local heap must be at least large enough to hold
the current environment.

Parameters bytes

Example HEAPSIZE 4096

Is an integer value that specifies the heap size in bytes. It
must not exceed 65,536 (the size of a single physical
segment).

This example sets the size of the application's local heap to 4096 bytes.

Chapter 70, Module-definition statements 137

IMPORTS

IMPORTS

Syntax IMPORTS [[internal-option]] modulename [[entry-option]]

This statement defines the names and attributes of the functions to be
imported from dynamic-link libraries. The IMPORTS key word marks the
beginning of the definitions. It can be followed by any number of import
definitions, each on a separate line.

Parameters internal-option

Example

Specifies the name that the application will use to call the
function. It has the following form:

internal-name=

where internal-name is one or more ASCII characters. This
name must be unique.

modulename Specifies one or more uppercase ASCII characters that define
the name of the executable module that contains the
function. The module name must match the name of the
executable file. For example, an application with the
executable file SAMPLE.DLL has the module name
"SAMPLE". The executable file must be named with the
.DLL extension.

entry-option Specifies the function to be imported. It can be one of the
following:

IMPORTS

.entryname

.entryordinal

where entryname is the actual name of the function, and
entryordinal is the ordinal value of the function.

Sarnple.SarnpleRead
write2hex=Sarnple.SarnpleWrite
Read.l

.. Instead of listing imported DLL functions in the IMPORTS statement, you
can specify an "import library" for the DLL in your application's LINK
command line. It also saves space to import by ordinal.

138 Software development kit

LIBRARY

LIBRARY

Syntax LIBRARY libraryname

This statement defines the name of a library module. Library modules are
resource modules that contain code, data, and other resources but are not
intended to be executed as an independent program. Like an application's
module name, a library's module name must match the name of the
executable file. For example, the library USER.EXE has the module name
"USER".

Parameters libraryname Specifies one or more ASCII characters that define the name
of the library module.

Comments The start address of the library module is determined by the library'S
object files; it is an internally defined function.

NAME

The libraryname parameter is optional. If the parameter is not included,
LINK uses the filename part of the executable file (that is, the name with
the extension removed).

If the .DEF file includes neither a NAME nor a LIBRARY statement, LINK
assumes a NAME statement without a modulename parameter is desired.

Example LIBRARY Utilities

This example gives a library the module name "Utilities."

Syntax NAME modulename

This statement defines the name of the application's executable module.
The module name identifies the module when exporting functions.

Parameters modulename Specifies one or more uppercase ASCII characters that define
the name of the executable module. The module name must
match the name of the executable file. For example, an
application with the executable file SAMPLE.EXE has the
module name "SAMPLE". Do not use OS/2 system library
names. Examples of these names are DOSCALLS,
VIOCALLS, and MOUCALLS.

Comments The modulename parameter is optional. If the parameter is not included,
LINK assumes that the module name matches the the filename of the
executable file. For example, if you do not specify a module name and the

Chapter 10, Module-definition statements 139

NAME

executable file is named MYAPP.EXE, LINK assumes that the module
name is "MYAPP".

If the .DEF file includes neither a NAME nor a LIBRARY statement, LINK
assumes a NAME statement without a modulename parameter is desired.

Example NAME Calendar

This example gives an application the module name "Calendar".

SEGMENTS

Syntax SEGMENTS segmentname [[CLASS 'class-name']] [[minalloc]]\
[[FIXED I MOVEABLE]]

[[DISCARDABLE]] [[SHARED I NONSHARED]] [[PRELOAD I
LOADONCALL]]

This statement defines the segment attributes of additional code and data
segments.

The FIXED option, if included, means that the segment remains at a fixed
memory location. The MOVEABLE option means that the segment can be
moved if necessary, in order to compact memory.

The DISCARDABLE option, if included, means that the segment can be
discarded if it is no longer needed.

The PRELOAD option, if included, means that the segment is loaded
immediately The LOADONCALL option means that the segment is loaded
when it is accessed or called. The Resource Compiler may override this
option. See Tools for more information.

Parameters segmentname Specifies a character string that names the new segment. It
can be any name, including the standard segment names
_TEXT and _DATA, which represent the standard code and
data segments.

class-name Is an optional key word that specifies the class name of the
specified segment. If no class name is specified, LINK uses
the class name CODE by default.

minalloc Is an optional integer value that specifies the minimum
allocation size for the segment.

Comments There are no default attributes for additional segments. The .DEF file
should always explicitly define the attributes of additional segments.

140 Software development kit

Example

SEGMENTS

If conflicting options are included in the same statement, LINK uses the
overriding option to determine the segment attributes. The following list
shows which options override which:

MOVEABLE overrides FIXED.

PRELOAD overrides LOADONCALL.

SEGMENTS
_TEXT FIXED
_INIT PRELOAD DISCARDABLE
_RES CLASS 'DATA' PRELOAD DISCARDABLE

STACKSIZE

STUB

Syntax STACKSIZE bytes

This statement defines the number of bytes needed by the application for
its local stack. An application uses the local stack whenever it makes
function calls.

The default stack size is zero if the application makes no function calls. If
your application does make function calls and you specify a stack size
smaller than 5K bytes, Windows automatically sets the stack size to 5K
bytes.

Parameters bytes Is an integer value that specifies the stack size in bytes.

Comments Do not use the STACKSIZE statement for dynamic-link libraries.

Example STACKSIZE 6144

This example sets the size of an application's stack to 6144 bytes.

Syntax STUB" filename"

This statement appends the old-style executable file specified by filename
to the beginning of the module. The executable stub should display a
warning message and terminate if the user attempts to execute the
module without having loaded Windows. The default file WINSTUB.EXE
can be used if no other actions are required.

Chapter 10, Module-definition statements 141

STUB

142

Parameters filename Specifies the name of the old-style executable file that will be
appended to the module. The name must have the DOS
filename format.

Comments If the file named by filename is not in the current directory, LINK searches
for the file in the directories specified by the user's PATH environment
variable.

Example STUB' WINS TUB . EXE '

This example specifies the executable file WINSTUB.EXE as the
application's stub. If a user tries to run this application in the DOS
environment, rather than with Windows, the program WINSTUB.EXE
starts instead.

Software development kit

c H A p T E R

1 1

Binary and ternary raster-operation
codes

This chapter lists and describes the binary and ternary raster operations
used by the graphics device interface (GDI). A binary raster operation
uses two operands: a pen and a destination bitmap. A ternary raster
operation uses three operands: a source bitmap, a brush, and a destination
bitmap. Both binary and ternary raster operations use Boolean operators.

Binary raster operations

This section lists the binary raster-operation codes used by the GetROP2
and SetROP2 functions. Raster-operation codes define how GDI combines
the bits from the selected pen with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the
selected pen and the destination bitmap are combined. There are two
operands used in these operations:

• D Destination bitmap
II P Selected pen

The Boolean operators used in these operations are as follows:

13 a Bitwise AND
II n Bitwise NOT (inverse)
• 0 Bitwise OR
II x Bitwise Exclusive OR (XOR)

Chapter 7 7, Binary and ternary raster-operation codes 143

Table 11.1
Operation indexes
for OPo and OPan

144

All Boolean operations are presented in reverse Polish notation. For
example, the following operation replaces the destination with a
combination of the pen and the selected brush:

DPo

Each raster-operation code is a 32-bit integer value whose high-order
word is a Boolean operation index and whose low-order word is the
operation code. The 16-bit operation index is a zero-extended 8-bit value
that represents the result of the Boolean operation on predefined pen and
destination values. For example, the operation indexes for the DPo and
DPan operations are shown in Table 11.1:

P 0 PSo DPSoo

a a a 1
a 1 1 1
1 a 1 1
1 1 1 a

The following list outlines the drawing modes and the Boolean operations
that they represent:

Raster operation

R2_BLACK
R2_COPYPEN
R2_MASKNOTPEN
R2_MASKPEN
R2_MASKPENNOT
R2_MERGENOTPEN
R2_MERGEPEN
R2_MERGEPENNOT
R2_NOP
R2_NOT
R2_NOTCOPYPEN
R2_NOTMASKPEN
R2_NOTMERGEPEN
R2_NOTXORPEN
R2_WHITE
R2_XORPEN

Boolean operation

a
P
DPna
DPa
PDna
DPno
DPo
PDno
D
Dn
Pn
DPan
DPon
DPxn
1
DPx

When a monochrome device is used, GDI maps the value 0 to black and
the value 1 to white. Given an application that attempts to draw with a
black pen on a white destination by using the available binary raster
operations, the following results will occur:

Software development kit

Raster operation

R2_BLACK
R2_COPYPEN
R2_MASKNOTPEN
R2_MASKPEN
R2_MASKPENNOT
R2_MERGENOTPEN
R2_MERGEPEN
R2_MERGEPENNOT
R2_NOP
R2_NOT
R2_NOTCOPYPEN
R2_NOTMASKPEN
R2_NOTMERGEPEN
R2_NOTXORPEN
R2_WHITE
R2_XORPEN

Result

Visible black line
Visible black line
No visible line
Visible black line
Visible black line
No visible line
Visible black line
Visible black line
No visible line
Visible black line
No visible line
No visible line
Visible black line
Visible black line
No visible line
No visible line

When a color device is used, GDI uses RGB values to represent the colors
of the pen and the destination. An RGB color value is a long integer that
contains a red, a green, and a blue color field, each specifying the intensity
of the given color. Intensities range from 0 to 255. The values are packed
in the three low-order bytes of the long integer. The color of a pen is
always a solid color, but the color of the destination may be a mixture of
any two or three colors. Given an application that attempts to draw with a
white pen on a blue destination by using the available binary raster
operations, the following results will occur:

Raster Operation

R2_BLACK
R2_COPYPEN
R2_MASKNOTPEN
R2_MASKPEN
R2_MASKPENNOT
R2_MERGENOTPEN
R2_MERGEPEN
R2_MERGEPENNOT
R2_NOP
R2_NOT
R2_NOTCOPYPEN
R2_NOTMASKPEN
R2_NOTMERGEPEN
R2_NOTXORPEN
R2_WHITE
R2_XORPEN

Result

Visible black line
Visible white line
Visible black line
Invisible blue line
Visible red/ green line
Invisible blue line
Visible white line
Visible white line
Invisible blue line
Visible red/ green line
Visible black line
Visible red/ green line
Visible black line
Invisible blue line
Visible white line
Visible red/ green line

Chapter 7 7, Binary and ternary raster-operation codes 145

Ternary raster operations

Table 11.2
Operation Indexes
for PSo and DPSoo

146

This section lists the ternary raster-operation codes used by the BitSlt,
PatBlt, and StretchBlt functions. Ternary raster-operation codes define
how GDI combines the bits in a source bitmap with the bits in the
destination bitmap.

Each raster-operation code represents a Boolean operation in which the
source, the selected brush, and the destination bitmap are combined.
There are three operands used in these operations:

• D Destination bitmap
• P Selected brush (also called pattern)
• S Source bitmap

The Boolean operators used in these operations are as follows:

• a Bitwise AND
• n Bitwise NOT (inverse)
• 0 Bitwise OR
• x Bitwise Exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For
example, the following operation replaces the destination with a
combination of the source and brush:

PSo

The following operation combines the source and brush with the
destination (there are alternate spellings of the same function, so although
a particular spelling may not be in the list, an equivalent form will be):

DPSoo

Each raster-operation code is a 32-bit integer value whose high-order
word is a Boolean operation index and whose low-order word is the
operation code. The 16-bit operation index is a zero-extended, 8-bit value
that represents the result of the Boolean operation on predefined brush,
source, and destination values. For example, the operation indexes for the
PSo and DPSoo operations are shown in Table 11.2:

P S 0 PSo DPSoo

0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1 1

Software development kit

For more
information about

RGB values, see the
RGB structure in

Chapter 7, "Data
types and

structures. "

Table 11.3
Raster-operation

codes

Table 11.2: Operation Indexes for PSo and DPSoo (continued)

1 0
1 1
1 1
Operation index:

1
o
1

1
1
1
OOFC

1
1
1
OOFE

In this case, PSo has the operation index OOFC (read from the bottom up);
DPSoo has the operation index OOFE. These values define the location of
the corresponding raster-operation codes, as shown in Table 11.1,
"Operation indexes for DPo and DPan." The PSo operation is in line 252
(FCh) of the table; DPSoo is in line 254 (FEh).

The most commonly used raster operations have been given special
names in the Windows include file, windows.h. You should use these
names whenever possible in your applications.

When the source and destination are monochrome, a bit value of zero
represents a black pixel and a bit value of 1 represents a white pixel.
When the source and the destination are color, those colors are
represented with RGB values.

Table 11.3 lists the raster-operation codes:

Boolean Boolean
Function Hex Function Common
in Hex, Hex ROP in Reverse Polish Name

00 00000042 0 BLACKNESS
01 00010289 DPSoon
02 00020C89 DPSona
03 000300AA PSon
04 00040C88 SDPona
05 000500A9 DPon
06 00060865 PDSxnon
07 000702C5 PDSaon
08 00080F08 SDPnaa
09 00090245 PDSxon
OA 000A0329 DPna
OB 000BOB2A PSDnaon
OC 000C0324 SPna
OD 000DOB25 PDSnaon
OE 000E08A5 PDSonon
OF OOOFOOO1 Pn
10 00100C85 PDSona
11 001100A6 DSon NOTSRCERASE
12 00120868 SDPxnon
13 001302C8 SDPaon
14 00140869 DPSxnon
15 001502C9 DPSaon

Chapter 11, Binary and ternary raster-operation codes 147

Table 11.3: Raster-operation codes (continued)

16 001 65CCA PSDPSanaxx
17 001 71 D54 SSPxDSxaxn
18 00180D59 SPxPDxa
19 00191CC8 SDPSanaxn
lA 001A06C5 PDSPaox
IB 001B0768 SDPSxaxn
lC 001C06CA PSDPaox
ID 001D0766 DSPDxaxn
IE 001E01A5 PDSox
IF 001 F0385 PDSoan
20 00200F09 DPSnaa
21 00210248 SDPxon
22 00220326 DSna
23 00230B24 SPDnaon
24 00240D55 SPxDSxa
25 00251CC5 PDSPanaxn
26 002606C8 SDPSaox
27 00271868 SDPSxnox
28 00280369 DPSxa
29 002916CA PSDPSaoxxn
2A 002AOCC9 DPSana
2B 002BID58 SSPxPDxaxn
2C 002C0784 SPDSoax
2D 002D060A PSDnox
2E 002E064A PSDPxox
2F 002FOE2A PSDnoan
30 0030032A PSna
31 00310B28 SDPnaon
32 00320688 SDPSoox
33 00330008 Sn NOTSRCCOPY
34 003406C4 SPDSaox
35 00351864 SPDSxnox
36 003601A8 SDPox
37 00370388 SDPoan
38 0038078A PSDPoax
39 00390604 SPDnox
3A 003A0644 SPDSxox
3B 003BOE24 SPDnoan
3C 003C004A PSx
3D 003D18A4 SPDSonox
3E 003EIB24 SPDSnaox
3F 003FOOEA PSan
40 00400FOA PSDnaa
41 00410249 DPSxon
42 00420D5D SDxPDxa
43 00431CC4 SPDSanaxn
44 00440328 SDna SRCERASE
45 00450B29 DPSnaon
46 004606C6 DSPDaox
47 0047076A PSDPxaxn
48 00480368 SDPxa

148 Software development kit

Table 11.3: Raster-operation codes (continued)

49 004916C5 PDSPDaoxxn
4A 004A0789 DPSDoax
4B 004B0605 PDSnox
4C 004COCC8 SDPana
4D 004D1954 SSPxDSxoxn
4E 004E0645 PDSPxox
4F 004FOE25 PDSnoan
50 00500325 PDna
51 00510B26 DSPnaon
52 005206C9 DPSDaox
53 00530764 SPDSxaxn
54 005408A9 DPSonon
55 00550009 Dn DSTINVERT
56 005601A9 DPSox
57 00570389 DPSoan
58 00580785 PDSPoax
59 00590609 DPSnox
5A 005A0049 DPx PATINVERT
5B 005B18A9 DPSDonox
5C 005C0649 DPSDxox
5D 005DOE29 DPSnoan
5E 005E1B29 DPSDnaox
5F 005FOOE9 DPan
60 00600365 PDSxa
61 006116C6 DSPDSaoxxn
62 00620786 DSPDoax
63 00630608 SDPnox
64 00640788 SDPSoax
65 00650606 DSPnox
66 00660046 DSx SRCINVERT
67 OG6718A8 SDPSonox
68 006858A6 DSPDSonoxxn
69 00690145 PDSxxn
6A 006A01E9 DPSax
6B 006B178A PSDPSoaxxn
6C 006C01E8 SDPax
6D 006D1785 PDSPDoaxxn
6E 006E1E28 SDPSnoax
6F 006FOC65 PDSxnan
70 00700CC5 PDSana
71 00711D5C SSDxPDxaxn
72 00720648 SDPSxox
73 00730E28 SDPnoan
74 00740646 DSPDxox
75 00750E26 DSPnoan
76 00761B28 SDPSnaox
77 007700E6 DSan
78 007801E5 PDSax
79 00791786 DSPDSoaxxn
7A 007A1E29 DPSDnoax
7B 007BOC68 SDPxnan

Chapter 11, Binary and ternary raster-operation codes 149

Table 11.3: Raster-operation codes (continued)

7C 007C1E24 SPDSnoax
7D 007DOC69 DPSxnan
7E 007E0955 SPxDSxo
7F 007F03C9 DPSaan
80 008003E9 DPSaa
81 00810975 SPxDSxon
82 00820C49 DPSxna
83 00831E04 SPDSnoaxn
84 00840C48 SDPxna
85 00851E05 PDSPnoaxn
86 008617 A6 DSPDSoaxx
87 008701C5 PDSaxn
88 008800C6 DSa SRCAND
89 00891 B08 SDPSnaoxn
8A 008AOE06 DSPnoa
8B 008B0666 DSPDxoxn
8C 008COE08 SDPnoa
8D 008D0668 SDPSxoxn
8E 008E1 D7C SSDxPDxax
8F 008FOCE5 PDSanan
90 00900C45 PDSxna
91 00911E08 SDPSnoaxn
92 009217 A9 DPSDPoaxx
93 009301C4 SPDaxn
94 009417 AA PSDPSoaxx
95 009501C9 DPSaxn
96 00960169 DPSxx
97 0097588A PSDPSonoxx
98 00981888 SDPSonoxn
99 00990066 DSxn
9A 009A0709 DPSnax
9B 009B07 A8 SDPSoaxn
9C 009C0704 SPDnax
9D 009D07 A6 DSPDoaxn
9E 009E16E6 DSPDSaoxx
9F 009F0345 PDSxan
AO 00AOOOC9 DPa
Al 00A11 B05 PDSPnaoxn
A2 00A20E09 DPSnoa
A3 00A30669 DPSDxoxn
A4 00A41885 PDSPonoxn
A5 00A50065 PDxn
A6 00A60706 DSPnax
A7 00A707 A5 PDSPoaxn
A8 00A803A9 DPSoa
A9 00A90189 DPSoxn
AA 00AA0029 D
AB 00AB0889 DPSono
AC 00AC0744 SPDSxax
AD 00AD06E9 DPSDaoxn
AE 00AEOB06 DSPnao

150 Software development kit

Table 11.3: Raster-operation codes (continued)

AF OOAF0229 DPno
BO OOBOOE05 PDSnoa
Bl OOBI0665 PDSPxoxn
B2 OOB21974 SSPxDSxox
B3 OOB30CE8 SDPanan
B4 OOB4070A PSDnax
B5 OOB507A9 DPSDoaxn
B6 OOB616E9 DPSDPaoxx
B7 OOB70348 SDPxan
B8 OOB8074A PSDPxax
B9 OOB906E6 DSPDaoxn
BA OOBAOB09 DPSnao
BB OOBB0226 DSno MERGEPAINT
BC OOBCICE4 SPDSanax
BD OOBDOD7D SDxPDxan
BE OOBE0269 DPSxo
BF OOBF08C9 DPSano
CO OOCOOOCA PSa MERGECOPY
Cl OOCllB04 SPDSnaoxn
C2 OOC21884 SPDSonoxn
C3 OOC3006A PSxn
C4 OOC40E04 SPDnoa
C5 OOC50664 SPDSxoxn
C6 OOC60708 SDPnax
C7 OOC707AA PSDPoaxn
C8 OOC803A8 SDPoa
C9 OOC90184 SPDoxn
CA OOCA0749 DPSDxax
CB OOCB06E4 SPDSaoxn
CC OOCCOO20 S SRCCOPY
CD OOCD0888 SDPono
CE OOCEOB08 SDPnao
CF OOCF0224 SPno
DO OODOOEOA PSDnoa
Dl OODI066A PSDPxoxn
D2 OOD20705 PDSnax
D3 OOD307A4 SPDSoaxn
D4 OOD41D78 SSPxPDxax
D5 OOD50CE9 DPSanan
D6 OOD616EA PSDPSaoxx
D7 OOD70349 DPSxan
D8 OOD80745 PDSPxax
D9 OOD906E8 SDPSaoxn
DA OODAICE9 DPSDanax
DB OODBOD75 SPxDSxan
DC OODCOB04 SPDnao
DD OODD0228 SDno
DE OODE0268 SDPxo
DF OODF08C8 SDPano
EO OOEOO3A5 PDSoa
El OOEI0185 PDSoxn

Chapter 7 7, Binary and ternary raster-operation codes 151

152

Table 11.3: Raster-operation codes (continued)

E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
FO
FI
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

OOE20746
OOE306EA
OOE40748
OOE506E5
OOE6ICE8
OOE70D79
OOE8ID74
OOE95CE6
OOEA02E9
OOEB0849
OOEC02E8
OOED0848
OOEE0086
OOEFOA08
OOF0002I
OOFI0885
OOF20B05
OOF3022A
OOF40BOA
OOF50225
OOF60265
OOF708C5
OOF802E5
OOF90845
OOFA0089
OOFBOA09
OOFC008A
OOFDOAOA
OOFE02A9
OOFF0062

DSPDxax
PSDPaoxn
SDPSxax
PDSPaoxn
SDPSanax
SPxPDxan
SSPxDSxax
DSPDSanaxxn
DPSao
DPSxno
SDPao
SDPxno
DSo
SDPnoo
P
PDSono
PDSnao
PSno
PSDnao
PDno
PDSxo
PDSano
PDSao
PDSxno
DPo
DPSnoo
PSo
PSDnoo
DPSoo
I

SRCPAINT

PATCOPY

PATPAINT

WHITENESS

For more information on topics related to raster-operation codes, see the
following:

Topic

Using raster-operation
codes with GDI functions

Setting the current drawing
mode with SetROP2

Reference

Reference, Volume 1: Chapter 2,
"Graphics device interface functions," and
Chapter 4, "Functions directory"
Reference, Volume 1: Chapter 4,
"Functions directory"

Software development kit

c H A p T E R

12

Printer escapes
This chapter contains an alphabetical list of the individual Microsoft
Windows printer escapes. The printer escapes allow applications to access
facilities of a particular output device that are not available directly
through the graphics device interface (CDI). The escape calls are made by
an application, translated by Windows, and then sent to the printer device
driver.

ABORTDOC

Syntax short Escape(hDC, ABORTDOC, NULL, NULL, NULL)

This escape terminates the current job, erasing everything the application
has written to the device since the last ENcooe escape.

The ABORTooe escape should be used to terminate:

1:1 Printing operations that do not specify an abort function using the
SETABORTPROe escape

IJ Printing operations that have not yet reached their first NEWFRAME or
NEXTBANO escape call

Parameters hDC H DC Identifies the device context.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Chapter 72, Printer escapes 153

ABORTDOC

Comments If an application encounters a printing error or a canceled print operation,
it must not attempt to terminate the operation by using the Escape
function with either the ENDDOC or ABORTDOC escape. GDI
automatically terminates the operation before returning the error value.

If the application displays a dialog box to allow the user to cancel the
print operation, it must send the ABORTDOC escape before destroying the
dialog box.

The application must send the ABORTDOC escape before freeing the
procedure-instance address of the abort function, if any.

BANDINFO

154

Syntax short Escape(hDC, BANDINFO, sizeof(BANDINFOSTRUCT), lpInData,
lpOutData)

This escape copies information about a device with banding capabilities to
a structure pointed to by the IpOutData parameter. It is implemented only
for devices that use banding.

Banding is a property of an output device that allows a page of output to
be stored in a metafile and divided into bands, each of which is sent to the
device to create a complete page.

The information copied to the structure pointed to by IpOutData includes:

• A value that indicates whether there are graphics in the next band
II A value that indicates whether there is text on the page
• A RECT data structure that contains a bounding rectangle for all

graphics on the page

The IpOutData parameter is NULL if no data are returned.

The IplnData parameter specifies information sent by the application to
the device driver. This information is read by the device driver only on the
first BANDINFO escape call on a page.

Parameters hDC

IplnData

HDC Identifies the device context.

BANDINFOSTRUCT FAR * Points to a BANDINFOSTRUCT
data structure that contains information to be passed to the
driver. See the following "Comments" section for more
information on the BANDINFOSTRUCT data structure.

IpOutData BANDINFOSTRUCT FAR * Points to a BANDINFOSTRUCT
data structure that contains information returned by the

Software development kit

BANDINFO

driver. See the following "Comments" section for more
information on the BANDINFOSTRUCT data structure.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful. It is zero if the function fails or is not implemented by the
driver.

Comments The BANDINFOSTRUCT data structure contains information about the
contents of a page and supplies a bounding rectangle for graphics on the
page. The following shows the format of BANDINFOSTRUCT:

Table 12.1
Meaning of

BANDINFOSTRUCT
fields

typedef struct {
BOOL fGraphicsFlagi
BOOL fTextFlagi
RECT GraphicsRecti

BANDINFOSTRUCTi

The BANDINFOSTRUCT structure has the following fields:

Field Description

fGraphicsFlag Is TRUE if graphics are or are expected to be on the page or in
the band; otherwise, it is FALSE.

fTextFlag Is TRUE if text is or is expected to be on the page or in the band;
otherwise, it is FALSE.

GraphicsRect Contains a RECT data structure that supplies a bounding region
for all graphics on the page.

Table 12.1 shows the meaning of these fields, depending on which
parameter contains the structure.

Field

fGraphicsFlag

fTextFlag

GraphicsRect

When used in IplnData

TRUE if the application is
informing the driver that
graphics are on the page.
TRUE if the application is
informing the driver that
text is on the page.
Supplies the bounding
rectangle for all graphics
on the page.

When used in IpOutData

TRUE if the driver is informing
the application that it expects
graphics in this band.
TRUE if the driver is informing
the application that it expects
text in this band.
No valid return data.

An application should call this escape immediately after each call to the
NEXTBAND escape. It is in reference to the band the driver returned to
that escape.

An application should use this escape in the following manner:

Chapter 12, Printer escapes 155

BANDINFO

On the first band, the driver may give the application a full-page band
and ask for text only (fGraphicsFlag is set to FALSE and fTextFlag is set to
TRUE). The application sends only text to the driver.

If in the first band the application indicated that it had graphics
(fGraphicsFlag is set to TRUE), or that the driver encountered vector
fonts, then the driver will band the rest of the page. If there are no
graphics or vector fonts, then the next NEXTBAND will return an empty
rectangle to indicate that the application should move on to the next page.

If there are graphics but no vector fonts (the application set fGraphicsFlag
to TRUE, but there were no graphics in the first full-page text band), then
for subsequent bands the driver may optionally band only into the
rectangle the application passed. This rectangle bounds all graphics on the
page. If there are vector fonts, then the driver will band the entire width
and depth of the page with fTextFlag set to TRUE. It will also set
fGraphicsFlag to true if the application set it.

The driver assumes that an application using BANDINFO will only send
text in the first full-page text band since that is all the driver requested.
Therefore, if the driver encounters a vector font or graphics in the band, it
assumes they were generated by a text primitive and sets fTextFlag to
TRUE for all subsequent graphics bands so they can be output as
graphics. If the application does not satisfy this expectation, the image
will still be generated properly, but the driver will spend time sending
spurious text primitives to graphics bands.

Older drivers written before the BANDINFO escape was designed used
full-page banding for text. If a particular driver does not support the
BANDINFO escape but sets RC_BANDING, the application can detect
full-page banding for text by determining if the first band on the page
covers the entire page.

Syntax short Escape(hDC, BEGIN_PATH, NULL, NULL, NULL)

156

This escape opens a path. A path is a connected sequence of primitives
drawn in succession to form a single polyline or polygon. Paths enable
applications to draw complex borders, filled shapes, and clipping areas by
supplying a collection of other primitives that define the desired shape.

Printer escapes supporting paths enable applications to render images on
sophisticated devices such as PostScript printers without generating huge
polygons to simulate the images.

Software development kit

To draw a path, an application first issues the BEGIN_PATH escape. It
then draws the primitives defining the border of the desired shape and
issues an END_PATH escape. The END_PATH escape includes a parameter
specifying how the path is to be rendered.

Parameters hDC HDC Identifies the device context.

Return value The return value specifies the current path nesting level. If the escape is
successful, the return value is the number of BEGIN_PATH escape calls
without a corresponding END_PATH escape call. Otherwise, the return
value is zero.

Comments An application may begin a subpath within another path. If the subpath is
closed, it is treated exactly like a polygon. If it is open, it is treated exactly
like a polyline.

An application may use the CLIP _TO_PATH escape to define a clipping
area corresponding to the interior or exterior of the currently open path.

Syntax short Escape(hDC, CLIP _TO_PATH, sizeof(int),lpClipMode, NULL)

This escape defines a clipping area bounded by the currently open path. It
enables the application to save and restore the current clipping area and
to set up an inclusive or exclusive clipping area bounded by the currently
open path. If the path defines an inclusive clipping area, portions of
primitives falling outside the interior bounded by the path are clipped. If
the path defines an exclusive clipping area, portions of primitives falling
inside the interior are clipped.

Parameters hDC HDC Identifies the device context.

IpClipMode LPINT Points to a short integer specifying the clipping mode.
It can be one of the following values:

1:1 CLIP_SAVE (0) Saves the current clipping area.
II CLIP_RESTORE (1) Restores the previous clipping area.
III CLIP_INCLUSIVE (2) Sets an inclusive clipping area.
II CLIP_EXCLUSIVE (3) Sets an exclusive clipping area.

Return value The return value specifies the outcome of the escape. It is nonzero if the
escape was successful. Otherwise, it is zero.

Comments To clip a set of primitives against a path, an application should follow
these steps:

1. Save the current clipping area using the CLIP _TO_PATH escape.

Chapter 72, Printer escapes 157

2. Begin a path using the BEGIN_PATH escape.

3. Draw the primitives bounding the clipping area.

4. Close the path using the END_PATH escape.

5. Set the clipping area using the CLIP _TO_PATH escape.

6. Draw the primitives to be clipped.

7. Restore the original clipping area using the CLIP _TO _P A TH escape.

DEVICEDATA

Syntax short Escape(hDC, DEVICE DATA, nCount, IpInData, IpOutData)

This escape is identical to the PASSTHROUGH escape. See the description
of PASSTHROUGH for further information.

DRAFTMODE

Syntax short Escape(hDC, DRAFTMODE, sizeof(int), IpDraftMode, NULL)

This escape turns draft mode off or on. Turning draft mode on instructs
the device driver to print faster and with lower quality (if necessary). The
draft mode can be changed only at page boundaries, for example, after a
NEWFRAME escape directing the driver to advance to a new page.

Parameters hDC HOC Identifies the device context.

IpDraftMode LPINT Points to a short-integer value that specifies the draft
mode. It may be one of the following values:

a 0 Specifies draft mode off.
a 1 Specifies draft mode on.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Comments The default draft mode is off.

DRAWPATIERNRECT

158

Syntax short Escape(hDC, DRA WP ATTERNRECT, sizeof(PRECTSTRUCT),
IpInData, NULL)

This escape creates a pattern, gray scale, or solid black rectangle by using
the pattern/rule capabilities of Page Control Language (PCL) on

Software development kit

DRAWPATTERNRECT

Hewlett-Packard® LaserJet® or LaserJet-compatible printers. A gray scale
is a gray pattern that contains a specific mixture of black and white pixels.

Parameters hDC

IplnData

HDC Identifies the device context.

PRECT_STRUCT FAR * Points to a PRECT _STRUCT data
structure that describes the rectangle. See the following
"Comments" section for more information on the
PRECT _STRUCT data structure.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful. Otherwise, it is zero.

Comments The IplnData parameter points to a PRECT _STRUCT data structure that
defines the rectangle to be created. The PRECT_STRUCT structure has the
following format:

typedef struct {
POINT prPositioni
POINT prSizei
WORD prStylei
WORD prPatterni

PRECT_STRUCTi

This structure has the following fields:

Field

prPosition
prSize
prStyle

prPattern

Description

Specifies the upper-left corner of the rectangle.
Specifies the lower-right corner of the rectangle.
Specifies the type of pattern. It may be one of the following values:

Value Meaning
a Black rule
1 White rule that erases bitmap data previously written to

same area; this pattern is available on the HP LaserJet liP
only.

2 Gray scale
3 HP-defined

Specifies the pattern. It is ignored for a black rule. It specifies the
percentage of gray for a gray-scale pattern. It represents one of six
Hewlett-Packard-defined patterns.

An application should use the QUERYESCSUPPORT escape to determine
whether a device is capable of drawing patterns and rules before using the
DRAWPATTERNRECT escape. If an application uses the BANDINFO
escape, all patterns and rectangles sent by using DRAWPATTERNRECT
should be treated as text and sent on a text band.

Chapter 72, Printer escapes 159

ENABLEDUPLEX

Do not try to erase patterns and rules created with the
DRAWPATTERNRECT escape by placing opaque objects over them. To
erase such patterns and rules, use the function calls provided by CD!.

ENABLEDUPLEX

Syntax short Escape(hDC, ENABLEDUPLEX, sizeof(WORD), lpInData, NULL)

This escape enables the duplex printing capabilities of a printer. A device
that possesses duplex printing capabilities is able to print on both sides of
the output medium.

Parameters hDC

IplnData

HOC Identifies the device context.

WORD FAR * Points to an unsigned 16-bit integer that
specifies whether duplex or simplex printing is used. It may
be one of the following values:

.0 Simplex

.1 Duplex with vertical binding

.2 Duplex with horizontal binding

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful. Otherwise, it is zero.

Comments An application should use the QUERYESCSUPPORT escape to determine
whether an output device is capable of creating duplex output. If
QUERYESCSUPPORT returns a nonzero value, the application should
send the ENABLEDUPLEX escape even if simplex printing is desired. This
guarantees replacement of any values set in the driver-specific dialog box.
If duplex printing is enabled and an uneven number of NEXTFRAME
escapes are sent to the driver prior to the ENDDOC escape, the driver will
eject an additional page before ending the print job.

ENABLEPAIRKERNING

160

Syntax short Escape(hDC, ENABLEPAIRKERNINC, sizeof(int), lpNewKernFlag,
lpOldKernFlag)

This escape enables or disables the driver's ability to kern character pairs
automatically. Kerning is the process of adding or subtracting space
between characters in a string of text.

When pair kerning is enabled, the driver automatically kerns those pairs
of characters that are listed in the font's character-pair kerning table. The

Software development kit

ENABLEPAIRKERNING

driver reflects this kerning both on the printer and in GetTextExtent
function calls.

Parameters hDC HOC Identifies the device context.

IpNewKernFlag LPINT Points to a short-integer value that specifies
whether automatic pair kerning is to be enabled (1) or
disabled (0).

IpOldKernFlag LPINT Points to a short-integer value that will receive the
previous automatic pair-kerning value.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful; it is zero if the escape is not successful or not implemented.

Comments The default state of this escape is zero; automatic character-pair kerning is
disabled.

A driver does not have to support the ENABLEPAIRKERNING escape just
because it supplies the character-pair kerning table to the application via
the GETPAIRKERNTABLE escape. In the case where the
GETPAIRKERNTABLE escape is supported but the
ENABLEPAIRKERNING escape is not, the application must properly space
the kerned characters on the output device using the ExtTextOut function.

ENABLERELATIVEWIDTHS

Syntax short Escape(hDC, ENABLERELATIVEWIDTHS, sizeof(int),
IpNewWidthFlag, IpOldWidthFlag)

This escape enables or disables relative character widths. When relative
widths are disabled (the default), each character's width can be expressed
as a number of device units. This guarantees that the extent of a string will
equal the sum of the extents of the characters in the string. This allows
applications to build an extent table by using one-character GetTextExtent
function calls.

When relative widths are enabled, the sum of a string may not equal the
sum of the widths of the characters. Applications that enable this feature
are expected to retrieve the font's extent table and compute relatively
scaled string widths.

Parameters hDC HOC Identifies the device context.

IpNewWidthFlag LPINT Points to a short-integer value that specifies
whether relative widths are to be enabled (1) or
disabled (0).

Chapter 12, Printer escapes 161

ENABLERELATIVEWIDTHS

IpOldWidthFlag LPINT Points to a short-integer value that will receive
the previous relative character width value.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful; it is zero if the escape is not successful or not implemented.

Comments The default state of this escape is zero; relative character widths are
disabled.

The values specified as font units and accepted and returned by the
escapes described in this chapter are returned in the relative units of the
font when the ENABLERELATIVEWIDTHS escape is enabled.

It is assumed that only linear-scaling devices will be dealt with in a
relative mode. Nonlinear-scaling devices do not implement this escape.

ENDDOC

162

Syntax short Escape(hDC, ENDDOC, NULL, NULL, NULL)

This escape ends a print job started by a STARTDOC escape.

Parameters hDC HDC Identifies the device context.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Comments If an application encounters a printing error or a canceled print operation,
it must not attempt to terminate the operation by using the Escape
function with either the ENDDOC or ABORTDOC escape. GDI
automatically terminates the operation before returning the error value.

If the application displays a dialog box to allow the user to cancel the
print operation, it must send the ENDDOC escape before destroying the
dialog box.

The application must send the ENDDOC escape before freeing the
procedure-instance address of the abort function, if any.

Syntax short Escape(hDC, END_PATH, sizeof(PATH_INFO),lpInData, NULL)

This escape ends a path. A path is a connected sequence of primitives
drawn in succession to form a single polyline or polygon. Paths enable

Software development kit

applications to draw complex borders, filled shapes, and clipping areas by
supplying a collection of other primitives defining the desired shape.

Printer escapes supporting paths enable applications to render images on
sophisticated devices such as PostScript printers without generating huge
polygons to simulate them.

To draw a path, an application first issues the BEGIN_PATH escape. It
then draws the primitives defining the border of the desired shape and
issues an END_PATH escape.

The END_PATH escape takes as a parameter a pointer to a structure
specifying the manner in which the path is to be rendered. The structure
specifies whether or not the path is to be drawn and whether it is open or
closed. Open paths define polylines, and closed paths define fillable
polygons.

Parameters hDC

IplnData

HOC Identifies the device context.

PATH_INFO FAR * Points to a PATH_INFO data structure
that defines how the path is to be rendered. See the
following "Comments" section for more information on this
data structure.

Return value The return value specifies the current path nesting leveL If the escape is
successful, the return value is the number of BEGIN_PATH escape calls
without a corresponding END_PATH call. Otherwise, the return value is
-1.

Comments An application may begin a subpath within another path. If the subpath is
closed, it is treated exactly like a polygon. If it is open, it is treated exactly
like a polyline.

An application may use the CLIP _TO_PATH escape to define a clipping
area corresponding to the interior or exterior of the currently open path.

The IplnData parameter points to a PATH_INFO data structure that
specifies how to render the path. This data structure has the following
form:

typedef struct
short RenderModei
BYTE FillModei
BYTE BkModei
LOGPEN Peni
LOGBRUSH Brushi
DWORD BkColori

}PATH_INFOi

Chapter 12, Printer escapes 163

The PATH_INFO structure has the following fields:

Field Description

RenderMode Specifies how the path is to be rendered. It may be one of the
following values:

Value Meaning
NO_DISPLAY (0) The path is not drawn.
OPEN (1) The path is drawn as an open polygon.
CLOSED (2) The path is drawn as a closed polygon.

FiIIMode Specifies how the path is to be filled. It can be one of the following
values:

BkMode

Pen

Brush

BkColor

ENUMPAPERBINS

Value
ALTERNATE (1)

WINDING (2)

Meaning
The fill is done using the alternate fill
algorithm.
The fill is done using the winding fill
algorithm.

Specifies the background mode for filling the path. It can be one
of the following values:

Value Meaning
OPAQUE The background is filled with the

background color before the brush is drawn.
TRANSPARENT The background is not changed.

Specifies the pen with which the path is to be drawn. If
RenderMode is set to NO_DISPLAY, the pen is ignored.
Specifies the brush with which the path is to be filled. If
RenderMode is set to NO_DISPLAY or OPEN, the brush is
ignored.
Specifies the color with which the path is filled if BkMode is set to
OPAQUE.

Syntax short Escape(hDC, ENUMP APERBINS, sizeof(int), lpNumBins,
lpOutData)

This escape retrieves attribute information about a specified number of
paper bins. The GETSETPAPERBINS escape retrieves the number of bins
available on a printer. This escape is provided only for backward
compatibility. An application should call the ExtOeviceMode function
instead.

Parameters hDC HOC Identifies the device context.

IpNumBins LPINT Points to an integer that specifies the number of bins
for which information is to be retrieved.

164 Software development kit

ENUMPAPERBINS

IpOutData LPSTR Points to a data structure to which information about
the paper bins is copied. The size of the structure depends
on the number of bins for which information was requested.
See the following "Comments" section for a description of
this data structure.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful; it is zero if the escape is not successful or not implemented.

Comments The data structure to which the IpOutData parameter points consists of
two arrays. The first is an array of short integers containing the paper-bin
identifier numbers in the following format:

short BinList[cBinMax)

The number of integers in the array (cBinMax) is equal to the value
pointed to by the IpNumBins parameter.

The second array in the data structure to which IpOutData points is an
array of characters in the following format:

char PaperNames[cBinMax) [cchBinName)

The cBinMax value is equal to the value pointed to by the IpNumBins
parameter; the cchBinName value is the length of each string (currently 24).

ENUMPAPERMETRICS

Syntax short Escape(hDC, ENUMP APERMETRICS, sizeof(int), lpMode,
lpOutData)

This escape performs one of two functions according to the mode:

c It determines the number of paper types supported and returns this
value, which can then be used to allocate an array of RECT data
structures.

c It returns one or more RECT data structures that define the areas on the
page that can receive an image.

This escape is provided only for backward compatibility. An application
should call the ExtOeviceMode function instead.

Parameters hDC

IpMode

Chapter 12, Printer escapes

HOC Identifies the device context.

LPINT Points to an integer that specifies the mode for the
escape. It can be one of the following values:

165

ENUMPAPERMETRICS

• 0 The return value indicates how many RECT data
structures are required to contain the information about
the available paper types .

• 1 The array of RECT structures to which IpOutOata points
is filled with the information.

IpOutOata lPRECT Points to an array of RECT data structures that
return all the areas that can receive an image.

Return value The return value is positive if successful, zero if the escape is not
implemented, and negative if an error occurred.

EPSPRINTING

166

Syntax short Escape(hDC, EPSPRINTINC, sizeof(BOOL), lpBool, NULL)

This escape suppresses the output of the Windows PostScript header
control section, which is about 7K. If an application uses this escape, no
CDI calls are allowed.

Parameters hOC

IpBaal

HOC Identifies the device context.

BOOl FAR * Points to a Boolean value indicating that
downloading should be enabled (TRUE) or disabled
(FALSE).

Return value The return value is positive if successful, zero if the escape is not
implemented, and negative if an error occurred.

Syntax short Escape(hDC, EXT_DEVICE_CAPS, sizeof(int), lpIndex, lpCaps)

This escape retrieves information about device-specific capabilities. It
supplements the GetOeviceCaps function.

Parameters hOC

lplndex

HOC Identifies the device context.

lPINT Points to a short integer specifying the index of the
capability to be retrieved. It can be anyone of the following
values:

• R2_CAPS (1) The IpCaps parameter indicates which of the
16 binary raster operations the device driver supports. A
bit will be set for each supported raster operation. For
further information, see the description of the SetROP2

Software development kit

Chapter 72, Printer escapes

function in Chapter 4, "Functions directory," in Reference,
Volume 1.

e PATTERN_CAPS (2) The [peaps parameter returns the
maximum dimensions of a pattern brush bitmap. The
low-order word of the capability value contains the
maximum width of a pattern brush bitmap, and the high­
order word contains the maximum height.

r:I PATH_CAPS (3) The lpeaps parameter indicates whether
the device is capable of creating paths using alternate and
winding interiors, and whether the device can do exclusive
or inclusive clipping to path interiors. The path capabilities
are obtained using the logical OR operation on the
following values:
• PATH_ALTERNATE (1)
• PATH_WINDING (2)
• PATH_INCLUSIVE (4)
• PATH_EXCLUSIVE (8)

tI POLYGON_CAPS (4) The lpeaps parameter returns the
maximum number of polygon points supported by the
device. The capability value is an unsigned value
specifying the maximum number of points.

II P ATTERN_ COLOR_CAPS (5) The lpeaps parameter
indicates whether the device can convert monochrome
pattern bitmaps to color. The capability value is 1 if the
device can do pattern bitmap color conversions, and zero
if it cannot.

13 R2_TEXT_CAPS (6) The lpeaps parameter indicates
whether the device is capable of performing binary raster
operations on text. The low-order word of the capability
value specifies which raster operations are supported for
text. A bit is set for each supported raster operation, as in
the R2_CAPS escape. The high-order word specifies the
type of text to which the raster capabilities apply. It is
obtained by applying the logical OR operation to the
following values together:
• RASTER_TEXT (1)
• DEVICE_TEXT (2)
• VECTOR_TEXT (4)

EI POLYMODE_CAPS (7) Specifies which poly modes are
supported by the printer driver. The capability value is
obtained by using the bitwise OR operator to combine a bit
in the corresponding position for each supported poly

167

lpCaps

mode. For example, if the printer supports the
PM_POL YSCANLINE and PM_BEZIER poly modes, the
capability value would be:

(1 PM_POLYSCANLINE) (PM_BEZIER)

See the description of the SET_POL V_MODE escape for
information on the poly modes.

DWORD FAR * Points to a 32-bit integer to which the
capabilities will be copied.

Return value The return value is nonzero if the specified extended capability is
supported, and zero if it is not.

EXTIEXTOUT

168

Syntax short Escape(hOC, EXTTEXTOUT, sizeof(EXTTEXT_STRUCT),lpInOata,
NULL)

This escape provides an efficient way for the application to call the GOI
TextOut function when justification, letter spacing, and/or kerning are
involved.

This function is provided only for backward compatibility. New
applications should use the GDI ExtTextOut function instead.

Parameters hDC

lplnData

HDC Identifies the device context.

EXTTEXT_STRUCT FAR * Points to an EXTTEXT_STRUCT
data structure that specifies the initial position, characters,
and character widths of the string. See the following
"Comments" section for more information on the
EXTTEXT _STRUCT data structure.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful; it is zero if the escape is not successful or not implemented.

Comments The EXTEXT _STRUCT data structure has the following format:

typedef struct {
WORD Xi

WORD Yi
WORD FAR *lpTexti
WORD FAR *lpWidthsi

} EXTTEXT_STRUCTi

This structure has the following fields.

Software development kit

Field

x

v

IpText

IpWidths

FLUSHOUTPUT

EXTTEXTOUT

Description

Specifies the x-coordinate of the upper-left corner of the string's
starting point.
Specifies the y-coordinate of the upper-left corner of the string's
starting point.
Points to an array of cch character codes, where cch is the number of
bytes in the string (cch is also the number of words in the width
array).
Points to an array of cch character widths to use when printing the
string. The first character appears at (X,V), the second at (X +
IpWidths[O],V), the third at (X + IpWidths[O] + IpWidths[l],V), and
so on. These character widths are specified in the font units of the
currently selected font. (The character widths will always be equal
to device units unless the application has enabled relative character
widths.)
The units contained in the width array are specified as font units of
the device.

Syntax short Escape(hDC, FLUSHOUTPUT, NULL, NULL, NULL)

This escape clears all output from the device's buffer.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

GETCOLORTABLE

Syntax short Escape(hDC, GETCOLORTABLE, sizeof(int), IpIndex, IpColor)

This escape retrieves an RGB color-table entry and copies it to the location
specified by the IpCalar parameter.

Parameters hDC

lplndex

IpCalar

Chapter 12, Printer escapes

HOC Identifies the device context.

LPINT Points to a short-integer value that specifies the index
of a color-table entry. Color-table indexes start at zero for the
first table entry.

DWORO FAR * Points to the long-integer value that will
receive the RGB color value for the given entry.

169

GETCOLORTABLE

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

GETEXTENDEDTEXTMETRICS

170

Syntax short Escape(hDC, GETEXTENDEDTEXTMETRICS, sizeof(WORD),
lpInData, lpOutData)

This escape fills the buffer pointed to by the IpOutData parameter with the
extended text metrics for the selected font.

Parameters hDC HOC Identifies the device context.

IplnData WORD FAR * Points to an unsigned 16-bit integer that
specifies the number of bytes pointed to by the IpOutData
parameter.

IpOutData EXTTEXTMETRIC FAR * Points to an EXTTEXTMETRIC data
structure. See the following "Comments" section for a
description of this data structure.

Return value The return value specifies the number of bytes copied to the buffer
pointed to by the IpOutData parameter. This value will never exceed that
specified in the nSize field pointed to by the IplnData parameter. The
return value is zero if the escape fails or is not implemented.

Comments The IpOutData parameter points to an EXTTEXTMETRIC data structure
which has the following format:

typedef struc{
short etmSize;
short etmPointSize;
short etmOrientation;
short etmMasterHeight;
short etmMinScale;
short etmMaxScale;
short etmMasterUnits;
short etmCapHeight;
short etmXHeight;
short etmLowerCaseAscent;
short etmLowerCaseDescent;
short etmSlant;
short etmSuperScript;
short etrnSubScript;
short etrnSuperScriptSize;
short etmSubScriptSize;
short etrnUnderlineOffset;

Software development kit

GETEXTENDEDTEXTMETRICS

short etmUnderlineWidth;
short etmDoubleUpperUnderlineOffset;
short etmDoubleLowerUnderlineOffset;
short etmDoubleUpperUnderlineWidth;
short etmDoubleLowerUnderlineWidth;
short etmStrikeOutOffset;
short etmStrikeOutWidth;
WORD etmKernPairs;
WORD etmKernTracks;
jEXTTEXTMETRIC;

The EXTTEXTMETRIC data structure has the following fields:

Field

etmSize
etmPointSize

etmOrientation

etmMasterHeight

etmMinScale

etmMaxScale

Chapter 12, Printer escapes

Description

Specifies the size of the structure in bytes.
Specifies the nominal point size of this font
in twips (twentieths of a point, or 1/1440
inch). This is the intended size of the font;
the actual size may differ slightly depending
on the resolution of the device.
Specifies the orientation of the font. The
etmOrientation field may be any of the
following values:

Value Meaning
o Either orientation
1 Portrait
2 Landscape

These values refer to the ability of this font
to be placed on a page with the given
orientation. A portrait page has a height that
is greater than its width. A landscape page
has a width that is greater than its height.
Specifies the font size in device units for
which the values in this font's extent table
are exact.
Specifies the minimum valid size for this
font. The following equation illustrates how
the minimum point size is determined:

smallest point size
= etmMinScale * 72/dNertRes

The value 72 represents the number of points
per inch. The dfV ertRes value is the number
of dots per inch.
Specifies the maximum valid size for this
font. The following equation illustrates how
the maximum point size is determined:

largest point size
= etmMaxScale * 72/ dN ertRes

171

GETEXTENDEDTEXTMETRICS

etmMasterUnits

etmCapHeight

etmXHeight

etmLowerCaseAscent

etmLowerCaseDescent

etmSlant

etmSuperScript

etmSubScript

etmSuperScriptSize

etmSubScriptSize

etmUnderlineOffset

etmUnderlineWidth

etmDoubleUpperUnderlineOffset

etmDoubleLowerUnderlineOffset

etmDoubleUpperUnderlineWidth

172

The value 72 represents the number of points
per inch. The dfVertRes value is the number
of dots per inch.
Specifies the integer number of units per em
where an em equals etmMasterHeight. That
is, etmMasterUnits is emtMasterHeight
expressed in font units rather than device
units.
Specifies the height in font units of
uppercase characters in the font. Typically,
this is the height of the capital H.
Specifies the height in font units of lowercase
characters in the font. Typically, this is the
height of the lowercase x.
Specifies the distance in font units that the
ascender of lowercase letters extends above
the baseline. Typically, this is the height of
the lowercase d.
Specifies the distance in font units that the
descender of lowercase letters extends below
the baseline. Typically, this is specified for
the descender of the lowercase p.
Specifies for an italicized or slanted font the
angle of the slant measured in tenths of a
degree clockwise from the upright version of
the font.
Specifies in font units the recommended
amount to offset superscript characters from
the baseline. This is typically a negative
value.
Specifies in font units the recommended
amount to offset subscript characters from
the baseline. This is typically a positive
value.
Specifies in font units the recommended size
of superscript characters for this font.
Specifies in font units the recommended size
of subscript characters for this font.
Specifies in font units the offset downward
from the baseline where the top of a single
underline bar should appear.
Specifies in font units the thickness of the
underline bar.
Specifies the offset in font units downward
from the baseline where the top of the upper
double underline bar should appear.
Specifies the offset in font units downward
from the baseline where the top of the lower
double underline bar should appear.
Specifies in font units the thickness of the
upper underline bar.

Software development kit

GETEXTEN DEDTEXTMETRICS

etmDoubleLowerUnderlineWidth Specifies in font units the thickness of the
lower underline bar.

etmStrikeOutOffset Specifies in font units the offset upward
from the baseline where the top of a strike­
out bar should appear.

etmStrikeOutWidth Specifies the thickness in font units of the
strike-out bar.

etmKernPairs Specifies the number of character kerning
pairs defined for this font. An application
can use this value to calculate the size of the
pair-kern table returned by the
GETPAIRKERNTABLE escape. It will not be
greater than 512 kern pairs.

etm KernTracks Specifies the number of kerning tracks
defined for this font. An application can use
this value to calculate the size of the track­
kern table returned by the
GETTRACKKERNTABLE escape. It will not
be greater than 16 kern tracks.

The values returned in many of the fields of the EXTTEXTMETRIC
structure are affected by whether relative character widths are enabled or
disabled. For more information, see the description of
ENABLERELATIVEWIOTHS escape earlier in this chapter.

GETEXTENTI ABLE

Syntax short Escape(hDC, GETEXTENTT ABLE,
sizeof(CHAR_RANGE_STRUCT), lpInData, lpOutData)

This escape retrieves the width (extent) of individual characters from a
group of consecutive characters in the selected font's character set.

Parameters hDC HOC Identifies the device context.

IplnData LPSTR Points to a CHAR_RANGE_STRUCT data structure
that defines the range of characters for which the width is to
be retrieved. See the following "Comments" section for
more information on the CHAR_RANGE_STRUCT data
structure.

IpOutData LPINT Points to an array of short integers that receives the
character widths. The size of the array must be at least
(chLast - chFirst + 1).

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful, and zero if the escape is not successful. If the escape is not
implemented, the return value is zero.

Chapter 12, Printer escapes 173

GETEXTENTTABLE

Comments The IplnData parameter points to a CHAR_RANGE_STRUCT data
structure that defines the range of characters for which the width is to be
retrieved. The CHAR_RANGE_STRUCT structure has the following
format:

typedef struct {
BYTE chFirst;
BYTE chLast;

CHAR RANGE STRUCT

This structure has the following fields:

Field

chFirst

chLast

Description

Specifies the character code of the first character whose width is to be
retrieved.
Specifies the character code of the last character whose width is to be
retrieved.

The values retrieved are affected by whether relative character widths are
enabled or disabled. For more information, see the
ENABLERELATIVEWIOTHS escape, earlier in this chapter.

GETFACENAME

Syntax short Escape(hDC, GETFACENAME, NULL, NULL,lpFaceName)

This escape retrieves the face name of the current physical font.

Parameters hDC HOC Identifies the device context.

IpFaceName LPSTR Points to a buffer of characters to receive the face
name. This buffer must be at least 60 bytes in length.

Return value The return value is positive if the escape was successful, zero if the escape
is not implemented, or negative if an error occurred.

GETPAI RKERNT ABLE

174

Syntax short Escape(hDC, GETP AIRKERNTABLE, NULL, NULL, IpOutData)

This escape fills the buffer pointed to by the IpOutData parameter with the
character-pair kerning table for the selected font.

Parameters hDC HOC Identifies the device context.

Software development kit

GETPAIRKERNTABLE

IpOutData KERNPAIR FAR * Points to an array of KERNPAIR data
structures. This array must be large enough to accommodate
the font's entire character-pair kerning table. The number of
character-kerning pairs in the font can be obtained from the
EXTTEXTMETRIC data structure returned by the
GETEXTENDEDTEXTMETRICS escape. See the following
"Comments" section for the format of the KERNPAIR data
structure.

Return value The return value specifies the number of KERNPAIR structures copied to
the buffer. This value is zero if the font does not have kerning pairs
defined, the escape fails, or is not implemented.

Comments The KERNPAIR data structure has the following format:

typedef struc {
union {

BYTE each [2]; /* UNION: 'each' and 'both'
share the same memory */

WORD both;
} kpPair;

short kpKernAmount;
} KERNPAIR;

The KERNPAIR structure contains the following fields:

Field Description

kpPair.each[O] Specifies the character code for the first character in the
kerning pair.

kpPair.each[1] Specifies the character code for the second character in the
kerning pair.

kpPair.both Specifies a WORD in which the first character in the kerning
pair is in the low-order byte and the second character is in the
high-order byte.

kpKernAmount Specifies the signed amount that this pair will be kerned if they
appear side by side in the same font and size. This value is
typically negative since pair-kerning usually results in two
characters being set more tightly than normal.

The array of KERNPAIR structures is sorted in increasing order by the
kpPair.both field.

The values returned in the KERNPAIR structures are affected by whether
relative character widths are enabled or disabled. For more information,
see the description of the ENABLERELATIVEWIDTHS escape earlier in this
chapter.

Chapter 12, Printer escapes 175

GETPHYSPAGESIZE

GETPHYSPAGESIZE

Syntax short Escape(hDC, GETPHYSP AGESIZE, NULL, NULL, IpDimensions)

This escape retrieves the physical page size and copies it to the location
pointed to by the IpDimensions parameter.

Parameters hDC HOC Identifies the device context.

IpDimensions LPPOINT Points to a POINT data structure that will receive
the physical page dimensions. The x field of the POINT
data structure receives the horizontal size in device units,
and the y field receives the vertical size in device units.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

GETPRINTINGOFFSET

Syntax short Escape(hDC, GETPRINTINGOFFSET, NULL, NULL, IpOffset)

This escape retrieves the offset from the upper-left corner of the physical
page where the actual printing or drawing begins. This escape is generally
not useful for devices that allow the user to set the origin of the printable
area directly.

Parameters hDC HOC Identifies the device context.

IpOffset LPPOINT Points to a POINT structure that will receive the
printing offset. The x field of the POINT structure receives
the horizontal coordinate of the printing offset in device
units, and the y field receives the vertical coordinate of the
printing offset in device units.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

GETSCALlNGFACTOR

176

Syntax short Escape(hDC, GETSCALINGFACTOR, NULL, NULL, IpFactors)

This escape retrieves the scaling factors for the x- and y-axes of a printing
device. For each scaling factor, the escape copies an exponent of 2 to the
location pointed to by the IpFactors parameter. For example, the value 3 is
copied to IpFactors if the scaling factor is 8.

Software development kit

GETSCALlNGFACTOR

Scaling factors are used by printing devices that support graphics at a
smaller resolution than text.

Parameters hDC HOC Identifies the device context.

IpFactors LPPOINT Points to the POINT data structure that will receive
the scaling factor. The x field of the POINT structure receives
the scaling factor for the x-axis, and the y field receives the
scaling factor for the y-axis.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

GETSETPAPERBINS

Syntax short Escape(hDC, GETSETP APERBINS, nCount, lpInData, lpOutData)

This escape retrieves the number of paper bins available on a printer and
sets the current paper bin. See the following "Comments" section for more
information on the actions performed by this escape.

Parameters hDC HOC Identifies the device context.

nCount int Specifies the number of bytes pointed to by the IplnData
parameter.

IplnData Binlnfo FAR * Points to a Binlnfo data structure that specifies
the new paper bin. It may be set to NULL.

IpOutData Binlnfo FAR * Points to a Binlnfo data structure that contains
information about the current or previous paper bin and the
number of bins available.

Comments There are three possible actions for this escape, depending on the values
passed in the IplnData and IpOutData parameters:

IplnData IpOutData Action

NULL Binlnfo Retrieves the number of bins and the number of the
current bin.

Binlnfo Binlnfo Sets the current bin to the number specified in the
Bin Number field of the data structure to which IplnData
points and retrieves the number of the previous bin.

Binlnfo NULL Sets the current bin to the number specified in the
BinNumber field of the data structure to which IplnData
points.

The Binlnfo data structure has the following format:

Chapter 72, Printer escapes 177

GETSETPAPERBINS

typedef struct{
DWORD BinNumber;
DWORD NbrofBins;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;

} Binlnfo;

The Binlnfo structure has the following fields:

Field Description

BinNumber Identifies the current or previous paper bin.
NbrofBins Specifies the number of paper bins available.

When setting a new bin, the setting does not take effect until a new device
context is created (without initialization data). The setting will take
immediate effect if the high bit of the bin number is set, so that the next
page printed will come from the new bin. For example, OxSOOl uses the
second bin immediately whenever OxOOOl sets the same bin as the default
for later print jobs.

In general, only the immediate-selection form should be used by
applications. Setting the bin for future print jobs is supported for
backward compatibility to an earlier form of this escape which appeared
in some versions of HP's Page Control Language (PCL) and PostScript.

GETSETPAPERMETRICS

178

Syntax short Escape(hDC, GETSETPAPERMETRICS, sizeof(RECT), lpNewPaper,
lpPrevPaper)

This escape sets the paper type according to the given paper metrics
information. It also retrieves the current printer's paper metrics
information. This escape is provided only for backward compatibility. An
application should call the ExtOeviceMode function instead.

This escape expects a RECl data structure representing the imageable
area of the physical page and assumes the origin is in the upper-left
corner.

Parameters hDC HOC Identifies the device context.

IpNewPaper LPRECl Points to a RECl data structure that defines the
new imageable area.

Software development kit

GETSETPAPERMETRICS

IpPrevPaper LPRECT Points to a RECT data structure that receives the
previous imageable area.

Return value The return value is positive if successful, zero if the escape is not
implemented, and negative if an error occurs.

Comments This escape is provided only for backward compatibility. New
applications should use the GDI OeviceCapabilities and ExtOeviceMode
functions instead.

GETSETPAPERORIENT

Syntax short Escape(hDC, GETSETP APERORIENT, nCount, IpInData, NULL)

This escape returns or sets the current paper orientation. This escape is
provided only for backward compatibility. An application should call the
ExtOeviceMode function instead.

Parameters hDC HOC Identifies the device context.

nCount Specifies the number of bytes pointed to by the IplnData
parameter.

IplnData ORIENT FAR * Points to an ORIENT data structure that
specifies the new paper orientation. See the following
"Comments" section for a description of this data structure.
It may be set to NULL, in which case the
GETSETPAPERORIENT escape returns the current paper
orientation.

Return value The return value specifies the current orientation if IplnData is NULL;
otherwise, it is the previous orientation. The return value is -1 if the
escape failed.

Comments This escape is provided only for backward compatibility. New
applications should use the GDI OeviceCapabilities and ExtOeviceMode
functions instead.

The ORIENT data structure has the following format:

typedef struct {
DWORD Orientation;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;

) ORIENT;

Chapter 72, Printer escapes 179

GETSETPAPERORIENT

The Orientation field can be either of these values:

Value Meaning

1 The new orientation is portrait.
2 The new orientation is landscape.

This escape is also known as GETSETPAPERORIENTATION.

GETSETSCREENPARAMS

180

Syntax short Escape(hDC, GETSETSCREENP ARAMS, sizeof(SCREENP ARAMS),
IpInData, IpOutData)

This escape retrieves or sets the current screen information for rendering
halftones.

Parameters hDC HOC Identifies the device context.

IplnData SCREENPARAMS FAR * Points to a SCREENPARAMS data
structure that contains the new screen information. This
parameter may be NULL.

IpOutData SCREENPARAMS FAR * Points to a SCREENPARAMS data
structure that retrieves the previous screen information. This
parameter may be NULL.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Comments This escape affects how device-independent bitmaps (DIBs) are rendered
and how color objects are filled.

The SCREENPARAMS data structure has the following format:

typedef struct {
int angle;
int frequency;
DWORD types;

} SCREENPARAMS;

The SCREENPARAMS structure has the following fields:

Field

angle
frequency
types

Description

Specifies in degrees the angle of the halftone screen.
Specifies in dots per inch of the screen frequency.
Is a mask containing bits which indicate the type of screen cell. If a
pointer to this structure is passed as the lplnData parameter, only
one bit may be set. If the lpOutData parameter contains a pointer to

Software development kit

GETIECHNOLOGY

GETSETSCREEN PARAMS

this structure, when the escape returns, the types field will have a
bit set for each type supported by the printer driver. Acceptable bit
values are:

a DIAMOND
ElDOT
El ELLIPSE
IJ LINE

Syntax short Escape(hDC, GETTECHNOLOGY, NULL, NULL, IpTechnology)

This escape retrieves the general technology type for a printer, thereby
allowing an application to perform technology-specific actions.

Parameters hDC HOC Identifies the device context.

IpTechnology LPSTR Points to a buffer to which the driver copies a null­
terminated string containing the printer technology type,
such as "PostScript."

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful, and is zero if the escape is not successful or is not
implemented.

GETIRACKKERNTABLE

Syntax short Escape(hDC, GETTRACKKERNTABLE, NULL, NULL,lpOutData)

This escape fills the buffer pointed to by the IpOutData parameter with the
track-kerning table for the currently selected font.

Parameters hDC

IpOutdata

HOC Identifies the device context.

KERNTRACK FAR * Points to an array of KERNTRACK
structures. This array must be large enough to accommodate
all the font's kerning tracks. The number of tracks in the font
can be obtained from the EXTTEXTMETRIC structure
returned by the GETEXTENOEOTEXTMETRICS escape. See
the following "Comments" section for the format of the
KERNTRACK data structure.

Return value The return value specifies the number of KERNTRACK structures copied
to the buffer. This value is zero if the font does not have kerning tracks
defined, or if the escape fails or is not implemented.

Chapter 72, Printer escapes 181

GETTRACKKERNTABLE

Comments The KERNTRACK data structure has the following format:

typedef struct {
short ktDegreei
short ktMinSizei
short ktMinAmounti
short ktMaxSizei
short ktMaxAmounti
} KERNTRACKi

The KERNTRACK structure contains the following fields:

Field Description

ktDegree Specifies the amount of track kerning. Increasingly negative
values represent tighter track kerning, and increasingly positive
values represent looser track kerning.

ktMinSize Specifies in device units the minimum font size for which linear
track kerning applies.

ktMinAmount Specifies in font units the amount of track kerning to apply to
font sizes less than or equal to the size specified by the ktMinSize
field.

ktMaxSize Specifies in device units the maximum font size for which linear
track kerning applies.

ktMaxAmount Specifies in font units the amount of track kerning to apply to
font sizes greater than or equal to the size specified by the
ktMaxSize field.

Between the ktMinSize and ktMaxSize font sizes, track kerning is a linear
function from ktMinAmount to ktMaxAmount. The values returned in the
KERNTRACK structures are affected by whether relative character widths
are enabled or disabled. For more information, see the description of the
ENABLERELATIVEWIOTHS escape earlier in this chapter.

GETVECTORBRUSHSIZE

182

Syntax short Escape(hDC, CETVECTORBRUSHSIZE, sizeof(LOCBRUSH),
IpInData, IpOutData)

This escape retrieves in device units the size of a plotter pen used to fill
closed figures. CDI uses this information to prevent the plotter pen from
writing over the borders of the figure when filling closed figures.

Parameters hDC

IplnData

HOC Identifies the device context.

LOGBRUSH FAR * Points to a LOGBRUSH data structure
that specifies the brush for which data are to be returned.

Software development kit

GETVECTORBRUSHSIZE

IpOutData LPPOINT Points to a POINT data structure that contains in its
second word the width of the pen in device units.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful; it is zero if the escape is not successful or is not implemented.

GETVECTORPENSIZE

Syntax short Escape(hDC, CETVECTORPENSIZE, sizeof(LOGPEN),lpInData,
IpOutData)

This escape retrieves the size in device units of a plotter pen. CDI uses this
information to prevent hatched brush patterns from overwriting the
border of a closed figure.

Parameters hDC HOC Identifies the device context.

IplnData LOG PEN FAR * Points to a LOGPEN data structure that
specifies the pen for which the width is to be retrieved.

IpOutData LPPOINT Points to a POINT data structure that contains in its
second word the width of the pen in device units.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful; it is zero if the escape is not successful or if it is not
implemented.

MFCOMMENT

Syntax BOOL Escape(hDC, MFCOMMENT, nCount, IpComment, NULL)

This escape adds a comment to a metafile.

Parameters hDC HOC Identifies the device context for the device on which
the metafile appears.

nCount short Specifies the number of characters in the string
pointed to by the IpComment parameter.

IpComment LPSTR Points to a string that contains the comment that will
appear in the metafile.

Return value The return value specifies the outcome of the escape. It is -1 if an error
such as insufficient memory or an invalid port specification occurs.
Otherwise, it is positive.

Chapter 72, Printer escapes 183

NEWFRAME

NEWFRAME

Syntax short Escape(hDC, NEW FRAME, NULL, NULL, NULL)

This escape informs the device that the application has finished writing to
a page. This escape is typically used with a printer to direct the device
driver to advance to a new page.

Parameters hDC HOC Identifies the device context.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is one of the following values:

Value

SP _APPABORT

SP_ERROR
SP _ OUTOFDISK

SP _ OUTOFMEMORY
SP _USERABORT

Meaning

Job was terminated because the application's abort
function returned zero.
General error.
Not enough disk space is currently available for spooling,
and no more space will become available.
Not enough memory is available for spooling.
User terminated the job through the Print Manager.

Comments Do not use the NEXTBANO escape with NEWFRAME. For banding drivers,
GDI replays a metafile to the printer, simulating a sequence of NEXTBANO
escapes.

The NEWFRAME escape restores the default values of the device context.
Consequently, if a font other than the default font is selected when the
application calls the NEWFRAME escape, the application must select the
font again following the NEWFRAME escape.

NEXTBAND

184

Syntax short Escape(hDC, NEXTBAND, NULL, NULL, lpBandRect)

This escape informs the device driver that the application has finished
writing to a band, causing the device driver to send the band to the Print
Manager and return the coordinates of the next band. Applications that
process banding themselves use this escape.

Parameters hDC HOC Identifies the device context.

IpBandRect LPRECT Points to the RECT data structure that will receive
the next band coordinates. The device driver copies the
device coordinates of the next band into this structure.

Software development kit

NEXTBAND

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is one of the following values:

Value

SP _APP ABORT

SP_ERROR

Meaning

Job was terminated because the application's abort
function returned zero.
General error.

SP _OUTOFDISK Not enough disk space is currently available for spooling,
and no more space will become available.

SP _ OUTOFMEMORY
SP _ USERABORT

Not enough memory is available for spooling.
User terminated the job through the Print Manager.

Comments The NEXTBANO escape sets the band rectangle to the empty rectangle
when printing reaches the end of a page.

Do not use the NEWFRAME escape with NEXTBANO.

PASSTHROUGH

Syntax short Escape(hDC, P ASSTHROUGH, nCount, IpInData, NULL)

This escape allows the application to send data directly to the printer,
bypassing the standard print-driver code.

t::> To use this escape, an application must have thorough knowledge of how
the particular printer operates.

Parameters hDC HOC Identifies the device context.

nCount

IplnData

short Specifies the number of bytes to which the IplnData
parameter points.

LPSTR Points to a structure whose first word (16 bits)
contains the number of bytes of input data. The remaining
bytes of the structure contain the data itself.

Return value The return value specifies the number of bytes transferred to the printer if
the escape is successful. It is less than zero if the escape is not
implemented, and less than or equal to zero if the escape is not successful.

Comments There may be restrictions on the kinds of device data an application can
send to the device without interfering with the operation of the driver. In
general, applications must avoid resetting the printer or causing the page
to be printed.

It is strongly recommended that applications not perform functions that
consume printer memory, such as downloading a font or a macro.

Chapter 12, Printer escapes 185

QUERYESCSUPPORT

An application can avoid corrupting its data stream when issuing
multiple, consecutive PASSTHROUGH escapes if it does not access the
printer any other way during the sequence.

QUERYESCSUPPORT

Syntax short Escape(hDC, QUERYESCSUPPORT, sizeof(int),lpEscNum, NULL)

This escape determines whether a particular escape is implemented by the
device driver.

Parameters hDC

IpEscNum

H DC Identifies the device context.

LPINT Points to a short-integer value that specifies the
escape function to be checked.

Return value The return value specifies whether a particular escape is implemented. It
is nonzero for implemented escape functions. Otherwise, it is zero.

RESTORE_CTM

If the IpEscNum parameter is set to DRA WP ATTERNRECT, the return
value is one of the following:

Value Meaning

a DRA WP ATTERNRECT is not implemented.
1 DRA WP ATTERNRECT is implemented for a printer other than the

HP LaserJet lIP; this printer supports white rules.
2 DRAWPATTERNRECT is implemented for the HP LaserJet lIP.

Syntax short Escape(hDC, RESTORE_ CTM, NULL, NULL, NULL)

This escape restores the previously saved current transformation matrix.

The current transformation matrix controls the manner in which
coordinates are translated, rotated, and scaled by the device. By using
matrices, an application can combine these operations in any order to
produce the desired mapping for a particular picture.

Parameters hDC HDC Identifies the device context.

Return value The return value specifies the number of SAVE_CTM escape calls without
a corresponding RESTORE_CTM call. If the escape is unsuccessful, the
return value is-l.

186 Software development kit

RESlORE_ elM

Comments Applications should not make any assumptions about the initial contents
of the current transformation matrix.

SAVE_CTM

This escape uses a matrix specification based on the Microsoft OS/2
Presentation Manager graphics programming interface (GPI) model,
which is an integer-coordinate system similar to the system which GDI
uses.

Syntax short Escape(hDC, SA VE_ CTM, NULL, NULL, NULL)

This escape saves the current transformation matrix.
The current transformation matrix controls the manner in which
coordinates are translated, rotated, and scaled by the device. By using
matrices, an application can combine these operations in any order to
produce the desired mapping for a particular picture.

An application can restore the matrix by using the RESTORE_eTM
escape.

An application typically saves the current transformation matrix before
changing it. This allows the application to restore the previous state upon
completion of a particular operation.

Parameters hDC Hoe Identifies the device context.

Return value The return value specifies the number of SAVE_eTM escape calls without
a corresponding RESTORE_eTM call. The return value is zero if the
esca pe was unsuccessful.

Comments Applications should not make any assumptions about the initial contents
of the current transformation matrix.

Applications are expected to restore the contents of the current
transformation matrix.

This escape uses a matrix specification based on the OS/2 Presentation
Manager graphics programming interface (GPI) model, which is an
integer-coordinate system similar to the system that GDI uses.

Chapter 12, Printer escapes 187

SETABORTPROC

SELECTPAPERSOURCE

This escape has been superseded by the GETSETPAPERBINS escape and
is provided only for backward compatibility. New applications should
use the GETSETPAPERBINS escape instead.

SET ABORTPROC

188

Syntax short Escape(hDC, SET ABORTPROC, NULL, lpAbortFunc, NULL)

This escape sets the abort function for the print job.
If an application is to allow the print job to be canceled during spooling, it
must set the abort function before the print job is started with the
STARTDOC escape. Print Manager calls the abort function during
spooling to allow the application to cancel the print job or to process out­
of-disk-space conditions. If no abort function is set, the print job will fail if
there is not enough disk space for spooling.

Parameters hDC HOC Identifies the device context.

IpAbortFunc FARPROC Points to the application-supplied abort function.
See the following "Comments" section for details.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Comments The address passed as the IpAbortFunc parameter must be created by
using the MakeProclnstance function.

The callback function must use the Pascal calling convention and must be
declared FAR. The abort function must have the following form:

Callback short FAR PASCAL AbortFunc(hPr, code)
Function HDC hPr;

short code;

AbortFunc is a placeholder for the application-supplied function name.
The actual name must be exported by including it in an EXPORTS
statement in the application's module-definition file.

Parameters hPr Identifies the device context.

code Specifies whether an error has occurred. It is zero if no error
has occurred. It is SP _ OUTOFDISK if Print Manager is
currently out of disk space and more disk space will become
available if the application waits.

Software development kit

SETABORTPROC

If code is SP _ OUTOFDISK, the application does not have to abort the print
job. If it does not, it must yield to Print Manager by calling the
PeekMessage or GetMessage function.

Return value The return value should be nonzero if the print job is to continue, and
zero if it is canceled.

SETALLJUSTVALUES

Syntax short Escape(hDC, SET ALLJUSTV ALUES,
sizeof(JUST_ V ALUE_STRUCT), IpInData, NULL)

This escape sets all of the text-justification values that are used for text
output.

Text justification is the process of inserting extra pixels among break
characters in a line of text. The blank character is normally used as a break
character.

Parameters hDC HOC Identifies the device context.

IplnData JUST _ VALUE_STRUCT FAR * Points to a
JUST _ VALUE_STRUCT data structure that defines the text­
justification values. See the following "Comments" section
for more information on the JUST_VALUE_STRUCT data
structure.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful. Otherwise, it is zero.

Comments The IplnData parameter points to a JUST_VALUE_STRUCT data structure
that describes the text-justification values used for text output. The
JUST_VALUE_STRUCT structure has the following format:

typedef struct {
short nCharExtra;
WORD nCharCount;
short nBreakExtra;
WORD nBreakCount;

JUST_VALUE_STRUCT;

This structure has the following fields:

Field

nCharExtra

Chapter 72, Printer escapes

Description

Specifies the total extra space (in font units) that must be
distributed over nCharCount characters.

189

SETALLJUSTV ALUES

nCharCount

nBreakExtra

nBreakCount

Specifies the number of characters over which nCharExtra is
distributed.
Specifies the total extra space (in font units) that is distributed
over nBreakCount characters.
Specifies the number of break characters over which
nBreakExtra is distributed.

The units used for nCharExtra and nBreakExtra are the font units of the
device and are dependent on whether relative character widths were
enabled with the ENABLERELATIVEWIDTHS escape.

The values set with this escape apply to subsequent calls to the TextOut
function. The driver stops distributing the extra space specified in the
nCharExtra field when it has output the number of characters specified in
the nCharCount field. Likewise, it stops distributing the space specified by
the nBreakExtra field when it has output the number of characters
specified by the nBreakCount field. A call on the same string to the
GetTextExtent function made immediately after the call to the TextOut
function will be processed in the same manner.

To re-enable justification with the SetTextJustification and
SetTextCharacterExtra functions, an application should call the
SETALLJUSTVALUES escape and set the nCharExtra and nBreakExtra
fields to zero.

Syntax short Escape(hDC, SET_ARC_DIRECTION, sizeof(int), lpDirection,
NULL)

This escape specifies the direction in which elliptical arcs are drawn using
the GDI Arc function.

By convention, elliptical arcs are drawn counterclockwise by GD!. This
escape lets an application draw paths containing arcs drawn clockwise.

Parameters hDC HOC Identifies the device context.

IpDirection LPINT Points to a short integer specifying the arc direction. It
can be either of the following values:

• COUNTERCLOCKWISE (0)
• CLOCKWISE (1)

Return value The return value is the previous arc direction.

Comments This escape maps to PostScript language elements and is intended for
PostScript line devices.

190 Software development kit

SET_BACKGROUND_COLOR

SET_BACKGROUND_COLOR

Syntax short Escape(hDC, SET_BACKGROUND_COLOR, nCount,lpNewColor,
IpOldColor)

This escape sets and retrieves the current background color for the device.

The background color is the color of the display surface before an
application draws anything on the device. This escape is particularly
useful for color printers and film recorders.

This escape should be sent before the application draws anything on the
current page.

Parameters hDC HOC Identifies the device context.

nCount int Specifies the number of bytes pointed to by the
IpNewColor parameter.

IpNewColor OWORD FAR * Points to a 32-bit integer specifying the
desired background color. This parameter can be NULL if
the application is merely retrieving the current background
color.

IpOldColor OWORO FAR * Points to a 32-bit integer which receives the
previous background color. This parameter can be NULL if
the application does not use the previous background color.

Return value The return value is TRUE if the escape was successful and FALSE if it was
unsuccessful.

Comments The default background color is white.

The background color is reset to the default when the device driver
receives an ENOOOC or ABORTOOC escape.

Syntax short Escape(hDC, SET_BOUNDS, sizeof(RECT), IpInData, NULL)

This escape sets the bounding rectangle for the picture being produced by
the device driver supporting the given device context. It is used when
creating images in a file format such as Encapsulated PostScript (EPS) and
Hewlett-Packard Graphics Language (HPGL) for which there is a device
driver.

Parameters hDC HOC Identifies the device context.

Chapter 72, Printer escapes 191

192

IplnData LPRECT Points to a RECT data structure that specifies in
device coordinates a rectangle that bounds the image to be
output.

Return value The return value is TRUE if the escape was successful; otherwise, the
return value is FALSE.

Comments An application should issue this escape before each page in the image. For
single-page images, this escape should be issued immediately before the
STARTDOC escape.

When an application uses coordinate-transformation escapes, device
drivers may not perform bounding box calculations correctly. When an
application uses the SET_BOUNDS escape, the driver does not have to
calculate the bounding box.

Applications should always use this escape to ensure support for the
Encapsulated PostScript (EPS) printing capabilities that will be built into
future PostScript drivers.

Syntax short Escape(hDC, SET_CLIP_BOX, sizeof(RECT), lpInData,
(LPSTR)NULL)

This escape sets the clipping rectangle or restores the previous clipping
rectangle. This escape is implemented by printer drivers that implement
the coordinate-transformation escapes TRANSFORM_CTM, SAVE_CTM,
and RESTORE_CTM.

When an application calls a GDI output function, GDI calculates a
clipping rectangle bounding the primitive and passes both the primitive
and the clipping rectangle to the printer driver. The printer driver is
expected to clip the primitive to the specified bounding rectangle.
However, when an application uses the coordinate-transformation
escapes, the clipping rectangle calculated by GDI is usually invalid. An
application can use the SET _CLIP _BOX escape to specify the correct
clipping rectangle when coordinate transformations are used.

Parameters hDC

IpClipBox

H DC Identifies the device context.

LPRECT Points to a RECT data structure containing the
bounding rectangle of the clipping area. If IpClipBox is not
NULL, the previous clipping rectangle is saved and the
current clipping rectangle is set to the specified bounds. If

Software development kit

IpClipBox is NULL, the previous clipping rectangle is
restored.

Return value The return value is TRUE if the clipping rectangle was properly set.
Otherwise, it is FALSE.

SETCOLORTABLE

Syntax short Escape(hDC, SETCOLORT ABLE, sizeof(COLORT ABLE_STRUCT),
IpInData, IpColor)

This escape sets an ReB color-table entry. If the device cannot supply the
exact color, the function sets the entry to the closest possible
approximation of the color.

Parameters hDC HOC Identifies the device context.

IplnData COLORTABLE_STRUCT FAR * Points to a
COLORTABLE_STRUCT data structure that contains the
index and ReB value of the color-table entry. See the
following "Comments" section for more information on the
COLORTABLE_STRUCT data structure.

IpColor OWORO FAR * Points to the long-integer value that is to
receive the ReB color value selected by the device driver to
represent the requested color value.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Comments The COLORTABLE_STRUCT data structure has the following format:

typedef struct {
WORD Index;
DWORD rgb;

} COLORTABLE_STRUCT;

This structure has the following fields:

Field Description

Index Specifies the color-table index. Color-table entries start at zero for the
first entry.

rgb Specifies the desired RGB color value.

A device's color table is a shared resource; changing the system display
color for one window changes it for all windows. Only applications

Chapter 12, Printer escapes 193

SETCOLORTABLE

developers who have a thorough knowledge of the display driver should
use this escape.

The SETCOLORTABLE escape has no effect on devices with fixed color
tables.

This escape is intended for use by both printer and display drivers.
However, the EGA and VGA color drivers do not support it.

This escape changes the palette used by the display driver. However, since
the driver's color-mapping algorithms will probably no longer work with
a different palette, an extension has been added to this function.

If the color index pointed to by the IplnData parameter is OXFFFF, the
driver is to leave all color-mapping functionality to the calling application.
The application must use the proper color-mapping algorithm and take
responsibility for passing the correctly mapped physical color to the
driver (instead of the logical RGB color) in such device-driver functions as
RealizeObject and Colorlnfo.

For example, if the device supports 256 colors with palette indexes of 0
through 255, the application would determine which index contains the
color that it wants to use in a certain brush. It would then pass this index
in the low-order byte of the OWORO logical color passed to the
RealizeObject device-driver function. The driver would then use this
color exactly as passed instead of performing its usual color-mapping
algorithm. If the application wants to reactivate the driver's color­
mapping algorithm (that is, if it restores the original palette when
switching from its window context), then the color index pointed to by
IplnData should be OxFFFE.

SETCOPYCOUNT

Syntax short Escape(hDC, SETCOPYCOUNT, sizeof(int), lpNumCopies,
lpActualCopies)

This escape specifies the number of uncollated copies of each page that
the printer is to print.

Parameters hDC HOC Identifies the device context.

IpNumCopies LPINT Points to a short-integer value that contains the
number of uncollated copies to be printed.

IpActualCopies LPINT Points to a short-integer value that will receive the
number of copies to be printed. This may be less than the

194 Software development kit

SETCOPYCOUNT

number requested if the requested number is greater than
the device's maximum copy count.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful; it is zero if the escape is not successful. If the escape is not
implemented, the return value is zero.

SETKERNTRACK

Syntax short Escape(hDC, SETKERNTRACK, sizeof(int), lpNewTrack,
lpOldTrack)

This escape specifies which kerning track to use for drivers that support
automatic track kerning. A kerning track of zero disables automatic track
kerning.

When track kerning is enabled, the driver will automatically kern all
characters according to the specified track. The driver will reflect this
kerning both on the printer and in GetTextExtent function calls.

Parameters hDC HOC Identifies the device context.

IpNewTrack LPINT Points to a short-integer value that specifies the
kerning track to use. A value of zero disables this feature.
Values in the range 1 to nKernTracks correspond to positions
in the track-kerning table (using 1 as the first item in the
table). For more information, see the description of the
EXTTEXTMETRIC structure provided under the description
of the GETEXTENOEDTEXTMETRICS escape.

IpOldTrack LPINT Points to a short-integer value that will receive the
previous kerning track.

Return value The return value specifies the outcome of the escape. It is 1 if the escape is
successful; it is zero if the escape is not successful or not implemented.

Comments Automatic track kerning is disabled by default.

A driver does not have to support the ENABLEPAIRKERNING escape just
because it supplies the track-kerning table to the application by using the
GETTRACKKERNTABLE escape. In the case where
GETTRACKKERNTABLE is supported but the SETKERNTRACK escape is
not, the application must properly space the characters on the output
device.

Chapter 72, Printer escapes 195

SETLINECAP

SETLINECAP

Syntax short Escape(hDC, SETLINECAP, sizeof(int),lpNewCap,lpOldCap)

This escape sets the line end cap.

A line end cap is that portion of a line segment that appears on either end
of the segment. The cap may be square or circular. It can extend past, or
remain flush with the specified segment end points.

Parameters hDC HOC Identifies the device context.

IpNewCap

IpOldCap

LPINT Points to a short-integer value that specifies the end­
cap type. The possible values and their meanings are given
in the following list:

• -1 Line segments are drawn by using the default CDI end
cap .

• 0 Line segments are drawn with a squared end point that
does not project past the specified segment length .

• 1 Line segments are drawn with a rounded end point; the
diameter of this semicircular arc is equal to the line width .

• 2 Line segments are drawn with a squared end point that
projects past the specified segment length. The projection
is equal to half the line width.

LPINT Points to a short-integer value that specifies the
previous end-cap setting.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Comments The interpretation of this escape varies with page-description languages
(PDLs). Consult the PDL documentation for its exact meaning.

This escape is also known as SETENOCAP.

SETLlNEJOIN

196

Syntax short Escape(hDC, SETLINEJOIN, sizeof(int), IpNewJoin, IpOldJoin)

This escape specifies how a device driver will join two intersecting line
segments. The intersection can form a rounded, squared, or mitered
corner.

Parameters hDC HOC Identifies the device context.

Software development kit

IpNewJoin

IpOldJoin

SETLlNEJOIN

LPINT Points to a short-integer value that specifies the type
of intersection. The possible values and their meanings are
given in the following list:

Ell -1 Line segments are joined by using the default CDI
setting.

Il 0 Line segments are joined with a mitered corner; the
outer edges of the lines extend until they meet at an angle.
This is referred to as a miter join.

Il 1 Line segments are joined with a rounded corner; a
semicircular arc with a diameter equal to the line width is
drawn around the point where the lines meet. This is
referred to as a round join.

c 2 Line segments are joined with a squared end point; the
outer edges of the lines are not extended. This is referred
to as a bevel join.

LPINT Points to a short-integer value that specifies the
previous line join setting.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Comments The interpretation of this escape varies with page-description languages
(PDLs). Consult the PDL documentation for its exact meaning.

If an application specifies a miter join but the angle of intersection is too
small, the device driver ignores the miter setting and uses a bevel join
instead.

Syntax short Escape(hDC, SET_MIRROR_MODE, sizeof(WORD), IpInData,
(LPSTR)NULL)

This escape sets the current mirror mode. The mirror mode produces
mirror images along the horizontal axis, the vertical axis, or both axes.

To produce a mirror image of a given page, the application issues the
SET _MIRROR_MODE escape before drawing the first primitive to be
mirrored. When the last mirrored primitive has been drawn, the
application issues a second SET _MIRROR_MODE escape to turn off
mirroring.

Parameters hDC HDC Identifies the device context.

Chapter 12, Printer escapes 197

IpMirrorMode LPINT Points to a short integer that specifies the mirror
mode. It must be one of the following values:

• MIRROR NONE (0) Disable mirroring.
• MIRROR=HORIZONT AL 0) Mirror along the

horizontal axis.
• MIRROR_VERTICAL (2) Mirror along the vertical axis.
• MIRROR_BOTH (3) Mirror along both axes. .

Return value The return value is the previous mirror mode.

Comments The default mirror mode is MIRROR_NONE.

Mirrored and un mirrored output can be mixed on a page. This allows the
application to produce mirrored output with unmirrored page labels, crop
marks, and so on.

SETMITERLIMIT

198

Syntax short Escape(hDC, SETMITERLIMIT, sizeof(int),lpNewMiter,lpOldMiter)

This escape sets the miter limit for a device. The miter limit controls the
angle at which a device driver replaces a miter join with a bevel join.

Parameters hDC HOC Identifies the device context.

nCount short Specifies the number of bytes to which the IpNewMiter
parameter points.

IpNewMiter LPINT Points to a short-integer value that specifies the
desired miter limit. Only values greater than or equal to -1
are valid. If this value is -1, the driver will use the default
CDI miter limit.

IpOldMiter LPINT Points to a short-integer value that specifies the
previous miter-limit setting.

Return value The return value specifies the outcome of the escape. It is positive if the
escape is successful. Otherwise, it is negative.

Comments The miter limit is defined as follows:

miter length

line width

1

sin(x/2)

X is the angle of the line join in radians.

The interpretation of this escape varies with page-description languages
(PDLs). Consult the PDL documentation for its exact meaning.

Software development kit

Syntax short Escape(hDC, SET_POLY_MODE, sizeof(int),lpMode, NULL)

This escape sets the poly mode for the device driver. The poly mode is a
state variable indicating how to interpret calls to the GOI Polygon and
Polyline functions.

The SET_POLY _MODE escape enables a device driver to draw shapes
(such as Bezier curves) not supported directly by GDI. This permits
applications that draw complex curves to send the curve description
directly to a device without having to simulate the curve as a polygon
with a large number of points.

Parameters hDC HOC Identifies the device context.

IpMode

Chapter 72, Printer escapes

LPINT Points to a short integer specifying the desired poly
mode. The poly mode is a state variable indicating how
points in Polygon or Polyline function calls should be
interpreted. All device drivers are not required to support
all possible modes. A device driver returns zero if it does not
support the specified mode. The IpMode parameter ma y be
one of the following values:

III PM_POLYLINE (1) The points define a conventional
polygon or polyline.

I:::J PM_BEZIER (2) The points define a sequence of 4-point
Bezier spline curves. The first curve passes through the
first four points, with the first and fourth points as end
points, and the second and third points as control points.
Each subsequent curve in the sequence has the end point
of the previous curve as its start point, the next two points
as control points, and the third as its end point.
The last curve in the sequence is permitted to have fewer
than four points. If the curve has only one point, it is
considered a point. If it has two points, it is a line segment.
If it has three points, it is a parabola defined by drawing a
Bezier curve with the first and third points as end points
and the two control points equal to the second point.

e PM_POL YLINESEGMENT (3) The points specify a list of
coordinate pairs. Line segments are drawn connecting
each successive pair of points.

1:1 PM_POLYSCANLINE (4) The points specify a list of
coordinate pairs. Line segments are drawn connecting
each successive pair of points. Each line segment is a

199

200

nominal-width line drawn using the current brush. Each
line segment must be strictly vertical or horizontal, and
scan lines must be passed in strictly increasing or
decreasing order. This mode is only used for polygon calls.

Return value The return value is the previous poly mode. If the return value is zero, the
device driver did not handle the request.

Comments An application should issue the SET_POLY _MODE escape before it draws
a complex curve. It should then call the Polyline or Polygon function with
the desired control points defining the curve. After drawing the curve, the
application should reset the driver to its previous state by issuing the
SET_POL Y _MODE escape.

Polyline calls draw using the currently selected pen.

Polygon calls draw using the currently selected pen and brush. If the start
and end points are not equal, a line is drawn from the start point to the
end point before filling the polygon (or curve).

CDI treats Polygon calls using PM_POL YLINESECMENT mode exactly
the same as Polyline calls.

Four points define a Bezier curve. CDI generates the curve by connecting
the first and second, second and third, and third and fourth points. CDI
then connects the midpoints of these consecutive line segments. Finally,
CDI connects the midpoints of the lines connecting the midpoints, and so
forth.

The line segments drawn in this way converge to a curve defined by the
following parametric equations, expressed as a function of the
independent variable t.

X(t) = (l-t)3X1 + 3(l-t)2tx2 + 3(l-t)t2x3 + t3x4

Y(t) = (l_t)3Y1 + 3(l-t)2tY2 + 3(l-t)t2Y3 + t3Y4

The points (xl'Yl)' (x2'Y2)' (x3,Y3) and (X4'Y4) are the control points defining
the curve. The independent variable t varies from 0 to 1.

The points (Cxl,CYl) and (Cx2,CY2) are third-degree control points of a
second-degree Bezier curve specified by the points (X1,Y1), (X2,Y2), and
(X3,Y3)·

Primitive types other than PM_BEZIER and PM_POL YLINESECMENT
may be added to this escape in the future. Applications should check the
return value from this escape to determine whether or not the driver
supports the specified poly mode.

Software development kit

Syntax short Escape(hDC, SET_SCREEN_ANGLE, sizeof(int), IpAngle, NULL)

This escape sets the current screen angle to the desired angle and enables
an application to simulate the tilting of a photographic mask in producing
a color separation for a particular primary.

Parameters hDC HOC Identifies the device context.

IpAngle LPINT Points to a short-integer value specifying the desired
screen angle in tenths of a degree. The angle is measured
counterclockwise.

Return value The return value is the previous screen angle.

Comments Four-color process separation is the process of separating the colors
comprising an image into four component primaries: cyan, magenta,
yellow, and black. The image is then reproduced by overprinting each
primary.

SET_SPREAD

In traditional four-color process printing, half-tone images for each of the
four primaries are photographed against a mask tilted to a particular
angle. Tilting the mask in this manner minimizes unwanted moire
patterns caused by overprinting two or more colors.

The device driver defines the default screen angle.

Syntax short Escape(hDC, SET_SPREAD, sizeof(int), IpSpread, NULL)

This function sets the amount that nonwhite primitives are expanded for a
given device to provide a slight overlap between primitives to
compensate for imperfections in the reproduction process.

Spot color separation is the process of separating an image into each
distinct color used in the image. The image is reproduced by overprinting
each successive color in the image.

When reproducing a spot-separated image, the printing equipment must
be calibrated to align each page exactly on each pass. However,
differences in temperature, humidity, and so forth, between passes often
cause images to align imperfectly on subsequent passes. For this reason,
lines in spot separations are often widened (spread) slightly to make up
for problems in registering subsequent passes through the printer. This

Chapter 12, Printer escapes 201

process is called trapping. The SET_SPREAD escape implements this
process.

Parameters hDC

IpSpread

HDC Identifies the device context.

LPINT Points to a short-integer value that specifies the
amount, in pixels, by which all nonwhite primitives are to be
expanded.

Return value The return value is the previous spread value.

Comments The default spread is zero.

The current spread applies to all bordered primitives (whether or not the
border is visible) and text.

STARTDOC

202

Syntax short Escape(hDC, ST ARTDOC, nCount, IpDocName, NULL)

This escape informs the device driver that a new print job is starting and
that all subsequent NEWFRAME escape calls should be spooled under the
same job until an ENDDOC escape call occurs. This ensures that
documents longer than one page will not be interspersed with other jobs.

Parameters hDC HDC Identifies the device context.

nCount short Specifies the number of characters in the string
pointed to by the IpDocName parameter.

IpDocName LPSTR Points to a null-terminated string that specifies the
name of the document. The document name is displayed in
the Print Manager window. The maximum length of this
string is 31 characters plus the terminating null character.

Return value The return value specifies the outcome of the escape. It is -1 if an error
such as insufficient memory or an invalid port specification occurs.
Otherwise, it is positive.

Comments The correct sequence of events in a printing operation is as follows:

1. Create the device context.

2. Set the abort function to keep out-of-disk-space errors from
terminating a printing operation.

An abort procedure that handles these errors must be set by using the
SETABORTPROC escape.

3. Begin the printing operation with the STARTDOC escape.

Software development kit

STARTDOC

4. Begin each new page with the NEWFRAME escape, or each new band
with the NEXTBAND escape.

5. End the printing operation with the ENDDOC escape.

6. Destroy the cancel dialog box, if any.

7. Free the procedure-instance address of the abort function.

If an application encounters a printing error or a canceled print operation,
it must not attempt to terminate the operation by using the Escape
function with either the ENDDOC or ABORTDOC escape. CDI
automatically terminates the operation before returning the error value.

TRANSFORM_ CTM

Syntax short Escape(hDC, TRANSFORM_ CTM, 36, lpMatrix, NULL)

This escape modifies the current transformation matrix. The current
transformation matrix controls the manner in which coordinates are
translated, rotated, and scaled by the device. By using matrices, YOll can
combine these operations in any order to produce the desired mapping
for a particular picture.

The new current transformation matrix will contain the product of the
matrix referenced by the lpMatrix parameter and the previous current
transformation matrix (CTM = M 1/ CTM).

Parameters hDC

IpMatrix

HDC Identifies the device context.

LPSTR Points to a 3-by-3 array of 32-bit integer values
specifying the new transformation matrix. Entries in the
matrix are scaled to represent fixed-point real numbers. Each
matrix entry is scaled by 65,536. The high-order word of the
entry contains the whole integer portion, and the low-order
word contains the fractional portion.

Return value The return value is TRUE if the escape was successful and FALSE if it was
unsuccessful.

Comments When an application modifies the current transformation matrix, it must
specify the clipping rectangle by issuing the SET _CLIP _BOX escape.

Applications should not make any assumptions about the initial value of
the current transformation matrix.

Chapter 72, Printer escapes 203

204

The matrix specification used for this escape is based on the Microsoft
OS/2 Presentation Manager graphics programming interface (GPI) model,
which is an integer-coordinate system similar to the one used by GO!.

Software development kit

c H A p T E R

13

Windows DOE protocol definition

The Microsoft Windows Dynamic Data Exchange (DDE) protocol defines
the method for communicating among applications. This communication
takes place as applications send messages to each other to initiate
conversations, to request and share data, and to terminate conversations.
This chapter describes these messages and the rules associated with their
use. It also briefly describes several clipboard formats which a DDE
application can register for use in a DDE conversation.

Guide to Programming provides an overview of DDE programming,
including such concepts as client, server, application, topic and item. It
also introduces the modes of DDE communication, including permanent
data links, one-time transfers, and remote command execution, and it
explains the flow of DDE messages.

Message-specific argument names bear prefixes indicating their type, as
follows:

Prefix

a
cf

f
h
w

Description

An atom of word length (16 bits); for example, aNa me.
A registered clipboard format number (word length); for example,
cfFormat.
A flag bit; for example, [Name.
A handle (word length) to a global memory bject; for example, hName.
Any other word-length argument; for example, wName.

Chapter 73, Windows DOE protocol definition 205

Using the DDE message set

Table 13.1
DDE messages

Each DDE message has two parameters. The first parameter, wParam
(word length), carries the handle of the sender's window; it is the same in
all cases and so is not shown in Table 13.1. The second parameter, IParam
(a long word, 32 bits), is composed of a low-order word and a high-order
word containing message-specific arguments, as follows:

Message

WM_DDE_ACK
In reply to INITIATE
In reply to EXECUTE
All other messages

WM_DDE_ADVISE
WM_DDE_DATA
WM_DDE_EXECUTE
WM_DDE_INITIATE
WM_DDE_POKE
WM_DDE_REQUEST
WM_DDE_TERMINATE
WM_DDE_UNADVISE

Arguments in IParam
Low-order word High-order word

aApplication
wStatus
wStatus
hOptions
hData
(Reserved)
aApplication
hData
cfFormat
(Reserved)
(Reserved)

aTopic
hCommands
altem
altem
altem
hCommands
aTopic
altem
altem
(Reserved)
altem

An application calls the Send Message function to issue the
WM_DDE_INITIATE message or a WM_DDE_ACK message sent in
response to WM_DDE_INITIATE. All other messages are sent using the
PostMessage function. The window handle of the receiving window
appears as the first parameter of these calls. The second parameter
contains the message to be sent, the third parameter identifies the sending
window, and the fourth parameter contains the message-specific
arguments. For example:

PostMessage(hwndRecipient, WM_DDE_MESSAGE, hwndSender,
MAKE LONG (low_word, high_word))

The MAKE LONG macro combines low_word and high_word into a long
word.

Synchronizing the DDE conversation

206

An application window that processes DDE requests from the window of
a DDE partner must process them strictly in the order in which they are
received from that partner. However, when handling messages from
multiple DDE partners, the window does not have to follow this "first in,

Software development kit

first out" rule. In other words, only the conversations themselves must be
synchronous; the window can shift from one conversation to another
asynchronously.

For example, suppose the following messages are in a window's queue:

Message from window X
Message from window Y
Message from window X

The window must process message 1 before message 3, but it need not
process message 2 before message 3. If window Y is a lower-priority
DDE-conversation partner than window X, the window can defer
processing the messages from window Y until it has finished dealing with
the messages sent by window X. The following table shows acceptable
processing orders for these messages and the relative priority implied by
each order:

Order

123
132
213

Relative Priority

Window X = window Y
Window X > window Y
Window X < window Y

If an application is unable to process an incoming request because it is
waiting for a DDE response, it must post a WM_DDE_ACK message with
the fBusy flag set to 1 to prevent deadlock. An application can also send a
busy WM_DDE_ACK message if for any reason the application cannot
process an incoming request within a reasonable amount of time.

An application should be able to deal with the situation in which its DDE
partner fails to respond with a message within a certain time-out interval.
Since the length of this interval may vary depending on the nature of the
application and the configuration of the user's system (including whether
it is on a network), the application should provide a way for the user to
specify the time-out interval.

Using atoms

The section "OOE
message directory"
describes the rules
for allocating and

deleting atoms
used by each

message.

Certain arguments of DDE messages (altern, aTopic, and aApplication) are
global atoms. Applications using these atoms must explicitly delete them
to purge them from the atom list.

In all cases, the sender of a message must delete any atom which the
intended receiver will not receive due to an error condition, such as
failure of the PostMessage function.

Chapter 73, Windows DOE protocol definition 207

Using shared memory objects

"DOE message
directory" on page

40 describes the
rules for allocating

and deleting
shared memory
objects used by
each message.

DDE uses shared memory objects for three purposes:

III To carry a data item value to be exchanged. This is an item referenced
by the hData argument in the WM_DDE_DATA and WM_DDE_POKE
messages.

EI To carry options in a message. This is an item referenced by the
hOptions argument in a WM_DDE_ADVISE message.

III To carry an execution-command string. This is an item referenced by
the hCommands argument in the WM_DDE_EXECUTE message and its
corresponding WM_DDE_ACK message.

Applications that receive a DDE shared memory object must treat it as
read only. It must not be used as a mutual read/write area for the free
exchange of data.

As with a DDE atom, a shared memory object should be freed properly to
provide for effective memory management. Shared memory objects
should be properly locked and unlocked.

In all cases, the sender of a message must delete any shared memory
object which the intended receiver will not receive due to an error
condition, such as failure of the PostMessage function.

Using clipboard formats

You can pass data by means of any of the standard clipboard formats or
with a registered clipboard formats. See the description of the
SetClipboardData function in Chapter 4, "Functions directory," in
Reference, Volume 1, for more information on standard clipboards. See the
description of the RegisterClipboardFormat function for information on
registering clipboard formats.

A special, registered format named Link is used to identify an item in a
DDE conversation. For more information, see Guide to Programming.

Using the System topic

208

Applications are encouraged to support at all times a special topic with
the name System. This topic provides a context for items of information
that may be of general interest to another application.

Software development kit

The following list contains suggested items for the System topic. This list
is not exclusive. The data item values should be rendered in the CF _TEXT
format. Individual elements of a System topic item value should be
delimited by tab characters.

Item

SysItems
Topics

ReturnMessage

Status

Formats

Description

A list of the System-topic items supported by the application.
A list of the topics supported by the application at the current
time; this list can vary from moment to moment.
Supporting detail for the most recently used WM_DDE_ACK
message. This is useful when more than eight bits of
application-specific return data are required.
An indication of the current status of the application. When a
server receives a WM_DDE_REQUEST message for this
System-topic item, it should respond by posting a
WM_DDE_DATA message with a string containing either
"Busy" or "Ready," as appropriate.
A list of clipboard format numbers that the application can
render.

DDE message directory

This section describes the nine DDE messages. Included in each
description is a list of the message-specific arguments and the rules for
posting and receiving each message. The SDK contains the DDE.H header
file, which defines the DDE messages and data structures described in this
section.

This message notifies an application of the receipt and processing of a
WM_DDE_INITIATE, WM_DDE_EXECUTE, WM_DDE_DATA,
WM_DDE_ADVISE, WM_DDE_UNADVISE, or WM_DDE_POKE
message, and in some cases, of a WM_DDE_REQUEST message.

Parameter

wParam
lParam

Description

Identifies the sending window.
The meaning of the low-order and high-order words
depends on the message to which the WM_DDE_ACK
message is responding. When responding to
WM_DDE_INITIATE:

Chapter 73, Windows DOE protocol definition 209

210

Argument
aApplication

aTopic

Description
Low-order word of [Paramo An atom that
contains the name of the replying
application.
High-order word of [Paramo An atom that
contains the topic with which the replying
server window is associated.

When responding to WM_DDE_EXECUTE:

Argument
wStatus

hCommands

Description
Low-order word of [Paramo A series of flags
that indicate the status of the response.
High-order word of [Paramo A handle that
identifies the data item containing the
command string.

When replying to all other messages:

Argument
wStatus

altem

Description
Low-order word of [Paramo A series of flags
that indicate the status of the response.
High-order word of [Paramo An atom that
specifies the data item for which the
response is sent.

Comments The wStatus word consists of a DDEACK data structure that contains the
following information:

Bit Name Meaning

15 fAck 1 = Request accepted.
a = Request not accepted.

14 fBusy 1 = Busy. An application is expected to set fBusy
if it is unable to respond to the request at the time
it is received. The fBusy flag is defined only
when fAck is zero.
0= Not busy.

13-8 Reserved for Microsoft use.
7-0 bAppReturnCode Reserved for application-specific return codes.

Posting Except in response to the WM_DDE_INITIATE message, post the
WM_DDE_ACK message by calling the PostMessage function, not
Send Message. When responding to WM_DDE_INITIATE, send the
WM_DDE_ACK message with Send Message.

When acknowledging any message with an accompanying altern atom, the
application that sends WM_DDE_ACK can reuse the altern atom that
accompanied the original message, or it may delete it and create a new
one.

Software development kit

When acknowledging WM_DDE_EXECUTE, the application that sends
WM_DDE_ACK should reuse the hCommands object that accompanied the
original WM_DDE_EXECUTE message.

If an application has initiated the termination of a conversation by
sending WM_DDE_ TERMINATE and is awaiting confirmation, the
waiting application should not acknowledge (positively or negatively)
any subsequent message sent by the other application. The waiting
application should delete any atoms or shared memory objects received in
these intervening messages.

Receiving The application that receives WM_DDE_ACK should delete all atoms
accompanying the message.

If the application receives WM_DDE_ACK in response to a message with
an accompanying hData object, the application should delete the hData
object.

If the application receives a negative WM_DDE_ACK message sent in
reply to a WM_DDE_ADVISE message, the application should delete the
hOptions object sent with the original WM_DDE_ADVISE message.

If the application receives a negative WM_DDE_ACK message sent in
reply to a WM_DDE_EXECUTE message, the application should delete
the hCommands object sent with the original WM_DDE_EXECUTE
message.

This message, posted by a client application, requests the receiving
(server) application to supply an update for a data item whenever it
changes.

Parameter Description

Identifies the sending window. wParam
[Param Identifies the requested data and specifies how the data is to be sent.

Argument Description
hOptions Low-order word of [Paramo A handle to a global

memory object that specifies how the data is to be
sent.

altem High-order word of [Paramo An atom that specifies
the data item being requested.

Comments The global memory object identified by hOptions consists of a DDEADVISE
data structure that contains the following:

Chapter 13, Windows DOE protocol definition 211

Word

1

2

Name

fAckReq

fDeferUpd

reserved
cfFormat

Content

If bit 15 is I, the receiving (server) application is
requested to send its WM_DDE_DATA messages
with the ACK-requested bit (fAckReq) set. This
offers a flow-control technique whereby the client
application can avoid overload from incoming
DATA messages.
If bit 14 is I, the server is requested to send its
WM_DDE_DATA messages with a null hData
handle. These messages are alarms telling the client
that the source data has changed. Upon receiving
one of these alarms, the client can choose to call for
the latest version of the data by issuing a
WM_DDE_REQUEST message, or it can choose to
ignore the alarm altogether. This would typically be
used when there is a substantial resource cost
associated with rendering and/or assimilating the
data.
Bits 13-0 are reserved.
The client's preferred type of data. Must be a
standard or registered clipboard data format
number.

If an application supports more than one clipboard format for a single
topic and item, it can post multiple WM_DDE_ADVISE messages for the
topic and item, specifying a different clipboard format with each message.

Posting Post the WM_DDE_ADVISE message by calling the PostMessage
function, not Send Message.

Allocate hOptions by calling the GlobalAlioc function with the
GEMEM_DDE_SHARE option.

Allocate altem by calling the GlobalAddAtom function.

If the receiving (server) application responds with a negative
WM_DDE_ACK message, the sending (client) application must delete the
hOptions object.

Receiving Post the WM_DDE_ACK message to respond positively or negatively.
When posting WM_DDE_ACK, reuse the altem atom or delete it and
create a new one. If the WM_DDE_ACK message is positive, delete the
hOptions object; otherwise, do not delete the object.

212 Software development kit

This message, posted by a server application, sends a data item value to
the receiving (client) application, or notifies it of the availability of data.

Parameter Description

wParam
[Param

Identifies the sending window.
Identifies the available data and specifies how it is sent.

Argument Description
hData Low-order word of [Paramo A handle that identifies

the global memory object containing the data and
additional information. The handle should be set to
NULL if the server is notifying the client that the
data item value has changed during a "warm link."
A warm link is established by the client sending a
WM_DDE_ADVISE message with the fDeferUpd bit
set.

altern High-order word of [Paramo An atom that identifies
the data item for which data or notification is sent.

Comments The global memory object identified by hData consists of a DDEDATA data
structure that contains the following:

Word

1

2

3-n

Name

fAckReq

reserved

fRelease

fRequested

reserved
cfFormat

Value[]

Chapter 73, Windows DOE protocol definition

Content

If bit 15 is 1, the receiving (client) application is
expected to send a WM_DDE_ACK message after
the WM_DDE_DATA message has been processed.
If bit 15 is zero, the client application should not
send a WM_DDE_ACK message.
Bit 14 is reserved.

If bit 13 is 1, the client application is expected to free
the hData memory object after processing it. If bit 13
is zero, the client application should not free the
object. See the "Posting" and "Receiving" sections for
exceptions.
If bit 12 is 1, this data is offered in response to a
WM_DDE_REQUEST message. If bit 12 is zero, this
data is offered in response to a WM_DDE_ADVISE
message.
Bits 11-0 are reserved.
This specifies the format in which the data are sent
or offered to the client application. It must be a
standard or registered clipboard data format.
This is the data. It is in the format specified by
cfFormat.

213

214

Posting Post the WM_DDE_DATA message by calling the PostMessage function,
not SendMessage.

Allocate hData by calling the GlobalAlloc function with the
GMEM_DDESHARE option.

Allocate altern by calling the GlobalAddAtom function.

If the receiving (client) application responds with a negative
WM_DDE_ACK message, the sending (server) application must delete the
hData object.

If the sending (server) application sets the fRelease flag to zero, the
sender is responsible for deleting hData upon receipt of either a positive or
negative acknowledgement.

Do not set both the fAckReq and fRelease flags to zero. If both flags are
set to zero, it is difficult for the sending (server) application to determine
when to delete hData.

Receiving If fAckReq is I, post the WM_DDE_ACK message to respond positively or
negatively. When posting WM_DDE_ACK, reuse the altern atom or delete
it and create a new one.

If fAckReq is zero, delete the altern atom.

If the sending (server) application specified hData as NULL, the receiving
(client) application can request the server to send the actual data by
posting a WM_DDE_REQUEST message.

After processing the WM_DDE_DATA message in which hData is not
NULL, delete hData unless either of the following conditions is true:

• The fRelease flag is zero .
• The fRelease flag is I, but the receiving (client) application responds

with a negative WM_DDE_ACK message.

This message, posted by a client application, sends a string to a server
application to be processed as a series of commands. The server
application is expected to post a WM_DDE_ACK message in response.

Parameter Description

wParam
IParam

Identifies the sending window.
Specifies the commands to be executed.

Software development kit

Description Argument
reserved
hCommands

The low-order word of [Param is reserved.
High-order word of [Paramo A handle that identifies
a global memory object containing the command(s)
to be executed.

Comments The command string is null-terminated. The command string should
adhere to the syntax shown below. Optional syntax elements are enclosed
in double brackets ([[]]); single brackets ([]) are a syntax element.

[opcodestring] [[[opcodestring]]] ...

The opcodestring uses the following syntax:

opcode[[(parameter [[,parameter]] ...)]]

The opcode is any application-defined single token. It may not include
spaces, commas, parentheses, or quotation marks.

The parameter is any application-defined value. Multiple parameters are
separated by commas, and the entire parameter list is enclosed in
parentheses. The parameter may not include commas or parentheses
except inside a quoted string. If a bracket or parenthesis character is to
appear in a quoted string, it must be doubled: «.
The following examples show valid command strings:

[connect] [download(queryl,results.txt)] [disconnect]
[query("sales per employee for each district")]
[open ("sample.xlm")] [run ("rlc1")]

Posting Post the WM_DDE_EXECUTE message by calling the PostMessage
function, not Send Message.

Allocate hCommands by calling the GlobalAlioc function with the
GMEM_DDE_SHARE option.

When processing WM_DDE_ACK sent in reply to WM_DDE_EXECUTE,
the sender of the original WM_DDE_EXECUTE message must delete the
hCommands object sent back in the WM_DDE_ACK message.

Receiving Post the WM_DDE_ACK message to respond positively or negatively,
reusing the hCommands object.

Chapter 13, Windows DOE protocol definition 215

WM_DDEJNITIATE

216

This message, sent by either a client or server application, initiates a
conversation with applications responding to the specified application
and topic names.

Upon receiving this message, all applications with names that match the
aApplication application and that support the aTopic topic are expected to
acknowledge it (see the WM_DDE_ACK message).

Parameter

wParam
[Param

Description

Identifies the sending window.
Specifies the target application and the topic.

Argument
aApplication

aTopic

Description
Low-order word of [Paramo An atom that
specifies the name of the application with
which a conversation is requested. The
application name may not contain slashes or
backslashes. These characters are reserved for
future use in network implementations. If the
application name is NULL, a conversation
with all applications is requested.
High-order word of lParam. An atom that
specifies the topic for which a conversation is
requested. If the topic is NULL, a
conversation for all available topics is
requested.

Comments If the aApplication argument is NULL, any application may respond. If the
aTopic argument is NULL, any topic is valid. Upon receiving a
WM_DDE_INITIATE request with a null topic, an application is expected
to send a WM_DDE_ACK message for each of the topics it supports.

Sending Send the WM_DDE_INITIATE message by calling the Send Message
function, not the PostMessage function. Broadcast the message to all
windows by setting the first parameter of SendMessage to -I, as shown:

SendMessage(-l,WM_DDE_INITIATE,hwndClient,MAKELONG(aApp,aTopic));

If the application has already obtained the window handle of the desired
server, it can send WM_DDE_INITIATE directly to the server window by
passing the server's window handle as the first parameter of
Send Message.

Allocate aApplication and aTopic by calling GlobalAddAtom.

When Send Message returns, delete the aApplication and aTopic atoms.

Software development kit

Receiving To complete the initiation of a conversation, respond with one or more
WM_DDE_ACK messages, where each message is for a separate topic.
When sending WM_DDE_ACK message, create new aApplication and
aTopic atoms; do not reuse the atoms sent with the WM_DDE_INITIA TE
message.

This message, posted by a client application, requests the receiving
(server) application to accept an unsolicited data item value.

The receiving application is expected to reply with a positive
WM_DDE_ACK message if it accepts the data, or with a negative
WM_DDE_ACK message if it does not.

Parameter Description

wParam
[Param

Identifies the sending window.
Identifies the data and specifies how it is sent.

Argument Description
hData Low-order word of [Paramo A handle that specifies the

global memory object containing the data and other
information.

altem High-order word of [Paramo An atom that identifies the
data item offered to the server application.

Comments The global memory object identified by hData consists of a DDEPOKE data
structure that contains the following:

Word

1

2

3-n

Name

reserved
fRelease

reserved
cfFormat

Value[]

Chapter 73, Windows DOE protocol definition

Content

Bits 15-14 are reserved.
If bit 13 is 1, the receiving (server) application is
expected to free the memory object after processing
it. If bit 13 is zero, the receiving application should
not free the object. See the following "Posting" and
"Receiving" sections for exceptions.
Bits 12-0 are reserved.
This specifies the client's preferred type of data. It
must be a standard or registered clipboard data
format.
This is the data. It is in the format specified by
cfFormat.

217

Posting Post the WM_DDE_POKE message by calling the PostMessage function,
not Send Message.

Allocate hData by calling the GlobalAlioc function with the
GMEM_DDESHARE option.

Allocate altern by calling the GlobalAddAtom function.

If the receiving (server) application responds with a negative
WM_DDE_ACK message, the sending (client) application must delete the
hData object.

If the sending (client) application sets the fRelease flag to zero, the
sending application must delete hData upon receiving either a positive or
negative WM_DDE_ACK message.

Receiving Post the WM_DDE_ACK message to respond positively or negatively.
When posting WM_DDE_ACK, reuse the altern atom or delete it and
create a new one.

After processing the WM_DDE_POKE message, delete hData unless either
of the following conditions is true:

• The fRelease flag is zero .
• The fRelease flag is 1, but the receiving (server) application responds

with a negative WM_DDE_ACK message.

WM DDE_REQUEST

This message, posted by a client application, requests the receiving
(server) application to provide the value of a data item.

Parameter Description

wParam
[Param

Identifies the sending window.
Specifies the requested data and the clipboard format number for the
data

Argument
cfFormat

altem

Description
Low-order word of [Paramo A standard or registered
clipboard format number.
High-order word of lParam. An atom that specifies
which data item is being requested from the server.

Posting Post the WM_DDE_REQUEST message by calling the PostMessage
function, not Send Message.

218 Software development kit

Allocate altern by calling the GlobalAddAtorn function.

Receiving If the receiving (server) application can satisfy the request, it responds
with a WM_DDE_DATA message containing the requested data.
Otherwise, it responds with a negative WM_DDE_ACK message.

When responding with either a WM_DDE_DATA or WM_DDE_ACK
message, reuse the altern atom or delete it and create a new one.

This message, posted by either a client or server application, terminates a
conversation.

Parameter

wParam
[Param

Description

Identifies the sending window.
Is reserved.

Posting Post the WM_DDE_TERMINATE message by calling the PostMessage
function, not Send Message.

While waiting for confirmation of the termination, the sending application
should not acknowledge any other messages sent by the receiving
application. If the sending application receives messages (other than
WM_DDE_TERMINATE) from the receiving application, it should delete
any atoms or shared memory objects accompanying the messages.

Receiving Respond by posting a WM_DDE_TERMINATE message.

WM DDE_UNADVISE

This message, sent by a client application, informs a server application
that the specified item, or a particular clipboard format for the item,
should no longer be updated. This terminates the warm or hot link for the
specified item.

Parameter Description

wParam
[Param

Identifies the sending window.
Specifies the data-request item to be canceled.

Argument Description
altem High-order word of [Paramo An atom that specifies

the data for which the update request is being
retracted. When altem is NULL, all active

Chapter 13, Windows DOE protocol definition 219

cfFormat

WM_DDE_ADVISE conversations associated with
the client are to be terminated.
Low-order word of [Paramo The clipboard format of
the item that specifies the clipboard format for
which the update request is being retracted. When
cfFormat is NULL, all active WM_DDE_ADVISE
conversations for the item are to be terminated.

Posting Post the WM_DDE_UNADVISE message by calling the PostMessage
function, not Send Message.

Allocate altern by calling the GlobalAddAtom function.

Receiving Post the WM_DDE_ACK message to respond positively or negatively.
When posting WM_DDE_ACK, reuse the altern atom or delete it and
create a new one.

220 Software development kit

A p p E N D x

A

Virtual-key codes
The following table shows the symbolic constant names, hexadecimal
values, and descriptive information for Microsoft Windows virtual-key
codes. The codes are listed in numeric order.

Name Value Description

VK_LBUTTON OlH Left mouse button
VK_RBUTTON 02H Right mouse button
VK_CANCEL 03H Used for control-break processing
VK_MBUTTON 04H Middle mouse button

(3-button mouse)
05H-07H Undefined

VK_BACK 08H BACKSPACE key
VK_TAB 09H TAB key

OAH-DBH Undefined
VK_CLEAR OCH CLEAR key
VK_RETURN ODH RETURN key
VK_SHIFT lOH SHIFT key
VK_CONTROL llH CONTROL key
VK_MENU 12H MENU key
VK_PAUSE 13H PAUSE key
VK_CAPITAL 14H CAPITAL key

15H-19H Reserved for Kanji systems
lAH Undefined

VK_ESCAPE lBH ESCAPE key
lCH-1FH Reserved for Kanji systems

VK_SPACE 20H SPACEBAR
VK_PRIOR 21H PAGE UP key
VK_NEXT 22H PAGE DOWN key
VK_END 23H END key
VK_HOME 24H HOME key
VK_LEFT 25H LEFT ARROW key

Appendix A, Virtual-key codes 221

VK_UP 26H UPARROW key
VK_RIGHT 27H RIGHT ARROW key
VK_DOWN 2BH DOWN ARROW key
VK_SELECT 29H SELECT key

2AH OEM specific
VK_EXECUTE 2BH EXECUTE key
VK_SNAPSHOT 2CH PRINTSCREEN key for Windows

version 3.0 and later
VK_INSERT 2DH INSERT key
VK_DELETE 2EH DELETE key
VK_HELP 2FH HELP key
VK_O 30H a key
VK_l 31H 1 key
VK_2 32H 2 key
VK_3 33H 3 key
VK_4 34H 4 key
VK_5 35H 5 key
VK_6 36H 6 key
VK_7 37H 7 key
VK_B 3BH 8 key
VK_9 39H 9 key

3AH-40H Undefined
VK_A 41H A key
VK_B 42H Bkey
VK_C 43H ckey
VK_D 44H Dkey
VK_E 45H Ekey
VK_F 46H Fkey
VK_G 47H Gkey
VK_H 4BH Hkey
VK_I 49H I key
VKJ 4AH J key
VK_K 4BH Kkey
VK_L 4CH Lkey
VK_M 4DH Mkey
VK_N 4EH Nkey
VK_O 4FH o key
VK_P 50H pkey
VK_Q 51H Qkey
VK_R 52H Rkey
VK_S 53H skey
VK_T 54H Tkey
VK_U 55H ukey
VK_V 56H v key
VK_W 57H wkey
VK_X 5BH X key
VK_Y 59H ykey
VK_Z 5AH zkey

5BH-5FH Undefined
VK_NUMPADO 60H Numeric key pad a key
VK_NUMPADl 61H Numeric key pad 1 key
VK_NUMPAD2 62H Numeric key pad2 key

222 Software development kit

VK_NUMPAD3
VK_NUMPAD4
VK_NUMPAD5
VK_NUMPAD6
VK_NUMPAD7
VK_NUMPADB
VK_NUMPAD9
VK_MULTIPL Y
VK_ADD
VK_SEPARATER
VK_SUBTRACT
VK_DECIMAL
VK_DIVIDE
VK_Fl
VK_F2
VK_F3
VK_F4
VK_F5
VK_F6
VK_F7
VK_FB
VK_F9
VK_FIO
VK_Fll
VK_F12
VK_F13
VK_F14
VK_F15
VK_F16

VK_NUMLOCK

Appendix A, Virtual-key codes

63H
64H
65H
66H
67H
6BH
69H
6AH
6BH
6CH
6DH
6EJi
6FH
70H
71H
72H
73H
74H
75H
76H
77H
7BH
79H
7AH
7BH
7CH
7DH
7EH
7FH
BOH-B7H
BBH-BFH
90H
91H
92H-B9H
BAH-COH
CIH-DAH
DBH-E4H
E5H
E6H
E7H-EBH
E9H-F5H
F6H-FEH

Numeric key pad 3 key
Numeric key pad 4 key
Numeric key pad S key
Numeric key pad 6 key
Numeric key pad 7 key
Numeric key pad 8 key
Numeric key pad 9 key
Multiply key
Add key
Separa ter key
Subtract key
Decimal key
Divide key
FI key
F2key
F3 key
F4 key
FS key
F6 key
F7key
F8 key
F9 key
FlO key
FII key
FI2 key
F13 key
F14 key
FIS key
FI6 key
OEM specific
Unassigned
NUMLocKkey
OEM specific
Unassigned
OEM specific
Unassigned
OEM specific
Unassigned
OEM specific
Unassigned
OEM specific
Unassigned

223

224 Software development kit

A p

See Chapter 8,
"Resource script
statements," for

information on the
keywords and fields

specified in this
appendix.

p E N D x

B

RC diagnostic messages

This appendix contains descriptions of diagnostic messages produced by
the Resource Compiler (RC). Many of these messages appear when the
Resource Compiler is not able to compile your resources. The descriptions
in this appendix can help you determine the problem.

A (V) symbol at the beginning of a message description indicates that the
message is displayed only if RC is run with the -v (verbose) option. These
messages are generally informational and do not necessarily indicate
errors.

The messages are listed in alphabetical order.

Accelerator Type required (ASCII or VIRTKEY)
The type field in the ACCELERATORS statement must contain either
the ASCII or VIRTKEY value.

BEGIN expected in Accelerator Table
The BEGIN keyword must immediately follow the ACCELERATORS
keyword.

BEGIN expected in Dialog
The BEGIN keyword must immediately follow the DIALOG keyword.

BEGIN expected in menu
The BEGIN keyword must immediately follow the MENU keyword.

BEGIN expected in RCData
The BEGIN keyword must immediately follow the RCDATA keyword.

Appendix 8, RC diagnostic messages 225

226

BEGIN keyword expected in String or Error Table
The BEGIN keyword must immediately follow the STRINGTABLE or
ERRTABLE keyword.

Cannot Reuse String Constants
You are using the same value twice in a STRINGTABLE or ERRTABLE
statement. lvfake sure you are not mixing overlapping decimal and
hexadecimal values.

Control Character out of range [J\A - J\Z]
A control character in the ACCELERATORS statement is invalid. The
character following the caret (A) must be between A and Z, inclusive.

copy of temp-file-2 to exe-file failed
The temporary file was not able to create the new .EXE file. Make sure
that the TEMP environment variable is pointing to a drive that is not
write-protected.

Copying segment id (size bytes)
(V) RC is copying the specified segment to the .EXE file.

Could not find RCPP.EXE
RCPP.ERR must be in the current directory or a directory in the PATH
environment.

Could not open in-file-name
RC could not open the specified file. Make sure the file exists and that
you typed the filename correctly.

Couldn't open resource-name
RC could not open the specified file. Make sure the file exists and that
you typed the filename correctly.

Couldn't write executable
The .EXE file could not be copied to the temporary file. Make sure that
the TEMP environment variable is pointing to a drive that is not write­
protected and that the .EXE file from the linker is correct. You can
check the .EXE file with the EXEHDR program.

Creating resource-name
(V) RC is creating a new .RES file.

Empty menus not allowed
An END keyword appears before any menu items are defined in the
MENU statement. Empty menus are not permitted by the Resource
Compiler. Make sure you do not have any open quotation marks within
the MENU statement.

Software development kit

END expected in Dialog
The END keyword must occur at the end of a DIALOG statement. Make
sure there are no open quotes left from the preceding statement.

END expected in menu
The END keyword must come at the end of a MENU statement. Make
sure you do not have any open quotation marks or a mismatched pair
of BEGIN and END statements.

Error: Bitmap file resource-file is not in 3.00 format.
Use SDKPaint to convert version 2.x resource files to the 3.0 format.

Error Creating resource-name
Could not create specified .RES file. Make sure it is not being created on
a read-only drive. Use the -v option to find out whether the file is
being created.

Error: 1/0 error reading file.
Read failed. Since this is a generic routine, no specific filename is
supplied.

Error: 1/0 error seeking in file
Seeking in file failed.

Error: 1/0 error writing file.
Write failed. Since this is a generic routine, no specific filename is
supplied.

Error: Old DIB in resource-name. Pass it through SDKP AINT.
The resource file specified is not compatible with Windows 3.0. Make
sure you have read and saved this file using the latest version of
SDKPaint.

Error: Out of memory. Try not using resources with string identifiers.
There is not enough memory to allocate for a table of string names. You
can view these names are when you use the -v option. Try to replace
the string names with numbers. For example, you can change

MYICON ICON myicon.ico

to

1 ICON myicon.ico

or provide the following statement in your header file:

#define MYICON 1

Appendix B, RC diagnostic messages 227

228

Error: Resource file resouce-name is not in 3.00 format.
Make sure your icons and cursors have been read and saved using the
latest version of SDKPaint.

Errors in .EXE file
LINK failed. See the Code View and Utilities manual in the Microsoft C 5.1
Optimizing Compiler documentation set for more information .

. EXE file too large; relink with higher IALIGN value
The EXE file is too large. Relink the .EXE file with a larger IALIGN
value. If the .EXE file is larger than SOOK, you should use the IALlGN:32
value on your LINK line .

. EXE not created by LINK
You must create the .EXE file with a version of LINK that is from C
version 5.1 or later.

Expected Comma in Accelerator Table
RC requires a comma between the event and idvalue fields in the
ACCELERATORS statement.

Expected control class name
The class field of a CONTROL statement in the DIALOG statement must
be one of the following types: BUTTON, COMBOBOX, EDIT, LISTBOX,
SCROLLBAR, STATIC, or user-defined. Make sure the class is spelled
correctly.

Expected font face name
The typeface field of the FONT option in the DIALOG statement must be
an ASCII character string enclosed in double quotation marks. This
field specifies the name of a font.

Expected 10 value for Menuitem
The MENU statement must contain a menuID field, which specifies the
name or number that identifies the menu resource.

Expected Menu String
Each MENUITEM and POPUP statement must contain a text field, which
is a string enclosed in double quotation marks that specifies the name
of the menu item or pop-up menu. A MENUITEM SEPARATOR
statement requires no quoted string.

Expected numeric command value
RC was expecting a numeric idvalue field in the ACCELERATORS
statement. Make sure you have used a #define constant to specify the
value and that the constant is spelled correctly.

Software development kit

Expected numeric constant in string table
A numeric constant, defined in a #define statement, must immediately
follow the BEGIN keyword in a STRINGTABLE or ERRTABLE
statement.

Expected numeric point size
The pointsize field of the FONT option in the DIALOG statement must be
an integer point size value.

Expected Numerical Dialog constant
A DIALOG statement requires integer values for the x, y, width, and
height fields. Make sure these values are included after the DIALOG
keyword and that they are not negative.

Expected String in STRINGTABLElERRTABLE
A string is expected after each stringid value in a STRINGTABLE or
ERRTABLE statement.

Expected String or Constant Accelerator command
RC was not able to determine what kind of key is being set up for the
accelerator. The event field in the ACCELERATORS statement might be
invalid.

Expecting number for 10
Expecting a number for the id field of a control statement in the
DIALOG statement. Make sure you have a number or #define statement
for the control ID.

Expecting quoted string in dialog class
The class field of the CLASS option in the DIALOG statement must be
an integer or a string, enclosed in double quotation marks.

Expecting quoted string in dialog title
The captiontext field of the CAPTION option in the DIALOG statement must
be an ASCII character string enclosed in double quotation marks.

File not found: filename
The file specified in the RC command line was not found. Check to see
whether the file has been moved to another directory and whether the
filename or pathname is typed correctly.

Font names must be ordinals
The pointsize field in the FONT statement must be an integer, not a
string.

Gangload area is [size] bytes at offset Ox[address]
(V) This is the size (in bytes) of all the segments that have one of the
following attributes:

Appendix 8, RC diagnostic messages 229

230

• PRELOAD

• DISCARDABLE

• Code segments that contain the entry point, WinMain

• Data segments (which should not be discard able)

The segments are placed in a continguous area in the .EXE file for fast
loading. The offset value is from the the beginning of the file. To
disable gangloading, use the -k option.

Insufficient memory to spawn RCPP.EXE
There wasn't enough memory to run the preprocessor (RCPP). You can
try not running any memory-resident software that might be taking up
too much memory. Use the CHKDSK program to verify the amount of
memory you have.

Invalid Accelerator
An event field in the ACCELERATORS statement was not recognized or
was more than two characters in length.

Invalid Accelerator Type (ASCII or VIRTKEY)
The type field in the ACCELERATORS statement must contain either
the ASCII or VIRTKEY value.

Invalid control character
A control character in the ACCELERATORS statement is invalid. A
valid control character consists of one letter (only) following a caret (A).

Invalid Control type
Each control statement in a DIALOG statement must be one of the
following: CHECKBOX, COMBO BOX, CONTROL, CTEXT,
DEFPUSHBUTTON, EDITTEXT, GROUPBOX, ICON, LlSTBOX, L TEXT,
PUSHBUTTON, RADIOBUTTON, RTEXT, SCROLL BAR.

Make sure these control statements are spelled correctly.

Invalid .EXE file
The .EXE file is invalid. Make sure that the linker created it correctly
and that the file exists. You can check the .EXE file with the EXEHDR
program.

Invalid switch, option
You used an option that was not valid. Use RC -? for a list of the
command-line options.

Invalid type
The resource type was not among the types defined in the windows.h
file.

Software development kit

Invalid usage. Use rc -? for Help
Make sure you have at least one filename to work with. Use RC -? for
a list of the command-line options.

No executable filename specified.
The -FE option was used, but no .EXE filename specified.

No resource binary filename specified.
The -FO option was used, but no .RES filename specified.

Not a Microsoft Windows format .EXE file
Make sure that the linker created the .EXE file correctly and that the file
exists. You can check the .EXE file with the EXEHDR program.

Out of far heap memory
There wasn't enough memory. Try not running any memory-resident
software that might be taking up too much space. Use the CHKDSK
program to find out how much memory you have.

Out of memory, needed n bytes
RC was not able to allocate the specified amount of memory.

RC: Invalid swap area size: -S string
Invalid swap area size. Check your syntax for the -5 option on the RC
command line. The following are acceptable command lines:

RC S123
RC S123K ;where K is kilobytes
RC S123p ;where p is paragraphs

RC: Invalid switch: option
You used an option that was not valid. Use RC -? for a list of the
command-line options.

RC: RCPP preprocessor-command-string
(V) RC is passing the specified string to the preprocessor.

RC: RCPP.ERR not found
RCPP.ERR must be in the current directory or a directory in the PATH
environment.

RC terminated by user
A CONTROL+C key combination was pressed, terminating RC.

RC terminating after preprocessor errors
See the Microsoft C 5.1 Optimizing Compiler documentation for
information about preprocessor errors.

RCPP.EXE command line greater than 128 bytes
The command line was too long.

Appendix 8, RC diagnostic messages 231

232

RCPP.EXE is not a valid executable
RCPP.EXE is not valid. The file might have been altered. Try copying
the file from the SDK disks.

Reading resource-name
(V) RC is reading the .RES file.

Resources will be aligned on number byte boundaries
(V) The alignment is determined by the ALIGN: number option on the
LINK line.

Sorting preload segments and resources into gangload section
(V) RC is sorting the preloaded segments so that they can be loaded
quickly.

Text string or ordinal expected in Control
The text field of a CONTROL statement in the DIALOG statement must
be either a text string or an ordinal reference to the type of control is
expected. If using an ordinal, make sure that you have a #define
statement for the control.

The EXETYPE of this program is not Windows
The EXETYPE WINDOWS statement did not appear in the .DEF file.
Since the linker might make optimizations for OS/2 (the default
EXETYPE) that are not appropriate for Windows, the EXETYPE
WINDOWS statement must be specified.

Unable to create destination
RC was not able to create the destination file. Make sure there is
enough disk space.

Unable to open exe-file
RC could not open this .EXE file. Make sure that the linker created it
correctly and that the file exists.

Unbalanced Parentheses
Make sure you have closed every open parenthesis in the DIALOG
statement.

Unexpected value in RCData
The raw-data values in the RCDATA statement must be integers or
strings, each separated by a comma. Make sure you did not leave out a
comma or leave out a quotation mark around a string.

Unknown DIB header format
The bitmap header is not a BITMAPCOREHEADER or
BITMAPINFOHEADER structure.

Software development kit

Unknown error spawning RCPP.EXE
For an unknown reason, RCPP was not started. Try copying the file
from the SDK disks, and use the CHKDSK program to verify the
amount of available memory.

Unknown Menu SubType
The item-definition field of the MENU statement can contain only
MENUITEM and POPUP statements.

Warning: ASCII character not equivalent to virtual key code
There is an invalid virtual-key code in the ACCELERATORS statement.
The ASCII value for some characters (such as *, 1\, &,) is not equivalent
to the virtual-key code for the corresponding key. (In the case of the
asterisk (*), the virtual-key code is equivalent to the ASCII value for 8,
the numeric character on the same key. Therefore the statement

VIRTKEY '* ,

is invalid.) See Appendix A, "Virtual-key codes," and Appendix D,
"Character tables," for these values.

Warning: Discardable segment id (hex-size bytes) is excessively large.
The segment is greater than 27FFh in size. RC displays this warning
because very large segments can adversely affect memory usage. Check
your map file listing for the exact size of your segments.

Warning: SHIFT or CONTROL used without VIRTKEY
The AL T, SHIFT, and CONTROL options apply only to virtual keys in
the ACCELERATORS statement. Make sure you have used the
VIRTKEY option with one of these other options.

Writing resource resource-name or ordinal-id resource type (resource
size)

(V) RC is writing the resource name or ordinal ID, followed by a period
and the resource type and size (in bytes).

Warning: string segment number set to PRELOAD
RC displays this warning when it copies a segment that must be
preloaded but that is not marked PRELOAD in the linker .DEF file.

All nondiscardable segments should be preloaded, including automatic
data segments, fixed segments and the entry point of the code
(WinMain). The attributes of your code segments are set by the .DEF
file. Check your map file listing for more information.

Appendix 8, RC diagnostic messages 233

234 Software development kit

N

[[]] (double brackets)
as document convention 3

... (ellipses)
as document convention 3

{ } (curly braces)
as document convention 3

() (parentheses)
as document convention 3

(/\) caret 68
(/\) caret[#caret] 67
& (ampersand) 80, 81, 82, 83, 84, 86, 87, 88
I (vertical bar)

as document convention 3
\bc169\ec \bc170\ec (quotation marks)

as document convention[(quotation marks),
as document convention] 3

\bcB\ecBold text\bcD\ec
as document convention 2

\ bcFl 05M\ecMonospaced type \ bcF255D \ ec
as document convention 3

\bcMI\ecItalic text\bcD\ec
as document convention 3

\bcS\ecBACKSPACE\bcD\ec key 95
\bcS\ecCONTROL \bcD\ec key 68
\bcS\ecSHIFT\bcD\ec key 68
\bcS\ecTAB\bcD\ec key 77
#define directive

[define directive] resource compiler 103
resource compiler 103

#elif directive
[elif directive] resource compiler 106

#else directive
[else directive]resource compiler 106

#endif directive
[endif directive]resource compiler 107
resource compiler 107

#if directive
[if directive]resource compiler 105

Index

D E

resource compiler 105, 106
#ifdef directive

[ifdef directive] resource compiler 104
resource compiler 104

#ifndef directive
[ifndef directive]resource compiler 105
resource compiler 105

#include directive
[include directive]resource compiler 103
resource compiler 103

#Undef directive

A

[undef directive] resource compiler 104
resource compiler 104

x

ABORTDOC printer escape 153
ACCELERATORS resource statement 67
Addition (+) operator 80,81,82,83,85,86,87,

88,89,90,91,92

B
BANDINFO printer escape 154
BEGIN_PATH printer escape 156
BITMAP data structure 10
BITMAP resource-compiler key word 62
BITMAPCOREHEADER data structure 11, 13
BITMAPCOREINFO data structure 12
BITMAPFILEHEADER data structure 14
BITMAPINFO data structure 14, 17
BITMAPINFOHEADER data structure 15, 16
BOOL data type 7
Border

window 76
Braces

curly ({ })
as document convention 3

235

Brackets
double ([[]])

as document convention 3
BS_3STATE control style 96
BS_AUT03STATE control style 96
BS_AUTOCHECKBOX control style 96
BS_AUTORADIOBUTTON control style 96
BS_CHECKBOX control style 96
BS_DEFPUSHBUTTON control style 96
BS_GROUPBOX control style 96
BS_HATCHED brush style 38, 39
BS_HOLLOW brush style 39
BS_LEFTTEXT control style 96
BS_OWNERDRAW control style 96
BS_PATTERN brush style 39
BS_PUSHBUTTON control style 96
BS_RADIOBUTTON control style 96
BS_SOLID brush style 39
Button

owner-draw 36, 46
BUTTON control class 83, 85, 86, 95
BYTE data type 7

c
Capital letters

small
as document convention 3

CAPTION resource statement 77
Caret (") 68, 95
Caret (\bc94\ec) 67
Carriage-return character 98
CB_ADDSTRING message 37, 47
CB_INSERTSTRING message 37, 47
CBS_AUTOHSCROLL control style 97
CBS_DROPDOWN control style 97
CBS_DROPDOWNLIST control style 97
CBS_HASSTRINGS control style 97
CBS_OEMCONVERT control style 97
CBS_OWNERDRAWFIXED control style 97
CBS_OWNERDRAWVARIABLE control style

97
CBS_SIMPLE control style 97
CBS_SORT control style 97
char data type 7
CHECKBOX resource statement 83, 84
CLASS resource statement 78

236

CLIENTCREATESTRUCT data structure 20
CLIP _TO_PATH printer escape 157
Clipping

child window 76
CODE module-definition statement 134
Code segment attributes

defining 134, 140
CODE statement 133
COLORREF data type 20
Combo box

owner-draw 28
sorting owner-draw 22

COMBOBOX control class 91, 95
COMBO BOX resource statement 91, 92
Communication devices 23, 25
COMP AREITEMSTRUCT data structure 22
COMSTAT data structure 23
CONTROL resource statement 94
Control window

user-defined 94
CREATESTRUCT data structure 24
Creating windows 75
CS_BYTEALIGNCLIENT window class style 58
CS_BYTEALIGNWINDOW window class style

58
CS_CLASSDC window class style 58
CS_DBLCLKS window class style 58
CS_HREDRA W window class style 59
CS_NOCLOSE window class style 59
CS_OWNDC window class style 59
CS_P ARENTDC window class style 59
CS_SA VEBITS window class style 59
CS_ VREDRAW window class style 59
CTEXT resource statement 82
Curly braces ({ })

as document convention 3
CURSOR resource-compiler key word 62
CW _USEDEFAULT default window width 45

D
DATA module-definition statement 135
Data segment attributes

defining 135, 140
DATA statement 133
Data types

naming conventions 7, 9

Software development kit

DCB data structure 25
Default pushbutton control 87
DefDlgProc function 78
DEFPUSHBUTTON resource statement 87, 88
DESCRIPTION module-definition statement

135
DESCRIPTION statement 133
DEVICEDATA printer escape 158
Devices

communication 23, 25
DEVMODE data structure 29
Dialog box units 80, 81, 82, 83, 84, 85, 87, 88,

89,90,91
Dialog option statements 75
DIALOG resource statement 73
DIALOG template 73
DialogBox function 74
Disabled window 74
DISCARDABLE resource-compiler key word

62, 64, 65, 66, 69, 74
DLGITEMTEMPLATE data structure 34
DLGTEMPLATE data structure 32
Double brackets ([[]])

as document convention 3
Double quotation marks (\bc169\ec\bc170\ec)

66, 67, 70, 78
Double quotation marks (\bc170\ec\bc169\ec)

70
DRAFT_QUALITY font quality 41
DRAFTMODE printer escape 158
DRA WP ATTERNRECT printer escape 158
Driver

printer initialization 29
DS_ABSALIGN dialog-box style 33, 74
DS_LOCALEDIT dialog-box style 33, 76
DS_MODALFRAME dialog-box style 33, 76
DS_NOIDLEMSG dialog-box style 33, 76
DS_SETFONT dialog-box style 33
DS_SYSMODAL dialog-box style 33, 76
DWORD data type 8

E
Edit control 90, 98
EDIT control class 95
Editing keys 90
EDITTEXT resource statement 89, 90

Index

EM_SETP ASSWORDCHAR message 98
ENABLEDUPLEX printer escape 160
ENABLEPAIRKERNING printer escape 160
ENABLERELATIVEWIDTHS printer escape

161
END_PATH printer escape 162
END DOC printer escape 162
ENUMP APERBINS printer escape 164
ENUMPAPERMETRICS printer escape 165
EPSPRINTING printer escape 166
ES_AUTOHSCROLL control style 99
ES_AUTOVSCROLL control style 98
ES_CENTER control style 97
ES_LEFT control style 97
ES_LOWERCASE control style 98
ES_MULTILINE control style 98
ES_NOHIDESEL control style 99
ES_OEMCONVERT control style 99
ES_PASSWORD control style 98
ES_RIGHT control style 97
ES_UPPERCASE control style 98
EVENP ARITY parity type 26
EXETYPE module-definition statement 136
EXPORTS module-definition statement 136
EXPORTS statement 133
EXT_DEVICE_CAPS printer escape 166
EXTTEXTOUT printer escape 168

F
FAR data type 8
FARPROC data type 8
FF _DECORATIVE font family 42
FF _DONTCARE font family 42
FF _MODERN font family 42
FF _ROMAN font family 42
FF _SCRIPT font family 42
FF _SWISS font family 43
FIXED resource-compiler key word 62, 63, 65,

66,69,73
FLUSHOUTPUT printer escape 169
FONT resource-compiler key word 62
FONT resource statement 79
FONTINFO data structure 34

G
GETCOLORTABLE printer escape 169

237

GetDialogBaseUnits function 35, 74,80,81,82,
83,84,85,86,88,89,90,91,92,93,94, 100

GETEXTENDEDTEXTMETRICS printer escape
170

GETEXTENTTABLE printer escape 173
GETFACENAME printer escape 174
GETPAIRKERNTABLE printer escape 174
GETPHYSP AGESIZE printer escape 176
GETPRINTINGOFFSET printer escape 176
GETSCALINGF ACTOR printer escape 176
GETSETPAPERBINS printer escape 177
GETSETPAPERMETRICS printer escape 178
GETSETPAPERORIENT printer escape 179
GETSETPAPERORIENTA TION printer escape

180
GETSETSCREENP ARAMS printer escape 180
GetSubMenu function 20
GETTECHNOLOGY printer escape 181
GETTRACKKERNTABLE printer escape 181
GETVECTORBRUSHSIZE printer escape 182
GETVECTORPENSIZE printer escape 183
GLOBAL HANDLE data type 8
GRAYED menu-item option 48
GROUPBOX resource statement 86, 87

H
HANDLE data type 8
Handle table 38
HANDLETABLE data structure 38
HBITMAP data type 8
HBRUSH data type 8
HCURSOR data type 8
HDC data type 8
Heap

local 137
HEAPSIZE module-definition statement 137
HEAPSIZE statement 133
HELP option

MENUITEM resource statement 71
HFONT data type 8
HICON data type 8
HMENU data type 8
HPALETTE data type 8
HPEN data type 8
HRGN data type 8
HS_BDIAGONAL brush hatch style 39

238

HS CROSS brush hatch style 39
HS -DIAGCROSS brush hatch style 39
HS - FDIAGONAL brush hatch style 39
HS - HORIZONTAL brush hatch style 39
HS= VERTICAL brush hatch style 39
HSTR data type 8
h WindowMenu 20

Icon resource 62
ICON resource-compiler key word 62
ICON resource statement 92
IMPORTS module-definition statement 138
IMPORTS statement 133, 138
INCLUDE environmental variable 103
IncUpdate 52
InsertMenu function 37
int data type 8

L
LB ADDSTRING message 28, 37, 47
LB -INSERTSTRING message 28,37,47
LB - SETCOLUMNWIDTH message 99
LBS EXTENDEDSEL control style 99
LBS - HASSTRINGS control style 99
LBS - MUL TICOLUMN control style 99
LBS - MULTIPLESEL control style 99
LBS - NOINTEGRALHEIGHT control style 99
LBS - NOREDRA W control style 100
LBS - NOTIFY control style 99
LBS - OWNERDRA WFIXED control style 100
LBS=OWNERDRAWVARIABLE control style

100
LBS_SORT control style 99
LBS STANDARD control style 99
LBS=WANTKEYBOARDINPUT control style

100
Library module 139
LIBRARY module-definition statement 139
LIBRARY statement 133, 139
LISTBOX control class 85, 95
LISTBOX resource statement 85, 86
LOADONCALL resource-compiler key word

62, 63, 65, 66, 69, 73
LoadString function 66
Local heap 137

Software development kit

Local stack 141
LOCALHANDLE data type 8
LOGBRUSH data structure 38
LOGFONT data structure 40
LOGP ALETTE data structure 43, 52
LOGPEN data structure 44
LONG data type 8
long data type 8
LPBITMAP data type 8
LPBITMAPCOREHEADER data type 8
LPBITMAPCOREINFO data type 8
LPBITMAPFILEHEADER data type 8
LPBITMAPINFO data type 8
LPBITMAPINFOHEADER data type 8
LPCOMP AREITEMSTRUCT data type 8
LPCREATESTRUCT data type 8
LPDELETEITEMSTRUCT data type 9
LPDRAWITEMSTRUCT data type 9
LPHANDLETABLE data type 9
LPINT data type 9
LPLOGBRUSH data type 9
LPLOGFONT data type 9
LPLOGP ALETTE data type 9
LPLOGPEN data type 9
LPMEASUREITEMSTRUCT data type 9
LPMETAFILEPICT data type 9
LPMSG data type 9
LPOFSTRUCT data type 9
LPP AINTSTRUCT data type 9
LPP ALETTEENTRY data type 9
LPPOINT data type 9
LPRECT data type 9
LPSTR data type 9
LPTEXTMETRIC data type 9
LPVOID data type 9
LPWNDCLASS data type 9
L TEXT resource statement 80

M
MakeProcInstance function 8
MARKP ARITY parity type 26
Maximize box 76
MDICREATESTRUCT data structure 45
MEASUREITEMSTRUCT data structure 46, 47
MENU resource statement 68, 69, 70, 71, 73, 78
MENUITEM SEPARATOR statement 73

Index

MENUITEM statement 70
MENUITEMTEMPLATE data structure 47
Metafile picture format 49
METAFILEPICT data structure 49
MF _CHECKED menu option 48
MF _END menu option 48
MF _HELP menu-item option 48
MF _MENUBARBREAK menu-item option 48
MF _MENUBREAK menu-item option 48
MF _ OWNERDRA W menu-item option 48
MF _POPUP menu-item option 48
MFCOMMENT printer escape 183
MIDCREATESTRUCT menu flag 46
Minimize box 76
Mnemonic 70,80,81,82,83,84,86,87,88
MOVEABLE resource-compiler key word 62,

64, 65, 66, 69, 73
MSG data structure 50
MUL TIKEYHELP data structure 50
Multiple-line edit control 98

N
n& (ampersand)[#ampersand]

use in MENUITEM statement 70
n \a See Escape character
n.DEF file See Module-definition file
n#include directiveUnclude directive]

when required with STYLE statement 75
n \t See Escape character
nAccelerator See ACCELERATORS resource

statement
NAME module-definition statement 139
NAME statement 133
nAmpersand (&)

adding a mnemonic with 70,80,81,82,83,
84,86,87,88

nASCII character
use with ACCELERATORS statement 67

nBitmap
device-independent

BITMAPCOREHEADER data structure 12
BITMAPCOREINFO data structure 13
BITMAPINFO data structure 15
BITMAPINFOHEADER data structure 17
color 55
described 12, 13, 15, 16

239

file format 109
file format 14
mouse cursor shape 62
resource 62

nBITMAPCOREINFO See also RGBTRIPLE
nBITMAPINFO See also RGBQUAD
nBrush

creating 38
nBUTTON control class

control styles 83, 87, 88, 89, 96
nCharacter

escape@\a 70
escape@\t 70

nCHECKBOX resource statement
DIALOG resource statement 79

nCHECKED option
MENUITEM resource statement 71
POPUP resource statement 72

nChild window
clipping 76

nClient area
painting 52

nClipboard
file format 113

nColor
data types 20
explicit RGB 20
logical-palette index 20
palette-relative RGB 20
specifying 20

nColor palette See also Logical palette
nCOMBOBOX control class

control styles 91, 97
nCOMBOBOX resource statement

DIALOG resource statement 79
nControl

owner-draw
drawing 36
item deleted from 28

size-box 95
nControl class

BUTTON@control styles 96
BUTTON@described 95
COMBOBOX@described 95
control styles@described 96
described 94
EDIT 95

240

control styles 97
LISTBOX 95
LISTBOX@control styles 99
SCROLLBAR 95
SCROLLBAR@control styles 100
STATIC 95

nControl edit See edit control
nCONTROL option

ACCELERATORS resource statement 68
nCONTROL resource statement

DIALOG resource statement 79
nControl styles

BUTTON class 96
COMBOBOX class 97
described 96
EDIT class 97
LISTBOX class 99
SCROLLBAR class 100

nControl text
centered 82
left-justified 80
right-justified 81

nCreateWindow function
creating a window with dialog-box attributes
75

nCursor
file format 111
resource 62

nDDE
messages 206
protocol 205

nDEFPUSHBUTTON resource statement
DIALOG resource statement 79

nDELETEITEMSTRUCT data structure
described 28

nDevice-independent bitmap See Bitmap,
device-independent

nDEVICEDATA printer escape See
P ASSTHROUGH printer escape

nDialogbox
creating 32, 73
items 34
template 73
text font 34
window style 75

nDIALOG resource statement
control class@control styles 96

Software development kit

dialog control statements@CHECKBOX 79,
83
dialog control statements@COMBOBOX 79,
91
dialog control statements@CONTROL 79, 94
dialog control statements@Control classes 94
dialog control statements@CTEXT 79,82
dialog control statements@CTEXT statement
79
dialog control
statements@DEFPUSHBUTTON 79, 87
dialog control statements@EDITTEXT 79, 89
dialog control statements@GROUPBOX 79,
86
dialog control statements@ICON 79, 92
dialog control statements@LISTBOX 79,85
dialog control statements@LTEXT 79, 80
dialog control statements@PUSHBUTTON
79,84
dialog control statements@RADIOBUTTON
79,88
dialog control statements@RTEXT 79,81
dialog control statements@RTEXT statement
79
dialog control statements@SCROLLBAR 93
dialog option statement@CAPTION 75, 77
dialog option statement@CLASS 75, 78
dialog option statement@FONT 75, 79
dialog option statement@MENU 75, 78
dialog option statement@STYLE 75
dialog option statement@STYLE 74

nDIB_PAL_COLORS
device-independent bitmap color table
option 13, 16,39, 121

nDIB_RGB_COLORS
device-independent bitmap color table
option 39, 121

nDirective
resource compiler

#define 103
#elif 106
#else 106
#endif 107
#if 105
#ifdef 104
#ifndef 105
#include 103

Index

#Undef 104
described 103

nDLGTEMPLATE
DLGITEMTEMPLATE data structure 34
FONTINFO data structure 34

nDocument conventions
\bcB\ecbold text\bcD\ec 2
\ bcFl 05M\ ecmonospaced type \ bcF255D \ec
3
\bcMI\ecitalic text\bcD\ec 3
curly braces ({ }) 3
double brackets ([[]]) 3
horizontal ellipses (. ..) 3
parentheses () 3
quotation marks (\bc169\ec \bc170\
ec)[quotation marks OJ 3
small capital letters 3
vertical bar (I) 3
vertical ellipses 3

nDRA WITEMSTRUCT data structure
described 36

nDrop-down menu See Pop-up menu
nDynamic Data Exchange See DDE
NEAR data type 9
nEDIT control class

control styles 90, 97
nEDITTEXT resource statement

style option 90
nEDITTEXT statement

DIALOG resource statement 79
nEllipses

horizontal
as document convention 3

vertical
as document convention 3

nEscape character
\a 70
\t 70

nEscapes
printer 153

NEWFRAME printer escape 184
nExporting

function 139
NEXT BAND printer escape 184
nFile

bitmap
device-independent@format 109

241

clipboard@format 113
cursor@format 111
icon@format 110
initialization@WINDOWS.H 75
metafile@format 113

nFile format
module-definition file 133

nFont
resource 62

nGRAYED option
MENUITEM resource statement 71
POPUP resource statement 71

nGroup box
BUTTON class 86

nGROUPBOX resource statement
DIALOG resource statement 79

nHEAPSIZE statement
syntax 137

nIcon
file format 110

nICON resource statement
DIALOG resource statement 79

nINACTIVE option
MENUITEM resource statement 71
POPUP resource statement 71

nKey
\bcS\ecBACKSPACE\bcD\ec 95
\bcS\ecCONTROL \bcD\ec 68
\bcS\ecSHIFT\bcD\ec 68
\bcS\ecTAB\bcD\ec 77
editing 90

nKeyword
resource-compiler

BITMAP 62
CURSOR 62
DISCARDABLE 62, 64, 65, 66, 69,74
FIXED 62, 63, 65, 66, 69; 73
FONT 62
ICON 62
LOADONCALL 62, 63, 65, 66, 69, 73
MOVEABLE 62, 64, 65, 66, 69, 73
PRELOAD 62, 63, 65, 66, 69, 73

nList box
owner-draw 28
owner-draw@measuring 46
owner-draw@sorting 22

242

nLISTBOX control class
control styles 86, 99

nLISTBOX resource statement
DIALOG resource statement 79

nLogical palette See also LOGP ALETTE data
structure
creating 43

nLTEXT resource statement
DIALOG resource statement 79

nMDI See Multiple document interface (MDI)
nMenu

loading 47
owner-draw@drawing 36
owner-draw@measuring 46
resource 68

nMENUBARBREAK option
MENUITEM statement 71
POPUP statement 72

nMENUBREAK option
MENUITEM statement 71
POPUP statement 71

nMetafile
file format 113

nModule-definition file
CODE statement 134
DATA statement 135
DESCRIPTION statement 135
EXETYPE statement 136
EXPORTS statement 136
HEAPSIZE statement 137
IMPORTS statement 138
LIBRARY statement 139
module statement@description 133
NAME statement 139
SEGMENTS statement 140
ST ACKSIZE statement 141
STUB statement 141

nModule statement
in module definition file@description 133

nMultiple Document Interface (MDI)
child window@creating 45

nMultiple document interface (MDI)
child window 20

nMultiple-line resource statement
ACCELERATORS 67
DIALOG 73
MENU 68

Software development kit

RCDATA64
STRINGTABLE 65

nNaming
executable module 139
imported functions 138
library module 139

nNaming conventions
data types 9

nNOINVERT option
ACCELERATORS resource statement 68

NOPARITY parity type 26
nOption

menu-item
CHECKED 71, 72
GRAYED 71
HELP 71
INACTIVE 71
MENUBARBREAK 72

MENUBARBREAK 71
MENUBREAK 71
SHIFf 68

nOwner-draw button See Button owner-draw
nOwner-draw control See Control owner-draw
nOwner-draw menu See Menu, owner-draw
nPalette See logical Logical palette
nPen

creating 44
nPop-up menu

described 71
nested 72

NPSTR data type 9
nPUSHBUTTON resource statement

DIALOG resource statement 79
nRADIOBUTTON resource statement

DIALOG resource statement 79
nRaw-data resource See RCDATA resource

statement
nResource

bitmap 62
cursor 62
font 62
icon 62
loading 62, 63, 65, 66, 73
raw data 64
string 66
user-defined 63

Index

nResource directive
#define[define1 103
#elif[elif] 106
#else[else1 106
#endif[endif] 107
#if[if] 105
#ifdef[ifdef1 104
#ifndef[ifndef] 105
#include[include1 103
#Undef[undef1 104
described 103

nResource statement
ACCELERATORS@CONTROL option 68
ACCELERATORS@NOINVERT option 68
ACCELERATORS@SHIFf option 68
DIALOG 73
DIALOG@CAPTION statement 77
DIALOG@CHECKBOX statement 83
DIALOG@CLASS statement 78
DIALOG@COMBOBOX statement 91
DIALOG@CONTROL statement 94
DIALOG@CTEXT statement 82
DIALOG@DEFPUSHBUTTON statement 87
DIALOG@dialog control statements 79
DIALOG@dialog option statements 75
DIALOG@EDITTEXT statement 89
DIALOG@FONT statement 79
DIALOG@GROUPBOX statement 86
DIALOG@ICON statement 92
DIALOG@LISTBOX statement 85
DIALOG@LTEXT statement 80
DIALOG@MENU statement 78
DIALOG@options 73
DIALOG@PUSHBUTTON statement 84
DIALOG@RADIOBUTTON statement 88
DIALOG@RTEXTstatement 81
DIALOG@SCROLLBAR statement 93
DIALOG@STYLE statement 75
MENU 68, 69, 70, 71, 73
RCDATA 64, 65
resource 62
single-line 61, 62
STRINGTABLE 65, 66
user-defined 63, 64

nRGB See also Color
explicit 20
palette-relative 20

243

nScroll bar
horizontal 76
vertical 77

nSCROLLBAR control class
control styles 100

nSELECTP APERSOURCE printer escape See
GETSETP APERBINS printer escape

nSETENDCAP printer escape See
SETLINECAP printer escape

nStatement See specific statement
module-definition file@EXETYPE 136
module-definition file@LIBRARY 139
module-definition file@NAME 139

nString resource See also STRINGT ABLE
resource statement, See also RCDATA
resource statement

nStyle
control

BUTTON class 83, 85, 87, 88, 89
COMBOBOX class 91
defau1t@CHECKBOX statement 84
defau1t@COMBOBOX statement 92
default@CTEXT statement 82
defau1t@DEFPUSHBUTTON statement 88
default@EDITTEXT statement 90
default@GROUPBOX statement 87
defau1t@ICON statement 92
defau1t@LISTBOX statement 86
default@LTEXT statement 80
default@PUSHBUTTON statement 85
defauIt@RADIOBUTTON statement 89
default@RTEXT statement 81
DS_ABSALIGN 74
EDIT class 90
LISTBOX class 86
STATIC class 92

window

244

listing 75
WS_BORDER 76, 86
WS_CAPTION 76
WS_CHILD 74, 76
WS_CHILDWINDOW 76
WS_CLIPCHILDREN 76
WS_CLIPSIBLINGS 76
WS_DISABLED 76, 85, 87, 88, 89, 90
WS_DLGFRAME 76

WS_GROUP 76,80,81,82,83,85,88,89,
90
WS_HSCROLL 76, 90
WS_ICONIC 76
WS_MAXIMIZE 76
WS_MAXIMIZEBOX 76
\AJS_r..I!INIMIZE 76
WS_MINIMIZEBOX 76
WS_OVERLAPPED 77
WS_OVERLAPPEDWINDOW 77
WS_POPUP 77
WS_POPUPWINDOW 77
WS_SIZEBOX 77
WS_SYSMENU 77
WS_ TABSTOP 77, 80, 81, 82, 83, 85, 87,
88,89,90
WS_THICKFRAME 77
WS_ VISIBLE 77
WS_VSCROLL 77,86,90

nSTYLE resource statement
when #include directive required with 75

nSTYLE statement
DIALOG resource statement 74, 75

nText control
left-justified 80
right-justified 81

nWindow
border 76
child 76
control

user-defined 94
creating 24, 75
disabled 74, 76
iconic 76
overlapping 77
pop-up 77
size 76, 77
style

dialog box 75
visible 77
zoom 76

n Window style
listing 75
WS_CHILD 74

Software development kit

o
ODA_DRAWENTIRE drawing action 37
ODA_FOCUS drawing action 37
ODA_SELECT drawing action 37
ODDP ARITY parity type 26
ODS_CHECKED owner-draw control status 37
ODS_DISABLED owner-draw control status 37
ODS_FOCUS owner-draw control status 37
ODS_GRAYED owner-draw control status 37
ODS_SELECTED owner-draw control status 37
ODT_BUTTON owner-draw control type 36, 47
ODT_COMBOBOX owner-draw control type

23,28, 36, 47
ODT_LISTBOX owner-draw control type 23,

28,36,47
ODT_MENU owner-draw control type 36, 47
OFSTRUCT data structure 51
ONE5STOPBITS stop-bits type 26
ONESTOPBIT stop-bits type 26
OR operator 72,80,81,83,85,86,87,89,90,

91

p
P AINTSTRUCT data structure 52
P ALETTEENTRY data structure 43, 52
Parentheses ()

as document convention 3
PASSTHROUGH printer escape 185
PC_EXPLICIT palette-entry option 53
PC_NOCOLLAPSE palette-entry option 53
PC_RESERVED palette-entry option 53
PINT data type 9
Plus (+) operator 80, 81, 82, 83, 85, 86, 87, 88,

89,90,91,92
POINT data structure 54
POPUP resource statement 70, 71, 72
PRELOAD resource-compiler key word 62, 63,

65, 66, 69, 73
Printer driver

initialization 29
PROOF_QUALITY font quality 42
PSTR data type 9
PUSHBUTTON resource statement 84, 85
PWORD data type 9

Index

Q
QUERYESCSUPPORT printer escape 186
Quotation marks

double (\bc170\ec) 70
double (\bc169\ec\bc170\ec) 66,67, 70, 78

Quotation marks (\bc169\ec \bc170\ec)
as document convention[Quotation marks (),
as document convention] 3

R
R2_BLACK raster drawing mode 144, 145
R2_ COPYPEN raster drawing mode 144, 145
R2_MASKNOTPEN raster drawing mode 144,

145
R2_MASKPEN raster drawing mode 144, 145
R2_MASKPENNOT raster drawing mode 144,

145
R2_MERGENOTPEN raster drawing mode 144,

145
R2_MERGEPEN raster drawing mode 144, 145
R2_MERGEPENNOT raster drawing mode 144,

145
R2_NOP raster drawing mode 144, 145
R2_NOT raster drawing mode 144, 145
R2_NOTCOPYPEN raster drawing mode 144,

145
R2_NOTMASKPEN raster drawing mode 144,

145
R2_NOTMERGEPEN raster drawing mode 144,

145
R2_NOTXORPEN raster drawing mode 144,

145
R2_WHITE raster drawing mode 144, 145
R2_XORPEN raster drawing mode 144, 145
Radio-button control 88
RADIOBUTTON resource statement 88, 89
RCDATA resource statement 64, 65
RECT data structure 54
RESTORE_CTM printer escape 186
RGBQUAD data structure 15, 55
RGBTRIPLE data structure 12, 55
RTEXT resource statement 80, 81

5
SAVE_CTM printer escape 187

245

SBS_BOTTOMALIGN control style 101
SBS_HORZ control style 100
SBS_LEFTALIGN control style 100
SBS_RIGHTALIGN control style 100
SBS_SIZEBOX control style 101
SBS_SIZEBOXBOTTOMRIGHTALIGN control

style 101
SBS_SIZEBOXTOPLEFTALIGN control style

101
SBS_TOPALIGN control style 101
SBS_ VERT control style 100
Scroll bars 98, 100
SCROLL BAR control class 95
SCROLL BAR resource statement 93
SEGMENTS module-definition statement 140
SEGMENTS statement 133
SET_ARe_DIRECTION printer escape 190
SET_BACKGROUND_COLOR printer escape

191
SET_BOUNDS printer escape 191
SET_CLIP_BOX printer escape 192
SET_MIRROR_MODE printer escape 197
SET_POLY_MODE printer escape 199
SET_SCREEN_ANGLE printer escape 201
SET_SPREAD printer escape 201
SETABORTPROC printer escape 188
SETALLJUSTV ALUES printer escape 189
SETCOLORTABLE printer escape 193
SETCOPYCOUNT printer escape 194
SETKERNTRACK printer escape 195
SETLINECAP printer escape 196
SETLINEJOIN printer escape 196
SETMITERLIMIT printer escape 198
SHIFT option

ACCELERATORS resource statement 68
short data type 9
Single-line resource statement 61, 62
Size-box control 77, 95
Small capital letters

as document convention 3
SP _APPABORT escape error code 184, 185
SP _ERROR escape error code 184, 185
SP _ OUTOFDISK escape error code 184, 185
SP _OUTOFMEMORY escape error code 184,

185
SP _USERABORT escape error code 184, 185
SP ACEPARITY parity type 26

246

SS_BLACKFRAME control style 102
SS_BLACKRECT control style 102
SS_CENTER control style 101
SS_GRAYFRAME control style 102
SS_GRAYRECT control style 102
55_ICON control style 92, 102
SS_LEFT control style 101
SS_LEFTNOWORDWRAP control style 101
SS_NOPREFIX control style 102
SS_RIGHT control style 101
55_SIMPLE control style 102
SS_USERITEM control style 102
55_ WHITEFRAME control style 102
SS_ WHITERECT control style 102
Stack

local 141
STACKSIZE module-definition statement 141
STACKSIZE statement 133
STARTDOC printer escape 202
STATIC control class 95
String resource 66
STRINGTABLE resource statement 65, 66
STUB module-definition statement 141
STUB statement 133
STYLE resource statement 75
STYLE statement

listing window style 75
System-menu box 77

T
Tab stop 95
Table

handle 38
Template

DIALOG 73
TEXTMETRIC data structure 56
Title bar 76, 77
TRANSFORM_CTM printer escape 203
TranslateAccelerator function 67
TWOSTOPBITS stop-bits type 26
Types

data 7,8,9

u
User-defined control window 94
User-defined resource 63

Software development kit

User-defined resource statement 63, 64

v
Variable

environmental
INCLUDE 103

Vertical bar (I)
as document convention 3

Virtual-key character 67
void data type 9

W
WINDOWS.H initialization file 75
WM COMMAND message 20
WM - COMMAND message message 67
WM - COMPAREITEM message 22
WM=DDE_ACK message 209
WM DDE ADVISE message 211
WM - DDE -DATA message 213
WM-DDE -EXECUTE message 214
WM -DDE -INITIATE message 216
WM - DDE - POKE message 217
WM - DDE -REQUEST message 218
WM - DDE -TERMINATE message 219
WM - DDE - UNADVISE message 219
WM - DELETEITEM message 28
WM - DRA WITEM message 36
WM - ENTERIDLE message 33
WM=MEASUREITEM message 46
WM SETFONT message 33
WM=SYSCOMMAND message 67

Index

WM SYSMENU window sty Ie 33
WNDCLASS data structure 58
WORD data type 9
Wordwrap 98
WS BORDER window style 76,86,91
WS - CAPTION window style 33, 76
WS - CHILD window style 74, 76
WS - CHILDWINDOW window style 76
WS - CLIPCHILDREN window style 76
WS - CLIPSIBLINGS window style 76
WS=DISABLED window style 76,85,87,88,

89,90
WS DLGFRAME window style 76
WS=GROUP control style 76,80,81,82,83,85,

88,89,90
WS HSCROLL window style 46, 76, 90
WS-ICONIC window style 76
WS -MAXIMIZE window style 46, 76
WS - MAXIMIZE BOX window style 76
WS -MINIMIZE window style 46, 76
WS-MINIMIZEBOX window style 76
WS - OVERLAPPED window sty Ie 77
WS - OVERLAPPEDWINDOW window style 77
WS - POPUP window sty Ie 77
WS-POPUPWINDOW window style 77
WS - SIZEBOX window style 77
WS - SYSMENU window style 76, 77
WS=TABSTOP window style 77,80,81,82,83,

85,87,88,89,90
WS THICKFRAME window style 77
WS - VISIBLE window style 77
WS= VSCROLL window style 46, 77, 86, 90, 91

247

y!(Q)IUW/~\I~: IIII

BORLAND
CORPORATE HEADQUARTERS: 1800 GREEN HILLS ROAD, P.O. BOX 660001, scons VALLEY, CA 95067-0001, (408) 438-5300. OFFICES IN: AUSTRALIA,
DENMARK, FRANCE, GERMANY, ITALY, JAPAN, NEW ZEALAND, SINGAPORE, SWEDEN AND THE UNITED KINGDOM. PART #14MN-API02-1 O· BOR 3188

