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In system analysis work there arises from time to time a need for sequences

of random numbers, to simulate, e.g., the effects of noise and errors of

a random nature on system performance; and, of course, such sequences are
essential to the use of Monte Carlo techniques. This memorandum will discuss
some techniques for generating sequences of numbers which are suitable for
these puproses, and will describe some experiments that have been conducted

to study the nature of such sequences. Although the following discussion will
be limited to application to Autonetics' RECOMP digital computer, the basic
ideas are certainly applicable to digital computation in general.

A conventional digital computer such as RECOMP is, of course, incapable of
performing a truly random process; all of its operations are deterministic,
However, there exists a rather convenient method of generating a sequence of
numbers which, from the standpoint of the user are (through his ignorance,

if you will) unpredictable and in this sense are pseudo-random. By a pseudo-
random sequence we mean a previously determined sequence which is used to
simulate a random sequence; however, in the discussion that follows the pre-
fix "pseudo" will be omitted when we refer to such sequences.

The method for generating this sequence is as follows: Let N be an integer
greater than one and let X, be a fraction

0 & x,<1
Define

Xewy = fractional part of [ Nx, 2
_ . -
Then the sequence -Sxk,g is uniformly distributed between zero and one.
. ~

That is, the probability density function

51  0<x<l
p(x)
(p otherwise

To generate this random sequence on RECOMP we store the fraction x at

a binary scale of zero and the integer N at a binary scale of 39. Then
if we multiply N by x we have the fractional part of the product, which
is the new x, in the R register., The sequence of commands is

CLA X
MPY N
XAR (exchange A & R registers)
3T0 x
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The simplicigg of this method is apparent. In practice it is recommended
that X = 2777 and that an odd power of 3 2515 be selected for N, Different
choices will of course provide different sequences. It is best to select

the largest odd power of 3 or 5 that can be contained in 39 bits. For further
discussion on this point, as well as the mathematical nature of the pseudo-~
random sequence, see references (b) and (c). A convenient method of obtaining
different sequences is to employ two generators with different odd powers of; -
say, 5 for N, A member of the first sequence is selected, with an element of
chance, by throwing a sense switch, to be used as the starting number for the
second sequence which provides the random numbers for the problem, A brief
table of odd powers of 3 and 5 in cormand format is given in Appendix B,

In a practical application we are concerned with two characteristics of the
random sequence, One of these is the distribution of the random numbers, As
asserted above the members of the random sequence are uniformly di stributed
between zero and one, and a proof of this fact may be found in reference (d).
Figure 1 shows the actual distribution of a sample of 102} numbers generated
in this manner.

A second characteristic of interest is the sequencing of the numbers, or more
precisely, if the sequence is thought of as a random time series, the power
spectral density of the series. In this regard experimental evidence indicates
that the spectral density is "white" or uniform over all frequencies. (Of
course, as in all digital computer work, the spectral content is band limited
in a real time sense, by the sampling frequency, or the rate at which the
numbers are generated.) Another way of considering +this characteristic which
does not depend on any concept of time is to state that the members of the
sequence are statistically independent of one another. To demonstrate this
fact an "autocorrelation" function was computeds

N

1 ) =012...
RODI=§F xea e e

Figure 2 shows an actual example of this computation on a sample of 102k
numbers. . (The numbers were shifted first by subtracting one-half to lie
between plus and minus one-half.) From this figure it is apparent that for
one or more shifts the numbers are uncorrelated,

An important consequence of the independence of the members of the sequence
is that it permits the use of a single random number generator to provide
numbers for several applications in the same problem,



RECOMP TECHNICAL BULLETIN NO.

22

0.4

0.3

0.5

o0

. S #_aww Somn R N .

T

. «0.5

0.2 -O. 1

-0.3

-0.4

Sample Distribution of 102l Random Numbers.

Figure 1.



Rx(t) |

N Rd0)= oy =.0 848
oost

0.06
: { :
RY(C) = Fu%'_XKXK-%t.. Z¢¢Q>l70°¢’>3,
K=t '
0.’-)4 e N - ’C’[‘l/’
with X uniformly distributed between -3 and +%
{,}.;;?Z.-—
O -t s 7 9 _ ¢ ) ') '
>3 < % 7'517;‘11”%:' ' T
S 10 o 20 25 3?9
T
Figure 2. Autocorrelation Function of 102 Random Numbers.

22 °ON NILATING TVOINHOUL dWOOHEY

dnod dovd



RECOMP TECHNICAL RULLETIN NO, 22 PACE FIVE

Thus, we have available a simple method of generating a random sequence whose
members are uniformly distributed between zero and one and are independent of
one another or "white". Other rectangular distributions may be easily obtained
by multiplying by a scale factor and adding a bias. For example, suppose it

is desired to select at random an integer between 1 and 52, We simply generate
a random number, multiply by 52, add 1, and take the integral part of the answer
as the desired number.

However, distributions other than rectangular are often required. For example,
failure rate is often characterized by an exponential distribution, system
errors are frequently considered to have gaussian distributions; other random
events may have a Poisson distribution. How may other distributions be ob-
tained from a rectangular distribution?

If x is uniformly distributed between zero and one and if the prcbability
‘density function p (t) has the properties

o

,
p(t)> 0 and | p (t)dt=1

ST

~ then the random variable 2z defined by the relation

A

x = (K p(t) dt (1)

N
-

has the probability distribution function

2

-

P (2) =j p (t) dt

and hence the probability density function p (z). For Probability éz < zog
N .. zo |
= Probability { i éjp (4) dt %
zo
= S p (t) dt
o

since x is uniformly distributed between zero and one and hence Probability

3
£

i
tx < éﬁ = a

For example, suppose an exponential distribution is required, i.e.,

/ -aZ
\ae 0
» o(z) = S
2 £

z
0

T
o
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From equation (1) it is therefore requitfed that the uniform random variable

8 ,
Ve -at gt
l\ ae ' 0% 3
x =
) / )o
(\ Y z £ 0
For z20
x=]l g2
or z=1 log (1-x)
‘ -a

or since x and (1 - x) have the same distribution, we let
z= 1 logx
-a

and the random variable 2z will have the probability density p (2) as
desired. In other words, we generate a random number, compute its natural
logarithm, and divide by minus a . The result will have the probability
density function p (zg.

As a second example suppose it is desired to select a point at random from

the unit circle under the assumption that the points are uniformly distributed
over the circle. One possible solution would be to generate two random numbers,
say x and Yy, scaled and biased to lie between plus and minus one, rejecting
the pair if the sum of their squares exceeded one. The pairs (x, ys that were
accepted would, of course, have a uniform distribution over the unit circle..

An alternate method would use polar coordinates r ande.‘_ From symmetry it
is clear that any angle is equally likely so the probability density of o
is given by

1 048 L 27T
: 2T
p_ ©) =
= 0 otherwise

Therefore, to generate the random variable & we simply generate a random
number and multiply it by 2yT.
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To find the distribution of r we note that the probability of a point lying
in an incremental ares is A '

dx dy = pr dr d&
T ™

=(2r dr) 42
277

= p.(r)ar pg(e) ds

‘Since we have already determined pg(©) it follows that
or O<Lr-l1

p(r) =

0 otherwise

From equation (1) we require that the uniformly distributed number

r
x = J 2t at = r°
0
%
or r= x‘

To summarize the procedure then we generate two random numbers. One of these
is multiplied by 27T and designated & . The square root of the other is
extracted and the result designated r. The resulting points (r,=) are
uniformly distributed over the unit circle. The size of the circle can be
easily scaled by multiplying r by the radius of the desired circle.

In principle any desired distribution may be obtained by the method discussed
in the preceding paragraphs. However, there may be computational difficulties
for some density functions. Unfortunately, this is the case for the most
important gaussian distribution,

1 -22/2

&=

p(z) =

According to equation (1) it would be necessary to invert the equation

z
J” -1-,2/2
x = e dat
Lo Y
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If the function on the right is designated C;i_) (z) we see that it is required
to find ~

-1

z = fiB (x)

and of course this equation may be solved by numerical methods; but, it would
appear that considerable computation would be required, and for this reason it
has not been attempted. As an alternate approach we again resort to polar
coordinates. If u and v are independent random nmumbers with gaussian
distributions then the random variable

2 2
r= u tvy
has the so-called Rayleigh distribution
*
| re * /2 r>0
p (r) =
0} r £ 0

and the random variable
' =1
= tan v

is uniformly distributed between zero and 277 . To obtain a random number
with the Rayleigh distribution, as before, we let the unlformly distributed

nunrber 5/
x = SI te™Y /2 dt
‘ 0
| 2
= l- e"'/2,

or

r = | 21log (1%;)

‘or since x and (1~x) have the same distribution we simply let

. D
TR
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Similarly we let

&= o= 2 °Tx

where of course x is another uniformly distributed number. Then we simply
make the inverse transformation

u = Ir cos &
v = pr sin =

and u and v will be independent random numbers with gaussian distributions.
It will be noted that this method requires the computation of a logarithm and
sine and cosine for which subroutines are normally available,

The above method provides a pair of independent gaussian random numbers at the
expense of computing a logarithm and sine-cosine. Since the latter computations
are somewhat time consuming, and usually time is at a premium in analyses of

a grobabilistic nature, this method has limited practical application. The
following approach provides a technique for generating numbers whose distribution
is approximately gaussian with relatively little computation required.

From the central limit theorem of statistics it is known that the distribution

of the average of N samples from any distribution approaches the gaussian
distribution as N becomes large. If the original distribution is rectangular,

the convergence is remarkably fast, in fact, N = 3 or | gives a distribution
which is a very good approximation to the gaussian.
Let

1 0c. xiz.l

Py (xi ) = (2)
0] otherwise

Then the random variable

7 = ox
i, ™
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has the probability density function Pn (2z) which may be obtained by con-
volving p; with py; or

e

s ‘ .
p, (2) =f py(a=x) ., (x) ax N =23, .
- 00

For convenience we let

g n
where M n = f tpn(t)dt
- ed

) -4
g2 - f('t- )2 b ()at

so that w, has a zero mean and unit wvariance.

For N = 2 the distribution is triangular shaped and of limited interest. For
N = 3 evaluation of the convolution integral gives

1=x® o ul& s
8

p,(u) - G-Juf 214 pi<3 (3)

0 34 [uf
'whereg-,Z (xl*x2+:f3 ) -3 (L)
with x,, 1=1,2, 3, distributed according to (2). Aplo't of py (u) is

given in Figure 3. For comparison, a plot of the gaussian distribution

&//(u);& e -u%
i} : \/2?75 :

is given on the same figure. From this figure it is seen that the distribution
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of u is a very good approximation to the gaussian, In fact, it would be
difficult to distinguish between samples from the two distributions unless
an extremely large sample were taken, Figure L shows the actual distri-
bution of 5000 numbers generated according to equation (L)e In this

figure the area of the rectangles equals the fraction of the sample falling
in the corresponding interval. The gaussian is also plotted on this figure
for comparison, ‘

This technique lends itself readily to digital computation. A subroutine for
generating "approximate gaussian' random numbers in this fashion is given in
Appendix A, As mentioned above, these numbers have the distribution given

by (3) with zero mean and unit variance. To simulate the gaussian random
variable z with mean .{ , and variance &, det

z = CrzLL ¥ ‘(z

It should be noted that members of the resulting gaussian random sequence
are also independent of one another or "white',

An even better approximation may be obtained by combining four of the uni-
formly distributed numbers., For N equal L, evaluation of the convolution
integral yields

o g ) = 2 3
g L L PRIy

Tt A

3'- 3 Ey < o 43
ph(u) - (2 13 SthL) 1,}3,‘_<_ ,u'wﬂ 2 'VB

where u = 1;37 é?: xi -2
. =1

with x3, 1 = 1, 2, 3, L, distributed according to (2). As before the distri-
bution has been scaled to have a zero mean and unit variance. Figure 5 shows
a plot of p (u) with the gaussian for comparison,

Appendix C provides a tébulation of the density functions p

3 (u) and P, (w)
together with thelr respective cumulative distributions,
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Another technique that is useful in providing a distribution that, although
not gaussian, favors small numbers over large and thus may be adequate for
some purposes, is to simply multinly two of the uniformly distributed numbers.
If Xyy Xp are distributed according to

( % -1 \Xi w1
P(xi) = 4

i
$

{& 0O otherwise
i=1, 2

 then the random variable z = x1x2

has the distribution
5 log _1_ -1 .2 ..1

p(z) =
{ 0 otherwise

Also the random variable y = x; |x;| has the distribution

p(y) = f
0

otherwise

T

>

Random variables such as these have the advantage of being computed rather
easily.

As 2 final subject, we will briefly consider the case where a random sequence

is required with a spectral density other than white. For example, it might

be required to constrain the sequence so that it does not change value too
rapidly or in other words, suppress the high frequency components in the sequence.
To achieve this end it is necessary to run the "white" sequence through a low-
pass filter.

If the input x (%) to a filter with transfer function H (jw) is white, i.e.,
has power spectral density,

S (jw) =8 (0)
X X

then the power spectral density of the output y (t) is

s (3w) =fH (3w | 25 (0)
y i : x
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or in other words, the output spectral content is determined by the filter
characteristic. If the input to a linear filter has a gaussian distribution
then the output will also be gaussian. It is then only necessary to determine
the mean and variance of the output in order to completely characterize the
output distribution. Well known techniques are available for the design of
digital filters and thus it is possible to generate gaussian random numbers
with a desired spectral content.

To demonstrate this technique a simple first order lag filter was programmed
and fed with a white gaussian input. The distribution and autocorrelation
function of the output were then computed. Such a filter has the character-
istic

H(jw) = a
a + juw
and impulse response
h(t) = ae~2t

where a 1is the so-called corner frequency. The output spectral density
is therefore
. - 2
S, (3w) a 5, (0) (7)
a2+ wl

The autocorrelation function of the output(the inverse transform of Sy(jw)
has the form 5 gl (8)
( s ) = ;‘ e !
Ry (& Ty

where :?’y is the variance of the output.

To derive the difference equation defining the digital filter, we use the
fact that the output is the convolution of the input with the filter impulse
response,

t
y(t) = S h(t - t') x(t') dt
0

~t ol ot
; ae a(t-t!) x(t') dt!
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To evaluate this integral numerically we take an integration step At =T
and assume x (t) is constant over this interval, thus

x(t) = x

n (n-l)T ER t "“ nT n= 1, 2, [N

The X will be the input white zaussian random sequence, with zero mean and

unit variance,

Now
(n+1)T
~a(n+)T at’
I+ = yE@+1)T) = e ) ae x(t')at!
0
nT (n+1)T
- -anT™ - A '
= g-2t -anl 208t & (t1)dt’ + e a(n+1)T§ aeat x_ bt
K 4T
or
Yoe1 = 73T Yo + (1 - e'aT) >

Equation (9) is the difference equation that defines the filter. By averaging
both sides of (9) we see that the output mean

Ay = e"aﬁl!y o (1 -emqly s

or ’Aiy = A{ = 0 since the input has zero mean. The variance of the output
x

may be obtained by squaring both sides and averaging, and noting that the cross
term on the right involving xn+1 y,, averages to zero, since future input Xp41

is uncorrelated with present output Yo

Thus
2 2
o224 - o
y x
or 2. 1- o3t 2
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for Z =0,1,2, « + &

As an example of this computation we let
aT = 0.4

This gives

2
o = ,197
y

Figure 6 shows the distribution of the output (normalized to have unit variance)
and Figure 7 shows the output autocorrelation function. One could apply Fourier
techniques to determine the output spectral content. However, from the exponen-
tial nature of the output autocorrelation function, it is clear that the output
has the desired spectral density.
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Appendix A "Approximate - Caussian" Random Number
Generator Subroutine

Enter Subroutine with + TRA 0006.0
Exit to next location with gaussian random number in A and R registers

0006.0 + SAX 7760.0 + CTL 0010.0
+ CTV 0020.0 + TRA 7760.0
0010.0 + ADD 7773.0 + STA T7773.1
+ OLA 7777.0 + MPY 7776.0
4+ XAR 0000.,0 + STO 7777.0
+ ARS 0001.0 + ADD 777L.0
+ STO 777L.0 + CLA 7777.0
+ MPY 7776.0 + XAR 0000.0
+ STO 7777.0 + ARS 0001.0
0020,0 + CLA 7777.0 + MPY 7776.0
+ OLA 7775.0 + XAR 0000,0
+ STO 0027.0 + ARS 0001.0
+ FAD 777L.0 + TRA 0000,1

=3 at Binary scale of 2
+2 at 3inary scale of 39
N at Binary scale of 39
Xy = +1 at Binary scale of 39

Notes:
(1) It is recommended that N be an odd power of 3 or 5,

(2) Main memory addresses are underlined,
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0dd Powers of 3 and 5

PAGE TWENTY ~TWO

RECOMP users may find the following list of odd powers of 3 and 5, in

Command format, useful in programming random number generatorss

323

321

319

317
3
515
513
511
59

15 -

= 4+ 1275321 +
= + 0115731 +
= + 0010520 =
= + 0000751 =
= + 0000061 +
= + 03h3271 +
= 4+ 0011080 =
= + 0000270 +
= + 000000L +

6720151
4245311
6547551
2413113
2714651
5223061
2347121
1035561
5632621
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Appendix C Probability Density Function and Cumulative

Distribution of pB(u) and ph(u)

W Coda
u PB(u) jﬁzp3(x)dx ph(u) S ph(x)dx
0  +,37500 + 0 +,00000 + O +,66667 + 0 +,00000 + O
1 +,37375 + 0 +,37L58 - 1 +,663L3 + 0 +,38L27 - 1
.2  +,37000 + O +,TL66T7 = 1 +,65010 + O +,76489 - 1
.3 +.36375 + 0 +,11137 + 0O +,63926 + 0O +,11385 + O
i +4.35500 + O +,14733 + O +,61949 + O +,15021 + O
o5  +.34375 + 0 +,18229 + O +,59536 + 0 +,18530 + 0
BH  +,33000 + O +,21A00 + O +,567L5 + O +,21888 + 0
o7 +.31375 + 0 +,2u821 + 0O +.5363L + O +,25076 + 0
.8  +,29500 + O +,27867 + 0O +,50260 + 0O +,23076 + O
9  +,27375 + O +,30712 + 0O +,1,6681 + 0 +,30876 + 1)
1.0 +,25000 + O +.33333 + O +,12956 + O +.3346L + 0O
1.1 +,22563 + 0O +.35710 + O +,39141 + O +,35834 + 0
1,2 +,20250 + O +,37850 + O +,3529L, + O +,37983 + O
1.3 +,18063 + 0O +.397€5 + O +,3147L + O +,39910 + O
1., +,16000 + O +.11L67 + 0O +,27737 + O +,01€19 + 0
1.5 +.14063 + 0O +,1,9969 + 0 +,201h3 + O +.1;3116 + O
1.6 +,12250 + O +,L14283 + 0O +,20747 + O +,0L110 + O
1.7 +.10563 + O +, 45123 + 0 +,17609 + 0 +,,5516 + O
1.8 +,90000 - 1 +. 16400 + O +,14781 + O +, 46450 + O
1.9 +.75625 -1 +,47227 + O +,12273 + O +. 01,7229 + 0O
2.0 +,62500 - 1 +,1,7917 + O +,10067 + O +,147873 + O
2.1 +,50625 - 1 +, 1,881 + O +,81115 - 1 +.1,8397 + 0
2,2 +,40000 -1 +,48933 + 0 +,64791 - 1 +,1,8818 + 0
2.3 +.,30625 -1 +,0,9285 + 0 +,50599 - 1 +,49150 + O
2.y +,22500 -1 +,19550 + O +,386L47 - 1 +,19406 + O
2,5 +,15625 -1 +.L49740 + O +,28743 - 1 +,L9600 + O
2.6 +,10000 - 1 +,1,9867 + O +,20695 - 1 +, 0972 + O
2.7 +.56250 - 2 +.199L) + O +.14309 - 1 +.498L2 + O
2.8  +,25000 - 2 +.119983 + 0 +.939h) - 2 +.09910 + O
2.9 +,62500 - 3 +.19998 + 0 +,57576 - 2 +,49953 + O
3.0 +.84703 =21 +,50000 + O +,32063 - 2 +.1,9979 + O
3,1 +.00000 + O +,10000 + 1 +,151482 - 2 +,1i9992 + O
3,2 +.,00000 + 0O +,10000 + 1 +,59085 - 3 +.19998 + O
3.3 +,00000 + O - +,10000 + 1 +. 1417 - 3 +,50000 + O
3.k  +.00000 + O +,10000 + 1  +.8LL8L - 5 +,50000 + O
3.5 +,00000 + O +,10000 + 1 +,00000 + O +,50000 + O
3.6 +,00000 + O +,10000 + 1 +,00000 + O +,50000 + O
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