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In system analysis work there arises from time to time a need for sequences 
of random numbers, to simulate, e.g., the effects of noise and errors of 
a random nature on system performance; and, of course, sue h sequences are 
essential to the use of Monte Carlo techniques. This memorandum will discuss 
some techniques for generating sequences of numbers which are suitable for 
these puproses, and will descr:ibe some experiment·s that have been conducted 
to studY the nature of such sequences. Although the following discussion will 
be limited to application to Autonetics' REC0HP digital computer, the basic 
ideas are certainly applicable to digital computation in general. 

A conventional digital computer such as RECOJ'!P is, of course, incapable of 
performing a truly random process; all of its operations are deterministic. 
However, there exists a rather convenient method of generating a sequence of 
numbers which, from the standpoint of the user are (through his ignorance, 
if you will) unpredictabl e and in this sense are pseudo-random. By a 1?seudo~. 
random sequence we mean a previously determined sequence which is used to 
simulate a random sequence; however, in the discussion that follows the pre­
fix IIpseudo" will be omitted l-lhen we refer to such sequences. 

The mathod for generating this sequence is as follows: Let N be an intefer 
greater than one and let Xo be a fraction 

o ~ xo~ 1 

Define 

Then the sequence 

=- fractional part of r NXk-1 
2 l_1 ? Xk) is uniformly distributed between zero and one. 

That is, the probability density function 

~l 
p(x) lo 

otherwise 

To generate this random sequence on RECOHP 'We store the fraction x at 
a binary scale of zero and the integer N at a binary scale of 39. Then 
if' we multiply N by x we have the fractional part of the product, which 
is the new x, in the R register. The sequence of commands is '. 

CLA x 
MPY N 
XAR (exchange A & R registers) 
STO x 
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The simplicity of this method is apparent. In practice it is recommended 
that X • 2-3~ and that an odd power ot 3 or 5 be selected tor N. Different 

o - ----choices will ot course provide different sequences. It is best to select 
the largest odd power of 3 or 5 that can be contained in 39 bits. For further 
discussion on this point, as well as the mathematical nature of the pseudo­
random sequence, see references (b) and (c). A convenient method of obtaining 
different sequences is to employ two generators with different odd powers oti­
say, 5 tor N. A member of the first sequence is selected, with an element of' 
chance, by throwing a sense switch, to be used as the starting number for the 
second sequence which provides the random numbers for the problem. A brief 
table of odd pOWers of 3 and 5 in command fonnat is given in AppendixB. 

In a practical application we are concerned with two characteristics of the 
random ~quence. One of these is the distribution of the random numbers. As 
assertea above the members of the random sequence are uniformly distributed 
between zero and one, and a proof of this fact may be found in reference (d). 
Figure 1 shows the actual distribution of a sample of 1024 numbers generated 
in this manner. 

A second characteristic of interest is the sequencing of the numbers, or more 
precisely, if the sequence is thought of as a random time series, the power 
spectral density of the series. In this regard experimental evidence indicates 
that the spectral density is "whiten or uniform over all frequencies. (Of 
course, as in all digital computer work, the spectral content is band limited 
in a real time sense, by the sampling frequency, or the rate at which the 
numbers are generated.) Another way of considering this characteristic which 
does not depend on any concept of time is to state that the menbers of the 
sequence are statistically independent of one another. To demonstrate this 
fact an ltautocorre1ation" function was computed. 

N 
• 012 • • • 

K • 1 

Figure 2 shows an actual example of this computation on a sample of 1024 
numbers. (The numbers were shifted first by subtracting one-half to lie 
between plus and minus one-halt.) From this figure it is apparent that for 
one or more shifts the numbers are uncorre1ated. 

An important consequence of the independence of the members of the sequence 
is that it permits the use of a single random number generator to provide 
numbers for several applications in the same problem. 
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Thus, we have available a simple method of generating a random sequence whose 
members are uniformly distributed between ·zero and one and are independent of 
one another or "white". Other rectangular distributions may be easily obtained 
by multiplying by a scale factor and adding a bias. For example, suppose it 

. is desired to select at random an integer bet't~een 1 ann 52. We simply gener ate 
a random number, multiply by 52, add 1, and take the integral part of the answer 
as the desired number. 

However, distributions other than rectangular are often required. For example, 
failure rate is often characterized by an exponential distribution, system 
errors are frequently considered to have gaussian distributions; other random 
events may have a Poisson distribution. How may other distributions be ob­
tained from a rectangular distribution? 

If x is uniformly distributed between zero and one and if the probability 
, density functio n p ( t) has the proper tie s 

/" ~ 

p (t) ~ 0 and I p (t) dt = 1 , 
./ 

_1,>tI&> 

then the random variable z defined by the relation 

x = 

z 

( p(t) dt 
\ 

,,} 
-~ 

has the probability distribution function 

z 

p (zo) =J _ p (t) dt 

and hence the probability density function p (z). 

= Probability { 
= 

Zo S p (t) dt 
_ <?O 

For Pro babili ty Sz 
<... 

(1) 

since x is uniformly distributed between zero and one and hence Probability 

tx!: aJ = a 

For example, suppose an exponential distribution is required, i.e., 

r/ -az 

p(z) 
\ae 

:: -'. 

/0 
o <. z -
z ~ 0 

; 

\ 
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From equation (1) it is theretore req~ed that the uniform random variable 

For z~O 

or 

x • f( 
I 0 

ae-at dt·. 

\ o 

z • 1 log (I-x) 
=a-

o ~ z 

z .c:.. 0 

or since x and (1 - x) have the same distribution, we let 
z· 1 log x 

-a 

and the random variable zwi11 have the probability density p (z) as 
desired. In other words, we generate a random number, compute its natural 
logarithm, and divide bl minus a. The result will have the probability 
densityfunction p (z). 

As a second example suppose it is desired to select a point at random from 
the unit circle under the assumption that the points are uniformly distributed 
over the c12-cle. One possible solution would be to generate two random numbers, 
say x and y, scaled and biased to lie between plus and minus one rejecting 
the pair if'the sum of their squares exceeded one. The pairs (x, y~ that were 
acoepted 'Would, ot oourse, have a unifom distribution over the unit circle.· 

c, 

An a1 temate matho d 'Would us e polar coordinates rand 9. From symmetry it 
1s clear that arty angle is equally likely so 1:J'e pro bahili ty density ot ~ 
is given by 

p e (9) • 

1 
2Tr 

o 

o ~ e .( 2TT 

otherwise 

Therefore, to generate the random variable ~we simply generate a random 
number and multiply it by 2,.,... 
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To find the distribution of r we note that the pro babili ty of a point lying 
in an incremental area is 

dxdy 

iT 
• r dr de 

-rT 

==(~dr)de 
211 

I: Pr(r)dr p~~ (e) de 

Since we have already determin~d P,9 ( e) 

p (r) J 2r 

r ( 0 

it follows that 

o -<.~ r .. .:. 1 

otherwise 

From equation (1) we require that the uniformly distributed number 

r 

x • 2t dt = r2 

or r • 

To summarize the procedure then -we generate two random numbers. One of these 
is multiplied by 2 if and designated G • The square root of the other is 
extracted and the result designated r. The resulting points (r, e) are 
uniformly distributed over the uni t circle. The size of the circle can be 
easily scaled by multiplying r by the radius of the de sired circle. 

In principle any desired distribution may be obtained by the nethod discussed 
in the preceding p,aragraphs. However, there may be computational difficulties 
for some density functions. Unfortunately, this is the case for the most 
important gaussian distribution, 

p(z) == 
1 

V2~ 
e 

According to equation (1) it would be necessary to invert the equation 

z 

x· J e 
- ~ Y21i 

dt 
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It the function on the right is designated 
to lind 

z -
t~. -1 
(~ (x) 

...... 
<P (z) we see that it is required ..-

and of course this equation may be solved by nunerical methods; but, it would 
appear that considerable computation ~uld be required,and for this reason it 
has not been attempted. As an alternate approach :we again resort to polar 
coordinates. If u and v are independent random numbers with gaussian 
distributions then the random variable 

r = 

has the so-called Rayleigh distribution 

re-
r2h r.~ 0 

p (r) • 

r ..(.. 0 

and the random variable 

e- -1 
tan v 

u 

is uniformly distributed bet'Ween zero and 2 iT". To obtain a random number 
with the Rayleigh distribution, as before, 'We let the uniformly distributed 
nuniber 

fa 
2 . 

x • te-t 12 dt 

~ -r • 1 - e 2 

or 

r • [210g (~) J' 
. or since . % and (1-%) have the same distribution we simply let 
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r = 

Similarly we let 

e III 2 Trx 

1. .? 

PAGE NINE 

where of course x is another uniformly distributed number. Then we simply 
make the inverse transformation 

u = r cos f? 

v = r sin f:::) 

and u and v will be independent random numbers with gaussian distributions. 
It will be noted that this me tho d requires the computation of a logarithm and 
sine and cosine for which subroutines are normally available • 

. The above method provides a pair of independent gaussian random numbers at the 
expense of computing a logarithm and sine-cosine. Since the latter computations 
are somewhat time consuming, and usually time is at a premium in analyses of 
a probabilistic nature, this method has limited practical apRlication. The 
following approach provides a technique for generating numbers whose distribution 
is approximate~ gaussian with relatively little computation required. 

From the central limit theorem of statistics it is known that the distribution 
of the averase of N samples from any distribution approache s the gaussian 
distribution as N becomes large. If the original distribution is rectangular, 
the convergence is remarkably fast, in fact, N = 3 or 4 gives a distribution 
which is a very good approximation to the gaussian. 

Let 

[ 1 0", Xi ot!.l 

Pl (Xi ) = ( 2) 
0 otherwise 

for i • 1, 2, •• • , N 

Then the random variable 

N 
z = 

Hl 
Xi 
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has the probabUity density function Pn (z) which may be obtained by con-
volving Pl with PN-l or r"- .• _""' • 

(z) -J; (z-x) P (x)· <Ix 
1 n-l 

- eo 
For convenience we let 

where 

u·Z-~n 

0- n 
~ 

/1 n· f tpn(t)dt 
- l.,,:.:l 

01:> 

o-!" f(t- ~n)2 Pn(t)dt 
-00 

so that t1n has a zero mean and unit varlance. 

'. 

N - 2, 3, 

For N - 2 the distribution is triangular shaped and of limited interest. For 
N • 3 evaluation of the convolution integral gives 

J - u 
2 

o ~'ul ~ 3 
8 

P
3
(u) - (3 - lu I )2 1~" lu 1-: 3 

16 
(3) 

o 3 ~ luI 

where u -2 (Xl + x2 + x3 ) - 3 

with xi' 1· 1, 2, 3, distributed according to (2). A plOt of P3 (u) is 

given in Figure 3. For comparison, a plot of the gaussian distribution 

·1 

r(u)··Vi~ e 

is given on the same figure. From this figure it is seen that the distribution 
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of u is a very good approximation to the gaussian. In fact, it would be 
difficult to distinguish between samples from the two distributions unless 
an extremely large sample were taken. Figure 4 shows the actual distri­
bution of ,000 numbers generated according to equation (4). In this 
figure the area of the rectangles equals the fraction of the sample falling 
in the corresponding interval. The gaussian is also plotted on this figure 
for comparison. 

This technique lends itself readily to digital computation. A subroutine for 
generating "approximate gaussian" random numbers in this fashion is given in 
Appendix A. As mentioned, above, these numbers have the distribution given 
by (3) with zero mean and unit variance. To simulate the gaussian random 
variable z with mean I J and variance I-""!'" , ,let ~l z ~ Z 

z -
O'u. 

z 
+ 

It should be noted that members of the resulting gaussi.an random sequeooe 
are also independent of one another or "white". 

An even better approximation may be obtained by combining four of the uni­
formly distributed numbers. For N equal 4, evaluation of the convolution 
integral yields 

• 

r::1 where u-13 

(" 4 13' - 2 iK3' u
2 

+lu/
3 

i 

l
i (2 )31 

- I u/ )3 
54 

o 

~.l xi -~ 

.-:-\ 
2 ,1 3 ~ lu I 

with Xi' 1 • 1, 2, 3, 4, distributed according to (2). As before the distr.l­
bution has been scaled to have a zero mean and unit variame. Figure, shows 
a plot of P4 (u) with the gaussi. an for comparison. 

Appendix C provides a tawlation of the density functions P3 (u) and P4 (u) 
together with their respective cumulative distributions. 
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Another technique that j.s useful in providing a distribution that, although 
not gaussian, favors small numbers over large and thus may be adequate for 
some purposes, is to simply multinly two of the uniformly distributed numbers. 
If xl' x2 are distributed according to 

i = 1, 2 

~ ~ -1 __ xi -_ 1 

I 0 otherwise (, 

then the random variable z = x x 
1 2 

has the distribution 

-1 . __ z '._ 1 

p(z) = 
o othen-Jise 

Also the random variable y = xl I xII has the distribution 

( 

1 

\ 
J.. 

4;y. '~ 

p(y) • 
l 0 , 

-1",- Y ... ,.1 

otherwise 
\ ... , 

Random variables such as these have the advantafe of being computed rather 
easily. 

As a final subject, we will briefly' consider the case where a random sequence 
is required with a spectral density other than white. For example, it might 
be required to constrain the sequence so that it does not change value too 
rapidly or in other words, suppress the high frequency components in the sequence. 
To achieve this end it is necessary to run the ttwhite" sequence through a lo'W­
pass filter. 

If the input X (t) to a filter with transfer function H (jw) is white, i.e., 
has power spectral density, 

S (jw)· S (0) 
x x 

then the power spectral density of the output y (t) is 

S (jw) ·iH (jw) 2 S (0) 
y i x 
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or in other words, the output spectral content is determined by the filter 
characteristic. If the input to a line ar filter has a gaussian distribution 
then the output will also be gaussian. It is then only necessary to determine 
the mean and variance of the output in order to completely characterize the 
output distribution. Well known techniques are available for the design of 
digit~l filters and thus it is possible to generate gaussian random numbers 
with a desired spectral content. 

To demonstrate this technique a simple first order lag filter was programmed 
a..l1d fed with a white gaussian input. The distribution and autocorrelation 
function of the output were then computed. Suc,h a filter has t~e character­
istic 

H(jw) = a 
a + jw 

and impulse response 

h(t) = 

where a is the so-called corner frequency. The output spectral density 
is therefore 

S (0) x 

The autocorrelation ,function of the output(the inverse transform of S (jw) 
y 

has the form (8) 

where <-::r y is the variance 0 f the output. 

To derive the difference equation defining the d;f!i-tal filter, we use the 
fact that the output is the convolution of the input with the filter i.1tIpulse 
response, 

yet) = 5'to h(t - t l > x(tt) dt' 

= 
t -a( t-t' ) 

ae x(tt) dt' 
o 
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To evaluate this integral numerically we take an integration step A t = T 
and assume x (t) is constant over this interval, thus 

xC t) a Xn (n-l)T ...... t ~'. nT n = 1, 2, ••• 

The xn ~ill be the input white p:aussian random sequence, 'With zero mean and 

unit variance. 

Now 

or 

Yn+l = y(fu+l)T) 
-a(n+l)T 

= e 

= e -at 
nT 

-anT:/"" 
e )"1 

(n+l)T 
( 
j 0 

~ -aT ( -aT) uo+l = e Yn + 1 - e xn+l 

at' 
ae xC t I )dt I 

Equation (9) is the difference equation that defi~es the filter. By averaging 
both sides of (9) we see that the output mean 

or . .,....2 = 
t/ Y 

I -aT 
- e 

1 + e-aT 

2 
, .. 'f" x 
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From equations (8) and (10) the autocorrelation function of the output is 

R CC) y 

for ~ = 0, 1, 2, • • • 

= 

-aT 
1 - e 

-aT 1 + e 

As an example of this computation we let 

aT = 0.4 

This gives 

2 

~.,'" = .191 
y 

-'CaT e 

Figure 6 shows the distribution of the output (normalized to have unit variance) 
and Figure 1 shows the output autocorrelation function. One could apply Fourier 
techniques to determine the output spectral content. However, from the exponen­
tial nature of the output autocorrelation f~~ction, it is clear that the output 
has the desired spectral density. 
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Appendix A "Approximate - Gaussian" Random Number 
Generator Subroutine 

Enter Subroutine with + TRA 0006.0 
Exit to next location with gaussian random number in A and R registers 

0006.0 + SAX 7760.0 + CTL 0010.0 
+ CTV 0020.0 + TRA 7760.0 

0010.0 + ADD 7773.0 + srA 7773.1 
+ CI.JA 77TI.O + ~1PY 7776.0 
+ XA.~ 0000.0 + STO 7777.0 
+ ARS 0001.0 + AnD 7774.0 
+ STO 7774.0 +. eLA 7777.0 
+ MPY 7776.0 + XAR 0000.0 
+ STO 7777.0 + ARS 0001.0 
+ A~D 777h.O + STO 7174.0 

0020.0 + CIA 7777.0 + MPY 7776.0 
+ nLA 7775.0 + XAR 0000.0 
+ STO ()027.0 + ARS 0001.0 
+ FAD 7774.0 + TR.A 0000.1 

-3 at Binary scale of 2 
+2 at Binary scale of 39 
N at Binary scale of 39 
Xo = +1 at Binary scale of 39 

Notes: 
(1) It is recommended that N be an odd power of 3 or 5. 

(2) r'~in memory addresses are underlined. 
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Appendix B Odd Powers of 3 and 5 

RECOMP users may find the following list of odd 'pawers ot 3 and 5, !!:! 
Command format,' usetul in programming random number generators a 

323 • + 1275321 + 67204$1 

3
21 • + 011,731 + 424$311 

319 • + 0010,20 6,47551 

317 • + 0000751 2413411 

3 
1, . 

• + 0000061 + 27446Sl 
$1, • + 0343271 + ,223061 

~3 • + 0011000 - 2347121 

sll • + 0000270 + 103$,61 
,9 • + 0000001 + ,632621 
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Appendix C Probability Density Function and Cumulative 

u 

.0 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 
1.0 
1.1 
1.2 
1.3 
1.L 1., 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.1+ 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.h 
3.5 
3.6 

+.37500 + 0 
+.37375 + 0 
+.37000 + 0 
+.36375 + 0 
+.35500 + 0 
+.34375 + 0 
+.330UO + 0 
+.31375 + 0 
+.29500 + 0 
+.27375 + 0 
+.25000 + 0 
+.22563 + 0 
+.20250 + 0 
+.18063 + 0 
+.16000 + 0 
+.lu063 + 0 
+.12250 + 0 
+.10563 + 0 
+.90000 - 1 
+.75625 - 1 
+.62500 - 1 
+.,0625 - 1 
+.40000 - 1 
+.30625 - 1 
+.22500 - 1 
+.15625 - 1 
+.10000 - 1 
+.56250 - 2 
+.25000 - 2 
+.62500 - 3 
+.84703 -21 
+.00000 + 0 
+.00000 + 0 
+.00000 + 0 
+.00000 + 0 
+.00000 + 0 
+.00000 + a 

,tt... 

j,. P3(x)dX 
~"J 

+.00000 + 0 
+.37458 - 1 
+.7}J.667 - 1 
+.11137 + 0 
+.14733 + 0 
+.18229 + a 
+.21~00 + 0 
+.24821 + 0 
+.27867 + 0 
+.30712 + 0 
+.33333 + 0 
+.35710 + 0 
+.378,0 + 0 
+.39765 + a 
+.41467 + 0 
+.42969 + 0 
+.44283 + 0 
+.45423 + 0 
+.h6400 + 0 
+.47227 + 0 
+.47917 + 0 
+.48h81 + 0 
+.48933 + 0 
+.49285 + a 
+.49,,0 + 0 
+.49740 + 0 
+.49867 + 0 
+.h9944 + a 
+.49983 + 0 
+.49998 + a 
+.50000 + 0 
+.10000 + 1 
+.10000 + 1 
+.10000 + 1 
+.10000 + 1 
+.10000 + 1 
+.10000 + 1 

P4(U) 

+.66667 + 0 
+.66343 + 0 
+.65L.IO + 0 
+.63926 + 0 
+.61949 + 0 
+.59536 + 0 
+.56745 + 0 
+.5363h + 0 
+.50260 + 0 
+.46681 + a 
+.42956 + 0 
+.39141 + 0 
+.35294 + 0 
+.31L.74 + 0 
+.27737 + 0 
+.2h143 + 0 
+.20747 + 0 
+.17609 + 0 
+.It,781 + 0 
+.12273 + 0 
+.10067 + 0 
+.81h15 - 1 
+.64791 - 1 
+.50599 - 1 
+.38647 - 1 
+.28743 - 1 
+.20695 - 1 
+.14309 - 1 
+.93944 - 2 
+.57576 - 2 
+.32063 - 2 
+.15482 - 2 
+.59085 - 3 
+.14174 - 3 
+.8h48h - 5 
+.00000 + 0 
+.00000 + 0 

.1.. 

~)' P4(x)dx 
") 

+.00000 + 0 
+.38427 - 1 
+.76489 - 1 
+.11385 + 0 
+.15C>21 + 0 
+.113530 + 0 
+.21:988 + 0 
+.25076 + 0 
+.28076 + 0 
+.30C376 + ') 
+.33464 + 0 
+.35834 + 0 
+.37983 + 0 
+.39910 + 0 
+.41619 + 0 
+.43116 + 0 
+.h4h10 + 0 
+.45",16 + 0 
+.46450 + 0 
+.47229 + 0 
+.h7873 + 0 
+.48397 + 0 
+.48818 + 0 
+.49150 + 0 
+.l.t9406 + 0 
+.49600 + 0 
+.49742 + 0 
+.49842 + 0 
+.1.9910 + 0 
+.49953 + 0 
+.l.t9979 + 0 
+.49992 + 0 
+.49998 + 0 
+.50000 + 0 
+. ,0000 + 0 
+.,0000 + a 
+.,0000 + 0 
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