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FOREWORD

INTRODUCTION

The Tire Control Series fornis part of
the Engineering Design Handbook Serieswhich
presents engineering information antl quanti-
tative data for the design and construction of
Army equipment. In particular, the hand-
books of the Fire Control Series have been
prepared to aid the designers of Army fire
control equipment and systems, and to serve
as a reference guide for all military and ci-
vilian personnel who may be interested in the
design aspects of such material.

The handbooks of the Fire Control Series
are based on the fundamental parameters of
the fire control problem antl its solution. In
all problems of control over the accuracy of
weapon fire, some method or system of firc
control is employed that derives its intelli-
gence from the acquisition and tracking of a
target; evaluates this system-input intelli-
gence by computation; and, finally, applies
the output information to the positioning of a
weapon along the line of fire. Primary em-
phasisislaid on the systematic approach re-
quired in the design of present-day fire con-
trol equipment and systems. This approach
involves (1)thorough analysis of the particu-
larfire controlproblem at hand, (2)establish-
ment of the most suitable mathematical model,
and (3) mechanization of tliis mathematical
model.

ORGANIZATIONAL BREAKDOWN

To accomplishthe aforenoted objectives,
the Fire ControlSerieswill'consistprimarily
of the following fourmain sections, each pub -
lished as a separate handbook:

a. Section 1, Fire Control Systems -
General (AMCP 706-327)

b. Section2, Target Acquisition, Location
and Tracking Systems (AMCP 706-
328)

c. Section 3, Fire Control Computing
Systems (AMCP 706-329)

d. Section 4, Weapon Pointing Systems
(AMCP 706-330)

xXxii

An additional handbook of the Fire Control
Series is AMC Pamphlet AMCP 706-331,
Compensating Elements. The following para-
graphs sumrnarize the content of each of
these five handbooks.

Scction 1 introduces the subject of fire
control systems, discloses the basic fire
control problem and its solution (in func-
tional tcrms), delineates system-design
philosophy, and discusses the application of
maintcnance antl human engineering princi-
ples and standard design practices to fire
control system design.

Section2 is devoted tothe first aspect of
fire control, i.e., gathering intelligence on
targct position and motion.

Scction 3, because of the complexity of
the subject of computing systems, is divided
into three parts that are preceded by an in-
troductory discussion of the roles of comput-
ing systems in Army fire control and by a
dcscription of specific roles played in parti-
cular firc-control applications. Part I dis-
cusses the first step in system design, i.e.,
the cstablishment of a mathematical model
for thc solution of a fire control problem.
Emphasis is given to the basis, derivation,
and manipulation of mathematical models.
Part II discusses the various computing de-
vices that perform useful functions in fire
control computing systems. The discussion
ranges from simple mechanical linkages to
complcx digital computers. Typesof devices
in ctach classification are briefly described;
cxternal sources are referenced for detailed
information where practical. Part III dis-
cusses the various ways in which the comput-
ing devices described in Part1I can be applied
to the mechanization of the mathematical
modcls described in Part I. It stresses that
a fire control computing system designer
nceds to apply his talents in three special
ways: (1)to improvise and innovate as needed
to mect particular problems that may arise,
(2) to use ingenuity in obtaining the simplest
and mosteconomical devices for the particu-
lar rcquirement at hand, and (3) to master
thc many problems that result from intra-
system interactions when individually satis-
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factory componcnts are combined in complex
computing systems. Examples culled from
actual fire-control-system designworkillus-
trate the concepts given.

Section 4 of the IFire Control Series dis-
cusscsweapon-pointing systems with respect
to (1) input intelligence and its derivation, (2)
the means of implementing weapon-pointing
forthe two basic types of weapon-pointing
systems from the standpoint of systcm stabil-
ity, (3) general design considerations, and
(4) the integration of components that form
a complete firc control system.

AMCP 706-331 presents information on:
(1) the effects of out-of-level conditions anti
a displacementbetween a weapon andits aim-
ing device, and (2)the instrumentation neces-
sary to correct the resulting errors. It also
presents general rcference information on
compensating clements that pertains to ac-
curacy considerations ,standard design prac-
ticcs; and considerations of general design,
manufacture, field use, maintenance, and
storage.

PREPARATION

The handbooks of the IFire Control Serics
have beenprepared under the direction ol the
Engineering llandbook Office, Duke Univer-
sity, under contract to the Army Research
Office-Durham. With the exception of the
handbook titled Compensating Elements, the
materiul for the FFire Control Series -- Scc-
tions 1 and 3 -- was prepared by the .Jackson
& Moreland Division of United Enginecrs and
Constructors Inc., Boston, Massachusetts,
under subcontract to the lnginecring Hand-
book Office. The Jackson & Moreland Divi-
sion was assisted in its work by consultants
who are recognized authorities in various
aspecets of fire control. Specific authorship
is indicated where appropriite.  Overall
technical guidance and assistance were rend-
ercd by Frankford Arsenal; coordination and
direction of this effort were provided hy Mr.,
L.eon G. Pancoastof the I*ire Control Develop-
ment &FEngincering Laboratorics at I"rankford
Arsenal.,

xX1iii
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PREFACE

The Engineering Design Handbook Series
of the Army Materiel Commandis a coordi-
nated series of handbooks containing basic
informationand fundamental datausefulinthe
designand developmentof Armymateriel and
systems. The handbooks are authoritative
reference books of practical informationand
quantitative facts helpful in the design and
development of Army materiel so thatit will
meet the tactical and the technical needs of
the Armed Forces.

The Handbooks are readily available to
allelements of AMC, including personneland
contractors having a need and/or require-
ment. The Army Materiel Command policy
istoreleasethese Engineering Design Hand-
books toother DOD activities and their con-
tractors and to other Government agencies
in accordance with current Army Regulation
70-31, dated 9 September 1966. Procedures
for acquiring these Handbooks follow:

a. Activities within AMC and other DOD
agencies order direct on an official form
from:

Commanding Officer

Letterkenny Army Depot

ATTN: AMXLE-ATD
Chambersburg, Pennsylvania 17201

b. Contractors whohave Department of
Defense contracts should submit their re-
quests through their contracting officer with

proper justification to the address listed in
par. a.

c. Governmentagencies otherthan DOD
having need for the Handbooks may submit
their request directly to the address listed
in par. a orto:

Commanding General

U. S. Army Materiel Command
ATTN: AMCAM-ABS

Washington, D. C. 20315

d. Industries not having Government
contracts (this includes colleges and univer-
sities) must forward their requests to:

Commanding General

U. S. Army Materiel Command
ATTN: AMCRD-TV
Washington, D. C. 20315

e. All foreign requests must be sub-
mitted through the Washington, D. C. Em-
bassy to:

Assistant Chief of Staff for
Intelligence

ATTN: Foreign Liaison Office

Department of the Army

Washington, D. C. 20310

All requests, other than those origina-
ting within DOD, must be accompanied by a
valid justification.

Comments and suggestions onthis hand-
book are welcome and should be addressed
to Army Research Office- Durham,Box CM,
Duke Station, Durham, North Carolina 27706.
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INTRODUCTION*®

As pointed out in Section 17 of the Fire
Control Series, computers play a very sig-
nificant role during the designphase for a fire
control system, and a computeris an integral
part of every complete modern fire control
system. The function of the computer in a
fire control system can be illustrated by con-
sidering for amoment the case of an individ-
val attempting to hit a moving target with a
rifle. If he isto be successful, he must esti-
matetlie distancetothe target and the rate at
which the line-of-sighttothe target is rota-
ting and must have aknowledge of the projec-
tile characteristics, such as velocityand gra-
vity drop. He must then compute the direction
in which to point the weapon to achieve a hit,
and so point the weapon. If a strong wind is
blowing, he must also take this into account
for long-range shots. Obviously, if the indi-
'vidual attempted to carry out detailed con-
scious calculations, his target would have
disappeared before he was ready to pull the
trigger. The expert marksman has, through
considerable experience, learned to include
each of these factors in a rapid mental ap-
praisal of the situationat hand. As the target
velocity is increased and the range extended,
however, the ability of the individual to apply
the required correction factors is exceeded
and successful shots can be achieved only if
rapid, accurate assistance is provided for
gathering the required data, carrying out the
necessary computations, and pointing the
weapon as required. In the provision of this
assistance, modern fire control systems have
evolved (see Chapter 1of Section 1of the Fire
Control Series). In each of these systems,
the computer serves as a vital element.

Until approximately 1950 to 1955, analog
computers were used almost exclusively in
firecontrol systemsbecause the digital-com-
puter art had not yet progressed to the stage
where tlie required operating speeds could be

* Prepared by W. W. Seifert, this Introduction incorporates information from various

achieved. Now, the demands of many fire con-
trol problems can be met by either an analog
or a digital computer, with the choice fre-
quentlybased upon such considerations as the
desire to use the same computer design in
several different systems or tlie background
of the particular group of designers respon-
sible forthe fire control system. (Suchbasic
factors as cost, size, weight, power require-
ments, complexity, reliability, solution speed,
solution accuracy, and the nature of environ-
mental effects must, of course, always con-
tinue to receive careful attention in relation-
ship to the particular circumstances under
which a given computer is destined for use.)
Worthy of special note is the recognition
during recent years of the promising poten-
tial for fire-control-system applications of
the digital differential analyzer -- an incre-
mental computer consisting of a collection of
digital integratorsinterconnected in such a
way asto solve integro-differential equations.

In addition to the use of computers inthe
design phase of a fire control system and as
an integral part of every complete modern
fire control system, computers have come to
serve mankind increasinglyin everyday tech-
nology. As amatter of fact, the development
of high-speed electronic digital-computing
equipment has created a revolution in tech-
nology. Because of the pioneer role played
by the US. Armyin the development of high-
speed electronic digital computers, it is par-
ticularly appropriate to briefly discuss this
development here.

Army activity in this field started after
the outbreak of World War II, when the need
for rapid computational equipment for use
in connection with the massive computing
problems involved in the preparation of firing
tables and related ballistic databecame in-
creasingly apparent. At that time, some of
the computations were being made by the Bush

U.S. Armmy documents--in particular,

“Historical Monograph, Electronic Computers Within the Ordnance Corps", by Karl Kempf, Historical Officer, Aberdeen Proving

Ground, Maryland; published by APG in November 1961.
§ Fire Control Systems—General (AMCP 706=327).
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Differential Analyzer.” With considerable
improvements inperformance resulting from
designmodificationsprovided during the early
1940's by the Moore School of Electrical
Engineering atthe University of Pennsylvania,
thismachine proved tobe of tremendous value
during World War 11. Used primarily to com-
pute trajectories forfiring tables and to pre-
pare trajectory chartsfor use with VT fuzes,
this machine could compute a 60-second tra-
jectory in about 15 minutes. In contrast, a
human operator using a desk calculator re-
quired about 20 hours to perform the same
computation.

As a result of the urgent need for some
means to provide accurate computation at
considerably higher speeds than those obtain-
able with the Bush Differential Analyzer,
. niuch thought went into the solution of this
problem. Itbecame apparent at the Univer-
sity of Pennsylvania that use could be made
of the fast reactiontime of electron tubesin an
extensive array to add or subtract impulses,
and thus make possible the design of a ma-
chine that would deal with numbers inamanner
that would far surpassthe speed and accuracy
ofthe Bushmachine. Accordingly, in 1943 the
US. Army awarded a research and develop-
ment contract to the University of Pennsyl-
vania forthe design and construction of ENIAC
(for Electronic Numerical integrator And
Computer). This contractwas based specifi-
tally ontechnical concepts underlying the de-
signof anelectronic computer that were con-
tained in an outline prepared by Dr. John
Mauchly and Dr. J. Presper Eckert, Jr. of
the Moore School of Electrical Engineering.

Completed in 1945, ENIAC was the
world's firstelectronic automatic computer. {
Its subsequentinstallation inthe Ballistic Re-
search Laboratories (BRL)atAberdeen Prov-
ing Ground marked the beginning of the wide-
spread use of electronic computing machines.
ENIAC was a decimal machine in which
ten decade ring counters == one per decimal

place -- and one PM (plus or minus) counter
formed the basic arithmetic and storage unit.
Itutilized 19,000 vacuum tubes (of 16 different
types), 1500relays, and hundreds of thousands
of resistors, capacitors, and inductors. It
consumed nearly 200 kilowatts of power. Its
thirty separate units weighed more than 30
tons. This huge collection of circuits could
calculate a 60-second trajectory in less than
the actualtime of flight of the projectile from
the gun to the target.

Even before the development of ENIAC
had been completed, however, it was realized
that a serial binary machine with delay-line
storage (an early type of memory device)
would have additional advantages. A binary
machine would utilize numbers to the base
two instead ofthe traditional base ten. Num-
berswould be translated intoa series of ONES
and ZEROS, values that could be easily
handled by electron tubes arranged either to
conduct a signal or block it -- a switching
function that could be handled at high speed.
Nonetheless, ENIAC remained a solid compu-
tational workhorse for the ten-year period of
1946-55, during which it was in constant
operation. It was the major instrument for
computation for all ballistic tables for the
US. Armyandthe US. Air Force -- domina-
ting the computer field during the period
1949-52. It was also used for calculations
relevant to other fields -- weather predic-
tion, atomic energy, cosmic-ray studies,
thermal ignition, random-number studies,
and wind-tunnel design problems, to mention
a few. (Electronic computers were not yet
available from commercial sources.)

ENIAC was the prototype from which
most otter modern computers have evolved
(see the computer tree of Fig. I-1), It em-
bodiedalmost all of the components and con-
cepts of laterhigh-speed storage and control
devices. Although built primarily for inte-
gration of the equations of external ballistics
by a step-by-step process, it was sufficiently

This was an electromechanical analog device utilizing mechanical integrators of the wheel-and-disc type that was developed by
Dr. Vannevar Bush and his associates at Massachusetts Institute of Technology in the late 1920's. Incorporating improvements
made in the early 1930's, a Bush Differential Analyzer was installed at Aberdeen Proving Ground in 1935.

T It should be noted that the Mark I Relay Computer (also called the Automatic Sequence-Controlled Calculator), completed in
1944 at Harvard University by Howard Aiken in cooperation with IBM engineers and Harvard graduate students, Xfﬁ the first
automatic computer ever completed. The operation of this machine was based on electromechanical principles. ough the

machine was efficient, fast, and capable of solving a wide variety of problems,

tronic type of automatic computer.

I-2

its speed could not approach that of the elec-



AMCP 706-329

flexible tobe applied toa wide range of large-
scale computations otherthan numerical inte-
gration of differential equations.

The urgent need for an operational com-
puter- had made it imperative to freeze the
engineering design of ENLACduring the early
stages of development. As work on ENIAC
pcrmitted, however, the design and construc-
tion of animproved computer for RRL having
much smaller size, greater flexibility, and
bettermathematical performance were pushed
forward under U.S. Army sponsorship at the
Moore School of Electrical Engineering, Uni-
versity of Pennsylvania. The design for this
computer, named EDVAC (forElectronic Dis-
crete Variable Automatic Calculator) was
proposed in 1945 by Dr. John von Neumann,
one of the world's leading mathematicians,
who had been attracted by the problems of
computer design. The major features of this
computer were the use of the binary system
ratherthan the decimal system of numeration,
a serial arithmetic mode, a four-address
command structure, a total of 16 possible
operationsthat couldbe performed by the com-
puter, and duplicate circuitry for check pur-
poses.

EDVAC was also the first computer with
an internally-stored program and was thus a
major improvement over ENLAC, which re-
quired considerable human effort to change
the different programs. With ENIAC, the dif-
ferent sections ofthe computerwere connect-
ed together via plug-in cables that had to be
changed for each particular type of problem.
Ifthe computationshad to be interrupted for a
few days, topermit some otherproblem ofhigh
priority to be run on the computer, the com-
plex tangle of plug-in cables had to be rear-
ranged manually. Also, whenthe runwas com-
pleted, the machine had to be "re-wired" for
the first problem. With an internally-stored
program device, the instructions are stored,
each storage location is queried, and each

SEAC - Standards Eastern Automatic Computer
FLAC - Florida Automatic Computer

DYSEAC - Second SEAC

MIDAC = Michigan Digital Automatic Computer

instruction is interpreted and executed as a
matter of formality until all the instructions
comprising a givenprogram are carried out.

Mork on EDVAC stimulated design and
constructionbyothergroups of a large family
of similar computers, including SEAC, FLAC,
DYSEAC, MIDAC," and the later commercial
types, such as the UNIVAC's (see Fig. I-1).
Computer development was further en-
couraged by the Army via a research con-
tract with the Institute for Advanced Study,
Princeton, New Jersey (later supported also
by the Air Force and Navy).

From this supportof computer research
came the ORDVAC (for Ordnance Variable
Computer), the BRL's third electronic com-~
puting machine. This was a parallel binary
computer that belongs to the group of com-
puters whose basic logic was developed by
the Institute for Advanced Study at Princeton,
New Jersey. The ORDVAC family of com-
puters includes suchmachines as the AVIDAC,
MANIAC, ILLIAC, ORACLE, JOHNNIAC, and
CYCLONE. T

These different designs constituted little
if anything new in innate computer design,
but carried out existing design principles
using the fruits of the ever-advancingtech-
nology of electronics -- such things as im-
proved memory techniques, smallervacuum
tubes, improved diodes, and the like. During
the early 1950's, a major part of the scien-
tific computational workload of the Western
world was accomplished on these machines.

The rapid, competitive evolution of com-
puters made itapparent at anearlystage that
prospectiveusers and designers of computers
in industry and in government would benefit
from a comprehensive survey of designs in
being. BRL accordingly made a nation-wide
survey in 1955. This showed that at thattime
approximately 87 different types of commer-
cial and scientific digital computers were
operational in this country. A second

T Avipac - Argonne Version of the lustitute's Digital Automatic Computer
MANIAC - Mathematical Analyzer Numerical Integrator and Computer

ILLIAC -Illinois Automatic Computer
ORACLE - Oak Ridge Automatic Computer and Logical Engine

JOHNNIAC - John (von Neumann) Integrator and Automatic Computer
CYCLONE - (an arbitrary name indicating high speed) Iowa State University
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survey by BRL, macle in 1957, showed that
this total had risen to 103. A third survey in
1961 indicated the existence of over 222 dif-
ferent types of electronic digital computing
systems, involving tens of thousands of units
throughoutthe United States. Fig. I- lindicates
there are approximately 500 differenttypes in
operation today.

These computers are committed to the
solution of almost every conceivable type of
computing and data-processingproblem -- in
defense, industry, science, commerce, ser-
vice operation, and manufacturing. A vital
element in almost every defense system, the
computer has become even more significant
in industry and commerce.

The overall discussion of electronic digi-
tal computers given thus far has covered the
historical development of serial computers
(representedby EDVAC)and of parallel com-
puters (represented by ORDVAC). Both of
these computers are shown in Fig. I-1 at the
lower ends of two separatelimbs of a compu-
tertree whose trunk represents the develop-
ment of ENLAC. As noted in Fig. I-1, this
separation tends to distinguish the business
computers on the left limb from the scien-
tific computers on the right limb.

The electronic digital computers that
have been developed specificallyto meet mili-
tary needs are identified on the center limb
of the computertree. Among those indicated
is FADAC (for Field Artillery Digital Auto-
matic Computer). This computer was de-
veloped underthe direction of Frankford Arse-
nal in the late 1950's as a sequel to Field
Artillery Fire Control System, M35, which
employed an electromechanical computer
whose accuracywas adequate forthe shorter-
range weapons -- such as the 105mm and
155 mm howitzers == but was not adequate

-4

for guns and free rockets. FADAC repre-
sents the latest development in connection
with the ever-present need to solve field-
artillery fire control problems with greater
accuracy and speed.

FADAC is a solid-state electronic digi-
tal computer whose background is discussed
in Chapter 1 of Section 1 of the Fire Control
Series and whose technical aspects are dis-
cussed in Chapter 4 of the present section.
Its overall capabilities, however, merit sum-
mation here:

1. FADAC canprovide firing data for a
battery of weapons. On a one-battery-at-a-
time basis, it canprovide firing datafor mor-
tars, howitzers, guns, and free rockets -- with
complete applicability to any kind of ammuni-
tionthese weapons maybe using. In emergen-
cies, it canprovide data forupto five similar-
type batteries on a rotating basis. By using
the FADAC's memory loading unit, authorized
field personnel can make program changes
that permit switching from the solution of one
type of fire control problem to another within
just a few minutes.

2. FADAC could be used with the PER-
SHING, SERGEANT, LACROSSE, and NIKE-
HERCULES weapon systems.

3. Inaddition to use in fire control sys-
tems and missile systems, FFADAC can also
be employed in fire planning, survey compu-
tations, counter-battery computation, reduc-
tion of meteorological data, and as universal
automatic check-out equipment

A universal computer capable of solving
all field-artillery fire control problems has
always seemed to lie in the future. However,
continuous study at Frankford Arsenal on in-
creasing the application of FADAC has yielded
results that make this computer a candidate
for the title '""Universal Artillery Computer".
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NOTE:
THIS TREE SHOWS THE ACCELERATES EVCLUTION OF ELECTRONIC DIGITAL COMPUTERS. THL AUTOMATIC COMPUTING ANC DATA
PROCESSING INDUSTRY IS A DIRECT QUTGROWTH OF THE RESEARCH, SPONSORED BY THE U.S. ARMY, THAT *RODUCED THE EMAC,
THE WORLD'S FIRST ELECTRONIC DIGITAL COMP STER. THIS INDUSTRY HAS GROWN TC A MULTI-BILLION DOLLAR ACTIVITY THAT HAS
PENETRATED EVERY PROFESSICN AND TRADE IN GOVERNMENT, BUSINESS, INDUSTRY, AND tDUCATION, THE TRUNK RESTS CN THE
ENIAC, THE SEIAL COMPUTERS , REPRISENTED BY THE EDVAC, AND THE PARALLLL COMPUTERS, REPRESENTED 3Y THE ORWWAC, ARE
SHOWN AS SEPARATE LIMBS .  THIS SEPARATION TENDS TO DISTINGUISH THE BUSINESS COMPUTERS ON THE LEFT LIMB FROM THZ
SCIENTIFIC COMPUTERS ON THE RIGHT LIMB, "HE COMPUTERS THAT WERE DEVELOPED SPECIFICALLY TC MLET MILITARY NEEDS ARE
SHOWN CN THE CENTER LIMB. MANUFACTUSERS HAVE ENTERZD THE FLECTRONIC COMPUTLR FIELC AT DIFFEIENT TIMES, AS SHOWN
BY THE VARIOUS BRANCHES. CM.Y UNIVERSITY AND GOVERNMENT SPCNSOREC COMPLUTERS AR SHOWN ALONG THE LIMBS, THE
RADIAL DISTANCE FROM THE ENPAC IS AN APPROXIMATE INDICATION OF THE YEAR EACH COMPUTER ‘WAS EITHER DEVELOREC, CON-
STRUCTED, OR PLACED IN OPERATION. Figure I-1. The computer tree for electronic digit
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PART |
MATHEMATICAL MODELS FOR

FIRE CONTROL COMPUTING SYSTEMS

CHAPTER 1*

THE ROLE OF THE MATHEMATICAL, MODEL
IN THE DESIGN PROCESS

1-1 DEFINITION AND IMPORTANCE OF A
MATHEMATICAL MODEL

In Section 17 of the Fire Control Series, a
mathematical model is defined as any scheme
for the manipulation of ideas in a group
wherein the individual ideas are identified by
means of more orless abstract symbols and
wherein manipulations are conducted in ac-
cordance with precise rules of logic. Mathe-
matical models take on a variety of forms,
depending upon the particular systemtheyare
being used to study. Such models provide the
system designer with a powerful tool that
enables him to develop a system not merely
by intuition and trial and error with the physi-
cal system but by bringing to bear on his
problem a considerable body of mathemat-
ical techniques, and thereby raises his de-
sign process from an art to a science.

The first requirement and advantage
that the system designer faces in using math-
ematical models is that of deriving an ac-
curate model for the physical system being
considered. K the designer is to carry out
this step in a satisfactory manner, he must
understand the system and the interrelation-
ships between its parts in considerablymore
detail than he might otherwise be forced to
employ. Formulationof the model is thus of
value in itself, but usually is taken as the
first step in a mathematical study aimed at
optimizing certain parameters inthe system.
This optimization may be carried out using
purely analytical techniques, graphical tech-
niques, or by studying the model on either an
analog or adigital computer. Chapter 2 out-
linesanumber of these techniques. As back-

*
By W. W. Scifert.
T Fire Control Systems--General (AMCP 706-327).

ground for this discussion, par. 1-2 summa-
rizes some of the more important mathe-
matical expressions used for describing
importantnatural lawsthat relate to physical
systems, and par. 1-3 summarizes the char-
acteristics and limitations of mathematical
models.

1-2 MATHEMATICAL MODELS FOR
PHYSICAL SYSTEMS

If one is to establish a mathematical
model or description for a physical system,
he must be able to express causes and ef-
fectsinmathematical terms for each indivi-
dual element of the system and be able to
describe mathematically the manner in which
these elements interact. Depending on the
purpose of the specific analysis, the indivi-
dual elements may be single components --
such as resistors, capacitors, and vacuum
tubes -- or complete amplifiers or even a
complete radar set. Insteadof electric-cir-
cuit elements, the system may be composed
of mechanical components -- suchas springs,
dampersand inertial elements -- or of fluid
elements -- such as valves, orifices, and fluid
pumps and motors. Some systems likewise
contain magnetic, acoustic, or thermal ele-
ments. Frequently, a complex system in-
cludes a mixture of elements of several of
these types.

Fortunately, the modern analyst is able
to draw on the work of Newton: Kirchoff,
d'Alembert, Coulomb, and many others who
were able to formulate mathematical re-
lationships to express their experimental
observations on particular physical systems.
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Basic requirements for the analyst who de-
sires to formulate a mathematical descrip-
tion for a system are (1) that he understand
thoroughly the laws relating to the types of
elements from which his system is composed
and (2)that he understand the range of varia-
bles for which the elements of his physical
system behave as ideal elements by obeying
the ideal laws, and the manner in which their
performance departs from the ideal outside
this range. It isimpossible ina single chap-
ter to outline all the relationships that an
analyst would require in analyzingthe various
systems with which he might be confronted.
However, a brief discussion of several il-
lustrative mathematical descriptions for
physical systems is provided, and a number
of other relationships are tabulated.

In order to develop and utilize mathe-
matical descriptions for physical systems,
it is first necessary to define the symbols
that areto be used in writing these descrip-
tions. Although agreement on symbolsis far
fromunanimous, the discussion which follows
uses symbolsthat have received wide usage.

As an illustration of a basic mathemat-
ical description of a physical phenomenon,
consider one of the fundamental laws of elec-
trostatics. Out of some of the earliest work
on static electricity grew the concept of elec-
tric charge, which gradually has come to be
represented symbolically by the letter q.
Early experimenters found that if two point
charges of electricity of opposite kind are in
the neighborhood of each other, they exert
attractive forces on each other. If they are
of the same kind, however, they exert repul-
sive forces on eachother. Furthermore, the
force that one exerts on the other is deter-
mined by the distance between the charges
and the magnitude of the charges. The work
of Cavendish and Coulomb in the late 1780's
established the inverse-square law of elec-
trostatic force, which states that the force
between two point charges of electricity is
directly proportional to the product of the
charges and inversely proportional to the
square of the distance between them. Mathe-
matically, this statement, which has come to
be called Coulomb's law, takes the form

9%

F-K
!

(1-1)

1-2

where Frepresentsthe force between the two
point charges, q, and qp represent the two
charges, r represents the distance by which
the charges are separated, and K is the pro-
portionality constant. This constant depends
upon the units usedto measure the force, the
distance, and the charges and also upon the
medium in which the experiment is conducted.
The force found when this experiment is per-
formedin ahigh-quality insulatingoil differs
fromthat found when the experiment is per-
formed in air. For such an experiment, the
pertinent parameter of the medium is its
dielectric constant k. In terms of this con-
stant, Eq. 1-1can be rewritten in the form

F - K, % (1-2)

where K| depends only on the units in which
the quantities are measured.

As man's understanding of electricity
grew, he discovered ways to produce steady
flows of current I which he then associated
with the rate at which charge was moving

through a system, i.e.,

dq
I

(1-3)

Healso discovered that when a battery (vol-
taic cell) was connected in a closed circuit
the current that flowed was determined by
the voltage E of the cell and a property of
the circuit determined by the length, cross-
sectional area, and composition of the con-
ductors. This property of the circuit came
to be known as its resistance R and Ohm
deduced the followingrelationship which now
bears his name:

7 -E (1-4)

Beginning with Oersted's discovery in 1820
that a magnetic needle tends to set itself at
right angles to awire through which an elec-
tric current is flowing, Faraday and others
began to experiment with, and attempt to dis-
cover the laws that govern, phenomena of




AMCP 706-329

electromagnetic induction. Their efforts led
to the definition of such new quantities as
inductance L and to new laws such as

di -
e=L o (1-5)

which relates the instantaneous voltage e
across aninductance to the rate at which the
instantaneous current i through the induct-
ance is changing.

Asknowledge of the behavior of electri-
cal systems grew, so did the knowledge of
other types of systems, such as mechanical,
hydraulic, and thermal systems. Further-
more, certainsimilarities were found to exist
between the ways in which entirely different
types of systems performed. For example,
the flow of current through a conductor was
likened to the flow of water through a pipe.
In each case, it was observed that the flow
increased as the forcing function (voltage or
pressure) increased.

Table 1-1 lists the principal elements
and parameters used to describe physical
systems, and gives symbols and units that are
comnionly used indescribing these systems.
it should be understood, of course, that other
systems of units also find wide usage. In
particular, the MKS (meter, kilogram, sec-
ond) system of units is rapidly becoming the
standard forall educational systemsand gov-
ernments. Accordingly, pertinent informa-
tion concerning physical constants and con-
version factors in terms of the MKS system
is presented in the appendix to this chapter.

Table 1-2 furtherdevelops the similarity
between different physical systems by sum-
marizing the expressions for power dissipa-
tion and energy storage, and giving the dif-
ferential equation that describes a simple
system containingone of each of the types of
elements belonging to a particular family.
It should be notedthattwo rows of entries ap-
pear for each system and that the associated
differential equations are of the same form.
The rcason for this similarity can be illus-
trated by examination of the two equivalent
electrical networks shown in I'ig. 1-1. The
top network represents a parallel combina-
tion ofa conductance (reciprocalresistance),
an inductance, arid a capacitance driven by a
current generator. The lower network repre-

sentsaseries combinationofthese same ele-
ments (withresistance showninplace of con-
ductance) driven by a voltage generator. In
the first case, it is desired to set up an ex-
pression for the instantaneous voltage e(t)
across the network, while in the second the
instantaneous current i(t) flowing in the net-
work is desired.

For the first case, the differentialequa-
tion from which e(t) can be computed is found
by summing the currents through the three
elements, i.e.,

i1) = ic(t) +ig(t) +i (1) (1~6)

Substitutionof expressions for these element
currents in terms of voltage shows that

i(1) =C 8 + Ge 15+ fedt

at L (1-17)

Forthe second case,the differential equation
is formed by equating the applied voltage to
the sum of the voltages across the individual
elements, i.e.,

e(t) = e (1) +ey(t) 1ec(t) (1-8)

When these element voltages are expressed
in terms of the loop current i(t), the resulti-
ant equation becomes

e - LY R - fia o9y
dt C

Comparison of ligs. 1-7 and 1-9 shows that
onc could be derived from the other if the
following substitutions were made:

i > e

C -
G

Z U

>

-
o -



AMCP 706-329

1-4

TABLE 1-1. SYMBOLS AND UNITS.
Parameter
or' Pictorial
System element Symbol Unit symbol

1. Electrical Voltage e volt
Current i ampere R
Charge q coulomb —ANN—
Power power watt
Angular velocity @ radians/sccond L
Energy w joule — T —
Resistance R ohm c
fopagines & mamy —
Capacitance C farad

2. Mechanical Forcc J pounds

rectilineal Velocity v feet/second R

Displacement z feet
Accclcration a feet/second? '_"‘J_
Accclcration of
gravity [ 32.2 feet/second?
Power power foot-pound/second E
Energy w foot-pound X
Viscous friction R pound-seccond/foot  — _rHH—
Mass m pound-second?/foot
Spring constant k pound /foot

3. Mechanical Torquc T pounds-feet

rolational Angular velocity w, € radians/sccond B
Angular +
displacement € radians
Power power foot-pound/second J
Energy 14 foot-pound _—@‘_—
c

Rotational friction B

pound-foot-second

Inertia J poun d-foot-second? S
Rotational spring
constant c pound-foot/radian

4. Hydraulic Pressure P pound/foot?
Flow rate g foot3/second
Volume vV foot3 R R
Power power foot-pound/seccond X, =——=
Energy w foot-pound
Resistance R pound-second/foott T - _—_
Incrtance M pound-second?/foot® M E
Capacitance C foot®/pound
Bulk modulus B pound/foot?
Density P pound /foot3

5. Pneumatic Pressure P pound /foot?
Flow rate q foatd/second R R
Volume V foot? x, ——
Powcr power foot-pound/second
Energy 14 foot-pound -
Resistance R pound-second /foot® | c l
Inertance M pound-sceond?/foot?
capacitance C foot*/pound

6. Thermodynamic Temperature [4 °F R
Heat flow q BTU/second — NN
Heat H BTU ¢
Resistance R degree-sccond/BTU
Capacitance C BTU/degree l(
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TABLE 1-2. SUMMARY OF ANAILOGIES.

Relations between Purameters and Elements

Parameters Elements Response Funetion Alternate Response
i Energy Storage Energy Storage Energy Storage E«}n:\tion of single-degre Fnergy Storage
Forcing Response | Alternate , of-freedom system conta- Power
System function function responsc Dissipative 1 2 Chasipative 1 2 Dissipative 1 2 ing all tvpes of clements dissipatior. 1 P System
voltage ¢ current ¢ charge ¢ fresistance R | inductance L %gpncimnce e =Ii e=L% e = a,ft dt e=1 4 = le—"‘{ ¢ "‘ : Ri+ f Pl = power = R W= l, e W= ;’ Cet
Electrical - - - —dt - “ ; - Electrieal
current ¢ voltage e conductance G ((:Japnclmncc gductance i=Ge i= Ct‘ili Q= } fe & (.(_q + Ge + . f (dt = i poer = G W = ‘I_’(.e. W= 1) I
force f velocity v | BiSPhee- [ rectilineal mass m reciprocal ) . ]
7 |resistance R of spring J=Re J= mf'd—'; S =k f vt f=r ‘(’}l’ S =m _d‘f f=tz ] ™ ‘(Iu + Re + k f rdt =, power = 2R W= ms W= !, }' '
Mechanical constant 1/k - - Mcch;mw?l
Rectilineal velocity v | force / reciprocal of | reciprocal | mass m ' 1d . Reetilinen
rectilineal of spring v = L v = ,lc%f v = lfjcll I.(d{ + % 4 + - fjdt = power ='-£ W= IJ" W= %mt*
resistance 1/I¢ | constant 17k R t m v
torque T lar ?lngt;lar rotational B momen:.r of | reciprocal of p do . . ] . - -
ocity w isplace- | resistance iicrtia rotational . _ g . v _ v g6 _ dw f - PR . ™
mént ¢ spring 7 = Bo T Jdt 7 —cfwd( 7 —BFl 7 —ng T =cp Jdt+13w+f wdt =1 powir = w'B n ?Jw b} 201
Mechanical constant /e Mechameal
Rotational lar torque T reciprocall of xccipmca.ll of momenf., of r a7 : 140 T . 1 . Rotations:
velocity w rotationa votational inertia . 14 j - op = L0 o, .t
resistance 1/B | oo w=% =140 ngfm S R power = 2 Wi | W =g
constant 1/¢
pressure p | volumetric | volume V | hydraulic incrtance M | hydraulic . dq 1 . 1 L. T
ow ¢ resistance R Zglpacitance p =Ry p=AM p= 5. f gdt p= % p=hi %{- Viu o TRt f qdt = p power = ¢*R W=3Mg W= 0y
Hydraulic PE— reciprocal of | hydraah: — 7 P " ; Hy draulic
volumetric | pressure p ydraulic inertance 1 . ]
flow ¢ hydraulie capacitance ¢=2 ¢=C dr g = L f pdt J + + 5 f pdt =g power = % W=s0p W=, M
resistance 1/R | C k dt M
pressure p | volumetric | volume ¥ | pneumatic inertance M | pncumatic dq ) o1 .1
ow ¢ resistance R %apacnt,gncc p =Ry p=M ‘1& _ %f gdt p= lfd p=M ffg P = .g + Rq + (,fq(ll =p power = ¢*R W= 3 My W= 3 Cp2
Pneumatic P——, orocal of + oy rortancs il ; - ; " Pnennm:.tic
volumetric | pressure p reciproc rneumatic | nertance d P ~ _p i R
flow ¢ pesistarntéc] /R | €upacitance 9= I—’; q= C;{{ q= 37 pdt +a f pdt =g power =5 W=30 W= My
temperaturel heat flow heat H | thermal thermal h 1
e q resistance 1 . 0=lfth 0=Ri’1 e=!! Rq+z,-fth=0
¢erpacitance € =1y C di (o}
Thermodynami¢ neat flow . . @ Thrermodynanu:
ea emperature
g i E5iTi¥tance G | BTRhnce ¢=Ge | q=c% Cate=a

1-571-6
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Figure 1-1. Equivalent, or dual,
electrical networks.

‘I'he reciprocal quantities%‘andlﬁ are some-
times designated I' and S ~~jyespectively,
whereupon the last correspondence above
bcconies

r-s5

When the differential equations describ-
ingtwonetworks composed of the same class
of physical elements (such as electrical or
mechanical) correspond in this manner, the
networks are called duals. Foralargeclass
of networks, such duals exist and frequently
represent alternative means for realizing a
giventype of dynamic system performance.f

Techniques for formulating the integro-
differential equations for electrical ne?q
works 2*ttand for more general systems
havc now been developed to a high degree.
A set of these equations sufficient to de-
scribe a given system that is under con-
siderationrepresents a mathematical model
for the system, and the development of such
amodecl constitutes the first step toward de-
termination of the performance character-
istics of this system. The fact that a variety
of differenttypes of physical systems can bc
described by equations of the same form fa-
cilitates considerably the study of a variety
of systems.

The equations shown in Table 1-2 de-
scribe the restricted but veryimportant class
ofllinear systems. While any physical system
canbe driven into regions of nonlinear oper-
ation, many systems do behave in an essen-
tially linear fashion over a wide uscful opcr-
ating range. The reason why systems that
operatein anessentially linear manner are so
important is tliat the mathematical techniques
for analyzing sucli systems are highly devel-
oped and relatively easy to apply. Consc-
quently, although the analyst sliould always
keep before him a clear picture of the ways
in which tlie system he is studying departs
from linearity, he should, as a first step in
his analysis, determine whether ornot useful
results could be obtained from study of a
linearized representation of the system. If,
under normal use,the system operates in an
cssentially linear fashion, very useful pre-
liminary estimates of system characteristics
canhe obtained at much less effort than if the
nonlinearities were included. Atalater stage
in the analysis, it may be desirable to in-
clude nonlinear terms in the niathcmatical
model, but their inclusion substantially in-
creases the difficulty of obtaining analytic
solutions and may force the analyst to resort
to computer methods of solutior.** While a
computer solution can frequently serve in
sucha circumstance to provide a more faith-
ful representation of a system than might
otherwise be obtainable,a good general rule
to observe is the following: If one can obtain
a satisfactory solution without the use of a
computer, he should do so since he will then
be likely to better understand the problem.

1-3 CHARACTERISTICS AND LIMITATIONS
OF MATHEMATICAL MODELS

A mathematical model is merely a con-
venient way in which to describe a physical
system. If such a model is to be useful, it
must (1) represent the physical system suf-
ficiently well that solutions obtained by study-
ing the model yield useful information about

1t should be noted that thesymbol S used here has no relationship to the symbol s used to represent the Laplace transform variable.

T For a considerably more extensive treatment of this subject, the reader is referred o Chapter 3 of Reference 1.

*
A general bibliography of references relating to the analysis of nonlinear systems appears at the end of Chapter 2.

tt Superscript numbers refer to References at the end of each chapter.
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the performance of the actual system and (2)
be amenable to analysis. Actually, neither
of these requirements is absolute. A crude
mathematical model may be easy to study
and may provide very useful information,
while amore sophisticatedmodel might yield
considerablymore accurate results but might
be very difficult to study. While misleading
results may be obtained if the model used
does not take into account all the significant
system characteristics, there is little point
in employing a model that is more complex
thanis required to obtain results that are of
sufficient accuracy fortlie particular purpose
at hand. The experienced analyst employs
simplemodels during the early stages of his
investigation as a means for examining a
broad range of possible systems and estab-
lishing preliminary bounds on system param-
eters. As the design proceeds, the model
may be elaborated upon so as to represent
the system more accurately. E’urthermore,
in the latter stages of analysis, it may be
desirable to determine how the system per-
forms when subjected to inputs and distur-
bances that can be described only in a sta-
tistical manner or when certain system
parameters deviate in some randomly
described fashion from the design values.
While such effects can be included in the
mathematical model, the resulting equations
frequentlybecome so complex as to preclude
analytic solution and require simulation on
an analog or a digital computer.

With more complex systems, the analyst
may initially be unable to formulate as pre-
cise a mathematical model as he may wish.
In fact, if the phenomena involved in some
portion of the system are not well understood,
the analyst may be forced to collect experi-
mental data on that portion of system and
then attemptto develop amathematical model
that will correspond with the data. Thismay
require considerable effort and involve a
number of attempts at refining the model or
developing completely different ones as the
phenomena involved become better under-
stood.

Possibly the greatest danger tliat the
analystfaces in using a mathematical model
lies in his placing too much reliance on the
factthat he hasbeenablebyone means or an-
otherto formulate and obtain solutions from
a mathematical model, and then being misled

1-8

by tlie results obtained. The solutions may
be 100percent correctbut the model may not
represent the physical system, either asare-
sultof anactualerror introduced in formula-
ting it or because intentional simplifications
have been made for the purpose of reducing
the mathematical complexity and subsequent-
lythese simplifications have been forgotten.
This type of pitfallis best avoided by experi-
cnce and by comparison, at appropriate steps
in the design, of results obtained from the
modelor subportions of it with experimental
results obtained directly, using correspond-
ing portions of the actual system. At some
stages inthe development of acomplex device
or system, itis frequentlyappropriate to run
simulation studies in which portions of the
physical equipment from the actual system
are employed, while the remainder is simu-
lated on a computer or with special-purpose
devices. In fact,this technique is frequently
carried to the point where essentially the
whole system is tested by supplying it with
simulated inputs and possibly by substituting
dummy loads or synthetic disturbing torques
onthe output. In this manner, the system can
beexercised forextended periods under con-
ditions much more favorable for the experi-
menter and frequently at very great savings
in both time and money. For example, test
of a fire control system against real targets
is much more difficult and time consuming
than determination of its performance when
subjected to synthetic inputs. Model studies
do not remove the necessity for performing
a final evaluation of a system under actual
field conditions but, if the model studies have
been well thoughtout and carried through, the
field tests should proceed very smoothly.

The analyst’s normal wishes are (1) to
refine hismodel sothat results obtained from
it correspond very closely to those obtained
from tests on the actual system and (2)to
study the model in sufficient detail to enable
him to arrive at parameters that will give
optimum performance of the system. How-
ever, the optimum-parameter settings for
well-designed systems are usually rather
broad. Furthermore, a mathematical model
necessarily differs from the physical system
it is designed to describe and discrepancies
necessarily existbetween the performance of
the model and of the physical system. Deter-
mination of the time at which it is appropriate
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toterminate model studies and freeze the de-
sign of the actual system is one of the major
decisions facing a project engineer. Unfor-
tunately, aswith many decisions of this type,
little of general value can be said. Each situ-
ation must be examined in the light of the
applicable technical background for the de-
sign and the nontechnical pressures for com-
pletion ofthe project. Experience inthe tech-
nical areas involved and basic good judgment

are the most important factorsinreaching an
appropriate decision.

The chapter which follows outlines the
principal mathematical tools used by the sys-
tem designer and discussesthe use of mathe-
maticalmodels to determine system accura-
cy and dynamic performance. Thismaterial
represents information that is essential for
the man engaged in the design of systems
where dynamic effects are important.

1-9/1-10
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The content of this a]:ipendix is that of Section 2 of the Handbook of Mathematical Functions with Formulas, Grapls, and Mathe-
matical Tables issued in June 1964 as part of the Applied Mathematics Series of the National Bureau of Standards.

T National Bureau of Standards.
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Physical Constants and Conversion Factors

The tables in this chapter supply some of tho
more commonly nceded physical constants and
conversion factors.

All scientific measurements are based upon four
internationnl arbitrarily adopted units, tlie magni-
tudes of which are fixed by four agreed on stand-
ards:

Length—the metor— fixed by tho vacuum wave-
length of radiation corresponding to tho transition
2Py— 50D of krypton 86

(1 meter= 1650763.73\)

Mass — the kilogram— fixed by the international
kilogram at Sdvres, France.

Time—the second—fixed as, 1/31,556,925.9747
of the tropical year 1900 at 12® ephemeris time.

Temperature—the degree—fixed on a thermo-
dynamic basis by taking the temperature for the
triple point of natural water as 273.16 °’K. (The
Celsius scalc is obtained by adding —273.15 to
the Kelvin scale.)

All other units are defined in terms of them by
assigning the value unity to the proportionality
constant in each defining equation, the system so
derived being called the MKS system. Taking
the 1/100 part of the meter as the unit of length
and the 1/1000 part of tho kilogram as the unit of
mass similarly gives rise to the CGS system,
often used in physics and chemistry., The more
common named units arid their conversion factors
are given in Table A-L

Table A-I. Common Units and Conversion

Factors
MKS CGS MXKS unit/
Quantify name name CGS unat
Foree, F newton  dyne 10¢
Energy, W joule erg 107
Power, P watt  o....... 107

The practical, or MKSA, clectrical units are
defined by the force per unit length between two
infinitely long parallel filamentary conductors
carrying current when unit distance apart in a
vacuum by the equation T,/ l./4x=2F. K F
is in newtons and T, bas the numnerical value
4xX1077 then £, and /; are measured in terms of
the practical unit, the ampere. The cusiomary
equations f the rationalized MKSA system then
define the other electric and magnetic units.
The force between electric charges in a vacuum
in this systeni is given by Q,@)/4xTs*=F, T,
having the numerical vuluo 10°/4x¢® where ¢ is
the speed of light in meters per sccond (I,=
8.854X1071%).

The CGS unratiorialized system is obtained by
deleting 4= in the denominators in these cquations
and expressing F' in dynes nnd r in centimeters
Setting T',, equal to unity defines the CGS unra-
tionalized electromagnetic system (emu), T,
taking the numerical value of 1/¢®. Setting I',
equal to unity defines the CGS unrationalized
electrostatic system (esu), I'n tuking the numerical
value of 1/¢

The Lorentz-Heaviside system involves a dif-
ferent process of rationalization,

Table A-11. Names and Conversion Factors for Electric and Magnetic Units

Quantity MKS emu esu MKS unit/ MKS unit/
name name name emu unit esu unit
Current ampere abampere statampere 107 ~3X 108
Charge coulomb abeoulomb statcoulomb 10t — 330
Potential volt abvolt stntvolt 10 ~(1/3) X 10"
Resistance ohm abohm statohm 100 ~(1/9) X101
Inductance henry centimeter  |...______..... 10° ~(181X10-2
Capagitance favad | _____..__ centimeter 10-* ~9 X 10n
Maguetizing foree amp. turns/ oersted e ieeoa| 4xX 1073 ~3% 10°*
meter

Magnetomotive foree amp. turns gilbert 4ax10-1* —3/10%*
Magnetic flux weber maxwell  Joo___._______. 100 ~(1/3) X107
Magnetie flux density tesla gauss | 10¢ ~(1/3) X 10~
Electric displacement SN (RUOEUU NP IR 10-8* ~3X10%*

Example: If the value assigned to a eurrent is 100 amperes its value in abamperes is 100X 107 = 10,
*Divide this number by 4 if unrationalized MKS system is involved; other numbers nre unchanged.
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The adjimted valiues of conatants given inTable A-11are those recommended by the National Academy of Seiences-National
Re~carch Comal Committee on Fimdameutal Constants m1 1963, ‘The ercor limits are three times the atandard errors eatimated
fiom the experunental data inclnded in the adjustment.  Valuea, where pertinent, are hased on the unified scale of atomic masses
in which the atomic mass innit (1) is defined at 1/12 of the mars of the atoin of the 12C nuelide.

Table A-111. Adjusted Values of Constants

Eat. 3 Unit
Conatant Symbol Value error
limit | Systeine International Centimrter-gram-second
MKSA (CGS)
Speed of light in vacuum.. ....... c 2.997925 3 | X107 ma~t X101 | cm s7?
Elementary charge ... .......... e 1. 00210 7 10~ | C 10-® | cmingin ¢
4. 80298 (I T 10710 | c?ngiing-t
Avogadroconatant . .. .......... Na 6.02252 28 102 mol-! 108 mol~t
Klectron rest mans. . ............. m, 9. 1091 4 10-¥ | kg o 10°® | g
5.48597 9 10~ | v 10-¢ |
IProton rest masa, ... .......... m, 1.67252 8 10-%7 | kg 10 | g
1.00727663 24 100 n 100 u
Neutron rest mass . .. ... ....| mq 1.67182 8 10-7 | kg 10°% | g
1.0086654 13 loo u 100 n
Faraday constant . .......... F 9. 61870 16 104 C mol-! 1» om! g Amol-t ¢
2.89261 T O 101 cm? gl tg~imol-t ¢
Planck constant. . .............. h 6.6256 S 10-% | g 10-7 | ergs
K 1.05450 7 10-% [ gs 10°9 | erg s
Fine atructure constant . ... ...... a 7.29720 10 1070 |......ovnnts 1071
1/« 1.370388 19 ) (0 A 10t
al2x 1. 161385 16 1070 | 10-3
o' 5.32492 14 ¢ 10-#
Churge to mas« ratio for electron ... | e¢/m. 1.758796 19 10 | Ckgt 107 | em'g-ine
5.27274 6| ....... e eaee e 10" cm3g-1g-) ¢
Quantum-charge ratio. hle 4. 13556 12 10-8 | J o C? 1077 | em?Agiig—t ®
1.37947 L 2 S 10-17 | emtAgin ¢
Compton wavelength of electron. .. | Ac 2.42621 6 10" [ m 10-1® | em
Ae2x 3.86144 9 10°¥ | m 10-1 | em
(:()“lllln“ wavelength of proton. ... Ae.p 1.32140 4 10-8 | m 10-2 | em
A, of2m 2. 10307 6 10-% | m 10-% | em
Rydberg constant .. ............. R. 1.0973731 3 107 m-! 108 cem™t
Bobrradina. .................... agy 5.29167 7 10-0 [ m 02 | em
Flectron radius. . . ... ......... re 2.81777 11 1008 | ' m 10-" | em
r 7.9398 6| 10-% | m 10-% | em®
Thomson croas section . . . . . .. .. 8rr? 6.6516 5 10-% [ m' 10-% | em?
Gyromagnetic ratio of proton. . . . | ¥ 2.67519 2 10" rads™'T! 10 rad s~'Gt *
¥/2r 4.25770 3 107 Hz T 100 oG *
(uncorrected for diamagnetism. ¥’ 2.67512 2 104 rade—: It 104 rad 6~'G™? *
i1,0)) ¥' 2= 4.25759 3 107 Hz T 108 a-1G-! ¢
Bohr magneton . . . . 0000 L Ha 9.2732 6 10-% | J T". 10°1 | erg G *
Nuclear magneton . .. ... ... By 5. 0505 4 10-7 | J T 10°% | erg G *
Proton moment . . . . .. Ho 1.41019 13 1o-® | J T 1072 | erg G™! *
Holun 2.79276 ? 100 (............. 100
{uncorrected for diamagnetism, 1L,0)| u'plun 2.79368 7 100 |............. 100
Anontalous clectron moment corrn. (mefnmo) —1 1. 159615 15 10°% | ... ........ 10—
Zeeman sphiting constant . .. ... .. unlhe 4. 60858 4 10 mT- 10-3 em-IG-1 ®
Gas constant . ... R 8.3113 12 100 J °K-f mol-! 107 erg °K-1 mol-!
Nonnal volume perfect gas. ... .. | 2 2.21136 30 10-2 3 mol=t 100 cm’ mol-t
Boltzmann constaut . k 1.38051 18 10-8 | J°K-! 10718 | erg °K-!
Fiest radhation constant (2rhe?). « 3. 7105 3 10°" | Wm? 10-% | erg cmn? s~}
Kecoml radiation constant €y 1.43879 19 D' m °K 100 em °K
Wien dhisplacement conatant . . b 2.8978 4 107 | m °K 107! | em °K
Stefan-Boltzmann constant ' 5. 6697 29 108 | W m~? OK- 4 1075 | erg can—® o~1 °K~*
Gravitational consiant . . .. [# 6.670 15 10" | N m* kg? 10-% | dynent g*
{Based on 3 atd. dev, applicd to lost digita in preceding coluinn. *Electromagnetic syatem. {Electrostatic ryrtem.

C—conlomb J—joule Hz—hertz We—watt N— newton T—tesla G—gauss



AMCP 706-329

Standard gravity g,

Standard atmospheric pressure #,

1 Therinodynaniic calorie ? cal,

11 T calorie? cnl,
1 liter 1

1 Angstrom unit A
1 Bar

1 Gal

1 Astronomical unit a.u.

1 Light year
1 Parsec

Table A-IV. Miscellancous Conversion Factors

==0.80665 n1 sec=?

=1.013250 10% newtons n~?
10® dynes cin~?

=4.1840 joules
=4.1868 joules

=1.000028X10~* m?

=107 n

=10° newtons m?

10% dynes ecm?
=10"2 n1 sec™?

1 em sec™
=1.495X10" m
=0.46X10% n
=3.08X10'* m

=3.26 light years
1 Curie, the quantity of radioactive material undergoing 3.700X 10" disintegrations scc™!.
1 Roentgen, the exposure of x- or gamma radiation which produces together with its secondaries
2.082< 10° electron-ion pairs in 0.001293 gin dry air.
Formula for index of refraction of atmosphere for radio waves (f<3X10") (n—1)10*=(77.6/T) (p i
4810¢/T), where n is refractive index; 7' temperature °K; p total pressure in millibars, ¢ water vapor
partial pressure in millibars,

Factors for converting the customary United
Stntcs units to units of tlie metric system arc given

in Table A-V.

Table A-V. Factors for Converting Customary
U.S. Units to Metric Units

1 yard

1 foot

1 inch

1 statute mile

1 nautical mile (inter-
nutional)

0.0144 ineter
0.3048 meter
0.0254 meter
1609.344 meters
1852 meters

Geodetic constants for the international (Hay-
ford) spheroid are given in Table A-VL. The
gravity values are on tlic busis of tlic old Potsdam
value and have not been correeted for more
recent determinations. They are probably aboeut
13 parts per million too great. They are ealcu-
lated for the surface of the geoid by the inter-
national formula.

Table A-VL. Gceodetic Constants
a=0,378,388 m; f=1/297; b=6,356,912 m

1 pound (avtlp.)
1 0%.(avdp.)

1 pound force

1 slug

1 poundal

1 foot pound

0.45359237 kilogram
0.0283495 kilogram
4.44823 newtons
14.5939 kilograms
0.135255 newtons
1.35582 joules.

Temperature
(Fuhrenheit)
1 British thermal unit ¢

324 (9/5) (temnperature
Celsius)
1055 joules

Length ength of 17 of
Latitude Iof 1 o(} gurallol L ntori(lian msgc"
i
Meters Meters i Meters
0°| 1,855.398 | 1,842.925! 9.780490
15 1, 792, 580 1,544.170 Q. TSSH0
30 1,GOS. 174 1,847 680 Q. THRRTS
45 1,314, 175 1, 852, 256 9. Stn2ag
60 030, 047 1,836, 951 9. 819240
75 481. 7256 1, 860. 101 0, 828754
90 0 1,861, 6LL 9. 8322138

2 Ured principally by chemists,
3 1'nedd principalty by engincers.

¢ Various definitions are given for the British thermal unit,

This represents s ronnded mean valne differing from

none of the more important definitions by more than 3 in 10%,

1-14
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CHAPTER 2*

DETERMINATION OF THE ACCURACY AND DYNAMIC
RESPONSE OF A SYSTEM FROM STUDIES OF ITS
MATHEMATICAL MODEL

2-1 INTRODUCTION

As discussed inpar. 1-2, the first step
the analyst faces incarryingouta theoretical
study of the performance of a system is that
of establishing a mathematical model for the
system. He doesthis based upon aknowledge
of the basic laws that describe mechanical,
electrical, hydraulic, and other systems (in-
cluding combinations of these systems)and
upon a thorough and detailed understanding
of the particular system with which he is con-
cerned. The result of this step usually takes
the form of a differential equation or, more
generally, a set of differential equations that,
in mathematical terms, describe the per-
formance of the system.

The next step is to solve these equations
by either analytic techniques or computer
simulationtechniques soas to obtain specific
information showing how the system would
respond to differenttypes of inputs. This en-
ables the designer to select the adjustable
system parameters in suchaway asto optim-
ize system performance.

The first part of this chapter (see
par. 2-2) surveys analytic techniques. Spe-
cifically, the application of such mathemat-
ical techniques as linear-differential- equa-
tion theory, frequency-domain analysis, fre-
quency-response techniques, block diagrams
and signal-flow graphs, statisticaltheory, and
nonlinear analysisare described. The second
part of the chapter (see par. 2-3) provides a
brief discussion of the way in which analog
and digital simulationtechniques can be em-

ployed in studying mathematical models that
are too complex for analysis by direct ana-
lytic techniques. The thirdpart of this chap-
ter (see par. 2-4) describes the application
of digital computation tothe branch of math-
ematics known as numerical analysis and
summarizesthemain aspects of the numer-
ical techniques that can now be employed.
Since a thorough discussion of these topicsis
beyond the scope of this handbook, a number
of themore important referencesineacharea
are provided in order to enable the reader to
obtain further information concerning those
topics he finds of particular interest,

2-2 MATHEMATICAL TECHNIQUES
2-2.1 GENERAL

This summary of mathematical tech-
niques deals with various methods of de-
termining.the dynamic response of physi-
cal systems from the differential equations
that describe them. The type of response
sought depends upon several factors: the
specifications of the system;the design pro-
cedure adopted; and'the limitations imposed
by test conditions encountered when seeking
experimental verification of the design per-
formance.

Differential equations can be classified
as follows:.
(a) Linear differential equations with
constant coefficients.
(b) Linear differential equations with
time-varying coefficients.
(c) Nonlinear differential equations.

® By W. W. Seifert (par. 2-1, 2-2and 2-3) and E. St. George, Jr. (par. 2-4).
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Of these three classes, constant-coefficient
linear differential equations are, by far, the
most widely used and the best understood.
The subject matter of par. 2-2.2 through
par. 2-2.6 is focusedexclusively on methods
of solving equations in this class. For a dis-
cussionof nonlinear differential equations and
some of thetechniques employed for treating
them, see par. 2-2.7 through par. 2-2.7.3.4.
Linear differential equations with time-vary-
ing coefficients represent an intermediate
case and are discussed in par. 2-2.7 in con-
nection with nonlinear analysis.

2-2.2 LINEAR-DIFFERENTIAL-EQUATION
THEORY

The general form of alinear differential
equation with constant coefficients is

a d ix m Adv
b, —
Z I au

1=0 i =0 b

(2-1)

where the a's and b's are the constant coef-
ficients, x(t) is the response function, and y(t)
is the input function. The equation is linear
because the response to a sum of component
input functions equals the sum of the re-
sponses to each ofthe component input func-
tions. The highest-order derivative of the
response, x(t), that is present in the equation
is called the order of the equation. Thus,
Eq. 2- lis an equation of the nth order. The
information necessary for a complete solu-
tion of the equation is astatement of the ini-
tial value of the response and the initial values
of its firstn -1 derivatives, as wellas spec-
ification of the input, y(t). By changing the
initial conditions, one obtains a different so-
lution. Inthe classical method of solution,
the response can be separatedinto two parts:
(1) a general or homogeneous solution, and
(2) a particular solution. The complete so-
lution of the differential equation is the sum
of the general solution and the particular so-
lution. The general solution always has the
form of a sum of exponentials with real and
complex arguments; the particular solution
has the same form as the input or a sum of
the input and its derivatives. The general
solution is often called the force-free or tran-
sient solution; the particular solution is called
the forced or steady-state solution. Each
term in thetransient solutionis called a nor-

2-2

mal response mode or characteristic of the
equation.

The complete solution of alinear differ-
ential equation can be represented in general
terms by the relationship

n
x(t) =x (1) + L
(M =x,1 Z Ae 2-2)
k=1

where xp(t) isthe particular solution, the py's
are the roots of the characteristic equation,
andthe A, 's arepolynomial functions of t. If
there areno multiple roots, the Ay 's are con-
stant- amplitude coefficients. The A,'s and
P's are, in general, complex numbers that
must occur in conjugate pairs if the coeffi-
cients a; (Eq. 2- 1) are real.

Theterm "root" is appliedto each of the
p,'s because these numbers canbe found from
the differential equation by treating the dif-
ferentiating operator d/dt as areal variable,
replacingit by the symbol p for convenience,
and setting y(t) equal to zero. The algebraic
equation that results from making such sub-
stitutions in Eq. 2-1is

(2-3)

This equation is known as the characteristic
equation. The roots of Eq. 2-3, when deter-
mined, give the p,'s of the normal response
modes of Eq. 2-2.

The classical procedure for solving con-
stant- coefficient linear differential equations
is covered in many textbooks, for example,
see Refs. 1, 2, 3, and 4 The use of more
powerful tools for treating differential equa-
tions, such as Laplace and Fourier trans-
forms, are discussed in par. 2-2.3 through
2-2.3.3. For situations where the input is
sinusoidal oris stochastic, additional special
techniques are used. These techniques are
discussed respectively in par. 2-2.4 and par.
2-2.5. Theuse of block diagrams and signal-
flow graphs is described in pars. 2-2.5.1
through 2-2.5.2.

2-2.3 FREQUENCY-DOMAIN ANALYSIS
2-2.3.1

Laplace and Fourier transforms5 are
typical aids for solving linear differential
equations that comeunder the general classi-

Laplace and Fourier Transforms
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fication of frequency-domain analysis. They
introduce properties of system performance
that enhancethe designer's understanding and
simplify his task.

The bilateral Laplace transform of a
function is defined as follows:

o0

)2/

-~

e[fm] 2 Fe) o5t (1) dt

[ Girect1 (2-4)

where s is the complex frequency variable,
0 +jw, and the symbol2 means "equal by
definition”. The inverse bilateral Laplace
transform has the form

t)éji'f

e

et ®
¢ [ F(s) ] es'F (s)ds

[Inverse] (2-5)

where ¢ is a constantthat defines the path of
integration.

The single-sided Laplace transform is a
useful special case, applicable to time func-
tions that exist only fort 2 0. The transform
and its inverse are defined as follows:

e [fw] 2Rl S et at
0

[Direct] (2-6a)
1 c+j®o
eV [Fe ] 2 f(t) = 21TJ es' F (s) ds
e-j®
[Inverse] (2-6b)

where the subscript + signindicatesthat these
two transforms apply for positive time only.

The Laplacetransform existsfora large
class of functions. For existence, it is nec-
essary onlythat the function f(t) be piecewise
differentiable (i.e., finite jumps ofthe function
f(t) are permissible) and be of exponential
order (i.e., the integral

e~ Ctdt

is finite for any finite value of C)12,

* For reasons of historical development and relative complexity,
of the Fourier transform.

As already noted, the frequencyvariable
s in thebilateral Laplacetransformisa com-
plex variable. When attention is restricted
to the imaginary component jw, the bilateral
Laplacetransform becomes identical in form
withthe Fourier transform. Thus, the Fourier
transform can be considered to be a special
case of the Laplace transform.::: The Fourier
transform and its inverse are defined by the
relationships

e
FLEM] BFG &/ emmriman

[Direct] (2-7a)

$5[FG0]’ e Qil— f e1°'F (jeo) d (je)
1 o

T —_— f e« Fjw)dw

27 -

Linverse] (2-7b)

The Fouriertransform exists for a more re-
stricted class of functions than the Laplace
transform. The requirement forthe existence
of the Fouriertransform isthat f(t) be piece-
wise differentiable and that the integral

J i If(t)l dt
exist.

2-2.3.2 Useful Theorems

The following theorems are useful for
applying the Laplace and Fourier transforms
to the solution of differential equations:

Linearity Theorems

(@) Lpaf@w] =aFqs
®  elar) + 86,0 ]

=ae [(0] o2 [ 0] @9

(2-8)

the Laplace transform is sometimes introduced as a special case

2-3
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Real Differentiation Theorem

(c) ¢ l—%'—)--l =s"F(s) - s~

| .
-s"2§1(04) - ...

- sfl0=2)(0 4)

- fa=m (0 +)  (2-10)

A li
in which £(0+) = t0f(t), where the
limit is approached from positive
values of t and

k
(0O, A dlf(t).

dt

Real Integration Theorem

(d)
(n times) -
9[! ff«)(de
Lo -
o+ ot ,
Fw L0 /., [f_wf(:) ot ] ot
s® ’ s" ¥ sn—!
o+ ’(n-l Hmes')
f [f S f(')(dt)"“]dt
- A S
...+ s
(2-11)
Normalization Theorem
© £ (’t’) (as) (2-12)
a

This relationship is useful when it
is desired to change the time scale
of a problem.

Real Convolution Theorem

® e [f' f (t-f)f,a)df]

= F,(s) Fy(s) (2-13)

where 7 is a new time variable.

1 et
@ efr, (1)t (1] i) "E (s

c~j®
(2-14)

where the notation * means that
F,(s) is convolved with F,(s).

M) & [f(NEM] # F () F(s) (2-15)

if neither f,(t) nor f,(t) is equal to
zero.

Real Translation Theorem

@) 2£[f(t-a) J=e-2*F{s) (2-16)
if f(t-a) =0for0<t<a

G) £[fitea ] -e=F(s) (2-17)
if f(t+a) =0for —a<t<0
Final- Value Theorem

&)  limsF(s)=lim (1) (2-18)

E ad ] -0

Initial- Value Theorem

lims F(s) =lim f (t)

(1) s~ t—0

Theorems (a), ), (e), (f), (g), (h), and
(k) also apply to the Fourier transform.

#Eq. 2-15 merely brings attention to a common error; Eq, 2-14 is the correct form of £ [f] ORAO! ] .

2-4
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2-23.3 Solution Procedure

The solution of ordinarylinear differen-
tial equations is accomplished by means of
theorems (a), (b), (c), and (d)of par. 2-2.3.2.
Application of these theorems to Eq.2-1
shows that

li?"-s'] X (s) - A (s) ‘[ 5‘ bjsj] Y (s) + B(s)
i-0 é=0

(2-20)

where A(s) is a polynomial in s depending
upon the a's and the initial values of x and
its first (n-1) derivatives, and B(s) is a poly-
nomial in s depending upon the b's and the
initial values of y and its first (m-1) deriva-
tives. The responsetransformcanbe obtained
by solving Eq. 2-20 for X(s), i.e.,

Z b“sJ'
X(s)=| H—|Y(s) +

i
S
Z 9 _S_ qs'
i=0

B (s) +A (s)

(2-21)

In words, this equation can be written
response \ _ ( system ) ( input )
(transform > function transform
R initial condition
function (2-22)
The ratio of the response transform to
the inputtransformwhenall initial conditions
are zero (i.e., when theinitial condition func-
tion is zero)is called thesystem function or
the transfer function of the system. This
functiondepends only uponthe coefficients of
the differential equation and isindependent of
the input and the initial conditions. As will
be shown later, the transform of an impulse
function is unity. Therefore, a comparison
of Eq. 2-22 (with initial condition functionset

equal to zero) with Eq. 2-20 shows that the
transfer functionof asystem equalsthetrans-

form of the impulse response of the system
for a unit impulse.

Transforminga differentialequation en-
ablesthe analyst to replace the processes of
differentiation and integration by simple al-
gebraicprocesses. Then, the transform X(s)
can be found algebraically. Subsequently, the
system response x(t) corresponding to the
response transform X(s) canbe found by using
the inverse Laplacetransform (see Eq. 2-7).
However, this inverse transform usually in-
volves contour integration in the complex s
plane. To avoid this integration, tables of
transform pairs have been constructed that
givethetime function correspondingto a given
transform directly. A brief listof commonly
used transform pairs is given in Table 2- 1.
More extensivetables canbe found inRefs. 5
and 6.

If tables of transformpairs are unavail-
able, or if the particular transform whose
inverse is sought is not listed in the tables,
the method of partial fractions may be used
to expand the transforminto a sumof terms,
each of which is readily recognized as the
transform of a simple time function. If the
transform whose inverseis sought is a ratio
of rational polynomials, the roots of the nu-
merator polynomial are called the zeros of
the function and the rootsof the denominator
polynomial are called the poles::: of the func-
tion. If the poles of the function are not re-
peated, they are called simple poles. The
order of a pole is the number of times the
pole is repeated. For a function containing
only simplepoles, the partial-fractionexpan-
sion of the function is

N{s) " K
F(s)é--__’.=z . (2-23)
Bs) =1 s-s,
where
(s~s,)N(s)
Kké [ﬁ__s_] =[N(_S)] (2-24)
D(S) s=5 D(S) s=s,

and sy isthekth rootofthe denominator poly-
nomial D(s).

* A function F(s) that can be represented by a ratio of polynomials is said to have a pole ats =sy of order n if lim  F(s) =cand if
S -» Sk

[(s-sk)"l F(s)] =5 is finiteand not zero. The function F(s) is said to have a zero ats =5, if élms . F(s)=o0.
= -
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TABLE 2-1. COMMONLY USED LAPLACE TRANSFORM PAIRS.

No. F(s) f(),t=0
1 1 d,(t), unit impulse
2 —: 6-, (t), unit step
3 s_{' 8.2 (t),unit ramp
1 A et
4 Ts 1 T
w .
S I Fa sin tot
s
6 m— cos of
. S— 1) i<l — 1 ewrsine AV I )
5+ 200u8 + an? ST evI—g o VAT
7 (2) £ =1: tewat
1 . TERREY'S
3)t>1: m eto. ! sin t w, \/§2 — 1t
1 1 .
8 _— — e sinfit
(s +a)* + f* P
S+ a
—F . = e t
9 (sTa)'+ cos f
1 1 -1
10} . (n—1)!
1 1 e
1 (Ts+ 1) (n—1)! T

If the transform contains multiple-order
poles, the partial-fraction expansion of the
function is

A N(s) n ™ k Kkj
F = — = _ (2-25)
(s) D(s) g J;I (s—sk)"'k-.l+l
where
A ‘ &7 [ (s-s)™N(s) ‘
K"] - P ) j=—1 [ ] ‘.l:
(=Dt 1 dsd D(s) 1} e==
(2-26)

and m, is theorder of the pole of F(s) at s=s, .

From Egs. 2-23 and 2-25, it is obvious
that the expansion of a rational function that
is inverse transformed produces a sum of
exponentialterms forthe correspondingtime

2-6

function. Terms containing simple poles, as
in Eq. 2-23, may be inverse-transformed by
the use of transform 4 of Table2-1. For
multiple- order poles with real roots, trans-
form 11 is employed. More commonly, the
multiple- orderpoles appearin complex con-
jugatepairs; in this case, transforms 8 and 9
are employed, and the time functions are com-
bined to form product terms (exponentials
multiplied by a sine or cosine function) rep-
resenting damped sinusoids.

An alternative to the partial- fraction ex-
pansion methodis the method of residues. If
F(s) has a simple pole at s=s,, then the res-
idue ¢(s,) is given by the relationship

N (2-26a)
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and theterm of f(t) corresponding tothatpole
is (;‘)(sk)eskt . The complete time function is
the sum of the residues of F(s) multiplied by
e®', for all the poles. For multiple-order
poles, the residue formula ig®3

1 ch N{s)
¢(s) = — l:aﬁ-" (s-s )0 D(sj q"] .
(2-26b)
where n is the order of the pole. Eq. 2-26b

reduces to Eq. 2-26a forn = 1.

Example. The system defined by the
equation
d4X d3x d2x dX
— 1065 —t89.0 — ¢ 1550 — +27.0x = 27.0y
dr4 di3 di2 dt

(2-27)

isinitially atrest. Att = 0, a unit ramp input
is applied. Find the difference between the
input y and theoutput x as a functionof time.

Solution. Since thesystem isinitially at
rest, all initial conditions are zero. Trans-
forming Eq. 2-27 results in

27.0
X(s) = Y (s)
s4 ¢ 10.65s3 £89.0s2 1 1550s + 27.0

(2-28)
Let

e(t)=y(t) - x(1) (2-29)

Then, transforming Eq. 2-29 and substituting
for X(s) from Eq. 2-28 gives

s [53 t 10.65s2 + 89.0s + 15.501
s4 t 10.65s3 + 89.0s2 + 15.50s + 27.0

E(s) = Y (s)

(2-30)

Determination of the solution of Eq. 2-30 re-
quires that the denominator of the equation
be put in factored form. Unfortunately, de-
termination of the roots of equations of order
higher than the third is difficult unless the
roots happen to be real. One of the methods
best suited to paper- and-pencil computations
is Lin'smethod?. Thisisadivisiontechnique
in which a trial divisor is assumed and re-

fined by repeated trials until a factoris found
to the accuracy desired.
Consider an equation of the form

s"tB__;s"1+B  sn72
n— n—2

+...+B;s?2+B;s+By =0 (2-31)
The first stepwhennisevenisto selecta trial
divisor formed from the last three terms.
This divisor takes the form

B, B,
s2+— g + — (2-32)
B, B
This is divided into the original equation as
follows:

s -
B, By [~ s | oo -
s?1——g «— [s" v B, s B st - B -Bs - B,

C;s?1Cis+Cy

D,s? ' Dys D,

Remainder

If the remainder is negligible, then the
divisor selected is a quadratic factor of the
original equation. If the remainder is not
negligible, then a second trial divisor is
formed as follows:

c, C,

s2+—s+— (2-33)
c, c,

where the C's are determined from the pre-
ceding division. The second trial divisor is
divided into the original equation as was the
first. If the remainderis negligible, the sec-
ond trial divisor is a quadratic factor of the
original equation. If not, the processis again
repeated. After one factor is found, the
method is applied inthe same way to the re-
sulting polynomial, which is now of ordern-2.

When the highest power of the original
equation is odd, a linear factor of the form

B

Q
s +—

B (2-34)

is taken as the trial divisor.
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This method maybe applied to find the
roots of the denominator of Eq. 2-30 as fol-
lows:

The first trial divisor is

15.50 21.0
st s +—— =52 £0.174 s + 0.303
89.0 89.0

This is then divided into the original equation
to give

s2+1048s 869
s? 101745+ 0303 s4+10.65s% °89.0s?2 - 1550y + 270
s+ 0174s% + 0303s?
1048s? +887s? + 1550s
1048s? + 18s?2 -+ 318s
869s2 12325270
869s? + 15125 + 263
280s - 07

The second trial divisor becomes

12.32 27.0
s+ ——=s52+0.142s + 0.311
86.9

86.9

s? ¢

Division then yields

s2+ 10.51s + 872

s4110.65s3 + 89.0s2 + 1550s « 27.0
s4+ 01453+ 03s?

s2+0.142s + 031

1051s% + 887s% + 1550s
1051s’ + 15s?+ 327s

8725’ + 12235 - 270
872s% 4 1238s + 2712

- 0l5s - 012

The remainderis such that the greatest
error inany term is 1%. This is sufficiently
small for this example; so now the denomi-
nator may be written in factored form as

(s2 +0.142s + 0.311) (s2 + 10.51s + 87.2)

The roots of each of these quadratics may now
be found by application of the quadratic form-
ula.

At this stage, it is possible to write Eq.
2-30 in the factored form

s [s?® + 10.65s' + 89.0s + 15.501 y
(s240.142s + 0.311) (s2 + 10.51s ¢ 87.2)

E(s) = (s)

(2-35)

Since it is desiredto evaluate E(s) when y(t)
is a unit ramp applied at t = 0, the transform
of the unit ramp is found from Table2-1 and
substituted in Eq. 2-35. Since the transform
of a unit ramp is 1/s?, the result is

s3+¢ 10.65s' + 89.0s ¢ 15.50
s (s? +0.142s +0.311) (s2 ¢ 10.51s + 87.2)

E(s) =

(2-36)

The inverse transform of E(s) is found
by reducing the expression for E(s) into the
sum of a number of terms for each of which
the transform is known or can be obtained
from a table. This means that a partial-
fraction expansion of Eq. 2-36 must be made.
This expansion * takes the form:

k K K,* K,
E(s)=—lt—lt '—{__Kg...i..__z_'

s $7s8, (2-37)

.
S8 s 52 s 52

[ K, and K,' are complex conjugates ]

K, and K; are complex conjugates

since the roots of eachof the quadratic terms
are complex conjugates, i.e.,
sl:-a1+j(4)‘ 52:-02+jw2
(2-38)

*

- . * T 41
S, - -ju s, G 7 Jay

The undriven or transient response of
any system whose characteristic equationisa
linear constant- coefficient differential equa-
tion with real coefficients takes the form:

-0 —O,t
e =ke ke “2'¢.. .+ Ke-otiopt

T -+
+K.*e( “ "a""+... +K..e( on Nt

s Kyl T NI (2-39)

¥ It is important to note that a polynomial equation with real coefficients has pairs of conjugate zeros, but this is not the case for
polynomial equations in general. Example: 22 +(j-2)e-2j = 0. This polynomial equation has 2 and-j as the only possible zeros.

2-8
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where Kj and K » are complex conjugates;
i=1,2 ., N

The constants K; and K;* in Eq. 2-37
(i=1,2) are therefore complex conjugates
and may be written as

K'=0‘+jb‘ and K:=0i'jb, (2-40)

Insertion of the expression of Eq. 2-38

and Eq. 2-40 into Eq. 2-37 yields

k a, +jb
E(s) _a, 4 1
s (st aq)-jo

oy ~ jby

(s + o) +joy

a, +jb, . 0, jb,

(s 4 o) ~jo, (s+ ) *je (2-41)
The terms with complex conjugate roots can
be combined to yield

k, 2 +a)-2b 2a0,(s + ) - 2b,a
E(s) =1+ (s + a) 1, a; % 2%
s (s + q) + o

(s + 02)2 + wzz

(2-42)

The valuesof a,, b}, a;, and b; are found in
the usualmanner following Eq. 2-24. There-
sults, in general, are complex numbers and
the real part is associated with the a; terms
and the imaginary part with the b;terms in
accordance with Eq. 2-40.

In the example at hand, the quadratic
terms in the denominator may be factored
usingthe quadratic formula. The results are

o=+ 0.071 a, =+ 5.26
(2-43)
w, = 0.553 w, = T1.72
K, may then be found as
[+ 5]
K, o, ¢ jb, (s -s,) —
D (s}
(s + 106552 - 89 0s + 15 50) | (2-44)

sis 10071 -;0553)(s? - 1051s + 872 | 0071+ 00553
s = ty

Straightforward substitution of s = s, entails
considerable manipulation. @ This may be
simplified by reducing the expression forKy
to its completely factored form and then em-
ploying an evaluation scheme 'based upon a
graphical approach. In factored form, after
substitutionof s = s,

(s, 0178) (s, + 524 - |7 73) (s,+ 5 24 - j7 T3)
s, (s, + 0071 +,0563) (s, + 526 - 772) (s, + 526 +;772)

(2-45)

The roots of Eq. 2-45 appear in the s-plane
as shown in Fig. 2-1.

It is now possible to evaluate K yinterms
of the length and angle of the phasors* drawn
to the root s, from theother poles and zeros
of the function; i.e.,

) (056 /79.1°) (944 [61.3°) (849 /302 3")
' (0557 /973°) (411 £90°) (885 /3059°) (976 /579"

0840 [-1084° -0265-;0797 aq, 4 b, (2-46)
Then
K" =0.840 /4 108.4' =-0.265 ¢ 0.797 =q, - jb,
(2-47)

Similarly, K, and K, * can be found to be
K =229x1074 M =(-0.82 ~j2.14) x 1074
=g, + b, (2-48)

Ky, =2.29x1074 /-111° =(-0.82 —j 2.14) x107*
(2-49)

=0, ~jb,

Substitutionof these values of a;, b;, a,, and
b, and the value of k, into Eq. 2-42 yields

k3
A phasor is a directed line segment in the complex plane. With the segment's point of origin given, the phasor is defined either by
a magnitude and an angle (the symbol Z denotes angle) or by the real and imaginary components of its terminal point.

2-9
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05_72 ' 2(-0 265) (s + 0 071) -2(~0 797) (0 553)

E(s) (s 1 0071)2 + (0 553)2

2(-082x1074) (s + 526) -2(-2 14x1074) {7 72)
+
(s +526)2 1 (772)2

0572 =0530(s + 0071) 0 881

(L R e S

®  (s+0071)2 - {0553)2 (s +0071)2+ (0553)2

164x1074 (s 1 5 26) 33 0dx 10+
+

(s 15262+ (1722

(2-50)

(s + 5262+ (172)2

Locations of the roots of

Figure 2-1.
Eq. 2-45 in the s-plane.

Each of these terms is now in a form that
appears directly in thc table of transforms.
It is,therefore, now possible towritc directly

e(t) =0.572 - 0.530 e *7cos 0.553+

0.881
0.553

+ e~ %0711 gjn 0.553 ¢

-1.64x10 4e~5%tcos 7.72¢

33.04x107¢
7.72

e 5%t gin 7.72¢

=0.572 + 70071 [- 0.530 cos 0.553t +

1,503 sin 0.553t | + o -5t [ -1.64 sin 7.72¢
- 4.28 cos 7.72t] x1074

=0.572 + 1.679e 9971t o5 (0.553t - 108.4")
t 4.584e ~5%1 cos (7.72t - 249.0°) x 104

(2-51)

2-2.4 FREQUENCY-RESPONSE
TECHNIQUES

It is often important to find the output
response x of a system to a sinusoidal input
y. For a sinusoidal input, A sin(wt + ¢,), the
output of the systcm will also be sinusoidal,
after the transients have died out, i.e.,
A,sin{wt + ¢,). The amplitude and phase
angle of the output relative to the input are
then dependent only upon W(s), thc transfer
functionofthe system, and can be dctermined
by letting s = jw in the transfer function,
where w is the frequency (in rad/sec) of the
input sinusoid. The ratio of outputamplitude
to input is then given by

X_

(2-52)

W(jm)

b4

where A, is the output amplitude, A is the
input amplitude, and W(jw)is the transfcr
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function of the system evaluated forreal fre-
quencies. The phase angle of the output ¢,
relative to the phase angle of the input ¢y is
given by

¢x_¢|y=£ W(je) (2-53)
where / W(i«)is the argument (phase angle)
of the transfer function.

When the transfer function of a system
is evaluated as a function of frequency for a
sinusoidal input, the complex functionthat re-
sults is calledthe frequency response of the
system.

2-2.5 BLOCK DIAGRAMS AND SIGNAL-
FLOW GRAPIIS
2-2.5.1 Block Diagrams

Eqgs. 2-20 and 2-22 demonstrate that,
with zero initial conditions, the transform of
the output of a system can be expressed in
terms of the input transform and the system
function. The system function can be thought
of as an operator, i.e., the system function
operates on the input transform to produce
the output transform. In a similar manner,
the system operates on the input to produce
the output in the time domain, the operation
being defined by the convolution integral and
depending only upon the impulse response of
the system. The concept of an operator is
presented pictorially by the technique shown
as operational block diagram algebra. The
block diagram of a system is the pictorial
representation of the mathematical opera-
tions involved in the differential equations
that describe the system.

Table 2-2 presents a list of symbols
used in the block-diagram representation of
a system and Fig. 2-2 summarizes some of
the reductions that enable one to simplify or
reducetheblock diagrams of a system. Since
the block diagram contains nomore informa-
tionthanthe differentialequations, the manip-
ulation of a block diagram is merely a pic-
torial process of manipulating the differential
equations. The advantage of ablock-diagram
representation is that the operational rela-
tions in a systemare emphasized ratherthan
the hardware. By becoming familiar with
common block arrangements, the designer

TABLE 2-2. BLOCK-DIAGRAM SYMBOLS.

Symbol I Description | Operation I
X vorioble —_—
—
operator = AX
X v P Y = A
A}
X vy | summing point [ Y = X - W
+
~lw
X X | splitting point | X = X
1 X
X v multiplier Y = XZ
i z

caninterpretthe function of various elements
in a systemmuchmore rapidly than wouldbe
possible from aninspection of the differential
equations.

Example. A servomotordrivesan iner-
tialload coupled to the motor through a flex-
ible shaft as shown schematically in Fig. 2-3.
The transformed equations of this system
are

T, =Us*+fs) 0 +K(&-4)  (2-54)
and
Klg,-¢g)=d.s + T, (2-55)
where
T. = motor-generated torque
J» = motor moment of inertia
f., = motor damping
0, = angular displacement of the motor
end of the shaft
K = shaft stiffness (spring constant)
6 = angular displacement of the load

end of the shaft
I o= load moment of inertia
= externally applied load torque
and s ks the complex frequencyvariable. The
damping of the flexible shaftis assumed to be
negligible. Drawtheblock diagram of the sys-
tem and reduce the diagram, keeping the

2-11
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RULE ORIGINAL DIAGRAM EQUIVALENT DIAGRAM

— A+B [

=

A & »
A -
3 * v As >
B e

i !

A
L}
+

!

Figure 2-2. Block-diagram manipulation and reduction "rules'. (Sheet 1 of 3)
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ORIGINAL DIAGRAM

EQUIVALENT DIAGRAM

RULE
’————1
D | A -
6 > > A f—
=  — A ——
—_— P L an
7 A 1
A
8 > - - —

Figure 2-2. Block-diagram manipulation and reduction "rules”. (Sheet2 of 3)
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+ RULE ORIGINAL DIAGRAM

EQUIVALENT DIAGRAM

11

12

4
‘.

WHERE A, =~ AC - BD

13

2

£

WHERE A, = 1 - ABCD

Figure 2-2. Block-diagram manipulation and reduction "rules". (Sheet 3 of 3)
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SERVO-

Figure 2-3.

J
__ \m i L
m g T!«.
777777777

Mechanical schematic diagram of a servomotor coupled to an inertial load

by means of a flexible shaft.

motor angle 6, and the load angle 6; in
evidence.

Solution. The block diagram of the sys-
tem is drawn in its "primitive" form in Fig.
2-4(A). The successive steps necessary to
reduce the "'primitive" diagramto the desired
form are showninFigs. 2-4(B) to 2-4(I), with
the rules used for each step indicated below
each step.

8,9, 44
2-2.5.2 Signal-Flow Graphs

An alternative procedure for represent-
ing the differential equations of a system
pictorially is Mason's signal-flow graph
method. In asignal-flow graph, variables are

)

represented by points called nodes and
transfer functions are represented by direct-
ed lines or branches called transmittances.
The distinction between the summing points
and the splitting points of block-diagram al-
gebra is eliminated in the signal-flow graph,
The rules for drawing a signal-flow graph
are as follows:

(a) Signals travel along branches onlyin
the direction of the arrows.

(b) A signal traveling along any branch
is multiplied by the transmittance of that
branch.

(c) Tae walue of the variable represented
by any node is the sum ofallsignals entering
the node.

B

J, s?

|

1
z z — -D—|—>
+ + I s

2-15
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J.’ L "8 (')

(C) Use of Rule 3 of Fig. 2-2

(D) Use of Rule 11 of Fig. 2-2

1 o X 1
Josads iy 37|
- —
K

Figure 2-4. Block-diagram examples. (Sheet2 of 3)
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-
"
",
~
&

1 o -~
ds¥sts h K >4
(F) Use of Rules 6 and 8 of Fig. 2-2
"L 2 g
1 1
> X P >
st e d,s , + z Js2.K
J‘.Sz p—
8,
> 1 g R N P -
LI k i LY

(H) Use of Rule 1 of Fig. 2-2

2 <t
It pe

Is?.x

A3

() Use of Rule 1 of Fig. 2-2

Figure 2-4. Block-diagram examples. (Sheet 3 of 3)
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(d) The value of the variable represented
by any nodc is transmitted on all branches
leaving that node.

Example. As an example of this proce-
dure, the two equations

X, =t.x

%ot % ot (2-56)

Xp T g% t Xyt tnX, (2-57)
are represented by a signal-flow graph in
Fig. 2-5.

For convenience, the signal-flow graph is
usually drawn such that no branch enters an
input node or leaves an output node. This is
accomplished by introducing an additional
node connected by a unity-transmittance
branch to each input and output node as shown
in Fig. 2-5, where the input node is assumcd
to be x_ and the output node is assumed to be
Xlo

0

The order of a signal-flow graph is a
measure of the number of independent feed-
back loops and thus indicates the complexity of
the system. The order of the signal-flow
graph is thc minimum number of essential
nodes-- those nodes that must be removedto

climinate all feedback paths. A node is re-
moved cither by setting the variable asso-"

ciated with thc node equalto zero or by delct-
ing all branches leavingthe node. Signal-flow

Signal-flow graph in threc
variables.

Figure 2-5.

2-18

graphs of orders one and two arc shown in
Figs. 2-6 and 2-7, respectively. The signal-
flow graph of Fig. 2-5 is of order two, the
essential nodes being x; and x,.

Thc reduction of signal-flow graphs is
accomplished by application of the following
rules:

(a) Two parallel paths may be rcplaced
by a single path with a transmittance equalto
the sum of the two original transmittances
(sece Fig. 2-8).

(b) Two cascaded paths are equivalentto
a single path with a transmittance cqual to
the product of the two original transmittances
(seeFig. 2-9).

(¢) The termination of a branch with
transmittance t can be shifted one node for-
ward by th? following steps (see Fig. 2-10):

(A) Original Graph

Xyn X x X, Xour

(B) Essential Node Removed

Figure 2-6. Signal-flow graph of order one.

XN X, Xy X3 X, Xour
(A) Original Graph

‘ . g .

x[u (x‘) x, X3 (x“ XOUT

(B) Essential Nodes Removed

Figure 2-7. Signal-flow graph of ordcr two.
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(A) Original Graph

(B) Equivalent Graph

Figure 2-8. Signal-flowgraph showing addi-
tion of parallel branches.

b3 /
- > >
X

(B) Equivalent Graph

Figure 2-9. Signal-flowgraph showing mul-
tiplication of cascaded branches.

(1) Determine all the branches leaving
the original terminating node x of branch t.

(2) Draw new branches fromthe starting
node x ; of branchttothe terminatingnodes of
all the branches leaving the terminatingnode
X,

(3) To each of thc new branches thus
drawn assign a transmittance equal to the
product ofttimes the transmittance froinnode
X to the node on which the new branch termin-
ates.

(4) Eliminate the original branch t.

(5) Change the variable of the original
node X to x' =x - txo.

(A) Original Graph - t to be Moved From x to x2

X« X - tXg

(c) Steps (3), (4), and (5) = Elimination of Old Branch;
Labelling of New Branches, Change of Variable at
Terminating Node of Old Branch

Figure 2-10. Signal-flowgraphshowingter-
mination shifted one node forward.

(d) The starting point or origin of a
branch with transmittance t canbe shifted one
node backward by thefollowing steps (secFig.
2-11):

(1) Determine all the branches entering
the original starting node x of branch t.

(2) Draw new branches fromthe starting
nodes of all the branches centering starting
node x to the tcrininating node X ; of branch t.

2-19
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1

® Steps (1) and (2) = Introduction of New
Branches

(C) Steps (3) and (4) = Elimination of Old Branch and
Labelling of New Branches

Figure 2-11. Signal-flowgraph showing ori-
gin shifted one node backward.

(3) To ecach of the new branches thus
drawn assign a transmittance cqual to the
product of t times the transmittancce fromthe
node at which the newbranch startstonode x.

(4) Eliminate the original branch t.

2-20

(e) A self-loop with transmittance t of a
node¢ x can be removed by dividing thetrans-
mittances of all branches entering node x by
(1 - t) and eliminatingthc loop (seeFig. 2-12;
in this figure, t= t,,, where the first sub-
script denotes the nodc on which the branch
originates and the second subscript denotes
the node on which the branch terminates).
Note, in rule (c), thata self-loopis created at
node x, for a branch starting from the ter-
minating node x of branch t and ending on the
starting node xjof brancht (Fig. 2-10 doesnot
happen to have such a branch). In rule (d), a
sclf-loop is created at node x; for a branch
starting from the terminating node x; of
branch t and ending on the starting node x
of branch t.

As an example of thereduction of signal-
flow graphs, the various stepsinvolvedinre-
ducing the second-order signal-flow graph of
Fig. 2-5 are shown in Fig. 2-13.

2-2.6 STATISTICAL THEORY '* !

The response r(t) of a linear systemtoa
stochastic input cannot be expressed as a
specific function of time. The only way to
describe system behavior in the presence of
stochastic inputs is in tcrms of the statistics
of the input and the response. Theoretically,
an infinite number of statistics isrequiredto
describe a stochastic proccss completely.
Practically,” however, only a few statistics

arc used.
22
Xy 2 X ta3 Xy
(A) oOriginal Graph
X, Xy
X I l'2:41
(B) Equivalent Graph
Figure 2-12. Signal-flow graph showing

elimination of a self-loop.
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()
‘_‘_z.}_-

N 1 Xy 1y ) X 1 our
=in
(B) .Reduction to First-Order Graph
by Eliminating Self-Loops
XN ! 1 Xour

tyalyy
m “3\!ﬂ‘i“'zz§

t
C) Movement of Branch e Termination From
1 =t 3

Node X4 to Node x 1

toatay + ty (1 - top)
(V=11 -tg))
X,

XN ) Xo \ 1 Xour
l]Z'Zl
(Tt X1 =199)
(D) Cascade and Parallel Branches Combined
t 2!;;’ + hx“"zz’
W KT =) - 1oty
Xin 1 Xg X, 1 Xpur
(E)} Reduction to Zero-Order Graph
by Elimination of Self-Loop
Figure 2-13. Signal-flow graph showing

reduction of second-order graph.

As discussed in Chapter 4 of Ref. 49,
probability density functions are directmea-
sures of the chance of occurrence of certain
events in a stochastic process. The first
probability density function of the stochastic
variable r(t)* is denoted and defined as fol-
lows:

py (ry 1) Al probability density func-
tion expressing the prob-
ability that the variable
has a valuc r, at time t,

Similarly, the second probability density
function is denoted and defined as follows:

Py (ry hiry 1) 2 probability  density
function expressing
the probability that
the variable has a
value r, at time t,
and also a valuc T,
at timc t2

In practice, only these first two probability
density functions are used. For a stationary
stochastic process, the first probability den-
sity function is independent of the timet 4,the
second probability density function is a func-
tion only of the time difference (t; - ty).

Two commonly used probability dcnsity
functions are the normal distribution and the
Poisson distribution. The normal distribution
is given by

P (2-58)
p(r) dr ———

[e2 f 277'

where p(r)dr is the probability of finding r be-
tween r andr + dr, T is the mean value of r
(to be definedbelow), and ¢ is the standard
deviation of r (tobe defined below). The Pois-
son distribution is given by

(vAnN P A

P(N, At) = N

(2-59)

*
The stochastic responsc variable r(t) should not be confused with the radial quantity r in the polar coordinate system (r,§,¢) em-

ployed in Chapter 4 of Ref. 49.

2-21
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where p(N,At) is the probability of finding N
events in a time interval At, and v is the av-
crage frequency of occurrence of the events.
In general, the average or mean value of
a stochastic variable r is given by
R /\ +Q
T -'-f r p(r,t) dr
=&
For a stationary stochastic process, the mean
value is independent of time and can also be
found from

(2-60)

+r

félim_l_

e L

r{t)dt (2-61)

The mean-square value of a stochastic
variable or process is given by

r2 = f 2 p(r, t) dr (2-62)
-

For a stationary stochastic process, the
mean-square value is also given by
+1
s lim — 2 (1) dt
T 2T Loy @

The root-mean-square (rms) value is the
square root of the mean-squart value.

The variance v of a stochasticprocessis

given by

R L7 (2-63)

voé lrr|7 (2-64)
The standard deviation ¢ is the squarc root of
the variance. It can be expressedinterms of
the mean value and the mean-squarevalue as
follows:

- -2
02 :rZ" [f]

In most applications, rms wvalues and
mean values are the most common statistics
used. To aid in the determination of these
quantities, statistics called corrclation func-
tions are used. The autocorrelation function

(7) of a stationary stochasticprocessr(t)
1d'defined as the mean value of the product of
the function r at time t by the function r at
time t + 7, i.e.,

(2-65)

2-22

A —_—
EeelT) = r()r(t 1) (2-66)
fim ! T
T_,wﬁ f rMrt+ D dt
(2-67)

The crosscorrelation function ¢m (T) between
two stationary stochastic processes r(t) and
u(t) is defined as the mean value of the prod-
uct of the function r attimet by the function u
at time t 7 i.e.,

LTI (2-68)

lim

f r(u(t+9)dt (2-69)

From the definition of the autocorrelation
function (Eq. 2~66), it is evident that the
mean-square value of a stochastic process
equals the value of the corresponding auto-
correlation function with zero argument, i.c.,

(2-70)

Useful properties of the correlation func-
tions arc as follows:

(@) @, (7) =@, (=7) [even function] (2-71)

(b) |¢,,(v)| : $re (0) (2-72)
(c) Nm (1) =0 (2-732)
Ilm ~f=”(‘7')= IS—(—') (2"73b)

7 =0

M gy (1) > [ ()] for 720 (2-73¢)
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li.e., the maximum aiways occurs at 7 - 0;

@) o (7) =g, (-7) (2-74)

(e)

%u(v)l : \/;:RB)QU(O) (2-75)
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(f) .
Jim (1) =0 (2-76a)
lim o () =r (1) u(n) (2-76b)

70

A few examples illustrating the use of
autocorrelation functions follow. If r(t) is a
rectangular wave with values +f or =8 and
with zero crossings located at even points
that are Poisson-distributed in time with an
average frequency of v, the autocorrelation
function of the process is given by*

#, (1) =Re I 2-77)

If r(t) is a rectangular wave with ampli-
tude values distributed in any fashion and with
zero crossings located at event points
Poisson-distributed in time with an average
frequency ¥, the autocorrelation function of
the process is given by

¢, (1) =o2e-VITl 4 12 (2-78)
where ¢ is the standard deviation of the amp-
litude distribution, and r is the meanvalue of
the amplitude distribution.

If r(i) is a train of identical finitepulses
whose starting points arePoisson-distributed
in time with average frequency VY, the auto-
correlation function of the process (knownas
‘‘shot noise™) is given by

+He
b, (7) ‘Vf fyf(e+7)dt tre
-
where f(t) is the time variation or waveform
of a single pulse and r is given by

(2-79)

+w
r =y f f(t) dt
-
If r(t) is pure or “white” noise, the auto-
correlation function is given by

(2-80)

&, (1) =¥ 8y (1) (2-81)

where y is a constant that depends onhow the
process is gencrated and 8,(7) is a delta
function whose value is unity at 7= 0 and is
zero for all other values of 7. Thus, if
“white” noise is considered as a limiting
case of shot noise generated by exponential
pulses of amplitude A and time constant T
(where the amplitude approaches infinity and
the time constant approaches zero with the
arca S under the pulseheld constant), then the
constant y is given by

vS
2

where v is the average frequency of occur-
rence of the pulses.

Because the correlation functions are
completely defined as functions of a time
variable T, they are Fourier transformable.
By convention, 1/27timesthe Fouriertrans-
form of a correlation function is called a
power spectrum or a power density spectrum.
Thus, the power-density spectrum on (s) of
a stochastic process is defined as

y = (2-82)

a1 Y, (2-83)
o, (s) - L e "o, (1) d7

The cross-power density spectrum between
two stochastic processes r(t) and u(t) is de-
fined as

A -I + 0

®, () r (2784)

e-sT ¢. ( d
2 ), (1)

Given the power spectra, the corresponding
correlation functions can be found by inverse
transformation, i.c.,

1 pemi® (2-85)
b (1) =— P, (s, e*"ds
J c-JOQ
1 ctje
¢,,(7) =‘—‘/- ® (s)e*7ds (2-86)
J g-Joo

* The derivation of Eq. 2-77 is too lengthy to repeat here. See page 221 of Ref. 45 for a complete derivation.
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In terms of the power-density spectrum, the
mean-squarc value of a stochastic process
can be found by evaluating the following in-
tegral:

+0oo
f ®,, (s)ds
-®

Useful properties of the power spectra are

(2-817)

® (s) = @ (-s) (even function) (2-88)

3, (s) = @, (-3 (2-89)

With some of the statistics of stationary
stochastic processes havingbeen established,
the response of a linear system toastochas-
tic input can now be described. K ¢, (7)is
the autocorrelation function of the input r(t)
of a linear system whoseimpulseresponseis
w(t), the autocorrelation function of the output
c(t) is given by*

bee (1) =

/ dt,w(:,)f dt, w(t,) ¢, (7+1t, -t,)

(2-90)

The crosscorrelation function between the in-
put and the output is given by

+o

¢ (T 7 f dtw(t)é,(1-9 (2-91)

which can be recognized as a convolution in-
tegral.

Extending the description of the stochas-
tic response of a linear system to the fre-
quency domain, if W(s) is the transfer function
of the system and® _, (s) is the input power-
density spectrum, the output power-density
spectrum is given by

O.(s) =W(W(-s)®, (s)  (2-92)

The cross-power-density spectrum between
input r(t) and output c(t) is given by

@ (s) = W(s) @, (s) (2-93)

or
& ,(s) = W(-s) @ (s) (2-94)
If 1(t) is another signal and ur () is

the cross-power-density spectrum between
(t) and the input r(t), the cross-power-
density spectrum between ((t) and the output
c(t) is given by

(p/,',c (s) =W (5) [ " (S) (2-95)
or
@, (s) =W(-s)®,, (s) (2-96)

In summary, once the properties of a
stochastic process are expressed interms of
corrclation functions, the analysis of system
behavior is a straightforward problem that
can be trecated through the use of the defini-
tions and properties of the correlation func-
tions andtheir transforms, the power spectra.
In particular, where rms values are of in-
terest, Eqs. 2-70 and 2-87 are of great use.

2-2.7 NONLINEAR ANALYSIS 12-40
2-2.7.1 General

All of the techniques of system analysis
discussed in previous paragraphs of this
chapter are restricted in their application to
linear, time-invariant systems. This lin-
earity restriction imposes two limitations on
design. First, components must be of high
quality if they are to operateinalinear man-
ner when amplitudes and frequencies of sig-
nals vary widely. Second, the linearity re-
striction limits the realizable system
characteristics, the types of systems, andthe
tasks that can be acomplished.

Whereas techniques for the analysis and
synthesis of linear time-invariant systcms

£3
See pages 331 and 332 of Rel. 45 for the derivation of this relationship.
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are well established and generally adequate
to handle most of the problems met in prac-
tice, this happy situation does not existinthe
case of nonlinear or time-varying systems.
A number of techniques are available that
give more or less satisfactory results, but no
really unified general theory for nonlinear
systems exists -- and itis doubtfulthatit will
for many years to come, if ever. Many quite
ordinary situations exist for which there are
no really satisfactory solution techniques.
These factors make the analysis of nonlinear
systems very interesting, but sometimesvery
frustrating.

Before proceeding further, it is inordcr
to define specifically what is meant when a
system is termed nonlinear. Unfortunately,
this is not easily done. Infactit is necessary
to look first at the definition of a linear sys-
tem and then proceed from there.

The most fundamental characteristic of
a linear system is that it obeys the principle
of superposition. Thisprinciple canbe stated
in the followingterms: The total responseof a
lincar system is the sumof theresponses due
to all the applied inputs acting individually
because each applied input produces a re-
sponse independent of the response to any
other applied input. This same criterion for
linearity applies whether or not the system
parameters are timc varying. Mathematic-
ally, a system is linear if the expressionre-
lating the input and output variables involves
only first powers of the input and output
variables and their derivatives.

This principle is usually stated as fol-
lows: If an excitation A, produces an effect
B, and an excitation A, produces an effect
B, when each is applied independently, then
the system is linear providing that for the
simultaneous application of A, and A, in any
proportion the effect is made up of B, plus
B, in the same proportion. Thus,

if  k,A, ()~ k, B, (t

and  k,A, () = k,B, (1)

then k A, (1) + kA, () ~ k, B, ()

+k, B, (1)

At first glance, it might apptar that the output-
input relationship for the circuit of I'ig. 2-
14(A) violates this definition of a linear cir-
cuit, whereas one certainly has the firm con-
viction that such a circuit must be linear since
it includes onlylinear resistors and a battery.
Consideration of the output-vs-input curve of
Fig. 2-14(B) shows that a simple change in
variable would translate the curve to the
origin and that in terms of this new variable
the definition of superposition as given is
indeed valid. Itisnecessarytorecognize this
possibility as it is the basis for the study of
nonlinear systems by piecewise linear tech-
niques.

Consider for a moment what the conse-
quences are of being fortunate enough to be
dealing withalinear system. In additionto the
fact that the mathematics associated with lin-
car systems are relatively simple, it should
be noted that linear systems allow great
freedom for the cxperimentalist. A truly
linear system can be tested with any one of a
variety of convenient test signalssuchasim-
pulses, steps, or sinusoids. Furthermore,
the observed system characteristics are in-
dependent of the amplitude of the test signal
used. Unfortunately, no real physical system
is entirely linear and, as aresult, attempts to
increase the linear range of operation of a

R 1 E Ry
-+
F——o
Ie ! R ? Tez
o * Ze)

(A) Simple Circuit

S
/ ey

(B) &, Vs e, for Simple Circuit

Figure 2-14. A simple circuit and its

associated input-output relationship.
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system usually lead to a requirement for
components with larger power ratings or
higher quality. Consequently, in spite of the
attractiveness of linear systems from the
analysis point of view, the designerisbecom-
ing increasingly interested in nonlinear sys-
tems -- first, because he is unable to build
systems that operate entirely in the linear
range, and second, because he can obtain a
more satisfactory solution to some problems
by the intentional introduction of nonlinear
components in a system. A contactor servo
might be thought of as a typical example.

Several additional characteristics pos-
sessed by a linear constant-coefficient sys-
tem should be noted. First, the output of a
linear constant-coefficient system cannot
contain components atfrequenciesnot present
in the input. Second, the question of stability
is clearly defined and the stability or insta-
bility of a system is not dependent on the
driving function or anyinitial conditions. For
the general nonlinear systems, however,
neither the principle of supcrposition nor
these other characteristics are wvalid.

Linear systems with time-varying coef-
ficients represent an intermediate case. The
principle of superposition can be extended to
include this type of system but, on the other
hand, it may notbe possible to obtain a simple
answer to system stability. Infact, the ques-
tion of stability may have no significance.

The analysis of constant-coefficient lin-
ear systems isrelatively simple and a variety
of techniques has been developed for handling
such systems. During the past ten years,
transform techniques (see par. 2-2.3.1) have
come into wide usage for analyzing constant-
coefficient linear systems. In fact, once a
correct mathematical representation has
been obtained for a constant-coefficient linear
system, the use of transform techniques re-
duces the problem of determining the re-
sponse of the system to a simple input to a
cookbook type of problem.

For time-varying systems, the concepts
of operational mathematics still arevalid, but
the details involved in obtaining answers to
specific problems usually become either very
involved or impossible to carry out. For
nonlinear systems, this whole concept mustbe

2-26

discarded because here the principle of
superposition no longer applies and applica-
tion of operational techniques implies validity
of the principle of superposition.

One might ask at this point, “Why all the
discussion of linear systems when what is
really of interest is the definition of a non-
linear system?” The answer is simply that
the definition of a nonlinear system is really
a negative one. A nonlinear systemis simply
defined as any system that does not obey the
principle of superposition.

As a practical matter, most systemsare
linear only by assumption, but this assump-
tion leads to a tremendous simplification in
the problem of analyzing or synthesizing a
system and thus is extremely important.
One should not jump to the conclusion, how-
ever, that linear systems are good and non-
linear systems arebad. Thebasiccharacter-
istics of many importantsystemsarerealized
only because some elementsinthese systems
are nonlinear.

In spite of the fact thatdetermination, or
even specification, of the performance of
nonlinear systems is apttobe rather difficult,
control system engineers arebecoming more
and more interested in this class of systems
either because they are confronted with sys-
tems that contain nonlinearities they cannot
(or cannot afford to) remove, or because they
feel that there is a good possibility that they
could devise a nonlinear system that would
achieve a desired end either more cheaply or
more reliably than a linear system.

Basically, the methods that have been
developed for analyzing nonlinear systems
can be divided into the following three main
categories:

1. Methods that can be carried out byan
analyst having at his disposal only the ordi-

nary analytic tools

2. Numerical techniques and methods
involving the use of modern computers

3. Methods based on extensive experi-
mentation with an actual system

The methods of Category lcanbe further
subdivided as follows:

1. Analytic and Quasi-Analytic Tech-
niques
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a. Direct solution of nonlinear differ-
ential equations
Variation-of -parameters tech-
nique
Piecewise linearization
Series solution
Pcrturbation theory
Describing- function methods
(1) Applicd to systems with deter-
ministic inputs
(2) Applied to systems with ran-
dom inputs
2. Graphical Techniques
a. Graphical integration
b. Isocline mcthod
¢. Phasc-plane method
d. Phase-spacc method
In addition to thc foregoing, there are
various tcchniques that have been developed
for investigating the stability of nonlinear
systems.
Refs. 12 through 36 should be consulted
for detailed information concerning these
various methods and tcchniques.

=3

-0 a0

2-2.7.2 Nonlinearities Found in Many Control
Systems

The paragraphs which follow describe
scveral types of nonlinearities that are fre-
quently encountered in control-systems work.
In addition, somc of the system performance
characteristics that are uniquc ly attributable
to tlie prcsence of a nonlinearity are noted.

2-2.7.2.1 Limiting

The saturation or limiting type of non-
lincarity shown in Fig. 2-15isfrequently met
in control-systems work. For small signals,
the effect or output is proportional to the
cause or input, but for signals greater than a
critical valuc, the output ccasestobe propor-
tional to the input and finally remains essen-
tially constant no matter how large tlie input.
The solid curve in Fig. 2- 15 rcpresents what
is sometimes referred to as soft limiting,
while tlie dotted curve represcnts sharp limit-
ing. In the firstcase, a smoothtransition oc-
curs between the linear and the saturated re-
gions, while in the second this transition
occurs abruptly.

OUTPUT

[ INPUT

Figure 2-15. Plotdepictingthe limiting type
of nonlinearity.

2-2.7.2.2 Dry Friction

Dry or Coulomb friction is a friction
force that is constant in magnitude, regard-
less of the relative velocity of the moving
parts, but reverses sign when the velocity
changes sign. This type of friction can be
represented as shown in Fig. 2-16. Some
Coulomb friction is present in any mechan-
ical system. In those systems that operate
with a high nonlinear-friction effect, accurate
analysis should include this nonlinear effect,
In a well-lubricated system, however, the
friction will be approximately proportional to
the velocity and thus will notintroduce anon-
linearity. This latter type of friction isgen-
erally referred to as viscous friction.

2-2.7.2.3 Hysteresis

Hysteresis is a complex type of non-
linearity in which the response of anelement
is determined by past history as well as by
the instantancous value of the excitation.
Fig. 2-17 illustrates this effect, which occurs
in electromagnetic circuits and in mcchanical
devices (such as strain gages and pressure
transducers) that utilize materials for which

FRICTION
FORCE

- VELOCITY +

Figure 2-16. Graphical representation of

Coulomb friction..
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RESPONSE

EXCITATION.

Figure 2-17. Graphical representation of

hysteresis.

the stress-strain relationship is determined
by the history of strain. Backlash, such as
occurs in gearing and mechanical linkages, is
somewhat related to hysteresis. Analysis of
systems containing backlash is complicated
by the fact that changes in the inertia distri-
bution between the driving and driven mem-
bers lead to significant changes in the influ-
ence of the backlash.

2-2.7.2.4 Relays

Relays are used inmany control systems
because they provide a simple means for
realizing a very high amplification. However,
the relay is a discontinuous-type amplifier.
The simplest representation of such adevice
is shown in Fig. 2-18. For inputs of magni-
tude less than A, the output is zero. A posi-
tive input greater than A is transformed into
a fixed positive output, and a negative input
whose magnitude exceeds A is transformed
into a fixed negative output. Theregionfrom
-Ato+A is termed “dead-space”.

OUTPUT

INPUT +

Figure 2-18. Graphical representation of a
relay with dead-space but no hysteresis
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A more complete representation of a
relay would include both dead-space and a
hysteresis effect to take into account the fact
that the voltage required to switch the relay
from the nonenergized position to the ener-
gized position is somewhat higher than that at
which the relay switches back fromthe ener-
gized to the nonenergized state.

An even more complete model of arelay
would include a time delay to account for (1)
the fact that the inductance of the relay coil
causes the control current to lag behind the
applied control voltage, and (2) the time re-
quired for the armature to move from one
position to the other.

2-2.7.2.5 Diodes

Diodes represent another type of non-
linear device that the control-systems de-
signer may wish to use in order to protect
equipment from excessive signals or to
achieve special effects. Anideal diode offers
zero resistance to the flow of current for one
polarity of applied voltage but infinite im-
pedance to the flow of currentforthe opposite
polarity of applied voltage. For many pur-
poses, practical diodes can be treated as
though they are ideal.

2-2.7.2.6 Orifices

In one class of hydraulic control systems,
the flow of hydraulic fluid in the system is
controlled by a valve that consists of several
variable orifices. For the case of a sharp-
edged orifice, which can usually be assumed
in a spool or flapper type of valve, the rate of
fluid flow through the valve is proportionalto
the area of the orifice and to the square root
of the pressure drop across it. Because of
this basic characteristic, a complete hy-
draulic valve may insert a significant non-
linearity into a system.

2-2.7.2.7 Products and Transcendental Func-
tions

Control systems are made nonlinear not
only by the types of nonlinearities just
described but also by the presence of com-
ponents or of arrangements that introduce
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products or powers of the dependentvariables
or their derivatives. The presence of trans-
cendental functions of the dependent variable
also leads to a nonlinear equation because
such functions can be expanded as aseries of
terms of progressively higher powers.

A typical example of a system whose
mathematical description involves powers of
the dependent variable is that of a mass
attached to a nonlinear spring. As a first
approximation, this nonlinear spring mightbe
described by the relationship

FORCE = k(| * a?x?)«x (2-97)
in which k and a are constants describingthe
spring and x is the deflection. A plus sign
would be used in Eq. 2-97 to represent a
spring that effectively becomes stiffer asitis
deflected while the minus sign would repre-
sent a spring that becomes weaker as it is
deflected. In this latter case, the mathemat-
ical model of Eq. 2-97 applies only for small
deflections since for | x| > 4 the forcere-
verses sign.

The differential equation that describes
the motion of a constant mass Mattachedto a
spring described by Eq. 2-97 is given by the
equation

dx

M — ¢tk (1 £a%¥) x 0
dt2

(2-98)

where it is assumed that no friction exists.
For nonzero values of a, Eq. 2-98 involves the
cube of the dependent variable and is thus a
nonlinear differentialequation. However, this
particular type of differential equation has
been studied extensively and its solution can
be obtained in the form of elliptic functions.

2-2.7.3 Classification of Nonlinear Systems

The definition of anonlinear system given
in par. 2-2.7.1 was negative in that it did not
describ¢ a nonlinear system but, instead,
relegated all systems that did not meet the
very specific test forlinearity tothe category
of nonlinear systems. This rather unsatis-
factory approach is taken because no really

good scheme has been devised for classifying
nonlinear systems. The present discussion
has followed the plan of merely cataloging
typical systems without trying to classify
them. Examination of the nonlincarities
described, however, indicates several
schemes of classification that might be em-
ployed.

2-2.7.3.1 Continuous and Discontinuous Non-
linearities

From a mathematical point of view, itis
sometimes desirable to distinguish between
nonlinearities that can be described by con-
tinuous curves and those in which the output-
vs-input relationship exhibits jumps. This
method, then, would distinguish between a
limiting type of nonlinearity and a relay.

2-2.7.3.2 Incidental and Essential Nonlin-
carities

A different scheme of classification
might distinguish between (1) those nonlin-
carities that are introduced because the per-
formance of supposedly linear physical de-
vices deviates from the ideal as a result of
mechanical tolerances or the characteristics
of materials, and (2) thosenonlinearitiesthat
the designer deliberately introduces into the
system. This scheme, for example, would
distinguish between (1) asystemthatis driven
into the saturation region for very large sig-
nals but that normally operates in the linear
region, and (2) a relay, which does not be-
have as a linear element for any amplitude
of input signal.

2-2.7.3.3 Zero-Memory and Nonzero-Mem-
ory Nonlinearities

Another important characteristic of a
nonlinearity is whether its instantancous out-
put is determined uniquely by the instant-
aneous input, in which caseitwould betermed
a zero-memory or amnesic nonlinearity, or
whether its instantaneous output is deter-
mined by the history of its inputs, in which
case it would be called a nonzero-memory
or nonamriesic nonlinearity. A relay with
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hysteresis is a typical example of anonzero-
memory nonlinearity since, over a region,
the output of the relay dependsnot only on the
instantaneous value of the input but alsoupon
the manner in which the input arrived at its
present value.

2-2.7.3.4 Phenomena Peculiar to Nonlinear
Systems 37-40

Nonlinear systems lead to several spe-
cial problems because they may exhibit
phenomena that never occurinapurely linear
system. One of the mostfrequently observed
phenomena of this type is the limit cycle, an
oscillation of fixed amplitude and period but
arbitrary wave shape that may be excited
under certain conditions. The motion of the
escapement in a watch and the voltage in a
vacuum-tube oscillator are typical examples
of limit cycles. It is basically thenonlinear-
ities in these systems that determine the
amplitude of oscillations for, if the systems
were actually linear in the ideal sense, the
oscillations would grow to unlimited ampli-
tude. Obviously, this would be physically im-
possible.

Another phenomenon observed in some
nonlinear systems is that of self-excitation.
This phenomenon cantake either of two forms.
Systems that break into oscillations when sub-
jected to a very smallinputsignal or disturb-
ance are said to exhibit softself-excitations.
Such systems may become stable when the
amplitude of the input signal is increased
sufficiently. Hard self-excitation, on the
other hand, is exhibited by a systemthat must
be excited with signals of at least some min-
imum amplitude before it becomes unstable.
Systems with quantizers may exhibit either of
these types of self-excitation.

Still another peculiarity of nonlinear sys-
tems is that the frequencies of the output sig-
nal and of intermediate signals in the system
are not necessarily the same as the fre-
quency of the input signal. Thus, some non-
linear control systems exhibit subharmonic
oscillations with the output oscillating at some
odd-order subharmonic of the input frequency.

Another phenomenon that cannotoccurin
a strictly linear system is the appearance of
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discontinuous jumps in amplitude as the sys-
tem excitation is continuously increased in
amplitude. When this effect occurs, it is
usually accompanied by ahysteresis, with the
result that the jump occurs at a different
amplitude for increasing signals than it does
for decreasing signals.

2-3 SIMULATION TECHNIQUES
2-3.1 GENERAL

Later chapters of thishandbook describe
both digital and analog computing components,
and the combination of such components into
digital, analog, or hybrid computers. The
paragraphs which follow outline the applica-
tion of analog and digital simulation tech-
niques for determiningthe performance char-
acteristics of complex mathematical models.

2-3.2 ANALOG TECHNIQUES

In the process of arrivingat a mathemat-
ical model for a system, the designer norm-
ally utilizes block diagrams as discussed
earlier in this chapter (seepar. 2-2.5 through
par. 2-2,5.2) and again in Chapter 6. For-
tunately, the programming of an analogcom-
puter follows quite simply as a detailed ex-
pansion of the block-diagram representation
of a system. To make this expansion, the
analyst must represent all operations indi-
cated on the block diagram in terms of those
operations that can be performedby the com-
puter, namely: integration, addition, multi-
plication, and generation of arbitrary func-
tions. Each transfer function in the block
diagram must be expanded to showin detail its
realization in terms of the basic analog ele-
ments. Fortunately, thisisa straightforward
task and represents no real problem.

After a completerepresentation hasbeen
developed in terms of computing components,
appropriate scale factorsmustbe worked out.
Scaling involves two distinct problems. The
first is concerned with the magnitudes of the
variables in the problem and the second with
the time the computer takes to obtain a solu-
tion. The computer will produce accuratere-
sults only if the variablesinthe computer are
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substantially larger than the variations rep-
rcsented by noise in the computing clements.,
This noise may be broad-band thermal noise
generated in resistors, shot noise gencrated
in vacuum tubes, low-frequency noiserelated
to slowly varying offsets in the output of am-
plifiers, or noise that arises from moving
contacts--such as a potentiometer wiper mov-
ing over the resistance elemeoent of the polen-
tiometer. Other sources of noise are ripple
from the power supplies and noise picked up
from disturbing sources completely external
to the computer. In a well-designed computer,
noise from these sources is usually small,
with varying amplifier offsets representing
tlic major limitation on accuracy.

At tlie other end of the scale, the accuracy
of the computation suffers if the magnitude
of any computer variable attempts to rise
above a maximum setby the design of the ele-
ment. For example, an amplifier may satu-
rate and thus cease to follow the linear rela-
tionship desired between the voltage at its
input and that at its output; or the input ap-
plied to a function generator may exceed the
maximum value for which it was set up, with
the result thatthe desired functionalrelation-
ship is lost.

The maximum operating voltage used in
the majority of the analog computers employ-
ing vacuum tube amplifiers is £ 100 volts. In
order to achieve the maximum accuracy, the
voltages appearing at all points inthe compu-
ter should be as closeto 100volts as possible
without ever exceeding this value. However,
since the very nature of solutions usuallyin-
volves large changes inthe variables, some of
them will usually approach zero duringsome
parts of a solution. The value of very small
variables cannot be determined with high ac-
curacy and, if additional accuracy isrequired,
it may be necessary to rescale the problem
and rerun a portion of it.

The question of solution running time
must also be considered before the task of
programming the computer is completed.
Some problems to be studied onthe computer
may represent physical situationsin which the
actions of interest take place in microsec-
onds, while in others the time is measuredin
decades.

Depending onwhether the computer is de-
signed for so-called “real-time operation™’
or “high-speed repetitive operation”, the
most satisfactory solution time will be inthe
range of 10 secondi to ond minute for real-
time computers or to — second forhigh-
speed computers. In an ‘analog machine, all
elements operate in parallel, so the running
time does not increase with the complexity
of the problem being studied. The running
time depends solely on the gatn of the inte-
grators and may be changed by a factor such
as 10 merely by changing the gain of each and
every integrator employed by that factor.

Before one can obtain a solution on which
to base the selection of scale factors in the
computer, he must arrive at some tentative
estimates and run a trialbaseduponthese. If
any of the signals exceedthe maximum allow-
able or appear to be too small, new scale
factors can be chosen and the solution rerun
until an acceptable result is achieved.

2-3.3 DIGITAL TECHNIQUES ¥

The effectiveness with which digital com-
puters can be utilized in the study of scien-
tific problems depends as much upon the ease
with which the analyst can communicate with
the computer as upon the actualcharacteris-
tics of the computing components of which the
computer is made up. These two aspects of
a digital computer arc generally referred to
as its software and its hardware.

In the early stages of digital computer
technology, the only programming method
available was what has now come to be re-
ferred to as machine-language programming.
Under this system, the programmer was
forced to keep a detailed bookkeeping record
of the contents of eachmemory location and of
each transfer of data from a memory loca-
tion, to the arithmetic unit of the machine, and
finally back into another storage location for
later use if desired.

As more experience was gained with pro-
gramming and as appropriate machine hard-
ware changesbecame possible, symbolicpro-
gramming techniques were developed. Under
these, the programmer was required only to
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identify each operation to be performed and
each piece of data, but not to make detailed
assignments of data to specific storage loca-
tions. The first step in obtaining the solution
for a problem written in such alanguageis to
have the machine analyze the symbolic pro-
gram and by means of a compiler program
translate the symbolic program into a ma-
chine language program.

The development of more and more so-
phisticated programming languages has re-
ceived a great deal of attention over the past
ten years andverypowerfullanguages such as
the FORTRAN series are now available.
Nevertheless, the conventional approach to
the use of the general-purpose computer is
still to develop a library of programs, each
program solving a specific or standardprob-
lem type. Yet, the variety of problem types
and engineering situations is sogreat thatthe
freedom of the engineeris severelyrestricted
by the fixed program library. Ideally, one
would like the ease of communicationwith the
computer to be such that the engineer could
quickly and economically write a unique pro-
gram for each engineering situation as it oc-
curs. For this to be feasible, the language
for stating the solution mustbe very efficient,
allowing the engineer todescribe a solutionin
the same technical terms he would use inin-
structing a colleague of his own professional
competence.

The development of such problem-ori-
ented languages is now receiving a greatdeal
of attention. One example is COGO (forCO-
ordinate Geometry) a system for use incivil
engineering problems.

2-4 NUMERICAL TECHNIQUES

2-4.1 GENERAL

Digital computers deal withnumbers and
are capable of performing simple arithmetic
operations at high speed and storing the re-
sults. Accordingly, the branch of mathemat-
ics known as numerical analysis, which is
concerned with the numerical evaluation of
mathematical functions and equations, has in
recent years seen a greatrevival of interest
and a considerable expansion of techniques.
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The methods used for evaluating func-
tions and solvingequations in a digital com-
puter may be generally classified as methods
of successive approximations, ormethods of
substitution of an approximate expression
for an exact expression. Such approximate
expressions may be either power series or
sets of tabular differences.

In the methods of successive approxima-
tions, or iteration, an approximate solution
is substituted in the equation so as to yield
a better approximation, and so on. Since the
computation involves a closed loop, the pos-
sibility of instability exists. Iteration, when
stable, is useful in the solution of equations
and sets of equations, and in the evaluation
of certain functions expressed as equations.

The impetus given to the field of numer-
ical analysis by the computational capacity
of the high-speed digital computer has led to
the investigation of mathematical fields for-
merly neglected because of the computational
difficulties involved. This, in turn, has led
to the application of mathematical tools in
new areas of engineering, science, and man-
agement. A typical example is the solution
of large sets of linear algebraic equations.
As is discussed in par. 2-4.6, such sets of
equations can frequently be solved by iter-
ative methods. Since such equation sets are
usually expressed in the shorthand matrix
notation, the method is commonly known as
"matrix inversion''. The inversion of very
large matrices is now practicable with the
aid of high-speed digital computers.

Certain logistics problems of the armed
services and of large corporations can be
expressed mathematically by an operations
research technique known as "linear pro-
gramming". Suchfactors as thesize and lo-
cation of warehouses, the production capacity
of suppliers, and the cost/time characteris-
tics of alternative transportation systems
are expressible in terms of sets of linear
algebraicequations. These sets of equations
can be manipulated by a digital computer so
as to achieve an optimum solution in terms
including cost or delivery time.

Similar methods applied to the solution
of sets of simultaneous linear differential
equations have proved equally powerful in the
investigation of engineering problems. The
problem of the flutter of an aircraft wing is
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a typical example. Here, the structural dy-
namics areexpressible by a set of differen-
tial equations with many coupling terms and
with excitation atnumerous points of the set.

The ability of the digital computer to
store or compute rapidly the values of a
function provides a capability of particular
value to the fire control field. Except for
trigonometric functionswhere a geometrical
analog is available, generation of functions
in an analog computer has been principally
accomplished by such inflexible methods as
mechanical cams and function potentiome-
ters. Methods to be outlined in par. 2-4.2
offer means of generating analytical or em-
pirical functions, and canreadily be extended
to functions of two or more variables.

The science of statistics has also been
abeneficiary of digital-computer techniques.
One of thebasicproblems of statisticsis that
of decidingbetweentwo (or more)hypotheses
on the basis of experimental data (decision
theory or tests of significance). Such deci-
sionsarebased on computations that involve
the consecutive multiplication of large num-
bers of probability distribution functions.
The digital computer has soenhanced the fa-
cility of performing such computations that
they are sometimes carried out ''on line";
for example, the production output of a man-
ufacturing plant can be continuously moni-
tored and evaluated statistically to provide
decisions to adjust or shut downthe produc-
tionmachinery if the deviation of the product
from the set standard exceeds certain statis-
tical limits.

The following paragraphs of Chapter 2
discuss the main aspects of numerical tech-
niques in terms of (a) the representation of
mathematical functions, (b) numerical differ-
entation, (c) numerical integration, (d) meth-
ods forsolving differential equations, and (e)
methods for solving systems of linear alge-
braic equations. It should be observed that
numerical analysis is partially a science and
partially an art. As a result, short of writ-
ing a textbookon the subject it would be im-
possible to indicate the particular circum-
stances in which even a selected sampling
from the vast stock of numerical interpola-
tion, differentation, and integration formulas
available would be useful or accurate, or to
elucidate the numerical difficulties to which

one might be led by uncritical use. Accord-
ingly, the formulas associated withnumerical
analysis should never be applied blindly.

2-4.2 REPRESENTATION OF MATHEMAT-
ICAL FUNCTIONS

One might expect, intuitively, that math-
ematical functions would be represented in a
digital computer by the storage of tabular
data, inamanner analogous to the table-look-
up procedure employed inhand computations.
However, while the storage of functional
tablesin a digital computer is certainly pos-
sible, the high speed of computation and the
relatively limited memory capacity that are
typical of modern computers make the com-
putation of functions a very attractive pro-
cedure. Some functions may be computed
from their defining equations (which, in many
cases, are differential equations )by iterative
techniques. Certain functions, on the other
hand, may be readily computed by the use of
series approximations.

If a stored table is employed in a digi-
tal computer to represent a mathematical
function, the storage requirements can be
greatly reduced by storing only a few points
and using aninterpolation formula to approx-
imate the function between these points.
Interpolation is also used with input data to
reduce the number of points that must be
entered. Arelated process called curve fit-
ting is employed whenever it is known from
theoretical considerations that a set of data
points should approximate a chosen mathe-
matical function. The best fit between this
chosen function and the data can be deter-
mined, and the function then used in lieu of
the data points.

The paragraphs which followsummarize
the pertinent aspects of the aforenoted tech-
niques for representing mathematical func-
tions.

2-42.1 Iteration

Iterative or recursive processes are
fundamental to numerical methods of analy-
sis. Inthe applicationofiterationtothe eval-
uation of a function specified by its defining
equation (or equations), one starts with a
rough estimate of the value of the function
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and then computes successivelybetter appro-
ximations. In general, if it is desired to
evaluate a function

f(x) =0 (2-99)

andthis equation canbe rewritten in the form

x = F(x) (2-100)
the procedure is as follows. Given an esti-
mate x X) where x®) represents the kth ap-
proximation tothe value of the given function
F(x), compute F(x®), Set F(x®) equal to
x &+ “and repeat the process--computing
F(x &™), and so on. The computation is ter—
minated whenthe difference betweentwo suc-
cessive approximations is equal to or less
than the allowable computational error. The
evaluation of \N presented in Example 2-1
illustrates the iterative technique. This
example was chosen for its simplicity; it
should be noted, however, that most defining
equations are differential equations.

2-42.2 Series Approximation

The representation of functionsby series
approximations is particularly useful in dig-
ital- computer calculations because the func-
tion can be generated by a relatively few
additions and multiplications. Example 2-2
showsthe ease of computing the sine function
from a power series.

The Taylor's series expansion isthe
general expression for a power- series €x-
pansion. If a function f(x) is differentiable
atapoint x = x,, then f(x) can be replaced in
the neighborhood of x, by the power series

RY
uf”(x)-&..

21 °
(2-101)

f=f(x)+(x -x) frix) +

or, in compact form,

N m(x) (27102)

HOEEDY

where £(® (x,) is the nth derivative of f(x),
evaluated at the point x = x,. For computa-
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tion, the series is truncated after a number
of terms, say m terms. The sum of the re-
maining terms, the remainder, constitutes
the errorinthe approximation. For the spe-
cial case of a convergent Taylor's series
with decreasing terms and alternating signs,
the remainder cannot exceed the magnitude
of the (m+1)th term, i.e.,

(x =x)m

< L fm) (x)

R

m!
(2-103)

where R, is the truncation error after the
mth term. An expression that may be used
todetermine the truncation error in the gen-
eral case is

1
R, =-————
" (m-1) [

Bydeterminingthe remainder or some bound
on the remainder, the maximum error for a
given number of terms is known. The com-
puter program may be written to determine
this error and to stop adding terms as soon
as the error decreases below a desired
amount.

X=X
fm) (x = 1) tm 71 dt

(2-104)

2-4.2.3 Interpolation

The preceding paragraph discussed the
approximation of functions by means of power
series. Another technique, useful when a
table of values of a function is available, is
interpolation. With this technique, the value
of the function at some point intermediate
between two known points is approximated
by a series of polynominals. In hand compu-
tation, only a first-order, or linear, inter-
polation is normally employed. The greater
computational capacity of the digital compu—
ter, however, permits the use of higher-
order polynomials. For the same accuracy,
the higher-orderinterpolation requires few-
er data points in storage.

If the tabular data are given for values
of x spaced atequalintervals h, various for-
mulas based on tabular differences can be
employed. Newton's formulas are given as
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Example 2-1. Iterative procedure for the evaluation of \/ N

An iterative procedure forthe evaluation of /N can be obtained ifthe solution is con-
sidered to be the intersectionof the curve xy = N and the straightline x =y, as shown by
Fig. 1. Start at the point (x(®, y©@) where x(® =N and y @ = 1. Successivevaluesofx
are taken as the arithmetic mean of the preceding values of x and v, i. e.,

x(1) + y(‘)
x(+n = —2———- 1)
The corresponding value of y is
Gin =
y S (2)

It can be readily seen that the solution follows the arrowed path shown in Fig. 1.
A sample calculation for N = 7 is shownin Table 1. For the sixplaces carried, \}N
=2.64575. The erroris 7 X 1075
Table 1.

Sample Calculation of \jl\ for the Case When N = 7.

; () S0
0 7.00000 1.00000
1 4.00000 1.75000
2 2.87500 2.434.78
3 2.65489 2.63664
4 2.64577 2.64573
5 2.64575 2.64575

x(+N =—_Xm ty

2
N
yttn :x_“.T

where
i=0, 1,2, 3, ..., i, i+1, ... for the number of computational steps required
to achieve the accuracy specified.
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Example 2-1 (Continued)

y axis

Sample i roximation

x(Z), y(z) is reached graphically from =D, y@) by moving initially along a per-
pendicular to the straight line x =y, and then dropping to the curve xy =N along aline
parallel to the y axis. Numerically,

OB

2

N
y@ = ——

x@ =

Figure 1. Graphical representation of the path followed in the computation of \/N.

Examplc 2-2. Computationof sin x by means of a power series.

The power series for sinx is

'S 'S | e x2n 1
sinx =x——— t-—1 .. -PrF—+ ...
TETET 9 T s R T (1)
n=123 ...

If x = 0.5 radian, the approximations for sin x employing one, two, and three tcrms
of the serics are, respectively,

£1) = 0.500000 2
£2) = 0.479167 (2)
£3) = 0.479427 s

Thce error is already quite small; inclusion of the fourth term reduces the least sig-
nificant figure by one unit.
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typical. Otherformulas of Stirling and Bessel
will be found in the literature 46, 47.

If a function f(x) is known at points x;,
evenly spaced by the interval h along the x-
axis, then

x =x 41h (i=0,1,23,...). (2-105)
The values of the function at x; are denoted
,by f, =f(x,). The firstcentraldifference be-
tween {; and f_ is denoted anb, and is defined
by

st 0 -1, (2-106)
Similarly,

8ty,276h -, (2-107)
and soon. The second, third, etc., central

differences are denoted bzf, 63f, etc., re-
spectively. The second differences are the
differences between adjacent first differen-
ences, the third differences are the differ-
ences between adjacent second differences,
and so on. Table 2-3illustrates the method.

If a new variable m is introduced such
that x = x_ + hm, Newton's forward-differ-
ence formula can be expressed as*

) m(m - 1) )
fm “f +maky,, e — 1
mim-1(m-2 .
3 O PP

mma-1)...(m-n¢1)

n! & f(1/2).,

(2-108)

It is also possible to work backwards from
f s using Newton's backward- difference for—
mula; this procedure yields

m(m+ 1)

f(m) =1, +m$f'”2+—T 82f_,

m@m+ 1) (m +2)

3
€ " Pt

mm+1) ... (m+n-1)
t én f

—(V2n

(2-109)

When the tabulated datapoints x; are not
equally spaced, Lagrangian interpolation by
polynomials of any desired degree canbe em-
ployed. The general form of the Lagrangian
interpolation is

o (x=x)(x-x) ...

(x -x]_,)(x -x”,) o {x=x)

fx} = i
,Z; (g = %) Og = %) .. b =% ) —x ) (gm k) !

(2-110)

where f; = f(xi). See Example 2-3 for an
illustrative application of this relationship.

2-4.24 Curve Fitting

Where interpolation assumes no know-
ledge of a functional relationship between
data points, curve fitting is the process by
which a chosen function is adjusted to best
fit a set of data points. The function may be
chosen becauseitappearsto fit the data well
or, more commonly, because physical rea-
soning indicates that the data should fit some
particular function. While many methods of
curve fitting are used--some quite elabo-
rate--only the most commonly used tech-
nique, that of the least-squares fit, will be
described here.

" It should be noted that, in place of the generalized difference symbol § used here, some references employ specific difference

operators for particular usage, as [ollows:

Sy(x) P y(x 1. x) -y (x) = forward.difference operator

Vy(x) ¥(x)-({y - Ax) = backward.difference operator

ax AxX
by(x) ~ylx~ 7) -y(x - T) = centrol-difference operator

See Section 20.4-2 of Ref. SO for example.
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TABLE 2-3. ARRAY OF TABULAR DIFFERENCES
i x| | oo 8%, 63, s, 8% bsfi
° x| fo
1/2 f; - £,
Py h 8f375 - 8f1/2
3/2 fp- 1y 52, - 821,
2 | x| 3 815/2 - Big)y 8%, - 671, /2
5/2 f3- £, 82, ~ 621, s, - 5%,
3| x| 13 8775 - Bl 83t7/5 - 635/, 8%, 15 - 8°%5/3
7/2 f4- 1, 6214 - 621, 64ty - 645
4 | x4 01, LI LN 838575 - 63772
9/2 f5- 14 6%t - 621,
5 | x5 1, 8115~ bg/p
11/2 fg - fy
6 xg | g

Lety = g(x) be a curve fitted by a func-
tional relationship between x and y having
the gencralized form

yEof tehx)+ .4k (%)

(2-111)
where the functions f(x), f,(x), ..., f (x) are

known. Itis desiredtosatisfythe setof equa-
tions

v, =ah () +ehx) « o+ ef (x)

Y= ofi (k) tef(x) + .+ cf (k)

v, Teafix) toh(x) + .4 of (x.)
(2-112)

forthe m sets of data points (x,,¥;) (X,,52)
eeey (x_,y, ) However, in general, cach

2-38

valuc of y will differ from its functional re-
presentation bythe "residual” error 6, where

§ =% - clfl (x‘) - szz (xi) - ... -cnf“ (x')

i

(i~ L2 ...,m (2-113)

In orderto minimize the sum of the squarcs
of the residuals, solutions of the following
set of "normal equations' are obtained.

te 2RI T e IR (0 D Y ()

€ z 2 (x)

S MACTANRTSS BT B

ve, 20 h)E ) - DV )

re, 42 (.x,) = DO, (k)

EDMAGIAGITD NI

(2-114)

where all summations arefromi=1to i =m.
Methods for the solution of these equations
are given in par. 2-4.6. An example show-
ing the application of these equations appcars
in Example 2-4.
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Example 2-3. Sample application of Lagrange's interpolation formula

Given:
_ X. f

X

=13 | 678=4,
X, = 16 632 =f
X2 = 32 454 = {2

x, 736 | 403 =¥,

Find:
f(x) when x = 26 and f(x) when x = 27
Solution:
Use the relationship
0o :(x = x,) {x = xp) (x = x5) - (x = %) (x = x,) (x = x,) :
(xo- xy) (xo— X,) (x0 - xa) (%, = %) (x] - xz) (x, - xa)
+(x-xo)(x-x])(x—xa) ; (x-xo)(x—x])(x-xz)
+
(% = %) (xg = %)) (5= xg) * (xg = %) (xy = %)) (x5 = %,) °
When x = 26,
(10) (- 6) (- 10) (13) (- 6) (- 10)
x) = 67.8) + 3.2)
(= 3)(-19) (- 23) (3) (- 16) (- 20)
(13) (10) (- 10) (13) (10) (- 6)
+ (45.4) + ————————— (40.3)
(19) (16) (- 4) (23) (20) (4)
(600) )
- 67.8) + (63.2)
(- 1311)
L1300 sy (- 780) (40.3)
(- 1216) (1840)
-31.02975 + 51.35 + 4853618 - 17.08370
= 51.77273
Wh = 27
el LU LG T B (LT IGL R
Y men Y el ©F
14 - -
. 149N (-9) (45.4) + (14) (11) (- ) (40.3)
(19) (16) (- 4) (23) (20) (4)
630
- (67.8) + — (63.2)
(- 1311) 960
RGRELD P U NPT
(- 1216) 1840
- 25.59954 + 41.475 + 48.53618 - 16.86467

= 47.54697

2-3E
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Example 2-4. Application of the least-squares curve-fitting technique to range-vs-
time- of-flight data.

roblem:
Fit the following range- vs-time- of-flight source data by a relationship of the form

y=c, 2 tc,xtey )
vhere
X =target range, in thousands of yards
y = time of flight, in seconds

¢y, €2, C3 = constants

Range-vs-Time-of- Flight Source Data

Data- Point Target Range Time of
Designation X; Flight

i (yards) i

(seconds)

1 0.8 0.70

2 0.8 0.96

3 1.0 1.24

4 1.2 1.50

5 1.4 1.82

6 1.6 2.12

7 1.8 2.46

8 2.0 2.80

9 2.2 3.16

10 2.4 3.52
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Example 2-4. (Continued)

Equation 1 canbe rewritten in the form of the generalized functional relationship

between x and y that is given by Eq. 211; i.e.,
y=c, f(x)+ czfz(x) 1 ¢, fy (x)

where
Loo=x% 00 =x (1

The constants ¢, €,, and ¢3 can be determincd by the use of equations that correspond
to the generalized relationships expressed by Eq. 2-114. For the problem under con-

sideration, these equations are
i=10

< Z f12 (x)
izl

=1 i=1

=10 =10 =10
1 f(x) £, {x) + ¢, Z £, (x)
i=1 i=1 i=1

i=10 =10 i=10

G Db Rt D BB e Y ()

Application of the relationships given by Eqgs. 3 to Eq. 4 yields the following set of

equations:
i=10 =10 =10
< E x,4 ¢, (xlz) ("u) + ¢y Z (xlz) (1) =
i=1 i=1 =1
1=10 =10 i=10
G ‘2:,‘ ) (x1) * @ Cs x2 t G § (x) (1) =
=10 =10

Mx) +e; D M

=10
3 E (M (x2 +e,
=1

The computations on the source data that are required for substitution in Eqs. 5 are

summarized in the following tabulation.

te, E fi(x) {x) + ¢ Z fi (x) f(x) =

t G Z f (x) £ (x) =

(2)

(3)

~

i=10
Z v, 4 (xl)
=1

Z Yy fz (x|)

i=1

(4)

i=10

D nfx)

=1

P

i=10

D (y) &)

=1

i=10
D (v (%)
i<l

(5)

DM
i=1

/
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Example 2-4. (Continued)
Summary of the Required Computations on the Source Data

i x; vi x x; x;? &) | ) &5

1 0.6 0.70 0.36 0.216 0.1296 0.420 0.2520

2 0.8 0.96 0.64 0.512 0.4096 0.768 0.6144

3 1.0 1.24 1.00 1.000 1.0000 1.240 1.2400

4 1.2 1.50 1.44 1.728 2.0736 1.800 2.1600

5 1.4 1.82 1.96 2.744 3.8416 2.548 3.5672

6 1.6 2.12 2.56 4.096 6.5536 3.392 5.4272

7 6.8 2.46 3.24 5.832 10.4976 4,428 7.9704

8 2.0 2.80 4.00 8.000 16.0000 5.600 11.2000

9 2.2 3.16 4.84 10.648 23.42 56 6.952 15.2944
10 2.4 3.52 5.76 13.824 33.1776 8.448 20.2752
i=10

15.0 20.28 25.8 48.6 97.1088 35.596 68.0008

i=1

971088 c, + 486 c, + 258 ¢, = 68.0008

486 c, + 258 ¢, +

258 ¢, + 150 ¢c, * 100 ¢, -

97.1088
48.6

25.8

In matrix form, Eq. 6 becomes

48.6

25.8

15.0

25.8

15.0

10.0

15.0 «,

35.596

20.28

68.0008

35.596

20.28

The substitution of these computations in Eqs. 5 yields the following system of linear
equations that can be used to determinc C1s Cys and c3:

(7
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Example 2-4. (Continued)
The solution set of this matrix equation is
c, 0.17803
<, - | 1.03439
(8)
[ 0.01709

The application to Eq. 1 of this solution setand thetabulated computations on the source
data establishes the following table of computed values for y; and the resulting residual
errors in these computed values. As defined by Eq. 2-113, a negative error means that
the computed value of y; is greater than the actual value of ¥;» i. e., the value givenin
the range-vs-time- of-flight source data.

Summary of Computed Values for y; and
the Resulting Residual Errors §;
Data-Point Computed Value of Error in y; (computed)
Designation Time of Flight i
i Yi (computed) (seconds)
(seconds)
1 0.702 =0.002
2 0.9 59 0.001
3 1.230 0.010
4 1.515 -0.015
5 1.814 0.006
6 2.128 -0.008
7 2.456 0.004
8 2.798 0.002
9 3.154 0.006
10 3.525 -0.005
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2-4.3 NUMERICAL DIFFERENTATION

Numerical differentiation is closely re-
lated to the interpolation methods described
in par. 2-42.3. If a function is represented
by interpolating polynomials, the polynomial
expression can be differentiated.

Numerical differentiation is very dan-
gerousto use, however, becauseit is subject
to errors that are due to the approximating
polynomial of a given function, insufficient
data, and many other reasons. As an illus-
tration of this danger, consider the deter-
mination of the derivative of a relationship
y = f(x) that is given by a table 3("0’3’0 )
(X[5¥1)s oo (xn,yn)§at the point for which
x =, where x,<¢< x, The table is first
approximated by a polynomial P,(x). The
derivative 2_(x)of this approximating poly-
nomial is then evaluated at x = “~.The re-
sulting number P} ({) is used as the deriva—
tive of f(x) atx = . Although the approxi-
matingpolynomial P,({) maybe avery satis—
factory fit to y = f(x), the number P}({) may
actuallybe averypoorapproximationto £'(¢).
For example, consider the relationship y =
f(x) and its approximating polynomial P,(x)
that is depicted in Fig. 2-19. This figure
shows that P! (), the slope of the tangent to
P.(x) atx = ¢, is close to zero but that f'({)
is far from zero. (Observe, however, that
although the approximation to f'(x) at x = €
is very poor the approximation to f'(x) at
x = {4 is very good.)

The various difference formulas (ref.
par. 2-4.2.3) can be differentiated to provide
suitable numerical differentation formulas.
For example, in the case of a given func-
tion y = f(x), the differentiation of Newton's

(Gregory-Newton) forward-difference for-
mulayieldsthe numerical differentiation for-

mula:
df N ’l( 1
= — Ay -
dx | h\ ¢ 2
+— Azyk - l)

(2-115)

® See, for example, Eq. 20. 6-1 in Section 20. 6 of Ref. 50

2-44

where

% “x, +kh (2-115a)

h = equal intervals at which the tabular

values of x are spaced

Ay T Y T (2- 115b)
= standard first-order difference
and
An yl( =A"-lyk+| -.An-—'lyk (2'115C)

= nth-order difference
n-213 ...

k=0, t1, +2, ..

As an example of the application of Eq.
2-115, consider the tabular function des-
cribed by the following set of values for x
and y: {(2.0, 0.69315), (2.1, 0.74194), (2.2,
0.78846), (2.3, 0.83291), (2.4, 0.87547)} . Find
the derivative at x = 2.1, using Eq. 2-115and
the following forward-difference table.

T

k | xk Yk ayy a?y a®yy aty,
4
o | 20 , o.6931s
0.04879
[ 1 | 21 | 074104 -0.00227
0.04652 | ——————]_0.00020
2 | 2.2 | 0.78846 | ————i_-0.00207
0.04445 | ————l_0.00018
3 | 2.3 | o.83zm -0.00189
0.04256
4 | 2.4 | o.87547

With h = 01, k = 1, Ay, = 0.04652, A’y; =
-0.00207, andA3y; =0.00018, Eq.2- 115shows
that

fr(2.1) ] (004652 ! { 0.00207 } ' 0.00018 })
(2. — { 0. -—1-0 + — (0.
0.1 2 3 (

~
~ — (0.04652 + 0.00104 + 0.00006)
0.1

1e

1
— (0.04762
0.1 ( )

= 04762
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Y
-p! ((I) = slope of tangent to P (x) at x =§;
P* () =slope of tangent to Pu(x) at x=1¢
~ ' ({) =slope of tangent to f (x) at x= ¢
-\
: ym (%) N\
:. GIVEN FUNCTION.
' —
:' |
S | B P {x)
F(8) | | o™
1 ‘ 1 APPROXIMATING
‘ ll POLYNOMIAL
]
)
! i
| |
1 !
c X = (1 x=t x

Figure 2-19.

The difference between the derivative of a given function and the derivative of

its approximating polynomial.

Thetabular function used inthis example was
takenfrom a natural log table, that is, f(x) =
fn x, which yields f'(x) = 1/x for x>0. When
thenumber 2.1 is substituted for x, the result
is f1(2.1) = 1/2.1 = 0.47619. Thus, the ap-
proximation obtained for £'(2.1) is excellent.
Sucharesult cannotalways be expected, how-
ever, as already observed.

It should be noted that Eq. 2-115is only
one of many possible numerical differentia-
tion formulas.: Theparticular problem con-
cerned and one's personal experienceinusing
numerical differentiation formulas normally
determine which formula is to be used. The
choice of an appropriate formula is a sub-
jective process andhence is in the nature of
an art rather than a science.

2-4.4 NUMERICAL INTEGRATION

The process of evaluating a definite in-
tegral (sometimes known as ''quadrature'’)
is alaborious task thathas been greatly eased
by the availability of digital computers. The
basis of numerical integration is inherent in
the definition of integration: integration of a
function f(x) is accomplished by adding the
areas of a series of strips of width Ax and
height f(x), as Ax—0. Since it would be nec-
essarytosum a largenumber of such incre-
mental areas in order to obtain an accurate
integration, various formulas have been de-
veloped to reduce the number of increments
required.

Of the many integration formulas that
have been developed,{ only one of the best

3% For example, Egs. 20.6-3 and 20. 6-4 in Section 20. 6 of Ref. 50 give numerical differentiation formulas that result from the

differentiation of Stirling's and Bessel's interpolation formulas.

1 See Chapter IX of Ref. 48.

See also page 231 of Ref. 10.
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known, Simpson's rule, will be described.
In applying this rule, a parabola is passed
through threc consecutive equally-spaced
points located on the functiontobe intcgrated.
It can be shown * that the area under the
curve is given by

h
A= 3- (Y| + 4Y2 t 73) (2-1 16)

where the quantities are defined in Fig. 2-20.
For an even number n values of x, the area
is

AT | i)+ 4E0) + 28 0g) 4+ 4F () + 2F(x)
t ... +4f(xﬂ_1)+f(xn):| (2-117)
where
b = X, =X,

Simpson's rule is exact for the integration
of polynomials up to the third order. Example
2-5 gives an illustrative application of
Simpson's rule.

2-4.5 METHODS FOR SOLVING DIFFEREN-
TIAL EQUATIONS

Since a differential equation describes
the behavior of a function by considering in-
finitesimally small changes, the general
method of its solution on a digital computer
is intuitively obvious. However, the desire
to improve the accuracy of solution and to
reduce thc amount of storage required has
led to the development of rather involved
methods of solution. A simple method orig-
inated by Euler, two more-complex methods
provided by Runge and Kutta, and a predictor-
corrector method due to Milne will be de-
scribed here. Other methods will be found
in the literature.

Consider, first, the simplefirst-order
differential equation in the form

dy
— = f(x,y)
dx

(2-118)
both forits owngreat usefulness and because
higher- order equations canbe reduced to this
form, as will be explained in this paragraph.
If the independentvariable is divided into in-
crements (notnecessarily equal)by the points

Y PARABOLIC APPROXIMATION

y=axi+bx+c

Figure 2-20.

See page 193 of Ref. 48.

2-46

Integration by means of Simpson's Rule.
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Example 2-5. Sample application of Simpson's rule.

20

Simpson's rulewill be used toevaluate fm f(x) dx when f(x) is given by the follo

ing tabulation for an initial value x, and n additional values of x:

n ! Xq J, f(x,)
0 1.6 12.6894
1 1.7 12.8724
2 1.8 13.0352
3 1.9 13.1943
4 2.0 13.3654

For n = 4, Eq. 2-117 shows that

AR +41(x) +210) +410 +1(x)]

where Xq = X 20 -1.6 0.4
h = = = = 0.1
n 4 4

Substitution from the tabulation yields

~ 0.1
— [12.6894 + 4 (12.8724) « 2 (13.0352) + 4 (13.1943) + 13.36541
3

>
I

0.0333 [12.6894 +51.4896 + 26.0704 + 52.7772 + 13.3654]

¥ 00333 [156.39201 = 5.2078
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Xg Xy eees Xjy X + y,-0s5 the value of y atany
point, say, i T 1, may be approximated by
extrapolating the value of y at the previous
point (i), using the known value of the slope
at i; thus,

dy
oo

where y; is the value of y atx = x; and yi+
is the value of y at x = x;4;. Substitution of
Eq. 2- 118 in Eq. 2- 119 yields

Copr =% T (a-1109)

Yipr " =x) by, (2-120)

where fi is the value of f(x,y) at x=x;, y=y,.

Eq. 2-120, known as Euler's formula, has a

truncation error with an order of magnitude

equivalenttothe squareof the increment in x.
As an example, the equation

o (2-121)

has been solved explicitly in Example 2-6
for values of x between 0 and 0.7, and also
by Euler's formula for the same range in x.
The evaluation of the Taylor's series for
Eq. 2-121 atx = 0 is also shown in Example
2-6. The evaluation of the series expansion
isaccurate nearthe point at which the deriv-
atives are evaluated, but requires consider-
able computational labor.

Toapply the Runge-Kutta method, again
considerthe differential equation of the form

dy

— =f(xy) (2-122)
dx

If the solution at some point x = x; can be
determined by the Taylor's series

h? ,
y (x, +h) Ty (x) 4 hflx, y) + 32 £ (x, y)

h3

e O L (2-123)

where h =x;4 - x;, then the Runge-Kutta
method determines an expression y(x;) + k
that is identical with Eq. 2-123, where

k=Rk+Rk+Rkt... (o124
and \
ky =hf(x,y)
= ht «ah, k
ky = ht(x + ah,y, +5k;) S (2-125)

k3 =hf(x'+alh,y'-l ,[3’l|(l+'yl kz)

efc.

¥
The constantsR |, R,, R,, ey 04 Q5 oy B5 P15
eees Y15 _eee etc., are determined by setting
y(x;) +k equalto a specificnumber of terms
of the expansion for y(x, *+ h). Exceptfor the
second-orderexpression (whichis formed b%/
discardingterms in Eq. 2-123 beyond the h
term), the constants are not uniquely deter-
mined; moreover the derivations are quite
involved. The second- and fourth-order ex-
pressions are as follows:

Second-Order
k =hf " 4
B SN SR (2-126)
k, =hf(x,y)
Fourth-Order
’ )
K = E(k,+2k2+2k, i k)
k, =hflx,y)
> (2-127)

h ky
2 '—h‘<x|+3’yl+ —2->

h k
k3 =hf(xl+3,y‘+—;>

=hf(x +hy+ k,)
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d
Example 2-6. The numerical solution of—y= y - x by the exact method and by four

. dx
approximate methods.

In order to show the application of the methods developed inpar. 2-2.3.2, the exact
solution of the differential equation

-, - (1)
dx yox

is determined for a starting point of x = 0, y = 4 and an interval in X of 0.1. The same
equationunderthese same conditionsisthen solved by Taylor's series,by Euler's method,
by the Runge-Kuttasecond-order method, and by the Runge-Kutta fourth-order method.

1. Exact Solution
y =ae+x+]1 (2

Initial Conditions: x=0andy=4

The substitution into Eq. 2 of these initial conditions shows that a = 3.

For Xg = 0

When x = 0, then e*®s = 1.00000

Therefore, y, = ae*0 + x5+ 1
=3(1)+ 0+ 1= 4.00000

Forx;=0.1
When x,; = 0.1, then e*! = 1.10517
Therefore, y =ae*l +x; *t1
= 3(1.10517)+ 0.1 + 1= 4.41551

Forx, =02
When x, = 0.2, then e*? = 1.22140
Therefore, y, = ae*2 + x, + 1
= 3(1.22140) + 0.2 + 1= 4.86420

Forx3; =03

When x3 = 0.3, then e*3 = 1.34986
Therefore, y; =ae*: +x3 +1

= 3(1.34986) + 0.3 *+ 1 = 5.34958
For x4 =04
When x4 = 0.4, then e ¥ = 1.49182
Therefore, y4; =ae*4 +x, +1

= 3(1.49182) + 0.4 + 1 = 5.87546

Forx5=10.5
When x5 = 0.5, then e*5 = 1.64872
Therefore, y5 = ae*s +x, + 1
= 3(1.64872) *+ 0.5 + 1= 6.44616
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Example 2-6. (Continued)

For x4 = 0.6
When x4 = 0.6, then »*¢ = 1.82212
Therefore, yg =ae®c +x4 +1
=3(1.82212) + 0.6 + 1= 7.06636

For X4 = 0.7

When x7 = 0.7, then e*7 = 2.01375
Therefore, y; = ae*7 +x; 11
= 3(2.01375) + 0.7 + 1= 7.74125

The exact solution, to five decimal places, is summarized in Table 1 for values of
x from 0 to 0.7 and an interval of 0.1.

Table 1. Exact Solution

X

X e Y exact

0 1.00000 4.00000
0.1 1.10517 4.41551
0.2 1.22140 4.86420
0.3 1.34986 5.349 58
0.4 1.49182 5.87546
0.5 1.6 4872 6.44616
0.6 1.82212 7.06636
0.7 2.01375 7.74125

2. Taylor's Series Solution
The Taylor's series through the third-order term is:

~ o x3
g Ty« xy' (0) -;—y O3y @ ...

y(© =4 y" = y'-1 y"(0) =3

y' (0)=4 gy =y" y" (0 =3
Therefore,

y (x) = 4+4x+—5-x2+—‘2-x3i.

| For X0= 0

When xg = 0, 2 3

then y,(x) = 4 +4x,+8B/2)x, +1/Dxo” +. ..
=4+0+0+0+...=4.00000

For x;, = 0.1

When x; = 0.1, 2 3

then yl(x) =4 +4x, +(3/2)X1 +(1/2)X1 +...
=4+04 +0.015 +0.0005 +. .. = 4.41550
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Example 2-6.

(Continued)

Forx-.=02

When x5, = 0.2,
then yz(x) =4 + 4X2 +(3/2)X22 +(1/2)X23 +. ..

=4108 t006 +0.004 +. .. =4.86400

For X3 = 0.3

When x = 0.3, .

then y;(x) = 4 +4x3 +3/2)x,2 +A/2)x 3 +. ..
=4+12 +0.135 +0.135 = 5.34850

Forx,s =04

When x = 04,

then y, (x) = 4 +4x; +(3/2)x4° +1/2)x
=4+16 1024 +0032 = 587200

Forx5= 0.5

When x = 0.3,

then y (x) = 4 +4x, +3/2xs? +(1/2)x;’
=4 +2 0375 +0.0625 = 6.43750

For X6 = 0.8
When x = 0.6,
then y (x) = 4 + 4x¢ +(3/2)x ¢’ +1/2)x 43
=4 +2.4+0.54 +0.108 = 7.04800

Forx, =07
When x = 0.7,
then y,(x) = 4 +4x; +(3/2)x,% +1/2)x,3

=4 +28 +0.735 t0.1715 = 7.70650

The Taylor’s Series Solutionis summarized in Table 2, together with the error between

it and the exact solution.

Table 2. Taylor’s Series Solution

X Y Y=Y exact

0 4.00000 0.00000
0.1 4.41550 -0.00001
0.2 4.86400 -0.00020
0.3 5.34850 -0.00108
0.4 5.87200 -0.00346
0.5 6.43750 -0.00866
0.6 7.04800 -0.01836
0.7 7.70650 -0.03475

Note that the error magnitude increases rapidly as the deviation from the point ol

evaluation of the derivatives (x = 0) increases.
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Example 2-6. (Continued)

3. Solution by Euler's Method
Euler's method makes use of the formula

Yigr = (g = x) £ 4y, ()

with f; = y; - x; and initial values x; = 0 and y, = 4, and with x LR S always equal to
0.1.

Forx0 =0

Initial values: x4 =0 and Yo = 4.00000

For X, = 0.1
Y1 =(XI' Xo)f -(Xl 'Xo) (yo- XO)"'yO
= (0.1 - 0.0) (4.00000 - 0.0) + 4.00000
= 4.40000
Forx =0.2
Yy=&y-x)) (y; -x) +y,
= (02 - 01) (4.40000 - 0.1) + 4.40000
= 4.83000
For X5 = 0.3
¥y =(0.1) (y, = x3) +y,
"= 0.1 (4.83000 - 0.2) + 4.83000
= 5.29300
For X4 = 0.4
y4 = (0.1) (y3- x3) +y3
= (0.1) (5.29300 - 0.3) *+ 5.29300
= 5.79230
Forxs= 0.5
5=1(0.1) (y4 - x4) +y4
= (0.1) (5.79230 - 0.4) *+ 5.79230
=6.33153
For XB = 0.6
=( 1) (ys' X5)+y5
= (0.1) (6.33153 - 0.5) +6.33153
= 6.91468
For x,=07

(0.1) (yg - x6)+y(,
(0.1) (6.91468 - 0.6) +6.91468
7.54615

I II

The Euler's Method Solution is summarized in Table 3, together with the error between
it and the exact solution.
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Example 2-6 (Continued)

Table 3. Solution by Euler's Method.

Error

X Y Yi~ Yexact

0 4.00000 0.00000
0.1 4.40000 =-0.01551
0.2 4.83000 -0.03420
0.3 5.29300 -0.05658
0.4 5.79230 -0.08316
0.5 6.33153 -0.11463
0.6 6.91468 -0.15168
0.7 7.54615 -0.19510

4. Solution by the Runge-Kutta Second-Order Method

k =hf ( " k')
- +--, 4 — ]
X 2 Y 5 \

k, = hflx, v) :

Vi Ty (g mh) =y (x) +k =y k (
(5)

where h = 0.1,

Forxg =0
Initial values: X, = 0 and y; = 4.00000

F
!

= hf (xg, ¥o) = h{yy - X,) = 0.1 (4.00000-0) = 0.4

h k)
k =h f(x, +95 Yo+ 3)
0.1 f (0+0.05, 4+0.2)
0.1 (4.20 - 0.05)
0.1 X 4,15 = 0.41500

Forx. =0.1
N _ T
= 4.00000 *+ 0.415
= 4.41500

k;=h fx;,y,) = h (y, - x;)
= 0.1 (4.41500 - 0.1) = 0.43150

= h K]

k =h f(x1 +95, y1 +3 )

(0.1) f(O.1 +0.05, 4.41500 +0.21575)
(0.1) (4.48075)

= 0.448075 = 0.44808
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Example 2-6. (Continued)

For X, = 0.2
¥,=y, +k = 4415 + 0.44808
= 4.86308
kl =h f(Xz, y2) = h ()’2 - XZ)
=0.1 (4.86308 - 0.2) = 0.1 (4.66308)
= 0.466308 = 0.46631
- k
k =h f(x, +1, v, +5L
=(0,1) £(0.2 +0.05, 4.86308 + 0.233155)
= (0.1) 4.846235 = 0.4846235
= 0.48462
Forx; =03
Y3 =Yy +k = 486308 + 0.48462
= 5.34770
k, =h f(x,, ya) =h (y;- X3)
= 0.1 (5.34770 - 0.3) = 0.1 (5.04770)
= 0.50477
h X
k =h flx; +3, Y3 +35)
= (0.1) £(0.3 + 0.05, 5.34770 + 0.252385)
= (0.1) (5.250085)
= 0.52501
Forx, =04
y,=y3; +k = 534770 + 0.52501
= 5.87271
k; =h fx4, y4) = h (y4- x4)
= 0.1 (5.87271 - 0.4)
= 0.1 (5.47271)
= 0.54727
- h ki
k -h f(X4 +3, y4 +-2-)
= 0.1 (0.4 ¥0.05, 5.87271 + 0.273635)
= 0.1 (5.69635) = 0.56964
For x5 =0.5
Ys=ys+k = 587271 + 0.56964
= 6.44235

2-54
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Example 2-6. (Continued)

For x;= 0.6

For x5 = 0.7

For x

0.8

Yo

k; =h x5, ys) = h (y5- xs)
= 0.1 (6.44235 - 0.5)
= 0.1 (5.94235)
= 0.59424
h Ky
k =h (\54‘7 y5+—-—)
=0.1 (0.5 + 0.05, 6.44235 +0.29712)
= 0.1 (6.18947)
= 0.61895

Ys +k = 6.44235 + 0.61895
706130

] II

ky =h (x4, y6) = h (yg- x¢)
0.1 (7.06130 - 0.6)
0.64613

k
=h f(XG +'§' Yo + )l)
(0.1) £(0.6 +0.05, 7.06130 + 0.323065)
(0.1) (6.734365)
0.67344

=\

Yo +k = 7.06130 + 0.67344
7.73474

nn

1= h f(x']) y7) = h ()’7 - x-;)
0.1 (7.73474 - 0.7)

0.1 (7.03474)

0.70347

o

k

=h f(x7 +T y7+ 2])

(0.1) f(0.7 + 0.05, 7.73474 + 0.351737)
(0.1) (7.336477)

0.73365

=1
|

vy, +k = 7.73474 + 0.73365
‘46839

[}
00

2-55
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Example 2-6. (Continued)

The solution obtained by the Runge-Kutta sccond-order method is summarized in Table
4, together with the error between it and the exaet solution.

Table 4. Solution by the Runge-Kutta Second-Order Method.

k= hi(x +14r, v, + %)
2

k=hf(x +4r, 5 * %

2

ke=hf(x +h, y, 4 k)

X, y; kl k Error
Yi7Y exact
0 4.00000 0.40000 0.41500 0.00000
0.1 4.41500 0.43150 0.448 08 0.00051
0.2 4.86308 0.46631 0.48462 0.00112
0.3 5.34770 0.5047 7 0.52501 0.00188
0.4 5.87271 0.54727 0.56964 0.00275
0.5 6.44235 0.59424 0.61895 0.00381
0.6 7.06130 0.64613 0.67 344 0.00506
0.7 7.73474 0.70347 0.7 3365 0.00651
0.8 8.46839
5. Solution by the Runge-Kutta Fourth- Order Method
Vi o YOe 1 h) =y (x) +k=y, +k
k -4 k, ¢ 2 2k, + k
- 6 ( y t l‘z t k; 4)
ko= ht (x, )
) (6)
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Example 2-6. (Continued)

Forxp =0
Initial Values: Xg = 0 and y, = 4.00000

ky = hf (xp, ¥o) = 0.1 {yg = %) = 0.1 (4.0000 - 0)
= 0.40000
h ky
ky = hi(xg + 5, yo+—5) = 0.1£(0 +0.05, 4.0 +0.2)
= 0.1 (4.2 - 0.05) = 0.1 (4.15)
= 0.41500
h kg
kg = hf(xo t5, Yo +35) = 0.1f (0 + 0.05, 4.0 + 0.2075)
= 0.1 (4.2075 - 0.05) = 0.1(4.1575)
= 0.41575
kg = hf (%, +-12‘-, Yo ¥ k3) = 0.1£(0+ 0.1, 4.0 + 0.41575)
= 0.1 ( 4.41575 - 0.1) = 0.1 (4.31575)
= 0.43158
= 1
k _.g(k1+ 2k, + 2k g + k4)
=-é- (0.4 + 2(0.415) + 2(0.41575) + 0.43158)
= 31(0.4 + 0.830 + 0.83150 + 0.43158)
= 0.41551
For x, = 0.1
Y1=yo+ k=40 % 041551
= 4.41551
K, = hf (x1, y1) = 0.1i(y; - x3) = 0.1 (4.41551 - 0.1)
= 0.1 (4.31551)
= 0.43155
h kl
kg = hi(x; ¥ 5, y1+—5)= 0.1£(0.1+ 0.05, 441551 + 0.215775)
= 0.1 (4.631285 - 0.15) = 0.1(4.481285)
= 0.44813
h ks
k3 =nf(x3 t3,y; T7)=0.1£(0.1+0.05, 441551 + 0.224065)
= 0.1 (4.639575 - 0.15) = 0.1 (4.489575)
= 0.44896
ky = hf (x1+ h, y; + k3g) = (0.1+ 0.1, 441551 + 0.44896)

0.1 (4.86447 - 0.2) = 0.1 (4.66447)
0.46645

nu

2-57
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Example 2-6. (Continued)

1
k =z(k1+2k2+ 2k3 + k4)

—; (0.43155 + 2(.44813) + 2(.14896) + 0.46645)

%(0.43155 + 0.89625 1 0.89792 + 0.46645)

%(2.692218)

0.44870
For x, = 0.2

Yy J ¥, + k= 441551+ 0.44870

= 4.86421
ky = hf(x,, yy) = 0.1 (4.86421 - 0.2) = 0.1 (4.66421)
= 0.46642 Ky
kg = hf(xg + 5,59+ —5) = 0.1£(0.2 + 0.05, 4.86421 + 0.23321)
= 0.1(5.09742 - 0.25) = 0.1(4.84742)
= 0.48474
h k2 ,
kg = hf(x, + 3, yg+ =5) = 0.1£(0.2 + 0.05, 4.86421 + 0.24237)
= 0.1 (5.10658 - 0.25) = 0.1 (4.85658)
= 0.48566
kg = hi(xy* h, yo + ky) = 0.1£(0.2+ 0.1, 4.86421+ 0.48566)
= 0.1 (5.34987 - 0.3) = 0.1 (5.04987)
= 0.50499
k =< (k; + 2ky + 2kg+ ky)
= %(0.46642 +2(0.48474)+ 2 (0.48566)+ 0.50499)
=1 (0.46642+ 0.96948 + 0.97132 + 0.50499)
6
1
= 2 (2.91221)
= 0.48537
For x,, = 0.3

Y3 = Vot k= 4.86421 + 0.48537
5.34958

kg

i

bf (x4, y3) = 0.1(yg - x5) = 0.1(5.34958 - 0.3)
0.1 (5.04958)
0.50496
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Example 2-6. (Continued)

k3

1]

i

hf (x + 2 yo+ Kl 0.1£(0.3+ 0.05,5.34958+ 0.25248)
3 2’73 2

0.1(5.60206~- 0.35)= 0.1(5.25206)
0.52521

h .
hf (xg + =, y3 + L—g-)= 0.1f(0.3+ 0.05,5.34958+ 0.262605)
0.1(5.612185- 0.35)= 0.1(5.202185)
0.52622

hf(x_+ h,y_+ k_)=0.1£f(0.3+ 0.1,5.34958 + 0.52622)
0.1(5.8758 - 0.4)= 0.1(5.4758)

0.54758
-%](kl + 2kg + 2k.; + k)= —1(0.50496 + 2(0.52521) + 2 (0.52622)+ 0.54758)
: 4 6

%(0.50496+ 1.05042+ 1.05244+ 0.54758) = % (3.15918)
0.52590

Xy = 0.4

y3 + 1-{
5.34958 t+ 0.52590
5.87548

hf(x4, y4) = 0.1(5.87548- 0.4)
0.54755
h b
BE(xg+ 3, yq+ T D0.1£(0.4+ 0.05,5.87548+ 0.273775)
0.1 (6.149255-0.45)= 0.1 (5.699255)
0.56993

k
hf(x4+7?, y4+ -%) = 0.1£(0.4+ 0.05,5.87548+ 0.284965)
0.1 (6.160445- 0.45)= 0.1(5.710445)
0.57104

hf (x4 +h, vqgt kg)=0.1£(0.4 0.1, 5.87548+ 0.57105)
0.1(6.44653 - 0.5)= 0.1(5.94653)
0.594u5

1 1
I_i(kl 1 2k2 + 2k3+ k4) =5 (0.54755+ 2 (0.56993)+ 2(0.57104) + 0.59465)

g(0.54755+ 1.13986+ 1.142081t 0.594b5) = §(3.42414)
0.57069
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Example 2-6. (Continued)

For Xg = 0.5

Y5 = ¥, + k =5.87548 + 0.57069
= 6.44617

ky =hf (x5, y5) = 0.1 (6.44617 - 0.5)

= 0.59462
k,y

h
kg = hf (xg +3, Y5 + 5 % 0.1f (0.5 +0.05, 6.44617 +0.29731)

0.1 (6.74348 - 0.55)

0.1 (6.19348)

= 0.61935
h b2 +
3 =hf b5 +3,y5 + =)= 0,16 (0.5 +0.05, 6.44617 ¥ 0.309675)

P
{}

0.1 (6.755845 - 0.55) = 0.1 (6.205845)

0.62058
k4 = hf (x5 +h, Ys + k3) =0.1f (0.5 + 0.1, 6.44617 + 0.62058)

= 0.1 (7.06675 - 0.6) = 0.1 (6.46675)

= 0.64668
- 1 1
k = 3 (k1 + 2k2 + 2k’; + k4) = 2(0.59462 +2(0.61935)+ 2(0.62058) + 0.64668)
1 R 1
= E (0.59462 *+1.23870 + 1.24116 + 0.64668) =3 (3.72116)
= 0.62019
For Xp = 0.6
Yg = yg + k = 6:44617 + 0.62019
= 7.06636
ky = hf (xg, ys) = 0.1 (7.06636 - 0.6)
= 0.64664
h k
k2 = hf (x6 +§ ’y6 +-2— ) = 0.1f (0.6 +0.05, 7.06636 + 0.32332)

= 0.1 (7.38968 - 0.65) = 0.1 (6.73968)

= 0.67397
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Example 2-6. (Continued)

k
h B
= - 2) = +
k3 hf (x6 + 3 y6 + > ) = 0.1f (0.6 + 0.05, 7.06636 0.336985)

= 0.1 (7.403345 - 0.65) = 0.1 (6.753345)
= 0.67533

k4 = hf (x6 + h, y6 +k3) =0.1 (0.6 +0.1, 7.06636 +0.67533)

0.1 (7.74169 - 0.7) = 0.1 (7.04169)

0.70417

1 1
k =-E- (kl + 2k,2 +2k_+ k4) = 5 (0.64664 *+2(0.67397) + 2(0.67533) +0.70417)

3
=%‘ (0.64664 + 1.34794 + 1.35066 + 0.70417)

1
= — (4.04941)
6
= 0.67490
For x,7 =0.7
y, =Yg+ k = 7.06636 * 0.67490
= 7.74126

k1 = hf (x ) =0.1 (7.74126 - 0.7)

7 Y7
0.70413

bt
|

N -
= hf (s, 40 y.. +—) = 0.1f (0.7 + 0.05, 7.74126 + 0.352065)

0.1 (8.093325 - 0.75) = 0.1 (7.343325)

0.73433

k
k. =hf x +8&,y_ +-2)=0.1f (0.7 + 0.05, 7.74126 +0.367165)
3 22T

= 0.1 (8.108425 - 0.75) = 0.1 (7.358425)

0.73584

k =hf (x‘7 +h, y‘7 + k3) = 0.1f (0.7 + 0.1, 7.74126 + 0.73584)

0.1 (8.47710 - 0.8) = 0.1 (7.6771)

0.76771
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Example 2-6, (Continued)

- 1 1
k =% (k1 + 2k2 + 2k3 + k4) = E( 0.70413 + 2(0.73433) + 2(0.73584) + 0.76771)
1
=E (0.70413 + 1.46866 + 1.47168 + 0.76771)
1
=— (4.41218
6
= 0.73536

For Xg = 0.8
Yg =¥, +k=T7.74126 +0.73536
= 8.47662

The results are tabulated in Table 5, together with the error. Note the marked im-~
provement in accuracy over the second-order solution (see Table 4).

Table 5. Solution by the Runge-Kutta Fourth-Order Method.

Error

> o Ky kg k3 ky k ¥i7Y exact

0 4+ 00000 0.40000 0.41500 0.41575 0.43158 0.41551 0.00000
0.1 41531 033155 0.44813 0.44896 0.46645 0.41870 0.0000
0.2 188421 0. 46642 0,484 4 0.48566 0.50449 0.48537 | -0.00001
0.3 0. B 0.50416 0.52521 0.52622 0.54758 0.52500 0.00000
0.4 2,87 348 0.54755 056493 0.57104 0.59465 0.57069 | -0.00002
0.5 641617 0.59462 061435 0.62058 0.64668 0.62019 | -0.00001
0.6 7.06636 0.64664 0.67397 0.67533 0.70417 0.67490 0.00000
0.7 71126 0.70413 0.73433 0.73584 0.76771 0.73536 | -0.00001
0.8 B 47663
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In Example 2-6, second-order and fourth-
order Runge-Kutta solutions of Eq. 2-121
are included.

A number of "predictor-corrector"
methods have been developed. The best
known, that of Milne, requires a knowledge
of the values of y at four consecutive values
of x. These values may be determined by a
Runge-Kutta method or other self-starting
methods. By Milne's method, a value of y at
a new point y,_, is predicted by the formula

4h
Yigr Va3 2y -yt y)

(2-128)

where y;-3, ¥;-55 ¥Yi-1» ¥;4; 4r€ successive
values of y at points on tllle x axis equally
spaced bythe interval h, and y', denotes the
derivative g_,%, evaluated at a point (x;,y,).
From the predicted y;4; and y';+; , acorrect-
ed value for the new y, denoted '}7“1 , is ob-
tained from the formula

— h ,
Yl-l»l = Yi..'l +-§-(Y|'_'| t4 Y|‘ + Y|+'|) (2-129)

Once the original four points have been ob-
tained, the computation by Milne's method
proceeds more rapidly than does a Runge-
Kutta computation of the same step size.

Anyofthemethods described inthis par-
agraph can be expanded to solve systems of
first-orderlinearequations. Ahigher-order
equation can always be reduced to a system
of first-order equations, as follows. Con-
sider the nth-order equation in the general
form

dry dy d% dr-ly
— - fixy, — —, ...,
dx dx  dx? dxn-!

(2-130)

2 n-1
Letzl%, zz=§—x%, v Zo g =;1xf_lﬁ. Then the

following set of first-order equations is
equivalent to Eq. 2-130:

L (2-131)

o zn—'l)

J

Thus, the numerical solution of higher-order
differential equations is straightforward.

2-46 METHODS FOR SOLVING SYSTEMS
OFLINEAR ALGEBRAIC EQUATIONS

The standard form of a systemof linear
algebraic equations, with n equations and
variables x; (i=1,2, ..., n) is

Xy tagx, ... +alnxn=c|1
O % T op% t ... ta,x =

(2-132)
a; X ta,x, + ... ta_x =c

In matrix form, Eqs. 2- 132 maybe express-
ed as

I X, 3

G 9 %2n * )

an'l 0“2 am xn cn
(2-133)
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Theleft-hand matrixin Eq. 2-133is the ma-
trixof coefficients A and is a square matrix

withnrows andn columns. The column mat-
rices are represented by X and C, respec-
tively. Eq. 2-133 may then be expressed

AX = C (2-134)
The solutions of Eq. 2-134 are, by matrix
algebra,

X = A-1C (2-135)
where A™! is the inverse matrix of A.* The
inverse of a square matrix is defined by the
the relationship

A

AATY =1 (2-136)
100 ...0
010...0

where I A 001...0 is the unit, or
000 ...1

identity, matrix.

The solutions to a set of simultaneous
linear algebraic equations can thus be ob-
tained by inversion of the matrix of coeffi-
cients, followed by multiplication of the in-
verted matrix by the column matrix of con-
stants. The major operation, that of matrix
inversion, canbe performed by severalmeth-
ods. The simplest is by the application of
Cramer's rule. In matrix form, Cramer's
rule states that

- _ - .
[AL, 1A, LA,
x " o e
[ Al JA vy
TAL, 1Al [Al,
= _ .. e m— <,
2 | A | Al [ Al
[AL, 1A, lA .,
X" -_ cn
[ Al AL [ Al
(2-137)

* . .
Not every square matrix has an inverse.

where |Al is the determinant of A and |Alj;
is the cofactorf of a;- in the determinant IAi.

Application of Cramer's rule in digital
computation requires a large number of op-
erations. An alternative procedure is the
Gauss-Seideliterativemethod. The equation
set, Eqs. 2-132,mayberewritten in the form

X, =d -b, x,-b, x3- ... - by, x_
p Zdibyx B by
x = d -byx -byx,- ... "b __,x_,
(2-138)
a,. C

i
and di:é?i-.
By defining the matrices

b..=—
where b;, Eyn

0 b12 bn < by,
b,, 0 b, b,,
B = -
b, b“2 b, . 0
(2-139)
and
_ .
d2
D = (2-140)
dﬂ

asimple iterative process may be employed,
represented bythe matrix iteration equation

The value of the matrix A == considered as a determinant for this operation == cannot

equal zero since, in computing the inverse, division by the determinant is necessary.
1' The. cofactor is th; determinant obtained from IAI by dropping the row and column that contain a; § The sign of the cofactor

15 given by (-1)+

2-64
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X(k+) = D+ BX(K) (2-141)
E(} 2-141 states that an improved matrix
X&*D canbeobtained by multiplyingthe pre-
ceding matrix X(k)by B and adding the result
to D. Eq. 2-141 is the original method of
Gauss. The improved Gauss-Seidel method
divides the matrix B into upper and lower
triangular matrices U and L; thus,

-
0 b|2 b|3 te bln
0 0 b, ... b
U i [ R
0 0 0 0
(2-142)
and
o 0 0 0 |
b, 0 0 0
L =l
b by by ... 0
(2- 143)

The matrix iteration equation is

X#D = D4 UX® 4 LX) (2-144)

Eq. 2- 144 represents the following process:
In the first of Eqs. 2-138, the initial value of
all the x's except x| is taken as zero. Then
X (1)=d1. In the second equation, the im-
proved value of x; isused, but the remaining
x's on the right-handside areset to zero, so
that x,"V=d,-b, x (V, and so on. Both the
Gauss and Gauss-Seidel methods converge if
the sum of the absolute values of the coeffi-
cients b;; is less than or equal to unity in
each equation, and is less than unity in at
least one equation. This condition canusually
beassuredby rearrangingthe equations such
that a;; is the largest coefficient.

The Gauss-Seidel method is best suited
to automatic computation. The widely-used
Crout method is best suited to hand compu-
tation.
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PART Il
COMPUTING DEVICES USEFUL IN

FIRE CONTROL SYSTEMS
CHAPTER 3

THE CLASSIFICATIONS OF COMPUTING DEVICES
USED IN FIRE CONTROL SYSTEMS"

3-1 INTRODUCTION

3-1.1 CHARACTERISTICS OF FIRE CON-
TROL COMPUTERS

The function of a fire control system is,
as discussed inSection1' of the Fire Control
Series, to so position a projectile-launching
device, or projector, as to cause the projec-
tile to hit the target. This purpose is accom-
plished by three subsystems: thc acquisition
and tracking systcm, the computing system,
and the weapon-pointing system. The comput-
ing system (generally referred to as simply
the "computer" for the sakc of convenience)
acceptsdata fromthe targettracker and from
atmosphcric and other measurements, com-
putes the required orientation of the projcc-
tor, and transmits these data to the weapon-
pointing system.

The aforenotcd functions of a fire-control
computer determine its two general basic
characteristics:

1. First, a fire-control computcr must
usually be fast. In many tactical situations,
it is important that the time petwcen the de-
tection of a targct and the firing of a projec-
tile be minimized. For this reason, it has
been found desirablc in many fire control
systems to incorporate the computer in the
tracking loop. In this casc, the computation
is performed on the same time base as that
onwhich incoming tracking dataarereceived.
Such a computer istermed a real-time com-
puter. If, on the other hand, the computer is
not incorporated in a data loop, it may oper-
ate at speeds either faster or slower than
real time.

% By E, St. George, Jr
T Fire Control Systems = General (AMCP 706-327).

2. Second, the fire control computer
must be extremely accurate. Errors incom-
ponents tend to accumulate, and usually cannot
be reduced by feedback. The only effective
overall fcedback is obtained from the obser-
vation of prior firings. While information ob-
tained in this manner is valuable when the
target is fixed or moving at low velocity, this
information-transfer process is too slow to
be of much help in reducing errors against
high-speed targcts; in addition, firingsneces-
sarily disclose thc position of the weapon. By
way of contrast, a homing guided missile
is continually measuring the error in the
missile-target linc of sight; thus, computers
forhoming guidcd missiles may have accuracy
requirements that are much Less stringent
than those for fire control systems.

Since the computer must be located in
proximity to the rest of the weapon system,
it must have qualities of portability, reliabil-
ity, ecase of adjustment, and freedom from
disturbances caused by the environment which
arc commensurate with those of the rest of
the system. These qualities are not easy to
combine with the requirements forhigh speed
and high accuracy.

3=1.2 CLASSIFICATION SCHEMES

The firecontrolsystemdesigner is faced
withthe problem of designing a fast, accurate,
compact, and rugged computer which will
mechanize the mathematical model of the
computer portion of the weapon system. To
carry out this task, he has the choice of a
wide variety of computing devices and sys-
tems: some very old, and others just out of
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the laboratory; some complex and some very
simple.

For the purpose of discussing the vast
field of fire-control computers, it is useful
to consider three classification schemes: (1)
from the viewpoint of the user, (2) from the
viewpoint of the systemdesigner, and (3) from
the viewpoint of the component designer. First
of all, however, it is desirable to identify the
essentialfeaturesof any computer or comput-
ing device.

3-1.3 BASIC COMPUTER CONCEPTS

Excluding direct analogs, in which one
physical phenomenon is simulated by another
physical phenomenon that has an analogous
behavior, all computing processes == whether
they be manual or automatic, digital or ana-
log == comprise the elements of computation,
programming, memory, input, and output.
These elements are best illustrated by an
analysis of hand computation.

In solving a complex problem by hand
computation, the problem must be broken down
into simple computations which can be carried
out mentally. Unless the problem is quite
simple, it isnecessary to write downthe steps
to be followed -- the program. As the com-
putational steps are carried out under the in-
structions of the program, the results arere-
corded on paper foruse inlater stages. This
sheet of paper constitutes the memory.

The process of computing may be sum-
marized as(1)transfer of data fromthe input
element to the computation element, (2) per-
formance of a series of computations, with
the transfer of intermediate results to and
from the memory", and (3)transfer of the
final result to the output. The sequence of
computations performed and the transfers of
data are allunderthe controlof the program,
as shown in Fig. 3-1.

For more complex calculations, various
aids to computation may be introduced, but
the basic concept is not changed. For exam-
ple, a slide rule, adding machine, ordesk cal-
culator may be employed as a computer
instead of the human brain. Tables of mathe-
matical functions may augment the paper-and-
pencil memory.

When automatic computers are con-
sidered, it is found that analog computers
perform all parts of a complex calculation
simultaneously, so that the memory element
disappears completely; also, the program-
ming functionis primarily concerned with the
interconnections between a large number of
computing elements and a largenumber of in-
puts and outputs. In a digital computer, on
the other hand, the computing elementis rela-
tively simple, whilethe memory may belarge
and complex, and divided into various cate-
gories, dependentprimarily upon speed of ac-
cess. Thus, the basic concept of the comput-
ing process applies, with some modification,
to allcomputers from the simplest hand com-
putation to the largestelectronicdigitalcom-
puter.

3-1.4 USER CLASSIFICATIONS

From the viewpoint of the user, or oper-
ator, it makes little difference whether the
computer is digital or analog, electronic or
mechanical, as long as it provides the requi-
site inputs and outputs, and has the required
speed and accuracy. The user, therefore,
will classify computers primarily by their
degree of automaticity. The first classifi-
cation schemesto be discussed (see pars. 3-2
through 3-4)consider both computing devices
that are primarily aids to a chiefly manual
computation and computers that are wholly
automatic, or almost so. A second classifi-
cation of importance to the user (see par.
3-7) divides computing devices into special-
purpose and general-purpose groups.

3-1.5 DESIGNER CLASSIFICATIONS

From the viewpoint of the system de-
signer, the decision as to the particular type
of computer to be employed (i.e., a digital
computer, a digital differential analyzer, or
an analog computer; see par. 3-5) rests upon
anumber of interacting factors. Although the
designer's own background should, ideally,
not influence the decision, it is, practically,
often one of the prime factors. However, the
decision is influenced, and possibly even
forced, by such purely technical considera-

% Additional input data may also be entered at various stages of the computation.
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Figure 3-1. The computing process.

tions as the number and form of the inputsto
be fed into the computer and of the outputsre-
quired, the accuracy required, the specific
computations to be performed, the speed at
which solutions must be obtained, etc. Also
involved, even in the choice of the basic com-
puter type, are suchquestions as the range of
variablesto be handled and the related scale-
factor questions, the reliability, and the ease
with which the computer could be adapted to
handle problems involving different operating
conditions or even different basic c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>