
TALIG E · TT

TOOLS

FOR AIX ®

di Taligent.

TOOLS

TESTING ENVIRO MENT

SNIFF+·· DocuM E TATION

TALIGENT TOOLS FOR AIX

TALIGENT, INC.

10201 NORTH DE ANZA BOULEVARD

CUPERTINO, CALIFORNIA 95014-2233
USA

(408) 255-2525

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

TALIGENT TOOLS FOR AIX

Copyright© 1994 Taligent, Inc. All rights reserved.
10201 N. De Anza Blvd., Cupertino, California 95014-2233 U.S.A.
Printed in the United States of America.

This manual and the software described in it are copyrighted.
Under the copyright laws, this manual or the software may not be copied, in
whole or part, without prior written consent of Taligent. This manual and
the software described in it are provided under the terms of a license
between Taligent and the recipient and its use is subject to the terms of that
license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more
U.S. and International Patents.

TRADEMARKS: Taligent and the Taligent logo are registered trademarks of
Taligent, Inc. All other trademarks belong to their respective owners.

TALIGENT CONFIDENTIAL: REGISTERED INFORMl'.TION PRELIMINARY

CONTENTS

Preface .. xrrr

Part 1 Tools ... 2

Chapter 1
Introduction ... 5

Chapter 2
The build environment ... 7
Taligent build terminology .. 7
The build process .. 8
Makefiles .. 9

Makefile description syntax ... 9
Target types .. 9

Makeit ... 10

Passing options to make ... 11

Creating makefiles . I I

Universal.Make .. 11

Environment variables ... 12

Setenv ... 13
How to change environment variables .. 13
When to change environment variables .. 13

Real life examples .. 14
A simple sample .. 14
A faster build ... 16
A clean build ... 1 7
A not-so-simple makefile ... 1 7
A simple * .PinkMake .. 18
Adding link libraries ... 19

PRELIMINARY TALI(;ENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

II

Chapter 3
Taligent build tools ... 23
CreateMake , ... 24
FindSyrnbols .. 25
IPCPurge ... 27
MakeExportList .. 2 7
Makeit .. 28
MakeSharedApp ... 30
MakeSharedLib .. 30
MakeSOL .. 31
mop ... 31
RunDocument .. 32
SharedLibCache ... 33
slibclean .. 33
SmartCopy ... 34
StartPink .. 34
StopPink .. 35

Chapter 4
CreateMake .. 37
application .. 38
binariessubfolderdir ... 38
binary; .. 39
build .. 40
compile option .. 40
developmentobject ... 41
end ... : 41
export : ... 42
header ... 43
headerdir .. 43
heapsize ... 44
library ... : .. 44
link ... 44
loaddump .. 45
local ... 46
localheader ... 46
localheaderdir ... 46
make .. 47
object (tag) ... 47
object (target) ... 48
objectdir .. 48

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

III

parentobject ... 49
parentobjectdir .. 49
private ... 50
privateheaderdir ... 50
program .. 51
public .. 51
server ... 52
source .. 52
sourcedir ... 53
start ... 53
subfolder ... 54
subfolderdir .. 54
subproject ... 55
testapplication .. 55
testlibrary .. 55
testparentobject .. 56
testserver ... 56
tool .. 56
trimdependencies .. 57

Chapter 5
Analysis tools .. 59
Overview ... 60

Tools .. : 61
Limitations ... 61
TLocalHeapMonitor ... 61
TLocalHeapAnalyzer .. 62
Heap monitoring file format .. 62
Heap analysis file format .. 63
Heap corruption ... 64
Debugging heap corruption ... 64

AIX notes .. ··················:································ 64
Dynamic analysis .. 6 5

Dynamic typing ... 6 5
Dynamic error detection .. 65

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

IV

Chapter 6
Xcdb .. 67
Setup ... 69

Installation ... 69
Signals .. 70
Compiling ... '. 70

Running .. 70
Program starting .. 7 2

Program interrupting .. 72
Program terminating ... 72
Xcdb exit codes ... 72

Window organization ... 73
Window manipulation .. 74
Execution control ... 75
Format Control ... 76

Common Formats .. 77
Type-specific Formats .. 77
class, struct, and union formatting ... 79
Array formatting .. 80
Pointer formatting ... 83

Breakpoints .. · 83
Preferences .. , 84
Self-displaying C++ objects ... 85
Customization ... 86
Frequently asked questions .. 88
Reporting bugs ... 93

Appendix A
Tips & techniques ... 95
cdpath ... 95
xcdb-the debugger ... 96
OpusBug() .. 96

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

v

Part 2 Test Environment .. 98

Chapter 7

Test Environment Overview ... 101

Chapter 8

Test framework ... 103
Test framework overview ... 104

TTest Class ... 104

Related classes ... 106

Getting started with the test framework ... 106

Designing a test .. 107

Creating a test .. 108

Writing a test function .. 109

Setting up the environment ... 110

Cleaning up after a test ... l lo
Writing a test to run more than once .. 110

Overriding inherited MCollectible members ofTTest 110

Writing text to the console ... 11 l
Combining tests ... l l 2

Using a script to run multiple tests .. 112

Combining operations in a single test class ... 11 2

Combining multiple TTest objects into a single test 114

Creating tests with dependencies on
other tests .. 114

Identifying what a test does ... 115

Chapter 9

Run Test ... 117

Performing a test .. 1 18

Testing an interface inherited from a base class 118

Providing input for a test ... 119

Parsing text inputs to a test .. 119

RunTest options ... 121

Stopping a test .. 122

Examining test results .. 12 3
Collecting timing information ... 12 3

Handling exceptions .. 12 3

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

VI

Part 3 SNIFF+ Guide ... 124

Chapter 10
Getting started ... 127
Introduction ... 127
About SNiFF+ documentation ... 128

Terminology .. 129
Typographical conventions ... 129

Basic SNiFF+ concepts .. 130
Main tools ... 130
Information extraction ... 130
Updating information ... 131
Project concept .. 131
Browsers and editors ... 131
Shortcuts .. 132

Prerequisites ... 133
Installation ... 133
Checking the environment ... 133
Copying the example files to your local directory 134

Starting the SNiFF+ tool. .. 135
SNiFF+ command line ... 135
Starting SNiFF + from shell .. 135

Creating a new project ... 136
Creating the file browser project ... 136
Setting the project attributes .. 138
Checking the source files into the version control system 140
Loading a subproject ... 142
Examining the results .. 143
Saving the new project and closing the Project Editor 143

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

VII

Chapter 11
Using SNiFF+ ... 145
Browsing Syinbols ... 145

Opening a
Syinbol Browser ... 145
Project tree .. 14 7
Constraining the
list with filters .. 14 7
Type pop-up menu .. 148

Top-down browsing .. 148
Viewing ActionButton in the class hierarchy .. 148
Browsing the elements of ActionButton-the Class Browser 150
Studying protocols .. 152

Bottom-up browsing ... 154
Studying the method GetMinSize .. 154
Where glook is used- the Retriever ... 156
Retrieving session 2-getting information about menu handling 158

Editing .. 158
Loading a syinbol into the editor ... 159
Working with the Syinbol list ... 160
Checking out a file .. 160
Some useful editing helps .. 161

Viewing and editing class and member descriptions 162
Opening the Documentation Browser .. 162
Viewing other descriptions ... 163
Changing from read-only to writable ... 163
Editing the file ... 164
Checking in and checking out files ... 164

Adding Taligent public includes to a new project ... 164
Compiling ... 165

Starting the compiler .. 166

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

VIII

Chapter 12
Basic Elements .. 169
SNiFF+ architecture .. 169

SNiFF+ environment ... 169
Basic user-interface components ... I 70

Status line ... 170
Layout handle .. 170

Common dialogs and windows .. 1 71
Find Dialog .. 1 71
File Dialog .. I 7 2

Directory Dialog .. I 7 4
Print Dialog .. 17 5
About dialog .. 17 5
License dialog .. i 76
Progress Window ... I 76
Error log window ... 177

Common menus ... 177
Icon menu .. 177
Info menu .. I 79
Class menu ... i 80
Filter menu .. 181
History menu .. 181
Edit pop-up menu ... 182

Shortcuts ... 183
Keyboard shortcuts .. 183

Chapter 13

SNiFF+ subsystems .. 185
Workspace manager ... 185

Project menu ... i 86
Project Editor .. 187

File list .. i 88
Project tree ... 188
File menu ... i 88
Make menu .. 189
Project menu .. 190
Show Locking button .. 191
Project Editor with locking information shown 192
Source Files dialog ... 197
Project Attributes Dialog ... 199
Project Attributes dialog for frozen subprojects 203

Symbol browser ... 204
Type pop-up ... 205
Project tree ... 205

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

IX

Class browser .. 206

Inheritance Graph .. 207

Hide Overridden button .. 207

Type pop-up .. 207

Hierarchy browser .. 208

Hierarchy menu .. 209

Projects menu .. 209

Retriever ... 2 1 o
Project tree .. 2 1 1

Status line .. 211

Retrieve menu ... 2 1 1

Filter menu .. 2 1 2

Editor .. 213

Symbol List .. 214

Class pop-up .. 214

File menu ... 214

Edit menu .. 216

Positioning menu .. 217

Utilities menu .. 218

Make menu .. 218

Exec menu ... 219

Inspect menu ... 219

Build menu .. 220

TAE menu ... 220

Custom menus ... 2 2 1

Debugging mode .. 222

Editing shortcuts and goodies .. 223

Documentation Browser .. 224

Symbol List .. 225

Class pop-up .. 225

File menu ... 225

Edit menu .. 226

Styles menu .. 226

Info menu .. 226

Class menu ... 226

TAE menu ... 226

Custom menus ... 226

Shell .. 227

Edit menu .. 227

Shell menu ... 228

Target menu .. 228

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

x

Chapter 14
Customizing. your environment .. 2 3 1

Preferences ... 2 3 1

Site .. 231
Preferences dialog ... 232

Teamwork Support ... 234
Overlaying shared files .. 234

Information extractor (sniffserver) ... 235
Running the sniffserver on a different host ... 235
Dealing with preprocessor macros ... 236
Configuring the parser .. 237

Files created and used by SNiFF+ .. 239
Project file .. 239
ETRC file .. 239
Parser configuration file ... 239
Retriever filters file .. 240
Template files .. 240
Custom menu file .. 240
Error formats file ... 241
Files generated by SNiFF + and stored in the generate directory 242

Tuning and persistency of symbolic information ... 243
File-level symbol persistency (default) ... 243
Project-level symbol persistency .. 243
Comparison of project loading times ... 244

SNiFF+ projects ... 244
Projects in SNiFF + ... 244
Declaration and implementation files in separate directories 245
Projects with many subprojects ... 246

Chapter 15

Support for other functions ... 249
Makefile Support .. 249

Dependencies (dependencies.incl) ... 249
Object file list (ofiles.incl) .. 250

Emacs integration ... 250
Integrating Emacs .. 251
Working with Emacs and SNiFF+ ... 252
Configuring the Emacs integration .. 253
How the Emacs integration works .. 2 54

Version control ... 254
Restrictions in using RCS and SCCS with SNiFF+ 255
Working with SNiFF+ version control and locking 255
How RCS and SCCS are integrated .. 2 55
SNiFF+ locking ... 255

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

XI

Appendix B
GNU Regular Expressions .. 257

Syntax ... 257

Appendix C
ETRC file entries ... 261

Description of entries .. 261

Index .. 269

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

XII

ION PRELIMINARY

PRELIMINARY

PREFACE

Taligent Tools for AIX is a reference guide to the tools that Taligent engineers use
in everyday development work on the AIX® platform. Most of these tools were
developed specifically for building the Taligent Application Environment®

This guide has three parts:

Taligent Tools describes the tools in detail, and provides information about how to
use them both collectively and individually.

Test Frameworks covers the test frameworks that you use to test your programs.

SNiFF+ Guide is a user's guide to the SNiFF+ development environment.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

XIII

XIV PREFACE

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Chapter 1
Introduction

Chapter 2
The build environment

Chapter 3
Taligent build tools <. ... , 2 3

Chapter 4
CreateMake ... ~ .. 37

Chapter 5
Analysis tools .. 59

Chapter 6
Xcdb

ION PRELIMINARY

PRELIMINARY

CHAPTER 1

INTRODUCTION

Taligent Tools for AIX describes the Taligent development tools and how to use
them. Advanced Interactive Executive (AIX) This guide assumes that you are
running the C Shell (csh) which is the standard shell used for the Taligent build
environment. If you intend to use a different UNIX Shell, refer to the
documentation appropriate for that shell.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

5

6

ION PRELIMINARY

CHAPTER 2

THE BUILD ENVIRONMENT

The Taligent AIX build environment was designed to allow individual
contributors to efficiently accomplish their work, to allow full-system (or major
subsystem) builds-and to accomplish both in a similar fashion. Once you know
how to do the first, the second is easy. This chapter focuses on how you, the
individual contributor, use the build environment.

TALIGENT BUILD TERMINOLOGY

PRELIMINARY

Taligent uses these terms when describing the build environment:

w Build-run the necessary tools to generate client and executable files in the
proper order on any project or any project hierarchy. To accomplish this,
each project (or project hierarchy) must have its own makefile. See
"Makefiles" on page 9 for more information.

m Client files- headers and export files.

m Header files (.h files)-files containing your C++ class definitions.

m Export files (.e files)-files containing a list of all entry points in your shared
library. Your clients link against .e files and the runtime system binds the calls
to your shared library at run time.

m Binaries-executable programs or applications that use shared libraries
during execution.

w Shared libraries-Class libraries used by multiple programs are usually loaded
dynamically at runtime. To build a shared library, compile your source files,
generate your . e file, and link against other . e files. For building
applications, use MakeSharedL i b (see page 30 for more details).

w Executables-binaries or shared libraries. To build a program or executable,
compile your source files and link against .e files using MakeSharedApp. Your
source files must contain a main entry point. (See "MakeSharedApp" on
page 30 for more details.)

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

7

8 CHAPTER 2 THE BUILD ENVIRONMENT

THE BUILD PROCESS

THE BUILD PROCESS

The Taligent Application Environment is a big web of interdependencies. To
solve these interdependencies, the build process is occurs in four phases that first
build all client files, and then build all executables. This automated process
generates both client and executable files.

Exports all public header
files for clients

Compiles all .C files into .o
files

Combines all .o, and
generates .e files for
clients

Generates all shared
libraries and executables

The build process makes header files
(*.h) by copying them from the project
into a common directory where other
projects (clients) can access them

The build process makes export files
(*.e) by compiling •.c files, combining
them into one .o (or .a), and then using
Make Expo rt List to generate the .e
file (see "MakeExportList" on page 27)

NOTE For Taligent Operating System builds, files currently have different
extensions than those cited in the illustration: object files are *. i p, libraries are
. 1 i b, and export files are .. client. i p.

To automate the build process, use makefile descriptions to specify the files to
build, and use CreateMake to translate the makefile descriptions and to build the
files.

A CAUTION The current build tools do not test to see if your component,
application, or library has the same name as one used by the system. The build
process will automatically overwrite the Taligent file with yours if you have a
duplicate name.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

MAKEFILES

Makefile
description syntax

Target types

Library

Program

CHAPTER 2 THE BUILD ENVIRONMENT 9

The makefiles associated with each project are makefile descriptions, not standard
makefiles. During a build, Makeit calls CreateMake to translate the makefile
description to a standard-makefile. Ma kei t then calls make to analyze the
dependencies of the generated makefiles and update the project. Because
makefile descriptions are source code, you can check them in to SCM; but, do
not check in the generated makefiles. Makefile descriptions have filenames in
the form Project.PinkMake, where Project is the name of the project or directory.

MAKEFILES

~--------------~--~-~~-~----~-~~- Typeofrarget.

TypeOfTarget TargetName {
Label:

}

FileList
Label:

FileList

Name of the target

· -- ---···--------- Identifies the build topic, typically
Source, Link, or PublicHeaders

The files to process

Crea teMa ke generates different build rules for each type of target. Here are a few
common target descriptions

Generates rules to build a shared library.

common types
include Library,
Program,
ParentObject, and
SubProjectlist

Li bra r y W i d get Li b { Build WidgetLib, also generates Widget. e to allow

}

Source: other Widget.h files to link in.

Ab st ractWi dget · C WidgetLib is built from
Widget. C these two files

PublicHeaders:
Widget. h ---------·-------- ---------- Export Widget.h to allow other projects to use

Li n k : Widget objects
TestFrameworkLib
ToolboxLib ,'----·-----------------····--····- Specifically link with these files

Generates rules to build an application.

Program ShowWidget {
Source:

ShowWidget.C
}

•----------------·-------·------------· Use all system libraries because there
is no Link label

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

10 CHAPTER 2 THE BUILD ENVIRONMENT

MAKE IT

ParentObject

SubProjectlist

MAKE IT

Syntax

Generates rules to build and combine the source files. Frequently used to
combine several projects into one larger library.

ParentObject FooBarLib {
source:

Foo.C
Bar .C

publicheaders:

--- Generate Foobarlib.o to be
included in the build of another
library

Foo.h
Bar.h

,___________ Exported for clients

ParentObject targets do
not require a Link label
because they are not
linked

A special type of target that lists all the sub projects that you want to build; it does
not have a target name or any labels. Make it uses this list when traversing the
project hierarchy and only builds from those directories listed.

SubProjectlist {
SubProjl
SubProj2

>---------------------------- Build SubProject1 and SubProject2, but ignore SubProject3,
even though it is part of the project

}

Once your have a makefile description, use Make i t to build your project. Make it is
a specialized wrapper (or front end) to make. Ma kei t simplifies builds, provides
consistency, and has the ability to traverse project hierarchies and convert
makefile descriptions to real makefiles along the way.

Makeit [options] [Targets]

Ma kei t only has a few options. If you specify any other options, Ma kei t passes
them along to make. So in effect, Ma kei t has the same options as make. For
information about Makeit and its options, see "Makeit" on page 28.

If you omit options and targets, Makei t goes through each target in the build
process (Includes, Objects, Exports, and Binaries), and builds the necessary
dependencies. However, because Ma kei tis really a wrapper for make, it accepts
any legitimate target in a makefile.

Ma keit DemoApp

A common mistake is to build one target (like the previous example), and not
realize that Make i t is going to do a make on all subprojects of DemoApp-many
of which do not have a target DemoApp. To prevent Makeit from building
subprojects, include - c.

Makeit -c DemoApp

For more robust examples, see "Real life examples" on page i4.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Passing options
to make

Creating makefiles

Universal. Make

Other Global Targets

CHAPTER 2 THE BUILD ENVIRONMENT 11

Ma kei t passes any options it does not recognize. You can use this feature to pass
options to make. Make it passes arguments to options, and can override variables
in makefiles. For example, to override the COPTS variable in the makefile:

Makeit COPTS~-g Binaries

When Makei t builds a makefile on the fly, it does so because either

"" The *.Make file does not exist

n The *.PinkMake file is newer than the *.Make file, or

n The -M option forced automatic makefile generation.

Makei t uses CreateMake to translate the makefile descriptions(*. Pi nkMake) to
UNIX makefiles (*.Make).

To prevent duplication in each makefile, and to allow more flexibility, Crea teMa ke
includes Universal .Make in every generated makefile(* .Make).

Universal .Make contains global targets and rules. Some of the familiar global
targets are: Includes, Objects, Exports, and Binaries. Other targets are useful
because they are applied only to the projects in the build and not to every
directory in the hierarchy. For example you can have a subsystem that is checked
into SCM, but is not part of the build. These targets will not be applied to those
projects.

Global Target

Clean

Complete

Makefiles

Task

Remove all .o's, .e's, and libraries that were built.

Expand into the standard targets: Includes, Objects, Exports, and Binaries.

Allows you to traverse the directory and rebuild makefiles as needed.

The includes, objects, exports, binaries, and clean targets have lower-case
synonyms, so capitalization is not required.

MAKE IT

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

1 2 CHAPTER 2 THE BUILD ENVIRONMENT

ENVIRONMENT VARIABLES

ENVIRONMENT VARIABLES

The AIX build environment relies heavily on two types of environment variables:

Pathname environment variables contain pathnames that are specific to each user. All the
build tools and makefiles refer to the standard locations through environment
variables. This allows you to define the location of your working directories.
Hali gent Root, set by Setenv, is the basis for all other pathname variables. For
example, here are two pathnames as set by Setenv:

The{} bound variable ---setenv Tali gent Includes ${Tali gent Root} /Pi nkI ncl udes
references in shell scripts. setenv Tali gentExports ${Tali gentRoot} /Exports

Variable

LIBPATH

TaligentBinaries

TaligentDefaultHomePlace

TaligentExports

TaligentExtensionlncludes

Taligentlncludes

TaligentlncludesDir

Taligentlibs

TaligentPlacesRoot

TaligentRoot

TaligentSharedlibs

TaligentSystemDataRoot

TaligentTemporaries

TaligentUniversalMake

Path to

Taligent shared libraries used during runtime.

Taligent runtime binaries.

Repository for the current user's home place (Only one user
currently for the system.) The Workspace group will provide a
better object API for getting access to the current user and storage
areas related to that user in future releases.

Taligent shared library interface files that developers link with to
access Taligent shared libraries.

Directory containing interfaces to system extension developers.

Main Iii nc l udes directories used in Taligent builds.

Base parent directory of all Taligentl/i ncl udes (this is the parent
of $Taligentlncludes, $TaligentExtensionlncludes, and
$Taligent0 bsoletel ncl udes).

Directory for certain nonshared libraries.

Repository where Places for the machine reside.

The base of everything in the build and runtime system.

Taligent runtime shared libraries.

Repository for system data files. These are typically configuration
files, not first class user data such as movies, images, or sounds.

Repository for temporary files until people use real Pluto
temporary file support.

Universal.Make file used in build system.

TALIGENT TOOLS FORAIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Setenv

How to change
environment variables

When to change
environment variables

CHAPTER 2 THE BUILD ENVIRONMENT 13

ENVIRONMENT VARIABLES

Option environment variables contain the standard options to the standard tools that the
build uses. Having the options in an environment variable allows you to change
and experiment with certain options (like debugging options) without
disturbing others. Never add options to the compiler (or to any build tools) in
the makefile-use the environment variables instead.

Variable

CompileOptions

MakeSharedAppOptions

LinkOptions

Options to

xl c command line during builds as the options for building
Taligent code and default search paths to Taligent/h ncl udes.

Ma keSha red App as default options for building a Taligent shared
library.

xl clink command line during builds.

NOTE Occasionally a project requires a special option (such as working
around a compiler bug). For special cases when the project cannot build or will
not work unless it has a particular option, add the option to the makefile
description file (*.Pi nkMake). To add an compiler option, add the following line
to the*. Pi nkMa ke file:

compileoptions: -NewOptions

Setenv defines the standard values for all the environment variables that the
Taligent build environment requires. Always use Setenv to set the variables and
pathnames. If you need to change a variable, do so after running Setenv.

The easiest way to change an environment variable is to add to it. For example, in
a shell script, to add -D_MYDEBUG_ as an option to the compiler:

setenv CompileOptions "-D_MYDEBUG_ ${Compile0ptions}"

Ify?u frequently add the same option, put the setting in a startup file.

It is easy to change the environment variables to customize your environment,
but be careful not to get too carried away with additions. Remember, other
people need to build your project too; do not become dependent on a particular
- D you have defined in your environment variable. The system builds use the
default options as defined in the BuildOptions file.

Makefile varia/Jles
area common

alternative to
environment
variables, but are
disastrous in our
build environment.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

14 CHAPTER 2 THE BUILD ENVIRONMENT

REAL LIFE EXAMPLES

REAL LIFE EXAMPLES

A simple sample

How to create
SimpleSample

By now you should understand the organization of projects and have a
fundamental grasp of how the build works. This section ties together everything
you have learned by using several real life examples.

SimpkSample is similar to Kernighan and Ritchie's hello world program. This
program is ideal for demonstrating how to create, build, and execute an
application.

D Create a directory named Simpl eSampl e. You can create the directory
anywhere on your file system; in your home directory is probably best.

fJ Create a source file hel 1 o. C and enter:

#include <stdio.h>
void main()
{

printf("Hi there everybody!\n");
}

Use your favorite editor to create hello.C . For custom features that can
improve Emacs efficiency, see "" on page 97.

Bl Create a makefile description called Si mpl eSampl e. Pi nkMake and enter:

program SimpleSample {

}

source:
hello.C II A single source file

The name of the *. Pi n kMa ke file must be the same as the name of the
directory in which it resides. The example resides in .. ./Si mpl eSampl e.

D Build SimpleSample using Ma kei t without any options or targets (See the
section Makeit, "Default operation:" on page 22):

Make it

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

The build log

Makeit messages

2

3

The Includes phase

4

5

6

7

8

The Objects phase

9

10

11

12

13

The Exports phase

14

15

16

17

18

The Binaries Phase

19

20

21

22

23

The Copy phase

24

CHAPTER 2 THE BUILD ENVIRONMENT 15

REAL LIFE EXAMPLES

What follows is the build log; yours should look similar.

The first message is from Makeit stating that itdid not find Simpl eSampl e.Make in
the project. Therefore, Makei t built a makefile from Simpl eSampl e. Pi nkMake.
Line 3 is the CreateMake command that Makei tissued to create the makefile.

Makeit: No makefile found in '/home/EeeDee/SimpleSample'.
ftft# However one will be built from 'SimpleSample.PinkMake'.
CreateMake > SimpleSample.Make;

Since SimpleSample.PinkMake did not specify any public header files, Ma kei t did
not build any include files.

#Making "Includes" for "/home/EeeDee/SimpleSample" ...
#make -f SimpleSample.Make Includes
1t
make: Nothing to be done for 'Includes'.

Compiles hello.C to hello.o, and contains the make line that Ma kei t called.

1t
#Making "Objects" for "/home/EeeDee/SimpleSample" ...
#make -f SimpleSample.Make Objects

#Compile hello.C to produce hello.a

Did not build a shared library because SimpleSample did not build an export
file.

#Making "Exports" for "/home/EeeDee/SimpleSample" ...
#make -f SimpleSample.Make Exports
1t
make: 'Exports' is up to date.

Creates the executable application by calling Ma keSha redApp (as echoed from
make). For more information, see "MakeSharedApp" on page 41

#Making "Binaries" for "/home/EeeDee/SimpleSample" ...
#make -f SimpleSample.Make Binaries
1t
MakeSharedApp -L. -L/usr/lib/dce -o SimpleSample hello.a /home/EeeDee/work/Expo
rts/Runtimelib.e /home/EeeDee/work/Exports/Opixlib.e /home/EeeDee/work/Exports/T
oolboxlib.e /home/EeeDee/work/Exports/TimeLib.e /home/EeeDee/work/Exports/TestFr
ameworklib.e /home/EeeDee/work/Exports/HighlevelAlbert.e /home/EeeDee/work/Expo
rts/LowlevelAlbert.e /home/EeeDee/work/Exports/AlbertPixelBuffers.e

Copies the built application to $Tali gentBi nari es, the standard location for
executable files, and leaves a copy in the current directory.

SmartCopy SimpleSample /home/EeeDee/work/TaligentBinaries

PREl.IMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

I 6 CHAPTER 2 THE BUILD ENVIRONMENT

REAL LIFE EXAMPLES

How to execute
SimpleSample

A faster build

When the build completes, execute SimpleSample program by typing its name at
the UNIX prompt. It Should look like this:

% SimpleSample
OPIX compile timestamp =Jan 22 1994, 08:25:22
Hi there everybody!

---- The Taligent AIX Layer prints a time-stamp

when it runs an application.
%

A slightly faster and more efficient way to use Make it is to include the target
name. For example, change SimpleSample to use a Taligent object, and then
rebuild it.

D Change hello.C to look like this:

#include <Geometry.h>

void main()
{

TGRect unUsedRect(O, 1, 2, 4);
unUsedRect.PrintObject(); // Print coordinates

}

fJ Rebuild the application.

Makeit SimpleSample.

The build log looks similar to this:

If
#Making "SimpleSample" for "/home/EeeDee/SimpleSample" ...
#make -f SimpleSample.Make SimpleSample
If
#Compile hello.C to produce hello.a
MakeSharedApp -L. -L/usr/lib/dce -o SimpleSample hello.a /home/EeeDee/work/Expo
rts/Runtimelib.e /home/EeeDee/work/Exports/Opixlib.e /home/EeeDee/work/Exports/T
oolboxlib.e /home/EeeDee/work/Exports/Timelib.e /home/EeeDee/work/Exports/TestFr
ameworklib.e /home/EeeDee/work/Exports/HighlevelAlbert.e /home/EeeDee/work/Expo
rts/LowlevelAlbert.e /home/EeeDee/work/Exports/AlbertPixelBuffers.e

Running the new SimpleSample should print these results:

%SimpleSample
OPIX compile timestamp =Jan 22 1994, 08:25:22
TGRect (top= 1.000000, left - 0.000000, bottom= 4.000000, right 2.000000)
%

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 2 THE BUILD ENVIRONMENT 17

REAL LIFE EXAMPLES

A clean build To ensure a successful build, delete all the object files before you build a project
(or project hierarchy). Cl ea n instructs Makeit to delete the object files before
building the project.

A not-so-simple
makefile

Makeit Clean Complete

TuffyData is an application with several dependency files. This makefile
description for TuffyData (TuffyData. Pi nkMa ke) is typical of a Taligent
application.

II $Revision: 1.1 $
II Copyright (c) 1994 Taligent, Inc. All Rights Reserved.

Used by all compile ---- compil eopti on: -D_DEBUG_ -DUSE_FI LE_SEGS
commands.

Copy these make ~1 ~~:~~e!derDi r- .. I .• I AESIUE/Local Includes
commands into the
beginningofthe Localincludes ::

d k .1 test -d $(TestHeaderDi r) 11 mkdi r $(TestHeaderDi r)
generate ma ef1 e }

Directory of headers ---- 1oca1 headerdi r: $ (TestHeaderDi r)
to export.

Dependencies and -----<

makefile commands for
creating the runtime

library.

library CellModellib {
publicheaders:

Cell Model .h
CellModelView.h
CellSelectioninteractor.h

source:
Cell Model .C
CellModelView.C
CellSelections.C
CellModelCommands.C
CellSelectioninteractor.C

link:

}

GraphicDocumentLib
StandardDocumentlib
NewGraphicApplicationlib
BDFTestlib
CompoundDocumentLib
BasicDocumentlib
NewControlsLib
ConstructorArchiveLib
AlbertScreens
{Universallinklist}

PRE!.IMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

18 CHAPTER 2 THE BUILD ENVIRONMENT

REAL LIFE EXAMPLES

I binary CreateTuffyData {
I source:

Createmake ------i CreateTuffyData.C
dependencies for I l i n k :
TuffyData, and build a Ce 11Mode1 Lib

StandardDocumentlib
single executable with Graphi cDocumentL i b
these sources linkedin. NewGra phi cApp l i cation Lib

BDFTestL i b
CompoundDocumentLib
BasicDocumentlib
NewControlslib
ConstructorArchiveLib
AlbertScreens
{Universallinklist}

}

A simple * .PinkMake How do you determine which link files you need to specify in your *.Pin kMa ke
file? If you don't specify any link files, CreateMa ke links all library files. As you can
imagine, this is not economical. Currently, the only way to determine which link
files to include is by trial and error, and with a little help from Fi ndSymbol s.

Main application binary ···

Consider this makefile description called JustAVi ew. Pi nkMake.JustAView builds a
shared library and an application binary. To link all library files, create
JustAVi ew. Pi nkMake like this:

library JustAViewLib {
source:

MyView.C
}

...... r bi nary JustAVi ew {

I
I source:

Main.C
L.. }

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Adding link libraries

CHAPTER 2 THE BUILD ENVIRONMENT 19

REAL LIFE EXAMPLES

To determine which library files to link, include 1 ink: targets and specify
{Si mp 1 el i nkl i st} as the tag in each list. {Si mpl el in kli st} is a variable specifying
a minimal set of libraries that most applications require:

library JustAViewlib {
source:

MyView.C

Add link targets ---------r-- 1 i n k:
! {Simplelinklist}
! }
L._

binary JustAView
source:

Main.C

link:
JustAViewlib
{Si mp 1 el i n kl i st}

}

II Minimal set

II The JustAView library created above
II Minimal set

When you build the JustAView project, Ma kei twill list errors for undefined
symbols encountered when Ma keSha red lib executes. In the messages, look for
errors like these below the MakeSharedl i b command line:

MakeSharedlib -o JustAViewlib ...
ld: 0711-317 ERROR: Undefined symbol: .TGArea::-TGArea()
ld: 0711-317 ERROR: Undefined symbol: .TRGBColor::-TRGBColor()
ld: 0711-317 ERROR: Undefined symbol: .TGRect::-TGRect()
ld: 0711-317 ERROR: Undefined symbol: _vtt12TContentView

To find the library files in which these symbols are defined, use Fi ndSymbol s.
(The first time you run Fi ndSymbol s, it parses all library files and builds a
database file so that subsequent lookups execute quickly.) To perform a lookup,
run Fi ndSymbol sand specify the symbol exactly as it appears in the error listing.
The symbol name must be enclosed within apostrophes (single quotes).

FindSymbols '.TGArea::-TGArea()'

Which produces a listing like this:

TGArea::-TGArea():
HighlevelAlbert

This is the unique set of libraries identified:
link tag to add------- Hi ghlevelAl bert

This listing indicates that the symbol is in Hi ghlevel A 1 be rt. Add thatname as the
tag in the library's 1 ink: target. To look for multiple symbols at once, include
each as a separate argument on the F.i ndSymbo 1 s command line:

FindSymbols '.TRGBColor::-TRGBColor()' '.TGRect::-TGRect()' '_vtt12TContentView'

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

20 CHAPTER 2 THE BUILD ENVIRONMENT

REAL LIFE EXAMPLES

Which produces this listing:

TRGBColor::-TRGBColor():
LowLevelAlbert

TGRect: :-TGRect():
CommonAlbert
High.Level Albert
_vtt12TContentView:
NewGraphicApplicationlib

This is the unique set of libraries identified:
CommonAlbert
HighLevelAlbert
LowlevelAlbert
NewGraphicApplicationlib

Notice that TGRect: :-TGRect(): appears in CommonAlbert and HighlevelAlbert.
When you get multiple libraries, you probably need to include only one. Try one
and if you still get errors for the symbol, try the other. In a worst case, include
both. This example only needed Hi ghlevel Al be rt.

library JustAViewlib {
source:

MyView.C

1 ink:
Addlinktargets---------1[Hi ghlevelAl bert

LowlevelAlbert
NewGraphicApplicationlib
{Simplelinklist}

}

binary JustAView {
source:

Main.C

1 ink:
{Simplelinklist}

}

TALIGENT TOOLS FOR AIX

II Add
II Add
II Add

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 2 THE BUILD ENVIRONMENT 21

REAL LIFE EXAMPLES

Even if you lookup every symbol in the list, it probably won't be enough to build
completely, because the libraries might also require other libraries. When you
buildJustAView again, you get these errors:

MakeSharedlib ...
ld: 0711-317 ERROR: Undefined symbol: vtt5TView
ld: 0711-317 ERROR: Undefined symbol: .TView: :GetClassMetainformation()
ld: 0711-317 ERROR: Undefined symbol: .TEventSenderSurrogate::GetClassMetainformation()

Repeat the lookup and*. Pi nkMake modification until Ma keSha redl i b doesn't
return an error.

Once your build gets past MakeSharedL i b without error, you will probably find
Ma keSha redApp producing similar errors:

MakeSharedlib .. .
MakeSharedApp .. .

ld: 0711-317 ERROR: Undefined symbol: TView: :virtual-fn-table-ptr-table
ld: 0711-317 ERROR: Undefined symbol: .TView::GetClassMetainformation()
ld: 0711-317 ERROR: Undefined symbol: .TEventSenderSurrogate::GetClassMetainformation()
ld: 0711-317 ERROR: Undefined symbol: .TinputDevice::GetClassMetainformation()
ld: 0711-317 ERROR: Undefined symbol: .TViewRoot: :-TViewRoot()
ld: 0711-317 ERROR: Undefined symbol: .TViewRoot::TViewRoot(TRequestProcessor*)
ld: 0711-317 ERROR: Undefined symbol: .TViewRoot::AdoptChild(TView*)

Use FindSymbol s again, but this time, add the link: tags to the binary target.

library JustAViewLib {
source:

MyView.C

link:

}

ViewSystemLib
Inputlib
HighLevelAlbert
LowlevelAlbert
NewGraphicApplicationLib
{Simplelinklist}

binary JustAView
source:

Main.C

link:
Add link targets·--- ··--·---·----f ~~~:~~~~emL; b

I JustAVi ewL i b
{Simplelinklist}

}

Repeat the process until Ma kei t completes the build.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

22

ION PRELIMINARY

PRELIMINARY

CHAPTER 3

TALIGENT BUILD TOOLS

The Taligent build tools include tools and scripts that you run from the
command line, and tools and scripts that those tools call. While this chapter
documents how to run all of the Taligent build tools, there are some tools that
you should avoid and are so noted. In addition , some tools require you to log on
with super user access.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

23

24 CHAPTER 3 TALIGENT BUILD TOOLS

CREATEMAKE

CREATEMAKE

Installation

Syntax

Arguments

Usage

Makefile format

Examples

CreateMake reads a file Project.PinkMake and creates a UNIX makefile for
building the project. CreateMake writes the makefile to stdout; by convention,
you should redirect the output to Project.Make.

CreateMake is located in /usr/tal i gent/bin and requires no installation. Make
sure this directory is in your command search path.

CreateMake [sourcefile] [-fast] [-D define]_ [-I includePath]_
[-noum] [-vers] > outputfile

-D define Include the specified definition during processing.

-fast Preprocess the source files and create a single .c that/Ii ncl udes the source
files to build each target. this results in faster builds, but is notto be used for
final builds.

-I includePath Add the path to the /fi ncl ude directory search-list.

-noum Generate a makefile that does not rely on Universal.Make for processing.

outputfile The file containing the new makefile. If you omit outputfile, output goes to
stdout.

sourcefile

-vers

The input file to process is usually a * .PinkMake filename. If you omit sourcetile,
c rea teMa ke assumes the current directory name is the project. For example, if
the current directory is /TestL; b, the sourcetile is Testlib.PinkMake.

Echo the current version and copyright information to stderr. This is the same
header that appears at the top of created makefiles. If you use this option with no
other parameters, the information echoes and c rea teMa ke exits. Otherwise, the
information echoes and processing continues.

You do not usually call CreateMake directly; instead, you should use Makeit to
automatically invoke it (see "Makeit" on page 28). Make it executes CreateMake if
the makefile is out-of-date or missing.

CreateMake generates a standard AIX makefile whose content depends on the
targets in sourcefile. Each makefile supports the standard Taligent build steps
(Includes, Objects, Exports, and Binaries).

Simple projects require simple make commands. For example, to create a
makefile named Sample.Make which builds a target from the C source files in the
working directory:

CreateMake Sample.PinkMake > Sample.Make

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

FIND SYMBOLS

Syntax

Arguments

Usage

Example

CHAPTER 3 TALIGENT BUILD TOOLS 25

FINDSYMBOLS

Fi ndSymbo ls reports the shared libraries that contain the specified symbols.

FindSymbols

'symbol

'symbol' ... J

The mangled, demangled, or mixed-form symbol to locate. The argument
must be enclosed in single quotes (').

Use Fi ndSymbol s when MakeSha redL i b or Ma keSharedApp report unresolved
symbols, and you want to know which libraries you should add to the link list in
your*. Pin kMa ke file.

The first time you run Fi ndSymbo ls, it builds a cache file: Hali gentExport/
_A 11 Symbols. Subsequent runs consult that cache file. To rebuild or update the
file, delete it and rerun Fi ndSymbol s. When you install a new build,
Interiminstal l should delete the cache.

NOTE If Fi ndSymbol s can't locate a symbol that you are certain exists, the
symbol is probably an inline. There is no way to find inlines, because they are
compiled into client code, as opposed to being compiled into and exported from
a library for use by clients.

Because the implementation of an inline must be compiled with the header, you
should be able to find the inline declaration if you do enough searching: it will
either be hidden down near the bottom of the header, or in another file that is
an #include in the header (typically similar to "XXXXlmplementation. [ih]").

A compiler is free to not inline an inline if doing so would generate worse code.
This means that some symbols declared inline might not actually be inlined, and
so can wind up compiled into and exported from a library which-if not in the
*.Pi nkMake's link list-would lead to an unresolved symbol error.

You will typically use Fi ndSymbo ls to locate the library that caused an "Undefined
symbol" error when your build fails. For example, Ma kei t might list errors for
undefined symbols encountered when MakeSharedL i b executes. In the messages,
look for errors like these below the MakeSharedL i b command line:

MakeSharedLib -o JustAVi ewL i b ...
l d: 0711-317 ERROR: Undefined symbol : . TGArea: :-TGArea()
l d: 0711-317 ERROR: Undefined symbol : .TRGBColor::-TRGBColor()
l d: 0711-317 ERROR: Undefined symbol : .TGRect::-TGRect()
l d: 0711-317 ERROR: Undefined symbol : - vtt12TContentView

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

26 CHAPTER 3 TALIGENT BUILD TOOLS

FINDSYMBOLS

To find the library files in which these symbols are defined, run Fi ndSymbol s and
specify the symbol exactly as it appears in the error listing. The symbol name
must be enclosed within apostrophes (single quotes).

FindSymbols '.TGArea::-TGArea()'

Which produces a listing like this:

TGArea::-TGArea():
HighLevelAlbert

This is the unique set of libraries identified:
Linktagtoaddto ----- - HighlevelAlbert
your *.PinkMake

This listing indicates that the symbol is in HighLevelAl be rt.

To look for multiple symbols at once, include each as a separate argument on the
Fi ndSymbol s command line:

Fi ndSymbol s ' . TRGBCol or: :-TRGBCol or()' ' . TGRect: :-TGRect ()' '_vttl2TContentVi ew'

Which produces this listing:

TRGBColor::-TRGBColor():
LowLevelAlbert

TGRect::-TGRect():
CommonAlbert
HighLevelAlbert

vtt12TContentView:
NewGraphicApplicationlib

This is the unique set of libraries identified:
CommonAlbert
HighlevelAlbert
LowlevelAlbert
NewGraphicApplicationlib

Notice that TGRect: :~TGRect (): appears in CommonA 1 bert and High Level Al be rt.
When you get multiple libraries, you probably need to include only one. Try one
and if you still get errors for the symbol, try the other. In a worst case, include
both. This example only needed HighLevelAl be rt.

It's also possible to find symbols before using Ma kei t. To do so, you must take a
symbol from C++ code and put it into the canonical form used by the linker. This
isn't easy. Here are some rules for functions that work 80-90% of the time:

D Remove the return value.

fJ Preface the function with the ClassNamefollowed by"::".

ID Remove all argument names.

El Remove all whitespace, except:

e There should be exactly one blank after all con st keywords inside a
function's argument-parenthesis.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 3 TALIGENT BUILD TOOLS 27

IPCPURGE

Syntax

€) There should be exactly one blank after a function's closing')' and
before a canst keyword.

For example:

class TSomeClass
int SomeFunc(canst TSomeType* someArg,

TOtherType& otherArg) canst;

becomes:

TSomeClass: :SomeFunc(const TSomeType*,TOtherType&) canst

Complications creep in when one or more of the types involved are /fdefi ne's or
typedef's. In such cases, it's better to choose a different function.

With practice, you can get good at this technique, and can even find other kinds
of symbols (en urn's, for example). This may seem like a lot of work, but at least you
don't have to keep running the linker.

This technique is best when you have a program that is already compiled and
working, and you add some new functionality to it. Then you have a good idea of
what new symbols you've introduced, and what symbols to search for.

I PC Purge purges global shared interprocess resources (such as global semaphores
and shared segments) from memory. Usually IPCPurge is called from mop, which
is called from Stop Pink.

IPCPurge

A CAUTION I PC Purge causes running Taligent applications to end abnormally.

MAKEEXPORT LIST

Usage

Example

PRELIMINARY

MakeExportL i st generates an .e file from an .o file (which is a combination of one
or more xl C compiled .C files). Clients of a shared library link with the .e file,
which is a text list of all the symbols that the shared library provides.

CreateMake executes this command for you when you are building libraries. You
should not have to run it independently.

MakeExportlist -1 Sharedlib Mylib.o > Sharedlib.e

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

IPCPURGE

28 CHAPTER 3 TALIGENT BUILD TOOLS

MAKEIT

MAKE IT

Installation

Syntax

Arguments

Ma kei t is a wrapper (a front end) to make. Ma kei t simplifies the builds and
provides consistency. It has the ability to traverse project hierarchies and convert
makefile descriptions to real makefiles (by calling CreateMake).

Make It is located in /usr/tal i gent/bin and requires no installation. Make sure
this directory is in your command search path if Make It fails to run.

Ma kei t has only a few options; however, it passes all other options onto make. So in
effect, Ma kei t has the same options as make, plus its own options.

Makeit [options] [Targets]

Ma kei t passes any unrecognized arguments on to make.

-c

-D
-i

-fast

-M

-T
VAR= value

-vers

Targets

Do not build subprojects. By default, Ma kei t operates recursively on
subprojects from the bottom up, executing targets at every project it finds in a
subprojectO block.

Do not rebuild a make tile, even if it is out of date.

Do not stop when errors are encountered. This is passed on to make as - i.

CreateMake option; Makeit passes this option to CreateMake.

Force all makefiles to be rebuilt on the fly by calling c rea teMa ke even it files
are up-to-date.

Traverse the project tree, but do not build anything.

Assign value to the variable named VAR. Makei t passes this expression to
make to alter makefile variable usage.

Echo the current version and copyright information to stderr.

The targets to build. If you omit this option, Ma kei t builds each target i.n the
current project (Includes, Objects, Exports, and Binaries) and the necessary
dependencies. You can also specify complete to build the tour targets.

Makefiles is a special targetthat generates a new makefile, but does not build
anything. Use this tor debugging.

Makeit Makefiles

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Usage

Passing options to make

Creating makefiles

Universal.Make

CHAPTER 3 TALIGENT BUILD TOOLS 29

Go through each build process target (Includes, Objects, Exports, and Binaries)
and build the necessary dependencies.

Make it

To build DemoApp, and its subprojects:

Make it DemoApp

A common mistake is to tell Ma kei t to build one target (like the previous
example), and not realize that it will execute make Demo App on all subprojects­
many of which do not have a target DemoApp. To prevent Ma kei t from building
subprojects:

Makeit -c DemoApp

To require Ma kei t to execute only the Includes and Exports targets in each
directory.

Makeit Includes Exports

Makei t accepts (and passes) all options to make. You can use this feature to pass
options to make. For example if you want make to continue building even ifan
error occurs (- i option for make):

Makeit -i Objects

This works similarly for any make option. Ma kei tis smart enough to pass on any
arguments for options too. For example, you can override variables in makefiles
as you can with make. To override the COPTS (compiler options) variable in the
makefile:

Makeit COPTS=-g Binaries

Makei t can build makefiles on the fly. Make it rebuilds a makefile if:

n the *.Make file does not exist

n the *.PinkMake file is newer than the *.Make file

rn you specify -M to override the automatic makefile generation

Makeit uses CreateMake to translate the makefile descriptions (*.PinkMake) to
makefiles (*.Make).

To prevent duplication in each makefile, and to allow for more flexibility, Ma kei t
includes Universal.Make in every makefile (*.Make). Universal.Make contains
global targets and rules, such as Includes, Objects, Exports, and Binaries.

MAKE IT

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

30 CHAPTER 3 TALIGENT BUILD TOOLS

MAKESHAREDAPP

Other global targets

Capitalization ____ _,

is optional

In addition to the global targets previously mentioned, other global targets are
also useful because they are applied only to the projects in the build and not to
every directory in the hierarchy. For example you might have an entire
subsystem, that exists, has been checked into SCM, but is not part of the build.
These targets will not be applied to those projects:

Global Target

Clean

Complete

Makefiles

Task

Removes all .o and .e files, and libraries that were built.

Expands into the four standard targets: Includes, Objects, Exports,
and Binaries.

Allows you to traverse the directory and rebuild makefiles as needed.

MAKESHAREDAPP

Usage

Example

Ma keSha redApp builds executable applications or programs (it is a wrapper for an
xl C command with special options).

CreateMake generates this command for you when you build binaries or
programs (applications). You should not need to run it independently.

The following example builds the MyApp executable, and specifies two search
paths - L. (current directory) - L/us r/l i b/dce which will be searched in the order
specified to load shared libraries SharedLibl and SharedLib2. If SharedLibl and
SharedLib2 are not in these directories, the AIX runtime searches in the path
specified by LIBPATH.

MakeSharedApp -o MyApp AppMain.o Sharedlibl.e Sharedlib2.e -L. -L/usr/lib/dce

MAKES HARED LIB

Usage

Example

MakeSharedL ibis a wrapper to the AIX makeC++SharedL i b script, which combines
.o and .a files into a single shared library, and uses .e files to resolve external
symbols located in other shared libraries.

CreateMake generates this command for you when you are building libraries. You
should not have to run it independently.

To create a shared library named SharedLibl that uses the code in MyLib.o, and
resolves external symbols by looking in SharedLib2.e:

MakeSharedLib -p 6000 -o Sharedlibl Mylib.o Sharedlib2.e

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

MAKESOL

Syntax

Arguments

Usage

MOP

Syntax

CHAPTER 3 TALIGENT BUILD TOOLS 31
MAKESOL

Ma keSO L registers export-file libraries for Taligent Application Environment.

MakeSOL [-c I -t I -e pattern I -i pattern I -I files I -E files] [-a file] [-v]

-a file

-c
-e pattern

-E file

-i pattern

-I file

-t

-v

An additional file to register.

Detects linking against . e files that don't have corresponding library files.

Excludes files matching the pattern.

Excludes the files listed.

Includes files matching the pattern.

Includes the files listed.

Includes the test libraries. By default, they aren't included.

Lists-to s tdout-status messages and the files registered. If you omit this
option, only warning and error messages appear.

Use Make SOL to add new libraries; ones that aren't already in the build.

mop is a wrapper for I PC Purge. In addition to calling IPCPurge, it removes
temporary files created by the AIX implementation of ScreamPlus. You can run
Mop independently, but it is best to let Sta rt Pink or Stop Pink call it.

mop

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

32 CHAPTER 3 TALIGENT BUILD TOOLS

RuNDocuMENT

RuNDocuMENT
RunDocument creates, opens, or deletes a document that accesses a shared library
already running in the Taligent Application Environment workspace.

Syntax RunDocument [-c Class Sharedlib I -o [-s Mode J [-p Way J I -d J [DocumentName

Arguments

Usage

-c Class Sharedlib

-d

-o

-p Way

-s Mode

DocumentName

Creates a new document from the TAbstractDocumentStationery subclass
Class, which is defined in the shared library Sharedlib. Can be combined
with -o to open and create at the same time.

If DocumentNamealready exists, Run Document appends an integer <n>
to the name, where <n> is 2 or greater such that the name is unique.

Deletes DocumentName.

Opens DocumentName. Can be combined with -c to open and create at
the same time.

Specifies the task in which to open the document. Way can be:

0 =open in same task (default.).
1 = open in a new task.

Specifies the mode in which to open the document. Mode can be:

0 =examine store (default.).
1 =assume this is a basic document.
2 =assume this is a compound document.

The document created, opened, or deleted. If you omit DocumentName,
use "Untitled" as the default.

RunDocument prints, to stdout, one of these status codes:

0 No error.

1 Syntax error in arguments.

2 Stationery class not found.

3 Document not found.

4 Could not delete document.

5 Could not open document.

6 Could not determine document store type.

NOTE In SDKl, if you are running multiple instances ofRunDocument, two
of them can pick up the same document name. One will successfully create that
document, but the other will get an exception that causes a SIG I OT. Be sure to use
a unique name for each instance.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 3 TALIGENT BUILD TOOLS 33
SHAREDLIBCACHE

SHAREDLIBCACHE

Syntax

Arguments

Usage

SLIBCLEAN

Syntax

Usage

SharedL ibCache builds a cache of symbol addresses at the end of shared libraries
for fast subroutine lookup during TStream::Flatten and TStream::Resurrect.
Ma keSha red Lib uses Sha red Li bCache to cache the default constructors of
MCollectibles for resurrection.

SharedlibCache [-d sharedLib] [-da sharedLib] [-r sharedLib]

-d sharedLib

-da sharedLib

-r sharedLib

Create cache of symbols required for flatten/resurrect.

Create cache of all formal symbols (rarely used).

Display the contents of an existing cache.

Running strip on a shared library destroys its cache; rerun Sharedl i bCache to
rebuild the cache.

NOTE Sha red Li bCache is also called s 1 cache.

sl i bcl ean cleans up global semaphores and global variable space. (Run by
Stop Pink.)

slibclean

Run s 1 i be 1 ea n between running different versions of Taligent Application
Environment. The file /etc/sl i bcl ean should be owned by root and swi d.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

34 CHAPTER 3 TALIGENT BUILD TOOLS

SMARTCOPY

SMARTCOPY

Syntax

Arguments

START PINK

Syntax

Arguments

Usage

SmartCopy is a cp imitator that solves one specific problem: during the Includes
phase of the build, when header files are copied to Ha 1 i gent Includes, if a file
exists in $Ta 1 i gent Includes, and it is write protected, cp fails but Sma rtCopy does
not. Sma rtCopy performs one other important task: it preserves the modification
date to prevent unnecessary rebuilds. Sma rtCopy copies a file unless the target file
has exactly the same date and time, and the same size as the source file. This
should save you the time of copying the same file over itself, and is more certain
to copy a file that is truly different.

SmartCopy sourceFile_ destFile

destFile

sourceFile

The destination of the file being copied.

The file(s) to copy.

Sta rt Pink starts the TaligentAIX reference layer and several servers. The
remaining servers are started when they are needed (when you launch a Taligent
Application).

StartPink [-a applicationName] [-q] [-n [-s]]

-a applicationName Load and run the named application.

-n

-q

-s

Use merged servers. If you omit this option, Sta rt Pink uses non­
merged servers.

Merged servers give you a smaller memory footprint, faster start-up,
and better interactive performance, but less stability.

Do not load shared libraries.

Start merged servers as a one. If you omit this option, the merged
servers start in three groups. -s has no effect if you omit -n.

When the Sta rtPi n k script finishes, it displays a message, similar to this:

Welcome to the Taligent AIX Layer
Based from vl.Od29

Copyright (Cl 1993, 1994 Taligent, Inc.
All rights reserved.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

SToPPINK

Syntax

Usage

CHAPTER 3 TALIGENT BUILD TOOLS 35

Stop Pink safely takes down the Taligent AIX layer. StopPi nk seeks out and kills
the servers that StartPi nk started. It also runs mop and sl i bcl ean, see "mop" on
page 31.

Stop Pink

Stop Pink only kills system servers and applications, not applications that are
running. Always quit your applications before running Stop Pink.

StopPink

STOP PINK

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

PRELIMINARY

CHAPTER 4

CREATEMAKE

CreateMake generates* .Make files for use with the Taligent build system. This
chapter describes each of the targets, tags, and options that are available for
input into CreateMake. For information about using CreateMake, see "Makefiles"
on page g.

NOTE When building for Taligent Application Environment, references to
compile and link methods are referring to the IBM xl C compiler and linker.

Crea teMa ke is a Taligent AIX tool that evolved from a similar Macintosh tool
called CreatePinkMakeFi 1 e. CreateMake is faster and can perform more
operations than its predecessor. Also, CreateMake does not require external tools,
such as the old Ma keMake. CreateMake accepts most of its predecessor's keywords;
however, these keywords are not implemented:

asmopti on, depends on, exportcl i ent, exports amp 1 e, I SR, ma kema keopt ion,
opusbugtemplate, otherheaderdiG othersourcediG plinkclientoption,
pl in kl i bra ryopt ion, pl in kopti on, prelude, programdata, and resident.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

37

38 CHAPTER 4 CREATEMAKE

APPLICATION

Keyword categories

Path names

APPLICATION

There are four categories of CreateMake keywords:

Targets generate dependencies for a specific output target. All targets contain at
least one source file declaration with which to build the target. Targets can contain
various tags, but never other targets.

Tags are target specific identifiers for components within that target. Use tags
within targets to specify, for example, source and header files.

Variables are keywords used within the generated makefile to control various
options.

Customs are keywords that allow custom control over the generated makefile.
start and end are examples of custom keywords.

!fa file name contains a slash or starts with a variable, such as$(...), CreateMake
assumes that you have specified a complete file name. To interpret the name
literally, enclose the name in single quotes; that is, Crea teMa ke will not pre pend a
directory or append a suffix.

This is an obsolete target; use bi nary instead.

BINARIESSUBFOLDERDIR

Syntax

Argument

Example

This variable overrides the default destination for binaries built by the makefile
that CreateMake generates. The default directory is $TaligentBinaries.

binariessubfolderdir: directoryPath

directoryPath The path location to copy the built binaries to. This can be an explicit path or a
shell variable.

binariessubfolderdir: $(TaligentRoot)/MyBinaries:
library Mylibrary {
source:

Library.c
}

NOTE For Release A, this keyword is a synonym for subfol derdi r, the
directory identifier used by export{subfol der: }. In later releases, this variable
will work as described.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

BINARY

Syntax

Argument

Example

PRELIMINARY

CHAPTER 4 CREATEMAKE 39

This target creates dependencies for a Taligent application, generates all make

dependencies for creating a Taligent application, and builds an executable/
library pair with all sources in the library.

binary name {
}

BINARY

name The name of the target, and the name used as a prefix for makefile variables,
include lists, and dependencies.

An unsupported version of this target is available with the ubi nary keyword.
Unsupported targets are similar to supported targets, except that they are not
built in the normal build process (Ma kei t) and require the desired target to be
explicitly stated for the build to occur.

Produce a makefile for compiling the three source files, link them together with
standard Taligent libraries, and create a main program binary and a shared
library containing most of the code. Both of which contain the name "MyApp":

binary "MyApp" {
source:

}

main.c
TMyApp.c
TMyView.c

NOTE program is a synonym for bi nary.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

40 CHAPTER 4 CREATEMAKE

BUILD

BUILD

Syntax

Example

This tag is for specifying build rules that control a specific target, from within
that target. The lines following build must have the correct indentation; they are
copied directly into the generated makefile.

build:
"S(ObjDir)/Sample.op" : Sample.txt

${BuildHelp) Sample.txt -o target

libraryMySample {
source:

SampleStartup.c
Sampleindex.c

build:
S(ObjDir)/Sample.op" : Sample.txt

$(BuildHelp) Sample.txt -o target

link:
Sample.op

}

COMPILEOPTION

Syntax

Argument

Examples

This variable sets a local variable in the makefile that is used in any compile
commands executed.

compileoption: -d optjon

option Any option you want to pass on all compile command-lines generated.

Create a parent object that requires one source file. Pass_ WHATEVER_ to the
compiler when that source file is compiled:

compileoption: -d _WHATEVER_

parentobjects MyObject{
source:

HandleObject.c
}

NOTE cpl usopti on is a synonym for compi l eopti on that will soon be
eliminated. Change all occurrences of cpl usopti on to compi l eopti on.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 4 CREA TEMAKE 41

DEVELOPMENTOBJECT

DEVELOPMENTOB JECT

Syntax

Argument

Examples

END

Syntax

Argument

Example

PRELIMINARY

This target combines the specified source files into a library object, and copies
the result object file to $TaligentDevelopment.

developmentobject name
}

name The name of the target.

developmentobject "SampleObject" {
source:

}

Sampl elnput. c
SampleOutput.c

NOTE devel opmentobject is currently treated the same as object.

This custom target allows you to supply a block of make commands to copy into
the end of the generated makefile.

end
makeCommands

makeCommands Any valid makefile syntax. c rea teMa ke places this block directly into the
generated makefile; pay careful attention to indentations and syntax.

end
Foo Bar

/fbuild rules
}

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

42 CHAPTER 4 CREATEMAKE

EXPORT

EXPORT

Syntax

Argument

Example

A variable that specifies that files in your project be exported to various Taligent
directories.

export {
export Tags

}

export Tags Control which files are exported. Valid tags are: bi nary, client,
subfolder,program, data, script, server, library,testlibrary,
testdata, and script.

The example shows the destination of each of the supported tags.

export {
binary:

SampleExportBinary II to $(TaligentBinaries)
client:

SampleExportClient II to $(Taligentlibraries)
subfolder:

SampleExportSubfolder II to $(TaligentBinaries)/subfolder
program:

SampleExportProgram II to $(TaligentBinaries)
data:

SampleExportData
script:

SampleExportScript II to $(TaligentSamples)
server:

SampleExportServer II to $(0PD)/Servers:
library:

SampleExportExportLibrary II to $(0PD)/Sharedlibaries:
testlibrary:

SampleExportTestLibrary II to $ (OPD) /Sha redL i bra r.i es:
TestSharedLibaries:

testdata: II to $(TaligentTests)TestData:
SampleExportTestData

testscript: II to $(TaligentTests)TestScripts:
SampleExportTestScript

}

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

HEADER

Syntax

Argument

Examples

HEADERDIR

Syntax

Example

CHAPTER 4 CREATEMAKE 43

Header files listed after this tag specify an explicit dependency for the target.

header:
header Fi 7 es

headerFiles The header files on which the target is dependent.

library Mylibrary
source:

Libraryinit.c
LibraryIO.c

header:
$(CustomHeaders)Library.h

}

NOTE In Release A, header acts like publ icheader in that the specified files
are exported to $Taligentlncludes. header will act as described in future releases.

This tag specifies an alternate directory in which header files are stored. By
default, CreateMake generates makefiles with references to headers in the same
directory as the makefile. CreateMake passes the reference to the compiler.

headerdir:

headerdir: _/MyHeaders:

HEADER

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

44 CHAPTER 4 CREATEMAKE

HEAPSIZE

HEAP SIZE

Syntax

Argument

Example

LIBRARY

Syntax

Argument

Examples

LINK

Syntax

Argument

This target controls the allocated heap size of a built Taligent application.

heapsize: heapSizex

heapSize The size, in bytes, of the heap.

binary QECalc {
source:

Main.c
heapsize: 1000000
}

II 1,000,000 bytes

This target creates dependencies and makefile commands for creating an library
to be used in the Taligent runtime system.

library name {
}

name The name of the target.

library "Mylibrary" {
source:

}

Li brarylnit. c
LibraryIO.c

This tag specifies all files to link within a target.

1 ink:
linkFiles

linkFiles These files are linked with the listed source files and any other object listed in
the target. If you omit this tag, nothing is explicitly linked in, and
$Universallinklist is used.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Example

LOAD DUMP

Syntax

Argument

Example

CHAPTER 4 CREATEMAKE 45

This example produces a Taligent program (see "binary" on page 39) by linking
with the files Menulib and Windowlib, in that order.

binary MyProgram
source:

main.c
Testl.c

1 ink:

}

Menulib
Windowlib

This target creates build rules for creating a loaddump file with the specified
headers. All targets built in a*. Pi nkMake file will have dependencies on the
specified loaddump file.

loaddump 7oadDumpFi7ePath {
}

loadDumpFilePath The path of the loaddump file. If this file does not exist during the build's
objects phase, the build creates this file.

NOTE This syntax is not supported when building for Taligent Application
Environment until the AIX development environment supports loaddump files.

Create a loaddump file called MyProj ect. Dump in the directory pointed to by
$(Tali gentRoot)/Dumps: with the given header files included in it. The header
files must be valid files in $Taligentlncludes or $TaligentPrivatelncludes.

loaddump "$(TaligentRoot)/Dumps/MyProject.Dump" {

}

Application.h
Test.h
Format.h
Dialogs.h

LOAD DUMP

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

46 CHAPTER 4 CREATEMAKE

LOCAL

LOCAL

Syntax

LOCALHEADER

Syntax

Argument

Examples

See the description of "localheader."

l oca 1 :

This tag specifies header files to export to the local headerdi r header directory.

local header:
headerFiles

headerFiles The files to export to the local headerdi r directory.

Export the file Parents.h into a directory called :LocalHeaders:. If you omit the
tag local headerdi r, the file is copied to the current directory.

localheaderdir: ./LocalHeaders:

parentobject MyParentObj {
source:

Parentl.c
Parent3.c
Parent5.c

local header:
Parents.h

}

LOCALHEADERDIR

Syntax

Argument

Example

This variable specifies the directory in which to export header files for the target.

local headerdi r: localheaderPath

loca/HeaderPath The directory in which to export local headers. if you omit this variable, the
headers are copied into the same directory as the source files.

See the example for "localheader."

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

MAKE

Syntax

Argument

Examples

OBJECT (TAG)

Syntax

Argument

Example

CHAPTER 4 CREA TEMAKE 4 7

With this target you can specify you own build rules. Unlike start and end, the
make target can appear anywhere in the input, and you can have multiple make
blocks in the input.

make {
buildRules

}

build Rules

make {
Foo : Bar

Your own build rules.

/fbuild rules

This tag specifies a target's a dependency on object files that might be built
within another target or project.

object:
objectFi7es

objectfiles Link these object files in after any other files produced from specified source
files within the target.

Create a dependency for My Li bra r y on the file Li b IO. c . o, which is an existing
object from another target in the same project or another project. The explicit
path to the object file is not required.

library My Library {
source:

Main.c
object:

_/ObjectFiles:LibIO.c.o

MAKE

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

48 CHAPTER 4 CREATEMAKE

OBJECT (TARGET)

OBJECT (TARGET)

Syntax

Argument

Example

OBJECTDIR

Syntax

Argument

Example

This target combines files into a single library object for later use in another
target or project.

object name {
}

name The name of the target.

Combine three files into a single library object called MyObject, and copy it to
$0bjDir, if it is not the default.

object MyObject {
source:

}

MySample.c
MyOtherSample.c
MyExtraSample.c

This variable specifies the directory for compile output and link input (object
files) built within the current project.

objectdir: path

path The directory for all compile output and link input. If you omit this variable, the
build stores these files within the current project in the : Obj ectFi l es:
directory.

Change the directory for built objects to MyObj ects, one directory up in the tree.

objectdir: _/MyObjects:

NOTE In Release A, objectdi r does nothing. This will be fixed in a later
release.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 4 CREATEMAKE 49
PARENTOB JECT

PARENTOBJECT

Syntax

Argument

Examples

This target is similar to the object target. It combines the specified files into a
single library object, then it copies the built object into $ParentObjectDir as
specified by the parentobjectdi r variable.

parentobject name {
}

name The name of the target.

Create My Object from the compiled output of the three specified files, then copy
it to the $ParentObjectDir directory.

parentobject MyObject {
source:

MySource.c
MyMenus.c
MySample.c

NOTE In Release A, pa rentobj ect does not export the created object to the
parent directory. This will be fixed in a later release.

PARENTOBJECTDIR

Syntax

Argument

Examples

PRELIMINARY

This variable changes the default directory in which to copy objects built from
the pa rentobj ect target.

parentobjectdir: path

path The directory for pa rentobj ect targets. If you omit this variable, the target
copies the files to the Object Fi 1 es directory in the parent directory.

Use only paths based on the current directory or a known directory tree. Do
not use a declaration scoped to a specific user volume.

Change the destination of parentobject copies to the Object Fi 1 es directory in a
project called Sample in the parent directory.

parentobjetdir: _/Samples/ObjectFiles/

A CAUTION Do not depend on directories that can change in other projects. In
example, if the Samples *.Pin kMa ke file ever has a different $Obj Dir (set with
objectdi r), this declaration might copy the built object to the wrong place.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

50 CHAPTER 4 CREATEMAKE

PRIVATE

PRIVATE

Syntax

Argument

Examples

Use this tag within a target to specify a dependency on header files located locally
to the project.

private:
headerFiles

headerFiles The local header files for the project. If you omit a header file, the build
searches for the file in the local directory, then in $Taligentlncludes, followed
by $TaligentPrivatelncludes. When you include a header file, the build
searches in the local directory only.

parentobject MyObject {
source:

MySource.c
MyMenus.c
MySample.c

II Look for MyMenus.h locally, then in the other directories

private:

}

MySource.h
MySample.h

II In local directory only
II In local directory only

PRIVATEHEADERDIR

Syntax

Argument

Example

This variable points to a directory to search for header files not in the source
directory.

privateheaderdir: path

path An optional directory for the compiler to search for header files not in the
source directory.

Pri vateHeader. his not in the current directory. Without the reference to its
location, compiles cannot locate it if ma i n . c tries to include it.

privateheaderdir: -IPrivateHeaders:

library MyLibrary{
source:

main.c
header:

PrivateHeader.h II not in source directory
}

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PROGRAM

PUBLIC

Syntax

Argument

Examples

CHAPTER 4 CREATEMAKE 51

This is an obsolete target; use binary instead.

This tag specifies which target headers the pub 1 i c tag can export to
$Taligentlncludes.

public:
headerFiles

headerFiles The header files that can be exported.

Create a dependency for Myl i brary on the file Li bIO. as usual. During the build's
Includes phase, export this file to $Taligentlncludes.

library Mylibrary {
source:

main.c
LibIO.c

public:
LibIO.h

}

PROGRAM

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

52 CHAPTER 4 CREATEMAKE

SERVER

SERVER

Syntax

Argument

Examples

SOURCE

Syntax

Argument

Examples

This target creates dependencies for a Taligent application. All make
dependencies for creating a Taligent application will be generated for you. This
target builds a single executable with all sources linked in

server name {
}

name The name of the target, and the name used as a prefix for makefile variables,
include lists, and dependencies.

An unsupported version of this target is userver.

Produce a makefile for compiling the three source files, link them together with
standard Taligent libraries, and create a main program binary and a shared
library containing most of the code. Both of which contain the name "MyServer".

server "MyServer" {
source:

}

main.c
Server.c
ServerView.c

This tag specifies source files within targets. The order of the files in the list is the
order used to compile, link, and export.

source:
targets

targets

binary "My App" {
source:

}

main.c
TMyApp.c
TMyView.c

The target files.

TALIGENT TOOLS FORAIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

SOURCED IR

Syntax

Argument

Examples

START

Syntax

Argument

Examples

CHAPTER 4 CREATEMAKE 53

This variable specifies the directory to search for source files.

sourcedir: path

path The directory for source files. If you omit this variable, the build searches in
the same directory as the*. Make file.

Base this path name on the current directory; do not rely on specific volume
names or base directory paths-they can change from user to user.

Change the default location of source files to a directory called Source within the
current project.

sourcedir: /Source

This custom target allows you to supply a block of make commands to copy into
the beginning of the generated makefile.

start {
makeCommands

}

makeCommnds

start {
Foo : Bar

Any valid makefile syntax. CreateMake places this block directly in the
generated makefile; pay careful attention to indentations and syntax.

If build rules
}

SOURCEDIR

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

54 CHAPTER 4 CREATEMAKE

SUBFOLDER

SUBFOLDER

Syntax

Argument

Examples

SUBFOLDERDIR

Syntax

Argument

Examples

This tag identifies files within the export target to export to the $SubfolderDir
within $TaligentBinaries.

subfolder:
exportFiles

exportFiles The files to export.

Export to the specified files to /MySampl es/ within the $TaligentBinaries path.

subfolderdir: /MySamples

export {
subfolder:

}

MySampleStuff
MyOtherSampleStuff

This variable specifies the subfolder that is copied to from within an export
block.

subfolderdir: directory

directory The directory to receive export files.

See example for "subfolder."

NOTE In Release A, bi nari essubfol der is a synonym that acts the same as
subfol derdi r. In later releases, bi nari essubfol der will not be a synonym. See the
"binariessubfolderdir" on page 38 for more information.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

SUBPROJECT

Syntax

Argument

Examples

CHAPTER 4 CREATEMAKE 55
SUBPROJECT

This target specifies subprojects to be included when the build system recursively
builds directories. CreateMake places these subproject names in the
$SubProjectList variable in *.Make files.

subproject {
subProjects

}

subProjects The sub projects to build.

Generate the *.Make file with the three specified subproject/ directory names in
the $SubProjectList, and allow the build system to recursively execute the *.Make
files in each of these subprojects whenever a make is done on is project.

subproject {

}

FancyText
FancyDraw
FancyPri nt

TEST APPLICATION

Syntax

TESTLIBRARY

Syntax

This target is similar to the binary target, but only gets built if "Makeit testing
complete" is used. See "binary" on page 39 for more information.

testapplication name {
}

This target is similar to the l i bra ry target, but only gets built if "Makeit testing
complete" is used. See "library" on page 44 for more information.

testlibrary name {
}

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

56 CHAPTER 4 CREATEMAKE

TESTPARENTOB JECT

TESTPARENTOBJECT

Syntax

TESTSERVER

Syntax

TOOL

Syntax

This target is similar to the pa rentobj ect target, but only gets built if "Makeit
testing complete" is used. See "parentobject" on page 49 for more information.

testparentobject name {
}

This target is similar to the testserver target, but only gets built if "Makeit
testing complete" is used. See "testserver" on page 56 for more information.

testserver name {
}

This target is similar to the binary target. See "binary" on page 39 for more
information.

tool name {
}

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 4 CREATEMAKE 57
TRIMDEPENDENCIES

TRIMDEPENDENCIES

Syntax

Argument

Examples

PRELIMINARY

This target specifies header file paths to remove from the generated makefile.

trimdependencies
headerPaths

}

headerPaths The list of header file paths to remove from the generated makefile. If you omit
these paths, CreateMake includes the list of dependencies found in
$Taligentlncludes and $TaligentPrivateincludes

By default, CreateMake includes the list of dependent header files found in
$Taligentlncludes and $TaligentPrivateincludes. In most cases, these headers do
not change and the extra dependencies result in larger make files that take
longer to process. With tri mdependenci es, CreateMake removes any dependencies
found in the list of header files from the generated makefile.

Strip out any dependencies that begin with $Taligentlncludes or
$TaligentPrivatelncludes. You can do the same thing with any pathname,
although generally, you only need to do this with the Taligent public and private
includes.

trimdependencies{
$(Taligentincludes)
$(TaligentPrivateincludes)

}

A CAUTION Be careful when using this feature. If a Taligent header used by one of
your source files changes, that file will not be recompiled. You must manually
force the file to be recompiled.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

PRELIMINARY

CHAPTER 5

ANALYSIS TOOLS

The heap analysis tools are a set of applications and classes that allow you to
perform heap-related debugging and dynamic analysis operations. These tools
are classes that you instantiate and control dynamically, and that use
TMemoryHook to receive notification of allocations and deletions in a memory
heap.

The heap tools let you:

m Track block allocation to see who allocated each block (when it is possible to follow
call chains) through several levels of indirection.

m Categorize all heap blocks to determine the type of blocks in the heap (for
example, this block is a TStandardText).

11 Browse heaps to see all the blocks in the heap, with their size, type, who
allocated them, who deleted them, and so on.

n Record memory usage over time by recording the relative time of each allocation
and deletion for later analysis.

t Zap memory by filling uninitialized and deleted blocks with odd byte patterns to
catch bad pointer usage errors.

r; Detect heap corruption by automatically checking the heap for corruption at each
allocation and deletion.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

59

60 CHAPTER 5 ANALYSIS TOOLS

OVERVIEW

OVERVIEW

Trade offs

There are two basic modes of operation:

w Heap monitoring (the simplest operation) watches the heap at the event
level and records allocation and deletion events. This produces an ASCII text
file where each line in the file describes an event.

m Heap analysis gathers the same data as heap monitoring, but processes the
events further to produce annotated blocks within a model of the heap. It
also detects anomalies in heap usage. When it stops watching, the analyzer
writes a block-by-block description of the heap to an ASCII text file, where
each line in the file describes a block in the heap.

Heap Monitoring Heap Analysis

Reports each event in the heap. Keeps and reports data for blocks currently in
the heap or that were most recently deleted.

Reports more data, generates a larger data file. Reports less data, generates a smaller data file.

Runs slower. Runs faster.

Does not detect problems. Detects problems, such as double deletion.

To use the local heap tools, modify your code to instantiate a heap tool object­
either TLocalHeapMonitor or TLocalHeapAnalyzer. Once the object is
instantiated, monitoring or analysis starts. When you destroy the object (such as
if it goes out of scope) monitoring or analysis stops.

Consider a class called TLeaksLikeASieve, which leaks storage when its Leak()
method is called. The following code starts monitoring, calls the suspect method,
then automatically stops monitoring when the monitor object goes out of scope:

#include <LocalHeapMonitor.h> II for TLocalHeapMonitor
void main()
{

}

II Start monitoring; continue until object 'monitor' is destroyed.
TLocalHeapMonitor monitor;
TLeakslikeASieve leaker;
1 eaker. Leak();

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Tools

Limitations

CHAPTER 5 ANALYSIS TOOLS 61

Both the heap monitoring tools and the heap analysis tools are available as
remote (monitor a different team) or local (monitor the same team) .There is no
separate garbage finding tool. Garbage finding is available as a function of the
other tools.

TLocalHeapMonitor

TLocalHeapAnalyzer

heap monitoring

heap analysis

local team

local team

TLocalHeapMonitor and TLocalHeapAnalyzer have minimal dependencies.

The heap tools contain these limitations:

,, The heap analyzer currently keeps data for only the most recently deleted
heap block. As new blocks come in, old deleted block data is lost.

u The heap tools consider the heap to be one logical object. In reality, the
heap consists of two subheaps, the chunky and tree heaps.

OVERVIEW

TLocalHeapMonitor The TLocalHeapMonitor constructor has several options:

PRELIMINARY

enum EignoreOld { kReportOld - 0, kignoreOld = 1 };
enum EZapMemory { kDontZapMemory = 0, kZapMemory - 1 };

TLocalHeapMonitor(const char* outputFileName=O,
EignoreOld ignoreOld-kReportOld,
EZapMemory zapMemory=kDontZapMemory,
FrameCount depth=8,
TStandardMemoryHeap* whichHeap=O);

M OutputFileName specifies the name of the output file; the default is "heap_trace".

'* lgnoreOld, if set to kignoreOld, causes all blocks on the heap when monitoring
was started to be ignored. The default shows all such blocks.

n ZapMemory, if set to kZapMemory, causes the memory hook to fill blocks with
recognizable patterns for the purpose of debugging reference-before­
initialization and reference-after-deletion errors.

Uninitialized memory gets filled with the pattern OxDEAFBEED.

Deleted memory gets filled with the pattern OxFEEDDEAD.

M Depth is the maximum count of functions which the stack crawls will contain.
Increasing this option provides more data in some cases, but takes up more
memory and slows down the tool.

w Which Heap specifies which heap to monitor. If unspecified, the default heap is
monitored.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

62 CHAPTER 5 ANALYSIS TOOLS

OVERVIEW

TLocalHeapAnalyzer

Heap monitoring
file format

The TLocalHeapAnalyzer constructor has several options:

enum EignoreOld { kReportOld = 0, kignoreOld = 1 };
enum EOnlyGarbage { kAllBlocks - 0, kOnlyGarbage = 1 };
enum EZapMemory { kDontZapMemory = 0, kZapMemory = 1 };

TLocalHeapAnalyzer(const char* outputFileName=O,
EignoreOld ignoreOld = kReportOld,
EOnlyGarbage onlyGarbage = kAllBlocks,
EZapMemory zapMemory = kDontZapMemory,
FrameCount depth=8,
TStandardMemoryHeap* whichHeap~O);

ITT OutputfileName specifies the output file name; the default is "heap_analysis".

m OnlyGarbage, if set to kOnlyGarbage, causes the analyzer to list only blocks
which were allocated, but not deleted. The default lists all blocks in the heap.

All other options are the same as those for TLocalHeapMonitor.

In heap monitoring output files, each line describes an event that indicates that:

M A block was allocated.

ITT A block was deleted.

ITT A block was already in the heap when monitoring was begun.

m The heap was corrupted.

Here is an example of each type of event:

Thread
2-22982
2-22982
0-0

Time of event
759537687555872
759537687558595
old

Address
Oxb2362718
Oxb2362950
Oxb24020d0

Size
del
12
48

Type
Titerator
novtbl
TLocalSemaphore

Stack crawl
TArrayiterator ...
THybri dNumber ...

Thread-the identifier for the thread that called new() or delete(). For old blocks,
this field is 0- 0.

Time of event-the time, in microseconds, of the event. Use this value to determine
the order of events and to compute the time between events, such as to find the
age of a block at deletion. For blocks already on the heap when monitoring
starts, this field is old.

Address-the address of the first byte of the block.

Size-the size of the block in bytes. If this is a deletion event, the size field is de 1.

Type-the type of the block, for blocks that represent C++ objects. If the v-table
pointer is NIL, this field is novtb 1. If the v-table pointer is non-NIL, but it cannot
be followed to a valid destructor, this field is notype. Note that only deletion
events and pre-existing block events can have type information. Allocation events
are always novtb 1 because the constructor, if any, has not been called yet.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Heap analysis
file format

PRELIMINARY

CHAPTER 5 ANALYSIS TOOLS 63

Stack crawl-the function that called new () or delete () . For old blocks, this field is
empty. The stack crawl consists of several function names, separated by 'I'
characters. The first function name is the innermost. It was called by the next
function name, and so forth. In the example, the stack crawls have been
abbreviated. A full stack crawl looks like this:

OVERVIEW

TArrayiterator::-TArrayiteratorC)JTHybridNumerals: :AddFormattingPairAbsolutely(unsigned
short,long)JTHybridNumerals::AddFormattingPair(unsigned
short,long)ITHybridNumerals::CreateStandardHexNumerals()ITTieredTextBuffer::NumberFormat
ClJTTieredTextBuffer::operator<<Cconst long)JTTieredTextBuffer::operator<<(const
int)JTLocalHeapMonitorTest::ShowMem(void*,long)

Heap analysis output files have two sections: the anomaly section and the heap
dump. In the anomaly section, any anomalies which were detected are described.
See"Dynamic error detection" on page 65 for explanations of the anomalies that
can be detected.

In the heap dump section, each line describes a block in the heap. By default, it
displays all blocks of the heap. You can also specify to ignore old blocks, or to
show only undeleted blocks. Use the latter for finding storage leaks. See
"TLocalHeapAnalyzer" on page 62 for more information.

Address Size
Oxb0c496b4 1028

Type
TFoo

Age
285198

Allocation

Thread Time
2-22981 759 ...

Address-the address of the first byte of the block.

Size-the size of the block.

Stack
Tlocal...

Deletion

Thread Stack
notask nochain

Type-the type of the block. If the v-table pointer is NIL, this field is novtb l. If the
v-table pointer is non-NIL, but it cannot be followed to a valid destructor, this
field is notype. Note that only deletion events and pre-existing block events can
have type information. Allocation events are always novtbl because the
constructor, if any, has not been called yet.

Age-the block in microseconds. If the block has been deleted, this is the age of
the block when it was deleted.

Allocation thread-the thread that allocated this block.

Allocation time-the time of the allocation, in microseconds. Use this to determine
the order in which blocks were allocated.

Allocation stack crawl-the function that allocated this block.

Deletion thread-the thread that deleted this block, or not ask if the block has not
been deleted.

Deletion stack crawl-the function that deleted this block, or nocha in if the block has
not been deleted.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

64 CHAPTER 5 ANALYSIS TOOLS

OVERVIEW

Heap corruption

Debugging heap
corruption

AIX notes

Both the heap analyzer and the heap monitor detect heap corruption by calling
TMemoryHeap::Check after each allocation event and before each deletion
event. When the heap is found to be corrupt, the tool writes a message similar to
the following to the output file and echoes it to the console. In heap monitor
output files, an asterisk (*) precedes each subsequent line to indicate that the
corrupt heap.

Tree heap corrupt with error 5. ***

See Privateincludes/TreeHeapExceptions.h for enums.

The message states that either the tree heap or the chunky heap is corrupt, and it
specifies an error number. This number is the return value of the Reason()
method in the TChunkyHeapCorrupted or TTreeHeapCorrupted exception
object. To determine its meaning, refer to TreeHeapExceptions.h or
ChunkyHeapExceptions.h in the Pri vateincl udes directory.

If you have a heap corruption bug, use a heap monitor to debug it. Although the
heap analyzer also notifies you of heap corruption, it does not help you pinpoint
the problem. The heap monitor shows the pattern of allocations and deletions
leading up to the corruption.

In order to debug the corruption, examine the event before the corruption
message. If the message that the heap is corrupt occurs before any other events,
you must start monitoring earlier. Starting with the code indicated by the
preceding event's stack crawl, trace forward until you find the corruption. You
can either read the source code or step in a debugger. The bug will usually
involve violating array boundaries or misusing pointers. If you see another heap
event (allocation or deletion), backup; you have gone too far.

On AIX, the heap tools trigger and catch segment violation signals (SIGSEGV)
during the dynamic typing of blocks. Usually this will be invisible to you.
However, if you run the heap tools under a debugger, it will trap the signal
SIGSEGV, and you will enter the debugger that is executing the heap tool code.
To avoid this, tell the debugger to ignore the signal 11, SIGSEGV. For example,
in the shell, use

xdb - i 11 Foo &

where Foo is your program's name. Within dbx, use:

ignore 11

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 5 ANALYSIS TOOLS 65
DYNAMIC ANALYSIS

DYNAMIC ANALYSIS

Dynamic typing

Dynamic error
detection

In processing block events, the heap tools analyze incoming data in many ways.

The heap tools attempt to determine the type of blocks in the heap (the class
they instantiate). For raw block events, all allocation events have no type
information because they represent unconstructed objects. Many blocks cannot
be typed.

Dynamic error detection, or discipline, is the programmatic detection of errors in
either the heap code itself, or calls to the heap indirectly through operators new
and delete.

The heap model has several varieties of discipline are built into it:

Bad address deletion-the detection of addresses that do not correspond to allocated
blocks in the heap. A subset of this is double deletion detection. Therefore, these
two anomalies are detected by the same class in an either-or fashion.

Double deletion detection-the detection of two deletions of the same block. This is
complicated by the fact that the heap allocates blocks to the same address once
that address is free. The tool tracks old blocks that have been deleted. When a
delete of the wrong type or is unmatched by a corresponding new occurs, it is an
error.

Non-unique allocate return values-according to the The Annotated C++ Reference Manual
(by Ellis and Stroustrup), operator new must return unique values (until such
blocks are deleted). The toll checks this by verifying new allocations against live
blocks in the existing block map.

Heap corruption-detected by calling TMemoryHeap::Check at each allocation and
deletion.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

66

ION PRELIMINARY

PRELIMINARY

CHAPTER 6

XCDB

Xcdb is a graphically oriented symbolic debugger for C, C++, and FORTRAN
programs running under AIX Version 3, Release 2 (and later). It is a standalone
program, not a windowed front-end to dbx. Xcdb has the breakpointing, stepping,
and traceback capabilities common to most debuggers, but particular attention
has been paid to presentation and ease of use. Xcdb understands the name
mangling schemes used by xl C for typesafe linkage. It can display C++ class
objects, display and set breakpoints in template instantiations, and display the
internal contents of virtual function tables.

Xcdb runs under the XI 1 Release 4 (and later) windowing system and makes full
use of X capabilities. Since Xcdb runs in a separate X window from the program
being debugged, each has unrestricted use of the screen, mouse, and keyboard.
The debugger is mouse driven, meaning that most interactions are performed by
positioning the mouse over an appropriate screen location and clicking a key or
button. Xcdb requires little or no typing.

With Xcdb, you can:

w Inspect the local environment of any function in the call chain and display
the format (signed, unsigned, hex, etc.) of any individual variable

L Expand aggregate objects (cl asses, structs, unions, and arrays) to reveal
arbitrary levels of detail

m Tailor window layout to your preferences by making appropriate entries in
your . Xdefaults file

w Dereference pointers to reveal pointed-to objects

rn Obtain the type, size, and address of any object

m Call upon C++ class instances to display themselves

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

68 CHAPTER 6 XCDB

The pointing hand
icon marks the
source line
corresponding to
the current

When Xcdb traps a program interruption, either planned (by setting breakpoints)
or unplanned (due to program exceptions or external signals), Xcdb makes the
program state available for inspection. The display includes window panes for:

m A traceback of uncompleted function calls

m A view of the source code for the current function, positioned at the current
line

m A view of variables defined in the scope of the current function

rn A view of variables defined outside the scope of any function

If the program interruption is of a type that allows execution to be continued,
then you can resume program execution, perhaps after setting or clearing
breakpoints. You can either ignore the signal that caused the interruption or pass
it to the program.

Here is a typical display following a program exception.

instruction. -------

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

An iconized
window.
Left-click the
icon to convert
it to a normal
window.
Left-click the
title bar to
convert it to an
icon.

PRELIMINARY

..
More detail
Less detail
Format as ...

CHAPTER 6 XCDB 69
SETUP

Activate this menu, ---­
by left-clicking the "x". . .. bits

... string·

SETUP

Installation

PRELIMINARY

111111111111-· ··array ..• pointer

~int zz = 123;

subr(x)
,, char *X; ,___.,,.__

v {
111\!'"*X = ZZ;

}

... address

.•. type

.•. size

... default
Select subrange
Change value
Change type
Set mark
Use mark

You must be running XI I Release 4 or later, with a graphics display and mouse.

Use two displays if you will be debugging programs that create virtual hft
terminals (graPHIGS programs, for example). One display should be used for X
and the other for the application program.

Download xcdb6000. tarbin as a binary file, and process itwith the tar. For
example, if you have xcdb6000. ta rbi n and in /tmp, use the following commands
to extract the tarfile contents into /usr/bi n:

SU
cd /usr/bin
tar xvf /tmp/xcdb6000.tarbin

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

become super user
go to destination directory
extract contents (Xcdb)
#now click Ctrl-d to become normal user again

TALIGENT TOOLS FOR AIX

70 CHAPTER 6 XCDB

RUNNING

Xcdb lays out its window panes according to a predefined format. The layout is
scaled to fit the window size specified by your. Xdefaults file, by a command line
parameter, or by the window manager. "Customization" on page 86 describes
how you can change the layout (and colors) to your preferences.

Signals To be able to interrupt your program or Xcdb asynchronously from the keyboard,
define appropriate signal keys using stty. This document assumes that Ctrl-c
generates an INTR signal and that Ctrl-\ generates a QUIT signal. These are the
default values on AIX systems.

Compiling Compile and link the program to be debugged with the -g option in order to
make the necessary symbolic information available. Do not use -0 with -g. Xcdb

cannot reliably debug the resulting program due to code and register motions
introduced by the compiler's optimizations.

RUNNING

Arguments

xcdb [-geometry WxH+X+Y]
[-font fontname]
[-title title]
[-bw]
[-wb]
[-I dirname]
[-a pi d]
[-r funcname]
[-e numelts]
[-c numcalls]
[-d numdeta ii s]
[-b numbreaks]
[-i signo]
[-f fetcher]
[-1]
[-q]
[-v]
[-n]
[-p]
program [args ...]

-geometry WxH+X+Y A window size and position, overriding the specification in . Xdefaul ts (if any).

-font fontname The name of a font, overriding the specification in . Xdefaul ts (if any).

-title title

-bw

-wb

A title to place on the window border.

Use a black on white color scheme.

Use a white on black color scheme.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

-r dirname

-a pid

-r funcname

-e numelts

-c numcalls

-d numdetails

-b numbreaks

-i signo

-f fetcher

-I

-q

-v
-n

-p

program

args

CHAPTER 6 XCDB 71

RUNNING

A directory to search for source files which cannot be found in the current
directory (multiple - r flags are cumulative; up to 50 directories will be searched
in the order listed). You can also specify the search path after Xcdb is running:
see "Preferences" on page 84.

The ID of an existing process to attach to, instead of starting a new process.

Specifies how far to run the program's initialization routines. Normally the
program runs to the symbol main, the standard starting point for C programs. To
stop at some other function, specify its name. For example, to stop at the
program's first instruction, specify -r \verb,_, start.
To stop at the function which initializes C++ static objects, specify
-r \verb,_,C\verb,_,runtime\verb,_,startup.

The maximum count of elements to display for any array (default is 1000).

The maximum count of functions to display in the function call traceback (default
is 20).

The count of detail levels to add (or remove) when More(or Less) detail is
selected from a data object formatting menu.

The maximum count of breakpoints that can be set simultaneously (default is 50).

The number of a signal to ignore and pass to the program (multiple -i flags are
cumulative).

The name of a program to call when the debugger needs to display a source file
that it cannot find in the regular unix file system. The debugger invokes the
program, passes it the name of the desired file as a command line argument, and
display its output in the Listing window pane. Use this feature if, for example,
your source files are kept in an SCCS or RCS database.

Write window layout information to a file named sampl e-1 ayout when the
debugger exits. You can then copy this file into your . Xdefa ul ts file where it
will be read when you next run the debugger. See "Customization" on page 86.

Run quietly, only revealing the debugger if the program being debugged stops
due to a signal or runtime exception.

Run verbosely, print status information and commentary while running.

Do not include shared object file symbols when loading the program. For large
shared libraries, this option can significantly speed up the debugger and reduce
the amount of virtual memory used.

Ignore compiler-generated filename qualifiers appearing in the program symbol
table. This allows source files to be found (by searching the directories specified
with - r) even if they were moved after the executable was generated.

The name of the program to execute.

Arguments to be pass to the program.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

72 CHAPTER 6 XCDB

RUNNING

Example

Program starting

Program interrupting

Program terminating

Xcdb exit codes

xcdb -I/u/derek/myproject -e2000 -c20 -il4 -i30 stuff one two three

invokes Xcdb and:

m Runs the program stuff with arguments "one two three"

n Looks for source files in either the current directory or the directory
/u/derek/myproject

M Displays up to 2000 elements for any array

'" Displays up to 20 functions in the Callers window pane

g Ignores signals 14 (SIGALRM) and 30 (SIGUSRl), passing them directly to
the program without stopping

To start a program running, left-click the Run command.

To interrupt a running program and return to the debugger, point the mouse to
the window from which the program was invoked and press Ctrl-c.

To resume execution, left-click the Run command.

To exit the debugger, left-click the Exit command.

You can also terminate the debugger and executing program by pressing Ctrl-\
on the xterm window from which you invoked the debugger. Do this only if both
the debugger and the program are unresponsive to keyboard input.

The exit code Xcdb returns to the operating system is determined as follows:

n If the program terminated normally, Xcdb returns the value passed by the
program to its ex i t () function.

2 If the program terminated due to an exception, Xcdb returns 255.

M If Xcdb terminated abnormally, then a value of 1 is returned.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 6 XcDB 73
WINDOW ORGANIZATION

WINDOW ORGANIZATION

Xcdb has these windows.:

Listing Displays the source code for the function selected in the Callers or Functions
windows, the file selected in the Files window, or a breakpoint selected in the
Breakpoints window. The window's title indicates the file's name.

Locals

Non Locals

Callers

Functions

Files

Breakpoints

Command

Messages

Set or clear a breakpoint by clicking on the line to affect. If the source file was used
to generate code multiple times (as for functions generated from a C++ template
file or an out of lined inline), a menu prompts you to choose the function instance
to breakpoint.

Displays variables defined in the scope of the function selected in the Callers
window. Click on a value in this window to activates a display-format menu (see
"Format Control" on page 76).

Displays variables defined outside the scope of any function (this includes static
C++ class members), grouped by translation unit. Click on a value in this window
to activates a display-format menu (see "Format Control" on page 76).

Displays a traceback of suspended function activations (most recent at top). Click
on a function name to display the source code for that function in the Listing
window and to display its local variables in the Locals window.

Displays the names of the functions comprising the program. Click on a name to
display the source code for that function in the Listing window.

Displays the names of the source files comprising the program. Click on a name to
display the source code for that function in the Listing window.

Displays a list of breakpoints currently set. Click on a breakpoint to display the
source code for that breakpoint in the Listing window. Lines with breakpoints are
marked with stop sign icons.

Displays the commands which can be used to control the debugger. Click on
command to execute it.

This window pane displays messages from time to time. It is invisible unless there
is a message to see.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

7 4 CHAPTER 6 XCDB

WINDOW MANIPULATION

WINDOW MANIPULATION

Lett button

Right button

Window and mouse clicks display and control all aspects of the debugger.

The left button manipulates the contents of a window. To scroll a window, drag the
contents; the contents scroll in a direction and amount proportional to the
motion of the mouse.

Title bar

End of a scroll bar

Middle of a scroll bar

Brings up a menu:

Move Changes the window's position

Resize

Lower

Minimize

Normalize

Maximize

Horizontal S.B

Vertical S.B.

Changes the window's size

Pushes the window down

Reduces the window to an icon

Restores the window's original size

Enlargse the window to fit the application window

Togglse horizontal scrollbars on or off

Toggles vertical scrollbars on or off

Scrolls the contents one line or column (fast click) or one page (slow click)1.

Sets the window to an absolute position on the contents (position is
proportional to the distance of the mouse from the end of the scrollbar).

1 A fast click is made by pressing and releasing the button in under 1/4 second; anything else is a slow click.

The right mouse button changes the shape, position, or visibility of a window.

Center of window

Corner or edge of window

To drag the window to a new position.

Right-click without moving the mouse pushes the window
beneath any other windows it might have been obscuring.

To resize the window.

TALIGENT TOOLS FORAIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Keys

CHAPTER 6 XCDB 75
EXECUTION CONTROL

Keys navigate through the window, and execute searches.

Enter

Arrow

Page-up

Page-down

Home

End

:nnn

/XXXX

\XXXX

Makes a selection; same as left-click.

Moves cursor, scrolling the window if necessary.

Scrolls window back.

Scrolls window forward.

Moves cursor to first column of window.

Moves cursor to last column of window.

Moves cursor to line number nnn (but not past end of file).

Search forward to next occurrence of the string XXXX; omit the XXXXto repeat
search from current position.

Moves cursor backward to preceding occurrence of XXXX; omit the XXXXto
repeat search from current position.

EXECUTION CONTROL

Commands

Issue commands by left-clicking on an item in the Commands window to bring
up the Commands menu.

Run

Line step

Call step

Return step

Signal

Executes the program until a breakpoint is encountered or a signal is received.

Executes the program until a breakpoint is encountered, a signal is received, or
control passes to a new line of source code. Executes functions called by the
current line without stopping.

Executes the program until a breakpoint is encountered, a signal is received,
control passes to a new line of source code, or a function call is made.1

Executes the program until a breakpoint is encountered, a signal is received, or
control returns to the caller of the current function.

Resumes execution at the current instruction, passing whatever signal caused the
interruption back to the program. Any signal sent to the program interrupts
execution and returns control to the debugger. Signals can arise from:

A signal key (Ctrl-c, for example) clicked in the controlling terminal's window. You
probably want the program to ignore the signal and so would resume execution
with the Run command.

A signal received in an alarm() or wait() system call. You probably want the program
to process the signal and so would resume execution with the Signal command.

A signal generated by a runtime exception. Execution cannot continue, but the
debugger can still inspect the environment that caused the exception. Re-execute
the program with the Res ta rt command.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

76 CHAPTER 6 XcDB

FORMAT CONTROL

Edit

Restart

Exit

Preferences

Invokes an editor on the file in the Listing window. Specifies the editor with
xcdb. Edit in your. Xdefaul ts. Use %sand %d symbols for filename and line
number, respectively. For example, to invoke vi:

xcdb.Edit: (xterm =+0-0 -n Vi -e vi +%d %s &)

To invoke emacs:

xcdb.Edit: (emacs '+%d' '%s' &)

To invoke v:
xcdb.Edit: (v -1 %d %s &)

Terminates the program, reloads it, and sets its execution point back to the
beginning; all breakpoints and data format selections remain unchanged. If st din
is a file, it is rewound to start-of-file.

If the debugger was attached to a process using -a, then the process is allowed to
resume execution (if you want the process to die, you must use ki 11 -9 from an
xterm window-there's no explicit command to do this from Xcdb); otherwise, the
process terminates and the debugger returns to the operating system.

A menu prompts adjustments for Xcdb's behavior. See"Preferences" on page 84.

1 Call stepping into a kernel function is not possible (because there's no way to set a breakpoint-the text
segment is read only). Xcdb handles this by running the program until the kernel function returns to the
point of call.

FORMAT CONTROL

You can reformat objects in the Locals and NonLocals windows in a variety of
ways, depending on their type.

Point the cursor to an object's name or value and left-click to invoke a menu.

Point the cursor to a menu selection and click again to reformat the object as specified.

Click outside the menu (or on its title bar) to close the menu without making a change,
and leave the object's format unchanged.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Common Formats

CHAPTER 6 XcDB 77
FORMAT CONTROL

All objects share a common subset of formatting options.

Default

Address of

Type of

Size of

Save

Recall

Edit

Displays the object's value in a representation appropriate to its type:

char A singly quoted letter: 'a'

int

unsigned

fl oat

en urn

function

class, struct,or
union

array

pointer

A signed integer: -123

An unsigned integer: 4294967173

A floating point number: 1.23

An enumerator name.

A function name.

A class name (or a member list, see "class, struct,
and union formatting" on page 79).

The word "array" (or an element list, see "Array
formatting" on page 80).

The word "ptr" (or a pointed-to object, see "Pointer
formatting" on page 83).

Displays the object's memory address.

Displays the object's type.

Displays the object's size.

Remembers the object's display format for later reference by Recall.

Changes the object's display format to match that of the object most recently
referenced by Save.

Edits the object's value.

Type-specific Formats Type-specific formatting options are also available.

Integer Character Letter format: 'a'

Signed Signed integer format: -123

Unsigned Unsigned integer format: 4294967173

Octal Octal format: 0177

Hex Hex format: Ox7f

Float decimal "f" format

Scientific "e" format

Hex Hex format: Ox7f

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

78 CHAPTER 6 XCDB

FORMAT CONTROL

Complex

Class, Struct, or Union

Class

Array

Pointer

Decimal

Scientific

Hex

Flatten

More detail

Less detail

Show self

More detail

Less detail

Real and imaginary parts of the number in "f" format.

Real and imaginary parts of the number in "e" format..

Displays the real and imaginary parts of the number in hex format

Reveals the members, horizontally.

Reveals the members, vertically.

Hides the members.

Runs the object's xcdb <) member function (if any). See "Self-displaying C++
objects" on page 85.

Reveals array elements.

Hides array elements.

String Displays an array of characters as a null terminated string: "abc".

Select subrange Selects a subrange of the array for display. A prompt asks for the subscripts of the
elements you wish to see. See"Array formatting" on page 80.

Less detail Hides the pointed-to object.

Hex

String

Array

The pointer in hex format.

A pointer to characteras a null terminated string.

At pointer to X as an array of X

Select subrange A selected subrange of the pointed-to array. A prompt asks for the elements you
wish to see.

Cast

Downcast

Less detail

Changes (casts) the base type of the pointed-to object. A list of struct, union, and
typedef names prompts to select a new base type. Subsequent formatting of the
pointed-to objects treats them as if they are of the type you select.

Converts a C++ pointer to abstract base class into a pointer to most derived class
by inspecting the pointed-to object's virtual function table pointer.

Hides the pointed-to object, for example:

class X { ... }; II base class
class Y public X { ... }; II derived class

f() {
X x;
g(&x): II pass a 'pointer-to-X'

y y;
g (&y); II pass a 'pointer-to-Y'
}

g(X *p) { II at run time 'p' could be either
II 'pointer-to-X'
II or 'pointer-to-Y'
II
II click on 'p' and select 'Downcast'
II to reveal the actual type

}

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 6 XcDB 79
FORMAT CONTROL

class, struct, and union
formatting

Choosing More deta i 1 multiple times on a structure reveals increasing levels of
detail. At the minimum level of detail, only the structure name displays. At the
maximum level of detail, all of the member names and values display. Similarly,
clicking Less detai 1 successive times causes the object's format to fold up.
Consider the following declaration:

struct node
{

struct node *next;
struct data

{

int type;
float value;
} data;

} Node~ { 0, { l, 123 } };

This sequence shows how you might inspect the object:

Click More deta i 1 here
N,ode: node

Node: NULL data }
Click More detai 1 here --·

Node: next: NULL
Click More detai 1 here - --···-·· .. --' data: data

Node: next: NULL
Click More detai 1 here _______ ___:

data: { 1 123.000000 }

Node: next: NULL
data: type: 1

value: 123.000000

Node: next: NULL
Click More detai 1 here -----· data: type: 1

value: 123.000000

Node: next: NULL
Click Less de ta i 1 here _________ J data: { 1 123.000000 }

Node: next: NULL
Click Less deta i 1 here --' data: data

Node: NULL data }
Click Less deta i 1 here ________ J

Node: node

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

So CHAPTER 6 XcDB

FORMAT CONTROL

You can also examine just a particular field of interest by clicking on that field:

Node: { NULL data }
Click Mo re deta i 1 here ________ _J

Node: { NULL { 1 123.000000 J }
ClickType here -····-·--··---····----···---·-------_J

Node: { NULL { 1 float } }
Click Hex here

Node: { NULL { 1 Ox42f60000 } }

Array formatting Xcdb displays arrays similar to structures, except that the elements are identified
by indices rather than member names. At the minimum level of detail, only the word
"array" displays. At the maximum level, the indices and values of all the array
elements display.

Statically allocated arrays Consider the following declaration.

struct point
{

char *name;
int coord[3];
} Set[] - {

{"one",
{"two",
{"three",
{"fou·r",
{"five",
{"six",
} ;

{1,1,1}}.
{2,2,2}}.
{3,3,3}}.
{4,4,4}}.
{5,5,5}}.
{6,6,6}}.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Click More detail here

Click More detail here

Click Mo re detail here

C/ickMoredetail here

ClickMore detail here

Dynamically allocated
arrays

This sequence shows how you might inspect the object:

Set: array
·---------

Set: { point point point point

Set: 0: point
1: point
2: point
3: point

Set: 0: { ptr array }

1: { ptr array }

2: { ptr array }

3: { ptr array }

Set: 0: { ptr array }
1: name: ptr

coord: array
·-··-----:r:T-i>tr-·array l

3: { ptr array }

Set: 0: { ptr array }
1: name: ptr

coord: { 2 2 2
2: { ptr array }
3: { ptr array }

}

... }

CHAPTER 6 XCDB 81

FORMAT CONTROL

In the previous section, the array dimensions were defined at compile time and
known to the debugger. But for arrays with runtime defined dimensions, the
debugger has no idea of the outer array dimension, so it assumes a value of 1
until you tell it otherwise. Consider the following declaration:

main()
{

char **stuff= malloc(3 * sizeof(char *));
stuff[OJ = "abc";
stuff[l] - "def";
stuff[2] - "ghi";
return O;
}

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

82 CHAPTER 6 XCDB

FORMAT CONTROL

Click String here

To format stuff as an array of character pointers, step the program until the
array has been completely initialized, and then:

stuff: ->->Ox61
'

stuff: ->"abc"
Click Se 1 ect subrange ________ _j

here, enter "0,2, ... "
stuff: { "abc" "def" NULL }

ClickMore detail here _____ _]

Subrange selection

stuff: 0: "abc"
1: "def"
2: "ghi"

Select specific subranges of array elements by clicking on the array and choosing
Se 1 ect subrange from the menu. Then, type the subscript or range of subscripts
of the element(s) that you wish to see. Use an expression of the form:

subrangeSpecifier sectionSpecifier { ',' sectionSpecifier } ...

sectionSpecifier '[' subdimensionSpecifier { ',' subdimensionSpecifier } ... ']'

subdimensionSpecifier l 0 . ' hi II subdim elements between lo and hi, inclusive
lo ' '*' II al 1 elements of subdimension, starting at '1 o'
'*' ' ' hi II all elements of subdimension,
'*' ' . '*' II all elements of subdimension
'*' II a 11 elements of subdimension
n II n'th element of subdimension

The count of subdi mens i onSpeci fi ers must match the count of array
dimensions. Here are some examples:

char array[4][2]; II a 4 by 2 array

[0, *] II matches elements:

[1 .. 2, l], [3, 0 .. 1] II matches elements:

[0,0]
[0,1]

[1,1]
[2,1]
[3,0]
[3,1]

ending

If a subrange specifier would display more than 1,000 elements, then the
remainder display as " ... ". Change this limit by specifying a different value using
-e or the xcdb. ArrayL i mits item in . Xdefaults.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

at 'hi •

PRELIMINARY

Pointer formatting

CHAPTER 6 XcDB 83
BREAKPOINTS

At the minimum level of detail, only the word "ptr" displays for a pointer object.
Click More detail to reveal the pointed-to object. Consider the following:

typedef int (*FUNCP)();
FUNCP Table[3] = {main, exit};

/* a function pointer */
/* table of pointers */

The sequence below shows how you might inspect the object:

Table: array
ClickMore detail here ___J

Table: { ptr ptr NULL}
Click More detail here ________ J

Click More detail here Table: 0: ptr
1: ptr
2: NU LL

Click Type here ---
Table: 0: -> n ()

1: ptr
2: NULL

Click Type here ----------

Click Type here

Table: 0: function-returning-int
1: ptr
2: NULL

Table: 0: pointer-to-function-returning-int
----1 1: ptr

2: NULL

Table: 3-item-array-of-pointer-to-function-returning-int

BREAKPOINTS

PRELIMINARY

Set or remove unconditional breakpoints by clicking on the line in the Listing
window. Set or remove conditional breakpoints that releate to the line indicated
by the pointing hand icon as follows:

D Run the program to the line where the breakpoint is to be set.

e If you set a breakpoint to get there, remove it.

6 Left-click on an integer or pointer object in the Locals or NonLocals window,
and select Breakpoint from the menu.

i'I Enter a breakpoint trigger value for the object, at the prompt.

Xcdb indicates the breakpoint with a stop sign icon on the source line and with
an asterisk-marked (*) entry in the Breakpoints window

Xcdb stops the program whenever the specified line executes, and the object has
the specified trigger value.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

84 CHAPTER 6 XCDB

PREFERENCES

PREFERENCES

Preference settings

To specify your preferences, use the Preferences option from the Commands
menu in the Commands window.

Language Controls printing of variable names and interpretation of array element addresses.
Normally, Xcdb determines the language automatically, based on the initial stopping
point in the program. You can change this by clicking either mouse button to cycle
through the possibilities:

c
C++

FORTRAN

Array element addresses are computed in row majorform.

Array element addresses are computed in row majorform; variable
names are demangled; nested class members are labeled.

Array element addresses are computed in column majorform.

Variables Controls printing of variables in the Locals window pane.

Lexically scoped Displays only the variables in the scope of the current instruction.

Unscoped Displays all variables in the current function, even those in other
lexical blocks. This option is a work-around for a bug in some
compilers-see "Frequently asked questions" on page 88.

Secret variables Controls visibility of C++ compiler-generated variables.

Hidden Does not display secret variables.

Visible Displays secret variables.

Include Files Controls interpretation of file symbols appearing in the symbol table.

Respect

Ignore

The debugger makes use of /ti ncl ude file information appearing
in the symbol table.

The debugger ignores /ti nc 1 ude file information appearing in the
symbol table. This option is a work-around for bugs in cpp, cc,
and cfront-see "Frequently asked questions" on page 88.

File search path Specifies the directories to search when displaying source files in the Listing window.
Enter a list of directory names, separated by spaces. See also the description of -s.

Upon fork follow Controls tracing of fork() system calls:

Auto raise

Detail per click

Parent

Child

Follows the parent process after a fork()

Follows the child process after a fork()

When stepping through a fork() statement, you must use Line Step and not Call
Step; otherwise, the debugger gets stuck trying to trace the system call.

Controls automatic raising of interior window upon mouse entry.

Controls the count of levels of detail to reveal (hide) when requesting More detail (Less
detail) on a structure, union, array, or pointer object. Right-click to increase the value,
and left-click to decrease it.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 6 XCDB 85
SELF-DISPLAYING C++ OBJECTS

SELF- DISPLAYING C++ OBJECTS

Example

Notes

PRELIMINARY

This is an experimental feature that allows C++ objects in a program to show

themselves in response to a request from the debugger. When a C++ object is
selected on the Locals or N onLocals window, and you choose Sh ow s el f from the
menu, Xcdb executes a member function named xcdb (), if found. For every class
you wish to examine, write an xcdb() member function with these constraints:

"' no arguments
;; of type void

s must not be inline

?; every class must have its own xcdb() member function (they cannot be
inherited; they may be virtual, but must be defined for each subclass)

When you want a class instance to run its xcdb () member function, click on the
object (as usual), format the object as a "structure" (choose More Detail if you
only have a pointer to the object), and choose Show self. This runs the object's
xcdb () member function. Control then returns to the debugger.

An xcdb () member function can be writ.ten to do anything at all. It might say
something interesting, display pretty pictures, and so on. Use your imagination.

class Mumble
{

private:
public:
public:
public:

} ;

canst char *name;
Mumble(const char *name) : name(name) {}
canst char *name() { return name; }
void xcdb();

void Mumble::xcdb() { printf("My name is '%s'.\n", name());}

main()
{

Mumble& mumble
}

*new Mumble("mumble");

Clicking on the variable "mumble" in the Locals pane and selecting Show self

from the menu displays

My name is 'mumble'.

in the xterm window that invoked the debugger.

Attempting to Show self on a cl ass or struct for which no xcdb() member
function is defined produces a complaint, but is otherwise harmless.

Any breakpoint or exception inside the xcdb () member function, while running
in the context of Show se 1 f, terminates the function (returning control to Xcdb),

and is otherwise ignored.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

86 CHAPTER 6 XcDB

CUSTOMIZATION

CUSTOMIZATION

General

Layout

Create layout entries from
your working environment

with -1 ; see "Running" on
page 70 for information.

Change Xcdb's window shape, position, font, colors, and window layouts with
\$HOME/ .Xdefaul ts. For information about available fonts and colors see /usr/
1 pp/Xll/defaul ts/Xfonts and /usr/l i b/Xll/rgb. txt, respectively.

The following tables summarize the . Xdefaults entries. Values to the right of the
colon indicate acceptable entries, where:

geometry

font

color

is a geometry specification such as "l 00x300+ 10-5"

is the name of a font, such as "Roml 0.500"

is the name of a color, such as "Slate Blue" or "\#7 AD"

Geometry: geometry

Font: font

AutoRaise: on !off

SaveUnder: on !off

Main window size and placement

Font to use for text

Behavior of window when mouse enters

Handling of pixels obscured by popup menus. On some X servers,
po pup menus run faster with SaveUnder set on; others run faster with
SaveUnder set off. Try both settings and see which works best tor you.

The layout entries customize each window in the debugger. You must specify settings for all or none of
the windows; you cannot specify some of the windows.

SpecialLayout: yes I no Do window specifications follow?

xxxxGeometry: geometry Size and placement tor normal window

xxxxlconGeometry: geometry Size and placement for iconized window

xxxxlconifyOk: yes I no Permit iconization of this window?

xxxxlconStartup: yes I no

xxx.xScrollbars: vertical I
horizontal I both I none

lconize window at start-up?

Scrollbar style

where xxxxis one of Callers, Functions, Files, Breakpoints, Commands, Listing, Locals, NonLocals,
Formats, or Messages.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Color

Xcdb ignores color entries

on monochrome displays or

when -bw or-wb has

been specified.

Other

Borderldle: color

BorderActive: color

Foreground: color

Background: color

MouseBody: color

MouseOutline: color

CursorForeground: color

CursorBackground: color

MarkForeground: color

MarkBackground: color

TitleForeground: color

TitleBackground: color

DialogForeground: color

DialogBackground: color

DimForeground: color

DimBackground: color

Scrollbuttonldle color

ScrollbuttonActive color

Editor: command

Language: language

Window borders, mouse outside

Window borders, mouse inside

Normal text

Normal text

Mouse body

Mouse outline

Cursor

Cursor

Marked text

Marked text

Window pane titles

Window pane titles

Command lines

Command lines

Non-selectable menu items

Non-selectable menu items

Scroll buttons, mouse outside

Scroll buttons, mouse inside

CHAPTER 6 XCDB 87
CUSTOMIZATION

The specified command is invoked when the Edit command is selected
from the Commands window (see earlier).

The debugger's behavior is adjusted for the specified language, as
described in the Preferences menu section (see earlier). language
must be one of:

g c
"" C++
:n FORTRAN

RespectlncludeFiles: yes I no Controls interpretation of file symbols appearing in the symbol table,
as described in the {\it Preferences} menu section (see earlier).

Arraylimits: NNNN Controls data formatting, as described for the "-e" command line flag
(see earlier).

DetailPerClick: NNNN Controls data formatting, as described for the "-d" command line flag
(see earlier).

UnsignedCharFormat: Selects default data formatting style for unsigned char numbers.
decimal I hex

UnsignedShortFormat Selects default data formatting style for unsigned short numbers.
decimal I hex

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

88 CHAPTER 6 XCDB

FREQUENTLY ASKED QUESTIONS

Example xcdb.Font: Rom17.500
xcdb.Background: slate blue
xcdb.Edit: (emacs '+%d' '%s' &)
xcdb.RespectincludeFiles: yes
xcdb.Arraylimits: 2000
xcdb.DetailPerClick: 2
xcdb.UnsignedCharFormat: hex
xcdb.FloatFormat: scientific
xcdb.AutoRaise: on
xcdb.SaveUnder: off

FREQUENTLY ASKED QUESTIONS

Here are the answers to some frequently asked questions.

Q: This document makes reference to menu item XXXX, but I don't see it on my
menu.

A: Your window pane is either too small or the item has scrolled out of view. Press
Home and then use the cursor keys to scroll the window contents until you find
the item you are looking for.

Q: A window pane or menu appears to be empty.

A: See the answer to the previous question.

Q: My program runs fine when invoked from the debugger, but doesn't run when
invoked from the shell command line.

A: Unlike the command shell, Xcdb loads your program without searching the
$PATH environment variable. You've probably got a program by the same name
somewhere in your $PATH. Try explicitly qualifying the program name when you
type it on the command line. For example, type:

./test a b c # run program in current directory \end{verbatim}

instead of:

test a b c #oops, this probably invokes /bin/test \end{verbatim}

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

CHAPTER 6 XCDB 89
FREQUENTLY ASKED QUESTIONS

Q: The debugger stops with a Signal 0 when it encounters the system() function
in my program.

A: This is normal. Just click the Signal item on the command pane to continue,
or reinvoke Xcdb with "-i O."

Q: I can't set a breakpoint on some lines of my C++ program (compiled with
cfront).

A: There are bugs in /l i b/cpp, the preprocessor used by cfront to perform
macro expansion. Try another macro preprocessor-some people have had luck
with /us r /l pp/Xll /Xampl es/ut i l I cpp/ cpp. Point to it with the CC's "cppC"
environment variable, and then recompile.

There are also bugs in cfront related to generation of #1 i ne directives for
templates and include files. Try setting Include files: If5Ytore in the Preferences
menu and see if this helps.

Q: Xcdb displays the wrong source file and/or line number in my C++ program
(compiled with cfront).

A: Try setting Include files: If5Ytore in the Preferences menu and see if this helps.

Q: Xcdb displays the wrong source file and/or line number in my C++ program
(compiled with xlC).

A: Make sure you have set Include files: Respect in the Preferences menu. Another
possibility is that the source file contains more than 65,534 lines. Due to an AlX
symbol table design feature, line information for such files is stored incorrectly.
The only workaround is to split the source file into smaller pieces.

Q: I can't see one of my local variables, but I know it's there.

A: This is due to a compiler bug. Try the Variables: Unscoped option on the
Preferences menu.

Q: My program seems to be running correctly, but the variables displayed by
Xcdb look wrong.

A: You probably compiled your program with both -g and -0. The resulting
compiler optimizations confuse the debugger. Recompile your program with
either -g or -0, but not both.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

go CHAPTER 6 XCDB

FREQUENTLY ASKED QUESTIONS

Q: I can't see code generated from /Ii ncl ude files.

A: You need a newer version of xl C (such as version 01.02.0000.0000, or later).

Q: Xcdb complains about an ambiguous breakpoint when I try to set a breakpoint
on certain parts of my program.

A: You probably tried to set a breakpoint on an instruction that was one of several
"instantiations" generated from the same /Ii ncl ude file.

If you are debugging template code generated by the xl C compiler, make sure
you've set the Language: C++ option on the Preferences menu.

Otherwise, if you are debugging non-template code, or code generated by
compilers other than xl C, there is no mechanism by which Xcdb can infer the
instruction instantiation to which you refer, so it is not possible to set a
breakpoint on the specified line. Sorry.

Q: I can't see a traceback in the Callers window pane when I set a breakpoint in a
signal handler.

A: This is a deficiency in Xcdb that is being addressed.

Q: I get an error when attempting to attach the debugger to a process using -a.

A: This seems to have something to do with shared libraries. If you can reproduce
this problem with a small program, please send a bug report to the Taligent Tools
Team.

Q: Xcdb is sluggish when stepping. How can I make it faster?

A: Display update performance during stepping operations can be improved by
iconif.ying the NonLocals window pane if it is not needed. The debugger is then
saved the expense of reading and formatting (potentially large) amounts of
global data from the program's execution image. Also, choosing the -n

command line option will help here, by reducing the number of symbols that
Xcdb must search. Reducing the size of the main window or using a larger font
will also help, because it reduces the amount of window drawing that takes place.
Also, enabling xcdb. Sa veUnder in your . Xdefaults file may improve performance
of pop-up menus (see "Customization" on page 86).

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

CHAPTER 6 XCDB 91

FREQUENTLY ASKED QUESTIONS

Q: How can I format a number of variables, all in the same style, without
tediously clicking more detail on each one?

A: Try using the Save and Recall selections on the Formats menu to propagate
the formatting information from one object to all the others.

Q: How can I change the display format of all the elements of an array at once,
without tediously clicking on each one?

A: Try this:

D Format the first item in the array

fJ Use Select subrange to (re)select the elements you wish to see

The format of the first element propagates through to all the other elements

Q: How can I invoke Xcdb from inside my program?

A: Try something like this:

main()
{

foo():
}

foo()
{

bar();
}

bar()
{

trouble():
}

trouble()
{

extern char **p_xargv: /* undocumented variable */
char cmd[lOO]:
sprintf(cmd, "xcdb -a %d %s", getpid(), p_xargv[O]);

if (fork() == 0)
system(cmd);

else
pause();

}

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

I* runs Xcdb */

/*waits until Xcdb issues "Run", "Line Step", etc. */

TALIGENT TOOLS FOR AIX

92 CHAPTER 6 XcDB

FREQUENTLY ASKED QUESTIONS

Q: When I Sekct a subrange, I only see the first 1,000 elements of my selection.
Where are the rest?

A: As a safety feature, Xcdb displays at most 1,000 elements per array. Use -e or
xcdb.Arraylimits in your .Xdefaults file to change this limit.

Q: How can I display a region of memory as an unstructured hex dump?

A: Try this (ok, it's a bit of a kludge, but it works):

D Determine the address of the region you wish to inspect (using Format ... as
address, for example)

fJ Take any convenient char pointer in your program and set its value to the
address you wish to inspect (using Edit)

IJ Select the number of elements to be displayed (using Select subrange)

Q: What version of Xcdb do I have?

A: Type xcdb (no arguments) to find out.

Q: Where can I get the latest version of Xcdb?

A: Obtain XCDB6000 PACKAGE from your nearest AIXTOOLS service machine.

Q: What's new in the latest version of Xcdb?

A: Please read the XCDB6000 NEWS file that is shipped with each XCDB6000
PACKAGE.

Q: I have a question that isn't answered here.

A: Please report any problems you discover (or wish list items) to the Taligent
Tools Team.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 6 XCDB 93
REPORTING BUGS

REPORTING BUGS

If you encounter a problem with Xcdb, file a Taligent bug report.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

94

ION PRELIMINARY

CD PATH

PRELIMINARY

APPENDIX A

TIPS & TECHNIQUES

Everybody has their own work style, but there are some simple tricks you can do
to make yourself more productive. Here are some useful pointers.

The cdpath shell variable contains a list of directories that shell searches when
you use ed. For example, if you are in your $HOME directory, you can type:

cd Envious

and the shell will take you right there. The shell looks in the current directory
first, and if it does not find Envious there, it searches the directories in cdpath,
which is what happens in the previous example.

This little trick saves a massive amount of typing when you are navigating around
the Taligent source tree. Here is an example of settings to add to your . csh re file:

set cdpath=(~ \
${HOME} \
${HOME}/Taligent \
${HOME}/tool s \
${HOME}/Taligent/Toolbox \
${HOME}/Taligent/Toolbox/Internationa1Utilities \
${HOMEJ/Taligent/Toolbox/Document2 \
${HOME}/Taligent/Toolbox/Runtime \
${HOMEJ/Taligent/Albert/Main \
${HOME}/Taligent/Instrumentation/TestSystem\
${HOME}/Taligent/Time \
/home/local \

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

95

96 APPENDIX A TIPS & TECHNIQUES

XCDB-THE DEBUGGER

XCDB-THE DEBUGGER

QpusBuG()

Taligent uses xcdb (an internal IBM project) as its Taligent Application
Environment debugger. Be sure to read Chapter 6, "Xcdb," before using this
debugger. To make your work with xcdb easier, use the suggested . Xdefaul ts file
for standard behavior.

Instead of calling xcdb directly, use the xdb script which install SCMFetch and turns
off some interrupts that you probably do not need.

Within the TaligentApplication Environment, Opus Bug() is a function that calls a
UNIX program script which runs a debugger to attach to your running process.
Opus Bug() emulates the functionality of the DebugStr() call found in many 68K
development environments. While fairly limited because the UNIX environment
is very different than other development environments, Opus Bug() provides the
rudiments of printing a message and starting a debugger.

NOTE The origin of the name OpusBugis lost in obscurity.

When you call OpusBug() within the TaligentApplication Environment, it

u prints a message.

u uses system() to call pink_debugger: the program script. pink_debugger must
be in your $PATH.

m then puts your process to sleep for five seconds. This is generally enough
time for a debugger to get started and attach to the process' to be debugged.
The debugger comes up with sleep () on the top of the stack; belows l eep C)

should be Opus Bug() and then the routine that called OpusBug(). You should
be able to debug from there.

Because Opus Bug C) invokes pin k_debugger via a system() call, it carries a few
restrictions:

u The pi nk_debugger script must terminate with an exit status of zero.

m The pi nk_debugger script must not be blocking. This means that anything
that requires interaction, like a debugger, must be run in the background.

Here is the prototype for OpusBug():

void OpusBug(char *message); II Print the message, and call pink_debugger

Opus Bug() passes two arguments, the process ID and the calling program name,
to provide enough information for a debugger to attach to a running process.

Here is a sample pi nk_debugger.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Arguments from -----'

OpusBug()

fl! /bin/sh
tt
fl This program starts an xdb session in the background.
tt

PROCESS ID=$1
PROGRAM_NAME=$2

echo
echo
echo "*** Entering pink_debugger ***"
echo "*** PROCESS_ID == $PROCESS_ID ***"
echo "*** PROGRAM_NAME == $PROGRAM_NAME ***"

APPENDIX A TIPS & TECHNIQUES 97
QpusBuc()

Call/ the debugger---- tal db -a $PROCESS_ID $PROGRAM_NAME &

Must return 0 ------
echo "*** Exiting pink_debugger ***"
exit 0

To print the message, but not start a debugger, pi nk_debugger should be nothing
more than ex i t with a zero return status.

fl Do not start the debugger
exit 0

To neither print a message nor start a debugger (do nothing), set the
PINK_DONT_USE_OPUSBUG environment variable.

setenv PINK_DONT_USE_OPUSBUG

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

................

Chapter 7 . . . (
TestEnviranmenrOverview .:'..;.,,

Chapter 8
Test framework ,

Chapter 9 uV
RunTest ... ,:, .. :.: .. 117,:

LIMINARY

100

ION PRELIMINARY

PRELIMINARY

CHAPTER 7

TEST ENVIRONMENT

OVERVIEW

The Test environment provides the tools and protocols for developing tests to
ensure that your code works properly. The Test environment gives you a standard
way to connect your code to the test conditions and get the test results.

The Test environment consists of two major elements.

The Test framework is a collection of classes that provides a standard format for all
tests and results reporting. The design goal is that anyone can:

w Run any test

m Understand the results of any test

The Test framework also eliminates the need to reinvent solutions to recurring
problems. For example, the Test framework contains a ready-to-use class to test
classes derived from MCollectible for proper support of flattening and cloning.

The RunTest application gives you an execution environment that works with a
scripting language that allows you to run tests, examine them at run time, and
retrieve logged outputs after run time.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

101

102

ION PRELIMINARY

FIGURE 1

THE TEST

FRAMEWORK

PROVIDES A

CONSISTENT

INTERFACE

BETWEEN YOUR

CODE AND YOUR

TESTS

CHAPTER 8

TEST FRAMEWORK

The Taligent Operating Environment Test framework provides the structure for
you to link the tests you write to your code. You can then perform any Test­
framework compliant tests consistently with the Run Test application.

In addition to performing a test, the Test framework supports:

g Setup and cleanup operations for each test

v Different ways to combine tests

n Test logging and timing

Your code
(target classes)

Your tests
(test classes)

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

103

104 CHAPTER 8 TEST FRAMEWORK

TEST FRAMEWORK OVERVIEW

TEST FRAMEWORK OVERVIEW

The core of the Test framework is the abstract base class TTest. Your test is a
derived class of TTest or one of its derived classes.

FIGURE 2

TEST FRAMEWORK CLASS

HIERARCHY

TMCollectibleTest A TTStreamTest

A TTest

A TTestCollection A TTestMu ·

TTestSequence A TStartStopTimingTest

TTest Class

FIGURE 3
IMPORTANT

TTEST

MEMBER

FUNCTIONS

TTest is an abstract base class. Use this class to decide whether a well-defined test
target works. Create a derived class of TTest for tests that perform a single
function. TTest contains a Test member function that you must override with the
code that represents your decision function. A decision function is code you
write that returns a True or False result when you test a specific condition.

SetTarget
GetTarget
Aun
GetSucce.ss

Reset
Setup

~Test
Cleanup
SetSuccess

When you declare a derived class of TTest to be a friend of the target class, the
derived TTest class can access all the private interfaces of the target class for
internal testing purposes.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Test collection classes

Protocol tests

Timing tests

CHAPTER 8 TEST FRAMEWORK 105

TEST FRAMEWORK OVERVIEW

The Test framework contains derived classes of TTest that allow you to group
tests that look at different aspects of your code.

TTestCollection, an abstract base class of TTest, contains a collection of TTest
instances. The tests in the collection run sequentially to determine the success or
failure of the entire group. TTestCollection has two concrete derived classes:

+ TTestSet contains an unordered set of subtests that can be shuffled to vary
the order the subtests run.

"" TTestSequence runs its subtests in a fixed sequence.

TTestMultiplexer derives from TTest and supports multiple decision functions
applied to a single test target. Invoke these decision functions by using text keys.
You can write a group of decision methods, then build a table that maps keys to
methods.

Protocol tests allow you to test an entire tree of classes if those classes are all
expected to adhere to a protocol. The Test framework contains two protocol
tests, one for derived classes of MCollectible and another for classes not derived
from MCollectible.

TMCollectibleTest tests the implementation of the IsEqual, Hash, Clone, operator>>=,
and operator<<= members of classes derived from MCollectible. You do not need
to derive or customize TMCollectibleTest, it is immediately ready for use by
anyone writing a derived class of MCollectible.

You can also change or augment TMCollectibleTest to test an enhanced protocol
superset by overriding some of its members.

TMCollectibleTypeTest is a derived class of TM Collectible Test, which is currently
defined by macros. It tests certain behaviors that cannot be tested without a
template class including the operator ==, the assignment operator, the copy
constructor, and the constructor and destructor.

TStreamTest is an abstract base class that tests the implementation of operator>>=
and operator<<= for classes not derived from MCollectible. Unlike
TMCollectibleTest, you derive from TStreamTest for each target class you want to
test. Use the declaration and definition macros supplied with TStreamTest to
create the required derived classes.

The TTimingTest base class provides a basic guide for tests that measure the time a
specific operation takes to complete. TTimingTest contains three framework
members: TimingSetup, TimingTest, and TimingCleanup.

Only the TimingTest member function is timed. The TimingSetup and
TimingCleanup members are run before and after TimingTest but are not timed
themselves. TTimingTest produces statistical analysis of results.

PRELIMINAI~Y TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

1 06 CHAPTER 8 TEST FRAMEWORK

GETTING STARTED WITH THE TEST FRAMEWORK

Related classes The Test framework uses other classes not directly related to TTest that are useful
to derived classes of TTest.

TTieredText is the class of objects collected by TTieredTextBuffer. It is a derived class
ofTText and allows a Test framework user to assign a tier of detail to each
instance. Tiers are, in increasing level of detail: headline, general, normal, detail,
and debug. ·

TTieredTextBuffer behaves like the C++ ostream class. It contains <<operators for all
basic types. Unlike the ostream class, TTieredTextBuffer keeps a collection of all
text sent to it. Other features of TTieredText are echoing of text to a destination
you specify, filtering output so that detailed information is suppressed or
displayed, and flushing text beyond a certain level of detail from the buffer. Each
instance of TTest contains a TTieredTextBuffer to which derived classes can
stream diagnostic text messages. TTest itself uses this mechanism to report
progress and results.

TTextArgumentDictionary parses a sequence ofTText objects into pairs of keys and
values. This allows you to check quickly for the existence of a keyword on the
command line or to retrieve the value given for a certain option.

GETTING STARTED WITH THE TEST FRAMEWORK

Here is an example of how you create a simple test of a member function.

Assume you have a class named TMySample that has a member function, Add,
which adds two objects together. You want to know if TMySample::Add works
correctly.

You need to decide the conditions you want to test and what the proper result
should be. For example, you want to make sure that your Add function properly
handles integers and complex numbers (a type you have defined). You would
write a test member that has an operation that adds an integer and a complex
value and compare that result with the result you expect. If the result is what you
expect, your test succeeds, otherwise, your test fails.

The following steps summarize the way you would create a test with the Test
framework:

0 Create a new derived class of TTest, TMySampleTestAdd.

This derived class contains the decision condition for the Add function ..

lfJ Verify that an instance of TMySample is available and in the proper state for
the test.

The required TMySample instance is called the target and a pointer to it is
maintained using TTest::SetTarget and TTest::GetTarget.

To determine the correct state, you might call Get functions in the target.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 8 TEST FRAMEWORK 107

DESIGNING A TEST

B Override the Setup member function.

Parse input arguments using TTextArgumentDictionary, if needed, and
initialize any private data members used for the test.

If TMySampleTestAdd is part of a TTestCollection, it might share its target
with the other subtests in the group.

See "Setting Up the Environment" later in this section.

19 Override the Test member function.

Put the code that determines whether the Add member works correctly here.
Decide if the test has passed or not and call SetSuccess.

Example code for test here

See "Creating a Test" later in this section.

m Override the Cleanup member function

Perform any cleanup after performing the tests. See "Cleaning Up After a
Test" later in this section.

m Compile and link into a shared library.

When you are ready to perform the test, use the Run Test application.

DESIGNING A TEST

FIGURE 4
EACH OF

YOUR TEST

CLASSES CAN

PERFORM

MULTIPLE

OPERATIONS

A single TTest covers an area, large or small, which allows you to determine what
works and what does not work when the test succeeds or fails. A single TTest can
exercise a single member function or can parse the input to select a subset of
member functions.

You decide how much testing a single TTest derived class needs to perform. If a
single TTest turns up several defects, the scope of your test is too large.

The most important part of using the Test framework is designing a test or group
of tests that properly exercises your code.

TMyClassTest TMyClassTest01
Each of the

Operation 1 Operation 1 TMyClassTestXX classes
Operation2 perform a single operation
Operation 3

TMyClassTest02

TMyClassTest Operation 2
performs
several
operations on TMyClassTest03
TMyClass

Operation 3

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

I 08 CHAPTER 8 TEST FRAMEWORK

CREATING A TEST

Before you use the Test framework to organize your tests, decide what operations
you can use for each class to test the public, protected, and private interfaces.

For example, you might find that for a given instance of TMyClass, which
contains an Add function, you can perform several different operations to test
that instance. Each operation might take arguments. You might want to have
several tests of the Add function, passing the test different combinations of
arguments that the Add function is designed to process, such as reals or vectors.

Cast each operation as a decision: Does the operation work correctly? The
outcome of the test condition must be True or False, indicating the success of the
associated test.

As a special case, when you discover that some sequence of actions causes a
defect, you need to write a special test that causes that sequence of actions to
occur in order to implement regression testing.

CREATING A TEST

The minimum requirement to use the Test framework is to include Test.h in your
source and to link your shared libraries with TestFrameworkLib.

To use other features of the Test framework, use the following files:

TestCollection.h
TestMultiplexer.h
MCollectible.h
StartStopTimingTest.h
StreamTest.h
TimingTest.h
MCollectibleTest.h
TieredTextBuffer.h
TextArgumentDictionary.h
TieredText.h

Your test class and the class you are testing, the target class, have no inheritance
relationship. Specifically, the test class is not a derived class of the target class.
Instead, each test class has an instance of its target class.

Use TTest::SetTarget and TTest::GetTarget to set and get a pointer to some
instance that a TTest is testing.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

FIGURE 5
TMYCODETEST

CONTAINS THE

CODE FOR YOUR

TEST IN THIS

EXAMPLE

FIGURE 6
EACH MEMBER

FUNCTION

THAT YOU

WANT TO TEST

NEEDS AN

INSTANCE OF A

TTEST OBJECT

Writing a test function

Li TTest

maintains n
TMyCodeTest TMyCode

CHAPTER 8 TEST FRAMEWORK 109

TMyCode is the target of
the test

CREATING A TEST

The TTest instance that owns the target needs to delete the target when the TTest
is destroyed. The owning TTest must cast the void* target to its correct type, or at
least the correct base type, before deleting the target, or else the correct
destructors will not get called.

You can use a simple naming convention to clarify which test classes relate to the
classes you are testing. For example, the test class for TMyClass is called
TMyClassTest. The test class for TMyClass::MyMethod is
TMyClassMyMethodTest.

MyCode

ClassTBarChart

TBarChart::Add
TBarChart::Rotate

ClassTPieChart

TPieChart::
TPieChart::

MyTest

ClassTBarChartTestAdd : publicTTest

Setup
Test
Cleanup l C!assTBarChartTestRotate : publicTTest

Setup
Test
Cleanup

When you create your test class, you override the Test member function. The Test
function contains the operations you use to actually perform the test.

Based on the result of your test operation, your Test function must call
SetSuccess. Call SetSuccess with True if it passed. Call SetSuccess with False if it
failed.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

11 0 CHAPTER 8 TEST FRAMEWORK

CREATING A TEST

Setting up the
environment

TTest::Setup performs arbitrary setup in preparation for the Test member
function. Override Setup to specify any conditions that the test requires.

Run calls Setup before calling Test.

If a test is unable to run more than once after the first test runs, have the Setup
function cause the test to fail on subsequent runs with an appropriate message.

Cleaning up after a test TTest::Cleanup is executed even if a software exception occurs. Override
Cleanup to perform any actions after the test finishes.

Writing a test to run
more than once

Overriding inherited
MCollectible members
of TTest

Run catches exceptions that occur in Test and always calls Cleanup after calling
Test.

Note that if a hardware exception occurs in Test, such as a bus error, then
Cleanup is not called. Such a hardware exception will probably kill the thread
that ran the test but not necessarily the task in which the test was running.

To run a test more than once, override TTest::Reset to change the state of the test
so that you can run the test again. Reset is a public member that any test class can
call. It is also called automatically inside Run if a test has been run and has not
been reset.

To specify the number of times to run the test, use the -n option of the Run Test
application.

Derived classes of TTest need to override the streaming operators when member
variables are added to the class. These new member variables must also be
streamed for the test to be functional.

Override Hash and IsEqual when you want additional derived class information
to be considered for hashing and equality testing.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Writing text to the
console

CHAPTER 8 TEST FRAMEWORK I I I

CREATING A TEST

To write out diagnostic text from a test, use the member function
OuptutTextStream, which understands the standard C++ operator<< for all built­
in types. Text output produced with this member goes to the console and is also
saved in a TTieredTextBuffer within the test. You can then log the test, including
the text buffer.

If a test fails, you can retrieve the diagnostic text associated with the test to try to
determine the cause of the failure.

TTieredTextBuffer sends output to the console. Text that is output in this way is
saved with the test. This is useful for evaluating the test after resurrecting it from
a log. However, saving all text to a log can sometimes cause a problem if it uses
too much memory.

void TMyClassTest::Test() II This member is in a derived class of TTest
{

OutputTextStream() << "Hello, world\n";

To cause some messages to appear on the console but not be saved, use the
special tier kEphemeral. Note that this is just a special case of the usual tier
mechanism:

void TMyClassTest: :Test() II This is a derived class of TTest
{

}

II This will be recorded in the test
OutputTextStream() << "Important data "<< fData << '\n';

II Subsequent text will NOT be recorded in the test, to save memory
OutputTextStream() << PushTier(TTieredText::kEphemeral);
for (short i=O; i<32000; ++i) {

OutputTextStream() <<"Loop"<< i << '\n';

}

II Start recording text again
OutputTextStream() << PopTier() << "New data "<< fData << '\n';

You may want to use a TTieredTextBuffer outside of a TTest derived class:

void TBar::DoStuff(short foo) II This is NOT a derived class of TTest
{

}

TTieredTextBuffer cout;
cout << "Foo = " << foo;

If you are writing to a TTieredTextBuffer from multiple threads in the same task
concurrently, you must use a TChunkyTextBuffer.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FORAIX

1 1 2 CHAPTER 8 TEST FRAMEWORK

COMBINING TESTS

COMBINING TESTS

Using a script to run
multiple tests

Combining operations
in a single test class

You have three ways to group the tests you have developed:

% Write a script that performs multiple tests.

A script allows you to create groups of tests that run sequentially.

x Combine multiple operations into a single test class.

This approach allows you to use a single instance that allows you to test
several functions. Using a single TTest object allows the decision functions to
share code or member functions.

"' Group multiple TTest objects into a single test.

The approach allows you to run tests in a specific sequence or to run the tests
in a random order.

You can combine tests that need to run together as a group into suites. Each test
suite has a script associated with it that runs all the tests. This script is currently
an ASCII text file that usually calls RunTest many times.

Your TTest class can become very large and complicated if you try to test many
member functions in the Test member. A simpler way to test multiple member
functions inside a test class is to create a derived class of TTestMultiplexer.

TTestMultiplexer contains a number of decision functions. These decision
functions are methods analogous to the TTest::Test member function. They are
different in that they return a Boolean result rather than calling
TTest::SetSucces. A TRUE return value indicates success. Each decision function
has an associated text key. This key is used to select the decision function at
runtime.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

FIGURE 7
DERIVE YOUR TEST

CLASS FROM

TTEsTMUL TIPLEXER

IF YOU NEED TO

PERFORM MANY

OPERATIONS IN A

SINGLE TEST CLASS

CHAPTER 8 TEST FRAMEWORK 113

COMBINING TESTS

You cannot manipulate the member functions inside a TTestMultiplexer as if
they were subtests. However, using the TTestMultiplexer derived class allows the
decision functions to share code or members.

!1. TTest

TTestMultiplexer

TMyTest

To make your tests easier to understand you should name the decision functions
the same as the member functions. However, there is not always a one-to-one
correspondence between decision functions and member functions.

Each decision function decides whether the associated member function in the
target class works correctly. If some of the member functions in the target class
are overloaded, you must differentiate the associated decision functions in the
test class by giving them slightly different names.

You can use the TTestMultiplexer protocol to run all or some of the test class
decision functions.

This means you can write fewer TTest derived classes if you consolidate several
tests inside a single TTestMultiplexer derived class by placing the behavior of
each test inside a member function, called a decision function. The decision
functions can be executed by name using a text input to select the decision
function to be executed in Test.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

114 CHAPTER 8 TEST FRAMEWORK

COMBINING TESTS

Combining multiple
nest objects into a
single test

FIGURE 8
DERIVE YOUR

TEST FROM

EITHER

'ITESTSEQUENCE

OR TTESTSET TO

CREATE A GROUP

OF'ITEST

INSTANCES

Creating tests with
dependencies on
other tests

To make it easier to manage your instances ofTTest, use the TTestCollection
derived classes, TTestSet and TTestSequence, to group related TTest classes into
a single test. The resulting test passes only if all of its subtests pass. This approach
allows you to use your TTest classes individually.

In addition to providing the collection behavior, TTestCollection derived classes
allow you to:

w Define the order subtests execute

it Shuffle the subtests into new random order

rn Propagate inputs from the group to the subtests

A TTest

A TTe~tCollE!f!ti~n J

··----····.! ·····-

TTe~t~~~~~c~. J TTestSet

Every test in a group's collection is owned by the group. That means when a
group is destroyed every test in the group's collection is also destroyed.

You can create tests that have different behavior depending on the outcome of
other tests. For example, TSecondTest only works if the system is in a state that is
only achieved if TFirstTest is run and passes.

To allow this, place TFirstTest, then TSecondTest inside a TTestSequence. When
the TTestSequence executes, the subtests run in order. If a subtest fails, the
remaining subtests do not run. This behavior can be switched on and off.

To ensure that your test has everything it needs to run, check the prerequisites by
overriding Setup, and if you can't run a test, then throw an exception in Setup.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 8 TEST FRAMEWORK l 1 5
IDENTIFYING WHAT A TEST DOES

IDENTIFYING WHAT A TEST DOES

PRELIMINARY

You can retrieve various types of meta-information, including the purpose of a
test and the name of the class being tested, using the Copylnfo member function.

Associated with each test clas~ are meta-information key-value pairs in a
dictionary. This supports categorization of different kinds of tests and analysis of
large numbers of test results.

void TTestTestMultiplexerTest::Copylnfo(TDictionary& infoDict) canst
{

infoDict.AddKeyValuePair(new TStandardText(kDescriptionKey), new TStandardText(
"A test for the TTestMultiplexer::Test member."));

infoDict.AddKeyValuePair(new TStandardText(klnputSyntaxKey), new TStandardText(
"TTestTestMultiplexerTest [-p <keyword> I -i <keyword ... >]"));

infoDict.AddKeyValuePair(new TStandardText(kTargetClassKey), new TStandardText(
"TMultiplexerTest"));

infoDict.AddKeyValuePair(new TStandardText(kTargetSharedlibraryKey), new
TStandardText(

"Testlib"));
}

You can print a test in a textual form in order to browse a collection of tests
before or after the tests are run.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

116

ION PRELIMINARY

PRELIMINARY

CHAPTER g

RuNTEsT

One of the primary benefits of the Test environment is a uniform protocol for
running tests. The ability to derive all tests from the abstract base class TTest
provides this capability. Test framework users need not write applications to run
their test-the program Run Test runs all tests derived from TTest.

Run Test provides the ability to instantiate a derived class of TTest in a newly
created task, or in another task.

When you start Run Test, you must give at least one of the three options -test, -log,
or -start. In addition to these options, Run Test also understands the options of
TTest::CreateTest. CreateTest options specify what test to run. RunTest options
specify how the test is to be run.

You can also create a script that launches RunTest multiple times to group your
tests into a suite of tests.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

I I 8 CHAPTER g RuNTEST

PERFORMING A TEST

PERFORMING A TEST

Testing an interface
inherited from a
base class

To perform a test:

D Make sure that your tests are compiled and linked into a shared library.

fJ Launch the Run Test application that runs a test, giving the name of the test
class and the name of the shared library containing that class.

For example, You can launch Run Test from the console in order to execute a test
named TMyTest in a shared library named TMySharedLibrary with the following
command line. The -e d option increases the echoing level to "detail."

> RunTest -t TMyTest TMySharedlibrary -e d

Run Test passes to your test as arguments any command line arguments following
the -o option. For example, in order to pass the options called full and 1 to
TMyTest:

> RunTest -t TMyTest -1 TMySharedlibrary -e d -o full 1

You can define the target of a test either in the test class or as a parameter to the
RunTest program.

To test class TMyClass, write TMyClassTest, which contains an instance of
TMyClass as its target. You can attach this instance in your TMyClassTest::Setup
member function.

To allow polymorphic testing, use -target option ofRunTest. For example, if you
later make a derived class ofTMyClass called TMyClassSubclass, then you can test
it using TMyClassTest with no recompilation by typing:

> RunTest -test TMyClassTest MyClassTestlib -target TMyClassSubclass MyClassSubclassLib

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER g RuNTEST 119

PROVIDING INPUT FOR A TEST

PROVIDING INPUT FOR A TEST

Parsing text inputs to
a test

Inputs to a test are textual (TText) so you can easily specify them in an
application and so that a script interpreter can handle them.

A log contains a test's original inputs, which allows you to repeat tests with any
inputs that cause a test to fail.

Pass input to a test as a collection of TText objects using Setlnputs. These TText
objects must be parsed, much like argv inputs to a main are parsed in an ANSI C
program. The advantage of this method is that any application can pass inputs to
a test, and inputs can be accurately logged after a test is run.

To see what text arguments a test requires, use TTest::Copyinfo to retrieve meta­
information about a TTest derived class, including the input argument syntax.

If a test cannot function with a given set of inputs, it can fail with a diagnostic
about unreasonable inputs.

To parse the inputs to the test, use the TTextArgumentDictionary class.
TTextArgument takes as input an ordered collection of TText objects and parses
the TText objects as arguments on a command line, forming key-value pairs.

TTextArgumentDictionary is a support class that is not specifically tied to TTest.

A leading hyphen character identifies keywords. Anything without a leading
hyphen is a value argument. Keywords pick up the following argument ifit isn't
another keyword. For example, the next table shows how the command line
input to a test is parsed.

Command line input:

-foo -bar squall8 forkl spoon -ccc 84 85

Dictionary entries:

Key Value

-foo

-bar squall8

fork1

2 spoon
-CCC 84

3 85

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

120 CHAPTER g RuNTEST

PROVIDING INPUT FOR A TEST

Note that:

rn All key and value objects are TText objects (actually, a concrete derived class
ofTText).

rn The value associated with -foo is an empty TText, not NIL. This allows clients
to distinguish "There is no -foo keyword" from "There is a -foo argument
with no associated value."

m The -bar argument picks up the following argument, squall8, as its value.

rn Arguments forkl, spoon, and 85 have no associated keyword argument and
are assigned keys of 1, 2, and 3, in the order in which they appear in the
input collection. These keys are TTexts not numeric values.

You can specify that certain keywords never take value arguments. Such keywords
are called naked options.

You can also specify that certain keys can take more than one argument. These
are called multiple-value options. Another example follows where-xis defined as
a naked option and -values and -libs are defined as multiple-value options.

Command line input:

-g 40 -x 43 -values 1 4 33 -z 4 -libs Foo Bar

Dictionary entries:

Key Value

-g 40

-x

43

-values 1, 4, 33

-z 4

-libs Foo, Bar

Note that:

m Even though-xis followed by a value, because it is a naked option, it does not
take the value. Instead, the following value is taken to be a key-less option.

rn The -values and -libs arguments are able to take more than one value,
because they have been specified to be multiple-value options.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

RuNTEST OPTIONS

RunTest Option

-a[sync]

-d[ebug]

-i [nteractive]

-lo[g] on I off

-m[achine] name

-n numberOfRuns

-o{ptions]

-s[erver] [name]

-st[art]

Description

Run test asynchronously, do not wait for test completion.

This option applies only if -s or -m is given as well.

CHAPTER g RuNTEsT i 2 i

RuNTEST OPTIONS

When running tests on a server, RunTest normally makes a synchronous call. If you
specify -a, RunTest instead queues the test on the server and returns immediately.

RunTest breaks into the debugger just before calling the Tiest::Run member function of
the test.

By default, tests are not interactive. They do nothing that requires human interaction (no
dialog boxes, no breaks into the debugger). If you give the -i flag, the test is set to
interactive mode, and is then able to do user interactions.

Run Test turns global logging on or off for this machine. This affects all subsequent tests
that are run with RunTest on this machine for this session, starting with the current test.

RunTest runs the test on the named machine. This is functionally similar to specifying -s
directly on the remote machine.

The -n option specifies the number of times the test is to be run.

Ignores any arguments following -o and passes them to the nest object by calling
Tiest::Setlnputs.

Run the test within another test server. The server must be specified by the server name.
If you do not give a name, RunTest uses the named server RemoteTestServer
communicating through message streams.

RunTest starts the test server in its own task and remains active indefinitely (normally
RunTest terminates immediately after test completion). You must specify the -s option
with a server name. This server name uniquely identifies the test server.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

1 2 2 CHAPTER g RuNTEsT

STOPPING A TEST

CreateTest options
interpreted by RunTest

-t[est] class library

-e[cho] hlglnldlD

-ta{rget] class library

STOPPING A TEST

Description

The TTest derived class to be instantiated and the shared library of the class. CreateTest
instantiates an object of class class using the default constructor.

CreateNewObject cannot instantiate the test by name if the derived class has either an in­
line default constructor or a compiler-supplied default constructor.

Set detail of diagnostic output: headline, general, normal, detail, Debug.

This option specifies the echo level for printing the diagnostic output from the tests.

TTest::OutputTextStream selectively echoes text to the console depending on the echo
level.

Specify the class and shared library to be the target of the test. Instantiates an object of
the class using the empty constructor. Use this option when the test you are running
requires that the caller setup the target before the Run member function is called.

To stop a test from inside the test, raise an exception-any exception that you do
not catch yourself. This is caught by the Test framework and terminates the test.
This also causes your test to fail, because all tests that terminate by exceptions are
defined to fail.

To stop a test from outside a test, you must terminate the task running the test.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER g RuNTEST 123

EXAMINING TEST RESULTS

EXAMINING TEST RES UL TS

Collecting timing
information

PrintTestReport gives you the ability to see the test results for tests that have been
logged using the -log option in Run Test. PrintTestReport accepts the following
options on the console command line:

-e[cho] hlglnldlD

-f[ail]

-tile fileName

-k[ey] key[value]

-p[ass]

-s[ummary]

Set detail of diagnostic output: headline, general, normal, detail, Debug.

This option specifies the echo level for printing the diagnostic output from the tests.

Show failing tests only. By default, prints all tests that have been logged.

Use the log file fileName.

Specify a key and a value to retrieve a more specific subset of the tests.

For example, you could search the log for all tests with key= kTargetSharedlibraryKey
and value= HighlevelToolBox, to retrieve all tests run on high level Toolbox. Define the
key-value pairs for a test in the Copy Info member function.

Show passing tests only. By default, prints all the tests that have been logged.

Print a summary for all the tests that were logged. The summary includes the total
number of tests, the number of tests that passed, and the number of tests that failed.

Tests run for a finite amount of time. You can analyze the total elapsed time to
run a test to conduct performance testing.

You can also identify the times when a test started and stopped to determine if
tests are running concurrently and might affect each other.

HANDLING EXCEPTIONS

If a software exception occurs in the Test member function, the Test framework
catches the exception and handles it.

To be notified when an exception occurs, override TText::HandleException,
which is called whenever an exception is caught.

If a hardware exception or fault occurs in the Test member function, a
monitoring task can terminate the task running the test.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

Chapter10
Getting started

Chapter 11
Using SNiFF+

Chapter 12
Basic Elements ... :; ... 169 ..

Chapter 13
SNiFF+ subsystems ... '.L, 185

Chapter 14
Customizing your environment

Chapter 15

Support for other functiQPlk,NlL'':::: 249

TALIGENT (i:,ONFIDENTIAL: REGISTERED INFORMATION LIMINARY

Appendix B
GNU Regular E

Appendix C
ETRC file entries

SNIFF+ GUIDE

Copyright© 1994 Taligent, Inc. All rights reserved.
Copyright © 1994 takeFive Software, Inc. All rights reserved.

This manual is copyrighted. Under the copyright laws, this manual may not be
copied, in whole or part, without prior written consent of Taligent or takeFive.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c) (I) (ii) of
the Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

This product may be protected by one or more U.S. and International Patents.

TRADEMARKS: Taligent and the Taligent Design Mark are registered
trademarks ofTaligent, Inc. SNiFF+ is a trademark oftakeFive Software, Inc.

ION PRELIMINARY

INTRODUCTION

CHAPTER 10

GETTING STARTED

NOTE This documentation is work in progress.

':P The tutorial uses ET++ instead of Taligent examples.

w Cross-references have not all been updated and the chapters have not been
edited.

rn References to the license file do not apply.

If the SNiFF+ instructions appear to contradict information in earlier parts of the
Taligent Tools for AIX, follow the information in the earlier chapters.

The SNiFF+ TM open environment provides browsing, cross-referencing, design
visualization, documentation, and editing support. It delegates compilation and
debugging to any C++ compiler and debugger of choice.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

128 CHAPTER 10 GETTING STARTED

ABOUT SNIFF+ DOCUMENTATION

ABOUT SNIFF+ DOCUMENTATION

Time needed to work
through this manual

Examples used
throughout this
manual

Feedback

The SNiFF+ documentation set consists of the following chapters:

w Getting Started

m Using SNiFF +

n Basic Elements

n SNiFF + subsystems

m Customizing your environment

"Getting Started" and "Using SNiFF+" provide step-by-step introduction to
SNiFF+. Using a real-world software system, they guide you through the various
tools and show you how to use them efficiently.

Both newcomers to C++ or programming environments and experienced
programmers should read the first two tutorial chapters to learn about the
underlying principles and provides background information important using
SNiFF+ tools.

The remaining reference chapters provide a complete and concise description of
all SNiFF + tools and menus.

To only read the two tutorial chapters, you will need around 1 1/2 hours. To
work through and follow all steps in front of a workstation, you will need roughly
3 hours.

All examples are taken from the ET++ public domain class library, whose source
is part of the SNiFF+ software distribution. ET++ is an object-oriented application
framework developed by University of Zurich and the UBILAB of the Union
Bank of Switzerland.

Experts know that ET++ is well designed and has a clean object-oriented
programming style. The core library without examples has around 250 classes
and has ca. 80K lines of code. SNiFF + itself was built on top of an internal version
of ET++.

Using ET++ as the basis for this manual allows you to get familiarized with SNiFF+
in a context that is very close to real-world software projects.

Feedback is always very welcome. Send feedback to our e-mail address:

sniff@takeFive.co.at

Send feedback on class and member descriptions to Taligent.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Terminology

Typographical
conventions

PRELIMINARY

CHAPTER 10 GETTING STARTED 129

ABOUT SNIFF+ DOCUMENTATION

Before starting the actual description of SNiFF+ it is important to explain the
meaning of some frequently used terms.

While SNiFF+ is a tool, it provides different kinds of tools itself. To simplify
the text, we use the term tool for all tools SNiFF+ provides.

n The exact distinction between the terms editor and browser has been
blurred so much that they are sometimes used as synonyms. We use the term
editor (e.g., the Project Editor) when we talk about a tool that is used for
both viewing and changing data. We call a tool a browser (e.g., the Symbol
Browser) when it is used for viewing only. All tool names are capitalized.

NOTE The Documentation Browser can change data when editing is
engaged (see "Documentation Browser" on page 224).

A programming environment deals with source code from which it extracts
information, which it represents in several ways. This information consists
mainly of data about declaration, definition, and use of named program
elements such as classes, methods, variables, and functions. We call a named
programming language construct a symbol. The repository where SNiFF+
stores the information about the symbols defined in a project is called
symbol table.

"" Tool names, window names, and menu names start with capital letters.
Examples: Symbol Browser, File dialog, Icon menu.

;t Menu entries are enclosed in double quotes.
Example: Menu entry "Mark classes defining methorl'.

+ Placeholders for names of symbols, selections, or other strings are printed in
italic.
Example: Menu entry "Mark classes defining methorl'.

M Code examples and inputs that have to be typed in by the user are printed in
monospace typeface.
Example: Type in: This text has to be typed in by the user.

"' Special keys are printed in Courier typeface with enclosing'<>'.
Examples: <Ctrb, <Enter>, <Alt>.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

130 CHAPTER 10 GETTING STARTED

BASIC SNIFF+ CONCEPTS

BASIC SN1FF+ CONCEPTS

Main tools

Information extraction

The main goal in developing SNiFF+ was to create an efficient and portable C++
programming environment that makes it possible to edit and browse large
software systems textually and graphically. Much emphasis was placed on run­
time and memory efficiency and o'n a comfortable user interface.

A running version of SNiFF + consists of two operating system processes, the
information extractor and the programming environment itself. The
information extractor can run locally or on any node on a network. Its task is to
extract information about definitions and declarations from the source code.

The programming environment consists of a number of tools that are organized
around a kernel consisting of the symbol table and the project manager. Both the
symbol table and the project manager organize information in main storage for
use by browsers and editors.

The symbol table manages the information about symbol definitions and
declarations, and the project manager manages the information about open
projects, such as the source files they consist of and various attributes.

The SNiFF + information extractor is a fuzzy C++ parser. This means that it
understands enough about C and C++ to extract the information of interest
without having to understand C++ completely. This approach makes it possible to
parse every file only once without including header files and expanding macros.

Not expanding macros is somewhat controversial because it could result in a loss
of information if macros are used to change the syntax or semantics of C++.
Experience with real projects shows that this is not a problem. Not expanding
macros means that the symbolic information corresponds exactly to the locally
visible source code. This is frequently an advantage, for example, when macros
are used to put unique prefixes in front of all class names.

The SNiFF+ information extractor extracts information about declarations and
definitions of C++ language elements and macros. It does not extract
information about the usage of symbols. This information is extracted on the fly
with the Retriever.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Updating information

Project concept

Browsers and editors

Symbol Browser

Class Browser

Hierarchy Browser

CHAPTER 10 GETTING STARTED 131

BASIC SNIFF+ CONCEPTS

If the source code of a project is edited, the information about the location of the
affected symbols is updated immediately. On saving a file, its symbolic
information is extracted anew and all browsing tools are updated. A user,
therefore, always works with symbol-based tools presenting information that
correctly mirrors the source code without ever having to bother about the effects
of changes. This updating is done only if the SNiFF+ Editor is used

NOTE If the source files are changed with external editors (e.g., vi), SNiFF+'s
symbol table is updated next time the file is read.

To start working with SNiFF+, a developer has to define a project. A project
consists of a set of source files and, possibly, a set of subprojects that can be
shared among projects. A subproject is a complete project on its own.

A typical project structure for a program building on a class library is to have a
root project containing the project-specific (application-specific) source files and
to load the library project as a subproject. Library projects are frequently trees of
projects themselves.

Whenever a project is opened or a file or a subproject is loaded into the current
project, its source code is analyzed and the information about the symbols
defined therein is stored in the SNiFF+ symbol table.

NOTE Software systems (like InterViews) that store implementation and
header files in different directories can be handled best with SNiFF+ by creating
separate projects for the implementation files and for the header files. The
Implementation file project is then loaded into the header file project as a
subproject.

Once a new project is defined with the Project Editor or an existing project is
opened, it can be browsed and edited in different ways.

The Symbol Browser provides an overview of symbols defined in the source code;
it displays the results of queries sent from other tools (e.g., "list all symbols
matching a certain name").

The Class Browser can be used to browse through the locally defined and
inherited elements of a class.

The Hierarchy Browser displays the inheritance hierarchy and visualizes queries
such as "mark all classes declaring method Add()".

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

132 CHAPTER 10 GETTING STARTED

BASIC SNIFF+ CONCEPTS

Retriever The Retriever can be used to obtain information about where a certain symbol is
used in the source code (i.e., cross-reference information). The Retriever is a
text-search-based tool. It makes it possible to extract all occurrences of strings
matching the name of a symbol (or any regular expression) in a set of projects
and to apply semantic filters to the matches.

Editor SNiFF + has two possibilities for editing:

Documentation Browser

rn The integrated Editor is a mouse- and menu-driven Editor. It understands
C/C++ syntax, provides browsing support, and automatically highlights
structurally important information such as class names, method names, and
comments. When a source file is modified, it is possible to trigger its
compilation from the Editor and to mark the source lines where the
compiler found syntax errors.

m The Emacs 19 editor has symbol highlighting. This manual uses the
integrated Editor for all examples. Please refer to "Emacs integration" on
page 250 for a description of how to integrate Emacs.

The Documentation Browser lets you view and edit class and member
descriptions.

Shortcuts The complete functionality of SNiFF + is provided in the menus of the various
tools. To speed up the work, especially for experienced users, SNiFF + provides
three different types of shortcuts to allow faster access to the commands found in
menus.

ITT Keyboard shortcuts are issued by holding down <Alt> of your keyboard and
pressing the key that is shown at the right of a menu entry. Throughout this
manual we work with the menus rather than keyboard shortcuts for
command selection. Some frequently used shortcuts are:

u <Alt>C for copy

ru <Alt>V for paste

w; <Alt>B for browse class

m Mouse shortcuts are issued by double-clicking with the mouse on entries in
lists or selectable items. Throughout this manual mouse shortcuts are used
wherever possible. Some frequently used shortcuts are:

m Editing the source of a symbol by double-clicking on it in the Symbol
Browser

w Jumping to the source location of a variable by double-clicking on it in
the Class Browser ·

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Fast positioning in lists

PREREQUISITES

Installation

Checking the
environment

$SNIFF_DIR

CHAPTER 10 GETTING STARTED 133

PREREQUISITES

v Deep clicks are issued by holding down the <Ctrl> key and pressing the left
mouse button. Some frequently used deep clicks are:

Switching from the declaration of a symbol to its implementation by
<Ctrl>clicking on the symbol in the symbol list of the Editor

n Restricting the information shown in the list of a Symbol Browser by
<Ctrbclicking on the checkbox of a project in the project tree view

"' Showing methods of only one class in the Class Browser by <Ctrbclicking
on the class in the inheritance graph view

Pressing a key while the mouse pointer is over a list will position the list to the
first entry whose name starts with that letter.

The following sections describe how the environment must be for you to use this
manual and run SNiFF+ successfully.

The SNiFF+ product package is installed automatically when the entire Taligent
product is initially installed. The source directory for all SNiFF+ files is
$TALIGENTROOT /$TOOLS/SNi FF. For more information regarding the installation,
see the Taligent installation guide or ask your system administrator.

SNiFF+ needs two environment variables. The environment variables should
already have been set by your system administrator. The following instructions
show you how to verify their values, and to correct them if needed. If the
variables are not set correctly, you set them in your . login or . cshrc file.

NOTE The environment variables and license file are set as part of the
installation procedure. Use the following settings for reference-you should not
need to complete the procedures.

In the shell type

ls $SNIFF_DIR

If you see a list of files containing bin, examples, doc and some others then the
variable is set correctly.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

134 CHAPTER 10 GETTING STARTED

PREREQUISITES

$PATH

$LM_LICENSE_FILE

Copying the example
files to your local
directory

If not, set the variable by typing in the shell

setenv SNIFF_DIR <sniff_directory>

SNIFF_DIR=<sniff_directory>; export SNIFF_DIR

where <sniff_directory> is the root of the directory tree of your SNiFF +
installation. You can get the location from the Taligent installation guide or the
person who installed the Taligent product (normally the system administrator).

In the shell type

echo $PATH

If you can see <sniff_directory>/ bin somewhere, then it is OK.

If not, set the path by typing in the shell

set path = ($SNIFF_DIR/bin $path)

PATH=$SNIFF_DIR/bin:$PATH; export PATH

NOTE You will not be able to compile and debug the example applications in
this manual. Therefore the executable search path does not contain compiler or
debugger names.

NOTE $ LM_LICENSE_FI LE is set automatically by the Taligent installation
procedures. The following information does not apply to Taligent users.

The $LM_LICENSE_FILE variable has to point to a valid license file.

The license file can also be specified with the -c command line option of sniff.
The following setting shows a configuration where the license file is located in
the SNiFF + installation directory:

setenv LM_LICENSE_FILE <sniff_directory>Jlicense.dat

LM_LICENSE_FILE=<sniff_directory>Jlicense.dat;
export LM_LICENSE_FILE

You have to copy the example source files to your home directory because you
will modify them during the following sessions.

In the shell type

sniff_copy_example

This shellscript creates the directory-/filebrowser and copies the files into it.

(for csh)

(for sh or ksh)

(for csh)

(for sh or ksh)

(for csh)

(for sh or ksh)

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 10 GETTING STARTED 135

STARTING THE SNIFF+ TOOL.

STARTING THE SN1FF+ TOOL.

SNiFF+ command line The command line syntax of SNiFF+ is

sniff [-c <license_file>J [<project_file>J

where the optional <project_fi 1 e> is the name of an existing SNiFF+ project file
and <l i cense_fi 1 e> points the license file to be used. Please refer to the
Installation Guide for more information on licensing issues.

Starting SNiFF+ from In the shell where you checked the environment variables type
shell

sniff

or

sniff &

SNiFF+ should come up and you should see the empty Workspace Manager
window:

Icon menu

After yo1.1. coniplete · t~e tut9.ria.I

;y'ou canbpel1 and browsetheTaligent
SNiFf.+pfqjects.•
Taligent,pro[i.st@e.TaHgentAPJ··interfac~s

Prqject;

Menu bar

__ __,.,___ List of projects

(currently empty)

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

136 CHAPTER 10 GETTING STARTED

CREATING A NEW PROJECT

CREATING A NEW PROJECT

Creating the
filebrowser project

In this section you will create the filebrowser project, load the already existing
source files into SNiFF +, and add the ET++ project as a subproject. The ET++
project is loaded as a subproject because the filebrowser project is based on
ET++.

D Choose "New ... " from the Project menu of the Workspace Manager.

A Directory Dialog is opened, prompting you for directory where the source
files of your project are located.

fJ Select the -/fi l ebrowser directory in the file list by clicking on it.

You can navigate either using the file list of the Directory dialog, by clicking
at the directory pop-up menu, the Directories menu, or by manually typing
in the directory name.

Opens the
current
directory

l.____ Selects the
current directory

--- Directories menu remembers the history of
selected directories.
Options menu can be used to create a directory

--- Directory pop-up menu
allows you to go up in hierarchy

-- ---------------------- List of directories
Pressing a letter on the keyboard positions
the list at the first entry whose name starts
with that letter.
The PageUp/PageDown keys also scroll the
list

TALIGENT TOOLS FORAIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

CHAPTER 10 GETTING STARTED 137

CREATING A NEW PROJECT

NOTE Each Directory dialog and File dialog expands C-shell metacharacters
such as '-' (for the home directory) or environment variables (for example,
$SNIFF _DIR).

ID Press the Select button (If you are in the directory and can see the source
files, type'.' and press the Select button).

D Press "Yes" to load all C/C++ files located in the directory.

A Project Editor is opened, all sources files are parsed, and the symbolic
information is loaded into SNiFF+.

After the files are loaded you are asked whether to save the yet untitled project.

ml Press the Yes button.

A File dialog is opened, prompting you for the name of the project file.

Ill Position the mouse pointer on the text field of the File dialog and type in:

filebrowser.proj

61 Press the Save button or <Enter>.

NOTE A project file stores only structural information and attributes of your
project. No source code or symbolic information is stored there.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

138 CHAPTER 10 GETTING STARTED

CREATING A NEW PROJECT

Icon
menu

Tool is-­
reusable

Setting the project
attributes

The Project Editor should look like this:

Brow::.erDoc. C

Brow8erDoc. h
Browseritems c
Browseritems. h
BrowserView. C
BrowserView. h
ChangeDirDiag. C
ChIDgeDirDiag. h
filebrovrser. C
Preferences. C
Preferences. h
SharedDocObjects. C

Filter regular expression
currently allowing all files

Pressing the button shows locking and version
control information

List of files
determined by project tree settings and Filter

Layout Handle
allows modification of the size ratio between the two views

---'Se--- Project tree
showing the project structure and the attributes

~-·--------·-··---··------·-·...,,•--·- Show files in file list

~-----------m-- Link objects to target

Project is writable

Next you have to specify some attributes for this newly created project.

D Select the newly created project in the project tree by clicking on it.

fJ Choose "Attributes of Projectfilebrowser.proj" from the Project menu or
double-dick on the project in the Project tree.

A Project Attributes dialog is opened.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Defining the target name,
tab length, class prefix
and version control
system

CHAPTER 10 GETTING STARTED 139

CREATING A NEW PROJECT

Directory where SNiFF+ stores the generated
project-specific files

Important for debugging: class prefix of ET++

Command called on make requests

········ Underlying version control system

Path used for the version directory

··········· Object files should be linked to the
target

Project is not a library; files may be modified

The target name is important because SNiFF+ uses it to drive the compiler and
the debugger. The tab length has to be set to 8 because ET++ was developed with
that setting and the SNiFF + default value is 4 (see "Preferences" on page 2 31).

D Type filebrowser in the target field.

fJ Press the <Tab> key twice to set the keyboard focus to the tab width field and
type in 8.

1151 In the class prefix field type ET_.

NOTE In order to debug the example application, the class prefix field must
be filled out correctly

D Select "RCS" from the Tool pop-up menu of the Locking Parameters.
Another possibility is "SCCS", but Taligent does not use it.

m Press <Enter> or click on the OK button.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

140 CHAPTER 10 GETTING STARTED

CREATING A NEW PROJECT

Checking the source
files into the version
control system

You have chosen "RCS" as the underlying version control system. To work with
the version control features of SNiFF+, you have to check in the files.

D Press the "Show Locking" button.

The Project Editor changes its layout and shows the additional components
for the version control system.

fJ Press the "Select All" button.

All entries in the list are selected.

ID Press the "Check In ... " button.

A Log Message dialog is opened, prompting for a message to be stored with
the initial version.

D Type in In it i a 1 Version and press "OK".

The Project Editor should look now like this:

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

BrowserDoc. C secs
BrowserDoc. h SCCS

!WiffiW'ii~tc:l\~lil!'ilLC:?;'''' ,,,.,,,,,,,,,,,"'i~PQ$(

Browserltems. h
BrowserView. C

revision 1. 1

SCCS

SCCS

secs
secs

date: 1993/09 /03 14 35 · 41; author ch:ri:;; li:n
Initial version

Ill Press the "Hide Locking" button.

CHAPTER 10 GETTING STARTED 141

CREATING A NEW PROJECT

The Project Editor is switched back to the initial mode and hides the version
control information.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

142 CHAPTER 10 GETTING STARTED

CREATING A NEW PROJECT

Loading a subproject

Investigating the
attributes of the
ET++ subproject

The filebrowser is based on the object-oriented application framework ET++,
which is in the public domain and is also part of the SNiFF+ distribution. ET++
was already loaded into SNiFF+, so there is an already existing project file.

NOTE Project structures must be created bottom up; i.e., you can load a
subproject only if it is a SNiFF + project itself.

D Choose "Load Subproject. .. " from the Project menu of the Project Editor
(filebrowser.proj must still be highlighted).

Now you see the File dialog prompting you for the project file.

fJ Select $SN I FF _DIR/ examples/projects/ et. proj and commit.

The symbolic information for ET++ is loaded and the project tree of the
Project Editor shows the new project structure. Since ET++ itself has a
subproject called CONTAINER.proj, this structure is also shown in the
project tree.

D Select et. proj in the project tree.

fJ Choose "Attributes of et.proj ... " from the Project menu.

The Attributes Dialog for et. p roj is opened.

You are not allowed to change the parameters because et. proj is a frozen
project, meaning that no files may be modified. You can also see that the object
files of this project should not be linked to the target.

8 Close the Attributes dialog by clicking the "Cancel" button.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Examining the results

Saving the new project
and closing the Project
Editor

CHAPTER 10 GETTING STARTED 143

Now your Project Editor should look like this:

BrowserCmdNo. h
Br-owserDoc. C

BrowserDoc. h
Browseritems C

Browseritems. h
BrowserV1ew. C

BrowserV1ew. h
ChangeDirDiag. C
ChangeD1rD1a9·. h
filebrowser. C
Preference::-.. C

Preferences. h
SharedDocObj ects C
SharedDocOb] ect3. h

_J ____ Subproject of filebrowser.proj

---+i--- Subproject of the et.proj subproject

-------- Don't show files in file list

CREATING A NEW PROJECT

Don't link objects to target

~---------'%--- Project is frozen and may NOT be modified

If not, close the newly created project in the Workspace Manager and restart
from scratch.

The project creation is finished now and all that is left to do is to save the project
specifications to a project file. From then on the Project Editor is only needed
when the structure changes or attributes have to be edited.

D Choose "Save Project filebrowser.proj" from the File menu of the Project
Editor.

El Choose "Close Tool" from the Icon menu.

The only open window now should be the Workspace Manager.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

CHAPTER 11

USING SNIFF+

BROWSING SYMBOLS

Opening a
Symbol Browser

The handling of the Symbol Browser, the Class Browser and Retriever is very
similar. Therefore the common parts of the browsers are describedonce while
working with the Symbol Browser.

D Select the fi l ebrowser. proj in the Workspace Manager by clicking on it.

fJ Choose "Symbol Browser" from the Icon menu.

A Symbol Browser is opened listing all classes.

l!I Click on the et.proj check box in the project tree at the bottom of the
window.

The classes of et. p roj are now also listed.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

145

146 CHAPTER 11 USING SNIFF+

BROWSING SYMBOLS

Relation to the
source code

Icon -
menu

Tool is

batchinfo (struct· WindowPort.

Bit1oap

Bi tmapCache

Bitmapinfo

EitSet

Bit.Set.It.er

block

Border!tem

BoundedGommandProcessor

Box

BrowserApplication

Filter regular expression (currently allowing all symbols)

---- Type pop-up menu

List of Symbols
determined by type pop-up menu, Filter, and
project tree settings

·· -·· Layout Handle
allows modification of the size ratio between the two views

--··--·· Project tree
showing the project structure

~---------~.,__ __ Symbols are not shown in list

Filter also matches part of a word

Generally speaking, the Symbol Browser shows a list of symbols which is
determined by the type selector, the project tree, and a regular expression
matching the names of the symbols.

Every symbol of the list is defined in the source code. You can jump to the
position in the source code defining the symbol by double-clicking on it.

D Double-click on the symbol named Action Button.

An Editor is now opened, the source files are loaded, and the cursor is
positioned to the location defining/ declaring the symbol.

NOTE Pressing a key in a list will position the list to the first entry whose
name starts with that letter.

You will have a closer look at the Editor later.

fJ Select "Close Tool" from the Icon menu to close the Editor.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Project tree

Restricting information
shown in the symbol list

Constraining the
list with filters

Setting a filter

Resetting the filter

CHAPTER 11 USING SNIFF+ 147

BROWSING SYMBOLS

The project tree shows the hierarchical structure of the project the browser
belongs to. The check boxes in front of the project names determine if the
corresponding symbols are shown or hidden in the symbol list.

Symbols can be shown/hidden by directly manipulating the check boxes or
issuing a menu command after selecting a project entry.

D Switch the check box of the et. p roj on and off and watch the results.

El Choose "Select from all projects" from the Filter menu.

Now you see the classes of all projects, including the subprojects of et.proj.

l'I Click on the fil ebrowser. proj entry (not on the check box of the entry).
The entry should be highlighted.

19 Choose "Select From filebrowser.proj Only" from the Filter menu.

Only the classes of file browser. proj are displayed; the classes of all other
projects are hidden. A deep click (<Ctrl>click) on the entry (not on the
check box of the entry) gives the same result as the "Select from
filebrowser.proj only" command.

SNiFF + allows you to restrict the list of the browsers to entries matching a regular
expression. This feature is very helpful when many entries are in the list and you
want to focus only on a subset of them. The regular expression is also called a
filter and conforms to the powerful GNU regular expression syntax (see "GNU
Regular Expressions" on page 257).

Let us set a filter to view only classes starting with the letter B.

D Also view the classes of the et. proj by toggling the et.proj check box to on.

El Choose "Set filter ... " from the Filter menu.

A dialog pops up prompting you for the filter.

l'I Type in "Band press <Enter> (the'"' in front of the Bis correct and means
beginning of line).

You see that only classes beginning with B are listed.

Because regular expressions are a powerful tool to limit the amount of
information, they are also used in the Class Browser, in the Retriever, and in the
Find/Change dialog of the Editor.

• Choose "Reset filter" from the Filter menu.

All classes are listed now.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

148 CHAPTER 11 USING SNIFF'+

TOP-DOWN BROWSING

Type pop-up menu The Symbol Browser can show symbols of different types and macros. Besides
classes, you can look at functions, friends, variables, types, etc. Methods can also
be shown. (The list of methods can get very long, because it is a flat view of all
methods of all classes if not further constrained).

O In the project tree check the box of et. p roj to show its symbols.

fJ Try to show functions, macros, types, etc., by selecting different types from
the type pop-up menu.

151 Switch back to classes.

TOP-DOWN BROWSING

Viewing ActionButton
in the class hierarchy

Top-down browsing is when you have a symbol, e.g., a class, and you want to learn
more about its details and where and in what context it is used. Figuratively
speaking, you are coming from a more distant view of your system (you just know
that there is a class with that name) and are browsing down to the source code
(bottom) and greater detail.

You will study this type of browsing now with the class ActionButton. During the
following step-by-step tour you will start with the already familiar Symbol Browser
and make acquaintance with the Hierarchy Browser, the Class Browser, and the
Editor.

0 View all classes in the Symbol Browser (including classes from et. proj). You
can do this by switching on the check box of et.proj in the project tree.

fJ Select class ActionButton in the Symbol Browser.

151 Choose "Show Class ActionButton in Hierarchy" from the Class menu.

A Hierarchy Browser is opened showing the complete class graph and
focusing on the class ActionButton.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Icon
menu

Tool is
reusable

Too much information­
restrict information to
Action Button

CHAPTER 11 USING SNIFF+ 149

\~\·.,-.....Slider <·-:-_.-Panner

\1\\ "-·--... Scroll.Ba..cSlider
I,,\

~ \\\Menuf;orderitem

I '\\ ----~· Zoomer 11 \ Sc:rnller -==::::-__
11 1

~-..,__ Spli tScroller

\ \ TreeNode -- Ci.caphNode

' I Scroll.Ba . .cBt\tton I i; r@il#§AW#11~1n1
I //1 f; ,MenuButtonitem

\ { ,/ VObJ ec tButton

'But ton ((, Rad1 oBu tton

'"StateBu.tton t:-ToggleButton

\ /PopupButt•
\ /

, MenuButton ~ Pull.Dow:nB1 ,,
',

TOP-DOWN BROWSING

Normal class

Inheritance
relationship from left
to right

Abstract class
containing pure
virtual methods

D Try to get an overview of the class hierarchy and the inheritance path of our
class by scrolling around.

NOTE Although we use only single inheritance in our examples, the SNiFF+
tools also support multiple inheritance.

Loading all classes into the Hierarchy Browser allows you to get a good overview
of the complete class hierarchy. However, you will find it very hard to follow an
inheritance path up to the root without lots of scrolling. Therefore you will
restrict the view to ActionButton.

D Select the class ActionButton in the Hierarchy Browser (if it is not already
selected).

If) Choose "Show Class ActionButton in Restricted Hierarchy" from the Class
menu.

Now the view is restricted to show only the superclasses and subclasses of
ActionButton. All other classes are hidden. Since ActionButton is a leaf class,
no other classes inherit from it. The information you get is now too limited.
You get the best results for our purposes by restricting the view to the abstract
base class of ActionButton, namely Button.

NOTE All tools print abstract classes in italic.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

150 CHAPTER 11 USING SNIFF+

TOP-DOWN BROWSING

Too little information­
restrict information to
Button

Browsing the elements
of ActionButton-
the Class Browser

0 Select the class Button in the Hierarchy Browser.

fJ Choose "Show Class Button in Restricted Hierarchy" from the Class menu.

Now the view is restricted to show only the superclasses and subclasses of
Button. All other classes are hidden. This gives you a better picture of the
inheritance that leads to ActionButton and related classes.

/ Scr~llBarButton

1 · ActionButton F 1MenuButtonitem

jl' ~/ VObJectButton

VObfect --Composi teVObject -~mJ~~(\....~ //RadioButton

-.....,StateSIJtton ,.- ToggleButton

\\ / PopupButton

' / \MenuButton ~ PullDownBut

~MenuiterfL

This is the context of our class in terms of inheritance. You will return to the class
hierarchy later. Now you concentrate on the internals of ActionButton.

With the Class Browser you can browse the internal structure of a class (in this
manual local symbols of a class are called elements). The structure of the Class
Browser is very similar to the Symbol Browser.

0 Select the class Button in the Hierarchy Browser (if is it not already selected).

fJ Choose "Browse Class Button" from the Class menu.

A Class Browser is opened and the information about class Button is loaded.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Icon
menu

Visibility
white: public
gray: protected
black: private

Tool is
reusable

Structure of the
Class Browser

0 Bu.tton Button

D DoLeftButtonDo1:mC Button

0 DoTrack.Mouse B'utton

D Dr aw Hi ghli gh t But ton

D Flush Button

0 GetMinSize

D SetLabel

0 Set.Origin

Button

Button

Button

CHAPTER 11 UsINGSNIFF+ 151

TOP-DOWN BROWSING

Name of class being browsed

Filter regular expression (currently allowing all symbols)

Type pop-up menu

List of elements
determined by type pop-up menu, filter and inheritance
graph settings

Layout Handle
allows modification of the size ratio between the two views

Inheritance Graph
showing the inheritance path with all superclasses

Don~ show local elements in list

All elements are shown, including overridden ones

The Class Browser lists the elements of the current class identified by the element
name and the name of the class defining the element. The small squares in front
of the name show the visibility of the element

n White is public.

n Grey is protected.

m Black is private.

Like the Symbol Browser, the Class Browser also has a type pop-up menu. Here
you can choose among methods, instance variables, friends, types, or local
enumerations of the current class. The list can be filtered with a regular
expression.

Where the Symbol Browser has a project tree, the Class Browser has an
inheritance graph reflecting the inheritance path. Each class can be toggled on
or off individually.

• Check the box of class CompositeVObject in the inheritance graph.

You will recognize that not only the methods of class Button are displayed
but also of class CompositeVObject.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

152 CHAPTER 11 USING SNIFF+

TOP-DOWN BROWSING

What overrides what?

Hiding overridden
methods

Studying protocols

• Choose "Select From All Classes" from the Filter menu.

Now you have a completely flat view of the class Button including all
overridden methods. Each entry in the list shows the method name and the
class defining the method. So you see what overrides what. Method Add, for
example, is introduced in VObject and overridden in CompositeVObject.

A completely flat view of the class is not always useful. Sometimes you want to see
just the interface of the current class, hiding all the methods that are overridden.

• Press the button labeled "hide overridden" at the bottom of the Class
Browser.

Now only the client interface of the loaded class is visible.

Very often when browsing software systems you would like to know what overrides
a certain method. SNiFF+ supports that type of protocol browsing by combining
the Class Browser and the Hierarchy Browser.

0 Load the class Button into the Class Browser (if it is not already there).

You can do this by loading it from either the Hierarchy Browser or the
Symbol Browser.

fJ Select method Button:: GetMi nSi ze.

You can do this either by scrolling or by pressing the key 'G' (which positions
the list to the first method starting with G).

II Choose "Mark Related Classes Defining GetMinSize" from the Class menu.

The Hierarchy Browser is opened and all classes related to Button are
loaded.

All classes displayed in boldface override the method GetMi nSi ze. The Hierarchy
Browser informs you about the marking in the status line.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Viewing the source code

CHAPTER 11 UsINGSNIFF+ 153

1 ScrollllarButton

/~ ActionButton

I/ 1. Mem1Buttonltern

ill,.,/
/ 1 VObj ectButton

t / _/

''Object -- c:omposi tevob_iect --'.88,f.."' ;;:<.:/. RadioButton

" StateButton ~ TogqleButton

\ / PopupButt011

\ MenuButton (--PullDownBut

~_....._ Menuitern

TOP-DOWN BROWSING

Marked class
overriding
GetMinSize

Not defining
GetMinSize

Semantics of
marking

By selecting boldfaced classes in the Hierarchy Browser, you can view the source
code of the overridden methods.

D Select ActionButton.

fJ Choose "Edit Method GetMinSize" from the Hierarchy menu.

An Editor is opened, class ActionButton is loaded, and the cursor is
positioned at the method implementation.

IJ Try to look at the implementation of GetMi nSi ze of some other classes in the
Hierarchy Browser.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

154 CHAPTER 11 USING SNIFF+

BOTTOM- UP BROWSING

BOTTOM-UP BROWSING

Studying the method
GetMinSize

- read-only
- not modified
- modified
currently: r/o

Symbol names
are printed in
bold

Tool is

Bottom-up browsing is when you start from the source code and you look at a
symbol, e.g., a variable, and you would like to know more about its declaration
and definition.

Figuratively speaking, you are coming from a special-usage context (source code,
therefore bottom) and are browsing up to its declaration (higher view).

You will study this type of browsing, continuing where you stopped in the last
section, namely with the implementation source code of
ActionButton:: GetMi nSi ze.

During the following step-by-step tour you will start with the already familiar
Editor and make acquaintance with the Retriever.

D Load the source of ActionButton: : GetMinSize into the Editor (if it is not
already loaded). You can do that from the Class Browser, the Hierarchy
Browser or the Symbol Browser.

fJ Study the method.

You see that the variable gLook is used in the context of a method call.

Metric ActionButton: :jl~O
{

if (TestFlag (eActionDefaultButton))
return gLook->DefaultButtonLayout()->GetMinSize (this);

return gLook->ActionButtonLayout() - >GetMinSize (this) ;

void ActionButton: :Drawinner(Rectangle, bool highlight)
{

int code= 0;
if (Enabled())

SETBIT(code, 2) '
if (highlight)

SETBIT(code, 3);
if (TestFlag(eActionDefaultButton))

gLook- >DefaultButtonLayout () - >Adorn (this, contentRect,
else

gLook- >ActionButtonLayout()->Adorn(this, contentRect, c

Class pop-up
menu either
shows all
classes or only
one class
(current setting)

Symbol list
defined by class
pop-up menu
(clicking on a
symbol
positions the
cursor)

Layout Handle
allows
modification of
the size ratio
between the two
views

TALIGENT TOOLS FORAIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

What is glook?

Browsing the
declaration of glook

Continued browsing­
what is Look?

Going back in history

CHAPTERll UsINGSNIFF+ 155

BOTTOM- UP BROWSING

D Double-click on the name gLook in the Editor.

fJ Choose "Find Symbols Matching gLook" from the Info menu.

SNiFF+ opens a Symbol Browser and tries to find a symbol of any type
matching gLook.

The Symbol Browser finds one symbol of type variable matching gLook. If there
were any matches for other types, too, you could see this by clicking on the type
pop-up menu. If no other entries are enabled, there are no other matches, which
is the case for gLook.

• Double-click on gLook in the Symbol Browser.

The source code declaring gLook is loaded into an Editor. gLook is a global
variable and refers to an object of class Look. Now you should learn more
about Look.

D Select Look in the Editor by double-clicking on its name.

fJ Choose "Browse Class Look" from the Class menu (the entry is enabled
because SNiFF + knows that Look is a class).

The class Look is loaded into a Class Browser.

11!1 Load the source code of some methods of Look into the Editor by double­
clicking on entries in the Class Browser.

D Close the Class Browser.

After browsing a lot, you seem to be lost somewhere in the source code. Didn't
you start originally from the usage of variable gLook somewhere in
ActionButton? Nowyou need the history feature ofSNiFF+.

D Click on the History menu of the Editor.

What you see in the pull-down menu are all the locations in the source code
of our system you have visited during the browsing session.

fJ Choose "gLook (Look.C)" from the History menu.

The Editor jumps back to the declaration of gLook.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

156 CHAPTER 11 USING SNIFF+

BOTTOM- UP BROWSING

An alternative to the
history mechanism­
tool locking

Where glook is used­
the Retriever

Retrieving glook from
all projects

There is an alternative to jumping back and forth in just one Editor. By default
every tool is reusable; that means whenever SNiFF+ needs a tool, it searches for
an open tool of that type and uses it for the request. It opens a new tool only if
there is no tool available. This feature prevents screen cluttering and too many
open windows.

You can lock any tool of SNiFF+ against automatic (re)usage by releasing the
"reusable" button in the status line. This feature is useful when writing code and
simultaneously browsing two or more source files. Any browsing request will then
open a new Editor.

D Release the "reusable" button of the status line of the open Editor.

fJ Double-click on any symbol in the Symbol Browser (currently only gLook is
loaded, but you can load all classes into the Symbol Browser by choosing
"class.*" from the History menu).

A new Editor is opened, leaving your locked Editor untouched.

NOTE You can have as many instances of a tool as you like. After you lock a
tool, SNiFF+ will not reuse that tool, but will open a new tool on a browsing
request. It is good "SNiFF+ing style" to work with as few tools as possible

In the previous session you started from ActionButton: : GetMinSize and browsed
the variable gLook.

Now you want to know where else in our software system this variable is used. The
Retriever is a tool that allows you to find any matches in the whole project.

• Load the declaration ofgLook into an Editor (if not already there).

You can do this by double-clicking on gLook in the variable list of the Symbol
Browser.

D Double-click on gLook in the Editor.

fJ Choose "Retrieve gLook From All Projects" from the Info menu.

After a few seconds a Retriever is opened and the usages of gLook in our
project, including all subprojects, are listed. This is too much information
for us. Let's restrict the list to the places where gLook is assigned a value

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

Icon
menu

Also
search this
project

Tool is
reusable

CHAPTER 11 USING SNIFF+ 157

BOTTOM-UP BROWSING

Menu. C

Menu. C gLook

Bm:. C gLool:

Box. C gLook

Text! teJR. C gLook

Look. C gLook

Look. c gLook

Look. C gLook

Ima.ge I tenL C gLook

WindowSyatem. C gLook

gLook- >MenuitemLayout () - >SetO:c1gin (this, at;1;

gLook- >Menu.ItemLayout () - >Adorn (this.. contentRe1

Metric m (gLook- >Sa .. 3hLayou.t () - >GetMinSize (this)

gLook.->SashLayout()->Adorn(this, r:, 0);

GrShowString (font, Enabled() ? ginkBlack

Lool: *gLook;

g·Look= looks [currentlook] ;

gLoo'k= looks [currentlook] ;

GrPa.intBitMa.p (contentF.ect,

l= title ? gLook- >PopUpMenuLayout ()

Search
string

List of matches
filename,
match,
source line

Layout
Handle
allows
modification
of the size
ratio between
the two views

Project tree

Case sensitive Also match part of a word Number of matches

l!J Choose "assignment" from the Filter menu of the Retriever.

What you see now are the two locations in our 60KLOC project where gLook
is assigned a value.

The Retriever uses a two-stage filtering process:

*' At first all lines matching the search string are extracted.

rn Then the list is once more restricted by the regular expression (in this
case a regular expression representing the syntax of an assignment).

NOTE The Retriever starts a full text search (like a super-grep in UNIX) over
the project files and adds flexible semantic filtering as a second stage.

Of course, you can also load the code of the matches into an Editor.

El Double-dick on a match.

The source code is loaded into an Editor.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

158 CHAPTER 11 USING SNIFF+

EDITING

Retrieving session 2-
getting information
about menu handling

Where are menus
allocated on the heap?

EDITING

The Retriever is a very powerful tool for formulating fuzzy queries. Let's try to get
all positions in our project that have something to do with menu handling.

D Type Menu in the text field of the Retriever and press the Ignore case button
in the status line.

fJ Press the Retrieve button or <Enter>.

The Retriever lists hundreds of places (you can see the exact number in the
status line). That's too many.

NOTE After the first retrieve, the source code is cached and all further
queries are much faster. You can switch caching off in the Preferences Dialog.

Let's apply the assignment filter.

II Choose "Assignment" from the Filter menu.

Now you have the locations in your project where a variable called "menu" or
similar is assigned a value.

To get this information, you only have to apply another filter.

• Choose "new" from the Filter menu.

Now you get about 60 locations in our project where a menu or something
related is allocated on the heap

NOTE The Retriever is a text retrieval tool with semantic filtering. It works
best when the software system has consistent naming.

SNiFF+ provides its own integrated Editor for editing source code. This section
describes how to work with the integrated Editor. SNiFF+'s WYSIWYG Editor
serves not only editing but also browsing purposes. It partially understands the
C/C++ syntax and can format the text with different fonts and colors.

NOTE Font and color settings for the formatted source code can be specified
in the ETRC file. For more information see "Preferences" on page 231.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Loading a symbol into
the editor

Icon menu
reflects editing
state
- read-only
- not modified
- modified
currently: r/o

Symbol names
are displayed
in special font
faces

Comments
are displayed
with a special
font face

Tool is
reusable

CHAPTER 11 UsING SNIFF+ 159

EDITING

• Load Class BrowserView into the Editor. You can do this by double-clicking
the symbol in the Symbol Browser.

NOTE It is possible that you still have the gLook variable match in the
Symbol Browser. If so, reset the filter and switch from the variable type to class
type via the type pop-up menu

The class is loaded into an Editor and the cursor is positioned to the
declaration of BrowserView.

class BrOtrtSttViMl. public VBo;' (
p:cotected

SeqCollection *pa.tl1, *directories,
COiilpo::..iteVObiect *fileLists, /,· S'i10!i'ti. FI.le lists
int .nS.holo'l'I:, - / .. ' n.13,v&be:i:." cf sf1mm f"i.1e li:st::
int left. ,'f index of left m.•:>st file lzst i.~1

VObject *slriftLeft, *shi.ftRigh.t; // h11tton.5

ChongeDi:cDiag *change/Jir,

void LoadFile(int at, FileList +fl;!.
void Shell(int a.t. char *path, cha:c ""cmd= 0);

public
MetaDef(BrowserView),
BrowserVie\.~(EvtHondler *dp, int nUJitFileli::its) ;

_ :wBrowse~V~ew () , _

//---- respond to u:sec .i.nput
void Control (int id, int deta1L void *data.),
bool GrabKeyioken (Token St);
void DoSetup () ;

//---- directory hMdlin.g
SeqCollection *ReadDirect:ory() ;
void SllmIDirect:ory(int at. char *nOO"fle) .
void Shm;iParentDirectory() ;

Class pop-up
menu either
shows all
classes or only
one class
(current setting)

Symbol list
defined by class
pop-up menu
(clicking on a
symbol
positions the
cursor)

Layout Handle
allows
modification of
the size ratio
between the two
views

Because the BrowserView class belongs to the filebrowser project and the project
is writable, you are allowed to modify this file. The status of the file is indicated by
the tool icon at the upper left corner of the Editor.

File is read-only File is writable File is modified

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

160 CHAPTER 11 USING SNIFF+

EDITING

Working with the
Symbol list

Switching between
declaration and
implementation

Checking out a file

The Symbol list shows the alphabetically ordered symbols (classes, methods and
functions) of this file. It can be constrained by the pop-up menu just above the
list. You can either select all classes or only one class. On a click on one symbol,
the Editor immediately positions to the source code location defining the
symbol. It also allows fast switching between declaration (normally in .h files) and
implementation (normally in .C files).

D Try positioning by clicking on various symbols in the Symbol list.

fJ Choose "FileBrowserTextView" from the class pop-up menu above the
Symbol list.

li1 Switch back to the "BrowserView" context. You can do this either by selecting
it from the class pop-up menu or by using the History menu.

With <Ctrl> mouse click on the symbol, you switch between declaration and
implementation of the selected symbol.

D <Ctrl> click on BrowserView (md) in the Symbol list.

The Editor now shows the implementation of BrowserView::BrowserView.

fJ Try some other entries.

NOTE You can check out the file only if you have selected a version control
system and checked in the files. See "Checking the source files into the version
control system" on page 140.

The loaded files are read-only because we have checked in all project files before.
To modify a file, you have to check out and lock the file.

D Load the implementation of BrowserVi ew into the Editor (file
BrowserView.C).

fJ Choose "Check Out" from the File menu.

The file is checked out and the editing state changes to writable. If you would
open the Project Editor, you could see that the latest version of the file is
locked by you.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Some useful editing
helps

Matching brackets
and quotes

Nesting and unnesting,
commenting and
uncommenting

CHAPTER 11 USING SNIFF+ 161

The Editor offers a lot of help that makes your life as a programmer easier. There
are features like multilevel undo, matching brackets, nesting and unnesting,
commenting and uncommenting, etc.

NOTE SNiFF + always keeps the locations of symbols in the source text up-to­
date, even after inserting or deleting lines. If a modified file is saved, all tools will
immediately update their views to reflect the newest set of symbols.

D Double-click to the right of the opening parenthesis of the last Add statement
in BrowserView::BrowserView.

The Editor marks the text to the closing bracket.

Add(fileLists);

D Select the last Add statement in BrowserView::BrowserView completely.

You can do this by double-clicking left to the Add and dragging the mouse
down to the last closing parenthesis while holding down the mouse button.

fJ Choose "Comment" from the Edit Menu.

The complete statement is commented out .

.in.it:;.ial.ize left: :m.o.s-t: fi.le 1.ist:
ShowDirectory (-1 ") ;

Add(fi1-eLi3t3);

Ill Undo the changes by choosing "Undo" from the Edit menu.

NOTE SNiFF+ allows an arbitrary number of undo levels. The number of
undo levels can be set in the ETRC file (see "Preferences" on page 2 31).

19 Don't save the modifications you have made.

EDITING

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

162 CHAPTER 11 USING SNIFF+

VIEWING AND EDITING CLASS AND MEMBER DESCRIPTIONS

VIEWING AND EDITING CLASS AND MEMBER DESCRIPTIONS

Opening the
Documentation
Browser

In this section, you will begin working with a Taligent project. Before you begin,
close the current project.

D Use the Icon menu to go to the application window.

fJ Close filebrowser.proj.

The Documentation Browser allows you to view and edit class and member
function descriptions. Taligent source and documentation files are accessed from
a prebuilt project called Ta 1 i gent. proj which is located in

$TaligentSystemDocs/TaligentincludesDocs/Public

The Taligent Application Environment class and member descriptions are stored
in the Docs subdirectory of the Public directory. The Manual Path preference
determines where class and member descriptions are found. See "Preferences
dialog" on page 232 for more information on preferences.

To load the Taligent project:

D From the Project Editor File menu, choose "Open Project..." and select
Taligent.proj.

fJ Double-click on Audio. h to display the file in the Source Editor.

The Documentation Browser is similar to the Source Editor, but you view and
work on the associated .d files.

D In the Source Editor, select GetFormat (md) from the class list.

fJ Choose "Show Documentation of GetFormat" from the Info menu.

The Documentation Browser displays the Audio. d file and the description of
GetFormat.

NOTE You can also start the Documentation Browser without a file displayed
by selecting Documentation Browser from the Icon menu.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Icon menu
reflects editing
state
- read-only
- not modified
- modified
currently:
modified

Tool is
reusable

Viewing other
descriptions

Changing from read­
only to writable

CHAPTER 11 USING SNIFF+ 163

VIEWING AND EDITING CLASS AND MEMBER DESCRIPTIONS

TAwlioType: :.GetFonl'lat
'!Token GetForma.t 0 const

Interfa.ce Category:
Same as clas:3 XXX:XX_M_INT

Puxpose:
xx:mac_M_PUF,

Calling Context
XJOG·;::K _ M _CAL

Pa.rameters
Takes no parameters. - X:::XXJ~_M_PAR

Return Value:
x:~co;:x_M_P.ET

Exceptions:
Throws no exceptions. pa.s2.es all exceptions through xx:nXX_M_EXC
Throws ~000.:::X_EXCEPTION if IDOO:X_M_EXC

Concurrency
sane as cla_s::.'. x1::xxx_M_C:ON

OtheL Considerations:
JGDQ;::X_ M _ OTH

TAudioiype: : SetFomat
void Set-Format \canst Trol:en &)

Interface Category:
sa11Le as cLBs xxxxx_M_nrr

Purpose
xxx:xx_M_ PUP.

GetOffsetBinary (md)
Get.Of fsetBinary8bi t22:
GetSOlltpleRa.te .(md)
GetSai11pleWidth (md)
Hash (md)
IsEqua.l (md.)
ope ca.tor<<= (md)
operato:r= (md)
opecator>>= (md)
PrintDe.buq·Info {md)
SetFormat- (md) .
SetSfilflpleRo.te (ntd)
SetSarr1pleWidth (md)
Tlrn.dioType (cl)
TAudioType (Iftd)
typedef cha.r Sample8B

As with the Source Editor, a list of classes appears at the right. You can display all
classes or view only one class.

In addition, you can list the classes in alphabetical order or in the order they
occur in the . d file by toggling the Alphabetically button at the bottom of the list.

Click on any item in the list to view the description.

If the file is read-only, you can view the documentation, but you can't change it,
and obsoleted descriptions are not displayed. Check the icon to see if the file is
writable. If you want to edit a read-only file, change the Preferences.

D Choose "Preferences" from the Icon menu.

fJ Press the button on the "Read-Only Documentation" flag to allow you to edit
the file.

The icon on the Documentation Browser changes to indicate the file is
writable and obsoleted descriptions are displayed.

B Select OK to close the window.

Class pop-up
menu either
shows all
classes or only
one class
(current setting)

Symbol list
defined by class
pop-up menu
(clicking on a
symbol
positions the
cursor)

Displays list
alphabetically or
in order of
appearance in
the file

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

Editing the file

Checking in and
checking out files

CHAPTER I I USING SNIFF+ I64

ADDING TALIGENT PUBLIC INCLUDES TO A NEW PROJECT

You can select and type in the Documentation Browser the same way you do in
the Source Editor. The Edit menu allows you to undo, redo typing, cut, copy, and
paste.

You can emphasize text or change it back to default font.

NOTE Checkin and Checkout functions are disabled in this release.

ADDING TALIGENT PUBLIC INCLUDES TO A NEW PROJECT

PRELIMINARY

When you create your own projects in the TaligentApplication Environment, you
need to add Taligent public includes.

D Open the Project Editor. Make sure the name of your new project is
highlighted.

fJ Choose "Load Subproject ... " from the Project menu.

Now you see the File dialog prompting you for the project file.

ID Select$TaligentSystemDocs/TaligentincludesDocs/Taligent.proj and
commit.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

COMPILING

Modifying the
BrowserView class

CHAPTER 11 USING SNIFF+ 165

COMPILING

SNiFF+ delegates compiling to a compiler of choice and interprets its output
messages to allow fast positioning in the source code. With the product package,
we supply the GNU gee compiling system. Unless your system administrator
installed SNiFF +with another compiler, gee will be called now. Make sure you are
working with fi 1 ebrowser. proj.

NOTE If gee is not installed on your system, you should skip this section.

D Load class BrowserView into an Editor.

fJ Position to the implementation of BrowserView::BrowserView.

II Find the line where a new ActionButton is assigned to shiftRi ght.

D Change the Label of the ActionButton from "»"to "Down"

NOTE Immediately after the code is changed, the tool icon at the upper left
corner changes to the modified sign.

Ii.I Insert an error by removing the comma',' before the "Down".

shiftLeft = new ActionButton(cidShiftLeft, "<< ");
shiftRight= new ActionButto (cidShiftRight .. "Down");

Ii) Save the file by choosing "Save" from the File menu.

The tool icon changes back to its unmodified position.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

166 CHAPTER 11 USING SNIFF+

COMPILING

Starting the compiler

Compiling BrowserView.o

Jumping to the error in
the source code and
correcting it

Building the target
executable

Icon
menu

Tool is

• Choose "Make File BrowserView.o" from the Make menu.

SNiFF+ now opens a Shell and starts the compiler with BrowserView.C. Since
you entered erroneous code, the compiler outputs an error.

D In the Shell click in the line where the error is reported.

fJ Choose "Find Error" from the Shell Menu.

The Editor positions the cursor to the line containing the error.

su.nsb 3 % mak.e
etCC -g -I/Users/joe/Sniff2/et3/src -c BrowserView. C
BrowserView. C: In method 'BrowserView: :ErowserView (class
ET_EvtHandler*, int) ·

-- Make called by SNiFF+

Compilation error -Brot-.rserView. C :43: parsi error before string constant

*** Error code 1
make: Fatal error: Comm.and failed for target 'BrowserView. o'
sun-e.b3%""

click to it and select "Find
Error'' from the Shell menu

II Correct the error by inserting the comma ',' before the "Down".

El Save the file.

• Choose "Make Target filebrowser" from the Make menu (if this entry is
disabled, you have forgotten to enter the target name in the Project
Attributes dialog; see "Setting the project attributes" on page i38).

Now make is called, the modified source file is compiled, and the target is
linked

NOTE In order to link the target, the correct target name must have been
specified in the attributes of the filebrowser project (see "Setting the project
attributes" on page i38).

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 11 USING SNIFF+ 167

COMPILING

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

i68

ION PRELIMINARY

CHAPTER 12

BASIC ELEMENTS

SN 1FF + ARCHITECTURE

SNiFF+ environment The SNiFF+ environment consists of several tools and processes, The common
data source for all tools is the Symbol Table, which is held in memory but is
persistent between sessions.

-

•

•

SNiFF+

Class
Browser

Hierarchy
Browser

Project
Editor

- make or cc

debugger back­
~-----.i end (gdb or dbx) -

Legend

0
0
D
-

• -------
PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

169

Subsystem

SNiFF+ operating
system process

Foreign operating
system process

Member function call

SNiFF+ tooltalk interface

Stream connection (also
via network)

interapplication message

command line interface

I 70 CHAPTER I 2 BASIC ELEMENTS

BASIC USER-INTERFACE COMPONENTS

BASIC USER-INTERFACE COMPONENTS

SNiFF+ provides eight tools. These tools have different purposes, but they share a
lot of functionality in several pull-down menus and the status line. This section
starts with a description of the commonalities.

Status line All SNiFF+ tools have a similar status line at the bottom which displays status
information. Status information can be either a boolean value represented by a
toggle button followed by a text, and/ or a nonmanipulable text showing some
information.

Toggle button determines the
reusability state of the tool

Status text; is
not editable

The reusable toggle button determines whether the tool can be reused in the
case of a request or when a new tool has to be opened.

NOTE It is good "SNiFF+ing style" to work with as few (reusable) windows as
possible. This habit prevents screen and information cluttering.

Tool-specific status information is described in the corresponding tool sections.

Layout handle All SNiFF + tools consisting of more than one view have a layout handle. The
layout handle allows modification of the size ratio between two views. By
dragging the handle with the mouse, the ratio can be changed.

Click with the mouse and drag

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 1 2 BASIC ELEMENTS 1 7 I
COMMON DIALOGS AND WINDOWS

COMMON DIALOGS AND WINDOWS

Find Dialog

Text fields

Direction

Options

PRELIMINARY

Common dialogs and windows can be accessed from more than one tool in
SNiFF+.

The Find/Change dialog is accessible from tools containing text views (like the
Editor and the Shell) via the "Find/Change ... " entry in the Positioning and Edit
menus. It allows finding and changing with regular expressions (see
Appendix B). If the text is read only, a Find dialog is opened that does not allow
changing text.

Find

Change

Forward/
Backward

Ignore Case

Describes the text that is to be found. It may contain
regular expressions.

Is the text that replaces a match on a change command.

Is the search direction. The start of search is always the
current cursor position.

Specifies either a case sensitive or a case insensitive search.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

I 72 CHAPTER 12 BASIC ELEMENTS

COMMON DIALOGS AND WINDOWS

Change Scope

Buttons

File Dialog

Icons
show the
file type

Match Whole Specifies whether the search string must match a whole
Word word. The default is that the search string is not restricted

to being a whole word.

All of Document/ Only specifies whether the scope of the search is the whole
Selection document or the currently active selection (default is always

the whole document).

Find Next

Change, Then
Find

Change All

Close

Triggers the search for the next match.

Replaces the current selection with the change string, then
starts a new search.

Changes all occurrences of the find string in the current
change scope to the text entered in the change field.

Closes the Find/Change dialog.

The File dialog is opened on save, new, and open file operations.

Directory pop-up
allows movement up in hierarchy

List of files
Pressing a letter on the keyboard positions the list at
the first entry whose name starts with that letter.
The up/down keys also scroll the list

Editable text field
metacharacters are expanded with the C-shell

The text field expands C-shell metacharacters like ·-· and $variables. Pressing
<Enter> in the text field selects the Open button.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Files menu

Directories menu

Options menu

Directory pop-up

Buttons

CHAPTER 12 BASIC ELEMENTS 173

COMMON DIALOGS AND WINDOWS

The Files menu lists the most recently opened files. Choosing a file from the list
performs an open of the selected file and closes the File dialog.

Permanent entry (retains until explicitly removed)

Normal entry

The Directories menu lists the most recently active directories. Choosing an
entry from the list updates the directory.

The Options menu serves to configure entries for the Files and Directories menu
and allows creation of a new directory.

Configure Files

Configure
Directories

Create Directory
directory

Opens a new dialog that allows making entries in the Files
menu permanent. Permanent entries stay there all the
time, regardless of how often they are selected.

See "Configure Files" above.

Creates directory in the current directory. This entry is only
enabled if the name of the new directory is entered in the
editable text field.

The Directory pop-up shows the parent directories of the current directory.
Clicking on it allows fast navigation in the directory tree.

Open

Cancel

Update

Opens the selected file and closes the File dialog.

Closes the File dialog without any further action.

Updates the file list (which is useful when new files are
created or deleted while the File dialog is open).

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

I 7 4 CHAPTER I 2 BASIC ELEMENTS

COMMON DIALOGS AND WINDOWS

Directory Dialog

Directories menu

Options menu

The Directory dialog is very similar to the File dialog, but allows the selection of a
directory rather than a file.

Directory pop-up
allows movement up in hierarchy

-------- - -- - List of directories

·,~.':~ #.;~WMM¥@W~~~T&WMH¥@W@MMMY1Wli.Mt
DMailboxes

Pressing a letter on the keyboard positions the list at
the first entry whose name starts with that letter.
The up/down keys also scroll the list.

DSNiFF+l. 0.1
DSNiFF+l. lB

Editable text field
metacharacters are expanded with the C shell

The text field expands C-shell metacharacters like ·-· and $va ri ables. Pressing
<Enter> in the text field automatically selects the Open button.

The Directories menu lists the most recently active directories. Choosing an
entry from the list selects that directory and closes the Directory dialog.

The Options menu serves to configure entries for the Directories menu and
allows creation of a new directory.

Configure

Create Directory
directory

Opens a new dialog that allows making entries in the
Directories menu permanent. Permanent entries stay there
all the time, regardless of how often they are selected.

Creates directory in the current directory. This entry is only
enabled if the name of the new directory is entered in the
editable text field.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Directory pop-up

Buttons

Print Dialog

About dialog

Show page
breaks in
the view

Postscript
header
(must
always bet
set)

CHAPTER 12 BASIC ELEMENTS 175

COMMON DIALOGS AND WINDOWS

The Directory pop-up shows the parent directories of the current directory.
Clicking on it allows fast navigation in the directory tree.

Open

Select

Cancel

Update

opens the selected directory and displays its contents in the
directory list

chooses the selected directory and closes the Directory
dialog.

closes the Directory dialog without any further action.

updates the file list (which is useful when new files are
created or deleted while the Directory dialog is open).

The Print dialog is opened on print requests from the Hierarchy Browser and the
Editor. It allows specification of printing options.

Apply current settings

Print to the printer specified below

A File dialog is opened

Close the Print dialog

Range of pages to print

-- Paper orientation

Paper size

Scaling factor (range 25% to 400%)

Printer

The About dialog shows the version number of SNiFF+, copyright information,
credits, and how to reach the authors.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

I 76 CHAPTER I 2 BASIC ELEMENTS

COMMON DIALOGS AND WINDOWS

License dialog

Progress Window

The License dialog displays information about the floating license server. The
dialog can be opened by choosing "Licenses ... " from the Icon menu. The dialog
is automatically opened when there is a problem connecting to the license server
process. A license is only allocated when a project is open.

Area where reason for a problem is
printed

<SNiFF+l. 0> License info view
< dgl00a72a2 >
<unlimited>

shows information about the license
server and the currently active licenses

Updates the license info view

The Progress window appears whenever SNiFF+ needs some time to complete an
operation. Examples are loading and closing of projects and retrieving a string in
the Retriever.

Pressing the Stop button opens a dialog that allows stopping of the running
operation. Some operations are not cancelable.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Error log window

CHAPTER 12 BASIC ELEMENTS i 77
COMMON MENUS

The Error log window displays SNiFF+ error and control messages. No messages
are printed to the terminal where sniff is started. The window can be opened by
choosing "Error Log ... " from the Icon menu.

cannot dUJ(lp syntbol::: to directory /u8r/openwin/include/X11/. sniffdir

COMMON MENUS

Icon menu

PRELIMINARY

The Icon menu groups together frequently used commands that have global
character.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

1 78 CHAPTER 12 BASIC ELEMENTS

COMMON MENUS

Hide Project

Close Tool

Hierarchy Browser

Project Editor

Documentation
Browser

Retriever

Shell

Symbol Browser

Preferences ...

Licenses ...

Error Log ...

Application
Window

About SNiFF+ ...

Quit

Hides the windows of all tools belonging to the
corresponding project. This is useful to avoid screen
cluttering while working with more than one project or
with several tools. A hidden project can be shown with the
Workspace Manager (see "Workspace manager" on page
185).

Closes the corresponding tool.

Brings a reusable Hierarchy Browser to· the top of the
display or opens a new tool if no reusable Hierarchy
Browser is available.

Brings a reusable Project Editor to the top of the display or
opens a new tool if no reusable Project Editor is available.

Brings a reusable Documentation Browser to the top of the
display or opens a new tool if no reusable Documentation
Browser is available.

Brings a reusable Retriever to the top of the display or
opens a new tool if no reusable Retriever is available.

Brings a reusable Shell to the top of the display or opens a
new tool if no reusable Shell is available.

Brings a reusable Symbol Browser to the top of the display
or opens a new tool if no reusable Symbol Browser is
available.

Opens the Preferences dialog to edit user-specific settings
(see "Preferences" on page 231).

Opens the License dialog, which shows information about
the current license status of SNiFF+.

Opens the Error log window, which shows all SNiFF+ errors
and other logging messages (see "Error log window" on
page i77).

Brings the Workspace Manager to the top of the display.
This command is useful when the Workspace Manager is
hidden below other windows.

Opens the About dialog, which gives information about
copyrights and how to reach the authors.

Terminates the current SNiFF+ session.

TALIGENT TOOLS FORAIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Info menu

PRELIMINARY

CHAPTER 12 BASIC ELEMENTS 179
COMMON MENUS

The Info menu groups together commands for obtaining information about the
current selection.

Edit Definition

Edit
Implementation

Retrieve selection

Retrieve selection
From Current
Project

Retrieve selection
From All Projects

Find Symbols
Matching
selection or

Loads the definition of the selected symbol (e.g., a class or
an enumeration) into an Editor. The mouse shortcut for
this command is a double click on the symbol.

Loads the implementation of the selected method into an
Editor. This command is only enabled if a method is
selected for which an implementation exists.

Opens a Retriever and retrieves all occurrences of selection

from the currently selected projects only (see "Retriever"
on page 210).

Opens a Retriever and retrieves all occurrences of selection
from the root project only (see "Retriever" on page 21 o).

Opens a Retriever and retrieves all occurrences of selection

from all projects (see "Retriever" on page 21 o).

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

i 80 CHAPTER 1 2 BASIC ELEMENTS

COMMON MENUS

Find Symbols
Containing
selection

Copy Selected
String

Show
Documentation of
selection

Serves to get information about all symbols with the current
selection as name or as part of the name. Both commands
obtain a Symbol Browser and start the corresponding query
(see "Symbol browser" on page 204).

Is enabled for browsing tools. It corresponds to the Copy
command of text-based tools and copies the string of the
selection to the clipboard.

Obtains a Documentation Browser with the documentation
of the selected symbol (see "Documentation Browser" on
page 224). This entry is enabled only if there is
documentation for selection.

Class menu The Class menu serves to issue commands for obtaining further class-specific
information about the current selection (the entries are only enabled if the
selection is a class).

Browse Class class Loads class into a Class Browser (see "Class browser" on
page 206).

Show class in
Hierarchy or

Show class in
Restricted
Hierarchy

Mark. Classes
Defining method
or

Mark Related
Classes Defining
method

Obtains a Hierarchy Browser and loads either the entire
class graph or the graph of the base and derived classes.
The selected class is highlighted in the Hierarchy Browser
(see "Hierarchy browser" on page 208).

Obtains a Hierarchy Browser and loads either the entire
class graph or the graph consisting of the selected class and
its base and derived classes. All classes defining method are
marked in the Hierarchy Browser (see "Hierarchy browser"
on page 208).

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Filter menu

CHAPTER 12 BASIC ELEMENTS 181

COMMON MENUS

There are two possibilities to restrict the amount of information in SNiFF+ tools
that display information in a list (i.e., the Symbol Browser, the Class Browser, and
the Retriever).

It is possible to define a regular expression which filters the list via the "Set
Filter ... " command.

Set Filter ...

Reset Filter

Opens a filter panel that prompts for a regular expression
filter (see "GNU Regular Expressions" on page 257).

Resets the filter to allow all entries.

The list can be further restricted by means of the contents of the view at the
bottom, which shows either the inheritance graph in the case of a Class Browser
or the project tree in all other cases. If a project/ class has a checked checkbox in
front of it, its corresponding information is displayed in the list.

Which information is displayed can be determined either by clicking on the
checkboxes directly or by setting them via the Filter menu.

Select From class/ Only displays entries in the list belonging to the class/project
project selected in the project tree.

Select From All Displays entries from all classes/projects.
Classes/Projects

History menu The History menu serves to reset the tool to a previous state (or to issue an
earlier query again). The structure of the entries depends on the kind of tool
from which the menu is invoked.

PRELIMINARY

The number of queries to be remembered can be specified in the Preferences
dialog (see "Preferences" on page 2 31).

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FORAIX

182 CHAPTER 12 BASIC ELEMENTS

COMMON MENUS

Edit pop-up menu The Edit pop-up menu appears when the right mouse button is pressed in any
editable text item or in a text view.

Undo command

Redo command

Cut

Copy

Paste

Undoes the last change (commanrl) to the text. The number
of remembered undoable commands can be specified in
the preferences file (see "ETRC file entries" on page 261).

Redoes the last undone change (commanrl).

Cuts out the current selection into the paste buffer. The
entry is only enabled if there is an active selection.

Copies the current selection into the paste buffer. The
entry is only enabled if there is an active selection.

Pastes the contents of the paste buffer at the current cursor
location. If there is an active selection, the selection is
replaced by the pasted text. The entry is only enabled if the
paste buffer is not empty.

NOTE The Undo, Redo, Cut, Copy, and Paste commands are also accessible
from the Edit pull-down menu in tools like the Editor and the Shell.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

SHORTCUTS

Keyboard shortcuts

Fast positioning
in lists

CHAPTER 1 2 BASIC ELEMENTS i 83
SHORTCUTS

The complete functionality of SNiFF+ is provided via the menus of the various
tools. To speed up the work, especially for experienced users, SNiFF+ also
provides three different types of shortcuts to allow faster access to the commands
found in menus.

D Keyboard shortcuts are issued by holding down <Alt> of your keyboard and
pressing the key that is shown at the right of a menu entry. Some frequently
used shortcuts are:

<Alt>C for copy

<Alt>V for paste

n <Alt>B for browse class

If) Mouse shortcuts are issued by double-clicking with the mouse on entries in
lists or on selectable items. Some frequently used shortcuts are:

m Editing the source of a symbol by double-clicking on it in the Symbol
Browser

m Jumping to the source location of a variable by double-clicking on it in
the Class Browser

B Deep clicks are issued by holding down the <Ctrl> key and pressing the left
mouse button. Some frequently used deep clicks are:

it Switching from the declaration of a symbol to its implementation by
<Ctrl>clicking on the symbol in the symbol list of the Editor

w Restricting the information shown in the list of a Symbol Browser by
<Ctrl>clicking on the checkbox of a project in the project tree view

s Showing methods of only one class in the Class Browser by <Ctrl>clicking
on the class in the inheritance graph view

Pressing an alphabetical key while the mouse pointer resides over a list will
position the list to the first entry whose name starts with that letter.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

CHAPTER 13

SNIFF+ SUBSYSTEMS

WORKSPACE MANAGER

Icon

Commands in the list of
loaded projects

The Workspace Manager serves to manage projects and open tools .. It consists of
a menu bar and a list of open projects.

---- Menu bar

et .proj
filebrnwser. pro.,_. __ _,,,_ ____ Open project (windows of project are visible)
Inerviews .pro]--·--·

NIHCL.proj

-·-·····--- ··- Hidden project (all windows of project are hidden)

--m----- List of loaded projects

Double-click

<Ctrl>
click

On a loaded project hides/shows all windows belonging to
that project. This command is also available via the Icon
menu.

On a project shows the windows of that project and hides
the windows of all the other projects.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

i86 CHAPTER 13 SNIFF+ SUBSYSTEMS

WORKSPACE MANAGER

Project menu The Project menu serves to create new, open existing, and close open projects, as
well as to quit SNiFF+. For a description of project files see "Project file" on page

239.

New ... Opens a Directory dialog, which prompts for the directory
where the source files of the new project are located. After
the directory has been specified, a Project Editor is opened
asking whether to load all existing C/C++ files. The newly
created project has to be stored in a project file.

NOTE To enhance the transportability of a project, the specification of the
source files directory can contain environment variables. Selecting directories
with the browser of the Directory dialog always stores the absolute directory path
into the project file. Entering the complete directory specification in the text
field at once retains used environmental variables and other shell metacharacters
like '~·. To change the source path of a project after it is created, see "Project
Attributes Dialog" on page 199.

Open ...

Close project

Opens a File dialog, which prompts for an existing project
file. After a project file has been specified, the project is
loaded into SNiFF+ and the environment (all window
positions, sizes and contents) is restored to the same status
as when the project was closed the last time.

Closes the selected project and all windows belonging to it. If
the structure of the project has been modified, a panel is
opened asking whether the project file should be saved. On
a reopen, the project environment is restored to the same
status as when the project was closed.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 13 SNIFF+ SUBSYSTEMS i87
PROJECT EDITOR

PROJECT EDITOR

PRELIMINARY

menu

Project is
writable

Project is a
library (not
writable)

Tool is

The Project Editor is used to edit and browse project-specific information:

Project attributes

" Information about which files belong to the project

'" Subprojects

' Version control and locking information.

NOTE While the Project Editor serves to browse the entire tree of projects
that are loaded, only the structure of the root project can be edited. To change
the structure of a subproject, it has to be opened as a root project itself.

The Project Editor stores the project information in project files (see"SNiFF+
projects" on page 244).

A Project Editor can be opened by choosing "Project Editor" from the Icon
menu.

A Project Editor contains two views. The upper view displays a list of files and the
lower view shows the project tree. The amount of information shown in the list of
files can be controlled with the Filter menu (see "Filter menu" on page 181).

AccessMem. h

Alert. C
Alert. h
Alert_e. h
Application. C
Application. h
Backgrounditem. C
Backgroundltem. h
Bitmap. C
Bitmo.p. h

Regular expression filter currently allowing all files

Pressing the button shows locking and version
control information

List of files
determined by project tree settings and filter

.~- Layout Handle
allows modification of size ratio between the two views

Root project

·------- -- Subproject

Subproject of subproject

. __ _.., ___ Show files in file list

------ Don't link objects to target

project tree
showing the project structure
and the attributes

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

188 CHAPTER 13 SNIFF+ SUBSYSTEMS

PROJECT EDITOR

File list The list of files shows the files belonging to the root project and its subprojects.
The list is restricted by the setting of the project tree (checkboxes) and by the
filter.

Project tree The project tree shows the hierarchical project structure including all
subprojects. It also shows whether the project is writable and whether its objects
should be linked to the project target of the root project. The attributes
displayed in the project tree can be edited in the Project Attributes dialog (see
below).

File menu

~
I

Project is a library;
project attributes
maybe modified but
not the source files

~
I

Project is read-only;
neither attributes
nor source files may
be modified

~
I

Project is writable

[g]
I

Link objects of
Project to target

li':il
l!:!.I

Don't link objects of
Project to target

The checkbox of the project defines whether the files of the project are shown in
the file list. They can be modified directly with the mouse or can be set by the
Filter menu.

A deep click (<Ctrl>click) on a project entry (not on the checkbox) selects only
files from that project and hides all others.

The Project Editor's File menu serves to issue commands that create, open, and
save projects, as well as to quit SNiFF+. For a description of project files see
"Project file" on page 239.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Make menu

PRELIMINARY

New Project .. .

Open Project .. .

Close Project

Save Project

Save Project As ...

CHAPTER 13 SN1FF+ SUBSYSTEMS 189

PROJECT EDITOR

The same entries as in the Project menu of the Workspace
Manager.

Saves the project file (this entry is only enabled if the
project structure or attributes have been modified since the
last save).

Opens a File dialog, which prompts for the new project file
name.

The make menu serves to issue make commands. The command actually issued
by these can be specified in the Preferences dialog and in the Project Attributes
dialog (see "Project Editor" on page 187).

Make File
objectfile

Make target
target or Make
Project project

Recursively Make
target or Make All
Writable Projects

Update Makefiles

Obtains a Shell and starts "make objectfilt!' in the project's
source directory.

Obtains a Shell and starts "make target" or "make project",
respectively, depending on whether the selected project has
a defined target, in the project's source directory. If no
project is selected in the project tree, the root project is
taken.

Obtains a Shell and starts the "make" command for all
writable subprojects. Finally, "make target" (or only "make"
if the root project doesn't have a defined target) is called
for the current root project.

Updates the dependency information for the makefiles of
all writable projects. This command has to be issued only
when a new include statement is inserted in one of the
source files of the project. This command need not be
issued when attributes or the project structure are changed,
in which case SNiFF + updates the makefile information
automatically.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

190 CHAPTER 13 SNIFF+ SUBSYSTEMS

PROJECT EDITOR

Project menu The Project menu serves to issue commands that manipulate the attributes and
structure of the current project. It is not possible to change information defined
in a subproject. To change a subproject, it has to be opened as a root project on
its own.

Source Files... Opens the Source Files dialog that serves to define the
project's source files (see "Source Files dialog" on page
i97).

Load Subproject... Pops up a File dialog box which prompts for the project file
of a subproject to be added. It is only possible to load
subprojects for the root project. If a subproject is to be
added to a subproject, it has to be opened as a root project
on its own.

Unload Subproject Purges the selected subproject from the current project.
This command is only enabled for subprojects of the root
project.

Attributes of Opens the Project Attributes dialog described on page 199.
Project project ...

Force Reparse of
project

Update Symbol
Table of project

Perfoms a reparse of the selected project. A reparse is
necessary, e.g., if the parser configuration file has been
modified (see "Dealing with preprocessor macros" on page
236).

Checks for all files belonging to project if the corresponding
source files were changed since the symbols were loaded
and reparses only the modified files. This command has to
be executed only if project files were modified with tools
other than SNiFF+ (see "Editor" on page 213).

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Dump/Remove
Symbol Table of
project

CHAPTER 13 SNIFF+ SUBSYSTEMS 191

PROJECT EDITOR

Dumps or removes a project-specific symbol table
containing the symbolic information about the whole
project. This entry is only enabled if the project is a library
project. Further explications can be found in "Tuning and
persistency of symbolic information" on page 243.

Delete Symbol files Deletes all symbol files of this project. Symbol file
management is normally fully transparent to the user. This
command is necessary only if the symbol files have a wrong
modification date (due to a copy or some other reason) or
were corrupted. On a project close then, new symbol files
will automatically be created.

Print Statistics Displays the number of symbols, files, and included files for
every project, as well as a summary of all projects, to a
reusable Shell.

Show Locking button Pressing the Show Locking button shows locking and version control
information in the Project Editor.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

192 CHAPTER 13 SNIFF+ SUBSYSTEMS

PROJECT EDITOR

Project Editor with
locking information
shown

When the Project Editor is opened for the first time, locking and version
information is hidden. After the Show Locking button is pressed the Project
Editor displays also locking and version information for the selected projects. For
a general discussion of the integration of version control systems in SNiFF+, see
"Version control" on page 254.

ProJTextitem. C RCS chris: 1. 8

~~@ll!!Nlf!WW Vii¥'i!P'!ilirniff%.HHtjijlW4®\W#ML
ProjTreeView. G RCS
ProjTreeView.h RCS ____ _

RccsAdaptor. C RCS
RccsAdaptor. h RCS
Retriever. C

. , List allows multiple selections.
A selection can be extended by pressing <SHIFT>
and selecting entries. All entries of a list can be
selected by pressing the "Select All" button.

---- Type of the version control system

Locker(s) and locked version(s)

---- File status, source file name and project name

--...-~-- Descriptive text of the selected source file can
be changed with the "Change" button

---- History of the selected source file

---- Revision number for check in, check out and
unlock operations

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

File list and status line

CHAPTER 13 SN1FF+ SUBSYSTEMS 193

PROJECT EDITOR

The file list is a multiple selection list and displays the following information:

Name of the file

Underlying
version control
system

User name of
locker and locked
version

Is the same as in the Project Editor without the locking
information.

Is the type of the version control system used. The following
systems are currently supported: RCS, SCCS, SNiFF and
none if no version control system is used. Different version
control systems can be used for different projects. The
ProjectAttributes dialog (see "Project Attributes Dialog" on
page igg) determines which version control system is used.

Is only displayed if the file is locked by somebody.

The status line displays the state of the file, the filename and the project name it
belongs to.

The modification state icon is determined by comparing the working file with the
version file and can be one of these:

Working file is not
writable and not
modified

Working file is writable Working file and last checked in version differ. Either the working file is
and not modified modified or a new version has been checked in by somebody else

The icon can be empty if the file has never been checked into the version system.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

194 CHAPTER 13 SNIFF+ SUBSYSTEMS

PROJECT EDITOR

Locking menu The Locking menu is only visible if the Project Editor shows locking information.

Hide Locking

Check Out

Check In ...

Hides the locking information in the Project Editor and
also hides this menu (same effect as pressing the Hide
Locking button).

Checks out the selected file(s). If a valid version number is
entered in the Revision text field (see below), this version is
checked out, else the latest version is checked out. If
multiple files are selected, the latest versions are checked
out. Depending on the "with lock" button setting, the
locking of the file is influenced in the following way:

rn With lock (default) the file (s) are
checked out writable and locked for
the current user.

m No lock the file(s) are checked out
read only and are not locked.

The "Check Out" menu entry in the SNiFF+ Editor always
checks out the file with a lock (see "File menu" on page
188).

Checks in the currently selected file(s). A Log message
dialog box is opened, prompting for the log message to be
saved with the checked in version. The log messages for the
various versions of a file are displayed in the History text.

If a valid version number is entered in the Revision text
field (see below), this version is checked in, else a new
version in the current branch is checked in. If multiple files
are selected, the latest version of the currently locked
branch is checked in. If a working file is not modified, a
dialog asks whether the file should still be checked in.
Depending on the "with lock" button setting, the locking of
the file is influenced in the following way:

m With lock: the file(s) are checked in as
new version(s) but are still locked for
the current user and writable.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Files popup button

Unlock

Update
Information

CHAPTER 13 SNIFF+ SUBSYSTEMS 195

No lock (default): the file(s) are
checked in, the lock of the current
user is released, and the protections of
the working source file(s) are set to
read only.

PROJECT EDITOR

The "Check In ... " menu entry in the SNiFF+ Editor always
checks in the file and removes the lock (see "File menu" on
page 188).

Removes the lock from the selected file(s) and sets the
protection of the working source file(s) to read only. The
version file(s) in the version control systems return to the
same state they had before the lock was set. If the working
file is modified, a dialog asks whether the lock should be
removed. The Unlock entry is only enabled if the selected
file is locked. A revision number can be entered to cover
the case that several revisions are locked on different
branches.

Updates the information of all files displayed in the file list.

The files popup button is used to constrain the list of displayed files.

all

modified

own

own modified

Displays all files regardless of the locking state.

Displays only working files that are different compared to
the last checked in version. There can be two reasons for
that:

rn The working file is modified by the
current user

rn A new version has been checked in by
someone else and the working file is
out of date.

Displays only files that are locked by the current user.

Displays only files that are locked by the current user and
are modified.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

196 CHAPTER 13 SNIFF+ SUBSYSTEMS

PROJECT EDITOR

Description text

History text

Check Out button

Check In button

Unlock button

Revision text field

secs only: New Branch
button

The Description text displays the description for the selected file. It also serves to
enter the description for a newly checked-in file. The text can be of arbitrary
length and may contain new-line characters. The description text can be
changed and stored with the "Change" button and with single-file check-ins.

The History text shows the log entries for the checked-in versions. Most recent
entries are displayed at the top, old entries at the bottom. RCS symbolic names
are displayed at the very bottom.

The Check Out button has the same effect as choosing "Check Out" from the
Locking menu.

The Check In button has the same effect as choosing "Check In ... " from the
Locking menu.

The Unlock button has the same effect as choosing "Unlock ... " from the Locking
menu.

This field is used for check in, check out, and unlock operations and determines
what version of the selected file is checked in/ out. If the field is empty, the latest
version of the file is taken.

When secs is the version control system, a new button appears above the
Revision text field:

--··-·· Only visible when SCCS is used

The New Branch button allows the creation of new branches during SCCS check­
out operations.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 13 SNIFF+ SUBSYSTEMS 197

PROJECT EDITOR

Source Files dialog The Source Files dialog serves to handle the source files of a project. It is opened
by choosing "Source Files ... " from the Project menu.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

Project directory

List of files
with multiple selections possible.
A selection can be extended by pressing
<SHIFT> and selecting entries. All entries
of a list can be selected by pressing the
"All" button

198 CHAPTER 13 SNIFF+ SUBSYSTEMS

PROJECT EDITOR

Buttons

All

Unload

Create

Load

Rename

Delete

Update

Done

Selects all elements in the list.

Unloads the selected source file(s) from the current
project. All symbols of an unloaded file are removed from
the project. This command is only enabled for files of the
root project. A file can also be unloaded by double-clicking.

Pops up a dialog box, which prompts for the name of a
source file to be created and loaded. The file name must
have one of the legal extensions for include or
implementation files. (Legal extensions can be specified
with the Preferences dialog as described in"Preferences" on
page 231.) If a legal filename was specified, no file with the
indicated name exists, and access permission allows the
creation of the file, then it is created and filled with a
template. A template name starts with the string "template."
and has the same extension as the newly created file. User­
specific templates can be provided by storing them in a
directory that is specified in the Preferences dialog. Site­
specific templates are stored in the config directory of the
SNiFF+ installation directory (see "Preferences" on page
2 31). If no templates are provided, then an empty file is
created.

Loads the selected source file(s) into the project. To load a
file into a project means to parse the file and load the
symbolic information. A file can also be loaded by double­
clicking.

Pops up a dialog box, which prompts for the new name of
the file. Only files in the directory can be renamed. To
rename the file of a project, unload the file, rename it and
load it again. The button is only enabled if a file is selected.

Deletes the selected file(s) if file permission allows. SNiFF+
asks for confirmation before actually deleting the file(s).

Updates the lists of file, which is necessary, e.g., if a new file
is created in the shell.

Closes the Source Files dialog.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Project Attributes
Dialog

CHAPTER 13 SNIFF+ SUBSYSTEMS 199

PROJECT EDITOR

Project specific parameters are edited with the Project Attributes dialog and are
stored in the project file. Some of the parameters override user preference
settings (see "Preferences" on page 2 31).

Changes to the project attributes take immediate effect if not otherwise specified
in the text below. Attributes of frozen projects cannot be changed.

The following picture shows the Project Attributes dialog for a root project.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

200 CHAPTER 13 SNIFF+ SUBSYSTEMS

PROJECT EDITOR

Target

Source Path

Tab Width

Generate Dir

Defines the name of the target of a project. The target
name is used to drive the make command and the
Debugger.

Specifies the directory where the source files of a project
are located. In the standard case this path is set
automatically when the project is created and is never
changed.

The reason for changing the Source Path attribute is to
improve the transportability of a project. If a project has to
be transported to another place in the UNIX directory tree,
two problems occur. First, the source files cannot be found
anymore because the absolute path name of the source
directory is stored in the project file. Second, the project
cannot be compiled because the path names of generated
makefile parts are outdated. The first problem is solved by
asking the user for the new source directory path when the
source files cannot be found anymore in opening a
project. The second problem can be solved by updating the
make support files manually (see "Make menu" on page
189).

A general way to enhance transportability of projects is to
use environment variables as part of the source path
specification. This also allows project team members to
work on the same project but on different NFS mount
points in a network.

Is used to specify the length of the spacing between two tab
stops. The default width is set in the Preferences dialog (see
"Preferences" on page 231).

Indicates the directory where SNiFF + puts the project­
specific files generated for this project (see "Files created
and used by SNiFF+" on page 239). Per default a directory
. sniffdi r is created in the source directory of the project.

You may want to change the directory if you are not allowed
to create a subdirectory in the source directory of the
project. SNiFF+ displays a warning message in the Error log
if permissions prevent writing to the generate directory.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

CHAPTER 13 SNIFF+ SUBSYSTEMS 201

PROJECT EDITOR

Parser Config File Indicates the file where special configurations for the
information extractor are stored (see "Files created and
used by SNiFF +" on page 2 39). If a new parser
configuration file is specified, or an existing file has been
changed, SNiFF+ has to reparse the source file(s) with the
changed configuration. Reparsing can be forced by issuing
"Force Reparse" from the Project menu. Effect of the
change: Reparse of the project.

Make Command Specifies the command to be submitted to the Shell when a
make command is issued (see "Make menu" on page 189).
The default is set in the Preferences dialog (see
"Preferences" on page 2 3 1). If you compile on a compile
server, you can change the command, for example, to "on
server make", or you can provide your own shell script to do
fancier things.

Class Prefix Is used only in conjunction with debugging. To enhance
integrability with other software systems, class libraries
sometimes add a prefix to classes with a macro. This prefix
change is not visible to SNiFF + since the information
extractor does not do macro expansion. To allow
transparent symbol matching between browsing and
debugging, the class prefix attribute may be set. ET++, for
instance, uses the class prefix 'ET_' for all of its classes.

Makefile Support Specifies whether the support files (ofi 1 es.incl and
dependency.incl) for the makefile are generated (see
"Makefile Support" on page 249).

Overlay Files Specifies whether files of subprojects should be overlaid by
files with the same name of superprojects. If this option is
set in the sub- and superproject, SNiFF+ hides the symbols
of files which are overlaid. This feature enhances the
teamwork support (see "Teamwork Support" on page 234).
If this option is switched off, all files are loaded, even if two
of them have the same name. Default is not to overlay files.
Change takes effect on the next project open.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

202 CHAPTER 13 SNIFF+ SUBSYSTEMS

PROJECT EDITOR

Locking Parameters

Tool

Path

determines which version control system is used for the
project.

A description of the integration of the different tools can
be found in "Version control" on page 254. SNiFF locking
is a simple SNiFF+ internal locking but without the version
control features of the other supported tools.

Defines the path where SNiFF+ searches for the version tool
subdirectories. The default path is the source directory of
the project. The path specification must not contain the
directory name of the version control system. The following
directories are added to the path for the various version
systems:

Version control
system

RCS

secs

Directory

RCS

secs

If the directory of the version control system is not located
in the source directory of the project, no link to the actual
version control directory is needed. Just enter the path
where the version control directory is located. Several
SNiFF + projects can share one common version control
directory.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Project parameters

Project Attributes
dialog for frozen
subprojects

Project is Library

Link Objects of
Project

CHAPTER 13 SN1FF+ SUBSYSTEMS 203

PROJECT EDITOR

Specifies whether the project is a library project. Library
projects are frozen and cannot be modified. This
information is also shown in the project tree of the Project
Editor (see "Project Editor" on page 187).

Specifies whether object files of the project have to be
linked to the target. This information is also shown in the
project tree of the Project Editor (see "Project Editor" on
page 187).

Attributes of frozen subprojects cannot be changed. Only the "Project
Parameters" can be overridden if the overriding results in a restriction. E.g., an
editable subproject can be frozen, but a frozen subproject cannot be turned
editable. If project files are to be linked, this can be turned off, but not vice versa.

If the attributes of a frozen subproject have to be changed the project must be
opened as a root project and must be unfrozen.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALJGENT TOOLS FOR AIX

204 CHAPTER 13 SNIFF+ SUBSYSTEMS

SYMBOL BROWSER

SYMBOL BROWSER

Icon
menu

The Symbol Browser consists of a list of symbols whose content is determined by
the type pop-up menu, the project tree settings, and the filter field. The type
pop-up menu allows selection among C++ constructs such as classes, methods,
and variables, as well as preprocessor macros. The project tree shows the project
structure and makes it possible to select the projects whose symbols are displayed.

Symbol Browsers are obtained by issuing the "Symbol Browser" command in the
Icon menu. The other way to obtain a Symbol Browser is to issue a "Find Symbols
Matching selection" or a "Find Symbols Containing selection" command from the
Info menu. In this case they show a symbol list that is filtered by selection.

Bitmap

Bi tmapGache

Bitmapinfo

BitSet

BitSetiter

block

Borderitem

BoundedGommandProcessor

Box

BrowserApplication

-- Regular filter expression (currently allowing all symbols)

Type pop-up

List of Symbols
determined by type pop-up menu, filter, and project tree
settings

Double-clicking on a symbol loads the source code
into an Editor

,,,,,--- Layout handle
allows modification of the size ratio between the two views

------ Project tree
showing the project structure

Abstract classes (i.e. classes that define a pure virtual method) are displayed in
italic font face.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Type pop-up

Project tree

PRELIMINARY

CHAPTER 13 SNIFF+ SUBSYSTEMS 205

SYMBOL BROWSER

The type pop-up specifies what type of symbols are shown in the list.

C structures and unions as well as typedefs for structures and unions are listed as
class types, whereby the names of these types are marked as" (struct)" or
"(union)" in the symbol list. C++ templates are also listed as classes, whereby the
names of the templates are followed by" (template)".

The list of methods and instance variables can get very long, since they are flat
views of all methods/variables in the project. Symbols of the same type with the
same name are qualified by the name of the file they belong to.

The project tree shows the hierarchical project structure including subprojects.
The only symbols shown are those whose project checkbox is checked. The
checkboxes can be manipulated directly with the mouse or can be set with the
Filter menu. A deep click (<Ctrl>click) on a project entry (not on the checkbox)
will list symbols only from that project and will hide the symbols of all other
projects.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

206 CHAPTER 13 SNIFF+ SUBSYSTEMS

CLASS BROWSER

CLASS BROWSER

Icon
menu

Visibility ---­
white:

public
gray:

protected
black:

private

Defines
whether
symbols
are listed

Toolis--­
reusable

The Class Browser shows a list of local symbols of the class currently being
browsed. The content of this list is determined by the type selector, the settings of
the inheritance graph view, and the filter field. The type selector is a pop-up
menu that allows selection among methods, instance variables, local types, local
enumerations, and friends. Class Browsers are invoked with the "Browse Class
class" command from the Class menu.

The access privileges of methods and instance variables are indicated by the color
of the squares located in front of them. Black means private, gray means
protected, and white means public.

D Butt.on Button

D DoLeftButtonDownC Button

D DoTrackMouse

D DrawHighlight.

D Flush

--· Name of class being browsed

··-·-· Regular filter expression (currently allowing all symbols}

Type pop-up

0 GetMinSize

D SetLabel

D Set.Origin

Button

Button

Button

Button

Button

Button List of local symbols (symbol name and class name)
determined by type pop-up menu, filter, and inheritance graph
settings;
a double-click on a symbol loads the source code into an Editor

~>--- Layout handle
allows modification of the size ratio between the two views

---<m---- inheritance graph
showing the inheritance path with all superclasses

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 13 SNIFF+ SUBSYSTEMS 207

Cuss BROWSER

Inheritance Graph The inheritance graph view shows the graph consisting of the browsed class and
its superclasses. The checkboxes in front of the classes show whether elements of
those classes are listed. The checkboxes can be manipulated directly with the
mouse or can be set with the Filter menu. A deep click (<Ctrl>click) on a class
entry (not on the checkbox itself) will list elements of that class only and will hide
the elements of all other classes.

Hide Overridden button A further filtering mechanism is the possibility to hide overridden methods. This
option can be set with the "Hide overridden" toggle button in the status line.

Type pop-up The type pop-up specifies the type of the class elements shown in the list.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

208 CHAPTER 13 SN1FF+ SUBSYSTEMS

HIERARCHY BROWSER

HIERARCHY BROWSER

The Hierarchy Browser is a graph browser designed to visualize a class graph. It
either displays the entire class graph or only the superclasses and subclasses of
the class indicated in the title of the browser view.

Hierarchy Browsers are invoked with the "Show Class in (Restricted) Hierarchy",
or the "Mark (Restricted) Classes Defining Method method' command in the
Class menu. Another way is to issue "Hierarchy Browser" in the Icon menu.

There are two ways to mark a subset of the displayed classes. One way is to mark
all classes that define a certain method. This kind of marking is obtained by
issuing the "Mark (Restricted) Classes Defining Method method' command in the
Class menu. The other way is to issue the "Mark Documented" command in the
Info menu of the Hierarchy Browser.

The semantics of the current marking are described in the status line.

lcon--­
menu Scope of view

Tool is

j ScrollBarButton

/JActionButton ~I -------

// i ;MerruButtonlteJn

/ !/, VObj ectButton

Object--Composi. teVOb>ect -~ ?RadioButton

..,.'-.. State~tton {(:-- ToggleButton

1 \ 1---- Popup

! \MenuButton~PullD
"Menul

1 ______ _

Inheritance relationship
from left to right

-- Marked class
(status line shows
semantics)

Normal class not marked

-·- Abstract class
containing pure virtual
methods

Semantics of marking

Abstract classes (i.e. classes that define a pure virtual method) are displayed in
italic font face.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 13 SNJFF+ SUBSYSTEMS 209

HIERARCHY BROWSER

Hierarchy menu The Hierarchy menu serves to issue a set of commands related to the Hierarchy
Browser.

Edit Method
method of Class
class

Reset markings

Print ...

Loads the implementation of the corresponding method of
the marked class into an Editor.

Resets the currently active markings.

Opens a Print dialog for printing.

Projects menu The Projects menu makes it possible to show only classes of certain projects and
to hide others. Hidden classes in the class graph are represented by a'+' sign.

PRELIMINARY

Select From All
Projects

Select From No
Project

Project entries with
a toggle button

Shows the classes of all projects in the hierarchy view.

Hides all classes except abstract classes.

Hides or shows the classes of projects individually. All
Project entries can be manipulated with the "Select From
All Projects" and "Select From No Project" menu entries.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FORAIX

210 CHAPTER 13 SNIFF+ SUBSYSTEMS

RETRIEVER

RETRIEVER

Icon
menu

Also
search this
project

The Retriever shows a list of matches and a project tree view. The information
about matches consists of the corresponding source file, the string that was
matched, and the source line containing the match. The matches are obtained
by a regular-expression-based search in all source files of the projects marked in
the project tree view, and filtered with the active filter expression. In other words,
the Retriever (like a super- grep in UNIX) starts a full text search over the project
files and issues flexible semantic filtering as a second stage.

A Retriever is obtained by choosing the "Retrieve ... " entries from the Info menu,
or by issuing "Retriever" from the Icon menu.

Manager. C

Menu. C

Menu. h

Menu.h

Menu.h

Menu. h

Look. C

Look. C

Menu

menu

eMenuTitle

eMenuJ-J"oScroll

eMenuDefault

eMenuLast

popUpMenuLayout

menuLineLayout

{ menu= m; exitRect= er; vop= v; }

eMenuTitle = BIT(eEvtLast+l),

eMenuNoScroll = BIT (eEvtLast+2),

eMenuDefault = eMenuTi tle,

eMenuLast = eEvtLast + 2

popUpMenuLayout= menuLineLayout= 0;

Search string

-- Active filter

List of matches
filename,
match,
source line

,..- Layout handle

I allows

I modification of
__ the size ratio

between the two
views

............... project tree

Tool is---~
reusable

Case insensitive Also match part of a word Number of matches

The search process can be triggered either from the Retrieve menu by pressing
the Retrieve button, or by pressing <Enter> after the regular expression defining
a query. After the first retrieve, the source code is cached and all further queries
are much faster. Caching can be switched off in the Preferences dialog (see
"Preferences" on page 2 31). A Progress window indicates the progress of the
search.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Project tree

Status line

CHAPTER 13 SNIFF+ SUBSYSTEMS 211

NOTE The Retriever is the only SNiFF + tool that is not updated after changes
are applied to the source code.

The project tree shows the hierarchical project structure including subprojects.
Only symbols of projects are shown where the checkbox is checked. The
checkboxes can be manipulated directly with the mouse or can be set with the
Filter menu. A deep click (<Ctrbclick) on a project entry (not on the checkbox)
will list symbols only from that project and will hide the symbols of all other
projects.

Ignore Case Specifies whether the search is case sensitive. The default is
case sensitive search.

Match whole word Specifies whether the search string must match a whole
word. The default is that the search string is not restricted
to being a whole word.

Matches Displays the number of matches.

RETRIEVER

Retrieve menu The Retrieve menu serves to trigger the retrieve process.

PRELIMINARY

Retrieve selection

Retrieve selection
From The Current
Project Only

Retrieve selection
From All Projects

Triggers retrieving based on the current selections in the
project tree view.

Triggers retrieving from the root project only.

Triggers retrieving from all projects.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

212 CHAPTER 13 SNIFF+ SUBSYSTEMS

RETRIEVER

Filter menu The Retriever's Filter menu consists of the standard Filter menu described in
"Filter menu" on page 212 and a set of extendable semantic filters. These
semantic filters are predefined regular expressions that serve to sensibly restrict
the number of matches obtained from textual searches.

Predefined filters are:

Call

Assignment

Comparison

New

Lists only matches where the matched string is a method or
procedure call.

Lists only matches where the matched string is assigned a
value.

Lists only matches where the matched string is part of a
comparison.

Lists only matches where the matched string is preceeded
by"new".

Additional filters can be added or the four standard filters can be overridden by
providing a file consisting of a sequence of lines of string pairs delimited by
double quotes (""). The first string is added to the menu and the second string is
the filter which is inserted on selecting the corresponding menu entry. The
Preferences dialog can be used to tell SNiFF+ where to find the filter extension
file (see "Preferences" on page 231, "Files created and used by SNiFF+" on page
2 39, and "Appendix A. GNU Regular Expressions").

In formulating a filter criterion, the string "%s" can be inserted several times. It
will be expanded with the actual search string.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

EDITOR

Icon menu ---­
reflects ed iii ng state
- read-only
- not modified
- modified
currently: r/o

Symbol names are
displayed in special
font faces

Comments are
displayed with a
special font face

Tool is reusable --

CHAPTER 13 SNIFF+ SUBSYSTEMS 213

EDITOR

SNiFF+ offers two possibilities for editing source code:

SNiFF+'s own integrated Editor.

v An interface to standard Emacs version 19 or later (see "Emacs integration"
on page 250).

This section describes how to work with the integrated Editor.

SNiFF+'s Editor consists of a WYSIWYG text Editor and a list of classes, methods,
and functions defined in this file. This list speeds up the positioning by
displaying the source code when a symbol is selected.

The Editor partially understands C/C++ syntax and can print comments and
symbols with a different typeface. Which fonts and colors should be used for
which symbols, the line spacing, and other attributes of the Editor can be defined
in the ETRC file (see Appendix B, "ETRC File Entries").

Besides the standard editing functionality, the Editor provides support for
copying and moving the selection by direct manipulation, and it selects the text
between matching characters such as brackets and quotes.

class Di:~et:Vi~: public VEox {
protected:

SeqColl ction *path .. *directories;
Composi eVObject *fileLists: // sf:owr: file list.:,
int // nul11.her of shotT. file list--:::
int le. ; // .z.nclex of left most file li.5 t .z.n
VObj ect *shiftleft, *shiftfight; // h:..~ttons

ChangeDirDiag *ch.angebir;

void LoadFile(int at, FileList *fl);
T,;roid Shell(int at, cha:c +path, char *cmd= 0).

public
MetaDef(BrowserView);
BrowserView(EvtHandler *dp, int nillflFilelists);

".".~-~~!:!:"!~~JL: ·-r .. ··· ···············
!/---- re.spond to User input
void Control(int id, int detail, void *data),
bool BrabKeyToken (Token &t) ;
void DoSetup();

/./---- dzre-ctO'Pl hEJridlina
SeqCollection +'ReadDirec'tory() ;
void ShmIDirectory(int at, char *naJO.e) ;
void ShowPareritDirectory() ;

··· Class pop-up
menu either
shows all
classes or only
one class
(current setting)

- Symbol list
defined by class
pop-up menu
(clicking on a
symbol
positions the
cursor)

Layout Handle
allows
modification of
the size ratio
between the two
views

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

214 CHAPTER 13 SNIFF+ SUBSYSTEMS

EDITOR

When a file is edited, the icon of the Icon menu changes to a warning sign until
the file is saved.

File is not writable File is writable File is modified

The entered text is automatically reformatted. The time interval between
reformatting can be set in the ETRC file (see Appendix B, "ETRC File Entries").

Symbol List The Symbol List is constrained by the Class pop-up and shows the list of:

Class pop-up

File menu

rn Method declarations "md" and implementations "mi"

w Class definitions "cl"

u Functions "f'

The Editor is positioned at the symbol by clicking on an entry in the Symbol List.
A deep click (<Ctrl>click) on a declaration entry will position the Editor at the
implementation and vice versa.

The class pop-up scopes the Symbol List to either show only symbols of one class
or to show all symbols of this file. This feature eases navigation when there is
more than one class defined in a file.

The Editor's File menu contains standard commands for loading and saving files.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

Load ...

Save

Save As ...

Revert

Check Out

Check In ...

Print...

CHAPTER 13 SNIFF+ SUBSYSTEMS 215

Opens a File dialog, which prompts for the name of the file
to load.

Saves the modified file (the option is only enabled when
the file is modified). During the save the file is parsed and
SNiFF+'s symbol table is updated. All tools are updated
automatically to reflect the changes made to the file. A
backup file can be created on every save (see
"*.Document.MakeBackup(Bool):" in Appendix B, ETRC
File Entries").

Opens a File dialog, which prompts for a new name of the
file to save.

Reverts to the last saved version of this file (the option is
only enabled if the file has been modified).

Checks out and locks the latest version of this file. The
protection of the file is set to writable. See also "Project
Editor with locking information shown" on page i92.

Checks in the currently loaded file. A Log message dialog is
opened prompting for the log message for the newly saved
version. The file is checked in as the newest version of the
currently checked out branch. The file is saved before it is
checked in. After the file is checked in, the protections of
the working file are set to read only. (See also "Project
Editor with locking information shown" on page i92.)

Opens a Print dialog for printing the file (see "Print
Dialog" on page i75).

EDITOR

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AJX

216 CHAPTER 13 SNIFF+ SUBSYSTEMS

EDITOR

Edit menu The Edit menu serves to issue standard commands for selecting, cutting,
copying, and pasting text. Furthermore, it provides the (Un)Nest and
(Un) Comment commands, which serve to shift the current selection tabwise or
to put comment marks in front of the current selection.

Undo command

Redo command

Cut

Copy

Undoes the last change (command) to the text. The number
of remembered undoable commands can be specified in
the preferences file (see Appendix B, ETRC File Entries").

Redoes the last undone change (command).

Cuts out the ·current selection into the paste buffer (entry is
only enabled if there is an active selection).

Copies the current selection into the paste buffer (entry is
only enabled if there is an active selection).

NOTE The Undo, Redo, Cut, Copy, and Paste commands are also accessible
from the Edit pop-up menu, which appears in the text view when the right mouse
button is pressed.

Paste

Select All

Nest

Unnest

Comment

Uncomment

Pastes the paste buffer into the text at the current cursor
location. If the cursor is a selection, the selection is
replaced by the pasting. (The entry is only enabled if the
paste buffer is not empty).

Selects the complete file contents.

Shifts the currently selected lines(s) one tab width to the
right.

Shifts the currently selected lines(s) one tab width to the
left.

Inserts '//'comment at the beginning of the currently
selected line(s).

Removes 'I/' comment at the beginning of the currently
selected line(s).

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Positioning menu

CHAPTER 13 SN1FF+SUBSYSTEMS 217

EDITOR

The Positioning menu provides commands for positioning in a text file, as well as
the "Find/Change ... " command.

Edit Superclass
class

Edit Overridden
Method method

Edit Declaration/
Implementation
of method

Edit Header/
Implementation
File

Previous Position

Find/Change ...

Go To Line ...

FindAgain

Next Match

} ------- If the cursor points at a symbol for which both declaration and
implementation exist, <Alt>E switches between them.
If not, the first entry is disabled and <Alt>E just switches between
the declaration and implementation file.

Jumps to the declaration of the superclass of the currently
loaded class (this entry is only enabled if the cursor is
positioned in the scope of a class that has a superclass).

Loads into Editor the overridden method of the closest
superclass that defines method.

Toggles between the declaration and the corresponding
implementation.

Toggles between the implementation file and the header
file, and positions the cursor at the beginning of the file.

Jumps to the previous cursor position in this file.

Opens a Find/Change dialog for finding or changing text.
Regular expressions may be used (see "Find Dialog" on
page i71).

Opens the Go To dialog, which prompts for the line
number.

Jumps to the next match of the search string in the Find/
Change dialog. This command also works if the Find/
Change dialog is not open.

Loads the next match of the most recently used Retriever.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

2 18 CHAPTER 13 SNIFF+ SUBSYSTEMS

EDITOR

Utilities menu

Make menu

The Utilities menu serves to trigger various kinds of utilities.

Update Symbol
Table

Hide/Show
Symbols

Triggers an update of the symbol table after files of loaded
projects were changed with tools other than SNiFF+. All
files belonging to the project are checked and reloaded
(reparsed) if they where modified and hence the symbol
table is updated (see "Make menu" on page 189).

Hides (or shows) the list of symbols used for fast
positioning in the Editor.

NOTE Use the Build menu to execute Makeit in the Taligent Application
Environment.

The make menu serves to issue three make commands. The command actually
issued by these can be specified in the Preferences dialog and in the Project
Attributes dialog (see "Project Editor" on page 187).

Make File Obtains a Shell and starts "make objectfild' in the project's
objectfile source directory.

Make Target target Obtains a Shell and starts "make target' in the project's

Recursively Make
target

Update Makefiles

source directory.

Obtains a Shell and starts the "make" command for all
subprojects bottom-up, depending on the attribute settings.
Finally, "make target' is called for the current root project.

Updates the dependency information for the makefiles of
all editable projects. This command has to be issued only
when a new include statement is inserted in one of the
source files of the project. This command need not be
issued when attributes or the project structure are changed,
in which case SNiFF + updates the makefile information
automatically.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Exec menu

Inspect menu

PRELIMINARY

CHAPTER 13 SNIFF+ SUBSYSTEMS 219

This menu does not currently apply to the Taligent environment. The Exec
menu is a front end to the SNiFF+ Debugger commands and its entries are only
enabled when the Debugger is started.

Add Symbols of
source file

Debug Target
target

End Debugsession

Quit Debugger

Adds symbolic information for source filR. This command
searches for a cached object file in the generate directory
of the project and recompiles the object with symbolic
information before loading it.

Starts the debugger and loads the target executable. The
entry is only enabled if the target name is set (see "Project
Attributes Dialog" on page igg) and the target is
executable.

Ends the current debugging session and quits the debugger
backend (including the debugged application), but does
not quit the SNiFF+ Debugger. The Debugger is iconified.

Quits the SNiFF+ Debugger and the debugger backend
(including the debugged application).

The Inspect menu is a front end to the SNiFF+ Debugger commands and its
entries are only enabled when the Debugger is started.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

EDITOR

220 CHAPTER 13 SNIFF+ SUBSYSTEMS

EDITOR

Build menu

TAE menu

The Build menu lets you build in the Taligent Application Environment.

Makeit Complete

Makeit (non­
recursive)

Makeit Testing
Complete

Makeit Includes

Makeit Objects

Makeit Libraries

Makeit Binaries

Create FAST
Makefile

Executes all standard phrases of a build for the current
project directory and all its subdirectories.

Executes all standard phrases of a build for the current
project directory

Make the tests for the current project directory and all its
subdirectories.

Ms the Includes phase for the current project directory and
all its subdirectories.

Makes the Objects phase for the current project directory
and all its subdirectories.

Makes the Libraries phase for the current project directory
ad all its subdirectories.

Makes the Binaries phase for the current project directory
and all its subdirectories.

Forces a rebuild of the . Make file for the current project
directory and its subdirectories, using the -fast option.

See "Makeit" in Chapter 5 for more information.

The TAE menu gives you commands for starting, shutting down, and
maintaining the Taligent Application Environment.

Start Taligent
Application
Environment

Shutdown
Taligent
Application
Environment

Start Taligent
Workspace

Make SOL

Starts the Taligent Application Environment. This takes
awhile, so please be patient.

Shuts down the Taligent Application Environment. You
should be sure to execute this option before you try to use a
reinstalled shared library.

Starts the Workspace if it has been installed in your
TaligentRoot.

Runs the MakeSOL command. You should do this if you
have added new shared libraries to the system. Be sure to
shut down the system first!

See the Taligent Installation and Release Notes for more information on these
features.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Custom menus

Placing entries in the
Custom menu

Adding multiple menus

CHAPTER 13 SN1FF+ SUBSYSTEMS 221

Custom menus allow the execution of customized commands in the Editor. You
can have as many custom menus as you want. There are two ways to define a new
menu:

Modify the Edi torCustomMenu config files located in $SNIFF _DIR/confi g.

u Add or modify . Edi torCustomMenu config files in your home directory.

NOTE If you specify the . Edi torCustomMenu in your home directory, these
files supersede the corresponding config file in $SNIFF _DIR (and therefore you
lose access to any customization set by your site manager). A better strategy is to
copy the required config file from $SN I FF _DIR/ confi g to your home, rename it,
and then modify it with new entries.

Entries with no specified menus are placed in the Custom menu, as in:

shell "echo %s" "echo %s"
shell "echo %F" "echo %F"
shell "echo %1" "echo %1"
filter "date" "date"

You can add multiple menus by adding menu titles to the menu config file. To
add a title, precede it with the "> " characters.

NOTE This is a greater than symbol and a space.

This example specifies one menu : Misc.

shell "echo %s" "echo %s"
shell "echo %d" "echo %d"
shell "echo %f" "echo %f"
filter "date" "date"
> Misc
shell "Command 1" "echo 1"
shell "Command 2" "echo 2"

The first menu is called Custom, the second is called Misc.

In this next example, the first menu is called Echo, the second is called Misc.

> Echo
shell "echo %s" "echo %s"
shell "echo %d" "echo %d"
shell "echo %f" "echo %f"
shell "echo %0" "echo %0"
shell "echo %F" "echo %F"
shell "echo %1" "echo %1"
filter "date" "date"
> Misc
shell "Command 1" "echo 1"
shell "Command 2" "echo 2"

EDITOR

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

222 CHAPTER 13 SNIFF+ SUBSYSTEMS

EDITOR

Debugging mode This menu does not currently apply to the Taligent environment. After the
command "Debug Target" is issued from the Exec menu, the Debugger is started
and the Editor is in debugging mode. In Debugging mode the file is read only
and a row of new buttons is added to the Editor window.

Run

Cont

Step

Next

Break In

Break At

Clear

Print*

Print

this

Stack

Up

Down

Runs the debugged application from scratch.

Continues the interrupted execution.

Single steps into the next function/method.

Single steps over the next function/method.

Sets a break point at the current selection, whereby selection
must be a valid function/method name.

Sets a breakpoint at the current cursor position (linewise).

Clears the breakpoint at the current line. The cursor must
be positioned to a line with a breakpoint.

Prints the value pointed to by the current selection. Selection
must evaluate to valid pointer.

Prints the value of the current selection. Selection must
evaluate to a valid variable.

Prints the value of the current object.

Opens a stack trace window and displays the current call
stack.

Goes one stack frame up in the call hierarchy. A reusable
Editor is automatically positioned at the source location of
the new stack frame.

Goes one stack frame down in the call hierarchy. A reusable
Editor is automatically positioned at the source location of
the new stack frame.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Editing shortcuts
and goodies

Selecting text

Marking of matching
language items
(brackets and quotes)

Fast copying

Copying and moving
with direct manipulation

CHAPTER 13 SNIFF+ SUBSYSTEMS 223

The are three ways to select text.

w Characterwise by clicking and dragging with the mouse.

Wordwise by double-clicking and dragging with the mouse.

x Linewise by triple-clicking and dragging with the mouse.

Double-clicking close to any of the following language elements:

single quotes- ' -
double quotes- " -
parentheses- (-
brackets- [-
braces-{ -

causes the Editor to mark the code between this item and the matching one.

To avoid the overhead of copy/ paste, a fast copy command can be used. Pressing
the <Shift> and <Ctrb keys at the same time and selecting a text to be inserted
will copy this text to the current cursor position.

Another possibility is copying with direct manipulation.

Clicking with the mouse on an active selection and dragging the text to a new
position will move the selected text. Pressing the <Ctrl> key while dragging will
copy the text instead of moving it.

EDITOR

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

224 CHAPTER 13 SNIFF+ SUBSYSTEMS

DOCUMENTATION BROWSER

DOCUMENTATION BROWSER

Icon menu -·-­
reflects editing
state
- read-only
- not modified
- modified
currently:
modified

SNiFF+ lets you view and edit class and member descriptions in a special
Documentation Browser.

Like the Editor, the Documentation Browser consists of a WYSIWYG text Editor
and a list of classes, methods, functions, and data defined in this file. This list
speeds up the positioning by displaying the description when a symbol is
selected.

l~UJiotypti/''i!'ici'<>t"'!!
'IToken GetFormat O const

Interface Category:
Same as class. XXXXK_M_INT

Purpose:
JOOOO{_M_PUR

Cal ling Con text :
10000: _ M _CllL

Parameters:
Takes no parameters. - XXXXX_M_PAR

Return Value.·
JOOOO{ _ M _ RET

Exceptions·
Throws no exceptions, passes all exceptions through. XA."'Tilli_M_EXC
Throws :XXXXX _EXCEPTION if XXIDCX _ M _ EXC

Concurrency·
San1e as clas8. XXXXX_M_CON

Other Considerations·
JOOOO{ _ M _OT!!

TAudioType: : SetFonnat
void SetFormat (Const 'IToken &)

Interface Category
SaJrLe as class XXXXX_M_INT

Purpose:
xmmx_M_PUR

EAudioExeeptions
GetALaw (md)
GetALawSKHz (md)
8etFormo.t (md)
GetLinear (md)
GetLinear16Bi t44¥Jfz
GetLinear8bi t22KHz (m
GetMuLci;i;.r (md)

GetMuLaw8KHz (md)
GetOffsetBinary (md)
GetOffsetBinarySbi t22:
GetSampleRate (md)
GetS,,,.pleWidth (md)
Hash (md)
IsEqual (md)
operator<<= (md)
operator= (md)
ope1:ator»= (md)
PrintDebuginfo (md)
SetFormat (md)
SetSQJJ\pleRate (md)
SetSampleW1dth (md)

ud10Type (cl)
dioType (md)
edef char Sam.ple8B

Tool is----­
reusable

When a file is edited, the icon of the Icon menu changes to a warning sign until
the file is saved.

~
I

File is not writable File is writable File is modified

The entered text is automatically reformatted. The time interval between
reformatting can be set in the ETRC file (see "ETRC file entries" on page 261).

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

Class pop-up
menu either
shows all
classes or
only one
class
(current
setting)

Symbol list
defined by class
pop-up menu
(clicking on a
symbol
positions the
cursor)

Displays list
alphabetically
or in order of
appearance in
the file

PRELIMINARY

CHAPTER 13 SNIFF+ SUBSYSTEMS 225

DOCUMENTATION BROWSER

Symbol List The Symbol List is constrained by the Class pop-up.

Class pop-up

File menu

PRELIMINARY

"md" indicates method declarations

"cl" indicates class definitions

"f' indicates functions

The Documentation Browser is positioned at the symbol by clicking on an entry
in the Symbol List.

The class pop-up scopes the Symbol List to either show only symbols of one class
or to show all symbols of this file. This feature eases navigation when there is
more than one class defined in a file.

The Documentation Browser's File menu contains standard commands for saving
files.

Load

Save

Revert

Check Out

Check In ...

Print ...

Opens a .d file directly, instead of using the Info menu.
Displays a file dialog from which you can open the Docs
directory and select the .d file you want to use.

Saves the modified file (the option is only enabled when
the file is modified). During the save the file is parsed and
SNiFF+'s symbol table is updated. All tools are updated
automatically to reflect the changes made to the file. A
backup file can be created on every save (see Appendix C,
"ETRC file entries").

Reverts to the last saved version of this file (the option is
only enabled if the file has been modified).

(Do not use in this release)

(Do not use in this release)

Opens a Print dialog for printing the file (see "Print
Dialog" on page I 7 5).

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

226 CHAPTER 13 SNrFF+ SUBSYSTEMS

DOCUMENTATION BROWSER

Edit menu

Styles menu

The Edit menu serves to issue standard commands for cutting, copying, and
pasting text.

Undo command

Redo command

Cut

Copy

Paste

Undoes the last change (command) to the text. The number
of remembered undoable commands can be specified in
the preferences file (see Appendix B, "ETRC File Entries").

Redoes the last undone change (command).

Cuts out the current selection into the paste buffer (entry is
only enabled if there is an active selection).

Copies the current selection into the paste buffer (entry is
only enabled if there is an active selection).

Pastes the paste buffer into the text at the current cursor
location. If the cursor is a selection, the selection is
replaced by the pasting. (The entry is only enabled if the
paste buffer is not empty).

NOTE The Undo, Redo, Cut, Copy, and Paste commands are also accessible
from the Edit pop-up menu, which appears in the text view when the right mouse
button is pressed.

The Styles menu formats text.

Default text

Emphasized text

Changes the selected text to the default text font.

Italicizes the selected text.

See the Class and Member Sty1R Guide for details on formatting class and member
function descriptions.

Info menu See "Info menu" on page i 79.

Class menu See "Class menu" on page 180.

TAE menu See "TAE menu" on page 220.

Custom menus See "Custom menus" on page 221.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

SHELL

Icon
menu

Tool is
reusable

CHAPTER 13 SNIFF+ SUBSYSTEMS 227

The Shell is a front end to the regular UNIX command line interface. It can be
used for system-level manipulations, and it is used by SNiFF+ to issue make
commands. Furthermore, it serves to select an error message and to trigger the
marking of the corresponding source code with the "Find Error" command of
the Shell menu.

SHELL

Make called by SNiFF+
etCC -g -I/Users/joe/Sniff2/et3/src -c BrowserView. C
BrowserView. c In method '·BrowserView: :BrowserView (clas:;;..
ET_ EvtHartdle r "*, int) ·

BrowserView. C :43 parsi error before string constant

*** Error code 1
Blake: Fa.tal error: Command failed for ta.rget 'BrowserView. o'
sunsb3%,,..

Compilation error
click to it and select "Find
Error" from the Shell menu

Edit menu The Edit menu of the Shell contains the usual Cut/Copy/Paste/Find commands
plus a Clear command.

Clear Clears the complete Shell buffer.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

228 CHAPTER 13 SNIFF+ SUBSYSTEMS

SHELL

Shell menu The Shell menu serves to issue three commands.

Target menu

Find Error

Reconnect

Auto Reveal On/
Off

Filters the line containing the cursor. If it understands the
error message format, it obtains an Editor and displays the
corresponding source code. Section "Error formats file" on
page 241 explains how to extend the list of understood
error formats.

Reconnects to a new shell.

Turns the auto-reveal feature on and off. If auto-reveal is on
and input is typed or sent from a process, the Shell
automatically scrolls to reveal the new text (this is the
default).

NOTE This menu does not apply to the Taligent Application Environment.

The target menu serves to make and run the target executable of the root
project.

Make Target target Obtains a Shell and starts "make target" in the project's
source directory.

Recursively make
target

Run target

Debug Target
target

Obtains a Shell and starts the "make" command for all
subprojects bottom-up, depending on the attribute settings.
Finally, "make targef' is called for the current root project.

Obtains a Shell and executes target.

Starts the debugger andloads the target executable. The
entry is only enabled if the target name is set (see "Project
Attributes Dialog" on page igg) and the target is
executable.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 13 SN1FF+ SUBSYSTEMS 229

SHELL

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

PREFERENCES

CHAPTER 14

CUSTOMIZING YOUR ENVIRONMENT

SNiFF + supports the setting of preferences generally for a site (or project team),
for each user individually, and for each project individually. Project preferences
override user preferences, which in turn override site preferences.

General tool Templates for Configuration Extensions to Project Custom
preferences newly created file for the infor- the Retriever's attributes menus

source files mation extrac- Filter menu
tor

ETRC Template Parser config Filters ETRC Custom menu
files file file file Site -

merges/
overrides

ETRC Template Filters ETRC Custom menu User files file file ...
merges/
overrides

Parser config Project Project file file

Each user of SNiFF + has a private set of preferences. General preference settings
are stored in a file called ETRC, located in the user's home directory. The most
important and frequently changed settings of that file can be manipulated with
the Preferences dialog. The other settings must be edited in the ETRC file
directly (see "ETRC file entries" on page 261).

As shown in the illustration above, other preferences and configurations are
stored in separate files.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

Location

SNiFF+
installation
directory

User's
location

User's or
project's
location

232 CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT

PREFERENCES

Preferences dialog

Files, Directories & Paths

SNiFF+'s Preferences dialog serves to browse and edit a number of settings that
apply to all your projects. Some of these settings can be overridden in the Project
Attributes dialog (see "Project Editor" on page 187). Generally, changes to the
preferences take immediate effect. Exceptions to this rule are noted in the
descriptions below.

SNiFF+ expands file and directory names using the C shell. Shortcuts such as the
"-"or Svari ables may therefore be used and are expanded correctly.

Template
Directory

Manual Path

Retriever Filter
File

Indicates the directory where the personal template files
are stored. These template files are used when a new source
file is created (see "Project menu" on page 190 and "Files
created and used by SNiFF+" on page 239).

Contains a list of directory names separated by colons.
These directories are searched for class and member
descriptions when the "Show Documentation of' command
of the Info menu is issued (see "Documentation Browser"
on page 224).

Indicates the file where extensions to the Retriever's Filter
menu are stored (see"Files created and used by SNiFF+" on
page 239 and "Retriever" on page 210).

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

File Suffixes

Sizes

Flags

PRELIMINARY

Include Suffixes

Source Suffixes

CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT 233

Describes the valid suffixes of header files. Suffixes are
separated with colons. The default is "h:hxx".

PREFERENCES

Describes the valid suffixes of implementation files. Suffixes
are separated with colons. The default is "c:cc:C:cxx".

($ NOTE The point separating file name from suffix must be omitted.

History Size

Default Tab Size

Retriever Cache

Motif Look

Store Window
Positions

Auto Popup
Error Log

Use Emacs

Read-Only
Documentation

Specifies how many previous states are kept in the history
buffer of every tool.

Defines the default size for tabulators. This attribute can be
overridden for each project separately in the Project
Attributes dia:log.

Specifies whether SNiFF+ caches files once they were
searched by the Retriever tool. This option can speed up
cross referencing considerably but it increases SNiFF+'s
RAM requirement by the size of your files (which is
frequently negligible).

Specifies the look SNiFF + selects at start-up. You can choose
between Motif look and native ET++ look. Native ET++ look
is superior on a black and white screen. Otherwise the
selection of the look is a question of personal taste. A
change takes effect on next SNiFF + start-up.

Defines whether the state of your current working
environment is stored on closing a project and restored
when it is loaded the next time. Default is to store window
positions.

Specifies whether the Error log window (see "Error log
window" on page i 77) is automatically opened when a
message is written to it. Default is not to open the window.

Determines the main Editor used by SNiFF+. You can
choose between the SNiFF+ integrated Editor and Emacs.

Changes documentation file from read-only to read-write.
The icon on the Documentation Browser changes to
indicate the file is writable. Toggle to change back.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

234 CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT

TEAMWORK SUPPORT

Other Options

Make Command Specifies the command to be submitted to the shell when a
make command is issued (see "Project menu" on page
186). The default is "make". If you compile on a compile
server, you can change the command, for exaniple, to "on
server make", or you can provide your own shell script to do
fancier things.

Sniff Server Host Indicates the host in the network where the information
extractor process (sniffserver) runs. The default is no host
(empty string), which means use a server process on the
local machine.

TEAMWORK SUPPORT

SNiFF+ supports teamwork in several ways:

Ill! Projects can be frozen. This prevents anybody from making changes to the
project.

m Version control systems can be integrated (see "Version control" on page
254).

m Shared files can be overlaid.

Overlaying shared files Files of a common subproject which are shared by several developers can be
copied to the directory of a root project. If the overlay files attribute is enabled
for the subproject and the superproject (see "Project Attributes Dialog" on page
199), the shared files are hidden by their copies. The developer works
transparently with the copies, and on linking the target, the object files of the
copies are linked. Hidden files are marked in the Project Editor with the string
"hidden", and during the loading of a project SNiFF + notifies the developer in
the Error log window about the files that are hidden.

Later on, the overlaid version can be merged into the shared version. This can be
achieved by using the version control tools (see "Version control" on page 254)
or by running the two versions through the UNIX diff facility and by manually
merging the changes.

fj NOTE Files are only overlaid if the Overlay Files attribute is set in the Project
Attributes dialog of the project to be overlaid and the overlaying project.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT 235
INFORMATION EXTRACTOR (SNIFFSERVER)

INFORMATION EXTRACTOR (SNIFFSERVER)

Running the
sniffserver on a
different host

When running, SNiFF+ consists of several processes: two of them are the SNiFF+
programming environment (sniff) and SNiFF+'s information extractor
(sniff server). The information extractor is a fuzzy C++ parser which analyzes
C++, ANSI C, or Kernighan & Ritchie C source files and sends the programming
environment a stream of information about the symbols defined and declared in
the source code.

The sniffserver process can run on the local workstation or on any workstation
on the network. The default behavior is to start the sniffserver process locally. If
the process is to be started on another workstation, this can be indicated in the
Preferences dialog (see "Preferences" on page 2 31).

NOTE If SNiFF+ does not find a running sniffserver process, it tries to start
one. If the server is to be started on the local workstation, the sniffserver
executable is to be found in one of the command directories. If the server has to
be started on a remote workstation, a shell script called startsni ff server has to
be found in one of the command directories.

Running the sniffserver process on a workstation other than the programming
environment can make sense for several reasons.

If main storage is scarce on the local machine, it can make sense to put the load
on a workstation with more RAM.

There are frequently fast server workstations on a network that can considerably
shorten parsing time. This effect is not relevant during programming, when only
single files are parsed at a time. But it can shorten 'start-up time when a large
project has to be loaded.

Parsing on the workstation where the source code is physically stored reduces
network traffic. Once again, this effect is not relevant during programming,
when only single files are parsed at a time. It becomes relevant at start-up time,
when a large project is loaded, or when many developers are working on projects
located on the same server.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FORAIX

236 CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT

INFORMATION EXTRACTOR (SNIFFSERVER)

How to run the sniffserver
on a remote host

Dealing with
preprocessor macros

Several things are necessary to run the sniffserver process on a remote host:

m The "Sniff Server Host" entry of the Preferences dialog (see "Preferences
dialog" on page 2 32) must contain the name of the host where the
sniffserver process is running.

ITT The file/etc/services must contain an entry similar to this:

sniffserver <port_num>/tcp

where <port_num> is an arbitrary unique tcp port number greater than 1024.
If your computers run with Yellow Pages (YP) or NIS, then the entry should
be made in the tables of the YP /NIS server. Please contact your system
administrator to do that.

x If the sniffserver is not running on the remote machine, SNiFF+ executes
startsni ff server, which has to be found in the command directories.
startsniffserver is located in the <sniff_di rectory>/bin directory and is a
shell script using the on command to start the sniffserver on the remote
machine. Several restrictions apply for using the on command (see the UNIX
manual pages). If the on command does not work, then you can start the
sniffserver manually on the remote machine with the following command:

$SNIFF_DIR/bin/sniffserver <remote_hostname>

where <remote_hostname> is the host name of the machine running the
sniff server.

SNiFF+'s information extractor does not expand preprocessor macros when it
parses source files, This approach has the advantage of speed, but occasionally
some preprocessor macros confuse the parser.

SNiFF+ provides a mechanism to solve these kinds of problems by configuring
the parser. For every project, you can write a file containing directives for the
parser (see "Parser configuration file" on page 239).

The location of this file is defined with "Parser Config File" attribute in the
Project Attributes dialog (see "Project Attributes Dialog" on page 199). After
changing the configuration file, you should force a reparse of the project
("Project menu" on page 190).

The following examples illustrate how to configure the parser in case of
problematic preprocessor macros.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Configuring the parser

Preprocessor macros to
be ignored by the parser

#ifdef directives to be
resolved by the parser

CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT 237
INFORMATION EXTRACTOR (SNIFFSERVER)

The VIRTUAL macro is used in the NIH class library in class definitions like this:

class A : public VIRTUAL B
{ . . . } ;

The VIRTUAL string can be ignored without losing information.

Strings to be ignored can be defined with ignore string string tuples in the
parser configuration file. In the case of NIH this is:

ignore string VIRTUAL

Don't forget to reparse the project after the configuration file has been changed.

Some class libraries use the preprocessor directive /fi fdef to modify the code in a
way that confuses the parser.

Examples are:

n Different class definitions for the same class selected with an /Ii fdef:

#ifdef UNIX
class someClass

//else
class someClass

/fend if
{ ... } ;

unixBaseClass

otherBaseClass

Since SNiFF+ normally parses the whole code without resolving /fi fdef, it
reads two class definition headers and just one actual definition.
To solve this problem add the following line to the parser configuration file:

define UNIX

This tells the parser to ignore the line between the /le l se and the /fend if
directives. Alternatively, you could add this line to the configuration file:

undefine UNIX

The parser will ignore the line between /Ii fdef and //else.

n Unbalanced braces:

f!i fdef HUGE_INT
for (int i=O; i<MAXVAL; i++) {

//else
for (long i=O; i<MAXVAL; i++) {

/fend if
... }

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

238 CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT

INFORMATION EXTRACTOR {SNIFFSERVER)

#if directives to be
resolved by the parser

Since SNiFF+ normally parses the whole code without resolving the Iii fdef, it
reads two opening and only one closing brace. To solve this problem add the
following line to the parser configuration file:

define HUGE_INT

Another possibility to solve this particular problem is to remove the opening
brace from the two for lines and put it after the lfendi f directive.

Sometimes it is necessary to resolve Iii f directives. For example:

lfif defined (UNIX) 11 defined (VMS)
class someClass unixBaseClass

lie 1 se
class someClass

/fend if
{ ... } ;

otherBaseClass

The expression after the Iii f directive will be evaluated if it contains only the 11,
&&, ! (logical negation), defined operator and parentheses for grouping. If the
expression contains other operators or a defined operator with an identifier that
does not appear in the parser configuration file, then the Iii f is not resolved (i.e.
both branches will be parsed). Assuming that your configuration file contains

define AAA
undefine BBB

Then from the following source code, only a, d, e and f will appear in the symbol
table.

lfif defined(AAA)
int a;

/felse
int b;

lfendif
/fif defined(AAA) && defined(BBB)

int c;
/felse

int d;
lfendi f
/fif defined(CCC)

int e;
//else

int f;
lfendi f

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT 239
FILES CREATED AND USED BY SNIFF+

FILES CREATED AND USED BY SN1FF+

Project file

ETRC file

Parser configuration
file

A project file describes a SNiFF+ project and is stored at a location indicated by
the developer. A project file stores only structural information and attributes of a
project. No source code or symbolic information is stored there. Project files are
usually just a few KB in size (see also "SNiFF+ projects" on page 244).

The information manipulated in the Preferences dialog is stored in the ETRC
file in the home directory of every SNiFF+ user (see "Preferences" on page 231
and "ETRC file entries" on page 261).

The parser configuration file contains special configuration instructions for the
SNiFF+ information extractor (sniffserver). It can be defined for projects using
preprocessor macros that semantically change the source code. For further
explanations, see "Dealing with preprocessor macros" on page 2 36.
The file can contain lines with

'" Ignore string string

The parser just ignores string in the source code.

w Define symbol or undefi ne symbol

The parser resolves 1h fdef containing symbol. 1/i fdefs not containing symbol
are parsed completely.

The location of the file can be specified with the Project Attributes dialog (see
"Project Attributes Dialog" on page 199).

11 Example ignore strings file
1f
ignore string VIRTUAL
ignore string _C_ARGl
define UNIX

1f for NIHCL
11 for the License project
11 resolve ifdefs for UNIX

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

240 CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT

FILES CREATED AND USED BY SNIFF+

Retriever filters file

Template files

Custom menu file

Syntax

The file describes filters that should be added to the Filter menu of the Retriever
and consists of a sequence of lines of "" delimited string pairs. The first string is
added to the menu and the second string is the regular filter expression that is
applied on selecting the corresponding menu entry. In formulating a filter
criterion, the string "%s" can be inserted several times. It will be expanded with
the actual match for every retrieved source line.

The Preferences dialog can be used to tell SNiFF + where to find the filter
extension file (see "Preferences" on page 231, "Retriever" on page 210, and
"ETRC file entries" on page 261).

#Example Retriever filters file

"call METHOD" "%s[(].*;"
"declare class::METHOD" "[A-z0-9_ \t]+::%s[A;]+$"
"CLASS::method/var" "%s::.*;"
"class::METHOD/VAR" "[A-z0-9_ \t]::%s.*;"
"->METHOD" "->%s[(]"
"OBJECT->method" "%s->[A-z0-9_ \t]+[(]"
"->VAR" "->%s(A(A-z0-9_]"
"OBJECT->var" "%s->[A-z0-9_ \t]+(A(A-z0-9_]"

Template files are loaded into newly created project source files (see "Project
Editor" on page 187). Templates must be called template.extension, whereby
extension is one of the allowed extensions for header and implementation files.
The location of template files and the list of allowed extensions can be specified
with the Preferences dialog (see "Preferences" on page 2 3 1).

SNiFF+ allows the definition of commands which are accessible from the Editor
via the Custom menu. The file specifying the menu is called .EditorCustomMenu
and is located in the user's home directory.
Site-specific custom menus may be defined in the config directory of the SNiFF +
installation. The name of the file must be: EditorCustomMenu. The files are
loaded during start-up.

CustomMenu={CustomMenuEntry}.

CustomMenuEntry=Descriptor MenuString Command
I Separator.

Descriptor="shell" I "debugger" I "filter".

MenuString=string.

Command=string.

Separator="-".

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Examples

Error formats file

CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT 241

A "shell" command is executed in aSNiFF+ Shell.

A "debugger" command is sent to the Debugger.

FILES CREATED AND USED BY SNIFF+

A "filter" command is any kind of process. Its input is the current selection in the
Editor and its output replaces the current selection.

A separator causes the insertion of a line in the menu. It is used for esthetic
reasons only.

Commands are expanded as follows:

%dProject file name
%f Source file name
%sCurrent selection
%DSource directory
% FBasename of source file
%1 Locking path without the RCS/SCCS extension
(used by the version control system to store the
version files)

Strings may be delimited with double quotes ("") if they contain blanks.

Example EditorCustomMenu file
1t
shell "RCS diff" "rcsdiff -kk %1/RCS/%F,v %f"
shell "SCCS diff" "cd %0; SCCS -d%1 diffs %F"

filter Date date
shell "Load File Into vi" "cmdtool vi %f"

debugger "Info Files" "info files"

SNiFF+ integrates various compilers and other tools (like Purify). The Shell
("Shell menu" on page 228) and the Debugger (see "Icon menu" on page 177)
are able to interpret the output messages of such tools based on a configurable
error- formats file. The file $SN I FF _DIR/ confi g/ ErrorFormats contains a list of
regular expressions for the most common error formats. If the error messages of
your compiler are not covered by an entry in that file, you can add the
corresponding regular expression. Regular expressions are explained in "GNU
Regular Expressions" on page 257.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

242 CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT

FILES CREATED AND USED BY SNIFF+

Supplied ErrorFormats file

Files generated by
SNiFF+ and stored in
the generate directory

Make support files
(dependencies.incl and
ofiles.incl)

Symbol table files

Window status files

SNiFF+ - regular expressions for compiler error messages
"file.c", line 123
"\([A"]+\)",[]+line[J+\{[0-9]+\)
file.c, line 123
\([A]+\),[]+line[J+\{[0-9]+\)
#Purify: [line 123, file.c,
line[J+\{[0-9]+\),[]+\{[A,]+\)
11 file.c:l23
\([A:]+\):[]*\{[0-9]+\)
11 file.c(123)
\{[A]+\,(A]+\){\{[0-9]+\))

The parts of the regular expression that match the filename and the line number
must be enclosed in a \ (\) construct. Each regular expression must have exactly
two such constructs.

For every project, SNiFF+ creates a directory that serves as a container for all
project-dependent files generated by SNiFF+. Its location and how it can be
changed is described in "Project Attributes Dialog" on page igg.

For every project a dependencies.incl file is generated that describes the include
dependencies between the files of the project and its subprojects. An
ofi l es.incl file is generated that defines which object files have to be linked in
building the current target. For a further description of how to use these files, see
"Makefile Support" on page 249.

SNiFF+ dumps symbol table files to the generate directory specified in the
Preferences dialog (see "Preferences" on page 231). For a detailed description of
symbol table persistency, see "Tuning and persistency of symbolic information"
on page 243.

Window status files are created by SNiFF+ for every user and are stored in the
generate directory. These files are named <project_name>. <user>. state and
store the position and contents of windows, the location of split handles and the
cursor positions when the project is closed. The next time the project is opened
the file is read in and the windows are restored.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT 243

TUNING AND PERSISTENCY OF SYMBOLIC INFORMATION

TUNING AND PERSISTENCY OF SYMBOLIC INFORMATION

File-level symbol
persistency (default)

Project-level symbol
persistency

SNiFF+'s tools always work with the newest symbol information since they use the
central symbol table (database) that is held in memory. The symbol table always
is up to date and refers to the newest source code. This is possible because
SNiFF+ directly uses the source code to extract the symbolic information. The
information extractor is a very fast and lean parser. Once a project is loaded and
parsed, all queries are executed in memory only- that is the reason why SNiFF+
scales linearly, and even huge software systems can be handled efficiently.

For smaller software systems up to 25 KLOC, the project loading time is no
problem and information can be extracted on the fly.

For bigger projects (more than 25 KLOC), information extraction from the
source code on every project load would be too time consuming, even with the
very fast information extractor.

Therefore SNiFF+ allows the symbol table to be efficiently persistent between
SNiFF+ sessions. Symbol table persistency is fully transparent to the user.

Depending on the kind and size of project, the user can choose between two
different persistency models.

After the first information extraction of a newly created project, SNiFF+ stores
binary symbolic files for each source file in the generate directory for the project.
The binaries are compact and efficient images of the symbol table held in
memory. On each project load, SNiFF+ checks whether binary symbol files exist
and loads them directly into memory instead of extracting the information from
the source files. Information extraction from the source code is still possible if
the source file is more recent than the binary symbol file. This can only happen
when the source has been changed with a foreign tool or the date of the files has
been otherwise modified.

For library projects that are never changed, it makes sense to dump a single
symbol table file for the whole project. This project symbol file is even more
efficient and also much faster in loading. A project symbol file can be dumped
(or actively removed) with the "Dump/Remove Symbol Table" command of the
Project menu of the Project Editor (see "Make menu" on page 189).

After the project symbol table has been dumped, SNiFF+ transparently manages
this symbol file. If the library status of a project for which a project symbol table
exists is changed to writable, the symbol table file is automatically removed and
file-based symbol table persistency is used.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

244 CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT

SNIFF+ PROJECTS

Comparison of project
loading times

The following table relates the times needed to load a 60KLOC C++ project into
SNiFF+ (the files of the project are located on the local system hard disk):

Kind of symbol loading

Loading the symbols via the information
extractor

(parsing all source files)

Loading individual symbol files (file-level
symbol persistency)

Loading one project symbol table dump

(project-level symbol persistency)

Relative loading time

100 %

70 %

40 %

The gain for project-level symbol persistency can be even bigger for projects
located on NFS file systems.

SN 1FF + PROJECTS

Projects in SNiFF+ A SNiFF+ project is a collection of source files and possibly a collection of
subprojects belonging to the project. Projects are described and saved in project
files.

Saving a project into a project file stores all information into that file. Opening a
project file opens the complete project and loads all symbolic information and
restores the window status.

Root project

Subproject I --- - --- Subproject of subproject

'

If a project (project files) is opened in SNiFF+, it always forms the root project.
Root projects are shown as the root in the project tree view of the different tools.
Subprojects are shown as descendants. A subproject can also be opened on its
own.

In the example above, fil ebrowser. proj is the root project, et. proj is the
subproject, and CONT A IN ER. p roj is the sub-subproject.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Declaration and
implementation files
in separate directories

Example (Interviews)

CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT 245

et. proj can also be opened on its own and is then the root project and
CONTAINER. proj would be its subproject.

SNIFF+ PROJECTS

On every project open, the symbolic information of all subprojects is loaded.

The Project Editor (see "Project Editor" on page i 87) serves to define the
structure, the source files and the attributes of a project.

The rest of this chapter describes how to create projects that have a complicated
structure or that have header and implementation files in separate directories.

SNiFF+ requires a project per directory. Sometimes software systems have
declaration (.h) and implementation (.C) files separated in different directories,
but you would like SNiFF + to treat such systems as if the files were all in one
directory. SNiFF+ should therefore manage the different directories
transparently.

To achieve that:

D Create a SNiFF+ project for the directory where the declaration files (.h) are
stored.

fJ Create a SNiFF + project for the directory where the implementation files
(.C) are stored.

11 Load the project containing the implementation (.C) files as subproject of
the declaration (.h) files project.

19 Close both projects.

When you reopen the declaration files project, you will also get the
implementation files. This method of creating subprojects and loading them in a
main project can also be used with more than two subprojects.

The declaration files of InterViews are in the subdirectory s rc/i ncl ude/
InterVi ews, and the implementation files in the subdirectory src/1 i b/
InterVi ews.

To create an InterViews project:

D Create a SNiFF+ project for the src/i ncl ude/InterVi ews directory. Name it
IV.

fJ Create a SNiFF+ project for the src/1 ib/InterViews directory. Name it
IV. i mpl.

11 Using the Project Editor of IV, load IV.imp 1 as a subproject of IV.

19 Close IV and IV . imp 1 and reopen the IV project.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

246 CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT

SNIFF+ PROJECTS

Projects with many
sub projects

If you are working on a big software project, you probably have a hierarchy of ·
directories and subdirectories, each containing the files of subprojects. Creating
these subprojects one by one, as SNiFF+ requires, may be a time-consuming task.

Therefore, we supply a tool called genproj that walks a directory tree downwards
and creates project files for every subdirectory.

Genproj is given the name of the directory that is the root of your software system
and it generates project files in every subdirectory.

Genproj accepts the following parameters:

genproj <source_dir> [-e] [-f] [-p <proj_name>J
[-d <destination_dir>J [-s <sniff_directory>]
[-i <ignore_dir>J

<source_di r> is the only mandatory parameter. It is the name of the root
directory of your software project. Genproj will walk this directory downwards
and generate project files for every subdirectory.

<proj_name> is the name you want to give to the root project. If you don't specify
a project name, genproj will use the base name of the source directory.

<des ti nati on_di r> is the name of the directory where you want to keep the
generated project files. If you don't specify a destination directory, the project
files will be generated in the corresponding subdirectories.

<sniff _di rectory> is the name of the directory where SNiFF+ stores the
persistent symbolic information and other project-related data. The directory
must already exist before starting SNiFF+. By default the directory is named
. sniff di r, and it is created in the source directory of the project.

< i gnore_d i r> is the name of a directory (only the name of the directory and not
the complete path) that should not be walked down. By default, genproj ignores
all the directories whose name starts with a dot and the directories named SCCS
and RCS. You can tell genproj to ignore additional directories by specifying the -
i flag for each directory.

When specifying directories, you can use environment variables (but you must
put their names in single quotes to prevent the shell from expanding them). The
environment variable names will be copied literally into your project files. This
will make the relocation of your software system easier, because you do not have
to regenerate project files. Just modify the value of the environment variable and
restart SNiFF+.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

CHAPTER 14 CUSTOMIZING YOUR ENVIRONMENT 247
SNIFF+ PROJECTS

A project file will be generated only if the subdirectory contains source files (i.e.
files whose suffixes are determined by "File Suffixes" attributes of the Preferences
dialog; see "Preferences" on page 2 31), or if the subdirectory has other
subdirectories that have source files. If you do want to have project files for
subdirectories with no source files and no subprojects, then invoke genproj with
the -e flag.

Genproj generates unique file names for projects. When it detects a name
conflict, it uses the name of the parent project (with an underscore) as a prefix.
The root project name is never changed. If you want genproj to prefix the names
of all projects (except the root) with parent project names (even when there is
no name conflict), then invoke it with the - f flag.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

CHAPTER 15

SUPPORT FOR OTHER

FUNCTIONS

MAKEFILE SUPPORT

Dependencies
(dependencies.incl)

SNiFF+ assumes that projects are compiled and linked with the m~e command
or a similar facility. Make commands use makefiles, which describe the process of
compiling and linking and the necessary options with a set of variables and rules.

SNiFF+ supports makefiles with two files (dependencies.incl and ofi 1 es.incl)
that make it possible to use the same makefile for different projects without
modifying it.

The files are created in the generate directory of the project (usually . sniff di r).
Whether the files are generated is determined by the Project attributes (see
"Project Attributes Dialog" on page 199).

Since SNiFF+ knows all about a project, it also knows about dependencies
between the files of a project, even if the dependencies exist over project/
subproject boundaries. On each save of the project file, SNiFF+ updates the
dependencies and stores them in a file called "dependencies.incl" in the
generate directory of the project (see "Preferences" on page 231).

This file stores the dependency information in a form understood by make and
can therefore be included in the makefile.

~NOTE The "Update Makefile" command of the "Make" menu of the Editor
triggers the update of the dependency information. You should issue this
command when you add a new include file to one of the project sources.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERJl,D INFORMATION TALIGENT TOOLS FOR AIX

~49

2 50 CHAPTER 15 SUPPORT FOR OTHER FUNCTIONS

EMACS INTEGRATION

Example makefile showing how to include dependency and
#object file information generated by SNiFF+

.SUFFIXES: .C
CC FLAGS -g
LDFLAGS
CC etCC $CCCFLAGS)

.C.o: CC -dump $(CCFLAGS) -c $<

.c.o:
cc $(CCFLAGS) -c $<

include .sniffdir/ofiles.incl

Object --- myAppl: $(0FILES)
file list $CCC) $(LDFLAGS) -o $@ $COFILES)

include .sniffdir/dependencies.incl
Dependency----// this line has to exist but it can be em~p,._t,,__Y~------­
list

$(0FILES) variable is
set by ofile.incl

Object file list
(ofiles.incl)

The second project-specific file created by SNiFF+ for inclusion in makefiles
contains the list of object files for the target of the project. Like the
dependencies.incl, on each save of the project file the ofi 1 es.incl is updated
and stored in the generate directory of the project. The ofi 1 es.incl sets the
make variable $(0FI LES), which can be used somewhere in the makefile, e.g., in
the rule for linking the target (see makefile example above).

EMACS INTEGRATION

SNiFF+ offers two possibilities for editing source code:

ill SNiFF+'s own integrated Editor (see "Editor" on page 213).

ri An interface to standard GNU Emacs (version 19 or newer).

This section describes how to integrate Emacs and how to work with it in the
SNiFF+ environment.

The following features are available:

m Emacs is used for all SNiFF+ editing requests.

w SNiFF+ recognizes and updates all browsers when a file is saved in Emacs.

ill SNiFF+ commands can be issued directly from Emacs.

m Emacs highlights symbols and comments like the integrated SNiFF+ Editor.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CHAPTER 15 SUPPORT FOR OTHER FUNCTIONS 2 51

EMACS INTEGRATION

The following figure shows an Emacs running under X connected to SNiFF +:

cons t int cObj NonDeleted
cObjDelayGhanyes
cObjVisited
cObj IsProto
cObj IsObserved

comt int cFlag!>lask= OxOOffffff;

OxlJlOOOOOO,
Ox02000000.
Ox04000000,
Ox08000000.
OxlOOOOOOO,

//---- class Object ------------------------------

' class [Ibj ect -r------L ----------------------·------------··----------
friend cla_ss Class:

public·
//---- automaticallv added bv macro Niet&Def --------------------------------
static class Clas::• *isa; ~
f:ciend IStreaJO. &operator>> (IStrea10. &s_. Object *&op)

{ return LoadPtr {s .. op_. Object : isa_);)
friend class Class *_Type(Object*)

{ return Obiect:: isa_; J
Object(clas::; _d:Ur1Lirty*);
virtu.a.l cla~.s Clas2; '*"lsA O ;
virtu.a.1 void Mernhers(AccessMembers*);
11· · · • -· · -- · · · -- · · · · · · · · -- --· · · · · · · · --- • - · · · -- • -- --- - • - • • · · · - ·-· - · · -- - · -- - - •

I
. ·····-·· Symbol and

comment
highlighting

public c·-·················----··--·········---····--······---·---····-·---·--··--·--·-++H·-·-------··· SNiFF+ mode
Object(rnt f= eObJDefault);

virtual object();
vi r tu.a.1 void FreeAll () ;

31i§liM1IMJilili
Each user can have one Emacs to SNiFF+ connection active at a time.

Integrating Emacs Integrating Emacs is fairly easy. All you need is:

Telling SNiFF+ to use
Emacs

11 SNiFF + up and running

~' GNU Emacs (version 19 or later) installed at your site

n The sniff-mode.el file (part of the SNiFF+package)

The Preferences dialog ofSNiFF+ contains a toggle button labeled "Use Emacs".
Pressing the button tells SNiFF+ to use Emacs for all editing requests. If the
button is pressed and no Emacs is actually connected to SNiFF+, a small dialog
panel asks you whether to switch off the Emacs mode and use the own integrated
Editor.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

252 CHAPTER 15 SUPPORT FOR OTHER FUNCTIONS

EMACS INTEGRATION

Switching Emacs to
SNiFF+ mode

Connecting Emacs to a
running SNiFF+

Disconnecting Emacs
from SNiFF+

Working with Emacs
and SNiFF+

Positioning Emacs from
SNiFF+

The product package contains an Emacs-lisp file called sniff-mode. el that
defines the SNiFF+ mode, how to talk to SNiFF+, and keyboard definitions for
the available SNiFF+ commands.

The file is located in the directory $SNIFF _DIR/config.

To load the sniff-mode. el file at Emacs start-up, we suggest adding the following
line to your . emacs file:

(load "$SNIFF_DIR/config/sniff-mode")

You can avoid the path specification by copying sniff-mode.el to the directory
for site-wide Emacs-lisp files:

cp <sniff_directory>/config/sniff-mode.el /usr/local/lib/emacs/site-lisp

Whereby <sniff_ directory> points to the root of the SNiFF + installation. After you
have done that, your . emacs file entry can look like this:

(load "sniff-mode")

Whenever Emacs is started and is switched to the sniff-mode, a connection
between SNiFF + and Emacs has to be created. This is done by evaluating in the
minibuffer:

M-x sniff-connect

Emacs automatically recognizes when SNiFF +is shut down and disconnects itself.
A disconnection can be forced, though, by evaluating in the minibuffer:

M-x sniff-disconnect

Once a connection between SNiFF + and Emacs is established, SNiFF + uses Emacs
for all requests to show or edit source code. On the other hand, Emacs can send
queries to SNiFF+.

With Emacs as the main editor, you have almost the same possibilities to position
quickly to a position in the source code as with the integrated Editor. Whenever
you double-click in the browsers of SNiFF + on a symbol or entry that has a
relation to the source code, Emacs loads the corresponding source file and
positions the cursor at the location.

When a new file is to be loaded, it is loaded into the currently active buffer (the
buffer where the cursor is located). If the file is already loaded in a hidden
buffer, Emacs is switched to that buffer.

Emacs highlights symbols in the source text by using different fonts. The
symbolic information for this is supplied by SNiFF+. Highlighting can be
switched off (see "Configuring the Emacs integration" on page 253).

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

SNiFF+ commands
available in Emacs

Switching a non-SNiFF+
buffer to SNiFF+ mode

Configuring the Emacs
integration

Changing key bindings

Configuring symbol
highlighting

CHAPTER 15 SUPPORT FOR OTHER FUNCTIONS 253

EMACS INTEGRATION

All of the SNiFF+ commands that are important when editing source code are
also available in Emacs. To accomplish this, a few keys have been bound to
functions that communicate with SNiFF+. The functions and the key bindings
are defined in the sniff -mode.el file (for changing the key bindings see
"Configuring the Emacs integration" on page 253).

The following commands and bindings are available:

XXX table missing from p 108 XXX

If SNiFF+ cannot find an identifier to answer a query from Emacs, then a
message is displayed in the echo area.

When a file is loaded in EMACS from SNiFF+, this buffer is automatically in
SNiFF+ mode. When a file is loaded manually (via the emacs load file command),
the buffer can be switched to SNiFF + mode by evaluating the following
command:

M-x sniff-mode

After the command is executed, all SNiFF + key bindings are available and
symbols are highlighted.

The SNiFF + key bindings are defined in the sniff -mode.el file. You can change
the SNiFF+ key bindings as for any other Emacs key bindings.

EMACS is able to use different fonts. We use this feature to highlight symbols in
source code. Emacs then is able to mimic the behavior of the integrated Editor.

The symbol highlighting is on by default, but can be switched off by setting

(setq sniff-want-fonts nil)

in your . emacs file (or interactively with M-x set-va ri ab 1 e). Setting this variable
to non-nil enables symbol highlighting.

The default font table for the highlighting is defined in the sniff-mode. el file.
You can change the table by setting variables in your . emacs file. An example is:

(aset sniff-font-table 0 'bold-italic)

This will tell Emacs to use bold-italic face for comments. Please see the sniff -
mode.el file for a full description of table entries.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

2 54 CHAPTER 15 SUPPORT FOR OTHER FUNCTIONS

VERSION CONTROL

How the Emacs
integration works

If symbols and comments are not highlighted although the sniff-want-fonts
variable is set, your Emacs might use a font that doesn't supply the necessary
faces. To make Emacs using the courier font family, which should have all the
different faces, try the following X resource (add the line to your . Xdefaul ts
file):

emacs.font: -*-courier-medium-r-normal--*-120-75-75-*-*-*-*

To work together with the SNiFF+ environment, Emacs need not be changed. An
Emacs configuration file is supplied with the SNiFF+ distribution. This file called
sniff-mode. el contains Emacs-lisp code and tells Emacs how to communicate
with SNiFF+.

Once the file is loaded, a new SNiFF +-mode is available in Emacs. Evaluating the
function called sniff-connect builds"' up an interprocess communication and
connects Emacs to the running SNiFF + of the same user.

After SNiFF+ has been told to use Emacs as the main editor and after connecting,
SNiFF+ uses Emacs to show and edit source code. Likewise, SNiFF+ provides
commands to the Emacs user.

VERSION CONTROL

Version file and working
file

SNiFF+ supports various version control systems.

The following systems are supported:

TI RCS version 5 or newer

w secs
11 SNiFF+ internal locking. This is a simple file-based locking system without

version control features

Each version system can be integrated into SNiFF+ with a flexible adapter
architecture that provides a consistent user interface.

A version file is located in the version control system repository and holds the
complete history information of the file.

A working file is a checked out version and is the file that can be edited, saved,
and checked in later.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Restrictions in using
RCS and SCCS with
SNiFF+

Working with SNiFF+
version control and
locking

How RCS and SCCS are
integrated

SNiFF+ locking

Information stored

CHAPTER 15 SUPPORT FOR OTHER FUNCTIONS 255

VERSION CONTROL

The following restrictions apply when using version control systems with SNiFF+:

"' Every SNiFF+ project has one version control directory, but several SNiFF+
projects can share one version control directory.

m The directory names where the version files are stored can only have the
following names:

Version control system Directory

RCS RCS

SCCS SCCS

w For RCS the filename extension of the version file must be the default . v.

The RCS/SCCS commands must be available in the command search path of
the sniff process.

,,, The user changing the version files must have write permission on the
version control directories.

w Only strict locking is supported.

n Access list handling of RCS is not directly supported.

rn Delete revisions is not directly supported.

n rcsdi ff, sccs di ffs and rcsfreeze commands are not directly supported.

Most of the above functionality can be made accessible in the custom menus of
the SNiFF+ Editor (see "Custom menus" on page 221).

SNiFF+ always extracts the symbolic information from the working files and not
from the version files of the version control system. The main SNiFF+ tool to
control and manage the version control is the Project Editor (see "Project Editor
with locking information shown" on page 192). The check in and check out
operations can also be accessed from the Editor (see "File menu" on page 225).

SNiFF+ provides a flexible adapter interface and consistent user interface to RCS
and SCCS. All version control commands executed in SNiFF+ are translated to
calls of the corresponding tools of the respective version control system.

The integrated SNiFF+ locking is a file-based locking system without version
control features. It is intended to be used for projects where no version control is
needed but where locking is important.

The SNiFF + locking stores the general description for a file and a log of changes
to that file. The locking information is stored in a file called sourcefik. 1 ck in the

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

Syntax

_ .. * ...

-- + --

-- ? --

-- \I --

PRELIMINARY

APPENDIX B

GNU REGULAR EXPRESSIONS

GNU regular expressions are a very powerful means to specify patterns for filters
and search strings in the various tools of SNiFF+. The syntax conforms to the
regular expression syntax used in the EMACS editor.

/ / Extended regular expression matching and search.

I/ Copyright (C) 1985 Richard M. Stallman

The GNU regular expression facilities are like those of most Unix editors, but
more powerful:

* specifies a repetition of the preceding expression 0 or more times.

+ is like *, but specifies repetition of the preceding expression 1 or more times.

? is like *, but matches at most one repetition of the preceding expression.

\I specifies an alternative. Two regular expressions A and B with \I in between
form an expression that matches anything that either A or B will match. Thus,
"foo\lbar" matches either "foo" or "bar", but no other string.

\I applies to the largest possible surrounding expressions. Only a surrounding\(
... \)grouping can limit the grouping power of\I.

Full backtracking capability exists when multiple \l's are used.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

257

258 APPENDIX BGNU REGULAR EXPRESSIONS

-- \(... \) --

-- \digit --

-- \' --

·- \' --

-- \b --

-- \B --

-- \< --

-- \> --

-- \w --

\(... \) are a grouping construct that serves three purposes:

"' To enclose a set of\I alternatives for other operations.
Thus, "\(foo\lbar\)x" matches either "foox" or "barx".

0 To enclose a complicated expression for * to operate on.
Thus, "ba\(na\)*" matches "bananana", etc., with any number ofna's (zero or
more).

m To mark a matched substring for future reference.

Application 3 is not a consequence of the idea of a parenthetical grouping; it is a
separate feature that happens to be assigned as a second meaning of the same \(
... \) construct because there is no conflict in practice between the two meanings.
The following is an explanation of this feature.

After the end of a\(... \) construct, the matcher remembers the beginning and
end of the text matched by that construct. Then, later on in the regular
expression, you can use\ followed by a digit to mean, "match the same text
matched this time by the\(... \) construct." The first nine\(... \) constructs that
appear in a regular expression are assigned numbers 1 through 9 in order of
their beginnings. \1 through \9 can be used to refer to the text matched by the
corresponding\(... \) construct.

For example, "\(. *\)\l" matches any string that is composed of two identical
halves. The "\(. *\)" matches the first half, which can be anything, but the \1 that
follows must match the exact text.

Matches the empty string, but only if it is at the beginning of the buffer.

Matches the empty string, but only if it is at the end of the buffer.

Matches the empty string, but only if it is at the beginning or end of a word.
Thus, ''\bfoo\b" matches any occurrence of "foo" as a separate word.

"\bball\(s\l\)\b" matches "ball" or "balls" as a separate word.

Matches the empty string, provided it is NOT at the beginning or end of a word.

Matches the empty string, provided it is at the beginning of a word.

Matches the empty string, provided it is at the end of a word.

Matches any word-constituent character. The editor syntax table determines
which characters these are.

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

-- \W --

-- \s<code> --

-- \S<code> --

PRELIMINARY

APPENDIX BGNU REGULAR EXPRESSIONS 2 59

Matches any character that is not a word-constituent.

Matches any character whose syntax is <code>. <code> is a letter that represents a
syntax code: thus, "w" for word constituent, "-" for whitespace, "(" for open­
parenthesis, etc. Thus, "\<; (" matches any character with open-parenthesis syntax.

Matches any character whose syntax is not <code>.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

APPENDIX C

ETRC FILE ENTRIES

The ETRC file stores all preference settings. Site-specific preferences are stored
in the ETRC file located in the SNiFF+ installation directory. User-specific
preferences are stored in the ETRC file located in the user's home directory.

Some entries of the user-specific ETRC file can be edited with the Preferences
dialog (see "Preferences" on page 77). All other user-specific and all site-specific
entries must be edited in the corresponding files directly.

DESCRIPTION OF ENTRIES

ETRC entries for all SNiFF + applications (sniff and sniffgdb)

Resource name

* .WindowSystem.Motif(Bool):

* .WindowSystem.DoubleBuffer(Bool):

*. WindowSystem. ForceMonochrome(Bool):

* .WindowSystem.MaxDepth(Num):

* .WindowSystem. HighlightColor(RGBColor):

Default value

YES

YES

NO

32

2 0 255 255 0 0

#yellow

*.WindowSystem.WindowBackgroundColor(RGB 2 0 190 190 190 0
Color): #grey

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

Description

Look Motif or ET++

Double buffering gives flicker­
free screen updates

Display only1 bit per pixel; force
monochrome output

Maximum bits/pixel on color
systems

Color for selections and
highlights. Format: Don't-change
Don't-change Red Green Blue
Alpha. Alpha should always be 0.
Range for RGB values: 0 - 255.

Background color of windows.
For format see
WindowSystem.HighlightColor.

262 APPENDIX CETRC FILE ENTRIES

DESCRIPTION OF ENTRIES

Resource name Default value Description

* .WindowSystem.ViewBackgroundColor(RGBColo 2 0 255 255 255 O Background color of all views
(also Editor text view). For
contrast reasons you might also
want to change Sniff.Code.Color
etc. For format, see
WindowSystem.HighlightColor

r): #white

* .WindowSystem.DisableColor(RGBColor):

*. IAC.Debug(Bool):

* .SysFont:

*.Appl Font:

*.Fixed Font:

* .LineSpacing:

* .TextView.CaretColor(RGBColor):

* .ShellText.UseStyles(Bool):

* .CodeText.UseStyles(Bool):

* .CodeText.AllowGraphics(Bool):

* .CodeText.TabPos(Num):

* .CodeText.Autolndent(Bool):

* .CodeText.WordWrap(Bool):

*.Scroll Bar.Thickness:

2 O 144 144 144 0 Color of disabled items. For

#dark grey format, see
WindowSystem.HighlightColor

FALSE lnterapplication communicator
prints control messages to stderr

Chicago-Medium-12 System font: Family-Face-Size
(possible values are listed in the
ETRC file)

Helvetica-Medium-12 Application font: Family-Face­
Size

Courier-Medium-12 Fixed font: Family-Face-Size for
fixed text views (Editor, Shell,
Debugger)

6 0 255 0 0 0

#red

YES

YES

YES

4

YES

NO

16

General line spacing for all fonts
and all tools

Color of caret (cursor) in
textview. For format, see
WindowSystem.HighlightColor.

Allow different styles in a Shell

Allow different styles in source
text view

Allow graphical objects

Tabulator width for non-SNiFF+
files

Automatically indent lines

Wrap words around lines if text
gets too long

Width of scrollbars

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

APPENDIX CETRC FILE ENTRIES 263
DESCRIPTION OF ENTRIES

Resource name Default value Description

* .Document.MakeBackup(Bool): NO Create a backup copy
(filenamif'lo) on a file save

*.Document. UndoLevel(N um): 99999 Number of undo levels

Doc.ltemName.Font Helvetica-Bold-14 Font for item names

#Doc. ltemName.Color 2 0 190 190 190 0 Color of item names

Doc. Item Name.Alignment 2 #centered Center alignment of item names

Doc.FieldName.Font Times-Bold Font for field names

#Doc.FieldName.Color 2 0 190 190 190 0 Color of field names

Doc.Normal Paragraph.Font Times Font for normal text

Doc.NormalParagraph.lndentation 10 Indent for indented text

#Doc.Emphasis 3 # bold italic Font for emphasized text

Doc.Obsoleteltem.Color 2 0 1 00 100 1 00 0 Color of obsolete items

*.SHELL: /bin/csh Shell used for the Shell

ETRC entries for sniff

Resource name Default value Description

Sniff.StoreState: YES Store the window positions and
sizes between sessions

Sniff.MainWindow: 10:10:250:200 Location and size of the
Workspace Manager window

Sniff.TabSize: 4 Default Tabulator width (can be
overridden for each project)

Sniff.MakeCommand: make Command called on makes

Sniff. I ncludePostfixes: h:hxx Recognized suffixes of header
files (Format: ':'-separated list)

Sniff .SourcePostfixes: c:cc:C:cxx Recognized suffixes of
implementation files (Format: ':'-
separated list)

Sniff.Emacs: NO Use Emacs as editor

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

264 APPENDIX CETRC FILE ENTRIES

DESCRIPTION OF ENTRIES

Resource name

Sniff.ServerHost:

Sniff.ManualPath:

Sniff.FilterFile:

Sniff.RetrieverCache:

Sniff.HistorySize:

Sniff.TemplateDir:

Sniff.PopupErrorLog:

Sniff.Code.Font:

Sniff.Code.Color:

Sniff.Comment.Font:

Sniff.Comment.Color:

Sniff.Macro.Font:

Sniff.Macro.Color:

Sniff.Class.Font:

Sniff.Class.Color:

Sniff .I nstVar.Font:

Default value Description

Host where the sniffserver is run

Search paths for documentation
files (Format: ':'-separated list)

File defining additional filters for
the Retriever

TRUE Cache source files after the first
search in the Retriever

10 Maximum number of recallable
history entries in the History
menus

Directory where templates for
newly created files are stored

FALSE The Error Log window is
automatically opened when a
message is written to

Courier-Medium-12 Editor code font: Family-Face-
Size

20 000 0 Color for normal code. For format

#black see
WindowSystem.HighlightColor

Courier-Medium-12 Comment font: Family-Face-Size

20 929292 0 Color for comments. For format

#dark grey see
WindowSystem.HighlightColor

Courier-Bold-12 Macro font: Family-Face-Size

2 0 92 92 92 0 Color for macros. For format see

#dark grey WindowSystem.HighlightColor

Courier-Bold-12 Class font: Family-Face-Size

2 0 92 92 92 0 Color for classes. For format see

#dark grey WindowSystem.HighlightColor

Courier-BoldOblique- Instance variable font: Family-
12 Face-Size

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

APPENDIX CETRC FILE ENTRIES 265
DESCRIPTION OF ENTRIES

Resource name Default value Description

Sniff. I nstVar.Color: 2 0 92 92 92 0 Color for instance vars. For

#dark grey format see
WindowSystem.HighlightColor

Sniff. Method Def. Font: Courier-Bold-12 Method definition font: Family-
Face-Size

Sniff.MethodDef.Color: 2 0 92 92 92 0 Color for methods defs. For

#dark grey format see
WindowSystem.HighlightColor

Sniff.Methodlmpl.Font: Gou rier-Bold-12 Method implementation font:
Family-Face-Size

Sniff. Method I mpl .Color: 2 0 92 92 92 0 Color for method impls. For

#dark grey format see
WindowSystem.HighlightColor

Sniff. Function. Font: Courier-Bold-12 Function font: Family-Face-Size

Sniff .Function .Color: 2 0 92 92 92 0 Color for functions. For format

#dark grey see
WindowSystem.HighlightColor

Sniff. Friend.Font: Courier-Bold-12 Friend font: Family-Face-Size

Sniff. Friend. Color: 2 0 92 92 92 0 Color for friends. For format see

#dark grey WindowSystem.HighlightColor

Sniff.TypeDef.Font: Courier-Bold-12 Type definition font Family-Face-
Size

Sniff.TypeDef.Color: 20 929292 0 Color for typedefs. For format see

#dark grey WindowSystem.HighlightColor

Sniff.Variable.Font: Gou rier-Bold-12 Variable font: Family-Face-Size

Sniff.Variable.Color: 2 0 92 92 92 0 Color for variables. For format

#dark grey see
WindowSystem.HighlightColor

Sniff.Const.Font: Courier-Bold-12 Constant font: Family-Face-Size

Sniff.Const.Color: 2 0 92 92 92 0 Color for constants. For format

#dark grey see
WindowSystem.HighlightColor

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

266 APPENDIX CETRC FILE ENTRIES

DESCRIPTION OF ENTRIES

Resource name

Sniff.Enum.Font:

Sniff.Enum.Color:

Sniff.Enumltem.Font:

Sniff.Enumltem.Color:

ETRC entries for sniffgdb

Resource name

sniffgdb.DebuggerExec:

sniffgdb.DebuggerAdaptor:

... ,. --~·-"·-·--····~---

sniffgdb.DebuggerPrompt:

sniffgdb.AddETSupport(Bool):

·· ···

sniffgdb.UseWordWrapForText(Bool):

Default value

Courier-Bold-12

2 0 92 92 92 0

#dark grey

Gou rier-Bold-12

2 0 92 92 92 0

#dark grey

Default value

gdb

Gdb4Adaptor

(gdb)

NO

NO

Description

· Enumeration font: Family-Face-
Size

Color for enumerations. For
format see
WindowSystem.HighlightColor

Enumeration item font Family-
Face-Size

Color for enumeration items. For
format see
WindowSystem.HighlightColor

Description

Name of the debugger executable
(must conform with the
DebuggerAdaptor)

sniffgdb adaptor for the
debugger backend (must
conform with the DebuggerExec)

Prompt shown in the Debugger

Add support for the ET++
programming environment.
Setting it to YES will add a new
menu called Inspect that allows
invocation of the ETPE from
within sniffgdb.

Wrap lines that are too long

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

APPENDIX CETRC FILE ENTRIES 267
DESCRIPTION OF ENTRIES

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT TOOLS FOR AIX

ION PRELIMINARY

INDEX

A
about dialog, 175
abstract classes

in Hierarchy Browser, 208
in Symbol Browser, 204

AIX, 5
analysis tools, 59
applications

building, 9, 30
running, 16

architecture, 169
assignment filter, 212

B
backup file, 263
binaries, 7
breakpoints, setting, 222
build

clean, 17
definition, 7
environment variables, 12
examples, 13
generating, 28
global targets and rules, 11
log listing, 15
mistake, one target, Io
phases of, 8
process, 8
terminology, 7

build tools, 23-35
building projects, 7

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

c
C++ templates, 205
C/C++ syntax, 213
call filter, 212
cd, shortcuts, 95
cdpath (environment variable), 95
changing directories, shortcuts, 95
Check in

in Editor, 215, 225
in Project Editor, 194

Check out
in Editor, 215, 225
in Project Editor, 194

Class Browser, 206
Class menu, 180
Class pop-up, 214, 225
cleaning up after a test, I Io
client files, 7
collecting timing information, I 2 3
colors, setting, 264, 265, 266
combining

multiple TTest objects into single test, 114
operations into a single test class, 112
tests, 112

commandline, 135
commands, custom, 240
comment, 2 i 6
comparison Filter, 212
compilation errors, jumping to, 228
compiler options, 13
copy, 182, 216, 226
Copylnfo, identifying what test does, 115

TALIGENT TOOLS FOR AIX

270 INDEX

copying files, 34
cp

See Sma rtCopy

CreateMake

definition, 24
syntax, 37-57

creating a test
dependencies on other tests, 114
requirements, 108

.csh re

directory shortcuts, 95
Custom menu, 240
Cut, 182, 216, 226

D
debug target, 219, 228
debugger

See xcdb

commands in Editor, 222
custom menu, 240

declaration, switching to, 217
default text, 226
define parser configuration, 237
dependencies for make, 249
dependencies, creating tests with, 114
designing a test, 1 07
Directories menu, 173
directory, changing to, shortcuts, 95
Directory dialog, 17 4
Directory pop-up, 17 3, 175
Documentation Browser, 224
dragging text, in the Editor, 223

E
.e

See export file
Edit menu, 216, 226
editing shortcuts, 223
editing state, 214, 224
editor, 213

Class pop-up, 214, 225
custom menu, 240
dragging text, 2 2 3
editing state icon, 214, 224

TALIGENT TOOLS FOR AIX

Emacs, 213
fast copying, 223
find/ changing, 21 7
list of symbols, 214, 225
matching brackets, 2 2 3
positioning, 217
text selection, 2 2 3

EditorCustomMenu, 240
Emacs, 250

configuring integration, 253
integrating, 251
workingwith, 252

emphasized text, 2 26
environment variables

build, 12
setting, 12-13

error
"Undefined symbol", 25

Error log window, 177
ErrorFormats file, 241
ETRC file entries, 261
examining test results, 12 3
exception

Cleanup function, 11 o
handling, 123
stopping a test, 122

executables
building, 30
definition, 7

executing applications, 16
export file

definition, 7
generating, 27

extendable filters, 2 12

F
fast copying, 2 2 3
file copying, 34
File dialog, 172
File level symbol persistency, 243, 250
File list, 188
File menu

of the Editor, 214, 225
of the Project Editor, 188

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

files
custom menu, 240
directories & paths, 2 32
ETRC, 239, 261
makfile support files, 249
project file, 239, 244
Retriever filters, 240
suffixes for, 233
templates, 240
used by SNiFF+, 239

Files menu, 173
Filter menu, 181, 212
filters

extendable set of, 212, 240
predefined

Assignment, 212
Call, 212
Comparison, 2 1 2

New, 212
semantic, 210
syntax for, 257

Find Error, 228
Find/Change Dialog, 171
Fi ndSymbol s, 25
fonts

setting, 262
setting in Emacs, 253

G
generate directory, 200
generating

builds, 28
executables, 30
export files, 27
libraries, 30

genproj, 246
grep, Retriever, 210

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

H
.h

See header file
handling exceptions, 123
header file, 7
heap corruption, 64
heap tools, 59
Hide overridden, 207
Hiding classes in the Hierarchy Browser, 209
Hierarchy menu, 209
Hierarchy Browser, 208
history

menu, 181
setting size, 264

History text, 196

Icon menu, 177
identifying what a test does, 115
ignore string

parser configuration file, 237
Implementation

switching to, 217
Info menu, 179
Information extractor, see sniffserver, parser
Inheritance relationship, 208
Inheritance Tree, 207
input

parsing for test, 1 19
test, 119

InterViews, 245
IPCPurge, 27

See also mop

K
key bindings in Emacs, 253
keyboard shortcuts, 183

TALIGENT TOOLS FOR AIX

INDEX 271

272 INDEX

L
Layout handle, 170
libraries

building from smaller libraries, Io
generating, 30
linking to export files, 27

library projects, overlaying files, 234
License dialog, I 76
line spacing, 262
list of symbols, 204
locking

in Project editor, i 92
Locking menu, 194
Project Editor, 192

look, Motif, 2 33

M
macro parsing problems, 236
make

command, 2 34
dependencies.incl, 249
menu, I 89, 2 19
ofiles.incl, 250
receiving options from Ma kei t, 11

support for makefiles, 249
See also Makei t, io

. Make, missing builds new makefile, 11
MakeC++Sharedlib, 30
MakeExportlist, 27
makefile, 9-1 o

description
check in to RCS, 9
naming convention, 9
standard makefile, translating to, 9
syntax, 9
target types, 9

standard makefile, creating, 9
syntax, 9
targets, 9
update, 189, 218
when to build, 11

TALIGENT TOOLS FOR AIX

Make it
definition, 28
log listing, 15
makefiles, when to build, I I
passing options to make, 11

MakeSharedApp, 30
MakeShredlib, 30
MakeSOL, 31
matching brackets, 2 2 3
Menu commands

custom, 240
shortcuts, 183

modified icon, 214, 224
mop, 31
Motiflook, 233
multiple users, see locking

N
nest, 216
new filter, 212

0
object file list for make, 250
options

compiler, 13
overriding with variables, 13

options, RunTest, 121
overridden, hide, 207
overriding, inherited MCollectible members ofTTest, 110

p
parser

configuration file, 239
dealing with preprocessor macros, 2 36
see also sniffserver

parsing text inputs to test, 119
paste, 182, 216, 226
performing a test, I i 8
persistency

file level, 243, 250
of SNiFF+ symbols, 243
project level, 243

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

.PinkMake, newer than *.Make, 11
polymorphic testing, 118
predefined filters, 212
preferences, 2 31

colors, 264, 265, 266
ETRC, 261
fonts, 262
history size, 264

Preferences dialog, 232
Preprocessor macros, 236
Print dialog, 17 5
programs, building, 30
Progress window, 176
project

building, 1 o
building subprojects, 1 o
with many subprojects, 246
with separate implementation and declaration

directories, 245
Project Attributes dialog

for frozen subprojects, 203
for subprojects, 203

Project Editor, 187
Project file, 244
project hierarchy

See project
project level symbol persistency, 243
Project menu, 186, 189
Project tree, 188
protocol tests, 105
providing input for test, 119
purify, understanding messages from, 241

R
RCS, 2 54, 192
Redo, 182, 216, 226
regular expressions syntax, 257
resources, purging, 27
results, examining test, 123
Retriever, 21 o, 240
reusable status, 170
Run, 222
RunDocument, 32
running applications, 16

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

Run Test

s

options, 121
overview, 11 7
run multiple tests, 112

SCCS, 2 54, 1 g2

ScreamPlus, 31
script, run multiple tests, 112
search string, 2 1 o
selecting text, 2 2 3
semantic filtering, 2 1 o
Setenv, 12
setup, test framework, 110
shared libraries

building, g
definition, 7
generating, 30
linking to export files, 27

SharedlibCache, 33
shell tool, 227
shortcuts

editing, 223
for menu commands, 183

single stepping, 2 2 2

site specific preferences, 2 31
slcache

See Sha red Li bCache
Slibclean, 33
Sma rtCopy, 34
SNiFF+ locking, 255
sniff-connect, 252
sniff-disconnect, 252
sniffserver, 235

running on a remote host, 236
see also parser, 235

source files
specifying in a project, 1 97
suffixes for, 233

StartPink, 34
status line, 170
stopping, test, 122
StopPi nk, 35
streaming operators, test framework, 11 o

TALIGENT TOOLS FOR AIX

INDEX 273

274 INDEX

subproject, 190

subproject, building, 10

suffixes, for sources files, 233

super class, quick positioning to, 2 l 7
Symbol Browser, 204

Symbol list
in the Editor, 214, 225

in the Symbol Browser, 204

Symbol table, 169

persistency of, 243

Update, 218

syntax, for regular expressions, 257

T
target

debug, 219, 228

make, 218,228

name, 200

teamwork, support for, 234

template files, 240

templates, C++, 205

test
creating, l 08

designing, 107

examining results, 12 3
identifying what test does, 115

input, 119

interface inherited from base class, 118

parsing input, 119

performing, 118

polymorphic, 1 18

stopping, 122

test framework
class hierarchy, 104

cleanup, I Io
collecting timing information, 123

combining multiple TTest objects, 114

combining operations in a single test, 11 2

combining tests, I 12

example, 106

header files, 108

identifying test, 115

overriding MCollectible members, 110

overview, 103, 104

TALIGENT TOOLS FOR AIX

performing a test, l I 8
run test more than once, 110

script, 112

setup function, i i o
test function, 1 09

tests with dependencies, 1 14
test function, writing, 109

this, 222

timing information, collecting, 123

tips and techniques, 95

TLocalHeapAnalyzer, 62

TLocalHeapMonitor, 61

TMCollectibleTest, 105

TTest
combining, 114

description, i 04

hierarchy, 104

TTestCollection, 105

TTestMultiplexer
definition, i 05

usage, 112

TTextArgumentDictionary, test framework, l 06

TTieredText, test framework, l 06

TTieredTextBuffer
test framework, i 06

writing text to console, 11 i

TTimingTest, 105

Tuning, 243

Type Pop-up

u

Class Browser, 207

Symbol Browser, 205

Undo, 182, 216, 226, 263

Universal .Make, 11
UNIX, shell interface, 227

update Makefiles, 189, 218

v
version control, 192, 254

version file, 254

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

w
window status

files, 242
preferences setting, 233

working file, 193, 254
Workspace Manager, 185
writing a test function, 109

writing a test to run more than once, 110

writing text to the console, 111

WYSIWYG, 213

x
xcdb (debugger), 96
xdb, 96
xLC, wrapper for, 30

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

INDEX 275

TALIGENT TOOLS FOR AIX

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

U94205-01A

