
Advanced Computer Architecture
Advanced Technology
Apple Computer, Inc.

Scorpius Architectural Specification
Revision 1.0

Confident/al and Proprietary Information of Apple Computer, Inc.

The information contained in this document is copyrighted in the name of Apple
Computer, Inc., and is highly confidential and proprietary. It may only be
accessed by authorized Apple employees and/or authorized Apple independent
contractors on a "need to know" basis.
Unauthorized use, misuse, access, copying, or disclosure of any or all of the
information contained in this document may constitute a violation of your Apple
employment agreement or independent contractor's agreement and may result in
termination of your employment with Apple and/ or in civil or criminal liability.
By proceeding into this document, you acknowledge the copyrighted, confidential,
and/ or proprietary nature of the information contained in it and you agree to use
the information only for the purpose for which it is intended, to maintain the
confidentiality of the information, and to refrain from any and all unauthorized
use, access, copying, and/ or disclosure of such information. ·

(__)

Scorpius Architectural Specification

Contents

Chapter 1. Introduction
1. 1 Scope 1- 1
1.2 The Scorpius CPU 1-3
1.3 Scorpius-Based Systems 1 -5
1.4 Parallel Execution 1-9
1.5 Notation and Terms 1- 11

Chapter 2. CPU Organization
2. 1 Introduction 2-1
2.2 Data and Address Formats 2-2
2.3 Programming Model : 2-3

• General Registers 2 - 4
• Program Counters 2-4
• Status Registers 2 - 6
• Special Registers 2- 6
• Caches 2- 13

2.4 Instruction Set Overview 2- 13
• Addressing Modes 2- 15

J

• Load, Store, and Move Instructions 2- 15
- Delayed Loads 2- 16

• Branch, Compare, and Jump Instructions 2- 16
- Delayed Branches 2-18

• Logical and Shift Instructions 2- 18
• Field Manipulation Instructions•................. 2-18
• Arithmetic Instructions•........................... 2- 19
• Broadcast and Semaphore Instructions 2-20
• Cache Control Instructions ~................... 2-20

2.5 Prefixing -• ~....... 2-22
• Immediate Prefixing -.. 2- 2 4
• Displacement Prefixing 2-25
• Field Manipulation Instruction Prefixing 2-26

Apple Computer Confidential

Scorpius Architectural Specification Contents

• Branch Displacement Prefixing 2-26

2.6 Condition Codes 2-26

2.5 Multi-Gauge Arithmetic 2-29

Chapter 3. Addressing
3. 1 Introduction 3- 1

3.2 Address Space Organization 3 -2
• Access Privileges 3-3
• Inter-Node Messaging Via Interrupt-on-Write Pages . 3-4

3.3 Address Formats 3-6
• Virtual Addresses 3- 6
• Address Arithmetic 3- 6
• Real Addresses 3- 6

3. 4 Translation Tables 3 - 7
• Structure 3- 7
• Entry Formats 3-9

Directory :... 3- 1 O
User Region Page Table .. 3- 11
Buffer Region Page Table 3-13

• Page Faults 3-15
• Access Privilege Violations 3- 16
• Buffer Region Table Organization 3- 1 6

3.5 Translation Table Placement 3-18
3.6 The Translation (Lookaside) Buffer 3-19

• The Antares Translation Buffer 3- 2 O
• Translation Buffer Invalidation 3- 2 O
• Translation Changes and the Cache 3- 2 O

>J,~-- T_ranslation Changes and the Write Buffer 3-21
• Translation Changes ánd the Pipeline 3- 2 1

3.7 Address Translation in Antares 3-22
:-•· !,l!J Search 3-2 2
~.-._ !B Hit 3-22

.,.

- •-·- T.,_B Miss 3-26

., .. •,.,,: A.ccess lf!itiàtion :~··· 3-2 7
3.8 tß_ache and TB Coherency in Antares 3-28

rt•. Caèh,_e Cohetency in. Single CPU Systems 3- 2 8
e!~¿ Gache Coherency in Multiple CPU Systems•........... 3-2 9

-:;, TB CQherency -·~··· 3-29

~-,; · "Apple Computer Confidential

Scorpius Architectural Specification Contents

Chapter 4. Interrupts and Traps
4. 1 ·Introduction 4- 1

4.2 Interrupts and Traps . 4 - 1

4.3 Interrupt Generation, Presentation, 4-4
and Recognition Control
• Pending Interrupt Flags 4-6
• Interrupt Arguments 4- 7

4.4 Trap Generation, Presentation, 4-8
and Recognition Control
• Trap Source Flags ~................ 4-8
• Trap Arguments 4- 1 O
• Multiple Exception Instances 4- 1 o

4.5 Interrupt/Trap Entry Addresses 4- 1 O

4.6 PU State at Interrupt/Trap Recognition 4-11
• The PCQ Enable Flag 4- 14
• The PU Available Flag 4-15
• PU State Saving 4-15
• PC Save Queue Access 4- 1 6

4.7 Return From Interrupt : 4-17
• Return 4-18
• Switch 4-19
• Startup 4-20

4.8 Interrupt/Trap Summary 4-21
• MachineCheck 4-22
• Power/Temp. 4-22
• Deadlock 4-23
• IO 4-23

• Message ~·····················.~·······················~ 4-24
• Event Counter Overflow :~,.••···~······~·~···· 4-24
• PU Check ~.~ .-:·.~ ·.· .. :...... 4-25
• · PU Restart : · .. ::·; ~ .. : 4~25

. • PU Preempt ~ ~.. 4-26
• Data Page Fault · ~ .-~:.. 4-26
• Data Access Privilege Violation _. ; : 4-27
• Message Reject ~: ;.~ :. 4-27
• System Call ;:~ ~~ ~ .. ~'.·~ .- . .-.¡· ••. · 4°28 e <S.

• Operation Fault ···························~··············· .. ~~~~.~ ~.~ .. ~··.:~ >4· .. 28
•·· Overflow•.• '~ ~· ~.L:~·-~ 4-3'0
• Instruction Page Fault ~ ~.····~-•:.. 4-31

Apple Computer Confidential

Scorpius Architectural Specification Contents

• Instruction Access Privilege Violation 4- 3 1

4.9 Interrupt/Trap Processing in Antares 4-32

Chapter 5. Inter-PU Communication & Coordination
5. 1 Introduction 5-1

5.2 Broadcast Instructions 5 - 1
• The PU Mask Field 5- 1
• The Wait instruction 5 - 2
• Halt Operation 5 -2
• Synchronize Operation 5 - 2
• Address Broadcasting 5 - 3
• .. Data Broadcasting 5 - 4

5.3 Inter-PU Traps 5 - 6
• Preempt 5 - 6
• Restart 5-7

5.4 Semaphore Instructions 5-8
• Lock and Unlock 5 - 8
• Service Order 5 - 8
• Applications :.............. 5-9

5.4 PU States & Deadlock Detection 5-1 O
• PU States 5- 1 O
• run state 5 - 1 O
• halt state 5-1 O
• wait state 5- 11
• State Change Delay 5-11
• Deadlock Detection 5- 11

Chapter 6. Cache Control Operations
6.1 Introduction 6- 1

6.2 Cache Organization 6- 1

6.3 - Cache Line Control 6- 5

6.4 ~ Prefetching 6- 7

6.5 Cache Invalidation in Antares 6- 7
·-. Instruction Cache 6-8
• Data Cache 6-8

Chapter 7. Measurement Facilities
7. 1 Introduction 7- 1

Apple Computer Confidential

Scorpius Architectural Specification Contents

7.2 Event Counters and Their Controls 7- 1
7.3 The Measurement Process 7-5

)

Chapter 8. Instructions
8. 1 Introduction 8- 1
8.2 Load, Store, and Move Instructions . .. 8-4

• Load Immediate (Ldl) 8-5
• Load/Store Register (LdR/StR) 8-6
• Load/Store Register+ Displacement (LdRDIStRD) 8- 7
• Load/Store Byte (LdB/StB) 8-8
• Load/Store Multiple (LdM/StM) 8-9
• Load Condition (Lec) 8-1 o
• Load Carry Partial (LdCP) 8- 11
• Load Program Counter (LdPC) 8-11
• Load PU Number (LdPU) 8- 12
• Move Register (Mov) 8-12
• Move From/To Special (MovFSIMovTS) 8- 13

8.3 Branch, Compare, and Jump Instructions 8- 14
• Branch on Condition (Bec) 8- 15
• Compare (Cmp) 8-17
• Compare Immediate (Cmpl) 8- 18
• Compare Partial (CmpP) 8- 19
• Jump Relative (Jmp) 8-20
• Jump and Link (JmpL) 8-21
• Jump Register (JmpR) 8-21
• Test Field (TstF) 8-22
• Test Mode (TstM) 8-23

8.4 Logical and Shift Instructions 8- 2 4
• And (And) 8-24
• And Complement (AndC) 8-25
• Not (Not) 8-25
• Or (Or) 8-26
• Exclusive Or (Xor) .-.......................... 8-26
• Shift Double(Dsh) 8-27
• Shift Left (ShL) _....................... 8-28
• Shift Right (ShR) 8-29

8.5 Field Manipulation Instructions ~........... 8-29
• Clear/Set Field (ClrF/SetF) 8-30
• Deposit (Dep) ~ ~............ 8-31

Apple Computer Confidential

Scorpius Architectural Specification Contents

• Extract Signed/Unsigned (ExtSIExtU) 8-32
• Insert (Ins) 8-33
• Define Field (Msk) 8-34
• Prefix Immediate (Pfxl) 8-35

8. 6 -Arithmetic Instructions 8- 3 5
• Add/Subtract (Add/Sub) 8-.36
• Add/Subtract with Carry (AddC/SubC) 8-3 7
• Add Immediate (Adi) 8-38
• Subtract Immediate (Subi) 8-39
• Add/Subtract Partial (AddP/SubP) 8-40
• Count Leading Zeroes (CLZ) 8-41
• Divide (Div) 8-42
• Divide Extended (DivE) 8-43
• Divide Unsigned (DivU) 8-44
• Divide Unsigned Extended (DivUE) 8-45
• Multiply (Mui) 8-46
• Multiply Unsigned (Mu/U) 8-46
• Multiply Partial (Mu/P) 8- 4 7
• Multiply Partial Unsigned (Mu/PU) 8-48

8.7 Broadcast and Semaphore Instructions : 8-49
• Receive (Rev) 8-50
• Resume (Rsm) 8-51
• Send (Send) 8-52
• Start (Start) 8- 5 3
• Wait (Wait) 8-54
• Lock (Lock) 8-55
• Unlock (Unlk) 8- 5 5

8.8 Cache Control Instructions 8-56
• Create Data Cache Line (CDC) 8-57
• Flush Data Cache Line (FDC) 8-58
• Invalidate Data Cache Line (/DC) 8-58
• Invalidate Instruction Cache Line (/IC) 8-59
• Invalidate Instruction Cache (I/CA) 8-59
• Read Data Tag By Index (RDTX) 8-60
• Update Data Cache Line (UDC) 8-61
• Validate Data Cache Line (VDC) 8-62

8.9 Control and Miscellaneous Instructions 8-62
• Clear/Set Mode (ClrM/SetM) 8-63
• Preempt (Prmpt) 8-64
• Restart (Res) 8-65

Apple Computer Confidential

Scorpius Architectural Specification Contents

• Return From Interrupt (Rtl) 8-66
• System Call (Trap) 8-67

Appendix A. Instruction Formats and Operation Codes
Basic Formats A-2

Unique Formats ································~······································ A - 3
Operation Codes A-4

Appendix B. Real Memory Organization in Antares

Appendix C. Machine Reset in Antares

)

Apple Computer Confident/al

Rev. 1.0 (10/88)

1. Introduction

1.1 Scope
This document provides a specification of the Scorpius CPU architecture and

a systems-programming-level reference for the Antares CPU, a particular
implementation of the Scorpius architecture. Scorpius is a tightly-coupled
multiprocessor CPU with effìcìent support for fine-grained parallelism; the
architecture was developed to talee advantage of the inter-connectivity of single­
chip VLSI tmplementations.1 Scorpius is intended to be the processing element
of a high-performance personal computer system constructed with a m1n1mal
number of components.

A Scorpius CPU comprises four independent processing units (PUs) which
share access to separate instruction and data caches, a Memory Management
Unit, and a Memory /Bus Interface. In addition to communicating through
memory. PUs can communicate and can coordinate their activities via broad­
cast instructions, which permit one PU to send data and addresses simultane­
ously to other PUs and to suspend its execution until other PUs complete
execution of their activities. Multiple Scorpius CPUs can be connected via an
Interprocessor Bus to fonn a multiprocessor system in which each CPU has its
own local memory which it can share with other CPUs. Support for inter-CPU
messaging is provided by tnt.errupt-on-wrtte pages. The Interprocessor Bus also
provides a means of communicating with other processors (e.g .• IO processors).

This chapter gives an overview of the Scorpius CPU. briefly describes the
organization of Scorpius-based systems, and introduces terms and notation
used in the remainder of the document. Chapter 2 describes CPU organization
and presents a programming model of the CPU. Address space organization,
translation table structure, and the address translation process are described in

,'-.__ __) 1However, multi-chip implementations are feasible. A multi-chip prototype of the
Scorpius CPU, called Venus, is currently being developed.

Apple Computer Confident/al 1-1

Introduction

INTER-PROCESSOR BUS ~-< '-- LOCAL IIEIIORY

111,are 1.1. MaJorCPUElements

Chapter 3. Chapter 4 describes interrupt and trap processing. and gives a
summary description of each interrupt and trap. Inter-PU coordination and
communication is effected via broadcast and semaphore instructions. which are
discussed in Chapter 5. The instruction and data caches are architecturally
visible in Scorpius. and instructions are provided. to invalidate and flush· cache
lines. These and other cache control instructions are discussed in Chapter 6.
Scorpius provides a pair of event counters with associated controls for use in
measuring various aspects of CPU performance, such as instruction execution
rates. PU utilization, and cache miss ratlos. These measurement facilities are
described in Chapter 7. The Scorpius instruction set is described in Chapter 8.
In most chapters, descriptions of the Antares implementation are included.
Also. the Antares versions of certain implementation-dependent aspects of the
CPU+-+system interface are described in appendices.

The intent of an CPU architectural speciftcatlon is to provide a description
which is sufficiently complete so that different implementations of that
architecture can be built. possibly by different design teams, with confidence
that a program executed on any one implementation will produce identical
results when executed on any other implementation. These implementations
are said to be instruction-level compatible. Instruction-level compatibility is
frequently. but not always. required. Sometimes it is sufficient to provide only
application-level compatibility, and permit changes in operations performed

Apple Computer Confident/al 1-2

Introduction

\
\..__

only by the operating system. so that some operating system functions become
model-dependent. To help identify such functions, architectural aspects subject
to change in future implementations (to the extent currently recognized) are
identified in the text.

1.2 The Scorpius CPU
The major elements of a Scorpius CPU are shown in Figure 1.1. (The shaded

region encloses those elements contained on the Antares CPU chip.) The CPU
has four identical and independent processing units. or PUs; each is a 32-bit
RISC (Reduced Instruction Set Computer). The four PUs access instruction and
data caches via interconnection networks. In addition to providing pu· cache
data transfer paths. these networks provide a direct inter-PU communication
path for broadcast operations and global register access, as well as a path for
interrupt routing. In Antares, instruction and data caches are divided into four
banks, and each network is a 5 x 4 crossbar switch, permitting simultaneous
instruction and data accesses by all four PUs.

Scorpius provtdes a flat - unsegmented - virtual address space of 4096
megabytes (MB). A 4-megabyte area at the high end of each address space is
reserved for the system kernel; the remaining 4092 megabytes, called user
space. are available for the user and for other parts of the operating system. The
kernel region is not paged, but instead maps directly to the first 4 megabytes of
real memory. A single instance of the kernel, then, ~ common to all address
spaces. User space is pageable. The standard page síze is 8192 bytes (8KB), but it
is possible to define special frame buffer regions in which space is allocated in
super-page units, which can range from 256KB to 8MB.

An address space is defined by a set of virtual-to-real page mappings which
are recorded in a translation table. Each address space has its own translation
table. At any instant, only one address space can be active on a CPU; the four
PUs always execute in the same address space. A global register holds a pointer
to the start of the translation table for the currently-active address space.
Translation table have a simple, two-level structure, composed of a first-level
directory and one or more second-level page tables. In addition to virtual-real
mappings, translation table entries identify pages as system, read-only, non­
cacheable, or interrupt-on-write.

Translation of virtual addresses to real addresses is done by the Memory
Management Unit (MMU) using mappings obtained from translation table
entries. To avoid reading dJrectory and page table entries on every translation,
the MMU maintains the most recently used mappings in a Translation Buffer.
Antares has virtually-addressed caches; address translation is required onJy on
a cache miss or on an access to a non-cached page. (The Antares MMU also
maintains the CPU's global regìsters.) A 32-bit virtual address translates into a
36-bit real address, comprising a 4-bit node number and a 32-bit intra-node
address. A node number identifies a position on the Inter-Processor Bus (IPB);
the node at which a particular real page resides is said to be the owner of that
page. On a cache miss or a non-cached memory access, the MMU sends a

Apple Computer Confidential 1-3

Introduction

memory access request to the Memory /Bus Interface (MBU. which examines the
node number of the real address accompanying the request. If the node number
is the same as that of the CPU generating the request, then the request is directed
to local memory: otherwise, the request is sent to the specifled node, or remote
memory, via the IPB.

Pages (other than super-pages) can be marked "interrupt-on-write". A store
to an interrupt-on-write page causes a message interrupt to be presented to the
node owning that page when the store is performed. The interrupt-on-write page
can reside in either local or remote memory, and must also be non-cacheable.
Interrupt-on-write pages provide a mechanism for transmitting messages
between nodes and for coordinating activtties of different nodes.

When a CPU receives a message interrupt or an external interrupt (such as an
IO interrupt). it examines the status of its four PUs. If one of the PUs is halted, it
is assigned to process the interrupt: only if all four PUs are busy is it necessary
to actually interrupt PU execution. Interrupt processing, then, frequently can be
done in parallel with application execution. Each PU has a flag which indicates
if its state must be saved on interrupt. If a PU sets this flag prior to halting, state
saving overhead on interrupt processing can be eliminated.

PUs. Scorpius PUs have a small register-oriented instruction set in which
all data access to memory is done by register load and store instructions.
(Register and word size is 32 bits.) Each PU has 16 general-purpose registers - a
total of 64 for the CPU - and 7 local registers. Local registers include product,
remainder, preñx, and various state saving registers. In addition. the four PUs
share 8 global registers, including interrupt. event counter, and global status
registers.

All Scorpius instructions are 16 bits in length. Instructions are tightly
encoded, with operation code lengths generally reflecting the number of
operands (zero, one, or two). There are orùy two address modes: register. and
base plus displacement. Base plus displacement addressing provides a
displacement of up to 64 words from the base register address, with the base
register limited to registers 0-3. However, preflxlng can be used to increase the
displacement range, transform register addressing into base plus displacement
addressing (with any register as base). and provide signed displacements.

The 16-blt instruction length limlts the s1ze of immediate and displacement
fields ln Scorpius instructions. However, a large proportion of immediate and
displacement values encountered ln programs are small enough to be contained
in these fields. When necessary. larger values can be created by preflxlng the
immediate or displacement field value. Each PU has a local register called the
Preßx Register. whose state (empty or not empty) is represented by a Preßx Valid
flag. Values are loaded into the Prefix Register by a Prefix instruction. If the
Prefix Register ls empty when a Prefix instruction ls executed, the immediate
field of the Prefix instruction is stored in the low-order bits of the Prefix
Register and sign extended. and the Prefix Valid flag set to not empty. If a second
Preßx instruction then ls executed, the contents of the Preßx Register are shifted
left and the immediate field of the second Prefix instruction stored in the low-

Apple Computer Confidential 1-4

Introduction

)

order bits of the Prefix Register. When a instruction with a preßxable
immediate or displacement is executed, the Preflx Valid flag is examined. If the
Preflx Register is not empty, the contents of the Preflx Register are concatenated
with the instruction's immediate or displacement field to form the effective
immediate or displacement value. Pretlxing also is used to define fields for field
manipulation instructions.

Like many RISCs, the Scorpius PU has delayed branching. The instruction
immediately following a branch, called the branch shadow instruction, always
is executed, regardless of whether or not the branch is taken. In many
implementations, this eliminates the delay which otherwise would result from
a a taken branch; compilers usually can move a useful instruction into the
branch shadow. Implementations of Scorpius also may have delayed loads. Toe
value loaded from memory into a register by a load instruction may not be
immediately available: if the instruction following the load attempts to use that
value, it may be delayed. While this is of concern from a performance viewpoint,
it is not a functional concern; all implementations provide the necessary
interlocks to insure that using instruction does not execute until the register
load completes.

Other important aspects of the Scorpius instruction set include the
following:

• load byte and store byte instructions with auto-incrementing to
speed string handling;
• load and store multiple instructions with auto-incrementing
on load and auto-decrementing on store to facilitate register
saving and restoring on procedure calls;
• multi-gauge arithmetic instructions which operate simultane­
ously on both half-words or all four bytes of a word (depending on
the mode selected), for high-performance graphics;
• extract, insert, deposit, and double shift Instructions to aid in
bit field manipulation:
• cache control instructions, including cache line prefetch, flush
and invalidate: and
• broadcast Instructions, which a PUs uses to send data (or an
address) simultaneously to to other PUs, and to suspend its execu­
tion until other PUs complete execution of parallel activities.

In Antares. multiply and divide are asynchronous operations which can be
overlapped by other Instructions.

1.3 Scorpius-Based Systems
With Antares and other single-chip implementations of the Scorpius CPU

architecture, systems can be constructed using relatively few components.
Figure 1.2 shows the major components of a single-CPU system using the

Apple Computer Confident/al 1-5

Introduction

VIDEOBUS

VRAM

l 4-WA.Y INTERLEAVED

¡.............._DRAM-~T =YŒO~ --=- VRAM VRAM

ANTARES
CPU

LOCAI.BUS

ADOAES&iDATA.
TRANSCEIVERS

IPBc->
10

IPlc->
NuBUS

INTER.PAOOESSOR BUS

Ft¡ure 1.2. Single-CPU System Components

Antares CPU. Because of the parallel processing capabilities of the CPU, and its
multi-gauge arithmetic, no separate graphics processor is required.
Incorporation of RAM, ROM, and bus control into the Antares CPU chip further
reduces the number of components. In this system, memory is four-way
interleaved so that data transfers between CPU and memory take place at a
maximum rate of one word per cycle. Note that memory is composed of both
dynamic and video RAMs. A frame buffer region is created using a single super­
page allocated in that part of real memory composed of video RAMs, a screen
Image ts created in the buffer by the CPU using normal load and store
operations. and the tmage then written to the screen over the video bus.

The system of Figure 1.2 can be extended into a multi-CPU system by
connecting additional CPUs, each with its own local memory and IPB Interlace,
to the IPB. Sixteen nodes can be directly addressed on the IPB; additional notes
can be added via gateways. In a typical multi-CPU system, one CPU will provide
the video interface and have its local memory constructed of both VRAMs and
DRAMS; the remaining CPUs will have local memory constructed of only
DRAMS. However, it is possible that very high performance graphics systems
may be developed ln which, for example, four CPUs share screen display respon­
sibilities. each operating on a quarter of the screen.

Apple Computer Confident/al 1-6

Introduction

/PB transfer from CPU n to CPU i does not inter­
fere with the local memory trafffic of other CPUs

LOCAL
MEMORY

.♦

LOCAL
MEMORY • •

LOCAL
• MEMORY

INTER-PROCESSOR BUS (IPB) -
CPU 1

,,
CPU 2's local
memory aœsses

CPU2
• • •

-
CPUn

store to
node 1

Figure 1.3. Multi-CPU System

A Scorpius virtual address translates into a real address comprising a node
number and a intra-node address, so any CPU in a multi-CPU system can share
pages with any other CPU in that system. However, the system organization is
different from that of a conventional shared memory multiprocessor in which
all processors access the same real memory; the operating system model
appropriate for the shared memory multiprocessor may be inappropriate for a
Scorpius-based multi-CPU system. (From the operating system viewpoint, a
Scorpius-based system perhaps should be considered as a form of distributed
system.)

In the shared memory multiprocessor, all processors compete for memory
access (often by competing for a memory bus). and all memory accesses have the
same expected delay. In most Scorpius-based multi-CPU systems, access to local
memory is independent of the IPB and is not delayed by IPB activity involving
other CPUs. as illustrated in Figure 1.2. Also. depending on implementation,
IPB transfers may have greater latency and possibly a lower transfer rate than
local memory transfers so that, even in the absence of conflicts, an IPB transfer
may take longer than a local memory transfer. Thus. frequently-accesses pages
should be located in local memory. Depending on the number of accesses to a
shared page, it can be more effìcìent to copy it from remote memory to local
memory before accessing it rather than to access it over the IPB.

Inter-CPU communication in a Scorpius-based system is based on interrupt­
on-wrtte pages; various message passing schemes can be implemented using the
interrupt-on-write mechanism and shared pages. (The interrupt-on-write
mechanism is the only mechanism provided for synchronization of multiple
CPUs.) Because of the dilierences between a Scorpius-based system and a
conventional shared-memory multlprocessor, Scorpius, as currently defined,
does not incorporate cache coherence in hardware.

Apple Computer Confidential t-7

Introduction

SCORPIUS CPU

-:-:-i----Mitiol"'r=:;;~;;,;1

__ :_:__. --+i:~:1Mk1r%;C:;C:J
DATA
CACHE

all PUI execute
lh• same code

PU O opera lll an A(O], A(-1], •.•
PU 1 operalll an A(1], A(5

Figure l.S(a). SIMD Mode Execution

SCORPIUS CPU

PUI

PU2

PU1

PUO

-1RUC110N
CAate

each PU executel a
different Ht of lnl1rUC11o,-

each PU parfDrml an operation
a pa11e1 lhe t"NUlt to the next PU

Figure l.S(b). MISD Mode Execution

SCORPRJS CPU

PUI

PU2

PU1

PUO

DATA
CACHE

each PU operalll on
different data

Flgme l.S(c). MIMD Mode Execution

Apple Computer Confidential 1-8

Introduction

1.4 Parallel Execution
Scorpius programs can execute in any of several parallel modes. These are

categorized using (With some liberties) the taxonomy developed by Flynn (Flynn.
M. J. Some Computer Organizations and _Their Effectiveness. IEEE Trans. on
Computers 21. 9 (Sept. 1972). pp948-960). These modes are referred to by
acronym in later chapters, and are described below.

SISD (Single Instruction stream. Single Data stream). This mode
corresponds to uní-, or serial. processing: only one PU executes. Scorpius
programs typically alternate between intervals of serial and of parallel
processing. A single PU initiates (and usually participates in) a set of parallel
computation activities. and. upon activity completion. may accumulate the
results.

SIMD (Single Instruction stream, Multiple Data streams). This mode
corresponds to the usual View of parallel processing: each PU executes the same
operation on different data streams. as illustrated in Figure l.3(a). or on
different elements of the same data stream. Data access may be , ordered or
random. In ordered access. inter-PU coordination is implicit. as when each PU
operates on every fourth element of a vector. In random access, explicit inter­
PU coordination is required. as when PUs operate concurrently on a linked list
or take work from a queue. Coordination in this case can be effected through the
use of semaphore instructions. This ts the easiest form of parallelism to exploit,
either With assembly code or by a compiler. For example. the compiler may be
able to "unwind" a loop which operates on an array to run on four PUs. with each
PU operating on every fourth array element. Optimal performance is easily
obtaìned-smce all PUs are doing the same work. 2

As an example of SIMD mode execution, consider the common graphics
transformation operation (used in scaling. rotation. and translation) which
involves the 1 x 4 matrix multiplication

[x* y* z* w*] • [x y x w] X I cu c12 c13 c14

c21 c22 c23 c24

C31 C32 C33 C34

C41 C42 C43 C44
where

Cx y x w l = original coordinate set.

[x* y* z* w*] = transformed coordinate set,
and the

c1j are fixed (pre-computed) for any given transformation. (For any
particular transformation. some of the e 1 j are lmown to be O or 1.)

21n Antares, having each PU operate on every fourth element of a one-dimensional array
eltmtnates data cache conflicts, since the Antares data cache ts four-way Interleaved with
adjacent words located ln different banks. u
Apple Computer Confident/al 1-9

Introduction

The matrix product can be written as
x* - xc11 + yc21 + ZC31 + WC41
y* = xc12 + yc22 + ZC32 + WC42
z* = xc13 + YC23 + ZC33 + WC43
w* = XC14 + YC24 + ZC34 + WC44

In a SIMD mode implementation of this transformation. PU O can be
assigned to compute x*, PU 1 to compute y*, and so on. Each PU preloads its
registers with the appropriate set of constants and, after each nth
transformation, each PU executes a cache prefetch instruction to prefetch the
next line of coordinate data. (Only one prefetch actually takes effect.) By careful
scheduling of prefetch and computation operations, very high transformation
rates can be realized.

MISD (Multiple Instruction streams, Single Data streams). In this mode,
each PU executes a difJerent operation on the same data stream element: data is
"pipelined" between PUs (Figure l.3(b)). For example, consider the computation
of

Yi• axi3 + bxi2 + cx1 + d

which might be dtvided across PUs as follows. (It is assumed that a, b, e, and d
are constants and are preloaded into registers of the appropriate PUs.)

• PU O: load and send Xi, compute and send cxi + d
• PU 1: compute and send Xi 2, bxi 2
• PU 2: compute xi3 • Xi (xi2>, compute and send axi3
• PU 3: sum intermediate results to form Yi and store Yi

Pipelining of intermediate results from one PU to the next can be done with data
broadcast instructions, which also serve to coordinate operations. For example,
PU 1 sends xi 2 to PU 2 by executing a Send instruction: to receive this value, PU
2 executes a Receive instruction. If this Receive is executed before PU l's Send,
PU 2's execution is blocked until the Send Is executed. Pipelining also could be
done through memory, using Wait and Resume instructions for coordination.

This is a relatively difficult form of parallelism to code or for which to
compile code. It 1s not easy to balance PU execution times to optimize perform­
ance. However, carefully crafted hand-coded MISO processing sometimes is
useful 1n improving the performance of critical programs. One stage of the
Antares graphics pipeline uses two PUs executing in SIMD mode and two PUs
executlng tn MISO mode.

MIMD (Multiple Instruction streams, Multiple Data streams). This mode is
analogous to multiprocessing: each PU executes a different and independent set
of instructions which operate on different and independent data elements
(Figure 1.3(c)). These might correspond to independent expressions within a
single statement, to independent statements, or to certain types of procedures. It
is easy to exploit this form of parallel execution at the assembly code level, and
it Is not too difficult for the compiler to generate MIMD code. However, it may be
hard for the compiler to determine independence (because of pointers, for

Apple Computer Confidential 1-10

Introduction

example}, and it also can be hard to obtain optimal performance (allocate
comparable work to each PU). The independence problem is eased somewhat by
compiler directives (e.g., C pragmas) which can be used to identify independent
program units.

1.5 Notation and Terms
This section describes notation and terms used throughout the remainder of

this document. Notation used in instruction operation descriptions is used only
in Chapter 8 and is described in that chapter.

numbers. Unless otherwise specified, all numbers are decimal. Hexa­
decimal numbers are specified using C language notation in which the
hexadecimal number is prefixed by "Ox'' or "OX''. For example, decimal 127 is
written in hexadecimal as OXFF. Bit positions in entitles such as registers are
indicated in brackets: bracketed numbers separated by a colon indicate a range.
For example, "bìts <7:0>" specifies bits 7 through O. Single binary digit and
certain multiple binary digit numbers are indicated in quotes. as in "if bit <l> =
"l" ". Multi-digit binary numbers are specified by appending the letter ''B". For
example, decimal 15 is written in binary as 1111B. The letters K and M
appended to a number indicate the multipliers 1024 and 1048576; these often
appear in conjunction with the letter B, indicating that the unit of measure is
bytes. Thus. 64KB. which usually is read as "64 kilobytes", specifies 65536 bytes.
Similarily, 2MB usually is read as "2 megabytes" and specifies 2097152 bytes.

undefined and unpredictable operations. The operation of the CPU may be
described in certain cases as undefined or as producing unpredictable results.
While any given implementation may produce predictable results in such cases,
different implementations may produce different results: the behavior of
operations described in this way is not reliable.

Apple Computer Confident/al 1-11

Rev. 1.0 (11/88)

í~
l

2. CPU Organization

2.1 Introduction
This chapter describes the elements and organization of the Scorpius CPU.

Data and address formats are described, and the programming model is
presented. The programming model comprises the elements of the CPU which
are Visible to the programmer (ì.e., can be operated on by instructions). These
elements include general registers, status register and• program counter, special
registers, and, because the Scorpius caches are architecturally Visible, the
instruction and data caches. An overview of the Scorpius instruction set
follows. A detailed description of preflxing, which is used to extend the range of
immediate and displacement fields, is given next. Following a description of
Scorpius condition codes, the chapter concludes with a discussion of the
rationale for and operation of multi-gauge arithmetic.

2.2 Data and Address Formats
Various Scorpius instructions operate on 32-bit words, 16-bit halfwords, 8-

bit bytes, and bits; instructions themselves always are a halfword in length.
Only words and bytes can be directly loaded into a register from memory or
stored to memory from a register; arithmetic operations can be performed on
words, half-words, and bytes. The 32 bits of a word are numbered, right to left,
from O to 31. Bit O, the rightmost bit, is the least significant bit. Higher­
numbered bits often are referred to as the high-order bits, and lower-numbered
bits often are referred to as the low-order bits.

Halfwords and bytes within a word are positioned as shown in Figure 2.1:
this figure also shows bit ordering within halfwords and bytes. Byte O is the
most significant Oeftmost) byte, while byte 3 is the least significant (rightmost)
byte. This ordering is compatible with that of Motorola 680x0 processors, and
sometimes is referred to as "bìg-endían".

Apple Computer Confidential 2-1

CPU Organization

Figure 2.1. Scorpius Data Formats

Figure 2.2. Scorpius Address Format

Unless otherwise specified, instructions and data are transferred between
memory and the CPU in 64-byte (16-word) blocks called lütes, which are stored
in the instruction cache and data cache. (The term "line" or "cache line" tends to
be used both for a physical location in a cache and for a block of 16 memory
words which can be stored in that location. The intended meaning usually is
clear from the context.) Scorpius instruction and data caches are
architecturally visible, and instructions are provided to perform operations on
cache lines including prefetch, invalidate, and flush.

Scorpius instruction and data addresses are byte addresses, 32 bits in length,
spanning a virtual address space of 4096 megabytes. (Address space organi­
zation ts discussed in Chapter 3.) While all addresses are byte addresses,
memory accesses for instructions and data are constrained to the appropriate
boundaries. A halfword boundary is a byte address with bit <0> = "O", a word
boundary is a byte address with bits < 1 :O> = "00", and a line boundary is a byte
address with bits <5:0> ="000000". Instructions always must be aligned on a
halfword boundary: the low-order bit of an instruction address is ignored. Word
operands always must be aligned on word boundaries: the low-order two bits of
the operand address of a load or store word instruction are tgnored. Cache lines,
by definition, are aligned on cache line boundaries: line transfers

Apple Computer Confident/al 2-2

CPU Organization

General Registers Special Registers

base register for LdRD/StRD
2 base register for LdRD/StRD
3 base register for LdRD/StRD
4 link register for JmpL
5

6

7
8

9

Program Counters

._·. í~;.:.:· ·:: :: :::_)/:::: -;:·-·· :::· · .. :: _ /.-_:: :<t

O Id Register (ldR) GIP ::: :
GIP:::
GIP::(
GIP:?
L/N :::.:-.

L/N :}::
L/N :,,-::::

1

2

3

4

5

6

7

Interrupt Argtnient Register (IAR)
Teat Register (T .. tR)

Globa l Statl.8 Register (GSR)

Product Register (ProdR)

Remaiider Register (RemR)
Prefix Register (PfxR)

fNtlrved
8

9
::: 10

.. · .. 11

) 12
13

Event Counter 1 (EYR1)
Evere Counter 2 (EYR2)
Scratch Register (SCR)

1 nterrupl Control Register (ICR)
StatLm Save Register (SneR)

Trap Regiater (TrapR)

GIP f\
GIP U<
GIP}}
GIP If
UP}/

UP {(

:::A 14
:}] 15

PC Save Queue (PCQ(1) & PCQ[2D

l'N8rved

Status Register

•:¡~;/ ,~;=:::::,;;m+:l
:-· .-:.. ;.·- . .:-:-:-:-:-:-_/:;:}:\:/:/::·:::

Figure 2.3. Programmin g Model: Registers

between the CPU and memory always are done on line boundaries. The low­
order six bits of the operand address of a cache control instruction are ignored.

From the viewpoint of the cache, memory comprises a set of Unes numbered
O, 1, ... , OX3FFFFFF. The mapping between these lines and the much smaller
number of cache Une locations is implementation-dependent. Addresses can be
viewed as comprising a line number in bits <31:6>, a intra-Une word index in
bits <5:2>. and an intra-word byte index in bits <1:0>. as shown in Figure 2.2.

_)

2.3 Programming Model
The programming model comprises the general register set. status register

and program counters. the special register set, and the instruction and data
caches. The various registers of the programming model are illustrated in
Figure 2.3 and described below. Each PU has its own general register set. status
register. and program counters; these registers are said to be local to the PU.
Each PU also has its own copy of certain special registers. while other special
registers are common to all PUs; these are called global registers. In Figure 2.3,
local and global special registers are marked "L" and "G".

Apple Computer Confident/al 2-3

CPU Organization

Current PC (PCf 1]) and Next PC (PCf 2])

Figure 2.4. Program Counters

PUs execute in one of two modes: user mode or system mode. The current
mode is determined by the setting of a flag in the PU Status/Control Register.
Generally, applications execute in user mode, while the operating system kernel
and other parts of the operating system execute in system mode. Execution in
system mode confers certain privileges. Some special registers can be accessed
only in system mode. certain instructions can be executed only 1n system mode.
and pages marked "system only'' can be accessed only in system mode. In Figure
2.3, special registers which can be accessed only in system mode are marked "P''
(for privileged), while those which can be accessed in either mode are marked "N''
(for non-privileged).

General Registers. Each PU has 16 32-bit general registers. numbered 0-
15, so there are 64 general registers for the CPU as a whole. With two exceptions,
registers are inter-changeable: any register can be used for any purpose.
Registers 0-3, only, can be used as base registers for the Load/Store Register+
Displacement instructions, LdRD/StRD, and register 4 is used by the Jump and
Link instruction, JmpL, to store the return address. I

Any individual general register can be loaded from memory or have its
contents stored to memory via Load/Store Register + Displacement and
Load/Store Register instructions. The Load Byte instruction loads the addressed
byte, right-Justified with zero fill, into a general register: the Store Byte
instruction stores the rightmost byte of a general register to memory. From 1 to
15 registers can be loaded from memory or have their contents stored to memory
via Load/Store Multiple instructions.

Program Counters. Scorpius has two program counters (PCs), called the
Current PC and the Next PC. Current PC holds the address of the currently­
executing instruction; Next PC holds the address of the next instruction to be
executed. Two program counters are required because of delayed branching. On
a taken branch or Jump, Current PC holds the address of the branch shadow
instruction, and the branch target address is stored in Next PC. For sequential

1 Using prefixing, any register can be used as a base register for base plus dJsplaccment
addressing: see section 2.5.

Apple Computer Confidential 2-4

CPU Organization

PU Status/Control Register (PsR)

· ::3fiiftr::::;?.·:.:: <25 24 ifa·22, .. , .,. · 1s 1s?fa d\2ü/: 1> + >> +::+;::: ·: <~::>ât'.a.fi\'J\<
···•·1i,~1:r~¡4t:r:1~c1N:V:CO:C1:C2:~3:Z:~:5:~:~==~:~:~:~,
field
l1M1Jl
Rmod

bit
position ts l lilI1!J1b.

<31> 1

Hit <24> 1

N <22> 1
V <21> 1
C~3 <20:17> 4
z <16> 1
I/TE <15> 1

--

)
BT <14> 1

U/S <13> 1

PCQE <12> 1

PV

H/B

1

1

OVT <1> 1

PUA 1

description
Register modified flag. Set to "1" on interrupt/ trap
recognition if the address register of Load/Store Byte or
Load/Store Multiple requires adjustment prior to return
from interrupt; "O" otherwise (Section 4.6).
Halt flag. Set to "1' when a PU executes a Wait instruction
specifyi ng itself as a target; cleared to "O" when another
PU executes a Start or a Resume instruction with the
halted PU specified as a target (Section 5.2).
Negative condition code flag (Section 2.6).
Overflow condition code flag (Section 2.6).
Carry condition code flags (Section 2.6).
Zero condition code flag (Section 2.6).
Interrupt/Trap Enable flag. When set to "1 ", enables
recognition of interrupts and traps by the PU; when "O",
disables interrupt/trap recognition (Sections 4.3, 4.4).
Taken Branch Trap enable flag. When set to "1 ", causes a
taken branch trap to be generated whenever the PU
attempts to execute a taken branch or a jump instruction;
when "O", no trap is generated (Sections 4.4 ,4.8).
User /System mode flag. Set to "1" when the PU is
executing in user mode and to "O" when the PU is
executing is system mode.

PCQ Enable flag. When set to "1", causes PsR and PC
contents to be transferred to SaveR and PCQ on inter­
rupt/trap recognition (Section 4.6).
Prefix Valid flag. Set to "1" if the contents of the Prefix
Register are valid and to "O" otherwise (Section 2.5).
Halfword/Byte mode flag. When set to "1", specifies that
multi-gauge arithmetic instructions are to operate on
halfwords; when "O", specifies that these instructions are to
operate on bytes (Section 2.6).
Overflow Trap enable flag. When set to "1 ", specifi es that a
trap is to be generated when overflow occurs on an
arithmetic operation; when "O", specifi es that no trap is to
be generated on overflow (Sections 4.4 ,4.8).
PU Available flag. When set to "1", advises the operating
system that PU state does not have to be saved and re­
stored when the PU processes an interrupt (Section 4.10).

Figure 2.5. PU Status/Control Register Fields

Apple Computer Confident/al 2-5

CPU Organization

code, the address in Next PC usually ts equal to the address in Current PC plus
two. Instructions must start on halfword boundaries, so program counter bit
<0> always Is "O".

The contents of Current PC can be read by executing a Load Program Counter
instruction. which loads the address in the Current PC. plus 2. into a general
register. In addition to the normal incrementing which takes place in execution
of sequential code. program counters are modified when a taken branch or Jump
instruction is executed. or when a return from interrupt takes place. When an
interrupt or a trap ts recognized by an interrupt/trap enabled PU, the contents of
the Current and Next PCs are saved in a special register pair called the PC save
queue: on return from interrupt. the contents of the PC Save Queue are
transferred to Current PC and Next PC (see Sections 4.6 and 4. 7).

Status Register. The PU Status and Control Register (PsR) contains flags
which control PU execution modes, enable or disable generation of certain traps
and recognition of interrupts, and record ínformatíon about the state of the PU
and about the results of arithmetic operations. Figure 2.5 shows the PsR and
briefly describes each of its flags. Shaded areas in this figure indicate fields
reserved for future use.

PsR bit <31> (Rmod flag) • bit <24> (Hit flag). and bits <22: 16> (condition
codes) are set and cleared only by hardware . Other PsR bits can be set, tested, or
cleared via Set Mode. Test Mode, and Clear Mode instructions. Bits <15:8> can
be accessed only in system mode: an attempt to access these bits while in user
mode causes an operation fault trap to be be generated. Bits <7:0> can be
accessed in either system mode or user mode. An attempt to set or clear a
reserved bit causes unpredictable results. Testing a reserved bit causes the Z flag
to be set.

When an interrupt or trap is recognized. the contents of the PsR are
transferred to a special register called the Save Register. and PsR bits <24> and
<15:0> then are cleared to "0".2 Among other things. this clears the mode flag
(selecting system mode). disables interrupt/trap recognition, and clears the Halt
and PU Available flags. Interrupt/trap recognition also causes a transfer of
control to a kernel interrupt/trap address. (The kernel is distinguished from
other system code by the range of addresses in which it runs.) On return from
interrupt. the contents of the Save Register are transferred to the PsR In
preparing for the the initial dispatch of an address space. the kernel ìnìtìalízes a
PU's PsR by setting or clearing Save Register bits as required; return from
interrupt causes the Save Register contents to be transferred to the PsR (see
Sections 4.6 and 4.7).

Special Registers. Some special registers are local (one instance per PU).
while others are global (one instance per CPU). Both local and global special

21nAntares, this occurs only If the PU ts interrupt/trap enabled (PsR bit <15> • "1"). If the
PU ts disabled (in which case the interrupt or trap represents an error), the PsR ls not
saved ln the Save Register (also, PC contents are not saved ln the PC Save Queue).

Apple Computer Confidential 2-6

CPU Organization

Id Register (ldR)

field
~
OSA

bit
positionfsl Úl.tJ911l
<31:19> 13

ASN <18:12> 7

Model <7:4> 4

Node <31» 4

des çrip tío o
Directories Starting Address. The concatenation of the
OSA and ASN fields provide bits <31:12> of the real
address of the translation table directory for the currently
active address space {Section 3.4).
Address Space Number. Address space number of the
currently-active address space.
Model number. "Hard wired" number assigned each
implementation of the Scorpius CPU architecture.3
Node Number. IPB location, assigned during machine
powerup.

)

Figure 2.6. Id Register Fields

registers are read or written via Move From Special and Move To Special
instructions. which move values between general and special registers. An
attempt to move to or from a privileged special register (one of the special
registers. marked "P" in Figure 2.3) while in user mode causes an operation trap
to be generated. Also. an attempt to access a non-existent (reservedl special
register while in user mode causes generation of an operation fault trap. (The
result of an attempt to access a non-existent special register while in system
mode is undeßned.)

IO - Id Register. Fields of the- Id Register (IdR) identify the model of the
CPU, its position on the Inter-Processor Bus (IPB). the number of the currently­
active address space. and the starting location of address translation tables in
the system The IdR is a global. privileged. register. Figure 2.6 shows the IdR and
briefly describes each of its fields (bits < 11 :8> are reserved for future use).

The OSA and ASN fields of the IdR specify the starting address of the
directory, or first level translation table. for the current active address space.
('lranslation tables and the translation process are described in Chapter 3.) The
DSA and ASN fields (IdR bits <31: 12>) can be read or written: other IdR fields
can only be read. Generally. the contents of the DSA field are written only on
operating system initialization after powerup. and the contents of the ASN field
are written only on an address space switch. 4

3venus Is model number O: Antares is model number l.
4In Antares, writing to the ldR causes the Translation Buffer and Its associated Dírectory
Buffer to be flushed: see section 3.6.

Apple Computer Confidential 2-7

CPU Organization

The Model field of the IdR contains a "hardwired" model number; this
number is used by implementation-dependent code to determine which
implementation of the Scorpius architecture it is running on.

The Node field contains the CPU's node number: this number corresponds to
the CPU's location on the Inter-Processor Bus (IPB) and is assigned during
machine powerup (see Appendix C). A Scorpius real address comprises a 32-bit
intra-node real byte address and a 4-bit node number. When performing an
address translation. the MMU compares the node number of the translated
address with the number in the IdR's node field. If these match, the memory
access for which the translation was performed is sent to local memory; ff they
do not, the access is sent to the appropriate remote memory via the IPB.

#1 - Interrupt Argument Register. The Interrupt Argument Register
(IAR) is a privileged global register which holds the argument associated with a
pending Message interrupt. This argument is the real intra-node address of the
message destination. Toe IAR is shown in Figure 4.2(b). The contents of IAR can
be read via a Move From Special instruction; the contents are valid from the
point at which the Message interrupt is presented up to the point at which the
Message Interrupt Pending flag in the Interrupt Control Register ts cleared (see
Section 4.3). The IAR can be written (for test purposes) via a Move To Special
instruction: however. the CPU should be disabled for external ínterrupts so that
a real Message interrupt is not presented while testing.

#2 ..:... Test Register. The Test Register (TestR) is a global. privileged
register provided for diagnostic purposes. The Test Register can be read or
written: its functions are implementation-dependent.

#3 - Global Status Register. The Global Status Register (GSR) is a
privileged global register which serves two functions: it holds the user and
system mode semaphore flags (in bits <31:30>). and it records the state and mode
of the four PUs (in bits <16:0>). Figure 2.7 shows the GSR and briefly describes
its fields. Bits <29: 16> are reserved for future use: the values returned in these
bit position when the GSR ts read are undefined. The GSR cannot be written; the
result of attempting to execute a Move To Special instruction with the GSR as the
destination register is unpredictable.

Semaphore operations are performed by Lock and Unlock instructions. The
Lock instruction examines the semaphore flag corresponding to the PU's mode.
If the Oag ts "1 ". it is changed to "O". and Lock instruction execution completes. If
the flag initially is "O". the Lock instruction watts until it becomes "l ". changes it
to "O". and then completes. The semaphore flag is unconditionally set to "l" via
an Unlock instruction. Semaphore operations are discussed in Section 5.4.

The state and mode flags in bits < 15:0> are used in deadlock detection and
analysis. The CPU monitors the halt and wait flags in the GSR If it finds that
all four PUs are either halted or waiting. it generates a Deadlock interrupt. This
is a non-maskable interrupt which is presented to and immediately recognized
by PU O. PU O uses the state and mode information to help analyze the cause of
the deadlock and to determine how to initiate recovery (see Section 5.5).

Apple Computer Confidential 2·8

CPU Organization

Global Status Register (ldR)

)

field bit
1lill1l.fl '2Q$ltk2.alsl lir1!J1b
UMS <31> 1

SMS ~> 1

H3-HO <15:12> 4

W3-WO <11:8> 4

U/Sl-US3 <7:4> 4

rr /E3-IT /EO <3:0> 4

d9sçcli2tïoa
User Mode Semaphore flag. Set to "O" if the user
semaphore is locked and to "1" if the semaphore is
unlocked (Section 5.4).

System Mode Semaphore flag. Set to "O" if the system
semaphore is locked and to "1" if the semaphore is un­
locked (Section 5.4).

Halt flag copies. Hi is "1" if PU i is halted (PsR bit <24> =
"1 ") and is "O" otherwise.

Wait flags. Wi is "1" if PU i is in wait state (see Section 5.5
for definition) and is "O" otherwise.

User /System Mode flag copies. U /Si is "1" if PU i is in
user mode (PsR <13> = "1 ") and is "O" if PU i is in system
mode (PsR <13> = "O").
Interrupt/Trap Enabled flag copy. IT /Ei is "1" if PU i is
interrupted/trap enabled (PsR <15> = "l'j and is "O"
otherwise.

Figure 2. 7. Global Status Register Fields

14 - Product Register. The Product Register (ProdR) is a local, non­
privileged register which holds the upper 32 bits of the 64-bit product produced
by a 32-bit multiply instruction (Mui or Mult1), or the four product bytes or two
product halfwords produced by a multiply partial instruction (MulP or llulPU).

15 - Remainder Register. The Remainder Register (RemR) is a local non­
privileged, register which holds the remainder produced by a divide instruction
(Dlv. DlvB, DlvU, or DlvUE). RemR also is used by the divide extended instruc­
tions (DlvB and DlvUE) in forming the 64-bit dividend: for these instructions,
the 64-bit dividend is formed by concatenating the contents of the Remainder
Register with the contents of the specified general register.

16 - Prefix Register. The Prefix Register (PíxR) is a local, non­
prtvileged, register which can be loaded with a constant value to be used in
extended the range of a displacement or an immediate, or with a field
description (position and length) for field manipulation instructions. Values
are loaded in the PíxR by Prefix Immediate and Mask Generate instructions;
these also set the Prefix Valid flag in the PsR (bit <3>). Instructions which use
the PíxR clear the Prefix Valid flag. The PíxR also can be read or written via

Apple Computer Confident/al 2-9

CPU Organization

Interrupt Control Register (/CR)

field bit
/latilfl 12í2§ltklal1.l /mlgJ/J

Pending <31:25> 7
Rupts

EvCtrll <17:12> 6

dssçrlp t[oa

EvCtrl2

Enables

<11:6> 6

<5:3> 3

Pending Interrupt flags. This field contains a flag for
each interrupt type; a Pending Rupt flag is set to "1"
if an interrupt of the corresponding type is pending
and is "O" otherwise (Section 4.3).
Event Counter 1 Control flags. The flags of this field spec­
ify the source of events (PU or MMU) to be counted by
event counter 1, and specify the event to be counted
(Chapter 7).
Event Counter 2 Control flags. The flags of this field spec­
ify the source of events (PU or MMU) to be counted by
event counter 2, and specify the event to be counted
(Chapter 7).
Interrupt Enable flags. This field contains flags which
control the generation of Event Counter Overflow
interrupts and the presentation of external (10 and
Message) interrupts (Section 4.3).

Figure 2.8. Interrupt Control Register Fields

Move From/To Special instructions, but these instructions do not affect the
Prefix Valid flag. (This flag can be set or cleared via Set/Clear Mode
mstructìons.l Bits < 1 :O> of the PfxR are unused: writing the PíxR (via a Move To
Special instruction) does not affect these bits. When reading the PíxR using a
Move From Special instruction, "O" is returned in these bit positions. A detailed
description of prefixing and PíxR use ts presented in Section 2.5.
IB, n - Event Counters 1 and 2. The two event counters (EvRl and

EvR2) are 32-bit global, privileged, registers which, under control of event
counter control flags in the Interrupt Control Register, can be used to count
various PU and MMU events as well as PU active time. Setup and use of these
counters is discussed ln Chapter 7.

110 - Scratch Register. The Scratch Register (ScR) is a global,
privileged, register used ln saving registers on interrupt/trap recognition. When
an interrupt or a trap ts recognized and PU state must be saved (the PUA flag in
the PsR = "O"), the kernel uses the system mode semaphore to enter a critical
section, stores the contents of one general register in ScR and uses that register -
typically register O - to form the address of a save area ln memory. After saving
registers, including the register temporarily moved to ScR. the kernel exits the
critical section, making the ScR available to some other PU.

Apple Computer Confidential 2-10

CPU Organization

Trap Register (TrapR)

:: ât><. :::::;::: i)(\.,::: :::: /\/:¿¿ 2{ >?19:::wér: <:.:>':::::;:::: ·>:>::.:-: ::. >::. : -::::: .\:} ' ::: :: <:•:· <:o>:

kl ; ; :•++flH ; ; li ; ; : ; ; : ; ~+H ; ; ; ; ; ; : li
-·::::::::· --:. ._ .. - --.-:>.·.:-.:--·:-. -:- : .. : ·.·.... · · .. - -. ·. -··.·-·.· .. · •.•,,• .

Figure 2.9. Trap Register Fields

#11 - Interrupt Control Register. The Interrupt Control Register (ICR)
is a global. privileged. register which contains interrupt pending and enable
(mask) flags. together with control flags for the two event counters. Figure 2.8
shows the fields of the ICR and briefly describes their function: ICR bits <24: 18>
and <2:0> are reserved fields. There is a pending interrupt flag for each type of
interrupt: when an interrupt occurs. the corresponding flag is set in the ICR and
a PU selected to process the interrupt: the kernel clears the interrupt pending
flag as part of interrupt processing. Figure 4.2(a) shows the individual pending
interrupt and interrupt enable flags. which are discussed at length in Section
4.3. Individual event counter control flags are described in Chapter 7.

The contents of the ICR can be read vía a Move From Special instruction: the
values returned in reserved field bits are undefined. The ICR can be written via a
Move To Special instruction. However, pending interrupt flags are set to "l" only
by hardware; software can only clear a pending interrupt flag to "O". If an
attempt is made to write a "l" to a pending interrupt flag, the state of the flag does
not change. (See Pending Interrupt Flags in Section 4.3.)

#12 - Status Save Register. The Status Save Register (SaveR) ts a local,
privileged. register. When an interrupt or a trap ls recognized, the contents of
the PsR are moved to the SaveR, from where they can be examined via a Move
From Special instruction. 5 The fields of the SaveR correspond to those of the
PsR (Figure 2.5): when reading the SaveR. the values returned in reserved field
bits are undefined. Following interrupt/trap recognition. the contents of the
SaveR remain valid only up to the point at which the PU reenables inter­
rupt/trap recognition.

The SaveR can be written via a Move to Special instruction. On return from
interrupt (which ls effected by executing a Return From interrupt instruction
pair). the contents of the SaveR are copied to the PsR and the contents of the PCQ
are copied to the Current and Next PC. To dispatch a newly-initiated address
space. each PU sets SaveR and PCQ as appropriate and performs a return from
interrupt. (See Sections 4.6 and 4. 7).

#13 - Trap Register. The Trap Register (TrapR) is a local. privileged,
register which contains trap source flags and, for certain traps, a trap

'- . ..,,_)
510 Antares, the transfer of the PsR to SaveR on interrupt or trap recognition takes place
only if the PU was interrupt/trap enabled - PsR bit <15> = "l" - at the time ofrecognttlon.

Apple Computer Confident/al 2-11

CPU Organization

PC Save Queue (PCO)

Figure 2.10. Toe PC Save Queue

argument. The Trap Register ts shown in Figure 2.9; Figure 4.2(c) shows the
individual trap source flags. There is a trap flag for each trap (except the PU
Check trap. which is identified by its kernel entry address): a trap source flag is
set to "l" by hardware when the corresponding trap is recognized. and cleared by
the kernel as part of trap processing. TrapR bits <21:19> are reserved,

Following interrupt/trap recognition. the contents of TrapR remain valid
only up to the point at which the PU reenables interrupt/trap recognition. The
Trap Register can be read via a Move From Special instruction and written via a
Move To Special instruction. When reading TrapR. the values returned in bits
<21:19> are undefined. While trap source flags can be set to "l" by software. as
well as cleared to "O". software setting of a trap source flag is ignored and does
not result in trap recognition.

#14 - PC Save Queue. This register (Figure 2.10) is a FIFO register
pair. comprising two 32-bit register. PCQ[l) and PCQ[2). (The register pair
sometimes is referred to as PCQ .) When an interrupt or a trap is recognized, the
instruction address in Current PC is transferred to PCQ[l), and the instruction
address in Next PC is transferred to PCQ[2).6 On return from interrupt. these
transfers are reversed. Following interrupt/trap recognition. the contents of
PCQ remain valid only up to the point at which the PU reenables interrupt/trap
recognition.

Because instructions must start on halfword boundaries. the low-order bit of
an instruction address is ignored when fetching instructions. In the PCQ, this
bit position is used to hold a Correction flag. or C flag. When the Correction flag
in PCQ(l) is set on interrupt/trap recognition. it is necessary to adjust the
address in PCQ[l) prior to returning from interrupt (see Section 4.6). The
Correction flag in PCQ[2) can always be ignored. (Address adjustment may be
required because of the "folding" of branch, prefix, and other instructions.)

61n Antares, the transfer of Current PC and Next PC to PCQ[l) and PCQ[2) on Interrupt or
trap recognttlon takes place only if the PU was Interrupt/trap enabled- PsR bit <15> = "l"
- at the time of recognition.

Apple Computer Confidential 2-12

CPU Organization

The contents of PCQ[l), only, can be read via a Move From Special instruc­
tion: PCQ[2), only, can be written via a Move To Special instruction. Whenever
PCQ[2) is written, the original contents of PCQ[2) are transferred to PCQ[1).
Thus, correcting the address in PCQ[l) or saving PCQ contents prior to an
address space switch requires that moves be done in the correct order. (See PC
Save Queue Access in Section 4.6.)

Caches. In Scorpius, the instruction and data caches are architecturally
visible and constitute part of the programming model (cache control
instructions are discussed in Chapter 6). The extent of the visibility of the
caches depends on the implementation. All implementations have a cache line
size of 64 bytes, and separate instruction and data caches with software

, maintenance of coherence between the two. Antares has a virtually-addressed
caches which may contain synonyms. Coherence and synonym issues are
discussed in Section 3.8. Also, the size of the data cache (64 lines) is visible in
Antares, which provides an instruction, Read Data Tag by Index, to read data
cache line tags (used in clearing the cache on an address space sWitch).

)

2.4 Instruction Set Overview
This section provides an overview of the Scorpius instruction set. A

specification of each instruction, including format and potential exceptions, is
given in Chapter 8. A summary of the instruction set is shown 1n Figure 2.11.
This figure organizes the 81 Scorpius instructions, by function, into eight
groups. 'The discussion in this section follows this organization. In this
discussion, the term "regíster", unqualified, always refers to a general register.

Scorpius instructions are 16 bits 1n length, limiting the size of displacement
and immediate fields. In many cases, the effective values of immediates and
displacements can be extended by prefixing. The Preßx Register can be loaded
with a value by executing one or more Prefix Inunediate (Pizi) instructions.
When a prefixable instruction is executed and the Preßx Register is not empty,
its contents are concatenated with the instruction's immediate or displacement
field to form the effective immediate or displacement. The Prefix Register also
is used to hold field descriptions for field manipulation instructions. In
Antares, prefix instruction execution frequently can be folded, or combined,
with the execution of some other instruction so that it effectively executes in O
time. Most displacement and immediate values are small, and can be specilled
directly by the instruction's displacement or ímmedìate field, so that the
corresponding operation typically requires one cycle and 16 bits of instruction
stream. When a larger value is required, prefixing can be used: in most cases,
the operation will still be carried out in one cycle, although 32 bits of
instruction stream will be used. For very large values, two prefix instructions
may be needed. which may add a cycle to the operation. Preflxing is discussed 1n
the next section.

Most arithmetic and logical instructions use a two (register) address format
in which one operand register also is the result register. Certain instructions,

Apple Computer Confident/al 2-13

CPU Organization

MNEMONIC OPERATION MNEMONIC OPERATION

LOAD, STORE, AND MOVE ARITHMETIC

Lei Load Immediate Add/Sub Add/Subtract
LdR/StR Load/Store Word (Register) AddC/SubC Add/Subtract with Carry
LdRD/StRD Load/Store Word (Base + 0isp.) Addi/Subi Add/Subtract Immediate
LdB/StB Load/Store Byte AddP/SubP Add/Subtract Partial
LdM/StM Load/Store Multiple CLZ Count Leading Zeroes
Lec Load Concltion Dlv Divide
LdCP Load Carry Partial DlvE Olvide Extended
LdPC Load Program Counter DlvU Olvide Unsigned
LdPU Load PU Number DlvUE Divide Unsigned Extended
Mov Move Register Mui Multiply
MovFS Move From Special MulU Multiply Unsigned
MovTS Move To Special MulP Muhiply Partial

BRANCH, COMPARE, & JUMP MulPU Multiply Partial Unsigned

Bec Branch Relative on Condition
Neg Negate

Cmp Compare Register BROADCAST & SEMAPHORE
empi Compare Immediate Rev Receive
CmpP Compare Partial Rsm Resume PUs
Jmp Jump Relative Send Send
JmpL Jump and Unk Strt Start PUa
JmpR Jump Register Walt Wait PUs (or Halt)
TstF Test Field Lock Lock Semaphore
TstM Test Mode Unlk Unlock Semaphore

LOGICAL & SHIFT CACHE CONTROL
And And CDC Create Data Cache line
AndC And Complement FOC Flush Data Cache Une
Not Not IOC Invalidate Data Cache line
Or Or UC Invalidate Instruction Cache line
XOr Exclusive Or IICA Invalidate Instruction Cache
Dsh Shift Double PDC Prefetch Data Cache Une
ShL Shift Left RDTX Read Data Tag t,¡ Index
ShR Shift Right UDC Update Data Cache line

voe Validate Data Cache line
RELD MANIPULATION

ClrF Clear Field CONTROL & MISCELLANEOUS
Dep Deposit ClrM Clear Mode
ExtS Extract Signed Prmpt PreemptPUs ExtU Extract Unsigned Res Restart PUs Ins Insert Rtl Return from Interrupt llsk Define Field Sett.I Set Mode
Pfxl Prefix Immediate Trap System Cal
Self Set Field

Figure 2.11. Scorpius Instruction Set Summary

Apple Computer Confidential 2-14

CPU Organization

including the field manipulation instructions, use the Prefix Register as an
implicit operand register.

Addressing Modes. All memory accesses for operands in Scorpius are
performed by load and store instructions using one of two addressing modes:
(base) register mode and base plus displacement mode. In register mode, the
operand address simply is the value contained in a specified register. For
certain instructions, this value may be incremented or decremented as part of
instruction execution. In base plus displacement addressing, the operand
address is formed by adding the value in the instruction's displacement field to
the contents of a specìñed register. For Load Word/Store Word instructions, the
address mode can be either register or base plus displacement, depending on the
Prefix Register state.

Load, Store, and Move Instructions. The Load Immediate (Ldl)
instruction loads an ê-bít immediate value in the designated register; this
immediate value can be extended by prefixing. The Load Word and Store Word
instructions LdR and StR load a register with a word from memory or store the
contents of a register to memory. If the Prefix Register is empty, the operand.
address is provided by a register. If the Prefix Register is not empty, the operand
address is formed by using the contents of a register as a base address to which is
added, as displacement. the value in the Prefix Register.

The Load Word and Store Word instructions LdRD and StRD load a register
with a word from memory or store the contents of a register to memory- using
base plus displacement addressing. The base register must be register O, l. 2, or
3: the displacement range is 1 through 64 words (which can be extended via
prefixing). In terms of frequency. displacements tend to be small (as when
accessing local variables on the stack or elements of many structures). LdRD
and StRD provide a compact means of accessing variables in these cases. For
larger displacements. prefixing can be used with LdRD/StRD; for other base
registers. prefixing can be used with LdR /StR .

The Load Byte instruction LdB loads a byte from memory into the low-order
8 bits of a register and clears the high-order bits: the Store Byte instruction StB
stores the low-order 8 bits of a register to memory. LdB and StB use register
addressing with auto-increment: after loading or storing a byte. the operand
address in the base register is incremented. These instructions speed string
handling.

Load and Store Multiple instructions (LdM and SUI) are provided to
facilitate register saving and restoring on procedure calls. These two instruc­
tions use register addressing: StM decrements the operand address in the base
register by the number of registers stored (x 4. to reflect the numbers of bytes
loaded). and LdM increments the operand address in the base register by the
number of registers loaded (again x 4). The auto-increment/decrement features
of these instructions reduce the number of instructions required by procedure
call protocols.

Apple Computer Confident/al 2-15

CPU Organization

The Load Condition Code instruction Lec sets the low-order bit of a register
to "l" if condition codes match the encoding in its cc field and to "O" otherwìse:
the remaining bits of the register are cleared. The Load Cany Partial instruc­
tion LdCP sign extends the carry condition flags resulting from a preceding
multìgauge arithmetic operation and stores the result in a register. If the
Halfword/Byte Mode flag (PsR bit <2>) is "l ", halfword cany condition code flags
CO and C2 are sign extended into the two halfwords of the result register. If this
flag is "O", byte cany condition code flags CO, Cl, C2, and C3 are sign extended
into the four bytes of the result register. (Condition codes and multigauge
arithmetic are discussed later in this chapter.)

The Load Program Counter instruction LdPC loads the address of the current
instruction plus 2 into a register. The Load PU Number instruction LdPU loads
the number (0-3) of the PU on which the instruction is executed into a register.
This is the only way in which a PU can determine its identity. One use of this
instruction is in offsetting array addresses for each PU when a loop operation
on an array is unwound across four PUs, as in the example shown in Figure 5.2.

The Move Register instruction Mov moves the contents of one register, the
source register, to a second register, the destination register. Mew does not affect
condition codes: a Move Register instruction in which the same register is
specified as both source and destination is used as a ''NOP" instruction. The
Move From Special and Move To Special instructions Movl'S and llovTS move
values between general and special registers.

Delayed Loads. In most Scorpius implementations, including Antares,
the majority of instructions execute at a rate of one instruction per cycle.
Certain instructions, such as LdM and StM, are "multl-cycle" instructions.
(Some instructions effectively require O cycles because of folding.) Also, in most
implementations, the load instructions Ld.R. Ld.RD. and LdB execute in one cycle:
however. the contents of the register being loaded are not available until the
following cycle (assuming a cache miss does not occur). Similarly. the contents
of the last register loaded by LdM are not available until one cycle after the LdM
completes execution. For this reason. loads from memory are called delayed
loads. If an instruction following a LdR, LdRD, or LdB instruction attempts to
use the contents of the register loaded by the LdR. LdRD, or LdB instruction, or if
the instruction following a LdM instruction attempts to use the last register
loaded by the LdM instruction. that instruction will incur a one-cycle delay.
Such delays can usually be avoided by appropriate ordering of instructions. (If a
useful Instruction cannot be inserted between the instruction loading a register
and the instruction using the contents of that register. it is not necessary to
insert a NOP instruction: hardware delays the instruction attempting to access
the register until the register contents can be made available.)

Branch, Compare, and Jump Instructions. A branch instruction is a
conditional transfer of control; a jump instruction is an unconditional transfer
of control. (Usually. when the distinction is not important. both are referred to
as branches.)

Apple Computer Confident/al 2•16

CPU Organization

As a debugging aid, Scorpius provides a Taken Branch trap which, when
enabled (by setting the Taken Branch Trap Enable flag in the PsR), causes a trap
to be generated whenever a conditional branch is taken or a jump instruction is
executed.

The Branch on Condition instruction Bec causes control to be transferred if
the condition codes in the PsR correspond to the value encoded in the instruc­
tion's cc field. The address to which control is transferred is called the branch
target address. or simply the target address. This address is formed by shifting
the signed value in the Bec instruction's displacement field left one position and
adding it to the contents of Current PC. The 8-bit displacement field provides a
branch range of-256 to +255 instruction locations. This range accommodates a
very large proportion of branches: for branches out of this range, the condition
code test can be inverted and the Bec instruction used to branch around a Jump
Relative or Jump Register instruction. Later versions of the Scorpius archi­
tecture may extend prefixing to include branch and Jump displacements, as
discussed in the next section.

The Compare Register instruction Cm p compares the contents of two
registers and sets the condition code flags in the PsR as if the contents of one
register were subtracted from the other. The Compare Immediate instruction
Cmpl compares an immediate value with the contents of a register, and sets the
condition code flags as if the contents of the register were subtracted from the
immediate. If the Prefix Register is empty, the immediate value is taken from
the Cmpl instruction's immediate field, which provides an immediate range of
0-255. If the Prefix Register is not empty, the immediate is formed by
concatenating the contents of the Prefix Register and the Cmpl instruction's
immediate field. Most immediate values used in comparisons are small, and
can be accommodated in the Cmpl instruction's immediate field: when a large
value is required, the instruction can be prefixed - usually without a Ume
penalty.

Depending on the value of the Halfword/Byte Mode flag in the PsR. the
Compare Partial instruction CmpP compares either the bytes or the halfwords
in two registers. When comparing bytes. condition codes CO, Cl, C3, and C3 are
set to reflect the result of the comparison; when comparing halfwords, CO and
C2 are set. The Z condition code is set if any of the comparisons yields an
equality. In addition to its use in multígauge arithmetic, CmpP can be used in
scanning strings.

The Jump Relative instruction JmP unconditionally transfers control to a
target address formed by shifting the signed displacement field of the instruc­
tion left one position and adding the result to the contents of Current PC. The
Il-bit displacement field provides a range of -1024 to +1023 instruction
locations. The Jump Register instruction JmpR transfers control to a target
address contained in a register. The Jump and Link instruction JmpL transfers
control to a target address contained in a register after storing a Unk address in
register 4. The link address is formed by adding 2 to the address in Next PC (i.e .•
the link address is the address of the sequential instruction following the

Apple Computer Confidential 2-17

CPU Organization

branch shadow instruction). JmpL and JmpR can be used to implement pro­
cedure call and return operations.

The Test Field instruction TstF tests a field in a register for zero or negative
(high-order bit of the field= "1"), and sets the condition codes accordingly. The
rightmost bit position and length of the field are specified by values in the Prefix
Register, as described in the next section. The Test Mode instruction T1tll sets
the N condition code to the value of a specified PsR bit.

Delayed Branches. All Scorpius implementations have delayed
branches: the sequential instruction following a branch or Jump always is
executed, regardless of whether or not the branch is taken. This instruction
sometimes is called the branch shadow instruction, and is described as being
executed "in the shadow of a branch". In most cases, it is possible to place a
useful instruction in the branch shadow; in the remaining cases, a NOP
instruction must be used. Delayed branching makes it possible to eliminate the
pipeline "hole" which otherwise could occur on a taken branch or a Jump.

Log/cal and Shift Instructions. The And, And Complement, Not, Or, and
Exclusive Or instructions (And, Ande, Not, Or, and XOr) perform the indicated
logical operation using the contents of registers A and B as operands and store
the result in register B. The Shift Left and Shift Right instructions ShL and ShR
perform a logical shift operation, shilling the contents of a register left or right
with zero fill. The Shill Double instruction Dsh shifts the double word formed
by concatenating the contents of registers A and B right a number of bit
positions specified by Prefix Register bits < 11: 7> and stores the lower 32 bits of
the result in register A If A=B, the effect is to rotate the contents of register A
right by the number of bits specified in the Prefix Register.

Field Manipulation Instructions. The Clear, Deposit, Extract, Insert, and
Set Field instructions, as well as the Test Field instruction described earlier,
operate on a field of a register using a field description contained in the Prefix
Register. Prefix Register bits <6:2> specify the field length minus one, while bits
< 11 :7> specify the rìghtmost (low-order) bit position of the field. A field descrip­
tion can be loaded into the Prefix Register Via a Prefix Immediate instruction or
by a Deßne Field (Mak) instruction; the latter permits the field position to be
specttled by the contents of a register (i.e., to be computed).

The Clear Field and Set Field instructions ClrF and SetF clear each bit of a
field in a register to "O" or set each bit to "l "; bits outside the field remain
unchanged. The Deposit instruction Dep extracts a right-Justified field from a
source register and stores it in a destination register at the specified position,
clearing destination register bits outside the field. The Insert instruction IDI is
similar to Deposit, except that destination register bits outside the field are left
unchanged. Extract Signed and Extract Unsigned, EztS and EztU extract a field
at a specified position from a source register and store it, right-Justified, in a
destination register. EztS sign-extends the field according to the field's high­
order bit; EztU clears bits outside the field to "O". With an appropriate field
definition, EztS instruction can be used to effect an arithmetic right shift.

Apple Computer Confident/al a-1s

CPU Organization

Arithmetic Instructions. Scorpius provides a complete set of instructions
for arìthmetíc operations on 32-bit integers. as well as add. subtract. and
multiply instructions which operate on all four bytes or on both halfwords of
their operands. The latter instructions - Add. Subtract. and Multiply Partial -
are described in the section on multi-gauge arithmetic later in this chapter. In
the current discussion. arithmetic operands are 32-bit signed integers except as
noted.

The Add and Subtract instructions Add and Sub add or subtract the values in
registers A and B and store the result in register B. Add with Cany (AddC) adds
the CO (carry) condition code flag and the value in register A to the value in
register B and stores the result ln register B. Subtract with Carry (Sube) adds the
CO condition code flag and the one's complement of the value ln register A to the
value ln register B and stores the result ln register B.

The Add Immediate instruction Addi adds an immediate value to the value
ln register. If the Prefix Register is empty. the immediate value is taken from the
Addi instruction's immediate field. This 8-bit field provides an immediate
range of 1-256. If the Preflx Register is not empty, the immediate value is formed
by concatenating the value ln the Prefix Register with the instruction's
immediate field. The Subtract Immediate instruction Subi subtracts an
immediate in the range 1-16 from the value ln a register. Sabi is not preßxable;
to subtract. an immediate value greater than that provide by the Subi instruc­
tion. Addi with a negative prefix value is used.

The Count Leading Zeroes instruction CLZ counts the number of leading
zeroes (the number of consecutive "O" bits counting down from bit <31>) ln a
register and stores that number ln another register.

Divide instructions divide a 32-bit or 64-bit dividend by a 32-bit divisor,
producing a quotient which is stored in a general register and a remainder
which is stored in special register 5, the Remainder Register (RemR). Dividend
and divisor may be either bòth signed or both unsigned. Divide and Divide
Unsigned (Dl• and DIYlJ) dMde a 32-bit Integer in register B by a 32-bit Integer
ln register A. store the quotient ln register B. and store the remainder ln RemR
Divide Extended and Divide Unsigned Extended (DlvE and DlvUE) form a 64-bit
dividend by concatenating the contents of the Remainder Register with the
contents of register B; the Remainder Register provides bits <63:32> of the
dividend (and the sign, for DlvE), and register B provides dividend bits <31:0>.
This extended dividend is dMded by value in register A. the quotient is stored in
register B and the remainder is stored ln RemR.

The Multiply and Multiply Unsigned instructions Mui and MulU multiply
the value in register B by the value in register A and store the resulting 64-bit
product in special register 4, the Product Register (ProdR) and register B. The
high-order 32 bits of the product (and sign, for Mui) are stored ln ProdR. while
the low-order 32 bits are stored in register B.

The Negate instruction Nel generates the two's complement of the value in a
register and stores it in another register.

Apple Computer Confidential 2-19

CPU Organization

In Antares, multiply and divide instructions are asynchronous operations
whose execution can be overlapped with the execution of other instructions.
Depending on the amount of overlap possible, the effective cost of a multiply or
divide can be as small as one cycle. If a multiple or divide instruction is
executing and a subsequently-issued instruction attempts to use the result
registers (general or special) of the multiply or divide, that Instruction is delayed
until the multiply or divide completes.

Broadcast and Semaphore Instructions. Broadcast instructions permit
one PU to send data values and activity starting addresses to one or more other
PUs, wait for other PUs to complete execution, or halt. The PUs addressed by a
broadcast Instruction are called the targets of that Instruction, and are specifled
by a 4-bit PU Mask field of the broadcast instruction.

The Resume instruction Ram causes each target PU. if halted, to resume
execution at the address in the target PU's Current PC. The Resume instruction
does not complete execution until all its targets have halted and then resumed.
The Start instruction Strt sends an address to each halted target PU and causes
the target PU to start execution at that address. The Start instruction does not
complete execution until all its PUs have halted and then started. The Send
instruction sends the value in a register to each target PU; the target PU must
execute a Receive (Rev) instruction to receive the value and store it in a register.
The Send Instruction does not complete execution until all of its targets have
received the broadcasted value. If a PU issues a Receive instruction before
initiation of a Send instruction, the PU waits for the data value to be sent.

The Wait instruction serves two functions. If a Wait instruction is issued
with the issuing PU specified as a target, PU execution is halted and the Halt flag
in the PsR is set to "l ". If the issuing PU is not specified as a target of the Wait,
that PU waits until all PU specified as targets have halted execution and then
continues execution.

In addition to using broadcast instructions. PUs can coordinate their
activities by means of semaphore instructions. The Global Status Register
contains user mode and system mode semaphores (bits <31> and <30>), which
are operated on by Lock and Unlock (Unlk) Instructions. The Lock instruction
examines the semaphore determined by the PU's mode (system or user). If the
semaphore initially is "l '. it is cleared to "O" (locked) and Lock instruction
completes. If the semaphore initially is "O". Lock instruction execution waits for
the semaphore to be set to "l" (unlocked); the semaphore then is cleared and
Lock instruction completes. If several PUs are waiting for the semaphore to be
set, one is selected in accordance with implementation-dependent rules. The
Unlock instruction sets - unlocks - the appropriate (user mode or system mode)
semaphore.

Broadcast and semaphore operations are discussed in Chapter 5.
Cache Control Instructions. Cache control instructions serve three

functions. They are used to maintain coherence between the instruction and
data caches of a single CPU and between the caches of different CPUs in a multi-

Apple Computer Confidential 2-20

CPU Organization

CPU system. They provide a means of flushing instruction and data caches
when required, as on a task switch in some implementations (such as Antares).
They also can be used to improve performance by eliminating unnecessary
transfers of of lines to and from memory. and fetching lines in advance of their
use. A brief summary of these instructions is given here; Chapter 6 provides a
detailed description.

Cache control instructions. except for IlCA and RDTX, operate on a cache
line specified by a memory address in a general register. With the exception of
the pref etch instructions. this address can be prefixed. If the Prefix Regtster is
not empty. its contents are added to the value in the register to form the operand
address; otherwise, the address in the register is the operand address.

The Create Data Cache line instruction CDC is used to avoid transferring a
line from memory into the data cache when the initial contents of that line are
no longer needed (as when the line will be completely overwritten). CDC selects
the cache line location of the least-recently-used line in the data cache set
specified by its operand address. writes the line currently in that location to
memory if it is modtfted, and creates a new line in that location with the desired
address.

The Flush Data Cache line, Invalidate Data Cache line, Update Data Cache
line, and Validate Data Cache line instructions (FDC, IDC, UDC, and VDC)
provide four different ways of disposing of a data cache line. All four do nothing
if the addressed line is not in the cache. FDC and UÍ>C both write the line to
memory if it is modìfìed: FDC then marks the cache line invalid, while UDC
marks the cache line unmodtfted. mc and VDC do not write the line to memory
if it is modified; mc marks the cache line invalid, while VDC marks the cache
line unmodified.

The Invalidate Instruction Cache line instruction IIC marks the specffl.ed
cache line invalid, while the Invalid Instruction Cache instruction IICA
invalidates ~ instruction cache lines. The Read Data Tag by Index instruction
RDTX returns the tag associated with each data cache line location O, 1, 2, ...• n-1
(n = 64 for Antares). This tag contains the address of the line residing in that
location together with valid, modified, and privilege (system/user) flags. In
peñorming a task switch in Antares, which requires flushing the instruction
and data caches, the operating system uses RDTX to examine data cache line
locations and obtain line addresses, and FDC to flush and invalidate lines.
RDTX is implementation-dependent; its operation can differ from one Scorpius
CPU version to another. and it may not implemented in all CPUs.

The Prefetch Data Cache line instruction PDC is used to prefetch a line from
memory in advance of its use to avoid delays. If the line specified by the operand
address is not in the data cache, PDC initiates a memory read request for the
line and completes execution without waiting for the line to be read.

Apple Computer Confident/al 2·21

CPU Organization

2.5 Prefixing
Prefixing provides an efficient means of extending the intrinsic immediate

and displacement fields of Antares instructions, and of providing field
descriptions (position and length) for field manipulation instructions. A preßx:
is constructed in the Prefix Register using one or more Prefix instructions. The
Prefix Register (PíxR) is a 32-bit local register, bits <1:0> of which are unused:
the Prefix Valid (PV) flag in the Program Status/Control Register (PsR) indicates
if the PíxR is empty ("O") or full (" 1 "). If PV is "O". execution of a Prefix instruction
causes that instruction's immediate field to be transferred into PíxR bits <13:2>
with sign extension, and PV is set to "l ". If PV is "1 ". execution of a Prefix
instruction causes the contents of the PfxR to be shifted left 12 and the
instruction's immediate field to be transferred into PíxR bits <13:2> without
sign extension. Multiple Prefix instructions can be used to construct prefixes of
up to 30 bits in length. A value also can be loaded into the Prefix Register by a
Move To Special instruction: however, PV is not set as a result of this instruc­
tion. A Set Mode instruction can be used to set PV to "l ".

When a preßxable instruction is executed, the PV flag 1s examined: if it is "l ".
the contents of the Prefix Register are used to extend or form that instruction's
immediate or displacement field, and PV is cleared to "O". However, the Prefix
Register contents remain valid and, if desired, PV can be set to "1" again vía a Set
Mode instruction.

Immediate and displacement fields in Antares instructions are encoded, in
most cases, to obtain maximum coverage. For Add and Load Immediate
instructions. an immediate value of i is encoded in the instruction's immediate
field as i - 1. 7 When that instruction is executed, the immediate value used in its
execution is decoded by extracting the value of the instruction's immediate field
and incrementing it by 1. Prefixing causes the contents of the Preßx Register to
be concatenated with an instruction's immediate or displacement field to form
an effective immediate or displacement: the incrementing carried out in
decoding the immediate or displacement field is applied to the concatenation of
the Prefix Register and immediate or displacement fields. This can result in a
carry from that part of the effective immediate or displacement obtained from
the instruction field and that part obtained from the Prefix Register. This cany
must be anticipated in specifying the value of a prefix. An immediate or
displacement value u subject to encoding can be separated into Prefix instruc­
tion immediate values and a prefix using instruction immediate or dis­
placement value as follows. 8

l. Let k be the length of the using instruction's immediate or
displacement field; the k low-order bits of u are the value of the

7The immediate field of Compare Immediate is not subject to encoding.
8Assembler macros, which generate the required number of Prefix instructions with
approprtate immediate field values, relieve the programmer of these details.

Apple Computer Confidential 2-22

CPU Organization

CPU system. They provide a means of flushing instruction and data caches
when required, as on a task switch in some implementations (such as Antares).
They also can be used to improve performance by eliminating unnecessary
transfers of of lines to and from memory. and fetching lines in advance of their
use. A brief summary of these instructions is given here: Chapter 6 provides a
detailed description.

Cache control instructions. except for IICA and RDTX, operate on a cache
line specified by a memory address in a general register. With the exception of
the pref etch instructions. this address can be prefixed. If the Preßx Register is
not empty, its contents are added to the value in the register to form the operand
address; otherwise, the address in the register is the operand address.

The Create Data Cache line instruction CDC is used to avoid transferring a
line from memory into the data cache when the initial contents of that line are
no longer needed (as when the line will be completely ovelWritten). CDC selects
the cache line location of the least-recently-used line in the data cache set
specified by its operand address. writes the line currently in that location to
memory if it is modified, and creates a new line in that location with the desired
address.

The Flush Data Cache line, Invalidate Data Cache line, Update Data Cache
line. and Validate Data Cache line instructions (FDC. IDC, UDC, and VDC)
provide four different ways of disposing of a data cache line. All four do nothing
if the addressed line is not in the cache. FDC and UDC both write the line to
memory if it is modified: FDC then marks the cache line invalid, while UDC
marks the cache line unmodified. mc and VDC do not write the line to memory
if it is modified: mc marks the cache line invalid. while VDC marks the cache
line unmodified.

The Invalidate Instruction Cache line instruction IIC marks the specified
cache line invalid, while the Invalid Instruction Cache instruction IICA
invalidates all instruction cache lines. The Read Data Tag by Index instruction
RDTX returns the tag associated with each data cache line location O, 1, 2, ...• n-1
(n = 64 for Antares). This tag contains the address of the line residing in that
location together with valid, modified, and privilege (system/user) flags. In
performing a task switch in Antares. which requires flushing the instruction
and data caches, the operating system uses RDTX to examine data cache line
locations and obtain line addresses. and FDC to flush and invalidate lines.
RDTX is implementation-dependent; its operation can differ from one Scorpius
CPU version to another. and it may not implemented in all CPUs.,

The Prefetch Data Cache line instruction PDC is used to prefetch a line from
memory in advance of its use to avoid delays. If the line specified by the operand
address is not in the data cache. PDC initiates a memory read request for the
line and completes execution without waiting for the line to be read.

Apple Computer Confident/al 2-21

CPU Organization

2.5 Prefixing
Prefixing provides an efficient means of extending the intrinsic immediate

and displacement fields of Antares instructions, and of providing field
descriptions (position and length) for field manipulation instructions. A prefix
is constructed in the Prefix Register using one or more Prefix instructions. The
Prefix Register (PfxR) is a 32-bit local register. bits < 1 :O> of which are unused:
the Prefix Valid (PV) flag in the Program Status/Control Register (PsR) indicates
if the PíxR is empty ("O") or full (" 1 "). If PV is "O". execution of a Prefix instruction
causes that instruction's immediate field to be transferred into PíxR bits < 13:2>
with sign extension, and PV is set to "l ". If PV is "l ". execution of a Prefix
instruction causes the contents of the PíxR to be shifted left 12 and the
instruction's immediate field to be transferred into PíxR bits <13:2> without
sign extension. Multiple Prefix instructions can be used to construct prefixes of
up to 30 bits in length. A value also can be loaded into the Prefix Register by a
Move To Special instruction: however, PV is not set as a result of this instruc­
tion. A Set Mode instruction can be used to set PV to "l ".

When a preßxable instruction is executed, the PV flag is examined; if it 1s "l ".
the contents of the Prefix Register are used to extend or form that instruction's
immediate or displacement field, and PV is cleared to "O". However. the Prefix
Register contents remain valid and, if desired, PV can be set to "l" again via a Set
Mode instruction.

Immediate and displacement fields in Antares instructions are encoded, in
most cases, to obtain maximum coverage. For Add and Load Immediate
instructions, an immediate value of t is encoded in the instruction's immediate
field as t- l. 7 When that instruction 1s executed, the immediate value used in its
execution is decoded by extracting the value of the instruction's immediate field
and incrementing it by 1. Prefixing causes the contents of the Prefix Register to
be concatenated with an instruction's immediate or displacement field to form
an effective immediate or displacement: the incrementing carried out in
decoding the immediate or displacement field is applied to the concatenation of
the Prefix Register and immediate or displacement fields. This can result in a
carry from that part of the effective immediate or displacement obtained from
the instruction field and that part obtained from the Prefix Register. This carry
must be anticipated in specifying the value of a prefix. An immediate or
displacement value v subject to encoding can be separated into Prefix instruc­
tion immediate values and a prefix using instruction immediate or dis­
placement value as follows. 8

l. Let k be the length of the using instruction's immediate or
displacement field: the k low-order bits of v are the value of the
using instruction's immediate or displacement (prior to encoding)

7nie immediate field of Compare Immediate is not subject to encoding.
8Assembler macros, which generate the required number of Prefix instructions with
appropriate immediate field values, relieve the programmer of these details.

Apple Computer Confident/al 2-22

CPU Organization

~i
I /

PV J~Ji PfxR :t z z z ~ z z ~ z z z z ~ z z z ~ ·z z z z z z ~ z z z ~ z z z m1i¡i~:i:::
....... ~t:}\:::/:(:::\:(.:\(\:::::::? :.: <<> / :: ::.: ./:\. : :~ Jjf

1
I PfxI I 000000000011 I

I
py.•o·: sign extend

PV :m: PfxR]o~~oo~.~~oooo·~·~~~oo:~~~oooo.~oo·¡¡ IIliiili:!
:~r <(>> < ::t::r.:>::::: :-: t>::::rt))::>-::: ::rt=<<>. JJ:r,c;,::

(a)

)

PV E] PfxR :r º·~~·~·~ ~··~·º·~º·~·º~·~~·~:~~:o~·~·º·~~·~:~•·;~·¡:~ ·¡¡¡¡¡¡¡¡¡j¡¡¡
· .. · .. · .. · ·· ~tJt::t>:::::f:\::t:::t/f :;:;:;:;,/::J+:tAt::::: :>/Ji:,\:)/.·.· ::::tu:A

py.•1-:
shift /elf 12 l

I PfxI j 111111111111 f

I
PV :Q] PfxR :1· ·~~·~~~·~:~~oo~oo~~··~·;1:~¡~·¡1{¡¡~¡;¡··1lilili¡i~:¡

:M\J:\t::tJ~?.\ :::::>> .. L:\:A~J•<<<<>Jt,=U:Ul'/tl

(b)

PV J]] PfxR :1:•· ~·~~·~:~•:º:~:~~ ~:~:~•:~•~ ~··~·~ \¡ ¡· ~•:~·~:•~·~•:¡ ·~·~:;¡ ·,¡¡¡¡1¡¡¡1):l

!!!ff WWlÍÍi;\••••··:;=íi •• ;i:/t .. /t•:\J•~•/ci:-+•

1

---•

Rag. 2 ¡r·~·~·ö·ö~ö·ö·~ö·{·ööö·~~:~~·~ö·ö·~ööö:~•:~o·~~ö·~ö· 1::1
:àf. :::::.::::::::/):. >)/) <ii:\ ·.: .: ... : ... : '.':'::'::'.::: =/::!:U/:/'.:::. Jf

LdI 1111111 0010

(e)

Ft,ure 2.12. Immediate Prefixing Example

Apple Computer Confident/al 2-23

CPU Organization

2. Subtract 1 from v: bits <k+ 11: k> of v - 1 compose the value of
the immediate field of the Prefix instruction immediately
preceding the using instruction.
3. if I vi > 2k+ll - 1, a second Prefix instruction is required; the
immediate field of this instruction comprises bits <k+23: k+ 12>
of v- l.

Immediate Prefixing. Add, Load, and Compare Immediate instructions are
preflxable: Subtract Immediate is not. 9 When an Add or a Load Immediate
instruction is executed, the Prefix Valid flag is examined.If this flag is "l", the
effective immediate for the instruction is formed by concatenating the contents
of the PfxR with the instruction's immediate field (or, equivalently, shiftlng the
prefix left and adding the immediate) and then adding "l" to the result. Effective
immediate bits <31:8> are taken from PfxR bits <25:2> and effective immediate
bits <7:0> are taken from the instruction's immediate ßeld. Bit <31> of the
effective immediate is treated as a sign bit: bits <31 :26> of the PfxR are ignored.

If the Preflx Valid flag is "l" when a Compare Immediate instruction is
executed, the effective ímmedìate is formed as described above. except that "l" is
not added to the result of concatenating the PfxR contents and Instruction's
immediate field, since the immediate field of Compare Immediate ls not
encoded.

As an example of the use of prefixing in extending. the range of immediates.
suppose it is desired to load the constant Ox400000 into register 2. The Load
Immediate instruction has an immediate field of k = 8 bits; specifying Prefix
(Pû:I) and Load Immediate (Ldl) field values according to the process outlined
above results in the following instruction sequence.

PfxI Ox3
PfxI OxFFF
LdI Ox00,2

The assembler will encode the Ldl instruction's immediate field as OxFF. The
execution of. this instruction sequence, showing the PfxR and PV contents before
and after the execution of each instruction (and assuming PV initially is "O"). is
illustrated in Figure 2.12. Figures 2.x(a) and (b) show the results of execution of
the first and second Preflx instructions. Figure 2.x(c) shows the result of
execution of the Load Immediate instruction. Since PV = "l ". the effective
immediate generated by this instruction is formed by concatenating PíxR bits
<25:2> with the instruction's immediate field and adding "l" to the result. as
described earlier. As described earlier, this addition effectively takes place after
the concatenation so that a cany. ff generated, will propagate through the full
effective immediate.

9subtract Immediate is not preflxable because prefixes are signed quantities: a prefixed
Add Immediate can be used when lt ls desired to subtract a constant larger than that
provided by the immediate field of the Subtract Immediate.

Apple Computer Confident/al 2•24

CPU Organization

usín instruction's immediate or displacement (prior to encod

PV ET PfxR lzz zzzzzzzz zz zz zz zzz zzzz zz z zzzz klrn:ii
31· · :: · .. •· · ... ··•• ... · 2.}:~t

I PfxI I 000000000011 I

I
Pv.·o·: sign extend I

(a)

(b)

PY EJ PfxR ·f oooooo:ooooooooo.~11:111111111111f¡j¡jl¡i1i:
:31>:::.\::.\ ;:::;.;-.: 2$: . - · .. · .. · · . : ·. ·._. - :;. _· :.::-:::-: :·i/}}\:: <{;i?~t</<*~)}:(f

····•~i

LdI 1111111 0010

Reg. 2 T·~~~~·~·Ö~··~~·Ïoooo~~oo~oooo~:ooo~oooo ¡:¡i
:~#tt::t>J ./?{\ · .. •. . · :- • .• > > > 8:7:: :< :·} tß:

PY T~] PfxR 1·~~~~~~~~~·~0~·~00011111111ï~i~11111lilii~:¡
st\ ·........ . · · · · · .. ·2/·••c(

(e)

Figure 2.12. Immediate Preflxtng Example

Apple Computer Confident/al 2-23

CPU Organization

2. Subtract 1 from v: bits <k+ 11: k> of v - 1 compose the value of
the immediate field of the Prefix instruction immediately
preceding the using instruction.
3. if I vi > 2k+ll - 1, a second Prefix instruction is required; the
immediate field of this instruction comprises bits <k+23: k+ 12>
of v- l.

Immediate Prefixing. Add, Load, and Compare Immediate instructions are
prefìxable: Subtract Immediate is not.9 When an Add or a Load Immediate
instruction is executed, the Prefix Valid flag is examined.If this flag is "l", the
effective immediate for the instruction is formed by concatenating the contents
of the PíxR with the instruction's immediate field (or, equivalently, shifting the
prefix left and adding the immediate) and then adding "1" to the result. Effective
immediate bits <31 :8> are taken from PfxR bits <25:2> and effective immediate
bits <7:0> are taken from the instruction's immediate field. Bit <31> of the
effective immediate is treated as a sign bit: bits <31 :26> of the PíxR are ignored.

If the Prefix Valid flag is "l" when a Compare Immediate instruction is
executed, the effective immediate is formed as described above, except that "l" is
not added to the result of concatenating the PfxR contents and instruction's
immediate field, since the immediate field of Compare Immediate is not
encoded.

As an example of the use of prefixing in extending· the range, of immediates,
suppose it is desired to load the constant Ox400000 into register 2. The Load
Immediate instruction has an immediate field of k = B bits: specifying Prefix
(Pf'zl) and Load Immediate (Ldl) field values according to the process outlined
above results in the following instruction sequence.

PfxI Ox3
PfxI OxFFF
LdI Ox00,2

The assembler will encode the Ldl instruction's immediate field as OxFF. The
execution of this instruction sequence, showing the PíxR and PV contents before
and after the execution of each instruction (and assuming PV initfally is "O"), is
illustrated in Figure 2.12. Figures 2.x(a) and (b) show the results of execution of
the first and second Prefix instructions. Figure 2.x(c) shows the result of
execution of the Load Immediate instruction. Since PV = "1 ", the effective
immediate generated by this instruction is formed by concatenating PíxR bits
<25:2> with the instruction's immediate field and adding "l" to the result, as
described earlier. As described earlier, this addition effectively takes place after
the concatenation so that a carry, if generated, will propagate through the full
effective immediate.

9subtract Immediate is not preßxable because prefixes are signed quantities; a prefixed
Add Immediate can be used when it is desired to subtract a constant larger than that
provided by the immediate field of the Subtract Immediate.

Apple Computer Confident/al 2-24

CPU Organization

PV :Œl PfxR I 111111 ~ l l l l l l 111111111111111 o 1 fülII::
::,i::.:-_.·· .. :_:-:~:,:,::·: .:··:.}:-·::.::- ::: __ :.: :/::.:.::::/·~:}:o.:

ILdRD 1111110011111110 I
D52 D10

I I

r..::.oa
iu

::I 11.111111111111 ~1~111111~000-~oo:oo.f effective byte
· _ . . _ . _ _ . : displacement
·31·::. ·-. -·· · '· .:·_- ... -,:._ <::: :::::.: .::,<::::-a1\:_.:-: i,::.:cr

Figure 2.13. Displacement Prefixing Example

Displacement Prefixing. Prefixing can be used to extend the displacement
range of Lc:IRD/StRD and to permit the use of signed displacements with these
two instructions, and to transform LdR/StR, cache control, and prefetch
instructions from register addressing to base plus displacement addressing.

When a LdRD /StRD instruction is executed, the Prefix Valid flag 1s examin­
ed; if this flag is "l", the effective displacement for the instruction ts formed by
concatenating the contents of the PíxR with the instruction's immediate field,
and the Preñx Valid flag is cleared to "O". In effect, the prefix and instruction
immediate are concatenated to form a word displacement which ts incremented
by 1 (since a displacement d is encoded as d- 1), and then shifted left 2 places to
form the required byte displacement. Bits <31 :8> of the effective ~
displacement are taken from PfxR bits <25:2>, bits <7:2> are taken from the
instruction's displacement field. and bits <l :O> are "00". For example. suppose it
is desired to execute an LdRD instruction with a displacement of -128 words (-
12810 = OxF ... FFSO) from the address in register 2 to load a word into register 3.
The LdRD displacement field and P&I immediate field values are determined as
described earlier. Since the displacement field length of this instruction is k = 6
bits 1n length, the unencoded displacement is~- -12810- 1 = OxF •.. FF7F;
extracting bits <17:6> from this gives the Pfzl immediate value OxFFD. The
desired operation can be performed by the following instruction sequence.

PfxI OxFFD
LdRD Ox00[2],3 ; "0x00" will be encoded as "OxFF"

Figure 2.13 illustrates the formation of the effective byte displacement during
execution of the Lc:IRD instruction (assuming the Prefix Register contents have
been established by execution of the above prefix instruction). The effective byte
displacement. which will be added to the contents of register 2 to form the
operand address, is OxF ... FFEOO, or-51210: 4 times the specified word displace­
ment of-12810-

LdR and StR instructions, which have no intrinsic displacement, use the
contents of the PíxR as a signed displacement if PV = "l". Bits <31:2> of the

Apple Computer Confident/al 2-25

CPU Organization

Figure 2.14. Field Description Locations in P&R

effective displacement are taken from PíxR bits <31:2>, and bits <1:0> are "O".
Thus, the value loaded into the PíxR by a prefix instruction (or instructions) is
an LdR/StR word displacement, which is transformed into a byte displacement
when used.

Prefixing also permits displacements to be used with certain cache control
and prefetch instructions in exactly the same way as LdR and StR. This usually
eliminates the need to use a register to form a prefetch address.

Field Manipulation Instruction Prefixing. The PíxR also is used to hold
a field description for the various field manipulation and test instructions
(Clear Field, Deposit, Extract, Insert, Set Field, Shift Double, and Test Field).
This field description comprises a field length len and a rightmost bit position
pos. Field manipulation instructions use PfxR bits <6:2> as len - 1 and PfxR bits
<11:7> as pos (Figure 2.14). The field description may be loaded into the PfxR by
a Prefix instruction or, when pos is determined at execution time, by a Mask
instruction.

Branch Displacement Prefixing. It is intended that future versions of
Scorpius extend prefixing to include relative branch (and jump) displacements.
In Antares, trapping on Bec/ Jm p when PV = "1" would provide a means of
realizing backwards compatibility: programs written for CPUs with branch
displacement prefixing could execute on Antares via emulation. However. this
presents certain implementation problems, so that the objective has been
limited to forward compatibility: programs written for Antares should execute
correctly on later Scorpius implementations which have branch prefixing.
Forward compatibility requires only that a Bcc/Jmp instruction does not
appear between the creation of a prefix and its use. For example, in extending
the lrmnediate field value of an Addi instruction, the sequence P&I-Addl -Bec is
acceptable: the sequence Píxl-Bcc-Addl is not. To enforce this usage in Antares,
the Prefix Valid flag is cleared whenever a Bcc/Jmp instruction is executed.

2.6 Condition Codes
Scorpius provides the traditional four condition codes - Negative (N), Zero

(Z), Overflow M. and Carry (C) - which are set or cleared based on the results of
arithmetic and certain other operations. However, Scorpius has four Carry
condition codes, CO, Cl, C2, and C3, which are set or cleared in various
combinations to reflect the results of word, halfword, or byte operations.
Condition codes are contained in bits <22: 17> of the PsR (Figure 2.5). Figure 2.15

Apple Computer Confident/al 2-26

CPU Organization

Instructions Which Set Condition Codes

Add cu ExtS Or Subi
AddC Cmp ExtU Rtl SubP
Addi Cmpl Ins Shi TstF
AddP CmpP MovFS ShR TstM
And Dep Neg Sub Xor
AndC Dsh Not SubC

Instructions Which Do Not Set Condition Cod•

Bec IICA LdR Pfxl StM
CDC Jmp LdRD PIC StR
ClrF JmpL Lock Prmpt StRD
ClrM JmpR Mov Rev Strt
Div Lec MovTS RDTX Trap
DivE LdB Msk Res UDC
DivU LdCP Mui Rsm Unlk
DivUE Ldl MulP Send VDC
FDC LdM MulPU SetF Wait
IDC LdPC MulU SetM
IIC LdPU PDC Stb

Figure 2. US. Instructions Which Set and Do Not Set Condition Codes

divides the Scorpius instruction set into those instructions which set condition
codes and those which do not (note that multiply and divide are among the
latter). Condition codes are set according to the following rules (for precise
definitions of the conditions under which condition codes are set. refer to the
individual instruction descriptions in Chapter 8).

N Negative condition code. For arithmetic instructions which store a
result.jr ís set to bit <31> of the stored result. For Cmp and Cmpl
instructions. N is set to "l" if the true result is less than zero.1 O For
CmpP. Nis set to the most sìgnìñcant bit of the true halfword or byte
arithmetic result. For TstF, N is set to "l" if the most sign1flcant bit
of the field = "l "; for TstM. N is set to the value of the specified mode
bit.

Z Zero condition code. For word arithmetic operations. Z is set to "I" if
the result is zero. For halfword or byte arithmetic operations. Z is set
to "I" if either halfword or any byte is zero. Z also is set to "I" if the
field operated on by an Deposit. Extract. Insert, or Test Field
instruction comprises all "O's".

u 1 Onie true result is the result computed without regard to machíne precision.

Apple _Computer Confident/al 2-21

CPU Organization

Figure 2.18. Correspondence Between Cany Codes and Operand Lengths

V Overflow condition code. For word arithmetic operations, V Is set to
"1" if the most sìgnìñcant bit of the result produced by adding two
numbers with the same signs differs from the sign of the result, or if
the sign of the result produced by subtracting two numbers with
unlike signs Is different from the sign of the minuend. V Is never set
by partial arithmetic instructions.

C Carry condition codes, CO-C3. These correspond to word, halfword,
and byte operands as shown in Figure 2.16. When a word operation
results in a carry, CO is set to "l" and C 1, C2, and C3 are cleared to "O".
In halfword mode (PsR bit <2> = "1'1 CO and C2 are set to "l" if there is
a cany from the corresponding halfword, while C 1 and C3 cleared to
"O". In byte mode, CO. Cl, C2, C3 are set to "1" if there is a carry from
corresponding byte.
For addition, the carry condition code C is determined from

C = (A& B) I ((AIB) & -R)

where A Is the sign of the addend, B is the sign of the augend, and R iS
the stgn of the resutt.11 Thus, Cis set if both addend and augend are
negative, or if either ís negative and the sum ìs positive. For sub­
traction and comparison, the cany condition code C Is determined
from

C = ((-A) I (((-A) I B) & -R)

where A Is the sign of the minuend, B iS the sign of the subtrahend,
and R is the sign of the result. C Is set if the minuend ts positive and
the subtrahend Is negative. Also, C ts set if the result Is positive and
either the minuend ls positive or the subtrahend Is negative.

11 Here, "&" denotes the and operation, " I " denotes the or operation, and "-" denotes the not.
or l's complement. operation.

Apple Computer Confident/al 2-28

CPU Organization

cc field condition
encoding mnemonic code settings interpretation

o F f aise (Lec only)
1 av v-1 overflow
2 LO e.o lower than
3 LT N • 1 less than
5 EO z-1 equal
6 LS c-0I2-1 less than or same
7 LE N-0I2•1 less than or equal
9 NV v.o no overflow
10 HS c-1 higher than or same
11 GE N.o greater than or equal
13 NE z-o not equal
14 Hl c-1&2-0 higher than
15 GT N-o&z-o greater than

)

Figure 2.17. cc Field Encodings

Condition codes are examined by the conditional branch (Bec) and load
condition (Lec) instructions. Also, CO is an operand of the add performed by the
Add with Cany instruction (AddC). Bec causes control to be transferred tf the
value encoded in its cc field corresponds to the value of the four condition codes.
Lec stores "l" in a result register if the value encoded in its cc field corresponds to
the value of the four condition codes and "O" otherwise. Figure 2.17 shows the
possible encoded values of cc and the condition code settings corresponding to
those values. For Bec. encodings of O, 4, 8, and 12 are reserved: for. Lec.
encodings of 4, 8. and 12 are reserved. A Lec instruction with a cc field value of
OxO. coded as.LF and called Load False, always loads "O" into its result register.
regardless of the condition code settings (providing a load immediate of O).

2.7 Multi-Gauge Arithmetic
This section to be added.

')
'-._....,

Apple Computer Confidential 2-29

Rev. 1.00 (9/88)

3. Addressing

3.1 Introduction
PUs use Virtual addresses to access memory for instructions and data.

Virtual addresses are 32-bit byte addresses in the range OxOOOOOOOO to
OxFFFFFFFF. For instructions. memory accesses are generated directly by
jump (JmpL/JmpR). prefetch, and start PU instructions, and indirectly by
instruction fetches using the current PC (Program Counter). Instructions must
be located on half-word boundaries; the low-order bit of a virtual address used
in accessing memory for an instruction is ignored. For data. memory accesses
are generated by load register. store register, and prefetch instructions. For
word accesses generated by load/store word instructions (LdR/StR. LdRD/StRD,
and LdM/StM). the low-order two bits of the address are ignored. so that word
loads and stores always are done on word boundaries.

Virtual memory addresses are translated by an address translation
mechanism into real addresses, which are used to access memory. (There is no
provision for PUs to access memory directly using real addresses.) Real
addresses may refer to locations in local memory or remote memory. Local
memory ts memory connected directly to the requesting CPU and accessed via
its Memory Bus. Remote memory is either memory connected to another CPU
(local to that CPU) or memory connected to a NuBus slot; in either case. remote
memory ts accessed via the Inter-Processor Bus (IPB). The size. composition,
and organization of real memory are implementation-dependent. Real memory
can comprise DRAM. VRAM. SRAM. and ROM sections. together with various
kinds of registers (e.g .• control, coprocessor). The organization of real memory
in Antares is described in an appendix.

A virtual address space divides into kernel space and user space; the latter
can be divided into user and (frame) buffer regions. Only one address space can
be active at a tlme on a gtven CPU. and the span of control of that address space
is local to that CPU. A virtual page of an address space on one CPU may map to a

Apple Computer Confident/al 3-1

Addressing

kemelspacs
(4 megabytes)

OXFFCOOOOO◄--------t
OXFFBFFFFF

ussrspacs
(4092 megabytes)

• user ragions
• buffer regions

oxoooooooo---------

VIRTUAL ADDRESS SPACE

---------- implementation­
dependent

page mapped

direct mapped

up to
OX003FFFFF

t
oxoooooooo

AEALIIEIIOAY

n,ure 3.1. Address Space and Real Memory Organization

real memory page located ln either local or remote memory. The memory ln
which the real page resides is said to be the owner of the page.

This chapter describes the organization of the Scorpius virtual address
space, the privileges which may be associated with parts of that address space,
and the translation of virtual addresses into real addresses. Except where noted,
addresses are described in terms of byte addresses.

3.2 Address Space Organization
Scorpius provides a flat (unsegmented) virtual address space of 4096

megabytes. A 4-megabyte area at the high end of each address space is allocated
for the operating system kernel, and the remaining 4092-megabyte area is
available for the user or for parts of the operating system other than the kernel
(Figure 3.1). These areas are referred to as kernel space and user spaœ.

Kernel space is not paged, but instead is directly mapped to the first 4
megabytes of real memory. Any part of this first 4 megabytes of real memory
which is not used by the kernel can be allocated for user space pages.

User space is allocated as user regtons and bqffer regtons: these can appear
anywhere in user space. User regions are created for user and system code and
data storage, and are allocated ln units of a page: the page size is 8192 bytes
(8KB). (User space comprises 523776 pages.) User region pages can be specified to
be system only or system/user. read only or read/write, cacheable or non­
cacheable, or interrupt-on-write. Interrupt-on-write pages are used in Inter­
node message transmission, discussed later in this chapter. Any virtual page
can be mapped to any real page. StarUng addresses of both virtual and real pages
must fall on a page boundary (address bits 0-12 must be O).

Apple Computer Confidential 3-2

Addressing

;)

Buffer regions are created for use as graphics frame buffers, and are allocated
in super-page units. The síze of a super-page can be spec1fted to be 256KB, 512KB,
1MB, 2MB, 4MB, or 8MB, and can be selected so that a single super-page covers
the entire frame buffer. The purpose of buffer regions is to reduce the number of
Translation Buffer misses generated when drawing lines on the screen. For
example, suppose the screen size is 1600 x 1200 pixels with 32-bit- one-word­
pixels, so that a frame buffer of almost 7. 7MB is needed. If the frame buffer is
allocated in the user region, in units of 8KB pages, drawing a vertical line from
the top of the screen to the bottom results in accesses to 1200 words in
approxìmately 938 distinct pages, and can be expected to result in 938
Translation Buffer misses. By allocating the frame buffer in a buffer region
with a super-page size of 8MB, the Translation Buffer miss rate for frame buffer
accesses is effectively reduced to zero. Super-pages can be specified to be system
only or system/user, read/ only or read/write, or cacheable/non-cacheable. Like
user region pages, starting addresses of both virtual and real super-pages must
fall on a page boundary corresponding to the super-page size. Allocating the
same real page as a user region virtual page and as part of a super-page causes
unpredictable results.

It is possible to create more than one buffer region. However, in Antares, a
single special Translation Buffer entry is provided for translation of super-page
references. Since graphics software typically performs all required operations
on one frame buffer before switching to another, the limit of a single
Translation Buffer entry for super-pages does not present a performance
problem in the intended use of buffer regions.

An address space is defined by a set of virtual to real page mappings which
are recorded in a translation table; each address space has its own table. The
number of address spaces which may be defined is model-dependent; Antares
defines the maximum number of address spaces to be 128. The CPU can access
only one address space, called the active address space, at a tlme. An address
space becomes active when its Address Space Number (ASN) is stored in the ASN
field of the ID Register.

Access Privileges. The operating system can specify that certain privileges
are to be associated with a user or buffer region page. These privileges are as
follows.

• system access only a "system" page can be accessed only by a PU.
in system mode (U/S bit in the PsR= "1'1.
An attempted access by a PU in user mode
results in generation of a access privilege
violation trap. (A "user" page can be
accessed in either system or user mode.)

• read access only a "read only'' page can be accessed only by
· an instruction or data fetch; an attempted
store access results in generation of a data
access privilege violation trap.

Apple Computer Confident/al 3-3

Addressing

an access to a "non-cacheable" page causes
the addressed word to be directly read from
or written to memory. Only load/ store
word data accesses and Instruction fetch
accesses are permitted to a non-cacheable
page; an attempted byte access (via
LdB/StB) results ln generation of a data
access privilege violation trap.

• interrupt-on-write a store access to an "ínterrupt-on-wnte"
page causes a Message lnteJTUpt to be
presented to the owner of that page, as
descrtbed below. This privilege is available
only for user region pages only.

Access privileges for a page are established by setting the approprtate flags ln the
translation table entry for that page.

Inter-Node Messaging via Interrupt-on-Write Pages. An attempted store
to an "interrupt-on-write" page by a store word instruction causes a Message
Interrupt to be presented to the node owning that page, called the d.esttnatton
node, or simply dest1nat1on..l The destination usually, but not necessarily, is a
d1fferent node than the node at which the store instruction is executed. If that
interrupt can be accepted by the owner node, the message word is stored at the
appropriate location in the owner's local memory, and the real intra-node byte
address of the word referenced as the operand of the store instruction is stored ln
the Interrupt Argument Register (IAR) of the owner node. If the owner node has
external interrupt presentation disabled, or if a Message Interrupt already is
pending at the owner node, the newly-presented Message Interrupt is rejected
and the message word is not stored. Rejection of a Message Interrupt causes a
Message Reject trap to be generated on the PU attempting to execute the store
instruction, unless that PU is interrupt/trap disabled; in this case, a PU Check
trap, rather than a Message Reject trap, is generated. (Consequently, a PU
should send a message - store to an interrupt-on-write page - only while
interrupt/trap enabled) The Message interrupt and the Message Reject trap are
discussed ln Chapter 4.

• non-cacheable ·

The kernel must decide how to deal with rejected messages. In a small
configuration, it may simply reínìtíate execution of the store instruction. In a
large configuration, it may use some adaptive (e.g., backofïl algoríthm to
determine when another attempt to send a message should be made.

A page marked interrupt-on-write must also be marked non-cacheable. If it
is not, a data page fault trap is generated when any access to the page results in

1Th1s store instructlon typically Is an StR or StRD Instruction. While executton of an SUI
Instruction to an interrupt-on-write page Is not an eITOr per se, a Message Interrupt Is
presented for each word stored, and there ls a high probability that stores after the first
will result in a Message Reject trap; the Stll may never complete.

Apple Computer Confident/al 3-4

Addressing

.·· .. · .. •3· ·.1.· .. ·. ··· · · · :.:::.>::::: '::::::::-:::-::::::::::;;:::; • /:. //f\ ·':"h: .. y<t(.\.i.::.•.•.::.••.::.::.•:.:•.•.•.::.t,:·•.·•3<.••1:· ·.·~.".\··•··\·•:· >.• : :, V<< < ·• <>.>•<•\ff>?>.••·••••: :.•·•.·. •.:.•.:·:·•·:.•::.•:·• ... o··•.··•·.•·•.:> :\\\:tr:::::•:?·--:··::-:-:-· -·-· - - •·)I virtual paga nu- lnlra-paga byte Index I >
····•·· , ... :. ·· : •':x • • (1>:vt ·•> · ><> x<::<,ô:: • ;::;j:J:+t:1u:::::•t:::r:u:n::t+:1::< r:::::::::¡::::•ti{\tt:)rr. :tj/< Ji\<:::• :: .. ::•••> :.:::.:.: :.• : :·: ··:

(a) User Region Virtual Addresses

::::.;::::::::::=:::::::::·.::::::::::=:-:::::::::;::::::::::::::::::::: .. ·-·-:-:-: :,:-:,;,;-:-:-:-:-·-:-:-:-:-:-:-:-:-:.:-:-:- . ·,•,· . :.: ·.·._-:-:-:-:-:-·-:-:-:-.-:-:-:.:.:-.-:..:. :-:.:- .. .: :-: :-:-:

: ::31:\ •.:·:.r.:.·.· .. :•.::.:.:.:.•::.:::.·.•.:•::·•.•::.·.•.•·:.::: .• :: .. •.:.·.•.:.•.:.•.:.\.•·.: :? b::<::::::::::::::::: :: <> ::::::::::::::<: :::::/1\::d:/i]f PñJ;?ii):i::::::: .:.:.: :: •·••:::,::::•:::::::· ·. :;:::::;:;:;: :;:::::::::::::::::,:t/•tt/:Y>i:?>1 t::¡y¡::
-:-:-:-:-:-.-:-.-:-:-:-:::.::-:-:.:-:.:-.:.-:-:-:-:-:-:-:-::-::.:-:-;.::,·._:.:-.-:-:-:-:-· .·.··-··.·.·.·.·.··.· .. ·.·.·--···· .-.- ... · ·.·.·.·.· {f \rirtual page number lnlra-paga byte Indu ¡¡,

.• e;,,.·••:::< :::::::::::<Y .:::: , e::::•.:::::::::::::::::,:., ki::::.::::::::::,.:: ::;:: · ·.·.·.•:-: ::/1:::::,:::::.:·. • ::::::::::: :-: : t:::::;1r i{\2t:::::+: :,: ::-:::::<••,::::: : :: : : : <<::::

. ·.· :-·-:.:-: :::,:::::::::::::::::::::::::::::::•::: ::::::•:::•·::::::::::::::::::::<::::<::::::::::::-:;:•:•:::•:•:-:-: :::;:::::::::::::::::::::::::::_._•,•,•.·.·.·-·.·.·. ._:_:_: :_:_:_._.:::.: ...• ·,·,·.·.· •.. •,•.·.·.•,•. ;'.;>::::::::::::::=:::::::::. ·.·.·.·.•. ·.·.·.·.·.·.·.·.·.·.•- /{:}){:};:::\}:/:.:;•

rightmost bit posi- virtual page intra-page byte
tion of virtual page number field index field

SUe!r•ese size number {n} leng!h {kl leng!h {il

256KB 18 14 18 -
512KB 19 13 19

1MB 20 12 20
2MB 21 11 21
4MB 22 10 22
8MB 23 9 23

(b) Buffer Region Virtual Addresses

Fl,are 3.2. Virtual Address Formats

an address translation which must read the corresponding translation table
entry. The requirement that the interrupt-on-write page also be non-cacheable

. is one of the reasons for inhibiting store byte access to an interrupt-on-write
page.2

Interrupt-on-write pages provide a baste mechanism for transmitting
messages between nodes and, since interrupt processing can be serialized, for
coordinating acttvtttes at different nodes. (It is the only mechanism provided
for synchronization of multiple processors.) A variety of message schemes
based on interrupt-on-write pages are possible.

21.ater versions of Scorpius may permit interrupt-on-write pages to be cacheable, as well
as non-cacheable, so that message lengths of a line (64 bytes) can be accommodated. To do
this safely will require the capab111ty to lock a line into the cache (to prevent inadvertent
moveout of an incomplete message).

Apple Computer Confidential 3-5

Addressing

Fl¡me 3.3. Real Address Format

3.3 Address Formats
Virtual Addresses. A virtual address is the concatenation of a virtual page

number and an intra-page byte index (Figure 3.2). For user region virtual
addresses, the virtual page number is 19 bits in length and the intra-page index
is 13 bits in length. On instruction fetches, the low-order bit of the virtual
address is ignored. On word loads and stores, the low-order two bits of the
virtual address are ignored. Virtual page numbers (of 8KB pages) in the range
OXOCX>OO to OX7FDFF correspond to user space virtual addresses, and are trans­
lated into real page numbers using the address translation process descrtbed
later in this chapter. Virtual page numbers in the range OX7FEOO to OX7FFFF
correspond to kernel space virtual addresses, which are directly mapped to real
addresses. The real address corresponding to a kernel region virtual address can
be obtained by subtracting OX7FEOO from the virtual page number field of the
address (retaining the intra-page index). For buffer region virtual addresses, the
lengths of the virtual super-page number and intra-page index depend on the
super-page size, and are listed in Figure 3.2(b).

Address Arithmetic. Address arithmetic (as in forming an effective
address from base register and displacement values) is performed modulo 232.
An attempt to generate an address greater than 232 - 1 does not cause an
exception. but results in an address which ''wraps around" the address space.

Real Addresses. A real address comprises a 4-bit node number and a 32-
bit intra-node real byte address (Figure 3.3). The intra-node address specifies a
location in memory local to (connected directly to) the node specified by the
node number. 1be node associated with the real address resulting from the
translation of a virtual address is said to be the mmci: of the real page referenced
by that address.

A real address resulting from the translation of a kernel space virtual
address always has the same node number as the CPU on which the address was
generated, and so always is directed to local memory. The node number of a real
address resulting from the translation of a user space virtual address may be the
same as that of the CPU generating the access, in which case the access is
directed to local memory, or may differ from the node number of the CPU
generating the memory access, in which case the access is directed to the
appropriate remote memory via the Inter-Processor Bus. In Antares-based
systems, all off-chip real addresses are word addressee, comprising a 4-bit node
number and a 30-bit intra-node real word address.

Apple Computer Confident/al 3-6

Addressing

Id Register

Starting Address of Directory for Address Space ASN

n,me S.4. Forming a Directory Starting Address

)

3.4 Translation Tables
Structure. A user space virtual address in the currently-active address

space is translated to a real address by hardware via a simple two-level
translation table. The first level is called the directory; it is fixed-length, and
comprises 1024 one-word entries. A directory entry represents a 4MB segment
of the virtual address space defined by the table. 3 Each entry, if valid, specifies
the address of a second level page table. Entries O - 1022 span user space: entry
1023 corresponds to kernel space and is never examined by hardware. Page
tables are fixed length, each comprising 512 one-word entries. User region and
buffer region page tables have the same structure. A page table entry, if valid,
specifies the real page number associated with a virtual address.

Directories are maintained in an area of real memory called Directories
Space. The real starting address of this area is defined by the Directories
Starting Address (DSA) field in the Id Register (IdR). Normally, the DSA is set
during system initialization and remains unchanged thereafter. The real
address of the first word of the directory for the currently-active address space is
defined by the concatenation of the DSA and the current ASN. as shown in
Figure 3.4. Antares permits up to 128 address spaces, numbered O - 127, to be
deßned.4 Page tables must begin on 512-word boundaries. Directories for
address spaces O, 1, ... , 127, must be stored contiguously and on 1024-word
boundaries; Directories Space must start on a 128K-word (512KB) boundary.

3 A segment is defined as the 4MB portion of a virtual address space represented by a
directory entry; it has no architectural deftnition beyond that.
4nie ASN field is defined for compatibility reasons. lt is not used or interpreted by
Antares, except that the concatenation of the OSA and ASN fields ts used to form the real
address of a directory entry. Later versions of Scorpius may Incorporate the ASN field ln
the cache tag (to ellmina te cache flushing on an address space switch).

Apple Computer Confident/al 3-7

:.
"t,
"t, - •
(')
Q
:3
"t, e: • ...
(')
Q :::.
~
Q. • :::. - - -

Directory
(1024 words)

Page Tables
(512 words per table)

·,:
,'

o------ ++------------------, I I I ------------E
;~ ~ ------------

:::::::11--------1(/ :- --- -- __...._ - -----------

- o- - ~ ~f-L..)------~ I I · I :::::::::::: I I
I
I
I
I
I
I
I

;::::-,

•:::;:-

:i • 1:::_::_::_ f!'6 · .j 1 1 • 1 - ----------- 1 1
,.... ---■--■.••.• I -. -■_ _...__ - --■--■--•••••••••••---• --■

J o------J]t----------·: I t
... :::::::::i:::i:?i\=.:-r.:t\}\t\ti:\:::

31 1211 2
A

r35 31 1110 2'

I OSA ; ASN I Dl n Directory Entry t t ~-
, A ' I

A

;!:!.._:;...!.....---::'.=::---¡--;:;:;::;-m~I PageTable I node I PTO I P~n l: Entry Address

I OSA ; ASN lmH node I ~eglster I Dl I PTI I Index

Virtual Address

35 31 + + O I node I RPN I Index I
Real Address

C4 • Q)

Figure 3.5. Translation Table Structure and Accessing

:.
Q.

! - - - :::.
CQ

Addressing

For address translation purposes. a 19-bit virtual page number divides into a
IO-bit directory index and a 9-bit page table index, as shown below.

<• •3:1=>•> • J>:r /\\\I 22>f(}) t??t:r.•tfa??/=-•·
Directory : Page Table
Index (Dl) ! Index (PTI) ·-:-:-:

J:::::t@nt<i< ,:=JO)/ <: : ,/:<:= =<<< t(L•J.?>}f l:(=1\/]); V
Virtual Page Number

In translating a virtual page number of either a user or buffer region page into a
real page number, the real address of a directory entry word is formed by
concatenating the OSA and ASN fields from the Id Register with the DI field of
the virtual page number. as shown 1n Figure 3.5. A flag 1n the directory entry
indicates whether or not the corresponding segment is defined; if it is defined.
the entry provides bits <31: 11> (called the Page Table Ortgin or PTO) of the
starting address of the page table for that segment together with a node number
specifying the location of the memory containing the page table. If the node
number from the directory entry matches the node number ln the IdR. the page
table resides in local memory: otherwise, the page table resides 1n remote
memory.

The real intra-node address of the page table entry for a virtual page is
formed by concatenating the PTO field from the directory entry with the PTI
field from the virtual page number. A flag in the page table entry indicates
whether or not a real memory page is associated with that virtual page: if it ts.
the entry provides the real page number of that page together with the node
number of its owner. If the owner's node number matches the node number in
the Idr. the real page is in local memory; otherwise, it is in remote memory.

Entry Formats. Figures 3.6 - 3.8 show the formats of directory and page
table entries and describe the fields of these entries. Translation table entry
accessing is discussed below; a later section provides a step-by-step description
of the translation process.

Toe translation of a virtual address to a real address is facilitated via a
Translation Buffer or a Translation Lookaside Buffer (depending on the imple­
mentation) which holds recently-used virtual-to-real page mappings. This
buffer, referred to here as the 'TB/TLB, is described later in this chapter. Toe
virtual-to-real page mapping held in a 'TB/TLB entry comprises a virtual page
number and the corresponding page table entry; this mapping sometimes is
simply called a translation. In translating a virtual address. the virtual page
number is extracted from the address and compared with the virtual page
numbers ln each of the 'TB/TLB entries in which a translation for that address
could appear. If a match is found, the real page number is extracted from the
TB/TLB entry and used to form the real address. For a 'TB/TLB entry represent­
ing a buffer region page. the SPS field from the entry determines the number of
bits used in this comparison.

Apple Computer Confident/al 3-9

Addressing

Directory Entry Format

> :fr> :: >"' .. > :.-. : :-· .·:·.· : · · >-: < <: :\\\\:\. :::::::::::::-::::;::::::: :::,:::::,::::?::::,::::: ,<<<t::::u:dtîö<,tartt _ _ {:·,~ta, ::::r::::,¡::u

\1 ••.••••·.·.·•·· •. . ··.·. . . paga T:~:;;~·················•···•························ :•·•·•1;1:1•••··•·•·:•••~••:r•· '.~:··.•••1
- - - - - - : . : : : : :: : :::<: :>:->>> ::'-1\: < :::Ut\\?/)::/:::-: -· .·.·-· ._._ ..

bit
name ~gs111aDhil l~Di1h descrt12Uan
PTO <31:11> 21 Page table ongtn: contains bits <31: 11> of real

intra-node addresses of entries in the page
table for the segment defined by this entry.

<10> 1 ReseIVed for future use.
T <9> 1 Segment type flag: tf T = "O". the segment deftn-

ed by this entry is 1n a user regton. If T = "l ".
the segment deßned by this entry is in a buffer
region.

V <8> 1 Valid flag. If V = "l ". this is a valid directory
entry specifying the start of the page table for
the segment defined by this entry. If V = "O".
this entry fs 1nvalid and the contents of the
remaining fields are unpredictable. Attempted
access to an invalid page causes an instruction
or a data page fault trap to be generated.

os <7:4> 4 Reserved for use by the operating system (not
examined by hardware)

Node <3:0> 4 Node number. Number of the node at which the
page table specified by this entry resides.

Fl¡ure 3.8. Directory Entry Format

Apple Computer Confident/al 3-10

Addressing

User Region Page Table Entry Format

··· 1~1·~·fa1 ;¡··~r··•·-: ;·:··•r :;;: 111

VaHd Flag
System/User Rag
Read-Only Rag ...______ Non-cacheable Rag
lntenupt-on-Write Rag

Real Page Number (RPN)

bit
name J2Q§l11Qn(§) lenith dŒri~Ugn
RPN <31:13> 19 Real page number: contains bits <31: 13> of

. real addresses of bytes in this page.

) 1W <12> 1 Interrupt-on-write flag. IF 1W = "l", an
attempted store to this page causes a Message
interrupt to be presented to the node owning
this page. No interrupt is presented lfIW = "O".
IfIW = "l", NC also must be "l"; otherwise, a
page fault trap is generated.

NC <Il> 1 Non-cacheable flag. IfNC = "l", lines of this
page are not stored in the cache; any access to
this page causes the addressed word to be read
from or written to memory. IfNC = "O", lines of
this page are cached, and transfers between the
CPU and memory take place in units of one
line. Attempted execution of a LdB/StB oper-
and access to this page causes an access privi-
lege violation trap to be generated.

R) <10> 1 Read-only flag. IfRO = "l", only read access Is
permitted to this page; an attempted store will
cause an access privilege violation trap to be
generated. If RO = "O". read and write access are
are permitted.

·, __) Figure 3. 7. User Region Page Table Entry Format

Apple Computer Confidential 3-11

Addressing

User Region Page Table Entry Format (continued)

bit
name 1u2:iiUan(:1l lcnitb descrt12t1gn
s <9> 1 System/user flag. If S = "l ", access to this page

1s permitted only to PUs in system mode (PsR
bit 13 = "0'1. Attempted access to a system page
while in user mode causes an access privilege
violation trapto be generated. If S = "O", access
ts permitted regardless of the PU mode.

V <8> 1 Valid flag. IfV = "l", this is a valid entry specì-
fying a real page number, its owner node, and
the access privileges associated with the page.
If V = "O", the entry 1s invalid and the contents
of the other fields are unpredictable. Attempt-
ed access to an invalid page causes an tnstruc-
tlon or a data page fault trap to be generated.

os <7:4> 4 Reserved for use by the operating system (not
examined by hardware.)

Node <3:0> 4 Node number. Number of the node owning the
real page specified by this entJy.

Fl¡ure 3. 7. User Region Page Table Enny Format (continued)

Apple Computer Confident/al 3-12

Addressing

Buffer Region Page Table Entry Format

bit
name position(sl len¡th
RPN <31:n> 31-n+l

desçrtptton
Real page number: contains bits <3 I:n> of real
addresses of bytes in this page Oeft-justlfied
and zero-filled). n depends on the super-page
sjze (see the SPS field, below).

SPS <17:13> 5 Super-page sjze. This field spcdflcs the super­
page size and the right-most bit position of the
real page number, as shown below

ses super-pa¡e sm;
"OOCXX)"
"00001"
"00011"
"00111"
"01111"
"11111"

256KB
512KB
1MB
2MB
4MB
8MB

.Jl..
18
19
20
21
22
23

NC
<12>

<11>

1
1

Setting the SPS field to an invalid value (a bit
combination other than those listed above)
will not generate an exception, but will cause
unpredictable results.
Reserved for future use.
Non-cacheable flag. IfNC = "l", lines of this
page are not stored m the cache: any access to
this page causes the addressed word to be read

Figure 3.8. Buffer Region Page Table Entry Format

Apple Computer Confident/al 3-13

Addressing

Buffer Region Page Table Entry Format (continued)

bit
name ;gg~füsmhil lcnatb descrt12t1gn

from or written to memory. If NC = "O". lines of
tim page are cached. and transfers between the
CPU and memory take place ln units of one
line. Attempted execution of a LdB/StB oper-
and access to this page causes an access privi-
lege violation trap to be generated.

R) <10> 1 Read-only flag. If RO = "I". only read access is
permitted to this page: an attempted store will
cause an access prtvilege violation trap to be
generated. If RO = "O''. read and wrtte access
are permitted.

s <9> 1 System/user flag. If S = "I". access to this page
1s permitted only to PUs ln system mode (PsR
bit 13 = "0'1. Attempted access to a system page
while in user mode causes an access prtvilege
violation trap to be generated. If S = "O". access
1s permitted regardless of the PU mode.

V <8> 1 Valid flag. IfV = "l". tim is a valid entry speci-
fying a real page number. its owner node.and
the access prtvileges associated with the page.
f V = "O". the entry is invalid and the contents
of the other fields are unpredictable. Attempt-
ed access to an invalid page causes an ínstruc-
tion or a data page fault trap to be generated.

os <7:4> 4 Reserved for use by the operating system (not
examined by hardware.)

Node <3:0> 4 Node number. Number of the node owning the
real page spedfled by this entry.

Figure 3.8. Buffer Region Page Table Entry Format (continued)

Apple Computer Confident/al 3-14

Addressing

To translate a virtual address for which no translation is found in the
TB/TLB, the CPU first reads the directory entry corresponding to the segment to
which the virtual page belongs: the address of this entry is formed by the
concatenation of the OSA and ASN fields from the Id Register and the DI field of
the virtual page number, as shown in Figure 3.5. Directocy entry read requests
always are directed to local memory. In Antares, the CPU maintains a buffer of
recently used directory entries to speed translation by elimina ting the directory
entry read operation. (As discussed in a later section, the operating system is
responsible for insuring that this buffer is invalidated when changes are made
in directory entries.) If the directory entry has V= "O" (entry not valid), a trap is
generated. If the access is an instruction fetch, this is an instruction page fault
trap: if the access is a data fetch or store, this is a data page fault.

For implementation simplicity, directory and page table structures are the
same for both user region and buffer region pages. A directory entry always
represents a 4MB segment of the virtual address space, regardless of whether
that segment is a user region segment with 8KB pages or a buffer region segment
with super-pages (which can be larger in size than the segment). The page table
for a buffer region segment always is the same length as that for a user region
segment (512 entries). even though the buffer region maps to a single real super­
page. (The translation table representation for a buffer region is discussed later
in this section.)

The real memory address of the page table entry for the page being accessed is
formed by concatenating the Node and PTO fields from the directory entry with
bits <21: 13> of the virtual address - the P11 field of the virtual page number.
Thus, the page table always is accessed as if the page size were 8KB. If the Node
field of the directory entry matches the Node field of the ID Register of the CPU
initiating the access, the page table resides in local memory, and a read request
for the entry word is sent to local memory. If the dírectory entry Node field does
not match the Id Register Node field, the page table block resides in remote
memory, and a read request for the entry word is sent to the specified node over
the IPB.

After reading the entry from local or remote memory, the entry's V flag is
examined and, if "O", either an instruction or a data page fault trap, depending
on the access type, is generated. If the entry is valid, it is checked to see if it is
legal. If it is, a TB/TLB entry, comprising the virtual page number and its page
table entry. is made. An access privilege check of the memory access is made
and. if the access is legal, the address translation is completed by forming the
real memory address. This is the concatenation of the Node and RPN fields from
the page table entry and the intra-page byte index from the virtual address. The
memory read or write operation is then initiated.

Page Faults. A page fault trap results from an invalid or ille¡al ~ in
the translation table. The following flag combinations are illegal, and result in
the generation of an instruction or a data page fault, depending on the access

Apple Computer Confidential 3·15

Addressing

w rie M
"O" "O" "l"
"l" "O" "l"
"l" "l" "l"

type. Generation of a page fault trap can occur only when translating an address
not found in the 'IB/TIB: í.e .• in the process of making a 1B/'1U3 entry.

Access Privilege Violations. An access prtvilege violation trap results
from an üläal aççess to a valid page table entry. and can occur on any access.
The following access prtvtlege violations can occur.

• store access to a page with RO = "l"
• load/store byte operand access to a page with NC = "l"
• user mode access to a page with S = "l"

The first two violations result in generation of a data access prtvtlege trap. User
mode access to a system page results in generation of either a data access
privilege violation trap or an instruction access privilege violation trap.
depending on the type of access.

While detection of an invalid/illegal translation table entry. or of an illegal
access. results in the generation of a trap. that trap will not be recognized ff the
PU generating the trap is interrupt/trap disabled: instead. a PU Check Trap is
generated (Section 4.4). Kernel region virtual addresses are translated to real
addresses directly and are· not represented by page table or 'IB/TLB entries.
Consequently. memory accesses to kernel region addresses cannot cause page
faults or access prtvtlege violations (except that a .wu:[mode access to the kernel
region will result in an access prtvtlege violation).

Page table entries are never modifted by the hardware.
Buffer Region Table Organization. A buffer region is created by

allocating contiguous real memory space in the amount dictated by the super­
page size (n bytes) and on a super-page boundary. Typically, the real memory
allocated to this region is memory constructed from VRAMs. For each 4MB
segment in the buffer region, a directory entry is constructed with the Segment
Type m flag set to "1". For each such directory entry. a page table of 512 words is
created. For each bound super-page in the segment represented by a page table,
n/8192 buffer region page table entries with the super-page size field set to the
super-page size are created, all pointing to the same real super-page. (The buffer
region commonly is represented by a single super-page, so that all page table
entries for the real memory allocated to the buffer region are identical.) Page
table entries corresponding to unallocated space are. as usual. marked invalid.
When the super-page size is greater than the segment size of 4MB, multiple
directory entries. all pointing to the same page table, are created.

As an example. suppose a 2MB buffer region comprising a single super-page
is to be created ln the upper half of segment z of user space (O s z s 1022); the
lower half of segment z is not allocated. This virtual super-page is to be bound to

Apple Computer Confidential 3·16

Addressing

511

.

;;i~t=t:< --- t-----=--~
Directory Entry
for Segment z

Segment z
in Virtual Space

o

)âMâV:)-•­ ,.:-,, >ir.eat>>,,> :::,~,~~:

Page Table
for Segment z

)
Fl¡are 3.9. Buffer Region Example

a 2MB block of real memory composed of VRAM. The operating system creates a
directory entry for segment z with T= "1", allocates a·512-word block of memory
for the page table for segment z, and stores bits <31: 11> of the starting address of
the page table in the directory entry. The buffer region ts presented by a single
2MB super-page in the upper half of the segment. and a 2MB page corresponds to
256 8KB pages, so entries 256 - 511 of the page table are created identically: each
of these entries has SPS = "00111" and RPN = bits <31:21> of the starting address
of the real super-page. Page table entries O - 255 all are marked invalid. The
resulting translation tables are illustrated in Figure 3.9.

When the initial access to this newly-created buffer region ts made, a 'IB/TLB
miss will occur and the associated virtual address ts translated in exactly the
same way as a user region virtual address. The DI field (address bits <31:22>) is
concatenated with the DSA and ASN fields from the IdR to obtain the directory
entry address. The directory entry is read and its PrO field extracted and
concatenated with the PI1 field from the virtual address (address bits <21:13>) to
form the address of a page table entry, and the page table entry is read. Because
the dtrectory entry has T = "l", the page table entry is recognized as a super-page
descriptor; the SPS field is used to select the bits from the virtual address to be
used as the intra-page byte index. bits from the virtual address to be used as the
virtual page number, and bits from the page table entJ:y to be used as the real page
number. Also, T = "1" causes the virtual page number and the page table entry to
be stored in a special buffer region TB/TLB entry.5 Since all 256 entries in that

5Antares provides a single buffer region 1B entry,

Apple Computer Confidential 3-17

Addressing

part of the page table which represents the buffer region are identical, the con­
tents of this. TB/TLB entry will be the same regardless of where in the buffer
region this initial access falls.

Whenever an address must be translated, this special buffer region TB/TLB
entry is checked (as well as normal entries). If the entry is valid, the SPS field is
used to select which bits from the virtual address are to be compared with the
virtual page number stored in the entry. If the result of this comparison is a
match, the SPS field is used to select the bits from the virtual address to be used
as the intra-page byte index and the bits from the TB/1LB entry to be used as the
real page number. (The translation process is described in detail in a later
section.)

If the bits comprising the super-page size (SPS) field in the page table entry
are set to an invalid combination, no error is detected by the hardware but
unpredictable operation can result. Also, all bound space in a segment whose
directory entry has T = "l" must be allocated in super-page units. It is the
responsibility of the operating system to insure that the SPS field is valid and
that segment composition is consistent.

3.5 Translation Table Placement
Translation table entries are read by the MMU using real addresses. The

directory entry address formed by concatenating the DSA I ASN field from the
IdR with the DI field from the virtual page number is a real word address (to
which "QC½" is appended to form a byte address). Directories always reside in
local memory (ì.e., at the node specifted in IdR bits <3:0>). The page table entry
address formed by concatenating the Node and PTO fields from a directory entry
with the PI'I field from the virtual page number (and appending "QC½") also is a
real address. Page tables may reside in either local or remote memory.

There are no restrictions on the placement of translation tables in real
memory, except that directories must be contiguous, with the directory for
address space O starting on a 512KB boundary, and page tables must start on a
2048-byte boundaries.

Translation tables may be stored completely in kernel space (if space
permits). stored partly in kernel space and partly in user space, or stored
completely in user space. Software access to translation tables must use virtual
addresses. For translation table elements stored in the kernel region, the
virtual word address of an element can be formed by inserting OXFFC in bits
<31 :22> of the real address of that element. Translation table elements stored in
the user region must be accessed via translation tables; the operating system
must construct and maintain the necessary virtual and real mappings. Since
user space access is possible only via the translation process, the construction of
translation tables in user space requires a ''bootstrap" process; a translation
table must first be constructed in kernel space to provide access to user space.
When construction of user space tables is complete, the table in kernel space can
be deallocated.

Apple Computer Confidential 3-18

Addressing

)

3.6 The Translation (Lookaside) Buffer
The. translation of a virtual page number into a real page number is speeded

usìng a hardware mechanism called the Translation Buffer ('IB) or Translation
Lookaside Buffer (TLB). The distinction depends on how the cache is addressed
in a particular Scorpius implementation. When the cache is accessed with
virtual addresses. as in Antares. address translation is done only when the
accessed line is not found in the cache: in this case, the translation mechanism
is called a Translation Buffer. When the cache is accessed with real addresses,
address translation is required on every cache access: in this case, translation
usually is done in parallel with the cache access and the translation mechanism
is called the Translation Lookaside Buffer. In this specification. when the
distinction is not important, the translation mechanism is referred to as the
'IB/TLB.

The 'IB/TLB holds the most recently used address translations, Just as the
data cache holds the most recently used data. If the translation for a virtual
address is found in the 'IB/TLB, it is not necessary to read the directory entry
and page table entry from memory. A 'IB/TLB entry contains a virtual page
number and a copy of most or all of the fields of the corresponding page table
entry.6 In translating a virtual address, the 'IB/TLB is searched for the virtual
page number: ff found, the real page number is extracted from the 'IB/TLB entry
and used to form the real address. If the virtual page number is not found, the
directory entry is read and used to find the page table entry. the page table entry
is read and checked for validity, a new TB/TLB entry is made, and the
translation process resumed. The new entry will replace an existing entry: the
set of entries considered for replacement depend on the implementation. If this
set has an entry marked invalid, that entry is replaced: otherwise, an entry is
selected using an implementation-dependent algorithm.

In addition to providing a set of entries to hold user region address
translations, the 'IB/TLB provides at least one entry to hold the latest buffer
region address translation. (Also. the translation of kernel addresses may be
mechanized by a ''hardwired" 'IB/TLB entry.)

The operating system is responsible for insuring that the translations
maintained in the 'IB/TLB are valid. Translations currently held in the 'IB/TLB
may become invalid because of operating system actions such as address space
deactivation on task termination, page remapping or state changes (e.g .• read­
only-> read/write), or address space switching (ff ASNs are not kept in TB/TLB
entries). Any modification to a translation table directory or page table entry
may require invalidation of a 'IB/TLB entry. When the TB/TLB holds
translations for only the currèntly-active address space, then translation table
entries for inactive address spaces may be changed without requiring 'IB/TLB
entry invalidation. Each Scorpius implementation provides a means of in-

610 some implementations (although not in Antares), the TB/11..B entry also may contain
the Address Space Number of the address space from whose page table the entry was taken.

Apple Computer Confidential 3-19

Addressing

validating TB/1LB entries together with any supporting buffers; details depend
on the Implementation.

The Antares Translation Buffer. Antares has virtual Instruction and data
caches, so that address translation is required only on a cache miss, and a single
Translation Buffer which holds translations for both instruction and data
accesses. The Translation Buffer has a set of 16 user-region entries. This set is
fully-associative (any translation can be stored in any entry) with FIFO
replacement. The 'IB also has a single buffer region entry and a "hardwired"
kernel space entry. (Kernel addresses are translated as if kernel space was
bound to a 4MB super-page located at real address O in local memory.)

In addition to the 'IB, the Antares MMU has a 4-entry Directory Buffer (DB),
which holds the most-recently-used directory entries together with the DI fields
of the corresponding virtual addresses. The DB also is fully associative with
FIFO replacement. When a 'IB miss occurs (i.e., a translation is not found in the
TB), the DI field of the virtual address is compared with the DI fields of DB
entries. If a match is found, the page table ortgin is obtained from the DB entry,
eliminating a memory read for the directory entry. In many cases, then, only a
single one-word memory read is required in processing a 1B miss.

Translation Buffer Invalidation. The Translation Buffer- (and Directory
Buffer) contents are invalidated on machine reset (see Appendtx C) and as a side
effect of writing to the IdR vía a Move to Special Instruction. 7 (The kernel entry
is not affected in either case.) Antares does not maintain ASNs in 'IB entries;
the 'IB must be invalidated on an address space switch or on any change to a
translation table entry of the active address space. An address space is switched ,
by executing a Move Special Instruction to set the ASN field of the IdR so that
DSA I ASN I OXOOO points to the start of the directory for the address space to be
activated. Although the TB contains only page table entries, it is still necessary
to invalidate it whenever a change is made to a directory entry of the currently­
active address space because of the Directory Buffer.

Translation Changes and the Cache. Depending on the implementa­
tion, a change in the mapping or state of a virtual page may require explicit
invalidation of cache entries as well as the TB/n.B entry. In :Implementations
with real-addressed caches and Translation Lookaside Buffers, invalidation of
a n.a entry may effectively invalidate associated cache lines. Implementations
with virtually-addressed caches which include an ASN in cache line tags do not
require invalidation on address space switches but may require explicit
invalidation of entries in other cases. The instructions provided for cache
invalidation and the details of their operation depend on the implementation.

The Antares caches do not include ASNs in their tags, and must be
invalidated on an address space switch, as well as when a change in the mapping
or state of a page in the active address space changes. The data cache can be

7 Other Scorpius implementations may provides instructions to selectively invalidate 1B
entries.

Apple Computer Confidential 3-20

Addressing
,,, ... ,,.

:')

)

selectively invalidated, using the Read Data Tag instruction to examine cache
line tags and the Invalidate Data Cache line instruction to invalidate lines (after
writing modified lines to memory when necessary, using the Flush Data Line
instruction). The entire instruction cache can be invalidated using the Invalid­
ate Instruction Cache All (IICA) instruction. When instruction cache lines of a
single page are to be invalidated, looping through the 128 lines of the page with
the Invalidate Instruction Cache Line (IIC) instruction max be more efficient
than invalidating the entire cache with IICA. Later implementations wtth
larger caches can be expected to provide other means for cache invalidation.
Cache flushing and invalidation are discussed in Chapter 6.

Translation Changes and the Write Butter. In Antares, when a data
cache miss occurs and the line selected to be replaced ts modified, that line is
transferred to a Write Buffer so that the missing line can be read from memory
without waiting for the line being replaced to be written to memory. (A line
written as the result of execution of one of the cache control instructions also ts
placed in the Write Buffer.) The Write Buffer operates asynchronously; its
contents are written to memory when the memory bus becomes idle or when it ts
required for a subsequent cache line moveout. If a miss occurs while the Write
Buffer ts waitlng for the memory bus, and that miss does not replace a modified
line, the memory read for that miss ts allowed to proceed; the Write Buffer write
continues to wait. (The Write Buffer ts not used for single word writes to non­
cacheable pages.)

. .
It 1s possible that, at the time a translation table change or an address space

switch ts to be made, a line may be in the Write Buffer waiting for the memory
bus. Writing that line to memory correctly requires that the correct address·
translation exist; therefore, the Write Buffer should be flushed prior to a
translation table change or an address space switch. To flush the Write Buffer,
the kernel can use the followmg procedure:

• execute a Create Data cache instruction to create a line at some
convenient location in kernel space,
• store some arbitrary value into this line to change its state to
modifled, and
• execute a F1ush Data Cache instruction for this line. The
current contents of the Write Buffer will be written to memory
prior to completion of execution of this instruction.

Tran•latlon Changes and the Pipeline. Changing a page translation
requires that the 1B be invalidated to insure that the original translation ts
discarded. If this 1B invalidation ts performed in user space, rather than kernel
space, it is possible that, as a consequence of the pipeline's prefetchtng of
instructions, the pipeline instruction fetch queue may contain instructions
fetched using the orígínal translation. These instructions can be discarded by
executing a Jump instruction immediately after the Move To Special instruction
which caused the 1B to be invalidated.

Apple Computer Confidential 3-21

Addressing

Because of the implementation-dependent nature of the 1B/TLB and cache
operations discussed in this section. their operating system use should be
localized. For model-dependent code. the operating system can determine on
which Scorpius implementation it is executing by examining the IdR's model
number field.

3. 7 Address Translation in Antares
This section gives a step-by-step description of the address translation

process in Antares. The address translation process in other Scorpius
implementations will be similar. but not necessarily identical. The translation
process ts diagrammed in Figures 3. lO(a) - 3. lO(c): bracketed numbers in the
following discussion refer to ''box" numbers in these figures.

TB Search [1]. In Antares, with its virtually-addressed cache, address
translation ts done only on a cache miss or on an access to a non-cached page.
Translation begins with a search of the TB. Each TB entry comprises a virtual
page number, called a tag in this discussion. and the page table entry for the
corresponding real page. (The hardwired TB entry for kernel space essentlally ts
the same as a buffer region entry for a super-page of 4MB with the real page
located at real address OXOOOOOOOO.)

The TB is fully associative. so the tags of all valid TB entries are
simultaneously compared with the appropriate bits of the virtual address. For
the 16 user region entries. tags are compared with the virtual page number in
address bits <31:13>. For the buffer region entry. the SPS field of the entry how
many bits of the virtual address are to be compared. For the kernel entry.
virtual address bits <31:22> are compared With the hardwired tag OX3FF
(1111111111B).

TB Hit [2-5). If the comparison of the selected virtual address bits and a TB
entry tag results m a match. the mode of the accessing PU and the access type are
checked against the privilege flags in the entry. A privilege violation results in
the generation of an access privilege violation trap. Execution of the instruction
making the access is terminated. the appropriate trap source flag (instruction
access privilege violation or data access privilege violation) ts set in the Trap
Register. virtual address bits <31: 13> are stored in the Trap Register's argument
field (data access privilege violation only). and control is transferred to the
kernel. An Instruction access privilege violation can result only from an
attempt to access a system page while ln user mode. To determine the specific
cause of a data access privilege. the kernel may need to form the page table entry
address Oust as the MMU does), read the page table entry, and examine the
privilege flags for the page: it also may need to examine the operation code of the
interrupted instruction. When the trap is recognized. the address of the
interrupted instruction is contained in PCQ[l). (In certain cases, the address in

t

PCQ(l) may require adjustment: see Section 4.6.)
If the access ts allowable. the real instruction or data address ts formed. (In

figure 3.1 O(a), the abbreviations 'VA" and ''RA" refer to the virtual address and

Apple Computer Confident/al 3-22

Addressing

Translate Add,_.

1
SNrch Tran■■tlon Buffer

i u Region EntrtH Buffw Region Entry Kernel Space Entry ö' e • compare VA bits c31 :13> • determine n from SPS leld • compare VA bita c31 :22> i with tags from TB entries of TB entry witl tag tom TB entry
• compare VA bits c31 :n> ,1111111111,
with tag from TB entry

found found found

2 2 2
Check Prtvllegn Check PrtvtlegN Check Prtvllegn

• user mode access m • user mode access m • user mode access to
system page? syslam paga? kernel space?

• store access m read- • smre accesa to read-
only paga? only page? yea no

• t,ya access to non- • bV1II access m non-
cached paga? cached page?

/

")
no no (

---·

3 4 5
Form 36-blt AHI Addreu Form 36-blt ANI Addl'NS Form 36-blt AHI Addreu
• Node (from TB entry) -> • Node (from TB entry) -> • Node (from ldR) ->
RA bits c35:32> RA bilS c35:32> RA bits c35:32>

• RPN (from TB entry) -> • RPN (tom TB entry) -> • "0000 0000 oo·
RA bi1S c31 :13> RA bits c31 '.11> -> RA bits c31 :22>

• VA bits <12:0> -> • VA bi1S <~1 :0>-> • VA bilS <21 :0>->
RA bi1S c12:0> RA biti <~ 1 :0> RA bits c21 :0>

Initiate
AccNS e TBII .. B

Fl¡me 3.lO(a). Address Translation in Antares

u
Apple Computer Confidential 3-23

Addressing

TB Misa 11

<r
Read Page Table Entry

• Node• ldA bl1s c3:0>?
yes: read page table en-

• try from local memory
Seereh Directory Buffer no: read page table en-
• compare VA bits <31 :22> try from remote memory
with 1ags from DB entries • check validity:

v- -o· Invalid
not found found orRo-•1•&rw.•1•

~ or NC • -o• & IW • •1-?

7 ~1 Form Page Table Entry
Address 12

• Node (from DB entry) •> check segment type (T)
PTEA bits <35:32> flag in clrectory entry

• PTO (from DB entry) -> T • •1• 1 lr--o·
PTEA bits <31 :11 > T • VA bits <21 :13> (the PTI
field)·> PTEA bits <10:2> 13

• "00ª ·> PTEA bits <1 :0> Form •bit ANI Addr ...
• Node (from PT entry) ->
RA bits <35:32>

• RPN (from PT en'Y) ->
I RA bits <31 :13>

Reed Directory Entry • VA bits <12:0>-->
• DSAIASN fields from ldR

RA bits <12:0>

·> DEA bits <31:12>
• VA bits <31 :22> (the Dl -è field) ·> DEA bits <11 :2>
• "00• ·> DEA bits <1 :0> Acc:Ns l
• read drectory entry from 14

local memory Entry • Tr■nalatlon Buffer
• valid entry (V • ·11? • construct TB entry;

yes

~

VA bits <31 :13> ·> tag
• discard oldest entry
(FIFO replacement)

• new entry -> TB;

• Form Page Table Entry
Addrua 15

• Node (from cir. entry) -> Form •bit ANI Address
PTEA bits <35:32> • Node (from TB entry) ->

• PTO (from dir. entry) ·> RA bits <35:32>
PTEA bits <31 :11 > • RPN (from TB entry) ->

• VA bits <21 :13> (the PTI RA bils c31 :n>
leld) ·> PTEA bill <10:2> • VA bits cn-1 :0> -->

• "00ª -> PTEA bits <1 :0> RA bits cn-1 :0>

~-è Acc:Ns
10

- Entry • Directory Buffer 18 ~
• conSlrUct DB entry; Entry • Translation Buffer
VA bits <31 :22> •> tag • conslrUCt TB entry;

• diacard oldest entry VA bl1II <31 :n> -> tag
(FIFO replacement) • new entry -> buffer

• new entry-> DB; ragion TB entry

Figure 3. lO(b). Address Translation in Antares (continued)

Apple Computer Confident/al 3-24

Addressing

Initiate Accea

17
Node = ldA bits <3:0>?

no
yes

18 22 Accea Local Memory Accea Remote Memory
store to interrupt-on-write store to Interrupt-on-write

page (IW = •1 •)? page (IW • •1;?

yes no yes no

19 23 initiate local memory Initiate remote memory
access access

)
20 24

external interrupts dsabled lni1iate remote memory
or access with I PB interrupt

message interrupt pending? flag set

no

25

21
wait for response:

• initiate store to local
rejected?

memory no
• present message Inter-
n,ptto CPU

Fl,ure 3. lO(c). Address Translation in Antares (continued)

Apple Computer Confidential 3-25

Addressing

its real translation.) For user space pages, this address is formed by con­
catenating the Node and Real Page Number fields from the TB entry with the
intra-page byte index (BI) from the virtual address, as shown below.8

TB Entry Vlrtual Addreaa

ANIAddreu

For buffer region addresses. the numbers of bits comprising the RPN and BI
fields is determined by the SPS field. Kernel space references always are
translated into local memory accesses. Real address bits <31 :22> (the
equivalent of the RPN field) are set to "O". so kernel address o XFF e o o o o o
translates into real address oxnoooooooo. where "n" represents the node number
of the CPU generating the access. Initiation of the memory access for the
instruction or data word or line is described later 1n this section.

TB Miss (6-16). If no match is found between the virtual page number and
the tags of the valid TB entries. a 1'B miss occurs; both the directory entry and
the page table entry for the virtual page must be accessed to effect the
translation. (Since the TB entry for the kernel is "hardwired". a 1'B miss can
never occur on a kernel space reference. The following discussion of TB miss
processing therefore applies only to user space references.)

The Antares Directory Buffer (DB) is a four-entry, fully-associative cache
which holds the four most-recently-referenced directory entries • each with the
DI field of the corresponding virtual address (called a tag in Figure 3.lO(b).) In
processing a TB miss, the MMU first searches the DB for an entry whose tag
matches the DI field of the virtual address. The DI field always comprises
virtual address bits <31 :22>, regardless of whether the access is to a user region
or a buffer region. If a match ts found between the DI field and a DB entry tag, the
Node and Page Table Origin (Pro) fields from the DB entry are concatenated with
the Page Table (Pl1) Index field from the virtual address to form the page table
entry address (PTEA). The P11 field always comprises virtual address bits
<21:13>, regardless of whether the access is to a user region or a buffer region:
access to the page table entry Is done in the same way for both kernel and user
region pages.

If the DI field does not match any of the DB entry tags, a DB miss occurs: the
directory entry must be read from memory. The real address of the directory

Bwhue real address formation ls described here ln terms of byte addresses, Antares off­
chip addresses are word addresses; the addresses actually constructed by the MMU always
are directed off-chip and so are formed as word addresses.

Apple Computer Confident/al 3-26

Addressing

)

entry is formed by concatenating the OSA and ASN field from the IdR with the
DI field from the virtual address (also see Figure 3.5); the directory always
resides in local memory. When the directory entry has been read from memory,
its V flag is examined; if the entry is invalid, an instruction or a data page fault
trap (depending on the access type) is generated and control transferred to the
kernel as described earlier. If the directory entry is valid, its Node and PTO
fields are extracted and, together with the PTI field from the virtual address,
used to from the page table entry address. At the same time, the directory entry
and tag (DI field of the virtual address) are stored in the DB, replacing the oldest
entry (ì.e., FIFO replacement).

When the page table entry has been read from either local or remote memory,
it is checked to determine if the entry is valid (V = "l ") and legal. If the entry is
invalid or contains an illegal combination of privilege bits, an instruction or a
data page fault trap (depending on the access type) is generated and control
transferred to the kernel. Otherwise, the Node and Real Page Number (RPN)
fields from the page table entry are concatenated with the intra-page byte index
(BI) field from the virtual address to form the real address: the segment type m
flag from the directory entry is used to determine which bits from the page table
entry are to be used as the RPN and which bits from the virtual address are to be
used as the BI. When the address has been formed, a memory access is initiated
for the instruction or data word or line. At the same tíme, the new translation is
stored in the 1B. If the translation was performed for a buffer region address,
the page table entry and tag (VPN field of the virtual. address) are stored in the
special buffer region TB entry. displacing the current contents of that entry. If
the translation was performed for a user region address, the page table entry and
tag replace an invalid TB entry. if one exists, or otherwise replace the oldest of
the 16 user region 1'B entries (again, FIFO replacement).

Access Initiation (17-25). When address translation is completed, a
memory access is initiated for the instruction or data word or line. The Node
field taken from the page table entry determines if the access is directed to local
memory via the local memory bus or to remote memory via the IPB.

A store to a page marked ínterrupt-on-wríte is a special case of a store word
access. If the store is to local memory. the MMU first determines if the CPU is
disabled for external interrupts (ICR bit <5> = "0'1 or if there already is a message
interrupt pending at the CPU (ICR bit <27> = "l"). If either condition holds, the
store ls not executed: instead, a Message Reject Trap is generated on the PU
attempting to execute the store. assuming the PU is interrupt/trap enabled (PsR
bit < 15> = "1 "), and control is transferred to the kernel. If the PU is
interrupt/trap disabled, a PU Check Trap, rather than a Message Reject Trap, is
generated. 9 If the CPU is enabled for external interrupts and no message

9Because the attempted generation of a trap while a PU is interrupt/trap disabled is
assumed to be an error event. Attempted generation of an Access Privilege Violation Trap
or a Page Fault Trap while interrupt/trap disabled also results ln generation of a PU Check
Trap.

Apple Computer Confidential 3-27

Addressing

interrupt is pending, the MMU initiates the memory store, sets the Message
Interrupt Pending flag in the ICR. and stores the real byte address (without Node
field) of the word being stored in the IAR. (Bits < 1 :O> of this address will be "00" .)
If there is an available PU (ì.e., a PU which is interrupt/trap enabled), the
Message Interrupt will be recognised and processed.

If the store is to remote memory, the MMU initlatlng the store - the sender -
generates an IPB request in which an interrupt ßag is set in the request "header",
and then waits for a response to the request. The recetvtng MMU checks its
CPU's external interrupt enabled and message interrupt pending flags; if the
CPU is disabled for external interrupts or if it already has an message interrupt
pending, the MMU does not execute the store but instead returns a "request
rejected" response to the sender. The sending CPU then generates a Message
Reject Trap on the PU initiating the store (or a PU Check Trap, if that PU is
interrupt/trap disabled). If the receiving CPU is enabled for external interrupts
and does not have a message interrupt pending, its MMU returns a "request
accepted" response to the sending CPU, initiates the store access, sets the
Message Interrupt Pending flag in the ICR. stores the real address of the store
operand in the IAR. and presents a message interrupt to the receiving CPU.

3.8 Cache and TB Coherency ln Antares
Whenever multiple copies of data can exist in a way such that changing the

value of one copy does not change the value of all coptes, there is a coherence
problem. Coherence problems can anse when coptes of a datum are distributed
to multiple users under a single name, or when a single user acquires multiple
copies of a single datum under different names (the synonym problem). In
Antares, maintaining coherence of data is the responsibility of software.
Coherency problems can arise in the following areas.

Cache Coherency ln Single CPU System•. There are two ways in
which the Antares cache can have multiple coptes of the same memory line.
First, a line referenced both on an Instruction fetch and on a data fetch or store
(either because of code modification or because instructions and data were
stored in the same line) can have one copy in the instruction cache and one copy
in the data cache. While this may be somewhat inefficient, it presents a
coherence problem only when code is modified. Modifytng the copy of the line
in the data cache does not change the copy of the line in the instruction cache;
instruction fetches to that line will fetch its original contents. When code
modification or "on-the-fly'' generation is required, correct operation can be
obtained as follows:

• assume a is the address of a line containing instructions to be
modified. After making the desired changes to this line,
• execute a Jl'DC (Flush Data Cache Line) instruction to force the
contents of line a to be written to memory, and

Apple Computer Confidential 3-28

Addressing

)

• execute an DC (Invalidate Instruction Cache Line) instruction to
invalidate the instruction cache's copy of line a. so that an
instruction fetch to line a will cause an instruction cache miss
and bring in the line just flushed from the data cache.

Attention must be paid to line boundaries: the DC instruction should not reside
in the modified line. Also, if instructions from line a may be present in the
pipeline's instruction fetch queue, the queue must be flushed (by executing a
jump instruction).

Because Antares has a virtually-addressed cache, multiple copies of a line
can appear in the instruction cache, or the data cache, or both, because of
synonyms - multiple virtual addresses mapping to the same real address. (This
implies that multiple virtual pages have been mapped to a single real page;
consequently, the TB may contain multiple translations for the same real page.)
When multiple copies of a line exist in the data cache, a store to a copy updates
only that copy, so that a read of another copy will not return the current
contents of the line. To avoid this problem, the software must be aware of
synonyms: · whenever a page is to be modified and that page can have synonyms
by which it may be subsequently referenced, it is necessary to insure that
synonym lines are deleted from the cache prior to such references. This can be
done by inspecting each data cache line with the RDTX instruction and deleting
synonym lines using an IDC instruction. It may sometimes be necessary to
flush the TB to discard entries for synonym pages.

Cache Coherency ln Multiple CPU Systems. Coherence problems
can arise when a page is shared between nodes; a common instance is an IO
buffer page accessed by an Antares CPU and an IO processor. In performing a
write operation, it is necessary to flush all buffer page lines from the data cache
(via FDC instructions) prior to requesting the IO processor to initiate the write.

A real memory page can be mapped into multiple address spaces on multiple
CPUs. and coptes of lines from that page can simultaneously exist in each CPU's
cache. If one CPU modifies its copy of the line. coptes of the lines in the caches of
the other CPUs are not updated: it is the responsibility of software to insure that
all users of a shared page access current coptes of that page. The instance of the
system executing on the CPU making the change must send a message to all
other potential users of that page advising them to invalidate lines of that page
in their caches.

TB Coherency. The TB and DB are caches for translation table entries for
the currently-active address space. and also present coherency and synonym
problems. Whenever a translation table entry is modified. it is necessary for the
operating system to insure that any TBs/DBs which may contatn a copy of that
entry are flushed. I O Situations in which this is required include the follOWing:

10As noted earlier, the 1B and DB must be flushed on an address space switch or
termination.

Apple Computer Confident/al 3-29

Addressing

• page state changes, such as changes from read-only to read­
write made as part of the operating system's tracking of modifted
pages and changes to the OS field of directory and page table
entries:
• page deallocation:
• page reallocation (as on a store to a copy-on-write page).

As a consequence of page sharing. a real memory page can be mapped into
multiple address spaces on multiple CPUs (on any stngle CPU. that page can be
mapped Into both Inactive address spaces and the active address space). Thus. a
number of translations to a single real page can appear ln TBs throughout the
system. It is the responsibility of the operating system to insure that changes ln
the state of that real page are propagated to every translation table which may
have a translation for that page and to every 1B which may have a copy of the
translation.

Apple Computer Confidential 3-30

Rev. 1.0 (12/88)

4. Interrupts and Traps

4.1 Introduction
Interrupts and traps are events which cause control to be transferred from

the currently-executing program to an interrupt processing program, commonly
called the tnierrupt handler, in the kernel region. This chapter describes the
interrupts and traps defined in Scorpius, the steps involved in transferring
control to the interrupt handler, the CPU state resulting from this transfer,
considerations in analyzing the cause of an interrupt or trap, and the process by
which control can be returned to the original program.

Portions of this description may be relevant only to Antares. where
implementation constraints require that some analysis of interrupt and trap
causes and of CPU state be done by software. Later implementations may
perform a larger part of this analysis in hardware. Careful organization of the
interrupt handler can ease the task of transporting the operating system from
one implementation to another.

4.2 Interrupts and Traps
The distinction between interrupts and traps traditionally has been based

on their source: from the viewpoint of the executing program. an interrupt is an
external event unrelated to program execution, while a trap is an internal event,
caused by execution of a particular instruction in the program. In Scorpius. the
distinction is based on destination; traps always are processed by a specific PU,
while interrupts can be processed by any available PU. Traps divtde into two
classes: local exceptions (e.g .• page fault, overflow). and tnter-PU signals. The
inter-PU signals generated by Prmpt (Preempt) and Res (Restart) instructions are
classified as traps because they are directed to a specillc PU. Also, since these
can be sent to several PUs simultaneously. local storage of interrupt identifying
information is needed, Just as local storage of local exception identifying
information is needed.

Apple Computer Confidential 4•1

Interrupts and Traps

Interrupts Traps
• Reset • PU Check
• Machine Check • PU Restart
- IPB error • PU Preef11)1
- hardware error • Data Page Fault

• Power/Temp. - access to invalid page/segment
• Deadlock - access to illegal page table entry
• IO • Data Access Privilege Violation
• Message - user mode access to system page
• Event Counter 2 Overflow - user mode access to kernel region
• Event Counter 1 Overflow - store to read-only paga/segment

- StB/LdB to non-cached page
• Message Reject
• System Call
• Operation Fault
- illegal operation code
- operation privilege violation
- taken branch trap

• Overflow
• Instruction Page Fault
- access to invalid paga/segment
- access to illegal page table entry

• Instruction Access Privilege VIOiation
- user mode access to system page
- user mode access to kernel region

Flpre 4.1. Scorpius Interrupts and Traps

Scorpius interrupts and traps are listed in Figure 4.1; a later section in this
chapter provides a detailed description of each interrupt and trap. Note that
several traps and interrupts have multiple causes (or subclasses); the kernel's
interrupt/trap handler must examine the CPU state to determine the exact
cause. The reset interrupt generated on machine power-on or via a reset switch
is implementation-dependent and is described in an appendix. The discussion
in this chapter excludes this interrupt.

Interrupts and traps result in transfers to different kernel entry addresses.
Also, the entry address for an interrupt or a trap depends on the interrupt/trap
type and on the setting of the PU Available flag in the PU Status and Control
Register (PsR). Entry address selection is discussed in a later section.

From a hardware view, interrupt and trap handling divides into three
phases: generation, presentation, and recognition. An interrupt or trap is
generated when a particular event. such as a machine error, occurs; it is then
presented to the CPU for assignment of a PU to process it. Traps always are
presented to the PU on which they were generated. An interrupt or trap is
recognized when a PU is selected to process it and a transfer of control to the
interrupt handler on that PU is initiated.

There are three forms of interrupt/trap control. First, for certain interrupts
and traps, the ¡eneration of the interrupt or the trap may be disabled, in which
case the underlying event does not occur insofar as the CPU's interrupt handler

Apple Computer Confident/al 4-2

Interrupts and Traps

pending interrupt flags event counter control flags enable flags

··.·•.· ••tr1~~;;;;;~;;•••·•·•···•·•·•·•·••·••·•••••••••••••••• Ev~=~~·••.•···,

Massage Ev~ Counter 2 ~
IO
Deadlock } non- .__ Power/Tamp maskable

..._ Machine Check

Figure 4.2(a). Interrupt Control Register (ICR)

Figure 4.2(b). Interrupt Argument Register (IAR)

......... -::•··.<<·>=··•:.:-:-:-:-:-:-•.•...... .. .·.·-:-:::::•:;:::::-:- .·.·.·.·.·.·.•.·.•.·.·.·.·.·.· ·.·.·.·.·.·,··.·,·,·,·.·.·.•,·-·.·•....... : > ~ :x:. <::::::::::: ::>rt:::::: :<::::r:::J1::1ni/2~:I i=jái:::J,r> =::,::: :::::::<:::<:::::>::,,,) :.;:::::::::\i,):t::rt:t,,::::,::::::,::/:::::: ::::: :r:::::: :::::::::::::::::::: :::::::::/<??>%it< Il::+~+::•:::::: :+~~H:::::: I~
Operation Fault

----- System Call
Message Reject

..._ Data Access Priv. Violation
..._ Data Page Fault

._ PU Preempt

---------- PU Restart (non-maskable)

Figure 4.2(c). Trap Register (rrapR)

Apple Computer Confidential 4-3

Interrupts and Traps

Fl¡me 4.2.(d). PU Status and Control Register (PsR)

disabled at presentation. Third. a PU can disable reco¡nJtton of interrupts and
traps. in which case an interrupt (although not a trap) may be assigned to
another PU. Interrupts and traps whose presentation or recognition can be dis­
abled are called maskable. Interrupts and traps resulting from errors cannot be
disabled: these are called non-maskable.

Interrupts can be processed by any PU. In recognizing an interrupt. the CPU
assigns a maskable interrupt to a halted PU, if there is at least one halted PU,
and otherwise to a PU for which interrupt/trap recognition is not disabled. If all
four PUs have interrupt/trap recognition disabled, the interrupt continues to be
presented (remains pending) until some PU enables interrupt/trap recognition
and the pending interrupt can be processed. Non-maskable (error) interrupts
always are presented to and are immediately recognized by PU O. A trap always
is presented to the PU on which it was generated. in the case of local exceptions.
or to which it was directed, in the case of inter-PU signals.

Interrupt/trap generation. presentation, and recognition are controlled by
setting flags in certain special registers. The special registers involved in
interrupt and trap processing are the Interrupt Control Register (ICR). the
Interrupt Argument Register (IAR), the Trap Register (TrapR), and the PU Status
and Control Register (PsR). These registers are shown in Figure 4.2. The ICR and
IAR are global registers, while the TrapR and PsR are local registers. The ICR.
IAR. and TrapR are privileged and can be accessed only in system mode: these
registers are accessed via Move to Special and Move from Special instructions.
PsR flags are set and cleared via Set Mode and Clear Mode instructions, and can
be inspected via the Test Mode instruction The flags in bits <3:0> of the PsR are
non-privileged, and can be accessed in either user or system mode: other PsR
flags can be accessed only in system mode. A summary description of PsR fields
is given in Figure 2.5.

4.3 Interrupt Generation, Presentation, and Recognition
Control

Generation of Event Counter Overflow interrupts. and presentation of IO and
Message interrupts, can be enabled or disabled. Generation of Event Counter

Apple Computer Confident/al 4.4

Interrupts and Traps

Overflow interrupts is enabled by setting the appropriate Event Counter
Overflow Interrupt Enable Flags in the ICR (bit <4> for counter 1 or bit <3> for
counter 2) to "1", and disabled by clearing these flags to "O". Presentation of IO
and Message interrupts is enabled by setting the External Interrupt Enable Flag
(ICR bit <5>) to "l" and disabled by clearing this flag to "O". To set or clear these
flags, a Move From Special instruction is used to transfer the ICR contents to a
general register, the appropriate logical instructions are used to operate on the
enable flag bits, and a Move To Special instruction is used to update the ICR The
ICR can be accessed only in system state; also, since it is global, it should be
updated only in a Critical section.

If an IO or a Message interrupt arrives while external interrupt presentation
is disabled (External Interrupt Enable Flag in the ICR = "O"), it is rejected. For a
message interrupt, external interrupt rejection results in cancellation of the
store to an interrupt-on-write page which generated the message interrupt and
the generation of a Message Reject Trap on the PU (local or remote) which
initiated that store. For an IO interrupt, external interrupt rejection simply
causes the. state of the external interrupt signal to be ignored; if external
interrupt presentation is later enabled and the external interrupt signal is still
asserted, the IO interrupt can be recognized. Also, an IO interrupt will be rejected
if an earlìer-arrìvìng IO interrupt already is pending, and a Message interrupt
will be rejected if an earlier-arriving Message interrupt already is pending.
However, an IO interrupt can be accepted even if a Message interrupt is pending,
and conversely.

An event counter can run - and overflow - regardless of whether or not
Event Counter Overflow interrupt generation is enabled, since counter operation
is controlled solely by the event counter control flags. However. if Event
Counter Overflow Interrupt generation is disabled (by clearing the appropriate
enable flags in the ICR), an interrupt will not be generated, even if a counter
overflows. Thus, a PU can disable External and Event Counter interrupts,
process any pending interrupts, and then open an "enabled window'', in which it
is guaranteed that no (non-error) interrupt can occur, by setting its
Interrupt/Trap Enable flag (Section 4.4). This is needed tn message sending: a
message reject is treated as an error if it occurs while the PU is interrupt/trap
disabled (see the description of the Message Reject trap).

Recognition of maskable interrupts by an individual PU is disabled when
the Interrupt/Trap Enable Flag (I/TE), bit <15> in the PU's PsR. is cleared to "O".
A PU with this flag cleared (set) is said to be interrupt/trap disabled (enabled).
Maskable interrupts are the Event Counter Overflow, Message, and IO
interrupts. When a maskable interrupt is presented to an interrupt/trap enabled
PU and recognized, the IT /E flag is cleared - and interrupt/trap recognition
disabled - as a consequence of saving the current PsR in SaveR and clearing the
PsR (Clearing the PsR also clears the User Mode. PCQ Enable, Overflow Trap
Enable, and Taken Branch Trap Enable flags, among others.) A PU can, while
in system mode. become interrupt/trap enabled or disabled by setting or
clearing the IT/E flag (via Set/Clear Mode instructions). To dispatch a user or

Apple Computer Confident/al 4-5

Interrupts and Traps

system task in an interrupt/trap enabled (or disabled) state, the kernel sets (or
clears) bit < 15> in the SaveR via a Move to Special Instruction before the return
from interrupt which initiates or resumes task execution. (rypically. this flag is
set to "I" when execution of a task is first initiated and remains unchanged
thereafter.)

The Reset, Machine Check. Power /Temp .• and Deadlock interrupts are non­
maskable. When one of these interrupts is generated by or arrives at the CPU, it
is immediately presented to and recognized by PU O.

Pending Interrupt Flags. When an interrupt is recognized, the appro­
priate pending interrupt flag is set in the ICR: also, for a Message interrupt. an
argument is stored in the IAR. The kernel can examine the pending interrupt
flags to determine the cause of an interrupt. The pending interrupt flags. ICR
bits <31:25>, are set to "I" only by hardware and are cleared to "O" only by
software. (Other ICR fields are set and cleared only by software.) If an attempt is
made to write a "1" to a pending interrupt flag. the state of the flag does not
change.

At the tíme an interrupt is recognized. more than one pending interrupt flag
may be set. either because multiple interrupts were generated in the same cycle
or because multiple interrupts occurred while all PUs were disabled or while
those interrupts were masked. The kernel enters a critical section, reads the
ICR. decides which interrupt to process, 1 generates a mask for the pending
interrupt flags field in which all bits are "l "s except for the bit corresponding to
the interrupt being processed. stores the mask in its copy of the ICR. and writes
that copy back to the ICR ('Ibe kernel may, at the same time, clear interrupt
enable flags if desired.) Critical section entry insures that only one kernel
instance at a time modißes the ICR: writing' "l"s to all flags except that for the
recognized interrupt insures that the state of any flag set by hardware during
this read-modify-write process is preserved,

When multiple interrupts are pending, the hardware interrupt handler
insures that a separate instance of interrupt presentation occurs for each
interrupt. For example, suppose all PUs initially are interrupt/trap disabled, an
event counter overflow interrupt is generated and an external interrupt arrives.
setting two pending interrupt flags. Assume PU O becomes interrupt/trap
enabled; an interrupt will be presented, the kernel Instance executing in PU O
will select one of the two pending interrupts to process and clear the pending
interrupt flag for that interrupt. When PU O or any other PU becomes inter­
rupt/trap enabled, the other interrupt will be presented to that PU.

Interrupt recognition is serialized so that a pending interrupt flag will not be
repeatedly set before being cleared. If a Message interrupt arrives to find
external interrupt presentation enabled but all PUs interrupt/trap disabled, it is
rejected if a Message interrupt already is pending (ICR bit <27> = "1"); otherwise,
it is queued (by setting the Message Interrupt Pending flag and storing an

I by, for example, using a CLZ instruction to translate the ßag into a jump table index. ~---

Apple Computer Confident/al 4-6

Interrupts and Traps

State Seen by an ArJiving Message Interrupt
External Interrupt Message Interrupt PU Interrupt/Trap

Enable Flag Pending Flag Enable Flag
Response to Interrupt (ICR bit 5) (ICR bit 27) (PsR bit 15)

o don1care don1 care reject Interrupt

1 o 1 (any) recognize Interrupt: argument •> IAR,
set Message Interrupt Pending flag,
assign PU to process Interrupt

1 o O (all) queue Interrupt: argument •> IAR,
set Message Interrupt Pending flag

1 1 don1 care reject lntarrupt

')

Fl¡ure 4.3. Responses to an Arriving Message Interrupt

argument in the JAR). Similarly, if an IO interrupt arrives to find external
interrupt presentation enabled but all PUs interrupt/trap disabled, it is rejected
if an IO interrupt already is pending (ICR bit <28> = "1'1: otherwise, it is queued
(by setting the IO Interrupt Pending flag).

An IO or a Message interrupt also is rejected if it finds external interrupt
presentation disabled upon its arrival. If external· interrupt presentation is
disabled while an IO or a Message interrupt is pending, or if event counter
overflow interrupt generation is disabled while an event counter overflow
interrupt is pending, the interrupt remains pending and will be presented and
recognized when a PU becomes interrupt/trap enabled. The possible responses
to an arriving Message interrupt are summarized in Figure 4.3. Responses to an
IO interrupt are similar, except that no argument is stored.

Interrupt Arguments. The Interrupt Argument Register (JAR) is a privi­
leged global register which holds the argument associated with a pending
Message interrupt. The IAR is shown in Figure 4.2(b). When a Message Interrupt
arrives, 2 the hardware interrupt handler first examines the external interrupt
mask (ICR bit <5>): if this bit is "O", the Interrupt is rejected. Otherwise, the
Message Interrupt Pending flag (ICR bit <27>) is examined; if this flag is "O", it is
set it to "l", and the real byte address of the message destination is stored ln the
IAR (with the two low-order bits cleared to "O"). If the Message Interrupt finds the
Message Interrupt Pending Flag already set to "I", it is rejected, as discussed
earlier. In processing a Message Interrupt. the kernel must save the contents of
the IAR before clearing the Message Interrupt Pending Flag ln the ICR

2or ts generated: a Message Interrupt can result from a store to an Interrupt-on-write page
ln local memory as well as one ln remote memory,

Apple Computer Confidential 4-7

Interrupts and T_raps

4.4 Trap Generation, Presentation, and Recognition
Control

Generation of the Overflow trap and the Taken Branch trap Is controlled by
trap enable flags 1n the PsR. The Overflow Trap Enable flag (OVO Is PsR bit <1>:
the Taken Branch Trap Enable flag (B'O Is PsR bit <14>. To enable generation of
one of these traps, a Set Mode instruction Is used to set the appropriate enable
flag to "l ". To disable trap generation. a Clear Mode instruction is used to clear
the enable flag to "O". A Test Mode instruction can be used to examine the
current state of one of these flags. The Taken Branch Trap Enable flag can be set.
cleared. or tested orùy 1n system mode: the Overflow Trap Enable flag can be set,
cleared. or tested in either user or system mode. Since the PsR is a local register,
critical section entry Is not required on trap enable flag access.

Recognition of traps by a PU Is disabled when the Interrupt/Trap Enable
Flag (1/TE).-bit <15> 1n the PU's PsR, is cleared to "O". A PU with this flag cleared
(set) is said to be interrupt/trap disabled (enabled). When a local exception trap
Is generated on or an inter-PU signal trap arrives at an interrupt/trap enabled
PU. it is immediately presented and recognized. Local exceptions are the data
page fault, data access privilege violation, message reject, system call. operation
fault. overflow. instruction page fault. and instruction access prtvilege violation
traps. Inter-PU signal traps are the PU restart and PU preempt traps: these are
generated by execution of Res (Restart) and Prmpt (Preempt) instructions on
some other PU. Upon recognizing the trap, the current PsR is saved in SaveR,
Current PC and Next PC are transferred to the PCQ, PsR bits <24> and <15:0> are
cleared, and control is transferred to the appropriate kernel entry address.
Among the PsR bits cleared are the Interrupt/Trap Enable flag, the PCQ Enable
flag. the User Mode flag. the Overflow Trap Enable, flag, and the Taken Branch
Trap Enable flag. Clearing the Interrupt/Trap Enable flag disable inter­
rupt/trap recognition for the PU: the PU can re-enable interrupt/trap recog­
nition as described in the preceding section.

The disposition of a trap which is generated or which arrtves while recog­
nition of traps is disabled depends on the trap type. An attempt to generate a
local exception trap on an interrupted/trap disabled PU Is an error; a PU Check
Trap ts generated (instead of the local exception trap) and is immediately
presented to and recognìzed by the PU. For example. occurrence of a page fault or
a message reject while the PU Is disabled will cause a PU Check Trap. The local
exception causing the PU Check Trap can be determined by examination of the
trap source flags. as described below. If a PU Preempt Trap arrives while a PU Is
interrupt/trap disabled, its presentation is deferred until the PU becomes
enabled: it is then presented and recognized. If a PU Restart Trap arrives while
the PU Is interrupt/trap disabled. it is immediately presented to and recognized
by the PU. The PU Check Trap and the PU Restart Trap are called non-maskable
traps because they are immediately recognized.

Apple Computer Confidential 4-8

Interrupts and Traps

Trap Trap Argument Field
TrapR Bita c18:0>

PU Check, PU Restart, or PU Preempt Unpredictable.

Data Page Fault, Data Access Privilege Virtual page number referenced on the access which
V10lation, or Message Reject generated the trap.

System Call Bits <3:0> contain the trap number, (instruction bits
<3:0>). ln Antares, bits <18:12> are unpredictable,
and bits <11 :4> contain instruction bits <15:8>

Operation Fault: Illegal operation code Bit <18> is -o•, distinguishing 1his case from the oper-
{Illegal operation codes are listed in the atlon privilege violation and taken branch trap cases.
Operation Fault Trap description in Bits <17:12> are unpredictable.
Section 5.8) Bits <11 :4> contain instruction bits <15:8>.

If instruction bits <15:12> (TrapR bits <11 :8>) are
·0001 •, this is a 16-bit illegaJ opcode and bits <3:0>
contain instruction bit1<3:0>; otherwise, this is a 4-,
8-, or 12-bit illegal opcode and bits <3:0> contain
instruction bits <7:4>.

Operation Fault: operation privilege Bit <18:17> are ·10·, distinguishing 1his case from
violation the illegal operation code and taken branch trap cases.

Bits <16:0> are unpredictable.

Operation Fault: taken branch trap Bit <18:17> ara •11•, distinguishing 1his case from
the illegal operation code and operation privilege
violation cases. Bits <16:0> ara unpredictable.

Overflow Unpredictable.

Instruction Page Fault or Instruction Unpredictable, in Antares. Later versions of
Access Privilege Violation the Scorpius architecture may store the vir1ual page

number referenced on the instruction fetch generating
the trap in the trap argument field.

Figure 4.4. Trap Arguments

Trap Source Flags. Bits <31:22> of the TrapR contain flags which
identify the trap source (bits <21: 19> are reserved for future use). For a local
exception. a trap source flag is set (to "1 ") when the exception occurs. even if the
PU is interrupt/trap disabled (and a PU Check Trap results). For inter-PU
signals. a trap source flag is set when the trap is presented. There is no trap
source flag for the PU Check Trap. Recognition of the PU Check Trap or the PU
Restart Trap results in a transfer to the non-maskable trap vector address; no
other traps result in a transfer to this address. The PU Check Trap can be
distinguished from the PU Restart Trap by examining TrapR bit <31>. If this bit
is "l ", a PU Restart Trap was recognized; if this bit is "O". a PU Check Trap was
recognized, and TrapR bits <29:22> can be examined to determine which
exception resulted in the PU Check Trap (assuming the Trap Source Flag field
had been cleared when the PU Check Trap was recognized).

Only one trap source flag will be set when a trap is recognized. If an inter-PU
signal trap (Preempt or Restart) is presented to a PU at the same time that a local

Apple Computer Confident/al 4-9

Interrupts and Traps

exception trap 1s generated on that PU, the inter-PU signal trap is recognized,
and the trap is ignored. Because trap generation is non-destructive, restoring
the PU to its oI1ginal state usually will cause the trap to be regenerated. trhere ts
one case in which a trap may not be regenerated; a store to an interrupt-on-write
page can result in a message reject trap on one instance of execution but not on
another.)

Trap source flags normally are set by hardware and cleared by software.
While trap source flags can be set. as well as cleared. by software. software
setting of a trap source flag is ignored by the hardware and does not cause trap
recognition. When the hardware sets a trap source flag, it does not clear the
remaining flags. Consequently, a PU should clear a trap source flag while dis­
abled following recognition of the trap associated with that flag.

Trap Arguments. Certain traps are accompanied by an argument which is
stored in the trap argument field of the TrapR (bits <18:0>) when the trap is
recognized. The contents of this field upon trap recognition are shown 1n Figure
4.4. The TrapR should be read only when the PU is interrupt/trap disabled. The
kernel should read and clear the trap argument field (as well as clear the trap
source flag) before enabling interrupt/trap recognition.

Multiple Exception Instances. The operating system must be prepared to
handle multiple instances of an exception such as a page fault or an access
privilege violation. For example. initiation of a SIMD loop can result in all four
PUs attempting simultaneous access to a single data page. If that page is invalid,
these accesses will result in simultaneous (or nearíysímultaneousl generation
of a page fault trap for the same virtual page on each PU. Correct and efficient
operation requires that trap processing on each PU be coordinated by the
operating system: a variety of approaches are possible.

4.5 Interrupt/Trap Entry Addresses
Interrupt/trap recognition causes control to be transferred (by setting an

address in Current PC) to one of eight interrupt/trap entry addresses generated
as follows. Recognition of an interrupt causes a PU to transfer control to the
kernel at address 0xFFC00000 + 0x200 x NE+ 0xl00 x PUA. where NE is "O" if
the interrupt does not represent a error and is "I" otherwise, and PUA is the PU
Available flag. bit <0> of the PU's PsR The Machine Check. Power /Temp .• and
Deadlock interrupts are called error interrupts: these interrupts are always
presented to and immediately recognized by PU o. regardless of whether or not
PU O is interrupt/trap enabled. If one of these interrupts is recognJzed while PU
O is interrupt/trap disabled, some PU state information may be lost.

Recognition of a trap causes a PU to transfer control to the kernel at address
OxFFC00400 + Ox200 x NE + OxlOO x PUA. where NE is "O" if the trap represents
a error and is "I" otherwise, and PUA is the PU Available flag from the PsR. The
PU Check and PU Restart traps are called error traps. The PU Check trap is
generated when a local exception occurs while the PU is interrupt/trap disabled

Apple Computer Confidential 4-10

Interrupts and Traps

31 22 10 9 8 o

I 1; : : : : : : : :, >: : : : : : : : : > 111111111~111 °: : : : : : > I
set il trap I 1 Lset H PUA • 1

set if non-error

Figure 4.5. Interrupt/Trap Entry Address Formation

and is immediately recognized by the PU. The PU Restart trap is generated and
immediately recognized by a PU when that PU ts the target of a Restart instruc­
tion executed by another PU, usually because the PU is "hung" while inter­
rupt/trap disabled. In both cases, some PU state information may be lost (see
The PCQ Enable Flag in Section 4.6).

Separate entry addresses are provided for error and non-error interrupts
and traps so that the kernel can. in the error case, bypass critical sections used
in non-error trap/interrupt processing. The spacing between successive entry
addresses ts 256 bytes (128 instructions).

Note that interrupt and trap entry addresses can be formed by setting
instruction address bits <31:22> to "l" to designate a kernel address, setting bit
<8> to PUA, setting bit <9> if the interrupt or trap does not represent an error,
setting bit <10> for a trap, and clearing the remaining bits, as shown in Figure
4.5.

Entry addresses for Scorpius interrupts and traps are listed below.

Intemmt/Trap
Error interrupts: Machine Check, Power /Temp.
& Deadlock
Non-error interrupts: IO, Message, & Event
Counter Overllow
Error traps: PU Check & PU Restart

Non-error traps: PU Preempt, Data Page Fault,
Data Access Privilege Violation. Message Reject.
System Call, Operation Fault. Overflow, Instruction
Page Fault, & Instruction Access Privilege Violation

PUA enta address
"O" OxFFCOOOOO
"l" OxFFCOOlOO

"O" OxFFC00200
"l" OxFFC00300

"O" OxFFC00400
"l" OxFFCOOSOO

"O" OxFFC00600
"l" OxFFC00700

4.6 PU State st Interrupt/Trap Recognition
Recognition of an interrupt or a trap results in a transfer to one of the kernel

addresses listed earlier. Concurrently. the contents of the two program
counters, Current PC and Next PC, are moved to the PC Save Queue, PCQ[l) and
PCQ[2) (assuming that the PCQE flag in the PsR was "l" at the time the interrupt
or trap was recognized). and the contents of the PsR are saved in SaveR Except

Apple Computer Confidential 4-11

Interrupts and Traps

for the System Call trap, the address of the instruction being executed at the tlme
the interrupt or trap was recognized is contained in PCQ[l). (PCQ(l] sometimes
must be adjusted to this address. as discussed below.) For a System Call trap.
PCQ [1) contains the address of the instruction following the the Trap instruc­
tion. For certain local exceptions, the kernel's interrupt handler must use the
address in PCQ[l) to examine this instruction. On return from interrupt, execu­
tion of the interrupted program begins with the instruction whose address ts
contained in PCQ[l); this instruction is called the interrupted instruction. This
section describes the state of the machine following interrupt/trap recognition;
return from interrupt processing is discussed in the next section.

The state of the machine following interrupt/trap recognition ts guaranteed
only in that restoring the state saved at the time of the interruption in accord­
ance with the architectural rules for restoring state produces correct results. If
the interrupted instruction ts a Lc:IM/StM ûoad/store multiple) instruction. it ts
generally not possible to determine from examination of the machine state how
many registers have loaded or stored. On return from interrupt. execution of the
LdM/StM instruction is repeated. not resumed. 2 If an interrupt or trap ts recog­
nized during execution of an instruction issued after issue of an asynchronous
instruction (a multiply or divide instruction). the effect on machine state is as if
the asynchronous instruction had completed execution prior to interrupt/trap
recognition. When an overflow trap is recognized, the result causing the trap
will nm have been stored in the result register.

When the kernel begins execution at the interrupt/trap entry address follow-
ing recognition of an interrupt or a trap, the state of the PU is as follows.

• On interrupt recognition, the pending interrupt flag in the ICR corres­
ponding to the interrupt recognized will be set to ''l'. Other pending
interrupt flags in the ICR also may be set, either because the associated
interrupt is pending or because the flag has not yet been cleared (see _
Pending Interrupt Flags). If a Message Interrupt ts pending. the real
address of the message destination will be stored in the IAR . When an
interrupt other than a Message Interrupt is recognized (and a Message
Interrupt is not pending) the contents of the IAR are unpredictable.
• On recognition of a trap other than PU Check. the trap source flag in
the TrapR corresponding to the trap recognized will be set to "l ". All
other trap source flags usually will be "O" (assuming that the kernel
properly clears trap source flags prior to enabling interrupt/trap recog­
nition). However. more than one trap source flag may be set if a non­
maskable trap (Restart or Check) is recognized while the kernel is
processing a previous trap and has not yet cleared the associated trap
source flag. In the case of PU Check. the trap source flag associated with
the local exception whose generation while the PU was interrupt/trap

2consequently, LdM/StM should not be used to transfer data from/to IO locations.

Apple Computer Confident/al 4-12

..
Interrupts and Traps

disabled caused the PU Check is set. For certain traps, a trap argument is
stored in the Trap Argument Field of the TrapR (see Figure 4.4).
• If the PCQ Enable flag in the PsR was "l" at the time the interrupt or
trap was recognized, the contents of the PsR have been moved to the
SaveR and the contents of the Current PC and the Next PC have been
moved to PCQ[l] and PCQ[2], respectively. If the PCQ Enable flag was "O",
these moves do not take place and part of the PU state at intenupt/trap
recognition time is lost. (The PCQ Enable flag is discussed later in this
section.) In the process, PsR and PCQ flags may be set indicating that
state adjustments are required before returning from interrupt.
- On recognition of a data page fault or data access privilege
Violation trap generated by the data access of a Load/Store Byte or
a Load/Store Multiple instruction, or when an interrupt is recog­
nized during execution of either of these instructions, the Rmod
flag in the PsR (bit <31>) is set to "lit before the PsR contents are
moved to SaveR When Rmod is lt l lt. address register adjustment is
required prior to return from interrupt (see next section); when
Rmod is "O". adjustment is not required.
- PCQ[l] and PCQ[2I each contain instruction address bits <31:1>
in bits <31:1> and a Correction (C) flag in bit <0>. (Since Scorpius
instructions always start on half-word boundaries, instruction
address bit <0> is ígnored.l Usually, PCQ[l) and PCQ[2J contain
the addresses of the next two instruction to be executed on return
from ínterrupt. Assuming the PCQ Enable flag was "l" when the
ínterrupt or trap was recognized, the contents of PCQ[l] and
PCQ[2) are frozen from that point up to the point at which the
PCQ Enable flag (which is cleared upon intenupt/trap recog­
nition) is set to lt l" again and are unpredictable thereafter. Under
certain (implementation-dependent) conditions, the C flags in
PCQ[l] and/or in PCQ[2I may be set to "I" when the contents of
Current PC and Next PC are moved to PCQ[l) and PCQ[2J. The C
flag in PCQ[l] must be examined prior to return from interrupt to
determine if the contents of PCQ[l) require adjustment (see next
section). Also, the C flag in PCQ[ll must be checked when it is
necessary to inspect the instruction whose execution was
ínterrupted by ínterrupt/trap recognition. If the C flag in PCQ[l)
is "O". no adjustment is required: PCQ[l] contains the address of
the instruction being executed when the interrupt/trap was
recognized. If the C flag in PCQ[ll is "lit, the address of the
instruction being executed at the Ume the interrupt/trap was
recognized is (PCQ[l]) + "2". (PCQ access is discussed later in this
section.)

The C flag in PCQ[2J may or may not be set on interrupt/trap
recognition. However. it is never necessary to inspect this flag or
to adjust the contents of PCQ[2) for correction purposes. (It is

' Apple Computer Confident/al 4-13

Interrupts and Traps

necessary to adjust the contents of PCQ[2) only when it is desired
to bypass execution of the interrupted instruction on return from
interrupt: see next sectìon.)

It is not necessary to clear the C flags in either PCQ(1) or
PCQ[2) prior to returning from interrupt. However. care must be
taken to insure that. when the C flag in PCQ(1) is set. the contents
of PCQ(l) are adjusted only once.

• PsR bits <24> and <15:0> are cleared to "O". As a result. when the
kernel begins execution following interrupt/trap recognition. modes and
flags have been initialized as follows.
- System mode is selected.
- Interrupt/trap recognition is disabled.
- Overflow and Taken Branch Trap generation are disabled.
- The PU Halted and PU Available flags are cleared.
- Toe PCQ Enable flag is cleared.
- Byte mode is selected for partial arithmetic operations.
- Condition codes are inherited from the user-mode PsR

The PCQ Enable Flag. The PCQ Enable flag lets the kernel control when
PsR and PC contents are to be saved in the event of an interrupt or trap. This
capability is provided to facilitate operating system debugging. When the PCQ
Enable flag. PsR bit <12>. is "l", recognition of an interrupt or trap causes the
contents of the PsR to be transferred to the SaveR the contents of the Current PC
and Next PC to be transferred to PCQ(l) and PCQ[2). and the PCQ Enable flag to be
cleared to "O". If this flag is "O" when the interrupt or trap is recognized, these
transfers do not take place. 3

The PCQ Enable flag (PCQE) is privileged. It is cleared to "O" on machine reset
and on interrupt or trap recognition. It can be set or cleared (in system mode) via
SetM or ClrM instructions; setting PCQE = "l" invalidates the contents of the
SaveR and PCQ. PCQE. like other PsR flags. also is set or cleared when execution
of a Return From Interrupt instruction pair causes the contents of the SaveR to
be transferred to the PsR The result of setting PCQE to "O" while the PU is
interrupt/trap enabled (PsR bit < 15> = "l ") is unpredictable.

In normal operation. PCQE = "l" at all times except for two short íntervals.
The first mterval is that between the time at which an interrupt or trap is recog­
nized (which clears PCQE to "O") and the time at which the kernel (after saving
SaveR and PCQ contents in a save area) sets PCQE to "l" again. The second inter­
val occurs just prior to return from interrupt. when the kernel sets PCQE to "O"

31n Antares. when the PCQ Enable flag ts "l ", these transfers take place as each tnstructlon
ls executed.

Apple Computer Confident/al 4-14

Interrupts and Traps

before restoring the PCQ from the save area. 4 Except in these mtervals, PsR and
PC contents will be saved if a non-maskable interrupt or trap occurs while the
PU is interrupt/trap disabled. This is important in operating system debugging,
since it helps, for example, find the address of the system instruction which
incurred a page fault while the PU was interrupt/trap disabled and so generated
a PU Check Trap. If an interrupt or a trap is recognized during an interval in
which PCQE = "O", the contents of the PsR and PCs at recognition time are lost.

It may not be possible to determine, by an examination of the state of the
machine, whether or not a non-maskable interrupt or trap was recognized
during the ínterval in which PCQE = "O". Since the PsR is not saved in this case,
the value of PCQE at the time the interrupt or trap was recognized cannot be
determined. However, assuming the kernel code executed in this ínterval is
correct, no local exceptions, and consequently no PU Check Trap. will be gener­
ated in this Interval. While a non-maskable interrupt or a restart (inter-PU)
trap can occur. losing PU state information in these cases usually is not the
severe debugging handicap that losing information in the PU Check Trap case
can be.

The PU Available Flag. On recognition of any particular interrupt or
trap, control is transferred to one of two kernel entry addresses, depending on
the setting of the PU Available (PUA) Flag in the PsR This flag is set only by
software (using a Set Mode instruction). It is cleared when the PU is a target of a

· Start instruction. when an interrupt or a trap is recognized. or on return from
interrupt if bit <0> of SaveR is "O".

The intended interpretation of the PUA flag is that, when set, the kernel is
not required to save PU state on interrupt/trap recognition or restore state prior
to returning from interrupt, reducing interrupt processing overhead. (The PsR
and Current and Next PCs are saved on recognition and restored on execution of
a return from interrupt instruction pair. When switching address spaces, local
register savtng and restoring, except for the SaveR and PCQ registers, is assumed
to be unnecessary if PUA is set.) To effect this, PU activities should, on com­
pletion of execution, set PUA prior to halting. From a hardware standpoint, the
PUA flag 1s used in kernel entry address selection and may be used in selecting a
PU to process an external or event counter overflow interrupt. In Antares, this
PU selection considers only PU halt flags: the hardware interrupt handler will
attempt to assign an interrupt to the highest-numbered halted PU. Later imple­
mentations may, in addition, consider PUA flags when selecting a PU.

PU State Saving. The steps performed by the kernel in saving state
following recognition of an interrupt or trap might include the following.

• Execute a Lock instruction to clear the system mode semaphore: this
insures that one and only one PU at a Ume will be attempting to access

4At least ln Antares, where the transfer of the PCs to the PCQ ls done on every instruction
and must be inhibited ln order to restore the PCQ.

_)
Apple Computer Confidential 4-15

Interrupts and Traps

the save area pointer. Scratch Register. and, on an interrupt, the ICR and
IAR.
• Save the value of general register RO in the Scratch Register (ScR).
• Construct, in RO, the address of a pointer to a register save area, and
read the pointer. (Note that prefixing cannot be used to construct this
address because PíxR contents have yet to be saved.) ·
• Execute a Store Multiple instruction to save registers 1-15 ln the save
area.
• Read and save the contents of the SaveR. read and save the contents of
the PCQ, and set the PCQ Enable flag to "l ". ('Ibis may be skipped on some
kernel service calls which, for efficiency, are processed without resetting
the PCQ Enable flag - and without the corresponding saving of SaveR
and PCQ contents.)
• Retrieve R0's original value from the ScR. and store it in the save area.
• If the PíxR will be used, read and save its value. Also, if a Multiply or a
Divide instruction will be executed, read and save the· value in ProdR or
RemR

• On an interrupt, read the ICR and select an interrupt pending flag. If
the selected interrupt is a Message Interrupt, read the message address
from the IAR. Clear the interrupt pending flag (as described in Pending
Interrupt Flags). Note that the IAR should be read before the interrupt
pending flag is cleared.
• Execute an Unllt instruction to release (set) the system mode sema­
phore flag.
• On a trap, read the trap source flag from the TrapR and clear it, and, if
appropriate. read the trap argument from TrapR and clear the trap
argument field tTrapR bits <18:0>), before enabling interrupt/trap recog­
nition.

On an address space switch, it may be necessary to save Event Counters 1 and 2,
together with the event counter control flags from the ICR (if event counting was
active), and the DSA and ASN fields from the IdR Uf not recorded elsewhere).

PC Save Queue Access. The PCQ is read when saving state prior to
setting the PC Queue Enable flag or prior to an address space switch. or whenever
the interrupted instruction must be examined, and is written when restoring
state or performing an address adjustment. (When the Rmod flag in the SaveR is
set, the kernel must determine if the interrupted instruction is an LdM/StM or
an LdB/StB and adjust the base register accordingly prior to return from
interrupt. The address of the interrupted instruction is obtained by reading
PCQ(l] using a Move From Special instruction and adjusting the address read if
the c flag in bit <31> is set.)

Apple Computer Confident/al 4-16

Interrupts and Traps

31 O

I,- ---:-::-rA-B---...11 =~: •
31 o ---A-dd-rA II PCQ(1J •

AddrB _ _ PCQ(2)

31 O

I,- ---::_d_;:---11 =~ •
(D PC Save Queue initial state

PC Save Queue after moving AddrA to © General Register Reg via
MovFS 14,Reg ; AddrA -> Reg

PC Save Queue after writing AddrA to PCQ[2]
via

@ MovTS Reg,14 , AddrA -> PCQ[2]
this write also causes the c:onten1s of PCQ(2] to
be transferred to PCQ[1]

31 O 1,-----:-:;-r:--- 11 =~ •
3,...1,o

li- ---:-:-:-:----Hl I ::~ •

©
the initial contents of PCQ(2] now can be read:

Nop
MovFS 14,Reg ; AddrB -> Reg

(the Nop is required)

PC Save Queue after being returned to i1s initial
state via

@ MovTS Reg,14 , AddrB -> PCQ[2]
this write also causes the conten1s of PCQ(2] to
be transferred to PCQ(1]

) Figure 4.6. Accessing PCQ Contents .ìn Antares

In Antares, the PC Save Queue, PCQ[l] and PCQ[2], is a FIFO register pair in
which the contents of PCQ[2] are moved to PCQ[I] whenever PCQ[2) ís written.
The contents of PCQ[l] (only) can be read via a Move From Special instruction:
PCQ[2) (only) can be written via a Move To Special instruction. To read the
contents of the PCQ while preserving its initial state, the procedure shown in
Figure 4.6 can be used.

4.7 Return From Interrupt
Returning control to an interrupted program following interrupt/trap

processing (return), initiating program execution in a newly-created address
space (startup), or reínítíatíng program execution after an address space switch
(switch) is effected via a sequence of operations called return from tnterrupt.
Return involves only a single PU, while an address space startup or switch
requires the coordinated action of all four PUs. When an instance of the kernel
executing in one PU decides that execution in the currently-active address space
is to be suspended in preparation for a startup or switch, it will cause the other
PUs to trap (via a Preempt instruction) so that they can save local state. The four
PUs must decide which PU is responsible for saving global state and performing
other serial operations. In all cases, the actual transfer of control from the
kernel to the program whose execution is being initiated or resumed is effected
by executing a pair of Return From Interrupt instructions. These instructions

Apple Computer Confident/al 4-17

Interrupts and Traps

transfer the contents of the SaveR to the PsR. transfer the contents of the PCQ to
the Current PC and Next PC. and cause execution to continue at the address in
the Current PC.

This section describes the operations in a return, startup, or switch. An
address space startup or a swap usually requires that execution of the currently­
active address space be suspended and its state saved. Some implementations
may require additional steps; in Antares, it is necessary to flush the TB and
caches on a startup or a switch (see Chapter 3).

Return. Returning to the interrupted program after processing an interrupt
or trap involves the following steps.

l. If the Correction flag in PCQ[l) is "l", the address in PCQ[l] must be
corrected by adding 2 (unless this correction was made during inter­
rupt/trap analysis). Use the procedure illustrated in Figure 4.6 to read
and write PCQ[l). If the PCQ and SaveR contents were saved, the PCQ and
SaveR accesses required in this and subsequent steps are made to the
save area.
2. If lt is desired to bypass reexecutìon of the interrupted instruction on
return from interrupt, increment both PCQ[l] and PCQ(2] by 2. One case
in which this is required is in exiting from trap processing for and
simulation of a non-implemented instruction. Note that this is W21
required in exiting trap processing for a System Call instruction.
3. If the Rmod flag of the interrupted program (SaveR bit <31>) is" l ",
adjustment of the address register of a Load/Store Multiple or a
Load/Store Byte instruction is required. (Note that moving the contents
of SaveR to a general register via a Move From Special instruction will
set the N condition code if the Rmod flag is "l".) The adjustment
procedure is as follows.

• Get the instruction address from PCQ[l], save bit <l> (i.e., the
halfword index), and use this address to read the word containing
the interrupted instruction. Use the halfword index to select the
appropriate halfword.
• Extract the operation code field. For Load/Store Multiple and
Load Store Byte. this is instruction halfword bits <15:8>.
• Extract the RegA field, bits <3:0>. of the instruction halfword.
This is the address register number; subtract it from the starting
address of the register save area to obtain a pointer p to the value
to be corrected. 5

• Examine the operation code. If the instruction is a Load/Store
Byte instruction. the address register must be decremented before

5Assumlng that the general registers were stored beginning at the first word of the save
area using a Store Multiple instruction (which decrements).

Apple Computer Confident/al 4-18

Interrupts and Traps

returning. Read memory location p. subtract 1. and store the
result in location p.
• If the instruction is a Load/Store Multiple instruction. extract
the RegB field, bits <7:4>. of the instruction halfword. This is the
number of registers loaded or stored.
• If the instruction is a Load Multiple instruction, the address
register must be decremented by the RegB field value, multiplied

)
, __ ,., .. r'

by 4, before returning. Read memory location p. subtract 4 x RegB,
and store the result at location p.
• If the instruction is a Store Multiple instruction, the address
register must be incremented by the RegB field value, multiplied
by 4, before returning. Read memory location p. add 4 x RegB, and
store the result at location p.
• Clear the Rmod flag in SaveR

4. Restore the ProdR, RemR, and PfxR register contents from the register
save area, using a load instruction to read the value stored in the appro­
priate save area memory location into a general register and a Move To
Special instruction to move that value to the special register.
5. If the PCQ Enable flag was set and the SaveR and PC contents saved on
entry. clear the PCQ Enable flag and restore the SaveR and PCQ contents
from the save area.
5. Restore the general registers by executing a Load Multiple instruction.
6. Execute a pair of Return From Interrupt (Rtl) instructions; these must
be executed ''back-to-back" (machine operation otherwise is unpredict­
able). The first Rtl instruction moves the contents of PCQ[l) to the
Current PC. The second Rtl moves the contents of PCQ[2) to the Next PC,
restores PsR from SaveR, and (unless the Halt flag in the PsR is "1 ")
causes execution to continue at the address in the Current PC.
The PU must be interrupt/trap disabled when the Rtl instruction pair is

executed. (Typically. the kernel will disable interrupt/trap recognition while
peñormfng the entire return from interrupt sequence.) When register save areas
are dynamically allocated and deallocated on a global basis. 6 the kernel must
adjust a free area pointer before restoring general registers: this (and save area
allocation) must be done in a critical section controlled by Lock and Unlit
instructions.

Switch. An address space switch is initiated by a single PU as the result of
an event such as a System Call trap suspending or terminating execution in the

6.As opposed to a scheme using a single fixed save area for each PU. ln a fixed save area
scheme, PU save area contents are moved to and from address space save areas on
switches.

Apple Computer Confident/al 4-19

Interrupts and Traps

currently-active address space or an external (timer) interrupt signalling
quantum end. The initiating PU causes the other PUs to trap by executing a
Preempt instruction. Local (PU) state saving can be done independently by each
PU. while global state saving is done by a single controlling PU. Assuming the
initiating and controlling PU is PU o. the basic steps involved in an address
space switch are as follows.

1. PU O disables presentation of external interrupts and generation of
event counter overflow interrupts. It then checks to see if there are any
interrupts pending and. if so. enables interrupt/trap recognition and
processes any pending interrupts before proceeding.
2. PU O executes a Preempt instruction with PUs 1-3 as targets. advising
each target PU (via a memory-based or register-based communication
mechanism) that a switch is to talee place. and then waits for PUs 1-3 to
halt. (Careful coordination of kernel activities is required here.)
3. PUs 1-3 save their local state and halt. (PU O saved its local state prior
to processing the interrupt or trap causing the switch.)
4. PU O saves global state and performs any necessary housekeeping
associated with an address space switch. In Antares. the data cache must
be flushed. and the instruction cache and Translation Buffer invali­
dated. The procedure for this is described in Chapter 3. and the cache
control instruction used are described in Chapter 6.
S. PU O obtains the OSA I ASN for the address space to be reactivated. and
stores it in the ldR, and restores global state.
6. PU O obtains the local save area addresses for PUs 1-3, sends these to the
appropriate PUs, and returns these PUs to execution via Start or Resume
instructions.
7. PU O enables presentation of external interrupts and, if required, enables
event counter overflow interrupt generation.
8. PUs 0-3 execute the steps described under Return.

Details of this procedure will depend on the kernel design and on the hardware
implementation.

Stanup. To in1t1ate execution in a new address space, the kernel first
suspends execution in the currently-active address space as described above. It
then creates a page table for the new address space: the address of the ßrst word
of the page table directory defines the OSA I ASN field for the address space.
Typically. the page table includes an entry for several shared pages. one of which
contains a startup task: the kernel starts address space execution by having one
PU "return" to the startup task's entry address while the remaining PUs "return"
to halt state. Assuming PU O is the controlling PU and PUs 1-3 are halted. the
final steps in this process. after global state has been initlalJzed. might be as
follows.

1. PU O sends a "dispatch halted PU'' message to PUs 1-3.

Apple Computer Confident/al 4-20

Interrupts and Traps

2. PUs 1-3 each set SaveR bits <24> (Halt flag), <15> (Interrupt/Trap
Enable flag), <13> (User Mode flag), and <0> (PU Available flag). All other
SaveR flags are set to "O". No other local registers need be initialized. 7
3. PUs 1-3 each execute an Rtl instruction pair, causing them to halt in
user mode.

4, PU O sets SaveR bits <15> (Interrupt/Trap Enable flag) and <13> (User
Mode flag). All other SaveR flags are set to "O". PCQ(1] is set to the startup
task's entry address , and PCQ(2] is set to that address + 2.
5. PU O enables external interrupt presentation and, if appropriate,
event counter overflow interrupt generation, and executes an Rtl instruc­
tion pair to initiate startup task execution.

The startup task. which begins execution in PU O in this example, can activate
other PUs via a Start instruction. In addition to activating these PUs, execution
of a Start instruction effectively causes its target PUs to-flush the contents of
their instruction queues. Note that an attempt to activate a PU using a Resume
instruction would cause it to initiate an instruction fetch at the address
contained in PCQ(l] at the time of return.

)
4.8 Interrupt/Trap Summary

This section provides a summary description of interrupts and traps. This
summary includes, for each interrupt and trap. the interrupt pending flag or
trap source flag bit position. the argument (value. if any. stored in the IAR or
TrapR), the cause(s). generation or presentation and recognition controls, and
notes on analysis.

7 Although PUs 1-3 will not execute instructions if dispatched in halt state., they w111, in
Antares, issue instruction fetches for the addresses loaded into Current PC and Next PC
from the PCQ. Unless the PCQ ts explicitly set with addresses valid in the new address
space, these fetches can cause useless cache and 1B misses (although, because the PU ts
halted, they cannot cause exceptions). To avoid this, the PCQ for all four PUs should be set
with the entry address and entry address + 2 (or some other valid address) prior to return
from interrupt. (Note that by adopting the convention that the instruction at the initial
entry point always ts a 'Watt l" instruction, all four PUs could be dispatched in run state.)

Apple Computer Confident/al 4•21

Interrupts and Traps

Interrupts

Name:
Cause(s):

Pending Flag:
Argument:
EntryAddr.:
Controls:
Notes:

Name:
Cause(s):
Pending Flag:
Argument:
Entry Addr.:
Controls:
Notes:

Machine Check
• Inter-Processor Bus (IPB) error.
• Internally-detected hardware error.
ICRBit <31>
None
OxFFCOOOOO + OxlOO x PUA
None (non-maskable)
This interrupt always is presented to and recognized by PU O.

Power/Temp
Power failure or internal temperature over limit
ICRBit <30>
None
OxFFCOOOOO + OxlOO X PUA
None (non-maskable)
The Power /Temp is implementation-dependent; voltage or
temperature sensing may or may not be provided in a parti­
cular implementation. This interrupt always is presented to
and recognized by PU O.

Apple Computer Confident/al 4-22

Interrupts and Traps

~\
I

Interrupts (continued)

Name:
Cause(s):
Pending Flag:
Argument:
Entry Addr.:
Controls:
Notes:

Name:
Cause(s):
Pending Flag:
Argument:
Entry Addr.:
Controls:

Deadlock:
Hardware deadlock detection.
ICRBit <29>
None
0xFFC00000 + Oxl00 x PUA
None (non-maskable)
This interrupt is generated when the state of each of the four
PUs, as reflected in the Global Status Register (GSR), is either
halt or wait (see discussion of PU states in Chapter 5), and
remains unchanged for a fixed time. (This is the time required
to propagate state changes from the PUs to the GSR. and is
implementation-dependent.)

Notes:

IO
IO interrupt
ICRBit <28>
None.
0xFFC00200 + 0xl00 x PUA
Presentation of this interrupt is disabled for the CPU when the
External Interrupt Enable flag, ICR bit <5>, is "O". Recognition
of this interrupt is disabled for a PU when the Interrupt/Trap
Enable flag in the PsR of that PU is "O".
If an IO interrupt arrives while external interrupts are dis­
abled, it is rejected. Rejection of an IO interrupt simply causes
the IO interrupt signal to be ignored; if external interrupt
recognition is later enabled and the IO interrupt signal
remains asserted, it can be recognized at that time. An IO
interrupt is rejected, even if external interrupts are enabled, if
an earlier-arriving IO interrupt still is pending (ICR bit <28> =
"l ") when it is presented. (See Pending Interrupt Flags.) This
interrupt is directed to a PU in accordance with the PU selec­
tion rules for the implementation.

Apple Computer Confident/al 4-23

Interrupts and Traps

Interrupts (continued)

Name:
Cause(s):
Pending Flag:
Argument:

Entry Addr.:
Controls:

Notes:

Name:
Cause(s):
Pending Flag:

Argument:
Entry Addr.:
Controls:

Message
Interrupt-on-write access to CPU's local memory
ICRB1t<27>
On recognition of a message interrupt. the real (byte) address of
the interrupt-on-write access (i.e .. the operand address of the
store tnstructlon ínìtíatíng that access) is contained ín the IAR.
0xFFC00200 + 0xl00 X PUA
Presentation of this interrupt is disabled for the CPU when the
External Interrupt Enable flag, ICR bit <5>, is "O". Recognition
of this interrupt is disabled for a PU when the Interrupt/Trap
Enable flag in the PsR of that PU is "O".
If a message interrupt arrives while external interrupts are
disabled. it is rejected. Rejection of a message interrupt causes
a Message Reject trap to be generated on the PU attempting to
store to an interrupt-on-write page. A message interrupt is
rejected. even if external interrupts are enabled, if an earlier­
arrtvìng message interrupt stlll is pending (ICR bit <27> = "1'1
when it is presented. (See Pending Interrupt Flags.) This
interrupt is directed to a PU in accordance with the PU selec­
tion rules for the implementation.

Notes:

Event Counter Overflow
Overflow of Event Counter 1 or Event Counter 2.
ICR Bit <26> (Event Counter 1)
ICR Bit <25> (Event Counter 2)
None
0xFFC00200 + 0xl00 X PUA
Generation of an overflow interrupt for Event Counter 1 is
enabled by setting the Event Counter 1 Overflow Interrupt
Enable flag. ICR bit <4> to "l", and disabled by setting this flag
to "O". Generation of an overflow interrupt for Event Counter 2
is enabled by setting the Event Counter 2 Overflow Interrupt
Enable flag. ICR bit <3> to "l". and disabled by setting this flag
to "O". Recognition of this interrupt is disabled for a PU when
the Interrupt/Trap Enable flag in the PsR of that PU is "O".
This interrupt is directed to a PU in accordance with the PU
selection rules for the implementation. If an event counter
overflow interrupt is generated for an event counter while a
counter overflow interrupt is still pending for that counter, the
newly generated interrupt simply is discarded. (This should
occur only if the pending interrupt was ignored by the kernel.)
Event counters are discussed in Chapter 7.

Apple Computer Confidential 4-24

Interrupts and Traps

Traps

Name:
Cause(s):

Source Flag:

Argument:
Entry Addr.:
Controls:
Notes:

Name:
Cause(s):

Source Flag:
Argument:
Entry Addr.:
Controls:
Notes:

PU Check
Attempt to generate a local exception trap on a PU while that
PU is interrupt/trap disabled (PsR bit < 15> = "0'1
There is no TrapR source flag for the PU Check trap itself; the
trap source flag corresponding to the local exception which
resulted in the PU Check trap will be set.
None
0xFFC00400 + 0xl00 X PUA
None (non-maskable)
A PU Check trap is generated when a data page fault, data
access privilege violation, message reject, system call,
operation fault, overflow, instruction page fault, or instruction
access privilege violation occurs while a PU is interrupted/trap
disabled. The TrapR flag for the local exception is set to "l" and
control transferred to the non-maskable trap entry address.
Control also is transferred to this address on a PU Restart trap.
The two cases generally can be distinguished by examining the
PU Restart trap source flag in TrapR Note that two trap source
flags can be set at the time a PU Check trap is recognized if the
PU Check trap occurred while the PU was processing an earlier
trap and had not yet cleared the source flag for that trap. When
a PU Check trap is recognized, the contents of the PsR and
Current and Next PCs are not saved (see Section 4.6).

PU Restart
Execution of a PU Restart (Res) instruction by another PU; this
trap is generated, presented to. and recognized by each PU
specffled as a target of the Res instruction.
TrapR bit <31>
None
OxFFC00400 + 0xl00 X PUA
None (non-maskable)
Control is transferred to this entry address on a PU Check trap
as well as on a PU Restart trap. The two cases generally can be
distinguished by examining the PU Restart trap source flag in
TrapR. which will be set to "I" on a PU Restart trap. If the PU is
interrupted/trap disabled when a PU Check trap is recognized,
the contents of the PsR and Current and Next PCs are not saved
(see Section 4.6). (This is the expected case; the Rea instruction
is provided to interrupt a PU which. is "hung" while inter­
rupt/trap disabled.) The Restart instruction is discussed in
Section 5.3.

Apple Computer Confident/al 4-25

Interrupts and Traps

(

Traps (continued)

Name:
Cause(s):

Source Flag:
Argument:
Entry Addr.:
Controls:

Notes:

Name:
Cause(s):

Source Flag:
Argument:

Entry Addr.:
Controls:
Notes:

PU Preempt
Execution of a PU Preempt (Prmpt) instruction by another PU;
this trap is generated and presented to each PU specfßed as a
target of the Prmpt instruction, and recognized when the target
PU becomes interrupt/trap enabled.
TrapR bit <30>
None
0xFFC00600 + 0xl00 X PUA
Recognition of this trap is disabled when the Interrupt/Trap
Enable flag in the PsR is cleared to "O".
This is the only maskable trap, in the sense that its recognition
may be deferred. Execution of the Prmpt instruction does not
complete until each target PU has become interrupt/trap en­
abled and recognized the Preempt trap. In Antares, all target
PUs must simultaneously be enabled before preemption takes
place. (See Section 5.3).

Data Page Fault
Attempted operand load or store access to
• a segment whose directory entry is invalid {V flag = "O"),
• a page whose page table entry is invalid {V flag = "0'1, or
• a page whose page table entry flags are set to an illegal com­
bination: read-only and interrupt-on-write (RO="l" & IW="l")
or cacheable and interrupt-on-write (NC="O" & IW="l'1.
TrapR bit <29>
The virtual page number from the address of the operand to
which access was attempted is contained in TrapR bits < 18:0>
0xFFC00600 + 0xl00 X PUA
None (non-maskable)
If a data page fault is encountered while the PU is inter­
rupt/trap disabled, a PU Check trap occurs.

Apple Computer Confident/al 4-26

Interrupts and Traps

Traps (continued)

Name:
Cause(s):

Source Flag:
Argument:

Entry Addr.:
Controls:
Notes:

Name:
Cause(s):

Source Flag:
Argument:

Entry Addr.:
Controls:
Notes:

Data Access Privilege Violation
• Attempted operand load or store access ln user mode (PsR bit
<13> = "1") to a system page (page whose page table block entry
has its S flag set to "l") or to the kernel region (i.e., operand
address ln the range 0XFFC0 o o o o to OXFFFFFFFF).
• Attempted operand store access to a read-only page (page
whose page table entry has its RO flag set to "l '1.
• Attempted operand access by a load byte or store byte
instruction to a non-cached page (page whose page table entry
has its NC flag set to "l '1.
TrapR bit <28>
The virtual page number from the address of the operand to
which access was attempted is contained ln TrapR bits < 18:0>
0xFFC00600 + 0xl00 x PUA
None (non-maskable)
If a data access privilege violation is encountered while the PU
is Interrupt/trap disabled, a PU Check trap occurs. Analysis of
this trap may require examination of the operation code of the
Interrupted Instruction as well as of the directory entry and
page table entry associated with the address of the operand to
which access was attempted. Accessing the interrupted
instruction is described in Section 4. 6.

Message Reject
A store access to a local or remote page marked "ìnterrupt-on­
write" was rejected either because external Interrupt presenta­
tion was disabled (ICR bit <5> = "O") or because a message
Interrupt already was pending (ICR bit <27> = "l').
TrapR bit <27>
The virtual page number of the "Interrupt-on-write" page to
which access was attempted is contained ln TrapR bits < 18:0>
0xFFC00600 + 0xl00 x PUA
None (non-maskable)
If a message rej cet is encountered while the PU is Inter­
rupt/trap disabled, a PU Check trap occurs. Consequently, the
kernel must open an "enabled window'' to send a message using
the interrupt-on-write mechanism. If the kernel desires to
become interrupt/trap enabled while insuring that no
Interrupts occur while it is enabled, it must disable external
Interrupt presentation and event counter overflow interrupt
generation and process all pending Interrupts before setting its
Interrupt/trap enable flag. The processing of a store access to
an "Interrupt-on-write" page is described ln Section 3. 7.

Apple Computer Confidential 4-27

Interrupts and Traps

Traps (continued)

Name:
Cause(s):
Source Flag:
Argument:

Entry Addr.:
Controls:
Notes:

Name:
Cause(s):

Source Flag:
Argument:

System Call
Execution of a Trap instruction
TrapR bit <26>
Bits <3:0> of the TrapR contain the trap number field from the
instruction (instruction bits <3:0>). The contents ofTrapR bits
< 18:4> are unpredictable.
0xFFC00600 + 0xl00 X PUA
None
When a System Call trap is presented to a PU, PCQ[l] contains
the address of the instruction following the Trap instruction.
An attempt to execute a Trap instruction while the PU is inter­
rupt/trap disabled results ln a PU Check Trap.

Operation Fault
• Attempted execution of an illegal (undeßned) operation code
• Operation privilege violation

attempted user-mode execution of a privileged instruc­
tion
attempted user-mode access to PsR bits < 15:8>
attempted user-mode access to a privileged special reg­
ister (special registers O through 4 or 8 through 14)
attempted user-mode access to a non-existent special
register (special registers 7 or 15)8

• Execution of a taken branch or a Jump instruction while
taken branch trap generation is enabled.
TrapR bit <25>
The three causes of an operation fault can be distinguished by
examining the two high-order bits of the trap argument field,
TrapR bits < 18: 17>, as shown in Figure 4. 7.
• For an Operation Fault trap resulting from attempted
execution of an illegal operation code, TrapR bit <18> is "O",
bits <17: 12> are unpredictable, and bits <11:4> contain in­
struction bits <15:8>. The contents ofTrapR bits <3:0> depend
on the operation code length, as follows:
- if instruction bits <15:12> (TrapR bits <11:8>) are "0001",

the operation code is a 16-bit code, and TrapR bits <3:0>
contain instruction bits <3:0>.

&nie result of an attempted system-mode access to a non-existent special register ts
undefined.

Apple Computer Confidential 4-28

Interrupts and Traps

Traps (continued)

trap argument field

TrapR1 li I: : : : : : : : : : : : : : : : I
' ' O x Illegal operation code

1 O Operation privilege violation
1 1 Jump executed or branch taken while Taken Branch

Trap is enabled

18 17 O

)

Entry Addr.:
Controls:

Notes:

Figure 4. 7. Distinguishing Operation Fault Causes

- if instruction bits <15: 12> (TrapR bits <11:8>) are other
than "0001", the operation code is a 4-, 8-, or 12-bit code
and TrapR bits <3:0> contain instruction bits <7:4>.

• For an Operation Fault trap resulting from attempted
execution of an privileged operation while in user mode, TrapR
bits <18:17> are "10", and bits <16:0> are unpredictable.
• For an Operation Fault trap resulting from execution of a
taken branch or a of a jump instruction while the Taken
Branch Trap is enabled, TrapR bits <18:17> are "11", and bits
<16:0> are unpredictable.
0xFFC00600 + 0xl00 X PUA
Generation of a trap on a taken branch or a jump instruction is
enabled by setting the Taken Branch Trap Enable flag, PsR bit
<14>, to "l" and disabled by setting this flag to "O". Illegal
operation code or operation privilege violation traps are non­
maskable.
Illegal operation codes are codes which are undefined or for
which the corresponding instruction is not implemented on a
particular Scorpius CPU and so must be emulated. (See
Appendix A.)
When an Operation Fault trap results from an attempt to
execute an illegal operation code, a maximum of 12 instruction
bits are stored in TrapR. even in the case of a 16-bit operation
code. However, since all 16-bit illegal opcodes have instruction
bits <15:12> equal to "0001" and instruction bits <7:4> (not
stored in TrapR) equal to "0000". this case can be identified by
exam1n1ng the 12 bits which are stored in TrapR
When the Taken Branch Trap Enable flag (PsR bit <14>) is set to
"l ". a taken branch trap is generated on execution of a branch
(Bec) or jump (Jmp, JmpL, JmpR) instruction. On recognition
of this trap, the branch or jump instruction will not have been
executed, and its address is available in PCQ(l). In Antares, a
taken branch trap ts not generated on execution of the other

Apple Computer Confidential 4-29

Interrupts and Traps

instructions which cause a transfer of control: System Call,
(Trap), Start (Strt}, or Return from Interrupt (Rtl).
Later versions of the architecture may extend the Taken
Branch Trap to include the Trap instruction; this will mean
that, unlike Antares, two trap source flags could simultane­
ously be set at trap recognition time. One reason for ilihibitlng
taken branch trap generation on Rtl execution is the require­
ment that a PU be interrupt/trap disabled when executing an
Rtl instruction.
Detection of a operation fault while the PU is interrupted/trap
disabled results in a PU Check trap.

Name:
Cause(s):

Source Flag:
Argument:
EntryAddr.:
Controls:

Notes:

Overflow
• Execution of an Add, Addi, AddC, Nel, Sub, Subi, or Sube
instruction which sets the V condition code flag to "l"
• Attempt to divide by zero or, for Dlv, DlvE, and DlvUE, an
attempt to divide which would produce a quotient which would
not fit in the result register.
TrapR bit <24>
None
0xFFC00600 + 0xl00 X PUA ·
Generation of an Overflow Trap caused by setting the V condi­
tion code flag can be enabled by setting the Overflow Trap
Enable flag (PsR bit <1>) to "l", and disabled by setting this flag
to "O". Generation of an overflow trap caused by dividing by
zero or by attempting to produce a quotient which would not flt
in the result register cannot be disabled. 9
Detection of overflow while the PU is interrupted/trap disabled
results 1n a PU Check trap. To determine the trap cause, the
operation code of the interrupted instruction must be examined
(Section 4.6). When an arithmetic operation results in Over­
flow Trap recognition , no result is stored for that operation.
While division is asynchronous, the trap caused by divide
overflow is precise; upon recognition, the divide instruction is
the interrupted instruction (Section 4.6), and no instruction
fetched after the divide will have been executed.

9cpu architectures frequently define dlvkle by zero to be non-maskable, ln the sense that
the fixed-point overßow trap enable flag has no effect on generation and recognition of a
divide-by-zero trap. Some architectures treat divide overflow in the same way as dtvide­
by-zero, while others permit divide overllow to be mask.ed. By deftnlng both to be non­
maskable, Scorpius effectively leaves the choice to software . The kernel, on recognizing
an Overflow Trap caused by attempted execution of a dlvtde instruction, can choose to
ignore the exception or can choose to process lt.

Apple Computer Confident/al 4-30

Interrupts and Traps

Traps (continued)

Name:
Cause(s):

Source Flag:
Argument:

EntryAddr.:
. Controls:
Notes:

Name:
Cause(s):

Source Flag:
Argument:

Entry Addr.:
Controls:
Notes:

Instruction Page Fault
Attempted instruction fetch access to
• a segment whose directory entry is invalid (V flag= "O"),
• a page whose page table entry is invalid (V flag = "O"), or
• a page whose page table entry flags are set to an illegal
combination: read-only and interrupt-on-write (RO=" 1" &
IW="l") or cacheable and interrupt-on-write (NC="0" & IW="l").
TrapR bit <23>
None. (Future implementations may store the instruction
address associated with the fault in TrapR).
0xFFC00600 + 0xl00 x PUA
None (non-maskable)
The address associated with the instruction page fault can be
obtained from PCQ[l). If the C bit in PCQ[l) is set to "l", this
address requires adjustment (see Section 4.6). If an instruction
page fault occurs while the PU is interrupt/trap disabled, a PU
Check trap results.

Instruction Access Privilege Violation
Attempt to fetch an instruction in user mode from a system
page (page whose page table entry has its S flag set to 1) or from
the kernel region (i.e .• instruction fetch address in the range
0XFFC000O0 to 0XFFFFFFFF).
TrapR bit <22>
None. (Future implementations may store the instruction
address associated with the violation in TrapR).
0xFFC00600 + 0xl00 X PUA
None (non-maskable)
The address of the instruction causing the violation can be
obtained from PCQ[l]. If the C bit in PCQ[l) is set to "l", this
address requires adjustment (see Section 4.6). When the viola­
tion is caused by a sequential instruction fetch (i.e .• a "page­
crosser"], the address in PCQ[l] is the address of the system page
or kernel region instruction. When the violation is caused by a
branch or jump from a user page to a system page or to the

Apple Computer Confident/al 4•31

Interrupts and Traps

kernel region, PCQ[l) contains the address of the branch or
jump instruction. 9 If an instruction access privilege violation
occurs while the PU is interrupt/trap disabled. a PU Check trap
results.

4.9 Interrupt/Trap Processing ln Antares
This section describes the hardware processing of ínterrupts and traps in

Antares from generation through recognition. (To be added.)

9i:n Antares, when an ìnstructìon access prtvilege vtolatlon ls caused by a taken branch or
a Jump to a system page or the kernel region, the address of the mia1 instruction is stored
in PCQ(l); the address of the branch or Jump instruction Is lost.

Apple Computer Confidential 4-32

Rev . 1.0 (10/88)

5. Inter-PU Communication and
Coordination

)

5.1 Introduction
Instructions for the initiation and coordination of concurrently-executing

activities on Scorpius PUs can be divided into three classes: broadcast, inter-PU
trap, and semaphore1. Using broadcast instructions, one PU can send data
values and activity starting addresses to one or more other PUs, and wait for
other PUs to complete activity execution. Inter-PU trap instructions are a
broadcast instruction variant and permit a PU executing in system mode to
cause one or more other PUs to trap, as when preparing for a task switch. Sema­
phore instructions clear and set a semaphore in the Global Status Register. If a
PU attempts to clear a semaphore which already is cleared, its execution is
blocked until the semaphore is set. Semaphore instructions are used to control
critical regions in programs. (A critical region is a code sequence, such as an
enqueue operation, which should be executed by only one PU at a tìme.)

This chapter describes broadcast, inter-PU trap, and semaphore instruc­
tions and their use, discusses the PU states which may result from execution of
these instructions, and describes the CPU's deadlock detection mechanism.
Summary descriptions of these instructions and instruction Connats are given
in Chapter 8.

5.2 Broadcast Instructions
The PU Mask Field. Start, Resume, and Send instructions permit a PU to

send an instruction address or a data value to other PUs in a single operation.

1concurrently-executlng Instruction sequences can correspond to any of several program
entities: expressions, statements, functions, etc. Whatever their correspondence, these
sequences are referred to as acttvtttes ln this discussion.

Apple Computer Confident/al 5-1

Inter-PU Communication and Coordination

The PUs receiving the address or data value are called the targets of the
instruction, and are specified by a 4-bit PU Mask field in the instruction. This

\
field has the form b3b2b 1 bo, where bt is ''O" If PU i is a target of the instruction
and "1" otherwise. In these three instructions, the PU Mask bit corresponding to
the PU issuing the instruction is ignored (a PU cannot send itself an address or a
data value). The Wait Instruction also uses the PU Mask field; If the PU Mask bit
corresponding to the PU issuing the Wait instruction is "O", the instruction
performs a halt operation. mie Inter-PU trap Instructions Preempt and Restart
use the PU Mask field to specify which PUs are to be preempted or restarted.).
The result of issuing a broadcast instruction with no target PUs specified (PU
Mask = l 111B) is unpredictable.

The Walt Instruction. This instruction has the form
Walt PUMask

and performs two different operations: halt and synchronize.

Halt Operation. When a Wait instruction is issued with the PU Mask bit
corresponding to the issuing PU set to "O" (ì.e., when the PU specifies itself as a
target), the remaining bits of the PU Mask are ignored, and PU execution is
halted. CA Wait instruction with PU Mask = ~ will cause any PU on which it
is issued to halt.) The Hlt flag (PsR bit <24>) is set to "l" and instruction issue is
halted with the Current PC containing the address of the instruction immedi­
ately following the Wait Instruction. PU execution can be recontínued in one of
the following ways (in addition to the transfer to an interrupt/trap entry
address resulting from recognition of an interrupt or an inter-PU trap).

• Execution by some other PU of a Resume Instruction specifying
the halted PU as a target: execution resumes at the address in
Current PC.
• Execution by some other PU of a Start instruction specifying
the halted PU as a target: execution continues at the address
contained the in the register specified by the Start Instruction.
• Return from interrupt with the Hlt flag cleared to "O"; execution
continues at the address ln Current PC.

In Antares. the hardware interrupt router attempts to assign an external or a
message interrupt to the highest-number halted PU. When the state of a PU
(other than PC and PsR contents) is not required for execution of subsequent
acttvtties , the PU should set the PUA flag (PsR bit <0>) via a Set Mode instruction
prior to halting. This eliminates the need to save and restore registers If the
halted PU is assigned to process an interrupt. (Later implementations of the
architecture may use the PUA flag, as well as the Hlt flag, in interrupt routìng.l

Synchronize Operation. When a Wait instruction is issued with the PU
Mask bit corresponding to the issuing PU set to "l", the issuing PU suspends
execution until all of its target PUs have halted in the same mode (user or
system) as the PU issuing the Wait instruction. When all target PUs have halted,
the Wait instruction completes and execution continues on the PU executing the
Wait instruction.

Apple Computer Confidential 5-2

Inter-PU Communication and Coordination

PU2 PU3

tine

Wait OXl

I ~. r--··;;~~~1

I I I I

1 I I
I I i ~ I ~ I · i ¡ Wait OXl :l

il i ¡ ~ I I I -,,xeaJ--tin-g-+- ,i--------+---+--"""-----....f--+- Wait ~ I
------ 'lw-----1

.... y waiting

• Wait OXl
halted

)
Fl,are IS.I. SIMD Mode Termination Via Walt

Combining both halt and synchronize operations in the Wait instruction
lets this instruction be used to termínate SIMD execution. For example, Figure
5.1 illustrates an interval of execution which begins with all four PUs active,
executing the same code. As PUs complete their current activity, they all execute
the same instruction, Walt OXl (OXl = 0001B). On PUs 1-3, this instruction
performs a halt operation, since the PU Mask bits corresponding to these PUs
are set to "O". On PU O, this instruction performs a synchronization operation,
since PU Mask bit O= "l". PU O waits until PUs 1-3 have halted, and then
continues execution. At this point, PU O is assured that all other PUs have
completed their activtties, including storing of results if necessary, and halted.
PU O can now perform any serial steps required by the computation, send new
data to PUs 1-3 through memory or via Send instructions, and re-initiate
execution on these PUs via a Start or Resume instruction.

SIMD mode execution frequently results from a loop which can be
"unwound" across two or more PUs. Depending on dependencies within the loop,
synchronization via Watt instruction execution may be required on every itera­
tion or only at the end.

Address Broadcasting. A PU returns one or more halted PUs to execution
via the broadcast instructions

Rmll PUMask
Strt @RegB, PUMask

The Resume (Rall) instruction causes each target PU, if halted, to resume
execution at the address 1n its Current PC. All the target PUs may or may not be

Apple Computer Confidential 5-3

Inter-PU Communication and Coordination

halted at the time the Resume instruction is issued. Halted PUs resume
execution immediately: other PUs resume immediately after halting. 2 Exec­
ution of the Resume ínstructìon does not complete until all target PUs have
halted and resumed execution. On resuming execution. each target PU clears the
PUA and Hlt flags in its PsR. Note that if a PU sets PUA prior to halting, its state
(other than PC and PsR contents) ts unpredictable when its execution ts resumed
(or started).

When the issuing PU ts in user mode, all target PUs must halt in user mode
before the Resume instruction completes. When the issuing PU ts in system
mode, the Resume instruction will resume execution of target PUs halted in
either system or user mode. This lets a system actlvtty signal a user activity that
it can execute concurrently with the system acttvtty.

The Start (Strt) instruction broadcasts the address in general register RegB to
each halted target PU. and causes the target PU to start execution at that address.
All the target PUs may or may not be halted at the time the Start instruction is
issued. Halted PUs start execution immediately; other PUs start immediately
after halting. 2 Execution of the Start instruction does not complete until all
target PUs have halted, received their new starting address, and started
execution. On resuming execution. each target PU clears the PUA and Hlt flags
in its PsR Unlike Resume, the Start instruction requires all its targets to have
halted in the same mode as the issuing PU before it completes.

A PU cannot effect a transfer of control by specifying itself as the target of a
Start instruction. since the PU Mask bit corresponding to the PU issuing the
Start instruction ts ~ored.

Data Broadcasting. A PU can broadcast a data value (or data address) con­
tained in one of its general registers to one or more other PU s via the Send
instruction:

Send (RegB). PUMask
Each target of the Send instruction must execute a Receive instruction to store
the broadcasted value in one of its general registers:

BCV' RegA

21n Antares, a synchronization operation Is Implicit ln Resume Instruction execution; all
target PUa must simultaneously be halted ln the appropriate mode before their execution
ls resumed and the Resume Instruction completes. The Start and Send Instructions
operate similarly . Start, like Resume, requires that all target PUs must simultaneously be
halted ln the appropriate mode before the new starting address ls broadcast, target PU
execution resumed and Start Instruction Instruction execution completed. Send requires
that all target PUs be receiving û.e., executing unsatisfied Receive Instructions) ln the
appropriate mode before the data value is broadcast and the Send Instruction completes
execution.

This synchronization ls a characteristic of the Antares implementation, not the
Scorpius architecture, and may not occur ln all Implementations. (Note that
synchronization elìmínates the need to keep track of which PUs have been resumed,
started, or received data.) If synchronization ls required prior to Resume, Start. or Send
Instruction execution, lt should be explicitly programmed using a Walt Instruction.

Apple Computer Confidential 5-4

Inter-PU Communication and Coordination

PUO PU1 PU2 PU3
1 strt [8],0Xl start PUs 1-3 at addr. G0123
2 send 6,0Xl send &A[O] to PUs 1-3
3 add 6,7 form &A[O]+n
4 jmp SIMD note send in jump shadow

5 send 7,0Xl ; send &A[O]+n to PUs 1-3
6 G0123 rev 6 ; get &A[O]

-··------~----~i~-----{-~;:+----------;-:::-;: r: ~ +:hÏt-;--¡~-,---¡--~~~------.:
9 shl 2,9 ; it to &A[O] to form array

I 10 add 9,6

11

12 SIMDl

13

14

15

16

17

ldi 0,5

str 5, [6]

; address offset by PU no.

; O-> &A[O]+PUt+4*i

adi 16,6 ; advance array address by 4*4

cmp 6,7 sense end of array

blt SIMDl

mov o, o no-op in branch shadow

wait OXl ; PUs 1-3 halt;

'• - - - - -- - - - - - - - - -- ------- ---- ----- - - - ---- - ---- -- - - ------ ------ - - --- --------------- -------- - ---- ----- - ------- -- - --- -- -- - - .. -- - - - - - __ ,
Figure 5.2. SIMD Execution Using Strt, Send, Rev. and Wait

The Send instruction sends the contents of general register RegB to each target
PU. Execution of the Send instruction does not complete until each target PU
has executed a Receive instruction in the same mode as the sender to store the
broadcasted value in the target's general register RegA. 2 If a target initiates
execution of a Receive instruction before execution of the corresponding Send,
the target watts for the data value to be broadcast by the Send instruction before
execution of the Receive completes. If a target initiates execution of a Receive
after execution of the corresponding Send has been initiated, the broadcasted
value is stored and the Resume completed without delay.

A PU cannot transfer data from register RegB to register RegA by specifying
itself as the target of a Send instruction, since the PU Mask bit corresponding to
the PU issuing the Send instruction is ignored.

As a simple example of the use of Start. Send. Receive. and Halt instructions,
Figure 5.2 shows, in somewhat simplified form. the SIMD code which might be
generated by the C statement:

for (i=O; i<n; i++) A[i]=O;

The compiler "unwinds" this loop across the four PUs in a SIMD loop in which
PU i clears array elements A(i). A(i+4). A(i+8). It is assumed that. initially. PU
O is executing. PUs 1-3 are halted, register 6 contains a pointer to the start of the
array (&A[0)), register 7 contains the array's dimension (n), and register 8
contains the instruction address GO123. The bars at the left of the code sequence
show which PUs are executing which lines of code. Instructions are shown in
Pyxis assembler format. (The actual compiler-generated code is more complex
because (e.g.) &a[0]+n must be checked for overflow.)

Apple Computer Confidential 5-5

Inter-PU Communication and Coordination

The sequence begins with PU O broadcasting the address GO123 to PUs 1 -3;
this is the address at which these three PUs will perform their initialization for
the SIMD loop. PU O then sends the starting address of the array and the ending
address plus one to the other PUs (lines 2, 3, and 5), and jumps to the beginning
of the SIMD code section. (In actual compiler-generated code, the addition of the
base address and loop limit would be followed by an overflow test.) Note that PU
O's second Send instruction is executed in the shadow of the jump.

On being activated by the Start instruction, PUs 1-3 transfer control to
GO 123. and begin their execution by storing the array starting address and
ending address plus l. Thereafter, beginning at line 8, all four PUs execute the
same instruction sequence (circled by a dashed line in Figure 5.2). Each PU
loads its number, shifted left 2 places to form a word offset, and adds it to the
array starting address. In the first iteration of the loop, then, PU O clears A[0).
PU 1 clears A[l). etc. At the end of an iteration, each PU advances its array by
4•4 (PU offset times word increment). so that on the second iteration PU O clears
A[4). PU 1 clears A(5], and so on. When each PU has advanced its array address
beyond the end of the array. it executes a Walt 0Xl instruction. This halts PUs 1-
3; PU O watts until all three PUs are halted and then continues executing.

5.3 Inter-PU Traps
There are two instructions which cause one or more other PUs to generate

traps: Preempt (Prmpt) and Restart (Res). These instructions use the PU Mask
field to specify which PUs are to generate traps. and so resemble broadcast
instructions. -The two instructions are similar in form:

Prmpt . PUMask
Rea PUMask

Both instructions are privileged and must be executed in system mode. The PU
Mask field bit corresponding to the PU issuing the Preempt or Restart instruc­
tion is ignored. Issuing a Preempt or Resume instruction with no target PUs
specified (PU Mask = l 111B) produces unpredictable results.

Preempt. The Preempt instruction causes each target PU to generate a PU
Preempt trap. If a target PU is interrupt/trap enabled (PsR bit <15> = "1"). it
immediately recognizes the trap: the PU Preempt Trap flag is set in the Trap
Register, PsR and PC contents are saved ln the SaveR and PCQ registers. the PU
mode is set to system, the Interrupt/trap enabled flag is cleared, and control is
transferred to the appropriate kernel entry address (see Chapter 4). If a target PU
is interrupt/trap disabled, recognition of this trap is deferred until the PU
becomes interrupt/trap enabled. (This is the only trap which can be deferred.)
Execution of the Preempt instruction does not complete until each target PU has
recognized the trap. 3

3 Antares waits until all target PUs are slmultaneousty interrupt/trap enabled before trap
generation and recognition ls effected.

Apple Computer Confidential 5-6

Inter-PU Communication and Coordination

While it is possible to cause multiple PUs to to generate traps via a single
Preempt instruction, the PU issuing the instruction will incur a delay (which
may or may not matter) if any of the target PUs is interrupt/trap disabled. To
minimize this delay, the operating system may elect to preempt one PU at a
time, using the information in the Global Status Register (Figure 5.3) to
determine if a prospective target is enabled or disabled. (While the target's state
may change between the time it was examined and the time at which the
Preempt instruction is issued, so that a delay occurs anyway, the average delay
can be reduced in this way.)

The operating system uses the Preempt instruction primarily to interrupt
execution of other PUs when initiating an address space switch: a message area
in memory is used to advise preempted PUs of the reason for preemption. The
operating system also may preempt PUs in preparation for parallel execution of
some system task. (However, the trap overhead must be considered when
specifying what tasks should be executed in parallel). It is expected that the
operating system will perform preemption in a critical section, so that one and
only one PU at any instant will be attempting to preempt other PUs. If PU A and
PU B both attempt to preempt PU C, either PU A or PU B, depending on
implementation, will succeed first, and the other will succeed when PU C
becomes interrupt/trap enabled once again. However, if PU A and PU B simulta­
neously attempt to preempt one another, the result is unpredictable.

Restan. The Restart instruction causes each target PU to generate and
immediately recognize a PU restart trap, regardless of whether or not the target
PU is interrupt/trap disabled. The PU Restart Trap flag is set in the Trap
Register, the PU mode is set to "system", the interrupt/trap enabled flag is
cleared, and control is transferred to the appropriate kernel entry address. If
the PU is interrupt/trap enabled when the PU Restart trap is recognized, the
contents of the PsR and PC are saved in the SaveR and PCQ registers. If the PU is
interrupt/trap disabled when the PU Restart trap is recognized, the contents of
the PsR and PC are not saved, and the contents of the SaveR and PCQ registers
upon transfer to the kernel interrupt/trap entry address are unpredictable.

The Restart instruction is used to restart execution after a fatal error has
been detected. A fatal error may be detected by hardware (and reported via a
non-maskable interrupt or by the PU Check Trap) or by software (as when the
kernel decides that a program is in an infinite loop). In such cases, execution in
the currently-active address space is terminated: it usually is desirable to save
as much state as possible for subsequent error analysis. A hardware-detected
error generates either a non-maskable interrupt (Machine Check. Power /Temp.
or Deadlock), which always iS presented to and recognized by PU O, or a PU
Check Trap. which is presented to the PU causing the PU Check. If PU O was
interrupt/trap disabled at the time a non-maskable interrupt is recognized and
its PCQ Enable flag is cleared, its PsR and PC contents are lost. A PU Check Trap
is generated when a trap (other than a PU Preempt Trap) iS generated on a PU
which iS interrupt/trap disabled. The PU's PsR and PC contents are lost if its
PCQ Enable flag is cleared when the trap occurs.

Apple Computer Confidential 5-7

Inter-PU Communication and Coordination

.· .. ·.·.· .. ·.·.·.··.···.· . . . - .. · - · .. ·.· .. ·.·.·,·.·.· - · .. · .. ·.·.·.· .. ·•. ·.·.-.·.·.·.·---···-·.·.·.·-·.··.·.·.·.• . ·- -.- - .. ·.·.·-· ··.·.·-·- ... 3f~ö:°Î,J};\/ >:: .. · .·.· >:\?tt,t<t>::n::::}<: :::tW~1:;t\? :¡:/\~ii :<>>>>tï< :U:'::'t.:::4::át:>::\> :·•o<

system mode semaphore halt wait user/ int/trap
user mode semaphore state state system enabled

PU state & mode flags

Fl,are 5.3. Global Status Register (GSR)

When an interrupt or a trap indicating a fatal error is recognized, the PU on
which it is recognized begins the process of terminating execution in the current
address space. If other PUs are interrupt/trap enabled when the error occurs,
this PU can interrupt their execution using the Preempt instruction. In this
case, these PUs can save their PsR and PC contents to aid in error analysis. If
any PU is interrupt/trap disabled, it can be interrupted via the Restart
instruction: in this case, however, the current PU's PsR and PC contents can be
saved only if the PU has its PCQ Enable flag set. See The PCQ Enable Flag in
Section 4.6.

5.4 Semaphore Instructions
Lock and Unlock. In addition to using broadcast instructions, PUs can

coordinate their activities by means of semaphore instructions. The Global
Status Register (Figure 5.3) contains two semaphores, a user mode semaphore
(bit <31>) and a system mode semaphore (bit <30>). Semaphore operations are
performed by Lock and Unlock instructions, whose form is simply

Lock
Unlit

If the PU issuing a Lock or Unlock instruction is in user mode (PsR bit < 13> =
"1 '1. these instructions operate on the user mode semaphore. GSR bit <31>. If the
PU is in system mode, these instructions operate on the system mode
semaphore, GSR bit <30>.

The Lock instruction examines the appropriate (user mode or system mode)
semaphore: if the semaphore is set (semaphore bit = "1 "), it is cleared (locked)
and Lock instruction execution completes. If the semaphore init1ally is cleared,
Lock instruction execution is blocked until the semaphore becomes set: the
semaphore then is cleared and Lock instruction execution completes.

The Unlock instruction unconditionally sets the appropriate (user mode or
system mode) semaphore. The PU unlocking a semaphore may or may not be the
PU which originally locked it.

Service Order. Multiple PUs may attempt to lock an already-locked
semaphore, in which case execution on these PUs are blocked until the sema-

Apple Computer Confidential 5-8

Inter-PU Communication and Coordination

phore is unlocked. On execution of an Unlock instruction. one of the blocked
PUs is selected and its Lock instruction allowed to complete. locking the
semaphore again: the remaining PU wait for a subsequent unlockíng, The order
in which waiting PUs are granted a semaphore upon its unlocking is
implementation-dependent. For correct operation. code should not rely. on the
order in which semaphore lock requests are serviced.

Antares uses a grouping scheme to provide fair service to semaphore
requestors. If a semaphore is initially unlocked with no waiting requests. and
then is locked, Antares records the number of each PU which, during that locked
interval, attempts to lock the semaphore. These PUs comprise a group, or batch.
When the semaphore is unlocked, it is granted next to the lowest-numbered PU
in this group: no other PU is allowed to join the group until all PUs in the group
have· been granted the semaphore. Thus, all requests arrMng during the first
locked interval are processed before any arriving during later lock intervals.
For example, suppose a semaphore is unlocked with no waiting requests when
PU O executes a Lock instruction. Before PU O unlocks the semaphore, PU 3 and
later PU 2 generate requests (ì.e., initiate Lock instructions). When PU O unlocks
the semaphore, PUs 2 and 3 are marked as comprising the group to receive
service, and the semaphore is granted to PU 2. Suppose PU I and later PU O
generate requests before PU 2 unlocks the semaphore; their requests are ignored
until PU 2 has unlocked the semaphore and PU 3 locked it. At that point, all the
PUs in the original group have received service, and PUs 1 and O now can join
the group.

Applications. Semaphore instructions are used to serialize execution of
critical regions and control access to data structures. For example, when a PU
begins saving state following recognition of an interrupt or a trap, it saves the
contents of one general register in the global Scratch Register (the ScR, special
register I O) and uses that general register to establish the memory address at
which general registers are to be stored. Since several PUs simultaneously can
be attempting to save state and there is only one Scratch Register, general
register saving is done in a critical section such as that outlined below.

lock begin critical section
movts 0,10 ; (RO) -> ScR
pfxi º"
ldi --, o save area address -> RO
stm 15, [O] store registers 1-15
movfs 10,1 retrieve original (RO)
unlk ; free ScR

adjust address & store (RO)

The operating system will require more than the single lock per mode
provided by the architecture. Operating system locks can be implemented in
various ways, using Lock and Unlock instructions to control software lock
access. Spin locks (which require a waiting PU to repeatedly read a memory
location until the contents of the location change state) cause cache access
contention and should be avoided.

Apple Computer Confident/al 5-9

Inter-PU Communication and Coordination

If necessary, additional semaphores can be added without great difftculty by
adding semaphore bits in the GSR and defining instructions to operate on these
bits. For example, if another pair (user mode and system mode) of semaphores is
added, the current Lock instruction would become Lockl and a second Lock
instruction, Lock2, would be added to the instruction set. Unlock instructions
would be handled in the same way.

5.5 PU States & Deadlock Detection
PU States. The Global Status Register (Figure 5.3) contains. in addition to

semaphores, four flags for each PU: a Halt flag, a Wait flag, a Mode flag, and an
Enabled flag. The Halt flag is a copy of the PU's Halt flag. PsR bit <24>, the Mode
flag is a copy of the PU's User/System Mode flag. PsR bit <13>, and the Enabled
flag is a copy of the PU's Interrupt/Trap Enabled flag. PsR bit <15>. The Wait flag
is set to "l" whenever a PU begins waiting as the result of issuing a broadcast or
semaphore instruction. GSR bit positions of these flags for the four PUs are as
follows.

Halt flag
Wait flag
Mode flag

Enabled flag

flLll
12
8
4
o

fll..l
13
9
5
1

zua
14
10
6
2

zua
15
11
7
3

From an execution viewpoint. a PU has three states: run. wait, and halt. These
states are reflected by the Halt and Wait flags in the GSR. as follows.

Hall watt ru state
"O"
"O"
"l"
"l"

"O"
"l"
"O"
"l"

run
wait
halt
invalid

These states are described below.
run state. A PU is in run state while it is executing instructions, even though

instruction execution may be temporarily delayed (stalled) because of resource conflicts
or cache line misses. (An event counter can be used to count the number of cycles a PU is
in run state or, equivalently, is active in either system mode or user mode, or in both
modes; see Chapter 7.)

halt state. A PU is in halt state when the Halt flag in its PsR is set, either
because the PU executed a Wait instruction with its own number specified in the
PU Mask field or because the kernel set the Halt flag in the PU's SaveR before
executing an Rtl pair. A PU exits halt state when it is the target of a Start or a
Resume instruction or when an interrupt or an inter-PU trap is recognized . 4

4 Antares requires that all targets of a Start or Resume Instruction be halted
simultaneously before the start or resume operation ls performed. ln Antares, then, a
target PU effectively remains ln halt state until the Start or Resume completes execution.

Apple Computer Confidential 5-10

Inter-PU Communication and Coordination

wait state. A PU is in wait state when execution of an instruction is
suspended waiting for an activating signal from some other PU or waiting for a
semaphore to become unlocked. The activating signal may represent (a) an
information transfer or (b) a change in the state of other PUs. An information
transfer either is an instruction address value sent by a Start instruction (or,
implicitly, by a Resume instruction) or a data value sent by a Send instruction.
A PU enters wait state for one of the following reasons.

• halt watt It initiates execution of a Start or a Resume instruc­
tion and all target PUs are not in halt state. It returns to run state
when all target PUs have halted and then had the start address
broadcast to them or received the resume signal.
• receive wait. It initiates execution of a Send instruction and all
target PUs are not in wait state attempting to receive data. It
returns to run state when the data value has been received by each
target PU.
• send wait. It initiates execution of a Receive instruction and
some other PU is not already attempting to send data to this PU. It
returns to run state upon receipt of the data value. 5
• Join wait. It initiates execution of of a wait instruction and all
target PUs are not in halt state. It returns to run state when all
target PUs are, jointly, in halt state.
• semaphore wait. It initiates execution of a Lock instruction
and the semaphore flag already is locked. It returns to run state
when execution of a Unlock instruction by some other PU releases
the semaphore and the semaphore is then granted to the waiting
PU.
• preempt wait. It initiates execution of a Preempt instruction
and all target PUs are not interrupt/trap enabled. It returns to run
state when all target PUs have been recognized the PU Preempt
trap.6

State Change Delay. The PU state flags in the GSR are copies of local
flags. and may be time-delayed in reflecting state changes. This delay. which
represents the time required to propagate state changes from a PU to the GSR is
implementation-dependent, and typically will be on the order of 1 or 2 cycles.

Deadlock Detection. A deadlock occurs when all four PUs are in halt or
wait state (i.e., when at least one PU is not in run state) for some period of Ume.
This period depends on the state change delay described above. The GSR is
monitored by hardware which, upon detecting deadlock, generates a Deadlock

5Antares requires that all targets of a Send be simultaneously receiving before the data
value ls broadcast.
6Antares requires that all targets of a Preempt be simultaneously Interrupt/trap enabled
before the preempt operation takes place.

Apple Computer Confident/al 5·11

Inter-PU Communication and Coordination

interrupt. This interrupt is non-maskable and is presented to and immediately
recognised by PU O.

To isolate the program error which caused the deadlock. it is useful to
determine the address of the current instruction for each of the four PU s. This is
easily done for PUs which were interrupt/trap enabled when the Deadlock
interrupt was recognized. An interrupt/trap enabled PU can be activated via a
Preempt instruction, and that PU's PCQ(l) register provides the address of the
instruction which the PU was attempting to execute when the deadlock occurred.
If current instruction addresses can be obtained for all four PUs, it usually is
straightforward to determine why the deadlock occurred. If PU O is
interrupt/trap disabled when the Deadlock interrupt is recognized, the PsR and
PC contents are not saved, making analysis more difficult. Similarly, if any of
the other PUs are interrupt/trap disabled, PU O will have to activate those PUs
via a Restart instruction, and their PsR and PC contents will be lost. Before
dealing with the other PUs, PU O should save the contents of the GSR. so that it
can be at least determined whether a PU was in halt state or wait state.

Apple Computer Confident/al 5-12

Rev.1.0 (12/88)

6. Cache Control Operations

')

6.1 Introduction
The Scorpius instruction and data caches are architecturally visible at both

system and user levels. Instructions are provided to control certain aspects of
cache operation in order to insure correct operation and also to improve
performance. This chapter provides a brief introduction to cache organization,
using the Antares cache as an example, and then describes the various cache
control instructions.

While caches are architecturally visible, substantial differences among
implementations are possible; only the line size of 64 bytes must be maintain­
ed. It is possible that an implementation might have a single composite cache
holding both instructions and data (although unlikely, for performance
reasons). The semantics of certain instructions may differ in different imple­
mentations, particularly for those instructions used to flush part or all of a
cache on an address space switch or termination; the operating system may
require model-dependent code to perform certain of its functions. However, at
the user level, code which operates correctly on a Scorpius CPU with separate
instruction and data caches is guaranteed to operate correctly on all imple­
mentations of the Scorpius architecture.

6.2 Cache Organization
A cache is a buffer placed in the data path between a processor and memory. It is

constructed of faster (and more expensive) components than memory, and its capacity is
small compared to that of memory. When a processor reads a word not in the cache (a
cache miss), a block of words, called a line, is transferred from memory to the cache,
and the requested word transferred from the cache to the processor. While a line may
be as small as one word, it almost always is larger for two reasons. First, a larger line
size often permits the overhead (memory access time, etc.) involved in the memory- u
Apple Computer Confident/al 6-1

Cache Control Operations

CACHE
·····.··.· .. :-::.-::-:••'::::::::::·:::: .. -:··: .. ,··.:::.:::-:.::::.::/.::.: .. ,: ... ·.'···.'::-•:•:•:•·.:,::¡

~t---+------+--------1

:.:e·:-: ._.·:·r•.--::.':·.}}.:'_t:.:•·.: .· ·:··:· .. :-::,·::•.,··.• .. : .. ·'···'···'f'''··

add~esa~ line (64 bytes)
\ I T

tag

4
lines
per
set

select
1 of 16
sets

hit or
miss

31

22 Virtual Address
'':-r':'.: :-,:,·,:.-::, .. :; .

T

tag field _J

Fl.pre 8.1. Cache Address Mapping in Antares

cache transfer to be amortized over a number of words. Second, programs usually evi­
dence spatial locality; words near the word currently being read are more likely to be
read in the immediate future than are words in more distant locations. Most programs
also evidence temporal locality; words read by the most recently executed instructions
are more likely to be read again in the future than are words not read by those
instructions. Since the time required to access a word in the cache is much less
than the time required to access a word in memory, a combination of spatial
and temporal locality can substantially improve performance.! Generally, the
spatial and temporal localities of code are greater than those of data.
Sometimes data can have considerable spatial locality but little temporal
locality, as in certain vector operations. When neither spatial locality nor
temporal locality exists, the cache can degrade performance: Scorpius permits
the cache to be bypassed by declaring a page or pages to be non-cacheable (see
Chapter 3).

Inie programmer, through careful design of program and data structures, can enhance
both temporal and spatial locality.

Apple Computer Confidential 6-2

Cache Control Operations

)

As long as the words of a cache line are only read by the processor. the
contents of that line's location in the cache are identical to the contents of that
line in memory. However, as soon as a processor writes to one of the words in
that line, the cache and memory copies differ. This is the coherence problem,
which arises whenever multiple copies of data can exist in a way such that
changing the value of one copy does not change the value of all copies. Some
system designs attempt to ease the cache coherence problem by using a store­
through, or write-through. cache; whenever the processor writes a word (ì.e.,
executes a store instruction), the word is written to the cache, if the line in which
the word is located is in the cache, and also to memory. Other system designs,
including Antares, use a store-to, copy-back, or write-back, cache; processor
writes are directed only to the cache, and a line containing modified words is, in
most case, written to memory only when its cache space is need for other data.
Store-through designs can generate substantially more memory traffic than
store-to designs, with consequent impact on performance, Since memory is not
kept current with the cache, store-to designs require that coherence be main­
tained by other means. The Scorpius architecture assumes that coherence, when
necessary, is maintained by software, and provides supporting instructions.

From the viewpoint of the cache, memory is divided into lines of 16 words
which start on line boundaries; í.e., the low-order six bits of the address of the
first word of a line are zero. The Antares instruction and data caches are
identical (except that a PU cannot store into the instruction cache); each has a
capacity of 64 lines (4K bytes). The cache (instruction or data) is organized into
16 sets of 4 line locations (Figure 6.1). Any memory line maps into one and only
one set, but can be stored in any one of the 4 line locations in that set.
Associated with each cache line location is a tag comprising address and flag
fields. The address field, or address tag, contains bits <31:10> of the virtual
address of the memory line stored in the cache line location; the flag field
contains a valid bit, a modified (or dirty) bit, a system/user bit, a read-only bit,
and least-recently-used (LRU) bits. The valid bit can be cleared by certain cache
control instructions (and also ts cleared on system powerup). The modified bit is
not used by the instruction cache; lt ts set by the data cache when a store
instruction modifies a word or a byte of the line. The system/user and read-only
bits are inherited from the page table entry of the page in which the line is
located. The LRU bits record the relative recency of reference of each of the four
lines ln a set. and are used to select which of the four is to be replaced when a new
memory line must be read into that cache line set. The Antares cache is called a
fot.a"-way set assoctattve cache because an address is associated with each line of
a set so that any memory line mapping to a set can be stored in any of the set's
four line locations.

Note that no address space number is stored with a cache line in Antares.
Consequently. it is necessary to flush the cache on an address space switch or
termination. (For the relatively small caches of Antares. this has little per­
formance impact. since all cache lines usuàlly would be replaced anyway.)

Apple Computer Confident/al 6-3

Cache Control Operations

Figure 6.1 shows how a cache line location is selected on a cache instruction
or data access. The low-order six bits of the instruction or data address are used
to select the desired byte, halfword, or word from the line, once the correct line
has been found. Bits <9:6> of the virtual address are used to select one of the
sixteen sets of lines. Once a set has been selected, the address tags of each of the
four line locations in that set are compared, simultaneously, with bits <31: 10>
of the virtual address. If the address tag associated with one of the four line
locations matches the tag field bits of the instruction or data address, a cache hit
has occurred; the instruction or data unit is read from or written to the cache,
and the LRU bits are updated. If none of the address tags match the tag bits of the
address, a cache miss ocCUIS.

In processing a miss, the cache control hardware selects one of the lines
from the set selected by the instruction or data address for replacement. In
Antares. a line marked invalid is selected if one exists; otherwise, the least­
recently-used line (referenced by a load or store mstructlon) is selected, using the
LRU bits in the flag field associated with the line's location. If the line selected
for replacement is not modißed, the missing line can be read directly into that
line location. If that line is modified, it must be written before it can be
replaced. In Antares, when a modified line must be replaced, it is written to a
Write Buffer, the missing line is moved tn from memory to the vacated cache
line location, and the modißed line then is written - moved out - to memory.
When a line has been moved in, the address tag and flags of the cache line
location are updated.

Cache designs for other Scorpius implementations may differ from the
Antares cache design in every aspect except line size. Future implementations
can be expected to have larger instruction and data caches which are not
necessarily equal in size. A larger virtual-addressed cache may incorporate
address space numbers in its tag to eliminate the need to flush the cache on an
address space switch. The number of lines per set (sometimes called the degree of
associativity) may change, and line replacement algorithms other than LRU
may be used. 2 It also is possible that future implementations may incorporate a
real-addressed cache rather than a virtual-addressed cache, which eliminates
the synonym problem. 3 This problem arises when one real page ls mapped to
more than one virtual page. When this occurs, a virtual-addressed cache can
have multiple copies of the same line; modifying one copy does not modify the
others. In Scorpius, the resolution of the synonym problem is the responsibility
of software (see Section 3.8).

2A cache whose degree ofasaoclattvtty Is 1 (any gtven memoiy line maps into one and only
one cache line location) Is called a d1rect-mapped cache.
3However, a real-addressed cache requires address translation to be done prior to (or at
least parallel with) cache address tag comparison. ln Antares, all four PUs can
simultaneously access the data cache (and Instruction cache as well); lt is easier to support
simultaneous address tag comparisons for four accesses than lt ls to support four
simultaneous address translations.

Apple Computer Confidential 6-4

Cache Control Operations

6.3 Cache Line Control
Cache line control instructions permit both system and user to force data

cache lines to be written to memory. mark data cache lines unmodíñed or
invalid, mark instruction cache lines invalid, and create data cache lines. All
cache line control instructions specify their operand -a memory line - via a
byte address in a general register: with the exception of the Invalidate
Instruction Cache line instruction, this address can be prefixed. If the Prefix
Valid flag is "O", the address in the specified general register are used as the
operand address. If the Prefix Valid flag is "l", the contents of the Prefix Register
are shifted left two places and added to the address in the general register to form
the operand address. (The prefix is a signed word displacement from the register
address.) Bits <31:6> of the operand address identify the memory line: bits
<5:0> are ignored.

The Create Data Cache line instruction CDC creates a memory line in the
data cache without causing the line to be moved in from memory if missing. The
data cache set into which the memory line maps is examined: if the specified
line already is in that set, CDC completes execution. If the line is not found in
that set, the line location of thé least recently used line in the set is selected. and
the line presently in that location is written to memory if it is modifled. The
address tag at that line location is set to bits <31: 10> of the address of the line to
be created, the system/user flag bit is set to the value of the system/user flag bit
in the page table entry for the page in which the line resides. and the remaining
flag bits are set so as to mark the line valid and unmodifled.

In executing a CDC instruction, the TB /1LB is searched to determine if a
translation is present for the page in which the line to be created is located. If a
translation is not present. a TB/1LB miss occurs and the page table entry for
that page is located and read. (Section 3. 7 describes TB miss processmg.) If
either the page table entry or its associated directory entry is invalid, a data page
fault trap is generated. and the page address is stored in the Trap Register. CDC
is the only cache control instruction which can cause a page fault.

The CDC instruction is used to eliminate the overhead of a movein when a
memory line is to be completely rewritten. Because a cache line is created
without clearing the line. the contents of the newly-created line are those of the
line it replaced. This creates a security exposure: programs which deal with
secure data should. before terminating, insure the cache no longer contains that
data. One possibility is for the operating system to provide an model-dependent
"erase" service function. This function, which would be aware of the degree of
associativity. would simply read empty lines into the appropriate set. The
simplest solution is to place secure data in a non-cacheable page.

Four instructions are provided to dispose of data cache lines: Flush,
Invalidate, Update. and Validate Data Cache line. These differ in whether or not
they cause the specified line to be written to memory if modified and 1n whether
the final state of the line is invalid or valid and unmodified. The functions of
these instructions are summarized in the following table.

Apple Computer Confident/al 6-5

Cache Control Operations

write line to final state of
lmitn!gJan mncmanit IDCIDQŒ 11: madl1:tcd2 ta~hc 11nc

Flush Data Cache line FDC y invalid
Invalidate Data Cache line mc N invalid
Update Data Cache line tJDC y unmodified
Validate Data Cache line VDC N unmodified

No operation is performed by these instructions if the specilled line is not in the
cache.

FDC (ortJDC. depending on the flnal line state desired) can be used to insure
that lines of an output buffer are written to memory before an IO operation is
performed. VDC can be used to save unnecessary moveouts by marking "scratch"
lines unmodified. In Antares, CDC and FDC are used together to flush the data
cache's Write Buffer; see Section 3.6.

The Invalidate Instruction Cache line Instruction UC marks the specifled
Instruction cache line invalid; it performs no operation if the specified line is
not in the cache. UC and FDC can be used to control Instruction cache/data
cache synonyms. One case in which such synonyms occur is in interpretive
execution. In this case. the interpreter builds a line of code in the data cache,
executes a FDC instruction to write the code line from the data cache to memory.
executes an UC Instruction to Insure that any previous copy of the line which
might be present in the instruction cache is invalidated, and then transfers
control to the code line, causing the newly updated memory line to be moved into
the instruction cache (see Section 3.8). In Antares, when an instruction cache
line is invalidated, the Instruction queues of the pipelines of one or more PUs
may contain instructions from that line, depending on the line's location and
recency of use. In this situation, it is necessary to flush the Instruction queue of
any suspect PU. A PUs instruction queue is flushed when the PU executes a
Jump instruction, is the target of a Start (but not a Resume) instruction. or is
dispatched on return from interrupt.

In deallocating a page, the DC and FDC instructions can be used to invalidate
the lines of that page 1n the Instruction and data caches. 4 Since a 8KB page
comprises 128 lines, this requires 128 executions of both the IIC and FDC
instructions if the page contains both Instructions and data. The code· required
can be parallelized. In Antares, it may be faster to invalidate the entire instruc­
tion cache using the Invalidate Instruction Cache (DCA) instruction described in
Section 6.5. The choice depends on the expected reuse of instruction cache lines
(ì.e., the number of lines which will have to be moved back in again if the entire
instruction cache is invalidated).

4subsequent versions of the architecture may provide flush/invalidate page instructions.

Apple Computer Confidential 6-6

Cache Control Operations

6.4 Prefetchlng
When a missing line is accessed, execution of the accessing instruction is

delayed until the line has been moved in. When it is lmown that a memory line
will be used in the near future, and that line is not likely to be already in the
cache, some or all of the cache miss delay can be avoided by prefetching that
line.5

Scorpius provides a Prefetch Data Cache line (PDC) instruction which can be
used to pref etch lines into the data cache in advance of their use. PDC specifies
its operand- a memory line - via a byte address in a general register. This
address can be prefixed. If the Preßx Valid flag is "O", the address in the specified
general register is used as the operand address. If the Preßx Valid flag is "l", the
contents of the Prefix Register are shifted left two places and added to the
address in the general register to form the operand address. (The preßx provides
a signed word displacement from the register address.) Bits <31:6> of the
operand address specify the memory line. and bits <5:0> arc ~ored

If the memory line spedfted by the operand address Is not already in the data
cache. PDC causes a memory request to be initiated for that line and completes
execution without waiting for the line to be moved in. 6 A cache line is selected
for replacement in the same way as a normal (demand) miss. If the specilled line
is in the cache. no operation is performed,

6.5 Cache Invalidation ln Antares
All Scorpius implementations require some means of invalidating part or

all of a cache's contents when certain events occur. These events include
deallocation of a page from an address space. address space termination. and,
for caches like those of Antares whose contents arc not distinguished by address
space number. address space swttchtng. Different implementations may pro­
vide dífferent instructions or different instruction operation. requiring model­
dependent code on the part of the operating system. This section describes
Antares cache invalidation instructions and operation. These events also
require invalidation of the Translation Buffer. as discussed in Section 3.6.

5nie Ume required to process a miss depends on the implementation, and includes delays
resulting from cache and memory bus conflicts as well as memory access and transfer
times. ln Antares, the nomtnal movetn time - the time required to process a miss ln the
absence of confiict delays - ls 15 cycles. Antares begins the moveln with the word
accessed on the miss, and that word ls forwarded to the accessing PU before the entire Une
ls moved ln. This reduces the delay for the accessed word to 8 cycles (Ignoring conflicts);
however, a subsequent access to another word of the line must watt for the moveln to
complete. Insofar as scheduling of prefetch Instructions on Antares ls concerned, lt ls
desirable to lnltlate prefetch of a line at least 15 cycles before the Une ls used: however,
any lead time ln prefetchtng a line can help performance ln many instances.
61n Antares, if a cache miss occurs on an access of a subsequently-issued Instruction and
the memory transfer for the prefetch request has not yet been tnítíated, the prefetch
request ls discarded.

Apple Computer Confidential 6-7

Cache Control Operations

Instruction Cache. All lines in the Antares instruction cache belong to the
user space portion of the currently-active address space (the address space whose
number is contained in the ASN field of the Id Register) or to the kernel, which is
mapped into every address space. The Invalidate Instruction Cache (IICA)
instruction marks all instruction cache lines. both user space and kernel space,
invalid. When the operating system deallocates a user space page, it must
invalidate all lines of that page which are in the instruction cache. There are
two alternatives: an DCA instruction can be used to invalidate all the lines in
the instruction cache, or 128 DC instructions can be used to invalidate indMd­
ual lines of the page, as discussed in Section 6.3.

On an address space switch or termination, the DCA instruction is used to
invalidate the instruction cache Also, the instruction queues of the pipelines of
all the PUs may contain instructions fetched from the old address space, and
these instructions must be flushed from the queues. The following procedure
can be used.

1. Assume PU O is controll1ng the address switch or termination
and PUs 1-3 are halted. To flush the instruction queues of PUs 1-
3, their execution must be reinitfated after the new address space
has been established either by a Start instruction or by being
dispatched to a new address ü.e., by setting a new address in the
PCQ prior to returning from interrupt).
2. PU O then executes an IICA instruction· to invalidate the
instruction cache, followed immediately by a Jmp instruction to
flush its instruction queue.

While the IICA instruction is non-privileged in Antares, it may become
privileged in later implementations. Also, the cache invalidation process is
implementation-dependent. Consequently. instruction cache invalidation
should be done only by the operating system, and the invalidation function
should be isolated for ease in updating to new models.

Data Cache. Data cache invalidation differs somewhat from instruction
cache tnvalidation because data cache lines can be modißed, and modified lines
must be written to memory before their cache line location can be marked
invalid. It ts not possible to invalidate the data cache with a single Instruction,
as can be done with the instruction cache: however, lt is possible to examine the
tag associated with each data cache line using the Read Data Tag by Index
instruction.

From the view of the Read Data Tag by Index (RDTX) instruction, the data
cache is an array of 64 lines Indexed 0-63. The RDTX Instruction spectßes a line
index as its operand address, and receives as its result the tag of the
corresponding cache line location. The line index is contained in bits <9:4> of a
general register: as shown in Figure 6.2(a). bits <9:6> specify one of the sixteen
sets, while bits <5:4> select one of the four lines in the selected set. The result is
returned 1n a second general register, as shown in Figure 6.2(b). The result
register contains the address tag (bits 31: 10> of the virtual address of the line

Apple Computer Confidential 6·8

Cache Control Operations

:;::::irI:::::I::::::rr;::,;=;:::;:::::\:;::::::::::;;:: :::;:;;::;:::::::::;;::::;:;:;:::::::::::::::::::::::>t::::\:::;:,:::::::::::::: ::::::::::::::::::\:=á>:<:::::>::::ir:\t:io.:•t::::: :'.::>\:::::::;:¡/{ti :itt::::::::::::]:J1\¡¡;::;

J .. l.ll.l.l.l .. !.·.l .. i.li ... l U ! .. ti.! .. ,l.U:~; .. Mtl
select 1 __J L select 1 of 4

of 16 se1s set elements
(a). Operand Address

address tag flags
(b). Result

l't,ure 8.2. RTDX lnstruct1on Operand and Result

stored 1n the speclfted location) 1n bits <31: 10> together with the read-only,
system/user, valid, and modißed flag bits from the tag ln bits <9:6>. (The LRU
bits are not returned.)

The flags are Interpreted as follows.
R read-only flag (result register bit <9>). This flag is inherited

from the page table entry for the page 1n which the cache
line is located: it ts "l" if the page is read-only and "O"
otherwise.

S system/user flag (result register bit <8>). This flag also ts
inherited from the page table entry for the page ln which the
cache line is located: it is "l" if the page can be accessed only
system mode and "O" if the page can be accessed 1n both
system and user modes.

V valid flag (result register bit <7>). This flag ts "l" if the
contents of the cache line location are valid and "O" other­
wise.

D dirty flag (result register bit <6>). This flag ts "l" if the line
1n this location has been modified since being moved ln or
since being marked unmodißed by a UDC or VDC instruc­
tion.

The settings of the R. s. and D flags are valid only if V = "l ", so this flag should be
examined first. If the line 1n the specified location ts valid, the address of that
line ts formed by concatenating the address tag from the result register with the
set number from the operand address register and setting the low-order six bits

Apple Computer Confidential 6-9

Cache Control Operations

of the address to "O". (The last is not necessary If the address is to be used as the
operand address of a cache line control instruction, since these instruction
:Ignore the low-order six bits of an address)

Invalidation of the data cache lines of a single page can be effected by
executing 128 FDC instructions, as discussed earlier. It also can be done by
reading the tags of the 64 lines in the data cache using RDTX, verifying that the
corresponding line is valid, determintng if the address tag falls with the page,
and, If it does, forming the line address from the address tag and set number and
executing an FDC instruction to dispose of the line. The first method is more
efficient and is Independent of cache size. However, performance ln any case is
determined primarily by the number of modJfled lines which have to be written
to memory.

To tnvalidate the data cache, the tag of each cache line location is read via an
RDTX instruction and checked for validity. If the line in a location is valid, an
FDC instruction is executed to write the line to memory (If necessary) and mark
the location Invalid. In performing this process, the kernel can check the
virtual address and avoid invalidating its own lines. In Antares, it is not
necessary to check the validity of a cache line location's contents prior to
executing the FDC instruction; the FDC instruction should not carry out any
operation when its operand address maps to and generates a tag match with a
cache line location which is marked invalid. However, this check is a safety
measure and is required If the virtual address from the tag is to be checked
against kernel region addresses.

Future implementations of the Scorpius architecture may have virtually­
addressed caches in which ASNs are Incorporated ln cache line tags. With this
extension, a cache access results in a ''hit" only if the virtual address associated
with the access matches the virtual address field of a cache line tag .and the ASN
field from that tag matches the ASN field of the IdR (i.e., the line "belongs" to the
currently-active address space). In such Implementations, lt ls not necessary to
flush the cache on a task switch, because all cache lines are uniquely identified.
However, it is still necessary to be able to Invalidate cache lines on address space
termination so that the address space number can be safely reused, so RDTX (or a
similar, possibly background, mechanism) still is required. It now is necessary
to clist1nguJsh between lines with the same virtual address but different ASNs.
RDTZ instruction compatibility between Antares and future implementations
with larger caches which incorporate ASNs in cache line tags can be achieved If
the RDTX deO.nition is extended so that the valid flag, as returned by RDTX, is "1"
only if (a) the valid bit in the cache line tag is "l" mid (b) the ASN field in the tag
matches the ASN field in the IdR. The kernel's invalidation code then can use
the valid flag to bypass invalidation of lines not belonging to the currently­
active address space. However, since FDC should operate only on valid lines
belonging to the currently active address space, it also should be possible to
simply read the tag for each line location, form the address of the line in that
location (without regard to validity), and flush and invalidate the line via an
FDC instruction.

Apple Computer Confident/al 6-10

Rev . 1.0 (12/88)

7. Measurement Facilities

7.1 Introduction
Scorpius provides two event counters which can be used to count cache

moveins and moveouts. Translation Buffer (TB) misses. total cycles. active
cycles for a PU, and instructions executed by a PU. These counts can be collected
in user mode, system mode, or in both modes. Using these counts, the
programmer can, for example, measure the level of parallelism realized by an
application. or the number of instructions and cache moveins and moveouts
required to accomplish some task. These measurements provide a means of
evaluting the effect on performance of application program and operating
system changes. It is expected that the operating system will provide system
services for selecting events to be counted, Initializing counters, and reporting
counts.

This chapter describes the event counters and their controls, and briefly
discusses the collection and interpretation of measurement data.

7.2 Event Counters and Their Controls
Event Counters 1 and 2 are special registers 8 and 9. These are 32-bit global,

priVileged, registers whose contents can be read or written Via Move From
Special and Move To Special instructions. By setting flags in the EvCtlrl and
EvCtlr2 flelds of the Interrupt Control Register (ICR), these counters can be used
to count various events.

Counts are 32-bit unsigned quantities: an event counter can count
approximately 4.3 billion events before overflowing. When an event counter
overflows, an Event Counter Overllow interrupt is generated if the Event
Counter Overflow Interrupt Enable flag for that counter in the ICR is set to "I". If
the Overflow Interrupt Enable for the counter is "O". the overflow simply is
ignored. In either case, the counter ''wraps around" and continues to count.
Upon recognition of the interrupt, a pending interrupt flag indicates that an

Apple Computer Confident/al 7-1

Measurement Fac/I/ties

•::,:sf\H\t ?>::r\:::\~:::~,:2tr:>>:t::/:: :<r:::>/}tâ!::'+tD<:>L>< ::>:;i:\H\/ \<\/\ :\::a.·¡::,: ~<i':i/:/ : ··o<:·

Pending Rupia ::~~-~ Eveb11 Eveb12 ~~- >

[
············ ············ .

> E:::2~~;§¡~~i;;;;
Event Counter 1 Overflow Interrupt Pending flag

Ft¡are 7.1. Event Counter Control Fields & Interrupt Enable/Pending Flags in
the ICR

(a) MMU Events Selected

~= = !ílllill:l/1111111 11111} =
~=-=:::: ~IT~ ==~~;,v

(count nothing if both mode
selection bi1B are -c,i

(b) PU Eventa Selected

l'l,me 7 .2. Event Counter Controls

Apple Computer Confidential 7-2

Measurement Fac/I/ties

event counter overllow has occurred and identlftes the overflowtng counter. The
Event Counter Overflow Interrupt Enable flags for counters 1 and 2 are ICR bits
<4> and <3>. respectively. The Event Counter Overflow Interrupt Pending flags
are ICR bits <26> and <25>. respectively. These flags. together with EvCtlr field
positions. are shown in Figure 7 .1. Interrupt generation. presentation. and
recognition are discussed in Section 4.3. In most cases. event counter overflow
interrupt processing simply is a matter of incrementing a software counter. and
most measurements will be made without counter overflow occurring. However,
it is possible to use an event counter as an interval timer of sorts. so that an
interrupt is generated after. for example, a specified number of instructions
have been executed. as discussed later in this chapter.

The events to be counted by a particular counter are specilled by setting the
appropriate bits in the corresponding EvCtlr field in the ICR The EvCtlr 1 field,
ICR bits <17: 12>. controls Event Counter 1, and the EvCtlr2 field, ICR bits
<11:6>. controls Event Counter 2. The ICR is a privileged register which can be
accessed only in system mode. To set or clear EvCtlr field bits or the Event
Counter Overflow Interrupt Enable flags. the operating system uses the
following procedure.

1. If the PU is not already ínterrupt/trap disabled, interrupt/trap
recognition is disabled by clearing the Interrupt/Trap Enable
Flag in the PsR to "O".
2. A critical section is entered, using the Lock instruction. to
insure that only one PU is attempting ICR access. (Disabling
interrupt/trap recognition insures that the PU is not interrupted
while in this critical section.)
3. The contents of the ICR are moved into a general register via a
Move From Special instruction.
4. The desired EvCtlr field values or Event Counter Overflow
Interrupt Enable flags are set using field manipulation instruc­
tions.
5. The Pending Rupts field. bits <31:25>, is set to all "l's" to insure
that the currrent state of the pending interrupt flags will not be
changed when the ICR is written. The pending mterrupt flags. ICR
bits <31:25>, are set to "1" only by hardware and cleared to "O"
only by software. Attempting to write a "l" to a pending interrupt
flag leaves the state of the flag unchanged. I
6. The contents of the general register are written to the ICR via a
Move To Special instruction.
7. The critical section is exited.

l5ee Pending Interrupt Flag• in Section 4.3.

Apple Computer Confident/al 7-3

Measurement Facilities

Events which can be counted and the EvCtlr field values which select these
events are shown in Figure 7. 2. Events can be classíñed as MMU events or PU
events: the high-order bit of the EvCtlr field. ICR bit < 17> for EvCtlrl or ICR bit
< 11> for EvCtlr2. selects the class. If this bit is "l ". MMU events are counted: if
"O". PU events are counted. The next two bits of the EvCtlr field. ICR bits < 16: 15>
for EvCtlrl or ICR bits <11: 10> for EvCtlr2. select the mode in which events are
to be counted": "01" specifies user mode only. "10" specttles system mode only.
and "11" specifies both system and user modes. If these two bits are "00". cycles
are counted if the MMU event class was selected. and nothing is counted if the PU
event class was selected. Thus, setting the high-order three bits of the EvCtlr
field to "O" turns the counter off. Any other setting will cause the counter to run
and eventually overflow: however, an Event Counter Overflow interrupt will be
generated only the Event Counter Overflow Interrupt Enable flag for that
counter is set to "I".

The interpretation of the high-order three bits of the EvCtlr field is
summarized in the following table.

high-order
3 btts of EvCtlr tnternretatton

"000"
"001"
"010"
"Oll"
"100"
"101"

counter off
count PU events in user mode
count PU events in system mode
count PU events in user & system modes
count time in cycles
count MMU events in user mode

"110" count MMU events in system mode
"111" count MMU events in user & system modes

In the MMU event class, countable events are instruction cache moveins,
data cache moveìns, data cache moveouts, singly or in sum, and Translation
Buffer misses. Moveins are all lines read from memory (including prefetched
lines): moveouts are all lines written to memory, including modified lines
replaced on a movein and lines written to memory via a cache control
instruction When the high-order bit of the EvCtlr field ts "l", the interpretation
of the low-order three bits is as follows.

low-order
3 btts of EvÇtJr tnterpretatton tn MMU Event class

"000"
"001"
"010"
"Oll"
"100"
"101"
"110"
"111"

count TB misses
count instr. cache moveins
count data cache moveins
count both instr. & data cache moveins
count data cache moveouts
count data cache moveouts & instr. cache moveins
count data cache moveìns & moveouts
count instr. & data cache moveins & moveouts

Apple Computer Confident/al 7-4

Measurement Fac/I/ties

There is no provision for counting accesses to non-cached pages. ln Antares. a
m miss results in either one or two one-word memory reads. depending on
whether or not the directory entry is found in the Directory Buffer (see Section
3.7).

Events in the MMU event class are global, and reflect the activity of the CPU as a
whole. Events in the PU event class (high-order bit of the EvCtlr field = "O") are local
to the PU specified by the low-order two bits of the EvCtlr field. The remaining bit of
the low-order three bits selects one of the two countable events in this class: PU active
cycles or PU instructions executed.2 PU active cycles are the cycles a PU spends in run
state. A PU is in run state while executing instructions, even if instruction execution is
temporarily delayed because of (e.g.) cache misses or register interlock delays. See
Section 5.5 for a description of PU states.

On reset. the contents of the event counters are undefined and remain
undefined until explicitly written: EvCtlr field and Event Counter Overflow
Interrupt Enable flags are cleared to "O". so the counters initially are off with
overflow interrupts disabled.

7.3 The Measurement Process
The primary use of the Scorpius measurement facilities is in improving the

performance of application and system programs. For purposes of this
discussion. it is assumed that the key measure of program performance ts its
CPU execution time. Other measures. such as number of instructions executed.
number of cache moveíns and moveouts. and level of parallelism may suggest
ways in which performance can be improved. Generally, there ts no absolute
standard with which measurements can be compared. although experience with
any given implementation tends to suggest, for example, when miss rates are
"too high". The performance improvement process typically involves running
the program and collecting measurements, examining the measurements to
obtain some idea of where improvements might be made, revising the program,
rerunning the program and collecting new measurements, and comparing the
two sets of measurements to see if the anticipated performance improvement
was realized and, if not, to gain some idea why not.

Since there are only two counters, collecting all available measurements for
a particular program requires that the program be executed several times. This
makes it desirable that program execution be repeatable. in these sense that
repeated runs produce essentially identical measurement results. Not all
programs are repeatable. In particular, run-to-run differences in IO device
behavior, task switching, and other environmental aspects can affect cache

,)

2Antares counts a folded instruction pair as two instructions, and counts LdM/StM as single
instructions. When counting instructions, Antares counts by two's {i.e., increments the counter
by two after two instruction have been executed, rather than incrementing it by one after one
instruction has been executed), leaving the least significant bit of the counter unchanged from
its initial value.

Apple Computer Confident/al 1-5

Measurement Facllltles

misses and consequently program execution time. 3 Some experimentation may
be necessary to determine if this problem exists: if it does. it may be necessary to
construct a test environment in which to carry out performance evaluation.

The initial set of runs of a user-mode-only application program might
collect the following counts.

run 1: CPU time ln cycles (Tc) and movefns plus moveouts (M + W)

run 2: for PU o. instructions executed (Ko) and active cycles (Ao)

run 3: for PU 1, instructions ex:ecuted (K¡) and active cycles (Ai)
run 4: for PU 2. instructions executed (1'2) and active cycles (A2)
run 5: for PU 3, instructions executed (N3) and active cycles (As)

The following measurements can be computed from these counts.
N = total instructions executed = No + N1 + N2 + N3
A = total PU active cycles = Ao + A¡ + A2 + As
P = average number of active PUs = A/Tc
Ua == approximate memory path utilization

= ((li + W) x (mean line transfer time ln cycles))/Tc
I = mean instruction ex:ecutton time in cycles = A/N

Note that Tc = N x 1/P; program execution tlme equals the total number of
instructions executed multiplied by the mean instruction execution time.
divided by the average number of active PUs. I includes cache miss processing
tíme, and is a function of Ua, and the objective of the performance improvement
process Is to reduce Tc .

The two most important measurements are P, the average number of active
PUs, and Ua, the approximate memory path utilization. The term ''memory
path" is used to describe the serial part of the path via which lines are
transferred between the cache and memory; this includes, but is not limited to,
the memory bus and memory itself. The mean line transfer time is the average
number of cycles this serial path is busy when a line is moved in or moved out.
This tlme is implementation-dependent and, because of overlap situations.
usually will have to be estimated. Also, line transfer times for CPU +-+ local
memory and CPU +-+ remote memory transfers may differ. As defined above. Ua
ignores word transfers for non-cached pages and for directory and page table
entries read on '1B misses. For many applications, however, this approximate
value ofUa is adequate. The minimum value ofUa is O (Le., no misses occurred);
the maximum value may be 1 but often is less because a gap may be required
between successive transfers (e.g., for bus pre-charge).

3It is assumed that the kernel associates measurements with address spaces and, on an address
space switch, saves and restores the event counters, event counter controls, and counter overflow
interrupt enable flags as necessary.

Apple Computer Confidential 7-6

Measurement Fac/I/ties

)

If Us 1s close to its maximum, then performance is memory-path-limited. 4
There 1s no point in trying to improve parallelism or "tune" code in this case
(except that other implementations may not be memory path-limited). The only
way to improve performance fs to reduce the number of moveins and moveouts.
The next step. then, is to make two more runs and collect the following counts.

run 6: instr. cache moveins (li¡) and data cache moveins (Mci)

run 7: data cache moveouts (W) and 1B mtsses (Mm)
This decomposition of memory trame provides a starting point for performance
improvement efforts. Program reorganization (e.g.. moving infrequently-used
or error-handling code out of the "mainstream") can reduce instruction cache
movetns. Data structure redesign (e.g .. ustng a hash table instead of a link.ed list)
and reorganization (e.g., grouping modißed variables) can reduce data cache
moveins and moveouts.

A high Translation Buffer miss rate - on the same order of magnitude as the
cache miss rate - sometimes indicates an access ordering problem, such as a
program accessing elements of a large array in an order contrary to that array's
storage form. Tots problem usually results in high data cache miss rates as well.
Certain TB/TLB designs may evidence high miss rates because of thrashing, as
when a loop touching three particular pages executes on a CPU with a 2-way set
associative TB/1U3. (Toe Antares 1B is fully associative.)

P. the average number of active PUs, 1s a measure of the level of parallelism
realized by the application. A PU 1s inactive when it 1s halted, when it is waiting
for a broadcast instruction to be executed by some other PU. or when it is waiting
for a semaphore. Improvements in P can sometimes be realized by simple
coding changes, but at other times can be achieved only by various levels of
algorithm redesign. Compiler reference manuals may suggest programming
techniques which enhance the compiler's ability to generate parallel code. Note
that as program changes bnprove P, Tc decreases, so that even though M + W is
unchanged, Us increases.

When Us and P cannot be further improved. some additional performance
may be gained by attempting to reduce I, the mean tnstruction execution time. (It
1s assumed that N, the number of instructions executed. has been reduced as
much as possible.) Factors which effect I Include cache miss delays. branch and
prefix instruction folding (at least in Antares), general. product. and remainder
register interlock delays, and the relative frequency of multi-cycle instructions
such as Load Multiple. Reordering instructions can increase the number of
folded instructions and reduce or even eliminate register Interlock delays.

4Being memory-path-limited is not necessarily an undesirable state; in the end, performance is
limited by some resource or other. For maximum performance, use of the limiting resource
must be optimized.

Apple Computer Confident/al 7-7

Measurement Fac/I/ties

It is expected that the operating system function which provides
measurement services will clear event counters as part of count initialization.
so that event counter overflow rarely will occur in most measurement
experiments. (Nevertheless. the operating system must anticipate overflow.)
However, an event counter can be used as a form of ínterval tímer by initializing
to something other than a zero value and performing a measurement operation
when the event counter overflow interrupt occurs. For example, the time spent
by an application in various states and modes can be measured by sampling.
Initialize a counter to a value (232- 1) - r. where r is a random variate with mean
R cycles, and set the counter's controls to count total cycles. On each overflow
interrupt. save bits <15:4> of the Global Status Register (GSR) and set the counter
once again to (232-1) - r. where ris a new random variate. On completion of
execution. Tc /R samples will have been collected. From the average values of
the GSR flags, estimates of the proportions of Ume spent in halt, wait, and run
state, and in user and system mode, can be computed for each PU and for the CPU
as a whole, and the average number of busy PUs can be estimated.

Apple Computer Confident/al 7-8

Rev. 1.0 (1 /89)

B. Instructions

)

8.1 Introduction
This chapter specffles the format and operation of the 81 instructions which

compose the Scorpius instruction set. For description purposes, the instruction
set is divided, by function, into the eight groups shown in the instruction set
summary of FJgure 2.11, repeated here as Figure 8.1.

Instruction descriptions comprise an instruction operation description, a
description of condition code changes which can occur as the result of execution
of the instruction, a list of exceptions which may be caused by execution of the
instruction, and the format of the instruction. Supplementary notes are
appended when necessary.

Instruction operation descriptions begin with an operation description
statement; for example, ''LdB @ReeA ➔ Re,S" is the operation description
statement for the Load Byte instruction. The notation and operators used in
these operation statements are defined in Figures 8.2 and 8.3.

An exception is an event such as a page fault or an arithmetic overflow
which can be caused by execution of an instruction and which can result in
generation of a trap (see Chapter 4). The exceptions listed for an instruction do
n21 include instruction page faults or instruction access privilege violations;
these two exceptions result from an instruction's place of residence, and not
from its execution.

Instruction formats show the length of each instruction field and give the
instruction's operation code in binary. While all Scorpius instructions are 16
bits in length, instructions are tightly encoded, with operation codes varying in
length, and there are more than a dozen instruction formats. Appendix A shows
the various instruction formats and lists instructions by operation code length.

Apple Computer Confidential 8-1

Instructions

MNEMONIC OPERATION MNEMONIC OPERATION

LOAD, STORE, AND MOVE ARITHMETIC

Lei Load Immediate Add/Sub Add/Subtract
LdR/StR Load/Store Word (Register) AddCJSubC Add/Subtract with Cany
LdRD/StRD Load/Store Word (Base+ Oisp.) Adel/Subi Add/Subtract Immediate
LdB/StB Load/Store Byte AddP/SubP Add/Subtract Partial
Ldll/StM Load/Store Multiple CLZ Count Leading Zeroes
Lec Load Condtion Dlv Divide
LdCP Load Cany Partial DlvE Divide Extended
LdPC Load Program Counter DlvU Divide Unsigned
LdPU Load PU Number DlvUE Divide Unsigned Extended
llov Move Register Mui Multiply
MovFS Move From Special MulU Multiply Unsigned
MovTS Move To Special MulP Multiply Partial

BRANCH, COMPARE, & JUMP MulPU Multiply Partial Unsigted
Bec Branch Relative on Condition Neg Negate

Cmp Compare Register BROADCAST & SEMAPHORE
Cmpl Compare Immediate Rev Receive CmpP Compare Partial Ram Resume PUa Jmp Jump Relative Send Send JmpL Jump and Unk Strt StartPUa JmpR Jump Register Walt Wait PUa (or Halt) Tstf Test Field Lock Lock Semaphore TstM Test Mode Unlk Unlock Semaphore

LOGICAL & SHIFT CACHE CONTROL
And And CDC Create Data Cache fine
AndC And Complement FDC Rush Data Cache line
Not Not IDC Invalidate Data Cache line
Or Or ne Invalidate Instruction Cache line
XOr Exclusive Or HCA Invalidate Instruction Cache
Dsh Shift Double PDC Prefetch Data Cache line
ShL Shift Left RDTX Read Data Tag tr, Index
ShR Shift Right UDC Update Data Cache line

VDC Validate Data Cache line
RELD MANIPULATION

Clrf Clear Field CONTROL & MISCELLANEOUS
Dep Deposit ClrM Clear Mode ExtS EX1ract Signed Prmpt PreemptPUa ExtU EX1ract Unsigned Aes Restart PUs Ina Insert Atl Return from Interrupt Mak Define Fiekt SetM Set Mode Pfxl Prefix Immediate Trap System Cal SetF Set Field

I

Fl¡ure 8.1. Scorpius Instruction Set s,munary

Apple Computer Confident/al 8·2

Instructions

Bue

(R)

@R

(R)<H/B>

(R)<m:n>

PV

<poa.len>

Imm

value contained in the Re¡A field of an instruction (bits <3:0>): the
register spedfted by this value is called register Re¡.&l

value contained in the Re¡B field of an instruction (bits <7:4>): the
register spedfted by this value is called register Re¡Bl

value contained in the Bue field of an instruction (bits <1:0>): the
register spedfted by this value is called register Bue 1

indiœtes the contents of register R used as an operand; (Reg.Al is
read " ..• the contents of register number Re¡A. .. " or " ... the value in
register Re¡A ... "

indiœtes the contents of register R used as an address; e.g .• @Bue
is read" ... the address contained in register number Bue ... "

indicates either the four bytes or two half words. depending on the
value of the H/B mode ßag in the PsR. contained in register R

bits m through n, inclusive, of register R

contents of or value in the Prefix Register. In instruction descrip­
tions, this value is assumed to have its least signtftœnt bit at
Prefix Register bit <2> (i.e., the fixed O's in Prefix Register bits <1:0>
are ignored).

Prefix Valid flag (PsR bit <3>)

implicit operands of field manipulation instructions, which
operate on fields described by the position of their least stgni­
ftœnt bit and their length. poe fs the value contained in PíxR bits
< 11 :7> and spedfles the position of the least signfflœnt bit; len is
one plus the value contained in PíxR bits <6:2> and specifies the
field length.

value contained in the displacement field of relative branch and
Jump instructions, and load/ store base plus displacement
instructions

value contained in the immediate field of the add. compare, load.
and subtract immediate instructions

n,ure 8.2. Notation Used in Instruction Operation Descriptions

Values in immediate and displacement fields of certain Scorpius instruc­
tions (Addi. Lcll. and LdRD/StRD) are incremented prior to their use. This
increases the maximum value which can be encoded. For example. Add
Immediate (Addi) has an ê-bít immediate field which can hold values O - 255.
However. the effective immediate value used by this instruction is (without
preflxing) the value in this field. Imm. plus one, and so the effective immediate
range is 1 - 256. In these cases. the Pyxis assembler encodes immediate and
displacement fields by subtracting l. For Addi, Pyxis generates the instruction's
immediate field value as Imm= (IMMEDIATE - 1) modulo 256, where IMMEDIATE
is the value specíñed in the assembler statement's immediate field. When used

1 In Instruction description operation statements, "regìster" is implicit llov (RegA) ➔ RegB
is read "move the contents of register (numbed Re¡A to register (number) ReaJ3".

Apple Computer Confidential 8-3

Instructions

A+B

A-B

AIB

-A

A &B

AIB

A<<B

A»B
A➔B

AIIB

o

add A and B

subtract B from A

multiply A (multiplicand) by B (multiplier)

divide A (dividend) by B (divisor)

one's complement A

bitwise AND A and B

bitwise OR A and B

bitwise EXCLUSIVE OR A and B

shift A left B bit positions

shift A right B bit positions

store the value speclfled by A in the register or memory location specifled
by B: e.g .• (RetB) -> ORe¡A is read "store the contents of register Re&B in
memory at the address contained in register Re¡A".

concatenate A and B: A occupies the most stgnUlcant bits of the result

indicate precedence: in "[0=+1]«2", lis added to D and the sum then ts
shifted left 2 places

Figure 8.3. Operators Used in Instruction Operation Descriptions

without prefixing. the range of IMMEDIA1E is assumed to be 1 through 256: with
prefixing, the range of IMMEDIATE is assumed to be O through 255, with O
encoded as 0xFF. Pyxis handles the immediate for Ldl and the displacements
for LdRD/StRD in the same way. For Subtract Immediate (Subi). the effective
immediate is 16 - Imm. and Pyxis encodes the Subi statement's immediate value
by subtracting it from 16: Imm= 16 - IMMEDIATE. Similarly. the effective shift
amount. AMOUNT, for Shift Left (ShL) is 31 - Amt, where Amt is the value stored
in the shift left instruction's immediate field. Pyxis encodes the immediate field
value by subtracting it from 31: Amt= 31-AMOUNT.

8.2 Load, Store, and Move Instructions
This instruction group comprises instructions which load or store words

(LdR/StR and LdRD/StRD). load or store bytes (LdB/StB). load or store multiple
words (LdM/StM). load a constant into a register (Ldl), load a specified state
value into a register (Lec. Ld.CP. Ld.PC. Ld.PU). or move values between two general
registers (Mov) or between a general register and a special register (MovFS and
MovTS). The descriptions of these instructions appear in the order in which the
instructions in this group are listed in Figure 8.1. Descriptions for symmetrical
instructions (load/store. move from/to) are combined.

Apple Computer Confidential 8•4

Load, Store, and Move Instructions

LdI lmm+l➔RegA
(P&R)<<8 + Imm + 1 ➔ RegA

if PV= "O"
ifPV="l"

Load the effective immediate value into register RegA. If the Prefix Valid flag
(PV) is "O", the effective immediate value is Imm + 1. This value is stored in bits
<7:0> of register RegA; bits <31:8> are cleared to "O's". If the Prefix Valid flag is
"l ", the effective immediate is formed by shifting the contents of the Pf'zR left 8
places and adding Imm, and then adding 1 to the result; clear the Prefix Valid
flag to "O".

Condition Cocles: unchanged

Ezceptlons: none

Notes: To load an ímmedíate value of O without affecting condition codes, use
Lec with cc = false.

15 12 11 43 O

Format: 0110 Imm RegA

Apple Computer Confident/al 8-5

Load, Store, and Move Instructions

'

:, ... '.:. t.0.'•· ~âìs.'''.râ. '..ïi.'.'jifÍÊG .. ts. '..TE_':•.:< 'R. ·::r ·. ''.:'.'.::_:: :· '. ::'::\':<:.::i::::::<::\:/':\(':t:: '?••:(>?\•<::''.:':::/C?!\' .:.:,',: ... !,:·•.:.::.:,••::\.1.\.:::•:.:.:.:::,••.·•.::,:···:,'._r.·,:,:,',d,•.•.:::.:·'.lUS.·:•'•·•·:,.: .•. : .. t.··.R .. '.:. :_·, _ ,,.,,.:,,·, :·•: .. ·.· . . ,. • > ' , : -.:: ::::,::::::::: ::::< \'/:/:>>>:U:> //U :(i\: U\::U: \/::{fü/ _

LdR @RegA➔Rr&ß
@RegA + (PfzRJ<<2 ➔ Rea&B

StR (Rea&B) ➔@Re¡¡A
(Re&B) ➔@Re¡Af- lPfzR><<2

jf PV= "O"
jfPV="l"

jf PV= "O"
jfPV="l"

Load the addressed word from memory into register Re,e (LdR) or store the word
in register Re¡B in memory (StR). If the Prefix Valid flag is "O", the memory
address of the word to be loaded or stored is contained in register RegA. If the
Prefix Valid flag is "l ". the memory address is formed by shifting the contents of
the P&R left 2 places and adding the result to the address in register RegA; clear
the Prefix Valid flag. (The Prefix Register provides a signed word displacement
from the register RelA address.)

Condition Codea: unchanged

Ezceptlona: data page fault: data access prtvilege violation

15 87 43 o
Format: LdR

StR

00010101 RegB RegA
00000101 RegB RegA

Apple Computer Confidential 8-6

Load, Store, and Move Instructions

LdRD @Bue + [Dlap + 1)<<2 ➔Rege if PV = "O"
@Base + [(PfzR)<<6 + Dlsp + 1)<<2 ➔ Rege if PV = "l"

StRD (Reg&) ➔ @Base +(Dlsp + 1)<<2 if PV = "O"
(Reg&) ➔ @Base + [(PfzR)<<6 + Dlap + 1)«2 if PV = "l"

Form the effective byte displacement and add it to the byte address in register
Base to form the effective operand address. Load the addressed memory word
into register RegB (LdRD) or store the word in register RegB in memory (StRD). If
the Prefix Valid flag is "O", the effective byte displacement is formed by shifting
Dlsp + I left 2 places. (Dlsp + I is the effective word displacement.) If the Prefix
Valid flag is "I", the effective byte displacement is formed by shifting the
contents of the PfzR left 6 places and adding Dl1p, adding I, and shifting the
result left 2 places: the Preßx Valid flag is cleared. ((PfzR)<<6 + Dlsp + 1 is the
effective word displacement).

Condition Codes: unchanged

) Ezceptlons: data page fault: data access privilege violation
15 1211 87 43 21 o

Format: LdRD

StRD

1001 Dlap Regi Dlsp Base
1000 Dlap Regi Dlsp Base

Apple Computer Confident/al 8-7

Load, Store, and Move Instructions

(

LdB @RegA➔RegB

StB (Rege) ➔@RegA

LdB loads the memory byte addressed by register Reg.A into bits <7:0> of register
Rege and clears bits <31:8> of register Reg& to "O's". StB stores the rightmost byte
of RegB (bits <7:0>) in the memory byte addressed by RegB. Both instructions
increment the address in Reg.A by one.

Condition Codes: unchanged

Ezceptlons: data page fault: data access privilege violation

Notes: An attempted operand access to a non-cached page by LdB or StB causes a
data access privilege violation.
If attempted execution of this instruction results in generation of a Data Page
Fault or Data Access PrMlege Violation trap, the Rmod flag in the PsR (bit <31>)
is set to "1 ", indicating that adjustment of the contents of the address register of
the interrupted instruction is required before execution of the instruction is
reattempted on return from interrupt. For LdB/StB. this adjustment is effected
by decrementing the contents of register RegA by one (see Sections 4.6 and 4.7).

15 87 43 o
Format: LdB

StB

00010110 RegB RegA
00000110 RegB RegA

Apple Computer Confident/al B•B

Load, Store, and Move Instructions

)

LdM @RegA➔l .. .RegB
StM (RegB. .. 1) ➔@RrgA

LdM loads registers 1 through RegB from memory. On Ld.M initiation, register
RegA contains address of the first word to be loaded (into register 1); on com­
pletion, the address in register RegA is incremented by 4 x Re¡B (i.e., by th4-
number of bytes loaded). StM stores the contents of registers RegB through 1 to
memory. On StM initiation, register RegA contains the address plus 4 of the
first word to be stored (the address plus 4 of the word into which the contents of
register RegB are to be stored): - on completion, the address in register Re¡A 1$
decremented by 4 x Regs (ands so contains the address of the location in which
register 1 was stored).

Condition Codes: unchanged

Ezceptlons: data page fault; data access privilege violation

Notes: LdM/StM operation is undefined if RegA is in the range 1 - RegB (i.e., if
the address register is one of the registers loaded/stored). or if Regs is O.
It is not required that incrementing or decrementing of the address in register
RegA be performed as each register is loaded or stored: incrementing or decre­
menting can be done at any implementation-convenient point prior to instruc­
tion completion. Consequently, LdM and StM are preemptive-repeat
instructions; if an interrupt or a trap is recognized during .exeeutìon of either
instruction, the instruction is restarted, not resumed, on return from interrupt.
Since this can result in repeating load or store accesses to memory, these
instructions should not be used certain operations, such as data transfers from
and to IO locations.
When an interrupt or a trap is recognized during execution of a LdM/StM
instruction. the Rmod flag in the PsR (bit <31>) may be set to "l", indicating that
it is necessary to adjust the address in register RegA to its initial value before
execution of the instruction is reattempted on return from interrupt. For LdM,
this adjustment is effected by subtracting 4 x RegB from the contents of register
RegA. For SUI, this adjustment is effected by adding 4 x Regs to the contents of
register RegA. (See Sections 4.6 and 4.7.)

15 87 43 o

Format: LdM

StM

00010111 RegB RegA
00000111 RegB RegA

Apple Computer Confident/al 8-9

Load, Store, and Move Instructions

l,::·,:·:·:·L::•·:.·.;.:::.ª··.:::••:::::~.--i::::::·•::•:a:':'.:::.:::·.:::•:·::.:.co.:.:::•··:.:.:::•··:.·•.::::::::•::·•:N.•:.·.'.·.:::•::::D_:·:•:::·:::::.'•::::•.:.n .•. :::::••.:::::.••·.:.º:·•:::.:::::•·:N•·.::··,··:.::.::::: .. :::::::::::::;;::;;:;:;:: :: :<· ::()lt(//t<:.::::::::> \/:+ +::::Y::: {::})) /J?::\J:!u ::::::t\L)L . ·.· :.:.: .• :.:.:·i·:.:.:.:::¡·::.:::¡:·:::•.:.t.:.·:·:·"·c.:'.·.··.c.·.•.:.·.•.::.•.:.:¡ t · .. ·.· ·.·.· ·.·.·-:•··.··· :-·•: :-:-:-:-:•:•:-:-:-:•.-:•:-·-:.::-::-:.:::::::-:::::::::::::/:'}::':::::::::::::::::::::::.· ::.:,::::::::::::::;::::::-::-.:::-::::::-.:::•. :-:····· -

If the current settings of the condition codes correspond to the relation defined
by the cc field of the instruction. set bit <O> of register Re,S to "1"; otherwise,
clear this bit to "O". In either case. clear bits <31: l> to "O's". The correspondence
between the cc portion of the instruction mnemonic, the cc ñeld of the instruc­
tion (instruction bits <3:0>). and the condition code settings examined by this
instruction are tabulated below.

cc field condtion
encoding mnemonic c:od9 settings interpre tation

o F not applicable false
1 ov v.1 overflow
2 LO e.o lower than
3 LT N • 1 lesa than
4 none not applicable undefined
5 EQ Z • 1 equal
6 LS c-01z-1 lesa than or same
7 LE N•0IZ•1 lesa than or equal
8 none not applicable undefined
9 NV v-o no overflow
10 HS c. 1 higher 1lían or same
11 GE N•O greater than or equal
12 none not applicable undefined
13 NE z-o not equal
14 Hl c.1,z-0 higher than
15 GT N-oaz-o greater than

A cc field value of "OxO" (instruction mnemonic LJI') causes register Re,S to be
cleared to "O's" regardless of the settings of the condition codes. This provides a
means of loading an Immediate value of "O" into a register without affecting
condition codes (Ldl. without prefixing, loads values in the range 1 - 256.)

Condition Codee: unchanged

Ezceptloaa: none

Notea: 1be results are unpredictable 1f a cc field value of 4, 8. or 12 is used.

15 87 43 o
Format: 00010001 Regi cc

Apple Computer Confident/al 8-10

Load, Store, and Move Instructions

lt"~!,.~e~; i ur bi >•.·········•····•···•··•·····•·•·•·••· •· •····•·•··•···••···•·•··• ·••·•·· ····•···•········· ,i}•·······ìldê,>•·I
LdCP (CO. •• CS) ➔ RegA

Sign extend the carry condition codes according to the mode specified by the
Halfword/Byte (H/B) mode flag in the PsR (bit <2>), and store the result in
register RegA. In byte mode (H/B = "0'1, each byte's cany code, CO, Cl, C2, and C3,
is sign extended into 8 bits. In halfword mode (H/B = "1"), each halfword carry
code, CO and C2. is sìgn extended into 16 bits Figure 2.16 shows the relationship
between carry condition codes and the byte and halfword of a word.

Condition Codes: unchanged

Ezceptlons: none

15 43 O

Format: 000000000010 R~A

LdPC (PC) + 2 ➔ RegA

LdPC loads its memory address plus 2 into register RegA.

Condition Codes: unchanged

Ezceptkma: none

Notes: The sequence Jmp-1.dPC can be used to synthesize PC-relative procedure
calls.

15 43 O

Format: 000100000110 R~A

Apple Computer Confidential 8-11

Load, Store, and Move Instructions

1
:--::·:•.:.- .::.:•'::: .. :,:/:}:,>'.\: :':.,::.: .. :: .:.::.::,:.::.:.:,:: :·· · · .. : . -:: . :,': .. .'.•: .·.·. : ... : . .-,:: :.:: .•. ··· .. ,.:... . . . :-·• ,..- ... ,,::: ,:.:•,::·',: .. ,.,::.: ,:,., .. ,,·,',·,',·,·,·.',·,·,·,:.:.:,:,·,:.•,: .. :,:,:.:.,,'.'.:.:,:.: ... ' ... :.,- .. ·.'.: .. :' ... ::' ,'::.·,:.:::<.' .·: ·,:-: .. • : :_. · 1 ·. ·t···n.aa. ·ftf'.·• N .. · ï'i·•• . . · .. · .. ·.·.·.·.·.·.·· · ., ... , ·'"''· · _.,,,:.-,:,:,: :, ,:::::,,,,,,:::::.:: · .. •.·.·.·•.·.·· ... ·.·.· ... ·.·.·.· ·,.',.·,.•,.•.,:,.:,.'::.:,•,.:,.:,.':::.':.:,.:,.:,.:,.:,,.,,·,.',· ... '.'.·,.':'::.'•··•··t·.•·:~.,·.,. !ft, •··:u .. ·.,:,,.·
· .. •· .. ·.·.,,,·.•,,"',,,·.·:·,,'~,,.·,·,.·,,.·.·,.,,·:.·, .. ,.·:',:,:,·,.-r,,.··.·, .. ' .. ·.·,".:·,,·,,·, .. ·,',,.·,· .. ,:.,"'.,,,:·.J:~ ,.:·,.,.1'8,,,·E · ,R '.·.:.:,:,,•'::,:, .:,·.'::,:,:.:.;.:,.:,',:,:,,:,.::.: :.'.::.,.:::.:.\.::.:.:'.i.:/.) ::::,: · · · · · · .. · .. ·· · · · · · ·· · ···· ··· · · ur • ' ·.· ·.·.·.·.· :-·-:-.-:-::.·\: :/.•.::: :·:·:.:::·::\??}:<·::-\:/:)){:\}'./:_.::·:::::· ·-

LdPU PU#➔Re¡A

Load the number (O - 3) of the PU executing the instruction into register RegA.

COncDtlon Codes: unchanged

Ezceptlon8: none

Notes: This is the orùy means provided for a PU to determine its identity.

15 43 O

Format: O O O O O O O O O O 1 1 AegA I

l.·: .. ::·. .. . ·:.·: .. :.:,·::::.::-:.,::: . .-:··::':'. > .. :::.:::::: • ·.·.·.·.· :::-: :::::,.:.:::,.:.,.:::::::::: .::.::..)(::<><:::>> :::::,:::::::::::::::::::::?:: :·::::;:::::::,:::::.:: ::::::,:-:/::,:::.:;:::::--,::,·:.:, ::(: .. •::·:- :·.· ·.·.··. t
'·'::•.·.·"'··•··" .. o:··· .. VE.· .. · ... ·· .. ·· .,:•,R···.· s.···.·.·:a .. ··.· .·.··,s··••:··.·:··· ... •.m.•::.·.· .. R ... ·::·•.··:.:.\.:.•: .. :•;:.:. /;\,/:'?\/?:!::Ct:·-: ·· ·· ·.·.·,•.::::.,.,,,.,:::.:::,::::::::,::::::::::::::::::::: >"'::::::-::::::::,:::-::::,,,,,:. ,,. · · ·· · · :.':.::.:,:.:.'.::::.•MO.• .. ::.:.·•·:·.·,·•·,,,,:.v. - ·.•.·-·.·,·-:-:-:-:.·-·-:-:-:.:-· :-:-:-:-: :.:_:_:_::::-::::::::.:::·:::::·::/::::::::::::::-:· -

Mov (ReCA)➔Re¡&B

Move the contents of register RegA to register RegB: register RegA's contents
remain unchanged.

COndltlon Codes: unchanged

Ezceptlom : none

Notea: A move with Re¡A = Re,& has no effect and can be used as a no operation
instruction.

15 87 43 O

Format: O O O O 1 O 1 1 Regi AegA

Apple Computer Confidential 8-12

Load, Store, and Move Instructions

. ·.·...

. ÏÏÒVE:#.ilO&I/ITÖSPECiAL:· .. Mo'IIFS/MovTS I
MovFS (Regt\)➔Redl
MovFS (RegB)➔RrgA

MovFS moves the contents of special register RegA to general register Regs.
MovTS moves the contents of general register RegB to special register RegA. The
scope (L - local, G - global), type (P - privileged, N - non-privileged) and number of
each special register is shown below.

o Id Register (ldR) GIP
1 Interrupt Argument Register (IAR) GIP
2 Test Register (TeatR) GIP
3 Global Status Register (GSA) GIP
4 Product Register (ProdR) LIN
5 Remainder Register (RemA) LIN
6 Prefix Register (PfxR) UN
7 reserved
8 Event Counter 1 (EvA1) GIP
9 Event Counter 2 (EvA2) GIP

10 Scratch Register (ScA) GIP
11 1 nterrupt Control Register (ICA) GIP
12 Status Save Register (SaveA) UP
13 Trap Register (TrapR) UP
i I 14 PC Save Queue (PCQ(1) & PCQ(2)) LIP U

I 1 s reserved I
Condition Codea: For llcwFS, condition codes are set as follows:

N- if special register RegB is local, Nis set to the value of
bit <31 > of that register: if special register Regs is
global, N is unchanged.

Z- if special register Reas is local, Z is set to "l" if the
contents of that register are zero and to "O" otherwise:
if special register RegB is global, Z is unchanged.

V- if special register Regs is local, V is cleared to "O"; if
special register Rega is global, V is unchanged.

C- unchanged
For MovTS, condition codes remain unchanged.

Apple Computer Confidential 8-13

Load, Store, and Move Instructions

Ezceptlons: operation fault (on access to a privileged or reserved special
register while in user mode)

Notes: The PU must be interrupt/trap disabled (PsR bit <15> = "0'1 when reading
or writing the PCQ, SaveR. or TrapR.or the result of the move 1s unpredictable.
External interrupts must be disabled (ICR bit <5> = "O") when reading the IAR, or
the results are unpredictable. The result of an attempted access to a reserved
special register is undefined. When reading special registers with reserved
fields, the values returned in the bit positions corresponding to those fields are
undefined. The GSR cannot be written. Bits <31 :25> of the ICR (the pending
interrupt flags) can be cleared to "O" only, not set to "l", via a MovTS instruction.
See the Special Registers subsection tn Section 2.3.

The Antares PCQ is a FIFO register pair in which only PCQ[l) can be directly
read and only PCQ[2) can be directly written; see Section 4.6.
In Antares, writing special register IdR invalidates all entries in the Trans­
lation Buffer and associated Directory Buffer (see Section 3.6).
In Antares, if a MovFS instruction is immediately preceded by an instruction
which causes the contents of the special register accessed by the MovFS
instruction to be modified, the result of the move is unpredictable. The result of
a MovFS instruction reading the GSR is unpredictable if the preceding mstruc­
tìon was a SetM or ClrM instruction changing the state of the Interrupt/Trap
Enable flag (PsR bit 15>) or the User/System Mode flag (PsR bit 13>).

15 87 43 o

Format: 00010111 Reg& RegA

StM 00000111 Reg& RegA

8.3 Branch, Compare, and Jump Instructions
This group comprises the conditional branch instruction (Bec), the compare

instructions (Cmp, Cmpl), the unconditional jump instructions (Jmp, JmpR,
JmpL). and the two test ínstructíons, Test Field (TstF) and Test Mode (TatM).

Scorpius has delayed branches and jumps; the sequential instruction
following a branch instruction always is executed, regardless of whether or not
the branch 1s taken. Similarly, the sequential instruction following a Jump in­
struction always fs executed.

Future implementations of Scorpius may extend preflxing to include rel­
ative branch (Bec) and Jump (Jmp) instruction displacements. The displace­
ments of these instructions cannot be extended by prefixing in Antares.
However, on Antares, execution of a Bec or Jmp instruction causes the Preßx
Valid flag to be cleared so that forward compatibility can be realized. See the
Branch Displacement Prefixing subsection in Section 2.4.

Apple Computer Confidential B-14

Branch, Compare, and Jump Instructions

. . .

BRANCH: ON CONDITION·

Bec @PC + Dlsp<<l

If the current settings of the condition codes correspond to the relation defined
by the cc field of the instruction. transfer control to the target address ~
executing the next sequential instruction: otherwíse, continue execution. In
either case. clear the Prefix Valid flag. The target address is formed by shifting
the value in the instruction's displacement field, Dlap, left one and adding it to
the address in Current PC (i.e .• the address of the Bec instruction). Disp is an 8-
bit signed valúe which provides an effective displacement of -256 to +255
instruction locations (halfwords). The correspondence between the cc portion of
the instruction mnemonic, the cc field of the instruction (instruction bits <3:0>),
and the condition code settings examined by this instruction are tabulated
below.

cc field
condtion

encoding mnemonic cods settings interpretation
O* none not applicable false
1 ov V=1 overflow
2 LO 0=0 lower than
3 LT N = 1 less than
4* none not applicable undefined
5 ea Z=1 equal
6 LS 0=012=1 less than or same
7 LE N=0IZ=1 less than or equal
8* none not applicable undefined
9 NV V=0 no overflow
10 HS 0=1 higher than or same
11 GE N=0 greater than or equal
12* none not applicable undefined
13 NE Z=0 not equal
14 Hl 0=1&Z=0 higher than
15 GT N=O&Z=O greater than

Condition Codes: unchanged

Ezceptlona: taken branch trap

Notes: Both Bec and Jmp (Jump Relative) have the same three-bit operation
code, "110B": they are are distinguished by instruction bits <1:0>, which always
are "00'' for Jmp. Note that none of the valid cc field values for Bec have bits
<1:0> = "00".

The sequential instruction following a Bec instruction (the branch shadow
instruction) may be any Scorpius instruction, including a branch or Jump. The
diagram below shows the execution sequences which can result when the shad-

Apple Computer Confident/al 8-15

Branch, Compare, and Jump Instructions

ow instruction of a Bec is itself a Bec. (This diagram can be applied to various
Bec and jump instruction combinations by removing "not taken" paths for the
latter.)

Address A

A+2

1st branch taken

A+2+m

15 13 12 43 o
Format: 110 Dlaplacement cc

Apple Computer Confidential 8-16

Branch, Compare, and Jump Instructions

Cmp I
Cmp (RegB)-(RegA)

Compare the contents of register Rege with the contents of register RegA and set
the condition codes according to the true arithmetic result of (RegB) - (RegA).

Condition Codes: N- set to "l" if (RegB) is arithmetically less than (RegA):
cleared to "O" otherwise .

Z- set to "1" if (RegB) equals (RegA): cleared to "O" other­
wise

V- cleared to "O"
C- if (Reg&), treated as unsigned, is equal to or greater than

(Reg.A), CO is set to "l"; otherwise, CO is cleared to "O".
c 1, C2, and C3 are cleared to "O".

Ezceptlons: none

Notes: The N condition code value resulting from Cmp will differ from the N
condition code setting resulting from Sub, using the same operands, when an
overflow condition exists.

15 87 43 O

Format: 00011000 R~B R~A

Apple Computer Confidential 8-17

Branch, Compare, and Jump Instructions

I COMPARE IMMEDIATE/<•· .. •·

Cmp Imm - (RegA)
[(P&R)<<8 + Imm] - (RegA)

if PV= "O"
ifPV="l"

Compare the effective immediate value with the contents of register RegA and set
the condition codes according to the true arithmetic result of the effective
immediate - (RegA). If the Prefix Valid flag is "O", the effective immediate is
Imm. the value stored in the instruction's immediate field. If the Prefix Valid
flag is "O". the effective immediate is formed by shifting the contents of the
Prefix Register (P:fxR bits <31:2>) left 8 places and adding Imm: the Prefix Valid
flag is cleared to "O". The range of Imm is O - 255.

Condition Codes: N- set to "I" if (RegA) is arithmetically greater than the
effective immediate: cleared to "O" otherwise.

Z- set to "I" if (RetA) equals the effective immediate:
cleared to "O" otherwise

V- cleared to "O"
C- if the effective immediate, treated as unsigned. is equal

to or greater than (RegA), CO is set to "I"; otherwise, CO
is cleared to "O". Cl. C2, and C3 are cleared to "O".

Ezceptlons: none

Notes: The effective immediate range for Cmpl differs from that of the other two
instructions of this format. Addi and Ldl, which increment Imm prior to use and
so have an effective immediate range range of I - 256.

15 1211 43 O

Format: o 1 o 1 Imm AegA

Apple Computer Confidential 8-18

Branch, Compare, and Jump Instructions

I coiíPARE PAímAL•·••··•·· .. •

)

Cmp (RegB)<H/B> - (RegA)<H/B>

Compare the bytes or halfwords, as determined by the H/B mode flag (PsR bit
<2>), in register RegB with the corresponding bytes or halfwords in register
Reg.A. Each byte or halfword in a register is treated as an independent operand
(i.e .• inter-byte or inter-halfword carries are forced to "1'). Set the condition
codes according to the true arithmetic result of (RegB)<H/B> - (RegA)<H/B>.

Condition Codes: byte mode (H/B = "0'1
N- set to "l" if the true arithmetic result of the comparison

of the most stgnfflcant bytes of registers RegA and Rege
is negative: cleared to "O" otherwise . (Byte O - bits <31-
24> - is the most significant byte.)

Z- set to "l" if the result of any byte comparison ts zero
(i.e., equal); cleared to "O" otherwise

V- cleared to "O"
C- Ci. i = o. I. 2. 3, is set to "l" jf register Rege byte 1, treated

as unsigned, is equal to or greater than register RegA
byte i, and cleared to "O" otherwise.

halfword mode (H/B = "l '1
N- set to "I" if the true arithmetic result of the comparison

of the most significant halfwords of registers RegA and
Regs is negative: cleared to "O" otherwise . (Halfword O
- bits <31-16>- is the most sígníñcant halfword.)

Z- set to "l" if the result of any halfword comparison is
zero (i.e., equal); cleared to "O" otherwise

V- cleared to "O"
C- CO is set to "I" if halfword O of register Regs. treated as

unsigned. is greater than halfword O of register RegA.
and cleared to "O" otherwise. C2 is set to "I" if halfword
I of register Regs. treated as unsigned, is greater than
halfword I of register RegA, and cleared to "O" other­
wise. CI and C3 are cleared to "O".

Ezceptlons: none

15 87 43 O
Format: O O O 1 1 O O 1 Rega RegA

Apple Computer Confident/al 8-19

Branch, Compare, and Jump Instructions

I JoMPÌÊ¡AnilS . ··. ··•••·· · •· ·•

Jmp @PC + Dlsp<<l

Transfer control to the target address äfifi executing the next sequential
instruction: otherwise, continue execution. In either case, clear the Prefix Valid
flag. The target address is formed by shifting the value in the instruction's
displacement field, Dlap, left one bit position and adding it to the address in
Current PC (i.e., the address of the Jmp instruction). Dlap is an 11-bit signed
value which provides an effective displacement of -1024 to + 1023 instruction
locations (halfwords).

Condition Cocles: unchanged

Ezceptlons: taken branch trap

Notes: Both Bec and Jmp (Jump Relative) have the same three-bit operation
code, "110B"; they are are distinguished by instruction bits <1:0>, which always
are "00" for Jmp. Note the position (below) of the two high-order bits of Dlsp.

15 1312 43 o
Format: 110 Dlaplacement 00

Apple Computer Confidential 8-20

Branch, Compare, and Jump Instructions

ln
·.·. Jmpt I

JmpL @RegA; (Nezt PC) + 2 ➔ Register 4

Transfer control to the instruction address in register Re¡A after executing the
next sequential instruction. Store the return address 1n general register 4. The
return address (the address of the instruction following the shadow instruction)
ts formed by adding 2 to the contents of Next PC.

Condition Codes: unchanged

Ezceptlons: taken branch trap

15 43 O

Format: 000000001011 R~A

I JUMP REGISTER ··· .. ·· ..• JmpRI

JmpR @RegA

Transfer control to the instruction address in register Re¡A after executing the
next sequential instruction.

Condition Codes: unchanged

Ezceptlom: taken branch trap

Notes: This instruction can be used to return from a subroutine.

15 43 O

Format: 000000001010 R~A

Apple Computer Confident/al 8-21

Branch, Compare, and Jump Instructions

TESt-i=IELD ... ·· .

Test the field in register RegA defined by the Prefix Register for a zero or a
negative value, set the condition codes accordingly, and clear the Prefix Valid
flag. The position of the least sígnìñcant bit of the field, pos. is contained in
Prefix register bits <11:7>. The length of the field, len, minus one, is contained
in Prefix Register bits <6:2>.

Condltlon Codes: N- set to "l" if the most significant bit of the field is "l ";
cleared to "O" otherwise.

Z- set to "l" if all bits of the field are "O"; cleared to "O"
otherwise.

V- cleared to "O"
C- unchanged

Ezceptlons: taken branch trap

15 43 O

Format: 000000000001 R~A

Apple Computer Confidential B-22

Branch, Compare, and Jump Instructions

TstM No.

Set the N condition code to the value of PsR bit <No.>. PsR bits are listed below.
O PU Available flag
1 Overflow Trap Enable flag
2 Halfword/Byte Mode flag
3 Prefix Valid flag

4-11 reserved
12 PCQ Enable flag
13 User/System Mode flag
14 Taken Branch Trap Enable flag
15 PU Interrupt/Trap Enable flag

Bits <15:8> are privileged and can be tested only in system mode.

Condition Codes: N- set to value of specified PsR bit
Z- unpredictable
V- cleared to "O"
C- unchanged

Ezceptlons: operation fault (on attempted access to bits <15:8> while in
user mode)

Notes: The result of attempting to test a reserved PsR bit is unpredictable.
PsR flags are set and cleared by Set Mode (SetM) and Clear Mode (ClrM) instruc­
tions or via the transfer of SaveR contents to the PsR on execution of a Return
from Interrupt (RtI) instruction. (SetM. ClrM and Rtl are described in Section
8.9). In Antares, executing a TatM instruction immediately after an instruction
which modißes the PsR (ClrM, SetM, Rtl) may not return the modified value.
Also. a correct value may not be returned when testing the Prefix Valid flag
immediately following an instruction that modifies that flag.

Format: 000100000001 No.

\,_)

Apple Computer Confident/al 8-23

Logical and Shift Instructions

8.4 Logical and Shift Instructions
Logical instructions include And, AndC (And Complement), Not, Or, and Xor,

which are register-register operations: there are no register-immediate logical
operations. Shift instructions are Dsh (Shift Double), ShL, and ShR), which
perf onn logical shift operations. The shift amounts for ShL and ShR are
obtained from immediate fields of those instructions: the shift amount for Dsh
is obtained from the Prefix Register. Shift operations also can be effected using
certain of the field manipulation instructions described in the next section:
these permit using a shift amount determined at execution time. Also, EztS
(Extract Signed) can be used to effect an arithmetic right shift.

I AND·
. ::/:{:-,:'._.::·.::.:::=::\>):-:::;:, _:._·- .·· :. .. - .· . .; .

And (RegB) & (Regt\) ➔Rega

AND the contents of register RelJI with the contents of register RegA and store
the result in register RegB.

Condition Codes: N- set to "l" if the result is negative: cleared to "O"
otherwise

Z- set to "l" if the result equals zero; cleared to "O"
otherwise

V- cleared to "O"
C- unchanged

Ezceptlona: none

15 87 43 o
Format: 00001010 RegB RegA

Apple Computer Confidential 8-24

Logical and Shift Instructions

I ANDèOMPLEMENT .· .AndC I
And (Rege) &-(RegA) ➔Rege

AND the contents of register RegB with the one's complement of the contents of
register RegA and store the result in register Reg:B.

Condition Codes: N- set to "l" if the result is negative: cleared to "O"
otherwise

Z- set to "l" if the result equals zero: cleared to "O"
otherwise

V- cleared to "O"
C- unchanged

Ezceptlons: none

15 87 43 o
Format: 00011010 RegB RegA

I NOT - - - -- - - - - - I -- . . .

····•·•· ··•···· , .• •··•·· ... ·.·.Not

Not -(RegA) ➔ Rege

One's complement the contents of register Reg.A and store the result in register
Rea&ß.

Condition Codes: N- set to "l" if the result is negative: cleared to "O"
otherwise

Z- set to "l" if the result equals zero: cleared to "O"
otherwise

V- cleared to "O"
C- unchanged

Ezceptlons: none

15 87 43 o
Format: 00011011 RegB RegA

\,_)

Apple Computer Confident/al 8-25

Logical and Shift Instructions

(

OR the contents of register Re- with the contents of register RelA and store the
result in register Re-.
Condition Coda: N- set to "l" if the result is negative: cleared to "O"

otherwise
z- set to "l" if the result equals zero: cleared to "O"

otherwise
V- cleared to "O"
C- unchanged

Ezceptlons: none

15 87 43 o
Format: 00001000 RegB RegA

EXCLUSIVE OR the contents of register Regs with the contents of register RegA
and store the result in register Re,&.

Coa.dltlon Coda: N- set to "l" if the result is negative: cleared to "O"
otherwise

z- set to "l" if the result equals zero; cleared to "O"
otherwise

V- cleared to "O"
e- unchanged

Ezceptlona: none

15 87 43 o
Format: 00001001 RegB RegA

"~-

Apple Computer Confident/al B-26

Logical and Shift Instructions

I SH1FTOOUBLE .. Osh I
Dsh [(Rege) I I (RegA)) » <pos> ➔ Regt\

Shift the double word formed by concatenating the contents of registers RegB
and RegA right pos places and store the least stgn.ificant 32 bits of the result in
register RegA: clear the Prefix Valid flag. The shift amount. pos. is contained in
Prefix Register bits < 11 :7>.

Condition Cocles: N- set to "l" if the result is negative: cleared to "O"
otherwise

Z- set to "l" if the result equals zero: cleared to "O"
otherwise

V- cleared to "O"
C- unchanged

Ezceptlons: none

Notes: If RegA = Re,:&. the effect is to rotate the contents of register RegA right
pos places.

15 87 43 O

Format: O O 1 1 1 1 1 1 Reg& RegA

\)' --
Apple Computer Confident/al 8-27

Logical and Shift Instructions

I SHIFTLEFT ShL I
ShL (RegB) << (31 -Amt] ➔ RegB

Shift the contents of register Regs left 31 - Amt places. inserting "O's" in the
vacated bit positions on the right (i.e .• the least sfgnillcant bits). The result is
undefined if Amt equals l 1111B.

Condition Codes: N- set to "l" if the result is negative; cleared to "O"
otherwise

Z- set to "l" if the result equals zero; cleared to "O"
otherwise

V- cleared to "O"
C- unchanged

Ezceptlona: none

15 987 43 o
Format: 0011101 11 Regi Amt

Apple Computer Confidential 8-28

Logical and Shift Instructions

)

ShRI

ShR (RegA) >> Amt ➔ RegA

Shift the contents of register RegA right Amt places, inserting "O's" in the
vacated bit positions on the left (i.e., the most significant bits). The result is
undefined if Amt is zero.

Condltlon Codes: N- cleared to "O"
Z- set to "I" if the result equals zero: cleared to "O"

otherwise
V- cleared to "O"
C- unchanged

Ezceptlons: none

Notes: Extract Signed (EztS) can be used to effect an arithmetic (sign extended)
right shift .

.)
15 98 A3 o

Format: 0010110 Amt RegA

8.5 Field Manipulation Instructions
The Clear/Set Field (ClrF /SetF), Deposit (Dep), Extract (EztS/EztU), and

Insert (Ins) instructions, and the Test Field (TstF) instruction described in
Section 8.3, operate on a bit field in a general register using a field description
contained in the Prefix Register. Prefix Register bits <6:2> specify the field
length, len, minus one, while bits <11:7> specify the right-most (low-order) bit
position of the field, pos. A field description can be loaded into the Prefix
Register via a Prefix Immediate (Pfzl) instruction or a Define Field (Mak)
instruction: the latter permits the field position to be specified by the contents
of a register. Also, a field description can be constructed tn a general register
and moved to the Prefix Register via a Move To Special instruction. The move
instruction does not set the Prefix Valid flag;, which can be set via a Set Mode
instruction.

Apple Computer Confidential 8-29

Field Manipulation Instructions

ClrF (RegA) <pOB,len>
SetF (RegA) <pOB.len>

ClrF clears the field 1n register Rel,A defined by the Preflx Register to "O's"; SetF
sets the field to "1 's'\ The Preflx Valid flag is cleared. Register Rel,A bits outside
the field are not affected. The field length. len. minus one. is contained 1n Prefix
Register bits <6:2>. The position of the rightmost (least significant) bit of the
field. poe. is contained 1n Prefix Register bits <11:7>.

Condition Codes: unchanged

Ezceptlons: none

15 43 o

Format: Clrl'

Seti'

O O O 1 O O O O O 1 O O RegA
000000000100 RegA

Apple Computer Confidential 8-30

Field Manipulation Instructions

I•·o~<· . ìJep.1

Dep (RegB)<len> ➔ RegA<pos>

Extract a right-justified field of length len (i.e .• bits <len-1:0>) from register
Regs and deposit it in register RegA. with its least significant bit at bit position
pos. Clear the bits of register RegA outside the field and clear the Prefix Valid
flag. The field length. len. minus one. is contained in Prefix Register bits <6:2>.
The position of the rìghtmost (least sìgníñcantì bit of the field. pos. is contained
in Prefix Register bits <11:7>.

Ifpoa +len;?! 32. the contents of register RegB, left-shifted by pos, are stored into
register RegA

Condition Cocles: N- set to "l" if the result is negative; cleared to "O"
otherwíse

Z- set to "l" if the result equals zero; cleared to "O"
otherwíse

V- cleared to "O"

) C- unchanged

Ezceptlons: none

Notes: To extract a right-justified field from a source register and insert it in a
destination register without clearing destination register bits outside the field,
use the Insert (Ins) instruction.

15 87 43 O

Format: O O 1 O 1 O O 1 Reg& RegA

~)

Apple Computer Confidential 8-31

Field Manipulation Instructions
\

.t:JttRÀCTSIGNEölüNSIGNED: •.•. ·· · •· •·· · ·.•. ·. · .· •. •.•··· .· • . EXfS!Extuj

EztS (Relt\)<poa.len> ➔ Re&B
EztU (Relt\)<poa.len> ➔ Re&B

Extract a field of length len, whose least sígníñcant bit is at bit position pos.
from register Re¡A and store it. right justified • in register RegB; clear the Prefix
Valid flag. For EztS. the most significant bit of the field is taken as the sign and
the field is sign-extended in register Regs (i.e .• bits <31:len> of register Regs are
set to the value of the most significant bit of the field. For EztU. the bits of
register Regs outside the field (bits <31 :len>) are cleared to "O's". The field length.
len. minus one. is contained in Prefix Register bits <6:2>. The position of the
rightmost (least significant) bit of the field. pos. is contained in Prefix Register
bits <11:7>.

Condition Codes: N- set to "l" if the result is negative; cleared to "O"
otherwise

Z- set to "l" if the result equals zero: cleared to "O"
otherwise

V- cleared to "O"
C- unchanged

Ezceptlons: none

Notes: If pos+ len~ 32. EztS is equivalent to an arithmetic right shift of pos
places; EztU is equivalent to a logical right shift of pos places.

15 87 43 o

Format: 00101110 RegB RegA
00101111 RegB RegA

Apple Computer Confident/al 8-32

Field Manipulation Instructions

I ·• 1NSEftc \·•·.····.

Ins (RegB)<len> ➔ RegA<poa>

Extract a right-justified field of length len (ì.e .• bits <len-1:0>) from register
Rege and deposit it in register RelA, with its least significant bit at bit position
pos; clear the Prefix Valid flag. Bits of register RegA outside the field are not
affected. The field length, len, minus one, is contained in Prefix Register bits
<6:2>. The position of the rightmost (least significant) bit of the field, pos. is
contained in Prefix Register bits < 11: 7>.

Condition Codes: N- set to "1" if the result is negative: cleared to "O"
otherwise

Z- set to "1" if the result equals zero: cleared to "O"
otherwise

V- cleared to "O"
C- unchanged

~) Ezceptlons: none

Notes: To extract a right-justified field from a source register and insert it in a
destination register with destination register bits outside the field cleared, use
the Deposit (Dep) instruction.

15 87 43 O
Format: O O 1 1 1 O O 1 Rega RegA

Apple Computer Confidential 8-33

Field Manipulation Instructions

Msk (Reg&). len- 1

Generate a field definition comprising a field length len and least significant
(rightmost) bit position pos. store the definition in the Prefix Register. and set
the Prefix Valid flag. The field length is in the range 1 - 32; the length minus 1 is
specified by the Msk instruction's immediate field and stored in Prefix Register
bits <6:2>. The least significant five bits of register Reg.A specify po■, and are
stored in Prefix Register bits < 11 :7>. The most significant bit of the field is at bit
position pos + l~n - 1. (If pos + len 1 ~ 31. the most significant bit is at bit
position 31.)

Condition Codes: unchanged

Ezceptlons: none

15 987 43 o
Format: 0010101 11 Raga 1er..1

Apple Computer Confidential 8-34

Field Manipulation Instructions

I PREl'IÌê IAiMEDIA TE •• ·. . ·•

P&I Imm ➔ P&:R

Imm + (P&R)<< 12 ➔ P&R
ifPV= "O"
ifPV= "1"

If the Prefix Valid flag is "O", store Imm into the Prefix Register, sign-extended,
and set the Prefix Valid flag. The high-order bit of Imm (instruction bit 11) is
taken as the sign bit. If the Prefix Valid flag is "1", shift the contents of the
Prefix Register left 12 places and store Imm in the vacated bit positions. Leave
the Prefix Valid flag set.

Bits < 1 :O> of the Prefix Register are unused. The immediate field value Imm of
the PízI instruction is stored in Prefix Register bits <13:2>. When using PízI to
store a field description in the Prefix Register, instruction bits <4:0> specify
len - 1, while instruction bits <8:5> specify pos.

Condition Codea: unchanged

Ezceptlons: none

Notes: In Antares, the result of executing a PízI instruction immediately after a
MovTS instruction storing into the Prefix Register is unpredictable.

15 12 11 o
Format: o 1 1 1 Immediate

B. 6 Arithmetic Instructions
Arithmetic instructions include 32-bit signed integer add, and subtract

instructions (Add/Sub and AddC/SubC), 32-bit signed and unsigned integer
multiply and divide instructions (Dlv/DlvU and Mul/MulU), 64-bit signed and
unsìgned Integer divide instruction (DlvE/DlvUE), as well as add, subtract, and
multiply instructions which operate on all four bytes or both halfwords of their
operand registers (AcldP /SubP and MulP /MulPU). Other arithmetic instruc­
tions include add and subtract immediate (Addi/Subi) and Negate (Neg).

AddP/SubP, and MulP/llulPU are called multi-gauge (or partial) arithmetic
instructions, and are provided primarily to speed graphics operations.. The
operand size - byte or halfword - for these instructions is specified by the
Halfword/Byte mode flag in the PsR. Multigauge arithmetic instruction
operands are treated as independent quantities (i.e., there are no carries between
bytes or halfwords), and the specified arithmetic operation is carried out
simultaneously on all four byte or on both halfwords (see Section 2. 7).

Apple Computer Confidential 8-35

Arithmetic Instructions

Add (Rea&B) + (RegA) ➔ Rea&&
Sub (Rea&B) - (RegA) ➔ Rea&&

Add the contents of registers Re&B and Re¡A (Add), or subtract the contents of
register Re¡A from the contents of register Rega (Sub). Store the result in register
Rega.

Condition Codes: N- set to "l" if the result is negative; cleared to "O"
otherwise

Z- set to "l" ff the result equals zero; cleared to "O"
otherwise

V- set to "l" ff an overflow is generated; cleared to "O"
otherwise

C- CO is set to "l" ff a cany is generated and cleared to "O"
otherwise; C 1, C2, and C3 are cleared to "O". For Sub,
CO = "not borrow", and is set ff (Re,S) ~ (RegA), with
(RelA) treated as unsigned.

Ezceptlons: arithmetic overflow

15 87 43 o

Format: Add

Sub

00001100 Rega RegA
00011100 Rega RegA

Apple Computer Confidential B-36

Arithmetic Instructions

.AdclCISubC I
AddC (RegB) + (RegA) + a> ➔Rege
Sube (RegB) - (RegA) + (CO- 1) ➔ RegB

AddC adds the value of the CO condition code (carry) flag to the contents of
registers Regs and Re1A and stores the result in register RegB. SubC adds the
value of the CO condition code (carry) flag and the one's complement of the
contents of register RelA to the contents of register Re&B and stores the result in
register Rege.

Condition Codes: N- set to "l" if the result is negative: cleared to "O"
otherwise

Z- cleared to "O" if the result is not equal to zero; left
unchanged otherwise

V- set to "l" if an overflow is generated; cleared to "O"
otherwise

C- CO is set to "l" if a carry is generated and cleared to "O"
otherwise; C 1, C2, and C3 are cleared to "O". For SubC.
CO= "not borrow' ', and is set if(RegB) 2: ((RegA) + CO - 1).

Ezceptlons: arithmetic overflow

15 87 43 o

Format: AddC

Sube

00001110 Rege RegA I
00011110 Rege RegA

'-')

Apple Computer Confidential 8-37

Arithmetic Instructions

I Aod~~ •.· ·. ·. .·. Addii

Addi (RegAl + Imm - 1 ➔ RegA if PV = "O"

(RegA) + [(PfzR.)<<8 + Imm + 1) ➔ RegA if PV = "l"

Add the effective immediate value to the contents of register RegA and store the
result in register Re¡A. If the Prefix Valid flag is "O". the effective immediate
value is Imm + I. If the Prefix Valid flag is "I"., the effective immediate is formed
by shifting the contents of the PlzR left 8 places and adding Imm. and then
adding 1 to the result; the Prefix Valid flag is cleared.

Condition Cocles: N- set to "l" if the result is negative: cleared to "O"
otherwise

Z- set to "I" if the result equals zero; cleared to "O"
otherwise

V- set to "l" if an overflow is generated or if the effective
immediate is - 231 and (RelA) is negative: cleared to "O"
otherwise

C- CO is set to "l" if a cany is generated or if the effective
immediate is O and is cleared to "O" otherwise. Cl, C2,
and C3 are cleared to "O".

Ezceptlons: arithmetic overflow

15 1211 43 O

Format: 0100 Imm RegA

Apple Computer Confident/al 8-38

Arithmetic Instructions

Subi I

Subi (RegA) - [16- Imm) ➔ RegA

Subtract the effective immediate value from the contents of register RegA and
store the result in register Re¡A. The effective immediate is formed by
subtracting the immediate field value, Imm, from 16, provìdìng an effective
immediate range of 1 - 16.

Condition Codes: N- set to lt l lt if the result is negative: cleared to Ito"
otherwise

Z- set to lt l lt if the result equals zero: cleared to "Olt
otherwise

V- set to lt 1" if an overflow is generated: cleared to "O"
otherwise

C- CO is set to lt l lt if a carry is generated or if (RegA), treated
as unsigned, is equal to or greater than [16 - Imm), and
is cleared to "Olt otherwise . Cl, C2, and C3 are cleared to
ltO".

Ezceptions: arithmetic overflow

Notes: To subtract a constant value greater than 16, Addi with a negative prefix
value is used.

15 8 7 43 O

Format: O O O O 1 1 1 1 Imm RegA

Apple Computer Confidential s·.39

Arithmetic Instructions

·. · · < AtldP/SubP I

AddP (RegB)<H/B> + (RegA)<H/B> ➔ Re&B

SubP (Re&B)<H/B> - (ReaAl<}i/B> ➔ Re&9

AddP adds the four bytes or the two halfwords, as determined by the H/B mode
flag (PsR bit <2>), in register RegA to the corresponding bytes or halfwords in
register RegB, and stores the result in register RegB. SubP subtracts the four
bytes or two halfwords in register RegA from the corresponding bytes or half­
words in register Re1B and stores the result in register Re1B. Each byte or
halfword pair is individually added or subtracted.

Condition Codes: byte mode (H/B = 110'1
N- set to the value of bit <31> of the result
Z- set to "l II if the result of any byte addition or sub­

traction is zero : cleared to "O" otheIWise
V- cleared to "O"
C- Ci, i= O, 1, 2, 3, is set to "l" if addition or subtraction of

byte i generates a carry, and cleared to "011 otheIWise.
halfword mode (H/B = 111'1
N- set to the value of bit <31> of the result
Z- set to II l II if the result of any halfword addition or sub­

traction is zero : cleared to 110" otheIWise
V- cleared to "O"
C- CO is set to "l" if addition or subtraction of halfword O

generates a cany, and cleared to 110" otherwise. C2 is set
to II l" if addition or subtraction of halfword 1 generates
a carry, and cleared to "O" otherwise. C 1 and C3 are
cleared to "O".

Ezceptlons : none

15 87 43 o

Format: AddP

8abP

00001101 Rega RegA
00011101 RegB RegA

Apple Compu'ter Confident/al 8-40

Arithmetic Instructions

I cooNTLEAotNGZEl'l0Es

CLZ (RegA) ➔ Rege

Count the number of leading zeroes (the number of contiguous "O" bits beginning
at bit <31> and counting toward bit <0>) in register RegA and store this number
in register Rege.

Condition Codes: N- set to "1" if the value in register RegA is negative:
cleared to "O" otherwise

Z- set to "1" if the value in register RegA is zero: cleared to
''O" otherwise

V- cleared to "O"
C- unchanged

Exceptions: none

15 87 43 o
Format: 00111101 Reg& RegA

)

Apple Computer Confidential 8•41

Arithmetic Instructions

I - . . . mV,i,¡f .· . DIV I
Div (Re&B)/(Regt\)➔Reg'B.RmlR

Divide the contents of register RegB (divisor) by the contents of register RegA
(dividend); store the quotient in register RegB and the remainder in the
Remainder Register (special register 5). The remainder will have the same sign
as the dividend. Both dividend and divisor are treated as 32-bit signed integers.

Condition Cocles: unchanged

Exceptions: arithmetic overflow

Notes: An arithmetic overllow exception occurs if the divisor is zero or if the
result will not fit in the result register (the latter occurs only if (RegB) = -231 and
(RegAl = -1). If an overllow exception occurs and the Overflow Trap enable flag
(PsR bit <1>) is "l". an Overflow Trap is generated and no result is stored: if the
Overflow Trap enable flag is "O". no trap is generated and the result stored is
unpredictable.
In Antares. Div is asynchronous and executes concurrently with subsequently­
issued instructions. Overflow, if it occurs. will be detected prior to execution of
any subsequent instruction.

15 87 43 O

Format: O O 1 1 O O 1 1 RegB RegA

Apple Computer Confidential 8-42

Arithmetic Instructions

....... ·. DIVE I

)

DlvE [(RemRJ I I (RegB)]/(RegA) ➔ Rej&B, RemR

Divide the 64-bit signed integer formed by concatenating the contents of the
Remainder Register with the contents of register RegB by the 32-bit signed
integer in register RegA: store the quottent in register Rep and the remainder in
the Remainder Register (special register 5). The Remainder Register provides
dividend bits <63:32> (Remainder Register bit <31> provides the sign). while
register Rep provides dividend bits <31 :O>. The remainder has the same sign as
the dividend.

Condition Codea: unchanged

Ezceptlona: arithmetic overflow

Notes: An arithmetic overflow exception occurs if the divisor is zero or if the
result will not fit in the result register. If an overflow exception occurs and the
Overflow Trap enable flag (PsR bit < 1>) is "l ". an Overflow Trap is generated and
no result is stored: if the Overflow Trap enable flag is "O". no trap is generated
and the result stored is unpredictable. ·

In Antares. DlvE is asynchronous and executes concurrently with subsequently­
issued instructions. Overflow. if it occurs, will be detected prior to execution of
any subsequent instruction.

15 87 43 O

Format: O O 1 1 O 11 1 Rega RegA

Apple Computer Confident/al 8-43

Arithmetic Instructions

. DlvU I

DlvU (RegB)/(RegA) ➔Rea&&. RemR

Divide the contents of register RegB (divisor) by the contents of register RegA
(dividend): store the quotient in register RegB and the remainder in the
Remainder Register (special register 5). Both dividend and divisor are treated as
32-bit unsigned integers.

Condition Codes: unchanged

Ezceptlons: arithmetic overflow

Notes: An arithmetic overflow exception occurs if the divisor is zero. If an
overflow exception occurs and the Overflow Trap enable flag (PsR bit < 1 >) is "1 ".
an Overflow Trap is generated and no result is stored; if the Overflow Trap
enable flag is "O". no trap is generated and the result stored is unpredictable.
In Antares, DlvU is asynchronous and executes concurrently with subsequently­
issued instructions. Overflow, if it occurs, will be detected prior to execution of
any subsequent instruction.

15 87 43 O

Format: 00100011 RegB RegA

Apple Computer Confidential 8-44

Arithmetic Instructions

DlvUE [(RemR) I I (RegB))/(RegA) ➔ RegB, RemR

Divide the 64-bit unsigned integer formed by concatenating the contents of the
Remainder Register with the contents of register RegB by the 32-bit unsigned
integer 1n register RegA: store the quotient in register RegB and the remainder in
the Remainder Register (special register 5). The Remainder Register provides
dividend bits <63:32>, while register RegB provides dividend bits <31:0>.

Condition Codes: unchanged

Ezceptlons: arithmetic overflow

Notes: An arithmetic overflow exception occurs if the divisor is zero or if the
result will not fit in the result register. If an overflow exception occurs and the
Overflow Trap enable flag (PsR bit <1>) is "l ", an Overflow Trap is generated and
no result is stored; if the Overflow Trap enable flag is "O". no trap is generated
and the result stored is unpredictable.

In Antares, DlvUE is asynchronous and executes concurrently with sub­
sequently-issued instructions. Overflow, if it occurs, will be detected prior to
execution of any subsequent instruction.

15 87 43 O
Format: O O 1 O O 1 1 1 Rega RegA

Apple Computer Confident/al 8-45

Arithmetic Instructions

Mui (RegB)*(Re&A) ➔ RegB, ProdR

Multiply the contents of register RegB by the contents of register Re&A: store
product bits <63:32> in the Product Register (special register 4) and products bits
<31:0> in register Rege. Both multiplicand and multiplier are treated as 32-bit
signed integers.

Condition Cocles: unchanged

Exceptions: none overflow

Notes: In Antares, Mui is asynchronous and executes concurrently with sub­
sequently-issued instructions.

15 87 43 O

Format: O O 1 1 O O O 1 RegB RegA

··.·••·· MulU I
MulU (RegB)*(Re&A) ➔ RegB, ProdR

Multiply the contents of register RegB by the contents of register Re&A: store
product bits <63:32> in the Product Register (special register 4) and products bits
<31:0> in register Rege. Both multiplicand and multiplier are treated as 32-bit
unsigned integers.

Condition Cocles: unchanged

Ezceptlona: none

Notes: In Antares. MulU is asynchronous and executes concurrently with sub­
sequently-issued instructions.

15 87 43 O

Format: O O 1 O O O O 1 RegB RegA

Apple Computer Confidential 8-46

Arithmetic Instructions

MulP (Reg'B)<H/B> • (RegA) ➔ Proc1R

Form a signed multiplicand from each of the four bytes or two halfwords, as
determined by the H/B mode flag (PsR bit <2>), in register RegB, using the
complement of the cany condition code flag for that byte or halfword as its sign.
Multiply each multiplicand by the multiplier in bits <31:16> of register RegA,
and store the results in the corresponding byte or halfword positions of the
Product Register. Bits <15:0> or register ReaA are ignored. Each byte or
halfword is independently multiplied.

Each multiplicand ls a signed, two's-complement, left-justified, fractional
quantity. The multiplier is an unsigned, left-justified, fractional quantity.
Each result byte or halfword is an unsigned fractional quantity formed by
discarding the sign of the product and storing as the result the most significant
byte or halfword of the product. Multiplication of byte O via a MulP instruction
with the H/B flag= "O" ls diagrammed below. Multiplication of bytes 1-3. or of
halfwords O and 1 when H/B = "l", ls performed similarly.

) CO carry flag from P1R byte O of register RegB

9-blt 1lgned
multlpllcand

X
31 high-order 16 bits of regisœr RegA 16

- -
product
(1lgned)

8-blt un1lgned
result

Isl.: : : : : : : : : : : : : : : :1
?

1. : : : : : : : h<l:,
byte O of ProdR

Condition Cocles: unchanged

Apple Computer Confident/al 8-47

Arithmetic Instructions

Ezceptlona: none

Notes: In Antares, MulP is asynchronous and executes concurrently with sub­
sequently-issued instructions. All four bytes or both halfwords are multiplied
simultaneously.

15 87 43 O

Format: O O 1 1 O 1 O 1 AegB AegA

l .. ':·+.u. · · üiTi.· .. '.îPÎ.YPA·'· :.:.,m.·.'·.• .. ··~·:·•·•,:.:·•·,·'.~,.:'.:',:',.:.u.•:,,·.·'.•,:N,'.''.::: .. ,s.:-,., •... ·, ~.• .. '.:,G··.,·.•·.·'.N,•,,,·,:,·,· .. ·.e.:,·,.•.,•·.·º·:··.:,.:::·:·,:.•.:,·,.:.::,:,.:,:.,:.,::,:,::. Jt:t\:/>:<u.<,. •:::::r•.,,:::::::.:,:·-::::::::::.,.:- ,,,,,,,,,,,:;;;;::::::.,:::::--:.: :.::::::;.;.: ,,,,.<' ·. ''· , .. ·· .·,. •·.,····¡ • . .:: ·:/:;: /:/ •• ,. /:,':::;:/·:>::>::: ::,:::::•:; :<.:-:•:<•· .•: . :·· ·.· .. ·. >•:: ·:•:•:-:- :•:•.;:-·:•:• :::::::::: ::~t,_!F.i_.t.J/

MulPU {Ref¡B)<H/B> • (RelA) ➔ ProdR

Multiply each of the four bytes or two halfwords, as determined by the H/B mode
flag (PsR bit <2>), in register Re¡B by the multiplier in bits <31:16> of register
RegA, and store the results in the corresponding byte or halfword positions of
the Product Register. Bits <15:0> or register Re¡.& are ignored. Each byte or
halfword is independently multiplied.
Each multiplicand byte or halfword is an unsigned, left-justifled, fractional
quantity. and the multiplier is an unsigned, left-justified, fractional quantity.
Each result byte or halfword also is an unsigned fractional quantity; only the
most stgnißcant byte or halfword of the product is stored in ProdR

Condition Cocles: unchanged

Ezceptkma : none

Notes: In Antares, MulPU is asynchronous and executes concurrently with sub­
sequently-issued instructions. All four bytes or both halfwords are multiplied
simultaneously.

15 87 43 O

Format: 00100101 Reg& AegA

Apple Computer Confident/al 8-48

Arithmetic Instructions

······•···•········•··•··••·T·•<.·s>••<f i: ::.·:<>~•••·!

Neg - (RegB) ➔ RegA

Store the two's complement of the value in register RegA in register Rege.

Condition Codes: N- set to II l II if the result is negative; cleared to 110"
otherwise

Z- set to "l II if the result equals zero: cleared to 11011

otherwise
V- set to 11l11 if the result or source is- 231: cleared to 110"

otherwise
C- CO is set to II l II if the result is O and is cleared to 11011

otherwise. Cl, C2, and C3 are cleared to 110".

Exceptions: arithmetic overflow

15 87 43 O
Format: O O O 1 1 1 1 1 RegB RegA

8.7 Broadcast and Semaphore Instructions
Scorpius provides three classes of instructions for initiating and coordi­

nating parallel actMties: broadcast, inter-PU trap, and semaphore. Broadcast
instructions are Start. Resume, Send, Receive, and Wait. The two inter-PU trap
instructions. Preempt and Restart, are a broadcast variant and are described in
Section 8.9. The semaphore instructions are Lock and Unlock.

Start, Resume, and Send instructions permit a PU to send an instruction
address or a data value to other PUs in a single operation. The PUs receiving the
address or data value are called the targets of the instruction, and are specified
by a 4-bit PU Mask field in the instruction. This field has the form b3b2b1bo,
where b1 is "O" if PU i is a target of the instruction and "1" otherwise. In these
three instructions. the PU Mask bit corresponding to the PU issuing the
instruction is ignored (a PU cannot send itself an address or a data value). The
Wait instruction also uses the PU Mask field: if the PU Mask bit corresponding
to the PU issuing the Wait instruction is "O", the instruction performs a halt
operation. Inter-PU trap instructions use the PU Mask field to specify which
PUs are to be preempted or restarted.. The result of issuing a broadcast
instruction with no target PUs specified (PU Mask = 111 lB) is unpredictable.

Broadcast. inter-PU trap, and semaphore instructions are discussed at
length in Chapter 5.

Apple Computer Confident/al 8-49

Broadcast and Semaphore Instructions

~·•·.::.R.:,= .. ·E,••··•·ê·:·'..SVEc,:=.'..'.',:.'..:.:.!.•.•.··.•·'.'.: ... •.'..:,:.-.:.i.,:.:.t.l ... :.
1

.:i.:,,.::.•.!. J<:lft>t:: >=<<== :.:.:.:.:.: .. :.!.i:.:.:·:·:·••·:.:.l}:.::: .. ::.::.Ej/}J/,i,: : := :, tr< :<:?:/:?:}i::\YI::i:i:::::, ... /'.:?=,<?/t>rrn+r :t\·•.:.'.:.a., = ... c.:.; ... v.'.·.· : .. :.! I ., ... ·=···=·=·=·····===·=,=,=,,,,.=·:==,,=,=,=?>::::,.,,===== .. ·.·.·.· ·.· ,.·. =·=·=·=···=···=···= ·.· =·= =·=·=·=·=·=·=··· .. ·. ·.·....... -

Wait for another PU to execute a Send instruction with the receiVing PU as a
target. store the value sent by that PU in register Re¡A. and continue execution.
Execution of the Send instruction may have been tnitlated prior to initiation of
the Rev instruction. in which case the value is stored and execution of the Rev
instruction completes without waiting.

Condition Cocles: unchanged

Ezceptlom: none

15 43 O

Format: O O O 1 O O O O O 1 1 1 RegA

Apple Computer Confident/al 8-50

Broadcast and Semaphore Instructions

Rsm PUMask

Cause each target PU of the Ram mstructìon, if halted, to resume execution at the
address in the target's Current PC. Execution of the Ram instruction does not
complete until all target PUs have halted (if not initially halted) and had their
execution resumed. If the PU issuing the Ram is in user mode, all target PUs
must halt in user mode before the Ram ínstructíon can complete. If the issuing
PU is in system mode, target PUs may halt in either mode (and will have their
execution resumed). A PU is specíñed as a target PU by setting the corresponding
bit in the instruction's PUMask field to "O". Clear the PU Available flag in the
PsR (PsR bit <O>).

Condltlon<Codes: unchanged

Ezceptions: none

Notes: The PUMask field bit corresponding to the issuing PU is ignored. Issuing
an Ram instruction with no target PUs specilled (PUMask = "1111B") causes un­
predictable results.

In Antares, a synchronization operation is implicit in Ram instruction execu­
tion: all target PUs must simultaneously be halted in the appropriate mode
before their execution is resumed and Ram execution completes. This synchro­
nization is an attribute of implementation, not architecture, and may not take
place in all implementations. If synchronization prior to a Ram is desired. it
should be explicitly programmed (via a Watt instruction).

15 43 O

Format: O O O O O O O O O 1 O 1 PUMaak

Apple Computer Confident/al 8-51

Broadcast and Semaphore Instructions

1-: .· -:-:_.,,,.,,,,,,.,,,,,,,,,,,,,,,,,,:,:,:•·,-:::::- ,, ... ,,,,, ,.,,,,,,,, ·.::.::,.:.::. '.:'.::::.::.::.:.,:-.,'.::.:.•.· .. •:.,.: .•. :.: ... ::.,.,.:.·.•.•,·.•.'.·.·.:.,.·.,.·.: :.:·,.'.,.:.•.,.\::. :. :,:::: : : .. ,<, . ,)': /){ :::;::,, ,,,.::::/:::::::::: \(/ }\\\:><< "' :,,.:,:::,:,,•,,.:,,:,,.:,.·,.:,::,,,:,.:.::,.:,, .• ,:.: .. ,,::,.:,:.':,:,,.',:.,':•:::•,.',,,•,·,.:,,,:,,•,,.:,.•,,,:,.:,,,•,,=,,.:,.,,',,.',,,::,·:,'s,:,.:.:::,•.·:\i!i,:·':i:.:•~:.·.:,.·.:,.·,,.·:',•,·:.·::.:,.:,,.··,, .• :•,.::I
:.'.',.:.'.:.s,···, .. ·,~.·.· .. ··.·•: .. ·,.:',·.·,·,D.:·,·,:,.·::,.·:;,:,•,:.::,,:,i,

1
.. :1,:.·.:,::•,'.•::.:,.:,.::•,·· ... :,·.,:·.·.,.·.:.,,:. =,::.:,.,.':.:.:,'.:.:::.'.•.-:.:.::.::. .,,u., - : : . :- : ·. •: •: :·: :: ': ':.: ::-:::?: •.• ,.,):(: •• :. : :(:... : :: :: : :)\ -:::: :: .• \)??)?}t>: /:}})?})}:

Send (Reg&) ➔ PUMuk

Send the contents of register Re,S to each target PU. Execution of the Send
instruction does not complete until each target PU has executed a Rev instruc­
tion in the same mode as the sender. A PU is specified as a target PU by setting
the corresponding bit in the instruction's PtJllaak field to "O".

Condition Codes: unchanged

Ezceptlom: none

Notea: The PlJMuk field bit corresponding to the issuing PU is ignored. Issuing
a Send instruction with no target PUs speci.tled (PlJMuk = "1111B") causes un­
predictable results.
In Antares, a synchronization operation is implicit in Send instruction execu­
tion: all target PUs must simultaneously be receiving in the appropriate mode
before the data value is broadcast and Send execution completes. This synchro­
nization is an attribute of implementation, not architecture, and may not take
place in all implementations. If synchronization prior to a Send is desired, it
should be explicitly programmed (via a Wait instruction).

15 87 43 O

Format: O O O O O O O 1 RegB PUllaak

Apple Computer Confidential B-52

Broadcast and Semaphore Instructions

)

)

Start @Reg&, PUMask

Send the address in register Re,S to each halted target PU and cause the target
PU to begin execution at that address. Execution of the Strt instruction does not
complete until each target PU has halted in the same mode as the PU issuing the
Strt instruction, received its new starting address, and begun execution. A PU is
specified as a target PU by setting the corresponding bit in the instruction's
PUMask field to "O". Clear the PU Available flag in the PsR (PsR bit <0>).

Condition Codes: unchanged

Ezceptlons: none

Notes: The PUMaak field bit corresponding to the issuing PU is ignored. Issuing
a Strt instruction with no target PUs specified (PUMask = "111 lB") causes un­
predictable results.
In Antares, a synchronization operation is implicit in Strt instruction execu­
tion: all target PUs must simultaneously be halted µi the appropriate mode
before the address is broadcast and Strt execution completes. This synchro­
nization is an attribute of implementation, not architecture, and may not take
place in all implementations. If synchronization prior to a Strt is desired, it
should be explicitly programmed (via a Wait instruction).

15 87 43 O
Format: O O O O O O 1 O Reg& PUllaak

Apple Computer Confidential 8-53

Broadcast and Semaphore Instructions

Walt PUMask

Walt serves two functions: it can be used to halt PU execution. or it can be used to
synchronize the activities of multiple PUs.
If the PU issuing the Walt is itself a target of the Walt (i.e .• its own bit in the
PUMaak field is "O"), the remaining Pmluk field bits are ignored. the PU's Halt
flag (PsR bit <24>) is set to "l ". and the PU halts. Execution on a halted PU can be
reínítìated via a RsM or Strt instruction. A PU ts specified as a target PU by
setting the corresponding bit in the instruction's PUMaak field to "O".
If the PU issuing the Walt instruction is not itself a target of the Walt, comple­
tion of the Walt instruction is delayed until all target PUs have halted in the
same mode as the PU issuing the Walt. The Wait instruction then completes- and
the waiting PU continues execution.

Condition Codea: unchanged

Ezceptlom: none

Notes: Issuing a Walt instruction with no target PUs specified (PUMask =
"111 lB") causes unpredictable results.

15 43 O

Format: 000100000101 PUMaak

Apple Computer Confidential 8-54

Broadcast and Semaphore Instructions

If the semaphore in the GSR for the current mode fs set to "l ", it ìs cleared to "O"
and Lock instruction execution completes. If the semaphore fs "O", Lock instruc­
tion execution 1s blocked until the semaphore 1s set to "l" by another PU: the
semaphore then is cleared to "O" and Lock instruction completes. GSR bit <31> ls
the user mode semaphore, and GSR bit <30> fs the system mode semaphore. The
U /S flag in the PsR determines the current mode.

Condition Cocles: unchanged

Ezceptlom: none

Notes: The order in which PUs attempting to lock a locked semaphore receive
service when that semaphore becomes unlocked is described in Section 5.4.

15 o

) Format: 0001000000000011

l · .. ·, ··.·.·.:- :-.·······. ·.<.··· .. ·:- .· . .:,',-:}\·"-:_,,,.:- .. ,. ·.. .. .· ,.,-: .. : .·. ·.· ·.·.·.....· ·.·:•-:-:,,.,,:-,.·-:•:•:,::-··,::: .. :•·--, ,. I
.:•:- . ·:: · ... ·-: ·-:-:•·· , .. ·•:- .. :-: .. :: :::::::::-:-:-·•:•: ·.•.·.·.·.·.·.· ::::::::::::::,:-:,:.:.:,.•·. ·: .. ;.;: :\\:/. :;: .. ,:;.;:;-::--::.:.:··:: :•:-. :•:-:·::: •:.::;·.',:·· :.:.::.:.•.·.: .. :.•.•·'.·.:.:.:.•,: .. ·.:.= .. :.,.'.'.: .. :.•.:,··.'•.·:.•.:.·:••:::.• .. :.:.,,·.::,:.•,: .. : .. ::,.:••··:: .. :., •. · ... ·.::, •. :: ·.',::··.:·:·.·,· ;·:·, '.·;, ·:.::i:.:.,• ... '.·,·:.'":
:,.- . U:.·· ,·.N .. · .. 1,,: .. :.:·,oc;,.:·,.·.·.·.::,,.K.·.·· ;.·.:,':"-.':,· .. •.•.= .. ,.·,:.•,' .. ':.:•.:::-,=::,,.•.:. :.,:.::..• -:·:: :-:-:.,.:-,.:-:.,.,.,.,.,.,.:,::::,, ;.:-,.;.· ;.;.;.,.:.:•··:.:-,.,.,.:.:.,.:-:•:,:;:•:,,.·,,:,::,,,,.,,:,:-:,:,:,-,,,:::: •:•:•:-: :::::::::::::.::::?::::=: :::-:,:,:•:•:•· .·.·.· .. ·... ...,,,,n,
.. :_·::::·::-:-::::;•::::::··:·:·.·:·:·:·:::::.:::::::::::::::::::::: :::::::;::·::::::::::::::::::::::::: :;•::::;::::::::::::::::::=:::::::::::::::.:::::_:;

Unlk

Set the semaphore in the GSR for the current mode to "l" (regardless of its
current value). GSR bit <31> fs the user mode semaphore, and GSR bit <30> ís the
system mode semaphore. The U /S flag in the PsR determines the current mode.

Condition Cocles: unchanged

Ezceptlona: none

Notes: The PU unlocking a semaphore fs not necessarily the PU which locked it.

15

\) .._,,.,
o

Format: 0001000000000010

Apple Computer Confident/al 8-55

Cache Control Instructions

8.8 Cache Control Instructions
Cache control instructions are used to maintain coherence between the

instruction and data caches of a single CPU and between caches of different
CPUs in a multi-CPU system, to flush instruction and data caches when requir­
ed (e.g .• on an address space switch in Antares), and to Improve performance by
eliminating unnecessary transfers of lines to and from memory and by
prefetching lines in advance of their use.

The Create Data Cache line instruction CDC is used to avoid transferring a
line from memory into the data cache when the in1t1al contents of that line are
no longer needed (as when the line will be completely overwritten). The Flush
Data Cache line, Invalidate Data Cache line, Update Data Cache line, and
Validate Data Cache line instructions (l'DC, mc. m>C, and VDC) provide four
different ways of disposing of a data cache line. All four do nothing if the
addressed line is not in the cache. l'DC and 1JDC both wrtte the line to memory if
it is modified; l'DC then marks the cache line invalid, while UDC marks the
cache line unmodified. IDC and VDC do not wrtte the line to memory if it is
modified: IDC marks the cache line invalid; VDC marks it unmodified. All
these instructions specify their operand - a data cache line .;_ via a byte address
in a general register. This address can be preßxed: the prefix provides a signed
word displacement from the register address. Bits <31 :6> of the operand address
identify the memory line: bits <5:0> are ignored.

The Invalidate Instruction Cache line instruction IIC marks the specified
cache line invalid, while the Invalid Instruction Cache instruction IICA
invalidates all instruction cache lines. The Read Data Tag by Index instruction
RDTX returns the tag associated with each data cache line location. The
Prefetch Data Cache line instruction PDC ts used to prefetch a line from memory
in advance of its use to reduce or eliminate miss delays.

Apple Computer Confident/al 8-56

Cache Control Instructions

CDC @RegA
@RegA + (PízR)<<2

If PV= "O"
If PV = "l"

Examine the data cache set speclf1ed by the operand address. If the specified line
already is in that set, complete execution. If the line is missing, select an
invalid member of that set, If one exists, in which to create the new line. If the
set does not contain an invalid line, select the set member marked least recently
used, and write the corresponding line to memory If it is modified. Create the
new cache line by extracting the tag from the operand address; mark it valid and
unmod.Jßed. If the Prefix Valid flag is "O", the operand address is the address in
register Re¡A. If the Prefix Valid flag is "l", the operand address is formed by
shifting the contents of the Prefix: Register left two place and adding the result to
the address in register RegA. (The Prefix Register provides a word displacement
from the register RegA address.) Clear the Prefix Valid flag

Condition Codes: unchanged

Ezceptlons: data page fault, data access privilege violation

Notes: In.Antares, the newly-created line is marked most-recent-used.

15 43 O

Format: 000100001000 AegA

Apple Computer Confident/al 8-57

Cache Control Instructions

FDC @RegA
@RegA + (PízR.)<<2

if PV= "O"
ifPV="l"

If the line specified by the operand address ts in the data cache, write it to
memory if it is modified and mark the cache line location ínvalíd, If the speci­
fied line is not in the data cache, this instruction has no effect. If the Prefix
Valid flag is "O". the operand address ts the address in register RegA. If the Prefix
Valid flag fs "1", the operand address is formed by shifting the contents of the
Prefix Register left two place and adding the result to the address in register
Reg.A. Clear the Prefix Valid flag.

Condition Codes: unchanged

Ezceptlons: data access privilege violation

15 43 O

Format: O O O 1 O O O O 1 1 O 1 RagA

I•·:.: ·1.1m.>,,~L>:l;".::. i:..· :li: '.b.··:·:·•:o::.• · .. ·¡ .: ·.· .. :·T:.~•.:·:·•.::.::.·•.,..·.':• .. ;r..·.:.·. A.o:.::·HE•.:.:::.•.•••.' .: .. •.¡::t.•:.,:.•·::'•·.t·:.º:·:···_•:\•I:!:.·.:.·.:.:.•::::·¡:.:.: . _ _ ·.·.·. :.J.:1.:_ •:::.:::::.::''°·-: .. :::::::::.: :.- ::-.:•.·· · ,,. ""' u,. a..: "'"~ ",.", JJ.n;..: -:-::•·· .. ••:ff)\/::::::::::::::::•:::.: :•·:: ·. · · · · .· ·
..... ···.···.·.··.·.·.··.·.•.-.·.·-.:-·-:.:-:-:-:.·•:•:-·•····-:-:-:-:

mc @RegA
@RegA + (PfzR)<<2

if PV = "O"
if PV = "l"

If the line specified by the operand address fs m the data cache, mark the cache
line location ínvalìd without wrtttng the line to memory if it ts modified. If the
specified line is not in the data cache, this instruction has no effect. If the Prefix
Valid flag ts "O". the operand address ts the address m register RegA. If the Prefix
Valid flag fs "l ". the operand address is formed by shifting the contents of the
Prefix Register left two place and adding the result to the address in register
RelA,. Clear the Prefix Valid flag.

Condition Codes: unchanged

Exceptions: data access privilege violation

15 43 O

Format: 000100001100 R~A

Apple Computer Confidential 8-58

Cache Control Instructions

IIC @RegA

If the line specilled by the address in register Re¡.& is in the instruction cache,
mark the cache line location invalid. If the specißed line is not in the data
cache, this instruction has no effect.

Condition Codes: unchanged

Exceptions: none

Notes: An DC instruction executed in user mode can invalidate a line belonging
to a system page: this does not result in correctness or security problems, and
does not cause an exception.

15 43 O

Form.at: O O O 1 O O O O 1 O 1 O RegA

)

DCA

Mark all instruction cache lines location invalid.

Condition Codes: unchanged

Ezceptlona : none

Notes: An IICA instruction executed in user mode can invalidate lines belong­
ing to system pages; this does not result in correctness or security problems, and
does not cause an exception.

15 o
Form.at: 0001000000000001

Apple Computer Confident/al 8-59

Cache Control Instructions

RDTX views the data cache as an array of 64 lines indexed 0-63. It specifies a
line index as its operand address, and receives as its result the tag of the
corresponding cache line location. The line index is contained in bits <9:4> of
register Re&A, as shown in (a) below; bits <9:6> specify one of the sixteen sets,
while bits <5:4> select one of the four lines in the selected set. The result is
returned in register RellJ. The result register, shown in (b) below, contains the
address tag (bits 31: 10> of the virtual address of the line stored in the specified
location) in bits <31: 10> together with the read-only, system/user, valid, and
modifted flag bits from the tag in bits <9:6>. (The LR.U bits are not returned.)

:IY~:'.:''.'.:il~t:Ym~
Nlact1 ~ L aelect1 of4

of 18 ae11 set elemen11

(a). Operand Addrue

addresa tag flags
(b). Reault

The flags are interpreted as follows.
R read-only flag (register RegB bit <9>). This flag is inherited from the page

table entry for the page in which the cache line is located; it is "l lt if the page
is read-only and "O" otherwise.

S system/user flag (register RellJ bit <8>). This flag also is inherited from the
page table entry for the page in which the cache line is located; it is lt l lt if the
page can be accessed only system mode and "O" if the page can be accessed in
both system and user modes.

V valid flag (register Re,S bit <7>). This flag is "I" if the contents of the cache
line location are valid and Ito" otherwise.

D dirty flag (register Re,S bit <6>). This flag is "I" if the line in this location
has been modified since being moved in or since being marked unmodified
by a une or voe instruction.

The settings of the R, s. and D flags are valid only if V = lt l lt.

Apple Computer Confident/al 8-60

Cache Control Instructions

Condition Codes: unchanged

Ezceptlons: operation fault

Notes: RDTX is a privileged instruction; attempted execution in user mode
causes an operation fault.
This instruction is implementation-dependent; the preceding specification
applies only to Antares. Other implementations of the Scorpius architecture
may implement RDTX d1fferently or not at all: see Section 6.5.

15 87 43 O
Format: O O O 1 O O 1 O RegB RegA

UDC @RegA
@RegA + (P&R)<<2

ifPV= "O"
ifPV="l"

If the line spectßed by the operand address is in the data cache and is modtßed,
write it to memory and mark it unmodified. If the spectßed line is not in the
data cache or is unmodíñed, this instruction has no effect. If the Prefix Valid
flag is "O", the operand address is the address in register Re¡A. If the Prefix Valid
flag is "I", the operand address is formed by shifting the contents of the Prefix
Register left two place and adding the result to the address in register RegA.
Clear the Prefix Valid flag.

ConcBtlon Codes: unchanged

Ezceptfom: data access privilege violation

Notes: In Antares. the IRU flags associated with the line are left unchanged.

15 43 O

Format: 000100001001 RegA

\)
-·~

Apple Computer Confidential · B-61

Control and Miscellaneous Instructions

VDC @RegA
@RegA + (PfzR)<<2

if PV= "O"
if PV = "l"

If the line spedfied by the operand address is in the data cache. and is modified,
mark the cache line location unmodified without writing the line to memory. If
the spedßed line is not in the data cache or is unmodified, this instruction has
no effect. If the Prefix Valid flag is "O". the operand address ts the address in
register RegA. If the Prefix Valid flag is "l". the operand address is formed by
shifting the contents of the Prefix Register left two place and adding the result to
the address in register RegA. Clear the Prefix Valid flag.

Condition Cocles: unchanged

Ezcepttons: data access privilege violation

Notes: In Antares. the LRU flags associated with the line are left unchanged.

15 43 O

Format: O O O 1 O O O O 1 O O O RegA

. 8.9 Control and Miscellaneous Instructions
This section describes the Clear/Set Mode instructions (ClrM/SetM). which

set and clear PsR flags, the inter-PU trap instructions (Prmpt and Res). the
Return from Interrupt instruction (Rtl), and the System Call instruction (Trap).
The Test Mode (TatM) instruction, which tests the state of a PsR flag. is described
in Section 8.3. The inter-PU trap instructions are a broadcast instruction
variant and are discussed in Section 5.3. Trap and interrupt processing is
discussed in Chapter 4: return from interrupt processing ts discussed in Section
4.7.

Apple Computer Confidential 8-62

Control and Miscellaneous Instructions

ClrM No.

Setlll No.

Clear PsR bit <No.> to "O" (ClrM) or set PsR bit <No.> to "l" (Setlll). PsR bits are
listed below.

O PU Available flag
1 Overflow Trap Enable flag
2 Halfword/Byte Mode flag
3 Preßx Valid flag

4-11 reserved
12 PCQ Enable flag
13 User/System Mode flag
14 Taken Branch Trap Enable flag
15 PU Interrupt/Trap Enable flag

Bits < 15:8> are privileged and can be tested only in system mode.

Condition Codea: unchanged

Ezceptlona: operation fault (on attempted access to bits <15:8> while ·in
user mode

Notes: The result of attempting to set or clear a reserved PsR bit is unpredict­
able. PU state is unpredictable following execution of a SetM instruction which
sets the PU Available flag. PsR bit <0> (see Section 4.6).

15 43 O

Format:
C1rll

8etll

000100000010 ~-
000100000·011 ~-

·.}·

\)
'-----·'

Apple Computer Confidential ._8-63

Control and Miscellaneous Instructions

Prmpt PUMask

Cause each target PU to generate a PU Preempt trap. If a target PU is inter­
rupt/trap enabled (PsR bit <15> = "l"), it immediately recognizes the trap and
transfers to the appropriate interrupt/trap entry address; otherwise, recogni­
tion is deferred until the PU becomes interrupt/trap enabled. Execution of the
Prmpt instruction does not complete until each PU has recomtzed the trap. A
PU is specified as a target PU by setting the corresponding bit in the instruction's
PUMask field to "O".

Condition Codes: unchanged

Ezceptlona: operation fault

Notes: Prm.pt is a privileged Instruction; attempted execution in user mode
causes an operation fault. The PUMask field bit corresponding to the issuing PU
is ignored. Issuing a Prmpt instruction with no target PUs specified (PUMask =
"1111B") causes unpredictable results.
In Antares, trap generation (and recognition) does not take place until all PUs
are simultaneously interrupt/trap enabled.

15 43 O

Form.at: 000000000110 PUllaak

-~---'

...... Apple Comp:uter Confidential B-64

Control and Miscellaneous Instructions

l:-;¡_:_::_:ii:,._:'_ .. :E_ .. :,.•::·._:_--_:_·_s.:::,.·::•::.-:::_:_._:.:::~-:-::·.·,_:.:::Wl_:_·:,-:.,:,:::::_:_:.·::-:_·::·:_=.:_::=, __ :_-.=: __ ·=r_=_::::.:.: .. _::::.:;,:=::,::_:=_:_;_i::_:.:_:_:_:_:_::_:_:_: __ :_1::;_::_i_ ttu ::::: :::r iii:ii: <:::::::: :\::: ':'//§?:-:-:: · :: :uz.:-:i?}}::::::::::::::::;::=-J,:t:rr::: :::::: : __ ::_:_¡:;_:·::i:i:i,:_:_:_¡:¡::._::_:::,: __ :i:i,:,:::¡=:·_::_:_::i::,::1_:_r::;:.·_1_·_:_:::=::¡·1_:_:_:_::¡:¡::.:_:::.:¡::.::_1_::_:_::¡_:_:_¡:1.::_:_::¡:;_:_:::,1_::_¡:_;_::_:_i:::_:_:::._.::i:: . .::!•a::,:_:_:.:_::,·:.:::·:.:,•::-:::-::_::¡::-¡::I

.. : :.:.: :: .:::::<)>>:::::::::-::::-:-:-:::-:-:-. .: ::?=:::::::::=:;:::?:::::::::·::::::=::-=::::· . . . :::·:·:·:·: .-: :···:·:·· :-: :-·-: :·:·:-:. :: :··-·.·_:·: .. _._._._:,-_: :::•·-·.·.·. -

Res PtJMaak

Cause each target PU, regardless of whether or not it is interrupt/trap enabled, to
immediately generate and recognize a PU restart trap and transfer control to the
corresponding interrupt/trap entry address. A PU is specified as a target PU by
setting the corresponding bit in the instruction's PlJlluk field to "O".

Condition Cocles: unchanged

Ezceptlona: operation fault

Notes: Rea is a privileged instruction; attempted execution in user mode causes
an operation fault. The PUMask field bit corresponding to the issuing PU is
ignored. Issuing a Res instruction with no target PUs specißed (PUMaak =
"1111B") causes unpredictable results.

15 43 o
Format: O O O O O O O O O 1 1 1 PUllaak

Apple Computer Confident/al

Control and Miscellaneous Instructions

Rtl

Rtl instructions are used to return from an interrupt or trap, and must be
· executed in paírs. An Rtl instruction pan· restores the Current PC and Next PC
from the PCQ and (on the second Rtl) restores the PsR from the SaveR If the Halt
flag 1n the restored PsR (bit <24>) is "l", PU execution halts following
completion of the second RtI instruction: otherwise, execution continues with
the instruction whose address is in Current PC.

Condition Codes: unchanged

Ezceptlona: operation fault

Notes: Rtl is a privileged instruction: attempted execution in user mode causes
an operation fault. The PU must be interrupt/trap disabled (PsR bit <15> = "O")
when executing an RtI instruction pair, or the results are unpredictable. Toe
result of attempting to execute a single RtI instruction is unpredictable.
In Antares, the result of an attempt to execute an RtI instruction immediately
following a taken branch or a jump, or a llovTS access of the PCQ, is undefined.

15 o
Format: 000100000000111 O

... ~., '6Apple Computer Confident/al 8-66

Control and Miscellaneous Instructions

Trap No.

Store the trap number (No.) tn bits <3:0> of the Trap Register and generate a
System Call trap. The values. stored 1n bits < 18:4> are undeâned.» If the PU ts
Interrupt/trap enabled, the trap¡ is recognized and control transferred Jo the
appropriate Interrupt/trap entryaddress; otherwise, a PU Check-Trapìsgener-
ated and recognized. . . .i. • .;,: .. Lr;~. ,·:-;, , . ~ ,~· , : ~ ...

.... ,.._ •.,.-,,

Condition Codes: unchanged

Ezceptlons: PU Check

Notes: Trap generation, presentation, and recognition are discussed 1n Section
4.4. In Antares, instruction bits <15:8> are stored 1n TrapR bits <U:4> when the
System Call trap is recognized.

15 ' q:.., ' ;_

======o=o=o==o :o:o:o::o =o=o=o==o=========No=·===L '::~ '' ·'.

b3 ~ b1 bo._ ,:'-... r~• ·

43
Format:

()

Apple Computer Confident/al

~ e',
,..,t,/ ·" ~!·

~k1- .?1·
~-L~· .. J:~.;"i; 1~.5' ~; r

_.,,..,<!'"'
., .. :. .. .,¡,, •

. ,,'~ .. '
'. 4

' .. ¡,'.,
t· ,~ ~~

Rev. 1.0 (12/88)

n

Appendix A. Instruction Formats
& Operation Codes

()

This appendix provides a summary of Scorpius instruction formats and
operation codes. All ínstructíons are 16-bits in length: however. to minimize
bandwidth, instructions are tightly encoded. Scorpius has a relatively large
number of instruction formats. with operation codes varying in length from 3
bits to 16 bits.

Instruction formats are shown tn Figures A. l and A.2. Basic formats (Figure
A 1) are instruction formats used by three or more instructions; unique formats
(Figure A.2) are instruction formats used by only one or two instructions.
Abbreviations are defined in Chapter 8. Note that formats include instructions
with immediate and displacement fields of several lengths as well as instruc­
tions in which bits of a field are. not contiguous. In most. but not all, cases, an
immediate value of I or a displacement value of D Is encoded as I - 1 or D -1.

Operation codes are listed in Figure A.3, grouped by length as 4-, 8-, 12, and
16-bit codes. While most operation codes are one of these lengths, there is one 3-
bit operation code (Bcc/JmP) and three 7-bit operation codes (Mak, ShL, and
ShR). The operation code length of an arbitrary instruction can be determined
as shown below.

0-3 ooor 10 100

4-F 01 -OF
10-1F
20-3F

8-bit opoode

000-00F'
101-10F

12-bitopcod8 16-bitC>pcode

\ __)

In tim diagram. the hexadecimal d.1gits of the operation ~ê -~ ~ed fròm
high-order to low-order: the "Ist hex digit" corresponds to ínstructíon halfword
bits < 15: 12>.

An instruction whose first hexadecimal digit is Cor Ô ül â ice .~ra Jmp
instruction. which are distingùished by examining insquctlp~ ,h$líword _bits
<1:0>. Sllnilarly, an instruction whose first two hexadecimal ~~fÎit.s,~ 2A. or.2~
is a llsk instruction, an instruction whose first two hexadeètmáì digìts are 2G or
2D is a ShR instruction. and an instruction whose first two hexadecimal· digits
are 3A or 3B is a ShL instruction.

Apple Computer Confidential A·1

. " '1. ~ -
.,, f' I "'t-;;

Appendix A

LdI
.1:$.:::;:::: ~,mrrs : :,-~J~/\ :• :: /:/:::::::/:/::::::·::: :::::.::·:::;::::::,::::::::::::::\¡f3}?< :'/::':':':::' :.:-::-:]f

- :1 Opédéle · 1 ·· ·········· .···.,.,~····. ··.····.·:-.-::-:• r•:·•·· RegA .. ··-r:

<> i.:.:.:.l.:.:.:.J.:.:.;.::.i.:.:.J.J.i.:.:J.J.:.¡ .. :i.:.:.:.:[.l.:.:'..::.1.i ... :.:.:.•.:l.l.i.·•.:¡.iï.·i.:.:l.•.i .•. '..:i.i.:.il.:.:ie.i:.i:.~.'..!.:.:.!.-:.:.'..·is.::.:.:.:.::.•.;::~~--Í¡;¡~··· u;¡¡¡¡jj
• • • • • ~ ._ ,--~ r, • • :-:•:•:•:•:-:•:•:•:<•.<•:-:-:-:•,•:-, ,-:-:,:-:•:••-:•••:•:•:•:,:-:-:•:•:•:•: :•:•:-:,:.:,:-:-:•:••••••

Mul'U
Neg .
Not·
Or
llDrX
SIB
SIM
Stil
Sul,
Sul,C
Sul,P
Xor

.,,, ~. ' '
:,~m:u::trrnwsmttl'ltl=tm:::: mft::mc:::::::r'=Httwj::mtm:::n:1::mtt/0?
l .°.~:½:~~~;,;,,:.::::·::,.;:;:::,,,:,:,~, ... ,,,,J> ~·~; ;:;., .,,.,::::•:•,~:~•:••:· li

•'• -·~<. - ~ , ' . ~ ·~

...... ··•--:,

,, ... ,,. ,.,, ... _ i• , - •• ~

' .. ~- -~ ~ ~ ... , . ,, ,.

JS,\/ %(:mt:.:: .. -~\. . · .;. · . . · -;_i-(}<:.-.\.,.:./ .. :::::.-.::.·-- .. 4.$.'.·. .. · :::.:.: : ... :. ·: :): :tf J o,-..::· I RegA .]i
·::::::::::::::::;.:: ,:::::-::;:;.;:; :::::::. :'.:.:::-::_._.,:_:-::-•-·,:-.-:-;.:::::::::::: ::::::; :::;;::·::::?:::-:;:-.•.· ...

. . ~ ' ,:.... '. ~-... : . : ' .
.. . -- ~ · ' \' .-_ .

}

./'

A-2

Appendix A

(__ , '

')

Prefix Immediate (Pfxl)

~·- ==: :
Define Fielcl (Mak)
Shift Left (ShL)

Shift 'Right (ShR)

- - ~-, ,,., :i,~#f litl\Df N~~,J~i~Jû!'tE:i!J!J!íiiîii\fjlff!iHliîföl\!ii, .
.. :~. ~ ':,~-:~\: •'. ,, ~-r,.: ... · .. : : /: ·.:ii~it{'i!\'.(ili::,:.:-i>:· '' ,:::::\kt)JÇ

-•~~-::-~~--~:~·~.::1!?~:Ä~~~'.¡tj;¡~:;:L:::;;:;;;,,:::;;~:'.,:;:,:::i:::;,;:;::::,1;:::i:~:•=~1;;,;,;:~;:i:;;;:~~:îffl!l:i1111:::líll!::::¡¡:¡:¡::::¡¡!.!i!t
...... ... ,~-- ~"""'" ' ,,•.,~- .. ,r,_... ,...,.~ ..,,. O .. _•• ,·.-.,. -~ • ~~ -, .. .,.~'•,M--:,. ~ •

u
Apple Computer Confidential A·3

Appendix A

-:."'-::,,.-.;~, Mnemonic
· : 00 no~:3·

,'.,;; 21::è ·::
· j:) œ . . 'MóYTS
'.{}.\ 04 ·'··ili\déf;
/,.:_05 :,:i·.-Sdl-:
f!:

1

:'fo·J6:'.~ -f, StB
.; 1/ .5tM~

··-\,œ · 0r
··:/òl ' '. >Xër.·

'OA . And.
:'18 ·Mov
1)C' 'Nd~. \,b -~ddP -:oe . -AddC

, ,,. ·~ ... : ·_~ih~r __

11Gœ
1·œt
1002
1Gœ

un-def.
llCA
Unlit

-~llotk.

1004 undef. 1008 undef.
1005 undef. 1009 . undef.
1006 undef. 1 OOA undef~
1'007 undèf. 1008" ,. ,~~" ' --

Opcode Mnemonic

g} Bcd}mp2
E undef.
F undef.

Opcode Mnemonic
30 undef.
31 Mal
32 undef.
33 Div
34 undef.
35 MulP
36 undef.
37 DivE
38 undef.
39 ln•

:} ShL4

3C undef.
30 CLZ
3E undef.
3F Deh

',
Opcode Mnemonic

108 VDC
109 UDC
10A IIC
108 undef.
10C IDC
100 FOC
10E CDC
10F PDC

Opcode Mnemonic
1000 undef.
1000 undef.
100E lltl
100F undef.

~ .. 'ïllfHilli'A ::....3 .. Ope . .. "'~ ,• ~ .. ,-.... . • -· . ratton"~~.:;.,
)

Apple comput·er-:t:onildentlàl A-4

.P: ,_.,·

