
..

PROGRAMMER'S REFERENCE MANUAL
ADAGE GRAPHICS TERMINAL

VOL. I (SOFTWARE)

CJ Ill CJ!!) I:!

ADAGE GRAPHICS TERMINAL

PROGRAMMER'S REFERENCE MANUAL

Volume I

ADAGE, INC.
1079 Commonwealth Avenue

Boston, Massachusetts 02215

CU!.ICJ!!]I:!
ADAGE GRAPHICS TERMINAL, AGT

Programmer' s Reference Manual

FOREWORD

This manual is provided to the prospective Adage Graphics
Terminal user to provide detailed information about the system
software. It is the first volume of a two-volume set which com­
prises the Programmer's Reference Manual. Descriptions con­
tained herein are subject to change without notice.

The actual manual from which this material was obtained is
loose-leaf and updated on a regular basis.

ADAGE GRAPHICS TERMINAL, AGT

Programmer's Reference Manual

CONTENTS

PROGRAMMING REFERENCE MANUALS

9ABS, AFORT Object Time ABS
, ADEPT, Adage Extendable Program Translator
· AFDSP, AFORT Display Interface
AFORT, Augmented ASA Basic Fortran
AMLDX, AMOS Bootstrap Loader
AMLPP, AMOS Line Printer Program
AMRMX, AMOS Resident Monitor
AMRMX, AMOS Disk Monitor

ARITH, Arithmetic Subroutines
ARMW, AMRMX Bin File Writer
ATOB, 9CE Power Routine
BUILD, AGT Build Operator
C DRDR, AMOS Card Reader Routine

COPVR, AMOS Copy and Verify
CRDTT, AMOS Card-to-Tape Routine
DBUG, Debugging Facilities
DISP, AMOS Edit Text Display Package
DPS, Symbolic Dump Statements
DSKIO, Disk I/O Routine
DSKL, Disk System Builder
DSKPY, AMOS Disk-Tape Copy
DSPLY, AGT Display Operator
EDIT, AMOS Display Text Editor
3EDIT, AMOS Display Text Editor
FCRD, Fortran I/O Driver /Cards
FCTE, Function Subroutine by Digital Interpolation
FDSK, Fortran Disk File I/O Routines
FILE I/O, AGT Disk File I/O Routines
FLSTR, AMOS File Lister
FNSIO, Function Switches I/O
FONT, Character Set for AMOS Editors
FREEZ, Freeze Graphics Operator
FTAP, Fortran I/O Driver/Tapes
LIBIO, Magnetic Tape File I/O Routines
MTAC, AMOS Monitor Magnetic Tape Supplement

iii

9ABS/PRM
ADEPT/PRM
AFDSP/PRM
AFORT/PRM
AMLDX/PRM
AMLPP/PRM
AMRMX/PRM
13 AMRMX/PRM

ARITH/PRM
ARMW/PRM
ATOB/PRM·
BUILD/PRM
CDRDR/PRM
COPVR/PRM
CRDTT/PRM
DBUG/PRM
DISP/PRM
DPS/PRM
DSKIO/PRM
DSKL/PRM
DSKPY/PRM
DSPLY/PRM
EDIT/PRM
3EDIT/PRM
FCRD/PRM
FCTE/PRM
FDSK/PRM
FILE I/O/PRM
FLSTR/PRM
FNSIO/PRM
FONT/PRM
FREEZ/PRM
FTAP/PRM
LIBIO/PRM
MTAC/PRM

ADAGE GRAPHICS TERMINAL, AGT

Programmer's Reference Manual

MTPRT, AMOS Magnetic Tape-to-Printer Routines
OBJPK, AFORT Object Package
PRIO, Processor I/O Routines
RAOC, Read Analog-to-Digital with Comparator
RADT, Read Analog Data Tablet
RANK, AMOS Read AGT Alphanumeric Keyboard
RANKC, Alphanumeric Keyboard Control Interface
RCD, General Card Reader
READS, Read Relocatable Symbols
RETRV, Load Image from Library
RJSB, Read Joystick and Bowling Ball
RVCD, Read Variable Control Dials
SAVE, File Image in Library
SCCPY, Scratch Pad Copy Routine
SDA TE, AMOS Set Date Routine
SNCOS, AGT Combined Sine-Cosine Routine
SNCSA, Sine and Cosine Subroutines
ST ALL, ADE PT Storage Allocation Subroutine
WGDR, Display Recorder Routine

iv

MTPRT/PRM
OBJPK/PRM
PRIO/PRM
RAOC/PRM
RADT/PRM
RANK/PRM
RANKC/PRM
RCD/PRM
READS/PRM
RETRV/PRM
RJSB/PRM
RVCD/PRM
SAVE/PRM
SCCPY/PRM
SDATE/PRM
SNCOS/PRM
SNCSA/PRM
STALL/PRM
WGDR/PRM

ABSOLUTE VALUE, 9ABS

Programmer's Reference Manual

GENERAL

This routine converts a real or integer number to its absolute value. If the
argument is of type real, the function ABS is of type real; if the argument is of
type integer, the function IABS is of type· integer. The argument is specified in the
parameter statement immediately following the ABS or IABS call. The result is
in the AR register when control is returned to the user program at the instruction
immediately following the parameter statement.

Name:

ABS

Purpose:

Convert the real argument A to the absolute value.

Calling Sequence:

JPSR ABS

ti A

Name:

IABS

Purpose:

Convert the integer argument I to absolute value.

Calling Sequence:

JPSR IABS

0 I

CORE REQUIREMENTS

ltl3 words

EXECUTION TIME

50 µs

7-69 1 9ABS/PRM/B

ADEPT

ADAGE EXTENDABLE PROGRAM TRANSLATOR

Programmer's Reference Manual

Revision G

July 1969

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

TABLE OF CONTENTS

INTRODUCTION

HARDWARE REQUIREMENTS

SYMBOLIC INPUT FORMAT
Statements
Comments
Statement Evaluation

ACTION OPERA TORS
Output Generation

Message Outputs
Object Program Outputs

Value Generation
Control/Definition

OUTPUT GENERATION
Translation Time Console Text Input (TYPEIN)

Translation Time Message Outputs
(TYPEOUT, TYPEOCT, TYPEDEC)

Text Output to Object Program (TEXT, STRING,
Control Output to Object Program
Value Output to Object Program

WORD-VALUE GENERATION
Expressions
Expression Evaluation Operators

(+,-,',±,&,*,/,//, !B, !K, !H,tab,space)
Operator Terms (.)
Numerical Terms
Symbolic Terms
Subexpression Terms

CHARACTER-STRING-VALUE GENERATION
String Substitution
Macro Call
Nested Macro Calls
Symbol Definition within Macros

7-69 iii

Page

1

2

3
3
3
4

5
5
5
5
5
5

6

6

6

ASCII) 6
7
7

8
8
8

8
9
9
9

10
10
10
11
11

ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Page
Numerical Text Generation (#, ##) 11
String Quotes(') 11
Concatenation (\) 11
Literal Characters (o/r) 12
Definite Repeat (REPEAT, ENDR) 12
Indefinite Repeat (IRE PEAT, ENDI} 12
Conditional Translation (IFZERO, IFNEGATIVE, IFPASSl, IFSAME, 13

ELSE, ENDC)
Termination of String Substitution (STOP) 14
Nesting Limit 14

CONTROL AND DEFINITIONS 15
Radix Control (OCTAL, DECIMAL, .) 15
Statement Scan Control (NOCARRET, CARRET) 15
Object Program Controls (TITLE, LOC, AVAILABLE, RELOCATE, 15

ABSOLUTE, TERMINATE)
External Symbol References and Definitions (ENTRY, $) 17
Symbol Definition (EXPUNGE, :, =, COMMON) 17
Macro Definition (MACRO, MACROl, MACR02, ENDM) 18
Nested Macro Definitions 19
Action Operator Definitions (DEFINE, ENDD, ENDAO) 19

PROGRAM FORMATS 21

ERROR DIAGNOSTICS 22

ADDITIONAL DETAILS 23
Characters 23
Symbols 25
Values 25

Strings 25
Words 25
Addresses 26

Relative 26
Absolute 26

Common 26
External 26

Operators 26

Statements 27

ADEPT/PRM/G iv 7-69

ADAGE EXTENDABLE PROGRAM TRANS LA TOR, ADEPT
Programmer's Reference Manual

APPENDIX A - Console Error Messages

APPENDIX B - Basic ADEPT Action Operators and Instruction Codes

7-69 v

Page
28

32

ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

INTRODUCTION

This manual is intended to be a reference guide for programmers using the
ADEPT symbolic programming language. The manual contains descriptions of
statement formats and the initial set of action operators for composing statements in
the ADEPT language.

The manual is organized to intr0duce the topics of symbolic input format
and action operators. The section on symbolic input format summarizes the concepts
of statements, comments, and statement evaluation. The following section analyzes
action operators by function and usage in output generation, value generation, and
control and definition. Since all processing by the ADEPT translator is governed by
action operators, the remainder of the manual is devoted to detailed expansion of this
par::i.graph (ACTION OPERA TORS).

The user may wish to consult the following documents for further information:

1. ADEPT PROGRAMMING INSTRUCTION MANUAL

2. ADEPT SOFTWARE MAINTENANCE MANUAL

3. ADEPT PROGRAM LISTING

7-69 1 ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

lL\ RDWAHE REQUIREMENTS

lows:
AMBILOG 200 subsystems and software required by basic ADEPT are as fol-

Version 1 - (SCUl-Pl, ACC1-P1, OPCl-Pl, DME1-P8 and AMRM ver­
sions 1 or 2) or (DPR1-P2 and AMRM versions 3, 4, 5 or 6).

Version 2 - (SCUl-Pl, ACCl-Pl, OPCl-Pl. DME1-P16 or P32 and AMRM
versions l or 2) or (DPR1-P3 or P4 and AMRM versions 3, 4, 5 or 6).

Version 4 - (DPR2-P3 or P4 and AMRM versions 3 or 4).

Version 5 - (AGT with memory size 16K or 32K and AMRM versions 11or12).

NOTE: The capability of extending the assembler to include
user-defined action operators i s not available on configurations
with DME1-P8, DPR1-P2, or DPR2-P2.

ADEPT/PRM/G 2 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR~ ADEPT
Programmer's Reference Manual

SYMBOLIC INPUT FORMAT

A. Statements

Input to ADEPT is nearly format-free, consisting of a series of ''statements",
each of which is terminated by a "statement terminator" character. When first
loaded into memory, ADEPT treats semicolons and carriage return characters as
"statement terminators". However, for convenience, the option of using or not
using the carriage return character as a "statement terminator" is provided by two
ADEPT "action operators". (See NOCARRET and CARRET descriptions in section
on CONTROL AND DEFINITIONS). There is no necessary correspondence be­
tween statements and physical lines; both multiple-statement lines and multiple­
line statements are acceptable in ADEPT input.

The ADEPT user is free to use any convenient tabular or columnar statement
format, such as the following:

TAG: MDAR'X COUNT [COMMENT

where space or tab characters separate the location tag, instruction, address, and
comment. The superficial appearance of specific fields for the four above-named
items on the line is, however, purely artificial.

B. Comments

Within a statement, the string of input characters is scanned from left to
right and processed on a symbol-by-symbol basis. Comments may be placed any­
where in the input text to increase the readability of the source program. These
comments are deleted at the lowest scanning level and are otherwise ignored by the
translator. Each such comment begins with the character n[" (left bracket), and is
terminated by another 11 ["or by a "statement terminator" character, whichever comes
sooner. The " [" characters are part of the comment and are deleted from the input
text, hence cannot be used for any other purpose.

7-69 3 ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

C. Statement Evaluation

Each statement. after being stripped of comments, is scanned from left to
right by the translator and evaluated.

In scanning a statement the translator replaces all symbols which represent
character string-s by their value texts. Prior to extension these consist of Macro
names, dummy arguments, and certain action operators.

The action performed by the translator in evaluating a scanned statement is
specified by any operators it contains, as modified by the arguments (symbols,
values, or character strings) of these operators.

NOTE: In this manual the OPC characters 0
1 ¢1 ±1 and BKSP

are equivalent to the TTY characters [1] 1 • and .._
respectively.

ADEPT /PRM/G 4 7-69

ACTION OPERA TORS

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

The actions specified by operators fall into the following general classes:

A. Output Generation

Operators are initially provided for generating two forms of output during the
translation.

1. Message Outputs

Message outputs are character strings to be output on the assigned system con­
trol unit.

2. Object Program Outputs

Object Program Outputs are either 3~-bit machine words and their address re­
location information, or control commands to the loader specifying any loading,
allocating, naming, referencing, or linking actions required prior to object program
execution.

B • Value Generation

These operators generate either character strings for further scanning or
address and word values for use as ''terms" in expression evaluation.

C. Control/Definition

These operators control subsequent translation by setting flags, adding code to
the translator, or making entries in the translator's tables.

7-69 5 ADEPT/PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

A. Translation Time Console Text Input

The operator

TY PEIN

Programmer's Reference Manual

will cause ADEPT to accept and process a string of characters input from the
console typewriter until a carriage return character is typed. ADEPT will then
process the string (not including the carriage return) as if it had occured in the
input text at the point of the TYPEIN operator. It is up to the source program to
indicate to the console operator that a type-in is required before using the TYPEIN
operator.

B. Translation Time Message Outputs

The input sequence

TYPE OUT CHAR STRING CHAR

where CHAR is any character except "\" (back-slash), " " " (double quote), or
" # " (number sign) selected by the programmer, causes the STRING to be typed
out on the console typewriter. Tabs, spaces, and C/R (in NOCARRET mode) are
ignored when they occur between TYPEOUT and the first occurrence of CHAR.
The STRING is scanned for substitution and expansion during output. CHAR may
not occur within STRING.

The statement

TYPEOCT EXPRESSION

causes the value of the EXPRESSION to be typed out as an octal integer. (See
section on VALUE GENERATION for Expression Evaluation). If the value of
EXPRESSION is negative, a single zero will be type~.

The statement

TYPEDEC EXPRESSION

causes the value of the EXPRESSION to be typed out as a decimal integer.

C. Text Output to Object Program

The operator TEXT followed by a string "quoted'' (i.e., preceded and
followed) by a character causes the AMOS code representation of the string to be
inserted into successive words of the output program. If the last word of the
output is not filled, the characters will be left-justified and the word filled with
zeros. Macro names will cause the strings to be expanded unless themselves
quoted (see String Quotes).

ADEPT /PRM/G 6 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

The form of this input is
TEXT CHAR Character String CHAR

where CHAR is any character except"\" (back-slash), """(double quote), or"#"
(number sign) selected by the programmer. Tabs, spaces, and C/R (in NOCARRET
mode) are ignored when they occur between TEXT and the first occurrence of CHAR.
CHAR may" not occur within the Character String.

The statement
STRING CHAR Character String CHAR

has the same function as the TEXT statement described above except that it forces the
Character String inserted into the object program to be terminated by a null character
(.00s) (i.e., if the length of the string is an integral multiple of five characters, an
additional 3,0-bit word containing zeros will be inserted after the text). The same
restrictions on CHAR also apply in this statement.

The operator ASCII (Version 5 only) followed by a string "quoted" by a
character, causes assembly of a packed USASCII string in the format used by
the LCGl Character Generator. The form of this input is:

ASCII CHAR Character String CHAR
where CHAR is any character except " " (back-slash), " " " (double quote), "#" (num­
ber sign), or"@" (at sign) ·selected by the. programmer. Tabs, spaces, and C/R (in
NOCARRET mode) are ignored when they occur between ASCII and the first occurrence
of CHAR. CHAR may not occur within the Character String unless used as a special
character generator after "@" (see below).

As the USASCII character set includes 12810 characters, the characters from
the AMOS ATEXT set are insufficient in number to generate all ASCII characters.
Provision is made to generate any ASCII character by the following sequence:

@nnn
where nnn is a three-digit octal integer indicating the desired ASCII character code
(.00.0 through 177). Any of the 12810 ASCII characters may be generated in this manner.

In order to provide a shorter sequence for commonly used characters, all the
standard AMOS A TEXT characters may be used in the string with the exception of "\"
(back-slash), " " " (double quote), "#" (number sign), "@" (at sign), and 11 [" (left
bracket). These characters and other ASCII characters used by the LCGl Character
Generator may be generated by the following sequences:

" @'
@+
(Cil @@
< @(
> @)
[@]
/\ (circumflex) @V

7-69 7 ADEPT/PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

_ . (underline) @ -
\ (back-slash) @I
Raise line (GS) @R
Lower line (F S) @L
Brighter (US) @B
Dimmer (RS) @D
Expand size (DC3) @E
Shrink size (DC2) @S
Italics control (BS) @I
CR (Carriage Return) @C
LF (Line Feed) @F
HT (Position "X") @X
VT (Position "Y") @Y
NUL (Null character) @N

A sequence of "@" (at sign) followed by a character which is not found in the list above
will be ignored by the ASCII operator.

The words inserted into the output program by the ASCII operator contain four
characters, each in the following format:

6 7 13 14 15 21 22 28 29
Char. 1 I Char. 2 I E I Char. 3 I Char. 4 I ~ I

Bit 14. the End code, is set to "1" on the last word generated by the string and is "~"
on all other words. If the last character generated for the string does not completely
fill the last word. the characters are left justified and NUL characters (code ~~&)
are inserted in the empty character positions.

D. Control Output to Object Program

Any assembly control operations which affect the loading or execution-time
allocating. naming, relocating, referencing, or linking of programs will automatically
generate any object-program control words needed.

The control operators and statements are individually described in the section
on CONTROL AND DEFINITIONS.

E. Value Output to Object Program

An:v expression whose value is left after a statement has been fully evaluated is
used to generate a word for the object program output, together with any modifying
codes to properl:v relocate its address at load-time. After any output of object code,
the value of the "current location" counter is appropriately incremented.

ADEPT/PRM/G 8 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR. ADEPT
Programmer's Reference Manual

WORD-VALUE GENERATION

A. Expressions

Expressions are composed of operators and their operands, The operators
substitute word or address-values for character strings and symbols (terms), and
operate on these values to yield word values. An expression is terminated by a
comma (,) or if at the end of a statement, by a "statement terminator".

B. Expression Evaluation Operators

The value of an expression is obtained by a left-to-right scan in which terms
are evaluated, and then combined with the previous value of the expression according
to the expression's "action operators". The operators initially provided by the
ADEPT translator for expression evaluation are:

+

+
&

*
I
II
space

tab
!B
!K
!H

C. Operator Terms

arithmetic plus
arithmetic minus
logical exclusive "OR"
logical inclusive "OR"
logical product "AND"
integer multiplication (versions 4 and 5 only)
integer division (versions 4 and 5 only)
integer division remainder (versions 4 and 5 only)
is ignored unless it is the only separator between two terms,

. when it acts as an arithmetic plus
same as space
rotates the expression value 1 bit left and then acts as a space
rotates the expression value 6 bits left and then acts as a space
rotates the expression value 15 bits left and then acts as a space

The character "·"(period) is an operator yielding the value of the current loca­
tion counter when used as a term in an expression.

7-69 9 ADEPT/PRM/G

D. Numerical Terms

An\GE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Each numerical term is either an octal integer or a decimal integer. Each
octal integer is a string of up to ten digits from the set 0, 1, 2, ••• 7. Each decimal
integer is a string of up t8 nine digits from the set 0, 1, 2, ••• 9, whose value must be
less in ma~itude than 22 = 536, 870, 91210. Leading zeros may be omitted from
both octal and decimal integers.

The choice of radix for numerical terms is controlled by three ADEPT operators.
(See OCTAL & DECIMAL in section on CONTROL AND DEFINITIONS).

E. Symbolic Terms

Each symbol consists of a string of up to ten characters from the set • , A, B,
C, ••• , Z, 0, 1, 2, ••• 9, of which at least one character must be from the set A, B,
C, ••• z. During expression evaluation, word and address values for the symbolic
terms are found by table look-up, and these values are used in obtaining the value of
the expression.

F. Subexpression Terms

An unterminated expression enclosed in parentheses is called a subexpression,
and may be used as a term in another expression or subexpression. Up to 311o levels
of nested subexpressions are permitted in ADEPT input statements.

ADEPT /PRM/G 10 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

CHARACTER-STIUNG-VALUE GENERATION

A. String Substitution

When a symbol defined as the name of a "Macro" is encountered during state­
ment scanning, it is replaced by the character string constituting the ''body" of the
Macro definition with substitutions from the argument list which follows the Macro
name. When a symbol is encountered which is currently a "dummy" argument of the
Macro body being expanded or of the indefinite repeat being repeated, the symbol is
replaced by its corresponding actual argument (character string).

B. Macro Call

The character string
NAME (STRl, STR2, STR3, ..•) or
NAME STRl, STR2, STR3, •.• ;

where NAME is the name of a defined Macro, is replaced during scanning with the
STRING corresponding to the body of Macro NAME, but with the ''place markers"
replaced by the "actual argument" strings STRl, STR2, STR3, etc., inserted instead
of the ''place markers" having the same ordinal numbers. (See "Macro Definition"
under CONTROL AND DEFINITIONS).

Any "place markers" defined in the Macro body for which no substrings are
given in the Macro call are simply deleted.

If the Macro argument list is enclosed by parentheses, these outer parentheses
are removed before substitution. Argument strings (STRn) may themselves contain
argument lists with commas, and matched parentheses.

If the Macro call terminates a statement (i. e. , is followed immediately by a
"statement terminator" character), the parentheses enclosing the argument list may be
omitted:

NAME STRl, STR2, STR3, ..• ;
If the first character (other than SPACE or TAB) following the Macro NAME is

not left parenthesis, then the argument string will consist of all characters up to but
not including the next end-of-statement character.

If a Macro is called which had no dummy arguments in its definition form, no ar­
gument list is required and the body of the called Macro will simply replace the Macro
name.

7-69 11 ADE PT/PRM/G

C. Nested Macro Calls

ADAGE EXTENDABLE PROGRAM TRANSLATOR. ADEPT
Programmer's Reference Manual

A Macro call may appear within a Macro definition. Such a nested call may
even be a call to the Macro being defined, so long as the rule for self-nesting is
followed (i. e. , there must be at least one path through the Macro that does not call
itself). If arguments are handed down (by using a dummy argument in a Macro call
imbedded in a Macro definition) the rules for argument substitution again apply.

D. Svmbol Definition within Macros

Care must be ta.ken in the defining of address tags within Macros to ensure
that multiple symbol definitions do not arise when these Macros are expanded. Con­
catenation and numerical text generation may be used for this purpose.

E. Numerical Text Generation

The operator "'#" (number sign) causes the symbol which immediately follows
to be replaced by a string of lead-zero suppressed octal digits corresponding to the
value of the symbol. If the symbol is undefined or has the value zero, a single zero
character will be inserted. The operator ''=ff#H (double number sign) causes the
following symbol to be replaced by a string (signed if negative) of decimal digits
corresponding to the value of the symbol. These operators can be used to generate
unique symbols for address tags within Macros, etc. The symbol following the "#"
or "##" ~ not be generated by Macro or argument substitution, concatenation, nor
by subsequent "#" or "##" operators.

F. String QJ.otes

A string in an argument list or a text-generating statement is taken literally
(i.e. 1 without expansion) if it is preceded and followed by a " " " (double quote)
character.

G. Concatenation

The character "\'' (back-slash) is used to concatenate two character strings -
i.e. 1 to place them end-to-end without an intervening character. If one such string is
replaced by another during input scanning1 the result will be a new string which may
include a new symbol at the position where the r'\" character originally appeared.

ADEPT/PRM/G 12 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

H. Literal Characters

Certain characters in the argument string of a Macro call (such as a semi-colon,
comma, left and right parentheses) have definite meanings in the format of the string.
In order to include these characters in an argument, the character "%" (per cent sign)
causes the next character following it to be scanned without considering any possible
format implications. To include the character "%"in the argument, one must include
it twice in the input -- "%%11 •

I. Definite Repeat

A portion of the input character string will be repeated a specified number of
times if the following sequence is encountered:

REPEAT EXPRESSION

STRING

ENDR

The EXPRESSION will be evaluated to produce a count and the STRING repeated
the corresponding number of times. If the count is zero or negative, the STRING will
be ignored.

The STRING may, of course, include symbols, statements, expressions, etc.,
subject to the same limitations with regard to symbol definitions and special characters
as in the body of a Macro definition.

J. Indefinite Repeat

An alternate method of repeating an input string is provided by the indefinite
repeat, which has the form:

7-69

IRE PEAT DUMMY, (ARGl, ARG2, .••) or

IREPEA T DUMlVIY, ARGl, ..•

STRING

END!

13 ADE PT /PRM/ G

ADAGE. EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

When the IREPEAT operator is encountered, the following STRING is repeated
once for each argument in the list ARGl, ARG2, etc. In each repetition, the corres­
ponding "actual argument" string ARGn is inserted in place of the "dummy argument"
string DUM1\1Y wherever it occurs within the repeated STRING. The argument string
following DUM1\1Y is of the same form as the argument string for a Macro call.

K. Conditional Translation

Conditional translation is provided in basic ADEPT (in addition to the indefinite
repeat) by the following sequences:

IF ZERO EXPRESSION

STRING

ENDC

\Vhen the above sequence is encountered, the expression is evaluated, and if
the value is logical (positive) zero, then the following STRING is scanned. otherwise,
the STRING is ignored.

IFNEGA TIVE EXPRESSION

STRING

ENDC

When the above sequence is encountered, the expression is evaluated, and if
the value is negative, then the following STRING is scanned. otherwise, the STRING
is ignored.

IFPASSl

STRING

ENDC

The above sequence causes the STRING to be scanned in the first translation
pass and ignored in the second.

IFSAME (ARGl) (ARG2)

STRING
ENDC

IF SAME

STRING
E:NDC

or

ADE PT /PRM/G

ARGl; ARG2;

14 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

When either of the above sequences is encountered, the two arguments, ARGl
and ARG2 (possibly null), are compared on a character-by-character basis and if
equal, the STRING is scanned. Otherwise the STRING IS ignored. Each argument
must have the same form as a Macro argument list and must be either bracketed by
parentheses or terminated by a statement terminator. Spaces or tabs between the
arguments are ignored.

IF ZERO
STRINGl
ELSE
ENDC

EXPRESSION

STRING2

The operator ELSE occurring in any conditional statement causes the scanning
or ignoring of the string to be reversed. In the above form, either STRING! or
STRING2 will be scanned, depending on whether the value of EXPRESSION is zero or
non-zero, respectively. This operator may be placed in any conditional statement.

Conditional statements may be nested to any depth permitted by the available
storage at assembly time.

Other conditional translation statements can easily be built into ADEPT using
"action operator" definitions.

L. Termination of String Substitution

STOP

This operator terminates the current string substitution operation (Macro call,
repeat or indefinite repeat) in which it occurs.

M. Nesting Limit

Macros, repeats, and argument substitutions may be nested in a depth of 6310.

7-G~ 15 ADEPf/PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

CONTROL AND DEFINITIONS

The following ADEPT inputs control various aspects of the object program:
assembly. definition and/ or loading.

A. Radix Control

OCTAL
This operator causes the following numerical terms to be taken as
octal, until the appearance of a DECIMAL operator.

DECIMAL
This openitor causes the following numerical terms to be taken as
decimal. until the appearance of an OCTAL operator.

NOTE: The use of a period (". ") immediately following a numeric form
causes that term to be regarded as decimal no matter what the
current radix. The current radix for subsequent numeric terms
is not changed.

B. Statement Scan Control

NOCARRET
This operator causes following carriage return characters to be treated
as space or tab characters.

CARRET
This operator causes following carriage return characters to act as
"statement terminator" characters.

C. Object Program Controls

TITLE NAME
This operator causes the alphanumeric symbol NAME (limited to no more
than five characters) to be designated as the name of the object program
file.

LOC EXPR
This oper::ttor sets the current location counter to the value of EXPR and
cnn he used in both machine coding output and action operator definitions.
At the start of translation. the location counter is initially set to zero
anci the output is relocatable and relative to location zero.

ADEPT/PRM/G 16 7-69

7-69

AVAILABLE

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

This operator sets the current storage pointer to the first available
storage location in memory. It may be used only during action
operator definition, to facilitate the assignment of storage for coding
added to the assembler. This operator is not available in version 1
ADEPT.

RELOCATE
This operator places the translator in relocatable assembly mode. In
this mode symbolic address tags are designated relative to the origin
or base address of the program and machine words created from re­
locatable expressions (expressions containing one relocatable term)
are subsequently relocated at load time. Address tags defined under
relocatable assembly mode are still relocatable if referenced under
absolute assembly mode. The translator is initially in relocatable
assembly mode at the start of each pass. Each assembly mode has
its own location counter, and when a switch from one mode to the
other occurs, the assembly location counter is set accordingly. The
generation of absolute coding does not affect the relocatable location
counter.

ABSOLUTE
This operator places the translator in the absolute assembly mode.
Symbolic address tags defined under the absolute mode are given the
absolute value of the location counter at the time they were defined,
and these tags are not relocated at load time whether referenced from
a relocatable or an absolute section of program coding. As in
RELOCATE, the absolute assembly mode has its own assembly loca­
tion counter similarly not affected by the generation of relocatable
coding.

TERMINATE
This operator is normally used at the end of an ADEPT input text to
bring the translation to an end.

17 ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, AbEPT
Programmer's Reference Manual

D. E:i-.1:ernal ~ymbol References and Definitions

ENTRY TAGl, TAG2, TAG3, TAG4, •.. ;
This statement causes the symbols TAGl, TAG2, etc. , (each limited to
no more than five characters), to be specified as entry points in the
object program. That is, they may be referenced by other programs,
and by the AMOS Monitor. Entry points are either absolute or re­
locatable depending on the current assembly mode.

$NAME
The dollar sign character preceding a symbolic NAME of no more than
five characters causes that NAME to be taken as an external reference
(reference to an entry point of another program or subprogram). The
reference will be linked to the appropriate core memory location at
load-time. The use of address arithmetic in a machine word ex­
pression containing an external symbolic reference is forbidden.

E. Symbol Definition

The symbolic address tags of ADEPT itself are initially available in the sym­
bol table. When all action operator definitions have been made, the operator

EXPUNGE

may be used to remove ADEPT' s own symbols to make room in memory for addi­
tional symbol storage. This operator should always appear before any Macro
definitions or machine code generation whether or not there have been any action
operator definitions. Symbol values may be defined during translation by one of
the following:

SYM=EXPR
This statement causes the symbol SYM to be given the value of the
expression EXPR. Symbols defined in this manner may be re­
defined at will. If the value of the expression is undefined on the
first pass of the translator (i.e., the expression contains at least
one undefined symbol), the symbol remains undefined. If the ex­
pression is undefined on the second pass of the translator, it
will result in an error message. In subsequent uses, the symbol
SYM will have the same relocation properties as the expression EXPR.
If the symbol being defined is the symbol "VERSION", ADEPT will
set the version number in the output object relocatable program to
the value of the expression. This definition, if desired, should be
used at the beginnin~ of the program and should be scanned during

ADEPT/PRM/G 18 7-69

TAG:

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

each pass of translation since ADEPT normally sets the version of
the output file from the version number of the input source text. The
revision level of the output file is set to that of the input source
program file.

The appearance of a symbol followed by a colon causes the symbol
(e.g., TAG) to be given the value of the "current location" counter.
Symbols defined in this manner may not be redefined. On the
second pass thru the input, the value of such a symbol is compared
with the "current location", and an error message results if they
are not equal. When defined outside the scope of the ABSOLUTE
operator, TAG symbols are relocatable.

COMMON SYM(LENl), SYM2(LEN2), SYM3(LEN3), ..•
This statement causes the symbols SYMl, SYM2, SYM3, etc., to be
specified as "common storage" references. The value of the ex­
pression LENn gives the size of the element in common storage.
If "(LENn)" is omitted, the size of SYMn is assumed to be one word.

F. Macro Definition

The Macro definition consists of a heading statement, a body, and a termina-
tor, in the format:

MACRO NAME (ARGl, ARG2, ...); (heading)
STRING (body)
ENDM (terminator)
If the character string comprising the body of the Macro contains the sub­

strings ARGl, ARG2, etc., these "Dummy Arguments" are replaced by corresponding
"place markers" during Macro definition. The body, containing these place markers,
is stored during definition, and identified by the NAME. If the MACRO heading line
contains no dummy arguments, no "place markers". will be defined in the Macro body
and no argument list is required in the Macro call.

Macro definition may occur during pass 1 of the translator, during pass 2, or
during both pass 1 and pass 2, according to the following operators:

7-69

MACRO
This operator causes a Macro definition during pass 1, and a redefinition
during pass 2.

MACROl
This oerator causes a Macro definition during pass 1 only. and should be
used for normal Macros to avoid redefinition during the pass 2 evaluation
scan.

19 ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSL.ATOR, ADEPT
Programmeris Reference Manual

l\t.\CR02

This operator causes a Macro definition during pass 2 only.

G. Nested Macro Definition

A Macro definition may be included within the body of another Macro definition.
The nested (inner) Macro is defined (or redefined) during the expansion of the en­
compassing Macro body. This takes place each time the encompassing Macro is
called, and the resulting definition of the nested Macro remains valid until it is re­
defined, or the expansion of the encompassing Macro is completed.

H. Action Operator Definitions

Definition of new action operators is accomplished in response to the input
sequence:

DEFINE EXPRESSIONl NAME ;

STRING

ENDD EXPRESSIONZ

where the value of EXPRESSIONl (which must be terminated by ", ") is the "type" of
action operator. NAME is the symbolic name of the action operator, and the STRING
defines the coding to be added to the translator, with entry at EXPRESSION2.

An alternate form is:

DEFINE;

STRING

ENDD
which adds coding to the translator without defining a new operator.

If the type is "~" and no NAME is given, the coding generated by the STRING is
added to ADEPT without defining an operator. In this case no EXPRESSION need be
given.

The "type'' of the action operator is an octal value from 1 to 177 8, specifying
a number used for identification during scanning and evaluation. The ADEPT Main­
tenance Manual should be consulted for a list of types for existing operators and
instructions for creat~ng new ones.

ADE PT /PRM/ G 20 7-69

ADAGE EXTENUi\.BLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

All action operator definitions must occur before any other part of the input
text which generates machine language output. The operator

ENDAO

must be used when all action operator definitions have been made. This statement
sets the current output location to the value it had prior to processing definitions.

The Action Operator define facility and associated operators are available
only in ADEPT versions 2, 4, and 5.

7-69 21 ADE PT /PRM/G

PROGRAM FORMATS

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

The following restrictions should be observed in preparing a source language
program for input to ADEPT:

The operator

TITLE NAME

should be placed near the beginning of the program, before any machine coding.

Action operator definitions should come at the beginning of the program, before
any Macro definitions and machine coding. These action operator definitions should be
followed by the operators

ENDAO

EXPUNGE
Next follow Macro definitions and machine coding, in which all ENTRY statements must
appear before any machine code-generating or location-setting statements and operators.

The COMMON statement may be placed anywhere in the program after EXPUNGE
and before TERMINATE.

The operator
TERMINATE

should be placed at the physical end of the program. If no action operator definitions
are being made, the "ENDAO" operator should be omitted. However, the "EXPUNGE"
statement must be present except when terminating with the "SETTRAN" statement.

The statement

SETTRAN STRING "carriage return"

may be used instead of TERMINATE, in which case the current ADEPT translator
in core memory containing the Action Operator definitions, Macro definitions and
parameter assignments from the source input is written on the current selected
system tape. When another translation is started, using this "extended" ADEPT,
the STRING from the SE TTRAN statement will be typed out to identify the version of
ADEPT beind used. The SETTRAN operator is not available in version 1 ADEPT.
Note: A program terminated by a SETTRAN statement does not generate any output
code.

The operator ADEPTSYMS should not be used in the input source language
program as this operator can only be used in the generation of ADEPT assemblies of
ADEPT.

ADEPT /PRM/G 22 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

ERROR DIAGNOSTICS

The three forms of the error message are as follows:
Form I - Terminating error (termination of both scan and output)

TERnn A:SYMl B:SYM2 C:SYM3 D:OLOC E:SYMLOC

Form II - Output terminating error (scan continues)
*ERRnn A:SYMl B:SYM2 C:SYM3 D:OLOC E:SYMLOC

Form m - Error indication (scan and output continue)
ERRnn A:SYMl B:SYM2 C:SYM3 D:OLOC E:SYMLOC

In the above forms "nn" is the decimal error number, SYMl, SYM2, and
SYM3 are three symbol buffers in the translator and depending on the particular
error messages generated, will give meaning to the error, OLOC is the octal loca­
tion counter value at the time of the error, and SYMLOC, if present, is the sym­
bolic location of the error. In both Forms I and II, the output is terminated. In
F;orm III the scan is terminated and control is returned from ADEPT.

7-69 23 ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
,Programmer's Reference Manual

ADDITIONAL DETAILS

A. Characters:

1. AMOS Character Set

Character Strings output by ADEPT (both message and object text) are in AMOS
internal 6-bit character codes (single case), as follows:

OPC TTY LNPR
Code Character Character Character

00 0 (null) [0 (null)
01 % % %
02 ~ J ~
03 ! !
04 & & &
05 * * *
06
07 \
10 + + +
11 tab tab (3 spaces) <
12 ? ? ?
13 " " "
14
15 carriage return return - L. F. >
16 (((
17)))
20 0 0 0
21 1 1 1
22 2 2 2
23 3 3 3
24 4 4 4
25 5 5 5
26 6 6 6
27 7 7 ,.,

I

30 8 8 8
31 9 9 9
32
33 = = =

34
35
36

ADEPT/PRM/G 24 7-69

Code

37
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

OPC TTY LNPR
Character Character Character

I I I
space space blank

A A A
B B B
c c c
D D D
E E E
F F F
G G G
H H H
I I I
J J J
K K K
L L L
M M M
N N N
0 0 0
p p p

Q Q Q

R R R
s s s
T T T
u u u
v v v
w w w
x x x
y y y

z z z
$ $ $

@ @ @

+ "!' +
backspace ...

25 ADE PT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

2. ASCII Character Set

Code ASCII LCGl Code ASCII LCGl -- --,6,60 NUL NUL ti4ti space space
.601 SOR 041
flfl2 STX .642 " "
003 ETX 043 # #
£104 EOT 044 $ $
,6,65 ENQ ,045 % %
£),06 ACK ,046 & &
,6,67 BEL .047
010 BS italics control 050 ((
till HT position "X" ,051))
fl12 LF line feed .052 * *
013 VT position "Y" ,053 + +
014 FF .054
.015 CR carriage return ,055
.616 so ,656
017 SI ,057 I I
£12.0 DLE ,06,tj 0 0
021 DCl ,t\61 1 1
,622 DC2 shrink size 062 2 2
023 DC3 expand size ,063 3 3
024 DC4 064 4 4
.625 NAK ,065 5 5
fl26 SYN ,066 6 6
.627 ETB .067 7 7
,tj3,tj CAN .070 8 8

031 EM ,071 9 9
032 SS .072
,tj33 ESC ,673
t'\34 FS lower line .074 < <
,635 GS raise line -075
fl36 RS dim intensity ,076 > >
£)37 us brighten intens- ,077 ? ?

ity

ADEPT/PRM/G 26 7-69

Code ASCII --
100 @

101 A
102 B
103 c
104 D
105 E
106 F
107 G
110 H
111 I
112 J
113 K
114 L
115 M
116 N
117 0
120 p

121 Q
122 R
123 s
124 T
125 u
126 v
127 w
130 x
131 y
132 z
133 [
134 \
135 J
136 /\

137

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Mam.al

LCGl Code ASCII LCGl* --
@ 14,0 \ \
A 141 a a
B 142 b b
c 143 c c
D 144 d d
E 145 e e
F 146 f f
G 147 g g
H 15,0 h h
I 151 i i
J 152 j j
K 153 k k
L 154 1 1
M 155 m m
N 156 n n
0 157 0 0

p 16,0 p p

Q 161 q q

R 162 r r
s 163 s s
T 164 t t
u 165 u u

v 166 v v
w 167 w w
x 170 x x
y 171 y y
z 172 z z
[173 [[

\ 174 I I
J 175 } }
/\ 176

177 DEL DEL

* NOTE: These LCGl characters (14~ -177s) are with the standard character set
expansion option.

7-69 27 ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

B. Svmbols

ADEPT accepts a stream of characters until a "symbol" is recognized in the
characters gathered. For this function characters are classified into seven types as
follows:

Type
1
2
3
4
5
6
7

Characters
,$"% ()
A throuth Z, ,0 through 9
; Carret (CARRET mode)

Tab Space Carret (NOCARRET mode)
@]?#+-/*.&'

Characters of "odd" types form one-character symbols, otherwise all suc­
cessive characters of the same type form single symbols.

After each symbol is obtained it is looked up in the translation tables to
determine if it has a value or if it is an operator which names a routine to be per­
formed.

C. Values

The values which ADEPT symbols may assume or generate as operators are
of the following three types:

1. Strings

Values v1hich are strings consist of a sequence of ADEPT characters of
arbitrary length.

2. Words

Values which are words consist of a 30-bit binary values.

ADEPT /PRM/G 28 7-69

3. Addresses

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Values which are addresses consist of 15-bit binary fields which may be modi­
fied to designate addressable cells in core memory. Address values may be modified
for the following four forms of designation.

D.

Relative -
Relative address values refer to location local to the program being
assembled.

Absolute -

Absolute address values refer to fixed locations in memory independent
of where the current program will be loaded for execution.

Common -

Common address values refer to locations local to a block of storage
common to all programs.

External -

External reference address values refer to global parameters and entry
points to be defined by other programs when the current one is loaded
for execution.

Operators

Operator symbols invoke the execution of translator routines which perform any
or several of the following functions: generation of values, generation of output,
entering definitions and controlling the translation process.

In the process of performing its function an operator may make use of a pre­
ceding value or of several following values, any of which may have been generated by
other operators.

If the value left by an operator is of type string, it is then broken into symbols
and scanned for operators to execute.

When the function of the operator is to generate output, either of two output
facilities is used. One outputs messages at assembly time to the assigned control
unit. and the other generates object code for the program being assembled with any
necessary control codes for its proper loading and binding for execution.

7-69 29 ADEPT /PRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

The operators which make definitions or control the translation process do so
by making entries in the translator's tables or setting flags which affect the execution
of subsequent translating procedures.

E. Statements

The gathering of an input character string into symbols and scanning them for
operators to perform (which may give further values upon which other operators per­
form) and repeating the entire procedure on any text strings generated in the process,
is termed evaluation of the character string.

The unit of text string upon which the translator performs this evaluation is
called a statement.

ADEPT /PRM/G 30 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

APPENDIX A

CONSOLE ERROR MESSAGES

See section on ERROR DIAGNOSTICS for message formats and codes.

*ERRl

*ERR2

ERR3

*ERR4
ERRS

ERR6
ERR7

ERRS

ERR9

ERRl.fl

*ERRll

ERR12

ERR13

*ERR14

7-69

Comma scanned on machine word expression evaluation. Could be mis­
spelled Macro name or operator.

Address arithmetic in expression with external reference. Ex. -
$SPTR+5

Illegal relocation in machine word output. Illegal relocation occurs when
two relocatable terms are added together. A relocatable term is sub­
tracted from some expression or a relocatable expression is rotated.

Undefined symbol in common size declaration. (B:SYM is error symbol).
Undefined symbol in conditional statement expression. (See last ERR2,tj

message for undefined symbol).
Character following ! is not B, K, or H.
Comma scanned in parameter definition. Commas are illegal termi­

nators for expressions giving parameter values.
Symbol in parameter definition (before=) is previously defined not a

parameter. A redefinition of a previously defined address tag or an
initially defined instruction (predefined in ADEPT) could cause this.

No symbol scanned for address tag definition. This is caused by the
scanning of a colon (":") without an alphanumeric symbol preceding it
(however, they can be separated h1' tabs or spaces).

A redefinition of an address tag was specified. (C:SYM is address tag).
Multiply defined address tag (occurs on pass 1).

Tag value does not equal current location value (pass 2). (D:LOC is
current location value). In pass 2, the current location when an ad­
dress tag is scanned differs from the defined value in pass 1. This can
usually be causes by some conditional assembly statements or Macro
calls which generate an unequal number of instructions on pass 1 and
pass 2.

Symbol for address tag definition is previously defined not a tag. (C :SYM
is symbol in error). This might be caused by trying to define an address
tag which has already been defined as a parameter, instruction, etc.

Symbol specified in entry point declaration undefined on pass 2. (B:SYM
is symbol in error). The symbol was never defined as an address tag
in pass 1.

Comma scanned in expression evaluation for AO definition machine word.
Commas are illegal expression terminators in machine words for ac­
tion operator definitions.

31 ADEPT/PRM/G

*ERR15

ERR16

ERR17

ERR18

ERR19
ERR20
ERR21
ERR22

ERR23

ERR24

*ERR25

ERR26

ERR28

*ERR29

ERR30

TERl
TER2

NOTE:

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Undefined symbol in expression evaluation for AO definition machine
word. (C:SYM is symbol in error)

Period scanned not separated from previous symbol. (C:SYM is pre­
vious symbol). No operator between term and following period (not
including tabs and spaces).

Character "8" or "9" appears in octal input. (C:SYM is numeric string
in error)

Number overflow error (number greater than 2 29 - 1). (C:SYM is un-
defined symbol). Decimal string greater than 229- 1 •

Common symbol predefined.
Undefined symbol in expression evaluation. (C:SYM is undefined symbol)
Common symbol redefined.
Undefined symbol in repeat count expression evaluation. (See last

ERR20 message for symbol)
Symbol consisting of greater than 10 characters scanned by the string

expansion scanner. This is caused by the inputting from source text
of a symbol consisting of more than ten characters (not including com­
ments).

Symbol consisting of greater than 10 characters scanned by the expres­
sion evaluator scanner. This is caused by the concatenation of two
strings causing a symbol of more than ten characters to be formed.

Comma scanned in dispatch address expression following "ENDD".
Commas are illegal expression terminators for the expression used to
specify the dispatch address in an action operator definition.

Undefined symbol in dispatch address expression following "ENDD".
(See last ERR20 message for undefined symbol)

Entry point same symbol as external reference. (B:SYM is symbol)
Entry point cannot be the same as an external reference used in the
same program.

Comma return in LOC statement. Commas cannot be used as the ex­
pression terminator for the expression computed in a "LOC" statement.

Undefined symbol in LOC statement. (See last ERR2.0 message for un­
defined symbol)

Too many dummy arguments in a Macro definition (more than 6210).

End of Macro scanned and Macro is not last entry in push-down list.
Adept scanned an end of Macro indicator. (Should not occur)

The errors listed as "should not occur" should not occur in normal
operation of ADEPT. However, they are listed as they might occur
as a result of incorrect action operator definition operations.

ADE PT /PRM/ G 32 7-69

TER3

TER6

TER7

TER8

TER9

TER10

TERll

TER12

TER13

TER14

TER15

7ER16

TER17

TER18

TER19

NOTE:

7-69

ADAGE EXTENDABLE PROGRAM TRANS LA TOR, ADEPT
Programmer's Reference Manual

End of argument scanned and Macro or indefinite repeat argument is
not last entry on list. Adept scanned an end of argument indicator.
(Should not occur)

Macro dummy argument pointer scanned and no Macros on push-down
list. (Should not occur)

"STOP" scanned and no Macros on push-down list. A "STOP" is
placed erroneously in the program not within an encompassing
MACRO, REPEAT, or !REPEAT.

"ENDR" scanned and "REPEAT" not last entry on push-down list.
(Should not occur)

lllegal format of IREPEA T argument list. This message can occur if
there is not an alphanumeric symbol followed by a comma after the
space(s) or tab(s) in an IREPEA T statement.

"DEFINE" scanned while in AO define mode. This will result from a
DEFINE operator placed within an action operator definition.

·Location not specified for AO definition. This occurs when a machine
word has been evaluated to insert into memory for an action operator
definition and the program has not told ADEPT where to put it by a
LOC statement or the AVAILABLE operator.

"END!" scanned and "!REPEAT" not last entry on push-down list.
(Should not occur) .

Argument list storage table exceeded. This occurs when there are more
than 40.0e entries in the argument list table (200 8 in version 1).

Dummy argument pointer scanned in argument list and no Macros on
push-down list. (Should not occur)

Dummy argument pointer scanned in argument storage. (Should not
occur)

"ENDD" scanned and not in AO definition mode. The symbol "ENDD" is
placed erroneously in the program.

Too many arguments on argument list (more than 62)· More than
62 arguments appear in the call of a Macro or IRitPEA T .. .

10
String Push-down List exceeded (more than 63 entries). This occurs

10
if the total nesting level of MACROS, REPEATS, IREPEA TS, and ar-
guments exceed 63 10• One common cause of this is a recursive
Macro call which does not terminate.

Illegal entry type in call to string push-down subroutine. (Should not
occur)

The errors listed as "should not occur" should not occur in normal
operation of ADEPT. However, they are listed as they might occur
as a result of incorrect action operator definition operations.

33 ADEPT /PRM/G

TER20
TER21

TER22

TER23

TER24

TER25

TER26

TER27

TER28

TER29
TER30
TER31
TER32
TER33

TER34

TER35

TER36

NOTE:

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

lllegal entry type in string pop-up. (Should not occur)
String Push-down List underflow. String pop-up subroutine called and

level equals zero. (Shouk~ not occur)
String storage exceeded. This is caused by extensive Macro definitions

and/or long repeated strings.
Symbol table length exceeded. Too many symbols defined in the input

program. Adept cannot handle that program without larger memory.
Expression Evaluation Push-down List overflow. (more than 7 entries).

This can occur when there is nesting of expression calls in machine
expression evaluation, repeat counts, and conditional statements.

Subexpression Push-down List overflow. (more than 3110 entries).
This is caused by too many subexpression levels in an expression or
in nested expressions.

Subexpression Push-down List underflow. This is caused by too many
right parentheses in an expression.

No symbol scanned for parameter definition. There was no alpha­
numeric symbol before the "=".

Equal sign scanned while evaluating another parameter. Parameter
definitions cannot be nested.

Parameter Storage exceeded. Too many parameters in the program.
lllegal symbol type-in Symbol Table. (Should not occur)
Illegal arithmetic or logical operator. (Should not occur)
Expression Evaluation Push-down List underflow. (Should not occur)
Parentheses nesting error in expression. Not the same number of

right and left parentheses in an expression.
"AVAILABLE'' scanned and not in define mode. "AVAILABLE" orera­

tor is placed erroneously in the program.
"AVAILABLE" scanned and already set. Two "AVAILABLE" operators

in the same action operator definition not separated by a "LOC'' state­
ment.

"ENDl''f" scanned while not in Macro define mode. "ENDM" placed
erroneously in the program.

The errors listed as "should not occur" should not occur in normal
operation of ADE PT. However, they are listed as they might occur
as a result of incorrect action operator definition operations.

ADEPT /PRM/G 34 7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

APPENDIX B

BASIC ADEPT ACTION OPERA TORS AND INSTRUCTION CODES

The following action operator symbols and predefined instruction codes are part of
the basic ADE PT Translator and may not be used for symbolic tags and value de­
finitions.

String Action Operators

MACRO ENDI " RELOCATE

MACROl IF ZERO # ENDAO

M..ACR02 IFNEGATIVE ## EXPUNGE

STOP IFPASSl % SETTRAN

ENDM IF SAME DEFINE TERMINATE

REPEAT ELSE AVAILABLE ADEPTSYMS

ENDR ENDC ENDD

!REPEAT \ ABSOLUTE

E:xpression Action Operators

(TAB) & COMMON
(SPACE) LOC TITLE

(CIR) = OCTAL TYPE OUT

$ DECIMAL TYPE OCT

+ TEXT TYPED EC

CARRET STRING

NOCARRET ASCII (Version 5 only)

...) ENTRY *
I
II f

(Versions 4 and 5 only)

7-69 35 ADEP f /PRM/G

MDMD ARMD

l\IDAR ARAR

MDBR ARBR

MDIC ARIC

MDIR ARIR

MDAS ARAS

MDAE ARAE

MDXO ARXO

S4MD S7AR

S4AR S7BR

S4BR S7IC

S4IC S7IR

S4IR B

S5MD K

S5AR H

S5BR 0

S5IC A

S5IR N

S6MD x
S6AR I
S6BR L

S3IC F

S6IR tTPSR
S7MD JUMP

ADEPT IPRM/G

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Pre-defined Instruction Codes

BRMD ICMD

BRAR ICAR

BRBR ICBR

BRIC ICIC

BRIR ICIR

BRAS ICAS

BRAE ICAE

BRXO ICXO

JSAN ANAS

JPAN ANAE

JSLS ANXO

JPLS LSMD

SKAN LSAR

SKLS LSBR

SKUA LSIC

SKLA LSIR

ANMD LSAS

ANAR LSAE

ANBR LSXO

ANIC CNVT
ANIR OPTY

OPTI
OPCR

FPRI
UPRI
NOOP

36 7-69

MOVE

2DTBL

DRAW

2DTF

LABLM

LABL

NUL

SCL

ROTX

ROTY

ROTZ

RXYZ

DX

DY

DZ

DV

7-69

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Additional Instruction Codes (Versions 4 and 5 Only)

MPYL
MPYU
MPYI
NORM

DIVL
DIVU
DIVI
ERAR

ARRS
ARLS
PINT

Display Image Codes (Version 5 Only)

LDSCL JMP

LDRX JSR

LDRY LDMB

LDRZ ORMB

LDRV ANDMB

LDX LDSN

LDY LDLS

LDZ CJMP

LDV CJSR

LDI WJMP

SAVT WJSR

REST LDW

RET MVW

IMG LWS

LOOP DEPTH

ENDL FLAGl

37

FLAG2

PEN

WBXl

WBYl

WBZl

WBX2

WBY2

WBZ2

IFW

IRL

RHW

RFW

RRL

DIR

STR

ADEPT /PRM/G

AFDSP

AFORT DISPLAY INTERFACE

Programmer's Reference Manual

Revision C

July 1969

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

CONTENTS

Page

INTRODUCTION 1

DEFINING IMAGES 1

DESCRIPTION OF AFDSP CALLS 4

1. RSET 4
2. IM CON 4
3. IMVAR 4
4. SHOW 5
5. NOSHO 5
6. SE TIO 5
7. TABL 6

TABLF 6
ZSET 6
TDFUN 6

DESCRIPTION OF IMAGE DEFINING ITEMS 7

1. MOVBM 7
2. LINE 7
3. LABEL 7
4. PLACE 8
5. ST PLC 8
6. IMC AL 9
7. CALL 9
8. GO 9
9. IFNEG 10

IFZRO 10
10. PE NON 10

PENOF 10
LOP 10
STPLP 11
DSH 11
NODSH 11

AFDSP VALUE AND NUMBER RANGES 11

IMAGE BUFFER SIZE REQUIREMENTS 12

7-69 iii AFDSP /PRM/C

AFORT DISPLAY lNTERF ACE; AFDSP

Programmer's Reference Ma.Iiual

CONTENTS (Cont.)

SUMMARY OF AFDSP FACILITIES

Calls
Items
Functions
Library Routines

USE OF AFDSP ON BK SYSTEMS

AFDSP/PRM/C iv

13

13
13
14
14

15

7-69

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

INTRODUCTION

AFDSP provides a FORTRAN programmer with the necessary facilities to
display two-dimensional pictures of three-dimensional images on the Graphics
Display Scope. A selected image is displayed by means of a SHOW call, with an
argument specifying the desired image. Images are kept in buffers, each buffer
being a single-dimensioned FORTRAN array in which the description of an image
has been created. The programmer may build up a description of an image by
means of CALL statements, which add image defining items to its buffer.

For each separate image, the programmer must perform the following tasks:

1. Dimension a variable (integer or real) to be used as a buffer in which the
image description is to be generated.

2. Empty and initialize the buffer; this is accomplished by means of a RSET
call with arguments specifying which buffer· and its dimension size.

3. Image-describing items can be added to the buffer. Two options are pro­
vided with respect to these items. Either they will remain unchanged
throughout the display of the image, or they are dynamic and may be
changed by subsequent computation or operator interaction.

Items may require arguments. For unchanging items requiring numerical
values as arguments, these may be any fixed or floating point FORTRAN expres­
sion. For dynamic arguments requiring numerical values, they may be the name
of any local or global (fixed or floating point) FORTRAN variable.

The call IMC ON is provided for adding unchangable image items to a buff er,
and IMVAR is used for adding dynamic image describing items.

DEFINING IMAGES

All images, when displayed, result in viewable lines or text strings
suitably generated and placed in the viewing space.

The viewing space is a cube in which the definition of the shown image is
specified. The orientation of the viewing space is that of a right-hand coordinate
system with the y-axis vertical, the x-axis horizontal from left to right, and the
z-axis horizontal coming out of the display screen towards the viewer.

7-69 1 AFDSP/PRM/C

AF ORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

The items defining an image specify:

1. Visible elements such as lines, text strings, and other images.

2. Placement of visible elements -- these may include changes in position,
size, or orientation.

3. Subprograms to be executed for any required dynamic variation, geo­
metrical constraints, or operator interaction.

Lines and text items have arguments giving their coordinates within the
current definition space. For a shown image with no "Placement" items, the
definition-space for all items corresponds to the viewing-space. The position in
the definition space in which the next visible element will be generated is refer­
red to as the "beam position." The generation of visual elements is done by a
moving "beam" of light in the definition space coordinate system.

An image definition space is also a cube, its sides ranging from minimum to
maximum values of the valid argument number ranges:

1. -10, 000 ~ fixed point arguments ~ +10, 000

2. -1. ~ floating point arguments ~ + 1.

The arguments to PLACE items may specify a change in scale, rotation,
and/ or displacement of the image portion now described by subsequent items.
The arguments for rotation range from - TT radians for the minimum numerical
value, increase linearly through 0 radians for the zero value, and extend to +TT 'for
the maximum numerical value.

I

All placement items affect the definition space. Items following a PLACE
item have their coordinates measured with respect to a new coordinate system
which has been turned, moved, or shrunk as specified by the PLACE item. The
effect of a previous PLACE item can be stopped by a SPLC (stop place) item.
All PLACE items are otherwise cumulative, i.e. , each successive PLACE is
performed with respect to the ,coordinate system resulting from the previous
PLACE, not that of the image-start or viewer-space. In this way, PLACE-SPLC
ranges may nest image describing segments.

Multiple instances of defined images may be placed about a definition space
as valid elements in the definition of a new image. The IMCAL item is provided
to implement such sub-image calls in a image's definition. The argument to an
IMCAL item is the name of the buffer containing the sub-image definition.

Lines and text strings can be created, arguments specifying them altered,
or arguments to items affecting their placement altered, by executing subprograms.

The CALL item in an image definition causes a subroutine to be executed.

AFDSP/PRM/C 2 7-69

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

This is a necessary element in the definition of dynamic images which are to be
affected by computation or I/O. The arguments to a CALL item are the name of
the subroutine to be executed, followed by its arguments (if any).

When numerical values for arguments to image describing items are to be
varied during display, the item should be added to the image buffer via an IMVAR
call. The variables used for arguments in the item may then have their values
changed dynamically by CALL'ed subprograms during display. But, these dynami­
cally assigned values must be transformed to machine oriented values prior to
assignment. This is done automatically by AFDSP in all other cases.

The functions IMV and RMV are provided to convert their one argument, any
valid fixed or floating point FORTRAN expression over the standard image argu­
ment ranges, into the proper hardware representation for assignment. IMV is
used to assign values to integer variables, and RMV is used to assign values to
real variables.

e.g. ' : A = RMV (. 3*B-C)

I = IMV (. 25)

Similarly, the functions ISVA and RSVA are used to assign the address of
an array name to a variable (integer or real, respectively).

e. g. ' : A = RSV A (B), where B is a dimensioned array.

I = ISV A (IB), where IB is a dimensioned array.

All desired dynamic changes of displayed images cannot be effected through
variations of numerical values of arguments to items. Some desired changes
constitute removal or inclusion of image portions. Conditional and unconditional
"jump-in-image" type items are provided for this purpose. The tested conditions
provided for are: sign of any dynamic variable, and detection of operator light
pen selection over any specified image portion.

To provide local references for image jumps, any item of an image buffer
may be "labeled" by a variable.

Each call adding an item to an image's buffer provides a location value which
may be used as a label referring to the next item. Jump items using this label
may be added to the buffer before or after this point of assignment.

7-69 3 AFDSP /PRM/C

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

DESCRIPTION OF AFDSP CALLS

1. A selected dimensioned variable is cleared and initialized for use as a
buffer into which an image description may be generated by the following call:

CALL RSET (Pie, n)

where: Pie = name of integer or real dimensioned variable.

n = size of dimensioned variable Pie.

2. The following CALL will cause the addition to the buffer Pie of an image
item, Item, with argument references as current values of Argl and Arg2, •••

CALL IMCON (Pie, Item (Argl, Arg2, •••), Loe)

where: Pie= name of dimensioned variable to be used as the buffer
for the image item.

Item = operation to be added to image in Pie. A description
of the available items is included in the next section.

Argn =Item arguments are local or global variables, literal
constants, or valid AFORT expressions.

Loe =Variable (error flag) which is set to negative if Item
could not be entered because there were no more
elements of Pie available or, if positive, a label for
the next image item in Pie.

3. The following CALL will cause the addition to the buffer Pie of an image
item with argument references as running values of Argl, Arg2,... .

CALL IMVAR (Pie, Item (Argl, Arg2, ...), Loe)

where: Pie= name of dimensioned variable, used as an image
definition buffer which will contain the image Item.

AF DSP /PRM/ C

Item = operation to be added to image in Pie. A description
of the available items is included in the next section.

Argn = Item arguments can only be local or global variables
for numeric arguments.

4 7-69

AF ORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

Loe = variable (error flag) which is set to negative if Item
could not be entered because there were no more ele­
ments of Pie available or, if positi'!'5l, a label for the
next image item in Pie.

4. The following CALL will cause the image items described in buffer Pie
to be displayed:

CALL SHOW (Pie, n)

where: Pie= name of dimensioned variable, the elements of which
contain image items previously generated.

n =fixed point argument giving frame rate code as follows:

n Rate (Frame/Second) -
1 60
2 40
3 30
4 24
5 20
7 15
9 12

11 10

5. The following CALL will suspend any current image display:

CALL NOSHO

6. The following CALL will establish a dimensioned variable as a text
buffer into which Hollerith or numeric variables may be output as characters of
a text record:

CALL SETIO (Buff, n)

where: Buff= name of dimensioned variable into which characters
are to be written.

n = the dimension size of Buff.

Once established, a record may be output to Buff under format control by an
AFORT WRITE statement using unit 54. Once containing an output record,
Buff may be used as an argument to the text generating image item I.ABEL
(described below).

7-69 5 AFDSP/PRM/C

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

7. The following CALLS will allow a more efficient display of a sequence
of two-dimension tables (i.e., X, Y coordinate pairs associated with a single
Z-value). These tables can only hold constant, pre-computed coordinate lists.

CALL TABL (Pie, Buff, Loe)

or

CALL TABLF (Pie, Buff, Loe)

where: Pie= name of dimensioned variable in which the image item
is to be added.

Buff = name of dimensioned variable containing the sequence
of coordinate pairs.

Loe = Variable (error flag) which is set to negative if the
item could not be entered because there were no more
elements of Pie available , or if positive, a label for
the next image item in Pie.

Note

TABLF is only used when all lines
are short (less than O. 5 in. in length)

Associated with the above TABL and TABLF CALLS is a function ZSET,
required to initialized the buffer into which 2-D lists may be generated and is
used as follows:

Buff (1) = ZSET (z, name)

or

Buff (1) = ZSET (z)

where: Buff (1) =the first element of the array to be filled. Subsequent
X, Y values start with the element Buff (2).

Name = when present, the array name of a possible subsequent
2-D list, to be displayed along with the list in Buff.

An X, Y coordinate pair is assigned to particular elements of an array by using
the function TDF UN as follows:

Buff (n) = TDFUN (x, y, nl, n2)

where: x =the X coordinate value expression.

y = the Y coordinate value expression.

AFDSP/PRM/C 6 7-69

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

nl = 0 if no line is to be drawn at this point, 1 if a 1 ine is to be
drawn at this point.

n2 = O if this is not the last point in the list, 1 if this is the last
point in the list.

DESCRIPTION OF IMAGE DEFINING ITEMS

The following items (and appropriate arguments) in IMCON and IMVAR
-statements will cause the described image definitions to be added to the specified
buffer.

1. The item to reposition the beam is:

MOVBM ({PTl (:, y, z)})
2. The item for drawing lines is:

LINE ({ ;~1 (xl, yl, zl)} { ~2 (x2, y2, z2)})
The arguments are either names of dimensioned variables (vl and v2), the ele­
ments of which contain, respectively, the X, Y, and Z coordinates of the end
points, or are functions (PT! or PT2) of the corresponding coordinates.

The line will be drawn from the first point to the second point leaving the
beam positioned at the second point.

If the first point argument and the separating comma are omitted, the line
will be drawn from the second point of the previous LINE item (or the current
beam position if it has been changed).

Example:

CALL IMCON (PIC, LINE (Vl, PT2 (-. 5, . 06, A*3.)), ERl)
where Vl is dimensioned and the arguments to PT2 lie within
the allowable range of numbers.

3. The operation to generate image items which can be used to display
character strings is:

LABEL (Buff, Mode)

7-69 7 AFDSP/PRM/C

AF ORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

The characters output into Buff by means of a WRITE statement will be dis­
played, according to the specified mode, in a plane parallel to the viewing screen.
The LABEL will begin at the current beam position, which may be set by a
MOVBM operation.

Mode = 1 for small horizontal line.
- 2 for medium horizontal line.
= 3 for large horizontal line.
= 4 for small column*
= 5 for medium column*
= 6 for large column.*

After the text has been displayed, the beam is returned to the start of the
text. Thus. LABEL items do not affect the beam position.

4. The item used to specify scale, position, and any rotation of subsequent
items is:

MOV
XMOV

PLACE SHRINK (s), YMOV

ZMOV

(dx, dy, dz)
(dx)
(dy)
(dz)

XTURN (rx)
YTURN (ry)
ZTURN (rz)

wheres is the desired size reduction; dx, dy, and dz the amount
of X, Y, and Z displacement respectively; and rx, ry, and rz are the
amount of rotation about the X, Y, and Z axes respectively. The
arguments to PLACE may be in order, or omitted. This imposed
PLACEing will affect subsequent items until the next PLACE or
''STop PLaCe" item (see 5).

5. The effect of the previous PLACE item which established the current
scale, position, and rotation may be cancelled by an item, STPLC, entered as
follows:

CALL STPLC (Pie, Loe)

Any positioning, rotation, or scaling which affected items prior to the last PLACE
(being cancelled) will resume and affect items subsequent to the STPLC.

*Available only on system with LCG Character Generator Option.

AFDSP/PRM/C 8 7-69

AF ORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

The item is added to image Pie. Loe defines the location of the next item
that can be added to Pie.

NOTE

This item, having no arguments, need not (and cannot) be
entered via an IMC ON or IMV AR call.

Thus, PLACE and STPLC items may nest segments of image descriptions.
The outermost segment is "PLACEd" with origin at the center of the screen, X
axis to the right, Y axis vertical, and Z axis coming out towards the viewer.

6. The item used to include to entire image described in another dimen­
sioned array for processing under the currently established PLACEing is:

IMCAL (Name)

where Name is the name of the other dimensioned array containing image items.

When the' sub-image selection is to be dynamically re-assigned during
display, (an IMVAR was used to add it to image buffer), any variable may be used
for Name.

Name may then be assigned during display by an ISVA or RSVA call.

7. The item to enable calling for the execution of another external sub­
routine while displaying an image is:

CALL (Name, Argl, Arg2, •••)

where Name is the name of the external subprogram to be called.

NOTE

Name must have been previously declared to be ex­
ternal by means of a specification statement of the
following form: EXTERNAL Name

When the CALL is to be dynamically alterable during display (IMVAR), the
arguments must be variables. The first argument, the subroutine to be called,
must still be the name of an EXTERNAL subprogram.

8. The item to cause the processing of the current image to change to
another location is:

GO (Loe)

7-69 9 AFDSP/PRM/C

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

where Loe is a variable referencing an item in the image. Loe is defined by the
IMV AR or IMC ON call preceding the item referenced.

9. Processing of the current image may be changed to another location
under two tested conditions:

IFNEG (Var, loc)

IFZRO (Var, loc)

In the above, if the value of Var is negative or zero, respectively, processing is
transferred to loc, a variable referencing an item in the image. Loe is defined
by the IMV AR or IMC ON call preceding the item referenced.

10. A further tested condition which may cause processing of the current
image to be changed to another location is detection of operator light pen
selection over any specified image portion, as follows:

IFPEN (Loe)

If the light pen was detected, processing of the current image will be changed to
Loe, a variable referencing an item in the image. Loe is defined by the IMVAR
or IMCON call preceding the item referenced.

Light pen detection is enabled by means of the following operation:

CALL PENON (Pie, Loe)

The item is added to image Pie. Loe defines the location of the next item that
may be added to Pie.

NOTE

This item, having no arguments, need not (and cannot)
be entered via an IMCON or IMVAR call.

Light pen detection is disenabled by means of the following call:

PENOF (Pie, Loe)

The operation to cause repeated processing of a sequence of items is:

LOP (n)

where: n = the number of times the sequence is to be repeated.

AFDSP/PRM/C 10 '7-69

AF ORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

The item which specifies the point at which the preceding looping is to end
is entered as follows:

CALL STPLP (Pie, Loe)

The operation to enable lines to be drawn in a dash mode is:

CALL DSH {Pie, Loe)

To discontinue the dash mode, the following call is used:

CALL NODSH (Pie, Loe)

The above three items are added to image Pie. Loe defines the next item to be
added to Pie.

NOTE

The above three items, having no arguments, need not
(and cannot) be entered via an IMCON or IMVAR call.

AFDSP VALUES AND NUMBER RANGES

An additional function is available and must be used to assign values to
variables which are used as arguments to Items entered by IMV AR calls:

IMV (valid AFORT expression)

Example:

A = IMV {. 3*B-C)

All other arguments may be specified by any valid floating or fixed point
FORTRAN expression.

The range of allowable values is as follows:

fixed point: [-10, 000, +10, 000]

floating point: [-1, +l]

These correspond to [minimum, maximum] values of all arguments
giving coordinates, scales, or angles. Angles correspond to [- 1T, + 1T] radians.

7-69 11 AFDSP/PRM/C

AF ORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

IMAGE BUFFER SIZ'E REQUIREMENTS

The dimension size required by an image buffer may be determined by
totaling the number of words per item or call, as follows:

Number of Buffer Words Needed*
Name of Call or Item IMCON Class IMVAR Class Call

RSET
TABL. TABLF
ST PLC
PE NON
PENOF
DSH
NODSH
LOP
STPLP
LINE

PTl & PT2, or Vl & V2
PT2 only, or V2 only

LABEL

MOVBM
PLACE

SHRNK
MOV
XMOV
YMOV
7MOV
XTURN
YTURN
7TURN

IMCAL
CALL
IF PEN
IF NEG
IF7RO
GO

1

4
2

(no. words in
output buffer
filled) +l

2

1
2
1
1
1
1
1
1
1

(no. args.)+1
2
2
2
1

(no.

1

6
3
1

3

1
3
1
1
1
1
1
1
1
args.)+l
2
2
2
1

2
1
1
1
1
1
1

1

*1 additional word is needed and used by AFDSP to specify the end of the image.

AFDSP/PRM/C 12 7-69

AFORT DISPLAY INTERFACE, AFDSP

SUMMARY OF AFDSP FACILITIES

7-69

Calls

RSET (Name, size}
IMCON (Name, item (args}, loc/err}
IMVAR (Name, item (args), loo/err)
SHOW (Name, rate}
NOSHO
SETIO (Buff, n)
TABL (Pie, Buff, Loe}
TABLF (Pie, Buff, Loe)
STPLC
PE NON
PENOF
DSH
NOD SH
LOP (n)
STPLP

Items

LINE (Pointl, Point2)
LABEL (Buff. Mode)
MOVBM (Point 1)
PLACE (Size, location, rotation)
IMCAL (Name)
CA LL (Subrtn, args, •••)
IFPEN (Loe)
IFNEG (Var, loc)

IF ZRO (Var, loc)

IFNEG (Var, loc)

GO (loo)

13

Programmer's Reference Manual

Initialize image buff er
Include unchangeable image item
Include dynamic image item
Display image
stop display
Initialize text buff er

Include X-Y pair in table

End sub-space
Initialize pen detection
Disenable pen detection
Initialize dash mode
Discontinue dash mode
Loop in image
Loop end delimiter

Visible line item
Text item
Move beam position
Start sub-space
Call sub-image
Call sub-program
Conditional image-jump on pen
Conditional image-jump on nega-

tive value
Conditional image-jump on mag­

nitude
Conditional image-jump on mag­

nitude
Unconditional image-jump

AFDSP /PRM/C

Functions

RMV (expr)
IMV (expr)
PTl (xl, yl, zl)
PT2 (xl, yl, zl)
SHRNK (s)
MOV (dx, dy, dz)
XMOV (dx)
YMOV (dy)
ZMOV (dz)
XTURN (rx)
YTURN (ry)
ZTURN (rz)
ISV A (ARRAY)
RSVA (ARRAY)
ZSET (z, name)
TDFUN (x, y, nl, n2)

Library Routines

FNSIO (sw, op, value/subroutine)

RVCDl (dial, value)
RVCD6 (vall, val2, val3, val4,

val5, val6)
RADTV (hor, ver, down, press)
PENHT (n, item, image)

AFDSP/PRM/C

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

For dynamic value assignments
For dynamic value assignments
For LINE and MOVBM arguments
For LINE and MOVBM arguments
For PLACE arguments
For PLACE arguments
For PLACE arguments
For PLACE arguments
For PLACE arguments
For PLACE arguments
For PLACE arguments
For PLACE arguments
Save address of array name
Save address of array name
Set Z value for table
Enter coordinate pair table

Read or set function sw or execute
when set.

Read a Variable Control Dial
Read all Variable Control Dials

Read Analog Data Tablet
Identify nth previous pen-hit

14 7-69

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

USE OF AFDSP ON SK SYSTEMS

Version 1 of AFDSP is used on 16 or 32K AGT Systems. Version 2 is seg­
mented and may be used on SK AGT Systems. Version 2 consists of two parts,
as follows:

Part 1 (Title "ADS Pl") containing routines for building display buffers:
All AFDSP routines except SHOW, NOSHO, ISVA, RSVA.

Part 2 (Title "ADSP2") containing routines to run displays: SHOW, NOSHO,
IMV, RMV, ISV A, RSVA.

On SK systems, a RECALL-OVRLY scheme may be used so that OBJPK,
AFDSP, etc., and DSPLY are not residing in core at the same time, as follows:

2

1

7-69

C DRIVER PROGRAM

c

c
c
c

c
c

c

SUBROUTINE MAIN
DIMENSION DISPLAY BUFFERS

DIMENSION BFl(n), BF2(n)
LOAD AND EXECUTE BUFFER AND BUILD ROUTINE
MAKE CONTAINS IMCON, IMVAR, ETC., CALLS
BUT NOT SHOW CALLS

RECALL-OVRLY: MAKE (BFl, BF2)
WATCH HAS SHOW CALLS
OVERLAY MAKE WITH SHOW, ETC. AND DSPLY

RECALL-OVRLY: WATCH (BFl, BF2)
DUMMY IF STATEMENT TO LOAD RUN-TIME ROUTINES

IF (1) 2, 2, 1
CALL RTSRl (args)
CALL RTSRl (args)
RETURN
END

15 AFDSP /PRM/C

AF ORT

(AUGMENTED ASA BASIC FORTRAN)

Programmer's Reference Manual

Revision C

July 1969

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

TABLE OF CONTENTS

INTRODUCTION

HARDWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

CHARACTER SET

LINE FORMAT

STATEMENTS FORMS
Rules
Definitions
AFORT Statements

COMPILATION INSTRUCTIONS

AFORT TELETYPE OUTPUT

FORMAT OF RELOCATABLE FILES
Relocation Bit Pairs
Special Sub-Codes

AFORT ERROR DIAGNOSTICS
Notification Errors
Termination Errors

APPENDIX A
NUMBER LIMITATION
ZERO

APPENDIX B
AFORT INTERNAL CHARACTER CODES

7/69 iii

Page

1

2

3

4

5
5
5
6

14

15

17
17
17

19
20
20

21
21
22

23
23

AFORT /PRM/C

AUGMENTED ASA BASIC FORTRAN, AF ORT

Programmer's Reference Manual

INTRODUCTION

AFORT is an extension of ASA Basic Fortran, and its source language con­

forms to the specifications proposed by the American Standards Association X3. 4. 3

subcommittee for Basic Fortran. *

The AFORT compiler is designed for use under the AMOS operating system.

It accepts source input text of type A TEXT. The object programs are output in stand­

ard AMOS relocatable linkage format, compatible with those output by the ADEPT

assembler.

AFORT includes the following extensions to ASA Basic Fortran:

1. Symbolic names specified in a GLOBAL statement may
be referenced by programs written in ADEPT, or by
expressions in AMOS Monitor control statements.

2. Symbolic names may be declared as function or subroutine
names by an EXTERNAL statement.

3. Available core storage may be shared between disjoint
program sets by a RECALL-OVRLY statement.

4. Selective symbolic tracing of program execution at the
source language level is possible with TRACE statements.

5. In assignment statements, the first element of an array
may be referenced by the array name alone.

* These specifications may be found in the Communications of the ACM, Volume
7 /Number 10/0ctober 1964.

7/69 -1- AFORT /PRM/C

AUGMENTED ASA BASIC FORTRAN, AF ORT

Programmer's Reference Manual

HARDWARE REQUIREMENTS

The required hardware for the AF ORT compiler is:

SCU-Pl, A CC-Pl, OPC- Pl, DME-P8, P16, P32, and

MTP cy' s or MTP7;

DPR1-P2, P3, P4, and MTP5/8 or MTP7;

AGT/1,0, Ml.6-Pl, and (MTP5/8 or MTP7 or DMS2)

AGT/5,0 or AGT/3.0, and (MTP5/8 or MTP7 or DMS2)

SOFTWARE REQUIREMENTS

AMRMX and PRIO (along with relocatable monitor symbol links, ARMSX)
which correspond to the hardware configuration.

NOTE: Execution of compiled programs requires
facilities implemented by the "Object Package"
(OBJPK) and possibly subroutines from the
library and Fortran library, FLIBR.

AFORT /PRM/C -2- 7 /69

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer' s Reference Manual

CHARACTER SET

An AFORT program may contain the following letters, digits and special
characters:

7-69

LETTERS:

DIGITS:

ABCDE FGHIJKLM
N 0 P Q R S T U V W X Y Z

01234 56789

ARITHMETIC OPERATORS:

+

*
I

Addition or positive value
Subtraction or negative value
Multiplication (** exponentiation)
Division

SPECIAL CHARACTERS:

(
)

Blank or Space
Equals
Left parenthesis
Right parenthesis
Comma
Decimal point
Colon

TAB The first ''TAB" character in a line sets the
column counter to Column 7. Subsequent
"TAB" characters in the same line are ignored.

C/R The Carriage Return character is used to termi­
nate a line. A C/R during AFORT teletype

1'
@

%
J
&
$
4F

I/O specifies an "End of Record."

permitted in Hollerith fields

3 AFORT/PRM/C

LINE FORMAT

AUGMENTED ASA BASIC FORTRAN, AFORT
Programmer's Reference Manual

The columns in an AFORT line are used as follows:

IF THE LETTER C IS CALLED OUT, THE ENTIRE
REMAINING LINE IS REGARDED AS A11COMMENT.11

AS A RESULT,THE "COMMENT LINE 11 IS IGNORED BY

A CONTINUATION COLUMN (COLUMN 6) MUST
CONTAIN ONE OF THE FOLLOWING:

I. BLANK SPACE
2 .A DI GIT, OTHER THAN ZERO (FOR CONT.)
3. A LETTER (FOR CONTINUATION) \.. THE COMPILER.)

\._*SEE NOTE BELOW)
t 7 f

~'1~'~~5~l_sl~1~~~~~~~~~~~~~-ss-~~~-n-I

~ I tt I t
A STATEMENT NUMBER UPTO FIVE) (STATEMENT FIELO '
DIGITS IN LENGTH NEED NOT BE (SPACES ARE IGNORED)
EITHER RIGHT OR LEFT JUSTIFIED.

NOTE:

AFORT /PRM/C

FIGURE I. SAMPLE AFORT LINE FORMAT

An AFORT statement may contain up to 5 continuation lines, subject

to the following restrictions:

1. DO statements must be written on only the first line.

2. The equals character (=) of a replacement statement
must appear on the first line.

3. A statement label (if any) must appear on the first line.

-4- 7/69

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

STATEMENT FORMS

A. Rules

1. [X] means that "X" is optional.

2. (x} means that "X" can occur one or more times, separated by y
"y" ("y" may be null).

z
3. [X} means that "X" can occur one or more times up to a maxi-

Y
mum of "z" times, separated by "y ".

B. Definitions

7/69

1. ch is any character

2. n and format are statement-label numbers

3. octal is one to four octal digits

4. r is the number of times a format field specification is to be repeated

5. ~ is the field width (in characters) to which a format specification applies

6. d is the number of characters to be assumed after the
decimal point

7. int is an integer constant or integer name

8. list element is either a variable or:

([list element } 1 [integer name = int1 int [1 int]])

9. spec is a formal specification and may be the following:

a. rFw.d
b. rEw.d
c. rlw
d. wH (ch}

w

e. r (spec)
f. wX
g. I

-5- AFORT /PRM/C

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer' s Reference Manual

1 O. sub is an integer constant used as subscript

11. unit is a logical I/O unit number:

C. AFORT Statements

a. 1 through 4 for physical tape drives
~ through 3. respectively.

b. 5 through 8 for the AMOS Format Library on
tape drives 13 through 3 respectively.

c. 21 through 24 for physical disk volumes last
assigned (by a SDVOL call).

d. 513 for the console teletype.
e. 52 for the Card Reader
f. 53 for the Printer
g. 54 forthe current ASCII buffer (set by SETIO call).
h. 55 for the high speed paper tape.

DIMENSION (name(sub[, sub])},

Purpose: Name and declare size(s) of array(s).

Restrictions: Specification statements must appear in the order of
DIMENSION, COMMON, EQUIVALENCE.

Example:

COMMON [name},

l\iay only be preceded by a SUBROUTINE, FUNCTION,
or other DIMENSION statement.
A name, if dimensioned here, must not have prev­
iously been dimensioned.

DIMENSION A(5), 12(3, 6), CP(22)

Purpose: Specify that the variables and/ or arrays listed are
to be assigned to storage in the memory area called
COMMON. Allow more than one program unit in an
executable program to reference the same data
directly.

Restrictions: Specification statements must appear in the order of
DIMENSION, COMMON, EQUIVALENCE.

Example:

AFORT/PRM/C

l\iay only be preceded by a SUBROUTINE, FUNCTION,
DIMENSION, or other COMMON statement.
The program unit with the largest common region
must be loaded first.

COMMON X, ANG, 12, IND

-6- 7/69

7/69

AUGMENTED ASA BASIC FORTRAN, AF ORT

Programmer's Reference Manual

EQUIVALENCE ((name[(sub[, sub])], (name[(sub[, sub])]},) } ,

Purpose: Cause the same area of memory to be shared by two
or more entities.

Restrictions: Specification statements must appear in the order
of DIMENSION, COMMON, EQUIVALENCE.

· Example:

EXTERNAL fname},

Purpose:

May only be preceded by a SUBROUTINE, FUNCTION,
COMMON, or prior EQUIVALENCE statement.
Effective lengthening of COMMON is permitted only
if it increases COMMON in the same direction as
additional COMMON elements would.
Two elements of the same array can not be equival­
enced.

EQUIVALENCE (X,A(2), Y), (B, I2)

Allow SUBROUTINE or FUNCTION names to be
used as arguments to yet other subprogram calls.

Restrictions: Names must not be dimensioned. Names previously
used must be used only in program definition.
Must follow any DIMENSION, COMMON, or
EQUIVALENCE statements.

Example: EXTERNAL SAM, TIGER

GLOBAL ((name},)
Purpose: Allow symbolic names to be referenced by programs

written in ADEPT or by expressions input with
AMOS Monitor control statements.

Restrictions: Must follow any DIMENSION, COMMON, EQUIV­
ALENCE, or EXTERNAL statements (or be em­
bedded in the executable statements). GLOBAL
variablas may not be dummy arguments. Only one
GLOBAL statement is permitted in a program or
subprogram.

Example: GLOBAL (ALICE, PAT, SUE)

[n] variable == expression

Purpose: Replace the value of a variable with the results of
the evaluation of an expression.

-7- AFORT/PRM/C

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

Restrictions: An "equals" sign must follow the first operand.

Example: A(JJ) = 7. *A(3)/2.

[n] GO TO n
Purpose: Transfer control to the statement labeled "n".

Example: GO T05

[n] GO TO ([n},) , integer name

Purpose: Transfer control to the 1st, 2nd, .•. statement
with a statement number, "n", depending on whether
"integer name" is 1, 2, .•. , respectively.

Restrictions: The value of "integer name" should not exceed the
number of statement numbers in the parenthesized
list.

Example: GO TO (5, 22, 3,656, 31), ISAM

[n] IF (expression) n, n, n

Purpose: Transfer control to the statement numbered "n",
depending on whether the value of "expression" is
less than zero, equal to zero, or greater than zero
(respectively, from left to right).

Restrictions: Three statement numbers, not necessarily differ­
ent, must be given.

Example: IF (S -3/2*X) 1.6, 22, 1.6

[n] CALL name [({expression},)J

AFORT/PRM/C

Purpose: Transfer control to a subprogram and present it
with any parenthesized arguments.

Restrictions: CALLs are not recursive.

Example: CALL TESl (A, B*C+6., 1(2))

-8- 7/69

7/69

n CONTINUE

Purpose:

Example:

[n] PAUSE octal

Purpose:

Note:

Example:

[n.J STOP octal

Purpose:

Example:

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

Serve as a program unit reference point.
May be last statement in a DO range when the loop
would otherwise end with an IF or GO TO statement
(which is illegal).

13 CONTINUE

Causes a temporary halt of program execution,
which may be resumed (with the next statement)
by depressing PULSEl, and also types "PAUSE
octal."
An external instruction on the console must be set
to 24fjf1f177776 and be activated by PULSE1.

PAUSE 24

Terminate program execution, type "STOP octal,"
transfer to the EXIT routine to type any object time
error messages, and return control to AMRMX.

12 STOP 1375

[n.J DO n integer name -= int, int[. int]

Purpose: Repetitively execute the statements following the DO
statement up to and including the statement labeled
"n". "Integer name" is incremented (optionally by
a value "int", greater than 1) from the value "int"
(the first control parameter) until its value is

· greater than "int" (the second control_ parameter).

Restrictions: The terminal statement (labeled "n") must physic­
ally follow and be in the same program unit as the
DO statement.
The terminal statement may not be a:

-9-

GO TO statement
IF statement
RE TURN statement
STOP statement
PA USE statement
DO statement

AFORT /PRM/C

Example:

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

If the range of a DO loop contains another DO state­
ment, the range of the contained DO loop must be a
subset of the range of the containing DO loop. A
GO TO or IF statement may not cause control to
pass into the range of a DO loop from outside its
range.
The control variable ("integer name") and/ or con­
trol parameters ("int"'s) may not be redefined during
execution of the range of the DO loop. ,
If a statement is the terminal statement of more than
one DO loop, the label of that terminal statement may
not be used in any GO TO or IF statement that occurs
anywhere but in the range of the most deeply-contained
DO with that terminal statement.

DO 24 IP = 1, JP, 3

[n] READ (unit[,format])[Uist element},]

Purpose: Input data from the next record on the external
source "unit, " according to the format specified by
a statement labeled "format, " and assign the values
to the variable name(s) "list element(s). " (NOTE:
The record size for formatted data is 12,t'i charac­
ters. Unformatted records are 24 binary words in
length.)

Restrictions: If only part of a record is input, the remainder is
lost. Records are read sequentially until the list is
exhausted and only enough values are read to fill the
list.

Example: READ (5,t'i, 2,t'i6) A(2), B, I3, (II(N), N = 1, K, 3)

[n] WRITE (unit [, format]) [{list element } ,]

Purpose:

AFORT/PRM/C

Take values sequentially from the variable name(s)
"list element(s)," convert these values according to
the format specified by a statement labeled "for­
mat, " and output records on the external device
"unit." (NOTE: The record size for formatted
data is 12,t'i characters. Unformatted records are
24 binary words in length.)

-10- 7 /69

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

Restrictions: Successive records are written only until the data is
exhausted. If the data does not fill a record, the
record is filled with blanks.

Example: WRITE (2, 28) A, II

format FORMAT (fspec})

Purpose: Describe the type of conversion and format of data
to be used in the transmission of an input/output list.

Example: 5 FORMAT (/2X, 3F Ut 5, E15. 8, /2HI = , I2)

[n] RECALL-OVRLY: name [((expression})]

Purpose: · Permit a loaded program unit to allocate any remain-
ing available storage to any of several disjoint pro­
grams. Functions or subroutines loaded in this man­
ner are kept in memory until a subsequent overlay
call from the same program unit.

Restrictions: The maximum depth of nested overlays allowed by
AMRMXis 16.

Example:

When storage is released by a subsequent overlay
call at the same level, all higher levels induced by
the previous overlay call are also released.

RECALL-OVRLY: TESTS (A, B, C*D)

[n] REWIND unit

Purpose: Cause the object program to rewind tape "unit" to
the BOT.

Restrictions: If "unit" is not a magnetic tape, no action is taken.

Example: REWIND 1

[n] BACKSPACE unit

7/69

Purpose: Cause the object program to backspace tape "unit"
one record.

Restrictions: If "unit" is not a magnetic tape, no action is taken.

Example: 43 BACKSPACE 2

-11- AFORT /PRM/C

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

[n] ENDFILE unit

Purpose: Write a file mark on tape "unit, " wherever the tape
is positioned .

. Restrictions: If "unit" is not a magnetic tape, no action is taken.

Example: ENDFILE .01

FUNCTION name ((name},)

Purpose: Define the name and dummy arguments of a FUNC­
TION subprogram.

Restrictions: The last statement executed in the FUNCTION sub­
program must be a RETURN statement.
The symbolic name "name" must appear as an
assigned variable in the subprogram, but must not
appear in any nonexecutable statement in the sub­
program.
A FUNCTION subprogram may not define or redefine
any of its arguments nor any variable in COMMON.
The dummy arguments must correspond in type,
number, and order with the actual arguments in the
FUNCTION call.
If a dummy argument is an array name, the corres­
ponding actual argument must be an array name.

Example: FUNCTION SALLY (A, B)

name ([(name },,1°]) = expression

AFORT/PRM/C

Purpose: Name and define a statement function.

Restrictions: May only be referenced within the program unit in
which it is defined.

Example:

Arguments used in the references must agree in
type, number and order with the corresponding
dummy arguments.

ANO (X, Y) = X**2. +5. *Y + 6

-12- 7/69

CH!J Cl 0 I::! AUGMENTED ASA BASIC FORTRAN, AF ORT

Programmer's Reference Manual

7/69

SUBROUTINE name [([name } •)]

Purpose:

Restrictions:

Example:

[n] TRACE name [.name}
[n] TRACE n

Define and name dummy arguments of a SUBROUTINE
subprogram.

The symbolic name of the subroutine must not
appear in any statement in the subprogram.
The symbolic names of the dummy arguments may
not appear in COMMON or EQUIVALENCE statements.
The dummy arguments must correspond in type,
number, and order with the actual arguments in the
SUBROUTINE call. If a dummy argument is an
array name, the corresponding actual argument
must be an array name.

SUBROUTINE AFL (PEL, MFL (11))

[n] TRACE n, name t, name}

Purpose:

Example:

[n] RETURN

Purpose:

Restrictions:

Example:

END

Purpose:

Example:

Trace (i. e.. type values) of selected variables, or
all variables and results of arithmetic expressions
within a specified range, or both, during program
execution. (NOTE: TRACE output may be termin­
ated or restarted by depressing IC (0).)

TRACE 51, A, B, C

Return control back to the current calling pro­
gram.

Each subprogram (Subroutine or Function) must have
at least one RETURN statement (the last statement
executed in the subprogram).

5 RETURN

Indicate the end of a program unit (main program,
function, or subroutine). (NOTE: A second END
statement is required at the end of the last source
program to be compiled.)

END

-13- AFORT /PRM/C

AUGMENTED ASA BASIC FORTRAN, AF ORT

Programmer's Reference Manual

COMPILATION INSTRUCTIONS

1. Load the AMOS Resident Monitor AMRMX (refer to AMRMX <)>erating

Instructions for further details).

2. Type:

START ("AFORT", sysunit) !
to load the compiler, where "sysunit" is the tape drive or disk volume con-

taining the relocatable program AFORT as well as the proper monitor links,

ARMSX.

3. Type:

SYST (output)!

to specify that the output object files are to be appended to the library

at the end of tape or disk volumes "output."

4. Mount a tape or disk with the AFORT source program texts in the

''scratch pad" (File #10) on tape unit 0 or in the currently assigned

disk input volumes.

5. Type:

NOTE:

ALSO:

AFORT /PRM/C

FOR TN!

On SK systems, AMRMX is overlayed by AFORT. The moni­

tor may be reloaded after the compilation (control will be

returned to the bootstrap loader by AFORT).

If "BIG PAGES" are encountered during the compilation, AMRMX

will be overlayed. The monitor may be reloaded after the com­

pilation.

-14- 7/69

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

AFORT TELETYPE OUTPUT

7/69

During compilation, output in the following form is typed:

name:

(any diagnostic messages--see next section)

PGRM SIZE nnnnn

TOT L SIZE nnnnn

CALLED SUBPROGRAMS

subl

name: FILE NO. n

END OF TEXTS

where:

name = subroutine or function name (="Title of text file" if
not a subprogram)

PGRM SIZE = program length (no. words output)

TOTL SIZE = PGRM size+ variable and temporary definitions

subl, etc. = programs called by "name" or names declared to be
external in "name"

FILE NO. relocatable file number output

NOTE: "name:" is typed at the point when AFORT is about to begin out­
putting from the first page of text. If errors were detected or
the end of the program reached (e.g .. a very short 1-page program)
before this point. the corresponding messages may be typed before
name.

-15- AFORT /PRM/C

AUGMENTED ASA BASIC FORTRAN, AF ORT

Programmer's Reference Manual
FORMAT OF RELOCATABLE FILES

HEADER
(4 WORDS)

BODY

(291IZIWORDS

MAXIMUM)

TRAILER

(BllZIWORDS)

AFORT /PRM/C

L

SEQUENTIAL RECORD NUMBER
WITHIN CURRENT FILE

(15)

CURRENT FILE NUMBER

(15)

AFORT SUBROUTINE OR FUNCTION NAME (I T05 6-BtT

ATEXT CHARACTERS)

COMPLETION DATE

MONTH

(4)

DAY

(5)

REVISION

LENGTH OF RECORD BODY

(15)

VERSION LEVEL

(5)

RELOCATION BIT PAIRS

(31!1)

PROGRAM DATA

(1311!1 TOl51i!IONE OR TWO WORD ENTRIES-261IZIWORDS MAXIMUM)

CHECKSUM

(SUMMATION [IGNORING OVERFLOW] OF ALL WORDS IN BODY)

TRAILER PADDING OF SEVEN 3~-BIT WORDS

FIGURE II. FORMAT OF RELOCATABLE FILES

{See pages 1 7 and 18 for Relocation Bit
Pairs and Special Sub-Codes.)

-16- 7 /69

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

A. Relocation Bit Pairs

Relocation bit pairs refer to the next 131.11to 15ui data entries. This word must
be rotated left one bit to get the code for the first entry in bits 28-29. Subsequent
rotations of two bits left are needed for successive entry codes. The two bit codes
describe the data entries as follows:

011 - Absolute loading of one word entry into next
available memory location.

01 - Load one word entry into next memory location
and add the base address of the program (or sub­
routine) to bits 15-29.

10 - Load one word entry into next memory location
and add the base address of common storage
to bits 15-29.

11 - Look at first 6 bits of first entry word and per­
form the operation indicated (see Special Sub­
codes). This entry may be one or two words
long depending on Sub-code.

B. Special Sub-Codes

7/69

1. Two-word entries:

.t11a - Subprogram Entry--name and address
WORD 1 - bits 15-29: Relocatable address
WORD 2 - bits .t1-29: Name (1 to 5 ATEXT characters)

.t12e - Subroutine call name and chain address
WORD 1 - bits 15-29: Last address of subroutine call

chain
WORD 2 - bits .0-29: Name (1 to 5 ATEXT characters)

,tj39 - Common block request
WORD 1 - bits 15-29: Length of common block
WORD 2 - (Present but not used)

.t14a - Chain continuity and address
WORD 1 - bits 15-29: Last address of word usage chain
WORD 2 - bits 15-29: Assigned address of word

-17- AFORT /PRM/C

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

2. One-word entries:

AFORT /PRM/C

1 ls - Relative origin
WORD 1 - bits 15-29: New load address (relative to

program origin)

12e - Global
WORD 1 - bits 15-29: Start address of global definition

13e - Absolute origin
WORD 1 - bits 15-29: New load address (absolute

location)

6.& - End of program
WORD 1 - bits 15-29: Length of program

(NOTE: The last record of a relocatable
file is padded with End of Program entries.
Only the first of these entries has the cor­
rect program length in its entry word.)

-18- 7/69

AUGMENTED ASA BASIC FORTRAN, AFORT
Programmer's Reference Manual

AFORT ERROR DIAGNOSTICS

Any errors encountered in a program during compilation are noted by diagnostic

message output on the typewriter. The AFORT statement in which an error is

detected is typed in the message.

Two kinds of diagnostic messages are typed by the Compiler--notification and

termination. An error which causes a notification message does not affect the com­

piled program. An error which causes a termination message causes the object pro­

gram output to be terminated (aborted after the previous file). The remainder of the

program is then interrogated and any further diagnostic messages are given. The

remainder of the program is not compiled into object output.

7/69

The diagnostic messages typed are of the following form:

en stn + n: stmt

where "en" is one of the error types shown

in the following table, "stn" is the last state­

ment label encountered prior to the error,

"n" is the number of statements following the

last statement label, and "stmt" is the por­

tion of the statement in which the error was

detected.

-19- AFORT/PRM/C

A. Notification Errors

ERROR 1

ERROR 2

ERROR 4

ERROR 5

ERROR 6

ERROR 7

ERROR 8

ERROR 9

ERROR 1,0

ERROR 11

ERROR 12

ERROR 13

ERROR 14

ERROR 15

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

Improper statement construction

Improper usage of variable

illegal statement for DO termination

Improper statement label usage

COMMON base less than .0

illegal EQUIVALENCE grouping

Reference to a non-executable statement

No path to this statement

Doubly defined statement label

Invalid FORMAT construction

Spelling error

FORMAT with no statement label

Function not used as variable

Real constant had to be truncated

~ Termination Errors

ERROR lT Improper statement construction

ERROR 2T Improper usage of variable

ERROR 3T Too many identifiers

ERROR 4T Illegal statement

ERROR 5T Improper use of variable name

ERROR 6T Too many statement function parameters

ERROR7T Invalid mode

ERROR ST Constant too large

ERROR 9T Improper DO nesting

ERROR lt)T Magnetic tape fail (parity error, off line
state, etc.)

AFORT /PRM/C -20- 7 /69

AUGMENTED ASA BASIC FORTRAN. AFORT
Programmer's Reference Manual

APPENDIX A

NUMBER LIMITATION

This appendix outlines the method by which numbers are treated. If the range
limitations are exceeded at compile time, a terminating error will occur. An "INPUT
ERROR" followed by a call to the "EXIT" routine will occur at object time if the over­
size is detected during data input. If the oversize is the result of a computation at
object time, the "OVERFLOW' flag will be set and a zero returned as the result of the
computation. Unless tested at some other point in the object program, the "OVERFLOW"
flag will be tested in the "EXIT" routine, with a typeout occurring if it is set. Numbers
are input either at compile time or object time.

INTEGERS

Integers may be in the range _fj ~I I I ~ 536870911 for both input or computation.

REAL NUMBERS

1 b 1. . h - 2 l 7 -,2 l < < 127 - 21 . Rea num ers must me mt e range 2 (-1 +2) =R =2 (1-2) (approxi-
mately, -_fj. 588 x Hf 38 ~ R ~ _fj, 588 x 1#"38). On input, numbers outside the range will
produce errors, while only numbers greater than the range will produce computational
errors. If the result of a computation is less than 2-127, zero will be used as the re­
sult, with no error flag.

When input, any real number can be considered to be of the form I. E±n, where
I is a decimal integer and n is the decimal exponent. If I is in the range 1,fj_fj_fj_fj_fj_fj_fj_fjx
~I~ 53687,fj911X (where Xis a string of decimal digits), the X digits will be dropped
and the exponent increased by the number of digits in X.

~· 1234567897234. E+2 will be treated as 123456789. E+6

If I is in the range 53687,fj91 YX ~I~ 99999999X (where Y is a decimal digit
greater than I), both Y and X digits will be:

~· 53687,fj917. E+3 will be treated as 53687,fj91. E+4

After input (and truncation if necessary), the resulting decimal real number
(I. E±n) is converted to a binary real number in the form e. f, where "e" (1 :§ e ~ 377s
is the actual binary exponent plus 2,fj.OS so that both positive and negative exponents are
represented by a positive e), and "f" (the binary mantissa) is a 21-bit number in the
range 1/2 ~ f ~1-2-21 • The conversion from I. E±n to e.f is done to 29 binary bits of
significance and the result truncated to 21 binary bits.

The basic arithmetic operations on real numbers (+, -, *, /) are performed to
27 bits of significance, with a ONE being added to the 22nd bit prior to truncation to
21 bits.

7/69 -21- AFORT/PRM/C

ZERO

AUGMENTED ASA BASIC FORTRAN. AFORT
Programmer's Reference Manual

AFORT makes no distinction between +O and -0, treating both as an
algebraic zero for computational and test purposes, with the result that any operation
or routine may return either +t) or -.0 for a correct .0 answer. In addition, for any
real number, e. f, if e is .0, f will also be ,t1,

AFORT/PRM/C - 22 - 7 /69

AUGMENTED ASA BASIC FORTRAN, AFORT
Programmer's Reference Manual

APPENDIX B

AFORT INTERNAL CHARACTER CODES

ATEXT internal code is converted to the following internal codes by--and for use
by--the compiler. As AFORT outputs relocatable tape files, "names" are converted
to standard AMOS code, and Hollerith strings from format statements remain unchanged.

7/69

TTY TTY TTY TTY
CODE CHAR. CODE CHAR. CODE CHAR. CODE CHAR.

ti ti SPACE 20 A 4,0 w 6ti +

til .fj 21 B 41 x 61

ti2 1 22 c 42. y 62 *
ti3 2 23 D 43 z 63 I

.04 3 24 E 44 ·t 64

,05 4 25 F 45 @J 65 (

.06 5 26 G 46 % 66)

.07 6 27 H 47 J 67

1.0 7 3.fj 0 5,0 I 7.0

11 8 31 p 51 J 71 &

12 9 32 Q 52 K 72

13 33 R 53 L 73

14 34 s 54 M 74 $

15 35 T 55 N 75 #

16 36 u 56 76

17 37 v 57 77 C/R

NOTES

" .•. " indicates that this internal code is not used in the AFORT system.

A code may yield a character different from the one listed above if a de­
vice other than a TTY is used (e.g., a printer).

-23- AFORT/PRM/C

AMOS SYSTEM LOADER, AMLDX

Programmer's Reference Manual

DESCRIPTION

AMLDX is an AMOS system program used to load absolute programs of
type (BIN) from AMOS formatted magnetic tape or disk. AMLDX occupies core
storage locations 0 through 1179 • AMLDX is intended to reside in memory dur­
ing the execution of all other standard programs. AMLDX Version 5 may only
be used to load the disk resident monitor, AMRMX Versions 13, 14, 15, or 16.

HARDWARE REQUIREMENTS

Version 1: MTP5, MTP8

Version 2: MTP7-DDC1

Version 5: DMS2- Pl

AMLDX is short enough to be conveniently loaded from punched paper
tape via the standard ''BOOTSTRAPPING" procedure, see DPR2/SOI.

CALLING SEQUENCE AND USE

For operational procedure, consult AMLDX Software Operating Instruc­
tions, AMLDX/SOI.

5-69 1 AMLDX/PRM/ A

AMOS LINE PRINTER PROGRAM, AMLPP
Programmer's Reference Manual

INTRODUCTION

AMLPP is an AMOS system program which provides the programmer with open
and closed subroutines for printing lines on the LPRl Line Printer subsystem.

HARDWARE REQUIREMENTS

AMLPP assumes a DPRl or DPR2 with LPR1-Pl/P2/P3 subsystem.

SOFTWARE REQUIREMENTS

AMLPP is intended for use as an AMOS library program under the AMRMX
A MOS Resident Monitor.

INITIALIZATION

The calling sequence:

JPSR $RSPNT

resets all printer pivots, flags, and locks.

USE

The AMOS Line Printer Program, AMLPP, defines four entry points: PRINT,
STPNT, REPNT, RSPNT. The calling sequence:

JPSR $PRINT
FMT
FETCH
NUM
PI
OFLN

Complete print before return
Form control code
Character-fetch instruction or Buff er address
Number of columns to print
Error instruction
Off-line instruction or idle code or wait code
Return

initiates the closed (serially executed) call to the print program. The value F MT
contains the skip control code in bits 24-29, see Table 1. The value, FETCH, is
the execution instruction for getting characters if bits ~-14 f:. .6 or, it is a pointer to
a packed character list if bits .6-14 = .6. The value, NUM, is the number of charac­
ters to be printed. The value, PI, is the instruction to be executed if there is a

5/68 - 1 - AM LPP/PRM/ A

a l!J a 0 e ___ A_M_O_S_L_I_N_E_P_R_I_N_T_E_R_P_R_O_G_R_A_M_..,_A_M_L_P_. ~p
Programmer's Reference Manual

parity error. The value, OFLN, is the instruction to be executed if the printer is
off-line and OFLN f .t1 or -.t1. If OFLN = .6 then the program idles, waiting for the
on-line state. If OF LN = -.ti, an interrupt instruction is set up and control is re­
turned to the calling program until the printer is returned to its on-line state.

The calling sequence:

JPSR $STPNT
FMT
FETCH
NUM
DI
PI
OFLN

Start printing in parallel with execution
• Form control code

Character-fetch instruction or Buffer address
Number of columns to print
Printing completed instruction
Error instruction
Off-line instruction or idle code or wait code
Return

initiates the open (executed in parallel) call to the print program. All argument
values correspond to those in the call to PRINT, except for DI which is the instruc­
tion to be executed when printing is completed.

The calling sequence:

JPSR $REPNT

re-calls the PRINT or STPNT subroutine with the same arguments as last used.
The definition of this entry, REPNT, is provided for use as the error routine argu­
ment, PI, in the above calls and will cause continued attempts at correct printing
of the line to be made.

5/68 - 2 - AMLPP/PRM/ A

Cl [!J Cl 0 I:! __ ..;.A;..;M~o ... s ...;L;;.;I;..;;;N.;.,;;E;;;....;;;P..;;R,;.;;I_N_T_E_R._.,r..-m.P..-R...,O....,G-..R_A ___ M..,,_.A-..-..M;..;;;L~P p
Programmer's Reference Manual

TABLE 1. FORMAT CHARACTER CODES

Skip to:

VFU Channel 1 (TOF)

VF U Channel 2

VF U Channel 3

VF U Channel 8

No line feed

1 line space

2 line space

31 line space

5/68

(if used)

-3-

24 25 26 27 28 29

1 0 0 0 0 0

1 0 0 0 0 1

1 0 0 0 1 0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

binary sequence

1

0

0

0

1

0

0

1

1

0

1

0

binary sequence

1 1 1

AMLPP/PRM/ A

AMRMX

AMOS RESIDENT MONITOR

Programmer's Reference Manual

Revision B

June 1969

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

PREFACE

A MRMX (Magnetic Tape f'ystem) is the ADEPT format text which generates
an.\· of eight versions of the AMOS Resident Monitor. The six versions have the
following hardware configurations:

1. SCU, OPC, ACC, MTP-5, DME (8, 16, or 32K)

2. SCU, OPC, ACC, DDC-1, MTP-7, DME (8, 16, or 32K)

3. DPR-P2, P3, or P4, MTP-5

4. DPR-P2, P3, or P4, DDC-1, MTP-7

5. SCU-TTY, ACC, MTP-5, DME (8, 16, or 32K)

6. SCU-TTY, ACC, DDC-1, MTP-7, DME (8, 16, or 32K)

11. AGT/10, MlO-Pl, PRI1-P2, MTP5-Pl or MTP8-Pl or AGT/30, PRI1-
P2, MTP5-Pl or MTP8-Pl or AGT/50, PRI1-P2, MTP5-Pl or MTP8-
Pl

12. AGT/10, MlO-Pl, PRI1-P2, MTP7-Pl, DDCl-Pl or AGT/30, PRI1-P2
MTP7-Pl, DDCl-Pl or AGT/50, PRI1-P2, MTP7-Pl, DDCl-Pl

The AMOS Resident Monitor, the core resident section of the AMOS program­
ming system, includes operator control statement handling routines, a relocatable,
linkable loader for loading other portions of the AMOS programming system into
memory when needed, various program debugging aids, magnetic tape subroutines,
and routines to process other often-called system operations.

()/(ig iii A lVIBMX/PRM/ B

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

TABLE OF CONTENTS

Page

INTRODUCTION 1

CONTROL INPUTS - GENERAL 3
Control Statements 3
Arguments 3

Expressions 4
Null Arguments 5
Sub-Argument List 5
Undefined Symbol 6
Multi-Word String 6

USE OF BUILT-IN MONITOR STATEMENTS 7
System Parameter Specification 7

Control Input Device (TYPEC, TAPEC) 7
System Tape for Processor Output (SYST) 7
Register-List Control and Interrogation (PANEL) 7
Memory I/O and Search Bounds (BOUND) 8
Output Format (MODE) 8
Magnetic Tape Density Selection (DSE T) 8

Memory Interrogation and Change 9
Memory Search (SRCHW, SRCHA) 9
Listing Memory Contents (LIST) 9
Changing Memory Contents (OPEN, TRAPS. FILL) 9

Control of Memory Allocation (RESET, START, LOAD, MARK, 11
RELEASE)

Symbol Table Control (DEFINE, DELETE) 11
Execution Control (DO, GOTO, SNAP, RETURN, STOP) 12
Magnetic Tape I/O (D.5ET, READF, READN, WRITE, CHECKSUM, 13

LOADA, DUMP, RESET)
Version Setting and Interrogation (VERSION) 14

USE OF MONITOR LIBRARY ROUTINES 15
Internal Program Symbols Access

Read Relocatable Symbols (READ.5)
Dump Relocatable ADEPT Symbols (DUMPS)

Paper Tape I/O Control (READB, PUNCH, FEED, PTLST)

6/69 v

15
15
15
15

AMRMX/PRM/B

. .

AMOS RESIDENT MONITOR, . AMRMX
Programmer's Reference Manual

MESSAGES TYPED BY THE MONITOR
While Typing Control Statement
During Control Statement Execution

AMOS CHARACTER CODES
Internal Characters
Input Characters

MONITOR CONTROL STATEMENT SUMMARY

SYNTACTIC STRUCTURE OF MONITOR STATEMENTS

AMRMX/PRM/ B vi

18
18
18

20
20
22

23

26

6-69

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

INTRODUCTION

The AMOS Resident Monitor (AMRMX) is that portion of AMOS which accepts and
interprets AMOS control statements, loads programs requested (if necessary), and
executes all programs.

The Monitor is called "resident" because it is kept in core memory at all times
during the use of AMOS, whereas all other programs are loaded into memory only as
they are needed to execute "control statements".

The Monitor lives up to its name by continuously monitoring the operator's
console, and responding to control statements entered therefrom by means of the key­
board or the punched tape reader (in versions 1 and 2). This monitoring function may
be performed as a "background" task to another "foreground" program being executed,
on a time-shared basis. In other words, while another program is being executed
under control of AMOS, the Monitor will accept and execute control statements not in
conflict with the real-time requirements of the running "foreground" program.

The function of the Monitor has been stated above -- it accepts, interprets and
executes AMOS control statements furnished by the system operator. Each such
control statement causes the execution of a previously-written program stored in
memory, with the parameter values indicated by the control statement. The general
form of an AMOS control statement is:

OPERATION (PARAMETER 1, PARAMETER 2, ••• PARAMETER N) !

where each parameter may be an octal/symbolic expression. Unneeded parameters
may be omitted from a control statement, provided only that all of the parameter­
separating commas preceding the last parameter used are given.

When such a control statement is input, the Monitor causes the program
corresponding to the OPERATION to be executed, with the parameters indicated, after
which control is returned to the Monitor. If the requested program is not currently in
memory, the Monitor will first load this program from magnetic tape into core memory,
together with the subroutines which it requires. Symbolic names of entry points and
externally-referenced parameters are also added to the Monitor's symbol list during
such loading, and an up-to-date memory map is available at all times.

3/68 -1- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

The Monitor loader provides memory allocation control to permit dynamic
overlaying of one or more nested levels of loaded programs. This permits any level
of loaded programs to share the remaining available storage among any of several
independent program sets. This permits running of program sets which would exceed
core capacity if all necessary levels were requested as one memory load.

The Monitor also includes a processor interface package used for outputting
mag tape files by AFORT and ADEPT.

The Monitor is loaded into memory from magnetic tapes by the AMLDR
routine. AMRMX occupies octal locations 70000 thru 77777 (including all interrupt
pivot locations).

3/68 -2- AMRMX/PRM/ A

al!.la0e AMOS RESIDENT MONITOR. AMRMX

Programmer's Reference Manual

CONTROL INPUTS

A. Control Statements

or

For every control input statement
TERM!

TERM (ARGl ••.. ARGN) !
the Monitor builds a standard calling sequence in available memory as follows:

Location Contents Explanation

LL JPSR $TERM Call to Subroutine
LL+l ARGl Argument-List Values

(Optional)
LL+NN ARGN
LL+NN+l r6 End of Argument-List Flag
LL+NN+2 JUMP MON9 Return to Monitor

After the statement has been input, and the program with entry point TERM
loaded (if necessary), the Monitor transfers control to this calling sequence.

An input or output of the character ? will re-start the control statement in
which it occurs.

B. Arguments

For those programs requiring arguments, the Monitor will accept a list of
inputs (enclosed in parentheses), and produce the corresponding entry in the generated
calling sequence.

3/68

Each argument is one of the following:

15-bit Address
30-bit Value
Null (omitted) Argument
Sub-Argument List
Undefined Symbol
Multi-Word String

-3- AMRMX/PRM/ A

AMOS RESIDENT MONITOR. AMRMX
Programmer's Reference Manual

Subroutines to be called on-line via Monitor control statements may be written
'

to interpret the Monitor's encoding of the above options permitting the user full flexi-
bility of assembly-like input arguments.

It is the responsibility of the user to ensure that the number and type of argu­
ment in each control statement correspond to the subroutine being called thereby.
Within this constraint, one may type command statements with 3lf-bit expressions,
quoted character strings. or parenthetically nested argument structures as arguments,
or with omitted optional arguments. When arguments are omitted. all separating
commas up to the last non-omitted argument must be given (final commas in a list
may be omitted). since arguments are identified by their position in the generated
calling sequence.

An input or output of * will re-start the current argument.

1. Expressions

Each 15-bit address or 3fl-bit value is entered as an expression. Expressions
consist of terms separated by arithmetic operators, and are evaluated on a term-by­
term basis, as they are input to the Monitor. The ~esulting 3fl-bit value is placed
in the generated calling sequence.

3/68

a. Terms

A term is one of the following:

(1) Octal Number: From 1 to 11110 octal digits. Its value is the 3fl10-bit
right-justified octal integer it represents.

(2) Decimal Number: From 1 to 910 decimal digits followed by a period
"· "· Its value is the 3{110-bit right-justified decimal integer it
represents.

(3) Symbol: From 1 to lfl10 alphanumeric characters, defined in the
Monitor's symbol table. Its value is its 3fl1o-bit definition in the
symbol table.

(4) One-Word String: From 1 to 5 characters, enclosed in quotation
marks ("). The value of the term is its 6-bit internal character
code representation, left-justified and filled with nulls (fl~). if
less. than 5 characters in length.

(5) Specific Values: During memory interrogation and change certain
characters may be used in expressions as terms having specific
values:

Has the value of the current OPEN location
¢or] Has the value of the contents of the current OPEN location

-4- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

b. Logical Arithmetic Operators

The value of an expression is obtained by combining the values of its
terms according to its logical and arithmetic operators. (The initial
expression, or preceding expression for the first term, is assumed
to be +0.) These operators are as follows:

Operator

+, tab, space

±or t

&

!B

!H

2. Null Arguments

Action

Add the value of the following term to the value of the
preceding expression.

Subtract the value of the following term from the value
of the preceding expression.

Inclusive OR the value of the following term with the
value of the preceding expression.

AND the value of the following term with the value
of the preceding expression.

EXCLUSIVE OR the value of the following term with
the value of the preceding expression.

Bit (1-bit) left rotate the value of the preceding
expression.

Character (6-bit) left rotate the value of the preceding
expression.

Half-word (15-bit) left rotate the value of the preceding
expression.

A null argument is one that is omitted. It is represented in the generated
calling sequence by the value -0.

3. Sub-Argument List

An argument-list nested in parentheses may be used as an argument. It is
represented in the generated calling sequence by a 30-bit word whose upper 15-bits
contain the number of arguments in the sub-argument list; the lower 15-bits contain
a pointer to the first sub-argument (i.e., its address, decremented by 1).

3/68 -5- AMRMX/PRM/ A

4. Undefined Symbol

AMOS RESIDENT MONITOR, AMRMX
Programmer's Reference Manual

An undefined symbol consists of a group of from 1 to lfd10 alphanumeric charac­
ters, not defined in the Monitor's current symbol table. It is represented in the
generated calling sequence by a 30-bit word whose upper 15 bits are -fd; the lower
15 bits are a pointer to the 2-word symbol string (i.e., its starting address).

5. Multi-Word String

A multi-word string consists of 6 or more characters enclosed in quotation
marks ("). It is represented in the generated calling sequence by a 3fd-bit word
whose upper 15 bits contain the negative of the number of words in the string; the
lower 15 bits are a pointer to the symbol string (i.e., its starting address).

3/68 -6- AMRMX/PRM/ A

a l!I a 0 E! ______ A_M_O_S_R_E_S_I_D_E_N_T_M_O_N_I T_O_R_,_A_M_R_M_X

Programmer's Reference Manual

USE OF BUILT-IN MONITOR STATEMENTS

A. System Parameter Specification

1. Control Input Device (TYPEC, TAPEC)

Under versions AMRMl and 2 only.

TYPEC!

Causes subsequent control statements to be accepted from the console type­
writer until the next occurrence of the following statement.

TAPEC!

Causes subsequent control statements to be read from punched tape until the
next occurrence of the preceding statement.

2. System Tape for Processor Output (SYST)

SYST (UNIT) !

Assigns tape on tape drive UNIT as the current system tape.

3. Register-List Control and Interrogation (PANEL)

PANEL ((Register-List))!

Replaces the saved register-list with new values, any of which may be
omitted (if a new value is omitted, the previous value is not changed). The Register­
List consists of the following:

6/69

Version

1,2
3,4,5,6,11, 12

where
AR, BR, IC
TPT
OVF
RTI
TTY BT
TTY CH

PANEL!

Register- List

AR, BR, IC, TPT, OVF, RTI
AR, BR, IC, TTYBT, TTYCH, OVF, RTI

are the saved contents of the AR, BR, IC registers
is the TPT interrupt pivot, 77774
is the AR overflow pivot, 77771
is the clock interrupt pivot, 77775
is the teletype bit pivot, 777 50
is the teletype character pivot, 77751

Causes the current saved values of the Register-List to be typed out.

7 AMRMX/PRM/B

AMOS RESIDENT MONITOR. AMRMX

4. Memory I/O and Search Bounds (BOUND)

BOUND (FffiST. LAST)!

Programmer's Reference. Manual

Sets FffiST and LAST addresses for processing by other control statements.
If FffiST is not specified. it will be set, each time it is referenced, to the then
current lower limit of available memory. If LAST is not specified, it will be set.
each time it is referenced, to the then current upper limit of available memory. The
FffiST and LAST addresses can also be set by the other bound-setting statements.
which are LIST, SRCHW, SRCHA, and WRITE.

5. Output Format (MODE)

MODE ("TYPE")!

Sets the format(s) desired for subsequent typeouts of internal machine-word
images. The available (built-in) formats and their type-codes are:

Type-Code

0 (Octal):

S (Symbolic):

Format

The octal number contained in the "upper half-word"
Space
The octal number contained in the "lower half-word"

Symbolic name of this location (followed by colon), if any
Tab
A symbolic expression whose value is contained in the

"upper half-word"
Space
A symbolic address expression whose value is contained

in the "lower half-word"

A (Characters): Five characters whose standard AMBILOG 200 internal
bi-octal codes are in the word

F (Full): All of the above

Any combination of O, S and A is also recognized. Whenever mode "S" is
selected, locations are typed out one per line. Otherwise, the resulting type-out
is given in several columns across the page.

6. Magnetic Tape Density Selection (DSET)

DSET (DSET) !

Causes the selection of magnetic tape density to be DENS (0 = 200BPI,
1 "- 55GBPI, 2 .c 800BPI) for subsequent magnetic tape operations. (MTP7 systems
only)

6/69 8 AMRMX/PRM/B

CH!J Cl!!) IE! AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

B. Memory Interrogation and Change

1. Memory Search (SRCHW, SRCHA)

SRCHW (WORD, MASK, FffiST, LAST, "MODE")!

Will list, in formats MODE, all memory words from location FffiST through
location LAST whose contents masked by MASK equal the value of WORD. If no
FffiST or LA.ST address is given that of the last bound-setting statement is taken. If
no MODE is given that of the last mode-setting statement is taken. SRCHW is a
bound-setting and a mode-setting statement. Note that if no MASK is given, it will
be an "omitted argument" and represented by -0, so that the search will be for exact
matching of the value of WORD.

SRCHA (ADDR, FffiST, LAST, "MODE")!

The behavior of SRCHA (A, F, L, M) I is identical to that of a control state­
ment SRCHW (A, 77777, F, L, M) ! .

2. Listing Memory Contents (LIST)

LIST ("MODE", FffiST, LAST)!

Will list all memory words from location FffiST through location LA.ST in
formats MODE. If no FffiST or LA.ST address is given that of the last bound­
setting statement is taken. If no MODE is given that of the last mode-setting state­
ment is taken. LIST is a bound-setting and a mode-setting statement.

3. Changing Memory Contents (OPEN, TRAPS, FILL)

OPEN (ADDR, "MODE") I

Causes the val ue of expression ADDR to be typed in mode OCTAL and
followed by a colon. Then the current contents of memory location ADDR are listed
in the mode MODE. The memory cell at location ADDR is now "open". As long as
a cell is left "open", further information concerning it may be requested by typing
"@", "="or 11 / 11 (see below), or information concerning it may be changed by typing:

NAMES VALUE CLOSE-CHARACTER

In the above, the inputs NAMES and/or VALUE may be omitted. If given,
the input NAMES may be any number of undefined alphanumeric symbols, ten or
fewer characters in length, each symbol followed by a colon (:). Each such symbol
is thereby defined in the current Monitor symbol list as a name of the "open" location

3/68 -9- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

ADDR. The expression VALUE, if given, is evaluated and its value replaces that
contents of location ADDR when it is "closed". The CLOSE-CHARACTER, (Comma,
Backspace or -, Semicolon, or Carriage Return) enters the new value (if any) into
the "open" cell (location ADDR) "closing" the cell, then does one of the following:

Close-Character

comma
backspace or -
semicolon
carriage return

Action

Opens the next cell in memory
Opens the previous cell in memory
Opens the cell addressed by the last open cell
Does not open any further cells, returns to Monitor

control statement input

While a cell is open, typing

@

I

*

0 or [

$

lists the nearest symbolic expression defining the location
of the open cell

lists the contents of the open cell in any modes other than
MODE

lists the contents of the location addressed by last listed
cell in the mode MODE

causes all input for expression VALUE to be dropped and
ignored so that immediate closing would not alter the
contents of the open cell

causes any comment (characters) up to the next 0 or [
to be ignored

closes the current open cell without altering its contents, and
then opens the cell with address VALUE

stores VALUE in "open" cell

If no MODE is given, OPEN! uses that set by the last mode-setting statement.

TRAPS (FffiST. LAST)!

Causes memory locations FIRST through LAST to be filled with "trap" in­
structions. If no FIRST or LAST address is given, that of the last bound-setting
statement is taken.

FILL (VALUE, FIRST, LAST)!

Causes the value of VALUE to be stored in memory locations FIRST through
LAST. If no FffiST or LAST address is given, that of the last bound-setting state­
ment is used.

3/68 -10- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

C. Control of Memory Allocation (RESET, START, LOAD, MARK, RELEASE)

RESET!

Causes all loaded programs or program symbols, entries, external (global)
parameters and memory allocations to be released. The state established by RESET
is logically equivalent to that immediately after loading the Monitor into memory from
magnetic tape.

START ("TITLE" , TAPE) I

Causes a RESET operation and then loads the program named TITLE and
all its required subprograms from tape unit TAPE. Loading defines all parameters
and subprogram entries loaded, with their current memory locations. If no TAPE
is given, the current "system tape" is used. If no TITLE is given, the first library
program (type RELOC) on this tape is loaded.

LOAD ("NAME", TAPE)!

Causes any local program assembly symbols to be released, then loads the
first subprogram with an entry NAME and all its required subprograms from tape
unit TAPE and defines them. If no TAPE is given, the current "system tape" is
used.

MARKI

Causes the Monitor to record the present limits of memory used for program
storage and symbol storage, with a typeout of the current number of such "marks",
which is also the identifying number of the one created by this operation.

RELEASE (NUMBER)!

Causes the Monitor to erase and make available for re-use all program and
symbol storage loaded since the MARK operation identified by NUMBER. If no
NUMBER is given, it is taken as the number of the most recently executed MARK
operation not canceled by a previous RELEASE operation with a lower NUMBER.
RELEASE operations may be performed automatically by operations which add pro­
_grams to memory.

D. Symbol Table Control (DEFINE, DELETE)

DEFINE (NAME, VALUE, .•.)!

Enters, for each NAME-VALUE pair, the symbolic name NAME into the
Monitor's current symbol table, assigning the value of expression VALUE as its

3/68 -11- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX
Programmer's Reference Manual

definition. If any NAME in a DEFINE statement is already defined in the Monitor's
current symbol table, the Monitor will type out a message of "?".

DELETE ("NAME", "NAME", ...)!

Removes each symbolic name NAME and its defining values from the Monitor's
current symbol table.

E. Execution Control (DO, GOTO, SNAP, RETURN, STOP)

DO (INSTRUCTION, (REGISTER-LIST))!

Causes the values of the expressions in the REGISTER-LIST to be placed in
the appropriate registers (as ordered in the PANEL statement) and then executes
the octal value of the expression INSTRUCTION as a 30-bit machine-language in­
struction. Any registers for which expressions are omitted in the REGISTER­
LIST will be restored to their saved values in the current PANEL. If execution
does not transfer control to another program, the value left in the registers after
execution are then saved, changing their previous saved-values in the PANEL. If
execution causes a "skip" an extra carriage return will be typed out.

GOTO (ADDR, (REGISTER-LIST))!

If no ADDR is given, restores the registers from the current PANEL, as
modified by (REGISTER-LIST), and then resumes execution of the last interrupted
program at the point of interruption; otherwise the statement has the same behavior
as DO (JUMP ADDR, (REGISTER-LIST))!

SNAP (FffiST, LAST, "MODE", (REGISTER-LIST))!

Restores registers and pivots to values saved in current PANEL, except
where changed by new values in REGISTER-LIST, then starts execution at location
FffiST. When execution reaches location LAST, or PULSE 1 (manual interrupt)
switch is depressed, execution is suspended. The location at which execution was
suspended is then typed in octal, followed by a listing of the resulting register
values in formats MODE. The resulting register and pivot contents are then en­
stated as the current PANEL. If no FffiST or LAST address is given, that of the
last bound-setting statement is taken. If no MODE is given, that of the last mode­
setting statement is taken. SNAP is a bound-setting statement.

RETURN ((REGISTER-LIST))!

Restores registers and pivots to values saved in current PANEL, except
where changed by new values in REGISTER-LIST, then resumes execution of last
interrupted "foreground" program at point of interruption.

3/68 -12- AMRMX/PRM/ A

CH!J Cl!!] I::! AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

STOP!

Permanently suspends execution of any running "foreground'' program.

F. Magnetic rape I/O (DSET, READF, READN, WRITE, CHECKSUM, LOADA,
DUMP, RESET)

In versions AMRM 2, 4 and 6 only, the control statement

DSET (DENSITY)!

Causes magnetic tape density to be set accordingly:

DENSITY

0
1
2

B.P.I.

200
556
800

READF (TAPE, FILE, FffiST RECORD, LAST RECORD)!

Causes the specified FILE, from FffiST RECORD through LAST RECORD,
to be read from the specified TAPE into the memory area defined by the most re­
cently executed bound-setting control statement. If no LAST RECORD is given, it
is set equal to the last record in the specified logical file. If no FffiST RECORD is
given, it is set equal to the first record in the specified logical file. If no TAPE is
specified, it is set to the currently specified "system tape".

READN (TAPE, "TITLE", TYPE)!

Causes the logical file identified by TITLE and TYPE, to be read from the
specified TAPE into the memory area defined by the most recently executed bound­
setting control statement. If TYPE is not given, it is assumed to be BIN. If no
TAPE is given, the current "system tape" unit will be selected. If no "TITLE" is
given, the next file of the given "TYPE" on the specified unit will be read.

WRITE (FffiST, LAST, "TITLE", TAPE)!

Causes the contents of the memory defined by FffiST and LAST addresses to
be written on the specified TAPE with the given TITLE, as a one-record file of type
BIN. The TITLE and file number are typed out for the information of the operator.
If no TAPE is given, the current "system tape" is selected. If no TITLE is given,
the TITLE from the most recently executed DUMP, RESET, READ or WRITE opera­
tion will be used.

3/68 -13- AMRM:X/PRM/ A

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

CHECKSUM!

Inhibits (or restores if already inhibited) the detection and notification of check­
sum errors during mag tape read operations, see page 19.

LOADA (FILE, TAPE)!

Loads type BIN records of file FILE from specified tape into memory at loca­
tions specified in header. WARNING: Will destroy programs, symbols or linkages
currently allocated to that region of memory and not recover from doing so. If no
TAPE is specified, the "system tape" is assumed.

DUMP ("TITLE", TAPE)!

Causes the memory contents exclusive of the Monitor itself to be written out
as a file with the specified TITLE at the end of the specified TAPE. and the TITLE
and file number to be typed out. If no TAPE is specified, the "system tape" is
assumed. If no TITLE is given, one will be furnished by the Monitor.

RESET ("TITLE"• TAPE)!

Causes the memory contents to be restored to the status existent just prior to
execution of the preceding DUMP statement with same TITLE and TAPE parameters.
If no TAPE number is given, the "system tape" is assumed. If no TITLE is given,
the "system tape" is assumed. If no TITLE is given, the memory is restored to the
state present immediately after loading the Monitor - i.e., all other programs and
symbols are erased.

G. Version Setting and Interrogation (VERSION)

VERSION (VERS, "REV")!

Causes the setting of version to be written on subsequent magnetic tape headers
to VERS (1 to 31 10, or 0 if omitted) and revision to REV (1 alphanumeric character).
A typed 11011 cannot be used as the version argument.

VERSION!

Causes the typing of the version, revision and date of the AMOS Monitor being
used in the following format:

STANDARD AMRMn (REV. r, date)

where "n" is the version number, "r" is the revision level, and "date" is the
assembly date.

3/68 -14- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

USE OF MONITOR LIBRARY ROUTINES

Routines described in this section are released as separate programs and
reside in the on-line library.

A. Internal Program Symbols Access

These statements permit a user to save the internal symbols defined during
program assembly for subsequent retrieval and enstating in the Monitor's local sym­
bol table to permit on-line debugging at the source language level.

1. Read Relocatable Symbols (READS)

READS ("TITLE", TAPE) I

Will cause the relocatable subroutine READS to be loaded (if not already in
memory). Then the relocatable symbols (type RLSYM, output by DUMPS) for the
program TITLE will be read in from the specified TAPE unit, adjusted and defined.
If the file is not on the specified tape, or if the program "TITLE" has not been
previously loaded, READS will type an appropriate message and return to the Monitor.

2. Dump Relocatable (ADEPT) Symbols

The DUMPS subroutine is called from the bootstrap loader immediately
following the assembly of a program by ADEPT in the AMOS system. (See Section
I of AMRMX Operating Instructions for the use of AMLDR.) It generates as output
a file of type "RLSYM" (Relocatable Symbols) on the currently-assigned system
tape, with the same TITLE as the latest ADEPT output. This file may be recog­
nized and properly loaded and relocated by the READS subroutine. DUMPS overlays
ADEPT on the SK system (which has presumably been loaded at location 12~ by a
START ("ADEPT", TAPE)! statement).

B. Paper Tape I/O Control (READB, PUNCH, FEED, PTLST)

PTPIO is a relocatable library program for use in the AMOS operating system
under control of the resident Monitor. Version 1 is used with AMRMl and 2;

3/68 -15- AMRMX/PRM/ A

a l!J am~ _____ A_M_O_S_R_E_S_I _D_E_N_T_M_O_N_I_T_O_R_. __ A_M_R_M_x_

=.I Programmer's Reference Manual

Version 2, with AMRM3, 4, and 5. It contains the routines READB, PUNCH, and
FEED which provide facilities to read and punch bootstrap paper tape. An entry
PTLST is also provided in Version 1 for listing a bootstrap tape.

REA DB ((FIRST, LAST))!

Causes the "bootstrap format" punched tape on the console punched tape reader to be
read into (at most) the memory area specified by FffiST and LAST addresses, start­
ing with the first non-null tape character encountered, and terminating when either
the specified memory area has been filled, bit ~ of the IC register is set by the opera­
tor, or the checksum word (preceded by 2 bootstrap bits) has been read in. If no
LAST is given, no operator-assigned upper memory limit is checked. If no arguments
are given, the limits are set from the most recently executed bound-setting control
statement. READB is a bound-setting statement. The actual limits of the memory
loaded are typed out, together with the "check value" (if non-zero) obtained by combining
all words read by the "checksum" operation. Under Version 2, a bell character is
output at the beginning and end of the operation to allow the reader to be turned on/off.

PUNCH ((FIRST, LAST), CHECK)!

Causes the contents of the memory area defined by FIRST and LAST addresses to be
output on "bootstrap format" punched tape, plus one extra bootstrap character, and
one additional word to make the "checksum" of all output words equal to the CHECK
value (octal). If no CHECK value is given, it is set to zero. Blank tape is punched
before and after the output to provide a "leader" and "trailer". If FffiST or LAST is
not given, it is set from the most recently executed bound-setting control statement.
Under Version 2, a bell character is output at the beginning and end of the operation to
allow the operator to turn the punch on/off.

FEED (LENGTH)!

Causes the punching of blank tape, where LENGTH specifies the number of characters.
If IC[~] is pressed during the operation, FEED will return to the caller. If LENGTH
-0 or null, FEED will punch blank tape until IC[~] is depressed. Under Version 2, a
bell character is output at the beginning and end of the operation to allow the operator
to turn the punch on/off.

PTLST ! (Version 1 only)

Causes the contents of a bootstrap paper tape to be interpreted and typed out in octal.

3/68 -16- AMRMX/PRM/ A

CH!.I a r:'I e _____ A_M_o_s_R_E_S_I_D_E_N_T_M_O_N_I_T_O_R..;.._A_M_R_M_X
::J Programmer's Reference Manual

If the AMOS checksum correction value is encounterd. PTLST types out

VALUE

After the above, or when operation has been terminated by IC[0] PTLST types

SUM: SIGMA

where SIGMA is the arithmetic sum of all octal values read in.

3/68 -17- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

MESSAGES TYPED BY THE MONITOR

A. While Typing Control Statement

*
?

Improper argument in argument list, restart expression

Improper statement formation, restart control statement

B. During Control Statement Execution

* Improper expression or close-character in OPEN subroutine, restart
expression

? Wrong argument type in PANEL, SNAP, READN. DEFINE statements;
Symbol not found in DELETE;
Invalid BOUNDS; or
File not found in LOADA, RSMAG
Restart control statement in all cases

REQUIRED: All of the following required programs were not contained on the speci­
fied unit. (Monitor then lists required subprograms.)

NAME Subprogram NAME has been loaded into locations FffiST through LAST.
(FIRST, LAST) Continues scanning if any more requests, or else returns to the Monitor.

NEW TAPE
#=

COMMON
ERROR

MEMORY
TOO FULL

TOO MANY
ENTRIES

3/68

Request for new tape unit number. The operator may type 0, 1, 2, or
3 which is enstated as the new system tape number, and loading is
resumed.

The program requesting the largest amount of common storage was not
encountered first during loading. Returns to the Monitor for input.

Not enough room in memory -- that is, the load limit and the symtol
table have overlapped. The Monitor then types the name of the offending
program, drops the current memory load, and returns to control
statement input.

The program being loaded has more entry points than can be accommo­
dated in the loader's entry point buffer. Returns to control statement
input.

-18- AMRMX/PRM/ A

TOO MANY
OVERLAY
SUBROUTINES
IN MEMORY
LOAD

LEVEL N

TOO MANY
OVERLAY
LEVELS

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

Stack of entries to forget is too large. Drops the current memory load,
and returns to the Monitor for control statement input.

Nth overlay level in memory.

More than OLTL levels of overlay in memory. Drops one level and
returns to the Monitor for control statement input.

N IS BIG PAGE Page N of the text being compiled is too long to be contained in the page
buffer, and has overflowed into the Monitor. Therefore, the Monitor
must be reloaded before it is used again.

END OF TEXT No more source text on scratch pad for processor (compiler, assembler).

RECORD
TOO LONG

WRITE
LOCKOUT

FILE/NO. N

CKS?

Correct termination after end of last program; unrecognizable end of
program error in all other cases.

Record which was specified to be read into memory BOUNDS was too
long. Returns to control statement input.

Tape unit on which a record is to be written does not permit writing.
Program waits for operator to enable write and depress IC bit ~. and
then tries to write again.

File number of file just written.

When reading record, indicates checksum error. May be avoided by
typing

CHECKSUM!

(Note that this avoids the error output and not the error itself.)

STANDARD AMRMn (REV. r,date) AMRM will identify itself after the operator
types the control statement:

VERSION!

3/68 -19- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

AMOS CHARACTER CODES

A. Internal Characters

The Monitor implements single case AMOS internal characters:

OPC TTY LPR
Code Character Character Character

00 0 (null) [[
01 % % %
02 ¢ 1]
03
04 & & &
05 * * *
06
07 \ \
10 + + +
11 tab tab (3 spaces) <
12 ? ? ?
13 II " II

14
15 carriage return return - L. F. >
16 (((
17)))
20 0 ¢ ¢
21 l 1 1
22 2 2 2
23 3 3 3
24 4 4 4
25 5 5 5
26 6 6 6
27 7 7 7
30 8 8 8
31 9 9 9
32
33 = = =

G/69 -20- AMRMX/PRM/B

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

OPC TTY LPR
Code Character . Character Character

34
35
36
37 I I I
40 space space blank
41 A A A
42 B B B
43 c c c
44 D D D

45 E E E
46 F F F
47 G G G

50 H H H

51 I I I
52 J J J
53 K K K
54 L L L
55 M M M
56 N N N

57 0 0 0
60 p p p

61 Q Q Q
62 R R R
63 s s s
64 T T T
65 u u u
66 v v v
67 w w w
70 x x x
71 y y y

72 z z z
73 $ $ $
74 # # #
75 @ @ @

76 ± /\

77 backspace +-

6/69 -21- AMRMX/PRM/B

a cl a r.I [E! _____ A_M_o_s_R_E_S_I_D_E_N_--T_. '_M_o_·N_t_T_O...,.R " _A,_ ... M_R_M_.._X
::J Programmer' s Reference. Manual

". . '

B. Input Characters

'l;'he following classes of input characters are recognized by the Monitor:

OCTAL DIGITS

consists of characters 0 through 7.

DECIMAL DIGITS

consists of characters 0 through 9.

ALPHANUMERIC CHARACTERS

consists of alphabetic characters A-Z, plus digits 0 through 9, plus period"~"·

STRING CHARACTERS

consists of all AMOS internal characters except%, ? and", which may be internally
represented by the input strings%%, %? and%", respectively.

3/68 -22- AMRMX/PRM/ A

A MOS RESIDENT MONITOR, A MRMX
Programmer's Reference Manual

MONITOR CONTROL STATEMENT SUMMARY

6/69

OPERATION (ARGUMENT1,ARGUMENT2, •.• ,ARGUMENT N) !

Control Parameter Specification

SYST (TAPE) !
MODE ("MODE")!
BOUND (FIRST, LAST)!
TAPEC ! Versions 1 and 2 only
TYPEC ! Versions 1 and 2 only
PANEL ((REGISTER-LIST)) !
VERSION (VERS, "REV") !
DSET (DENS) !

Memory Search, List and Change

SRCHW (WORD, MASK, FffiST, LAST, "MODE")!
LIST ("MODE", FffiST, LAST)!
SRCHA (ADDRESS, FffiST, LAST)!
FILL (VALUE; FffiST, LAST)!
TRAPS (FffiST, LAST)!
OPEN (ADDRESS, "MODE")!

Resulting typeout: Input options:

LOCATION: CONTENTS NAMES VALUE DCH CCH

where: means:

CCH enter any VALUE, close location, and:

open next
backspace or -

carriage return
DCH
@

I
*
0 or [

$

VALUE= An expression

open previous
open location addressed by contents
return to Monitor

list symbolic location
list contents in other MODES
list cell addressed by contents
ignore previous VALUE
ignore following comment
close location and open cell at VALUE
enter VALUE without closing

NAMES= Undefined symbols followed by ":" to name "LOCATION"

23 AMRMX/PRM/B

3/68

AMOS RESIDENT MONITOR, AMRMX

Programmer's Reference Manual

Execution Control

DO (INSTRUCTION, (REGISTER-LIST))!
GOTO (ADDRESS, (REGISTER-LIST))!
SNAP (FffiST, LAST, "MODE", (REGISTER-LIST))!
RETURN (REGISTER-LIST)!
STOP!

Memory Allocation

START ("TITLE", TAPE)!
LOAD ("ENTRY", TAPE)!
LOADA (FILE, TAPE)!
DU~P ("TITLE", TAPE)!
RESET ("TITLE", TAPE)!
MARK!
RELEASE (N) !

Magnetic Tape I/O

READF (TAPE, FILE, FffiST RECORD, LAST RECORD)!
READN (TAPE, "TITLE", TYPE)!
WRITE (FffiST, LAST, "TITLE", TAPE)!
CHECKSUM!

Monitor Version Inquiry

VERSION!

Paper Tape I/O

READB ((FffiST, LAST))!
PUNCH ((FffiST, LAST), CHECK)!
FEED (LENGTH)!
PTLST!

Symbol Table Control

DEFINE (NAME, VALUE, NAME, VALUE, ...)!
DELETE ("NAME", "NAME", ...)!
DUMPS!
READS ("TITLE", TAPE)!

Arguments

TAPE = Specified Tape Unit Number 0. 1, 2, or 3
FILE = Specified File Number
RECORD= Specified Record Number
"TITLE" = Title of a Specified File

-24- AMRMX/PRM/ A

AMOS RESIDENT MONITOR, AMRMX
Programmer's Reference Manual

"ENTRY" = Name of an Entry Point
NAME= A symbolic address enclosed in quotes, " ", in the DELETE operator and

not enclosed in quotes in the DEFINE operator.
"MODE"= Typeout Mode: "0", "A", "S", "F", ••.
Register LIST= Values for AR, BR, IC, TPT, OVF, RTI in version 1, 2 or

AR, BR, IC, TTYBT, TTYCH, OV, RTI in versions
3, 4, 5

F ffiS T, LAST = Lower and Upper Bounds in a Monitor Operation
N = A Level Number
CHECK= Value for checksum
LENGTH = Feed-hole count
VERS =Program version number (1 through 31 10)

''REV" = A single program revision character (i. e. , "A'~
DENS = Density selection code (0 = 200BPI, 1 = 556BPI, 2 = 800BPI)

6/69 - 25 - A MRMX/PRM/B

AMOS RESIDENT MONITOR, AMRMX
Programmer's Reference Manual

SYNTACTIC STRUCTURE OF MONITOR STATEMENTS

The following is an extended BNF description of the control statement
syntax accepted by AMRMX.

< control statement>: : = < term> ! I < term> < argument list> !

< argument list > : : = (< argument > (, < argument> } 0)

< argument> : : :;: < expression> l l (<argument list>) l " (< character> J 6 "

< expression> : : = < sign> < term> I < expression> (< rotation > } 1

< expression> (< op>} 1 < term >

< term > : : = (< octal digit>} t0 I (< decimal digit> } i . I [< alphanumeric> }t0 I
. I] I " (< character > } .f "

< rotation > : : = ! B I ! K I ! H

< op > : : = < sign > I 't I ' I &

< sign> : : = + I - I space I tab

<octal>::==ol 1l 2l 3l4l 5l 6l 7

< decimal digit > : : = < octal digit > I 8 I 9

< alphanumeric > : : == < decimal digit> I A I B I C • • • I X I Y I Z I .

< character > : : = < alphanumeric > I < op > I , I I I $ I :fl: I @ I [I = I \ l (I) I ... I " I
carriage return I J I ! I : I ; I * I %% I % ?

Explanation af notation

< x > "a member of the syntactic class of x"

: : = "is defined to be"

"or"

''from m ton" instances of x(if n is not specified, can be arbitrarily large)

"and so on"

NOTE: In non-TTY versions the characters: [J \ T are replaced by the chara-
cters. 0 ~ ± backspace.

6/69 26 AMRMX/PRM/B

AMRMX

AGT DISK MONITOR

Programmer's Reference Manual

Revision A

April 1969

AGT DISK MONITOR, AMRMX

Programmer's Reference Manual

TABLE OF CONTENTS
Page

INTRODUCTION 1

CONTROL INPUTS 3
Control statements 3
Arguments 3

Expressions 4
Null Arguments 6
Sub-Argument List 6
Undefined Symbol 6
Multi-Word String 6

USE OF BUILT-IN MONITOR STATEMENTS 7
System Parameter Specification 7

Console Message Unit Assignment (TYPE, DISPLAY) 7
System Volume for AMRMX Disk I/O (SYST) 7
Input Volume and File for Processor Text Input (ASSIGNIN) 7
Control Register-List Change and Interrogation (PANEL) 8
I/O and Search Memory Bounds (BOUND) 8
Output Format (MODE) 8
Disk Volume Directory Initialization (RELOAD, HOME) 9
Disk Program Initialization (CLEAR) 10

Memory Interrogation and Change 10
Memory Search (SRCHW, SRCHA) 10
Listing Memory Contents (LIST) 10
Changing Memory Contents (OPEN, TRAPS, FILL) 11

Control of Memory Allocation (RESET, START, LOAD, MARK,
RELEASE) 12

Symbol Table Control (DEFINE, DELETE, NTRY, DNTRY,
READS, DUMPS) 13

Execution Control (DO, GOTO, SNAP, RETURN, STOP) 14
Version Setting and Interrogation (VERSION) 15
Paper Tape I/O Control (READB, PUNCH, FEED) 16
Disk Storage Allocation (INITIALIZE, CREATE, CHANGE,

PURGE, REMOVE) 17
Disk Input/Output (DUMP, RESET, LOADA, WRITE, COPY,

COPYAMRMX) 18
Disk Volume/File and Memory Map Listing (LISTD, LISTV,

LISTA, MEMAP) 20
Text Display Output Format 21

4/69 iii 13 AMRMX/PRM/A

AGT DISK MONITOR, AMRMX

Programmer's Reference Manual

AMOS CHARACTER CODES
Internal Characters
Input Characters

CONTENTS (Cont.)

MONITOR CONTROL STATEMENT SUMMARY
Operation (Argument 1, Argument 2, •••• , Argument n) !
Syntactic Structure of Monitor Statements

13 AMRMX/PRM/ A iv

Page

23
23
25

27
27
32

4/69

AGT DISK MONITOR, AMRMX

Programmer's Reference Manual

CONTENTS (Cont.)
Page

AMOS CHARACTER CODES 23
Internal Characters 23
Input Characters 25

MONITOR CONTROL STATE1\1ENT SUMMARY 27

l\1ESSAGES TYPED BY THE MONITOR 33
Common Error Messages 33
Initialization 33
Segment Loader 34
Relocatable Loader (LOAD, START, OVRLY) 34
OVRLY, MARK 36
Disk Output 36
VERSION 37
Messages Typed during ADEPT Assembly or AFORT Compilation 37
DUMPS 38
READS 39
LISTA, LISTV, LISTD 39
Initialization Group 40
INITIALIZE 40
CREATE 40
CHANGE 41
REMOVE 41
COPYAMRMX 41
COPY 42
NTRY 43
DNTRY 43
READB 43
ME MAP 44
DUMP, WIUTE 44
RESET, LOADA 44

13 AMRMX/PRM/ A v 4/69

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

INTRODUCTION

The AMOS Resident Monitor (AMRMX) is that portion of AMOS which ac­
cepts and interprets AMOS control statements, loads programs requested (if
necessary), and executes all programs.

The Monitor is called "resident" because it is kept in core memory at
all times during the use of AMOS, whereas all other programs are loaded into
memory only as they are needed to execute "control statements." Portions
of the Monitor are called into memory from disk when needed and occupy space
within the Resident section.

The Monitor continuously monitors the operator's console, and responds
to control statements entered therefrom by means of the keyboard. This moni­
toring function may be performed as a "background" task to another "fore­
ground" program being executed on a time-shared basis. In other words,
while another program is being executed under control of AMOS, the Monitor
will accept and execute control statements not in conflict with the real-time
requirements of the running "foreground" program.

The function of the Monitor is to accept, interpret, and execute A MOS
control statements furnished by the system operator. Each control statement
causes the execution of a previously-written program stored in memory, with
the parameter values indicated by the control statement. The general form of
an AMOS control statement is:

OPERATION (PARAMETER 1, PARAMETER 2, ••• PARAMETER N) !

where each parameter may be an octal/symbolic expression. Unneeded para­
meters may be omitted from a control statement, provided that all of the para­
meter-separating commas preceding the last parameter used are given.

4/69 1 13 AMRMX/PRM/ A

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

This document gives operating information for the following versions
of AMRMX, having the hardware configuration as specified:

Version 13-· AGT/10, MlO-Pl, 2, or 3, DMS2-Pl

Version 14- AGT/30, DMS2-Pl

Version 15- AGT/50, DMS2-Pl

Version 16- AGT/10, MlO-Pl, 2, or 3, DMS2 -Pl, LCGl-Pl
or AGT/30, DMS2-Pl, LCGl-Pl
or AGT/50, DMS2-Pl, LCGl-Pl

13 AMRMX/PRM/ A 2 4/69

A GT DISK MONITOR, A MRMX
Programmer's Reference Manual

CONTROL INPUTS

CONTROL STATEMENTS

For every control input statement

TERM!

or

TERM (ARGl, ••• ARGN) !

the Monitor builds a standard calling sequence in available memory as follows:

Location Contents Explanation

LL JPSR $TERM Call to Subroutine
LL+l ARGl Argument-List Values

(Optional)

LL+NN ARGN
LL+NN+l ~ End of Argument-List Flag
LL+NN+2 JUMP MON9 Return to Monitor

After the statement has been input and the program with entry point
TERM loaded (if necessary), the Monitor transfers control to this calling se­
quence.

An input or output of the character ? will re-start the control statement
in which it occurs.

ARGUMENTS

For those programs requiring arguments, the Monitor will accept a list
of inputs (enclosed in parentheses) and produce the corresponding entry in the
generated calling sequence.

Each argument is one of the following:

4/69 3 13 AMRMX/PRM/ A

AGT DISK MONITOR, AMRMX
Proe:rammer's Reference Manual

15-bit Address
30-bit Value
Null (omitted) Argument
Sub-Argument List
Undefined Symbol
Multi-Word String

Subroutines to be called on-line via Monitor control statements may be writ­
ten to interpret the Monitor's encoding of the above options, permitting the user
full flexibility of assembly-like input arguments.

It is the responsibility of the user to ensure that the number and type of
argument in each control statement corresponds to the subroutine being called.
Within this constraint one may type command statements with 3.0-bit expressions,
quoted character strings, omitted optional arguments, or parenthetically nested
argument structures as arguments. When arguments are omitted, all separating
commas up to the last non-omitted argument must be given (final commas in a
list may be omitted), since arguments are identified by their position in the
generated calling sequence.

An input or output of '- (back slash) will re-start the current argument.

Expressions

Each 15-bit address or 30-bit value is entered as an expression. Expres­
sions consist of terms separated by arithmetic operators. They are evaluated
on a term-by-term basis as they are input to the Monitor. The resulting 30-bit
value is placed in the generated calling sequence.

Terms -- A term is one of the following:

· Octal Number - From 1 to 10 10 octal digits. Its value is the
3,0 10 -bit right-justified octal integer it represents.

· Decimal Number - From 1 to 9 10 decimal digits followed by
a period ". ". Its value is the 3.0 10-bit right-justified decimal
integer it represents.

Defined Symbol - From 1 to 10 10 alphanumeric characters,
defined in the Monitor's symbol table. Its value is its 3,0 10 -

bit definition in the symbol table.

13 AMRMX/PRM/ A 4 4/69

AGT DISK MONITOR, A MRMX
Programmer's Reference Manual

• One-Word String - From 1 to 5 characters, enclosed in quo­
tation marks ("). The value of the term is its 6-bit internal
character code representation, left-justified and filled with
nulls (dd 8), if less than 5 characters in length.

· Specific Values - During memory interrogation and change
certain characters may be used in expressions as terms
having specific values:

• Has the value of the current OPEN location
] Has the value of the contents of the current OPEN

location

Logical and Arithmetic Operators -- The value of an expression is ob­
tained by combining the values of its terms according to its logical and arith­
metic operators. (The initial expression or preceding expression for the first
term is assumed to be +t1.) These operators are as follows:

4/69

Operator

+, tab, space

t

&

Action

Add the value of the following term to the value
of the preceding expression.

Subtract the value of the following term from
the value of the preceding expression.

Inclusive OR the value of the following term
with the value of the preceding expression.

AND the value of the following term with the
value of the preceding expression.

EXCLUSIVE OR the value of the following term
with the value of the preceding expression.

! B Bit (1-bit) left rotate the value of the preceding

!K

!H

*

expression.

Character (6-bit) left rotate the value of the
preceding expression.

Half-word (15-bit) left rotate the value of the
preceding expression.

Multiply the preceding expression by the fol­
lowing term.

5 13 AMRMX/PRM/ A

AGT DISK MONITOR, A MRMX
Programmer's Reference Manual

Operator Action

I Divide the preceding expression by the following term.

Null Arguments

A null argument is one that is omitted. It is represented in the generated
calling sequence by the value -6.

Sub-Argument List

An argument-list nested in parentheses may be used as an argument. It is
represented in the generated calling sequence by a 3,0-bit word whose upper 15-
bits contain the number of arguments in the sub-argument list. The lower 15-
bits contain a pointer to the first sub-argument (i.e., its address, decremented
by 1).

Undefined Symbol

An undefined symbol consists of a group of from 1 to 1.0 10 alphanumeric
characters, not defined in the Monitor's current symbol table. It is represented
in the generated calling sequence by a 3,0-bit word whose upper 15 bits are -.0.
The lower 15 bits are a pointer to the 2-word symbol string (i.e. , its starting
address).

Multi-Word String

A multi-word string consists of 6 or more characters enclosed in quotation
marks ("). It is represented in the generated calling sequence by a 36-bit word
whose upper 15 bits contain the negative of the number of words in the string.
The lower 15 bits are a pointer to the symbol string (i.e., its starting address).

1:3 AMRMX/PRM/ A 6 4/69

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

USE OF BUILT-IN MONITOR STATEMENTS

SYSTEM PARAMETER SPECIFICATION

Console Message Unit Assignment (TYPE, DISPLAY)

TYPE!

causes all normal character string output from Monitor statements LIST,
OPEN, SRCHW, SRCHA, LISTA, LISTD, LISTV, PANEL, VERSION and
MEMAP to be typed on the console TTY unit.

DISPLAY!

causes all normal character string output from Monitor statements LIST,
OPEN, SRCHW, SRCHA, LISTA, LISTD, LISTV, PANEL, VERSION and
MEMAP to be displayed on the CRT.

System Volume for AMRMX Disk I/O (SYST)

SYST (VOL) ! (where VOL is of the form pvv 8)

assigns volume vv (1 to 4,0 8) on disk pack p (.0 to 7) as the current system
volume.

Input Volume and File for Processor Text Input (ASSIGNIN)

ASSIGNIN (FILE, VOL) !

assigns file FILE on volume vv of pack p as the current input text file for
ADEPT or AF ORT. If the volume is 0, text will be read from the "Scratch
Pad" area of pack p. When AMRMX is first loaded, assignment is made to
the "Scratch Pad" area of Pack .D.

'~

4/69 7 13 AMRMX/PRM/ A

AGT DISK MONITOR, A MRMX
Programmer's Reference Manual

Control Register-List Change and Interrogation (PANEL)

PANEL ((Register-List))!

replaces the saved register-list with new values, any of which may be omitted.
(If a new value is omitted, the previous value is not changed.) The Register-List
cons is ts of the following:

AR, BR, IC, OVF

where AR, BR, IC
OVF

PANEL!

are the saved contents of the AR, BR, IC registers
is the AR overflow pivot, 77771

causes the current saved values of the Register-List, the saved AMRMX entry
address LC, the current highest loaded location (LD), and the current lowest
local symbol table bound (PTR), to be typed out (or displayed if in DISPLAY
mode).

I/ 0 and Search Memory Bounds (BOUND)

BOUND (FIRST, LAST)!

sets FIRST and LAST addresses for processing by other control statements. If
FIRST is not specified, each time it is referenced it will be set to the current
lower limit of available memory. If LAST is not specified, each time it is
referenced it will be set to the current upper limit of available memory. The
FIRST and LAST addresses can also be set by the other bound-setting statements
which are LIST, SRCHW, SRCHA, WRITE, READB, and PUNCH.

Output Format (MODE)

MODE ("TYPE")!

sets the format(s) desired for subsequent typeouts of internal machine-word
images. The available (built-in) formats and their type-codes are:

13 AMRMX/PRM/ A 8 4/69

Type-Code

0 (Octal):

S(Symbolic):

A (Characters):

F (Full):

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

Format

The 5-digit octal value contained in the "upper half
word" followed by a space followed by the 5-digit
value contained in the ''lower half-word."

Symbolic name of this location, followed by colon.

A symbolic expression whose value is contained
in the ''upper half-word" followed by three spaces.

Five characters whose standard AMOS internal
bi-octal codes are in the word.

All of the above.

Any combinations of 0, S, and A are also recognized. Whenever mode "S"
is selected, locations are typed out one per line; otherwise, the resulting type­
out is given in several columns across the page.

Disk Volume Directory Initialization (RELOAD, HOME)

RELOAD (PACK)!

causes the Monitor to reload the volume directory sector from disk pack PACK
into memory. This command must be given after changing a disk pack so that
the proper volume directory for the new pack will be used in any subsequent disk
input/output. This command should not be used after changing pack 0. The
Monitor must be reloaded from a changed pack .0 by the system loader, AMLDX,
Version 5.

The disk should be positioned at cylinder .0 (home cylinder) before stopping
the disk drive. The following statement:

HOME (UNIT)!

will cause the selected unit to position at cylinder .0.

4/69 9 13 AMRMX/PRM/ A

AGT DISK MONITOR, AMRMX

Programmer's Reference Manual

Disk Program Initialization (CLEAR)

CLEAR!

causes all program status about disk position, open (selected) file names, and
busy indications to be reset as the DSKIO section of the Monitor is used to read
in the segments. CLEAR cannot be loaded if the DSKIO busy indicator is set. In
order to clear this indicator, the operator should reset the BR register to zero
and execute the instruction in location 77774 8 •

MEMORY INTERROGATION AND CHANGE

Memory Search (SRCHW, SRCHA)

SRCHW (WORD, MASK, FIRST, LAST, "MODE")!

will list (in formats MODE) all memory words, from location FIRST through lo­
cation LAST, whose contents masked by MASK equal the value of WORD. If no
FIRST or LAST address is given, that of the last bound-setting statement is taken.
If no MODE is given, that of the last mode-setting statement is taken. SRCHW is
a bound-setting and a mode-setting statement. Note that if no MASK is given, it
will be an "omitted argument" and represented by -0, so that the search will be
for exact matching of the value of WORD. SRCHW may be prematurely terminated
by depression of IC[O] or FNSl.

SRCHA (ADDR, FffiST, LAST, "MODE")!

The behavior of SRCHA (A, F, L, M) I is identical to that of a control state­
ment SRCHW (A, 77777, F, L, M) ! .

Listing Memory Contents (LIST)

LIST ("MODE", FIRST, LAST)!

will list all memory words from location Fffi.ST through location LAST in formats
MODE. If no FIRST or LAST address is given that of the last bound-setting
statement is taken. If no MODE is given that of the last mode-setting statement
is taken. LIST is bound-setting and mode-setting statement. LIST may be pre­
maturPly terminated by depression of IC[O] or FNSl.

13 AMRMX/PRM/ A 10 4/69

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

Changing Memory Contents (OPEN, TRAPS1 FILL)

OPEN (ADDR, "MODE")!

causes the value of expression ADDR to be typed in mode OCTAL and followed
by a colon. Then the current contents of memory location ADDR are listed in
the mode MODE. The memory cell at location ADDR is now "open." As long
as a cell is left "open, " further information concerning it may be requested
by typing a "@", "=", or "/" (see below), or information concerning it may be
changed by typing:

NAMES VALUE CLOSE-CHARACTER

In the above statement, the inputs NAMES and/or VALUE may be omitted.
If given, the input NAMES may be any number of undefined alphanumeric sym­
bols, ten or fewer characters in length, ~ach symbol followed by a colon(:).
Each symbol is defined in the current Monitor local symbol list as a name of
the "open" location ADDR. The expression VALUE (if given) is evaluated, and
its value replaces the contents of location ADDR when it is "closed." The
CLOSE-CHARACTER (Comma, ._ , Semicolon, or Carriage Return) enters the
new value (if any) into the "open" cell (location ADDR) "closing" the cell, then
does one of the following:

4/69

Close-Character

comma

..
semicolon

carriage return

Action

Opens the next cell in memory.

Opens the previous cell in memory •

Opens the cell addressed by the last open
cell.

Does not open any further cells, returns
to Monitor control statement input.

While a cell is open, typing

@

=

I

lists the nearest symbolic expression de­
fining the location of the open cell

lists the contents of the open cell in any
modes other than MODE

lists the contents of the location addressed
by last listed cell in the mode MODE

11 13 AMRMX/PRM/ A

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

\

[

$

causes all input for expression value to be
dropped and ignored so that immediate
closing would not alter the contents of the
open cell

causes any comment (characters) up to the
next [to be ignored

closes the current open cell without alter­
ing its contents, and then opens the cell with
address VALUE

stores VALUE in "open" cell and leaves it
still open

If no MODE is given, OPEN uses that set by the last mode-setting statement.

TRAPS (FIRST, LAST) J

causes memory locations FIRST through LAST to be filled with "trap" instructions.
Jf no FIRST or LAST address is given, that of the last bound-setting statement is
taken.

FILL (WORD, FIRST, LAST) J

causes the value of WORD to be stored in memory locations FIRST through LAST.
Jf no FIRST or LAST address is given that of the last bound-setting statement is
used.

CONTROL OF MEMORY ALLOCATION (RESET, START, LOAD, MARK, RE­
LEASE)

RESET!

causes all loaded programs, local symbols, program entries, external references,
and memory allocations to be released. The state established by RESET is logi­
cally equivalent to that immediately after loading the Monitor into memory from
disk.

START ("TITLE," voL) r
START (FILE, VOL) J

13 AMRMX/PRM/ A 12

[form 1]

[form 2]

4/69

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

causes a RESET operation and then loads the program named TITLE (form 1)
or having file number FILE (form 2) from disk volume VOL. Loading defines
all subprogram entries loaded, with their current memory locations. A
memory map file is created. If no VOL is given, the current "system volume"
is used. If no TITLE is given (form 1), the first library program (type RELOC)
on the volume is loaded.

LOAD ("NAME", VOL) f

LOAD (FILE, VOL) f

[form 1]

[form 2]

loads the first subprogram with an entry NAME (form 1) or with file number
FILE (form 2) and all its required subprograms from the disk volume VOL.
The current memory map is updated. If no VOL is given, the current "system
volume" is used. LOAD is a "system volume" setting statement.

MARK!

causes the Monitor to record the present limits of memory and disk used for
program and symbol storage with a typeout of the current number of such
"marks." That number is also the identifying number of the one created by
this operation.

RELEASE (NUMBER)!

causes the Monitor to erase and make available for re-use all programs and
symbol storage loaded since the :MARK operation identified by NUMBER. If
no NUMBER is given, it is taken as the number of the most recently executed
:MARK operation not cancelled by a previous RELEASE operation with a lower
NUMBER. RELEASE operations may be performed automatically by opera­
tions which add programs to memory via OVRLY calls.

SYMBOL TABLE CONTROL (DEFINE, DELETE, NTRY, DNTRY, READS,
DUMPS)

DEFINE (NAME, VALUE, •••) l

enters the symbolic name NAME into the Monitor's current local symbol table
for each NAME-VALUE Pair, assigning the value of expression VALUE as its
definition. If any NAME in a DEFINE statement is already defined in the Moni­
tor's current local symbol table, the Monitor will typeout a l'l'lessage of "?".

4/69 13 13 AMRMX/PRM/ A

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

DELETE ("NAME", "NAME" ••••) !

removes each symbolic name NAME and its defining value from the Monitor's
current local symbol table.

NTRY (NAME, LOC, •••••)I

enters the symbolic name NAME into the Monitor's current external symbol
table for each NAME-LOC pair, assigning the address value of expression LOC
as its definition. If any NAME in an NTRY statement is previously defined, the
Monitor will typeout a message of "?".

DNTRY ("NAME", "NAME", •••) l

removes each symbolic NAME and its defining value from the current external
symbol table.

DUMPS!

generates as output a file of type "RLSYM" (Relocatable Symbols) on the cur­
rently assigned "system volume, " with the same TITLE as the last ADEPT out­
put. This file may be recognized and properly loaded and relocated by the READS
statement. DUMPS may be called only immediately following an ADEPT assembly.

READS ("TITLE", VOL)!

reads and defines in the Monitor's current local symbol table the file of the title
TITLE and type "RLSYM'' from the disk volume VOL. If no VOL is given, the
current "system volume" will be used. If the file is not contained within the
specified volume, or if the program "TITLE" has not been loaded, or if there is
insufficient room in the local symbol table to make the symbol definitions, an ap­
propriate error message willbe typed and control will be returned.

EXECUTION CONTROL (DO, GOTO, SNAP, RETURN, STOP)

DO (INSTRUCTION, (REGISTER-LIST)) l

causes the values of the expressions in the REGISTER-LIST to be placed in the
appropriate registers (as ordered in the PANEL statement) and then executes the
octal value of the expression INSTRUCTION as a 3~-bit machine-language in-

13 AMRMX/ PRM/ A 14 4/69

A GT DISK MONITOR, A MRMX
Programmer's Reference Manual

struction. Any registers for which expressions are omitted in the REGISTER­
LIS Twill be restored to their saved values in the current PANEL. If execution
does not transfer control to another program, the values left in the registers
after execution are then saved, changing their previous saved-values in the
PANEL. If execution causes a "skip," an extra carriage return will be typed out.

GOTO (ADDR, (REGISTER-LIST)) !

restores the registers from the current PANEL as modified by (REGISTER-LIST)
if no ADDR is given, and then resumes execution of the last interrupted program
at the point of interruption; otherwise the statement has the same behavior as DO
(JUMP ADDR, (REGISTER-LIST))!

SNAP (FffiST, LAST, "MODE", (REGISTER-LIST))!

restores registers and pivots to values saved in current PANEL except where
changed by new values in REGISTER-LIST, then starts execution at location
FIRST. When execution reaches location LAST, or the PULSE 1 (manual in­
terrupt) switch is depressed, execution is suspended. The location at which
execution was suspended is then typed in octal, followed by a listing of the re­
sulting register values in formats MODE. The resulting register and pivot con­
tents are then enstated as the current PANEL. If no FIRST or LAST address is
given, that of the last bound-setting statement is taken. If no MODE is given,
that of the last mode-setting statement is taken. SNAP is a bound-setting state­
ment.

RETURN ((REGISTER-LIST))!

restores registers and pivots to values saved in current PANEL except where
changed by new values in REGISTER-LIST, then resumes execution of last in­
terrupted ''foreground" program at point of interruption.

STOP!

permanently suspends execution of any running ''foreground" program. It also
stops the Monitor's console message character string display routine.

VERSION SETTING AND INTERROGATION (VERSION)

VERSION (VERS, "REV")!

4/69 15 13 AMRMX/ PRM/ A

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

causes the setting of version to be written on subsequent magnetic tape headers to
VERS (1 to 31 10 or 0 if omitted) and revision to REV (1 alphanumeric character).
A typed "~"cannot be used as the version argument.

VERSION!

causes the typing of the version, revision, and date of the AMOS Monitor being
used in the following format:

STANDARD AMRMX (VERS. n. REV. r, date)

where "n" is the version number, "r" is the revision level, and "date" is the
source text date.

PAPER TAPE I/O CONTROL (READB, PUNCH, FEED)

READB ((FIRST, LAST))!

causes the ''bootstrap format" punched tape on the console punched tape reader to
be read into (at most) the memory area specified by FIRST and LAST addresses,
starting with the first non-null tape character encountered, and terminating when
either the specified memory area has been filled, bit j1 of the IC register or FNSl
is set by the operator, or the checksum word (preceded by 2 bootstrap bits) has
been read in. If no LAST is given, no operator-assigned upper memory limit is
checked. If no arguments are given, the limits are set from the most recently
executed bound-setting control statement. The actual limits of the memory loaded
are typed out together with the "check value" (if not-zero) obtained, by combining
all words read by the "checksum" operation. A bell character is output at the be­
ginning and end of the operation to al.low the reader to be turned on/off. READB
is a bound-setting statement.

PUNCH ((FIRST, LAST), CHECK)!

causes the contents of the memory area defined by FIRST and LAST addresses
to be output on ''bootstrap format" punched tape, one extra bootstrap character,
and one additional. word to make the "checksum" of all output words equal to the
CHECK value (octal). If no CHECK value is given, it is set to zero. Blank tape
is punched before and after the output to provide a "leader" and "trailer. " If
FIRST or LAST is not given, it is set from the most recently executed bound­
setting control statement. A bell character is output at the beginning and end of

13 AMRMX/PRM/ A 16 4/69

AGT DISK MONITOR, A MRMX
Programmer's Reference Manual

the operation to allow the operator to turn the punch on/off. PUNCH is a bound­
setting statement.

FEED (LENGTH)!

causes the punching of blank tape where LENGTH specifies the number of charac­
ters. If IC[0] or FNSl is pressed during the operation, FEED will return to the
caller. If LENGTH -J1 or null, FEED will punch blank tape until IC[0] or FNSl
is depressed. A bell character is output at the beginning and end of the operation
to allow the operator to turn the punch on/off.

DISK STORAGE ALLOCATION (INITIALIZE, CREATE, CHANGE, PURGE,
REMOVE)

All the monitor statements in the following section access on-line disk
storage for the creation and manipulation of user and system files. For a de­
tailed description of the standard formats and conventions, ref er to the FILE
I/O PRM document.

INITIALIZE (PACK, "IDENTIFICATION STRING")!

causes the initialization of disk pack PACK. All files stored on the designated
pack are deleted, new address information is written on all sectors, and empty
volume directory and file directories are created. The IDENTIFICATION
STRING, a character string of 19 or fewer characters in length, is written on
the pack to identify it. This string will be output when listing an index of the pack
in the Monitor statements LISTA and LISTD. The current date is also written on
the disk pack for identification purposes. This operation is illegal on disk pack
0.

CREATE (PACK, VOLUME, #CYLS) !

causes volume VOLUME on disk pack PACK to be created. The number of disk
cylinders to be allocated to the volume is specified by #CYLS. If the volume is
already defined or if there is insufficient free disk storage for the requested num­
ber of cylinders, an appropriate error message will be typed and control returned
without completing the operation.

4/69 17 13 AMRMX/PRM/ A

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

CHANGE (PACK, VOLUME, ± #CYLS) !

causes the number of cylinders assigned to volume VOLUME on disk pack PACK
to be increased by #CYLS, or decreased if #CYLS negative. This operation may
cause moving of cylinder data on the disk. If the volume is not defined, if there
is insufficient free disk storage for the request, or if there is not enough unused
disk storage within the volume to reduce the number of cylinders as requested,
an error message will be typed and control returned without completing the opera­
tion.

PURGE (PACK, VOLUME)!

causes the entire contents of volume VOLUME on disk pack PACK to be deleted.
The volume directory for the specified volume is reset, and a CREA TE operation
must be performed to use this volume again. This operation may cause moving
of cylinder data on the disk. If the volume is not defined, an error message will
be typed and control returned.

REMOVE (PACK, VOLUME, FILE)!

or

REMOVE (PACK, VOLUME, (FILEl, FILE2 ••••)) !

deletes the file or files specified from volume VOLUME on disk pack PACK. If
a file specified to be deleted is not found in the selected volume, or if the file
list is not in order, an error message is typed and the operation is terminated
with the previously designated files deleted. If the volume is not defined, an
error message is typed, and control is returned. Re-ordering of sector data with­
in the volume may be done by this operation.

DISK INPUT/OUTPUT (DUMP, RESET, LOADA, WRITE, COPY, COPYAMRMX)

DUMP ("TITLE II t VOL) II

causes the writing of all currently used program storage areas of core memory,
the current local and external symbol tables, the overlay table, and selected
AMRMX storage allocation parameters onto disk volume vv of pack p as a new
file titled TITLE of type "DUMP." If VOL is omitted, output will occur on the
currently selected "system volume. " This file may be read fr.om disk by a sub­
sequent RESET operation with the effect of restoring all programs, symbol
definitions, and memory allocations as were in effect when the DUMP operation
was executed.

13 AMRMX/PRM/ A 18 4/69

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

RESET ("TITLE", VOL)!

causes the reading of the file titled TITLE of type "DUMP" from volume vv on
disk pack p and restores all programs, symbol definitions, and memory alloca­
tion in effect at the time of the DUMP operation which created the file. If VOL is
omitted, the current "system volume" is used.

LOADA (FILE, VOL)!

causes the reading of the file with file number FILE and type "BIN" from volume
vv on disk pack p into the locations specified in the record control words in the
file.

CAUTION

This operation may overwrite programs, symbols,
etc. , if they lie in areas changed by the specified
absolute (BIN) file.

WRITE (FIRST, LAST, "TITLE", VOL)!

creates a file on volume vv of disk pack p of type "BIN" and titled TITLE con­
taining the contents of core memory from FIRST through LAST. Record control
words are inserted into the file so that the file created may be read back into the
same area of core memory by a LOADA statement. If FIB.ST and LAST are
omitted, the area to be written is specified by the last bound-setting statement.
If VOL is omitted, the current "system volume" is used. WRITE is a bound­
setting statement.

COPY (FIRST, LAST, !VOL, OVOL) !

or

COPY ((Fl, Ll, Il, OVOL), (F2, L2, I2), (F3, L3, I3) ••••) !

causes the copying of files FIRST through LAST from volume vv of pack p (!VOL)
to volume vv of pack p (OVOL). If LAST is omitted, it is set equal to FIRST. In
the multiple argument group form, the first argument group must specify the
four arguments as in the non-multiple argument form. In subsequent argument
groups, OVOL (if present) must be equal to the initial OVOL. If !VOL is omitted
on any subsequent argument group, the input volume and pack is specified by the
last given !VOL argument. If LAST is omitted in any argument group, it is set
equal to FIRST.

4/69 19 13 AMRMX/PRM/A

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

COPYAMRMX (PACK)!

causes the copying of the binary monitor, cylinders 2 through 14 8 , from pack 0
to the specified output pack. This operation may only be performed on an ini­
tialized disk pack which contains no "CREA TE "d volume assignments.

DISK VOLUME/FILE AND MEMORY MAP LISTING (LISTD, LISTV, LISTA,
ME MAP)

LISTD (PACK) I

causes the typing (displaying if in DISPLAY mode) of the volume directory of disk
pack PACK. Included in the output is the pack's IDENTIFICATION STRING, cre­
ation date, number of free (unassigned) cylinders, and number of cylinders used
in the "scratch pad" area. For each define_d volume, the number of files used,
number of cylinders assigned, the number of free (unused) sectors, and the disk
storage area assignments of the volume are output.

LISTV (PACK, VOLUME, VOLUME, VOLUME ••••) !

causes the typing (displaying if in DISPLAY mode) of the volume information as
specified in the LISTD statement and a file index for each file in the volume for
each volume specified in the statement. The file index gives the file number,
title, type, version, revision, date, length, cylinder /track/ sector origin of the
file (relative to the first cylinder in the volume) for each file and whether or not
the file is in "record" format.

LISTA (PACK) I

causes the typing (displaying if in DISPLAY mode) of the volume di.rectory of disk
pack PACK along with a file index for each file in each defined volume.

ME MAP!

causes the typing (displaying if in DISPLAY mode) of the current memory map.
The output consists of each loaded program file title along with the limits of core
memory assigned to that progTam.

13 AMRMX/PRM/ A 20 4/69

AGT DISK MONITOR, AMRMX

Programmer's Reference Manual

TEXT DISPLAY OUTPUT FORMAT

When the Monitor is displaying the output from the statements LIST,
SRCHW, SRCHA, LISTV, LISTD, and LISTA on the CRT, the entire output may
not fit on the screen at one time. In this case, the Monitor will display the
current "screen - load " (''page'~ until the operator depresses any FNS button
except FNSl, at which time the next ''page" is generated on the CRT. This
operation continues until the last ''page" is generated at which time control is
returned to accept subsequent Monitor statements while the last "page" is
being displayed. The depression of FNS 1 will cause the operation to be termi­
nated and control returned to monitor statement input. As the text output from
the statements LISTV, LISTD, and LISTA may be buffered in a core area of the
Monitor used by the statement input routine, the typing of the next statement to
the Monitor may cause the latter portion of the text being displayed to be blanked
out at the time of the first symbol search operation performed by the statement
input routine.

4/69 21 13 AMRMX/ PRM/ A

AGT DISK MONITOR, A MRMX
Programmer's Reference Manual

AMOS CHARACTER CODES

INTERNAL CHARACTERS

The Monitor implements single case AMOS internal characters:

USASCII TTY LPR/LCG
Code8 Eg,ui valent13 Character Character

.00 133 [[

.01 045 % %

.02 135 J J

.03 041
04 046 & &

05 052 * *
06 072
07 134

1.0 053 + +
11 074 tab (3 spaces) <
12 077 ? ?
13 042 " "
14 047
15 076 return - L. F. >
16 050 ((
17 051))
20 060 .0 .0
21 061 1 1
22 062 2 2
23 063 3 3
24 064 4 4
25 065 5 5
26 066 6 6
27 067 7 7
30 070 8 8
31 071 9 9
32 073
33 075 =

4/G9 23 13 AMRMX/PRM/ A

AGT DISK MONITOR, A MRMX
Programmer's Reference Manual

USASCII TTY LPR/LCG
Codee Equivalent9 Character Character

34 054
35 055
36 056
37 057 I I
40 040 space blank
41 101 A A

42 102 B B

43 103 c c
44 104 D D
45 105 E E
46 106 F F
47 107 G G
50 110 H H
51 111 I I
52 112 J J
53 113 K K
54 114 L L
55 115 M M
56 116 N N
57 117 0 0
60 120 p p

61 121 Q Q
62 122 R R
63 123 s s
64 124 T T
65 125 u u
66 126 v v
67 127 w w
70 130 x x
71 131 y y

72 132 z z
73 044 $ $
74 043 # #
75 100 @ @

76 136 t /\

77 137 ... _(underline)

13 AMRMX/PRM/ A 24 4/69

AGT DISK MONITOR, A MRMX
Programmer's Reference Manual

INPUT CHARACTERS

The following classes of input characters are recognized by the Monitor:

OCTAL DIGITS

consists of characters 0 through 7.

DECIMAL DIGITS

consists of characters ,0 through 9.

ALPHANUMERIC CHARACTERS

consists of alphabetic characters A - Z, plus digits 0 through 9, plus period ". 11 •

STRING CHARACTERS

consists of all AMOS internal characters except %, ? , and ", which may be in­
ternally represented by the input strings %%, %?, and%", respectively.

4/69 25 13 AMRMX/PRM/ A

AGT DISK MONITOR, AMRMX

Programmer's Reference Manual

MONITOR CONTROL STATEMENT SUMMARY

OPERATION (ARGUMENT!, ARGUMENT2, •••• , ARGUMENT N) !

4/69

Control Parameter Specification

TYPE!

DISPLAY!

SYST (VOL) !

ASSIGNIN (FILE, VOL) !

PANEL ((REGISTER-LIST))!

BOUND (FIRST, LAST)!

MODE ("TYPE") !

RELOAD(PACK) !

HOME (UNIT) !

CLEAR!

VERSION (VERS. "REV") !

Memory Search, List, and Change

SRCHW (WORD, MASK, FIRST, LAST, "MODE")!

SRCHA (ADDR, FIRST, LAST, "MODE")!

LIST ("MODE", FIRST, LAST)!

TRAPS (FIRST, LAST) !

FILL (VALUE, FIRST, LAST)!

OPEN (ADDR, "MODE")!

27 13 AMRMX/PRM/ A

Resulting typeout

LOCATION: CONTENTS

where:

CCH

C/R

DCH

@

=

I
\
[

=#=

$

VALUE= An expression

AGT DISK MONITOR~ AMRMX
Programmer's· Reference Manual·

Input o:etions

NAMES VALUE DCH CCH

means:

enter any VALUE, close location, and:

open next

open previous

open location addressed by contents

return to Monitor

list symbolic location

list contents in other MODES

list cell addressed by contents

ignore previous VALUE

ignore following comment

close location and open cell at VALUE

enter VALUE without closing

NAMES = Undefined symbols followed by ":" to name "LOCATION"

Memory Allocation

RESET!

START ("TITLE", VOL)!

START (FILE, VOL) 1

LOAD ("ENTRY", VOL) !

LOAD (FILE, VOL)!

MARK!

RE LEASE (N) !

13 AMRMX/PRM/A 28 4/G9

4/69

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

Symbol Table Control

DEFINE (NAME, VALUE, NAME, VALUE, ••••) !

DELETE ("NAME", "NAME", •••) !

NTRY (NAME, LOC, NAME, LOC, ••••) !

DNTRY ("NAME", "NAME", •••) !

DUMPS!

READS ("TITLE", VOL)!

Execution Control

DO (INSTRUCTION, (REGISTER-LIST))!

GOTO (ADDR, (REGISTER-LIST))!

SNAP (FffiST, LAST, "MODE", (REGISTER-LIST))!

RETURN ((REGISTER-UST)) !

STOP!

Version Setting and Interrogation

VERSION (VERS, "REV") I

VERSION!

Paper Tape I/ O

READB ((FIRST, LAST))!

PUNCH ((FIRST, LAST)!, CHECK)!

FEED (LENGTH)!

Disk Storage Allocation

INITIALIZE (PACK, "IDENTIFICATION STRINGli) !

CREA TE (PACK, VOLUME, #CYLS) !

CHANGE {PACK, VOLUME, ±#=CYLS) !

PURGE {PACK, VOLUME)!

29 13 AMRMX/ PRM/ A

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

REMOVE (PACK, VOLUME, FILE)!

REMOVE (PACK, VOLUME (FILEl, FILE2, ••••)) !

Disk Input/Output

DUMP ("TITLE", VOL)!

RESET ("TITLE", VOL)!

LOADA (FILE, VOL)!

WRITE (FIRST, LAST, "TITLE", VOL)!

COPY (FIRST, LAST, IVOL, OVOL) !

COPY ((Fl, Ll, 11, OVOL), (F2, L2, I2), (F3, L3, I3), •••) !

COPYAMRMX (PACK)!

Disk Volume/File and Memory Map Listing

LISTD (PACK)!

LISTV (PACK, VOLUME, VOLUME, VOLUME, ••••) !

LISTA (PACK)!

MEMAP!

Arguments

VOL = Specified Disk Volume (pvv 8 = pack p, volume vv)

FILE = Specified File Number

"TITLE" = Title of a Specified File

"ENTRY" = Name of an Entry Point

NAME= A symbolic name enclosed in quotes, " ", in the DELETE
and DNTRY operators and not enclosed in quotes in the DEFINE
and NTRY operators.

"MODE"= Typeout Mode: "0", "A", "S", "F", ••.

REGISTER LIST = Values for AR, BR, IC, OVF

FIRST, LAST= Lower and Upper Bounds in a Monitor Operation;
or first and last files in a COPY operation.

13 A MRMX/ PRM/ A 30 4/69

4/69

AGT DISK MONITOR, AMRMX
Programmer's Reference Manual

N = A Level Number

CHECK= Value for checksum

LENGTH= Feed-hole count

VERS = Program version number (1 through 31 10)

"REV" = A single program revision character (i.e. , "A'~

VOLUME= Volume number (1 through 40 9)

PA CK = Disk pack (0 through 7)

ADDR =Expression yielding 15-bit address value

WORD= Expression yielding 30-bit value

MASK= 30-bit expression value used as search mask

INSTRUCTION= Expression yielding 30-bit machine instruction

"IDENTIFICATION STRING" = 19 10 character or less string used
for disk pack initialization

#CYLS =Number of cylinders for volume creation or± number
of cylinders for volume allocation change

IVOL = Input VOL for disk file copy

OVOL = Output VOL for disk file copy

31 13 AMRMX/PRM/A

AGT DISK MONITOR, AMRMX

Programmer's Reference Manual

SYNTACTIC STRUCTURE OF MONITOR STATEMENTS

The following is an extended BNF description of the control statement
syntax accepted by AMRMX.

< control statement>: : = < term> ! I < term> < argument list> !

< argument list > : : = (< argument > { , < argument > } 0)

< argument> : : = < expression> I I (< argument list>) I "£ < character> } 6 11

< expression> : : = < sign>< term> I < expression> {< rotation>} 1

< expression> { < op>} 1 < term>

< term> : : = { < octal digit>} t0 I { < decimal digit>} i . I {<alphanumeric> }t0 I
. I] I " { < character > } ~ "

< rotation> : : = ! B I ! K l ! H

< op > : : = < sign > I f I ' l &

< sign> : : = + l - l space I tab

<octal>:: =O I 1 l 2 I 3 I 4 l 5 I 6 I 7

< decimal digit > : : = < octal digit > l 8 l 9

< alphanumeric > : : = < decimal digit> I A I B l C • • • l X I Y l Z I ·

< character > : : = < alphanumeric > I < op > I , I I I $ l # 1 @ I [I = I \ I (I) I +- I 11 l
carriage return l J I ! l : l ; l * l %% l % ?

Explanation of notation

< x > "a member of the syntactic class of x"

: : = "is defined to be"

"or"

"from mton" instances ofx(if n is not specified, can be arbitrarily large)

"and so on"

13 AMRMX/PRM/ A 32 4/69

FIXED AND FLOATING POINT ARITHMETIC, ARITH

Programmer's Reference Manual

GENERAL

ARITH is a relocatable AMOS library program that performs fixed and
floating point arithmetic operation on the AGT (Adage Graphics Terminal). It is
available in two versions:

Version 1 - DPRl or OPC

Version 2 - DPR2 or AGT (with EAU).

ARITHMETIC ROUTINES

ARITH contains the following routines:

A. Integer Arithmetic Routines

Two integer arithmetic routines are available in the ARITH package:
integer multiply and integer divide. Integer computations are performed to
29 bits of precision by the routines. The result is in (AR) when control is re­
turned to the user program. The magnitude of a number is in bit positions
1 - 29, and the sign of the number is in bit position O. Negative numbers
are represented as the ONEs complement of the corresponding positive number.
The result is accurate to 29 bits.

4-69

1. Integer Multiply

Name: 98T
Purpose: To divide I by J
Calling Sequence: JPSR 98T

0 J

Operation: The dividend, I, is loaded in the AR register prior
to executing the call to the 98T routine. The routine develops
the quotient I/ (J) in AR, and returns control to the calling program
at the instruction immediately following the divisor address, J.
The remainder, if any, is disregarded by the routine. If the
divisor is zero, (AR) is set to zero and the divide check error
bit is set.

1 ARITH/PRM/ A

FIXED AND FLOATING POINT ARITHMETIC, ARITH

Programmer's Reference Manual

B. Floating Point Arithmetic Routines

The ARITH Package includes four routines to perform floating point
arithmetic.

•
•
•
•

Floating Point Add
Floating Point Subtract
Floating Point Multiply
Floating Point Divide

9CQ
9CR
9CS
9CT

Floating point computations are performed to 28 bits of accuracy. The
result is rounded to a 21-bit mantissa with an 8-bit exponent. The result will
be in the AR register when control is returned to the user program.

The form of a real number is as follows:

• Bit position O - Sign
• Bit position 1-8 - Exponent (with a bias of +200 8)

• Bit position 9-29 - Mantissa (binary fraction)

A negative number is represented as the 30-bit ONES complement of the corre­
sponding positive number.

1. Floating Point Add

Name: 9CQ
Purpose: To add A+(B)
Calling Sequence: JPSR 9CQ

O B

Operation: The augend, A, is loaded in the AR register prior to
executing the call to the 9CQ routine. The routine computes the
sum A+(B) in AR. and returns control to the program at the instruc­
tion immediately following the addend address. B. If overflow occurs,
the (AR) is set to zero. and the overflow error bit is set.

2. Floating Point Subtract

Name: 9CR
Purpose: To subtract A-(B)
Calling Sequence: JPSR 9CR

O B

ARITH/PRM/ A 2 4-69

FIXED AND FLOATING POINT ARITHMETIC, ARITH

Programmer's Reference Manual

Operation: The minuend, A, is loaded in the AR register prior to
executing the call to the 9CR routine. The routine computes the
difference A-(B) in AR. and returns control to the main program at
the instruction immediately following the subtrahend address. B.
If overflow occurs, the (AR) is set to zero and the overflow error
bit is set.

3. Floating Point Multiply

Name: 9CS
Purpose: To multiply A *(B)
Calling Sequence: JPSR 9CS

0 B

Operation: The multiplicand, A, is loaded into the AR register
prior to executing the 9CS routine. The routine computes the
product A *(B) in AR, and returns control to the main program at
the instruction immediately following the multiplier address, B.
If overflow occurs, the (AR) is set to zero and the overflow error
bit is set.

4. Floating Point Divide

Name: 9CT
Purpose: To divide A/ (B)
Calling Sequence: JPSR 9CT

0 B

Operation: The dividend, A, is loaded into the AR register prior
to executing the 9CT routine. The routine computes the quotient
A/B in AR, and returns control to the main program at the instruc­
tion immediately following the divisor parameter, B. If the
divisor is zero, or if overflow occurs, the (AR) is set to zero
and the divide check error bit is set.

C. I to J Power

This routine raises the integer number in (AR) to the power specified by
the integer number included in the parameter statement following the call to the
98E routine. The result is computed to 29 bits of accuracy, with the sign of the
result in bit position 0, and the magnitude of the number in bit positions 1-29.

4-69 3 ARITH/PRM/ A

FIXED AND FLOATING POINT ARITHMETIC, ARITH

Programmer's Reference Manual

The result is in the AR register when control is returned to the user program.

Name: 98E
Purpose: To raise I to (J) power
Calling Sequence: JPSR 98E

0 J

Operation: The integer I is loaded in the AR register prior to J)
executing the call to the 98E routine. The routine evaluates I(
in AR by multiplying I by itself (J)-1 times, and returns control to
the program at the instruction immediately following the address~
J. If the exponent is zero, the result is equal to 1. Any exponent
less than zero causes a zero result. If overflow occurs, (AR) is
set to zero and the overflow error bit is set. If I is zero and (J) is
less than one, (AR) is set to zero and the indeterminate error bit
is set.

Subroutine Called: 98S

Accuracy: 29 bits

D. A to I Power

The routine raises the floating point number in AR to the power specified
by the integer exponent following the 9BE call. Computations are performed to
28 bits of accuracy. The result is rounded to the standard floating point format
of a 21-bit mantissa and 8-bit exponent. The result is in the AR register when
control is returned to the user program.

Name: 9BE
Purpose: To raise A to the power of (I)
Calling Sequence: JPSR 9BE

0 I

Operation: The floating point number, A, is loaded in the AR
register before executing the call to the 9BE routine.

• To raise A to a positive power, the result is calculated by
multiplying A by itself (I)-1 times.

• To raise A to a negative power, the result is determined by
the first calculating 1/A, and multiplying it by itself (I)-1 times.

ARITH/PRM/ A 4 4-69

C:U!.I Cl!!] E!
FIXED A~'TI FLOATING POINT ARITHl\fETIC, ARITH

Programmer's Reference Manual

If the exponent is zero, the result is equal to 1. Control is returned
to the main program at the instruction immediately following the
power address,, I. If overflow occurs,, (AR) is set to zero and the
overflow error bit is set. If A is zero and (I) is less than one,
(AR) is set to zero and the indeterminate error bit is set.

Subroutines called: 9CS

Accuracy: Computation is performed with the floating point arith­
metic routines giving a relative accuracy of 21 bits.

E. Real to Integer

Converts the real value F in AR to an integer value by truncation. Places
this value in AR and the specified location.

Calling Sequence: (AR) is R
JPSR 98Y

IF
[Address of result (integer)

F. Integer to Rea!

Converts the integer value I in AR to a real value and stores it in the
specified location.

Calling Sequence: JPSR

G. Utility Routines

9CY
RI

[Address of result (real)

PO\VRF - Used by the External Functions to obtain the binary exponent
of a real number.

SICOF - Reduces the range of a SIN or COS argument to the range IA!..;; rr/4.

4-69 5 ARITH/PRM/ A

FIXED AND FLOATING POINT ARITHMETIC, ARITH

Programmer' s Reference Manual

BASIC INTRINSIC FUNCTIONS

A. General

AGT Basic FORTRAN includes the following Intrinsic Functions:

• ABSOLUTE VALUE

• FLOAT

• FIX

• TRANSFER OF SIGN

(ABS) (!ABS)

(FLOAT)

(!FIX)

(SIGN) (!SIGN)

The result of a call to an Intrinsic Function is in the AR register when con­
trol is returned to the user program.

• If the Function type is real, the result is rounded to a 21-bit
mantissa and an 8-bit exponent.

• If the Function type is integer, the result is accurate to 29
bits, with the magnitude of the number in bit positions 1-29 ,

and the sign in bit position O.

B. Absolute Value

This routine converts a real or integer number to its absolute value. If
the argument is of type real, the function ABS, is of type real; if the argument is
of type integer,, the function,, !ABS,, is of type integer. The argument is specified
by the address (possibly indirect) immediately following the ABS or !ABS Call. The
result is in the AR register when control is returned to the user program at the
instruction immediately following the argument address.

Name:
Purpose:

Calling Sequence:

Name:
Purpose:

Calling Sequence

ARITH/PRM/ A 6

ABS
Convert the real argument (A) to

absolute value
JPSR ABS
0 A

IABS
Convert the integer argument (I) to

absolute value
JPSR !ABS
0 I

4-69

FIXED AND FLOATING POINT ARITHMETIC, ARITH

Programmer's Reference Manual

C. Float

This routine converts a type integer value to type real. The argument is
of type integer and the function is of type real. The argument is of type integer
and the function is of type real. The argument is specified in the parameter
statement immediately following the FLOAT call. The computed real number is
in the AR register, in standard floating point format of a 21-bit mantissa and 8-bit
exponent, when control is returned to the user program at the instruction immediately
following the address, I.

Name:
Purpose:

Calling Sequence:

D. Fix

FLOAT
Convert the integer argument (I) to

a real number
JPSR FLOAT
O I

This routine converts a type real value to type integer. The argument
is of type real, and the function is of type integer. The argument is specified
in the parameter statement immediately following the !FIX call. The computed
integer number will be in the AR register, to 29 bits of accuracy when control is
returned to the user program at the instruction immediately following the ad­
dress, A.

Name:
Purpose:

Calling Sequence:

E. Transfer of Sign

!FIX
Convert the real argument (A) to an

integer number
JPSR !FIX
O A

This routine transfers the sign of a real or integer number, by multiplying
the sign of the second argument by the absolute value of the first argument. If
the arguments are of type real, the function, SIGN, is of type real; if the argu­
ments are of type integer, the function, !SIGN, is of type integer. The arguments
are specified by the address (possibly indirect) immediately following the SIGN or
!SIGN Call.

4-69 7 ARITH/PRM/ A

FIXED AND FLOATING POINT ARITHMETIC, ARITH

Programmer 1 s Reference Manual

The result is in the AR register when control is returned to the user pro­
gram at the instruction immediately following the second parameter address.

Name:
Purpose:
Calling Sequence:

Name:
Purpose:
Calling Sequence:

ARITH/PRM/ A 8

SIGN
Transfer the sign of (B) to (A)
JPSR SIGN
0 A
0 B

!SIGN
Transfer the sign of (J) to (I)
JPSR !SIGN
0
0

I
J

4-69

GENERAL

AMRMX RELOCATABLE-TO-BINARY
CONVERTER ROUTINE, ARMW

Programmer's Reference Manual

The relocatable AMOS routine ARMW may be loaded (e.g., START ("ARMW') !)
and used to convert the relocatable AMOS Monitor, AMRMX (as output by the ADE PT
assembler) to type ''BIN" (Binary) for loading via bootstrap loaders.

VERSIONS

ARMW, Version 1, is used on MTP-5 systems.

ARMW, Version 2, is used on MTP-7 systems.

CALLING SEQUENCE AND USE

The following calling sequence:

ARMW (FILE, CODE, INPUT TAPE, OUTPUT TAPE)!

where:

FILE

CODE

INPUT TAPE

OUTPUT TAPE

=
=

=

File No. of AMRMX, type "RE LOC"

0 - Jump to new monitor after conversion
1 - Return to bootstrap loader, AMLDX

Tape unit containing the relocatable AMRMX

Tape unit on which the binary AMRMX is to
be written

will accomplish the conversion of AMRMX from relocatable to binary.

4-69 1 ARMW/PRM/A

FLOATING POINT EXPONENTIATION, ATOB

Programmer's Reference Manual

GENERAL

This library raises the floating point number in (AR) to the power specified
by the floating point number included in the parameter statement following the call
to 9CE.

Name: 9CE

Purpose: To raise A to the power B

Calling Sequence: JPSR 9CE

,t) B

OPERATION

The floating point number A is loaded in the AR register before executing
the call to the 9CE routine. The routine calculates AB using the formula:

AB= eBlogA

Subroutines Called: 9CE, EXP, ALOG, and arithmetic subroutines in the
ARITH package.

Accuracy: Computation is performed with the floating point arith-
metic routine, giving a relative accuracy of 21 bits.

SOFTWARE REQUIREMENTS

9CE, EXP, ALOG, arithmetic subroutines in ARITH. ·

HARDWARE REQUIREMENTS

The hardware configuration is the same as that required for the above
software items.

CORE REQUIREMENTS

20s words

EXECUTION TIME

7-69 1 ATOB/PRM/B

AGT BUILD OPERATOR, BUILD

Programmer's Reference Manual

Revision A

April 1969

ADAGE, INC.
1079 Commonwealth Avenue

Boston, Massachusetts 02215

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

CONTENTS
Page

I. INTRODUCTION 1
A. BUILD OPERA TOR 1
B. DSPLY OPERA TOR 2

1. Image Items 2
a. Element Generating 2

b. Transform Specifying 2

c. Control 2

d. View Defining 2
2. Item Arguments 2

c. BUILD SYSTEM ENVIRONMENT 3
1. Resident Programs 3

a. DSPLY 3

b. I/O Drivers 3
c. User 3
d. System 4

2. External System Library 4
D. BUILD OPERA TOR COMPONENTS 5

1. Work Storage 5
2. Temporary Library 5
3. Macro-Action Storage 5
4. Tables and Directories 5
5. Initial Tables 7

a. Control Table 7
b. Temporary Library Table 7
c. Table of Tables 7
d. External Symbol Table 7
e. Work Storage Table 8
f. Formal Parameter Table 8

II. ENVIRONMENT REQUIREMENTS 11

III. IMA GE UNDER BUILD 13
A. WORKING STORAGE (W.S.) 13
B. DYNAMIC VARIABLES 13
c. FORMAL PARAMETERS 13
D. FORMAL PARAMETER TABLE 13

1. Use of Formal Parameters 14
E. TEMPORARY LIBRARY 16

4/69 iii BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

IV. CONTROL OF BUILD
A. BUILD OPERATIONS
B. MENUS

1. Control Table Use
2. Format and Use of the Menus

C. CONTROL TABLE: OPERATIONS
1. Work Storage Management
2. Argument Processing
3. I/O Communication
4. MACRO Facilities

Page

17
17
17
17
17
20
20
20
20
20

V. EXTERNAL BUILD ENVIRONMENT 21
A. EXTERNAL SYMBOLS 21
B. EXTERNAL ROUTINES AND IMAGES 21
C. EXTERNAL SYSTEM LIBRARY IMAGE SEGMENTS 21
D. EXTERNAL CONTROL-SEQUENCE-DEFINITION MACROS 21

VI. INITIAL BUILD OPERATIONS AND THEIR USE 23
A. WORK STORAGE CONTROL OPERATIONS 23

1. CLEAR 23
2. PUT 23
3. GET 24
4. SKETCH 24
5. SKBAND 24
6. SKETCHING - GENERAL 24

B. ARGUMENT ASSIGNMENT AND FORMAL PARAMETER 25
CONTROL

1. SETVALUE - Set by Value
2. SETNEGVAL - Set to Negative Value
3. SETNAME - Set by Name
4. HOLD
5. MERGE - Merge Formal Parameter References
6. RENAME - Rename a Formal Parameter
7. CLOSE - Eliminate a Formal Parameter

C. I/O AND COMMUNICATION CONTROL OPERATIONS
1. INPSTRING - Input string
2. DELETE - Delete from a Table
3. MOVTBLE - Move Table Entry
4. ADDENTRY - Add an Entry to a Specified Table

D. MACRO FACILITIES
1. MACRO - Start a Macro Definition

BUILD/PRM/A iv

25
25
25
26
26
27
27
27
27
27
28
28
28
28

4/69

AGT BUILD OPERATOR, BUILD

Programmer's Reference Manual

2. ENDM - End Macro Definition
3. DUMPM - Dump Macros
4. LOADM - Load Macros

E. OTHER CONTROL OPERATIONS
1. HIDE - Suppress Display
2. UNHIDE - Stop Display Suppression

Page

29
29
30
30
30
30

APPENDIX A. PREDEFINED IMAGE ITEMS A-1

APPENDIX B. PREDEFINED OPERATIONS B-1

4/69 v BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

I. INTRODUCTION

A. BUILD OPERA TOR

The Build Operator is a program which permits an online user of an Adage
Graphics Terminal to create, assemble, and adjust visual representations of pro­
gram variables, models, or structures. The two or three dimensional visual
representation is called an Image. The data structure in memory .which defines
an Image will also be referred to as the Image Description or simply the "Image. "
When an Image Description is processed for viewing, the resulting two dimensional
projection displayed on the CRT will be referred to as its current "Picture."

B. DSPLY OPERATOR

The DSPLY Operator is a program which processes selected Image Descrip­
tions and generates their resulting Image for display at a chosen frame-rate.

The Image Descriptions processed by DSPLY consist of an Image Header
and an Image Body. The Image Header only contains a character string with the
Image's name; the remainder of the Image Description is the Image Body .

Image

4/69

.. I ___ ___.I} Image Header

I"'

> Image Body

• J.- --- I ------ --- Operation
Argument 1
Argument 2 ===' ---..... __ .• _.,. __ - - - -·--- - - - _.._ _____ ~

"""
..... Im.age Item

......
..........._ ___ ...

I .J Image Segment

1 BUILD/PRM/ A

AGT BUILD OPERA TOR, BUILD
Programmer's Reference Manual

An Image Segment is a portion of an Image Bociy in a contiguous area of
memory. An Image Body is not necessarily kept as a contiguous table in memory.
Segments of an Image Body may be in separate linked tables or scattered through­
out a programmatic model or its data structure.

1. Image Items

Each Segment of an Image Body consists of a set of contiguous Image Items.
Image Items are the basic elements of an Image Description. An Image Item con­
sists of an item code and a set of argument references.

There are four classes of Image Items:

a. Element Generating

These Items specify the visual elements of an Image Des­
cription such as lines , points, and characters.

b. Transform Specifying

These Items apply affine transforms such as scalings,
rotations, and translations to bracketted Image Segments.

c. Control

These Items effect control over image scanning, and
execution of any chosen programs.

d. View Defining

These Items specify effects on the projected Picture.
The::;e effects include cut-offs, viewing windows, and
intensity modulated depth cueing.

2. Item Arguments

Many of the available Image Items require one or more arguments to define
their effect. Examples of several Items and the arguments they use are given in
the following table:

BUILD/PRM/ A 2 4/69

AGT BUILD OPERATOR, BUILD

Programmer's Reference Manual

Type of Items Sam2le Items Arguments

Visual elements Lines Coordinates of end-points
Text List of characters
Table Addr of packed vector values

Transforms Scale Scale-factor
Rotation Angular rotation

Control Subroutine Call Subroutine entry point
Subimage Call Address of image
Transform delimiting None

bracket

For a complete specification of Image-Description data structures, formats,
and their processing, the reader should refer to the "DSPL Y Programmer's
Reference Manual. " The mnemonics for Image Items and their arguments as
given in the DSPLY/PRM are used by the BUILD Operator.

C. BUILD SYSTEM ENVIRONMENT

The BUILD Operator provides an online user with facilities for creating and
linking image. segments and binding them to loaded Programs or Images. All con­
trol of the BUILD Operator is effected via interactive use of online inputs such as
the data tablet and foot pedals. The results of all BUILD actions are accessible
for viewing via the display screen.

1. Resident Programs

During operation of the BUILD Operator, the online user will have loaded
programs of the following four types:

4/69

a. The BUILD and the DSPLY Operators which present the re­
sults of BUILD usage to the user.

b. I/O drivers for the online devices by which the BUILD user
manipulates BUILD Image Segments.

c. Other resident or selected standard system programs for
storage and peripheral communication, program loading or
dumping, control statement processing, etc ..•.

3 BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD

Programmer's Reference Manu:.i.1

?

d. The user's problem, or irn model, coded as programs or Images
to which the BUILD user is to bind his created or assembled
visual imagery.

External Svstem Library

In addition to the Programs and Images loaded in core, the user has access
to all files resident in the External System Library on online mass storage (tape/
disk/ other).

The files in the External System Library may be compiled or assembled
object programs or images, or the source texts which generated them. Also
binary absolute dumps of core areas and previously link-loaded symbolic core­
loads may be generated or re-instated from the Library via System functions.

Of interest to a BUILD user are files of saved Macro-Action definitions
for extending the set of BUILD operations and files of Image Segments for
RETRVing into a local Temporary Library of available definitions. These can
then be used for local Image BUILDing.

D&ta Flow

Control

EXTERNAL

SYSTEM

LIBRARY

__ _,C>

Reference aod - - - - -
LiDluip

BUILD/PRM/ A

ea
Source-Text.I
Dump&
BUILD:

Segmenta
Macros

4

CORE []
STORAGE USER

[PROO RAMS J
lvo] [AND] IMAGES

SUB- l r] ROtrrINES
I

'1 '.

Work

Storage

BUILD OPERATOR ENVIltONMENT

4/69

AGT BUILD OPERATOR, BUILD

Programmer's Reference Manual

D. BUILD OPERA TOR COMPONENTS

During operation, the BUILD Operator maintains four classes of informa-
tion:

1. Work Storage

This is a table which contains the Image Segment currently being defined
via user interaction. The contents of the Work Storage are continually being pro­
cessed by the DSPLY Operator and presented to the user.

2. Temporary Library

This is a file of saved Image Segments. Segments created in the Work
Storage may be saved in the Temporary Library at any time. Segments saved in
the Temporary Library are used as building pieces to create new segments in the
Work Storage. The Temporary Library initially contains one-item segments for
the items implemented by the DSPLY Operator.

Selections from the Temporary Library may be gathered and filed in the
External System Library by the SAVE Operator. Sets of saved Image Segments
may be fetched from the External System Library and instated in the current
Temporary Library via the RE TRV Operator.

3. Macro-Action storage

All operations performed by the BUILD Operator are encoded as strings of
text characters in a machine independent form. These strings specify the sequence
of actions, either internal transformation or user communication, required to
implement any BUILD function. Via the BUILD Macro Facilities, a user may
either create anew or condense a sequence of existing actions into a single new
action to be added to the existing BUILD repertoire. A set of user defined action
sequences may be selected and filed into the external System Library. Sets of
filed BUILD action-sequences may be fetched from the library and instated; thus,
facilities implemented under BUILD may be selectively tailored for different
applications.

4. Tables and Directories

During the use of the BUILD Operator, there are many occasions where
entities are created, objects are referenced, or selection of alternatives must

4/69 5 BUILD/PRM/ A

AGT BUILD OPERATOR. BUILD

Programmer's Reference Manual

BUIIJ) OPERA TOR COMPONENTS

Temporary
Library
Table

Segment
Names

SAVE

v

BUILD/PRM/ A

I

Temporary
Library

Arguments

Segment

Arguments

.segment

Arguments

Segment

Constants

Retrieve
(RETRV)

I
.I

Formal
Parameters

; Current
Segment
Arguments

\

}-<J~GET_-----'fJ
PUT

Work
Storage

Current
Image
Segment .

Control
Table

Macro-Action
Storage

Operation
Names

I Operation Dfn.)

I Operation Dfn. I

LOADM

6

I

4/69

AGT BUILD OPERATOR, BUILD

Programmer's Reference Manual

be made. For this purpose, Names are used to label created entities, to refer
to defined objects, and to list available options for input of user decisions.

The BUILD Operator maintains all defined Symbols (Names) and their as­
signed definitions in tables and directories. These are all stored in a threaded
list storage area, which may be extended by request of the online user.

The BUILD Operator initially has six tables defined. The user may extend,
replace or create new tables during operation. The six initially defined tables
are heavily used for communication with the user to control BUILD Operation.
They can be used to present the user with alternate courses of action for his
selection.

5. Initial Tables

4/69

The six initially provided tables are:

a. Control Table

This is a directory of the Macro-Action Storage contents. All BUILD
Operations available to the user may be selected for execution from
this table.

b. Temporary Library Table

This is a directory of the contents of the Temporary Library of
Image Segments. All currently defined Image Segments avail­
able for use in building the Image Segment in the Work Storage
can be selected from the Temporary Library Table.

c. Table of Tables

This is a directory of all currently defined Tables available to
the BUILD user for use or modification.

d. External Symbol Table

This is a table through which a BUILD user may access values,
images, or subroutine entries loaded in core. These are used
as arguments to Image Items or to Segments in the Work Space.
The contents of this table are created during loading or other
system operations which create External Symbol definitions.

7 BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

e. Work Storag·e Table

The Work Storage Table is a directory of all Image Segments
in the current Work Storage.

As each new Segment is selected from the Temporary Library
and added to the Work Storage, its name is added to the Work
Storage Table.

f. Formal Parameter Table

This table contains Formal Parameters. Each Formal Para­
meter consists of an Argument for the current Work Storage
Segment and its current value assignment. An Argument for
an Image Segment is a Name and the set of Item arguments
in the Segment, jointly taking the Name's current value as­
signment. An assignment is a Name of a value and a refer­
ence to the value. The Formal Parameter Table will be
represented as a set of Arg-Value name pairs. The set of
all first names for all pairs forms a directory of arguments
for the current image being built in the Work Space. As
values are selected and assigned to these arguments, the

second name is added. This is the name of the value assigned.

When the Work Space Image Segment is finished and saved in
the Temporary Library, both the segment in the Work Space
and the contents of the Formal Parameter Table are filed in
the Temporary Library as the definition of the Segment being
saved.

BUILD/PRM/ A 8 4/69

t

h

b

Work Storage

wl: MOVE 1,1,0

w3: DRAW (f2), 1, 0

w6: DRAW 1,(fl),O

w9: DRAW 1,1,0

w12: DRAW (f3), (fl), 0

w15: DRAW 1, (fl), 0

Current Image Segment

4/69

AGT BUILD OPERATOR, BUILD

Programmer's Reference Manual

h:

b:

t:

0
A
e
B
e
c

Fo~l Parameters

F.P. Table

fl(w7, w13, wlO): IIlGHT: DIAL A

9

f2(w3): BASE: DIAL B

f3(w12): TOP: DIAL C

Current Segment
Arguments

•
Current Value

Assignnients

Example of Formal Parameters

Schematic of a bracket with
variable dimensions under user
control.

BUILD/PRM/ A

A GT BUILD OPERA TOR, BUILD
Programmer's Reference Manual

II. ENVIRONMENT REQUIREMENTS

For its operation, the BUILD Program requires the presence of AMRMX
for monitor statements; it requires the DSPL Y Operator to process the Image
Descriptions for CRT display and it requires user I/O or cursor communication
via such device sampling routines as RADT, RVCD, or RJSB. The BUILD
Operator maintains a large (10, 000 8 locations) buffer-internal to the BUILD
program to store the Image Segment description currently appearing on the CRT
(Work Storage). and to save copies of Image Description and various constants and
strings (Temporary Library). An additional buffer (1, 000 8) internal to BUILD
is used to store the tables created by the user in the operation of BUILD. Ad­
ditional core storage may be requested by BUILD should more be required. In
addition to the libraries resident in core, external libraries may be used to
store Image Segment Descriptions and BUILD Operation statement definitions.

4/69 11 BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

III. IMAGE UNDER BUILD

A. WORKING STORAGE (W. S.)

The Working Storage is that part of the in-core library that contains the
image currently being displayed on the CRT, and currently being acted upon by
the various operations of the BUILD Operator. The BUILD Operator allows the
contents of the Working Storage to be modified (i.e. , an image may be sketched
in, altered, or assembled by the user while he is viewing it).

B. DYNA.MIC VARIABLES

Each Item of an Image Description may require one or more arguments to
specify its effect (i.e. , a DRAW item requires 3: Z, X, Y coordinate values of
vector end-point while a SA VT item requires none). The addressing modes im­
plemented by the DSPLY Operator permit these arguments to be given as im­
mediate values or as addresses which refer to the value. An image can be defined
with some (or all) of its arguments referring to changing variables in running
programs or to online inputs. Thus, an image being worked on via BUILD may
be dynamically changing to reflect a programmed model or respond to online
control.

C. FORMAL PARAMETERS

A Formal Parameter is defined as a data block that relates arguments of
items in an Image Segment description to values elsewhere in memory. A
Formal Parameter is presented as a pair of names: its own and that of the
value addressed by those Image Segment arguments it represents. It also main­
tains the address of the value referenced by the Image Arguments and a list of all
its occurrences in the Im.age Segment. This facilitates re-assignment of formal
parameters.

D. FORMAL PARAMETER TABLE

The Formal Parameter Table is a list of all Formal Parameters associated
with the image currently stored in the Working Storage. Each new item or set of

BUILD/PRM/ A 13 4/69

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

items called into the working storage for display and adjustment has names of
all its formal arguments added to the Formal Parameter Table.

1. Use of Formal Parameters

The usefulness of Formal Parameters is that they permit user-defined,
dynamic variation of the arguments of an Image Description, while that image
resides in the Working Storage. A user may assign an Item Argument, via its
entry in the Formal Parameter Table to an online input (dial, tablet, joystick,
etc.) for the purpose of adjusting the argument to a satisfactory value by sight.
Then the user may "HOLD" the argument so that it no longer tracks the input
dynamically. When adding a non-dynamic item to an Image Description, the
user may define the arguments to be precise values of defined constants. A
Formal Parameter may at any time be modified so that its references relate to
different values in core (i.e. , change the arguments of a ROTZ item, the angle
of a Z-rotation, AZ, from addressing dial input VCDA to addressing dial VCDF).

Thus, via the Formal Parameter Table, Image Item Arguments may be
assigned static, (by Value), or dynamic (by Name) whether the value of the vari­
able being assigned is dynamically changing or not. Formal Parameters may be
permanently merged together so that all argument references to one Formal
Parameter are changed to reference the other. The name of a Formal Parameter
may be changed so that the user may construct an image whose parameter names
are clear and distinct. When the user is satisfied with an argument's assign­
ment (whether static or dynamic) he may permanently "close-off" its Formal
Parameter, deleting the entry from the Formal Parameter Table and in effect
reducing by one the number of Formal Parameters associated with the image in
the Working Storage.

4/69 14 BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

Work Storage

Formal Parameter Table Item 1
A

A v. B
c w 40
D z Item 2
B x 300

c
'

D

Item 3

Argument:Assignm.ent
Name pairs

LOGICAL REPRESENTATION OF
FORMAL PARAMETER TABLE

1. Argument D was assigned to Value Z
by Value, all others have been assigned
by Name. Implementing a static (by Value)
assignment requires making a fixed copy of
the possibly-varying assigned value.

2. Arguments #2 of Item 1 and #1 of Item 2
are not (now) Formal Parameters.

3. Arguments #2 of Item 1 and #2 of Item 3
(also 3rd of Item 2 and 1st of Item 3) have
been merged.

4. All the references shown are "assignments" ac-
tually contained in the Formal Parameter area and
the Items using them do so by addressing indirectly
through pointers maintained for each Formal Parameter.

BUILD/PRM/ A 15

Core Storage

V: 10

W: 20

X: 30

Z: 50

Temp. Libr.

50
} Constants

4/69

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

E. TEMPORARY LIBRARY

A portion of the BUILD internal buffer is designated the Temporary Image
Segment Library (as opposed to a permanent library on tape or disc). This
temporary library contains all user defined strings and constants fetched through­
out the operation of BUILD. It also contains copies of Image Segments that at
one time were resident in the Work Storage and were "PUT" away. After a BUILD
user has assembled an image portion in the Working Storage, chosen any desired
assignment for arguments and adjusted any fixed values, the entire contents of
the Working Storage may be given a name and copied along with the contents of
the Formal Parameter Table into the in-core BUILD Temporary Library. The
name given to the Image Description will then be added to the Temporary Library
Table, which is a directory of all Image Segments residing in the Temporary
Library.

Tht: Temporary Library (and its Table) initially contain all DSPL Y Image
Items as defined in the DSPLY/PRM with their arguments all Formal (i.e., with
each argument there is associated one Formal Parameter with the name given to
the argument in the DSPLY/PRM). Thus, the predefined MOVE Image Item has
three Formal Parameters, FZ, FX, and FY, while the predefined ROTZ Image
Item has one Formal Parameter Name AZ. The predefined mnemonics used by
BUILD correspond to the item mnemonics and argument mnemonics used in the
DSPLY/PRM.

During the use of BUILD, all named Image Segments (including all as­
semblages the user has previously created, named, and put into the Temporary
Library) are available to be added to the Working Storage Image Segment. When
an image portion is added to the Work Storage all Formal Parameters for the
image portion are added to the Formal Parameter Table. The user may also have
generated fixed planar Segments using one of the available sketching modes.

-t/u9 16" BUILD/PRM/A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

IV. CONTROL OF BUILD

A. BUILD OPERATIONS

The BUILD Program can perform various operations on the Image Segment
residing in the Working Storage. An operation may actually consist of a series
of actions and is called a BUILD Action Sequence. The online user selects and
executes the desired BUILD Action Sequence. Action sequences may have argu­
ments which must be specified by the user when requested.

B. MENUS

Selections of action sequences to be executed, or arguments of action se­
quences, are made by the user from a displayed menu or table. The BUILD
Operator maintains many distinct menus for display. The selection process is
central to the operation of BUILD.

1. Control Table Use

When no action sequence is currently in progress, a table (menu) of
available BUILD Action Sequences is displayed. This list of available BUILD
Operations will be called the Control Table. When a selection is made, the
action sequence is executed up to the point where an additional argument must
be selected by the user. At that point, the BUILD Operator automatically presents
for display the proper menu for this selection (such as Temporary Library, the
Formal Parameter Table, the External Symbol Table or some other user-defined
table). When a selection is finally made, the action sequence steps to seek a
further argument, or to perform the operation. When the action sequence is
finished, the Control Table is again displayed so that another action sequence
may be initiated.

2. Format and Use of the Menus

Some menu will appear on the CRT during most of the time BUILD is in
operation. Any menu will appear on the left quarter of the screen and will not
interfere with the Working Storage Image, which normally appears on the CRT.
All menus presented to the user on the CRT are in a standard format which per-

BUILD/PRM/A 17 4/69

AGT BUILD OPERATOR, BUILD
Programmer's Reference :Manual

mit scanning and selection by means of the same user actions. Only one table
is displayed at any one time, no mortJ than sixteen entries are displayed at one
time, and each entry consists of from one to ten characters.

Associated with each menu may be a message, which will appear in italics
at the top of the screen. Each menu also has a table name, which appears above
the menu list.

The user uses the data tablet stylus to position a blinking double asterisk
to the left of the desired menu entry. When the blinker is positioned next to the
selection desired, the user expresses his choice by depressing the pen stylus.
The action-sequence then steps either to display another table for argument
selection, or to complete the operation.

In addition to the information described above, which changes from menu
to menu, there is displayed in large print in the lower left corner of each menu
a set of unchanging menu selection aids. These items each consist of one
character (see layout which follows) which perform the following actions when
selected.

M: Selection of this character will display more entries (up
to 16) from the current menu.

L: Display less entries.

U: Roll the menu up half a frame, if possible (needed to scan
tables with more than 16 entries).

· D: Roll the menu down half a frame, if possible.

A: ABORT the current action sequence, and present the Con­
trol Table to allow operator to select a new action sequence.

T: Allow the operator to choose a different menu from which to
make the currently requested selection. The table of Tables
is presented for choice of alternate menu, then it is presented
for selection of the current requested input.

H, Q: These menu aids are displayed only in Macro definition mode.
See Section VI-D, lVIacro, of this document for details.

The menu aids may be selected by positioning the tablet stylus until a double
blinking underbar is situated under the desired menu aid. Depressing the pen
stylus will perform the selected aid function.

4/69 18 BUILD/PRM/ A

4/69

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

MESSAGE FOR THIS USER SELECTION

NAME OF TABLE

SELECTION I

SELECTION 2

SELECTION 3

SELECTION 4

AUMH
TDLQ

19 BUU.D/PRM/ A

AGT BUILD OPERATOR, BU;ILD
Programmer's Reference Manual

C. CONTROL TABLE: OPERATIONS

All the facilities initially built into the BUILD Operator are listed in a Con­
trol Table. It may be extended via the MACRO facilities covered in Section VI-D.
The Control Table is presented whenever a new action sequence may be initiated.
By selecting the name of an action sequence from the displayed control table, the
user activates the sequence.

The non MACRO-extended BUILD facilities fall into the following four
general categories:

1. Work Storage Management

This includes commands for emptying, saving, or adding to the image
portion being worked on in the Working Storage.

2. Argument Processing

This includes commands for creating, merging, renaming or deleting
Formal Parameters and for setting or altering their assigned values or changing
assignments between static and dynamic.

3. I/O Commw:lication

These commands create menu tables for user input selection, display them,
process the resulting selections. They also include the ability to input strings of
characters from the keyboard.

4. MACRO Facilities

These commands permit the user to compose new action sequences from
existing ones. Thus a useful sequence may be carried out by the user as the '
"definition stage" of a macro input. The resulting sequence is saved and assigned
a name which is entered in the Control Table. Later when the execution of any
such predefined action sequence is desired, it can be selected from the Control
Table as if it had been ''built-in" and the entire set of its constituent action se­
quences performed as one user step. Such selection of a macro name to acti­
vate its definition will be termed "invoking" of the MACRO.

4/69 20 BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

V. EXTERNAL BUILD ENVIRONMENT

A. EXTERNAL SYMBOLS

lVIany Image Items take as arguments numerical values representing angles,
coordinates, or counts, but some Items make references to character strings,
executable subroutines, other images or image portions. In order to permit the
static or dynamic assignment of Formal Parameter values to range easily over
all of these value classes, the assignment commands permit value selection
over all defined external symbols. These include all loaded entry-point names
as maintained in the External Symbol Table. It is recommended that when pre­
paring application packages those desirable external symbol choices be gathered
into new Tables for presentation to the user.

B. EXTERNAL ROUTINES AND IMAGES

A user-created BUILD Image portion can be easily linked to new values or
coding entered from the on-line monitor. Also pre-assembled routines or images
can be loaded from the External System Library and referenced by new BUILD­
created image segments.

C. EXTERNAL SYSTEM LIBRARY IMAGE SEGMENTS

The SAVE and RETRV Operators are available as standard system programs
to gather selected Image Segments filed in BUILD's in-core Temporary Library
and save them as a set, with any Formal Parameter variables, on the External
System Library. These can later be selected for retrieval and reinstatement into
some later core resident BUILD item library for use in subsequent BUILDing.

D. EXTERNAL CONTROL-SEQUENCE-DEFINITION MACROS

A BUILD user may select a set of MACRO defined action-sequences to be
dumped as a set into the permanent External System Library. Previously dumped
sets of control definitions may be loaded and the constituent commands added to
the Control Table. Thus, the universe of possible useful commands may be
selectively shuffled to provide more optimum command sets for differerent ap­
plications.

B UILD/PRM/ A 21 4/69

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

VI. INITIAL BUILD OPERATIONS AND THEIR USE

A. WORK STORAGE CONTROL OPERATIONS

1. CLEAR

Executing this operation causes the Working Storage and the Formal Para­
meter Tables to be emptied. Any created image portion being viewed will disap­
pear. It will no longer be available for BUILD use.

2. PUT

This operation causes a copy of the Image Segment being displayed (the
Working Storage) to be saved with all its current static or dynamic argument as­
signments (Formal Parameters) into the core-resident BUILD Temporary Li­
brary. The names, identity, and current assignments of all Formal Parameters
are noted and saved with the image portion. The keyboard is activated and the
user is requested to type in a name under which the image portion is to be filed.
The name is added to the directory for the Temporary Library.

Temporary Library

Current
Arguments

Formal Parameters

Current
Segment

OPERATION OF "PUT"

4/69

Work Storage Table
'1

Arguments

Segment -----/
,

Arguments
Directory _

'
Segment '

Arguments

Segment

(I
PUT ("NAME'?

23 BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

3. GET

This operation presents the user with the Temporary Library Table (direc­
tory) for selection. Once the user selects the name of an entry from the Tempo­
rary Library, the Image Segment filed under that name is appended to current
Working Storage contents and therefore appears in the display under the current
transformation. The Formal Parameter definitions of the filed Image Segment
are also retrieved and appended to those currently in the Formal Parameter
Table.

4. SKETCH

This operation displays a tracking cross on the current X-Y plane. The
tracking cross can be moved over the X-Y plane by the ADTl Tablet stylus. When
the stylus is depressed, a blanked (MOVE) vector item to the current cross posi-
tion is added to the current Image Segment in the Work Storage. Any further
motion of the stylus (while depressed) will add line segments to the current Image
Segment,. Releasing stylus pressure will again track in preparation to enter a MOVE item.

5. SKBAND

This operation permits sketching of straight lines. A menu is presented
with a D or an M entry. Selecting D will remove the D and present the M. Select­
ing M will remove the M and present the D.

While the D is displayed, a line will J::>e drawn from the last point of the cur­
rent Image Segment to the current tracking cross position. Depressing the stylus
(anywhere but on the D) will stop moving the. endpoint of the line, enter the line
into the Work Storage as part of the current Segment, and start a new line from
there to wherever the tracking cross i~ subsequently moved.

While the M is displayed, no line will be displayed to the tracking cross
position; depressing the stylus will enter a MOVE (blanked vector Item) to the
cross position into the current Image Segment.

6. SKETCHING - GENERAL

The current Image Segment is maintained when the SKTCH mode is entered;
all items "sketched" in will be appended to that image.

RETURNING - Depressing an FNS switch will return to the normal
mode where tables are displayed.

BUILD/PRM/ A 24 4/69

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

ERASING - Depressing an FNS switch will erase the last item con­
structed in the current SKETCH call. If the operator
attempts to erase above the beginning of the current call
to the SKTCH routine, then the program will return as
in RETURNING. Also, the tracking cross position is
moved to the new last beam position after each erase
call.

The entire two-dimensional construction built while in Sketch operations,
including the tracking cross, is displayed under the current transformation of
the array. Thus, if a rotation is currently enstated, the sketched image and the
tracking cross will be drawn under that rotation, and the user will see on the
screen a two-dimensional projection of the cross and the image he is sketching.

B. ARGUMENT ASSIGNMENT AND FORMAL PARAMETER CONTROL

1. SETVALUE - Set by Value

Sets a Formal Parameter to the current value of any variable (e. g. ,
DIALA). After the SETVALUE operation is selected, the Formal Parameter
Table is displayed until a selection is made from it.

After a selection is made from the Formal Parameter Table, the External
Symbol Table, which contains all names loaded as entry points will be displayed.
Then the parameter selected will be set to the value of the variable selected.

2. SETNEGVAL - Set to Negative Value

Sets a Formal Parameter to the negative of the current value of a variable.
It is exactly like SETVALUE, except that the value retrieved is negated. This
operation is useful in the construction of symmetric images. To sequence
SETNEGVAL, first select SETNEGVAL from the Control Table, select the
Formal Parameter Table, and finally select the parameter variable from
the Symbol Table.

3. SETBNAME - Set by Name

This operation sets a formal parameter to "track" a variable (e.g., for a
SCALE factor to track dial A). Also SETBNAME should be used to assign the
arguments of such DSPLY items as JSR, IMG, LABL, JMP, CJMP, WJMP

4/69 25 BUILD/PRM/ A

'AGT BUILD OPERATOR, BUILD

Programmer's Reference Manual

and all Table operations. This includes all Image Items whose arguments de­
liver values which are Addresses of core locations. These are all described in the
DSPLY/PRM with argument mnemonics beginning with a letter "L".

To sequence through the SETBNAME operation, select SETBNAME from
the Control Table, then select from the Formal Parameter Table the name of the
Image Argument which will track the selected variable name, then select from
the displayed External Symbol Table the name of the variable to be tracked. The
operation will then complete itself.

The two names picked are put into a name pair that will appear whenever
the Formal Parameter Table is again displayed. This name pair will be broken
if the Formal Parameter is later reassigned.

Thus, for the example above, the displayed Formal Parameter name will
be changed from SCALE to "SCALE VCDA" and any changes in the position of
Variable Control Dial A will change the scale of subsequent affected Image
Items.

4. HOLD

Holds the value of a parameter at its current value, making the assignment
static. This is useful in stopping a Formal Parameter from tracking a variable.
The operation is equivalent to doing a SETVALUE of a variable to a Formal
Parameter. With HOLD, however, it is necessary only to select operation HOLD
and then the Formal Parameter to be held. ,

If the argument of the Formal Parameter had last been set by a SETN com­
mand, i.e. , was dynamic, then the external name appended to the Formal Para­
meter name will be deleted. Thus, a HOLD of "SCALE VCDA" will change the
Formal Parameter Table entry displayed to "SCALE."

5. MERGE - Merge Forinal Parameter References

Causes all references to the first Formal Parameter to use the second
Formal Parameter. The first Formal Parameter is dropped from the Formal
Parameter Table. An example of the use of this operation would be to GET
(MOVE) and GET (DRAW), then MERGE both Y parameters. The line drawn
would then always be horizontal because the Y values would be "merged" and
would from that point on, always have the same values.

BUILD/PRM/ A 26 4/69

AGT BUILD OPERATOR, BUILD

Programmer's Reference Manual

The sequence for this operation is to select the MERGE control operation,
then a formal parameter. Select a second Formal Parameter and the first will
be merged onto it. The first parameter selected will be erased from the Formal
Parameter Table.

6. RE NA ME - Rename a Formal Parameter

Select operation RENAME. then the Formal Parameter to be renamed. then
input a name (up to 10 characters & terminated by a "control C") on the console in­
put unit. The name of the selected Formal Parameter will be changed to the one
just typed.

7. CLOSE - Eliminate a Formal Parameter

CLOSE removes a selected Formal Parameter from the Formal Parameter
Table, and sets all references to the value of the parameter or to the name of
the parameter, depending on whether a SETVALUE or a SETBNAME was last ap­
plied (i.e., a rotation angle, AX, can be permanently left at its current value,
or can permanently reference a dial, for example). To sequence this operation,
select CLOSE from the Control Table, then select the Formal Parameter to be
CLOSE'd, and the operation will take place.

C. I/O AND COMMUNICATION CONTROL OPERATIONS

1. INPSTRING - Input String

Select INPSTRING from the Control Table. then select from the Formal Para­
meter Table the variable which is to address the input character string, then
type in the string terminated by a typed control-C. The string will be stored
into constant storage in LCG or DSPLY ASCII format. This is useful for inputting
LA BL arguments.

2. DELETE - Delete from a Table

Select DELETE from the Control Table, then select from the list of Tables
the name of the table from which an item is to be deleted. Finally, select the
item from the chosen table. The item selected will be deleted from the table.
If the list of Tables is the one selected above, then a selection of an item from
it will not only delete that table name from the list of Tables, but will also de­
lete the entire table itself.

-!/ ()9 27 BUILD/PRM/A

AGT_BUILD OPERATOR, BUILD
Programmer's Reference Manual

3. MOVTBLE - Move Table Entry

Select MOVTBLE from the Control T.able.. then select from the list of Tables
the two tables to be involved in the moving operation. Select from the first
table involved all items to be copied onto the second table. As each selection
is made, the table entry is copied from the one table to the other.

4. ADDENTRY - Add an Entry to a Specified Table

This command enables the operator to add new entries to any table. The
operator will be shown a list of all tables. He then selects the table to which he
wishes to append the new entry, and then types in the name he wishes to give the
entry. If the operator should select the ''table of tables" as the table to which
the appendment is to be made, then he has in fact created an entirely new table,
to which other table entries can be moved. For example, the user can create a
table of all the control dial variables, giving it the name "DIAL TBL" and then
selecting a MVTE operation to move VCDA through VCDF into "DIAL TBL. "

D. MACRO FACILITIES

1. MACRO - Start a Macro Definition

Selection of MACRO from the Control Table will put BUILD into the macro
mode. All selections made by the user will be recorded until ENDM is selected
to end the macro definition mode. When MACRO is selected, the TTY is enabled
for the user to typein the name of the macro sequence to be constructed. This
macro will be a recording of the BUILD action sequences selected following
MACRO.

While in the MACRO definition mode, the operator, as before, will be mak­
ing selections from tables in order to step BUILD action sequences. If the
operator makes a selection from some menu, then that selection is recorded,
such that when the macro is later invoked as an operation, the same selection
will be automatically accepted with no user choice or intervention. However,
if in the Macro definition, the operator wishes the choice he makes now not be
automatic, but to be only a dummy, later to be replaced by a selection made and
accepted at Macro invoke time, he may so specify by positioning the blinker and
depressing the pen stylus over one of two control areas (H, Q) in the menu dis­
play. (These two special control areas are displayed only at Macro definition
time. The remaining control areas are always displayed when a menu selection

BUILD/PRM/ A 28 4/69

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

is to be made). Selecting the Q(Quit) menu-control tells the Macro processor not
to record the menu selection made now, so that when this Macro is later invoked
the user will again have to choose selection from this menu. Selecting the "H"
menu-control will do everything the first control will do, but in addition will ask
for a comment to be typed in. This comment is recorded. When the macro is
later invoked, the comment input during Macro definition time will be displayed
in italics at the top of the screen. Thus, the operator defining new Macro is able
to give instructions to the operator who will be using the macros.

During Macro definition, if the operator decides to select an item from a
different menu than that originally presented, he may do so as described in sec­
tion IV. The J.Vfacro processor will record the new table chosen for display and
selection, and when the macro is later invoked only the menu finally chosen for
display will be displayed.

This feature has many obvious uses. For example, a GET command will
ordinarily display a menu of all display segments in the Temporary Library and
wait for a selection to be made. If the person defining a macro, instead wants
the macro user to GET only items moved into some "PARTS" list, then when he
selects MACRO, followed by operation GET, he can select the menu display con­
trol T to pick another table, choose the "PARTS" table, then select the special
:Macro menu display control H to input a message. Typing in "GET ITEM FROM
PARTS LIST," will be recorded. When this macro is later invoked, at this
point, the "PARTS" menu will be displayed for selection, and the above message
string will be displayed in Italics.

2. E1'.1DM - End Macro Definition

Selection of ENDM from the Control Table will halt the macro definition and
enter the macro name in the Control Table. The action string is moved into the
temporary library, and this new control may now be selected like any other. pre­
defined BUILD operation.

3. DUMPM - Dump Macros

This operation copies MACRO strings (BUILD operation definitions) from
the l\facro-Action Library to the External System Library. The user is asked to
input a name for this collection of action strings. He is then shown the menu of
all current action strings (the Control Table) so that he may select the desired
operations to be DUMPed. Each user selection is recorded; when the user
signifies (via pedal or F NS) that the list is complete, the entire collection of
operations is dumped into the External System Library under the file title input
by the user.

4/69 29 BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

4. LOADM - Load Macros

This operation loads into the l\1acro-Action Storage a collection of Macro
definitions (BUILD operations) which was previously dumped into the External
System Library via a DUMPM operation. The user must input the name of the
collection to be retrieved. Then the :Macro strings are loaded into the Macro­
action storage, and the l\1acro names are appended to the list of available BUILD
operations (Control Table).

E. OTHER CONTROL OPERATIONS

1. HIDE - Suppress Display

This operation permits the user to suppress the normal display of either the
menu, or the current Work Storage Image Segment, or both. When the menu
display is suppressed, a small U is displayed in the lower left-hand corner of the
screen; selecting it will re-instate display of menus.

After selecting HIDE from the Control Table, selecting from anywhere in
the center of the screen will suppress the normal Work Storage display, and
selecting the menu Table Name will suppress any further display of the Control
Table.

2. UNHIDE - Stop Display Suppression

This operation is used to re-activate normal display of the current Image
Segment (Work Storage) after a HIDE operation.

Dl'ILDlPHl-1 iA .J /(j !)

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

APPENDIX A

Predefined Image-Items (Initial Contents of Temporary Library)

Item Name Names of Arguments

VISUAL ELEMENT GENERATION:

MOVE
DRAW
LABL
2DTBL

FZ, FX, FY
FZ, FX,FY
LT EXT
LTABLE

CONTROL EFFECTING:

IMG
JSR
NUL

RET

SAVT

REST

LOOP
ENDL

JMP
CJMP'PEN

CJ MP' Fl

CJMP'F2

LDSNl
LDLSl
LDMB
ORMB
AND MB

4/69

LIMG
LSUBR
LARG

ICNT

L
L

L

L

LVAL
LVAL
B
B
BMSK

A-1

Item Function

Blanked vector to end-pt. coor-ds.
Displayed vector to end-pt. coor-ds.
String of text characters
Table of packed 2D vectors

Sub-image call
Sub-program call
Null (for passing arguments to

S. R. 's)
Sub-image return exit (restores

transf. & count)
Open-brackett for transform &

loop range
Close-brackett for range of trans­

form & loop
Repeat st.art
Repeat end (cannot be nested w/o

SA UT-REST)
Jump in image
Conditional jump in image (on

Pen)
Conditional jump in image (on

full-wd)
Conditional jump in image (on

rt-half-wd)
Load signs to flags
Load "=0" test to flags
Load all mode bits
Set selected mode bits
Reset wi-selected mode bits

BUILD/PRM/ A

TRANSFORM SPECIFYING:

SCL
ROTX
ROTY
ROTZ
RXYZ

DX

DY

DZ

DV

LDSCL

LDRX

LDRY

LDRZ

LDRV

LDX

LDY

LDZ

LDV

LDI

BUILD/PRM/ A

FSCAL
AX
AY
AZ
AZ,AX, AY

FX

FY

FZ

FZ, FX, FY

FSCAL

AX

AY

AZ

AZ, AX, AY

FDX

FDY

FDZ

FDZ, FDX, FDY

AGT BUILD OPERATOR, BUILD

A-2

Programmer's Reference Manual

Scale down from current size
Rotate about local X-axis by AX
Rotate about local Y-axis by A Y
Rotate about local Z-axis by AZ
Rotate about local X, Y, AX, then

about resulting Y by AY, then
about final Z axis by AZ.

Displace along local X from cur­
rent position

Displace along local Y from cur­
rent position

Displace along local Z from cur­
rent position

Displace following image from
current position along local
X, Y, Z axii by (FX FY FZ).

Scale subsequent image seg. by
FSCAL

Instate rotation by AX about CRT-X
axis

Instate rotation by A Y about CRT-Y
axis

Instate rotation by AZ about CRT-Z
axis

Instate successive X, Y, Z rotations
from CRT frame.

Reset local X displacement to FDX
from CRT center

Displace FDY from CRT center
along local Y axis

Displace FDZ from CRT center
along local Z axis

Displace from CRT center by FD
along local axis.

Instate CRT reference frame.

4/G9

Operations

CLEAR

GET

SKETCH

SKBAND

PUT

SETBNAME

SETVALUE

SETNEGVAL

HOLD

MERGE

RENAME

CLOSE

INPSTRING

DELETE

MOVE TE

4/69

AGT BUILD OPERATOR, BUILD

Programmer's Reference l\fa.nual

APPENDIX B

Pre-defined Operations

Additional User Inputs Required
Select from Tables: - TTY Input

Temporary Library Table

Input a Name

External Symbol Table
Formal Parameter Table

External Symbol Table
Formal Parameter Table

External Symbol Table
Formal Parameter Table

Formal Parameter Table

Formal Parameter Table
Formal Parameter Table

Formal Parameter Table
Input a Name

Formal Parameter Table

Formal Parameter Table
Input a String on TTY

Table of Tables
Entry from Selected Table

Table of Tables
Table of Tables
Any entry(s) from first table selected

B-1 BUILD/PRM/ A

APPENDIX B (Continued)

Operations

ADDENTRY

MACRO

ENDM

DUMPM

LO ADM

HIDE

BUILD/PRM/ A

AGT BUILD OPERATOR, BUILD
Programmer's Reference Manual

Additional User Inputs Required
Select from Tables: - TTY Input

Table of Tables
Input a Name

Input a Name

Entry from Control Table
Input a Name

Input a Name

B-2 4/69

a [!J a 0 E! ___ A_M_o_s_c_A_R_D_R_E_A_D_E_R_R_O_l_T _T_r N_E_s_, _c_D_R_D_R_

Programmer's Reference Manual

ABSTRACT

CDRDR is a set of relocatable routines in the AMOS library which are used to
read punched cards on the CDR-Pl. It contains the following subroutine entry points:

RDCB
RDCH

Read Binary Card(s)
Read Hollerith Card(s)

CDRDR contains no external references, and so is independent of all other pro-
grams.

REFERENCE DATA

CDRDR is a set of relocatable routines in the AMOS library which are used to
read either binary or Hollerith cards. It does not depend on any external references.
CDRDR contains the following entry points:

A. RDCB-Read Binary Card@}_

This subroutine reads as many cards on the C DR-Pl as is necessary to fill the
TABLE of specified LENGTH. (One card will fill a table of 4tl8 words). Each column
on the cards is interpreted as two 6-bit binary characters.

Calling Sequence:

JPSR RDCB
TABLE
LENGTH
ERROR
DONE

B. RDCH-Read Hollerith Card(s)

0 Address of 1st word of table
0 Length of table
0 Error instruction
0 Instruction to be executed when done
0 Foreground program

This subroutine reads as many cards on the CDR-PI as is necessary to fill the
TABLE of specified LENGTH with characters packed 5 per word. (One card will fill
~,0::3 words. Each column on the cards is interpreted as one character.) Before the
characters are stored, they are converted from the Burroughs 6-bit code to standard
,\::\IOS G-bit internal code. If more than one card is read in, a carriage return character
is packed into the table to indicate an end of card.

U/1G/G7 -1- CDRDR/PRM/ A

C][!J CJ 0 [!! ___ A_M_o_s_c_A_R_D_._R_E_A_D_E_R_R_o_u_T_I_N_E_s_,_._c_D_R_. _D_R

C alling Sequence:

JPSR RDCH
TABLE
LENGTH
ERROR
DONE

Programmer's Reference :Manual

0 Address of 1st word in table
0
Length of table

0 Error instruction
0none instruction
°Foreground program

If the reader is in the "not ready" state as indicated by S4 ~7] , the "start pivot"
(STPVT) is set to return to a location in the program, and the foreground program is
executed, in anticipation of the operator's turning on the reader. CDRDR may not be
re-entered from RDCH or RDCB until STPVT and BUSY have been cleared.

In case of an error, the card reader is turned off and an ERROR instruction is
executed.

RDCB and RDCH are "open" subroutines, that is, a foreground program may be
in operation while the cards are being read, which may be interrupted by the card
reader to process characters and end-card pivots. The contents of all registers will
be restored when CDRDR finishes, and control returned to the foreground program.

While the card reader is being used, location BUSY is negative, indicating that
it should not be called again until it has finished. Jf it is called again before it has
finished, RDCB will wait until BUSY has been cleared by the character processor
before proceeding to its next task. In this case, the foreground program being executed
is the waiting for location BUSY to be cleared.

When CDRDR has finished filling its TABLE, the card reader is turned off and
the instruction DONE is executed.

C. CON-Convert from Burroughs to AMOS 6-bit Code

This subroutine converts the Burroughs 6-bit character in BR[24-29] to the
corresponding AMOS 6-bit character and leaves it in BR[24-29 l

Calling Sequence:
uBR [24- 29}: Burroughs Character

JPSR CON

l :~ '] (i (ii

0 Returns to next location
0 BR[24-29] = AMOS character

-2- CDRDR/PHM/ A

C:U!.I a~ c:! AMO~ CARD READER ROUTINES, CDRDR

Programmer's Reference Manual

D. OFF-Turn Off Card Reader

This subroutine is called to turn off the card reader. It sets the character,
end-card and error-end-card pivots to point to a dummy subroutine, clears the BUSY
flag, and turns off IC control bits for the card reader IC[6-7].

Calling Sequence:

JPSR OFF
0 Returns to next location

12/16/67 -3- CDRDR/PRM/ A

a l!J a r."l (:! _________ A_M_O_S_F_I_L_E __ C_O_P_Y~,_C_O_P_V_R
=.I Programmer's Reference Manual

GENERAL

The AMOS routine COPVR may be used to copy specified files on an input
tape to be appended to an output tape.

OPERATION

The statement input to the AMOS Monitor includes (optional) the means to
specify that an attempt to verify the copied files against the input files be made.
The COPVR calling sequence is as follows:

COPVR (FffiST, LAST, INTAPE, OUTTAPE, MODE, DENSl, DENS2) !

where:

FIRST = First input file no.
LAST = Last input file no.
INTAPE = Input tape unit no.
OUTTAPE = Output tape unit no.
MODE = JS copy only, no verify

DENSl
DENS2

= 1 copy and verify, with minimal typeout
(i. e. , "verify" or "no verify")

= 2 copy and verify, with typeout
(i.e. , "verify" or "record, file, no. words, no. words
failing to verify, contents of first input word failing,
contents of first output word failing")

= Input tape density (= JS, 1, or 2)
= Output tape density (= JS, 1, or 2)

The verify subroutine VRFY in COPVR may be called separately under AMOS
to attempt to verify a specified number of files from specified first files on spe­
cified input and output units. The VRFY calling sequence is as follows:

VRFY (FI, FO, IN, OUT, MOD, NOF, DI, DO)!

where:

1/69 -1- COPVR/PRM/B

a l!I a r:I EE! ______ A_M_O_s_F_I L_E_c_o_P_Y_.., _c_o_P_V_R

:I Programmer's Reference Manual

FI = First input file no.
FO = First output file no.
IN = Input tape unit no.
OUT = Output tape unit no.
NOF = No. files to be verified
MODE = 1 output corresponds to that in copy call

2
DI = Input tape density (= ~' 1, or 2)
DO = Output tape density (= ~. 1, or 2)

HARDWARE REQUIREMENTS

/

1. Two tape drives compatible with following required software items.

2. Enough available core (after program loading) to hold twice the length of
the longest record to be checked.

SOFTWARE REQUIREMENTS

AMRM, MTAC and RDHDR versions appropriate for the hardware configura­
tion used.

1/69 -2- COPVR/PRM/B

AMOS CARD-TO-TAPE ROUTINE, CRDTT

Programmer's Reference Manual

ABSTRACT

CRDTT is a utility routine in the AMOS library which is used to read in a
batch of text files from cards on the CDR-Pl, and output them as successive A TEXT
files on the specified mag tape unit. It links with CDRDR and mag tape routines within
the AMOS Monitor. It is independent of system version.

HEFERENCE DATA

This subroutine is called internally by the calling sequence:

JPSR CRDTT

UNIT 0 Unit No. =O, 1, 2, or 3

0 Next instruction

It reads Hollerith cards on the CRD-Pl and outputs them at the end of the
specified tape (unit) as a series of files which may subsequently be edited by the
AMOS text editor or translated by ASMT, ADEPT, or FORTRAN.

The Deck Format of the cards input must be as follows:

Column: 1 2

* *

12/lG/Gi

Page 1

*
Page 2

*

*
Page N

* *
Page 1

*

*

6-10
TIT LA

TIT LB

-1-

16-20
MODE

MODE

CRDTT/PRM/ A

Page M

**

*

* *
* *
where:

AM 0 S CARD - T 0- TAPE R 0 UT IN E , C RD TT

Programmer's Reference Manual

TIT LC MODE

TITLZ MODE

TITLA, ... TITLZ are the titles to be given to the output files for each program.

MODE indicates in which mode the characters are to be packed.

If MODE•FORTN, no tabs will be inserted for spaces; This is necessary for
the proper compilation of AFORT programs.

Otherwise tab characters will be inserted to replace strings of blanks ending at
the specified tab stops, which are set at 1010, 2210 , and 3410. Trailing spaces will be
deleted.

NOTE

The tab stops and the maximum number of input columns may be changed. See
the maintenance manual.

CRDTT will write the current page and start a new one if either the buffer length
is exceeded or the maximum number of lines is exceeded.

NOTE

This parameter may be changed; it is specified by entry 11oint LINES.

As CRDTT completes each separate file it Will type TITLE: FILE NO. N.
where N is the file number of the output A TEXT file.

If an illegal character is encountered on a card, a ? character will replace it
in the te)\.1:.

12/1G/G7 -2- CRDTT/PRM/ A

AMOS CARD-TO-TAPE ROUTINE, CHDTT

Programmer's Reference .Manual

When CHDTT has completed processing the deck, it will write a terminating
file mark on the output tape, and rewind the tape.

C HDTT must link to CDRDR, the AMOS library card-reader routines, as
well as to AMRMS.

1:2/l<i/(i/ -3- CHDTT/ Pl\M/ !\

AMOS DEBUGGING ROUTINES, DBUG

Programmer's Reference Manual

GENERAL

DBUG is a relocatable AMOS library file which contains programs that
may be used for debugging purposes. They are loaded when requested by a
statement input to AlVlRMX. If symbolic typeout MODE is requested, file DPS
will also be loaded from the library.

MONITOR STATEMENTS

OPEN (ADDR, "MODE'~!

OPEN causes the value of expression ADDR to be typed in mode OCTAL
and followed by a colon. Then, the current contents of memory location ADDR
are listed in the mode MODE. The memory cell at location ADDR is now "open."
As long as a cell is left "open," further information concerning it may be requested
by typing "@ ", "="or "/"(see below), or information concerning it may be changed
by typing:

NAMES VALUE CLOSE-CHARACTER

In the above, the inputs NAMES and/or VALUE may be omitted. If given,
the input NAMES may be any number of undefined alphanumeric symbols, ten or
fewer characters in length, with each symbol followed by a colon (:). Each such
symbol is thereby defined in the current Monitor symbol list as a name of the
"open" location ADDR. The expression VALUE, if given, is evaluated and its
value replaces the contents of location ADDR when it is "closed." The CLOSE­
CHARACTER, (comma, backspace or +-, semicolon, or carriage return) enters
the new value (if any) into the "open" cell (location ADDR) "closing" the cell,
then does one of the following:

4-69

Close-Character

Comma

Backspace or +­

Semicolon

Carriage Return

Action

Opens the next cell in memory.

Opens the previous cell in memory.

Opens the cell addressed by the last open cell.

Does not open any further cells, returns to
Monitor control statement input.

1 DBUG/PRM/A

AMOS DEBUGGING ROUTINES, DBUG

Programmer's Reference Manual

While a cell is open, typing

@

I

*

0 or [

Lists the nearest symbolic expression defining the
location of the open cell.

Lists the contents of the open cell in any modes other
than MODE.

Lists the contents of the location addressed by last
listed cell in the mode MODE.

Causes all input for expression VALUE to be dropped
and ignored so that immediate closing would not alter
the contents of the open cell.

Causes any comment (characters) up to the next 0 or [
to be ignored.

Closes the current open cell without altering its contents,
and then opens the cell with address VALUE.

$ Stores VALUE in "open" cell.

If no MODE is given, OPEN! uses that set by the last mode-setting statement.

SRCHW (WORD, MASK, FIRST, LAST, ''MODE'')!

SRCHW will list, in formats MODE, all memory words from location FIRST
through location LAST whose contents masked by MASK equal the value of WORD.
If no FIRST or LAST address is given that of the last bound-setting statement is
taken. If no MODE is given that of the last mode-setting statement is taken.
SRCHW is a bound-setting and a mode-setting statement. Note that if no MASK
is given, it will be an "omitted argument" and represented by -o, so that the
search will be for exact matching of the value of WORD.

SR CHA (ADDR, FIRST, LAST, ''MODE'')!

SRCHA -- the behavior of SRCHA (A, F, L, M) ! is identical to that of a
control statement SRCHW (A, 77777, F, L, M) ! .

TRAPS (FIRST, LAST)!

TRAPS causes memory locations FIRST through LAST to be filled with
''trap" instructions. If no FIRST or LAST address is given, that of the last
bound- setting statement is taken.

DBUG/PRM/A 2 4-69

AMOS DEBUGGING ROUTINES, DBUG

Programmer's Reference Manual

SNAP (FIRST, LAST, "MODE," (REGISTER-LIST))!

SNAP restores registers and pivots to values saved in current PANEL,
except where changed by new values in REGISTER- LIST, then starts execution at
location FIRST. Wben execution reaches location LAST, or PULSE 1 (manual
interrupt) switch is depressed, execution is suspended. The location at which
execution was suspended is then typed in octal, followed by a listing of the result­
ing register values in formats MODE. The resulting register and pivot contents
are then enstated as the current PANEL. If no FIRST or LAST address is given,
that of the last bound-setting statement is taken. If no MODE is given, that of
the last mode-setting statement is taken. SNAP is a bound-setting statement,

4-G9 3 DBUG/PRM/A

AMOS EDIT DISPLAY PACKAGE, DISP
Programmer's Reference Manual

INTRODUCTION

This manual is intended as a reference manual for DISP, the AMOS EDlT
Display Package. Certain subroutines contained in DISP can be used by other user
programs; however, it should be noted that many DISP routines contain external
references into EDIT and FONT, the EDIT character coordinate lists, and that these
programs (or user furnished equivalents) would be loaded into core if DISP routines
were called elsewhere.

For further information, the user is advised to consult the following docu­
ments:

1. DISP Software Maintenance Manual

2. DISP Program Listing

3. DISP Software Operating Instructions

4. FONT Programmer's Reference Manual

CONFIGURATION REQUIRED

The DISP source program is written with conditional assembly statements to
cause the assembly for any of the following configurations:

Version 1:

Version 2:

Version 3:

Version 4:

Version 5:

DISPLAY ROUTINES

OSD-1 with DAC/CMP-2 pair loaded from destination D14e.

OSD-1 with DAC/CMP-2 pair loaded from destination D7.

OSD-2, CTO with DAC/ ACE pairs in destinations Dl.0 8 ,

Dlle, and Dl2e and with CTO distributor in destination D6.

AGT/1,0

AGT/3,0

A. DCHAR - Display Character Subroutine

DCHAR is called to display a character in a given position on the oscilloscope
screen. The calling program must first set up the character position in location
$DCHd5 with X/2 in the upper half and Y/2 in the lower half and must load the

6/68 - 1 - DISP/PRM/B

AMOS EDIT DISPLAY PACKAGE, DISP
Programmer's Reference Manual

ambilogical configuration register, D5, with the appropriate control word (4.6.0.01 ! H
6.0.0.Dl for versions 1 and 2, and 44,06.0 ! H 1,0,6,6,6 for version 3). Control is returned
to the calling program (see calling sequence below) after the character has been dis­
played in versions 1 and 2 and after the vector generator has been started in versions
3, 4, and 5. The calling program has the responsibility of turning off the ambilogical
control register (versions 1, 2, and 3 only).

Calling Sequence:

DCH.65: Character coordinates (X/2fH Y/2)
AR: 6-bit AMOS character code (bits 24-29)
L: JPSR $DCHAR
L+ 1: Returns here if normal character
L+2: Returns here if backspace (77 8)

L+3: Returns here if C/R (15s)
L+4: Returns here if tab (11 e)
L+5: Returns here if SPACE (4.0 8)

B. DTBL - Display Special Character Subroutine

DTBL is called to display a special character not in the standard AMOS charac­
ter set (normally EDIT calls DTBL to display the characters "down arrow", "right
arrow", and "page mark"). On entry, a fetch instruction addressing the desired
coordinate list for the special character is in the AR register. The FONT Main­
tenance Manual should be consulted for the fetch instruction and coordinate list
structures. As in DCHAR, it is the responsibility of the calling program to place
the character coordinates in DCH,05 and to turn on and off the ambilogical control
register (versions 1, 2, and 3 only).

Calling Sequence:

AR: Special fetch instruction
L: JPSR $DTBL
L+ 1: Returns here

C. LNDIS - Display Line Subroutine

LNDIS is called to display a text line on the display scope. The arguments to
LNDIS include the X and Y origin coordinates for the beginning of the line and the
address - 1 of the packed text line. The characters are packed five per word and
terminated by a carriage return character (15e) or BACKSPACE (77 8). LNDIS
handles all necessary loading of the ambilogical control destination (D5).

6/68 - 2 - DISP/PRM/B

AMOS EDIT DISPLAY PACKAGE, DISP
Programmer's Reference Manual

Calling Sequence:

AR: Origin of line coordinates (X/2 !H Y/2)
L: JPSR $LNDIS
L+ 1: Address - 1 of first word in line
L+2: Returns here after C/R (15e)
L+3: Returns here after BACKSPACE (77e)

D. BMSET - Set Oscilloscope Beam Subroutine

BMSET is called to load the ambilogical control register and move the scope
beam to a given position for versions 1 and 2, and to load the ambilogical control
register for version 3. Also, the first time the version 3 BMSET is entered, the
Coordinate Transform Operator array is loaded with appropriate coefficients and
the end-of-list interrupt pivot is initialized. In versions 4 and 5, the array is
loaded and the vector generator enabled.

Calling Sequence:

AR: Beam coordinate (X/2!H Y/2) (versions 1 and 2 only)
L: JPSR $BMSET
L+ 1: Returns here

DISPLAY PARAMETER SETTING

A. SCALE - Set Parameters Subroutine

SCALE is the subroutine entered to set the desired character coordinate
scaling, character and line spacing, tab settings, and the standard number of lines
displayed before and after the current line in EDIT. This subroutine is normally
called from the AMOS Monitor by an AMOS control statement (see below). Any of
the functions performed by SCALE may be omitted by making the appropriate argu­
ment null (-£1). In addition, certain tab increments can be left undisturbed by a
zero argument.

Calling Sequence:

L: JPSR $SCALE
L+ 1: Address - 1 of a list of five tab spacing values
L+2: No. lines displayed before and after the EDIT "current line"
L+3: Character spacing ! H line spacing
L+4: Character scale
L+5: ,t1
L+6: Returns here

6/68 - 3 - DISP/PRM/B

AMOS EDIT DISPLAY PACKAGE, DISP
Programmer's Reference Manual

AMOS Monitor Statement:

SCALE (Tl; T2; T3, T4, T5), LINES, XINC !H YINC, SCALE)!

B. TBSE T ,.,. Com,eute Tab Coordinates Subroutine

TBSE:Tis called by SCALE to compute the coordinate values of the tab settings
according to the current tab count values and the character spacing value. The tab
coordinates computed are used in LNDIS for setting the X coordinate when a tab
character is scanned in the text line.

Calling Sequence:

L: JPSR $TBSET
L+ 1: Returns here

C. DCH2,£j - Scale Characters Subroutine

DCH2.6 is called by SCALE to scale the character coordinate lists in FONT
according to the given character scale size (versions 1, 2, and 3 only).

Calling Sequence:

AR: Scaling factor (X*4!H Y*4)
L: JPSR $DCH2.fi
L+ 1: , Returns here

D. DCH27 - Digital Multiply Subroutine

DCH27 is called by TBSET and DCH2.fi to provide digital multiplication. The
result is returned in the AR register shifted two bits right (i.e., RESULT - A * B / 4).

Calling Sequence:

AR: Multiplicand
BR: M'1ltiplier
L: JPSR $DCH27
L+l: Returns here with:
AR: Product/4

6/68 -4- DISP/PRM/B

AMOS SYMBOLIC DUMP ROUTINES, DPS

Programmer• s Reference Manual

GENERAL

DPS is an AMOS relocatable file which contains the routines (formerly
included in AMRMX) for disassembly of machine words for symbolic typeouts, and
symbolic typeout of addresses. The entry points provided are DPS and DPAD.

When MODE "S" is required by AMRMX, it will load DPS and then call it
to make symbolic typeouts.

4-69 1 DPS/PRM/A

DISK INPUT/OUTPUT ROUTINE, DSKIO
Programmer's Reference l\Ianual

INTRODUCTION

The DSKIO is a package of subroutines that drive the DMS2 Disk Memory
Subsystem. Included in this package are subroutines and arguments for reading
and writing data, formating tracks, track seeking, and requesting status informa­
tion and current head position. Two versions are provided for single or multiple
disk unit systems.

Automatic cylinder (track) seeking and stepping between successive cylin­
ders are provided in the I/O operations initialized by the DSKIO calls.

DISK DESCRIPTION

DSKIO, Version 2, is capable of driving the four-disk configuration which
is the maximum disk system. Each unit consists of two removable disk packs;
each pack containing two recording surfaces which have 203w concentric tracks.
The term "cylinder" is used to describe the two recording surfaces of a track.
There are eight 104 10 word sector blocks on each track (1610 per cylinder), there­
fore, disk storage capacity is as follows:

Words/cylinder = 1, 664 10

Words/pack = 337, 792 10

Words/unit = 675, 584 10

Words/four units = 2, 702, 336 10

Version 1 of DSKIO drives a single unit system. The core requirements of the
DSKIO versions are as follows:

Ve rs ion 1 - 1020 8 locations

Version 2 - 1300 8 locations

HARDWARE CONFIGURATION

DSKIO requires the following hardware configuration:

3-69 1 DSKIO/PRM/B

DISK INPUT/ OUTPUT ROUTINE, DSKIO
Programmer's. Reference Manual

1. Disk .Memory S\ibsystem, DMS2-(Pl for Version 1,
P2 for Version 2).

2. Extended. Arithmetic Unit, EAUl.

3. Priority Interrupt Instruction, "JPSR'I 77743." This
i~truction; is ·executed by a programmatic interrupt
of a lower priority than DMS2 when called by special
tnetruction C27.

For timing information on DMS2 operations, refer to the DMS2 Subsystem Pro­
gramming Ins;tru~tion Manual.

DSKIO SUBROUTINE CALLS

A. Read and Write Subroutines

READ

The read subroutine reads data from disk into core memory. A read
operation starts at the beginning of a specified sector and continues until the de­
sired number of words have been transferred.. The disk heads will be positioned
at the desired cylinder before the read operation is started. Automatic stepping
through sequential cylinders will be done by this routine if necessary.

Calling sequence:

DSKIO/PRM/B ·

JPSR $8RD
BUSY
DISK
SECT

#WRDS
ADDR
ERR
DONE

Call
Returns here if unit busy
Unit (27-28), Pack (29)
Cylinder (18-25), Track (26),

Sector (27-29)
Number words to be transferred
First core address for data
Instruction executed if error
Instruction executed when completed
Returns here after operation started

2 3-69

DISK INPUT/OUTPUT ROUTINE, DSKIO
Programmer's Reference Manual

WRITE

This call writes data from core memory onto disk. A write opera­
tion starts at the beginning of a specified sector and continues until the desired
number of words have been transferred. Zero words are written to pad out the
last sector if the output data will not completely fill it. The disk heads will be
positioned to the desired cylinder before the write operation is started. Auto­
matic stepping through sequential cylinders will be done by this routine if re­
quired. Automatic read checking after writing may be specified by having the
flag $8RCF set to -0 before initiating the write call. In this mode, DSKIO will
read the data written on the disk after the write operation and check for any
errors. If the automatic read check after write mode is not desired, the flag
$8RCF should be set to +O before the call.

Calling sequence:

JPSR $8WR
BUSY
DISK
SECT

#WRDS
ADDR
ERR
DONE

READ CHECK

Call
Returns here if unit busy
Unit (27-28), Pack (29)
Cylinder (18-25), Track (26),

Sector (27-29)
Number words to be transferred
First core address for transfer
Instruction executed if error
Instruction executed when completed
Returns here after operation started

This subroutine reads data from the disk and checks for any data
error. No data is read into core memory by this operation. The disk heads will
be positioned at the desired cylinder before the check operation is started. Auto­
matic stepping through sequential cylinders will be done by this routine if neces­
sary.

3-69

Calling sequence:

JPSR $8RC
BUSY
DISK

Call
Return here if unit busy
Unit (27-28), Pack (29)

3 DSKIO/PRM/B

CH!.I Cl!!] E DISK INPUT/OUTPUT ROUTINE, DSKIO

SECT

#WRDS
0
ERR
DONE

B. Write Format Subroutine

WRITE FORMAT

Programmer's Reference Manual

Cylinder (18-25), Track (26),
Sector (27-29)

No. words to be checked
Address argument (ignored)
Instruction executed if error
Instruction executed when completed
Returns here when operation started

The write format subroutine is called to initialize a selected cy lin­
der. This operation writes the sector addresses and clears the sector data areas.
This operation is required before ~riting data on any new disk packs. The disk
heads will be positioned to the desired cylinder before the write format opera­
tion is started.

Calling sequence:

JPSR $8WF
BUSY
DISK
CYL
ERR
DONE

C. Track Seeking Subroutines

SEEK

Call
Returns here if unit busy
Unit (27-28), Pack (29)
Cylinder (18-25)
Instruction executed if error
Instruction executed when completed
Returns here when operation started

The seek subroutine positions the disk heads on a selected unit to a
particular cylinder. Although the read and write commands will position to the
specified cylinder prior to performing the operation, the seek subroutine is pro­
vided for positioning the heads before requesting input/output to allow instruction
execution overlap.

DSKIO/PRM/B 4 3-69

a l!I a 01::! ___ D.-.-;IS-K--..;I_N_P;...U;;...;;.T.;..,/ .;.O.;.U...;;T;..;P;...U.;..;;;.T_.;;.;.R.;.O..;U;..;T;..;;I;.;,N.;.;;E;:..,i:.....,;;D;..;;S;..;;K;,;.;I:..;;..O

Calling sequence:

JPSR $8SK
BUSY
UNIT
CYL
ERR
DONE

Programmer's Reference Manual

Call
Returns here if unit busy
Unit (27-28)
Cylinder (18-25)
Instruction executed if error
Instruction executed when completed
Returns here when operation started

D. Status and Positions Subroutine

STATUS

The status subroutine may be called to read the current DMS2 status
word. This routine will wait until the DMS2 is not busy, then read the status
word and store it into the calling p:r:ogram. The subroutine may not be called on
a priority level equal to or higher than the DMS2. The "DISK" argument (see be­
low) is needed for proper pack selection for write lockout and unit fault indica­
tions. The figure below illustrates the standard status word format for the DMS2.

0

Calling sequence:

JPSR $8ST Call
Unit (27-28), Pack (29) DISK

ADDR Address where status word is to be stored
Returns here

.--------..-----r------------------ UNIT 0

I 1.---~, =· J-"'--1 ~1~1 =·~I =1--.---, =,---=-=--==--==--=~~:; ~
2 3 4 5 6 7 8 9 I~ II 12 13 14 15 16 17 18 28 27-29

OFF­
LINE

UNIT
SEEKING

SEEK
ERROR

ADDRESS
'-------ERROR

'-------- DATA OVER-RUN

'--------- DATA ERROR

SECTOR
TRACK LAST USED
LAST----'
USED

'----WRITE LOCKOUT IN LAST
SELECTED PACK

.___ ____ COMMAND ERROR

...__ _____ DISK UNIT FAULT

3-69 5 DSKIO/PRM/B

aC!Ja0e ___ D_IS_K_I_N_P_U...._T ... /_o u..,T_P_U ... T..._R......_O...,U ... T"""I.;.;N.-E,.,,_·-.n.-.s.-K~IO
ProgTammer's Reference Manual

POSITION

The position subroutine is called to request the current cylinder po­
sition of a disk unit. The current cylinder position will be returned or an indica­
tion will be made that the position of the unit is undefined (DSKIO has not used
that unit since being loaded).

Calling sequence:

JPSR

RESET STATUS

$8PO
BUSY
UNIT
ADDR

Call
Returns here if unit busy
Unit (27-28)
Addr. where position is to be stored

(will store -0 if position undefined)
Returns here

The reset status subroutine is called to reset software flags and
status words about the disk units. Each active unit is designated non-busy and
the current position is set undefined. No hardware disk operation is initiated by
this subroutine. The effective operation caused by this subroutine is to reset the
information kept by DSKIO about the units. This subroutine should be called in
the event any disk operations were interrupted by system power down~ etc.

Calling sequence:

JPSR $8RS Call
Returns here

ARGUMENTS FOR SUBROUTINE CALLS

BUSY

Control is returned to this point in the calling sequence if conditions
are such that the requested operation cannot be started on the selected unit. Con­
trol will be returned on the same priority level as that in effect at the time of the
subroutine call. If the. calling progTam desires to wait until the unit is free, the
instruction located at BUSY might be "JUMP • -1. "

DSKIO/PRM/B 6 3-69

DISK INPUT/OUTPUT ROUTINE, DSKIO
ProgTammer' s Reference Manual

DISK

This argument gives the selected disk pack with the disk unit number
in bits 27-28 and the pack number in bit 29.

SECT

This argument gives the selected sector with the cylinder number
(0-20310) in bits 18-25, the track number (0 or 1) in bit 26, and the sector number
(0-7) in bits 27-29.

#WRDS

This argument gives the number of words to be transferred in a read
or write operation.

ADDR

This argument gives the first core address used in a read or write
operation, or storage address for status or position information.

CYL

This argument gives the selected cylinder number (0-20310) in bits
18-25.

UNIT

This argument gives the selected unit number (0-3) in bits 27-28.

DONE

This instruction is executed when the specified disk operation has
been completed without error on the programmatic interrupt priority level. It
must be a single instruction which does not modify the Location Counter (LC), or
may be a subroutine jump to a user subroutine which returns to the following lo­
cation. The content of the AR is set to zero before the execution of the DONE in­
struction.

3-69 7 DSKIO/PRM/B

a l!I a!!] CE! ___ D_I S_K_I_N_P_U_T_/_O_U_T_P_U_T_R_O_U_T_I_N_E_, _D_S_K_. I_O
Programmer's Reference Manual

ERR

This instruction is executed on the programmatic interrupt priority
level if an error condition is found in trying to perform the specified disk opera­
tion.

It must be a single instruction which does not modify the Location
Counter (LC), or may be a subroutine jump to a user subroutine which returns to
the following,location. The AR is loaded with the error code prior to executing
the ERR instruction. The error code bits are as follows:

!~~~~ : ~ } Available for setting sign flags

AR(2) = Unit off-line
AR(3) ::= Read redundancy error after 3 re-tries
AR(4) = Sector address error
AR(5) = Cylinder address error
AR(6) = Write lockout
AR(7) = Hardware malfunction error. This error should not

occur in normal operation. Bits (27-29) of AR give
the particular error condition as follows:

DSKIO/PRM/B

AR(27-29)8

1 Seek error condition when executing home
track seek operation.

2 Command error when normal error inter­
rupt occurs. This condition could occur
if the disk unit power is dropped while an
operation is in progress or if the write pro­
tect switch were turned on during a write or
write format operation.

3 Error terminate interrupt occurred and no
error bits on in the status word.

4 Count error (i.e., no words = 0).

5 "Fault" condition is disk unit.

8 3-69

a r!J a~ 12! ___ D_I S_K_I_N_P_U_T_/_O_U_T_P_U_T_R_O_U_T_I_N_E_, _D_S_K_I 0
Programmer's Reference .Manual

SUMMARY OF DSKIO CALLS

A. Read and Write Subroutines

READ
WRITE
READ CHECK

$8RD(BUSY, DISK, SECT, #WRDS, ADDR, ERR, DONE)
$8WR (BUSY, DISK, SECT, #WRDS, ADDR, ERR, DONE)
$8RC (BUSY, DISK, SECT, #WRDS, 0, ERR, DONE)

B. Write Format Subroutine

WRITE FORMAT $8WF (BUSY, DISK, CYL, ERR, DONE)

C. Track Seeking Subroutine

SEEK $8SK (BUSY, UNIT, CYL, ERR, DONE)

D. Status and Position Subroutines

3-69

STATUS
POSITION
RESET

$8ST(ADDR)
$8PO(BUSY, UNIT, ADDR)
$8RS

9 DSKIO/PRM/B

AMRMX DISK BINARY FILE WRITER, DSKL

Programmer's Reference Manual

GENERAL

DSKL is an ADEPT language program used to create a binary monitor on
disk from the ADEPT relocatable output of AMRMX, Version 7. Versions of
DSKL are provided to load the relocatable file from disk or magnetic tape.

HARDWARE REQUIREMENTS

Version 1 - AGT/10, MlO-Pl or AGT/30 or AGT/50 and MTP5 or 8-Pl or
MTP7-Pl, DDCl-Pl and DMS2-Pl

Version 2 - AGT/10, MlO-Pl or AGT/30 or AGT/50 and DMS2-Pl

SOFTWARE REQUIREMENTS

Ve rs ion 1 - DSKIO - Disk I/ 0 Routines
LIBIO - Magnetic Tape I/ 0 Routines

Version 2 - DSKIO - Disk I/O Routines

MEMORY REQUIREMENTS

Version 1 - 20008 words.

Version 2 - 24008 words.

OPERATION

The following control statement input to the Resident Monitor causes the
loading of AMRMX onto disk:

DSKL (FILE, TAPE/VOL, PACK, "IDENTIFICATION", FLAG)!

where:

FILE is the file number of AMRMX, type RELOC.

TAPE/VOL is the tape number [Version 1 J or disk input volume/pack of the
form pvv8 where p is the pack (0 through 7) and vv is the volume (1 through 40g)
[Version 2].

PACK is the output pack number (cannot be the same as the pack in input
VOL [Version 2]).

"IDENTIFICATION" is the 19-character or less pack identification string
to be written on the output pack's directory.

3-69 1 DSKL/PRM/A

AMRMX DISK BINARY FILE WRITER, DSKL

Programmer's Reference Manual

FLAG is the termination flag with:

DSKL/PRM/A

FLAG= 0 - enter Monitor just written at end of operation (only
valid if PACK= 0).

FLAG 'f O - return control at end to BOOTSTRAP loader, AMLDX.

2 3-69

DISK-TAPE COPY ROUTINES, DSKPY

Programmer's Reference Manual

INTRODUCTION

DSKPY is an ADEPT language program for copying standard AMOS files
from disk to magnetic tape and from tape to disk. DSKPY occupies approximately
10008 locations of core memory.

SOFTWARE REQUIREMENTS

DSKPY requires the following software items:

1. AMRMX (Version 7) - disk system monitor

2. LIBIO (Version 1 or 2) - magnetic tape 1/0 routines.

DSKPY also requires the hardware configuration specified for the above
software items.

OPERATION

The following call, input via AMRMX statement or equivalent machine
language calling sequence, causes the copying of files from tape to disk.

where:

CPYTD (FIRST, LAST, OVOL, DENS)!

FIRST is the first file to be copied
LAST is the last file to be copied
TAPE is the input tape number
OVOL is the output disk volume in the form pvv8 (p =pack, 0 through 7;

vv is the volume, 1 through 408)
DENS is the input tape density (0 = 200 BPI, 1 = 556 BPI, 2 = 800 BPI).
This argument is ignored on MTP5/8 systems.

Multiple argument sets may be used for copying in the following form:

CPYTD ((Fl, Ll, Tl, 01, Dl), (F2, L2, T2), ••• etc.)!)

The following call causes the copying of files from disc to tape:

where:

3-69

CPYDT (FIRST, LAST, IVOL, TAPE, DENS)!

FIRST is the first file to be copied
LAST is the last file to be copied
IVOL is the input disk volume in the form pvv8 (p =pack, 0 through 7;

vv is the volume, 1 through 408.

1 DSKPY/PRM/A

DISK-TAPE COPY ROUTINES, DSKPY

Programmer's Reference Manual

TAPE is the output tape number
DENS is the output tape density (0 = 200 BPI, 1 = 556 BPI, 2 = 800 BPI)

This argument is ignored on MTP5 and MTP8.

Multiple argument sets may be used for copying in the following form:

CPYDT ((Fl, LI, 11, Tl, DI), (F2, L2, 12). ••• etc.)!)

DSKPY/PRM/ A 2 3-69

DSPLY

AGT DISPLAY OPERATOR

Programmer's Reference Manual

Revision F

July 1969

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

TABLE OF CONTENTS

Page
INTRODUCTION 1

The DSPLY Program 1
Versions and Hardware Requirements 1
Describing DSPLY Images 2
Graphical Concepts 2

Spaces and Reference Frames 2
Transforms 3
Images 5
Views 6

DISPLAY OPERA TOR STATEMENTS 7

DSPLY - Start Display Program 7
RA TE Definition 7
HA.LT - Stop Display Program 8
SKIP - Image Error Option 8
ALL, CUT, BUMP - Timing Error Options 8
DSPLY- Default Arguments 8
VIEW - Define Depth of Viewing Space 9
CLOCK - Append to CLOCK Chain 9
CLKOF - Reset CLOCK Chain 10
CLOCK Routine Restrictions 10
SnSET - Specify Logical Scopes 1, 2, 3, and 4 11

IMAGE DATA STRUCTURE 12

Image Format 12
Image Item Format 12
Data Type Definitions 13
Address Mode Definitions 15
Argument Values 15

IMAGE ITEM OPERATIONS 17

Element-Generating 17
Transform-Specifying 22
Viewing 22
Control 23
Restrictions for Subroutines Called by JSR-type Image Items 26

7-69 iii DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

TABLE OF CONTENTS (Cont.)

THE STATUS REGISTER (SR)
I

Mode Bi~ of SR
Sense Bits of SR
Explanation of Status Register Bits

USEFUL ENTRY POINTS

PENHT - Read Pen-Hit Table
TRF - Current Transform Storage
IDTRF ."'. Load the Current Transform
IDVEW - Load Viewing Parameters
SR - Status Register.
DSPTB - Dispatch Table Base Address
IFA, ARGS, APTR - Process Standard Arguments
3DPS, 2DPS - Standard Picture Scale Values
Restrictions for Subroutines Called as Image Items

CHARACTER STRING FORMAT

Control Character Definitions and Values
Display Character Values

OPERATION CODE VALUES

FIEID VALUES

DSPLY/PRM/F' iv

Page
27

27
27
27

30

30
30
31
32
32
32
32
33
33

34

36
37

39

41

7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

INTRODUCTION

THE DSPLY PROGRAM

The AGT Display Operator, DSPLY, is a relocatable machine-language
program which serves as the principal user and systems software interface to
the graphics processing subsystems of the AGT/10, AGT/30, and AGT/50
graphics terminals. DSPLY, in conjunction with the Resident Monitor,
processes graphically-oriented data structures or three-dimensional "images"
in memory, and interprets these data structures when necessary to produce
the appropriate two-dimensional picture on the CRT.

Once DSPLY has been started it operates as a background program inter­
rupting the foregound program to process particular "image items" or parts
of the data structure. Input to DSPLY may be modified as a result of operator
interaction with the image or processing of the image input by another program
or subroutine. DSPLY refreshes the picture on the CRT at a constant frame
rate, and provides for the execution of error routines in the event of a timing
error or an error in the data structure.

VERSIONS AND HARDWARE REQUIREMENTS

The DSPL Y program exists in several versions, accommodating different
hardware configurations of the AGT, as follows:

7-69

Version 1 - AGT /10
Version 2 - AGT /30
Version 3 - AGT /50
Version 4 - AGT /10 and LCGl
Version 5 - AGT/30 and LCGl
Version 6 - AGT /50 and LCGl
Version 7 - AGT/30 and HWDl
Version 8 - AGT /50 and HWDl
Version 9 - AGT /30 and LCGl and HWDl
Version 10 - AGT /50 and LCGl and HWDl

1 DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

DESCRIBING DSPLY IMAGES

The unit data structure interpreted by the DSPLY Operator program is a
graphical machine-language entity called an Image Item. The set of Image Items
interpreted by DSPLY includes the following types:

Element-Generating Image Items draw lines on the CRT, position the CRT
beam, and draw character strings.

Transform-Specifying Image Items cause the elements generated by the image
description to be changed quantitatively, i.e. , to be moved about, scaled, and
rotated in three dimensions before they are projected to the two-dimensional
face of the CRT.

Viewing Image Items control the appearance of the projected two-dimensional
picture to the viewer.

Control Image Items process sub-images conditionally or unconditionally,
perform conditional and unconditional branching, and perform program loops.

DSPLY provides several methods of accessing its data. These are specified
by the Data Type and Address Mode fields of the data structure.

GRAPHICAL CONCEPTS

A. Spaces and Reference Frames

Images displayed on an AGT are contained in the VIEWING SPACE of the CRT,
an imaginary 3-dimensional space defined with reference to the CRT. A given
point is specified in this space by the triplet (x, y, z) where x, y and z are frac­
tions in the interval (-1, +l). These values are internally r~re~nted ~the AGT
by signed, 14-bit binary one's-complement fractions. The X0 , Y0 and Z0 UNIT
VECTORS are oriented in a right-handed coordinate system as diagrammed in
Figure 1.

~

-----+---t•lo
(out of CR'I)

FIGURE 1. Unit Vectors in the CRT' s Frame of Reference

DSPLY/PRM/F 2 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

Any image or image segment (group of image items) may be displayed with
reference to a new coordinate system defined relative to the initial one by a
TRANSFORM that is specified by translation, rotation, and scaling.

The resulting (embedded) coordinate space or FRAME OF REFERENCE in
which the image is defined is called the IMAGE SPACE. Several levels of
COMPOSED frames of reference may be defined in this way. Once the portion
of an image which is embedded in a transformed image space has been displayed,
the previous transform may be restored. This eliminates any accumulated er­
rors resulting from the composition.

B. Transforms

A point (x, y, z) is displayed under a transform according to this equation:

[~] = s [R] [~] ~

+ d

Wheres is a SCALE FACTOR (fraction)

R is a 3 x 3 ROTATION MA TRIX
(the matrix of an orthogonal . linear transformation in 3-space)

..lo.

d is a DISPLACEMENT VECTOR

I I I

x, y and z are the coordinates as seen by the EMBEDDING SPACE. (If the
embedding space is the viewing space of the CRT, these are the actual co­
ordinates which are projected onto the screen of the CRT.)

The viewing space of the CRT corresponds to the IDENTITY TRANSFORM:

s = 1

.....
[R], Sand d may be specified with respect to this frame by Load-Transform image
items.

7-69 3 DSPLY/PRM/F

IMAGE
(CUBE)

ROTATION
ABOUT
X-AXIS

ROTATION
ABOUT
Y-AXIS

ROTATION
ABOUT
r-AXIS

AGT DISPLAY OPERATOR, DSPLY

SCHEMATIC REPRESENTATION

y'

y

y

\
\

/
/

/

y'

/I

\
\
~r'

\ y
\
\
\

,#
/

x

x'

x

Programmer' s Reference Manual

PICTURE ON CRT

y

•

y

•

y

•

--- NEW(PRIMED) AXIS

•x

~x

-!" x

FIGURE 2. Rotations about the X, Y, and Z Axes

DSPLY/PRM/F 4 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

The transform applied may be of the following types:

1. Scale

a. Load Scale - defines s relative to the viewing space of the CRT regard­
less of the embedding space.

b. Compose Scale - scales down the three unit vectors defining the image
space by the specified scale factor. Any image items displayed in this
embedded image space will be scaled down by this factor. The axis
definitions will remain unchanged. A negative scale factor causes re­
flection about all three axes.

2. Displacement

-lo.

a. Load Displacement - sets the value of din the CRT's viewing space.

b. Compose Displacement - displaces in its own image space the specified
amount~.

~ ~ ..),,.

d' = s [R] (dv) + d

3. Rotate (not implemented in AGT /10 versions)

a. Load Rotation - sets [R] to a rotation matrix of an angle about the spe­
cified axis in the CRT's frame of reference.

Suppose the image displayed is a cube as in Figure 2. A rotation about
one of the axes changes the definition of the other two axes with respect to
the CRT. When three rotations are specified by the same image item
the Z-rotation is performed first, then the Y-rotation relative to the new
Y-axis, and finally the X-rotation relative to the new X-axis.

b. Compose Rotation - rotates the entire image space the specified amount.
This operation changes the definition of the other two axes relative to
the current image space.

C. Images

An image is a set of items which constitute a complete segment for display
via the DSPLY operator. An item (IMG) is available for including completed images
as part of another image.

7-69 5 DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

The "transform-specifying" items just described may be used to "place"
image segments in a flexible manner. For example, boxes representing buildings
could be scaled and placed on an empty lot shape for use in area studies. This can
be done by load-transform items followed by IMG items which refer to a box-image.
There can be several box-shapes representing the desired building types.

When viewed in this manner, the type of building at any place, the shape of
all buildings of a given type, and the size or location of any one building can all be
changed easily by varying only a few arguments to particular items.

Either load or compose transform items would be adequate for describing
one view of the above lot.

The lot may be moved or turned, giving different views, or it may be repli­
cated and placed repeatedly over an area representing one or more city blocks. In
both cases, the buildings should be placed on the lots by compose operations so
that they will "stay with" the lots as they are scaled or moved.

Once the variable parts of an image have been adjusted, the resulting image
may be expanded into an inflexible image consisting entirely of element generating
items for more efficient display or use by other images. This can be done by the
FREEZ operator program.

D. Views

Control of the projected two-dimensional picture of an image as seen by a
viewer is effected by items and statements referred to as "viewing" operations.

These affect such qualities as overall picture scale, front cut-off blanking,
intensity modulation or depth cueing, and partitioning of the display surface into
bounded windows.

DSPLY/PRM/F 6 7-69

AGT DISPLAY OPERA TOR, DS PLY

Programmer's Reference Manual

DISPLAY OPERATOR STATEMENTS

The following operations can be performed by inputting the given statements
on the teletype to AMRMX or by executing equivalent calling sequences in memory.

A. DSPLY - Start Display Program

DSPLY may be started by a statement input to the on-line monitor, AMRMX,
or by executing an equivalent calling sequence in memory. The program which
starts DSPLY then becomes the foreground program. The monitor statement:

DSPLY (IMAGE, RATE, ERROR!, ERRORT) !

causes the data structure starting at location IMAGE to be interpreted by DSPLY,
and the corresponding two-dimensional picture to be displayed on the CRT re­
freshed at the specified RA TE.

B. RA TE Definition

The frame RA TE is defined by the equation:

FRAMES/SEC= 12010/(RATE +l)

For example:

RATE FRAMES/SEC

1 60
2 40
3 30
4 24
5 20
7 15
910 12

llio 10

7-69 7 DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

C. HALT - Stop Display Program

DSPLY may be stopped and control returned to AMRMX by depressing the
PULSE 1 operator interrupt button. Also, typing the statement:

HALT!

to AMRMX (or executing an equivalent calling sequence in memory) stops all dis­
play.

D. SKIP - Image Error Option

In the case of an error in the IMAGE data structure, control is transferred
to the ERROR! routine. The entry point SKIP is provided by DSPLY for this pur­
pose. When executed SKIP will notify the operator (via the teletype) of the ad­
dress of the faulty image item and continue interpreting without processing the re­
mainder of the subimage containing the faulty image item.

E. ALL. CUT, BUMP - Timing Error Options

If the IMAGE cannot be interpreted in the time allotted by the specified
RATE, a timing error occurs. In this case control is transferred to the ERRORT
routine. fhe following entry points may be used for this purpose;

ALL

CUT

BUMP

Interpret the entire IMAGE at a slower RATE.

Display as much of the IMAGE as possible at
the specified frame RATE.

Advance RATE enough so that the entire
IMAGE may be processed. and notify the
operator (via the teletype) of the new RA TE
at which the picture on the CRT is being re­
freshed.

F. DSPLY - Default Arguments

If any of the arguments .are omitted in the DSPLY statement the previously
specified ones are assumed. Initially, DSPLY assumes the following argwnents:

DSPLY/PRM/F 8 7-69

AGT DISPLAY OPERATOR, DSPLY

Argument

RATE
ERR ORI
ERRORT

Programmer's Reference Manual

Initially assumed value

2 (40 frames/sec)
SKIP
ALL

G. VIEW - Define Depth of Viewing Space (not implemented in AGT /10 versions)

The Z-dimension in the data structure refers to the depth of the image in
three-space. This is analagous to the depth into the viewing space of the CRT.
The Z-viewing parameters are set by the following statement:

VIEW (FRONT, BACK, DIM)!

When DIM is 0 all lines are shown at maximum intensity regardless of
depth. DIM is initially assumed to be 0.

The AGT/30 and AGT/50 have the capability of providing "depth cueing" to
remove the visual ambiguity between the front and back of displayed three-dimen­
sional images. Lines near the front of the image may be shown very bright in
comparison to those in the back. When the absolute value of DIM is full scale
(37777), the maximum amount of such "dimming" occurs.

FRONT and BACK specify the range in Z which is to be displayed when DIM
is maximum (37777). Those portions of lines which correspond to Z-values greater
than the specified FRONT are blanked. On systems with the optional Hardware Win­
dowing Operator (HWDl) any portions of lines outside of the specified range in Z
are blanked.

FRONT and BACK are specified as 5-digit octal fractions ranging from full
scale forward (37777) to full scale into the CRT (40000). Until otherwise speci­
fied they are assumed to be 37777 and 40~~9 respectively.

H. CLOCK -Append to CLOCK Chain

DSPL Y has provision for requesting the execution of programs once per
frame. Real time inputs such as the variable control dial values may be sampled
in this way. The monitor statement.:

CLOCK (ROUTINE, EXIT)!

7-69 9 DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

or the equivalent AFORT or ADEPT calling sequence causes control to be trans­
ferred to ROUTINE once per frame. EXIT is the address of the last instruction
executed by ROUTINE. CLOCK will change location EXIT to the return that
ROUTINE must take. Subsequent calls to CLOCK cause new routines to be
"chained" to EXIT and performed in sequence.

NOTE

ROUTINE is taken as the address of the first executable in­
struction of the routine to be chained, NOT as the entry­
point. A subroutine can be executed on the clock chain via
the monitor statement:

CLOCK (ENTRY+ 1, ENTRY)!

where ENTRY is the subroutine's entry point.

Routines placed on the CLOCK chain are executed on a lower priority inter­
rupt level (programmatic interrupt, PINT) than the vector generator and the
DSPLY item-processing program. This enables such routines to be executed
"simultaneously" with the DSPLY program (i.e., while the vector generator is
drawing lines or processing image items· automatically).

I. CLKOF - Reset CLOCK Chain

The monitor statement:

CLKOF!

causes the CLOCK chain to be reset clearing the effect of all previous CLOCK
calls.

J. CLOCK Routine Restrictions

Since the routines executed on the CLOCK chain are executed on a higher
priority interrupt level than the foreground program, they must not perform any
JUMP'! instructions. The AR need not be restored. These routines may be in­
terrupted by all higher priority levels. All registers except the ER will be re­
stored; therefore, portions of the code which depend on the ER or have strick
timing restrictions must be bracketed by FPRI (freeze priority interrupts) in­
structions. Calling ROUTINE by the CLOCK chain does not affect the time re­
quired to display IMAGE; therefore, if ROUTINE must be called once per frame,
it is better to use the CLOCK chain than a "JSR ROUTINE" image item.

DSPLY/PRM/F 10 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

K. SnSE T - Specify Logical Scopes 1. 2. 3 and 4

The AGT is supplied with up to four CRT's or "physical scope units."
These are named physical scopes 1, 2. 3 and 4. DSPLY may select any one
of four "logical scope units" for display.

They may be assigned to any of the four physical scopes by the statements:

SlSET (Physical scope unit list)!
S2SET (Physical scope unit list)!
S3SET (Physical scope unit list)!
S4SE T (Physical scope unit list)!

respectively. The "physical scope unit list" consists of the appropriate physical
scope unit numbers separated by commas. Until otherwise specified each Logical
Scope Unit is assigned to all four physical scope units.

7-69 11 DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

IMAGE DATA STRUCTURE

A. Image Format

An image data structure in memory consists of a two-word header followed
by a list of image items which describe the image. The header is ignored by
DSPLY, and usually contains the AMOS internal 6-bit code for the image NAME.
The last-interpreted image item must be a RET; thus, in general an image looks
like this:

NAME: TEXT/NAME
ITEM 1
ITEM 2

RET

B. Image Item Format

I [2 Words

[Last Item

Image items or parts are variable in length. The first 30-bit word of each
image item contains the item's command. It has the following format:

Data Address
Operation Type Mode Address

bits: 0 8 9 11 12 15 29

COMMAND ARGUMENT REFERENCE

Each operation (as it is defined in the section entitled "IMAGE ITEM OPERA­
TIONS") is associated with a number of arguments. The arguments are obtained
according to the Data Type specified in the Image Command; therefore, the num­
ber of 30-bit words in an image item depends upon:

1. The number of arguments used by the Item's Operation.

2. The way in which these arguments are defined as specified
by the Item's Data Type.

DSPLY/PRM/F 12 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

C. Data Type Definitions

The following diagrams illustrate, for all Operations, the way in which the Data
Type specifies the definition of arguments.

Immediate Half-Word Value List (Assumed)

IHW
bits ~ 8 9 11121415 29 ---------....------.----------....... * OP RATION ARGUMENT

ARGUMENT 2 ARGUMENT 3

Referenced Half-Word Value List

RHW
bits ~ 8 9 1112 1415 29 ~ I Operation I 1 I A-M f Address 1>--1-.... ~a .,. ___ * ____ A_R_G_U_M_E_N_T_l_ ,_. _____ _,.--........................ ~

14 15 29

ARGUMENT 2 ARGUMENT 3

Immediate Full-Word Value List

IFW

bits 6 8 9 11121415 29

_Q.P ERATl_ON I 2 l * ARGUMENT 1

* ARGUMENT 2

* ARGUMENT 3

* These fields are ignored by DSPL Y.

7-69 13 DSPL Y/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

Referenced Full-Word Value List

RFW
14 15 29 Bits: 0 8 91112 14 15 29 ~

li;~~a-f 3 IA-M J Address 1>~--1---•.,r---*----r--------.

Immediate Reference List

IRL
Bits: ii

Opera-
ti on

8 91112

6 A-M 1

A-M 2

A-M 3

Referenced Reference List

RRL

1415

ADDRESS 1

ADDRESS 2

ADDRESS 3

29 Bits: ~ 8 91112 14 15

(°fi~~aj1 I A-M IAddress I>

* These fields are ignored by DSPLY.

DSPLY/PRM/F 14

* Ar ent 2

* Ar ent 3

2 9

1112 14 15 29

* A-M 1 Address 1

* A-M 2 Address 2

A-M 3 Address 3

7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

D. Address Mode Definitions

The Address Mode Field of the Image Command specifies the way in which a
single argwnent is to be found from its Address.

Immediate
(Asswned !MED)

Direct
nm

Indirect
I

Structu:::-e
STR

This mode (Address Mode 0) indicates that
the associated 15-bit Address Field is the
value sought.

This mode (Address Mode 4) indicates that
the associated Address is the location of the
value sought.

rhis mode (Address Mode 1) indicates that
the associated Address is the first of an
arbitrary long chain of indirect addresses.
The first non-indirect address in the chain
is the location of the value sought.

This mode (Address Mode 5) requires two
machine words to determine its associated
value. The Address Field of the first word
is used as an offset; it is added to the final
reference obtained from the second to locate
the value sought.

E. Argument Values

An Argwnent is a fifteen-bit binary value, which may be interpreted by the
Image Item Command in one of the following ways:

7-69

1. integer -- a signed 14-bit one's complement binary integer.

2. address -- a pointer to another location in memory.

3. fraction -- a signed 14-bit one's complement binary fraction. Values
displayed on the CRT range from 377778 (full scale) to 40000 (minus
full scale).

4. angle value -- expressed in radians as a fraction, modulo 27T and
scaled by l/7T.

15 DSPLY/PRM/F

For example,

Angle Value1 radians

1T+21Tn*

7T/2±_21Tn

0 ~ 2 1Tn

-W2 ±. 2 1T n

-7T+2'1T n

± 'IT 37777
radians 4.0.0.0.0

* n is an integer

DSPLY/'PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

Fraction Octal Value

1 37777 (Full Scale)

1/2 2jj,0,0,0

0 0 or 77777

-1/2 57777

-1 4f1f6f6f1

'IT I
2 ladians

2.0.0.00

5 777
-'IT I
2 radians

I

16

0 radians

7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

IMAGE ITEM OPERATIONS

Each Image Operation is described below,, along with the argument(s) it re­
quires. These argwnents are obtained from the image item according to the Data
Type and Address Mode fields. In the following they are presented in parenthese
following the operation's name for the sake of clarity.

The argument names are also encoded as follows:

First Letter

F
I
L
A
B

Meaning of 15-bit Argument

Fraction
Integer
Location Address
Angle Value (a fraction)
Binary Value

In the following descriptions [T] (X. Y,, Z) means "the current transforma­
tion (translation,, scale and then rotation) applied to the vector (X,, Y. Z). "

A. Element-Generating

DRAW (F z. FX,, FY)

MOVE (F Z, FX,, FY)

2DTBL (L)

L: FZ

7-69

Draws a line on the scope from the last beam
position to the point [T] (FX,, FY. FZ).

Moves the beam from any position to the
point [T] (FX,, FY, FZ) without displaying.

2D Table:

Displays a sequence of 2-D tables in which
each consists of a 1-word header and con­
secutive 14-bit value pairs. The sequence
starts at location L. The first word of each
table has this format:

14 15 29

L'

17 DSPLY/PRM/F

FX

2DTF (L)

2DLST (L)

AGT /50 Tables

AGT DISPLAY OPERATOR, DS·PLY

Programmer 1 s Reference Manual

Where FZ is the Z-value at which this table
is to be displayed,, L' is the address of the
next table in the sequence to be displayed (or
" if there is none). Values in each table are
packed as follows:

13 14 15 28 29

FY

Dis the "draw" control bit. When D = 1 this
vector is drawn; otherwise. the vector is
blanked. EOL is the "end of list" control bit
which indicates the end of the table. When it
is encountered the next table is started,, if
there is one.

Same as 2DTBL except all vectors are short
(of length less than o. 5 '~ and one vector is
displayed every 5. O fJS. Longer vector lengths
result in poor end matching and low intensities.
At lengths of two inches and greater. gross
errors and distortions result.

Same as 2DTBL except that the picture drawn
is not intended to be part of a three-dimen­
sional image. It occupies a larger portion of
the scope face. This item is useful for draw­
ing graphs.

The following image items (in AGT /50 versions only) display lists of vec­
tors in the various AGT /50 table formats. Each table consists of a one-word
header followed by consecutive 3 0-bit table words. Each table word contains tre
X and Y or X, Y, and Z endpoint-values for a vector. Also contained in each
table word are the draw (I)) and end-of-list (EOL) control bits (see description of
2DTBL above). In tables which contain only X- and Y-values in each table word
(2DTAB and 2DROT). the one-word header is used to contain the Z-value at which
the table is to be displayed. In tables which also contain Z-values in each table
word (2DINT and 3DTAB), the one-word header is ignored but must be present.
The header and table word formats are different for each table and are presented
under the individual item descriptions below. (Shaded fields are ignored.)

DSPLY/PRM/F 18 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

Note that links to additional tables are not present in the header words of
the AGT/50 tables. This feature is provided in the 2DTBL, 2DTF, and 2DLST
image items described above to eliminate the overhead time required for switch­
ing tables on AGT/10 and AGT/30 systems. However, the automatic table­
switching facility of the AGT /50 eliminates the need for these links. In order to
provide upward compatibility with AGT/10 and AGT/30 DSPLY programs, the
2DTBL. 2DTF. and 2DLST tables are also available on AGT /50 versions, but
their use is discouraged in favor of the newer table formats below.

L:

L + 1:

7-69

2DTAB (L)

0

2D Full Precision Table:

Same as 2DTB L, but with a different format
for the first table word. This format allows
full-precision (14-bits) of X and Y values for
vectors in a plane (i.e., constant Z-value).

14 15 29

- FZ I
0

I FX

2DINT (L)

1314 15 28 29

Isl FY H
2D Intensity Table:

Allows 16-level intensity control (4 bits in
Z) of vectors while maintaining 12-bit pre­
cision of X and Y values.

19 DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

0 29

L:

0 11121314 15 26272829

L+l: _I __ Fx __ l_i __ ls_l __ F_Y __ l ___ i_H

L:

3DTAB (L) 3D Table:

Allows three-dimensional images to be con­
structed with one word per vector by using
10 bits for x. 9 bits for Y. and 9 bits for Z.

0 29

0 9 10 1314 15 23 24 28 29

L+l:I ---~--FX--~--~'F_z_[0_--3]~1-~~'------FY ______ .1..-F_z_[_4-_s_J~'n_,I

2DROT (L)

DSPLY/PRM/F

2D Rotated Table:

Same as 2DTAB, but with each table word
rotated six-bits to the right. If only 5 bits of
precision for X and Y vectors is required, this
table format may be overlapped with that of the
2DT AB image item to allow two separate lists
of vectors to occupy the same area of memory.

20 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

r6 5 6 19 20 29

L: • FZ -r6 4 5 6 19 20 21 29

L + 1: I FY[9-13]H FX

1
2

1

FY[rb-8] I
2DTAF (L)
2DINF (L)
3DTAF (L)
2DROF (L)

LABL (L) *
LABR (L) **

Same as the above four tables except that all
vectors are short (of length less than O. 5 ")
and one vector is displayed every 5. Oµs.
Longer vector lengths result in poor end
matching and low intensities. At lengths of
two inches and greater. gross errors and
distortions result.

Displays text characters from a string of
packed codes in consecutive words starting
at location L. LABL displays the string
upright with reference frame of the CRT
starting at the present beam position. LABLR
rotates the entire character display 90° counter:­
clockwise. At the conclusion of the character
string, the beam is moved back to its initial
position (before the string was drawn). See
the section entitled "CHARACTER STRING
FORMAT."

* May be deleted in DSPLY, Version 1 (AGT/10 systems without LCGl).
**Not implemented in DSPLY, Version I.

7-69 21 DSPLY/PRM/F

B. Transform-Specifying

SCL (F)

ROTX (A)*
ROTY (A)*
ROTZ (A)*

RXYZ (AZ. AX. AY)*

DX (F)
DY (F)
DZ (F)

DV (FZ. FX. FY)

LDSCL (F)
LDRX (A)"'
LORY (A)"'
LORZ (A)*
LDRV (AZ. AX. AY) *
LDX (F)
LDY (F)
LDZ (F)
LDV (FZ. FX. FY)

LDI

C. Viewing

LDPS(F)

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

Scales down the following items by scale fac­
tor F.

These operations rotate the image spec.ified by
the following items about the indicated reference
axis (X. Y. or Z respectively) by the angle A.

This operation rotates as would the items:
ROTZ (AZ); ROTY (AY); ROTX (AX).

These operations displace the following image
portions by the distance F along the specified
local reference axis.

This operation repositions as would the items:
DX (FX); DY (FY); DZ (FZ).

These operations set the values for a particular
transformation matrix element(s). LDC SL sets
the scale for the following elements. LDX. LDY.
LDZ. and LDV set the origin position for follow­
elements. LDRX •••• sets the rotation matrix
to give the specified rotation. The LOAD oper­
ation implies that previous orientations. scales.
etc •• are replaced by corresponding load items.
(Any items generated are defined with respect to
the CRT's frame of reference; any transforms
are specified with respect to its axes.)

This operation causes the image specified by
the following items to be displayed with the
identity transform. i.e.• in the CRT's frame
of reference.

Sets the overall picture scale of images in
the CRT' s frame of reference to the value F.
Two entry-points, 3DPS and 2DPS. are pro­
vided by DSPLY for this purpose. (See
section entitled ''USEFUL ENTRY POINTS.")

(continuation)

* Interpreted as NUL in AGT/10 versions.

DSPLY/PRM/F 22 7-69

IDW (FH, FV, FDH,
FDV) **

MVW (FH, FV) **

LWS (FDH, FDV) **

DEPl'H (Fl, F2,
FDIM)*

~ Control

NUL

SAVT

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

A full-scale picture scale (37777) corresponds
to a 20-inch square display area centered on
the screen of the CRT. As the visible display
area is a 12-inch square, a smaller than full­
scale picture scale is generally more useful.
3DPS is initially assumed.

Sets window parameters (horizontal and ver­
tical) to include a field centered at the point
FH, FV with horizontal and vertical dimensions
FDH and FDV. **

Moves a viewer's window, centering it at the
point (FH, FV) while retaining the same di­
mensions. **

Changes a window size to have new horizontal ·
and vertical dimensions FDH and FDV. The
window remains centered at its original posi­
tion. **

Sets the Z-cutoff and depth cueing parameters
for display of following part of the image. Fl,
F2, and FDIM have the same meaning as
FRONT, BACK and DIM in the VIEW monitor
statement.

This operation is ignored, and the DT and
Argument fields may be used in a calling
sequence to pass arguments to subroutines
called by the JSR image item.

Saves the currently-specified transform.
This saved transform may be reinstated later
by a REST operation.

* Interpreted as NUL in AGT/10 versions.
** Implemented only with the optional Hardware Windowing Operator (HWDl).

7-69 23 DSPLY/PRM/F

REST

RET

IMG (L)

LOOP (1)

ENDL

JMP (L)

JSR (L)

SHORT"'

DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

This operation is used to reinstate the pre­
viously-saved transform. so that the following
image items are defined in its frame of refer­
ence.

This operation terminates the description of an
image. If the image was processed as a part
of another image's description (by an IMG com­
mand) that image's frame of reference is re­
stored and processing resumes in its definition.

This operation in the current image causes the
entire image at location L to be processed rela­
tive to the current transform as part of the cur­
rent image's definition.

fhis operation is used to initiate a loop of items
whose processing is to be repeated I times. No
nesting is permitted within one transform level
of any one image; thus. IMG commands referenc­
ing sub-images with loops are permitted. and
loops may be nested by bracketing them in SAVT­
REST pairs.

This operation is used to terminate a repeat
loop. The loop count is decremented and
tested and the loop repeated until the count
is zero, then subsequent items are processed.

This operation causes processing of the current
image to branch to location L where the current
description resumes.

Execute machine language subroutine at location
L.

Sets the AGT /50 "short" operation mode so that
all succeeding DRAW and MOVE image items
are treated as short (less than O. 5" long) vec­
tors where one vector is displayed every 6us.

24 7-69

LONG*

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

Resets the AGT /50 operation mode so that
succeeding DRAW and MOVE image items may
specify any length vectors. The minimum
drawing time per vector is 9 µ.s, the maximum
is 39 µ.s. Initially, the ''long" mode is assumed
and remains constituted until a "short" mode
is encountered. Upon returning from a sub­
image called by an IMG image item, the pre­
vious drawing mode is restored.

These image items use the Status Register (SR) which is described in the next
section.

CJMP'C (L)

WJMP'WW (L) * *

LDMB(B)

ORMB (B)

ANDMB (B)

LDSN (B)

Conditional Branch in image if any of the Status
Sense Bits selected by C are true. C may
denote Flag 1, Flag 2, and/or Pen Detect.

Conditional Branch in image if any of the speci­
fied window boundaries have been crossed.
Branch to L when any of the windowing bits (9-14]
in the Status Register as selected by WW are true.

Load Mode bits of the Status Register. bits
[0'-7] from parameter B. bits [15-22].

OR Mode bits (15-22] of parameter B into bits
['1-7] of the Status Register. Bits (23-29] of
SR remain unchanged. This item allows for
independent setting of the Mode bits.

AND bits (15-22] of parameter B into bits [0'-7]
of the Status Register (Mode Bits only). Bits
(23-29] of SR remain unchanged. This item al­
lows for independent resetting of the Mode bits
of SR.

Load flag bits from sign bits. bits j1 and 15 of
value B into bits Flagl and Flag 2 of SR.

* Treated as NUL image item in AGT/10 and AGT/30 versions; has no effect
on AGT/50 table image items.

** Implemented only with the optional Hardware Windowing Operator (HWDl).

7-69 25 DSPLY/PRM/F

LDLS (B)

AGT DISPLAY OPERATOR, DSPLY

Programmer 1 s Reference Manual

Load flag bits from upper and lower signifi­
cance, of value B. If bits [,l1-14] of Bare not
.f1, set Flag 1 in SR; otherwise, reset Flag 1.
Similarly, if bits [15-29] of value B are not
~. set Flag 2; otherwise, reset Flag 2 .

...E.:_ Restrictions for Subroutines Called by JSR-Type Image Items

The subroutine L may use a calling sequence to pass arguments provided
that bits [~-8] of the arguments are ~ (NUL-operation image items). The next
image item is temporarily replaced by DSPLY and stored in location JSRSV.
For this reason if the JSR image item must alter or refer to the image item fol­
lowing it,, it should alter or refer to $JSRSV.

The subroutine L must not execute any "JUMP'!" instructions. It must
not generate any interrupts from the AVG. Because of its priority level it will
not service any interrupts from the LCG (Character Generator), LPR (Line
Printer),, or the programmatic interrupt.

The subroutine L must not reset bit 5 of Destination 10 (Display Clock Hard­
ware Control). Also,, any registers in the hybrid array that are changed must be
restored. (See the Section entitled "USEFUL ENTRY POINTS. ")

DSPLY/PRM/F 26 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

THE STATUS REGISTER (SR)

The Status Register (SR) is a 15-bit software register that is maintained by
DSPLY and may be changed or interrogated by items in the image data structure.
SR may also be referenced by a conditional image item to perform a machine­
language subroutine or to branch to another location in the image data structure.

A. Mode Bits of SR

Bits [,fl-7] of SR are called Mode Bits; they control various aspects of the
displaying process. The Mode Bits may be set and reset by the LDMB, ORMB,
ANDMB, LDSN, and LDLS image items.

B. Sense Bits of SR

Bits [6-14] of SR are called Sense Bits; they describe various display and
core conditions. The Sense Bits can be sensed by the conditional image items
CJMP'CC, CJSR'CC, WJMP'WW*, WJSR'WW* and used to alter the image pro­
cessing path.

STATUS REGISTER FORMAT

The Status Register has the following format:

bits: ,fl 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scope Visual
PE WE F F PD

L L w w w w w w
Field Element A A B B B B B B

s c Field G G x x y y z z
VEL 1 2 1 2 1 2 1 2

Mode Bits Sense Bits

C. Explanation of Status Register Bits

SC Scope Field
This two-bit field specifies which of the four logical scopes is
selected for display. These are assigned to any of the four physi­
cal scopes by the SnSET commands. Initially Logical Scope 1 is
selected.

* Used only with optional Hardware Windowing Operator (HWDl).

7-69 27 DSPLY/PRM/F

VEL

AGT DISPLAY OPERATOR, DS PLY

Programmer's Reference Manual

The logical scopes are selected according to the following table:

SR Bit: 0 1 Logical Sco,ee Selected
0 0 1
0 1 2
1 0 3
1 1 4

Visual Element Field

This field sets any one of four (two on non-AQT /50 versions)
visual element modes for the displaying of vectors as follows:

SR Bit: 2 3 Visual Element Mode Selected
0 0 Line
1 0 Dash
1 1 Point*
0 1 Stroke*

Line mode is the normal vector drawing mode.

Dash mode causes the intensity of lines to be modulated, pro­
ducing dashed lines.

Point mode (AGT/50 only) causes only the end-points of draw­
type vectors to be intensified (lines are not drawn).

Stroke mode (AGT/50 only) speeds up the vector drawing rate
from 5. 0 µs to 4. O µs in the 2DTF, 2DTAF, 2DINF, 3DTAF,
and 2DROF image items. Stroke mode has no effect (i.e.,
is treated as line mode) on other image items. This mode
assumes that vectors are shorter than 0. 25 in. and are drawn
at or near right angles to each other; it is most useful for
constructing curved lines and surfaces.

PE Pen Enable

This bit resets the PD bit. and causes the light pen to sense
light from the currently selected logical scope unit when a vec­
tor beam is encountered. When the light is sensed the PD bit
will be set and the "Pen-Hit Table" updated (via a hardware
interrupt). When the PE bit is reset hardware light pen inter­
rupts will be ignored.

* AGT/50 versions only.

DSPLY/PRM/F 28 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

WE Window Enable*

FLAGl
FLAG2

PD

WBXl
WBX2
WBYl
WBY2
WBZl
WBZ2

Resets window bound detect bits and allows interrupts to be
generated when windowing bounds are crossed.

Image Flag Bits

These bits may be used by the image as flags to indicate any
condition. They may be set or reset within the image and tested
at any point by a CJMP or CJSR image item.

Pen Detect

This bit is set whenever the light pen is detected while enabled
and reset when Pen Enable is set. It may be tested by the
CJMP'PEN and CJSR'PEN image items.

Window Bounds Detect*

These six bits indicate whether the specified window bounds
have been crossed. They are reset whenever Window Enable
is set and may be tested by the WJMP'WW and WJSR'WW image
items.

* Used only with optional Hardware Windowing Operator (HWDl).

7-69 29 DSPLY/PRM/F

USEFUL ENTRY POINTS

PENHT - Read Pen-Hit
Table -

TRF - Current Transform
Storage

AGT /10 Version Transform

Location (octal)

TRF + 1
TRF + 2
TRF + 3
TRF + 4

DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer 1 s Reference Manual

This subroutine will read the nth previous
entry in the Pen-Hit Table, a circular
table with 16io entries. The execution of
the calling sequence:

JPSR $PENHT
N Address of n
ITA
IMA

will set location IT A to the address of the
image item seen by the light pen; it will
set location IMA to the address of the
image in which the item was seen. En­
tries are made in the Pen-Hit table only
when the PE bit in SR is set.

The values of the current transform en­
tries are stored in memory starting at
location TRF. These contain the actual
values that are loaded into the array
registers.

Transform Entry (contained in bits 15-29)

S - Scale factor
DX - X-displacement
DY - Y-displacement
DZ - Z-displacement

30 7-69

c.

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

AGT /30 and AGT /50 Version Transform

Location (octal)

TRF + 1

TRF + 2

TRF + 3

TRF + 4

TRF + 5

TRF + 6

TRF + 7

TRF + 1,0

TRF + 11

TRF + 12

TRF + 13

TRF + 14

TRF + 15

PS: TRF + 16

LDTRF - Load the Current
Transform

Transform Entry (contained in bits 15-29)

* RHl Matrix entry

R:a1 Matrix entry

s Scale factor

R11 Matrix entry

Raa Matrix entry

R22 Matrix entry

Ras Matrix entry

R33 Matrix entry

R1s Matrix entry

R21 Matrix entry

DX X-displacement

DY Y-displacement

DZ Z-displacement

**PS Overall picture scale

This subroutine reloads the current
transform stored in memory into the hy­
brid array hardware registers. It may be
used by a subroutine called by a JSR image
item but not by a foreground program or a
program executed on the clock chain.

* The notation RAB means ''the matrix entry in row A, column B of the
matrix [R]."

** PS must contain _tj_tjji2ji !Hin bits _tj-14.

7-69 31 DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

D. LDVEW - Load Viewing Para- This subroutine reloads the array regis-

E.

F.

G.

meters (AGT/30 and ters which specify the viewing parameters
AGT/50 versions only) from storage in memory.

SR - Status Register

DSPTB - Dispatch Table Base
Address

IF A, ARGS, APTR - Process
Standard Arguments

The Status Register bits .0-14 are stored
in entry point SR, bits 15-29.

A subroutine SUBR may be executed as an
image item by assigning it an unused
OPERATION code. If the code is

abc.66e !H

where a, b, and c are octal digits, loca­
tion

DSPTB + [20 s * a + (b c & 17)]

should contain the instruction

JPSR SUBR

SUBR should return to the next location.

When SUBR (above) is executed, entry
point IF A contains the address of the image
item which called it. During the execu­
tion of SUBR, IF A must be advanced to the
first word of the next image item to be pro­
cessed. This may be done by either in­
dexing IF A the proper amount or fetching
standard arguments.

The subroutine ARGS accesses standard
arguments according to Data Type and Ad­
dress Mode fields and advances IF A to the
next image item.

DSPLY/PRM/F 32 7-69

7-G9

3DPS, 2DPS - Standard
Picture Scale Values

Restrictions for Subroutines
Called as Image Items

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

Calling sequence:
(AR) = n, bits 15-29
JPSR $ARGS

Returns to next location

Result: Successive arguments may be
fetched by MDAR 'I' X $APTR instructions.

The standard 3-D picture scale (3DPS) has
a value equal to (1 + /3)-1 , which allows
a full-scale cube to be completely rotated
about its center within the 12-inch square
visible display area of the CRT. Similarly,
the 2-D picture scale (2DPS) has a value
equal to (1 + 12)-1 , which allows a full­
scale square to be rotated within the visible
display area. These values may be used
with the I.DPS image item. Also, they
contain 2,el ! H in bits ,el-14, to enable in­
sertion in location TRF + 16, as described
above.

Calling Sequence:
JPSR SUBR

Returns to next location

Results: Subroutine SUBR must advance
location IF A to the next image item as
described above. SUBR must not execute
any "JUMP'I" instructions. It must not
generate any interrupts from the A VG; it
will not service any interrupts from the
LCG (Character Generator), LPR (Line
Printer) or the programmatic interrupt.
SUBR must not reset bit 5 of Destination
1,el (Display Clock Hardware Control). Also,
any registers in the hybrid array that are
changed must be restored. (See entry points
I.DTRF, LDVEW above.)

33 DSPLY/PRM/F

AGT DISPLAY OPERA TOR, DS PLY

Programmer's Reference Manual

CHARACTER STRING FORMAT

The character strings processed by LABL are stored as lists of 30-bit words
which are assumed to be in the following format:

Character Number:
1 2 3 4

7-bit 7-bit
A

7-bit 7-bit
B

Char. Char. Char. Char.
Bit Positions: 6 7 13 14 15 21 22 28 29

A is a flag bit; if set it indicates the end-of-string.

Bis used by the programming system and should be left .0.

Character strings are displayed starting at the last beam position and may
be displayed from that position on a grid of 6410 lines of 128 10 characters (small­
est character size) as specified by the HT and VT control characters. The
initial position of the beam is defined as (64, 64) on the grid. The center area
of the grid of size 96 10 x 4010 is scaled to fit within the 1210 inch usable display
area as shown below if the beam position was initially at the center of the
screen. (On the Y-axis, characters can be positioned only on even-numbered
lines.)

1210
inches

DSPLY/PRM/F

(16, 24)

(16, 102)

(111, 24)

(64, 6~

Initial
beam position

(111, 102)
12 10 inches

40 lines x 96 character grid

34 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

LABLR rotates the entire grid 90 degrees counter-clockwise. * This is
useful for labeling vertical axes on graphs. After the character string has been
displayed, the beam remains in its previous position.

Each 7-bit character may be used for control or display. The control
characters can be used to position the beam, select the character size, shape,
brighten and format the text (line feed, carriage return, superscripts and sub­
scripts).

Characters may be displayed in any of the following three sizes:

Size
B
1

B
2

B
3

At the beginning of a character string, the size is always 2. Size increase
or decrease is determined by control characters.

If the italic mode is selected, characters will qe drawn slanted, as italics.

B
The italic mode is initially off. *

If the vertical spacing mode is selected (by using the Space Switch control
character) characters will be spaced automatically on a vertical line.

B
B
B

The vertical spacing mode is initially off.

There are three levels of brightness. The initial level at the beginning of
a string of characters is the intermediate brightness level. Brightness increase
or decrease is done by control characters.*

* Not implemented in non-LCG AGT/10 version (DSPLY version 1).

7-69 35 DSPLY/PRM/F

AGT DISPLAY OPERATOR. DSPLY

Programmer' s Reference Manual

A. Control Character Definitions and Values

The available control characters are the following:

ADEPT
7-Bit Code Mnemonic Code Control Operation

.eJ.eJ.eJ NUL @N No action

.eJ1.eJ BS* @I Italics control. Complements the italic
state •

.eJn HT @X Position X. The next 7-bit character speci-
fies the horizontal grid position for succeeding
characters .

. J~
/J13 VT @Y Position Y. Similar to Position X but speci-

fies vertical grid position.

,eJ12 LF @F Line feed - move beam down to next line.

/J15 CR @C Carriage return - reset X to position 16 u>

,eJ21 DCl Space switch .. Complements the vertical
spacing state.

,tj22 DC2 @S Decrease size of character, if possible.

/J23 DC3 @E Increase size of character, if possible.

/J34 FS @L Lower line one-half current character
height (for subscripts), if possible.

,ej35 GS @R Raise line one-half current character
height (for superscripts), if possible.

,ej36 RS* @B Brightness decrease, if possible.

,eJ37 US* @D Brightness increase, if possible.

* Not implemented in non-LCG AGT/10 version (DSPLY version 1).

DSPLY/PRM/F 36 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Reference Manual

B. Display Character Values

The available Display Characters are the standard 7-bit ASCII codes:

7-Bit Code Character 7-Bit Code Character

040 Space 198 @ (@@)

041 191 A

042 " 192 B
043 # 193 c
,044 $ 194 D
,tj45 % 195 E
,046 & 196 F
047

, (apostrophe, is1 G
,05,0 (

acute accent)
us H

,051) 111 I
052 * 112 J
053 + 113 K

054 114 L
055 115 M
056 116 N
057 I 117 0
,060 ,0 128 p
061 1 121 Q
062 2 122 R
,063 3 123 s
064 4 124 T
665 5 125 u
066 6 126 v
,067 7 127 w
978 8 139 x
871 9 131 y

972 132 z
973 133 [(@ J)
974 < (@() 134 \ (@ /)

975 ::::: 135]
976 > (@)) 136_(circumflex) (® V)
977 ? 137 _(underbar) (® -)

7-69 37 DSPLY/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

In addition, the following extended set is available as an option:

7-Bit Code Character 7-Bit Code Character

14,d ... (grave accent) 1611 p
141 a 161 q
142 b 162 r
143 c 163 s
144 d 164 t
145 e 165 u
146 f 166 v
147 g 167 w
1511 h 17~ x
151 i 171 y
152 j 172 z
153 k 173 {
154 1 174 I (vertical bar)
155 m 175 }
156 n 176 """" (tilde)
157 0 177 Space

DSPLY/PRM/F 38 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer' s Ref ere nee Manual

OPERATION CODE VALUES

Mnemonic Value Mnemonic Value

ELEMENT-GENERA TING

MOVE 1,0~ !H 2DTAB 1000! H
2DTBL 2tfj1 ! H 2DTAF 1100! H
DRAW 3ji,0 ! H 2DINT 1200! H
2DTF 4jij1 ! H 2DINF 1300!H
LAB LR 5ji,ti ! H 3DTAB 1400! H
2DLST 6ji,0!H 3DTAF 1500! H
LABL 7J1.fi!H 2DROT 1600! H

2DROF 1700! H

TRANSFORM-SPECIFYING

SCL 1£)£)£)£) ! H LDSCL 2,f)£),t'j£) ! H

ROTX 1£)1£)£) !H LDRX 2.f1H'£l !H
ROTY 1£)2R)£) ! H LDRY 2,t12,t1,t1!H

ROTZ 1£)3£)£) ! H LDRZ 2,t'.l3,t1,t1!H

RXYZ 1£)4£)£) ! H LDRV 2,t14,t1,t1!H

DX 1£)5£),0 ! H LDX 2,t)5,t'),t') ! H

DY 1£)6£)£) ! H LDY 2£)6£)£) ! H

DZ 1£)7~£) ! H LDZ 2£)7£),t') ! H

DV 11£)£)£) ! H LDV 21£)£)£) ! H
LDI 212,0,t') ! H

CONTROL

NUL ,t'),t1£),t')£) ! H LDMB 5£)£)yj.f1 ! H
SAVT 3 £)£)£)£) ! H ORMB 5,01,0£) ! H
REST 3£)1£)£) ! H AND MB 5£)2£)£)! H
RET 3£)2£)£) ! H LDSN 54,0,0,0 !H
I.MG 3£)3.fj£) ! H LDLS 55£)£),0 ! H
LOOP 3£)4~£) !H CJMP 1 C G6C,0£)!H
ENDL 3£)5,0£) ! H CJSR 1 C 57C£)£)! H
JMP 3£)6£)£) ! H WJMP 1WW 6WW£),0!H
JSR 3£)7£)£) ! H WJSR'WW 7WW£)fJ! H

LONG 315~,!H
SHORT 316,,!H

7-69 39 DSPL Y/PRM/F

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

Mnemonic Value Mnemonic Value -
VIEWING

LDW 31.8.8.8!H LWS 312D.8!H
MVW 311.8,8!H DEPTH 313,D,8 ! H

LDPS 314,ef,ef !H

DSPLY/PRM/F 40 7-69

AGT DISPLAY OPERATOR, DSPLY

Programmer's Reference Manual

FIELD VALUES

CONDITION CODES (C above)

FLAGl 4,tS,tS ! H PEN ltliJ!H
FLAG2 2,6,tS ! H

WINDOW BOUNDS (WW above)

WBXl 400.tS!H WBX2 2.tSOO!H
WBYl ltl.flO ! H WBY2 4,t'l,t'J! H
WBZl 200!H WBZ2 1,t'l,t) ! H

DATA TYPE

IHW (Assumed) 6.tS!H RHW liJ!H
IFW 2,t'J!H RFW 30!H
IRL 6,6 !H RRL 70!H

ADDRESS MODE

I l!H IMED (Assumed) C!H
DIR 4!H STR 5!H

7-69 41 DSPLY/PRM/F

AMOS DISPLAY TEXT EDITOR, EDIT
Programmer's Reference Manual

INTRODUCTION

EDIT is an AMOS library program used to edit alphanumeric information
available on punched paper tape, magnetic tape, or disk. With this routine, the
console operator can, under typewriter control, perform any desired combination
of the following editing functions:

"Kill" (i. e. , erase or nullify) the previous contents of the text buffer in
memory.

Read one or more pages of a text from punched tape into the text buffer,
appending the input to a previously entered page.

Type alphanumeric information into the text buffer, appending the input
to a previously entered page.

Punch out the contents of the text buff er.

Insert :new lines at any place in any "page" already in the text buffer.

Delete or change specified lines or pages in the text buff er.

Dis~lay current text on the CRT scope.

Type out a selected line (or lines) of the text buffer.

Type out selected pages or the entire text buffer, with or without page
and line numbers.

Write the entire text buffer onto a "scratch pad."

Replace the text buffer contents from the magnetic tape "scratch pad".

Insert or remove "page marks".

Copy the "scratch pad" to and from the magnetic tape or disk "User Volume. 11

Usi.ng these functions, EDIT simplifies the preparation of error-free alpha­
numeric text, such as symbolic programs from either typewriter input or previously
prepared punched or magnetic tapes or disk.

If the text is of greater length than will fit conveniently into memory, the
tape "scratch pad", contained on magnetic tape or disk, can be used to hold an
up-to-date version of the text, keeping one "page" at a time in core memory and

7-69 1 EDIT/PRM/C

AMOS DISPLAY TEXT EDITOR, EDIT
~~~~~~~~~~~~~~~~~~~~ 

Programmer's Reference Manual 

updating the "scratch pad" when a user requests an operation that would cause 
the text in a changed ''page" in core memory to be lost, such as bringing a new 
''page" into core memory. A user may, therefore, edit text of almost any length, 
subject only to the length of the "scratch pad. " 

EDIT is a relocatable library program normally residing on the system mass 
storage until loaded by a user control statement of the AMOS Monitor. Core 
memory from the end of EDIT to beginning of AMRMX is used as a text buffer. 
EDIT is loaded and entered using the AMOS control statement (EDIT!), and uses 
the same PULSEl PRI switch setting (24.fi.fj.fj 77776). Such entry terminates any 
prior input/ output state and establishes the control type-in mode of EDIT. Certain 
display parameters may be set by calling the SCALE routine in DISP. (See "TEXT 
DISPLAY". ) 

INPUT MODES 

EDIT has two input type-in modes, control mode and text mode. In control 
mode, characters typed are interpreted as commands by EDIT; in the text mode, 
typed input is copied directly into the line buffer and line-by-line into the text buffer. 
The only exception to this is the "4-" (left arrow) or RUBOUT characters (corres­
ponding to the backspace character on the OPC) which in the text mode causes the 
deletion of the last input character. To go from text mode to control mode, a ".- " 
(left arrow) or RUBOUT (backspace) character is typed immediately following a 
carriage return or after deleting all characters from a line. While in control 
mode, certain commands put EDIT in the text mode automatically. The current 
mode is indicated on the display scope by the words "CNTRL MODE" or "TEXT 
MODE". 

LINE BUFFER 

In the text type-in mode, a line consists of all input characters up to and in­
cluding a CR (carriage return). During input, each line is held in a special line 
buffer area. A line may contain up to 31.6 8 characters. 

TEXT BUFFER 

In magnetic tape systems, EDIT operates on text in two different modes, 
the Normal mode and the Tape-Edit mode. In the normal mode of operation, all 
text is kept in core memory. The core memory buffer then holds one or more 
''pages" of typescript, separated by ''page marks" and terminated by an ''end-of­
buffer" mark. Each contains one or more "lines" terminated by CR (carriage 

EDIT/PRM/C 2 7-69 



AMOS DISPLAY TEXT EDITOR, EDIT 

Programmer's Reference Manual 

return) characters. The text buffer can be loaded from the typewriter, the punched 
tape reader, or the magnetic tape "scratch pad. " Each line within a page is identi­
fied by an octal line number, and each page in the text buffer is identified by an 
octal page number. The disk version of edit always operates in a mode similar 
to Tape-Edit in which "scratch pad" updates are automatically made. 

In the Tape-Edit mode, the "scratch pad" area contains the text in the form 
of one of the following. 

In the Tape-Edit mode, the "scratch pad" area contains the text in the form 
of one or more magnetic tape records. On magnetic tape systems, the "scratch 
pad" is contained at the beginning of magnetic tape unit 0. On disk systems, the 
"scratch pad" is contained on the inner cylinders of whichever disk pack was 
specified on entry to EDIT. These records each contain a "page" of text. A one­
word record, containing the "end-of-buffer" mark is written following the last 
page. The "current page" (that page currently being referenced) is kept in core 
memory and may be modified and examined at will. When any operation is re­
quested that would cause that page to be lost, and the current contents of that 
page are different from the corresponding page on the "scratch pad" (i. e. , 
changes have been made to that page in core memory), an update operation 
will take place before the requested operation. The action of an update will occur 
in one of two modes (Single and Multi-Tape) specfied by the user. 

In the Single-Tape-Edit mode, a tape update takes place by reading in text 
from the "scratch pad" until the core buffer is full, writing out a specified number 
of pages, deleting these pages from the core buffer and reading again. This opera­
tion is repeated until all pages from the "changed" page to the last page have been 
recopied onto the tape. 

In the Multi-Tape-Edit mode, a two tape update takes place in which the text 
on the "scratch pad" is copied onto the user specified "copy tape", substituting the 
"changed" page for the corresponding page on the "scratch pad" and then re-copying 
the "copy tape" back to the "scratch pad". This operation requires the use of the 
"scratch pad" area of two magnetic tapes, but is usually faster than the one tape 
update, especially with a long text. The disk system version of EDIT does not 
have a corresponding mode. 

In both types of Tape-Edit modes, there is normally only one page in memory, 
unless "page marks" have been inserted, in which case the next tape update would 
cause the separate pages to be written out on the "scratch pad. " With respect to 
the current page in core memory, the line references are the same as in the normal 
mode. 

7-69 3 EDIT/PRM/C 



AMOS DIS PIA Y TEXT EDITOR, EDIT 

Programmer's Reference Manual 

TEXT DISPLAY 

The display scope is used primarily to provide instantaneous access to the 
text. The amount of text displayed is set by the user and certain commands are 
available to select that part' of the text the user desires. Normally the text is cen­
tered about the "current line" displaying some number of lines before and after the 
"current line".· A header line at the top of the display gives information about the 
current status of EDIT. This header is of the form: 

mmmMODE PAGEp LINEl ttt 

where "~~" ~s the mode "CNTRL" or "TEXT", "p" is the current page number, 

In the Control Mode, the current line is indicated by a 11 -+" (right arrow) on 
the far left side of the display. In Text Mode, the right arrow points to the line 
currently being inserted into the line buffer. In cases where there is more than 
one page· currently in the core memory text buff er, the first line of each page (not 
page 1) is indicf,l.ted by a page mark character "1'" (or ''P" for disk and LCG 
versions) to the left of that line on the display. 

Certain parameters for the display can be set up by calling the routine SCALE 
in DISP. The.Command form: 

SCALE ( (tl, t2, t3, t4, t5), c, b, a)! 

typed as a monitor control statement will enter DISP and set the five display tabula­
tion increments to tl, t2, t3, t4, and t5. These arguments represent the number of 
spaces betwe.en each tab setting. If it is desired to change just one or two of the tab 
settings, leaving any of the four arguments zero will cause their particular setting 
not to be changed. The normal setting is 7, 158 , 128 , and 1.6 8 • 

1. A value in "a" will set the character size. The value "a" is S/ 4 where 
the S scale facwr multiplies the character size increments (normally 4). 

2. A value in "b" will set the increments for character and line spacing. 
The value "b" is of the form Dx in the upper half and Dy in the lower half where Dx 
and ~ are the_ character spacing and line spacing increments respectively (normally 
4D.de and 156iJe). · , 

EDIT/PRM/C .. · 4 
7-69 



AMOS DISPIA Y TEXT EDITOR, EDIT 

Programmer's Reference Manual 

3. A value in "c" sets the number of lines displayed before and after the 
current line. 

If in any of the three command forms, one or more arguments ("a", "b", or 
"c") are omitted, no action will be taken on that argument. For example, desiring 
only to change the number of lines normally displayed before and after the current 
line one might type: 

SCALE (, 7) ! 

This command is not valid in disk and character generator versions of EDIT. 

CONTROL INPUTS 

Many EDIT commands require input of a numerical argument. This may be 
provided as an octal integer, or any of the characters "L", • (period), ' (single 
quote), or ! (exclamation point), explained below, or it may be any expression 
(EXP) made up of integers and these special characters, separated by "space" or 
"+" (plus) a:ad "-" (minus). Certain commands may take two arguments; these 
appear before the command letter, separated from each other by a comma. 

The slash("/") and all alphabetic command letters except G, H, W, S, X, and 
Z require· a "terminator" before action on the command is taken. This "terminator" 
is a tab or a carriage return typed immediately after the command letter. If part 
or all of a command was typed (prior to the "terminator") by mistake, a"?" (ques­
tion mark) may be typed to wipe out the command. Some commands acknowledge 
that the operation requested has been accomplished or that action is required by the 
operator by typing the character BELL. 

Characters in addition to octal digits used to represent value are: 

L has the value of the number of lines in tne current page of the 
text buffer; in other words, it is the number of the last in the 
current page. 

(period) represents the number of the line most recently re­
ferred to by an EDIT command. 

(single quote) represents the number of the current page. 

(exclamation point) represents the number of the last page 
in the text buff er. 

1f an "=" (equal sign) is typed following an expression, EDIT will type out the 
expression as an octal number. 

5 
7-69 EDIT/PRM/C 



AMOS DIS PIA Y TEXT EDITOR, EDIT 

Programmer's Reference Manual 

In the following descriptions, EXP is the octal value of the expression typed in 
the given context. Where two expressions are assumed, their values are designated 
as EXPl and EXP2, and are separated from each other by a comma. When the 
operation specified by an EDIT command cannot be performed, a typed error res­
ponse is produced, indicating the nature of the error encountered. The commands 
available in EDIT are: 

I EXPl, EXP2 I (list - types out lines EXPl through EXP2 of the 
current page and returns to the control input mode. If no 
"EXPl", sets it equal to EXP2. The operation can be aborted 
by depressing IC [,ti]. 

A A (Append)..,. .eDters the text type-in mode, and adds the sub­
sequent typed input to the end of the current page on a line­
by-line basis. This operation will create new text if buffer 
is empty. 

A EXP A (Append from "User Volume") - causes the next file EXP on 
the ''User Volume" to be appended to the current "scratch pad" and 
returns to control input mode. This command is valid only 
in Tape-Edit modes, and will cause an update operation if in 
Tape-Edit mode and the page in memory has been changed. 
In the Multi-Tape-Edit mode, this operation will cause a copy 
of the "scratch pad" to be made on the user specified "copy" 
tape at the end of the operation. 

A EXPl, EXP2 A (Append from Tape) - same as above but reads 
file EXP2 starting at record (i. e. , page) EXPl. 

B B (Back to AMRMX) - returns control to the AMOS Monitor 
This command will cause an update operation if in Tape-Edit 
mode and the page in memory has been changed. 

C EXPl, EXP2 C (Change) - deletes lines numbered EXPl 
through EXP2 from the current page of the text buffer, enters 
the text input mode, and inserts the subsequent typed input 
into the text buffer, on a line-by-line basis in place of the 
deleted lines. If no "EXPl", sets EXPl equal to EXP2. The 
number of lines inserted need not be equal to the number of 
lines deleted. 

D EXPl, EXP2 D (Delete) - deletes lines numbered EXPl through 
EXP2 from the current page of the text buffer, changing sub­
sequent line numbers accordingly. If no EXPl, sets EXPl 
equal to EXP2. Returns to control input mode. 

EDIT/PRM/C 6 7-69 



7-69 

AMOS DISPLAY TEXT EDITOR, EDIT 

Programmer's Reference Manual 

E E (Single-tape-edit) - sets EDIT to work in the single-tape­
edit mode with the "scratch pad" on the tape unit ,fl, and 
returns to control input mode. Invalid in disk version. 

E EXP E (multi-tape-edit) - sets EDIT to work in the multi­
tape-edit mode with the "scratch pad" on tape unit t') and the 
"copy tape" on tape unit EXP (1, 2, , - 3) and returns to 
control input mode. Invalid in disk version. 

E EXP % E (multi-tape-edit and copy) - same as above but 
causes an immediate copy of the "scratch pad" to be made 
on the "copy tape". Invalid in disk version. 

E -E (Normal) - causes EDIT to establish the normal mode 
where all text is kept in the core text buffer, and returns 
to control input mode. Invalid in disk version. 

F EXP F (Feed Blank Tape) - types a BE LL character and 
enters a three-second wait period to allow the operator time 
to turn on the punch unit. Then punches EXP number of null 
characters (feed holes only) on the paper tape punch unit. 
At the end of the punch operation, a BELL character is again 
typed and a three-second wait period entered to allow the 
operator time to turn off the punch unit. Control mode is 
then entered. This operation may be aborted by depressing 
IC [,0]. 

G EXP G (Advance Display) - causes the "current line" to be 
advanced by EXP. If no EXP or if EXP= .0, advances by 
number of lines set by user. 

G EXPl, EXP2 G (Advance and Set) - causes "current line" 
to be advanced by EXP2 and sets the number of lines, ad­
vanced by "G" along or backspaced by ''H" alone, to EXPl. 

H EXP H (Backspace Display) - causes the "current line" to 

be backspaced by EXP. If no "EXP" or if EXP= ,fl, backs 
up display by number of lines set by user. 

I EXP I (Insert) - enters the text type-in mode, and inserts 
the subsequent typed input into the text buffer, on a line-by­
line basis, before line no. EXP of the current page. No 
material is lost from the text buffer, although line numbers 
are changed to accommodate the insertion. 

7 EDIT/PRM/C 



EDIT/PRM/C 

AMOS DISPLAY TEXT EDITOR, EDIT 

Programmer's Reference Manual 

J EXP J (Jump to Page) - sets current page number = EXP, 
and returns to control input mode. If no EXP, set page 1 
current. This command will cause an update operation if 
in Tape-Edit mode and the page in memory has been changed. 

K EXPl, EXP2 K (Kill) - deletes pages EXPl through EXP2 
from the text buffer, and returns to the control mode. If no 
EXP!, sets it equal to EXP2. If EXP2 is negative, deletes 
the entire text buffer. For example, -K ''Kills" the entire 
text buffer. This command will cause an update operation 
if in Tape-Edit mode. 

M -M (Memorize) - if EDIT is in the normal mode, writes the 
entire text buffer on the "scratch pad" area of tape /J, and 
returns to control input mode. This command will cause an 
update if in the Tape-Edit mode and the page in memory has 
been changed, following which the text on the "scratch pad" 
is copied onto the end of the user specified ''User Volume" 
and the file number typed out. 

N EXP N (Next) - increments the current page no. by EXP, 
and returns to the control input mode. If no EXP, incre­
ments by 1. This command will cause an update operation 
if in Tape-Edit mode and the page in memory has been 
changed. 

· 0 0 (Omit) - deletes the page mark from the end of the current 
page and returns to the control input mode. 

P EXPl, EXP2 P (Punch) - causes EDIT to type a BELL 
character and enter a three-second wait period to allow the 
operator time to turn on the punch unit. Pages EXPl 
through EXP2 are then punched in the following form. As 
the page printer operates simultaneously with the punch unit, 
the punch operation will also generate a page listing of the 
selected text, and will generate a paper tape which can be 
listed as off-line as well as read-in for text input by EDIT. 
Tab characters in the text cause the punching of a Horizon­
tal Tab character (non-printing) followed by enough SPACE 
characters to position the printed output to the next tab 
setting. After the Carriage Return character at the end of 
each line, a Line Feed character is punched; and after the 
last line of each page, enough line feed characters are 
punched to position the paper to the next page (11 inch pages). 

8 7-69 



7-69 

AMOS DISPLAY TEXT EDITOR, EDIT 

Programmer's Reference Manual 

After each page, sixteen null characters are punched to 
signify the end-of-page. Following the last page, an 
End of Message character (3.f}.f) 8 ) is punched. A three­
second wait loop is then entered to allow the operator 
time to turn off the paper tape punch unit. If no "EXPl" 
is given, it is set equal to "EXP2". If "EXP2" is also 
not given, the entire text buffer (entire "scratch pad" if 
in Tape-Edit mode) is punched. This command will cause 
an update operation if in Tape-Edit mode and the current 
page has been changed. This operation can be aborted by 
depressing IC [,0]. 

Q EXPl, EXP2 Q (Annotate) - causes text to be appended to 
lines EXPl through EXP2. The operation is as follows: 
Line EXPl is inserted into the line buffer replacing the 
carriage return by a TAB. EDIT then enters "text" 
mode and the following typewriter input until a carriage 
return is appended to the line. The line is then re­
inserted into the text buff er. The next line is inserted 
in the same manner and this operation is continued through 
the EXP2. If no "EXPl", sets it equal to EXP2. If no 
"EXP2", causes annotation of the entire page. Lines con­
taining only a carriage return (CR) are not annotated. 

R R (Read) - types a BELL character and waits for the 
operator to turn on the paper tape reader unit. The input 
paper tape is then read and appended to the contents of the 
text buffer ("scratch pad" if in Tape-Edit mode) until an End-of­
Message character [ CTRL C (3008 )] is read or until IC[ O] is 
depressed. The input text format is compatible with that 
generated by the punch operation. Line Feed characters 
are ignored. Sequences of null characters (only feed holes) 
signify the end of a page. Horizontal tab characters cause 
the input of a TAB character and all following SPACE 
characters are ignored until the occurrence of a non-SPACE 
character. At the end of the operation, a BELL character 
is typed and a three-second wait period entered to allow the 
operator time to turn off the reader unit. This command 
causes an update operation if in Tape-Edit mode and the 
current page has been changed. At the end of this opera-
tion, a copy of the "scratch pad" will be made on the user 
specified "copy" tape if in Multiple-Tape-Edit mode. 

9 EDIT/PRM/C 



EDIT/PRM/C 

AMOS DISPLAY TEXT EDITOR, EDIT 

Programmer's Reference Manual 

S EXP S (Set current line) - causes the EXP to be set as the 
current line. If no "EXP" or if "EXP" =.ti, sets current 
line= 1. 

T T (Tag) - establishes "tag" mode, and returns to the con­
trol input mode. In the tag mode, each line of text output 
on the typewriter is labelled with its octal page number and 
line number separated by a period. 

T -T (Untag) - establishes the normal "no tag" type-out, and 
returns to the control input mode. 

U EXPl, EXP2 U (Unload) - types out pages EXPl through 
EXP2, and returns to the control input mode. At the end 
of each page, enough Line Feed characters will be typed 
to position the paper in the typewriter to the next page. 
If no "EXPl", sets it to equal EXP2. If no "EXP2", 
types out the entire text buffer (the entire "scratch pad" 
if in Tape-Edit mode). This command will cause an 
update operation if in Tape-Edit mode and the page in 
memory has been changed. The operation can be aborted 
by depressing IC Lt1]. 

V EXP V (Divide) - inserts a page mark before line number 
EXP of the current page and returns to the control input 
mode. 

W W (Reset Vertical) - sets the number of lines displayed 
before and after the "current line" to the value set by argu­
ment "c" in the setup entry from AMRM. 

W EXP W (Set Vertical.) - sets number of lines displayed 
before and after the "current line" to be EXP. 

w EXP, W (Set Character Size) - sets the character size to 
EXP (1, 2, or 3) on disk and character generator versions 
of EDIT. 

W EXP, W (Set Horizontal) - sets the horizontal display cutoff 
to full screen if EXP= O or to half screen if EXP f. O on 
non-disk and non-:character generator versions of EDIT. 

10 7-69 



7-69 

AMOS DISPLAY TEXT EDITOR, EDIT 

Programmer's Reference Manual 

W EXPl. EXP2 W (Set Character Size or Horizontal. and Set 
Vertical) - sets the character size or the horizontal display 
cutoff. as explained above, to EXPl. and sets the number 
of lines displayed before and after the "current line" to 
EXP2. 

X X (Backspace Half-Frame) - backspaces the "current line" 
one-half frame (i.e •• the top line displayed becomes the 
"current line"). 

Y - Y (Yank) - kills (deletes) the entire text buffer and reads 
into the text buffer from the "scratch pad" area on mag 
tape unit~. and returns to the control input mode. This 
command is only valid in the normal mode. 

Y EXP. - Y (Yank) - copies file no. EXP from the specified 
"User Volume" to the "scratch pad". makes a copy of this 
on the "copy tape" if in Multi-Tape-Edit mode. and returns 
to the control input mode. This command is only valid 
when in the Tape-Edit mode. 

Z Z (Advance Half-Frane) - advances the "current line" one­
half frame (i.e •• the bottom line becomes the "current line"). 

BACKSPACE or 

RUBOUT or 

.. (BACK ARROW) 
When entering text. will delete the last character from the 
current line. but if the line is empty. no further text will be 
accepted and subsequent characters will be taken as edit 
commands. When not entering text. the current line will 
be typed out and the reference pointer advanced. 

NOTE: The commands "G". "H". and "Z" can cause the 
"current line" to move across the page boundaries 
in Normal mode but not in Tape-Edit mode. 

< EXP<(¢ on the OPC) Set "User Volume" - causes the 
"User Volume" to be specified as tape unit EXP (EXP = 1. 
2. or 3) or disk volume on disk systems where EXP is of 
the form 11pvv8 11 with p =pack (0 - 7) and vv =volume (1 - 40s)· 

11 EDIT/PRM/C 



AMOS DISPLAY TEXT EDITOR, E J)}'..1'_ 
Programmer's Reference Manual 

SUMMARY OF EDIT COMMAN:OO (A FUNCTIONAL BREAKDOWN) 

1. To enter the editor from the AMOS Monitor: 

EDIT! Enters editor (non-disk systems). 
EDITl! Enters editor without storing End of E-Text Mark 

(non-disk systems). 
EDIT2! Enters editor without clearing the change flag 

(non-disk systems). 
EDIT(n)! Enters editor and sets "scratch pad" on disk 

pack n (disk systems only). 

To enter or leave the Editor in the Editor: 

B Returns to the AMOS Monitor 

2. Other Monitor calls: (non-disk and non-character generator systems). 

Scale ((Tl,, T2,, T3, T4, T5), C, B, A)! 

Sets Tab increments to Tl through T5. "C" is the number of lines 
displayed before and after the current line. "B" is the X and Y character spacing 
with X in left and Y in right half of word. "A" is the character scale (relative to 
"4") with X in the left and Yin the right half of the word. Each of the four main 
arguments is optional. 

SNAME ("TITLE")! 

Sets the title of the output file (and all text records written to title). 

3. To look around while in the Editor 

One page moves: 

Other page moves: 

4. To enter text: 

EDIT/PRM/C 

G 
H 
s 
x 
z 

Advance Display 
Backspace Display 
Set current line 
Backspace Half-Frame 
Advance Half-Frame 

W Set and reset width of display and no. 
of line (and size for character gener­
ator and disk systems.) 

J 
N 

A 
I 

12 

Jump to page 
Increment page number 

Append 
Insert before current line 

7-69 



AMOS DISPLAY TEXT EDITOR. EDIT 

Programmer's Reference Manual 

Q Annotate to end of line 
R Read paper tape 
y Yank (Read from "user" mag tape) 

5. To change text: c Change (Delete and enter text) 
D Delete 
K Kill 

6. Paging 0 Omit page mark 
v Divide (insert page mark) 

7. Output text: F Feed blank tape 
M Memorize onto mag tape 
p Punch paper tape 
u Unload 

8. Set mode: E Establish tape edit mode 
T Establish tag mode (line numbers 

on printout) 

EDIT/PRM/C 13 7-69 





3EDIT 

A M 0 S Display Text Editor (Version 3) 

Programmer's Reference Manual 

June 1968 





6/68 

AMOS DISPLAY TEXT EDITOR (VERSION 3), 3EDIT 
Programmer's Reference Manual 

PROPRIETARY NOTICE 

The contents of this publication are the 
property of Adage, Inc. and shall not be 
used as the basis for manufacture or 
sale of apparatus without permission . 

TRADEMARK NOTICE 

Ambilog is a trademark used by Adage, 
Inc. to designate its hybrid information­
processing devices and systems having 
both analog (i. e. , continuous) and digital 
(i.e., discrete) input and/or output signals. 

Ambilogical is a trademark used by Adage, 
Inc. to designate the hybrid logical and/ or 
arithmetic operations performed by Ambi­
log devices and/or systems, or these 
devices and systems themselves. 

i 3EDIT/PRM/ A 



Cl [!J Cl !!JI:! ---~A::..;M;;.;:.,.;;;.O.;;;.S...;;D;;;.;I;;..;;S;..;;P...;;L=A-Y __ T---.E-..X.-.T~E-D~I~T:-0-R~,-3=-::E~D_I~T 
Programmer's Reference Manual 

6/68 

TABLE OF CONTENTS 

INTRODUCTION 

COMMANDS 

MODES 

DISPLAY FORMAT 

EDITING COMMANDS 

Delete Line(s) 

Text Insertion 

Line Modification 

Special Format Input Characters 

TTY AND PAPER TAPE INPUT/OUTPUT COMMANDS 

Feed Blank Tape 

List Line(s) 

Punch Line(s) 

Read Paper Tape 

Typeout Octal Value 

MAGNETIC TAPE INPUT/OUTPUT COMMANDS 

Select Tape Drive 

Write Text on Tape 

Read Text from Magnetic Tape 

ERROR MESSAGES 

ii 

1 

1 

1 

2 

2 

2 

3 

3 

3 

4 

4 

4 

4 

4 

5 

5 

5 

5 

6 

6 

3EDIT /PRM/ A 



AMOS DISPLAY TEXT EDITOR (VERSION 3), 3EDIT 
Programmer's Reference Manual 

INTRODUCTION 

3EDIT, version 3 of the AMOS system program, is a Display Text Editor de­
signed for operation on the AGTl10, 4K of memory, and MTP5 or MTP8 tape unit(s). 
3EDIT provides the user with the capability of creating and maintaining a text file on 
magnetic or paper tape. 3EDIT holds one page at a time in its text buffer, allowing 
insertion, deletion, and appending of new text. 

COMlV..ANDS 

Control input to 3EDIT, version 3, is by a series of typed commands, consis­
ting in general of a command letter preceeded by from zero to three arguments 
separated by commas. In addition, most alphabetic letter commands require their 
termination by the typing of a carriage return character following the command. 

Arguments for the commands consist of expressions made up of terms separated 
by the operators "+" or SPACE (arithmetic plus), or "-" (arithmetic minus). Valid 
terms are octal integers and certain special characters having the values as des­
cribed below . 

. (peri<td) 

$ (dollar sign) 

MODES 

has the value of the number of the 
"current line" (described later). 

has the value of the number of the 
last line on the page. 

Teletype input to 3EDIT may occur in one of two modes. The first, Control 
Mode (represented on the display by the symbol CNTRL), signifies that typed con­
sole input is interpreted as commands to 3EDIT. The second, TEXT Mode, causes 
characters typed on the console (with certain exceptions described later) to be in­
serted into the text buffer. 

A third mode, READ Mode, is in effect when paper tape is being read into the 
text buffer. Certain commands given in CNTRL Mode place 3EDIT into the TEXT 
or READ Mode. CNTRL Mode is re-established when the specified operations 
indicated by the command are completed. 

6/68 - 1 - 3EDIT/PRM/ A 



Cl l!J Cl~ E! ___ _.;;,;A;....M_O~S;.__D.-IS;;...P_LA...;.;;..Y_T_E_X_T_E_D_IT_O_R_,(.._V_E~R-S:"'"IO_N_3 ..... ),~3~E-D--:IT 
Programmer's Reference Manual 

DISPLAY FORMAT 

The display consists of a header line indicating the current mode and current 
line number, and a text display of up to 2110 lines from the text page. The center 
line is indicated by a right arrow character at its left. The line number of the 
center line is used as the "current line" number. Certain special commands typed 
in CNTRL Mode affect the "current line" number. ·These commands are as follows: 

G Advance current line by 1. 

H Decrease current line by 1. 

Z Advance current line by 10 lO· 

X Decrease current line by 1010. 

expS Set current line to line exp. 

If in advancing the current line number there are not enough lines left in the 
page, the last line will be set as the current line. If in decreasing the current line 
number there are not enough lines available to move backward, line one will be set 
as the current line number. 

These display commands are special in that they require no carriage return 
"terminator" to initiate their action. 

In the TEXT and R.EAD Modes, a blinking cursar character (down-arrow) is 
also present to indicate the position of the next character to be inserted into the 
text buffer. 

EDITING COMMANDS 

A. Delete Line( s) 

expD 

expl, exp2D 

6/68 

causes line exp to be deleted from the text 
buffer. Subsequent lines are renumbered 
accordingly. 

causes lines expl thru exp2 to be deleted 
from the text buffer. 

;.. 2 - 3EDIT/PRM/ A 



Cl [!J Cl r.1 ~ ____ A_M_o_s_n_1s_P_L_A_Y_T_E~X~T__,E .... D':"'"IT __ O __ R'"':"'"".'(";""'.V'."""E~R~Sl"'.'.IO~N~3~) ·~3E~D~IT 
~ Programmer's Reference Manual 

B. Text Insertion 

I 

exp I 

C. Line Modification 

expM 

causes entry into TEXT Mode and typed 
input to be appended to the end of the 
text buffer. 

causes entry into the TEXT Mode and 
typed input inserted prior to line exp. 

causes entry into the TEXT Mode for 
subsequent insertion of typed input with 
the cursar character positioned just 
before the first character in line exp. 

D. Special Format Input Characters 

Certain special characters may be used in the TEXT Mode. These characters 
and their respective operations are described below. 

BELL 

RUBOUT 

control "R" 

control "E" 

control "F" 

end operation and return to CNTRL 
Mode. 

deletes from the text buff er the charac­
ter just preceeding the cursar. 

moves the cursar backward (reverse) 
skipping the preceeding character. 

deletes from the text buffer the charac­
ter immediately following the cursar. 

moves the cursar forwards skipping 
the next cha.ra.cter. 

For readability, the cursar character in TEXT Mode initiated by the "I" com­
mand is displayed with a ficticious carriage return (end-of-line) following it. This 
carriage return is omitted when CNTR L Mode is re-established. 

6/68 - 3 - 3EDIT/PRM/ /\. 



C][!J CJ 0 [:! ___ ....;.;A-M_o_s;;_D.-IS._P_L_A_Y_T_E_X_T_E_D_IT_o_R_(_V_E'.".'."R-:s::-Io_N_3_) ,-:"".3:-E_D--=-IT 
Programmer's Reference Manual 

TTY AND PAPER TAPE INPUT/OUTPUT COMMANDS 

A. Feed Blank Tape 

expF causes exp number of null characters 
to be punched on the paper tape punch. 

3EDIT will initially type two BELL characters and enter a three second wait 
period for the operator to turn on the punch unit. Another three second wait period 
will be entered at the end of the operation allowing the operator time to turn off the 
punch unit. 

B. · List Line(s) 

expL 

expl, exp2L 

C. Punch Line(s) 

expP 

expl, exp2P 

types line exp on the TTY printer. 

types lines expl thru exp2 on the TTY 
printer unit. 

punches line exp on the punch unit. 

punches lines expl thru exp2 on the 
punch unit. 

In both forms of the punch command, 3EDIT will type two BELL characters 
and enter a three second wait period to allow the operator sufficient time to turn on 
the paper tape punch unit. When the desired text has been punched, 3EDIT will 
cause the punching of 20s null characters and again enter the three second wait 
period for the operator to turn off the punch unit. 

D. Read Paper Tape 

R 

expR 

reads text from the paper tape reader and 
appends it to the end of the text buffer. 

reads text from the reader and inserts it 
prior to line exp. 

In both forms of the read command, 3EDIT types two BELL characters to 
notify the operator to turn on the reader. Initial null characters are ignored on 
the reader. Initial null characters are ignored prior to the first non-null character 
on tape. The first null character after valid input is taken as the end-of-text indi­
cator and the read operation is terminated by the typing of three BELL characters 

6/68 -4- 3EDIT/PRM/ A 



C:H!J CJ Q] I:! AMOS DISPLAY TEXT EDITOR (VERSION 3), 3EDIT 
Programmer's Reference Manual 

and the entry into a three second wait period to allow time to turn off the tape reader. 

During the read operation, all line feed characters are ignored and all space 
characters ignored if they occur immediately following a horizontal tab character. 
The RUBOUT character, if read, will cause the deletion of the previous character 
and successive RUBOUT characters may be used, deleting characters back to the 
beginning of the line. 

E. Typeout Octal Value 

exp= causes the typing of the lead zero 
suppressed octal integer having the 
value of exp. This command requires 
no carriage return "terminator". 

MAGNETIC TAPE INPUT/OUTPUT COMMANDS 

A. Select Tape Drive 

expT 

B. Write Text on Tape 

exp3W 

expl,exp2,exp3W 

sets the tape drive for subsequent tape 
operations to be exp. 

writes the entire text buffer on mag­
netic tape according to format exp3. 

writes lines expl thru exp2 on mag­
netic tape according to format exp3. 

Argument exp3 is a code indicating the desired location on tape of the output 
record. The permissable codes are as follows: 

1 

2 

3 

appends record io ::scratch pad::. 

starts new "scratch pad" (i. e. , record 
1) 

appends to last file on tape. 

starts new file in file area of tape. 

At the end of the write operation, the file and record numbers of the record 
written are typed. 

6/68 -5- 3EDIT/PRM/ A 



Cl[!) Cl 0 E! ____ A_M_o_s_D_Is_P_LA_Y_T_E~X~T---E--D--IT_O __ R~(r':V~E~R':"lS~IO--N':'."".::-:3~) ·~3E~D~I~T 
Programmer's Reference Manual 

C. Read Text from Magnetic Tape 

expl, exp2Y reads record expl of file exp2 and 
appends the text read to the end of 
the text buffer. 

expl,exp2,exp3Y 

ERROR MESSAGES 

? 

NOT ENOUGH MEMORY. 

RECORD TOO LONG. 

RECORD NOT FOUND. 

ILLEGAL RECORD TYPE. 

ARGUMENT ERROR. 

6/68 

reads record expl of file exp2 and 
inserts the text read prior to line 
exp3. 

Illegal character typed in CNTRL 
Mode. 

Text buffer storage exceeded in either 
"R", "I", or "M" commands. Opera­
tion is terminated. 

Text buff er exceeded in reading from 
magnetic tape. Input text is deleted 
and read operation terminated. 

Specified record is not found on tape. 
Read operation is terminated. 

Specified record is not type "A TEXT". 
Read operation is terminated. 

Illegal line number for command or 
multiple arguments out of sequence or 
not enough arguments for specified 
command. The command operation is 
terminated. 

-6- 3EDIT /PRM/ A 



AFORT CARD READER DRIVER, FCRD 

Programmer's Reference Manual 

INTRODUCTION 

FCRD is a card reader routine used by AFORT to implement the command 
READ on unit 52 (see OBJPK/PRM). FCRD is loaded by OBJPK and is called 
directly by OBJPK. It makes use of CDRDR to implement the routine. C DRDR 
is called by FCRD, Version 2. 

VERSIONS 

FCRD may be assembled in one of two versions, specified at assembly­
time. Version 1 is used when the card reader is not available to the system. 
Version 2 is used with a single card reader. 

LOADING 

FCRD is a relocatable program which is loaded by OBJPK whenever 
OBJPK is loaded. 

UNIT ERROR 

If an AFORT program specifies reading when the card reader is not avail­
able or writing on the card reader, a UNIT ERROR will occur. 

AFORT CARD READER ROUTINE 

Read a Hollerith Formated Card 

The calling sequence: 

JPSR 9CD1 [Entry 
[Normal Return 

causes a single card to be read if $910 = O. The input is translated from AMOS 
code provided by CDRDR to AFORT internal code and put in the buffer at $90B. 
In normal use $910 and $90B exist in OBJPK. 

FCRD/PRM/A 1 6-69 



al!Ja~E! 
AFORT CARD READER DRIVER, FCRD 

Programmer's Reference Manual 

INTERNAL CODES 

AMOS code is translated to AFORT code as follows: 

TTY AFORT AMOS TTY AFORT AMOS 
CHAR. CODE CODE CHAR. CODE CODE 

SPACE 00 40 w 40 67 
0 01 20 x 41 70 
1 02 21 y 42 71 
2 03 22 z 43 72 
3 04 23 .,. 44 76 
4 05 24 @ 45 75 
5 06 25 % 46 01 
6 07 26 ] 47 02 
7 10 27 I 50 51 
8 11 30 J 51 52 
9 12 31 K 52 53 

13 32 L 53 54 
14 00 M 54 55 
15 03 N 55 56 
16 11 56 13 
17 12 57 14 

A 20 41 + 60 10 
B 21 42 61 35 
c 22 43 * 62 05 
D 23 44 I 63 37 
E 24 45 64 36 
F 25 46 ( 65 16 
G 26 47 ) 66 17 
H 27 50 , 67 34 
0 30 57 = 70 33 
p 31 60 & 71 04 
Q 32 61 72 06 
R 33 62 73 07 
s 34 63 $ 74 73 
T 35 64 # 75 74 
u 36 65 76 77 
v 37 66 C/R 77 15 

NOTE 

"· •• " indicates that this internal code is 
unused in the AFORT system. 

FCRD/PRM/A 2 6-69 



FUNCTION SUBROUTINE USING EAU, FCTE 
Programmer's Reference Manual 

INTRODUCTION 

FCTE is a subroutine written in ADEPT source language for the AMOS library 
which uses the EAU to obtain a single valued function of one (positive) independent 
variable, using table look-up and quadratic interpolation in a 6510 word table. 

HARDWARE REQUIREMENTS 

Any configuration of DPR2. 

SOFTWARE REQUIREMENTS 

The function table supplied by the calling program (such as SNCSA). 

STORAGE AND TIMING 

FCTE occupies less than 100 8 words of storage and requires 175 microseconds 
for execution. 

VERSIONS 

VERSION! FCTE Uses EAU of DPR2 for digital arithmetic. 

VERSION(s) FCTA Sarne as FCTE, but using arnbilogical arithmetic 

USE 

Calling Sequence: 

AR X (+ sign in bit 0, value in bits Ll-14]) 
L JPSR $FCTA 
L+ 1 Address of TBL (Function table) 
L+2 Next instruction 

Result: 

AR F(x) (SIGN in bit 6, value in bits [1-14] 

where the table is of the following format: 

7/68 - 1 - FCTE/PRM/A 



al!.la~e 

LOCATION 

TBL+2J-2 
TBL+2J-1 

for J = 1, 2, 3, ••• 33 

FUNCTION SUBROUTINE USING EAU, FCTE 
Programmer's Reference Manual 

BITS [,6-14] 

d 
4(F(J+l)-F(J-l)) 

BITS [15-29] 

F(X(J)) 
4(F(J+l)-2F(J)+F.(J-1)) 

where X(J) = (J-1)/32 and F(J) = F(X(J)) 

7/68 -2- FCTE/PRM/A 



FORTRAN DISK I/O DRIVER, FDSK 

Programmer's Reference Manual 

GENERAL 

FDSK is a collection of FORTRAN callable subroutines for reading and 
writing data on Adage Disk Memory, DMS2. 

ATTACHING DISK VOLUMES TO FORTRAN UNIT NUMBERS 

Four FORTRAN I/O unit numbers (21, 22, 23, 24) are assigned to disk 
allowing a total of four separate I/O paths open at any one time. An entry in 
FDSK is provided to attach a (logical) unit number to a selected disk volume and 
disk pack as follows: 

CALL SDVOL (NUNIT, NPACK, NVOL, IBUFF) 

where NUNIT is 2110, 2210. 2310, or 2410; NPACK is the disk pack number (0 
through 7); NVOL is the disk volume number (1 through 3210), and IBUFF is a 
FORTRAN vector of length 20810• 

DISK FILE CONTROL 

Start Output File CALL SDOUT (NUNIT) 

The above call causes FDSK to initiate a file output operation on the pack 
and volume associated with NUNIT. The file which is written by subsequent 
FORTRAN WRITE statements of this unit will be of type "DATA," have title 
"FDA TA," and have the date, version, and revision as set by the last AMRMX 
date setting and VERSION statement and operation. 

Start Input File CALL SDIN (NUNIT, IEOF) 

The above call causes FDSK to search the associated volume and instate 
the first file of type "DATA" to be read by subsequent FORTRAN READ state­
ments. At this time, the integer variable specified by the IEOF argument is set 
to +O. When a subsequent READ statement is given and the file contains no more 
records, the integer variable is set to -1 (e.g. , the READ statement following the 
READ statement which input the last record of the file causes the variable to be 
set to -1). 

3-69 1 FDSK/PRM/A 



FORTRAN DISK I/O DRIVER, FDSK 

Programmer's Reference Manual 

/ 

Close File CALL CLDIO (NUNIT) 

The above call causes the "closing" of the file currently being input or 
output on this unit. All files "opened" by calls to SDOUT or SDIN should be 
"closed" by a call to this routine for proper operation of the disk driver routines. 
Note that the CLDIO call on an input file followed by an SDIN call on the same unit 
is equivalent to "rewinding" and starting the file over. 

PROGRAM RESTRICTIONS 

The following errors will cause run-terminating I/O error stops: 

1. There may never be more than one unit "attached" to a given pack and 
volume at any one time. 

2. A Unit must be "attached" to a pack and volume before any SDOUT, SDIN, 
or CLDIO calls are given. 

3. An "attach" operation on a unit which is already attached and contains an 
open input or output file is illegal. Files must be closed before any sub­
sequent "attach" operations or new input or output selection (on the same 
unit) may take place. Before FDSK is first called, all units are closed and 
unattached. 

SUMMARY OF CALLS 

Attach Unit: CALL SDVOL (NUNIT, NPACK, NVOL, !BUFF) 

Start Output: CALL SD OUT (NUNIT) 

Start Input: CALL SDIN (NUNIT, IEOF) 

Close Unit: CALL CLDIO (NUNIT) 

FDSK/PRM/A 2 3-69 



FILE I/O 

AGT DISK FILE INPUT/OUTPUT 

Programmer• s Reference Manual 

Revision B 

August 1969 





AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer' s Reference Manual 

TABLE OF CONTENTS 

~ 
INTRODUCTION 1 

DISK FILE I/O 1 

Volumes 1 
Files 1 
Records 2 

FILE I/O FACILITIES 2 

Define 2 
Open 5 
Look-Up 6 
Input/ Output 8 

ARGUMENTS FOR FILE I/O 11 

BUSY 11 
DISK 11 
VOL# 12 
NAME 12 
DONE 13 
ERR 13 

FILE I/O FORMATS AND TABLES 16 

Disk Pack 16 
Volume Directory 17 

Volume ID Entry 18 
FD Sector Entry 18 
Cylinder Allocation 18 

File Directory 18 
Available Bin 19 
File ID 19 

APPENDIX A 

Synopsis of Calling Sequences for File I/O Package 21 

APPENDIXB 

File I/ O Pack Directory Formats 22 

8-69 iii FILE I/O/PRM/B 





AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Reference Manual 

INTRODUCTION 

The File I/O Package is a set of subroutines for filing and retrieving 
information to and from disk storage. It implements facilities for allocating 
the storage on disk and for maintaining the necessary indexes and directories 
for efficient access and input/ output. 

All standard system software referencing online mass storage on disk 
configurations use the structures, formats, and conventions of the File I/ 0 
Package. The package is available as standard in disk versions of the AMOS 
Monitor. 

DISK FILE I/0 

The Disk File I/O package provides the means for creating "volume" 
definitions. The disk areas assigned under these definitions are utilized to hold 
user and system information files. 

A. Volumes 

Programmed processes and procedures using standard File I/O facilities 
may have their input/output streams assigned to selected volumes. Efficient 
calls are provided for: 

1. Randomly accessing any file in a volume. 
2. Appending new files to a volume. 
3. Deletion of files anywhere within a volume. 

B. Files 

Files are the units in which collected information is added to, read, or 
deleted from disk storage with the File I/O package. Each file is assigned 
fields for containing the following ID information: 

1. An alphanumeric "title." 
2. A sequence number to establish order in volume. 

8-69 1 FILE I/O/PRM/B 



AGT DISK FILE INPUT/OUTPUT, FILE 1/0 

Programmer's Reference Manual 

3. The type of information contained in the file. 
4. An associated date, version, and revision level. 
5. Flags defining: 

a. Whether the file is further subdivided into records, and 
b. if the file ID contents (lines 1 and 4) do not follow standard 

formats. 

The above information for all files in all volumes, along with the actual 
disk location, is maintained in a File Directory. This allows easy searching 
for such identifying information without having to access the actual files. 

C. Records 

Files may be further subdivided into records which later can be processed 
serially. 

FILE I/O FACILITIES 

The calls implemented by the File I/ 0 package are: 

1. The Define group which provides for the creation and alteration of a 
disk pack's volume definitions. 

2. The Open group that controls the establishment of selected volumes 
for use in subsequent disk operations. 

3. The Look-Up group performs serial sequencing over file ID fields 
and instating of files for subsequent I/O accesses. 

4. The I/O group directs the actual transfer of information between 
disk file and core storage. 

A. Define 

The following calling sequences govern disk allocation. For more infor­
mation on arguments, see the section on arguments. 

INITIALIZE 

Destroys all information on the selected pack, regenerates disk format 
and addressing information, creates an initial empty volume and file directories. 

FILE I/O/PRM/B 2 8-69 



AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Ref ere nee Manual 

This prepares any new or used pack for use under File I/O. 

JPSR 

CREATE 

$8IT 

BUSY 

DISK 

ADR 

ERR 

DONE 

[Call 

[Instruction executed if unit busy 

[Pack address: unit (0-3) pack (0-1) = (0-7) 

[Address of packed 19 character or less string 
for pack identification 

[Instruction executed if pack unavailable 

[Instruction executed when done 

[Location returned to once the operation has 
been started 

Establishes a new volume as available on a pack for use in holding files. 

JPSR 

PURGE 

$8CR 

BUSY 

DISK 

VOi.Ji 

#CILS 

ERR 

DONE 

[Call 

[Instruction executed if unit busy 

[Unit and pack (0-7) 

[ID of volume being defined (1-32) 

[No. of cylinders to be allocated to new volume 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once operation has been 
started 

Removes a volume from a pack, destroys all contained files and their 
information, releases all disk storage which has been allocated to the volume. 
Major reallocation of disk contents may be undertaken by this operation. 

8-69 3 FILE I/O/PRM/B 



JPSR 

CHANGE 

$8PU 

BUSY 

DISK 

VOU/= 

ERR 

DONE 

AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Reference Manual 

[Call 

[Instruction executed if unit busy 

[Unit and pack (0-7) 

[Volume to be dropped 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has 
been started 

This call increases or decreases the amount of disk storage allocated to 
a given volume; no information is destroyed. Major reallocation of disk con­
tents may be undertaken by this operation. 

JPSR 

REMOVE 

$8CH 

BUSY 

DISK 

VOLf/= 

[Call 

[Instruction executed if unit busy 

[Unit and pack (0-7) 

[Volume to be expanded 

±:/l=NEWCIL [Number of cylinders to be added to (or sub­
tracted from if negative) current allocation 

ERR 

DONE 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has 
been started 

This call removes one or several files from a selected volume and deletes 
the file directory information for this (these) file(s). Reallocation of the selected 
volume's contents may be undertaken by this operation. 

FILE I/O/PRM/B 4 8-69 



JPSR 

B. ~-

$8RE 

BUSY 

DISK 

VOL# 

SEQ NO 

ERR 

DONE 

AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Reference Manual 

[Call 

[Instruction executed if unit busy 

[Unit and pack (0-7) 

[Volumes containing file(s) to be deleted 

[ File to be deleted or pointer to list of files 
(-1) with number of files to be deleted in 
upper portion of word (multiple file list must 
be in increasing order) 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[ Location returned to once operation has been 
started 

These calls govern the establishing of selected volumes for use in sub­
sequent disk operations. Disk operations refer to their volume by a NAME 
which is set when the volume is opened by a SELECT operation. For each 
volume opened, the caller must furnish a buffer area in which two sectors may 
be held (208 words). 

SELECT 

This call opens the specified volume for accessing and I/O. A NAME 
word is set to reference the volume. 

JPSR $SSE 

BUSY 

NAME 

DISK 

VOL# 

BUFF 

ERR 

DONE 

8-69 

[Call 

[ !!lStruction executed :!f unit busy 

[Address of cell for referring to volume 

[Unit and pack 

[Volume to be opened 

[Address of 208-word Buffer area 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[ Location returned to once the operation has 
been started 

5 FILEI/O/PRM/B 



AGT DISK FILE INPUT/OUTPUT, FILE I/0 

Programmer's Reference Manual 

UNSELECT 

This call closes and detaches the specified volume. The name cell ref erring 
to it and the buffer area it used are then no longer required or used. This call 
also closes any open output files with the same file name. 

JPSR 

C. Look-Up 

$SUS 

BUSY 

NAME 

ERR 

DONE 

[Call 

[Instruction executed if unit busy 

[Cell referring to volume (or O if all are to be 
closed) 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has been 
started 

Look-Up calls are used to sequence through an open selected volume. Each 
call breaks out of the file directory the file ID information pertaining to the current 
file reached. Refer to NAME in section on arguments for file ID format. Any file 
reached in this manner is then accessible for read or skip operations. In all of these 
calls, the user's NAME cell is set to point to the file ID block. 

FIRST 

This call accesses the first file of the specified volume, instating its ID 
information and preparing it for reading. 

JPSR 

FILE I/0/PRM/B 

$8FI 

BUSY 

NAME 

ERR 

DONE 

[Call 

[ Instruction executed if unit busy 

[Address of cell referencing volume 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has 
been started 

6 8-69 



AGT DISK FILE INPUT/OUTPUT, FILE I/0 

Programmer's Reference Manual 

NEXT 

This call accesses the next sequential file in the referenced volume (if 
any) and instates its ID information. The accessed file is then ready for reading. 

JPSR 

LAST 

$8NE 

BUSY 

NAME 

ERR 

DONE 

[Call 

[Instruction executed if unit busy 

[Address of cell referencing the volume 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has 
been started 

This call accesses the final file in the referenced volume and instates its 
ID information. The accessed file is then ready for reading. 

JPSR 

PREvl:OUS 

$8LA 

BUSY 

NAME 

ERR 

DONE 

[Call 

[Instruction executed if unit busy 

[Address of cell referencing the volume 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has been 
started 

This call accesses the previous file (if any) of an open volume and instates 
its ID information. The accessed file is then ready for reading. 

JPSR 

8-69 

$8PR 

BUSY 

NAME 

[Call 

[Instruction executed if unit busy 

[Address of cell referencing the volume 

7 FILE I/0/PRM/B 



CH!.la!!]e 

ERR 

DONE 

D. Input/Output 

AGT DISK FILE INPUT/OUTPUT, FILE I/0 

Programmer's Reference Manual 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has been 
started 

The following calling sequences are used to process information pertain­
ing to the CUI'l'ently accessed file of the specified open volume. 

SKIP 

This call is used to read past information in a file without transferring it 
to core storage. 

JPSR 

OUTPUT 

$8SP 

BUSY 

NAME 

f WRDS 

ERR 

DONE 

[Call 

[Instruction executed if unit busy 

[Address of cell referencing the volume 

[Address of number of words to be skipped 
(Address of~ value if to skip 1 record) 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has been 
started 

This call is used to start a new file at the end of the current volume. No 
data is written in the file as a result of this call. The "new ID" argument refers 
to a three-word block giving ID information for the new file. The first word has 
two flag bits indicating whether ~e file is structured into records, and if the next 
two ID words have standard or w:ler assigned contents. The remaining two words 
can be used to hold a file title, tyPe, version, revision, and date under standard 
format use. This call also closes any current open output files with the same file 
name. (See section on Table Formats for layout. ) 

FILE I/0/PRM/B 8 8-69 



JPSR 

APPEND 

$SOU 

BUSY 

NAME 

NEWID 

ERR 

DONE 

AGT DISK FILE INPUT/OUTPUT, FILE I/0 

Programmer's Reference Manual 

[Call 

[Instruction executed if unit busy 

[Address of cell referencing the volume 

[Address of new IDblock 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete. 

[ Location returned to once the operation has 
been started 

This call is used to add information to the last file of the specified volwne 
which has been previously started by an "OUTPUT" call. If the file is structured 
in records, each APPEND call adds one more record to the file. Each record 
has associated with it (first word in its disk image) an origin and a Length field. 
The origin will normally be set to the core location given in the left half of the 
word count argwnent. 

JPSR 

CANCEL 

$SAP 

BUSY 

NAME 

LOC 

#WDS 

ERR 

DONE 

[Call 

[Instruction executed if operation not possible 

[Address of cell referencing the volume 

[Address of cell pointing to buffer to be written 

[Address of cell of number of words to write (and 
origin if record format) 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has been 
started 

This call will cause the current OUTPUT or APPEND operation to be 
aborted. It would be used to terminate the writing of a new file before the file 
has been completed. The file 1 s contents and directory information written to 
this point will be dropped. 

S-69 9 FILE I/O/PRM/B 



JPSR 

INPUT 

$SCA 

BUSY 

NAME 

ERR 

DONE 

AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Reference Manual 

[Call 

[Instruction executed if unit busy 

[Address of cell referencing volume being closed 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to one the operation is complete 

This call is used to input information from the accessed file of the speci­
fied volume. The number of words to be read are specified by an argument. 
Successful INPUT calls will input successive blocks of information from the file 
on disk. If there are not enough remaining words in the file, the error word 
will give the number read (see ERR in section on Arguments). 

JPSR $8IN 

BUSY 

NAME 

LOC 

:/fWDS 

ERR 

DONE 

INPUT RECORD 

[Call 

[Instruction executed if unit busy 

[Address of cell referencing volume 

[Address of cell pointing to input area 

[Address of cell giving number of words to read 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has been 
started 

This call is used to input successive records from the currently accessed 
file (in_ record format) of the specified volume. The :/fWRDS argument gives 
the size of the read area. If the record exceeds it, the ERR will be performed. 
The LOC argument points to the address of the input area. The record read 
into a specified area will include as its first word the origin and length associated 
with it. If the LOC argument is set +O, the record will be read into core at the 
address given by its associated origin and the first word will be the first data word 
of the record. 

FILE I/O/PRM/B 10 8-69 



JPSR 

CLOSE 

$8IB 

BUSY 

NAME 

LOC 

:/FWDS 

ERR 

DONE 

AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer' s Reference Manual 

[Call 

[Instruction executed if unit busy 

[Address of cell referencing the volume 

[Address of address-of-input area or +O if input 
is at origin 

[Address of cell giving maximum read length 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation has been 
started 

This call terminates the file being written, updates all pointers and directories, 
and empties all related buffers. A CLOSE is done automatically if a volume being 
written into is UNSELECTed. A CLOSE operation performed on a file currently being 
read will cause the scan pointers to be reset , and the file can be read again from the 
beginning. 

JPSR $8CL [Call 

BUSY 

NAME 

ERR 

DONE 

ARGUMENTS FOR FILE I/O 

A. BUSY 

[Instruction executed if unit busy 

[Address of cell referencing volume being closed 

[Instruction executed if operation is not possible 

[Instruction executed when operation is complete 

[Location returned to once the operation is complete 

Control is returned to this argument whenever the state of the designated 
disk drive does not permit a required disk operation to be initiated. Control is 
returned at the same priority level as the File I/O call. If the user chooses to 
wait until available, BUSY can be set= JUMP. -1. 

8-69 11 FILE I/O/PRM/B 



AGT DISK FILE INPUT/OUTPUT, FILE I/0 

Programmer's Reference Manual 

B. DISK 

This argument used to address physical disk packs is composed as 
follows: 

DISK (27-28) = Unit: 0,1,2,3 

DISK (29) = Pack: O, 1 

C. VOL# 

This argument is used as the "physical" volume number within the pack 
containing it. Each pack may have up to 32 volumes, each assigned a distinct 
VOL number from 1 to 32. 

D. NAME 

This argument is used as the "logical" volume address for referencing 
any "opened" volume in the system. After each Look-Up call, the cell refer­
enced by NAME is set to address the accessed file's ID information in a four­
word table as follows: 

Word 1 (0) 

Word 1 (1) = 

Word 1 (2-14) = 

Word 1 (15-29) = 

Word 2 (0-29) = 

Word 3 (0-3) = 

FILE I/O/PRM/B 

STD: 1 if next two words in standard format 

RCD: 1 if file composed of standard format 
records (first word/rec= Origin and Length) 

File#. Sequence Number in volume 

Relative disk address in volume 

Five-character title of file 

Type of file. Stan~d assigned types are as follows: 

0 SYMS Absolute symbols 

1 DATA Fortran files 

2 RE LOC Object programs 

3 TRACF Reactive typewriter forms 

4 TEXT Case Shift Sensitive Text 

(continuation) 

12 8-69 



AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer' s Reference Manual 

5 RLSYM Relocatable symbols 

6 PRNTR Off line printer records 

7 A TEXT Standard text 

lOa BIN Absolute file 

lle DUMP Core save file 

128 -17e TYPE3-TYPE8 (unassigned) 

Word 3 (4-8) = Version: numeric from 1 to 31 (0 = none) 

Word 3 (9-14) = Revision: one alphanumeric or special character 

Word 3 (15-29) = Date: subdivided as follows: 

(16-20) = 

(21-24) = 

(25-29) = 

Year - 1964 

Months: 12 

Days; 31 

The second and third words of file ID information need not contain the pre­
ceding items; they are available for any special user-use desired. When these 
two words are used in a non-standard way, the STD flag in word 1 should be set 
to zero for proper operation of system search and listing routines. 

E. DONE 

This instruction is executed once the requested File I/ 0 operation has been 
completed. It is executed at the programmatic interrupt level (PRI level= 15) 
and must not release it (via a J1JMP'I). When executed, the AR register is= 0 
and the LC is set to where control MUST be returned to. Thus, DONE may be 
a subroutine call (JPSR) to a subroutine which returns (without unlocking PRI 
level) or a single instruction which does not destroy LC (non-J1JMP or SKIP), i.e., 
it can set flags ARMD FL or ARMD'N FL, etc. 

F. ERR 

This argument is an instruction to be executed if a started File I/O opera­
tion can not be successfully completed. It is executed at the programmatic 
interrupt level and must not release it. When executed, the AR register contains 

8-69 13 FILE I/O/PRM/B 



AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Reference Manual 

error-flag settings in the upper half and, where relevant, an address or count in 
the lower half. The LC is set at a point to which control must be returned in 
order to restore saved registers and resume execution in the program which was 
running at the time that the disk operation error was discovered. The same 
instructions described for DONE apply to ERR. 

The errors indicated in AR are as follows: 

AR[O] = 

AR[l] = 
O (Available for setting sign flags) 

O if error is of the Access or Availability class 
1 if error is of the. Hardware class 

Subsequent bits in the Access or Availability Class are: 

AR[2] = Disk Storage Full (SCR, SCH); 
Disk Storage Full and File Canceled (SOU, SAP) 

AR[3] = End of Volume (SNE, SPR, SFI, SLA, SCH) 

AR[4] = End of File (SIN, sm, SSP) - Bits 15-29 give number 
of words transferred or skipped 

AR[5) = End of Buffer (Sffi) - Bits 15-29 give number of words 
remaining in record 

AR[6] = Not used 

AR[7] = Illegal Volume Number (SSE, SCR, SCH, SPU, SRE) 

AR[S] = illegal Command (8ffi - file not in record format; SOU -
another file outputting on same volume; SIT - pack O 
initialize requested; SRE - file list out of order) 

AR[9] = Volume Name not Selected (Look-Up, I/O, SUS); Volume 
Name Already Selected (SSE) 

AR[lO] = No File Accessed For Volume (8PR, SNE, SIN, sm, 8SP) 

AR[ll] = Volume Previously Defined (8CR); Volume Not Defined 
(SCH, 8PU, SRE, SSE) 

AR[12] = File Sequence Number not in Volume (SRE) 

FILE I/O/PRM/B 14 8-69 



AR[13] 

AR[14] 

A.GT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Reference l\Ianual 

Four Volume Names Already Selected (SSE) 

No Output in Progress (SAP, SCA) 

Subsequent bits in the Hardware Error Class are: 

AR[2] 

AR[3] 

AR[4] 

AR[5] 

AR[6] :::: 

AR[7] 

NEWID 

Unit off-line 

Read redundancy error after three re-tries 

Sector address error 

Cylinder address error 

Write lockout 

Hardware malfunction error. This error should not occur 
in normal operation. Bits [27-29] of AR give the particular 
error condition as follows: 

AR[27-29]e 

1 Seek error condition when executing home 
track seek operation. 

2 Command error when normal error interrupt 
occurs. This condition could occur if the disk 
unit power is dropped while an operation is in 
progress or if the write protect switch were 
turned on during a write or write format operation. 

3 Error terminate interrupt occurred and no error 
bits on in the status word. 

4 Count error (i.e., no words = 0). 

5 "Fault" condition is disk unit. 

When outputting information to start a new file, this argument is used to 
provide the file ID information desired. The relevant items for standard ID for­
mat are the same as described under NAME. NEWID is the address of a cell 
pointing to a three-word block. The first word always has the following format: 

S-69 15 FILE I/0/PRM/B 



CH!.I Cl!!] E! 
AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer• s Reference Manual 

Word 1 (0) 

Word 1 (1) 

Word 1 (2-29) 

= 

= 
= 

STD 

RCD 

Not used 

The remaining two words of the block may be used by the user for file 
identification of his choice or may follow the standard file ID format as follows: 

Word 2 (0-29) = Title 

Word 3 (0-3) = Type 

Word 3 (4-8) = Version 

Word 3 (9-14) = Revision 

Word 3 (16-29) = Date 

If the standard file ID format is followed, the STD bit in word 1 should be 
set to ''1 "; otherwise, to 110." 

See NAME write-up for further description of contents. 

FILE 1/0 FORMATS AND TABLES 

This section will describe some of the information maintained by File I/O 
and its location. 

A. Disk Pack 

The standard File 1/0 disk pack has its cylinders allocated in one of the 
following ways; 

FILE I/O/PRM/B 

FD 
SYSTEM a 

USER 
VOLUMES 

AVAILABLE 
DISK 

STORAGE 

SYSTEM 
SCRATCH 

PAD 

en.-: f_1_2_;, ....... >>------'----' 

File I/O Disk Layout 

16 8-69 



Where: 

VD 

FD 

AGT Dbl-.. FILE INPUT/OUTPL1T, FILE I/O 

Programmer's Reference Manual 

Volume Directory 

File Directory 

System Scratch Page System working buff er used for 
text by editor. 

When a pack may be used on pack 0 of unit O under standard AMOS soft­
ware systems, it must have the following format. 

VD .J ow 
CD .J 
:IE ID 

FD 
~j! 
:i a. 
.... <I 
:IE :IE 

MONIT 

CYL: 11 I 2 3 

Where: 

MO. 
l 

MO NIT 

Sym. Tab. 

> ) 

MO 

2 4 6 8 10,12 14 16 ,18 SYSTEM 8 AVAILABLE SYSTEM 

I 

4 

USER DISK SCRATCH 

MO VOLUMES STORAGE PAD 

315 7 9 II 13115117 

5 6 7 8 9 1111 11 12 13 > ) 
211l21lll 

File I/O Layout and System 

= 

= 

= 

Monitor Over lay i 

Absolute Monitor for Bootstrap Loading 

Current Loader Symbol Table 

This format is recommended for all packs at an installation with a single 
disk drive. 

B. Volume Directory 

The Volume Directory for each pack is kept in sector 0 of cylinder 0. The 
first 64 words contain the Volume Definition Table with one 2-word volume ID 
entry for e~:ch of the 32 possible \o~lumes. Words 64 through 95 of the Volume 
Directory contain the File Directory Occupancy List with a one-word FD Sector 

8-69 17 FILE I/O/PRM/B 



AGT DISK FILE INPUT/OUTPUT, FILE I/0 

Programmer 1 s Reference Manual 

entry for each of the 31 sectors of the File Directory. Words 96 and 97 give the 
pack's current cylinder allocation. Word 99 contains the pack's creation date. 
Words 100-103 contain the pack's descriptive string (19 or fewer characters). 
Refer to Appendix B. 

1. Volume ID Entcy 

The i' th word pair of the Definition Table has the following information 
for the i'th volume: 

Word 1 (0-14) = Pointer to FD entry for last file ID of volume 

Word 1 (15-29) = Pointer to FD entry for first file ID of volume 

Word 2 (0-14) = Number of cylinders assigned to volume 

Word 2 (15-29) = First cylinder of volume 

2. FD Sector Entry 

The i'th word of the FD Occupancy List contains a count of the number 
of file ID 1 s in the i 1 th sector of the File Directory, and the pointer to the first 
free entry in that sector. 

3. Cylinder Allocation 

The first word of the cylinder allocation contains the ''Last Available 
Cylinder" number (plus 1) which is the current lower bound of the scratch pad. 

The second word contains the first available cylinder number which is the 
end of assigned disk storage. 

C. File Directory 

The File Directory occupies all sectors of the first two cylinders, except 
for the Volume Directory. Each of the 31 sectors of the FD contains twenty 
'bins," each "bin" being five words in length. The bins are used to hold file 
ID1 s. 

FILE I/O/PRM/B 18 8-69 



AGT DISK FILE INPUT/OUTPUT, FILE I/0 

Programmer's Reference Manual 

Forward and backward referencing links chain each file ID to the following 
and preceding file ID' s of its volume. All empty bins of an FD sector are linked 
into a chain of ''available" bins. 

The first word of each FD sector contains a pointer to the first "bin" on 
the available chain. 

The next twenty five-word blocks are the bins containing either file ID' s 
or available chain links. Each has one of the following formats: 

1. Available Bin 

Word 1 (0-14) = Sector address (*2 7 ) of current FD sector 

Word 1 (15-29) = Pointer to next available bin (or 0 if last) 

Words 2, 3, 4, 5 = Not used (zero value) 

2. File ID 

Word 1 (0-14) Pointer to previous file ID of volume 

Word 1 (15-29) = Pointer to next file ID of volume 

Word 2 (0) = STD: standard ID flag 

Word 2 (1) = RCD: record-formatting file flag 

Word 2 (2-14) File sequence number within volume 

Word 2 (15-29) = File's 1st sector address related to 1st 
cylinder in volume 

Word 3 (0-29) = Title of file 

Word 4 (0-3) Type of file 

Word 4 (4-8) = Version 

Word 4 (9-14) Revision 

Word 4 (15-29) = Date 

Word 5 (0-11) = Number of sectors in file 

Word 5 (12-29) = Number of words in file 

8-69 19 FILE I/O/PRM/B 



---- - ·------------· 

AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Reference Manual. 

The "pointers" used as links in the FD have the following format: 

Cylinder = 
Sector = 

Word = 

Leading 4 bits (can only be = O or 1) 

Next lower 4 bits (0-15) 

Low order 7 bits 

NOTE 

Within the VD and FD sectors, all cylinder addresses 
and values (i. e. , first cylinder in volume and number 
of cylinders in volume) are actually stored as sectors. 
That is, the cylinder value appears in the high order 
11 bits of the 15-bit value field and the low order 4 
bits are zero. 

FILE I/0/PRM/B 20 8-69 



AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer 1 s Reference Manual 

APPENDIX A 

SYNOPSIS OF CALLING SEQUENCES FOR FILE I/O PACKAGE 

The following calling sequences used by the File I/O package governs disk 
allocation: 

8-69 

DEFINE 

Initialize 

Create 

Change 

Purge 

Remove 

OPEN 

Select 

Unselect 

LOOK-UP 

First 

Next 

Last 

Previous 

Skip 

Output 

Append 

Cancel 

Input 

Input Record 

Close 

SIT (BUSY, DISK, ADR, ERR, DONE) 

SCR (BUSY, DISK, VOL/f, CYLS, ERR, DONE) 

SCH (BUSY, DISK, VOL/f, ±#CYLS, ERR, DONE) 

SPU (BUSY, DISK, VOL/f, ERR, DONE) 

SRE (BUSY, DISK, VOL/f, SEQNO, ERR, DONE) 

SSE (BUSY, NAME, DISK, VOL#, BUFF, ERR, DONE) 

SUS (BUSY, NAME, ERR, DONE) 

S FI (BUSY, NAME, ERR, DONE) 

SNE (BUSY, NAME, ERR, DONE) 

SLA (BUSY, NAME, ERR, DONE) 

S PR (BUSY, NAME, ERR, DONE) 

SSP (BUSY, NAME, #WRDS, ERR, DONE) 

SOU (BUSY, NAME, NEWID, ERR, DONE) 

SAP (BUSY, NAME, LOC, #WDS, ERR, DONE) 

SCA (BUSY, NAME, ERR, DONE) 

SIN (BUSY, NAME, LOC, #WDS, ERR, DONE) 

sm (BUSY, NAME, LOC, #WDS, ERR, DONE) 

BCL (BUSY, NAME, ERR, DONE) 

21 FILE I/O/PRM/B 



AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Programmer's Reference Manual 

APPENDIX B 

FILE I/O PACK DffiECTORY FORMATS 

SECTOR 
11 

SECTOR 
I 

SECTOR 
2 

SECTOR 
3 

SECTOR 
4 

SECTOR 
5 

SEGTOR 
6 

SECTOR 
7 

SECTOR 
8 

SECTOR 
9 

SECTOR 
10 

SECTOR 
I I 

SECTOR 
12 

SECTOR 
13 

SECTOR 
14 

SECTOR 
15 

CYLINDER 0 

VOLUME 
DIRECTORY 

FILE DIRECTORY 
SECTOR I 

FILE DIRECTORY 
SECTOR 2 

FILE DIRECTORY 
SECTOR 3 

FILE DIRECTORY 
SECTOR 4 

FILE DIRECTORY 
SECTOR 5 

FILE DIRECTORY 
SECTOR 6 

FILE DIRECTORY 
SECTOR 7 

FILE DIRECTORY 
SECTOR 8 

FILE DIRECTORY 
SECTOR 9 

Fl LE DIRECTORY 
SECTOR 10 

FILE DIRECTORY 
SECTOR 11 

FILE DIRECTORY 
SECTOR 12 

FI LE DIRECTORY 
SECTOR 13 

FILE DIRECTORY 
SECTOR 14 

FILE DIRECTORY 
SECTOR 15 

FILE I/O/PRM/B 22 

SECTOR 
~ 

SECTOR 
I 

SECTOR 
2 

SECTOR 
3 

SECTOR 
4 

SECTOR 
5 

SECTOR 
6 

SECTOR 
7 

SECTOR 
8 

SECTOR 
9 

SECTOR 
10 

SECTOR 
11 

SECTOR 
12 

SECTOR 
13 

SECTOR 
14 

SECTOR 
15 

CYLINDER I 

FILE DIRECTORY 
SECTOR 16 

FILE DIRECTORY 
SECTOR 17 

FILE DIRECTORY 
SECTOR 18 

FILE DIRECTORY 
SECTOR 19 

Fl LE DI RECTORY 
SECTOR 20 

FILE DIRECTORY 
SECTOR 21 

FILE DIRECTORY 
SECTOR 22 

FILE DIRECTORY 
SECTOR 23 

FILE DIRECTORY 
SECTOR 24 

FILE DIRECTORY 
SECTOR 25 

FILE DIRECTORY 
SECTOR 26 

FILE DIRECTORY 
SECTOR 27 

FILE DIRECTORY 
SECTOR 28 

FILE DIRECTORY 
SECTOR 29 

FILE DI RECTORY 
SECTOR 30 

FILE DIRECTORY 
SECTOR 31 

8-69 



VOLUME 
DEFINITION 
TABLE 

FILE 
DIRECTORY 
OCCUPANCY 
LIST 

-< 

-< 

CYLINDER 
ALLOCATION '~ 

8-69 

" I 
t-

2 
3 

t-

4 
5 

to-

6 
7 

to-

62 
63 

t-

64 

65 

66 

67 

95 

96 

97 

98 

99 

100 
t-

t-

t-
103 

AGT DISK FILE INPUT/OUTPUT, FILE I/0 

Programmer's Reference Manual 

VOLUME DIRECTORY VOLUME ID ENTRY 
0 14 l!i 29 

VOLUME I ID ..__, v AODR. OF LAST AOOR.OF FIRST 
FILE IO OF FILE ID OF 
VOLUME VOLUME 

VOLUME 2 ID -
NO.Or CYLINDERS FIRST CYLINDER 

VOLUME 3 ID -"' ASSIGNED NUMBER 

VOLUME 4 ID -
etc 

VOLUME 32 ID -
NOT USED 

FD SECTOR I ENTRY FD SECTOR 
OCCUPANCY ENTRY 

F D SECTOR 2 ENTRY ' 
0 14 l!i 29 -

FD SECTOR 3 ENTRY 
POINTER TO s.at COUNT OF NO. OF 
AVAILABLE FILLED ENTRIES 
ENTRY BIN 1N SECTOR -

etc 

F D SECTOR 31 ENTRY 

LAST AVAILAlilLE 
CYLINDER +1 

(BEG.OF SCRATCH PAD) 

FIRST AVAILABLE CYLINDER 
(END OF SYSTEM OR CURRENT) 

NOT USED 

CREATION 

DATE 

~ 

0 to 1910 

CHARACTER 

PACK IDEN'TIFICATION -I 

STRING 

-

23 FILE I/0/PRM/B 



5 
6 

91 

95 
96 

10fl 

1(11 

IQJ2 

I flJ3 

AGT DISK FILE INPUT/OUTPUT, FILE I/O 

Fl LE DIRECTORY SECTOR 

POINTER TO FIRST 

AVAILABLE ENTRY 

POINTER TO FIRST 

AVAILABLE ENTRY 

FILE ID 

Programmer 1 s Reference Manual 

FILE ID ENTRY 

.. ~Oil PREVIOUS FILE ID
1415 

NEXT FILE ID =r,_ 
ADDRESS(ISTWORD) ADDRESS (ISTWORD)I ' 

0 Tr£ T4 FIRST SECTOR ADDA. 
11-----------------.rlil'1 ' R FILE SEQUENCE (RELATIVE TO FIRST 

D g NO.!WITHIN VOU CYLINDER IN VOL) 

FILE ID 

etc 

AVAILABLE ENTRY 

etc 

FILE ID 

AVAILABLE ENTRY 

NOT USED 

NOT USED 

NOT USED 

TITLE 

N 10 lll't •1• 1415 29 N TYPEIVERSIO~EVISIONl DATE 

0 II 12 29 
NO.OF SECTORSlll NO.OFWORDS IN FILE 

IN. FILE l 

STD: 1 - STANDARD FORMAT FILE 
6"" ~ - NON-STANDARD FORMAT 

RCD: 

6i 

1 - RECORD FORMAT {Word 
be.fore each record gives 
length of record and first 
core address) 

» - PACKED DA TA FORMAT 

FILE I/O/PRM/B 24 8-69 



Cl l!J Cl 0 E! ________ A_M_o_s_F_I L_E_L_I_S_T_E_R....,,._F_L_S_T~R 
Programmer's Reference Manual 

INTRODUCTION 

The F LSTR AMOS File Lister is a relocatable routine in the AMOS system 
library having two subroutines which can list files or records (depending on configu­
ration) at the system teletypewriter or graphics display scope. 

VERSIONS 

FLSTl - For use with SK systems 
F LST2 - For use in systems with more than SK and a graphics facility 

SOFTWARE REQUIREMENTS 

FLSTl - AMRM (appropriate Version for hardware configuration used) 
FLST2 - AMRM (appropriate Version for hardware configuration used) 

EDIT - DISP - FONT 

DESCRIPTION 

or 

where 

The following input statements to the AMOS Monitor 

LISTF (TAPE, START FILE)! 

LISTR (TAPE, START FILE)! 

TAPE is the requested tape drive number:~. 1, 2, or 3 
START FILE is the starting file 

or RECORD!H FILE numbers. 
(If RECORD is omitted, it is assumed to be 1. If START FILE 

is omitted, FLSTR lists the entire tape). 

causes the specified TAPE to be rewound and scanned, starting at START FILE, for 
record header information which is appended to EDIT' s text buffer for display, edit­
ing, listing, etc. (Version 2) or typed directly on the system cOl)l.sole (Version 1). 

6/6S - 1 - FLSTR/PRM/C 



cu!I a 01'.:! ________ A_M""!;!!O::o-S-F_I_L_E~L-I S=T_,....E_R_, _F-........L_S_T_R 
Programmer's Reference Manual 

Output is by logical files or by records, respectively, under the headings 

FILE RECORDS NAME ORIGIN LENGTH TYPE VERS REV DA/MON/YR 
or RECORD 

FILE is the logical file number as contained in the first header word. 

RECORDS (LISTF entry only) is the actual number of records on the file (not 
the last one's record number). 

RECORD (LlSTR entry only) is the record's actual record number. 

NAME is the file's internal character-code name. 

ORIGIN is the specified origin of the record or file. 

LENGTH is: 
(LISTF entry) the sum of all specified record lengths within the 
logical file. 
(LISTR entry) the specified record length. 

TYPE is the file or record's specified type. 

VERS is the version number of the file. 

REV is the revision level of the file. 

DA/MON IYR is the date the file was created. 

TERMINATION AND RE-ENTRY 

F LSTR continues to scan the tape until the second file mark, which indicates 
the logical end of tape has been read, or until the operator has depressed IC [,6]. 

If LISTF or LISTR is re-entered while still in m.emory, FLSTR will append 
text to that already existing in the text buffer. 

6/68 - 2 - FLSTR/PRM/C 



AMOS FILE LISTER, FLSTR 
Programmer's Ref ere nee Manual 

ERROR MESSAGES 

If there is not enough unused core storage, FLSTR types "NO MEMORY 
AVAILABLE" and returns to the caller. If the requested START FILE is not 
found, FLSTR types "FILE NOT FOUND", rewinds the tape, and returns. If there 
is not enough storage to list all the files requested, FLSTR types "NOT ENOUGH 
MEMORY", and returns, retaining in the text buffer all information it has thus far 
accumulated. 

6/68 - 3 - FLSTR/PRM/C 





a [!J a 01::! _______ F_U_N_C_T_I_O_N_S_W_I_T_C_H_I/_O_, _F_N_S_I_O 
Programmer's Reference Manual 

INTRODUCTION 

F NSIO is one of a set of A MOS system programs in the subroutine library 
which may be called by either programs or image descriptions to interface on-line 
terminal. I/O devices with the calling program or image description. Using the 
function switches or pedals of the F NS1-Pl/P2 subsystem, the programmer may 
enter selected values, execute routines and control the indicator lights of the 
function switch array. The FNS1-P2 has a light associated with each function key 
which is controlled by the program rather than by the associated switch. F NSIO 
samples the input from the F NS1-Pl/P2 subsystem at the frame rate specified by 
the user's call to the CLOCK facility in the DSPLY operator. DSPLY then imple­
ments sampling of frames at the specified rate. 

HARDWARE REQUIREMENTS 

AGT/1,6, 3_n, or 5,6 having an FNS1-Pl/P2 subsystem. 

SOFTWARE REQUIREMENTS 

F NSIO requires the CLOCK facility provided by the DSPLY operator. 

STORAGE & TIMING 

FNSIO occupies less than 45.tSa words of storage. 
Time/frame for no change = 8~ µsec. 
Time/frame for change= 6~,tj µsec. plus time of any subroutines 

executed. 
Time/ call to FNSIO = 1n~ µsec. 

VERSION 

FNSIO exists in one version for the FNSl-Pl and FNS1-P2 subsystems. 

4/68 -1- F NSIO/PRM/ A 



FUNCTION SWITCH I/O, FNSIO 
Programmer's Reference Mamal 

INITIALIZATION 

The F NSIO program defines the three entry points: F NSIO, F NSK, and F NSR. 

The calling sequence: 

JPSR $CLOCK 
$FNSK 
$FNSR 

causes the F NSl Function Switches sampling program, F NSK, to be chained to the 
CLOCK subroutine calling list with a return instruction being put in FNSR. FNSK 
causes any requested operations, "OP", to be carried out upon the detection of a 
switch changing from a "reset" to "set" or "set'' to "reset" status. 

USE 

The calling sequence: 

JPSR $FNSIO 
SW 
OP 
VALUE 

causes the setting up of a table of procedures, specified by "OP", upon the sensing 
of a change in a selected function switch, specified by "SW". The operation, "OP", 
may take an argument, "VALUE". The available operations are the following: 

4/68 

OP= ,tj 
1 

2 

3 

4 
5 

ignore the specified switch. 
set the location specified by!J.VALUE" to +l if the specified switch 
is set. 
execute the routine with entry at "VALUE" when the specified 
switch is set. 
set the location specified by "VALUE"~ -1 if the specified 
switch is set. 
turn on light specified by "SW". 
turn off light specified by "SW". 

-2- F NSIO/PRM/ A 



AMOS EDIT CHARACTER COORDINATE LIST, FONT 
Programmer's Reference Manual 

INTRODUCTION 

FONT is an ADEPT program consisting of a character instruction execution 
table and display coordinate lists for all characters in the AMOS character set •. 
The coordinate iists are made available to DISP, the display package for AMOS 
EDIT, and to other user routines. FONT consists of four versions with the con­
figuration dependence outlined in the Hardware Requirement section. 

HARDWARE REQUIREMENTS 

Version 1 - OPC and OSD-1 

Version 2 - TTY and OSD-1 

Version 3 - OPC and OSD-2 

Version 4 - TTY and OSD-2 

THE CHARACTER SET 

The FONT character set is dependent on console characteristics (OPC or TTY). 
The displayed set according to the octal AMOS internal character code is as follows: 

Octal OPC TTY Octal OPC TTY 

00 
0 [ 22 2 2 

01 % % 23 3 3 
02 ¢ J 24 4 4 
03 r 25 5 5 
04 & & 26 6 6 
05 * * 27 7 7 
06 30 8 8 
07 \ 31 9 9 -
10 + + 32 

*11 TAB TAB 33 = = 

12 ? ? 34 
13 " " 35 
14 36 

*15 C/R C/R 37 I I 
16 ( ( *40 SPACE SPACE 
17 ) ) 41 A A 
20 0 0 42 B B 
21 1 1 43 c c 

9/68 -1- FONT/PRM/B 



A MOS EDIT CHARACTER COORJ)INATE LIST, FONT 
Programmer's Reference Manual 

Octal OPC TTY Octal OPC TTY 

44 D D 62 R R 
45 E E 63 s s 
46 F F 64 T T 
47 G G 65 u u 
5.fJ H H 66 v v 
51 I I 67 w w 
52 J J 7.fJ x x 
53 K K 71 y y 
54 L L 72 z z 
55 M M 73 $ $ 
56 N N 74 =IF =IF 

57 0 0 75 @ @ 
60 p p 76 :i: .,. 
61 Q Q *77 BKSP +-

The characters marked with an asterisk(*) by their octal values (11, 15, 40 
and 77) do not correspond to normal displayed characters. The entries for these 
special characters in the instruction table contain non-normal instructions (see sec-
tion on Instruction Table). 

In addition, the fetch instructions and character lists are available for three 
additional characters -- down arrow("+"), right arrow (!! ... "), and page mark ("Cl!"). 

CHARACTER LIST FORMAT 

All characters (except right arrow and page mark) in an unscaled list are con­
structed with a maximum size of 24.8e in the x direction and 4,tJ,8 8 in they direction 
with the ,8, ~ reference origin in the lower left-hand corner of the character. As the 
coordinate is rotated one bit left before use, the resultant values are twice the 
maximum figures stated above. 

The word format for the OSD-1 character lists is as follows: 

B I X-Coordinate lEOLl Y-Coordinate 
0 1 14 15 16 29 

where EOL is the end-of-character flag present in the last vector of each character, 
and B is the blanking flag, indicating, if on, that the vector is not to be displayed. 
The first vector in each character is assumed to be blanked, and the blanking flag is 
not present in the first vector. 

9/68 -2- FONT/PRM/B 



AMOS EDIT CHARACTER COORDINATE LIST, FONT 
Programmer's Reference Manual 

The word format for OSD-2 character list is: 

I X-Coordinate lEOL I Y-Coordinate 
e 1 14 15 16 29 

where EOL again specifies the end-of-character. However, bit 6, which indicates 
blanking in the OSD-1 list, indicates intensification of the vector for the OSD-2 list. 
Bit 6, is never "1" on the first vector of each character. 

INSTRUCTION TABLE 

Contained in FONT is a 166e word instruction table, with entry name DCH15, 
in the order of the AMOS internal 6-bit code. The instructions for the four non­
displayed characters (codes 11, 15, 46 and 77) are: 

Code (and Table Position) 

11 
15 
46 
77 

Instruction 

JUMP 
JUMP 
JUMP 
JUMP'I'X 

$DCH16 
$DCH.07 
$DCH14 
$DC HAR 

These "JUMP" instructions provide special character re-ent:r,-y into DCHAR, 
the DISP display character subroutine which uses FONT. 

The address field of the other instructions references the first vector of its 
appropriate character. The instruction portion is dependent on the OSD version. 
With OSD-1, the instruction portion is "MDAR" and with OSD-2, "MD16'B." 

The three additional special characters, down arrow, right arrow, and page 
mark, each have one instruction word containing an "MDAR" ("MD1.0'B" for OSD-2) 
addressed to the first vector of the character. The entries for these special charac­
ters are: 

Character 

Down Arrow 
Right Arrow 
Page Mark 

Entr 

DC26X 
DC21X 
DC4,0X 

In addition to these entries and to DCH15 noted above, the first vector of the 
entire coordinate list and the last vector of the list are entries defined DC241 and 
DCHXX respectively for use by the coordinate list scaling routine in DISP. 

9/68 -3- FONT/PRM/B 
' 





a C!J a 0 I::! ___ F_R_E_E_Z_G_R_A_P_H_I_C_S_O_P_E_R_A_T_O_R_., __ F_R_E_E_Z 
Programmer' s Reference Manual 

GENERAL 

The FREEZ Graphics Operator program transforms a display image into its 
equivalent sets of X, Y, and Z coordinates. This new coordinate set is a different 
image that will produce the instantaneous picture that was on the CRT screen; thus, 
the FREEZ operator transforms an image, made up of many different types of 
image commands, into a set of coordinates which is equivalent to the picture that the 
complex image had created. This transformation causes the loss of the identities of 
specific subimages within the image. 

The resulting transform is stored in a specified core buffer. The transformed 
images generally occupy more core storage than the original, but since the image 
description of the transform consists entirely of packed MOVE and DRAW items, 
2DTBL items, or LABL items, it requires minimal software interpretation for 
CRT display. The effect is a very efficient operation of the A VG 1 and the LCG 1 
subsystems. 

HARDWARE REQUIREMENTS 

AGT/30 or AGT/50 

SOFTWARE REQUIREMENTS 

AMOS - Monitor 
DSPL Y - Operator 

OPERATIONS AND SEQUENCES 

This section contains the monitor control statements for the various FREEZ 
operations: 

FREEZ(''name", img, buflw, bufmx, bufov, adcer)! 

or an equivalent ADEPT calling sequence will freeze the image beginning at "img", 
and store the transformed image into locations ''buflw" - through "bufmx". 
A standard two word text header will be built with the text "name". A standard RET 
statement will be inserted at the end of the image definition. All LABL image items 
will be changed to immediate addressing LABL items, and the character strings 

12/68 -1- FREEZ/PRM/A 



Cl[!) Cl m c:! ___ F_R_E_E_Z_G_R_A.._P_H_I C.._S_O_P_E_R...,A_T...,O_R ....... __ F_R.._E-..E---.Z 
Programmer's Reference Manual 

addressed by the LABL item will be moved into the specified buffer starting at the 
location following the RET item (i.e., image terminator). FREEZ returns with 
the address of the last used buffer cell in the AR. 

FREZl (img, buflw, bufmx, bufov, adcer) ! 

or its equivalent ADEPT calling sequence will have the same result as FREE Z, 
with the exception that it will not build the two word text header or the RET state­
ment at the end. Also, the character strings addressed by LABL items will not be 
moved into the buffer region. 

FREZ2 ("name", img, buflw, bufmx, bufov, adcer) ! 

or its equivalent ADEPT calling sequence will freeze the 3-dimensional image into 
a 2-dimensional projection. All vectors, except those characters drawn by LABL 
image items, will be translated into a 2DTBL image item that describes the entire 
image displayed. This form of the image. can be displayed in the 2-dimensional 
normal mode of the AVGl which operates nearly twice as fast as the 3-dimensional 
normal mode. FREEZ and FREZl stabilizes the image into a full 3-dimensional 
image of very efficient construction, while FRE Z2 does the same with the image 
for its 2-dimensional replica, allowing even more efficient operation of the AVGl 
subsystem. 

ERROR ROUTINES 

There are two error routine entries for FREEZ. They are: 

1. 11bufov11 , if the buffer is too small 

2. "adcer", if the picture scale is too large 

The user may specify any routines for these error conditions. The following 
routines are automatically and initially specified if omitted. 

12/68 

STOPF - on a buffer overflow this routine will halt the conversion 
process and close off freezing of the image at the point where the 
buffer overflowed. In addition, STOPF outputs on the teletype: 

BUFFER TOO SMALL 

-2- FREE Z/PRM/ A 



12/68 

FREEZ GRAPHICS OPERATOR, FREEZ 
Programmer's Reference Manual 

RESCL - if the picture scale is too large to allow undistorted con­
versions, this routine will scale the picture by 1/2 and try the 
conversion a second time. RES CL will type: 

ADC OVERFLOW - WILL RESCALE IMAGE AND TRY AGAIN 

If the picture scale is too large, RESCL will terminate operation 
and type: 

PICTURE SCALE STILL TOO LARGE - ABORT 

- 3 - FREE Z/PRM/ A 





AFORT MAGNETIC TAPE I/O ROUTINES. FTAP 

Programmer's Reference Manual 

INTRODUCTION 

FTAP is a set of magnetic tape routines used by AFORT to implement its 
input-output commands. It makes use of LIBIO and MTAC as well as the AMOS 
monitor to implement its routines. FT AP is loaded by OBJPK and all of its rou­
tines, with the exception of STIO are called directly by OBJPK. 

VERSIONS 

FT AP may be assembled in any of five versions. specified at assemble-time 
by the number of tape units on the AGT system. 

No. of TaJ:!e Units 

None 
1 
2 
3 
4 

LOADING 

Version 

1 
2 
3 
4 
5 

Core Requirements 

5 words 
320s words 
335s words 
3528 words 
365s words 

FT AP is a relocatable program which is loaded by OBJPK whenever OBJPK 
is loaded. 

UNIT ERROR 

If an AFORT program specifies a tape unit that does not exist for the 
version of FTAP in core. a UNIT ERROR will occur. 

AFORT MAGNETIC TAPE ROUTINES 

A. Read or Write a Non-AMOS Format Record 

The calling sequence: 

JPSR 9MTn 

7-69 1 

[ Entry where n is the tape unit # 
[ Normal return 

FTAP/PRM/A 



AFORT MAGNETIC TAPE I/O ROUTINES, FTAP 

Programmer's Reference Manual 

causes a record on tape unit n to be read ($910 = ~ or written ($910 =I~). All 
input/ output uses buffer at $90B of length 34s. Jn normal use $910 and $90B 
exist in OBJPK. 

B. Read or Write an AMOS Format Record 

The calling sequence: 

JPSR 9MTnA [ Entry where n is the tape unit # 
[ Normal return 

causes a record on tape unit n to be read ($910 = ~ or written ($910 =I ~). All 
input/output uses buffer at $90B of length 34s. Jn normal use $910 and $90B 
exist in OBJPK. 

C. Backspace a Record 

The calling sequence: 

JPSR 9BA [ Entry 
[ Normal return 

causes the tape unit to be set by the OBJPK routine $9SU and then backs up one 
record. 

D. Write a File Mark 

The calling sequence: 

JPSR 9EN [ Entry 
[ Normal return 

causes the tape unit to be set by the OBJPK routine $9SU and then backs up one 
record. 

E. Rewind Tape Unit 

The calling sequence: 

JPSR 9RE [ Entry 
[ Normal return 

causes the tape unit to be set by the OBJPK routine $9SU and then rewinds the 
tape. 

FTAP/PRM/A 2 7-69 



F. Special. Tape Input/Output 

The calling sequence: 

JPSR 

AFORT MAGNETIC TAPE I/O ROUTINES, FTAP 

STIO 
icype 
idens 
itab 

Programmer's Reference Manual 

[ Entry 
[ Address of ITYPE 
[ Address of IDENS 
[ First address of IT AB 

or the following AFORT statement will cause the results described: 

7-69 

CALL STIO (ITYPE, IDENS, ITAB) 

Purpose: 

Definitions: 

Restrictions: 

Change the external cype, densicy and character 
set to allow reading and writing magnetic tapes 
which are compatible with other machines. 

ITYPE determines the tape paricy 

0 - no change 
1 - BCD or even paricy 
2 - BIN or odd paricy 

IDENS determines the tape densicy in bits per inch 

0 - no change 
1 - 200 bpi 
2 - 556 bpi 
3 - 800 bpi 

IT AB refers to the name of the lookup table 

100 - no table - use internal character set 
N - name of dimensioned variable (64) 

The lookup table is a list of 64 right justified, 
externally coded characters written one character 
per word. The table must be written in the numer­
ical sequence, 00 to 778, of the AFORT internal 
character code (see Table). 

If a code appears twice on the table it will be read 
according to the earlier occurrence on the list. 

An undefined character code will be read as 448 

which is undefined to the fortran object package. 

3 FTAP/PRM/A 



AFORT MAGNETIC TAPE I/O ROUTINES. FTAP 

Programmer's Reference Manual 

INTERNAL CODES 

TTY AFORT TTY AFORT 
Char. Code Char. Code 

SPACE 00 w 40 
0 01 x 41 
1 02 y 42 
2 03 z 43 
3 04 t 44 
4 05 @ 45 
5 06 % 46 
6 07 ] 47 
7 10 I 50 
8 11 J 51 
9 12 K 52 

13 L 53 
14 M 54 
15 .N 55 
16 ... 56 
17 57 

A 20 + 60 
B 21 61 
c 22 * 62 
D 23 I 63 
E 24 64 
F 25 ( 65 
G 26 ) 66 
H 27 • 67 
0 30 = 70 
p 31 & 71 
Q 32 72 
R 33 73 
s 34 $ 74 
T 35 # 75 
u 36 76 
v 37 

NOTE 
C/R 77 

" ••• 11 indicates that this internal code 
is unused in the AFORT system. 

FTAP/PRM/A 4 7-69 



LIBIO 

MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES 

Programmer's Reference Manual 

February 1969 





MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

Programmer' s Reference Manual 

CONTENTS 

INTRODUCTION 

MAGNETIC TAPE FORMAT 

SELECTION AND CONTROL ROUTINES 

$DSET -- Density Selection 
$STAPE -- Tape Selection 
$STDN -- Tape Selection in IC Register 

*$VERSN -- Version and Revision Parameter Setting 

POSITIONING ROUTINES 

$BEAR -- Take Bearings 
$RWI, $mWI, $WBOT' $HWBOT -- Rewind Tape 
$BSX -- Backspace Tape One Record 
$BRF -- Backspace Record and Position to Write 
$SFM -- Position to End-of-File Area 
$9IXFC -- Index File Mark (EOF) Counter 

INPUT/OUTPUT ROUTINES 

$RHD -- Read Record Header 
$ffiC -- Ignore Tape Record 
$RRC -- Read Tape Record 
$FIND -- Find Record 

*$BOUND -- Set Output Buffer 
$WREC -- Write Record 
$WFM -- Write File Mark (EOF) 

Page 

1 

1 

4 

4 
4 
5 
5 

5 

5 
6 
6 
7 
7 
7 

8 

8 
10 
10 
10 
11 
11 
13 

*NOTE: The coding covered by the description of these routines is not contained 
in LIBIO but in either AMRMX or AMRMX support programs. The descriptions 
are given for information purposes only and may be duplicated elsewhere. 

2-69 iii LIBIO/PRM/A 





MAGNj.TIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

Programmer's Reference Manual 

INTRODUCTION 

This document describes the standard AMOS Magnetic Tape formats and 
the tape driving routines contained in LIBIO. These routines also reside in the 
resident portion of the AMRMX (AMOS Resident Monitor) Versions 1, 2, 3, 4, 5, 
6, 11and12. LIBIO is used externally in AMRMX Versions 7, 8 and 9fordriving 
the magnetic tape subsystems. LIBIO consists of two versions with the following 
hardware configuration requirements:. 

Version 1 -- MTP5-Pl or MTP8-Pl 
Version 2 -- MTP7-Pl, DDCl-Pl 

MAGNETIC TAPE FORMAT 

BEG "SCRATCH PAD" RECORDS LIBRARY RECORDS END 

0 \D D DD 0 DD DD DODOO h 
c:_z:::a ~t 

l 
' / "SCRATCH PAD11 AREA 

REFLECTIVE BOT 

MARKER 

" ' FILE AREA \ 
EOF MARK 

Figure 1. Standard AMOS Magnetic Tape Format 

J 

EOF MARK 

The first portion of the tape, between the reflective BOT (beginning of tape) 
marker and the first EOF (end of file) mark, is called the "scratch pad." This 
area contains text records operated on by the system text editor. The length of 
this area is specified when a tape is initialized. The area between the first and 
second EOF marks is called the file area and is the normal library file storage 
area for the tape. All valid (current) files on the tape are contained within the 
"scratch pad" area or the file area. 

The "scratch pad" may be empty or may contain one ATEXT file. If a 
file is present, it is given the file number 108 • Files in the file area are sequen­
tially numbered starting with file 118 • Each file on the tape has one or more 
records; each record is numbered sequentially within the file starting with record 1. 

2-68 1 LIBIO/PRM/ A 



a l!J a l':'I e MAGNETIC TAPE FILE INPIJ'l;(OUTPUT ROUTINES, LJBIO 
:J Programmer• s Reference Manual 

Figure 2 gives the format of individual records on standard AMOS tapes. 
Each word in the figure contains 30-bits (five 6-bit characters). 

The record number and file number give the sequential identifiers for file 
and record within file. 

The file TITLE consists of from one to five alphanumeric or special charac­
ters (left justified and filled with 00 characters if less than five) and is used in loading 
and file identification. 

The number of words field gives the number of 30-bit words in the body of the 
record, excluding header and trailer. 

15 15 

RECORD NO. FILE NO. 

FILE TITLE 

DATE NO. WORDS IN BODY 

4 5 6 15 
TYPE VERS REV ORIGIN OF RECORD 

RECORD BODY 

CHECKSUM 

7 PADDING WORDS 

Figure 2. AMOS Tape Record Format 

LIBIO/PRM/ A 2 

HEADER 
(4 WORDS) 

BODY 
(VARIABLE 

LENGTH) 

TRAILER 
(8 WORDS) 

2-69 



Cl l!J Cl r:l [E! MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

~ Prograinmer' s Reference Manual 

The date field gives the date the file was created in the following format: 

Bit 0: 
Bits 1-5: 
Bits 6-9: 
Bits 10-14: 

Unused 
Year - 1964. (i.e., O = 1964, 1 = 1965, 2 = 1966, etc.) 
Month (1 through 12.) 
Day (1 through 31.) 

The origin field gives the core origin of the record at the time it was created. 
For binary files, this location will be where the record is read into memory. 

The revision field gives one 6-bit alphanumeric or special character which 
indicates the revision level of the file. 

file. 

2-69 

The version field gives a version number (1 through 3110 , or none) for the 

The type field gives the type of data contained in the file described below: 

Types Mnemonic 

00 SYMS 

01 DATA 

02 RELOC 

03 TRACF 

04 TEXT 

05 RLSYM 

06 PRNTR 

07 A TEXT 

10 BIN 

11 TYPE2 

12 TYPE3 

13 TYPE4 

14 TYPE5 

15 . TYPE6 

16 TYPE7 

17 TYPES 

Description 

Absolute symbol dump 

FORTRAN files 

Object prograins 

Reactive typewriter forms 

Case-shift sensitive text 

Relocatable symbols 

Off-line printer line image records 

Standard text 

Absolute file 

Unassigned -- reserved for system 
expansion 

Unassigned -- available for user 
assignment 

3 LIBIO/PRM/ A 



MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

Programmer• s Reference Manual 

The checksum word contains the arithmetic sum (ignoring overflows) of all 
words in the body of the record. When computed, the initial value of the checksum 
word is set to -0 before accumulation. 

The padding words (which may contain any value) are present to provide a 
minimum number of characters in each tape record. They are ignored by the 
software. 

SELECTION AND CONTROL ROUTINES 

The subroutines described in this section control the setting of tape density, 
selection of tape unit for subsequent tape operations, and specification of version 
and revision parameters for magnetic tape output. 

$DSET -- Density Selection 

This subroutine sets the tape density according to a given input argument. 
Programmatic density selection is valid only in Version 2 of LIBIO; however, the 
entry point $DSET is included in Version 1 for cross-version compatability. When 
using Version 1 of LIBIO, the density setting is made by setting a switch on the 
tape control unit to 200 or 556 bpi. 

All tape operation subroutines in LIBIO assume binary (ODD) parity in use 
and incorrect detection of EOF marks may result if BCD (EVEN) parity is used. 

JPSR 

$STAPE -- Tape Selection 

· $DSET 
code 

[Call 
[O =200BPI, 1 =556BPI, 2 =800BPI 
[Returns here 

This subroutine selects the tape unit for subsequent tape operation and sets 
up a pointer to the file mark counter for the selected tape unit (see 9IXFC). 

[ 

LIBIO/PRM/ A 

(AR) = n 
JPSR $STAPE 

4 

n=unit number (0, 1, 2, or 3) 
[Call. 
[Ret-qrns here 

2-69 



MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

Programmer's Reference Manual 

$STDN -- Tape Selection in IC Register 

This subroutine first clears out any tape control bits in the IC register, then 
ORs the currently selected tape unit into IC[19-20J. 

JPSR $STDN [Call 
[Returns here 

$VERSN -- Version and Revision Parameter Setting 

This subroutine sets the version and revision parameters needed by tape 
output operations. 

JPSR 

''Rev" 

$VERSN 
Vers 

[Call 
[Version no. (-0 if no version desired) 
[Revision character (bits O - 5) 
[Returns here 

After the subroutine has been executed, location $TVERS will contain the 
version ntllllber in bits 19 - 23 and the revision character in bits 24- 29. This sub­
routine is not contained in LIBIO but is included here for information. 

POSITIONING ROUTINES 

The subroutines described in this section control the positioning of the 
selected tape unit. It is assumed that the proper unit selection and density setting 
is made by calls to $STAPE and $DSET respectively before any of the following 
routines are called. 

$BEAR -- Take Bearings 

This subroutine is called to determine the current position of the selected 
tape unit. BEAR backspaces one record and if not at BOT it reads a single record 
header and ignores the remainder of the record. BEAR sets the file mark counter 
for the selected tape unit to -0 if the tape is positioned before the first EOF mark 
and to +o if positioned after it. BEAR returns to the calling program with -0 in 
the AR if a normal record header was read or with +O in the AR register if the 
tape is at BOT or if an EOF mark was read. In the former case, the record 
header is available for use by the calling program (core location of header data may 
be found in the INPUT/OUTPUT ROUTINES Section). 

2-69 5 LIBIO/PRM/ A 



MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, IJBIO 

[ 
[ 

JPSR 

(AR) =+O 
or=-0 

$BEAR 

Programmer's Reference Manual 

[Call 
[Returns here 
BOT or EOF seen 
Record header read 

.;@WI2 $ffiWI1 $WBOT, $HWBOT -- Rewind Tape 

These subroutines cause the selected tape unit to be rewound to the BOT 
marker. In Version 1 of LIBIO, the four above entries are the same subroutine. 
BEAR is first called to determine the position of the tape. If the tape is beyond 
the first EOF mark, a high-speed rewind operation will be initiated; otherwise, a 
low-speed rewind is started. If IC [ ol is depressed during the rewind, the rewind 
operation will be terminated, BEAR called again to set the current position of the 
tape, and control returned; otherwise, control is returned to the calling program 
when the tape has reached the BOT marker. 

In Version 2 of LIBIO, two rewind subroutines are present. A call to 
$RWI or $ffiWI will initiate a high-speed rewind operation and return control. A 
call to $WBOT or $HWBOT will initiate a high-speed rewind, wait until the tape 
has reached the BOT marker, and then return control. Once a rewind operation 
has been started, the tape cannot be stopped until it reaches the BOT marker, and 
any subsequent operations which cause tape movement (except for $BSX, $BEAR, 
or any rewind call) are illegal until the tape has reached the BOT marker. 

JPSR $RWI 

$BSX -- Backspace Tape One Record 

[Call (or $ffiWI, $BOT, or $HWBOT) 
[Returns here 

This subroutine causes the currently selected tape unit to be backspaced 
one record. BSX may be called prior to reading a record but not immediately 
before a write operation as the erase head of the tape unit would not be stopped 
within the record gap. Note that EOF marks are counted as one record when 
backspacing. 

JPSR $BSX 

IJBIO/PRM/ A 6 

[Call 
[Returns here 

2-69 



MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

Programmer' s Reference Manual 

$BRF -- Backspace Record and Position to Write 

This subroutine is called to backspace and position the tape heads for a 
write operation. BRF backspaces over two records then reads the record header 
of the second record backed over and ignores the rest of the record. The tape is 
then positioned to write a record. BRF also sets location $LID to be the ID 
(record and file numbers) of the second record backed over, or to be 108 if an 
EOF mark was read in place of a record header. This subroutine is normally 
called to position for appending to the file area of a tape after reading the second 
EOF mark, or for repositioning to rewrite a bad record. 

JPSR $BRF 

$SFM -- Position to End of File Area 

[Call 
[Returns here if EOF mark seen 
[Header return 

This subroutine is called to position the currently selected tape unit for 
appending files or records to the file area of a tape. SFM scans the tape until 
the second EOF mark is seen, then calls $BRF to back over the EOF mark and 
position for writing. SFM returns with the contents of location $LID containing 
either the ID of the last record on the tape, or 108 if the file area is empty. 

JPSR $SFM 

$9IXFC -- Index File Mark (EOF) Counter 

[Call 
[Returns here if file area is empty 
[Returns here if file area not empty 

This subroutine is called to index the EOF mark counter for the currently 
selected tape unit. This subroutine should be called when an EOF mark is read 
while scanning down a tape. Subroutine 9IXFC returns with the indexed value 
of the counter so that the calling program can determine the tape position. 

2-69 

[ 
[ 

JPSR 

(AR)= O 
ori o 

$9IXFC 

7 

[Call 
[Returns here 
EOF mark read was first one on tape 
EOF markread was second one on tape 

LIBIO/PRM/ A 



MAGNETIC TAPE. FILE INPUT/OUTPUT ROUTINES, UBIO 

Programmer's Reference Manual 

INPUT/OUTPUT ROUTINES 

The subroutines described in this section consist of input/ output routines 
for reading and writing tape records and for writing EOF marks. It is assumed 
that the tape has been positioned, and that tape unit selection and density setting 
are made by calls to $STAPE and $DSET respectively before calls are given to 
subroutines in this section. 

$RHD -- Read Record Header 

This subroutine reads the record header information from the next record 
on to the currently selected tape unit, and returns to the calling program while 
the tape is still in motion for a decision to either read into memory the body of 
the record or to ignore it. While the record header is being read, the header 
words are stored in core memory and certain tests are made on thE;' header infor­
mation. These tests will be used by the calling program when making the 
read/ignore decision. The following is a list of functions performed while RHD 
is in the process of reading a record header: 

WORD 1 -+ TEM 

WORD 1 1 TFID -+ IDFF 

FOLD (WORD 1 ' TFID) -+ IDF 

WORD 2 -+ STB 

FOLD (WORD2 1 TNA:ME) -+ NAMF 

WORD3 -+ RDATE 

WORD3 & 777778 -+ NOW 

if NOW> TLENG, -0 -+ FITF 
else +o -+ FITF 

TLENG- NOW -+ NOWF 

WORD4 -+ FST 

(WORD4 ! H & 740008 ) 1 TTYPE -+ FSTF, AR Register 

LIBIO/PRM/ A 8 2-69 



MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

Programmer' s Reference Manual 

where: FOLD (X) = X ! Ht X 

X'Y = X exclusive ORed with Y 

X&Y = X ANDed with Y 

XtY = X inclusive ORed with Y 

X-Y = Xminus Y 

X!H = X rotated left 15-bits 

X-+Y = X replaces the value of Y 

WORDn = Word from tape header (n = 1, 2, 3, or 4) 

Starting with the innermost, all operations are performed in sequence from left 
to right within each parenthetical nesting. 

As RHD prepares for the possible operation of reading in the tape record, 
the EA Ul overflow pivot location is cleared, and the checksum accumulator word 
initialized to -0. The calling sequence to RHD is as follows: 

JPSR $RHD [Call 
[Returns here if EOF 
[Returns here after header 

If an EOF mark is detected by RHD, return will be made to the first loca­
tion after the call with the tape stopped. If not, return is made to the second 
location after the call with the tape in motion is in the process of reading the fifth 
word of the tape record. The calling program must make a decision based upon 
prior knowledge or on information imparted by the parameters stored by RHD, 
and then call either $ffiC to ignore the reading of the record, or $RRC to cause 
the record to be read into core memory. 

In Version 2 of LIBIO, the calling program may execute, at most, four 
instructions before calling $RRC or $ffiC while reading tape at 800 bpi. At 
lower tape densities, a proportionally greater number of instructions may be 
executed. In Version 1, $RRC or $ffiC must be called within 50 to 60 µ.s after 
returning from RHD. Note that 800 bpi density cannot be used for Version 1 
LIBIO routines. 

2-69 9 LIBIO/PRM/ A 



MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

Programmer's Reference Manual 

$me -- Ignore Tape Record 

me is called, following a return from $RJID or $FIND, to cause the 
record currently being read to be skipped and the tape unit to be stopped in the 
gap following the record. me returns control to the calling program after the 
record has been scanned and the tape unit stopped. 

JPSR 

$RRC -- Read Tape Record 

$IRC [Call 
[Returns here 

RRC is called, follovving a return from $RHD or $FIND, to cause the 
record being scanned to be read into core memory. The address of the core 
buffer area is transmitted to RRC in the AR register. The number of words 
loaded into core memory is specified by the number of words filed in the record 
header. Once the record has been read the tape parity error indication is 
checked, and the record backspaced and re-read if incorrect. The backspacing 
and re-reading will continue until the record is read with the correct parity, or 
until ICf o] (or FNS 1) is depressed by the operator in which case the record 
read into memory will be accepted. Control will then be returned to the calling 
program. While the record is being read into core memory, RRC computes a 
checksum of all body words and compares it with the checksum word written on 
the record. An incorrect checksum will also cause a backspace and re-read 
operation until the record is read with the correct checksum or until 1cf 1] (or 
FNS 2) is depressed. Control is returned with the tape stopped in the record 
gap after the record just read. 

[ (AR) 
JPSR 

$FIND -- Find Record 

Read buffer origin 
$RRC [Call 

[Return here after record read 

This subroutine is called to find a particular record on the currently 
selected tape. The calling program must first initialize location $TFID to con­
tain the file .number of the record desired in bits 15-29 and the record number 
within the file in bits 0-14. FIND will determine its position on the tape and 
read forward to the record if the tape is positioned before the record desired, 

LIBIO/PRM/ A 10 2-69 



----------·----~---

MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 
Programmer's Reference Manual 

rewind and then read forward if the tape is positioned after the file which contains 
the record desired. FIND will backspace the proper number of records and read 
forward if the tape is positioned within the file but beyond the desired record. In 
any case, FIND will return to the second location after the call, after finding the 
desired record with the tape in motion. The calling program must either call 
$IRC to ignore the record or call $RRC to read the record into core memory. If 
800 bpi density is being used (Version 2 of LIBIO) the calling program must im­
mediately call $RRC or $IRC (one instruction for fetching the record buffer ad­
dress is allowed when calling $RRC). If the record desired is not found on the 
currently selected tape unit, control is returned to the first location after the 
call, with the tape stopped and positioned just prior to the second EOF mark. 

[ (TFID) = Record ! H File 
JPSR $FIND 

$BOUND -- Set Output Buffer 

[Call 
[Returns here if not found 
[Returns here after correct 
header scanned 

This subroutine is called to set the limits of the output record area. 

JPSR $BOUND 
First 
Last 

[ ($SRCHF) = First 
[ ($SRCHL) = Last 
[ ($BNDF) = $SRCHF 
[ ($BNDL) = $SRCHL 

[Call 
[Address of first word 
[Address of last word 
[Returns here 

This subroutine is not included in LIBIO, but is included for information. 

$WREC -- Write Record 

This subroutine is called to write a record on the currently selected tape 

2-69 11 LIBIO/PRM/ A 



MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 
Programmer's Reference Manual 

unit at its present position. The area of core memory to be written as the body 
of the record is specified by the last $BOUND call. The checksum of the area of 
core memory is computed and used for the record being written. The header 
words are created by the following procedure: 

if WFF < 0 or LID [0-14] = O, 
(LID + 1) [15-29] ... LID 

LID+ (1 ! H) ... LID 

LID -+ WORD1 

TNAME -+ WORD2 

TDA TE [ 15-291 -+ WORD 3 [0-141 

($SRCHL) - ($SRCHF) -+ WORD3 115-291, TLENG 

TVERS [ 19-291 -+ WORD4 [4-141 

TORIG I 15-291 -+ WORD4 115-291 

TTYPE 115-181 -+ WORD4 lo-31 

Once the header information has been processed, WREC writes the record 
containing the header, body from (SRCHF) through (SRCHL), and trailer onto the 
tape. If a parity error condition exists after writing, WREC will back over the 
incorrect record, erase a section of tape, and rewrite the record. This opera­
tion continues until the record has been written properly, or until the operator 
depresses IC[O] (or FNSl) which causes the parity error condition to be ignored. 
Control is returned to the calling program after the record has been written, with 
the tape stopped in the gap following the record just written. Before writing the 
record, WREC checks for write-lockout on the tape unit being used. If a write­
lockout condition exists a message to that effect will be typed, and the operator 
must enable the writing of the unit and depress IC [ ol (or FNS 1). WREC will 
then again attempt the tape write operation. In the process of removing the 
write-lockout condition, if the operator moves the position of the tape in the tape 
unit, the record will not be written at the proper position on the tape. 

JPSR $WREC 

LIBIO/PRM/ A 12 

lean 
!Returns here 

2-69 



MAGNETIC TAPE FILE INPUT/OUTPUT ROUTINES, LIBIO 

Programmer' s Reference Manual 

$WFM -- Write File Mark (EOF) 

This subroutine writes an EOF mark at its current position on the currently 
selected tape. After writing the EOF mark, WFM backs over it for proper sub­
sequent operation of BEAR and subroutines which call BEAR. WFM does not 
check for WRITE ENABLE before or after initiating a file mark write operation. 

JPSR $WFM 

2-69 13 

lean 
!Returns here after writing 
EOF mark 

LIBIO/PRM/ A 





al!Ja0E AMOS MONITOR MAG TAPE SUPPLEMENT, MTAC 
Programmer's Reference Manual 

INTRODUCTION 

MTAC is a set of magnetic tape routines to supplement those existing in the 
AMOS Monitor. The combination of the two is designed to provide all tape depen­
dent functions to every program used under the system. 

VERSIONS 

Version MTACl is used with the MTP5 and MTAC2, with the DDCl mag tape 
subsystem. 

LOADING 

MTAC is a relocatable program which is loaded into memory automatically by 
the Monitor when one of its entry points is requested by another program being 
loaded. It may also be loaded by typing: 

START ("MTACl", UNIT)! 

where unit is the tape unit number (.0, 1, etc.). 

SUPPLEMENTAL MAGNETIC TAPE ROUTINES 

A. Magnetic Tape READ 

The calling sequence: 

RE Tl: 
RET2: 

JPSR MTARC 
N 
ADDR 
UNIT 

0 Number of words to be read 
0 Starting address 
0 Unit number (.0, 1, etc.) 
° File mark return 
0 Normal return 

causes (at most) N words of the next record on the specified UNIT to be read into 
memory starting at location ADDR. If a parity error is read, the program backs 
over the record and tries to read again, until the operator depresses IC [.fl]. Jn 
this case, MTARC exits via RET2 with the tape unit positioned after the offending 
record. 

6/68 - 1 - MTAC/PRM/B 



AMOS MONITOR MAG TAPE SUPPLEMENT, MTAC 

B. Magnetic Tape WRITE 

The calling sequence: 

RE Tl: 
RET2: 

JPSR MTAWC 
N 
ADDR 
UNIT 

Programmer's Reference Manual 

0 Number of words to be written 
0 Starting address 
0 Unit number (.fl, 1, etc) 
0 Write lockout return 
0 

Normal return 

causes a record N words in length to be written on the specified UNIT (.0, 1, etc.) 
starting at location ADDR. If a parity error is written, MTA WC repositions the 
unit, erases a patch of tape, and tries to write again. If the operator depresses 
IC [.fl], the program will exit via RET2, positioned to write the same record. If 
write lockout is sensed, the program will position to write again and exit via RE Tl. 

NOTE: MTA WC assumes that the tape is already positioned 
to write. MTAWG does not write records in TOPS2 
format; it writes only the block of N words. 

C. Erase SCRATCH Pad 

The calling sequence: 

RE Tl: 
RET2: 

JPSR ERSCP 
UNIT 0 Unit number (.f}, 1, etc.) 

0 Write lockout return 
0 

Normal return 

causes the SCRATCH pad on the specified UNIT (,I}, 1, etc.) to be erased in this way: 
ERSCP first rewinds the unit, then searches forward to the first file mark, backs 
over it, and erases to BOT. 

D. Erase at BOT 

The calling sequence: 

JPSR ERBOT 
UNIT 0 Unit number (.0, 1, etc.) 

0 Returns to next location 

causes the tape to be rewound and prepared to write a record a few inches after the 
BOT. On the MTP5 system, this involves erasing about 3 i inches of tape. (The 
erase is automatic at the start of a write operation on the DDC system). 

6/68 -2- MTAC/PRM/B 



E. Erase TAPE 

The calling sequence: 

RETl: 
RET2: 

JPSR ERAS 
UNIT 
N 

AMOS MONITOR MAG TAPE SUPPLEMENT, MTAC 

Programmer's Reference Manual 

0 Unit number (.6, 1, etc.) 
0 Number of feet 
0 Write lockout return 
0 

Normal return 

causes N feet of tape to be erased on the specified UNIT, and then backs up the tape 
unit enough so that it is positioned to write on clean tape. 

F. Write a FILE Mark 

The calling sequence: 

JPSR WRFM 
UNIT 0 Unit number (.6, 1, etc.) 

0 Returns to next location 

causes a FILE mark to be written on the specified unit. 

G. Skip a RECORD 

The calling sequence: 

RE Tl: 
RET2: 

JPSR RS KIP 
UNIT 0 Unit number (.6, 1, etc.) 

° File mark return 
0 

Normal return 

causes the specified UNIT to skip over one record, which must be more than 26 
characters in length, unless it is a file mark. 

6/68 - 3 - MTAC/PRM/B 





AMOS TAPE TO PRINTER ROUTINES, MTPRT 

Programmer's Reference Manual 

GENERAL 

AMOS Tape to Printer Routines (MTPRT) list text files, file and record 
header listings, and octal record dumps for the LPRl Line Printer. 

CALLING SEQUENCES AND CODES 

Calling Sequence 

MTPRT (TAPE, FIRST, LAST, CODE, SYMS)! 
where: 

1. TAPE is the selected tape number (0, 1, 2, or 3). 
2. FIRST is the first file selected. 
3. LAST is the last file selected (or= FIRST if omitted). 
4. CODE is the code for selecting the type of listing desired. 
5. SYMS is the symbol file number of the type "SYMS" for 

the text listing (or 0 if symbol listing is not desired). 

Definition of Codes 

1. In code types 0, 1, 2, no symbol files will be printed if SYMS is 
specified as equal to zero. If SYMS is non-zero, and multiple files are listed, 
then file SYMS will be printed as symbols for the first text file, SYMS + 1 for 
the second, etc. 

2. In code types 3, 4, and 5, FIRST and LAST can be used to specify 
particular records in the selected file by giving one or both the following format: 

RECORD! H FILE 

where RECORD is the record in file FILE to be used as the FIRST or LAST 
argument. 

Listing Format 

5-69 

The following listing formats can be generated by the codes: 

0 - Text listing from FIRST through LAST with symbol files 
SYMS, SYMS + 1, etc. , and no tag listing 

1 Text listing from FIRST through LAST with symbol files 
SYMS, SYMS + 1, etc., and tag listing in ADEPT format 

1 MTPRT /PRM/ A 



AMOS TAPE TO PRINTER ROUTINES, MTPRT 

Programmer's Reference Manual 

2 - Text listing from FffiST through LAST with symbol files 
SYMS, SYMS + 1, etc., and tag listing in ASMT3 format 

3 File header listing from file FIRST through LAST. If FIRST 
is zero, listing starts at first record on tape. If LAST is 
also zero, listing continues through end of tape. 

4 - Record header listing from file FffiST through LAST. If 
FffiST is zero, listing starts at first record on tape. If 
LAST is also zero, listing continues through end of tape. 

5 - Octal record dump with header information from file FffiST 
through LAST. If FffiST is zero, listing starts at first 
record on tape. If LAST is also zero, listing continues 
through end of tape. 

NOTE 

For operator convenience, several of the above calling se­
quences may be used on one MTPRT call in the form: 

MTPRT ((Tl, Fl, Ll, Cl, Sl), (T2, • F2, L2, C2, 
S2), etc. , (Tn, Fn, Ln, Cn, Sn))! 

Many different operations can be specified, and MTPRT will 
process each sub-argument list in sequence. 

MTPRT /PRM/ A 2 5-69 



OBJ PK 

AFORT OBJECT PACKAGE 

Programmer's Reference Manual 

Revision B 

March 1969 





AFORT OBJECT PACKAGE, OBJPK 

Programmer's Reference Manual 

TABLE OF CONTENTS 

INPUT/OUTPUT OPERATIONS • 

GENERAL. • • • •• 

INPUT/OUTPUT INITJA TION. 

Unit Specification • • • • 
I/ O Initiate Call. • • • • 
Data Mode Specification. 

ARGUMENT LIST CALLS • 

Argument Size • • 
Argument Type Call • 
Argument Address • 

INPUT/OUTPUT TERMINATION • 

I-0 Terminate Call 

FORMAT CONTROL • • 

Integer Data • • • 
Integer Input • 
Integer Output 

Real Data • • • • 
Real Input • • 
Real Output . • • • • • • • 

Hollerith Data 
Hollerith Input • 
Hollerith Output • 

. . . . 

. . . . . . 

X Format Descriptor • • • • • • 
X Format Input • • • • • 
X Format Output 

Record Terminator • 

INPUT /OUTPUT ERROR MESSAGES. • 

CHARACTER CODES. • . 

UTILITY ROUTINES • • • • • 

3/69 iii 

1 

1 

2 

2 
2 
3 

3 

4 
4 
4 

5 

5 

6 

6 
6 
7 

8 
8 
9 

9 
10 
10 

10 
10 
10 

11 

11 

11 

13 

OBJPK/PRM/B 





AFORT OBJECT PACKAGE, OBJPK 

Programmer' s Reference Manual 

INPUT/OUTPUT OPERATIONS 

GENERAL 

Data is input from an external medium to internal memory or output from 
internal memory to an external medium by the Input/Output Routine. This routine 
converts data between the 6-bit external codes and internal FORTRAN 6-bit 
character codes. Data is processed in either the formatted or unformatted mode. 

Formatted data is converted to real, integer, or 
Hollerith data as specified in a Format Statement. 

Unformatted data is processed as 6-bit internal 
characters, packed five characters per computer 
word. 

A program specifies an I/O operation to the Input/Output Routine by means 
of an I/O Initiate Call. The Argument List Call is required only when a list is 
associated with the input/output function. In general, an I/O operation is speci­
fied to the input/ output routine in the following sequence: 

I/O Initiate Call 
Argument List Call 
Argument List Call . 

Argument List Call 
I/O Terminate Call 

The I/0 Initiate Call defines the operation type; each Argument List Call 
supplies the program data applicable to the operation; the I/O Terminate Call 
terminates the operation. 

Data is operated upon in the form of external records. The I/O Initiate Call 
establishes a new record. Other records may be established according to the 
Argument List Calls or the specifications in the Format Statement. The I/O 
Terminate Call terminates any in.complete records. 

3-69 

External Device 

Magnetic Tape 
Paper Tape 
Typewriter 

Record Terminator 

Tape Gap 
Carriage Return Character 
Carriage Return Character 

1 OBJPK/PRM/B 



AFORT OBJECT PACKAGE. OBJPK 

Programmer's Reference Manual 

Maximum Record Size 

120 Six-Bit Characters 

A record may be smaller than the maximum size if it has a proper record termi­
nator. An error condition is created if a record is larger than the specified 120 
character maximum size. 

INPUT /OUTPUT INITIATION 

Input/output operations are initiated by a coding sequence composed of three 
elements: 

Unit Specifications 
I/O Initiate Call 
Data Mode Specification 

Unit Specification 

The device and unit number to be selected are declared by the Unit Specifi­
cation. The number is placed in the A-register. Local unit numbers, and the 
equivalent devices specified, are shown in the following table: 

Logical Unit Number 

1 
2 
3 
4 
21, 22, 23, 24 
50 
51 
54 

I/O Initiate Call 

Device 

Magnetic Tape o 
Magnetic Tape 1 
Magnetic Tape 2 
Magnetic Tape 3 
Logical Disk Volume 
Console Typewriter 
Paper Tape 
ASCII Core Buffer 

An I/O Initiate Call specifies an I/O operation in one of the following forms: 

JPSR 9RD [Input Data 
JPSR 9WR [Output Data 

The input data and output data operations normally require an Argument List. If 
none is given, data is passed only as specified by a Hollerith type format specifi­
cation. If this type of format is not specified, the result is a blank record for 
output or a record skipped on input. 

OBJPK/PRM/B 2 3-69 



AFORT OBJECT PACKAGE. OBJPK 
Programmer's Reference Manual 

The three auxiliary I/O operations given below do not use the Data Mode. 
Argument List Call. or I/O Terminate Call: 

JPSR 9RE 

JPSR 9BA 

JPSR 9EN 

[Rewind Magnetic Tape 

[Backspace Magnetic Tape One Record 

[Write File Mark on Magnetic Tape 

Data Mode Specification 

The data mode is supplied in the form of a parameter following either a 
JPSR 9RD or a JPSR 9WR. If this parameter is zero, the data is unformatted; 
otherwise, this parameter specifies the address of a Format Specification. 

Application of the I/O Initiate Call is demonstrated in the following examples. 
An input operation is specified by the following sequence of instructions: 

MDAR' F 51 [ Select Paper Tape 
JPSR 9RD [ Call Read Routine 

An output operation is specified by the following sequence of operations: 

MDAR' F 50 [ Select Typewriter 
JPSR 9WR [ Call Write Routine 
O O [ Unformatted Output 

A rewind magnetic tape operation is specified by the following instruction set: 

MDAR'F 
JPSR 

1 
9RE 

[ Select Tape Unit O 
[ Call Rewind Routine 

A backspace magnetic tape operation is specified by the following instruction set: 

MDAR 1 F 2 [ Select Tape Unit 1 
JPSR 9BA [ Call Backspace Routine 

A write file mark on magnetic tape operation is specified by the following 
instruction set: 

MDAR'F 
JPSR 

ARGUMENT LIST CALLS 

4 
9EN 

[ Select Tape Unit 3 
[Call End Of File Routine 

The 1/0 Argument List Call is an optional declaration, and is required only 
if there is a list associated with the I/O function. If used, it is composed of three 
elements: 

3-69 3 OBJPK/PRM/B 



AFORT OBJECT PACKAGE. OBJPK 
Programmer's Reference Manual 

Argument Size 
Argument Type 
Argument Address 

Argument Size 

Argument size specifies the number of words for the argument. This number 
is placed in the A-register. 

Argument Type Call 

The argument type call initiates the call to the linkage routine in the form: 

JPSR 9Ik 

where: k specifies the argument type: 1 = integer, and 2 = real. 

Argument Address 

The argument address specifies the address of the argument. All arguments 
in the list must be of the same mode and must have the same argument size. The 
parameter is of the form: 

O L1 
0 L2 

O L 
n 

where: L2 is the address of the argument. 

The use of the I/O Argument List Call in conjunction with the I/O Initiate 
Call is demonstrated in the following example: 

MDAR 50 [ Select Typewriter 
JPSR 9WR [ Call Write Routine 
O F [ Address of Format Specification 
MDAR' F 5 [ Five Words for Each Argument 
JPSR 911 [ Argument List is of Type Integer 
O J [ Argument Address 
O K [ Argument Address 
0 L [ Argument Address 

OBJPK/PRM/B 4 3-69 



AFORT OBJECT PACKAGE. OBJPK 
Programmer's Reference Manual 

The Argument List in this example would cause the data at locations J through 
J + 4, K through K + 4, and L through L + 4 to be typed on the typewriter 
according to the format specification in location F. 

INPUT/OUTPUT TERMINATION 

The 1/0 Terminate Call provides the necessary linkage to complete the 1/0 
operation and terminate any incomplete records. 

I/O Terminate Call 

The I/ 0 Terminate Call initiates a call to the linkage routine in the form: 

JPSR 9ND 

The sequence of instructions required then, for an I/O operation not using an 
Argument List, can be demonstrated in the following example: 

MDAR' F 51 [ Select Paper Tape 
JPSR 9WR [Call Write Routine 
O A [ Address of Format Specification 
JPSR 9ND [ I/O Terminate 

where: A is a Hollerith type Format Statement, e.g., (5HABCDE). 

A sequence of instructions required for an I/O operation using an Argument List 
is shown below: 

MDAR'F 50 [ Select Typewriter 
JPSR 9WR [ Call to Write Routine 
0 F [ Address of Format Specification 
MDAR'F 5 [ Five Words for this Argument 
JPSR RU [ Argument List of Type Integer 
0 J [ Argument List Address 
JPSR 9ND [ I/ 0 Terminate 

A sequence of instructions for an I/O operation requiring an Argument List of 
different sizes and data types is shown below: 

MDAR' F 50 [ Select Typewriter 
JPSR 9RD [ Call Read Routine 
0 F [ Format Address 
MDAR' F 1 [ One Word Per Argument 
JPSR 911 [ Type Integer 

3-69 5 OBJPK/PRM/B 



AFORT OBJECT PACKAGE, OBJPK 
Programmer's Reference Manual 

0 J [Argument List Address 
0 K [Argument List Address 
MDAR'F 1 [One Word Per Argument 
JPSR R12 [Type Real 
0 R [Argument List Address 
0 s [Argument List Address 
MDAR'F 20 [Twenty Words per Argument 
JPSR 912 [Type Real 
0 T [Argument List Address 
JPSR 9ND [I/O Terminate Call 

FORMAT CONTROL 

Formatted data is described by a format descriptor of one of the following 
forms: 

Integer Data 

I Integer Data 
F Fixed Point Real Data 
E Floating Point Real Data 
H Hollerith Data 
X Blank Data 
I Record Terminator 

NOTE 

In the following examples of data types, ,!! represents 
a blank character. 

Integer data is input/ output with an I/ 0 Initiate Call and an Argument List 
Call to the routine 9Il. The format specification must be of the form Iw; where 
w is the width of the external field. 

Integer Input. -- The external value is right-justified to the width w. All 
blanks are treated as zeros. The value may be preceded by a + or - sign charac­
ter. If no sign is indicated, the value is assumed to be positive. Any other non­
numeric character in the field is an input error. The maximum numeric value 
allowed for an integer number is 536870911. An input value exceeding this limit 
causes an input error. 

OBJPK/PRM/B 6 3-69 



AFORT OBJECT PACKAGE, OBJPK 

Programmer's Reference Manual 

Examples of integer input are shown on the following list: . 
Input External Internal 
Format Characters Value 

I6 b12345 +12345 

I7 b+l2345 +12345 

I7 b-12345 -12345 

IS bbbbbbbb 0 

IS bbbl2b45 +12345 - -
I9 536870911 +536870911 

19 536870912 ERROR 

IS 123-45 ERROR 

IS ABC DE ERROR 

Integer Output. -- The characters output are right-justified in the field 
width n. Negative numbers are preceded by a minus sign. If the specified width 
of the field is smaller than the number of characters required for a number, an 
* character is placed in the least significant character position. 

3-69 

Examples of an integer output are shown in the following list: 
Output Internal Characters 
Format Number Output 

IS +12345 

17 -12345 

16 +12345 

15 +12345 

I5 -12345 

14 +12345 

I3 -12345 

I2 +12345 

11 -12345 

IO - FORMAT ERROR 

15 0 
7 

bbb12345 

b-12345 

b12345 

12345 

-123* 

123* 

-1* 

1* 

* 

bbbbO 
OBJPK/PRM/B 



AFORT OBJECT PACKAGE, OBJPK 

Programmer's Reference Manual 

Real Data 

Real data is input/output with an J/O Initiate Call and an Argument List Call 
to the 912 routine. The format specifications must be of the form Fw. d or Ew. d; 
where w is the width of the external data field and d is the number of decimal 
places. 

Real Input. - The external value is right-justified to the width w, with d 
decimal places. For type E format, the two least significant characters are con­
sidered to represent the decimal exponent. All blanks are treated as zeros. The 
number may be preceded by a+ or - sign character. If a sign is not indicated, 
the number is considered to be positive. The external data field may contain the 
decimal point character (.), which determines the position of the decimal point and 
overrides the d specification. 

The character E in an internal field specifies a decimal exponent of up to 
two characters. The exponent may be preceded by a + or - sign. · If an E is 
present, and a decimal point is not specified, the decimal place is considered to 
be d positions to the left of the E character. Any non-numeric character in the 
data field other than those described above causes an input error. 

. . -127 127 -38 
Real numbers must he m the range 2 s: R s: 2 (0. 588x10 

~RS: O. 588xlo+38 approximately). On input, numbers outside the range will pro­
duce an input error. When input, any real number can be considered to be of the 
form I. E±n, where I is a decimal integer and n is the decimal exponent. If I is in 
the range lOOOOOOOOX s: I =' 536870911X (where Xis a string of decimal digits), 
the X digits will be dropped and the exponent increased by the number of digits 
in X. (e.g., 1234567897234, E+2 will betreated as 123456789. E+6). 

Examples of real data input are shown in the following list: 

Input External Internal 
Format Characters Value 

F6.3 b12345 +.12345E+2 
F6.3 -12345 -.12345E+2 
F6.3 1234.5 +.12345E+4 
F6. 3, E6. 3 1. 2E04 +.12000E+5 
F6. 3, E6. 3 1.20+4 +.12000E+5 
F6.3, E6_.3 bbbbbb +. OOOOOE-+-0 
F6. 3, E6. 3 212E+4 +.21200E+4 
F6. 3, E6. 3 212E-4 +.21200E+4 
E6.3 b12345 +.12300E+45 

OBJPK/PRM/B 8 3-69 



.--·· 

CH!.I Cl!!) I:! AFORT OBJECT PACKAGE. OBJPK 
Programmer's Reference Manual 

Input External Internal 
Format Characters Value 

E6.3 -12345 -.12300E+45 
E6.3 1. 2345 +.12300E+46 

E6.3 b12345. INPUT ERROR 
F6.3, E6.3 12E+39 INPUT ERROR 
F6. 3, E6. 3 12. ES. INPUT ERROR 
F6. 3, E6. 3 ABC INPUT ERROR 

Real Output. -- The characters output are right-justified in the field width 
w. Negative numbers are preceded by a minus sign. If the size of a number ex­
ceeds the field width, the least significant character is replaced by an asterisk 
(*). Formal type E must allow four character positions for the exponent, and one 
character position for the decimal point. 

Examples of real data are shown in the following list: 

Output Internal Characters 
Format Number Output 

E12.4 -123456. b-0.1235Eb06 - -
E12.4 +.012346 bb0.1235E-01 
Ell.4 +123456 .QO. 1235E.Q06 
Ell.4 -.000123 -0.1230E-03 
El0.4 -123456. - .1235E.Q06 
E9.4 +123456. .1235E.Q06 
E9.4 -123456. -.12*E.Q06 
E9.4 0 • OOOOE.QOO 
F6.0 0 bbbbO. 
F6.3 +.123456 b0.123 
F6.3 -.123456 -0.123 
F6.3 +1.23456 bl.235 
F6.3 -1.23456 -1. 235 
F6.3 +12.3456 12.346 
F6.3 -12.3456 -12.3* 
F6.3 +123.456 123.4* 
F6.3 -123.456 -123.* 

Hollerith. Data 

'!be Hollerith format descriptor is of general form: n H k 
where: n is an integer, H is the format descriptor, and k is a string of 
n Hollerith characters within the Format Specification. 

3-69 9 OBJPK/PRM/B 



AFORT OBJECT PACKAGE, OBJPK 

Programmer's Reference Manual 

Hollerith Input. -- For input, n characters from the external field are placed 
into the string k in the format. 

Hollerith Output. -- The integer n specifies the number of k characters that 
will be transmitted from the format to the external field. If the character string k 
contains more than n characters, characters starting with n + 1 will be interpreted 
as format descriptor characters, with resulting errors. 

The X Format Descriptor 

The X format descriptor is in the general form: n X 
where: n is an integer and X is the format descriptor. 

X Format Input. -- With the X format input, n characters are skipped in the 
external field. 

X Format Output. -- The integer n specifies the number of bl8.;llk characters 
to be transmitted. Examples of H and X output are shown in the following list: 

Format 
Descriptor 

lOX 
3X 
x 
12HADD.Q(A, B *D)E 
5HXYZ 
.4HXYZ 
3HXYZ 
2HXY 
lHX 
HXYZ 

Characters 
Output 

bbbbbbbbbb 
bbb 
b 
ADDB(A,B*D)B 
XYZbb 
XYZB 
XYZ 
XY 
x 
FORMAT ERROR 

Examples of H and X format input are shown in the following list: 

Format External Resultant 
Description Field Format 

6HABCDEF 
4Hbbbb 
4H1234 
3HABC, 2X, lHA 

OBJPK/PRM/B 

123456 
ABCD 
bbbb 
123456 

10 

6H123456 
6HABCD 
4Hbbbb 
3H123, 2X, 1H6 

3-69 



AFORT OBJECT PACKAGE, OBJPK 

Programmer's Reference Manual 

Record Terminator 

The I format descriptor causes termination of a record. On input, any re­
maining unprocessed data is ignored and further data is input from .the next record. 
On output, the record is output, and further data in the I/O operation is placed in 
the next record. 

INPUT/OUTPUT ERROR MESSAGES 

Error conditions that occur during execution of an input/ output operation 
cause one of the following messages to be typed on the typewriter. 

1. FORMAT ERROR - This message indicates the format is in error. 

2. MODE ERROR - This message indicates the mode of the argument, integer 
or real, does not agree with the format specification. 

3. DA TA ERROR - This message indicates the input data is in error. The 
error may be that the value is too large or the file contains an illegal character. 

4. UNIT ERROR - This message indicates a logical unit number outside the 
range 1 to 51 has been specified. 

5. TAPE ERROR - This message indicates a non-recoverable magnetic tape 
failure has been encountered. After the message is typed, execution of the program 
is terminated and control is transferred to the exit routine. 

CHARACTER CODES 

The following table provides a listing of the external and internal character 
representations used in AFORT: 

Magnetic Tape and External 
Character Internal Code Code 

0 01 20 
1 02 21 
2 03 22 
3 04 23 
4 05 24 
5 06 25 
6 07 26 
7 10 27 
8 11 30 
9 12 31 

3-69 11 OBJPK/PRM/B 



Cl l!.I Cl!!] E! AFORT OBJECT PACKAGE. OBJPK 
Programmer's Reference Manual 

Magnetic Tape and External 
Character Internal Code Code 

A 20 41 
B 21 42 
c 22 43 
D 23 44 
E 24 45 
F 25 46 
G 26 47 
H 27 50 
I 50 51 
J 51 52 
K 52 53 
L 53 54 
M 54 55 
N 55 56 
0 30 57 
p 31 60 
Q 32 61 
R 33 62 
s 34 63 
T 35 64 
u 36 65 
v 37 66 
w 40 67 
x 41 70 
y 42 71 
z 43 72 
+ 60 10 

61 35 

* 62 05 
I 63 37 

64 36 
( 65 16 
) 66 17 

67 34 
= 70 33 . 72 06 
% 73 01 
$ 74 73 # 
C/R 

75 74 
77 15 

SPACE 
00 40 

OBJPK/PRM/B 12 3-69 



AFORT OBJECT PACKAGE, OBJPK 

Programmer's Reference Manual 

UTILITY ROUTINES 

Utility routines are contained as part of the Operating Routines loaded with 
the loader. The utility routines perform basic functions necessary for execution 
of most FORTRAN programs. Following is a list of these routines and their 
functions: 

9DO 

9CG 

9IF 

9ST 

9PA 

9TI 

9TR 

9TG 

9TS 

ER FUN 

EXIT 

Performs the incrementing and testing of a DO loop index. 
Receives parameters for increment, index, limit, and 
start of loop. 

Performs the computed GO TO statement. Receives the 
index value in the A-register and the transfer locations as 
parameters. 

Performs the IF statement. Receives the expression value 
in the A-register and the transfer locations as parameters. 

Performs the STOP statement. 

Performs the PA USE statement. 

Types the TRACE of an integer value. 

Types the TRACE of a real value. 

Types the TRACE value of a real IF statement. 

Types the TRACE of a statement number. 

Sets the arithmetic error designator bits. 

Performs the termination of execution of a program. 

These routines are primarily used to implement compiled statements and are not 
compatible with normal subroutine usage. For further description of their be­
havior and calling sequences refer to Adage Doc. OBJPK/SMM. 

3-69 13 OBJPK/PRM/B 





PROCESSOR INPUT /OUTPUT ROUTINES, PRIO 

Programmer's Reference Manual 

INTRODUCTION 

PRIO is an AMOS system program written in the ADEPT assembly langu­
age. PRIO provides ADEPT and AFORT with the necessary interface to I/O 
devices to obtain source text input and to output object machine code in relocat­
able format. 

SOFTWARE REQUillEMENTS 

Version 1 - AMR.MX versions 1, 2, 3, 4, 5, 6, 11, or 12. 

HARDWARE REQUmEMENTS 

Hardware requirements are specified by the appropriate version of AMR.MX 
being used. 

PRIO occupies approximately 440a locations of core memory. 

PROCESSOR I/O ROUTINES 

A. Text Input 

The "current" input text to be processed by all AMOS processors is taken 
from an ATEXT file in the file area or the scratch pad of the currently assigned 
input tape. 

The routines by which processors access the current text are: 

1. INITI - Initialize Input prepares (or reprepares in the case of multi-
ple passes) the "current text" for input from the beginning of the first page. This 
subroutine initializes the next input routine, ICH, to start scanning the text in 
the scratch pad area of the scratch tape (unit O). 

Calling Sequence 

[Scratch pad unit O = text to be input 

JPSR INITI 

7-69 1 

[Call 
[Return 

PRIO/PRM/A 



PROCESSOR INPUT /OUTPUT ROUTINES. PRIO 

Programmer's Reference Manual 

2. ICH - Input Character subroutine fetches successive characters of 
the current input text into AR[24-29 ]. As each page is exhausted, the next one 
is fetched via FPB. 

Calling Sequence 

JPSR 

Results 

ICH [Call 
[Return 

(AR.[24-29 ]) = next character of current input text. 

3. FPB - Fill Page Buffer subroutine is called by INITI and occasion-
ally by ICH in order to enter the next page of the current text and reset ICH to 
scan it. 

Calling Sequence 

JPSR ICH 

NOTE 

[Call 
[Return 

If processor output is currently being generated 
on the same tape as the text input tape, FPB will 
first close the library file area, and later reposi­
tion the tape for subsequent output after it has 
found and read the next text input page. 

B. Object Output 

All object output generated in the AMOS System is appended to the user­
file area of the currently assigned System Tape. The I/O Package provides 
facilities to: 

1. INITO - Initialize Output subroutine prepares the currently assigned 
system tape to accept a set of relocatable files comprising object code generated 
by a language text processor. This includes positioning of the system tape, 
establishing the write parameters (the title is typed out), and resetting the output 
routines, buffers, pointers, and counts. 

Calling Sequence 

JPSR 

PRIO/PRM/A 

INITO 

2 

[Call 
[Return 

7-69 



c:mJa~e 
PROCESSOR INPUT /OUTPUT ROUTINES, PRIO 

Programmer's Reference Manual 

2. OAB - Output Absolute, ORE - Output Relative, OCM - Output Com-
mon, and OSP - Output Special 

These subroutines load the contents of (AR) into the output buffer, 
and set the appropriate matrix code. For OSP, (AR) must have the subcode in 
bits 0-5. 

Calling Sequences 

[(AR) = string to be output 

JPSR OAB 

JPSR ORE 

JPSR OCM 

JPSR OSP 

[Call 
[Return 

[Call 
[Return 

[Call 
[Return 

[Call 
[Return 

3. SOM - Set Output Matrix subroutine loads the contents of (Call + 1) 
[28-29] - 3 into the next spot in the output matrix and preserves RA. Called by 
one of the output {AR) routines OAB, ORE, OCM, or OSP, this routine sets the 
appropriate matrix code and then calls OWD to output (AR). 

Calling Sequence 

[(AR) = string to be output 

JPSR SOM 
1 

[Call 
[i = o, 1, 2 .. 3 
[Return 

4. OWD - Output Word subroutine loads the contents of (AR) into the 
output buffer. When the buffer is full, it is written, then pointers and counters 
reset. 

Calling Sequence 

[(AR) = string to be output 

JPSR OWD 

• 

7-69 3 

[Call 
[Return 

PRIO/PRM/A 



CH!.I a !!J e 
PROCESSOR INPUT /OUTPUT ROUTINES, PRIO 

Programmer's Reference Manual 

5. RSOT - Reset Output Routines 

This subroutine initializes the object-code outputting routines. It 
clears the output buffer to -Os, resets the current entry pointer to the first word, 
and resets the count of relocation-types in the buffer. 

Calling Sequence 

JPSR RSOT [Call 
[Return 

6. SOT - Set Object Output Tape Parameters 

This subroutine instates the "title" and "type" parameters for use by 
the magnetic tape write routines when called by object output routines. 

Calling Sequence 

JPSR SOT 

7. SETN - Set Output Name 

[Call 
[Return 

This subroutine obtains a right-justified blank-filled name and left­
justifies it, filling with nulls, and then establishes it as the "title" for any sub­
sequent object records output. 

Calling Sequence 

JPSR SETN [Call 
[Return 

8. DROP - Delete Past and Suspend Further Output for Current File 

This subroutine insures that any output for the current program will 
be deleted, and that any subsequent output generated will not be written. 

Calling Sequence 

JPSR DROP 

9. TOT - TERMINATE OUTPUT 

[Call 
[Return 

This subroutine is used by processors (Compilers, Assemblers) 
to terminate the outputting of one object program and initialize the output rou­
tines for outputting the next one as a new file. 

PRIO/PRM/A 4 7-69 



PROCESSOR INPUT /OUTPUT ROUTINES, PRIO 

Programmer's Reference Manual 

Any remaining room in the buffer is fulled with type "END" object 
records until the buffer gets written and reset. Jf the current program has been 
DROPPED and not removed from the output tape,, it will be removed on the first 
output call. 

The DROP flag is reset and the last-record-count is cleared, forcing 
the next write to start a new file. 

Calling Sequence 

(AR) = length of object program 

JPSR TOT 

10. CLOSE - CLOSE TAPE LIBRARY FILE 

[Call 
[Return 

This subroutine is used to close the user-file area after having 
added object program files to it. The system tape is selected, and the terminal 
file mark is generated. 

Calling Sequence 

JPSR CLOSE [Call 
[Return 

11. NOMOR - Terminate Output and Close Library 

This subroutine is used by the processors to both terminate the ob­
ject program output and close the user file area. 

Calling Sequence 

JPSR 

7-69 

NO MOR 

5 

[Call 
[Return 

PRIO/PRM/A 





~ ... 1 Cl r:1 [E! _____ R_E_A_D_A_N_A_L_o_G_-_T_o_-__ n_I_G_I_T_Ami.L_W.;;..;.I_T...;..H gL:J ::J COMPARATOR, RADC 
Programmer's Reference Manual 

INTRODUCTION 

The RADC subroutine is used in the AGT/10 with the AMC1-Pl,P2 comparator 
option. The comparator is used by RADC to convert an analog input into a 10-bit 
digital value. RADC is called by those versions of RVCD, RJSB, and RADT which 
operate on the AGT/10. 

USE 

Select a CHANNEL(S) to be digitized by loading the proper multiplexor bit(s) 
and then specify: 

L: JPSR $RADC 
L + 1: Returns here 

This will digitize the sum of the input device(s) selected and will return with the 
value in the AR[l5-24](1's complements for negative numbers, sign extended). 

STORING AND TIMING 

RADC occupies less than 40 10 words of core and requires 120 µ.secs to exe­
cute and retrieve a 10-bit value. 

NOTE: RADC destroys the current transformation of the array. For 
this reason, it must not be processed asynchronously with any 
program which uses the array (such as DSPL Y). Any programs 
which call RADC must not be chained on the CLOCK routine of 
the DSPLY operator. 

12/68 - 1 - RADC/PRM/A 





READ ANALOG DATA TABLET, RADT 
Programmer's Reference Manual 

GENERAL 

RADT is an AMOS libracy routine which is used to read the X and Y coor­
dinates on the ADT (Analog Data Tablet) to determine the pen-up/pen-down con­
dition of the ADT stylus tip, and to detect the "pen-depressed" position of the 
stylus tip. 

CALLING SEQUENCE AND USE 

When used with DSPLY, RADT may be appended to the CLOCK chain and 
executed once per frame by typing the statement: 

CLOCK (RADTK, RADTR)! 

Result: 

The tablet is sampled once each time the picture on the CRT is refreshed. 

RADTX: X value in bits 15-29 (Sign extended bits 0-14) 
RADTY: Y value in bits 15-29 (Sign extended bits 0-14) 

The X and Y values range from -3777~ (minus full scale) to 37777 (full 
scale). The center of the data tablet is defined as the origin (0, 0). When the 
pen stylus is not positioned on the data tablet, the flag ADTFl is set to -1, and 
the values of RADTX and RADTY do not change; otherwise, ADTFl is set to +0. 
When the tip of the stylus is depressed hard enough to engage the "pen-depressedn 
switch, the flag ADTF2 is set to -1; otherwise, ADTF2 is set to +0. 

NOTE 

RADT may be called once per frame with a "JSR 
RADTR" image item or at any time by executing 
a "JPSR RADTR" instruction in memocy. 

To obtain the four variable values in an AFORT program, use the calling 
sequence: 

CALL RADTV (Il, 12, 13, 14) 

where: 11 is RADTX, 12 is RADTY, 13 is ADTFl, and 14 is ADTF2. RADTX 
and RADTY are integers ranging from +16, 384 to -16, 384. The RADTV sub­
routine presumes that RADT is on the CLOCK chain or has been called with a 
CALL RADTR. 

5-69 1 RADT/PRM/A 





READ ALPHANUMERIC KEYBOARD. RANK 
Programmer's Reference Manual 

DESCRIPTION 

RANK is a relocatable AMOS library routine which may be used to read 
characters from any of four ANK-Pl Keyboard sybsystems. RANK may also be 
interlaced with the AMRMX and EDIT system programs so that they may receive 
input from the alphanumeric keyboard by the program RANKC. 

REQUIREMENTS 

RANK requires the EAU subsystem. It also requires the implementation 
of the programmatic interrupt at the lowest priority level and must be used with 
the corresponding version of AMRMX. 

Version 1 of TIANK is for systems with only one ANK; Version 2 of RANK 
is for systems with up to 4 ANK-Keyboards. 

USE 

A. Initiate Input Routine 

The calling sequence: 
JPSR RKCHn n = 1 for Version 1 

DONE n = 1, 2, 3, or 4 for Version 2 

Returns to next location 

Enables keyboard n to accept an input character. This subroutine is "open". 
That is, it first initiates the keyboard character routine and then returns to the 
location after the calling sequence. It executes instruction DONE after the charac­
ter has been input. With the 7 -bit character is the 7-bit reversed ASCII character 
(compatible with the TTY input characters) contained in AR bits [22-28 ]. If the 
instruction DONE causes control to be returned to the next location when it is exe­
cuted, the foreground environment will be restored. If RKCHn is called again 
before the character has been accepted, the program will wait until the previously 
specified OONE instruction is executed. 

1/69 -1- RANK/PRM/B 



READ ALPHANUMERIC KEYBOARD, RANK 
Programmer's Reference Manual 

B. Wait for Input Routine 

The calling sequence: 

JPSR RKCWn 
CHAR 

n = 1 for Version 1 
n = 1, 2, 3, or 4 for Version 2 

Returns to next location 

Waits for keyboard n to input a character. The result is the 7 -bit reversed 
ASCII character contained in AR bits [22-28] and also in the location referenced by 
CHAR, which may be an indirect chain. Thus, RKCWn may be called by AFORT 
programs. 

1/69 -2- RANK/PRM/B 



a[!Ja!!)I::! ALPHANUMEIUC KEYBOARD CONTROL INTERFACE, RANKC 

Programmer's Reference Manual 

DESCRIPTION 

RANKC is a relocatable AMOS library routine used to interface the RANK 
program (Read Alphanumeric Keyboard) with AMRMX and EDIT. Using RANKC, 
AMRMX and EDIT may receive control statements from an ANKl or ANK2 Alpha­
numeric Keyboard subsystem. 

USE 

The calling sequence: 

JPSR SYSC 

n 

Where: n = *1, 1, 2, 3, 4 

This call causes RANK to interface with the basic teletype input of AMRMX thus 
allowing EDIT, as well as AMRMX, to receive input from keyboards 1, 2, 3, or 4. 
When n is *1, the input function is restored to the TTY. If n is omitted, it is 
assumed to be *1 

When Version 1 RANK is used, arguments of n = 1, 2, 3, or 4 all cause 
input to be from the one alphanumeric keyboard on the system. 

HARDWARE REQUIREMENTS 

RANK may be used on an AGT with an EAU subsystem and a programmatic 
interrupt. It links with the AGT Monitor (AMRMX, Version 11 or 12) and the 
program RANK (Version 1 or 2 ). 

NOTE: 

The call: 

JPSR SYSC 

n 

is the equivalent to Monitor statement SYSC (n) ! 

11/68 -1- RANKC/PRM/ A 





---- -----------~--

CARD READER PROGRAM, RCD 

Programmer's Reference Manual 

INTRODUCTION 

RCD is a set of relocatable subroutines which are used to read punched cards 
on the CDRl card reader. RCD contains both open routines for flexibility and 
closed routines for user convenience. Each call to RCD will cause a single card to 
be read. 

VERSION 

RCD exists in only one version. 

SOFTWARE REQUIREMENTS 

RCD makes use ot the AMRMX routines to link subroutines at the PINT 
priority level. 

HARDWARE REQUIREMENTS 

RCD requires the CDRl-Pl subsystem. RCD occupies 5058 words of core 
storage. 

TIMING CONSIDERATIONS 

The CDRl-Pl provides interrupts for each character every 2. 4 ms. The 
longest the computer will be held at the card reader interrupt level for each 
character is: 

Code 

1 

Time 

15,0 µ.s 

35,0 µ.s 

39.0 µ.s 

In all cases RCD must be allowed to operate at its priority level at least 15% of the 
time 

The done or error instructions, which require less than 1.0.0 µ.s at the CDRl 
level to be set up, are completed at the PINT level. 

7-69 1 RCD/PRM/A 



CARD READER PROGRAM, RCD 

Programmer's Reference Manual 

CARD READER ROUTINE 

A. RCD - Read Card (Open Call} 

The calling sequence: 

JPSR RCD 

TABLE 
CODE 
DSAB INST 
ERR INST 
DONE INST 

[Entry 
[ Busy return 
[ Location of table 
[ Conversion code 
[ Instruction if machine not enabled 
[ Instruction if error 
[ Instruction when done 
[ Normal return 

will initiate the reading of a single card into a table starting at TABLE. The pro­
gram will return through the normal return and the reading will continue on an 
interrupt basis. If the RCD program is in operation at the time of the call, it will 
return through the busy return and no action will be taken. 

RCD will read the following codes: 

Code 

-kl 

Code 

1 

Card Code Conversion 

Binary input. Each I column on the card is interpreted as two 6-bit 
binary characters. One card will fill a table of 408 words. 

Hollerith input. Each column on the card is translated into the 
standard AMOS code according to the table in this document (or 
a table which has been substituted by SRCDT). One card will 
fill a table of 208 words. 
Card Code Conversion 

Hollerith input. Does the same as kl above except the 11-8-2 and 
12-8-2 punches are replaced by the 11-0 and 12-kl punches 
respectively. 

The DSAB INST is executed if RCD is called when the card reader is turned 
off or not enabled. The instruction is executed with a ONE in the AR. RCD will re­
turn immediately through the normal return with the contents of AR after the DSAB 
INST still in the AR. 

If the AR is left negative by the DSAB INST (e.g., -DSAB INST= ARAR'N'F) 
the program will: 1. Set up the instructions to read a card when the card reader is 
enabled; 2. Retain the "busy" state to prevent additional RCD calls; and 3. Return 
immediately through the normal return. 

RCD/PRM/A 2 7-69 



CARD READER PROGRAM, RCD 

Programmer's Reference Manual 

The ERR INST will be executed if an error is detected by the CDRl or an il­
legal code is detected in the Hollerith translation. The instruction is executed at 
the PINT priority level with one of the following codes in AR: 

102 error detected by CDRl. 

1002 illegal code character. 

The DONE INST is executed when the card read is complete. The instruction 
is executed at the PINT priority level with a ~ in AR. 

NOTE 

Care should be taken to make sure that the DSAB INST, ERR 
INST, and DONE INST do not contain instructions which will 
release their interrupt level and that they return to their 
calling sequence. 

B. RCDC - Read Card (Closed Routine) 

The calling sequence: 

JPSR RCDC 
TABLE 
CODE 
ERR 

[Entry 
[ Location of table 
[ Conversion code 
[ Return if error 
[ Normal return 

will read a single card into a table starting at TABLE. CODE will be as in RCD. 

The program will not return until either an error is detected or the card has 
been read. If the error return is taken, the error code will be in AR as follows: 

7-69 

1 

102 

1002 

10000002 

CRDl Off Line or Not Enabled 

Error Detected by CDRl 

illegal Code Character 

RCD Busy 

3 RCD/PRM/A 



C. SRCDT- Set RCD Code Table 

The calling sequence: 

JPSR SRCDT 
ADDR 

CARD READER PROGRAM, RCD 

Programmer's Reference Manual 

[Entry 
[Address of new code table 
[Return 

will cause a table af 2~ words starting at ADDR to be loaded into the RCD code 
table. The code words are packed four 6-bit characters, left justified per word, 
according to the following chart. If ADDR =-~,.the standard AMOS code will be 
restored. 

ZONE PUNCHES 

~ NONE j1 11 12 29 

ADDR: 1 

2 

3 

4 
B 

5 I 

6 
T 

7 
p 

u 
9 N 

c 
none 

H 
8 2 E 

8 3 
s 

8 4 

8 5 

8 6 

8 7 

8 

RCD/PRM/A 4 7-69. 



CARD READER PROGRAM, RCD 

Programmer's Reference Manual 

CHARACTER SET 

TTY AMOS CARD TTY AMOS CARD 
CHAR. CODE PUNCH CHAR. CODE PUNCH 

[ 00 12-8-2* space 40 none 
% 01 0-8-4 A 41 12-1 
J 02 11-8-2* B 42 12-2 

03 12-8-7 c 43 12-3 
& 04 12 D 44 12-4 
* 05 11-8-4 E 45 12-5 

06 8-2 F 46 12-6 
07 0-8-2 G 47 12-7 

+ 10 12-8-6 H 50 12-8 
tab 11 12-8-4 I 51 12-9 

? 12 0-8-7 J 52 11-1 
" 13 8-7 K 53 11-2 

14 8-5 L 54 11-3 
C/R 15 0-8-6 M 55 11-4 

( 16 12-8-5 N 56 11-5 
) 17 11-8-5 0 57 11-6 
0 20 0 p 60 11-7 
1 21 1 Q 61 11-8 
2 22 2 R 62 11-9 
3 23 3 s 63 0-2 
4 24 4 T 64 0-3 
5 25 5 u 65 0-4 
6 26 6 v 66 0-5 
7 27 7 w 67 0-6 
8 30 8 x 70 0-7 
9 31 9 y 71 0-8 

32 11-8-6 z 72 0-9 
33 8-6 $ 73 11-8-3 
34 0-8-3 # 74 8-3 
35 11 @ 75 8-4 
36 12-8-3 76 11-8-7 

I 37 0-1 77 0-8-5 

*CODE 1 will replace 12-8-2 and 11-8-2 with 12-0 and 11-0 respectively. 

7-69 5 RCD/PRM/A 





GENERAL 

READ RELOCATABLE SYMBOLS, READS 
Programmer's Reference Manual 

Read Relocatable Symbols subroutine implements the Monitor Statement 
READS. It causes local assembly symbols (of type RLSYM) saved in the file 
"TITLE" to be defined and properly relocated. 

CALLING SEQUENCE AND USE 

Calling Sequence: 

JPSR READS 

"TITLE" 

TAPE 

• 

[TITLE of requested file 

[Tape unit number= .0, 1, etc. 
(SYSTN if omitted) 

[End argument-list 

[Returns to next location 

READS eliminates any local tags defined in the external symbol table 
and selects the tape unit, then finds the requested file. If it is not found, 
READS then types the message "FILE NOT FOUND" and returns to the 
Monitor. 

The READS subroutine reads the file into the external symbol table. 
(See DUMPS abstract for a definition of the format of the file.) 
The true relocation constant is computed from the ENTRY value in the new 
file (:M.) and its value in the Monitor's symbol table (X), provided that the 
program has been loaded. If it has not been loaded, READS will cause it to 
be loaded and the program will continue. The relocation constant has the 
value (X-M). If the source program specified no entry points, it has the 
value 12.0. All relocatable symbols will have their values incremented by 
the value of the relocation constant. 

11/68 1 READS/PRM/B 





RETRIEVE GRAPHICS OPERATOR, RETRV 

Programmer's Reference Manual 

INTRODUCTION 

The Retrieve Graphics Operator enables selection and reading of tape or 
disk files from the System Library. The input, consisting of relocatable records 
in a type "IMAGE" file, may have been generated by a SAVE operation. The image 
segment(s) in the files are reinstated in the current core resident BUILD 
Temporary Library Table. The additional segment(s) may be used in subsequent 
BUH.Ding operations. 

DESCRIPTION 

The following operation: 

where: 

title 

unit 

vol 

RETRV ( { unit}) "title 11 , v°:i ! 

The name (title) of the relocatable IMAGE file to be read. 

The input tape unit or, if omitted, the current "system 
tape". 

The input volume number if unput is to be from disk. If 
omitted, the current "system volume" is assumed. 

Causes the image segment(s) in the input file to be read (appended) into 
BUILD' s Temporary Library Table. 

VERSIONS 

Version 1 = 

Version 2 = 

CORE REQUIBEMENTS 

50Q:i words 

5/69 

AGT Tape System 

AGT Disk System 

1 RETRV/PRM/A 





READ JOYSTICK AND BOWLING BALL. RJSB 

Programmer's Reference Manual 

GENERAL 

RJSB is one of a set of AMOS system programs in the subroutine library 
that interfaces on-line terminal 1/0 devices with the user's calling program. 
RJSB samples the input from the JSBl-Pl, P2 subsystem. In Version 2 RJSB 
may be chained to the CLOCK facility in the DSPLY operator, thereby continually 
sampling the joystick at the specified frame rate. 

The RJSB program defines five external symbols: entry points RJSB, 
RJSBV, and the three input addresses, JSBX, JSBY, JSBZ. 

In addition, Version 2 of RJSB defines entry points JSBK and JSBR. 

USE (Versions 1 and 2) 

The calling sequence: 

JPSR $RJSB 

causes all dials to be sampled and their values stored in locations JSBX, JSBY, 
and. JSBZ respectively. Do not use this call if the RJSB program is chained to 
the clock. 

Version 2 only: 

JPSR $CLOCK [CLOCK (JSBK, JSBR) ! ] 
$JSBK 
$JSBR 

causes the RJSB program to be chained to the CLOCK subroutine of the DSPLY 
operator. This will cause the dials to be sampled once per frame and the results 
to be stored in JSBX, JSBY, and JSBZ. 

4-69 1 RJSB/PRM/C 



READ JOYSTICK AND BOWLING BALL, RJSB 

Programmer's Reference Manual 

To obtain the values JSBX, JSBY, and JSBZ from an AFORT program, 
use the following call: 

CALL RJSBV (Al, A2, A3) 

where: Al is JSBX, A2 is JSBY, and A3 is JSBZ. 

JSBX, Y, and Z are integers between 16, 384 and -16, 384. The RJSBV 
subroutine presumes that RJSB is on the CLOCK chain or has been called with 
a CALL RJSB. 

HARDWARE REQUIREMENTS 

AGT with GHAl or GHA2. 

Version 1 - for AGT/10, JSBl-Pl, AMCl-Pl 

Version 2 - for AGT30 or AGT/50, JSB1-P2 

SOFTWARE REQUIREMENTS 

Version 1 - RADC, Read analog digital with comparator 

Version 2 - DSPLY operator, if RJSB is to be chained to the CLOCK 

STORAGE AND TIMING 

Version 1 - RJSB together with the RADC routine, occupies less than 100 10 

locations in core. To digitize the three input variables requires 380 µs of time. 

Version 2 - RJSB occupies less than 60 10 locations in core. To digitize 
the three input variables requires 95 µs of time. 

RJSB/PRM/C 2 4-69 



READ VARIABLE CONTROL DIALS, RVCD 

Programmer's Reference Manual 

GENERAL 

The RVCD program is one of a set of AMOS system programs in the 
subroutine library that interfaces on-line terminal I/O devices with the user's 
calling program. RVCD samples the input from the VCD1-Pl/P2 subsystem and 
may be chained to the CLOCK facility in the DSPLY operator, thereby continually 
sampling the dials at a frame rate specified by the operator. 

Versions 1 and 2 of the RVCD program define nine external symbols: 
entry points RVCD, RVCDl, RVCD6, and the six dial addresses, VCDA, VCDB, 
VCDC, VCDD, VCDE, VCDF. 

In addition, Version 2 defines entry points VCDK, VCDR. 

CALLING SEQUENCE AND USE (Versions 1 and 2) 

The Calling Sequence: 

JJ?SR $RVCD 

causes all the dials to be sampled and their values stored in locations VCDA 
through VCDF, respectively. Do not use this call if the RVCD program is chained 
to the clock. 

Version 2 only: 

JPSR $CLOCK 
$VCDK 
$VCDR 

[CLOCK (VCDK, VCDR)!] 

causes the RVCD program to be chained to the CLOCK subroutine of the DSPLY 
operator. This will cause the dials to be sampled once per frame and the results 
to be stored in VCDA - VCDF. 

To obtain the values VCDA - VCDF from an AFORT program, use either 
of the following calls: 

5-69 

CALL RVCDl (AA, Al) causes the contents of dial 
AA (1-6 VCDA - VCDF) to be loaded into variable Al. 

1 RVCD/PRM/C 



READ VARIABLE CONTROL DIALS, HVCD 
Programmer's Reference Manual 

CALL RVCD6 (Al, A2, A3, A4, A5, A6) will load 
variables Al - A6 with VCDA - VCDF contents 
respectively. VC DA - VC DF are integers between 
+ 16, 384 and -16, 384. The RVCDl and RVCD6 sub­
routines presume that RVCD is on the clock chain 
or has been called with a CALL RVCD. 

HARDWARE REQUIREMENTS 

AGT with GHAl or GHA2 

VCDl-Pl or P2 

AMC1-P2 (Version 1 only) 

VERSIONS 

Version 1 - AGT/10, VCDl-Pl, AMC1-P2 

Version 2 - AGT/30 or AGT/50, VCD1-P2 

SOFTWARE REQUIREMENTS 

Version 1 - RADC 

Version 2 - DSPLY operator, if RVCD is to be chained to the clock. 

STORAGE AND TIMING 

Version 1 - The RVCD and RADC subroutines occupy less than 10010 

locations in core. · To digitize the six dials requires 750µ.s of time. 

Version 2 - RVCD occupies less than 9010 locations in core and requires 
161µ.s to digitize the six dials. 

RVCD/PRM/C 2 5-6~) 



CU!.J Cl!!] I:! 
SA VE GRAPHICS OPERATOR# SA VE 

Programmer's Reference Manual 

INTRODUCTION 

The SA VE Graphics Operator enables the filing of image items into the 
System Library on either mag tape or disk. These image items may comprise 
one or more segments in the BUILD Temporary Library Table or may be any 
complete image descriptions in core. The output consists of relocatable records 
in a type "IMAGE" file. 

DESCRIPTION 

The following operation: 

SA VE ("title"# 

where: 

{
unit} ( {.image name } # ••• ) ) 1 or or # • • • . 
vol segment name 

t 

title the name (title) of the relocatable Image file to be output. 

unit = the output tape unit number or, if omitted, thecurrent 
"system tape". 

vol = the output volume number if output is to be on disk. 

image 
name 

segment 
name 

If omitted# the current "system volume" is assumed. 

the entry point name (or location) of a complete image 
description (with 2 word header, etc.) 

= the name of a segment currently defined in BUILD's 
Temporary Library Table (done by means of a BUILD 
PUT operation). 

Causes the output of a file on either tape or disk of type "IMAGE". 

These files may subsequently be read from the library on tape or disk 
by LOAD or RETRY operations. 

VERSIONS 

1 - For use under Mag Tape Operating Systems 
2 - For use under Disk Operating Systems 

STORAGE REQUIREMENTS 

The SA VE operator occupies less than lK of storage. 

5/69 1 SAVE/PRM/A 





SCRATCH PAD COPY ROUTINE, SCCPY 

Programmer's Reference Manual 

INTRODUCTION 

SCCPY is an ADEPT language program for copying TEXT or ATEXT 
files on magnetic tape. SCCPY is primarily used on one-tape systems for copy­
ing text files from and to the ''Scratch Pad" area of the tape. 

OPERATION 

The following statement is input to the AMOS Monitor, or given by appro­
priate machine language: 

SCCPY (RECORD, FILE, INPUT, OUTPUT, DENSl, DENS2)! 

where RECORD is the first record of the input file. 

FILE is the input file number. 

INPUT is the input tape number (0, 1, 2, or 3). 

OUTPUT is the output tape number (0, 1, 2, or 3, with - for output 
to scratch pad). 

DENSl is the input tape density (0 for 200 bpi, 1 for 556 bpi, or 2 for 
800 bpi). 

DENS2 is the output tape density (0, 1, or 2 as above). 

NOTE 

Density arguments are ignored on MTP5/8 systems. 

This statement causes the specified text FILE to be written on the output tape 
starting with the specified RECORD. If the specified OUTPUT tape number is 
preceded by a minus sign(-), output is to the "scratch pad" (file 108 ) of the out­
put tape. Otherwise,· the output is to the end of the output tape. Where the 
arguments are the same as the above, except that when output to the "scratch 
pad" is specified, input records replace the contents of the existing "scratch 
pad." 

The following statement: 

SCCPA (RECORD, FILE, INPUT, OUTPUT, DENSl, DENS2)! 

4-69 1 SCCPY/PRM/ A 



SCRATCH PAD COPY ROUTINE, SCCPY 

Programmer 1 s Reference Manual 

is equivalent to the first statement except that when output to the "scratch pad" 
is specified, input records are appended to the existing contents of the "scratch 
pad. II 

When finished, the program writes a file mark on the output tape if output 
has not been to the "scratch pad," and rewinds both tapes. If output has not been 
to the "scratch pad," the program types FILE = N, where N is the output file 
number. On MTP-7 systems, magnetic tape density will be left at the output 
density, DENS2. The program then returns to the caller. 

SCCPY/PRM/A 2 4-6~ 



AMOS SET DATE ROUTINE, SDATE 

Programmer's Reference Manual 

GENERAL 

AMOS Set Date Routine, SDATE, is an AMOS library program written in 
the ADEPT assembly language used for setting the current date cell in the AMOS 
Resident Monitor. 

CALLING SEQUENCE 

SDA TE is called by the Monitor control statement 

SDATE! 

or by a subroutine call in a user program of the following form: 

USE 

LL: 
LL+l: 

JPSR 
Returns here 

$SDATE 

On entry, SDATE types the following message: 

TYPE-IN DAY OF MONTH •.• 

The operator should then type in the day of the month, a decimal integer 
from 1 to 31, terminated by a carriage return character. 

Next, SDA TE will type: 

TYPE-IN SYMBOLIC MONTH ..• 

The operator should then type the symbolic month, terminated by a carriage 
return character. The entire month word need not be typed as long as the charac­
ters typed are sufficient to uniquely specify the desired month. For example, 
"J(C/R)" is insufficient as the months "JANUARY," "JUNE," and "JULY" all 
begin with "J." The sequence "JA(C/R)" is sufficient to specify "JANUARY," 
while "JUN" and "JUL" must be present to specify "JUNE" or "JULY" respectively. 

After the month has been typed in, SDA TE will type: 

TYPE-IN YEAR (4 DIGITS) ... 

4-69 1 SDA TE/PRM/ A 



AMOS SET DATE ROUTINE, SDATE 

Programmer's Reference Manual 

The operator should then type in the year terminated by a carriage return 
character. Permissable years lie in the range 1964 through 1995. 

SDA TE will then evaulate the octal code for the date type in, check for any 
errors, place the date in the Monitorls date cell, and type the following message: 

EVALUATED OCTAL DATE IS 00000 

where "00000" is the five digit octal date code representing the bits 15-29 of the 
word placed in the Monitor' s date cell. Control is then returned from SDA TE. 

The octal date code generated by SDA TE has the following structure: 

YEAR-1964. MONTH DAY 

SDATE/PRM/A 2 4-69 



AGT SINE-COSINE ROUTINE, SNCOS 
Programmer's Reference Manual 

DESCRIPTION 

SNCOS is a relocatable AMOS Library subroutine for computing both the sine 
and cosine of a specified angle (expressed in radians) using the second-order Taylor 
Series approximation: 

SIN(X+liXF:SIN(X) (l-6X2 )+COS(X)6X 
COS(X+liX)~ COS(X) (1-t.X2 )-SIN(X)6X 

as well as the trigonometric relations: 

SIN(-X) = -SIN (X) 
COS(-X) = COS (X) 

REQUIREMENTS 

SNCOS requires the EAU subsystem; it occupies 166 (octal) locations in memory. 

TIMING 

SNCOS computes both the sine and the cosine of the given angle in (at most) 
178µ, sec. 

CALLING SEQUENCE 

(AR) = x = angle value (radians) in bits [15-29] 
7T 

JPSR SN COS 
Returns to next location 

RESULTS 

11/68 

(AR)= SIN( 7TX) in bits [,0-14], ,0 in bits [15-29] 
SINE: ,tj ! H SIN( 7T X) 
COSN: .0!H COS( 7TX) 

-1- SNCOS/PRM/ A 





SINE/COSINE SUBROUTINE, SNCSA 

Programmer's Reference Manual 

DECRSIPTION 

SNCSA is a standard Adage library subroutine written in ADEPT source lan­
guage. This subroutine uses FCTA to obtain the functions SIN (TT X) and COS (TT X) 
for the argument range -1. LT. X. LT. +l, using table lookup and interpolation. 
SNCSA contains two subroutines, SINA and COSA. 

Calling Sequences: 

SINA 

AR: X(sign in bit O, value in bits 1-15) 
L: JPSR $SINA 
L+l: Next instruction 

EXECUTION TIMES 

SINA -223 µs, COSA -248 µs 

SUBROUTINES REQUIRED 

FCTA or FCTE. 

HARDWARE REQUIRED 

FCTA 

Two DA C channels 
Two ACE subsystems 
One CMP subsystem 
One ADC3 or ADC5 subsystem 

FCTE 

One Extended Arithmetic Unit (EAU) 

USAGE 

COSA 

JPSR $COSA 

Except for AR, no other "live register" contents are changed by the subroutine. 

RESULT 

AR 

7-69 

SIN (TT X) cos ('IT X) (Sign in bit O, value in bits 1-29) 

1 SNCSA/PRM/B 





GENERAL DESCRIPTION 

ADEPT STORAGE ALLOCATION SUBROUTINE, STALL 
Programmer's Reference Manual 

STALL is a subroutine which runs under the AMOS monitor. The purpose of 
this routine is to allocate data storage to a program at execution time. This allows 
a program to have variable length data buffers, or all of available memory, if neces­
sary. If the program terminates and returns to the monitor, its storage area is 
released and made available to other programs. 

There are two entry points to the storage allocation routine, STALL and ALL. 
STALL is used when a specific number of cells is desired, and ALL is used when all 
of available memory is desired. 

REQUIREMENTS 

When using STALL, it is assumed that a proper version of the AMOS Resident 
Monitor, corresponding to the system configuration being used, is present in core. 

STALL 

CALLING SEQUENCE 

JPSR $STALL 
N 

RESULTS 

/Call 
I (Number of cells requested) 
/Error return when not 

available 
/Normal return 

(AR) =Starting address of N-word block reserved 
from available storage if possible. 

ALL is used when all possible available storage is desired. Four cells are 
left available to permit entering control statements if program is interrupted. 

1/67 - 1 - STALL/PRM/B 



ALL 

CALLING SEQUENCE 

JPSR $ALL 
N 

RESULTS 

ADEPT STORAGE ALLOCATION SUBROUTINE, STALL 
Programmer's Reference Manual 

/Call 
I (Set to size of block re­

served) 
/Error return for s4 avail­

able cells 
/Normal return 

N words of storage reserved (all but 4 of available core). 
(AR) = Base address of block reserved when possible. 

1/67 - 2 - STALL/PRM/B 



1/67 

STALL(S) 

LD -SAVEl 
LD+S -- A. SAVE2 
A-l+PTR -- A 

SAVE2 --LD 

Error Ret. 

Return (SAVEl) 

ALL(S) 

LD -- SAVEl 
PTR-LD-4 -- A 

A --s 
+ 

Return (SAVEl) 

3 

~-----11>1( Error Ret.) 

STALL/PRM/B 





DISPLAY RECORDER ROUTINE. WGDR 
Programmer's Reference Manual 

INTRODUCTION 

This routine permits AGT display output to be recorded on the GDRl under 
operator or programmed control. 

GENERAL 

USE 

WGDR implements the following facilities: 

1. Contents of the display screen may be exposed and printed. 

2. Successive partial picture displays may be exposed and a 
final composite of the separate exposures printed. 

3. The exposures may be timed by frame counts or by a 
mechanical timer under operator control. 

WGDR can be used by the following online monitor statements or the equiva­
lent calling sequences: 

GDRX (BUSY, TIME) ! 

GDRP (BUSY, TIME)! 

Expose current display as per TIME 

Expose display as per TIME, then print 

Where: 

BUSY is the instruction transferred to when the GDRl is not avail­
able. 

TIME is the number of fra~es to expose (or ~ if manual timer run­
out is to be used). 

When a frame count is used to time exposure, the routine GDRR must be 
called once per frame. This may be done under DSPLY by an image item: 

JSR GDRR 

12/68 -1- WGDR/PRM/A 



. CJC!JCJ!!]E DISPLAY RECORDER ROUTINE, WGDR 
Programmer's Reference Manual 

or by the clock chain with the monitor statement: 

CLOCK (GDRK, GDRR) ! 

If the user chooses to wait while the GDRl is busy, the BUSY argument may 
use the entry point GDRWT. 

REQUIREMENTS 

WGDR occupies less than 40 10 cells. 

GDRR takes less than 44 µseconds per frame. 

WGDR requires no other software, but is designed for easy use with the 
DSPLY operator under the AMRMX monitor. 

12/68 -2- WGDR/PRM/A 



CORPORATE OFFICES AND 
MANUFACTURING PLANT 

Adage, Inc. 
1079 Commonwealth Avenue 
Boston, Massachusetts 02215 
Telephone(617) 783-1100 
TWX No. 710-330-0141 

SALES OFFICES 

NORTHERN 
1079 Commonwealth Avenue 
Boston, Massachusetts 02215 
Tel. (617) 783-1100 

1300 Route 46 
Parsippany, New Jersey 07054 
Tel. (201 ) 335-0900 

17500 West Eight Mile Road 
Southfield, Michigan 48075 
Tel. (313) 358-3393 

SOUTHERN 
818 Roeder Road 
Silver Spring, Maryland 20910 
Tel. (301 ) 589-1221 

Braniff Airways Building 
Exchange Park 
Dallas, Texas 75235 
Tel. (214) 358-3161 

WESTERN 
6151 West Century Boulevard 
Los Angeles, California 90045 
Tel. (213) 776-6610 

680 Beach Street 
San Francisco, California 94109 
Tel. (415) 771-3577 

,. 


