- PROGRAMMER’S REFERENCE MANUAL
ADAGE GRAPHICS TERMINAL
VOL.I (SOFTWARE)

anlaneE

ADAGE GRAPHICS TERMINAL

PROGRAMMER'S REFERENCE MANUAL

Volume I

ADAGE, INC.
1079 Commonwealth Avenue
Boston, Massachusetts 02215

a EI a E E ADAGE GRAPHICS TERMINAL, AGT

Programmer's Reference Manual

FOREWORD

This manual is provided to the prospective Adage Graphics
Terminal user to provide detailed information about the system
software. It is the first volume of a two-volume set which com-
prises the Programmer's Reference Manual. Descriptions con-
tained herein are subject to change without notice.

The actual manual from which this material was obtained is
loose-leaf and updated on a regular basis.

anlane

ADAGE GRAPHICS TERMINAL, AGT

Programmer's Reference Manual

CONTENTS

PROGRAMMING REFERENCE MANUALS

9ABS, AFORT Object Time ABS

" ADEPT, Adage Extendable Program Translator
“AFDSP, AFORT Display Interface

AFORT, Augmented ASA Basic Fortran
AMLDX, AMOS Bootstrap Loader

AMLPP, AMOS Line Printer Program
AMRMX, AMOS Resident Monitor

AMRMX, AMOS Disk Monitor

ARITH, Arithmetic Subroutines
ARMW, AMRMX Bin File Writer
ATOB, 9CE Power Routine

BUILD, AGT Build Operator
CDRDR, AMOS Card Reader Routine

COPVR, AMOS Copy and Verify
CRDTT, AMOS Card-to-Tape Routine
DBUG, Debugging Facilities

DISP, AMOS Edit Text Display Package
DPS, Symbolic Dump Statements
DSKIO, Disk I/O Routine

DSKL, Disk System Builder

DSKPY, AMOS Disk-Tape Copy

DSPLY, AGT Display Operator

EDIT, AMOS Display Text Editor
3EDIT, AMOS Display Text Editor
FCRD, Fortran I/0 Driver/Cards
FCTE, Function Subroutine by Digital Interpolation
FDSK, Fortran Disk File I/0 Routines
FILE I/0, AGT Disk File I/0 Routines
FLSTR, AMOS File Lister

FNSIO, Function Switches I/0

FONT, Character Set for AMOS Editors
FREEZ, Freeze Graphics Operator
FTAP, Fortran I/O Driver/Tapes
LIBIO, Magnetic Tape File I/O Routines
MTAC, AMOS Monitor Magnetic Tape Supplement

iii

9ABS/PRM
ADEPT/PRM
AFDSP/PRM
AFORT/PRM
AMLDX/PRM
AMLPP/PRM
AMRMX/PRM

13 AMRMX/PRM

ARITH/PRM
ARMW/PRM
ATOB/PRM-
BUILD/PRM
CDRDR/PRM
COPVR/PRM
CRDTT/PRM
DBUG/PRM
DISP/PRM
DPS/PRM
DSKIO/PRM
DSKL/PRM
DSKPY/PRM
DSPLY/PRM
EDIT/PRM
3EDIT/PRM
FCRD/PRM
FCTE/PRM
FDSK/PRM
FILE I/O/PRM
FLSTR/PRM
FNSIO/PRM
FONT/PRM
FREEZ/PRM
FTAP/PRM
LIBIO/PRM
MTAC/PRM

anlagE

ADAGE GRAPHICS TERMINAL, AGT

Programmer's Reference Manual

MTPRT, AMOS Magnetic Tape-to-Printer Routines
OBJPK, AFORT Object Package

PRIO, Processor I/0 Routines

RADC, Read Analog-to-Digital with Comparator
RADT, Read Analog Data Tablet

RANK, AMOS Read AGT Alphanumeric Keyboard
RANKC, Alphanumeric Keyboard Control Interface
RCD, General Card Reader

READS, Read Relocatable Symbols

RETRV, Load Image from Library

RJSB, Read Joystick and Bowling Ball

RVCD, Read Variable Control Dials

SAVE, File Image in Library

SCCPY, Scratch Pad Copy Routine

SDATE, AMOS Set Date Routine

SNCOS, AGT Combined Sine-Cosine Routine
SNCSA, Sine and Cosine Subroutines

STALL, ADEPT Storage Allocation Subroutine
WGDR, Display Recorder Routine

iv

MTPRT/PRM
OBJPK/PRM
PRIO/PRM
RADC/PRM
RADT/PRM
RANK/PRM
RANKC/PRM
RCD/PRM
READS/PRM
RETRV/PRM
RJSB/PRM
RVCD/PRM
SAVE/PRM
SCCPY/PRM
SDATE /PRM
SNCOS/PRM
SNCSA/PRM
STALL/PRM
WGDR/PRM

EMEEE ABSOLUTE VALUE, 9ABS

Programmer's Reference Manual

GENERAL

This routine converts a real or integer number to its absolute value. If the
argument is of type real, the function ABS is of type real; if the argument is of
type integer, the function IABS is of type integer. The argument is specified in the
parameter statement immediately following the ABS or IABS call. The result is
in the AR register when control is returned to the user program at the instruction
immediately following the parameter statement.

Name:

ABS

Purpose:
Convert the real argument A to the absolute value.

Calling Sequence:
JPSR ABS
[/ A

Name:

IABS

Purpose:

‘Convert the integer argument I to absolute value.

Calling Sequence:
JPSR IABS
¢ I

CORE REQUIREMENTS

16, words

EXECUTION TIME

50 us
7-69 - 1 ’ 9ABS/PRM/B

ananeE

ADEPT

ADAGE EXTENDABLE PROGRAM TRANSLATOR

Programmer's Reference Manual

Revision G

July 1969

a E_l a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

TABLE OF CONTENTS

Page
INTRODUCTION 1
HARDWARE REQUIREMENTS 2
SYMBOLIC INPUT FORMAT 3
Statements 3
Comments 3
Statement Evaluation 4
ACTION OPERATORS 5
Output Generation 5
Message Outputs 5
Object Program Outputs 5
Value Generation 5
Control /Definition 5"
OUTPUT GENERATION 6
Translation Time Console Text Input (TYPEIN) 6
o 6

Translation Time Message Outputs
(TYPEOUT, TYPEOCT, TYPEDEC)

Text Output to Object Program (TEXT, STRING, ASCII) 6

Control Output to Object Program

]

Value Output to Object Program 7
WORD-VALUE GENERATION 8
Expressions 8
Expression Evaluation Operators 8
(+,-,". %, &,%,/,//, 1B, 1K, !H, tab, space)
Operator Terms (.) 8
Numerical Terms 9
Symbolic Terms 9
Subexpression Terms 9
CHARACTER-STRING-VALUE GENERATION 10
String Substitution 10
Macro Call 10
Nested Macro Calls 11
Symbol Definition within Macros 11

7-69 iii ADEPT/PRM/G

a E' a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Page
Numerical Text Generation (#, #1) 11
String Quotes('") 11
Concatenation (\) 11
Literal Characters (%) 12
Definite Repeat (REPEAT, ENDR) 12
Indefinite Repeat IREPEAT, ENDI) 12
Conditional Translation IFZERO, IFNEGATIVE, IFPASS1, IFSAME, 13
ELSE, ENDC)

Termination of String Substitution (STOP) 14
Nesting Limit 14
CONTROL AND DEFINITIONS 15
Radix Control (0CTAL, DECIMAL, .) 15
Statement Scan Control (NOCARRET, CARRET) 15
Object Program Controls (TITLE, LOC, AVAILABLE, RELOCATE, 15

ABSOLUTE, TERMINATE)
External Symbol References and Definitions (ENTRY, $) 17
Symbol Definition (EXPUNGE, :, =, COMMON) 17
Macro Definition (MACRO, MACRO1, MACRO2, ENDM) 18
Nested Macro Definitions 19
Action Operator Definitions (DEFINE, ENDD, ENDAO) 19
PROGRAM FORMATS 21
ERROR DIAGNOSTICS 22
ADDITIONAL DETAILS 23
Characters 23
Symbols 25
Values 25
Strings 25
Words 25
Addresses 26
Relative 26
Absolute 26
Common 26
External 26
Operators 26
Statements 27

ADEPT/PRM/G iv 7-69

a E] a E] E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Page
APPENDIX A - Console Error Messages 28
APPENDIX B - Basic ADEPT Action Operators and Instruction Codes 32

7-69 v ADEPT/PRM/G

a El a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

INTRODUCTION

This manual is intended to be a reference guide for programmers using the
ADEPT symbolic programming language. The manual contains descriptions of
statement formats and the initial set of action operators for composing statements in
the ADEPT language.

The manual is organized to intreduce the topics of symbolic input format
and action operators. The section on symbolic input format summarizes the concepts
of statements, comments, and statement evaluation. The following section analyzes
action operators by function and usage in output generation, value generation, and
control and definition. Since all processing by the ADEPT translator is governed by
action operators, the remainder of the manual is devoted to detailed expansion of this
paragraph (ACTION OPERATORS).

The user may wish to consult the following documents for further information:

1. ADEPT PROGRAMMING INSTRUCTION MANUAL

2, ADEPT SOFTWARE MAINTENANCE MANUAL

3. ADEPT PROGRAM LISTING

7-69 1 ADEPT/PRM/G

= EJ =1 E [ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

H RDWARE REQUIREMENTS

AMBILOG 200 subsystems and software required by basic ADEPT are as fol-

lows:

Version 1 - (SCU1-P1, ACC1-P1, OPC1-P1, DME1-P8 and AMRM ver-
sions 1 or 2) or (DPR1-P2 and AMRM versions 3, 4, 5 or 6).

Version 2 - (SCU1-P1, ACC1-P1, OPC1-P1, DME1-P16 or P32 and AMRM
versions 1 or 2) or (DPR1-P3 or P4 and AMRM versions 3, 4, 5 or 6).

Version 4 - (DPR2-P3 or P4 and AMRM versions 3 or 4).

Version 5 - (AGT with memory size 16K or 32K and AMRM versions 11 or 12).

NOTE: The capability of extending the assembler to include
user-defined action operators is not available on configurations
with DME1-P8, DPR1-P2, or DPR2-P2.

ADEPT/PRM/G 2 7-69

] E_I cl E [2 _ ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

SYMBOLIC INPUT FORMAT

A. Statements

Input to ADEPT is nearly format-free, consisting of a series of ''statements',
each of which is terminated by a '"statement terminator' character. When first
loaded into memory, ADEPT treats semicolons and carriage return characters as
"statement terminators'. However, for convenience, the option of using or not
using the carriage return character as a ''statement terminator' is provided by two
ADEPT '"action operators'. (See NOCARRET and CARRET descriptions in section
on CONTROL AND DEFINITIONS). There is no necessary correspondence be-
tween statements and pliysical lines; both multiple-statement lines and multiple-
line statements are acceptable in ADEPT input.

The ADEPT user is free to use any convenient tabular or columnar statement
format, such as the following:

TAG: MDAR'X COUNT [COMMENT

where space or tab characters separate the location tag, instruction, address, and
comment. The superficial appearance of specific fields for the four above-named
items on the line is, however, purely artificial.

E._ Comments

Within a statement, the string of input characters is scanned from left to
right and processed on a symbol-by-symbol basis. Comments may be placed any-
where in the input text to increase the readability of the source program. These
comments are deleted at the lowest scanning level and are otherwise ignored by the
translator. Each such comment begins with the character n['" (left bracket), and is
terminated by another " [rer by a "statement terminator' character, whichever comes
sooner. The " ["characters are part of the comment and are deleted from the input
text, hence cannot be used for any other purpose.

7-69 3 ADEPT/PRM/G

a El a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

C. Statement Evaluation

Each statement. after being stripped of comments, is scanned from left to
right by the translator and evaluated.

In scanning a statement the translator replaces all symbols which represent
character strings by their value texts. Prior to extension these consist of Macro
names, dummy arguments, and certain action operators.

The action performed by the translator in evaluating a scanned statement is
specified by any operators it contains, as modified by the arguments (symbols,
values, or character strings) of these operators.

NOTE: In this manual the OPC characters °, ¢, +, and BKSP
are equivalent to the TTY characters [,], 4 and <=
respectively.

ADEPT/PRM/G 4

7-69

a E,' a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

ACTION OPERATORS

The actions specified by operators fall into the following general classes:

A. Output Generation

Operators are initially provided for generating two forms of output during the
translation.

1. Message Outputs

Message outputs are character strings to be output on the assigned system con-
trol unit.

2. Object Program Outputs

Object Program Outputs are either 3@-bit machine words and their address re-
location information, or control commands to the loader specifying any loading,
allocating, naming, referencing, or linking actions required prior to object program
execution.

B. Value Generation

These operators generate either character strings for further scanning or
address and word values for use as "terms'" in expression evaluation.

C. Control/Definition

These operators control subsequent translation by setting flags, adding code to
the translator, or making entries in the translator's tables.

7-69 5 ADEPT/PRM/G

anlanE

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

A. Translation Time Console Text Input

The operator
TYPEIN

will cause ADEPT to accept and process a string of characters input from the
console typewriter until a carriage return character is typed. ADEPT will then
process the string (not including the carriage return) as if it had occured in the
input text at the point of the TYPEIN operator. It is up to the source program to
indicate to the console operator that a type-in is required before using the TYPEIN
operator.

B. Translation Time Message Outputs

The input sequence
TYPEOUT CHAR STRING CHAR

where CHAR is any character except '""\" (back-slash), '" ' " (double quote), or

" # " (number sign) selected by the programmer, causes the STRING to be typed
out on the console typewriter. Tabs, spaces, and C/R (in NOCARRET mode) are
ignored when they occur between TYPEOUT and the first occurrence of CHAR.
The STRING is scanned for substitution and expansion during output. CHAR may
not occur within STRING.

The statement
TYPEOCT EXPRESSION

causes the value of the EXPRESSION to be typed out as an octal integer. (See
section on VALUE GENERATION for Expression Evaluation). If the value of
EXPRESSION is negative, a single zero will be typed.

The statement
TYPEDEC EXPRESSION
causes the value of the EXPRESSION to be typed out as a decimal integer.

C. Text Output to Object Program

The operator TEXT followed by a string ''quoted' (i.e., preceded and
followed) by a character causes the AMOS code representation of the string to be
inserted into successive words of the output program. If the last word of the
output is not filled, the characters will be left-justified and the word filled with
zeros. Macro names will cause the strings to be expanded unless themselves
quoted (see String Quotes).

ADEPT/PRM/G 6 7-69

a El a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Relerence Manual

The form of this input is
TEXT CHAR Character String CHAR
where CHAR is any character except "\ (back-slash), " " ' (double quote), or "#"
(number sign) selected by the programmer. Tabs, spaces, and C/R (in NOCARRET

mode) are ignored when they occur between TEXT and the first occurrence of CHAR.
CHAR may not occur within the Character String.

The statement
STRING CHAR Character String CHAR
 has the same function as the TEXT statement described above except that it forces the
Character String inserted into the object program to be terminated by a null character
(0fs) (i.e., if the length of the string is an integral multiple of five characters, an
additional 3f-bit word containing zeros will be inserted after the text). The same
restrictions on CHAR also apply in this statement.

The operator ASCII (Version 5 only) followed by a string '"quoted' by a
character, causes assembly of a packed USASCII string in the format used by
the LCG1 Character Generator. The form of this input is:

ASCII : CHAR Character String CHAR
where CHAR is any character except '" " (back-slash), ' ' " (double quote), '"#'" (num-
ber sign), or "@" (at sign) selected by the programmer. Tabs, spaces, and C/R (in
NOCARRET mode) are ignored when they occur between ASCII and the first occurrence
of CHAR. CHAR may not occur within the Character String unless used as a special
character generator after ""@'" (see below).

As the USASCII character set includes 1289 characters, the characters from
the AMOS ATEXT set are insufficient in number to generate all ASCII characters.
Provision is made to generate any ASCII character by the following sequence:

@nnn
where nnn is a three-digit octal integer indicating the desired ASCII character code
(008 through 177). Any of the 128y, ASCII characters may be generated in this manner.

In order to provide a shorter sequence for commonly used characters, all the
standard AMOS ATEXT characters may be used in the string with the exception of "\"
(back-slash), ' "' " (double quote), "#'" (number sign), "@" (at sign), and "[" (left
bracket). These characters and other ASCII characters used by the LCG1 Character
Generator may be generated by the following sequences:

\Al @v

@+
@@

@

@)

@]

(circumflex) @v

>V Ag #*

7-69 7 ADEPT/PRM/G

anlam E . ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

_ . (underline) @ —
\\ (back-slash) @/
Raise line (GS) @R
Lower line (FS) @L
Brighter (US) @B
Dimmer (RS) @D
Expand size (DC3) @E
Shrink size (DC2) @s
Italics control (BS) @1
CR (Carriage Return) @Cc
LF (Line Feed) Q@F
HT (Position "X') @X
VT (Position "Y"") (@'
NUL (Null character) @N

A sequence of "@" (at sign) followed by a character which is not found in the list above
will be ignored by the ASCII operator.

The words inserted into the output program by the ASCII operator contain four
characters, each in the following format:

[} 6 7 13 14 15 21 22 28 29
Char. 1 Char. 2 E Char. 3 Char. 4 [

Bit 14, the End code, is set to ''1" on the last word generated by the string and is "#"
on all other words. If the last character generated for the string does not completely
fill the last word. the characters are left justified and NUL characters (code 00%s)
are inserted in the empty character positions.

D. Control Output to Object Program

Any assembly control operations which affect the loading or execution-time
allocating, naming, relocating, referencing, or linking of programs will automatically
generate any object-program control words needed.

The control operators and statements are individually described in the section
on CONTROL AND DEFINITIONS.

10 Value Output to Object Program

Any expression whose value is left after a statement has been fully evaluated is
used to generate a word for the object program output, together with any modifying
codes to properly relocate its address at load-time. After any output of object code,
the value of the ""current location' counter is appropriately incremented.

ADEPT/PRM/G 8 o 7-69

aE]aEE ' ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

WORD-VALUE GENERATION

A, Eg_(Eressions

Expressions are composed of operators and their operands. The operators
substitute word or address-values for character strings and symbols (terms), and
operate on these values to yield word values. An expression is terminated by a
comma (,) or if at the end of a statement, by a ''statement terminator'.

B. Expression Evaluation Operators

The value of an expression is obtained by a left-to-right scan in which terms
are evaluated, and then combined with the previous value of the expression according
to the expression's "action operators'., The operators initially provided by the
ADEPT translator for expression evaluation are:

+ arithmetic plus
arithmetic minus
logical exclusive "OR"

+ logical inclusive ""OR"

& logical product "AND"

* integer multiplication (versions 4 and 5 only)

/ integer division (versions 4 and 5 only)

// integer division remainder (versions 4 and 5 only)

space is ignored unless it is the only separator between two terms,

~ when it acts as an arithmetic plus

tab same as space '

'B rotates the expression value 1 bit left and then acts as a space

'K rotates the expression value 6 bits left and then acts as a space

'H rotates the expression value 15 bits left and then acts as a space
C. Operator Terms

The character "." (period) is an operator yielding the value of the current loca-
tion counter when used as a term in an expression.

7-69 9 ADEPT/PRM/G

aE'aEE ADANGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

D. Numerical Terms

Each numerical term is either an octal integer or a decimal integer. Each
octal integer is a string of up to ten digits from the set #,1,2,...7. Each decimal
integer is a string of up to nine digits from the set #,1,2,...9, whose value must be
less in magnitude than 27 = 536, 87#,91219. Leading zeros may be omitted from
both octal and decimal integers.

The choice of radix for numerical terms is controlled by three ADEPT operators.
(See OCTAL & DECIMAL in section on CONTROL AND DEFINITIONS).

E. Symbolic Terms

Each symbol consists of a string of up to ten characters from the set., A, B,
C,eue,72,0,1,2,...9, of which at least one character must be from the set A, B,
C,...Z. During expression evaluation, word and address values for the symbolic
terms are found by table look-up, and these values are used in obtaining the value of
the expression.

I, Subexpression Terms

An unterminated expression enclosed in parentheses is called a subexpression,
and may be used as a term in another expression or subexpression. Up to 31y levels
of nested subexpressions are permitted in ADEPT input statements.

ADEPT/PRM/G 10 7-69

a EI a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

CHARACTER-STRING-VALUE GENERATION

A, String Substitution

When a symbol defined as the name of a ""Macro' is encountered during state-
ment scanning, it is replaced by the character string constituting the '"body' of the
Macro definition with substitutions from the argument list which follows the Macro
name. When a symbol is encountered which is currently a "dummy' argument of the
Macro body being expanded or of the indefinite repeat being repeated, the symbol is
replaced by its corresponding actual argument (character string).

B. Macro Call

The character string

NAME (STR1, STR2, STR3,...) or

NAME STR1, STR2, STR3,... ;
where NAME is the name of a defined Macro, is replaced during scanning with the
STRING corresponding to the body of Macro NAME, but with the "place markers'
replaced by the "actual argument' strings STR1,STR2,STR3, etc., inserted instead
of the '"place markers' having the same ordinal numbers., (See '"Macro Definition"
under CONTROL AND DEFINITIONS).

Any "place markers' defined in the Macro body for which no substrings are
given in the Macro call are simply deleted.

If the Macro argument list is enclosed by parentheses, these outer parentheses
are removed before substitution. Argument strings (STRn) may themselves contain
argument lists with commas, and matched parentheses.

If the Macro call terminates a statement (i.e., is followed immediately by a
"statement terminator' character), the parentheses enclosing the argument list may be
omitted:

NAME STR1,STR2,STR3,... ;

If the first character (other than SPACE or TAB) following the Macro NAME is
not left parenthesis, then the argument string will consist of all characters up to but
not including the next end-of-statement character.

If a Macro is called which had no dummy arguments in its definition form, no ar-
gument list is required and the body of the called Macro will simply replace the Macro
name.

7-69 11 ADEPT/PRM/G

a E.I a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

C. Nested Macro Calls

A Macro call may appear within a Macro definition. Such a nested call may
even be a call to the Macro being defined, so long as the rule for self-nesting is
followed (i.e., there must be at least one path through the Macro that does not call
itself). If arguments are handed down (by using a dummy argument in a Macro call
imbedded in a Macro definition) the rules for argument substitution again apply.

D. Symbol Definition within Macros

Care must be taken in the defining of address tags within Macros to ensure
that multiple symbol definitions do not arise when these Macros are expanded. Con-
catenation and numerical text generation may be used for this purpose.

E. Numerical Text Generation

The operator '"#'" (number sign) causes the symbol which immediately follows
to be replaced by a string of lead-zero suppressed octal digits corresponding to the
value of the symbol. If the symbol is undefined or has the value zero, a single zero
character will be inserted. The operator "##'" (double number sign) causes the
following symbol to be replaced by a string (signed if negative) of decimal digits
corresponding to the value of the symbol. These operators can be used to generate
unique symbols for address tags within Macros, etc. The symbol following the "'#"
or "##'" can not be generated by Macro or argument substitution, concatenation, nor

by subsequent '"#'" or "##'' operators.

F. String Quotes

A string in an argument list or a text-generating statement is taken literally
(i.e., without expansion) if it is preceded and followed by a ' ' ' (double quote)
character.

G. Concatenation

The character "\" (back-slash) is used to concatenate two character strings —
i.e., to place them end-to-end without an intervening character. If one such string is
replaced by another during input scanning, the result will be a new string which may
include a new symbol at the position where the "\" character originally appeared.

ADEPT/PRM/G 12 7-69

a EI a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

H. Literal Characters

Certain characters in the argument string of a Macro call (such as a semi-colon,
comma, left and right parentheses) have definite meanings in the format of the string.
In order to include these characters in an argument, the character "%'" (per cent sign)
causes the next character following it to be scanned without considering any possible
format implications. To include the character '"%'" in the argument, one must include
it twice in the input —- "%%".

L Definite Repeat

A portion of the input character string will be repeated a specified number of
times if the following sequence is encountered:

REPEAT EXPRESSION

STRING
ENDR

The EXPRESSION will be evaluated to produce a count and the STRING repeated
the corresponding number of times. If the count is zero or negative, the STRING will
be ignored.

The STRING may, of course, include symbols, statements, expressions, etc.,
subject to the same limitations with regard to symbol definitions and special characters
as in the body of a Macro definition.

J. Indefinite Repeat

An alternate method of repeating an input string is provided by the indefinite
repeat, which has the form:

IREPEAT DUMMY, (ARG1,ARGZ,...) or
IREPEAT DUMMY, ARG]L,... ;

STRING
ENDI

7-69 13 ADEPT/PRM/G

a EJ a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

When the IREPEAT operator is encountered, the following STRING is repeated
once for each argument in the list ARG1l, ARG2, etc. In each repetition, the corres-
ponding "actual argument' string ARGn is inserted in place of the "dummy argument"
string DUMMY wherever it occurs within the repeated STRING. The argument string
following DUMMY is of the same form as the argument string for a Macro call,

K. Conditional Translation

Conditional translation is provided in basic ADEPT (in addition to the indefinite
repeat) by the following sequences:

IFZERO EXPRESSION

STRING
ENDC

When the above sequence is encountered, the expression is evaluated, and if
the value is logical (positive) zero, then the following STRING is scanned. Otherwise,
the STRING is ignored.

IFNEGATIVE EXPRESSION
STRING
ENDC

When the above sequence is encountered, the expression is evaluated, and if
the value is negative, then the following STRING is scanned. Otherwise, the STRING
is ignored.

IFPASS1

STRING

ENDC

The above sequence causes the STRING to be scanned in the first translation
pass and ignored in the second.

IFSAME (ARG1) (ARG2)

STRING

ENDC
or
IFSAME ARG1; ARG2;

STRING
ENDC

ADEPT/PRM/G 14 7-69

cl E_I cl E [@ ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

When either of the above sequences is encountered, the two arguments, ARG1
and ARG2 (possibly null), are compared on a character-by-character basis and if
equal, the STRING is scanned. Otherwise the STRING IS ignored. Each argument
must have the same form as a Macro argument list and must be either bracketed by
parentheses or terminated by a statement terminator. Spaces or tabs between the
arguments are ignored.

IFZERO EXPRESSION
STRING1

EISE STRING2
ENDC

The operator ELSE occurring in any conditional statement causes the scanning
or ignoring of the string to be reversed. In the above form, either STRING1 or
STRING2 will be scanned, depending on whether the value of EXPRESSION is zero or
non-zero, respectively. This operator may be placed in any conditional statement.

Conditional statements may be nested to any depth permitted by the available
storage at assembly time.

Other conditional translation statements can easily be built into ADEPT using

"action operator' definitions.

L. Termination of String Substitution

STOP

This operator terminates the current string substitution operation (Macro call,
repeat or indefinite repeat) in which it occurs.

M. Nesting Limit

Macros, repeats, and argument substitutions may be nested in a depth of 6310.

7-69 15 . ADEPT/PRM/G

a EI a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

CONTROL AND DETINITIONS

The following ADEPT inputs control various aspects of the object program:
assembly, definition and/or loading.

A. Radix Control

OCTAL
This operator causes the following numerical terms to be taken as
octal, until the appearance of a DECIMAL operator.

DECIMAL
This operator causes the following numerical terms to be taken as
decimal, until the appearance of an OCTAL operator.

NOTE: The use of a period (".'") immediately following a numeric form
causes that term to be regarded as decimal no matter what the
current radix. The current radix for subsequent numeric terms
is not changed.

B. Statement Scan Control

NOCARRET
This operator causes following carriage return characters to be treated

as space or tab characters.

CARRET
This operator causes following carriage return characters to act as
""statement terminator' characters.

|o

Object Program Controls

TITLE NAME
This operator causes the alphanumeric symbol NAME (limited to no more
than five characters) to be designated as the name of the object program
file.

LOC EXPR
This operator sets the current location counter to the value of EXPR and
can be used in both machine coding output and action operator definitions.
At the start of translation. the location counter is initially set to zero
and the output is relocatable and relative to location zero.

ADEPT/PRM/G 16 7-69

cl EI cl E [@ ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

AVAILABLE

This operator sets the current storage pointer to the first available
storage location in memory. It may be used only during action
operator definition, to facilitate the assignment of storage for coding
added to the assembler. This operator is not available in version 1
ADEPT.

RELOCATE
This operator places the translator in relocatable assembly mode. In
this mode symbolic address tags are designated relative to the origin
or base address of the program and machine words created from re-
locatable expressions (expressions containing one relocatable term)
are subsequently relocated at load time. Address tags defined under
relocatable assembly mode are still relocatable if referenced under
absolute assembly mode. The translator is initially in relocatable
assembly mode at the start of each pass. Each assembly mode has
its own location counter, and when a switch from one mode to the
other occurs, the assembly location counter is set accordingly. The
generation of absolute coding does not affect the relocatable location
counter,

ABSOLUTE
This operator places the translator in the absolute assembly mode.
Symbolic address tags defined under the absolute mode are given the
absolute value of the location counter at the time they were defined,
and these tags are not relocated at load time whether referenced from
a relocatable or an absolute section of program coding. As in
RELOCATE, the absolute assembly mode has its own assembly loca-
tion counter similar ly not affected by the generation of relocatable
coding.

TERMINATE

This operator is normally used at the end of an ADEPT input text to
bring the translation to an end.

7-69 17 ADEPT/PRM/G

cl EI cl g 2 ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual
gr

|

External Symbol References and Definitions

ENTRY TAG1l, TAG2, TAG3, TAG4,... ;
This statement causes the symbols TAG1l, TAG2, etc., (each limited to
no more than five characters), to be specified as entry points in the
object program. That is, they may be referenced by other programs,
and by the AMOS Monitor. Entry points are either absolute or re-
locatable depending on the current assembly mode.

$NAME
The dollar sign character preceding a symbolic NAME of no more than
five characters causes that NAME to be taken as an external reference
(reference to an entry point of another program or subprogram). The
reference will be linked to the appropriate core memory location at
load-time. The use of address arithmetic in a machine word ex-~
pressicn containing an external symbolic reference is forbidden.

E. Symbol Definition

The symbolic address tags of ADEPT itself are initially available in the sym-
bol table. When all action operator definitions have been made, the operator

EXPUNGE

may be used to remove ADEPT's own symbols to make room in memory for addi-
tional symbol storage. This operator should always appear before any Macro
definitions or machine code generation whether or not there have been any action
operator definitions. Symbol values may be defined during translation by one of
the following:

SYM=EXPR
This statement causes the symbol SYM to be given the value of the
expression EXPR. Symbols defined in this manner may be re-
defined at will. If the value of the expression is undefined on the
first pass of the translator (i.e., the expression contains at least
one undefined symbol), the symbol remains undefined. If the ex-
pression is undefined on the second pass of the translator, it
will result in an error message. In subsequent uses, the symbol
SYM will have the same relocation properties as the expression EXPR.
If the symbol being defined is the symbol '"VERSION", ADEPT will
set the version number in the output object relocatable program to
the value of the expression. This definition, if desired, should be
used at the beginning of the program and should be scanned during

ADEPT/PRM/G 18 7-69

amagE ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

each pass of translation since ADEPT normally sets the version of
the output file from the version number of the input source text. The
revision level of the output file is set to that of the input source
program file.

TAG:
The appearance of a symbol followed by a colon causes the symbol
(e.g., TAGQG) to be given the value of the "current location' counter.
Symbols defined in this manner may not be redefined. On the
second pass thru the input, the value of such a symbol is compared
with the "current location", and an error message results if they
are not equal. When defined outside the scope of the ABSOLUTE
operator, TAG symbols are relocatable.

COMMON SYM(LEN1), SYM2(LEN2), SYM3(LEN3),... ;
This statement causes the symbols SYM1, SYM2,SYM3, etc., to be
specified as '"common storage' references. The value of the ex-
pression LENn gives the size of the element in common storage.
If "(LENn)" is omitted, the size of SYMn is assumed to be one word.

F. Macro Definition

The Macro definition consists of a heading statement, a body, and a termina-
tor, in the format:

MACRO NAME (ARG1, ARG2, ...); (heading)
STRING (body)
ENDM (terminator)

If the character string comprising the body of the Macro contains the sub-
strings ARG1, ARG2, etc., these "Dummy Arguments' are replaced by corresponding
"place markers' during Macro definition. The body, containing these place markers,
is stored during definition, and identified by the NAME. If the MACRO heading line
contains no dummy arguments, no ''place markers' will be defined in the Macro body
and no argument list is required in the Macro call.

Macro definition may occur during pass 1 of the translator, during pass 2, or
during both pass 1 and pass 2, according to the following operators:

MACRO :
This operator causes a Macro definition during pass 1, and a redefinition
during pass 2.

MACRO1
This oerator causes a Macro definition during pass 1 only, and should be
used for normal Macros to avoid redefinition during the pass 2 evaluation
scan.

7-69 19 : ADEPT/PRM/G

a E_I a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer’s Reference Manual

MACRO2
This operator causes a Macro definition during pass 2 only.

G. Nested Macro Definition

A Macro definition may be included within the body of another Macro definition.
The nested (inner) Macro is defined (or redefined) during the expansion of the en-
compassing Macro body. This takes place each time the encompassing Macro is
called, and the resulting definition of the nested Macro remains valid until it is re- -
defined, or the expansion of the encompassing Macro is completed.

H. Action Operator Definitions

Definition of new action operators is accomplished in response to the input
sequence:
DEFINE EXPRESSION1 NAME ;

STRING
ENDD EXPRESSIONZ
where the value of EXPRESSION1 (which must be terminated by ', ') is the '"type' of

action operator. NAME is the symbolic name of the action operator, and the STRING
defines the coding to be added to the translator, with entry at EXPRESSION2.

An alternate form is:

DEFINE;
STRING
ENDD
which adds coding to the translator without defining a new operator,

If the type is ""#'" and no NAME is given, the coding generated by the STRING is
added to ADEPT without defining an operator. In this case no EXPRESSION need be
given.

The "type" of the action operator is an octal value from 1 to 177g, specifying
a number used for identification during scanning and evaluation. The ADEPT Main-
tenance Manual should be consulted for a list of types for existing operators and
instructions for creating new ones.

ADEPT/PRM/G 20 7-69

cl EI cl g [@ ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Relerence Manual

All action operator definitions must occur before any other part of the input
text which generates machine language output. The operator

ENDAO

must be used when all action operator definitions have been made. This statement
sets the current output location to the value it had prior to processing definitions.

The Action Operator define facility and associated operators are available
only in ADEPT versions 2, 4, and 5.

7-69 21 ADEPT/PRM/G

cl Ej | g [ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

PROGRAM FORMATS

_ The following restrictions should be observed in preparing a source language
program for input to ADEPT:

The operator
TITLE NAME
should be placed near the beginning of the program, before any machine coding.

Action operator definitions should come at the beginning of the program, before
any Macro definitions and machine coding. These action operator definitions should be
followed by the operators

ENDAO

EXPUNGE

Next follow Macro definitions and machine coding, in which all ENTRY statements must
appear before any machine code-generating or location-setting statements and operators.

The COMMON statement may be placed anywhere in the program after EXPUNGE
and before TERMINATE,

The operator
TERMINATE
should be placed at the physical end of the program. If no action operator definitions
are being made, the "ENDAO'" operator should be omitted. However, the "EXPUNGE"
statement must be present except when terminating with the "SETTRAN" statement.

The statement
SETTRAN STRING "carriage return"

may be used instead of TERMINATE, in which case the current ADEPT translator
in core memory containing the Action Operator definitions, Macro definitions and
parameter assignments from the source input is written on the current selected
system tape. When another translation is started, using this ""extended'' ADEPT,
the STRING from the SETTRAN statement will be typed out to identify the version of
ADEPT beind used. The SETTRAN operator is not available in version 1 ADEPT.
Note: A program terminated by a SETTRAN statement does not generate any output
code.

The operator ADEPTSYMS should not be used in the input source language
program as this operator can only be used in the generation of ADEPT assemblies of
ADEPT.

ADEPT/PRM/G 22 ' 7-69

a E.I a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

ERROR DIAGNOSTICS

The three forms of the error message are as follows:
Form I - Terminating error (termination of both scan and output)
TERnn A:SYM1 B:SYM2 C:SYM3 D:OLOC E:SYMLOC
Form II - Output terminating error (scan continues)
*ERRnn A:SYM1 B:SYM2 C:SYM3 D:OLOC E:SYMLOC

Form III - Error indication (scan and output continue)
ERRnn A:SYM1 B:SYM2 C:SYM3 D:OLOC E:SYMLOC

In the above forms '"nn" is the decimal error number, SYM1, SYM2, and
SYMS3 are three symbol buffers in the translator and depending on the particular
error messages generated, will give meaning to the error, OLOC is the octal loca-
tion counter value at the time of the error, and SYMLOC, if present, is the sym-
bolic location of the error. In both Forms I and II, the output is terminated. In

Form III the scan is terminated and control is returned from ADEPT.

7-69 23 ADEPT/PRM/G

=1 [‘_I cl g 3 ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

ADDITIONAL DETAILS

A. Characters:
1. AMOS Character Set

Character Strings output by ADEPT (both message and object text) are in AMOS
internal 6-bit character codes (single case), as follows:

OPC TTY LNPR
Code Character Character Character
) © (null) L © (null)
g1 %
g2]
g3 !
g4 &
85 *
#6 : :
87 - \
14 + +
11 tab tab (3 spaces)
12 ? ?
13 " 1A
14 1 1
15 carriage return return - L. F.
16
17
26
21
22
23
24
25
26
27
3
31
32
33
34
35 - - -

36

- -0 xR
-0 R

* @
* @

PR Y /\+|

C O 00U AW R~
O W 3O U WN -~~~
C O 0N U WN RS~ V -

[
-

-

ADEPT/PRM/G 24 7-69

a E,I a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

OPC TTY LNPR
Code Character Character Character
37 / / /
46 space space blank
41 A A A
42 B B B
43 C C C
44 D D D
45 E E E
46 F F F
47 G G G
50 H H H
51 I I I
52 J J J
53 K K K
54 L L L
55 M M M
56 N N N
57 (0] (0] (@)
60 P P P
61 Q Q Q
62 R R R
63 S S S
64 T T T
65 U U U
66 A% v A%
67 w W w
78 X X X
71 Y Y Y
72 Z Z Z
73 $ $ $
74 # # #
75 @ @ @
76 i PN *
77 backspace - |

7-69 25 ADEPT/PRM/G

a E_I a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

2. ASCII Character Set

Code ASCII LCG1 Code ASCII LCG1
000 NUL NUL 046 space space
001 SOH 641 ! !
062 STX #42 " "
003 ETX 043 # #
004 EOT 44 $ $
0665 ENQ 045 % %
066 ACK 046 & &
087 BEL 647 '

610 BS italics control @56 ((
011 HT position "X" #51))
612 LF line feed $52 * *
013 VT position "'Y" 853 + +
014 FF 054 ,

015 CR carriage return 055 - -
016 SO 056 . .
017 SI 057 / /
020 DLE 060 0 0
621 DC1 061 1 1
0622 DC2 shrink size #62 2 2
023 DC3 expand size 063 3 3
024 . DC4 064 4 4
025 NAK 065 5 5
026 SYN 066 6 6
027 ETB 067 7 7
030 CAN 078 8 8
031 EM 071 9 9
032 SS 072 : :
033 ESC 073 ; ;
834 FS lower line 674 < <
035 GS raise line 675 = =
036 RS dim intensity 0876 > >
037 US brighten intens- @77 ? ?

ity

ADEPT/PRM/G 26 7-69

a m a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Code AscHI LCG1 Code ASCII LCG1*
1090 @ @ 146 \ \
101 A A 141 a a
162 B B 142 b b
103 C C 143 c c
164 D D 144 d . d
165 E E 145 e e
106 F F 146 f f
107 G G 147 g g
116 H H 150 h h
111 I I 151 i i
112 J J 152 j j
113 K K 153 k k
114 L L 154 1 1
115 M M 155 m m
116 N N 156 n n
117 o) o} 157 o o
126 P P 160 p p
121 Q Q 161 q q
122 R R 162 T r
123 S S 163 s s
124 T T 164 t t
125 U U 165 u u
126 v v 166 v v
127 W w 167 w w
130 X X 170 X X
131 Y Y 171 y y
132 V4 Z 172 z z
133 L L 173 { {
134 \ \ 174 I |
135]] 175 } }
136 A A 176 ~ ~
137 _ 177 DEL DEL

* NOTE: These LCGI characters (146s-177s) are with the standard character set
expansion option.

7-69 27 ADEPT/PRM/G

a EI a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

B. Svmbols

ADEPT accepts a stream of characters until a ""symbol" is recognized in the
characters gathered. For this function characters are classified into seven types as
follows:

Type Characters
1 8" % O
2 A throuth Z, # through 9
3 ; Carret (CARRET mode)
4 =
5 Tab Space Carret (NOCARRET mode)
6 @1o4+-/*bg
7 !

Characters of "odd' types form one-character symbols, otherwise all suc-~
cessive characters of the same type form single symbols.

After each symbol is obtained it is looked up in the translation tables to

determine if it has a value or if it is an operator which names a routine to be per-
formed.

C. Values

The values which ADEPT symbols may assume or generate as operators are
of the following three types:

1. Strings

Values which are strings consist of a sequence of ADEPT characters of
arbitrary length.

2. Words

Values which are words consist of a 3@-bit binary values.

ADEPT/PRM/G 28 7-69

a E_I a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

3. Addrésses

Values which are addresses consist of 15-bit binary fields which may be modi-
fied to designate addressable cells in core memory. Address values may be modified
for the following four forms of designation.

Relative -
Relative address values refer to location local to the program being
assembled.

Absolute -

Absolute address values refer to fixed locations in memory independent
of where the current program will be loaded for execution.

Common -

Common address values refer to locations local to a block of storage
common to all programs.

External -

External reference address values refer to global parameters and entry
points to be defined by other programs when the current one is loaded
for execution.

D. Operators -

Operator symbols invoke the execution of translator routines which perform any
or several of the following functions: generation of values, generation of output,
entering definitions and controlling the translation process.

In the process of performing its function an operator may make use of a pre-
ceding value or of several following values, any of which may have been generated by
other operators.

If the value left by an operator is of type string, it is then broken into symbols
and scanned for operators to execute.

When the function of the operator is to generate output, either of two output
facilities is used. One outputs messages at assembly time to the assigned control
unit, and the other generates object code for the program being assembled with any
necessary control codes for its proper loading and binding for execution.

7-69 29 ADEPT/PRM/G

a EI a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

The operators which make definitions or control the translation process do so
by making entries in the translator's tables or setting flags which affect the execution
of subsequent translating procedures.

I*Z_._ Statements

The gathering of an input character string into symbols and scanning them for
operators to perform (which may give further values upon which other operators per-
form) and repeating the entire procedure on any text strings generated in the process,
is termed evaluation of the character string,

The unit of text string upon which the translator performs this evaluation is
called a statement.

ADEPT/PRM/G 30 _ 7-69

a E_I a E E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
: Programmer's Reference Manual

APPENDIX A

CONSOLE ERROR MESSAGES

See section on ERROR DIAGNOSTICS for message formats and codes.

*ERR1 Comma scanned on machine word expression evaluation. Could be mis-
spelled Macro name or operator.
*ERR2 Address arithmetic in expression with external reference. Ex. -
$SPTR+5
ERR3 Nllegal relocation in machine word output. Illegal relocation occurs when

two relocatable terms are added together. A relocatable term is sub-
tracted from some expression or a relocatable expression is rotated.
*ERR4 Undefined symbol in common size declaration. (B:SYM is error symbol).
ERR5 Undefined symbol in conditional statement expression. (See last ERR20
message for undefined symbol).
ERR6 Character following ! is not B, K, or H.

ERR7 Comma scanned in parameter definition. Commas are illegal termi-
nators for expressions giving parameter values.
ERRS Symbol in parameter definition (before =) is previously defined not a

parameter. A redefinition of a previously defined address tag or an
initially defined instruction (predefined in ADEPT) could cause this.

ERR9 No symbol scanned for address tag definition. This is caused by the
scanning of a colon (":'") without an alphanumeric symbol preceding it
(however, they can be separated by tabs or spaces). _

ERR146 A redefinition of an address tag was specified. (C:SYM is address tag).
Multiply defined address tag (occurs on pass 1).

*ERR11 Tag value does not equal current location value (pass 2). (D:LOC is
current location value). In pass 2, the current location when an ad-
dress tag is scanned differs from the defined value in pass 1. This can
usually be causes by some conditional assembly statements or Macro
calls which generate an unequal number of instructions on pass 1 and
pass 2. ,

ERR12 Symbol for address tag definition is previously defined not a tag. (C:SYM
is aymbol in error). This might be caused by trying to define an address
tag which has already been defined as a parameter, instruction, etc.

ERR13 Symbol specified in entry point declaration undefined on pass 2. (B:SYM
is symbol in error). The symbol was never defined as an address tag
in pass 1.

*ERR14 Comma scanned in expression evaluation for AO definition machine word.
Commas are illegal expression terminators in machine words for ac-
tion operator definitions.

7-69 31 ADEPT/PRM/G

a E_l a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

*ERR15 Undefined symbol in expression evaluation for AO definition machine
word. (C:SYM is symbol in error)
ERR16 Period scanned not separated from previous symbol. (C:SYM is pre-

vious symbol). No operator between term and following period (not
including tabs and spaces).

ERR17 Character '"8'" or ""9'" appears in octal input. (C:SYM is numeric string
in error)

ERR18 Number overflow error (number greater than 229"1). (C:SYM is un-
defined symbol). Decimal string greater than 23971,

ERR19 Common symbol predefined.

ERR26 Undefined symbol in expression evaluation. (C:SYM is undefined symbol)

ERR21 Common symbol redefined.

ERR22 Undefined symbol in repeat count expression evaluation. (See last
ERR260 message for symbol)

ERR23 Symbol consisting of greater than 10 characters scanned by the string

expansion scanner. This is caused by the inputting from source text
of a symbol consisting of more than ten characters (not including com-
ments).

ERR24 Symbol consisting of greater than 10 characters scanned by the expres-
sion evaluator scanner. This is caused by the concatenation of two
strings causing a symbol of more than ten characters to be formed.

*ERR25 Comma scanned in dispatch address expression following "ENDD'"'.
Commas are illegal expression terminators for the expression used to
specify the dispatch address in an action operator definition.

ERR26 Undefined symbol in dispatch address expression following "ENDD''.
(See last ERR20 message for undefined symbol)
ERR28 Entry point same symbol as external reference. (B:SYM is symbol)

Entry point cannot be the same as an external reference used in the
same program.

*ERR29 Comma return in LOC statement. Commas cannot be used as the ex-
pression terminator for the expression computed in a "LOC'" statement.
ERR30 Undefined symbol in LOC statement. (See last ERR20 message for un-
defined symbol)
TER1 Too many dummy arguments in a Macro definition (more than 62;).
TER2 End of Macro scanned and Macro is not last entry in push-down list.

Adept scanned an end of Macro indicator. (Should not occur)

NOTE: The errors listed as '"'should not occur' should not occur in normal
operation of ADEPT. However, they are listed as they might occur
as a result of incorrect action operator definition operations.

ADEPT/PRM/G 32 7-69

a E,I a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

TER3

TER6

TER7

TERS

TER9

TER16

TER11

TER12
TER13
TER14
TER15
TER16
TER17

TER18

TER19

NOTE:

7-69

Programmer's Reference Manual

End of argument scanned and Macro or indefinite repeat argument is
not last entry on list. Adept scanned an end of argument indicator.
(Should not occur)

Macro dummy argument pointer scanned and no Macros on push-down
list. (Should not occur)

"STOP" scanned and no Macros on push-down list. A "STOP" is
placed erroneously in the program not within an encompassing
MACRO, REPEAT, or IREPEAT.

"ENDR'" scanned and "REPEAT" not last entry on push-down list.
(Should not occur)

Illegal format of IREPEAT argument list. This message can occur if
there is not an alphanumeric symbol followed by a comma after the
space(s) or tab(s) in an IREPEAT statement.

"DEFINE" scanned while in AO define mode. This will result from a
DEFINE operator placed within an action operator definition.

Location not specified for AO definition. This occurs when a machine

word has been evaluated to insert into memory for an action operator
definition and the program has not told ADEPT where to put it by a
LOC statement or the AVAILABLE operator.

"ENDI'" scanned and "IREPEAT" not last entry on push-down list.
(Should not occur) 4

Argument list storage table exceeded. This occurs when there are more
than 40fs entries in the argument list table (2060s in version 1).

Dummy argument pointer scanned in argument list and no Macros on
push-down list. (Should not occur)

Dummy argument pointer scanned in argument storage. (Should not
occur)

"ENDD'" scanned and not in AO definition mode. The symbol "ENDD" is
placed erroneously in the program.

Too many arguments on argument list (more than 62). More than
62m arguments appear in the call of a Macro or IR]éPEAT..

String Push-down List exceeded (more than 63 1 entries). This occurs
if the total nesting level of MACROS, REPEATS, IREPEATS, and ar-
guments exceed 63 0 One common cause of this is a recursive
Macro call which does not terminate.

Illegal entry type in call to string push-down subroutine. (Should not
occur)

The errors listed as '"'should not occur'' should not occur in normal
operation of ADEPT. However, they are listed as they might occur
as a result of incorrect action operator definition operations.

33 ADEPT/PRM/G

a EI a g E ADAGE FXTENDABLE PROGRAM TRANSLATOR, ADEPT

Programmer's Reference Manual

TER26 Illegal entry type in string pop-up. (Should not occur)

TER21 String Push-down List underflow. String pop-up subroutine called and
level equals zero. (Shoul¢ not occur)

TER22 String storage exceeded. This is caused by extensive Macro definitions
and/or long repeated strings.

TER23 Symbol table length exceeded. Too many symbols defined in the input
program. Adept cannot handle that program without larger memory.

TER24 Expression Evaluation Push-down List overflow. (more than 7 entries).

This can occur when there is nesting of expression calls in machine
expression evaluation, repeat counts, and conditional statements.

TER25 Subexpression Push-down List overflow. (more than 313 entries).
This is caused by too many subexpression levels in an expression or
in nested expressions.

TER26 Subexpression Push-down List underflow. This is caused by too many
right parentheses in an expression.

TER27 No symbol scanned for parameter definition. There was no alpha-
numeric symbol before the ''=".

TER28 Equal sign scanned while evaluating another parameter. Parameter
definitions cannot be nested.

TER29 Parameter Storage exceeded. Too many parameters in the program.

TER30 Illegal svmbol type-in Symbol Table. (Should not occur)

TER31 Illegal arithmetic or logical operator. (Should not occur)

TERS32 Expression Evaluation Push-down List underflow. (Should not occur)

TER33 Parentheses nesting error in expression. Not the same number of
right and left parentheses in an expression.

TER34 "AVAILABLE" scanned and not in define mode. "AVAILABLE'" orera-
tor is placed erroneously in the program.

TER35 "AVAILABLE" scanned and already set. Two "AVAILABLE'" operators
in the same action operator definition not separated by a "LOC" state-
ment.

TER36 "ENDM'" scanned while not in Macro define mode. "ENDM'" placed

erroneously in the program.

NOTE: The errors listed as "should not occur' should not occur in normal
operation of ADEPT. However, they are listed as they might occur
as a result of incorrect action operator definition operations.

ADEPT/PRM/G 34 7-69

anane

ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT

APPENDIX B

Programmer's Reference Manual

BASIC ADEPT ACTION OPERATORS AND INSTRUCTION CODES

The following action operator symbols and predefined instruction codes are part of
the basic ADEPT Translator and may not be used for symbolic tags and value de-

finitions.

MACRO
MACRO1
MACRO2
STOP
ENDM
REPEAT
ENDR
IREPEAT

(TAB)
(SPACE)

(C/R)

+

1

String Action Operators

ENDI "
IFZERO #
IFNEGATIVE ##
IFPASS1 %
IFSAME DEFINE
ELSE AVAILABLE
ENDC ENDD
\ ABSOLUTE
Expression Action Operators
& ’
LOC

= OCTAL
$ DECIMAL
! TEXT
. CARRET
(NOCARRET
) ENTRY

35

RELOCATE
ENDAO
EXPUNGE
SETTRAN
TERMINATE
ADEPTSYMS

COMMON
TITLE

TYPEOUT
TYPEOCT
TYPEDEC
STRING

ASCII (Version 5 only)
*

/
78

(Versions 4 and 5 only)

ADEPT/PRM/G

| E_I] g 3 ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
; Programmer's Reference Manual

Pre-defined Instruction Codes

MDMD ARMD BRMD ICMD
MDAR ARAR BRAR ICAR
MDBR ARBR BRBR ICBR
MDIC ARIC BRIC ICIC
MDIR ARIR BRIR ICIR
MDAS ARAS BRAS ICAS
MDAE ARAE BRAE ICAE
MDXO ARXO BRXO ICXO
S4MD STAR JSAN ANAS
S4AR S7TBR JPAN ANAE
S4BR S7IC JSLS ANXO
S41C STIR JPLS LSMD
S4IR B SKAN LSAR
S5MD K SKLS LSBR
S5AR H SKUA LSIC
S5BR 0 SKLA LSIR
S5IC A ANMD LSAS
S5IR N ANAR LSAE
S6MD X ANBR LSXO
S6AR I ANIC CNVT
S6BR L ANIR OPTY
S3IC 13 OPTI
S6IR JPSR OPCR
S7TMD JUMP FPRI
UPRI
NOOP

ADEPT/PRM/G 36 7-69

a E,I a g E ADAGE EXTENDABLE PROGRAM TRANSLATOR, ADEPT
Programmer's Reference Manual

Additional Instruction Codes (Versions 4 and 5 Only)

MPYL DIVL ARRS
MPYU DIVU ARLS
MPYI DIVI PINT
NORM ERAR

Display Image Codes (Version 5 Only)

MOVE LDSCL JMP FLAG2
2DTBL LDRX JSR PEN
DRAW LDRY LDMB WBX1
2DTF ' LDRZ ORMB WBY1
LABLM LDRV ANDMB WBZ1
LABL LDX LDSN WBX2
NUL LDY LDLS WBY2
SCL LDZ CIMP WBZ2
ROTX LDV CJSR IFW
ROTY ' LDI WIMP IRL
ROTZ SAVT WJISR RHW
RXYZ REST LDW RFW
DX RET MVW RRL
DY IMG LWS DIR
DZ LOOP DEPTH STR
DV ENDL FLAGI

7-69 37 ADEPT/PRM/G

aplane

AFDSP

AFORT DISPLAY INTERFACE

Programmer's Reference Manual

Revision C

July 1969

anlane

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

CONTENTS
Page
INTRODUCTION 1
DEFINING IMAGES 1
DESCRIPTION OF AFDSP CALLS 4
1. RSET 4
2. IMCON 4
3. IMVAR 4
4. SHOW 5
5. NOSHO 5
6. SETIO 5
7. TABL 6
TABLF 6
ZSET 6
TDFUN 6
DESCRIPTION OF IMAGE DEFINING ITEMS 7
1. MOVBM 7
2. LINE 7
3. LABEL 7
4. PLACE 8
5. STPLC 8
6. IMCAL 9
7. CALL 9
8. GO 9
9. IFNEG 10
IFZRO 10
10. PENON 10
PENOF 10
LOP 10
STPLP 11
DSH 11
NODSH 11
AFDSP VALUE AND NUMBER RANGES 11
IMAGE BUFFER SIZE REQUIREMENTS 12

7-69 iii AFDSP/PRM/C

aclage

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

CONTENTS (Cont.)

Page
SUMMARY OF AFDSP FACILITIES ' 13
Calls S ; 13
Items 13
Functions 14
Library Routines 14
USE OF AFDSP ON 8K SYSTEMS 15

AFDSP/PRM/C ; iv 7-69

a EI a E E AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

INTRODUCTION

AFDSP provides a FORTRAN programmer with the necessary facilities to
display two-dimensional pictures of three-dimensional images on the Graphics
Display Scope. A selected image is displayed by means of a SHOW call, with an
argument specifying the desired image. Images are kept in buffers, each buffer
being a single-dimensioned FORTRAN array in which the description of an image
has been created. The programmer may build up a description of an image by
means of CALL statements, which add image defining items to its buffer.

For each separate image, the programmer must perform the following tasks:

1. Dimension a variable (integer or real) to be used as a buffer in which the
image description is to be generated.

2. Empty and initialize the buffer; this is accomplished by means of a RSET
call with arguments specifying which buffer and its dimension size.

3. Image-describing items can be added to the buffer. Two options are pro-
vided with respect to these items. Either they will remain unchanged
throughout the display of the image, or they are dynamic and may be
changed by subsequent computation or operator interaction.

Items may require arguments. For unchanging items requiring numerical
values as arguments, these may be any fixed or floating point FORTRAN expres-
sion. For dynamic arguments requiring numerical values, they may be the name
of any local or global (fixed or floating point) FORTRAN variable.

The call IMCON is provided for adding unchangable image items to a buffer,
and IMVAR is used for adding dynamic image describing items.

DEFINING IMAGES

All images, when displayed, result in viewable lines or text strings
suitably generated and placed in the viewing space.

The viewing space is a cube in which the definition of the shown image is
specified. The orientation of the viewing space is that of a right-hand coordinate
system with the y-axis vertical, the x-axis horizontal from left to right, and the
z-axis horizontal coming out of the display screen towards the viewer.

7-69 1 AFDSP/PRM/C

cl El) E = AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

The items defining an image specify:
1, Visible elements such as lines, text strings, and other images.

2. Placement of visible elements -~ these may include changes in position,
size, or orientation.

3. Subprograms to be executed for any required dynamic variation, geo-
metrical constraints, or operator interaction.

Lines and text items have arguments giving their coordinates within the
current definition space. For a shown image with no '"Placement' items, the
definition-space for all items corresponds to the viewing-space. The position in
the definition space in which the next visible element will be ;generated is refer-
red to as the '"beam position." The generation of visual elements is done by a
moving '"beam' of light in the definition space coordinate system.

An image definition space is also a cube, its sides ranging from minimum to
maximum values of the valid argument number ranges:

1. -10,000 = fixed point arguments = +10, 000

2. -1. = floating point arguments = +1.

The arguments to PLACE items may specify a change in scale, rotation,
and/or displacement of the image portion now described by subsequent items.
The arguments for rotation range from - 7 radians for the minimum numerical
value, increase linearly through 0 radians for the zero value, and extend to + 7 for
the maximum numerical value.

All placement items affect the definition space. Items following a PLACE
item have their coordinates measured with respect to a new coordinate system
which has been turned, moved, or shrunk as specified by the PLACE item. The
effect of a previous PLACE item can be stopped by a SPLC (stop place) item.

All PLACE items are otherwise cumulative, i.e., each successive PLACE is
performed with respect to the coordinate system resulting from the previous
PLACE, not that of the image-start or viewer-space. In this way, PLACE-SPLC
ranges may nest image describing segments. '

Multiple instances of defined images may be placed about a definition space
as valid elements in the definition of a new image. The IMCAL item is provided
to implement such sub-image calls in a image's definition. The argument to an
IMCAL item is the name of the buffer containing the sub-image definition.

Lines and text strings can be created, arguments specifying them altered,
or arguments to items affecting their placement altered, by executing subprograms.

The CALL item in an image definition causes a subroutine to be executed.

AFDSP/PRM/C 2 7-69

a EI a E E AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

This is a necessary element in the definition of dynamic images which are to be
affected by computation or I/O. The arguments to a CALL item are the name of
the subroutine to be executed, followed by its arguments (if any).

When numerical values for arguments to image describing items are to be
varied during display, the item should be added to the image buffer via an IMVAR
call. The variables used for arguments in the item may then have their values
changed dynamically by CALL'ed subprograms during display. But, these dynami-
cally assigned values must be transformed to machine oriented values prior to
assignment. This is done automatically by AFDSP in all other cases.

The functions IMV and RMV are provided to convert their one argument, any
valid fixed or floating point FORTRAN expression over the standard image argu-
ment ranges, into the proper hardware representation for assignment. IMV is
used to assign values to integer variables, and RMV is used to assign values to
real variables.

e.g.,: A = RMV (. 3*B-C)
I =IMV (.25)

Similarly, the functions ISVA and RSVA are used to assign the address of
an array name to a variable (integer or real, respectively).

e.g.,: A = RSVA (B), where B is a dimensioned array.

I = ISVA (IB), where IB is a dimensioned array.

All desired dynamic changes ofdisplayedimages cannot be effected through
variations of numerical values of arguments to items. Some desired changes
constitute removal or inclusion of image portions. Conditional and unconditional
""jump-in-image' type items are provided for this purpose. The tested conditions
provided for are: sign of any dynamic variable, and detection of operator light
pen selection over any specified image portion.

To provide local references for image jumps, any item of an image buffer
may be '"labeled" by a variable.

Each call adding an item to an image's buffer provides a location value which
may be used as a label referring to the next item. Jump items using this label
may be added to the buffer before or after this point of assignment.

7-69 3 AFDSP/PRM/C

cJ E_l = g = AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

DESCRIPTION OF AFDSP CALLS

1. A selected dimensioned variable is cleared and initialized for use as a
buffer into which an image description may be generated by the following call:
CALL RSET (Pic, n)
where: Pic = name of integer or real dimensioned variable.
n = size of dimensioned variable Pic.

2. The following CALL will cause the addition to the buffer Pic of an image
item, Item, with argument references as current values of Argl and Arg2,...

CALL IMCON (Pic, Item (Argl, Arg2,...), Loc)

where: Pic = name of dimensioned variable to be used as the buffer
for the image item.

Item = operation to be added to image in Pic. A description
of the available items is included in the next section.

Argn = Item arguments are local or global variables, literal
constants, or valid AFORT expressions.

Loc = Variable (error flag) which is set to negative if Item
could not be entered because there were no more
elements of Pic available or, if positive, a label for
the next image item in Pic,

3. The following CALL will cause the addition to the buffer Pic of an image
item with argument references as running values of Argl, Arg2,...
CALL IMVAR (Pic, Item (Argl, Arg2,...), Loc)

where: Pic = name of dimensioned variable, used as an image
definition buffer which will contain the image Item.

Item = operation to be added to image in Pic. A description
of the available items is included in the next section.

Argn = Item arguments can only be local or global variables
for numeric arguments.

AFDSP/PRM/C 4 7-69

a El a g E AFORT DISPLAY INTERFACE, AFDSP

Programmer!'s Reference Manual

Loc = variable (error flag) which is set to negative if Item
could not be entered because there were no more ele-
ments of Pic available or, if positive, a label for the
next image item in Pic,

4, The following CALL will cause the image itemns described in buffer Pic
to be displayed:

CALL SHOW (Pic, n)

where: Pic = name of dimensioned variable, the elements of which
contain image items previously generated.

n = fixed point argument giving frame rate code as follows:

Rate (Frame/Second)

60
40
30
24
20
15
12
10

=W =3 Ul WK |IB

—

5, The following CALL will suspend any current image display:
CALL NOSHO

6. The following CALL will establish a dimensioned variable as a text
buffer into which Hollerith or numeric variables may be output as characters of
a text record:

CALL SETIO (Buff, n)

where: Buff = name of dimensioned variable into which characters
are to be written.

n = the dimension size of Buff.
Once established, a record may be output to Buff under format control by an
AFORT WRITE statement using unit 54. Once containing an output record,

Buff may be used as an argument to the text generating image item LABEL
(described below).

7-69 5 AFDSP/PRM/C

AFORT DISPLAY INTERFACE, AFDSP

anlanE

Programmer's Reference Manual

7. The following CALLS will allow a more efficient display of a sequence
of two-dimension tables (i.e., X, Y coordinate pairs associated with a single
Z-value). These tables can only hold constant, pre-computed coordinate lists.

CALL TABL (Pic, Buff, Loc)
or

CALL TABLF (Pic, Buff, Loc)

where: Pic = name of dimensioned variable in which the image item
is to be added.

Buff = name of dimensioned variable containing the sequence
of coordinate pairs.

Loc = Variable (error flag) which is set to negative if the
item could not be entered because there were no more
elements of Pic available , or if positive, a label for
the next image item in Pic.

Note

TABLF is only used when all lines
are short (less than 0.5 in. in length)

Associated with the above TABL and TABLF CALLS is a function ZSET,
required to initialized the buffer into which 2-D lists may be generated and is

used as follows:
Buff (1) = ZSET (z, name)
or
Buff (1) = ZSET (2)

where: Buff (1) = the first element of the array to be filled. Subsequent
X, Y values start with the element Buff (2).
Name = when present, the array name of a possible subsequent
2-D list, to be displayed along with the list in Buff.

An X, Y coordinate pair is assigned to particular elements of an array by using
the function TDFUN as follows:
Buff (n) = TDFUN (x,y, nl,n2)
where: x = the X coordinate value expression,

y = the Y coordinate value expression.

AFDSP/PRM/C 6 7-69

cl E_I cl E] AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

nl = 0 if no line is to be drawn at this point, 1 if a line is to be
drawn at this point.

n2 = 0 if this is not the last point in the list, 1 if this is the last
point in the list.

DESCRIPTION OF IMAGE DEFINING ITEMS

The following items (and appropriate arguments) in IMCON and IMVAR
-statements will cause the described image definitions to be added to the specified
buffer.

1. The item to reposition the beam is:

\'
MOVBM({PTl x, vy, z)})

2. The item for drawing lines is:

vl , v2
LINE PT1 (x1, y1, zl) PT2 (%2, y2, z2)

The arguments are either names of dimensioned variables (vl and v2), the ele-
ments of which contain, respectively, the X, Y, and Z coordinates of the end
points, or are functions (PT1 or PT2) of the corresponding coordinates.

The line will be drawn from the first point to the second point leaving the
beam positioned at the second point.

If the first point argument and the separating comma are omitted, the line
will be drawn from the second point of the previous LINE item (or the current
beam position if it has been changed).

Example:
CALL IMCON (PIC, LINE (V1, PT2 (-.5, .06, A*3.)), ER1)
where V1 is dimensioned and the arguments to PT2 lie within

the allowable range of numbers.

3. The operation to generate image items which can be used to display
character strings is:

LABEL (Buff, Mode)

7-69 7 AFDSP/PRM/C

a E.l a g E AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

The characters output into Buff by means of a WRITE statement will be dis-
played, according to the specified mode, in a plane parallel to the viewing screen.
The LABEL will begin at the current beam position, which may be set by a
MOVBM operation.

Mode = 1 for small horizontal line.
= 2 for medium horizontal line.
3 for large horizontal line.
4 for small column*
5 for medium column*
6 for large column. *

il

Il

Il

After the text has been displayed, the beam is returned to the start of the
text. Thus. LABEL items do not affect the beam position.

4, The item used to specify scale, position, and any rotation of subsequent
items is:

MOV (dx, dy, dz)

XTURN (rx)
XMOV (dx)

PLACE| SHRINK (8)3 316y (dy) » 1 YTURN (ry)
ZMOV (dz) ZTURN (rz)

where s is the desired size reduction; dx, dy, and dz the amount

of X, Y, and Z displacement respectively; and rx, ry, and rz are the
amount of rotation about the X, Y, and Z axes respectively. The
arguments to PLACE may be in order, or omitted. This imposed
PLACEing will affect subsequent items until the next PLACE or
"STop PLaCe" item (see 5).

5. The effect of the previous PLACE item which established the current
scale, position, and rotation may be cancelled by an item, STPLC, entered as
follows:

CALL STPLC (Pic, Loc)

Any positioning, rotation, or scaling which affected items prior to the last PLACE
(being cancelled) will resume and affect items subsequent to the STPLC.

*Available only on system with LCG Character Generator Option.

AFDSP/PRM/C 8 7-69

a [I_I a E E AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

The item is added to image Pic. Loc defines the location of the next item
that can be added to Pic.

NOTE

This item, having no arguments, need not (and cannot) be
entered via an IMCON or IMVAR call.

Thus, PLACE and STPLC items may nest segments of image descriptions.
The outermost segment is "PLACEd" with origin at the center of the screen, X
axis to the right, Y axis vertical, and Z axis coming out towards the viewer.

6. The item used to include to entire image described in another dimen-
sioned array for processing under the currently established PLACEing is:

IMCAL (Name)

where Name is the name of the other dimensioned array containing image items.

When the sub-image selection is to be dynamically re-assigned during
display, (an IMVAR was used to add it to image buffer), any variable may be used
for Name.

Name may then be assigned during display by an ISVA or RSVA call.

7. The item to enable calling for the execution of another external sub-
routine while displaying an image is:

CALL (Name, Argl, Arg2,...)
where Name is the name of the external subprogram to be called.

NOTE

Name must have been previously declared to be ex-
ternal by means of a specification statement of the
following form: EXTERNAL Name

When the CALL is to be dynamically alterable during display (IMVAR), the
arguments must be variables. The first argument, the subroutine to be called,
must still be the name of an EXTERNAL subprogram.

8. The item to cause the processing of the current image to change to
another location is:

GO (Loc)

7-69 9 AFDSP/PRM/C

a EJ a g E AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

where Loc is a variable referencing an item in the image. Loc is defined by the
IMVAR or IMCON call preceding the item referenced.

9. Processing of the current image may be changed to another location
under two tested conditions:

IFNEG (Var, loc)

IFZRO (Var, loc)
In the above, if the value of Var is negative or zero, respectively, processing is
transferred to loc, a variable referencing an item in the image. Loc is defined
by the IMVAR or IMCON call preceding the item referenced.

10. A further tested condition which may cause processing of the current
image to be changed to another location is detection of operator light pen
selection over any specified image portion, as follows:

IF PEN (Loc)

If the light pen was detected, processing of the current image will be changed to
Loc, a variable referencing an item in the image. Loc is defined by the IMVAR
or IMCON call preceding the item referenced.

Light pen detection is enabled by means of the following operation:
CALL PENON (Pic, Loc)

The item is added to image Pic. Loc defines the location of the next item that
may be added to Pic.

NOTE

This item, having no arguments, need not (and cannot)
be entered via an IMCON or IMVAR call.

Light pen detection is disenabled by means of the following call:
PENOF (Pic, Loc)

The operation to cause repeated processing of a sequence of items is:
LOP (n)

where: n = the number of times the sequence is to be repeated.

AFDSP/PRM/C 10 7-69

E E_I a g E AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

The item which specifies the point at which the preceding looping is to end
is entered as follows:

CALL STPLP (Pic, Loc)

The operation to enable lines to be drawn in a dash mode is:
CALL DSH (Pic, Loc)

To discontinue the dash mode, the following call is used:
CALL NODSH (Pic, Loc)

The above three items are added to image Pic. Loc defines the next item to be
added to Pic.

NOTE

The above three items, having no arguments, need not
(and cannot) be entered via an IMCON or IMVAR call.

AFDSP VALUES AND NUMBER RANGES

An additional function is available and must be used to assign values to
variables which are used as arguments to Items entered by IMVAR calls:

IMV (valid AFORT expression)
Example:
A = IMV (. 3*B-C)

All other arguments may be specified by any valid floating or fixed point
FORTRAN expression,

The range of allowable values is as follows:

fixed point: [-10, 000, +10, 000]
floating point: [-1, +1]

These correspond to [minimum, maximum] values of all arguments
giving coordinates, scales, or angles. Angles correspond to [-7, +m] radians.

7-69 11 AFDSP/PRM/C

a E-I a g E AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

IMAGE BUFFER SIZE REQUIREMENTS

The dimension size required by an image buffer may be determined by
totaling the number of words per item or call, as follows: _
Number of Buffer Words Needed*
Name of Call or Item IMCON Class IMVAR Class Call

RSET - -
TABL, TABLF - -
STPLC - -
PENON - -
PENOF - -
DSH - -
NODSH - -
LOP 1 1
STPLP - -
LINE
PT1 & PT2, or V1 & V2 4
PT2 only, or V2 only 2
LABEL (no. words in 1 -
' output buffer
filled) +1
MOVBM 2 3 -
PLACE
SHRNK
MOV
XMOV
YMOV
ZMOV
XTURN
YTURN
ZTURN
IMCAL 1
CALL (no. args.)+1 (no.
IFPEN 2
IFNEG 2
IF 7RO 2
GO 1

[\

L T S G SRS

w o
11

I
[B S S O T R SR SO
[

rgs.)+1 -

- DN N DN
|

*1 additional word is needed and used by AFDSP to specify the end of the image.

AFDSP/PRM/C 12 : 7-69

ana6nE

AFORT DISPLAY INTERFACE, AFDSP

SUMMARY OF AFDSP FACILITIES

7-69

Calls

RSET (Name, size)

IMCON (Name, item (args), loc/err)
IMVAR (Name, item (args), loc/err)

SHOW (Name, rate)
NOSHO

SETIO (Buff, n)

TABL (Pic, Buff, Loc)
TABLF (Pic, Buff, Loc)
STPLC

PENON

PENOF

DSH

NODSH

LOP (n)

STPLP

Items

LINE (Pointl, Point2)

LABEL (Buff, Mode)

MOVBM (Point 1)

PLACE (Size, location, rotation)
IMCAL (Name)

CALL (Subrtn, args,...)

IFPEN (Loc)

IFNEG (Var, loc)

IFZRO (Var, loc)
IFNEG (Var, loc)

GO (loc)

13

Programmer's Reference Manual

Initialize image buffer

Include unchangeable image item
Include dynamic image item
Display image

Stop display

Initialize text buffer

Include X-Y pair in table

End sub-space
Initialize pen detection
Disenable pen detection
Initialize dash mode
Discontinue dash mode
Loop in image

Loop end delimiter

Visible line item

Text item

Move beam position

Start sub-space

Call sub-image

Call sub-program

Conditional image-jump on pen

Conditional image-jump on nega-
tive value

Conditional image-jump on mag-
nitude

Conditional image-jump on mag-
nitude

Unconditional image-jump

AFDSP/PRM/C

anlanE

AFORT DISPLAY INTERFACE, AFDSP

Functions

RMYV (expr)

IMV (expr)

PT1 (x1, y1, 21)
PT2 (x1, yl, zl1)
SHRNK (s)

MOV (dx, dy, dz)
XMOV (dx)
YMOV (dy)
ZMOV (dz)
XTURN (rx)
YTURN (ry)
ZTURN (rz)
ISVA (ARRAY)
RSVA (ARRAY)
ZSET (z, name)
TDFUN (x, y, nl, n2)

Library Routines

FNSIO (sw, op, value/subroutine)

RVCDL1 (dial, value)

RVCDS6 (vall, val2, val3, val4,
val5, val6)

RADTV (hor, ver, down, press)

PENHT (n, item, image)

AFDSP/PRM/C

Programmer's Reference Manual

For dynamic value assignments
For dynamic value assighments
For LINE and MOVBM arguments
For LINE and MOVBM arguments
For PLACE arguments

For PLACE arguments

For PLACE arguments

For PLACE arguments

For PLACE arguments

For PLACE arguments

For PLACE arguments

For PLACE arguments

Save address of array name

Save address of array name

Set Z value for table

Enter coordinate pair table

Read or set function sw or execute
when set.

Read a Variable Control Dial

Read all variable Control Dials

Read Analog Data Tablet
Identify nth previous pen-hit

14 7-69

aplane

AFORT DISPLAY INTERFACE, AFDSP

Programmer's Reference Manual

USE OF AFDSP ON 8K SYSTEMS

Version 1 of AFDSP is used on 16 or 32K AGT Systems. Version 2 is seg-
mented and may be used on 8K AGT Systems. Version 2 consists of two parts,
as follows:

Part 1 (Title "ADSP1') containing routines for building display buffers:
All AFDSP routines except SHOW, NOSHO, ISVA, RSVA.

Part 2 (Title "ADSP2') containing routines to run displays: SHOW, NOSHO,
IMV, RMV, ISVA, RSVA.

On 8K systems, a RECALL-OVRLY scheme may be used so that OBJPK,
AFDSP, etc., and DSPLY are not residing in core at the same time, as follows:

C DRIVER PROGRAM
SUBROUTINE MAIN
C DIMENSION DISPLAY BUFFERS
DIMENSION BF1(n), BF2(n)
LOAD AND EXECUTE BUFFER AND BUILD ROUTINE
MAKE CONTAINS IMCON, IMVAR, ETC., CALLS
BUT NOT SHOW CALLS
RECALL-OVRLY: MAKE (BF1, BF2)
C WATCH HAS SHOW CALLS
C OVERLAY MAKE WITH SHOW, ETC. AND DSPLY
RECALL-OVRLY: WATCH (BF1, BF2)
C DUMMY IF STATEMENT TO LOAD RUN-TIME ROUTINES
IF (1) 2, 2, 1

aQaQa

2 CALL RTSR1 (args)
CALL RTSR1 (args)
1 RETURN
END

7-69 15 AFDSP/PRM/C

anlanE

AFORT
(AUGMENTED ASA BASIC FORTRAN)

Programmer's Reference Manual

Revision C

July 1969

amagE AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

TABLE OF CONTENTS

INTRODUCTION
HARDWARE REQUIREMENTS
SOFTWARE REQUIREMENTS
CHARACTER SET
LINE FORMAT
STATEMENTS FORMS

Rules

Definitions
AFORT Statements

COMPILATION INSTRUCTIONS
AFORT TELETYPE OUTPUT

FORMAT OF RELOCATABLE FILES
Relocation Bit Pairs
Special Sub-Codes

AFORT ERROR DIAGNOSTICS
Notification Errors
Termination Errors

APPENDIX A
NUMBER LIMITATION
ZERO

APPENDIX B
AFORT INTERNAL CHARACTER CODES

7/69 iii

Page

N

S Oor

14
15

17
17
17

19
20
20

21
21
22

23
23

AFORT/PRM/C

EEJEEE AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

INTRODUCTION

AFORT is an extension of ASA Basic Fortran, and its source language con-
forms to the specifications proposed by the American Standards Association X3.4.3

subcommittee for Basic Fortran. *

The AFORT compiler is designed for use under the AMOS operating system.
It accepts source input text of type ATEXT. The object programs are output in stand-
ard AMOS relocatable linkage format, compatible with those output by the ADEPT

assembler.

AFORT includes the following extensions to ASA Basic Fortran:

1. Symbolic names specified in a GLOBAL statement may
be referenced by programs written in ADEPT, or by
expressions in AMOS Monitor control statements.

2. Symbolic names may be declared as function or subroutine
names by an EXTERNAL statement.

3. Available core storage may be shared between disjoint
program sets by a RECALL-OVRLY statement.

4, Selective symbolic tracing of program execution at the
source language level is possible with TRACE statements.

5. In assignment statements, the first element of an array
may be referenced by the array name alone.

* These specifications may be found in the Communications of the ACM, Volume
7/Number 10/October 1964.

7/69 -1- AFORT/PRM/C

BEIEEE AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

HARDWARE REQUIREMENTS

The required hardware for the AFORT compiler is:

SCU-P1, ACC-P1, OPC-P1, DME-P8, P16, P32, and
MTP 58 or MTPT;

DPR1-P2, P3, P4, and MTP5/8 or MTPT;

AGT/18, M16-P1, and (MTP5/8 or MTP7 or DMS2)
AGT/56 or AGT/38, and (MTP5/8 or MTP7 or DMS2)

SOF TWARE REQUIREMENTS

AMRMX and PRIO (along with relocatable monitor symbol links, ARMSX)
which correspond to the hardware configuration.

NOTE: Execution of compiled programs requires
facilities implemented by the '"Object Package'
(OBJPK) and possibly subroutines from the
library and Fortran library, FLIBR.

AFORT/PRM/C -2- 7/69

aplan e

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

CHARACTER SET

An AFORT program may contain the following letters, digits and special
characters:

LETTERS: A B CDEVFGHIJKILM
N O PQRSTUV WX Y Z
DIGITS: 01 2 3 4 5 6 7 8 9
ARITHMETIC OPERATORS:
+ Addition or positive value
- Subtraction or negative value
* Multiplication (** exponentiation)
/ Division
SPECIAL CHARACTERS:
Blank or Space
= Equals
(Left parenthesis
) Right parenthesis
, Comma
Decimal point
Colon
TAB The first "TAB' character in a line sets the

column counter to Column 7. Subsequent
"TAB'" characters in the same line are ignored.

C/R The Carriage Return character is used to termi-

nate a line. A C/R during AFORT teletype
1/0 specifies an "End of Record."

permitted in Hollerith fields

H=h R @
g

7—69 3 AFORT/PRM/C

aEJEEE AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

LINE FORMAT

The columns in an AFORT line are used as follows:

A CONTINUATION COLUMN (COLUMN 6) MUST

IF THE LETTER C IS CALLED OUT,THE ENTIRE CONTAIN ONE OF THE FOLLOWING:
REMAINING LINE IS REGARDED AS A"COMMENT. 1. BLANK SPACE
AS A RESULT,THE "COMMENT LINE"ISIGNORED BY 2.ADIGIT, OTHER THAN ZERO (FOR CONT.)
THE COMPILER, y 3. A LETTER(FOR CONTINUATION)
7 (¥SEE NOTE BELOW ’ y
v
Il slelr B d
27 B
(A STATEMENT NUMBER UP TO FIVE ' 7 STATEMENT FIELD D
DIGITS IN LENGTH NEED NOT BE (SPACES ARE IGNORED)
EITHER RIGHT OR LEFT JUSTIFIED,
FIGURE I. SAMPLE AFORT LINE FORMAT
NOTE: An AFORT statement may contain up to 5 continuation lines, subject

to the following restrictions:

1. DO statements must be written on only the first line.

2. The equals character (=) of a replacement statement
must appear on the first line.

3. A statement label (if any) must appear on the first line.

AFORT/PRM/C -4- 7/69

EEIEEE AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

STATEMENT FORMS

A.

|

7/69

Rules
1. [X] means that '"X" is optional.
2. {X }y means that '"X'' can occur one or more times, separated by

nyu (nyu may be nu]_l).

Z

3. {X }y means that ""X'"' can occur one or more times up to a maxi-

mum of '"z'" times, separated by 'y''.
Definitions
1. ch is any character
2. n and format are statement-label numbers
3. octal is one to four octal digits
4, r is the number of times a format field specification is to be repeated
5, w is the field width (in characters) to which a format specification applies
6. d is the number of characters to be assumed after the

decimal point
7. int is an integer constant or integer name
8. list element is either a variable or:

({list element }, [integer name = int, int[,int]])

9. spec is a formal specification and may be the following:

a. rFw.d

b. rEw.d

c. riw

d. wH{ch}"
€. T (spec)

f. wX

g. /

-5- AFORT/PRM/C

aplane

AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

10. sub is an integer constant used as subscript

11. unit is a logical I/O unit number:

C. AFORT Statements

de

b.

et oo

1 through 4 for physical tape drives

¢ through 3, respectively.

5 through 8 for the AMOS Format Library on
tape drives @ through 3 respectively.

21 through 24 for physical disk volumes last
assigned (by a SDVOL call).

5@ for the console teletype.
52 for the Card Reader

53 for the Printer
54 for the current ASCII buffer (set by SETIO call).
55 for the high speed paper tape.

DIMENSION {name(sub(, subl)},

Purpose:

Restrictions:

Example:
COMMON {namel,

Purpose:

Restrictions:

Example:

AFORT/PRM/C

Name and declare size(s) of array(s).

Specification statements must appear in the order of
DIMENSION, COMMON, EQUIVALENCE.

May only be preceded by a SUBROUTINE, FUNCTION,
or other DIMENSION statement.

A name, if dimensioned here, must not have prev-
iously been dimensioned.

DIMENSION A (5), 12(3, 6), CP(22)

Specify that the variables and/or arrays listed are
to be assigned to storage in the memory area called
COMMON. Allow more than one program unit in an
executable program to reference the same data
directly.

Specification statements must appear in the order of
DIMENSION, COMMON, EQUIVALENCE.

May only be preceded by a SUBROUTINE, FUNCTION,
DIMENSION, or other COMMON statement.

The program unit with the largest common region
must be loaded first.

COMMON X, ANG, I2, IND
-6- 7/69

aEIaEE AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

EQUIVALENCE {(namel(subl, subl)], {namel(sub[, subJ) 1},)},

Purpose: Cause the same area of memory to be shared by two
or more entities.

Restrictions: Specification statements must appear in the order
of DIMENSION, COMMON, EQUIVALENCE,
May only be preceded by a SUBROUTINE, FUNCTION,
COMMON, or prior EQUIVALENCE statement.
Effective lengthening of COMMON is permitted only
if it increases COMMON in the same direction as
additional COMMON elements would.
Two elements of the same array can not be equival-

enced.
Example: EQUIVALENCE (X,A(2),Y), (B, I2)
EXTERNAL fhamel,
Purpose: Allow SUBROUTINE or FUNCTION names to be

used as arguments to yet other subprogram calls.

Restrictions: Names must not be dimensioned. Names previously
used must be used only in program definition.
Must follow any DIMENSION, COMMON, or
EQUIVALENCE statements.

Example: EXTERNAL SAM, TIGER

GLOBAL ({namel,)
Purpose: Allow symbolic names to be referenced by programs
written in ADEPT or by expressions input with
AMOS Monitor control statements.

Restrictions: Must follow any DIMENSION, COMMON, EQUIV-
ALENCE, or EXTERNAL statements (or be em-
bedded in the executable statements). GLOBAL
variables may not be dummy arguments. Only one
GLOBAL statement is permitted in a program or

subprogram,
Example: GLOBAL (ALICE, PAT, SUE)
[n] wvariable = expression
Purpose: Replace the value of a variable with the results of

the evaluation of an expression.

7/69 -7 AFORT/PRM/C

aujagE AUGMENTED ASA BASIC FORTRAN, AFORT

Programmer's Reference Manual

Restrictions: An "equals' sign must follow the first operand.

Example: A(JJ) = 7. *A(3)/2.

[n] GO TO n
Purpose: Transfer control to the statement labeled ''n'.
Example: GO TO 5

n] GO TO (fnl,), integer name

Purpose: Transfer control to the 1st, 2nd, ... statement
with a statement number, ''n", depending on whether
"integer name' is 1, 2, ..., respectively.

Restrictions: The value of ""integer name' should not exceed the
number of statement numbers in the parenthesized
list.

Example: GO TO (5, 22, 3656, 31), ISAM
[n] IF (expression) n, n, n

Purpose: Transfer control to the statement numbered 'n',
depending on whether the value of "expression" is
less than zero, equal to zero, or greater than zero
(respectively, from left to right).

Restrictions: Three statement numbers, not necessarily differ-
ent, must be given.

Example: IF (S -3/2*X) 16, 22, 16
[n] CALL name [({expression},)]

Purpose: Transfer control to a subprogram and present it
with any parenthesized arguments.

Restrictions: CALLs are not recursive.

Example: CALL TES1 (A, B*C+6., I(2))

AFORT/PRM/C -8- 7/69

HNEEE AUGMENTED ASA BASIC FORTRAN, AFORT

n CONTINUE

Purpose:

Example:

n] PAUSE octal

Purpose:

Note:

Example:
[h] STOP octal

Purpose:

Example:

Programmer's Reference Manual

Serve as a program unit reference point.

May be last statement in a DO range when the loop
would otherwise end with an IF or GO TO statement
(which is illegal).

13 CONTINUE

Causes a temporary halt of program execution,
which may be resumed (with the next statement)
by depressing PULSE1, and also types "PAUSE

octal."
An external instruction on the console must be set

to 24@@@77776 and be activated by PULSE1.
PAUSE 24

Terminate program execution, type "STOP octal, "
transfer to the EXIT routine to type any object time
error messages, and return control to AMRMX.

12 STOP 1375

[n] DO n integer name = int, int[, int]

Purpose:

Restrictions:

7/69

Repetitively execute the statements following the DO
statement up to and including the statement labeled
"n". "Integer name' is incremented (optionally by
a value "int", greater than 1) from the value "int"
(the first control parameter) until its value is

" greater than "int" (the second control parameter).

The terminal statement (labeled ''n'') must physic-
ally follow and be in the same program unit as the
DO statement.

The terminal statement may not be a:

GO TO statement
IF statement
RETURN statement
STOP statement
PAUSE statement
DO statement
-9- AFORT/PRM/C

aE_IEEE AUGMENTED ASA BASIC FORTRAN, AFORT

Example:

Programmer's Reference Manual
gr

If the range of a DO loop contains another DO state-
ment, the range of the contained DO loop must be a
subset of the range of the containing DO loop. A

GO TO or IF statement may not cause control to

pass into the range of a DO loop from outside its
range.

The control variable ("'integer name') and/or con-
trol parameters ("int'''s) may not be redefined during
execution of the range of the DO loop. '

If a statement is the terminal statement of more than
one DO loop, the label of that terminal statement may
not be used in any GO TO or IF statement that occurs
anywhere but in the range of the most deeply-contained
DO with that terminal statement,

‘DO 24 1P =1,JP,3

n] READ (unitl,format])[{list element},]

Purpose:

Restrictions:

Example:

Input data from the next record on the external
source '"'unit, " according to the format specified by
a statement labeled "format,' and assign the values
to the variable name(s) '"list element(s)." (NOTE:
The record size for formatted data is 120 charac-
ters. Unformatted records are 24 binary words in
length.)

If only part of a record is input, the remainder is
lost. Records are read sequentially until the list is
exhausted and only enough values are read to fill the
list.

READ (58, 266) A(2), B, I3, (IN), N=1, K, 3)

(n] WRITE (unit [, format]) [{list element },]

Purpose:

AFORT/PRM/C

Take values sequentially from the variable name(s)
"list element(s), "' convert these values according to
the format specified by a statement labeled '"for-
mat, " and output records on the external device
"unit." (NOTE: The record size for formatted
data is 120 characters. Unformatted records are
24 binary words in length.)

-10- 7/69

an_lagE AUGMENTED ASA BASIC FORTRAN, AFORT

Restrictions:

Example:
format FORMAT ({specl)

Purpose:

Example:

Programmer's Reference Manual

Successive records are written only until the data is
exhausted. I the data does not fill a record, the
record is filled with blanks.

WRITE (2, 28) A, II

Describe the type of conversion and format of data
to be used in the transmission of an input/output list.

5 FORMAT (/2X, 3F 16.5, E15.8, /2HI =, 12)

[n] RECALL-OVRLY: name [({expression})]

Purpose:

Restrictions:

Example:

[(n] REWIND unit
Purpose:

Restrictions:

Example:
[n] BACKSPACE unit

Purpose:

Restrictions:

Example:

7/69

Permit a loaded program unit to allocate any remain-

ing available storage to any of several disjoint pro-
grams. Functions or subrout<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>