
PASCAL USERS GROUP

Pascal News
NUMBER 17

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

MARCH J 1980

~ u . --o
Q.

POLICY: PASCAL NEWS (11-Mar-BO)

* Pascal News is the official but informal publication of the User's Group.

* Pascal News contains all we (the editors) know about Pascal; we lise it as
the vehicle to answer all inquiries because our physical energy and
resources for answering ind i v id ual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend t~e to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

* Pascal News is produced 3 or 4 t~es during an academic year; usually in
september, November, February, and May.

* All. THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
1B.5 an lines!) --

* Remember: All. LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY •

* Pascal News is divided into flexible sections:

POLICY - explains the way we do things (All.-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and docunents source prograns written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and '"general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal Bt different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence anong
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal ~plementations: contacts
for maintainers, ~plementors, distributors, and docunentors of various
~plementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various ~plementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
]mplementations.

[]

[]

[]

- - - - ALL-PURPOSE COUPON - - - - - -

Pascal User's Group, c/o Rick Shaw
Digital Equipment Corporation

5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342 USA

NOTE

Membership is for an academic year (ending June 30th).

(l7-Mar-80)

Membership fee and All Purpose Coupon is sent to your Regional
Representative.
SEE THE POLICY SECTION ON THE REVERSe SIDE FOR PRICES AND
ALTERNATE ADDRESS if you are located in the European or
Australasian Regions.
Membership and Renewal are the same price.
The U. S. Postal Service does not forward Pascal News.

- - - - - - - - - - - - - - - ------ - - - - - - - - -
[] 1 year ending June 30, 1980

Enter me as a new member for:
[] 2 years ending June 30, 1981

Renew my subscription for:
[] 3 years ending June 30, 1982

Send Back Issue(s)

[] My new/correct address/phone is listed below

~ [] Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

[] Comments:

NAME

$
ENCLOSED PLEASE FIND: A$

£

ADDRESS _______________________ _

PHONE

COMPUTER __ ___

DATE

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

- Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.

- Please do not send us purchase orders; we cannot endure the paper work!
- When you join PUG any time within an academic year: July 1 to June 30, you

will receive all issues of Pascal News for that year.
- We produce P8'SCal News as a means-foward the end of promoting Pascal and

communicating news Of events surrounding Pascal to persons interested in
.Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do. ----

- American Region (North and South America): Send $6.00 per year to the
address on the reverse side. International telephone: 1-404-252-2600.

- European Region (Europe, North Africa, Western and Central Asia): Join
through PUG 1UK). Send £4.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton S09 5NH,
United Kingdom; or pay by direct transfer into our Post Giro account
(28 513 4000); International telephone: 44-703-559122 x700.

- Australasian Region (Australia, East Asia - inc!. Japan): PUG (AUS). Send
$A8.00 per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

PUG (USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatIVes collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

- Please renew early (before August) and please write us a line or two to tell
us what you are doing with Pascal, and tell us what you think of PUG and
Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

- Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a academic year (July 1 to June 30) means Tfi'8.t we
eliminate many requests for backissues ahead of time, and we don't have to
reprint important information in every issue--especially about Pascal
implementations!

- Issues 1 •• 8 (January, 1974 - May 1977) are out of print.
(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

- Issues 9 .• 12 (September, 1977 - June, 1978) are available from PUG (USA)
all for $10.00 and from PUG(AUS) all for $AIO.

- Issues 13 •• 16 are available from PUG(UK) all for £6; from PUG(AUS) all for
$AIO; and from PUG (USA) all for $10.00.

- Extra single copies of new issues (current academic year) are: $3.00 each
- PUG(USA); £2 each ~ PUG(UK); and $A3 each - PUG(AUS).

SENDING MATERIAL fOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm wide) form.

- All letters will be printed unless they contain a request to the contrary.

PASCAL NEWS #17 MARCH, 1980 INDEX

o POLICY, COUPONS, INDEX, ETC.

1 EDITOR'S CONTRIBUTION

2 HERE AND THERE WITH Pascal
2 Tidbits
5 Pascal in the news
6 Books
7 Book Review: Alagic & Arbib
8 Articles
9 Conferences and Seminars
12 ADA: an ISO report
13 Pascal in teaching

17 APPLICATIONS
17 Introduction
18 REFERENCER -- a cross referencer for procedures
29 MAP -- a macro processor for Pascal
41 XREF -- a cross reference program
46 A string package - OMSI
47 A complex arithemetic package
52 A string package - U. of Witwaterstrand

53 ARTICLES
54 Conformant Arrays in Pascal" -- A.H.J. Sale !!note!!
57 Pascal Survey" -- Robeit R. Ransom
59 Converting an Application Program from OMSI to AAEC"
60 Does Scope = Block in Pascal?" -- T.P. Baker
62 A Note on Pascal Scopes" -- T.P. Baker
63 Alternate Approach to Type Equivalence" - W.MacGregor
65 'Fixing Pascals I/O" -- R. Cichelli
66 "SIMPASCAL" -- J. Deminet
68 "Some Observations on Pascal and Personal Style"- Sale

71 OPEN FORUM FOR MEMBERS
83 Pascal Standards Progress Report

85 IMPLEMENTATION NOTES
85 Editorial
86 Implementation Critiques
89 Validation Suite Reports
101 Checklists

~ontributors to this issue (#17) were:

EDITOR Rick Shaw
Here & There John Eisenberg
Books & Articles Rich Stevens
Applications Rich Cichelli, Andy Mickel
Standards Jim Miner, Tony Addyman
Implementation Notes Bob Dietrich
Administration Moe Ford, Kathy Ford, Jennie Sinclair

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write lias above" if the same) -------.,..---------

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop­
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc­
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur­
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc­
uments, reference shall be made to the original copyright notice and its source.

X Distribution charge: $50.00

~ Make checks payable to ANPAjRI in US dollars drawn on a US bank.
Remittance must accompany application.

Source Code Delivery Medium Specification:
9-track, 800 bpi, NRZI, Odd Parity, 600' Magnetic Tape

() ANSI-Standard

a) Select character code set:
() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.

() 40 () 20 () 10

() Special DEC System Alternates:
() RSX-IAS PIP Format
() DOS-RSTS FLX Format

Office use only

Mail request to:

ANPAjRI
P.O. Box 598
Easton, Pa. 18042
USA
Attn: R.J. Cichelli

Signed ____________ _
Date

Richard J. Cichelli
On behalf of A.H.J. Sale & R.A. Freak

PASCAL NEWS #17 MARCH, 1980 PAGE 1

Editor's Contribution
GETTING STARTED

Let me start my first editorial by saying, "I can't believe how hard this job
is! !" My esteem for Andy Mickel has always been high, but after the last few
months, it has gone up astronomically! I don't know how one person had all
the time--there are so many things to do, and I have been lucky enough to have
alot of help.

My section editors have been very prompt (for the most part!) and have made
the job "do-able". And, I might add, PUG has hired sane part-time clerical
help that is out of this world! To round it off, the switch to a commercial
printer (oh, the luxury of a university print shop) has been quite successful.

I could not ask for better service. Their prices are close to those we paid
in the past.

My thanks
must go to the membership, who have been so patient with me. This issue
represents a tremendous learning curve for me (and culture shock!). Things
will go smoother starting next issue.

NEXT ISSUE (#18) - SPECIAL!!

Speaking of next issue, we at PUG are pleased to announce that the next one
will be canpletely devoted to the ISO Draft Standard for Pascal. (See Jim
Miner's article this issue for a discussion of this and other items concerning
standards.)

We are currently preparing this document for reproduction; it will be out no
later than one month after this issue (#17).

ABOUT THIS ISSUE

WOil!! Is there alot of good stuff in this issue! Pascal has been on
everyone's tongue lately, so "Here and There" is chock full of "newsy"
information. We also have a large number of books and articles that have been
reviewed this quarter, as well as an excellent in-depth review of the text
Alagic and Arbib by one of our readers. (We could use more contributions such
as this.)

The "Articles" section is kicked off by lucid discussion of "Conformant Array
Paraneters" authored by Arthur Sale (who else!). This article is highly
recommended for review by all readers because of its controversial, proposed
inclusion into the ISO standard.

There is no lack of contributions to the "Software Tools" section either.
Nearly one-quarter of the issue is devoted to publishing programs and
algorithms. This quarter many checklists are included in the "Implementation
Notes" section, as well as sane contributions to ur new section, "Validation
Suite Reports".

A great deal of fine work went into this issue. We hope you like it.

Here and There With Pascal

TTTTTTT
T
T
T
T
T
TIDBITS

J. Mack Adams, Compo Sci Dept., Box 3CU, New Mexico State University, Las
Cruces, NM 88001: "We have added an assertional checking capability to UCSD
Pascal and have developed a debugging system based on assertional checking
and symbolic execution. A paper on the system will be presented at ACM
79 ••• " (*79/05/14*)

Ron Barstad, P.O. Box 6000, B-118, Phoenix, AZ 85005: "The Pascal on the
(*USW Louisiana*) L68 (Multics) is only a subset. The L66 version from
Waterloo is a full blown batch and/or TSS version. (*79/09/14*)

Dr. Oddur Benediktsson, Science Institute, University of Iceland, Dunhaga 3,
Reykjavik: "We ••• are looking for a PASCAL compiler for ••• our PDP-II RSX-I1M
system and so far have found only the OMS! product which we find a bit on
the expensive side at·$1500. We would also rather have the P-code type
compiler if available. Can you make any suggestions? (*78/11/23*)

Rick ~, Nationwide Insurance, One Nationwide Plaza, Columbus, OR 43216:
!lOur problem is one of finding a Pascal implementation which matches our
operating environment: a large-scale IBM/AMDAHL center running MVS 3.7
and ••• both the TSO and VSPC interactive systems." (*79/10/10*)

Paul C. Boyd, PPG Industries, Box R, Elwin-Mt. Zion Rd., Mt. Zion, IL 62549:
"We are hoping to implement the OMSI PASCAL-1 package on a DEC
PDP-l1/34 ••• under RSX-ll/M ••• to develop process control programs to run on a
network of DEC LSI-ll/23 micros •••• I would appreciate hearing from any OMSI
PASCAL-l users with experience in digi tal control applications."
(*79/09/27*)

Glenn A. Burklund, 3903 Carolyn Ave., Fairfax, VA 22031: "Have North Star
(UCSD) Pascal----it is miserable. Going Pascal/Z ••• for scientifc and
engineering applications. The funct. & proc. are th main features of
interest. It is virtually aimpossible to implement under North Star
Pascal. Unless it is practical to implement these calls easily, Pascal will
wither on the vine." (*79/10/09*)

John D. Bush, Minnesota Power & Light COe, 30 West Superior St., Duluth, MN
55802: "I have been trying to get programmers and DP Managers at MP&L
interested in Pascal. By finding compilers for our Prime and IBM machines, I
hope to give some of these people a chance to experiment with the language."
(*79/10/03*)

Jim Carlson, School of Dentistry, University of the Pacific, 2155 Webster
St., San Francisco CA 94115: "The School of Dentistry has recently acquired
an Omsi Pascal Compiler •.• configured to operate under RSX-IIM and will be
installed on a PDP-ll/34. We plan to use Pascal primarily for
administrative purposes, but it will also be available for uses in other
areas." (*79/05/22*)

M. B. Clausing, 5603 Fisher Dr., Dayton, OH 45424: "If the matter's still at
issue, I vote not to affiliate with ACM. I see no particular advantage."
(*79/07/06*)

John Cor:i~s, Loyola.Univ:rsity of Chic~go, 6525 N. Sheridan Road, Chicago,
IL 60026. Loyola Un1vers1ty ••• has acqu1red the Pascal compiler from the
University of Manitoba for academic instructional use ... we are.
(*interested*) in acquiring PASCAL subroutine libraries that we could use in
our computer science classes." (*79/05/14*)

Don R. Couch, 5100 Montreal Dr., San Jose, CA 95130: "I am a student in a
Cogswell College Pascal course, and use Pascal on a PDP-ll/I0 computer at
American Microsystems, Inc~" (*00 date*)

R. H. Frank, Digital Consulting Corporation, P.O. Box 32505 San Jose CA
95152: "Our company has just released a Pascal Compiler (pz' derivativ~) for
the popular CP/M microcomputer system." (*79/09/26*)

Jim Gagne, M.D., Datamed Research, 1433 Roscomare Rd., Los Angeles, CA
90024: "Who's your medical applications editor (if any)? I'll do it if
need." (*79/05/30*) you

Anton L. Gilbert, Information Sciences U.S. Army White Sands Missile Range,
NM 88002:~a new Pascal users. I~ will be used in my research
group ••• on a PDP-ll/70, PDP-ll/35, a PDP-ll/34 (* all under RSX-IIM) and a
PDP-II/IS (RT-ll). One of my employees ••• is especially interested in Pascal
in Image 'Processing Research." (*79/06/12*)

Ricardo O. Giovannone, Box 3606, University Park Branch Las Cruces NM
88003: fir am a graduate student at New Mexico State Uni~ersity ... using this
language since fall '78 and I really like it •••• At the moment, I am working
in a project dealing with implementation of an Educational Data Base System
using Pascal as a host language •.•. We hope to finish in this fall. We are
using UCSD Pascal Version 1. 4." (*79/08/20*)

Mark Gordon, Computer Business Systems, Box 421, Truro, Nova Scotia B2N SCS:
"I am using a DEC PDP-11 under RSTS/E". (*79/05/23*)

Roedy Green, 1478 East 27th Avenue, Vancouver, British Columbia V5N 2W5:
"I'm loking after a computer acquisition for the provincial Electric and Gas
utility. I'm looking forward to using Pascal to implement our records & man
scheduling system. At present Burroughs 1800, DEC PDP-ll/70, Tandem, Univac
1100, Cyber 170 are all potential winners. I am particularly interested in
Pascal on these machines." (*79/09/04*)

David L. Hamby, Combustion Engineering, INc., 1000 Prospect Hill Rd.,
Windsor, CT 06095: "Interests are real time process monitoring. Looking for
process support software in a machine independent high level language."
(*79/06/18*)

M. L. Harper, Oak Ridge National Labs, Bldg. 1505, Rm. 118, Oak Ridge, TN
37830: "I have pursued your references at JPL regarding a Pascal for ModComp
minicomputers and the prospects look promising." (*79/06/26*)

David C. E. Holmes, P.O. Box 1708, Grafton, VA 23692: Teacher of
micro-computer design, system design, and programming. owns 48K 280 Altair
8800, CP/M, UCSD Pascal, and Ithica Intersystem Pascal/Z compiler.
(*79/10/29*)

Mike Hughes, P.O. Box ~93, Rapid City, SD 57709: "I am currently about three
fourths of the way there on a business-oriented Pascal compiler for
second-generation BCD machines. The implementation is for the RCA 301, but
the probiems are similar to the IBM 1401 and 1620, Burroughs B600, etc. I
would be interested in getting in touch with anyone else having such
Quixotic interests." (*no date*)

G. P. Janas, 4447 Buchanan, Warren, MI 48092: "I own an Apple J (with two
disk drives. I have on order, since September, the Apple Language Card and
am awaiting same." (*79/10/18*)

i-'
CD
00
o

Peter T. Jawbsen, Ceremain Microsystems, 759 Glen Canyon Rd., Santa Cruz, CA
95060: "I use both UCSD and OMSI Pascal." (*79/09/09*)

John W. Jensen, Jensen Farms, RRlll Box 142, Everly, IA 51338: "I have been
working on computer programs for a complete feedlot management system for
about 4 years. The programs are written in RPG and run on an IBM System 34
which •.• I am losing access to.... I •.. am wiling to look at something in the
$10-15000 range not counting software •.. (* here follows a description of
hardware being considered *) Basic is the mos,t popular language ... but I'm
not convinced that Basic is the best language to program in. Pascal has
been called the software superstar. Yet it appears to me to be rather slow
in being accepted. I have seen very little commerical software available
(such as accounting packages, etc.)." (*79/10/01*)

Donald R. Kelley, 2451 Hingham Court, Woodbridge, VA 22192: "Just getting
started using Pascal - have been working wi th assembly and BASIC."

(*79/10/01*)

Wallace Kendall, 9002 Dunloggin Rd., Ellicott City, MD 21043: "I have an OSI
Challenger III and have been trying for some time to get Pascal for it.
Althought it has a Z80 chip (as well as a 6502 and a 6800) OSI apparently
used a slightly different implementation, and the version used by most Z80
computers (I'm told) doesn't run on OSI. HOwever, I'm told that it will soon
be ready either for the 6502 or the Z80 in OSI." (*79/05/07*)

Jack Laffe, 320 19th Ave_ S., Minneapolis, MN 55454: "Re: machine dependent
imple~tions: remove NCR 200 implementation that is listed in News #9/10
p. 105. This has been replaced by an NCR 8400 implementation and will be
available February 1980. I will make more information available at that

time." (*79/08/07*)

W. A. Lane, Canadian Tire Corporation, Limited, Box 770, Station K, Toronto,
ONtario M4P 2V8: "We are a large retailing company in Canada wi th
approximately 315 stores country wide. We are presently implementing "point
of Sale" systems in these stores and are utilizing Datapoint, NCR and Amdahl
computers. We also have several other machines including IBM system 34's,
IV Phase and Basic mini's." (*79/08/22*)

James H. Lauterbach, Genesys Corporation, 223 Alexander Ave., Upper
Montclair, NJ 07043: "Genesys Corporation .•• (*wishes*) to feature' canned'
applications programs which are easily customized •.. hence, our development
system will probably be configured largely with C Basic and Pascal
capability in mind--especial1y Pascal. Our quandary, at present, revolves
arund the ... relative merits of UCSD Pascal, the Per Brinch Hansen sequential
version, the Intersystems Pascal/Z, the Alpha Micro version, the new 6809
Motorola version, the soon to be released Data General Micro NOva version,
etc. etc. etc. Can you kindly bring some illumination to us?" (* no date *)

C. E. Leonard, 14008 S.E. Harrison, Portland, OR 97233: "I presently own an
Exidy Sorcerer (Z80) with 32K and want to implement Pascal to go with my one
year of Pascal studies at Portland Community College." (*79/08/31*)

Jerry LeVan, Eastern Kentucky University, Richmond, KY 40475: "I have
extended Pascal-S with strings, scalars, graphiCS, execution profiler and
many features usefuloin a teaching environment - runs under RSTS on a
PDP-ll/70." (*79/06/11*)

Robert C. Luckey, M.D., P.S., 1110 Gillmore Ave., Richland, WA 99352: "It is
with distress that I read in the truly excellent issue 13 of your (*Andy's*)
withdrawal fram active lead position. You obviously have that combination
of talent to co-ordinate a complex development such as that of a new high
level computer language. None of the alternatives offered to the present
arrangement at all compares with what we have now." (*79/03/26*)

Phong Thanh 1.Y, 6415 Prospect Terrace, Alexandria, VA 22310: "I am currently
using Pascal on a PDP-II and am going to have a Pascal compiler for the
Honeywell Level-6 very soon." (*no da te*)

Gregory A. Marks, Institute for Sociai Research University of Michigan
SQR(A), MI 48106: "All I ever hear about UCSD P~scal is the good commen~s.
~ere can I get the opposite viewpoints; the problem in their extensions and
lmplementation." (*79/06/29*)

Richard R. Martin, 634 Dallas Ave. 1121, Grand Prairie, TX 75050: "I am
running the UCSD Pascal on my Z80 system and am interested in keeping up
with other imple~entations. My use for Pascal is in writing a CAl system
with color graphlcs (RAMTEK). For a living I manage a computer store"
(*79/08/27*) , •

M. E. Markovitz, Culp & Tanner, Inc., 585 Manzanita Suite 6 Chico CA
95926: "I am trying to build up a Pascal scientific library' and wo~ld like
to see if anyone else could lend me a hand. P.S. Does the user's group have
such a scientific library?" (*79/07/23*)

Sakari M. Mattila, Lokkalantie 18 B 43, SF-00330 llelsinki 33 Finland: "I am
a computer scientist at Technical Research Centre of Finland: EDP research
division. We have University of Minnesota Pascal 6000 release 3 on CDC and
some other on minis." (*79/07/07*)

Frank Monaco, 679 Lowell Drive, Marietta, GA 30060: "Keep up the good work."
(*79/03/09*)

Jerry Moore, Dunn, Moore & Associates, 2935 E. Broadway Suite 201 Tuscon
AZ 85716: "We are a systems house in Tucson working pri~arily wi th' ,
Perkin-Elmer (Interdata) and Alpha Microsystems minicomputers. We have a
project slightly outside our normal sphere of influence, and ..• for which
~as:al ~s most desirable. (*The project is*) a hydrologic model of complex
lrrlgatlon systems for Saudi Arabian Naval base (* which *) must run on an
IBH 3032 in Saudi Arabia. Development will have to be done on DEC
system •.. unless I can find some IBM 370 time nearby. I would be very
appreciative if you would consider my plight briefly and forward any
suggestions." (*79/09/04*)

Hal MorriS, Prindle and Patrick Architects:planners, 199 S. Fifth St.,
Columbus, OH 43215: "The company ..• is an architecture firm which has a PDP-
11/34 running RT-11 and TSX. Our applications are Accounting, Word
Processing, and some statistics and simulation ..•. My own impression is
that_ C and Pascal are quite complementary, C being a better systems
language, and Pascal being better for many, or even most applications."
(*79/10/17*)

Gregory L. Nelson, Apt. 31, 2280 California St., Mountain View, CA 94040:
"Have implemented Swedish Pascal V5 and NBS Pascal Vl.4d (a preliminary
version) under RSX-11M V3.1 on a PDP-11/70 system. Both Pascals lack
operating system linkages sufficient to consider them for systems
implementation." (*79/03/12*)

Neil Overton, Computer Systems and Services, Inc., Box 31407, Dallas, TX
7,5231: "I wanted an accounting package in Pascal or BASIC to be converted to
run on a TI 990/2 for a large non-chain restaurant." (*79/09/05*)

Cr~ig Payne, Enertec, 19 Jenkins Ave., Lansdale, PA 19446: "We are actively
uSlng Concurrent Pascal to write real time programs for the Z80. The
language has been extended to allow the writing of device drivers directly
in C.P.; the interpreter/kernel knows nothing about I/O." (*79/06/05*)

Raymond E. Penley, 3578F Kelly Circle, Bolling AFB, DC 20336: "Just
purchased Pascal/Z from Ithaca Intersystems. This is a Z80 compiler that
makes assembly code directly from the Pascal source. Will let you know more
when I get it running. I don't have enough memory right now." (*79/09/24*)

Martin ~. Peritsky, Bendix Corporation, P.O. Drawer 831, Lewisburg, WV
24901: I am available for membership on standardization committees, etc. I
am a member of IEEE and ISA. One of my specialties is compiler design."
(*79/10/30*)

I--'
cD
00
o

Stephen A. Piits, 305 Jarman Dr., Midwest City, OK 73110: "I have ordered
Apple Compu~ Pascal system for my Apple 1 [." (*79/08/24*)

Stephen M. Platt, 4060 Irving St., Philadelphia, PA 19104: "In my work (CS
grad studen~of P.) people are starting to prefer Pascal to FORTRAN for
reasons of portability(!) and ease of use. From my own view, it's a choice
of hours ·debugging 100 lines of FORTRAN or not having to debug 700-1000
lines of Pascal ••• you get the idea. Keep up the good work." (*79/09/13*)

Michael S. Plesher, RDI Box 258, Hoewell, NJ 08525: "I am currently using
the AAEC compiler on an IBM 370/168 (RCA, Cherry Hill NJ). They also have a
Pascai P4 compiler." (*79/08/05*)

Hardy J. Pottinger, EE Dept., Univ. of Missouri Rolla, Rolla, MO 65401: "We
are using University of Lancaster's implementation for Nova from Gamma Tech
under RDOS and DOS. Like it a lot. We will be experimenting with
microcomputer versions and concurrent Pascal during coming year."
(*79/08/01*)

Fred W. Powell, P.O. Box 2543, Staunton, VA 22401: "I have been working
primarily on a TI 990/10 computer which has a TI supported Pascal compiler.
I expect to soon be using a TI 990/5 system which does not currently support
the Pascal compiler. if TI does not change that problem soon, I intend to
put the Pascal P compiler on that system. Thanks for your help and for the
good job you are doing with PUG." (*79/10/08*) John Purvis, Sperry Univac
Computer Systems, 55 City Centre Dr., Missisaugua, Ontario L5B IM4: "I am a
software instructor with Sperry Univac in Toronto. Our Mini Computer
Operation is becoming involved with Pascal, so I am very interested in
finding out what is happening with a Pascal user group." (*79/08/24*)

Frederick A. Putnam, Joseph R. Mares Asst. Prof., Dept. of Chemical
Engineering, Massachusetts Institute of Technology, Cambrdige, MA 02139:
"Here in the Chemical Engineering Department, we have a Data General Eclipse
running (among other things) Gamma Technology's Pascal." (*79/10/17*)

Holly Robinson, Winthrop Publishers, Inc., 17 Dunster St., Cambridge, MA
02138: ''We are about to publish two titles which will be of considerable
interest to your PASCAL NEWS readership: PROGRAMMING FOR POETS: A GENTLE
INTRODUCTION USING PASCAL, ~ Conway & Archer; and A PRIMER ON PASCAL by the
same authors." (*79/10/03*)

Armando R. Rodriguez, P.O. Box 5771, Stanford, CA 94305: "I am in charge of
the compilers for Pascal at LOTS, SAIL, GSB, SUMEX, and SCORE at Stanford,
all of them DEC-I0 or DEC-20. I am preparing a note on our improved version
of the Hamburg compiler for DEC-I0 and DEC-20." (*79/06/21*)

Wayne Rosing, Digital Equipment Corp., TW-C03, 1925 Andover St., Tewksbury
MA 01876: "I was a 12/15/78 lost soul. I figured for $4/year you had gone
out of business or you folks had been eaten by a FORTRAN compiler. (I'm on
UCSD now but want to get a 32-bit Zurich version up on a 68000, demand
paging off an 8 inch Winchester hard disk.)" (*79/08/20*)

Louis V. Ruffino, Federal Systems Division, IBM, 18100 Frederick Pike,
Gaithersburg MO 20854: '~our pubs are excellent, but keep up the great
work.

I look forward to PUG just like BYTE!" (*79/07/09*)

Carl Sandin, 314 Shadow Creek Dr., Seabrook, IX 77586: "I have a SOL-20,
with North Star disks and Diablo printer. I'm trying to get started in
North Star Pascal." (*79/08/06*)

Robert H. Scheer, CDP, Sheridan Oaks Cybernetics, 1915 Larkdale Dr.,
Glenview, 11 60025: "I have" had some limited experience with Pascal on an
Alpha Micro system and expect to start a project on a North Star Horizon
microcomputer system before the year is over. I am also an instructor in
computer science at Northwestern University's Division of Continuing
Education in Chicago. I am investigating the possiblity of using Pascal as
a means of teaching structured programming techniques." (*07/07/09*)

R. C. Shaw, The Grange, Spring Brank New Mills, Nr Stockport, Cheshire, SK12
4BH: "I would be interested in information on Pascal implementations on
either Argus 700 or Modular One machines." (*07/09/13*)

Thomas W. Sidle, Technical Staff, Scientific Calculations, Inc., 4245-B
Capitola, CA 95010: "We are interested in bringing up Pascal on VAXll/780,
Prime 400 (and larger), and IBM 370/148 (and larger) computers."
(*07/07/24*)

Connie Jo Sillin, Kansas City Southern Industries, Inc. 114 W. 11th St.,
Kansas City, MO 64105: "We at KCSI are interested in the Pascal programming
language and the compiler for Pascal. We now have the IBM 370/158 and 3032
(OS-VS2) soon to be 3033 (MVS).

T. R. Simonson, G~M. Simonson & T.R. Simonson Consulting Engineers, 612
Howard Street, San Francisco, CA 94105: "I realize that PUG may have simply
collapsed. I certainly hope not, for I have thoroughly enjoyed the
contact. I believe you stated that some cross compilers exist for creating
8080 or Z80 machine code. If you know of one for CDC machines I would
appreciate your jotting down the source." (*79/10/12*)

Lee L. C. Sorenson, 10226 Victoria Ave, Whittier, CA 90604: "I do not yet
have a large enough system for Pascal, but I hope to learn from your group
and to implement it in my system some day." (*79/06/07*)

T. J. Sullivan, 712 Rand Ave., Oakland, CA 94610: "I work with BART (*Bay
Area Rapid Transit*) and am a neophyte to Pascal but am highly interested in
all aspects of the language; particularly interested in programming for real
time process control." (*79/06/07*)

Kevin Talbot, 3029 127th Place S.E., Bellevue, WA 98005: "The system I use
is an HP3000 (Pascal p/3000 by Fraley, et. al.)" (*no date*)

Ron Tenny, President, G.W. Tenny Co. Inc., 3721 Scottsville Rd., Box A,
Scottsville, NY 14546: "We are currently using a DEC 11/34 with 256KB
memory, eight terminals, two printers, and dual 20MB drives in a business
application environment. We want to implement Pascal under RSTS/E (CTS-500)
and ·are looking for a good DBMS package to go with the Pascal code."

William W. Tunnicliffe, Bobst Graphic, INc., P.O. Box 462, Bohemia, NY
11716: "Thanks, volunteers!" (*79/08/20*)

Rex M. Venator, Major.USA, 12451 Skipper Circle, Woodbridge, VA 22192:
"While working on my Masters at Georgia Tech I became a Pascal 'fanatic' and
since then my enthusiasm has not diminished. I attempt to follow all aspets
of the language from the standardization efforts to Pascal's-first
descendant ADA in DOD. I would most certainly like to join your group and
provide what assistance I can from an unofficial DOD perspective."
(*79/05/16*) .

Dick Wattson, 10 Dutton St. S., Manchester, NH 03104: "I surely would
appreciate info on PDP-11 compilers (RT-11 compatible)." (*79/10/31*)

Anna Watson, 3705 Delwood Drive, Panama City, FL 32407: "Don't be
discouraged, Andy. You're putting out a really interesting publication. I
expect to use it as a reference tool later." (*79/08/12*)

I-'
lD
0:>
co

Sydney S. Weinstein, CDP, CCP, 170 Centennial Road, Warminster, PA 18974:
"I am now working for Fischer and Porter Company, and am developing data
communications software for local networks for them. We use C as our main
development language, but are also looking at Pascal especially as it
develops for the PDP-11 and 8086 computers. Pascal is the basis of our new
'experimental' process control language." (*79/08/19*)

Tom Westhoff, Willmark A.V.T.I., Box 1097, Willmar, MN 56201: "Are there any
Pascal implementations for Ohio Scientific Challenger II disk systems?"
(*79/09/07*)

Rodney E. Willard, M.D., Lorna Linda Medical Center Clinical Laboratory, Lorna
Linda, CA 92350: "I am trying to get a Z80 UCSD-CP/H system together and
running." (*no. date*)

R. S. Wood, 260 Trafalgar Lane, Aiken, SC 29801: "I'm a research analyst
working for the DuPont Company at the Savannah River Laboratory. My
interests in Pascal are both personal i.e., on a home micro and
professional. The company is looking into the possiblity of using a Pascal
based 'black-box' between our big main frames and any arbitrary
microcomputer to make the micros look like all the other IBM-TSO terminals
in the shop." (*79/07/03*)

Hax vlunderlich, c/o Textronix, Inc., P.O. Box 500, Beaverton, OR 97077:
"Both of us (*Max Wunderlich & Steve Jumonville*) are software engineers for
Tektronix, Inc. We are presently using OMSI Pascal for production testing
purposes on an LSI-11/2 with RT-ll." (*no date*)

Richard Yensen, Ph.Da, clinical Psychologist, 2403 Talbot Road, Baltimore,
MD 21216: "I am running UCSD Pascal version 1.5 on a Heathkit H-ll Computer
with 32K words of 16 bit memory. The computer is a 16 bit machine. II
(*79/07/01*)

Fred Zeise, Data Systems Design, 3130 Coronado Drive, Santa Clara CA: "We
are using ESI/OMSI Pascal and will be getting UCSD PascalI. 5 soon. 11

(*79/05/07*)

PPPPPP
P P
P P
PPPPPP
P
P
PASCAL IN THE NEWS

JOBS:

(* Note-these listings are intended primarily to show that there are indeed
openings for Pascal programmers "out there". By the time you see these
listings, the jobs may well be filled. *)

Control Data Corporation, Communications Systems DiVision, 3285 E. Carpenter
Avenue, P.O. Box 4380-P, Anaheim, CA 92803: "Professional openings exist in
the areas of data communications netowrk, message switching and front-end
systems. Experienced candidates should be familiar in any of the
following: Assembly/Pascal/Algol languages, Microprocessors, Real Time
Systems, Communications protocols, test procedure development, test tool
development." Contact Jess Holguin. (*Computerworld 79/09/24*)

Hewlett-Packard, Hest 120 Century Road, Paramus, NJ 07652.: "We have
opportunities both in Commercial and Scientific areas. Scientific
experience is desired using FORTRAN, Assembler, BASIC, Pascal, data base,
data communications with real-time operating systems. (*79/10/12*)

VaP. Personnel SS160, New York Times: '~inimum of 1 year experience.
Prograre.ming experience with Pascal, PLM, Pll, ALGOL, or FORTRAN" V.P.
Personnel SS160 Times (*79/10/28*)

Perkin-Elmer Corporation, Main Avenue, NOrwalk, CT 06856: Looking for a
micro-computer progranlIl'er whose responsibilities include "developing high
level language (PL/1,Pascal) techniques to improve software development for
micro-computers. (*79/10/28*)

HANUFACTURERS' ADVERTISEHENTS:

Apple Computer Co.,10260 Bandley Drive, Cupertino, CA'95014: Various
advertisements for their version of UCSD Pascal

Columbia Data Products, Inc, 9050 Red Branch Road, Columbia, MD 21045:
Advertising "a unique family of computer systems, the Commander series"
which will run Pascal under CP/H. (* Computer Design, October 1979*)

Enertec, a company in Pennsylvania, has sent a flyer about their version of
concurrent Pascal, which runs on the HP3000, and has an interpreter/kernel
for a Z-80 Micro-computer. P-code for a given program is "about one-third
the size of the P-code from Brinch-Hansen's concurrent Pascal compiler." On
the Z-80, "execution speed at 4MHz is fast enough to handle 1200 baud
terminals with all I/O to the IN, OUT level written in Concurrent Pascal.
P-codes execute in 20 microseconds (push constant) to 500 microseconds
(divide, context switch)

Pertec Computer Corp, Chatsworth, CA advertises a "Pascal Blaiser software
development system, intended for systems and real-time applications
programming," with 64K RAM, 1 megabyte of mass storage. The CPU directly
executes Pascal; price is $5995 in single-unit quantities. (*Mini-Micro
Systems October 1979*)

Rational Data Systems, 245 W 55th St., New York, NY 10019: has provided a
Pascal that is "compatible wi th the entire (*Data General*) line - from
Eclipse to microN ova. All versions are source compatible and each can
cross-compile for any of the other systems. The AOS version is priced at
$3500." (*Computer Design, October 1979*)

Southwest Technical Products Corp., 219 W. Rhapsody, San Antonio, TX 78216
advertises the S/09 with MC6809 processor. "Both multiuser and
multitasking/multiuser operating systems are available for the S/09. BASIC,
Pascal, and an Assembler are immediately available." Cost with 128K bytes
of RAH is $2995.

Sperry Univac Minicomputer OPerations, 2722 Michelson Dr., Irvine, CA 92713
has various advertisements for the Structured Programming System (SPS)
running under their SUMMIT operating system which supports a Pascal
compiler, debugger, program formatter, and concordance program. SPS also
includes a text editor and document formatter.

Stirling/Bekdorf, 4407 Parkwood, San Antonio, TX 78218, advertises
combination coding and CRr layout sheets to IIspeed software development and
documentation for Pascal programmers". Two pads of 50 cost $26.85 plus
$3.25 for handling.

Texas Instruments: Various advertisements for the DS990 Hodel which runs
Pascal on a system that stores "up to 4,600,000 characters usinp,
double-sided, double-density diskette storage". Also advertisements in
various places for their Microprocessor Pascal System with source editor,
compiler, host debugger, configurator, native-code generator, and run-time
support.

I---"
cD
00
o

Three Rivers Computer Corp., 160 N. Craig St., Pittsburgh, PA. 15213: has a
stand-alone system that can take up to 1 Megabyte of RAM, with interactive
graphics (1024 lines on a IS-inch screen), and a speech output module. Mass
storage is provided by 12 Megabyte Winchester disk drive with a 24 Megabyte
disk option. "The unit contains a 16-bit processor that operates with
P-Code, a high-level instruction language based on Pascal. The processor
can reportedly execute in excess of one million P-Codes per second. The
system's memory has a 32-bit segmented virtual addressing mechanism," and
has 4K bytes of writable micros tore as an option. (*Computerworld,
79/10/22*)

NEWSLETTERS & ARTICLES:

David A. Mundie has an article on the relative merits of Pascal vs. BASIC in
Recreational Computing, Sept-Oct 1979. It concludes with '~ost Pascal
lavers are deeply committed to portability and standardization. It is not
our fault that BASIC dialects have proliferated so wildly that there exists
no standard BASIC to compare with Pascal."

Arthur Sale passes on a note from Computing, 1 November 1979, which mentions
that the European Space Agency (ESA) will be using concurrent Pascal "to
program ESA's latest venture into the simulation of satellite subsystems,
the Multiple Processor Reconfigurable Simulator."

The Big Byte (University of Calgary) notes in its September 1979 issue that
"the development of a Pascal compiler under Multics is near completion."

Early Warning Newsletter (University of Nebraska Computer Network) has a
"new release of Stanford Pascal. This version is a copsiderable improvement
over previous versions. For the most part, changes to the system are
enhancements and will not affect Pascal programs that ran under the previous
version." A change has been made to nested comments, giving a compiler
option to make constructs such as (* x:=y (* comment *) *) legal or produce
an error as the user desires. (* 79/09/13*)

Log On (Massey University Computer Centre), notes that ''We are to implement
a Pascal compiler" for a newly-acquired IBM Series/I minicomputer. In usage
statistics for the B6700, Pascal comes in second place with 10% of usage
(981 accesses) during June 1979. (*July 1979*)

ICSA Newsletter (Rice University, Houston TX), tells "Pascal users don't
despair. Although Pascal is currently not available at ICSA, we hope to
remedy the situation soon. Plans are underway to install Pascal 8000 this
fall." (*79/09/17*)

BOOKS ABOUT PASCAL

Alagic, S. and Arbib, M. s., The Design of Well-stpuctured and COr-Tect·PPograms,
Springer-Verlag, 1978, 292 pages.

Bowles, K. L., Microcomputer Problem Solving Using Pascal, Springer-Verlag, 1977,
563 pages.

Brinch Hansen, P., The Architecture of Concurrent ProgramB~ Prentice-Hall, 1977.

Coleman, D., A Structured PPogramming Approach to Data, MacMillan Press, 1978,
222 pages.

Conway, R. W., Gries, D. and Zimmerman, E. C., A Primer on PascaL, Winthrop
Publishers Inc., ·1976, 433 pages.

Findlay, B. and Watt, D., PASCAL: An Introduction to Methodical FPogramming,
Computer Science Press (UK Edition by Pitman International) 1978.

Grogono, P., FPogramming in Pascal, Addison-Wesley, 1978, 359 pages. Note:
Those persons using the first printing of this text may obtain a list of
corrections from: Barry Cornelius, Dept. of Computer Studies, University
of Hull, HuZl, HUB 7RX, EngZand.

Hartmann, A. C., A Concurrent Pascal Compiler for Minicomputers, Sprinter-Verlag
Lecture Notes in Computer Science, No. 50, 1977.

Jensen, K. and Wirth, N., Pascal User Manual and Report, Springer-Verlag Lecture
Notes in Computer Science, No. 18, 2nd Edition, 1976, 167 pages.

Kieburtz, R. B., Stpuctured FPogramming and FPoblem-Solving "nth Pascal, Prentice­
Hall Inc., 1978, 365 pages.

Rohl, J. S. and Barrett, H. J., Programming via PascaZ, Cambridge University Press,
in press.

Schneider, G. M., Weingart, S. W., and Perlman, D. M., An Introduction to Program­
ming and Problem Solving with Pascal, Wiley and Sons, 1978, 394 pages.

Webster, C. A. G., Introduction to Pascal, Heyden, 1976, 129 pages.

Welsh, J. and Elder, J., Introduction to Pascal, Prentice-Hall Inc., in press.

Wilson, I. R. and Addyman, A. M., A PracticaZ Introduction to Pascal, Springer­
Verlag, 1978, 148 pages.

Wirth, N., Systematic Programming: An Introduction, Prentice-Hall, 1973, 169
pages.

Wirth, N., Algorithms + Data Structures = FPograms, Prentice-Hall, 1976, 366
pages.

......
lD
00
o

Alagic, s.; Ar~ib, M. A. tiThe Design of ~ell-Structured and
(orrect Programs,'t Springer-Verlay, Ne~ York, 1976.

The major goal of this book is to present the tech­
niques of to~-aown program design ana verification of
~r09ram correctness hand-in-hand. It thus aims to give
readers a ne~ way of lookin0 at algorlthms and their
oesi~n, synthesizing ten years 01 research in the
~rocess. It provides many examples of program and
proof development with tne aid 01 a tormal and informal
treatlnent of Hoare's mEthoo ot invariants ••••

The secondary yoal 01 this Dook is to teach the reaaer
how to use the programming language Pascal ••••

From the Preface

This reviewer is d Pascal production ~rogrammer and this review
i. presented in light of that background. While many production
~rogrdmmer5, not familiar with the Pascal language, may find this
took to be some~hat difficult at first reading, it is well worth
the trouDle for the insights that it proviaes. The production
programmer, consioering the purchase of this book, should ~ave a
.ell reaa cop, of JEnsen ana wirth l1l handy. This book's advan­
tdge is tnat it can raise the proJrammin~ abilities of its care­
ful reaOers. The cha~ters and the topics chosen for inclusion
a reo:

Chapter

1 ,
.l
4 ,
6
7

Topic

IntrOducing lop-Dawn Design
80s;c Compositions of Actions and Their Proof RuLes
Data Ty"es
DEveloping Programs with Proofs of Correctness
Proceuures ana Function5
Recur~ic,n

Pro~romming with ana without Gotos

Chapter 2 contains an excellent intrOduction to log;cal formulas;
Cha~ter 3 contains an excellent primer on set theory (expanded
later in Chapter 4). A bibliography, glossary ana subject index
are incLuded as are t~o appenoices: the sy~tax of Pascal ana a
complete renumeration of Pascal statement Proof Rules.
Typography is clean and uncluttered with extremely few typograph­
ical €."rrors.

I have only t"o com~laints re~arding this book. The first, an
anrcyance, is the excessive use of reference numoers appendeo to
examples. The authors also begin reference renumbering at the
,ection level rot her than at the chapter level. This causes
unnecessary difficulties to the reader who, ignoring the section
numoer, provided at the top of the odd-numbered oages, thumbs
tack to find a referenced example (in one case, the reference is

to an example in a preceaing section, therefore requiring a lit­
tle aetective work to deter.ine exactly Which examole should be
revie.ed!) 1 have founa myself completely Daflled by an
'Obviously erroneous' back~ard reference, only to realize, after
some consternation, that I had passed back into an earlier
~ection!

The secono, and perhaps more significant, complaint deals with
the tormatting of ana symbols us~d in Pascal program ~xampLes.
The indentdtion scheme is incon5istent. Thus, on page 09, we
t i no:

~!!.i!f"'" eof (f) 22
~f.giO s := S .. f~;

get (f)

while on the very next page (}Q), we find

!2£ i
\l~9.iO

:: 1 to numstud ao
gr :=-gra.Je [i,jj-;

i1 gr 1': Q l!l£O totgraoe := totgrage
~1~~ num~rades := numgrades - 1

.. gr

In the first ekample, it is clear that the compound statement is
within the scope, and thprefore control, of the ~bii~; ;n the s~

/ond it is not ut all apparent that the compound statemE'nt is
under th~ control of the 12[' Although tnis inconsiStency may be
a sym~tom of • -gremlin typesetter', it should be corrected in
1vtur~ poitions. A less ji5(onc~rting problem with th~ tyoe­
:Aet~ing;Of ,Pas~dl,pr09ram; i~ the use of the non-Pascal symbols

, V, ..., and ;it. Since they are not a part of the
LanBuag~, they should be repLacea cy 2DQ' Q!' QQ! ana '<>',
respect,vely, in ali program fragments (they are acce~table .ith­
in the proof comments, since the} have a logical meaning).

lhis text has been used in ~t least onp graouate level course and
so contains material of interest to the more eruJite Pascal
progr~mmer. E~en though the goin~ may be rough at t4mes, I
stongly recommend tnis bOOk tJ anyone seriously interested in
programming lan~uages, and Es~ecially to Pascal programmers.

G. G. Gustafson, San D;eoo CA

Reference

t1J Jensen, K. ana wirth, ~. I'PASCAL - user Manual and Report,"
~econu Edition (Corrected Printing), Soringer-Verlag, New York,
1~76.

.......
CD
00
o

ARTICLES ~BOUT P~S~

Addyman, A. M., et al., IJA Draft Description of Pascal," Software - Practice
and Experience, Vol. 9, 381-424, (1979).

Atkinson, L. V.,"Pascal Scalars as State Indicators," Software - Practice and
Experience, Vol. 9, 427-431, (1979).

Ball, M. S.t "Pascal 1100: !JAn Implementation of the Pascal Language for Univac
1100 Series Computers," NTIS: AD-~059 861/5WC, (1 Ju1 78).

Barron, D., "On Progranuning Style, and Pascal,lI Computer Bulletin, 2,2, (Sep 79).

Bate, RoO R. and D .. SoO Johnson, ~ting Pascal to Work," Electronics, (7 Jun 79).

Bishop, JoO MoO, "On Publication Pascal," Software - Practice and Experience, Vol. 9,
711-717, (1979).

Bishop, J. MoO, "Implementing Strings in Pascal,1I Software - Practice and Experience,
Vol. 9, 779-788, (1979).

Bonyun, D. A. and Holt, R. C., "Euclid Compiler for PDP-II," NTIS: AD-A061 402/
4WC, (~pr 78).

Bonyun, D. ~. and Holt, R. C., "Euclid Compiler for PDP-1l," NTIS: AD-~06l 406/
5WC, (Oct 78).

Brinch Hansen, PoO and Hayden, C., "Microcomputer Comparison, II Software - Practice and
Experience, Vol. 9, 211-217, (1979).

Clark, RoO G., "Interactive Input in Pascal," ACM SIGPLAN Notices., (Feb 79).

Crider, J. E., "Structured Formatting of Pascal Programs," ACM SIGPLAN Notices,
(Nov 78).

Davis, H., "The Pascal Notebook," Interface Age, Chapter 1, (Jun 79).

Fletcher, D., Glass, R. ·L., Shillington, K., and Conrad, MoO, "Pascal Power,1I
Datamation, (Ju179).

Forsyth, C. H. and Howard, R. J., IICompilation and Pascal on the New Microproces­
sors," Byte, (Aug 78).

Gracida, J. C. and Stilwell, R. R., "NPS-Pascal. A Partial Implementation of
Pascal Language for a Microprocessor-based Computer System," NTIS: AD-A06l
040/2WC, (Jun 78).

Graef, N., Kretschmar, H., Loehr, K., Morawetz, B., IIHow to Design and Implement
Small Time-sharing Systems Using Concurrent Pascal," Software - Practice and
Experience, Vol. 9, 17-24, (1979).

Graham, S. LoO, Berkeley, U. C., Haley, CoO B., and Joy W. N., "Practical LR Error
Recovery," ~CM SIGP~ Notices, (~ug 79).

Grogono, P. I "On Layout, Identifiers and Semicolons in Pascal Programs," ACM
SIGP~N Notices, (~pr 79).

Gustafson, G. G. , flSome Practical Experiences Formatting Pascal Programs,"
~CM SIGP~ Notices, (Sep 79).

Hansen, G. J. t Shoults, G. A. , and Cointment, J. D., "Construction of a Trans­
portable, Multi-pass Compiler for Extended Pascal," ACM SIGPLAN Notices,
(~ug 79).

Heimbigner, D., "Writing Device Drivers in Concurrent Pascal," ACM SIGOPS, (Nov 18) ..

Holdsworth, 0. 1 "Pascal on Modestly-configured Microprocessor Systems," IUCC
Bulletin, 1., 1, (1979).

Holt, R. C., and Wortman, D. B., "A Model for Implementing Euclid Modules and
Type Templates," ~CM SIGP~ Notices, (~ug 79).

Joslin, D. A., "A Case for Acquiring Pascal,lI Software - Practice and Experience,
Vol. 9, 691-692, (1979).

LeBlanc, R. J., IIExtensions to Pascal for Separate Compilation, II ACM SIGPLAN
Notices, (Sep 78).

LeBlanc, R. J., and Fischer, C., "On Implementing Separate Compilation in Block­
Structured Languages," ACM SIGPLAN Notices, (Aug 79).

Luckham, D. C., and Suzuki, N., "Verification of Array, Record, and Pointer
Operations in Pascal," ACM Transactions on Progranuning Languages and Systems,
Vol. 1., 2, (Oct 79).

Marlin, C. D., "A Heap-based Implementation of the Progrannning Language Pascal, II
Software - Practice and Experience, Vol. 9, 101-119, (1979).

Narayana, K. T., Prasad, VoO R., and Joseph, MoO, "Some Aspects of Concurrent
Programming in CCNPASCAL," Software - Practice and Experience, Vol. 9, 749-
770, (1979).

Natarajan, N., and Kisinha, M., "Language Issues in the Implementation of a Kernel,1I
Software - Practice and EXperience, Vol. 9,771-778, (1979).

Nelson, P. A., itA Comparison of Pascal Intermediate Languages," ACM SIGPLAN Notices,
(~ug 79).

Nievergelt, J., et al., "XS-O: A Self-explanatory School Computer," Dr. Oobb's
Journal of Computer Calisthenics and Orthodontia, No. 36, (Jun/Ju179).

Parsons, R. G., "UCSD Pascal to CP/M File Transfer Program," Dr. Dobb's Journal of
Computer Calisthenics and Orthodontia, Box E. Menlo Park, C~ 94025, No. 37,
(~ug 79).

Perkins, DoO RoO, and Sites, R. L., IIMachine-independent Pascal Code Optimization, II
~CM SIGP~ Notices, (~ug 79).

Powell, M. SoO' "Experience of Transporting and Using the SOLO Operating System,"
Software - Practice and Experience, Vol. 9, 561-569, (1979).

....
<0
00
o

00

Pugh, J. and Simpson, D.,IIPascal Errors - Empirical Evidence," Computer Bulletin,
(Mar 79).

Ravenel, B. W., "Toward a Pascal Standard," IEEE Computer, (Apr 79).

Rudmik, A. and Lee, E. S., "Compiler Design for Efficient Code Generation and
Program Optimization," ACM SIGPLAN Notices, (Aug 79).

Sale, A., "SCOPE and PASCAL," ACM SIGPLAN Notices, (Sep 79).

Sale, A. H. J., "Strings and the Sequence Abstraction in Pascal,.11 Software -
Practice and Experience, Vol. 9, 671-683, (1979).

Schauer, H" "MICROPASCAL - A Portable Language Processor for Microprogramming
Education," Euromicro Journal, ~, 89-92, (1979).

Schneider, G. M., IIPascal: An Overview, II IEEE Computer, (Apr 79).

Shirnasaki, M., et al., t'A Pascal Program Analysis System and Profile of Pascal
Compilers,lI Proceedings of the Twelfth Hawaii International Conference on
System Sciences, (ED.) Fairley, R. E., (1979).

Silberschatz, A., "On the Safety of the 10 Primitive in Concurrent Pascal,"
Computer Journal, Vol. 22, No.2, (May 79).

Sites, R. L. and Perkins, D. R., "Universal P-Code Definition,"
NTIS, PB-292 082/5WC, (Jan 79).

Sites, R. L., "Machine-independent Register Allocation," ACM SIGPLAN Notices,
(Aug 79).

Smith, G. and Anderson, R., "LSI-II writable Control Store Enhancements to
u. C. S. D. Pascal," NTIS, OCIO-l8046, (Oct 78).

Tanenbaum, A. S., "A _Co,mparison of Pascal and ALGOL 68," Computer Journal, Vol. 21,
No.4, (Nov 78).

Tanenbaum, A. S., "Implications of Structured Progranuning for Machine Architecture,"
Communications of the ACM, (Mar 78).

Wallace, B., "More on Interactive Input in Pascal," ACM SIGPLAN Notices, (Sep 79).

Watt, D. A" "An Extended Attribute Grammar for Pascal," ACM SIGPLAN Notices.

Wickman, K., "Pascal is a Natural," IEEE Spectrum, (Mar 79).

Wiggers, R. and Van De Riet, R. P. I "Practice and Experience with BASIS: An
Interactive Progranuning System for Introductory Courses in Informatics,"
Software - Practice and Experience, Vol 9., 463-476, (1979).

Wirth, N., "MODULA-2," ETH Zurich, Institut flir Inforrnatik, No. 27, (Dec 78).

wi'("th, N., "Reflections About Computer Science, n Univ. of York (England) Dept.
of Computer Science, Report No. 19, (Ju178).

Wirth, N., "A Collection o~ Pascal Programs," ETH Zurich, Institut fur Inforrnatik,
No. 33, (Jul 79).

UCSD .Ji.o_rkshop Proceedings

The Proceedings of the July 1978 UCSD Workshop on Pascal Extensions
(see Pascal News 1/13, pages 12 .. 15) are nmv available for $25 from:

Institute for Information Systems
lrail Code C-021
University of California, San Diego
La Jolla, CA 93093
USA

Payment mus t accompany all orders.

Several persons involved with the Horkshop expressed to me
thei r unhappiness With the Proceedings. Because of this,
1 asked Ruth Higgins, who served on the Edi torial Board, to
provide some background information. Ruth graciously agreed
to do so, and the follO\\1ing note is the result. r

-Jim I-liner

Comments on the Proceedings of the UCSD Workshop on System Programming Extensions
to the Pascal language.

The Proceedings of the UCSD Workshop on System Programming Extensions to the
Pascal Language are now available. I would like to provide some information
for the benefit of those who did not attend the workshop but will obtain a
copy of the proceedings.

Near the end of the second week of the Workshop, it became clear that we would
not be able to approve the wording of a final document within the time frame
of the Workshop. And yet, since the proceedings would be purported to
represent consensus of about 50 industry representatives, it was important
that they be accurate. To that end, the Workshop participants appointed an
Editorial Board whose function was to compile a draft of the proceedings for
UCSD to distribute to Workshop attendees for comment with respect to accurac~
review those comments, attempt to edit the draft to reflect the comments and
prepare a final version. Preparation and distribution of copies was provided
by the Information Sciences Institute, UCSD.

I--'
<.D
00
o

The Editorial Board met in August, 1978, to prepare the draft. It was
distributed to Workshop members with the phrase "Not for distribution" on each
page. The comment period was to last until the end of October. The next
date when most of the Editorial Board could meet was January 11, 1979. At
that time, we went through each section of the proceedings and tried to
incorporate comments as fairly as possible. We then wrote instructions to
Gillian Ackland, the UCSD person who was doing the actual editing and
distribution of the document. We also wrote a cover letter to accompany the
proceedings. Copies of both of these are enclosed.

In late April or early May, I received a phone call from Gillian. She said she
had had a very busy winter quarter and had not been able to do anything at all
on the proceedings. However, in the Spring, she had gone on with the
work but had a few questions. Instructions 1 through 5 (see enclosed) were OK,
but why didn't the Editorial Board members want their names included except
in the Workshop attendees list? I told her that we had discussed this at length
and agreed that we did not want our names to lend credibility or be
misconstrued as endorsement of the poor technical quality of the document.

She had another question regarding Section G (Proposed Experiments) on the
subsection on Type Secure External Compilation. This section had sparked
several, carefully written, long letters disputing the accuracy of what
claimed to be a representation of the part on which there had been agreement.
The Board could find no way to treat these fairly except to instruct Gillian
to include the letters also in that section. For some reason, Ken Bowles and
Terry Miller did not want to do that. Instead, they left the section as it was
in the first draft and added, as an editorial comment, the sentence "The
accuracy of this representation has been disputed." She asked me if that was
all right. I said that the Board had considered that approach but felt it
would be educationally important to include all of the disagreement to show
how pervasive the dispute was. Anything less would be misleading and, therefore,
unfair to the workshop participants. Gillian suggested that they rewrite the
section, incorporating the comments as best they could. I told her that the
rewritten section would have to be apProved by, at least, those who had
disputed the first version. It seemed to me that the simplest, fairest, and
most professionally honest way to handle it was to make the whole technical
controversy available to the readers. In addition, it would help to demonstrate
how complicated the issue of external compilation really is.

When one receives a copy of the proceedings one can see that the cover letter
is not included; the words "not for distribution" do not appear &\$ per
the Board's instructions; and the subsection on Type Secure External Compilation
does not include any of the related technical controversy. Finally, a final
copy was not sent to the Editorial Board Chairman as requested in 8 (see enclosed).
I was told that the matter was handled in such a way in the interest of'time,
that the whole thing had dragged on far too long and any further delay was
not iustified compared to the desirability of getting it distributed. It is
not clear to me how the Board's instructions' could have added noticeable
delay.

Sincerely,

/~}y1. J./ . ~
Ruth M. Higgins ~

Dear Gillian:

Many thanks for getting your new version of Sections B thru F
to us. There was some concern about how certain comments had been
handled. Having the updated version allowed us to check.

We have decided that, on the basis of responses from reviewers,
the ~r~ceedings do not merit publication. However, the Workshop
partlclpants deserve an accurate report. Therefore enclosed are the
required corrections. '

Regarding overall format,

1. Replace Section A with the enclosed;

2. Edit Sections B through G as shown. Although you did not
send ~s your copy of G, the Board edited a copy from
the flrst draft to our complete satisfaction;

3. Delete Section H, Section I, and Appendix X;

4. Insert page numbers in the Table of Contents;

5. The list of participants should be in alphabetical order
by name of individual accompanied by affiliation, omitting
addresses and phone numbers. .

6. The members of the Editorial Board do not wish to have their
names appear anywhere except among those of Workshop
participants.

7. Since the Board feels that these proceedings do not merit
wide distribution (even though persons requesting individual
copies should receive them at cost), the phrase NOT FOR
DISTRIBUTION will remain on each page.

8. Before printing, mail a final copy to Bruce Ravenel. He will
ascertain that editing instructions were understood correctly.

Thank you again for your tremendous efforts. We appreciate the
work you have done so far. Good Luck in this semester!

The Editorial Board

I->
CD
00
o

I->
o

To: The Workshop Participants

From: The Editorial Board

Subject: The Enclosed Proceedings

Da te: January 11, 1979

This is the final version of the Proceedings to the UCSD Workshop
on System Programming Extensions to the Pascal language.

In light of review responses received, the Editorial Board
has decided that the quality of the contents of this document merits
distribution to the vlorkshop participants only. It does not warrant
publication. However, as prescribed in the general resolutions (Sec­
tion B), copies will be sent to a few others and will be available
at reproduction and mailing costs to any who request individual copies.
Recipients of this document are requested to restrain from distributing
it further.

The production of these Proceedings reflect the combined
efforts of many people. In particular, Gillian Ackland has performed
an outstanding, Herculean effort of document preparation and distribution
under the gui dance of Terry Mill er and Ken Bowl es. vJe wi sh to thank
them on behalf of the Workshop participants.

A Report on Pascal Activities at the
San Diego 1979 Fall DECUS U.S. Symposium

Bill Heidebrecht
TRW DSSG
One Space Park
Redondo Beach, CA 90278

The 1979 Fall Digital Equipment Computer Users Society (DECUS) U.S. Symposium was
held in San Diego, California on December 10-13. Approximately 600 of the 2500 people
who preregistered indicated an interest in Pascal. The DECUS Pascal SIG, chaired by
Dr. John R. Barr of the University of Montana, has now grown to over 2000 members.

In the Pascal Implementation Workshop. John Barr, Brian Nelson and I spoke briefly
about the implementation of NBS Pascal under RSX, RT-ll, RSTS and VAX/VMS systems.
Gerry Pelletier of Transport Canada spoke about his work in implementing a self compiling
version of Torstendahl's "Swedish" Pascal (V5.3) under RSX-llM.

In the Pascal Standards Report, Leslie Klein (DEC) and Barry Smith (Oregon Software)
reported on the current status of the ISO draft standard and progress within the X3J9-
IEEE Joint Pascal Committee. Barry gave a detailed discussion on conformant array para­
meters and answered a number of good questions from the audience. The quality of questions
asked showed the increasing level of sophistication of Pascal users in the DEC world.

John Barr gave a presentation of his work on implementing NBS Pascal on LSI 11 's -0

running RT-ll. The compiler is completely selfsupporting now on such systems, an~ can ~
compile itself on a 28K word machine using the RT-ll SJ monitor. It takes approx1mately ~
10 minutes to compile the compiler on an LSI-ll using floppy disks (about 700 lines/minute). ~
The compiler is not yet a full implementation of Standard Pascal, but we (the Pascal SIG)
are working on it.

William Donner and James Forster of TMI Systems gave interesting presentations on
the implementation of a financial message switch for EFT using a Pascal Multi:p~o:ess
Subsystem (PMPS-ll), which they also implemented. They added concu~rency fac111t1:S
(processes, monitors and semaphores) to OMSI Pascal strictly by add1ng to the run~1me.
without extending the language. Fed up with MACRO. FORTRAN and RATFOR. they cons1~ered
using C, PL/I and Pascal as their implementation langua~e. They :hose.Pasca~ for 1ts
reliability, efficiency and good structure. 99% of the1r system 1S wr1tten 1n Pascal.

Isaac Nassi of Digital Equipment gave two overview presentations on Ada, wh~ch
were very well attended. The audience seemed somewhat overwhelmed by the complex1ty of
the 1 anguage.

During the Pascal SIG Business Meeting a variety of topics was discussed. For
example. Leslie Klein gave an update on DEC's VAX Pascal compiler. The compiler has under­
gone field testing since June 79 at 15 sites. and should be ready for shipment to customers
very soon (approx. December 79). Although it is not a highly optimizing compiler. the
test sites were largely enthusiastic about it. One of the test site users reported
moving a large program from CDC Pascal to the VAX with only 3 changes to the program
required. DEC should start receiving some user feedback on the compiler by the next DECUS
Symposium.

Reid Brown of Digital spoke about the positive influence the Pascal SIG has had
on Digital with respect to Pascal.

Roy Touzeau (Pascal SIG Newsletter Editor) and John Barr also spoke on a number
of subjects concerning the SIG. Due to DECUS's new funding structure, each SIG may
soon have to charge a small annual subscription fee for its newsletter.

I spoke briefly about the stat~s of the DECUS Pascal SI~ l~brar~. "The Fal~ 79
Pascal SIG library contains two verS10ns of Seved !orsten~a~l s Swed1sh Pasc~l.
version 6, which contains some new symbolic debugg1n~ fac111ties, and the verS10n
modified by Gerry Pelletier to enable it to compile 1tself on a PDP11. There are also
versions of NBS Pascal for RSX, RSTS and RT-ll systems, as we~l as a number of other
utilities. PN readers who are interested in the Pascal SIG 11br~ry should consult
recent editions of the DECUS Pascal SIG Newsletter for more deta1ls.

The next DECUS U.S. Symposium will be held in Ch~cago on April 22-25, 1980. and
will again feature a number of interesting Pascal seSS10ns.

......
<D
00
o

......

ISO/TC 97/SC 5 N 553
ISO INTERNATIQNAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

From: UNIPREA

VIA MONTEVECCHIO, 29

10128 - TORINO

Telephone. 531712

Telegramj: UNISO - TORINO

REPORT ON ADA

ISO/TC 97/ SC 5

PROGRAMMING LANGUAGES

Secretariat ANSI (U, S ,A,)

Ada is a programming language being produced by the
U.S, Department of Defense in cooperation with several foreign
and international organizations, The project has spanned five
years and is unique for its openness in all phases and the
resultant international contributions,

The first phase was an evolution of requirements from
the users by an itterative process which produced five versions,
increaSingly refined, These documents were w~dly circulated
and major input was received from individuals outside the U,S"
from the International Purdue Workshop such especially its LTPL-E
committee, and from experts of SC 5/WG 1, Major support has been
contributed by the CEC and by the goverments of the U,K. and
Germany, We believe that this requirements phase was very valuable
in settling many of the questions that normally arise much later
in the development process, when they are much more difficult to
deal with, It might be said that, in the best procedure for
major projects, we are proceeding thorough definitive requirements,
followed by firm design, before coding,

After evaluation of several dozen existing languages
against these requirements, a new design was initiated, On the
basis of an international request for proposal, four contractors
were chosen to produce competive prototypes, All started from
Pascal, althoug'il-there-":Cs"no":Lntent that the resulting language
be closely related to Pascal since their requirements were much
different, The initial designs from these four contractors were
reviewed by several hundred experts worldwide and a decision was
made to continue refinement of two of the designs, A year later,
these two designs were reviewed, again with international partici­
pation, The single design selected was that produced by Cii
Honeywell-Bull, That design, and a document giving rationale for
design decisions, are contained in N-499 and have been distributed
as t'he June 1979 issue of SIGPLAN Notices, A preface from the
Secretary of Defense requests international public comment.

2)
For any that do no have this document, a microfiche is available

this meeting,

Ada is a modern powerful computer programming language,
It has real-time features and has been under consideration by WG 1
for that reason, It is however targeted to a much wider audience,

Ada promotes modularity for the production of 'large
systems, strong data typing for reliable, even provable, programming,
etc, A rigorous definition will allow ,control of the language
to make possible wide portability, It is our intent that there
be no subset or superset compilers and that a validation facility
be used to assure compliance,

Our economic analyses show that even more benefit may
be attributed to the commonality resulting from exactly compatible
systems than that would be attributed to the technical improvements
postulated from introduction of Ada,

Even greater benefits may accrue from the wide availabi­
lity if toolsadevelopment enVironment, debugging systems, appli­
cations specific packages, etc, We term this the '''environment''
of Ada, It is expected that the availability of this environment
to those who have compliant compilers will be an incentive for
such compliance,

A fundamental question is why does the DoD want to get
inv'olved with national and international standardization, Ada
is ':::>eing volved in a single place and does not have the normal
standards problem of rationalization of divergent definitions and
implementations, Is not the DoD's control sufficient?

It may well be that the DoD has sufficient control in­
ternally and with its contractors, This control may be sufficient
to carryover to much of U,S, industry, We are not confident that
this will be sufficient to cover small business, academiC, and
foreign industry, We do, however, feel very strongly about the
benefits of commonality, specifically those benefits to the DoD
of universal commonality, the ability to pick up programs generated
elsewhere, transfer of technology, availability of compilers
generated elsewhere, and most significantly the increacend
availability of other sources on Which we can draw for hardware
and software contractors, increacing competition,

For the advantages this will provide, the DoD is
prepared to relinguish some control to the proper authorities,
the matter is certainly up for negotation, Ada Control Board will
be established to maintain and interpret the standard, It seems
reasonable to have representatives on this group from any nation
having a significant committment to the language, Consider that
group as the sponsoring body, presently the U,S, DoD with repre­
sentatives of U,K" France and Germany,

I-'
<.D
00
o

I-'
N

It has certainly been true that the design of ADA, and
the entire project leading up to it, has been an inter­
national effort, as I believe has been evidenced here
today. It would be a shame if this opportunity to assu­
~~$f~1~s~~~ beginning, a worldwide single definition

In light of the resolution 6 intent, we consider that
we are now in a phase of simultaneous comment from lo­
cal, national, and international bodies. This was the
purpose of the WG 1 Resolution and the SC 5 circula­
tion of the documents (N 499, N 504, N 505).
Several hundred comments have already been received
and processed. The results of these comments and fur­
ther studies will result in a final design document in
May 1980 (with perhaps an early draft in January 1980).
At that time we will have a Military Standard, and, one
expects, a US Government Standard. I be live that at that
time, with your cooperation, we will have done the pro­
cessing appropriate in order for SC 5 to recommend Ada
for international standardization.

The University of Nebraska-Lincoln

Pascal User's Group, c/o Andy Mickel
University Computer Center: 227 EX
208 SE Union Street
University of Minnesota
Minneapolis, MN 55455

Dear Andy,

Department of Computer Science
Ferguson Hall

Telephone (402) 472-2402
Lincoln, Nebraska 68588

Enclosed is an article for the Pascal News that should be of interest
to your readers. It describes some observations on error message fre­
quency, persistence, and apparent student reaction in an introductory
Pascal class for Computer Science majors and advocates the development
of better error diagnostics particularly for novice programmers.

Sincerely,

D£~'~~~
Assistant Professor

The University of Nebraska-lincoln
The University of Nebraska at Omaha -Th';-University of Nebraska Medical Center

1. Introduction

A STUDY OF SYNTAX ERRORS ENCOUNTERED
BY BEGINNING PASCAL PROGRAMMERS

Kirk Baird
David W. Embley

Department of Computer Science
University of Nebraska - Lincoln

Lincoln, NE 68588

In the 1978-1979 school year, the Computer Science Department at the University of
Nebraska - Lincoln replaced FORTRAN with PASCAL as the introductory language for Compu­
ter Science majors. Since PASCAL was known to only a handful of upperclassmen and pro­
fessors, it was anticipated that beginning students would encounter difficulty finding
assistance with errors in their programs. The traditional sources of assistance, other
than the teaching assistant or professor (e.g. the debug consultant, fraternity files,
or the dorm-floor Compo Sci. genius) would not be as helpful as before. In this situ­
ation, increased dependence on the compiler generated error messages was inevitable;
and even though PASCAL is designed for instructional use, its error diagnostics are
unfortunately not composed so that the beginning student can readily understand them.

Anticipating this difficulty, we decided to observe all first semester student programs
submitted for execution and note error message frequency, error persistence, and appar­
ent student reaction and catalogue actual causes for each error. The results of these
observations were to serve as a basis for improving PASCAL errOr messages or at least
to provide material for a reference document for beginning PASCAL programm~rs.

2. Data Collection

The students observed were Computer Science majors taking CS 155, Introduction to Com­
puter Programming, using PASCAL. These students ran their PASCAL programs on an
IBM 370/148 (later upgraded to a 158) using the September 1977 version of a PASCAL
compiler developed at Stanford University.

A special JCL package was developed for use in data-collection. Each time a student
ran a program, the output, including in-line errOr messages, was routed to disk. If
the program compiled without syntax errors, it was allowed to execute, and the output
was also sent to disk. A copy of all of the temporary disk output including program
listing and program output was placed in a permanent file and finally routed to the
printer and given to the student as if it were undisturbed. The permanent file was
occasionally reblocked 2nd copied to tape.

The data collected in this manner eventually came to almost six million bytes of stor­
age. Elementary pattern matching techniques were used to locate and tabulate the
occurrences of syntax errors in this data. The results of this tabulation appear in
Appendix 1.

On occasion, listings of random portions of the data were printed, and the syntax
errors, their cause, and their persistence were analyzed by hand and cataloged. Later
in the semester, printouts of unsuccessful runs were collected by the professor and
turned over for analysis and-cataloging. The results of this tabulation are reported
in Appendix II.

I-'
cD
00
o

3. Observations

Three general observations can be made from the data: 1) beginning students interpret
error messages too literally, 2) differences between standard PASCAL as described in
the text (Kieburtz, 78) and the version implemented confuse students, and 3) certain
error messages seem to be particularly ambiguous or misleading.

3.1 Literal Interpretation

Given little else, the beginning student is likely to depend unwittingly on the com­
piler generated error messages~ at first taking them too literal1y_ In the Stanford
compiler as implemented at UNL, an error arrow points to a particular column of a
line of code and is followed immediately by a list of error message numbers. The
premise is made that the arrow points to the exact position of the error described by
the error messages associated with the error numbers. In fact, the error arrow never
points to the exact position of the er-ror. Most often, it is positioned just past the
error, usually pointing at the following keyword or identifier.

More than once a student forgot to put a semicolon at the end of the PROGRAM line and
found the error arrow pointing to the character following the succeeding keyword, VAR,
giving the message "SEMICOLON EXPECTED". The student would run the program a second
time with a semicolon after the keyword (i.e. VAR;), and the compiler would respond
with an error arrow pointing to the semicolon and the message "SEMICOLON EXPECTED",
among others.

Other students inadvertently put a semicolon where a comma belongs in a HRITELN param­
eter list. The resulting error was ") EXPECTED" with the error arrow positioned near
the semicolon. Subsequent runs showed students putting right parentheses before, after,
and in pla~e of the semicolon.

3.2 A Non-Standard Version

The second problem is the difference between the standard version of PASCAL and the one
implemented at UNL. Since some characters were not available, the compiler expected
standard substitutions such as left-parentheses-vertical-bar for left-square-bracket
and the at-sign for up-arrow. These obvious distinctions caused relatively few prob­
lems.

Some other differences, however, were more detrimental. For example, in the September
1977 version of the Stanford compiler, the standard identifier ~V<KINT was not imple­
mented, nor was PAGE, and HRITELN and its counterparts had to be followed by paren­
theses in contrast to the syntax diagrams. Several students faithfully adhered to the
syntax diagrams and appropriately omitted the parentheses only to find their code blem­
ished with unwarranted syntax errors. The subsequent July 1978 version resolved the
problems with PAGE and HRITELN hut disallowed SET OF CHAR. Hence students copying seg­
ments of programs from their text with such syntactically legal expressions as
CH IN (I ·A· •• ·Z· I) or N >= SQRT(MAXINT) would get syntax errors.

3.3 Ambiguity

The third problem is the ambiguity of the error message itself. There are a handful of
often occurring ambiguous error messages including "ILLEGAL SYMBOL" and "ERROR IN VARI­
ABLE" and less often occurring messages such as "SEMICOLON EXPECTED" and "TYPE CONFLICT
OF OPERANDS". In fact, "ILLEGAL SYMBOL" and ERROR IN VARIABLE" accounted for almost
forty percent of all error messages observed.

One of the most often committed blunders exemplifies. the novices·reaction to these
ambiguous messages. Students would precede an ELSE with a semicolon; the resulting
error message, "ILLEGAL SYMBOL", pOinted at the blank following the ELSE. Students
replaced this blank with almost anything, including another THEN, another semicolon, a
BEGIN, or a new line.

The reason ambiguous error messages hold such a maj ority of the total is twofold:
1) the very fact that the error message is unclear causes the student to repeat it,
sometimes with changes, and at times with the innocent hope that it will go away, and
2) many error messages have more than one cause and are unclear because the message
has to be general enough to cover all cases.

4. What can be done?

Ideally, the compiler should be modified, with the beginning student in mind, to give
more appropriate error messages. This modification should involve more than mere cos­
metic changes to the error messages. Most likely, additional messages are needed, and
a finer distinction among possible causes should be incorporated particularly for
ambiguous and high frequency error messages.

Not having developed the compiler ourselves~ we were not in a position to make these
intricate alterations. We were, however, in a position to alter the error message
table so that an error message would include a listing of the most prevalent potential
sources of the error. Although this option was at our disposal, we rejected it for a
number of reasons. No beginning student could remain calm at seeing a hard-worked-on,
twenty-line PASCAL program intermingled with two hundred lines of error messages.
Moreover, there are certain to be sources of errors that have not been cataloged; a
given student assignment might generate a particular error message a thousand times
even though it never appeared during the semester observed. In addition, because
Stanford is regularly updating its compiler, such alterations would soon be made obso­
lete. For example, when a literal character string spanned two source lines on the
September 1977 version, the error message generated was "IMPLEMENTATION RESTRICTION".
In subsequent versions, the error is "STRING CONSTANT CANNOT EXCEED SOURCE LINE".

In view of these difficulties, it was thought best to provide a supplementary handout
that could be updated from time to time. This handout (Baird, 79) provides a list of
the most frequently encountered errors and their typical causes. Another advantage
of a handout over a cosmetic alteration of the syntax error ~table is that additional
documentation and helpful suggestions can also be included. In addition to syntax
errors, this handout documents differences between the UNL Stanford compiler and
standard PASCAL, describes runtime errors and what to do about them, lists compiler
options, and shows and explains a sample program listing.

He encourage PASCAL implementors to make the effort to~provide better error messages
particularly for novice programmers. We would be interested to hear of such projects
in progress, and would eventually like to obtain a compiler with error messages that
are more palatable to the beginner.

References

1.

2.

Kieburtz, R. B., Structured Programming and Problem Solving with PASCAL,
Prentice Hall, 1978.

Baird, K., "Stanford PASCAL at UNL", Department of Computer SCience,
University of Nebraska - Lincoln, 1979.

......
to
00
o

APPENDIX I

These errors were tabulated from students running PASCAL as an introductory programming
language, using the Stanford PASCAL compiler. The actual error message is listed in
order of decreasing occurrence. Errors of insignificant occurrence are omitted.

ERROR

6
104

59
13
58

***** 398
134

51
4

101
5

129
10

103
18
14

125
2

1411
21
52

116
17
53
54

124
9

140
50

126
145

8
16
20
55

102
106
107
139
142
143
150
167
201
255

ILLEGAL SYMBOL
IDENTIFIER IS NOT DECLARED
ERROR IN VARIABLE
"EN D" EXPECTED
ERROR IN FACTOR
END OF FILE ENCOUNTERED
IMPLEMENTATION RESTRICTIO'N
ILLEGAL TYPE OF OPERAND(S)

.":=" EXPECTED
")" EXPECTED
IDENTIFIER DECLARED TWICE
":" EXPECTED
TYPE CONFLICT OF OPERANDS
ERROR IN TYPE
IDENTIFIER IS NOT OF APPROPIATE CLASS(sic)
ERROR IN DECLARATION PART
":" EXPECTED
ERROR IN TYPE OF STANDARD FUNCTION PARAMETER
IDENTIFIER EXPECTED
ILLEGAL TYPE OF EXPRESSION
"*" EXPECTED
"THEN" EXPECTED
ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER
"BEGIN" EXPECTED
"UNTIL" EXPECTED
"DO" EXPECTED
F-FORMAT IS FOR REAL TYPE ONLY
"(" EXPECTED
TYPE OF VARIABLE IS NOT A RECORD
ERROR IN CONSTANT
NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION
TYPE CONFLICT
"OF" EXPECTED
"=" EX PECTED
" ," EXPECTED
"TO" OR "DOWNTO" EXPECTED
LOW BOUND EXCEEDS HIGHBOUND
NUrlBER EXPECTED
INCOMPATIBLE SUBRANGE TYPES
INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION
ILLEGAL PARAMETER SUBSTITUTION
ILLEGAL TYPE OF LOOP CONTROL VARIABLE
ASSIGNMENT TO STANDARD FUNCTION IS NOT ALLOWED
UNDECLARED LABEL
ERROR IN REAL CONSTANT : DIGIT EXPECTED
TOO MANY ERRORS IN THIS SOURCE LINE

PERCENT
OCCURRENCE

27.0
18.2
11.4
04.5
04.3
04.1
03.6
02.7
02.5
02.4
02.1
01.6
01.6
01.5
01.5
01.4
01.3
01.0
00.8
00.7
00.6
00.6
00.5
00.4
00.4
00.4
00.4
00.3
00.3
00.2
00.2
00.2
00.1
00.1
00.1
00.1
00.1
00.1 J

00.1
00.1
00.1
00.1
00.1
OO.t
00.1
00.1

Appendix II

The following error messages were found in the programs of beginning PASCAL students
and were catalogued as to what caused them. Only the more recurrent causes are listed;
the obvious causes are not listed (e.g. error 14, n;" EXPECTED, does not list missing
semicolon as a cause).

2: IDENTIFIER EXPECTED

a) extra comma in list
b) used TYPE as a variable name
c) missing quote in character literal
d) previ~us error in declaration
e) used zero instead of 0 in identifier

4: ")" EXPECTED

a) => used instead of >=

5: ":" EXPECTED

(note: in Stanford PASCAL, the colon is a viable
substitute for ••)

a) tried to use FILE as a variable name
b) CASE without END
c) TO used instead of ••

6: ILLEGAL SYMBOL

a} previ~us statement missing a semicolon
b) semic~lon precedes ELSE
c) misspelled keyword
d) => instead of >=
e) missing quote in character literal
f) missing (in comment
g) = used instead of :=
h) extra END
i) DO used instead of BEGIN
j) TO used instead of ••
k) = used instead of : for RECCRD within RECORD
11 END missing on CASE statement
m) comma missing in list
n) spaces within an identifier
0) comma or colon used instead of a semicolon

8: "OF" EXPECTED

a) tried to use FILE as a variable name
b) identifier declared twice

.....
CD
00
co

10: ERROR IN TYPE

a) tried to use TYPE as a variable name
b) colon used instead of equal sign

13: "EN~' EXPECTED

a) forgot END for RECORD
b) used TYPE as a variable name within record

14: ";" EXPECTED

(note: this error only occurs within the declaration part
semicolons missing within the block are flagged wi til
error 6: ILLEGAL SYMBOL)

a} illegal characters within PROGRAM identifier
b) forgot END for RECORD
c) tried to redefine TYPE within a RECORn

16: "=" EXPECTED

a) colon used to instead of equal sign
b) tried to use TYPE as a variable within a RECORD

18: ERROR IN DECLARATION PART

a) VARIABLES used instead of VAR

19: ERROR IN FIELD LIST

a) forgot END for RECORD

50: ERROR IN CONSTANT

a) ••• used instead of ••
b) TO used instead of
c) variable list used as an array index

51: ":=" EXPECTED

a) = used instead of :=
b) misspelled name of procedure identifier

58: ERROR IN FACTOR

a) => used instead of>=
bl literal character used without quotes
C) real fraction constant used without leading zero

59: ERROR IN VARIABLE

a) missing quote
b) missing semicolon
c) missing comma in list
d) misspelled procedure identifier
e) := used instead of = in expression
f) misspelled AND
g) illegal charactrer in identifier

101: IDENTIFIER DECLARED TWICE

a) identifier used once as an element in a user defined
datatype and once as a simple variable

102: LOWBOUND EXCEEDS HIGHBOUND

a) TO used instead of ••

103: IDENTIFIER IS NOT OF APPROPRIATE CLASS

a) semicolon missi~g before WRITE
b) previous error ~n declaration
c) no END for CASE statement
d) missing quote for literal string

104: IDENTIFIER IS NOT DECLARED

a) misspelled identifier
b) misspelled keyword
c) missing quote in character literal
d) imbedded blanks within an indentifier

116: ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER

a) tried to read a user defined data type gualified record
identifier broken between source lines

125: ERROR IN TYPE OF STANDARD FUNCTION PARAMETER

a) passed integer to TRUNC

129: TYPE CONFLICT OF OPERANDS

a) integer assigned a real result
b) misspelled identifier
c) I. used instead of DIV
d) literal character string not the same size as

ARRAY OF CHAR it is assigned to

"--'
cD
00
o

"--'
en

134: ILLEGAL TYPE OF OPERAND(S)

a) => used instead of >=
b) previous error in declaration

136: SET ELEMENT MUST BE SCALAR OR SUBRANGE

a) set written inside square brackets
e.g. X : SET OF BOOLEAN; •••• (I X I)

138: TYPE OF VARIABLE IS NOT AN ARRAY

a) = used instead of := when assigning an array

139: INDEX TYPE IS NOT COMPATIBLE WITH DECLARA~ION

a) previous error in declaration

140: TYPE OF VARIABLE IS NOT A RECORD

a) previous error in declaration

143: ILLEGAL TYPE OF LOOP CONTROL VARIABLE

a) previous error in declaration

144: ILLEGAL TYPE OF EXPRESSION

a) := used instead of =

145: TYPE CONFLICT

a) previous error in declaration

147: LABEL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION

a) no END for CASE statement

152: NO SUCH FIELD IN THIS RECORD

a) misspelled field
b) previous error in declaration

156: MULTIPLY DEFINED CASE LABEL

a) no END for CASE statement
b) missing quote within CASE statement
c) ELSE preceded by semicolon in CASE statement

255: TOO MANY ERRORS IN THIS SOURCE LINE #

(note: the compiler only lists the first nine syntax
errors of a source line)

398: IMPLEMENTATION RESTRICTION

a) WRITELN (a record)
b) literal character string> 64 characters
c) SETs OF CHAR are disallowed on the compiler

DDDDDDDD

Applications

AYLI - As You Like It
Production programming in Pascal requires a number of 'source code manipulation tools.

With them appropriate application specific syntactic sugar and common multi-program pro­
cedure and data structure definitions can be managed. Doug Comer's MAP is such a pro­
gram.

Tram's complex arithmetic routines and Judy Bishop's/Arthur Sale's string routines
are examples of typical library source utilities. Barry Smith also sent in a small
string package. Take your pick. After all, with Pascal you can have it .AYLI.

CORRECTIONS

A Class of Easily ... - Pascal News #15
in example #3 change

lIy = .0 11 to !ly ::; 9"

Applications
S-5 "ID2ID" (See PN 15, September 1979, page 31.)

Jim Miner spotted two typos in the published version of ID2ID. He also provided code to
improve error processing by handling unclosed _strings correctly as well as an unexpected
EOF inside comments. - Andy Mickel

Correct typographical errors:

Replace line 172 by:
HigherRight then P1-.Bal := HigherLeft

Replace line 314 by:
ImportantChars := LettersAndDigits + ['(', '{', "");

Improve error processing:

Replace line 3 by:
'Ie James F. Miner 79/06/01, 79/09/30.

Insert after line 275:

label
1 { TO ESCAPE EOF INSIDE OF A COMMENT };

Replace lines 338 and 339 by:
'in source program.')

else begin Write(Target, Source-); Get(Source) end

Insert after line 345:
Write(Target, Source~); Get (Source);

Delete line 347.

Rep lace lines 350, 351, and 352 by:
if EOLn(Source) then
--begin WriteLn(Target); ReadLn(Source);

if EOF(Source) then goto 1 { EXIT SCAN
end

else begin Write(Target, Source-); Get (Source)

Replace lines 362, 363, and 364 by:
if EOLn(Source) then
--begin WriteLn(Target); ReadLn(Source);

if EOF(Source) then goto 1 { EXIT SCAN
end

else begin Write(Target, Source-); Get(S?urce) ~

Replace line 372 by:
end'

l:-{-COME FROM EOF INSIDE OF COMMENT}

USER MANUAL - REFERENCER

Version S-02 .01. 1979 December 17

1, INTRODUCTION

The Referencer program is a software tool intended to assist programmers in
finding their way around Pascal program listings of non-trivial size. In
keeping with a basic philosophy that software tools should have distinct
and clear purposes (as indeed most craftsmen desire), the function of
Referencer has been defined as providing s ~ summary of
procedure-headings l.n. s ~, .arul. s 11!l2.l.!:. of ~ made.!l.Y. each
procedure. It thus provides information on the first-order procedural
interfaces~

The products of Referencer may serve also as an adjunct to a full cross­
reference, because in presenting less informalion Referencer produces a
more convenient summary, Additionally, for those people who wish to change
the syntax of Pascal to require repetition of a procedure-heading at the
occurrence of the block of a forward-declared procedure, it will serVe as a
reminder that language changes are not the only answer to every problem.

2. USE OF REFERENCER

Version S-02.01 of Referencer, the distribution version, has no options to
be set. It reads from the ~ file, expecting to find a complete Pascal
program on this textfile. Although the results with syntactically incorrect
programs are not guaranteed, Referencer is not sensitive to most flaws. It
cares about procedure, function, and program headings, and about proper
matching of begins and cases with ends in the statement-parts,

The two tables are produced on the file output. Referencer does not try to
format the headings to fit them into a device-line width; it leaves them
pretty much as they were entered into the program, except for indentation
alignment. The first table thus benefits from a wide print-line. The
second table has a constant in the program which controls its width, and
the distributed version requires 132 characters of print positions.

ThUS, use of Referencer involves simply executing it, with the attachment
of the input file to some program text, and the direction of the output
file to some suitable printing device.

3. LEXICAL STRUCTURE TABLE

The first table (see Appendix) displays the lexical structure and the pro­
cedure headings, (The term procedure means procedure, function, or program
in this documentation unless otherwise stated.) As the program is read,
each heading is printed out with the line-numbers of the lines in which it
occurs. The text is indented on the first line so as to display the

3:
:I>
::0
r>
=
I-'
to
oc
o

I-'
oc

lexical nesting. Subsequent lines ere .adjusted left or right so as to
maintain their relative position with respect to this 'mother' line. On
rare occasions it may not be possible to achieve this adjustment if there
are insufficient leading spaces to delete on the dependent lines, and then
the display will suffer.

In this context, the 'procedure heading' is taken to mean all the text
between and including the opening reserved word of the heading, and the
semicolon that separates it from the text that follows. What will be
printed is everything contained on the lines that contain this heading.
While this definition of procedure heading is not the one in the draft Pas­
cal Standard, it is a pragmatic convenience to consider it thus rather than
as the syntactic construct.

The prime USe of this table is in understanding programs; it documents the
interfaces to each procedure, their lexical nestin~, and where the headin~s
are' located •

4. THE CALL-STRUCTURE TABLE

The second table is produced after the program has been scanned completely,
and -is the result of examlnlng the internal data. For each procedure
listed in alphabetical order, the table holds:

- The line-number of the line on which its heading starts.

- Unless it was external or formal (and had no corresponding block),
the line-number of the ~ that starts the statement-part (the
body) •

- In the Notes column, the characters 'ext' are printed if the pro­
cedure has an external body (declared with a directive other than
forward), and' the characters 'fml' are printed if it is a formal pro­
cedural or functional parameter. If a number appears, the procedure
has been declared ~ and this is the line-number of the line
where the block of the procedure begins; the second part of the two­
part declaration.

- A list of all. user-declared procedures immediately called by this
procedure. In other words, their call is contained in the
statement-part. The list is in order of occurrence in the text; a
procedure is not listed more than once if it is called more often.

This table may be useful in finding the components of a procedure as they
are squashed into different places in the listing by the flattening effects
of syntax. It may also be useful in seeing the inter-dependencies of the
procedures of the program.

~, LIMITATIONS

As mentioned before, the behaviour of Referencer when presented with
incorrect Pascal programs is not guaranteed. However, it has been the
intention that it be fairly robust, and there are not too many flaws thot

will cause it to fail. The most critical features, and therefore those
likely to cause failure if not correct are the general structure of the
procedure heading (reserved word followed by name with optional parameter­
list with balanced parentheses followed by semicolon and either reserved
word or directive), and the correct matching of Jill£!. with each ~ or .Q.l!ll.§.

in each statement-part (since this information is used to detect the end of
a procedure).

If an error is explicitly detected, and Referencer has very few explicit
error checks and minimal error-recovery, a message is printed out that
looks like this:

FATAL ERROR - No identifier after prog/proc/func - AT FOLLOWING LINE
procedure (t : TransactionType);

The line of text printed is where the program was when it got into trOUble;
like all diagnoses this does not guarantee that the correct parentage is
ascribed to the error. Processing may continue despite the fatal error for
a while, but the second table will not be produced.

Referencer is believed to accept the full Pascal language, as described in
the draft proposal submitted to ISO, and to process it correctly.

6. PORTABILITY

It is believed that Referencer uses only Standard Pascal features according
to the draft proposal submitted to ISO.

It should be relatively easy to transfer it to other Pascal processors. It
does not use packing, except for pseudo-strings of characters. Neither
does it use dispose, though a possible usage is marked in the program. The
small amount of data stored does not warrant their use if it might imperil
portability. It requires the use of small sets of at least set of 0 .• 15,
and a set of char. Those who have not a set of char available can fairly
easily program around it, and complain to their Pascal suppliers. The
names are stored internally in a canonic letter-case (lower-case in Version
S-02.01), with a set indicating those to be transformed on output. This
strategy should enable users to mOdify it to run even on CDC's 6+6 bit
lower-case system, and on one-case systems~ The program implements the
Pascal Standard's attitude towards letter-case.

7. SYSTEM NOTES AND MODIFICATIONS

7.1 PARAMETERIZED CONSTANTS

The heading of the program contains information on altering:

- The significance limit of identifiers (currently 16 characters).
This should not be reduced below 10 as it will be difficult to dis­
tinguish identifiers and reserved words.

- The difference between upper-case and lower-case letters. EBCDIC
users will probably need to change only this single constant.

- The line width for table 2, which automatically affects the number of
columns of called procedure names. The distributed version has this
set at 132, which allows 5 columns of 16-character names across the
page. Setting it to 54, which allows a single column, is an useful
variatioo*

- The number of indentation spaces per level.

7.2 INTERNAL STRUCTURES

Procedure information is held in ~n 'Entry' record, each of which is linked
into two binary trees by alphabetical order of name (ignoring letter-case).
Each 'Entry' record contains a linked list of 'UsageCell's which point to
procedures called from that procedure'. There is also a lexical stack
display, composed of 'StackCell's. Similarly, these point to the currently
nested procedures during the first phase of processing. Each stach cell
also contains a root pointer which holds a "scope-tree" which contains all
the names declared at this level. A single "super-tree" contains all the
procedure names. The scope-trees are traversed during searching for names,
and the supertree is used to produce the final table.

The final tables are capable of further interpretation which has not been
done here in the interests of simplicity of the resulting software tool.
For example, recursivity may be deduced from the data, and small modifica­
tions would allow the keeping of call-frequency counts.

As mentioned earlier, each name is separated into a case-independent com­
ponent and a solely-case component for storage~ The identifiers are recon­
structed at the time of display. In the case where not all occurrences of
an identifier have the same visual representation, Referencer will thus
still recognize them as the same, and will use the first occurrence as the
display form. Referencer could easily Check the identity of such forms,
but any error messages would spoil the tables and it has not been done in
line with the philosophy that each tool has a particular purpose.
General-purpose tools are often such compromises that they are successful
at none of their tasks •..

7 -3 EFFICIENCY

As might be expected, Referencer spends most of its time in NextCh, NextTo­
ken, ReadIdent, IgnoreComment and FindNode. As a guide, the following
information was collected while. Referencer processed its own text. The
counts under the TtStatements" column are the maximum statement counts for
any statement within the procedure body. All counts have been rounded and
depend to some extent on the use of spaces and tabs in the source file.

Procedur'e

NextCh
NextToken
ReadIdent
FindNode
IgnoreComment

Calls

30800
2600
1600
3800

102

Statements

30800
8700
9000
4500

13500

The space usage of Referencer is very small, except perhaps for the program
itself.

On Berkeley Pascal running under UNIX on a PDP-11/34, processin~ Referencer
by itself requires about 96 seconds of processor time. This is about 10.6
lines per second. The code occupies about 9,000 bytes of storage. Berke­
ley Pascal is an interpretive system intended for student users, and is
therefore rather slow in comparison with compilers with native code genera­
tion.

8. ERROR REPORTING

If any errors in processing Standard Pascal programs are detected, please
write to the author at the following address with the exact details. Prob­
lems wit.h processing incorrect or non-Standard programs are not interest­
ing.

Prof A.H.J.Sale
Department of Information Science
University of Tasmania
Box 252C, G.P.O. Hobart
Tasmania 7001

Any experiences with the portability of this tool are also welcomed. A
Technical Report on its design and structure is in preparation.

9. HISTORY

This program grew out of the proper haunts of good ideas (the coffee-room)
and several discussions of what one would like from such a tool 4

A.J.Currie, at the University of Southampton, produced the first prototype
program of 231 lines. Based on this experience and the problems in accept­
ing the full Pascal language, A.H.J.Sale (on leave from the University of
Tasmania) wrote the current version of just over 1000 lines. The resulting
program is now about 20% slower than the prototype, but it is believed to
be a more modifiable and a correct tool.

The current program was written in 4 days. It does not fit
integrated system of software tools but has been designed with
view that software tools should be plentiful, correct, portable,
and single-purpose. All attributes are equally important.

into any
the basic
flexible,

I-'
<.D
co
o

N
o

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065

program Referencer(input,output);
{---i , ,
i
i
i , , , ,

PASCAL PROCEDURAL CROSS-REFERENCER

(c) Copyright 1979 A.H.J.Sale, Southampton, England.

DEVELOPMENT
This program is a software tool developed from a prototype by
A.J.Currie at the University of Southampton, England. The proto­
type of 231 lines of source text was used firstly as a basis for
extensions, and t.hen rewritten to assure correctn~ss by
A.H.J.Sale, on leave from the Univ.ersity of Tasmania and then
also at the University of Southampton. The current version was
stabilized at 1979 December 4; the development time being es­
timated at 4 man-days from prototype to production.

PURPOSE
The program reads Pascal source programs and produces two tables
as output. These tables are procedural documentation and cross­
references. One documents all procedure or function headings in
a format that illustrates lexical nesting. The other tables
gives the locations of heading, block, and body for each pro­
cedure and function, and what procedures and functions it immedi­
ately calls.

There is a User Manual for this program; if it has not been pro­
vided with your installation write to:

Department of Information Science
University of Tasmania
P.O.Box 252C, G.P.O. Hobart
Tasmania 7001

and ask for the Technical Report on Referencer, if it is still
available. The program is written to be portable and is believed
to be in Standard Pascal.

Permission is granted to copy this program, store it in a comput­
er system, and distribute it, provided that this header comment
is retained in all copies. , , , ,

:---}

{---!

, ,

PROGRAM ASSERTIONS

Pre-Assertion Pl:
"The file input contains a representation of a correct
Standard Pascal program, in the ISO Reference form."

Post-assertion P2:
Pl and "the file output contains a representation of the
two tables described above, which correctly describe facts
about. the program. 11

,

, , , ,
1---}
const

{ This constant is the number of significant characters kept in
the identifier entries. It can readily be changed. It is not
advised that it be reduced below 10 (reserved words get to 9). }
SigCharLimit = 16;

{ This must always be (SigCharLimit - 1). It is used simply to
reduce the set range to have a lower bound of 0, not 1. }

SetLimit = 15;

{ This constant is used to convert upper-case letters to lower-case
and vice-versa. It s.hould be equal to ord('a') - ord('A'). }

UCLCdisplacement = 32;

{ This constant determines the size of the input line buffer.
The maximum acceptable input line is one smaller because a sentinel
space is appended to every line. }
LineLimit = 200;

{ This constant determines the maximum width of the printing of the
second cross-reference table. The program deduces how many names
will fit on a line. }
LineWidth = 132;

{ This determines the indentation of the lex-levels. }
Indentation = 4;

{ These constants are used for the sketchy syntax analysis.
They are collected here so that their lengths may be altered if
SigCharLimit is altered. }
Sprogram 'program
Sprocedure 'procedure
Sfunction 'function
Slabel 'label
Sconst
Stype
Svar
Sbegin
Scast!
Send
Sforward
Spaces

'const
'type
'var
'begin
'case
'end
'forward

,. , ,. , ,. , ,. , ,. , ,. , ,. , ,. ,
'; ,. ,
'; ,. ,

0066
0067
0068
0069

0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129

type
Natural
Positive

SixChars

SigCharRange
SetRange

PseudoString
String Cases

LineSize
LineIndex

SetOfChar

ProcKind

PtrToEntry

ListOfUsages

PtrToStackCell

TokenType

o .. maxint;
1 .. maxint;

packed array[1 •• 6] of char;

1 •• SigCharLimit;
O •. SetLimi t;

packed array [SigCharRange] of char;
set of SetRange;

1 •• LineLimit;
0 .• LineLimi t;

set of char;

(FwdHalf,AllFwd,Shortform,Formal,Outside,NotProc);

Entry;

UsageCell ;

StackCell;

(OtherSy,NameSy,LParenSy,RParenSy,ColonSy,
SemiColSy,PeriodSy,AssignSy,SubRangeSy);

{ This type represents a procedure or function identifier found

.......
cD
00
o

N
.......

0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176 var
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193

during processing of a
procname & case set
linenumber
startofbody
forwardblock
status

program. The fields are used as follows:
representation of name
where heading starts
where begin of statement-part starts
where forward-declared block starts
kind or status of name

- left,right subtrees of the scope-level tree
subtrees of the super tree - before, after

- calls a list of the procedures this calls
the scope tree for the interior localtree

Entry _
record

procname : PseudoStringj
case set StringCases;
linenumber .' Natural;
startofbody Natural;
left ,right PtrToEntry;
before ,after PtrToEntry;
calls : ListOfUsages;

local tree : PtrToEntry;
case status: ProcKind of

FwdHalf,Shortform,Formal,Outside,NotProc:
();

AIIFwd:
(forwardblock: Natural)

end;

This type records an instance of an activation of a procedure or
function. The next pOinters maintain an alphabetically ordered
list; the what pOinter points to the name of the activated code. }
UsageCell =

record

end;

what: PtrToEntry;
next: ListOfUsages

This type is used to construct a stack which holds the current
lexical level information. }
StackCell =

record

end;

lineno
chno
total
depth
level
pretty

current: PtrToEntry;
scopetree: PtrToEntry;
substack: PtrToStackCell

Natural;
LineIndex;
LineIndex;
Natural;
-1 •• maxint;
Natural;

{ These are used to align the lines of a heading. }
adjustment (First,Other);
movement : integer;

{These are true, respectively, if line-buffers need to be
printed before disposal, and if any errors have occurred.
printflag Boolean;
errorflag Boolean;

ch char;

0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258

token TokenType;

symbol PseudoString;
symbol case StringCases;

savesymbol PseudoString;

line array[LineSize] of char;

superroot PtrToEntry;

stack PtrToStackCell;

{ The remaining variables are pseudo-constants.
alphabet SetOfChar;
alphanums SetOfChar;
uppercase SetOfChar;
digits SetOfChar;
usefulchars SetOfChar;

namesperline Positive;

procedure PrintLine;
var

i : LineSize j
begin

write(output, lineno:5,' ');
i : = 1;

{ Is this the first time in a run or not? }
if adjustment = First then begin

{ Ignore any leading spaces there happen to be. }
while (i < total) and (line[i] = ' ,) do

i := succ(i);
{ Compute the adjustment needed for other lines.
movement := (level * Indentation) - (i - 1);
adjustment := Other;
{ Insert any necessary indentation }
if level > 0 then

write(output, ' ': (level*Indentation));
end else begin

end;

{ It wasn't the first time, so try to adjust this
line to align with its mother. }
if movement > 0 then begin

write (output , ' ':movement)
end else if movement < 0 then begin

end

while (i < total) and (line[iJ ") and
(i <= -movement) do begin
i := succ(i)

end

{ Write out the line. }
while i < total do begin

write (output , line[i]);
i := succ(i)

end'
writeln(output)

end; { PrintLine }

procedure Error(e: Positive);
{ This procedure is the error message repository. }
begin

errorflag := true;
write (output , 'FATAL ERROR _ .);

I-'
l.D
00
o

N
N

0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322

case e of
1: write(output, 'No "program" word');
2: write(output, 'No identifier after prog/proc/func');
3: write(output, 'Token after heading unexpected');
4: write(output, 'Lost ".", check begin/case/ends');
5: write(output, 'Same name, but not forward-declared')

end;
{ We shall print the offending line too.
writeln(output, , - AT FOLLOWING LINE');
adjustment := First;
PrintLine

end; { Error)

procedure NextCh;
begin

if chno = total then begin
if printflag then

PrintLine;
total : = 0;
while not eoln(input) do begin

total := succ(total);
read(input, line[total])

end·
totai := succ(total);
line[total] : = ' ';
readln(input);
lineno := lineno + 1;
chno : = 1;

ch := line[1]
end el se begin

end

chno := succ(chno);
ch := line[chno]

end; { NextCh)

procedure Push(newscope: PtrToEntry);
var

begin
newlevel: PtrToStackCell;

new(newlevel) ;
newlevelT .current := newscope;

newlevelT .scopetree .- nil;
newlevelT.substack := stack;
stack ._ newlevel;
level ._ level + 1

end; { Push

procedure Pop;
var

begin
oldcell: PtrToStackCell;

stackT.currentT.localtree .- stackT .scopetreej
oldcell := stack;
stack := oldcellT.substack;
{ *.* dispose(oldcell); .**
level := level - 1

end; {Pop)

procedure FindNode(var match : Boolean;
var follow PtrToEntry;

thisnode: PtrToEntry);
begin

match : = false;
while (thisnode <> nil) and not match do begin

0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354

0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0361
0382
0383
0384
0385
0386

end

follow := thisnode;
if savesymbol < thisnodeT.procname then

thisnode := thisnodeT.left
else if savesymbol > thisnodeT.procname then

thisnode := thisnodeT.right
else

match . _ true

end; { FindNode)

function MakeEntry (mainprag: Boolean;
proc : Boolean): PtrToEntry;

{ The first parameter is true if the name in symbol is the
program identifier, which has no scope. The second parameter
is true if the name in symbol is that of a procedure or function.
The result returned is the identification of the relevant record.
var

newentry, node: PtrToEntry;
located: Boolean;

procedure PutToSuperTree(newnode: PtrToEntry);
{ This procedure takes the entry that has been created by
MakeEntry and inserted into the local tree, and also links
it into the supertree.)
var

place : PtrToEntry;

procedure FindLeaf;
{ FindLeaf searches the supertree to find where this
node should be placed. It will be appended to a leaf
of course, and placed after entries with the same
name.)

var
subroot : PtrToEntry;

begin
subroot := superroot;
while subroot <> nil do begin

place := subroot;

end

if savesymbol < subrootT.procname then
subroot ._ subrootT.before

else
subroot := subrootT.after

end; { FindLeaf)

begin { PutToSuperTree
if super root = nil then begin

{ Nothing in the super tree yet.)
superroot := newnode

end else begin

end

{ Seek the right place
FindLeaf;
with placeT do begin

end

if savesymbol < procname then
before := newnode

else
after := newnode

end; { PutToSuperTree

begin { MakeEntry)
located := false;

save symbol := symbol;

3:
~
::0
n = ,
~
<D
00
co

0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450

if mainprog then begin
newt newentry) ;

end else if stacki .scopetree nil then begin
{ Nothing her'e yet. }
newt newentry) ;
stackt .scopetree :~ newentry

end else begin
{ Seek the identifier in the tree.
FindNode(located, node, stacki.scopetree);

if not located then begin

end

{ Normal case, make an entry. }
newt newentry) ;
with noder do

if symbol < procname then
left := newentry

else
right := newentr'Y

end;
if not located then begin

{ Here we initialize all the fields }
with newentryi do begin

procname := symbol;
case set := symbolcase;

linenumber := lineno;
startofbody := 0;
if proc then

status .- Short form
else

status .- NotProc;
left .- nil;
right . - nil;

before . - nil;
after . _ nil;
calls ._ nil;

local tree := nil
end;

MakeEntry := newentr'Y;
if proc then begin

PutToSuperTree(newentry);
Push (newentr'Y j

end
end else begin

end

{ Well, it'd better be forward or else.)
MakeEntry := node;

Push(node);
if nodei .status = FwdHalf then begin

stacki .scopetree := node; .localtree;
nodei.status := AIlFwd;
node; .forwardblock := lineno

end else begin
Error(5)

end

end; { MakeEntry

procedure PrintTree(root: PtrToEntry);
val"

thiscell: ListOfUsages;
count: Natural;

procedure ConditionalWrite(n: Natural;
substitute: SixChar's);

begin

0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515

{ Write either the substitute string or' a number. }
if n = 0 then

write (output , substitute)
else

write(output, n:6)
end; { Conditional Write }

procedure NameWrite(p
var

PtrToEntry) ;

s : SetRange;
begin

for s := 0 to SetLimit do begin
if s in pi .caseset then

write(output,
chr(ord(pT .procname[s+1])-UCLCdisplacement))

else
write(output, pi.procname[s+1])

end
end; {NameWrite

begin { PrintTree }
if root <> nil then

with rooti do begin
PrintTree(before);

writeln(output);
write(output, linenumber:5);
ConditionalWri te(startofbody, ' ,);

end

case status of
FwdHalf,NotProc:

end;

write(output,' eh?');
Formal:

wri tee output,' fml');
Outside:

write(output,' ext');
Shortform:

write(output, ' ');
AllFwd:

write(output, forwar·dblock: 6)

write(output,' ');
NameWrite(root);
write(output, ' : ');
thiscell := calls;
count := 0;
while thiscell <> nil do begin

if «count mod namesperline) 0) and (count <> 0)
then begin
writeln(output);
write(output, ' ':35, ' : ,)

end;
write(output, ' ');
NameWrite(thiscelli.what);
thiscell := thiscelli.next;
count := count + 1

end;
writeln(output);

PrintTree(after)

end; { Print Tree }

procedure NextToken;
{ This procedure produces the next "token" in a small set of
recognized tokens. Most of these serve an incidental purpose;

......
<.D
00
C)

0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0512
0573
0574
0575
0576
0577
0578
0579

the prime purpose is to recognize names (res'd words or identifiers).
It serves also to skip dangerous characters in comments, strings,
and numbers. I

procedure IgnoreComment;
{ This procedure skips over comments according to the definition
in the Draft Pascal Standard. I
begin

NextCh ;
repeat

while (ch <> '.') and (ch <> 'I') do
NextCh;

if ch = I.' then
NextCh;

until (ch = ')') or (ch 'I I);
NextCh;

end; { IgnoreComment

procedure IgnoreNumbers;
{ This procedure skips numbers because the exponent part
just might get recognized as a name! Care must be taken
not to consume half of an •• " occurring in a construct like
"1 •• Name" , or worse to consume it and treat the name as an
possible exponent as in "1 •• E02". Ugh. I
begin

while ch in digits do
NextCh;

{ The construction of NextCh, chno & line ensure that
the following tests are always defined. It is to get
rid of tokens which begin with a period like .. & .)
if (ch = '.') then begin

if (line[chno+l] in digits) then begin
NextCh;
while ch in digits do

NextCh
end;

end;
if (ch = 'E') or (ch = 'e') then begin

NextCh;

end

if (ch = ,+,) or (ch = '-') then
NextCh;

while ch in diFits do
NextCh

end; { IgnoreNumbers

procedure Readldent;
{ This procedure reads in an identifier J
var

j : Positive;
begin

token := NameSy;
symbol := Spaces;
symbol case := [];
j := 1;
while (j <= SigCharLimit) and (ch in alphanums) do begin

if ch in uppercase then begin
symbol[j] := chr(ord(ch) + UCLCdisplacement);
symbolcase := symbolcase + [j-l]

end else begin
symbol[j] : = ch

end;
j := j+l;
NextCh

0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642

begin

end;
{ In case there is a tail, skip it. I
while ch in alphanums do

NextCh
end; { ReadIdent I

. token: = OtherSy;
repeat

if ch in useful chars then begin
case ch of

')': begin
NextCh;
token : = R ParenSy

end;

'(': begin
NextCh;
if ch = I.' then begin

IgnoreComment
end else begin

token := LParenSy
end

end;

t(,: begin
IgnoreComment

end;

t t. t: begin
NextCh;
while ch <> "" do

NextCh;
NextCh

end;

'0' , t 1 t , '2' ,'3' , '4' , • 5' , '6' , '7' , '8 I , t 9' :"
begin

IgnoreNumbers
end;

,: ': begin
NextCh;
if ch = '=' then begin

token := AssignSy;
NextCh

end else begin
token : = ColonSy

end
end;

'.': begin
NextCh;

'.f. , .

if ch <> '.' then
token := PeriodSy

else begin

end
end;

begin

token := SubRangeSy;
NextCh

I-'
ill
00
C

N
IJl

0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706

NextCh;
token ._ SemiColSy

end;

'A' t 'B' , 'C I, 'D' , 'E' ,IF' , 'G I, 'H' ,II' , I J' , 'K t , 'L ' ,1M' ,
'N' ,'0' ,'PI ,'Q' ,'R' ,'S' ,'T','U' ,'V' ,'W' ,'X' ,ty' ,'Z',
'a' , 'b ' , 'c I ,'ct' , I e t ,'f' ,'g' ,t h' , 'i I ,I j' ,'k' , '1' ,'rot,
'n' , I o' " pi , t q' , I r' , 'Sf, 't t ,t u' , I VI , I Wi ,1 X, , 'y' , 'z' :

end

begin
ReadIdent

end

end else begin

end

{ Uninteresting character }
NextCh

until token <> OtherSy
end; { NextToken }

procedure ProcessUnit(programid: Boolean);
{ This procedure processes a program unit. It is called on
recognition of its leading token = program/procedure/function.
The parameter records whether we currently have the main program
identifier in the token, or not. It doesn't have scope. }
var

at : PtrToEntry;

function NamelsInScope: Boolean;
{ This function is called during the declaration phase
of a block, and has to find any procedure which gets
renamed by the scope rules. }
var

Hevel
discovered
where

PtrToStackCell ;
Boolean;
PtrToEntry;

begin
llevel ._ stack;
discovered : = false;
savesymbol := symbol;
while (llevel <> nil) and not discovered do begin

FindNode(discovered, where, llevelT.scopetree);
if not discovered then

llevel := llevelT .substack
endj
if discovered then

NameIsInScope .- (whereT.status <> NotProc)
else

NameIslnScope .- false
end; { NameIsInScope }

procedure ProcessBlock;
{ This procedure is called by ProcessUnit when it .has recognized
the start of a block. It handles the processing of the block. },
var

address: PtrToEntry;

procedure CrossReferencer;
{ CrossReferencer is called whenever we have a name which
might be a call to a procedure or function. The only way
we tell is by looking in the table to see. If it is, then
the list of usages of the procedure we are in is scanned and
possibly extended. }
var

0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770

"ewe ell
ptr
home
slevel
found

ListOfUsages;
ListOfUsages;
PtrToEntry;
PtrToStackCell ;
Boolean;

procedure FindCell;
{ FindCell is used to scan a List Of Usages to determine
whether the name already appears there~ -If not, it
leaves ptr pointing to the tail of the list so that an
addition can be made. }
var

nextptr : ListOfUsages;
begin

found : = false;
nextptr := stacki .currentT .callsj'
if nextptr <> nil then .

else

repeat
ptr : = nextptr;
found := (ptrT .whatT .procname
nextptr .- ptrT.next

until found or (nextptr = nil)

ptr : = nil
end; { FindCell }

begin { CrossReferencer
slevel := stack;
found : = false;

savesymbol) ;

while (slevel <> nil) and not found do begin
FindNode(found, home, slevelT .scopetree);
if not found then

slevel := slevelT .substack
end;
if found then begin

end

if homeT.status <> NotProc then begin
FindCell;

end

if not found then begin
new(newcell);

end

if ptr <> nil then
ptrT.next := newcell

else
stackT .currentT .calls 0- newcellj

newcellT .what ._ home;
newcellT .next := nil

end; { CrossReferencer

procedure ScanForName;
{ This procedure is required to go forward until the
current token is a name (reserved word or identifier).
begin

NextToken;
while token <> NameSy do

NextToken
end; { ScanForName

begin { ProcessBlock }
while (symbol <> Sbegin) do begin

while (symbol <> Sbegin) and (symbol <> Sprocedure) and
(symbol <> Sfunction) do begin
ScanForName;

= rn
::0::
C/)

I-"

'" 00
o

0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
·0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834

end;

end;

if NameIsInScope then begin.

end

address := MakeEntry(false, false);
{ MakeEntry made its status NotProc

if symbol <> Sbegin then begin
ProcessUnit(false);
ScanForName

end

{ We have now arrived at the body }
depth := 1;
stackT.currentT.startofbody := lineno;
NextToken;
while depth <> 0 do begin

end

if token <> NameSy then begin
NextToKen

end else begin

end

if (symbol = Sbegin) or (symbol Sease) then begin
depth : = depth + 1;
NextToken

end else if (symbol = Send) then begin
depth := depth - 1;
NextToken

end else begin

end

{ This name is a candidate call. But first we
must eliminate assignments to function values.
savesymbol := symbol;
NextToken;
if token <> AssignSy then begin

CrossReferencer
end else begin

NextToken
end

end; { ProcessBlock

procedure ScanParameters;
{ This procedure scans the parameter list because at the outer
level there may be a formal procedure we ought to know about. }.
var

which : PtrToEntry;

procedure ScanTillClose;
{ This procedure is called when a left parenthesis is
detected, and its task is to find the matching right
parenthesis. It does this recursively. }
begin

NextToken;
while token <> RParenSy do begin

if token = LParenSy then
ScanTillClose;

NextToken
end

end; { ScanTillClose

begin { ScanParameters }
NextToken;
while token <> RParenSy do begin

if (token = NameSy) then begin
if (symbol = Sprocedure) or

(symbo~ = Sfunction) then begin

0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
6893
0894
0895
0896
0897
0898

{ A formal procedural/functional parameter.
NextToken;
if token = NameSy then begin

which := MakeEntry(false, true);
whichT.status := Formal;
Pop;
NextToken;
if token = LParenSy then begin

{ Skip interior lists. }
. ScanTillClose

end
end else begin

Error(2);
NextToken

end
end else begin

if NameIsInScope then
which := MakeEntry(false, false);

NextToken
end

end else begin
NextToken

end
end;
NextToken

end; { Scan Parameters

begin { ProcessUnit }
printflag : = true;
adjustment := First;
NextToken;
if token <> NameSy then

Error(2)
else begin

{ We now have the name to store away. }
at := MakeEntry(programid, true);
while not (token in [LParenSy,SemiColSy,ColonSy]) do

NextToken;
if token = LParenSy then

ScanParameters;
while token <> SemiColSy do

NextToken;
PrintLine;
{ We have now printed the procedure heading. }
printflag := false;
writeln(output);
{ Our next task is to see if there is an attached block. }
NextToken;
if token <> NameSy then

Error(3)
else begin

if (symbol <> Slabel) and (symbol <> Sconst) and
(symbol <> Stype) and (symbol <> Sprocedure) and
(symbol <> Sfunction) and (symbol <> Svar) and
(symbol <> Sbegin) then begin
{ Bloody directive, mate. }
if symbol = Sforward then

atT.status :=' FwdHalf
else

atT.status := Outside;
Pop

end else begin
ProcessBlock;
Pop

.......
<D
00
o

08gg
ogoo
OgOl
Og02
0903
0904
0905
0906
0901
0908
0909
0910
0911
0912
0913
0914
0915
0916
0911
0918
0919
0920
0921
0922
0923
0924
0925
0926
0921
0928
0929
0930
0931
0932
0933
0934
0935
0936
0931
0938
0939
0940
0941
0942
0943
0944
0945
0946
0941
0948
0949
0950
0951
0952
0953
0954
0955
0956
0951
0958
0959
0960
0961
0962

, , , ,

end
end

end
end; { ProcessUnit

*** --I
This procedure outlines what is needed to insert the
predefined names into Referencer's tables. De-box it
and extend it as needed.

procedure BuildPreDefined;
const

NoOfNames = 2;
type

Nameslndex 1 •• NoOfNames;
var

kk NamesIndex;
tt array[NamesIndex] of PseudoString;
hohum: PtrToEntry;

begin
t t [0 1] : = 'new ' ;
tt[02] := 'writeln- ';
case set : = [];
for kk := 1 to NoOfNames do begin

symbol := tt[kk];

end;
end;

hohum := MakeEntry(false,false);
hohumi .status := Outside;

1-- .. *

procedure PrintHeading;
begin

writeln(output, 'Procedural Cross-Referencer - Version S-02.01');
writeln(output, '===');
writeln(output)

end; { PrintHeading }

begin { Referencer }
superroot := nil;
{ Here we construct an outer-scope stack entry. This is needed
to hold any pre-defined names. The distributed version does not
include any of these, but they are easily provided. See the
outlines in the code marked with *** if you want this feature. }
new(stack);
with stackT do begin

current : = nil;
scopetree := nil;
substack : = nil

end;

printflag . _ false;

uppercase ._ ['A','B','C','D','E','F','G','H','I','J','K','L','M',
1 N ' , to 1 , t pI, I Q t , 'R ' t t S' , IT' , f U' , 'V' , ' W' , 'X' , 'Y I "I Z '] ;

alphabet ._ uppercase +
[I a' , I bl , ' 0' , I d I , 'e t , 'f' , 'gt , t h' , 'i' , ' j I ,.' k' , '1' , I rot ,

In' , '0' , 'p' , 'q t , 'r' , IS' , 't' J 'u' , 'v' , 'w' , 'x' , 'y' , 'z'];
digits .- ['0','1','2','3','4','5','6','7','8','9'];
alphanums ._ alphabet + digits { H* + [,_,] *** }
usefulchars := alphabet + digits +

[Ie', I)', '{I, ':', I;', ""];

0963
0964
0965
0966
0961
0968
0969
0910
0911
0912
0913
0914
0915
0916
0911
0918
0919
0980
0981
0982
0983
0984
0985
0986
0981
0988
0989
0990
0991
0992
0993
0994
0995
0996
0991
0998
0999
1000
1001
1002
1003
1004
1005
1006
1001
1008
1009
1010
1011
1012
1013
1014
1015
1016
1011
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027 end.

namesperline := (LineWidth - (SigCharLimit + 21)) div
(SigCharLimi t + 1);

*** If you want to introduce some options, this is the place
to insert the call to your OptionAnalyser. None is provided
with the standard tool because the requirements vary widely
across user environments. The probable options that might be
provided are (a) whether pre-declared names should appear in
the call lists, (b) how many columns are to be printed in them
(namesperline), (c) whether underscore is permitted in identifiers,
and perhaps whether output should be completelY in upper-case
letters. The first option (a) requires a call to BuildPreDefined
just below this pOint, after analysing options ••• }

total := 0;
chno := 0;
lineno := 0;
level := -1;
errorflag : = fal se;
{ *** BuildPreDefined; ***

*** page(output); **.
PrintHeading;
writeln(output, 'Line Program/procedure/function heading');
for pretty := 1 to 43 do

write (output , '-');
writeln(output);
writeln(output);
{ Now we need to get the first token, which should be program. }
NextToken;
if token <> NameSy then

Error(1)
else if symbol <> Sprogram then

Error(l)
else begin

ProcessUnit(true);

end;

{ Having returned, there ought to be a period here. }
if not errorflag then begin

end

{ We check all tokens that begin with a pp~iod because
what occurs after the closing period is pO':,bing to do
with us. }
if (token <> PeriodSy) and (token <> SubRangeSv) then

Error(4)
else begin

end

adjustment .- First;
PrintLine

{ Completed Phase One - now for the next. }
if not errorflag then begin

end

page(output) ;
PrintHeading;
writeln(output,

'Head Body Notes',
, ':SigCharLimit,

Calls made to');
for pretty := 1 to (SigCharLimit+31) do

write (output , '-');
writeln(output);
PrintTree(superroot);
writeln(output)

I-'
lD
00
o

N
00

PASCAL NEWS #17 MARCHI 1980
AN OVERVIEW OF IIAP

!lAP provides four basic Idditions to Pascal: constant expression
e •• lultion; source fHe inclusion; par .. et.rized .acro substitution; and
conditionll cOllpHltion. This section contlins a discus.ion of elch f these
faci l ities.

IiIAP evaluates constant e .. pressions (expressions where operands are
constants or previously defined syabolic constants) on the right-hind side of
CONST de ... etiona. Expressions .By contain the following operators Cl i,ted in
.. escending precedence):

function:
neglting:
.ultiplying:
adding:
relating:
concatenating:

n ••• (argu.ents)
NOT -
AND * I DIV 1100 IIIN !lAX
OR + -
«=:0>=>
(one or .ore blinks)

All standard operators hIVe the s_e .eaning 8S in PascaL, and strong typing i •
• bserved. The operators IIIN and IIAX requi re operlnds of type INTEGER or REAL
and return the s.lller Ind larger of their operands, respectively.
Concltenation require. operand. of type PACKED ARRAY OF CHAR, and returns I
PACKED ARRAY OF CHAR which i. th.ir concatenation (the type CHAR is a.s .. ed to
be a packed array .of one character for concatenation).

!lAP recognize. the .tlndard Piscil functions ASS, SQR, CHR, ORO, ROUND,
TRUNC, as well IS two nonstandlrd functions, LENGTH Ind STRIN60F. LENGTH
requi res an Irg.-ent of type PACKED ARRAY OF CHAR or CHAR, Ind returns the
n~ber of characters in it. STRIN&OF requires an integer argUilent, and returns
a PACKED ARRAY OF CHAR consisting of its deci .. l representation.

Operands in CONST .xpre.sions .. y be constants or previously defined CONST
na.es. Of cour.e, Pllcil scope rules Ipply to defined na.es. !lAP Ilso provide.
several predefined syabolic con.tlnts which can be u •• d in CONST expressions.
Two .specially ~seful predefined n .. e., TIllE Ind DATE, give the ti.e and dlte on
which the cOIIpi lltion w.s perfo .. ed. Thes. predefined constlnts help when
writin. production progr.s that .u.t be ti.e and date st.ped. For ex.ple, in
a production progr. a heeding is usuilly printed whenever the progr. run.:

'PROSRAII XVI COII'ILED ON •• /dd/yy AT hh: '

Such a heading .ay provide the only link between In object ver.ion .f I progr.
and its source. Unfortunately, I progr._r .ay fail to update the heeding when
.aking changes to the progr.. Using the predefined constlnts in !lAP to create
the heading relieve •. the progr_er of the updating task and guarantees the
heading wi II Ilways :e accurlte:

CONST
READING· 'PROSRAII XVI COIIPILED ON' DATE '·AT' TIllE;

In addition to constant expression evaluation, !lAP suppl ie. a .acro
substitution facilHy. A •• ero, which •• y have zero or lIore to".al para.ters,
.. y be defined anywhere in the source progr_ u.ing the syntax:

SDEFINE(na .. (fo .. al.) ,vllue)

where 'na •• ' is • valid Pascal identifier, 'for.als' is a list of identifiers
separat .. d by COII •• S, and 'value' i. a sequence of Pascal tokens which 1s well
balanced wHh respect to parentheses. Once I "Icro has been defined, it cln be
cilled by codi ng

Sna.e(lctulls)

where,'nalle' is the nMe of the lIacro, and 'actuals' is a list of actual
parueters separated by COIIII.S. Each actual par.eter lIust be a sequence of
Pascal tokens which is well balanced with respect to parentheses.

In addition to the user-defined .acros, MAP recognizes several .)'st_
lIacros. Definition of .• new lIacro, as shown above, requires the use of the one
such syste •• aero, DEFINE. Another systell lIacro, INCLUDE, prov;des for source
file ;nc lus;on. When NAP encounters a call:

SINCLUDE(fHe n .. e)

it opens the n .. ed file, and continues processing, reading input frOil the new
file. Upon encountedng In end-of-fHe condition, IIAP closes t~e included file,
and resumes processing the original file. Includes .ay be nested, but they .ay
not be recursive (even though there is a way to prevent an infinite recursion).

One .ay think of 'include' as a .acro whose body is an entire file. This
view, however, does not reflect the fact that the user also expects inc luded
text to be listed like .tlndard i.nput rather thin like the body of a .. cro.
While lIacro expansions are .. ot usually displayed in the source listing, included
files are. Therefore, INCL.UDE has a special status among .acros.

One other syste. _acro, CODElF, is provided to support the conditional
co.pi lation of code. The syntl. of CODEIF is:

SCODEIF(constant Boolean expression, code)

where the constant Boolean expo cssion follows the rules for CONST expressions
outlined above, and code represents a sequence of Pascal tokens which is well
balanced with respect to parentheses. If the Boolean expression evaluates to
'true', the code is cCllpi led; if the expression evaluates to 'false', the code
is skipped.

1. D. COlIer, 'A Pascal .. aero· Preprocessor for Large Progr .. Develo.-ent',
~~.!!!!t Experience ,vol. 9, Z03-Z09 (1979).

PAGE 29

PASCAL NEWS #17 MARCH, 1980 PAGE 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

prograll map(output, psource)i

{ portable version -- -- -- }
{ *****.** ••••• ***************** ••••• **.**.*** ••• *****................ }
{ }
{ program: MAP (Macro Pascal) -- Pascal preprocessor with }
{ constant expressions, macros, included files, and }
{ conditional canpilation. (portable version) }
{ }
{ date: February 12, 1978, modified lIpril 30, 1979 }
{ }
{progrll\1lDer Doug Comer, Computer Science Department, Purdue }
{ }
{ input: A Pascal progran with expressions allowed in the }
{ const values, and macro definitions and calls. }
{ Macros may be called fran the source code by }
{ wr itin;! the nEllIe prefixed with a dollar sign, wi th }
{ actual paraneters suppl ied as a str in;! }
{ enclosed in parentheses. 1be actual paraneters }
{ may not contain references to other actual }
{ paraneters or macros. Formal paraneter references, }
{ also denoted brj $name in the body of the macro, }
{ OII'erride macro definitions, so a macro with formal }
{ 'a' cannot call macro 'a'. rull argument lists }
{ like () must be used when callirg a macro with no }
{ actual paraneters. rull paraneters will be used }
{ if insufficient actual paraneters are specified; }
{ extra actuals are ignored. Note that this differs }
{ fran the version cited in the paper. }
{ Input must be in collllUls 1 - 'rc' (default 72). }
{ }
{output OJtput is the file, psource, a canpressed version }
{ of the Pascal source deck. 1be present version }
{ str ips all canments except '(*$' and all the }
{ unnecesary blanks in performirg the canpression. }
{ Also, the source is cranmed into 'prc' COllllUlS, }
{ the default bein;! 71. }
{ }
{ system: Pascal on ere 6500, Purdue dual MACE }
{ }
{Copyright (C) 1978. Permission to copy, modify and }
{ distribute, but not for profit, is hereby granted, }
{ provided that this note is included. }
{ } { .. iI.iI... }
l!.!!!!. 1 for abortin;! };

, .. , ;
, ';

pointer for errors }
ccnst
----arrow

blank
break
COll_.
defexpr
defl ist
defprc
defrc
dollar
double
equal
errflag
errprefix
err len

= , '; break between rc and rest of 1 ine
',' ;
true;
true;
71;
72;

'$' ;
'0' ;
'=' ;

default is expression evaluation
defaul t is listin;! }
defaul t right collllUl for pascal }
defaul t right collllUl for map input

double space carriage control

= , , ;
'---> error
40;

, ;
lergth of error message

error messa:Jes

erabstype =
erarith
eratntype =
erbodyeof =
erchrtype =
ercklpar
erckrpar ==
ercodcoa ==
ercodeof =
ercodtype =
.rconvert =
ercostype =
erdefcOil :;;:
erdefnaae =
erexptype =
erextype =
erfacrpar =
erfactype =
erincname ==
erincrpar =
erindrpar =
erindxtyp =
erlentype =
erlntype =
er longst r =
erlllacname =
ermacdefn =
ermeonsyn =
eroctdig =
eroddtype =
eropen
eropttype =
erordarg =
erordtype =
erover
erparscon =
erparsend =
erparseof =
erparsfwd =
erparsmcon=
erpconsyn =
erputtok =
errelatyp =
errelconf =

'evalabs - type error, number needed ';
'arith - bad type I;
'evalatn - type error, number needed ';
'getbody - end of file in Macro body ';
'evalchr - type error, integer needed';
'ck.acro - left paren expected ';
'ckllacro - right paren expected ';
'docodeif - syntax error, .issing cOlima';
'docodeif - unexpected end of file ';
'docodeif - type error, boolean needed';
• convert - integer truncated ';
levalcos - type error, nU/lber needed ';
'dodefine - missing cemlla ';
'dodefine - syntax error, name needed ';
'expression - invalid operand type ';
levalexp - type error, number needed ';
'factor - right paren expected ';
• factor - type conf l i ct ';
'do i nc tude - file name needed • ;
'doinc tude - right paren expected ';
'doindex - right paren expected ';
'doindex - type error, integer needed';
'evaLLen - type error, string needed ';
'evaLLn - type error, number needed I;
'gettok - string exceeds source Line';
Igettok - illegal macro name ';
'getbsu - undefined macro calL ';
'parsemcon - 'Semicolon expected ';
'gettok - illegal octal digit ,.
'evaLodd - type error, integer needed ';
'open - recursive includes ignored';
'dooptions - error in options list ';
'evalord - ord requi res 1 char. arg. ';
'evalord type error, char. needed ';
'over - tab le overf low ';
'parsecon - equal sign needed ';
'parse - unmatched end ';
'parse - unexpected end of fi le ';
'parse - unmatched forward decl. ';
'parsemcon - equaL sign needed I,;
'parsecon - semicolon expected ';
'puttok - token too large I;
're~ate - illegal type for rel. oper.';
'relate - type conflict in relation ';

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

"138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

erroutype = 'evalrou
ersintype = 'evalsin
ersQrtype = 'evalsqr
erstrtype = 'evalstr
ersyslpar = 'dosysmac
ertermtyp = 'term
ertrutype = 'evaltru
ervalexp = 'variable
ervarfnct = 1 vari ab le
ervarrpar = 'variable

'>'.

- type error, rea l needed I;
- type error, nLlllber needed ';
- type error, number needed I;
- type error, integer needed I;
- left paren expected I;
- invalid operand type I;
- type error, real needed ';
- value or name expected ';
- unknown funct ion, 0 used ';
- right paren expected ';

greater
inname
inlname

, INPUT , ;
, ; standard input file nEllIe }

standard input file nane for
listin;! }

'B' ;
'E' ;
'(' ;
15; max macro call depth }

max active const defns }

letterb
lettere
lparen
maxcalls
max cons
maxcol
maxcst r
maxdefs
maxdefstr
maxfi les
maxfns
maxkeys
maxline
mincol
minus
ndefconst
{} newl ine

200;
120;

=1000;
= 100;
=4000;

max right collllUl for input/output
max const str in;! area }

newpage
nsysmac
pagesize
period
plus
quote
rparen
semi
space
star

5;
= 14;
= 21;
= 140;
= 70; ,-, ;

9;
= chr(10);

'1' ;
5;

55;
I.' ;
'+' ;

=' "';
')' ;
';' ; , ';

max defined macros }
max macro str in;! area }
max included file depth
max recognized functions }
max recognized larguage key>oOrds
max characters per input line }
min right collllUl for input/output }

nllDber of predefined constants
{ set to newl ine char acter }
newpage carr iage control }
nunber of system macros }
1 ines/page not coun tin;! head in;!

sin;!le space carriage control

sysinc
syscodeif =
sysindex :
sysdefine
sysoption
tit le1

'*' ;
1 ;
2;
3;
4;
5;

, MAP

codes for system macros }

(vers 2.0p of 4/30/29)
run on ';

, ;
title1a

title1b
tit le2
tit le3
title4
tit le5
title6

= ,
, at ';

include pascal';
, line fi Le l ine line source'i ------------- ------ ----------------, ; ' __ , ;
,-----, i

zero '0';

!le!
al fa
text

crng
csrng
drng
dsrng
flrng
fnrng
krng
lnrng
mrng
pgrng

= ~alked arrayC1 .. 10] .21. char;
= -2..-! of char;

o •• maxcons;
O •• maxcstr;
O •• maxdefs;
O •• maxdefst r;
O •• maxfi Les;

= O •• maxfns;
= O •• maxkeysi
= O •• maxLine;
= O •• maxcalls;
= O •• pagesize;

constant expression stack
constant expr. strin;! area
macro definition stack
macro def. strin;! area
included file stack
builtin functions
keY'O)rds
input line
macro call stack
listin;! page

msg = packed arrayC1 •• 40] .21. char;

fptr ="forllal;

forma l = record
--rna .. e

fnext
end;

al fa; { name of formal paraneter }
fptr

fns (fabs,fatn,fchr,fcos,fexp, { builtin functions
f len, fln, fodd, ford, frou, fsin, fSQr, fstr, ftru) i

lex <Lex add, lexsub, {order dependent }
lexand, lexmul t, lexdvd, Lexmi n, lexmax, lexdiv, lexllod,
Lexa lpha, lexi nt, lexreal, lexst, lexmac,
lexbeg, lexcas, lexend, lexrec, lexfun, lexproc, lexcon,
lexmcon,
lextpe, lexvar, lexfwd,
lexor, lexnot,
lex It, lex Le, lexeQ, lexgt, lexge, lexne,
lexsemi, lexother,
lex lparen, lexrparen,
lexcomma,lexeof) ;

aptr ="arg;

arg

constyp

= record
----afci"rm

afirst :
alast
anext
~

{ actual argllDent list node
al fa; { formal name
dsrng; { start of actual in dstr
dsrngi
aptr

(tbl,tch,terr,tin,tot,tre); { type ofconst expression}

PASCAL NEWS #17 MARCH, 1980 PAGE 31
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

cset

strng

effll59

var
-ctab

ctop,
cval id

cstr
cstop

fstack

:II .!!!. ~ constYPi

= array[lnrng] 2.!. char;

= packed arrayCl .. err len] 2.!. char;

arrayCcrng] 2.!. constant table
record
---cname : al fa;

case ctyp : constyp of
--tin (ei: integer);

tre (cr: real)i
tch (c1; rst : csrng; c len csrng);
tbl (cb: boolean);
tot (co: al fa)

end'
Gurrent top of ctab am last const

: c rng; { last nontemporary constant }

: arrayCcsrng] 2.!. char;{ strin3 const stonge
: csrng;

: arrayCflrng] 2.!. included file stack
record
-"Triame a l fa; file llII1Ie

ffi le text;
fl ine integer
end;

ftop -1 •• .aXITl es;

keywd

IIstack

IItop

defs

arrayCO •• maxkeys] 2.!. { larguage keywords
record
-,rna.e : a l fa; { keyword mme }

klex: lex
end;

arrayCmrng] of macro calls }
record -

margs
IIInext
mlast
matop
!!!!!i

aptr;
dsrngi
dsrngi
dsrng

list of arguments
next char to read
last char in this macro
actual top upon call

: mrng; top of called macro stack

: arrayCdrng] 2.!.
record
--anime :

dfi rst:
dlast

al fa;
dsrngi
dsrngi
fptr dargs

!!!!!i

macro definitions }

macro niIIle
first char in this macro
last char in this macro
list of formals

dtop drng;

defst r

dstop

atop

funct

inl ine
last,
next
ch
line
pline

t.e,
dte
ti.ein
tott.e

Unectr
nerrors

psource,
dummy

rcopt,
prcopt
l i stopt
expropt

lastlex
outpos

lexst r
lex len
lextyp

index

confl

: arrayCdsrng] 2.!. char; { macro definition bodies

dsrngi

dsrng;

top of definition string area }

actual arguments saved in top of defstr

: arrayCfnrngJ 2.!. list of builtin functions
record
--rniime al f a; { function llII1Ie)

fntyp fns
end;

strngi input line

LnrnQi last char am next char in inline
char; next character fran getch)
integer; last 1 ine number)
integer; next pascal output I ine number

time of day fran system)
al fa; date fran system)
integer; clock value at start of run
integer; total time used in IDS)

integer; lines so far on this page
integer; number of errors found }

text; dLll1ll1Y used for real number conversion

lnrng; right column on input/output)
boolean; list on or off }
boolean; rec(XJnize expressions on or off

lex; last token type put by puttok }
lnrng; last column pos used bY put tok }

: st rng; { lexical string }
lnrng; { number of chars in lexstr
lex; { type of token in lexstr }

integer; for $index macro }

set of lex; -- { set of tokens needing blank between

forward declarations for all procedures and functions }

procedure arith; forward;
procedure ckformal(name: alfa; { formal mee } ~ found: boolean);

forward;

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

P?Cedud" ckmacro(name: alfa; { macro llII1Ie) ~ found: boolean);
orwar ;

proce~ure c lose; forward;
procedure convrt; forward;
procedure convrti; forward;
proceaure convrtr; forward;
proce ure convrts; forward;
procedure docodeif; forward;
proce~ure dodefine; forward;
proceaure doinclude; forward;
proce ure doindex; forward;
procedure dooptions; forward;

rocedure dosysmac (d: drng); {which macro forward;
proce ure error(err: errmsg); forward;
proce~ure eval fn. (f: fns); forward;
proce ure eva labs; forward;
procedure evalatn; forward;
procedure evalchr; forward;
procedure eva lcos; forward;
procedure evalexp; forward;
procedure eva llen; forward;
procedure eva lln; forward;
procedure eva lodd; forward;

rocedure eva lord; forward;
proce ure evalrou; forward;
procedure evalsin; forward;
procedure eva lsqr; forward;
procedure evalstr; forward;
procedure evaltru; forward;
procedure experror (err: errmsg); forward;
procegure expression; forward;
proce ure factor; forward;
procedure findcon(name: aUa;

{ name of const } var found: boolean); forward;
procedure flookup(nm: alfa;

{ function llII1Ie) var fun: fns;
{ function code } Vir found: boolean); forward;
procedure flush; l'Orward;
procedure forcereal; forward;
procedure getactuals(f: fptr;

{ polI1ter to next formal } var act: aptr); { pointer to actual)
forward; -

procedure get body; forward;
procedure getbsu; forward;
procedure getcdparm; forward;
procedure getch; forward;
procedure getformals(!!!. f: fptr); forward;
procedure getkey; forward;
procedure get line; forward;
procedure getparm; forward;
procedure gettok; forward;
procedure initialize; forward;
procedure need(l: pgrng); forward;
procedure newPQ; forward;
procedure open(name: alfa); {file name to open) forward;
procedure over(i: integer;

{ current value) rnaxval: integer); { max value forward;
procedure parse(top: crng;

{ ctOp upon entry) tok: lex); token causUg recursion)
forward;

procedure parsecon; forward;
procedure parsemcon; forward;
procedure pushback; forward;
procedure puttok; forward;
procedure relate; forward;
procedure scanheader; forward;
procedure terll; forward;
procedure terRlinate; forward;
irocedure t imedate; forward;
unction types"atch: boolean; forward;

function typeis(c: cset): boolean; forward;
~e variable; forward;

procedures am fl.nctions)

{ ********)
{ arith - recognize aritlllletic ops in expression)
{ ******** }
procedure arith;

begin
term;

op: lex;

*e~lextyp in nexor, lexadd, lexsub]) and (.!!2! typeisUterr]»

--rr «lextyp = lexor) and typeis(CtbLJ» or «lextyp in rLexadd,
- lexsub]) and typei'SITtin, tre]» - -
then -
---riegi n

over (ctop, max cons) ;
while lextyp in rLexor, lexadd, lexsub] do

begin -
ctop := ctop + 1; op:= lextyp; get key; ter,,;
H (op = lexor) and typeis(Ctbl])
then with ctabCctop - 1] do cb := cb £!:. ctabCctop].cb erse-- -
--rr (op in nexadd, lexsub]) and typeisUtin, tre])

then - -
----wTth ctabCctop - 1] do

--rr (ctyp = tin) and(ctabCctop].ctyp = tin)
then -
----case op of

---COxadd:ci := ci + ctabCctopJ.ci;
lexsub: ci := ci - ctabCctop].ci

end { case
else

begin

PASCAL NEWS #17 MARCH, 1980 PAGE 32
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

.550

forcereal;
case op of
--rixada:cr

lexsub: cr
end { case

ena

:= cr + ctab[ctop1.cr;
... cr - ctab[ctop1.cr
i

else ---n- ctab[ctop1.ctyp <> terr
ctop:= ctop - 1

end
end-

o!!!!!. {arith };

{ ******** }

i!!.!!l experror(erarith);

{ ckfoIllllll - if reference to fonnal, push on call stack
{ ******** }
procedure ckfor"al { name:alfa; var found:boolean };

a: aptr;

be,in
ound := false;
if .top > 0
then
-,;ig;n

a := IIstacHlltop1 •• args;
IIh; le (a <> n; II and (not found) .!!!!.

6eg1\ - --
II t a" do
---n- afori .. na .. e

then
be,;n

ound := true; pushback; mtop:= mtop + 1;
lI;th IIstacH"top1 do
"!)igin -

marps :=!!i!i "next:= afirst; .last:= alast;
, .. top := atop

end·
geffl'

a :=~anext
end·

; rror.nd i!!.!!l pettok
end

.!!!!!. tckfoIllllll };

{ ******** }
{ ckmacro - if macro called, push onto stack }
{ ******** }
procedure ckllacro { name:alfa; var found:boolean };

d: drng { index to defined macros };

.l!!i1!!.
d :. dtop; defs[Ol.dnalle:= nalle;
IIhile defs[d1.dn •• e 0 nalle do d := d - 1;
iTT> 0 -
then
"!)i,;n

ound := true;
if d <= nSYSllac !t!!!!. dosys"ac (d)
erse
-,;ig;n

over(IItop, lIaxcalls);
lI;th .stack[lItop + 11, defs[d1 do
-,;ipin -

lIarps :=!!i!i "next:= dfi rst; IIlast:= dlast;
.atop := atop; .!!!!i!:.!. ch = blank.!!!!. getch;
;f ch " lparen
"iiien
"!)ipin

petch; getactuals(dargs, lIargs);
if ch <> rparen then error(erckrpar)

end
elseerror(ercklpar)

.!!!!!;
.top := .top + 1; getch

.!!!!!;
gettok

end
.!!!!!. tclonacro };

{ ******** }
{ close - close the current file + restore old one
{ ******** }
procedure close;

begin ftop := ftop - 1 .!!!!!. { close };

{ ******** }
{ convrt - convert constant to pascal input· format
{ .******* }
procedure convrt;

begin

i: integer;
c: char;

sign: boolean;

IIlth ctab[ctop1 do
-case ctyp of
~n: -

beg~n
i abs(c;) >= maxint
then begin i := maxint; error(erconvert).!!!!!.
else i := eii
111 < 0 then begin sign := true; ;:= abs(;) .!!!!!.

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
66Q

else sign := false;
lex len := 0;
IIhile ; > 0 do

be~;n -
exlen := lexlen + 1;

lexstr[Lexlen1 := chr(ord('O') + (; .!.2!!. 10»;
; := i d;v 10

if~n the:--
be9in leXTen := lex len + 1; lexstr[Lexlen1:= .;nus .!!!!!;
for 1 :" 1 toUexlen div 2) do

begin - --
c := lexstr[il; lexstr[il:" lexstr[Lexlen - i + 1];
lexstr[Lexlen - i + 1] := c

.!!!!!;
lextyp := lexint

.!!!!!;
terr: ;
tot:

begin
lex len := 10; unpack(co, lexstr, 1>; lextyp:= lexalpha;
IIhile lexstr[Lexlen1 = blank.!!!!. lex len := lexlen - 1

.!!!!!;
tch:

begin
lextyp := lexst; lexlen:= 1; lexstr[11:" quote;
for i := 0 to c len - 1 do
bepin - -

lex len :- lexlen + 1;
lexstr[Lexlen1 := cstr[cfirst + il;
;f lexstr[Lexlen1 = quote then
begin lex len :s lexlen +1;" lexstr[Lexlen1 :. quote

end
end·-

lefiin .= lex len + 1;
end·

lexstrUexlen1 :'" quote

tbfF'
begin

lextyp :" lexa lpha;
if cb
then begin unpack('TRUE', lexstr, 1>;
else begin unpack('FALSE', lexstr, 1);
~

tro:
begin

! lex len :"' 4 end
lexlen :. 5 ond

rellrite(dullllY); IIrite(dUIIIIY, cr, blank); r •• ot<dlllllY);
IIhile du".y" .. blank do get(dlllllY); lexlon:. 0;
iiIiTIi dUIIIlY" <> blankdo

be~in -
exlen :- lex len + 1;

get (du ... y)
.!!!!!;

lextyp :s lexreal
end

lexstr[Loxlen1 :. dlllllY";

end rcase }
.!!!!!. tconVrt };

{ ******** }
{ convrti - convert integer token to binary form }
{ ******** }
procedure convrti;

begin

i: integer;
l: lnrng;

lIith ctab[ctop1 do
begin

ctyp := tin; c;:= 0;
for l := 1 to lex len do
ci := 10 *c; + ordTIexstr[L1) - ord(zero)

end
end t convrti } ;

{ ******** }
{ convrtr - convert real token to binary form }
{ ******** }
procedure convrtr;

i: lnrngi

begin
rellr;te(dummy); for;:= 1 to lex len do IIrite(du"lIY, lexstr[ill;
IIr;te(dUllmy, blankr;- reset<dUII"Y);
lIith ctab[ctop1 do begin ctyp := tre; read(dullmy, cr) .!!!!!.

encrT"" convrtr };-

******** }
convrts - convert quoted str ing to conat str ing

******** }
procedure convrtsi

l: lnrng;

begin
lIith ctab[ctop1 do
"!)igin

ctyp := tch; elen:= 0; cfirst:= cstop + 1;
l := 2 { skip leading quote };
IIhile l <= <Lexlen - 1) do

end

begin -
clen := clen + 1; over(cstop, maxcstr);
cstop := cstop + 1; cstr[cstop1:= lexstr[L1;
if lexstr[l] = quote i!!.!!ll:= l + 2 !l!! l := l + 1

end

end !convrts };

PASCAL NEWS #17

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
68D
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
no

{ ***** ••• I
(clocodeif - peocess $codeif(expr., code)
{ •••• * ••• I
procedure docodeif;

a: dsrng { save area for atop upon entry I;
ctr: integer (left paren count I;

begi\
get ey; over(ctop, lIaxcons); ctop:= ctop + 1; expression;
ctop := ctop - 1; a:= atop;
if lextyp <> lex cOlIma .!!!!!l elperror(ercodcom)
erse
-wlth ctabCctop + 1J ~

-"'IT ctyp = tbl
'ilien
-"'IT cb

'ilien
begin

over(lItop, .. alcalls);
wHh matacU.top + 1] do
--,;agin

lIargs :=.!!i!; .. last:= atop - 1; getcdpar,,;
.next := atop; .atop:= Ii

.!!!.!!;
IItop := .top + 1; getch

end
else

begin
ctr := 1i
while ctr > 0 do

be~;n -
, ch = newline
'ilien
--,;a~ln (IItOP = 0) and (ftop = D) and eof(fstacUDJ.

-ffile) - -
en~ begin error(ercodeof); ~ 1 end

else
-"'IT ch = rparen then ctr := ctr -

erse if ch = lparen- then ctr := ctr + 1;
getcii"" -

end
end

else'11 ctyp <> terr
.!!!!!.{~f I;

{ ***** •• * I

.!!!!!l error(ercodtype)

(dodefine - peocess $define(name(formal parms) ,striDJ)
(******** I
procedure dodefine;

begin
pettok;
if lextyp 0 lexalpha .!!!!!l error(erdefname)
erse

begin
over(dtop, lIaxdefs); dtop:= dtop + 1;
with defsCdtop] do

beyin -
exstrCO] := dollar; pack(lelstr, 0, dname);

dfirst := dstop + 1; dlast:= dstop; gettok;
if lextyp = lexlparen
'ilien segin gettok; getforllals(dargs); pettok end
erii args := ni l

enG:" -
if'rixtyp <> lelCO •••
'ilien be~n error(erdefcOll); dtop:= dtop - 1 end
erii get ody

encr-
.!!!!!. tdodefine I;

{ ... ** •• * I
(doinclucle - peocess $inclucle(file)
(* •• ***.* I
procedure doi nelude;

begi\
get SUI
if leltyp <> lexalpha .!!!!!l error(erincna"e)
erse
--,;agi\

pac (lelstr, 1, na"e) (check file nane here if desired I;
get key; if leltyp <> lelrparen then error(erincrpar);
open (nalle)-

end
.!!!!!. tdoinclucle I;

{ *.*** •• * I
(doindex - peocess $index(expression)
{ *.*.**** }
procedure doindex;

i: lnrngi

begin
over(ctop, .axcons); ctop:= ctop + 1; getkeYi
if lextyp = lexrparen
'ilien with ctabCctop] do begin ctyp := tin; ci:= 0 end
erii expression; -
iT"Textyp <> lexrparen .!!!!!l error(erindrpar)
erse
--,;agin

MARCH, 1980 PAGE

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

pushback;
with ctabCctop] do
--,-r not (ctyp inCterr, tin]) then error(erindltyp) ersi- -

---rf ctyp = tin
'ilien

be,ia n ex := index + 1; c;:= ci + index; convrt;
over(lItop, IIllcalls); mtop:= .top + 1;
with 'IStackClltop] do

.!!!!!

begin -
lIargs :=..!li.!; IInext:= atop; IIlast:= atop - 1;
.. atop := atop;
for i := lellen ~ 1 do

begin
IInext := IInext - 1;
defstrCllnext] .= lelstrCiJ

end;
getcn

end

.!!!.!!;
ctop := ctop - 1

.!!!!! { doindex I;

{ ******** }
{ dooptions - peocess $options (...)
{ ******** }
procedure dooptions;

begin
gettok;

i: integer;

while not (leltyp in [Lelrparen, lexeofll !!!!.
be~ln -

, lextyp = lexalpha
ITen
1T lexstr[1J in ['R', Ipl, IN ' , 'L', 'E']

'ilien -
-COse lexstrC1] of
~I, 'R': -

begin
while not (ch in C'O' •• '9', ') ']) ~ getch;
, :=0;
while ch in C'D' •• '9'] do
lisln C:= 10 * i + ordTCh) - ord('0'); getch .!!!.!!;

i II ncol <= i) and (i <= lIaxcol> then
-case lexstrC1] Of" --

----rp"1: prcopt :=i;
'R': rcopt := i

end (case I
end'-

'Nif"
if lellen >= 3 then
-if lexstrC3] =-"C' then listopt := false

erse if lexstrC3] ,~ .!!!!!l expropt := false;
'L I :'"'"'('i"Stopt := true;
'E': expropt := true

end
elSi""error(eropttype)

el5eif lextyp <> lexCOllll8 .!!!!!l error(eropttype);
gettol(

end
end tdooptions I;

{ ***.*.** I
{ dosysmac - perform peoper system macro
{ **.**.** I
procedure dosys.ac (d:dng I;

begin
gettok;
if lextyp <> lexlparen .!!!!!l error(ersyslpar)
erse
--c.se d of

--.ysinC: doinelude;
syscodeif: docodeif;
sysindex: doindex;
sysdefine: dodefine;
sysoption: dooptions

end
end (dosysmac I;

{ ******** }
{ error - write out error message
{ ******** }
procedure error (err:enlllsg I;

i: lnrng;

begin
need(2) make sure message fits on page I;
if listopt
'ilien
--,;agin

write(space, errflag); ~ i := 1 to nelt - 1 do write(blank);
writeln(arrow)

end
elsewriteln(' AT LINE:', line: 2, , (pascal line:', pline: 2, ')');
W"r"iteln(space, errprefix, err); nerrors:= nerrors + 1

.!!!!!. { error I;

{ ******** } .
{ evalfns - evaluate a builtin function
{ ******** I
procedure evalfns { f:fns I;

33

PASCAL NEWS #17

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

begin
case f of
--ra-bs:evalabs;

fat": evalatn;
fchr: evalchr;
feos: evaleos;
fexp: evalexp;
flen: evallen { length of a string };
fln: evalln;
fodd: evalodd;
ford: eva lord;
frou: evalrou { round };
fsin: evalsin;
fsqr: evalsqr;
fstr: evalstr { string of - make integer a string };
ftru: evaltru { trWICate }

end { case }
end! evalfns l;

{ ******** }
{ evalabe - evaluate the abe builtin function
{ ******** }
procedure eva labs;

bepirh II ctab[ctopJ do --rr typeisC[tre';-tinJ)
t1ien cise ctyp of
--tm:ci := i1i"Cci);

tre: cr := absCcr)
end

eluexperrorCerabstype)
.!!!!!. TEivalabe };

{ ******** }
{ evalatn - evaluate the arctan builtin function
{ ******** }
procedure evalatn;

bepirh II ctob[ctopJ do --rr typeisCUre;-tinJ)
t1ien
-cise ctyp of
~n: begiii' cr := arctanCcD; ctyp:= tre end;

tre: cr := arctanCcr)
end { case }

eluexperrorCeratntype)
.!!!!!. TEivalatn };

{ ******** }
{ evalchr - evaluate the chr bui! tin funct¥m
{ ******** }
procedure evalchr;

i: integer;

bepin
IIlth ctab[ctopJ do --rr ctyp = tin -

t1ien
--,;e'¥in .

, := el; ctyp:= tch; over(cstop, atop);
cstop := cstop + 1; clen:= 1; cstr[cstopJ:= chrCD;
cfi rst := cstop

end
eluexperrorCerchrtype)

.!!!!!. Te'valchr };

{ ******** }
{ evalcos - evaluate the cosine bui! tin function
{ ******** }
procedure evalcos;

bepj\
II t ctab[ctopJ do --rr typeisC[tre;-tinJ)

t1ien
-..se ctyp of
~n: bepiii' cr := cosccn; ctyp:= tre .!!!£;

tre: cr := cosCcr)
end { case }

eluexperrorCercostype)
.!!!!!. lEivalcos } ;

{ ******** }
{ evalexp - evaluate the exp builtin function
{ **.***** }
procedure eva lexp;

begjn
IIlth ctab[ctopJ do
--rr typeis([tre;-tinJ)

then
--COse ctyp of

tTn: begin cr := exp(ci); ctyp:= tre ~
tre: cr := expCcr)

end { case }
eluexperrorCerextype)

end \1iValexp } ;

{ ******** }
{ evallen - evaluate the length bui! tin function
{ ******** }
procedure evallen;

i: integer;

MARCH~ 1980 PAGE 3LJ

991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

begjn
IIlth ctab[ctopJ do
--rr ctyp = tch

t1ien
be?in

1 := clen; cstop:= cfirst - 1; ctyp:= tin; ci:= i
end

elseexperrorCerlentype)
end T"'"ii'vallen } ;

{ ******** }
{ evalln - evaluate the In builtin function
{ ******** }
procedure evalln;

begin
IIlth ctab[ctopJ do --rr typeis([tre;-tinJ)

t1ien
--COse ctyp of

-rrn: begin cr := lnCci); ctyp:= tre .!!!£;
tre: cr := lnCcr)

end { case }
elseexperrorCerlntype)

end \1iValln } ;

{ ******** }
{ evalodd - evaluate the odd builtin function
{ ******** }
procedure evalodd;

i: integer;

begin
II th ctab[ctopJ do --rr ctyp = tin-

t1ien begin i := ci; ctyp:= tbl; cb:= oddcn .!!!!!.
else experrorCeroddtype)

end \1iVavodd } ;

{ ******** }
{ evalord - evaluate the om bui! tin function
{ ******** }
procedure eva lord;

c: char;

begin
IIlth ctab[ctopJ do --rr ctyp = tch -

t1ien --rr clen = 1
then begin c := cstr[cfirstJ; ctyp:= tin; ci:" ordCc) .!!!!!. erse experrorCerordarg)

elseexperrorCerordtype)
.!!!!!. T"'"ii'valord };

{ ******** }
{ evalrou - evaluate the round builtin function
{ ******** }
procedure evalrou;

r: real;

begin
IIlth ctab[ctopJ do --rr ctyp = tre -

t1ien begin r := cr; ctyp:= tin; ci:= roundCr) end erse experrorCerroutype)
.!!!!!. \1iValrou };

{ ******** }
{ evalsin - evaluate the sin buil tin function
{ ******** }
procedure evals;n;

begi\
lilt ctab[ctopJ do --rr typei!C[tre;-tinJ)

t1ien
--COse ctyp of
~n: beg iii' cr := sinCc;); ctyp:= tre .!!!£;

tre: cr := sinCcr)
end { case }

elseexperrorCersintype)
.!!!!!. T"'"ii'valsin };

{ *******. }
{ evalsqr - evaluate the sqr bui! tin function
{ ******** }
procedure evalsqri

begl\
w t ctab[ctopJ do --rr typeis([tre;-tinJ)

then
--COse ctyp of
~n: ci := sqr(ci);

tre: cr := sqrCcr)
end { case }

elseexperrorCersqrtype)
end {"'evalsqr } ;

{ ******** }
{ evalstr - evaluate the stringof builtin function
{ ******** }
procedure evalstr;

PASCAL NEWS #17 MARCH, 1980 PAbt

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

i integer;
c char;

sgn boo lean;

begin h
w,t etabCetop] do
----rr etyp <> tin- then experror(erstrtypel

orse --
"'""begin

; := eii
if i < 0 then begin sgn := true;
erse sgn :="""lirse;

:= abs(;) end

o.er(estop, atopl; estop:= estop + 1; etyp:= teh;
efirst := estop;
if ; = 0 then begin den := 1; estrCestop]:= zero end
orse --

begin
c en := 0;
while; > 0 do

begin -
estrCestop] := ehr(ord(zerol + (; "od lOll;
; := ; d;v 10; over(estop, atopl;
estop :=estop + 1; e len := den +

end;
;tSgn then estrCestop] := minus
erse estop := estop - 1;
~; := 0 to(elen - 1) div 2 do
Deg;n - - -

e := estrC; + ef; rst];
estrCi + efirst] := estrCcf;rst + elen - - 1];
estrCef;rst + elen - ; - 1] := e

end

.!!!!!.
.!!!!!.

end (--evalstr };

(********)
(evaltru - evaluate trunc builtin function
{ ******** }
procedure eva l t ru;

var
r: real;

begin
---;;;th ctabCctop] do

----rr ctyp = tre -
tnen begin r := cr; ctyp:= tin; ci:= trunc(rl end
else experror(ertrutypel

.!!!!!. r-ivaltru };

{ ******** }
(experror - print error for expression and flush)
{ ******** }
procedure experror { err :errmsg };

ctabCctop] .ctyp := terr; flush begi! error(errl;
.!!!!!. experror} ;

{ ******** }
(expression - parse expression; put value in ctab{ctop)
{ ******** }
procedure expression;

begin
--;:erato;

if typeis([tchJl
tnen
"'""begin

over(ctop, .8xcons); ctop:= ctop + 1;
whl~e i~extyp in [Lexst, lexalpha] ~

~ate;
if typeis(Ctch]l
tnen with ctabCctop - 1] do clen := clen + ctabCetop].den
er.e 1T'iiot typeis(CterrJ) then experror(erexptype)
~-- --

etop := etop - 1;
end

.!!!!!. {expression };

{ ******** }
{ factor - recognize factor part of expression
{ *****.*. }
procedure factor;

op: lex;

begin
*e~extyp ill [Lexnot, lexsubJ

begin
op := lextyp; getkeYi factor;
with etabCetop] do --rr typeis(CtblIT and (op = lexnotl then eb := ~ eb

else -

end
else

----rr typeis([tin, trell .!!!!!. (op = lexsubl
tnen
---case etyp of

---r1n: ci := - eii
tre: cr := '- cr

end { case }
elSe ----rr etyp <> terr

then begin etyp := terr; experror(erfaetypeJ end

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

if lextyp = lex lparen
tnen

begin k
get ey; express; on;
if not typeis(CterrJl then
-iTTextyp <> lexrpare;;- then experror(erfacrparl

erse get key
end--

elSeyariable
end r-ractor };

{ ******** }
(findcon - find previously defined constant
(****.***)
procedure findeon { name:alfa; var found:boolean };

c: crng;
i: integer;

begin
e := eval id; etabCOJ.ename:= name;
while etabCeJ.cna"e <> name do e := c - 1;
TfT> 0 -
"ITen
"'""begin

etabCetopJ := etabCe];
with etabCetopJ do --rr etyp = tch -

tiien
begin

over(estop + elen, "axestr); efirst:= estop + 1;
for i : = 0 to e len - 1 ~

begin
estop := estop + 1;
cstrCcstopJ := estrCetabCe].efirst + iJ

end
.!!!!!.;-

found := true
end

end Ifindcon };

{ ******** }
{ flookup - lookup fl.nction nane and return type code
{ ******** }
procedure flookup { name:alfa; var fun: fns; var found:boolean };

f: fnrng;

bet n
uneH01. fnnme := na"e; f:= .. xfns;

while funcHfJ. fnn.e <> nalle do f := f - 1;
if f = 0 then found := false
erse begin lOiiiid := true; fun:= funcHfl.fntyp end

en'dT" flookup } ; -

{ ******** }
{ flush - flush to senicolon
{ ******** }
procedure flush;

be~in .!!l!.ii!. ~ (lextyp .!!l Clexeof, lexsemi]) do get key
!!!... { flush };

{ ******** }
{ forcereal - force top t"" constants on stack to real
{ ******** }
procedure forcereal;

;: integer;

begin
with etabCetopJ do ----rr etyp = tin -then begin i := ei; ctyp:= tre; er:· i .!!!!!i
witn etabCetop - 1Jdo --rr etyp = tin then begin i := ei; ctyp:= tre; er:'" i .!!!!!.

.!!!!!. t forcereal } ;--

{ ******** }
{ getactuals - get actual paraneters for macro call
{ ******** }
procedure getaetuals { f:fptr; var act:aptr };

begin
if f = nil
tiien { if no fODllals, then no actuals }
er.e

begin
new(act);
with aet-, f" do

begi" -
a orm := fname; alast:= atop - 1; getparlD;
afirst := atop; if ch = comma then getch;
getactuals(fnext, anext)

end
~-

end (getactuals) ;

{ ******** }
{ getbody - get the body of a macro
{ ******** }
procedure getbody;

etr: integer { left parenthesis counter };

be?in
2i eh rparen

1,.""nL III .. "" ttJ.1 MARCH, 1980 PAGE 36

1:$21
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
.1369
1370
1371
137Z
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

then
---wrth defs[dtopl do

---cegin getch; alast := dstop; dfi rst := dstop + 1 !!!!!.
else
---ceqin

ctr := 1;
with defs[dtopl do
---cegin

---viirle ct r > 0 do
begin -

overCdstop, atop); dstop:= dstop + 1;
defstr[dstopl := chi dl.st:= dstop;
if ch = rparen then ctr := ctr - 1
erse --
~ ch = lparen then ctr := ctr + 1

erse ----n- Cch = newline) and Cftop = 0) and eofCfstacHOl.
-ffile) - -
then begin errorCerbodyeof); ~ 1 !!!!!;

getcn-
end;

deTStr[dlastl := blank { replace trailing ")")
end

end
!!!!!. tgetbody);

{ ********)
{ getbsu - get basic syntatic Wlit, subst. macro calls)
{ ******** }
procedure getbsu;

nalle: al fa;
found: boolean;

begin
gettok;

whi le lextyp = lexllac do
begi\ -

pac <Lexstr, 1, name); ckformalCnam., found);
if not found then
biifn· -

c "acroCnalle, found);
if not found then begin errorCermacdefn); gettok!!!!!.

end
!!!!!; - -----

!!!!!. 1getbsu };

{ ********)
{ getcdparm - get "codeif" code an:) save it
{ ******** }
procedure getcdparm;

begin

ctr: integer;
d: dsrng;

d := dstop; ct r := 0;
whi le Cctr > 0) or Cch <> rparen) do

begin -
overed, atop); d:= d + 1; defstr[dl:= chi
if ch "lparen then ctr := ctr + 1
erse if ch = rpar~ then ctr := ctr - 1; gem- --

end;
ifd> dstop then
-begin --

overCd, atop); d:= d + 1; defstr[dl:= blank;
while d > dstop do
--segin -

-atoP := atop - 1; defstr[atopl:= defstr[dl; d:= d - 1
!!!!!.

end
!!!!!. 1getcdparm };

{ ******** }
{ getCh - get next character and place in ch
{ ******** }
procedure getch;

bevt
, mtop > 0 then
-while ClIst8cITmtopl.mnext > mstack[mtopl.mlast) and Cmtop > 0) do

begin atop := mstacHmtopl.matop; mtop:= mtop- 1; end;
if mtop > 0 -
then
---wrth .stack[lItopl do

---cegin ch := defstr[mnextl; mnext:= mnext + 1 end
else--

---ceg;n
, next> last then getl ine; ch:= inline[nextl;
next := next + 1 --

end
end {getch j;

{ ******** }
{ getformals - get formal parameter nanes
{ ******** }
procedure getformals { var f:fptr);

be¥in
'f lextyp <> l .. alpha then f := !!.i..!:.
erse
~gin

--niiiCf); lexstr[ol:= dollar; packHexstr, 0, f· .fname);
gettok;
if lextyp = lexcomma
tnen ~eg;n gettok; getformalsCf" .fnext) end erse . next := nil

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
147Z
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

end
!!!!!. tgetformals };

{ ******** }
{ getkey - get token and classify language keywords
{ ******** }
procedure get key;

nalle: al fa
k: krng

name of constant } ;
pointer to keywords } ;

begin b
get SUi
if lextyp = lexalpha
tnen
~gin

pack<Lexstr, 1, name); keywd[OJ.kna .. :" nalle; k:" lIaxkeys;
while keywd[kJ.knalle <> name do k := k - 1;
Tf'i<> 0 then lextyp := keywd[kl.klex

end .--
end tgetkey };

{ ********)
{ getline - place input line in linline; set next, last }
{ ******** }
procedure get line;

incol: lnrng;
i: integer;

beg~i
w le eofCfstacHftopl.ffile) and Cftop > 0) do close;
if eofCfstacHftopl.ffile) - -
then begin next := 1; last:= 0; Inline[nextJ:= newline.!!!!!.
erse
---wrth fstacHftopl do

betn -
. ,ne := Une + 1; fllne:= fline + 1; Incol:= 1;
if l istopt
then

bewin
'f linectr >= pagesi.e
then begin linectr := 0; newpg!!!!!.;
"'CTriectr :" llnectr + 1; writeCspace, line: 4,' ');
for i := 1 to 7 do writeCfn .. e[i]);
W"rTt.Cfline:5, prine: 8,' ');
while Cnot eolnCffile» and Clncol <- rcopt) and (ffileA
~lank) do - -

be~ln getCffile); writeCblank); Incol:" Incol + 1

ne~= incoli
inl ine[nextJ := newline { in case of empty line };
while Cnot eolnCfflle» and Cincol <= rcopt) do

begin- - -
inline[incoll := fflle A; incol:= incol + 1;
writeCffi leA); getCffi le)

!!!!!.;
last := incol - 1;
if not eolnCffi le) then
beg,n --

wr1teCbreak) ;
while not eolnCfflle) and Cincol < .. xcoll do

begin writeCfflleA);-getCffile) end

wr~n
end

else
begi!

wh le Cnot eolnCffile» and Cincol <= rcopt> and CffiloA
--;;-blank) do - -

begin get(lTile); incol:= Incol + 1 !!!!!.;
next :a incol;
Inline[nextJ := newUne { in case of empty line };
while Cnot eolnCffile» and Cincol <= rcopt> do

begin- - -
inline[incoll :" ffileA; Incol:" Incol + 1;
getCffile)

!!!!!.;
last := Incol - 1

.!!!!!i
readlnCffile);
if last >= next
tnen begin last := last + 1; inline[Lastl:= newline end

ena-
end {geUine };

{ .******* }
{ getparm - get an actual parm and save
{ ******** }
procedure getparm;

begin

ctr: integer;
d: dsrng;

d := dstop; ctr:= 0;
while Cctr > 0) or not Cch in [comma, rparen]) do

begin -- - -
over Cd, atop); d:= d + 1; defstr[dl:= chi
if ch = lparen then ctr := ctr .. 1
ers. if ch = rpar~ then ctr := ctr - 1;
getch-

end·
im dstop
then
---cegin

overCd, atop); d:= d + 1; defstr[dl:= blank;

PASCAL NEWS #17

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

whi le d > dstop do
begin { JOOV'e paon to right }

atop := atop - 1; defstr[atop]:= defstr[d]; d:= d - 1
end

end-
.!!!!! Igetpaon };

{ .*.***** }
{ gettok - get a tokenl set lexstr, lexlen, lextyp }
{ ******** }
procedure gettok;

;: integer;
num: integer { value of octal nl>l\ber };

berin
ex len := 0;

while lex len = 0 do
beg~n

W lle ch = blank do getch; texten:= 1; lextyp:= lexother;
Lexstr[n := chi -
case ch of
----new l ; ne:

if (ftop = 0) and eof(fstack[ftop].ffile)
tnen lextyp :=Lexeof
erse ~egjc getch; lex len := 0 end;

'A-r;-'"e, " 'D', IE', IF', IG',-rw', 'I', 'J', IK', ILl,
'''', 'N', '0', Ip', IQ', 'R', '5', IT', 'U t , 'V', 'W I , 'X',
'Y I, 'Z':

begin
getch; lextyp:= lexalpha;
while ch in ['A' _. 'Z', 'D· ._ '9'J ~

be~in -
exlen := l .. len + 1; lexstrrLexlen]:= chi getch

end;
if"1Oxlen > 10 then lex len := 10;
TOr i := lex len +1to 10 do lexstr[i] := blank

end; - -
IO~'1', '2', 13', 14', IS', '6' .• '7', '8', '9':

begin
getch; lextyp:= lexint;
while ch in ['0' •• '9'] do
begin - -

--rexlen := lex len + 1; lexstrrLexlen]:= chi getch
end;

ifCli = letterb
'then
-sigin { octal

getch; num:= 0;
for i := 1 to lex len do
,f lexstrm in ['err-.. '7']

tnen num := 8* num + ord(lexstr[i]) - ord(zero)
erse begin num := 8 * num; error(eroctdig) end;

overrttop, maxcons)i ctop:= ctop + 1; -
with ctab[ctop] do begin ctyp := tin; ci:= num end;
convrt; ctop:= ctop - 1

end
el..--

bei~n
1 ch = period
tnen
-sigin

getch;
if ch = period then pushback
else
-sigin

lextyp := lexreaL; Lex Len := LexLen + 1:
lexstrnexlen] := period;
while ch in ['0' .• '9'] do
begin - -

--rexLen : = lex Len + 1:
lexstrrLexlen] := chi getch

end
end

end;­
ifCh = lettere
then

-sitn
extyp := LexreaL: lex Len := Lex Len + 1;

end
end:-

Lexstr[Lexlen] := chi getch:
if ch in (pLus, minus] then
begin --

----rei"Len := Lex Len + 1; lexstr(LexLen]:= chi
getch

end o

while' ch in ['a' .. '9 1].£!£
beIin -

ex Len lex Len + 1: lexstr[Lexlen]:= chi
getch

end
end

'+r:-begin Lextyp :=
'_I: ~egln Lextyp :=
'*': eg1n Lextyp :=
'I': beg,n Lextyp :=
1(':

lexadd;
Lexsub;
lexmul t;
lexdvd;

getch end;
get ch end:
getchend;

getch end:

begin
get chi
if ch <> star then Lextyp := LexLparen
erse
--';'-gin

---getch:
if ch = doLLar
tnen

bet n
exlen := 3: unpack('(*S', Lexstr, 1);

repeat

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

repeath getc; lex len := lexlen + 1;
lexstrrLexlen] := ch

until ch = star;
getch; lex len := lex len + 1;
lexstr[lexlen) := ch

unt il ch = rparen;
getch

end
elSe

begin
lexlen := 0;
repeat while ch <> star do getch; getch
unt 1 l ch = rparen;
getch

end
end

end o -

,)T:"'begin lextyp := lexrparen; getch!.!)!!;
IS':

begin
getch;
if not (ch in ['A' •• 'Z'])
then begin erroder .. acna .. e); lexlen:= O.!!!!!
else

begin
Lextyp := Lexllae;
whiLe ch in ('A' •• 'Z', '0' •• '9'J ~

begin -
lex len := lex len + 1; lexstrUexlen):= chi
getch
~

if lex len > 10 then lex len := 10;
TOr i := lex len +1to 10 do leutr[i] := blink

end - -
end;-

'="-begin lextyp := lexeq; getch !.!)!!;
::: ~ begin Lextyp := Lexcomma; getch ~

begin
getch;
if ch = period then
begin lexstrar:= period; lexlen:= 2; getch .!!!!!

end;
"TI.

begin { extract string including all qootes }
Lexlen := 0;
repeat

over(Lexlen, maxLine): lex Len := lexlen + 1:
lex,trrLexlen] := chi
repeat h

getc :
if ch = newline then
-begin --

error(erlongstrl; pushback;
ch := quote { supply missin;J qoote

end o

ovmLexlen, maxLine); lex len := Lexlen + 1:
lex,trUexlen] := ch

until lexstr[lexlen] quote;
getch

unt it eh <> quote;
lextyp := lexst

end:
I:':

begin
getch:
if ch = equal
then begi n lex len

end:
I#~

beyin
extyp := lexne:

getch
end:

'!~
begin

:= 2; lexstr[2]:= equal;

unpack('O', lexstr, 1):

getch .!!!!!

lex len := 2;

lextyp := lexor: unpack('OR', lexstr, 1): lexlen:= 2:
getch

end:
'&r:-

begin
Lextyp := Lexand: unpack('AND', Lexstr, 1):
lex len := 3; getch

end:
'<or:

begin
getch:
if ch = equal
then

begin
lex len := 2; lexstr[2]:= equal; lextyp:= lexle;
getch

end
eLse
if ch = greater

'then
begin

Lex Len := 2: Lexstr[2J:= greater:
Lextyp := lexne; getch

end
elSelextyp := Lexlt

end;--
'>"'-:-

begin
getch;
if ch = equaL
'then

begin
lex len := 2: lextyp := lexge; lexstr[2] := equal;

PASCAL NEWS #17 MARCH, 1980 PAGE 38

1761
176Z
1763
1764
1765
1766
1767
1768
1769
1770
1771
177Z
1773
1774
1775
1776
1777
1778
1779
1780
1781
178Z
1783
1784
1785
1786
1787
1788
1789
1790
1791
179Z
1793
1794
1795
1796
1797
1798
1799
1800
1801
180Z
1803
1804
1805
1806
1807
1808
1809
1810
1811
181Z
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
18Z8
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

getch
end

elselextyp := lexgt
enO;-

'i~
beyin

extyp := texLe; unpackC'<=', lexstr, 1);
getch

end;
'\or:-

begin
Lextyp := lexgei unpack(I>:', lexstr, 1);
getch

end;
'-T'!

begin
Lextyp := lexnot; unpack('NOT', Lexstr, 1);
lex len := 3; getch

end·

lex len := 2;

lex len := 2;

';Tfij¥in lextyp := leuemi; getch end;
1[1, , , • " '?': getch all 'O'ffier characters

end { case} -
ena

end tgettok } ;

{ ******** }
{ initialize - perform all necessary initialization
{ ******** }
procedure initial ize;

.'!!!.
i: integer;

begin
t'liein := clock;
with ctab[1J do
-re-gin -

cname :=
cfi rst := 1

end;
witllctab[2J do

begin
cname := '00
c1; rst := 4

end;
withctabC3J E£
-re-gin

'Ciiime := .yy
cfi rst := 7

end;
withctabC4J do
-re-gin

cnalle := ·TI .. E
cfirst := 9

end·
wimtabC5J do

begin -
cnalle := 'DATE
cfi rst := 1

end;
wit11ctabC6J do
-re-gin cnalle:= 'TRUE
with ctabC7J do
,gin cname:= • FALSE
wit ctabC8J do

bligin cname:= • .. AXINT
wit ctabC9J do

· ;
· ;
· ;

· ;

· ;

ctyp := tch; cLen

ctyp := tch; clen

ctyp := tch; c len

ctyp := tch; c len

ctyp := tch; clen

· ; ctyp := tbl;

· ; ctyp := tbl;

· ; ctyp := tre;

:= 2;

:= 2;

:= 2;

:= 8;

:= 8;

cb := true end;

cb := false ~

cr := max;nt end;

-re-gin cname:= • .. ININT '; ctyp:= tre; cr:= - maxint end;
ctop := ndefconst { nlJ1lber of predefined constants };
cval id := ndefconst;
tilledate { put mm/dd/yyhh:nun:ss into cstr[l. .16] };

{ keywords are in order of decreasi"1 frequency of access
with keywdC16J do ~egin kna .. e := 'AND '; klex:= le.and !!!!!i
ii1tli keywdC20J ao .!!!i.l.!2. kname := 'BEGIN '; klex:= lexbeg end;
ii1tli keywdC14J do ~egln kname := 'CASE '; klex:= lexcas!!!!!i
ii1tii keywdC10J do .!!!i.l.!2. kna"e := 'CONST '; klex:= lexcon end;
~ keywdC11J do ~ kna .. e := 'DIV '; klex:= lexdiv ~
w,th keywdC21J do e"gin kname := 'END '; klex:= lleexxefnwdd =-ennd ••
ii1tli keywdC 8J ao.!!!i.l.!2. kname := 'EXTERN '; klex:= end;
ii1tli keywdC 2J ao~ kname := 'FORTRAN '; klex:= lexfwd ~
ii1tli keywdC15J do e"gin kname := • FORWARD '; k lex := lexfwd end;
ii1tli keywdC 9J ao .!!!i.l.!2. kname := • FUNCTION '; klex:= lexfun ~
ii1tli keywdC 4J ao ~ kname := • .. AX '; klex:= lexmax end;
ii1tli keywdC 3J ao ~ kname := '''CONST '; klex:= lexmcon !!!!!i
ii1tli keywdC 5J ao ~ kname := 'MIN '; klex:= lexmin!DS!i
ii1tii keywdC 6] ao ~ kname := '''OD '; klex:= lexmod!DS!i
WTfii" keywdC17J do begin kname := 'NOT '; klex:= lexnot end;
ii1tii keywd[12J ao begin kname := 'OR '; klex:= lexor elid;
ii1tli keywdC19] ao
--""begin kname :;-'PROCEDURE, klex:= lexproc end;
with keywdCBJ.5!£ begin kname := 'RECORD '; ffix:= lexrec end;
with keywdC 1J do begin kname := 'RUN '; klex:= lexfwd end;
with keywdC 7J do begin kname := 'TYPE '; klex:= lextpe end;
ii1tii keywdC18J do begi8 kname := 'VAR '; klex:= lexvar end;
mtop := 0; dstop:=; defs[sys;nc].dname:= 'SINCLUDE '; -
defsCsysdefineJ.dname := 'SDEFINE ';
defsCsys i ndexJ .dname := 'SINDEX ';
defsCsysopt ionJ .dname := 'SOPTIONS ';
defs[syscodeHJ .dname := • SCODElF '; dtop:= nsysmac;
atop := maxdefstr { actuals in rhs of dstr };
with funct[1] do begin fnnme := 'ABS ';
with functC 2J do begin fnnme := 'ARCTAN ';
with functC 3J do begin fnnme := 'CHR ';
ii1tii functC 4J ao begi n fnnme := • COS ';
~ functC 5J do begin fnnme := 'EXP: ';
w,th functC 6J do begin fnnme := 'LENGTH ';
ii1tii functC 7J do begin fnnme := 'LN ';
with functC 8J do begin fnnme := 'ODD ';
ii1tii functC 9J ao begin fnnme := 'ORD ';
ii1tii functC10J.5!£ begin fnnme := 'ROUND ';

fntyp
fntyp
fntyp
fntyp
fntyp
fntyp
fntyp
fntyp
fntyp
fntyp

:= fabs end;
:= fatn end;
:= fchr end;
:= feos end;
:= fexp end;
:= fLen end;
:= fln end;
:= foddend;
:= ford end;
:= frou end;

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

with functC11J do begjn fnMe := 'SIN
WTfii" functC12J ao beg,n fnn"e := 'SQR
with functC13J do ~egin fnMe := 'STRINGOF
ij"lt'ji functC14J ao .!!!i.l.!2. fnnme := 'TRUNC
nne : = 0 { last I1iii!nlJ1lber for listiI'J } ;

fntyp := fsin ~
fntyp := fsqr ,!!!g;
fntyp := fstr end·
fntyp := ftru ~

p line : = 1 { next, not last, pascal line nlJ1lber } ;
rewrite(psource); rcopt:= defrc; prcopt:= defprc;
listopt := deflist;
expropt : = defexpr { parse const expressions } ;
outpos := 0 { last output position used };
lastlex := lexeof { last token type output }; nerrors:= 0;
index := 0;
confl := Clexalpha, lexreal, lexint, leund, lexor, lexnot, lex.in,

lexllax, lexdiv, lexlllod, lexbeg, lexcas, lexend, lexrec, Lexfun,
Lexproc, lexcon, lextpe, Lexvar];

l inect r := pagesi ze { force newpage on listiI'J };
ftop := - 1 { no open files }; open(inna .. e);
fstackCDJ.fname := inlna"e

.end { initialize };

{ ******** }
{ need - need 1 lines: start new page if necessary }
{ ******** }
procedure need { l:pgr"1 };

begin
if Clinectr + l) > pagesize then begin linectr := li newpg .!!!!.
erse linectr := linectr + l

enirrneed };

{ ******** }
{ newpg - skip to a new page and pr int the headi"1
{********}
procedure neWPQi

begin
w.,teln(newpage, t itle1, tit le1a, dte: 9, t itle1b, tile: 9);
writeln(double, title2); writeln(space, title3);
write(space, title4); writeln(title5, title6)

end { ne"P9 };
newpg }

******** }
open - open an included file

***.*.*. }
procedure open name:alfa};

f: flrng;

begin
over(ftop, maxfiles); fstackCftop + 1J.fname := name; f: c 0;
while fstackCfJ.fname <> name do f := f + 1;
iTT<= ftop then error(eropen)
erse --
-re-gin

ftop := ftop + 1;
with fstackCftopJ E£

begin

f?fUe:;u~~m~ opened with nome fnane
reseHffile); fline:= 0; last:= 0; next:- 1;
inl ineCnextJ := newline; mtop:= 0; getch

end
end

end ropen };

******** }
over - abort on overflow

{ ******** }
procedure over { i:integeq maxval:integer l;

begi\, if i >= maxval l!!!!!. begin error(erover); ~ 1 end
.!!!2. over };

{ ******** }
{ parse - parse the input progran }
{ ******** }
procedure parse { top:Cr"17 tok:lex };

begin k
get ey;
while not (lextyp in Clex.of, lexend, lexfwdJ) do
---:rt'lextyp in [LeXi="ec, lexfun, lexproc, lexccn;-lexmcon, lexbeg,

- lexcasJ-
then
-case lextyp of

-r.xbeg: -
begin

puttoki
if tok in Clexproc, lexfunJ
then begin tok := lexbeg; get key end
else parse(ctop, lexbeg)

.@i
lex cas:

begin
puttoki
if tok = lexrec then getkey !l!!. parse(ctop, lexcas)

~
lexcon:

begin puttok; if expropt then parsecon else getkey
end;

ledun: begin puttok; scanheaderi parse(ctop, lexfun) .!!!!!;
lexmcon: parsemeon;
lexproc:

begin puttok; scanheader; parse(ctop, lexproc) ~
lexrec: bj9in puttok; parse(ctop, lextyp) end

end { case
else begin puttok; getkey end;

puttok;

PASCAL NEWS #17 MARCH, 1980 PAGE 39

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
Z064
2065
2066
2067
2068
2069
.070
.071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090

; f Clextyp = lexeof) Ind (tok <> lexeof)
tnen begin error(erparseof); ~ 1 end
'i'rSe' -rr Clextyp = lexend) and not (tok ;n Clexbeg, lex cas, lexreel)

tnen error(erparsend)- - -
'i'rSe' -rr Clextyp = lexfwd) and not (tok in [Lexproe, lexfunl)

tnen error(erparsfwd);- - -
if lextyp <> lexeof then get key; etop:= top; evalid:= top

enol parse } ; --

{ ******** }
I parsecon - parse a constant declaration with expression
{ ******** }
procedure parseconi

begi\
get ey;

slvtyp: lex;
savstr: strngi
savlen: lnrng;
sval id: boolean;

consn ... : alfa;

whi le lextyp = lexalpha do
begin

puttok; overCctop, maxeons); ctop:= ctop + 1;
plekClexstr, 1, eonsnatl); get key;
if lextyp <> lexeq
tnen
-o.gin

error(erparseon); etabCetopl.etyp:= terr; flush;
get key

end
else
-o.g;n

puttok; get key; while eh = blank do geteh;
if (eh = selli> Ind CLextyp ;n [Lexint;-lexreal, lexotherl)
tnen
-o.g;n

savstr := lexstr; savlen:= texlen;
slvtyp := lextyp; sval id := true

end
elsesvalid := false;
iiP'F"ession;
if Clextyp <> leuelli> and (not typeis([terrl» then
-;begisc experror(erpeonsyn); -etabCetopl.etyp := terr end;
; ctl etopl.ctyp <> terr
tnen

beq;n
1 svalid
tnen
-o.y;n

exstr ::1: savstr;
lexlen : = sav len

lextyp := savtYPi

end
elSeconvrt;
Puttok; lextyp:= lexsemi; lexstrCl1:= selli;
lex len .= 1; puttok; etabCctopl.cname:= eonsn ... ;
cvalid := ctop

end
else
-o.gin

lexstrCl1 := zero;
lextyp := lexst;

end

lexstrC21 := sell;;
lex len := 2; puttok

!!S-
it ctabCctopl.ctyp in Cterr, totl !l!!!2 ctop := ctop - 1;
get key -

end
.!!!J!. t parsecon };

I ******** } .
{ parsemcon - parse an internal constant declaration with expression
I ******** }
procedure parsaconi

begin
--get"key;

consnam: alfa;

wh; le lextyp = lexalphl.!!2.
begin

over(ctop, maxeons); ctop:= ctop + 1;
pack<lexstr, 1, consnaa); getkeYi
if lextyp <> lexeq
tnen
-o.gin

error(erparsmcon)i ctab[ctopJ.ctyp:= terri flush;
get key

end
else

begin
get key; while eh = blank do geteh; expression;
if Clextyp<>lexsemi) and mot typeis(Cterrl» then
-begin experror (ermconsyn); -ctab[ctopJ .ctyp :~rr end;
if"""Ct"a!iCetopl.etyp <> terr then
begin etabCetopJ.ename :=COn"snam; evalid:= etop end

end;
ifCtabCetopJ.etyp in [terr, totl then etop := etop - 1;
getkey -

end
end {parsencon };

******** }
puslt>ack - push character back onto input }

******** }

2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200

procedure pushbaek;

beWln
1 Mtop > 0 then with IIstaeH.topl do "next := .next - 1
erse next := next"-~

end"T puslt>ack } ;

{ ******** }
I puttok - put out a token for pascal usilg cols l-prc }
{ ******** }
procedure puttok;

i: lnrng;

be9ln
1 Cllstlex in eonfU and (lextyp in confU then
-begin - -

wrlte(psouree, blank) { space needed between tokens };
outpos := outpos + 1

if~tyP = lexeof then begin writeln(psouree); outpos:· O.!!!!!
erse
-o.gin

if (outpos + lexlen) > preopt
then

begin
p lne := pline + 1; writeln(psource); outpos:- 0;
if lexlen > preopt
then begin error(erputtok); lexlen:" preopt .!!!!!.

fO~ 1 to lex len do write(psouree, lexstrCi]);
outpos := outpos + lex len; lIst lex := lextyp

end
end { puttok };

******** }
relate - parse subexpression with rel. ops

{ ******** }
procedure relate;

!!!:.
op: lex;
i: integer;
r: rell;

el,
e2: csrng;

begi!
ar th;
while (Lextyp.i!l. [Lexlt •• lexne]) and (not typeis([terrl» .!!2.

begin
over(etop, IIlxeons); etop:= etop + 1; op:. lextyp;
get key; arith;
if types.ateh
tnen
---vith etlbCetop - 1] .!!2.
~etyp~

tln:
bewin

1 := ei; etyp:= tbl;
case op of
---rexlt:c'b .=

lexle: eb :=
lexeq: eb :=
lexge: eb :=
lexgt: eb :=
lexne: eb :=

end (case
!EF

< etabCetopl.ci;
<= etabCctopl. e i;
= etabCetopl. e i;
>= etabCctopl. c i;
> etabCetopl.ei;
<> etabCetopl.ci

tre:
begin

r := er; ctyp:"' tbl;
case op of
---rexlt:cb :=

lexle: eb :=
lexeq: cb :=
lexge: cb :=
lexgt: cb :"
lexne: eb :=

end I case
!!S

r < ctabCetopl.cr;
r <= ctabCctopl.cr;
r = etabCctopl.er;
r >= etlbCetopl.er;
r > ctabeetopl.cr;
r <> ctabCetopl.er

tbl:
case op of
---rixlt:C'b :=

lexle: eb :=
lexeq: eb :=
lexge: eb :=
lexgt: eb :=
lexne: eb :=

eb < etabCetopl.cb;
eb <" etabCetopl.eb;
eb = etabCetopl. eb;
eb >= etabCetopl.eb;
eb > etabCetopl.eb;
eb <> etabCetopl. eb

!!S
tot: begin experror(errelatyp); etyp:= torr !!S
teh:

begin
el := efirst; e2:= etabCetopl.cfirst; i:= 1;
while (i < elen) and (estr[ell = cstrCe21) .!!2.
.,...-:= i + 1;
estop := estop - clen - etabCetopl.elen;
etyp := tbl;
case op of
---rexlt:C'b :=

lexle: eb :=
lexeq: eb :=
lexge: eb :=
lexgt: eb :=
lexne: eb :=

end { case
end

estrCel1
estrCel1
estrCell
cst rCell
estrCel1
cst rCell

< estrCe21;
<= estrCe21;
= cst rCe21;
>= cstrCe21;
> estrCe21;
<> estrCe21

end ICase
else-

2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301

MARCH, 1980 t'Abt. LtU

if ctab[ctopJ .ctyp <> terr
tli"en begin experror(errelconf)i ctab[ctopJ.ctyp:= terr end;

ctap:= ctop - 1
end

end Irelate I;

{ ******** }
{ scanheader - scan procedure or function heading
{ ******** }
procedure scanheader;

var
ctr: integer;

begin
-getkey get nane I; puttok get nane I;

getkey { get paren if paraneters I;
*s~extyp <> lexlparen then puttok

-negin
ct r := 1; puttoki
repeat

getkey; if lextyp lexlparen then ctr := ctr + 1;
if lextyp =lexrparen then ctr := ctr - 1; puttok

unTIL ctr = 0
en-d--

end I scanheader I;

{ ******** }
{ term - process multiplication ops in expression
{ ******** }
procedure term;

op: Lex;

be~in
actor;

if <Lextyp in CLexand •• lexmodJ) ~ (not typeis([terrJ»
tnen
"1T (typei,([tblJ) and <Lextyp = lexand» or (typeis([treJ) and (

- lextyp in CLexm'UTt •• lexmaxJ» or (typei,([tinJ) and (lextyp
in CLexiiiUlt •• lexmodJ» - -

then
--wI1ile lextyp in CLexand •• lexmodJ ~

begin -
ctop := ctop + 1; op:= lextYPi getkeYi factor;
with ctab[ctop - 1J do
"1T (op = lexand) ancr (ctyp = tbll

tnen cb := cb andCtab[ctopJ.cb
else -
"1T (op in [lexdiv lexmodJ) and (ctyp = tin)

tnen -
'"Ca,e op of

---rexdiv:ci := ci div ctab[ctopJ.ci;
lexmod: ci := ci mod ctab[ctopJ.ci

end { case
el
"1T (op in [Lexmult •• lexmaxJ) and typeis([tin, treJ)

'then -
-ne~;n

, (ctyp = tin) and typei,([tinJ) and (op <>
-lexdvd) - -
then
-case op of

--ri"xmult: ci := ci * ctab[ctopJ.ci;
lexmin:

if ctab[ctopJ.ci < ci
then ci := ctab[ctopJ .ei;

lexmax:
if ctab[ctopJ.ci > ci
then ci := ctab[ctopJ.ci

end !Case I
el

end
else

be~in
oreereat;

case op of
~xmul"t": cr := cr * ctab[ctopJ.cr;

lexdvd: cr := cr I ctab[ctopJ.cr;
lexmin:

if ctab[ctopJ.cr < cr
then cr := ctab[ctopJ.cr;

leX'iii'a'X:
if ctab[ctopJ.cr > cr
then cr :: ctab[ctopJ.cr

end tease
end

~ ctab[ctopJ.ctyp <> terr
"tllen experror (ertermtyp);

ctop := ctop - 1
end

e l seerror(ertermtyp)
end rterm I;

{ *** •• *.* }
{ terminate - pr int statistics ard close files I
{ ******** }
procedure terminate;

2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402

ratio: real { lines/sec ratio I;

begin
if outpos > 0 then writeLn(psource);
if nerrors > 0 then
begin

need(2);
writeLn(double, ,---> there were', nerrors: 1,

I errors detected by map');
end;

tottme := cLock - timein;
if tottme = 0 then ratio := 0.0
erse ratio := 10lll!""* line I tottme;
need(2);
writeln(doubLe, ,---) end run: " Line: 5, , input lines,', pL ine: 6

, , output lines, I, tottme: 7, t MS (I, ratio: 8: 4,
I lines/sec) I);

end { terminate I;

{ ******** }
{ timedate - get time ard date and store in cstr
{ ******** }
procedure t imedate;

begi n { get time and date fran systen ard make
cstr [1 •• 16] III1I/dd/yyhh:mm:ss I

I
global var iables tme ard dte should be I
set to time and date for the listing I
temporar:(time ard date I

unpack(MM/DD/YYHH:MM:SS', cstr, 1); tme:= '*TIME* ';
dte := '*rODAY* '

end { timedate I;

{ ******** }
{ typeis - return true if type of top of stack is in set I
{ ******** }
function typei, { c:cset) :boolean I;

begin typeis := ctab[ctopJ.ctyp in c end { typeis I;

*******. }
typesmatch - return true if types of top operands canpatible

{ ******** }
function typesmatch { :boolean j;

begin
type,match := false;
with ctab[ctop - 1J do
~ ctyp = ctab[ctoPJ.ctyp then
-if ctyp <> tch then type,match := true

erse if clen = ct"ii6rctopJ.clen then typesmatch :=
~ { typesmatch I;

{ ******** }
{ variable - recognize variable in expression I
{ ******** }
procedure vari ab le;

be~~n

name: al fa;
found: boo lean;

fun: fns;

true

, not (lextyp in [lexalpha, lexint, lexreal, lexstJ)
then begin experror(erva lexp); ctab[ctopJ.ctyp:= terr .!!!!!
else
--CO,e lextyp of

--r.xint: begr~ convrti;
lexreal: beg,n convrtr;
lexst: beg," convrts;
lexalpha:

begin

getkey .!!!!!;
get key .!!!!!;

get key .!!!!!;

pack<Lexstr, 1, name); getkey;
if lextyp <> lex lparen
then

begin
findcon(name, found);
if not found then
-will ctab[ctOpJ do

found := false;

begin ctyp := tot; co:: name end
end

else
begin

flookup(name, fun, found) { function call I;
if not found then experror(ervarfnct)
erse
--segin

-getkey; expression;
if lextyp <> lexrparen then experror(ervarrpar)
else begin getkey; evalf'ilsTfun) end

encr--- -
end

end
end (case I

end (variable I;
begin { map I
initialize; parse(ctop, lexeof);

1: terminate~.

PASCAL NEWS #17 MARCHI 1980 PAGE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3D
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

program Xref(input, output, tty) { N. Wirth 10.2.76 };

·1
{
{
{
{
{
{
{
{
{
{
{
{

Cross Aeference generator for Pascal 'programs
quadratic qootient hash method
revised by R.J.Ciche11i 16-Feb-79
include perfect hash function, ri1'J3 data structures,

and clean up code.
revised by J.P.It:Grath 22-May-79
predefined identifier processil'J3
modified quicksort algor i tbn
canmand line processil'J3 by M.Q. '!hanpson

revised by R.J.Cichelli 26-Nov-79
str iI'J3 table processil'J3 and work-files

Copyright 1979 Pascal USers Group
permission to copy - except for profit - granted

}
}
}
}
}
}
}
}
}
}
}
}
}

* Purpose:
'!his progran cross references Pascal prograns.
It supports upper and lower case, 101'J3 identifiers and
10l'J3 prograns.

* Authors:
N. Wirth, R.J.Cichelli, M.Q. '!hanpson, J.P.lt:Grath.

, * Method:
()Jadratic qootient hash method with tagged, quick-sorted Stril'J3
table and perfect hash function reserved word and predefined
identifier filters. Overflow processil'J3 by multi-file merge-sort.

* Description of parameters:
IEC PDP 11 RSX protocol.
PXR <output file>=<input: file> [<options>]
<options> :: =

C- captalize identifiers,
DI- display progran,
po. cross reference predefined identifiers,
'l'- terminal output (80 colllDDS and ids. only),
W-132 width of output.

* Input:
Pascal Program source.

* OUtput:
Listi1'J3 and references.

* Limitations:

* Olmputer systen:
Program was run under Seved 'l\:)rstendahl's IEC PDP 11 RSX Pascal.
'!his canpiler. (version 4.5) doesn't support progran parameters
in full generality. In this progran implememtation specific
code handles control card crackil'J3 and file variable and systen
file nane associations.

* Installation under RSX:

DPl:XRI!F/-FP/l«l, TI :/SII=DPl:XREF.OOLjMP
TASK= ••• PXR
LIBR-Sl1SRES:Kl
En'SCT=$IIFAPl: 40000
En'SCT=$$FSRl: 5140
llNITS=6
//

;ooL (overlay description)
.KXlT Rl-*(01,02)

Rl:
01:
02:

• Ft'rR DPl: XREF /lB: XREF :PAGEIIE-Dpo: [1, 1] PASLIB/LB
.Ft'rR DPl:XREF/lB:(XJICKS
.Ft'rR DPl:XREF/lB:INITPE-03-*(021,022)

.021:
022:
03:

• FCTR DPl: XREF /lB: INIR:H
• Ft'rR DPl: XREF /lB: INITPR
.Ft'rR DPD: [l,l]PASLIB/lB:OCML
• END

{$R- 00 runtime testi1'J3
{$W- no warnil'J3 messages

const
QUote = III.;

lCurleyBra = '{'; .
rCurleyBra = I}I;

size of hash table - prime } ; HashTb lS i ze = 997
.. ax It ems = 4000
StgTblSize = 6000
StgTblLimit = 5900
NumOfReserved = 40
NumOfPredefnd = 48

arbitrary limit on incore references };

key length = 10
DigitsPerNumber = 6
L inesPerPage = 57
DefaultTerminalWidth = 80
Defaul tLpWidth = 132
fIIaxLineNo = maxint

{ str iI'J3 table size } ;
{ limit is size - 100 } ;
{ size of reserved word table } ;
{ size of predefined id table };
{ keylel'J3th } ;
{ no. of digits per number };
{ lines/page } ;
{ terminal width } ;
{ line pr inter width } ;
{ maximum line nunber } ;

text = file of char;
index = 'If"::' HashTblSi ze;

StgTblIndx = 1 .. StgTblSi ze;
al fa = eacked array [1 .. key length] .£1. char;

ItemPtr = ,telli
word =~

keyindx,
keylen: StgTblIndx;

lastptr: ItemPtr

item
~

= packed~
LineNumber: 0 •• MaxLineNoi

next: It emPt r

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

LineBuffer = packed array [1 •• 80l .£1. char;
ChrType = (ucLetter, lcLetter, digit, other);

FilStates = Unout, inwrk1, wrk10ut, wrk1wrk2, wrk20ut,
wrk2wrk1) ;

charindx,
idlen,

HshTbLIndx: integer;
empty: al fa;

identifier: alfa;
CurrentL ineNumber: integer current line nt.lIlber };

LinesOnPage: integer nlll1her of lines on current page };
LineNosPerLine: integer {no. of line-nlll1bers per line };

HashTable: array [index] of word { hash table };
StgTable: packed arraf [StgTbLIndx] of char

for storil'J3 Identifiers };
FreeStgPt r: integer;

FreeltemPtr: ItemPtr;
ItemCnt: integer;

ChrCatagory: array [char] of ChrType;
ChrSortOrd: array [char] Of integer;

ReservRepresentedBy,
PredefRepresentedBy: array [char

LastLeadingChar,
ch,

rawch,
fstchar,

'A' •• '9' }] .£1. integer;

lstchar: char;
reserved: array [1

predefined: rray [1
NUIIOfReservedJ of al fa;
NumOfPredefnd] Of al fa;

L ineLength: nteger;
cmlline: LineBuffer;
cllllen: integer;
today,

now: ~j~ke~ arr~~ [1 ' .. 10] .£1. char;
OutputSection: lstlng, 1 ents);

PageNumber: integer;
Di splayIsActi'\le,

DoPredefined,
terllinal,

AllCapitals: Boolean;
state: Fi lStates;

NextState: array [Fi lStates, Boolean] .£1. Fi lStates;
wrk2active: Boolean;

wrk1,
wrk2: text;

procedure Pageheader;

begin

i: integer;
!sNarrow: 0 •• 1;

IsNarrow := 0;
if not terminal
tiien

begin
PageNumber := PageNumber + 1; page(output);
write(' CrossRef - ');
case OutputSection of
--risting: write('Program Listing ');

idents: write(' Identifier Cross-Reference ')
~
writeC ' I, today,' " now: 8);
if LineLength <= DefaultTerminalWidth
then begin writeln; write(' '); IsNarrow:= 1; .!!!!!
!1!!. write(' I);

for i := 1 to cmllen do write(cmll ine[il);
'Wr1te(' ': ~5 * ISNarrow + 40 - cmllen»;
writeln(' Page', PageNumber: 3); writeln;
~

L inesOnPage := IsNarrow;
end { pageheader } ;

function UpperCase(ch: char): char;

begin { This should work for both ASCII and EBCIiIC.
if ChrCatagory[ch] = lcLetter '
then UpperCase := chr(ord(ch) - ord('a') + ord('A'»
erse UpperCase := chi

endT'" uppercase' };

function EqlStg(indx1, len1, indx2, len2: integer): Boolean;

disp,
StopAt: integer;

be?~n
1 len1 <> len2 then EqlStg := false
erse

begin
dlSP := 0; StopAt:= len1 - 1;
while (disp < StopAt) and (StgTable[indx1 + disp] = StgTabLe[
--:rndx2 + disp]) do

disp := disp + 1;
EqlStg := StgTable[indx1 + disp] = StgTable[indx2 + disp]

end
end Teqlsb3 };

function LssStg(indx1, len1, indx2, len2: integer): Boolean;

StopAt,
di sp,

point: .integer;

41

PASCAL NEWS fl17 MARCH. 1980 PAGE 42
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

if len1 < len2 then StopAt := len1 - 1 !!.!!. StopAt := len2 - 1;
arsp := 0;
while CStgTableCindx1 + disp] = StgTableCindx2 + disp]) and Cdisp <
---stopAt) do

disp := c/1s"P + 1;
point := di sp;
while (UpperCaseCStgTableCindx1 + disp]) = UpperCaseCStgTableCind.2
--+-disp]» and Cdi sp < StopAt) do

disp := disj)+ 1; -
if UpperCaseCStgTableCindx1 + disp]) = UpperCaseCStgTableCindx2 +
- dispJ)
then
-,r len1 = len2

tnen
--CSsStg := ChrSortOrdCStgTableCindx1 + pointlJ < ChrSortOrdC

StgTableCindx2 + pointJJ
else lssStg := len1 < len2

elSe""
--CSsStg := ChrSortOrdCStgTableCindx1 + disp]] < ChrSortOrdCStgTable

Cind.2 + displJ;
end { lssst:r:l I;

{$Y+ new segment I

procedure PrintTablesCvar infil, out: text);

tryindx,
trylen:

Swapllord:
lIidpoint:
TbLInd.,

"oveToIndx:
i:

integer { quick sort temporaries I;
word { quicksort temporary I ;
integer;

NumberCounter:

index;
integer;
integer;

CllpRefPtr,
CllpReflen: integer;

procedure QuickSort ClowerBound, UpperBound: integer);

begin

T"plowerBnd,
TllpUpperBnd: integer;

repeat
T"pLowerBnd := lowerBound; TmpUpperBnd:= UpperBound;
"idpoint := CTllplowerBnd + TllpUpperBnd) div 2;
tryindx := HashTableCmidpointJ.keyindx; -
trylen := HashTableCllidpointJ.keylen;
repeat
--.;me lssStgCHashTableCTllpLowerBnd] .keyindx, HashTable[

----rii"plowerBndJ.keylen, tryindx, trylen) do
T"plowerBnd : = T.plowerBnd + 1; -

while lssStg Ct ryindx, try len, HashTab le[TllpUpperBndJ. keyi nd.,
~shTableCTllpUpperBndJ.keylen) do

TMpUppe rBnd : = TllpUppe rBnd - 1; -
if TllplowerBnd <= TllpUpperBnd
tnen

IiiMin
wapllord := HashTableCTllplowerBndJ;

HashTableCTllplowerBndJ := HashTableCTmpUpperBndJ;
HashTableCTllpUpperBndJ := Swapllord;
TllplowerBnd := TllpLowerBnd + 1;
TllpUpperBnd := TmpUpperBnd - 1

end
unt iTT.plowerBnd > TmpUpperBnd;
iT'i'ipUpperBnd - lowerBound < UpperBound - T"plowerBnd
tnen
Iii,;n

lowerBound < TmpUpperBnd
tnen QuickSort ClowerBound, TmpUpperBnd);
lowerBound := TmpLowerBnd;

end
else
Iii~;n

, TllplowerBnd < UpperBound
then Qui ckSort CTllplowerBnd, UpperBound);
UpperBound := TllpUpperBnd;

end;
·until UpperBound <= lowerBound;

enn-quicksort I;

procedure EndlineCachar: char);

begin
if OutputSection = idents
tnen
liigin

writelnCout); linesOnPage:= linesOnPage + 1;
if linesOnPage > linesPerPage
then begin Pageheader; l inesOnPage := 1 end;

end
elsewritelnCout, achar);

endlendline I;

procedure PrintNumbers Caword: word);

LoopPtr,
Tai lPtr: ItemPtr;

begin
Ta,lPtr := aword.lastptr; loopPtr:= TailPtro.next;
Ta; LPtr := LoopPtri
reeeat

,f NUllberCounter = lineNosPerline then
-begin

NumberCounter := 0; EndLine(',');
writeCout, , ': keylength + ordCOutputSection idents»;

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

!!!!!;
Nu.berCounter := NUllberCounter + 1;
write(out, LoopPtr" • LineNuliber: DigitsPerNullber);
loopPtr := loopptrO .next

until loopptr = TailPtr;
free rill] I

aword.lastptrO .next := FreeItellPtr; FreeIteIlPtr:= loopptr;
Endl ineC'.');

.!!!!! { pr intnllllbers I ;

procedure NextRef;

begln
i CllpReflen > 0
tnen
liigin

CmpReflen := 0;
if not eofCinfil) then
-repeat ---,

StgTableCCllpRefPtr + C"pReflen] := infi lO;
CmpReflen := CmpReflen + 1; getCinfil)

until Cinfilo = , ')
end---

end \nextref I;

procedure OutIdCkeyptr, lenkey: integer; SetUpForNos: Boolean);

chindx: integer;

bew;n
, OutputSection = idents
then

bev;n
, ClinesOnPage + 4) > linesPerP.ge
tnen begin Pageheader; linesOnPage:= 1 .!!!!!
else
-,r lastleadingChar <> UpperCaseCStgTableCkeyptrJ)

tnen EndlineC' ');
wri'ii"fout, • .);
lastleadingChar := UpperC.seCStgT.bleCkeyptr]);

end"
fo~ind. := keyptr to keyptr + lenkey - 1 do
writeCout, StgTable!ChindxJ);
if SetUpForNos
tnen

begin
if lenkey > key length
tnen
liigin

wrlteCout, , ': CCDigitsPerNumber - 1) - C(Lenkey - C
keylength + 1» lIod DigitsPerNullber»);

NUllberCounter := Ccteii'key - keylength) div DigitsPerNUllber
) + 1; -

end
else

begi~
wrlteCout, , ': Ckeylength - lenkey»;
NUllberCounter := 0

end !!!!!;
end toutid I;

procedure CopyRefCAllOfIt: Boolean);

last len: integer;

procedure Copylines;

Ref Done: Boolean;
savech: char;

be~in
astlen := CmpReflen; Ref Done := false;

repeat
repeat

writeCout, infilO); lastlen:= last len + 1; get(infil)
until Cinfilo = '.') or Cinfil- = ',').2!. eolnCinfil);
savech := infil"; -
if savech = '.'
tnen

begil Re Done := true;
if not AllOfIt then
-begin ---

end

savech := I I;

NumberCounter := C(Lastlen - keylength) div
Di gitsPerNullber);

!!!!!;

elselastlen := 0;
iirne not eolnCinfil) do get(infil);
1T'eOflTri'f ill
tnen begi" CmpReflen := 0; Ref Done := true; .!!!!!
eLSe" get ,nfil);
lTSavech <> ' , then
-begin ---

EndL ineCsavech);
if not Ref Done and (OutputSection = idents)
tnen;;riteCout,""') ;
en~

unt fffefDone
end { COFf lines I;

begin { cO!7jref I
OutIdCCmpRefPtr, CllpReflen, false); Copylines;

end { copyref I;

PASCAL NEWS #17 MARCH, 1980 PAGE 43
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

procedure syncronize(aword: word);

done: 800 lean;

begin
--ac;;;e := false;

wHh aword do
reefat -

, CmpRefLen = 0
"fFi"en begin done := true; Outld(keyindx, keylen, true); end
erse
---rf LssStg(CmpRefPtr, CmpRefLen, keyindx, keyLen)

TIien begin CopyRef(true); NextRef end erse -
--rr EqLStg(CmpRefPtr, CmpRefLen, keyindx, key Len)

TIien begin CopyRef(faLse); NextRef; done:= true; end
else

begin Outld{keyindx, key len, true); done:= true; end;
unti l done;

.!!!!!. { syncronize } ;

begln { pcinttables }
L n.sOnPege := L inesPerPage; MoveToIndx:= 0
for TbLIndx :- 0 to HeshTbLS;ze - 1 do
--n HeshTebLe[TbUndx1.keyindx <> Othen

begi\ -
Hes TebLe[MaveToIndx1 := HashTebLe[TbLIndx1;
lIoveToIndx := MoveToIndx + 1

.!!!!Y

canpress table } ;

if MaveToIndx > 0 then Qui ckSort (0, MoveToIndx - 1);
ITneNosPerLine := (LTiIe[ength - keyLength - 1) div OigitsPerNumber;
C.pRefPtr := FreeStgPtr + idLen; LastLeadingChar:=";
if state> inwrkl
tnen begin CmpRefLen := 1; NextRef
erse C.pRefLen : = 0;
1T"1iashTabLeto1.keyindx <> 0 then
-for TbLIndx := 0 to MoveToIiiiliC- 1 do

begin - -
sync roni ze (HashTab Le[Tb Llndx1);
Pri ntNumbers (HashTab Le[Tb LIndx1);

end;

first reference }; end

while CmpRefLen <> 0 do begin CopyRef(true); NextRef;'!!!!y
eria'T""""" pr inttables };-

485
486
487
488

procedllre OumpTabLes;

489
490
491
492
493
494
495
496
497 {}
498
499
500
501
502 {}
503
504
505
506
507 {}
508 {}
509
510
511
512
513 {}
514
515
516
517
518 {}
519 {}
520
521
522
523
524
525
526
527
528
529
530
531
532
533

var
chptr: integer;

begin
state := NextState[state, (OutputSection = idents)l;
case state of
"""""Triout: PrlntTabLes(input { dLlll1lY }, output);

inwrkl :
begin

rewrite(wrkl, 'XRF1JNK.TMP;l'" 'OPO:');
PrintTabLes(input { d\Jll1lY }, wrkl);

end;
wrlC'fOut:

begin
reset(wrk1, ·XRF1JNK.TMP;1'" 'oPO:');
PrintTabLes(wrkl, output);

wr~k2:
begin
--reset<wrkl, 'XRF1JNK.TMP;l'" 'OPO:');

rewrHe(wrk2, 'XRF2JNK.TMP;l'" 'OPO:');
wrk2active := true; PrintTabLes(wrkl, wrk2);

end:
wri20ut:

begin
reset<wrk2, 'XRF2JNK.TMP;l'" 'OPO:');
PrintTabLes(wrk2, output)

end:
wrk2w"rkl :

begin
reset<wrk2, 'XRF2JNK. TMP;l'" 'OPO: ');
rewrite(wrk1, 'XRF1JNK.TMP;1'" 'DPO:');
PrintTabLes(wrk2, wrkl)

end
end \Case };
lrOutputSection <> idents
tnen
""""'"De¥in

temCnt := 0;
for HshTbLIndx := 0 to HashTbLSize do
HashTabLe[HshTbLIndXl.keyindx := 0;
for chptr := 1 to idLen do
StgTabLe[chptrJ := StgTabLe[FreeStgPtr + chptr - 11;
FreeStgPtr := 1;

end:
end (dllllp tables } ;

534
535
536
537

procedure scan:

538
539
540
541
542
543
544
545
546
547
548
549
550

LabeL
""""'"1T exit scan on eof while processi!¥] camrent };

procedure advance;

be~~n
, OispLayIsActive
rawch := input";

end { advance } ;

procedure OpenL ine;

begin

then write(rawch); get(input);
c h ---.=-Uppe rCas e (i nput ") ;

CurrentL ineNumber := CurrentL ineNumber + 1;

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

if Oi spLayIsActive
then

begin
if LinesOnPage >= LinesPerPage then Pageheader;
write(' " CurrentLineNumber: DigitsPerNumber, , I);
LinesOnPage := LinesOnPage + 1:

end o

end Gpenline);

procedure CloseL ine;

begin
get (i nput); rawch := input"'; ch
if OispLayIsActive

end { closeline } ;

. procedure enter;

then writeln;

hashval,
FstHashVaL,

dispLacement: integer;
NewItellPtr,

Tai LPtr: Ite"Ptr;
found: BooLean;

;: integer;

:= UpperCase(input");

procedure MakeNew(var AnItemPtr: Ite.Ptr);

be~~n
, UtemCnt > MaxItems) or (FreeStgPtr > StgTbLLi.it)
then OumpTabLes; -
Tf"freeItemPtr = ni L .!!!!.!!. new(AnIte"Ptr)
orse -

begin
AnItemPtr := FreeItemPtr; FreeItemPtr:= AnIt .. Ptr- .next
~

ItemCnt := ItemCnt + 1
end { makenew };

begin { enter}
MakeNew(NewItemPtr); hashvaL:= 1;
for i := FreeStgPtr to FreeStgPtr + idLen - 1 do
hashvaL := (hashvar* 17 + abs(ord(StgTabLe[U) - ord('A'») !2!!.

HashTb LSi ze;
FstHashVaL := hashvaL; found:= faLse; dispLacement:= 1;
NewltemPtr" .LineNumber := CurrentLineNumber;
reef at

, HashTabLe[hashvaLl.keyindx = 0
then

begi n { new entry }
found := true; HashTabLe[hashvall.keyindx:= FreeStgPtr;
HashTabLe[hashvaL1.keyLen := idLen;
FreeStgPtr := FreeStgPtr + idLen;
HashTabLe[hashvaLl. Lastptr := NewItellPtr;
NewItemPtr- .next := NewIte"Ptr;

end
eLse
--rr Eq LStg (FreeStgPt r, i d Len, HashTab Le[hashvaL1. keyi ndx,

- HashTabLe[hashvaL1.keyLen)
then
""""'"Degin { found }

found := true; TailPtr:= HashTabLe[hashvaL1.Lastptr;
NewltemPtr" .next := Ta; lPtr" .next;
Tai LPtr" .next := NewIte"Ptr;
HashTabLe[hashvaL1.Lastptr := NewItemPtr;

end
eLse-
""""'"Degin { collision }

hashvaL := (hashvaL + dispLacement) lIod HashTbLSize;
dispLacement := dispLacement + 2;
if dispLacement> 2 * HashTbLSize then
"begin --

OumpTabLes; hashvaL:= FstHashVaL;
displacement := 1;
start over

end
end

until fOUnd
end { enter } ;

be~~n { scan }
, eof(input)
then begin writeLn(tty, , Empty input file.'); ~ 1; .!!!!y
rawch := input-; ch:= UpperCase(input-);
while not eof(input) do

begin -
Openl ine;
while not eoLn(input) do

beVln
, ch = 1. then advance
else --rr ChrCatagory[ch1 in [ucLetter, LcLetter1

TIien -
begin

charindx := 0; idLen:= 0; identifier:= ellpty;
fstchar := chi
repeat
iTCharindx < keyLength then

-begin
charindx := charindx + 1;
identifier[charindx] := chi

end o

if~capitaLs
then StgTabLe[FreeStgPtr + idLen1 := ch
erse StgTabLetFreeStgPtr + idLen1 := rawch;
"1cJI'en := idLen + 1; advance

until not (ChrCatagory[ch1 in [ucLetter, digit1);
[stcha,,= identifier[charindx1;
i! idLen > charindx then enter

PASCA L NEWS #17
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

else
"""iT identifier <> reserved[eharindx +

end
else

- ReservRepresentedBy(fstcharJ +
ReservRepresentedBy[Lstehar]] { perfect hash

then
"""iT DoPredefined then enter

orse
"""iT identifier <> predefined[eharindx +

- PredefRepresentedBy[fstehar] +
P redefRep re sent edBy [l st e h a r]]

then enter;

"""iT ChrCatagory[eh] = digit
Bien

repeat advance; ; f ch = '.' then advance

678 {}
679

unt, l (ChrCatagorYLCh] <> digit) and (eh <> 'E')
and (eh <> 'B') and (eh <> 'e')

else
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

--rr ch = quote
Bien

begin { strin;!
repeat advance
until (eh = quote) or eoln(input);
if not eoln(input) -then advance

end­
else
"""iT eh = lCurleyBra

tIlen
~gin { cClllJrent

advance;
whi le eh <> rCurleyBra do

begin -
advance:
whi le eoln(input) do

begin -
C loseL ; ne;
if eof(input) then ~ 1
or se OpenL i ne

en-d­
end·­

advan~e
end

else
---rT ch = 1('

tIlen
--,;Fgin

advance;
ifch='*'
Bien

end

begin { cClllJrent
advance;
repeat
--wnrte ch <> '.' ~

begin
if eoln(input)
Bien

repeat
eLoseLine;
if eof(input> then ~ 1
iTse OpenL ine

un'tiT""not eoln(input)
e l se advance

!!!2i
advance

unti l ch = .) I;
8dVance

end

else advance

Cl~;:t ine
end·

1: { ""1i'rminate scan on eof while processirg canment
.!!!!!.{ scan };

I$Y+ new segment }

procedure initialize;

procedure InitLetDi g;

const
"lffiiCharOrd = 0;

I ordinal of minimum character
DefaultMaxCharOrd = 64;
I BCD = 64 & ASCII = 127 & EBCDIC = 255

var
i;

MaxCharOrd: integer;
ch: char;

procedure InitChrVaL<StartChar, endchar: char; avaL: integer);

begin

leChar,
ucChar: char;

---rar leChar := Start Char to endehar do
begin

---c1i'rcatagory[LeChar] := leLetter;

MARCH, 1980 PAGE 44
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819 {}
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

if ord('A') = 193 ~ I EBCDIC I MaxCharOrd := 255
orse
"""iT ord(' A') = 65 then I ASCII } MaxCharOrd := 127

orse MaxCharOrd := De'13ul tMaxCharOrd;
forT:= MinCharOrd to MaxCharOrd do

beain ChrCatagory[Chr(i)] := other; ChrSortOrd[ehr(i)]:= 0;

fo~n c~ := 'a· to 19' do
beg~n - -

C rCatagory[eh] := digit;
ChrSortOrd[eh] := 100 + ord(eh) - ord('O');

end;
I-m,ould work for all Pascal canpatible character sets
{ which are contiguous and for EBCDIC as well.

InitChrVaU'a', Ii I', 2); InitChrVal(lj', Ir', 20);
InitChrVaL('s', 'z', 38);

end I initletdig };

procedure InitPerfect;

procedure Ini tReserved;

ch: char;

regin { RJC's perfect hash function }
for Pascal's reserved words and predefined identifiers

I table imex " identifier lergth + }
I reservrepresentedby[identifier's first character] +
I reservrepresentedby[identifier's last character}

for eh := '0' to '9' do ReservRepresentedBy[eh] := 0;
ReservRepresentedBy['A'] := 11;
ReservRepresentedBy['B'] := 15;
ReservRepresentedBy['D'] := 0;
ReservRepresentedBy[' F'] : = 15;
ReservRepresentedBy['H'] := 15;

ReservRepresentedBy['C'l :. 1;
ReservRepresentedBy['E'l :" 0;
ReservRepresentedBy['G'] :" 3;

ReservRepresentedBy['I'] := 13; ReservRepresentedBy['J']:. 0;
ReservRepresentedBy['K'] := 0; ReservRepresentedBy['L']:" 15;
ReservRepresentedBy['M'] := 15;
ReservRepresentedBy['N'] := 13;
ReservRepresentedBy['P'] := 15;
ReservRepresentedBy['R'] := 14;
ReservRepresentedBy['T'] := 6;
ReservRepresentedBy['V'] := 10;
ReservRepresentedBy['X'] := 0;
ReservRepresentedBy['Z'] := 0;
reserved[38] := empty;
reserved[40] := empty;

ReservRepresentedBy['0']
ReservRepresentedBy['II']
ReservRepresentedBy[' S']
ReservRepresentedBy['U']
ReservRepresentedBy['W']
ReservRepresentedBy[' Y']
reserved[1] := e.pty;
reserved[39] :" e.pty;

:- 0;
:= 0;
:c 6;
:" 14;
:- 6;
:" 13;

eh := 'A' I prevent optimizirg , and' to empty - caapile bug } ;
reserved[14] := 'AND '; reserved[29] := 'ARRAY ';
reserved[33] := 'BEGIN '; reserved[5] :" 'CASE ';
reserved[12] := 'CONST '; reserved[13] :. 'DIV ';
reserved[2] : = 'DO ' ; reserved[6] :" 'OOWNTO ';
reserved[4] := 'ELSE '; reserved[3] := 'END ';
reserved[19] := 'FILE ';
reserved[36] := 'FUNCTION ';
reserved[7] : = 'GOTO ' I
reserved[30] : = I IF' ;

reserved[32] := 'FOR ';

reserved[35] := 'LABEL ';
reserved[31] := 'NIL ';

to xref 90tos set to empty
reserved[28] : = 'IN
reserved[18] := 'MOO
reserved[22] := 'NOT

reserved[171. 'OF ';
I if otherwise becanes reserved then flush left the next.
reserved[9] := ' OTHERWISE'

I anticipatin;! the revised standard };
reserved[16] := 'OR '; reserved[21]:=
reserved[24] := 'PROCEDURE '; reserved[37]:=
reserved[20] := 'RECORD '; reserved[26]:=
reserved[15] := 'SET '; reserved[23]:=
reserved[8] := 'TO '; reserved[10]:=
reserved[34] := 'UNTIL '; reserved[27]:=
reserved[11]. 'WHILE '; reserved[25]:=

end { initreserved };

procedure InhStatesi

begin
NextState[inout, true] := inout;
NextState[inout, false] := inwrk1;
NextState[inwrk1, true] := wrk10ut;
NextState[inwrk1, false] := wrk1vrk2;
NextState[wrk10ut, true] := vrk10ut;
NextState[wrk10ut, false] := wrk1out;
NextState[wrk1wrk2, true] := wrk2out;
NextState[wrk1wrk2, false] := wrk2wrk1;
NextState[wrk20ut, true] := wrk20ut;
NextState[wrk20ut, false] := wrk20ut;
NextState[wrk2wrk1, true] := wrk10ut;

'PACKED
'PROGRAM
'REPEAT
'THEN
'TYPE
'VAR
'WITH

NextState[wrk2wrk1, false] := wrk1wrk2; state -:= inout;
end I initstates };

($Y+ new segment }

procedure InitPredefinedi

ch: char;

begin

}; , ; ,. , , ;

, ;
, ;
, ;
, ;
, ;
, ;
, ;

for eh := '0' to '9' do PredefRepresentedBy[eh] := 0;
PredefRepresentedBy['A'"] := 15; PredefRepresentedBy['B']:= 9;

~: ~;
764 ChrSortOrd[LeChar] := aval; ueChar:= UpperCase(leChar); 874

PredefRepresentedBy['C'] := 11;
PredefRepresentedBy['D'] := 19;
PredefRepresentedBy['F'] .= 3·
PredefRepresentedBy['H'] ;= 0;
PredefRepresentedBy['J'] .= O·
PredefRepresentedBy['L '] ;= 13;
PredefRepresentedBy['N'J := 19;
PredefRepresentedBy['P'] := 18;
PredefRepresentedBy['R'] := 0;
PredefRepresentedBy['T'] := 0;

PredefRepresentedBy['E']
PredefRepresentedBy['G']
PredefRepresentedBy[' I']
PredefRepresentedBy['K']
PredefRepresentedBy['II']
PredefRepresentedBy['0']
PredefRepresentedBy['II']
PredefRepresentedBy[' S']
PredefRepresentedBy['U']

:= 3;
:= 16;
:= 1;
:= 0;
:= 0;
:= 15;
:= 17;

765
766
767
768
769
770

ChrCatagoryCucCharJ ::;;; ucLetter; 875
ChrSortOrd[ueChar] := aval - 1; aval:= aval + 2; 876

end 877
.!!!!!. Tinitchrval }; 878

879
begin I initletdig 880

PASCAL NEWS fl17 MARCH. 1980
88t
882
883
884
885
886
887
888
889 {)
890
891
892
893
894
895
896
897

PredefRepresentedBy['V' J
PredefRepresentedBy[' X' J
PredefRepresentedBy[' Z 'J
predefined[2J := ellpty;
predefined[421 :" ellPty;
predefined[44J := e"pty;
predefined[46J := empty;
predefined[48J :" ellpty;

= 0; PredefRepresentedBy['W'J
= 0; PredefRepresentedBy['Y'J
= 0; predefined[1J:= empty;

predefined[3J := empty;
predefined[43J := ellpty;
predefined[45J := empty;
predefined[47J := empty;

:= 10;
:= 0;

ch := 'A' I prevent optimizi~
predefined[33J := 'ABS ';

, abs' to empty - canpile bug } ;

predefined[40J := 'ARCTAN ';
predefined[35J := 'BOOLEAN ';
predefined[15J := 'CHAR ';
predefined[14J := 'CHR ';
predefined[291 := 'COS ';
predefined[31J := 'DISPOSE ';
predefined[11l := 'EOF ';

991
992
993
994
995
996
997
998
999

{}

{}
{}
{}
{}
{}
{}
{}
{}
{}
{}2:
{}
{}

if i <= 32 then { contains file name part
begin --

J := 1;
while ord(fspec[i]) > ord(' ') do
beg,n

na,,[jJ := fopec[iJ;
; := ; + 1; j:= j + 1;
if (i > 32) or (j > 18) then .s!!!]. 2;

!!iffi - --
end;

!!iF

PAGE 45

898 predefined[28J := 'EOLN ';
899 predefined[26J := 'EXP ';

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

{} procedure reeset (!!!. f: text; !!!. fopec: FileNames);

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930 {)
931
932 I}
933 {)
934
935 {)
936 {)
937 {}
938 {}
939 {)
940 {}
941 {}
942 {}
943
944 {}
945 {}
946 {}
947 {)
948 {)
949 {)
950 {}
951 {}
952
953

predefined[13J := 'FALSE ';
predefined[8J := 'INPUT ';
predefined[34J := 'LN ';

predefined[3J := 'GET
predefined[10J := 'INTEGER
predefined[7J := 'IIAXINT

predefined[321 := 'NEW ';
predefined[221 := 'ORD '; predefined[6J := 'OUTPUT
predefined[38J :" 'PACK ';
predefined[27J :. 'PAGE - ';
predefined[41l :"' 'PRED ';
predefined[21l := 'PUT ';
predefined[231 := 'READ ';
predefined[251 :"' 'READLN ';
predefined[17J := 'REAL '; predefined[5J := 'RESET
predefined[12J :" 'REWRITE ';
predefined[24J ." 'ROUND ';
predefined[37J := 'SIN ';
predefined[18J := 'SQR ';
predefined[19J := 'SQRT ';
predeflned[30J := 'succ ';
predefined[9J := 'TRUE ';

predefined[4J :" 'TEXT
predefined[16J := 'TRUNC

predefined[39J := 'UNPACK ';
predefined[20J := 'WRITE ';
predefined[36J := 'WRITELN ';
~ I initpredefined };

I $Y+ new segment }

be¥ii I initperfect }
n tReserved; InitStates; InitPredefined;
~ I initperfect };

procedure ConnectFi les;

const
--njiecLeng = 32;

fspecs " array [1 .. FSpecLengJ of char;
FileSpecs" array [1 .. 2J of fspecs;
extension = paCke\;rray [1 .. 4J .2! char;
FiLeNalles = array .. 32J of char;

devs = array [1 .. 5J orchar;
dirs = array [1 9J or char;
nails = array [1 18Jof char;

fspec:
fLen:

clllptr:
ClllCh,

FI leSpecs;
o •• FSpecLeng;
1 •• 80;

C"dCh: char;
Dot Found: Boo lean;

POI: integer;

954
955
956
957
958

{) procedure Spl itFiLeSpecification (fspec: FileNaMes;
{} !!!. dev: devs;!!!. dir: dirs;!!!. naa: nams);
{} l!!!!l 2;

959 {}
960 {}
961
962 {)
963 {}
964 {}
965
966{}
967 {}
968 {}
969
970 {)
971 {)
972 {)
973 {)
974 {}
975
976 {)
977 {}
978 {}
979 {}
980 {}
981 {}
982 {}
983
984 {}
985 {}
986 {}
987 {}
988 {}
989 {}
990 {}

var
--,: 1 •• 33; j:l •• 19;

~ ----aev := I '; dir := , ;
n •• :z • , ;
for i := 1 to 32 do
- if fspeCLiJ >='a' then

-fspec[iJ := CHR <Ord(fspec[iJ) - 408);

; := 1;
while not (fopec[iJ in [':', '[',
6eg,n- -

'.', ';'J) and (j < 32) do

, := ; + 1;
.!!!!;

if fopec[iJ " ':' then I contains a device name
be9i'; -

end

or j : = 1 to i do
--'f j <= 5thendev[jJ := fopec[jJ;
;:=; + 1;--

else i := 1;

if fspec[iJ =
begin

'[' then { contains a directory part }

J := 1;

re§i81 r jJ
i := i
~(i

:= fspec[iJ;
+ 1; j:= j + 1;
> 32) .!!!. (j > 9) .!!!. (dir[j-1J 'l');

'; 1010 {}
'; 1011 {}

'; 1012

, ; 1013 {}
1014 {}
1015 {}
1016 {}
1017
1018
1019

var
dev:devsi di r: di rSi nam: nallsi

begin
Spl itFi leSpecification (fopec,
reset (f, nail, dlr, dev);

.!!!!;

deY, dir, nlll);

, ; 1020
1021
1022

{} procedure reewrite (!!!. f: text; !!!. fspec: FiLeNalles);

1023 {}
1024 {}
1025
1026 {}

'; 1027 {}
'; 1028 {}

1029 {}
1030
1031 {}
1032 {}
1033
1034 {}
1035
1036 {}
1037 {}
1038 {}
1039 {}
1040 {}
1041 {}
1042 {}
1043 {}
1044 {}
1045 {}
1046 {}
1047 {}
1048 {}
1049
1050 {}
1051
1052 {}
1053 {}
1054 {}
1055 {}
1056
1057 {}
1058 {}
1059
1060 {}
1061
1062 {}
1063 {}
1064 {}
1065 {}
1066 {}
1067
1068 {}
1069 {}
1070 {}
1071 {}
1072 {}
1073 {}
1074 {}
1075 {}
1076 {}
1077 {}
1078 {}
1079 {}
1080 {}
1081 {}
1082 {}
1083 {}
1084 {}
1085
1086 {}
1087 {}
1088 {}
1089 {}
1090 {}
1091 {}
1092 {}
1093 {}
1094 {}
1095 {}
1096 {}
1097 {}
1098 {}
1099 {}
1100 {}

var
dev:devs;

begin

di r: di rs;

Spl itFi leSpecification (fopec, dev,
rewrite (f, naill, dir, dey);

.!!!!;

procedure GCIIUvar line: L ineBuffer; var len: integer);
extern { return CCl1IIIIiIDl line in iiPr case } ;

procedure quit;

begin
wrlteln(tty, , Errors in COlllland Line');
for clllptr := 1 to clILLen do write<tty, cIILLine[clllptr]);
rnteln(tty); writeln(tty;;
writeln(tty, , <output fiLe>=<input file> [<optons>J ');
writeln(tty, , <options> ::=');
writeln(tty,' C- capitalize Identifiers,');
writeln(tty,' D+ display progra.,');
writeln(tty,' P- cross ref predefined ids.,');
writeln(tty,' T- terllinal output (ids. only),');
writeln(tty,' W=132 width of output. '); writeln(tty);
writeln(tty); writeln(tty,' HALT'); halt
~ { quit};

procedure NextCllICh;

be¥jn
, cmlptr >= cmLLen then quit;
CiilCh := clILL ine[c"lptrr-

c .. lptr := c.lptr + 1;

end { nextanlch } ;

procedure getfspec(InputOutput: integer; DefaultExtension: extension
);

procedure get next ;

beW
flen >= FSpecLeng then quit;

'fSpec[InputOutputJ [fLe'ii!"7= ClIlCh;
NextCllICh;

fLen := flen + 1;

~ { getnext } ;

be¥i n { getfspec }
spec[InputOutputJ := ' , ;

flen := 1; Dot Found := false;
wMle ClllCh in ['A' •• IZ', '0' •• '9', ':', 1[', ']', '.', ',',
---r:-, J do -

if' CmlC'ii = '[' ~ repeat getnext; ~ C,.lCh = 'J'
else

be~t , not Dot Found ~ Dot Found := ClIlCh = '.'; getnext;
end--

if <f[in > 1) and (not Dot Found) then
-for pos := 1TD 470

begin --
fopec[InputOutputJ [flenJ := DefaultExtension[posJ;
fLen := fLen + 1;

.!!!!;
~ { getfspec } ;

begin { connectfiles }
GCMUcmlline, cllllen); ClIlCh:= cmlline[1J; clllptr:= 1;
cllllen := cllllen + 1; cmLLine[c.llenJ:=";
while ClIlCh <> ' , do NutCl"Ch; while ClIlCh = , , do NextCl"Ch;
getfsped1, '.LST');
if flon = 1
then ~eg~n writeln(tty, , No Output File Specified'); quit;.!!!!;
NeX'tc IIC; while CIIlCh = ' , do NutCllICh;
getfspec(2, '.PAS'); -
if flen = 1
ITen b(~in writeln(tty, , No Input File Specified'); quit;!!!!!;
;=eeset ,nput, fspec[2J); reewrite(output, fspec[1]);
while «clllptr < c"llen) and (ClIlCh <> '['» !!2. NextCl.Ch;
if CmlCh = '[' -
then

PASCAL NEWS #17 MARCH, 1980 PAGE 46

1101 ()
1102 {}
1103 {}
1104 {}
1105 {}
1106 {}
1107 {}
1108 {}
1109 {}
1110 {}
1111 {}
1112 {}
1113 {)
1114 {)
1115 {)
1116 {}
1117 {}
1118 {}
1119 {}
1120 {}
1121 {}
1122 {}
1123 {)
1124 {)
1125 {}
1126 {}
1127 {}
1128 {)
1129 {)

1
2
3
4 .
5 .;,.
7
8
9

10

repeat
~ClmCh;

while (CmlCh = I I) or (tllltCh = I,ll do NextClmChi
'i"f'""'Cm"LCh in [Ie', 'D"'; Ip', IT', ''''3-
tlien -
--reg;1l

em eh := CmlCh; NextCllIChi
case Cmdeh of
--reI: AllCapitals ;= tmleh = '+';

'D': DisplayIsActive := elllCh = '+';
'p': DoPredefined := Cmleh = '+';
'T' :

begin
terminal := CmlCh = '+';
if terminal
then LineLength := DefaultTerminalWidth;
"Di'S'j)layIsActive := .!!.5!!. terminal;

end;
'WI;

be~~n(CmlCh = ':') or (Cmleh = '=') then NextClmCh;
TIneLength := 0; -
while CmlCh in ['D' •• 19') do

begjn - -
LlneLength := LineLength * 10 + ord(CmLCh) - ord

(10' >;
NextClmCh;
~ .i!. LineLength < (DefaultTerlllin.lWidth - 8)

(* Purpose:
. Library rOl:ltines for strirrg manipulation.

• Author.:
.. Barry flnith

Oregon SOftware
2340 SW Canyon !«lad
Portland oregon 97201

• Method:
Uses fixed lergth arrays of characters.

• Oeser iption of &>utines:
Ien - Function. Returns string length.
Clear - Blank fills a strirq.
Concatenate - Appends one string to another.
Search - Function. Returns substr iD:J position.
Readstring - Read a strirq fran a file.
Writestrirq -- Write a strirq to a file.
SUbstr ing - Extract a substr irq fran a str irq •
Delete - Remove part of a string.
Insert - Insert a str~ into a string.

In several routines error processing is left for the
user to provide.

* Coinp.lter System:
IEC PDP 11, QtSI Pascal version 1.

*)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

const

71
72
73
74
75
76
77
78
79
80
81
82
83

-st"ringmax = 100;

.!.ill.
string = record

---ren: 0 .• stringmax;
ch: packed array [1 ••

.!!:!5Y
~ len(s: string): integer;

begin len := s.len end { len };

procedure clear(var 5: string);

var
-,-: integer;

stringmax] .£!. char

begin s.len := 0; for i := 1 ..!2. stringmax ~ s.cHiJ :=
end { clear);

~ concatenate("y"!!' s: string; t: string);

var
l, j: integer;

be,;n
s.len + t.len > stringmax

tnen j := stringmax - s.len { overflow }
"iTii j := t.len;
~i := 1 to j do s.cHs.len + iJ := t.chCiJ; s.len:= s.len + j;

enn concatenate T;

function searches, t: string; start: integer): integer;

var
l, j: 0 •• stringllax;

uneq: boolean;

begin
----rr-start < 1 then start := 1;

1T (start + t.l"iil"""'> s.len + 1) or (t.len = 0) then search := 0 er.e -
~gin
~= start - 1;

repeat
---:r:= i + 1; j:= 0;

~~f~jtu~e~=o~ ~j1! t. uneq := t.cHj] <> s.ch[i + j - 1];

Len); -
unti l (not uneq) or (; = s.
"leii'-= t:Len + 1);-

:= Defaul tLpW;dth; {} then UneLength
() enr-
{) ~-

H untfr~lCh = 'J';
() end rconnectfiles);

beg;n (initialize)
CurrentLineNumber := 0; PageNumber:= 0;
LinesOnPage := LinesPerPage; AllCapitals:= false;

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148 {}
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

DisplayIsActive := true; DoPredefined:= false; FreeStgPtr:= 1;

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

~~~e~~::~~~ ~: TiPo 80 do cmllineClteIlCnt]:- I; cllllen:= 0; 
ItemCnt := 0; terminaL:= false; empty:=' '; 
for HshTbLIndx := 0 to HashTblSize - 1 do 
HashTable[HshTbLInOxl.key;ndx := 0; -
InitLetDig; InitPerfect; LineLength:= DefaultLpWidth; 
today := e.pty; now:= empty; 

ConnectFi les; date(today); tillle(now); 
wrk2active := false; 

end ( initialize ); 

($Y+ new segnent ) 

beg;n ( oref ) 
writeln(tty, 1- CrossAef (80.2.1)'); initialize; 
OutputSection := listing; scan; OutputSection:= idents; 
DumpTables; writeln(tty, 1- End CrossAef'); writeln(tty, 

end ( oref ). 

if uneq .!h!!! search := 0 .!!!!. search := i; 
en"d"='" 

end ~arch I; 

procedure readstring(.!!..!:. f: text; ill s: string); 

begin 
cleads) ; 
with 5 do 
----w"hileCnot eoln(f» and Clen < stringmax) do 

betf1en := len +1; read(f, ch[len]);~ 
readln f ; 

end { readstr ing I; 

procedure writestring(var f: text; 5: string); 

var 
i: integer; 

, '); 

begin for i := 1 ~ s.len ~ write(f, s.chCil) end { writestriDJ }; 

procedure substring(.!!!. t: string; s: string; start, span: integer); 

var 
i: integer; 

benn span < 0 

~e~t:~~i~ ~pan := - span; start:= start - span .!!J.!!; 

ITen begin span := span + start - 1; start:= 1 .!!J.!!; 
"i"f""Start + span> s.len + 1 then span := s.len ... start + 1; 
"if" span <= 0 then clear(t) 
erse --

begin 
for i := 1 to span do t.cHiJ := s.ch[start + i - 1J; 
for i := span + 1 ~string",ax .22. t.ch[iJ := I I; 

Den := span; 
end· 

end .:r:ubstrirq ); 

procedure delete(var s: string; start, span: integer); 

var 
i, lilllit: integer; 

beNn span < a 
tnen begin span := - span; start:= start - span ..!n!!i 
Tiiilt := start + span; if start < 1 then start := 1; 
if lillit > s.len + 1 then limit := s.len+ 1; 
span := limit - start; 
if span> 0 
then 
--regin 

for i := a to s.len - Limit do 
s.cHstart+ iJ := s.ch[L iift + il; 
for i := s.len - span + 1 to s.len do s.chCil := 1 I; 

S':Ten := s.len - span; - -
end· 

end alete ); 

procedure insertC"y"!!' 5: string; t: string; p: integer); 

var 
i, j: integer; 

begin 
if t.Len > 0 
tlien --rr (p > Q) and (p <= s.ten + 1) 

tlien 
--reg;n 

if s.len + t.len <= stringlflu then s.len := s.len + t.len 
erse s.len := stringmax { overfl""OW1; 
~i := s.len downto p + t.len do s.cHil := s.chei - t.lenJ; 
»s.len < p + t:"'le'n'"" then j :=s.len 
erse j := p + t.len - 1-;-
Tori := p to j do s.cHi] := t.chCi - p + 1]; 

end --
elS'e{ non-contiguous strirg } 

end TTnsert }; 

***************** 



PASCAL NEWS #17 MARCH, 1980 PAGE 47 
1 {* Purpose: 
2 Program canputes Hankel functions of the first and second 
3 kinds for an integrel order and canplex argument. 
4 
5 * Author: 
6 O.M. Tran, SclrJol of Electrical Eng ineer il>;j , Uliversity of New 
7 South Wales. 
8 
9 * Method: 

10 Hankel functions of a required order are calculated fran 
11 correspondil>;j Bessel functions of the first and second kinds. 
12 A backward recursive scheme is used in canputil>;j Bessel function 
13 of the first kind for a number of orders. 
14 These are then sllll1led to give the two orders 0 and 1 of 
15 Bessel function of the second kind, which in turn serve as 
16 startil>;j point for findil>;j a higher-order Bessel function of 
17 the second kind. 
18 
19 * Description of parameters: 
20 p - integral order, where -max (= p (= max and max = 500. 
21 z - complex argument. 
22 fnl - Hankel function of the first kind. 
23 fn2 - Hankel function of the second kind. 
24 
25 * Input: 
Z6 Program reads in an integer (p) and two real numbers (real and 
27 imaginary parts of z). 
28 
29 * CUtput, 
30 Arglllll!nts and values of the Hankel functions of the first 
31 and second kinds are returned. 
32 Warnirlg message is given if any parameter exceeds specified 
33 limits or is outside ral>;je. 
34 
35 * Limitations: 
36 -500 <-p<-500, 
37 1.08-5 <- aldulus of z <- 377.0 , 
38 Jilaginary part of z <- 50.0 , 
39 P must not be much greater than the modulus of z, otherwise 
40 exponent error in the computer (PDP 11/70) will occur. 
41 
4Z * Qlmputer sys\:aD: 
43 Program was run under tllIX Pascal (Berkeley - Version 1.2, 
44 May 1979) on lEe PDP 11/70. 
45 
46 * lIccuracy: 
47 CIlmplted results were checked against published values over the 
48 followil>;j ral>;jes: 
49 - 100 <- P <- 100 and 
50 real argQDE!llt z = 0.1 - 100.0 , 
51 -l<-p<-land 
52 complex argument z - (0.01,5 deg.) - (10.0,90 deg.) 
53 
54 1hey were found to be accurate to at least 10 significant digits. 
55 
56 
57 progra. hankel(input, output); 
58 
59 label 
60 -n Exit to terminate progrllll }; 
61 
6Z const 
63 --eli = 501; 
64 .. x. 5OD; 
65 tpi. 0.6366197723675813 { 2.0 by pi }; 
66 euler. 0.5772156649015329; 
67 
68 .!.lP!. 
69 ca-plex = record 
70 ---;:e,-i,,: rea l 
71 .!!l!!; 
72 
73 ~ 
74 1, k, n, ., l, p: ;nteger; 
75 z, u, v, w, yo, y1, y2: cOllplex; 
76 f"1, fn2, S~, elUII, os ... , nor., zero: comp lex; 
77 f: array [0 .. l ill] ~ complex; 
78 
79 
80 procedure stop; 
81 
82 .2!i!.!!. 
83 goto 1 { halt } 
84 en'dT stop }; 
85 
86 
87 procedure <:read(.l!.!!. z: complex); 
88 
89 begin 
90 read(z.re, z.ill) 
91 .!!l!!. { cread }; 
92 
93 
;~ procedure cwrite(var z: co.plex); 

96 begin 
97 vrlteln(I(I, z.re, .,., z.im, I)') 
98 .!!l!!. { cwrite }; 
99 

100 
101 function .ag(var z: cOllplex): real; 
102 ~ ~modulus of a complex number 
103 
104 begin 
105 "ag := sqrt<sqr(z.re) + sqr(z.im» 
106 .!!!!! { mag }; 
107 
108 
~n procedure add(u, v: complex; .l!.!!. w: co.plex); 

111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 

begin 
w.re := u.re + v.rei w.im:= u.im + v.;m 

end (add l; 

procedure sub(u, v: compLex; .y.!!. w: complex); 

begin 
w.re := u.re - v.rei w.im:= u.im - v.im 

end ( sub l; 

1rocedure mult(a: real; z: complex; var w: complex); 
Mulhplies a real with a canplex l-

begin 
w.re := a * z.re; w.im:= a * z.;m 

end { mult }; 

procedure productCu, v: complex; :!!!. w: compLex); 

begin 
w.re := eu.re * v.re) - Cu.; .. * v.im); 
w.;m := eu.re * v.;m) + Cu.;m * v.re) 

end { product }; 

procedure quotientCu, v: compLex; .!!!!. w: cOllplex); 

var 
vr, vi, a, b, x1, x2, y1, y2, root: real; 

begin 
vr := abs(v.re); vi:= abs(v.i.); 
root := sqrt<2.0) * sqrt<vr) * sqrt<vi>; a:= vr + vi + root; 
b := vr + vi - root; 
if (a = 0.0) or (b = 0.0) then 

-be~~~teln( 'W: dividing b~in procedure quotient'); 
stop { Exit to tecninate program }; 

.!!l!!; 
x1 := u.re I ai 
y2 := v.im I b; 
w.im := x2 * y1 

end { quotient }; 

x2 := v.re I b; y1:= u.ill I a; 
w.re := .x1 * x2 + y1 * y2; 

- x1 * y2 

~rOCedure ccosCz: cOllplex; me: cOlipLex); 
CoSlne of a complex } 

m. 
ep, ell, p, II: real; 

begin 
ep := exp(z.ill); ell:= 1.0 I ep; p:s ep + e.; .:= e. - .p; 
c.re := 0.5 * p * cos(z.re); c.ill:= 0.5 * II * sin(z.re) 

.!!l!!. { ccos }; 

rocedure polar(u: complex; var v: complex); 
Wiihl>;j a complex into polirform } 

const 
---pi'""= 3.1415926535897932; 

bevln 
, (u.re = 0.0) and (u.im = 0.0) then 
-begin -

writeln('W: conversion of 0 in procedure polar'); 
stop { Exit to terminate program }; 

irw:re = 0.0) and (u.ill <> 0.0) then 
begin - --

v.re := .. ag(u); v.i .. := pi I 2.0 
end 

else 
begin 

v.re := lIag(u); v.ill:= arctan(u.im I u.re) 
end 

.!!l!!. (polar ); 

irocedure clnCz: cOlipLex; var C: cCHlpLex); 
IliituiaI logaritbn of a canplex } 

!!!. 
p: complex; 

begil po arCz, P)i 
end { cln }; 

c.re := In(p.re); c.i,,:= p.i .. 

function order(z: complex): integer; 
{ G1Ves a startil>;j and even order for recursive computatiori } 

m 
a: real; 
m: ;nteger; 

begin 
• := .. ag(z); 
if a < 0.1 then m := 10 
else 
-re~in 11. a < 2.0 .!!!!!!..:= 28 .!!!! .. := round(1.2 * a + 48.0) 

,!!!:; 
order := II; if odd(lI) .!!!!!!. order := .. + 1 

end { order}; -



PASCAL NEWS #17 

221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 

1rocedure sign(u: complex; var v: complex); 
charges the sign of a canpYex } 

begin 
v.re := - u.re; v.im:= - u.;m 
~ ( sign }; 

irocedure checkCz: complex); 
Checks to see if the function argument is outside rarge } 

.'!!L 
a, b: reaL; 

begin 
a := abs(z.re)i b:= abs(z.im); 
if ({a < 1.0E - 5) and (b < 1.0E - 5» or 
- {{b <> 0.0> and (l)< 1.0E - 5» then-

begin - --
write('W: small argument which causes exponent error I); 
cwrite(z); stop { Exit to terminate program }; 
~ 

if b > 50.0 then 
-begin --

wrlte('W: argument with imaginary part outside range = I>; 
cwrite{z); stop ( Exit to terminate program }; 

end 
end Icheck }; 

procedure hankel12(u, v: compLex; var w1, w2: complex); 
{ OlIIibines Bessel functions of the-nrst & second kinds to give Hankel 

functions} 

beg1n 
w .re := u.re - v.im; w1.im:= u.im + v.re; 
w2.re := u.re + v.im; w2.im:= u.im - v.re 

end ( hanke1l2 }; 

beg i n ( Hankel } 
read{p); n:= abs{p); 
if n >= Lim then 
-begin --

wrltelnC'W: required order " p: 6, I is outside the range (I, -
max· 4 I I max· 4 ')1). 

stop (Ex'it to' term'ina'te pr~ram j; 
end; 

creaa(z); 
check{z) ( If z is outside rarge, exit to terminate program }; 
m := order(z); 
if m >= lim then 
-begin --

---wrlteln(IW: starting order I, m: 6, 
, exceeds the specified maximum', max: 4); 

stop ( Exit to terminate program }; 
end· 

zero.;e := 0.0; 
osum := zero; 
f[,.l.im := 0.0; 

zero. im := 0.0; 
f[m + 1] := zero; 

for i := m dovnto 1 do 
begin --- -

sum := zero; esum:= zero; 
Hml.re := 1.0e - 30; 

quotient(fCiJ, z, w); mult(Z.O * i, w, w); 
sub{w, Hi + 1], f[i - 1]) 

end-
k := ~ div 2; 
if abs{z.re) > 10.0 * abs{z.im) 
then 

begin 

MARCH, 1980 PAGE 

291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 

. 332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 1: 

for i := 1 to k do add{sum, H2 * il, sum); mult<2.0, sum, sum); 
add{sum, HiIT, norm) 

end 
else 
--regin 

for i : = 1 to k do 
begin - -

if odd{i) then add{osum, H2 * il, osum) 
else add{esuiii;"f[2 * il, esum) 

end; 
sub(esum, osum, sum); mu l t (2.0, sum, sum); 
add(sum, fCO], sum); ccos(z, u); quotient(sum, u, norm) 

fOf!!'f:= 0 to m do 
quotient{TIil,norm, Hil) ( Bessel functions of 1st kind }; 
esum ::: zero; osum:= zero; l:= 1; 
if n = 0 
then 

betn ( Ho } 
or i := 1 ~ k do 

begin 
l :: - 1; mult<L I i, f[2 • iJ, u): add(esum, u, esurn) 
~ 

mult(2.0, esum, esum); mult(0.5, z, u); cln(u, u); 
u.re := u.re + euler; product(u, fCOJ, u); sub(u, esum, u); 
mult{tpi, u, yo) ( Yo}; hankel12{H01, yo, fn1, fn2); 
writeln; writeln; write(' Function argument:: .); 
cwrite(z); writeLn; 
wrHe{' Hankel function of the first kind and order 0 = '); 
cwrite(fn1); writeln; 
write(' HankeL function of the second kind and order 0 = I); 

cwrite(fn2); writeLn; writeLn; 
stop ( Exit to terminate program }; 

end ( Ho } 
else 

begin ( Hn, where n <> 0 } 
for i := 1 to k do 

begin - -
L := - 1; mult<L I i, f[Z • iJ, u)i add(esum, u, esum); 
sub{f[2 * i - 1], H2 * i + 11, v); mult{l I i, v, v); 
add(osum, v, osum); 

!.'2'!i 
mult<2.0, esum, esum)i 
u.re := u.re + euler; 
mult{tpi, v, yo) { YO 
quotient(f[OJ, z, w); 
mult{tpi, w, y1) ( Yl 
while i < n do 

mult(O.5, z, u); cln(u, u); 
product(u, f[OJ, v); sub(v, esum, 

}; product{u, f[1], v); 
sub(v, w, w); add(w, OSllft, w); 

}; i:= 1; 

--rForwararecursion to canpute Yo, ..nere n <> 0,1 } 
begin 

v); 

quotient(y1, z, u); ,mult(2 * i, u, u); sub(u, yo, y2); 
yo := y1; y1:= y2; i:= i + 1; 

end ( Forward recursion }; 
ififl< max then for; := m + ~ max do f[il := zero; 
h8nkel12{Hnl;yT, Tnf, fn2); 
if (p < 0) and odd (p) then 
-begin - --

,~ign{fn1, fn1); sign{fn2, fn2) 

t!$ 
wrlteln; writetn; write(' Function argument = I); 

writetn; cwrlte(z); 
write( I Hankel function of the first kind and order', p: 4, 

I = .); 
cwrite(fn1); writeLn; 
write(' Hankel function of the second kind and order " p: 4, 

I = I); 

cwrite(fnZ); 
end { Hn }; 

writeln; writeLn; 

360 end ( Hankel }. 

********* 

48 



PASCAL NEWS #17 ~lARCHJ 1980 PAGE 49 

1 
Z 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1Z 
13 
14 
15 
16 
17 
18 
19 
ZO 
Z1 
ZZ 
Z3 
Z4 
Z5 
Z6 
Z7 
28 
Z9 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
4Z 
43 
44 
45 
46 
47 
48 
49 
50 
51 
5Z 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
7Z 
n 
74 
75 
76 
77 
78 
79 
80 
81 
8Z 
83 
84 
85 
86 
87 
88 
89 
90 

<91 
9Z 
93 
94 
95 
96 
97 
98 
99 

100 
101 
10Z 
103 
104 
105 
106 
107 
108 
109 
110 

(* 1'IIrpose: 
Program canputes a Bessel function of the first kind for an 
integral order and canplex IU9l111<!f1t. 

• Author: 
O.M. Tran, School of Electrical EngineeriRJ, Uliversityof 
New South wales. 

* Method: 
Backward recurrence equation is employed to canpute the function, 
stsrtilYJ at a higher order for which the Bessel function has a 
... all value. '!he stsrtiRJ order is calculated usiRJ an 
empirical formula. When the function arg\lllent is mainly real, 
normalization is to unity. U it is mainly imaginary, 
normalization involves cosine of the canplex argllllent. 

• Description of parameters: 
p - integral order, where __ <~ p <- max am max = 500 
z - canplex argument. 
fn - Bessel function of z and order p. 

• Input: 
Program reads in an integer (p) and two real nllllbers 
(real am imaginary parts of z). 

• Qltput: 
Argument & value of the Bessel function of the first kind 
are returned. warnilYJ message is given if any parameter 
exceeds specified limits or is outside rarYJe. 

• Limitstions: 
- 500 <= p <~ sao, 
1.0e-5 <= lI'<Xlulus of z <= 377.0, 
Imaginary part of z <~ 50.0. 

• canputer system: 
Program was run under WIX Pascal (Berkeley - Version 1.2, 
May, 1979) on DEC PDP 11/70. 

• l\ccuracy: 
Cclnputed resul ts were checked against published values over 
the followilYJ rarYJes: 
- 100 <= P <= 100 and 0.1 <= lI'<Xlulus of z <= 100.0. 
'!hey were found to be accurate to at least 8 decimal digits. 

program bessell (;nput, outputl; 

label 
-,-r Exit to terminate program ); 

canst 
---niii = 501; 

ma. = 500; 

.!H!. 
complex = record 

----;:e;-im: real 
end; 

m 
1, k, n, m, p: integer; 
z, w, fn, SUM, esum, asum, norm, zero: complex; 
f: array [0 .. UmJ of comple.; 

procedure stop; 

beg;n 
~ 1 (halt 
~ ( stop ); 

procedure cread(~ z: complex); 

beg;n 
readez.re, z.im) 
~ ( cread ); 

procedure cwriteC:!..!!. z: complex); 

beg;n 
--wr:iteln(1 C1 , z.re, 
end ( cwrite ); 

, , , , z. im, .) I) 

function mag(var z: compLex): reaL; 
I canputes the modulus of a canplex nllllber 

beg;n 
mag := sqrt<sqr(z.rel + sqr(z.;mll 
~ (mag ); 

procedure add(u, v: complex; .!!!: w: complex); 

beg;n 
w.re := u.re + v.re; w.im:= u.im + v.im 

end (add); 

procedure sub(u, v: complex; ~ w: complex}; 

beg;n 
w.re := u.re - v.re; w.im:= u.im - v.im 

end ( sub ); 

procedure muLt(a: real; z: complex; !:!!:. w: complex); 

111 
112 
113 
114 
115 
116 
117 
118 
119 
lZ0 
lZ1 
12Z 
lZ3 
124 
125 
126 
127 
lZ8 
1Z9 
130 
131 
13Z 
133 
134 
135 
136 
137 
138 
139 
140 
141 
14Z 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
16Z 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
ZOZ 
203 
204 
205 
206 
Z07 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 

( Multiplies a real with a canplex 

begin 
--;:;:-e := a * z.re; W.;II:= a * z.ill 
end ( mult ); 

procedure quotient(u, v: compLex; !!!. w: complex); 

var 
vr, vi, a, b, x1, x2, y1, y2, root: reaL; 

beg;n 
vr := abs(v.re); vi:= abs(v.ill); 
root := sqrt<Z.Ol • sqrt<vrl • sqrt(vD; a:= vr + v; + root; 
b := vr + vi - root; 
;t (a = O.Ol or (b = O.Ol then 

-bee;~teln('W: d;v;d;ng b:-;-;n procedure quot;ent'); 
stop ( Exits to terminate progr ... ); 

!!!!!i 
x1 := u.re I a; 
yZ := v.;" I b; 
w.;m := .2 • y1 

end ( quotient ); 

.Z := v.re I b; y1:= u.;" I a; 
w.re := xl •• Z + y1 • yZ; 

- .1 • yZ 

~rocedure ccos(z: complex; var c: compLex); 
COsme of a canplex I -

:!!!:. 
ep, em, p, m: real; 

beg;n 
ep := exp(z. im); 
c.re := 0.5 • p • 

end ( ccos ); 

ell := 1.0 I ep; p:= ep + ell; 11:= e. -ep; 
cos(z.re); c.ill:= 0.5 * m * sinez.re) 

funct ion order(z: CCIiP lex): integer; 
( Gives a stsrtilYJ am even order for recursive canputstion ) 

var 
a: real; 

m: integer; 

beg;n 
a := mag(zl; 
;t a < 0.1 then m := 10 
else 
~g;n i!. a < Z.O !h!!! m := Z8 !!!!. II := round(1.Z • a + 48.0) 

end' 
orFr := m; i!. odd( .. l then order := II + 1 

end ( order I; 

trOCedure sign(u: cOlipLex; !!!:. v: complex); 
CharYJes the sign of a canplex ) 

beg;n 
v.re := - u.re; v.ill:= - u.im 

end ( sign ); 

rocedure check (z: comp le.l; 
Checks to see if the function argument is outside rarYJe 

!!!. 
a, b: reaL; 

begin 
a := abs(z.rel; b:= abs(z.;"l; 
H «a < 1.0e - 5l and (b < 1.0e - 5ll or «b <> O.Ol and (b < 1.0e 
--5ll - - -
then 

beg;n 
write('W: smaLL argument which causes exponent error '); 
cwrHe(zl; stop ( Exits tc terminate program ); 

end; 
H b > 50.0 then 
-beg;n --

write('W: argument with imaginary part outside range = .); 
cwrHe(zl; stop ( Exits to terminate program ); 

end 
end \Check ); 

beg; n ( Bessell ) 
read(pl; n:= abs(pl; 
H n >= Um then 
-beg;n --

writeln( 'W: requi red order ., p: 6, • is outside the range (., -
max: 4, .,., max: 4, .).); 

stop ( Exits to terminate program ); 
.!!!!!i 

cread(z); 
check(zl ( If z is outside rarYJe, exit to terminate program ); 
m := order(z); 
;t m >= Um then 
-beg;n --

writeln( 'W: starting order ., m: 6, 
, exceeds the specified maximum', max: 4); 

stop ( Exits to terminate program ); 
end; 

if n >= m 
ITen 

beg;n 
writeln; 
cwrite(z); 
writeln( • 

writeln; write( I Function argument = .>; 
writeln; 
Bessel funct;on of the f;rst k;nd and order', p: 4, 



PASCAL NEWS #17 MARCH} 1980 PAGE 50 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

I = ( 0 , 0 ) I>; 
writeln; writeln; stop ( Exits to terminate program}; 

end; 
zero.re := 0.0; zero.im:= 0.0; sum:= zero; esum:= zero; 
osum := zero; 
f(mJ.im := 0.0; 

f(m + 1) := zero; f[mJ.re:= 1.0e - 30; 

for; := m downto 1 do 
begin -- -

---quQtient(f(;J, z, w); mult(2.0 * i, w, w); 
sub(w, Hi + 1], Hi - 1]) 

end; 
k"'!7""mdiv2; 
if abs(Z"':'"'re) > 10.0 * abs(z .. ;m) 
t'Fien 

begin 
for; := 1 to k do add(sum, f(2 * 1], sum); 
aaa(sum, Hur, nO"'rm) 

end 

{* Purpose: 

muLt(2.0, sum, sum); 

Program COOlPltes a Bessel function of the second kind for an 
integral order and complex argument .. 

* Author: 
Q.K. Tran, School of Electrical Engineering, lhiversity of New 
SOuth wales. 

* Method: 
Initially, a number of Bessel functions of the first kind are 
generated by backward recursion. '!hese are then summed to give 
the two orders 0 and 1 of the Bessel function of the second kim. 
Using forward recurrence relation based on these two orders, 
a higher order is calculated. 

* Description of parameters: 
p - integral order, where -max <= p <== max and max == 500. 
z - complex argument. 
fn - Bessel function of z and order p. 

* Input: 
Program reads in an integer (p) and t\liO real nlmlbers (real arK1 
imaginary parts of z) • 

* OUtput: 
ArglUllent & value of the Bessel function of the second kim are 
returned. Warning message is given if any parameter exceeds 
specified limits or is outside range. 

* Limitations: 
- 500 <-= P <= 500 , 
1.0e-5 <= JOOdu1us of z <= 377.0 
Imaginary part of z <-= 50.0 , 
P must not be much greater than the modulus of z, otherwise 
exponent error in the canputer (PDP 11/70) will occur. 

* COmp..1ter system: 
Program was run under UNIX Pascal (Berkeley - Version 1. 2, 
May 1979) on DEC PDP 11/70. 

* lIccuracy: 
Computed resul ts were checked against published values over the 
following ranges: 

- 100 <= P <= 100 and 
real argument z -= 0.1 - 100.0 , 

-l<=p<=land 
ccmp1ex argument z = (0.01,5 <leg.) - (10.0,90 deg.). 

49 'lbey were found to be accurate to at least 10 significant digits. 
50 program bessel2<input, output); 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

label 
-;-r Exit to terminate program}; 

const 
---r:rm = 501; 

max = 500; 
tpi = 0.6366197723675813 { 2.0 by pi }; 
eu le r = 0.5772156649015329; 

~ 
compLex = record 

var 

re, im: reaL 
end; 

i, k, n, m, L, p: integer; 
z, u, v, w, yo, y1, y2: compLex; 
tn, sum, esum, osum, norm, zero: complex; 
f: array [0 •• Lim) 2...!. compLex; 

procedure stop; 

begin 
""""Qat 0 1 { halt 
en"ir"{ stop I; 

procedure cread(~ z: complex); 

begin 
read(z.re, z.im) 
~ { cread_}; 

procedure cwrite(~ z: complex); 

begin 
--wr1teln('(', z.re, 
end { cwrite I; 

I,', z. im, I)') 

function mag(var z: compLex): reaL; 
{ Computes themcdulus of a ccmplex nl.ll\ber 

begin 
mag := sqrt(sqr(z.re) + sqr(z.im» 

end { _ }; 

239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 

else 
begin 

for i := 1 to k do 
begin 

if odd(;) then addeosum, te2 * iJ, osum) 
else addeesui1i;"1t2 * iJ, esum) 

ena;-
su1l"re'sum, osum, sum); mult(2.0, sum, sum); 
add(sum, teO), sum); ceos(z, w); quotient(sulII, w, norm) 

qu*-nt (f [n), norm, fn); 
if (p < Q) and (odd(p» then sign(fn, fn); writeln; writeln; 
write(' Function argum"'iiit""= I); ewrite(z); writeln; 
write(' BesseL function ot the first kind and order " p: 4, , 

); 

cwrite(fn); writeln; writeln; 1: 
end { Bessell }. 

procedure add(u, v: complex; ~ w: complex); 

begin 
w.re := u.re + v.re; w.im:= u.im + v.;m 

end { add }; 

procedure sub(u, v: compLex; ~ w: compl.ex); 

begin 
w.re := u.re - v.re; ",.im:= u.im - v.im 

end { sub }; 

procedure mulUa: reaL; z: complex; var w: complex); 
{ Mul tipl ies a real with a canplex }-

begin 
w.re := a * z.re; w.im:= a * z.im 

end { mult }; 

procedure product(u, v: complex; ::!.!!. w: compLex); 

begin 
w.re := (u.re * v.re) - eu.im * v.im); 
w.im := (u.re * v.im) + eu.im * v.re) 

end { product }; 

procedure quotient<u, v: complex; ::!.!!. w: complex); 

var 
vr, vi, a, b, x1, x2, y1, y2, root: real; 

begin 
vr := abs(v.re); vi:= abs(v.im); 
root := sqrt(2.0) * sqrt(vr) * sqrt(vi); a:= vr + vi + root; 
b := vr + vi - root; 
if (a = 0.0) or (b = 0.0) then 
-begin - --

writeln('W: dividing by 0 in procedure quotient'); stop; 
{ Exit to terminate program } 
end; 

x1 := u.re I a; 
y2 := v.im I b; 
w.;m := x2 * y1 

end { quotient }; 

x2 := v.re I b; y1:= u .. ;m I a; 
w.re := x1 * x2 + y1 * y2; 

- x1 * y2 

procedure ccos(z: complex; var c: compLex); 
{ Cosine of a canplex I -

~ 
ep, em, p, m: real; 

begin 
ep ;= exp(z .. im); em:= 1 .. 0 I ep; p:= ep + em; m:= ell - ep; 
c.re := 0.5 * p * cos(z.re); c.im:= 0.5 * m * sin(z.re) 

end { ccos }; 

trOcedure polareu: complex; 'liar v: complex); 
Wr 1t1ng a ccmplex into polarform. } 

const 
---pro 3.1415926535897932; 

be{;n (u.re = 0.0) and eu.im = O.Q) 
oegin - then 

writeln('W: conversion of 0 in procedure polar'); stop; 
{ Exit to terminate program } 
end; 

if (u.re = 0.0> and (u.im <> O.Q) then 
-begin - --

v.re := mag(u); v.im:= pi I 2 .. 0 
end 

else 
begin 

v.re := mag(u); v.im:= arctanCu.im I u.re) 
end 

end TPolar }; 

procedure cln(z: compLex; .y.!!. c: compLex); 
{ Natural logarithm of a canplex } 

var 
p: complex; 

begin 
-PO[ar(z, p); c.re:= In(p.re); c.im:= p.;m 
end { cln }; 



PASCAL NEWS #17 MARCHI 1980 PAGE 51 

198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 

221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 

function ordedz: complex): integer; 
( Gives a starting and even order for recursive caaputation I 

!!!. 
a: real; 
m: integer; 

begin 
a := magCz); 
ifo<0.1 thenm:=10 
erse 

begin if. a < 2.0 then m := 28 !!.!!. m := roundC1.2 * 0 + 48.0) 
end' 

orFr:= m; if. oddCm) ~ order := • + 1 
end ( order I; 

procedure sign(u: complex; var v: cOMplex); 
( Changes the sign of a canplex ) 

begin 
v.re := - u.rei v.;m:= - u.;m 

end ( sign I; 

rOCedure checkCz: cOllplex); 
CheCkS to see if the function argllllel1t is outside range 

var 
a, b: reali 

begin 
a :. absCz.re); b:'" absCz.ill); 
If CCa < 1.0e - 5) and Cb < 1.0e - 5» or CCb <> 0.0) .!!!!!. Cb < 1.0e 
-- 5» - -
then 
""""De9ii' 

wr teC 'W: s .. lll argument whi ch causes exponent error .); 
c.,rUe(z); stop; 

( Exit to terminate progr ... I 

i~ 50.0 then 
begii --

wr te('W: argument with imaginary part outside range I>; 
cwriteCz); stop; 

( Exit to terminate program I 
end 

end TCheck I; 

begin ( Besse12 I 
readCp); n:- absCp); 
if n >= ll. then 
begin --

wrlteln( 'W: requi red order ., p: 6, I ; s outside the range (., -
.ax: 4, ',', max: 4, .).); 

stop; 
( Exit to terminate progr ... I 
end' 

criia'cz); checkCz); 
If z is outside range, exit to terminate program } 
" := orderCz); 
if 11>= lio then 
begin --

.,riteln< 'Ii: starting order', m: 6, 
I exceeds the specified maximum', max: 4); 

stop; 
( Exit to terminate progr ... I 

.!!!!!; 

267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 

281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 

zero. re := 0.0; zero. hi := 0.0; sum:= zero; esUII:= zero; 
osus := zero; 1[0 + 1l := zero; f[ml.re:= 1.0e - 30; 
teol.l. := 0.0; 
for i :'" II downto 1 do 
begin -- -

quotientCf[il, z, w); multC2.0 * i, w, w); 
subCw, 1[i + 1l, tei - 1]) 

end; 
k :=-. div 2; 
if abscZ":"re) > 10.0 * absCz. im) 
'then 

btn 
or i := 1 to k do addCsum, f[2 * il, sum); multC2.0, sum, sum); 

'8ddCsu"" f[Ol, nOiio) 

end 
else 

be,in 
or i := 1 to k do 
be,~n -

oddCi) then addCosum, H2 * il, OSUII) 
erse addCesuil,f[2 * il, esum) 

!!iJ} 
lubees ... , os .. , SUII); lIult(2.0, 11.11, SUIII); 
addCsUII, HOl, sum); ccosCz, u); quotientCsUII, u, nora) 

.!!!!!; 
for i := 0 to II do quotientCf[il, norm, teil); 

( Bessel functronsof 1st kim I 
esl.lll := zero; OSt.III:= zero; l:= 1; 
if n " 0 
t1ien 
""""Degin ( Yo) 

for i := 1 to k do 
beyl~= _ 

l; IIultCl I i, f[2 * il, u); addCesUII, u, esUII) 
end' 

IIU"ffi2.0, es ... , esum); lIultCO.5, z, u); clnCu, u); 
u.re := u.re + euler; productCu, 1[OJ, u); lubCu, esUII, u); 
lIultCtpi, u, yo); fn:= yo; .. riteln; writelni 
writeC' Function argument = .); cwrUe(z)i writeln; 
writeC' Bessel function of the second kind and order 0 = '); 
cwriteCfn)i writelni writelni stop; 

( Exit to terminate program 
end(Yol e(se-

""""Degin ( Yn where n <> 0 I 
for i := 1 to k do 

beyln --
:= - l; lIultCl I i, H2 * il, u); addCesum, u, esum); 

sub(f[2 * i - 1l, f[2 * i + 11, v); lIultCl I i, v, v); 
addCosLIII, v, alum); 

end' 
IIU"ffi2.0, eSIa, SUIII); 
u.re := u.re + euler; 
lIultCtpi, v, yo); 

multCO.5, z, u); clnCu, u); 
product Cu, HOl, v); subCv, esum, v); 

( Yo I productCu, f[il, v); 
quotientCf[Ol, z, w); subCv, w, w); oddCw, OSUII, w); 
multCtpi, w, y1); 

( Y1 I i:= 1; 
while i < n do ( Forward recursion I 

begin -
quotientCy1, z, u); muLt(Z * i, u, u); subCu, yo, y2); 
yo := y1; y1:= y2; i:= i + 1; 

end; 
Forward recursion I 
fn := y1; if Cp < 0) and oddCp) then signCfn, fn); writeln; 
writeln; w"MteC I Function argument = I); cwrite(z)i 
writeln; 
write( I 

• = • >; 
Bessel function of the second kind and order', p: 4, 

cwrHe(fn); wr;teLn; wrHeLn 
end; 

( Yn I 
1 : 
end ( besse12 ). 

******** 



PASCAL NEWS #17 MARCHI 1980 PAGE 52 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 

{* Purpose. 
Library routines to inanipulate character str in:}s in Pascal. 

* Author. 
Judy M. Bishop, canputer Science Division, lkliversity of the 
Witwatersrand, Johannesburg 2001, South Afr ica. 

* Description of routines: 
Strin]Initialize - set up the free space list ••• called first 

Strin]Error 
News 
Disposes 
Rewrites 
Resets 
len:}th 

FDfs 

PUts 
Gets 
Cpens 
Closes 
Reads 
writes 
SUppress 
Assign 
canpare 

AlfaToStr in] 
OlarToStr in] 

and once. 
- Internal error reportin] routine. 
- Internal str in] allocation routine. 
- Internal strin] deallocation routine. 
- user callable. Initialize a strin] for writin]. 
- user callable. Initialize a strin:} for readin:}. 
- User callable function. 

Returns strin:}'s len:}th. 
- User callable function. 

True if at end of str in]. 
- Internal strin] character put routine. 
- Internal strin] character get routine. 
- User callable strin] creation routine. 
- user callable strin] renoval routine. 
- User callable read str in:} routine. 
- User callable write strin:} routine. 
- User callable trail in:} blank renOVal routine. 
- User callable strin:} assignnent routine. 
- User callable function return in:} the 

relationship beboeen two str in:}s. 
- User callable assigrment of alfa to str in:}. 
- User callable assignnent of char to str in:}. 

An implenentation of character str in:} pr imitives usin] Pascal's 
dynamic storage allocation facilities. '!he routines follow Arthur 
Sale's recanmendation that str in:}s be treated as sequences of 
characters. Pascal sequences are processed bY file routines, thus 
these string routines use similar names for s:imilar functions. 

* canputer SYsten: 
IBM 360/370 AAEC Pascal c~iler version 1.2. 

* References: 
J. M. Bishop, 'Implenentin:} Strin:}s in Pascal', "Software -
Practice and Expsrience", 9 (9), 779-788 (1979). 
A. H. J. Sale, 'Strings and the" sequence abstraction in Pascal', 
'Software - Practice and Expsrience", 9(8), 671-683 (1979). 

*} 

program stg(input, output); 

const 
CliUnksize = 32; 

al falen = 10; 

natural = 0 •• maxint; 
text= file of char; 
al fa= pacreaarray [1 

chunkptr = ·chunk; 
chunk = record 

aL falen] .£!. char; 

next: chunkptri 
line: packed array [1 chunksize] of 

char 
end; 

st ri ng = record 

end; 

w: char; 
Length: naturaL; 

position: 0 •• chunksize; 
start, 

current: chunkptr; 
chunkno: naturaL; 
status: (reading, writing, not ready) 

re Lat ion = "'('bi'fore, beforeorequa L to, equaL to, afterorequal te, 
after, netequalto); 

avai l: chunkptr; 

procedure stringinitialize; 

begin avail := ni l; end; 

procedure stringerror(n: natural); 

begin 
--w-r:rteln; writeln(' **** execution error in string library ****'); 

case n of 
-r: write(' put attempted in read state I); 

2: write(' get attempted in write state I); 
3: write(' get attempted beyond end of string I); 

4: write(' delete portion bigger than string I); 
5: write(' extract portion bigger than string I); 

6: write(' inserting beyond end of string I) 

end; 
writeln(' ****'); 

{} halt 
end [ str in:}error }; 

procedure news(~ p: chunkptr); 

var 

be~~n avai l 
then 

begin 
new (p); 

i: 1 •• chunksize; 

with p' ~.f£!:. i := ~ chunksize ~ l ine[;] := , t; 

111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 

{ undefined } 
end 

else begi} p:= avail; avail:- avaiL"'.next end; 
enaTnews ; 

procedure disposes(p: chunkptr); 

begin p" .next := avai L; avai l := p; ,!!!!!; 

procedure rewrites(:!!!. s: string); 

begin 
w,th s do 
~~in-

,f start = nil 
tlien begin news(start); start" .next := $ !w 
current := start; position:= 0; chunkno:= 0; 
length := 0; status:= writing 

end 
end \rewrites }; 

procedure resets(var s: string); 

c: chunkptr; 

begin 
with s do 

begin-
if status = writing 
tlien 
~gin 

length := length + position; c:= current'" .next; 
current" .next :=!!..iJ; 
while c <> nil do 

beSin current:= c" .next; disposes(c); c := current 
en 

.!!!£!;-
current := start; position:= 1; chunkno:= 0; 
status := reading; 
if current <> nil then w := current" .line[1J else w := I '; 

[ -when reset do'iie" on an-enpty str in:} 
end 

end \resets }; 

function length(s: string): natural; 

begin resets(s); length := s.length; end; 

~ eofs(s: string): boolean; 

begin 
with s do eofs := (length + 1) 

enaT eofS) ; 
chunkno * chunksize + position; 

procedure puts('y!!:' s: string); 

begin 
with s do 

be9;n-
, status = reading then stringerror(1); 
"'1T position = chunksiz-e-
then 
~gin 

----=r:r-current" .next = ni l then 
-begin ---

news (current" .next); current" .next" .next := ni L; 
end; 

cumnt := current" .next; chunkno:= chunkno + 1; 
length := length + chunksize; position:= 1; 

end 
eLse-position := position + 1; 
C'U"r"rent". L ine[positionJ := W; w:="; 

end 
end Iputs }; 

procedure gets(.!!!:. s: string); 

begin 
with s do 
be~in-

1f status = writing then stringerror(2); 
if eofs(s) then stringerror(3); 
if position =---chiJnksize 
then 

begin 
current := current" .next; chunkno:= chunkno + 1; 
pOSition := 1 

end 
else-position := position + 1; 
'1"'T'"Current <> ni l then w := current". L ine[position] 
else w ::;:: 1 ';- --

[ Wh€r1 the eof coincides wi th the end of a chunk. } 
end 

end (gets }; 

procedure opens(var s: string); 

begin 
with s do 
~gin-

---rerl"gth := 0; chunkno:= 0; position:= 0; start:= .!2ili 
current := ni l; status:= not ready; w:= I '; 

end -
~ TOpsns 1; 

procedure closes(~ s: string); 



PASCAL NEWS #17 

221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 

whHe start <> nH do 
begin 

current := start'" .next; disposes(start)i 
start := current 

end· 
end I ~ses }; 

l,ocedure reads(var from: text; var 5: string>; 
reads until an end-of-line. J 

begin 
--;:e;rites(s); if eoln(from) then get (from); 

whi le not eoln(from) do 
~egin s.w := from";- puts(s); get(from)i end; 

end reads}; 

procedure writes(.:!!!. onto: text; 5: string); 

begin 
resets(s); 
whHe not eofs(s) ~ begin write(onto, s.w); gets(s); end 

end { wrlEes }; 

procedure suppress(var 5: string); 
rE!ll\Ol1es trailin;fOIanks. } 

canst 
space = I I; 

begin 

spaces: boolean; 
mark, 

i, 
l: naturaL; 

--r:= length(s); mark:= 0; resets(s); spaces:= false; 
for i := 1 to l ~ 
begin -
~s.w = space 

then 
---segin 

lTnot spaces then begin spaces := true; mark:= 
eno-

elOebegin spaces := false; mark:= 0; !!!!!; 
gets(sr--

end; 
ifliiirk > 0 then s.length := mark - 1; resets(s); 

enol suppress }-;-

procedure assign(~ 51: string; 52: string>; 

begin 
rewrites(s1); resets(s2); 

MARCHI 1980 PAGE 

275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 

whi le not eof.(.2) do 
~egin .1.w := s2.W; puts(sl); gets(s2);!!!!!;. 

end assign}; 

function compare(s1: string; r: relation; 52: string): boolean; 

less, 
equa L: boo lean; 

lsl, 
ls2: natural; 

bet, 
s := length(sl); ls2:= length(s2); resets(sl); 

equal := lsl = ls2; less:= false; 
resets(s2) ; 

while (equal and not less) and ~ eofs(sl) .!!!!!~ eofs(s2) do 
begin --

equal := slow = s2.w; 
gets(s2) 

!!!!!; 
case r of 
--refort: compare := less; 

less := s1.w < s2.w; 

beforeorequalto: compare := less or equal; 
equalto: compare := equal; 
afterorequalto: compare := not less or equal; 
after: compare := not less;- -
notequalto: compare:= not equal 

end· -
enn canpare }; 

procedure alfatostring(a: alfa; ~ s: string); 

~ 
space = 

i: natural; 
state: (scanning, ended, spacefound); 

begin 
rewrites(s); := 1; state:= scanning; 
replat 
hs~ > al falen lh!!!. state := ended 

gets(sl); 

--n- aei] = space then state := spacefound 
orse begin s.w := anT; puts(s); i:= i + 1 end 

unti l state <> scanning; 
en'(f'T"alfatostrin;! }; 

procedure chartostring(c: char; !!!. s: string); 

begin rewrites(s); s.w:= ·c; puts(s)!!!!!; 

begin end. 

Articles 

53 



PASCAL NEWS #17 MARCH, 1980 

********* 
CONFORMANT ARRAYS IN PASCAL 

by A.H.J.Sale 
University of Tasmania 

(at the request of Andy Mickel) 

l. CONFORMANT ARRAYS AND THE NEW STANDARD 

The draft proposal for an ISO Standard for Pascal contains within it a 
definition of what I shall call a "conformant array parameter". The basic 
concept is that of a parameter specification which allows a formal­
parameter to assume the values and types of different actual array­
parameters. 

How did the draft Standard acquire this feature? And why? 

£. rRESSURE GROUPS 

During the preparation of the draft Standard, a considerable amount of 
public comment was received by the sponsoring body, BSI, and the chairman 
of its Pascal Committee, Tony Addyman. (I seem to recall a figure of 
10kg.)A significant amount of this was devoted to the problem of writing 
general procedures to sort and perform other array operations, inevitably 
leading either to suggestions of a full dynamic array facility, or some 
sort of conformant array parameter. 

Of course, contributors to Pascal News have not been idle in this regard 
either. Many suggestions for conformant array parameters have been 
received; some good, some not. It is clear that this is perceived by many 
to be a deficiency in the language, though there are quite good arguments 
to support the view that it is only a deficiency viewed in a particular 
way. Correct or not, the perception has led to pressure being applied to 
the Pascal Committee to put a feature of this sort in the draft, the 
Numerical Algorithms Group (NAG) at Oxford being an important example. 

However, this pressure had not had an effect by the time of the publication 
of the third Working Draft (N462) widely published last year. Then, two 
critical pressures were applied to the Committee by N. Wirth and 
C.A.R.Hoare (independently) supporting the view that llQK was the time to 
add a conformant array feature to Pascal. It seems safe to assume that in 
the absence of pressure from such quarters the urge to add to Pascal would 
have been successfully resisted by BSI • 

.1. PROPOSALS 

The proposals put forward by way of defining a conformant array feature 
have been many and varied. Some have been strange in their exploi tati·on of 
minor aspects of Pascal, and many others have been obsessed by syntax to 
the exclusion of what the construct should mean. It is quite clear, even 
before you look seriously, that the addition of conformant arrays to Pascal 
is not a trivial task. 

The BSI Pascal Committee accordingly had to choose something to satisfy the 
pressures from the joint designers of the language. They rejected the 
silly sugg~stions of course, and chose to put in the document which went to 

PAGE 54 



Turin (N510) a considerably modified version of a scheme which seemed to 
originate with Jacobi. Subsequently, it became clear that there were 
better possibilities, and BSI withdrew support for its own draft, in favour 
of an improved one, now incorporated in the Draft Proposal. This scheme, 
which seems to have originated with N.Wirt,h, has been examined by both 
opponents and proponents of the addition in order to ensure that at least 
if there is to be an addition, it should be the best One possible. That is 
my own position. 

The key idea behind the current proposal is that it preserves the 
abstraction of an array as a complete mapping, and incorporates a number of 
"compile-time" checks on the validity of !!ctual calls. The cost is that of 
introducing what the draft proposal calls a "schema"; or in other words a 
specification which is not a ~ but a rule for identifying and 
constraining a set of types. Thus the type of a formal conformant-array­
parameter is not known from its declaration, but is supplied by each call. 
The consequences are very simple outside this one pOint, especially in 
defining parameter-list congruity which many other proposals make very 
heavy weather of indeed. 

At Turin, the site of the very first computer conference ever, there was a 
considerable amount of discussion of the conformant array proposal. 
Opposition to the proposal was stated by the US, and one or two other 
people, but there was clearly a substantial majority which would accept the 
inclusion of such a feature, and many indeed welcomed it. Consequently, 
the feeling of the experts group was recorded as being in favour of some 
form of conformant array parameter being in the first Standard. 

Discussion then turned on the form of the parameter mechanism, with the 
possibilities being the BSI original, the redraft now incorporated, and an 
improved Jacobi-like proposal. Conformant array parameters took over two 
hours of technical discussion (about 12% of the total), and also ran into 
dinner, breakfast and a coffee-break. However, it is useful to realize 
that the Turin meeting perceived this as an important issue, but not of 
over-riding importance. 

.5.. TIMELINESS 

Part of the pressure to make this feature appear in the Draft Standard 
arises from a desire to have important numerical algorithms translated into 
Pascal, and the language used in this area now dominated by Fortran. But 
simply because this pressure is present, many implementors have already 
inserted a feature of this general type into their implementations, and 
they differ very widely. Not surprizingly, not many implementors think 
much about the abstractions behind their extenSions, or perhaps they borrow 
extensions. The signs are there that if conformant array parameters are 
not standardized now, they may as well never be for all the good it will 
do. 

Speaking personally, I had had six new implementors call me in the last 
month, and all of them have asked for guidance on how they should implement 
conformant array parameters. Such interest by new commercial 
implementations is significant; however the existing implementations are 
likely to be harder to bring into any sort of conformance. 

Reluctantly, because I was not an original supporter of conformant arrays, 
I have been convinced that both timeliness and utility require the action 
that was taken at Turin. I think the inclusion is warranted. 

~. CURRENT STATUS 

To keep readers of Pascal News informed, I reproduce some pieces of the 
draft proposal as they relate to conformant array parameters. It can be 
Seen that the addition is entirely localized within the parameter list, 
except for the addition of one item to 'factor' (and no need even to write 
anything about it in the accompanying text). The conformant array 
parameter schema is well-crafted so that it hangs together as an integrated 
whole, and the reasons for most of the statements will be clear after some 
thought. 

The exact syntax may be changed without damage to the proposal. The use of 
.. " til:" . and , is based on analogies with subranges, variable-

declarations, and formal parameter lists respectively. Other people may 
prefer to Use commas or whatever. It doesn't really matter as long as the 
abstraction is right, except for students. 

~. IMPLEMENTATION 

I have noticed some people saying that the implementation of conformant 
arrays is unproven, and I should like to sharply disagree. There is no 
problem whatsoever about the implementation of ~ of these schemes, and 
they have been well-known for a very long time. The whole argument has 
been around fitting the idea into Pascal with the minimum of change to its 
fabric. Any competent implementor will be able to implement this feature 
on any machine I know, and existing implementations which differ can be 
altered = .!illl!.lli. 

There is one exception. Not that it is unknown, but that we know very well 
that if we are going to allow packed arrays to be actual parameters to a 
conformant array parameter, then we will be forced into either giving up 
packing completely on SOIDe machines, or imposing SOIDe ugly restrictions on 
conformant array parameters, or passing some bit-size argument and 
requiring the called procedure to reproduce the vagaries of the packing 
algorithm. The problem is essentially that the ~ (in bits, say) of the 
component-type may not be known until execution. For this reason, the use 
of packed in a conformant array parameter was not allowed. 

It should be realized that the inclusion of packed in the Standard means 
that s1! implementors ~ provide it (do not fall into the trap of 
thinking of the Standard as a permissive one or a layered one such as 
COBOL), and the likely effects are simply to cause it to be ignored and the 
effectiveness of the Standard nullified, or to cause no packing to take 
place when the 'Standard' compiler option is set. This would be singularly 
unfortunate for a feature whose main use seems to be to simUlate something 
else (strings). It should be pointed out that its exclusion means that 
some implementors may choose to provide it as an extension. The abstract 

~~~~t~~lt~S clear; the syntax is clear; onl~::~ion is 

I-'
<.D
00
o

V1
u;

EXTRACTS FROM WORKING DRAFT 5 (ShortLy to be Draft ProposaL to ISO)

SufU,n 6-6-3
variable-paraMeter-specification •

"var" identifier-Hst ":"
(type-identifier : conformant-~rray-schema)

conformant-array-schema =
"array' "[" index-type-speciflcation
{ ~;" Index-type-specificatlon } al" "of"
(typp.-identifler : conformant-array-schema) •

Index-type-speclf1cation =
bound-id~ntifier " •• " bound-identifier
":" ordinal-typc-identtfier

bound-identifier • identifier •

The occurrence of an identifier within an identifier-list of a
value-paraMeter-specification or a variable-paraMeter-specification
shall be its defining-point as a parameter-identifier for the region
that 1s the formal-parameter-list in which it occurs and its
defining-point as a variable-identifier for the region that is the
procedure-block or function-block, if any. whose formal parameters
are dafinad by that formal-parameter-list.

The occurrenoe of an identifier as a bound-identifier within an
index-type-specification shall be its defining-point as a
bound-identifier for the region that is the formal-parameter-list in
which it ocours and for the region that is the procedure-block or
fun·otion-block, if any, whose formal parameters are defined by that
for~al-parameter-list.

If the component or a conformant-array-schema is ltself
oonformant-array-schema, then an abbreviated form of defint.lion may
be used. In the abbreviated form, all the index-type-specifications
shall be contained within the same enclosing square brackets, a
Single semi-colon replacing each sequence of right-square-bracket
"of" "array· left-SQuare-bracket that oocurred in the full form. The
abbreviated form shall be equivalent to the full form.

Examples:
array[u •• v: Tll of array[j •• k: T2l of T3
array[u .. v: Tl; j .. k: T2l of T3

6.6.3.3 Variable parameters. The actual-parameter (see 6.7.3 and
6.9.2.3) corresponding to formal parameters that oocur in the same
identifier-list in the formal-parameter-list shall all be of the
same type. This type shall be the same as the type of the
type-identifier in the variable-paraMeter-specification if the
formal parameter is so specified, otherwise it shall be conformable
to the conforman·t-array-schema in the
variable-parameter-specification. Each formal parameter shall denote
the .. corresponding actual-parameter during the entire activation- of
the block. Any operation involving the formal parameter shall be
performed immediately on the aotual-parameter.

If access to 'the aotual-parameter invoives the indexing of an array
and/or the selection of a field within a variant of a record and/or
the de-referencing of a pOinter and/or a reference to a
buffer-variable, these actions shall be executed before the
activation of the block.

Components of variables of any type designated packed shall not be
used as aotual variable parameters.

If Tl is an array-type, and T2 is the type the
ordlnal-type-~dentifier of a conformant-array-schema, then Tl is
conformable w1th T2 if all the following four statements are true.
(a) The index-type of Tl is compatible with T2.
(b) The smallest and largest value of the index-type of Tl lie

within the closed interval defined by valuea of T2.
(c) The component-type of Tl is the same as a component-type of the

conformant-array-schema, or is conformable to a oomponent
oonformant-array-schema.

(d) Tl is not designated paoked.

It shall be an error
index-type of Tl
valueS <>f'T2.

if the smallest or largest value of the
lies outside the cloBed interval aefined by the

During the entire aotivation of the block, the first
bound-identifier shall denote the smallest value of the. index-type
of the actual-parameters, and the second bound-identitier shall
denote the largest value of the index-type of the
actual-parameters.

6.6.3.6 Parameter list congruity. Two formal-parameter-lists shall
be congruous if they contain the same number of parameters and if
the parameters in corresponding positions match. Two parameters
shall match if any of the four statements that follow is true.
(a) They are both value parameters of the same type.
(b) They are both variable parameters of the same type, or have

equivalent conformant-array-schemas. Two
conformant-array-schemas are equivalent if they have the same
ordinal-type specIfied in their index-type-apecifieations and
theIr components are either of the same type or are equivalent
contormant-array-schemas.

(c) They are both prooedural parameters with congruous parameter
lists, if any.

(d) They are both functional parameters with congruous parameter
lists, if any. and the same result-type.

8~ 6-7,1
factor = variable I unsigned-oonstant I bound-identifier

function-designator I set-constructor I
"(" expression ")" I "not" faotor •

......
<D
00
o

DEPARTMENT OF THE ARMY
USA DARCOM AUTOMATED LOGISTICS MANAGEMENT SYSTEMS ACTIVITY

PO BOX 1578, 5T LOUIS, MISSOURI 63188

DRXAL-T

Mr. Andy Mickel
P?-s,cal User's Group
University Computer Center: 227 EX
208 SE Union Street
University of Minnesota
Minneapolis, MN 55455

Dear Andy:

18 January 1979

Our agency sent questionnaires to about 950 members of the Pascal
User's Group in the United States in order to gather information
on their experience with the l~nguage and available software. Thank
you for providing us with a copy of the User's Group mailing list
for this ~ndeavor.

We are submitting the attached copy of the results of our survey to
you for publication in the Pascal News. Also, enclosed is a copy
of the questionnaire for your information. If you have any questions,
please contact John McCandliss, 314-268-2786, or Sue Burklund 314-
268-5151. '

1 Incl
As stated

') /()) "- .: .L~¥j, k, ~.~_
R~BERT R. RANSOM
Director for ADP Technology

PASCAL SURVEY

Pascal is a computer language developed by Niklaus Wirth at ETH in
Zurich, Switzerland. It is derived from Algol 60, but is more powerful
and incorporates structured programming principles. Pascal has been
implemented on a variety of computers throughout the world with the most
common being Control Data Corporation and Digital Equipment Corporation
computers. Its widest use to date has been as an instructional tool to
teach students the principles of programming in a structured manner, but
some computer companies, notably CDC and Texas Instruments are using it
as a systems programming language.

ALMSA developed a questionnaire which was sent to approximately 950
members of the Pascal User's Group in the United States. We received
about 120 usable responses, which were analyzed to provide the statistics
for this report. The responses, especially in the area of relative speed
and size of Pascal generated code compared to other languages, were often
incomplete, so each area of the report indicates the number of responses
on which it is based.

The questionnaire brought some interesting facts about Pascal llSage to
light. The first interesting statistic is that almost ~ of the responses
were from educational institutions, and another ~ were from computer
companies. Most of the government organizations responding were research
oriented. It is safe to say that as yet, Pascal has not moved into the
mainstream of computer programming, although judging by the fact that
over 4/5 of the respondents said that Pascal usage at their installation
was increasing this development might be forthcoming in the future.

Another interesting fact is that 3/5 of the respondents were using Standard
Pascal. Pascal was highly rated as an educational tool, but got its
lowest ratings as a language for writing operating systems and business
applications. Extensions of Pascal, such as Brinch Hansen's Concurrent
Pascal, will be necessary before Pascal will be acceptable for writing
operating systems. Other extensions, such as better I/O capabilities
will be necessary to make Pascal an acceptable business programming
language.

It is hard to make any judgment as to the efficiency of Pascal generated
code, because of the small number of responses, and the large variety of
compilers cited. In most cases, the Pascal generated code was both
slower and larger compared to modules in assembly language and other high
level languages. However, a couple of compilers, including the widely
used University of Colorado version, were producing code that was compared
favorably with that produced by FORTRAN compilers.

June-October 1978

PASCAL QUESTIONNAIRE STATISTICS

General Statistics:

Number of questionnaires mailed
Number of replies received
Replies from organizations which didn't have working

compilers or' said they couldn't answer our survey
Usable replies

Types of Respondents:

a. Governmental organizations
b. Educational organizations
c. Business organizations
d. Computer organizations

Type of Pascal Used:

a.
b.
c.
d.
e.

Standard
Subset of standard
Sequential Pascal
Concurrent Pascal
Other

Total

Total

950
155
33

122

10
60
23
29

122

78
12
11
5

14
120

100%
16%

3%

13%

8.2%
49.2%
18.9%
23.8%

100.1%

65.0%
10.0%
9.2%
4.2%

11.7%
100.1%

~: These numbers are not exact since some organizatiOns had more than
one Pascal compiler.

How many of these organizations use Pascal compilers
as opposed to interpreters?

a. Pascal compilers
b. Pascal interpreters
c. Both

Total

87
15
13

ill

Percentage of coding being done at each installation in Pascal:

a. Number of replies
b. Average % of coding

94
14.5%

Trend of" Pascal usage at each installation:

a. Replies
b. Increasing
c. Decreasing or stable

116
84%
16%

76%
13%
11%

100%

June-October 1978

~: The follOwing three areas
o = Poor
1 = Adequate
2 = Good
3 = Excellent

Reliability of Pascal compilers:

were rated on a 0 to 3 scale where:

Number of replies

116

Suitability for the following applications:

a. FORTRAN replacement
b. ALGOL replacement
c. Educational use
d. Operating systems
e. Systems programming
f. Business applications
g. Scientific applications

Pascal's capabilities in various programming areas:

a. I/O operations
b. Numeric computations
c. Integer arithmetic
d. Character handling
e. String handling

110
95

104
88

101
87
99

114
122
111
114
112

Average
Rating

2.2

2.1
2.4
2.6
1.4
2.0
1.4
2.1

1.4
1.8
2.4
1.9
1.1

Speed/size of Pascal generated code compared to a similar module on the
same system in another language:

Speed Size
a. Number of replies 20
b. Faster 3
c. Slower 17

a:-"Number of replies 13
b. Smaller 1
c. Larger 12

Comments that many respondents made about the limitations of Pascal and
what they thought would be the most useful extensions to Pascal:

a. Formatted I/O
b. Random access capabilities
c. Better interfaces with other programs
d. Ability to initialize variables
e. Bit strings
f. Make it easier to:compile procedures separately
g. More interactive functions
h. Dynamic arrays

......
CD
00
o

CONVERTING ~ APPLICATION PROGRAM FROM
OMSI PASCAL !....!.E. m ~ PASCAL 8000/1. 2

Geoffrey R Grinton
State Electricity Commission of Victoria

Richmond. Victoria 3121. Australia

I recently had occasion to transfer an application program originally
written on a PDP 11/34 system using RT-11 and OMSI Pascal 1.1F to an
installation running AAEC Pascal 8000/1. 2 und .. r MVS on a dual IBM 370.

Although the program had originally b .. en writt .. n with this transf .. r in
mind. and hence with a minimum of system dependent f .. atur .. s. th .. re w .. r ..
several ar .. as in which unexpected changes had to be made. Some of th ..
changes are of a trivial nature. and were expected. Others. however.
were less obvious. and posed some problems.

This note describes the differences encountered, and is intended to show
others the sorts of problems likely to be encountered in such an
exerc ise.

1. The original version was written 'using a mixture of upper and lower
Case characters. When this was fed into the AAEC compiler the compiler
crashed; no indication of the likely cause of the problem was given. so
a bit of inspired guess-work was re~uir .. d. The solution used was to
change the whole program to upper case.

2. It was necessary to convert occurences of the characters [. J and
to the AAEC equivalents. namely C •.) and @. I have since found that
the AAEC compiler accepts [and l. but this is not documented,

3. There were several occurences of VALUE as a variable name. Since
the AAEC compiler allows a VALUE segment. which follows immediately
aft,r the VAR segment. this caused it some confusion.

4. I had omitted to include names of external
and OUTPUT. in the program header (which
compiler). so these had to be inserted.

Pi Ies. i nel ud i ng INPUT
is optional in the OMSl

5. It was necessary to reduce the nesting level of procedures. since
AAEC allow only six levels, The OMSI compiler allows up to ten levels.
Such a restriction would appear to me to be contrary to the philosophy
of structured programming. as it re~uires the programmer to either use
larger (and hence less comprehensible) blocks. or to plac~ procedures
which should logically be contained in another block at a hlgher level.

6. The OMSI system had failed to detect an iT.valid assignment to a
subrange variable. This was correctly diagnosed by the AAEC run-time
system. The particular example was a subtle form of:

~5!T.. index : 1.. top;

index : = 0;

7,. The AAEC system. when running under the Time Sharing Option (1'SO) of

MVS does not actually write to a terminal until a line is completed.
with writeln. Hence all prompting messages had to be changed to -us ..
writeln instead of write.

8. It was nec .. ssary to change all output formats to allow for a
carriag .. control character. This was not strictly n .. cessary. but it was
re~uired if the system default DCB information was to be used (i ..
RECFM=FAl.

9. Since the AAEC version does not specifically allow for interactive
use. all input had to be changed so that the Pile pointer was always
defined. This was done primarily by changing all occurences of
readlnC.) to readln; readC.). although several other minor programming
changes were also necessary.

10. The OMSI compiler does not pre-declare files INPUT and OUTPUT. and
conse~uently does not allow references to inputA to look-ahead on the
input file. With the changes described in point 9. it was useful to be
able to do this in the AAEC verion of the program. Further changes
became necessary. however. when I realised that the system was adding
extra blanks to the ends of my input lines. to fill them out to 80
characters. (I can't say that I wasn't warned by .Jensen and Wirth, but
that one took a lot of finding!)

11. OMSl Pasca 1 uses mod i f i ed forms of reset
actual RT-11 files to internal file variables.
this connection to be made externally, and
initialisation routine had to be changed.

and rewrite to attach
The AAEC system requires

hence the appropriate

12, As OMSI Pascal ignores the 'packed' attribute,
packs all character arrays and ",trings. I had not
type char as packed, This was necessary on the AAEC
operation of my program.

and automatically
specified arrays of
system for proper

The conversion process was. despite the differences outlined above.
probably simpler than I had expected. Ap~rt from the I/O related
difficulties. there were few incompatibili·ties between the systems. and
conversion of the whole program of 1200 lines was completed within a
couple of days.

15th May. 1979

I-'
lD
00
o

DOES SCOPE = BLOCK IN PASCAL?

T. P. Baker*
Department of Computer Science

The University of Iowa
Iowa City, Iowa 52242

and

A. C. Fleck
Department of Computer Science

and
Weeg Computing Center

The University of Iowa
Iowa City, Iowa 52242

INTRODUCTION

There seems to have developed some controversy over whether the scopes of identi­
fiers are (or should be) synonymous with blocks in PASCAL. In this note we call
attention to the formal statement of the "rules" dealing with this situation, point
out several other items in the literature that address the question of the title~ and
present our own personal conclusions. We relate our comments first with respect to
"Standard" PASCAL and then to the new BSIjISO Working Draft Standard PASCAL.

WIRTH'S STANDARD PASCAL

There are several levels of documentation to consider in this case~ in decreasing
order of abstraction: the Report [2], the User Manual [2], and the several E.T.H.
compilers. Arthur Sale in [3] argues strongly the position that scope = block. But
we would like to suggest that there are loopholes. The Report is unfortunately vague.
In section 10, we are told that scope = procedure (or function) declaration and that
identifiers are not known outside their scope. But it gives no details of how they
are known inside their scope. The crucial issue is nested scopes which are mentioned
in Section 2 but for which no rules are given. Section 4 of the Report tells us that
the association of an identifier must be unique within its scope. This is essentially
the extent of the specifications in the Report. In this light, consider the following
example:

1 PROGRAM Pl(OUTPUT);
2 PROCEDURE Q; BEGIN WRITELN(l) END;
3 PROCEDURE R;
4 PROCEDURE S; BEGIN Q END;
5 PROCEDURE Q; BEGIN WRITELN(2) END;
6 BEGIN SEND;
7 BEGIN REND.

Now there are two definitions provided for identifier 'Ql within nes~ed scopes.
The one wit'hin R must not be known outside R. There is only one invoking instance
of the identifier 'Q 1 (hence its association must be unique) and its occurrence is
validly within both scopes and the Report's rules give us no reason for preference.

*Present address: Mathematics Department, Florida State Univ., Tallahassee, FL 32306

Next we consider the User Manual. Here in Chapter 1 (pp. 6-7) we find it again
stated that scope = procedure declaration. Also it is stated "the scope or range of
validity of an identifier x is the entire block in which x is defined, including
those blocks defined in the same block as x." Applied to program PI above, this
would seem to imply that the correct output of PI is 1. However the above quote has a
parenthetical comment that all identifiers must be distinct for this to apply and
refers to Section 3.E for the case where identifiers are not necessarily distinct
(this is the case with PI). Reading Section 3.E, we find that the definition of a
variable definition in an inner block is valid throughout that block. This might sug­
gest the correct output of PI is 2. Actually this rule has nothing to do with program
PI as it deals exclusively with variable identifiers, the topic of Section 3.E.
Unfortunately the other sections on type identifiers, procedure identifiers and con­
stant identifiers give no rules at all.

The last, most specific and least satisfactory source for a resolution of scope
rules (other than for variable identifiers) is the E.T.H. compilers. Because of
Wirth's close association here, their performance must be considered significant. The
output of both the Version 2 and Version 3 compiler for Pl is 1. This performance is
supported by the rule in Chapter 1 (p. 8, item 16) of the User Manual that "All ob­
jects must be declared before they are referenced" (two exceptions noted are pointer
types and forward procedures). In the absence of other rules about scope it is not
unnatural to apply this one, hence accepting the outer definition throughout its scope
until another occurs (the Version 2 and 3 compilers do violate the unique association
rule which does not come up in PI). This is presumably the reason for Watt's [4]
assumption that Sale [3] criticizes.

THE BSIjISO STANDARD

We now turn our attention to the new Draft Standard [1]. While there are prob­
lems with the existing language specification, it is this new definition which causes
us the most serious concern. The Draft Standard eliminates the previously existing
omissions on the specification of scope rules. There is an explicit enumeration of
the nested scope rules for all varieties of identifiers (see Section 6.2.1). Unfor­
tunately, as we shall see, these rules imply that scope I block for all cases except
variable and type identifiers.

Each identifier has a defining occurrence and each defining occurrence has a
scope which encloses all "corresponding occurrences" (a term not defined). Here the
Draft Standard leaves some ambiguity as it does not state precisely where such scope
begins and ends. Since the scope must enclose all "corresponding occurrences If we
shall simply assume that the scope ends with the end of the block in whose heading the
defining occurrence appears. The choice for the beginning of the scope is another
question. Since each defining occurrence is prescribed as having a scope associated
with it (i.e., scopes are associated with defining occurrences not blocks)~ one seems
naturally forced to assume that such a scope begins with the defining occurrence.
This assumption seems reinforced by the rule (in Section 6.4) that the scope of the
defining occurrence of a type identifier does not include its own definition, except
for pointer types. There is one exception to this assumption explicitly stated in
rule (5) of Section 6.2.1. This rule states that the defining occurrence of any
identifier or label must precede all its "corresponding occurrences" except for a
pointer-type identifier which may have its defining occurrence anywhere in the type­
definition part. Hence we assume that the scope of a pointer-type identifier begins
with the beginning of the type-definition part rather than with its defining occur­
rence.

......
lD
00
o

Now consider the previously given program example Pl. There is no longer any
doubt over what its correct output must be. This program has two defining occurrences
of the identifier 'Q' (the specification of a defining occurrence for a procedure
identifier is given in Section 6.6.1), in lines 2 and 5. The scope of the first
extends to the end of Pl (i.e., lines 2-7) and the nested scope of the second extends
to the end of procedure R (i.e., lines 5-6). Clearly then the call in line 4 is a
"corresponding occurrence" for the definition in line 2., ~ association clearly vio­
lating ALGOL60-style scope rules.

The same situation prevails for constant identifiers. As an example consider

1 PROGRAM P2(OUTPUT);
2 CONST TWO = 2;
3 PROCEDURE Q;
4 CONST ONE = TWO;
5 TWO = 1;
6 BEGIN WRITELN(ONE) END;
7 BEGIN Q END.

We do not include the scope analysis for this program as it is similar to that
for program Pl. The upshot is the same as for procedure identifiers, namely scope f
block for constant identifiers.

On the other hand since type-identifiers cannot occur in a heading prior to the
type-definition part, rule (5) of Section 6.2.1 implies that scope = block for type
identifiers. For instance, in contrast to the previous examples, the program

1 PROGRAM P3(OUTPUT);
2 TYPE A = RECORD L: fA; C : REAL END;
3 PROCEDURE Q;
4 TYPE B = fA;
5 A = RECORD L : B; C : INTEGER END;
6 VARX:B;
7 BEGIN NEW(X); XI.C :=0.5 END;
8 BEGIN Q END.

is illegal because of the type conflict in the assignment in line 7 (however the Ver­
sion 3 E.T.H. compiler finds it legal).

. Also since variable identifiers cannot be used in the heading at all, these rules
lmply that scope = block for variable identifiers as well. Hence for the Draft Stan­
dard we get two answers to the question of the title; 'yes· for variable and type
identifiers and 'no' for constant, procedure and enumeration-type identifiers.

CONCLUSIONS

The lack of specification of rules for nested scopes in the original PASCAL defi­
nition has resulted in different interpretations being taken by different implementa­
tions. This point has already been made in [5]. The fact that so basic an issue must
be settled has been recognized in the development of a draft standard.

We feel that while the Draft Standard dOeS resolve the ambiguities of scopes, the
solution that is proposed is very poorly conceived. The answer to the question "does
scope = block?1I should be uniform for all varieties of identifiers and furthermore we
agree with Sale [3], that uniform answer should be yes.

Programs Pl and P2 show how present scope rules provide for the binding of cor­
responding occurrences of identifiers to defining occurrences outside the block of the
corresponding occurrence even though this block itself contains a defining occurrence.
A convention which provides for the binding of one identifier to two definitions with­
in the same block seems entirely contrary to the evolution of PASCAL.

The scope rules should state that the scope of a defining occurrence extends from
the beginning of the block in whose heading it occurs to the end of this block. This
would replace rules (1) and (2) of Section 6.2.1 of [1]. The other rules would be
retained as stated; however we would rephrase rule (5) slightly to say that the com­
pletion of the definition for a defining occurrence must precede all corresponding
occurrences--then the scope rule in Section 6.4 is dropped. This would make programs
Pl and P2 illegal as they then violate rule (5)--the defining occurrence in the nested
block does not precede first use. It has already been suggested [5] how this inter­
pretation can be handled in a 'one-pass compiler. The only complication to this comes
in the exception to rule (5) for pointer-types which must force the binding of all
such identifiers (even those with definitions in enclosing scopes) to be deferr~
until the end of the type-definition part.

We feel the approach we suggest provides a conceptually cleaner solution to the
seoping questions. The treatment of all varieties of identifiers is internally con­
sistent and consistent with the conventions of other block structure languages as
well. Moreover it conforms with the principle of locality. With the rules given in
the present Draft Standard, a block can c.ontain identifiers with both a local and a
nonlocal binding--a very confusing situation.

REFERENCES

1. A.M. Addyman et al., "A draft description of PASCAL," Software-Pract. & Exper.
9,5(1979),381-424; also PASCAL News 14(1979),7-54.

2. K. Jensen & N. Wirth, PASCAL User Manual and Report, Springer-Verlag, Second Edi­
tion, 1975.

3. A. Sale, "Scope and PASCAL," SIGPLAN Notices 14,9(Sept. 1979), 61-63.

4. D.A. Watt, "An extended attribute grammar for PASCAL," SIGPLAN Notices 14,2(Feb.
1979), 60-74.

5. J. Welch, W.J. Sneeringer & C.A.R. Hoare, I1Arubiguities and insecurities in PASCAL,"
Software-Pract. & Exper. 7(1977), 685-696.

......
<.D
00
o

A NOTE ON PASCAL SCOPES

T. P. Baker and A. C. Fleck

Department of Computer Science
The University of Iowa
Iowa City, Iowa 52242

In response to .the recent efforts toward development of a PASCAL standard [lJ, we
would like to point out a peCuli~ity we have observed in the uPASCAL ?tot ion of ~copes,
as exemplified in the E.T.H. complIers, and to suggest how a cleaner alternatlve
notion might be implemented.

Beginning with ALGOL60, "block structured" languages have followed the convention
that scopes of local declarations correspond to the boundaries of the blocks in which
they occur. Since PASCAL superficially appears to follow this convention, a programmer
is likely to go along for some time before he stumbles upon a case where PASCAL scopes
do not correspond to block boundaries. When he does, it is likely to be a.source of
confusion. For example, consider the programs and output below (from Verslon 3 of the
PASCAL 6000 compiler):

I
2

I
2

I PROGRAM Pl(OUTPUT);
2 PROCEDURE Q; BEGIN WRITELN(l) END;
3 PROCEDURE R;
4 PROCEDURE S; BEGIN Q END;
5 PROCEDURE Q; BEGIN WRITELN(2) END;
6 BEGIN S; Q END;
7 BEGIN REND.

1 PROGRAM P2(OUTPUT);
2 TYPE A = CHAR;
3 PROCEDURE Q;
4 TYPE B = AA;
5 A ='RECORD L,R: BEND;
6 YAP. x: B;
7 BEGINNEW(X);X"':= 'At END;
8 BEGIN Q END.

1 PROGRAM P3(OUTPUT);
2 YAP. F: INTEGER;
3 PRElCEDURE Q;
4 PROCEDURE R; BEGIN WRITELN(F) END;
5 FUNCTION F: INTEGER; BEGIN F := 2 END;
6 BEGIN R; WRITELN(F) END;
7 BEGIN F := 1; Q END.

Note that according to current and proposed scope rules [l]:t this is the "correct"
program behavior in each case.

:z:
We propose that PASCAL can be standardized to follow the ALGOL60 scope conventions, ~

with the added restriction that (except in recursive pointer type declarations) no use ~
of an identifier may precede its deC-la!-ation (this appears to be the approach taken in
JillA [2 J) . Thus, program PI above would be consider'ed incorrect, since the use of Q in
procedure S precedes a local definition of Q. P3 would be incorrect for a similar rea­
son, because the use of F in procedure R precedes a local declaration of F. Program P2
would be considered incorrect, but for a different reason. The variable X would be in­
terpreted as a pointer to a record, so that the assignment "X":-= fA f If 'fould be a type
conflict. This is exactly what would have happened if the outer declaration "A -= CHAR u

had not been present. In this case, the convention followed by the compiler not only
makes the interpretation of the procedure Q dependent in an unobvious way on its global
environment, but also effectively blocks the possibility of defining a pointer type for
the local record type A.

A single pass compiler can enforc-e these conventions. On first encountering a us~
of an identifier X that is not yet declared in the local block, the compiler attempts
to resolve the reference to a previously processed nonlocal declaration, say D, in ODe
of the surrounding blocks. If this search is successful, the processor creates new
"dummy" entries for X in the symbol table for the local block and all surrounding blocks,
out to the block where D appeared. These dummy entries will include a pointer to the
entry corresponding to D and will serve the purpose of insuring that any subsequent dec­
laration of X locally will be deleted and treated as an error.

PASCAL already provides means for handling the few cases where forward references
are unavoidable. For procedures, functions, and labels, there are forward declarations.
For recursively defined pointer types, processing can be deferred until it can be
determined whether a type identifier should be resolved as a local or nonlocal refer-
ence. For eX8ll1ple, processing of "B = ,.. AU in P2 would be deferred until the local dec-
laration of A was encountered (or until the end of the TYPE section). ~

We believe that the proposed conventions are an improvement in the direction of
Simplicity and conformity to established practice. Furthermore, as exemplified best in
program P2, they improve program modularity, by permitting reliable local resolution of'
references, which under present rules is impossible.

[lJ A.M. Addyman et al. "A draft description of PASCAL," Software Pract. & Exper.
9, 5(1979), 381-424; also PASCAL News 14(1979), 7-54.

[2J Preliminary ADA Reference Manual, SIGPLAN Notices 14, 6(1979).

o

AN ALTERNATE APPROACH TO TYPE EQUIVALENCE

William I. MacGregor

Bolt, Beranek, and Newman
So Moulton St.
Cambridge, l'L~ 02138

One of the strongest features of Pascal is the ability to define new data
types. Because this ability is central to the language it is unfortunate that the
original documents defining Pascal (i.e., the Jensen and Wirth "User Manual and
Report" and the axiomatic definition) did not precisely state when two variables or
values are of the same type, or precisely what constitutes fttype checking" in an
assignment statement or procedure call. Language designers have exerci~ed their
skill and imagination in attempting to resolve the ambiguities without unduly
disturbing the "spirit of Pascal"; this note is one such attempt.

Recently, the BSI/ISO Working Draft of Standard Pascal was published in Pascal
News #14, and this standard exhibits a particular (and carefully considered) solution
to the type equivalence problem. The technique is a hybrid of name and structural
equ~valence; for strings and sets, the standard specifies a structural definition of
type equivalence (for a discussion of name versus structural equivalence, see Welsh,
Sneeringer and Hoare, "Ambiguities and insecurities in Pascal", Software Practice and
Experience, N 7, 1977). While the solution is relatively direct it leaves a great
deal to be desired, for instance, under the proposed interpretation all variables
which are structurally integer or sub range of integer are of compatible types. Since
the criterion for type equivalence is a function of the underlying structure,
seemingly inconsistent cases arise. After the program fragment

VAR
x :PACKED ARRAY [1 •• 10] OF integer;
y : PACKED ARRAY [1. .10] OF integer;
u : PACKED ARRAY [1. .10] OF char;
v : PACKED ARRAY [1 •• 10] OF char;

the assignment "u:=v" is legal whereas "x:=y" is not. (The first must be permitted
to include statements like "u:='abcdefghij''', and the second is presumably denied to
limit the complexity of the equivalence definition and forthcoming Standard Pascal
comp ilers.)

The rest of this note describes a different role for types and type equivalence
in a Pascal-like language. The scope of the solution is strictly limited because
significant extensions to the syntax of Pascal were not considered (this eliminated
interesting but grandiose schemes involving a new unit of program modularity, as well
as the possibility of explicit type transfer operators). The details are developed
from a series of principles embodying my understanding of what strong typing means in
the context of Pascal.

* * * * *

Pl. Every variable has a unique type and a unique symbolic type
name.

Since both the type and type name are unique, the type of a variable can be referred
to by its symbolic name without ambiguity. In the interests of simplicity it seems

wise to prohibit mUltiple names for the same type. Types are assigned to variables
rather than values, because I wish to allow distinct types to exist with the same
value set.

P2. All types are either predefined or created in a TYPE definition
part.

The only function of the TYPE part is to define new types; the only function of the
VAR part is to define new variables. As obvious as this may appear at first glance
it is a very strong restriction--it implies that all types must be explicitly named
in a TYPE part. For example, the Standard Pascal fragment

VAR
v :ARRAY [1 •• 100] OF REAL;
e : (red,blue,green);

would have to be rewritten in order to conform to principle P2

TYPE

VAR

vector
color

ARRAY [1 •• 100] OF REAL;·
(red,blue,green);

v :vector;
e :color;

This principle will force the creation of many new names in a typical program, one
for each type, but at the same time it provides the basis for a simple and explicit
test for type equivalence. In fact, the spread of names can be controlled in a
manner described below.

P3. Every 'clause in a TYPE definition part (i.e., every use of the
operator "=") creates a unique type.

This principle, too, seems like good common sense: the TYPE part exists to define
new types. (It is interesting to note that the proposed Standard Pascal allows new
types to be created in a VAR part, and doesn't require types to be created by a TYPE
part!)

P4. Two variables have the same type if and only if they are
declared with the same type name.

In other words we adhere to a very strict form of name equivalence. After the TYPE
and VAR parts

TYPE

VAR

speed = -real;
weight = real;

a,b :speed;
x :weight;
y :weight;

:real;

the variables a and b have the same type (namely speed); x and y have the same type
(weight) and no other type equivalences exist.

P5. In every assignment, the type of the variable on the left must
be the same as the type of the expression on the right (exception:
integers may be assigned to real variables).

I believe this is the simplest definition of "strong typing". To continue the
previous example "a:=b M is a legal assignment hut "a:=x" is not, even though the
values of both a and x are real numbers. Since parameter transmission can be
described in terms of assignment this principle applies to parameters in function and
procedure calls; it forces an exact match between the types of formal and actual
parameters, and it implies a careful interpretation of operator overloading in
expressions (discussed after P7.below).

The exception is galling but historically founded. It is pervasive, as will be
seen, because it implies that any type derived from integer is assignment compatible
with any type derived from real.

P6. The types of all constants (simple and structured) are
determined from context.

There is no way to avoid this, given P5 and the fact that variables of different
types may have the same value set. Continuing the example, if the statement "a:=4.7"
is legal, then by principle P5 the constant "~.7" is of type speed; but if "x:=4.7"
is also legal, in this case the same value has type weight. To reconcile these
cases, the type of a constant must be permitted to be a function of its context.
(Note that P6 paves the way for the introduction of othet types of structured
constants, e.g., record and array constants;- the proposed BSI type equivalence
definition does not extend so easily.)

Pl. A created type inherits all of the predefined operators on its
underlying type, but none of the user defined functions or
procedures.

This principle is admittedly a compromise. Since the ground rules forbid syntactic
extensions, the promotion of operators to the new type must be automatic, and the
only issue remaining is which operators should be promoted. A primal set of
operators is specified in Standard Pascal; this provides a natural partitioning. (If
user defined functions and procedures were promoted as well, ambiguities would result
which could only be resolved through explicit typing of constants.)

An operator in the language (e.g., +) consists of a semantic action (e.g.,
addition) and a "signature lt , a template giving the types of the arguments and result
of the operator (e.g., integer + integer -> integer). A user-defined type extends
the set of operators available to a program, implicitly creating new operators from
old ones by combining the old semantics with new signatures; each new signature is
obtained from an old one by uniformly substituting the new type name for all
occurrences of the base type in the old Signature. For example, all programs will
initially possess an operator + defined by

+ addition; real + real -> real

and in a program containing the declarations of speed and weight above the operators

+
+

addition;
addition;

speed + speed -~ speed
weight + weight -> weight

are also available~ but it would be impossible to add a "speed" to a ''weight'' or a

"real lt •

With some information about context, these principles are sufficient to' deduce
the type of an expression or subexpression, or to' select the correct operator for an
overloaded operator symbol. Given

IF 3 < round(x/4.5 + 3.0) THEN •••

the operators in the boolean expression must be

< less than; integer < integer -> boolean
round weight -> integer
+ addition weight + weight -> weight
/ divide weight / weight -> weight

and the constants 4.5 and 3.0 must both be of type weight. In a few cases involving
only constants, it may not be possible to determine the constituent types, but the
correct action is obvious, e.g.,

IF 3 IN {1,5,7,12} THEN ...

does not permit the determination of a unique type either for the set or the base
type of the set elements, but the value of the expression must be false in spite of
that.

P8. A sub range is a global constraint on the set of values assumed
by a variable; it does not create a new type.

Subranges are used for many different purposes; sometimes it would be useful for them
to be distinct types and sometimes not. For this reason it is a good idea to
accomodateboth usages--if there is a simple way to do so. At this point I admit to
bending the rules, and introduce one minor change to the Pascal syntax, in the form
of a typed subrange. A declaration of a variable

i :integer 1 •• 10

means that the type of i is integer, but its values are constrained to the closed
interval 1 •• 10. A typed sub range consists of a type name followed by a subrange
contained in the value set of the type. If the type name is omitted, it is assumed
to be integer. If a typed subrange appears in a variable declaration, the variables
have the named type; but if the typed sub range appears in the TYPE section, it
participates in the creation of a (range restricted) new type, just as required by
P3. For example

TYPE
hour 1 •• 24;

VAR
i
am
pm
h

: integer;
:hour 1 •• 12;
:hour 13 •• 24;
:hour;

The variables am, pm and h are all of type hour, and- the assignments "h:=am" and
"h:-=pm" will always be valid; "am:=pm" will never be valid because the value sets of
am and- pm are disjoint; "am:;;:::i", "pm:=i" and flh:=ill are all prohibited by type
mismatch.

......
co
00
o

* * * *

These principles lead to a view of types very different from the BSI/ISO
Working Draft. It is a much more restrictive world, emphasizing type safety at the
expense of flexibility. I suspect that neither approach is clearly superior for
"general purpose" use, but the reader can form his own opin~on.

Finally, a suggestion for controlling name proliferation appeared in an
entertaining paper by Robert G. Herriot, "Towards the ideal programming language"
(SIGPLAN Notices, V 12 N 3, March 1977). Herriot proposed the use of English
articles (flthe", "a", "an", etc.) and adjectives to create variable names. With this
syntactic mechanism, the fragment

TYPE
car (ford,GM,volkswagen);

VAR
a car :car;
a sports car :car;
a compact car :car;
a blue electric car :car;

would declare four enumeration variables, referred to in the program text as "the
car", ','the sports car", lithe compact car" anJ "the blue electric car". Thus names
for variables can be directly manufactured trom type names, frequently improving the
program's readability.

DDDDDDDD

FIXING PASCAL'S I/O by Richard J. Cichelli

There have been a flurry of articles advocating modifications to Pascal's
file facility to improve its functionality for input/output. Here, questions
regarding terminal I/O and relative record I/O will be discussed.

r,1any criticisms of Pascal's file facility contain arguments that Pascal's
files don't support the full data set manipulation capabilities of the host's
operating system, An alternate view of the situation is to ask if the problem
to be solved can have its solution cleanly specified as an algorithm in Pascal.
If so, request that the Pascal compiler/system writer provide an implementation
complete enough to run the program efficiently. In short, buy compilers and
computing systems to run your programs rather than write programs to instruct
your (particular) computer.

Wirth created Pascal files. In the Revised Report Section 2, paragraph 10,
\,!i rth defines them as sequences of components of the same type. Although an
implementer may map Pascal files into sequential data sets, this isn't required
by the definition. The Report doesn't seem to require that the ideas of I/O
and files be associated. A valid Pascal implementation could exist on a system
which lacks backing storage and a third generation file system. If this is the
case for your system and you still can run your Pascal programs, what do you
care? Besides, future data base oriented systems may avoid the redundancy of
a "file system". The problems of named data sets and directories are obviously
best dealt with in terms of local predefined (not standard) procedures.

For legible input and output (Report section 12) Pascal has a special type
of file called a text file. Text files have a special substructure and special
procedures and functions. Since sequences work and Pascal has appropriate fa­
cilities for mJnip;;lating then (i.e. the Pascal f"ile piii:'i.iv~';), it \'!c;"ld be
very strange if you couldn't make Pascal talk to terminals. Wirth specifically
mentions them in the first paragraph of section 12 and, guess ~Ihat, many imple­
mentors have succeeded in implementing exactly what the report calls for and
having facile terminal interaction as well. One of the techniques is called
"lazy I/O" and it is fully detailed in Pascal News #13.

There are those who want to put random I/O or "direct access files" into
Pascal. What's Pascal missing? Surely not random access. In the Report sec­
tion 2, paragraph 6, the array is discussed and specifically called ~ random
access structure. "But", you say, "I can't fit big direct access files in
core". Every implementation of Pascal is likely to have some restrictions.
Perhaps an array will need to be stored on bulk storage. ,!ould you embed this
limitation in the language and in your algorithms and programs? If you need
to worry about a hierarchy of memory access facilities in these days of v'irtual
memory, etc, then a pragma or compi 1 er di recti ve mi ght be the appropri ate mech­
anism for suggesting to a particular compiler that certain data be placed on
backing store. Note: There is no prohibition to passing arrays (e.g. an im­
plementation relative records I/O) as program parameters. See the Report sec­
tion 13. Program parameters can reference any external object.' It is only
suggested that these are "(usually files)". Thus arrays and pointer based
data structures can be external objects to Pascal programs. (The" (usually
files)" reference has been removed from the current draft standard document.)

Although doing relative record I/O ~Iith Pascal arrays may seem strange at
first, adding the unnecessary notion of memory hierarchies to the language is
far worse. The IBM System/38 has a uniform 48 bit addressing mechanism. A
System/38 applications programmer does quite well while being unaware of the
storage location of his data whether it be cache, core, disk buffer or on disk.

~
LD
00
o

If the 38 can be said to auger the future, then certainly Pascal shouldn't take -0

a step backwards and introduce concepts which provide no additional functionality J>

In summary, fixing Pascal's I/O only requires implementing what the Report FK
suggests.

JAREI(OEMINCT, M,Sc.
JOANNA WISNIFWSKA
Institute of Informatics
University of Warsaw
P.O.Box 1210
00·901 WarSlawa

POLAND

Simpascal

Introduction

This article presents a new extension (called Simpascal) to Pascal. The goal of this
extension was to provide facilities for sirnu;ating discrete time systems in the way similar to
the one adopted in Simula. This goal has been achieved with no cilanges in the original
Pascal compilers, but rather by use of some rUIl·time routines. Simpascal has been
implemented on CDC CVBER73 and IBM 36b.

Background

Simpascal was designed as a part of the OSKit Project (simulation of operating systems
[1]) at the Institute of Informatics, University of Warsaw. Those extensions were necessary
since existing standard_ Pascal facilities didn't allow one to write a simulator in this language.
The reason for creating a new tool instead of using Simula was mainly better performance of
the Pascal object code. Besides, all other parts of the project (data input preparation and
output analysis) had been already written in Pascal.

A general design of Simpascal and its implementation on the CVBER73 were made by
Jarek Oeminet, while some improvements and the 360 version were prepared by Joanna
Wisniewska. A standard Pascal compiler was used on the CVBERI3. 360 compiler was
produced at the Institute of Computer Science, Polish Academy of Science. The whole work
lasted approximately 6 weeks.

Oesc ription

A simulator in Pascat (as in Simula) consists of some number of coroutines, each of
which implements one process. At any given time one of them is active and the others are
suspended. Some of the latler may be ready to run and wait in a so-called Sequential Sel
(SOS), other are blocked. SOS is ordered according to increasing time, which is an attribute
of each process. Full description of this idea may be found in [2]. From this point on, a term
routine will meiJ,11 either a coroutine, subroutine or the main program, while a subroutine will
be either a procedure or a function,

In order to provide all expected functions the following subroutines were implemented:

function Create (procedure P):coroutineID;
Creates a new process (coroilline), with the same attributes and the body as in the
procedurA given as a parameter. This coroutine is started; after an initial part it
should call Detach (see below). Control then returns to a creator, and the function
retllrns as its value a unique cormltine identifier. The first routine calling this
function is called a raolof the whole set of coroutines. There is a restriction that
C rea Le may be later called either by the root or by any other coroutine, but not in
its initial part (i.e. no nesting of C rea te calls is allowed).

protedul'u Detacll;
Finishes an initial part of a COroUtill8 and returns control to its creator.

procedure Start (C:cor'outinelD: maxl'ime: real);
Starts lhe coroutine C, thus initiatinq the whole simulation. It should be pointed that,
unlike ill Simulu, an root is not a coroutine itself and may be rf~Gllrned only after
finishing tile simulation. Simulation ends as soon as there is no process in the SQS
with its time less tllen the lila x lime paramAter of Start.
This rouline may be called only by tile root.

procedure Activate (C:coroutille]O; delay:real);
Makes the coroutine C ready, i.e. inserts it into the SOS. its time will be equal to the
time of the currently active (current) coroutine increased by delay. If del ay is
negative, then the coroutil1e C will be resumed immediately (becoming active), and
the current coroutine will be suspended.

procedure Pass (C:coroutineID);
Acts similarily to Ac t i vate (C, -1) , but also removes the current coroutine from
the SOS.

pl'ocedlll'e Cancel (e: COl'out ineID);
Removes the coroutine C from the SOS. If that WaS the current coroutine, the next
coroutine from the SOS is resumed.

function Time (C:coroutineID):real;
Returns time of the coroutine C.

procedure Hold (increment:real);
Suspends the current coroutine, increases its time by increment and resumes the
first coroutine from the SOS,

function This:coroutilleID;
Returns an 10 of the current coroutine.

There is one very unpleasant and artificial restriction for a call of the so-called special
routines, which may change an active coroutine (i.e. Activate, Pass, Cancel and Hold), If
any of those subroutines is called from a Simpascal subroutine, called in turn (directly or
indirectly) from a coroutine, then all subroutines down to the level of the coroutine will be
immediately terminated, That means that the coroutine is suspended and reactivated always
at its own level. This concept was called IJUskin9 and is necessary to ensure slack
consistency.

Implementation

The data structure on which Simpascal subroutines operate is very similar in both
implementations so it will be presented here in a relatively machine· independent form,

.......
ill
00
o

Each instantiation of every Pascal routine is defined by a segment on the stack (the
routine is called an owner of this segment). Each such segment (except the first one,
corresponding to the main program) consists generally of two purts:

Environment definition
Contains all information necessary to refer non-local objects, to safely execute a
return jump, and to perform an error handling action if necessary.

Local data
Contains local variables (which include also parameters of the call, compiler­
generated auxiliary variables and srace for registers saved in case of further routine
calls). Generally, this part is of no interest for Simpascal, except for register saving
space.

A base (an address of the first word) of the segment of the current routine is pointed by
one of the registers (a B register on CDC, a general purpose register 011 IBM), which will be
called a Base Register (BReg). Also the first free location above a top of the stack is pointed
by a register (Top Register or Hleg).

In case of ordinary Pascal subroutines information in the environment definition is as
follows:

Static Link (Slink)
Poinls to a base of the segment defining the latest instantiation of the routine in
which the segment's owner was declared. A chain of those links defines an access
path to all non-local objects.
This link is created always by tile calier, according to its own access path.

Dynamic Link (DLink)
Points to a base of the previous segment on the stael<, i.8. the segment
corresponding to the rouline which called the oWller of this segment. It is used to
restore the BReg before return and to produce a Post-Mortem Dump should an
error arrive.
This link is created by the routine itself using the old value of BReg.

Return Address (RAddr)
Contains the address to which control shuld be transferred in a return jump.
This address is provided by a caller (passed through a register).

Figure 1 presents the general structure of the Pascal stack.

The same data structure had to be adopted in Simpascal, since the code of co routines
was to be the same as for normal subroutines. Several assumptions had to be made,
however, to ensure a consistency of the structure:

Ali coroutine segments occupy a contiguous space on the stack, directly above the
segment defining the root of the system (there may be no other segments in
between).

The stae!< of only one coroutine at any particular time (the active, or current coroutine)
may consist of more than one segment. This would mean that no action which
implies a change of the active coroutine may be undertaken from any level other
than ti,e level of the coroutine itself. To allow creating of user-defined control
transfer subroutines the concept of flUS/ling (described above) was adopted. Its
implementation is very simple: any special subroutine removes from the stuck all
segments from above the block of the coroutine segments.

meg -1-------1
Current routine

DLink --

Bf~eg ----------tops~L~in;k====t-t1
Pmvious IOU line

I~D~L~in~k ________ i'-
Slink

DUnk

SLink

Main program

Figure 1. Pascal stack structure.

TR(-~U --.

/------1
Subroutine

r-------
BRcg -----------. IJLink ---~

Coroutine

scumcnts
Coroutine

DUnk. ~-- --- f---
---.. ---~

Ne~Flllvepalt

Ancestor

Main

Figure 2. Simpascal stack (only some parts shown)

.......
<D
00
o

The seqmcnt for each coroutine WliS changed in n manner invisible to ordinary routine
cod-t~. First, a rW{jativu purf wa:--i adducJ. It contains a rt'!start addless for an inactive coroutine,
and also some additiDllal information (timo, status and some pointers) used by routines
which handle and ::.;equence proce~~~es. The fl1n<lnin~l of SOHIt) st<1ndard fieids was also
modiliecL Sillc(~ tile .asslHllption is that a coroutine will never execute a return jump (because
it would destroy the stack structure), FlAddr points to an error-handling routine.

DUnl~, in turn, no lonwcn points to the previous segment on the stack, since it is not
intended to be used to update llle BHcg. llecaw;e of somt; functioll:'; plJ.ynd by DLink during
standard enOl" hUllrllinu, it was df.~cidcd lilat this it SllOulJ poillt to a base of the root's
segment.

Contents of BReg, Tileg and SLink were left unchanged.

Figure 2 illustrates t1H~ general slack strudure ill Simpascal.

III order to have su.ch a structure, tile following actions have to be performed by C!'eato
before calling a coroutine:

setting BReg to a base of tile root;

incromenting Tllog by the size of the negative part of the segment;

- setting Sling according to information which is always a part of the actual-parameter­
descriptor in a call-by-procedure in Pascal.

Results

Several programs have already been written in Simpascal and run on both machines,
fulfilling all expectations. A comparison with Sill1ula shows that a program in Simpascal
needs 50 to 80% less memory and 50 to 70% less time. This is mainly due to much simpler
memory structure allowing better performance of the code.

References

[1] Leppert M., Madey J., Schroff R. : ITS Status Report
Report 7739, Technisches Universitat Munchen, Munich, Germany;
Report 63, Instytut Infonnatyki Uniwersytetu Warszawskiego, Warsaw, Poland

[2] Slm"la 67 Common Base Language
Publ. no. S-22, Norwegian Computing Center, Oslo, Norway

The University of Tasmania
Postal Address: Box 252C, G.P.O., Hobart, Tasmania, Austra!ia 7001

Telephone: 230561. Cables'Ta,uni' Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE"

FILE NO

IF TELEPHONING OR CALl1NG

ASK FOR

Some observations on Pascal and personal style

Arthur Sale

Tasmania, 1979 June

Background

Recently, arising out of a course I gave for microprocessor engineers and
their possible use of Pascal, I had to write a program of around 800 lines
to control a hot-plate assembly (as might be installed in a home with
provision for switching the hot-plates individually up or down at selected
times), The purpose of the program was to demonstrate the viability (and
snperiority!) of Pascal for microprocessor purposes over assembly code or
Fortran. The experiment was a demonstrable success, taking one man-day to
write together with its correctness proof, and another man-day to transform
the abstract program into one having some useful properties for rr.icro­
processor Pascal compilers and run-time support. The experime1t will be
reported elsewhere; by contrast the writing of the consequent paper has
consumed over a man-week, and nearer two ...

However, in the course of writing this up, I came across some interesting
facts I should like to share with the readers of Pascal News. They relate
to personal stylistics, and use of Pascal's features, None of the reported
statistics here' were considered specifically while writing the program:
they reflect a personal style.

......
lD
00
co

Identifiers

The program contains 120 identifiers d t f . ,an one label (as a consequence of a
.rans.ormatlon to eliminate a task). The length distribution of the
ldentlflers is shown in Figure 1. It is interesting to note that approximately 55% exceed 8 characters in

length, and approximately 27~% exceed 10 characters in length. These
correspond to the significance limits of the Pascal Standard and the
Control Data Cyber compiler. The Burroughs B6700 compiler I used has,
of course, no limit on significance.

Since the B6700 compiler is good in this respect, it is possible to write
programs which work on the B6700, but which give rise to compiler error
messages (or worse, altered and undetected scope renaming) on systems with
limited significance. How often does this occur? Fortunately, the
STANDARD option on the B6700 compiler checks the possibility of any such
events. The answer seems to be: surprizingly often. In previous programs
I have seldom been able to escape changing an identifier name to avoid
problems elsewhere, and it happened twice in this program. The instances
were:

numberofevents
NumberOfPlates

DisplaYTYpe
Display Time

{an integer variable}
{a constant, altered to NoOfPlates}

{the type of the display register}
{a procedure, altered to DisplayATime}

draw the conclusion that any compiler that has a significance limit greater
than 8 characters ought to perform the same checks; software I receive from
elsewhere often exhibits the same problem. I also conclude that the
8-character limit is a mistake, and should never have been introduced into
Pascal.

The B6700 compiler also produces as a by-product of this checking a list
of instances of renaming under the scope rules. None were reported in this
program at all, which surprized me. Usually i and j crop up with mono­
tonous regularity, but in this case it appeared that the lesser numeric
orientation and the program structure minimized this.

Letter Cases
As the examples above indicate, the compiler accepts either letter caSe in
accordance with the Pascal Standard, and I write programs in predominantly
lower-case letters. I dislike the practice of capitalizing the reserved
words as it has a bad effect on readability for me. However, during the
course of this program I found myself falling into a practice which I had
never used before, but which seemed to be useful. I offer it as an
example of the differences in personal style that can arise with a little
thought devoted to stylistics.

The practice I adopted, more or less by chance at first, was to write
variables in all-lower-case, as in numberofevents, but constants, types,
and procedures in mixed-cases, as in NoOfPlates or DisplayATime.
Rationalizing it after the event, I noted that variables often have
shorter and less complex names than other objects and thus may have less
need of extra lexical cues, and procedure names are often the longest and
most complex. Sometimes these are a verb-phrase, while variable names
are more noun-like.

The practice improved my understanding of the program, mainly because I
could detect in expressions which were variables and which constants.
Such slight cues are worth a lot more to me than emphasizing reserved
words (which r know very well)~ Example:

if (time = LastMinuteOfDay) then begin
I am not yet sure whether this will be a stable feature of my future style.

Line Layout

I used my usual line layout and indentation rules, reported in Sale [1978],
and had no need to edit or correct any semicolons or ends. A consistent
style minimizes these trivial but annoying errors.

Comments

classified the comments into three categories:

(a) Marker comments, used to assist picking out corresponding
points in a program, typically attached to an end to show
what it is the end of, or to pick out a procedure name by
underlining. Little semantic content.

(b) Procedure heading comments. These have considerable
semantic content, and outline the purpose of the procedure.

(c) In-text comments, which either give additional information
relating to the execution, or explain definitional points.
They vary all the way from a hint:

{Midnight changeover}

to an assertion:

{Re-establishing the invariant:
Ri = "AU events up to and including the one pointed

to by the 'preceding' pointer are due to occur
before or simultaneously with the new one. Also
·if state=EXit there are no more records that
satisfy this criterion."

The comment characteristics are shown below.

Kind of comment no lines % lines
spanned spanned

Marker 36 36 19%
Header 18 67 35%
In-text 67 87 46%

TOTAL 121 190 100%

The closing comment marker ("}") was always the last non-blank character
of the line it appeared on. Since one-line comments make up 80% of the
total number of comments, and 51% of the total numb~r of lines spanned,
here is support for the idea that comments delimited by end-of-line
require no more keystrokes than bracketted comments. (Apart from other,
better, reasons for preferring them.)

The distribution of comment lengths, shown in Figure 2, emphasizes this.
It is certainly influenced by my habit of putting correctness assertions·
and·hints in the code body, thus reducing the size of procedure header
comments. (The comments often share lines with code, so do not make the
mistake of assuming that the program contains 190 lines of waffle together
with the 157 blank layout lines).

SO

I
Procedures and Functions
Having arrived at a suitable transformation level by eliminating tasks from
the conceptual solution and substituting interrupt-driven procedures (Yes,
I know they aren't standard), the resulting program had 18 procedures/
functions, including the main program. Other statistics are:

Procedures
15 (83%)

Parameters:

Functions
2 (11%)

Program
1 (6%)

The low frequency of parameters is explained by the nature of several of
the p~ocedures: they are refinements. In fact six of the parameterless
procedures are called from only one place each, and a microprocessor
engineer might well apply a transform to put their code in-line and their
local data in the caller's stack. Personally, I exert pressure on compiler
suppliers to make their compilers do it automatically: detecting the once­
only call is not difficult for a multi-pass compiler. On the B6700 such a
transformation would save 54 bytes of code out of a total of 2304 (2.3%),
and would also speed up the execution slightly.

The maximum level of procedure nesting is three, and this occurs 7 times.
This is astonishingly low for me, since my refinements often creep up
into the 10 to 12 levels deep. Analysing it after the event, I conclude
that the low nesting level here is due (a) to the complexity of this
problem being in task interlocking, not in algorithm complexity, and (b)
to several refinements being pushed to outer levels for use in several
contexts (by the sub-tasks).

!~
~
:J>
r
2:
rT1.
::E:
(/)

""

.....
l.D
00
o

~
As might be expected, real numbers are not needed in this problem.
The usage of different types in the program is shown below:

definitions uses in var or type

boolean (1) 2
integer (1) 0
char (1) 6
real (1) 0
us er-defined scalars 6 7
subranges of scalars 1 1
subranges of integer 9 30
records 1 1
arrays 3 8
sets 4 8
pointer types 1 4
files 0 0

·The absence of integers arises naturally because no negative numbers occur
in this problem, and because the range of every integral value is predict­
able. Only innate laziness allowed one of my favourite types:

NatuYaZ = 0 •• Maxint;

in to substitute for the type of a value parameter which ought to have had
a special type declared for it in the outermost block:

~oDaysWopthOfMinutes = 0 .. 2879; {2*24*60 - 1}

salved my conscience by adding a comment to this effect, which probably
took more time doing it right •..

Of some interest is the ratio of user-defined scalars to Uses of pre­
defined types (7 : 2). This is a measure which I take as roughly indicative
of a switch from other language thinking to Pascal (or abstract) thinking.

The problem isn't big enough to draw any more conclusions.

Boolean expressions

Some people, on seeing my programs, adopt a knowing look and say, "You used
to be a Fortran programmer, weren't you?" and point to an example like:

if (eventZist = 0) then begin

Since this is total misunderstanding, it deserves a few words. I usually
put parentheses around every relational expression I write. The prime
reason is that I find it greatly improves the readability of the program
in that the limits of some complex expression can be more readily found,
as for example in:

if (moduZoeountep in pattePn[pZate[ill) then begin

But having done this for a long time, it confers several other benefits:

(a) I almost never make mistakes in writing expressions which the
Pascal syntax will parse in a way I didn't intend. (The few
priority levels are well-known as a trap).

(b) I have to devote less thought to trivia while writing programs,
and therefore more thought to correctness proofs, simply
because I use codified rules.

To illustrate the point, the same thing happens in the following example:

IsT1BefopeT2 := (tl < t2);

The purpose of this little letter is to give you some insight into
some personal stylistics in the hope that you will examine your own
equally carefully and ask yourself whence they came and why.
Pascal is no language for nongs who mindlessly copy others. I also
hope it may give some ideas to compiler-suppliers on the sorts of
things I do. If you ever want to please me, here are some hints.
Preserve the abstractions and make any limits on what I can do at
what I call viptuaZ infinity

DODD

Open Forum for Members

I--'
I.D
00
o

......
I--'

Yale University New Haven, Connecticut 06510

January 23, 1980

Andy Mickel
Univers ity Computer Center
University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

SCHOOL OF MEDICINE
333 Cedaf Street

Section of Laboratory Medicine

Yesterday I called and spoke to Rick Marcus about a bug 1 have found in
10210. My version is attached, together with the data that showed the
fault, and the symbol table progression in the original system.

Please consider this as a letter to PUr" and pass it on accordingly.
attach a second copy for the purpose;

On Pascal Standards, I have several observations. f'irst, based on Bob
Fraley's HP3000 Pascal Compiler, I feel the need for a standard procedure

PROMPT (FILE)
which will have the effect of a writteln without caUSing a line-feed or
carriage-return. This is required for interactive use, where the under­
lying system buffers output. The procedure will flush the buffers.
Wherever the I/O system is direct, the procedure is not needed and need
not generate any code.

I firmly approve of the "otherwise" clause 11'1 the case statement, and
also feel it should be extended to variant records. I.E.

A "
Case B

C
o

Otherwise

Record
Type of
Ctype)
otype)
Elsetype »

~iOISPOSE is often replaced by Mark/Release, which should be an availilble
option in t~e standard. DISPOSE must always require a garbage collector, ~
and thus a good deal of run"time. However, systems nat implementing
dispose should generate a null procedure for source compatibility,and
similarly for Mark/Release. Nate that implementation of Mark/Release
on systems' that provide (new) storage to various processes from a common
pool must implement the equivalent of dispose for a release. However.

Andy Mickel January 23, 1980

these systems are complex by definition, and thus a ful1 OISPOSE is
probably not excessive. In this case release effectively signals the
garbage disposal system to function.

An extension sorely needed is simple arithmetic in constant definitions,
a~l~wing .all compile time constants to. be s~aved to a sing~e d~finition.
Slm1larly the use of ORO and CHR funct10ns 1n constant def1nitlons
would be useful.

Implementation of goto's out of procedures is virtually impossible (at
reasonable cost) on many machines. The HP3000 is an example. I would
therefore recommend that the standard does not require these, and that
they be considered an extension. LO!jically, I have never found such
goto's necessary, and in addition such use customizes code segments to
any overall program, preventing direct re"use.

1 am also running the USCD Pascal System, VER 11.0. Users should be
warned that, as supplied, this does not detect integer overflows, (at
least on 8080/Z80 Systems). and that the complement of -32768 is O!!
~iith no warningiSome stack overflows can occur without tr!lPping in
addition. ~y revised interpreter cures these problems, when many
system programs proceed to crash on integer overflow, and thus the over­
flow check has been made switchable. The USCD System does not detect
EOF on the remote files, and thus cannot read text files remotely with­
out considerable contortions.

Sincerely,
/" ..- ~

C~£----:?~-:/~
(.. "

Charl es Falconer .'
Chief Instrument Engineer

CF:tmm

Enclosures

......
lD
00
C>

......
'"

Carnegle-Meilon University

A.M, Addyruan
Department of Computer Science
University of Manchester
Oxford Road
Manchester M13 9PL
England

Dear Professor Addyruan:

Departmen.t of Computer Science
Scherrley Park
Pittsburgh, Pennsylvania 15213

January 29, 1980

I was delighted to see the proposed Pascal standard in Pascal
News, In general, I think the proposal is excellent, However,
there were a few points that troubled me.

- Textfiles. 6.4.24 seems to require that every textfile
end with a linemarker. Is that intentional? If so,
must closing a file(used for writing) force a ,linemarker
to be output if one does not already end the file?

- Pages. It seems bizarre to include a standard Page
procedure without specifying the effect on the file
or including a procedure to test f.or end of page 9

I propose making the procedure optional, but if it is
included, require that a oage marker be written which
is (like a linemarker) read as a blank, and that an
Eop (end-of-page) predicate be included as well.
Additional questions: Should Eop imply Eoln? Should
Page force a Writel,. automatically?

- The CASE statement. I must say I am surprised the
OTHERS clause was not included in the standard. I'm
equally unhappy (but less surprised) that subrang,es
were not to be permitted in the case-co"nstpnt list~

- Numeric output. 6.9.3 requires a leading blank for a
number that fits in the output field, while' no leading
blank is required if it does not. So, in the case of a
number whose width is the same as the fieldwidth, the
number is printed out in just that field"idth without a

*
Dear Pug

leading blank. 1 suggest rewr~iting the specification
so that this is clear - by noting that 0 rather tlwn
1 leading blank is required.

I have seen the notation l.]rite(Val: 1) used to mean: Use the
smallest possible fieldlvidth. A cute use of the spf~cifications,
but its obscurity is not in the spirit of the language. Perhaps
lJrite(Val) ought to print Val" in the sr,tallest fielduidUI possi.ble
(no leading bLmks either:) while a fixed fic1d,·,idth ,wuld be used
only if specified. This \vould unquestionably be the most pleasant
solution for most users, espe.cially novices.

The \.Jrite(Val: 1) idiom is deficient for another reason. Many
irnplementors have chosen to implement output in an undersized field
by writing out asterisks. A good case can be made for this., and I
suspect many Pascal implementors \vill continue to do so despite the
standard.

Sincerely!

Ellis Cohen

BRITISH COLUMBIA HYDRO AND POWER AUTHORITY

Red Stripe Computer Trailer
Gas Division
3777 Lougheed Highway
Burnaby, B.C.
V5C 3Y3 CANADA
Iq~() Jo." " ... ,,) 2.1-

I wrote a while ago about banning the marriage of Pascal and EBCDIC.
I think I stated a decent character set should have the following property
"ORD('9')-ORD('O') should be 8" That should read "ORD('9')-ORD('O') should be 9".

If yOU decide the publish that letter, please correct the mistake:
Please do not publish this letter.

Thal'lks

I-'
l.O
00
o

C!!!:~ WINTHROP PUBU SHERS, INC., ",.~,~ d .• ~m''''''' -. , .. " .,,,,,.".,,,

January 8, 1980

Professor Andy Mickel
University Computer Center
227 Experimental Engineering Bldg
208 SE Union Street
University of Minnesota
Minneapolis, MN 55455

Dear Andy,

I'm a little concerned about some possible unintended
effects of your brief book reviews section on page 8
of Pascal News, No. 15.

You quoted a table from a review by Jan Hext, of the
Univerpity of Sydney, comparing Pascal textbooks in their
coverage of the language. I am concerned that, taken
ou~ of context, that table may scare potential readers
away from our book by Conway, Gries, and Zimmerman,
A PRIMER ON PASCAL, the second edition of .which is due
this spring.

There is no question that the coverage of Pascal in that
book is not nearly as extensive as many other ·books
(although in the new edition it will be somewhat more so),
but taken out of context, it looks like you are rating the
book in general as "poor." The reviews in my files
indicate, of course, that the book is arguably the best
introduction to programming using Pascal as a vehicle,
and for such a use might well be much more appropriate than
a book which is a more thorough rendering of the language
but less helpful in learning to program. So, while I do
not quarrel for a moment with Professor Hext's analysis
of what this book is not, I wish to rush to the barricades
to reaffirm what, on the other hand, it is.

Thanks for listening.

~sl regards,

CMAA c.l= "J\W
Charles F. Durang
Editor, Computer Science

CFD/mw

SOPHIE DAVIS SCHOOL OF
BIOMEDICAL EDUCATION

Rick Shaw
PASCAL User's Group

THE CITY COLLEGE
OF

THE CIn UNIVERSITY OF NEW YORK

NEW YORK. N.Y. 10031

Wednesday, January 30th, 1980

Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick;

(212)690.6629, 8255

Enclosed is my personal check for $2G.OO; please enter my subscription/
membership to PASCAL News for this academic year 1979/80 and also send the
pr~v~ous two years' . ba~k issues 9. - 16. I would be glad' to pay Xeroxing and
ma111ng expenses (w1th1n reason) 1f somebody could furnish copies of your
extinct issues 1 - 8.

In our mammoth CUNY University Computer Center (Amdahl 470/V6 and IBM 3033
under OS/MVT and ASP; IBM 3031 under VM and CMS), Stony Brook PASCAL 1.3 is
standard, and Versi~n 2S was just added to a test library last week. (I gather
from the documentatlon that both are rather limited in complex applications _
for example, no external files ...) Although I know of no campus among our 20
where PASCAL is the prime teaching language, faculty and student use is clearly
on the rise; we've just brought up 2 pASCALs on a PDP-I0 here in the CCNY
Science Building.

.. I am invo~ved in bringi~g up an orphan Z-80 microcomputer from the defunct
D1g1tal Group 1n Denver; bes1des opscan test grading, the primary application
will be bibliographic citation retrieval from a hybrid collection of about 8 000
articl~s .. I am presently working up the necessary software package for this'
operatlOn 1n PASCAL, using bit-string inverted lists hung from a B-tree.

With the possibility of a brief trip to Switzerland this April, I have
considered arranging a visit with Professor Wirth; if anvbodv else has done
so, expecially recently, I'd love to hear from him as soon as possible. PASCAL
was my native language at SUNY Stony Brook, and I'm very thankful for that.
I'm eager to meet other New.York City PASCAL users.

encl.

Sincerely yours;

/ /' / I l/.' ,.), '. "-

Alan N. Bloch, M.P.H.
CCNY Biomed J 910 Cl

AN EQUAL OPPORTUNITY EMPLOYER

KERN INSTRUMENTS, INC.

GENEVA ROAD. BREWSTER, NEW YORK 10509

Mr. Rick Shaw
Digital Equipment Corporation
Pascal User's Group
5775 Peachtree Dunwoody Road
Atlanta, GA 30342

Dear Rick:

TELEPHONE:

(914) 279-5095

TELEX;

969624

January 15, 1980

While renewing my subscription, I am taking the opportunity to say
a few words.

I have used two Pascal systems in my work here; initially, a
Northwest Microcomputer 85/P with UCSD Pascal, and now a PDP-II
with RT-ll operating system and OMSI, Pascal I version 1.1. Both
have advantages (and disadvantages). The UCSD operating system
(with CP/M utilities) was fantastic, especially the editor. How­
ever, I/O handling (I wanted interrupts) was poor. With RT-ll, I
can use all the I/O facilities of this excellent operating system,
b~t OMSI doesn't support them very well. Hopefully, this will be
flxed in version 2 which is due any day now. I'm also disappointed
that several Pascal features I used quite heavily with the UCSD
system are not implemented in OMSI Pascal I, particularly the Pack
and Unpac~ functions. These are very convenient for formatting and
unformattlng I/O records used in certain peripherals.

I see al~ost weekly announcements concerning new Pascal compilers
and machlnes. Now that most of the established computer manu­
facturers have taken up the cause, we can say that Pascal has
arrived. So much so in fact, that I would not have resubscribed to
PU~ if not for Arth~r Sale's recent issue describing the Validation
SUlte. Congratulatlons to Prof. Sale and his group.

Now it's up to us Pascalers to encourage the compiler writers to
meet the standard and implement any extensions in an acceptable
manner.

Good luck, Rick!

Sincerely yours,

KERN IN~TRUI<)ENTS', I~C.

T. P. Roberts
Photogrammetric Systems Engineer

TPR:pm

-0
~
C/)

n
.~

BRITISH COLUMBIA HYDRO AND POWER AUTHORITY :::

Dear PUG

re: outlawing EBCDIC and Pascal marriage

970 BURRARD STREET
VANCOUVER, B.C.
V6Z lY3
TE LEX 04-54395

1979 December 31

I have tried to write some text tidying routines with the
University of B.C. Pascal compiler under MTS. It uses
EBCDIC as its underlying code. Arrgh~

ORD('Z')-ORD('A') should be 25 in all decent Pascal implementations.
ORD('z')-ORD('a') should also be 25. There should exist a magic
number m such that you can do lower to upper case conversions,
ORD('9')-ORD('0') should be 8. (Even EBCDIC gets that right~)
ORD(' ') should be less than ORD('A'), ORD('a'), and ORD('O').

ASCII has these properties. EBCDIC does not, It is thus difficult
to write portable code.

I suggest that any Pascal standard insist that an "excellent" rated
compiler provide a compile-time switch to insist that all internal
character codes be ASCII even if this means translation in and out.
Alternatively, Pascals that live in an EBCDIC environment that wish
to manipulate all 256 characters should work internally on a
modified EBCDIC that has the above nice properties. A compiler
that could not provide this option could only obtain a "reasonable" rating.

To indicate the honrors of EBCDIC, consider that none of the following
code works as you would expect.

lfe in ['a' .. 'z'] then S1; if C >= 'a' and C (= 'z' then S3;

for C := 'A' to 'Z' do S2;

It is also impossible to write (I hope I am wrong) decent hashing
algorithms and random number generators that are truly portable (ie.
give the same answers in all implementation~. Perhaps "excellent" rated
compilers should also provide some extra builtin functions for these
tasks. It wouldn't hurt to define their names and parameters now.

~:j G\CE:.",-

Roedy Green

.,.,
:0:::
C/)

~ COMPUTER SCIENCE PRESS INC.

9125 FALL RIVER LANE
POTOMAC, MO. 20854
[301 J - 299~2040

November 27, 1979

Dr. Andy Mi ckel
Editor
Pascal Newsletter
University of Minnesota
University Computer Center
227 Experimental Engineering Building
Minneapolis, Minnesota 55455

Dear Dr. Mickel:

In the 15th issue of Pascal News on page 8 you inadvertently omitted
the list for our book PASCAL: An Introduction to Methodical Program­
ming by William Findlay and David Watt in an article comparing the
available Pascal books. It was listed in the table at the bottom of
the page. We would appreciate it if you would correct thisommission.
Pascal: An Introduction to Methodical Programming is published far
the United States and Canada by Computer Science Press, Inc. @ $11.95.
it is available and published throughout the remainder of the world by
Pitman Publishing Ltd., 39 Parker Street, London, EnglandWC2B 5PB.

In its first year Computer Science Press has sold over 12,000 copies of
Pascal: An Introduction to Methodical Programming within the United
States and Canada. We also believe that a much more meaningful com­
parison and evaluation of books can be obtained by the basis of the
universities and colleges which are using it. Our book has been
adopted at over 50 schools within the United States and Canada including:

Arcadia University
Albright College
Brock University
Broome Community College
California State University at

Long Beach
Cari boo College
Case Western Reserve University
College of William and Mary
Dalhousie University
Dickinson College
Fairleigh Dickinson University
Framingham State University
Iowa State University at Ames
John Brown University
Kansas Wesleyan University
E. R. Lauren University
LeTourneau College
Loyola University

Lucas College
Marian College
Marquette University
Merri tt College
Montana State University at Bozeman
Moravian College
Morningside College
North Carolina State University at

Raleigh
Northampton Community College
Northeastern University
Plymouth State College ~
Purdue University at West Lafayette
Rollins College
Rosemont College
Sonoma State College
Southern Methodist University
Stanford University
Temple University

~ COMPUTER SCIENCE PRESS INC.

9125 FALL RIVER LANE
POTOMAC, MO. 20854
[301 J - 299~2040

Texas Technological University U. of Mississippi at University
Thames Valley State Technical ColI. U. of Oregon at Eugene
Towson State University U. of the Pacific at Stockton
Union College U. of Pennsylvania at Philadelphia
U.S. Military Academy at West Point U.of Saskatchewan
U. of California at Berkeley U. of South Carolina at Columbia
U. of Chicago U. of Southern California at Los Angeles
U. of Houston at Clear Lake City U. of Texas at Austin
U. of Maryland at College Park U. of Utah at Salt Lake City
U. of Massachusetts at Amherst U. of Washington at Seattle

Villanova University

WE INVITE ALL COLLEGE PROFESSORS WITHIN THE UNITED STATES AND CANADA
TO WRITE TO COMPUTER SCIENCE PRESS AND REQUEST A COMPLIMENTARY COpy
OF PASCAL: AN INTRODUCTION TO METHODICAL PROGRAMMING. Please write
on school stationary, identifying the current text, the course name
and number, as well as the anticipated annual enrollment, and we will
be happy to let you determine for yourselves which is the best book
for teaching Pascal.

We would also like to call to your attention our short course program
offered through our Computer Science Education Extension Division which
will offer 2-3 day courses on Pascal on:

March 24-28 at San Francisco
May 18-19 at Anaheim (preceding the NCC)

Thank you.

BF:cw

Sincerely yours,

Barbara B. Friedman
President

I--'
<..0
00
o

..,0
en

PRINDLE AND PATRICK ARCHITECTS: PLANNERS

October 17, 1979

Pascal User's Group
c/o Andrew hickel,
University of ~innesota,
227 Experimental En~ineerinQ,
t·'inneapolis, !><l!'i 55455 ~

Re: Pascal Lser's Group and Pascal ~ewsletter

Dear Sir:

I would like to ~et inforrr,ation on the Pascal User's Group,
especially, as soon as possible to get the Pascal Newsletter,
including back issues if possible. I would like to join the
orga~liz~tion . and find out all I can as I an~, contemplating
conJurttrng thrs system to extensive use of Pascal. although I an,
~ot at, pres7nt ,a, Pascal user. I woula like to learn something
about the avarlabrlrty of Pascal software, either to swap or
sell.

The con,pany I work for is an architecture firm which has a
PDP-ll/34 running R'l'-ll and TbX (TSX provides several virtual
RT-il single Job monitors with SOUle limitations and some
additions, if you are familiar with DEC's RT-ll.). Our
applications are Accounting l v'Jord ProcessinCj, and. some statistics
a~.d simUlation.. We hope someday to get into SOllie sraphics.
Rr~ht now there rs an awful lot of awful assembler stuff around
here which must one way or another be transformed into son,ething
wore portable.

Another bit of background is that I am one of the first users
of the Vihi tesmi th 's Ltd. C compiler, which satis fies the
specitication given in Kernic;,han and Ritchie's book with one
a~dition, which is that different "typedef"s can have elel'lents
wrth the sante name. I.e. there can be an A.x and a b.x.
According to Kernighan ana Ritchie, this is not allowed in
regular C, which is very peculiar (It can be disabled in
Whitesl£lith's. C fo~ compatibility). Whitesmith's also says they
have been usrng therr own maX-compatible o. S. (will run UNIX
l.'inary prosrams) for about a year now, ana will soon be selling
rt tor much less than the cost of UNIX. I estimate that one
(~uch as a very serious hobbiest) could have a quasi-UNIX system
wrthin a year for under $10,000. 1'he rub is that Bell Labs is
cuu'ently trying to make it appear as if UlI,IX user' s society
sottware cannot be spread around to non-n.en.bers, at least that is
the impression I ~et. But a nUf(,ber of sources from DEC to
Youroan, Inc., to Whi tesnlith' s tell me they don't have a legal
leg to stand on. But who will get the ball rolling?

I aon't know if all this interests you or not, but I thought
there was a fair chance it ntight, and that you might be able to
lead me to some help in finding or helping to establish services
that would do for C what you are doing for Pascal. ~ly own
inlpression is that C and Pascal are quite complementary, C being
a better systems lan9uage, and Pascal being better for many, or
even most applications.

Sincerely,

Hal Norris
System hanager

BRITISH COLUMBIA HYDRO AND POWER AUTHORITY

Dear Pascal Standardizers:

Red Stripe Computer Trailer
Gas Division
3777 Lougheed Highway
Burnaby, B.C.
CANADA V5C 3Y3

1979 November 20

(604)298-1311 loc 372

The key beauty to Pascal is that if you take a valid Pascal
program and randomly change/delete/insert a character, there is a
very high probability that you will have an invalid program. There
is also a high probability that this invalidity can be detected by
the compiler at compile time. Ie. Pascal will catch typos.

One of the few exceptions involves the semicolon. Randomly
sprinkling semicolons can change the intent of a pro9ram as described
in the User Manual and Report on page 26.

if P then; begin Sl; S2; S3 end is a surprise

To get around this problem (and to force everyone to use the
semicolon as a separator instead of a terminator as God intended), I
suggest making the empty statement invalid. In its place we would
invent the null statement.

The null statement would make programs easier to read:

if p !!1~ null else Sl

case n of
2:X:=5;
3: nUll;
4: x:=6
end

Other than that, Pascal is perfect and should' be left alone.
However, why not let people extend the language in any way they want
by using pre-processors written in Pascal that produce Pascal code.
Now all we r.eed is an ingenious general purrose pre-processor to
implement any goody your heart desires.

Love \ \ ~O(.fl.'·
Roedy Green~-

The UNIVERSITY of WISCONSIN - LA CROSSE

LA CROSSE, WISCONSIN 54601

UN IVERSITY COMPUTER CENTER

JOHN C. STORLIE, DIRECTOR

HARVEY FOSSEN. ADMINISTRATIVE SERVICES

JOHN NIERENGARTEN. ACADEMIC SERVICES

July 2, 1979

Mr. Andy Mickel
Pascal User's Group
University Computer Center: 227 EX
208 SE Union Street
University o'f Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

(60S) 785-8000

785 8029

Per your request for information on what we're doing here with Pascal, I
have the following. .
We have a Hewlett Packard ,3000 computer system which among other things
supports undergraduate computer science instruct·ion. In the past six
months we have installed the contributed compiler from HP labs made
available to the HP General Systems Users Group. The current version is
fairly complete, although it is somewhat slow because it,is a P-code
system, which first translates into SPL (system programm1ng language) and
then compiles and executes the SPL.

Nonetheless, for pedagogical reasons our computer science department ~s going
to teach Pascal. In fall 1979 we will introduce Pascal to three sect:ons
of Computer Science 121, Programming in Algorithmic Languages~ rep1ac1ng
FORTRAN. This will introduce about 100 Computer Science students a semester
to it and will provide them with a tool which they will use through much of
the rest of their curriculum. Pascal meets a long unfulfilled need here
for a block structured, high level language for -teaching which enables one
to teach proper programming structure.

Sincerely,

John A. 4Ni::~::::n'-l ,/ ~
Assistant Director
Computer Center

JAN:lh

c.c. J. Storlie

AN EQUAL OPPORTUNITY EMPLOYER

THE ROYAL COLLEGE OF PHYSICIANS ANO SURGEONS OF CANADA· LE COllEGE ROYAL DES MEDECINS ET CHIRURGIENS OU CANA

THE R. S, McLAUGHLIN
EXAMINATION AND RESEARCH CENTRE

Andy Mickel
Pascal Users' Group
University Computer Centre
208 SE Union Street
University of Minnesota
Minneapolis. MN 55455

Dear Andy (-if I may?),

LE CENTRE D'EXAMENS
ET DE RECHERCHES R. S, McLAUGHLIN

PROTECTRICE; SA MAJESTE LA REINE:

PATRON' HER MAJESTY THE QUEEN

25th October, 1979

Thank you for returning my call yesterday regarding the
small print size of the PUG Newsletter.

I find your reply that the reduced print size will
continue disappointing, of course.

Your remark to my secretary that you have only had about
four or five complaints about print size is of uncertain value as an argument.
How many people, disgusted by the print size, did not trouble to call? Bearing
in mind that your distribution is world-wide, many-p,2ople rather distant from
Minneapolis might be slightly more reluctant to call than I was; I very
nearly did not call. 3:

»
I am always rather disturbed at the insistence on ~

uniformity in the name of technology, or efficiency, or cost. Surely people should ~
come first? Why not leave a few print-outs at full size, and ship those to the
feeble-sighted? You save on the cost of reducing and binding, at the expense of
a little extra organization.

......
ill
00
C>

I do appreciate that yours is a volunteer effort, run
with minimal staff. But are not PASCAL and its devotees worth it?

Yours sincerely,

Colin Park (Ph. D)
(Assistant Director).

P.S. In the case of PASCAL, some of us may even be prepared to pay a little
more for the privilege of not straining our eyes.

/ /

'--------8-113 CLINICAL SCIENCES BLDG. UNIVERSITY OF ALBERTA, EDMONTON, CANADA T6G 2G3------

Andy Mlckel
Pascal News
Universlty Computer Center
227 Experimental Engineering Building
208 Southeast Unlon Street
Unlversity of Minnesota
Mlnneapolls, Minnesota 55455

Dear Ana.l:

Pete ~oodeve
3012 Deaklu Street. apt D
Berkelel, Calif. 94705

1979 Nove:nber 9

Wlilett Kempton mentioned, in his letter to you of a few
months back, that I was finishing up a new Pascal sJstem for Data
General AOS lnstallatlons, ani ever since then I have been
gettlng around to sending IOU a proper report. As the system has
been stable now for over a month, it is obviously hign tlme to
flnally get thlS note written.

We have actually had a version of AOS Pascal out in the field
for nearly a year now, but this lS basically the Lancaster P4
Nova RDOS Pascal wlth a run-time system modified to mate with AOS.
The new edltlon lS extenslvely rewritten, at both the run ti:ne
and compiler levels.

The run time lnterpeter now taKes full aivantage of the
Eclipse's instruction set (rather than being Nova compatible),
has completely revised file-variable management and has been
expunged of the few eXlsting (and actualll rarely encountered)
bugs in the Lancaster original.

The comfller is now considerably closer to the (draft)
standard than 1s P4: I had initially hoped to remove ~ll the
essential discrepanCies, but a couple still remain due to tl~e
and budget limlts. A couple of non-standard features -- in the
form of some addltional predeclared procedures (~odlfied from the
Lancaster original) -- improve the links to the external world
somewhat. Tnese are: a) abnormal program termination with HALT;
b) random access of the components of any Pascal file via
GETRANDOM and PUTRANDOM. This compiler -- llKe its Lancaster
parent -- sUfports external procedure declarations, and as these
may be wrltten in elther Pascal or assembly language, the user
has considerable freedom in adding any slstem functions etc. that
may suit him.

I should point out that what Lancaster calls P4" has been
conslderably extended from the onginal Zurich version. In
particular, it embodies full, tlped file-variable facilities,
includlng external files. I have had the gall to label the new

compiler "P5 to avoid some of such guilt by association.
Restrictions that have now disappeared include:

1) Upper-case-only ASCII: lower case may no.
be used freell in program text; it is not
dlstlngUlshed from its upper case equivalent.
The standard brace convention for comments is
allowed.

2) Tiny string constants (originally 16 chars max):
the limlt has been (arbitrarily) extended to 120 chars,
but complIer heap space used corresponds to actual length.

3) GOTOs within procedures only: the full Pascal
standard lS now implemented; this was felt to be
lmportant for the occasionally vital "panlC sequence".

4) No second field-Width specifier for real output:
full standard formatting is now implemented.

Other changes to the compiler -- such as increased set-size
are really only relevant to this implementation. and I will

leave them aside here, but one other internal change may be of
more general interest. It turns out that while the staCK fra:ne
size allocation mechanism used in the original P4 was qUlte
adequate for an implementation where all stack elements are the
same size, it doesn't really cope with the situation of differlng
Slzes. In Drief, when generating a P-code instruction that does
not have a fixed operand type, the compiler didn't take the
actual type lnto account when allocating'space on the stack;
lnstead, lt would"allog,ate the l!!!:g~~l possible size if the
lnstruction was a" pu?,n type, and release the s.ll!!l.le.s.l possible
in the case of a pOF. This meant that the longer the procedure,
the larger the stack frame it apparently would need. whlle in
fact most procedures really need very little in the wal of
temporary space. ThlS defect became especially severe when we
went to 8-word setsl The P5 algorlthm is exact, keeying proper
track of tne amount of space needed or releasei by each
instruction.

Llke a number of other systems around, the approach to
generatlng an executable Pascal program is for the compiler to
generate a fairly low-level symbolic "P-code" fro:n the origlnal
source; this is converted to binary form and bounQ with the
run-tlme library modules to create an executable file; the whole
sequence of course follows automaticalll from a single command to
the operatlng system by the user. I don't intend to get lnto
dlScussion here of the relative merits of interpretation versus
compllatlon to machlne code, although the system seems to perform
very CreQitably against DG Fortran, for instance. The main
advantage of thlS approach as I see it is its moiularlty: lf one
later wants true comFiled code out of the system, there is no
need to touch the compiler at all; P-code appears to translate
veri smoothli into many machine instruction sets (includlng that
of the Eclipse) and in some cases this may be posslble uSlng an

eXlst1ng macroaS5embler. (In fact, for simpliciti and because of
the slowness of macro expansion, in our system even the
translatIon of P-code to its ~aCKed form is mostly done by a
translator written in Pascal.) Certainly, if the P-code is
complete enouen, it snould be reasonably simple to ~roduce
translators ana Interpreters for different machines, uSIng
~!221~l the same complIer.

Because fIrst Lancaster, and then ourselves, found some
lacks in the Zurich P4 P-code in the ancillary information that
one would liKe to have when generating a binary version of toe
code, an attempt has been made in the P5 variant to pass on all
tne informatIon that a translator progra~ ~ight need, in a form
entirely independent of the target machine. The P-code instruc­
tions and their formats are unchanged from the original, except
for the.inclusion.of the new facilities, but a new statement type
-- .he directIve -- has been added. Directives are used to
indicate such things as procedure entry labels -- together with
tneir original Pascal identifiers; this sort of extra information
is useful in buildIng ·memory maps" or other debuggIng aids during
translation. External procedure declarations and entry points
also have their own directives, so that suitable links can be set
up when the modules are bound into executable form. Other
directives supply the program name and 50 on, and the source line
numbers now a~pear with the instruction counts recorded In the
P-code.

I had intended to enclose a specification sheet for the
Implementation Notes of the "News", but I think we shOUld be sure
that you recelve it In final released form, so I will let Ga~~a
Technology supply that item. If anyone is interested in more
details in the meantime, they are welcome to contdct:

GAMMA TECHNOLOGY, INC.
2452 E~barcadero Way
Palo Alto, Callf. 94705
(415) 856-7421

Sincerely,

h-zt'

PATTERN ANALYSIS & RECOGNITION CORP.

228 LIBERTY PLAZA

ROME. N.Y. 13440

Mr. Timothy M. Bonham
D605/l630 S. Sixth Street
Minneapolis, MN 55454

Dear Tim:

TEL 315-336-8400

15 February 1979

I have modified the PDP-II pascal compiler kit (version 4) dis­
tributed by DECUS and by Seved Torsterdahl (see Pascal News #12, June
1978) to improve it in several ways and would like to make it avail­
able to interested RSX-IAS users. I have called my modified kit
version 4.5, to avoid confusion, because version 5 is now available
from DEeUS. All of the modifications were made in order to allow the
compiler to compile itself (until now it had to be cross-compiled
using a DEC-10), but as a side effect my version has the following ad­
vantages:

1) Can be configured to have one of three different levels of
overlaying (with correspondingly different symbol table
space) in order to allow trading of compilation speed for
capacity to compile large programs.

2) When configured with lightest overlaying, overlay swapping
time is minimal and compiler runs three times faster than
version 4.

3) Produces object code which is 12% smaller -than and is faster
than version 4.

4) I corrected bugs to allow procedural parameters to work.

5) It can compile itself in approximately 15 minutes (without
using memory resident overlays) with all files on the same
RP06 disk drive.

Persons interested in obtaining a copy should contact Richard
Cichelli or John Iobst, who will be distributing the kit (and making
further fixes and improvements) at the following address:

MC/dms

A.N.P.A. Research Institute
1350 Sullivan Trail
P.O. Box 598
Easton, PA 18042

Sincerely,

"r~0~"'w\ fY, C~J",,{
Michael N. Condict

......
<.D
00
o

00
a

o

KF lOS

~KF
EDP department
Michael Evans

Datum

1978-10-26

PROBLEMS IMPLEMENTING PASCAL IN A COMMERCIAL ENVIRONMENT

We are interested in implementing Pascal as a normal program­
ming language in parallel with COBOL and Assembler. The current
program development environment is -

IBM 370/168 under MVS
Interactive development using TSO
Logical modular programming
Interactive testing of modules
Structured programming using macro COBOL (MetaCOBOL)
Data base management using System 2000
Applications development staff of about 70 persons

In order to be able to use Pascal in a production environment,
we need to know about the future of Pascal in the following
areas -

Standardisation/Formalisation
Integration with existing sy~tems
Special commercial requirements
Development environment

Beteckning

Programs produced in our environment have long useful life Standardisation
times, up to 10 years. Before committing to a new language,
we must be sure that it is going to survive that long.

Usually this kind of guarantee is provided by a machine
supplier who undertakes support of a number of main line
languages. Pascal is not one of our supplier's main line
languages.

Another guarantee is given by a formal standardisation through
ISO/ANSI. Pascal is in practice formalised via Wirth & Jensens
book. More recently, the Pascal group at UCSD have taken on
collection of Pascal extensions and modifications. Are all
Pascal implementors going to accept and implement all exten­
sions or is there going to be a foundation Pascal with many
different extensions?

Various Pascal-like languages have been developed and are
being developed. How much invested development must be scrapped
if it turns out that one of these languages, for example
ironman/DODl, turns out to be a standard? How easy will it
be to automatically convert to the new language. We have o

Ctt.?KF
EDP department
Michael Evans

Datum

1978-10-26

converted between various COBOL dialects without leaving the
COBOL language. It ought to be possible to convert to a new
Pascal dialect if this does not involve a complete rethink
regarding education, programming techniques, development
tools etc.

One of the advantages of Pascal is the use of machine inde­
pendent p-code. Is this standardized sufficiently that code
from one compiler may be used with another machine which
supports the same level of p-cocie? This is of interest for
us as we envisage the use of satellite machines of various
sizes with centrally developed programs. This development
would be eased if tested object code could be sent to remote
sites.

Pascal is taught at many universities. Unfortunately, many
of our programmers, and many of those whom we employ in the
future, have not had the benefit of this education. Are
educational materials, in the form of video cassettes,
course books, examples of good programming practices available
for Pascal? It would be of great interest if we could get in
touch with other installations, especially in Europe, who
use Pascal in a commercial environment.

Although Pascal can be used to implement operating systems
and data base management systems, these functions are nor­
mally already present in the commercial environment. Data
already exists in some form of data base which must be
accessed in a particular way, common functions such as date
calculation are already implemented in standard program
modules etc. For Pascal to be fully useable, it must be able
to communicate with modules written in other languages. This
communication must include being invoked by other modules
(IMS calls to data base programs) and invoking other modules
(IMS data base services). In addition, it is often suitable
to divide an application into a number of separately compil­
able modules. Pascal must therefore be able to communicate
with Pascal modules compiled on other occasions.

The same data structures are often used in a number of pro­
grams. To be improve safety and simplify development it
would be useful to use the same physical definition. Some
kind of source library management feature with a compiler
directing COpy function is needed in Pascal.

Programming can be simplified if common functions are already
coded and tested. The number of such common functions can
become enormous if all combinations of parameter types are

Beteckning

Integration I-'
<.D
00
o

00
I-'

KF lOS

~Kf

EDP department
Michael Evans

Datum

1978-10-26

to be catered for. This problem may be avoided if a standard
type "THINGII were available. A parameter defined as THING
may contain any type of data. It may only be used as a para­
meter to the standard function DATATYPE (variable) which
returns BOOLEAN INTEGER REAL CHAR USER etc, or in an assign­
ment statement. Execution time type checking would be needed
in that statement but nowhere else. This admittedly breaks
the rules of Pascal as a strongly typed language in the same
way as GO TO breaks the rules of control structures. The type
violation would however be well marked both in the invoked
function and probably in the invoking function (in order to
pass type information). It would allow such functions as ge­
neral interfaces to external systems to be implemented in
Pascal.

Pascal as defined by Jensen and Wirth only defines sequential
files. It is often necessary to be able to access a particu­
lar record in a file, either by means of a key (indexed
files) or by means of record number (relative or direct files).
The use of Pascal would be eased if it were possible to pro­
gram this in Pascal and not need Assembler routines to do it.

Other programming languages use different formats for internal
data. These formats are often used on existing data files. It
must be possible to access even these kinds of data. One
method is to implement general Pascal functions to perform the
conversion to and from standard Pascal types. To ease the
coding of this function, the data type THING mentioned above
would be useful. The other method would be to support data
types which are already supported in FORTRAN/COBOL/PLI even
in' Pascal possibly with some limitations.

Arithmetic operations often involve a fixed number of "decimal
places. It must be possible to define these fields as integer
with decimal shift instead of risking inaccuracy caused by
floating point errors.

The formatting requirements for figures in a financial listing
are many and varied. Zero suppression, credit/debit signalling,
thousand comma insertion and floating currency sign are just
a few of the features need. Pascal must be able to define the
editing required when outputting numeric variables to text
files in a way similar to COBOL's report item PICTURE clause.
If this is not done centrally, each implementor will find his
own way of editing, resulting in confusion similar to that
surrounding BASIC's PRINT USING statement.

Beteckning

Cormnercial progrannning

o

KF 10S

~Kf
EDP department
Michael Evans

~ac\7~-1 0-2 6
Beteckning

The programmers involved in developing commercial programs Development
are among the most expensive items used during development. environment
To enable them to work as efficiently as possible, they must
have better tools than a straight batch compiler. Combined
with a suitable compiler, Pascal p-code·gives the ability to
have an advanced interpreter which allows single statement
execution, breakpoints, setting och listing global and local
variables, statement trace and path execution summaries. When
used in an interactive environment, these features would
greatly ease program development. Many of these ideas are
found in the current Pascal compiler series in Byte magazine.

As Pascal makes it easier to write large compilable units
than many separately compilable modules, it is essential
that the programmer be able to find variable definitions and
uses. A cross reference listing would be very useful.

Occasionally, commercial data processing requires handling
of such large data volumes that speed of operat~on ~s a
critical issue. To allow Pascal to be used in these situations
~t must ~e possible to translate p.-code to executable machine '
~nstruct~ons on the target machine. It may even be possible
to optimize this machine code. The interrelationship between
these functions is illustrated below.

PASCAL
SOURCE COMPILER

TRANSLATOR/
OPTIMIZER

"NORMAL"
INTERPRETER

DEBUGGING
INTERPRETER

EXECUTABLE
OBJECT
CODE

This paper contains the ramblings of a newcomer to the Post-script
Pascal user community. I have tried to see Pascal through
the eyes of the business data processing department where I
am responsible for programming methodology. I imagine that
many of the questions have been answered earlier or rejected
as contrary to the spirit of Pascal, in which case I apologize.

az

......
cD
00
o

PASCAL NtW!) #11 nnl\\'IIJ .LJVV

Pascal Standards Progress Report

Jim Miner, 1 December 1979

Several newsworthy events have occurred since the
(pages 90-95). In a nutshell, these events
international Pascal standard. (See the Progress
terms used here.)

Another Working Draft

last Progress Report in Pascal News #15
show substantial progress toward an

Report in #15 for a glossary of some the

As expected in the last Progress Report, a fourth working draft prepared by BSI DPS/13/4
was distributed within standards organizations in October by the secretariat of
ISO/TC 97/SC 5 under the document number "N510". (Recall that the previous draft is
called "N462".) N510 contains a large number of changes from N462. Most of these changes
are corrections to "obvious" errors and oversights. A smaller number of changes address
fundamental ambiguities or other technical flaws in the Pascal User Manual and Report;
these changes often are more controversial than the "obvious" ones.

As an example of the more controversial kind of change, consider the restrictions placed
on labels to which goto-statements may refer. The User Manual and Report specifies that a
goto may not jump into a structured statement. Although the wording in N462 was felt to
be unclear, this was the intent of the restriction in that document. But the comments
received from the public on this section of the draft clearly showed that run-time tests
were required to enforce the restriction in the case of goto's which jump out of
procedures or functions. In order to allow efficient compile-time checking of goto
restrictions, the restrictions were tightened in N510, as described later. At the same
time, of course, the wording was clarified in response to many comments.

A full list of all changes between N510 and N462 would be very difficult to compile and
explain. Rather, we hope to print in a future issue of Pascal News the next draft which
will be based on N510.

However, there is one very important new language feature which was introduced in N510.
This feature is called "conformant array parameters". The feature was added to N510 in
response to the many comments, including those from Niklaus Wirth and Tony Hoare, which
cited as a major shortcoming in Pascal the inability to substitute arrays of different
sizes for a given formal parameter in procedure and function calls. Because this such a
significant and recent change, Arthur Sale has written the description which appears
below.

The Experts Group Meeting

The new draft, N510, served as a basis for discussion at the meeting on November 12 and 13
in Turin Italy of the ad hoc Experts Group. This meeting was held in conjuction with the
ISO/TC 97/SC 5 meeting on November 14 •• 16. The following individuals were in attendance.

Franco Sirovich (Italy)
Bill Price (USA)
Michel Gien (France)
Christian Craff (France)
Olivier Lecarme (France)
William A. Whitaker (USA)
Don MacLaren (USA)
Fidelis Umeh (USA)
Bengt Cedheim (Sweden)
Marius Troost (USA)

David Jones (USA)
Coen Bron (Netherlands)
Jim Miner (USA)
Scott Jameson (USA)
Makoto Yoshioka (Japan)
Akio Aoyama (Japan)
Albrecht Biedl (Germany)
Arthur Sale (Australia)
Emile Hazan (France)
Tony Addyman (UK)

The purpose of the meeting was twofold: first, to advise the "sponsoring body" (BSI,
represented by Tony Addyman) on solutions for remaining technical issues, and, second, to
advise SC5 on a course of action for further work on the standard. Most of the two days
was spent on technical issues.

Technical issues were informally divided into three categories: (1) "niggles" (or
"obvious" problems having fairly simple solutions), (2) "local" issues which affected few
sections of the draft, and (3) issues of greater magnitude, affecting several sections of
the draft. Naturally, discussion centered on the last two categories.

Ao example of a "local" issue (category 2) was mentioned above, namely the restrictions on
labels and goto·s. The relevant section reads as follows.

6.8 Statements

6.8.1 General. Statements shall denote algorithmic actions, and shall
be ex~e. They may be prefixed by a label. Within its scope, a
label shall only be used in the statement S that it prefixes, the
conditional-statement (if any) of which S is an immediate constituent,
the statement-sequence (if any) of which S is an immediate
constituent, and, if this statement-sequence is the statement-part of
a block, the procedure-declarations and function-declarations of that
block.

statement = [label ":" (simple-statement I
structured-statement) •

The group quickly agreed both that the word "used" (in "a label shall only be used")
should be changed to indicate the fact that the only possible use of a label is a
reference by a gato-statement, and also that the long sentence which states the
restrictions on references to labels should be broken down into more-easily understood
parts. It was agreed that the intent of the sentence allows goto-statements to reference
the label of a statement S only in the following contexts:

(a) when the gata-statement occurs anywhere within Sj or

(b) when the goto-statement occurs anywhere within the if-statement or case-statement of
which S is one ''branch'' or component statement (e-g., the gato may occur anywhere in the
else part of an if-statement and still reference the label on the then statement, but not
a label within it); or

(c) when the goto-statement occurs anywhere within a statement-sequence (in a
compound-statement or a repeat-statement) of which S is a component statement; or

(d) when the goto-statement occurs in a procedure or function declaration (within the
scope of the label) nested in the block which declares the label (i.e., non-local goto's),
and only if the statement prefixed by the label is not nested inside a structured
statement (other than the compound-statement which is the statement part of the block).

More than one member of the group certified that these restrictions can be enforced
efficiently by a one-pass compiler with no run-time overhead.

There was resistance to allowing jumps between "branches" of conditional-statements. It
was argued that the use of such gata's is not good, is poor "style", and should not be
part of the standard. After some discussion, the group agreed to further restrict the
goto by not allowing the references cited in (b), above. As with most such changes, the
precise redrafting was left to an individual member of the group.

The major topic of discussion was conformant array parameters. This was confused by the
fact that the form present in N510 had already been renounced by the British in favor of a
form drafted by Arthur Sale. With the exception of a different proposal by Coen Bron,
which was closer to the version in N510, there was nearly unanimous support for the
version proposed by Arthur Sale. (See his note, below, for a description.)

In addition to technical issues, the Experts Group also briefly reviewed Pascal standards
activities within the nations represented. It was clear that the approach taken by BSI
DPS/13/4 toward a Pascal standard had a great deal of support internationally, with the
exception of a few technical details. Discussions are currently underway in attempting to
resolve those issues not completed in Turin_

Also evident was significant interest in extensions to Pascal within several countries,
especially France, Germany, the Netherlands, and the United States. Therefore, any future
extended standard must be developed in cooperation between the interested national groups
as a longer-range project. This project undoubtedly will involve the newly-formed Working
Group discussed below.

The Experts Group sent two resolutions to SC5 for approval. The first resolution, which
passed SC5 without OPPOSition, states that Tony Addyman should revise the Pascal draft
(N510) according to the agreements reached by the Experts Group, and that this revised
draft would be registered as a Draft Proposal for voting. What this means is that some
time in the next few months the revised draft will be distributed to SC5 voting members
for a three-month letter ballot. We hope to print the full text of the Draft Proposal in
Pascal News when it becomes available so that readers will have a chance to provide
comments on it to their own national standards group_

The second resolution, passed unanimously by SC5, established a formal Working Group
("Working Group 4, Pascal") to advise the British group on further standardization, and to
consider proposals for such from bodies recognized by ISO. The Working Group is intended
to replace the Experts Group, and will be under the Convenorship of Tony Addyman. Members
are to be nominated by SC5 member bodies. This group will aid in resolving negative
comments (if any) on the new Draft Proposal, and will probably coordinate future work on
Pascal extensions.

The SC5 meeting also saw an interesting exchange on the subject of Ada (the U.S.
Department of Defense language). William A. Whitaker, attending as an observer from the
United States, made a presentation to SC5 on Ada. Under questioning by the Australian
representative (Arthur Sale), Whitaker admitted that Ada actually has little in common
with Pascal. This stands in stark contrast to the impression one might get from reading
DoD press releases and other articles which some feel have attempted to lend credence to
the Ada project by associating it with Pascal. Thankfully, Pascal need no longer suffer
from such derogatory associations!

Several small points should be noted as having changed since the Progress Report in #15.
These changes occurred at the meeting of November 28 •• 30 in Boston.

First, a single joint committee has been formed from the ANSI-X3J9 and the IEEE Pascal
Standards Committees. The new committee is formally called the "Joint ANSI/X3J9 IEEE
Pascal Standards Conmittee", abbreviated "JPC".

Second, Jess Irwin has resigned as secretary of X3J9. Carol Sledge of On-Line Systems has
volunteered to take the job. Correspondence with the JPC should be sent to:

Carol Sledge (X3J9)
c/o X3 Secretariat
CBEMA: Suite 1200
1828 L Street NW
Washington, D.C. 20036

Third, the proposed "SD-3" for considering extensions to Pascal printed in /115 (pages
93 •• 95) was modified to reflect the international interest in Pascal extensions which was
apparent at the Turin meeting. The revised document specifies that the JPC will cooperate
with Working Group 4 of SC5 on developing an international extended standard, and that the
resulting American National Standard will be compatible.

......
lD
00
<=>

Implementation

Editorial

First, the formalities:

Bob Dietrich
MS 63-211
Tektronix, Inc.
P. O. Box SOO
Beaverton, Oregon 97077
U.S.A.

Notes

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

Phone: (503) 644-0161
TWX: 910-467-8708

phone: (S03) 682-3411 ext 3018

Feel free to call me (I'm usually in between lOAM and SPM Pacific time),
but consider yourself lucky if you find me near the phone. I don't have
a secretary, and may have to be paged. Consider yourself foolhardy if
you write me and expect a personal reply in less than a year. I'll try
to do better for those outside the U. S. Should you wish information on
a specific implementation, please read Pascal News first. It's unlikely
that I will have any more current information than can be found there.
Furthermore, this can put me in the delicate position of seeming to
endorse a particular implementation, which 1 will not do for ethical and
legal reasons. These cautions aSide, I'll do what I can to help.

Next,the traditional goals statement of a new editor. At this time, I
don't plan to change anything (I know - every new editor and politician
says the same thing). My basic goal is to publish a comprehensive list
of Pascal implementations by the summer of 1980. Whether this will
appear in one issue or several is yet to be discovered: a great deal
depends on the cooperation of the readers of Pascal News. Which brings
me to the next topic.

As you may have noticed, the Implementation Notes section was pretty
sparse in issue # lS, and almost non-existent in this issue (except for
a long winded editorial). The reason is we have received very few new
reports and/or updates of implementations in recent months. No garbage
in, no garbage out. To remedy this problem, 1 will be mounting ~a mail
campaign as has been done in previous years. Anyone and everyone who
has ever even hinted they had an implementation of Pascal will be
getting a letter requesting a new implementation checklist. However, I
do realize how difficult it is at times to answer mail. To save us both
some trouble, you will notice a brand new Pascal News One Purpose Coupon
at the back of this issue (not to be confused with the ALL Purpose

Coupon). This amazing piece of paper is simply an implementation
checklist with room to write on. Fill in the blanks, fold, and mail to
the address on the back. Feel free to also send in camera ready
checklists. I hope this will give us a little more to print in the
meantime.

Now for my biggest irritation. In my everyday work, I have used many
different implementations/versions of Pascal. On our DECsystem-l0 alone
we have six different versions of Pascal available. This does not
include some cross-compilers for other machines. Why do we have so many
different compilers for the same machine?

The reason we have so many versions still active is that many user
programs have not been updated to account for major changes in new
releases of the compilers, and so the old release stays around. Most of
the changes have been non-trivial, and heavily impact whether the
programs can be simply recompiled under the new release. The changes
have included the way the character set, terminal I/O, I/O in general,
operating system interface, et cetera, are mishandled. Even worse are
the versions that made "improvements" to the language, such as:

j := case k+34 of

And

1 := if FouledUp then sqr(x) else sqrt(z)

Of course, the changes are rarely upward or cross compatible.

The root of the problem, and the part that irritates me, is the fact
that the compilers implement different extended subsets of Pascal. This
means they implement entirely different languages, not Fascal. None of
these compilers implement all of "standard" Pascal (as in the Jensen and
Wirth Report); however, all the versions have been "extended" in quite a
few arbitrary ways. Little attention seems to have been given to
eradicating errors, even those due to the P2 heritage of the compilers.
In fact, one of the versions came out with quite a few extensions (many
of them bastardizations) and none of the errors of its predecessor
corrected. (In all fairness, two of the versions have had major error
corrections performed on them). These shortcomings and extensions make
it very difficult for programs to be transported both to and from our
installation, especially for those not totally aware of the problem.

Please do not misunderstand me. I am not against extending Pascal
(well, at least not totally against it). Some extensions make the
bootstrap process for a new implementation much easier. What I am
against is the effort put into extensions that would be much better

......
w
00
o

00
V1

directed toward fixing errors and implementing the full language. How I
long for a full set of {ASCII) char! As a compiler writer, 1 realize
that extending the language in a particular implementation both is fun
and might help differentiate the product in the marketplace. This is
especially true in the Pascal market, where both users and implementors
have not really understood the language.

What I am really looking for (I don't think I'm alone) is quality in the
tools I use. Just as I wouldn't be too happy buying a saw missing half
its teeth, or with half the teeth backwards, or with teeth on the handle
where my hand is supposed to go, 1 really dislike the so-called
implementations of Pascal whose manuals list ten major omissions to the
language and thirty "improvements". The omissions are even less
tolerable once an implementation has gotten past the "well, at least it
looks like Pascal" stage. This is not quality.

Perhaps you feel 1 expect too much for a language that owes its
popularity to the efforts of many individuals rather than large
companies. True, we owe these implementors a debt that will never be
repaid. But this debt does not relieve implementors of their
responsibility to do the job right, especially if they have the time and
energy to make their own "improvements" to the language. Another reason
I expect quality is for the many new users of Pascal. These users judge
the language itself by the particular implementation they are first
exposed to, and I have already seen some discouraged by poor
implementations. The most important reason to hold implementors
responsible for quality is the simple fact that if we do not, there
won't be any, and we the users will find ~t much more difficult to get
our own jobs done.

A good many implementors are professional enough to assume this
responsibility for quality, and have probably already done so. What of
those individuals and companies who have not? What can we users do?
Well, the best approach is to convince the implementor that conforming
to standard Pascal is in the implementor's own best interests. The
reasons can be many: good will, conditions of purchase, additional
sales, blackmail, advertising, even legal requirements. In many
countries, adoption of a standard (such as ISO Pascal) gives it the
weight of law. Any product purporting to be Pascal in such a country
MUST conform to the standard.

It is fortunate that there are now two tools to back up this demand for
quality. The first, of course, is the upcoming ISO Pascal standard.
There are admittedly problems because the standard is not yet official,
but at the same time the standard is for the most part not all that
different from the Jensen and Wirth Report. Getting most
implementations to conform to the Report would be B major accomplishment

in itself, and not that far from where the ISO standard will probably
end up.

The second tool to help quality is the Pascal Validation Suite that was
published in issue II 16. The biggest problem in quality assurance is
finding quality tests, and the validation suite goes a long way toward
solving this problem. It is also a very big advantage to have the suite
available now, even before the Pascal standard is adopted. Implementors
of other language standards had to wait quite a while (many are still
waiting) before such a measurement device was available. I will have
quite a bit more confidence in a particular implementation of Pascal if
I know the results of having it try to process the validation suite.

I would like to encourage both users and implementors to use the
validation suite and send the results to me as well as to Arthur Sale.
By all means, also send a copy to the implementor. I will then publish
the reports I receive in Pascal News for the world to see. Please see
the sample reports in issue # 16 for format. I would hope that over the
next year we can get reports for each and every implementation (then
again, I always have been an optimist). The letter campaign to
implementors will also be requesting reports of the validation suite
results.

One last comment. Be kind to your implementor, especially if he is
doing a good jcb. It's not all that easy to wrestle many of our poorly
designed machines into speaking Pascal. Don't use the validation suite
to beat him senseless, but have some patience. On the other hand, if he
has implemented something that cannot even pass for a subset of Pascal,
cannot add two numbers correctly, and has a lot of "improvements", be
merciless.

Implementation Critiques

Digital Equipment PDP-11 ('Swedish')

1979 December 19

A critique of the Swedish Pascal compiler

(as derived from its User Manual by A.H.J.Sa1e)

1. The User Manual is a supplement to Jensen & Wirth. It is well-written,

and describes the implementation of Seved Torstendah1 running on PDP-lIs

under RSX-IIM and lAS.

......
<.D
00
o

00
en

2. The manual first describes how to run Pascal programs under the operating

systems, how to attach files, etc.

3. The next section addresses extensions. The tokens are extended by:

(. for [freasonable, given poor print capability

.)] and use of these ISO posi tions for Swedish chars.

(* { Jnot extension; allowed by standard.

*) J

* for <>
& for and especially since neither:IF nor! capture

for or

J ",., ", .. ","".i= i""" _".in",',

any of the meaning of the well-defined tokens.

I recommend the removal of the last three extensions as being contrary

to the best interests of portabili ty of programs and programming skills,

and ugly as well.

4. The document introduces extra pre-defined constants: MAXINT, MININT,

ALFALENG, MAXREAL, Mr.-'REAL, and SHALLREAL. It mis-calls these

I standard' cons tants which they are not, except for MAXINT. No prob lems

with the introduction of extra constants provided they are properly

identified.

5. 'Standard I types is also misused. TEXT is indeed standard and need not

be in a section on extensions, but types

ASCII = CHR(O) •. CHR(127); BYTE CHR(0) .. CHR(255);

are simply extra pre-defined types. This misuse of 'standard' runs throughout

the document. Something can only be called 'standard' if it conforms to

a standard, either the oUi de facto standard of Jensen & Wirth, or

preferably the new ISO draft standard. We may as well get this right now.

LDmpUTEA
STU[] ~ES
[JADUP The University of Southampton

6. The extended case statement (otherwise clause) does not use the syntax

more or less agreed internationally and published in Pascal News, but

uses an OTHERS label. The syntax suggests it need not be last.

7. A LOOP-Elm construct is introduced, together with an EXIT. I strongly

recommend the removal of this construct which is a frequent cause of error

in many programs. Why it was introduced is difficult to understand since

Pascal handles the so-called loop-and-a-half structure much better without

it.

8. There are 'Standard' procedures DATE and TIME; it seems a pity tHat these

cannot be guaranteed to relate to the same instant, and that a single

TIMESTAMP cannot return both values guaranteed synchronous. NEW is

implemented, but not DISl'OSE; t1ARK and RELEASE are provided.

There is a HALT, and RESET and REWRITE allow file selection by additional

parameters. BREAK flushes line buffers for the special file TTY, and

acts as WRITELN for other text-files (irregular). PAGE inserts a form­

feed character into the text-file.

Random access is provided by allowing another integer parameter to GET and

PUT. I cannot understand why people prefer to overload names with new

meaning and introduce irregularity in preference to choosing new names

such as PUTR and GETR. Especially sinc'e the axioms of GET/PUT do not hold.

9. There are additional 'standard' functions RUNTIME, TWOPOW, SPLITREAL

and IORESULT.

10. There is an adjustable array parameter feature. How it works is a mystery

as the component-type is apparently not given. The following example

is taken from the manual:

PROCk:DURE MATADD(VAR A,B ,C: ARRAY [INTEGER,INTEGER]) ;

It would seem highly desirable to alter this implementation to something

with more abstract structure, and more checkable.

11. There is also a facility to declare a new kind of parameter

PROCEDURE ·PRINT (STRING S);

This feature turns Pascal's ordering on its head (type precedes identifier)

and it misuses the word 'string' by defining it to be an array! The

facility is badly expressed, and should be described in terms of a sequence

(= file) of characters.

......
t.D
00
o

12. There is a facility to pass procedural and functional parameters, but

it differs from the draft ISO standard in defining a new form of

parameter-list. Congruity of two parameter lists is not adequately

defined, but this is an informal document.

13. There is an external compilation facility; the directive EXTERN is used

followed by a parameter list. Example~

EXl'ERN (FORTRA.'I)

or EXTERN (FORTRA.'I , 'TEST')

14. The reserved word list is extended by LOOP, EXIT, OTHERS, EXTERN.

If the loop construct is removed this drops to two.

15. PACK and UNPACK are not implemented; only char and Boolean arrays

are packed. (Presumably no records are packed, which is very

unsatisfactory for many mini and micro applications.)

16. Only local GUTUs are permitted; a set may have up to 64 elements;

files may only be declared in tile main program.

17. The documentation cheats on 11AXINT by disallowing it as a limit in a

for-loop. It would be accurate to say that HAXINT in this implementation

is really 32766, and that the constant called MAXINT should be renamed,

perhaps to BIGINT or similar. Or the implementation should be improved

(see Pascal News 15).

18. Set of char is allowed, by defining the type char to be tne sub range

of characters from CUR(32) •• CHR(95). Of course this violates a lot of

Pascal axioms, notably about the type of the result of CUR. A very crude

approach to the problem. It should be done right.

A.H.J.Sale

{ See Zilog Z-80 (Digital Marketing)

See Zilog Z-80 01etaTech)

See Ga..EM B (Weizmann)

This cO"l'iler runs under CP/M and produces macro-assembler code.
pr ice is $275.

Ithaca Intersystems (formerly Ithaca Audio)
1650 Hanshaw Road
P.O. Box 91
Ithaca, NY 14850

The

This cO"l'iler runs under CP/M and is a Pascal-P descendant.
is S350.

The pr ice

Digital Marketing
2670 Cherry Lane
Walnut Creek, CA 994596

This is a cO"l'iler for a cassette-based system, and sells for $35.

Dynasoft Systems
POB 51
Windsor Junction, Iiorth Saskatchewan
Canada

The information on this compiler is unclear. It appears to be all or
partly in RCt1, and sells for .(40.

The Golden River Co., Ltd.
Telford Road.
Bicester, Oxfordshire 0X6 Il.L.
England

......
lD
00
o

PASCAL NEWS #17 MARCHI 1980 PAGE 89

Validation Suite Reports

The University of Tasmania
Postal Address: Box 252C, G.p.a., Hobart, Tasmania, Australia 7001

Telephone: 230561. Cables'Tasuni' Telex: 58150 UNTAS

IN REPLY PLEASE auoTE:

FILE NO.

IF TELEPHONING OR CALLING

ASK FOR

Mr. R. Shaw,
Digital Equipment Corp.,
5775 Peachtree-Dunwoody Road,
Atlanta, Georgia 30342
U.S.A.

Dear Rick,

4th December, 1979

Enclosed is a copy of a report of the Pascal Validation Suite on a
VAX-II Pascal system. The report was produced for us by Les Cooper at
La Trobe University.

The Pascal system is a Field Test version and is not available generally
at this stage. All errors have been rep'orted back to DEC who presumably will
fix them before the system is finally released. The report should be seen
in this context. Nevertheless, it provides an insight into what the VAX
compiler will be like when it is officially released early in 1980.

Les Cooper says he will provide an up-to-date copy of the report after
the compiler has been officially released.

Yours sincerely,

Roy A. Freak,
Information Science Department

Digital Equipment VAX 11/780 (DEC)

VI~-11 Pascal - Tested At LaTrobe University
Pascal ValidationSui te Report .

l'ascal Processor Identification

Computer: Digital Equipment Corporation VAX-11/780
VAX-11 Pascal Field Test version TO.1-68 Processor:

Test Conditions

Tester: Les Cooper
Computer Centre

Date:

La Trobe University
Australia

i-JovemlJer i 979

VersiOi1 : Validation Suite 2.2

Conformance Tests

llul:0er of 'rests Passed: 128
i".h.a:U...l21" of Tests Failed: 9

Details of Failed Tests

Test G.4 .. 3.3-1 failed because an empty record contain­
ing a semi-colon produces a syntax error.
Ci'est 6.3.3.3-4 failed because an attempt to redefine a
tag field else",here in the declaration part prouuces
synta,: errors.
'i'est 6.4.3.5-1 failed because an attenpt d"fine a file
of pointertype failed to com!)ile.
Test G. 5.1-1 failed because an atte;cpt to define a file
of filetype failed to compile.
Tests 6.6.3.1-5, 6.6.3.4-2 failed to comp:ile \There they
tried to pass a proced.ure Hi th a farnal parar.1eter list
as as fornal parameter to another procedure.
Test 6.9.4-15 ShOHS that a ",rite "'hich does not specify
the file does not Hrite on the default file after
reset(output) ..

llurrJ)er of Deviations Correctly Detected: 61
HuDber of tests ShO\'ling true extensions: 4
I-JurnDer of tests not detecting erroneous deviations: 18

NumLer of tests failed: 5

l)'2tails of l:xtensions

Test 6.1.5-6 shaHs that lm"er case e may be useU in
nU1IDers.
Tests 6.8.3.9-9, 6.8.3.9-13, 6.8.3.9-14 ShOH that the
follmying may be used as the controlled variable in a
for statenent: intermediate non-local variable, formal
pararoeter, global variable.

Details ,of Deviations not Detected

Test 6.1.2-1 shmm that nil may be redefined.
Tests 6.2.2-4, 6.3-6, 6.4. 1-3 ShO~1 that a common scope
error Has not detected by the compiler.

7ests 6.4.5-2, 6.4.5-3, 6.4.5-4, 6.4.5-5 indicate that
type compatibility is used \-lith var parameter elements
rather than enforcing identical types.
Test 6.6.2-5 shous the cODpiler permits a fWlction de­
claration with no assignment to the function identif­
ier ..
Teats 6.8.2.4-2, 6.8.2.4-3. 6.8.2.4-4 show that a goto
bet:\>"'een Dranches of a statenent is permitted.
Tests 6.8.3.9-2, 6.8.3.9-3, 6.8.3.9-4, 6.8.3.9-16 show
thclt assignJI:2nt to a for statement control varia.lJle is
not detected.
T"st 6.9.4-9 shous that z"ro and negati V" filed \1idths
are allo1 ed in Hri te ..

Detv_ils of r a.iled Tests

T"st 6.6.3.6-2, 6.6.3.6-3, 6.6.3.6-4, 6.6.3.6-5 check
the compatibility of param"ter lists. They fail to
conpile Ylhere they use a procedure with a formal paran­
eter list as a parameter to another procedure. Test
6.8.3.9-19 shoHS that insecurities have been introduced
into for statements by allowing non-local control vari­
ables ..

i:JU!IDer of Errors correctly detected: 14
Number of errors not detected: 33

Details of errors not detected

'i'ests 6.8.3.9-5, 6.B.3.9-G, 6.2.1-7 indicates that un­
defined values are not detected.
Tests 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-0 indi­
cate that no checking is perforned on the tag filed of
variant records.
An assignment to an empty record is not detected in
test 6.4.3.3-12.
Tests 6.4.6-4, 6.4.6-5, 6.4.6-6, 6.4.6-7, 6.4.6-8,
6.5.3.2-1, 6.8.3.5-5, 6.8.3.5-6, 6.6.6.4-4, 6.6.6.4-5,
6.6.6.4-7 indicate that no bounds checking is performed
on array subscripts, subranges, set operaeions, or case

selectors. Note: The system default is run time
checks off. If the tests had been compiled with checks
on then the checking would have been done.
Tests 6.5.4-1 and 6.5.4-2 show that a poor error mes­
sage is given when a nil pointer is dereferenced and
when an undefined pointer is dereferenced.
Test 6.6.2-6 shows that, if there is no result assigned
to a function, there is no run time error message.
Test 6.6.5.6-6, 6.6.5.6-7 show that it is possible to
change the current file position while the buffer vari­
able is an actual parameter to a procedure and ",hilst
the buffer variable is an. elewent of the record vari-'
able list of a ",ith statement.
Test 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5, 6.6.5.3-6 shoH
that there is no errormessage \·ihen the following occur
as the pointer parameter of dispose: nil, undefined
pointer, variable which is currently an actual' parame­
ter, va.riable whic..'r1 is an element of the record vari­
able list of a with statement.
Test 6.6.5.3-7, 6.6.5.3-8, 6.6.5.3-9 fail because no
checks are inserted to check pointers after they have

>-"
CD
00
C

CD
o

been assigned a value using the variant form of new.
Test 6.8.3.9-17 shoH that two nested for statelDentsnay
ahve the same controlled variable.

Implementation Defined

Number of tests correctly run: 9
Number of tests incorrectly handled: 0

Details of implementation dependence

Test 6.4.2.2-7 shovls maxint to be 21474883647
Test 6.4.3.4-2 shows that a set of char is permitted.
Test 6.4.3.4-4 shows that there are 255 elements in a
set.
Tests 6.7.2.3-2 and 6.7.2.3-3 show that Boolean expres­
sions are fully evaluated.
Tests 6.!l.2.2-1 and 6.1.2.2-2 sho\-l that the variable is
selected before the expression is evaluated in an as­
signment statement.
Test 6. 10-2 shm'ls that a reVlri te is allowed on file
output.
Test 6. 11-1 sho~ls that alternate cor:.ment delimiters are
implenented.
Tests 6.11-2, 6.11-3 shO\o/ that equivalent symbol cannot
be used for the standard reference representation for
the up arrow, :, 7, :=, [, 1, and the arithmetic opera­
tors.
Test 6.9.4-5 shows that two digits are written in an
exponent.
Test 6.9.4-11 shows the default field width to be in­
teger 10, Boolean 16, real 16.

Quality l:easurement

Number of tests run: 23
Humber of tests incorrectly ha.'1dled: o

~esults of tests

Test 5.2.2-1 shm-Is that identifiers are not distingu­
ished over their "Ihole lengtl}..
Test 6.1.3-3 shm-1s that there are 15 significant char­
acters in an identifier.
Test 6.1.8-4 shows that no warning is given if a { or 7
is detected in a COI'1..'llent.
Tests 6.2.1-8, 6.2.1-9, and 6.5.1-2 indicate that large
lists of declarations nay be used in each block.
Test 6.4.3.2-4 indicates that integer index type is not
permitted.
Test 6.4.3.3-9 show that variant fields of a record oc­
cupy the same space, using the declared order.
Test 6.4.3.4-5 (Harshall's algorithm) took 1.010 CPU
seconds and 249 bytes on the VAX-l1/780. Note: This
was using the VAX default of no run time checking.
Test 6.8.3.5-2 shows that no Vlarning is given for im­
possible cases in a case statement.
Test 6.8.3.5-8 shows that a large populated case is ac­
cepted.
Test 6.8.3.9-18 shows that the undefined value of a for
stater.>ent controlled variable is left in the range of
its type.
Tests 6.8.3.9-20, 6.8.3.10-7 show that at least 15 lev­
els of nesting are allmled when dealing "lith for stat­
ments, with statements, and procedures.

I
Test 6.9.4-10 shows that the output buffer is flushed
at end of job.

Extensions

Number of tests run:

Test 6.8.3.5-14 shO\o/s that otherwise is' implemented
though -not with the same syntax as that adopted at the
UC?D Pascal workshop in July 1978.

VAX-11/780 Pascal ~ Commentary on Results

The Validation suite has shown ,!p quite a number of flaws in
the compiler, as documented ~n the preceeding report. Of
particular concern is the apparent philosophy that the run
time checking should be off by default.

These tests were run using Field Test version TO .1-68 of the
compiler. With luck (a lot), the problems found will all be
fixed before the compiler is released.

DEC has been inforned of the results of all the tests. They
have been given run listings, etc. where necessary. The
replies they send to me (when they arrive) will be included
in thi-s section of the report.

I--'
<.D
00
o

PASCAL VALIDATION SUITE REPOR~

Comput~: Apple II

Pltoeef>f..olt: UCSV P~eal veM-Lon II. 1

T~teJL: R.A. healz

Vate: JanuMtj 1980

V~dat-Lon Su-Lte VeM-Lon: 2.2

ConnoJunanee T ~:0o

Numb~ 06 t~u P~f..ed: 116

Nwnb~ 06 t~u 6ail.ed: 22 (13 b~-Le eauo~J

T~t 6.1. 2-3 ~howf.. that idenuMeM and .~.~e-~ved WOIt~
Me not fuung~hed eOMeeUtj ove-~ the-LJt whole length.

T~t 6.2. 2-1 pMdue~ an vr..~0Jr. -Ln .6eope.

T~u 6.4.303-1, 6.4.3.3-3 and 6.8.2.1-1 6aU beeauoe
empttj Mud .eMu o~ empttj ~eeOJr.~ Me not aUowed.

T~t 6.4.3. 3-4 -Ln~eat~ t/1at a tag Mud deM~n
M not loeal to the Iteeo~d de6~~n.

T~u 6.4.3.5-1 and 6.5.1-1 6aU beeauoe a f,Ue 06
po-LnteM M not p~ed, nM ean a 6Ue be .t:XVlt 06
a ~eeo~d .6~uetMe.

T~u 6.6.3.1-5, 6.6.3.4-1, 6.6.3.4-2 and 6.6.3.5-1
naU beeauoe the p~/.)-Lng on pMeedM~! nuneUoM ~
paltatnue-u w not been implemented.

T~u 6.6.5.2-3 and 6.6.5.2-5 na~ beeauoe eoil M not
flU on an empttj nUe, no~ M U ~U a6t:~ a Itew~e.

T~t 6.6.5. 3-2 6~ beeauoe fupo~e h~ not been
implemented.

T~t 6.6.5.4-1 6~ beeauoe the pMeedM~ paek and unpaek
have not been implemented.

T~t 6.8.2.4-1 f,~ beeauoe non-loeal gotM Me not
peJWIilled.

T~t 6.8.3.5-4 f,~ beeauoe a ~IXVLM e~e ~tatement wUt
not eompUe. (Th~e M a .emU on the ~ on eaelt phOeeduMJ .

T~t 6.8.3.9-1 6~ beeauoe the ~~~9nment to a 60~
~:t;atement eon:t;Jtol v~ble 60Uow~ the evaluaUonOjj the
f,A.JL6t exp~~.6-ton. U6e of, e~eme vafu~ ~n a 60~ ~tate­
ment pMdue~ an -LnM~te loop (t~t 6.8.3.9-11-

T~u 6.9.4-4 and 6.9.4-7 6aU beeau~e the w,,-,i;Ung of,
~eal value~ do~ not eonf,o~ to the ~;(:an~d and the
~ng of, boolean valuef> M not p~milled.

Numb~ of, dev~oM eOMeeUtj deteeted: 56

Numb ~ of, t/&,:0o ~ how~ng :tJwe exteM-Lo M : (4 adual exteM-Lo MJ

Numb~ of, t~u not dueet-Lng 1&Jt!(.0neouo dev-LaUoM: 25 (12 b~-Le eauo~J

Numb~ 0 6 t~u f,aUed:

T ~u 6. 1 • 7 -6 and 6.4. 5-11 .6how that ~;(:IUng~ Me: aUowed
to have boun~ oth~ than 1 •. n and that eompaUble ~;(:IUn9.6
ean have ~f,6~ent numbeM 06 eomponelli.

T~u 6.8.3.9-9 and 6.8.3.9-14 -Ln~eate that the f,01t­
eonuol v~ble do~ not have to be loeal to the
-Lmme~utj endM-<-ng bloef<.

T~u 6.10-1 and 6.10··3 ~haw that 6Ue pMatnUeM Me
-LgnMed and the p~edeMned -Ldent-LMelt output matj be he-
deMned. ---

T~t 6. 10-4 ~howf.. that a pltogMm doe-, not have to have a
pMg"-'atn ~tatement.

V~ of, dev~oM not dueeted:

Tut 6.1. 2-/ ~how~ that ill may be ~edeMned.

Tef>u 6.1.7-11 and 6.4.3.2-5 ~how that a nuU ,-,;(:lUng M
aeeepted btj the eompileJt and that ~;(:IUngf.. matj have oth~
than a ~ubltange 06 WegeM ~ boun~.

Tut 6.2 .1-5 ~how~ that an w1.6Ued .tabu M not dueeted.

T~u 6.2.2-4, 6.3-6 and 6.4.1-3 eonta-Ln a eommon ~eope
1&Jt!(.0Jr. wMeh M not dueeted.

Tuu 6.3-5 .and 6.7.2.2-~ .6how that the unalty op~ato~, +,
matj be app.e-Led to non-aJtUhm~e op~n~.

T~u 6.4.5-2, 6.4.5-3, 6.4.5-4, 6.4.5-5 and 64.5-/3
~how that -Lde~eal eompaUbilUtj M not enilolteed.

T~t 6.6.2-5 '-'hoW!> that a 6w1etWn wUhout an ~.6-Lgnment
to the f,unet-Lon vaUable M not due.eted.

T~u 6.6.6.3-4 and 6.6.6.4-6 ",how that Mal pMamUeM
Me aUowed f,0Jr. the Iiunet-Lon .6uee and p~ed, wWe ~W1e
and ~ound ean have -Lnteg~ pMamUeM.

....
LD
00
o

LD
N

Tebtb 6.8.2.4-2 and 6.8.2.4-3 ~how ~hat a go~o between
bMneheb 06 a ~~emen~ ..L6 pVlmilled. --

Tebtb 6.8.3.9-2 and 6.8.3.9-3, 6.8.3.9-4.and 6.8.3.9-16
~how ~ho.t a fioh-eo~oi vahiabie maif be ~ehed ~n ~e
Mnge 06 ~he 60h M:atemeM.

Teb~ 6.8.3.9-19 .6ho~ ~hat neb~ed tiM .6~ementb M~ng
~he .6arne coMJz.oi vahiabie Me no~ ddeded.

Teb~ 6.9. 4-9 .6ho~ ~hat ~MegeJL6 maif be WlL-i.tten uo~ng a
neg~ve fiohmat.

V~ 06 naited ~ebtb:

ElUl.Oh handling:

Tebtb 6.6.3.5-2, 6.6.3.6-2, 6.6.3.6-3, 6.6.3.6-4 and
6.6.3.6-5 6ait beeau.6 e ~he pM.6ing 06 pJtocedwteb / nunctioM
M pMamdeJL6 hM no~ been impiemeMed.

Teb~ 6.8.2.4-4 6ail./> beeauoe non-loc.a.£. go~o~ have na~ been
~piemeMed.

Nu.mbf!.lJl.6 ehhOh-l> eOMedty ddeded: 14

Numbeh 06 ehhOh-l> no~ ddec;ted:

Nltmbeh 0 6 ~eb.t..6 6aited:

V~ 06 ehhOh-l> no~ ddeded:

28 114 bMie =~;)

4 11 bMie ecuu,e)

Teb~ 6.2.1-7 .6ho~ ~at vahiabieb Me bwtW.ize.d ~O what
WM pAe.v.Louoiy leM in meinMY.

Tebtb 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7 and 6.4.3.3-8 J..nd.i.c.ate
~hat no eheellig ..L6 peh60hmed on ~he .tag Meld au vMlam
heeohd.6 .

An cu,I.>.Lgnmem ~o an empty heeoAd ..L6 no~ ddeded J..n ~e;t
6.4.3.3-12.

Tebtb 6.4.6-1, 6.4.6-8 and 6.1.2. 4-1 ~d.Leate ~ha..t no
bOWld..6 efteeking J..J.> pehfiohmed on .6d OP~OM and OVeh­
lappJ..ag .6W Me not ddeded.

Tebtb 6.5.4-1 and 6.5.4-2 .6llOW ~hat a nd po~meh Man
uMnitiaUzed poimeh Me 'lOt ddedeaDe:j)Me uo e.

Teb~ 6.6.2-6 .6howI.> ~hat a ounction wilhout an M.6.LgnmeM
~ ~he. tlunv-...ton vahiabie ..L6 no~ ddeded.

Teb~ 6.6.5.2-1 :,how.6 ~hat a put on an ~put 6ite J..J.> not
ddeded.

Teb~ 6.6.5. 2-2 .6ho~ ~hat a gd pM~ e06 J..J.> no~ ddeded.

Teb~ 6.6.5. 2-1 ~ndieateb that a 6ite bu6t)eh vw..a.bie ean
be ~ehed ~e9attif.

Tebtb 6.6.5.3-7, 6.6.5.3-8 and 6.6.5.3-9 nait beeau.6e no
ehe,e/u, ahe ,iw.,eJt;ted ~o eheek poimeJL6 aMeh ~hey have been
M.6.Lgne.d a value M~g ~e vahiam fiOhm 06 new.

Teb~.6 6.6.6.4-4, 6.6.6.4-5 and 6.6.6.4-7 ~ndieate ~hat no
bound./> eheekil1g ..L6 peh60hmed on ~he 6un~M .6uee, phed
ohelrh.

Tebtb 6.7.2.2-6 and 6.7.2.2-7 .6how ~hat ~Megeh oVeh6iow
and undeh6iow eO>l~oM Me na~ ddeded.

Tebtb 6.8.3.5-5 and 6.8.3.5-6 .6how ~hat ~6 ;the value 06
~he. CMe ~dex dOeb no~ eOlUl.~~pond. ~o a c.M'e: labe.t, eo~ol
paMeb ~o ~he :,~emem aMeh ~e CMe .6~atemem. The
VUWh ..L6 no~ ddeded.

Tebtb 6.8.3.9-5, 6.8.3.9-6 and 6.8.3.9-17 ~how ~hat a 6M
co~ol vahiabie may be uoed a6~eh ~he 60h loop hM
~eJUnina.ted. Neb~ed 6M ioop.6 uoing ~he .6arne co~l
vahiabie Me no~ ddeded.

Vdail./> 06 6aited ~ebtb:

TebL~ 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5 and 6.6.5.3-6 6ait
beealu,e dMPOM. ha.6 11O~ be.en impiememed.

Impieme~onde6~ed

l~wnbeJt 06 ~e;t.~ AW!: 15

Numbeh 06 tebtb ineolUl.edty ha,"d1.ed: 0

Vdail./> 06 ~piemeM~on-de6~ion:

Teb~ 6.4.2.2-7 :,how.6 max.LyL-t ~o be 32767.

Tebtb 6.4.3.4-2 and 6.4.3.4-4 .6how ~ha.t lMge .6U6 Me
aeeepted by ~he. eomp.ueh but a hW1-Ume .umu 06 512 e.tementb
..L6 impo'->ed. A.6U 06 dlM ..L6 aUowed.

Teb~ 6.6.6.1-1 -6how.6 ~at no 6.tandMd phoceduJz.eb oh 6U.l1ctioM
may be. pM'->ed M paJtamdeJL6.

Teb~ 6.6.6.2-11 giveb Mme deta.-Ul.> 06 'leal nu.mbeh 60hmQ;t;
and maeMl1e ehMa.c~~LLc.6.

Tebtb 6.7.2.3-2 and 6.7.2.3-3 -6how ~hat booiean eXpAebl.>WM
Me 6utty evaluated.

Tebtb 6.8.2.2-1 and 6.8.2.2-2 :,how ~hat a vaAiabie..L6
:,e.teded l:ie60Ae ~he eXpAebl.>~On -0~ evaluated.Ln an M-6ignmem
~~emelL-t.

Tebtb 6.9.4-5 and 6.9.4-11 J.>how ~hat ~he numbeh 06 d.i.gffi
~n an exponem Meld Va.M:eb aceoAding ~o ~e -6~ze 06 ~he
e.xponem. The de6au.U outpu~ Meld width 60h ~egeJL6 .and
,'l2tU..6 tU..60 VWeb aCC.DAd-ing ~o the .6he 06 the expAeM-<.D1t
phinte.d.

.....
<D
00
o

Tut 6.10-2 vlclie.atu that a ftwille e.annot be pelt60ftmed
on the. Manda.Jtd ilile., ou:tpu:t.

Tu:t6 6.11-1, 6.11-2 and 6.11-3 -6how that the a.Ueltvza.tive
e.omment detvnliV1!.> fIave been vnptemerz;ted bld no othelt
equ1vC'.£ent -6 ymbot-b have been imptemented.

Q!11LU;ty MeMllftemevz;t

Numbelt 00 te.6:t6 Mft!

NumbeJt 00 te.6;/:-6 inc.oMeilly handted:

22

Tu:t6 5.2.2-1 and 6.1.3-3 -6how that ldent,i6lV1!.> a.Jte ~tlng­
u)J.,lted OVelt thu~ owt ugh;(: e.ha.Jta.etV1!.> ovz£y.

Tut 6.1.8-4 lnclic.ate.6 that no heep M pfWvlded 60ft deteet­
lItg unc.£o-6ed c.ommen:t6.

Tu:t6 6.2.1-8 and 6.2.1-9 inclie.ate that mofte than 50 ;typu
may be c.ompiled and mofte than 50 £abm may be dec.£a.Jted
and -6lied. Te.6t 6.5.1-2 I.>how-6 a illlli 06 70 -Ldent,iQieM
In a wt hM been lmpol.>ed.

Te.6t 6.4.3.' 2-4 I.>howl.> that an aMay wlih an J..ntegelt vldex­
type M not peJtmJ.ti:ed.

Tut 6.4.3.3-9 -6llOW!.> ;(:hat viVliant Meed; 06 a Jtec.Jtod [C:,e
fteWMe c.OM~on 60ft ltOMge.

Tu;(: 6.4.3.4-5 (WctMhaU'l.> o.£gouthml ;(:ook 166 by;(:e.6 of, e.ode.
No ~flg lntioJtmct-Uon M availabte.

Tut 6.6.1-7 I.>howl.> ;(:hat pftoe.edUJte.6 may be ne.6ted :to a depth
06 7. Foft I.>tatement-6 may be ne.6ted to a depth gftea.telt';(:itan
15 (te.6t 6.8.3.9-201 bu:t wlih I.>tatemen:t6 may be nu;(:ed to
a depth 0611 (;(:e.6;(: 6.8.3.10-71.

Te.6:t6 6.6.6.2-6, 6.6.6.2-7, 6.6.62-8, 6 6.6.2-9 and 6.6.6.2-10
;(:e.6;(:ed ;(:Ile I.> qft;(:, a.;(:a.n, exp, I.>lIt/ e.ol.> and tn 6unwo HI.> and
all te.6tl.> welte e.ompleted l.>ue.c.e.61.> 6a.Uy. (The te.6:t6 had ;(:0

be mocliQied :to avo,Ld the illlli pfue.ed on pftoe.edWte I.>lzel .

Tu;(: 6.7.2.2-4 I.>howl.> ;(:hat cli"Mion into negat-ive opeltand!.>
.<-5 lnc.aHl.>Mtent but clivMlon by negative opeJta.nd!.> M e.OHl.>M­
;(:en. The quotlerz;t M :tJtW'le. (A/B) 60ft aU opeJta..td!.>. mod(a.,bl
lie.6 In (O,b-1).

Te.6t 6.8.3.5-2 I.>howl.> ;(:hat rto wa.JtMng M given 60ft acMe
e.OHl.>ta.nt wh,ic.h e.anno;(: be ftea.e.hed.

Tu;(: 6.8.3:9-18 -6howl.> :that no Mnge e.hedu, Me weUed on
a 60ft e.on:tJto£ va.Jt,ia.ble a6:teJt a 60ft £oop.

Tu;(: 6.9.4-10 I.>hoW!.> that :the 6ile, outpu:t, M 6tMhed at
end 06 job and :te.6:t 6.9.4-14 I.>hol\Jl) :that Jtee.uMlve I/O MVIg
.the !.>ame 6de M aUowed.

V~ 06 oa.<:£ed te.6:t6:

Te.6t 6.8.3.5-8 6M£!.> - a £a.Jtge eMe I.>:tatement e.aMe.6 ,the
-6lze 06 the pftoe.edllfte ;(:0 oveJt6£ow :the max-Dnum illlli.

NwnbeJt 06 :te.6:t6 Mn:

Te.6;(: 6.8.3.5-14 -6howl.> :that :the o:theilwMe c.£a.UI.>e In a eMe
Matement hM no:t been lmpteme~ - - --

Pascal Validation Suite Report

Pascal processor identification

This Pascal-VU compiler produces code for an EN-1 machine as de­
fined in [1J. It is up to the implementor of the EM-1 machine
whether errors like integer overflow, undefined operand and range
bound error are recognized or not. Therefore it depends on the
EN-1 machine implementation whether these errors are recognized in
Pascal programs or not. The validation suite results of all knolln
implementations are given.

There does not (yet) exist a hardllare E~I-1 machine. ThereJore,
EM-1 programs must be interpreted, or translated into instructions
for a ta;-get machine. The following implementations currently ex­
i st:

Implementation 1: an interpreter running on a PDP-11 (using
UNIX)' The normal mode of operation for this interpreter is
to check for undefined integers, overflow, range errors etc.

Implementation 2: a translator into PDP-11 instructions (using
UNIX). Less checks are performed than in the interpreter, be­
cause the translator is intended to speed up the execution of
well-debugged programs.

I-'
to
00
o

Test 6.6.3.3-3:
Test 6.8.2.2-2: Co k d) referring to

Several pointer type dellnitions re or
the same record type are incompatible.

Test 6.6.3.4-2:
Only a single procedure identifier is allowed in a formal
procedure parameter section.

Test 6.9.4-4:
Reals printed in scientific notation always contains an
exponent part, even for exponent equal to zero.

Latest standard proposal

A newer version of the proposal is received in November 1979.
Because of the differences between these versions the follow­
ing tests are changed:

Test 6.1.5-6:
The case of any letter occurring anywhere
character-string shall be insignificant
currence to the meaning of the program.

outside of
in that oc-

Test 6.4.3.3-3:
Test 6.4.3.3-11:
Test 6.4.3.3-12:

Definition of an empty record is not allowed.

Test 6.4.3.3-10:
The case-constants introducing the variants shall be of
ordinal-type that is compatible with the tag-type.

Tesl: 6.5.1-1:
The type of the component of a file-type shall be neither
a file-type nor a structured-type with a file co~ponent.

Test 6.9.4-4:
Test 6.9.4-5:

The character indicating the exponent part of a real as
written in scientific notation ;s either Ie' or 1£1 ..

Test 6.9.4-4:
The representation of a positive real in fixed point for­
mat does not include a space if it does not fit in the
specified field width.

Test 6.9.4-7:
The case of each of the characters written as representa­
tion for a Boolean is implementation-defined.

Test 6.9.4-9:
Zero or negative field width is allowed in write-
parameters.

Conformance tests

Number of tests passed 138
Number of tests failed 1

Details of failed tests

Test 6.1.2-3: 8 h t s
Character sequences starting with the c ara~ :r

d r ' or 'function' are erroneously classlfled ce U If .,
word-symbols 'procedure' and unctlon.

'pro­
as the

Test Conditions

Tester: J .\J.Stevenson
Date: December 19, 1979
Validation Suite version: 2.0, dated June 19, 1979

The final test run is made with
suite. The changes made can
categories:

Typing errors

Test 6.4.3.5-1:

a sligh~ly modified
be divided into the

val idat ion
following

the identifier 'ptrtoi' must be a type-identifier, not
variable-identifier.

Test 6.6.3.3-1:
The type of 'colone' should probably be 'subrange', not
'colour', because the types of actual and formal variable
parameters should be identical.

Test 6.6.3.1-5:
In passing a procedure as actual parameter the parameters
must not be specified. So line 29 must be changed to

conformCalsoconforms)

Test 6.6.5.3-1:
This test is incorrectly terminated by 'END.' instead of
lend. I ..

Test 6.6.1-7:
The terminating 'end.' is incorrectly preceded by a
space.

Test 6.9.4-14:
The program parameter 'f' must be removed.

Portability problems

Test 6.6.3.1-2:
A set of integer subrange containing more than 16 ele­
ments may give probLems for some ;mplementations~ A spe­
cial option must be provided to the Pascal-VU cOlilpiler,
specifying the number of elelilents.

Test 6.6.6.2-3:
Not all implementations support reals with 9 deCimals of
precision. The precision supported by Pascal-VU is about
7 decimals C24 bits).

Erroneous programs

Some tests did not conform to the standard proposal of Febru­
ary 1~79. It is this version of the standard proposal that is
used by the authors of the validation suite.

Test 6.3-1:
Test 6.6.3.1-4:
Test 6.4.5-5:

The meaning of these test program is altered by the trun­
cat·ion of thei r identifiers to e.ight characters.

Test 6.4.3.3-1:
A record definition consisting of a single semicolon is
illegal.

......
lD
00
o

Deviance tests

Number of deviations correctly detected = 81
Number of tests not detecting deviations = 12

Details of deviations

The following tests faiL because the PascaL-VU compiLer only
generates a warning that does not prevent to run the tests.

Test 6.2.1-5:
A declared Label that is never defined produces a warn-
ing.

Test 6.6.2-5:
A warning is produced if there is no assignment to a
function-identifier.

The following tests are compiLed without any errors while they
·do not conform to the standard.

Te;t 6.2.2-4:
Te~t 6.3-6:
Test 6.4.1-3:

Undetected scope error. The stope of an identifier should
start at the beginning of the block in which it is de­
clared. In the PascaL-VU compiLer the scope starts just
after the declaration, however.

Test 6.8.2.4-2:
Test 6.8.2.4-3:
Test 6.8.2.4-4:

The Pascal-VU compiler does not restrict the places from
where you may jump to a labeL by a goto-statement.

Test 6.8.3.9-2:
Test 6.8.3.9-3:

Test 6.8.3.9-4:
Test 6.8.3.9-16:

Error handling

There are no errors produced for assignments to a vari­
able in use as control-variable of a jor-statement.

The results depend on the 81-1 im~lementaticn.

Number of errors correctly detected =
Implementation 1: 26
Implementation 2: 12

Number of errors not detected
Implementation 1: 19
Imp' ''''entation 2: 33

Details of errors not detected

Test 0.2.1-7:
It is allowed to print all integer values, even the spe­
cial 'undefined' value.

Test 6.4.3.3-5:
Test 6.4.3.3-6:

Test 6.4.3.3-7:
Test 6.4.3.3-8:

the notion of 'current variant' is not impLemented, not
even if a tagfield is present.

Test 6.4.6-4:
Test 6.4.6-5:

Implementation 2: Subrange bounds are not checked.

Test 6.4.6-7:
Test 6.4.6-8:
Test 6.7.2.4-2:

If the base-type of a set is a subrange, then the set
elements are not checked against the bounds of the
subrange. Only the host-type of this sub range-type is
relevant for Pascal-VU.

Test 6.5.3.2-1:
Implementation 2: Array bounds are not checked.

Test 6.5.4-1:
Test 6.5.4-2:

ImpLementation 2: NiL or undefined pointers are not
detected.

Test 6.6.2-6:
An undefined function result is not detected, because it
is never us~~ in an ~pression.

Test 6.6.5.2-6:
T~st a.6.5.2-1:

Changing th~ file pJsition while the window is in use as
actual variable p~rameter or as an element of the record
viodable Ust of a with-statement is not detected.

Test 6.6.5.3-3:
Test 6.6.5.:1-4':

llilple"',mtat iun 2: !}lsposing nil or an undefined pointer
i'" root d~te~ted.

·test 6.6.5.3-5:
THt 6.6.5.3~:

~i~posing 3 variable while it is in use as actual vari­
a~le par~meter or as an element of the record variable
l13t ~f a with-statement is not detected.

Test 6.6.:;.3",7:
Test 6.6.5.3-8:
Te"t ~.6.S.3-9:

11 ;sn· .. t detected that a record variable, created with
the v~riant form of new, is used as an operand in an ex­
pression or as the variable in an assignment or as an ac­
tual value parameter.

Test 6.6.6.4-4:
Test 6.6.6.4-5:
Test 6.6.6.4-7:

ImpLementation 2: There are no range checks ·for pred,
suee and chr.

Test 6.7.2.2-3:
Tast 6.7.2.2-6:
Test 6.7.2.2-7:
Test 6.7.2.2-8:

ImpLementation 2: Division by 0 or integer overflow is
not detected.

.....
lD
00
o

Imple~entation dependence

Ih .. :nber of test run = 15
~umber of tests incorrectly handLed = 0

Details of imple~entation dependence

Test 6.4.2.2-7:
C1axint = 32767

Test 6.4.3.4-2:
'set of char' aLlowed.

Test 6.4.3.4-4:
Up to 256 elements in the range 0 •• 255 in a set.

Test 6.6.6.1-1:
Standard procedures and functions are not aLLowed as
parameter.

Test 6.6.6.2-11:
Details of the machine characteristics regarding real
numbers.

Test 6.7.2.3-2:
Test 6.7.2.3-3:

BooLean expressions fuLLy evaLuated.

Test 6.8.2.2-1:
Test 6.8.2.2-2:

The expression in an assignment statement is evaLuated
before the variabLe seLection if this invoLves pointer
dereferencing or array indexing.

Test 6.9.4-5:
Nu;nber of digits for the exponent is 2.

Test 6.9.4.11:
The defauLt fieLd widths for integer, BooLean and reaL
are 6, 5 and 13.

Test 6.10-2:
Rewrite(output) is a no-op.

Test 6.1'1-1:
Test 6.1"1-2:
Test 6.1"1-3:

ALternate comment deLimiters impLe~ented, but not the
other equivaLent symboLs.

Quality measurement

~u~ber of tests run = 23
Number of tests incorrectLy handLed o

Results of tests

Test 5.2.2-1:
Test 6.1.3-3:

CnLy 8 characters are significant in identifiers.

Test 6.1.8-4: if they are

Test
Test
Test

Both 1;1 and I{I cause a warning message
found inside comments.

6.2.1-8:
6.2.1-9:
6.5.1-2: h bl k
Large lists of declarations are possibLe in eac oc.

Test 6.4.3.2-4:
An 'array(integerJ of' is not alLowed.

Test 6.4.3.3-9:
Variant fieLds of a record occupy the same space, using
the decLared order.

Test 6.4.3.4-5:
Size and speed of YarshaLL's aLgorithm depends on the i~­
pLementation of EM-1

I~pLementation 1:
size: 31 bytes
speed: 4.20 seconds

ImpLementation 2:
size: 204 bytes
speed: 0.62 seconds

Test 6.6.1.7:
At Least 15 LeveLs of nested procedures aLLowed.

Test 6.7.2.2-4:
'div' is correctLy impLe~ented for negative operands.

Test 6.8.3.5-2:
The co~piLer requires case constants to be compatibLe
with the case seLector.

Test 6~8.3.5-8:
Large case statements are possibLe.

T~st 6.3.3.9-13;
The vaLue of the controL variabLe of a normaLLy terminat­
ed for-statement is equaL to the final vaLue.

Test 6.3.3.9-20:
At Least 20 nested for-statements aLLowed.

Test 6.8.3.10-7:
At Least 15 nested with-statements alLowed.

Test 6.9.4-10:
Line marker appended at end of job if the Last character
written is not a Line ~arker.

Test 6.9.4-14:
Recursive i/o using the same fiLe aLLowed.

The foLLowing 5 tests test the ~athematicaL functions. For
each the foLLowing three quaLity measures are extracted fro~
the test resuLts:

meanRE: mean reLative error.
maxRE: maxi~um relative error
rmsRE: root-mean-square relative error

I--'
to
00
o

Test 6.6.6.2-6:

Test

Test

Test

Test sqrt(x): no errors and correct resuLts~

6.6.6.2-7: fl
T.s~ arctan(x): may cause underflow or under ow errors.

meanRE: 2 ** -30.46
malRE: 2 ** -22.80
rmsRE: 2 ** -24.33

6.6.6.2-8:
Test expCx): may C:3;use underf Low

meanRE: 2 ** "25.37
maxRE: 2 ** "17.62
rmsRE: 2 ** "19.56

6.6.6.2-9:
Test sin(x): may cause underf low

meanRE: 2 ** -22.98
maxRE: 2 ** -10.43
rmsRE: 2 ** -15.59

Test cos(x): may cause underflow
meanRE: 2 ** -21.69
maxRE: 2 ** - 8.23
rmsRE: 2 ** -13.37

Test 6.6.6.2-10:
Test In(x): no errors

meanRE: 2 ** -25.12
maxRE: 2 ** -21.97
rmsRE: 2 ** -23.75

I
or overflow errors.

errors ..

error::.

Extensions

Ilu::;i:Jer of test run o

References

[1]

[2]

"D . t' of an A.S.Tanenbaum, J.Y.Stevenson, J.M.van Staveren, escrlp 10n d
ex~:rimental machine architecture for use of block structure
l c~'ua,'es", Informati ca rapport lR-54., The

~ ~ 97/Sc5 N4 2 dated February 1979. ISG standard proposal ISO/Te -:'0 , b- f din:
52:,'1; oropbsal, in slightly mod,fled form, ~an t:' Qun _
A.~I.Add/man e.a., "A draft description of Pascal,. Software~ pra,c_
t' -~ and experience, Nay 1979. An improved vers,.on, recelVed /,0 t
v~:,ber 1979, is foLlowed as much as possibLe Tor the curren

Pascal-VU.

CDC-6000 RELEASE 3

PASCAL VALIDATION SUITE REPORT

Pascal Processor Identification

Computer:

Processor!

Control Data Corp. CYBER 74, running NOS 1.3

CDC-6000 Release 3 (Zurich Compiler) of January,
1979

Tes t Condi tious

Tester: Rick L. Marcus

Date: January, 1980

Validation Suite Version: 2.2

Conformance Tests

Number of tests passed: 128

Number of tests failed: 11

Test 6.1.8-3 is not relevant; only one form of comment
is al1owed~

Test 6.2.2-3 fails because the compiler thinks that the
scope of node = real covers procedure ouch.

Test 6.2.2-8 fails because assignment to a function is
allowed only within the function body.

Test 6.4.3.3-1 fails because the declaration for an
empty record (D) is not allowed. If the semi-colon is
removed from the record definition then there is no
error, which can be seen in the next test, 6.4.3.3-3.

Test 6.4.3.3-4 fails because the tag-field in a record
may not redefine an existing type declared elsewhere.

Test 6.5.1-1 fails because the compiler does not allow a
file QL record... where the record contains a file as a
field. I believe the latest version of the standard
changes this. Our compiler will pass the test if files
of files are not allowed.

Test 6.6.3.1-1 fails in procedure Testtwo because of
'strict' type checking. Passing a variable of ~
colour as a parameter of 1YQg sub range causes the error.
Passing as a value paramter is allowed(i.e_, procedure
Testone passes the test).

Test 6.8.3.5-4 fails hecause the range of case labels is
too large_

......
ill
00
o

Deviance Tea t8

Test 6.9.1-1 fails because eoln is not necessarily true
after the last character written on a line. The
operating system pads to an~even number of characters on
a line with blanks.

Test 6.9.4-4 fails because the test assumes only two
places in the exponent field while there are three on
our CDC systems.

Test 6.9.4-7 fails because Booleans are right justified
on CDC 6000 Pascal, not left as in the test. I believe
the latest standard assumes right justification, so that
the compiler would pass the test in that case.

Number of deviations correctly detected: 76

Number of tests not detecting erroneous deviations: 18

Details of errors .B.Q1. detected

Test 6.2.1-7 shows that the value of I is that which is
left over from procedure q (1=3).

Tests 6.4.3.3-5/6/7/8 indicate that no checking is done
on the tag field of variant records.

Test 6.4.3.3-12 shows that an empty record can be
assigned an undefined empty value.

Test 6.4.6-8 shows that strict type compatibility is not
enforced for sets passed by value.

Test 6.6.2-6: The error was not detected. The value of
the variable CIRCLEAREA was zero after the assignment.
It seems that a function is assigned the value zero if
no assignment is made in its body.

Test 6.6.5.2-2 fails to catch the error because of
Details of deviations system padding of blanks to an even number of blanks.

Test 6.1.2-1 shows that nil is not a reserved word.

Tests 6.1.5-6 is not relevant as only upper case is
allowed anywhere in a Pascal program.

Test 6.2.1-5 shows that a label may be declared without
being used anywhere in a program.

Tests 6.2.2-4, 6.3-6, 6.4.1-3 show that a common scope
error was not detected by the compiler.

Test 6.6.2-5 shows that a function need not be assigned
a value inside its body. The value of A after the
assignment (A := ILLEGAl(A)) is zero.

Test 6.6.3.5-2 shows that strict type compatibility of
functions passed as parameters is not required.

Tests 6.8.2.4-2, 6.8.2.4-3, 6.8.2.4-4 show that a goto
between branches of a statement is permitted.

Tests 6.8.3.9-2, 6.8.3.9-3, 6.8.3.9-4, and 6.8.3.9-16
show that an assignment may be made to a for statement
control variable.

Test 6.8.3.9-14 shows that a for loop control variable
may be a variable global to the whole program.

Test 6.8.3.9-19 shows that in nested for loops, if both
have the same control variable, then the value gets
changed by the inner loop and falls out of the outer
loop after 1 iteration.

Error Handling

Test 6.9.4-9 shows that characters may be written even
if the field width is too small.

Number of errors correctly detected: 24

Number of errors not detected: 21

Number of tests incorrectly handled:

Test 6.6.5.2-6/7 shows that I/O is not implemented
according to the standard.

Test 6.6.5.3-5 fails because no check is made by the
runtime system to see if the variable being disposed of
is a parameter to the procedure which calls dispose-

Tests 6.6.5.3-6/7/8/9 all fail.

Tests 6.7.2.2-6/7 fail because an integer variable does
not cause an overflow error when it is over the value of
maxint.

Tests 6.8.3.9-5/6 show that the value of an integer
control variable is set to -576460752303423487 after the
for loop.

Test 6.8.3.9-17 shows that two nested for loops may have
the same control variable.

Details of tests incorrectly handled

Test 6.6.6.3-3: An overflow of the real variable reel
caused termination of the program.

Implementationdefined

Number of tests run: 15

Number of tests incorrectly-handled: 0

Deatails of implementation-dependence

TEst 6.4.2.2-7 shows maxint to be 281474976710655.

Tests 6.4.3.4-2/4 show that set bounds must be positive,
have no element whose ordinal is greater than 58, and
that ~ of char is not legal.

Test 6.6.6.1-1 indicates that standard procedures and
functions are not allowed to be passed as parameters to
procedures and functions.

......
c.D
00
o

c.D
c.D

Test 6.6.6.2-11 details some machine characteristics
regarding number formats.

Tests 6.7.2.3.2/3 show Boolean expressions are fully
evaluated.

Tests 6.8.2.2-1/2 show
before an expression is
statement.

that a variable is selected
evaluated in an assignment

Test 6.9.4-5 shows that the number of digits in an
exponent is 3.

Test 6.9.4-11 details the default field width specific­
ations: 10 for integers and Booleans and 22 for reals.

Test 6.10-2 shows that a rewrite is allowed on the file
output, but that it has no effect (i.e., output is not
rewritten) unless there is an actual local file of a
different name which replaces output on the control
statement to execute the program.

Test 6.11-1/2/3 show that alternate comment delimiters
and other alternate symbols have not been implemented.

Number of tests run: 23

Number of tests incorrectly handled: 0

Results of quality measurements

Tests 5.2.2-1 and 6.1.3-3 show that i!entifiers are not
distinguished over their whole length; only the first 10
characters are significant.

Test 6.1.8-4 shows that no warning is given if a valid
statement or semicolon is embedded in a comment.

Tests 6.2.1-8/9 and 6.5.1-2 indicate that large lists of
declarations may be made in each block.

an indextype of
site the use of

only in the

Test 6.4.3.2-4 shows that an array with
INTEGER is not permitted. At this
INTEGER for an indextype is permitted
current implementation of dynamic arrays.

Test 6.4.3.3-9 shows that the variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 0.236 seconds
CPU time and 171 words (10260 bits) on the CDC CYBER 74.

Test 6.6.1-7 shows that procedures cannot be nested to a
level greater than 9.

Tests 6.6.6.2-6/7/8/9/10 tested
sin/cos, and in functions and all

the sqrt, atan, exp,
tests showed there

were no significant errors in their values.

Test 6.7.2.2-4 shows that div and mod have been imple­
mented consistently. mod returns the remainder of dive

Test 6.8.3.5-2 shows that case constants do not have to

Extension

be of the same type as the case index, if the case index
is a subrange, but the constants must be compatible with
the ~ index.

Test 6.8.3.5-8 shows that a large case statement is
permissible (>256 selections).

Test 6.8.3.9-18 shows that the use of a control variable
is allowed after the for loop. The run-time system
catches the use of the control variable this time
because after exiting the loop the variable is set to
the value found in Test 6.8.3.5.9-5, and the case
variable is out of range.

Tests 6.8.3.9-20 and 6.8.3.10-7 indicate that for and
7;~h statements may be nested to a depth greater than

Test 6.9.4-10 shows that file buffers are flushed at the
end of a the program.

Test 6.9.4-14 indicates that recursive I/O is permitted,
using the same file.

Number of tests run:

Number of tests incorrectly handled: 0

Details of extensions

Test 6.8.3.5-14 shows that the 'OTHERWISE' clause has
been implemented in a ~ statement.

DODD

TI PASCAL

O. DATE/VERSION

Release 1. 6.0', January 1980.

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTER

Implemented by Texas Instruments. Information is available
from TI sales offices, or write to

Texas Instruments
Digital Systems Group, MS784
P. O. Box 1444
Houston, Texas 77001

or call (512) 250-7305. Problems should be reported to

Texas Instruments
Software Sustaining, MS2l88
P. O. Box 2909
Aust in, Texas 78769

or call (512) 250-7407.

2. MACHINE

3.

The compiler runs on a TI 990/10 or 990/12. The compiled
object code can be linked for execution on any member of the 990
computer family.

SYSTEM CONFIGURATION

The compiler runs under the DXlO operating system (release
3) and requires at least a TI DS990 Model 4 system, which
includes a 990/10 with l28K bytes of memory and a 10 megabyte
disk. (More than l28K of memory may be required, depending on
the size of the operating system.) Compiled programs can be
executed on any FS990 or DS990 system, using the TX5, TX990, or
DXlO operating systems.

6. MAINTENANCE POLICY

TI Pascal is a fully supported product. Bug reports are
welcomed and maintainence and further development work are in
progress.

7. STANDARD

TI Pascal conforms to "standard" Pascal, with the following
principal exceptions:

* A GOTO cannot be used to jump out of a procedure.
* The control variable of a FOR statement is local

to the loop.
* The precedance of Boolean operators has been

modified to be the same as in Algol and Fortran.
* The standard procedures GET and PUT have been

replaced by generalized READ and WRITE
procedures.

TI Pascal has a number of extensions to standard Pascal,
including random access files, dynamic arrays, ESCAPE and ASSERT
statements, optional OTHERWISE clause on CASE statements, and
formatted READ.

8. MEASUREMENTS

9.

10.

The compiler occupies a 64K byte memory region. Compilation
speeds are comparable to the 990 Fortran compiler.

RELIABILITY

The system has
TI since October
since May of 1978.
and January 1980.
maintainance makes
product.

DEVELOPMENT METHOD

been used by several different groups within
of 1977, and by a number of outside customers
Updates have been released in January 1979

This long history of extensive use and
this a reasonably stable and reliable

The compiler produces object code which is link-edited with
run-time support routines to form a directly executable program.
The compiler-is written in Pascal and is self-compiling.

4. DISTRIBUTION 11. LIBRARY SUPPORT

Available on magnetic tape or disk pack. Contact a TI
salesman for a price quotation and further details.

5. DOCUMENTATION

Complete user-level documentation is given in the "TI Pascal
User's Manual", TI part number 946290-9701.

TI Pascal supports separate compilation of routines and
allows linking with routines written in Fortran or assembly
language.

:;<
:x>
:;0

n
::r::

......
CD
00
o

-0-

-1-

-3-

-4-

Date:

Intel 8080/8085 /Meta le~
Specializing In Innovative Infor.mation Processing

Pascal/~ Ilm)lementation Scecification

~ovember 8, 1979
Version: Release 2~S

Distributed, IImlle.rnented and Maintained by:

MetaTech, 8672-I Via Mallorca, La Jolla, Ca. 92037
(714) 223-5566 x289 or (714) 455-661B

~: Intel B080/B085 and Zilog Z80

.~i:~:i/~n~~:~~~:;O~~der the CP/M operating system lor and equivalent system such as COOS,
IMDOS, etc.} in a minimum of 32K bytes of memory.

The package consists of a compiler and symbolic debugger and generates SQao/zsa object
code directly from the Pascal program source.

The symbolic debugging packaqe is optionally copied into the output object file by the compiler.

Distribution:
The P&scaIIMT package is distributed on a single density a-inch floppy diskette which contains:

The compiler for Pascal/MT
The symbolic debugging package
The text for the compiler error messages
Two utility programs written in J?ascal/m to illustrate the facilities of the la!'lguage

Cost of a single system license for Pascal/MT tincludes manual) is $99.95
Manual available tor $30.00
Source for the run-time package is $50.00

Master Charqe, Visa, UPS COD, and Purchase Orders

-5- Standard;
Pascal/MT i!\\plements tin 2.5) a subset of the full Pascal language. This was done to generate
both s~ace and time- efficient code for 8-bit microcomputers.

Pascal/MoT al-so contains is number of "built-in" procedures. This allows source code usL"1g
these procedures :to be·~portable to ot.."ler systems providing appropriate routines are i:nple!l\ented
on the other systems.

Pascal/MT omits the following features from the Pascal standard (Jensen & Wirth 2nd Ed.) :
*No LABEL declaration and therefore no GOTOs
Non-standard file support for CP/M files

*Enumeratipn and Record types not implemented
PACKEO is iqnored on boolean arrays
All variables and parameters are allocated statically

Items marked with a * are being implemented in the subsequent releases of Pascal/MoT.

-6- Extensions:
Pascai/MT contains the following extensions (in release 2.5):

Pre-declared arravs wINPUT" and "OUTPUT" for manipulating I/O ports directly.
EXTERNAL assembly 6lanquaqe procedure declarations for using pre-assemble.c.

routines [using PL/~ parameter passing)

OPEN, CLOSE, DELETE, CREATE, BLOCKREAD, BLOCKWRITE routines for accessing CP/M files.
Logical un-typed boolean operators for and (&) 2.!. (t) and ~ tN)
IS-diqit BCO ari~~etic packageo

-7- MeasurDments:
compilaeion speed is approxi.'"!lately 600 lines/min. 6K bytes symbol table s?ace is available in
a 3,2K system and 38K bytes table space is avai;'able ':'n a .64K system. Run-ti..."t'Le code (o,ofithout.
debuggerl is 5 to 10 t!mes faster e...~an P-code sjo~stems, and is 1.3 =0 3 times larger 'than :?-code
syst.ems (but Pascal/MT requires no interpreter).

-8- Availability:
Pascal/MT Release 2.5 is available i~ediately.

Enhanced releases will be :uade periodically throughout: ~he next year.

Also available from: FMG Corp (817) 294-2510 for TRS-80
Lifeboat Assoc. (212) 580-0082 for all formats

IBM 370-165 (Weizmann)
(See Ga..EM B (Io!elzmann))

Motorola 6800 (Oynasoft Systems)
This is a con.,iler for a cassette-based system, and sells for $35.

~nasoft Systems
POB S1
Windsor Junct ion, North
Canada

Motorola 6809 (Motorola)

Saskatchelllall

MOTOROLA 6809 PASCAL - CHECKLIST FOR PASCAL NEWS

O. DATE/VERS.rON

12 December 1979
Versio:l 1.0 released September 1979
Version 1.1 to be released February 1980

1. IMPLEHENTOR/DISTRIBlJTOR/HAINTAINER

Motorola Microsystems
P.O. Box 20906
Phoenix, Arizona 85036
(602) 831-4108

~ACHINE

Motorola 6809 EXORciser

3. SYSTE~1 CONFIGlJRATION

MDOS~9 ~3.~0 running on 6809 EXORciser with 56K
bytes and floppy~disk drive.

4. DISTRIBlJTION

On floppy diskette (M6809PASCLI)
Motorolu Microsystems

for $1500 from

P.O. Box 20906
Phoenix, Arizona 85036
(602) 962-3226

Orders should be placed through local
Motorola Sales Office or Distributor

3:
:::­
::0

" ::r ,
....
to
00
o

5. DOCUMENTATION

Motoro la Pascal Language 1'lanua 1 (M68PLM(Dl)) describing
Motorola implementation (56 pages). 6809 Pascal Interpreter
User's Gtlide (r168~9PASCLI(Dl)) describing operation of
interpreter (48 pages).

6. MAINTENANCE POLICY

Bugs should be reported to software support.
Subsequent releases will include corrections.

7. ST!\NnARD --------------
Re~trictiofls: May not specify fm'JI1al paran;2ters v:hic!l are procedl're
or function idcntif"iel's. F'io3ting Doint numbers ,TC not ilnplell,enterl.
Packed atV'ibut€ has no efrect. All \1i11 be imple!nented 'in future
releases. Enhancements: A~dress specification for variables;
alphal'umcric labels: ~Il exit 5tatew2nt; e;:ternal proc0dur~ and
function dl'claratici"ls; nori:(fecimal integcl's; otheY'l"Iise clause
in f~~~. statement; l"untime file assignments; ·sTr·uct"ul~ed function
values; string variables and string functions.

Compiles in 55K bytes. Runt"ime SUppOI't requires 3-4K byte
interpretel' module.

Very good--first released in September 1979 with few majol' problems
reported.

10. DEVELOPt,lENT ~lETHOD

One pass recursive descent compiler generates variable length
P-code. One pass P-assembler (second release) generates a
compact, position-independent code for interpreter. Code and
interpreter both ROi·~able for use in non-EXORciser environment.

11. LIBRARY SUP?ORT

Standard Pascal procedures and functions, plus the ability to
link assembly 'il.nguage routines.

RCA 1802 (Golden River)
The information on this cORlli ler is unclear. It appears to be all or
partly in Ra'1, and se lIs for (40.

The Golden River Co., Ltd.
Telford Road.
Blcester, Oxfordshire 0X6 0UL
En!! land

Zilog Z -80 (Digital Marketing)

(See Zi lo!! Z-80 CDi!!ital Marketin!!) }

Zilog Z -80 (Ithaca Intersystems)

This compiler runs under CP/M and produces macro-assembler code. The
price is $275.

Ithaca Intersystems (formerly Ithaca Aud io)
1650 HanshauJ Road
P.O. Box 91
Ithaca, NY 14850

Zilog Z -80 (Meta Tech)
{ See Zilo!! Z-80 (MetaTech) }

I-'
<.D
00
c:>

I-'
c:>
VI

GOLEM B (Welzmann)

m~TOO
THE wazMANN lNSIllUTE OF SOENce
RE.No-VOT

DEPARTMEMT OF APPLIED MATHEMATICS

Pascal Userts Group

C/o J. Miner
University Computer Center: 227 EX
20B SE Union St.
University of Minnesota
Minneapolis, MN 55455

Dear Mr. Miner,

September 5, 1979

I have transported the ZUrich P4 Compiler to the GOLEM B computer of the
Weizmann Institute. Following is a checklist for lmplementation Notes:

O. Date(Version. 79/09/03

1. Distributor/ImplementorjMaintainer,

W·. Silverman
c/o Dept. of APplied Mathematics
The Weizmann Institute of Science
Rehovot, Israel~

2. ~: GOLEM B, 370-165.

3. System COnfiguration: GOBOS for GOLEM B (designed and built by WI). Also
produces P-CODE on our 370-165. variants produce

P-CODE for the GA-16 and the Z80~ a loader, written in PASCAL is available
for the latter, and an interpreter is being checked out on our Z80 simulator
and on the TEKTRONIX 800l/8002ApProcessor Lab.

4. Distribution: Source of compiler, configured for your machine as is P4,
with a few additional parameters, and of our Loader and addi­

tional package as they become available, on magnetic tape (9-track, 1600 BPI
or 7-tiack as required) within Israel. Send mini-tape to distributor -
mailing costs only. Special arrangements possible outside Israel.

5. Documentation: Same as P4 system plus additional P-Code and extra parameters
descriptions.

CABLE ADDIES-S: WElllNSf {IsraelI :~~D;' '(lID PHONE: (D54)82111-8.5111 :Tltlc", TELEX: ~"14 :opl",

6. Maintenance Policy: Bug reports receive prompt attention al'ld replies.
Various optimization programs will be announced as

available.

7. Standard,

Extensions to P4 (Standard):
Multiple global text files permitted and "FILE OF CHAR" properly processed,
Procedure/Function may be declared as formal parameter (no run-time check
for argument match) ;

PACK,UNPACK,ROUND,REWRITE,RESET implemented;

e,el:e2 implemented for real e in WRITE-lis.t;

MAXINT a'ccessible as standard constant.

Non-Standard Extensions:

FORTRAN, EXTERN and independent compilation option (*$E+*);

Additional digraphs and operator codes (e.g. '1(.II,".)",u&").

8. Measurements:

- Compilation speed: 1300 characters/second (measured compiling itself;
4442 lines x BO characters per line in 280 seconds - 300 seconds with
listing) •

- Compilation space: 288000 B-bit bytes (this can be reduced somewhat
from the actual l1B64l6 4-byte words of storage, by reducing the stack/

heap which is nominally l28K bytes for GOLEM B - the basic level-O stack
requirement is 6700 bytes, plus 700 bytes per recursion level of BODY and
a basic procedural overhead of 32 bytes per nested call).

- Execution speed: Approximately 1/5 as fast as PASCAL 8000 on our 370/165
(the GOLEM is intrinsically 1/2 as fast).

- Execution space: 8.3 bytes / P-Code instruction (peep-hole optimization
improves this figure dramatically), plus data storage as follows:

Item Size Allignment

Stack element 8 bytes 8 bytes
Real 8 8
Integer 4 4
Pointer 4 4
Character 1 byte byte
Set 1-8 bytes byte
Boolean 1 bit bit

Note that Boolean arrays are optimally stored, I-bit/element; the cost in
access overhead is modest. Declared scalars are represented as integers.

:3
J:>
:;0

n = ,
......
lD
CO
a

9. Eeliability:

Excellent - this is primarily due to the high quality of the P4 system
we received from Zurich. We have conserved their design and implement­
ation principles in all modifications. Two sites, both of them at the
WI, are currently using the system. Two others are considering it.

10. Development Methods

The P4 Compiler was transported to the GOLEM in approximately three months
(real time) by one person. The P-Code is expanded as macros by our Assemb­
ler to produce a mixture of in-line instructions and subroutine calls.
The Assembly-language system consists of 3430 source lines, including all
macro definitions and full run-time support. Total effort to date is
approximately 6 man-months by professional programmers plus 2 student­
months. Included in this effort are 850 lines of modifications and ex­
tensions to P4, w·ritten in PASCAL, replacing and extending 300 lines of
the received compiler.

The implementor had previously been project manager for CDC FORTRAN '63,
supervised the development of several other compilers and written numerous
Cross-Asemblers and Simulators; although familiar with ALGOL he had no
previous knowledge of PASCAL.

11. The FORTRAN and EXTERN extensions permit access to FORTRAN libraries
(specifically NAG and IMSL) and to independantly compiled PASCAL proce­
dures and functions. All linkage is via our system linking loader, so
normal JCL suffices:

e.g. a) PASCAL (SOURCE)
EXAMPLE

compiles and executes the program EXAMPLE from the file SOURCE.

b} PASCAL (Sl)
PASCAL (S2,BINAE'll)
PASCAL (S3,BINAEY2)
FOETRAN (S4, BINARY3)
LOADNAG, EXAMPLE
EXAMPLE

compiles 4 files and links their programs with binary and NAG routines and
executes the resultant load-module, EXAMPLE, which has the same name (in
this case) as the PROGRAM statement of the principal file.

No automatic text copying is supplied, however, various edito-rs obviate
the need for this facility with COPY,DECK,COMDECK,COMMON and INCLuDE
connnands.

A symbolic-dump-table option produces a symbolic file which is used by a
PASCAL-coded Post-Mortem dump procedure to produce a symbolic dump (one
new P-CODE instruction is produced for this purpose) .

We have two Master's thesis projects developing transportable
optimization programs for global and peep-hole optimization. I'll keep
you informed of their progress. We're also developing a Cross-compilation
support system to provide PASCAL capability to all the lab-computers
(Mini's and Micro's) connected to our major computer complex.

Sincerely,

, "-(. ~ 'i

William Silverman

P.S. 01?W n~~~i to Kris and Elaine Frankowski and hello to Larry Liddiard,
et al in the Computer Science Dept.

tntel 8085/8080 (Digital Marketing)

This co""iler runs under CP/M and is a Pascal-P descendant.
is $350.

Digital Marketing
2670 Cherry Lane
Walnut Creek, CA 994596

The prIce

......
l.D
00
o

......
o
V"l

0)

1)

2)

4)

5)

6)

7)

GAMMA TECHNOLOGY Pascal for Data General AOS Systems

Implementation Checklist

DATE/VERSION:
AOS Pascal Revision 2 - September 1979
Checklist date: November 16~ 1979

D ISTR IB UTOR:
Gamma Technology, Inc a
2452 Embarcadero Way
Palo Alto, CA 94303
(415) 856-7421
TWX: 910-373-1296

IMPLEMENTOR/MAINTAINER:
Pete Goodeve
3012 Deakin Street
Berkeley, CA 94705

MACHINE/SYSTEM CONFIGURATION: 3) SYSTEM CONFIGURATION:

Data General Eclipse and M600 Series AOS Rev 2.00 or later
Floating point hardware

DISTRIBUTION:
documentation

$500 package comprises a 9-track, 800 bpi magnetic tape and
(package price is $50 if it is an upgrade to a previously purchased

release-1 system.
Tape is in AOS dump format, containing a complete system, documentation, and

sources. Included at no charge are some public domain Pascal utilities based on
thQse supplied by the University of Minnesota.

DOCUMENTATION: An instruction manual gives details of usage under AOS; a current
textbook should be referred to for knowledge of the Pascal language itself.

Differences from the (draft) standard (and from previous versions) are
described in reference sections of the manual.

An AOS "HELP" file is supplied, and also documentation for the utilities.
All documentation is also in machine-retrievable form.
An up-to-date list of bugs and notes will be maintained.

MAINTENANCE POLICY: Bug reports (in writing) are encouraged; please send them to
the distributor (Gamma Technology). The system is expected to be stable; no
incremental upgrades are planned, but fixes will be di.stributed. Any future major
development will depend on demand.

STANDARD: The compiler is a considerably enhanced derivative of P-4 (christened
"P_5 11) with many major restrictions of the original removeda

Restrictions:
PACKED is ignored; PACK and UNPACK are not implemented.
DISPOSE is not implemented; heap management is by MARK and RELEASE.
Parameters may not be Procedural or Functional a
Subrange set constructors are not recognized.
There are restrictions on READ and WRITE (but not on GET and PUT) for
files either passed as parameters or coded as non-text·restriction on
Only four text files may be in use at one time (no
other types).

Enhancements over earlier versions (P-4):
Files may be of any type (except FILE).
Any (global level) files may be specified external in program headera
Full ASCII is supported; lower and upper case alphabetics are equiva­
lent identifiers. Braces may be used as comment delimiters.

8)

9)

10)

11)

String constants may be up to one line in length.
Format control of real output is as defined by the standard.
TEXT and NAXINT are predeclared.
GOTOs must be to a line within enclosing scope (standard Pascal).
Stack frame allocation is improved.

Language enhancements:
External procedures (Pascal or assembly code).
HALT (or HALT(n» abnormal termination feature.
Random access to all files.

AOS features:
Compile command options (selecting e.g. cross-reference listing,
binary only, syntax check only, etc.).
?-fax stack/heap space allocated . can be specified at both compile
and execution time.
External files may be specified in execution command.

MEASURFJ.IENTS: No real timing tests have yet been made, but compiler compiles
itself (on a quiet system) in 10 or 11 minutes.

The run-time interpreter occupie.s about 9 Kbytes. In addition to this, and the
space needed for the program's P-code, a default of 4K bytes is allocated for run­
time stack and heap space; this can be increased or decreased by the user at
compile and/or run time the range is from 2K bytes up to the limits of the
machine.

RELIABILITY: Excellent, over the two months it has been running at the
development site. No Pascal program has yet managed to cause a system crash
(unlike other languages runing under AOS).

Revision 1 is now in use at abut 20 sites, with a good reliability record. A
few slight problems (mainly with stack overflow) found in that revision have been
fixed in the new one.

DEVELOPMENT NETHOD: This is a fast P-code interpreter system. The compiler
generates an extended, machine-independent symbolic P-code, which is then
translated and assembled into a compact binary form; this is bound with the
interpreter to create an executable program file. The sequence from source to
program file is managed automatically by a single user command.

This "P-S" compiler has been developed directly from the Lancaster version of
P-4. It should be completely transportable, except that it assumes the character
set is ASCII. Aside from its use of HALT{n), the compiler is written entirely in
standard Pascal. It was necessary, however, to split the compiler P-code into
overlay segments, so that large programs can be compiled (the overlay scheme is
not available to user programs).

The P-code translator is written in Pascal, and the run-time system in Eclipse
assembly language.

LIBRARY SUPPORT: Pascal cannot be linked to other languages for the Eclipse
(except assembly language), because each has its own stack format.

External procedure modules may be co~piled separately and linked to a main
(Pascal) program. External procedures may also be written in assembly language.

One or two library procedures are supplied with the system (for example, for
extra file management functions), but no general library is envisaged aside from
the utilities already supplied.

IMPLEMENTATION NOTES ONE PURPOSE COUPON

O. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

2. MACHINE/SYSTEM CONFIGURATION (* Any known limits on the configuration orsupportsohwarerequired, e.g.

operating system. *)

3. DISTRIBUTION (* Who to ask, how it comes, in what options, and at what price. *)

4. DOCUMENTATION (* What is available and where. *)

5. MAINTENANCE (* Is it unmaintained, fully maintained, etc? *)

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How. *)

7. MEASUREMENTS (* Of its speed or space. *)

8. RELIABILITY (* Any information about field use or sites installed. *)

9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *)

10. LIBRARY SU PPORT (* Any other support for compiler in the form of linkages to other languages, source libraries, etc. *J

(FOLD HERE)

BOB DIETRICH
M. S. 63-211
TEKTRONIX INC.
P.O. BOX 500
BEAVERTON, OREGON
97077 U.S.A.

(FOLD HERE)

NOTE: Pascal NeWs publishes all the checklists it
gets. Implementors should send us their checklists
for their products so the thousands of committed
Pascalers can judge them for their merit. Otherwise
we must rely on rumors.

Please feel free to use additional sheets of paper.

PLACE
POSTAGE

HERE

IMPLEMENTATION NOTES ONE PURPOSE COUPON

POLICY: PASCAL USERS GROUP (17-Mar-80)

Purpose: The Pascal User's Group (PUG) promotes the use of the programming
language Pascal as well as the ideas behind Pascal through the
vehicle of Pascal News. PUG is intentionally designee to be non
political, and as such, it is not an "entity" which takes stands on
issues or support causes or other efforts however well-intentioned.
Informality is our guiding principle; there are no officers or
meetings of PUG.

The increasing availability of Pascal makes it a viable alternative
for software production and justifies its further use. We all
strive to make using Pascal a respectable activity.

Membership: Anyone can join PUG, particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Memberships from libraries are also encouraged. See the
ALL-PURPOSE COUPON for details.

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and read by
humans, and efficient to translate by computers.

Pascal has met these goals and is being used successfully for:
* teaching programming concepts
* developing reliable "production" software
* implementing software efficiently on today's machines
* writing portable software

Pascal implementations exist for more than 105 different computer systems, and
this number increases every month. The "Implementation Notes" section of
Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There"
section of Pascal News.

The programming language, Pascal, was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acron~.

Remember, Pascal User's Group is each individual member's group. We currently
have more than 3357 active members in more than 41 countries. this year
Pascal News is averaging more than 120 pages per issue.

1J o -_.
n
'<

Return to:

PASCAL USERS GROUP
P.O. Box 888524
Atlanta, GA 30338

Return postage guaranteed
Address Correction requested

Bulk Rate
U.S. Postage

PAID
Atlanta, Ga.

Permit No. 2854

,

