
The SOTM
Desktop Computer

Users' Guide

!i~n~liC!i
a subSIdiary of U.S. Philips COf'"poration

rlGnlTICr
InSTRUCTOR 50
USIRS'

!i!!llotiC!i
a subsidiary of U.S. Philips Corporation

Signetics Corporation
P.O. Box 9052

811 East Arques Avenue
Sunnyvale, California 94086

Telephone 408n39-7700

Signetics reserves the right to make changes in the products
manual in order to improve design or performance and to
possible products. Signetics also assumes no responsibility
any circuits described berein, conveys no license under any
right, and makes no representations that the circuits are
infringement. Reproduction of any portion hereof without.
consent of Signetics is prohibited.

contained in thii
supply the best
for the use of
patent or other

free from ~atent
the prior written

Copyright June 1978, Signetics Corporation

PREFACE

This manual provides tutorial and reference information on the Signetics
INSTRUCTOR 50--a complete, fully assembled and low cost microcomputer system.
The INSTRUCTOR 50's computing power is enhanced by the Signetics 2650
microprocessor which is described in detail in Chapter 9.

INSTRUCTOR 50 is designed to assist you in learning programming and in
writing, debugging, and testing the programs you develop. There is enough
information here to get you started, whether or not you have ever written a
program before. The only prerequisite is a familiarity with the 2650
microprocessor. Readers who are not familiar with the 2650's hardware
structure and instruction set should read Chapter 9 prior to using the
INSTRUCTOR 50.

The microprocessor has brought with it a host of terms which e~perienced users
bandy back and forth with the greatest of ease. For the novice, this
"language within a language" can be an obstacle of no small proportions. For
the benefit of these people, Chapter 1 is devoted exclusively to microcomputer
basics. To further assist you, we've put a glossary in the back to summarize
some of the more frequently used buzz words.

CONTENTS

PREF ACE ••

1.

2.

3.

MICROCOMPUTER BASICS ••••••••••••••••••••••••••••••

A Micro Defined •••
Word/Byte/Nibb Ie•............•.....•..•.••.•.....•.
Binary Notation •••
Hexadecimal Notation .•••••••••••••........••••••.••.•••••••••.
Architecture .. .
Program Counter (Jumps, Subroutines and the Stack) ••••••••••••
Instruction Register and Decoder ••••••••••••••••••••••••••••••
Add.ress Register(s) .. .
Addressing Modes••..•..•......•••......•.•....•......•
Extended/Non-Extended I/O ...•.....••..•...•..••..•.•..••.•••.•
Software••.............•....................•••...•••
Machine Language••.........................•.••...•••••.
As s emb 1 y Languag e •••••••••.•••••••••••••••••••••••••••••••••••
Higher-Level Languages ••••••••••.•••••••••••••••••••••••••.•••
Other Software ••••.••.••.•••••••.•••.••.••••••••••••••••••••••

GETTING STARTED •••

Introduction ••
Power On and Initial Display .•.••..•..••.........••.....••...•
Operating Modes
Keying in and Entering Values•.................•.•..••....
Correcting Entry Errors •..........•..•...•....•.••.......••...
The Prompt Light•.............•........•...••.......•
Entering and Executing a Simple Program •••••••••••••••••••••••
Example 2: The Billboard Program •••••••••••••••••••••••••••••
Example 3: The Clock Program •••••.••••.•.••••..••••..•••.••••

SYSTEM OVERVIEW ..•......••.....•.....•.•••........•....•.••...

Introduction •..•••...........•..........•....•.....•.•••.•..•.
2650 Microprocessor•...•....•..•.......••....••••.•....•
2656 System Memory Interface ••••••••••••••••••••••••••••••••••
Keyboards ..•.....•.....••••.•••.•................•..•....•..•.
Di sp lay Pane 1 ...••...•......••••.....•..............••.•....•.
Audio Cassette Interface ••...•......••..•.••••••••••••••••••••
Sl00-Compatib1e Expansion Bus •••••••••••••••••••••••••••••••••
Monitor FirtnW'are ••••••••.••.••.••••••..•••••••••••••••••••••••
Debugging Aids••••.................•...••••..•.•••...
On-Board User I/O •••••••••••••••••••••••••••••••••• ~ ••••••••••
Forced Jump Logic .•..•...••.....•.......•..•.•.•...••.•...•...
Memory and I/O Organization •••••••••••••••••••••••••••••••••••
Clock Circuitry •••••••••• ~ ••••••••••••••••••••••••••••••••••••
Internal Power Supply •••

iv

iii

1-1

1-1
1-1
1-2
1-2
1-3
1-4
1-6
1-6
1-6
1-8
1-9
1-10
1-10
1-10
1-10

2-1

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-6
2-12

3-1

3-1
3-1
3-3
3-3
3-3
3-3
3-3
3-5
3-5
3-5
3-7
3-7
3-7
3-7

4.

5.

6.

CONTENTS (cont.)

CONTROLS AND INDICATORS ••.•••••••• .
Introduc t ion•.......... . '•
Function Control Keyboard •..••••••••••••••••••.•••.•••••••••.•
He~adecimal Keyboard •••••••••••••.••.••••.••••••••.•••••••••••
Eight-Digit Hex Display Panel •••••••••••••••••••••••••••••••••
Port Data Input Switches ••••••••••••••••••••••••••.•.••.••••••
Port Data Indicators ••
Direct/Indirect Interrupt Switch ••••••••••••••••••••••••••••••
Port Address Select Switch ••••••••••• .
FLAG Indicator .•.... ..•..••..•....•...•.....•.•.••....•.•.••.•.
RUN Indicator ..•••••..•..•....••.••....•••.•.•••••.•.•••••... ".

COMMAND DESCRIPTIONS ••

In t roduc t i on .•••••.••..••..••.•.....••.•.•.•...••.••••.•....•.
Display and Alter Registers •••••••••••••••••••••••••••••••••••
Display and Alter Memory ••••••••••••••••••••••••••••••••••••••
Fast Patch ..•.•..•...•.•.•.....•••••••..• ..••• ' .•..••••....••••.
Display and Alter Program Counter •••••• .
Breakpoint .•.......... • , ...•....•.............••......•.....••.
Step ..•.••.••••.••.••••.••.••...•••..•••..•••..•..•••••••.••.•
Write Cassette•....••..•.....•••.•..•....... J •••••••••••••

Adjus t Cassette••...............••.•....•••
Read Cassette•.•.....•.............
Run •• •.••••••••
Reset •••••• .
Error Messages ..•........•.... a •••••••••••••••••••••••••••••••

USING THE INSTIJCTOR 50 ••••••••• -
Restrictions on Using the 2650 Instruction Set ••••••••••••••••
U8~ng Interrupts•.....•..•.........•..•.•.•....
Using the I/O Switches and Lights •••••••••••••••••••••••••••••

FLAG and SENSE I/O ••••••••••.•••••••.••••.••••.••••.•••••
Non-Extended I/O ••••••.••••••••••••••••••••••••••••••••••
Extended I/O •••••••••••••••••••••••••••.••••.••••••••••••
Memory Mappe d, I/O •••••••••.•••••••••••••••••••••••••••••••

Calling Monitor Subroutines •••••••••••••••••••••••••••••••••••
MOVE Subroutine ••••••• e,a •• e ••••••••••••••••••••••••••••••

DISPLAY Subroutine •••••••••••••••.••••••••••.•••••.••••••
USER. DISPLAY Subroutine •••••••••••••••••••••••••.•••••••••
NIBBLE Subroutine ••....••..••••.••••••••.••.•.••••••.•.
INPUT DATA Subroutine ••••••••••••••••••••••••••••••••••
MODIFY DATA Subroutine •••••••••••••••••••••••••••••••••••

Jumper Opt ions ••••••••••••••••.• ••••••.••••••.••••••••.••.•••••
Jumper A Interrupt Selection •••••••••••••••••••••••••••
Jumper B S100 Clock Select •••••••••••••••••••••••••••••
Jumper C
Jumper D

Power Source Select •••••••••••••••••••••••••••
Cassette Output Selection •••••••••••••••••••••

v

4-1

4-1
4-1
,4-3
4-4
4-4
4-4
4-4
4-4
4-4
4-4

5-1

5-1
5-2
5-4
5-6
5-8
5-10
5-12
5-14
5-17
5-19
5-21
5-22
5-23'

6-1

6-1
6-1
6-5
6-5
6-5
6-6
6-6
6-6
6-8
6-10
6-12
6-14
6-16
6-19
6-22
6-22
6-24
6-24
6-25

7.

8.

9.

CONTENTS (cont.)

SYSTEM En-ANSlON""""""""""""""""""""""""""",, .. ,,""""""""""""""""

Introduc tion. " " " " " " " " "

THEORY OF OPERA.TION " " " .. " .. " .. " ..

Introduc tion " .. " ..
Bas ic Concept ... "
Detailed Block Diagram Description ••••••••••••••••••••••••••••
'rh.e Microco1Dputer " " " "
INSTRUCTOR 50 Memory Allocation •••••••••••••••••••••••••••••••
Parallel I/O Port " "
Keyboard and Display Logic ••••••••••••••••••••••••••••••••••••
Bit Assignments for Keyboard and Display Ports ••••••••••••••••
The Cassette Interface ••••••••••••••••.•••.•••••••••••••••••••
Interrupt Logic .. "
Forced Jump Logic •••••••••••••••••.•••••••••••••••••••••••••••
Power On (POR) or MON Key Depression ••••••••••••••••••••••••••
Breakpoint Detection ••••••••••••••••••••••••••.••••••••••••••.
Single Step •••
S100 Bus Interface ••
System Power •••••..••••..•..••.••.••••.•.•..••......••••..•..•
The USE Monitor •••

THE 2650 MICROPROCESSOR •••••••••••••• ·
Introduction•....•.........•..•...•........•...•.••.•..
Fea tures •........•••••..•.••.•••.•••••.•••••••••••..•..•...••.

Low Sys tem Cost ••
Ease of Use ••
Wide Range of Applications •••••••••••••••••••••••••••••••

2650 Microprocessor Characteristics •••••••••••••••••••••••••••
General .••••.••.•.....••••••••••••...............•......•
Interfaces ••••••••••••••••••••.•
Architecture ••••••••••••••••••••

· ·
Instruction Set •••••••••••••••••••••••••••••••••••••••

Internal Organization •••••••••••••••.••.••••.••.•••••••••.•
Program Status Word ••.•••••.•••••••••••••••••••••••••••••
Sens e (S) ••••••••••••..••••••••••••••••••.•••••••••••••••
Flag (F) •• 0 •••••••••

Interrupt Inhibit (II) •••••••••••••••••••••••••••••••••••
Stack Pointer (SP) •••••••••••••••••••••••.••..•••••••••••
Condition Code (CC) •••••.•.••••••••••••••...•••••••••••••
Interdigit Carry (IDC) •••••••••••••••••••••••••••••••••••
Register Select (RS) •••••••••••••••••••••••••••••••••••••
With/Without Carry (WC) ••••••••••••••••••••••••••••••••••
Compare (COM) ••
Carry (C) ••••.••.•.•••••••.•••.••.•••••.••••.•••.••••••.•
Over flow (OVF) •••
Memory' Organization ..•.•.•.••.••...•••.•..•.•••••••.••...

vi

7-1

7-1

8-1

8-1
8-1
8-3
8-3
8-5
8-8
8-8
8-11
8-12
8-12
8-12
8-14
8-14
8-15
8-15
8-15
8-16

9-1

9-1
9-1
9-1
9-2
9-2
9-2
9-2
9-2
9-2
9-3
9-3
9-5
9-5
9-5
9-6
9-6
9-6
9-7
9-7
9-7
9-8
9-8
9-9
9-9

10.

11.

12.

13.

CONTENTS (cont.)

Interface .•...
Pin Configuration ••.••••••••••.••••.•••••••••••••••••••••
Signal Descriptions •••••.••••.•.•.•••••••••••••••••••••.•
Signal Timing

Memory Read ••
Memory Write. ~ ••.•.•.•.•••••..••••.•••••••••.••••••••
I/O Device Read•....
I/O Device Write•...•.............•.•••....••...

A Minimal System Example ••••••••••.•..•••••.•••.••••••••••••••
Input/Output Facilities ••••••••••••.•••••••.•••••••••••••.••.•

Flag and Sense r/o
Non-Extended I/O •••••••••••••••.•••.•••••••.•.•.••.••....
Extended I/O .•••.•••••••••••••••••••.•.••••••••.•••.•••.•
Memory I/O •••

Interrupt Mechanism ...••......•.•........••.••..•••.....•••...
Subroutine Linkage ••.••••.•••••••.••••••••••••••••••••••••••••
Condition Code Usage•.•••..•••••.••••••••••.••.•••••••••.
Start-Up Procedure •••••.••••••••••••••••.•••••••••••••••.
Ins true tions •••.•••••••••••••••••...•••••••.••••••.•••••.

Addressing Modes ••..•...•......•.......•.....•...........
Register Addressing •••••••.•.••••••••••••.•••.••••.••
nmmediate Addressing ••••••.••••••••••••••••••••••••••
Relative Addressing ••••••••••••••••••••••••.•••••.•••
Absolute Addressing for Non-Branch Instructions ••••••
Absolute Addressing for Branch Instructions ••••••••••
Indirect Addressing.~ ••••••••••••••••••••••••••••••••

Instruction Format Exceptions ••••••••••••••••••••••••••••
Detailed Processor Instructions ••••••••••••••••••••••••••

Introduction •••
Symbols and Abbreviations Used •••••••••••••••••••••••
Calculating Effective Addresses ••••••••••••••••••••••

Instruction Descriptions ..•.••..••••••••••••..••.••••••••

INSTRUCTOR 50 SYSTEM SCHEMATICS ·

USE PROGRAM. LISTINGS •• " ••

CONVERSION TABLES •••

ASCII Conversion Table ••••••.•.•..•••••.••.•••.•••••••••.•••.•
Decimal to Hex Conversion Table •••••••••••••••••••••••••••••••

GLOSSARY ••

vii

9-11
9-11
9-11
9-17
9-18
9-18
9-19
9-19
9-19
9-21
9-21
9-21
9-22
9-22
9-24
9-26
9-27
9-27
9-27
9-27
9-28
9-28
9-29
9-29
9-30
9-31
9-32
9-35
9-35
9-35
9-36
9-37

10-1

11-1

12-1

12-1
12-2

13-1

Figure No.

1-1
2-1
2-2
3-1
3-2
3-3
3-4
4-1
6-1
8-1
8-2
8-3
8-4
8-S
8-6
8-7
9-1
9-2
9-3
9-4
9-S
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13

LIST OF ILLUSTRATIONS

Title

Basic Elements of Computers ••••••••••••••••••••••••
Flowchart for Binary/Counter Program •••••••••••••••
Flowchart for Billboard Program ••••••••••••••••••••
INSTRUCTOR SO Basic Block Diagram ••••••••••••••••••
INSTRUCTOR SO ~isplay Font •••••••••••••••••••••••••
Basic USE Monito.r Flowchart ••••••••••••••••••••••••
Memory and I/O Organization ••••••••••••••••••••••••
Controls and, .Indicators ",.', .

Jumper L·Qcati~ons •••••••••••••••••••••••••••••••••••
Basic IN~TRUCTOR SO Architecture •••••••••••••••••••
INSTRUCTOR SO Detailed Block Diagram •••••••••••••••
Memory and I/O Organization ••••••••••••••••••••••••
Keyboard Layout•••.................•. . " .•
Bit Assignments for Keyboard & Display Ports •••••••
Cassette Record Waveforms ••••••••••••••••••••••••••
USE Command and Routine Executive ••••••••••••••••••
26S0/26S0A Block Diagram •••••••••••••••••••••••••••
Major 26S0/26S0A·Registers •••••••••••••••••••••••••
Rotate Operations .••..•.••••.••..••••..••••.•.•••••
26S0/26S0A Pin Configuration •••••••••••••••••••••••
Memory Read Operation ••.•••..•••••..•.•••••••...•••
Memory Write Operation •••••••••••••••••••••••••••••
I/O Device Read Operation ••••••••••••••••••••••••••
Seven Package Minimal System •••••••••••••••••••••••
26S0/26S0A I/O Facilities - General Block Diagram ••
Interrupt Operation
Example 1 - Indirect Addressing ••••••••••••••••••••
Example 2 - Indirect Addressing ••••••••••••••••••••
Instruction Formats •••.•••.••.•..•••••••••••.•.••.•

viii

1-4
2-3
2-9
3-2
3-4
3-6
3-8
4-2
6-23
8-2
8-4
8-7
8-10
8-11
8-13
8-17
9-4
9-4
9-8
9-12
9-18
9-19
9-20
9-20
9-23
9-2S
9-31
9-32
9-33

1. MICROCOMPUTER BASICS

This chapter introduces certain basic computer concepts. It provides beck--,
ground information and definitions which will be useful in later chapters',of
this manual. Those already familiar with computers may skip this materia1., i.<

Before we begin, note that we are using two words: microprocessor and micro~
computer. The microprocessor is a device wbich performs arithmetic, cont;1!'QlH
and logical operations. The microcomputer, in turn, is a collection of'Tde .. ,
vices that includes a microprocessor, memory, and associated interface 'cir~
cuits to communicate with the "outside" world. Because it has its own micro­
processor (the Signetics 2650), memory, latches, counters, buffers, power;f:'I'JP~(
ply, an operator keyboard and display panel, and a cassette input/output in~)
terface, the INSTRUCTOR 50 is a complete and fully operational microcompute1;'i
system housed in one single package. ",n "

A MICRO DEFINED

Since the microprocessor is a miniaturized, coventional digital computer in
integrated circuit (IC) form, a good place to start is with computers. Simply
put, A computer is a device capable of automatically carrying out a seqQencer

of operations on data expressed in descrete (digital) or continuous (a~aL,(>g):
form. Its purpose is to solve a problem or class of problems; it may; be'.:Q!J;le!
of control, analysis, or a combination of the two. In digital computers, num­
bers are represented by the presence of voltage levels or pulses on given
lines. A single line defines one bit. A bit is the smallest unit of informa­
tion in a binary system of notation. It is the choice between two possible
states, usually designated one (1) and zero (0). A group of lines considered
together is called a "word"; a word may represent a computational quantity
(operand) or it may be an instruction specifying how the machine is to operate
on computational quantities.

Word/Byte/Nibble
\ "\,' I

These terms are often misused in describing microprocessor· d~:ta. F(tr a'sp'~~
cific microprocesfjlor, a word is the number of bits associated; ,with,the, i~.
struction or data length. This can be 4, 8, 16 bits, e~c, .. ,c. depenAAng' on,.,.tn.e,
machine. A byte commonly refers to an 8-bit word; a byte can be manipulated
by a 4, 8, or 16-bit microprocessor. For example, inf:'l~ructiolts a~e.-oft:e{l . ,pro:","
vided to deal with byte data in 4 or 16-bit processors .'Jhis··:is·,c\611e4 byt~
handling, and is independent of the natural word siz,e, ·of the l11&chinJt,o v .IV ",

A nibble is 4 bits, and it is rather humorous to consider that it takes two
nibbles to make a byte. Nibble (or 4 bit) contr01cant:te :found,:on~ny,,8~pip
word machines as well as on some l6-bit machineS;.i '>;(Ji'.our-b;;i,t,pper~ions;·a.lf~
usually associated with Hexadecimal (Hex) or Binary 'Colied .D:.ecinu~,l (Ben), .. oPEn<;~""
tions. Applications that have a man/machine inter'f:a,"~, El,u,.c;h' aft a ,.ciotltrql:ke~"7',
board or a numeric display, are good candidat~,s, Jor nib,bl(·~Rntrol. " ':e)

"' .1.,' ,~ " .. '.' . ".- '. , "

Binary Notation

One of the problems in communicating with a computer is language. How does an
el~etronic instrument handle and manipulate numbers? The answer is suggested
by,.the nature of aU electrical devices: a light bulb is either on or off, a
switch is either open or closed, a magnet has a field in one direction or the
opposite. For the purpose of understanding computer language, one can think of
thl!~~!"!?,n" condition as being equal to 1 and the "off" state as O. So the com­
pufe~1'which is made up of literally millions of electronic components, has
two[numbers it can work with. These numbers, 1: and 0, form all the elements
needed in the binary system of notation.

In'oilr more familiar decimal system, the right-hand column of a figure counts
numbers up to 9; the column to the left of that registers the number of lOs;
thtf coitmm next to the left registers hundreds--then thousands, miUions, and
so on. In binary notation, the columns starting at the right register powers
of 2 instead of 10. Take the binary number 10110, with successive powers of 2
noted above each column:

16
1

8
o

4
1

2
1

1
o

A:ddingtogether the powers of 2 turned "on" in this binary number--16, 4 and
2;....w~~ ~rrive at its decimal equivalent--22. The first eight decimal numbers
tT';ans lated into the binary system look like this:

~' .

1 = 1
2 = 10
3 = 11
4 = 100

Hexadecimal Notation

5
6
7
8

=
=
=
=.

101
110
11L

1000

To deal with large binary numbers, certain simplifications are extremely help­
fuL To this end, hexadecimal notation is often used. The term "hexa­
decimal", or'hex for short, refers to a shorthand method of expressing a group
of of our cOItsecutive' binary bits by a single digit. Valid digits range from 0
through F ,.whereF represents the highest decimal value (15). See Table 1.1.

Two hexadecimal digits can ,be used to specify a byte. Hexadecimal notation is
very convenient for microprocessors since it gives good counting densities and
works very -wellwith,the' multiples-of-four binary words usually encountered in
a microprocessor.

To understand hex notation, take a decimal number like 10710 • In binary no­
tation:j this becomes 11010112. Breaking this number into 4-bit nibbles
(half";'bytes), you get 01102 and 10112. The first and most-significant
nibble is 'equal to 616 , while the second and least-significant nibble is
equal to B16.Thus, in hexadecimal notation, 10710 becomes 6B16. One
way to distinguish hexadecimal numbers from numbers wr1tten in other number
systems (e.g., decimal, octal, etc.) is to enclose the hex number in single

1-2

Decimal Hexadecimal Binar!

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Table 1.1: Relationship among decimal~ hexadecimal,
and binary systems.

quotation marks and precede it by the letter H. Hence, in hex notation 6B16
would appear as H'6B'. To convert from decimal to hexadecimal, or vice versa,
you must first convert the number into binary and then into hexadecimal as
previously illustrated.

The INSTRUCTOR 50 uses the hexadecimal number system for entering values.
Since the INSTRUCTOR 50 uses 8-bit bytes, two hexadecimal digits can be used
to specify a byte. The smallest hexadecimal number is H'OO' (000000002) and
the largest is H'FF' (111111112)' The INSTRUCTOR 50 still reads only binary
numbers; hexadecimal is the user's shorthand, not the microcomputers.

Architecture
A microcomputer looks, architecturally, like any other computer (Figure 1.1).
What distinguishes a micro from other computers is the intrinsic power inside
each of the five functional boxes. What large-scale computers used to do,
minis now handle. Similarly, micros have begun to supplant minicomputers in
many applications. Advances in semiconductor technology have made this possi­
ble.

The four basic elements of all programmable computers emerge:

• Memor! -- A storage unit. In modern computers, memories are implemented
with semiconductor or magnetic core systems. Memories can be read only (ROM),
for program or data constant storage, or read/write random access (RAM) for
program, operand or temporary storage. Data is usually stored in binary nota­
tion. The memory is composed of storage space for a large number of words,
with each storage space identified by a unique address. The word stored at a
given address might be either computational data (operands) or an instruction
(such as add, read from memory, etc.).

1-3

• Arithmetic & Logic Unit (ALU)' -- Performs the arithmetic and/or logical
operations on operands or provides partial results within the computer. The
simplest ALU consists of a parallel adder and an accumulator. The adder adds
(or performs similar logical operations, e.g., OR) two inputs, A and B, and
produces the output. The accumulator holds intermediate results of a computa­
tion or numbers for a pending computation. The accumulator serves as a tem­
porary storage device.

• Control unit -- Referred to as the brain of any computer because it coor­
dinates all units of the computer in a timed, logical sequence. The control
unit generates clock pulses to control and maintain the proper sequence of
operations within the microprocessor. It also responds to external signals
such as an interrupt request. In fixed-instruction computers, this unit re­
ceives instructions from the program memory. These instructions are in se­
quences, called programs. The control unit is closely synchronized to the
memory cycle speed, and the execution time of each fixed instruction is often
a mUltiple of the memory speed.

• Input/Output -- The means by which the computer communicates with a wide
variety of devices, referred to as peripherals. They include audio cassette
recorders, switches, indicator lamps, teletypewriters, CRT terminals, paper
tape units, line printers, A/D orD/A converters, card readers and punches,
communication modems, etc. The I/O lines can be connected to intermediate
storage devices for use with mass memories, including magnetic discs and
large-scale RAM systems.

Program Counter (Jumps, Subroutines, and the Stack)

The instructions that make up a program are stored in the system's memory.
The central processor references the contents of memory in order to determine
what action is appropriate. This means that the processor must know which lo­
cation contains the next instruction.

Each of the locations in memory is numbered to distinguish it from
locations in memory. The number which identifies a memory location
its Address.

r-------l
I ARITHMETIC

I & LOGIC

I UNIT I Central
(ALU) Processing

I
f

I Unit (CPU)

I
I I

INPUT .- CONTROL
I OUTPUT , ,

I I
L---f---...J

STORAGE
(MEMORY)

Figure 1.1

1-4

all other
is called

The processor maintains a counter which contains the address of the next
gram instruction. This is called a Program Counter (PC). The processor
dates the program counter hy adding to the counter each time it fetches an
struction, so that the program counter is always current (pointing to the
instruction). If an instruction takes several words in memory, the PC is
cremented by the proper numher so that it is always pointing to the first
of the next instruction.

~e programmer therefore stores his instructions in numerically adjacent
dresses, so that the lower addresses contain the first instructions to be
ecuted and the higher addresses contain later instructions. The only time
programmer may violate this sequential rule is when an instruction in one
tion of memory is a jump instruction to another section of memory.

pro­
up­
in­

next
in­

word

ad­
ex­
the

sec-

A jump instruction contains the address of the instruction which is to follow
it. The next instruction may be stored in any memory location, as long as the

.programmed jump specifies the correct address. During execution of a jump in­
struction, the processor replaces the contents of its program counter with the
address embodied in the jump. Thus, the logical continuity of the program is
maintained.

A special kind of program jump occurs when the stored program calls a sub­
routine. In this kind of jump, the processor is required to "remember" the
contents of the program counter at the time that the jump occurs. This en­
ables the processor to resume execution of the main program when it is finish­
ed with the last instruction of the subroutine.

A subroutine is a program within a program. Usually it is a general-purpose
set of instructions that must be executed repeatedly in the course of a main
program. Routines which calculate the square, the sine, or the logarithm of a
program variable are good examples of functions often written as subroutines.
Other examples might be programs designed for inputting or outputting data to
a particular peripheral device.

The processor has a special way of handling subroutines, in order to insure an
orderly return to the main program. When the processor receives a call in­
struction, it increments the Program Counter and stores the counter's contents
in a reserved memory area known as the stack. The stack thus saves the ad­
dress of the instruction to be executed after the subroutine is completed.
Then the processor loads the address specified in the call into its Program
Counter. The next instruction fetched will therefore be the first step of the
subroutine.

The last instruction in any subroutine is a return. Such an instruction need
specify no address. When the processor fetches a return instruction, it sim­
ply replaces the current contents of the Program Counter with the address on
the top of the stack. This causes the processor to resume execution of the
calling program at the point immediately following the original call instruc­
tion.

Subroutines are often neste~; that is, one subroutine will sometimes call a
second subroutine. The second may call a third, and so on. This is perfectly
acceptable, as long as the processor has enough stack capacity to store the
necessary return addresses, and the logical provision for doing so. In other
words, the maximum depth of nesting is determined by the depth of the stack
itself. If the stack has space for storing three return addresses, then three
levels of subroutines may be accommodated.

1-5

Processors have different ways of maintaining stacks. For example, some, like
the Signetics 2650, have facilities for the storage and return addresses built
into the processor itself. Other processors use a reserved area of external
memory as the stack and simply maintain a pointer register which contains the
address of the most recent stack entry. The external stack allows virtually
unlimited subroutine nesting.

Instruction Register and Decoder

Each operation that the processor can perform is identified by a unique byte
of data known as an Instruction Code or Operation Code. An eight-bit word
used as an instruction code can distinguish between 256 alternative actions,
more that adequate for most processors.

The processor fetches an instruction in two distinct operations. First,
processor transmits the address in its Program Counter to the memory.
the memory returns tha addressed byte to the processor. The CPU stores
instruction byte in a register known as the Instruction Register, and uses
to direct activities during the remainder of the instruction execution.

the
Then
this

it

An eight-bit instruction code is often sufficient to specify a
cessing action. There are times, however, when execution of
requires more information than eight bits can convey.

particular pro­
the instruction

One example of this is when the instruction references a memory location. The
basic instruction code identifies the operation to be performed, but cannot
specify the operand address as well. In a case like this, a twoor three-byte
instruction must be used. Successive instruction bytes are stored in se­
quentially adjacent memory locations, and the processor performs two or three
fetches in succession to obtain the full instruction. The first byte retriev­
ed from memory is placed in the processor's instruction register, and subse­
quent bytes are placed in temporary storage; the processor then proceeds with
the execution phase. Such an instruction is referred to as variable length.

Address Register(s)

A CPU may use a register pair to hold the address of a memory location that is
to be accessed for data. If the address register is programmable (i.e., if
there are instructions that allow the programmer to alter the contents of the
register), the program can "build" an address in the address register prior to
executing a memory reference instruction (i.e., an instruction that reads data
from memory, writes data to memory or operates on data stored in memory).

Addressing Modes

An instruction word must convey the operation to be performed (operation code)
and the address of the memory location or registers containing the data on
which the operation is to be performed (operand). An n-bit instruction may be
divided into three basic parts: 1) an operations code, 2) an address mode,
and 3) an operand add.ress. The number of bits in each of these parts varies
from microprocessor to microprocessor.

1-6

The instruction length depends on the machine and the operation being perform­
ed. An 8-bit instruction format would allow only 28 = 256 possible combina­
tions of operations and addresses. This is obviously inadequate if a reasona­
ble-size memory is to be accessed. For this reason 2 and 3-byte instructions
are frequently used for memory access. Such an instruction is 16 or 24 bits
long. In most cases, one byte is used to represent the operations code and
address mode portions of an instruction. The number of bits used for each of
these and their relative locations within the byte vary from processor to pro­
cessor. The address mode and operand part of the instruction combine to indi­
cate the location in which the operand is stored. There are numerous modes of
addressing the operand. The most important for microprocessors include direct
(or absolute), indirect, relative, indexed, and immediate addressing. The ad­
dress mode portion of the instruction specifies how the address is to be in­
terpreted. These addressing modes are defined as follows:

• Direct Addressing. With direct addressing, the address of the operand is
specified directly in the instruction. This is a common form of addressing
used in microcomputers. Direct addressing usually requires multiword in-
structions in 4 or 8-bit microprocessors.

• Indirect Addressing. In this mode, the instruction provides the address at
which the address of the operand is to be found. In microprocessors, a
form of addressing called register indirect addressing is commonly used.
The address is stored in one or more registers within the CPU. In most
cases, this architecture allows any location in memory to be addressed with
a single-word instruction. Indirect addressing allows modification of the
operand address during execution of the program.

• Relative Addressing. In relative addressing, the address is specified by
its relation to the program counter. In this mode the address specified in
the instruction is added to the number in the program counter to obtain the
address of the operand. For example, if the address in the instruction is
11 and the program counter contains 124, then the address of the operand
will be 11 + 124 = 135. The use of relative addressing simplifies the
transfer of programs to different areas of memory.

Microcomputer memory is frequently structured into~. A page may consist
of 256 words of memory and is frequently located on a single IC. A page
structure divides the memory into small blocks. The use of paging reduces the
necessity for multiword memory reference instructions. In conjunction with a
memory page structure, a form of relative addressing called page relative ad­
dressing is frequently used. In page relative addressing, an operand address
given in the instruction is interpreted as a location on the same page of me­
mory addressed by the program counter. In page-O relative addressing, the
operand address refers to a location on page 0 of the memory, regardless of
the program counter contents.

• Indexed Addressing. This mode is similar to relative addressing. The ad­
dress specified in the instruction, however, is relative to a prespecified
register other than the program counter. This register is called the
index. The address given in the instruction is added to the contents of
the index register to determine the address of the operand. Indexed ad­
dressing is valuable in programs involving tables or arrays of numbers.
The address of the first element of the table may be stored in the index
register, and all other elements in the table may be addressed in

1-7

relation to the first element.

• Immediate Addressin~. In this mode, the operand. is given in the
tion itself. In a microprocessor with only an 8-bit word length
not be possible. In this case, the memory location immediately
the instruction is often used to store the immediate data.

The Signetics 2650 microprocessor can develop addresses in eight ways:

• Register addressing.

• Immediate addressing.

• Relative addressing.

• Relative, indirect addressing.

• Absolute addressing.

• Absolute, indirect addressing.

• Absolute, indexed addressing.

• Absolute, indirect, indexed addressing.

instruc­
this may
following

However, of these eight addressing modes, only four of them are
others are variations due to indexing and indirection. Chapter
how effective addresses are developed by the 2650 microprocessor.

basic. The
9 describes

Extended/Non-Extended I/O
One of the major tasks performed by the CPU portion ofa microcomputer is the
transfer of data between the CPU and an I/O device. This, of course, is the
method used by the computer to communicate with the outside world; e.g., read­
ing data into the processor from a keyboard, cassette tape unit, paper tape
reader, etc. or writing data into a CRT display, paper tape punch, cassette
recorder, etc.

In most microprocessor-based system, there is essentially only one way that
these I/O data transfers take place; Le., by placing the "address" or identi­
fication code of a specific I/O device on the address bus and the data to be
written on the data bus. (If its a read operation, the I/O device will place
the data to be read on the data bus.) With this arrangement, some mechanism
must be provided to examine the address bus during an I/O transfer to deter­
mine which specific I/O device is being accessed. This operation requires
some type of decoder which can look at up to 8-bits of address data and from
this information, generate a signal on a single line which will open a path
from the data bus to the individual I/O device specified by the data on the
address bus.

This can be a rather complex task and, in fact, is often implemented by a spe­
cial LSI chip designated specifically for this purpose. In addition to the
hardware required, this approach to I/O data transfer also consumes memory
space for storing this I/O address. For example, the 2650 requires two eight­
bit memory words to implement this type of I/O transfer. One word

1-8

specifies the operation (Read or Write) and the other specifies the I/O de­
vice. In the 2650, this is referred to as an Extended I/O operation.

In addition to the Extended Mode of parallel I/O data transfer, the 2650 can
also operate in what is referred to as a Non-Extended mode. In this mode, two
different I/O devices can be addressed by a single p1n called Data/Control
(D/C). This is an output from the 2650 that responds to a specific instruc­
tion calling for a Non-Extended I/O operation. This pin and the memory mapped
I/O (see Chapter 6) are the only two pins that need be decoded to use this
simple form of I/O. When the D/C output is high, it connects the "D" output
device to the data bus; when it is low, it connects the "c" output device.
Thus, simple SSI gates are the only interface required to enable the 2650 to
communicate with I/O devices in the Non-Extended Mode.

In ad~ition to saving hardware, the Non-Extended I/O mode also saves software
(or program memory). Each Non-Extended instruction is a single word instruc­
tion which contains enough information to specify two different operations
(Read or Write) to two different ports (D or C).

One additional benefit in having both Extended and Non-Extended I/O modes is
the fact that one can "mix" modes in any given system. For example, assume
that a typical system has 20 I/O channels, two of which are used substantially
more that the other eighteen. In this system, one could specify the two fre­
quently used channels as Non-Extended channels and address these with single­
byte instructions. The other, less frequently used channels would be address­
ed with Extended instructions.

Another example would be in those situations where a single I/O device has two
separate ports for information flow. Quite often, one of these ports is used
to handle Control or status information; for example, "start a motor" or
"start the timer," etc. The other channel is used for the actual data trans­
fer. In this case, the basic I/O device can be addressed in the Extended Mode
with a two-byte instruction and the actual information transferred in a Non­
Extended Mode with a single-byte instruction. (In fact, the Data/Control
aspects of this dual-port situation is what prompted the nomenclature for the
D/C pin.)

SOFTWARE
Software is a ter.m used to describe the programs that make a computer do a
specific task. In fact, when used in the context of computers, the word soft­
ware can be interchanged with the word program. In general, a program is a
series of sequential steps (instructions) that accomplish an objective. Even
though the specific set of instructions it can use is fixed by its design, a
computer is general purpose because it can execute a list of these instruc­
tions (a program) to perform some functions, execute another list of instruc­
tions to perform some other function, and so on.

In discussions about software and programming, a great deal 15 often said
about programming in some language or another. This is because the way we
command the machine is very much like the way we communicate in a written
language. We have rules about how we start and end sentences and paragraphs
and how we spell words. The way we communicate with a computer is through a
programming language, which also has rules of spelling and punctuation, but
these rules are much more strictly enforced. If you misspell a few words,

1-9

your reader will probably understand you anyway. A computer language is not
that forgiving and will not produce the desired result if its rules are broken.

Machine Language

There are a number of levels of programming languages. The most basic level
is that of the actual machine language. Each instruction is uniquely defined
by a binary code (pattern) of ones and zeros. The central processing unit
(CPU) examines each instruction code and performs the exact sequence of events
to produce the operation defined by that instruction. After an operation has
been performed and a problem solved, the computer must then reverse its open­
ing procedure. It must retranslate its machine language and display the
answer in a form the person who presented the problem can understand.

The use of machine language is a perfectly reasonable way to program when the
application is not too complex and the effort is on a low budget. The IN­
STRUCTOR 50 is a machine-language microcomputer; making it support assembly
language would have considerably raised its cost. The main advantages of ma­
chine language programming are that it can be completed without the aid of an­
other program, and it allows the programmer to keep track of and control every
detail of the machine operation.

Assembly Language

To make programming easier, assemblers have been developed. An assembler is a
computer program that accepts coded instructions or mnemonics that are more
meaningful to use and translates them into binary machine code for execution
by a computer. The mnemonics used for each instruction are much easier to re­
member, and they make a listing of the program'much easier to read. Assembly
language programming allows the programmer to retain complete control over the
important details of the computer operation, but takes care of all the drudg­
ery of the binary coding, address calculations, and the like.

Higher-Level Languages
A third category of software is the higher-level languages, such as BASIC and
FORTRAN, which come the closest to natural human languages. They are problem­
oriented and contain familiar words and expressions; however, they have a very
strictly defined structure and syntax. There are two types of support pro­
grams associated with higher-level languages: compilers and interpreters.
Both types take the higher-level language program the programmer writes and
turn it into machine language the computer can use.

Other Software

Other software associated with microprocessors include monitor programs, debug
programs, simulators, editors, I/O handlers, diagnostic programs, and load­
ers. Brief definitions of these programs are provided in the glossary (Chapt­
er 13).

1-10

2. GETTING STARTED

Introduction

Welcome aboard the INSTRUCTOR 50--a unique and powerful tra1n1ng tool designed
to introduce you to the world of microcomputers in the shortest possible time.

INSTRUCTOR 50 is for computer hobbyists, students, engineers or anyone who
wants to learn how to use a microcomputer the easy way, without having to face
the drudgery of a long and tedious training program.

INSTRUCTOR 50 is a stand-alone microcomputer based on the Signetics 2650 mi­
croprocessor. It includes everything that you need to write, run, and debug
machine-language programs. A 12-key Function Control Keyboard and a 16-key
Hexadecimal Keyboard are used to enter data and perform various system func­
tions associated with the INSTRUCTOR 50. The INSTRUCTOR 50 User System Execu­
tive (USE) monitor program guides you in the use of the system by displaying
prompting messages and responses on an eight-digit LED display. All facilit­
ies required for program development are built into INSTRUCTOR 50 -- you don't
need anything else to start.

Before getting into the details of what makes the INSTRUCTOR 50 tick, let's
first take a short shakedown cruise and write a few simple programs. Detailed
information on each 2650 instruction is provided in Chapter 9.

Power On and Initial Display

To apply power to the INSTRUCTOR 50, connect the power cord into the rear
panel receptacle, and insert the power pack into any standard 115 VAC domestic
wall socket. The INSTRUCTOR 50 does not have a power ON/OFF switch. The
initial display is the message HELLO, indicating that the INSTRUCTOR 50 is in
the monitor mode and ready for use. If the HELLO message does not appear, de­
press the MON key to initialize the INSTRUCTOR 50. Unplug the power pack to
turn the INSTRUCTOR 50 off.

Operating Modes

The INSTRUCTOR 50 has two basic modes of operation, the MONITOR mode and the
EXECUTION mode. The MONITOR mode is entered automatically on power up or by
depressing the MON key on the function control keyboard. The monitor responds
by displaying HELLO. While in the MONITOR mode, you may:

• Enter and alter a program.

• Read in a previously saved program from audio cassette tape.

2-1

• Display and alter the contents of the microcomputer's general-purpose
working registers and/or Program Status Word (PSW).

• Examine and alter the contents of memory locations.

• Examine and alter the contents of the Program Counter.

• Specify and examine a program breakpoint.

• Step through a program one instruction at a time.

• Save a program on cassette tape.

The EXECUTION mode is entered by depressing the RUN key, the STEP key, or the
RESET (RST) key on the function control keyboard. Depressing the RUN key ter­
minates the MONITOR mode and causes program execution to begin at the address
specified in the Program Counter. Depressing the STEP key causes the IN­
STRUCTOR 50 to execute a single instruction and return to the MONITOR mode.
When the" RST key is depressed, current INSTRUCTOR 50 activity is terminated,
and the processor begins program execution at address zero or, in hex nota­
tion, H'OOOO'.

Keying in and Entering Values

Address and data parameters are entered into the INSTRUCTOR 50 via the hexa­
decimal keyboard using the hex notation. described in Chapter 1. When entering
an address, you may enter as many as four hex digits starting with the most­
significant digit of the address. Leading zeroes need not be entered; if less
that four digits are entered, the leading digits are automatically zeroed.
Data values consist of one or two hex digits, with the most-significant digit
entered first. If only one digit is entered, the most-significant digit is
automatically zeroed.

Correcting Entry Errors

The numbers keyed in appear in the address or data display fie1el and can be
edited prior to depression of a funciton key by simply keying in the correct
characters. The display shifts to the left each time a new character is en­
tered, and characters shifted out of the field are disregarded. Only the last
digits entered are retained, so that an error in entry can be corrected by en­
tering the correct data.*

For example, if you were entering an address and you depressed 121 instead of
the correct value of 120, the display would read:

*

.Ad. = 121

Data values entered during operation in the FAST PATCH command
be corrected in this manner. See description of the FAST PATCH
Chapter 5.

2-2

mode cannot
command in

To recover from this error, simply key in the correct value by depressing the
following hex keys:

(0) (1) (2) (0)

The correct value would then be displayed as indicated below •

• Ad. = 0110

The Prompt Light

A aot or period in the left-most position of the display (e.g., .Ad. =)
prompt signal. It indicates that the INSTRUCTOR 50 is ready to accept a
or address value.

Entering and Executing a Simple Program

To demonstrate the use of the INSTRUCTOR 50, let's write a simple program,
ter it, and execute it. Prior to writing the program, we must decide
task or operation we want the program to perform.

Let's say we want to "show the operation of an 8-bit binary counter on the
STRUCTOR 50' s output port indicator LEDs". The flowchart for performing
task is shown in Figure 2.1.

is a
data

en­
what

IN­
this

The DELAY block shown in the flowchart provides a time interval between new
values of the binary count in order to observe the counting action on the port
indicators. This can be implemented in several ways, depending on the delay
required.* We will use a double-loop technique, with the outer loop counting
the number of excursions through the inner loop.

OUTPUT
REGISTER
TO PORT

Figure 2.1: Flowchart for Binary Counter Program

*See Signetics 2650 Applications Note AS52 - General Delay Routines.

2-3

The next step is to select registers for the binary counter and the delay
counters, and to select an output port for the display operation. Let's
trarily make the following assignments:

loop
arbi-

Register
Register
Register
Port D

o = Binary counter
1 = Outer loop counter
2 = Inner loop counter

= Output display port

We are now ready to write the program:

ADDRESS

00

02
03
04
06
08
OA
OC
OE

HEX VALUE

75,11

20
FO
05,20
06,20
FA,7E
F9,7A
84,01
1F,00,03

LABEL

START

OUT
LOOP1
LOOP2
SELF

INSTRUCTION

CPSL C + RS

EORZ,RO
WRTD,RO
LODI,R1 H'20'
LODI,R2 H'OO'
BDRR,R2 SELF
BDRR,R1 LOOP2
ADD 1 , RO H' 0 1 '
BCTA,UN OUT

COMMENTS

Operations without
Carry, Reg. bank 0
Clear RO
Output RO to D
Initialize outer loop
Initialize inner loop
Count inner loop
Count outer loop
Add 1 to RO
Go back to output

Let's begin entering the program using the INSTRUCTOR 50's FAST PATCH command,
which is used for entering long hex data strings. The FAST PATCH mode is en­
abled by depressing the (REG) key followed by the (F) key:

KEY

(MON)
(REG) (F)
(0) (ENT/NXT)
(7) (5)
(1) (1)
(2) (0)

(1) (F)
(0) (0)
(0) (3)
(ENT/NXT)

We will now

KEY

(MEM)

verify

(0) (ENT/NXT)
(ENT/NXT)
(ENT/NXT)
(ENT/NXT)

(ENT/NXT)

DISPLAY

HELLO
.Ad. =
.0000
• 0000 75
.0001 11
.0002 20

.OOOE IF

.OOOF 00

.0010 03

.0010 03

correct entry by

DISPLAY

.Ad. =

.0000 7S

.0001 11

.0002 20

.0003 FO

.0010 03

COMMENTS

Enter monitor mode
Enter FAST PATCH
Enter starting address
Begin program entry •

Terminate FAST PATCH

using the DISPLAY & ALTER MEMORY cOtmIland:

COMMENTS

Display and Alter memory
Address entered, data displayed

Verification complete

2-4

ERROR CORRECTION TECHNIQUE

If an error is detected during verification, it can be
the correct value before depressing the (ENT/NXT) key.

corrected by
For exa.mple:

KEY

(ENT/NXT)
(F) (0)
(ENT/NXT)

DISPLAY

.0003
• 0003
• 0004

F8
FO
05

EXERCISING THE PROGRAM

COMMENTS

Error. Data should be FO.
Correct data entered •
New data deposited •

entering

We are now ready to exercise the program. Before proceeding, make certain
that the Interrupt Select Switch which is accessible from the bottom side of
the case is in the keyboard position (towards the center). The Port Address
Select Switch is placed in the NON-EXTENDED Port D position, and, since the
program begins at address zero, the (RST) key is depressed to ~n~t~ate execu­
tion. The program operation can be observed on the I/O port indicators.

CHANGING THE PROGRAM PARAMETERS

We can use the INSTRUCTOR 50 facilities to change the program parameters or to
observe the internal operation of the program. For example, to change the de­
lay time, we can change the delay constant at address H'05' with the DISPLAY
AND ALTER MEMORY command.

KEY

(MON)
(MEM)
(5) (ENT!NXT)
(4) (0)
(ENT!NXT)
(RST)

DISPLAY

HELLO
• Ad. =
• 0005 20
• 0005 40
.0006 06

COMMENTS

Return to monitor mode.
Display and Alter memory •
Address entered, data shown •
New constant entered •
New constant deposited.
Program re-started.

The counter now operates about half as fast as before.

We can observe the internal operation of the program by using a breakpoint,
which will stop program execution at a selected instruction and return to the
monitor mode. Let's watch the outer delay loop operate by placing a break­
point at address H'OA'. To enable the breakpoint during program execution,
the program must be started via the RUN command. Before running the program,
the starting address (H'OO') must be entered by using the DISPLAY AND ALTER
PROGRAM COUNTER (PC) command:

2-5

KEY

(MON)
(BKPT) (A)
(ENT/NXT)

DISPLAY

HELLO
b.P. = A

• PC = 0

COMMENTS

Return to monitor.
Breakpoint entered.

Enter starting address • (REG) (C) (0)
(RUN) -OOOA F9 Start execution. Program stops at

breakpoint and returns to monitor.
(REG) (1)
(RUN)
(REG) (1)
(RUN) (REG)
(1)
(BKPT) (BKPT)
(RUN)

• r1 = 3F
-OOOA F9
.rl = 3E
• rl = 3D

b.P =

Rl has decremented by 1 •
Execute again.
Rl has decremented again.
And again •

Breakpoint removed.
Program runs without stopping.

EXAMPLE 2: THE BILLBOARD PROGRAM

Example 2 is a program that makes use of the User Display Routine described in
Chapter 6. The User Display Routine moves an eight-byte message from a user
program to the display buffer and then displays the message. In our sample
program, the selected message will reappear on the display panel at regular
intervals to give the effect of a rotating billboard.

ne-The following program listing is self-explanatory and contains all the
cessary parameters for entering and executing the program. If you
familiar with program listings, the hex values are located in the third
from the left under the word OBJECT. Figure 2.2 is a flowchart of the
board program.

are not
column
bill-

2-6

TWIN ASSEHBlER YER 2. Xi BILLBOfIRI) PROGRAM 17 APR 78

LINE ADDR OBJECT E SOURCE

0002 **
13001 * 0004 *PROGRfII'I WRITTEN BY JOI-fl KEENAN
0005 * eoo6 *THIS PROGRAt1 IS WRIffiN FOR THE INSTRUCTOR 50
e007 * 0008 *THIS PROGRAI1 DISPI...AYS TI£ I'£SSAGE IN THE DISPlAY BUFFER
0009 *
0018 *THE I'1ESSAGE WILL WILL REAPPEAR ON TI£ DISPlAY PANEL
0011 *AT REGLtAR INTERVALS TO GIVE THE EFFECT OF A ROTATING
0012 *BILLBOARD.
0013 *
0014 *TI£ I'IAXII'IlJI I£SSAGE LENGTH IS 254 CHARACTERS
0015 *THE I'IESSAGE IS ENTERED STARTING AT LOCATION Wl81'. PROORAM LABEL ~11SG~
0016 *1l£ END OF I1ESSAGE IS INDICATED BY THE IlAl..UE OF H'FF' AS THE LAST
0017 *CHARACTER OF THE I'1ESSAGE.
(-ilj18 ***
0019 * STANDfIR[) SYI'IEO.. DEFINITION - THIS FILE !'flY BE APPEtf>ED TO THE
0028 * FRCffT OF ANY USER'S SOURCE DECK
131321 * REGISTER EQUATES
0022 0000 R0 EQIJ '3 REGISTER '3
0023 9001 Rl EQU 1 REGtSTER 1
0024 fI892 R2 EQU 2 REGISTER 2
13825 0003 RJ EQU 3 REGISTER 3
0026 * ClJI) ITION CODES
00270081 P EQU 1 POSIT! VE RESll. T
0028 0088 Z EQIJ 0 ZERO RESllT
ee29 8002 N EQIJ 2 NEGATIVE RESll T
0038 0002 IT EQIJ 2 LESS ~
0031 eooe EQ EQIJ 8 EQUAL TO
0032 0081 GT EOO 1 GREATER ~
0033 0083 UN EOO 3 lJNCOII) I TI otfII..
0034 * PSW LOI£R EQUATES
0035 8009 cc EOO WOO' WI) I TIONAL CODES
0036 0020 IDe EQIJ W28~ INTEIIDIGIT CARRY
0037 0018 RS EQU Wi8' REGISTER BANK
OOJa eeee I(; EQIJ WOO' l=WITH 0--WITHOlIT CARRY
0039 0084 (M EQU W04' OYERFL()4
0048 0602 cot! EQIJ W82' 1=LOGIC 0=ARITlflETIC COI1PARE
0041 0001 C EQU wel' CARRY /BORROW
0042 * PSW lfPER EQUATES
00430080 SENS EQU W80' SENSE BIT
0044 0040 FlftJ EQU W46' FLAG BIT
0045 802EI II EQU W28' INTERRUPT I~IBIT
0046 0087 SP EQU WEl7' 5700< POINTER
0047 * END (f' EQUATES
0048 **"'****************

2-7

TlHN ASSEI'IBlER YER 2. X1 BILLBOARD PROGRAtI17 APR 78

LINE AOOR OBJECT E SOURCE

0056 0008
0051 '"

ORG SET THE BEGINNING OF PROGRAt1 TO LOCATION 0

0052 0000 7510
0053 0902 0560
0054 0094 7718
0055 0006 0581
0056 8008 0E0109
0057 000B 8701
0058

BEGIN CPSL RS SET LOIER REGISTER BAN<
l()fI) THE DELAY COUNTER START LooI, R1 H'68'

D ISPL PPSl RS SET THE UPPER REGISTER BAN<

0059 0000 BBE6
0060 000F 7510
0061 0011 FD0604
0062
0063
0064 0914 0E018€t
0065 0017 8601
0066 0019 CE0100
0067 OO1C 0E6189
0068 091F E4FF
0069 0021 9(:0002
0070
0071 0024 0400
0072
0073 0026 Ct0109
0074 0029 1F0082
0075

, 0076

'"

*
*

*

*

*
'"
*

LooI, R1 {t1SG
LOI)A,R2 PNTR
LOOLR101

LOAD THE UPPER BYTE OF I1ESSflGE POINTER AOORESS
LOft[) THE LOIoER BYTE OF I'IESSfIGE POINTER AOORESS-1
LOAD THE 1 PASS COI'I1fN) PARfll'lETER TO THE DISPLAY
ROUTINE

ZBSR *USR\)SP EXIT TO THE DISPLAY ROOTItE FOR 1 PASS
CPSL RS SELECT THE LQl.ER REGISTER BANK
BDRA.. R1 DISPL DECREI1ENT THE DELAY COI.JfTER ANI) CHECK FOR END

IF NOT AT END, DISPLAY 11£ SAt1E I1ESSAGE UNTIL
COlJlT = 0

LOOA, R2 PNTR LOAD POINTER TO I'IESSAGE
ROO I, R2 1 INCREtIENT IT
STRA, R2 PNTR SAVE THE NEW POINTER Yfl.LE
L()[)fI, R0 t1SG+S, R2 LOAD THE NEXT CHARACER TO BE DISPLAYED
CQ11L R0 H'FF I IS IT THE END OF I1ESSAGE CHARACTER?
BCFA, EQ START IF NO, 00 DISPLAY THE I1ESSfIGE ROTATED LEFT 1

CHARACTER
LooI. R0 0 IF YES, RESET I'1ESSAGE POINTER TO BEGINNING OF

11ESSfG:
STRA, R0 PNTR SET POINTER TO BEGINNING
BCTfL UN START GO DISPLAY THE I'1ESSfIGE FROM THE BEGINNING

ORa H'100' THIS IS THE DATA AREA FOR THE PROORAI'I 0077 002C
0078
08798100
0080

PNTR RES 1 1 LOCATION TO SAVE THE LEAST SIGNIFICANT BYTE OF
I'1ESSAGE POINTER * 0081 * 08f12 * 0083 *THIS IS THE INITIAL MESSAGE IN THE BlfFER

0084 *
8085 *THE MESSAGE IS 'HI THIS IS THE 2650 HI THIS'
0086 '" ee87 *
0000 0181 14011707 t1SG DATA

0195 14019517
0109 019517

0089 019(; 07140E17 DATA
8118 82068500

8090 0114 1A1A1A1A DATA
8118 14011707
0i1C 148185

0091 011F FF DATA
0092 '"
0093 '"
0094 0129 ORG
0095 1FE6 USRDSP EQU
0096 *
0097 *
009B 0000 END

TOTAL ASSEI'IBl Y ERRORS = 0088

THE 2650

H'1A, 1fL 1f1,1fL 14, 81. 17,87, 14, 01, 85' HI THIS

H'FF' END OF I'IESSflGE FLAG

H'1FE6' LOCATIctI OF POINTER IN I'IONITOR TO DISPlAY ROUTItE
$

BEGIN

2-8

SELECT
REGISTER

BANKO

SET R1 = H '60'
FOR DELAY
COUNTER

SELECT
REGISTER

BANK 1

LOAD REGISTERS
1,2,3WITH

SUBROUTINE
PARAMETERS

DECREMENT
DELAY

COUNTER

INCREMENT
DISPLAY
BUFFER
POINTER

CHECK NEXT
CHARACTER
IN BUFFER

RESET
POINTER TO
BEGINNING

Figure 2.2: Flowchart for Billboard Program.

2-9

Let's begin entering the hex values shown in the program listing
memory location H' 0000'. We will again use the FAST pATCH command
ing values.

starting at
for enter-

Program Entry & Verification

KEY(S)

(MON)
(REG)
(0)
(7)
(1)
(0)
(6)

(F)
(ENT/NXT)
(5)
(0)
(5)
(0)

(1) (F)
(0) (0)
(0) (2)
(ENT/NXT)

DISPLAY

HELLO
.Ad. =
• 0000
• 0000
.0001
.0002
.0003

75
10
05
60

.0029 IF

.002A 00

.002b. 02
002b. 02

COMMENTS

Enter monitor mode
Enter FAST PATCH
Enter starting address •
Begin program entry •

Terminate FAST PATCH.

We will now verify correct entry by using the DISPLAY & ALTER MEMORY command:

KEY(S)

(MEM)
(0) (ENT/NXT)
(ENT/NXT)
(ENT/NXT)
(ENT/NXT)

(ENT/NXT)
(ENT/NXT)
(ENT/NXT)

Setting a Pointer

DISPLAY

.Ad. =
• 0000 75
.0001 10
.0002 05
.0003 60

.0029 IF

.002A 00
• 002b. 02

COMMENTS

Display and Alter Memory
Address entered; data displayed •

Verification complete •

Our next step will be to set a message pointer at memory location 100 to indi­
cate that our message will begin at address 101.

KEY(S) DISPLAY COMMENTS

(MEN) .Ad. = Display and Alter Memory
(1) (0) (0) .Ad. = 100 Location of message pointer address

entered.
(ENT/NXT) .0100 lA Previous contents of memory location

100 is lA.
(0) (0) • 0100 00 Contents changed to 00 •
(ENT/NXT) • 0101 00 Kessage pointer set •

2-10

Entering a Message

Now that the message pointer has been entered and set, we can begin entering
our message starting at memory location 101. We will re-enter the FAST PATCH
mode prior to message entry and then begin entering the message: HI THIS IS
THE 26S0 •••• HI THIS. Note that the first two words of our message are repeat­
ed to give the effect of a rotating billboard.

Refer to Figure 3.2 for the hex value corresponding to each character in our
message.

KEY(S)

(REG) (F)
(1) (0)
(ENT/NXT)
(1) (4)
(0) (1)
(1) (7)
(0) (7)
(1) (4)
(0) (1)
(0) (S)
(1) 0)
(0) (1)
(0) (S)
(1) (7)
(0) 0)
(1) (4)
(0) (E)
(1) (7)
(0) (2)
(0) (6)
(0) (S)
(0) (0)
(I) (A)
(I) (A)
(1) (A)
(I) (A)
(I) (4)
(0) (1)
(l) 0)
(0) (7)
(1) (4)
(0) (1)
(0) (5)
(F) (F)

(1)

DISPLAY

.Ad. =
• Ad. = 101
• 0101
.0101 14
.0102 01
.0103 17
.0104 07
.0104 14
.0106 01
.0107 OS
.0108 17
.0109 01
.010A OS
.010b. 17
.01OC 07
.010d. 14
.010E OE
.010F 17
.0110 02
.0111 06
.0112 OS
.0113 00
.0114 1A
.0115 1A
.0116 1A
.0117 1A
.0118 14
.0119 01
.011A 17
.011b. 07
.011C 14
.011d. 01
.OUE 05
.OUF FF

Exercising the Program

COMMENTS

Enter FAST PATCH
Starting address entered •
Starting address set •
Hex value for letter H
Hex value for letter I
Hex value for blank or space
Hex value for letter T
Hex value for letter H
Hex value for letter I
Hex value for letter S
Hex value for blank or space
Hex value for letter I
Hex value for letter S
Hex value for blank or space
Hex value for letter T
Hex value for le~ter H
Hex value for letter E
Hex value for blank or space
Hex value for numeral 2
Hex vlaue for numeral 6
Hex value for numeral 5
Hex value for numeral 0
Hex value for dot or period
Hex value for dot or period
Hex value for dot or period
Hex value for dot or period
Hex value for letter H
Hex value for letter I
Hex value for blank or space
Hex value for letter T
Hex value for letter H
Hex value for letter I
Hex value for letter S
End of message flag.

To execute the program, depress the following keys:

(REG) (C) (0) (RUN)

2-11

"

You can now observe the movement of our message on the display panel. We can
use the INSTRUCTOR 50 facilities to vary the speed of message movement by
changing the constant at memory location 0003 from 60 to another value. To
accomplish this, proceed as follows:

KEY(S) DISPLAY COMMENTS

(MON) HELLO Return to monitor mode.
(MEM) • Ad. = Display and alter memory •
(3) (ENT/NXT) .0003 60 Address entered; data shown.
(F) (F) • 0003 FF New constant entered •
(ENT/NXT) • 0004 77 New constant deposited •
(REG) (C) (0) Program re-started.
(RlUN)

EXAMPLE 3: CLOCK PROGRAM FOR THE INSTRUCTOR 50

Example 3 is a clock program that makes use of the Display routine described
in Chapter 6. Since this program incorporates features described in later
chapters of this manual, you may wish to skip it for now and return to it when
you are more familiar with the INSTRUCTOR 50.

The following program listing is self-explanatory and contains all the ne­
cessary parameters for entering and executing the program. As in the previous
example, the hex values in the program listing are located in the third column
from the left under the word OBJECT.

NOTE: When entering the hex values from the listing, note the gaps at address
locations 0005 and 0006. These gaps are used to accommodate an interrupt rou­
tine. No Operation (NOP) instructions (e.g., CO) may be inserted in these
gaps.

Let's begin entering the program using the program listing as a guide:

KEY(S)

(MON)
(REG) (F)
(0) (ENT/NXT)
(7) (6)
(2) (0)
(1) (F)
(0) (0)
(9) (5)
(C) (0)
(C) (0)
(0) (C)

.
(1) (B)
(6) (E)
(ENT/NXT)

DISPLAY

HELLO
.Ad. =
.0000
.0000
.0001
.0002
.0003
.0004
.0005
• 0006
.0007

.00A5

.00A6

.00A6

76
20
IF
00
95
co
co
OC

lb.
6E
6E

COMMENTS

Enter monitor mode.
Enter FAST PATCH
Enter starting address
Begin program entry.

NOP entered ~n gap.
NOP entered in gap •

Terminate FAST PATCH

2-12

Now that we have entered the program, let's enter the time of day, execute the
program, and observe the clock on the display panel. For demonstration pur­
poses, we will use the time of day specified on page 1 of the program listing;
that is 3:45:27 AM.

KEY(S) DISPLAY COMMENTS

(REG) (F) .Ad. = Enter FAST PATCH
(1) (0) .0100 Enter starting
(0) (ENT/NXT) address.
(1) (7) .0100 17
(8) (3) .0101 83
(0) (4) .0102 04
(8) (5) .0103 85
(0) (2) .0104 02
(0) (7) .0105 07
(1) (7) .0106 17
(0) (A) .0107 OA
(ENT/NXT) Terminate FAST PATCH

Depress (RST) and observe the clock on the display panel.

2-13

LINE ADDR OBJECT E SOURtf

0002 ***+ •• ******
0003 * 0004 * CLOCK PROGRfII1 FOR INSTRUCTOR 50
009S * e006 '" THIS PROGRAI'I I\'IF'lEMENTS A CLOCK ON THE INSTRUCTOR 50.
9007 '" TO RUN THE PROGRAM.. THE 'IHRECT/lr£1IRECT' SWITCH MUST
eoos '" BE IN n£ 'DIRECT' POSITION fIN) THE 'INTERRUPT SELECT'
0099 >I< SWITCH MUST BE IN THE 'AC LINE' POSITION.
0019 '" 0011 '" THE DISPLAY FORttAT IS AS F(LLOWS:
0012 '" HH.I'1t1. SS AlP
0013 '" AFTER ENTERING THE PROGRAM INTO 1l£ INSTRUCTOR 50,
0014 '" THE INITIAL TIME !'UST BE ENTERED INTO LOCATIONS H'180'
0015 '" TO W107' USING THE EXAtlINElfUER MEMORY CCJPII'I1M) OR THE
8016 >I< FAST PATCH CMflND. THE DATA ENTERED IN THESE LOCATIONS ARE
0017 '" THE DISPLAY CODES DESCRIBED IN FIGURE 3. 2 OF THIS
0018 '" MANUAL. FOR EXAMPlE, TO INITIALIZE THE TIME TO 3:45:27 ~
0019 >I< PROCEED AS FOLLOWS ON THE INSTRUCTOR 50:
0020 '" REGF ENTER FAST PATCH
0021 * 100 E/N ENTER STARTING ADDRESS
0022 * 17 Bl.fH(CODE
0023 * 83 3. CODE
8824 * 04 4 CODE
9025 * 85 5. CODE
0026 * 82 2 CODE
0027 * 07 7 CODE
0028 '" 17 BI..ANK CODE
9029 * 9fI A CODE
0030 * EIN TERI'IINATE FAST PATCH f'KIlE
0031 >I< AFTER INITIAL TIlE VAl...UE IS ENTERED, DEPRESS 'RES' KEY TO
0032 * BEGIN PROGRAM EXECUTION.
0033 * 8034 ** •••••• *******************
8035 '" REGISTER EQUATES
8036 eeee R0 EQU 0 REGISTER 8
0037 8881 R1 EQU 1 REGISTER 1
0038 8882 R2 EQU 2 REGISTER 2
0039 0893 R3 EQU 3 REGISTER 3
8048 '" CONI) ITION COOE5
00410001 P EQU 1 POSITIVE RESULT
8042 eeee Z EQU 8 ZERO RESIJ.. T
00438802 N Eoo 2 NEGATIVE RESULT
8044 9002 LT Eoo 2 LESS TfotFW
0045 eeee EQ EQIJ 8 EQUfIL TO
8046 8881 GT EQU 1 GREATER THAN
80478003 UN EQU 3 UNCONI) ITIOtft..
804S '" PSW LOWER EQUATES
80490000 CC EQU W08' CON() IT IONfL CODES
0959 9829 IDe EQU H'20' INTERDIGIT CARRY
00510818 RS EQU W18' REGISTER BfH(

8852 9808 we EQU WOO' 1=WITH 9=WITH(.VJT CARRY
0053 0004 OYF EQU H'84' OVERFUll
0954 9882 COI'1 EOO H'82' 1=LOOIC 8=ARITIf£TIC CCI1PARE
0855 8081 C EQU H'91' CARRY /BORROIoI
0056 * PSW lfPER EQUATES

2-14

TWIN ASSEI'ElER YER 2. 0 ClOCK PROGRftI F(R INSTROCTOR 50 PAGE 0892

LItE fI)()R OBJECT E StI.RCE

08570880
0858 8048
9859 0020
9060 0087
8861
8862
8863
0864
9865
9866
0867
0868
90690800
9970
9971 8009 7628
9972 0092 1F9895
9973
99740095
0875
ee76 0087 0108
9977 898A 8401
8878 001:: CC0108
9979 eeeF E43C
0880 881116
8081
0082 8812 20
8083 081l CC0108
0884 8816 D105
ees:; 8819 8401
8086 901B CC0195
8887 881E E40A
8088 0020 16
0089 0021 20
9890 0822 CC0105
0891 8825 D104
0892 0828 8401
889l 092A CC8194
9894 982() E496
8895 002F 16
8896
98978830 28
8898 8811 CC0104
8899 0934 0C0103
0199 8037 8401
0101 8039 CC0103
0102 803C E48fI
0103 99lE 16
0104 80lF 9480
0105 8041 CC0103
0196 8044 0C0102
0187 8047 8401
0108 0049 CC0102
0109 804C E496
0110804E 16
0111
0112 004F 28

SENS EQU W88' SENSE BIT
FLfkJ EQU H' 40' FLOO BIT
I I EQIJ W28' INTERRUPT ItIIIBlT
SP EQU H'07' STACK POINTER
* END (f EQUATES

*

* * PROGRAI1 BEGINS HERE. LOCATE AT STARTIt«l ADDRESS H'eeee'

*

* ORG 0 PROGRAfII STARTS AT H'8099'

* STMT PPSU 11 ItfUBlT INTERRUPTS
BCTA.. ~ DISP BRfKH fROlK) INTERRUPT ROUTItE TO DISPLAY

*

* ClOCK LOOA, R0 ~

*

*

*

fl)()l, R0 1
STRA,R0 ~
CIJII, R0 69
RETC,lT

EORZ R0
STRA, R0 FROC
lOOA. R0 USEe
fl)()I. R0 1
STRA, R0 USEC
CIJII,R0 19
RETC,lT
EORZ R9
STRA, R0 USEC
lODA, R0 TSEC
fl)()I, R0 1
STRA. R0 TSEC
OO'II,R0 6
RETC,LT

EORZ R0
STRA, R0 TSEC
lOOA. R0 IJIIN
fl)()I, R0 1
STRA. R0 lItlN
CIJII, Ret H'SA'
RETC,lT
looI, R0 wee'
STRA.. R8 IJIIN
lOOA.. R0 1MIN
fl)()I, R0 1
STRA.. R9 1l'IIN
CIJII,R0 6
RETC,lT

EORZ R0

lOCATION OF INTERRUPT ROOTIt£

GET FRFK:TIIJR. SECOtI)5
Ill[) 1 sIta INTERRUPTED EVERY 69TH Cf A SEC
RESTORE TI£ YfLI£
HAVE WE COUNTED (l£ SECOtI>?
NO-RETtJ:N TO DISPLAY
YES-I'LIST It«:REIENT 5EC(H)S

SET R0 TO ZERO
SET FROC TO ZERO
GET UNIT SECCH>S
fI)() 1
PUT IT BACK
IS ~IT SEC(N)S 10?
NO-RETlRN TO DISPlAY
SET R0 TO ZERO
SET UNIT SEC TO ZERO
GET TENS Cf SECON>S
fI)I) 1
PUT IT BACK
REfICt£I) 69 SECCM>S?
NO-RETlRN TO DISPLAY
YES-JtlIST INCREI£NT I'IItUTES
SET R0 TO ZERO
SET TENS (f SEC TO ZERO
GET ~IT l'lItUTES
fI)I) 1
PUT IT BACK
REACHED 18 I'IItlJTES?
NO-RETURN TO DISPlAY
SET R9 TO '0. I

SET ~IT "IN TO 'a I

GET TENS OF "INUTES
ADD 1
PUT IT BACK
REfOE\) ONE ~
NO-RETlRN TO DISPlAY
YES-ItJST INCREI1ENT tnRS
SET R0 TO ZERO

2-15

TWIN ASSEI1BLER VER 2. 0 CLOCK PROGRAI'I FOR INSTRUCTOR 50 PAGE 0003

LINE flOOR OBJECT E SOURCE

0113 0050 Cf'....0102 STR~R0 THIN SET MINUTES TO ZERO
0114 0053 0C0101. LOOA.. R0 UHRS GET UNIT HOURS
01.15 0056 8401. AOOI,R0 1 ROO 1 TO UNIT HOURS
0116 0058 cce101 STRA,R0 UHRS PUT IT BACK
0117 '" HUST CHECK IF HtWE REACHED 113' HRS
01.18 005B E483 COI'1I, R0 W83' IS UNIT HRS A 3 (83=1)?
0119 005{) 1812 BCTR, EQ HRS13 BRANCH IF YES
13120 '" NO - MUST CHECK IF REACHEI) '12" HRS TO
0121 '" CHANGE A TO P OR VICE-VERSA
0122 005F E482 COI'1I, R0 W82" IS UNIT !-IRS A 2 (82=2.)?
0123 0061 l81F BCTR,EQ HRS12 BRANCH IF YES
0124 0063 E48A COI'1 I, R0 W 8A' IS UNIT HRS 10 (A=10)?
01.25 0065 16 RETC,LT NO-RET~ TO DISF'lA't'
8126 0066 0480 LooI, R0 WOO' SET R0 TO 'e. '
13127 0068 ocele1 STRA, Re UHR5 PUT IN UNIT HOURS
0128 006B 0401. LooI,R01 MUST SET TENS OF HRS TO 1
8129 0061) CC01.00 STRA, R0 THRS STORE IN TENS OF HRS
0130007017 ~C,UN RETURt' TO DiSPlAY
0131 '" FOllOWING CODE CHANGES '13' HOURS TO
0132 '" '1' HOUR
0133 0071 0C0100 HRS13 LOOA.. Re THRS CHECK IF '3' OR '13'
01.34 0074 E417 COI'1I, R0 W17' IS THRS A BLANK?
0135 0076 14 RETC,E(! 'r'ES -IT IS '3', NOT l13' -RETURN TO DISF'lA't'
01.36 '" NO-I'IlIST BE '13' so CHANGE TO '1'
01.37 0077 0417 LODI, Re W17' CODE FOR BLANK
0138 0079 0C0100 STRA, R0 THRS SET TENS OF HRS TO BLANK
0139 007C 0481 LODI. Re wal' CODE FOR '1. '
0140 007E CC01.01 STmRe UHRS STORE IN UNIT HOURS
13141 0081 17 RETC, UN RETURN TO DISPLAY
01.42 '" FOlLOWING CODE CHANGES A TO P ANI)

01.43 '" VICE-VERSA AT '12' HOURS
0144 0082 0C0100 HRS12 LOoo, Re THRS FIRST CHECK IF '2' OR '12'
0145 0085 E417 COl'll, R0 W17' IS TEt'S OF HRS A BLANK?
01.46 0087 14 RETC,EQ YES, l'IUST BE '2'-RETURN TO DISPLAY
0147 0008 04011 LOD!' Re WOO' LOAD CODE FOR 'A'
0148 008A EC0l0? COMA .. R0 Af1Pt1 IS SYMBOl NOW AN IW?
8149 00.'30 9802 BCFR.. EQ SVMB NO-IT IS 'PI so MUST CHANGE TO 'A'
0150 008F 0410 LODL R0 W10' CODE FOR 'p.- SINCE Af1PM NOW 'A'
0151 0091 CC0107 5'r'MB STRA, R0 Af1PM STORE NEW SYMBOL
0152 0094 17 PHC, UN RETURN TO DISPlAY
0153 '" 0154 :+: THIS IS THE DISPlAY ROUTINE
0155 '"
8156 0095 75FF DISP Cpr~ WFF' CLEAR AlL BITS OF PSl
0157 0097 7702 PPSL COI'1 SET C0f1=1 FOR ARITH COMPARES
0158 *' PRESET REGISTERS FOR I1ONITOR DISPLAY ROUTINE
0159 0099 0500 Loo r. R1 (THRS-1 UPPER PART OF DISPLAY BUFFER LOCATION-1
0160 0098 06FF LOD 1, R2) THRS-1 LOWER PART
0161 0091) 87131 LODLR3 1 CODE FOR ONE SCAN AND RETURN
0162 009F 7620 PPSU II INHIBIT INTERRUPTS WHILE DISF'lA't'ING
0163 00fI1 BBE6 ZBSR *H'1FE6' GO TO MONITOR DISF'lA't' ROUTINE
0164 '" AFTER ONE SCAN THROUGH DISPlAY, PROGRAt1 WILL
0165 * C.oNTINUE EXECUTION HERE
01.66 00A3 7420 CPSlJ II ENABLE INTERRlJPTS - IF INTERRUPT HAS
0167 '" ~'REl) WILL GO TO INTERRUPT ROUTINE At{l TI£N
0168 '" RETURN TO NEx.'T INSTRUCTION

2-16

TWIN ASS8B..ER VER 2. 9 CLOCK PROGRAr1 FOR INSTROCTOR 59 PAGE 9994

LINE ADDR OBJECT E SOURCE

9169 98A5 1B6E BCTR. ~ DISP COOlNUE DISPLAYING
9170 * 9171 * I'EItlRY AREA FOR DISPLAY BUFFER
9172 * 9173 09A7 ORa H'199' START DISPLAY BUFFER AT W100'
9174 *
9175 9100 THRS RES 1 TENS OF lOR)

91769191 ~ RES 1 UNIT HOORS
9177 9192 TMIN RES 1 TENS OF "INUTES
9178 9103 lt1IN RES 1 UNIT "INUTES
91790104 TSEC RES 1 TENS OF SECCWS
9180 0105 USEC RES 1 UNIT SECONDS
0181 9106 17 SPOCE DATA W17' BLANK SPf\CE
9182 9107 AtIPtI RES 1 A OR P SYr1BOI..
9183 *
91.84 * END OF DISPLAY BUFFER
9185 * 0186 9108 FRfIC RES 1 69THS OF SEC COUNTER
9187 * 9188 0900 END START

TOTft. ASSEt18I... y ERRORS = 0009

The simple programs described above are designed to demonstrate some of the
capabilities of the INSTRUCTOR 50 and to give you a feel for how the system
works. Additional programming examples are presented in subsequent sections
of this manual.

2-18

3. SYSTEM OVERVIEW

Introduction

A simplified block diagram of the INSTRUCTOR 50 system is shown in Figure
3.1. Major system components include:

• 2650 8-bit, N-channel microprocessor
• 2656 System Memory Interface (SMI)
• Sixteen-key hexadecimal keyboard
• Twelve-key function selection keyboard
• Eight-digit, 7-segment display
• Audio tape cassette interface
• SlOO-compatible expansion bus
• User System Executive (USE) monitor
• Debugging aids
• On-board user Input/Output
• Forced jump logic
• 512 bytes of on-board user RAM
• Crystal-controlled system clock

2650 Microprocessor

microprocessor made using an ion-implant­
It has a fixed command set of 75 instruc­
data and can address 32,768 bytes of
are three-state and can drive either one

The 2650 processor is a single-chip
ed, N-channel silicon-gate process.
tions, operates on 8-bit parallel
memory. All bus outputs of the 2650
7400-type load, or four 74LS loads.

The 2650 contains a total of seven general-purpose registers, each eight bits
long. They may be used as source or destination for arithmetic operations, as
index registers, and for Input/Output (I/O) data transfers.

The processor instructions are one, two, or three bytes long, depending on the
instruction. Variable length instructions tend to conserve memory space since
a one or two-byte instruction may often be used rather than a three-byte in­
struction. The first byte of each instruction always specifies t.e operation
to be performed and the addressing mode to be used. Most instructions use six
of the first eight bits for this purpose, with the remaining two bits as an
operation code.

The 2650 has a versatile set of addressing modes used for locating operands
for operations and an interrupt mechanism which is implemented as a single
level, address vectoring type. Address vectoring means that an interrupting
device can force the processor to execute code at a device-determined location
in memory.

Detailed hardware and software information on the 2650 microprocessor is pro­
vided in Chapter 9.

3-1

.. 2650
..----II_~ MICROPROCESSOR

3.58 MHz CLOCK

~I~

2656 SMI
(MONITOR

FIRMWARE &
RAM)

512 BYTES
OF RAM

USER
PARALLEL

I/O

FORCED
JUMP
LOGIC

1
/\ \l BUFFERS

CASSETTE
INTERFACE

CONTROL
DECODING

HEX
KEYBOARD &

DISPLAY

USER
INTERRUPT &

SERIAL I/O

BUFFERING &
LOGIC FOR
S100 BUS

r---ttIN

CASSETTE

~OUT

S100
~

COMPATIBLE
EXPANSION BUS

Figure 3.1: Instructor 50 Basic Block Diagram

2656 System Memory Interface

The Signetics 2656 System Memory Interface (SMI) contains Read-Only Memory
(ROM), Random-Access Memory (RAM), and a programmable I/O port.

Two notable features are onboard decoders that make it possible to place the
ROM and RAM anywhere in the memory space and an I/O port that can be set up as
either a bidirectional port or as chip-select lines. The chip-select capa­
bUrty eliminates a great deal of the TTL that usually surrounds micropro­
cessors. The 2K USE monitor, 128 bytes of scratchpad memory, I/O decode
logic, and the system clock are housed in the 2656 SMI.

Keyboards

A 16-key hexadecimal keyboard and a 12-key function control keyboard enable
you to communicate with the INSTRUCTOR 50. Both the hexadecimal keyboard and
the function keyboard are under control of the USE monitor. The monitor per­
forms a scanning process to determine what key has been depressed and what ac­
tion is to be taken by the INSTRUCTOR 50 as a result of the depression. A
functional description of the various controls and indicators is provided in
Chapter 4.

Display Panel

The 8-digit, 7-segment display panel provides responses to input commands and
guides you in the use of the INSTRUCTOR 50 by displaying prompting messages
describing the data that must be entered.

Messages or responses are displayed using the seven-segment display font il­
lustrated in Figure 3.2. Note that the characters 'b ' and 'd ' are always dis­
played with the right-hand decimal point attached in order to distinguish
these characters from the number 16 1•

Figure 3.2 also shows the hexadecimal code required in the monitor's display
buffer to display the character illustrated. To display a character with a
right-hand decimal point attached, H'80 ' must be added to the value given.
For example, H'07' will display '7 1, while H' 87 1 will display 17. 1• Refer to
Chapter 6 for additional information on the use of the monitor's display sub­
routine.

Audio Cassette Interface

An audio cassette interface lets you load and store programs into and out of
RAM. The storage medium is any audio cassette recorder.

S1 DO-Compatible Expansion Bus

The INSTRUCTOR 50 includes an Sl00-compatible expansion bus connector so that
other standard products, such as additional memory or prototyping cards, can
be used with the system. This connector carries all of the 2650 ' s I/O signals
in addition to control signals required by the S100 bus. (See Chapter 7.)

3-3

n
U

(00) ,-
:I
(05)

l-' ,-,
(OA) ,-,-
(OF)

'-' , J
(14)

-
(19)

, , , LI , C :, ,
(01) (02) (03) (04) ,- , ,-,

" I:' I ,:, 1
(06) (07) (OS) (09)

l r LJ. ,_
_I I: ,_J. ,_

(OB) (OC) (00) (OE)

r, , II ,-,- ,- ,-,
(10) (11) (12) (13)

,:, - I
_I -(15) (16) (17) (lS)

• (lA)

II :, ,-,
(lB) (1C)

INDICATES THE HEX VALUE USED AS THE
INTERNAL DISPLAY CODE.

NOTE: IF S016 IS ADDED TO ANY CODE, A DECIMAL
POINT WILL APPEAR WITH THE CHARACTER.

Figure 3.2: Instructor SO Display Font

3-4

~~~- ----------



Monitor Firmware 

The USE (User System Executive) monitor supervises operation of the INSTRUCTOR 
50 and allows you to enter and alter programs, execute these programs in con­
tinuous or single-step modes, and perform a number of auxiliary functions. 
Monitor commands are entered via the control keys and the hexadecimal key­
board, and responses are displayed on the monitor display. 

A basic flowchart of the monitor is shown in Figure 3.3. The monitor normally 
idles in the scan display and keyboard mode. If a key closure is detected 
during the scan, the monitor verifies that this is a new key closure (that any 
previously depressed key had been released), extinguishes the display, per­
forms a keyboard debounce function, and then performs the requested function. 
The monitor then resumes the display and keyboard scan. 

Monitor functions are terminated by depressing a new function key. 
are inhibited while the monitor is running. 

Debugging Aids 

Interrupts 

Two key features incorporated into INSTRUCTOR 50 are designed specifically for 
program debugging. These features are: 

1. The ability to set a breakpoint that automatically interrupts execu­
tion of programs at any point without loss of hardware or software 
status. 

2. The ability to step through a program one instruction at a time. 

When a breakpoint is encountered during program execution or when a single in­
struction is executed in the single-step mode, control is returned to the 
monitor at which time you may examine the 2650 registers, the Program Status 
Word (PSW), and the program counter to determine the status of the microcoDr 
puter. You can then continue execution, set a new breakpoint, or resume the 
single-step operation. While in the monitor mode, you may change any register 
value, including the PSW and program counter, and you may alter memory loca­
tions. 

On-Board User I/O 

Both parallel and serial I/O are available in the INSTRUCTOR 50. The parallel 
I/O port provides 8 switch inputs and 8 individual Light-Emitting Diodes 
(LEDs) as a latched output port. A single LED is attached to the processor's 
FLAG output, and the SENS key on the function control keyboard allows you to 
test the processor's SENSE input. Additionally, you may exercise interrupt 
operation by using the interrupt (INT) key on the function control keyboard. 
See Chapter 6 for a discussion of the INSTRUCTOR 50's I/O capabilities. 

3-5 



• INITIALIZE SYSTEM 
• DISPLAY "HELLO" 

SCAN DISPLAY 
AND KEYBOARD 

NO 

EXTINGUISH DISPLAY 

DEBOUNCE DELAY 

GO TO INDICATED 
COMMAND ROUTINE 

NO 

NO 

DATA 

STORE DATA 

UPDATE 
DISPLAY BUFFER 

Figure 3.3: Basic Use Monitor Flow Chart 

3-6 



Forced Jump Logic 

The Forced Jump Logic performs the following functions: 

• Entry into the MONITOR mode when power is applied to the INSTRUCTOR 50 
or when the MON key is depressed. 

• Re-entry to the MONITOR mode after executing one instruction in 
single-step operation or upon detection of a breakpoint. 

Memory and 1/0 Organization 

512 bytes of RAM storage is provided for storing user programs and data. The 
RAM area may be expan~ed via the expansion bus connector. 

Partitioning of the INSTRUCTOR 50's memory and I/O locations is illustrated in 
Figure 3.4. The supplied user memory occupies locations H'OOOO' to H'OlFF' 
and may be expanded to occupy locations H'0200' H'OFFF' and H'2000' 
H'7FFF'. The extended I/O ports from H'OO' to H'F7' are available for program 
use. Ports H'FB' to H'FF' and memory locations H'1000' to H'lFFF' are re­
served for the USE monitor. 

An additional 64 bytes of RAM storage is available to user programs for stor­
ing data values. This additional storage space occupies memory locations 
H'17BO' to H'17BF'. Because of the way the USE monitor operates, instructions 
should not be stored at these locations. 

The INSTRUCTOR 50 I/O data port is assigned one of three locations, depending 
on the setting of the Port Address Select Switch. These are memory address 
H'OFFF', extended I/O address H'07', or non-extended I/O Port D. 

Clock Circuitry 

The 2656 SMI provides the clock circuitry for the INSTRUCTOR 50. 
MHz crystal is used to provide the reference frequency. 

Internal Power Supply 

A 3.579545 

The INSTRUCTOR 50 uses a self-contained A-C power pack that produces B VAC @ 
1.5A. An on-board rectifier and regulator reduces this to 5 VDC. A jumper 
option permits the use of an alternate 8 VDC source. The INSTRUCTOR 50 may be 
plugged into any standard 115 VAC domestic wall socket. (European models re­
quire 220 VAC primary power.) 

3-7 



7FFF 

~~ 

2000 
1FFF 

1800 
17FF 

17CO 
17BF 

AVAILABLE 
FOR 

~~ USER RAM 
EXPANSION 

USE 
MONITOR 

FIRMWARE 

USE 
MONITOR RAM 

USER PROGRAM 
DATA STORAGE RAM 

FFr-------------~ 1780 
177F 

1000 
OFF F 

020 
01F 

0 
F 

0 000 
HEX 

\DDRESS 

NOT 
AVAILABLE 

-

AVAILABLE 
FOR 

USER RAM 
EXPANSION 

SUPPLIED 
USER RAM 

MEMORY 

RESERVED FOR 
USE MONITOR F8 ~ _____ --I 

F7 
'OFFF'IS 
ADDRESS OF 
I/O PORT 

AVAILABLE 
TO 

USER 
PROGRAM 

....... -+-'07' IS ADDRESS 
OF I/O PORT 

OOL------....... 
HEX 

ADDRESS EXTENDED I/O 

Figure 3.4: Memory And I/O Organization 

3-8 



4. CONTROLS AND INDICATORS 

Introduction 

This chapter provides a brief functional description of 
switches and indicators associated with the INSTRUCTOR 50. 

the various keys, 
See Figure 4.1. 

The 12-key Function Control Keyboard and the 16-key Hexadecimal keyboard en­
able you to communicate with, enter data, and perform the various system func­
tions associated with the INSTRUCTOR 50. The 8-digit display is used by the 
USE monitor to display responses to keyed input commands. The other switches 
and indicators are associated with various INSTRUCTOR SO facilities. 

Function Control Keyboard 

The keys in the left-most column of the function control keyboard (SENS, INT, 
MON, and RST) are used primarily for system control. All other keys on this 
keyboard perform functions associated with entry, execution, and debugging of 
programs. 

The RST and MON keys are active at all times. All other keys except SENS and 
INT are normally active only during the monitor mode. Depressing these keys 
while executing your program has no effect. The SENS and INT keys are active 
only during execution of a program and have no effect on monitor operation. 

However, you may take advantage of the INSTRUCTOR 50's keyboard and display 
facilities by incorporating calls to the monitor subroutines controlling these 
devices as part of your program. See Chapter 5 for a description of these 
subroutines. 

4-1 



FLAG 
INDICATOR 

RUN 
INDICATOR 

EIGHT-DIGIT 
DISPLAY 
PANEL 

PORT DATA 
INDICATORS 

PORT DATA 
INPUT SWITCHES 

KEY 

SENS 

INT 

PORT ADDRESS 
SELECT SWITCH 

DIRECT/INDIRECT 
INTERRUPT 

SWITCH 

FUNCTION 
CONTROL 

KEYBOARD 

Figure 4.1: Controls and Indicators 

FUNCTION 

HEXADECIMAL 
KEYBOARD 

CASSETTE 
CONNECTORS 

Controls the SENSE input to the 2650 when executing a user pro­
gram. The SENSE input is normally a logic '0'. Depressing the 
SENS key will set the SENSE input to a logic '1'. 

Allows you to manually interrupt the processor when executi.ng a 
program. When this key is depressed, an interrupt sequence be­
gins, resulting in the processor being vectored to or through me­
mory location 07. The Direct/Indirect switch on the INSTRUCTOR 
50 panel determines whether an instruction at location 07 is exe­
cuted (Direct), or whether location 07 contains a branch address 
to another location in the user memory (Indirect). A switch ac­
cessible through a cutout in the bottom panel permits interrupts 
to be controled by the AC line input frequency. See Chapter 5 
for more information on INT options. 

4-2 



MON 

RST 

WCAS 

RCAS 

STEP 

RUN 

BKPT 

REG 

MEM 

ENT NXT 

Termintes any operation in process and causes the forced jump 
logic to output a jump instruction sequence resulting in an entry 
to the monitor mode. The response to a depression of the MON key 
is the message HELLO on the display panel. 

When this key is depressed, any current operation 
end a RESET signal is applied to the 2650 causing 
tion to begin at address zero. The system does 
monitor mode when this key is depressed. 

is terminated, 
program execu­
not enter the 

Allows programs to be transferred from the INSTRUCTOR 50 memory 
to audio cassette tape. 

Allows programs to be transferred from audio CB.ssette tape to the 
INSTRUCTOR 50 memory. 

Causes the 2650 to execute a single program instruction anC!. re­
turn to the monitor moC!e, displaying the address of the next in­
struction to be executeC! on the monitor display. 

Depressing this key terminates the monitor mode and causes pro­
gram execution to begin at previously specified adClress. Program 
execution continues until (1) a breakpoint is encountered; (2) 
the RST or MON keys are depressed; or (3) the program executes a 
WRTC or HALT instruction. 

Allows you to specify and examine a program breakpoint. 

Places the INSTRUCTOR 50 in the Display and Alter Registers 
mode. In this mode, you may examine and alter the contents of 
the 2650's general-purpose registers, the program counter value, 
and the value of the Program Status Word (PSW). This key is also 
used to initiate entry into the ADJUST CASSETTE and FAST PATCH 
commands. See Chapter 5. 

Places the INSTRUCTOR 50 in the Display and Alter Memory mode. 
In this mode you may specify memory locations that you wish to 
examine, and you may alter the contents of these memory locations. 

Enters keyed-in data into memory or registers and also causes the 
contents of the next sequential memory or register location to be 
displayed. The use of this key during the various monitor opera­
tions is described in the detailed command descriptions, Chapter 
5. 

Hexadecimal Keyboard 

The 16-key hexadecima~ keyboard (0 through 9 and A through 
address and data parameters as required. This keyboard is 
junction with the REG key on the function control keyboard 
commands. See detailed command descriptions, Chapter 5. 

4-3 

F) is used to enter 
also used in con­
to enable certain 



Eight .. Digit Hex Display Panel 

The 8-digit display panel is used by the monitor to display prompting messages 
and re9porrses to keyed input commands. It also displays prompting messages to 
guide you in the operation of the INSTRUCTOR 50. 

Port Data Input Switches 

These eight switches are usee to specify a byte of input data at the parallel 
I/O port. This value is read when the 2650 executes a reae I/O port instruc­
tion. 

Port Data Indicators 

The eight I/O port LEDs reflect the current value in the parallel output port 
latch. This latch is loaded with the contents of an internal register by a 
write I/O port instruction. 

Direct/Indirect Interrupt Switch 

This switclt determines whether the 2650 executes a direct or indirect branch 
to suhroutine when it acknowledges an interrupt request. 

Port Address Select Switch 

This switch selects the manner in which the parallel 1/0 port 
The three modes are: non-extended I/O - Port D, extended 1/0 at 
0716, and memory mapped 1/0 at address OFFF16' 

is addressed. 
port address 

FLAG Indicator 

This LED indicates the current value of the FLAG bit 
Status Word. If the FLAG bit is a one, the LED is on. 
zero, the LED is off. 

in the 2650's Program 
If the FLAG bit is a 

RUN Indicator 

The RUN indicator reflects the operating status of the 2650. 
is executing either the monitor program or a user program, the 
on. The RUN light is off when the 2650 haST executed a HALT 
when the PAUSE line of the SlOO interface has been driven low. 

4-4 

When the 2650 
RUN light is 

instruction or 



5. COMMAND DESCRIPTIONS 

Introduction 

This chapter describes the various commands available to the INSTRUCTOR SO 
user. These commands include: 

DISPLAY AND ALTER REGISTERS 
DISPLAY AND ALTER MEMORY 
FAST PATCH 
DISPLAY AND ALTER PROGRAM COUNTER 
BREAKPOINT 
STEP 
WRITE CASSETTE 
ADJUST CASSETTE 
READ CASSETE 
RUN 
RESET 

In this chapter, each pair of facing pages discusses a single command. The 
left-hand page is devoted to text, while the right-hand page actually shows 
what is displayed on the monitor display panel When specific keys are depress­
ed. The circled numbers imbedded in the text on the left-hand page correspond 
with the circled numbers on the right-hand page. 

A discussion of the INSTRUCTOR 50's error messages is presented at the end of 
this chapter. 

5-1 



DISPLAY AND ALTER REGISTERS 

FUNTION: This command allows you to inspect and alter, if desired, the con­
tents of the 2650's general-purpose registers and/or Program Status Word (PSW). 

PROCEDURE: 

1. Depress the IREGI key C!) followed by the register ~dress 
correspon~ing to the first register to be inspected, ~ ac­
cording to the following table: 

REGISTER 
ADDRESS REGISTER 

0 RO 
1 Rl, bank 0 
2 R2, bank 0 
3 R3, bank 0 
4 Rl, bank 1 
5 R2, bank 1 
6 R3, bank 1 
7 PSU 
8 PSL 

2. The contents of the register are displayed as two hex digits in the ~ata 
field of the display. ~ 

3. The register contents may be modified at this time by keying in a new 
value followed by I ENT/NXT I. The numbers keyed in and appearing in the 
DATA display field are displayed t~e only and can be edited by simply 
keying in the correct characters ~. The display shifts to the left 
each time a new character is entered, and characters shifted out of the 
two-digit field are lost. The hex value a1Pearing on the c'isplay is de-
posited in the register when the IENT/NXT_ key is depressed. ~ 

4. When the 
register 
is being 
played. 

IENT/NXTl key is depressed after step 2 or 
in sequence will be displayed as in step 2 
di~layed, in which case RO will be the 

® 

~ the next higher 
~ unless the PSL 
next register dis-

5. The command is terminated by initiating any other command. 

6. If the keys 9, B, D, or E are depressed following I REG I in step 1, the 
key depression will be ignored. If the keys A, C, or F are depressed, the 
INSTRUCTOR 50 will enter the ADJUST CASSETTE, DISPLAY AND ALTER PROGRAM 
COUNTER, or FAST PATCH commands, respectively. See appropriate command de­
scriptions. 

5-2 



DISPLAY AND ALTER REGISTERS 

EXAMPLES 

KEY DISPLAY COMMENTS 

CD I REG I I r = I Awaiting register address 

I 4 I I .r4 = 7E I R1, bank 1 = H'7E' 

I ENT/NXT I I .r5 = OF I R2, bank 1 = H'OF' 

I ENT/NXT I I .r6 = 13 I R3, bank 1 = H'13' 

Example A: Examine contents of R1 - R3 of bank 1 

KEY DISPLAY COMMENTS 

I REG I I r = I Awaiting register adc1ress 

I 7 I I .PU = 04 I PSU = H'04' 

(]) I ENT/NXTI I .PL = 53 I PSL = H'53' 

® ~[D I .PL = 48 I Wrong data enterec1 

~0 I .PL = 40 I Correct data entered 

I ENT/NXTI I .rO = 721 Entered data deposited in 
PSL and RO contents displayed. 

Example B: Examine contents of PSW and change contents of PSL to H'40' 

5-3 



DISPLAY AND ALTER MEMORY 

FUNCTION: Allows,you to 
locations individually. 
bugging your program and 
memory locations. 

examine and optionally alter the contents of memory 
This command is particularly useful wnen you are de­
wish to examine, verify and/or change the contents of 

PROCEDURE: 

1. 

2. 

3. 

Depress the /MEMI key iJ) followeo by the address of the memory loca­
tion to be inspected. ~ If fewer than four digits are entered, the 
digits entered are used as the least-significant hexadecimal digits of the 
address. ® If more than four digits are entered, the last four digits 
are used as the address. 

Depress the I ENT/NXT I key ~ to display the contents of the specified 
memory location. The contents are displayed as two hexadecimal digits in 
the data field of the display. 

You amy continue to examine the contents of sequential memory locations by 
depressing the IENT/NXT\ key. ~ If you wish to alter the contents 
of any mem~ location, enter the new data via the hexadecimal key­
board. ~ Only the last two digits entered are retained, so that an 
error in entry can be corrected by entering the correct data. To deposit 
the new data into the specified memory location, you may either depress 
the IENT/NXTI k~or transfer control to a new function by depressing a 
function key. \!) 

Each time new data is specified, the monitor performs a read-after-write 
check to verify that you are not attempting to write into a ROM area or 
into non-existent memory. If the check fails, error message 3 is dis­
played. To recover from this error, depress the IMEMI key and repeat 
the cycle correctly. 

5-4 



DISPLAY AND ALTER MEMORY 

EXAMPLES 

1 

2 

3 

4 

® 

® 

KEY DISPLAY COMMENTS 

IMEM I I·Ad. = I Awaiting memory address 

Q]~ I·Ad. = 10 I 10 = Address of memory location to be 
examined 

I ENT/NXT I 1.0010 02 I R'02' = contents of memory location 
0010 

I ENT/NXT I 1.0011 FF I Address and contents of next sequen-
tial memory location 

Example A: Examine contents of memory location 0010, and move to 
next sequential memory location. 

KEY DISPLAY COMMENTS 

IMEM I I .Ad. = I Awaiting memory address 

0EJ I .Ad. = 22 I Address of memory location to 
be examined 

I ENT/NXT I I .0022 06 I R'06' = Contents of memory lo-
cation 0022 

0~ I .0022 05 I Desired contents of memory lo-
cation 0022 entered and dis-
played. 

I REG I I .r = I R'05' deposited into memory lo-
cation 0022, Display and Alter 
MemorI command is terminated, 
and monitor enters Disp1aI and 
Alter Resisters commahQ. 

Example B: Examine contents of memory location 0022, change data, 
and transfer control to another function. 

5-5 



FAST PATCH 

FUNCTION: The FAST PATCH command allows you to enter long strings of data in­
to memory from the hexadecimal keyboard. Once the starting address is select­
ed, data is loaded into memory sequentia11y--one byte for every two hex keys 
depressed. Once keyed in, data may not be changed in the FAST PATCH mode. To 
change data, you must use the DISPLAY AND ALTER MEMORY command or re-enter the 
FAST PATCH command starting at the address where the change is required. 

PROCEDURE 

1. To enter the FAST PATCH command, depress the I REG I key C!) on the ~2n­
ction control keyboard followed by [!] on the hexadecimal keyboard. \:) 

2. Enter the desired starting address on the hexadecimal keyboard. ~ 

3. 

4. 

5. 

NOTE: You may bypass this step and go directly to step 3 to 
known starting address. The starting address is known under 
the following conditions: 

begin at a 
anyone of 

a) When a file has been read into memory from a cassette tape by the IN­
STRUCTOR 50. The file's starting address will be the beginning ad­
dress for the FAST PATCH. 

b) The address from which the last exit from the DISPLAY AND ALTER MEMORY 
or FAST PATCH command took place. 

Depress the IENT/NXT I 
the starting address. 

key ~ on the function control keyboard to s~t 
Data may now be entered into the specified address. 

Enter desired data for the displayed address as two hex digits. 
tinue entering data in this manner until all data is entered. 
STRUC~ ~a~m~ca11y increments the memory address as data 
ed. ~ \2) ~ ~ 

Exit th~AST PATCH mode 
key. ® 

by depressing I ENT/NXT I or another 

CD Con­
The IN­

is enter-

function 

6. A read-after-write check is performed as each byte is deposited. The IN-
STRUCTOR 50 will display Error 3 if data cannot be stored. 

5-6 



FAST PATCH 

EXAMPLE 

CD 

KEY(S) DISPLAY COMMENTS 

I REG I Ir = I 

I F I I·Ad. = I Awaiting starting memory a~dress. 

[!]~ I·A~ • = 10 I Starting address entered. 

I ENT/NXT I 1.0010 I Starting address set. 

~[Q 1. 0010 12 I Data entry. 

[!][2J 1·0011 13 I 
[]][Q I .0012 14 I 
[]]~ 1·0013 15 I 

[]]~ 1.0014 16 I 
IMEM I I·Ad. = I Exit from FAST PATCH mode. 

Enter Data String "12 13 14 15 16" into Successive Memory 
Locations Starting at Address H'10' 

5-7 



DISPLAY AND ALTER 
PROGRAM COUNTER 

FUNCTION: The DISPLAY AND ALTER PROGRAM COUNTER connnan(1 allows you to examine 
or change the address of the fi.rst instruction to be executed by the 2650 dur­
ing execution of a RUN or STEP command. 

PROCEDURE: 

1. 

2. 

3. 

To en~ the DISPLAY AND ALTER PROGRAM COUNTER command, depress 
key 1 on the fun~on control key~oard followed by [QJ on 
decima keyboard. ~ 

the I REG I 
the hexa-

The display will s~ the current Program Counter (PC) value as four hexa­
decimal digits. ~ 

If you want to changeth~C address, enter 
hexadecimal keyboard. ~ 

the desired address on the 

NOTE: For a multiple-byte instruction, the address entered is the address 
of the first byte. 

4. Depress any command key ~ on the function control keyboard to set the 
desired starting address. If the IENT/NXT\ key is used, the INSTRUCTOR 
50 transfers control to the DISPLAY AND ALTER REGISTERS command. 

5-8 



EXAMPLE 

o 
<0 

KEY 

I REG I 
I C I 

EJEJ 
IENT/NXT I 

DISPLAY 

( r = 

DISPLAY AND ALTER 
PROGRAM COUNTER 

COMMENTS 

I 

I .PC = 0015 I 0015 = present 
Counter. 

contents of Program 

I .PC = 17 I Starting address changed to 0017. 

I r = I Sets new starting address, ancl trans-
fers control to DISPLAY AND ALTER 
REGISTERS command. 

Set Starting Address for RUN Command to H'0017' 

5-9 



BREAKPOINT 

The BREAKPOINT COMMAND allows you to enter, clear, or examine a program break­
point. A breakpoint returns system control from the executing porgram to the 
monitor and enables you to examine the state of the memory and processor reg­
isters, make modifications, if desired, and continue program execution from 
the point of interruption. 

PROCEDURE: 

1. Depress the I BKPT I key on the function control keyboard G) to place 
the INSTRUCTOR 50 in the breakpoint mode. 

2. The monitor will display either: 

a) A blank da~field if a 
vious1y. '-!J 

breakpoint address was not specified pre-

b) The address of the breakpoint previously entered. ~ 

3. Enter the desired breakpoint address on the hexadecimal keyboard. ~ 
If the desired address is already displayed, as in step (2b); re-entry is 
not required. 

NOTE: If a breakpoint is set at a multiple-byte instruction, the address 
specified for the breakpoint s~ou1d be the address of the first byte. 

4. Depress the IENT/NXTI key (3) or another function key ~ to set the 
breakpoint at the address dis~yed. 

5. ~ clear a breakpoint, depress the IBKPT\ key twice in succession. 

NOTE: The breakpoint is inserted into your program when you enter the execu­
tion mode via the RUN command. When the breakpoint is encountered during pro­
gram execution, the breakpoint address and contents are displayed, preceded by 
a "-" (minus) sign. The instruction at the breakpoint adc:lress is restored and 
executed prior to this display, and the Program Counter is updated to the ad­
dress of the instruction following the breakpoint. 

ERROR MESSAGES 

During specification of the breakpoint address, the INSTRUCTOR 50 may display 
one of the following error messages: 

ERROR 1 

ERROR 2 

If the user attempts to specify a breakpoint address in the IN­
STRUCTOR 50's ROM address space or in non-existent memory. To clear 
this error, depress IBKPTI once. 

If the user attempts to enter a new breakpoint address after having 
set a previous breakpoint address by depression of the I ENT/NXT I 
key. To clear this error, depress any function key. The original 
breakpoint address will be saved. 

5-10 



BREAKPOINT 

EXAMPLE 

KEY(S) DISPLAY COMMENTS 

1 I BKPT I I .b.P = I No previous breakpoint specified. 
Waiting for breakpoint address. 

2 GJEJ I .b.P = 44 I Breakpoint address entered. 

3 I ENT/NXT I I h.p = 0044 I Breakpoint address set. 

4 lREG I I r = I Breakpoint address set by exiting to 
another function. 

5 I BKPT I I .b .P = 0044 I Breakpoint address displayed. 

6 I BKPT I I b.P = I Breakpoint cleared. 

Set Breakpoint at Address H'0044' and then clear it. 

5-11 



STEP 

FUNCTION: Causes the 2650 to execute a single instruction and return to the 
MONITOR mode, displaying the address of the next instruction to be executed on 
the monitor display. 

PROCEDURE: 

1. 

2. 

Enter the address of the first instruction to be ~ecuted 
under DISPLAY AND ALTER PROGRAM COUNTER command. ~ 

as 

Depress the I STEP I key. ® The 
instruction and display the aadress 
and the data at that address. 

INSTRUCTOR 50 will execute 
of the next instruction to be 

described 

a single 
executed 

3. At this point you may examine and alter memory and/or register values if 
desired by using the appropriate commands. 

4. Continue as in step 2 to repeat the single-step operation. ~ ~ 

5. To exit the single-step mode, depress any function key. ~ 

6. Note that a breakpoint, if entered, is ignored during single-step opera­
tion. 

The single-step sequencer and the forced jump logic are used in this mode of 
operation. Following is the sequence of operations executed by the monitor 
when the ISTEPj key is depressed: 

a) The monitor SINGLE STEP flag is set. 

b) Register contents previously stored upon entry to the monitor are re­
stored to the 2650. 

c) The monitor executes a "hidden single step" to determine how many cy­
cles are contained in the instruction to be stepped. 

d) The monitor permits execution of one user program instruction by 
counting the predetermined number of cycles. 

e) The registers (RO - R3, RI' - Rl' and PSW) are saved. 

f) The Program Counter is updated to the next instruction. 

g) The address in the Program Counter and data at that address are dis­
played. The SINGLE STEP flag is cleared. 

h) The monitor exits to the KBD SCAN routine to await user's input. 

5-12 



STEP 

EXAMPLE 

KEY(S) DISPLAY COMMENTS 

CD IREGI [£] 0 I ENT/NXT ) Ir = I Starting address H'0008' entered. 

I CD STEP I IOOOA 42 I Single step executed.* Next instruc-
tion is at H'OOOA' , and op-code is 
H'42' (ANDZ, R2). 

0) I STEP I IOOOB CC I Next instruction op-code is H'CC' 
(STRA, RO). 

0 I STEP I I IOOOE. 20 Next instruction op-code is H'20' 
(EORZ, RO). 

G) I REG I Ir = I Exit single step. 

Single step three instructions starting at address H'0008' 

* Since the displayed address is two greater than the 
(H'OOOA' - H'0008' =2), the first instruction executed was 
stuction. 

5-13 

starting address 
a two-byte in-



WRITE CASSETTE 

FUNCTION: The WRITE CASSETTE command allows you to write programs and data 
from memory onto cassette tape. Any good quality audio cassette tape recorder 
may be used as the output device. The data transfer rate is approximately 300 
bits per second. 

PROCEDURE: 

General Installation 

• Connect the INSTRUCTOR 50's Cassette-Out Jack to the microphone (MIC) in­
put of the cassette deck using the appropriate cable supplied with the IN­
STRUCTOR 50 package. 

• Install tape in transport. 

• Make certain that the tape is positioned so that previously recorded files 
will not be destroyed when the WCAS command is issued. 

• Adjust recorder's input level control, if one is provided, to normal re­
cording level. 

Operation 

1. Depress the I WCAS I key 0 to place the INSTRUCTOR 50 in the WRITE 
CASSETTE mode. 

2. Enter the lower (beginning) address of the file to be written. CD 
3. Depress the I ENT/NXT I key G) to set the lower address. 

4. Enter the upper (ending) address of the file to be written. (0 
5. Depress the I ENT/NXT I key CD to set the upper address. 

6. Enter the program start ad~ss 
gram to begin executing). ~ 

(the address at which you want your pro-

7. Depress the I ENT/NXT I key (j) to set the start address. 

8. Enter the file identification (ID) number. ~ 
NOTE: The file ID may be any hex value between 00 and FF. If no ID is 
entered, the default file number is 00. 

9. Place the cassette deck in the RECORD mode. 

1Q. Depress I ENT/NXT I key. ® This starts a five-second 
actual memory dump to tape. The INSTRUCTOR 50 flashes the 
at one-se~d intervals during this delay. The message 
played ~ when data transfer to tape is completed. 

5-14 

delay 
FLAG 
HELLO 

prior to 
Indicator 
is dis-



WRITE CASSETTE 

11. During the recording process, a visual indication of the 'dump' can be ob­
served on the I/O port indicators by placing the I/O Port Address Select 
Switch in the EXTENDED (center) position. 

Tape Deck Shutdown 

• Turn the audio tape recorder off. 

• If the tape deck has a counter, note its value for future reference. 

• Disconnect tape deck and remove and store tape cartridge. 

Error Messages 

The INSTRUCTOR 50 will display the message 'Error 7' if the value of the spe­
cified upper address is less than the value of the lower address. 

EXAMPLE 

KEY(S) DISPLAY COMMENTS 

I WCAS f f L.Ad. = I Waiting for lower a.ddress of 
be written onto tape. 

[QJ I L.Ad. = 0 I Lower address entered. 

I ENT/NXT I I U.Ad. = I Lower address set. Waiting 
address. 

[2]0 I U.Ad. = 76 I Upper address entered. 

I ENT/NXT I I S.Ad. = I Upper address set. ¥Jaiting 
address. 

[!][2J I S.Ad. =10 I Start address entered. 

I ENT/NXT I I .F = I Start address set. Waiting 
number. 

IT] I • F = I I File ID entered • 

I ENT/NXT I I HELLO I File address set. Write data 
sette tape completed. 

Write a file to tape with the following parameters: 
File Number = 1 
Beginning Address = 0 
Ending Address = H'76' 
Program Start Address = H'10' 

5-15 

file to 

for upper 

for start 

for file 

to cas-



ADJUST CASSElTE 

FUNCTION: The ADJUST CASSETTE command allows you to adjust the output 
of a cassette recorder for proper interface to the INSTRUCTOR 50 during a 
CASSETTE operation. 

level 
READ 

While most conventional audio cassett~ recorders are compatible for use with 
the INSTRUCTOR 50, the playback volume control must be accurately a~justed to 
ensure proper detection of data by the INSTRUCTOR 50. Otherwise, the data 
signal may be distorted (volume too high) or may drop below detection thres­
holds (volume too low). 

PROCEDURE: 

General Installation 

1. Check to ensure that the cassette recorder's playback heads and transport 
mechanism are clean and free from any obstructions. 

2. Install tape in transport and rewind to an area known to contain a pre­
viously recorded file. 

3. Connect the INSTRUCTOR 50's PHONE jack to the cassette deck's PHONE or 
SPEAKER output jack using the appropriate cable supplied with the IN­
STRUCTOR 50 package. 

Operation 

1. Place the INSTRUCTOR 50 in the ADJUST CASSETTE mode 
I REG I key on the fUn~on control keyboard followed 
decimal keyboard. ~ 

by depressing 
by m on the 

the 
hexa-

2. Start playback of previously recorded data. 

3. Adjust tape deck VOLUME or LEVEL control. The following three digits 
will be displayed intermittently during t~e adjustment process: 

U Increase volume 

d. Decrease volume 

volume control adjusted correctly 

4. When a minus sign (-) 0) is displayed, the audio cassette's playback 
volume is properly adjusted. 

5. During the a~just process, the I/O Port indicators can also be 
observe data being read by the INSTRUCTOR 50 if the I/O Port 
Switch is placed in the EXTENDED (center) position. The display 
following significance: 

All LEDs OFF Indicates proper operation or no data. 

5-16 

used to 
Address 

has the 

-----"- - --------



Some negative number (LED 
bit 7 ON) 

Some positive number (LED 
bit 7 OFF) 

Indicates that the playback level is too 
low - not enough pulses. 

Indicates that the playback level is too 
high. Tape "noise" is being detected 
too many pulses. 

6. When level is properly set, turn off the cassette deck. 

7. Depress the IMONI key ® to exit from the ADJUST CASSETTE routine. 

EXAMPLE 

KEY(S) DISPLAY COMMENTS 

IREGIID I U I Places INSTRUCTOR 50 in the ADJUST 
CASSETTE mode. Increase playback 
level. 

I d. I Decrease playback level. 

I - J Playback level properly set. 

I MON I I HELLO I Exit ADJUST CASSETTE mode. 

5-17 



READ CASSETTE 

FUNCTION: The READ CASSETTE command allows you to read files previously stor­
ed on cassette tape using the WRITE CASSETTE command and store these files in 
the specifie~ RAM locations. 

PROCEDURE: 

General Installation 

1. Check to ensure that the cassette recorder's playback heads and transport 
mechanism are clean and free from any obstructions. 

2. Install tape in transport and rewind to desired file location. 

3. Connect the INSTRUCTOR 50's PHONE jack to 
SPEAKER output jack using the appropriate 
STRUCTOR 50 package. 

the 
cable 

cassette 
supplied 

deck 
with 

PHONE 
the 

or 
IN-

4. Adjust playback level to setting previously determined to be proper by 
ADJUST CASSETTE operation (See ADJUST CASSETTE command). 

Operation 

1. Depress the I RCAS I key CD to place the INSTRUCTOR 50 in the READ 
CASSETTE mode. 

2. Depress one or two hex digits ~ corresponding to the file num~er de­
sired to be read back. 

NOTE: The user may elect to read the first file encountered by omitting 
this step. 

3. Depress the I ENT/NXT I key ~ to set the file ID number. 

4. Start the cassette deck in playback mode. The reading of data by the IN­
STRUCTOR 50 can be visually observed on the I/O Port indicators by plac­
ing the I/O Port Address Switch in the EXTENDED (center) position. 

5. When the reading of the speci.fied~le is 
will display the HELLO message. ~ 

6. Turn off the audio cassette deck. 

completed, the INSTRUCTOR 50 

7. Data read from tape will be placed at consecutive memory locations start­
ing at the beginning address specified when the file was created. The 
Program Counter (PC) will be set to the address specified as the program 
start address when the file was created. 

5-18 



READ CASSETTE 

Error Messap-:es 

During the read-in process, anyone of the following error messages may be 
displayed: 

• Error 4 - Cassette Block Check Character (BCC) error 

• Error 5 - Read Cassette Memory Write Error 

• Error 6 - Read Cassette character from tape not ASCII HEX 

EXAMPLE 

KEY(S) DISPLAY COMMENTS 

I RCAS I I .F = I Places the INSTRUCTOR 50 in the READ 
CASSETTE mode. Waiting for file ID 

1 

number. 

2 CO I .F = 1 I File ID number entered. 

3 I ENT/NXT I Sets file ID number. Begins reading 
data into memory.* 

4 I HELLO I File is fully loaded into memory. 

*Flashing I/O Port indicators at this point indicate 
that the file is being read. 

5-19 



RUN 

FUNCTION: Terminates the monitor mode and causes program execution to begin 
at the address specified in the Program Counter. Program execution continues 
until 1) a breakpoint is encountered, 2) the RST or MON key is depressed, or 
3) the user program executes a WRTC (Write to Port C) or HALT instruction. 

The RUN command allows program execution to begin at any point in the user 
program. It is particularly vaiuable, when used in con;unction with a set 
breakpoint, for debugging sections of a program. When th~ RUN key is depress­
ed, the INSTRUCTOR 50 performs the following actions: 

1. If a break~oint was set, the WRTC code is inserted at the specified 
breakpoint address and a monitor 'BREAKPOINT ENABLED' flag is set. This 
flag distinguishes a breakpoint 'WRTC' from any other 'WRTC' in the user 
program when control is returned to the USE monitor by the forced jump 
logic upon execution of a WRTC instruction. 

2. The processor registers are restored to the last values existing when 
control was returned to the USE monitor after a breakpoint or single 
step, or to the values specified by you in a DISPLAY AND ALTER REGISTERS 
operation. 

3. The INSTRUCTOR 50 switches to the execution mode by jumping to the ad­
dress specified in the Program Counter. This address will be the address 
of the next instruction following a breakpoint or single step, or the ad­
dress specified by you in a DISPLAY AN.D.ALTER PROGRAM COUNTER operation. 

5-20 



RESET 

FUNCTION: When the RST (RESET) key is depressed, current INSTRUCTOR 50 ac­
tivity is terminated immediately, and the processor begins program execution 
at address H'OOOO. Breakpoint and single-step flags, if set, are ignored. A 
high (logic one) level appears on the expansion connector RESET pin for as 
long as the key remains depressed. 

When the RESET key is used to initiate program execution 
H'OOOO', the initial processor register values are unknown, and 
if previously specified, is not inserted in the user program. 
tion continues until anyone of the following occurs: 

1. The RESET key is depressed again. 

from location 
a hreakpoint, 

Program execu-

2. A HALT instruction (H'40') is executed. 
struction, tbe processor balts until the 
if the Interrupt Inbibit PSW bit was not 

Upon detection of a HALT in­
RESET key is depressed again or, 
set, until an interrupt occurs. 

3. A WRTC Instruction is executed or the MON key is depressed. Control is 
transferred to the USE monitor and the HELLO message is displayed. When 
control is returned to tbe monitor, the address of the last memory fetcb 
is saved in the Program Counter, and register values are saved in monitor 
RAM. These may he examined by using the appropriate commands. 

4. The processor's PAUSE input is raised high via the expansion connector. 
When this occurs, tbe RUN indicator light is extinguished. Program exe­
cution will begin at the next instruction when PAUSE goes low. 

5-21 



ERROR MESSAGES 

The USE monitor incorporates extensive error checking firmware. If an error 
is encountered while attempting to execute a command, a message of the form 
'Error n' is presented on the monitor display. Error messages are summarized 
in Table 5.1. 

• Error 1 BREAKPOINT CANNOT BE SET. 

• Error 2 INVALID COMMAND. 

• Error 3 ALTER OR PATCH MEMORY WRITE ERROR. 

• Error 4 CASSETTE BCC ERROR. 

• Error 5 READ CASSETTE MEMORY WRITE ERROR. 

• Error 6 CHARACTER FROM TAPE NOT ASCII HEX. 

• Error 7 START ADDRESS GREATER THAN STOP ADDRESS. 

• Error 8 KEYBOARD HAS 2 KEYS IN COLUMN DOWN. 

• Error 9 NEXT SINGLE STEP IS INTO MONITOR. 

TABLE 5.1: Error Messages 

Additional information on each of the above error messages is presented in the 
following paragraphs. 

Error 1 *BREAKPOINT CANNOT BE SET* 

The ~isplay message Error 1 indicates that an attempt was 
point at a memory address which is not RAM. A breakpoint 
serting the WRTC,RO code H'BO' into the memory ad~ress 
after-write check is then performed. If this test fails, 
displayed. 

Error 2 *INVALID COMMAND* 

made to set a break­
is entered by in­

specified. A read­
the error message is 

The display message Error 2 indicates that an incorrect conunand sequence was 
entered via the keyboard. 

Error 3 *ALTER OR PATCH MEMORY ERROR* 

The display message Error 3 indicates that an attempt was made to 
data at a memory address which is not RAM. When changing memory 

5-22 

cha.nge the 
data during 



an Alter Memory or Patch Memory operation, a read-after-write check is per­
formec'l. If this test fails, the error message is displayeCl. 

Error 4 *CASSETTE BCC ERROR* 

When data is written on tape with the WRITE CASSETTE command, a Block Check 
Character (BCC) is appenCled to the end of the file. The BCC is recalculateCl 
when data is read back with a READ CASSETTE command and compared with the BCC 
recovered from the tape. If the BeC's do not match, the message Error 4 is 
displayed, indicating that some problem has occurred in reading the tape. 

Error 5 *READ CASSETTE MEMORY ~mITE ERROR* 

Data read back from the tape is stored in the INSTRUCTOR 50 at consecutive 
memory locations starting at the address specified in the tape file. A read­
after-write check is performed on each byte stored. If the test fails, the 
message Error 5 is displayed. 

Error 6 *CHARACTER FROM TAPE NOT ASCII HEX* 

Data written on tape uses the ASCII code for the characters 0 through F. 
display message Error 6 indicates that a non-hex character was recovered 
the tape. Correct adjustment of playback level should be verified using 
ADJUST CASSETTE command. 

Error 7 *START ADDRESS GREATER THAN STOP ADDRESS* 

The 
from 
the 

The display message Error 7 indicates that the 
CASSETTE command is greater that the specified 
cannot be performed. 

sta.rt address 
stop address. 

in 
The 

the WRITE 
operation 

Error 8 *KEYBOARD HAS 2 KEYS IN COLUMN DOWN* 

The Error 8 message is displayed when the monitor detects that two keys are' 
depressed simultaneously. The monitor cannot decode the action desired. 

Error 9 *NEXT SINGLE STEP IS INTO MONITOR* 

Single-step operation in the memory area reserved for the USE monitor (H'lOOO' 
- H'lFFF') is not permitted and will cause unpredictable results if executed. 
The display message Error 9 is a warning that such a single-step operation was 
attempted. 

5-23 





6. USIN·G THE INSTRUCTOR 50 

Restrictions on Using the 2650 Instruction Set 

When writing programs, the INSTRUCTOR 59 user has the complete 2650 micropro­
cessor instruction set at his disposal. However, because of the interaction 
between the USE monitor and user hardware and software, certain restrictions 
must be observed: 

1) The USE monitor reserves the WRTC, Rx instruction (H'BO' H'B3') to 
indicate the location of a breakpoint in a user program. If this in-
struction is executed in a user program, control of the system will re-
turn to the monitor, and the message HELLO will be displayed. 

2) If a HALT instruction (H'40') is executed, processor operation will 
terminate. This is indicated by the RUN indicator being extinguished. 
The only ways to reinitiate operation are to depress the RST key 
or, if interrupts were not inhibited, to cause an interrupt by depress­
ing the INT key. 

If a breakpoint is set at a HALT instruction location, the monitor will 
prevent execution of the HALT, and normal operation will continue. 

3) The top of memory page zero is occupied by the USE monitor program. 
Therefore, the ZBSR and ZBRR instructions with negative displacements 
should not be used unless entry into the monitor program is -desired. 
The same applies to interrupt vectors with negative displacements. 

4) The USE monitor uses three levels of the 2650 subroutine Return Address 
Stack (RAS) in its operation. Since the RAS is limited to eight 
levels, user programs being developed under control of the USE monitor 
should be limited to a maximum of five levels of subroutines, including 
interrupt levels. 

Using Interrupts 
Interrupts provide a method of interfacing a synchronous program to asynchron­
ous external events. An Interrupt Request forces the 2650 to temporarily 
suspend execution of the program currently running and branch to an interrupt 
service routine. Upon completion of the interrupt service routine, the 2650 
resumes execution of the interrupted program. 

The INSTRUCTOR 50 provides three methods of interrupting the 2650. The first 
method is a manual interrupt using the INT key on the function keyboard. 
The second method uses a 60Hz signal derived from the INSTRUCTOR 50's power 
supply to generate interrupt requests once every 16.7 ms. This option 

6-1 



accommodates user programs that require a real-time clock. {For European sys­
tems, the real-time clock interrupts occur at a 50Hz rate or once every 20 
ms). The third method of interrupting the INSTRUCTOR 50 is via the S100 bus 
interface. This section decribes the 2650's interrupt mecbanism and provides 
details on selecting the interrupt options. 

The 2650's interrupt mechanism can be selectively enabled or disabled at vari­
ous points in a user program by setting or clearing the Interrupt Inhibit (II) 
bit of the processor's Program Status Word (PSW). If the Interrupt Inhibit 
bit has been set, the 2650 ignores interrupt requests. The Interrupt Inhibit 
bit may be cleared (thus enabling interrupts) in any of the following four 
ways: 

n By resetting the processor (depressing the RST key); 

2) By executing a Clear Program Status Upper (CPSU) instruction with the 
proper mask value; 

3) By executing a Return from Subroutine and Enable Interrupt (RETE) in­
struction; or 

4) By executing a Load. Program Status, Upper (LPSU) instruction. 

The interrupt mechanism of the 2650 operates with a vectored interrupt. When 
the processor accepts an interrupt request, it responds by issuing an 
INTerrupt ACKnowledge (INTACK). Upon receipt of INTACK, the interrupting de­
vice responds by placing an "interrupt vector" on the 2650 data bus. This 
vector is used as the address, relative to byte zero, page zero, of a branch 
to subroutine instruction. The interrupt vector may specify either direct or 
indirect addressing. A vector that specifies direct addressing causes the 
2650 to execute a subroutine branch to the address specified by the vector. 
If an indirect address is specified, the interrupt vector points to the first 
of two successive memory locations (interrupt vector and interrupt vector + 1) 
where the address of the interuupt subroutine is stored. In this case, the 
processor first fetches the two interrupt subroutine address bytes and then 
branches to the subroutine. Thus, a direct interrupt vector transfers the 
program to any location from -64 to +63 relative to byte zero, page zero, and 
an indirect interrupt vector can transfer the program to any location within 
the 2650's 32K addressing range. 

If the Interrupt Inhibit bit has been cleared, the INSTRUCTOR 50 responds to 
an interrupt request loyith the following sequence of events: 

1) The 2650 completes execution of the current instruction. 

2) The processor sets the Interrupt Inhibit bit of the PSW (=1). 

3) The first byte of a Zero Branch to Subroutine Relative (ZBSR) instruc­
tion is inserted in the 2650's internal instruction register. 

4) The processor issues INTACK and waits for an interrupt vector to be re­
turned. on the data bus. 

5) The INSTRUCTOR 50's interrupt logic places the interrupt vector (H'07' 
or H'87') on the data bus. Whether the interrupt vector specifies 

6-2 



6) 

direct (H'07') or indirect (H'S7') addressing is determined by the set­
ting of the Direct/Indirect switch on the front panel. If the switch 
is in the Direct position, the next instruction executed is the in­
struction at address H'07'. If the switch is in the Indirect position, 
the next instruction executed is at the address contained in H'07' and 
H'OS' • 

The 2650 executes the ZBSR instruction. The address of the 
struction in the interrupted progra.m is stored in he 2650' s 
subroutine address stack, and the stack pointer is incremented. 

next in­
internal 

7) When the interrupt subroutine is terminated with an RETE or RETC in­
struction, the 2650 decrements the stack pointer, replaces the current 
value of the Program Counter with the address previously stored in the 
subroutine stack, and resumes execution of the interrupted program. 

Since the INSTRUCTOR 50 interrupt logic vectors interrupt requests through 
memory address H'07', user programs that support direct interrupts must place 
the first byte of the interrupt subroutine at this address. If indirect sub­
routines are used, the address of the interrupt subroutine must be stored at 
memory locations H'07' and H'OS'. 

As interrupts may occur at any point in a user program, it is entirely pos­
sible that they will affect the contents of the 2650's internal registers with 
unpredictable results for the interrupted program. This probe1m can be solved 
in two ways. The first way is to tightly control the portions of a user pro­
gram that can be interrupted by selectively setting and clearing the Interrupt 
Inhibit (II) bit in the PSW. The second method is to save the 2650's internal 
registers and Program Status Word upon entering the interrupt subroutine and 
restoring them before returning from the subroutine. 

The INSTRUCTOR 50's interrupt modes can be selected by a combination of switch 
settings and a jumper option on the printed circuit board. As mentioned pre­
viously, the Direct/Indirect switch on the INSTRUCTOR 50's front panel deter­
mines whether the interrupt vector generated by the interrupt logic specifies 
direct or indirect addressing. Whether the 2650 responds to the INT key or 
the 60 Hz real-time clock is determined by the setting of a slide switch lo­
cated at the bottom of the INSTRUCTOR 50 case. Optionally, devices external 
to the INSTRUCTOR 50 can generate interrupt requests via the S100 bus inter­
face. To accomplish this, a jumper option described in the last part of this 
section is used. 

Following are two programming examples that make use of the INSTRUCTOR 50's 
interrupt facilities: 

Example 1 - Direct Interrupt 

This example is a complete program that first clears the parallel I/O 
lights and then maintains a binary counter at the I/O port lights. The 
is incremented each time the INT key is depressed. Prior to running 
program, you must place the Direct/Indirect switch in the Direct position, 
the I/O port address select switch in the Non-Extended position. 

6-3 

port 
count 
this 

and 



Address Data Instruction Mnemonic 

0000 76,20 PPSU H'20' 

0002 75,08 CPSL H'08' 

0004 IF,OO,OA BCTA,UN,H'OOOA' 

0007 84,01 ADDl,RO,H'Ol' 

0009 17 RETC,UN 

OOOA 20 EORZ,RO 

OOOB FO WRTD,RO 

OOOC 74,20 CPSU H' 20' 

OOOE 76,20 PPSU H'20' 

0010 IF,OO,OB BCTA,UN H'OOOB' 

Example 2 - Indirect Interrupt 

Comment 

Set II - inhibit interrupts. 

Operations without carry. 

Branch over interrupt 
routine. 

Increment RO (counter). 

Return from interrupt 
routine. 

Clear RO (counter). 

sub-

sub-

Write RO to the lights (non­
extended). 

Clear II (open interrupt win­
dow) • 

Set II (close interrupt win­
dow) • 

Branch back to WRTD. 

This example performs the same function as above but uses indirect inter­
rupts. The interrupt subroutine starts at address H'lOO'. This address is 
contained in program locations H'07' and H'08'. Prior to running this pro­
gram,·. you must place the Direct/Indirect switch in the indirect position but 
retain the I/O port address select switch in the non-extended position. 

Address Data Instruction Mnemonic Comments 

0000 76,20 PPSU H'20' Set II - Inhibit Interru·pts. 

0002 75,08 CPSL H'08' Operations without carry. 

0004 IF,00,09 BCTA,UN H'0009' Branch over interrupt address. 

0007 01,00 AeON H'OlOO' Interrupt routine address. 

0009 20 EORZ,RO Clear counter. 

OOOA FO WRTD,RO Write RO to the lights. 

OOOB 74,20 CPSU H'20' Clear II - enable interrupts. 

OOOD IF,OO,OD BCTA,UN H'OOOD' Loop forever. 

0100 84,01 ADD 1 ,RO H' 01' Increment counter. 

6-4 



0102 FO WRTD,RO Write RO to the lights. 

0103 37 RETE,UN Return and enable interrupts. 

Using the I/O Switches and Lights 

The 2650 provides several methods for monitoring the status of and controlling 
the operation of external I/O devices. One such method unique to the 2650 is 
a serial I/O port formed by the SENSE input pin and the FLAG output pin on the 
processor. The 2650 also has provisions for two types of parallel I/O in­
structions, called extended and non-extended. The non-extended I/O instruc­
tions are one-byte instructions that allow a user program to read from and 
write to two eight-bit I/O ports: port C and port D. The two-byte extended 
I/O instructions expand the 2650's I/O capahilities to 256 bidirectional I/O 
ports. 

In addition to the 2650 instructions specifically intended for I/O opera­
tions, you may choose to use the memory mapped I/O mode. This mode is imple­
mented by assigning a memory address to an I/O device. While a memory mapped 
I/O port requires more decode logic than either an extended or a non-extended 
port, it can ba accessed by the full range of 2650 memory referencing instruc­
tions. (Refer to Chapter 9 for a description of the 2650 I/O control modes.) 

The INSTRUCTOR 50 includes features that demonstrate all of the 2650's I/O 
modes. These features are described as follows: 

FLAG and SENSE I/O 
The 2650's FLAG and SENSE pins are associated with the flag and sense bits of 
the processor's internal Program Status Word (PSW). The SENSE bit of the PSW 
always reflects the signal level on the SENSE pin. Likewise, the level on the 
FLAG pin always reflects the current value of the flag bit in the PSW. 

The user may manually control the value of the sense bit in the PSW using 
the SENS key on the function control keyboard. When the SENS key is 
depressed, the SENSE bit is a one. Otherwise, the SENSE bit is a zero. 

The INSTRUCTOR 50's Flag indicator on the front panel is driven by the FLAG 
pin on the 2650, providing a visual indication of the FLAG bit's current 
value. The FLAG light is on if the FLAG bit is a one, and the light is off if 
the FLAG bit is a zero. 

Non-Extended I/O 

The 2650 can control two bidirectional I/O ports with four single-byte in­
structions: WRTC, WRTD, REDC and REDD. These instructions move data between 
port C, port D and the 2650's internal registers. 

The INSTRUCTOR 50's front panel parallel I/O port can be 
tended port D by placing the Port" Address select switch 
position. In this position, the I/O port can 

6-5 

assigned as non-ex­
in the NON-EXTENDED 
be accessed with 



the WRTD and REnD instructions. This allows you to manually enter data with 
the input switches by including a REDD instruction in your program. Similar­
ly, your program can write a data value to the output LEDs by executing a WRTD 
instruction. 

Extended 1/0 
The 2650 can control up to 256 bidirectional I/O ports with the double-byte 
instructions WRTE and REDE. The second byte of these instructions specifies 
the extended I/O port address. The INSTRUCTOR 50's parallel I/O port can be 
assigned as extended address H'07' by placing the Port Address switch in the 
EXTENDED position. In this mode, the parallel I/O port can be accessed with 
WRTE and REDE instructions that specify an extended address H'07' in their 
second byte. 

Memory Mapped 1/0 

Memory mapped I/O is simply a matter of decoding a memory address for enabling 
an I/O port. To demonstrate this I/O mode, the INSTRUCTOR 50's Port Address 
select switch can be placed in the MEMORY position. This assigns the parallel 
I/O port a memory address of H'OFFF'. Thus, any memory reference instruction 
that specifies H'OFFF' as the source or destination will access the front 
panel parallel I/O port. When an instruction reads location H'OFFF', the 
value contained in the specified register will appear in the port output LEDs. 

CALLING MONITOR SUBROUTINES 

Now that you are familiar with the 2650 instruction set and have successfully 
entered a few simple programs, you are undoubtedly ready and anxious to make 
use of some of the more powerful features provided by the INSTRUCTOR 50. For 
example, you might want to write a decimal add program using the INSTRUCTOR 
50's keyboard and eight-digit display. By calling subroutines within the 
monitor program, the display can be used to request the two numbers to be add­
ed, and the hex keyboard can be used to enter the numbers. After the two num­
bers have been entered, and their sum calculated, another monitor subroutine 
can be called to display the results of the addition. This section describes 
these subroutines and provides examples in their use. 

In additi_on to subroutines that provide easy access to the INSTRUCTOR 50's 
keyboard and display, the monitor program contains other subroutines that are 
useful in writing application programs. Refer to the program listing in 
Chapter 11 for additional information on other subroutines. 

The monitor subroutines are called with Zero Branch to Subroutine Relative 
(ZBSR) instructions. The ZBSR instruction specifies a subroutine relative to 
byte zero, page zero. The relative addressing range is -64 to +63. Since the 
2650 uses an 8K page addressing scheme, ZBSR instructions with a negative off­
set (relative address) wrap back around to the top of the first 8K page. The 
top of the first 8K page in the INSTRUCTOR 50 is located within the monitor 
program and contains a table of indirect subroutine addresses. Thus, the 
monitor subroutines can be called by ZBSR instructions that specify indirect 
addressing and have the negative offset that points to the desired 

6-6 



subroutine. The addresses required to call the various monitor subroutines 
are included in the description of each subroutine. 

The subroutine descriptions include a list of the 2650 registers used in their 
execution. Unless otherwise specified, the contents of these registers will 
contain meaningless data when the subroutine returns control to the user pro­
gram. Therefore, registers that contain important user program information 
must be stored in a memory location before the monitor subroutine is called. 

When calling monitor subroutines, caution must be exercised to avoid over­
flowing the 2650's internal 8-level subroutine stack. Since some of the user­
accessible subroutines call other subroutines within the monitor program, each 
subroutine description includes the number of other subroutines called during 
its execution. This information allows you to calculate the number of 
subroutine stack levels required by your program and insures that this number 
never exceeds eight. 

6-7 



MOVE SUBROUTINE 

Calling Instruction: 

Registers Used: 

Mnemonic Hex Value 

ZBSR ">\MOV BB,FE 

Rl = Message Pointer - 1 (high-order byte) 
R2 = Message Pointer - 1 (low-order byte) 

Subroutine Levels Used: 0 

Function: 

MOVE fetches an eight-byte message within the user's program and 
eight bytes in the monitor's display buffer. When combined with 
subroutine, MOVE allows you to write messages on the INSTRUCTOR 
digit display. Any of the INSTRUCTOR 50's characters can be used 
ing a message. 

Operation: 

stores the 
the DISPLAY 
50's eight­
in assembl-

Before calling MOVE, you must store an eight-byte message within your pro­
gram. The location of the sequential message bytes is transferred to MOVE by 
storing the address of the first message byte in Rl and. R2 prior to calling 
the subroutine. Because of the algorithm used to implement the MOVE sub­
routine, it is necessary to subract one from the message pointer before it is 
stored. in Rl and R2. Following is an example of the MOVE subroutine call and 
a list of the hexadecimal values for the INSTRUCTOR 50's display characters. 

6-8 



Address 

• • 
• 

0010 

0012 

0014 

• 
• 
• 

0100 

0101 
0102 
0103 
0104 
0105 
0106 
0107 

Character 

*0.0 
*1.1 
*2 
*3 
*4 
*5.5 
*6.G 
*7 
*8 
*9 

Data 

05,00 

06,FF 

BB,FE 

17 

14 
OE 
11 
11 
00 
17 
17 

Value 

H'OO' 
H'Ol' 
H'02' 
H'03' 
H'04' 
H'05' 
H'06' 
H'07' 
H'08' 
H'09 

EXAMPLE OF MOVE SUBROUTINE CALL 

Instruction Mnemonic 

LODI, R1 H'OO' 

LODI, R2 H'FF' 

ZBSR *'MOV 

Hex Values of Display 

Character Value 

*A H'OA' 
*B H'OB' 
*C H'OC' 
*D H'OD' 
*E H'OE' 
*F H'OF' 
*p H'10' 
*L H'll ' 
*U H'l2' 
*R H'13' 

6-9 

Conunents 

Load message pointer -1 in R1 
and R2. 

(H'100' - 1 = H'OOFF'). 

Call MOVE. The message bytes 
stored in locations 0100-0107 
are transferred to the moni­
tor's display buffer. 

= blank (first byte of mes-
sage) 

= H 
= E 
= L 
= L 
= 0 
= blank 
= blank (last byte of mes-
sage). 

Characters 

Character Value 

*H H'14' 
*0 H'lS' 
*= H'16' 
*BLANK H'17' 
*J H'18' 
*- H'19' 
* H'lA' 
*Y. H'lB' 
*N H'lC' 



DISPLAY SUBROUTINE 

Calling Instruction: 

Mnemonic Hex Value 

ZBSR *DISPLY BB,EC 

Registers Used: 

RO,RI ,R2 ,R3 

On entry RO = Display Command 
On exit RO = Key Value (optional) 

Subroutine Levels Used: 0 

Function: 

When used with the MOVE subroutine, DISPLAY writes messages on the INSTRUCTOR 
50's eight-digit display. DISPLAY reads the message stored in the monitor's 
display buffer with MOVE and writes the message on the display. Optionally, 
DISPLAY can be used to read the function and data keyboards and return the 
value of a depressed key. 

Operation: 

DISPLAY has three modes of operation that are selected by 
byte in RO prior to calling the subroutine. The DISPLAY 
functions they specify are summarized below: 

writing a 
commands 

command 
and the 

Value Placed 
in RO 

H'OO' 

H'OI' 

H'BO' 

Function 

Displays message in display buffer until a function or data 
key is depressed. Returns the value of the depressed key in 
RO. 

Makes one pass through the DISPLAY subroutine and does 
read the keyboards. A single pass through the DISPLAY 
routine will not produce a visible display. Hence, 
this command is used, it should be part of a loop that 
DISPLAY a sufficient number of times to illuminate the 
sage. 

This command is identical to the H'OO'command except 
the decimal point of the most-significant (far-left) 
is illuminated. 

not 
sub­
when 

calls 
mes-

that 
digit 

The function and data key values returned in RO when operating in response to 
commands H'OO' and H'BO' are listed in the following table. This is followed 
by an example of the MOVE and DISPLAY subroutine calls that displays the mes­
sage HELLO until the I RUN I key is depressed. 

6-10 



Data Values for Command and Data Ke!s 

Ke! Value Ke! Value Ke! Value 

0 H'OO' 8 H'OB' WCAS H'BO' 
1 H'Ol' 9 H'09' BKP H'B1' 
2 H'02' A H'OA' RCAS H'B2' 
3 H'03' B H'OB' REG H'B3' 
4 H'04' C H'OC' STEP H'B4' 
S H'OS' D H'OD' MEM H'BS' 
6 H'06' E H'OE' RUN H'B6' 
7 H'07' F H'OF' ENT/NXT H'B7' 

Exam]2le of Move and Dis]2la! Subroutine Calls 

Address Data Instruction Mnemonic Comment 

0010 OS,OO LODI,R1 H'OO' Place message table pointer 
0012 06,FF LODI,R2 H'FF' minus one in R1 and R2. 

0014 BB,FE ZBSR *MOV Call the Move subroutine. 

0016 04,00 LODI,RO H'OO' Place command byte in RO. 

0018 BB,EC ZBSR *DISPLY Call the DISPLAY subroutine. 

001A E4,B6 COMI,RO H'B6' Compare returned key code to 
RUN code. If equal, branch to 

001C 1C,XX,XX BCTA,EQ H'XXXX' address H'XXXX'. 

001F 1C,00,16 BCTA,UN H'0016' If not equal, loop back and 
wait for next key. 

0100 17 First byte of message table ::: 

blank 
0101 14 ::: H 
0102 OE ::: E 
0103 11 ::: L 
0104 11 ::: L 
0105 00 ::: 0 
0106· 17 ::: blank 
0107 17 Last byte of message table ::: 

blank. 

6-11 



USER DISPLAY SUBROUTINE 

Calling Instruction: 

Registers Used: 

Mnemonic Hex Value 

ZBSR *USRDSP BB,E6 

RO, R1, R2, R3 

On entry R3 = Display Command 
R1 = Message Pointer -1 (high order) 
R2 = Message Pointer -1 (low order) 

On exit RO = Key value (optional) 

Subroutine Levels Used: 2 

Function: 

USER DISPLAY combines the functions of MOVE and DISPLAY. That is, USER DIS­
PLAY moves an eight-byte message from a user program to tbe display buffer and 
then displays the message. As with DISPLAY, this subroutine may be used to 
read the function and data keyboards. 

Operation: 

Before calling USER DISPLAY , you must load the first address of your message 
table (-1) in R1 and R2. Additionally, R3 must be loaded with the desired 
command as in the DISPLAY subroutine. 

The following example of a USER DISPLAY subroutine call 
HELLO until the RUN key is depressed. (This example is 
lent to the example for the DISPLAY subroutine). 

6-12 

displays tbe 
functionally 

message 
equiva-



Address 

0010 

0012 

0014 

0016 

0018 

001A 

001D 

0100 

0101 
0102 
0103 
0104 
0105 
0106 
0107 

Example of a USER DISPLAY Subroutine Call 

Data Instruction Mnemonic 

05,00 LODI,R1 H'OO' 

06,FF LODI,R2 R'FF' 

07,00 LODI,R3 R'OO' 

BB,E6 ZBSR *USRDSP 

E4,86 COMI,RO R'86' 

1C,XX,XX BCTA,EO R'XXXX' 

1F,00,10 BCTA,UN R'0010' 

17 

14 
OE 
11 
11 
00 
17 
17 

6-13 

Connnent 

Place message tahle pointer 
-1 in R1 and R2. 

Place connnand byte in R3. 

Call USER DISPLAY. 

Compare returned key value to 
RUN's value. 

Branch to XX,XX if equal. 

If not equal, loop back and 
get another key. 

First byte of message table = 
blank 

= R 
= E 
= L 
= L 
= 0 
= blank 
Last byte of message table = 
blank 



NIBBLE SUBROUTINE 

Calling Instruction: 

Mnemonic Hex Value 

ZBSR *DISLSD BB,F4 

Registers Used: 

RO and R2 
On entry: 
On exit: 

RO = byte (high-order nibble, low-order nibble) 
RO = high-order nibble 
Rl = low-order nibble 

Subroutine Levels Used: 1 

Function: 

NIBBLE takes an eight-bit byte and separates it into two bytes, each contain­
ing one of the original four-bit nibbles. This subroutine is useful in user 
programs that display a register or memory data value on the INSTRUCTOR 50 
display. The NIBBLE subroutine is an invaluable aid in converting binary data 
to hexadecimal values. 

Operation: 

The byte to be separated in passed to NIBBLE in RO. NIBBLE then takes the 
least-significant four bits (low-order nibble) from RO and places them in the 
four least-significant bits of Rl. When NIBBLE returns program control to 
your program, RO contains the low-order nibble, and Rl contains the high-order 
nibble. The most - significant four bits of both RO and Rl contain zeros. A 
functional example of NIBBLE is shown below. This is followed by an example 
of a NIBBLE subroutine call. 

6-14 



On entry: 

On exit: 

Address 

0000 

0001 

0003 

0006 

0009 

OOOB 

OOOD 

OOOF 

0011 

0100 

0101 
0102 
0103 
0104 
0105 
0106 

0107 

RO = F3 

RO = OF 
R1 = 03 

Data 

70 

BB,F4 

CD,01,07 

CC,01,06 

05,00 

06,FF 

04,00 

BB,E6 

1B,6D 

13 

OE 
OD 
OD 
16 
17 
17 

17 

Functional Example of NIBBLE 

Example of NIBBLE subroutine Call 

Instruction Mnemonic 

REDD,RO 

ZBSR *DISLSD 

STRA,R1 H'01,07' 

STRA,RO H'01,06' 

LODI,R1 H'OO' 

LODI,R2 H'FF' 

LODI,RO H'OO' 

ZBSR*USRDSP 

BCTR,UN H'6D' 

6-15 

Comment 

Read I/O port (Non-Extended) 
into RO. 

Call NIBBLE subroutine. 

Store low-order nibble in 
message table. 

Store high-order nibble in 
message table. 

Place message table pointer 
(-1) in R1 and R2. 

Place display command in RO. 

Call USER DIAPLAY subrou­
tine. Displays previous Port 
D value. Allows new I/O 
value to be set up in switch­
es. Exits When any key is 
depressed. 

Loop back to 0000 and get new 
I/O value. 
= "R" (first byte of message 
table) • 
= "E" 
= "n" 
= "D" 
= "=" 
= "blank" 
= "blank" (hign-order nibble 

will be stored here). 
= "blank" (low-order nibble 

will be stored here). 



INPUT DATA SUBROUTINE 

Calling Instruction: 

Mnemonic Hex Value 

ZBSR *GNP BB,FA 

Registers Used: 

On entry: RO = Input Command 

On exit: RO = Two Data Key Values 
Rl = Two Data Key Values (optional) 
R2 = Function Key Value 
R3 = Data Entered Indicator 

Subroutine Levels Used: 1 

Function: 

INPUT DATA displays the contents of the display buffer and scans the data key­
board for data entry. As data is keyed in, the subroutine writes the input 
data in the least-significant digits of the display. When a function key is 
depressed, USER DISPLAY returns to the main program with the input data and 
function key values in the 2650's internal registers. 

Oper.ation: 

INPUT DATA has two selectable modes of operation. Mode selection 
writing an input command byte in RO before calling the subroutine. 
command bytes and the functions they specify are listed as follows: 

is made by 
The input 

Value Placed 
in RO 

H'OO' 

H'O!' 

Function 

Displays a four-digit message and accepts four digits 
of data. As each data value is keyed in, it is dis­
played in the least-significant (right-most) display 
digit, and previously entered values are shifted left. 
Data entry is terminated and program control is re­
turned to the user program when a function key is de­
pressed. If less than four data values are entered, 
zeros are inserted in the non-entered digit positions. 

Identical to H'OO' except that a five-digit message is 
displayed, and two digits of data are input from the 
data keyboard. 

6-16 



The four or five-digit message to be displayed by INPUT DATA must be placed in 
the monitor's display buffer before INPUT DATA is called. The message charac­
ters displayed are taken from the first four 0 r five bytes of the eight-byte 
message table transferred to the display buffer by the MOVE subroutine. 

The data values input to INPUT DATA are returned to the main program in RO for 
the two-digit input mode and to RO and RI for the four-digit input mode. In 
the two-digit input mode, the most-significant (lata value entered is returned 
to the most-significant nibble of RO, and the least-significant data value is 
returned to the least-significant nibble of RO. In the four-digit input mode, 
the two most-significant data values are returned in Rt, and the two least­
significant data values are returned to RO. 

When data entry is terminated witb a function key depression, the value of the 
function key is returned to'R2, and a data entered indicato r value is returned 
to R3. If no data has been entered before a function key is depressed, R3 
will contain the value H'7F'. If data has been entered, R3 will contain a 
value of H'OO'. The following example illustrates how data is returned to the 
user program. (Thi's is followed by an example of an INPUT DATA call.) 

6-17 



Example of Data Entry and Register Contents on Return 

From Input Data Subroutine 

Display Comments 

(1) (2) (3) (4) 
(RUN) 

PLUS 
PLUS1234 

Initial display on subroutine entry. 
Data values entered. 

Register 

RO 
R1 
R2 
R3 

Address 

0050 

0052 
0054 

0056 

0058 

0100 

0101 
0102 
0103 
0104 
0105 
0106 
0107 

Data entry terminated and program con­
trol returned to user program. 

Register Contents on Return from Input Data Subroutine 

Contents 

H'34' 
H'12' 
H'86' 
H'OO' 

Comments 

Least-significant data values 
Most-significant data values 
Value of RUN key 
Indicates valid data in RO and R1 

Example of Input Data Subroutine Call 

Data Instruction Mnemonic Comments 

05,00 LODI,R1 H'OO' Place message table pointer 
(-1) in R1 and R2. 

06,FF LODI,R2 H'FF' 
BB,FE ZBSR *'MOV Call MOVE to transfer message 

table to aisplay buffer. 
04,00 LODI,RO H'OO' Place input command in RO 

(H'OO' = 4 digits). 
BB,FA ZBSR *GNP Call INPUT DATA sub routine. 

10 First byte of message table = 
P 

11 = L 
12 = U 
05 = S 
17 = blank 
17 = blank 
17 = blank 
17 Last byte of message table = 

blank. 

NOTE: Since the input command requests four digits of input data, only the 
first four message table bytes (0100 - 0103) are displayed. 

6-18 



MODIFY DATA SUBROUTINE 

Calling Instruction: 

Mnemonic Hex Value 

ZBSR *GNPA BB,FC 

Registers Used: 
RO,R1,R2,R3 

On entry: RO = Input command 

On exit: RO = Two Data Key Values 
R1 = Two Data Key Values 
R2 = Function Key Values 
R3 = Data Entered Indicator 

Subroutine Levels Used: 1 

Function: 

MODIFY DATA is very similar to INPUT DATA. The major difference is that the 
initial display message can use all eight digit positions on the INSTRUCTOR 50 
display panel. MODIFY DATA enables a program to display data values that were 
previously entered with INPUT DATA and allows these data values to be modified. 

Operation: 

As with INPUT DATA, MODIFY DATA has two modes of operation that are selected 
by writing an input command byte in RO prior to calling the subroutine. The 
input commands and their respective functions are listed below: 

Value Placed in RO 

H'OO' 

H'Ol ' 

Resulting Function 

Displays an eight-digit message and accepts four digits 
of data. After the first data key is depressed, the 
four least-significant digits of the display are clear­
ed. Each new data value entered is then displayed in 
the least-significant display digit, and previously en­
tered values are shifted left. Data entry is terminat­
ed when a function key is depressed. 

Identical to H'OO' except that when the first 
is depressed, the three least-significant 
digits are cleared, and two digits of data may 
teredo 

6-19 

data key 
display 
be en-



The eight-digit message to be displayed must be transferred to the monitor's 
display buffer with MOVE before MODIFY DATA is called. The values for the 
data entered indicator are the same for MODIFY DATA as for INPUT DATA. That 
is, R3 contains H'OO' if RO and Rl contain valid data and H'7F' if a function 
key was de~ressed before data was entered. The following example illustrates 
operation of MODIFY DATA. This is followed by an example of a MODIFY DATA 
subroutine call. 

6-20 



Data Input 
Key 

(2) 

(RUN) 

Data Entry and Register Contents on Return 

Display 

JOB = 01 

JOB = 2 

From Modify Data 

Comments 

Initial ~isp1ay on subroutine entry. 

Least-significant three digits are cleared 
and new data is displayed. 

Data entry is terminated, an~ program con­
t ro1 is returned to user program. 

Register Contents on Return from MODIFY DATA 

Register 

RO 

Rl 

R2 

R3 

Address 

0034 

0036 
0038 

003A 

003C 

0100 

0101 
0102 
0103 
0104 
0105 
0106 

0107 

Data 

05,00 

06,FF 
BB,FE 

04,01 

BB,FC 

17 

18 
15 
OB 
16 
17 
00 

01 

Contents Comments 

R'02' Data entered is returned in RO. 

R'XX' Data in Rl is meaningless. 

R'86' Value of RUN key. 

R'OO' Indicates valid data in RO. 

Example of MODIFY DATA Subroutine Call 

Instruction Mnemonic 

LODI,Rl R'OO' 

LODI,R2 R'FF' 
ZBSR *'MOV 

LODI,RO H'OI' 

ZBSR *GNPA 

6-21 

Comment 

Place message table 
(-1) in Rl and R2. 

pointer 

Call MOVE to transfer the mes­
sage table to the display buff­
er. 

Place input command 
(H'OI' = 2 digits). 

in RO 

Call MODIFY DATA subroutine. 

First byte of message table = 
"blank" 
= "J" 
= "0" 
= "B" 
= "=" 
= "blank" 
= "0" previously entered data 

value. 
= "1" previously entered data 

value. 



Jumper Options 

The INSTRUCTOR 50's versatility is enhanced by jumper options on the printed 
circuit board. These options allow you to modify the system's basic con­
figuration. The jumpers are accessible through cutouts at the bottom of the 
INSTRUCTOR 50's plastic housing. Figure 6.1 identifies the location of the 
various jumpers and their configuration. The factory supplied configurations 
are identified by asterisks (*) in the jumper pin description tables. 

Jumper A - Interrupt Selection 

As described previously, a switch at the bottom of the INSTRUCTOR 50 allows 
you to select interrupts from the interrupt key on the function keyboard or 
from the input line frequency clock. Jumper 'A' provides additional interrupt 
flexibility by allowing interrupt requests flDm external logic via the bus in­
terface connecton If this option is exercised, interrupt requests from ex­
ternal logic will result in a vectored interrupt through memory address 
H'0007'. The setting of the DIRECT/INDIRECT switch on the front panel deter­
mines whether an externally generated interrupt request results in a direct or 
indirect subroutine branch. The pin descriptions for jumper 'A' are defined 
in the following table: 

Pins 
Connected Description 

JUMPER A Pin Descriptions 

1-2* No unal operation. The 2650 recognizes interrupt requests; from 
the interrupt key or the real-time clock, depending on the posi­
tion of S6. 

2-4 Bus interface. The 2650 recognizes interrupt requests froni the 
interface signal VIO (pin 4). The interrupt latch is set on the 
rising edge of VIO. 

2-39 Bus interface inverted. This configuration is identical to the 
2-4 option except that the 

3-4 interrupt latch is set on the falling edge of VIO. 

6-22 



(J\ 
I 

N 
W 

I'%j 
1-" 

aq 
c: 
t1 
(1) 

0-

I-' 

c.... 
~ 

't:I 
(1) 
t1 

S 
o 
I» 
rI' 
1-" 
o 
~ 
til 

15 

• 17 •• 16 

JUMPER 0 

JUMPER A 

3 •• 4 
2 •• 1 

INTERRUPT 
SELECT 
SWITCH 

JUMPER B 

@ 

@ l@ 

32 34 36 38 •••••••• 31 33 35 37 

PARALLEL I/O PORT 
SWITCH INPUTS 

PARALLEL I/O PORT 
LED DRIVERS 



Jumper B - S100 Clock Select 

The bus interface includes three pins for 8100 interface clock requirements. 
The jumper 'B' option allows you to select between two clock signals generated 
by the INSTRUCTOR 50. The first clock is the same 895 KHz clock available to 
the 2650. 

The second clock is the 2650 OPREQ signal gated by the forced 
able (Le., the OPREQ clock is inhibited whenever the forced 
control of the 2650's address and data busses). The pin 
jumper 'B' are defined in the following table: 

jump logic 
jump logic 

descriptions 

en­
has 
for 

Clock Source Pins 

Pin Numbers 

11,12 

13,14 

S100 Clock Pins 

Pin Numbers 

8 

9 

10 

JUMPER B Pin Definitions 

DESCRIPTION 

These pins are driven by the INSTRUCTOR 50's 895 KHz system 
clock. 

These pins are driven by the conditioned OPREQ signal. The 
frequency is approximately 303 KHz. (NOTE: This clock is 
not a continuous frequency. Some 2~ instructions are 
executed without generating OPREQ). 

Description 

This pin is connected to the SlOO bus signal 01, pin 25. 

This pin is connected to the S100 bus signal 02, pin 24. 

This pin is connected to the SlOO bus signal CLOCK, pin 49. 

Jumper C - Power Source Select 

The INSTRUCTOR 50 is designed to operate with its own internal power supply 
used in conjunction with,~the wall transformer supplied with the system. Op­
tionally, the input to the INSTRUCTOR 50's 5-volt regulator can be supplied 
from the interface bus connector. Jumper 'c' supports this option. The pin 
descriptions for jumper 'c' are defined in the following table: 

Pin Connected 

18-20* 

18-19 

JUMPER 'c' Pin Definitions 

Description 

Normal operation. The INSTRUCTOR 50's power requirements 
are supplied by the wall transformer. 
The INSTRUCTOR 50's power requirements are supplied by an 
8-volt unregulated D-C source applied via the bus interface 
connector. 

6-24 



Jumper D - Cassette Output Selection 

The INSTRUCTOR 50's cassette interface provides two reco~ing signal levels. 
Jumper 'D' selects between a 30mV rms record level and a 300mV rms record 
level. The pin descriptions for jumper 'D' are defined in t~e following table: 

Pins Connected 

15-17* 

16-17 

Jumper 'D' Pin Definitions 

Description 

This option provides a 30mV rms record level to the cas­
sette. 

This option provides a 300mV rms record level to t~e cas­
sette. 

• 

6-25 



~"'J"!,):~Ij'::):t 7lfnJ:: \!JwO('E ~ htlH r9v~E{1 b·'.fO:J!':Vl ~~rft'l vrrrOf .S n99~'Njsd Bj:>sIsa t a! :t9Cf!rIDt, 

:~)r6J;'J gf1Z'\10 In:! ~)r{'j (o;} r!.:1;"Lt=tsf·~ '7.",\C~, tn~ ';(}1 R.noI.j :r:;e.9.b nlq ~rIT .19'*191 

noj' ,iqo 
~ ~) j j' ~} ,~:l . 

• 



7. SYSTEM '~XPANSION 

Introduction 

~ict'"Opl'qce~H~9ts h;lve had:,a,' trewendqu~, impact; on the hobbyist c01!lPuter market. 
Beginning:~witbqAltair'$ 8800:bome.computer, the hobbyist market has literally 
exploded,wi·tbi,newprQduct.~··, The.se,c;new;iproducts include not only basic com­
puters but a host of small support systems or peripheral boards. The first 
periphet'abbo.r,pfiI,weJ;'e silDPle~memorye~pansioJl.boards, but today. there are a 
wide:;yariety:':of:,peripoeralsavai:lable~'There; 'are:, television interfaces for 
<;omputer·,gllap'hj:cs;·,f1pppy.gi~c. inte1:'faces ·,for ~s~,$t:orage, and even a board 
that synthesizes human speech. 

The maJc:n;it;y:.o:f, t1;lese,.,per:i.p1;leral :pQards a:re de.dgned to be compatible with the 
AJltai1;''78&00:,bu~;~i ,~s,;;D.JQre ,aIldm9r;"e.,A,.1ta:i;r.88pO-c;ompatible systems were intro­
~lJF,e.~, ;g;:t,s;tW.cr,qc,<?mpute.r blls,was given an ipdustrywide name, the SlOO bus. 

The INSTRUCTOR 50's SlOO interface (an edgeconn~ctor at the back of the unit) 
t;t;"~nsfq:r;tp.$d!l!s,iw.ple,learning(,device into. a, small, sYStem computer, limited only 
b;yt;1:)e:,numbe.r andt~pelot per:i,pheral boards used. Moreover, the powerful pro­
gramld:a:~~:.en~ry:,.and:,<ie1:>ug facilitiesoL the ,1?asic, INSTRUCTOR 50 are extended 
t:(), any"devi~eC;9~nected:, t;o Ule SlOO bus interface. 

1. \ ry \:'j 1 t:i ; ,", , 

Because the Altair 8800,dhome computer was based on the 8800, many of the S100 
bus signals are essentially 8080 signals. Many of these signals" such as the 
two-phase clock and negative supply voltage, are not required by state-of-the­
art microprocessors like the 2650. Hence, the INSTRUCTOR 50 ',s SlOO interface 
bus is not pin-for-pin compatible with Altair's original bus. However, the 
INSTRUCTOR 50's interface bus contains the most commonly use9>sigllds and can 
be easily connected to the majority of S100 peripherals. In addition to the 
common S100 bus signals, spare pins on the SlOO pin bus have:been assigned 
2650 signals (e.g., OPREQ, R/W, and MilO). Thus, custom interfaces can be de­
signed with the 2650 control logic, instead of the more cumbersome 8080 inter­
face bus logic. In short, the INSTRUCTOR 50's S100 interface opens up the en­
tire universe of home computer peripherals to owners of" the INSTRUCTOR, 50 
training system. 

The INSTRUCTOR 50 bus interface signals are described in Table 7.1. 

".;: '·t 

; . 

. ':"", 
t' ••• : 

"'.'.' 

7,.,.1 



Pin # Mnemonic 

1 +8V 

2 +16V 

3 XIU)Y 

4 VIO 

5 Not used 

6 Not used 

7 Not used 

8 Not used 

9 Not used 

10 Not used 

11 Not used 

12 R/'iN* 

13 

TABLE 7.1 

INSTRUCTOR 50 INTERFACE BUS SIGNALS 
(*lndicates a 2650 bus signal) 

Sianal Description 

Positive 8 volts, unregulated. This line provides 
+8 volts to the INSTRUCTOR 50 when Jumper C selects 
the interface bus as the system power source. 

Positive 16 volts. This line is reserved for +16 
volts that may be required for a S100 peripheral 
board. +16V is neither required for or generated by 
the INSTRUCTOR 50. 

External Ready. XRDY is returned by an external de­
vice when it has completed a data transfer with the 
2650. On board the INSTRUCTOR 50 XRDY becomes OPACK 
for the 2650. 

Vectored Interrupt #0. VIO provides an external in­
terrupt request when Jumper A is wired for external 
interrupts. VIO is latched and generates either an 
indirect or direct interrupt (selected by the 
DIRECT/INDIRECT switch) through address H'0007'. 

Read/Write. A 2650 control signal that indicates 
whether the processor is performing a read or write 
operation with an external peripheral board. As 
with all of the 2650 control signals, R/W is valid 
only when OPREQ is true. 

NOTE: An asterisk (*) indicates non-SIOO 2650 con­
trol signals. 

Write Pulse. A 2650 control signal that is generat­
ed during memory or I/O write sequences. WRP may be 
used to strobe data into the selected device. 

7-2 



14 M/IO* 

15 RESET* 

16 RUN/WAIT* 

17 PAUSE* 

18 Not used 

19 Not used 

20 Not used 

21 Not used 

22 Not used 

23 Not used 

24 01 

25 02 

26 Not used 

27 Not used 

28 Not used 

29 AS 

30 A4 

31 A3 

32 A15 

33 A12 

Memory/Input-Output. A 2650 signal that is generat­
ed during memory or I/O write sequences. WRP may be 
used to strobe data into the selected device. 

Reset. When driven high, 
operation as depressing 
STRUCTOR 50 front panel. 
and begins executing the 
H'OOOO' • 

RESET performs 
the RST key on 
That is" the 2650 
user program at 

the same 
the IN­

is reset 
location 

Run/Wait. A 2650 control signal that indicates 
whether the 2650 is in the wait state or is execut­
ing a program. 

Pause. This 2650 control signal input is provided 
for Direct Memory Access (DMA) operations. When 
driven high, this signal causes the 2650 to enter 
the WAIT state after completing the instruction 
rently being executed. 

cur-

Phase 1 Clock. 01 may be driven by the 895 KHz sys­
tem clock or the 2650 OPREQ signal depending on the 
configuration of the Jumper B option. 

Phase 2 Clock. 02 may be driven by the system clock 
or OPREQ depending on the configuration of Jumper B. 

Address Bit 5 

Address Bit 4 

Address Bit 3 

Address Bit 15. Since the 2650 has an address range 
of 32K, this line is grounded. 

Address Bit 12 

7-3 



35 

:·1 :36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

Y··' 
,···AIO 

D04 

DOS 

D06 

DI2 

DI3 

DI7 

Not used 

SOUT 

SINP 

SMEMR 

Not used 

CLOCK 

GND 

+8V 

-16V 

Not used 

Not used 

,iV! .1:.:1. ' (\::~r'~~t~~: ,~ 

:,;DataJOut,.Bl.t }.':<·,,;2 

Data Out Bit 4 . : '. . 

.Data.Out Bit 5 
',1" . " ,- ; . ~ ' .. 
Data Out Bit 6 

Data In Bit 2,' 

Data In ,Bit 3 

Data In Bit 7. 

Output. SOUT indicates that the ,address 
tains the address of an output I/O device. 
dressed device may accept the value on the 
when PWR (pin 77) is active. 

bus can­
The ad­

data bus 

Input. SINP indicates that the address bus contains 
the address of an input I/O device;. . .The selected 
device should return its data when PDBIN (pin 78) is 
active. 

Memory Read. This signal indicates that the address 
bus contains the address of a memory location and 
that the 2650 is performing a memory read operation. 

System Clock. Depending on the configuration of 
Jumper B, this line is driven by the 895 KHz system 
clock or the 2650 OPREQ output. 

System Ground. 

Positive 8 volts. This line provides +8V to the IN­
STRUCTOR 50 when Jumper C selects the interface ,bus 
as the system power source. 

Negative 16 volts. This line is reserved for -16 
volts that may be required by a SIOO peripheral 
board. Not supplied with the INSTRUCTOR 50. 

7-4 



55 DO* 
56 D1* 
57 D2* 
58 D3* 
59 D4* 
60 Not used 
61 D5* 
62, 'oi D6* 
63' D7* 

64 UOPREQ* 

65 INTACK* 

66 FLAG* 

67 USENSE* 

68 MWRlTE 

69 Not used 

70 Not used 

71 Not used 

72 PRDY 

73 PINT 

Data Bus Bit 0 - In addition to the 2650 control 
Data Bus Bit 1 - signals, the INSTRUCTOR 50 ,1.\,. 

Data Bus Bit 2 - interface bus also includes a 
Data Bus Bit 3 - bidirectional data bos. The 1-. ;, 

Data Bus Bit 4 - 2650 signals form a subset of 
the Interface busnthat can be i, '\ 

Data Bus Bit 5 - used to interface the 
"Data Bus :Bit 6 ~ ?:tNSnUCTOR 50 to bri!adboard '.~ " 
. Data Bus ,Bit, 7;- .. vperiphera1s with a minimum of in-

terconnect wires. 

User Operation Request:"<iOPREQ, a 2690~' ;contro1 ~Hg­
na1, ,indicates .that"the.processor' s address bus, 
data bus"and other' control signals are valid. 
OPREQ may ,be used to' latch::the data bus for write 
operations and enable input device bus drivers for 
read operations. .cJ i;. ,'; (t; C\ 

INTERRUPT ACKNOWLEDGE. .. :'; .. The 2650 returns INTACKO(ito 
to an INTERRUPT 
the ~}; interrupt ing 
relative branch 

PRDY,~,,4 These dg­
OPACK. 

an interrupting device in response 
REQUEST. Upon': receipt,·.of./,INTACK, 
device drives the data bus with a 
address and asserts eitherXRDY or 
nals become the 2650 status signal 

r 
" 

FLAG. This line contains the 2650 single-bit output 
port. \ . 

USER SENSE. USENSEis';.the 2650 sing],e-bit 
port. FLAG and SENSE are part of the PROGRAM 
WORD. :i ~ :, j. 

MEMORY WRITE. ,MWRlTE indicates that data is 
written into the memory location addressed 
current value of, :the· ADDRESS BUS. . r . 

'-' >.'. 
~: . i '.:1 " . 

itlPut 
STATUS 

to;be 
by the 

PROCESSOR READ:f.' ;',pRDYis 'logically 
to form the 2650 status signal OPACK. 
turned by an addre'Ssed ·device (either 
or an interrupting device when the 
transfer has been.completced. 

ORrd with 
PRDY is 

memory or 
requested 

XRDY 
re-

110) 
data 
·',n 

PROCESSOR INTERRUPT.;' PINT;is an SlOOT:'signal tnat 
corresponds to the 2650 INTERRUPT REQUEST signal. 
The 2650 acknowledges PINT when it completes the:in­
struction it was executing when PINT was driven 
low. The 2650 does not recognize'·;PINT.:i'f it is\.·in 
the WAIT state or if the INTERRUPT INHIBIT bit of 
the PSW is reset. PINT can be use:~L:, t~)":release i~t:he 
2650 from the HALT state • 

. 7-\5 



74 Not used 

75 Not used 

76 Not used 

77 

78 

79 

80 

81 

82 

8.3 

84 

85 

86 

87 

88 

89 

90 

91 

92 

9.3 

94 

95 

( 

PWR 

PDBIN 

AO 

Al 

A2 

A6 

A7 

AS 

Al.3 

A14 

All 

002 

D03 

007 

DI4 

DIS 

DI6 

D11 

DIO 

96 Not used 

97 Not used 

98 Not used 

PROCE,SSOR WRItE. PWRI indicates that the data bus is 
valid and may be accepted by the addressed memory 
location or output device. 

PROCESSOR DATA BUS IN. PDBIN indicates that the 
2650 is readng data from the addressed memory loca­
tion or input device. PDBIN may be used to enable 
the selected device's data bus drivers. 

Address Rit 0 

Address Bit 1 

Address Bi t 2 

Address Bit 6 

Address Bit 7 

Address Bit 8 

Address Bit 13 

Address Bit 14 

Address Bit 11 

Data Out Bit 2 

Data Out Bit 3 

Data Out Bit 7 

Data In Bit 4 

Data In Bit 5 

Data In Bit 6 

Data In Bit 1 

Data In Bit 0 

7-6 



99 POR POWER ON RESET. POR is an output signal that indi-
cates that power has been applied to the INSTRUCTOR 
50 and the system is being reset. POR may be used 
to reset peripheral boards on the Interface Bus. 

100 GND GROUND. System Ground. 

7-7 



-.ibni: .'1 s iIj Isn~.i:a juq:Juo fiB !;Lr 5iwr .T:I235! ~m .H:I\"'O~T 
J!OT:)UJIT2MJ !Jrlj oj D0.i:iqqs fISSO f!f;11 '!9t.;rOq jsrU aS1),;:] 
t.%W SO yr>m .HOg .j~a9l: ;';'l-'ll:sd 21 m9j2Ys 9£[1 bm:; Dc 

.BuB 9~81~9jnI 9rlj no 8L~BOd lsT9dqi~9q j9BST oj 

• DnJJo:rd IlIS 001 



i', :1; t, :~j 

8tl~lH150RY OF OPERATION 

Introduction J11U~; r~~ 
The INSTRUCTOR 50 is iy~i.cal, o~ nlder~jmic~ocomputers, reflecting many of the 
recent advances in mi~r§~~b~~s~orl t~~~«olo~y. For example, the current trend 
in microcomputer design':'1i"s'::to rep!lace qogiF functions implemented with Small­
Scale Integration (SSJhand Me~iuin-Sca:le Iptegration (MSI) circuits with com­
plex Large-Scale Int~gratiQ~~) (I1SIJ",~.micrbprocessor support circuits. This 
trend is exemplified iih tlte J1NSTRUdTOt 5q,: which makes use of the 2650 micro­
processor and the 2656 ;Sy~ten\lMemoty ;nt~rface. These two chips alone consti­
tute a basic microcompt+per,'o;""iB-eyemd'f'-t!'his ~two-chip microcomputer, the remainder 
of the circuits on the tIN~TRU~tQ&~,g;,\,g,f,..\jted Circl!i:E,,,~P,~~~2_.~.!.~~devoted to pro­
viding thfT...mict:Qc,omputet'r ~ith man-llJachin~ and mac1iine-:~acQjne i,interfaces. 

~ r ;; ~ (,~',.~'_~~."~~.v.~,.~~ "~~'_"~~'.~M~_~',~".~ ;.~:: ~~ ~j , 
This chapter desdribesilthe" hal'dwa1±e and ,sof~w:are a:sspciated with the IN­
STRUCTOR .5 O~y.s t ~m,.~;~"",~~:!;i.n.t,mlt;;!>;j,:'~~f;Q.P?~~~f~gr~'~"~i<"·qe t ai:iEfd :~xpos1i t i on for mai n­
tenance pdqto~s.; The ~;rNSTRUCTOR ~O com~s fully !asemb-led-aooJ debugged ready 
~o be p~u*g~~ ~~n :artci'l':'tf+d and requ~re~ 1~tt1e or no maintenance. Rather, the 
1.nt:nt 1.S I to.::: L.!t1Q?qce ~ou to the bas1.c ~undament"l~L "Q.~"" .. mg,g~~n microcomputer 
des 1.gn. I'"' ,,~ s~ ~ iI" ! 

I .' ~,c'~~w":";o, '_9>'t;'~"~~"~~~~',.~:~, i F. ~;< ii" 

';", .. ~ ._" ... """,,, ~ ,", i ,. ftt;(l(~"·f'~""·1 "'", 
Basic Concept ~ ;i') i ~ ~ j q,; J 

j~ .. _n''7''1 I '~;::; j ;~i ~ '~m"~~""~,"_~'V_~" 

The funct~onaL,h~art o~ iGomputers 1.~ gen(!ra1 and microcomputers in particular 
is the sy,ten:t :.pr~gr4m. ;; $he progra~ 21s a~10gica1 sequencl!""O'f"""lIlachine instruc­
tions th~f 1ij.!;)1i~'t~r:."#.~~~~~!I1._~l;:"~.!u.s,,,,~n~,,p.f,,s~cJ Qn,,'t~a~ni~at~s, d~cid~s what c~n­
tro1 act1.~ns::;tro !:lake. ,!A computer' s Cent~a1 Proce~s1.",-g::::Un1.t (CRU) 1.S a dev1.ce 
that read. i,~Ef.~rtictti!(Jft~!,~J,"prog:ram!i'S't'o-rage and, 1 br ~~;~e~uti4g the instruc­
tions, petfdrms a1.1. oJ[~the arithmetic an~;,logica1 !op't~tions ~equired by the 
system pr~giani~ jTIiE~"'t~U also provides t~~:; system! p-togram; ~.i~h the physical 
means to acces:Ei ~nd control the system's%:r:!O functHons;'''--'''The: ?:INSTRUCTOR 50's 
CPU is th~,,2.§,5.().,~icropiocessor. ~ ! ~;~ ! 

~~; ~ ~ ~ "?", ~"!:: 

The 2650 fetches instr~e't't'Ot1~'OM"''l51!'>Gg'r~';''~!fe'i~~ a~d:~: ~Jo~hicates with the 
system I/O circuits vi~ its address bus'I.4"£~~tEM%."jus~"a-nd,J dat4-_~us. As the 
2650 executes each ins~ruction, the addrtfss and 'c'{>ntfOLbUfJ va~u~.!::;Specify the 
device to be com1:ti~i"ca~Efo~~tlh. (mef6"':Y'1~Ea,.~10r, 1/01 ~~yife, le~ .. :!.o, and the 
data bus s~rves 'S~_~,~ftif-Q~~1.on fohtikJl:i-ltJ)ge1:wfenl th~ .:'SP'.l'10Fess1r...Jand the s~-
1ected dev1.ce. 1hll:"s'-N}i-&Pmat1.on tta.n.s.f,e.f",..sGlteibe I def~nes._j the ~ system's bas1.c 
architecture il1ustrat~d in Figure 8.1. , (,~~~ .... _,,~~.,.....,i 

Considerable sav~~~7-i!'''~-;;t~-''~~~~t'"~;;"~~;iI;ld by deC~ing the I/O device 

addresses within ithe 2656 SMI ."," ;:~ L;~,-.v,,-,"'''-.! U 
J.~ ~"./ ' 

t ... ,.: 

Thus, when the 2$50 executes an instruction that references an I/O device 
(e. g., the para1 terll0"porf)';"l:11'a'f"aevt"c(ft'~"'''iddress is asserted on the ad­
dress bus, and the Programmable Gate Array within the SMI decodes the. address 
and generates the'·:I~rFde.(,1~e;ls\'~nable!;sigfitt1,~j i:1Thus; ~niiM.ea:~l'the selected I/O 
device either accepts data from or returns data to the 2650 over the data 
bus. As the 2650 executes each instruction, it selects the device 



00 

• N 

>s;I .... 
~ 
11 
(I) 

00 

.... 
~ 
II) 
lIII .... 
n 
1-1 ::s 
lIII 
n 
11 
~ 
n 
n 
o 
t1 

1.11 
o 

!'; 
n 
l3" .... 
t't 
(I) 
n 
t't 
~ 
t1 
(\) 

rO~ 
2656SMI 

CLOCK f7Kl~ 
~~ 

1 

2650 
pP 

B 
U 

~~ 
E 
R 

B 
U 

~~ 
E 
R 

I/O 
DECODE 

DATA 

512X8 
RAM 

FORCED 
JUMP 
LOGIC 

• 

CONTROL 

ADDRESS 

• 
HEX KEYBOARD 

& DISPLAY 

t • 
PARAllEL 
J!OPORT 

:j ~~TTE 1--
IN, 

~ OUT 

DATA 

-.t 
S100 
BUS 

ADDRESS 

INTERFACE CONTROL 



specified by the instruction (program storage, user RAM, an 1/0 
with the address bus and communicates. with the selected device 
bus. 

device, 
via the 

etc.) 
data 

Detailed Block Diagram Description 

A detailed block diagram of the INSTRUCTOR 50 
This section gives a description of each of the 
lustrated in Figure 8.2 

is presented in 
major fUnctional 

Figure 
blocks 

8.2. 
il-

The Microcomputer 

As mentioned previously, the basic microcomputer consists of the 
processor and the 2656 System Memory Interface (SMI). The 2650 
following functions: 

2650 micro­
provides the 

8-bit ALU 

Program Counter 

Interrupt Logic 

Internal Registers 

Bus Interface Logic 

The Arithmetic Logic Unit performs all of the arithme­
tic and logical operations required for program execu­
tion. 

The program counter is used to generate program stor­
age addresses. 

The interrupt logic performs all functions required to 
respond to an interrupt request from an external de­
vice. 

The 2650's seven internal registers provide 
data storage and serve as a link between the 
external data storage, such as RAM locations 
devices. 

temporary 
ALU and 
and 1/0 

The bus interface logic distinguishes 
and 1/0 device addresses and specifies 
of data transfers between the processor 
data storage. 

between memory 
the direction 

and external 

The 2650 microprocessor is surrounded with bus drivers (buffers). Because the 
2650 is fabricated using an MOS process, its output pins can drive only one 
TTL load. The bus drivers buffer the 2650 outputs and are able to drive all 
of the loads on the INSTRUCTOR 50's busses. 

The buffered 2650 data, address and control busses are connected directly to 
the 2656 SMI. The SMI contains the 2K monitor program, 128 bytes of scratch­
pad RAM, a system clock generator, and an eight-bit 1/0 port. The eight-bit 
I/O port is controlled by a mask Programmable Gate Array (PGA). As configured 
for the INSTRUCTOR 50, the PGA decodes the address bus and provides eight 1/0 
chip enables for the user RAM and I/O devices. Table 8.1 lists the functions 
of these outputs. 

All of the monitor program's scratchpad memory requirements are met by the 
SMI's 128 byte RAM. In fact, the monitor only requires 64 bytes, thus leaving 
the remaining 64 bytes for user storage. It should be noted, however, that 
while the INSTRUCTOR 50 enables you to access these 64 bytes of the SMI's RAM 
with the DISPLAY AND ALTER MEMORY command and the FAST PATCH command, the SIN­
GLE STEP and BREAKPOINT commands are not supported within this memory 

8-3 



.... 
~ 

... -' :>u 
8o~ a:- ~ 

a: " w O '" U;:::~ .... -' .... 
1-1-

~ t--- ~ 0 
u 

.... ... 
:> 
a: 

.S:~8 9'lU;g .. ", n.1:... \) I3jI~ a .q ~H i t}( 
-Jl e>i ::>01 :i ... ~.ffi;"~n~ ~ngi If ~ rL £,1 "0""" ,,' ". /.., 

~z .... z .. 
Ow z" 0 .... 
w:> 0- 0 .. u o u'" .. 0 - a: w 
5:'" 

-' 
'" '" 0 '" :> a: w 

"' .... II: 
Z 0 r~ 1'" :: 8, .':""~ 0 

J r ,,; ~ '" .,.... . 
•• < """ ~~.,j, 

-r<1I2 3d:: ~ b:T.6f1ll1W:J H:)'f'NI 
X'1omsm Fdrfj if b:f.:t ii-I 

~:,dj bm~ 

jai~, 

Jq::.::' ;'} 

!jdj V_d b:)_~~li<J~'Cf~:\ 

aa~:i':tbhr; 9ri:i r1j"l,\rl 



space. Hence, these 64 bytes should be used for data storage only. 
user programs should be stored in user RAM or on an S100 memory 
board. . 

INSTRUCTOR 50 Memory Allocation 

That is, 
expansion 

Figure 8.3 is a memory map of the INSTRUCTOR 50's addressable memory space. 
The memory map is divided into four 8K pages reflecting the addressing archi­
tecture of the 2650. The first page, page zero, contains the user RAM and the 
SMI ROM and RAM. The second, third, and fourth pages are available for user 
memory expansion or memory mapped I/O. 

The user RAM, is formed by four 256 x 4 RAMs (Signetics 2112's) that are enabl­
ed by the SMI chip-enahle lines mentioned previously. Chapter 7 described how 
S100 memory boards can be added to the INSTRUCTOR 50. 

8-5 



Signal 

RAMOCE 

. RAMICE 

PORTFX 

USRPORT 

USRMEM 

Dllo 

clIo 

MON 

Table 8.1 

CONTROL SIGNALS GENERATED BY THE SMI 

Function 

RAM 0 chip enable: this signal enables the lower 256 bytes of 
user RAM. 

RAM 1 chip enable: this signal enables the upper 256 bytes of 
user RAM. 

PORTFX goes low whenever the 2650 executes an extended 1/0 in­
struction with an address between H'F8' and H'FF', inclusive. 
This signal enables the INSTRUCTOR 50's 1/0 device addresses to 
be decoded with just three address bits. 

USRPORT goes low whenever the 2650 accesses the parallel 1/0 
port with an extended 1/0 instruction (address H'07'). 

This signal goes low when the 2650 executes a memory reference 
instruction that specifies address H'OFFF'. USRMEM enables the 
parallel 1/0 port when the port address select switch is in the 
MEMORY position. 

Dllo goes low when the 2650 executes a non-extended 1/0 instruc­
tion that specifies port D. If the port address select switch 
is in the NON-EXTENDED position, Dr/o enables the parallel I/O 
port. 

CI/O goes low when the 2650 executes a WRTC instruction. This 
signal is used by the forced jump logic for breakpoint detection. 

MON goes low whenever the 2650 fetches an instruction or data 
value within the monitor's address space (H'17CO' and H'lFFF'). 

8-6 



7FFF .... ---------. 

AVAILABLE 
FOR 

USER RAM 
EXPANSION 

0200 ..... --------1 
01FF 

SUPPLIED 
USER RAM 

0000 '---------"" 
HEX 

ADDRESS MEMORY 

FF 

FE 

00 
HEX 

ADDRESS 

NOT USED 

KEY RETURN 
INPUT 

LAST ADDR ESS 
REGISTER. M.S. 
BYTE, INPUT 

LAST ADDRESS 
REGISTER. L.S. 
BYTE, INPUT 

FORCED JUMP 
LOGIC.OPREQ 

COUNTER OUTPUT 

DIGIT/COLUMN 
SELECT OUTPUT 

DISPLA Y SEGMENT 
OUTPUT 

CASSETTE INTER-
FACE OUTPUT 

AVAILABLE 
TO 

USER 
PROGRAM 

EXTENDED I/O 

Figure 8.3: Memory and I/O Organization 

8-7 

RESERVED 
FOR 

MONITOR 

'07' IS ADDRESS 
OF I/O PORT 



Parallel I/O Port· 

The parallel I/O port consists of an output latch, input switches, and port 
address decode logic. The port address decode logic generates a port enable 
whenever one of the three following conditions are met. 

1) 

2) 

3) 

The 2650 executes a WRTD orREDD instruction. 

The 2650 executes either a WRTE or REDE instruction that specifies 
H'07' as an extended I/O address. 

The 2650 executes a memory reference instruction that specifies lo­
cation H'OFFF'. 

The Port Address switch selects one of these signals as the parallel I/O port 
enable. 

Whenever the I/O port is enabled and the R/W control line specifies a 
operation, the value on the data bus is strobed into the I/O port 
latch. This latch drives the I/O port indicator LEDs. 

write 
output 

The I/O port switches are one of four inputs to a data bus multiplexer. When­
ever the I/O port is enabled and the R/W line indicates a read operation, the 
I/O switch levels are asserted on the data bus via the data bus multiplexer. 

Keyboard and Display Logic 

The INS~YCTOR 50's primary man-machine interface consists of an output de­
vice, the eight-digit display, and two input devices - the function and data 
entry keyboards. Together they provide an inexpensive human interface to ,the 
microcomputer. 

The display digits consist of seven discrete LEDs arranged in a rectangular 
array or bars and an eighth LED that serves as a decimal point. There are se­
veral methods of driving a seven-segment display with a microprocessor. The 
most straightforward approach is to provide a separate output port latch to 
drive each individual display. With this approach, the microprocessor simply 
writes a byte to each output port, corresponding to the segments required to 
form the desired character. While the direct drive approach is the simplest 
to conceptualize, it also requires the most hardware to implement. However, 
the basic rule of thumb in microcomputer design is to eliminate as much system 
hardware as possible with program logic. Toward this end, an alternate dis­
play drive method that requires only two output ports is used in the IN­
STRUCTOR 50. 

The first output port (extended port F9) is a latch that drives the segment 
select lines connected in parallel to each of the eight digits. The second 
output port (extended port FA), an eight-bit latch, enables only one digit at 
a time. With this structure, the segment select lines can be time shared 
among the eight digits. The 2650 first enables a digit with the digit select 
output port and then writes that digit's character segments in the segment se­
lect output port. The process is repeated for each digit in a sequential 
fashion. If each digit is illuminated at a sufficiently fast frequency, about 
100 Hz, the entire eight-digit display appears flicker free. Thus, consider­
able savings in display drive hardware is realized by substituting program 
complexity for output ports. 

8-8 



Because of the display's high-current requirements, the two output port latch­
es require current buffering. A darlington transistor array on the output of 
each latch supplies the required current. 

There are several methods of interfacing a microcomputer to an input key­
board. Here again the primary objective is to minimize the system hardware by 
placing as much of the control logic in the program as possible. The keyboard 
scan approach used by the INSTRUCTOR 50 arranges the two keyboards in a ma­
trix. Since each function and data key is actually a two-terminal switch, a 
matrix can be formed by grouping the terminals of each switch into columns and 
rows. This organization is illustrated in Figure 8.4 

Referring to Figure 8.4, the column select signals, COL I-COL 6, are driven by 
an output port (extended port FA), and the four sense signals, KRO-KR3, serve 
as the inputs to an input port (extended port FE). Given this structure, the 
2650 can scan the keyboard to detect a switch closure as follows: 

1) 

2) 

3) 

The processor writes a byte to the column select output port that 
drives one of the column select lines low. 

The processor reads the row sense input port. If any of the keys in 
the selected column are depressed, a low is sensed on the corres­
ponding row sense line. 

The process is repeated for each column. 

The keyboard interface column select operation is identical to that of the 
display digit select. Hence, a single output port serves both interfaces. 
The row sense input port is another input to the data bus multiplexer. When 
the 2650 executes an REDE instruction that specifies the row sense input port, 
the row sense signals are returned to the processor on the data bus via the 
multiplexer. 

Referring again to Figure 8.4, you will notice that four of the function keys, 
SENS, INT, HON, and RST, are not included in the switch matrix. The reason 
for their absence is that the functions they perform are independent of the 
monitor program. Since RST resets the 2650, this switch is connected to the 
2650's RESET pin (after being OR'ed with the power on reset signal). Like­
wise, the SENS key is connected to the 2650 SENSE input pin. (Actually the 
2650 SENSE pin is used for both the SENS key and the audio cassette inter­
face. The signal presented to the 2650 depends on whether or not the 2650 is 
reading data from cassette). The INT key is connected directly to the IN­
STRUCTOR 50 interrupt logic, and the MON key is connected to the forced jump 
logic. The operation of these two keys is described under forced jump logic. 

8-9 



leol 1) 

leol2) 

leol3) 

z· leOlO 
c:: 
11 
(1) 

~ leol5) 
.p-.. 

00 
~ leol6) I 

~ 

0 '< 
a' 
0 
II) 
11 
P. 

t"4 
II) 
'< 
0 
c:: 
1'1' 

+5 

t ;CAS_ I BKPT 

I ..,---

1 
~~~~ 

3

-) I 0 I 0 I 0 I 0 I 0 • I I I r KR 0

2 o

4
r---

5
r---

6
r--

7 ?-;AS t-;EG
0--- . -t-<> I 0 I 0 I 0 I 0 • I I r KR 1

~

8 9 A
r­

B STEP T MEM
0-- . t-o I 0 I 0 I 0 I 0 • I [KR 2

0-.
RUN ENT/o-. o E

.r-­
F o ONEXT e 0,---0,--- ,.-----~.- ir KR 3 o 0

Bit Assignments for Keyboard and Display Ports

Figure 8.5 gives the bit assignments for the ports associated with the key­
board and display circuits.

PORT F9 -- SEGMENT OUTPUT

I
7

I
6

I
5

I
4

I
3

I
2

I
1

I
0

I SEG SEG
DP G F E D C B A

1 = SEGMENT ON
0 = SEGMENT OFF

PORT FA -- KEYBOARD COLUMN AND DISPLAY DIGIT SELECT OUTPUT

BKPT WCAS 3 2 1 0

} KEYS

REG &cAS 7 6 5 4
MEM STEP B A 9 A
ENT/NXT RUN F E... D C

7 6 5 4 3 2 1 0 } DISPLAY
(LEFT) (RIGHT) DIGIT

1 = COLUMN/DIGIT selected
0 = COLUMN/DIGIT not selected

YORT FE -- KEY RETURN INPUT

C 8 4 0
D 9 5 1
E A 6 2
F B 7 3
RUN STEP RCAS WC
ENT/NXT MEM REG BKPT

Figure 8.5

8-11

The Cassette Interface

The cassette interface is unique among the INSTImCTOR 50's I/O devices in that
it communicates with an analog system, a cassette tape recorder. It converts
microprocessor-generated logic signals into an audio waveform for recording
data, and converts the audio waveform returned from the recorder into a digi­
tal pulse stream that can be decoded by the processor when data is being read
from the cassette.

The INSTRUCTOR 50 uses a two-bit output port (extended port F8) for recording
data onto cassette tape and a single-bit input port for reading the data
back. Figure 8.6 illustrates the record waveforms required by this techni­
que. The two signals, FREQ and ENV, are provided by a two-bit output port
(port F8, bits 3 and 4, respectively). These signals are combined with an
open-collector NAND gate to form the write signal for the cassette. As shown
in Figure 8.6, six pulses are used to record a 'zero' on the cassette, and
three pulses to record a 'one'. The only exception to this recording format
is the last bit of a byte. Six additional pulses are recorded for the last
bit of a byte to mark byte boundaries (i.e., a one is nine pulses and a zero
is twelve pulses).

Since only a single bit input port is required to read data back from cas­
sette, the 2650's SENSE pin is used for this purpose. Bit 7 of portJi'8 is
used to switch the SENSE input from the keyboard to the cassette interface
when a Read Cassette operation is in progress. However, before the audio in­
put is presented to the SENSE pin, it is digitized by a Schmidt trigger. The
Schmidt trigger has about 1.5 volts of hysteresis that provides the read logic
with necessary noise immunity.

Interrupt Logic

The INSTRUCTOR 50 can respond to interrupt requests from three possible sourc­
es: the INT key, the real-time clock derivea from the power supply line fre­
quency, or the S100 bus interface. As mentioned previously, interrupt source
is determined by a switch located at the bottom of the INSTRUCTOR 50 case.
This switch selects between the INT key and the real-time clock. A jumper op­
tion enables interrupt requests from the S100 bus interface.

The selected interrupt request source is input to a flip-flop that is set when
an interrupt request is received. The output of the flip-flop is connected to
the INTREQ pin on the 2650. The 2650 responds to an interrupt request by as­
serting INTACK. INTACK, in turn, enables a tri-state drive that places the
interrupt vector H'07' or H'87', depending on the position of the DIRECT/IN­
DIRECT switch on the data bus. INTACK also resets the interrupt request flip­
flop.

Forced Jump Logic

The INSTRUCTOR 50's Breakpoint and Single Step commands are implemented with a
combination of firmware and hardware control. ·This hardware portion is called
the forced jump logic. The forced jump logic returns program control to the
monitor whenever a breakpoint is detected, after a single user instruction has
been executed in the step mode, when the MON key is depressed, and when power
is initially applied to the INSTRUCTOR 50.

8-12

FREQ

OUTPUT
TO

CASSETTE
1 o 1

Figure 8.6: CASSETTE RECORD WAVEFORMS

8-13

The forced jump logic consists of the following logical elements:

1) The Return to Monitor Sequencer - This sequencer is responsible for re­
turning program control to the monitor when the 2650 is executing a
user program. The sequencer consists of a programmable counter and a
32 x 8 PROM. The PROM contains the data values of an absolute branch
instruction. When the sequencer is active, the forced jump logic dis­
ables the INSTRUCTOR 50's normal instruction fetch mechanism and re­
turns the absolute branch instruction stored in the PROM. The 2650
initializes the sequencer by loading the counter via extended output
port FB.

2) The Last Address Register - The Last Address &agister (LAR) saves the
last address issued by a user program before program control is re­
turned to the monitor. This address points to the next instruction
that the user program would execute if the return to monitor had not
been activated. The monitor program reads the LAR to determine where
the user program should resume execution after a STEP command has been
completed or when a breakpoint is encountered. The monitor reads the
1east-signigicant byte of the LAR by addressing port FC, and the most­
significant byte by addressing port FD.

3) Control Logic - The control logic performs general housekeeping func­
tions such as loading the LAR, integrating interrupt requests with the
return to monitor state sequencer, and loading the programmable counter.

The forced jump logic is enabled when power is first applied to the INSTRUCTOR
50, when the MON key is depressed, when a breakpoint is detected, and when the
monitor program executes the STEP command. The resulting action taken by the
forced jump logic when one of these events occurs is described below.

t'OW)l:R.Oif (POR) Olt ~<m KEY DEPRESSION

When power is applied to the INSTRUCTOR 50 or when the MON key is depressed,
the 2650 is reset. The 2650 responds to a reset by clearing its internal pro­
gram counter and fetching the instruction located at byte zero, page zero.
However" when the 2650 places address H'OOOO' on the address bus, the forced
jump logic disables the normal memory access mechanism and returns a NOP in­
struction value to the 2650 via the data bus. The 2650 executes the NOP and
attempts to fetch an instruction at the next sequential address H'OOOl'. This
instruction'fetch generates an operation request (OPREQ). OPREQ is used to
increment the sequencer counter. In this state, the return to monitor se­
quencer places the first byte of an unconditional branch instruction on the
data bus. When the 2650 receives the BCTA, UN op-code, it generates two more
OPREQs to fetch the branch address. Each OPREQ increments the counter and the
PROM, places the beginning address of the monitor, H'1800', on the data bus.
At this point the 2650 executes the branch to monitor, and the forced jump lo­
gic returns to the idle state.

B;RE.AKPUIN'r DETECtI(lN

If the user has specified a breakpoint, the monitor program inserts a WRTC

8-14

instruction at the breakpoint address specified. When the 2650 executes the
WBTC instruction, a control signal is generated that produces the same results
as the POBosignal, and program control is returned to the monitor. A monitor
software flag distinguishes this entry from a FOR or MON key entry and causes
a branch to the breakpoint routine.

SINGLE STEP

The execution of a single 2650 instruction in response to the STEP key is an
excellent example of combined firmware/hardware control. When the STEP key is
depressed, the monitor program fetches the instruction pointed to by the Pro­
gram Counter and calculates the number of OPREQs required to execute the in­
struction. The OPREQ counter (an extended I/O port) is then loaded with a
value that corresponds to the number of OPREQs. The monitor then restores the
user's program registers and status and branches to the instruction to be
stepped. When the 2650 executes the instruction, the OPREQ counter, beginning
at the present count, addresses "dummy states" of the return to monitor se­
quencer. That is, the locations addressed are not output on the data bus.
When the last OPREQ of the instruction occurs, the output of the return to
monitor PROM is enabled, and subsequent OPREQs return the unconditional branch
to monitor instruction bytes to the processor.

If an interrupt request should occur during execution of the STEP instruction,
the 2650 waits until the instruction has been completed before asserting IN­
TACK. Conditioned by the forced jump control logic, TNTACK becomes an address
bit for the return to monitor PROM. While INTACK is high, another address bit
reflects the position of the DIRECT/INDIRECT switch. In concert, these two
address bits force the sequencer into one of two interrupt handling se­
quences: one for direct interrupts and another for indirect interrupts.

S100 Bus Interface

The S100 bus interface consists of tri-state drivers and receivers and a Field
Programmable Gate Array (FP~A5 which produces the SlOO bus signals from logi­
cal combinations of 2650 control signals. Unfortunately, the S100 bus is far
from standardized. Many of the signals are repetitious and different peri­
pheral manufacturers make different demands of the bus. The FPGA enables you
to modify the bus interface to meet any specific needs you may encounter. A
detailed description of the S100 bus interface is given in Chapter 7.

System Power

The INSTRUCTOR 50 obtains its system power from one of two possible sources.
The first source is an A-C wall transformer supplied with the INSTRUCTOR 50.
The transformer provides the INSTRUCTOR 50 with 8 VAC (rms). On board, the
A-C input is rectified, and the resulting D-C voltage is applied to a three­
terminal regulator. The regulator supplies 5 VDC at 1.5 amps, the system
power requirements of the INSTRUCTOR 50. The user may optionally change a
wire jumper at the bottom of the printed circuit board to select unregulated 8
VDC from the S100 bus interface as input to the regulator.

In addition to the rectifier, the A-C input to the system is
the resistive divider network. The reduced A-C voltage

8-15

also applied
is input to

to
a

comparator that outputs a 60 Hz real-time clock (50 Hz in Europe and Japan).
This real-time clock is available to the interrupt request logic via a select
switch at the bottom of the printed circuit board. The wall transformer can
be used to_drive the real-time clock even if system power is derived from the
SlOO bus interface.

The USE Monitor

Without question, the most important component of any microcomputer (or any
computer for that matter) is the system program. Every function or operation
performed by a microcomputer is accomplished by executing a sequence of in­
structions within the system program.

Basically, the USE monitor is a collection of separate routines -- one routine
for each system command. A brief functional description of several routines
with illustrative examples is provided in Chapter 5. This section provides a
brief description of the command executive - a section of the monitor program
that links the various command routines into a cohesive system program.

Figure-8.7 is a flowchart of the command routine executive section of USE.
Whenever the forced jump logic returns program control to the monitor, monitor
execution begins at H"1800', the first address of the executive. Beginning at
this address, the first operation is to save the 2650 registers and Program
Status Wor~. (These values are restored before program control is transferred
to the user program). The next operation is to check certain software flags
to determine how the forced jump logic was enabled.-If it was triggered by a
breakpoint (WRTC instruction), program control is returned by the breakpoint
routine. Similarly, if the forced jump logic was activated by the completion
of a single-step sequence, program control is returned to the single-step rou­
tine. The alternatives to these two entry modes are power on and MON key de­
pression. If the executive was entered via either of these two modes, the
executive clears the breakpoint and step flags, since they may be on even if
entry to the monitor was via power-on. Next, the display buffer pointer is
set to the "HELLO" message table, and the DISPLAY subroutine is called. The
monitor remains in this routine until a function key is depressed.

Upon returning from the DISPLAY subroutine, RO contains the function key
value. This value is used as an index to fetch a command routine address from
the command address table. The address thus accessed is used for an absolute
branch to one of the command routines. The executive is re-ent_ered from any
command routine when a function key is depressed. Hence, a new command ad­
dress is accessed, and the monitor again branches to the specified command
routine. Refer to the USE Program Listing in Chapter 11 for detailed informa­
tion on tQe USE routines.

8-16

SSTEP
SINGLE STEP

ROUTINE

WCAS
WRITE TO
CASSETTE
ROUTINE

(FROM ANY ROUTINE)

REG
DISPLAY AND

ALTER REGISTERS
ROUTINE

CLEA'R
STEP AND BKPT

FLAGS

SET DISPLAY
BUFFER POINTER

TO "HELLO"
MESSAGE

CALL
DISPLAY

SUBROUTINE.
RETURN WITH
FUNCTION KEY
VALUE IN RO

USING FUNCTION
KEY VALUE IN RD.
FETCH COMMAND

ROUTINE ADDRESS

BRANCH TO
COMMAND
ROUTINE

RCAS
READ FROM
CASSETTE
ROUTINE

ALTER
DISPLAY AND

ALTER MEMORY
ROUTINE

GO
(RUN) BEGIN
PROGRAM

EXECUTION AT
CURRENT PC VALUE

Figure 8.7: USE Command And Routine Executive

8-17

seBP
BREAKPOINT

ROUTINE

9. THE 2650 MICROPROCESSOR

Introduction

The 2650 processor is a general purpose, single chip, fixed
parallel 8-bit binary processor. A general purpose processor
data manipulations through execution of a stored sequence of
tions. The processor has been designed to closely resemble
nary computers, but executes variable length instructions of
length.

instruction set,
can perform any
machine instruc­
conventional bi-

1 to 3 bytes 1n

The 2650A microprocessor is functionally identical to the 2650, but it in­
corporates a new chip design which provides improved operating margins. All
references to the 2650 in this section apply to the 2650A as well.

The 2650 contains a total of 7 general purpose registers, each 8 bits
They may be used as source or destination for arithmetic operations, as
registers, and for I/O transfers.

long.
index

The processor can address up to 32,768 bytes of memory in 4 pages of 8,192
bytes each. The processor instructions are 1, 2 or 3 bytes long, depending on
the instruction. Variable length instructions tend to conserve memory space,
since a 1- or 2-byte instruction may often be used rather than a 3-byte in­
struction. The first byte of each instruction always specifies the operation
to be performed and the addressing mode to be used. Most instructions use 6
of the first 8 bits for this purpose, with the remaining 2 bits forming the
register field. Some instructions use the full 8 bits as an operation code.

The 2650/2650A instruction set consists of 75 basic instructions, of which
about 40% are arithmetic instructions. This class contains the Boolean,
arithmetic and compare operations, each of which may be executed using anyone
of eight addressing modes. Another 30% of the instruction set includes I/O
instructions, instructions for performing operations on the two status regist­
ers, a Decimal Adjust instruction and the Halt instruction.

Utilizing mUltiple addressing modes greatly increases coding efficiency, al­
lowing functions to be performed using fewer instructions than less powerful
machines. The resulting reduction in routine execution time and memory
capacity requirements directly translates into improved system performance and
reduced memory cost.

In addition to the microprocessor itself, a number of support circuits and de­
velopment tools are also required to design and test microprocessor-based sys­
tems. A growing complement of circuits and hardware and software development
aids are available from Signetics.

Features:

Low System Cost

• Low cost N-channel products
• Intrinsic advantages of single +5V supply

9-1

• Uses standard low cost memories

• Low cost inter facing

Ease of Use

• Easy interfacing

• Conventional instruction set

• Ease of programming

Wide Range of Applications

• General purpose capability

• Powerful architecture

• Powerful instruction set

• Flexibility

• Expanding family of support devices

2660 Microprocessor Characteristics

General

• Single chip 8-bit processor
• Signetics' silicon gate N-channel technology
• Single +5V power supply
• Low power consumption
• Single phase TTL-compatible clock
• Static operation: No minimum clock frequency
• Clock frequency: 1.25 MHz maximum
• Cycle time: 2.4us minimum
• Standard 40-pin DIP

Interfaces

• TTL-compatible inputs and outputs-no external resistors required.
• Tri-state bus outputs for multiprocessor and direct memory access

systems.
• Asynchronous (handshaking) memory and I/O interface.
• Accepts wide range of memory timing.
• Interfaces directly with industry standard memories.
• Powerful control interface.
• Single-bit direct serial I/O path.
• Parallel 8-bit I/O capability.

Architecture

• 8-bit bidirectionsl tri-state data bus.
• Separate tri-state address bus.
• 32,768-byte addressing range.
• Internal 8-bit parallel structure.
• Seven 8-bit addressable general purpose registers.
• Eight-level on-chip subroutine return address stack.
• Program status word for flexibility and enhanced processing power.
• Single-level hardware vectored interrupt capability.
• Interrupt service routines may be located anywhere in addressable

memory.

9-2

Instruction Set

• General purpose instruction set with substantial capabilities in
arithmetic, character manipulation and control and I/O processing

• Fixed instruction set
• 75 instructions
• Up to 8 addressing modes
• True indexing with optional auto increment/decrement
• 1, 2 or 3-byte instructions
• 1 and 2-byte I/O instructions
• Selective test of individual bits
• Powerful instruction set and addressing modes minimize memory re­

quirements.

Internal Organization

The block diagram of the 2650 series, Figure 9.1, shows the major internal
components and the data paths that interconnect them. In order for the pro­
cessor to execute an instruction, it performs the following general steps:

1. The Instruction Address Register provides an address for memory.
2. The first byte of an instruction is fetched from memory and stored in the

Instruction Register.
3. The Instruction Register is decoded to determine the type of instruction

and the addressing mode.
4. If an operand from memory is required, the operand address is resolved

and loaded into the Operand Address Register.
5. The operand is fetched from memory and the operation is executed.
6. The first byte of the next instruction is fetched.

The Instruction Register (IR) holds the first byte of each instruction and
directs the subsequent operations required to execute each instruction. The
IR contents are decoded and are used in conjunction with the timing informa­
tion to control the activation and sequencing of all the other elements on the
chip. The Holding Register is used in some multiple-byte instructions to con­
tain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data manipula­
tion operations, including load, store, add, subtract, AND, inclusive-OR, ex­
clusive-OR, compare, rotate, increment and decrement. It contains and controls
the Carry bit, the Overflow bit, the Interdigit Carry and the Condition Code
register parts of the Program Status Word.

The Register Stack contains 6 registers that are organized into two banks of
three registers each. The Register Select bit (RS) of the Program Status Word
picks one of the two banks to be accessed by instructions. In order to ac­
commodate the register-to-register instructions, register zero (RO) is outside
the array. Thus, register zero is always available along with one set of
three registers.

The Instruction Address Register (IAR) holds the address of the next instruc­
tion byte to be accessed. The Address Adder is used to increment the instruc­
tion address and to calculate relative and indexed addresses. The Operand Ad­
dress Register stores operand addresses and sometimes contains intermediate
results during effective address calculations.

9-3

AOORESS
BUS

14

SUBROUTINE
RETURN

ADDRESS
STACK
8X15
LIFO

o

SUBROUTINE RETURN ADDRESS
STACK (8X1S RAMI

14 13 12 o

I I I
PAGE CONTROL

2650/2650A BLOCK DIAGRAM

REGISTER
STACK
2X3Xe

Figure 9.1

MAJOR 2650/2650A REGISTERS

o

DATA BUS

CLOCK

7 0

REG 3' I 5 I F I I I ISP+P1 I spol PSU

REG 2'

REG I'

o

REG 3

REG 2

REG 1

o

~ ____________________ ----~I REG 0

GENERAL PURPOSE REGISTERS

INSTRUCTION ADDRESS REGISTER

Figure 9.2

9-4

IT L",~~
UNUSED
INTERRUPT INHIBIT

FLAG

'------------ SENSE

PROGRAM STATUS WORD

NOTES

o

CARRY BIT
LOGICAL/ ARITH COMPARE
OVERFLOW BIT
WITH/WITHOUT CARRY
REGISTER BANK SELECT

INTEROIGIT CARRY
CONDITION CODE

Not all internal registers are shown.

The Return Address Stack (RAS) is an a-level, Last-In, First-Out (LIFO) memory
which receives the return address whenever a Branch-to-Subroutine instruction
is executed. When a Return instruction is executed, the RAS provides the last
return address for the processor's IAR. The stack contains 8 levels of stor­
age so that subroutines may be nested up to a levels deep. The Stack Pointer
(SP) is a 3-bit wraparound counter that indicates the next available level 1n
the stack. It always points to the current return address. Placing the RAS on
the chip allows efficient ROM-only systems to be implemented in some applica­
tions.

Figure 9.2 summarizes the 2650 internal registers as seen by the programmer.

Program Status Word

The Program Status Word (PSW) is a major feature of the 2650/2650A which
greatly increases its flexibility and processing power. The PSW is a special
purpose register within the processor that contains status and control bits.
It is 16 bits long and is divided into two bytes called the Program Status Up­
per (PSU) and Program Status Lower (PSL).

The PSW bits may be tested, loaded, stored, preset or cleared using the in­
structions which effect the PSW. The Sense bit, however, cannot be set or
cleared because it is directly connected to pin 1. The PSW is organized as
follows:

Sense (S)

PSU

PSl

7 6

S F

S Sense
F Flag

5 4

1\
Not

Used

II Interrupt Inhibit

7 6 5 4

3 2 1 0

Not
SP2 SP1 SPO Used

SP2 Stack Pointer Two
SPl Stack Pointer One
SPO Stack Pointer Zero

3 2 1 0

CC1 CCO IDC RS WC OVF COM C

CC1 Condition Code One
CCO Condition Code Zero
IDC Interdigit Carry
RS Register Bank Select

WC WithlWithout Carry
OVF Overflow

COM Logical/Arithmetic
Compare

C Carry/Borrow

The Sense bit in the PSU reflects the logic state of the input to
cessor at pin 1. The Sense bit is not affected by the LPSU, PPSU or
structions.

Flag (F)

the pro­
CPSU in-

The flag bit is a simple latch that drives the FLAG output (pin 40) on the
processor.

9-5

Interrupt Inhibit (II)

When the Interrupt Inhibit bit is set (II = 1), the processor will not re­
cognize an incoming interrupt. When interrupts are enabled (II = 0), and an
interrupt signal occurs, the inhibit bit in the PSU is automatically set.
When a Return-and-Enable instruction is executed, the inhibit bit is automa­
tically cleared.

Stack Pointer (SP)

The three stack pointer bits are used to address locations in the Return Ad­
dress Stack (RAS). The SP designates the stack level which contains the cur­
rent return address. The SP bits are organized as a binary counter which is
automatically incremented with execution of Branch-to-Subroutine instructions
and decremented with execution of Return instructions.

Condition Code (CC)

The Condition Code is a 2-bit register which is set by the processor whenever
a general purpose register is loaded or modified by the execution of an in­
struction. Additionally, the CC is set to reflect the result of a Compare in­
struction or a Test instruction.

The following table indicates the setting of the condition code whenever
is set into a general purpose register. The data byte is interpreted as an
bit, two's complement number:

REGISTER
CONTENTS CCl CCO

positive 0 1
Zero 0 0
Negative 1 0

data
8-

For Compare instructions, the data is compared as two 8-bit absolute numbers
if the COM bit of the Program Status Lower byte is set to indicate "logical"
compare (COM = 1). If the COM bit indicates "arithmetic" compare (COM = 0),
the comparison instructions interpret the data bytes as two 8-bit two's com­
plement binary numbers. The CC indicates the result of the comparison as
follows:

REGISTER TO MEMORY REGISTER TO REGISTER CCI CCO
COMPARE INSTRUCTION COMPARE INSTRUCTION

Reg X greater than Memory Reg 0 greater than Reg X 0 1
Reg X equal to Memory Reg 0 equal to Reg X 0 0
Reg X less than Memory Reg 0 less than Reg X 1 0

The test instructions set the CC to indicate whether the bits in the selected
register that correspond to the one's in the mask (second byte of the test in­
struction) are all one's or not all one's. The following table describes the
condition code setting for the test instructions:

9-6

RESULTS CC1 CCO

All of the selected
bits are Is 0 0
Not all of the selected
bits are Is 1 0

'!he CC is never set to "1" by normal processor operations, but it may be ex­
plicitly set to "11" through LPSL or PPSL instruction execution.

Interdigit Carry (IDC)

For BCD arithmetic operations, it is sometimes essential to know if there was
a carry from bi t 3 to bi t 4 during the execution o'f an arithmetic instruction.

The IDC reflects tha value of the interdigit carry from the previous add or
subtract instruction. After any add or subtract instruction execution, the
IDC contains the carry or borrow out of bit 3.

The IDC is also modified upon execution of Rotate instructions when the WC bit
in the PSW is set. The IDC will reflect the same information as bit 5 of the
operand register after the rotate is executed.

Register Select (RS)

There are two banks of general purpose registers with three registers in each
bank. The Register Select bit is used to specify which set of general purpose
registers will be currently used. Register 0 is common and is always avail­
able to the program. An individual instruction may address only 4 registers,
but the bank select feature effectively expands the available on-chip reg­
isters to 7. When the Register Select bit is 0, registers 1, 2 in register
bank 0 will be accessible, and when the bit is 1, registers 1, 2 and 3 in reg­
ister bank 1 will be accessible.

With/Without Carry (WC)

This bit controls the execution of the Add, Subtract and Rotate instructions.

Whenever an Add or a Subtract instruction executes, the following bits are
either set or cleared: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry
(IDC). These bits are set or reset without regard to the value of the WC
bit. However, when WC = 1, the previous value of the carry bit affects the
result of an Add or Subtract instruction, i.e., the carry bit is either added
to (Add instruction) or subtracted from (Subtract instruction) the result of
the operation.

Whenever a Rotate instruction executes with WC = 0, only the 8 bits of the ro­
tated register are affected. However, when WC = 1, the following bits are al­
so affected: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry (IDC).
The Carry /Borrow bit is combined with the 8-bit register to make a 9-bit ro­
tate (see Figure 9.3). The Overflow bit is set whenever the sign bit (bit 7)
of the rotated register changes from a 0 to a 1 and is cleared otherwise. The
Interdigit Carry bit is set to the new value of bit 5 of the rotated register.

9-7

Compare (COM)

ROTATE OPERATIONS

L&=lf4T4T4tlJ
76543210

Rotate Register Left or Right With Carry

EJlI±4T4T4tj]
(NOT 76543210

CHANGED)

Rotate Register Left or Right
Without Carry

Figure 9.3.

The Compare Control bit determines the type of comparison that is executed
with the Compare instructions. Either logical or arithmetic comparisons may
be made. The arithmetic compare assumes that the comparison is between 8-bit,
two's complement numbers (-128 to +127). The logical compare assumes that the
comparison is between 8-bit positive binary numbers (0 to +255). When COM is
set to 1, the comparisons will be logical, and when COM is set to 0, the com­
parisons will be arithmetic. See Condition Code (CC).

Carry (C)

The Carry bit is set or cleared by the execution of Add or Subtract instruc­
tions. The Carry bit is set to 1 by an Add instruction that generates a carry
and a Subtract instruction that does not generate a borrow out of the high­
order bit of the ALU. Conversely, an add that does not generate a carry
causes the C bit to be cleared as does a subtract instruction that generates a
borrow.

Even though a borrow is indicated by a zero in the Carry bit, the processor
will correctly interpret the zero during subtract with borrow operations. For
a subtract without borrow operation (WC = 0), the processor automatically pro­
vides the proper borrow input into the ALU. However, if operations with carry
are being performed (WC = 1), the Carry bit must be preset to a 1 by a PPSL
instruction in order for the result of a single byte subtraction (or the re­
sult of the first subtraction of a multiple byte subtraction) to be correct.

The Carry bit may also be set or cleared by Rotate instructions as described
earlier under "With/Without Carry."

To perform an Add with Carry or a Subtract with Borrow, the WC bit must be set
(WC = 1).

9-8

Overflow (OVF)

The Overflow bit is set during Add instruction" execution whenever the two 1n­
itial operands have the same sign but the result has a different sign. Adding
operands with different signs cannot cause overflow. Example: A binary +124
(01111100) added to a binary +64 (01000000) produces a result of (10111100)
which is interpreted in two's complement form as a -68. The true answer would
be 188, but that answer cannot be contained in the set of 8-bit, two's com­
plement numbers used by the processor, so the OVF bit is set.

The overflow bit is also set during Subtract instruction execution whenever
the minuend and the subtrahend have different signs, but the result has a sign
that is different from the sign of the minuend. Subtraction of operands with
the same signs cannot cause overflow. These conditions are summarized 1n
Table 9.1

TABLE 9.1

SIGN (BIT 7)
ADD SUB

Oper- Oper- Re- OVF OVF
and 1 and 2 suit

+ + + 0 0
+ + - 1 0
+ - + 0 0
+ - - 0 1
- + + 0 1
- + - 0 0
- - + 1 0
- - - 0 0

The Rotate instructions will cause an overflow if the we bit is
sign bit changes from a zero to a 1 as a result of the rotate.
is not set, the OVF bit is not affected.

SIGN (BIT 7)

Before After
OVF

Rotate Rotate

+ + 0
+ - 1
- + 0
- - 0

Memory Organization

set
If the

and
we

the
bit

The 2650/2650A can address memory in locations 010 to 32,76710' As may be
seen in the Instruction section of this chapter, most direct addressing in­
structions have 13 bits allocated for the direct address. Since 13 bits can
only address locations 010 to 8,19110' a paging system is used to ac­
commodate the entire address range.

The memory may be thought of as being divided into 4 pages of 8,192 bytes
each. The addresses in each page are as shown below.

9-9

PAGE START ADDRESS END ADDRESS

0 000000000000000 001111111111111 010-8191 10
1 010000000000000 011111111111111 819210-16,38310
2 100000000000000 101111111111111 16,38410-24,575 10
3 110000000000000 111111111111111 24,57610-32,76710

The low order 13 bits in every page range through the same set
These 13 bits are the 13 bits addressed by Non-Branch instructions
so the same 13 bits which are brought out of the 2650/2650A on
lines ADRO-AOR12.

of numbers.
and are a1-
the address

The two high-order bits of the IS-bit address are known as the page bits. The
page bits when examined by themselves represent, in binary, the number of the
memory page. Thus, the address 010000001101101 is known as address location
10910 in page 1. The page bits, which correspond to ADR13 and ADR14, are
brought out of the 2650/2650A on pins 19 and 18.

There are no instructions to explicitly set the page bits. They are set
through execution of Direct or Indirect, Branch or Branch-to-Subroutine in­
structions. These instructions (see Instruction section) have 15 bits al­
located for the address field. When such an instruction is executed, the two
high-order address bits are set into the page bit latches in the 26S0/2650A
processor and will appear on ADR 13 andADR 14 during direct memory accesses
until they are specifically changed by another instruction of the branch type.

For memory access from Non-Branch instructions, the 13-bit direct address will
address the corresponding location within the current page only. However, the
Non-Branch Memory Access instructions may access any byte in any page through
indirect addressing which provides the full IS-bit address. In the case of
Non-Branch instructions, the page bits are only temporarily changed to cor­
respond to the high order 2 bits of the IS-bit indirect address used to fetch
the argument byte. Immediately after the memory access, ADR13 and ADR14 will
revert to their previous value.

The consequences of this page address system may be summarized by the fol­
lowing statements:

1. The Reset signal clears both page latches, i.e., ADR13 and ADR14 are
cleared to zero.

2. All Non-Branch Direct Memory Access instructions address memory within
the current page.

3. All Non-Branch Memory Access instructions may access any byte of
able memory through use of indirect addressing which temporarily
the page bits for the argument access. The page bits revert
their previous state immediately following instruction execution.

address­
changes

back to

4. All Direct and Indirect Addressing Branch instructions set the page bits
to correspond to the high order 2 bits of the IS-bit address.

9-10

5. Programs may not flow across page boundaries. They must branch to set
the page bits.

6. Interrupts always drive the processor to page zero (see Interrupt Mechan­
ism section of this chapter).

Interface

Pin Configuration

The 26S0/26S0A is packaged in a standard dual-in-line 40-pin
9.4 illustrates the pin configuration for the 26S0/26S0A, and
marizes the characteristics of the interface signals.

package. Figure
Table 9.2 sum-

Signal Descriptions

RESET (Pin 16)

The RESET signal is used to cause the 26S0/26S0A to begin processing from a
known state. RESET will normally be used to initialize the processor after
powerup or to restart a program. RESET clears the Interrupt Inhibit control
bit, clears the internal interrupt-waiting signal and initializes the IAR to
zero. RESET is normally low during program execution, and must be driven high
to activate the reset function. The leading and trailing edges may be asyn­
chronous with respect to the clock, but the Reset signal must be at least 3
clock periods long. If RESET alone is used to initiate processing, the first
instruction will be fetched from Memory location page zero, byte zero after
the RESET signal is removed. Any instruction may be programmed for this lo­
cation including a branch to some program located elsewhere.

Processing can also be initiated by combining an interrupt with
this case, the first instruction to be executed will be at the
dress.

a reset.
interrupt

In
ad-

CLOCK (Pin 38)

The CLOCK signal is a positive-going pulse train that determines the
tion execution rate. Three clock periods comprise a processor cycle.
instructions are 2, 3 or 4 processor cycles long, depending on the
type of instruction. Indirect addressing adds 2 processor cycles to
rect instruction times.

ADR (Pins 2-14, 18-19)

instruc­
Direct

specific
the di-

TIle Address signals form a IS-bit path out of the processor and are used pri­
marily to supply memory addresses during memory operations. The addresses re­
main valid as long as OPREQ is on so that no external address register is re­
quired. For extended I/O operations, the low order 8 bits of the ADR lines
are used to output the immediate byte of the instruction which typically is
interpreted as a device address.

The 13 low order lines of the address are used only for address information.
The 2 high order address lines are multiplexed with I/O control information.
During memory operations, the lines serve as memory addresses. During I/O
operations, they serve as the D/C and E/NE control lines. Demultiplexing is
accomplished through use of the Memory/IO control line (see D/C and E/NE
below).

9-11

ABBREVIATION PINS TYPE FUNCTION SIGNAL SENSE

GND 1 INPUT Ground GND =0
vee 1 INPUT +5 Volts ± 5% vec = 1
RESET 1 INPUT Chip Reset RESET = 1, causes reset
CLOCK 1 INPUT Chip Clock CLOCK = 0 (low), CLOCK = 1 (high)
PAUSE 1 INPUT Temp. Halt execution PAUSE = 0, temporarily halts execution
INTREO 1 INPUT Interrupt Request INTREO = 0, requests interrupt
OPACK 1 INPUT Operation Acknowledge OPACK = 0, acknowledges operation
SENSE 1 INPUT Sense SENSE = 0 (low) or SENSE = 1 (high)
ADREN 1 INPUT Address Enable ADREN = 1 drives into third state
DBUSEN 1 INPUT Data Bus Enable DBUSEN = 1 drives into third state
DBUSO-DBUS7 8 IN/OUT Data Bus DBUSn = 0 (low), DBUSn = 1 (high)
ADRO-ADR12 13 OUTPUT Address 0 through 12 ADRn = 0 (low), ADRn = 1 (high)
ADR13 or E/NE 1 OUTPUT Address 13 or Extended/Non-Extended Non-Extended = 0, Extended = 1
ADR14 or D/C 1 OUTPUT Address 14 or Data/Control Control = 0, Data = 1
OPREO 1 OUTPUT Operation Request OPREO = 1, requests operation
M/IO 1 OUTPUT Memory/IO 10 = 0, M = 1
RIW 1 OUTPUT Read/Write R = 0, W = 1
FLAG 1 OUTPUT Flag Output FLAG = 1 (high), FLAG = 0 (low)
INTACK 1 OUTPUT Interrupt Acknowledge INTACK = 1, acknowledges interrupt
RUNIWAIT 1 OUTPUT RunlWait Indicator RUN = 1, WAIT = 0
WRP 1 OUTPUT Write Pulse WRP = 1 (pulse), causes writing

Table 9.2 INTERFACE SIGNALS

2650/2650A PIN CONFIGURATION

/

Figure 9.4

9-12

ADREN (Pin 15)

The Address Enable signal allows external control of the tri-state address
outputs (ADRO-ADR12). When ADREN is driven High, the address lines are
switched to their third state and show a high output impedance. This feature
allows wired-OR connections with other signals. The ADR13 and ADR14 lines
which are multiplexed with other signals are not affected by ADREN.

When a system is not designed to utilize the feature, the ADREN input may, be
connected permanently to a low signal source.

DBUS (Pins 26-33)

The Data Bus signals form an 8-bit bidirectional data path in and out of the
processor. Memory and I/O operations use the data bus to transfer the write
or read data to or from memory or the I/O device.

The direction of the data flow on the data bus is indicated by the state of
the R/W line. For write operations, the output buffers in the processor out­
put data to the bus for use by memory or by external devices. For read opera­
tions, the buffers are disabled and the data condition of the bus is sensed by
the processor. The output buffers may also be disabled by the DBUSEN signal.

The signals on the data bus are positive true signals, i.e., a one is a high
level and a zero is low.

DBUSEN (Pin 25)

The Data Bus Enable signal allows external control of the tri-state data
output drivers. When DBUSEN is driven high, the data bus will exhibit a
output impedance. This allows wired-OR connection with other signals.

bus
high

When a system is not designed to utilize this feature, the DBUSEN input may
permanently connected to a low signal source.

be

OPREQ (Pin 24)

The Operation Request output is the coordinating signal for all external
operations. The M/lO, R/W, E/NE, D/C and INTACK lines are operation control
signals that describe the nature of the external operation when the OPREQ line
is true. The DBUS and ADR bus also should not be considered valid except when
OPREQ is in the high, or on state.

OPREQ will stay on until the external operation is complete, as
the OPACK input. The processor delays all internal activity
OPREQ until the OPACK signal is received.

OPACK (Pin 36)

indicated by
following an

The Operation Acknowledge signal is a reply from external memory or I/O de­
vices as a response to the Operation Request signal from the processor. OPREQ
is used to initiate an external operation. The affected external device indi­
cates to the processor that the operation is complete by returning the OPACK
signal. This procedure allows asynchronous functioning of external devices.

If a memory operation is initiated by the processor, the memory system will

9-13

provide an OPACK when the requested memory data is valid on the data bus or
when the Memory Write operation is completed. If an I/O operation is initiat­
ed by the processor, the addressed I/O device may respond with an OPACK as
soon as the write data is accepted from the data bus, or after the read opera­
tion is completed. If an I/O operation is initiated by the processor, the ad­
dressed I/O device may respond with an OPACK as soon as the write data is ac­
cepted from the data bus, or after the read operation is completed. However,
in order to avoid slowing down the processor when using memories or I/O de­
vices that are just fast enough to keep the processor operating at full speed,
the OPACK signal must be returned before the external operation is completed.
Any OPACK that is returned within 640ns following an OPREQ will not delay the
processor. Data from a read operation can return up to 850ns after an OPREQ
is sent and still be accepted by the processor. If all devices will always
respond within these time limits, the OPACK line may be permanently connected
in the on (low) state. Whenever an OPACK is not available within that time,
the processor will delay instruction execution until the first clock following
receipt of the OPACK. All output line conditions remain unchanged during the
delay, and the processor does not enter the wait state. OPACK is true in the
low state and false in the high state.

M/IO (Pin 20)

The Memory/IO output is one of the operation control signals that defines ex­
ternal operations. M/IO indicates whether an operation is memory or I/O, and
should be used to gate read or write signals between the 2650/2650A and memory
or I/O devices.

The state of M/IO will not change while OPREQ is high. The high state
responds to a memory operation, and the low state corresponds to an I/O
tion.

R/W (Pin 23)

cor­
opera-

The Read/Write output is one of the operation control signals that defines ex­
ternal operations. R/W indicates whether an operation is read or write. It
controls the nature of the external operation and indicates whether the bi­
directional DBUS is driving or receiving data. R/W should not be considered
valid until OPREQ is on, and the state of the R/W line does not change as long
as OPREQ is on.

The high state corresponds to the write operation and the low state cor­
responds to the read operation.

The Data/Control output is an I/O signal which is used to discriminate between
the execution of the two types of I-byte I/O instructions. There are four
I-byte I/O instructions: WRTC, WRTD, REDC, REDD. When Read Control or Write
Control is executed, the D/C line takes on the low state which indicates Con­
trol (C). When Read Data or Write Data is executed, the D/C line takes on the
high state, indicating Data (D). "Data" and "Control" are identifiers only
and are not indicative of the type of information which is transferred.

D/C is multiplexed with a high-order address line. When the M/IO line is in
the I/O state, the ADRI4-D/C line should be interpreted as "D/C." When the

9-14

M/IO line is in the M state, the ADRI4-D/C line should be interpreted as
memory address bit 14.

When the processor responds to an interrupt request with an INTACK, the state
of the control lines is equivalent to that occurring during a Read Control
operation. Thus, port C may be used to input the interrupt address vector to
the data bus. If this type of operation is not desired, INTACK must be used
to inhibit the reading of port C.

E/NE (Pin 19)

The Extended/Non-Extended output is the operation control signal that is used
to discriminate between 2-byte and I-byte I/O operations. There are 6 I/O in­
structions: REDE, WRTE, REDC, REDD, WRTC, WRTD. When either of the 2-byte
I/O instructions is executed (REDE, WRTE), the E/NE line takes on the high
state or "extended" indication. When any of the I-byte I/O instructions is
executed, the line takes on the low state or "non-extended" indication. Thus,
E/NE indicates the presence or absence of valid information on the 8 low-order
address lines during I/O operations. E/NE is mUltiplexed with a high-order
address line. When the M/IO line is in the I/O state, the ADRI3-E/NE line
should be interpreted as "E/NE." When the M/IO line is in the M state, the
ADRI3-E/NE line should be interpreted as memory address bit 13. E/NE should
not be considered valid until: (a) OPREQ is on, and (b) M/IO indicates an I/O
operation.

FLAG (Pin 46)

The FLAG output indicates the state of the FLAG bit in the PSW. Any change in
the FLAG bit is reflected by a change in the FLAG output. A 1 in the FLAG bit
will give a high level on the FLAG output pin. The LPSU, PPSU and CPSU in­
structions can change the state of the FLAG bit. The FLAG output is always a
valid indication of the state of the FLAG bit without regard for the status of
the processor or control signals. Changes in the FLAG bit are synchronized
with the last cycle of the changing instruction.

SENSE (Pin 1)

The SENSE line provides an input line to the 2650/2650A that is independent of
the normal I/O bus structures. The SENSE signal is connected directly to one
of the bits in the program status word. It may be stored or tested by an
executing program. When a Store (SPSU) or Test (TPSU) instruction is execut­
ed, the SENSE line is sampled during the last cycle of the instruction.

Through proper programming techniques, the SENSE signal may be used to imple­
ment a direct serial data input channel or it may be used to present any bit
of information that the designer chooses.

The SENSE input and FLAG output facilities provide the simplest method of com­
municating data in or out of the 2650/2650A processor, as neither address de­
coding nor synchronization with other processor signals is necessary.

PAUSE (Pin 39)

The PAUSE input provides a means for temporarily stopping the execution of a
program. When PAUSE is driven low, the 2650/2650A finishes the instruction in

9-15

go
in­
and

progress and then enters the wait state, causing the RUN/WAIT output to
low. When PAUSE goes high, program execution continues with the next
struction, and RUN/WAIT returns to the high state. If PAUSE is turned on
then off again before the last cycle of ,the current instruction begins,
gram execution continues without PAUSE. The PAUSE line must be held on
RUN/WAIT goes low or the processor may continue without pausing. If
PAUSE and INTREQ occur prior to the last cycle of the current instruction,
interrupt will be recognized, and an INTACK will be generated immediately
lowing release of PAUSE. The next instruction to be executed will be a
to service the interrupt.

pro­
until
both

the
fol­
ZBSR

If an INTREQ occurs while the 2650/2650A is in a wait state due to PAUSE, the
interrupt will be acknowledged and serviced after execution of the next normal
instruction following release of PAUSE.

RUN/WAIT (Pin 35)

The RUN/WAIT output signal indicates the Run/Wait status of the
The wait state may be entered by executing a Halt instruction or by
the PAUSE input. At any other time, the processor will be in a run

processor.
turning on
state.

When the processor is executing instructions, the line is in the high or run
state; when in the wait state, the line is held low.

The Halt-initiated wait condition can be changed to run by a RESET or an In­
terrupt. The PAUSE-initiated wait condition can be changed to run by removing
the PAUSE input.

If a RESET occurs during a PAUSE-initiated wait state and the PAUSE remains
low, the processor will be reset, fetch one instruction from page zero byte
zero and return to the wait state. When the PAUSE is eventually removed, the
previously fetched instruction will be executed.

INTREQ (Pin 17)

The Interrupt Request input (normally high) is a means for external devices to
change the flow of program execution. When the processor recognizes an
INTREQ, i.e., INTREQ is driven low, it finishes the instruction in progress,
inserts a ZBSR instruction into the IR, turns on the Interrupt Inhibit bit in
the PSU, and then responds with INTACK and OPREQ signals. Upon receipt of
INTACK, the inter~upting device may raise the INTREQ line and present a data
byte to the processor on the DBUS. The required byte takes the same form as
the second byte of a ZBSR instruction. Thus, the interrupt initiated
Branch-to Subroutine instruction may have a relative target address anywhere
within the first or last 64 bytes of memory page O. If indirect addressing is
specified, a branch to any location in addressable memory is possible.

The relative address presented by the interrupting device is handled with a
normal I/O Read sequence using the usual interface control signals. The ad­
dition of the INTACK signal distinguishes the Interrupt Address operation from
other operations that may take place as part of the execution of the inter­
rupted instruction. At the same time that it acknowledges the INTREQ, the
processor automatically sets the bit that inhibits recognition of further in­
terrupts. The Interrupt Inhibit bit may be cleared anytime during the in-

9-16

terrupt service routine, or a Return-and-Enable instruction may be used to en­
able interrupts upon leaving the routine. If an INTREQ is waiting when the
Interrupt Inhibit bit is cleared, it will be recognized and processed im­
mediately without the execution of an intervening instruction.

INTACK (Pin 34)

The Interrupt Acknowledge signal is used by the processor to respond to an ex­
ternal interrupt. When an INTREQ is received, the current instruction is com­
pleted before the interrupt is serviced. When the processor is ready to ac­
cept the interrupt, it sets INTACK to the high, or on, state along with
OPREQ. The interrupting device then presents a relative address byte to the
DBUS and responds with an OPACK signal. INTREQ may be turned off anytime fol­
lowing INTACK. INTACK will fall after the processor receives the OPACK signal.

WRP (Pin 22)

The Write Pulse output is a timing signal from the processor that provides a
positive-going pulse in the middle of each requested write operation (memory
or I/O) and a high level during read operations. The WRP is designed to be
used with Signetics' 2606 memory circuits to provide a timed chip enable
signal. For use with memory, it may be gated with the M/IO signal to generate
a memory write pulse.

Because the WRP pulse occurs during any write operation, it may also be used
with I/O write operations where convenient.

Signal Timing

The clock input to the 2650/2650A provides the basic timing information that
the processor uses for all its internal and external operations. The clock
rate determines the instruction execution time, except to the extent that
external memories and devices slow the processor down. The maximum clock rate
of the standard 2650/2650A is 1.25 megacycles (1 clock period = aOOns
minimum). One unique feature of the 2650/2650A is that the clock frequency
may be slowed down to dc, allowing complete timing flexibility for
interfacing. This feature permits single stepping the clock which can greatly
simplify system checkout. It also provides an easy method to halt the
processor. Each 2650/2650A cycle is comprised of 3 clock periods. Direct
instructions require either 2, 3 or 4 processor cycles for execution and,
therefore, vary from 4.8 to 9.6us in duration.

OPREQ is the master control signal that coordinates all operations external to
the processor. Many of the other signal interactions are related to OPREQ.
The timing diagrams (Figures 9.5, 9.6 and 9.7) assume that the clock periods
are constant and that OPACK is returned in time to avoid delaying instruction
execution. In that case, OPREQ will be high for 1.5 clock periods and then
will be low for another 1.5 clock periods.

The interface control signals have been designed to allow implementation of
asynchronous interfaces for both memory and input/output devices. The control
signals are relatively simple and provide the following advantages: no
external synchronizing is necessary, external devices may run at any data rate
up to the processor's maximum I/O data rate, and, because data signals are
furnished with guard signals, the external devices are often relieved of the
necessity of latching information.

9-17

The timing diagrams (Figures 9.5, 9.6, and 9.7) are for illustrative purposes
only and are not meant to convey precise timing relationships. Consult the
2650/2650A data sheet for detailed DC and AC parameter information.

Memory Read

The timing for a typical Memory Read operation is shown in Figure 9.5. When
reading memory, the 2650/2650A simultaneously switches OPREQ to the high
state, M/IO to M (memory), R/W to R (read), and places the memory address on
lines ADRO-ADR14. Even though the ADR13 and ADR14 lines are mUltiplexed with
I/O control information, they contain valid address data during memory
operations, so special demultiplexing or gating circuitry is not required.

Once the memory logic has determined the simultaneous existence of the signals
mentioned above, it places the true data corresponding to the given address
location on the data bus (DBUSO-DBUS7), and returns an OPACK signal to the
processor. The processor, recognizing the OPACK, strobes the data into the
receiving register and lowers OPREQ. This completes the Memory Read sequence.

CLOCK

FROM 2650

OPREQ

WRP

FROM MEMORY

DBUSo­
DBUS7

MEMORY READ OPERATION

-_____________________ ~I--~~I ______ --.

Figure 9.5

If the OPACK signal is delayed by the memory device, the processor waits until
it is received. OPREQ is lowered only after the receipt of OPACK. The memory
device should raise OPACK after OPREQ falls. If the memory will always
respond within the allowed time, the OPACK input may be left permanently in
the low state.

Memory Write

The signals involved with the processor's Memory Write sequence are similar to
those used in the Memory Read sequence with the following exceptions:

1. The R/W signal is in the write state; and
2. The WRP signal provides a positive-going pulse during the write sequence

which may be used as a chip enable, write pulse, etc.

9-18 •

Figure 9.6 demonstrates the signals that occur during a memory Write operation.

I/O Device Read

CLOCK

FROM 2650

OPREO

ADRO­
ADR14

M/iO

MEMORY WRITE OPERATION

ii/W~
DBUSO­
DBUS7

WRP

FROM MEMORY

~ __________________________ ~I----~I __ --__ .

Figure 9.6

The timing sequences for the I/O Read instructions are the same as the Memory
Read sequences with the following exceptions: The M/IO signal is switched to
10, the ADR13 signal becomes the E/NE (Extended/Non-Extended) signal, and for
Non-Extended instructions, the ADR14 signal becomes the D/C (Device/Control)
signal. The address lines only contain valid information for extended
instructions.

Figure 9.7 shows the signals that occur for an I/O Device Read operation.

I/O Device Write

The timing sequences for I/O Write operations are similar to those shown in
Figure 9.7 for an I/O Read operation except that the R/W signal is in the wait
(high) state and the WRP signal provides a positive-going pulse during the
OPREQ time. In addition, the data bus signals are provided by the 2650/2650A.

A Minimal System Example

The 2650/2650A has been designed for low cost, easy interfacing, which is
illustrated by a minimal configuration shown in Figure 9.8. This system has a
Teletype interface, 1024 bytes of ROM, and 256 bytes of RAM, yet requires only
7 standard integrated circuit packages. The ROM can contain a bootstrap
loader and I/O driver programs for the Teletype. Other programs could reside
in ROM or be read into RAM via the Teletype. An alternative to the 2608
n-channel MOS ROM is the 82S115 bipolar PROM which offers a 512X8
organization. Only one +5 volt power supply is required for this system. The
advantages of conceptual simplicity and minimum system costs of the 2650/2650A
approach will become obvious to the system designer, particularly when
compared with alternative microprocessor products.

9-19

+s

CLOCk

FROM 2650

OPREO

*ADRO­
ADR7

M/iO

EINE

"O/C

R/W

WRP

FROM 110 DEVICE

OBUSO­
OBUS7

SENSE

FLAG

110 DEVICE READ OPERATION

7fI_/!II!!JIf/Ili/ll/lillJflA wflffilfl/u/ih
W!I!lI/&/fI//I/J/J////!/1////4

EXTENOEO~

NON-EXTENDED

_//////!I!I!$/flJ//!II////A
CONTROL :..;ttl

wl/!///t/l/l/l/lt/ll///////II(II/A JI!I!I//JI/I1//;14

______________________ .. 1 __ ' __ -----

Figure 9.7

SEVEN PACKAGE MINIMAL SYSTEM

r-J------,
~I I -= I I

t-----6--+---"1 ~ I
7439 I I

~~~-~.-~ t +5 C>-W'v-1. _____ -t 
DATA BUS 

1. One +!;V supply seven IC packages 
2. ·CMOS recelver used lor high noise tmmunily. 

Figure 9.8 

9-20 



Input/Output Facilities 

The 2650/2650A processor provides several mechanisms for performing input/out­
put functions. They are Flag and Sense, Non-Extended I/O instructions, Ex­
tended I/O instructions and Memory I/O. These four facilities are described 
below. 

Flag and Sense I/O 

The 2650/2650A has the ability to directly output 1 bit of data without 
additional address decoding or synchronizing signals. 

The bit labeled "Flag" in the Program Status Word is connected through a 
TTL-compatible driver to the chip output at pin 40. The Flag output always 
reflects the value in the Flag bit. When a program changes the Flag bit 
through execution of an LPSU, PPSU, or CPSU instruction, the bit will be set 
or cleared during the last cycle of the instruction that changes it. 

The Flag bit may be used conveniently for many different purposes. The 
following is a list of some possible uses: 

1. A serial output channel 
2. An additional address bit to increase addressing range. 
3. A switch or toggle output to control external logic. 
4. The origin of a pulse for polling chains of devices. 

The Sense bit performs the complementary function of the Flag and is a single 
bit direct input to the 2650/2650A. The SENSE input, pin 1, is connected to a 
TTL-compatible receiver and is then routed directly to a bit position in the 
Program Status Word. The bit in the PSW always represents the value of the 
external signal. It may be sampled anytime through use of the TPSU or SPSU 
instructions. 

This input to the processor may be used in many ways. The following is a list 
of some possible uses: 

1. A serial input channel. 
2. A sense switch input. 
3. A break signal to a processing program. 
4. An input for yes/no signaling from external devices. 

Non-Extended I/O 

There are four I-byte I/O instructions: REDC, REDD, WRl~ and WRTD. 
all referred to as non-extended because they can communicate only 
data, either into or out of the 2650/2650A. 

They are 
1 byte of 

REDC and REDD cause the input transfer of 1 byte of data. They are identical 
except for the fact that the D/C signal is in the D state for REDO and in the 
C state for REDC. Similarly, the instructions WRTC and WRTD cause an output 
transfer of 1 byte of data. The D/C line discriminates between the 2 pairs of 
input/output instructions, and can be used as a I-bit device address in simple 
systems. 

The 10 and NE signals inform the devices outside the 2650/2650A that a 
I/O instruction is being executed. The D/C line indicates which pair 

9-21 

I-byte 
of the 



1-byte I/O instructions are being executed; D implies either WRTD or REDD, and 
C implies either WRTC or REDC. Finally, the R/W signal level specifies 
whether a read or a write is being performed. 

Extended I/O 

There are two 2-byte I/O instructions: REDE and WRTE. When these 
instructions are executed, the second byte of the instruction is output on the 
low order address lines ADRO-ADR7. REDE causes the byte of data then on the 
data bus to be strobed into the register specified in the instruction to be 
output on the data bus. 

The 2-byte I/O instructions are similar to the I-byte I/O instructions except 
the D/C line is not considered, and the data from the second byte of the I/O 
instruction appears on the address bus during the time that OPREQ is valid. 
The data on the address bus is intended to convey a device address, but may be 
utilized for any purpose. 

Memory I/O 

The 2650/2650A user may choose to transfer data into or out of the processor 
using the memory control signals. The advantage of using this technique is 
that the data can be read or written by the program with memory reference 
instructions, and data may be directly operated upon with the arithmetic and 
logical instructions. The memory reference instructions can use the various 
addressing modes provided by the 2650/2650A, such as indexing and indirect 
addressing. 

To make use of this technique, the designer must assign memory addresses to 
I/O devices and design the device interfaces to respond to the same signals as 
memory. 

A possible disadvantage of this method is that it may be necessary 
more address lines to determine the device address than with 
facilities. 

to decode 
other I/O 

Table 9.3 summarizes the I/O signal states for the various types of 
facilities, and Figure 9.9 illustrates the types of I/O available with 
2650/2650A. 

I/O 
the 

TYPE OF 1/0 OPERATION OPREQ MilO R/W AORO-AOR7 AOR13 (E/NE) ADR14 (Ole) 

Sense input X X X X X X 
Flag output X X X X X X 
Extended read H L L Second byte H X 
Extended write H L H of instruction X 

Non-extended read C H L L X L L 
Non-extended read 0 H L L X L H 
Non-extended write C H L H X L L 
Non-extended write 0 H L H X L H 
Memory I/O read H H L ADRO-ADR7 ADR13 ADR14 
Memory I/O write H H H ADRO-ADR7 ADR13 ADR14 

x = Don't care 

Table 9.3 I/O INTERFACE SIGNAL STATE 

9-22 



SINGLE BIT 
110 

SENSE FLAG 

CONTROL 
BUS 

I > 
2650 

ADDRESS BUS ) 

V 
TO MEMORY 

2650/2650A I/O FACILITIES-GENERAL BLOCK DIAGRAM 

/'0 

INPUT 
PORT 

C 

REDC 

INPUT 
PORT 

0 

REDO 

t--
WRTC 

CONTROL I 
LOGIC 

I 
OUTPUT 

PORT 

I 
C 

f---

DATA BUS 

WRTD 

OUTPUT 
PORT 

D 

I 
DEVICE- I 

ADDRESS I 
DECODER I PORTSEL 

I 

~ 
EXTENDED 

INPUT 
PORT 

RED E 

VI 

" '" " .. 
~ 

PORT SEL 

EXTENDED 
OUTPUT 

PORT 

WRTE 

" TO MEMORY 

Figure 9.9 

9-23 

1 

1 

) 

1 

'> 

NON-EXTENDED 1/0 

MAX. 
256 
INPUT 
PORTS 

EXTENDED 110 

MAX. 
256 
OUTPUT 
PORTS 



Interrupt Mechanism 

The 2650/2650A has been implemented with a single level, address vectoring 
interrupt mechanism. There is 1 interrupt input pin. When an external device 
generates an Interrupt signal (INTREQ), the processor is forced to transfer 
control to any of 128 possible memory locations as determined by an 8-bit 
vector supplied by the interrupting device on the data bus. The device may 
also return an Indirect Address signal which causes the processor to enter an 
indirect addressing sequence. This enables a device to direct the processor 
to execute code anywhere within addressable memory. 

Upon recongnizing the Interrupt signal, the processor automatically sets the 
Interrupt Inhibit bit in the Program Status Word. This inhibits further 
interrupts from being recognized until the interrupt routine is finished 
executing and a Return-and-Enable instruction is executed or the Inhibit bit 
is explicitly cleared. 

When the Inhibit bit in the 'PSW is set (11=1), 
recognize an interrupt input. The Interrupt Inhibit 
program control (LPSU, PPSU) and is automatically set 
accepts an interrupt. The Inhibit bit may be cleared 

the processor will not 
bit may be set under 
whenever the processor 

in 3 ways: 

1. By a Reset operation. 

2. By execution of an appropriate Clear or Load PSU instruction (CPSU, LPSU). 

3. By execution of a Return-and-Enable instruction. 

The sequence of events for an Interrupt operation is as follows: 

1. An executing program enables interrupts. 

2. The external device initiates an Interrupt with the INTREQ line. 

3. The processor finishes executing the current instruction. 

4. The processor sets the Inhibit bit in the PSW. 

5. The processor inserts the first byte of a ZBSR 
Subroutine, Relative) instruction. 

(Zero Branch-to 

6. The processor accesses the data bus to fetch the second byte of the ZBSR 
instruction. 

7. The interrupting device responds to the processor-generated .INTACK 
(Interrupt Acknowledge) by supplying the requested second byte. 

8. The processor executes the Zero Branch-to-Subroutine instruction, saving 
the address of the next sequential instruction in the RAS, and proceeds 
to execute the instruction at the address relative to page 0, byte 0 
given by the'interrupting device. 

9. When the Interrupt routine is complete, a Return instruction (RETC, RETE) 
pulls the address from the RAS and execution of the interrupted program 
resumes. If the instruction is an RETE, interrupts are again enabled. 

9-24 



Since the interrupting device specifies the interrupt subroutine address in 
the standard relative address format, it has considerable flexibility with 
regard to the interrupt procedure. It can point to any location that 1S 

within +63 or -64 bytes of page 0, byte 0 of memory. (Negative relative 
addresses wrap around the memory, modulo 8,19210 bytes.) The interrupting 
device also may specify whether the subroutine address is direct or indirect 
by providing a zero or one to DBUS7 (pin 26). 

The vectored interrupt technique requires that each interrupting device 
contain the hardware required to provide the address vector to the processor. 
In some cases, an overall reduction in system hardware may be realized by 
implementing a "polled" interrupt scheme. In this case, the INTACK generated 
as a response to any interrupt is used to force an address byte on the data 
bus. The program at this address sequentially polls all devices to determine 
the interrupting device, and then branches to a program to service that 
device. The disadvantages of this technique are increased coding requirements 
and slower response to the interrupt. 

The timing diagram in Figure 9.10 illustrates how the interrupt system works 
in the processor. The execution of the instruction labeled "A" has been 
proceeding before the start of this diagram. The last cycle of instruction A 
is shown. Notice that, as in all external operations, the OPREQ output 
eventually causes an OPACK input, which, in turn, allows OPREQ to be turned 
off. The arrows show this sequence of events. The last cycle of instruction 
A fetches the first byte of instruction B from memory and inserts it into the 
Instruction Register. 

INTERRUPT OPERATION 

INST 

OPREQ 

, I 
~TM* ______________________ -J1 ,~ ______________ _ 

• Processor inserts 1st byte of ZBSR instruction. Address of 1st byte of INST C is pushed into return 
address stack. 

•• 2nd byte of ZBSR (interrupt vector) provided by interrupting device. 

Figure 9.10 

Assume that instruction B is a 2 cycle, 2-byte instruction such as ADD. Since 
the first byte has already been fetched by instruction A, the first cycle of 
instruction B is used to fetch the second byte of instruction B. Had the 
interrupt not occurred during instruction B, it would have fetched the first 
byte of the next sequential instruction during its second (last) cycle. 

9-25 



Since an Interrupt occurred, however, the processor uses the last cycle of B 
to jam the Interrupt instruction (ZBSR) execution into the instruction 
register. Notice that the INTREQ input can arrive at any time prior to the 
last (second) cycle of execution of instruction B and that execution of 
instruction B is completed. 

Instead of being the next sequential instruction following B, instruction C is 
the execution of the Interrupt. The first cycle of C is us.ed to fetch the 
second byte of the ZBSR instruction from the USUS as provided by the 
interrupting device. This request is indicated by the presence of the INTACK 
control signal. The INTREQ may then be removed. When the device responds 
with the requested byte, it uses a standard Operation Acknowledge procedure 
(OPACK) to so indicate to the processor. During the second cycle of 
instruction C the processor executes the ZBSR instruction, and fetches the 
first byte of instruction D which is the first instruction of the interrupt 
subroutine. 

Subroutine Linkage 

The on-chip stack, 
instructions, provide 
subroutine can return 
instruction. 

along with the Branch-to Subroutine and Return 
the facility to transfer control to a subroutine. The 
control to the program that branched to it via a Return 

The stack is eight levels deep and operates on a last-in, first-out basis. 
This means that a routine may branch to a subroutine, which may branch to 
another subroutine, which may branch to another subroutine, etc., eight times 
before any Return instructions are executed. 

When designing a system that utilizes interrupts, it should be remembered that 
the processor jams a ZBSR into the IR and then executes it. This will cause 
an entry to be pushed into the on-chip stack like any other Branch-to­
Subroutine instruction and may limit the stack depth available in certain 
programs. 

When branching to a subroutine, the following sequence of events occur: 

1. The address in the IAR is used to fetch the Branch-to-Subroutine 
instruction and is then incremented in the Address Adder so that it 
points to the instruction following the subroutine branch. 

2. The Stack Pointer is incremented by ones so that it points to the next 
Return Address Stack location. 

3. The contents of the IAR are stored in the stack at the location 
designated by the Stack Pointer. 

4. The operand address contained in the Branch-to-Subroutine instruction 
(the address of the first instruction of the subroutine) is inserted into 
the IAR. 

When returning from a subroutine, this sequence of events occurs: 

1. The address in the IAR is used to fetch the return (RETC, RETE) 
instruction from memory. 

9-26 



2. When the Return instruction is recognized by the processor, the contents 
of the stack entry pointed to by the Stack Pointer is placed into the IAR. 

3. The Stack Pointer is decremented by one. 

4. Instruction execution continues at the address now in the IAR. 

Condition Code Usage 

The 2-bit register called the Condition Code is incorporated in the Program 
Status Word. It may be seen in the description of the 2650/2650A instructions 
that the Condition Code (CC) is specifically set by every instruction that 
causes data to be transferred into a general-purpose register and by Compare 
and Test instruction.s. 

The reason for this design feature is that after an instruction executes, the 
CC contains a modest amount of information about the byte of data which has 
just been manipulated. Thus, when a program loads a register with a byte of 
unknown data, the Condition Code setting indicates whether the byte is 
positive, negative or zero. A negative indication, for example, implies that 
bit 7 is set to one. 

Consequently, a data manipulation operation, when followed by a conditional 
branch, is often sufficient to determine desired information without resorting 
to a specific test, thus saving instructions and memory space. 

Start-up Procedure 

The 2650/2650A must be started in an orderly fashion to assure that the 
internal control logic begins in a known state. 

Assuming power is applied to the chip and the clock input is running, the 
easiest way to start is to apply a Reset signal for at least three clock 
periods. When the Reset signal is removed, the processor will fetch the 
instruction at page 0, byte 0 and commence instruction execution. 

To start processing at a different address, a more complex start-up procedure 
may be employed. If an Interrupt signal is applied initially along with the 
Reset, processing will commence at the address provided by the interrupting 
device. Recall that the address provided may include a bit to specify 
indirect addressing, and therefore the first instruction executed may be 
anywhere within addressable memory. The Reset and Interrupt signal may be 
applied simultaneously and when the Reset is removed, the processor will 
execute the usual interrupt signal sequence as described in "Interrupt 
Mechanism. " 

Instructions 

Addressing Modes 

An addressing mode is a method the processor uses for developing argument 
addresses for machine instructions. 

9-27 



The 2650/2650A processor can develop addresses in eight ways: 

• Register addressing 
• Immediate addressing 
• Relative addressing 
• Relative, indirect addressing 
• Absolute addressing 
• Absolute, indirect addressing 
• Absolute, indexed addressing 
• Absolute, indirect, indexed addressing 

However, of these eight addressing modes, only four are basic. The others are 
variations due to indexing and indirect addressing. The basic addressing mode 
of each instruction is indicated in the first line of each detailed 
instruction description. The following text describes how effective addresses 
are developed by the processor. 

Register Addressing 

All register-to-register instructions are one byte in length. 
utilizing this addressing mode appear in this general format: 

Operation Code Register 

fr----II--...... \~ 

I I I I I I I I 
76543 2 

Byte 0 

Instructions 

Since there are only two bits designated to specify a register, register zero 
always contains one of the operands while the other operand is in one of the 
three registers in the currently selected bank. &agister zero may also be 
specified as the explicit operand giving instructions such as: LODZ RO. 

In 1-byte register addressing instructions which have just one operand, any of 
the currently selected general-purpose registers or register zero may be 
specified, e.g., RRL, RO. 

Immediate Addressing 

All immediate addressing instructions are two bytes in length. Usually, the 
first byte contains the operation code and register designation, while the 
second byte contains data used as the argument during instruction execution. 
In some cases, the entire eight bits of the first byte are used for the 
operation code. 

Operation Code Register 
I ~ fr----'------' ~ 

I I I I I I 
7 6 5 4 3 2 

Byte 0 

binary number 
or 8·bit logic mask 

I 

The second byte, the data byte, may contain a binary number 
depending on the particular instruction being executed. Any 
designated in the first byte. 

or a logic mask 
register may be 

9-28 



Relative Addressing 

Relative addressing instructions are all two bytes in length and may be of the 
branch or non-branch type. The format of relative addressing instructions is: 

Register or 
Condition 

Code Operation Code 

,r-_----JIL.....-_"""'\\~ 

I I I I I I I 
7 6 5 432 1 

Byte 0 

I Relative Displacement 
.L I 'v \. 

I I I I I I I I I 
7 654 3 2 1 0 

Byte 1 

For branch type instructions, the first byte contains the operation code and 
the condition code value for which the branch will take place. For non-branch 
instructions, one argument is a register and the second argument is the 
contents of a memory location, and the first byte contains the operation code 
and register designation. 

For either type, the second byte contains the relative address. Bits 0-6, 
byte 1, contain a 7-bit two's complement binary number which can range from 
-64 to +63. This number is used by the processor to calculate the effective 
address. The effective address is calculated by adding the address of the 
first byte following the Relative Addressing instruction to the relative 
displacement in the second byte of the instruction. 

If bit 7, byte 1 is set to 1, the processor will enter an 
cycle, where the actual operand or branch address will be 
effective address location. See Indirect Addressing. 

indirect addressing 
accessed from the 

Two of the branch instructions (ZBSR, ZBRR) allow addressing relative to page 
0, byte ° of memory. In this case, values up to +63 reference the first 62 
bytes of page ° and values up to -64 reference the last 64 bytes of page 0. 

Absolute Addressing for Non-Branch Instructions 

Non-branch, absolute addressing instructions are all 3 bytes in length and are 
memory reference instructions. One argument of the instruction is a register, 
designated in bits 1 and 0, byte 0; the other argument is the contents of a 
memory location. The format of these instructions is: 

Index 
Register 
or 
Argument 

Operation Code Register 
~ 

I I I I I I I I I 
76543210 

Byte 0 

Index High-Order 
I Control Address 

~ 

I I I I I I I I I 
7 654 3 2 1 0 

Byte 1 

Low-Order Address 
~ __ --,I ___ "" 

/- , 
I I I I I I I I I 
7 654 3 2 1 0 

Byte 2 

Bits 4-0, byte 1 and 7-0, byte 2 contain the absolute address and 
any byte within the same page that contains the instruction. 

can address 

The index control bits, bits 6 and 5, byte 1, determine how 
address will be calculated and possibly which register will be 

9-29 

the 
the 

effective 
argument 



during instruction execution. 
interpretation: 

The index control bits have the following 

INDEX CONTROL 
MEANING 

Bit 6 Bit 5 

0 0 Non-indexed address 
0 1 Indexed with auto-increment 
1 0 Indexed with auto-decrement 
1 1 Indexed only 

When the index control bits are 0 
argument register designation and 
contain the effective address. 
setting bit 7, byte 1 to a one. 

and 0, bits 1 and 0 in byte 0 contain the 
bits 0 to 4, byte 1 and bits 0 to 7, byte 2 
Indirect addressing may be specified by 

When the index control bits are 1 and 1, bits 1 and 0 in byte 0 designate the 
index register and the argument register implicitly becomes register o. The 
effective address is calculated by adding the contents of the index register 
(interpreted as an 8-bit positive integer) to the address field. If indirect 
addressing is specified, the indirect address is accessed and then the value 
in the index register is added to the indirect address. This is commonly 
called post indexing. 

When the index control bits contain 0 and 1, the address is calculated by the 
processor exactly as when the control bits contain 1 and 1 except a binary 1 
is added to the contents of the selected index register before the calculation 
of the effective address proceeds. Similarly, when the index control bits 
contain 1 and 0, a binary 1 is subtracted from the contents of the selected 
index register before the effective address is calculated. 

Indexing across page boundaries is not allowed. This is true even if indirect 
addressing with indexing is specified. Attempts to index across the top of a 
page will result in an address at the bottom of the same page. 

Absolute Addressing for Branch Instructions 

The 3-byte, absolute addressing, branch instructions deviate slightly in 
format from non-branch absolute addressing instructions as shown below: 

Register or 
·Condition 

Operation Code Code I High Order Address Low-Order Address 
I \~ AI I / \ / \ 

I I I I I I I I I I I I I I I I I I 
7 6 5 4 3 2 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Byte a Byte 1 Byte 2 

The notable difference is that bits 6 and 5, byte 1, are no.longer interpreted 
as index control bits, but instead are interpreted as the high order bits of 

9-30 



the address field. This means that there is no indexing allowed on most 
absolute addressing branch instructions. ~owever, indexed branches are 
possible through use of the BXA and BSXA instructions. Bits 6 and 5, byte 1, 
are used to set the current page register, thus enabling programs to directly 
transfer control to another page (see Memory Organization, BXA and BSXA 
instructions, and Indirect Addressing). 

Indirect Addressing 

Indirect addressing means that the argument address of an instruction is not 
specified by the instruction itself, but rather the argument address will be 
found in the 2 bytes pointed to by the address field, or relative address 
field, of absolute or relative addressing instructions. In both cases, the 
processor will enter the indirect addressing mode when the bit designated "I" 
is set to 1. Entering the indirect addressing sequence adds 2 cycles (6 clock 
periods) to the execution time of an instruction. 

Indirect addresses are 15-bit addresses stored right- justified in 2 
contiguous bytes of memory. As such, an indirect address may specify any 
location in addressable memory (0-32,767). The high order bit of the 2-byte 
indirect address is not used by the processor. In the case of absolute 
addressing, with indexing specified, the value of the index register is added 
to the indirect address, not to the value in the address field of the 
instruction. 

Only single level indirect addressing is implemented. 
demonstrate indirect addressing. 

The examples below 

In Figure 9.11, the LODA instruction in memory locations 10, 11, and 12 
specifies indirect addressing (bit 7, byte 1, is set). Therefore, when the 
instruction is executed, the processor takes the address field value, H'5l', 
and uses it to access the 2-byte indirect address at 51 and' 52. Then using 
the contents of 51 and 52 as the effective address, the data byte containing 
H'67' is loaded into register 2. 

The example In Figure 9.12 is, in a fashion, similar to the previous example; 
the relative address is used to access the indirect address which points to 
the data byte. When the LODR instruction is executed, the data byte contents, 
H'67', will be loaded "into register 2. 

Example 1 

10 0 0 0 1 1 1 0111 0 0 0 0 0 0 0 110 1 0 1 0 0 0 11 LODA,R2 "H'SI' 

ADDRESS 1018 1118 1218 

10 0 0 0 0 0 0 1 110 0 1 0 1 0 0 0 I H'128' 

5118 5218 

I 0 1 1 0 0 1 1 1 I H'87' 

12818 

Figure 9.11 

9-31 



Example 2 

10 0 0 0 1 0 1 0111 0 0 0 0 1 0 1 I LOOA,lt2 "H'17' 

ADDRESS 1018 1118 

10 0 0 0 0 0 0 1 110 0 1 0 1 0 0 0 I H'128' 

1718 1818 

10 1 1 0 0 1 1 1 I H'87 , 

12818 

Figure 9.12 

Instruction Format Exceptions 

There are several instructions which are detected by decoding the entire 8 
bits of the first byte of the instruction. These instructions are unique and 
may be noticed in the instruction descriptions. Examples are HALT, CPSU and 
CPSL. 

Of this type of instruction, 2 operation codes were taken from otherwise 
complete sets, thus eliminating certain possible operations. The cases are as 
follows: 

(Not okay) 
(Okay 

(Not okay) 
(Okay) 

STRZ 0 } 
NOP 

ANDZ 
HALT 

Storing register zero into register zero is not 
implemented; the operation code is used for NOP 
(no operation). 

AND of register zero with register zero is not 
implemented; the operation code is used for HALT. 

9-32 



INSTRUCTION FORMATS 

(Z) REGISTER ADDRESSING I I I I I I 'I I I 
DATA MASK OR 

OPERATION CODE R BINAA~ VALUE 
, ! '~f \ 

(I) I .... EDIATE ADDRESSING I I I I I I II I II I I I I I I I 
RELATIVE DISPLACEMENT 

"PERATIDN CODE RIC I 64 DISPLACEMENT 63 , ' ,r---. nl \ 
(R) RELATIVE ADDRESSING I I I I I I I 1 I 11113 I III 

"'NDEX HIGHER ORDER 
OPERATION CODe A/)( .cONTROL ADDRESS LOWER ORDER ADDRESS , ' ,,--'--, 

(A) ABSOLUTE ADDRESSING I I I I I I I I I 
(HON-BRANCH INSTRUCTIONS) 

~,'" ! , 

111111111111111111 
HIGHER ORDER ADDRESS 

! 

,.OPERATI?" CODE \~ , I PAGE LOWER ORD,ER ADDRESS r-.,........ , \ 
(B) ABSOLUTE ADDRESSING I I I I I I I I I 

IBRANCH INSTRUCTION) • ~ • • • . • • _ I!IIIIIIIIIIIIIIII 
HIGHER ORDER ADDRESS 

! 

(UNUSED) PAGE LOWER ORDER ADDRESS r--.,-....... , \ 
INDIRECTADDRESSINGI I I I I I I I I I I I I I I I I I 

OPERATION CODe 

SYMBOLS: 

R - REGISTER NUMBER 
C - CONDITION CODE VALUE 
X - INDEX REGISTER NUMBER 
I - INDIRECT BIT 

'E) "'SCELLANEOUS INSTRUCTIONS ( 1 I I jill) "INDEX CONTROL: 

00 ~ NON-INDEXED 

Figure 9.13 

9-33 

01 ~ INDEXED WITH AUTO-INCREMENT 
10 ~ INDEXED WITH AUTO-DECREMENT 
11 ~ INDEXED ONLY 



THIS PAGE INTENTIONALLY BLANK 

9-34 



DETAILED PROCESSOR INSTRUCTIONS 

Introduction 
The 2650/2650A uses variable-length instructions that are 1, 2 or 3-bytes 
long. The instruction length is determined by the nature of the operation 
being performed and the addressing mode being used. Thus, the instruction can 
be expressed in 1 byte when no memory operand addressing is necessary, as with 
register-to-register or rotate instructions. On the other hand, for direct 
addressing instructions, 3 bytes are allocated. The relative and immediate 
addressing modes allow 2-byte instructions to be implemented. 

The 2650/2650A uses explicit operand addressing; that is, each instruction 
specifies the operand address. The first byte of each 2650/2650A instruction 
is divided into three fields and specifies the operation to be performed, the 
addressing mode to be used and, where appropriate, the register or condition 
code mask to be used. 

In the instsruction descriptions which follow, the mnemonic assembler format 
as well as the execution time are listed. In the mnemonics, parentheses are 
used to indicate options. The parentheses are not included when the option is 
desired. With regard to execution time, note that non-branch type 
instructions specifying indirect addressing require an additional 2 cycles (6 
clock periods) for execution. Branch type instructions specifying indirect 
addressing require an additional 2 cycles for execution only if the branch is 
taken. 

Symbols and Abbreviations Used 

a 
C 
CC 
COM 
EA 
F 
I 
IAR 
IC 
IDC 
II 
OVF 
PSL 
PSU 
PSW 
r 
RS 
RO 
S 
SP 
v 
WC 
x 
X 

(A) 

Address Value 
Carry bit 
Condition Code bits 
Compare bit 
Effective Address 
Flag bit 
Indirect addressing bit 
Instruction Address Register 
Index Control bits 
Inter-Digit Carry bit 
Interrupt Inhibit bit 
Over flow bi t 
Program Status L.ower byte 
Program Status Upper byte 
Program Status Word 
Register (O~r~3) 
Register Bank Select bit 
Register zero 
Sense bit 
Stack Pointer 
A value 
With Carry bit 
Index register value (O~ x ~3) 
Index register value with optional 
auto-decrement (,-) 
Contents of A 

9-35 

auto-increment (,+) or 



«A) ) 
(a:b) . . 

Contents of location addressed by A 
Bi ts a through b 
Is compared to 
Is replaced by 

Calculating Effective Addresses 

The "Effective Address' (EA) of an instruction depends on the addressing mode 
used and whether the indirect and/or indexing options are invoked. The 
following rules apply for calculating the EA. Exceptions to these rules are 
detailed in the instruction descriptions. 

EA = a if I = 0, Ie = 00 
EA = (a) if I = l, IC = 00 
EA = a + (x) if I = 0, Ie = 11 
EA = a + (x) + 1 if I = 0, Ie = 01 
EA = a + (x) 1 if I = 0, Ie = 10 
EA = (a) + (x) if I = 1, Ie = 11 
EA = (a) + (x) + 1 if I = 1, Ie = 01 
EA = (a) + (x) -1 if I = 1, Ie = 10 

Absolute Addressing - Branch Instructions 

EA = a if I = 0 
EA = (a) if I = 1 

Relative Addressin~ 

Relative instructions (except ZBRR and ZBSR) are calculated relative to the 
current value of the Instruction Address Register (IAR). Note that when the 
calculation of EA is made, the IAR value is the first address following the 
instruction, or equivalently, the address of the first byte of the relative 
addressing instruction plus two. 

EA = (IAR) + a 
EA = «IAR) + a) 

if I = 0 
if I = 1 

Note that 'a' is treated as a two's complement value, so that forward or 
backward EA's can be generated. 

9-36 



ADDA,r (*)a(,X) ADD ABSOLUTE 

Addressing: Absolute 

Operation Codes: 8C - 8F 

Binary Coding: 

11lololol111lrd[xl III If I ~h!gh:or~erl I : :8 Ipw:or~er: : I 
7 654 321 0 7 6 5 4 3 2 1 0 765 4 321 0 

Execution Time: 4 cycles (12 clock periods) 

Operation: (r) .... (r) + (EA) 
(r) .... (r) + (EA) + (C) 

; if (WC) = 0 
if (WC) = 1 

DESCRIPTION: This 3-byte instruction causes the contents of 
the contents of the byte of memory pointed to by the effective 
added together in a true binary adder. The 8-bit sum replaces 
register r. 

register rand 
address to be 

the contents of 

Indirect addressing and/or indexing may be specified. If indexing is 
specified, bits 1 and 0, byte 0, indicate the index register and the 
destination of the operation implicitly becomes register zero. 

NOTE 
Add with Carry may be performed. 
description of Program Status Word. 

PSW Bits Affected: C, CC, IDC, OVF 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCI 

o 
o 
I 

See With/Without Carry and Carry in 

cco 

1 
o 
o 

9-37 



ADDI,r v ADD IMMEDIATE 

Addressing: Immediate 

Operation Codes: 84 - 87 

Binary Coding: 

11101010101 1 1 r II: : : y : : : I 
7 6 5 432 1 0 7 6 5 432 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r)~(r) + v 
(r)~(r) + v + (c) 

if (WC) = 0 
if (WC) = 1 

DESCRIPTION: This 2-byte instruction causes the contents of register rand 
the contents of the second byte of this instruction to be added together in a 
true binary adder. The 8-bit sum replaces the contents of register r. 

NOTE 
Add with carry may be performed. 
description of Program Status Word. 

PSW Bits Affected: C, CC, IDC, OVF 

Condition Code Setting: 

REGISTER r 

positive 
Zero 
Negative 

CCI 

o 
o 
1 

See With/Without Carry and Carry in 

cco 

1 
o 
o 

9-38 



ADDR,r (*)8 ADD RELATIVE 

Addressing: Relative 

Operation Codes: 88 - 8B 

Binary Coding: 

1110101010101 ~ 1 II/:::a::: 1 
76543210 76543210 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) - (r) + (EA) 
(r) -(r) + (EA) + (C) 

if (WC) = 0 
if (WC) = 1 

DESCRIPTION: This 2-byte instruction causes the contents of 
the contents of the byte of memory pointed to by the effective 
added together in a true binary adder. The 8-bit sum replaces 
register r. 

Indirect addressing may be specified. 

NOTE 

register r 
address to 

the contents 

and 
be 
of 

Add with Carry may be performed. 
description of Program Status Word. 

See With/Without Carry and Carry in 

PSW Bits Affected: C, CC, IDC, OVF 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCl 

o 
o 
1 

cco 

1 
o 
o 

9-39 



ADDZ r ADD TO REGISTER ZERO 

Addressing: aegister 

Operation Codes: 80~83 

Binary Code: 

1110101010101 r I 
7 6 543 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (ao) ..... (ao) + (r) 
(ao) ..... (ao) + (r) + (c) 

if (WC) = 0 
if (WC) = 1 

Description: This I-byte instruction causes the contents of register 
be added together in a true binary adder. The 8-bit sum of the 
replaces the contents of register zero. The contents of register 
unchanged. 

NOTE 

zero to 
addition 

r remain 

Add with Carry may be performed. See With/Without Carry in description of 
Progrum Status Word. 

PSw Bits Affected: C, CC, IDC, OVF 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCI 

o 
o 
I 

ceo 

1 
o 
o 

9-40 



ANDA,r (*)a(,X) 

Addressing: Absolute 
Operation Codes: 4C - 4F 

Binary Code: 

765 4 321 a 7 6 5 432 1 a 7 6 543 2 1 a 

Execution Time: 4 cycles (12 clock periods) 

Operation: (r) -- (r) AND (EA) 

AND ABSOLUTE 

Description: This 3-byte instruction causes the contents of register r to be 
logically ANDed with the contents of the memory byte pointed to by the 
effective address. The result of the operation replaces the contents of 
register r. 

The AND operation treats each bit of the argument bytes as in the truth table 
below: 

BIT BIT AND 
(0-7) (0-7) RESULT 

0 0 0 
0 1 0 
1 1 1 
1 0 0 

Indirect addressing and/or indexing may be specified. If indexing is 
specified, bits 1 and 0, byte 0, indicate the index register and the 
destination of the operation implicitly becomes register zero. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER N 

Positive 
Zero 
Negative 

CC1 

o 
o 
1 

cco 

1 
o 
o 

9-41 



ANDI,r v AND IMMEDIATE 

Addressing: Immediate 

Operation Codes: 44 - 47 

Binary Code: 

1011101010111 f 1 1 : : : y : : : 1 
7 6 5 432 1 0 7 654 321 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r)~(r) AND v 

Description: This two-byte instruction causes the contents of the specified 
register r to be logically ANDed with the contents of the second byte of this 
instruction. The result of this operation replaces the contents of register r. 

The AND operation treats each bit of the argument bytes as in the truth table 
below: 

BIT BIT 
(0-7) (0-7) 

0 0 
0 1 
1 1 
1 0 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCl 

o 
o 
1 

AND 
RESULT 

0 
0 
1 
0 

CCO 

1 
o 
o 

9-42 



ANDR,r (*)8 AND RELATIVE 

Addressing: Relative 

Operation Codes: 48 - 4B 

Binary Code: 

1011101011101 filii: : :a: : : I 
7 654 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) -- (r) AND (EA) 

Description: This two-byte instruction causes the contents of 
register r to be logically ANDed with the contents of the memory 
to by the effective address. The result of this operation 
contents of register r. 

the specified 
byte pointed 
replaces the 

The AND operation treats each bit of the argument bytes as in the truth table 
below: 

BIT BIT 
(0-7) (0-7) 

0 0 
0 1 
1 I 
I 0 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCI 

o 
o 
I 

AND 
Result 

cco 

I 
o 
o 

0 
0 
I 
0 

9-43 



ANDZ r AND TO REGISTER ZERO 

Addressing: Register 

Operation Codes: 41 -43 

Binary Code: 

101110101 0101 ~ I 
7 6 5 432 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (RO) ...... (RO) AND (r) ; r = RO 

Description: This I-byte instruction causes the contents of the specified 
register, r, to be logically ANDed with the contents of register zero. The 
result of the operation replaces the contents of register zero. The contents 
of register r remain unchanged. 

The AND operation treats each bit of the argument bytes as in the truth table 
below: 

BIT BIT AND 
(0-7) (0-7) RESULT 

0 0 0 
0 1 0 
1 1 1 
1 0 0 

NOTE 
Register r may not be specified as zero. 
reserved for HALT. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER ZERO CC1 

Positive 0 
Zero 0 
Negative 1 

CCO 

1 
o 
o 

9-44 

The operation code '01000000' is 



BCFA,v (*)8 BRANCH ON CONDITION FALSE, ABSOLUTE 

Addressing: Absolute 

Operation Codes: 9C - 9E 

Binary Code: 

I' 1 0 10 I, I, I, 1 Y 1 II I : a >iph: ~rd~r I I :a: (o~ : or~er: I 
7 6 5 432 , 0 7 6 5 4 3 2 1 0 7 6 543 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR) -EA if v=(CC), v=3 

Description: This 2-byte instruction causes the 
instruction to be executed from the memory 
effective address only if the 2-bit v field does 
Code field (CC) in the Program Status Word. 
contents of the Instruction Address Register are 
address. 

processor 
location 
not match 
If there 

replaced 

to fetch the next 
pointed to by the 
the 2-bit Condition 
is no match, the 

by the effective 

If the v field and CC field match, the next instruction is fetched from the 
location following the third byte of this instruction. 

Indirect addressing may be specified. 

The v field may not be set to 3 as this bit combination is used for the BXA 
operation code. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-45 



BCFR,v(*)a BRANCH ON CONDITION FALSE, RELATIVE 

Addressing: Relative 

Operation Codes: 98 - 9A 

Binary Code: 

\11 010\1\1\0\ ~ I 1. 11 : : ;a; ; : I 
7 6 543 2 1 0 765 432 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR) ~EA ; if v = (CC), v = 3 

Description: This 2-byte branch instruction causes the processor to fetch the 
next instruction to be executed from the memory location pointed to by the 
effective address only if the 2-bit v field does not match the 2-bit Condition 
Code field (CC) in the Program Status Word. If there is no match, the 
contents of the Instruction Address Register are replaced by the effective 
address 

If the v field and CC field match, the next instruction is fetched from the 
location following the second byte of this instruction. 

Indirect addressing may be specified. 

The v field may not be set to 3 as this bit combination is used for the ZBRR 
operation code. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-46 



BCTA,v (*)a BRANCH ON CONDITION TRUE, ABSOLUTE 

Addressing: Absolute 

Operation Codes: IC - IF 

Binary Code: 

10101011 11 11 I y I II I ~ :hi~h :or+< I I : > >~w :or~e< 1 
7 654 3 2 1 0 7 6 5 4 3 2 1 0 7 6 543 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR) - EA 
(IAR) .-EA 

if v = (CC), v = 3 
if v = 3 

Description: This 3-byte conditional branch in$truction causes the processor 
to fetch the next instruction to be executed from the memory location pointed 
to by the effective address only if the 2-bit v field matches the 2-bit 
Condition Code field (CC) in the Program Status Word. If the v field is set to 
3, an unconditional branch is effected. 

If the v field and CC field do not match, the next instruction is fetched from 
the location following the third byte of this instruction. Indirect 
addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-47 



BCTR, v (*)8 BRANCH ON CONDITION TRUE, RELATIVE 

Addressing: Relative 

Operation Codes: 18 - IB 

Binary Code: 

1010101111101 y 1111: : : :a: : I 
7 6 5 4 3 2 1 0 7 654 321 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR) .-EA 
(IAR) ~EA 

; if v = (CC), v = 3 
if v = 3 

Description: This 2-byte conditional branch instruction causes the processor 
to fetch the next instruction to be executed from the memory location pointed 
to by the effective address only if the 2-bit v field matches the current 
Condition Code field (CC) in the Program Status Word. If the v field is set 
to 3, an unconditional branch is effected. 

If the v field and CC field do not match, the next instruction is fetched from 
the location following the second byte of this instruction. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-48 



BORA,r (*)8 BRANCH ON DECREMENTING REGISTER, ABSOLUTE 

Addressing: Absolute 

Operation Codes: FC - FF 

Binary Code: 

11 11 11 11 11 11 I ~ I II I ~ ~i9~ :or~e< I I > : !o~ ?rd~< I 
7 6 5 432 1 0 7 6 5 432 1 0 7 6 5 432 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) -+- (r) - 1, then 
(IAR) -+-EA if (r) = 0 

Description: This 3-byte instruction causes the processor to decrement the 
contents of the specified register by one. If the new value in the register 
is non-zero, the next instruction to be executed is taken from the memory 
location pointed to by the effective address; i.e., the effective address 
replaces the previous contents of the Instruction Address Register. If the new 
value in register r is zero, the next instruction to be executed follows the 
third byte of this instruction. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-49 



BDRR,r (*)8 BRANCH ON DECREMENTING REGISTER, RELATIVE 

Addressing: Relative 

Operation Codes: F8 - FB 

Binary Code: 

111111111 1 101 r I III: : ~: : : I 
765 432 1 0 7 6 543 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) ~(r) - I, then 
(IAR)~EA if (r) = 0 

Description: This 2-byte branch instruction causes the processor to decrement 
the contents of the specified register by one. If the new value in the 
register is non-zero, the next instruction to be executed is taken from the 
memory location pointed to by the effective address; i.e., the effective 
address replaces the previous contents of the Instruction Address Register. 
If the new value in r-egister r is zero, the next instruction to be executed 
follows the second byte of this instruction. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-50 



BIRA,r (*)8 BRANCH ON INCREMENTING REGISTER, ABSOLUTE 

Addressing: Absolute 

Operation Codes: DC - DF 

Binary Code: 

765 432 1 0 7 6 5 4 3 2 1 0 7 654 321 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) - (r) + 1, then 
(IAR) -EA if (r) = 0 

Description: This 3-byte branch instruction causes the processor to increment 
the contents of the specified register by one. If the new value in the 
register is non-zero, the next instruction to be executed is taken from the 
memory location pointed to by the effective address, i.e., the effective 
address replaces the previous contents of the Instruction Address Register. 
If the new value of register r is zero, the next instruction to be executed 
follows the third byte of this instruction. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-51 



BIRR,r (*)8 BRANCH ON INCREMENTING REGISTER, RELATIVE 

Addressing: Relative 

Operation Codes: D8 - DB 

Binary Code: 

11111011\1101 ~ I1II :: :a: : : I 
7 6 5 432 1 0 7 654 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) ..... (r) +1, then 
(IAR) ..... EA ; if (r) = 0 

Description: This 2-byte branch instruction causes the processor to increment 
the contents of the specified register by one. If the new value in the 
register is non-zero, the next instruction to be executed is taken from the 
memory location pointed to by the effective address; i.e., the effective 
address replaces the previous contents of the Instruction Address Register. 
If the new value in register r is zero, the next instruction to be executed 
follows the second byte of this instruction. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-52 



BRNA,r (*}a BRANCH ON REGISTER NON-ZERO, ABSOLUTE 

Addressing: Absolute 

Operation Codes: 5C - SF 

Binary Coding: 

1011101111 111 f I II I ~ :hiQ< or~er: I I : ~ I~W: o:rd~< I 
765 4 321 0 7 6 543 2 1 0 7 6 543 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR) ~EA ; if (r) = 0 

DESCRIPTION: This 3-byte branch instruction causes the contents of the 
specified register r to be tested for a non-zero value. If the register 
contains a non-zero value, the next instruction to be executed is taken from 
the location pointed to by the effective address; i.e., the effective address 
replaces the contents of the Instruction Address Register. 

If the specified register contains a zero value, the next instruction is 
fetched from the location following the third byte of this instruction. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-53 



BRNR,r (*)8 BRANCH ON REGISTER NON-ZERO, RELATIVE 

Addressing: Relative 

Operation Codes: 58 - 5B 

Binary Code: 

I 0 11 I 0 11 11 I 0 I r I II I : : :a : : : I 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR)~EA ; if (r) = 0 

Description: This 2-byte branch instruction causes the contents of the 
specified register r to be tested for a non-zero value. If the register 
contains a non-zero value, the next instruction to be executed is taken from 

.the location pointed to by the effective address; i.e., the effective address 
replaces the current contents of the Instruction Address Register. 

If the specified register contains a zero value, the next instruction is 
fetched from the location following the second byte of this instruction. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-54 



BSFA,v (*)8 BRANCH TO SUBROUTINE ON CONDITION FALSE, ABSOLUTE 

Addressing: Absolute 

Operation Codes: BC - BE 

Binary Code: 

765 4 3 2 1 0 7 654 3 2 1 0 7 6 543 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (SP)~(SP) + 1 } 
«SP» ~(IAR) 
(IAR)~EA 

if v = (CC),v = 3 

Description: This 3-byte conditional subroutine branch instruction causes the 
processor to perform a subroutine branch only if the 2-bit v field does not 
match the current Condition Code (CC) in the Program Status Word. If the 
fields do not match, the Stack Pointer is incremented by one and the current 
content of the Instruction Address Register, which points to the location 
following this instruction, is pushed into the Return Address Stack. The 
effective address replaces the previous contents of the IAR. 

If the v field and the CC match, the next instruction LS fetched from the 
location following this instruction and the SP is unaffected. The v field may 
not be coded as 3 since this combination is used for the BSXA operation code. 

Indirect addressing may be specified. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

9-55 



BSFR,v (*)8 BRANCH TO SUBROunNE ON CONOmON FALSE, RELATIVE 

Addressing: Relative 

Operation Codes: B8 - BA 

Binary Code: 

1110111111101 y I Ill: : ;a; : : I 
76543 2 1 0 765 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (SP) -+-(SP) + 1 } 
«SP» -(IAR) 
(IAR)-EA 

if v = (CC), v = 3 

Description: This 2-byte conditional subroutine branch instruction causes the 
processor to perform a subroutine branch only if the 2-bit v field does not 
match the current Condition Code field (CC) in the Program Status Word. If 
the fields do not match, the Stack Pointer is incremented by one and the 
current content of the Instruction Address Register, which points to the 
location following this instruction, is pushed into the Return Address Stack. 
The effective address replaces the previous contents of the IAR. 

If the v field and the CC match, the next instruction is fetched from the 
location following this instruction and the SP is unaffected. The v field may 
not be coded as 3 because this combination is used for the ZBSR operation code. 

Indirect addressing may be specified. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

• 

9-56 

- -- ----- ----- -- ---- ----~- - .--.--~---------~- --------~- --- - --------



BSNA,r (*)8 BRANCH TO SUBROUTINE ON NON-ZERO REGISTER, ABSOLUTE 

Addressing: Absolute 

Operation Codes: 7C - 7F 

Binary Code: 

765430210 7 6 5 432 1 0 7 654 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (SP) - (SP) + 1 } «( SP» ~(IAR) if (r) = 0 
(IAR)-EA 

Description: This 3-byte subroutine branch instruction causes the contents of 
the specified register r to be tested for a non-zero value. If the register 
contains a non-zero value, the next instruction to be executed is taken from 
the location pointed to by the effective address. Before replacing the 
current contents of the Instruction Address Register (IAR) with the effective 
address, the Stack Pointer (SP) is incremented by one and the address of the 
byte following the instruction is pushed into the Return Address Stack (RAS). 

If the specified register contains a zero value, the next instruction is 
fetched from the location following the third byte of this instruction and the 
SP is unaffected. 

Indirect addressing may be specified. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

9-57 



BSNR,r (*)8 BRANCH TO SUBROUTINE ON NON-ZERO REGISTER, RELATIVE 

Addressing: Relative 

Operation Codes: 78 - 7B 

Binary Code: 

1011111111101 ~ 11II : : :a: : : I 
7 6 5 4 3 2 1 0 7 6 543 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (SP) -(SP) + 1 } 
«SP)) - (IAR) 
(IAR)-EA 

if (r) = 0 

Description: This 2-byte subroutine branch instruction causes the contents of 
the specified register r to be tested for a non-zero value. If the register 
contains a non-zero value, the next instruction to be executed is taken from 
the location pointed to by the effective address. Before replacing the 
contents of the Instruction Register with the effective address, the Stack 
Pointer (SP) is incremented by one and the address of the byte following the 
instruction is pushed into the Return Address Stack (RAS). 

If the specified register contains a zero value, 
fetched from the location following the second byte 
the SP is unaffected. 

Indirect addressing may be specified. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

9-58 

the next 
of this 

instruction is 
instruction and 



BSTA,v (*)8 BRANCH TO SUBROUTINE ON CONDITION TRUE, ABSOLUTE 

Addressing: Absolute 

Operation Codes: 3C - 3F 

Binary Code: 

765 432 1 0 7 6 5 4 3 2 1 0 7654321 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (SP) .... (SP) + 1 } 
«SP» .... (IAR) 

(.IAR) .... EA 
if v = (CC) or 
if v = 3 

Description: This 3-byte conditional subroutine branch instruction causes the 
processor to perform a subroutine branch only if the 2-bit v field matches the 
current Condition Code Field (CC) in the Program Status Word. If the fields 
match, the Stack Pointer is incremented by one and the current contents of the 
Instruction Address Register, which points to the byte following this 
instruction, is pushed into the Return Address Stack. The effective address 
replaces the previous contents of the IAR. 

If the v field and the CC field do not match, 
from the location following the third byte of 
Pointer is unaffected. If v is set to 3, 
unconditionally. 

Indirect addressing may be specified. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

9-59 

the next instruction is fetched 
this instruction and the Stack 
the BSTA instruction branches 



BSTR,v (*)a BRANCH TO SUBROUTINE ON CONDITION TRUE, RELATIVE 

Addressing: Relative 

Operation Codes: 38 - 3B 

Binary Code: 

7 6 5 432 1 0 7 6 5 432 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (sp) .... (SP) + 1 } 
«SP)) '-(IAR) 

(IAR) .... EA 
if v = (CC) or 
if v = 3 

Description: This 2-byte conditional subroutine branch instruction causes the 
processor to perform a subroutine branch only if the 2-bit v field matches the 
current Condition Code field (CC) in the Program Status Word. If the fields 
match, the Stack Pointer is incremented by one and the current contents of the 
Instruction Address Register, which points to the byte following this 
instruction, is pushed into the Return Address Stack. The effective address 
replaces the previous contents of the IAR. 

If the v field and CC field do not match, the next instruction is fetched from 
the location following the second byte of the instruction and the SP is 
unaffected. If v is set to 3, the BSTR instruction branches unconditionally. 

Indirect addressing may be specified. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

9-60 



BSXA (*)a,x BRANCH TO SUBROUTINE, INDEXED, ABSOLUTE, UNCONDITIONAL 

Addressing: Absolute 

Operation Code: BF 

Binary Code: 

765 4 321 0 7 654 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (SP) ~(SP) + 1 
( ( SP» .... (IAR) 

(IAR) .... EA 

Description: This 3-byte instruction causes the processor to perform an 
unconditional subroutine branch. Indexing is required, and register 3 must be 
specified as the index register because the' entire first byte of this 
instruction is decoded by the processor. Auto-incrementing or 
auto-decrementing of the index register cannot be specified. 

Execution of this instruction causes the Stack Pointer (SP) to be incremented 
by one, the address of the byte following this instruction is pushed into the 
Return Address Stack (RAS), and the effective address replaces the contents of 
the Instruction Address Register. 

If indirect addressing is specified, the value in the index register is added 
to the indirect address to calculate the effective address. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

9-61 



BXA (*)a,x BRANCH INDEXED, ABSOLUTE, UNCONDITIONAL 

Addressing: Absolute 

Operation Code: 9F 

Binary Code: 

I' 1010 I' I' I' 1'1' I I, 1 :a: hiph :a~de~ I 1 >: (ow: 9rd~< I 
7 6 5 4 321 0 7 654 3 2 1 0 7 6 5 432 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR) ~ EA 

Description: This 3-byte 
an unconditional branch. 
specified as the index 
instruction is decoded by 

branch instruction causes the 
Indexing is required, and 

register because the entire 
the processor. 

processor to perform 
register 3 must be 
first byte of this 

Auto-incrementing or auto-decrementing of the index register cannot be 
specified. When executed, the content of the Instruction Address Register 
(IAR) is replaced by the effective address. 

If indirect addressing is specified, the value in the index register is added 
to the indirect address to calculate the effective address. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-62 

--- ----.-------~ --_.- - -.-.~----. ---~.-.~~~~~-



COMA,r (*)a(,X) COMPARE,ABSOLUTE 

Addressing: Absolute 

Operation Codes: EC - EF 

Binary Code: 

11 11 1110 11 11 I r I II I If I a:hi~h ~rdir I I >: I~W: order : I 
7 654 321 0 7 6 543 2 1 a 7 654 3 2 1 a 

Execution Time: 4 cycles (12 clock periods) 

Operation: (r): (EA) 

Description: This 3-byte instruction causes the contents of register r to be 
compared to the contents of the memory byte pointed to by the effective 
address. The comparison will be performed in either the arithmetic or logical 
mode depending on the setting of the COM bit in the Program Status Word. 

When COM = 1 (logical mode), the values will be treated as 8-bit, positive 
binary numbers; when COM = 0 (arithmetic mode), the values will be treated as 
8-bit, two's complement numbers. 

Indirect addressing and/or indexing may be specified. If 
specified, bits 1 and 0, byte 0, indicate the index register and 
used in the operation implicitly becomes register zero. 

PSW Bits Affected: CC 

Condition Code Setting: 

indexing is 
the register 

The execution of this instruction causes the Condition Code to be set as shown 
in the following table: 

RESULT 

Register r greater than memory byte 
Register r equal to memory byte 
Register r less than memory byte 

CCl 

o 
o 
1 

9-63 

CCO 

1 
o 
o 



COMI,r v COMPARE, IMMEDIATE 

Addressing: Register 

Operation Codes: E4 - E7 

Binary Code: 

11111 1 10101 1 1 r 1 I: : : y: : : 1 
7 6 543 2 1 0 765 432 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r): v 

Description: This 2-byte instruction causes the 
register r to be compared to the contents of 
instruction. The comparison will be performed in 
logical mode depending on the setting of the COM 
Word. 

When COM = 1 (logical mode), the values will be 
binary numbers; when COM = 0, the values will 
complement numbers. 

PSW Bits Affected: CC 

Condition Code Setting: 

contents of 
the second 

either the 
bit in the 

treated as 
be treated 

the specified 
byte of this 

arithmethic or 
Program Status 

8-bit pos1t1ve 
as 8-bit two's 

The execution of this instruction causes the Condition Code to be set as shown 
in the following table: 

RESULT 

Register r greater than v 
Register r equal to v 
Register r less than v 

CCl 

o 
o 
1 

9-64 

cco 

1 
o 
o 



COMR,r (*)a COMPARE, RELATIVE 

Addressing: Relative 

Operation Codes: E8 - EB 

Binary Code: 

1111111011101 filii: : :a: : : I 
7 654 321 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r): (EA) 

Description: This 2-byte instruction causes the contents of the specified 
register r to be compared to the contents of the memory byte pointed to by the 
effective address. The comparison will be performed in either the arithmetic 
or logical mode depending upon the setting of the COM bit in the Program 
Status Word. 

When COM = 1 (logical mode), the values 
binary numbers; when COM = 0, the values 
complement numbers. 

PSW Bits Affected: CC 

Condition Code Setting: 

will be 
will 

treated as 
be treated as 

8-bit positive 
8-bit, two's 

The execution of this instruction causes the Condition Code to be set as shown 
in the following table: 

RESULT 

Register r greater than memory byte 
Register r equal to memory byte 
Register r less than memory byte 

CCl 

o 
o 
1 

9-65 

cco 

1 
o 
o 



COMZ r COMPARE TO REGISTER ZERO 

Addressing: Register 

Operation Codes: EO - E3 

Binary Code: 

1111111010101 r 1 
7 654 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (RO) (r) 

Description: This I-byte instruction causes the contents of the specified 
register r to be compared to the contents of register zero. The comparison 
will be performed in either arithmetic or logical mode depending on the 
setting of the COM bit in the Program Status Word. 

When COM = I (logical mode), the values will be interpreted as 8-bit two's 
complement numbers. 

PSW Bits Affected: CC 

Condition Code Setting: 

The execution of this instruction causes the Condition Code to be set as shown 
in the following table: 

RESULT 

Register zero greater than register r 
Register zero equal to register r 
Register zero less than register r 

CCI 

o 
o 
1 

9-66 

CCO 

1 
o 
o 



CPSL V CLEAR PROGRAM STATUS LOWER, MASKED 

Addressing: ~ediate 

Operation Code: 75 

Binary Code: 

101 11111101110111 I: : : :v: : : 1 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (PSL) - (PSL) AND NOT v 

Description: This 2-byte instruction causes individual bits in the Lower 
Program Status Byte to be selectively cleared. When this instruction is 
executed, each bit in the v field of the second byte of this instruction is 
tested for the presence of a one and, if a particular bit in the v field 
contains a one, the corresponding bit in the status byte is cleared to zero. 
Any bits in the status byte which are not selected are not modified. 

PSW Bits Affected: CC, IDC, RS, WC, OVF, COM, C 

Condition Code Setting: The CC bits may be cleared by execution of this 
instruction. 

9-67 



CPSU V CLEAR PROGRAM STATUS UPPER, MASKED 

Addressing: Immediate 

Operation Code: 74 

Binary Code: 

101 111111011101011: : : :v: : : 1 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (PSU) ~ (PSU) AND NOT v 

Description: This 2-byte instruction causes individual bits in the Upper 
Program Status Byte to be selectively cleared. When this instruction 1S 

executed, each bit in the v field of the second byte of this instruction is 
tested for the presence of a one and, if a particular bit in the v field 
contains a one, the corresponding bit in the status byte is cleared to zero. 
Any bits in the status byte which are not selected are not modified. 

PSW Bits Affected: F, II, SP 

Condition Code Setting: N/A 

9-68 



DAR, r DECIMAL ADJUST REGISTER 

Addressing: Register 

Operation Codes: 94 - 97 

Binary Code: 

1110101110111 f 1 
7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: See description and table below. 

Description: This I-byte instruction conditionally adds a decimal ten (two's 
complement negative six in a 4-bit binary number system) to either the high 
order 4 bits and/or the low order 4 bits of the specified register r. 

The truth tables below indicate the logical operation performed. The 
operation proceeds based on ~he contents of the Carry (C) and Interdigit Carry 
(IDC) bits in the Program Status Word. The C and IDC bits remain unchanged by 
execution of this instruction. 

This instruction allows BCD sign magnitude arithmetic to be performed on 
packed digits by the following procedures: 

BCD Addition 
1. Add 6616 to augend 
2. Perform addition of addend and augend 
3. Perform DAR instruction 

BCD Subtraction 
1. Perform subtraction (2's complement of subtrahend is added to the 

minuend) 
2. Perform DAR instruction 

Since this operation is on sign-magnitUde numbers, it is 
establish the sign of the result prior to executing in order 
control the definition of the subtrahend and minuend. 

INTERDIGIT ADDED TO 
CARRY CARRY REGISTER r 

0 0 AA16 

0 1 AOl6 
1 1 0016 
1 0 OA16 

9-69 

necessary to 
to properly 



PSW Bits Affected: CC 

Condition Code Setting: The condition code is set to a value reflecting the 
contents of the register as if it were a two's complement binary number. 

REGISTER r 

Positive 
Zero 
Negative 

cel 

o 
o 
1 

CCo. 

1 
o 
o 

9-70 



EORA,r (*)a(,X) EXCLUSIVE-OR ABSOLUTE 

Addressing: Absolute 

Operation Codes: 2C - 2F 

Binary Code: 

7 6 543 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 4 cycles (12 clock periods) 

Operation: (r) .... (r) XOR (EA) 

Description: This 3-byte instruction causes the contents of register r to be 
Exclusive-ORed with the contents of the memory byte pointed to by the 
effective address. The result of the operation replaces the previous contents 
of register r. 

Indirect addressing and/or indexing may be specified. If indexing is 
specified, bits 1 and 0, byte 0, indicate the index register, and the 
destination of the operation implicitly becomes register zero. 

The Exclusive-OR operation treats each bit of the argument bytes as shown in 
the truth table below: 

BIT 
(0-7) 

o 
o 
1 
1 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

BIT 
(0-7) 

0 
1 
1 
0 

CC1 

o 
o 
1 

EXCLUSIVE-
OR RESULT 

cco 

1 
o 
o 

9-71 

0 
1 
0 
1 



EORI,r v EXCLUSIVE-OR IMMEDIATE 

Addressing: . Immediate 

Operation Codes: 24 - 27 

Binary Code: 

10101110101 1 1 r I I: : : y : : : 1 
765 432 1 0 7 654 321 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r) -(r) XOR v 

Description: This two-byte instruction causes the contents of the specified 
register r to be logically Exclusive-ORed with the contents of the second byte 
of this instruction. The result of this operation replaces the previous 
contents of register r. 

The Exclusive OR operation treats each bit of the argument bytes as shown in 
the truth table below: 

BIT 
(0-7) 

o 
o 
1 
1 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

BIT 
(0-7) 

0 
1 
1 
0 

CCl 

o 
o 
1 

EXCLUSIVE 
OR RESULT 

cco 

1 
o 
o 

9-72 

0 
1 
0 
1 



EORR,r (*)8 EXCLUSIVE-OR RELATIVE 

Addressing: Relative 

Operation Codes: 28 - 2B 

Binary Code: 

1010111011101 ~ I I" : : :a: : : I 
7 6 5 4 3 2 1 0 7 654 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r)-(r) XOR (EA) 

Description: This 2-byte instruction causes the contents of the specified 
register r to be logically Exclusive-ORed with the contents of the memory byte 
pointed to by the effective address. The result of the operation replaces the 
previous contents of register r. 

Indirect addressing may be specified. 

The Exclusive-OR operation treats each bit of the argument bytes as shown in 
the truth table below: 

BIT 
<0-7) 

o 
o 
I 
I 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

BIT 
(0-7) 

0 
I 
1 
0 

CCI 

o 
o 
1 

AND 
Result 

0 
1 
0 
I 

cco 

I 
o 
o 

9-73 



EORZ r EXCLUSIVE-OR TO REGISTER ZERO 

Addressing: Register 

Operation Codes: 20 - 23 

Binary Code: 

10101 1 1010101 ~ 1 
7 6 5 4 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (RO) ..... (RO) XOR (r) 

Description: This I-byte instruction causes the contents of the specified 
register r to be logically Exclusive-ORed with the contents of register zero. 
The result of this operation replaces the contents of register zero. The 
contents of register r remain unchanged. 

The Exclusive-OR operation treats each bit of the argument bytes as shown in 
the truth table below: 

BIT 
(0-7) 

o 
o 
I 
I 

PSW Bits Affected: ec 

Condition Code Setting: 

REGISTER ZERO 

positive 
Zero 
Negative 

BIT 
(0-7) 

0 
I 
I 
0 

CCI 

o 
o 
I 

EXCLUSIVE 
OR RESULT 

eeo 

I 
o 
o 

9-74 

0 
I 
0 
I 



HALT HALT, ENTER WAIT STATE 

Operation Code: 40 

Binary Code: 

10111010101010101 
7 6 5 432 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: HALT 

Description: This I-byte instruction causes the processor to stop 
instructions and enter the Wait state. The RUN/WAIT line is set to 
state. 

executing 
the Wait 

The only way to enter the Run state after a HALT has been executed is to reset 
the 2650 or to interrupt the processor. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-75 



IORA,r (*)a(,X) INCLUSIVE-OR ABSOLUTE 

Addressing: Absolute 

Operation Codes: 6C - 6F 

Binary Code: 

7 6 5 432 1 0 7 6 5 4 3 2 1 0 7 6 5 432 1 0 

Execution Time: 4 cycles (12 clock periods) 

Operation: (r) ..... (r) OR (EA) 

Description: This 3-byte instruction uses the contents of register r to be 
logically Inclusive-ORed with the contents of the memory byte pointed to by 
the effective address. The result of the operation replaces the previous 
contents of register r. 

Indirect addressing and/or indexing may be specified. If indexing is 
specified, bits land 0, byte 0, indicate the index register and the 
destination of the operation implicitly becomes register zero. 

The Inclusive-OR operation treats each bit of the argument bytes as in the 
truth table below. 

BIT 
(0-7) 

o 
o 
1 
1 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

positive 
Zero 
Negative 

BIT 
(0-7) 

0 
1 
1 
0 

CCl 

o 
o 
1 

INCLUSIVE 
OR RESULT 

CCO 

1 
o 
o 

9-76 

0 
1 
1 
1 



IORI,r v INCLUSIVE-OR IMMEDIATE 

Addressing: Immediate 

Operation Codes: 24 - 27 

Binary Code: 

\0\1\1\0\0\1\ f \ \ : : : y : : : \ 
7 654 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r) 1- (r) or v 

Description: This 2-byte instruction causes the contents of the specified 
register r to be logically Inclusive-ORed with the contents of the second byte 
of this instruction. The result of this operation replaces the contents of 
register r. 

The Inclusive-OR operation treats each bit of the argument bytes as in the 
truth table below: 

BIT 
(0-7) 

o 
o 
1 
1 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

BIT 
(0-7) 

0 
1 
1 
0 

CCI 

o 
o 
1 

INCLUSIVE 
OR RESULT 

cco 

1 
o 
o 

9-77 

0 
1 
1 
1 



IORR,r (*)8 INCLUSIVE-OR RELATIVE 

Addressing: Relative 

Operation Codes: 68 - 6B 

Binary Code: 

101 1 11 1011101 filii: : :a: : : I 
7 654 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) ~ (r) OR (EA) 

Description: This 2-byte instruction causes the contents of the specified 
register r to be logically Inclusive-ORed with the contents of the memory byte 
pointed to by the effective address. The result of this operation replaces 
the previous contents of register r. 

Indirect addressing may be specified. 

The Inclusive-OR operation treats each bit of the argument bytes as in the 
truth table below: 

BIT 
(0-7) 

o 
o 
1 
1 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

BIT 
(0-7) 

0 
1 
1 
0 

CCl 

o 
o 
1 

INCLUSIVE 
OR RESULT 

cco 

1 
o 
o 

9-78 

0 
1 
1 
1 



IORZ r INCLUSIVE-OR TO REGISTER ZERO 

Addressing: Register 

Operation Codes: 60 - 63 

Binary Code: 

10111 110101 01 r I 
7 6 5 432 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (RO)'" (RO) or (r) 

Description: This I-byte instruction causes 
register, r, to be logically Inclusive-ORed 
zero. The result of this operation replaces 
The contents of register r remain unchanged. 

the 
with 

the 

contents of the specified 
the contents of register 

contents of register zero. 

The Inclusive-OR operation treats each bit of the argument bytes as in the 
truth table below: 

BIT 
(0-7) 

o 
o 
I 
I 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER ZERO 

Positive 
Zero 
Negative 

BIT 
(0-7) 

0 
I 
I 
0 

CCI 

o 
o 
I 

INCLUSIVE 
OR RESULT 

cco 

I 
o 
o 

9-79 

0 
I 
I 
I 



LODA,r (*)a(,X) 

Addressing: Absolute 

Operation Codes: OC - OF 

Binary Code: 

lolololol111lro;rxl 1IIIp I ~h!gh:or~erl I : :a Ip~or~er: : I 
7 654 3 2 1 0 7 6 5 432 1 0 7 6 5 4 321 0 

Execution Time: 4 cycles (12 clock periods) 

Operation: (r) .... (EA) 

Description: This 3-byte instruction transfers a byte of 
into the specified register, r. The data byte is found 
address. The previous contents of register r are lost. 

LOAD ABSOLUTE 

data from memory 
at the effective 

Indirect addressing and/or indexing may be specified. If indexing is 
specified, bits 1 and 0, byte 0, indicate the index register and the 
destination of the operation imp1icilty becomes register zero. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCl 

o 
o 
1 

cco 

1 
o 
o 

9-80 



LODI,r v LOAD IMMEDIATE 

Addressing: Lmmediate 

Operation Codes: 04 - 07 

Binary Code: 

10 10101010111 r I I: : : :v: : : I 
76543210 76543210 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r) ... v 

Description: This 2-byte instruction transfers 
instruction, v, into the specified register, r. The 
are lost. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCI 

o 
o 
1 

cco 

I 
o 
o 

9-81 

the second byte 
previous contents 

of the 
of r 



LODR,r (*)8 LOAD RELATIVE 

Addressing: Relative 

Operation Codes: 08 - OB 

Binary Code: 

\0\0\0\0\1\0\ ~ I 1,1: : :a: : : I 
7 6 543 2 1 0 7 6 5 432 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) ..... (EA) 

Description: This 2-byte instruction transfers a byte of 
into the specified register, r. The data byte is found 
address formed by the addition of the field, considered 
complement number, and the address of the byte following 
The previous contents of register r are lost. Indirect 
specified. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCl 

o 
o 
1 

CCO 

1 
o 
o 

9-82 

data from memory 
at the effective 

as a 7-bit two's 
this instruct:Lon. 

addressing may be 



LODZ r LOAD REGISTER ZERO 

Addressing: Register 

Operation Codes: 00 - 03 

Binary Code: 

1010101010101 r 1 
7 654 321 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (RO) - (r) 

Description: This I-byte instruction transfers the contents of the specified 
register, r, into register zero. The previous contents of register zero are 
lost. The contents of register r remain unchanged. 

When the specified register, r, equals 0, the operation code is 
6016 (IORZ) by the assembler. However, the processor will 
instruction 0016 correctly. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER ZERO 

Positive 
Zero 
Negative 

CC1 

o 
o 
1 

cco 

1 
o 
o 

9-83 

changed 
execute 

to 
the 



LPSL LOAD PROGRAM STATUS, LOWER 

Operation Code: 93 

Binary Code: 

\1\0\0\11 01011111 
7 6 5 4 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (PSL) ~ (RO) 

Description: This I-byte instruction causes the current contents of the Lower 
Program Status Byte to be replaced with the contents of register zero. 

See Program Status Word description for bit assignments. 

PSW Bits Affected: CC, IDC, RS, WC, OVF, COM, C 

Condition Code Setting: The CC will take on the values in bits 7 and 6 of 
register zero. 

9-84 



LPSU LOAD PROGRAM STATUS, UPPER 

Operation Code: 92 

Binary Code: 

111010111010111 01 
7 654 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (PSU) - (RO) 

Description: This I-byte instruction causes the current contents of the Upper 
Program Status Byte to be replaced with the contents of register zero. 

See Program Status Word description for bit assignments. Bits 4 and 3 of the 
PSU are unassigned and will always be regarded as containing zeroes. 

PSW Bits Affected: F, II, SP 

Condition Code Setting: N/A 

9-85 



NOP NO OPERATION 

Operation Code: CO 

Binary Code: 

11111010101010101 
7 6 5 4 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: None 

Description: This 1-byte instruction causes the processor to take no action 
upon decoding it. No registers are changed, but fetching and executing a NOP 
instruction requires two processor cycles. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-86 



PPSL V PRESET PROGRAM STATUS LOWER, MASKED 

Addressing: Immediate 

Operation Code: 77 

Binary Code: 

10111111101111111 I: : : :v: : : I 
7 6 543 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (PSL) ~ (PSL) or v 

Description: This I-byte instruction causes individual bits in the Lower 
Program Status Byte to be selectively set to binary one. When this 
instruction is executed, each bit in the v field of the second byte of this 
instruction is tested for the presence of a one and, if a particular bit in 
the v field contains a one, the corresponding bit in the status byte is set to 
one. Any bits in the status byte which are not selected are not modified. 

PSW Bits Affected: CC, IDC, RS, WC, OVF, COM, C 

Condition Code Setting: The CC bits may be set by the execution of this 
instruction. 

9-87 



PPSU V PRESET PROGRAM STATUS UPPER, MASKED 

Addressing: Immediate 

Operation Code: 76 

Binary Code: 

10111111101111101 I: : :v: : : : I 
765 4 321 0 7 6 5 432 1 0 

Executi.on Time: 3 cycles (9 clock periods) 

Operation: (PSU) ... (PSU) or v 

Description: This 2-byte instruction causes individual bits in the Upper 
Program Status Byte to be selectively set to binary one. When this 
instruction is executed, each bit in the v field of the second byte of this 
instruction is tested for the presence of a one and, if a particular bit in 
the v field contains a one, the corresponding bit in the ststus byte is set to 
one. Any bits in the status byte which are not selected are not modified. 

PSW Bits Affected: F, II, SP 

Condition Code Setting: N/A 

9-88 



REDC,r READ CONTROL 

Addressing: Register 

Operation Codes: 30 - 33 

Binary Code: 

10101 1 11 10101 ~ I 
7 654 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r) ~ (Port C) 

Description: This I-byte input instruction causes a byte of data to 
transferred from the data bus into register r. Signals on the data bus 
considered to be true signals; i.e., a high level will be set into 
register as a one. 

be 
are 
the 

When executing this instruction, the processor raises the Operation Request 
(OPREQ) line, simultaneously swit'ching the M/IO line to IO, the R/W line to R 
(Read), the D/C line to C (Control), and the E/NE line to NE (Non-Extended). 

See Input/Output section of this chapter. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

positive 
Zero 
Negative 

CCl 

o 
o 
1 

cco 

1 
o 
o 

9-89 



REDD,r READ DATA 

Addressing: Register 

Operation Codes: 70 - 73 

Binary Code: 

\011111110101 ~ 1 
7 6 5 4 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r) .. (Port D) 

Description: This I-byte input instruction causes a byte of data to be 
transferred from the data bus into register r. Signals on the data bus are 
considered to be true signals; i.e., a high level will be set into the 
register as a one. 

When executing this instruction, the processor 
(OPREQ) line, simultaneously switching the M/IO 
(Read). Also, during the OPREQ signal, the D/C 
the E/NE switches to NE (Non-Extended). 

See Input/Output section of this chapter. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCl 

o 
o 
I 

cco 

I 
o 
o 

9-90 

raises the Operation Request 
line to 10 and the R/W to R 
line switches to D (Data) and 



REDE,r v READ EXTENDED 

Addressing: Immediate 

Operation Codes: 54 - 57 

Binary Code: 

101 1101 110111 r I I : : : ~ : : : I 
7 6 543 2 1 a 7 6 5 4 3 2 1 a 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) ~ (Port v) 

Description: This 2-byte input instruction causes a byte of data 
transferred from the data bus into register r. During execution of 
instruction, the content of the second byte of this instruction is 
available on the ADRO to ADR7 lines of the address bus. 

to be 
this 
made 

During execution, the processor raises the Operation Request (OPREQ) line, 
simultaneously placing the contents of the second byte of the instruction on 
the address bus. During the OPREQ signal, the M/IO line is switched to 10, 
the R/W line to R (READ), and the E/NE line to E (Extended). 

See Input/Output section of this chapter. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CC1 

o 
o 
1 

CCO 

1 
o 
o 

9-91 



RETe, v RETURN FROM SUBROUTINE, CONDITIONAL 

Operation Codes: 14 -17 

Binary Code: 

10101011101 11 Y 1 
7 6 5 432 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR) -- «SP)) } if v = (CC) or 
(SP) - (SP) - 1 if v = 3 

Description: This I-byte instruction is used by a subroutine to 
effect a return of control to the program which last issued 
branch instruction. 

conditionally 
a subroutine 

If the 2-bit v field in the instruction matches the Condition Code field (CC) 
in the Program Status Word, the following action is taken: The address 
contained in the top of the Return Address Stack replaces the previous 
contents of the Instruction Address Register (IAR), and the Stack Pointer is 
decremented by one. 

If the v field does not match CC, the return is 
instruction to be executed is taken from 
instruction. 

not 
the 

effected, and the 
location following 

If v is specified as 3, the return is executed unconditionally. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

9-92 

next 
this 



RETE,v RETURN FROM SUBROUTINE AND ENABLE INTERRUPT, CONDITIONAL 

Operation Codes: 34 - 37 

Binary Code: 

1010111 1101 11 Y I 
7 654 3 2 1 0 

Execution Time: 3 cycles (9 clock 

Operation: (IAR) ... «SP» } 
(SP) ... (SP) - 1 
(II) "'0 

periods) 

if v = (CC) or 
if v = 3 

Description: This I-byte instruction is used by a subroutine to conditionally 
effect a return of control to the program which last issued a Subroutine 
Branch instruction. Additionally, if the return is effected, the Interrupt 
Inhibit (II) bit in the Program Status Word is cleared to zero, thus enabling 
interrupts. This instruction is mainly intended to be used by an interrupt 
handling routine because receipt of an interrupt causes a Subroutine Branch to 
be effected and the Interrrupt Inhibit bit to be set to 1. The interrupt 
handling routine must be able to return and enable simultaneously so that the 
interrupt routine cannot be interrupted unless specifically desired. 

If the 2-bit v field in the instruction matches the Condition Code field (CC) 
in the Program Status Word, the following action is taken: The address 
contained in the top of the Return Address Stack (RAS) replaces the previous 
contents of the Instruction Address Register (IAR) , the Stack Pointer is 
decremented by one and the II bit is cleared to zero. 

If the v field does not match CC, the return is not effected and the 
instruction to be executed is taken from the location following 
instruction. 

If v is specified as 3, the return is executed unconditionally. 

PSW Bits Affected: SP, II 

Condition Code Setting: N/A 

9-93 

next 
this 



RRL,r ROTATE REGISTER LEFT 

Addressing: Register 

Operation Codes: DO - D3 

Binary Code: 

1111101110101 ~ I 
7 654 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r(7:I) .. (r(6:0» 
(r(O» .. (r(7» 
(r(0» .. (C) } 

(C) .. (r(7» 
(IDC) .. (r(4» 

if (WC) = 0 

if (WC) = 1 

1 6 5 4 J 2 

Description: This I-byte instruction causes the contents of the specified 
register r to be shifted left one bit. If the WC bit in the Program Status 
Word is set to zero, bit 7 of register r flows into bit 0; if (WC) = 1, then 
bit 7 flows into the Carry bit and the Carry bit flows into bit o. 

Register bit 4 flows into the IDC if (WC) = 1. 

PSW Bits Affected: C, CC, IDC, OVF 

NOTE 
If (WC) = 1, and the Rotate causes bit 7 of the specified register to change 
from 0 to 1, the OVF bit is set in the PSL. 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CCI 

o 
o 
1 

CCO 

1 
o 
o 

9-94 



RRR,F ROTATE REGISTER RIGHT 

Addressing: Register 

Operation Codes: 50 - 53 

Binary Code: 

1011101110101 r 1 
7 6 5 4 321 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r(6:0»" (r(7:1» 
(r(7» - (rCO» 
(r(7» - (C) 1 

(c) - (r(7» 
(IDC) - (r(6» 

[j tltiflf ~=t 
76543210 

if (WC) = 0 

if (WC) = 1 

Description: This I-byte instruction causes the contents of the specified 
register r to be shifted right 1 bit. If the WC bit in the Program Status 
Word is set to zero, bit 0 of register r flows into bit 7; if (WC) = 1, then 
bit 0 of the register r flows into the Carry bit and the Carry bit flows into 
bit 7. 

Register bit 6 flows into the IDC if (WC) = 1. 

PSW Bits Affected: C, CC, IDC, OVF 

NOTE 
If (WC) = 1, and the Rotate causes bit 7 of the specified register to change 
from 0 to 1, the OVF bit is set in the PSL. 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

cel 

o 
o 
1 

ceo 

1 
o 
o 

9-95 



SPSL STORE PROGRAM STATUS, LOWER 

Operation Code: 13 

Binary Code: 

10101011101011111 
7 6 5 4 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (RO) ~ (PSL) 

Description: This I-byte instruction causes the contents of the Lower Program 
Status Byte to be transferred into register zero. 

See Program Status Word description for bit assignments. 
I 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER ZERO CC1 cco 

Positive 0 1 
Zero 0 0 
Negative 1 0 

9-96 



SPSU STORE PROGRAM STATUS, UPPER 

Operation Code: 12 

Binary Code: 

\ a \ a \ a \1 \ a \ a \1 \ 0\ 
765 432 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (RO)'" (PSU) 

Description: This I-byte instruction causes the contents of the Upper Program 
Status Byte to be transferred into register zero. 

See Program Status Word description for bit assignments. Bits 4 and 3 of the 
PSU which are unassigned will always be stored as zeroes. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER ZERO 

Positive 
Zero 
Negative 

CCI 

o 
o 
1 

cco 

1 
o 
o 

9-97 



STRA,r (*)a(,X) STORE ABSOLUTE 

Addressing: Absolute 

Operation Codes: CC - CF 

Binary Code: 

7 6 5 432 1 0 7 654 3 2 1 0 7 6 5 432 1 0 

Execution Time: 4 cycles (12 clock periods) 

Operation: (EA) ~ (r) 

Description: This 3-byte instruction transfers a byte of data from the 
specified register, r, into the byte of memory pointed to by the effective 
address. The contents of register r remain unchanged and the contents of the 
memory byte are replaced. 

Indirect addressing and/or indexing may be specified. If indexing is 
specified, bits 1 and 0, byte 0, indicate the index register and the source of 
the operation implicitly becomes register zero. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-98 



STRR,r (*)a STORE RELATIVE 

Addressing: Relative 

Operation Codes: C8 - CB 

Binary Code: 

1111101011101 r 1 III: : :a: : : I 
76543210 76543210 

Execution Time: 3 cycles (9 clock periods) 

Operation: (EA)" (r) 

Description: This 2-byte instruction transfers a byte of data from the 
specified register, r, into the byte of memory pointed to by the effective 
address. The contents of register r remain unchanged and the contents of the 
memory byte are replaced. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-99 



STRZ r STORE REGISTER ZERO 

Addressing: Register 

Operation Codes: C1 - C3 

Binary Code: 

1111 1010101 01 ~ I 
765 4 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r) ... (RO) ; r vi RO 

Description: This I-byte instruction transfers the contents of register zero 
into the specified register r. The previous contents of register r are lost. 
The contents of register zero remain unchanged. 

NOTE 
Register r may not be specified as zero. This operation code, '11000000', is 
reserved for NOP. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CC1 

o 
o 
1 

cco 

1 
o 
o 

9-100 



SUBA,r (*)a(,X)- SUBTRACT ABSOLUTE 

Addressing: Absolute 

Operation Codes: AC - AF 

Binary Code: 

7654321 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Execution Time: 4 cycles (12 clock periods) 

Operation: (r) -. (r) - (EA) 
(r) - (r) - (EA) - (C) 

if (WC) = 0 
if (WC) = 1 

Description: This 3-byte instruction causes the contents of 
memory pointed to by the effective address to be subtracted from 
of register r. The result of the subtraction replaces the 
register r. 

the byte of 
the contents 
contents of 

The subtraction is performed by taking the binary two's complement of the 
contents of the memory byte and adding that result to the contents of register 
r. 

Indirect addressing and/or indexing may be specified. If indexing is 
specified, bits 1 and 0, byte 0, indicate the index register, and the 
destination of the operation implicitly becomes register zero. 

NOTE 
Subtract with Borrow may be performed. See With/Without Carry and Carry in 
description of Program Status Word. 

PSW Bits Affected: C, CC, IDC, OVF 

Condition Code Setting: 

REGISTER r 

Positive 
Zero 
Negative 

CC1 

o 
o 
1 

cco 

1 
o 
o 

9-101 



SUBI,r v SUBTRACT IMMEDIATE 

Addressing: Immediate 

Operation Codes: A4 - A7 

Binary Code: 

1110111110111 r 1 I: : : ~: : : 1 
7 6 5 432 1 0 7 6 543 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (r) ~ (r) - v 
(r) ~ (r) - v - (C) 

if (WC) = 0 
if (WC) = 1 

Description: This 2-byte instruction causes the contents of the second 
of this instruction to be subtracted from the contents of register r. 
result of the subtraction replaces the contents of register r. 

byte 
The 

The subtraction is performed by taking the binary two's complement of the 
contents of the second instruction byte and adding that result to the contents 
of register r. 

NOTE 
Subtraction with Borrow may be performed. See With/Without Carry and Carry in 
description of Program Status Word. 

PSW Bits Affected: C, CC, IDC, OVF 

Condition Code Setting: 

REGISTER r 

positive 
Zero 
Negative 

CCI 

o 
o 
1 

CCO 

1 
o 
o 

9-102 



SUBR,r (*}a SUBTRACT RELATIVE 

Addressing: Relative 

Operation Codes: A8 - AB 

Binary Code: 

11 1011 101 1 101 ~ I III : : :a: : : I 
765 432 1 0 7 6 5 4 321 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (r) - (r) (EA) 
(r) - (r) - (EA) - (C) 

if (WC) = 0 
if (WC) = 1 

Description: This 2-byte instruction causes the contents of 
memory pointed to by the effective address to be subtracted from 
of register r. The result of the subtraction replaces the 
register r. 

the byte of 
the contents 
contents of 

The subtraction is performed by taking the 
contents of the byte of memory and adding 
register r. 

binary two's complement of 
that result to the contents 

the 
of 

Indirect addressing may be specified. 

NOTE 
Subtract with Borrow may be performed. See With/Without Carry and Carry Ln 
description of Program Status Word. 

PSW Bits Affected: C, CC, IDC, OVF 

Condition Code Setting: 

REGISTER r 

positive 
Zero 
Negative 

CC1 

o 
o 
1 

cco 

1 
o 
o 

9-103 



SUBZ r SUBTRACT FROM REGISTER ZERO 

Addressing: Register 

Operation Codes: AO - A3 

Binary Code: 

11101110101 01 f I 
7 6 5 4-3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (RO) .. (RO) - (r) 
(RO) .... (RO) - (r) - (C) 

if (WC) = 0 
if (WC) = 1 

Description: This I-byte instruction causes the contents of 
register r to be subtracted from the contents of register zero. 
the subtraction replaces the contents of register zero. 

the specified 
The result of 

The subtraction is performed by taking the binary 
contents of register r and adding that result to 
zero. The contents of register r remain unchanged. 

two's complement 
the contents of 

of the 
register 

NOTE 
Subtract with Borrow may be performed. See With/Without Carry and Carry in 
description of Program Status Word. 

PSW Bits Affected: C, CC, IDC, OVF 

Condition Code Setting: 

REGISTER ZERO 

Positive 
Zero 
Negative 

CC1 

o 
o 
1 

CCO 

1 
o 
o 

9-104 



TMI,r v TEST UNDER MASK IMMEDIATE 

Addressing: Immediate 

Operation Codes: F4 - F7 

Binary Code: 

111 1111110111 ~ I I::: ~: : : I 
7 6 5 4 3 2 1 0 7 6 543 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (CC) ~ 0 
(CC) ~2 

if (r) OR NOT v = FF16 
otherwise 

Description: This 2-byte instruction tests individual bits in the specified 
register r to determine if they are set to binary one. During execution, each 
bit in the v field of the instruction is tested for one, and if a particular 
bit in the v field contains a one, the corresponding bit in register r is 
tested for a one or zero. The Condition Code is set to reflect the result of 
the operation. 

If a bit in the v field is zero, the corresponding bit in register r is not 
tested. 

PSW Bits Affected: CC 

Condition Code Setting: 

REGISTER r 

All of the selected bits are Is 
Not all of the selected bits are Is 

eCl 

o 
1 

9-105 

CCO 

o 
o 



TPSL V TEST PROGRAM STATUS LOWER, MASKED 

Addressing: Immediate 

Operation Code: B5 

Binary Code: 

1110111 11011101 11 1 : : : ~ : : : 1 

7 6 5 432 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (CC).- 0 
(CC).- 2 

if (PSL) OR NOT v = FF16 
otherwise 

Description: This 2-byte instruction tests individual bits in the Lower 
Program Status Byte to determine if they are set to binary one. When this 
instruction is executed, each bit in the v field of this instruction is tested 
for a one, and if a particular bit in the v field contains a one, the 
corresponding bit in the status byte is tested for a one or zero. The 
Condition Code is set to reflect the result of this operation. 

If a bit in the v field is zero, the corresponding bit in 
tested. • 

PSW Bits Affected: CC 

Condition Code Setting: 

All of the selected bits in PSL are Is 
Not all of the selected bits in PSL are Is 

9-106 

CC1 CCO 

o 
1 

o 
o 

register r is not 



TPSU V TEST PROGRAM STATUS UPPER, MASKED 

Addressing: Immediate 

Operation Code: B4 

Binary Code: 

11101111101110101 I::: ¥ : : : I 
7 6 5 432 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods' 

Operation: (CC) .... 0 
(CC) .... 2 

if (PSU) OR NOT v = FF16 
otherwise 

Description: This 2-byte instruction tests individual bits in the Upper 
Program Status byte to determine if they are set to binary one. When this 
instruction is executed, each bit in the v field of this instruction is tested 
for the presence of a one, and if a particular bit in the v field contains a 
one, the corresponding bit in the status byte is tested for a one or zero. 
The Condition Code is set to reflect the result of this operation. 

If a bit in the v field is zero, the corresponding bit in the status byte is 
not tested. 

PSW Bits Affected: CC 

Condition Code Setting: 

All of the selected bits in PSU are Is 
Not all of the selected bits in PSU are Is 

9-107 

CC1 CCO 

o 
1 

o 
o 



WRTC,r WRITE CONTROL 

Addressing: Register 

Operation Codes: BO - B3 

Binary Code: 

1110111110101 r I 
7 6 5 432 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (Port C) ... (r) 

Description: This I-byte output instruction causes a byte of data to be made 
available to an external device. The byte to be output is taken from register 
r and made availablaon the data bus. 

When executing this instruction, the processor raises the Operation Request 
(OPREQ) line and simultaneously places the data on the Data Bus. Along with 
the OPREQ signal, the M/IO line is switched to 10, the R/W signal is switched 
to W (Write), the D/C line is switched to C (Control), the E/NE is switched to 
NE (Non-Extended), and a Write Pulse (WRP) is generated. 

See the Input/Output section of this chapter. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9 .... 108 



WRTD,r WRITE DATA 

Addressing: Register 

Operation Codes: FO - F3 

Binary Code: 

\1\1\1\1\0\0\ r I 
7 6 5 4 3 2 1 0 

Execution Time: 2 cycles (6 clock periods) 

Operation: (Port D) - (r) 

Description: This 1-byte output instruction causes a byte of data to 
available to an external device. The byte to be output is taken from 
r and made available on the data bus. 

be made 
register 

When executing. this instruction, the processor raises the Operation Request 
(OPREQ) line and simultaneously places the data on the data bus. Along with 
the OPREQ, the M/IO line is switched to 10, the R/W signal is switched to W 
(Write), and a Write Pulse (WRP) is generated. Also, during the OPREQ signal, 
the D/C line is switched to D (Data) and the E/NE line is switched to NE 
(Non-Extended). 

See Input/Output section of this chapter. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-109 



WRTE,r v WRITE EXTENDED 

Addressing: Immediate 

Operation Codes: D4 - D7 

Binary Code: 

1111101110111 r 1 I: : : ~: : : 1 
7 6 5 4 3 2 1 0 7 654 321 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (Port v) .... (r) 

Description: This 2-byte output instruction causes a byte of data to be made 
available to an external device. The byte to be output is taken from register 
r and is made available on the data bus. Simultaneously, the data in the 
second byte of this instruction is made available on the ADRO to ADR7 lines of 
the address bus. The second byte, v, may be interpreted as a device address. 

When executing this instruction, the processor raises the Operation Request 
(OPREQ) line and simultanously places the data from register r on the data bus 
and the data from the second byte of this instruction on the address bus. 
Along with OPREQ, the M/IO line is switched to 10, the R/W line is switched to 
W (Write), the E/NE line is switched to E (Extended), and a Write Pulse (WRP) 
is generated. 

See the Input/Output section of this chapter. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-110 



ZBRR (*)a ZERO BRANCH RELATIVE 

Addressing: Relative 

Operation Code: 9B 

Binary Code: 

\1\0\0\1\1\0\1\1\ 11\ : : :a: : : I 
7 6 5 432 1 0 7 6 5 4 3 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (IAR) "'EA 

Description: This 2-byte unconditional relative 
the processor to calculate the effective address 
calculation for the Relative Addressing mode. 

branch instruction directs 
differently than the usual 

The specified value, a, is interpreted as a relative displacement from page 
zero, byte zero. Therefore, displacement may be specified from -64 to +63 
bytes. The address calculation is modulo 819210, so the negative 
displacement actually will develop addresses at the end of page zero. For 
example, ZBRR -8, will develop an effective address of 818410, and a ZBRR 
+52 will develop an effective address of 5210'. 

This instruction causes the processor to clear address bits 13 and 14, the 
page address bits, and to replace the contents of the Instruction Address 
Register with the effective address of the instruction. This instruction may 
be executed anywhere within addressable memory. 

Indirect addressing may be specified. 

PSW Bits Affected: None 

Condition Code Setting: N/A 

9-111 



ZBSR (*)8 ZERO BRANCH TO SUBROUTINE, RELAnVE 

Addressing: Relative 

Operation Code: BB 

Binary Code: 

111011111110111111,1: : :a: : : 1 
7 6 543 2 1 0 7 6 543 2 1 0 

Execution Time: 3 cycles (9 clock periods) 

Operation: (Sp) .. (SP) + 1 
« SP» ... (IAR) 

(IAR)"'EA 

Description: This 2-byte unconditional subroutine branch instruction directs 
the processor to calculate the effective address differently than the usual 
calculation for the relative addressing mode. 

The specified value, a, is interpreted as a relative displacement from page 
zero, byte zero. Therefore, displacement may be specified from -64 to +63 
bytes. The address calculation is modulo 819210, so the negative 
displacement will develop addresses at the end of page zero. For example, 
ZBSR -10, will develop an effective address of 818210, and ZBSR 31 will 
develop an effective address of 3110. 

This instruction may be executed anywhere within addressable memory. 
addressing may be specified. 

Indirect 

When executed, this instruction causes the Stack Pointer to be incremented by 
one, the address of the byte following this instruction is pushed into the 
Return Address Stack (RAS) , and control is transferred to the effective 
address. 

PSW Bits Affected: SP 

Condition Code Setting: N/A 

9-112 



10. INSTRUCTOR 50 SYSTEM SCHEMATICS 

10-1 





B 

A 

4 
DASH NO NIEXT .... SSy 

Y I 3 • .58 MIIZ. 

I 
I 

3 

USER MEMORY 

2 1 
REVISIONS 

DESCRIPTION 

PEl< ECO "001 3-8· 

I I 
, I I I 
I CP U BUFFER I CP U I CPU BUI=FER I 

r--_____ +--_'-43 ~~'·9 ~" I .-_______________________ +-I ____________________ -4: __ ~ __________ ~I------------~!--~R~A~M~O~C~E-- 281 
00-07 2AI 

I 
r-=::- ~ ADO 18 "1 ~ 1----1---k-~=------'\.=..t9 ro r-eo- I , AD 1 I. 
~ I" A02 20 It. 
~ I 'A03 2.1 13 
~ I,AD" ZZ I4 
~ I 'ADS 23 15 r-ez !, AD~ Z4 It. 
r--a3 i"- AD7 Z5 h 
f-64' , ADa 2' 
~ ," AD9 Z7 i: rtr 'ACIO Z8 I •o 
~'ADI Z9 III 
~ 'ADl2 3C 
~ 'ADI.'! E.lm:; 31 !It 

85 32 I.~ 
~, ADl'" o/r I ... 
'--=='- I , M/~ IS I.t. 

:--.. WRP 17 I "''-:::!""R~/~W'-----:-14.:-1 r 11 

I 

I 
It 

X!"!2D8 .3 8 !) 0 / I 
o 13.9 DI"/ 

:~ 40 02/ +~ " 

OB3 I 0:3/ RI"~['" 9 I 
DB 4 2. 04/ 4.7 LS 10 

3 05/ K I 
OBs 4 0"/ 3lf 
OB6. 5" 07 ............ 
061 I 

l'.<l34 RAMoe£: 
X, 35 RAMI tE 

I 

" ADO 
'AOI 
"ADZ 
'1'003 
"AD'! 
" 1'005 
"AoeD 

" "'07 

I I I 
W/R Ir~~~~:::::::::::::::::j:::::::::::::::::=!II::::::::::::::::tl:::p~~~: 2A~ I ZBI 

2.1\Z.-~ 2.112-Z _ I I 
4 AI> rD. 9 DO/ "ADO 4 Ao rot 9 DO / ~.<} r---------AD-R-O~II.;::43-:-11 _1:..:5~74LSZ",~ !-'S=-.-:--L,l-/----f:.A"-!:Dw.::...0l 
;3 A. TO. 10 01/ "1>.01 3 A. tOz 10 0 I / I h I ~-i-__ 4-'+--i It<. I / AD I 
2. Aa I03 I I DZ/ " ADZ 2. At rD3 II 02 j ~'\,;O:::..:O==------..!tD=+-. B .3 DBllS (I Z 1-'1:.::;2.-:-1 _!.!174• ~ 3 I / ADZ 
I 1'.3 IO~ 12. D3/ 'AD3 " A3 tll", 12 mj I ~ ..... D"'_I'--__'S:<.j&1 T 9:3Z I 3 II I IE> 14 I /A03 

1.5 AA '" ' AD4 A ~D2 4 f-l ~ Z 4 10 B . 14 12. I / AD~ J 2A3 
.5 As c.... "ADS 5 4 :3 r--., 03.3 prIM 3 5 9 I 13 7 I / An.,-
'" A~ R/W~ "AD" ,,~ RIW ~ I 4 eD 8 I II ~~9~=~=...I.}/;--::::....r.:AU,jD'".oJIllI-'-
7 A, C.E P113:I"-+--i~ 'AD7"1 1'.7 C.E pJ3 T /\ "1 7 ~ 2 1-1;...:8;;.....;'--""'-/+-__ A ...... D.-'-'7 

I ,,"R/w I ~ 8 I 
.--;-----ir--------+~--+~I~ ~~~~--+~7~~LS~Z~"I~3 : '~9 

2r..Sfi, 
SMI 

2.112-2. 2.112-Z ~ 

"1'.01 3",. rot 10 osj "ADI 3 A. tOz 10 05/ ~'-D=-"-=-~ID~. h B 2.9 4 B 5 I 15 5 / AD9 

",o,D3 I A~ ~ 12. 07/ '1'.03 I A3 ro4~I-+-,JJU-/ '" OeD ~'II 3 I 17 :3 / ADII 2A2. 

"1100 4 AI> 1Q,.3 0.0\/ "ADO 4 Ao to. ~.9:t--tr-D~'''~/ I ID' tD 74LS 2"14 rl....:4'--_ .... /-+-__ """'-AD' .... S} 
I "",02. 2",2 I031\ D'~ 'ADZ. Z. At. l031-'-1=t' -+-'~::-:.7"7j I '" 05 45 ~W' 1910 2287 5 I~ ~ I 414"4 I~ / AOID. 

10 [loc.I< I ".0.1)1\ 1.5 A~ S ,,~'" 15 A " 07 3 1\ U. DBUS 7 ADRIZ 2. I 2. 9 18 / ADIZ 

1\2 !~ ~ ,~ :g: ~ ~ RNI ~ _ ~ :: ! ~i ;/W ~ I .......... .:.-----'''-1 7/\ ~ ~~~! E~ri ,,~: :~. ~ j ~~~ ~/~ 
~~ 1-':.9:--~U!J=IR~M","E:.:;M I 'A07 7.0.> ap-13 '.0.07 7 A, CEP-l3 I "---!R~/~'N..!-_-I-:,:.,..-=-=·~"="', M/!O 201 8 12 / Min:! 14 2BI 

UOPERG 
";4 

ZB2. 
.3A3 

~! ~ ~ ___ _ ___ 7_"11_52_"_3_ _ :TPI 1~'.9 

- - - - - - - - - --- -- -- -- -- -- - - - - -- - .-__ .:...IJ,;,Itl:t\ADRf"l 2'1 I e. 74LS244 18 / OPERa 
- ~ I OPREQ U I 13 1-'7=-""'-~/*---"'-':VlJV~R! p~~ J@1"1'5l'.7 ~~ I I I ~ DBUSfN I I -

-"M~E~M=IN~H~ ___ ID~.I~e ~---~--------~-------------------------.-,O-K--~:~~~7~~/~6:IT~ n~: ~:~~ 
~~9 ~~~ ~--------i-----------------------------~I&~~~ ~231 11~9L / ~/w~~:~ 

2. A I - .f5V O--"IY\~-----i-""-..I.Ll'PA[)SE "LM 3" 17 3 I ~ SENSE T R I I INTACt:' ... I INTA(K ~ 1>.4, Z.A2. 
3A2 I SENSE ~a, 14 I w' CRI 
3Af ~1~T~R~------------------~---~~~+_~------~--------4_-------------_______________________ ~~--~I ~171NrR I ~ 12 I ~ lCR~ ~5 
2B~ l'mf 12-fSO\..\I r 4.-- I I r 

IJ~~ r--) 35 ID lEo I ~ 3A2. RESEr 13LSl29 ~ r:-+-I-+;--Hr-----_+--------~---------------------------+_-..L~...!!4R:T _____ 1 __ ~~9 __ I :RTH. 

~----_+--------------_r------------------------------------------+_---------------------------------------~~~~- ZA~,2BI 

IS" 
RES~T 

J?13 
33Q.A 

L----------r----------------i----------------------------------------------------~----------------_____________________ ~~I~~RP~'R~ 2A'I.2BI DSRMtM 
~-----------+-----------------+---------------------------------------------------~----------------------------------------~t~t~o~- ZA4,2BI 

2 A4 23 I 
DID 2A4 2S1 

VAUSE" II 
MZlKI 12 UM E M 

2.131. 3A4 ~=-------------~~~-5::2:::-- II J~~--------~----r::::ir---:::::::::::::::::::=:::::::::::::::::::::::::::::::::::::-':;:::::::::::::::::::::::~EN~:C7AjiiS~I~N~~- 2 A 3 
M/ro 131LSOB f-U---- I mCASIN 3A4 

IBI ------------------------________ ~~~~ I 3A~ 

3 

72. 

"'ROY 

PROY 

ZA3 CMD 

@ CAS PHOt\JE 

JI 

RI5 RI't 
< 'I.7K 4,71< 

~~--~.....---o).. -+sv 
T 

13 
2. 7400 

15 I r---.h-2--; U 1 ~ 2:~ - '~~"f.5V R4 ,~"K : 
I ~ 01 (> QI ~ 38 ~3 .... --------" ..... 10 ..... o"'I(.,.--..... I ..... ---l+-------....,!.:;;C~A=f,-A:...:;L):;:;,,~ 

~ OZ GZ 7 I LSO.3 l RCD I 110 
-' ~ 03 03J-!I~O+_----I I 

CMO 'c" I IK .~ 
~ ~ -

74LSI7S 
IB 

17 
a CAS MIC. © 

J2. 

~ 
R"1 

2.21( 
R8 

~v oCr 
I 

~------------------------------------------------------~_" __ ---------------------=C~AS~I~~--3A4 

I' "I.1K 
CI 
)~ __ ~ ________ 4-~Z4 

.IUF 

RS 
IK 

LIST OF MATERIALS 

ITEM 

NO 

RIO 
2.21( 

CASSETTE 
ORAWN ALTMAN 
OESIGNER 

_\ -77 TITLE Sjgnl!tics 

4 

RII 
2,'2K 

3 

-= 
RI2. 

4"1K 

2 

~:;;-;:-------lLOGIC DIP-.GRAM 
APPROVED IN. STRU CTO R 

FACILITIES JOB NO 

1 

CO" PORATtON 

.... 0 ... 11: 401 , ••. noo 

." (AS"AAQuES ""'E 
." .... ~"4~1. e ... ~ ~Oft .. , ... 

10-2 

B 

A 





B 

A 

4 
DASH NO 

1 1 

3BI KR'O-KR'3 

USE.R PAR~LLEL 

I 

r/o 
I 
I 

31 I 
74 LS273 

~ 01 2 Z1l. CR'3 ;.cRIO I 
~B~ ~02 ~il! ~ 

:3 a 03 ~,,31~~<--':;:2n-.... --... I 
~~ 05 1227 
~~ ~15~~~ ____ ~ I 
~ 07 QID I" 2!l:: ,C.~\2. 

3B"I, IA"'t 

~ DB ~17ai-=I.:::.9-=3Il:::o-___ ~-.... -.LI~"45:..;7 I 
_P:..,:Q::.;.R:....-. _____ ..-:11 EiJf CKn' ::!:-

3 

,Jil ,Ji/o 
LAORO , roOid Otb 

I'.. ~ ~R8 ~Ild 'l'd~ 
"-----i'----I:"'u~oo,o=-~led II 741L5Z53 

!p 1.'!.~,)3 

~l3a. 
~--T~~~rob 

V lAOR91 Ib Yb~ 
V l(ffi' 12 ab 

UOATI ~ b 
V ;05 

14 Z 

r~ 
I I 4 I >,1D1_1-:-::::--:;:::t:14~~2 r-__ -t''15'-jJIL503 , 

LAIJR2 " Io" , 
V/""_--t'L:;::AO~R",ID'-7III: '1'4.12--££/ 

2 

It-JPUT MU~ 

v 
V 
V 

,Ii I AIS" 
IADR4 '"OEIL OEb 

an",,? Io.. I-I n4 ./ 
I d '1'4. I-'--""-'-' 

UDAT 4 ,......, i~: lID 74 LSZ53 
AAOR5 Ib lob 

lADRI'3 1\ lIb 'l'b ~ 
.,J? l~b 

UDAT5 13 I!ob 
V " 5. 

14 2. 

14 Z 
LAO? , 'o~- I 

LAORI4 16. 'l'a ~ 

1 

ZONE ISSUE 

I I 
20 

,§§!Q..3 
11'11 i510 ?I ['4 

11'11 no 22. II3 
I B I IOOiii1U 2.3 lIt F,l!ll. MWRT ID 8 

RAIIIO(E 74 L 
I B I 'Ii19VI1l\lR 9C" F" 11 POBI t.J 7 B 
ZAI....-.cTr ?" 1,0 
11'14 MUN Z 19 Fa It PWR 77 

IAI ~ 77 Ie. 13 5MBIIR 
11'11 05RRlRT 17 F4 47 
11'11 ~ 2 L. F~ 15 SIIIIP "lID 

I ~I AD13EJN1! 3 I. 1'_ ~OUT-@] '" = ~ F.· '" 4r' I 81 1'1014 01" 4 I.. & .=> 

1 

00 
/01 
VOl. 
V03 
V04 
Vos 
VOl> 
V07 

V 

DATE ",""OVAl. 

I I 
22 

74LS2'14 

t~~i~:~!H 
8 12. DI214~ 

-"- R 14 39 
15 '."l~~ 
4H-b~~ 

.--+----'±--~ 

j0..,IO"'---,-:IB'tr-::;:::;---<. 2. 010'9'5 
/01 3 l\J 17 DII ~ 
V02. 9 ~ ~ III Ol2~ 
Vm 7 13 41: 

IBI WRP 513 F, 17 

IE MilO Go r 0..:.::..-------+--' R w 7 2. FOIlS 
11'1\ I, 
I B4lJlPREG. 8 10 VD4 12. B OI4~ 

t504 T . 1 - I 
~P-=O~R~ ___ ~~I 40D~aJ.ll-----~::::::::::::::::::::::~~~-~-LJ_, 

~~5V 1 

II" KRl 'I 
U£A.!£ I td IZ. 
I~ u.. 74lSZ53 3A4 

V 
1/ 

UlJ\TG. 7124. 
:r=::=-~'Il.s4. 1"1 

IAADR7 I Db 74 LS 253 

'--- VD£ 14 (., 0 92 
VPE>- ..1&01 /\ /~ 4 Ol~~ 
V""D"-"7 __ ..... 5'-t1~,-. ~! 15 DI7~ 

-~SIl4 
~R.".[J~'W:.=-__ -+3=-!L"'O 4 ZBI IAI 

IBI 

................... '"* ... R/7 -R2,4 

10K I 

I 
~ 
I 

---u r/o DECODE I 
r-----------------------~~--~ 

~W~/~R~~~ __ ~---'2.~)~7 
2BI IAI USRMI:M .3 LSD 

5 
I '" 7 lC", ..... 4'---.+--, 

2131 111.1 -=U:.;:5:.:.;R:.;..F'O=RT"---i-__ +-cH-=':.j·JLS02 3 5 

ll3l IAI OTO 

t.BI IAI CiO 

12. 
'17 13 L--~ ____ ~C;cf R (,7: 

~ ____ +--I---!I!-/I L~O ~: 51 1.5K 

~'D-'I.:::O~~--+---.,1-'9~G:)r" =-~ ____ +---! aa~ hL ';:5~02;> ) -
Il 

~J 45 ",-!-I -+_---..J 
3 LS02 fV 

41 
10 lS3 

5_ 

S 

r ,J.~~.,) 4 

~ 8 
3 45 
~ 3.9 '"' 9 LSOZ 

~~~~_44~~S~IL~S~I~I)~~------~ 
lS04

~,d'~1 4.9 12

10

RIDS
15K

213 I. 111.1

rV lS I 0 p:.:=--, ----'1 LSIl4

PORTF" ~ 1 LSD4
-=-="'-'-:":":.!.---1i-=-1~ 74L5139 G I " II o4Cll;l~[).I~O:;;C;M:;D;;..

~IA 1'1' " IA4

48 IYI 5 5EC; REG 3A4 I
3 IY2~ 12 OIG/KBO COL 384

r--IB IV ~1 CVC01T I

'-- 1

1

4 I 3

/""---t'~~~I .. b
V LADRII II lIb
V ~ 11hb 'l'b~

IU~r..b

V .Ji1b
~-+_-Ib=~J~ IIZZ, I~b Vb ~

UOAT7 I I b

V H9 2 I '----=-

V o~ OE.b

:;(1 tl.5
V ilk DEb

1'1 91s"

2 3.9
1.------------,'='i13ILS II

Ie. BI<PT ~ JUMP LOGI C

I f':'::.. 2.

V"" 04 •~3; I,01l
r--~ J QP.I°=---jl--_____ +-H ___ -+--, ~

I 9 I/Z~~?9 ~ 45 ~13::......------_4...:M~E!!.M~IN=H:... IA4.2.81
13;',,4 LSD 7'1LS2.44
f< K 82.5123 =- 'z 2 9 1+18~ __ 4 / __ ...:D:!o7.!.-

'fr5' f 7 10 S I4 lID / Of..
I 15" ~ :P CEP CET 4-- 84 B3.3 I I ID u">--+lrl::.4~-=--=--=--:..~/~~::::::::~~D.~,5:-
~ --1:1..:::. 1\..02 50 aD 12 12 .3382"er--' r ~ 'Ie 7 04

~
2. J L51D3 t'--"0i4(3e. QCj-::13=+-~-~I=-lI' A~ 8, -'- T " 1-:9?---4--~O=-3>IBI. 364

~5V 4 3'1 '\. 1m -;" B CIa 14 AI - ~ / -(r c ~A QA 10"", B I - 13 1-7~ __ 4 __ ~D~Z,-
if" K QI-7=--__ I-+ ____ --::::tdl'E MR :r1 ~ A"I ~~ 8 5 1-;5:-__ 4 / __ ~O:.!,I:-
4.71< -;-n- ft~ As B5 17 37 DO = IT .411(LSI" I 13 I" ~ 1 1 ~--.....L+_--~LJ

+5'V¢'" I 50 8 IT TI9

L. ~
AI;' [SOD

+5V ~ ~ 52 " ::J'---<r D o.rL5 ~ D 2. L50B J a. 74LSZ44
r<l7 '12. '12. 4 C. 51 l~I09 r---__ ---!e.=-i 30 '-'1:=;8_-:0=-7-:-4/ ___ ---jf'""""7"'i'"

~.71<' .3 LS7'1 ~ L"'71~ 13 K li II 4 >--t-:"I.:;:I<>,--"'J O)"'IE!../..y. ___ -I~
I ~ 'f3 Tt "II ;[U~1~4'---l.:D n~i:~~4_------__l: ~~

1"Z.L5~;' m:~ ~ g ~~ : ~~
o(r::r:~~~~/ ~~~)~~~ ~ 15 -S- 017 ~
I): j~ ~ I): I): 0:: I): IX "" II< II:: 00: 0 is II:: " 17 3 00/ I SS
o (:) ~ !i !:i ~ ~ ~ !i ~ ~ ~ <t. 4: ~ F?57 ~~_-I---Jr t.......==-

:5 ~I- ..J ..J -'--..... --1----- -'1- ~ ..J -' 52..J 4./K \ 1 119
2 ~ " , IZ I "I'" 1\ 1215 , 9 III It 117 1508
_NM~~~~~~ ~ Nmv~~r ~ ddCdddC~~ d~ddddda 4 5 ~

10 74LS273 74LS273 15 A R5~ -t5V LS04

74L5244

i5 :::: ~ ~ l3 ~ I' ~ :j ~ 01:1 !:l ~ l3 ~ 8l§ .J,SV 'r' 101(S3 3 I
.-+-'1-+-+-__ --:;;.3+-4 .. 7 8,1:! 14 17181,(1,(347 81L: 1411118\ I DlRCfT

1~:ZI~I~ 0 INT ~mY~~I--~~---~I----------~~------------h"mE.M t'f51 a ~ REa ,. ... HT NUM8ER LIST OF MATERIALS OESCRIPTION NO

CJlmg=I~!!:!!: .-
00 9 gl~ 00 «« 4:<[<[

~

RZS

glol~I~I~I~I~I~ IK
a: ([4: «14 4: <C 4: -0-
\ V I +5V

I!l

111.1 I~TACJ(
3A4

2

DRAWN ALTMAN.

I-:-::-~:-::-----~ LOGIC DI~GRAM
INSTRUCTOR

ro. , fiANCES
UNLESS Of " 1 "WISE SPECIFIED

9!!1nl!tiC9
CORPORATION

~"Il 40. 7 •• -"'00

III EASTARQU[S ""'E.

MAT.ERIAL DWG NO REV

hi"~N"HO=--------12 7 2 0 Z/O - e B
FRAC' I I(XX!: 005

ISHT z.. OF A ACtliTIES JOB NO
XXtOl ICI(XX t~

1 210-302()..102-230

10-3

B

A

B

A

4

DSI
DIG

12345"7
3 2 15 " 78~

I .. I~ 1413 12 \I 10

zra
UUJ2.003

ZA
74L527 '3

I 2. 3 4 , 7
DO :3 G.I 2 DIG I St:L

/ 01
'" Q2 5 DIG 2 Oln

/ 02 7
Cl3 CD DIG 3S£L

2AI 03 V 8 ~ DIG 4 SEL Q4
V 0'1 13 12 DIG 5 SEL 05

3AZ
3AZ

2A3

V OS" 14 15 lHo
ot<. V 17 1(;,

V
G7

07 IB I~

V
CIa

2B4 PDR I

V
CLl?

2A3 OIG/KBD COL /I C.K

28
74LS273

~ QI2
~ Q2 15
~ Q3"
~ Cl4.9
~ QS I2
/~ 0,,15 1- ~ Q71~

Pm 9~ ~ OB 19
MOMKY ICil 39 \$1' I CLR

.~ ll~ ~ CI<

5EG REG S" 43 "
04 USEhlSE.

DIG tt. S[L

DIG 75EL

DIG.8 sa

SlOG A

SEtS B
SEt; C
SEG D
SEG E
SEt; I="
SEC; G

D. P.

+ 5V ~'VVV'-. R"I,3
IK

3BI

1,1:>.1
1.0.1
1,1:>.1
IA4

3AI
284
IA I

.,,5 V

381

+5V

3BI

+5V

381

MOI\.l

RIC
P
I

Rt.3 IK
37

~~~---v~~-.------~----~3~ 4 
C"I 

1?41D 
.lID UF 

IK 

R47 
IK 

CID 
1. 10Uf' 

4 

.9 

3 2 1 
REVISiONS 

ZONE ISSUE 

TILB04 
SEG 

8 ABCDEFGDP 
10 12 13 I I! 19 IE 1716 'KRO-KR3 

///// "" "- '\ '\ '\ '\ 
.... ~ ...J...J -'-J ...J 

...J 
...J ...J ...J LJ -J UJW UJ UJ UJUJ UJ 111 t.u W '" w 1IlU1 lnVl lI1Vl R30- R37 lJl V1 111 lJl VI 

-'" 01< In''l :> [\J 
100 J>. - fTl < '" -.9 

I~ e ss ........ .... .... <) -' -' o() .... 
U u < < <J Q 

8 S () 

"'5V l.J U U V 

I" I! 1413 12 II 10 IB 17 !I(;, 1<; 14 " Il /I -< }- R38 

H+BV 411< 3,:l 2,10 5,7 " 1\ / KRO 5 2 
0 3 25 27 -v 

UUJ 2003 2~.81 ~ ~ k k ~PT ~S n t. ~ SfNS R3.9 
5" 7 2 3 45 ID 7 B 411< 8 / KRI \I 8 0 OlD I 2 3 4 I 

~ ~ h: k ~ ~S ~T 12 R4D 9 

·31'.4 

"11K 4 / KR2 17 14 015 

~ ~( k' ~ ~ ~P ~N R41 18 

'11K 19 " 1 / KR3 20 
0 21 

~ ~ k l--;: 24KT ~N ~T 
tt"l-T Z3 

54 S5 -= -

3A4 

19 +8Y 
0 

fl(~ ,. l,.SV 
T 

~ + ~78~b51 OUT .I.+5V 

R"IB R4.9 +1 C.9 CIO- 2.11 ,-

~ C7, lCOM 4.7K II( T4:70F, .IUI' f.lUF 
RIo9 "1."11( J3-1 ~8!lOOF 

-15'1 16.Y 32 
-b ~ ~ 53 

~ -£'J 5Q~~IO.9 R50 R51 - 7 RTC ,XT.:>.r_------------ 3A4 

50 

IB4 OOPREQ Z.ZK 2.2K 

eEl "'52 IIUF 1<53 10K 

-= 3.3K 3.:'K 
SENSE lPl4 --

'3 I"-lTR 
1,0,4 

7 

cO -'tSV 

5 
1<'58 

220'" 

VI!ZI 

RESET 31'..q,11'..q 

LS04 
12 lIAOt..lKY 3,0,4 • 2':,0,3 

3 2 

Q", 

R'Q 

Ie 
21D50 
2"sra 
21 12.-2 

74LS 2.43 
7"llS2.44 

74LSOB 
74L500 
7"'1 LS03 

7415175 
LM'393 

74LS 273 
74LS253 

74LS04 
74lS0Z 
74 LS32 
74LS II 

vce GI\\C 
39 21 
3'3 13 
lID g 
14 7 
'W 10 
14 7 
14 7 
14 7 
lID 8 
a "'I 

20 10 
lCD B 
14 7 
14 7 
14 7 
14 7 

DESCRIPTION 

LIST OF MATERIAt.S 

DRAWN AlTM,..N '-27.77 "TeE 

.",O'"""G",,,N':-' -----I LOGIC DIAGRAM 
APPROVED I~STRUCTOR 

t----,O;;:O""' •• "'NC"''';-----I 

Ie. vce GND 
74LSI0 14 7 

74LSI39 lID a 
74LSIO.9 lID a 
74LSIIDI lID a 
825123 I/D a 
74LSl4 14 7 

ULNeOD'3 a 
74 LOl2 7 14 7 
74LS51 14 7 
6Z5103 lB 14 
74 L574 1"1 7 

S!!)DotiCS 
CO"PO .. ATION 

_0 .... 0 • .,. •• -7700 

'" EASTAIIQUes AVE 
.......... "' ..... 1, CA ... ,,,OII"'" 

UNLESS (IT''tItWISE SPECIFIED k".,.,.,---------h;;;c.;;;n------,r.e;;--I 
FRAC' \ h4 

"CILITIES JOB NO 

1 210-3020-102-230 

10-4 

B 

cc 
::E 
~ 
z 
!=) 

A 









11. USE MONITOR PROGRAM LISTINGS 

11-1 



TWIN ASSEI'IBLER YER 2. 0 INSTRUCTOR 50' PRGM1i/1l78 PAGE 0091 

LINE AOOR OBJECT E SOURCE 

0902 
0003 
00e4 
00e5 
0906 
8807 eeee 
0808 0001 
0009 0802 
08100003 
8911 
0912 0081 
881l 8800 
00140882 
88150082 
00169090 
00170891 
00180003 
0019 
0028 00C8 
8021 0020 
9022 0018 
0023000S 
0024 0084 
0025 9002 
0026 8801 
0027 
0028 0080 
0029 0040 
0030 0928 
0031 0007 
0932 
80330887 
0934 
eelS 0007 
00360087 
0037 
0038 00FE 
0039 09F9 
0049 OOF9 
0941 90FA 
004200F8 
9043 OOF8 
0044 OOFB 
004590FD 
004699FC 

*PROGRAM WRITTEN BY DAVE WOTRING 

*****************************************'*******"''******************** * EQUATE TABLES 

* REGISTER EQl~TES 
R0 EQU 9 
R1 EQU 1 
R2 EQU 2 
R3 EQU 3 
* CONI) ITION CODES 
P EQU 1 
Z EQIJ 0 
NG EQU 2 
LT EQU 2 
EO EQU 0 
GT EQU 1 
UN EQU 3 
* psw. LOWER EQUATES 
CC EQIJ WC0' 
IDC EQU W20' 
RS EQU H'10' 
we EQIJ wes' 
OYF EQIJ W04.r 
ro1 EQIJ W02' 
C EQIJ H'01' 
* PSW UPPER EQUATES 

REGISTER 0 
REGISTER 1 
REGISTER 2 
REGISTER 3 

POSITIYE RESULT 
ZERO RESULT 
NEGATIYE RESULT 
LESS THAN 
EQUAL TO 
GREATER TIfIN 
UNCOND ITIONAL 

CONI)ITIOtR.. CODES 
INTERDIGIT CARRY 
REGISTER BANK 
1=WITH 9=WITHOUT CARRY 
OVERFLOW 
1=LOOIC 0=ARITHI£TIC COMPARE 
CARRYIBORROW 

SENS EQIJ H'801 SENSE BIT 
FLAG EQIJ W40' FLAG BIT 
II EQU W20' INTERRUPT INHIBIT 
SP EQU H/e7' STACK POINTER 
* 10 PORT DEFINITIONS 
LEOS EQU We7' USER EXTENDED 10 PORT 
* INTERUPT YECTORS 
UINTV EOU We7' USER DIRECT INTERIJPT VECTOR 
UINTVI EQIJ Wa7' USER INDIRECT INTERUPT VECTOR 
'" HARDWARE DEFINITIONS 
KBDIN EQlJ H'FE' ADDRESS OF KBD 10 PORT 
SEG EQU WF9' 10 ADDRESS OF SEGMENT DRIVER 
DISP EQU SEG 
DIGIT EQIJ H'FA' 
CTBYT EQlI H'FS' 
CAS EQU CTBYT 
OPRQCT EQU H'FB' 
LADRH EQU H'FD' 
LADRL EQU H'FC' 

ADDRESS OF DIGIT ENABLE 
AOORESS OF CONTROL BYTE 
ADDRESS OF CASSETTE INTERFACE 
ADDRESS OF OPREQ COUNTER 
ADDRESS OF LAST ADDRESS REG HI BYTE 
ADDRESS OF LAST ADDRESS P..EG LO BYTE 

11-2 



TWIN ASSEI1l.ER YER 2. " INSTRUCTOR 50 PRGJ1111/1178 PAGE 0992 

LIt£ fI)I)R OBJECT E SOlRCE 

8848 ***************************************************** 8849 * 8850 0000 ~ H'1800'-64 TRAINING CARD RfII'1 AREA 
0051 * 
8852 17C0 SCTCH RES S S BYTE SCRATCH AREA 
005l17C6 TEI'P EQU SCTCH+6 TEMP STORAGE 
8854 17CS Ell> RES 2 STOP ADDRESS FOR WCAS 
8855 17CA BAD RES 2 BEGINNING ADDRESS FOR WCAS 
0856 17CC BPI) RES 1 DATA TO BE RESTORE!) IN BREAK lOC 
885717CD BPL RES 2 ADDRESS OF BREAK POINT LOC 
0858 17CF 8PF RES 1 BREAK POINT SET FlAG 
8859 171>9 SSF RES 1 SINGLE STEP SET FlAG 
8860 1701 DISBUF RES S S BYTE DISPlAY REGISTER 
08611709 SAYREG RES 4 A PlACE TO SAVE R0 THRU Rl OF ONE BAM< 
8862 1700 I1EM RES 2 ADDRESS FOR At. TER OR PATCH COMI'IANI) 

886l17DF FID RES 2 FILE II> FLAG AND FILE 10 
8864 17E1 BCC RES 1 BlOCK Cl£CK CHAR 
8865 11£2 BSTT RES 1 SAVE UNITS I>IGIT 
0866178 T RES 2 TEMP REGISTER 
0867 17£5 T1 RES 1 TEt1P REGISTER 
986S 11£6 T2 RES 1 TEMP REGISTER 
886917E7 n RES 1 TEI'IP REGISTER 
0070 11£S LADR RES 2 COPY OF LAST ADDRESS REGISTER 
887117EA Sl.fII)R RES 2 SAVE LOCATION FOR LADR 
0072 11£C KFLG RES 2 KBD S~ FLAGS 
0071 17EE RES 1 KBI) I>EBOUNCE ~T 
887417EF fl.TF RES 1 DISPLAY fIN) At. TER FlAG 
0075 17F8 RESTF RES 1 RESTORE REGISTERS FlAG 
007617F1 IFLG RES 1 INTERUPT INHIBIT FlAG 
8877 17F2 UREG RES 12 STORAGE FOR USER REGISTERS 
9978 17FE PWRON RES 2 WHEN POWER ON THESE LOC CONTAIN H'5946! 
8079 ****************************************************** 

11-3 



TWIN ASSEMBLER YER 2.0 INSTRUCTOR 50 PRGM 1111178 

LINE ADDR OBJECT E SOURCE 

0081 
0082 1800 
9003 
0084 
9085 
0086 
0087 
0088 
0089 
0090 
0091 
0992 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
9100 
9191 
0192 
0191 
9194 
9195 
0196 
9197 
0108 
0109 
0110 
0111 
0112 1800 C870 
01131802 11 
9114 1803 C875 
0115 1805 C875 
0116 1807 12 
9117 1808 C86F 
0118 18eR 7620 
9119 180C 7510 
0120 180E C961 
0121 1810 Cfl62 
0122 1812 CB61 
0121 1814 7710 
9124 1816 C95E 
0125 1818 CASD 
0126 l8tA CB5C 
0127 181C 75FF 
9128 181E 7702 
0129 1820 54FD 
9130 1822 CC17ES 
9131 1825 54FC 
9132 1827 CC17E9 
0133 182A 20 
0134 1828 CC17F1 

***********************"'******"''''**************************** 
ORG W1800' BEGINING OF TRAINING CARl) ROM AREA 

*"'********************************************************** 
* 
*~~ AlL REGISTERS UPON ENTRY TO PROGRAM 

* *REGISTERS USED 

'" 
"'R0 THRU Rl' PSU PSL 

'" *SUBROUTINES CAllED 

'" *NONE 

'" *RAM MEMORY USED 

* 
*UREG = R0 
*lIREG+1 
*lJREG+2 
*UREG+3 
*UREG+4 
*lIREG+5 
*lIREG+6 
*UREG+7 
*UREG+S 
*UREG+9 
*UREG+10 
*'.JREG+11 

=Ri 
=R2 
=RJ 
= Ri' 
= R2' 
= R3' 
= PSU 
= PSL 
= PPSL INSTRUCTION OPCOOE 
= PSL 
= RETC, UN INSTRUCTION OPcpDE 

* 
******************"'********************************************* 
'" SAVRG STRR, R0 UREG SAVE R0 

SPSL GET PC...L. 
STRR. R0 UREG+8 SAVE PSL 
STRR, R0 UREG+10 SAVE PSl FOR RESTORE ROUTINE 
SPSU GET PSU 
STRR,R0 UREG+7 SAVE PSU 
PPSU II SET INTERUPT INHIBIT 
CPSl RS CLEAR REGISTER :~ITCH 
STRR,R1 UREG+1 SAVE Ri 
STRR,R2 UREG+2 SAVE R2 
STRR, Rl UREG+ 3 SAVE Rl 
PPSL RS SET REGISTER SWITCH 
STRR,R1 UREG+4 SAVE R1' 
STRR, R2 UREG+5 SAYE R2' 
STRR, Rl UREG+6 SAVE RJI 
CPSl 255 CLEAR PSL 
PPSL COM 00 LOGICAL COMPARES 
REDE, R0 LADRH GET LAST ADDRESS HI BYTE 
STRA. R0 LADR SAVE IN I'IEI1OR't' 
REDE. R0 LADRl GET LAST ADDRESS LO BYTE 
STRA, R0 LADR+1 SAYE IT 
EORZ R0 GET A 0 
STRA, R0 IFlG CLEAR INTERUPT INHIBIT FlAG 

11-4 



TWIN AS5aIBLER YER 2.0 INSTRUCTOR 50 PRGM 1111178 PAGE 9004 

LINE AOOR OBJECT E SOURCE 

0136 
9137 
0138 
0139 
0140 
9141 
0142 
9141 
0144 
0145 
9146 
9147 
9148 
9149 
0158 
9151 
0152 
9153 
9154 
9155 182E 984E 
9156 1830 E459 
0157 
9158 1832 9813 
0159 
0160 1834 8849 
0161 1836 E446 
9162 1838 9S0D 
9163 1S3A 0C17D0 
9164 !SID 9C19C9 
9165 1840 0899 
0166 1842 9C197A 
9167 1845 1813 
9168 

***************************************************************** 
* 
* 
* *PROORAM ENTRV ROUTINE 

* 
* *DECIDES H().I REAC~D ENTRY POINT (f PROGRAM 

* *1 POWER ON 
*2 SIt-a.E STEP 
*3 I'IONITOR PUSHBUTTON ON KEY BOARD 
*4 BREAKPOINT 

* 
* 
* 
* 
~************************************* 

* BEG LOOR, R0 Pt.RON CHECK POWER ON FLAG 
COtll, R0 W59' AFTER POWER VALUE OF FLAG IS 

* H'5946 , 
BEG! BCFR, EQ INIT IF NOT CORRECT THIS IS POWER ON 
* GO INITIALIZE THE MONITOR FLAGS 
BEG3 LOOR, R0 PWRON+1 CHECK LO BYTE OF POWER ON FLAG 

COMI, R0 W46' IS SECOND BYTE CORRECT 
BCFR,EQ INIT IF NOT INITIALIZE THE PROGRAM 
LOOA, R0 SSF CHECK THE SINGLE STEP' FLAG 
BCFA, EQ SGLSTP IF FLAG THEN GO SINGLE STEP 
LOOR, R0 #1ON+1 SEE IF BREAK POINT ENABLED 

BEG2 BCFfL EQ BRKPT GO EXECUTE THE BREAK POINT ROUTINE 
BCTR, UN /'ION MUST BE MONITOR KEY 

* 

11-5 



TWIN ASsaIBlER YER 2. e INSTRUCTOR 50 PRGI'I 1111178 

LItE ff)[)R OBJECT E SC4RCE 

0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
8187 
0188 
0189 
0190 
0191 
8192 
0193 
0194 
0195 
0196 
0197 
8198 1847 8459 
0199 1849 CC17FE 
0200 i84C 0446 
0201 184E CC17FF 
0202 1851 28 
02031852 CC1700 
0284 1855 CC17DE 
0285 1858 C881 
0206 185A 0C17CF 
0207 1851) 1S0F 
0208 ·185F 0C17CC 
0209 1862 CC97CD 
0210 1865 EC97CD 
0211 1868 1884 
9212 186A 0701 
0213 l86C 9BE8 
0214186£ 26 
8215 186F D4F8 
0216 1871 CC1700 
0217 1874 051F 
8218 1876 0694 
0219 1878 BBFE 
0229 i87A 26 
0221 1878 BSEC 
8222 1871> F680 
0223 1S7F 9816 
0224 i881 468F 

* 
* *KEY BOfIRI) MONITOR ROUTH£ 

* 
* *REGISTERS USEJ) 

* 
*R8 SCRATCH 
*R1 SCRATCH 
*R2 SCRATCH 
*R3NOTlfSEI) 

* *SlEROOTlNES USED 

* *I1OY MOVE DATA TO DISPLAY BUFFER 
*DISPL'r' DISPLAY I1ESSAGE fK) KEY BOARD SCAN 

* 
* *RAI'I I1EMOR'r' USEJ) 

* *PWRON POWER ON FLAG 
*SSF SING.E STEP FLAG 
*Bf'F BREAK POINT FLAG 
*BPI.. BREAK POINT LOCATION 

* 
* INIT LOOI, R8 W59/ SET THE POWER ON FLAG 

STRA.R0 PJ.RON TO POWER ON VflUE W5946/ 
LooI, R8 W46' 
STRA.R8 ~1 
EORZ R0 GET A 0 
STRA. R8 161 PRESET IN)lRECT ADDRESS tel 
STRA. R8 1'181+1 
STRR, R8 *11ON+1 CLEAR BREAK POINT FLAG 

MON LODA. R0 BPF GET BREAK POINT FLAG 
BeYR, EQ MONS BREAK POINT NOT SET 
LODA, R0 BPI> GET BREAK POINT DATA 
STRR. R0 *BPI. CLEAR BREAK POINT 
CMt, R9 *BPL CHECK DATA STORED CORRECTL'r' 
BeTR, EQ I'ION5 BREAK POINT CLEARED OK 
LOOZ. R3 1 BREAK POINT DIDWT CLEAR 
ZBRR *ERR OOTO ERROR 

I1ON5 EORZ R0 GET A 9 
WRTE, R0 eTBYT CLEAR CONTROl BYTE 
STRR. R0 SSF CLEAR SINGLE STEP FLAG 

t10Nl LOOI, pj O£I.LD-1 GET ADDRESS OF HELLO MESSAGE 
LOOI,R2 >HELLD-l 

MON1 ZBSR *I'IOY I'IOYE MESSAGE TO DISBlf 
I'ION4 EORZ RfJ SET FLAG TO WAIT FOR ENTRY 

ZBSR *DISPlY DISPLAY I'IESSAGE AND SCAN KEYBOARD 
MON2 TI1I, R2 W8e' CHECK COI'II'fANI) FLAG 

BCfR. EQ ERR2 IF FLAG NOT SET ERROR 
ANDI, R2 WeF' MASK COItIfH). VALUE 

11-6 



- --------_._._--_. __ ._._----

TWIN ASSEMBLER VER 2. 0 INSTRUCTOR 59 PRGM 1111/78 PAGE 0006 

LINE ADDR OBJECT E SOlRCE 

0225 1883 E607 COMI, R2 7 MAX COf1MAND VALUE 
0226 1885 1910 BCTR,GT ERR2 ERROR CODE VALUE TO LARf.£ 
0227 1887 D2 RRL,R2 MULTIPLY INDEX BY 2 
0228 1888 0E78A4 LOOA,R0 CI'1D,R2 SET UP ffl ItfHRECT fIOORESS 
0229 1888 CC17E3 STRfI,R0 T TO THE FUNCTION WANTED 
0210 1asE 0E78AS LOOA. Re Cl'lD+L R2 
0231 1891 CC17E4 STRA,Re T+1 
0232 1894 1F97E3 BeTA,UN *T EXECUTE A COIt\ANI) 

0233 * 0234 * 
0235 1897 0702 Em LODI,RJ 2 INVALID COI'It1AND SEQUENCE 
02J6 1899 951F ERRI LODI, R1 <ERROR-1 GET AOOF.ESS OF ERROR MESSAGE 
0237 1898 0684 LODI, R2 >ERRQR-1 
0238 1890 BBFE ZBSR *I1OY MOVE MESSAGE TO DISBUF 
0239 189F CF17D8 STRA. RJ DISBUF+7 WRITE THE ERROR NUt1BER 
0240 18A2 1856 BCTR, UN I'ION4 GO LOOK FOR NEW COI'Il'1Atf) 
0241 * 
0242 *COI1'IAND ADDRESS TABLE 
0243 * 0244 18A4 1C91 00 ACON WCAS WRITE CASSETTE rotIftID 
0245 1SA6 11>61 ACON SCBP BREAK POI NT COI'II'IANI) 

0246 18A8 1BAC ACON RCAS READ CASSETTE COI'II'IANl) 

0247 18AA 1A7E ACON REG REGISTER DISPLAY fHl ALTER COI'II'IAND 
0248 18AC 1884 ACON SSTEP SItn.E STEP COt1MAN) 
0249 18AE 1A0C AeON ALTER DISPLAY fH) AI.. TER I'IE/'IORY 
0250 1888 1E59 ACON GO GOTO COI'It1AND 
0251 1882 187A AeON ItON4 ENTRINEXT V,EY IS NOT COI'1J'IANI) 
0252 * 

11-7 



TWIN ASSEMBLER VER 2. 0 INSTRUCTOR 50 PROM 1111/78 PAGE 0007 

LINE ADDR OBJECT E SOURCE 

0254 
0255 
0"256 
0257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
8278 
0279 
0200 
0281 
0282 
0283 0000 
0284 
0285 
0286 
0287 
02SS 1884 0C17E8 
0289 1887 E410 
0290 1889 1A8S 
029118BB E420 
0292 1880 9A04 
0293 1SBF 0709 
0294 1SC1 9BE8 
0295 1SCl 047F 
0296 1SCS CC1700 
0297 1SCS 0420 
0298 18CA CC17F1 
0299 1SCD 7508 
0300 1SCF 0601 
0301 1eD1 0EF7E8 
0302 1004 CC17E7 
0303 181)7 9F:97ES 
0304 18Df1 0l 
0305 18DS 471C 
0306 1800 0500 
0307 18DF 0605 
0308 18£1 F420 

*********************************************************** 

* 
* *SINGLE STEP ROUTINES 
*THIS ROUTINE WRITTEN BY BBC 

* 
* PROCESSOR TRANSFERS CONTROL TO USER PROGRAI1 
* AFTER COMPUTING THE tlIttlER OF OPREQ'S TIll 
* THE NEXT INSTRUCTION FETCH. 

* 
* 
*REGISTERS lISED 

* *R0 THRU R3 SCRATCH 

* 
* *SUBROUTINES CALlED 

* 
*RLADR RESTORE LAST fIOORESS REGISTER 

* 
* *RAM LOCATIONS USED 

* 
*lADR LAST ADDRESS REGISTER 
*Tl TEMP REGISTER 
*TEt1P TEMP REGISTER 
*SCTCH SCRATCH REGISTER 

* 
*************************************************************** 
OYHD EQU o NEGATIVE NUI'IBER OF OPREQ'S 

* 
* *CI£CK IF NEXT SINGLE STEP IS IN MONITOR AREA 

* SSTEP LODfl.. R0 LADR GET I'1SB OF LAOR 
COMI,R0 H/10' IS ADDRESS LT H'1000' 
BCTR,LT SSTEP1 GO SINGLE STEP 
COMI, R0 W20' IS ADDRESS GT OR EQ W2000' 
BCFR, LT SSTEP1 GO SINGLE STEP 
LooI, R3 :9 NEXT SINGLE STEP ENTERS MONITOR 
ZBRR *ERR GOTO ERROR 

SSTEP1 LooI, R0 127 SET SINGLE STEP FLAG 
5TRAJ R0 SSF STORE IT 
LODI,R0 H'20' SET THE INTERUPT INHIBIT 
STRA, R0 IFLG SAVE IN INTERUPT INHIBIT FLAG 
CPSL WC CLEAR WITH CARRY IF SET 

SSTEP2 LooI. R2 1 SET INDEX 
LODfl.. REI *LADR, R2 GET SECOND BYTE OF INSTRUCTION 
STRA, R0 n SAVE IT FOR LATER 
LOOA. R3 *LADR GET NEXT INSTRUCTION 
LooZ Rl SAVE INSTRUCTION IN REI 
ANDI, R3 W1C' EXTRACT INSTRUCTION CLASS 
LooI, R1 OYHD SET OYERHEAD OPREQ COUNT 
looI. R2 5 SHIFT OR f1O\IE COUNT 
TIiL R0 W20' TEST FOR ooD OPCOOE IN CLASS4 

11-8 



TWIN ASSBRER VER 2. 8 INSTRUCTOR 50 PRGH 1111/78 PAGE 8e08 

LItE flOOR OBJECT E SOURCE 

8389 188 9F1982 
8319 
8311 
8312 
9311 18E6 FA2F 
9314 1eE8 4787 
0315 18EA 8F7967 
8316 18E1> C1 
0317 
0318 
9319 
0329 18EE 1F195E 
9321 
8322 
9323 
8324 18F1 3F1.96F 
9325 18F4 8I>17C6 
8326 18F7 7508 
9327 
8328 
8329 
8338 18F9 OC17E7 
933118FC F489 
0332 18FE 1886 
0333 1908 1B6C 
0334 
0335 
0336 
8337 1902 
0338 
0339 1902 A501 
8340 1984 1868 
8341 1906 A502 
8342 1908 1864 
8343 199A A503 
8344 190C 1B6B 
0345 190E A504 
8346 1910 1867 
0347 1912 1872 
0348 1914 1B6C 
0349 1916 C3 
0358 1917 53 
93S1 1918 1B4C 
0352 191A 8501 
835l mc 6494 
8354 191E A593 
9355 
9356 
9357 
9358 
9359 1929 C9D3 
8369 1922 D5FB 
9361 1924 F440 
9362 1926 1894 
8363 1928 F483 
8364 192A 1841> 

BXA CBRTB,RJ BRANCH TO CLASS PROCESSOR 

* * CLASS 5. MIXED NUMBER OF OPREQ'S. 

* 
ClSB BDRR, R2 CLSA 

ANDI, RJ H'87' \'!ASK TO OPCOOE 
looo, R9 ClSTB, R3 GET NUMBER OF OPREQ/S FROM TABLE. 
STRZ R1 

* * WRITE OPREQ COUNT AND EXIT TO USER 

* 
EXIT BeTA. UN EXIT4 OOTO USER 

* * RETURN FRO'! TEST BRANCH, IF BRANCH TAKEN 

* BRCH BSTA, UN RLADR RESTORE LAST AOOF.E5S REGISTER 
BRCHi looo, R1 TEMP GET OPREQ COUNT BACK AFTER TEST BRANCH 

CPSL we CLEAR PSl we BIT 

* * ROOTINE TO ADD 2 OPREQ'S IF INDIRECT APPLIES. 

* CHID lODfL R9 T3 

* 

Tf1I, R0 W80' 
BCTR.9 PLS2 
BC~UN EXIT 

GET SECOND BYTE OF INSTRUCTION 
TEST INDIRECT BIT 
SET, ADD 2 (PREQ'S 
NOT SET, DO t«JT ADD 

* CLASS PROCESSOR TfI8LE. 

* 
CBRTB EQU :$ 

* PLS1 SUBI, Ri1 CLASS 0. 10PREQ 
BC~UN EXIT 

PLS2 SUBI, Ri 2 
BCTR, UN EXIT 
SUBI,Ri 3 
BCTR, UN CIND 
SUBI,Ri 4 
BCTR, UN CUID 
BC~EQ PLS2 
BCTR. UN PlS1 
STRZ RJ 

CLSA RRR,RJ 

* 

BCTR, UN CLSB 
ADDI,R11 
IORL R0 H'84' 
SUBI,R1 3 

* CLASS 6 AND 7. 

CLASS 1 2 OPREQ/S 

CLASS 2. 3 OPREQ'S + INDIRECT 

CLASS 1 4 OPREQ/S + INDIRECT 

CLASS4 2 OPREQS IF OPCODE ODD 
1 OPREQ IF OPCODE EVEN 

CLASS 5. MIXED NUMBER OF OPREQ/S 
SHIFT OPCOOE TO lOW BYTE 
AND lOOK UP IN TABLE 
CLASS 6. 2 OPREQ'S + INO IF BRANCH TAKEN 
CONVERT TO CLASS 7. 
CLASS 7. 3 OPREQ'S + IND IF BRANC'H TAKEN 

* ADD 2 OPREQ'S IF INDIRECT AND BRANCH IS TAKEN. 

* 
STRR, R1 *BRCH1+1 SAYE PRESENT NUI'IElER OF OPREQ'S IN TEMP 
WRTE. R1 OPRQCT ALSO OUTPUT TO HARDWARE 
Tf1I, R0 H' 48' TEST FOR REGISTER CLASS 
BC~ 0 CL67B IF SO, DO NOT TEST FOR UNCONDITIONAL 
Tf1I,R9 H/03' IS BRANCH UNCONDITIONAL 
~ 9 CINO IF SO, DO NOT TEST BRANCH 

11-9 



TWIN ASSEMBLER YER 2. 8 INSTRUCTOR 50 PRGM 1111178 

LINE ADDR OBJECT E SOURCE 

8365 192C F4E8 
9366 mE 1882 
8367 1938 44DF 
9368 1932 CC17C0 
0369 1935 0E7951 
9370 1938 CE77C0 
9371 1938 FA78 
9372 
9373 
9374 
8375 1931> 0C17E8 
0376 1948 CSRE 
8377 1942 0C17E9 
9378 1945 C8f£ 
8379 1947 0417 
9388 1949 C8f1 
9381 1948 04C0 
9382 194[) CC9943 
0383 1950 1893 
9384 
9385 
9386 
93871951 
9388 1952 18F1 
0389 1954 1F1957 
0390 
0391 1957 3816 
9392 1959 0D17C6 
0393 195C 7508 
9394 195E D5FB 
9395 1968 20 
8396 1961 CC17F1 
9397 1964 1F1E59 
9398 
8199 
0400 
04011967 FF 
0402 1968 FF 
0491 1969 FD 
0404 196A FE 
0405 196B FF 
0406 196C FE 
0407 196D Ffj 

0408 196E FE 
0409 
0419 
0411 
0412 196F 0C17EA 
0413 1972 C8CA 
0414 1974 0C17EB 
0415 1977 CSCA 
8416 1979 17 
9417 

CL67B T\'II, R0 WE0' TEST FOR BDR INST 
BCTR. 9 CL67C IF SO, 00 NOT REI'IOYE 'SUBROUTINE' BIT 
ANDI,R0 H'DF' REI'IOYE SUBROUTINE BIT FROM OPCOOE. 

CL67C STRA, R0 SCTCH STORE IN TEST AREA 
I'IYCOOE LOOA, R0 BReD, R2 GET ROI1 CODE 

STRfL R0 SCTCH, R2 STORE IN RAM 
8DRRJ R2 I'1YCOOE 00 UNTILL ALL HAS BEEN I'IOVED. 

* 
*SAVE LADR 

* SLAD1 LOOfI, R0 LADR GET LAST ADDRESS REG 
STRR, R0 *RLAl>R+1 SAVE IT 

SLAD2 LOOfI, R0 LADR+1 
STRR, R0 *RLADRi +1 

* 

LOOI, R0 (SCTCH GET AOORESS SCRATCH 
STRR, R0 *SLAI>1 +1 
LODI, R0 )SCTCH 
STRA,R0 *SLAI>2+1 
BeTR, UN *EXIT1+1 00 TEST BRANCH 

*THIS IS COOE FOR TEST BRfKH 

* BRCD EQU $-1 
ACON BRCH AOORESS FOR TEST BRANCH 
BCTA, UN EXIT2 RETURN IF BRANCH NOT TAKEN 

* EXIT2 BSTR, UN RLADR 
LODA.. Ri TEMP 
CPSL we 

EXIT4 WRTE,Ri OPRQCT 
EORZ R0 
STRA. R0 IFLG 

EXIT1 BeTA, UN 00 

* * CLASS 5 OPREQ TABLE 

* CL5TB DATA 000-1 
DATA OIlHD-1 
DATA OVHD-3 
DATA Q\IHl)-2 
DATA OYHD-1 
DATA OYHD-2 
DATA OYHD-1 
DATA OYHD-2 

* 

RESTORE LAST ADDRESS REG 
GET OPREQ COUNT 
CLEAR WITH CARRY 
SET THE OPREQ COUNTER 
CLEAR INTERUPT INHIBIT FLAG 
SAVE IN INTERUPT INHIBIT FLAG 

RETC 
RETE 
REDE 
C-P PSW 
DAR 
TPSW 
WRTE 
TI11 

*RLADR RESTORE LAST ADDRESS REG 

RLADR LOOA, R0 SLADR GET SAVED LADR 
STRR. R0 *SLAD1 +1 

RLADR1 LODA, R0 SLADR+1 
STRR, R0 *SLAD2+1 
RETC,UN 

* 
11-10 



TWIN ASSEtIUR \o'ER 2. 0 INSTRUCTOR 50 PRGtI 11/1178 PAGE 0010 

LINE II>DR OBJECT E SOURCE 

0419 
0428 
0421 
0422 
0423 
0424 
0425 
0426 
0427 
042S 
0429 
0430 
0431 
0432 
0433 
0434 
0435 
0436 
0437 
0438 
0419 
0440 
0441 
0442 
0443 
0444 
0445 
0446 
0447 
044S 
0449 
0450 
0451 
0452 
0453 
0454 
0455 197A 0C17E8 
0456 1971> 0D17E9 
0457 1980 7709 
0458 1982 A501 
0459 1984 A400 
0460 1986 447F 
8461 19S8 7589 
8462 198A ESAF 
0463 19& 9C185f1 
0464 198F E9AF 
8465 1991 98FA 
0466 1993 C8E6 
0467 1995 C9E7 
0468 1997 0C17CC 
8469 199A CC97CD 
0470 1990 EC97CD 
0471 19A9 1804 
0472 19A2 9701 
0473 19A4 9BE8 

************************************************************************ 
* 
* *BREAK POINT ANI) SINGLE STEP RUN TIME CODE 

* 
* *SItIl..E STEP 

* *Wi£N ENTERED AT SINGLE STEP. SINGlE STEP FLAG IS CLEARED 
*fINI) DISPLAY IS I AOOR 00' 

* 
* *Wt£N ENTERED AT BREAK POINT AND BREAK POINT IS SET AND MATCHES 
*BREAK POINT REGISTER. THE DISPLAY IS '-AOOR 00' 

* 
* *REGISTER USED 

* 

* *SUBROUTINE CALLE!) 

* *DLSI..D PREPARE BINARY DATA FOR DISPlAY 

* 

.. 
*f) ISBUF DISPLAY BUFFER 
*BPF BREAK POINT FLAG 
*BPI. BREAK POINT LOCATION 
*BPD DATA FOR BREAK POINT LOCATION 
*LADR copy OF LAST ADOORESS REGISTER 
*SSF SINGLE STEPFLAG .. 
************************************************************************ 
* BRKPT LOOA, R0 LADR GET LAST ADDRESS REGISTER 
BRK]: LOOA, R1 LADR+1 

PPSL C+We SET CARRY AND I~ITH CARRY 
SUBL R1 1 DECREMENT LAST ADDRESS REG 
SUBI,R0 0 50 CAN COMPARE TO BREAK POINT REGISTER 
AND!' R0 W7F MASK OFF UNUSED BIT 

.. CPSt. C+WC CLEAR CARRY AND WITH CARR~' 
.BRK2 CQMR,R0 *BRKPT2+1 COMPARE WITH BPL 
BRK1 BCFA, EQ MOO NO COMPARE 

COI1R, R1 *BRKPT:1 +1 COi'IPARE WITH BPL +1 
BCFR, EQ *BRK1 +1 NO COMPARE 
STRR. R0 *BRKPT+1 IF COMPARE UP DATE PC 
STRR,R1 *8RK3+1 
LODft R0 BPD IF COMAPRE CLEAR BREAK POINT 
STRA,R0 *BPL 
COMA, R0 *f3PL ERROR CHECK OF DATA WRITTEN 
BCTR,EQ BRK8 DATA STORED OK 
LOOI, R3 1 BREAK POINT NOT CLEARED OK 
ZBRR *ERR 

11-11 



TWIN ASSEl'lBLER YER 2. 0 INSTRUCTOR 50 PRG/'I 11/1178 PAGE 0011 

LINE fll)DR OBJECT E SOURCE 

0474 19F16 E440 
0475 19A8 1S08 
0476 19AA 0480 
0477 19AC CC17CF 
0478 19AF 1F1SB4 
0479 1982 047F 
0480 1984 C8F7 
0481 1986 0419 
0482 1988 C89A 
0483 19BA OC17CD 
0484 1980 3832 
0485 19BF 0C17CE 
0486 19C2 3836 
0487 19C4 OC97CD 
04S8 19C7 1BiR 
0489 
0490 
0491 
0492 19C920 
0493 19CA CC17D0 
0494 19CD 0SDE 
0495 19CF 1A01 
0496 
0497 191>1 0417 
0498 1901 CC17D1 
0499 191>6 0C17E8 
0500 19D9 1B16 
0501 1908 OC17E9 
0502 19DE 38iR 
0501 19E0 0C97E8 
0504 198 3801 
0505 19E5 !F187A 
0506 
0507 
0508 
0509 19E5 B8F4 
0510 19EA CC17D7 
0511 19ED CD17D8 
0512 19F017 
0513 
0514 
0515 
0516 19F1 BBF4 
0517 19F1 CC17D2 
051S 19F6 CD17D1 
0519 19F9 17 
0520 
0521 
0522 
052l19FA BBF4 
0524 19FC CC17D4 
0525 19FF CD17D5 
0526 1A02 0417 
0527 iR04 CC17D6 
0528 1007 17 

BRK0 COMI, R0 H'40' HALT INSTRUCTION OPCOOE 
BCTR,EQ BRKPT9 IF HALT DON'T DO HIDDEN SINGlE STEP 
LOOI, Fie W80' SET FLAG FOR HIDDEN SINGlE STEP 

BRKPTl STRA, REI BPF SET FLAG IN BREAK POUlT 
BCTA, UN SSTEP EXECUTE ONE USER INSTRUCTION 

BRKPT9 LOOI, REI 127 SET BREAK POINT FLAG 
STRR, REI *BRKPTl+1 
LOOI, REI H'1!:V DASH SYt1BOl. FOR BREAK POINT 
STRR, Re *BRKPT8+1 SET THE DASH SYI'IBOl. IN DISBlf 

BRKPT2 LOOA. REI BPL GET BREAK POINT ADDRESS 
BSTR, UN BRKPT7 SET THE DISPLAY 

BRKPT1 LODA,R0 8PL+1 
BSTR, UN BRKPT6 
LOOA, R0 *BPL GET INSTRUCTION OPCODE 
BCTR, UN BRKPT5 

* 
*ENTRY POINT FOR SINGLE STEP 

'" SGLSTP EORZ R0 GET A 0 
STRA, R0 SSF CLEAR SItG.E STEP FLAG 
LOOIt R0 *BRKPTl+1 CHECK BREAK POINT FLAG 
BCTR, NG BRJ<PT9 DID A HIDDEN SINGLE STEP 

'" SGLST9 LOOI, R0 H'17' 
BRKPTS STRA, REI DISBUF 

LOOA, R0 LADR 
BSTR, UN BRKPT7 
LOOA. REI tmR+1 

DISPLAY THE BREAK POINT 
BLANK SYIm. 
SET DISPLAY BUFFER 
GET ADDRESS 
SET THE DISPLAY 

BSTR. UN BRKPT6 SET THE DISPLAY 
LOOA.. R0 *LfII)R GET INSTRUCTION DATA 

BRKPTS BSTR, UN BRKPTI SET UP DISPLAY 
BeTA, UN 1'10N4 GOTO MONITOR 

'" *SET UP DISBUF 6&7 

'" BRKPTI ZBSR *DISLSI) CONYERT TO BIN FOR DISPLAY 
STRA, R0 DISBUF+6 
STRA, R1 D ISBUF+7 
RETC, UN 

'" *SET UP DISBIJF 1&2 

'" BRKPT7 ZBSR *DISlSI) CONVERT BIN TO DISPLAY 
STRA, REI DISBUF+1 
STRA, R1 DISBIJF+2 

. RETC,UN 

* 
*SETUP DISBUF 1&4 

* BRKPT6 ZBSR *DISLSI) COOERT BIN TO DISPLAY 
STRftREI DISBUF+1 STORE DATA 
STRA. R1 DISBIJF+4 
LOOI, R0 H'1r BLANK SYMBOL 
STRA, R0 DISBIJF+5 
RETe,UN 

11-12 



TWIN ASSEI'I3I..ER YER 2.0 INSTRUCTOR 50 PRGI'I 1111178 PAGE 0012 

LINE fH)I)R OBJECT E SOURCE 

0538 
0531 
0512 
05ll 
0534 
0535 
0536 
0537 
05lS 
0539 
0540 
0541 
0542 
0543 
0544 
0545 
0546 
0547 
0548 
0549 
0550 
0551 
0552 
055l 
0554 
0555 
0556 
0557 
0558 
0559 
0560 
0561 
0562 
056l 
0564 1A88 0403 
0565 1A0A 1B02 
0566 
0567 
0568 
0569 1A0C 0481 
0570 1A0E CSA4 
0571 1A10 lF1B04 
0572 1A13 E6S7 
0573 1A15 9C187D 
0574 1A18 5B8E 
0575 1A1A C88D 
0576 1A1C C981 
0577 1A1E 0E1700 
0578 1A21 0717 
0579 1A2l CF17D8 
0580 1A26 1805 
0581 
05S2 
0583 
0584 1A2S 0C17DE 

******************************************************* 
* 
'" *D I SPLAY AND ALTER MEI'IORY ROUTINE 
*PATCH I1B1ORY ROUTINE 

* 
'" *REGISTERS USEI) 

'" *R0 SCRATCH 
*R1 SCRATCH 
*R2 SCRATCH 
*R3 SCRATCH 

* 
*SLmlUTINES CALLED 

'" *GAD GET ADDRESS PARAMETER 
*GNP (E tuIBER PARAMETER 
*ROT ROTATE R8 1 NIBBLE LEFT 
*BRKPT4 SETUP DISPLAY 6&7 
*BRKPT6 SETUP DISPLAY 3&4 
*BRKPT7 SETUP DISPLAY 1&2 

'" 
'" 
*tel IN>IRECT ADDRESS MEMORY POINTER 
*ALTF filTER FLAG = 1 FOR DISPLAY AND fUER 
'" 3 OR 5 FOR PATCH 

'" 
**************''''******************************** 
'" * 
*ENTRY POINT FOR PATCH COIt1AND 

'" PTCH LOOt, R8 3 SET ALTER FLAG TO PATCH 
BCTR, UN ALTERS 

'" *ENTRY POINT FOR DISPLAY ANI) ALTER COI'It1FIND 

* ALTER LooI, R8 1 SET ALTER FLAG TO ALTER 
ALTERS ST~R8 *ALTER1+1 STORE IN ALTF 

BSTA.. UN GAD DISPLAY fl):: AND WAIT TILL DIGITS ENTERED 
COMI, R2 W87' ENTRIN'hT? 
BCFIt EQ MON2 NEW FUNCTION ABORT ALTER COI'II'IAND 
BRNR, R3 AL TER4 NO ADDRESS ENTERED CONTINUE FROM LAST LOCATION 
STRR, R0 *AI.. TER4+1 1£M+1 SAVE ADDRESS DATA 
STRR, R1 *AL1 +1 

AU LOOA, R2 /'IEM GET DATA 
LODI,R3 H/17' BLANK 
STRA.. R3 DISBUF+? CLEAR DISPLAY 
BCTR, UN ALTER2 SET UP DISPLfIV 

'" 
*NO ADDRESS CONTINUE FROf1 LAST ADDRESS 

'" AL TER4 LODA, R0 1'IEJ'1+1 GET ADDRESS 

11-13 



TWIN ASSEI'I8I..ER VER 2. 0 INSTRUCTOR 50 PRGI'1 W1I7S 

LINE ADDR OBJECT E SOORCE 

0585 1A2B 0AF2 
0586 
0587 
058S 
0589 1A2O 3848 
0590 1A2F 02 
0591 1A30 3F19F1 
0592 
0593 
0594 1fI33 OC17EF 
0595 1fI36 E401 
0596 1fI38 1807 
0597 1fI3A 0417 
0598 1Ale CC171>7 
0599 1A3F 1B05 
0600 
86011A41 OC9700 
0602 1A44 BBEA 
0603 1A46 08EC 
0604 1A48 BBFC 
0605 1A4R 5B0C 
0606 1A4C CC9700 
0607 1A4F EC9700 
0608 1A52 1804 
0699 1A54 0703 
0610 1A56 9BE8 
0611 
0612 
0613 
0614 1A58 080A 
0615 1ASA E401 
0616 1A5C 9807 
0617 1A5E E687 
0618 1A60 9C1871> 
0619 1A63 1Bes 
0620 
0621 
0622 
0623 1A65 E60F 
0624 1A67 19F8 
0625 1A69 0405 
0626 1A6B cae7 
0627 1A6D CE171>8 
0628 
0629 
0630 
0631 1A70 3F 1C55 
0632 iAn 1F1A2I> 
0633 
0634 
0635 
0636 1A76 C1 
0637 1An 44F0 
0638 1A79 450F 
0639 1A7B BBF6 
0640 1AlD 17 

LOOR.R2 *AU.+11£11 

* 
*UPDATE THE D ISPLAV 

* ALTER2 BSTR, UN BRKPT6 SET UP ADDRESS DISPLAY 
LooZ R2 GET MSD 
BSTA,UN BRKPT7 SET UP DISPLAY 

* 
* FL TER! LODfL R0 AL TF CHECK fI. TER FLAG 

COtII, R0 1 PATCH COItIANI) 

BCTR. EQ AI. TER8 NOT PATCH 
LooI, R8 H'17~ BlAtI< CIfIR 
smt R8 DISBUF+6 
BCTR. UN AI.. TER9 PATCH CO\'II'IflNI) 

* AL TER8 LOOA, R0 *Mel GET THE DATA 
ZBSR *BRKPT4 SET UP DATA VALUE DISPLAY 

ALTER9 LOOR, R8 *ALTER1+1 SET FLAG TO SINGLE BYTE DATA 
ZBSR *GNPA DISPLAY BUFFER ANI) WAIT FOR tBI ENTRY 
BRNR, R3 fI. TOO NO DATA 
STRfL R0 *MEM CHANGE DATA IN LOCATION 
COI'IfI, R0 *I'IEI'I CHECK DATA STORED OK 
BCTR. EQ AL TERJ DATA STORED OK 
LOOI, RJ 3 ALTER OR PATCH WRITE ERROR 
ZBRR *ERR GOTO ERROR 

'* *EXIT FROM COMMAND 

'" AI. TER3 LOOR, R8 *AI. TER! +1 EXIT FROM ALTER OR PATCH 
COMI, R8 1 IS IT PATCH 
BCFR, EQ AL TER6 IF YES TAKE THIS BRANCH 
COML R2 W87~ IS IT filTER NEXT KEY FUNCTION? 

AL2 BCFA, EQ 11ON2 GO TO I1ONITOR tBI COI'I'IAND 
BeTR, UN filTER? GO UPDATE THE DISPLAY 

* 
*EXIT FRoM PATCH 

* 
AL TER6 COMI, R2 WaF / WAS LAST KEY FUNCTION KEY 

BeTR, GT *AI..2+1 MON2 Fl.KTION KE't' WAS LAST GO TO MONITOR 
LOOI, R8 5 RETlRN ON SECOND DIGIT FLAG 
STRR, R0 *AL TER1 +1 SAVE IN AL TF 
STRA, R2 DISBlf+? SET DISPLAY 

* 
*INCREtlENT INDIRECT ADDRESS 

'" 
AL TER7 BSTA, UN INK INCREMENT THE AOORESS 

BCTA, UN AL TER2 

'" *PREPARE BIN DATA FOR DISPLAY 

'" DISLSI STRZ R1 
ANDL R8 H'F0~ 
ANDI, R1 WaF' 
ZBSR *ROT 
RETC,UN 

SAVE NI.JMBER IN R0 
I'IfISK FOR MSD 
I'IASK FOR LSD 
ROTATE A NIBBLE 

11-14 



TWIN ASSEtIlLER YER 2. 8 INSTRUCTOR 50 PRGI"I 1111178 PAGE 0014 

LItE AOOR OBJECT E SOURCE 

0642 
0641 
0644 
0645 
9646 
0647 
864S 
0649 
8650 
8651 
8652 
065l 
0654 
0655 
0656 
0657 
0658 
0659 
8660 
8661 
0662 
0661 
0664 
0665 
9666 
0667 
8668 
8669 
8678 
0671 
0672 
0671 
0674 
0675 
8676 
0677 
9678 
0679 
0688 
0681 
06S2 1A7E 051F 
0683 1A88 06A4 
0684 1A82 BBFE 
8685 1A84 28 
8686 1A85 BBEC 
0687 
0688 1AS7 F488 
0689 1A89 1882 
0698 1A8B E489 
0691 !AS[> 1E1f1C2 
0692 1A98 E48A 
0693 1A92 1C1F32 
0694 !A95 E48C 
0695 1A97 1807 
0696 1A99 E4eF 

****************~**************************************** 
* 
* *f.>ISFlAY ANf) ALTER REGISTERS COMMAND 

* *THE DISPLAY AND ALTER REGISTERS cottIANI) ALLOWS 
*ll£ USER 10 EXAMINE AND AlTER REt, Ri, R2, R3, Ril .. R2 l, R3 i , ?SU, PSL PC 

* 
*THIS COI1I'IAM) ALSO PROYIDES ENTRY POINT TO At. TERNATE FUNCTIONS 
*REG 9 NOT DEFItED 
*REG A ADJUST CASSETTE COItIAND 
*REG B tlIT DEFINED 
*REG D tlIT DEFINED 
*REG E tlIT DEFINED 
*REG F ENTER THE FAST PATCH MODE 

* *REGISTERS USED 

* 
*R0 SCRATCH 
*R1 SCRATCH 
*R2 SCRATCH 
*R3 SCRATCH 

* *SUBROUTINES CALLED 

* 
*I1OY MOVE DATA TO DISBUF 
*GNP GET N\JI'IERIC PARAI'IETERS 
*ROT ROTATE A NIBBLE 
,qffI DISPLAY ANI) GET NUMERIC PARAMETERS 
*BRKPT4 SET DISPLAY 6&7 
.scBP2 SET D ISPLAV 4&5 

* 
*RAM I1EMORY USED 

* *DISBUF DISPLAY BUFFER 
*UREG USER REGISTERS 
*lADR LAST ADDRESS P£GISTER PC COUNTER 
*T2 TEMP REGISTER 

* ************************************************************* 
REG LooI, R1 <REQ-1 GET ADDRESS OF R= DISPLAY 

LOOI,R2 )RfQ-1 
2BSR #10'7' MOVE DATA TO DISBUF 
EORZ R8 SET FLAG TO RETURN AFTER KEY PRESSED 
ZBSR *f) ISPL Y 

* TMI,R0 HiSe' SEE IF FUNCTION 
BCTR,EQ *REG14+1 MON2 GOTO MONITOR 
COMI, R8 9 CHECK THE COMMAND 
BeTA, L T REG2 DISPLAY AND ALTER REGI STERS R0 THRU PSL 
COI'II, R8 WOO' IS IT ADJUST CASSETTE COt1MfIND 
BeTA, EQ TCAS TEST CASSETTE 
CO/'II, R8 WOC' IS IT DISPLAY ANI) ALTER PC 
BeTR, EQ REID DISPLAY AND ALTER PC 
COMI, R8 WeF' IS IT THE PATCH COI1MfIND 

11-15 



TWIN ASSEI1BLER YER 2. 0 INSTRUCTOR 50 PRGM 11/1178 PAGE 0015 

LINE ADM OBJECT E ~CE 

0697 1A9B lC1A08 
0698 1A9E 1B5E 
0699 
0700 
9701 
0702 1AAe 051F 
0701 1AA2 06AC 
0704 1AA4 BBFE 
0705 1AA6 essE 
0706 tAM BBEA 
0707 1AAfI 0C17E8 
9708 tAAD lF1DSA 
0709 1AB0 20 
0710 lA81 BBFC 
0711 tABl 5805 
0712 lABS CC17E9 
07B 1ABS C9F1 
0714 lABA E687 
0715 1ABC 9C187D 
0716 1ABF 1F1A7E 
0717 
0718 
8719 
0720 1AC2 CCl7E6 
07211ACS Cl 
8722 1AC6 0510 
8721 1AC8 E787 
0724 1ACA 1A9A 
8725 1ACC 1904 
8726 !ACE 0412 
8727 1AOO 1806 
8728 
8729 1AD2 0411 
8730 1AD4 1B02 
0731 
0732 1AD6 0513 
873l 1AJ)8 COl7Dl 
0714 1ADB CC17D4 
0735 lADE 0F77F2 
0736 iRE1 B8EA 
0737 lAEl 0401 
8738 lRES BBFC 
8m 1AE7 5B0C 
0740 lie 0BD8 
0741 1AEB CF77F2 
0742 lREE E708 
0743 1AF0 9803 
0744 iAF2 CCl7FC 
0745 1AF5 E687" 
0746 1AF7 98C4 
0747 iAF9 03 
0748 iAFA D800 
0749 lAFC E408 
0750 iAFE 9D1AC2 
07511801 20 
0752 1B02 1BFB 

BeTA. EQ PTCH DO THE PATCH COI'tfINI) 
BCTR, UN REG NOT DEFINED TRY AGAIN 

'" *D I SPLAY AND ALTER PROGRAM COUNTER 

'" 
REGl LOOI, R1 <PCEQ-1 GET ADDRESS OF PC EQUALS DISPLAY 

LCD!' R2 >PCEQ-l 
ZBSR *trlY I10YE DATA TO DISBlf 
LODR, R0 *REG4+1 GET CURRENT· PC ADDRESS 
ZBSR *BRKPT4 SET UP DISPLAY 

REG11 LOOA, R0 LADR GET I'\SB OF CURRENT PC 
BSTA, UN SCBP2 SET UP DISPLAY 
EORZ R0 SET FLAG TO OOUBLE BYTE 
ZBSR *GNPA DISPLAY fIDDRESS ~ WAIT FOR ENr.:-'( 
BRNR,Rl REGS DON'T CHANGE DATA 

REG4 STRA, R0 LADR+l UP DATE THE PC SAVE LSB 
STRR, R1 *REG11 +1 SAVE I'1SB OF PC 

REGS CCtIl, R2 W87' ENTRINXT TERI'IINATION 
REG14 BCFA, EQ t1ON2 IF ooT tel FUNCTION EXIT 

BeTA, LW REG GO ASK FOR PEW REGISTER 

* *DISPLAY fH) ALTER REGISTERS 

* REG2 STRA, R0 T2 SAVE IT 

* 

STRZ R3 
LOOI, R1 W10' 
COI'II! R3 7 
BCTR, L T REGS 
BeTR, GT REG10 
LOO!' R0 W12' 
Bent UN REG12 

SAVE R0 TO USE AS INDEX 
P CHAR 
IS IT PSU 
NOT PSU PSL 
NOT PSU 
~U 

GO DISPLAY 

REGi0 LODI,R0 H'11' CHAR L 
Bent UN REG12 GO DISPLAY 

'" REGS LCD I, R1 H' B' CtftR R 
REG12 STRfI, R1 DISBUF+2 SET DISPLAY RN= 
REG9 STRfLR0 DISBUF+l SET UP DISPLAY 

LODfI, R0 UREa Rl GET REGISTER CONTENT 
ZBSR *BRKPT 4 SET UP DISPLAY 
LCD I , R0 1 SET FLAG TO SINGLE BYTE 
ZBSR *GIf!A DISPLAY REG CONTENT fIN!) WAIT FOR ENTRY 
BRNR, R3 REG7 NO DATA TERI'IINATE 

REG6 LODR, R3 *REG2+1 GET THE INDEX VAlUE 
STRA, R0 UREG, Rl PUT NEW YALUE IN REGISTER 
COI'II,Rl a IS IT PSL? 
BCFR,. EQ REG7 NO CtECK TERMINATION 
STRA, R0 UREG+10 SAVE FOR RESTORE OF PSL 

REG7 COI1I, R2 wa7' CtECK TERMINATION 
BeFR, EQ *REG14+1 I'ION2 NEW FUNCTION 
LOOZ R3 INCREMENT INDEX VALUE 
BIRR,R0 $+2 INC~ REGISTER COUNT 
COtlI, R0 8 ROLL OYER? 

REGB BCFA, GT REG2 NO UP DATE DISPLAY 
EORZ R0 GET A 0 GO TO R0 
Bent UN *REGB+! UPDATE DISPLAY 

11-16 



TWIN ASSEJfIlER VER 2. 0 INSTRUCTOR 50 PRGI'I 11/1/78 PAGE 0016 

LINE AOOR OBJECT E SOURCE 

0754 
0755 
0756 
0757 
0758 
8759 
8768 
8761 
8762 
8763 
8764 
8765 
8766 
8767 
0768 
8769 
8778 
8771 
8m 
8773 
8774 
8775 
8776 
8m 
8778 
0779 
8788 
0781 
0782 
8783 
0784 
8785 
8786 
8787 
8788 
8789 
0798 
0791 
0792 
0793 
8794 
0795 
0796 
0797 
8798 
8799 
8808 
8881 
0802 
8883 
8804 
0805 
8886 
8887 
8S08 

******.**** •• **.~******************************* • 
• 
*GET NUMERIC PARAMETERS 

* • 
.THIS ROUTINE GETS EITHER 2 OR 4 DIGIT NUMERIC PARAMETERS 

'" '" Itf'UT PARAMETERS 
• 
*R8 CONTAINS INPUT PARAl'lETER 

'" *BITe = 0 DOUBLE BYTE 
*BITe = 1 SINGLE BYTE DATA TO BE RETURNED 
*BIT1 = e REQlJIRES FUNCTION KEY DE~.ESSION TO EXIT 
*BIT1 = 1 WHEN SET WITH BITe EXIT IS AFTER ENTRY OF THIRD DIGIT 
'" OF SINGLE BYTE DATA 
*BIT2 = 1 IaI£N SET WITH BITe EXIT IS AFTER SECOND DIGIT 
* OF SINGLE BYTE DATA 
• 
*SINGLE BYTE DATA USES DISPLAY BUFFER 5 THRU 7 
*DOUBlE BYTE DATA USES DISPLAY BUFFER 4 THRU 7 
*OTHER DIGITS OF DISBUF /'lUST BE INITIALIZED ON ENTRY 

* *RE1'm5 WHEN FUNCTION KEY DEPRESSED 

* 
*OUTPUT PARAl'lETERS 

• 
*R0 = LSB OF DOI.B.E BYTE DATA OR SINGLE B'I1 t DATA 
*R1 = HSB OF OO.B..E BYTE DATA OR 8 FOR SINGLE BYTE DATA 
*R2 = FUNCTION KEY PRESSED CODE 
*R3 = 8 DATA RETURNED IN R0(LSB), R1<I'ISB) 
*Rl = NOT 0 NO DATA RETURNED R0,R1 = e 
* *REGISTERS USED 

* *R0 SCRATCH 
*R1 SCRATCH 
*R2 SCRATCH 
*R3 SCRATCH 

* 
*SUBROUTINES CALLED 

* *DISPLY DISPLAY AND READ KEY BOARD 
*CLR BLANK DIGIT DISPLAY 

* 
*RAI'I I'I81ORY USED 

* 
*T1 SAVE ENTRY FLAG 
*DISPLY 4 THRU 7 

* 
***********************************"'****"''****************** 
'" 
'" *DISPLAY AD: AND GET DATA 

11-17 



TWIN ASseaER YER 2.0 INSTRUCTOR 58 PRGf11i1117S PAGE 0017 

LINE flOOR OBJECT E SOURCE 

0889 
8810 1B04 851F 
8811 1806 068C 
0812 1B08 BBFE 
0813 1B0A 28 
0814 1B08 182E 
0815 
0816 
0817 
0818 1801) 9517 
0819 180F F401 
0828 1811 1803 
08211B13 CD17D5 
0822 1816 C017D6 
0823 1819 C017D7 
8824 181C CD17D8 
0825 1B1F 17 
0826 
0827 
0828 
0829 
08101B28CSA6 
0831 1822 0480 
0832 1824 BBEC 
0833 1826 08A0 
0834 1B2S F680 
0835 182A 9809 
0836 182C E687 
0837 182E 1802 
8838 1810 lBSB 
0839 1832 1F1B74 
0840 1835 F404 
08411837 lAS4 
0842 1839 180C 
0843 
0844 
0845 
9846 1B3B CSOO 
0847 :l.BlO 3B4E 
0848 :l.B3F 0480 
0849 1B4:1. BBEt 
0850 1B43 F680 
0851 1B45 182D 
0852 
138SJ 
13854 
0855 1847 0C17E5 
0856 1B4A F483 
0857 184C :1.826 
0858 :l.B4E F425 
0859 1850 1822 
0860 1B52 F491 
9861 1B54 1800 
0862 1856 9D17D6 
0863 1859 CD17D5 
0864 1B5C 001707 

* 
Gfl) LooI,Ri <AI)R-1 GET AOORESS OF fit):: DISPALV 

LooI, R2 }flI)R-1 
ZBSR *MOIl I'IOYE DATA TO DISBUF 
EORZ R0 SET FLAG TO OOUBLE BYTE DATA 
BCTR, ~ GNPI (£T THE ADDRESS DATA 

* 
*THIS ROUTINE ClEARS DIGIT DISPlAY 

* CLR LOOI, Ri W1?' BLANK SVMBOL 
TI'II, R0 1 SINGLE BYTE? 
BeTR,EQ CLRi ONE BYTE DATA 
STRA.. R1 DISBUF+4 INITIALIZE DISPLAY TO BI..ANK 

CLRi STRA, R1 DISBUF+5 GET HERE FOR ONE BYTE DATA 
STRfI.. Ri D ISBUF +6 
STRA,R1 DISBUF+7 
RETC,UN 

* *THIS ENTRV POINT ALLOWS DISPlAV OF DATA IN DISPLAV 
*BUFFER 4 THRU 7 

* GNPAI STRR, R0 *GNP12+1 SAVE INPUT FLAG IN T1 
LOOI, R0 WOO' TURN ON DECIMAL POINT FOR ENTRV 
ZBSR *DISPLY DISPLAV MESSAGE AND READ KEY BOARD 
LOOR, R0 *GNP12+1 GET ItflUT PfIRAI'ETER 
TMI,R2 H' OO' FUNCTION KEY? 
BCFR, EQ GNP13 FIRST CHAR IS COMMAND TERMINATE 
COMI,R2 H'S?' ENTRINXT? 
BeTR/EQ $+4 
BSTR, UN CLR CLEAR D ISPLfI'y' 
BeTA, UN GNP4 

GNP1] TMI,Re 4 PATCH COMMAND RETURN SECOND DIGIT? 
BSTR, NG CLR CLEAR 01 SPLAY 
BCTR,UN GNP12 

* 
*THIS ENTRY POINT CLEARS DISPlAY AND WAITS FOR ENTRY 
>I< 

GNP I STRR, R0 *GNF'12+1 SAVE INPUT FLAG IN T1 
GNP:!.:!. BSTR, UN CLR CLEAR [i I SPLA'r' 
GNP2 LOOI, R0 WOO" TllP.N ON DECIMAL POINT FOR ENTRY 

ZBSR *DISPLY DISPLAY MESSAGE AND READ KEY BOARD 
GNPS TML R2 WS0' FUNCTION KEY PRESSED? 

BCTR .. EQ GNP4 GO TERl'IINATE 
*' 
*i'10VE DISPLAY 1 DIGIT LEFT 

* GNP12 LOOA, R0 T1 GET INPUT PARAMETER 
TMI,R0 H'S]' THIRD DIGIT *EXIT ON THIRD ENTRY*SI~IDlE BYTE 
BCW" EQ GNP4 GO TERMItftTE 
T\'Il, Re W25' 2ND DIGIT*EXIT ON 2ND DIGIT*SINGLE B'r'TE 
BCTR, EQ GNP4 GO TERMINATE 
TMI,R0 1 SINGLE BYTE DATA? 
BCTR,EQ GNP3 ONLY TWO DIGITS 

GN1 LQDA,Ri DISBUF+5 GET DIGIT 
GN2 STRfb R1 OISBUF+4 SHIFT IT 
GN3 LODA, R1 DISBUF+6 GET DIGIT 

11-18 



TWIN ASSEtB..ER YER 2. 0 INSTRUCTOR 50 PRGM 11/1178 PAGE 0018 

LINE Jl)f)R OBJECT E SOI.EE 

086S 1BSF C9F6 
0866 1861 001708 
0S67 1864 C9F7 
086S 1866 CAFA 
0869 1868 08DE 
0870 186A 75eS 
08711B6C 8448 
0872 186E 6420 
0811 1870 CSD6 
0874 1872 1848 
0875 
0876 
0877 
0878 1874 20 
08791875 C1 
08S9 1876 C1 
0881 1877 08CF 
8882 1879 F401 
0881 1878 1812 
9884 1870 0C9B5A 
9885 1B80 E410 
08S6 1882 9A01 
0887 1884 lB1F 
8888 1B86 C1 
0889 1887 08CE 
0890 1B89 E410 
0891 1B8B 9fI02 
08921800 61 
0893 1B8E C1 
0894 1BSF 08CC 
0895 1891 E418 
0896 1B93 9A01 
0897 1895 lB8E 
8898 1897 C3 
9899 1B9S 08C8 
0900 189A E418 
0901 1B9C 9A04 
0902 189E 63 
0903 189F 0700 
0904 18Ai17 
8905 1BA2 077F 
0906 18A4 17 
0907 
0998 
8989 
0919 1BAS 7508 
09111BA700 
0912 1Bft8 De 
0913 1BA9 00 
0914 !BAA D8 
0915 1BAB 17 

STRR.R1 *GN1+1 SHIFT IT 
GNPl LODA,R1 DISBUF+7 GET DIGIT 

STRR.. R1 *GN3+1 SHIFT IT 
STRR,R2 *GNP3+1 ENTER NEW DIGIT 
LOOR. R0 *GNP12+1 GET INPUT PARAI'IETER 
CPSL we CLEAR WITH CARRY 
ROO I, R0 H/40' SET BEEN HERE ONCE FLffi 
IORI.R0 H'20' SET SECOND DIGIT FLAG 

GN4 STRR, R0 >l(JNp12+1 RESTORE THE FlAG 
BCTR. UN CW2 GET NEXT ENTRY 

* 
*SET UP DATA TO BE RETlIRNED 

* GNP4 EORZ R0 GET A 0 
STRZ R1 CLEAR R1 DATA 
STRZ R3 CLEAR R3 
LODIt R0 *GNP12+1 GET INPUT PARAI'ETER 
TI'II. R0 1 CHECK FOR SINGLE BYTE 
BCTR,EQ GNP7 IF EQ ONLY 1 DIGIT 
LOOA, R0 *GN2+1 DISBUF+4 GET MSD OF I'ISB 
COMI.R0 H/10' SEE IF HEX DIGIT 
BCFR,LT GNP6 IF NOT SKIP TO NEXT DIGIT 
BSTR.. UN Ron ROTATE NIBBLE 
STRZ R1 SAYE IN R1 

GNP6 LODR.. R0 *GN1+1 DISBUF+5 GET LSD OF I'ISS 
COMI,RQ H'10' SEE IF HEX DIGIT 
BCFR.. LT GNP? IF NOT SKIP TO NEXT DIGIT 
IORZ R1 INCLUSIVE OR MSD ANI) LSD OF MSB 
STRZ R1 SAVE IN R1 

GNP7 LOOR.R0 *GNl+1 DI5BUF+6 GET MSD OF LSB 
COMI,R0 H/10' SEE IF HEX DIGIT 
BCFR,LT GNP8 IF NOT SKIP TO NEXT DIGIT 
BSTR.UN ROTI ROTATE THE NIBBLE 
STRZ Rl SAYE IN R3 

GNP8 LODR.. R0 *GNP3+1 DISBUF+7 GET LSD OF LSB 
COMI.R0 H/10' SEE IF HEX DIGIT 
BCFR, LT GNP9 I F NOT RET~.N 
IMZ Rl INCLlJSIVE OR MSD ~HTH LSD OF LSB 
LODI,R3 0 SET DATA IN R0,Rl FLAG 
RETe. UN 

.GNP9 LODI,R3 127 NO DATA 
RETe, UN 

* *THIS ROUTINE ROTATES A NIBBLE 4 BITS LEFT 

Ron CPSL we 
RRL,R0 
RRL .• R0 
RRLR0 
RRl. R0 
RETC,UN 

CLEAR WITH CARRY 

11-19 



TWIN ASSEMBl..ER VER 2.13 INSTRUCTOR 50 PRGM 1iI1t7S PAGE ee19 

LINE ADDR OBJECT E SOURCE 

0917 
0918 
0919 
13929 
0921 
0922 
0923 
0924 
0925 
0926 
0927 
0928 
9929 
0930 
8931 
13932 
0933 
9934 
0935 
0936 
0937 
0938 
0939 
0940 
0941 
9942 1BRe 051F 
0943 18AE 0684 
0944 1BB0 BBFE 
0945 1BB2 0401 
0946 1884 BBFA 
0947 1886 189A 
0948 1888 E687 
9949 1SBA 9S8C 
0950 1BBC 047F 
0951 1BBE C8A4 
0952 18C0 1B24 
0953 
0954 
0955 
8956 
0957 18C2 CC17E8 
0958 1BC5 E687 
0959 18C7 9(1871) 
13969 1BCA 20 
0961 18CB CS97 
0962 1BCI) 75F1) 
0961 1BCF BBEE 
0964 1B01 E416 
0965 181)3 987A 
0966 181)5 3F1C28 
0967 1008 E9E9 
0968 1BDA 1805 
0969 1BDe 20 
0979 1Boo cass 
8971 1BDF 1B05 

*************'********************************************* 
* 
* *REAl) CASSEITE COI1I'IfINI) 

* 
* 
* 
*THIS IS TI£ HEX OBJECT LOADER 

* *THIS ROllTINE REQlIESTS A FILE ID AND THEN LOADS 2650 HEX OBJECT MODlILES 
*INTO MEMORY 

*' 
*REGISTERS lISED 

* 
*ALL 

* 
*SlIBROIJTlNES CALLED 

*' * IN CASSEITE ItRIT ROlIT INE 
*I'1OV rovE DATA TO DISPLAY BUFFER 
*GNP GET NUMERIC PARAI'IETERS 

* 
************************************************************************ 
* 
* RCAS LOOI, R1 (FEQ-1 GET ADDRESS OF F= DISPLAY 

* 
* 

LOOI, R2 )FEQ-1 
28SR :trMOV MOYE DATA TO DISBlIF 
LOOI, R0 1 SET ROO FOR SINGLE BYTE 
ZBSR *GNP GET THE FILE ID 
BCTR,EQ RCASl FILE II) SPECIFIED 
COM!. R2 we7' ENTRINXT KEY? 
BCFR.. EQ *RCA54+1 GOOO NEW FUNCTION 
LOOI, R0 127 SET FILE 10 FLAG TO FILE 10 FOUND 
STRR. R0 *RCAS5+1 STORE IN FILE II) FLAG 
BCTR, UN LOAD 

*FILE ID SPECIFIED 

* 
RCA51 STRA, R0 FID+1 SAYE FILE 10 

COMI,R2 H'87' ENTR/NXT KEY? 
RCAS4 BCFA, EQ MOO GO DO NEW FUNCTION 

EORZ R9 SET FILE 10 TO ID NOT FOUND 
STRR, R0 *RCAS5+1 STORE IN FILE ID FLAG 
CPSL H'FI)' CLEAR PSL 

RCAS2 ZBSR *IN LOOK FOR BEGINNING OF FILE 
com, R0 H'16' BEGINNING OF FILE CHAR? 
BCFR.. Ell RCAS2 LOOP iILL FIND BEGIN OF FILE 
BSTA, LIN BIN GET THE FILE ID 
CO/'1R, R1 *RCAS1 +1 CHECK FILE ID FOR MATCH 
BCTR,EQ RCAS3 FOUND A MATCH 
EORZ R0 GET A 13 
STRR, R0 *RCRS5+1 NO MATCH SAVE IN FIfJ FLAG 
BCTR, UN LOAD 

11-20 



TWIN ASSEl'RER 'tIER 2. 0 INSTRUCTOR 50 PRGM 11/1/78 PAGE 1313213 

LINE ADDR OBJECT E SOURCE 

0972 1BE1 047F 
0971 188 CC17DF 
0974 1BE6 7SFf) 

0975 1BE8 BBEE 
0976 1BEA E4lA 
0977 1BEC 9878 
097818EE 20 
0979 1BEF CC17E1 
0980 1BF2 3B34 
09811BF4 CD1700 
0982 1BF7 3B2F 
9983 1BF9 CD17DE 
0984 1BFC 3B2A 
9985 1BFE 91 
0986 l8FF 1C1C42 
0987 1C02 C3 
0988 1ce3 000F 
0989 1Ces 185F 
0990 1ce7 3B1F 
0991 1C09 1804 
0992 1C0B 0704 
0993 1C00 9BES 
0994 1C0F 3817 
0995 1Cll CD9700 
0996 1C14 ED9700 
0997 1C17 1884 
0998 1C19 9705 
0999 1Cl8 9BE8 
1000 1C1I) 3836 
1001 1CiF FB6E 
1002 1C21 3B05 
1993 1C23 9866 
1004 1C2S if 1BE6 
1005 
1006 
1007 
100B 
1999 
1919 
1911 1C2S BBEE 
1812 1C2A 7509 
1913 1C2C 3836 
1914 1C2E 92 
1015 1C2F BBF6 
1916 1C31 C1 
1817 1C32 BBEE 
1918 1C34 7509 
1919 1C36 3B2C 
1029 1C!8 01 
1021 1C39 62 
1022 
1923 
1024 
1925 1ClA C1 
1026 1C38 2C17E1 
1927 1C3E 00 

RCAS3 LCDI, R0 127 SET FLAG TO FILE IS MATCH 
RCAS5 STRA, R0 FID FILE ID FOLIND 
LOAD CPSL H'FD' CLEAR PSL 

ZBSR *IN GET A CHAR 
COMI,R0 AI:' START OF LINE CHAR? 
BCFR,EQ LOAD LOOP TILL FIND START FO RECORD 
EORZ R0 GET A 13 
STRA,R0 BC~ PRESET BCC 
BSTR> lIN BIN INPUT A BYTE OF DATA 
STRA.. R1 f'IEM HI AOOR 
BSTR> UN BIN INPUT A B'T'TE OF DATA 
STRA,R1 MEM+1 LO ADDR 
BSTR.. UN BIN INPUT A BYTE OF I>ATA 
LODZ R1 
BCTA, EQ L0AD1 GO T9 START OF PROGRAM IF B't'TE C:OI.P.·IT 0 
STRZ R3 SAVE BYTE COUNT 
LOOR, R0 *L0AD-2 GET FILE ID FLAG 
BCTR, EQ LOAD FILE II> NOT FOllND SKIP TO END OF FILE 
BSTR, UN BIN INPUT A BYTE OF DATA 
BCTIt EQ BLOA sec OK READ THE RECORD 

BL0A1 LooI, R3 4 BeC ERROR 
ZBRR *ERR GOTO ERROR 

BLOA BSTR, UN BIN INPUT A BYTE OF DATA 
STRA, R1 *MEM STORE DATA IN f'lEMOR'r' 
CQt1A, R1 "'MEM 00 THE ERROR CHECK 
BCTR,EQ BlOA2 DATA STORED OK 
LOD I, R3 5 READ CASSETTE MEMORY WR'I TE ERROR 
ZBRR "'ERR GOTO ERROR 

BL0A2 BSTR, lIN INK INCREMENT POINTER MEM 
BDRR, R3 BLOA LOOP TILL DONE 

* 

BSTR, UN BIN INPUT A BYTE OF DATA 
BCFR, EQ BLOA1 BeC ERROR 
BeTA. UN LOAD 

* INPUT A PAIR OF HEX ASCI I CHAR 
*CONVERT TO BINARY 
*OUTPUT IS IN R1 
*CAl..ClILATE BeC ON DATA 

* BIN ZBSR *IN INPUT A CHAR 
CPSL C+We CLEAR CARR~' AND WITH CARRY 

BIN1 BSTR, UN AH03 LOOK lIP VALUE 
LODZ R2 PUT VALUE IN R0 
ZSSR *ROT ROTATE VALUE 
STRZ R1 SAVE VALUE IN R1 
ZBSR '" IN GET A CHAR 
CPSL C+We CLEAR CA~:Y AND WITH CARRY 
BSTR, lIN AH03 LOOK lIP VALUE 
LOOZ R1 GET SAYED VALUE 
IORZ R2 !'tAKE THE BINARY BYTE 

* *CALCULATE Bee 

'" 
CBCC STRZ R1 

EORA.R0 Bee 
RRLR0 

SAVE VALUE 
XOR WITH CtlRRENT Bee 
ROTATE LEFT 

11-21 



TWIN ASSEfoIBlER YER 2. e INSTRUCTOR 50 PRGM UI1I7S 

LINE AOOR OBJECT E SOORCE 

1928 1ClF C8FB 
1029 1C41 17 
1830 
1031 
1032 
1033 
1834 1C42 8C17Df 
1035 1C45 1C1BCF 
1036 lC4S 088F 
1837 lC4A CC17E8 
1038 lC4D 0887 
1039 1C4F CC17E9 
1040 1C52 1F1874 
1041 
1842 
1043 
1044 1C55 0C17DE 
1845 lC58 0El7DO 
1846 1C5B D802 
1047 1C5I) MOO 
1048 1C5F CSF5 
1049 1C61 CAF6 
1050 1C63 17 
1851 
1852 
1053 
1054 1C64 06FF 
1055 1C66 EE3FCS 
1056 1C69 14 
1057 1C6A E610 
1058 1C6C 9878 
1059 1C6E 0706 
1060 1C10 9BE8 
1061 
1862 
1863 
1864 1C72 8400 
1065 lC74 BBF0 
1066 lC76 040A 
1067 lC78 BBF0 
1868 lClA 17 
1869 
1070 
1071 
1072 lC7B 7508 
1073 1(:7[1 BBF4 
1074 1C7F C2 
1075 1C80 0E7FCS 
1076 lCS3 BBF0 
1077 1(:85 ~7FC5 
1078 lC8S BBF0 
1079 1CBf1 17 

* 
'" 

5TRRJ Re *CBCC+2 UPl)ATE TI£ ace 
RETC,UN 

*FINISI£D REAl>ING FILE 

'" LOAD! LOOA. Re FID CHECK FILE If) FLAG FOR FILE If) FOtH) 

'" 

BeTft EQ RCAS2 NO LOOK FOR START OF NEXT FILE 
L~ Re *INI(2+1 GET VALUE FROM !'IE" PLACE START ADDRESS IN PC 
STRft R0 LflI)R 

LOOIt Re *IM(+l GET VALUE FRIl1 1'91+1 
STRA, Re LADR+l 
BeTA, UN MONl GO TO THE MONITOR 

... INCREMENT AOORESS I'IEI'I 

* INK LOOfL Re 1'IEI'I+1 GET ADDRESS 
INK2 LOOA, R2 f1EI'1 

BIRR, R0 INK! INCREMENT IT 
BIRR, R2 INK! 

INK1 STRR.. Re *INK+1 SAVE IN l'IEJ't+l 
STRR, R2 *INK2+1 SAVE IN I'IEI1 
RETC, UN 

* *LOOK UP ASCII HEX TO CONVERT TO BINARY 

* AH03 LooI, R2 255 PRESET INDEX 

'" 

COI'IA, Re ASCI I, R2, + CHECK THE VALUE 
RETC, EQ RETURN IF EQIJIL 
COMI, R2 WllV CHECK FOR MAX COUNT 
BCFR,EQ AH03+2 LOOP 
LooI, R3 6 CHAR NOT ASCII HEX 
ZBRR *ERR GOTO ERROR 

*CARRAGE RETURN ANI) LINE FEED 

*' CRLFF LooI,Re 13 CARRAGE RETURN 
PRINT 

:I< 

ZBSR *ooT 
LOOI, R0 10 
ZBSR *OUT 
RETe,UN 

LINE FEED 
PRINT 

*CONYERT BINARY TO ASCI I HEX ANI) PRINT 
:I< 

~JTT CPSL we 
ZBSR *DISLSI) CONVERT BIN TO NIBBlE 
STRZ R2 SAVE IN R2 
LOOA. R0 ASCII, R2 TENS DIGH 
ZBSR *OUT PRINT TENS DIGIT 
LOOA, R8 ASCII, R1 . GET UNITS DIGIT 
ZBSR *Ol~ f~INT UNITS DIGIT 
RETe, LIN 

11-22 



TWIN ASSEI1BLER YER 2. 0 INSTRUCTOR 50 PRGM 1111178 PAGE 0022 

LINE AODR OBJECT E SOURCE 

1081 
1082 
1081 
1084 
1085 
1086 
1087 
1088 
1089 
1990 
1991 
1092 
1091 
1094 
1095 
1096 
1997 
1098 
1099 
1100 
1191 
1102 
11el 
1104 
1195 
1106 
1197 
1108 
1109 
1119 
1111 
1112 
1111 
1114 
1115 
1116 
1117 less 20 
1118 lCse BBFA 
1119 1esE E687 
1120 1C90 17 
1121 
1122 
1121 1C91 051F 
1124 1(91 06BC 
1125 1C95 BBFE 
1126 1C97' 3872 
1127 1(99 98& 
1128 1(98 (1)1700 
1129 1C9E CC17DE 
1130 lCA! 0412 
11311CAl CCl7Dl 
1122 lCA6 386l 
1133 lG'f18 9C187D 
1134 
1135 

*********************************************************** 
* 
* #RITE CASSETTE COMI'1AND 

* 
*THIS ROUTINE WRITES 2650 HEX FORI'IAT TO CASSETTE TAPE 

* *REGISTERS USED 

'" *R0 SCRATCH 
*Rl SCRATCH 
*R2 SCRATCH 
*R3 SCRATCH 

* 
*SLeROUTINES CAl..lEI) 

* 
*OUT WRITE CHAR TO TAPE 
#fOUT CONVERT BINARY TO ASCI I HEX fIN!) WRITE TO TAPE 
*IM< It£REt1ENT POINTER /'tEM 

* 
*RAM USED 

* *Bee BLOCK CHECK CHAR 
*I'IEI'I PO I NTER 
*BAD PROORfIM START ADDRESS 
*SAD DUMP STOP ADDRESS 
*FID FILE ID FlAG AND STORAGE 

* 
*THIS ROUTINE PIJNCHES A HEX FORMAT TAPE 

* 
* * lEADER16ID: AOORCTBCAADOCCRR ....... Be 

'" ********************************************************************* 
* 
* WCAS4 EORZ R0 GET A 0 

* 
'" 

ZBSR *GNP 
COMI, R2 wall 
RETC, UN 

GET Nllf1BER 
ENTRINXT KEY 

WCAS LODI,Ri (LADEQ-i GET ADDPJESS OF LAD= DI5F~A¥ 
LODI,R2 >LADEQ-l 
ZBSR *MOV MOVE TO DISFtRY BlfFER 
BSTR,!JN WCAS4 GET ADDRESS DATA 
BCFR, EQ *IoICAS6+i MON2 IF NOT EXIT 
STRA, R1 /'!EM SAVE START ADDRESS 
STAA, R0 /'tEM+l 
LODI,R0 Wi2' 
STRfI, R0 DISBIJF 
BSTR, UN WCAS4 

CHftNfj£ DISPLAY 
DISPlIW 'UAD= 
GET ADDRESS DATA 

WCAS6 BCFA, EQ 1'ION2 NOT ENTRINXT l'IUST BE NEW COMMAND 

'" *CHECK FOR START ADDRESS GT THAN STOP 

11-23 



TWIN ASSEMBLER IJER 2. 0 INSTRUCTOR 50 PRGM 11/1178 

LINE ADDR OBJECT E SOURCE 

1116 
1il7 1CAS ED17DD 
1118 1CAE 1806 
1139 1ese 1909 
1140 1CB2 8707 
1141 1CB4 9BE8 
1142 1CB6 EC17DE 
1143 1CB9 1A77 
1144 
1145 1CBB 0802 
1146 1CBD D900 
1147 1CBF CD17CS 
1148 1CC2 CC17C9 
1149 1CC5 0405 
1150 iCC? CC1?D1 
1151 1CCA 3F1CSB 
1152 1CCD 9C9CA9 
11511COO CD17CA 
1154 lG03 CC17CB 
1155 1CD(! 951F 
1156 1CDS 0684 
1157 1CDA BBFE 
1158 1GOC 0401 
1159 1CDE BBFA 
1160 lCEe E687 
1161 1CE2 9SC5 
1162 1CE4 CS94 
1163 1CE6 060A 
1164 1CES 0719 
1165 1CER 20 
1166 1CEB BBF0 
1167 1CED FB7B 
1168 1CEF 12 
1169 1CF0 2440 
1170 lCF2 92 
11711CF3 FAn 
1172 1CFS 0416 
11n 1CF7 BBF0 
1174 1CF9 0C17E0 
1175 lCFC BBF2 
1176 1CFE BBFS 
1177 11>00 04lA 
1178 1002 BBF0 
1179 1D04 20 
1180 1005 C8fI1 
11811D07 0C17CS 
1182 1D0A 7709 
1181 100C 0F17C9 
1184 1D0F ABAC 
1185 1D11 ASA5 
1186 1013 7508 
1187 1015 lE1CB2 
1188 
1189 
1190 1Dle 5818 
1191 101A 5815 

COMA, R1 MEt1 
BeTR, EQ WCAS7 
BeTR.. GT WCAS9 

CHECK HI BYTE 

WCAS8 LooLRl? SET THE ERROR NUMBER 
GOTO ERROR Z8RR *ERR 

WCAS? COMA, Re MEt1+l 
BC~LT WCAS8 

CHECK LO BYTE 

'" WCAS9 BIRR, R0 WC.f!SA INCREMENT STOP ADDRESS 
SO DUMP IS INCLUSIVE 
SAYE END ADDRESS 

BIRR, R1 WCASA 
WCASA STRA, R1 EAD 

STRA.. R0 EftD+1 
LODI,Re H/05' CHANGE DISPLAY 
STRA.. R0 DISBUF DISPLAY 'SAD= 
BSTA, UN WCAS4 GET PROGRAM START ADDRESS 

WCAS3 BCFA.. EQ *WCAS6+1 t1ON2 GOTO MONITOR NEW FUNCTION 
STRA.. R1 BAD SAVE START ADDRESS 
STRA.. Re 8AD+l 
LooI, R1 <FEQ-1 GET ADDRESS OF F= DISPLAY 
LooI,R2 >FEQ-1 
ZBSR >!</'lOy MOVE DATA TO D ISBUF 
LOOt, R0 1 SET FLAG TO SINGLE BYTE 
ZBSR *GNP GET THE FILE ID 
COMI,R2 H'S?' ENTRINXT KEY 
BCFR, EQ *WCAS6+1 MON2 EXIT NEW COtt1ANI) 

STRR, Re *WCAS5+1 SfI\lE FILE ID 
LOO I, R2 10 SET THE DELAY 

PUN10 LOOI, Rl 25 
EORZ R0 GET A 0 

ZBSR *OUT OUTPUT A LEADER 
BDRR, R3 PUN10+2 
SPSU GET FLAG 
EORI, R0 H' 40' COMPLEt1ENT IT 
LPSU RESTORE IT 
BDRR, R2 PUN10 DECREASE THE COUNT 
LOOI,Re H'16' START OF FILE CHAR 
ZBSR *OUT PRINT 

WCAS5 LODA, Re FID+l GET FILE ID 
ZBSR *HOUT CONVERT TO ASCII HEX ANI) PRINT 

PUN2 ZBSR *CRLF OUTPUT CARRAGE RETURN AND LINE FEED 

* 
'" 

LOOI, Re A': I START OF BLOCK CHAR 
ZBSR *OUT PRINT 
EORZ Re GET A 0 
STRR. R0 *PUN1+1 PRESET BeC 
LOOA.. R0 EAD CALCULATE NO OF BYTES TO OUTPUT 
PPSL WC+C SET CARRY AND WITH CARRY 
LODA, R3 EAD+1 GET END ADDRESS 
SUBR, R3 *BDUI11 +1 MEM+1 SUBTRACT START AOORESS FROM STOP ADDRESS 
S1JBR, R0 *BDUt1+1 MEM 
CPSL we CLEAR WITH CARRY 
BeTA, NG WCAS8 START} STOP 

PUN4 BRNR, R0 ADU\'I START ADDRESS GT THAN 256 AWAY FROM STOP 
BRNR .. R3 GDUM START ADDRESS L T 256 AWAY FROM STOP 

11-24 



TWIN ASSEMBLER YER 2. 8 INSTRUCTOR 50 PRGI'I 11/1178 PAGE 8024 

LINE AOOR ceJECT E SOIEE 

1192 1D1C 8C17CA 
W11DiF lBl9 
1194 1021 8C17C8 
1195 1D24 lBl4 
1196 1026 28 
11971027 lBl1 
1198 1029 8C17E1 
1199 102C lB2C 
1288 102£ iF1874 
1281 
1282 
1281 1Ol1 E71E 
1204 1011 1A82 
1285 1035 871E 
1286 !DJ7 8C17oo 
1287 10lA lB1E 
1288 10le 8C17DE 
1289 10lF lB19 
1218 1041 81 
1211 1042 lB16 
1212 1044 88E4 
121l 1046 lB12 
1214 11>48 8C9700 
1215 104B J80I) 

1216 1D4f) 3F1C55 
1217 1D58 FB76 
1218 !D52 OC17E1 
1219 1055 lB8J 
1228 1D57 iF1CFE 
1221 
1222 1D5A 3F1ClA 
122l1l)5l) 91 
1224 105E BBF2 
1225 1D68 17 

LOOA, R0 BAD THIS IS EN!) OF FILE BLOCK 
BSTR, UN EDUI'I SO OUTPUT START ADDRESS OF PROGRAM 
LOOA. R0 BAD+1 
BSTR, UN EI>lIM OUTPUT A ~'TE AS 2 ASCII HEX CHARS 
EORZ R0 END OF FILE BLOCK 
BSTR, UN EDIJ'I OIJTPUT BYTE COI~T 

POO LOOA, R8 Bce GET BeC 
BSTR. UN EDUI'1 OIJTPUT BCC 

* 
* 

BeTA. UN I'IONJ GOTO MONITOR 

OOUI'I CIl'II, RJ W1E' IS START LT Je AWAY FROM STOP 
BCTR. LT BOOI'I OUTPUT LAST BYTES 

ADIJIII LOOI, Rl H'1E' NO OF BYTES THIS RECORD IS Je 
BDUI'I LOOA, R0 MEt1 OUT ADDR HI 

BSTR, UN EDIJtI OUTPUT BYTE AS 2 ASCI I HEX CHARS 
BDlI'I1 LODA.. R8 1'IEI'I+1 OUT ADDR LO 

85TR. UN EDlII'I OUTPUT BYTE AS 2 ASCII HEX CHARS 
LODZ RJ OUT BYTE COUNT 
BSTR, UN EI)UM OUTPUT BYTE AS 2 ASCI I HEX CHARS 
LODR, R0 *PUN3+1 OIJT BCC FOR ADDR AND BYTE COUNT 
BSTR. UN EDIJII OUTPUT BYTE AS 2 ASCI I HEX CHARS 

OOUI'I LODft R0 *I'EI'I OUTPUT DATA FROM I1EI'I 
BSTR. UN EDUI'I OUTPUT BYTE AS 2 ASCI I HEX CHARS 
BSTA. UN INK INCREI1EI'IT POINTER !'IE11 
BDRR, Rl 00IJ1 LOCf TILL DONE 
LODA, R0 Bee GET BCC 
BSTR, UN EDI.II'1 OUTPUT Bee FOR DATA 
BCTA, UN PltQ 

* ED\JIII BSTA, UN CBCC CALCULATE Bee 
LODZ R1 GET VALUE TO OUTPUT 
ZBSR *HOIJT . PRINT AS 2 ASCII HEX CHARS 
RETC,IJN 

11-25 



TWIN ASSEI'IBI..ER VER 2. 0 INSTRUCTOR 50 PRGf1 1111178 PAGE 0025 

LINE ADM OBJECT E SOURCE 

1227 
1228 
1229 
1230 
1231 
1232 
1211 
1214 
12lS 
1216 
1217 
1218 
1239 
1248 
1241 
1242 
1241 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
125l 
1254 
1255 1061 051.F 
1256 1l)6J 069C 
1257 1D65 BBFE 
1258 lD67 0C17CF 
1259 lD6A 1eeR 
1260 
1261 
1262 
1263 lD6C 0C17CE 
1264 1D6F BBER 
1265 1071 9C17CD 
1266 1D74 3814 
1267 1D76 20 
1268 1D77 SBFC 
1269 1079 181E: 
1279 
1271 
1272 
:1273 ln7B 9BSB 
1274 lD7D 186'9 
1275 H<?F EG81 
1276 11)81 9885 
1277 1083 29 
1278 1D84 CC17CF 
1279 lDS! iFl&7[;, 
1289 
1281 iC·,~A B8F4 

************************* ...... ***"'*********************** ... 
... 
*SET OR CLEAR BREAK POINT 
... 

* *TO SET BREAK POINT ENTR ADDRESS AND DEPRESS FUNCTION KEY 
*TO CLEAR BREAK POINT DEPRESS FUNCTIOO KEY 
... 
"'SUBROUTINES CALLED 
... 
*I'K)VI1O\IE DATA TO DISBUF 
~ DISPLAY AND GET ADDRESS DATA 
*ROT ROTATE A NIBBLE 
*SCBP2 SET DISBUF 4&5 
*BRKPT4 SET DISBUF 6&7 
*D5LSD CONYERT TO BINARY FOR DISPLAY 

* *RAI1 MEI'IORY USED 

* 
*BPF BREAK POINT FLAG 
*BPL LOCATION OF BREAK POINT 
*BPD DATA TO BE RESTORED IN BREAK POINT LOCATION 
... 
... 
... 
******** ... **~~******************** ... ***************** ... ** ...... **** ... *** 
... 
SCBP LO[>I,Ri <BPEQ-l GET ADDRESS OF BP= DISPfd..Y 

LOO 1, R2 )BPEQ-1 
ZBSR *MOV MOVE DATA TO DISBUF 
LOOA, R0 BPF BREAK POINT SET? 
BCTR, EQ SCBP1 NOT SET GET ADDRESS 

... 
*BREAK POINT SET SET UP ADDRESS DISPLAY 

'" LQDA,R9 SPL+1 
ZBSR *BRKPT4 
LODA,R9 BPL 
BSTR,UN SCBP2 

PREPARE THE ADDRESS 
SET UP DISPLAY 

GET MSB 
SETUP DISPLAY 

SCBP1 EORZ R9 SET L~ GET NUMBER PARAMETER TO 4 DIGIT 
ZBSR *GNPA GET THE flDDES5 I F ANY 
BCi~EQ SCBP4 SET THE BREAK POINT 

'" *THIS SECTION CLEARS THE BREAK POINT 

LODR .. R3 *SCBP6+1 CHECK BREAK POINT FLAl3 
BCTR,EQ *SCBP5+1 BREAK POINT NOT SET GO TO MONITOR 
COML, R2 W8':'·· =5 TERMINATION BKP? 
BCFR,. EQ *SCBF'5+i NO LEFr·/E 8F~EAK POINT SET GO TO r10;-iITOR 
EORZ R0 GET Po 0 

;CBP6 5TRfI> Foil BPF CLEflR BFEAK POINT FLAG 
SeBPS BeTR., UN MON2 GO TO MOt-~ITOR 

* SCBP2 ZBSR *,HSL5D CONVERT TO BIN FOE [lISPLA~' 

11-26 



TWIN ASSEMBLER VER 2. e INSTRUCTOR 50 PRGM 11/1/78 

LINE ADD~: OBJECT E SOURCE 

1282 :LDSC CD17t'6 STRA.. R1 DISBUF+5 
1283 lD8F CG17D5 STRA,R0 DISBUF+4 
1284 lC'92 17 RETC .. UN 
1285 * 
1286 *THIS SECTION SETS THE BREAK POINT 
1287 
1288 1[;93 CC17CE 
12B9 1096 CD17CD 
1298 1D99 29 
1291 109A C8ES 
1292 1D9C eC97CD 
1293 1D9F 3588 
1294 1OA1 CD97CD 
1..'95 1DA4 ED97CD 
1296 iDA? 18134 
1297 1DA9 07131 
1298 lOAB 98E8 
1299 lOAD CC97CD 
1300 1080 047F 
1301 1DB2 C8D1 
1302 1DB4 1BD2 

* SCBP4 5TRA,R0 BPL+1 SET BREAK POINT ADDRESS 
STRA.·R1 BPL 
EORZ Re CLEAR BREAK POINT FLAG 
STRR, R0 *SCBP6+1 CHECK THE BREAK POINT CAN BE SET 
LOOA .. R0 *BPL GET DATA FROM BREFIK POINT LOCATION 
LooI, R1 WOO' BREAK POINT INSTRUCTION. .. ~~RTC, Pe 
STRfI, R1 *BPI.. TRY TO SET 8REAK POINT 
COMA, R1 *BPl DID IT SET OK? 
BCTR,EQ SCBP7 BREAK POINT CAN BE SET 
lool, R3 1 CANT SET BREAK POINT ERROR 
ZSRR *EP..R GOTO ERROR 

SCBP7 STRA,R0 *8PL RESTORE USER DATA 
LooI,R0 127 SET THE BREAK POINT FLAG 
STRR, R0 *SCBP6+1 SET IT 
BCTR,UN *SCBPS+1 GOTO MONITOR 

11-27 



TWIN AS5EI'1BLER VER 2. tl INSTRUCTOR 50 PRGI'I 11/1178 PAGE 0027 

LINE AOOR OBJECT E SOURCE 

1304 
1305 
1306 
E0? 
B0S 
B09 
1310 
1311 
1112 
1~13 

1314 
H15 
1116 
E17 
1318 
1319 
1320 
il21 
1322 
1323 
1124 
1125 
1326 
1127 11)86 CD17El 
1328 1DB9 CE17E4 
1329 1DBC 0608 
Ell) 11)8£ 0EF7El 
il31 1I)C1 CE7700 
il32 1OC4 FA78 
El3 10C6 17 

******************************************-+:*********** 
* 
'" "'MOVE 8 B'T'TES OF DATA POINTED TO IN R1 AN!) R2 TO DISBUF 

* 
* 
*REGISTERS USED 

* *R0 SCRATCH 
*R1 HI ADDRESS BYTE OF DATA ADDRESS-1 
*R2 LO FtI)DRESS B'r'TE OF DATA AOORESS-1 
*P3 NOT USED 

* *SUBROllTINES CALLED 
:+: 

:+:NONE 
:+: 
*RAM MEMORY USED 

* *T TEMP INDIRECT ADDRESS 

* 
*******************************rt****"'******************* 
'" I'IOY1 STRA, R1 T SET INDIRECT ADDRESS 

STRfI.. R2 T +1 
LOOI, R2 8 SET INDEX TO MOVE 8 BYTES 

MOY1 LODA,R0 *T,R2 GET A BYTE 
STRA, R0 DISBUF-l, R2 !'lOVE TO BUFFER 
BDRR. R2 MOII1 
RETC,UN 

11-28 



TWIN ASSEI'IBLER YER 2.0 INSTRUCTOR 50 PRGM 11/1/78 PAGE 131328 

LINE ADOR OBJECT E SOURCf 

1315 
1356 
1337 
1338 
1339 
1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 
1351 
1352 
1353 
1354 
1155 
1356 
1157 
1358 
1359 
1368 
1561 
1362 
1363 
1364 
1365 
1366 
1367 
1368 
1569 
1378 
1371 
1372 
1373 
1374 
1375. IDC7 8406 
1376 1DC9 FB7E 
1377 10CB 52 
1378 IDCC 0F7700 
1379 IDCF C1 
1380 IDDe 4580 
1381 1002 447F 
1182 1004 0C7F68 
1383 IDD7 61 
1384 IDOO F601 
1385100A1A08 
1386 IDDC 0D17ED 
1387 IDDF 9A03 
1388 1DE1 4580 
1389 IDE3 61 

**************************************"'**14'***: ... ·+::+**1·*******-t* 
'" 
'" >!-"KEY BOAR!) SCAN AND DISPLAV ROUTINE 

'" *THIS ROUTINE WRITTEN B'l' AlEX GOLDBIJRGER 

* 
'" *TO USE THIS ROUTINE PLACE DATA TO BE DISPLftYEC· 
*IN DISBIJF (SEE CODES AT BEGINNING OF PROGRAM) 

* 
*ON ENTRY R0 CONTAINS A FLAG 

* *R0 = 13 NORMAL OPERATION 
* ON EXIT R0 = KEY PRESSED CODE 
*R0 = 1-127 00 THRlI SCAN ONCE AND E:~IT 

'" ON r";IT R0 = KE'( PRESSEl' CODE 
*R0 = WOO' TURN ON DECIMAL POINT FOR ENTR't MODE 
'" ON EXIT R0 = KEY PRESSED CODE 

* 
*SEE KEY PRESSED CODES AT BEGINNING OF PROf'Jf:At1 

'" "'REGISTERS -USED IN BANK ON ENTRY 

'" *R0 SCRATCH 
*Pi KEYBOARD FLAGS 
*R2 DIGIT SELECT 
*R3 DIGIT POINTER 
* 
*SltlROUTINES CALLED 

* 
"'NONE 

* 

* 
*OISBUF DISPlAY BUFFER 
*KFLG KEY BOARD FLAG 

* 
*******************************************:t14'******1"*****:1"'+ 
* [)lOOP LODI,R06 DELAY TO MAKE LOOPS E~_~L 

BDRR,Re $ 
[)l00P1 RRR,R2 ROTATE DIGIT SELECT 

LODA,R0 DnSBlf-1,R3 GET DATA TO BE DI;~LP.YED 
STRZ Ri SAVE () I SPLAY CODE 
ANDI,Ri H1 80' MASK FOR DECIMAL POINT 
ANDL R0 W7F' MASK OFF DECIMAL POINT 
Looo. R0 SEGTBL R0 CONVERT TO SEGMENT DATA 
IORZ Ri SET THE DECIMAL POUlT IF NEEDED 
TMI,R2 H/e1' COl 7? 
BCTR,NG DlOOP3 DONT PUT DECIMAL POINT HERE 
LODA, Ri KFLG+1 GET FlAG 
BCFR,NG [)lOOP3 IF FLAG NOT NEG NO DECIMAL POINT 
fK)I, R1 WOO" MASK DECIMAl POINT 
IORZ R1 SET DECIMAL POnn 

11-29 



TWIN ASSEI1BI..ER YER 2. 0 INSTRUCTOR 50 PRGt11111178 

LINE AOOR OBJECT E SOURCE 

1390 iDE4 0500 
1391 1DE6 D5F9 
1392 1DES D6FA 
1393 1DEA D4F9 
1394 iDEC 9C17EC 
1395 11>EF 980B 
1396 1DF1 1BiR 
1397 
1398 11>8 FB52 
1399 
1400 
1401 
1402 WF5 9C17ED 
1403 WFS 1933 
1404 lDFA 1823 
1405 
1406 
1407 lDFC 3828 
1408 WFE 9806 
1409 1£00 0887 
1410 1E02 F804 
1411 lE04 1B14 
1412 1E06 0460 
1413 lE08 CC17EE 
1414 1£08 1866 
1415 
1416 
1417 lE0D 3817 
1418 1E0F 1862 
1419 lEll 1824 
1420 
1421 
1422 
1423 1£13 CC17ED 
1424 lE16 0460 
1425 
1426 lE18 C8EF 
1427 1ElA CC1?EC 
1428 lEW 7509 
1429 lE1F 0708 
1430 lE21 0601 
1431 1£23 1F1DCB 
1432 
1433 
1414 
1435 1E26 55FE 
1416 lE28 450F 
1417 lE2A 250F 
1438 lE2C 17 
1419 
1440 
1441 
1442 1E2[:' 1340A 
1443 1E2F F87E 
1444 lESl [l4F9 
1445 lE33 04SB 

I>LOOP3 LOO 1.. R1 0 
WRTE,Rl SEG 
!-!RTE, R2 DIGIT 
WRTE,R0 SEQ 
LOOA,R0 KFLG 
BCFR.. EQ DLOOP4 
BCTR,UN DLOOP5 

GET A 0 
TURN OFF SEGMENTS 
ENABLE NEXT DIGIT 
AND DISPLAY IT 
SEE IF KEY IS DOWN? 
KEY UP DEBOllt-lCE 
IS KEY DOWN? 

* 
DLOOP2 BDRR.. R3 DLOOP DECREI'IENT DIGIT PTR 
'" TEST IF ONE SCAN IS DONE. 
:I< IF ONE SCAN DONE INITIALIZE SCAN 
'" PARAMETERS AND KEY FLAGS 

'" 
'" 

LOOA, Re KFLG+1 CHECK FOR ONE PASS THEN EX I T M®E 
BCTR..GT DISP3 IF ONE PASS EXIT 
BCTR, UN DISP4 RESET THE FLAGS 

DLOOP4 BSTR, lIN GETKEY GET A KEY 
BCFR.. EQ DLP0 KEY IS 0ClIrlN RESET DEBOlINCE 
LODR,R0 *DLP1+1 KFLG+2 GET C~_~TER VAlUE 
BDRR,Re DLPl 
BeTR,IJN DISPl 

DLP0 LODI,R0 H'60' 
SET FLAG TO ACCEPT KEY 
SET THE DELA'T' COIJNT 
SAVE DELAY COLINT DLPl STRA,R0 KFLG+2 

BCTR,UN DLOOP2 DO THE NE',{T SCAN 

'" [)LOOPS BSTR .. UN GETKEY IS A KEY DOI-JIP 
BeTR.. EQ DLOOP2 NO 
BeTR.. UN CODE 

* *ENTR\' TO DISPLAY ROUTINE HERE 

* DISPLI STRA,R0 KFLG+l SAVE INPUT PARRMETER 
DISP2 LOO!' R0 W60'" KE't' WAS r)O~lN - SET ~::FLG 

* NOT TO OCCEn KE'T' NEXT SCAN 
STRR.. F.iI *l)I ... Pi +"1 KFLG+2 SET ITT' r:1£80UNCE ~RA~' 

DISPl 5TRA,R0 KFLG SAVE KFLG 
CPSL C+WC CLEPR CAP."",' PN(:' t.JITH CARRV 

[lISP4 LON .. R1 WOO" INITIALIZE UGIT POINTER 
LOD!' R2 wei-' fiND tJIGIT SELECT 
BCTA.. UN DLOOP1 GO [::!5PLA'r' 

:+: 

*GET KE'r' CODE 

* GErKE'T' RED£.. R"1 KBD HI REAC' KE'r'BOAR[) 
ANDl .• PJ. WeFt I'IASK OFF UNIJSE£1 BITS 
EORL R1 WeF' INVERT THE INPUT 
RETe, l~ 

'" *SINGLE PASS EXIT 

*' 
DISP3 LOCI,R010 

BDRR, Re $ DELAY 
WRTE,R0 SEG Tl~N OFF SEGMENTS 
LOCI, Re WSB' NO KE';' PRESSED COf)E 

11-30 



TWIN ASsaB..ER IlER 2. 0 INSTRUCTOR 50 PRGl'I 11/1/78 PAGE 0030 

LINE ADOR OBJECT E SOURCE 

1446 1E35 C2 STRZ R2 SAVE IN R2 
1447 1£36 17 RETC, LIN 
1448 >I< 

1449 *CONVERT KEY LINE DATA TO KEY CODE 
1450 * 
14511£3720 CODE EORZ R0 GET A 13 
1452 1£38 D4F9 WRTE, R0 SEG TURN OFF SEGMENTS 
1453 l£JA A701 51JBI, R3 1 DECREMENT COUJMN COUNTER 
1454 lEJC D4FA WRTE, R0 DIGIT TURN OFF COLIJMNS 
1455 l£SE 0604 CooEi LaD}, 1"2 4 LOOP COlINT 
1456 lE49 51 COOE4 RRR, 1".1 GET WEIGHT OF KE'~ LINE 
1457 1£41 ESse COl'll, R1 WOO' CHECK FOR 1 KEy' DOWN 
1458 1£43 1808 BCTR.. EQ C00E2 R0 = 0,4.·8 .. OR we' 
1459 1£45 8404 AOOI,Re W04' 
1469 1£47 FA?? BDRR .. R2 CODE 4 CHECK FOR ONL l' 1 ~I!r' 
1461 1£49 0708 Loo!' R3 8 MORE THAN 1 KEY r!l)WN OR NO KE'T' ()OM'; 
1462 1£4B 9BE8 ZBRR *ERR GOTO ERROR 
1463 1£4D E704 C00E2 COtil, RJ W04' NUMBER OR FUNCTI ON KEY? 
1464 1£4F 1A85 BCTR, LT CODE3 t KEY 
1465 1E51 50 RRR,Re DIVIDE KEYLlNE WEIGHT B¥ 2 
1466 1£52 6480 lORI, R0 WOO' FUNCTION KEY DESIGNATOR 
1467 1£54 4701 ANDLR3 W01' RETAIN lSB ONL'T' 
1468 lE56 83 COO8 ADDZ R3 TO GET ~ID ... E KEYCOOE 
1469 1£57 C2 STRZ R2 SAllE KEY CODE IN R2 
1470 1£5S 17 RETe. UN 

11-31 



TWIN ASSEMBLER YER 2_ €I INSTRUCTOR 50 PRGI'I 11/1/78 

1472 
1473 
1474 
1475 
1476 
1477 
1478 
1479 
1400 
1481 
1482 
1483 
1484 
1485 
1486 
1487 
1488 
1489 
1490 
1491 
1492 
1493 
1494 
1495 
1496 
1497 
1498 
1499 
1500 
1501 
1502 
150J 
1504 1E59 0C17D8 
1595 1£SC 9819 
1506 1£SE 0C17CF 
1507 1E61 1814 
1508 1£63 0C97CD 
1509 1£66 CC17CC 
151e 1E69 0480 
1511 1£68 CC97eD 
1512 1£6E EC97CD 
1513 1£71 1804 
1514 1£73 0701 
1515 1£75 9BE8 
1516 1£77 

**************************************"'******"'******"'"+"****-tt-t;l.­
* 
.+: . 

*GOTO ROlITIHE 

* 
* 
*REGISTERS lISE!> 

* 
*R0 SCRATCH 
*R1 SCRATCH 
*R2 SCRATCH 
*RJ SCRATCH 
*R1-' RESTORED 
*R2" RESTORED 
*R3' RESTORED 
*f'SU RESTORED 
*PSL RESTORED 

'" *SUBROUTINES USED 

'" *NONE 

* *RAM MEt1OR'r' USED 

* *SSF SINGLE STEP FLAG 
"'BPF BREAK POINT FLAG 
*BPl BREAK POINT LOCATION 
*BPI> BREAK POINT DATA 
*LADR INDIRECT AOORESS TO JUMP THRU 

* 
*********************************"'*********************"'** 
'" GO 

G01 

LOOA,R0 SSF 
BeFR,EQ GO! 
LOO~R0 BPF 
BeTR,EQ GO! 
LOOA, R0 *Bf'L 
~R0 BPD 
LOOI, R0 WB0' 
STRA,R0 *BPl 
COt1fb R0 *BPL 
BCTR,EQ G01 
LOOI, Rl1 
ZBRR *ERR 
EIlU $ 

GET SINGlE STEP FLAG 
NO SINGLE STEP GOTO lISER 
GET BREAK POINT FLAG 
BREAK POINT GO TO lISER NO BREAK POINT 
GET lISER DATA 
SAVE USER DATA 
WRTC, R0 BREAK POINT INSTRIJCTIOtI 
SET THE BREAK POINT 
CI£CK BREAK POINT SET OK 
GOTO USER 
ERROR BREAK POINT NOT SET OK 
GOTO ERROR 

11-32 



TWIN ASSEMBlER YER 2.0 INSTRUCTOR 50 PRGM 11/1/78 

LINE AOOR OBJECT E SOURCE 

1518 
1519 
1520 
1521 
1522 
1523 
1524 
1525 
1526 
1527 
1528 
1529 
1530 
15J1 
15J2 
15J3 
1534 
1535 
1536 
1537 
1538 
1539 
1540 
1541 
1542 
1543 
1544 
1545 
1546 
1547 
1548 
1549 
1550 1£77 0577 
1551 1£79 CD17FB 
1552 1£7C 0517 
1553 1E7E CD17FD 
1554 1£81 7518 
1555 1£83 00178 
1556 1£86 0E17F4 
1557 1£89 0F17F5 
1558 l£SC 7718 
1559 l£SE 0017F6 
1568 1£91 8E17F7 
1561 lE94 0Fl7F8 
1562 1£97 0C17F9 
1563 lE9A 6C17Fl 
1564 1E9D 92 
1565 1£9E 0C17F2 
1566 l£A1 75FF 
1567 l£A3 3F17FB 
1568 1EA6 1F97ES 
1569 

*****",******************************:j.·*:T·**·tH::+.t '~':+':H' p .'. P'H1 , ., 

* 
* *RESTORE REGISTERS BEFORE GOHKi TO '-ISE~: PPO'3RF:f'! 

* 
'" '" 
* *REGISTERS USED 

'" ·'l<R0 THRU R3" PSU PSL 

* *SUBROUTINES CALLED 

'" *lIREG+9 RESTORE PSL 

'" *RAM MEMORY USED 

'" *UREG 
*lIREG+l 
*UREG+2 
*UREG+3 
*UREG+4 
*lIREG+5 
>l<UREG+6 
*UREG+7 
*UREG+S 
*'.JREG+9 
*UREG+10 
*lIREG+11 

=R0 
= Rl 
= R2 
= R3 
= Ri' 
= R2' 
= R3' 
= PSU 
= PSL 
= PPSl INSTRUCTION OPCOOE 
= PSL 
= RETe .. UN INSTRUCTION OPCO()E 

* 
***********"'************"'*********************************"***'f:* RESTRG LOOI, Ri W77' PPSL INSTRUCTION OPc:ODE 

STRA, P1 UREG+9 CREATE A SUBROUTINE TO RESTORE PSL 
LOOI, R1 Wi?" RETC .. UN INSTRlICTION OPCODE 
STRA, Rl UREG+11 
CPSL RS CLEAR REGISTER SHITCH 
LOOA,R1 lIREG+1 RESTORE R1 
LODA.. R2 lIREG+ 2 
LOOA .. R3 lIREG+ 3 
PPSL RS 
LOOA, R1 lIREG+4 
LODA,R2 UREG+5 
LODA,R3 IJREG+6 

RESTORE R2 
RESTORE R,3 
SET THE REGISTER SWITCH 
RESTORE R1' 
RESTORE R2" 
RESTORE R3' 

RESTR1 LODA .. R0 IJREG+7 
lORA .. R0 IFLG 
LPSIJ 

GET PSlJ DATA 
SET INTERIJPT INHIBIT IF PEQUIPEt' 

RESTORE PSI.! 

* 

LODA .. RO UPEG 
CPSL 255 
SSTA.· UN UREG+9 

RESTORE R0 
CLEAR PSL 

RESTORE P5L 
BCTA .. UN *LADR GOTO USER 

11-33 



TWIN ASSEMBlER IIER 2. £I INSTRUCTOR 50 PRf'J'I 11/1178 PAGE OO?1 

LINE ADDR OBJECT E SOURCE 

1571 
1572 
1571 
1574 
1575 
1576 
1577 
1578 
1579 
1580 
1581 
1582 
1583 
1584 
1585 
1586 
1587 
1588 
1589 
1590 
1591 
1592 iEA9 CDl7DA 
1593 iEAC CE17DB 
1594 1EAF CF17DC 
1595 1E82 17 
1596 
1597 
1598 
1599 
1600 
1601 
1602 
1603 
1604 
1605 
1606 
1607 
1608 
1609 
1610 
1611 
1612 
1613 
1614 
1615 
1616 
1617 
1618 lES3 09F5 
1619 lESS 0flF6 
1620 lEB7 0BF7 
1621 iEB9 17 

**"'~****************************************~~~~***** 
'" 
* *SUBROUTINE TO SAVE Ri, R2, R3 

'" *REGISTERS USED IN BANK ON ENTRY 

'" *R1 SfIIIEO IN SAVREG+1 
*R2 SAYED IN SAVREG+2 
*R3 SA\~O IN SAVREG+3 

* 
*SUBROUTINES CflLLEO 

* 
*NONE 

'" *RAI'I I'IEI1OR¥ USED 

'" *SAllREG+1 
*SAYREG+2 
tc..oAYREG+3 

**"''''*****************'''*************************~::f.:f:** SAVR0 STRFb Rl SAVREG+1 
SAVR01 STRA,R2 SAVREG+2 
SAVR02 STRA, Rl SAVREG+ 3 

RETC,UN 

*************************************************************­
* 
'" *SUBROUTINE TO RESTORE R1,R2,R3 

* 
* *REGISTERS USED IN BANK ON ENTRY 

* *R1 RESTORED TO VALLIE IN SAVREG+1 
*R2 RESTORED TO VALUE IN SAVP£G+2 
"'RJ RESTORED TO VAlUE IN S~1ERG+]' 

*' "'SUBROUTINES CALLED 
:+: 
*NONE 

* *RAM MEMORY IJSED 
:+: 
*SAVREG+l 
*5AVREG+2 
*SAIIREG+3 
****************************************"i<:+:*********'** RESTR0 LODR, R1 *SAVR0+1 

LODR,R2 *SAYR01+1 
LODR,R3 *SAVR02+1 
~ETC,UN 

11-34 



TWIN ASSEtII.ER YER 2. 8 INSTRUCTOR 50 PRGt1 1111178 PAGE OOJ4 

LINE f[II)R OOJECT E sot.e:E 

1623 
1624 
1625 
1626 
1627 
1628 
1629 
1638 
1631 
1632 
1633 
1634 
1635 
1636 
1637 
1638 
1639 
1648 
1641 
1642 
1643 
1644 
1645 
1646 
1647 
1648 
1649 
1658 
1651 
1652 
1653 
1654 
1655 
1656 
1657 
1658 
1659 
1669 
1661 
1662 0011 
1663 8888 
1664 8013 
1665 0893 
1666 8806 
1667 8809 
1668 aeeF 
1669 
1678 
1671 
1672 
1673 
1674 1EBA 3B6I) 

1675 lESe 0407 
1676 iEBE 8788 
1677 lECe CSA8 

******"************************"''''**************'''*'''*'''*** 
'" 
'" *CASSETTE 10 ROOTINES 
*PROGRAM !.RITTEN BY BBC 

'" '" 84-27-77 

* * TI£SE ROUTINES "'UTES OR READS ONE BYTE TO OR FROI'I 
'" TI£ CASSETTE IN sua FDRI'IAT. 

* * 1l£ FREQl£NCY ISDETERI1INED BY FREt;! 
* (CYClE TIME IS 3. m MICRO-SEC. ) 

'" 
'" *ROOTINES SAYE AND REESTORE RL R2, R3 OF CURRENT BAtt: 

* 
*IN RETIMfS WITH DATA BYTE IN R0 
*OUT REQUIRES BYTE TO BE OUTPUT TO BE IN R8 

* 
"'TCAS IS ll£ CASSETTE READ TEST USED TO SET LEYELS ON PLAY BfICK 

'" *SEE FRONT OF PROORffI FOR DISPLAYS AND INSTRUCTIONS 

* 
* *REGISTERS USED 

'" *R9.. RL R2, R3 ARE SCRATCH 

'" 
*SUBROUTINES CALLED 

'" "'SAYRe SAVES RL R2, R3 
*RESTR8 RESTORES RL R2. R3 

'" *RAI'I ~ USED 

'" 
"'IDIP TEI'FCWIRY STORAGE 

'" 
***************"'*************************"'*************************"'*** FREQ EQU 17 PllSE TIME ( 0.2 MSEC. ) 
SPDL Y EQU StFREQ INTER-BIT SPACE 
TI'IDl.Y EQU 19 TII1E-otJT FOR INTER-BIT DETECTION 
PllS1 EQU 3 NltIBER OF PllSES FOR A ONE 
PULse EQU 2*PI.lS1 NUI1BER OF PULSES FOR A ZERO 
THRES EQU 3*PULS1 TRANSITION THRESHOLD FOR DETECTION 
EBIT EQU 5*PULS1 TRANSITION THRESHOLD FOR END BIT 

* 
'" '" SUBROUTINE OUT 
'" WRITES ONE BYTE FROM Re TO CASSETTE 

'" OUTT BSTR. UN SAVR8 SAVE R1-R3 
!.RTE, R0 LEDS WRITE BYTE TO LEDS FOR DISPLAY 
LODI.R3 S BIT COUNT 

0UT1 STRR. R0 *OUT5+1 TEMP Sf!YE BYTE IN TEMP 
11-35 



TWIN ASSEMBLER VER 2. 13 INSTRUCTOR 50 PRGM 1111/78 PAGE 131315 

LINE RDDR OBJECT E SOURCE 

1678 lEC2 CBAA 5TRR.· R3 *OIJT6+1 TEI'IP+1 SAVE BIT WJNT IN TEI'IP+l 
1679 lEC4 05136 Loo 1, Rl PUlS0 GET NUMBER OF PllL~.ES FOR A ZERO 
16813 lEC6 F4131 TMI..R0 H'i.W TEST FOR P. ONE 
1681 lEC8 98131 BCFR.. 13 0IJT2 
1682 lECR 51 RRR,Rl DIVWE COUNT I F A ONE 
1683 lECB FS82 OUT2 BDRR, R1 oun CHECK FOF: LAST BIT 
1684 lECI> 85136 ADD I, R1 PlILS0 VES. AOO LAST BIT PULSES 
1685 lECF 861.1 olJn LooI, R2 FRED LENGTH OF PUlSE 
1686 lEDl 13718 LooI.. P3 H'18' SET ENV AND FREQ 
1687 lED3 D7FB lo.f:TE .. R3 CAS 
1688 1£D5 FA7E BDRR.. R2 t- DElRY 113 MICRO-SEC PER ITERATION 
1689 lECt? 13611 LON .. R2 FRED LENGTH OF PULSE 
16913 1£09 137113 LooI.. R3 H'113' RESET !=REQ 
1691 lEDB D7F8 WRTE.. R3 CAS 
1692 lEDD FA7E OORR,R2 t- DElA'y' 113 MICRO-SEC PER ITERATION 
:1.693 1EC'F F96E BDRR..Rl OUB DO NE~:T PllLSE 
1694 lEEl 13688 LODI.. R2 SPDL'T' INTER-BIT SPACE 
1695 1£E 1371313 LooI.. R3 WOO' TURN OFF ENV AND FRED 
16% lEE5 D7F8 WRTE,R3 CAS 
1697 lEE7 FA7E BDRR,R2 $ DELAY 113 MICRO-SEC PER ITERATION 
1698 * 
1699 lEE9 9C17C6 OUTS LOOA,R0 TEMP GET CHARACTER BACK 
1700 lEEe 50 RRR,R9 ROTATE RIGHT ONE PLACE 
17131 lEED aF17C7 DUT6 LODA, R3 TEI'IP+l GET BIT COUNT 
1702 lEF0 FB4E BDRR,R3 OUTl CONTINUE IF COIJNT NON-ZERO 
1793 1£F2 3F1EB3 OllT4 SSTA,UN RESTR9 RESTORE R1-R3 
1704 1£FS 17 ~ETC,UN ELSE, RETURN 
1705 * 
1796 * SUBROUTINE IN 
1797 * READS ONE BYTE FROM CASSETTE TO Re 
1708 '" 1709 1EF6 3F1EA9 INN SSTA, UN SAYR0 SAVE Ri-R3 
1719 1EF9 20 EORZ Re SET R13 TO ZERO 
1711 1EFA 44FE IN1 001 .. Re H'FE' MASK ~JT LOW BIT 
1712 1EFC CSEC STRR, R0 :t.OUT5+1 TEMP SAVE PARTIAL B~'TE 
1713 lEFE 3B0A SSTR, UN GaIT GET NEXT BIT 
1714 IF00 SSE8 AOOR, R0 *OUT5+1 TEMP ADD IN PARTIAL B'r'TE 
1715 lF02 50 RRR,Re MOVE NEW BIT TO HIGH POSITI~l 
1716 !F133 5975 BRNR,Rl IN1 TEST LAST BIT FLAG 
1717 lF05 3BEC BSTR, UN *OlIT 4+1 YES, RESTORE Rl-R3 
1718 !F07 0407 WRTE .. Re LEOS WRITE BYTE TO LEDS FOR DISPlfl'T' 
1719 1F09 17 RETC, UN RETURN 
1729 '" 
1721 '" SUBR~JTINE TO GET THE NEXT BIT FROM CASSETTE 
In'2 '" BIT IS RETURNED AS LEAST SIGNIFICANT BIT OF R0 
1723 '" 
1724 1F0A 9589 GBIT LooI.. Rl W80' 
1725 lF9C D5F8 WRTE .• Rl CAS SET SENSE TO CASSETTE 
1726 !FeE 12 SPSU GET PSU 
1727 1FaF e7FF LooI..R3 -1 SET TRANSITION COUNT TO -1 
1728 lFl1 06FF LODI, R2 WFF··· SET TlME-~JT TO MAX FOR FIRST TRANSITION 
1729 1F13 lBe2 BCTR,UN GBB 
lne 1F15 9613 OOT2 LOOI,R2 TMDL'r' SET END-OF-BIT DETECTION DELA'r' 
1731!F17 C1 GBB STRZ Ri SAVE LAST COP'r' OF PSlI IN R1 
17321F188701 AOOI,R3 1 INCREMENT TRANSITION COUNTER 
1733 !F1R 12 GBT4 SP5l1 LOO.l( FOR TRANSITION 

11-36 



TWIN ASSEMBLER VER 2.13 INSTRUCTOR 5e PRGM 11/1/78 PAGE 01336 

LINE ADDR OBJECT E SOURCE 

1734 1F18 E1 
1ns 1F1C 9877 
1736 1FiE FA7A 
1737 1F2e 20 
1ns 1F21 D4F8 
1739 1F23 0581 
17413 1F25 E7eF 
1741 1F27 9903 
1742 1F29 A7ec 
1743 1F2B C1 
1744 1F2C E709 
1745 1F2E 15 
1746 1F2F 13401 
17471F3117 
1748 
1749 
1750 
1751 
1752 182 0588 
1753 1F34 D5FA 
1754 186 13740 
1755 1F38 D407 
1756 1FlA D7F9 
1757 1F3C CF17C7 
1758 1FlF 06eA 
1759 1F41 CE17C6 
1760 lF44 3B44 
1761 1F46 0AFA 
1762 1F48 050C 
1763 1F4A 60 
1764 lF4B 1801 
1765 1F4D 51 
1766 1F4E 133 
1767 1F4F 1867 
1768 1F51 A1 
1769 1F52 9804 
1770 1F54 FA6B 
1771 1F56 18SE 
1772 1F5B 190A 
1773 1F5A 98E1 
1774 1FSC E4DE 
1775 1FSE 1874 
1776 1F60 enE 
1777 1F62 1854 
1778 lF64 0lOE 
1779 1F66 lB5e 

COMZ R1 
BCFR. EQ GBT2 
BDRR, R2 0014 
EORZ R0 
IoIRTE, R0 CAS 
LOOL R1 1 
COMI, R3 EBIT 
BCFR,GT GBT5 

IF NOT EQUAL NEW TRANSITION 
IF EW_~L, TEST TIME-OUT 
SET R0 TO ZERO 
SET SEN~'£ BACK TO IJSER 
PRESET END FLAG TO 1 
ENDBIT THRESHOLD 

SlIBL Rl 2*PlILS@ LAST BIT, 9JB EN[)BIT r;'ULSES 
STRZ R1 AND SET END FLAG 

GBT5 COMI,Rl THRES IS COUNT GREATER THAN THF.'ESHOLV 

'" 
'" 

RETC,GT RETl~N IF TRl[ 
LODI, R0 1 NO.. SET BIT TO O~JE 
RETC,UN RETURN 

'" SUBROUTINE TEST CASSETTE READS 

'" TCAS LOOI,R1 H'se' SELECT LEAST SIGNIFICA~IT DIGIT 
IoIRTE, R1 DIGIT 

TCS0 LooI,R3 H'40' OUTPUT '-' TO DI5PLA'r' 
TCS1 IoIRTE.. R0 LEDS OUTPUT VALUE TO LED I 5 

IoIRTE, R3 DISP OUTPUT TO DISPLAY 
TCS10 STRA, R3 TEMP+l SAVE LID COND I TI ~J 

LOO I, R2 113 RETURN AFTER 10 EXACT READS 
TCS2 STRA,R2 TEMP SAVE R2 

BSTR, UN 00 IT GET A BIT 
LO[lR,R2 *TCS2+1 TEMP RESTORE R2 
LOOI,R1 2*PULS0 NUMBER OF TRANSITIONS FOR A ZERO 
IORZ R0 GET CONDITION CODE FOR R0 
BCTR. EQ TCS3 BRANCH IF A ZERO 
RRR, P..1 DIVIDE NOMINAL TRAUSITION COUNT Bl' 2 

TCS3 LOOZ R3 GET COUNT IN R0 
BCTR, EQ TCS1 BLANK DISPLA'r' IF e 
SlIBZ R1 TEST COlJNT 
BCFR. EQ TC54 IF NOT EQIJAL RETURN 

TCS35 BDRR,R2 TCS2 IF EQUAL AND C~JNT NOT up, GET NEW BIT 
BClR.1JN lCse 

TCS4 BClR,6T TC55 DETEF.'.MlNE POLARIT'r' 
LODR,R0 *TCS10+1 TEMP+1 GET UD CO~IDITION 
COMI.. R0 WDE' 00l01N CONDITION 
BCTR,EQ TC535 CANT GO DIRECT FROM DOWN TO L~ 
LODI,R3 H/3E' OUTPUT 'U' TO DISPLAY 
BCTR. UN TCS1 

TC5S LooI.. R3 WDE' OUTPUT '0' TO DISPLA'T' 
BCTR.. IJN TCS1 

11-37 



TWIN flSS91BI£R Y£R 2. 8 INSll\ICTOR 50 ~ 11I1RS 

t.IME ADDR OBJECT t SOl.RCE 

ii'S! 
1782 
Hel 
1784 
1785 
1786 
1787 

*****~**"'****~***"'******~***************'" • 
*l£lm'f8 lOOKUP mBlE FOR HEX TO $EYEN SEGI'IOO 

'" "'THIS TABlE CONTAINS 11£ YRLUES fOR LIGHTING THE 
*SEGMENTS FOR THE DIGITS 0 THRU 9 fN) LETTERS 1'1 TO f 

'" 1788 If£S lFt6'SB4f 
1F6C 666D7007 
1m 7Fb777Ft 
1F74 39DE7971 

SEGTBL Mm H'lf,06,$, 4f, 6&>6t), m.07,7F.b7177,.FC, 39,oc, 79.71' 

11< 1789 
1799 *SEGMENT DATA fOR SYMBOLS P L UR H 4) = Bl.fINK J -. Y N 
1791 '" 
1792 tHS 7JJ8JES0 MTA W7l, lS, lE, 50, 75, St., 4S,@e,\£. 40 .. Be, bE, 54 t 

IF7C 76SC4S00 
1fS00E4f3S06E 
1F84 54 

1793 '" 
1794 "'THIS TABLE CONTAINS THE DISPLAY ERROR 
1795 * 
1796 1F85 170£1313 ERROR OOTA Wl?, 0E,1l,13, 15. 13,17,17' 

1FS9 15131717 
1797 '" 
1798 *THIS TOOLECONTAINSn£ DISPLAY fII)= 

1799 '" 
1800 iFeD 17MOO16 fIDR MT!1 W1?, ifl, 00, It:d], i7 .. 17, 17/ 

1F91 17171717 
1801 '" 
1802 "'THIS TABLE (~NTAINS THE DISPLAY HELLO 
1893 '" 
1804 1F95 17140E11 HELLO DATA W17, 14, 0E, It..11, 00,17,17' 

1F99 11001717 
1805 '" 
1806 *THIS TABLE CONTAINS THEI)ISPLAYBP: 
1807 '" 
1808 1F91) i7~B1316 BPErI DATA Wi?. 08, 10 .. 16,17, 1{, :1.7 .. 17' 

1FA1 17171717 
1S09 '" 
1810 "'THIS TABLE CONTAINS THEDISF'LA'T'R= 
1811 '" 
1812 IFA5 171713:17 Rm Nnl1 W17,17, 13, 17,16,17 .. 17.,17' 

lFA9 16171717 
1813 * 
1814 *THIS TfIBLE CDNT'AINS tHE OISPLflY PC= 
181S " 
1816 lFAr:o 17100(:16 Pct:Q OOTA Wl?, 10,0(,16,17 .. 17.17, 17" 

IF'E'J. 17171717 
1817 '" 
1818 *THIS TABLE 'CONTAINS THE DISPLAY F= 
1819 * 
1S2-3 1fBS 171M16 FEG! DATA H'17:·1{,,0F, Ib, 17,11,17,17' 

1FB9 17171717 
1ezl '" 
1822 *THI5 TfIf.t.£ 'C\lNffiINS THE DISPL'IW li'l)'= 

11-38 



TWIN ASSEMBLER IIER 2.0 INSTRlh:TOR 50 PRGM 11/1/78 PAGE 0018 

LINE ADDR OBJECT E SOURCE 

1821 * 
1824 1FBD 118001)16 LADEQ DATA W1!. 0fI, 00, 16, 17, 17 .• 17, 17' 

1FC1 17171717 
1825 * 
1826 *THIS TABLE IS THE ASCII LOOK UP TABLE 
1827 * 
1828 iFC5 19113213 ASCII DATA A '8123456789ABCDEF , 

1FC9 14353617 
!FeD 18194142 
iF!)1 43444546 

1829 * 

11-39 



TWIN ASSEMBLER VER 2.0 INSTRUCTOR 50 PRGM 11/1/78 

LINE AODR OBJECT E SOLIRCE 

1831 
1832 
1833 
1834 
1835 
1836 
1837 iFD5 BBFE 
1838 iFD7 e3 
1839 lFD8 BBEC 
184(1 1FDA 17 

*'****'*'******************************************"*********** 
*' 
* *IJSER ENTRV TO DISPLA'T' ROUTINES 
*' 
*' USRDSI ZBSR *1'101,1 SET UP D I SPLAt' 

LODZ R3 GET DISPlAY FLAG 
ZBSR *DISPL'T GO TO (JISPLA'y' ROUTINE 
RETC,UN . 

11-40 



TWIN ASSEMBLER YER 2. 0 INSTRUCTOR 50 PRGM 11/1/78 

LINE .fIDDR OBJECT E SOURCE 

1842 
1843 iFOB 
1844 
1845 1FE6 1FD5 
1846 !FE8 1899 
1847 1FEA 19E8 
1848 !FEC !EB 
1849 1FEE 1EF6 
1850 1FF0 1EBA 
1851 1FF2 1C7B 
1852 1FF4 1A76 
1853 1FF6 1BAS 
1854 lFFS 1C72 
1855 lFFA lB3B 
1856 1FFC 1B20 
1857 1FFE 10B6 
1858 
1859 1800 

*****",******************************************"f:***"'*:f*:f: 
ORG 8192-26 THE 2BSR OR ZBRR VECTORS APE HEF:E 

****************************************************·t**$"+';1.< 
USR[)SP AeON 
ERR ACON 
BRKPT4 ACON 
[) ISPL', AeON 
IN ACON 
OUT AeON 
HOUT ACON 
DISlS[) ACON 
ROT AeON 
CRLF ACON 
GNP ACON 
GNPA ACON 
MOil ACON 

U:.RDSI USER ENTR'r' TO DISPLA\' ROUTINES 
ERR I ERROR MESSAGE 

BRKPTI SET DISBIJF6, -; WITH CONTENTS OF R0 
DISPLI DISPLAY AND KE~'BOARD ROUTINE 
INN CASSETTE INPUT ~JTlNE 
OUTT CASETTE OUT PUT 
HOIJTT CASSETTE BINAR\' TO ASCII HE~: OLITPlJT 
DISLSI CON'-lERT BnE TO NIBBLE 
ROn ROTATE A NIBBLE 
CRLFF CARRAGE PETURN AND lINE FEEr' 
GNP I GET NUMBERS 
GNPAI GET NUMBERS AND [iISPLAV 

1'1(1\/1 MOVE £lATA TO DISBIJF 
***********************t.********************-:+ .. ********.+::+:**+:.1'+ 

END SAIIRG 

TOTAl ASSEI'IBL Y ERRORS = 0000 

11-41 





~ CHAR 
L.S. 
CHAR 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

C 1100 

D 1101 

E lllO 

F 1111 

12. CONVERSION TABLES 
ASCII CONVERSION TABLE 

ASCII CHARACTER SET (7-BIT CODE) 

0 1 2 3 4 5 
000 001 010 011 100 101 

NUL DLE SP 0 @ P 

SOH DC1 ! 1 A Q 

STX DC2 n 2 B R 

ETX DC3 # 3 C S 

EOT DC4 $ 4 D T 

ENQ NAK % 5 E U 

ACK SYN & 6 F V 

BEL ETB I 7 G W 

BS CAN ( 8 H X 

HT EM ) 9 I Y 

LF SUB * · J Z · 
VT ESC + · K ( , 

FF FS . < L 

CR GS - = M ) 

SO RS • > ~ t 
+ 

51 US I ? 0 or -

12-1 

6 7 
110 111 

P 

a q 

b r 

c s 

d t 

e u 

f v 

g w 

h x 

i y 

j z 

k { 

1 

m } 

-n 

0 DEL 



DECIMAL TO HEX CONVERSION TABLE 

HEXADECIMAL COLUMNS 

6 5 4 3 2 1 

HEX=DEC HEX=DEC HEX=DEC HEX=DEC HEX=DEC HEX=DEC 

° ° ° ° ° ° ° ° ° ° ° ° 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1 
2 2,097,152 .2 131,072 2 8,192 2 512 2 32 2 2 
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3 
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4 
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5 
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6 
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7 
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8 
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9 
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10 
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11 
C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12 
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13 
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14 
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15 

12-2 



13. GLOSSARY 

This chapter contains definitions of terms unique to microprocessors and micro­

computers. Definitions used are connnon to the industry where such definitions 

exist. Other definitions were specially written for this glossary. 

13-1 



ABSOLUTE ADDRESS 

The actual address of a memory location, as opposed to a relative address 

which may not be determined until it is used during the execution of an in­

struction. 

ACCESS TIME 

The time interval between the instant that data is called from or delivered to 

a storage device and the instant the requested retrieval or storage is com­

plete. 

Time between the instant that an address is sent to a memory and tQe instant 

that data returns. Since the access time to different locations (addresses) 

of the memory may be different, the access time specified in a memory device 

is the path that takes the longest time. 

ACCUMULATOR 

A register of the Arithmetic Logic Unit (ALU) of a central processor used as 

intermediate storage during the formation of algebraic sums, or for other in­

termediate logical and arithmetic operations. 

Register and related circuitry that holds one operand for arithmetic and logi­

cal operations. 

ADDRESS 

A unique lable, name, or number that identifies a memory location or a device 

register for access by a computer. 

A number used by the CPU to specify a location in memory. 

ADDRESS FIELD 

That portion of a computer word containing either the address of the operand 

or the information necessary to derive that address. 

ALGORITHM 

A prescribed set of well-defined rules or processes for the solution of a 

blem. Algorithms are implemented on a computer by a programmed sequence 

instructions. 

ADDRESSING MODES 

See MEMORY ADDRESSING MODES. 

13-2 

pro­

of 



ARRAY 

A named group of related variables or constants. Also referred to as a table 

or list. An index is used in combination with the array name to access indi­

vidual variables or constants in the array. Items in the array may be located 

in consecutive memory locations or they may be linked. 

ARCHITECTURE 

Organizational structure of a computing system mainly referring to the CPU or 

microprocessor. 

ARGUMENT 

The independent variable of a function. Arguments can be passed as part of a 

subroutine call where they would be used in that subroutine. 

ASCII CODE 

The acronym for American Standard Code for Information Interchange. This 

standardized code is used extensively in data transmission. The code includes 

128 upper and lower case letters, numerals, and special-purpose symbols each 

encoded by a unique 7-bit binary number. 

ASSEMBLER 

A computer program which converts a symbolic assembly language program into an 

executable object (binary-coded) program. Depending on the assembler, the 

machine language program produced can be structured to occupy a set of loca­

tions in system memory by adding a given value (offset) to each assembled ad­

dress. 

ASSEMBLY LANGUAGE 

A human oriented symbolic-mnemonic source language which is used by the pro­

grammer to encode programs and associated data bases. Assembly language pro­

grams are read by the assembler and converted to executable machine language 

programs during the assembly processes. Assembly language is easier to remem­

ber and manipulate than machine language. 

BAUD RATE 

Synonymous with signal events (bits)-per-second and used as a measure of se­

rial data flow between a computer and/or communication devices. 

13-3 



BIDIRECTIONAL 

Refers to a type of bus structure where a single conductor is used to transmit 

data or signals in either direction between a peripheral device and a central 

processor or memory. 

BINARY NUMBER SYSTEM 

A number system having 2 as its base and expressing all quantities by the num­

erals 0 and 1. As in the decimal system, the value of binary digits is posi­

tionally weighted from right to left by ascending powers of the base. The 

two-state character of the binary number system makes it especially suitable 

for the digital computer which operates most conveniently on a bistable basis. 

BISTABLE LATCH 

A rudimentary flip-flop which can be enabled to store a logical one or a logi­

cal zero. One bistable latch device is commonly used in memory and register 

circuits for the storage of each bit. 

BIT 

A minimum logic element. A binary number of either 0 or 1. A bit is the 

smallest unit of imformation in a binary system of notation. It is the choice 

between two possible states, usually designated one (1) and zero(O). 

BIT PARALLEL 

A method of simultaneously moving or transferring all bits in a contiguous set 

of bits over seperate wires, one wire for each bit in the set. 

BIT SERIAL 

Refers to a method of sequentially moving or transferring a contiguous set of 

bits one at a time over a single wire, according to a fixed sequence. 

BLOCK 

A group of consecutive words, characters, or bits which are handled as a sin­

gle unit, particularly with respect to input-output operations. 

BLOCK DIAGRAM 

A chart which graphically depicts the functional relationships of hardware 

making up a system. The block diagram serves to indicate the various data and 

control signal paths between functional units of the system hardware. 

13-4 



BOOTSTRAP 

A short sequence of instructions used for loading system memory with a larger, 

often more sophisticated loader of system programs. Bootstrap programs are 

hardwired in a reserved section of a computer system memory which, when enter­

ed, will operate a device such as a paper tape reader to load the system. 

BRANCH 

An instruction which, when executed, can cause the 

control unit to obtain the next instruction to be 

computer's arithmetic and 

executed from a location 

other than the next sequential location. A branch can be unconditional or 

conditional based on the magnitude or state of some value. Branch is synony­

mous wi tlt jump. 

BREAKPOINT 

A location in a program at which execution of that program can be halted to 

permit visual check, printing out, or other performance analysis. 

BUS 

A circuit or group of circuits which provide a communication path between two 

or more devices, such as between a central processor, memory, and peripherals. 

BUS DRIVER 

A circuit which amplifies a bus data or control signal sufficiently to assure 

valid receipt of that signal at the destination. 

BYTE 

A set of contiguous binary bits, usually eight, which are operated on as a 

unit. A byte can also be a subset of a computer word. 

CARRY 

In arithmetic operations, the transfer of a value from a lower order position 

to the next higher position as a result of the lower order digit having equal­

ed or exceeded the base of the number system involved. 

CENTRAL PROCESSING UNIT 

A typical microprocessor incorporates a central processing unit (CPU), a me­

mory and Input/Output ports. The CPU reads instructions from the program 

13-5 



memory in a logical determined sequence and uses them to initiate processor 

actions. To perform these functions, a CPU must incorporate registers, an 

arithmetic/logic unit (ALU) and central circuitry. Registers, temporary stor­

age units inside the CPU, differ in their functional capabilities. Some, like 

the program counter and instruction registers, serve dedicated applications; 

others, like the accumulator, serve general-purpose functions. 

An accumulator usually stores one of the operands manipulated by the ALU. A 

typical instruction could direct the ALU to add another register's contents to 

those of the accumulator and store the results in the accumulator. In gen­

eral, the accumulator serves both as a source and destination register. In 

addition to the accumulator, the CPU may contain additional general-purpose 

registers that programmers can use to store source or intermediate "scratch­

pad" data. 

CHARACTER 

A letter, digit, or other symbol that is used as part of the organization, 

control, or representation of data. A character is often in the form of a 

spatial arrangement of adjacent or connected strokes. 

CLOCK 

A pulse generator which generates basic timing signals to which all system 

operations are synchronized. 

CONDITIONAL JUMP 

An instruction causing a program transfer to 

than the next sequential instruction only if a 

the instruction is satisfied. If the condition 

an instruction location other 

specific condition tested by 

is not satisfied, the next 

sequential instruction in the program line is executed. 

CONSTANT 

A data item which does not change during program execution. Program constants 

can be symbolically defined in 2650 assembly language with the EQU, DATA and 

ACON statements. 

CONTROL CHARACTER 

A character whose occurrence in a particular context initiates, modifies, or 

halts operation. 

13-6 



CONTROL STATEMENT 

A program statement (instruction) which is used to direct the flow of the pro­

gram either causing an unconditional transfer or making a transfer dependent 

upon meeting a certain specified condition. Branch instructions in the 2650 

are control statements. 

CYCLE STEALING 

A characteristic of Direct Memory Access (DMA) channels. An I/O device can 

delay CPU use of the I/O bus for one or more bus cycles while it accesses sys­

tem memory. 

CYCLE TIME 

The time required by a computer to read from or write into the system memory. 

If system memory is core, the read cycle time includes a write after read 

(restore) subcycle. Cycle time is often used as a measure of computer perfor­

mance, since this is a measure of the time required to fetch an instruction. 

DATA BUFFER REGISTER 

A temporary storage register in a CPU or peripheral device capable of receiv­

ing or tran~itting data at different I/O rates. Data buffer registers are 

generally positioned between the computer and slower system components, allow­

ing data to flow at the computer's I/O rate. 

DEBUG PROGRAMS 

Debug programs help the programmer to find errors in his 

are running on the computer, and allow him to replace 

into (or out of) his program. 

DECODER 

programs 

or patch 

while they 

instructions 

A logic device which converts data from one number system to another; e.g., an 

octal-to-decimal decoder. Decoders are also used to recognize unique address­

es, such as a device address and bit patterns. 

DECREMENT 

To reduce the numerical contents of a counter. A decrement of one is usually 

assumed unless specified otherwise. 

13-7 



DEFERRED ADDRESSING 

An indirect addressing mode in which the directly addressed location 'contains 

the address of ,the operand, rather than the operand itself. 

DIAGNOSTIC PROGRAM(S) 

A troubleshooting aid for locating hardware malfunctions in a system or a pro­

gram to aid in locating coding errors in newly developed programs. These pro­

grams check the various hardware parts of a system for proper operation; CPU 

diagnostics check the CPU, memory diagnositcs check the memory, and so forth. 

DIRECT ADDRESSING 

1) An addressing mode in which the contents of the addressed location is the 

operand. 2) The address of an instruction or operand is completely specified 

in an instruction without reference to a base register or index register. 

DIRECT MEM)RY ACCESS (DMA) 

A method of transferring blocks of data directly between an external device 

and system memory without the need for CPU intervention. This method 

ficantly increases the data transfer rate, hence system efficiency. 

Cycle Stealing.) 

DOUBLE OPERAND 

signi­

(see 

An instruction type containing two address fields, source operand address 

field, and destination operand address field. 

DOUBLE-PRECISION ARITHMETIC 

Refers to a method of performing arithmetic operations in which two computer 

words ar'e used to represent a single number, effectively doubling the data 

word size. 

EDITOR 

1) A program which permits a user to create new files in symbolic form or 

modify existing files. 2) As an aid in preparing source programs, certain 

programs have been developed that manipulate text material. These 

called editors, text editors, or paper tape editors, make it possible 

pose assembly language programs on-line, or on a stand-alone system. 

13-8 

programs, 

to com-



EMULATOR 

A program or a hardware device which duplicates the instruction set of one 

computer on a different computer, allowing program development for the emulat­

ed computer without that computer being available. 

EXECUTE 

To perform a specified computer instruction. To run a program. 

FETCH 

1) The action of obtaining an instruction from a stored program and decoding 

that instruction. Also refers to that portion of a computer's instruction cy­

cle when that action is performed. 2) A process of addressing the memory and 

reading into the CPU the information word, or byte, stored at the addressed 

location. Most often, fetch refers to the reading out of an instruction from 

the memory. 

FIFO 

First In, First Out method of storing and retrieving items from a stack, table 

or list. 

FILE 

A collection of related records treated as a unit. In a 

file can exist on cassette tape, disk, punched paper tape, 

as an accumulation of information in a system memory. A 

data, programs, or both. 

FIRMWARE 

See SOFTWARE. 

FIXED-INSTRUCTION COMPUTER 

computer 

punched 

file 

system, a 

cards, or 

can contain 

(Stored-Instruction Computer): The instruction set of a computer is fixed by 

the manufacturer. The users will design application programs using this in­

struction set (in contrast to the micro-programmable computer for which the 

users may design their own instruction set and thus customize the computer for 

their needs.) 

FIXED-POINT ARITHMETIC 

Arithmetic in which the binary point that separates the integer and 

13-9 . 



ft'a~tional portions of nume-rical exp"t'essions is eitheT explicitly stated for 

all expressions orb fixed 'W:i.th respect to the first or last digit of each 

expre~rsl'On .• 

FLAG 

An indicat'Or, usually a single binary bit,whose state is used to inform a 

later s'ecti'On 'Of a program that a condition, identified with the flag and 

designated by tbestateof the flag, has 'Occurred. Afla.g can be b'Oth S'Oft­

'Ware and hardware implemented. 

FLAG LINES 

Inputs t'O a micr'Oprocessor controlled by I/O devices and tested by branch in­

structi'Ons. 

FLOATING-POINT ARITHMETIC 

Arithmetic in which the l'Ocati'On 'Of the decimal P'Oint f'Or each number in an 

arithmetic operati'On is defined as a power of 'ten and all eXP'Onents are 

equalized prior t'O the 'Operati'On. The maJor advantages of floating point 

arithmetic are that it e:lttends the calculati'On capability of a c'Omputer bey'Ond 

the limit imposed by the fixed word length and that it contributes to ease of 

programming .. 

FLOWCHART 

A graphicalrepresentati'On of the processing steps performed by a computer 

pr'Ogram 'Or of the sequence of logic operations implemented in hardware. 

GENERAL 'REGISTER 

One ofa specified number 'Of internal addressable registers in a CPU which can 

be useCl.for temp'Orary storage, as an accumulator, an index register, a stack 

pointer or fOTany 'other .general-purp'Ose functi'On. 

HANDSHAKING 

D.efers to the ~quired iJequence ·cf signals for communication between system 

functions. The I/O bus protoc'Ol for a system define·s its handshaking require­

ments. (This is especially true for asynchronous I/O systems in which each 

signal requires a res'POllse (reply) to <complete an I/O operation). 

U-IO 



HARD-WIRED LOGIC 

A group of logic circuits permanently interconnected to perform a specific 

function--permanently assigned device address, memory bank assignments, and 

interrupt vector addresses. 

HEXADECIMAL 

A number system using 0, 1, ••••• , A, B, C, D, E, F to represent all the pos­

sible values of a 4-bit digit. The decimal equivalent is 0 to 15. Two hexa­

decimal digits can be used to specify a byte. 

HIGH-LEVEL LANGUAGE 

Programming language that generates machine codes from problem or function­

oriented statements. FORTRAN, COBOL, and BASIC are three commonly used high­

level languages. A single functional statement may translate into a series of 

instructions or subroutines in machine language, in contrast to a low­

level(assemhly) language in which statements translate on a one-for-one basis. 

I/O HANDLERS 

Input/Output handlers, sometimes called device drivers, are subroutines that 

service specific peripheral devices such as teletypewriters and card readers. 

They help prevent "reinvention of the wheel" every time a programmer wants to 

use a standard peripheral. 

I/O PORT 

A connection to a CPU that is configured (or programmed) to provide a data 

path between the CPU and external devices, such as a keyboard, display panel, 

audio cassette recorder, etc. An I/O port of a microprocessor may be an input 

or an output port, or it may be bidirectional. 

IMMEDIATE ADDRESSING 

The method of addressing an instruction in which the operand is located in the 

instruction itself or in the memory location immediately following the in­

struction. 

IMMEDIATE DATA 

Data that immediately follows an instruction in memory and is used as an oper­

and by that instruction. 

13-11 



INDEX .REGISTER 

A register that contains a quantity which may be used to modify memory address. 

INDEXED ADDRESSING 

An addressing mode in which the address part of an instruction is modified by 

the contents in an auxiliary (index) register during the execution of that in­

struction. 

INDIRECT ADDRESSTNG 

A means of addressing in which the address of the operand is specified by an 

auxiliary register or memory location specified by the instruction rather than 

by bits in the instruction itself. 

INPUT-OUTPUT (I/O) 

General term for the equipment used to communicate with a computer CPU, or the 

data involved in that communication. 

INSTRJJCTION 

A set of bits that defines a computer operation, and is a basic command under­

stood by the CPU. It may move data, do arithmetic and logic functions, con­

trol I/O devices, or make decisions as to which instruction to execute next. 

INSTRUCTION CYCLE 

The process of fetching an instruction from memory and executing it. 

INSTRUCTION LENGTH 

The number of words needed to store an instruction. It is one word in most 

computers, but will use multiple words to form one instruction. Multiple-word 

instructions have different instruction execution times depending on the 

length of the instruction. 

INSTRJJCTION REPERTOIRE 

See INSTRUCTION SET. 

INSTRJJCTION SET 

The set of general-purpose instructions available with a given computer. In 

general, different machines have different instruction sets. The number of 

13-12 



instructions only partially indicates the quality of an instruction set. Some 

instructions may only be slightly different from one another; others rarely 

may be used. 

INST&UCTION TIME 

The time required to fetch an instruction from memory and then execute it. 

INTERPRETER 

A program that fetches and executes "instructions" (pseudo instructions) 

written in a higher-level languag~. The higher-level language program is a 

pseudo program. Contrast with compiler. 

INTERRUPT 

An interrupt involves the suspension of the normal programming routine of a 

microprocessor in order to handle a sudden request for service. The 

ance of the interrupt capability of a microprocessor depends on the 

applications to which it will be exposed. When a number of peripheral 

import­

kind of 

devices 

interface the microprocessor, one or several simultaneous interrupts may occur 

on a frequent basis. Multiple interrupt requests require the processor to be 

able to accomplish the following: to delay or prevent further interrupts; to 

break into an interrupt in order to handle a more urgent interrupt; to establ­

ish a method of interrupt priorities; and, after completion of interrupt ser­

vice, to resume the interrupted program from the point where it was inter­

rupted. 

INTER&UPT MASK 

(Interrupt Enable): A mechanism that allows the program to specify whether or 

not interrupt requests will be accepted. 

INTERRIUPT REQUEST 

A signal to the computer that temporarily suspends the normal sequence of a 

routine and transfers control to a special routine. Operation can be resumed 

from this point later. Ability to handle interrupts is very useful in com­

munication applications where it allows the microprocessor to service many 

channels. 

INTERRIUPT SERVICE ROUTINE 

A routine (program) to properly store away to the stack the present status of 

13-13 



the machine in order to respond to an interrupt request; perform the "real 

work" required by the interrupt; restore the saved status of the machine; and 

then resume the operation of the interrupted program. 

INTERRUPT VECTOR 

Typically, two memory locations assigned to an interrupting device and con­

taining the starting address and processor status word for its service routine. 

JUMP 

1) An instruction which, when executed, can cause the computer to fetch the 

next instruction to be executed from a location other than the next sequential 

location. Synonymous with branch. 2) A departure from the normal one-step 

incrementing of the program counter. By forcing a new value (address) into 

the program counter, the next instruction can be fetched from 

location (either further ahead or back). For example, a program 

an arbitrary 

jump can be 

used to go from the main program to a subroutine, from a subroutine back to 

the main program, or from the end of a short routine back to the beginning of 

the same routine to form a loop. See also BRANCH INSTRUCTION. If you reached 

this point from branch, you have executed a jump. Now return. 

LIFO 

Last-In, First-Out method of storing and retrieving data in a stack, table or 

list. 

LOADERS 

The various applications (user written) programs must be placed in the 

locations of the system memory. The Programs that do this job are 

proper 

called 

loaders. Loader programs range from simple ones that load absolute bina~y ob­

ject code with no error detection, to sophisticated loaders that load relocat­

able binary object code, resolve global (between Program) symbolic label link­

ages, perform error detection, and execute various commands, including start­

ing the program just loaded. 

LOOP 

A self-contained series of instructions in which the last instruction can 

cause repetition of the series until a terminal condition is reached. Branch 

13-14 



instructions are used to test the conditions in the loop to determine if the 

loop should be continued or terminated. 

MACHINE CYCLE 

The basic CPU cycle. In one machine cycle an address may be sent to memory 

and one word (data or instruction) read or written, or, in one machine cycle a 

fetched instruction can be executed. 

MACHINE LANGUAGE 

The numeric form of specifying instructions ready for loading into memory and 

execution by the machine. This is the lowest level language in which to write 

programs. The value of every bit in every instruction in the program must be 

specified (e.g., by giving a string of binary, octal, or hexadecimal digits 

for the contents of each word in memory). 

MEMORY 

A general term which refers to any storage media for binary data. 

ory functional types include read/write and read-only. 

Basic mem-

That part of a computer that holds data and instructions. Each instruction or 

datum is assigned a unique address that is used by the CPU when fetching or 

storing the information. 

MEMORY ADDBESS REGISTER 

The CPU register that holds the address of the memory location being accessed. 

MEMORY ADDRESSING MODES 

The method of specifying the memory location of an operand. Common addressing 

modes are: direct, immediate, relative, indexed, and indirect. 

are important factors in program efficiency. 

MEMORY CYCLE 

These modes 

The operations required for addressing, reading, writing, and/or reading and 

writing data in memory. 

MEMORY MAP 

A listing of addresses or symbolic representations of addresses which define 

the boundaries of the memory address space occupied by a program or a series 

of programs. Memory maps can be produced by a high-level language such as 

FORTRAN. 

13-15 



MICROCODE 

A set of control functions performed by the instruction decoding and execution 

logic of a computer which defines the instruction repertoire of that com­

puter. Microcode is not generally accessible by the programmer. 

MICROCOMPUTER 

A class of computer having all major central processor functions contained on 

a single printed circuit board constituting a stand-alone module. Microcom­

puters are typically implemented by a small number of LSI circuits and are 

characterized by a word size not exceeding 16 bits, and very low cost, usually 

under $1,000. A computer whose CPU is a microprocessor. A microcomputer is 

an entire system with microprocessor, memory, and input-output controllers. 

MICROPROGRAM 

A combination of primitive computer operations which are executed in parallel 

and/or serial and which accomplish the execution of one programming level in­

struction. The instruction sets of computers may be hardwired or they may be 

microprogrammed. Microprogramming takes place at a level of abstraction below 

the programming level. The essential difference between the two levels is 

that at the programming level computers are represented as sequential devices 

whereas at the microprogramming level operations take place in parallel and 

many components are active simultaneously. 

MICROPROCESSOR 

A single LSI circuit which performs the functions of a CPU. Some characteris­

tics of a microprocessor include small size, inclusion in a single integrated 

circuit or a set of integrated circuits, and low cost. 

Frequently called "a computer on a chip," the microprocessor is, in reality, a 

set of one, or a few, LSI circuits capable of performing the essential func­

tions of a computer CPU. 

MNEMONIC CODE 

Computer instructions written in brief, easy-to-learn, symbolic or abbreviated 

form. Mnemonic code is also recognizable by the assembly program. For exam­

ple, ADD-, SUB, CLR, and MOV are mnemonic codes for instructions which will be 

executed as machine code. 

13-16 



MONITOR PROG&AMS 

Monitor programs (also called supervisors, executives, and opera.ting systems) 

enable you to communicate with all of the system hardware and software. They 

allocate available resources as efficiently as possible, and range from simple 

microcomputer monitors to complex time-sharing systems. 

NESTING 

A programming tec~nique in which a segment of a larger program is executed 

iteratively (looping) until a specific data condition is detected, or until a 

predetermined number of interactions has been performed. The 

que allows a program segment to be nested within a larger 

segment to be nested within an even larger segment. 

NIBBLE 

A sequence of 4 bits operated upon as a unit. Also see byte. 

NOP 

nesting techni­

segment and that 

Contraction of No Operation. An instruction which specifically instructs the 

computer to do nothing for one cycle, and then to get the next instruction. 

OBJECT PROGRAM 

The binary form of a source program produced by an assembler or a compiler. 

The object program is composed of machine-coded instructions that the computer 

can execute. 

OPERAND 

Any of the quantities arising out of or resulting from the execution of a com­

puter instruction. An operand can be an argument, a result of computation, a 

constant, a parameter, the address of any of these quantities, or the next in­

struction to be executed. The field of an assembly language or machine in­

struction which specifies the data to be operated on. 

OPERATION CODE (OP-CODE) 

That part of a computer instruction word which designates the function per­

formed by a given instruction. For example, the op-codes for arithmetic in­

structions include ADD, SUB, DIV, and MUL. 

13-17 



OVERFLOW 

A condition occurring in a computer when the results of a mathematical 

tion produces a resul t which has a magnitude exceeding the capacity 

computer's data word size. 

PAGE 

opera­

of the 

A natural grouping of memory locations by higher-order address bit. In an 8-

bit microprocessor, 256 consecutive bytes often may constitute a page. Words 

on the same page only differ in the lower-order 8 address bits. 

PAGE ZERO 

The memory page that includes the lowest numbered memory addresses. 

PARITY CHECK 

A method of checking the correctness of binary data after that data has been 

transferred from or to storage. An additional bit, called the parity bit, is 

appended to the binary word or character to be transferred. The parity bit is 

the single-digit sum of all the binary digits in the word or character and its 

logical state can be assigned to represent either an even or an odd number of 

Is making up the binary word. Parity is checked in the same manner in which 

it is generated. 

PERIPHERAL DEVICE 

A general term designating various kinds of machines which operate in combina­

tion or conjunction with a computer but are not physically part of the comput­

er. Peripheral devices typically display computer data, store data from the 

computer and return the data to the computer on demand, prepare data for human 

use, or acquire data from a source and convert it to a form usable by a CORr 

puter. Peripheral devices include printers, keyboards, graphic display termi­

nals, paper tape reader/punches, analog-to-digital converters, audio cassette 

tape recorders, etc. 

POINTER 

Registers in the CPU that contain memory addresses. See PROGRAM COUNTER. 

POINTER ADDRESS MODE 

The pointer consists of one or two internal registers that must be set with 

the desired address before an instruction referring to memory is called. This 

13-18 



mode is not unlike indirect addressing except that it uses registers 

than main memory, and it requires more time because the pointer must 

with separate instructions, such as load immediate or increment. 

PROGRAM 

rather 

be set 

A complete sequence of computer instructions necessary to solve a specific 

problem, perform a specific action, or respond to external stimuli in a pre­

scribed manner. As a verb, it means to develop a program. 

PROGBt»f COUNTER 

A CPU register that specifies the address of the next instruction to be fetch­

ed and executed. Normally it is incremented automatically each time an in­

struction is fetched. 

A register that holds the identification of the next instruction. 

PROG&AM STATUS WORD (PSW) 

A special-purpose register within the 2650 processor that contains status and 

control bits. It is 16 bits long and is divided into two bytes called Program 

Status Upper (PSU) and the Program Status Lower (PSL). 

PSEUDO INSTRUCTION 

A symbolic statement meaningful only to the program containing it, rather than 

to the computer as a machine instruction. 

PUSH-DOWN STACK 

Dedicated consecutive temporary storage registers in a 

part of system memory, structured so that the data items 

most recent items stored in the stack. 

RANDOM ACCESS 

computer, 

retrieved 

sometimes 

are the 

Accessibility of data is effectively independent of the location of the data. 

READ 

The Process of transferring information from- an input device into the co~ 

puter. Also, the process of taking information out of the computer's memory. 

13-19 



READ-WRITE CYCLE 

The sequence of operations required to read and write (restore) memory data. 

REGISTER 

1) A temporary storage unit which can be implemented as a hardware device or 

as a software structure and used to store data for manipulation and/or pro­

cessing reference. Typically, a register consists of a single computer word 

or a portion of a word. 2) A fast-access circuit used to store bits or words 

in a cpu. Registers playa key role in cpu operations. In. most applications, 

the efficiency of programs is related to the number of registers. 

REGISTER ADDRESS MODE 

Access to a general-purpose register can be achieved by citing the name of the 

register in the instruction. 

REGISTERS 

An array of hardware binary circuits (flip-flops, toggles) for temporary stor­

age of information. Registers can be wired for operation to allow flexible 

control of the contained information; that is, for arithmetic operations, 

shifts, transfers. The nature of the data determines whether the register is 

an index, pointer, program counter, flag, or temporary register. 

RELATIVE ADDRESS 

1) An address of a machine instruction which is referred to an origin ad­

dress. For example, consider the relative address 15 which is translated into 

the absolute address origin R + 15, where R...,is, typically, the contents of the 

PC register. Relative addressing allows the generation of position-indepen­

dent code. 2) The number that specifies the difference between the actual 

address and a base address. 

RELATIVE ADDRESSING 

The address of the data referred to is the address given in the instruction 

plus some other number. The "other number" can be the address of the instruc­

tion, the address of the first location of the current memory page, or a num­

ber stored in a register. Relative addresssng permits the machine to relocate 

a program or block of data by changing only one number. 

13-20 



RELOCATABLE 

Object programs that can reside in any part of system memory. The actual 

starting address is established at load time by adding a relocation offset to 

the starting address. Relocatable code is typically composed of position-in­

dependent code. 

RELOCATABLE PROGRAMS 

Programs having symbolic rather than absolute addresses. 

ROUTINE 

A program or program segment designed to accomplish a single function. 

SCRATCHPAD MEMORY 

Scratchpad memory usually designates an area of memory used for many quick 

data transfers. It is the most frequently used memory segment. Some micro­

processors have simplified instructions that can only be used in a certain 

small part of the memory (say, the first 256 bytes), where the most-signifi­

cant byte of the address is zero. The scratchpad is usually placed in such 

a location. 

SERIAL I/O 

A method of data transfer between a computer and a peripheral device in which 

data is transmitted for input to the computer (or output to the device) bit by 

bit over a single circuit. 

SERVICE ROUTINE 

A set of instructions to perform a programmed operation, typically in response 

to an interrupt 

SET 

A signal condition representing a binary "one." 

SHIFT REGISTER 

A register in which binary data bits are moved as a contiguous group a pre­

scribed number of positions to the right or to the left. 

SIMULATOR, SOFTWARE 

Program written to run on computer 'A' but which simulates the execution of 

13-21 



instructions of computer 'B'. Allows debbugging and verification of computer 

'B' software. 

Software simiJlators are sometimes used in the debug process to simulate the 

execution of machine-language programs using another computer (ofter a time­

sharing system). These simulators are especially useful if the actual co~ 

puter is not available. They may facilitate the debugging by providing access 

to internal registers of the CPU which are not brought out to external pins in 

the hardware. 

SINGLE LEVEL INTER&UPT 

The interrupt signal causes transfer of control to a pre-assigned memory loca­

tion at which the interrupt processing routine starts. The program must poll 

all possible sources of interrupt to determine which one requires service. 

SINGLE LEVEL VECTOR INTERRUPT 

The interrupt signal causes the microprocessor to interrogate the vector (V2, 

VI, VO), which specifies an address to which the program jumps to find the 

appropriate service subroutine. Each possible source of interrupt can be as­

signed a different service subroutine. Vector interrupt eliminates the need 

for polling. 

SINGLE-OPERAND INSTRDCTION 

An instruction containing a reference to one register, memory location, or de­

vice. 

SKIP 

An instruction which causes the computer to omit the instruction in the im­

mediately following location. 

SOFTWARE/FI~ARE 

The microprocessor is generally a stored program computer, with its 

of programs and instructional procedures referred to as Software. 

by directing the hardware, enables the microprocessor to perform a 

system related task. In a fixed instruction microprocessor, a set 

instructions of operations are defined with fixed word lengths, and 

ercise the CPU independent of the data. Software is alterable and 

by the user. 

collection 

Software, 

functional 

number of 

these ex­

accessible 

Firmware can be considered an extension to a computer's basic instruction 

13-22 



repertoire that creates microprograms for a software instruction set. 

extension to the basic instruction set is often permanently burned into 

Only Memory (ROM), rather than being implemented in software. Firmware 

This 

Read 

pro-

grams may be composed of instructions of variable width; the number of in­

structions in a Firmware program is generally smaller than in a Software pro­

gram, although the instructions are usually much wider. A Firmware program 

can be used to implement a Software instruction set; this occurs in the emula­

tion of larger minicomputers by bit slice microprocessors. 

SORT 

A function performed by a program, usually part of a utility package; items in 

a data file are arranged or rearranged in a logical sequence designated by a 

key word or field in each item in the file. 

SOURCE ADDBESS 

In computer systems having a source-destination architecture, the source ad­

dress is the address of the device address or memory location from which data 

is being transferred. 

SOURCE PROGBtAM 

A program coded in other than machine language (in assembly or compiler langu­

age) that must be translated into machine language for use. Assembly and com­

piler language programs are human readable whereas object programs are machine 

readable. 

STACK 

1) A dynamic, sequential data list, usually contained in system memory, hav­

ing special provisions for program access from one end or the other. Storage 

and retrieval of data from the stack is generally performed by the processor 

automatically. 2) A sequence of registers and/or memory locations used in 

Last In, First Out (LIFO) fashion. A stack pointer specifies the last-in en­

try (or where the next-in entry will go). 

STACK POINTER 

The stack pointer is coordinated with the storing and retrieval of information 

in the stack. The stack pointer is decremented by one immediately 

the storage in the stack of each byte of information. Conversely, 

pointer is incremented by one immediately before retrieving each 

13-23 

following 

the stack 

byte of 



information from the stack. The stack pointer may be manipulated for trans­

ferring its contents to the index register or vice versa. 

STACK, SUBROUTINE LINKAGE 

One-dimensional array or registers used specifically for storing subroutine 

return addresses. 

STARTING ADDRESS 

The address of a m~mory location in which is stored the first instruction of a 

given program. 

STATEMENT 

An instruction in any computer-related language. 

STATUS CODES (CONDITION CODES) 

Indicators used to record the resulting condition of data in the accumulator. 

Four control bits are set as a result of each arithmetic and logical opera­

tion: carry flip-flop (C), sign flip-flop(s), and parity flip-flop (p). The 

carry bit provides a means of performing mUltiple precision binary arithmetic. 

STRING 

A connected sequence of entities. 

SUBROUTINE 

1) A short program segment which performs a specific function and is avail­

able for general use by other programs and routines. 2) A subprogram (group 

of instructions) reached from more than one place in a main program. The pro­

cess of passing control from the main program to a subroutine is a subroutine 

call, and the mechanism is a subroutine linkage. Often data or data addresses 

are made available by the main program to the subroutine. The process of re­

turning control from subroutine to main program is subroutine return. The 

linkage automatically returns control to the original position in the main 

program or to another subroutine. 3) Programming technique that allows the 

same instruction sequence or subprogram to be given control and used repeated­

ly by other sections of the program. 

13-24 



SYMBOL 1'ABLE 

A table in which symbols and their corresponding values are recorded. 

SYMBOLIC ADDRESS 

A label assigned instead of absolute numer1C addresses, usually for purposes 

of relocation. 

TRAP 

A CPU-initiated interrupt which is automatically generated when a predetermin­

ed condition, such as an illegal instruction, a breakpoint, a specified error, 

or a power failure 1S detected. Two vector locations are dedicated for each 

trap type. The vector locations contain the PC and PS for the service routine. 

TEMPORARY STORAGE 

Memory locations or registers reserved for immediate and partial results ob­

tained during the execution of a program. 

TWO'S COMPLEMENT 

A two's complement number is obtained electronically by inverting the states 

of all bits in the number and adding one (complement and increment). Two's 

complement arithmetic is widely used in microprocessors. 

UTILITY ROUTINE 

A standard routine, usually part of a larger software package, which performs 

a service and/or program maintenance function, such as file maintenance, file 

storage and retrieval, media conversions, and production of memory and file 

printouts. 

VARIABLE 

A named memory (RAM) location which is given some consistent and meaningful 

interpretation by the programmer and which will contain different data values 

during the execution of the program. A variable may contain a boolean, in­

teger, floating point, ASCII, etc. value. The type of data stored in each 

variable should remain consistent throughout the execution of the program. 

RAM memory locations can be reserved for variables using the 2650 language RES 

statement. 

13-25 



VECTORED INTERRUPT 

This term is used to describe a microprocessor system in which each interrupt, 

both internal and external, have their own uniquely recognizable address. 

This enables the microprocessor to perform a set of specified operations which 

are preprogrammed by the user to handle each interrupt in a distinctively dif­

ferent manner. 

WORn 

A set of binary bits handled by the computer as the primary unit of informa­

tion. The length of a computer word is determined by the hardware design. 

Typically, each system memory location contains one word. 

WiITE 

The process of storing data in memory. 

13-26 





SI!IIotiCS 
a subsidiary of U.S. Philips Corporation 

Signetics Corporation 
P.O. Box 9052 

811 East Arques Avenue 
Sunnyvale, California 94086 

Telephone 408/739-7700 

Printed in USA AUG 1979, 


