The Instructor 50

Desktop Computer
Users’ Guide

a subsidhary ot U.S. Philips Corporation

Imersie

e SHIEAS WROONS

§ edize
S0y 78 IRER3Y

oy e

. RxBalfiis
»u.unuu»mmuu
w

Z235%3R8Ls
TrENRREESY

E.
INTERRUPT
%

bmECT
A

Ieedsuanne cog
$SFINFRNY Sume

fsiz,%
Lk

WA smes

T
< 5838338 Sa3arasng

8588028 s8pe<qeqy
m $184 88 R3sain

iy

. PRALLEL
8 e

EXTENDED

INSTRUCTOR 50

INSTRUCTOR 50
USERS" GUIDE

SIGNETICS

PO. Box 9052

811 East Arques Avenue

Signetics Corporation
Sunnyvale, California 94086

Telephone 408/739-7700

a subsidiary of U.S. Philips Corporation

Sinetics

Signetics reserves the right to make changes in the products contained in this
manual in order to improve design or performance and to supply the best
possible products. Signetics also assumes no responsibility for the wuse of
any circuits described herein, conveys no license under any patent or other
right, and makes no representations that the circuits are free from patent
infringement. Reproduction of any portion hereof without the prior written
consent of Signetics is prohibited.

Copyright June 1978, Signetics Corporation

PREFACE

This manual provides tutorial and reference information on the Signetics
INSTRUCTOR 50--a complete, fully assembled and low cost microcomputer system.
The INSTRUCTOR 50's computing power is enhanced by the Signetics 2650
microprocessor which is described in detail in Chapter 9.

INSTRUCTOR 50 is designed to assist you in learning programming and in
writing, debugging, and testing the programs you develop. There 1is enough
information here to get you started, whether or not you have ever written a
program before. The only prerequisite is a familiarity with the 2650
microprocessor. Readers who are not familiar with the 2650's hardware
structure and instruction set should read Chapter 9 prior to using the
INSTRUCTOR 50.

The microprocessor has brought with it a host of terms which experienced users
bandy back and forth with the greatest of ease. For the novice, this
"language within a language'" can be an obstacle of no small proportions. For
the benefit of these people, Chapter 1 is devoted exclusively to microcomputer
basics. To further assist you, we've put a glossary in the back to summarize
some of the more frequently used buzz words.

CONTENTS

PREFACE-.....-.......o.ooooocooo..c-ooo--oo-oooooooooooo..ooooco--c

1. MICROCOMPUTER BASTICS.cciceeonceccccosancoasssssosssascosssacsonnsne

A Micro Defined..ceeeeeeeecacesescssssecssacssnssssosssssconss
Word/Byte/Nibble.eeeeeeeeeeesoeeoeceocosecncnsescoassscnansnsse
Binary NOtatioNieeeeaeeeeoseasssesscsssosssassasaanscsssssscssses
Hexadecimal NOtatioN...eeceeeeeescoccacsscsssssssnenossonconens
ArChiteCtUTr . eeeeeeoeesoosoassscsssssnsssssosssssesssssssscesse
Program Counter (Jumps, Subroutines and the Stack)..eeeeveceess
Instruction Register and DecoOder.cccecessccsscscccssssoscnssse
Address RegisSter(S)iceceeeeceeeeescccsccescssccsoscasasssssannsns
Addressing MOdeS..sessessssosscssssssssssssssssscesssnccncnnna
Extended/Non-Extended I/0...ceceeesccncoascseccosasecosscscans
SO WAL . et teeeesecceeosssasecescsssscsssensossscsssoscsssss
Machine Language..cseeeeccessscccssssssescscssssssosscsascsanee
Assembly Language...cccececccccssescccsosccsoscccscssssasocsccnocsscs
Higher-Level LanguageS...ececeeeceecccsscccccssscccsasssansscscss
Other SOftWare...ceceeeeccceceseccecosscocsccsssosssonsssassascss

2. GETTING STARTED....oo..-.ooooncooo.oo.oooo'oo-o-n-ooo.oo.ooa-o

INtrodUCEION. e eeeeeeeeeeeosscsscessesccacssacsoscnsoccosssssssne
Power On and Initial Display.eseesecccsssseccsscsccoccocnonnans
Operating ModeS..ceeeeceeeeccecsossosssecosccsscsccccnossssnnsne
Keying in and Entering ValueS....cceeceeeecescssecccccnnnnnans
Correcting Entry ErrorScceccsecssecececscceeccsscscossscccssnans
The Prompt Lighteeeeeeesceeesecoeccosesnccssacccsssascsscasssnns
Entering and Executing a Simple Program...ccececececscscccccss
Example 2: The Billboard Program...ceecececcsscescosscccsocccs
Example 3: The Clock Program.ccceeceecccecccccscscccosccsccnanes

3. SYSTEM OVERVIEW........-.o.o.ocooctoooooooooooo-o.oooooQooo“o

INtrodUCtIiON.eeeeeecsooeososcccscconooansssssssssssssssscssssss
2650 MiCTOPTrOCESSOTeessscasssossosassssssssssssssassncasssssas
2656 System Memory Interface....ceeecesescccssccsosscossssasocs
KeyboardS.seeeeeeceeeseescsossscosessossassesnssssossssssssccssnnsss
Display Panel....ccceeeeeeecesccoesosesencssaccosscceonscsocnos
Audio Cassette INterfacCe...ccsceeesccsccssccscscssassssssascacoss
S100-Compatible Expansion BuS....eesssccessssccsssasccacsscans
MONItOY FirmMWare..eeoseessssssssssssscsscccnscrsosssoossnsosssnssss
Debugging AidS.eceeeeecossscssccassssscsssssccnasessscssssansss
On-Board User I/0.ceeececeesccessesssessssssscssscsssosssasasnse
Forced Jump LOZIiCeisesscssssosesssssssssssssscssosscscscssssssosse
Memory and I/0 OrganizatioN.eceeeeccscesceccsscscoscsscsccssns
Clock CLlrCUibtTrYeeeeeeesoosoeessoccssssscsssassosssoascsasscssncs
Internal Power SUPPly.cccceeececesscsseccssssasssscossssscscasns

iv

]

wwwwHHHTwwuwwww
= et b= e O 00 ONON VP W NN

[=Re o No)

|

N
[
[

NNNNIT’NNNN
N WWNN -

[}

w
I
[

wwwuwutfuuwwwuw
NN Ut WL WW W -

[}

CONTROLS AND INDICATORSQ&...C.‘0.00.0‘Ol....b..l..l'..'.I.OIO'

CONTENTS (cont.)

INtrodUCtioN.ceeseseesccesceossscnsssssssssnssossscasssosssonss
Function Control Keyboard....ceeeeeeeeeseecscecseoscccocscsonns
Hexadecimal Keyboard....cceeeeeeeecrecocncccccncscssscncoconcns
Eight-Digit Hex Display Panel....eeeeecvecscececesccceosonncns
Port Data Input SwitcheS....eieeeeeeecerercsooccersscoscconsns
Port Data IndicAtOrS.ceescecscesssssossssesssnsosssssoccsnnsss
Direct/Indirect Interrupt SwitCh..ieeeeeeevocaceessssacveocses
Port Address Select SwitcCh.iceeeeeeossoecsssccscsossnssescsassne
FLAG Indicator.uceeseseessasecesssscsssosssssscsnssssssossasas
RUN IndicatOr.eseeesseescossscssasossssassssocnsssnsssassoonsosse

COMMAND DESCRIPTIONS. .¢cceeeeceeonsssosssssssssasocssooososacns

Introduction..."....lCOODI......I..‘OI.O.IQ.O.'.l‘..‘..l'....
Display and Alter RegisStersS...ccecececcecsccoccoscscscscsoscncocs
Display and Alter MemoOTy..eecesecsssssccesasssssnsssssonnncnss

Fast Patch-oonoooo'oooo-oo-o-nlooo.onocsoooooooouonooonouaooou

Display and Alter Program CoUNteT..eeesssecscessosssccoosssaons

Breakpoint.coono-uto-0loooouool.t0.0oooootocooocoooooo.n.ouo-o

Step...oo..:oo-oooocooot.nnoo.oo'o.c-oooo.oo..os.oaoooo';ooono

write cassette.-t.aocuo..oo.o.'otoot00.oo.-.oooo;cooo.'qooooo'
Adjust Cassetteouooooootc.uoo‘uoc-oouooaooo‘oo-oo-.ooo..o.otoo
Read Cassette.o-.-.-.-.o....................-..........-....o.

Runooooo.-oo.oootollonaooo-oocooocoooo--cooooooooo.oooo.oonuot

ReSet.o........'..o-‘..-....--o--....--.....................-.

Error Messages..o.cooo00000‘0‘0otoooooon‘coocoooooo-!cuooo.o.o

USING THE INSTUCTOR 500..-00.00otoooooo.ooootoocoo-ort.otvooco

Restrictions on Using the 2650 Instruction Set.veeeescessesees
USing InterruUPtS.esceeeesossccerococcsvocsnssssscsossossosnssss
Using the I/0 Switches and LightS.eeeaceseseocssocnscasscnccss
FLAG and SENSE I1/0.ccceeteccecccoscsoscccnssesesossssosses
Non-Extended I/0..ceeeeeescccessscoscsossssssscssccnsssans
Extended I/Oooooooo-oooloonoo.oo.oooouo-occoo-nc0oocuooo-
Memory Mapped I/0.ceeecessoscoscesscoscosossnscsscnssnsas
Calling Monitor SubTrOUtINeS...eesescesecccessssccsssocsecosnss
MOVE SUbBTOULINe.eeeessssseosssssessccossssscsosssoccncsss
DISPLAY SUDTOULINE..eeeseeccesssssosssscssssssssssssssssse
USER DISPLAY Subroutine..cececssceccasescssccacssasssosss
NIBBLE SubroUtine..sseeseececcssscccssssssccsssssosscassas

INPUT DATA Subroutineooooc-oo.oooto..oo.'caoocutcul000..0

MOD IFY DATA Subrout ine @ 0 0 0 0 0 0 0 0 00 0SS G LD O OSSO NN S eSS
Jumper OptionstQ...00..'.l...'0..0..O.".000.....00.000'.00'00
Jumper A - Interrupt SelecCtioON.ceeeececcseececscccccecsns

Jumper B
Jumper C
Jumper D

Sloo Clock Se]-ect.....‘.‘.‘..‘.l‘.‘.‘.‘.C'.l..
Power Source SeleCt.cecescccccssccsccssssscosns
Cassette Output SelectiON.iseeessssessssssssens

CONTENTS (cont.)

SYSTEM ExPANSION....oooo.'ooo.oooo.ooooouooo‘o'ooooooooo'.oo.-
Introductionoooo.otot.totoooooc00.o.ooooooooo-o.ooaotooooooooo
THEORY OF OPERATION'..l..000lo..00..l'.t.lt.o.oooo.l...oo...io

INtroducCtion.eeeeeeseesssessesssssesssosssosssssssssoosssanses
BasSicC CONCEPLessrecenesssccsossssscsersossssosscssssssssocnasans
Detailed Block Diagram DescriptioON.ccceessccesssccssssscncasss
The MiCroCOmMPULET .t tesssssssssssssssssssssscsnscassssassssnses
INSTRUCTOR 50 Memory AllocatioN.ceeeeeesseeccesseccccoccconane
Parallel I/0 POTt..ececeeccocseossocascssssesssssssosesscncocscs
Keyboard and Display LOgIlCeceeescccscscescsscesssosoccossssaass
Bit Assignments for Keyboard and Display PortS.....ceeesssecee
The Cassette Interface...ceceeeeeececccssccsccnessscscccsasscnas
Interrupt LOgiC.eeesssessoesssesssssesssscsssosssescsssascncas
Forced Jump LOgiCeeeeeeeeesecsneocsocceessccenssenasssccsonens
Power On (POR) or MON Key DepressiON.cececesecscsssscssssesoss
Breakpoint DetecCtiONeissssssssessssssosscccscansssssssssssssans
Single StepPetcecccccecsosssosssssesssssssssssssssccscsnssssnness
S100 Bus Interfaclicecesceeceessssscsvcessssossassassosncsssssnnnss
System POWeT..ccceeeeeocsoseocscscccsssoscsscscsssnssssnssnnssns
The USE MONIitOTY.eeeeoossoessosssssssssssssccssosssssssssnssnss

THE 2650 MICROPROCESSOR...OQ...oo-oooooc-oo.o.otoon..oo.ooo.oo

IntroduCtion.ceeeesceeceeseaseosescseasoseassssassssocsssssssonses
FeatUreS.ceecesceecaoesorscssccssossonssososssossscsccsssossssssssse
Low System CoSteseceeessecessccsssccssnsccsssccssccossasssss
Ease Of USEueeereesrssseeesecascsasscccoonscscssssassssss
Wide Range of ApplicationS...esssesssscssccccosecccccccss
2650 Microprocessor CharacteriStiCS.iseeescsssccosccccocosconsne
General.ceeeeecceseeseccscsoccesosssosssnscsscccccscansncscss
InterfacesS.ceeeeecceeessosssssssssnsssascssssscsssnncsscscsns
ArchiteCtUre.ceeeseeseeeesosasssssssssnssssssssassssssses
INStruction Set..eeeessesesssesssossessssssasssssscassons
Internal OrganizatioN....ceecseecsececssssccsssssoasssssssssassess
Program Status Worde..ceeeeesseeceosceososcenccscasancsnons
Sense (S)eeeeseeesnsassesssocssossscsssecsssscssssncnnans
Flag (F)uveeeeeeecnoosescssosesessssnsssosssnssssssosnsnos
Interrupt Inhibit (TI).cuieeeeevesecesesosesosocossannsnsse
Stack Pointer (SP)iceceeeesssscessosssscsesssssnssancsoes
Condition Code (CC)evriurrrceannesesseacncsscacencnscnssns
Interdigit Carry (IDC).uccececscsococsecnsrsccosnsosananns
Register Select (RS)eeceeescocscecossesncosssossssnsasnses
With/Without Carry (WC)..eeeeeeoseessessasscesscnsssonsss
Compare (COM)..ucveseeeoscsesscossseascsssssassssscnsssnns
Carry (C)eeeeeeeeeeaceeescssscseasssosssoscsscensssosssnnss
OVerflow (OVF).eeeeeescesoscncosssnasassssnsnanssnsaanses
Memory OrganizZatioN..eceecscssseecessssccssssessssnsanscncsns

vi

Page
7-1
7-1
8-1

8-1
8-1
8-3
8-3

8-8

8-8

8-11
8-12
8-12
8-12
8-14
8-14
8-15
8-15
8-15
8-16

O
L}
[

\O\D\O\D\O\O\D\D\D\D\D\'O\OND\D\O\D\D\O\D\D\D\O\D
WWOWOOONNTIOOAANRNNNUVUVWWLWNNRONRNNN - -

10.

11.

12.

13.

CONTENTS (cont.)

Interface............................-........................

Pin Configuration.ceeeeeseeesersscsssossscossscascsascnnss
Signal DescriptioNS.escescscesssesssesssssccoscsssssssanss
Signal Timing..eeseecesosesosessssscossscssssosasssssnnacns
Memory Read.ceieeeeseesececssccocsscsssocssossascnnsss

MemOoTy Writ€.ceeeeeoeeaeessssoesssscsssasscsasasannas

I/0 Device Readiceeescescvsssasssssssscsscssnssnsosss

I/0 Device WIit@ueeseosesososssosesssascsscsossscnnsns

A Minimal System Example....cecececeeoccceecccscccoccssonncsns
Input/Output FacilitieS.uveeeesceesssescosssssssescsosscsssnnse
Flag and Sense I/0cieccceeccesccsossoscassccoscosscannans
Non-Extended I/0..ceeeseeccescscosccessscesssssosonsosonas
Extended I/0..ecececccascsesssoscsescosssosssnsssssssasss
MemOTY I/0.ceceeeoceosssssscsssconsesssnsscesssnsscnssnas
Interrupt Mechanism..cceeeooosscesscesssososossoosssssssassssons
Subroutine Linkage.seeesssscssctescssssssoossaosssssssssnssons
Condition Code USAge..ceeeeasecssossoscnssssoscsssssasssssnssssas
Start-Up Procedure..c.c.ceeccsccecsccccsseosssscsscnsscsnosssncssos
INStrUCtioNS.eseesssassssosscsssssssssscseccscscnsssssssasasss
Addressing MOdeS.ceeeeeeocessssscscssssssnssacacsssssnnas
Register AddresSing..cceersecescccssscossssscscssssnns
Immediate Addressingeecceeececceccenscececcososocsanns

Relative AddresSing.icceseceeossssssssssssssssssssscs

Absolute Addressing for Non-Branch Instructions......

Absolute Addressing for Branch InstructionS..........

Indirect AdAresSing.ceeeseceesssscesssccccnssscsnnsos
Instruction Format EXceptionS..ceesceesscsssscssscsssccss
Detailed Processor InStructionS.ceesssscssscsoscsssssccsns
IntroducCtion. e eeeeeeesosssssenssssscsssssccnssssonnos

Symbols and Abbreviations Used....eeeeecscesscncscass
Calculating Effective AddresseS...cceeecccssecscccons
Instruction DescriptionS.ceeeesceeessescesssocsoossccenans

INSTRUCTOR 50 SYSTEM SCHEMATICS.oo.o-0.600.0000..00.0:--0.0..o
USE PROGRAM LISTINGS.Q..ooooooo.oao-co--.oo-ooooooo.-oo-ooco-o
CONVERSTON TABLES..eececceccoccccccsscosscosscssscssscsnnssssans

ASCII Conversion Table..esceeeeecceesscscssosesassossccssssncssns
Decimal to Hex Conversion Table..cceceeeecsssosssssscssssosssass

GLOSSARY.-..oooootoooo'ooooooooooonoo.oo.o.o-oo-uoo.oooooonooo

vii

Figure No.

ARG A D SRR S8 SN SR ARA0
S:SKOOO\IO\U\-PUJNH\IO\wwaH»—Av—-l-‘qu—-No—-t—l

9-13

LIST OF ILLUSTRATIONS

Title

Basic Elements of COMpPULETrS....coeevsssaccccsscnnns
Flowchart for Binary'Counter Program........eeceees
Flowchart for Billboard Program.....cceceecess
INSTRUCTOR 50 Basic Block Diagram.....cceeesss
INSTRUCTOR 50 Display Font..eeeeeeeecsccocascancnns
Basic USE Monitor Flowchart.....eeeeeeeceeens .
Memory and I/0 OrganizatioN..eseeessesccessccscccss
Controls and IndicatorS.c.ceecececeroceccannes
Jumper LoCAtionS.eeieessecesosssssossssccsasscsonsns
Basic INSTRUCTOR 50 Architecture...eeeeeeeeeeeeesss
INSTRUCTOR 50 Detailed Block Diagram.....ceceseeeees
Memory and I/0 OrganizatioN..eeeesesceccsscsscssnss
Keyboard LayoOuUt.ceeeceeessossosssossescsssscssnocssss
Bit Assignments for Keyboard & Display Ports.......

Cassette Record Waveforms......
USE Command and Routine ExXecUtiVe...eceeeececesss

2650/2650A Block Diagram....ceeeescccssacenns .
Major 2650/2650A RegiSterS.eeeesceeceesscesss .

Rotate OperationS...eesssssssscss

s e 00

2650/2650A Pin ConfiguratioN.cescesescesceccscoscns

Memory Read OperatioN..ssessssscss
Memory Write Operation........

e e ece 0000000000

I/0 Device Read OperatioN.escescscesccsescoscoscnss

Seven Package Minimal SyStem.....eceesevesscass

2650/2650A 1/0 Facilities - General Block Diagram..
Interrupt Operation...ieeeeveceeessccesssssnncssans
Example 1 — Indirect AddresSing...ecceeessscccccsces
Example 2 - Indirect AddresSing.sscecececceccescssess

Instruction FormatsS..eeeeeoses

viii

o0 sees 00

2
)]
o

\ubmmmmobwww-ﬁ

1. MICROCOMPUTER BASICS

This chapter introduces certain basic computer concepts. It provides back=~.
ground information and definitions which will be useful in later chapters :of
this manual. Those already familiar with computers may skip this material. ...
Before we begin, note that we are using two words: microprocessor and micro=-
computer. The microprocessor is a device which performs arithmetic, control,.
and logical operations. The microcomputer, in turn, is a collection of .. .de-.
vices that includes a microprocessor, memory, and associated interface ‘cir--
cuits to communicate with the "outside" world. Because it has its own micro-
processor (the Signetics 2650), memory, latches, counters, buffers, power . sup-:
ply, an operator keyboard and display panel, and a cassette input/output in-.
terface, the INSTRUCTOR 50 is a complete and fully operational microcomputer:
system housed in one single package. e

A MICRO DEFINED

Since the microprocessor is a miniaturized, coventional digital computer in
integrated circuit (IC) form, a good place to start is with computers. Simply
put, A computer is a device capable of automatically carrying out a sequence”
of operations on data expressed in descrete (digital) or continuous (analog):
form. Its purpose is to solve a problem or class of problems; it may . be one:
of control, analysis, or a combination of the two. In digital computers, num-
bers are represented by the presence of voltage levels or pulses on given
lines. A single line defines one bit. A bit is the smallest unit of informa-
tion in a binary system of notation. It is the choice between two possible
states, usually designated one (1) and zero (0). A group of lines considered
together is called a "word"; a word may represent a computational quantity
(operand) or it may be an instruction specifying how the machine is to operate
on computational quantities.

Word/Byte/Nibble

These terms are often misused in describing microprocessor data. For ‘'a spe~
cific microprocessor, a word is the number of bits associated with the. in-
struction or data length. This can be 4, 8, 16 bits, etc., - depending ' on. the
machine. A byte commonly refers to an 8-bit word; a byte can be manipulated
by a 4, 8, or 16-bit microprocessor. For example, instructions are often .pro-
vided to deal with byte data in 4 or 16-bit processors. This -is called byte
handling, and is independent of the natural word size of the machine.

A nibble is 4 bits, and it is rather humorous to consider that it takes two
nibbles to make a byte. Nibble (or 4 bit) control can be found on: many .:8-bit
word machines as well as on some 16-bit machines. Four-bit operations -are
usually associated with Hexadecimal (Hex) or Binary Coded Decimal (BCD) opera~-
tions. Applications that have a man/machine interface, such: as a control key-
board or a numeric display, are good candidates for nibble comtrol. = .- ...~

Binary Notation

One of the problems in communicating with a computer is language. How does an
electronic instrument handle and manipulate numbers? The answer 1is suggested
by the nature of all electrical devices: a light bulb is either on or off, a
switch is either open or closed, a magnet has a field in one direction or the
opposite. For the purpose of understanding computer language, one can think of
the "on" condition as being equal to 1 and the "off" state as 0. So the com-
puter; which is made up of literally millions of electronic components, has
two numbers it can work with. These numbers, 1 and 0, form all the elements
needed in the binary system of notation.

In our more familiar decimal system, the right-hand column of a figure counts
numbers up to 9; the column to the left of that registers the number of 10s;
the column next to the left registers hundreds--then thousands, millions, and
so on. In binary notation, the columns starting at the right register powers
of 2 instead of 10. Take the binary number 10110, with successive powers of 2
noted above each column:

16 8 4 2 1
1 0 1 1 0

Adding together the powers of 2 turned "on" in this binary number--16, 4 and
2-~we arrive at its decimal equivalent--22. The first eight decimal numbers
translated into the binary system look like this:

1 = 1 5 = 101
2 = 10 6 = 110
3 = 11 7 111
4 100 8 = 1000

Hexadecimal Notation

To deal with large binary numbers, certain simplifications are extremely help-
ful. To this end, hexadecimal notation is often used. The term '"hexa-
decimal"”, or hex for short, refers to a shorthand method of expressing a group
of four consecutive binary bits by a single digit. Valid digits range from 0
through F, where F represents the highest decimal value (15). See Table 1.1.

Two hexadecimal digits can be used to specify a byte. Hexadecimal notation is
very convenient for microprocessors since it gives good counting densities and
works very well with the multiples-of-four binary words usually encountered in
a microprocessor.

To understand hex notation, take a decimal number like 107,,. In binary no-
tation, this becomes 1101011,. Breaking this number into 4&4-bit nibbles
(half-bytes), you get 01105 and 10l1lp. The first and most-significant
nibble is ‘equal to 616’ while the second and least-significant nibble 1is

equal to Bjg, Thus, in hexadecimal notation, 10710 becomes 6Bjg. Ome
way to distinguish hexadecimal numbers from numbers written 1in other number

systems (e.g., decimal, octal, etc.) is to enclose the hex number in single

1-2

Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Table 1.1: Relationship among decimal, hexadecimal,
and binary systems.

quotation marks and precede it by the letter H. Hence, in hex notation 6Bjg
would appear as H'6B'. To convert from decimal to hexadecimal, or vice versa,
you must first convert the number into binary and then into hexadecimal as
previously illustrated.

The INSTRUCTOR 50 uses the hexadecimal number system for entering values.
Since the INSTRUCTOR 50 uses 8-bit bytes, two hexadecimal digits can be wused
to specify a byte. The smallest hexadecimal number is H'00' (00000000,) and
the largest is H'FF' (111111119). The INSTRUCTOR 50 still reads only binary
numbers; hexadecimal is the user's shorthand, not the microcomputers.

Architecture

A microcomputer looks, architecturally, like any other computer (Figure 1.1).
What distinguishes a micro from other computers is the intrinsic power inside
each of the five functional boxes. What large-scale computers used to do,
minis now handle. Similarly, micros have begun to supplant minicomputers in
many applications. Advances in semiconductor technology have made this possi-
ble.

The four basic elements of all programmable computers emerge:

e Memory -- A storage unit. In modern computers, memories are implemented
with semiconductor or magnetic core systems. Memories can be read only (ROM),
for program or data constant storage, or read/write random access (RAM) for
program, operand or temporary storage. Data is usually stored in binary nota-
tion. The memory is composed of storage space for a large number of words,
with each storage space identified by a unique address. The word stored at a
given address might be either computational data (operands) or an instruction
(such as add, read from memory, etc.).

e Arithmetic & Logic Unit (ALU) -- Performs the arithmetic and/or logical
operations on operands or provides partial results within the computer. The
simplest ALU consists of a parallel adder and an accumulator. The adder adds
(or performs similar logical operations, e.g., OR) two inputs, A and B, and
produces the output. The accumulator holds intermediate results of a computa-
tion or numbers for a pending computation. The accumulator serves as a tem~
porary storage device.

e Control unit -- Referred to as the brain of any computer because it coor-
dinagtes all units of the computer in a timed, logical sequence. The control
unit generates clock pulses to control and maintain the proper sequence of
operations within the microprocessor. It also responds to external signals
such as an interrupt request. In fixed-instruction computers, this wunit re-
ceives instructions from the program memory. These instructions are in se-
quences, called programs. The control unit 1is closely synchronized to the
memory cycle speed, and the execution time of each fixed instruction 1is often
a multiple of the memory speed.

e Input/Output -- The means by which the computer communicates with a wide
variety of devices, referred to as peripherals. They include audio cassette
recorders, switches, indicator lamps, teletypewriters, CRT terminals, paper
tape units, line printers, A/D or D/A converters, card readers and punches,
communication modems, etc. The I/O lines can be connected to intermediate
storage devices for use with mass memories, including magnetic discs and
large-scale RAM systems.

Program Counter (Jumps, Subroutines, and the Stack)

The instructions that make up a program are stored in the system's memory.
The central processor references the contents of memory in order to determine
what action is appropriate. This means that the processor must know which lo-
cation contains the next instruction.

Each of the locations in memory is numbered to distinguish it from all other
locations in memory. The number which identifies a memory location 1is called
its Address.

ARITHMETIC
& LOGIC |
UNIT Central
(ALU) I Processing
Unit (CPVU)

/

INPUT > CONTROL »>1 OUTPUT

]——-l

—_———te—

STORAGE
(MEMORY)

Figure 1.1

The processor maintains a counter which contains the address of the next pro-
gram instruction. This is called a Program Counter (PC). The processor up-—
dates the program counter by adding to the counter each time it fetches an in-
struction, so that the program counter is always current (pointing to the next
instruction). If an instruction takes several words in memory, the PC 1is in-
cremented by the proper number so that it is always pointing to the first word
of the next instruction.

The programmer therefore stores his instructions in numerically adjacent ad-
dresses, so that the lower addresses contain the first instructions to be ex-
ecuted and the higher addresses contain later instructions. The only time the
programmer may violate this sequential rule is when an instruction in one sec—
tion of memory is a jump instruction to another section of memory.

A jump instruction contains the address of the instruction which is to follow
it. The next instruction may be stored in any memory location, as long as the
_programmed jump specifies the correct address. During execution of a jump in-
struction, the processor replaces the contents of its program counter with the
address embodied in the jump. Thus, the logical continuity of the program is
maintained.

A special kind of program jump occurs when the stored program calls a sub-
routine. In this kind of jump, the processor is required to '"remember" the
contents of the program counter at the time that the jump occurs. This en-
ables the processor to resume execution of the main program when it is finish-
ed with the last instruction of the subroutine.

A subroutine is a program within a program. Usually it 1is a general-purpose
set of instructions that must be executed repeatedly in the course of a main
program. Routines which calculate the square, the sine, or the logarithm of a
program variable are good examples of functions often writtem as subroutines.
Other examples might be programs designed for inputting or outputting data to
a particular peripheral device.

The processor has a special way of handling subroutines, in order to insure an
orderly return to the main program. When the processor receives a call in-
struction, it increments the Program Counter and stores the counter's contents
in a reserved memory area known as the stack. The stack thus saves the ad-
dress of the instruction to be executed after the subroutine 1is completed.
Then the processor loads the address specified in the call into its Program
Counter, The next instruction fetched will therefore be the first step of the
subroutine,

The last instruction in any subroutine is a return. Such an instruction need
specify no address. When the processor fetches a return instruction, it sim-
ply replaces the current contents of the Program Counter with the address on
the top of the stack. This causes the processor to resume execution of the

calling program at the point immediately following the original call instruc-
tion,

Subroutines are often nested; that is, one subroutine will sometimes call a
second subroutine. The second may call a third, and so on. This is perfectly
acceptable, as long as the processor has enough stack capacity to store the
necessary return addresses, and the logical provision for doing so. In other
words, the maximum depth of nesting is determined by the depth of the stack
itself. If the stack has space for storing three return addresses, then three
levels of subroutines may be accommodated.

1-5

Processors have different ways of maintaining stacks. For example, some, like
the Signetics 2650, have facilities for the storage and return addresses built
into the processor itself. Other processors use a reserved area of external
memory as the stack and simply maintain a pointer register which contains the
address of the most recent stack entry. The external stack allows virtually
unlimited subroutine nesting.

Instruction Register and Decoder

Each operation that the processor can perform is identified by a wunique byte
of data known as an Instruction Code or Operation Code. An eight-bit word
used as an instruction code can distinguish between 256 alternative actions,
more that adequate for most processors.

The processor fetches an instruction in two distinct operations. First, the
processor transmits the address in its Program Counter to the memory. Then
the memory returns tha addressed byte to the processor. The CPU stores this
instruction byte in a register known as the Instruction Register, and uses it
to direct activities during the remainder of the instruction execution.

An eight-bit instruction code is often sufficient to specify a particular pro-
cessing action. There are times, however, when execution of the instruction
requires more information than eight bits can convey.

One example of this is when the instruction references a memory location. The
basic instruction code identifies the operation to be performed, but cannot
specify the operand address as well. In a case like this, a twoor three-byte
instruction must be used. Successive instruction bytes are stored in se-
quentially adjacent memory locations, and the processor performs two or three
fetches in succession to obtain the full instruction. The first byte retriev-
ed from memory is placed in the processor's instruction register, and subse-
quent bytes are placed in temporary storage; the processor then proceeds with
‘the execution phase. Such an instruction is referred to as variable length.

Address Register(s)

A CPU may use a register pair to hold the address of a memory location that 1is
to be accessed for data. If the address register is programmable (i.e., if
there are instructions that allow the programmer to alter the contents of the
register), the program can "build" an address in the address register prior to
executing a memory reference instruction (i.e., an instruction that reads data
from memory, writes data to memory or operates on data stored in memory).

Addressing Modes

An instruction word must convey the operation to be performed (operation code)
and the address of the memory location or registers containing the data on
which the operation is to be performed (operand). An n-bit instruction may be
divided into three basic parts: 1) an operations code, 2) an address mode,
and 3) an operand address. The number of bits in each of these parts varies
from microprocessor to microprocessor.

1-6

The instruction length depends on the machine and the operation being perform-
ed. An 8-bit instruction format would allow only 28 = 256 possible combina-
tions of operations and addresses. This is obviously inadequate if a reasona-
ble-size memory is to be accessed. For this reason 2 and 3-byte instructions
are frequently used for memory access. Such an instruction is 16 or 24 bits
long. 1In most cases, one byte is used to represent the operations code and
address mode portions of an instruction. The number of bits used for each of
these and their relative locations within the byte vary from processor to pro-
cessor. The address mode and operand part of the instruction combine to indi-
cate the location in which the operand is stored. There are numerous modes of
addressing the operand. The most important for microprocessors include direct
(or absolute), indirect, relative, indexed, and immediate addressing. The ad-
dress mode portion of the instruction specifies how the address is to be in-
terpreted. These addressing modes are defined as follows:

e Direct Addressing. With direct addressing, the address of the operand is
specified directly in the instruction. This is a common form of addressing
used in microcomputers. Direct addressing usually requires multiword in-
structions in 4 or 8-bit microprocessors.

e Indirect Addressing. In this mode, the instruction provides the address at
which the address of the operand is to be found. In microprocessors, a
form of addressing called register indirect addressing is commonly used.
The address is stored in one or more registers within the CPU. In most
cases, this architecture allows any location in memory to be addressed with
a single-word instruction. Indirect addressing allows modification of the
operand address during execution of the program.

e Relative Addressing. In relative addressing, the address 1is specified by
its relation to the program counter. In this mode the address specified in
the instruction is added to the number in the program counter to obtain the
address of the operand. For example, if the address in the instruction 1is
11 and the program counter contains 124, then the address of the operand
will be 11 + 124 = 135, The use of relative addressing simplifies the
transfer of programs to different areas of memory.

Microcomputer memory is frequently structured into pages. A page may consist
of 256 words of memory and is frequently located on a single IC. A page
structure divides the memory into small blocks. The use of paging reduces the
necessity for multiword memory reference instructions. In conjunction with a
memory page structure, a form of relative addressing called page relative ad-
dressing is frequently used. In page relative addressing, an operand address
given in the instruction is interpreted as a location on the same page of me-
mory addressed by the program counter. In page-0 relative addressing, the
operand address refers to a location on page 0 of the memory, regardless of
the program counter contents.

e Indexed Addressing. This mode is similar to relative addressing. The ad-
dress specified in the instruction, however, is relative to a prespecified
register other than the program counter. This register 1is called the
index. The address given in the instruction is added to the contents of
the index register to determine the address of the operand. Indexed ad-
dressing is valuable in programs involving tables or arrays of numbers.
The address of the first element of the table may be stored in the index
register, and all other elements in the table may be addressed in

1-7

relation to the first element.

e Immediate Addressing. In this mode, the operand is given in the instruc-
tion itself. In a microprocessor with only an 8-bit word length this may
not be possible. In this case, the memory location immediately following
the instruction is often used to store the immediate data.

The Signetics 2650 microprocessor can develop addresses in eight ways:

o Register addressing.

° Immediate addressing.

o Relative addressing.

° Relative, indirect addressing.

° Absolute addressing.

° Absolute, indirect addressing.

° Absolute, indexed addressing.

) Absolute, indirect, indexed addressing.

However, of these eight addressing modes, only four of them are basic. The
others are variations due to indexing and indirection. Chapter 9 describes
how effective addresses are developed by the 2650 microprocessor.

Extended/Non-Extended I/O

One of the major tasks performed by the CPU portion of a microcomputer 1is the
transfer of data between the CPU and an I/O device. This, of course, 1is the
method used by the computer to communicate with the outside world; e.g., read-
ing data into the processor from a keyboard, cassette tape unit, paper tape
reader, etc. or writing data into a CRT display, paper tape punch, cassette
recorder, etc.

In most microprocessor-based system, there is essentially only one way that
these I/0 data transfers take place; i.e., by placing the "address" or 1identi-
fication code of a specific 1/0 device on the address bus and the data to be
written on the data bus. (If its a read operation, the I/0 device will place
the data to be read on the data bus.) With this arrangement, some mechanism
must be provided to examine the address bus during an I1/0 transfer to deter-
mine which specific I/0 device is being accessed. This operation requires
some type of decoder which can look at up to 8-bits of address data and from
this information, generate a signal on a single line which will open a path
from the data bus to the individual I/0 device specified by the data on the
address bus.

This can be a rather complex task and, in fact, is often implemented by a spe-
cial LSI chip designated specifically for this purpose. In addition to the
hardware required, this approach to I/0 data transfer also consumes memory
space for storing this I/0 address. For example, the 2650 requires two eight-
bit memory words to implement this type of I/O transfer. One word

1-8

specifies the operation (Read or Write) and the other specifies the 1I/0 de-
vice. In the 2650, this is referred to as an Extended I/0 operation.

In addition to the Extended Mode of parallel I/0 data transfer, the 2650 can
also operate in what is referred to as a Non-Extended mode. In this mode, two
different I/0 devices can be addressed by a single pin called Data/Control
(D/C). This is an output from the 2650 that responds to a specific instruc-
tion calling for a Non-Extended 1/0 operation. This pin and the memory mapped
1/0 (see Chapter 6) are the only two pins that need be decoded to use this
simple form of 1/0. When the D/C output is high, it connects the "D" output
device to the data bus; when it is low, it connects the '"C" output device.
Thus, simple SSI gates are the only interface required to enable the 2650 to
communicate with I/0 devices in the Non-Extended Mode.

In addition to saving hardware, the Non-Extended I/0 mode also saves software
(or program memory). Each Non-Extended instruction is a single word instruc-
tion which contains enough information to specify two different operations
(Read or Write) to two different ports (D or C).

One additional benefit in having both Extended and Non-Extended I/0 modes 1is
the fact that one can "mix" modes in any given system. For example, assume
that a typical system has 20 I/0 channels, two of which are used substantially
more that the other eighteen. In this system, ome could specify the two fre-
quently used channels as Non-Extended channels and address these with single-
byte instructions. The other, less frequently used channels would be address-
ed with Extended instructions.

Another example would be in those situations where a single I/0 device has two
separate ports for information flow. Quite often, one of these ports 1is wused
to handle Control or status information; for example, 'start a motor" or
"start the timer," etc. The other channel is used for the actual data trans-
fer. 1In this case, the basic I/0 device can be addressed in the Extended Mode
with a two-byte instruction and the actual information transferred in a Non-
Extended Mode with a single-byte instruction. (In fact, the Data/Control
aspects of this dual-port situation is what prompted the nomenclature for the
D/C pin.)

SOFTWARE

Software is a term used to describe the programs that make a computer do a
specific task. In fact, when used in the context of computers, the word soft-
ware can be interchanged with the word program. In general, a program is a
series of sequential steps (instructions) that accomplish an objective. Even
though the specific set of instructions it can use is fixed by its design, a
computer is general purpose because it can execute a list of these instruc-
tions (a program) to perform some functions, execute another list of instruc-
tions to perform some other function, and so on.

In discussions about software and programming, a great deal 1is often said
about programming in some language or another. This is because the way we
command the machine is very much like the way we communicate in a written
language. We have rules about how we start and end sentences and paragraphs
and how we spell words. The way we communicate with a computer is through a
programming language, which also has rules of spelling and punctuation, but
these rules are much more strictly enforced. If you misspell a few words,

your reader will probably understand you anyway. A computer language 1is not
that forgiving and will not produce the desired result if its rules are broken.

Machine Language

There are a number of levels of programming languages. The most basic level
is that of the actual machine language. Each instruction is uniquely defined
by a binary code (pattern) of ones and zeros. The central processing unit
(CPU) examines each instruction code and performs the exact sequence of events
to produce the operation defined by that instruction. After an operation has
been performed and a problem solved, the computer must then reverse 1its open-—
ing procedure. It must retranslate its machine language and display the
answer in a form the person who presented the problem can understand.

The use of machine language is a perfectly reasonable way to program when 6 the
application is not too complex and the effort is on a 1low budget. The IN-
STRUCTOR 50 is a machine-language microcomputer; making 1t support assembly
language would have considerably raised its cost. The main advantages of ma-
chine language programming are that it can be completed without the aid of an-
other program, and it allows the programmer to keep track of and control every
detail of the machine operation.

Assembly Language

To make programming easier, assemblers have been developed. An assembler is a
computer program that accepts coded instructions or mnemonics that are more
meaningful to use and translates them into binary machine code for execution
by a computer. The mnemonics used for each instruction are much easier to re-
member, and they make a listing of the program much easier to read. Assembly
language programming allows the programmer to retain complete control over the
important details of the computer operation, but takes care of all the drudg-
ery of the binary coding, address calculations, and the like.

Higher-Level Languages

A third category of software is the higher-level languages, such as BASIC and
FORTRAN, which come the closest to natural human languages. They are problem—
oriented and contain familiar words and expressions; however, they have a very
strictly defined structure and syntax. There are two types of support pro-
grams associated with higher-level languages: compilers and interpreters.
Both types take the higher-level language program the programmer writes and
turn it into machine language the computer can use.

Other Software

Other software associated with microprocessors include monitor programs, debug
programs, simulators, editors, I/0 handlers, diagnostic programs, and load-
ers. Brief definitions of these programs are provided in the glossary (Chapt-
er 13).

1-10

2. GETTING STARTED

Introduction

Welcome aboard the INSTRUCTOR 50--a unique and powerful training tool designed
to introduce you to the world of microcomputers in the shortest possible time.

INSTRUCTOR 50 is for computer hobbyists, students, engineers or anyone who
wants to learn how to use a microcomputer the easy way, without having to face
the drudgery of a long and tedious training program.

INSTRUCTOR 50 is a stand-alone microcomputer based on the Signetics 2650 mi-
croprocessor. It includes everything that you need to write, run, and debug
machine-language programs. A 12-key Function Control Keyboard and a 16-key
Hexadecimal Keyboard are used to enter data and perform various system func-
tions associated with the INSTRUCTOR 50. The INSTRUCTOR 50 User System Execu-
tive (USE) monitor program guides you in the use of the system by displaying
prompting messages and responses on an eight-digit LED display. All facilit-
ies required for program development are built into INSTRUCTOR 50 -- you don't
need anything else to start.

Before getting into the details of what makes the INSTRUCTOR 50 tick, let's
first take a short shakedown cruise and write a few simple programs. Detailed
information on each 2650 instruction is provided in Chapter 9.

Power On and Initial Display

To apply power to the INSTRUCTOR 50, connect the power cord into the rear
panel receptacle, and insert the power pack into any standard 115 VAC domestic
wall socket. The INSTRUCTOR 50 does not have a power ON/OFF switch. The
initial display is the message HELLO, indicating that the INSTRUCTOR 50 is in
the monitor mode and ready for use. If the HELLO message does not appear, de-
press the MON key to initialize the INSTRUCTOR 50. Unplug the power pack to
turn the INSTRUCTOR 50 off.

Operating Modes

The INSTRUCTOR 50 has two basic modes of operation, the MONITOR mode and the
EXECUTION mode. The MONITOR mode is entered automatically on power up or by
depressing the MON key on the function control keyboard. The monitor responds
by displaying HELLO. While in the MONITOR mode, you may:

° Enter and alter a program.

. Read in a previously saved program from audio cassette tape.

2-1

] Display and alter the contents of the microcomputer's general-purpose
working registers and/or Program Status Word (PSW).

° Examine and alter the contents of memory locations.

® Examine and alter the contents of the Program Counter.
° Specify and examine a program breakpoint.

° Step through a program one instruction at a time.

e Save a program on cassette tape.

The EXECUTION mode is entered by depressing the RUN key, the STEP key, or the
RESET (RST) key on the function control keyboard. Depressing the RUN key ter-
minates the MONITOR mode and causes program execution to begin at the address
specified in the Program Counter. Depressing the STEP key causes the IN-
STRUCTOR 50 to execute a single instruction and return to the MONITOR mode.
When the RST key is depressed, current INSTRUCTOR 50 activity 1is terminated,
and the processor begins program execution at address zero or, in hex nota-
tion, H'0000'.

Keying in and Entering Values

Address and data parameters are entered into the INSTRUCTOR 50 via the hexa-
decimal keyboard using the hex notation described in Chapter 1. When entering
an address, you may enter as many as four hex digits starting with the most-
significant digit of the address. Leading zeroes need not be entered; if less
that four digits are entered, the leading digits are automatically =zeroed.
Data values consist of one or two hex digits, with the most-significant digit
entered first. If only one digit is entered, the most-significant digit is
automatically zeroed.

Correcting Entry Errors

The numbers keyed in appear in the address or data display field and can be
edited prior to depression of a funciton key by simply keying in the correct
characters. The display shifts to the left each time a new character 1is en-
tered, and characters shifted out of the field are disregarded. Only the last

digits entered are retained, so that an error in entry can be corrected by en-
tering the correct data.*

For example, if you were entering an address and you depressed 121 instead of
the correct value of 120, the display would read:

Ad. = 121

¥ Data values entered during operation in the FAST PATCH command mode cannot
be corrected in this manner. See description of the FAST PATCH command in
Chapter 5.

2-2

To recover from this error, simply key in the correct value by depressing the
following hex keys:

(0) (1) (2) (o
The correct value would then be displayed as indicated below.

.Ad. = 0120

The Prompt Light

A dot or period in the left-most position of the display (e.g., .Ad. =) 1is a
prompt signal. It indicates that the INSTRUCTOR 50 is ready to accept a data
or address value.

Entering and Executing a Simple Program

To demonstrate the use of the INSTRUCTOR 50, let's write a simple program, en-

ter it, and execute it. Prior to writing the program, we must decide what
task or operation we want the program to perform.

Let's say we want to "show the operation of an 8-bit binary counter on the IN-
STRUCTOR 50's output port indicator LEDs". The flowchart for performing this
task is shown in Figure 2.1.

The DELAY block shown in the flowchart provides a time interval between new
values of the binary count in order to observe the counting action on the port
indicators. This can be implemented in several ways, depending on the delay
required.* We will use a double-loop technique, with the outer loop counting
the number of excursions through the inner loop.

< START ’

/

CLEAR
REGISTER

OUTPUT
REGISTER
TO PORT

DELAY

/
ADD ‘1" TO
REGISTER

N

Figure 2.1: Flowchart for Binary Counter Program

*See Signetics 2650 Applications Note AS52 - General Delay Routines.

2-3

The next step is to select registers for the binary counter and the delay loop
counters, and to select an output port for the display operation. Let's arbi-
trarily make the following assignments:

Register 0O
Register 1
Register 2
Port D

We are now ready to write

ADDRESS HEX VALUE

00 75,11

02 20

03 FO

04 05,20

06 06,20

08 FA,7E

0A F9,7A

oc 84,01

OE 1F,00,03

o

LABEL

START

ouT
LOOP1
LOOP2
SELF

the program:

Binary counter

Outer loop counter
Inner loop counter
Output display port

INSTRUCTION COMMENTS

CPSL C + RS Operations without
Carry, Reg. bank 0O

EORZ,RO Clear RO

WRTD,RO Output RO to D

LODI,R1 H'20' Initialize outer loop

LODI,R2 H'0O' Initialize inner loop

BDRR,R2 SELF Count inner loop

BDRR,R1 LOOP2 Count outer loop

ADD1,RO H'O1' Add 1 to RO

BCTA,UN OUT Go back to output

Let's begin entering the program using the INSTRUCTOR 50's FAST PATCH command,
which is used for entering long hex data strings. The FAST PATCH mode is en-
abled by depressing the (REG) key followed by the (F) key:

KEY
(MON)

(REG) (F)
(0) (ENT/NXT)
(7) (5)
(1) (1)
(2) (0)
1y ®
0) (o)
(0) (3)
(ENT/NXT)

DISPLAY
HELLO

Ad. =
.0000
.0000 75
.0001 11
.0002 20
.000E 1F
.000F 00
.0010 03
.0010 03

COMMENTS

Enter monitor mode
Enter FAST PATCH

Enter starting address
Begin program entry.

Terminate FAST PATCH

We will now verify correct entry by using the DISPLAY & ALTER MEMORY command:

KEY

(MEM)

(0) (ENT/NXT)
(ENT/NXT)
(ENT/NXT)
(ENT/NXT)

.

(éNT/NXT)

DISPLAY

Ad. =

.0000 75
.0001 11
.0002 20
.0003 FO
.0010 03

COMMENTS

Display and Alter memory
Address entered, data displayed

Verification complete

ERROR CORRECTION TECHNIQUE

If an error is detected during verification, it can be corrected by entering
the correct value before depressing the (ENT/NXT) key. For example:

KEY DISPLAY COMMENTS

(ENT/NXT) .0003 F8 Error. Data should be FO.
(F) (0) .0003 FO Correct data entered.
(ENT/NXT) .0004 05 New data deposited.

EXERCISING THE PROGRAM

We are now ready to exercise the program. Before proceeding, make certain
that the Interrupt Select Switch which is accessible from the bottom side of
the case is in the keyboard position (towards the center). The Port Address
Select Switch is placed in the NON-EXTENDED Port D position, and, since the
program begins at address zero, the (RST) key is depressed to initiate execu-
tion. The program operation can be observed on the I/0 port indicators.

CHANGING THE PROGRAM PARAMETERS

We can use the INSTRUGCTOR 50 facilities to change the program parameters or to
observe the internal operation of the program. For example, to change the de-
lay time, we can change the delay constant at address H'05' with the DISPLAY
AND ALTER MEMORY command.

KEY DISPLAY COMMENTS

(MON) HELLO Return to monitor mode.
(MEM) .Ad. = Display and Alter memory.
(5) (ENT/NXT) .0005 20 Address entered, data shown.
(4) (0) .0005 40 New constant entered.
(ENT/NXT) .0006 06 New constant deposited.
(RST) Program re-started.

The counter now operates about half as fast as before.

We can observe the internal operation of the program by using a breakpoint,
which will stop program execution at a selected instruction and return to the
monitor mode. Let's watch the outer delay loop operate by placing a break-
point at address H'OA'. To enable the breakpoint during program execution,
the program must be started via the RUN command. Before running the program,
the starting address (H'00') must be entered by using the DISPLAY AND ALTER
PROGRAM COUNTER (PC) command:

KEY ' DISPLAY COMMENTS

(MON) HELLO Return to monitor.

(BRPT) (4) b.P. = A Breakpoint entered.

(ENT/NXT)

(REG) (c) (0) .PC =0 Enter starting address.

(RUN) -000A F9 Start execution. Program stops at
breakpoint and returns to monitor.

(REG) (1) .rl = 3F Rl has decremented by 1.

(RUN) -000A F9 Execute again.

(REG) (1) .rl = 3E Rl has decremented again.

(RUN) (REG) .rl = 3D And again.

(1

(BKPT) (BKPT) b.P = Breakpoint removed.

(RUN) Program runs without stopping.

EXAMPLE 2: THE BILLBOARD PROGRAM

Example 2 is a program that makes use of the User Display Routine described in
Chapter 6. The User Display Routine moves an eight-byte message from a user
program to the display buffer and then displays the message. In our sample
program, the selected message will reappear on the display panel at regular
intervals to give the effect of a rotating billboard.

The following program listing is self-explanatory and contains all the ne-
cessary parameters for entering and executing the program. If you are not
familiar with program listings, the hex values are located in the third column

from the left under the word OBJECT. Figure 2.2 is a flowchart of the bill-
board program.

TWIN ASSEMBLER YER 2. X1 BILLBOARD PROGRRM 17 APR 78 PAGE o661

LINE ADDR OBJECT E SOURCE

BaEz

#0as *

Ba84 *PROGRAM WRITTEN BY JOHN KEENAN

86835 *

neas *THIS PROGRAM IS WRITTEN FOR THE INSTRUCTOR 58

aea? *

#ags *THIS PROGRAM DISPLAYS THE MESSAGE IN THE DISPLAY BUFFER
apa3 *

sai@ *THE MESSAGE WILL WILL REAPPEAR ON THE DISPLAY PANEL

it *AT REGULAR INTERVALS TO GIVE THE EFFECT OF A ROTATING
gaiz *BILLBOARD.

aaLz *

Biata *THE MAXIMUM MESSAGE LENGTH IS 254 CHARACTERS .
aa15 *THE MESSAGE IS ENTERED STARTING AT LOCRTION H'181°. PROGRAM LABEL ‘MSG”
mate *THE END OF MESSAGE IS INDICRTED BY THE VALUE OF H°FF“ AS THE LAST
a7 *CHARACTER OF THE MESSAGE.

GE18 ¥

8a19 * STRHDARD SYMBOL DEFINITION - THIS FILE MAY BE APPENDED TO THE
e * FRONT OF ANY USER‘S SOURCE DECK
ga2t * REGISTER EQUATES

a6z Gong 4] EQu B REGISTER @

27 eadd Ri EQU 1 REGISTER 1

gu24 Bam2 Fz2 EQU 2 REGISTER 2

BAZS BHAY k2 EQU 3 REGISTER 2

@Az * CONDITION CODES

BaZ7 BoeL P EQu 1 POSITIVE RESULT

4628 608 Z EQU] ZERD RESULT

4029 Bod: N EQl 2 NEGRTIVE RESULT

oE36 Bas2 L7 EQu 2 LESS THAN

G0zl oot ER EQU 8 EQUAL TO

Baiz Boal GT EQU 1 GREATER THAN

Ba33 0603 UN EQu 3 UNCONDITIONAL

B34 * PSH LOKER EQUATES

BacsS Beed cc EQU H'88” CONDITIONAL CODES

G635 pacw I EW H’28° INTERDIGIT CARRY

G637 Bal6 RS EQU H'18” REGISTER BANK

9938 6865 HC EQU H'88° 4=HITH 8=WITHOUT CARRY

0033 Gesd o EQU H'@4° OYERFLOW

@4l Bee2 oM EQU H'82° 1=LOGIC @=ARITHMETIC COMPARE

B4l Beol C EQU H'81° CARRY/BORRON

6042 * PSW UPPER EGURTES

#843 8856 SENS EBU H’88° SENSE BIT

044 Gad8 FLAG EQU H’48° FLAG BIT

#0945 @aZe I Eau H'28’ INTERRUPT INHIBIT

GB4c Boa7 SP EQU R‘@7° STRCK POINTER

aady * END OF EQURTES

#0438

THIN ASSEMBLER VER 2. %1 BILLBOARD PROGRAM 17 APR 78 PAGE Bo62

LINE ADOR OBJECT E SOURCE

Base M09

a5

Ba52 8864 7518
#0853 BOE2 @56
Bu34 8684 7710
2855 ewec A581
Q856 PeBR HEG106
9u57 0eat BraL
U

4839 @86l BBES
aage @aRF 716
Geel Gall FDBGR4
aae2

HB63

8664 Gald GEG100
8RS 8817 8681
fae6 Gal9 CEalee
Bhe? BAiC BEs1@D
BO6S @B1F E4FF
BR6S 3021 SCapa:
@78

AE71 BE24 D46
aave

#a73 Baze CCuide
BE74 G029 1Fena2
Bars

T

GayT Bezl

Bera

BEre G106

BEse

Bl

Bag2

BEgz

#Ha4

aEaEs

BE36

aaay

#930 A1A1 14041787
#1685 14818517

8169 616517

BBES B10C B7148E17
@118 62668500
B0%9 6114 1R1AIALA
9118 14811707

BL1C 140185
@391 aLiF FF
ang2
9z
8934 9128
B8535 1FEe
2895
aas?

B35 3609

ORG 8 SET THE BEGINNING OF PROGRAM TO LOCATION @
*
BEGIN CPSL RS SET LOMWER REGISTER BANK
START LODL K1 H/6@° LOAD THE DELAY COUNTER
DISPL PPSL RS SET THE UFPER REGISTER BRHK

LODI,RL <MSG LOARD THE UPPER BYTE OF MESSAGE POINTER RDDRESS

LODA:R2 PNTR LOAD THE LOWER BYTE OF MESSAGE POINTER ADDRESS-1

LODLR3 &4 LOAD THE 1 PASS COMMAND PRRAMETER TO THE DISPLAY
* ROUTINE

ZBSR *USRDSP EAIT TD THE DISPLRAY ROUTINE FOR 1 PRSS

S OPL RS SELECT THE LOKER REGISTER BANK
BORA. R1 DISPL DECREMENT THE DELRY COUNTER AND CHECK FOR END

* N IF HOT AT EMD, DISPLAY THE SAME MESSAGE UNTIL
* COUNT = &

LODA,R2 PNTR LORD POINTER TO MESSAGE

ADDI, R2 1 INCREMENT IT

STRA: R2 PNTR SAVE THE HEW POINTER VALUE

LODA, KB MOG+8, R2 LORD THE NEXT CHRRACER TO BE DISPLAYED

COMI, k@ H'FF“ IS IT THE END OF MESSRGE CHARACTER?
BCFR.EQ START IF WO, GO DISPLAY THE MESSAGE ROTATED LEFT 1

* CHARACTER
LODL. R & IF YES, RESET MESSRGE POINTER TO BEGINNING OF
* MESSAGE

STRA @ PNTR SET POINTER TO BEGINNING

BCTA, UN START GO DISPLAY THE MESSAGE FROM THE BEGINNING
*

*
ORG H/188” THIS 1S THE DATA ARER FOR THE PROGRANM
*
PNTR RES 1 1 LOCATION TO SRVE THE LEAST SIGNIFICANT BYTE OF

* MESSRGE POINTER
¥

*

*¥THIS IS THE INITIAL MESSAGE IN THE BUFFER
¥
*THE MESSAGE IS “HI THIS IS THE 2658... HI THIS'
*

*

M5G DATA H'14,81,17,87, 14,61, 65,17,01, 85,17/ HI THIS IS

DATR H787, 14, 6E, 17, 62, 86, 85, B8° THE 2658

DATA H74R. 1R 1R, 1R, 14, 81,17, 87, 14, 81,85 ... HI THIS

DATR H'FF* ERD OF MESSAGE FLAG
*

*
ORG H’AFE6’ LOCATION OF POINTER IN MONITOR TO DISPLAY ROUTINE
LISRDSP EQU $
*
*

END BEGIN

TOTAL RSSEMBLY ERRORS = 0068

2-8

‘ START ’

SELECT
REGISTER
BANK 0

SET R1=H ‘60’
FOR DELAY

COUNTER

SELECT
REGISTER
BANK 1

LOAD REGISTERS
1,2,3WITH
SUBROUTINE
PARAMETERS

DISPLAY

BUFFER

DECREMENT
DELAY
COUNTER

INCREMENT
DISPLAY
BUFFER
POINTER

!

CHECK NEXT
CHARACTER
IN BUFFER

CHARACTER

RESET
POINTER TO
BEGINNING

Figure 2.2:

Flowchart for

2-9

Billboard Program.

FF

Let's begin entering the hex values shown in the program listing starting at
We will again use the FAST PATCH command for enter-

memory location H'0000'.
ing values.

Program Entry & Verification

(0) (ENT/NXT)

KEY(S)
(MON)
(REG) (F)
(7) (5)
(1) (o)
(0) (5)
(6) (0)
(1 ((®
(0) (0)
(0) (2)
(ENT/NXT)

DISPLAY
HELLO

JAd. =
.0000
.0000 75
.0001 10
.0002 05
.0003 60
.0029 1IF
.002A 00
.002b. 02
002b. 02

COMMENTS

Enter monitor mode
Enter FAST PATCH

Enter starting address.
Begin program entry.

Terminate FAST PATCH.

We will now verify correct entry by using the DISPLAY & ALTER MEMORY command:

KEY(S)

(MEM)

(0) (ENT/NXT)

(ENT/NXT)
(ENT/NXT)
(ENT/NXT)

(éNT/NXT)
(ENT/NXT)
(ENT/NXT)

Setting a Pointer

DISPLAY

QAd. =

.0000 75
.0001 10
.0002 05
.0003 60
.0029 1F
.002A 00
.002b. 02

COMMENTS

Display and Alter Memory
Address entered; data displayed.

Verification complete.

Our next step will be to set a message pointer at memory location 100 to indi-
cate that our message will begin at address 101.

KEY(S)

(MEN)
(1) (o)

(ENT/NXT)

) ()
(ENT/NXT)

(0)

DISPLAY
JAd. =
Ad. = 100
.0100 1A
.0100 00
.0101 00

COMMENTS

Display and Alter Memory

Location of message pointer address
entered.

Previous contents of memory location
100 is 1A.

Contents changed to 00.

Message pointer set.

2-10

Entering a Message

Now that the message pointer has been entered and set, we can begin entering
our message starting at memory location 101. We will re-enter the FAST PATCH
mode prior to message entry and then begin entering the message: HI THIS IS
THE 2650....HI THIS. Note that the first two words of our message are repeat-
ed to give the effect of a rotating billboard.

Refer to Figure 3.2 for the hex value corresponding to each character in our
message.

KEY(S) DISPLAY COMMENTS

(REG) (F) .Ad. = Enter FAST PATCH

(1) () (@) .Ad. = 101 Starting address entered.
(ENT/NXT) .0101 Starting address set.

(1) (&) .0101 14 Hex value for letter H

0) (1) .0102 01 Hex value for letter I

OO GD ' .0103 17 Hex value for blank or space
) (M .0104 07 Hex value for letter T

(1) (4) .0104 14 Hex value for letter H

(o) (1) .0106 01 Hex value for letter I

(0) (5) .0107 05 Hex value for letter S

)y .0108 17 Hex value for blank or space
(o) (1) .0109 01 Hex value for letter I

(0) (5) .010A 05 Hex value for letter S

vy .010b. 17 Hex value for blank or space
0y (7) .010c 07 Hex value for letter T

(1) (&) .010d. 14 Hex value for letter H

(0) () .010E OE Hex value for letter E

(1 (M .010F 17 Hex value for blank or space
0) (2 .0110 02 Hex value for numeral 2

(0) (6) .0111 06 Hex vlaue for numeral 6

0 (5 .0112 05 Hex value for numeral 5

(0) (0) .0113 00 Hex value for numeral 0

(1) (a) L0114 1A Hex value for dot or period
(1 0115 1A Hex value for dot or period
(1) (A .0116 1A Hex value for dot or period
(1) (&) 0117 1A Hex value for dot or period
(1) (&) .0118 14 Hex value for letter H

(0) (1) .0119 01 Hex value for letter I

1)y (7 011A 17 Hex value for blank or space
(0) (7 .011b. 07 Hex value for letter T

(1) (&) .011C 14 Hex value for letter H

0) (1) .011d4. 01 Hex value for letter I

(0) (5) .011E 05 Hex value for letter S

F .0l1F FF End of message flag.

Exercising the Program

To execute the program, depress the following keys:

(REG) (c) (0) (RUN)

2-11

You can now observe the movement of our message on the display panel. We can
use the INSTRUCTOR 50 facilities to vary the speed of message movement by
changing the constant at memory location 0003 from 60 to another value. To
accomplish this, proceed as follows:

KEY(S) DISPLAY COMMENTS

(MON) HELLO Return to monitor mode.
(MEM) LAd. = Display and alter memory.
(3) (ENT/NXT) .0003 60 Address entered; data shown.
(7 (F) .0003 FF New constant entered.
(ENT/NXT) .0004 77 New constant deposited.
(REG) (c) (0) Program re-started.

(RUN)

EXAMPLE 3: CLOCK PROGRAM FOR THE INSTRUCTOR 50

Example 3 is a clock program that makes use of the Display routine described
in Chapter 6. Since this program incorporates features described in later
chapters of this manual, you may wish to skip it for now and return to it when
you are more familiar with the INSTRUCTOR 50.

The following program listing is self-explanatory and contains all the ne-
cessary parameters for entering and executing the program. As in the previous
example, the hex values in the program listing are located in the third column
from the left under the word OBJECT.

NOTE: When entering the hex values from the listing, note the gaps at address
locations 0005 and 0006. These gaps are used to accommodate an interrupt rou-
tine. No Operation (NOP) instructions (e.g., CO) may be inserted in these
gaps.

Let's begin entering the program using the program listing as a guide:

KEY(S) DISPLAY COMMENTS

(MON) HELLO Enter monitor mode.
(REG) (F) .Ad. = Enter FAST PATCH

(0) (ENT/NXT) .0000 Enter starting address
(7) (6) .0000 76 Begin program entry.
(2) (0 .0001 20

(1) (F) .0002 1IF

(0) (o) .0003 00

(9) (5) .0004 95

) () .0005 CO NOP entered in gap.
(c) (o) .0006 CO NOP entered in gap.
(0) (c) .0007 OC

(1) (B) .00A5 1b.

(6) (E) .00A6 6E

(ENT/NXT) .00A6 6FE Terminate FAST PATCH

2-12

Now that we have entered the program, let's enter the time of day, execute the
program, and observe the clock on the display panel. For demonstration pur-

poses, we will use the time of day specified on page 1 of the program listing;
that is : 3:45:27 AM.

KEY(S) DISPLAY COMMENTS

(REG) (F) LAd. = Enter FAST PATCH

(1) (o) .0100 Enter starting
(0) (ENT/NXT) address.

() (N .0100 17

(8) (3) .0101 83

(0) (4) .0102 04

(8) (5) .0103 85

o)y (2) .0104 02

0) (7 .0105 07

(1) (7) .0106 17

(0) (4 .0107 0A

(ENT/NXT) Terminate FAST PATCH

Depress (RST) and observe the clock on the display panel.

THIN MOOLNDLEN YER . 9 LLULR, FRUGRITT FUR INSIRULIUR JD rmuc voul

LINE RDDR OBJECT E SOURCE

Boa2
0@z
2084
8043
0986
aaa7
Paag
poas
a1
0011
0a12
a1z
8e14
315
aa1e
ani7

8931
8832
8933
pa34
8933
8036 0860
2937 6Bl
8938 9002
8039 a3

9941 Be8L
8942 (aga
9943 0882
8944 9082
8845 Goep
946 oAl
0047 0803

2945 260
20508 0820
2851 9810
8952 dees
8853 0084
8054 0082
8855 gegl

*
* CLOCK PROGRAM FOR INSTRUCTOR 58

*

* THIS PROGRAM IMPLEMENTS A CLOCK ON THE INSTRUCTOR 58.

T RUN THE PROGRAM, THE ‘DIRECT/INDIRECT’ SWITCH MUST

* BE IN THE ‘DIRECT” POSITION AND THE ‘INTERRUPT SELECT/

* SHITCH MUST BE IN THE “AC LINE" POSITION.

*

* THE DISPLAY FORMAT IS5 AS FOLLOWS:

¥ HH. MM, 35 AP

AFTER ENTERING THE PROGRAM INTO THE INSTRUCTOR 5@,

* THE INITIRL TIME MUST BE ENTERED INTO LOCATIONS H 18@‘

* T0 H'187 USING THE EXRMINE/RLTER MEMORY COMMAND OR THE

* FAST PRTCH COMMAND. THE DATA ENTERED IN THESE LOCATIONS ARE
THE DISPLAY CODES DESCRIBEDL IN FIGURE 3.2 OF THIS

* MANUAL. FOR EXAMPLE, TO INITIALIZE THE TIME TO 3:45:27 A
* PROCEED AS FOLLOWS ON THE INSTRUCTOR S@:

* REG F ENTER FRST FATCH

* 166 E/MN ENTER STARTING ADDRESS
¥ 17 BLANK CODE

* g2 3. CODE

* 64 4 CODE

* 85 5. CODE

* a2 2 CODE

* o7 7 CODE

* 17 BLANK CODE

* BA A CODE

* E/N TERMINATE FRST PATCH MODE

* AFTER INITIAL TIME YRLUE IS ENTERED, DEPRESS “RES” KEY TO

* BEGIN PROGRAM ENECUTION.
*

* REGISTER EQUATES

Ro EQuU 8 REGISTER 8
Ri EQU 1 REGISTER 1
R2 EQU 2 REGISTER 2
K3 EQL 3 REGISTER 3
+ CONDITION CODES

P EQU 1 POSITIVE RESULT
Z Eq 8 ZERG RESULT

N EQU 2 NEGRTIVE RESULT
LT EQU 2 LESS THAN

EQ EQU 8 EQUAL TD

GY EQU 1 GREATER THAN

UN EQU 3 UNCONDITIONAL

* PSH LOWER EQUATES

cc EQU H'88- CONDITIONAL CODES

Ioc e H’28° INTERDIGIT CARRY

RS EQU H’18° REGISTER BRNK

HC EQU H'83" 1=WITH @=WITHOUT CARRY

OvF EQu H'84” OVERFLOW

oM EQU H'82° 1=L0GIC B=ARITHMETIC COMPARE
C EQU H'81’ CARRY/BORROM

* PSW UPPER EQUATES

2-14

TWIN RSSEMBLER YER 2@ CLOCK PROGRAM FOR INSTRUCTOR 58

LINE ADDR OBJECT E SOURCE

0857 0080
0938 0040
0859 9929
0960 8887 Sp
0861 * END
o862 *

SENS
FLAG
I1

EQU H’88’

EQU H’40°

EQy H 28"

EQU H@7”
OF EQUATES

PAGE 80@2

SENSE BIT

FLAG BIT
INTERRUPT INHIBIT
STARCK POINTER

8064 *

0866 *

* PROGRAM BEGINS HERE.

LOCATE AT STARTING RDDRESS H’0@0@0‘

#9868 *
0069 080

oare ¥
8071 9AB8 7620 START
6872 8002 1FBS5

00873 *
0074 08085

0875 ¥
9876 0987 ACe168 CLOCK
08877 900A 8481

0878 09eC CCe183

8879 B@8F E43C

90808 @011 16

P81 *
9082 0812 20

8883 9813 CCe108

@884 Bo16 ACA109

8885 9819 8401

0886 9918 CCB185

9887 BB1E E40A

9058 0829 16

2889 0821 20

09890 0822 CCA185

0891 9825 aCeind

8852 8628 8481

9893 @v2A CCei04

8894 082D E486

@695 602F 16

889% *
8897 8030 20

9898 9831 CCo184

0099 9024 B8C0163

8100 9827 8401

8161 0839 CCaiez

9162 983C E48A

8163 @82k 16

8184 GAzF 8488

8185 0841 CCB1a3

0106 8944 BCo162

8167 8847 8481

0183 8849 CCaie2

0109 Ba4C E406

81108 004E 16

141 ¥
8112 984F 20

ORG 8

PPSU 11
BCTR, UN DISP

ORG 7

LODA, R@ FRAC
ADDI, RB 1
STRA, kB FRAC
COMI,R@ 68
RETC,LT

EORZ RB
STRA, R@ FRAC
LODA, R8 USEC
ADDI,R8 1
STRA, R@ USEC
COMI, RO 1@
RETC, LT
EORZ RO
STRA, R@ USEC
LODA, R8 TSEC
DL RE 1
STRA, RG TSEC
COMI. Re 6
RETC, LT

EORZ RO
STRA, R8 TSEC
LODA, RB UMIN
ADDI, RA 1
STRR, R@ UMIN
COMI, R H8R'
RETC, LT
LODI, R@ H'8e’
STRA, RB UMIN
LODA, R@ THIN
RODL, R 1
STRA, R@ THIN
COMI,RE 6
RETC, LY

EORZ RO

PROGRAM STARTS AT H’ @608’

IKHIBIT INTERRUPTS

BRANCH ARGUND INTERRUFT ROUTINE TO DISPLAY

LOCATION OF INTERRUPT ROUTINE

GET FRACTIONAL SECONDS

RDD 1 SINCE INTERRUPTED EVERY 68TH OF A SEC

RESTORE THE VALUE

HAYE WE COUNTED ONE SECOND?
NO-RETURN TO DISPLAY
YES-HUST INCREMENT SECONDS
SET RO TO ZERD

SET FRAC TO ZERO

GET UNIT SECONDS

A0 1

PUT IT BACK

IS UNIT SECONDS 167
NO-RETURN TO DISPLARY

SET R@ TO ZERD

SET UNIT SEC TO ZERO
GET TENS OF SECONDS

fD 1

PUT IT BRCK

REACHED 68 SECONDS?
NO-RETURN TO DISPLAY
YES-HUST INCREMENT MINUTES
SET R@ TO ZERO

SET TENS OF SEC TO ZERO
GET UNIT MINUTES

fbD 1

PUT IT BARCK

REACHED 10 MINUTES?
NO-RETURN TO DISPLAY
SET R8 TO ‘8.7

SET UNIT MIN TO /8.7

GET TENS OF MINUTES

ADD 1

PUT IT BACK

REACHED ONE HOUR?
NO-RETURN TO DISPLAY
YES-MUST INCREMENT HOURS
SET R TO ZERD

2-15

TWIN ASSEMBLER YER 2.0

LINE ADDR OBJECT E SOURCE

6113 8856 CCaiaz
#114 0853 6laiaL
8115 9656 8481
8116 9858 CCaiel
8117

8118 8838 E483
2119 895D 1812
8120

121

6122 @ASF E482
8123 e@el 181F
8124 9863 E48A
8125 0865 16
812¢ Ba66 B460
8127 @e6s Clalel
8128 @8cB B461
8129 @aeh CCole8
B138 Be7e 17
3l

8132

8133 @71 BCO188
8134 8474 E417
2135 8876 14
B136

137 0977 B417
8132 0079 (o168
8139 BA7C 9481
8140 BavE CCO101
8141 @881 17
a142

43

8144 6a82 BCo106
8145 9@85 E417
8146 8687 14
8147 0855 840A
8148 8624 ECA167
8149 63D 3882
A15a BAcF 3410
@151 Bas1 CCeia?
8152 @994 17
8132

254

8139

2156 8@35 TOFF
8157 @asy 7782
8158

#1359 6a%9 a5aa
8108 2998 BEFF
2161 BASD 8781
Ale2 B89F 7620
#1632 BBAL BBEA
64

@163

@66 BAAZ 7426
o167

pl68

HRS13

HRS12

*

CLOCK PROGRAM FOR INSTRUCTOR 58

STRA. kB THIN
LODR, RB UHRS
ADDI, ke 1

STRA, R@ UHRS

COMI,R8 H'83°
BCTR, EQ HRS132

COMI. RB H'827
BCTR, EQ HRS12
COMI, Ré H'8A”
RETC, LT
LODI, R@ H'88°
STRA, RB UHRS
LODL.R® 1
STRA, RG THRS
RETC, UN

LODA, RB THRS
COMI.R2 H'177
RETC, EG

LODI, R8 H/17/
STRA: R@ THRS
LODI. kA H'S8L”
STRA, R8 UHRS
RETC, UN

LODA, R@ THRS
COMI. RO H'17/
RETC, EQ

LODI, k@ H @R’
COMA. kB AMPH
BCFR. EQ SYMB
LODI. R@ H18°
STRA, K@ AMPM
PETC, UN

PAGE 6063

SET MINUTES TO ZERD

GET UNIT HOURS

ADD 4 TO UNIT HOURS

PUT IT BACK

MUST CHECK IF HAYE REACHED ‘43 HRS

IS UNIT HRS A 2 (83=3.)7

BRANCH IF YES

NO - MUST CHECK IF RERCHED “12’ HRS TO
CHANGE R TO P OR YICE-VERSA

IS UNIT HRS R 2 (82=2.)?

BRANCH IF YES

I5 UNIT HRS 18 (R=18)7

NO-RETURN TO DISPLAY

SETRE TO ‘8.7

PUT IN UNIT HOURS

MUST SET TENS OF HRS T0 1

STORE IN TENS OF HRS

RETURN TO DISPLAY

FOLLOWING CODE CHANGES ‘13 HOURS TO
‘17 HOUR

CHECK IF 737 (R "137

I5 THRS A BLANK?

YES -IT IS5 <37, NOT “43/-RETURN TO DISPLRY

NO-MUST BE “137 S0 CHANGE TO ‘17

CODE FOR BLANK

SET TENS OF HRS TO BLANK

CODE FOR 717

STORE IN UNIT HOURS

RETURN TO DISPLRY

FOLLOWING CODE CHANGES A TO P AND
YICE-VERSA AT ‘12 HOURS

FIRST CHECK IF ‘27 OR "12”

IS TENS OF HRS A BLANK?

YES, MUST BE “2/-RETURN TO DISPLAY

LORD CODE FOR A’

I5 SYMBOL NOW AN “R77

NO-IT IS ‘P SO MUST CHANGE TO ‘R”

CODE FOR 7P SINCE AMPH NOW "R’

STORE NEW SYMBOL

RETURM TO DISPLAY

THIS IS THE DISPLAY ROUTINE

¥
DISF

*

CPSL H'FF’
PPSL COM

CLEAR ALL BITS OF PSL
SET COM=1 FOR ARITH COMPARES
PRESET REGISTERS FOR MONITOR DISPLAY ROUTINE

LODL, RL (THRS-1 UPPER PART OF DISPLAY BUFFER LOCATION-1

LODI, R2 STHRS-1

LODLR3 1

PPt II
ZBSR *H/AFEE’
ey I

LOWER. PART
CODE FOR ONE SCAN AND RETURN
INHIBIT INTERRUPTS WHILE DISPLAYING
GO TO MONITOR DISPLAY ROUTINE
RFTER ONE SCAN THROUGH DISPLAY, PROGRAM WILL
CONTINUE EXECUTION HERE
ENABLE INTERRUPTS - IF INTERRUPT HRS
OCCURRED WILL GO TO INTERRUPT ROUTINE AND THEN
RETURN TO NEXT INSTRUCTION

2-16

TWIN ASSEMBLER YER 2.8 CLOCK PROGRAM FOR INSTRUCTOR S0 PRGE 2684

LINE ADDR OBJECT E SOURCE

8169 B8RS 1B6E BCTR,UN DISP CONTINUE DISPLAYING
0176 *

g * MEMORY ARER FOR DISPLRY BUFFER

872 *

0473 B9A7 ORG H/188° START DISPLAY BUFFER AT H 168’
8174 *

8175 6168 THRS RES 1 TENS OF HOURS

8176 8161 UHRS RES 1 UNIT HOURS

0177 6182 THIN RES i TENS OF MINUTES
8178 8183 UMIN RES 1 UNIT MINUTES

0179 g194 TSEC RES 1 TENS OF SECONDS
8186 8165 USEC RES 1 UNIT SECONDS

@181 0166 17 SPACE DATA H17/ BLANK SPRCE

8182 @107 AMPM RES i Al OR P SYMEOL

8182 *

8184 * END OF DISPLAY BUFFER

0185 *

8186 B1A8 FRAC RES i G6OTHS OF SEC COUNTER
8187 *

9188 @aga END START

TOTAL ASSEMBLY ERRORS = 000a

The simple programs described above are designed to demonstrate some of the
capabilities of the INSTRUCTOR 50 and to give you a feel for how the system
subsequent sections

works. Additional programming examples are presented in

of this manual.

2-18

3. SYSTEM OVERVIEW

Introduction

A simplified block diagram of the INSTRUCTOR 50 system is shown in Figure
3.1. Major system components include:

2650 8-bit, N-channel microprocessor
2656 System Memory Interface (SMI)
Sixteen-key hexadecimal keyboard
Twelve-key function selection keyboard
Eight-digit, 7-segment display

Audio tape cassette interface
S100-compatible expansion bus

User System Executive (USE) monitor
Debugging aids

On-board user Input/Output

Forced jump logic

512 bytes of on-board user RAM
Crystal-controlled system clock

2650 Microprocessor

The 2650 processor is a single-chip microprocessor made using an ion-implant-
ed, N-channel silicon-gate process. It has a fixed command set of 75 instruc-
tions, operates on 8-bit parallel data and can address 32,768 bytes of
memory. All bus outputs of the 2650 are three-state and can drive either one
7400-type load, or four 74LS loads.

The 2650 contains a total of seven general-purpose registers, each eight bits
long. They may be used as source or destination for arithmetic operations, as
index registers, and for Input/Output (I/0) data transfers.

The processor instructions are one, two, or three bytes long, depending on the
instruction. Variable length instructions tend to comserve memory space #6ince
a one or two-byte instruction may often be used rather than a three-byte in-
struction. The first byte of each instruction always specifies t e operation
to be performed and the addressing mode to be used. Most instructions use six
of the first eight bits for this purpose, with the remaining two bits as an
operation code.

The 2650 has a versatile set of addressing modes wused for locating operands
for operations and an interrupt mechanism which is implemented as a single
level, address vectoring type. Address vectoring means that an interrupting
device can force the processor to execute code at a device-determined location
in memory.

Detailed hardware and software information on the 2650 microprocessor 1is pro-
vided in Chapter 9.

2650
| MICROPROCESSOR

3.58 MHz CLOCK
|—{l|—| Ziy BUFFERS
(MONITOR CASSETTE
FIRMWARE & INTERFACE CASSETTE
RAM) @ OUT
512 BYTES CONTROL
OF RAM DECODING
USER HEX
PARALLEL KEYBOARD &
1/0 DISPLAY
FORCED USER
JUMP INTERRUPT &
LOGIC SERIAL 1/O
BUFFERING & S100
LOGIC FOR -
$100 BUS COMPATIBLE
EXPANSION BUS

Figure 3.1: Instructor 50 Basic Block Diagram

2656 System Memory Interface

The Signetics 2656 System Memory Interface (SMI) contains Read-Only Memory
(ROM), Random—Access Memory (RAM), and a programmable I/0 port.

Two notable features are onboard decoders that make it possible to place the
ROM and RAM anywhere in the memory space and an I/0 port that can be set up as
either a bidirectional port or as chip-select 1lines. The chip-select capa-
bility eliminates a great deal of the TTL that wusually surrounds micropro-
cessors. The 2K USE monitor, 128 bytes of scratchpad memory, 1/0 decode
logic, and the system clock are housed in the 2656 SMI.

Keyboards

A 16-key hexadecimal keyboard and a 12-key function control keyboard enable
you to communicate with the INSTRUCTOR 50. Both the hexadecimal keyboard and
the function keyboard are under control of the USE monitor. The monitor per-
forms a scanning process to determine what key has been depressed and what ac-
tion is to be taken by the INSTRUCTOR 50 as a result of the depression. A
functional description of the various controls and indicators 1is provided in
Chapter 4.

Display Panel

The 8-digit, 7-segment display panel provides responses to input commands and
guides you in the use of the INSTRUCTOR 50 by displaying prompting messages
describing the data that must be entered.

Messages or responses are displayed using the seven-segment display font il-
lustrated in Figure 3.2. Note that the characters 'b' and 'd' are always dis-
played with the right-hand decimal point attached in order to distinguish
these characters from the number '6'.

Figure 3.2 also shows the hexadecimal code required in the monitor's display
buffer to display the character illustrated. To display a character with a
right-hand decimal point attached, H'80' must be added to the value given.
For example, H'07' will display '7', while H'87' will display '7.'. Refer to
Chapter 6 for additional information on the use of the monitor's display sub-
routine.

Audio Cassette Interface

An audio cassette interface lets you load and store programs into and out of
RAM. The storage medium is any audio cassette recorder.

S$100-Compatible Expansion Bus

The INSTRUCTOR 50 includes an S100-compatible expansion bus connector so that
other standard products, such as additional memory or prototyping cards, can
be used with the system. This connector carries all of the 2650's I/0 signals
in addition to control signals required by the S100 bus. (See Chapter 7.)

I SR A Ry
| Y N S | ’I'

rr 0rn
Ao 1d4

(05) (06) (07) (08) (09)
[| []
(| [} | (]
(0A) (oB) (0C) (0D) (OE)

A Y N
I~ I L LI T

(OF) (10) (11) (12) (13)
I Ll - |
(14) (15) (16) (17) (18)
[-’ ’ ’
(19) (1A) (1B) (1C)

() INDICATES THE HEX VALUE USED AS THE
INTERNAL DISPLAY CODE.

NOTE: IF 8016 IS ADDED TO ANY CODE, A DECIMAL
POINT WILL APPEAR WITH THE CHARACTER.

Figure 3.2: Instructor 50 Display Font

Monitor Firmware

The USE (User System Executive) monitor supervises operation of the INSTRUCTOR
50 and allows you to enter and alter programs, execute these programs in con-
tinuous or single-step modes, and perform a number of auxiliary functions.
Monitor commands are entered via the control keys and the hexadecimal key-
board, and responses are displayed on the monitor display.

A basic flowchart of the monitor is shown in Figure 3.3. The monitor normally
idles in the scan display and keyboard mode. If a key closure is detected
during the scan, the monitor verifies that this is a new key closure (that any
previously depressed key had been released), extinguishes the display, per-
forms a keyboard debounce function, and then performs the requested function.
The monitor then resumes the display and keyboard scan.

Monitor functions are terminated by depressing a new function key. Interrupts
are inhibited while the monitor is running.

Debugging Aids

Two key features incorporated into INSTRUCTOR 50 are designed specifically for
program debugging. These features are:

1. The ability to set a breakpoint that automatically interrupts execu-
tion of programs at any point without loss of hardware or software
status.

2. The ability to step through a program one instruction at a time.

When a breakpoint is encountered during program execution or when a single in-
struction is executed in the single-step mode, control 1is returned to the
monitor at which time you may examine the 2650 registers, the Program Status
Word (PSW), and the program counter to determine the status of the microcom~
puter. You can then continue execution, set a new breakpoint, or resume the
single-step operation. While in the monitor mode, you may change any register
value, including the PSW and program counter, and you may alter memory loca-
tions.

On-Board User 1/O

Both parallel and serial I/0O are available in the INSTRUCTOR 50. The parallel
1/0 port provides 8 switch inputs and 8 individual Light-Emitting Diodes
(LEDs) as a latched output port. A single LED is attached to the processor's
FLAG output, and the SENS key on the function control keyboard allows you to
test the processor's SENSE input. Additionally, you may exercise interrupt
operation by using the interrupt (INT) key on the function control keyboard.
See Chapter 6 for a discussion of the INSTRUCTOR 50's I/O capabilities.

3-5

MON KEY

® INITIALIZE SYSTEM
® DISPLAY “HELLO”

-t A <

SCAN DISPLAY
AND KEYBOARD

o>
YES

NO

YES

EXTINGUISH DISPLAY

DEBOUNCE DELAY

COMMAND
OR DATA?

GO TO INDICATED
COMMAND ROUTINE STORE DATA
|
: -
UPDATE
DISPLAY BUFFER

Figure 3.3: Basic Use Monitor Flow Chart

3-6

Forced Jump Logic
The Forced Jump Logic performs the following functions:

e Entry into the MONITOR mode when power is applied to the INSTRUCTOR 50
or when the MON key is depressed.

e Re-entry to the MONITOR mode after executing one instruction in
single-step operation or upon detection of a breakpoint.

Memory and I/O Organization

512 bytes of RAM storage is provided for storing user programs and data. The
RAM area may be expanded via the expansion bus connector.

Partitioning of the INSTRUCTOR 50's memory and I/0 locations is illustrated in
Figure 3.4. The supplied user memory occupies locations H'0000' to H'OlFF'
and may be expanded to occupy locations H'0200' - H'OFFF' and H'2000' -
H'7FFF'. The extended I/0 ports from H'0O0' to H'F7' are available for program
use. Ports H'F8' to H'FF' and memory locations H'l1000' to H'lFFF' are re-
served for the USE monitor.

An additional 64 bytes of RAM storage is available to user programs for stor-
ing data values. This additional storage space occupies memory locations
H'1780' to H'17BF'. Because of the way the USE monitor operates, instructions
should not be stored at these locations.

The INSTRUCTOR 50 I/0 data port is assigned one of three 1locations, depending
on the setting of the Port Address Select Switch. These are memory address
H'OFFF', extended I/0 address H'07', or non-extended I/0 Port D.

Clock Circuitry

The 2656 SMI provides the clock circuitry for the INSTRUCTOR 50. A 3.579545
MHz crystal is used to provide the reference frequency.

Internal Power Supply

The INSTRUCTOR 50 uses a self-contained A-C power pack that produces 8 VAC @
1.5A. An on-board rectifier and regulator reduces this to 5 VDC. A jumper
option permits the use of an alternate 8 VDC source. The INSTRUCTOR 50 may be
plugged into any standard 115 VAC domestic wall socket. (European models re-
quire 220 VAC primary power.)

7FFF

AVAILABLE
~N FOR :u
i USER RAM v/
EXPANSION
2000
1FFF
USE
MONITOR
FIRMWARE
1800
17FF oo
17C0O MONITOR RAM
17BF USER PROGRAM
DATA STORAGE RAM
o FF RESERVED FOR
177F R
NOT F8 USE MONITOR
AVAILABLE F7
1000 ‘OFFF’ IS
OFFF <—} ADDRESS OF
1/0 PORT
AVAILABLE AVAILABLE
FOR To
USER RAM USER
EXPANSION PROGR AM
0200
01FF
SUPPLIED
USER RAM -
0000 00
\DDRESS MEMORY ADDRESs EXTENDED 1/0

Figure 3.4:

| ‘07" IS ADDRESS
OF 1/O PORT

Memory And I/0 Organization

4. CONTROLS AND INDICATORS

Introduction

This chapter provides a brief functional description of the various keys,
switches and indicators associated with the INSTRUCTOR 50. See Figure 4.1.

The 12-key Function Control Keyboard and the l6-key Hexadecimal keyhoard en-
able you to communicate with, enter data, and perform the various system func-
tions associated with the INSTRUCTOR 50. The 8-digit display is used by the
USE monitor to display responses to keyed input commands. The other switches
and indicators are associated with various INSTRUCTOR 50 facilities.

Function Control Keyboard

The keys in the left-most column of the function control keyboard (SENS, INT,
MON, and RST) are used primarily for system control. All other keys on this
keyboard perform functions associated with entry, execution, and debugging of
programs.

The RST and MON keys are active at all times. All other keys except SENS and
INT are normally active only during the monitor mode. Depressing these keys
while executing your program has no effect. The SENS and INT keys are active
only during execution of a program and have no effect on monitor operation.

However, you may take advantage of the INSTRUCTOR 50's keyboard and display
facilities by incorporating calls to the monitor subroutines controlling these
devices as part of your program. See Chapter 5 for a description of these
subroutines.

EIGHT-DIGIT
FLAG RUN DISPLAY
INDICATOR INDICATOR PANEL

CASSETTE
CONNECTORS
i
PORT DATA
INDICATORS
PORT DATA PORT ADDRESS DIRECT/INDIRECT FUNCTION HEXADECIMAL
INPUT SWITCHES SELECT SWITCH INTERRUPT CONTROL KEYBOARD |
SWITCH KEYBOARD
Figure 4.1: Controls and Indicators
KEY FUNCTION
SENS Controls the SENSE input to the 2650 when executing a user pro-
gram. The SENSE input is normally a logic '0O'. Depressing the
SENS key will set the SENSE input to a logic 'l'.
INT Allows you to manually interrupt the processor when executing a

program. When this key is depressed, an interrupt sequence be-
gins, resulting in the processor being vectored to or through me-
mory location 07. The Direct/Indirect switch on the INSTRUCTOR
50 panel determines whether an instruction at location 07 is exe-
cuted (Direct), or whether location 07 contains a branch address
to another location in the user memory (Indirect). A switch ac-
cessible through a cutout in the bottom panel permits interrupts
to be controled by the AC line input frequency. See Chapter 5
for more information on INT options.

MON

RST

WCAS

RCAS

STEP

RUN

BKPT

REG

ENT NXT

Termintes any operation in process and causes the forced jump
logic to output a jump instruction sequence resulting in an entry
to the monitor mode. The response to a depression of the MON key
is the message HELLO on the display panel.

When this key is depressed, any current operation 1is terminated,
and a RESET signal is applied to the 2650 causing program execu-
tion to begin at address zero. The system does not enter the
monitor mode when this key is depressed.

Allows programs to be transferred from the INSTRUCTOR 50 memory
to audio cassette tape.

Allows programs to be transferred from audio cassette tape to the
INSTRUCTOR 50 memory.

Causes the 2650 to execute a single program instruction and re-
turn to the monitor mode, displaying the address of the next in-
struction to be executed on the monitor display.

Depressing this key terminates the monitor mode and causes pro-
gram execution to begin at previously specified address. Program
execution continues until (1) a breakpoint is encountered; (2)
the RST or MON keys are depressed; or (3) the program executes a
WRTC or HALT instruction.

Allows you to specify and examine a program breakpoint.

Places the INSTRUCTOR 50 in the Display and Alter Registers
mode. In this mode, you may examine and alter the contents of

the 2650's general-purpose registers, the program counter value,

and the value of the Program Status Word (PSW). This key is also

used to initiate entry into the ADJUST CASSETTE and FAST PATCH
commands. See Chapter 5.

Places the INSTRUCTOR 50 in the Display and Alter Memory mode.
In this mode you may specify memory locations that vyou wish to
examine, and you may alter the contents of these memory locations.

Enters keyed-in data into memory or registers and also causes the
contents of the next sequential memory or register location to be
displayed. The use of this key during the various monitor opera-

tions is described in the detailed command descriptions, Chapter
5.

Hexadecimal Keyboard

The 16-key hexadecimal keyboard (0 through 9 and A through F) is used to enter
address and data parameters as required. This keyboard is also used in con-
junction with the REG key on the function control keyboard to enable certain

commands.

See detailed command descriptions, Chapter 5.

4=3

Eight-Digit Hex Display Panel

The 8-digit display panel is used by the monitor to display prompting messages
and responses to keyed input commands. It also displays prompting messages to
guide you in the operation of the INSTRUCTOR 50.

Port Data Input Switches

These eight switches are used to specify a byte of input data at the parallel
I/0 port. This value is read when the 2650 executes a read I/0 port instruc-
tion.

Port Data Indicators

The eight I/0 port LEDs reflect the current value in the parallel output port
latch. This latch is loaded with the contents of an internal register by a
write I/0 port instruction.

Direct/Indirect Interrupt Switch

This switch determines whether the 2650 executes a direct or indirect branch
to subroutine when it acknowledges an interrupt request.

Port Address Select Switch

This switch selects the manner in which the parallel 1I/0 port 1is addressed.
The three modes are: non-extended I/0 - Port D, extended I/0 at port address
0716, and memory mapped I/0 at address OFFFjg.

FLAG Indicator

This LED indicates the current value of the FLAG bit in the 2650's Program
Status Word. If the FLAG bit is a one, the LED is on. If the FLAG bit is a
zero, the LED is off.

RUN Indicator

The RUN indicator reflects the operating status of the 2650. When the 2650
is executing either the monitor program or a user program, the RUN light is
on. The RUN light is off when the 2650 has' executed a HALT instruction or
when the PAUSE line of the S100 interface has been driven low.

4=4

5. COMMAND DESCRIPTIONS

Introduction

This chapter describes the various commands available to the INSTRUCTOR 50
user. These commands include:

DISPLAY AND ALTER REGISTERS
DISPLAY AND ALTER MEMORY
FAST PATCH

DISPLAY AND ALTER PROGRAM COUNTER
BREAKPOINT

STEP

WRITE CASSETTE

ADJUST CASSETTE

READ CASSETE

RUN

RESET

In this chapter, each pair of facing pages discusses a single command. The
left-hand page is devoted to text, while the right~hand page actually shows
what is displayed on the monitor display panel when specific keys are depress-
ed. The circled numbers imbedded in the text omn the left-hand page correspond
with the circled numbers on the right-hand page.

A discussion of the INSTRUCTOR 50's error messages is presented at the end of
this chapter.

5-1

DISPLAY AND ALTER REGISTERS

FUNTION: This command allows you to inspect and alter, if desired, the con~
tents of the 2650's general-purpose registers and/or Program Status Word (PSW).

PROCEDURE:

1. Depress the key @ followed by the register address
corresponding to the first register to be inspected, (f) ac-
cording to the following table:

REGISTER

ADDRESS REGISTER
0 RO
1 Rl, bank 0
2 R2, bank O
3 R3, bank O
4 Rl, bank 1
5 R2, bank 1
6 R3, bank 1
7 PSU
8 PSL

2. The contents of the register are displayed as two hex digits in the data
field of the display.

3. The register contents may be modified at this time by keying in a new
value followed by |ENT/NXT |. The numbers keyed in and appearing in the
DATA display field are displayed there only and can be edited by simply
keying in the correct characters . The display shifts to the left
each time a new character is entered, and characters shifted out of the
two-digit field are lost. The hex value appearing on the display is de-
posited in the register when the |[ENT/NXT| key is depressed.

4, When the [ENT/NXT| kev is depressed after step 2 or 3, the next higher
register in sequence will be displayed as in step 2 unless the PSL
is being displayed, in which case RO will be the next register dis-
played. ‘

5. The command is terminated by initiating any other command.

6. If the keys 9, B, D, or E are depressed following |[REG| in step 1, the

key depression will be ignored. If the keys A, C, or F are depressed, the
INSTRUCTOR 50 will enter the ADJUST CASSETTE, DISPLAY AND ALTER PROGRAM
COUNTER, or FAST PATCH commands, respectively. See appropriate command de-
scriptions.

DISPLAY AND ALTER REGISTERS

EXAMPLES
KEY DISPLAY COMMENTS
(:) REG r = Awaiting register address
(2) || & .rh = TE Rl, bank 1 = H'7E'
@ ENT/NXT .r5 = OF R2, bank 1 = H'OF'
(&) || ENT/NRT .r6 = 13 R3, bank 1 = H'13'
Example A: Examine contents of Rl - R3 of bank 1
KEY DISPLAY COMMENTS
<:> REG r = Awaiting register address
®) || 7 .PU = 04 PSU = H'04'
(@) || ENT/NxT .PL = 53 PSL = H'53"
4 8 .PL = 48 Wrong data entered
<:> 4 0 PL =40 Correct data entered
ENT/NXT .t0 = 72 Entered data deposited in
PSL and RO contents displayed.

Example B:

Examine contents of PSW and change contents of PSL to H'40'

5-3

DISPLAY AND ALTER MEMORY

FUNCTION: Allows:you to examine and optionally alter the contents of memory
locations individually. This command is particularly useful when you are de-
bugging vour program and wish to examine, verify and/or change the contents of
memory locations.,

PROCEDURE:

1. Depress the [:::] key followed by the address of the memory loca-
tion to be inspected. If fewer than four digits are entered, the
digits entered are used as the least-significant hexadecimal digits of the
address., If more than four digits are entered, the last four digits

are used as the address.

2. Depress the |ENT/NXT| key <:> to display the contents of the specified
memory location. The contents are displayed as two hexadecimal digits in

the data field of the display.

3. You amy continue to examine the contents of sequential memory locations by
depressing the key. @ If you wish to alter the contents
of any memory location, enter the new data via the hexadecimal key-
board. (’ Only the last two digits entered are retained, so that an
error in entry can be corrected by entering the correct data. To deposit
the new data into the specified memory location, you may either depress

the |ENT/NXT| key or transfer control to a new function by depressing a
function key. (f)

Each time new data is specified, the monitor performs a read-after-write
check to verify that you are not attempting to write into a ROM area or
into non-existent memory. If the check fails, error message 3 1is dis-
played. To recover from this error, depress the key and repeat
the cycle correctly.

5-4

DISPLAY AND ALTER MEMORY

EXAMPLES
KEY DISPLAY COMMENTS

<:> MEM -Ad. = Awaiting memory address

(:) 1110 JAd. =10 10 = Address of memory location to be
examined

<:> ENT/NXT .0010 02 H'02' = contents of memory location
0010

(:) ENT/NXT .0011 FF Address and contents of next sequen-

® Q@ ® ©

©

tial memory location

Example A:

Examine contents of memory location 0010, and move to
next sequential memory location.

KEY DISPLAY COMMENTS

MEM Ad. = Awaiting memory address

2|2 LAd., = 22 Address of memory location to
be examined

ENT/NXT .0022 06 H'06' = Contents of memory lo-
cation 0022

01|5 .0022 05 Desired contents of memory lo-~
cation 0022 entered and dis-
played.

REG T = H'05' deposited into memory lo-

cation 0022, Display and Alter
Memory command is terminated,

and monitor enters Display and
Alter Registers command.

Example B:

Examine contents of memory location 0022, change data,
and transfer control to another function.

FAST PATCH

FUNCTION: The FAST PATCH command allows you to enter long strings of data in-
to memory from the hexadecimal keyboard. Once the starting address is select-
ed, data is loaded into memory sequentially--one byte for every two hex keys
depressed. Once keyed in, data may not be changed in the FAST PATCH mode. To
change data, you must use the DISPLAY AND ALTER MEMORY command or re—enter the
FAST PATCH command starting at the address where the change is required.

PROCEDURE

1. To enter the FAST PATCH command, depress the key @ on the fun-
ction control keyboard followed by [:] on the hexadecimal keyboard. (f)

2. Enter the desired starting address on the hexadecimal keyboard. (:)

NOTE: You may bypass this step and go directly to step 3 to begin at a
known starting address. The starting address is known under any one of
the following conditions:

a) When a file has been read into memory from a cassette tape by the IN-
STRUCTOR 50. The file's starting address will be the beginning ad-
dress for the FAST PATCH.

b) The address from which the last exit from the DISPLAY AND ALTER MEMORY
or FAST PATCH command took place.

3. Depress the |ENT/NXT | key (:) on the function control keyboard to set

the starting address. Data may now be entered into the specified address.

4. Enter desired data for the displayed address as two hex digits. (:) Con-
tinue entering data in this manner until all data is entered. The IN-

STRUCTOR 50 automatically increments the memory address as data 1is enter-
ssolotore
5. Exit thAST PATCH mode by depressing |ENT/NXT| or another function

key.

6. A read-after-write check is performed as each byte is deposited. The IN-
STRUCTOR 50 will display Error 3 if data cannot be stored.

5-6

FAST PATCH

EXAMPLE
KEY(S) DISPLAY COMMENTS
(:) REG T =
<:> F Ad. = Awvaiting starting memory address.
<:> 1 0 JAd. =10 Starting address entered.
<:> ENT/NXT .0010 Starting address set.
ORINIE .0010 12 Data entry.
) |[1]]3 .0011 13
(:) 1 4 .0012 14
E .0013 15
OIEE .0014 16
MEM JAd. = Exit from FAST PATCH mode.

Enter Data String "12
Locations Starting at Address H'10'

13

14 15 16" into Successive Memory

DISPLAY AND ALTER
PROGRAM COUNTER

FUNCTION: The DISPLAY AND ALTER PROGRAM COUNTER command allows you to examine
or change the address of the first instruction to be executed by the 2650 dur-
ing execution of a RUN or STEP command.

PROCEDURE:

1.

To enter the DISPLAY AND ALTER PROGRAM COUNTER command, depress the
key (:5 on the function control keyboard followed by [C | on the hexa-
decimal keyboard. (ii

The display will show the current Program Counter (PC) value as four hexa-
decimal digits. <f§

If you want to change the PC address, enter the desired address on the
hexadecimal keyboard.

NOTE: For a multiple-byte instruction, the address entered is the address
of the first byte.

Depress any command key (:) on the function control keyboard to set the
desired starting address. If the |ENT/NXT| key is used, the INSTRUCTOR
50 transfers control to the DISPLAY AND ALTER REGISTERS command.

DISPLAY AND ALTER

PROGRAM COUNTER
EXAMPLE
KEY DISPLAY COMMENTS

<:) REG r =

(:) C .PC = 0015 0015 = present contents of Program
Counter.

(:) 1117 .PC =17 Starting address changed to 0017.

(:) ENT/NXT r = Sets new starting address, and trans-
fers control to DISPLAY AND ALTER
REGISTERS command.

Set Starting Address for RUN Command to H'0017'

BREAKPOINT

The BREAKPOINT COMMAND allows you to enter, clear, or examine a program break-
point. A breakpoint returns system control from the executing porgram to the
monitor and enables you to examine the state of the memory and processor reg-
isters, make modifications, if desired, and continue program execution from
the point of interruption.

PROCEDURE :

1. Depress the |BKPT| key on the function control keyboard <:> to place
the INSTRUCTOR 50 in the breakpoint mode.

2. The monitor will display either:

a) A blank data field if a breakpoint address was not specified pre-
viously. (i)

b) The address of the breakpoint previously entered. <:>

3. Enter the desired breakpoint address on the hexadecimal keyboard.
If the desired address is already displayed, as in step (2b), re-entry 1is
not required.

NOTE: If a breakpoint is set at a multiple-byte instruction, the address
specified for the breakpoint should be the address of the first byte.

4., Depress the |ENT/NXT| key or another function key <:> to set the

breakpoint at the address displayed.

5. fo clear a breakpoint, depress the |BKPT| key twice in succession. (:)

NOTE: The breakpoint is inserted into your program when you enter the execu-
tion mode via the RUN command. When the breakpoint is encountered during pro-
gram execution, the breakpoint address and contents are displayed, preceded by
a "-" (minus) sign. The instruction at the breakpoint address is restored and
executed prior to this display, and the Program Counter 1is updated to the ad-
dress of the instruction following the breakpoint.

ERROR MESSAGES

During specification of the breakpoint address, the INSTRUCTOR 50 may display
one of the following error messages:

ERROR 1 If the user attempts to specify a breakpoint address in the IN-
STRUCTOR 50's ROM address space or in non-existent memory. To clear

this error, depress BKPT once.

ERROR 2 If the user attempts to enter a new breakpoint address after having
set a previous breakpoint address by depression of the
kev. To clear this error, depress any function key. The original
breakpoint address will be saved.

5-10

BREAKPOINT

EXAMPLE
KEY(S) DISPLAY COMMENTS

1 BKPT b.P = J No = previous breakpoint specified.
Waiting for breakpoint address.

2 4114 .b.P = 44 Breakpoint address entered.

3 ENT/NXT b.P = 0044 Breakpoint address set.

4 REG [r = Breakpoint address set by exiting to
another function.

5 BKPT b.P = 0044 Breakpoint address displayed.

6 BKPT LP.P = J Breakpoint cleared.

Set Breakpoint at Address H'0044' and then clear it.

5-11

STEP

FUNCTION: Causes the 2650 to execute a single instruction and return to the
MONITOR mode, displaying the address of the next instruction to be executed on
the monitor display.

PROCEDURE:

1. Enter the address of the first instruction to be ecuted as described
under DISPLAY AND ALTER PROGRAM COUNTER command. <f$

2. Depress the |[STEP| key. The INSTRUCTOR 50 will execute a single
instruction and display the address of the next instruction to be executed
and the data at that address.

3. At this point you may examine and alter memory and/or register values 1if
desired by using the appropriate commands.

4. Continue as in step 2 to repeat the single-step operation. (:) (:)
5. To exit the single-step mode, depress any function key. <:>

6. Note that a breakpoint, if entered, is ignored during single-step opera-
tion.

The single-step sequencer and the forced jump logic are used in this mode of

operation. Following is the sequence of operations executed by the monitor
when the |[STEP| key is depressed:

a) The monitor SINGLE STEP flag is set.

b) Register contents previously stored upon entry to the monitor are re-
stored to the 2650.

c) The monitor executes a "hidden single step" to determine how many cy-
cles are contained in the instruction to be stepped.

d) The monitor permits execution of one user program instruction by
counting the predetermined number of cycles.

e) The registers (RO - R3, R1' - R3' and PSW) are saved.
f) The Program Counter is updated to the next instruction.

g) The address in the Program Counter and data at that address are dis-
played. The SINGLE STEP flag is cleared.

h) The monitor exits to the KBD SCAN routine to await user's input.

5-12

EXAMPLE

STEP

KEY(S)

DISPLAY

COMMENTS

O|lred] [c][e] [evr/mer] | [=

STEP

000A 42

STEP

000B cC

REG

@
®
OREZE 000%. 20
©

Starting address H'0008' entered.

Single step executed.* Next instruc-
tion is at H'O00A', and op-code is
H'42' (ANDZ, R2).

Next instruction op-code is H'CC'
(STRA, RO).

Next instruction op-code is H'20'
(EORZ, RO).

Exit single step.

* Since the

Single step three instructions starting at address H'0008'

displayed address 1is

two greater than the starting address

(H'000A' - H'0008' =2), the first instruction executed was a two-byte in-

stuction.

5-13

WRITE CASSETTE

FUNCTION: The WRITE CASSETTE command allows you to write programs and data
from memory onto cassette tape. Any good quality audio cassette tape recorder
may be used as the output device. The data transfer rate is approximately 300
bits per second.

PROCEDURE:

General Installation

® Connect the INSTRUCTOR 50's Cassette-Out Jack to the microphone (MIC) in-
put of the cassette deck using the appropriate cable supplied with the IN-
STRUCTOR 50 package.

e Install tape in transport.

® Make certain that the tape is positioned so that previously recorded files
will not be destroyed when the WCAS command is issued.

® Adjust recorder's input level control, if one is provided, to normal re-
cording level.

Operation

1. Depress the |WCAS | key (:) to place the INSTRUCTOR 50 in the WRITE
CASSETTE mode.

2. Enter the lower (beginning) address of the file to be written. <:>

3. Depress the ENT/NXT key (:) to set the lower address.

4. Enter the upper (ending) address of the file to be written. (:)

5. Depress the |ENT/NXT | key (:) to set the upper address.

6. Enter the program start address (the address at which you want your pro-
gram to begin executing).

7. Depress the |ENT/NXT | key (:) to set the start address.

8. Enter the file identification (ID) number.
NOTE: The file ID may be any hex value between 00 and FF. If no ID is
entered, the default file number is 00.

9. Place the cassette deck in the RECORD mode.
10. Depress | ENT/NXT| key. (:) This starts a five-second delay prior to
actual memory dump to tape. The INSTRUCTOR 50 flashes the FLAG Indicator

at one-second intervals during this delay. The message HELLO is dis-
played <i5 when data transfer to tape is completed.

5-14

WRITE CASSETTE

11. During the recording process, a visual indication of the 'dump' can be ob-
served on the I/0 port indicators by placing the I/O Port Address Select
Switch in the EXTENDED (center) position.

Tape Deck Shutdown

e Turn the audio tape recorder off.
e If the tape deck has a counter, note its value for future reference.

e Disconnect tape deck and remove and store tape cartridge.

Error Messages

The INSTRUCTOR 50 will display the message 'Error 7' if the value of the spe-
cified upper address is less than the value of the lower address.

EXAMPLE
KEY(S) DISPLAY COMMENTS
(:) WCAS [L.Ad. = | Waiting for lower address of file to
be written onto tape.
<:) [::1 [L.Ad. =0 I Lower address entered.
<:> ENT/NXT [U.Ad. =] Lower address set. Waiting for upper
’ address.
(:) 7116 U.Ad. = 76 Upper address entered.
<:> ENT/NXT l S.Ad. = I Upper address set. Waiting for start
address.
@ E] I S.Ad. =10 | Start address entered.
(:) ENT/NXT [F o= ‘] Start address set. Waiting for file
number.
F =1 File ID entered.
@ ENT/NXT | HELLO) File address set. Write data to cas-

sette tape completed.

Write a file to tape with the following parameters:
File Number = 1

Beginning Address = 0

Ending Address = H'76'

Program Start Address = H'10'

5-15

ADJUST CASSETTE

FUNCTION: The ADJUST CASSETTE command allows you to adjust the output level
of a cassette recorder for proper interface to the INSTRUCTOR 50 during a READ
CASSETTE operation.

While most conventional audio cassette recorders are compatible for wuse with
the INSTRUCTOR 50, the playback volume control must be accurately adjusted to
ensure proper detection of data by the INSTRUCTOR 50. Otherwise, the data
signal may be distorted (volume too high) or may drop below detection thres-
holds (volume too low).

PROCEDURE:

General Installation

1. Check to ensure that the cassette recorder's playback heads and transport
mechanism are clean and free from any obstructions.

2. Install tape in transport and rewind to an area known to contain a pre-
viously recorded file.

3. Connect the INSTRUCTOR 50's PHONE jack to the cassette deck's PHONE or
SPEAKER output jack using the appropriate cable supplied with the IN-
STRUCTOR 50 package. ‘

Operation

1. Place the INSTRUCTOR 50 in the ADJUST CASSETTE mode by depressing the
[REG] key on the funszon control keyboard followed by [A] on the hexa-

decimal keyboard.
2. Start playback of previously recorded data.

3. Adjust tape deck VOLUME or LEVEL control. The following three digits
will be displayed intermittently during the adjustment process:

U Increase volume
d. Decrease volume
- volume control adjusted correctly

4. When a minus sign (-) (:) is displayed, the audio cassette's playback
volume is properly adjusted.

5. During the adjust process, the I/0O Port indicators can also be used to
observe data being read by the INSTRUCTOR 50 if the 1I/0 Port Address
Switch is placed in the EXTENDED (center) position. The display has the
following significance:

All LEDs OFF Indicates proper operation or no data.

5-16

Some negative number (LED Indicates that the playback level is too

bit 7 ON) low - not enough pulses.
Some positive number (LED Indicates that the playback level is too
bit 7 OFF) high. Tape "noise" 1is being detected -

too many pulses.
6. When level is properly set, turn off the cassette deck.

7. Depress the key @ to exit from the ADJUST CASSETTE routine.

EXAMPLE

KEY(S) DISPLAY COMMENTS

| u | Places INSTRUCTOR 50 in the ADJUST

CASSETTE mode. Increase playback
level.

Decrease playback level.

u
.

Playback level properly set.

SICIONNC,

[HELLO | Exit ADJUST CASSETTE mode.

5-17

READ CASSETTE

FUNCTION: The READ CASSETTE command allows you to read files previously stor-
ed on cassette tape using the WRITE CASSETTE command and store these files in
the specified RAM locations.

PROCEDURE:

General Installation

1. Check to ensure that the cassette recorder's playback heads and transport
mechanism are clean and free from any obstructions.

2. TInstall tape in transport and rewind to desired file location.

3. Connect the INSTRUCTOR 50's PHONE jack to the cassette deck PHONE or
SPEAKER output jack using the appropriate cable supplied with the IN-
STRUCTOR 50 package.

4. Adjust playback level to setting previously determined to be proper by
ADJUST CASSETTE operation (See ADJUST CASSETTE command).

Operation

1. Depress the |[RCAS| key <:> to place the INSTRUCTOR 50 1in the READ
CASSETTE mode.

2. Depress one or two hex digits (:) corresponding to the file number de-
sired to be read back.

NOTE: The user may elect to read the first file encountered by omitting
this step.

3. Depress the ENT/NXT key <:> to set the file ID number.

4, Start the cassette deck in playback mode. The reading of data by the IN-
STRUCTOR 50 can be visually observed on the 1/0 Port indicators by plac-
ing the I/0 Port Address Switch in the EXTENDED (center) position.

5. When the reading of the specified file is completed, the INSTRUCTOR 50
will display the HELLO message.

6. Turn off the audio cassette deck.

7. Data read from tape will be placed at consecutive memory locations start-

ing at the beginning address specified when the file was created. The
Program Counter (PC) will be set to the address specified as the program
start address when the file was created.

5-18

READ CASSETTE

Error Messages

During the read-in process, any one of the following error messages may be
displayed:

e Error 4 - Cassette Block Check Character (BCC) error
° Error 5 - Read Cassette Memory Write Error

@ Error 6 - Read Cassette character from tape not ASCII HEX

EXAMPLE

KEY(S) DISPLAY COMMENTS

Places the INSTRUCTOR 50 in the READ
CASSETTE mode. Waiting for file 1ID
number.

L [EE) | =

r F =1] File ID number entered.

3 ENT/NXT l Sets file ID number. Begins reading

data into memory.¥*

4 HELLO File is fully loaded into memory.

*Flashing I/0 Port indicators at this point indicate
that the file is being read.

5-19

RUN

FUNCTION: Terminates the monitor mode and causes program execution to begin
at the address specified in the Program Counter. Program execution continues
until 1) a breakpoint is encountered, 2) the RST or MON key is depressed, or
3) the user program executes a WRTC (Write to Port C) or HALT instruction.

The RUN command allows program execution to begin at any point in the user
program. It is particularly valuable, when used in conjunction with a set
breakpoint, for debugging sections of a program. When the RUN key is depress-
- ed, the INSTRUCTOR 50 performs the following actions:

1. If a breakpoint was set, the WRTC code 1is 1inserted at the specified
breakpoint address and a monitor 'BREAKPOINT ENABLED' flag is set. This
flag distinguishes a breakpoint 'WRTC' from any other 'WRTC' in the user
program when control is returned to the USE monitor by the forced jump
logic upon execution of a WRTC instruction.

2. The processor registers are restored to the last values existing when
control was returned to the USE monitor after a breakpoint or single
step, or to the values specified by you in a DISPLAY AND ALTER REGISTERS
operation.

3. The INSTRUCTOR 50 switches to the execution mode by jumping to the ad-
dress specified in the Program Counter. This address will be the address
of the next instruction following a breakpoint or single step, or the ad-
dress specified by you in a DISPLAY AND ALTER PROGRAM COUNTER operation.

5-20

RESET

FUNCTION: When the RST (RESET) key is depressed, current INSTRUCTOR 50 ac-
tivity is terminated immediately, and the processor begins program execution
at address H'0000. Breakpoint and single-step flags, if set, are ignored. A
high (logic one) level appears on the expansion connector RESET pin for as
long as the key remains depressed.

When the RESET key is used to initiate program execution from location
H'0000', the initial processor register values are unknown, and a breakpoint,
if previously specified, is not inserted in the user program. Program execu-
tion continues until any one of the following occurs:

1. The RESET key is depressed again.

2. A HALT instruction (H'40') is executed. Upon detection of a HALT in-
struction, the processor halts until the RESET key is depressed again or,
if the Interrupt Inhibit PSW bit was not set, until an interrupt occurs.

3. A WRTC Instruction is executed or the MON key is depressed. Control is
transferred to the USE monitor and the HELLO message is displayed. When
control is returned to the monitor, the address of the last memory fetch
is saved in the Program Counter, and register values are saved in monitor
RAM. These may be examined by using the appropriate commands.

4. The processor's PAUSE input is raised high via the expansion connector.

When this occurs, the RUN indicator light is extinguished. Program exe-
cution will begin at the next instruction when PAUSE goes low.

5-21

ERROR MESSAGES

The USE monitor incorporates extensive error checking firmware. If an error
is encountered while attempting to execute a command, a message of the form
'Error n' is presented on the monitor display. Error messages are summarized
in Table 5.1.

) Error 1 BREAKPOINT CANNOT BE SET.

° érror 2 INVALID COMMAND.

° Error 3 ALTER OR PATCH MEMORY WRITE ERROR.

e Error &4 CASSETTE BCC ERROR.

o Error 5 READ CASSETTE MEMORY WRITE ERROR.

° Error 6 CHARACTER FROM TAPE NOT ASCIT HEX.

o Error 7 START ADDRESS GREATER THAN STOP ADDRESS.
° Error 8 KEYBOARD HAS 2 KEYS IN COLUMN DOWN.

) Error 9 NEXT SINGLE STEP IS INTO MONITOR.

TABLE 5.1: Error Messages

Additional information on each of the above error messages is presented in the
following paragraphs.

Error 1 *BREAKPOINT CANNOT BE SET*

The display message Error 1 indicates that an attempt was made to set a break-
point at a memory address which is not RAM. A breakpoint 1is entered by in-
serting the WRTC,R0O code H'BO' into the memory address specified. A read-
after-write check is then performed. If this test fails, the error message 1is
displayed.

Error 2 *INVALID COMMAND¥*

The display message Error 2 indicates that an incorrect command sequence was
entered via the keyboard.

Error 3 *ALTER OR PATCH MEMORY ERROR¥*

The display message Error 3 indicates that an attempt was made to change the
data at a memory address which is not RAM. When changing memory data during

5-22

an Alter Memory or Patch Memory operation, a read-after-write check 1is per-
formed. If this test fails, the error message is displayed.

Error 4 *CASSETTE BCC ERROR*

When data is written on tape with the WRITE CASSETTE command, a Block Check
Character (BCC) is appended to the end of the file. The BCC is recalculated
when data is read back with a READ CASSETTE command and compared with the BCC
recovered from the tape. If the BCC's do not match, the message Error 4 is
displayed, indicating that some problem has occurred in reading the tape.

Error 5 *READ CASSETTE MEMORY WRITE ERROR¥*

Data read back from the tape is stored in the INSTRUCTOR 50 at consecutive
memory locations starting at the address specified in the tape file. A read-
after-write check is performed on each byte stored. If the test fails, the
message Error 5 is displayed.

Error 6 *CHARACTER FROM TAPE NOT ASCII HEX*

Data written on tape uses the ASCII code for the characters 0 through F. The
display message Error 6 indicates that a non~hex character was recovered from
the tape. Correct adjustment of playback level should be verified using the
ADJUST CASSETTE command.

Error 7 *START ADDRESS GREATER THAN STOP ADDRESS* : !
The display message Error 7 indicates that the start address in the WRITE
CASSETTE command is greater that the specified stop address. The operation
cannot be performed. :

Error 8 *KEYBOARD HAS 2 KEYS IN COLUMN DOWN*

The Error 8 message is displayed when the monitor detects that two keys are
depressed simultaneously. The monitor cannot decode the action desired.

Error 9 *NEXT SINGLE STEP IS INTO MONITOR*

Single-step operation in the memory area reserved for the USE monitor (H'1000'
- H'IFFF') is not permitted and will cause unpredictable results if executed.

The display message Error 9 is a warning that such a single-step operation was
attempted.

5-23

6. USING THE INSTRUCTOR 50

Restrictions on Using the 2650 Instruction Set

When writing programs, the INSTRUCTOR 50 user has the complete 2650 micropro-
cessor instruction set at his disposal. However, because of the interaction
between the USE monitor and user hardware and software, certain restrictions
must be observed:

1) The USE monitor reserves the WRTC, Rx instruction (H'BO' - H'B3') to
indicate the location of a breakpoint in a user program. If this in-
struction is executed in a user program, control of the system will re-
turn to the monitor, and the message HELLO will be displayed.

2) If a HALT instruction (H'40') is executed, processor operation will
terminate. This is indicated by the RUN indicator being extinguished.
The only ways to reinitiate operation are to depress the RST key
or, if interrupts were not inhibited, to cause an interrupt by depress-
ing the INT key.

If a breakpoint is set at a HALT instruction location, the monitor will
prevent execution of the HALT, and normal operation will continue.

3) The top of memory page zero is occupied by the USE monitor program.
Therefore, the ZBSR and ZBRR instructions with negative displacements
should not be used unless entry into the monitor program is -desired.
The same applies to interrupt vectors with negative displacements.

4) The USE monitor uses three levels of the 2650 subroutine Return Address
Stack (RAS) in its operation. Since the RAS is 1limited to eight
levels, user programs being developed under control of the USE monitor
should be limited to a maximum of five levels of subroutines, including
interrupt levels.

Using Interrupts

Interrupts provide a method of interfacing a synchronous program to asynchron-
ous external events. An Interrupt Request forces the 2650 to temporarily
suspend execution of the program currently running and branch to an interrupt
service routine. Upon completion of the interrupt service routine, the 2650
resumes execution of the interrupted program.

The INSTRUCTOR 50 provides three methods of interrupting the 2650. The first
method is a manual interrupt using the INT key on the function keyboard.
The second method uses a 60Hz signal derived from the INSTRUCTOR 50's power
supply to generate interrupt requests once every 16.7 ms. This option

accommodates user programs that require a real-time clock. {(For European sys-
tems, the real-time clock interrupts occur at a 50Hz rate or once every 20
ms). The third method of interrupting the INSTRUCTOR 50 is via the 8100 bus
interface. This section decribes the 2650's interrupt mechanism and provides
details on selecting the interrupt options.

The 2650's interrupt mechanism can be selectively enabled or disabled at vari-
ous points in a user program by setting or clearing the Interrupt Inhibit (II)
bit of the processor's Program Status Word (PSW). If the Interrupt Inhibit
bit has been set, the 2650 ignores interrupt requests. The Interrupt Inhibit
bit may be cleared (thus enabling interrupts) in any of the following four
ways:

1) By resetting the processor (depressing the RST key);

2) By executing a Clear Program Status Upper (CPSU) instruction with the
proper mask value;

3) By executing a Return from Subroutine and Enable Interrupt (RETE) in-
struction; or

4) By executing a Load Program Status, Upper (LPSU) instruction.

The interrupt mechanism of the 2650 operates with a vectored interrupt. When
the processor accepts an interrupt request, it responds by issuing an
INTerrupt ACKnowledge (INTACK). Upon receipt of INTACK, the interrupting de-
vice responds by placing an "interrupt vector" on the 2650 data bus. This
vector is used as the address, relative to byte zero, page zero, of a branch
to subroutine instruction. The interrupt vector may specify either direct or
indirect addressing. A vector that specifies direct addressing causes the
2650 to execute a subroutine branch to the address specified by the vector.
If an indirect address is specified, the interrupt vector points to the first
of two successive memory locations (interrupt vector and interrupt vector + 1)
where the address of the interuupt subroutine is stored. In this case, the
processor first fetches the two interrupt subroutine address bytes and then
branches to the subroutine. Thus, a direct interrupt vector transfers the
program to any location from -64 to +63 relative to byte zero, page =zero, and
an indirect interrupt vector can transfer the program to any location within
the 2650's 32K addressing range.

If the Interrupt Inhibit bit has been cleared, the INSTRUCTOR 50 responds to
an interrupt request with the following sequence of events:

1) The 2650 completes execution of the current instruction.
2) The processor sets the Interrupt Inhibit bit of the PSW (=1).
3) The first byte of a Zero Branch to Subroutine Relative (ZBSR) instruc-

tion is inserted in the 2650's internal instruction register.

4) The processor issues INTACK and waits for an interrupt vector to be re-
turned on the data bus.

5) The INSTRUCTOR 50's interrupt logic places the interrupt vector (H'0?'
or H'87') on the data bus. Whether the interrupt vector specifies

6-2

direct (H'07') or indirect (H'87') addressing is determined by the set-
ting of the Direct/Indirect switch on the front panel. If the switch
is in the Direct position, the next instruction executed is the in-
struction at address H'07'. 1If the switch is in the Indirect position,
the next instruction executed is at the address contained in H'07' and
H'08'.

6) The 2650 executes the ZBSR instruction. The address of the next in-
struction in the interrupted program is stored in he 2650's internal
subroutine address stack, and the stack pointer is incremented.

7) When the interrupt subroutine is terminated with an RETE or RETC in-
struction, the 2650 decrements the stack pointer, replaces the current
value of the Program Counter with the address previously stored in the
subroutine stack, and resumes execution of the interrupted program.

Since the INSTRUCTOR 50 interrupt logic vectors interrupt requests through
memory address H'07', user programs that support direct interrupts must place
the first byte of the interrupt subroutine at this address. If indirect sub-
routines are used, the address of the interrupt subroutine must be stored at
memory locations H'07' and H'08'.

As interrupts may occur at any point in a user program, it is entirely pos-
sible that they will affect the contents of the 2650's internal registers with
unpredictable results for the interrupted program. This probelm can be solved
in two ways. The first way is to tightly control the portions of a user pro-
gram that can be interrupted by selectively setting and clearing the Interrupt
Inhibit (II) bit in the PSW. The second method is to save the 2650's internal
registers and Program Status Word upon entering the interrupt subroutine and
restoring them before returning from the subroutine.

The INSTRUCTOR 50's interrupt modes can be selected by a combination of switch
settings and a jumper option on the printed circuit board. As mentioned pre-
viously, the Direct/Indirect switch on the INSTRUCTOR 50's front panel deter-
mines whether the interrupt vector generated by the interrupt logic specifies
direct or indirect addressing. Whether the 2650 responds to the INT key or
the 60 Hz real-time clock is determined by the setting of a slide switch 1lo-
cated at the bottom of the INSTRUCTOR 50 case. Optionally, devices external
to the INSTRUCTOR 50 can generate interrupt requests via the S100 bus inter-
face. To accomplish this, a jumper option described in the last part of this
section is used.

Following are two programming examples that make use of the INSTRUCTOR 50's
interrupt facilities:

Example 1 - Direct Interrupt

This example is a complete program that first clears the parallel 1I/0 port
lights and then maintains a binary counter at the I/0 port lights. The count
is incremented each time the INT key is depressed. Prior to running this
program, you must place the Direct/Indirect switch in the Direct position, and
the I/0 port address select switch in the Non-Extended position.

6-3

Address Data Instruction Mnemonic Comment

0000 76,20 PPSU H'20' Set II - inhibit interrupts.

0002 75,08 CPSL H'08' Operations without carry.

0004 1F,00,0A BCTA,UN,H'000A" Branch over interrupt sub-
routine.

0007 84,01 ADD1,RO,H'01" Increment RO (counter).

0009 17 RETC,UN Return from interrupt sub-

' routine.

000A 20 EORZ,R0O Clear RO (counter).

000B FO WRTD,RO Write RO to the 1lights (non-
extended).

000C 74,20 CPSU H'20' Clear II (open interrupt win-
dow).

000E 76,20 PPSU H'20' Set IT (close interrupt win-
dow).

0010 1F,00,0B BCTA,UN H'O0OB' Branch back to WRTD.

Example 2 - Indirect Interrupt

This example performs the same function as above but uses indirect inter-
rupts. The interrupt subroutine starts at address H'l00'. This address is
contained in program locations H'07' and H'08'. Prior to running this pro-
gram, you must place the Direct/Indirect switch in the indirect position but
retain the I/0 port address select switch in the non-extended position.

Address Data Instruction Mnemonic Comments

0000 76,20 PPSU H'20' Set II - Inhibit Interrupts.
0002 75,08 CPSL H'08! Operations without carry.

0004 1¥,00,09 BCTA,UN H'0009' Branch over interrupt address.
0007 01,00 ACON H'0100' Interrupt routine address.
0009 20 EORZ,RO Clear counter.

000A FO WRTD,RO Write RO to the lights.

000B 74,20 CPSU H'20' Clear II - enable interrupts.
000D 1¥,00,0D BCTA,UN H'000D' Loop forever.

0100 84,01 ADD1,RO H'O1' Increment counter.

6-4

0102 FO WRTD,RO Write RO to the lights.

0103 37 RETE,UN Return and enable interrupts.

Using the I/O Switches and Lights

The 2650 provides several methods for monitoring the status of and controlling
the operation of external I/0 devices. One such method unique to the 2650 is
a serial I/0 port formed by the SENSE input pin and the FLAG output pin on the
processor. The 2650 also has provisions for two types of parallel I/0 in-
structions, called extended and non-extended. The non-extended I/0 instruc-
tions are one-byte instructions that allow a user program to read from and
write to two eight-bit I/0 ports: port C and port D. The two-byte extended
1/0 instructions expand the 2650's I/0 capabilities to 256 bidirectional 1I/0
ports.

In addition to the 2650 instructions specifically intended for 1/0 opera-
tions, you may choose to use the memory mapped 1/0 mode. This mode 1is imple-
mented by assigning a memory address to an I/0 device. While a memory mapped
I/0 port requires more decode logic than either an extended or a non-extended
port, it can ba accessed by the full range of 2650 memory referencing instruc-
tions. (Refer to Chapter 9 for a description of the 2650 I/0 control modes.)

The INSTRUCTOR 50 includes features that demonstrate all of the 2650's 1I/O
modes. These features are described as follows:

FLAG and SENSE 1/O

The 2650's FLAG and SENSE pins are associated with the flag and sense bits of
the processor's internal Program Status Word (PSW). The SENSE bit of the PSW
always reflects the signal level on the SENSE pin. Likewise, the level on the
FLAG pin always reflects the current value of the flag bit in the PSW.

The user may manually control the value of the sense bit in the PSW using
the SENS key on the function control keyboard. When the SENS key is
depressed, the SENSE bit is a one. Otherwise, the SENSE bit is a zero.

The INSTRUCTOR 50's Flag indicator on the front panel is driven by the FLAG
pin on the 2650, providing a visual indication of the FLAG bit's current
value. The FLAG light is on if the FLAG bit is a one, and the light is off if
the FLAG bit is a zero.

Non-Extended I/O

The 2650 can control two bidirectional I/0 ports with four single-byte in-
structions: WRTC, WRTD, REDC and REDD. These instructions move data hetween
port C, port D and the 2650's internal registers.

The INSTRUCTOR 50's front panel parallel I/O port can be assigned as non-ex-

tended port D by placing the Port Address select switch in the NON-EXTENDED
position. In this position, the I/0 port <can be accessed with

6-5

the WRTD and REDD instructions. This allows you to manually enter data with
the input switches by including a REDD instruction in your program. Similar-
ly, your program can write a data value to the output LEDs by executing a WRTD
instruction.

Extended I/O

The 2650 can control up to 256 bidirectional I/0 ports with the double-byte
instructions WRTE and REDE. The second byte of these instructions specifies
the extended I1/0 port address. The INSTRUCTOR 50's parallel I/0 port can be
assigned as extended address H'07' by placing the Port Address switch in the
EXTENDED position. In this mode, the parallel I/0O port can be accessed with
WRTE and REDE instructions that specify an extended address H'07' in their
second byte.

Memory Mapped 1/O

Memory mapped I/0 is simply a matter of decoding a memory address for enabling
an I/0 port. To demonstrate this I/0 mode, the INSTRUCTOR 50's Port Address
select switch can be placed in the MEMORY position. This assigns the parallel
I1/0 port a memory address of H'OFFF'. Thus, any memory reference instruction
that specifies H'OFFF' as the source or destination will access the front
panel parallel I/0 port. When an instruction reads location H'OFFF', the
value contained in the specified register will appear in the port output LEDs.

CALLING MONITOR SUBROUTINES

Now that you are familiar with the 2650 instruction set and have successfully
entered a few simple programs, you are undoubtedly ready and anxious to make
use of some of the more powerful features provided by the INSTRUCTOR 50. For
example, you might want to write a decimal add program using the INSTRUCTOR
50's keyboard and eight-digit display. By calling subroutines within the
monitor program, the display can be used to request the two numbers to be add-
ed, and the hex keyboard can be used to enter the numbers. After the two num-
bers have been entered, and their sum calculated, another monitor subroutine
can be called to display the results of the addition. This section describes
these subroutines and provides examples in their use.

In addition to subroutines that provide easy access to the INSTRUCTOR 50's
keyboard and display, the monitor program contains other subroutines that are
useful in writing application programs. Refer to the program listing in
Chapter 11 for additional information on other subroutines.

The monitor subroutines are called with Zero Branch to Subroutine Relative
(ZBSR) instructions. The ZBSR instruction specifies a subroutine relative to
byte zero, page zero. The relative addressing range is =64 to +63. Since the
2650 uses an 8K page addressing scheme, ZBSR instructions with a negative off-
set (relative address) wrap back around to the top of the first 8K page. The
top of the first 8K page in the INSTRUCTOR 50 is located within the monitor
program and contains a table of indirect subroutine addresses. Thus, the
monitor subroutines can be called by ZBSR instructions that specify indirect
addressing and have the negative offset that points to the desired

subroutine. The addresses required to call the various monitor subroutines
are included in the description of each subroutine.

The subroutine descriptions include a list of the 2650 registers used in their
execution. Unless otherwise specified, the contents of these registers will
contain meaningless data when the subroutine returns control to the user pro-
gram. Therefore, registers that contain important user program information
must be stored in a memory location before the monitor subroutine is called.

When calling monitor subroutines, caution must be exercised to avoid over-
flowing the 2650's internal 8-level subroutine stack. Since some of the user-
accessible subroutines call other subroutines within the monitor program, each
subroutine description includes the number of other subroutines called during
its execution. This information allows you to calculate the number of

subroutine stack levels required by your program and insures that this number
never exceeds eight.

6-7

MOVE SUBROUTINE

Calling Instruction:

Mnemonic Hex Value

ZBSR *MOV _ BB,FE

Registers Used:

Rl = Message Pointer - 1 (high-order byte)
R2 = Message Pointer — 1 (low-order byte)

Subroutine Levels Used: 0

Function:

MOVE fetches an eight-byte message within the user's program and stores the
eight bytes in the monitor's display buffer. When combined with the DISPLAY
subroutine, MOVE allows you to write messages on the INSTRUCTOR 50's eight-
digit display. Any of the INSTRUCTOR 50's characters can be used in assembl-
ing a message.

Ogeration:

Before calling MOVE, you must store an eight-byte message within your pro-
gram. The location of the sequential message bytes is transferred to MOVE by
storing the address of the first message byte in Rl and R2 prior to calling
the subroutine. Because of the algorithm used to implement the MOVE sub-
routine, it is necessary to subract one from the message pointer before it 1is
stored in Rl and R2. Following is an example of the MOVE subroutine call and
a list of the hexadecimal values for the INSTRUCTOR 50's display characters.

EXAMPLE OF MOVE SUBROUTINE CALL

Instruction Mnemonic Comments

LODI, Rl H'00'

LODI, R2 H'FF'

ZBSR *MOV

Load message pointer -1 in Rl
and R2.

(H'100' - 1 = H'OOFF').

Call MOVE. The message bytes
stored in locations 0100-0107
are transferred to the moni-
tor's display buffer.

= blank (first byte of mes-
sage)

E

L

0

blank

blank (last byte of mes-
sage).

Hex Values of Display Characters

Address Data
)
°
o
0010 05,00
0012 06,FF
0014 BB,FE
'}
®
°
0100 17
0101 14
0102 OE
0103 11
0104 11
0105 00
0106 17
0107 17
Character Value
*0.0 H'00'
*1.1 H'01'
*2 H'02'
*3 H'03'
*4 H'04'
*5.5 H'05'
*6 .G H'06'
*7 H'07"
*8 H'08'
*9 H'09

Character Value
*A H'OA'
*B H'OB'
*C H'OC'
*D H'OD'
*E H'OE'
*F H'OF'
*P H'1l0'
*1, H'11'
*U H'12'
*R H'13"

Character Value

*H H'14'
*0 H'1l5'
%= H'16'
*BLANK H'17'
*J H'18'
*— H'19'
* H'1lA'
*Y H'1B'
*N H'lc'

DISPLAY SUBROUTINE

Calling Instruction:

Mnemonic ; Hex Value

ZBSR *DISPLY BB,EC
Registers Used:

RO,R1,R2,R3

On entry RO = Display Command
On exit RO = Key Value (optional)

Subroutine Levels Used: 0

Function:

When used with the MOVE subroutine, DISPLAY writes messages on the INSTRUCTOR
50's eight-digit display. DISPLAY reads the message stored in the monitor's
display buffer with MOVE and writes the message on the display. Optionally,
DISPLAY can be used to read the function and data keyboards and return the
value of a depressed key.

Operation:
DISPLAY has three modes of operation that are selected by writing a command
byte in RO prior to calling the subroutine. The DISPLAY commands and the

functions they specify are summarized below:

Value Placed

in RO Function

H'00' Displays message in diéplay buffer until a function or data
key is depressed. Returns the value of the depressed key in
RO.

H'OLl' Makes one pass through the DISPLAY subroutine and does not

read the keyboards. A single pass through the DISPLAY sub-
routine will not produce a visible display. Hence, when
this command is used, it should be part of a loop that calls
DISPLAY a sufficient number of times to illuminate the mes-
sage.

H'80' This command is identical to the H'00'command except that
the decimal point of the most-significant (far-left) digit
is illuminated.

The function and data key values returned in RO when operating in response to
commands H'00' and H'80' are listed in the following table. This 1is followed
by an example of the MOVE and DISPLAY subroutine calls that displays the mes-
sage HELLO until the [RUN]| key is depressed.

6-10

Data Values for Command and Data Keys

Key Value Key Value Key Value

0 H'00' 8 H'08' WCAS H'80'

1 H'01l’ 9 H'09' BKP H'81'

2 H'02' A H'OA' RCAS H'82'

3 H'03! B H'0B' REG H'83!'

4 H'04' C H'OC' STEP H'84"'

5 H'05' D H'0D' MEM H'85'

6 H'06' E H'OE' RUN H'86'

7 H'07! F H'OF' ENT/NXT H'87'

Example of Move and Display Subroutine Calls

Address Data Instruction Mnemonic Comment

0010 05,00 LODI,R1 H'0O' Place message table pointer

0012 06 ,FF LODI,R2 H'FF' minus one in Rl and R2.

0014 BB,FE ZBSR *MOV Call the Move subroutine.

0016 04,00 LODI,RO H'00' Place command byte in RO.

0018 BB,EC ZBSR *DISPLY Call the DISPLAY subroutine.

001A E4,86 COMI,RO H'86' Compare returned key code to
RUN code. If equal, branch to

001C 1C,XX,XX BCTA,E0 H'XXXX' address H'XXXX'.

001F 1¢,00,16 BCTA,UN H'0016' If not equal, loop back and
wait for next key.

0100 17 First byte of message table =
blank

0101 14 =H

0102 OE = E

0103 11 =L

0104 11 =L

0105 00 =0

0106 17 = blank

0107 17 Last byte of message table =
blank.

6-11

USER DISPLAY SUBROUTINE

Calling Instruction:

Mnemonic Hex Value
ZBSR *USRDSP BB,E6

Registers Used:

RO, R1, R2, R3

On entry R3 = Display Command
Rl = Message Pointer -1 (high order)
R2 = Message Pointer -1 (low order)

non

On exit RO = Key value (optional)

Subroutine Levels Used: 2

Function:

USER DISPLAY combines the functions of MOVE and DISPLAY. That 1is, USER DIS-
PLAY moves an eight-byte message from a user program to the display buffer and
then displays the message. As with DISPLAY, this subroutine may be used to

read the function and data keyboards.

Operation:

Before calling USER DISPLAY , vou must load the first address of your
table (~1) in Rl and R2. Additionally, R3 must be loaded with the
command as in the DISPLAY subroutine.

The following example of a USER DISPLAY subroutine call displays the

HELLO until the RUN key is depressed. (This example is functionally
lent to the example for the DISPLAY subroutine).

6-12

message
desired

message
equiva-

Address

0010

0012
0014
0016

0018

001A

001D

0100

0101
0102
0103
0104
0105
0106
0107

Example of a USER DISPLAY Subroutine Call

Data

05,00

06 ,FF
07,00
BB,E6

Ek4,86

1C,XX,XX

1F,00,10

17

14
OE
11
11
00
17
17

Instruction Mnemonic

LODI,R1 H'00'

LODI,R2 H'FF'
LODI,R3 H'00'
ZBSR *USRDSP

COMI,RO H'86'

BCTA,E0 H'XXXX'

BCTA,UN H'0010'

6-13

Comment

Place message tahle pointer
-1 in R1 and R2.

Place command byte in R3.
Call USER DISPLAY.

Compare returned key value to
RUN's value.

Branch to XX,XX if equal.

If not equal, loop back and
get another key.

First byte of message table
blank

wononn
orr ®m

blank
Last byte of message table
blank

NIBBLE SUBROUTINE

Calling Instruction:

Mnemonic Hex Value
ZBSR *DISLSD BB,F4

Registers Used:

RO and R2
On entry: RO = byte (high-order nibble, low-order nibble)
On exit: RO = high-order nibble

R1 low-order nibble

Subroutine Levels Used: 1

Function:

NIBBLE takes an eight-bit byte and separates it into two bytes, each contain-
ing one of the original four-bit nibbles. This subroutine is useful in user
programs that display a register or memory data value on the INSTRUCTOR 50
display. The NIBBLE subroutine is an invaluable aid in converting binary data
to hexadecimal values.

Operation:

The byte to be separated in passed to NIBBLE in RO. NIBBLE then takes the
least-significant four bits (low-order nibble) from RO and places them in the
four least-significant bits of Rl. When NIBBLE returns program control to
your program, RO contains the low—order nibble, and Rl contains the high-order
nibble. The most - significant four bits of both RO and Rl contain zeros. A
functional example of NIBBLE is shown below. This is followed by an example
of a NIBBLE subroutine call.

6-14

On entry:

On exit:

Address

0000

0001

0003

0006

0009

000B
000D

000F

0011
0100

0101
0102
0103
0104
0105
0106

0107

RO = F3

RO
Rl

OF
03

Data

70

BB,F4

cp,01,07

cc,01,06

05,00

06 ,FF
04,00

BB,E6

1B, 6D
13

OE
0D
()]

17
17

17

Functional Example of NIBBLE

Example of NIBBLE subroutine Call

Instruction Mnemonic

REDD, RO

ZBSR *DISLSD

STRA,R1 H'01,07'

STRA,RO H'01,06'

LODI,R1 H'00'

LODI,R2 H'FF'
LODI,RO H'00'

ZBSR*USRDSP

BCTR,UN H'6D'

6-15

Comment

Read I/0 port (Non-Extended)
into RO.

Call NIBBLE subroutine.

Store low-order nibble in
message table.

Store high-order mnibble in
message table.

Place message table pointer
(-1) in Rl and R2.

Place display command in RO.

Call USER DIAPLAY subrou-
tine. Displays previous Port
D value. Allows new I/0
value to be set up in switch-
es. Exits when any key is
depressed.

Loop back to 0000 and get new
I/0 value.

= "R" (first byte of message
table).

"E"

|lD||

"D'l

nan

"Hlank"

"blank" (high-order nibble
will be stored here).
"blank" (low-order nibble
will be stored here).

INPUT DATA SUBROUTINE

Calling Instruction:

Mnemonic Hex Value

ZBSR *GNP BB,FA

Registers Used:
On entry: RO

Input Command

On exit: RO = Two Data Key Values

Rl = Two Data Key Values (optional)

R2 = Function Key Value

R3 = Data Entered Indicator
Subroutine Levels Used: 1

Function:

INPUT DATA displays the contents of the display buffer and scans the data key-
board for data entry. As data is keyed in, the subroutine writes the input
data in the least-significant digits of the display. When a function key is
depressed, USER DISPLAY returns to the main program with the input data and
function key values in the 2650's internal registers.

Operation:

INPUT DATA has two selectable modes of operation. Mode selection is made by
writing an input command byte in RO before calling the subroutine. The input
command bytes and the functions they specify are listed as follows:

Value Placed
in RO Function

H'00' Displays a four-digit message and accepts four digits
of data. As each data value is keyed in, it 1is dis-
played in the least-significant (right-most) display
digit, and previously entered values are shifted left.
Data entry is terminated and program control is re-
turned to the user program when a function key 1is de-
pressed. If less than four data values are entered,
zeros are inserted in the non—-entered digit positions.

H'O1l' Identical to H'00' except that a five-digit message is

displayed, and two digits of data are input from the
data keyboard.

6-16

The four or five-digit message to be displayed by INPUT DATA must be placed in
the monitor's display buffer before INPUT DATA is called. The message charac-
ters displayed are taken from the first four or five bytes of the eight-byte
message table transferred to the display buffer by the MOVE subroutine.

The data values input to INPUT DATA are returned to the main program in RO for
the two-digit input mode and to RO and Rl for the four-digit input mode. In
the two-digit input mode, the most-significant data value entered 1is returned
to the most-significant nibble of RO, and the least-significant data value is
returned to the least-significant nibble of RO. 1In the four-digit input mode,
the two most-significant data values are returned in Rl, and the two least-
significant data values are returned to RO.

When data entry is terminated with a function key depression, the value of the
function key is returned to R2, and a data entered indicator value is returned
to R3. 1If no data has been entered before a function key is depressed, R3
will contain the value H'7F'. If data has been entered, R3 will contain a
value of H'00'. The following example illustrates how data is returned to the
user program. (This is followed by an example of an INPUT DATA call.)

6-17

Example of Data Entry and Register Contents on Return

From Input Data Subroutine

4Comments

Initial display on subroutine entry.
Data values entered.

Data entry terminated and program con-
trol returned to user program.

Register Contents on Return from Input Data Subroutine

Comments

Least-significant data values
Most-significant data values
Value of RUN key

Indicates valid data in RO and Rl

Example of Input Data Subroutine Call

Instruction Mnemonic

Reys ~Display
(1) (2) (3) (&) PLUS
(RUN) PLUS1234

Register Contents

RO H'34'

R1 H'12'

R2 H'86'

R3 H'00'
Address Data
0050 05,00 LODI,R1 H
0052 06,FF LODI,R2 H
0054 BB, FE ZBSR *MOV
0056 04,00 LODI,RO H
0058 BB,FA ZBSR *GNP
0100 10
0101 11
0102 12
0103 05
0104 17
0105 17
0106 17
0107 17

IOO'

'FF'

'00'

Comments

Place message table pointer
(-1) in Rl and R2.

Call MOVE to transfer message
table to display buffer.

Place input command in RO
(H'00' = 4 digits).

Call INPUT DATA sub routine.

First byte of message table =

L

U

S

blank

blank

blank .

Last byte of message table =
blank.

LT B~

nou

NOTE: Since the input command requests four digits of input data, only the
first four message table bytes (0100 - 0103) are displayed.

6-18

MODIFY DATA SUBROUTINE

Calling Instruction:

Mnemonic Hex Value

ZBSR *GNPA BB,FC

Registers Used:

RO,R1,R2,R3
On entry: RO = Input command
On exit: RO = Two Data Key Values
Rl = Two Data Key Values
R2 = Function Key Values
R3 = Data Entered Indicator
Subroutine Levels Used: 1
Function:

MODIFY DATA is very similar to INPUT DATA. The major difference is that the
initial display message can use all eight digit positions on the INSTRUCTOR 50
display panel. MODIFY DATA enables a program to display data values that were
previously entered with INPUT DATA and allows these data values to be modified.

Operation:

As with INPUT DATA, MODIFY DATA has two modes of operation that are selected
by writing an input command byte in RO prior to calling the subroutine. The
input commands and their respective functions are listed below:

Value Placed in RO Resulting Function

H'00' Displays an eight-digit message and accepts four digits
of data. After the first data key 1is depressed, the
four least-significant digits of the display are clear-
ed. Each new data value entered is then displayed in
the least-significant display digit, and previously en-
tered values are shifted left. Data entry is terminat-
ed when a function key is depressed.

H'O1' Identical to H'00' except that when the first data key
is depressed, the three least-significant display

digits are cleared, and two digits of data may be en-
tered.

6-19

The eight-digit message to be displayed must be transferred to the monitor's
display buffer with MOVE before MODIFY DATA is called. The values for the
data entered indicator are the same for MODIFY DATA as for INPUT DATA. That
is, R3 contains H'00' if RO and Rl contain valid data and H'7F' if a function
key was depressed before data was entered. The following example illustrates
operation of MODIFY DATA. This is followed by an example of a MODIFY DATA
subroutine call.

6-20

Data Input
Kez

(2)

(RUN)

Register Contents on Return from MODIFY DATA

Data Entry and Register Contents on Return

From Modify Data

Display Comments
JOB = 01 Initial display on subroutine entry.
JOB = 2 Least-significant three digits are cleared

and new data is displayed.

Data entry is terminated, and program con-—
t rol is returned to user program.

Register
RO

R1
R2

R3

Address
0034

0036
0038

003A

003cC

0100

0101
0102
0103
0104
0105
0106

0107

Data
05,00

06 ,FF
BB, FE

04,01

BB, FC

17

18
15
0B
16
17
00

01

Contents Comments

H'02' Data entered is returned in RO.
H'XX' Data in Rl is meaningless.
H'86' Value of RUN key.

H'00' Indicates valid data in RO.

Example of MODIFY DATA Subroutine Call

Instruction Mnemonic

LODI,R1 H'00'

LODI,R2 H'FF'
ZBSR *MOV

LODI,RO H'O1'

ZBSR *GNPA

6-21

Comment

Place message table pointer
(-1) in R1 and R2.

Call MOVE to transfer the mes-
sage table to the display buff-
er.

Place input command in RO
(H'01' = 2 digits).

Call MODIFY DATA subroutine.

First byte of message table =
"blank"

"J"

"o"

"Bll

"n_mn

"blank" ;

"0" previously entered data
value.

"1" previously entered data
value.

L}

Jumper Options

The INSTRUCTOR 50's versatility is enhanced by jumper options on the printed
circuit board. These options allow you to modify the system's basic con-
figuration. The jumpers are accessible through cutouts at the bottom of the
INSTRUCTOR 50's plastic housing. TFigure 6.1 identifies the location of the
various jumpers and their configuration. The factory supplied configurations
are identified by asterisks (*) in the jumper pin description tables.

Jumper A - Interrupt Selection

As described previously, a switch at the bottom of the INSTRUCTOR 50 allows
you to select interrupts from the interrupt key on the function keyboard or
from the input line frequency clock. Jumper 'A' provides additional interrupt
flexibility by allowing interrupt requests f rom external logic via the bus in-
terface connector. If this option is exercised, interrupt requests from ex-
ternal logic will result in a vectored interrupt through memory address
H'0007'. The setting of the DIRECT/INDIRECT switch on the front panel deter-
mines whether an externally generated interrupt request results in a direct or
indirect subroutine branch. The pin descriptions for jumper 'A' are defined
in the following table:

- JUMPER A Pin Descriptions

Pins
Connected Description

1-2% No mal operation. The 2650 recognizes interrupt requests: from
the interrupt key or the real-time clock, depending on the posi-
tion of S6.

2-4 Bus interface. The 2650 recognizes interrupt requests from the
interface signal VIO (pin 4). The interrupt latch is set on the
rising edge of VIO.

2-39 Bus interface inverted. This configuration is identical to the
2-4 option except that the

3-4 interrupt latch is set on the falling edge of VIO.

6-22

[N A’]

$1°9 @andtg

suoT131e207] aadunf

JUMPER A

300 4
20 01

0@ [_Jss

JUMPER D INTERRUPT
, SELECT
SWITCH

o11 13@

JUMPER B

o’

T

PARALLEL 1/0 PORT
(? LED DRIVERS

29
27 230 ® @30

32 34 36 38
00000000
31 33 3 37

PARALLEL 1/0 PORT
SWITCH INPUTS

o | .
0.

Jumper B - S100 Clock Select

The bus interface includes three pins for S100 interface clock requirements.
The jumper 'B' option allows you to select between two clock signals generated

by the INSTRUCTOR 50. The first clock is the same 895 KHz clock available to
the 2650.

The second clock is the 2650 OPREQ signal gated by the forced jump logic en-
able (i.e., the OPREQ clock is inhibited whenever the forced jump logic has
control of the 2650's address and data busses). The pin descriptions for
jumper 'B' are defined in the following table:

JUMPER B Pin Definitions

Clock Source Pins

Pin Numbers DESCRIPTION
11,12 These pins are driven by the INSTRUCTOR 50's 895 KHz system
clock.
13,14 These pins are driven by the conditioned OPREQ signal. The

frequency is approximately 303 KHz. (NOTE: This clock is
not a continuous frequency. Some 2650 instructions are
executed without generating OPREQ).

8100 Clock Pins

Pin Numbers Description
8‘. This pin is connected to the S100 bus signal 01, pin 25.
9 This pin is connected to the S100 bus signal 02, pin 24.
10 This pin is connected to the S100 bus signal CLOCK, pin 49.

Jumper C - Power Source Select

The INSTRUCTOR 50 is designed to operate with its own internal power supply
used in conjunction with the wall transformer supplied with the system. Op-
tionally, the input to the INSTRUCTOR 50's 5-volt regulator can be supplied
from the interface bus connector. Jumper 'C' supports this option. The pin
descriptions for jumper 'C' are defined in the following table:

JUMPER 'C' Pin Definitions

Pin Connected Description
18-20% Normal operation. The INSTRUCTOR 50's power requirements
are supplied by the wall transformer.
18-19 The INSTRUCTOR 50's power requirements are supplied by an
8-volt unregulated D-C source applied via the bus interface
connector.

6-24

Jumper D - Cassette Output Selection

The INSTRUCTOR 50's cassette interface provides two reconling signal 1levels,
Jumper 'D' selects between a 30mV rms record level and a 300mV rms record
level. The pin descriptions for jumper 'D' are defined in the following table:

Jumper 'D' Pin Definitions

Pins Connected Description

15~17% This option provides a 30mV rms record level to the cas~
sette.

16-17 This option provides a 300mV rms record level to the cas-
sette.

6-25

|
|
|
,ﬁ
1
|
el
® ?.m
| o
Fl Ett -
w.m“ W) W
; §
f o
i | [
W«m W vma
s § -
N7 g . m.,,
O
: &
&
% @ o
C p——
&

7. SYSTEM EXPANSION

Introduction

Microprocessors have had' a-tremendous. impact on the hobbyist computer market.
Beginning with.Altair's 8800 home computer, the hobbyist market has literally
exploded with:new products,: These:new products include not only basic com-
puters but a host of small support systems or peripheral boards. The first
peripheral:boards-were simple memory expansion boards, but today there are a
wide:variety of-peripherals available:. There are: television interfaces for
computer- graphics, -floppy disc interfaces for mass storage, and even a board
that synthesizes human speech.

The majority:of.these. peripheral ‘boards are designed to be compatible with the
Altair-8800-bus.. As more and more Altair 8800-compatible systems were intro-
duced, this microcomputer bus was given an industry wide name, the S100 bus.

The INSTRUCTOR 50's S100 interface (an edge connector at the back of the unit)
transforms.a simple.learning device into a small system computer 1limited only
by the.number and type of peripheral boards used.. Moreover, the powerful pro-
gram/data. entry. and. debug facilities of the basic. INSTRUCTOR 50 are extended
to- any dev1ce connected to the S100 bus 1nterface.

Because the Altalr 8800 home computer was based on the 8800, many of the S100
bus signals are essentially 8080 signals. Many of these signals, such as the
two-phase clock and negative supply voltage, are not required by state-of-the-
art microprocessors like the 2650. Hence, the INSTRUCTOR 50's S100 interface
bus is not pin-for-pin compatible with Altair's original bus. However, the
INSTRUCTOR 50's interface bus contains the most commonly used signals and can
be easily connected to the majority of S100 peripherals. In addition to the
common S100 bus signals, spare pins on the S100 pin bus have ‘been assigned
2650 signals (e.g., OPREQ, R/W, and M/I0). Thus, custom interfaces can be de-
signed with the 2650 control logic, instead of the more cumbersome 8080 inter-
face bus logic. In short, the INSTRUCTOR 50's S100 interface opens up the en-
tire universe of home computer peripherals to owners of the INSTRUCTOR .50
training system.

The INSTRUCTOR 50 bus interface signals are described in Table 7.1.

B

7-1

10
11

12

13

onic

Mnem

+8V

+16V

XRDY

Vio

Not
Not
Not
Not
Not
Not
Not

R/W*

WRP*

used
used
used
used
used
used

used

TABLE 7.1

INSTRUCTOR 50 INTERFACE BUS SIGNALS
(*Indicates a 2650 bus signal)

Signal Description

Positive 8 volts, unregulated. This 1line provides
+8 volts to the INSTRUCTOR 50 when Jumper C selects
the interface bus as the system power source.

Positive 16 volts. This line is reserved for +16
volts that may be required for a S100 peripheral
board. +16V is neither required for or generated by
the INSTRUCTOR 50. .

External Ready. XRDY is returned by an external de-
vice when it has completed a data transfer with the

2650. On board the INSTRUCTOR 50 XRDY becomes OPACK
for the 2650.

Vectored Interrupt #0. VIO provides an external in-

terrupt request when Jumper A is wired for external
interrupts. VIO is latched and generates either an
indirect or direct interrupt (selected by the
DIRECT/INDIRECT switch) through address H'0007'.

Read/Write. A 2650 control signal that indicates
whether the processor is performing a read or write
operation with an external peripheral board. As
with all of the 2650 control signals, R/W 1is wvalid
only when OPREQ is true.

NOTE: An asterisk (*) indicates non-S100 2650 con-
trol signals.

Write Pulse. A 2650 control signal that is generat-

ed during memory or I/0O write sequences. WRP may be
used to strobe data into the selected device.

7-2

14

15

16

17

18

19

20

21

22

23

24

25

26
27
28
29
30
31

32

33

M/10%*

RESET*

RUN/WAIT*

PAUSE*

Not

Not

Not

Not

Not

Not

01

02

Not

Not

Not

A5

A4

Al5

Al2

used

used

used

used

used

used

used

used

used

Memory/Input-Output. A 2650 signal that is generat-
ed during memory or I1/0 write sequences. WRP may be
used to strobe data into the selected device.

Reset. When driven high, RESET performs the same
operation as depressing the RST key on the IN-
STRUCTOR 50 front panel. That is, the 2650 is reset

and begins executing the wuser program at location
H'0000'.

Run/Wait. A 2650 control signal that indicates
whether the 2650 is in the wait state or 1is execut-
ing a program.

Pause. This 2650 control signal input is provided
for Direct Memory Access (DMA) operations. When
driven high, this signal causes the 2650 to enter

the WAIT state after completing the instruction cur-
rently being executed.

Phase 1 Clock. 01 may be driven by the 895 KHz sys-
tem clock or the 2650 OPREQ signal depending on the
configuration of the Jumper B option.

Phase 2 Clock. 02 may be driven by the system clock
or OPREQ depending on the configuration of Jumper B.

Address Bit 5
Address Bit 4
Address Bit 3

Address Bit 15. Since the 2650 has an address range
of 32K, this line is grounded.

Address Bit 12

3[.. S

35

- 36

37

38

39
40
41
42
43
44

45

46

47

48
49

50

51

52

53

54

Dol
-DO0 -

CAIO

D04

DO5

D06
DI2
DI3
D17
Not used

SOUT

SINP

SMEMR

Not used

CLOCK

+8V

-16V

Not used

Not used

tAddress Bit (9 - on e

“Data-Out Bit:0 ...

. Address Bit 10: =

Data Out Bit 4‘

‘Data Out Bit 5

Data Out Bit 6.

Data In Bit 2 -

Data In Bit 3

Data In Bit 7.

Output. SOUT indicates that the . address bus con-
tains the address of an output I/0 device. The ad-
dressed device may accept the value on the data bus
when PWR (pin 77) is active.

Input. SINP indicates that the address bus contains
the address of an input I/0 device. .The selected
device should return its data when PDBIN (pin 78) 1is
active. S 2

Memory Read. This signal indicates that the address
bus contains the address of a memory location and
that the 2650 is performing a memory read operation.

System Clock. Depending on the configuration of
Jumper B, this line is driven by the 895 KHz system
clock or the 2650 OPREQ output.

System Ground.

Positive 8 volts. This line provides +8V to the IN-
STRUCTOR 50 when Jumper C selects the interface bus
as the system power source.

Negative 16 volts. This line 1is reserved for -16

volts that may be required by a S100 peripheral
board. Not supplied with the INSTRUCTOR 50.

7-4

55
56
57
58
59
60
61

62
63

64

65

66

67

68

69

70

71

72

73

DO*
D1*
D2*
D3*
D4*
Not used
D5*

-~ D6*

D7%:

UOPREQ*

INTACK*

FLAG*
USENSE*
MWRITE
Not used
Not used

Not used

PRDY

PINT

..~Data Bus Bit
.. Data:Bus Bit.

- In addition to the 2650 control
- signals, the INSTRUCTOR 50 a¥
interface bus also includes a
- bidirectional data bus. The I°%
- 2650 signals form a subset of
the Interface bus::ithat can be
- used to interface the
=~ “INSTRUCTOR 50 to bré&adboard
= .peripherals with a minimum of in-
terconnect wires.

Data Bus Bit
Data Bus Bit
Data Bus Bit
Data Bus Bit
Data Bus Bit

PONFO
!

Data Bus Bit

LN oW
’]

User Operation Request -"OPREQ, a 2650: :control sig-
-naly . .indicates that:.the: processor's address bus,
-data bus, and other 'control signals are wvalid.
- OPREQ may:-be used to’ latch:the data bus for write

operations and enable input device bus drivers for
read operations.: . ooovion) Da ot

INTERRUPT ACKNOWLEDGE.: .The 2650 returns INTACK:uito
an interrupting device in response to an INTERRUPT
REQUEST. Upon: receipt-.of -INTACK, the:u:interrupting
device drives the data bus with a relative branch
address and asserts either XRDY or PRDY.: These sig-
nals become the 2650 status 51gna1 OPACK.

FLAG. This 11ne contalns the 2650 51ng1e-b1t output
port. SOH e s i

USER SENSE. USENSE - is-. the 2650 single-bit input
port. FLAG and SENSE are part of the PROGRAM STATUS
WORD. Cig i

MEMORY WRITE. MWRITE indicates that data is to 'be
written into the memory location addressed by the
current value of the ADDRESS BUS. L

PROCESSOR READY. "PRDY is logically OR'd with XRDY
to form the 2650 status signal OPACK. PRDY is re-
turned by an addressed device (either memory or 1I7/0)
or an interrupting device when the requested data
transfer has been: completed.

PROCESSOR INTERRUPT.: 'PINT:is an S100: 7 signal that
corresponds to the 2650 INTERRUPT REQUEST signal.
The 2650 acknowledges PINT when it completes the ~in-
struction it was executing when PINT was driven
low. The 2650 does not recognize:PINT if it is: in
the WAIT state or if the INTERRUPT INHIBIT bit of
the PSW is reset. PINT can be used:. to:.:release (ithe
2650 from the HALT state.

74
75
76

77

78

79
80
81

82

83
84
85
86
87
88
89
90
91
92
93
9%
95
96
97

98

Not used
Not used
Not used

PWR

PDBIN

A0
Al
A2
A6

A7

Al13
Al4
All
D02
DO3
DO7
DI4
DI5
DI6
DIl
DIO
Not used
Not used

Not used

PROCESSOR WRITE. PWR indicates that the data bus is
valid and may be accepted by the addressed memory
location or output device.

PROCESSOR DATA BUS 1IN, PDBIN indicates that the
2650 is readng data from the addressed memory loca-
tion or input device. PDBIN may be used to enable
the selected device's data bus drivers.

Address Bit 0

Address Bit 1

Address Bit 2

Address Bit 6

Address Bit 7

Address Bit 8

Address Bit 13

Address Bit 14

Address Bit 11

Data Out Bit 2

Data Out Bit 3

Data Out Bit 7

Data In Bit 4

Data In Bit 5

Data In Bit 6

Data In Bit 1

Data In Bit O

7-6

99 POR POWER ON RESET. POR is an output signal that indi-
cates that power has been applied to the INSTRUCTOR
50 and the system is being reset. POR may be used
to reset peripheral boards on the Interface Bus.

100 GND GROUND., System Ground.

Introduction g

. ?

I a-
o

The INSTRUCTOR 50 is typlcal.of modern mlctocomputers, reflecting many of the
recent advances in micro ocessor technology. For example, the current trend
in microcomputer design'“ to replace 1og1c functions 1mp1emented with Small-
Scale Integration (SSI)= ‘and Medlum-Scale Integratlon (MSI) circuits with com-
plex Large-Scale Integratlon, (LSI) .microprocessor support circuits. This
trend is exemplified in the FNSTRUCTORoSO which makes use of the 2650 micro-
processor and the 2656 Syste Memory Interface. These two chips alone consti-
tute a basic mlcrocomputerfn Beyandwthlsétwo—chlp microcomputer, the remainder
of the circuits on the: INSTRUQTORiSO P ':ted C1rcu1t Board are devoted to pro-
viding thewmlgrocomputer w1th man—machlne and machlne-machlne Lnterfaces.

g i 5 s

This chapter desdrlbesﬁthe hardware and software a; ,ciated with the IN-
e .intent..is. nonﬂt; give a detailed expos1t10n for main-
"INSTRUCTOR 50 comes fully assembled-and.! debugged ready
uéed and requ1res 1itt1e or no maintenance. Rather, the
. of modern microcomputer

Basic Concept ;
The functlonal heart of computers 1n:genera1 and microcomputers in particular
is the syétem program.;,The program:is ayloglcal sequence~of--machine instruc-
tions that mon;torvasaem _status, and, based on ‘that’status, decides what con-
trol actions. to take. ‘A computer's Central ProceSSlng Unlt (CPU) is a device
that reads iﬁ§truct10ns«-rem -program-storage and,: by eﬁecutlng the instruc-
tions, performs a he arithmetic and 1og1caleopefations requlred by the

‘The CPU also provides tﬁﬁ:systemw program with the phys1cal

system program
“I70 functions. The RINSTRUCTOR 50's

means to access and control the system'
CPU is the 2650 mlcrOpgocessor.

The 2650 fetches 1nstruct10nswfrom program: storage and ommu icates with the
system I/0 circuits v1a its address bus,: ntre bus, and - dataw bus. As the
2650 executes each 1nstruct10n, the add s and eontnol bus vakuea.spec1fy the
device to be communlcate “with (metiory location, I/O dev1pe, setsag and the
data bus serves asian- 1nfonmat10n conduat betweensthe,,pfocesséamgand the se-

lected device. Thlsmknfermatlon ttanstem -scheme ’deflneam the§ system's basic
architecture illustratéd in Figure 8.1. &

PERP——— s s

Considerable sav1ngs in parts count'was reallzed by decoﬂlng the 1I/0 device
addresses within the 2656 SMI. . - %

Thus, when the 2650 executes an 1nstruction that references an I/0 device
(e.g., the parallel I/0 port), that device*s address is asserted on the ad-
dress bus, and the Programmable Gate Array w1th1n the SMI decodes the . address
and generates the I/0"devicée's ‘enableisignali “Thus’enablédy:the selected I/0
device either accepts data from or returns data to the 2650 over the data
bus. As the 2650 executes each instruction, it selects the device

-8

$1°g @and1g

2aN3993TYd1y (0§ 103dONIISUI dIseg

rth

FORCED
512X 8 JUMP
RAM LOGIC

2656 SMI
L
cLock 2K 128 1/0
ROM RAM DECODE
B
v
o E
E
R
2650
uP
B
v
1
E
R

L CONTROL

ADDRESS

HEX KEYBOARD
& DISPLAY

PARALLEL
1/0 PORT

casseTTE [N
1/0 | » OUuT
DATA
$100 ADDRESS
BUS

INTERFACE | CONTROL

specified by the instruction (program storage, user RAM, an I/0 device, etc.)
with the address bus and communicates with the selected device via the data
bus.

Detailed Block Diagram Description
A detailed block diagram of the INSTRUCTOR 50 is presented in Figure 8.2,
This section gives a description of each of the major functional blocks il-

lustrated in Figure 8.2

The Microcomputer

As mentioned previously, the basic microcomputer consists of the 2650 micro-
processor and the 2656 System Memory Interface (SMI). The 2650 provides the
following functions:

8-bit ALU The Arithmetic Logic Unit performs all of the arithme-
tic and logical operations required for program execu-
tion.

Program Counter The program counter is used to generate program stor-

age addresses.

Interrupt Logic The interrupt logic performs all functions required to
respond to an interrupt request from an external de-
vice.

Internal Registers The 2650's seven internal registers provide temporary

data storage and serve as a link between the ALU and
external data storage, such as RAM locations and I/0
devices.

Bus Interface Logic The bus interface logic distinguishes between memory
and 1/0 device addresses and specifies the direction
of data transfers between the processor and external
data storage.

The 2650 microprocessor is surrounded with bus drivers (buffers). Because the
2650 is fabricated using an MOS process, its output pins can drive only one
TTL load. The bus drivers buffer the 2650 outputs and are able to drive all
of the loads on the INSTRUCTOR 50's busses.

The buffered 2650 data, address and control busses are connected directly to
the 2656 SMI. The SMI contains the 2K monitor program, 128 bytes of scratch-
pad RAM, a system clock generator, and an eight-bit I/0 port. The eight-bit
1/0 port is controlled by a mask Programmable Gate Array (PGA). As configured
for the INSTRUCTOR 50, the PGA decodes the address bus and provides eight I/0
chip enables for the user RAM and 1/0 devices. Table 8.1 lists the functions
of these outputs.

All of the monitor program's scratchpad memory requirements are met by the
SMI's 128 byte RAM. In fact, the monitor only requires 64 bytes, thus leaving
the remaining 64 bytes for user storage. It should be noted, however, that
while the INSTRUCTOR 50 enables you to access these 64 bytes of the SMI's RAM
with the DISPLAY AND ALTER MEMORY command and the FAST PATCH command, the SIN-
GLE STEP and BREAKPOINT commands are not supported within this memory

8-3

SLHDIT SNLVLS §3HILIMS) 1901
H “THOdO/1 1804 0/1 13834
[T NO 43IMOd

3ISN3S
QYvOo8A3IN

fe=|
A
~ xnw nﬂv
sna viva «
.7 .1
.. s834aqv QUVOIAIN a¥vOgAIN =
. 1sv1 viva NOILONNA
. o
' 43151934
. / $338aAQV L8V T 2
ks 4 P! =
'3dou1s ﬁ £
ss3vaav S
FTa) - %
sna b
J0H1L “
NOD o
®
B
. a
o)
0
i
-
o]
Il Y WSE ¢ S .
TouiNoo | [E ”m :
0/l “* "
o S$3HAAY s&. :
3 g * &
STNDIS)
TOHLNOD
-
MS LNI
21901
LdNYHALNI
18X
i
T 3DVHOLS
WVYHDOH Hasn

oo

ey

24Y

vy

oM
57

i

space. Hence, these 64 bytes should be used for data storage only. That 1is,

user programs should be stored in user RAM or on an S100 memory expansion
board.)

INSTRUCTOR 50 Memory Allocation

Figure 8.3 is a memory map of the INSTRUCTOR 50's addressable memory space.
The memory map is divided into four 8K pages reflecting the addressing archi-
tecture of the 2650. The first page, page zero, contains the user RAM and the

SMI ROM and RAM. The second, third, and fourth pages are available for wuser
memory expansion or memory mapped I/0.

The user RAM is formed by four 256 x 4 RAMs (Signetics 2112's) that are enabl-
ed by the SMI chip-enable lines mentioned previously. Chapter 7 described how
5100 memory boards can be added to the INSTRUCTOR 50.

Signal
RAMOCE

- RAMICE

PORTFX

USRPORT

USRMEM

DI/O

CcI/o

MON

Table 8.1

CONTROL SIGNALS GENERATED BY THE SMI

Function

RAM O chip enable: this signal enables the lower 256 bytes of
user RAM.

RAM 1 chip enable: this signal enables the upper 256 bytes of
user RAM.

PORTFX goes low whenever the 2650 executes an extended I/0 in-
struction with an address between H'F8' and H'FF', inclusive.
This signal enables the INSTRUCTOR 50's I/0 device addresses to
be decoded with just three address bits.

USRPORT goes low whenever the 2650 accesses the parallel 1/0
port with an extended I/0 instruction (address H'07').

This signal goes low when the 2650 executes a memory reference
instruction that specifies address H'OFFF'. USRMEM enables the
parallel I1/0 port when the port address select switch is in the
MEMORY position.

DI/O goes low when the 2650 executes a non-extended I/0 instruc—
tion that specifies port D. If the port address select switch
is in the NON-EXTENDED position, DI/O enables the parallel 1I/0
port.

C1/0 goes low when the 2650 executes a WRTC instruction. This
signal is used by the forced jump logic for breakpoint detection.

MON goes low whenever the 2650 fetches an instruction or data
value within the monitor's address space (H'17C0' and H'IFFF').

8-6

FF
7FFF
| FE
AVAILABLE
Y FOR L FD
Y USER RAM v
EXPANSION
FC
2000
1FFF
FB
USE
MONITOR
FIRMWARE EA
1800
17FF SSE Fo
17¢0 MONITOR RAM
17BF USER PROGRAM
DATA STORAGE RAM F8
1780
177F
NOT
AVAILABLE F7
1000 ‘OFFF’ IS
OFFF <—} ADDRESS OF
1/0 PORT
AVAILABLE
FOR
USER RAM
EXPANSION
0200
01FF
SUPPLIED
USER RAM
0000 00
HEX HEX
ADDRESS MEMORY ADDRESS
Figure 8.3:

NOT USED

KEY RETURN
INPUT

LAST ADDRESS
REGISTER. M.S.
BYTE, INPUT

LAST ADDRESS
REGISTER. L.S.
BYTE, INPUT

RESERVED

FORCED JUMP
LOGIC. OPREQ
COUNTER OUTPUT

FOR
MONITOR

DIGIT/COLUMN
SELECT OUTPUT

DISPLAY SEGMENT
OuUTPUT

CASSETTE INTER-
FACE OUTPUT

AVAILABLE
TO
USER
PROGRAM

| ‘07’ IS ADDRESS
OF 1/O PORT

EXTENDED 1/0

Memory and I/0 Organization

8-7

Parallel I/O Port

The parallel I/0 port consists of an output latch, input switches, and port
address decode logic. The port address decode logic generates a port enable
whenever one of the three following conditions are met.

1) The 2650 executes a WRTD or REDD instruction.

2) The 2650 executes either a WRTE or REDE instruction that specifies
H'07' as an extended I/0 address.

3) The 2650 executes a memory reference instruction that specifies lo-
cation H'OFFF'.

The Port Address switch selects one of these signals as the parallel I/0 port
enable.

Whenever the I/0 port is enabled and the R/W control 1line specifies a write
operation, the value on the data bus is strobed into the I/O port output
latch. This latch drives the I/0 port indicator LEDs.

The I/0 port switches are one of four inputs to a data bus multiplexer. When-
ever the I/0 port is enabled and the R/W line indicates a read operation, the
I1/0 switch levels are asserted on the data bus via the data bus multiplexer.

Keyboard and Display Logic

The INSTRUCTOR 50's primary man-machine interface consists of an output de-
vice, the eight-digit display, and two input devices - the function and data

entry keyhoards. Together they provide an inexpensive human interface to the

microcomputer.

The display digits consist of seven discrete LEDs arranged in a rectangular
array or bars and an eighth LED that serves as a decimal point. There are se-
veral methods of driving a seven-segment display with a microprocessor. The
most straightforward approach is to provide a separate output port latch to
drive each individual display. With this approach, the microprocessor simply
writes a byte to each output port, corresponding to the segments required to
form the desired character. While the direct drive approach is the simplest
to conceptualize, it also requires the most hardware to implement. However,
the basic rule of thumb in microcomputer design is to eliminate as much system
hardware as possible with program logic. Toward this end, an alternate dis-
play drive method that requires only two output ports 1is used in the IN-
STRUCTOR 50.

The first output port (extended port F9) is a latch that drives the segment
select lines connected in parallel to each of the eight digits. The second
output port (extended port FA), an eight-bit latch, enables only one digit at
a time. With this structure, the segment select 1lines can be time shared
among the eight digits. The 2650 first enables a digit with the digit select
output port and then writes that digit's character segments in the segment se-
lect output port. The process is repeated for each digit in a sequential
fashion. If each digit is illuminated at a sufficiently fast frequency, about
100 Hz, the entire eight-digit display appears flicker free. Thus, consider-
able savings in display drive hardware is realized by substituting program
complexity for output ports.

8-8

Because of the display's high-current requirements, the two output port latch-
es require current buffering. A darlington transistor array on the output of
each latch supplies the required current.

There are several methods of interfacing a microcomputer to an input key-
board. Here again the primary objective is to minimize the system hardware by
placing as much of the control logic in the program as possible. The keyboard
scan approach used by the INSTRUCTOR 50 arranges the two keyboards in a ma-
trix. Since each function and data key is actually a two-terminal switch, a
matrix can be formed by grouping the terminals of each switch into columns and
rows. This organization is illustrated in Figure 8.4

Referring to Figure 8.4, the column select signals, COL 1-COL 6, are driven by
an output port (extended port FA), and the four sense signals, KRO-KR3, serve
as the inputs to an input port (extended port FE). Given this structure, the
2650 can scan the keyboard to detect a switch closure as follows:

1) The processor writes a byte to the column select output port that
drives one of the column select lines low.

2) The processor reads the row sense input port. If any of the keys in
the selected column are depressed, a low is sensed on the corres-
ponding row sense line.

3) The process is repeated for each column.

The keyboard interface column select operation is identical to that of the
display digit select. Hence, a single output port serves both interfaces.
The row sense input port is another input to the data bus multiplexer. When
the 2650 executes an REDE instruction that specifies the row sense input port,
the row sense signals are returned to the processor on the data bus via the
multiplexer.

Beferring again to Figure 8.4, you will notice that four of the function keys,
SENS, INT, MON, and RST, are not included in the switch matrix. The reason
for their absence is that the functions they perform are independent of the
monitor program. Since RST resets the 2650, this switch is connected to the
2650's RESET pin (after being OR'ed with the power on reset signal). Like-
wise, the SENS key is connected to the 2650 SENSE input pin. (Actually the
2650 SENSE pin is used for both the SENS key and the audio cassette inter-
face. The signal presented to the 2650 depends on whether or not the 2650 is
reading data from cassette). The INT key is connected directly to the IN-
STRUCTOR 50 interrupt logic, and the MON key is connected to the forced jump
logic. The operation of these two keys is described under forced jump logic.

8-9

01-8

3noder] paeoqAdy

tH*g @an3iyg

J

R

KR 1

+5
o— ﬁ)—» 4)—» o— —
WCAS BKPT 0 1 2
o O~ o O o —O-
Oo—> O o— O
RCAS REG 4 5 6
o O- -O 0 O 'o}
o—= oO— o— o
STEP MEM 8 9 A
o O- O— O O O
O—> o—> J}——h— é}——»— o—>
RUN ENT/ (o D E
NEXT
o —0 O —O -O- —O

KR

J

Bit Assignments for Keyboard and Display Ports

Figure 8.5 gives the bit assignments for the ports associated with the key-
board and display circuits.

PORT F9 -- SEGMENT OUTPUT

7 6 5 4 3 2 1 0
SEG SEG
0} G F E D C B A

1 = SEGMENT ON
0 = SEGMENT OFF

PORT FA -- KEYBOARD COLUMN AND DISPLAY DIGIT SELECT OUTPUT

BKPT WCAS 3 2 1 0
REG RCAS 7 6 5 4
MEM STEP B A 9 A KEYS
ENT/NXT | RUN F E D c
7 6 5 4 3 2 1 0 DISPLAY
(LEFT) (RIGHT) |{ DIGIT
1 = COLUMN/DIGIT selected
0 = COLUMN/DIGIT not selected
PORT FE -- KEY RETURN INPUT
C 8 4 0
D 9 5 1
E A 6 2
F B 7 3
RUN STEP RCAS WeC
ENT/NXT | MEM REG BKPT
Figure 8.5

8-11

The Cassette Interface

The cassette interface is unique among the INSTRUCTOR 50's I/0 devices in that
it communicates with an analog system, a cassette tape recorder. It converts
microprocessor—generated logic signals into an audio waveform for recording
data, and converts the audio waveform returned from the recorder into a digi-
tal pulse stream that can be decoded by the processor when data is being read
from the cassette.

The INSTRUCTOR 50 uses a two-bit output port (extended port F8) for recording
data onto cassette tape and a single-bit input port for reading the data
back. Figure 8.6 illustrates the record waveforms required by this techni-
que. The two signals, FREQ and ENV, are provided by a two-bit output port
(port F8, bits 3 and 4, respectively). These signals are combined with an
open—collector NAND gate to form the write signal for the cassette. As shown
in Figure 8.6, six pulses are used to record a 'zero' on the cassette, and
three pulses to record a 'one'. The only exception to this recording format
is the last bit of a byte. Six additional pulses are recorded for the last
bit of a byte to mark byte boundaries (i.e., a one is nine pulses and a zero
is twelve pulses).

Since only a single bit input port is required to read data back from cas-
sette, the 2650's SENSE pin is used for this purpose. Bit 7 of port [FE8 is
used to switch the SENSE input from the keyboard to the cassette interface
when a Bead Cassette operation is in progress. However, before the audio in-
put is presented to the SENSE pin, it is digitized by a Schmidt trigger. The
Schmidt trigger has about 1.5 volts of hysteresis that provides the read logic
with necessary noise immunity.

Interrupt Logic

The INSTRUCTOR 50 can respond to interrupt requests from three possible sourc-
es: the INT key, the real-time clock derived from the power supply 1line fre-
quency, or the S100 bus interface. As mentioned previously, interrupt source
is determined by a switch located at the bottom of the INSTRUCTOR 50 case.
This switch selects between the INT key and the real-time clock. A jumper op-
tion enables interrupt requests from the S100 bus interface.

The selected interrupt request source is input to a flip-flop that is set when
an interrupt request is received. The output of the flip-flop is connected to
the INTREQ pin on the 2650. The 2650 responds to an interrupt request by as-
serting INTACK. INTACK, in turn, enables a tri-state drive that places the
interrupt vector H'07' or H'87', depending on the position of the DIRECT/IN-
DIRECT switch on the data bus. INTACK also resets the interrupt request flip-
flop.

Forced Jump Logic

The INSTRUCTOR 50's Breakpoint and Single Step commands are implemented with a
combination of firmware and hardware control. This hardware portion is called
the forced jump logic. The forced jump logic returns program control to the
monitor whenever a breakpoint is detected, after a single user instruction has
been executed in the step mode, when the MON key is depressed, and when power
is initially applied to the INSTRUCTOR 50.

8-12

Env — ' J L I L
OUTPUT
o — U JUUUULH 1
CASSETTE]
0 1

Figure 8.6: CASSETTE RECORD WAVEFORMS

8-13

The forced jump logic consists of the following logical elements:

1) The Return to Monitor Sequencer — This sequencer is responsible for re-
turning program control to the monitor when the 2650 1is executing a
user program. The sequencer consists of a programmable counter and a
32 x 8 PROM. The PROM contains the data values of an absolute branch
instruction. When the sequencer is active, the forced jump logic dis-
ables the INSTRUCTOR 50's normal instruction fetch mechanism and re-
turns the absolute branch instruction stored in the PROM. The 2650

initializes the sequencer by loading the counter via extended output
port FB,

2) The Last Address Register — The Last Address Register (LAR) saves the
last address issued by a user program before program control is re-
turned to the monitor. This address points to the mnext instruction
that the user program would execute if the return to monitor had not
been activated. The monitor program reads the LAR to determine where
the user program should resume execution after a STEP command has been
completed or when a breakpoint is encountered. The monitor reads the
least-signigicant byte of the LAR by addressing port FC, and the most-
significant byte by addressing port FD.

3) Control Logic - The control logic performs general housekeeping func-
tions such as loading the LAR, integrating interrupt requests with the
return to monitor state sequencer, and loading the programmable counter.

The forced jump logic is enabled when power is first applied to the INSTRUCTOR
50, when the MON key is depressed, when a breakpoint is detected, and when the
monitor program executes the STEP command. The resulting action taken by the
forced jump logic when one of these events occurs is described below.

POWER .ON° (POR) OR. MON KEY DEPRESSION

When power is applied to the INSTRUCTOR 50 or when the MON key 1is depressed,
the 2650 is reset. The 2650 responds to a reset by clearing its internal pro-
gram counter and fetching the instruction located at byte zero, page zero.
However, when the 2650 places address H'0000' on the address bus, the forced
jump logic disables the normal memory access mechanism and returns a NOP in-
struction value to the 2650 via the data bus. The 2650 executes the NOP and
attempts to fetch an instruction at the next sequential address H'000l'. This
instruction fetch generates an operation request (OPREQ). OPREQ is wused to
increment the sequencer counter. In this state, the return to monitor se-
quencer places the first byte of an unconditional branch instruction on the
data bus. When the 2650 receives the BCTA, UN op-code, it generates two more
OPREQs to fetch the branch address. Each OPREQ increments the counter and the
PROM places the beginning address of the monitor, H'1800', on the data bus.
At this point the 2650 executes the branch to monitor, and the forced jump lo-
gic returns to the idle state.

BREAKPOINT DETECTIQN

If the user has specified a breakpoint, the monitor program inserts a WRTC

8-14

instruction at the breakpoint address specified. When the 2650 executes the
WRTC instruction, a control signal is generated that produces the same results
as the PORssignal, and program control is returned to the monitor. A monitor
software flag distinguishes this entry from a POR or MON key entry and causes
a branch to the breakpoint routine.

SINGLE STEP

The execution of a single 2650 instruction in response to the STEP key 1is an
excellent example of combined firmware/hardware control. When the STEP key is
depressed, the monitor program fetches the instruction pointed to by the Pro-
gram Counter and calculates the number of OPREQs required to . execute the in-
struction. The OPREQ counter (an extended I/0 port) 1is then loaded with a
value that corresponds to the number of OPREQs. The monitor then restores the
user's program registers and status and branches to the instruction to be
stepped. When the 2650 executes the instruction, the OPREQ counter, beginning
at the present count, addresses "dummy states" of the return to monitor se-
quencer. That is, the locations addressed are not output on the data bus.
When the last OPREQ of the instruction occurs, the output of the return to
monitor PROM is enabled, and subsequent OPREQs return the unconditional branch
to monitor instruction bytes to the processor.

If an interrupt request should occur during execution of the STEP instruction,
the 2650 waits until the instruction has been completed before asserting IN-
TACK. Conditioned by the forced jump control logic, INTACK becomes an address
bit for the return to monitor PROM. While INTACK is high, another address bit
reflects the position of the DIRECT/INDIRECT switch. In concert, these two
address bits force the sequencer into one of two interrupt handling se-
quences: one for direct interrupts and another for indirect interrupts.

S100 Bus Interface

The S100 bus interface consists of tri-state drivers and receivers and a Field
Programmable Gate Array (FPGA) which produces the S100 bus signals from logi-
cal combinations of 2650 control signals. Unfortunately, the S100 bus is far
from standardized. Many of the signals are repetitious and different peri-
pheral manufacturers make different demands of the bus. The FPGA enables you
to modify the bus interface to meet any specific needs you may encounter. A
detailed description of the S100 bus interface is given in Chapter 7.

System Power

The INSTRUCTOR 50 obtains its system power from one of two possible sources.
The first source is an A-C wall transformer supplied with the INSTRUCTOR 50.
The transformer provides the INSTRUCTOR 50 with 8 VAC (rms). On board, the
A-C input is rectified, and the resulting D-C voltage is applied to a three-
terminal regulator. The regulator supplies 5 VDC at 1.5 amps, the system
power requirements of the INSTRUCTOR 50. The wuser may optionally change a
wire jumper at the bottom of the printed circuit board to select unregulated 8
VDC from the S100 bus interface as input to the regulator.

In addition to the rectifier, the A-C input to the system is also applied to
the resistive divider network. The reduced A-C voltage is input to a

8-15

comparator that outputs a 60 Hz real-time clock (50 Hz in Europe and Japan).
This real-time clock is available to the interrupt request logic via a select
switch at the bottom of the printed circuit board. The wall transformer can
be used to drive the real-time clock even if system power is derived from the
S100 bus interface.

The USE Monitor

Without question, the most important component of any microcomputer (or any
computer for that matter) is the system program. Every function or operation
performed by a microcomputer is accomplished by executing a sequence of in-
structions within the system program.

Basically, the USE monitor is a collection of separate routines —- one routine
for each system command. A brief functional description of several routines
with illustrative examples is provided in Chapter 5. This section provides a
brief description of the command executive - a section of the monitor program
that links the various command routines into a cohesive system program.

Figure 8.7 is a flowchart of the command routine executive section of USE.
Whenever the forced jump logic returns program control to the monitor, monitor
execution begins at H"1800', the first address of the executive. Beginning at
this address, the first operation is to save the 2650 registers and Program
Status Word. (These values are restored before program control is transferred
to the user program). The next operation is to check certain software flags
to determine how the forced jump logic was enabled. 1If it was triggered by a
breakpoint (WRTC instruction), program control is returned by the breakpoint
routine. Similarly, if the forced jump logic was activated by the completion
of a single-step sequence, program control is returned to the single-step rou-
tine. The alternatives to these two entry modes are power on and MON key de-
pression. If the executive was entered via either of these two modes, the
executive clears the breakpoint and step flags, since they may be on even if
entry to the monitor was via power-on. Next, the display buffer pointer 1is
set to the "HELLO" message table, and the DISPLAY subroutine is called. The
monitor remains in this routine until a function key is depressed.

Upon returning from the DISPLAY subroutine, RO contains the function key
value. This value is used as an index to fetch a command routine address from
the command address table. The address thus accessed is used for an absolute
branch to one of the command routines. The executive is re-entered from any
command routine when a function key is depressed. Hence, a new command ad-
dress is accessed, and the monitor again branches to the specified command
routine. Refer to the USE Program Listing in Chapter 11 for detailed informa-
tion on the USE routines.

8-16

RETURN
FROM STE

[

(POR (BKPT DETECT)
P) POWER om) (WRTC) CMO"' "EV)

!

H*1800 *

SAVE USER
REGISTERS
AND
PsSw

NO

CLEAR
STEP AND BKPT
FLAGS

!

SET DISPLAY
BUFFER POINTER
TO “HELLO”
MESSAGE

{

CALL
DISPLAY
SUBROUTINE.
RETURN WITH
FUNCTION KEY
VALUE IN RO

FUNCTION
KEY DEPRESSED Y

(FROM ANY ROUTINE)

USING FUNCTION

KEY VALUE IN RO,

FETCH COMMAND
ROUTINE ADDRESS

!

BRANCH TO
COMMAND
ROUTINE

Y

:V (MUST BE MON KEY ENTRY)

@_,‘

Y

/

\

\

Y

Y

no.

\J

SSTEP
SINGLE STEP
ROUTINE

WCAS
WRITE TO
CASSETTE
ROUTINE

REG

ROUTINE

DISPLAY AND
ALTER REGISTERS

RCAS
READ FROM
CASSETTE
ROUTINE

ALTER
DISPLAY AND
ALTER MEMORY
ROUTINE

GO
(RUN) BEGIN
PROGRAM
EXECUTION AT
CURRENT PC VALUE]|

Figure 8.7:

USE Command And Routine Executive

8-17

SCBP
BREAKPOINT
ROUTINE

9. THE 2650 MICROPROCESSOR

Introduction

The 2650 processor is a general purpose, single chip, fixed instruction set,
parallel 8-bit binary processor. A general purpose processor can perform any
data manipulations through execution of a stored sequence of machine instruc-
tions. The processor has been designed to closely resemble conventional bi-
nary computers, but executes variable length instructions of 1 to 3 bytes 1in
length.

The 2650A microprocessor is functionally identical to the 2650, but it in-
corporates a new chip design which provides improved operating margins. All
references to the 2650 in this section apply to the 2650A as well.

The 2650 contains a total of 7 general purpose registers, each 8 bits long.
They may be used as source or destination for arithmetic operations, as index
registers, and for 1/0 transfers.

The processor can address up to 32,768 bytes of memory in &4 pages of 8,192
bytes each. The processor instructions are 1, 2 or 3 bytes long, depending on
the instruction. Variable length instructions tend to conserve memory space,
since a 1- or 2-byte instruction may often be used rather than a 3-byte in-
struction. The first byte of each instruction always specifies the operation
to be performed and the addressing mode to be used. Most instructions use 6
of the first 8 bits for this purpose, with the remaining 2 bits forming - the
register field. Some instructions use the full 8 bits as an operation code.

The 2650/2650A instruction set consists of 75 basic instructions, of which
about 407 are arithmetic instructions. This class contains the Boolean,
arithmetic and compare operations, each of which may be executed using any one
of eight addressing modes. Another 30% of the instruction set includes 1I/0
instructions, instructions for performing operations on the two status regist-
ers, a Decimal Adjust instruction and the Halt instruction.

Utilizing multiple addressing modes greatly increases coding efficiency, al-
lowing functions to be performed using fewer instructions than less powerful
machines. The resulting reduction in routine execution time and memory
capacity requirements directly translates into improved system performance and
reduced memory cost.

In addition to the microprocessor itself, a number of support circuits and de-
velopment tools are also required to design and test microprocessor-based sys-
tems. A growing complement of circuits and hardware and software development
aids are available from Signetics.

Features:
Low System Cost

° Low cost N-channel products
o Intrinsic advantages of single +5V supply

Ease of Use

Uses standard low cost memories
Low cost interfacing

Easy interfacing
Conventional instruction set
Ease of programming

Wide Range of Applications

o e o 00

General purpose capability

Powerful architecture

Powerful instruction set
Flexibility

Expanding family of support devices

2650 Microprocessor Characteristics

General

Interfaces

Architecture

Single chip 8-bit processor

Signetics' silicon gate N-channel technology
Single +5V power supply

Low power consumption

Single phase TTL-compatible clock

Static operation: No minimum clock frequency
Clock frequency: 1.25 MHz maximum

Cycle time: 2.4us minimum

Standard 40-pin DIP

TTL-compatible inputs and outputs—-no external resistors required.
Tri~-state bus outputs for multiprocessor and direct memory access
systems.

Asynchronous (handshaking) memory and I/0 interface.

Accepts wide range of memory timing.

Interfaces directly with industry standard memories.

Powerful control interface.

Single-bit direct serial I/0 path.

Parallel 8-bit I/0 capability.

8-bit bidirectionsl tri-state data bus.

Separate tri-state address bus.

32,768-byte addressing range.

Internal 8-bit parallel structure.

Seven 8-bit addressable general purpose registers.

Eight-level on-chip subroutine return address stack.

Program status word for flexibility and enhanced processing power.
Single-level hardware vectored interrupt capability.

Interrupt service routines may be located anywhere 1in addressable
memory.

9-2

Instruction Set

° General purpose instruction set with substantial capabilities in
arithmetic, character manipulation and control and I/0 processing
Fixed instruction set

75 instructions

Up to 8 addressing modes

True indexing with optional auto increment/decrement

1, 2 or 3-byte instructions

1 and 2-byte I/0 instructions

Selective test of individual bits

Powerful instruction set and addressing modes minimize memory re-
quirements. ‘

Internal Organization

The block diagram of the 2650 series, Figure 9.1, shows the major internal
components and the data paths that interconnect them. In order for the pro-
cessor to execute an instruction, it performs the following general steps:

1. The Instruction Address Register provides an address for memory.

2. The first byte of an instruction is fetched from memory and stored in the
Instruction Register.

3. The Instruction Register is decoded to determine the type of instruction
and the addressing mode.

4. If an operand from memory is required, the operand address 1is resolved
and loaded into the Operand Address Register.

5. The operand is fetched from memory and the operation is executed.

6. The first byte of the next instruction is fetched.

The Instruction Register (IR) holds the first byte of each instruction and
directs the subsequent operations required to execute each instruction. The
IR contents are decoded and are used in conjunction with the timing informa-
tion to control the activation and sequencing of all the other elements on the
chip. The Holding Register is used in some multiple-byte instructions to con-
tain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data manipula-
tion operations, including load, store, add, subtract, AND, inclusive-OR, ex-
clusive~-OR, compare, rotate, increment and decrement. It contains and _controls
the Carry bit, the Overflow bit, the Interdigit Carry and the Condition Code
register parts of the Program Status Word.

The Register Stack contains 6 registers that are organized into two banks of
three registers each. The Register Select bit (RS) of the Program Status Word
picks one of the two banks to be accessed by instructions. In order to ac-
commodate the register-to-register instructions, register zero (RO) is outside
the array. Thus, register zero is always available along with one set of
three registers.

The Instruction Address Register (IAR) holds the address of the next instruc-
tion byte to be accessed. The Address Adder is used to increment the instruc-
tion address and to calculate relative and indexed addresses. The Operand Ad-
dress Register stores operand addresses and sometimes contains intermediate
results during effective address calculations.

9-3

2650/2650A BLOCK DIAGRAM

REGISTER
SUBROUTINE < P
RETURN Sk Saes J PROGRAM
ADDRESS <: H STATUS Cﬁ
STACK “g I Ro | WORU
8X15
" LIFO 1
13 14 ALU
4
apbRess A1 Q 1 MULTIPLEXER
Bus 5 (}:|
5 N CONDITION CODE
5 INSTRUCTION 14 # AND
o ADDRESS REGISTER —_() BRANCH LOGIC
; ¥ 4
OPERAND :> 2y
ADDRESS REGISTER : «2 DATA BUS
< w
ﬁ | | ! ax
INTERRUPT :> HOLDING INSTRUCTION
ADORESS REQUEST INTERRUPT REGISTER REGISTER
ADDER - INTERRUPT LoGIC
ACKNOWLEDGE %
E: DECODING (1: TIMING
10 " AND
CONTROL oo C::D CONTROL LOGIC LoGic cLock
LINES ——
N
.
Figure 9.1
MAJOR 2650/2650A REGISTERS
14 0 7 0 7 0
~ REG 3 slFlu sPa|sPy]spo] Psu
REG 2’ t
REG 1’ STACK POINTER
~— UnuUsED
INTERRUPT INHIBIT
. o FLAG
SENSE
REG 3
7 [
REG 2 CC1JCCo] IDC | RS | WC JOVF C | PSL
REG 1 Q " carmvarr
LOGICAL/ARITH COMPARE
OVERFLOW BIT
, o WITH/WITHOUT CARRY
BANK SELECT
SUBROUTINE RETURN ADDRESS REG 0 INTERDIGIT CARRY
STACK (8X15 RAM) A CONDITION CODE
GENERAL PURPOSE REGISTERS PROGRAM STATUS WORD
413 12 [
INSTRUCTION ADDRESS REGISTER
~—— NOTES
PAGE CONTROL Not all internal registers are shown.

Figure 9.2

9-4

The Return Address Stack (RAS) is an 8-level, Last-In, First-Out (LIFO) memory
which receives the return address whenever a Branch-to-Subroutine instruction
is executed. When a Return instruction is executed, the RAS provides the last
return address for the processor's IAR. The stack contains 8 levels of stor-
age so that subroutines may be nested up to 8 levels deep. The Stack Pointer
(SP) is a 3-bit wraparound counter that indicates the next available 1level in
the stack. It always points to the current return address. Placing the RAS on
the chip allows efficient ROM-only systems to be implemented in some applica-
tions.

Figure 9.2 summarizes the 2650 internal registers as seen by the programmer.
Program Status Word

The Program Status Word (PSW) is a major feature of the 2650/2650A which
greatly increases its flexibility and processing power. The PSW is a special
purpose register within the processor that contains status and control bits.
It is 16 bits long and is divided into two bytes called the Program Status Up-
per (PSU) and Program Status Lower (PSL).

The PSW bits may be tested, loaded, stored, preset or cleared using the in-
structions which effect the PSW. The Sense bit, however, cannot be set or
cleared because it is directly connected to pin 1. The PSW is organized as
follows:

PSU!7)6}|5] 4 | 3 | 2}|1]}]0

Not | Not

S|FIN Used | Used SP2 |SP1|SPO
S Sense SP2 Stack Pointer Two
F Flag SP1 Stack Pointer One
11 Interrupt Inhibit SPO Stack Pointer Zero

PSL| 7 | 6 (5 4 3 2 1 0

CC1|CC0]IDC| RS | WC|OVFiCOM| C

CC1 Condition Code One WC With/Without Carry
CCO Condition Code Zero OVF Overflow
IDC Interdigit Carry COM Logical/Arithmetic
RS Register Bank Select Compare
C Carry/Borrow

Sense (S)

The Sense bit in the PSU reflects the logic state of the input to the pro-
cessor at pin 1. The Sense bit is not affected by the LPSU, PPSU or CPSU in-
structions.

Flag (F)

The flag bit is a simple latch that drives the FLAG output (pin 40) on the
processor.

9-5

Interrupt Inhibit (II)

When the Interrupt Inhibit bit is set (II = 1), the processor will not re-
cognize an incoming interrupt. When interrupts are enabled (II = 0), and an
interrupt signal occurs, the inhibit bit in the PSU 1is automatically set.
When a Return-and-Enable instruction is executed, the inhibit bit is automa-
tically cleared.

Stack Pointer (SP)

The three stack pointer bits are used to address locations in the Return Ad-
dress Stack (RAS). The SP designates the stack level which contains the cur-
rent return address. The SP bits are organized as a binary counter which is
automatically incremented with execution of Branch-to-Subroutine instructions
and decremented with execution of Return instructions.

Condition Code (CC)

The Condition Code is a 2-bit register which is set by the processor whenever
a general purpose register is loaded or modified by the execution of an in-
struction. Additionally, the CC is set to reflect the result of a Compare in-
struction or a Test instruction.

The following table indicates the setting of the condition code whenever data
is set into a general purpose register. The data byte is interpreted as an 8-
bit, two's complement number:

REGISTER

CONTENTS CCl CcCco
Positive 0 1
Zero 0 0
Negative 1 0

For Compare instructions, the data is compared as two 8-bit absolute numbers
if the COM bit of the Program Status Lower byte is set to indicate '"logical"
compare (COM = 1). If the COM bit indicates "arithmetic" compare (COM = 0),
the comparison instructions interpret the data bytes as two 8-bit two's com—
plement binary numbers. The CC indicates the result of the comparison as
follows:

REGISTER TO MEMORY REGISTER TO REGISTER CCl cco
COMPARE INSTRUCTION COMPARE INSTRUCTION

Reg X greater than Memory Reg O greater than Reg X 0 1
Reg X equal to Memory Reg 0 equal to Reg X 0 0
Reg X less than Memory Reg 0 less than Reg X 1 0

The test instructions set the CC to indicate whether the bits in the selected
register that correspond to the one's in the mask (second byte of the test in-
struction) are all one's or not all one's. The following table describes the
condition code setting for the test instructions:

RESULTS cCl cco

All of the selected

bits are ls 0 0
Not all of the selected
bits are ls 1 0

The CC is never set to "1" by normal processor operations, but it may be ex-
plicitly set to "11" through LPSL or PPSL instruction execution.

Interdigit Carry (IDC)

For BCD arithmetic operations, it is sometimes essential to know if there was
a carry from bit 3 to bit 4 during the execution of an arithmetic instruction.

The IDC reflects tha value of the interdigit carry from the previous add or
subtract instruction. After any add or subtract instruction execution, the
IDC contains the carry or borrow out of bit 3.

The IDC is also modified upon execution of Rotate instructions when the WC bit
in the PSW is set. The IDC will reflect the same information as bit 5 of the
operand register after the rotate is executed.

Register Select (RS)

There are two banks of general purpose registers with three registers in each
bank. The Register Select bit is used to specify which set of general purpose
registers will be currently used. Register 0 is common and is always avail-
able to the program. An individual instruction may address only &4 registers,
but the bank select feature effectively expands the available on-chip reg-
isters to 7. When the Register Select bit is 0, registers 1, 2 1in register
bank 0 will be accessible, and when the bit is 1, registers 1, 2 and 3 in reg-
ister bank 1 will be accessible.

With/Without Carry (WC)
This bit controls the execution of the Add, Subtract and Rotate instructions.

Whenever an Add or a Subtract instruction executes, the following bits are
either set or cleared: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry
(IDC). These bits are set or reset without regard to the wvalue of the WC
bit. However, when WC = 1, the previous value of the carry bit affects the
result of an Add or Subtract instruction, i.e., the carry bit is either added
to (Add instruction) or subtracted from (Subtract instruction) the result of
the operation.

Whenever a Rotate instruction executes with WC = 0, only the 8 bits of the ro-
tated register are affected. However, when WC = 1, the following bits are al-
so affected: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry (IDC).
The Carry /Borrow bit is combined with the 8-bit register to make a 9-bit ro-
tate (see Figure 9.3). The Overflow bit is set whenever the sign bit (bit 7)
of the rotated register changes from a 0 to a 1 and is cleared otherwise. The
Interdigit Carry bit is set to the new value of bit 5 of the rotated register.

ROTATE OPERATIONS

l*El**l RESESESE .

7 6 5 4 3 2 1 o
Rotate Register Left or Right With Carry

LI SRS ASE .
(NOT 7 6 5 4 3 2 1 o
CHANGED)

Rotate Register Left or Right

Without Carry

Figure 9.3.

Compare (COM)

The Compare Control bit determines the type of comparison that 1is executed
with the Compare instructions. Either logical or arithmetic comparisons may
be made. The arithmetic compare assumes that the comparison is between 8-bit,
two's complement numbers (-128 to +127). The logical compare assumes that the
comparison is between 8-bit positive binary numbers (0 to +255). When COM is
set to 1, the comparisons will be logical, and when COM is set to 0, the com-
parisons will be arithmetic. See Condition Code (CC).

Carry (C)

The Carry bit is set or cleared by the execution of Add or Subtract instruc-
tions. The Carry bit is set to 1 by an Add instruction that generates a carry
and a Subtract instruction that does not generate a borrow out of the high-
order bit of the ALU., Conversely, an add that does not generate a carry
causes the C bit to be cleared as does a subtract instruction that generates a
borrow.

Even though a borrow is indicated by a zero in the Carry bit, the processor
will correctly interpret the zero during subtract with borrow operations. For
a subtract without borrow operation (WC = 0), the processor automatically pro-
vides the proper borrow input into the ALU. However, if operations with carry
are being performed (WC = 1), the Carry bit must be preset to a 1 by a PPSL
instruction in order for the result of a single byte subtraction (or the re-
sult of the first subtraction of a multiple byte subtraction) to be correct.

The Carry bit may also be set or cleared by Rotate instructions as described
earlier under "With/Without Carry."

To perform an Add with Carry or a Subtract with Borrow, the WC bit must be set
(we = 1).

Overflow (OVF)

The Overflow bit is set during Add instruction execution whenever the two in-
itial operands have the same sign but the result has a different sign. Adding
operands with different signs cannot cause overflow. Example: A binary +124
(01111100) added to a binary +64 (01000000) produces a result of (10111100)
which is interpreted in two's complement form as a -68. The true answer would
be 188, but that answer cannot be contained in the set of 8-bit, two's com—
plement numbers used by the processor, so the OVF bit is set.

The overflow bit is also set during Subtract instruction execution whenever
the minuend and the subtrahend have different signs, but the result has a sign
that is different from the sign of the minuend. Subtraction of operands with
the same signs cannot cause overflow. These conditions are summarized in
Table 9.1

TABLE 9.1
SIGN (BIT 7) ADD | sue
Oper- Oper- Re- OVF | OVF
and 1 and 2 sult
+ + + 0 0
+ + - 1 0
+ - + 0 0
+ - - 0 1
- + + 0 1
- + - 0 0
- - + 1 0
- - - 0 0

The Rotate instructions will cause an overflow if the WC bit is set and the
sign bit changes from a zero to a 1 as a result of the rotate. If the WC bit
is not set, the OVF bit is not affected.

SIGN (BIT 7)
Before After OVF
Rotate Rotate
+ + 0
+ - 1
- + 0
- - 0

Memory Organization

The 2650/2650A can address memory in locations 010 to 32,76715. As may be
seen in the Instruction section of this chapter, most direct addressing in-
structions have 13 bits allocated for the direct address. Since 13 bits can
only address locations 0;5 to 8,191;5, a paging system is used to ac-
commodate the entire address range.

The memory may be thought of as being divided into 4 pages of 8,192 bytes
each. The addresses in each page are as shown below.

9-9

PAGE START ADDRESS END ADDRESS
0 000000000000000 001111111111111 010—819110
1 OlOOOOOOQOOOOOO 011111111111111 819210—16,38310
2 100000000000000 101111111111111 16,38410-24,57510
3 110000000000000 111111111111111 24,57610—32,76710

The low order 13 bits in every page range through the same set of numbers.
These 13 bits are the 13 bits addressed by Non-Branch instructions and are al-
so the same 13 bits which are brought out of the 2650/2650A on the address
lines ADRO-ADR12.

The two high-order bits of the 15-bit address are known as the page bits. The
page bits when examined by themselves represent, in binary, the number of the
memory page. Thus, the address 010000001101101 is known as address location
10979 in page 1. The page bits, which correspond to ADR13 and ADRl4, are
brought out of the 2650/2650A on pins 19 and 18.

There are no instructions to explicitly set the page bits. They are set
through execution of Direct or Indirect, Branch or Branch-to-Subroutine in-
structions. These instructions (see Instruction section) have 15 bits al-
located for the address field. When such an instruction is executed, the two
high-order address bits are set into the page bit latches in the 2650/2650A
processor and will appear on ADR 13 and ADR 14 during direct memory accesses
until they are specifically changed by another instruction of the branch type.

For memory access from Non-Branch instructions, the 13-bit direct address will
address the corresponding location within the current page only. However, the
Non-Branch Memory Access instructions may access any byte in any page through
indirect addressing which provides the full 15-bit address. In the case of
Non-Branch instructions, the page bits are only temporarily changed to cor-
respond to the high order 2 bits of the 15-bit indirect address used to fetch
the argument byte. Immediately after the memory access, ADR13 and ADR14 will
revert to their previous value.

The consequences of this page address system may be summarized by the fol-
lowing statements:

1. The Reset signal clears both page latches, i.e., ADRI3 and ADR14 are
cleared to zero.

2. All Non-Branch Direct Memory Access instructions address memory within
the current page.

3. All Non-Branch Memory Access instructions may access any byte of address-
able memory through use of indirect addressing which temporarily changes
the page bits for the argument access. The page bits revert back to
their previous state immediately following instruction execution.

4, All Direct and Indirect Addressing Branch instructions set the page bits
to correspond to the high order 2 bits of the 15-bit address.

9-10

5. Programs may not flow across page boundaries., They must branch to set
the page bits.

6. Interrupts always drive the processor to page zero (see Interrupt Mechan-
ism section of this chapter).

Interface
Pin Configuration

The 2650/2650A is packaged in a standard dual-in-line 40-pin package. Figure
9.4 illustrates the pin configuration for the 2650/2650A, and Table 9.2 sum-
marizes the characteristics of the interface signals.

Signal Descriptions
RESET (Pin 16)

The RESET signal is used to cause the 2650/2650A to begin processing from a
known state. RESET will normally be used to 1initialize the processor after
powerup or to restart a program. RESET clears the Interrupt Inhibit control
bit, clears the internal interrupt-waiting signal and initializes the IAR to
zero. RESET is normally low during program execution, and must be driven high
to activate the reset function. The leading and trailing edges may be asyn-
chronous with respect to the clock, but the Reset signal must be at least 3
clock periods long. If RESET alone is used to initiate processing, the first
instruction will be fetched from Memory location page zero, byte =zero after
the RESET signal is removed. Any instruction may be programmed for this lo-
cation including a branch to some program located elsewhere.

Processing can also be initiated by combining an interrupt with a reset. In
this case, the first instruction to be executed will be at the interrupt ad-
dress.

CLOCK (Pin 38)

The CLOCK signal is a positive-going pulse train that determines the instruc-
tion execution rate. Three clock periods comprise a processor cycle. Direct
instructions are 2, 3 or 4 processor cycles long, depending on the specific
type of instruction. Indirect addressing adds 2 processor cycles to the di-
rect instruction times.

ADR (Pins 2-14, 18-19)

Th2 Address signals form a 15-bit path out of the processor and are wused pri-
marily to supply memory addresses during memory operations. The addresses re-
main valid as long as OPREQ is on so that no external address register 1is re-
quired. For extended I/0 operations, the low order 8 bits of the ADR lines
are used to output the immediate byte of the instruction which typically is
interpreted as a device address.

The 13 low order lines of the address are used only for address information.
The 2 high order address lines are multiplexed with I/0 control information.
During memory operations, the lines serve as memory addresses. During I/0
operations, they serve as the D/C and E/NE control 1lines. Demultiplexing is
accomplished through use of the Memory/I0 control line (see D/C and E/NE
below).

9-11

ABBREVIATION PINS TYPE FUNCTION SIGNAL SENSE

GND 1 INPUT Ground GND =0

VCC 1 INPUT +5 Volts £ 5% VCC =1

RESET 1 INPUT Chip Reset RESET = 1, causes reset

CLOCK 1 INPUT Chip Clock CLOCK =0 (low), CLOCK =1 (high)
PAUSE 1 INPUT Temp. Halt execution PAUSE = 0, temporarily halts execution -
INTREQ 1 INPUT Interrupt Request INTREQ = 0, requests interrupt
OPACK 1 INPUT Operation Acknowledge OPACK = 0, acknowledges operation
SENSE 1 INPUT Sense SENSE = 0 (low) or SENSE = 1 (high)
ADREN 1 INPUT Address Enable ADREN = 1 drives into third state
DBUSEN 1 INPUT Data Bus Enable DBUSEN = 1 drives into third state
DBUS0-DBUS? 8 IN/OUT Data Bus DBUSN = 0 (low), DBUSN = 1 (high)
ADRO-ADR12 13 OUTPUT Address 0 through 12 ADRn = 0 (low), ADRn = 1 (high)
ADR13 or E/NE 1 OUTPUT Address 13 or Extended/Non-Extended Non-Extended = 0, Extended = 1
ADR14 or D/C 1 OUTPUT Address 14 or Data/Control Control = 0, Data = 1

OPREQ 1 QUTPUT Operation Request OPREQ = 1, requests operation
M/I0 1 OUTPUT Memory/10 10=0,M=1

R/W 1 OUTPUT Read/Write R=0,W=1

FLAG 1 OUTPUT Flag Output FLAG = 1 (high), FLAG = 0 (low)
INTACK 1 QUTPUT Interrupt Acknowledge INTACK = 1, acknowledges interrupt
RUN/WAIT 1 OUTPUT Run/Wait Indicator RUN =1, WAIT =0

WRP 1 OUTPUT Write Pulse

Table 9.2 INTERFACE SIGNALS

2650/2650A PIN CONFIGURATION

sense [T [40] FLAG
ADR 12[7] 39] Vee
AoR 11[3] [38] cLock
ADR 10 [] [37] PAUSE
ADR 9 [5] [36] GPACK
aoR 8 [6] 135] RUN/WATT
ADR 7 [7] [34] INTACK
ADR 6 [B| [33] pBUS 0
abR 5 [9] 32] DBUS 1
ADR 4 [10 31] DBUS 2
ADR 3 [T7] [30] oBUS 3
abR2[12 [29] pBUS 4
AR 1[13] 28] DBUS 5
abRo[12 [27] oBUS 6
‘ADREN [15] [26] oBUS 7
RESET [16 [25] DBUSEN
iINTREG [17 [24] oPReEQ
ADR 14 -0/C [18 23] Arw
ADR 13 - E/NE [19 22| WRP
w/io [20 21] GND

Figure 9.4

9-12

WRP = 1 (pulse), causes writing

ADREN (Pin 15)

The Address Enable signal allows external control of the tri-state address
outputs (ADRO-ADR12). When ADREN is driven High, the address lines are
switched to their third state and show a high output impedance. This feature
allows wired-OR connections with other signals. The ADR13 and ADR14 lines
which are multiplexed with other signals are not affected by ADREN. '

When a system is not designed to utilize the feature, the ADREN input may be
connected permanently to a low signal source.

DBUS (Pins 26-33)

The Data Bus signals form an 8-bit bidirectional data path in and out of the
processor. Memory and I/0 operations use the data bus to transfer the write
or read data to or from memory or the I/0 device.

The direction of the data flow on the data bus is indicated by the state of
the R/W line. For write operations, the output buffers in the processor out-
put data to the bus for use by memory or by external devices. For read opera-
tions, the buffers are disabled and the data condition of the bus is sensed by
the processor. The output buffers may also be disabled by the DBUSEN signal.

The signals on the data bus are positive true signals, i.e., a one is a high
level and a zero is low.

DBUSEN (Pin 25)

The Data Bus Enable signal allows external control of the tri-state data bus
output drivers. When DBUSEN is driven high, the data bus will exhibit a high
output impedance. This allows wired-OR connection with other signals.

When a system is not designed to utilize this feature, the DBUSEN input may be
permanently connected to a low signal source.

OPREQ (Pin 24)

The Operation Request output 1is the coordinating signal for all external
operations. The M/I0O, R/W, E/NE, D/C and INTACK lines are operation control
signals that describe the nature of the external operation when the OPREQ 1line
is true. The DBUS and ADR bus also should not be considered valid except when
OPREQ is in the high, or on state.

OPREQ will stay on until the external operation is complete, as indicated by
the OPACK input. The processor delays all internal activity following an
OPREQ until the OPACK signal is received.

OPACK (Pin 36)

The Operation Acknowledge signal is a reply from external memory or I/0 de-
vices as a response to the Operation Request signal from the processor. OPREQ
is used to initiate an external operation. The affected external device indi-
cates to the processor that the operation is complete by returning the OPACK

signal. This procedure allows asynchronous functioning of external devices.

If a memory operation is initiated by the processor, the memory system will

9-13

provide an OPACK when the requested memory data is valid on the data bus or
when the Memory Write operation is completed. If an I/0O operation is initiat-
ed by the processor, the addressed I/0 device may respond with an OPACK as
soon as the write data is accepted from the data bus, or after the read opera-
tion is completed. If an I/O operation is initiated by the processor, the ad-
dressed I/0 device may respond with an OPACK as soon as the write data is ac-
cepted from the data bus, or after the read operation is completed. However,
in order to avoid slowing down the processor when using memories or I/0 de-
vices that are just fast enough to keep the processor operating at full speed,
the OPACK signal must be returned before the external operation is completed.
Any OPACK that is returned within 640ns following an OPREQ will not delay the
processor, Data from a read operation can return up to 850ns after an OPREQ
is sent and still be accepted by the processor. If all devices will always
respond within these time limits, the OPACK line may be permanently connected
in the on (low) state. Whenever an OPACK is not available within that time,
the processor will delay instruction execution until the first clock following
receipt of the OPACK. All output line conditions remain unchanged during the
delay, and the processor does not enter the wait state. OPACK is true in the
low state and false in the high state.

M/I0 (Pin 20)

The Memory/IO0 output is one of the operation control signals that defines ex-
ternal operations. M/IO indicates whether an operation is memory or I/0, and
should be used to gate read or write signals between the 2650/2650A and memory
or I/0 devices.

The state of M/IO will not change while OPREQ is high. The high state cor-
responds to a memory operation, and the low state corresponds to an I/0 opera-
tion.,

R/W (Pin 23)

The Read/Write output is one of the operation control signals that defines ex-
ternal operations. R/W indicates whether an operation is read or write. It
controls the nature of the external operation and indicates whether the bi-
directional DBUS is driving or receiving data. R/W should not be considered
valid until OPREQ is on, and the state of the R/W line does not change as 1long
as OPREQ is on.

The high state corresponds to the write operation and the low state cor-
responds to the read operation.

D/C (Pin 18)

The Data/Control output is an I/0 signal which is used to discriminate between
the execution of the two types of l-byte I/O instructions. There are four
l-byte 1/0 instructions: WRTC, WRTD, REDC, REDD. When Read Control or Write
Control is executed, the D/C line takes on the low state which indicates Con-
trol (C). When Read Data or Write Data is executed, the D/C line takes on the
high state, indicating Data (D). "Data" and '"Control" are identifiers only
and are not indicative of the type of information which is transferred.

D/C is multiplexed with a high-order address line. When the M/IO0O 1line is in
the I/0 state, the ADR14-D/C line should be interpreted as '"D/C." When the

9-14

M/IO line is in the M state, the ADR14-D/C 1line should be interpreted as
memory address bit 14.

When the processor responds to an interrupt request with an INTACK, the state
of the control lines is equivalent to that occurring during a Read Control
operation. Thus, port C may be used to input the interrupt address vector to
the data bus. If this type of operation is not desired, INTACK must be wused
to inhibit the reading of port C.

E/NE (Pin 19)

The Extended/Non-Extended output is the operation control signal that is used
to discriminate between 2-byte and l-byte I/0 operations. There are 6 I/0 in-
structions: REDE, WRTE, REDC, REDD, WRTC, WRTD. When either of the 2-byte
I/0 instructions is executed (REDE, WRTE), the E/NE 1line takes on the high
state or "extended" indication. When any of the 1l-byte 1I/0 instructions is
executed, the line takes on the low state or "non-extended" indication. Thus,
E/NE indicates the presence or absence of valid information on the 8 low-order
address lines during I/0 operations. E/NE is multiplexed with a high-order
address line. When the M/IO line is in the I/O state, the ADRI3-E/NE line
should be interpreted as "E/NE." When the M/IO line is in the M state, the
ADRI3-E/NE line should be interpreted as memory address bit 13. E/NE should
not be considered valid until: (a) OPREQ is on, and (b) M/IO indicates an 1I/O
operation.

FLAG (Pin 46)

The FLAG output indicates the state of the FLAG bit in the PSW. Any change in
the FLAG bit is reflected by a change in the FLAG output. A 1 in the FLAG bit
will give a high level on the FLAG output pin. The LPSU, PPSU and CPSU in-
structions can change the state of the FLAG bit. The FLAG output is always a
valid indication of the state of the FLAG bit without regard for the status of
the processor or control signals. Changes in the FLAG bit are synchronized
with the last cycle of the changing instruction.

SENSE (Pin 1)

The SENSE line provides an input line to the 2650/2650A that is independent of
the normal 1/0 bus structures. The SENSE signal is connected directly to one
of the bits in the program status word. It may be stored or tested by an
executing program. When a Store (SPSU) or Test (TPSU) instruction is execut-
ed, the SENSE line is sampled during the last cycle of the instruction.

Through proper programming techniques, the SENSE signal may be used to imple-

ment a direct serial data input channel or it may be used to present any bit
of information that the designer chooses.

The SENSE input and FLAG output facilities provide the simplest method of com-
municating data in or out of the 2650/2650A processor, as neither address de-
coding nor synchronization with other processor signals is necessary.

PAUSE (Pin 39)

The PAUSE input provides a means for temporarily stopping the execution of a
program. When PAUSE is driven low, the 2650/2650A finishes the instruction in

9-15

progress and then enters the wait state, causing the RUN/WAIT output to go
low. When PAUSE goes high, program execution continues with the next in-
struction, and RUN/WAIT returns to the high state. If PAUSE is turned on and
then off again before the last cycle of the current instruction begins, pro-
gram execution continues without PAUSE. The PAUSE line must be held on until
RUN/WAIT goes low or the processor may continue without pausing. If both
PAUSE and INTREQ occur prior to the last cycle of the current instruction, the
interrupt will be recognized, and an INTACK will be generated immediately fol-
lowing release of PAUSE. The next instruction to be executed will be a ZBSR
to service the interrupt.

If an INTREQ occurs while the 2650/2650A is in a wait state due to PAUSE, the
interrupt will be acknowledged and serviced after execution of the next normal
instruction following release of PAUSE.

RUN/WAIT (Pin 35)

The RUN/WAIT output signal indicates the Run/Wait status of the processor.
The wait state may be entered by executing a Halt instruction or by turning on
the PAUSE input. At any other time, the processor will be in a run state.

When the processor is executing instructions, the line is in the high or run
state; when in the wait state, the line is held low.

The Halt-initiated wait condition can be changed to run by a RESET or an In-

terrupt. The PAUSE-initiated wait condition can be changed to run by removing
the PAUSE input.

If a RESET occurs during a PAUSE-initiated wait state and the PAUSE remains
low, the processor will be reset, fetch one instruction from page zero byte
zero and return to the wait state. When the PAUSE is eventually removed, the
previously fetched instruction will be executed.

INTREQ (Pin 17)

The Interrupt Request input (normally high) is a means for external devices to
change the flow of program execution. When the processor recognizes an
INTREQ, i.e., INTREQ is driven low, it finishes the instruction in progress,
inserts a ZBSR instruction into the IR, turns on the Interrupt Inhibit bit in
the PSU, and then responds with INTACK and OPREQ signals. Upon receipt of
INTACK, the interrupting device may raise the INTREQ line and present a data
byte to the processor on the DBUS. The required byte takes the same form as
the second byte of a ZBSR instruction. Thus, the interrupt initiated
Branch-to Subroutine instruction may have a relative target address anywhere
within the first or last 64 bytes of memory page 0. If indirect addressing is
specified, a branch to any location in addressable memory is possible.

The relative address presented by the interrupting device is handled with a
normal I/0 Read sequence using the usual interface control signals. The ad-
dition of the INTACK signal distinguishes the Interrupt Address operation from
other operations that may take place as part of the execution of the inter-
rupted instruction. At the same time that it acknowledges the INTREQ, the
processor automatically sets the bit that inhibits recognition of further in-
terrupts. The Interrupt Inhibit bit may be cleared anytime during the in-

9-16

terrupt service routine, or a Return-and-Enable instruction may be used to en-
able interrupts upon leaving the routine. If an INTREQ is waiting when the
Interrupt Inhibit bit is cleared, it will be recognized and processed im-
mediately without the execution of an intervening instruction.

INTACK (Pin 34)

The Interrupt Acknowledge signal is used by the processor to respond to an ex-
ternal interrupt. When an INTREQ is received, the current instruction is com-—
pleted before the interrupt is serviced. When the processor is ready to ac-
cept the interrupt, it sets INTACK to the high, or on, state along with
OPREQ. The interrupting device then presents a relative address byte to the
DBUS and responds with an OPACK signal. INTREQ may be turned off anytime fol-
lowing INTACK. INTACK will fall after the processor receives the OPACK signal.

WRP (Pin 22)

The Write Pulse output is a timing signal from the processor that provides a
positive-going pulse in the middle of each requested write operation (memory
or 1/0) and a high level during read operations. The WRP is designed to be
used with Signetics' 2606 memory circuits to provide a timed chip enable
signal. For use with memory, it may be gated with the M/IO signal to generate
a memory write pulse.

Because the WRP pulse occurs during any write operation, it may also be used
with I/0 write operations where convenient.

Signal Timing

The clock input to the 2650/2650A provides the basic timing information that
the processor uses for all its internal and external operations. The clock
rate determines the instruction execution time, except to the extent that
external memories and devices slow the processor down. The maximum clock rate
of the standard 2650/2650A is 1.25 megacycles (1 clock period = 800ns
minimum). One unique feature of the 2650/2650A is that the clock frequency
may be slowed down to dc, allowing complete timing flexibility for
interfacing. This feature permits single stepping the clock which can greatly
simplify system checkout. It also provides an easy method to halt the
processor. Each 2650/2650A cycle is comprised of 3 clock periods. Direct
instructions require either 2, 3 or 4 processor cycles for execution and,
therefore, vary from 4.8 to 9.6us in duration.

OPREQ is the master control signal that coordinates all operations external to
the processor. Many of the other signal interactions are related to OPREQ.
The timing diagrams (Figures 9.5, 9.6 and 9.7) assume that the clock periods
are constant and that OPACK is returned in time to avoid delaying instruction
execution. In that case, OPREQ will be high for 1.5 clock periods and then
will be low for another 1.5 clock periods.

The interface control signals have been designed to allow implementation of
asynchronous interfaces for both memory and input/output devices. The control
signals are relatively simple and provide the following advantages: no
external synchronizing is necessary, external devices may run at any data rate
up to the processor's maximum I/0 data rate, and, because data signals are
furnished with guard signals, the external devices are often relieved of the
necessity of latching information.

9-17

The timiny diagrams (Figures 9.5, 9.6, and 9.7) are for illustrative purposes

only and are not meant to convey precise timing relationships. Consult the
2650/2650A data sheet for detailed DC and AC parameter information.

Memory Read

The timing for a typical Memory Read operation is shown in Figure 9.5. When
reading memory, the 2650/2650A simultaneously switches OPREQ to the high
state, M/I0 to M (memory), R/W to R (read), and places the memory address on
lines ADRO-ADR14. Even though the ADR13 and ADR14 lines are multiplexed with
1/0 control information, they contain valid address data during memory
operations, so special demultiplexing or gating circuitry is not required.

Once the memory logic has determined the simultaneous existence of the signals
mentioned above, it places the true data corresponding to the given address
location on the data bus (DBUSO-DBUS7), and returns an OPACK signal to the
processor. The processor, recognizing the OPACK, strobes the data into the
receiving register and lowers OPREQ. This completes the Memory Read sequence.

MEMORY READ OPERATION

|<— ONE PROCESSOR CYCLE ———————]
cLock _I To |] T1 1 | T2 1 J T l
FROM 2650
OPREQ | l
s/ Y, Yz,
wis T,
w —

WRP

FROM MEMORY

oevsr ZULZIIIIZZZIZIIII;IZZITZION W70,

GPACK 1]

Figure 9.5

If the OPACK signal is delayed by the memory device, the processor waits until
it is received. OPREQ is lowered only after the receipt of OPACK. The memory
device should raise OPACK after OPREQ falls. If the memory will always
respond within the allowed time, the OPACK input may be left permanently in
the low state.

Memory Write

The signals involved with the processor's Memory Write sequence are similar to
those used in the Memory Read sequence with the following exceptions:

1. The R/W signal is in the write state; and

2. The WRP signal provides a positive-going pulse during the write sequence
which may be used as a chip enable, write pulse, etc.

9-18

Figure 9.6 demonstrates the signals that occur during a memory Write operation.

MEMORY WRITE OPERATION
Je——————— ONE PROCESSOR CYCLE e
cLock I+ 1 g 1 | |] © L
OPREQ] 1
sone 2222222222222 V7222
AW 772222222724 V722
oevst 2222 W77,
wep 1 | |
OPACK 1 I
Figure 9.6

I/0 Device Read

The timing sequences for the I1/0 Read instructions are the same as the Memory
Read sequences with the following exceptions: The M/IO signal is switched to
I0, the ADRI3 signal becomes the E/NE (Extended/Non-Extended) signal, and for
Non-Extended instructions, the ADR14 signal becomes the D/C (Device/Control)
signal. The address 1lines only contain valid information for extended
instructions.

Figure 9.7 shows the signals that occur for an I/0 Device Read operation.
I/0 Device Write

The timing sequences for I/0 Write operations are similar to those shown in
Figure 9.7 for an 1/0 Read operation except that the R/W signal is in the wait
(high) state and the WRP signal provides a positive-going pulse during the
OPREQ time. In addition, the data bus signals are provided by the 2650/2650A.

A Minimal System Example

The 2650/2650A has been designed for low cost, easy interfacing, which 1is
illustrated by a minimal cénfiguration shown in Figure 9.8. This system has a
Teletype interface, 1024 bytes of ROM, and 256 bytes of RAM, yet requires only
7 standard integrated circuit packages. The ROM can contain a bootstrap
loader and I/O driver programs for the Teletype. Other programs could reside
in ROM or be read into RAM via the Teletype. An alternative to the 2608
n-channel MOS ROM is the 828115 bipolar PROM which offers a 512X8
organization. Only one +5 volt power supply is required for this system. The
advantages of conceptual simplicity and minimum system costs of the 2650/2650A
approach will become obvious to the system designer, particularly when
compared with alternative microprocessor products.

9-19

1/0 DEVICE READ OPERATION

|<—-———- ONE PROCESSOR CYCLE ——»’
cmcxm JTvl rTzL]TGL_

FROM 2650

opREQ I]
on A V7777777,
wio 7T V7777777,
“o A | I
a7 e A

WRP

FROM 1/O DEVICE
oevsr LU Y7777

OPACK 1]

Figure 9.7

SEVEN PACKAGE MINIMAL SYSTEM

+5

a0 £
SENSE - tm
FLAG 7439 —f
" +5 0V DATA BUS
pe-07 K — 1
N % +5 () O {T
A/w _D R/W R/W
2650 OPRCK L e
oprea = 2606 2606 2608
256X4 RAM 256X4 RAM 1024X8 ROM
WRP

CE cs
Ao ' ’-
=Tt
Ao-Ag

+5 ADDRESS BUS
CLOCK 74123
+5

NOTES
1. One +5V supply seven IC packages

& O—fvee
i eno

2. *CMOS receiver used for high noise immunity. |

Figure 9.8

9-20

Input/Output Facilities

The 2650/2650A processor provides several mechanisms for performing input/out-
put functions. They are Flag and Sense, Non-Extended I/0 instructions, Ex-
tended I/0 instructions and Memory I/0. These four facilities are described
below.

Flag and Sense I/0

The 2650/2650A has the ability to directly output 1 bit of data without
additional address decoding or synchronizing signals.

The bit labeled "Flag" in the Program Status Word 1is connected through a
TTL-compatible driver to the chip output at pin 40. The Flag output always
reflects the value in the Flag bit. When a program changes the Flag bit
through execution of an LPSU, PPSU, or CPSU instruction, the bit will be set
or cleared during the last cycle of the instruction that changes it.

The Flag bit may be used conveniently for many different purposes. The
following is a list of some possible uses:

1. A serial output channel

2. An additional address bit to increase addressing range.
3. A switch or toggle output to control external logic.

4. The origin of a pulse for polling chains of devices.

The Sense bit performs the complementary function of the Flag and is a single
bit direct input to the 2650/2650A. The SENSE input, pin 1, is connected to a
TTL-compatible receiver and is then routed directly to a bit position in the
Program Status Word. The bit in the PSW always represents the value of the
external signal. It may be sampled anytime through use of the TPSU or SPSU
instructions.

This input to the processor may be used in many ways. The following is a list
of some possible uses:

1. A serial input channel.

2. A sense switch input.

3. A break signal to a processing program.

4. An input for yes/no signaling from external devices.

Non-Extended I/0

There are four l-byte I/0 instructions: REDC, REDD, WRIU and WRTD. They are
all referred to as non-extended because they can communicate only 1 byte of
data, either into or out of the 2650/2650A.

REDC and REDD cause the input transfer of 1 byte of data. They are identical
except for the fact that the D/C signal is in the D state for REDD and in the
C state for REDC. Similarly, the instructions WRTC and WRTD cause an output
transfer of 1 byte of data. The D/C line discriminates between the 2 pairs of
input/output instructions, and can be used as a 1-bit device address in simple
systems.

The I0 and NE signals inform the devices outside the 2650/2650A that a 1-byte
I/0 instruction is being executed. The D/C line indicates which pair of the

9-21

l1-byte I/0 instructions are being executed; D implies either WRTD or REDD, and
C implies either WRTC or REDC. Finally, the R/W signal 1level specifies
whether a read or a write is being performed.

Extended 1/0

There are two 2-byte I/0 instructions: REDE and WRTE. When these
instructions are executed, the second byte of the instruction is output on the
low order address lines ADRO-ADR7. REDE causes the byte of data then on the
data bus to be strobed into the register specified in the instruction to be
output on the data bus.

The 2-byte I/0 instructions are similar to the l-byte I/O instructions except
the D/C line is not considered, and the data from the second byte of the 1I/0
instruction appears on the address bus during the time that OPREQ 1is wvalid.
The data on the address bus is intended to convey a device address, but may be
utilized for any purpose.

Memory 1/0

The 2650/2650A user may choose to transfer data into or out of the processor
using the memory control signals. The advantage of wusing this technique 1is
that the data can be read or written by the program with memory reference
instructions, and data may be directly operated upon with the arithmetic and
logical instructions. The memory reference instructions can use the various
addressing modes provided by the 2650/2650A, such as indexing and indirect
addressing.

To make use of this technique, the designer must assign memory addresses to
I1/0 devices and design the device interfaces to respond to the same signals as
memory.

A possible disadvantage of this method is that it may be necessary to decode
more address lines to determine the device address than with other I/0
facilities.

Table 9.3 summarizes the I/0 signal states for the various types of 1/0
facilities, and Figure 9.9 illustrates the types of I/0 available with the
2650/2650A.

TYPE OF 1/0 OPERATION OPREQ M/i0 R/W ADRO-ADR7 ADR13 (E/NE) ADR14 (D/C)
Sense input X X X X X X
Flag output X X X X X X
Extended read H L L Second byte H X
Extended write H L H of instruction X
Non-extended read C H L L X L L
Non-extended read D H L L X L H
Non-extended write C H L H X L L
Non-extended write D H L H X L H
Memory 1/0 read H H L ADRO-ADR7 ADR13 ADR14
Memory /O write H H H ADRO-ADR7 ADR13 ADR14

X = Don't care

Table 9.3 I/0 INTERFACE SIGNAL STATE

9-22

2650/2650A 1/0 FACILITIES—GENERAL BLOCK DIAGRAM

N

=
[

ﬁ |

INPUT
PORT
c
REDC
SINGLE BIT
170
SENSE FLAG
INPUT
K PORT
[
CONTROL _
BUS RED D
WRTC
CONTROL
LOGIC
OUTPUT
! PORT
c
2650
A
(‘ DATA BUS D
v WRTD
OuTPUT
PORT
D
DEVICE-
ADDRESS BUS ADDRESS
DECODER PORT SEL
EXTENDED
INPUT
PORT
U
TO MEMORY REDE
F
aQ
<
=
a
PORT SEL
EXTENDED
OUTPUT
PORT

|

TO MEMORY

NON-EXTENDED I/0

MAX.
256
INPUT
PORTS

EXTENDED i/0

MAX.
256
OuTPUT
PORTS

Figure 9.9

9-23

Interrupt Mechanism

The 2650/2650A has been implemented with a single level, address vectoring
interrupt mechanism. There is 1 interrupt input pin. When an external device
generates an Interrupt signal (INTREQ), the processor is forced to transfer
control to any of 128 possible memory locations as determined by an 8-bit
vector supplied by the interrupting device on the data bus. The device may
also return an Indirect Address signal which causes the processor to enter an
indirect addressing sequence. This enables a device to direct the processor
to execute code anywhere within addressable memory.

Upon recongnizing the Interrupt signal, the processor automatically sets the
Interrupt Inhibit bit in the Program Status Word. This inhibits further
interrupts from being recognized until the interrupt routine 1is finished
executing and a Return-and-Enable instruction is executed or the Inhibit bit
is explicitly cleared.

When the Inhibit bit in the PSW is set (II=1), the processor will not
recognize an interrupt input. The Interrupt Inhibit bit may be set under
program control (LPSU, PPSU) and is automatically set whenever the processor
accepts an interrupt. The Inhibit bit may be cleared in 3 ways:

1. By a Reset operation.

2. By execution of an appropriate Clear or Load PSU instruction (CPSU, LPSU).

3. By execution of a Return-and-Enable instruction.
The sequence of events for an Interrupt operation is as follows:

1. An executing program enables interrupts.

2. The external device initiates an Interrupt with the INTREQ line.
3. The processor finishes executing the current instruction.

4, The processor sets the Inhibit bit in the PSW.

5. The processor inserts the first byte of a ZBSR (Zero Branch-to
Subroutine, Relative) instruction.

6. The processor accesses the data bus to fetch the second byte of the ZBSR
instruction.

7. The interrupting device responds to the processor-generated INTACK
(Interrupt Acknowledge) by supplying the requested second byte. :

8. The processor executes the Zero Branch-to-Subroutine instruction, saving
the address of the next sequential instruction in the RAS, and proceeds
to execute the instruction at the address relative to page 0, byte 0
given by the - interrupting device.

9. When the Interrupt routine is complete, a Return instruction (RETC, RETE)

pulls the address from the RAS and execution of the interrupted program
resumes. If the instruction is an RETE, interrupts are again enabled.

9-24

Since the interrupting device specifies the interrupt subroutine address in
the standard relative address format, it has considerable flexibility with
regard to the interrupt procedure. It can point to any location that is
within +63 or -64 bytes of page 0, byte 0 of memory. (Negative relative
addresses wrap around the memory, modulo 8,192)7 bytes.) The interrupting
device also may specify whether the subroutine address is direct or indirect
by providing a zero or one to DBUS7 (pin 26).

The vectored interrupt technique requires that each interrupting device
contain the hardware required to provide the address vector to the processor.
In some cases, an overall reduction in system hardware may be realized by
implementing a "polled" interrupt scheme. In this case, the INTACK generated
as a response to any interrupt is used to force an address byte on the data
bus. The program at this address sequentially polls all devices to determine
the interrupting device, and then branches to a program to service that
device. The disadvantages of this technique are increased coding requirements
and slower response to the interrupt.

The timing diagram in Figure 9.10 illustrates how the interrupt system works
in the processor. The execution of the instruction labeled "A" has been
proceeding before the start of this diagram. The last cycle of instruction A
is shown. Notice that, as in all external operations, the OPREQ output
eventually causes an OPACK input, which, in turn, allows OPREQ to be turned
off. The arrows show this sequence of events. The last cycle of instruction
A fetches the first byte of instruction B from memory and inserts it into the
Instruction Register.

INTERRUPT OPERATION

INST INST INST INST
A { B } c f D
LAST CYCLE CYCLE 1 | CYCLE2 CYCLE 1 1 CYCLE 2 CYCLE 1
OPREQ
/S | WY A W A W
- N U e W e W e W
oBUS L\ L\ L A\ —\ Y
'\ J \ J \ J \ J \ J \ J
1ST BYTE 2ND BYTE * * ¥ 1ST BYTE
INST B INST B INST D
INTREG \ /
INTACK ' \

Processor inserts 1st byte of ZBSR instruct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>