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FAST FOURIER TRANSFORM

1. INTRODUCTION

Fast Fourier transform (FFT) is a fundamental driving
force for high-speed real-time digital signal processing. It
consists of a wide variety of applications including radar,
sonar, seismic, ultrasonic, medical, image, etc. Sharp
Microelectronics Technology (SMT) provides two chip set
solution with LH9124 and LH9320 to efficiently and pow-
erfully implement these applications in real-time. 4K-point
complex FFT can be finished within half of a millisecond
by one LH9124. The LH9124 is a fixed-point high perform-
ance digital signal processor and its data path is opti-
mized for the FFT radix-4 butterfly structure with peak
performance of 6 multiplications and 11 additions per
cycle. The LH9320 is a programmable address generator
to provide the address patterns required by the LH9124.
Both chips are operated at a 25 ns cycle time. The two
chip set solution has the following advantages:

[a] Parallel or pipelined architecture can be easily con-
figured to match the speed requirement.

[b] No constraint on the length of the FFT executed by
the LH9124 is applied and the constraint on the
length of the address sequence generated by one
LH9320 is no more than 2% points.

[c] The glue logic required by an application system is
minimized due to flexible four 1/O port configuration
of the LH9124.

[d] The system design can be simplified because the
user’s system function block diagram can be easily
mapped to the function instructions provided by the
chips.

Both fast Fourier transform and discrete cosine trans-
form (DCT) from one-dimension (1-D) to multi-dimension
(M-D) can be efficiently implemented by the LH9124 and
LH9320. The two-dimensional (2-D) FFT is suggested to
be employed by the 1-D column-row or row-column
approach because the LH9320 can provide the required
address patterns for both data and twiddle factors. The
implementation of the M-D FFT algorithm can be
extended from the 2-D approach.

The benchmark of the FFT and DCT is shown in Table
1-1. The performance can be further improved by the
paralleled or cascaded structures as shown in Table 1-2.
The throughput may be improved by a factor of M when
the chip set is configured into M cascaded stages. The
latency due to computations can be reduced almost by a
factor of M with M LH9124 chips executed in parallel for
the same stage. Thus, the chip set can be easily config-
ured to satisfy the user’s application requirements.
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Table 1-1. Benchmark of the FFT and DCT

POINTS COMPLEX DATA FFT REAL DATA FFT REAL DATA DCT
CYCLES USECS CYCLES HSECS CYCLES USECS

8 52 1.30 40 1.00 54 1.35
16 68 1.70 52 1.30 70 1.75
32 150 3.75 101 2.53 127 3.18
64 214 5.35 149 3.73 191 4.78
256 648 16.20 462 11.55 600 15.00
512 1690 42.25 1111 27.78 1377 34.43
1K 3226 80.65 2135 53.38 2657 66.43
4K 12492 312.30 8304 207.60 10362 259.05
8x82-D 328 8.20 274 6.85 432 10.80
16 x 16 2-D 648 16.20 536 13.40 972 24.30
32x322-D 4268 106.70 2846 71.15 4468 111.70
64 x 64 2-D 16556 413.90 10622 265.55 16884 422.10
256 x 256 2-D 262416 6560.00 164898 4122.45 263512 6587.80
512x 512 2-D 1573172 39329.30 919878 | 22996.95 | 1313148 32828.70
1K x 1K 2-D 6291764 157294.10 | 3674438 | 91860.95 | 5247356 131183.90
16 x 16 x 16 3-D 12492 312.30

Table 1-2. Benchmark of the Parallel Complex FFT

FUNCTION CYCLES | uSECS
1K (3 Stage Cascaded) 1024 25.6
4K (3 Stage Cascaded) 4096 102.4
64 x 64 (4 Stage Cascaded) 4096 102.4
256 x 256 (4 Stage Cascaded) 65536 | 1638.4
4K (2 Parallel) 6348 158.7
4K (2 Parallel with 3 Stage Cascaded) 2048 51.2
16K (4 Parallel) 16606 415.15
16K (8 Parallel) 8414 210.35
16K (16 Parallel) 4320 108.0

1A-2 DSP Application Note
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2. OVERVIEW OF FAST FOURIER
TRANSFORM

Orthogonal transforms and transform properties play
an important role for engineers to solve new problems.
The great advantage of such a transform is that we are
in a position of being able to analyze a signal with some
knowledge of its constituent parts. In this note, the imple-
mentation of three fundamental orthogonal transforms —
Fourier transform, cosine transform and Hartley trans-
form — by the LH9124 and LH9320 is discussed.

2.1. Discrete Fourier Transform

For a long time, the Fourier transform has been a
powerful and principle analysis tool in diverse fields such
as linear systems, probability theory, boundary-valued
problems, communications theory, signal processing, etc.
The discrete Fourier transform (DFT) is the counterpart
of the Fourier transform in the discrete time domain. The
definition of the DFT is given by the expression:

N-1
X =Y xmWy fork=0,1, .., N-1 [2A]

n=0
and the inverse DFT, IDFT, is expressed as:
1 N-1
—kn
x(n):NZX(k) Wy forn=0,1,..,N-1 28]
k=0

where W,kq = ¢”"™is a sequence of twiddle factors of the

DFT and is equally spaced around the unit cycle. Inthese
equations x(n) is the sample value in the time domain and
X(k) is the sample value in the frequency domain. If the
sampling rate of a signal is F, the sequence of time-
domain sampling locations becomes

0, 1/F, 2/F, 3/F, ... , (N-1)/F [2C]

Thus, corresponding to these time-domain samples, the
sequence of frequency-domain sampling locations will be

0, F/N, 2F/N, 3F/N, ... , (N - 1)F/N [2D]

The computation of the DFT and IDFT is basically a
vector dot operation. The instructions BCFIR used for the
FIR operation can be directly employed for the DFT or
IDFT computation. The LH9320 provides an instruction
ADECIM to fetch the required address patterns from the
twiddle factor table. If the length of the sequence is N and
the samples to be computed is M, the cycles required for
the computation will be M « N + 18. Comparing the cycles
required by the DFT with Table 1-1, it can be seen that
the manipulation based on the FFT is generally more
efficient if the number of frequency samples to be ob-
tained is more than 3.

The DFT and IDFT both produce periodic results with
period N. It can be seen from Equations [2A] and [2B] that
some symmetric properties also exist. These properties
are shown in Table 2-1. the computation of the real DFT
will be more efficient by employing these symmetric
properties.

Table 2-1. Symmetric Properties of the DFT

TIME-DOMAIN FREQUENCY-DOMAIN

X(n) real X(K)y=X" (k)=X*(N-k)

X(k) real

xM)=x*(=n)=x"(N-n)

x(n) real and even X(k) real and even

x(n) real and odd X(k) imaginary and odd

2.2. Fast Fourier Transform

A direct computation of the DFT or IDFT requires N?
complex multiplication is and N(N — 1) complex additions.
The FFT is an efficient algorithm for computing the DFT
and can be derived from the DFT. The discrete Fourier
transform can be computed in O(N log, N) multiplications
by the FFT. The data path of LH9124 is optimized for this
algorithm. It can compute a decimation-in-time radix-2
butterfly in two cycles, radix-4 butterfly in four cycles, or
radix-16 in 16 cycles. Therefore, a very large of important
computational problems under the general rubric of
Fourier transform methods or spectral methods can be
efficiently solved.

2.2.1. Formation of the FFT

The fast Fourier transform algorithm achieves its com-
putational efficiency through a divide and conquer strat-
egy. The essential idea is a grouping of the time and
frequency samples such that the DFT summation over N
values can be expressed as a combination of DFT sum-
mations over N/2 samples. When N is a power of two, this
process of grouping can be repeatedly applied until the
DFT summation has been reduced to a combination of
DFT summation over only two samples. For example,
when N is a power of two, Equation [2A] can be decom-
posed as follows:

N/2-1 N/2-1
Xk = ¥ x@n) W* + 3 x@n + 1) W™ [2E]
n=0 n=0
N/2-1 N2-1
=Y x@n) W™+ W Y x@n+1) Wik
n=0 n=0

DSP Application Note
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Define two (N/2)-point sequences {h(n)} and {g(n)} as
the even and odd elements of {x(n)}, respectively. Then,
h(n) = x(2n) [2F]
g(n) =x(@n+ 1) [2G]

The discrete Fourier transform of the two (N/2)-point
sequences can be defined as follows:

N/2-1

Hk =Y h(n) Wy, [2H]
n=0
N/2-1

Gl =Y o) W, 21
n=0

Thus, the discrete Fourier transform of x(n) can be
expressed in terms of even and odd elements as:

N/2—1

XK = h(n)

n=0

N/2-1
nk k nk
N2 + Wi Y, 9(n) Wy [2J]
n=0

In terms of H(k) and G(k), we have:

Therefore, N-Point discrete Fourier transform can be
represented by two (N/2)-point discrete Fourier transform.
Since N is a power of two, the above partitioning scheme
can be iteratively applied to the sequences {h(n)} and
{g(n)} by N/4 elements. These partitions can be carried
out until the two-point DFT is reached. The process is
depicted in Figure 2-1 for N = 8. Figure 2-2 shows the flow
graph of an 8-point FFT that denotes the results of the
8-point decomposed DFT.

2.2.2. Fundamental Computing Structures:
Butterflies

The structure shown in Figure 2-2 is called decimation-
in-time (DIT). Its basic module is a radix-2 butterfly shown
in Figure 2-3 in which two points xc(a) and xy(b) are
computed to give two output points x,,4(a) and x,¢(b) via
the operations represented by Equations [2K] and [2L].
Each radix-2 butterfly requires one complex multiplication
and two complex additions. Observing Figure 2-2, it can
be seen that there are Log, N radix-2 butterfly stages for
N-point FFT and each stage has N/2 radix-2 butterflies.
Therefore, there are totally (N/2)log, N radix-2 butterflies
in an N-point FFT. In addition, the input is in bit-reverse
order and output is in linear order.

X(k) = H(k) + WK G(k) [2K]
For the coefficient at (K + N/2), we obtain:
X(k +N/2) = H(k) - W G(k) (2]
p—— e ] —
— L — 4'PD€'TNT COMBINE |——
— - S 4-POINT |——
— 8POINT [— g DFT  }——
— DOFT |— WITH  |—
] — —] 4-POINT TWIDDLE |——
— DFT FACTORS |——
2-POINT DFT COMBINE
— 2-POINT —
DFT WITH
— TWIDDLE COMBINE [
2-POINT DFT FACTORS 4-POINT
] PO L
WITH
- COMBINE TWIDDLE
| 2PowTDFT SOMBINE FACTORS |
DFT WITH
—] TWIDDLE —
2-POINT DFT FACTORS
9124-248

Figure 2-1. 8-Point DFT Decomposed into
8-Point 3-Stage Radix-2 FFT
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x(0) X(0)
x(4) X(1)
x(2) X(2)
x(6) X(3)
x(1) X(4)
x(5) X(5)
x(3) X(6)
x(7) X(@)
STAGE 1 STAGE 2 STAGE 3
9124-249

Figure 2-2. 8-Point FFT With 3-Stage
Decimation-in-Time Radix-2 Structure
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X(a) Xks1(a)
Xk(b) Xk+1(0)
9124-250

Figure 2-3. Radix-2 Butterfly Structure

From the flow graph shown in Figure 2-2, a lot of FFT
structures can be derived by exchanging the position of
the flow graph. One of these structures is shown in Figure
2-4 of which the input is linear order and output is in
bit-reverse order. Both structures employ the in-place
algorithm. In-place means that the computed outputs can
be placed on the same storage as the inputs. Moreover,
the addressing for the input and output data can be
shared. One more equivalent structure is depicted in
Figure 2-5. The four radix-2 butterflies enclosed in the
dashed box can be implemented by a radix-4 butterfly.
The structure has inputs in digit-reverse order and outputs
in linear order. It is not an in-place algorithm for radix-2
but it is an in-place algorithm for radix-4. The notation of
the DIT radix-4 butterfly is shown in Figure 2-6.

The LH9124 and LH9320 are designed to implement
decimation-in-time FFT structures with digit-reverse
inputs and linear outputs. The LH9124 provides three
instructions BFLY2, BFLY4, and BFLY16 for computing
radix-2, radix-4, and radix-16 butterflies. The radix-2 but-
terfly is a fundamental module for the FFT. The radix-4
butterfly implemented by BFLY4 is equivalent to the four
radix-2 butterfly structure shown in Figure 2-7. The radix-
16 butterfly implemented by BFLY16 is equivalent to the
eight radix-4 butterfly structure shown in Figure 2-8 or to
the 32 radix-2 butterfly structure shown in Figure 2-9.
Thus, a radix-16 butterfly stage is equivalent to two

radix-4 butterfly stages or four radix-2 butterfly stages with
the same input-output map. If the instruction overhead is
not counted, the computation time for one radix-16 stage
is the same as that of one radix-4 stage or one radix-2
stage. Therefore, the rate of computing efficiency for
radix-16, radix-4, and radix-2 is almost 4:2:1.

The N-point FFT can be implemented by the mixed
radix operation as long as the following relation exists:

N=rpsry#ry® . *rgy [2M]

where 1, is 2 for a radix-2 stage, 4 for a radix-4 stage, and
16 for a radix-16 stage. The r, is the first stage and r, is
the last stage of the FFT. The order of the stages can be
arbitrarily selected when implemented by the chip set.
The structure of the N-point FFT with the order of r,
indicated by Equation [2M] is denoted by roXr,X ... Xrg,.
Thus, the structures shown in Figure 2-2 and Figure 2-5
are denoted by 2 x 2 x 2 and 4 x 2, respectively. If N = 2"
there are M stages by the radix-2 structure. We may
define that the FFT has M columns. For an arbitrary j-th
column, we may have three ways to implement this
column. First, it may be directly implemented as a radix-2
stage. Second, it and its next column may be imple-
mented by a radix-4 stage. Third, it and its next three
columns may be implemented by a radix-16 stage. The
column defined here will be used to explain the FFT
addressing instructions provided by the LH9320.

1A-6
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\ - - - - - T - T T T 1 o T I r-—=- - - - - - - - =
| | | 1 |
x(0) X(0)
x(1) X(4)
x(2) X(2)
x(3) X(6)
x(4) X(1)
x(5) X(5)
x(6) X(3)
x(7) X(7)
STAGE 2 STAGE 3
9124-251
Figure 2-4. 8-Point FFT With Linear Input
and Bit-Reverse Output
DSP Application Note 1A-7
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x(0) X(0)
x(2) X(1)
x(4) X(2)
x(6) X(3)
x(1) X(4)
x(3) X(5)
x(5) X(6)
x(7) X(7)

| | | !

| o o o L e e a1 | — |

STAGE 1 STAGE 2
9124-252

Figure 2-5. Digit-Reverse Input and Linear Output
for 4 x 2 Stage FFT
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w 0
Xk(a) N Xks1(a)
Wy
Xk(b) Xics1(b)
wi
Xy(c) Xks1(C)
Wi
Xk(d) Xk+1 (d)
9124-253
Figure 2-6. Notation of a Radix-4 Butterfly
Xk(@) Xi+1(a)
Xk(b) Xic+1(b)
Xk(c) Xi+1(0)
Xk(d) Xi1(d)
9124-254
Figure 2-7. A Radix-4 Butterfly Depicted by its
Equivalent Radix-2 Structure
DSP Application Note 1A-9
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\\V 7
Dol

Figure 2-8. A Radix-16 Butterfly Depicted by its
Equivalent Radix-4 Structure
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The LH9320 will generate all the required data and
twiddle factor address patterns according to the structure
of the FFT. The FFT addressing instructions provided by
the LH9320 are listed in Table 2-2. If the j-th column is
implemented by a radix-2 stage, the instructions BF2j and
TF2j are used to generate the required data and address
patterns. If the j-th column is the beginning column of a
radix-4 stage, the instructions BF4i and TF4i will be
implemented when j=2 * i or the instructions MXB24i and
MXT24i will be implemented when j =2 * i + 1. Similarly,
we can select instructions for a radix-16 stage.

Table 2-2. The LH9320 Instructions for

FFT Computations
INSTRUCTION DESCRIPTION
. Data address sequence for i-th
BF2i .
column radix-2
. Data address sequence for (2 * i)-th
BF4i .
column radix-4
. Data address sequence for
MXB241 | (2 +i + 1)-th column radix-4
. Data address sequence for (4 * i)-th
BF16i .
column radix-16
. Data address sequence for
MXB2161 | (441 + 1)-th column radix-16
. Data address sequence for
MXBA161 | 4+i 4 2)-th column radix-16
. Data address sequence for
MXB2416i (4 * i + 3)-th column radix-16
. Twiddle factor address sequence for
TF2i . .
i-th column radix-2
TE4i Twiddle factor address sequence for
(2 *i)-th column radix-4
. Twiddle factor address sequence for
MXT24 | @41+ 1)-th column radix-4
TF16i Twiddle factor address sequence for
(4 = i)-th column radix-16
. Twiddle factor address sequence for
MXT2161 | 4"+ 1)-th column radix-16
" Twiddle factor address sequence for
MXT4161 | 4§ 4 2)-th column radix-16
. Twiddle factor address sequence for
MXT24161 | 4} 4 3)-th column radix-16
RBFO Linear sequence tq Digit-reverse
sequence conversion

2.2.3. Data Sequence: Linear and Digit-Reverse

The decimation-in-time FFT algorithm with inputs in
digit-reverse order and outputs in linear order is imple-

mented by the chip set. Set a digit number n = ny.ynn.2 ...
nyne and assume the radius of n;is r;. A binary number is
a special case of digit number with the radius of all the n;
being 2. The digit number implemented by the chip set for
the FFT have the constraint that the radius of an arbitrary
n; is 2 or 4. The digit number used by the radix-16 is
actually represented by two digits nin;.; with the radius of
each digit being 4. The weighting factor of n; is obtained
by:

W =T % g% ... %I %0 [2N]
The function of digit-reverse is then defined as follows:

dr(n) = dr(Ny_Nn_a --- NyNg) = NNy ... Ny_oNN_4 [20]

If the pattern of its associated radius fyfy, ... fify is
symmetric, the function of digit-reverse is reversible.
Thus,

dr(dr(n)) =n [2P]

The function of bit-reverse is always reversible because
its radius pattern is symmetric.

The digit-reverse sequence can be generated in the
same way of the linear sequence. Both can be recursive
computed by adding a fixed addend as follows:

S,¢ = S; + addend [2Q]

Two things are different in Equation [2Q] between the two
sequence generators. First, the carry digit is propagated
from right to left for the linear sequence and from left to
right for the digit-reverse sequence. Second, the addends
for the two are different. The addend of the linear
sequence is 1 for the least significant digit and O for all the
other digits. The addend of the digit-reverse sequence is
1 for the most significant digit and 0 for all the other digits.

Both the linear and digit-reverse 8-point sequences
with the radius pattern 2 x 2 x 2 and 4 x 2 are shown in
Table 2-3. For the 2 x 2 x 2 radius pattern, the addend is
001 for the linear sequence and 100 for the digit-reverse
sequence. For the 4 x 2 radius pattern, the addend is 01
for the linear sequence and 10 for the digit-reverse
sequence. It can be seen from the table that the digit-
reverse sequence can also be obtained by reflecting the
digit of the linear sequence according to the center digit.
For example, the digit-reverse of 1234 and 12345 are
4321 and 54321, respectively.

The 2 x 2 x 2 radius pattern is symmetric. Thus, the
function of digit-reverse is reversible. The 4 x 2 radius
pattern is not symmetric. Thus, Equation [2P] does not
exist. The LH9320 provides one instruction RBFO to
generate a digit-reverse sequence based on the length of
the sequence and the radius pattern defined by the user.
The radius pattern actually shows the radix stage of the
FFT operation. The radix-16 stage is represented by
4x4.

1A-12
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Table 2-3. Relation Between Linear and Digit-Reverse Order
2x2x 2 PATTERN 4x2 PATTERN
LINEAR DIGIT-REVERSE LINEAR DIGIT-REVERSE
DECIMAL DIGIT DIGIT DECIMAL DECIMAL DIGIT DIGIT DECIMAL
0 000 000 0 0 00 00 0
1 001 100 4 1 01 10 2
2 010 010 2 2 02 20 4
3 o11 110 6 3 03 30 6
—
4 100 001 1 4 10 01 1
5 101 101 5 5 11 11 3
6 110 011 3 6 12 21 5
7 111 111 7 7 13 31 7

2.2.4. Inverse Fast Fourier Transform

The inverse FFT (IFFT) defined by Equation [2B] can
be changed to the following form:
N-1
* kn | #
X(n) = 3 X (k) Wy
k=0

forn=0,1, ..., N-1[2R]

where the notation of the superscript * denotes the con-
jugated data.

If the input frequency samples are conjugated, the
bracketed term in Equation [2R] is exactly an FFT opera-
tion. Thus, the computation of the IFFT can share all the
instructions of the FFT. It can be seen from Equation [2R]
that the final computed results have to be conjugated
also. The LH9124 provides two pins DCI and DCO to
control the input and output data conjugate. Thus, the
computation of the IFFT is the same as the FFT except
the input data sequence of the first stage and output data
sequence of the last stage are conjugated.

The results computed by the FFT instructions are
reference values and not exact values shown by Equation
[2R]. If users like to get exact values, the results have to
be multiplied by a factor. This factor can be derived from
the length of data N and the total number of scaling for
the block data. The total number of bits scaled for the input
block data can be obtained from the block floating-point
output pins BFPO[5:0] of the LH9124.

2.3. Two-Dimensional Fast Fourier Transform

Considering a complex function defined over a two-
dimensional region 0 <ny <Ny—t1and 0<ny, <N, -1,
we can define two dimensional discrete Fourier transform
over the same region as follows:

N=1 N1
Xk =3 3 x(n,n,) W' Wi 2s]

n=0 n=0
for 0<k,<N;,—1and0<k,<N,—1

As in the 1-D DFT, the 2-D DFT also possesses some
properties like linearity, symmetry, etc. The fast computa-
tion of the 2-D DFT is probably the most important means
for realization of 2-D filters.

The direct computation of 2-D DFT is somewhat naive
because there are Ny * N, multiplications for each fre-
quency sample. There are some different methods for fast
computation of the 2-D DFT by the way of partitioning the
Equation [2S]. The vector-radix method is not suggested
because the address pattern is not suited to the LH9320,
although the basic module of the vector-radix FFT is a
radix-4 structure. The 1-D column-row or row-column
approach is recommended because the LH9320 pro-
vides all the required address patterns for efficient com-
putations.

DSP Application Note



LH9124

SHARP

Fast Fourier Transform

2.3.1. Column-Row or Row-Column
Decomposition Approach

Equation [2S] can be reordered into the column-row
expression:

N1 [ N1
Xk =Y | 3 x(ny, ny) W' | Wi [2T]

2
n=0 [ n=0
or into the row-column expression:
N1 [ N1

X(k1, k2) = z Z X(n1, n2) Vv:ikz Wsjj‘h [2U]

n=0| n=0

If the bracketed item in Equation [2T] is expressed by a
2-D function (k,,n,), then the 2-D FFT can be computed
by two phases of 1-D FFT as follows:

N1

Fky,ng) = 3 x(ny,ny) Wﬁ'k‘ forO<k;<N;-1 [V
n,=0
N,-1

X(kikp) = 3 F(kynp) Wie®  for0<k, <N, =1 [2W]
n,=0

Thus, the 2-D FFT can be obtained by computing 1-D FFT
for each row of x(n,,n,), putting the result into an interme-
diate array, and then computing 1-D FFT for each column
of the intermediate array.

2.3.2. 2-D Data Sequence: Linear and
Digit-Reverse

In the 1-D case, if the input sequence is in linear order,
the output sequence after FFT operations will be in digit-
reverse order and vice versa. The 2-D FFT can be
obtained by doing two phases of 1-D FFT for each tuple.
Therefore, the indices k; and k; of the output array after
2-D FFT are both in digit-reverse order with respect to the
indices ny and n,. For example, Table 2-4 shows the
pattern of a (8,8) 2-D input array. Assume that each row
is implemented by the 1-D FFT with a radix-4 stage
followed by a radix-2 stage and each column is imple-
mented by a radix-2 stage followed by a radix-4 stage.
The function F(k4,n) of the intermediate stage 2-D array
after row operations is shown in Table 2-5. It can be seen
that the index K; is in digit-reverse order and n; is still in
linear order. Table 2-6 shows the function X(k1,kp) of the
final 2-D array after two phases of 1-D FFT operations.
Both indices k; and k, are in digit-reverse order. Con-
versely, If the indices of x(ny,ny) are in digit-reverse order,
the indices of the output array X(kq,ko) will be in linear
order.

Comparing Table 2-4 with Table 2-6, the function of the
2-D digit-reverse has the following relation:

dr(ny, ny) = (dr(ny), (dr(ny)) = (ky, ky) [2X]

The memory device is generally a 1-D array. In the 2-D
FFT implementation, we will discuss how to use 1-D
N, * N,-point FFT to realize the 2-D FFT for the 2-D array,
where N, and N, are the dimensions of the tuples.

2.4. Multi-Dimensional Fast Fourier Transform

The column-row or row-column approach of the 2-D
FFT can be extended to the multi-dimensional (M-D) FFT
case. The three-dimensional FFT is discussed here and
the M-D FFT can be obtained by extending the tuples from
3 to M. A three-dimensional (3-D) discrete Fourier trans-
form is represented by:

N=1 N1 Ng-1
3 k. k
Xkpkpke) =Y, X 3 x(ny,npng) Wy W W™

n=0 ny=0 ng=0
forO<k;<N,-1 [2v]

It can be reordered into the 1-D DFT expression as
follows:

N1 N1 [ N1
MKy [\ af2e | ks
Xkpkpk) =Y, 1 3 | X x(nyng) Wy Wy Wy,
nszo n=0 n=0
[27]

Thus, the 3-D FFT can be calculated by employing (1)
1-D Ny-point FFT Ny * N3 times first, (2) 1-D Ny-point FFT
N4 * Nz times next, and (3) finally 1-D Nz-point FFT N; * N,
times. After the 3-D FFT calculation, the indices n; and k;
will be in digit-reverse order in each tuple as follows:

dr(ny, ny, Ng) = (dr(ny), dr(ny), dr(ng)) = (ky, ko, k3) [2AA]

The basic execution modules are unchanged for the
1-D to M-D FFT if the column-row or row-column
approach is implemented. Thus, the radix execution
instructions provided by the LH9124 can be applied to the
FFT operation with an arbitrary dimension. The constraint
for the LH9320 is that the number of points for a 1-D FFT
operation cannot be larger than 2%°. If the addressing of
the whole M-D array is seen as a 1-D array, the constraint
willbe Ny * N, * ... * Ny < 220, where N; is the length of
the i-th tuple.

1A-14
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Table 2-4. Pattern of an 8 x 8 2-D Linear Array
x(0,0) x(1,0) x(2,0) X(3,0) x(4,0) x(5,0) x(6,0) x(7,0)
x(0,1) x(1,1) x(2,1) X(3,1) x(4,1) x(5,1) x(6,1) x(7,1)
x(0,2) x(1,2) x(2,2) x(3,2) x(4,2) x(5,2) X(6,2) X(7,2)
x(0,3) x(1,3) x(2,3) x(3,3) x(4,3) x(5,3) x(6,3) x(7,3)
x(0,4) x(1,4) x(2,4) x(3,4) x(4,4) x(5,4) x(6,4) x(7,4)
x(0,5) x(1,5) x(2,5) X(3,5) x(4,5) x(5,5) x(6,5) x(7,5)
x(0,6) x(1,6) X(2,6) x(3,6) x(4,6) x(5,6) x(6,6) x(7,6)
x(0,7) x(1,7) x(2,7) X(3,7) x(4,7) x(5,7) x(6,7) x(7,7)
Table 2-5. Pattern of 2-D Array After 1-D FFT for Each Row

F(0,0) F(2,0) F(4,0) F(6,0) F(1,0) F(3,0) F(5,0) F(7,0)
F(0,1) F(2,1) F(4,1) F(6,1) F(1,1) F(3,1) F(5,1) F(7,1)
F(0,2) F(2,2) F(4,2) F(6,2) F(1,2) F(3,2) F(5,2) F(7,2)
F(0,3) F(2,3) F(4,3) F(6,3) F(1,3) F(3,3) F(5,3) F(7,3)

(0,4) F(2,4) F(4,4) F(6,4) F(1,4) F(3,4) F(5,4) F(7,4)

(0,5) F(2,5) F(4,5) F(6,5) F(1,5) F(3,5) F(5,5) F(7,5)
F(0,6) F(2,6) F(4,6) F(6,6) F(1,6) F(3,6) F(5,6) F(7,6)
F(0,7) F(2,7) F(4,7) F(6,7) F(1,7) F(3,7) F(5,7) F(7,7)

Table 2-6. Pattern of 2-D Array After 2-D FFT

X(0,0) X(2,0) X(4,0) X(6,0) X(1,0) X(3,0) X(5,0) X(7,0)
X(0,4) X(2,4) X(4,4) X(6,4) X(1,4) X(3,4) X(5,4) X(7,4)
X(0,1) X(2,1) X(4,1) X(6,1) X(1,1) X(3,1) X(5,1) X(7,1)
X(0,5) X(2,5) X(4,5) X(6,5) X(1,5) X(3,5) X(5,5) X(7,5)
X(0,2) X(2,2) X(4,2) X(6,2) X(1,2) X(3,2) X(5,2) X(7,2)
X(0,6) X(2,6) X(4,6) X(6,6) X(1,6) X(3,6) X(5,6) X(7,6)
X(0,3) X(2,3) X(4,3) X(6,3) X(1,3) X(3,3) X(5,3) X(7,3)
X(0,7) X(2,7) X(4,7) X(6,7) X(1,7) X(3,7) X(5,7) X(7,7)

2.5. Real Data Fast Fourier Transform

Three differentmethods of calculating the real data fast
Fourier transform are discussed in this section. The
LH9124 and LH9320 provide instructions toimplement all
these three methods. Therefore, users can flexibly select
a method based on his application requirement.

The first and straightforward method is by padding the
imaginary data with zero and employing the complex fast
Fourier transform discussed in section 2.2. Thus, the

performance of the N-point real FFT is the same as that
of the N-point complex FFT. The other two methods
employ the symmetric properties of the DFT shown in
Table 2-1 to improve the performance. The second
method discussed in section 2.2.1 uses the complex FFT
to compute two real sequences at the same time. The last
method discussed in section 2.2.2 handles 2N-point real
FFT with the N-point complex FFT.
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2.5.1. Fast Fourier Transform for Two Real Data
Sequences

Given two real sequences h(n) and g(n), a complex
sequence x(n) can be obtained by setting
x(n) = h(n) + jg(n). The DFT of x(n) can be expressed in
terms of the DFT of h(n) and g(n) as follows:

N-1
Xk = Y x(n) Wy
n=0
N-1 N-1
=3 hy Wy +] Y gm) Wy
n=0 n=0
=H®K) +iGK)
=[H(K) — Gi(k)] + j[Hi(k) + Gi(K)] [2AB]

where H (k) and H(k) are the real and imaginary parts of
H (k). Similarly, the frequency sample at the point (N — k)
can be represented by:

N-1 N-1
X(NH0 = 3 xm Wi = 3 xn) Wy«
n=0 n=0
N-1 N-1
= 3 h) Wi+ Y, a(m) Wy
n=0 n=0
=H* (0 +]G * (k)
= [H K + G(®] + JI-H(K) + G(K)] [2AC)
It can be derived From Equation [2AB] and Equation
[2AC] that the frequency sample H(k) and G(k) can be

represented in terms of the frequency samples of X(k) at
the points k and (N-k) as follows:

H(k) = H,(K) + jHi(k)

[Re[X(k) + X(N - k)] +JIm[X(k) = X(N - k)]}

[2AD]

N | =

and
G(K) = Gy(k) +Gi(k)
= % {lm[X(k) + X(N - k)] — jRe[X(k) + X(N — k)]}
[2AE]

where Re[X(k)] and Im[X(k)] denote the real and imagi-

The LH9124 provides one instruction BRFT to calcu-
late the recombing equations Equations [2AD] and [2AE].
Therefore, two N-point real FFTs can be obtained by the
N-point FFT followed by one pass of recombining proc-
ess. The LH9320 provides the instructions BRFTL and
BRFTU to support the required addressing for the equa-
tions.

Table 2-7 compares the computing efficiency of two
approaches of implementing the FFT on two real
sequences with length N apiece. The first approach
employs the general FFT computation with one sequence
atatime. The imaginary part of the time sample is padded
with zero. The second approach employs the method
discussed in this section to do the two real FFTs at the
same time. The number indicates the required machine
cycles to complete two real FFTs including the latency. It
is obvious from the table that two real sequences com-
puted at the same time has better performance.

From the symmetric properties of the DFT for a real
sequence in time-domain, the real part are symmetric and
the imaginary part are antisymmetric with respect to the
center point N/2 of the transformed sequence in fre-
guency-domain. Thus, the samples from 0 to N/2 provide
enough information to describe the whole frequency
spectrum. The address instructions for generating full or
half length of the sequences are both provided.

2.5.2. 2N-Point Real FFT by N-Point Complex FFT

This section will shows how a 2N-point real FFT is
computed from an N-point complex FFT. A frequency
sample for a 2N-point real DFT can be expressed as:

2N-1
X(9) = ¥, () Woy
n=0
N-1 N-1
=3 x@n) Wi + Why 3 x@n + 1) Wy [2AF)

n=0 n=0

Set h(n) = x(2n) and g(n) = x(2n + 1). X(k) then becomes:

N-1 N-1
X(K) = Thim) Wy +Way 3 o) Wy 2AG]
n=0 n=0

= H(K) + Wiy G(K)

Set y(n) = h(n) + jg(n). From Equations [2AB] and [2AC],
Y(k) can be represented by:

nary parts of X(k). Y(K) = [H, () = Gi(k)] +jHK® + G(K)] [2AH]
Table 2-7. Performance Comparison for Two Real N-Point FFTs
N 8 16 32 64 128 256 512 1024 2048 4096
Direct 104 136 300 428 976 1296 3380 6452 16724 | 24984
Recom. 78 102 200 296 634 922 2220 4268 10430 | 16606
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and Y(N — k) can be represented by:
Y(N=K) = [H(K) + Gi(K)] + - H(K) + G(K)] [2A1]

Combining Equations [2AG], [2AH], and [2Al], the real
part of X(k) can be represented by:

Xyk) = -—Re[Y(k)+Y(N k)] +

% cos(nk/N) Im[Y(K) + Y(N — k)]

1.
— 5 sinm/N) ReY(k) = Y(N - k)] [2AJ]

and the imaginary part of X(k) can be represented by:

X(K) = %Im[Y(k) — Y(N-K)] +

% sin(k/N) IM[Y(K) + YN — k)]

- 5 COSTIN) RelY( - YN -]

The LH9124 provides one instruction BFCT to calcu-
late the recombing equations Equations [2AJ] and [2AK].
Therefore, one 2N-point real FFT can be obtained by the
N-point FFT followed by one pass of recombining proc-
ess. The LH9320 provides the instructions BFCTL and
BFCTU to support the required addressing for the equa-
tions.

There is one dead point that cannot be obtained from
the computation of the above recombination process.
This point is the highest frequence sample located at N
of the 2N frequency samples. The data at this point is real
and can be obtained by the following calculation

X(N) = H(0) — G(0) [2AL]

If the time sequence is symmetric, X(N) will be zero.
Otherwise, user may assign a proper value to the sample.

Table 2-8 compares the computing efficiency of two
approaches in implementing a 2N-point real FFT. The first
approach directly employs the general 2N FFT computa-
tion. The imaginary part of the time sample is padded with
zero. The second approach employs the method dis-
cussed in this section by dividing the 2N-point sequence
into two N-point sequences. The number indicates the
required machine cycles to complete the 2N real FFT
including the latency. As the number of points increased,
the 2N real FFT based on the recombination process is
more efficient.

2.6. Discrete Cosine Transform by FFT

The Discrete Cosine Transform (DCT) is a fundamen-
tal image processing for many image and video compres-
sion systems because of its suboptimal property and easy
implementation. This section will discuss three methods
of employing the chip setto implement the DCT. The DCT
is defined as follows:

1 1/2 N-1

X(0) = [ﬁj Y x(n) [2AM]
n=0
1/2 N-1

_(2 m(2n + Dk
X(K) = [N] Y x(n) cos[ N ]

n=0

fork=1,2,... ,N-1 [2AN]

and the Inverse Discrete Cosine Transform (IDCT) is
defined as follows:

1/2N
X(O)+[ j Zx(k) {M}

,N-1

1/2

ol

forn=0,1, ... [2A0]

2.6.1. N-Point DCT by Zero Extended 2N-Point FFT

The first method of computing N-point DCT extends
the sequence from N points to 2N points by padding zeros
to the last N data. The DCT in Equations [2AM] and [2AN]
can be expressed as:

2N-1

Xk =Re | e e ™ Y xn) Wiy
n=0
fork=0,1,... ,N-1 [2AP]

where

1/2

i -

ck) =

12 [2AQ]

(gJ otherwise

Equation [2AP] means that the N-point DCT can be
obtained by doing 2N-point real FFT first and then taking
the real part of complex multiplications as shown in Figure
2-10. Thus, the DCT can be implemented by the LH9124
in three phases. The first computes the N-point FFT. The
second computes the recombining process. The final
phase computes complex vector multiplications.

Table 2-8. Performance Comparison for Real 2N-Point FFT

2N 16 32 64 128 256 512 1024 2048 4096 8192

Direct 68 150 214 488 648 1690 3226 8364 12492 32990

2N Recom. 86 118 232 360 762 1178 2732 5292 12478 20702
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9124-257

Figure 2-10. N-Point DCT by Zero Extended
2N-Point FFT

2.6.2. N-Point DCT by Symmetric Extended
2N-Point FFT

The second method of computing N-point DCT also
extends the sequence from N points to 2N points. How-
ever, the extended 2N-point sequence is symmetric and
defined as follows:

;(\(n)_ X(n) n=0,1,...,N-1 [2AR]
TIx@N-1-n) n=N,N+1,...,2N-1
Then, the DFT of X(n) is given by:
N 2N-1
Xk =Y kin) W, [2AS]
n=0
K @n+ 1)k
11: T (2n +
=2¢ "N zox(n) Cos™ N
n=t

Comparing Equation [2AS] with Equation [2AN], the DCT
can be expressed as:

c(k) —jnk/2N £

X(k) = X(k) fork=0,1,...,N-1

[2AT]

Thus, the N-point DCT can be obtained by doing
2N-point real FFT first and then adjusting the results by
complex multiplications as shown in Figure 2-11. Asin the
method 1, the DCT can also be implemented in the same
three phases.

SEQUENCE OF N
REAL DATA

!

GENERATING NEW 2N
SEQUENCE x(n) =
{ x(n) forn=0, 1, ... N-1
X(2N-n-1) for n = N+1, ... 2N-1

J

2N-POINT
FFT

&

FIRST N DATA
MULTIPLIED BY

(k) _-jnk/2N
5 e

¢

OUTPUT DCT OF THE
N REAL DATA

9124-258

Figure 1-11. N-Point DCT by Symmetric Extended
2N-Point FFT

2.6.3 N-Point DCT by N-Point FFT

The first two methods introduce inefficiency in compu-
tation by extending the data sequence. The last method
rearranges the data sequence instead of extending the
data sequence. The new data sequence y(n) derived from
the original sequence x(n) is represented by:

| [xen) n=01, .. N2-1
Y =1 @N=-2n-1) n=N2 N2+1,... N-1
[2AU]

Thus, the N-point DCT is obtained from the N-point FFT
instead of the 2N-point FFT.

X(k) z x(n) cosr(zn—ﬁ\:)ﬁ [2AV]
n=0
N/2-1 @n+ i
n+kn
=2, X(@n) cos

n=0
N/2-1

Y x(@n+1) cos
n=0

(4n + 3)km
2N

Setting n=N—-n-1in the second term of Equation [2AV],
we may get:

N/2-1

Sy (4n + 1)kr p (4n + 1)kn
X(k) =Y y(n) cos™— S + Y v cos o
n=0 n=N/2
[2AW]
- (@n + Dk
n+ 1)kn
= %y(n) cos o
=

1A-18
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Thus, the DCT can be computed from the following
equation:

N-1
X(k) =Re| c) e ™ T y(n) Wy [2AX]
n=0

It can also derived that:

N-1
X(N=k)=Im| c(k) e ™" PR whe

n=0
fork=0,1,...,N/2 [2AY]

This means that we can only compute the first
(N/2 + 1) points of the complex sequence. The first
half of the DCT sequence can be obtained from the
real part of the complex sequence and the second
half of the DCT sequence can be obtained from the
imaginary part of the complex sequence. The N-point
DCT can be obtained by computing N-point real FFT
first and then adjusting the results by complex mul-
tiplications as shown in Figure 2-12.

SEQUENCE OF N
REAL DATA

f

DATA REARRANGEMENT y(n) =
{ x(2n) forn=0, 1..., N/2-1
X(2N-2n-1) for n=N/2, N/2+1, ... N-1

!

2N - POINT
FFT

i

FIRST N/2+1 DATA
MULTIPLIED BY
C(k)e-mk/ZN

!

FIRST HALF OF DCT OBTAINED
FROM ADDRESSES 0 TO N/2-1 OF
REAL PART SECOND HALF FROM

ADDRESSES N2 TO 1 OF
IMAGINARY PART

%

OUTPUT DCT OF THE
N REAL DATA

9124-259

Figure 1-12. N-Point DCT of the N Real Data

2.6.4. Performance Comparison of the Three DCT
Methods

Table 2-9 shows the computing efficiency of the
DCT by three different methods discussed above.
Method 1 extending the sequence to 2N by zero
padding is discussed in section 2.6.1. Method 2 ex-
tending the sequence to a 2N symmetric sequence is
discussed in section 2.6.2. Method 3 directly comput-
ing the rearranged N-sequence is discussed in sec-
tion 2.6.3. The first two methods have the same
performance by the chip set. The third method is
obviously better than the first two. If two sequences
are computed at the same time, the performance can
be further improved. Method 3 is still the best among
the three for 2 N-sequences. The figure in the table
indicates the cycles required to finish the operation.

2.7. Two-Dimensional Discrete Cosine Transform

The discrete cosine transform has been widely
recognized as the most effective technigue among
various transform coding methods for image and
video signal compression. The 2-D DCT is defined as
follows:

N~ N1
X(ky,kp) = ckpetky) Y, Y x(Ny,ny)
n,=0 n=0
@ny + 1)kym @2n, + 1)k [2AZ]
COSs 2N1 COSs 2N2
where:
(%)1/2 k=0 [2BA]
c(k) =
1 otherwise

As in the 2-D DFT, the 2-D DCT can be computed
by the 1-D column-row or row-column approach.
Equation [2.52] can be decomposed into the follow-
ing form for the column-row approach:

N1 N1
2n; + km
X(k1ko) = clko) D 4c(kq) 3, x(n1,n2)cos(—12N1L

n,=0 n=0

2n, + ko
cos——2N2 (28]

Thus, the 2-D DCT can be computed as two phases
of 1-D DCT. The benchmark of the 2-D DCT is shown
in Table 1-1. It was derived by the method discussed
in section 2.6.3.

DSP Application Note

1A-19




LH9124

SHARP

Fast Fourier Transform

2.8. Windowing

The consequence of the cycle nature of the DFT is the
creation of an artificial jump at the endpoints of the data
sequence. Direct truncation of the data sequence leads
to the well-known Gibbs phenomenon which manifests
itself as a modify the data sequence by window smoothing
before applying the DFT.

Thus, given a data sequence x(n) and the window
function w(n), the truncated data x,(n) sequence by the

window effect is defined by:
X, (M) = X(N) * w(n) [2BC]

The straightforward window function is the rectangular
window defined as:

N-1

we(m) =11 for Ini <

0 elsewhere [2BD]

The frequency response of the rectangular window is
shown in Figure 2-13. The multiplication of the window
function in the time-domain implies the convolution of the
window function in the frequency-domain. In orderto keep
the shape of a original signal in the frequency-domain,
desirable window characteristics are (1) reducing the
width of the main lobe and (2) reducing the energy of the
side lobes.

There are a lot of window functions proposed. User can
select a proper window function for his application. One
of the frequently used windows is the generalized Ham-
ming window defined as:

N-1

o+ (1-o) cos(z—:\jn) for Inl <
wy(n) =

0 elsewhere [2BE]
where o is in the range between 0 and 1. If & =0.54, itis
called a Hamming window. If o. = 0.5, it is called a Hann-
ing window.

The window function can be combined with the first
stage of radix-2 or radix-4 operation. Thus, no extra phase
is required for the windowed FFT operation. The coeffi-
cients combining the twiddle factors and window coeffi-
cients are stored in the C port memory either in linear
order or digit-reverse order. There are two instructions
BWND2 and BWND4 provided by the LH9124 to support
the first stage of the windowed FFT operation. The
address pattern for twiddle factors will be changed for this
stage. The twiddle factor address pattern may use the
same as the input data address pattern.

Table 2-9. Performance Comparison of Three DCT Methods

N ONE N-SEQUENCE TWO N-SEQUENCES
METHOD 1 METHOD 2 METHOD 3 METHOD 1 METHOD 2 METHOD 3

8 94 94 75 152 152 108
16 152 152 95 250 250 140
32 264 264 185 378 378 254
64 442 442 265 780 780 382
256 1452 1452 795 2750 2750 1200
512 3262 3262 1965 5310 5310 2754
1K 6334 6334 3245 10430 10430 5314
4K 24816 24816 14559 49410 49410 20724

1A-20
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Figure 2-13. Frequency Response of a Rectangular Window
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3. BLOCK FLOATING-POINT
ARCHITECTURE

The LH9124 supports block floating-point arithmetic to
improve the precision of computations for a fixed-point
processor. The FFT algorithm for its inherent block proc-
essing structure is suited to block floating-point arithmetic.
The block structure means that the FFT algorithm is
decomposed into pipelined computing stages and that
the block output data of the current stage is the block input
data of the next stage as shown in Figure 2-1. The
processor with block floating-point can have the advan-
tages of both fixed-point and floating-point. First, the
architecture is simple because both multiplications and
additions are fixed-point. Second, the block floating-point
can even get higher precision than the floating-point with
the same word length.

Fundamentally, the block floating-point mechanism of
the LH9124 consists of two parts. The output part is to
calculate the maximum magnitude of the output data for
the current stage of radix operations. Then, a scaling
factor is derived as a reference value for the input scaling
ofthe nextstage. The input part receives the scaling factor
generated by the previous stage. The number of bits to
be shifted right for the current input data will be based on
the scaling factor and the instruction to be executed.
Therefore, the data overflow and the precision of integer
operations are automatically controlled by the block float-
ing-point mechanism.

3.1. Output Part of Block Floating-Point
Mechanism

The input and output data for the FFT are complex
numbers with real and imaginary part having 24 bits
apiece. There is no loss of precision in the intermediate
stage of data computations because the intermediate
values can grow to 60 bits. The error occurs when the
60-bit data in accumulators are rounded to the 24-bit
output data. This means that the error occurs at the output
stage of data transfer. However, the block floating-point
mechanism will make the output block data as precisely
as possible.

The magnitude of the computed output data is com-
pared to some threshold values to generate a scaling
factor output (DSFO) parameter according to Table 3-1.
The LH9124 will keep the maximum value of DSFO. If the
new generated DSFO is larger than the maximum value,
the maximum value will be updated. Table 3-1 lists the
threshold values to be compared by the magnitude of
complex data x. The value x, is computed by the following
equation:

2 2.1/2
Xm = (X +1x1) [BA]

where Ix| and Ix| denote the magnitudes of the most
significant five bits of real and imaginary data x, respec-
tively.

Table 3-1. The Scaling Factor Output

DSFO Lookup Table
THRESHOLD MAGNITUDE DSFO
Xm 2 1.000488 5
1.000488 > xm = 0.5 4
0.5>xm=0.25 3
0.25 >xm = 0.125 2
0.125 > xm 2 0.0625 1
0.0625 > Xm 0

3.2. Input Part of Block Floating-Point Mechanism

One input pin DSFISEL controls the way of scaling. If
DSFISEL goes high, the number of bits to be shifted right
for input data is directly controlled by the three scalar
factor input pins DSFI[2:0]. In this user mode, the right
shifting of the input data can be 0 to 7 bits. If DSFISEL
goes low, the block floating-point automatic scaling will
control the input data shifting. In this case, the three scalar
factor input pins will be connected to the three scalar
factor output pins. In the block automatic mode, the
number of bits to be shifted is a function of the instruction
to be executed and the scaling factor output generated
by the previous stage as shown in Table 3-2. Moreover,
the maximum number of bits for shifting is 5. In the FFT
applications, the block automatic mode is suggested
because the optimum performance is usually obtained by
the automatic scaling. Thus, the overflow control and the
precision for integer arithmetic are simplified and users
only take care of the first stage of the input data.

Table 3-2. Input Data Auto-Scaling Lookup Table

DSFI RADIX-2 RADIX-4 RADIX-16
5 2 3 5
4 1 2 4
3 0 1 3
2 0 0 2
1 0 0 1
0 0 0 0

3.3. Scaling Factor Accumulator

The block-floating point mechanism provides informa-
tion not only for the bit growing of the current stage but
also for the total bit growing of all the previous stages. The
6 block floating-point output pins BFPO[5:0] show the
total number of bits that input data being shifted right from
the first stage. There are 6 block floating-point input pins
BFPI[5:0] also. The BFPI pins are usually connected to
the BFPO pins. The output value of BFPO is obtained by
adding the input value of BFPI with the number of bits that

1A-22
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the input data are shifted for the stage. This means that
the number of input data shifting can be continuously
accumulated. Therefore, the performance of the 24-bit
block floating-point is comparable to that of the 32-bit
floating point because the exponent part of the floating-
point is implicitly implemented by BFPI and BFPO.

3.4 Performance Analysis of Block Floating-Point

This subsection will employ an example™® to analyze
the signal to roundoff noise ratio of the fixed-point, float-
ing-point and block floating-point arithmetic. It can be
seen that the performance of the block floating-point is
very close to that of the floating-point. In addition, the
performance of the FFT implemented by the radix-4 or
radix-16 is similar to that implemented by the radix-2,
even though the radix-4 or radix-16 implementation can
have double or quadruple the speed than the radix-2
implementation.

The input time samples are defined as follows:

x(n) = {sin(2r * 0.1245 «n) + j2°
sin (2 * 0.2505 * n)} * w(n)

forn=0,1,2,..,1023 [3B]
where w(n) is a window function.

3.4.1 1K FFT With Three-Term Black-Harris
Window

The minimum three-term Black-Harris ® window can
achieve a sidelobe level of -67 dB. The window is defined
as follows:

2n
w(n) =0.42323 — 0.49755 = cos(WnJ+

1024
forn=0,1,2, ..., 1023 [3C]

0.07922 = co{zzn]

The power spectrum of the input signal illustrated in
Figure 3-1 clearly shows two harmonic signals and the
spectral shape of the Black-Harris window. The power
spectrum are obtained by executing five radix-4 stages of
the 1K FFT with block floating-point arithmetic. The
roundoff noise is hardly to be seen because the sidelobe
effect of the window dominates. Therefore, the block
floating-point has almost the same performance as the
double precision floating-point.

3.4.2 1K FFT With Four-Term Black-Harris
Window

The low level harmonic signal can be more clearly
seen if the four-term Black-Harris window is employed.
The minimum four-term window can achieve a sidelobe
level of —92 dB and is defined by:

w(n) = 0.35875 — 0.48829 * cos(1024n] +0.14127 *
co —0.01168 * cos 2n
1024 1024°"
forn=0,1,2, ..., 1023 [3D]

3.4.2.1. Double Precision Floating-Point
Computation

The power spectrum of the 4-term windowed harmonic
signals shown in Figure 3-2 are generated by the software
package MathCAD." The computation is through double
precision floating-point. The two harmonic signals and the
spectral sharp of the four-term Black-Harris window can
be clearly seen.

3.4.2.2. Block Floating-Point Computation

Figures 3-3, 3-4 and 3-5 show the power spectrum of
the four-term windowed harmonic signal generated by the
LH9124 and the LH9320. Figure 3-3 is generated by the
1K FFT with all radix-2 stages, Figure 3-4 with all radix-4
stages and Figure 3-5 with one radix-4 stage followed by
two radix-16 stages. The total number of shifting for the
radix-2 implementation is eight and for the other two
implementations is nine. In this case, the signal level of
the radix-2 implementation is higher. However, the radix-4
implementation may have less roundoff noise. Therefore,
there is no obvious performance difference between the
radix-2 and radix-4 implementation. It can be seen that
the performance of these block floating-point implemen-
tations are very close to that of double precision floating-
point implementation.

3.4.2.3. Fixed-Point Computation

Figure 3-6 shows the power spectrum of the four-term
windowed harmonic signal generated by the LH9124 and
LH9320. It is generated by 10 radix-2 stages with the
block floating-point mechanism tumed off. There are
10-bit shift in total with one bit shift per stage. It can be
seen that the noise level of the fixed-point implementa-
tions are obviously higher than that of block floating-point
implementation because the signal level is lower.
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4. SYSTEM CONFIGURATIONS

The LH9124 is a by-pass form digital signal processor.
Itis an execution unit without on-chip memory. Moreover,
it provides a flexible four bidirection 1/0 port structure.
Therefore, combined with a wide variety of memory struc-
tures, it can be easily configured into cascaded or paral-
leled architectures. The speed of a system is linearly
increased with the number of the chips. The throughput
and latency both can be improved by the parallel archi-
tectures to match the user’s real-time application require-
ment. The benchmark of the FFT for parallel architectures

The LH9124 does not provide on-chip RAM and
address generator. Thus, each port may be associated
with one external RAM and address generator as shown
in Figure 4-1. The LH9320 is a address generator for
supporting the addressing required by the LH9124 in-
structions. Hence, it is a good candidate to be selected
for implementation. The data flow of the system is con-
trolled by three DF pins which specify the dedicated input
and output ports as shown in Table 4-1.

Table 4-1. LH9124 Data Flow Function Set for
FFT Instructions

is shown in Table 1-2. For more detailed information about
. . E : DESCRIPTION
system configurations, please refer to LH9124 User’s MNEMONIC | DFf2:01 P
Guide. Input data through A port and
RAWB 111

4.1. Single Chip Architectures output data through B port

The LH9124 consists of four bidirection 48-pin 1/O RAWQ 101 g‘ﬁ;h?iﬁ ;Thﬁzgg:‘g%';ﬁ“d
ports: A, B, C, and Q as shownin Figure 4-1. Data through
these ports are complex. Twenty-four of the pins are for RBWA 000 Input data through B port and
real data and the other 24 pins for imaginary data. The C output data through A port
port is usually employed as a coefficient port. Any two of
the A, B, and Q data ports can be selected as input and RBWQ 100 Intht ?Zti ﬂ:;}?,ggthg Og: nd
output ports for the execution of the LH9124. These three output data ug P
ports provide the same function for implementation. The RQWA 001 Input data through Q port and
Q port may be employed as a acquisition port. Hence, Q output data through A port
port will be an input port in the first pass and an output

: Input data through Q port and

rt in the last f the FFT.

portinthe fast pass ol the RQWB 011 output data through B port
COMPLEX
DATA IN/OUT
f—_‘J_’\

LH9320 RAM
ADDRESS
GENERATOR

REAL.Q00 ’lIMAG‘QOO

RAM

|

QR al
RAM RAM
AR BR
REAL.A00 REAL.BOO
FUNCTION CODE
LH9124
DATA FLOW oF
RAM RAM
Al BI
IMAG.AQO IMAG.B0O
CR cl
LH9320 LH9320 LH9320
ADDRESS ADDRESS |—s-| FRAM RAM ADDRESS
GENERATOR GENERATOR REAL.C00 IMAG.C00 GENERATOR

9124-108

Figure 4-1. Single LH9124 System With
Four Port Architecture
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There are four input control pins that can change the
values of the data and coefficients either for the input and
output ports. The control pins DCI and DCO are used in
conjunction with the data flow function. The data of the
input sequence loaded to the LH9124 will be conjugated
when DCI is set. Similarly, the data of the computed
results transferred to the output buffer will be conjugated
when DCO is set. The inverse FFT can be computed the
same as the FFT if these two pins are properly controllied.
The other two pins CCR and CCl are used by the coeffi-
cient port. The sign of the real part of the input coefficient
will be changed when CCR is set. CCl will control the sign
of the imaginary of the input coefficient. The memory size
of the twiddle factors can be saved through the control of
these two pins. The input data can also be scaled as
discussed in Section 3.

The four port design of the LH9124 provides users the
flexibility in system configurations. Users can use this
flexibility either to optimize the system performance or to
reduce the system cost. Two of system configurations are
shown in Figure 4-1 and Figure 4-2. Figure 4-1 is a four
port architecture and Figure 4-2 is a three port architec-
ture. There are a lot of possible architectures depending
on the user’s application requirement.

4.2. Multi-Chip Architectures

The FFT algorithm is computing-intensive and its
architecture has some form of regularity. Therefore, it is
a good candidate to be implemented by the cascaded or
parallel architecture. The throughput can be improved by
the cascaded architecture and the latency can be
improved by the parallel architecture. The LH9124 is
more suitable in cascaded or parallel architectures than
the contemporary FFT chips because of its by-pass form
structure.

4.2.1. Cascaded Architectures

The decomposition process of the DFT shown in Fig-
ure 2-1 points out that the FFT inherently has the cas-
caded form. Each stage of the FFT can be implemented
by one radix instruction of the LH9124. Hence, the
N-stage FFT can be implemented by N cascaded LH9124
processors. The block output data of the i-th stage will be
the block input data of the (i + 1)-th stage. The computa-
tion of the (i + 1)-th stage will wait for the completion of
the i-th stage because of data dependency.

COMPLEX DATA COMPLEX DATA
INJOUT INJOUT
RAM RAM
REAL.A00 REAL.B0O
R
RAM a al RAM
AR BR
REAL.A01 REAL.BO1
FUNCTION CODE
——— = FC
LH9124
DATA FLOW _ |
RAM RAM
Al BI
IMAG.AO1 IMAG.BO1
f CR Cl
LH9320 RAM
RAM (AG) IMAG.B00
IMAG.A00 LH9320 RAM RAM LH9320
(AG) REAL.C00 IMAG.C00 (AG)
LH9320 LH9320
(AG) (AG)
9124-22
Figure 4-2. Single LH9124 System With
Three Port Architecture
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The computing efficiency will be very low if only one
sequence of the FFT is to be computed. In this case, the
performance of the cascaded structure will be the same
as that of a single chip structure. If a lot of sequences with
the same length are to be computed, the computing
efficiency will be improved by a factor equal to the number
of cascaded stages. In this way, the processor i is com-
puting the n-th sequence instead of waiting for the com-
pletion of the (n + 1)-th sequence of the processor i — 1
as shown in Table 4-2. This means that double buffers
have to be used in the interface between two stages as
shown in Figure 4-3.

The input and output data rate in all the cascaded
stages are the same because all the radix instructions use
the same time to finish the same length of data. Figure
4-3 shows a three stage cascaded structure. The time
required to compute the 4K FFT is 312.3 usecs for a single
chip structure. However, the 4K FFT can be completed in
every 102.4 psecs by the cascaded structure. This means
that the speed is improved by more than triple.

4.2.2. Parallel Architectures

The alternative way to improve the throughput for the
FFT is obtained by parallel processing. The advantage of
the parallel architecture is that each processor can run an
independent job or algorithm. For an N-point FFT with M
stages, the time required for a single LH9124 to finish the
operation is about N » M cycles. If the data transfer is the
same as the machine cycle, the N-point data loaded to
one processor will be N cycles. By the method of data
multiplexing, the N * M points of data can be loaded to M
processors with each processor having N points. Thus,
the computing-bound and 1/O bound will be balanced for
the whole system. The throughput is improved by a factor
of M. The schedule of data sequences for 3 parallel
processors is listed in Table 4-2.

Figure 4-4 shows a common bus parallel system with
three processors. A 4K-point FFT can be implemented by
three stages of radix-16. It takes about 312.3 usecs for a
single chip system or 104.1 psecs for the parallel system
for every N-point FFT. Thus, the speedup factor is three
for a three processor parallel system.

Table 4-2. Schedule of Sequences Processed by Cascaded and Parallel Structures

INPUT CASCADED PARALLEL OUTPUT
SEQUENCE | PROC.1 | PROC.2 | PROC.3 | PROC.1 | PROC.2 | PROC.3 | SEQUENCE
n n-1 n-2 n-3 n-3 n-2 n—1 n—4
n+1 n n-1 n-2 n n-2 n-1 n-3
n+2 n+1 n n-1 n n+1 n-1 n-2
n+3 n+2 n+1 n n+1 n+2 n-—1
n+4 n+3 n+2 n+1 n+3 n+1 n+2 n
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—
LH9124
A B
PROC. 1
——

RAM || RAM

LH9320
(AG)

LH9320
(AG)

LH9320
(AG)

LH9320
(AG)

_e OUTPUT
LH9124
A B
PROC. 3

— oUTPUT

RAM |[RAM
LH9320
(AG)

LH9320
(AG)

LH9820
(AG)

9124-29

Figure 4-3. Three-Stage Cascaded System
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Figure 4-4. Common Bus Parallel System
With Three Processors
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4.2.3. Cascaded and Parallel Combined
Architectures

The parallel systems discussed in the above two sub-
sections do improve the throughput of the FFT. However,
the latency time for an arbitrary N-point FFT is still the
same. If the latency time is the main concernin the system
design, the computing time in each stage has to be
reduced. Since the structure in each stage is regular, it
can be further partitioned by a factor k that is a power of
two. Thus, the computing time for the stage will be
reduced from N to N/k. The complexity increased in
interface between stages is the cost for this improvement.

One of the architectures thatimprove both the through-
put and latency is shown in Figure 4-5. It has three
cascaded stages and two parallel processors in each
stage. The latency for a 4K-point FFT is 312.3 psecs for
a single LH9124 system and 153.2 usecs for the parallel
system. The time required for a 4K-FFT is 312.3 psecs
forasingle LH9124 system and 51.2 usecs for the parallel
system. Thus, the throughput is improved by a factor of 6
and the latency is improved by a factor of two for the
proposed parallel system. For two processors in each
stage, the dual-port memory is one of the methods to
solve the interface problem.
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Figure 4-5. System With Three-Stage Cascaded and
Two Parallel in Each Stage
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5. LH9124’S FFT EXECUTION
INSTRUCTIONS

One of the salient features of the LH9124 is its pro-
gramming in function block level. Therefore, the instruc-
tion codes of the LH9124 will be ready as soon as the
function block diagram is defined. For example, the DCT
of two real 128-point sequences is computed by the
method shown in section 2.6.1. The function block dia-
gram to implement the example is shown in Figure 5-1.
The two 128-point sequences is first zero-extended to two
256-point sequences and then form a 256-point complex
sequence. The 256-point FFT is executed by two radix-16
stages. Then, the recombining process of transforming
one complex FFT into two independent real FFTs is
performed. Finally, the DCT can be obtained by taking the
real part of two complex sequence multiplications. It can
be seen that each function block is mapped into one
instruction code. Therefore, it is easy for users to use the
LH9124 to implement the DSP algorithms. Especially, the
LH9320 is optimized to be used with the LH9124 to
provide the required addressing sequences. However,
users have the flexibility of selecting other devices such
as PLD to replace the LH9320.

TWO 256-POINT
REAL SEQUENCE FORM A
256-POINT COMPLEX SEQUENCE

t

RADIX-16 1ST J

STAGE OF BFLY16
256-POINT FFT

RADIX-16 2ND
STAGE OF ——EWG I
256-POINT FFT

RECOMBING PROCESS

GENERATING TWO | '
COMPLEX FFTs FOR BRFT
TWO REAL SEQUENCES

EACH SEQUENCE
MULTIPLIED BY ;———| CMUL
c(k)e-lnk/ZN

TWO DCT
TRANSFORMED —~+—————"
SEQUENCES
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Figure 5-1. Mapping From Function Block
Diagram to the LH9124 Instructions

The coding for the FFT is extremely easy by employing
the LH9124 and LH9320. The instruction codes for the
FFT algorithm are based on the stages of the FFT decom-
position. The 8-point FFT shown in Figure 2-2 is decom-
posed into three radix-2 two stages. Thus, the FFT can
be implemented by a series of three BFLY2 instructions.
The 8-point FFT shown in Figure 2-5 is implemented by
one radix-4 stage followed by one radix-2 stage. The
corresponding instruction codes will be BFLY4 followed
by BFLY2. Therefore, the LH9124 instruction codes will
be defined once the stages of the FFT structure are
decided.

The inverse FFT (IFFT) can be implemented almost
the same as the FFT. The only difference is that the input
data is conjugated in the first stage and the output data
is conjugated at the last stage. The LH9124 contains two
input pins DCI and DCO to control the conjugate opera-
tion of the input and output data, respectively.

5.1. Radix-2 Butterfly Instruction: BFLY2 or
BWND2

The radix-2 butterfly is the fundamental computing
module for FFT algorithms. The radix-2 butterfly is gen-
erally represented by the flow graph shown in Figure 2-3.
The input-output relation of a butterfly operation is
expressed as:

Xi1(8) = Xy@) + Wy Xi(b) (BA]
Xi1(b) = Xy@) — Wy X,(b) 58]

These two equations are executed by the instruction
BFLY2 with throughput of two cycles per radix-2 butterfly.
The instructions BF2i and TF2i provide the required data
and twiddle factor address patterns.

If the radix-2 butterfly is combined with the window
function in the first stage of the FFT operation, the input-
output relation for this stage is represented by the follow-
ing equations:

Xii1(a) = X (@) w(a) + X (b) w(b) 15C]
Xier1(b) = X,(2) W(@) — X(b) W(b) ‘ (5D]

These two instructions are executed by the instruction
BWND2 with throughput of two cycles per butterfly. It can
be seen from Equations [5C] and [5D] that the address
indices for both input and window functions are the same.
Thus, the address pattern of windowed radix-2 coeffi-
cients can use the same as that of input data. The address
instruction RBFO or BF20 may be employed depending
on the order of the coefficients. There are 18 cycle latency
for BFLY2 and 20 cycle latency for BWND2 from loading
the first data to the LH9124 to receiving the first computed
result.

1A-32
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5.2. Radix-4 Butterfly Instruction: BFLY4 or
BWND4

The LH9124 also supports a radix-4 butterfly instruc-
tion BFLY4 to improve the FFT computing efficiency. The
input-output relation of the radix-4 butterfly with notation
shown in Figure 2-6 are represented by:

Xi1(@) = Xe@WS + X DIWK + X (©OWE) + X (W -

Xiee1(b) = X AWy, — X, D)Wy, — X (©WE + jxk<d>WEr[5F]

X, 1(0) = Xi(@Wy — X (D)WY + X, (OWa — Xi(DWiy -

Xiee1(d) = X AWy, + X D)Wy — X ©W — ixk<d>w?N"[5H]

The throughput is four cycles per radix-4 butterfly. With
the same input-output map, a radix-4 butterfly is equiva-
lent to the four radix-2 butterflies shown in Figure 2-7. The
twiddle factor relationship between Figure 2-6 and Figure
2-7 is shown as follows:

WrN = WN [51
Wi, o
Wi = WyW, = Wiy i

The instructions BF4i and MXB24i provide the required
data address patterns. In addition, the instructions TF4i
and MXT24i provides the required twiddle factor address
patterns. If the radix-4 butterfly is combined with the
window function in the first stage of the FFT operation,
the input-output relation for this stage is represented by
the following equations:

Xi1(a) = X(@w(@) + X (byw(b) + X, (c)w(c) + X, (d)w(d)
[5L]

Xir1(0) = X (@w(@) — X (byw(b) — X, (c)w(C) + jX(d)w(d)
5M]

Xi.1(€) = X (@w(a) — X (byw(b) + X, (c)w(c) — X, (d)w(d)
{5N]

Xi1(d) = X(@)w(@) + X (b)w(b) — X (c)w(c) - jX(d)w(d)
[50]

These four instructions are executed by the instruction
BWND4 with throughput of four cycles per butterfly. It can
be seen from Equations [5L] to [50] that the address

indices for both the input and window data are the same.
Thus, the address pattern of windowed radix-4 coeffi-
cients can use the same as that of input data. The address
instruction RBFO or BF40 may be employed according to
the order of the coefficients. There are 18 cycle latency
for BFLY4 and 20 cycle latency for BWND4 from loading
the first data to the LH9124 to receiving the first computed
result.

5.3. Radix-16 Butterfly Instruction: BFLY16

The architecture of the LH9124 is optimized for this
instruction. Thus, the peak performance can be obtained
with 6 multiplications and 11 additions per cycle. I/O
bound and computing bound are well-balanced. With the
same input-output map, the structure of a radix-16 is
equivalent to the eight radix-4 butterflies connected in the
form as Figure 2-8 or to the thirty-two radix-2 butterflies
connected in the form as Figure 2-9. The instructions
BF16i, MXB216i, and MXB2416i provide the required
data address patterns. In addition, the instructions TF16i,
MXT216i, and MXT2416i provides the required twiddle
factor address patterns.

The throughput is 16 cycles per radix-16 butterflies.
There are 68 cycle latency from loading the first data to
receiving the first computed result. The latency of the
instruction BFLY16 is longer than that of the instructions
BFLY2 and BFLY4. However, the computing efficiency of
the instruction BFLY16 is two times higher than that of
BFLY4 and four times higher than that of BFLY2.

5.4. Recombining Two Real FFT Instruction: BRFT

The two real FFTs can be computed by one complex
FFT. Then, the complex FFT results can be decomposed
and recombined into two complex sequences repre-
senting two real FFTs. The instruction BRFT performs the
function of final decomposition and recombination as
represented by Equations [2AD] and [2AE]. In the proc-
ess, two complex data from the i-th and (N-i)-th elements
of the complex FFT results are fetched and computed to
get the results for the i-th element of each real FFT.

The LH9320 instructions BRFTL and BRFTU provide
the input and output data addressing for BRFT. Since the
spectrum for the real time samples has the symmetric
property, only half of the frequency samples can provide
all the information. To save time or storage, only half of
frequency samples are computed. The LH9320 instruc-
tions BRFTLS and BRFTUS provide the input and output
data addressing to compute the first half of frequency
samples for each real input sequence. The instruction has
18 cycles of latency.
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5.5. Recombining 2N Real FFT instruction: BFCT
or BFCT2

The 2N-point real FFT can be computed by a N-point
complex FFT. Then, the complex FFT results can be
decomposed and recombined into the 2N-point real FFT
results. The instruction BFCT or BFCT2 performs the
function of final decomposition and recombination as
represented by Equations [2AJ] and [2AK]. In the proc-
ess, two complex data from the i-th and (N—i)-th elements
of the complex FFT results are fetched and computed to
get the results for the i-th element or the (2N — i)-th
element of the 2N real FFT. The instruction BFCT gener-
ates the result for the i-th element only and BFCT2
generates the results for the i-th and (2N — i)-th elements
both.

The LH9320 instruction BFCTL provides the input data
addressing for BFCT and BFCT2 both. The instructions
BFCTUS and BFCTU provides the output data address-
ing for BFCT and BFCT2, respectively. Since the spec-
trum for the real time samples has the symmetric property,
the (2N — i)-th sample will be the complex conjugate of
the i-th sample. The instruction BFCTT will provide the
coefficient addressing for both instructions. Both instruc-
tions have 18 cycles of latency.

5.6. DFT or DCT Instruction: BCFIR or BDFIR

Both instructions basically compute the vector dot
operation required for the FIR operation. BCFIR com-
putes a complex vector dot operation with one tap per
cycle and BDFIR computes two real vector dot operation
with one tap per cycle. There are 18 cycles of latency for
both instructions. The equations represented by the
BCFIR for two complex sequences {h(n)} and {x(n)} are
expressed as:

Ye= 2 [hr(j) * Xd(j) - hi(j) * %()]

j=0 [5P]

and:

yi= 2, [0 * %0) + hi) * x0)]
=0 [5Q]

The equations represented by the BDFIR for two complex
sequences {h(n)} and {x(n)} are expressed as:

Y= z he(i) * %)

Fo [5R]

and:

yi= 2. hiG) * x()
=0 [58]

Thus, the instruction BDFIR sees the complex number
as two independent real numbers and do multiplications
for each part. The sum of product operation for both
instructions will be infinitely executed as the function is
continuously applied. The output data pins will be updated
according to the data in the accumulator. Users can latch
the output data at the proper time. The START signal will
clear the accumulator and users use this signal to initiate
a new sum of product operation and control the vector
length for each output. No overhead occurs between two
consecutive outputs.

5.7. General Complex Arithmetic Instruction:
CADD, CMAG, CMUL, or CSUB

The instructions CADD, CMUL, and CSUB are com-
plex operators which execute on two complex input data
to get one complex output data. The instruction CMAG
computes the magnitude square of a complex data to get
one real data. If the function of the operator is continu-
ously on, it can perform on the arbitrary length of arrays
or vectors.
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6. LH9320’S FFT ADDRESSING
INSTRUCTIONS

The LH9320 provides the address patterns and
matches the the 1/O throughput required by the LH9124.
It is programmable with 32 instruction buffers. The pa-
rameter PCSTART specifies the starting address and the
parameter PCSTOP specifies the ending address of the
executed codes. The instructions between these two
addresses can be infinitely executed as a loop if the
START pin is continuously triggered. The LH9320 pro-
vides over 150 address instructions. More than two thirds
of these instructions are used by FFT operations. Each
instruction associated with some definable parameters
stored in the on-chip RAM or registers generates the
desired address pattern at the proper time. The address-
ing modes required by general DSP algorithms such as
digit-reverse, modulo, and linear are all provided.

The number of points for FFT operations has to be a
power of two and is no larger than 22, This means that
one LH9320 can handle up to 22%-point FFT. We may
define thatthe 2-point FFT has M columns. Each column
can be implemented by one radix-2 stage. Hence, there
will be M stages for the 2¥-point FFT. Moreover, any two
consecutive columns can be implemented by one radix-4
stage or any four consecutive columns can be imple-
mented by one radix-16 stage. The M columns will be
denoted from column 0 to column M-1. The column O is
always the first stage and can be a radix-2, radix-4 or
radix-16 stage.

In the FFT operation, each stage not each column is
to be specified by one LH9124 radix execution instruction
in conjunction with three LH9320 instructions: first for
input data addressing, second for twiddle factor address-
ing, and third for output data addressing. The input and
output data have the same address patterns because the
in-place algorithm is employed.

The addressing instruction for either data or twiddle
factor is a function of two parameters: the radix of execu-
tion and the initial column of the stage. Table 6-1 shows
the data addressing instruction and Table 6-2 shows the
twiddle factor addressing as a function of the two parame-
ters. For a 128-point FFT, there will be 7 columns from
column 0o column 6 because 128 =27. Assume the FFT

is implemented by one radix-2 stage followed by one
radix-4 stage followed by one radix-16 stage. The data
and twiddle factor addressing instructions for the radix-2
stage are BF20 and TF20. These instructions can be
selected from column 0 under radix-2 from Table 6-1 and
6-2. The radix-4 stage begins with column 1. The instruc-
tions from column 1 under radix-4 is to be selected from
both tables. They will be MXB240 and MXT240. The
radix-16 stage begins with column 3. Similarly, the
instructions selected will be MXB24160 and MXT24160.

Table 6-1. LH9320 Instruction Selection

DSP Application Note

for FFT Data Pattern

COLUMN RADIX-2 RADIX-4 RADIX-16
0 BF20 BF40 BF160
1 BF21 MXB240 | MXB2160
2 BF22 BF41 MXB4160
3 BF23 MXB241 MXB24160
4 BF24 BF42 BF161
5 BF25 MXB242 | MXB2161
6 BF26 BF43 MXB4161
7 BF27 MXB243 MXB24161
8 BF28 BF44 BF162
9 BF29 MXB244 MXB2162
10 BF210 BF45 MXB4162
11 BF211 MXB245 | MXB24162
12 BF212 BF46 BF163
13 BF213 MXB246 | MXB2163
14 BF214 BF47 MXB4163
15 BF215 MXB247 | MXB24163
16 BF216 BF48 BF164
17 BF217 MXB248
18 BF218 BF49
19 BF219
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Table 6-2. LH9320 Instruction Selection

for FFT Twiddle Factors
COLUMN RADIX-2 RADIX-4 RADIX-16

0 TF20 TF40 TF160

1 TF21 MXT240 MXT2160
2 TF22 TF41 MXT4160
3 TF23 MXT241 MXT24160
4 TF24 TF42 TF161

5 TF25 MXT242 MXT2161
6 TF26 TF43 MXT4161
7 TF27 MXT243 MXT24161
8 TF28 TF44 TF162

9 TF29 MXT244 MXT2162
10 TF210 TF45 MXT4162
11 TF211 MXT245 MXT24162
12 TF212 TF46 TF163
13 TF213 MXT246 MXT2163
14 TF214 TF47 MXT4163
15 TF215 MXT247 MXT24163
16 TF216 TF48 TF164

17 TF217 MXT248

18 TF218 TF49

19 TF219

6.1. Digit-Reverse Input Data Addressing: RBF0

The FFT algorithm implemented by the LH9124 and
LH9320 is decimation-in-time with digit-reverse inputs.
The instruction RBFO is used to generate a digit-reverse
sequence from a linear sequence. The instruction con-
sists of two parameters to be specified. The parameter N
indicates the length of the FFT and the 20-bit parameter
DIGITREV specifies the structure of the FFT.

For N = 2M, the least significant M bits will be mapped
by the structure of the FFT and all the other bits are set
zeros. These M bits can also be mapped to the M columns
of the FFT with column 0 mapped to the (M — 1)-th bit,
column 1 mapped to the (M — 2)-th bit, and so on. If the
column i is implemented by a radix-2 stage, the associ-
ated (M —i—1)-th bitin DIGITREV will be zero. Otherwise,
the (M — i — 1)-th bit will be one. For a 128-point FFT
implemented by 2 x 4 x 16, the least significant seven bits
in DIGITREV will be specified by the structure. These
seven bits will be 0111111 according to the specified rule.
The first zero indicates the first stage of the FFT is a
radix-2 stage. The following six bits are one. Thus, the
stages followed the radix-2 stage could be three radix-4
stages, one radix-4 stage followed by one radix-16 stage,

or one radix-16 stage followed by one radix-4 stage. In
the LH9124, a radix-16 stage is actually implemented by
two cascaded radix-4 stages. Thus, a radix-16 stage is
seen as two radix-4 stages in digit-reverse sequence
generation. The digit-reverse sequence will be the same
for2x4x 16,2 x4 x4 x4, or 2 x 16 x 4, although they
have different implementation structures.

In section 2.2.3, we have discussed that if the structure
of the FFT have been defined, the digit-reverse sequence
can be systematically generated. The radius pattern dis-
cussed in that section can be mapped into DIGITREV and
vice versa. Inthe LH9320, if N and DIGITREYV are defined,
the digit-reverse sequence with length N will be gener-
ated.

6.2. FFT Data Addressing

The LH9320 provides instructions to generate data
address sequences for the radix-2, radix-4, or radix-16
stage which can begin with an arbitrary column. The only
parameter N specifies the number of points of the FFT
and the number of addresses to be generated. This value
has to be a power of two and is equal to or less than 2%,
The in-place FFT algorithm is employed. Thus, the input
and output data address sequences will be the same for
any stage of the FFT except the first stage. If the data
stored in the input acquisition RAM is in linear order, the
instruction of the first input stage will be RBFO instead of
BF20, BF40, or BF160.

6.2.1. Radix-2 Data Addressing: BF2i

The instruction in this group generates the data
address sequence for the execution of a radix-2 stage.
BF2i generates a data address sequence for the radix-2
butterfly stage at the i-th column. The radix-2 data
address sequence of the i-th column can be generated
by the following algorithm:

for(k=0; k<2 - 1: k++)

for(j=0;js§—1;j++)

(Outputj * 2'+ K|
6.2.2. Radix-4 Data Addressing: BF4i, MXB24i

The instruction in this group generates the data
address sequence for the execution of a radix-4 stage.
BF4i generates a data address sequence for the radix-4
stage beginning with the (2 * i)-th column. MXB24i gen-
erates a data address sequence for the radix-4 stage
beginning with the (2 * i + 1)-th column. The radix-4 data
address sequence of the (2 * i + m)-th column can be
generated by the following algorithm:

for (k=0; k <2™4 — 1; k++)
for(j:O;jszl—th)

m4i

[outputj * 24 + K
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6.2.3. Radix-16 Data Addressing: BF16i,
MXB216i, MXB416i, MXB2416i

The instruction in this group generates the data
address sequence for the execution of a radix-16 stage.
BF16i is to generate a data address sequence for the
radix-16 stage beginning with the (4 = i)-th column.
MXB216i generates a data address sequence for the
radix-16 stage beginning with the (4 * i + 1)-th column.
MXB416i generates a data address sequence for the
radix-16 stage beginning with the (4 * i + 2)-th column.
MXB2416i generates a data address sequence for the
radix-16 stage beginning with the (4 * i + 3)-th column.
The radix-16 data address sequence of the (4 * i + m)-th
column can be generated by the following algorithm:

for (k=0; k< 2™6' - 1; k ++)

N L
m16i_1yj"+)

for(j=0;j<

(Outputj * 2™16'+ K|
6.3. FFT Twiddle Factor Addressing

The LH9320 provides instructions to generate twiddle
factor sequences for all the stages of the FFT. The stage
can be a radix-2, radix-4, or radix-16. The instruction in
this group with three specified parameters control the
pattern of a generated address sequence. The parameter
N denotes the number of points of the FFT and the

number of addresses to be generated. The parameter
MEMSIZE specifies the memory size of twiddle factors to
be employed. The size of twiddle factors is equal to N or
to N multiplied by a factor d. This factor has to be a power
of two. The third parameter is the 4-th bit of the mode
register Mode[4]. If zero, the memory stores 360 degrees
of twiddle factors. Otherwise, it stores all the twiddle
factors in the fourth quadrant and the point at 270 degree.

The algorithms generating twiddle factor sequences
discussed later assume that N = MEMSIZE and the
twiddle factors stored are 360 degrees. If the MEMSIZE
is larger than N by a factor d, the effective address is
obtained by the generated address Adr multiplied by this
factor. If the twiddle factors stored are 90 degrees, the
effective address is calculated from the generated
address Adr by the following equation:

Effective Address =
Adr if Adr < MEMSIZE/4
MEMSIZE/2 — Adr if MEMSIZE/4 < Adr < MEMSIZE/2
Adr — MEMSIZE/2 if MEMSIZE/2 < Adr < 3*MEMSIZE/4
MEMSIZE - Adr  if 3 * MEMSIZE/4 < Adr < MEMSIZE

[6A]

Thus, the memory size can be saved by a factor of four.
Figure 6-1 shows the twiddle factors for MEMSIZE = 16,
and N = 16. The twiddle factors are equally spaced on the
unit circle in the clockwise order starting at position (1,0).

11

10

90°

12

'\113

360°

180°

4

270°

9320-830

Figure 6-1. Address Mapping of
90 Degree Twiddle Factors
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Any point that is not on the fourth quadrant or on the point
of 270 degree can be mapped into the fourth quadrant or
the point of 270 degree. For example, the 13th point at
the first quadrant, the 11th point at the second quadrant,
and the 5th point at the third quadrant will be mapped into
the 3rd point of the fourth quadrant. Thus, only N/4 + 1
points instead of N points of twiddle factors are required
for the N-point FFT.

The sign of real part or imaginary part of a complex
coefficient might be changed when loaded to the LH9124
if Mode[4] = 1. There are two input coefficient sign control
pins CCOMR and CCOMI. The LH9320 will generate the
required control signals for these two pins. Table 6-3
shows how the control signals CCOMR and CCOMI are
changed according to the generated address Adr. If
CCOMR is one, the real part of the twiddle factor loaded
to the LH9124 will be negated. Similarly, CCOMI will
control the sign of the imaginary part of the twiddle factor.
The twiddle factor addresses and control signals ccomr
and ccomi are a function of Mode[4] and MEMSIZE. Table
6-4 shows some examples for a 16-point FFT.

Table 6-3. Relation Between Control Signals
and Location of Twiddle Factor

TWIDDLE FACTOR LOCATION CCOMR | CCOMI
Adr< MEMSIZE /4 0 0
MEMSIZE/4 < Adr < MEMSIZE/2 1 0
MEMSIZE/2 < Adr < 3 * MEMSIZE /4 1 1
3 * MEMSIZE/4 < Adr < MEMSIZE 0 1

6.3.1. Radix-2 Twiddle Factor Addressing: TF2i

The instruction in this group generates the twiddle
factor address sequence for the execution of a radix-2
stage. TF2i generates a twiddle factor sequence for the
radix-2 stage at the i-th column. The algorithm generating
the radix-2 twiddle factor address sequence at the i-th
column is listed in the following:

Adr=£

j+1
for (k=0; k<2 — 1; k++)
. N .
for(1=0;1s£g—1;14+)

{output 0
output k * Adr}

Table 6-4. Example of Twiddle Factor Addresses with MEMSIZE and Control Signals

4TH BIT
OF N MEMSIZE DATA 1 2 3 4 5 6 7 8 9 10 |11 (12 | 13 | 14 | 15 | 16
MODE
Adr ojo|ojo]o|1]|]2|3|0]|2]4 0|3
0 |16 16 CCOMR [0|O0|O0OfO]|O]O|O|O|O|O]O 0o|o
CCOoMI olo|o|lo|lo|lo|o(ofO|O|O|O|O|O[O]O
Adr olo{o|lo|lo|2|4({6|0|4|8|12] 0|6 12|18
0 |16 32 CCOMR |0|O0|0O|O0|O|O|O]|O]j]O|O|O]O|O|O|O]|O
CCOMI o|lo|lo|lo|o|o|o|o|]Oo|]oOo|O|]O|O|O|O|O
Adr o|lo|lo|lo|o|1|2|3|0|2|4|2|0|83|2]1
1 |16 16 CCOMR |0|O0|O0|O0O|O|O|O[O|O|[O]|O|1]|O|O][1]H1
ccoMml ololoflo|lo|ojofofo|O|lOo|lO|O|O|O]H
Adr ololo|lolo|2]|4]6|0|4|8|4|0|6|4]2
1 116 32 CCOMR |o0|O0|O0O|O0|O|O]|O|]O|O|O|O|1]O|O|1]H1
CCOMI ojo|ololo|o|o|olo|O|O|O|O|O|O]H1
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6.3.2. Radix-4 Twiddle Factor Addressing: TF4i,
MXT24i

The instruction in this group generates the twiddle
factor address sequence for the execution of a radix-4
stage. TF4i generates a twiddle factor sequence for the
radix-4 stage beginning with the (2 * i)-th column. MXT24i
generates a twiddle factor sequence for the radix-4 stage
beginning with the (2 * i + 1)-th column. The algorithm
generating the radix-4 twiddle factor address sequence
of the (2 * i + m)-th column is listed in the following:

N

m i+t
4

Adr =

for (k=0; k< 2™4' —1; k ++)

for (j=0;]j 52—m4i+1 -1+
{output O

output k = Adr

output 2k = Adr

output 3k * Adr}

6.3.3. Radix-16 Twiddle Factor Addressing:
TF16i, MXT216i, MXT416i, MXT2416i

The instruction in this group generates the twiddle
factor address sequence for the execution of a radix-16
stage. TF16i generates a twiddle factor sequence for the
radix-16 stage beginning with the (4 * i)-th column.
MXT216i generates a twiddle factor sequence for the
radix-16 stage beginning with the (4 * i + 1)-th column.
MXT416i generates a twiddle factor sequence for the
radix-16 stage beginning with the (4 * i + 2)-th column.
MXT2416i generates a twiddle factor sequence for the
radix-16 stage beginning with the (4 * i + 3)-th column.
The algorithm generating the radix-16 twiddle factor ad-
dress sequence of the (4 *i + m)-th column is listed in the
following:

Adr1 =

2+m i

2#"16
N

2m16i+1

for (k=0; k< 2™6' - 1; k ++)

for (j=0;j<

Adr2 =

2m16i+1 =i+
{output 0}
for(I=1;1<3;1+H)

{output | » k » Adr1}
for(1=1;1<3;1++)

{output | * k » Adr2}
for(1=1;1<3;1++)

loutput 1 * 216 + k) * Adr2]
for1=1;1<3;1++)

[output I # (2 * 2™6' + k) * Adr2)

for(1=1;1<3; 1+
loutput | * (3 * 2716 +k) * Adr2]

6.4. Recombining Two Real N-Point FFT
Addressing

The instructions in this group generate address
sequences to support the instruction BRFT of the
LH9124. The frequency sample X(k) after the FFT opera-
tion is in linear order. We may assume that the sequence
{X(k)} with length N stored in the buffer 2 of Figure 6-2
begins with address 0. Based on the recombination proc-
ess implemented by Equations [2AD] and [2AE], we will
generate two linear sequences {H(k)} and {G(k)} stored
in the buffer 3 of Figure 6-2. The length for each sequence
is N. {H(k)} begins with address 0 and {G(k)} begins with
address N for the full length computation and address N/2
for the half length computation. The information for the
other half can be obtained from the symmetric properties
of DFT. It can be derived from Equations [2AD] and [2AE]
that the input data at addresses i and N — i will generate
two output data to be stored at addresses i and N + i for
the full length sequence computation and at addresses i
and N/2 + i for the half length sequence computation.

6.4.1. Input Data Addressing: BRFTL and BRFTLS

The instructions BRFTL and BRFTLS generate the
input address sequences for the recombination process.
The difference between the two is that BRFTL generates
the full address sequences for {H(k)} and {G(k)} and
BRFTLS only generates the first half of the address
sequences. The address sequence generated by BRFTL
is given by the following algorithm:

Output0and 0
for(k=1; k< N; k++)
{Qutput k and N — k}

BUFFER 1

!

FFT
OPERATION

J

BUFFER 2

{

RECOMBINATION
PROCESS

#

BUFFER 3

9124-263

Figure 6-2. Block Diagram of Real FFT
Recombination Process
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and the sequence generated by BRFTLS is given by:

Output 0 and 0
for (k=1; k< N/2; k ++)
{Output k and N — k}

6.4.2. Output Data Addressing: BRFTU and
BRFTUS

The instructions BRFTU and BRFTUS generate the
output address sequence for the results of the recombi-
nation process. The instructions BRFTU and BRFTUS
are used in conjunction with the instructions BRFTL and
BRFTLS, respectively. The address sequence generated
by BRFTU is given by the following algorithm:

for (k=0; k< N; k ++)
{Output k and N + k}

and the sequence generated by BRFTLS is given by:

for (k= 0; k < N/2; k ++)
{Output k and N/2 + k}

6.5. Recombining Real 2N FFT Addressing

The instructions in this group generate address
sequences to support the instructions BFCT and BFCT2
of the LH9124. Comparing Equations [2AJ] and [2AK]
with Equations [2AD] and [2AE], it can be seen that the
input data address sequences for both cases are the
same. However, recombination process for 2N real FFT
requires one coefficient address sequence to fetch twid-
dle factors used by the FFT operation. In addition, the
results are a sequence with length 2N instead of two
sequences with length N apiece. The generated 2N re-
sults have the symmetric properties of the DFT. The real
data is symmetric and the imaginary data is anti-symmet-
ric to the center point N. The information of the highest
frequency sample at address N is lost. Based on Equa-
tions [2AJ] and [2AK] and the symmetric property of the
DFT, the input data at addresses i and N —i will generate
the output data to be stored at addresses i and 2N — i.
Thus, the highest frequency sample at address N cannot
be generated from the recombination process. From the
symmetric property of the DFT, the first N points provide
enough information to describe the whole 2N sequence
except the point N.

6.5.1. Input Data Addressing: BFCTL

The address sequence generated by the instruction
BFCTL is the same as that by the instruction BRFT. The
address sequence is generated by the following algo-
rithm:

Output 0 and 0
for (k=1; k<N; k++)
{Output kand N — k}

6.5.2. Parameter Addressing: BFCTT

The instruction BFCTT generates the address
sequence to fetch the parameter, WKy, required by Equa-
tions [2AJ] and [2AK]. The factor d is defined the same as
that used for the FFT instructions except the length being
2N instead of N. The bit Mode[4] can be set to save the
buffer required to store the twiddle factors. The address
sequence is generated by the following algorithm:

d = MEMSIZE/(N * 2)
for (k=0; k< N; k ++)
{Output k * d and k » d}

6.5.3. Output Data Addressing: BFCTU and
BFCTUS

The instructions BFCTU and BFCTUS generate the
output address sequences for the results of the recombi-
nation process. Both BFCTU and BFCTUS are used in
conjunction with BFCTL. BFCTU generates the address
sequence with 2N length and BFCTUS only generate the
first half of the 2N addresses. The address sequence
generated by BFCTU is given by the following algorithm:

Output 0 and index address
for(k=1; k<N; k++)
{Output k and 2N —k}

and the sequence generated by BFCTUS is given by:

for (k=0; k< N; k ++)
{Output k and k}

6.6. DFT Addressing: ADECIM

The DFT operation can be represented by the following
matrix form:

x©0) | [wg wh.. wy ][ x©) |
XAy | |wy wy.wy | xa
X@ (Wl WL Wi x@

0 N-1 N-1
wawh L wd

X(N-1) Lx(N—1) [6B]

where M, is the twiddle factor of the FFT and is periodic
with period N. Thus,

VV‘;,:W',;W*N form=...,-2,-1,0,1,2, ... [6C1

To compute the i-th frequency sample, we have to fetch
the twiddle factors from the i-th row of Equation [6B]. The
instruction ADECIM providing five parameters is used to
generate the address sequence to fetch the twiddle fac-
tors for the DFT. The parameter N specifies the length of
the time or frequency samples and also indicates the
length of addresses in each set of the address sequence.
MEMSIZE defines the memory size of the twiddle factors.

1A-40
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The first set of the address sequence can be obtained by
the following recursive equation:

Adr,,; = Mod(Adr; + DFACTOR )yevsize [6D]

The initial value Adr, is always at address 0. The
parameter DFACTOR denotes the address difference of
two consecutive fetched addresses in the twiddle factor
memory for the first setof N addresses. Thus, DFACTOR,
= DFACTOR. Equation [6D] also indicates that the
addressing of ADECIM is a modulo addressing with
modulo length equal to MEMSIZE. The DFACTOR will be
updated after one set of N addresses as follows:

DFACTOR;,; = DFACTOR + LEAP [6E]

LEAP denotes the value DFACTOR to be incremented
between two consecutive set of addresses. NLEAP indi-
cates how many sets of addresses to be generated. For

example, given N = 8 and MEMSIZE = 16, the frequency
samples X(1), X(3), X(5), and X(7) are to be computed.
We will set DFACTOR = 2, LEAP = 4, and NLEAP = 4.
Table 6-5 shows the twiddle factor address sequence
generated for the DFT computations.

Table 6-5. Example of an ADECIM
Address Sequence

DSP Application Note

ADDRESS | 1 2 3 4 5 6 7 8
Set 1 02| 4|6 8 (10|12 | 14
Set2 0 12| 2 8 |14 4 | 10
Set3 0 (10| 4 {14 8 12 | 6
Set 4 0 (1412 10| 8 4 2
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7. EXAMPLES OF FFT IMPLEMENTATION

The LH9124 and LH9320 system configuration with
four 1/O ports shown in Figure 4-1 will be employed for
the following FFT application examples. Users have the
flexibility in selecting either three or four port configuration
for their FFT applications. The Q port is designed as an
acquisition port and the C port is used as a coefficient
port. We may assume that the input data are stored in
linear order in the input acquisition Q port. The coefficients
such as twiddle factors are always through the C port. The
input and output ports can be any two of the three ports.
There are three input pins, DF[2:0], to control the data
flow among these four ports.

7.1. Comparison of Four Different 256-Point FFT
Structures

FFT applications using the LH9124 and LH9320 are
easy and powerful. This section gives one example to
discuss how to implement the instructions of LH9124 and
LH9320 and how to optimize the performance. The
example is to implement a 1024-point FFT with four
different structures: (1) 2x2x2Xx2Xx2x2x2x2Xx2x 2,
(2)4x4x4x4x4and(3)4x16x16.

The general purpose DSP chip implementing the FFT
algorithm with non-mixed radix mode usually requires
writing a software program with three nested loops. The
inner loop is to compute the fundamental module such as
the radix-2 or radix-4 butterfly. The performance of the
FFT basically depends on the speed of computing large
volume of butterflies. The fundamental modules are built
in the data path of the LH9124. Therefore, the perform-
ance of the LH9124 is tremendous improved by the
hardware approach instead of the software programming.

The outer loop of the software program is to control the
stage of the FFT operation. The instructions implemented
by the LH9124 are in this level. Thus, the number of
instruction codes depends on the number of stages of the
FFT as shown in Table 7-1 to Table 7-3. The advantage
of defining instructions at this level is easy for program-
ming. The structure of the FFT can be directly mapped
into and coded by the LH9124’s instructions. In addition,
both mixed and non-mixed radix mode of the FFT can be
efficiently implemented. Furthermore, the time required
for computing a stage is dependent on the length of block
data and is regardless of the instructions implemented.
Hence, users can easily find an optimum structure for
their applications. For the general DSP chips, the length
of instruction codes will be greatly increased if the FFT is
implemented in mixed radix modes.

The function of the middle loop is to control the data
transfer. It will generate the addresses for fetching data

and twiddle factors executed by the inner loop within a
stage and storing the computed data in the proper posi-
tion for the next stage operation. This function is actually
done by the LH9320. There are three instructions asso-
ciated with the input data block, output data block and
twiddle factors as shown in Table 7-1 to Table 7-4. No
overhead occurs between the LH9124 and LH9320
because the functions are well-partitioned. Thus, the
required cycles for the computation of a stage are equal
to the number of points executed without overhead from
the data or twiddle factor addressing. If the input data is
in digit-reverse order in the acquisition port, the instruction
RBFO has to be replaced by BF20, BF40, or BF160. Table
7-1 and Table 7-3 show that the input data are in linear
order and the digit-reverse instruction has to be applied.
Table 7-2 shows that the input data are in digit-reverse
order. Therefore, the don’t care notation "X" is set for the
parameter DIGITREV in the Q port of Table 7-5. However,
the instruction at the output of stage 1 remains
unchanged.

The instruction BFLY2, BFLY4, or BFLY16 will be
employed to the first stage of execution with no window
function applied to the input data or a rectangular window
implicitly applied. When a window function other than a
rectangular window is applied, the function can be exe-
cuted in conjunction with the first stage of radix-2 or
radix-4 operation. The instructions BFLY2 and BFLY4 will
be replaced by BWND2 and BWND4 in the first windowed
radix operation stage. A radix-16 stage cannot be com-
bined with the window execution. Thus, the window func-
tion has to be performed by an extra stage.

Table 7-1 and Table 7-3 show that both the input and
window data stored in the input and coefficient ports are
in linear order. Thus, the digit-reverse address instruction
is applied to both ports. In the example of Table 7-2, the
input and window data both are stored in digit-reverse
order. Therefore, the instructions BF40 and TF40 are
performed. The final results are in linear order stored in
the Q output acquisition port. For the input data sequence
defined by Equation [3B], we may get the output power
spectrum results shown in Figures 3-2 to 3-4.

Table 7-4 compares the performance of the four differ-
ent FFT structures. It can be seen that the performance
is inversely proportional to the number of stages of the
structure. The higher the performance, the shorter the
stages. Thus, the three stage 4 x 16 x 16 structure has
the best computing efficiency for the 1024-point FFT. We
assume that the computing efficiency for the non-mixed
mode radix-2 structure is 1. The computing efficiency of
other structures will be compared with that of the radix-2
structure.
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Table 7-1. Instructions for 1024-Point FFTby 2 x2x2x2x2x2x2x2Xx2Xx2
sTage | EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE
1 BWND2 Q RBFO A BF20 C RBFO
2 BFLY2 A BF21 B BF21 C TF21
3 BFLY2 B BF22 A BF22 C TF22
4 BFLY2 A BF23 B BF23 C TF23
5 BFLY2 B BF24 A BF24 C TF24
6 BFLY2 A BF25 B BF25 C TF25
7 BFLY2 B BF26 A BF26 C TF26
8 BFLY2 A BF27 B BF27 C TF27
9 BFLY2 B BF28 A BF28 C TF28
10 BFLY2 A BF29 Q BF29 C TF29
Table 7-2. Instructions for 1024-Point FFT by 4 x4 x4 x4 x4
STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORt CODE PORT CODE PORT CODE
1 BWND4 Q BF40 A BF40 C TF40
2 BFLY4 A BF41 B BF41 C TF41
3 BFLY4 B BF42 A BF42 C TF42
4 BFLY4 A BF43 B BF43 C TF43
5 BFLY4 B BF44 Q BF44 C TF44
Table 7-3. Instructions for 1024-Point FFT by 4 x 16 x 16
STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE
1 BWND4 Q RBFO B BF40 C RBFO
BFLY16 B MXB4160 A MXB4160 C MXT4160
BFLY16 A MXB4161 B MXB4161 C MXT4161
Table 7-4. Performance Comparison for the Structures of 1024-Point FFT
STRUCTURE 2X2X2X2X2X2X2X2X2X2 4x4x4x4x4 4x16x16
Cycles 10420 5210 3276
No. of Stages 10 5 3
Efficiency 1 2 3.18
DSP Application Note 1A-43
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The LH9320 instruction codes can be stored either in
the on-chip program memory or in the external memory.
The bit Mode[0] controls where it is in the internal or
external program memory mode. In the internal mode,
two parameters PCSTART and PCEND specify the start-
ing and ending addresses of a program. The parameter
N specifies the number of points of the FFT and N = 1024
in the example. The parameter MEMSIZE specifies the
size of twiddle factors and is equal to N multiplied by a
factor, d, when d = 2}, for j = 0,1, ... . The parameter
DIGITREV is specified by the structure of the FFT. The
digit-reverse sequence is generated based on this
parameter and N. A radix-16 stage is considered as two
radix-4 stages in generating the digit-reverse sequence.

Table 7-5 lists the parameters set in each port of the
LH9320 for the above three examples.

The optimum performance is usually obtained by
selecting a FFT structure that has a minimum number of
stages. The 16-point FFT is the only exception to this rule
because the latency time is higher than the computation
time. Thus, a two-stage 4 x 4 structure is faster than a
one-stage radix-16 structure. Table 7-6 lists the optimum
structure of the FFT as a function of the number of points.
The structure is arranged in ascending radix order. How-
ever, the order of radix operation can be exchanged
without changing the performance.

Table 7-5. LH9320 Parameter Setting for Each Port of the LH9124

PARAMETER N T MEMSIZE DIGITREV
2X2X2X2X2X2x2x2%x2x2
Q Port 000000000010000000000 000000000010000000000 00000000000000000000
APort 000000000010000000000 000000000010000000000 X
B Port 000000000010000000000 000000000010000000000 X
C Port 000000000010000000000 000000000010000000000 00000000000000000000
4x4x4x4x%x4
Q Port 000000000010000000000 000000000010000000000 X
A Port 000000000010000000000 000000000010000000000 X
B Port 000000000010000000000 000000000010000000000 X
C Port 000000000010000000000 000000000010000000000 X
4x16x16
Q Port 000000000010000000000 000000000010000000000 00000000001111111111
APort 000000000010000000000 000000000010000000000 X
B Port 000000000010000000000 000000000010000000000 X
Table 7-6. Optimum N-Point FFT Structure by the LH9124
NO. OF POINTS STRUCTURE 2048 2x4x16% 16
8 2x4 NO. OF POINTS STRUCTURE
16 4x4 4096 16 x 16 x 16
32 2x16 8192 2x16x16x 16
64 4x16 16382 4x16x16x 16
128 2x4x16 32764 2x4x16x16x 16
256 16 x 16 65528 16 x16x16x 16
512 2x16x 16 131056 2x16x16x16x 16
1024 4x16x 16 262102 4x16x16x16x 16
1A-44 DSP Application Note
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7.2. 2-D FFT Implementation

The 2-D FFT implementation is usually obtained by
employing 1-D FFT on the 2-D image column by column
and row by row. The 2-D FFT implementation discussed
in this section will assume the whole 2-D image as a long
1-D array. Then, the 1-D FFT implementation with a little
modification can be directly and efficiently employed to
the 2-D FFT.

7.2.1. 2-D Digit-Reverse Sequence Generation

For the FFT algorithm implemented by the LH9124 and
LH9320, the input sequence either for 1-D or 2-D FFT is
in digit-reverse order and the output sequence is in linear
order. The straightforward way of obtaining a 2-D digit-
reverse array is to do the 1-D digit-reverse for each
column and then for each row of the 2-D array. In the
following, a more efficient way is presented by consider-
ing the whole 2-D array together as a 1-D long sequence
and doing the digit-reverse by the instruction RBFO pro-
vided by the LH9320.

The general memory device is a 1-D array. Thus, the
2-D array with dimension (N4,N,) has to be mapped into
the 1-D storage. Both N; and N, have to be a power of
two. In the column-major order, an element (n4,n,) in a

2-D array (N4,N,) is mapped into a 1-D device with the
address represented by:

n=N,*n,+n, [7A]

Table 7-7 shows an example of a 2-D array with
dimension (8,8). The element (ny,n,) has the associated
1-D address depicted on the left of parenthesis. Assume
that the 1-D array is implemented by the structure of 4 x 2
in each row and by the structure of 2 x 4 in each column.
After the 2-D FFT, the function X(k4,ko) has digit-reverse
order on both indices k; and k,. Table 7-8 shows the 2-D
digit-reverse array with its associated address in the 1-D
array depicted on the left of parenthesis. The digit-reverse
sequence shown in the table has to be derived first
because the input sequence of the FFT computed by the
chip is in digit-reverse order.

Assume thatthe 2-D FFT is obtained by doing 1-D FFT
for each row first and then for each column. Thus, we
should get a 1-D sequence from Table 7-8 in the row-ma-
jor order. It can be seen that the digit-reverse sequence
can be obtained from the instruction RBFO by setting N =
8 * 8 and the structure of 4 x 2 x 2 x 4. For the general
array (N4,N,), the parameter N is obtained by Ny multi-
plied by N, and the structure is obtained by the structure

Table 7-7. Memory Address for 8 x 8 2-D Linear Array

0(0,0) 8(1,0) 16(2,0) 24(3,0) 32(4,0) 40(5,0) 48(6,0) 56(7,0)
1(0,1) 9(1,1) 17(2,1) 25(3,1) 33(4,1) 41(5,1) 49(6,1) 57(7,1)
2(0,2) 10(1,2) 18(2,2) 26(3,2) 34(4,2) 42(5,2) 50(6,2) 58(7,2)
rf 3(0,3) 11(1,3) 19(2,3) 27(3,3) 35(4,3) 43(5,3) 51(6,3) 59(7,3)
4(0,4) 12(1,4) 20(2,4) 28(3,4) 36(4,4) 44(5,4) 52(6,4) 60(7.,4)
5(0,5) 13(1,5) 21(2,5) 29(3,5) 37(4,5) 45(5,5) 53(6,5) 61(7,5)
6(0,6) 14(1,6) 22(2,6) 30(3,6) 38(4,6) 46(5,6) 54(6,6) 62(7,6)
7(0,7) 15(1,7) 23(2,7) 31(3,7) 39(4,7) 47(5,7) 55(6,7) 63(7,7)
Table 7-8. Memory Address for 8 x 8 2-D Digit-Reverse Array
ki —
0(0,0) 16(2,0) 32(4,0) 48(6,0) 8(1,0) 24(3,0) 40(5,0) 56(7,0)
4(0,4) 20(2,4) 36(4,4) 52(6,4) 12(1,4) 28(3,4) 44(5,4) 60(7,4)
1(0,1) 17(2,1) 33(4,1) 49(6,1) 9(1,1) 25(3,1) 41(5,1) 57(7,1)
kf 5(0,5) 21(2,5) 37(4,5) 53(6,5) 13(1,5) 29(3,5) 45(5,5) 61(7,5)
2(0,2) 18(2,2) 34(4,2) 50(6,2) 10(1,2) 26(3,2) 42(5,2) 58(7,2)
6(0,6) 22(2,6) 38(4,6) 54(6,6) 14(1,6) 30(3,6) 46(5,6) 62(7,6)
3(0,3) 19(2,3) 35(4,3) 51(6,3) 11(1,3) 27(3,3) 43(5,3) 59(7,3)
7(0,7) 23(2,7) 39(4,7) 55(6,7) 15(1,7) 31(3,7) 47(5,7) 63(7,7)
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for the row array cascaded by the structure for the column
array. The parameter DIGITREV is obtained by mapping
the cascaded stages to the associated bits.

The 1-D sequence for the 2-D digit-reverse can be
derived from the definition of 2-D to 1-D mapping shown
in Equation [7B]. The digit-reverse sequence can be
obtained by the following equation:

dr(n) = N, * dr(n,) + dr(ny) [78]

Since the 2-D FFT is obtained by-doing the 1-D FFT for
each row first, the 1-D digit-reverse sequence derived
from the 2-D array is obtained by the following algorithm:

for (ny; Ny < Ny; Ny ++)
for (ny; ny < Ny; ny ++)
dr(n)

Given a 2-D digit-reverse array shown in Table 7-8, the
output will be a 2-D linear array shown in Table 7-7 after
2-D FFT operations. However, the 2-D array mapped into
the 1-D array is in the row-major order instead of the
column-major order. The 2-D array mapped into the 1-D
array can also be defined by the following equation:

n=N; *n,+n;, [7C]
In this case, the above discussion is still valid if row and
column are exchanged.

7.2.2. Data and Twiddle Factor Sequence

Corresponding to the 2-D digit-reverse sequence gen-
erated in section 7.2.1, the 2-D FFT is done by the 1-D
FFT with row-by-row first and then column-by-column.
Assume that the stage executed is a radix-2 and its
associated address instructions are BF2i and TF2i. If we
do 1-D FFT for the same stage of all the rows, the data
address sequence to be generated is given as the follow-
ing algorithm:

for (I1=0; 1 < Ny; | ++)
for k=0, k<2 —1;k++)
o N
fOr(j=0,jSE— 1)+
foutput j * 2 + k+1%N,)
and the twiddle factor address sequence to be generated
is given as the following algorithm:
N
Adr=—%
2
for (1=0; 1 < Ny; | ++)
for (k=0;k<2 - 1;k++)

Ny
i+1

for(j=0;j< -1;j+0)

{output 0, k = Adr}

Since the in-place algorithm is used, changing the
order of butterfly computations will not change the final
results as long as the data and twiddle factors are
changed accordingly. It can be seen from the twiddle
factor algorithm that the butterflies with the same index k
use the same twiddle factors. We may put all the butter-
flies with the same index k together. Thus, we can delete
both the outer loops and change the length of the inner
loop from N, to N in both algorithms, where N = Ny * N,.
We still get the same results after changing the order of
the address sequences. This means that the instructions
BF2iand TF2iwith N = N, * N, canimplementthe radix-2
stage for all the rows. The same discussion can also be
applied to the radix-4 or radix-16 stage. For the example
shown in Table 7-8, each row is implemented by the
structure of 4 x 2. The FFT for all the row-by-row operation
can be implemented by two stages with instructions
shown in Table 7-9 and N = 64.

Next, we consider doing 1-D FFT for all the columns
of the 2-D array. Similarly, assume that the stage exe-
cuted is a radix-2 and its associated address instructions
are BF2i and TF2i. If we do 1-D FFT for the same stage
of all the columns, the data address sequence to be
generated is given as the following algorithm:

for (I=0; 1< Ny; I ++)
for (k=0 k<2 —1; k++)
) .\ .
for(=0;j<——-1;j+b
2
[output j * 2"+ Ny +k * Ny +1}

and the twiddle factor address sequence to be generated
is given as the following algorithm:

N
Adr=—2
for 1=0; 1 < Ny; [ ++)
for (k=0; k<2 — 1; k ++)

N
i+1

{output 0, k * Adr}

for j=0;j< 15§+

Similarly, we can put all the butterflies with the same
twiddle factors together. Then, the data address
sequence will be generated by the following algorithm:

for (k=0; k<2 % N, - 1; k ++)
for(j=0;j<

i _111H)
* Ny

foutput j * 2' % N, +K|
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and the twiddle factor address sequence will generated
by the following algorithm:

N
Adl’=;

for (k=0 k<2 — 1; k++)
) ._ N .
fOI’(j=0;j_<_'2ﬁ—1;j—H-)
{output 0, k = Adr}

Thus, the twiddle factor address instruction is the same
as that for the 1-D column array but the length of the FFT
is changed to N. The data address instruction will be
changed from BF2i to BF2j, where j=i + ¢, and N, = 2.
The same discussion can also be applied to the radix-4
or radix-16 stage. For the example shown in Table 7-8,
each column is implemented by the structure of 2 x 4. The
FFT for all the column-by-column operation can be imple-
mented by two stages with instructions shown in the last
two rows of Table 7-9 and N = 64.

Table 7-9 shows the LH9124 and LH9320 instructions
to implement (8,8) 2-D FFT with its row structure by 4 x 2
and column structure by 2 x 4. Table 7-10 shows the
LH9124 and LH9320 instructions to implement 64-point
1-D FFT with the structure by 4 x 2 x 2 x 4. Both cases
will use the same time to complete the operation. It can
be seen that both cases employ the same data address
instructions. However, the instructions for the twiddle
factors are different. The third stage of the 2-D FFT is
actually the first stage of the 1-D FFT for the column array.
Thus, the twiddle factor instruction in the 0-th column of
Table 6-1 has to be used. Similarly, the fourth stage of the
2-D FFTis the second stage of the 1-D FFT for the column
array.

There are some advantages of computing the 2-D FFT
by the proposed method. The overhead occurred from
one row to the other row or from one column to the other
column can be eliminated. Moreover, the build-in block
floating point mechanism can fully implement this
approach as in the 1-D case without glue logic required.
Furthermore, the LH9320 can provide all the required
address pattern up to 2%° points, i.e., ny * N, < 2%

7.2.3. Example of a 32 by 32 2-D FFT
Implementation

This subsection will discuss the implementation of a
windowed 2-D FFT with array size 32 by 32. The real part
of the time sample is defined as:

X(ny,n,) =sin(2x * 0.1255 * ny)sin(2m * 0.1255 * n,) *
w(ny) * w(ny) — 2°sin(@n * 0.3755 * n,)
sin(2m * 0.3755 * ny) * w(ny) * w(ny) (7]

and the imaginary part of the time sample is defined as:

X(ny,ny) = 2_8sin(2n * 0.1255 * ny)sin(2m * 0.3755 * ny)

w(ny) * W(ny) + 2 sin(@r * 0.3755 * n,)
sin(2m * 0.1255 * n,) * W(ny) * W(Nny) [7E]

where n, and n, are from 0 to 31 and the window function
w(n) is a Black-Harris window defined as follows:

W(n) = 0.35875 — 0.48829 * co{g—g

2n 2n
co{§§2ni]— 0.01168 * co! ESniJ F

forn,=0,1,2,...,31

ni]+ 0.14128 =

Table 7-9. Instructions for 2-D (8,8) FFT With (4 x 2,2 x 4) Structure

STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE

1 BFLY4 Q RBFO A BF40 C TF40

2 BFLY2 A BF22 B BF22 C TF22

3 BFLY2 B BF23 A BF23 C TF20
4 BFLY2 A BF42 Q BF42 C MXT240

Table 7-10. Instructions for 1-D 64-Point FFT With 4 x 2 x 2 x 4 Structure
STAGE EXECUTION INPUT OUTPUT COEFFICIENT

CODE PORT CODE PORT CODE PORT CODE

1 BFLY4 Q RBFO A BF40 o] TF40

BFLY2 A BF22 B BF22 o] TF22

BFLY2 B BF23 A BF23 c | TF23
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Assume that the row and column both are imple-
mented by a 3-stage FFT with the 4 x 4 x 2 structure.
Thus, the 2-D FFT implementation will have six stages in
total. Table 7-11 lists the LH9124 and LH9320 instructions
implemented in those stages. As in the 1-D windowed
FFT, the 2-D window function can be combined with the
first stage of the 2-D FFT operation. Thus, the instruction
BWND4 is performed instead of BFLY4. The input data
and the window coefficients are assumed to be stored in
the Q and C ports in linear order. Hence, the digit-reverse
instruction RBFO is used to generate the required address
sequence in the first stage. The associated parameters
of the LH9320 defined in each port are listed in Table 7-12.
The power spectrum of the computed results is shown in
Figure 7-1. The frequency pattern of the spectrum can be
clearly seen, even though the resolution of the image is
low and the difference of the signal levels is high.

7.3. 3-D FFT Implementation

The concept of the 2-D FFT implementation can be
extended to the 3-D FFT implementation because they
have the same form in mathematical representation.
Assume that an element (ny,ny,nz) in a 3-D array
(N1,N2,N3) is mapped into a 1-D device with the address
represented by

N=N,*Ng*n;+Ng*ny+ns [7D]

If x(n4,np,Nn3) is a time sample, the frequency sample
X(kq,ko,ks) is obtained from the 3-D FFT of the time

sample. The sequence k; is in a digit-reverse pattern of
the sequence n;. The input array is required to be in
digit-reverse order to be implemented by the LH9124 and
LH9320. As in the 2-D case, the required digit-reverse
sequence can be obtained by employing the instruction
RBFO. The parameter DIGITREV is mapped by the struc-
ture that cascades the structures of the 1-D FFT in three
tuples. For a 3-D array (8,16,8), assume that the array is
implemented by the structure of 4 x 2 for the first tuple,
16 for the second tuple, and 2 x 4 for the third tuple. Thus,
the parameter DIGITREV is mapped from the structure
4x2x16x2%x 4. The parameter N is equal to
Ni # Ny # Na.

Table 7-13 shows the instructions to compute the 3-D
FFT for a 3-D array (8,16,8). There are five stages to
implement the 3-D array. Table 7-14 shows the instruc-
tions to implement 1-D 1024-point FFT with the same
structure used by the 3-D FFT. As in the 2-D case, the
data address instructions used by the two cases are the
same and the twiddle factor address instructions are
different. The second and the fourth stages of the 3-D FFT
are actually the first stage of the 1-D 8-point FFT. The third
and fourth stages of the 3-D FFT are the first stage of the
1-D FFT. Thus, the twiddle factor address instruction in
the 0-th column of Table 6-1 has to be used. Similarly, the
fifth stage of the 3-D FFT is the second stage of the 1-D
FFT in the third tuple.

//4"'
\‘ /
»"’&4 'Q’ 4’

\\\>’ f,;.-.,\ O

i '.\\\»";;;;;33\\
r,i.:uf/n.%\\\

\\\\i/'"lg}:s'l"l
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nps‘!!'l \

A s'ﬁ

Figure 7-1. 2-D FFT of 1K Point (32 x 32)
With Four-Term Black-Harris Window
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Table 7-11. Instructions for 32 by 32 2-D FFT With 4 x 4 x 2 For Row and Column
STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE
1 BWND4 Q RBFO A BF40 C RBFO
2 BFLY4 A BF41 B BF41 C TF41
3 BFLY2 B BF24 A BF24 C TF24
4 BFLY4 A MXB242 B MXB242 C TF40
5 BFLY4 B MXB243 A MXB243 C TF41
6 BFLY2 A BF29 Q BF29 C TF24
Table 7-12. LH9320 Parameter Setting for Each Port of the LH9124
PARAMETER N MEMSIZE DIGITREV
Q Port 000000000010000000000 000000000010000000000 00000000001111011110
A Port 000000000010000000000 000000000010000000000 X
B Port 000000000010000000000 000000000010000000000 X
C Port 000000000010000000000 000000000010000000000 00000000001111011110
Table 7-13. Instructions for 3-D (8,16,8) FFT With 4 x 2 x 16 x 2 x 4 Structure
STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE
1 BFLY4 Q RBFO BF40 C TF40
2 BFLY2 A BF22 B BF22 C TF22
3 BFLY16 B MXB24160 A MXB24160 C TF160
4 BFLY2 A BF27 B BF27 C TF20
5 BFLY4 B BF44 A BF44 C MXT240
Table 7-14. Instructions for 1-D 1024-Point FFT With 4 x 2 x 16 x 2 x 4 Structure
STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE
1 BFLY4 Q RBFO BF40 C TF40
2 BFLY2 A BF22 B BF22 o] TF22
3 BFLY16 B MXB24160 A MXB24160 C MXT24160
4 BFLY2 A BF27 B BF27 C TF27
5 BFLY4 B BF44 A BF44 C TF44
DSP Application Note 1A-49
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7.4. Two Real 256-Point FFT

This method discussed in section 2.5.1 is used to
implementthis example. A256-point complex FFT isused
to compute two 256-point real FFTs. The two 256-point
real sequences are arranged to form a 256-point complex
sequence with one sequence placed in the real part and
the other sequence placed in the imaginary part of the
input memory. The 256-point complex sequence is stored
in the Q input acquisition port in linear order.

The two real FFTs are obtained by two phase of
computations. The first phase performs a 256-point com-
plex FFT that is executed by two cascaded radix-16
stages as shown in Table 7-15. The results are stored in
the B portin linear order. The second phase performs the
recombining process represented by Equations [2AD]
and [2AE]. The instructions executed for this phase are
shown in the final stage of Table 7-15.

The final results are stored in the Q output acquisition
port. The frequency samples in conjunction with the real
part of the input acquisition port are stored in the first 256
memory addresses and the frequency samples in con-
junction with the imaginary part are stored in the next 256
addresses of the output acquisition port in linear order.
The LH9124 and LH9320 instructions can be straightfor-
ward applied to implement this example. The first half of
the frequency sample and the sample at the highest
frequency is enough to provide all the information in the
frequency domain. If only these frequency samples are
computed, the required instruction cycles will be 924
cycles.

7.5. A Real 512-Point FFT

This example is implemented by the method discussed
in section 2.5.2. The 256-point complex FFT will be used
to compute the 512-point real FFT. The 512-point real
sequence {x(n)} is first transformed to the 256-point
complex sequence {c(n)} with c(n) = x(2n)} and
ci(n) =x(2n + 1). The 256-point complex sequence will
be stored in the Q input acquisition port.

The real FFT is obtained by two phases of computa-
tions. The first phase performs a 256-point complex FFT
that is executed by two cascaded radix-16 stages as
shown in Table 7-16. The results are stored in the B port
in linear order. The second phase performs the recombin-
ing process represented by Equations [2AJ] and [2AK].
The instructions executed for this phase are shown in the
final stage of Table 7-16.

The final results are stored in the Q output acquisition
port in linear order. The LH9124 and LH9320 instructions
can be straightforward applied to execute this example.

The highest frequency samples at the location 256 is not
calculated in this example because the limitation of the
recombining algorithm. Users may assign a proper value
or zero to the location. 1178 cycles are required to com-
plete the operation as shown in Table 2-8.

7.6. Two 256-Point Discrete Cosine Transforms

The two 256-point discrete Cosine transforms are
implemented by the method discussed in section 2.6.3.
The two 256-point real sequences are rearranged to form
a 256-point complex sequence {x(n)} with one sequence
placed in the real part and the other sequence placed in
the imaginary part. The complex data sequence {x(n)} is
first reordered by Equation [2AU] to generate a new
complex sequence {y(n)}. This sequence will placed in
the Q input acquisition port. Table 7-17 lists the instruc-
tions to execute the two real 256-point DCTs.

The procedure of computations is shown in Figure
2-12 and is executed with four stages by the LH9124 and
LH9320. The first two stages perform the 256-point com-
plex FFT. The frequency samples are stored in C port in
linear order. Then, the two real FFT recombining instruc-
tion is employed to generate two complex frequency
sequences for the two real time sequences. Both instruc-
tions BRFTL and BRFTU will generate 512-point
addresses. Only the first 258-point addresses will be
used. The break point register BREAKPOINT and the
mode bit Mode[1] can control the number of addresses
generated. The first 129 points of the frequency samples
are generated for each sequence. The first complex
sequence stored in the RAM begins with address 0. The
second complex sequence stored in the RAM begins with
address 256.

The final stage performs complex multiplication of two
complex sequences. One complex sequence is the 129-
point coefficient function c(k)e = 7N and will be multi-
plied by each of the two sequences generated from the
recombining process. The final results are stored in the
Q output acquisition ports. The first half of the first fre-
quency sequence are stored in the real part of the RAM
from address 0 to address 127. The second half of the
first sequence are stored in the imaginary part of the RAM
from address 128 to address 1. The first half of the second
frequency sequence are stored in the real part of the RAM
from address 256 to address 383. The second half of the
second sequence are stored in the imaginary part of the
RAM from address 384 to address 256. The instruction
BFCTUS will generate address sequence in the form { 0,
0, 1,1, 2, 2, ... }. The instruction BF28 will generate
address sequence in the form { 0, 256, 1, 257, 2, 258, ... }
and the parameter N = 512. The parameter BREAK-
POINT is set to 258.
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Table 7-15. Instructions for Two Real 256-Point FFTs by 16 x 16

STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE
0 BFLY16 Q RBFO A BF160 C TF160
1 BFLY16 A BF161 B BF161 C TF161
2 BRFT B BRFTL Q BRFTU
Table 7-16. Instructions for Real 512-Point FFT by 16 x 16
STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE
1 BFLY16 Q RBFO A BF160 C TF160
2 BFLY16 A BF161 B BF161 C TF161
BFCT2 B BFCTL Q BFCTU C BFCTT
Table 7-17. Instructions for Two 256-Point DCTs
STAGE EXECUTION INPUT OUTPUT COEFFICIENT
CODE PORT CODE PORT CODE PORT CODE
1 BFLY16 Q RBFO A BF160 C TF160
2 BFLY16 A BF161 B BF161 C TF161
3 BRFT B BRFTL A BRFTU
3 CMUL A BF28 Q BF28 C BFCTUS
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MEDICAL TOMOGRAPHY IMAGING USING THE LH9124/LH9320

INTRODUCTION

Tomographic imaging algorithms used in medical
imaging applications are highly computation exten-
sive. Even with current technology a significant
amount of hardware is required. In the first part of this
application note a brief description of the tomography
algorithm is given. In the second part an efficient and
simple implementation using the LH9124/LH9320 chip
set will be presented. In particular, we will present the
two most commonly used algorithms: the Filter-back
propagation algorithm and the two-dimensional
inverse Fourier transform algorithm.

Tomographic Imaging Algorithms

Tomography Imaging

Tomography refers to cross-sectional imaging of an
object based on its transmission data. Tomography
algorithms reconstruct the image of an object from its

transmission data when illuminating from many direc-
tions. The major applications of these algorithms are
Cat scan (X-ray) and Nuclear Magnetic Resonance
(NMR). Figure 1 illustrates a typical measuring sys-
tem, where f(x,y) is the two-dimensional-object pa-
rameter to be imaged.

The measurement made by each detector is a line
integral of f(x,y) along the ray. The set of data received
from the receiver array (a set of line integral) is called
projection or view. The mathematical relation between
the function f(x,y) and its projection data is given by:

P(t,) =JH 00,
ay

where the line equation is:
t; = xcos(0) + ysin(6).

The function Pe(t) for a given 6 is a parallel projec-
tion of f(x,y) in angle 6. The two dimensional function
Po(t) is called the Radon transform of f(x,y).

RECEIVER
ARRAY

OBJECT

Pg(t)

RAY

Qy)/

/

ILLUMINATION SOURCE

APP2-8

Figure 1. Typical Tomography Measuring System
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The Fourier Slice Theorem

The Fourier Slice Theorem relates the one-dimen-
sional Fourier transform of a projection of a two-dimen-
sional function f(x,y) to its two-dimensional Fourier
transform F(w1,02) as follows:

The Fourier transform of a parallel projection of an
image f(x,y) taken at angle of 9, gives a slice of the two
dimensional transform F(o1,02) along a line with an-
gle 6 to the axes 1. Referring to Figure 2, the theorem
claims that the Fourier transform Sg(€2) of Pg(t) gives
the value of F(w1,w2) along line BB'.

The theory implies that if the object is illuminated
from many directions then the two-dimensional fre-

The Filter Back Propagation Algorithm

The filter back propagation algorithm is an image
reconstructing algorithm based on the Fourier slice
theorem. First the algorithm for parallel projection is
presented, and in the second part the modification
needed for FAN projecting (point illumination source)
is described.

Let F(w1,®2) be the two dimensional Fourier trans-
form of f(x,y) and let (2,0) be the polar coordinate of
the plane (®1,w2). The Inverse two dimensional
Fourier transform can be written as:

f(x,y)=J f F(o1,02) exp{j(xmo1 +

quency domain F(w1,02) can be filled. The reconstruc- 0 -
tion is given by the two-dimensional Inverse Fourier y02)}QdQdo (1]
Transform.
NOTE: In some NMR applications the collected data
is the Fourier-domain data. In this case, the recon-
structing algorithm is the two-dimensional Fourier
transform.
;T T Tt \
/ \
/ \ [0
PROJECTION
B
0
P XX \ ]
«WgOOOOO X
K
NG%Y ~
*‘401
QAN
\ B
OBJECT
SPACE DOMAIN FREQUENCY DOMAIN
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Figure 2. The Fourier Slice Theorem

1A-54

DSP Application Note



Medical Tomography Imaging

SHARP

LH9124/LH9320

Using the Fourier slice theorem (and some alge-
braic manipulation 1) gives:

ixy) =] | Sew)lolexpotydode 2
0 —oo

where:
t = xcos(0) + ysin(0) is the ray equation

Se(w) is the one-dimensional Fourier transform
of Py(t)

Equation [2] can be rewritten as:

Q)= | Syo)lolexp(otd(o)
oo [3.1]

= Py(t)*F ' {Iwl}

where * is the mark for convolution

fxy) = | Qo(xcos(8) + ysin(e))de (3:2]
0

Using discrete notation we received:
Qg = Py (n7)*h(n1) [4.1]
f(XiYi) = ZQq (X,COS(6)) + y,COS(8))) [4.2]
where h(nt) is the reconstructing filter which is basi-
cally IFFT{lwl}.

The equation set [4] defines the filter back propaga-
tion algorithm:

First stage — All the projections Pgy(nt) are filtered
with h(nt) to received Qy(nt).

Second stage — Back propagating all the filtered
projections. This means that to each point (x,yy)
of the image the sum of the projection’s contribu-
tion is calculated.

It should be noted that the point
t = x,cos(0;) + y,cos(6;)

is not necessarily an integer point of nt, and interpo-
lation or up-sampling of the function Qg(nt) is needed.

The extensive part of the algorithm is the filtering
operation. The filtering could be done directly in the
time domain, but it is more efficient to implement in the
frequency-domain (Fast Convolution), which is based
on the Fourier transform. See equation [5].

Qei(n) = Pei(n)*h(n) = IFFT{FFT{h(n)FFT{Py(n)}}
[5]

Another advantage of the frequency-domain imple-
mentation is that interpolating of the output sequence
Q(n) could be done easily by zero padding the fre-
quency-domain data prior to performing the IFFT
When implementing frequency-domain filtering the in-
put time-domain sequences should be zero-padded to
length of at least of M + N to prevent circular convolut-
ing where N and M are the original sequences length 8,

The Filter Back Propagation for FAN Projection

In practical, the illumination source of a Cat Scan
system is not a plane-wave but a single-point source,
which creates a fan-like source of illumination waves
(Figure 3).

Derivation of the algorithm is beyond the scope of
this paper. The derivation can be found in reference 1
The back-propagation algorithm for FAN projection
can be summarized by equation set [6].

Qg(na) = {w(na)Ry(na)}*{h(na)/2}
fxk,yi) = 204 (SU*(X40100) [6.1]

where Rg(na) is the collected data.
b
ND? + n’a”

a — the spacing between the receiver senores arrays

w(na) =

s — identifies the ray pass throw (x,y)
U(xk,yj,)) is the ratio SP/D (related to Figure 3).

The equation set [6] implies that each view Rg(na)
has to multiply by a window w(na) and then filter by
h(na). For each point (xk,yj) a weighted sum of the
contribution of all the views is performed.
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Figure 3. Point Source lllumination
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Using the LH9124

The 2-D-IFFT and the Filter Back Propagation algo-
rithms can be implemented efficiently and simply by
using the LH9124/LH9320 chip set. A basic system
configuration is illustrated in Figure 4. This system
configuration can be referenced in the LH9124 Data
Sheet®.

Back Propagation Algorithm Using the LH9124

The extensive computation part of the algorithm is
the filtering operation. The back propagation part
involves mainly summation. In this application note
only the filtering implementation will be considered. In
the description and the computation load analysis the
following system parameters are assumed:

N =512 — Number of measured points in a view
M =900 — Number of views (relates to 0.2 deg.

The algorithm will implement the frequency-domain
filtering:

Q(n) = IFFT{FFT{P(n)w(n)}H(k)}
where:

P(n) is the measured data view

w(n) space-domain window

H(k) frequency-domain filter response

When implementing this algorithm using the
LH9124, it should be noticed that it has a complex
input and that two views can be processed simultane-
ously by loading one view to the real memory port and
the other to the imaginary memory port. The real
output of the algorithm will be the filtered first view and
the imaginary part will be the filtered second view.

resolution)
LH9320
ADDRESS

GENERATOR

SRAM
SYSTEM
48 (24 x 2
DATA BUS BUFFER ( )
LH9124
48 (24 x 2 48 (24 x 2
SRAM { ) DIGITAL ¢ ) SRAM

SIGNAL

PROCESSOR

LH9320 LH9320
ADDRESS ADDRESS
GENERATOR 48 (24x2) GENERATOR
SRAM
LH9320
ADDRESS
GENERATOR
APP2-14

Figure 4. Basic System Configuration

DSP Application Note



LH9124/LH9320 SHARP Medical Tomography Imaging

The proof of the above statement is as follows: Case A: Filtering With No Upsampling

let x(n) and y(n) be two views, connecting x to The algorithm includes the following steps:
the real port and y to the imaginary port creates
a complex input sequence:

z(n) =x(n) +jy(n)

The complex output sequence is:
zf(n) = IFFT{H(K)FFT{z(n)w(n)}}
zf(n) = IFFT{H(K)FFT{x(n)w(n)} +

— zero-pad the time (space) domain data

multiply by a shading window

perform 1024 FFT

multiply by the filter H(k) frequency response
perform 1024 IFFT

JHK)FFT{y(n)w(n)}} The algorithm block diagram is shown in Figure 5.
26(n) = IFFT{H(K)FFT{x(n)w(n)}} + The system program is given in Tables 1 and 2.
JIFFT{H(K)FFT{y(n)w(n)}} Table 2. Address Generator Register Settings
zf(n) = xf(n) + jyf(n) REGISTER VALUE PORT
Due to the FFT properties 3the sequences xf(n) and N 1024 AB,C &
yf(n) are the convolution result of x(n) and y(n) with the Q
filter h(n). Since the sequences x(n), y(n) and h(n) are | DIGITREV | 0000000001111111111 | A

all real sequences xf(n) and yf(n) are also real se-

quences, and the real output of zf(n) is xf(n) and the ZEROPAD 512 Q
imaginary output is yf(n). ADRLENGTH | 1024 Q
ADRINC 1 ] QA
Programming the Algorithm INDEXING zero-address Q
Two cases are presented in this paragraph. Case A ADRSTART 0 QA
needs no interpolation of the output. Case B needs an N
interpolation by a factor of 4.
VIEW | —= —=—{ MULTIPLY |-=—{R —=—{R MULTIPLY [— R VIEW | - FILTERED
JERoRM BY FFT BY IFFT
VIEW J —=| = wn) = =1  Hw) [ | = VIEW J - FILTERED
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Figure 5. Frequency Domain Two-at-a-Time Filtering

Table 1. Frequency-Domain Filtering With No Up-Sampling

LH9124 NUMBER

PASS CODE D ATA FLOW PORT Q PORT A PORT B PORT C OF CYCLES
1 MOVD Q-A PADHIGH | INC - - 1024 + 18
2 BWND4 A—-B - RBFO BF40 BRFO 1024 + 20
3 BFLY16 B—A - MXB4160 | MXB4160 | MXT4160 1024 + 68
4 BFLY16 A—B - MXB4161 | MXB4161 MXT4161 1024 + 68
5 BWND4 B—A - RBFO BF40 RBFO 1024 + 20
6 BFLY16 A—B - MXB4160 | MXB4160 | MXT4160 1024 + 68
7 BFLY16 B—Q MXB4161 - MXB4161 | MXT4161 1024 + 68

Total Number of Cycles 7498
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Explanation
Pass Number 1

Loading the complex data from port Q to port A, zero
padding the original input sequence from 512 point to
1024 point. The zero-padding is accomplished by set-
ting a zero-padding sequence at the input (port Q) and
a linear-sequence addressing (INC) at the output
(port A).

Passes 2,3 & 4

Performing 1024 FFT using mixed radix 4 X
16 x 16. The first FFT pass (pass 2) is radix-4 and
incorporate multiply by the shading window stored in
the coefficient memory.

Passes 5,6 & 7

Performing IFFT operation using mixed radix
4 x 16 x 16 where the first IFFT pass (pass 5) includes
multiply by the reconstruction filter frequency re-
sponse. It should be noted that the total number of
sequences is seven and the whole program can be
stored in the Address Generator’s program memory.
When doing the IFFT it is possible to use the twiddle
factor coefficient used for the FFT by setting the
LH9124’s ci and co control flags as follows:

ci =1 during pass 5 (equals zero during all
other cases)

co = 1 during pass 7 (equals zero during all
other passes)

For further details see reference 5.

Computation Load

Table 1 shows that the number of cycles needed to
complete two (since the system performs two at a

time) views is 7500, which is equal to 187 usec. The
time to complete 900 views is 187 x 900/2 = 84 msec.

Memory Requirement

Ports A 1K complex word

Ports B 1K complex word

Ports Q 1K complex word

Ports C 1K complex word for twiddle factors
1K complex word for the frequency
domain filter response
1K complex word for time (space) domain
shading window

The word length is 24 bits.

Case B: Filtering With Output Up Sampling
Factor of 4

To perform an up-sampling or interpolation in the
time (space) domain the data in the frequency domain
should be zero-padded before doing the IFFT. When
doing the zero-padding it should be noticed that the
symmetric property of the frequency domain should be
kept as illustrated in Figure 6.

The frequency domain zero padding should be as
follows:

X(k) 0<k<N/2
XP(k)= {0 N/2 <k <PN-N/2
X(k-NP+N) PN-N2<k<PN

The algorithm block diagram for the frequency
domain filter interpolator is illustrated in Figure 7. The
programming for this algorithm is given in Tables 3
and 4.

o JﬁL-L& ..

(a) = Original frequency domain sequence
(b) = Zero padded frequency domain sequence

N PN-1
PN >

APP2-17

Figure 6. Frequency Domain Zero-Padding
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view! —T - oan = Mumieey =R == R MULTIPLY = Jcn0 pan 1 Rl VIEW | - FILTERED
512 ——1024 BY FFT BY 1024— 4006| | 4006
VIEW J —] 1 w(n) | | H(w) | = VIEW J - FILTERED
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Figure 7. Two Channels Frequency Domain
Filter Interpolator

Table 3. LH9124/LH9320 Programming for Frequency Domain Filter Interpolator

LH9124 NUMBER
PASS PORT Q PORT A PORT B PORT C
CODE | DATAFLOW OF CYCLES
1 MOVD Q-A PADHIGH | INC - - 1024 + 18
2 BWND4 A—B - RBFO BF40 BRFO 1024 + 20
3 BFLY16 B—A - MXB4160 | MXB4160 | MXT4160 | 1024 + 68
4 BFLY16 A—-B - MXB4161 | MXB4161 | MXT4161 | 1024 + 68
5.1 CMUL B—A - PADHIGH | INC PADHIGH | 3585 + 18
5.2 CMUL B—A - INC INC PADHIGH | 512+ 18
6 BFLY16 A—B - RBFO BF160 TF160 4096 + 68
7 BFLY16 B—A - BF161 BF161 TF161 4096 + 68
8 BFLY16 A-Q BF162 BF162 - TF162 4096 + 68
20895
Table 4. Address Generator Register Settings Explanation
REGISTER VALUE PORT PASS Passes 1,2, &3
Identical to Case A.
1024 e C|1as
N Pass 5
A,B,C |5,6,7
4096 &Q &8 Performs the frequency domain zero padding and
000000000 multiply by the frequency domain filter response. The
A 2 filter response should be saved in the coefficient mem-
1111111111
DIGITREV 0000000111 ory in zero-padded form. The pass is composed of two
111111111 A 6 subpasses.
ZEROPAD 512 Q 1 Subpass 5.1 is with length of P N — N/2 + 1. Where
513 B 5.1 N = 1024 and the up-sampling factor is P = 4. The
1024 Q 1 Output and the coefficient sequences are linear se-
4096 — quences. The input sequence is a zero-pad where the
510+41= | MB& g4 first N/2 + 1 addresses are linear and the rest of the
ADRLENGTH 3585 c sequence is the ‘0’ address (address to a location
containing zero).
512 é B& 5.2 - .
Sub-pass 5.2 of length N/2 is linear sequence in all
ADRINC 1 AB,C Al the ports. The start address of the input sequence is
&Q N/2 (512), while the start address of the output and the
- coefficient sequences is PN-N/2.
INDEXINC Zg;‘: Q'QB’ C i a
acoress Passes 6,7,8
3585 AC 5.2 ]
ADRSTART 512 B 5.0 Radix-16 passes.
0 All other cases
and passes
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Computation Load

From Table 3 we can see that the number of cycles
needed to complete two (since the system performs
two at a time) views is 20895, which equals 522 usec.
The time to complete 900 views is 522 x 900/2=235
msec.

Memory Requirement

Ports A 4K complex word

Ports B 4K complex word

Ports Q 4K complex word

Ports C 4K complex word — twiddle factors
4K complex word — frequency domain
filter response

4K complex word — time (space) domain
shading window.

The word length is 24 bits.

2-D-IFFT Reconstructing Algorithm Using
LH9124/LH9320

The 2-D-IFFT Reconstructing algorithm is com-
posed of three steps:

Step 1: Performing FFTs;, to 900 views

Step 2: Building the 2-D Fourier domain using the
Fourier slice theorem

Step 3: Performing 2-D-IFFT to reconstruct the

image.
The algorithm block diagram is given in Figure 8.

Steps 1 and 3 are the computation intensive step of
the algorithm. Implementation of this steps will be
discussed below.

Step 1: Performing 900 time FFTs;z .
The following options are available when performing a
multi-channel one-dimensional FFT:

Option 1: Each FFT at a time using mixed radix 2 x
16 x 16

Option 2: Two-sequence-at-a-time method:
Loading the first view connected to the
real port and the second view to the
imaginary port.

FFT followed by separation pass (BRFT)

Option 3: Using the 2-N real FFT method:

Create a complex sequence with a length
half that of the original sequence length
by loading the even data point to the real
port and the odd data point to the
imaginary FFT, followed by a
reconstruction pass (BFCT2)

For further details see reference 5.

The computation load for the three options are:

38 msec for 900

Option 1: 42 usec for view views

. . . 24 msec for 900
Option 2: 27 pusec for view views

. . . 26 msec for 900
Option 3: 30 psec for view views

Step 2: Building the 2-D Fourier domain

Building the 2-D Fourier domain is mainly addressing
and other processors (or dedicated hardware) are
needed for this stage.

Step 3: 2-D FFT (512 x 512)

Implementing two-dimensional Fourier transform
using the LH9124/LH9230 chip set is explained further
in reference 5. The two-dimensional transform can be
considered as a one-dimensional transform (of length
N x M) with the proper addressing sequence settings.

For the case of (512) x (512), the following mixed radix
can be selected:

(2%x16x16) x (2 x 16 x 16)

The data addressing shall be as one-dimensional
long transform, while the twiddle addressing shall be
for each dimension separately. Tables 5 and 6 provide
the algorithm programming.

900 Sgi(®)
6i(®@)_| ACCUMULATE 2D-IFFT
Pei(n) ——=|CHANNELS = fxy
6i(m) FET 510 TO F(wy0) 512X 512 )
— ——

APP2-13

Figure 8. 2-D-IFFT Reconstruction Algorithm
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Table 5. 2-D-IFFT for 512 x 512 Matrix
LH9124 \ NUMBER OF
PASS PORT Q PORT A PORT B PORT C
CODE | DATAFLOW | CYCLES

1 BFLY2 Q->A | RBFO BF20 - TF20 | 512x512+20

2 BFLY16 A—B - MXB2160 | MXB2160 | MXT2160 | 512 x 512 + 68

3 BFLY16 B—A - MXB2161 | MXB2161 | MXT2161 512 x 512 + 68

4 BFLY2 A—B - BF212 BF212 TF20 512 x 512 + 20

5 BFLY16 B—A - MXB2162 | MXB2162 | MXT2160 | 512 x 512 + 67

6 BFLY16 A—-Q - | MXB2163 | MXB2163 MXT2161 512 x 512 + 68
Table 6. Address Generator Register Settings REFERENCES

REGISTER VALUE | PORT |
N 512 x 512 = 262144 All
MEMSIZE | 262144 C
DIGITREV | 0 1111 1111 0 1111 1111 Q

Computation Load

The total number of cycles is 1.57 Mcycle = 39 msec
(the clock rate is 40 MHz). The total time needed to
complete steps 1 and 3 is 65-80 msec.

SUMMARY

This application note presented two major algo-
rithms of medical imaging: the filter-back propagation
algorithm and the 2-D-IFFT algorithm. It was shown
that implementing the computation extensive part of
the algorithms is straightforward and very efficient
when using the LH9124/LH9320 chip set.

For the example that was demonstrated, the num-
ber of sensors equals 512 and the number of views
equaled 900. The computation time for imaging is 80
ms. If higher performance is required, a multi-proces-
sor can be used in a cascade or a parallel configura-
tion.
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Digital Signal Processing

DFT FILTER-BANK USING THE LH9124/L.H9320

INTRODUCTION

Digital filter-bank implementation arises in many
applications, such as speech analysis bandwidth com-
pression, communication, radar and sonar. Figure 1
illustrates a typical filter-bank scheme. The filter-bank
structure can be interpreted as a short-time spectrum
analyzer that decomposes the input signal into its
instantaneous spectral components.

Usually the filter’s output signals are decimated so
that each filter’s output rate is lower than the input rate:

fout = fin/ M
where:
M is the decimation factor.

The extreme case is when K equals M, where K is
the number of filters. Here, the output signal is critically
sampled, since this rate is the minimal sampling rate
without information loss.

This application note concentrates on the most
important case of the filter bank — the DFT filter-bank
— where the filter's frequency responses have equal
spacing and equal bandwidth.

Historically, the algorithm to implement the DFT
filter-bank was developed via two interpretations that
were shown to be the realization of the same mathe-
matical framework:

o Filter-bank interpretation using polyphase-filter
decomposition

* Block-transform interpretation using weighted over-
lap-add structure
Filter-Bank Structure

Figure 2 illustrates the simplest interpretation of the
filter-bank algorithm. The process for each channel is:

e Band-shifting (modulated by e 7<)
o Low-pass filtering by h(n)

¢ Decimation

where:

ay is the central frequency of filter k
h(n) is the prototype filter impulse response

The filter’s output signals are given in equation [1].

oo

Xi(m) = Z

N=—oco

h(mM — n)x(n)W, " 1]

The design of the filter frequency response is appli-
cation-dependent. For example, in communication
applications where the input signal is a frequency
multiplexing of several channels, the analyzer filter
should be narrow to prevent overlapping in the fre-
quency response of the filters, which appears as
cross-talk between the received signals. For spectral
analysis applications where the concern is a low side-
lobe level and smooth estimate, the design usually
allows an overlap between the filter’s frequency
response.

CHANNEL

FILTER
X(n) INPUT —={  BANK
ANALYZER

0

Xo(m)
1 . Xy(m)

2

= Xp(m)

3

= Xg(m)

——K— xm)

Kt

F——— Xk-1(m)

APP3-2

Figure 1. Typical Filter-Bank Scheme
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Implementing the filter-bank analyzer according to
the straightforward interpretation as formulated in
equation [1] is highly inefficient. For a critical sampled
DFT filter-bank, the polyphase-filter decomposition is
an efficient implementation. The polyphase algorithm
derivation found in [1] is summarized in equation set
[2] and illustrated in Figure 3.

where:

* is the convolution mark

P, is the polyphase filter of branch p given by:
Po(m) = h(mM - p)

X,(m) = x(MM + p)

The polyphase structure assumes that the output is

M-1 . critically sampled, which means that the sampling rate
Xi(m) = 2 [Pp(m)*x,(m)] - W, ? = of each filter is fin/K, where K is the number of the
p=0 filters. Increasing the output sampling rate by an inte-
[2] ger factor | is possible by inserting a zero-padding
FFT,{P,(m)"x,(m)} stage of order | at the input of each polyphase filter
branch.
() — | h(n) t M et ()
e-jokn
X(el®)
|
O
W ——
X(@)
O ——
APP3-1
Figure 2. Simple Interpretation of Filter-Bank Algorithm
X, —
1 Bym) 0 0 ——— Xo(m)
X4(m) —
? &—— P«m) 1 T Xi(m)
§
X(n) DFT
- () (VIA
£ Py(m) p VRl e xm)
X —
\—m1(m) PM~1(m) M-1 M1 XM-1 (m)
APP3-3

Figure 3. Polyphase DFT Filter-Bank Structure
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Weighted Overlap-Add Structure

The weighted overlap-add structure implements the
DFT filter-bank in terms of block-by-block analysis.
This structure is more general than the Polyphase
structure in the sense that it allows interpolating the
output signals to any required sampling rate. As in the
previous case, the output signals are given in equation
[1]. The equation can be rewritten as:

Ym(n) = h(mMM = n)x(n) [3a]

oo

XM = Sy MW" (3]

n=-

Using this notation, the filter h(*) can be interpreted
as a sliding analysis window that selects the short-time
sequence block ym(n) (equation [3a]), and then the
short-time sequence is a Fourier transform. In this
interpretation, the decimated time index m is the block
number, and Xk(m) could be interpreted as the short-
time spectrum of the signal at time n = mM. In equation
[3b], the time reference point is constant n = 0. It is
more convenient to have a sliding reference point
always at the center of the analysis window n = mM by
defining:

r=n-mM

The short-time transform is expressed as:

Xdm =Y hE0x(r+ mMW [4a]

r=—oo

where:
X, (m) expresses the short-time Fourier trans-

form referenced to the center of the sliding
window:

X,(m) = X mW™ e

Equation [4a] is basically a Fourier transform, but it
is notin aform that is compatible for the FFT algorithm,
since the FFT algorithm requires that the number of
the input points is equal to the number of the output
point. Note that the length of the short-time input

sequence ym(n), as determined by the analysis filter

length, is generally greater than the number of the
filters (the transform length). To bring equation [4] to
the form that can be implemented by the FFT algo-
rithm, the time-aliasing method is used. The sequence

ym(n) is divided into segments of length K (Kiis the FFT
length); the segments are summed to form the time-
aliased sequence with a length of K.

The algorithm can be summarized by the following
steps:

1. Multiplying the input signal x(n) by the analysis
window h(-r) to form the short-time sequence:

X"‘(r) = h(—rx(r + mM)

2. Segmenting the short-time input sequence into
blocks of length K, and summing them to form the
time-aliased sequence:

Xm(P) = z!m(r +1K)

|=-o0

3. Performing a FFT to the time-aliased sequence to
calculate the output:

x(m) = FFT{,m(n)

4. If necessary, phase shifting the output to refer it to
a fixed time reference point n = 0:

X,(m) = x W™

5. For the next block (m + 1), the data is shifted by M
point and a new block of size M is loaded (the new
data is overlapped by the old data by N, — M,
where N, is the analyzer filter length).

Figure 4 illustrates the algorithm flow for the case
of Nn=4-K.

With this structure there is no constraint on the
decimation factor M, while in the polyphase structure
the decimation factor was limited to be an integer
multiplicand of the filter bank length (K =1 - M).

For critical decimation M =K, it can be seen that the
two structures, the polyphase filter and the weighted
overlap-add, are identical. The only difference be-
tween the two is the order of the operations. The
polyphase structure is point-by-point oriented — each
new data is filtered by its corresponding polyphase
filter. The output of the polyphase filters is Fourier
transformed. The weighted overlap-add structure is
block oriented — it first accumulates a block of data and
then divides it into segments, adds the segment and
performs Fourier transform.

DSP Application Note
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Np = 4K
Np — SAMPLE SHIFT REGISTER

AL\AQ[\Z\,\,\A/\ A/ INPUT x(n)
N\ =g A\ A Y4 A A g T N

IN BLOCKS

\\ OF M SAMPLES
—~——— DIRECTION OF SHIFT x(r+mM)
h(-n) ANALYSIS WINDOW
' \ ' NDO!
- . WINDOW
_—"/\1 f\ A /\A g meSmiem——] SEQUENCE
Y ~, ¥n(0
r=-2K-1 r=-K-1 r=0 r=-K-1 r=-2K-1
=0
TIME-ALIASING +
(STACK & ADD)
IN BLOCKS OF )1
K SAMPLES =
+
AN
+
/\/J\ =2
1
\/V\A/' TIME-ALIASED
SEQUENCE Xm(r)
0 r‘ K-1
DFT
SHORT-TIME
[~ Xk(Mm) TRANSFORM
Wyckmi (SLIDING-TIME REF)
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Xg(m)  TRANSFORM
(FIXED-TIME REF)
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Figure 4. Weighted Overlap-Add Algorithm
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Using the LH9124/LH9320

The LH9124 is a block-oriented processor; there-
fore, it is natural to select the weighted overlap-add
method to implement the DFT filter-bank. In this sec-
tion, the algorithm implementation for two cases with
various FFT lengths are presented:

e Case 1: Processing two channels simultaneously
e Case 2: Processing one channel

In both cases, the standard system configuration is
assumed as illustrated in Figure 5. The system
includes:

o 1DSP (LH9124)

Case 1: Processing Two Channels Simultaneously

Here, implementation of the algorithm for the follow-
ing parameters is presented:

o Filter-bank length (FFT length) is in the range of
N =1K. 16K

o The analysis filter impulse response length is 2 - N
e Number of input channels is 2

NOTE: The case of N = 1K is presented first, then the
modification needed for the other FFT lengthsis given.

The input sequences {x} {y} are segmented into
blocks of length N:

Xin1,Xin2,Xi
e 4 AGs (LH9320) in1,Xin2,Xin3
e 4 complex-memory banks Yin1,Yin2,Yin3
LH9320
ADDRESS
GENERATOR
SRAM
SYSTEM
48 (24 x 2
DATA BUS BUFFER (24 x 2)
LH9124
SRAM 48 (24 x 2) DIGITAL 48 (24 x 2) SRAM
SIGNAL
PROCESSOR
LH9320 LH9320
ADDRESS ADDRESS
GENERATOR 48 (24 x2) GENERATOR
SRAM
LH9320
ADDRESS
GENERATOR
APP2-14
Figure 5. System Configuration
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The output blocks are given by:
Xout1 = FFT{Xin1 - W1 + Xin2 - W2}
Yout1 = FFT{Yin1 - W1 +Yin2 - W2}
Xout2 = FFT{Xin2 - W1 + Xin3 - W2}
Yout2 = FFT{Yin2 - W1 +Yin3 - W2} [5]

To achieve an efficient implementation with a mini-
mum number of passes, the following key features of
the LH9124 should be used:

o Performs two real FFTs at a time as follows:
— Loading X input to the real input
— Loading Y input to the imaginary input

— Performing a separation pass after performing
the FFT

e Performs any required mixed radix (2, 4, 16). The
optimal radix for the 1K FFT case is 4 x 16 x 16.

e Multiplies by a shading window during the first pass
of the FFT. This option is available if the first pass
of the FFT is radix-2 or radix-4.

Loading X input to the real input memory, and Y
input to the imaginary input memory creates a complex
input Q:

Q=X+jY
The algorithm then can be described by:

Out = Separation{BFLY16{BFLY16
{BFLY4{Q1 - W1 + Q2 - W2}} ®)

To gain the multiply by a window during the first
pass, the linearity property of the radix-4 operation is
used:

BFLY4(Q1 - W1 + Q2 - W2) =

The algorithm as described in equation [6] can be
written as:

Out = Separation{BFLY16{BFLY16
{BFLY4{Q1 - W1} + BFLY4{Q2 - W2}}}} (6a)

Based on equation [6a], mapping the algorithm to
the LH9124/LH9320 requires seven passes as follows:

BFLY4(Q1-W1) > A (Q1is X1 +jY1)
BFLY4(Q2-W2) - B (Q2is X2 +jY2)
A—-C

B+C—A

BFLY16(A) — B

BFLY16(B) — A

Separation(A) - Q

N o ok~ o0 b=

Programming the algorithm is straightforward since
each line of the above steps is mapped into one pass
(one program line) of the chip set as detailed in Ta-
ble 1.

Register Programming:

N =1024
MEMSIZE =1024
DIGITREV =11 1111 1111
ADRSTART =0
ADRLENGTH =1024
ADRINC =1

Performance: The computation time for one block of
length N = 1K is:

T=(1024.-7+68-2+20-2+18-3)-
25 nsec = 184 usec

BFLY4(Q1 - W1) + BFLY4(Q2 - W2)

The maximal sampling rate is 5.5 MHz.

Table 1. Algorithm Programming for Case 1

PASS LH9124 ADDRESSING
OPCODE DATA-FLOW AGin AGout AGcoeff.
1 BWND4 RQWA RBFO BF40 RBFO
2 BWND4 RQWB RBFO BF40 RBFO
3 MOVD RAWC INC - INC
4 CADD RBWA INC INC INC
5 BFLY16 RAWB MXB4160 MXB4160 MXT4160
6 BFLY16 RBWA MXB4161 MXB4161 MXT4161
7 BRFT RAWQ BRFTLS BRFTUS -
1A-68 DSP Application Note
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NOTES:

1.

The coefficient memory should contain three dif-
ferent buffers that are selectable by the system
controller by paging operation, before starting a
new pass.

Buffer 1: contains the twiddle factor for the trans-
form length of 1K

Buffer 2: contain a real data window function
(length 2K).

Buffer 3: temporary buffer for passes 3 and 4

The separation pass creates for each channel only
one-half of the points of the spectrum. Since the
input sequences are real, this data contains all the
required information (the Fourier transform of a
real sequence is an anti-symmetrical function).
However, if required, the full spectrum could be
calculated by setting the address sequence of
pass 7 to BRFTL and BRFTU instead of BRFLTS
and BRFTUS. The computation time is:

T=(1024-7+68-2+20-2+18-3+
1024) - 25 nsec = 210 psec

Programming the algorithm for other filter-bank

lengths (FFT lengths) is done by choosing the optimal
radix for each FFT length. Table 2 summarizes the
algorithm mapping for the various FFT lengths.

Register Programming:

N The value of N should be the FFT
length.

MEMSIZE The value of MEMSIZE should
be the maximal FFT length. See
note 1.

ADRSTART =0

ADRLENGTH =N

ADRINC =1

DIGITREV  The value of the register is

determined by the radix structure:
radix-2 is presented as 0
radix-4 is presented as 11
radix-2 is presented as 1111

The value of DIGITREYV for the

cases presented in Table 2 are:
011 1111 1111 for N=2K

(2 x4 x16 x 16)
for 4K
(4x4x16 x 16)
for 8K
(2x16x 16 x 16)

for 16K
(4x16x 16 x 16)

1111 1111
1111

01111 1111
1111

11 1111 111
1111

NOTES:

1.

The lookup table in Port C memory contains the
twiddle factors for the maximal resolution (maxi-
mal FFT length). The value of the register MEM-
SIZE should reflect this value. When doing FFT
with other lengths, the AG decimates the twiddle
factor table.

The window function length should be equal to
twice the current FFT length (the system controller
should download them when changing the FFT
length or switching between preloaded pages that
contain the window functions with the various
lengths).

Performance: The computation time for one block of

size N is:

T =N - 8- 25 nsec (neglecting the latency of

each pass)

The maximal sampling rate is N/T = 5 MHz.

Table 2. Two Channels-at-a-Time Algorithm Mapping for Several FFT Lengths

2K

4K

8K

16K

BFLY16(A) — B

BFLY16(A) - B

BFLY16(A) — B

BFLY16(A) - B

Separation(A) —» Q

Separation(A) — Q

1 BFLY2(Q1- W1) - A BFLY4(Q1 - W1) - A BFLY2(Q1 - W1) - A BFLY4(Q1- W1) - A
2 | BFLY2(Q2-W2) »B | BFLY4(Q2 - W2) B | BFLY2(Q2-W2) > B | BFLY4(Q2 - W2) > B
3 A—>C A—>C A—-C A—>C

4 B+C—oA B+C—A B+C—->A B+C—-A

5 BFLY4(A) —»B BFLY4(A) - B BFLY16(A) —» B BFLY16(A) > B

6 BFLY16(B) —» A BFLY16(B) - A BFLY16(B) — A BFLY16(B) —» A

7

8

Separation(A) - Q

Separation(A) - Q
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Case 2: Processing One Channel

The implementation of the algorithm is given when
processing of one channel is required. The perform-
ance for this case is less than case 1, since the
capability of the LH9124 to process two channels at a
time is not fully used. The parameters for this case are
the same as in case 1.

The algorithm for the DFT filter-bank for one channel
can be described as:

Xout1 = FFT{Xin1 - W1 + Xin2 - W2} [7]

The straightforward approach is to perform the
same algorithm as in case 1 by setting the imaginary
input to zero. The last pass (separation pass) is not
required. The algorithm for N = 1K completes in six
passes:

1. BFLY4(Q1#W1)—> A (Q1is X1)
BFLY4(Q2-W2) - B (Q2is X2)
A->C
B+C—->A

BFLY16(A) -» B
BFLY16(B) —» Q
Performance: One block computation time:

T=(1024-6+68-2+2032+18-2)-
25 nsec = 158 usec

o o~ 0D

The maximal sampling frequency: F = 6.4 MHz.

A more efficient implementation is achieved by work-
ing with:

e Complex input data: Xin = Xin1 + jXin2
e Complex window function: W = W1 — jW2

The complex data input is received by loading the
first data block, Xin1, to the real input memory, and the
second data block, Xin2, to the imaginary input mem-
ory. The complex window is received by loading the
first half of the analyzer window, W1, to the real coef-
ficient memory, and the second half (negated), -W2,
to the imaginary coefficient memory.

Multiplying the complex input by the complex window
gives:

Xin - W = (Xin1 + jXin2)(W1 — jW2) =
(Xin1 - W1 + Xin2 - W2) + [8]
j(Xin1 - W2 = Xin2 - W1)

The real part of XinW is (Xin1 - W1 + Xin2 - W2).
According to equation [7], Fourier transforming this
sequence gives the required output. However, the time
domain sequence Xin - W contains an imaginary part;
therefore, a separation pass is required after Fourier

transforming Xin - W, where only the first half of the
data is relevant.

The algorithm can be formulated as:
Out = Separation{BFLY16{BFLY16{BFLY4
{Xin - Wh}} [
where:
Xin = Xin1 + jXin2
W =W1-jw2

Based on equation [9], mapping the algorithm to the
LH9124/LH9320 system, for N = 1K, requires four
passes as follows:

1. BFLY4(Q-W) —>A
(Q=Xin1 + jXin2; W = W1 (jW2)
BFLY16(A) — B
BFLY16(B) — A

4. Separation(A) - Q
(only the first N/2 point is relevant)

Table 3 provides the algorithm programming for this
case.

Register Programming:

N = 1024
MEMSIZE =1024
DIGITREV =11 1111 1111

Performance: The computation time for N = 1K is:

T=(1024-4+68-2+18-2) 25 nsec =
107 usec

The maximal sampling rate is 9.5 MHz.

Programming the algorithm for other filter-bank
lengths (FFT lengths) is done by choosing the optimal
radix for each FFT length. Table 4 summarizes the
algorithm mapping for each FFT length.

Register Programming:

The value of N should be the FFT
length.
The value of MEMSIZE should be
MEMSIZE the maximal FFT length. See note
of Case 1.
The radix structure determines the
DIGITREV value of this register. See Case 1.

N

Performance: The computation time for one block with
size N is:

T=N-5 .25 nsec (neglecting the latency of
each instruction)

The maximal sampling rate is N/T = 8 MHz.
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Table 3. Algorithm Programming for Case 2
PASS LH9124 ADDRESSING
OPCODE DATA-FLOW AGin AGout AGcoeff.

1 BWND4 RQWA RBFO BF40 RBFO

2 BFLY16 RAWB MXB4160 MXB4160 MXT4160

3 BFLY16 RBWA MXB4161 MXB4161 MXT4161

4 BRFT RAWQ BRFTLS BRFTUS -

Table 4. One Channel, Algorithm Mapping for Several FFT Lengths
2K 4K 8K 16K

1 BFLY2(Q1 - W1) - A BFLY4(Q1 - W1) - A BFLY2(Q1- W1) > A BFLY4(Q1-W1) > A
2 | BFLY4(A) > B BFLY4(A) - B BFLY16(A) - B BFLY16(A) » B

3 | BFLY16(B) > A BFLY16(B) — A BFLY16(B) — A BFLY16(B) —» A

4 | BFLY16(A) > B BFLY16(A) » B BFLY16(A) —» B BFLY16(A) —» B

5 | Separation(A) —» Q Separation(A) —» Q Separation(A) — Q Separation(A) —» Q

SUMMARY

This application note presents the DFT filter-bank.
It is shown that by selecting the proper algorithm,
weighted overlap-add, an efficient and simple imple-
mentation is achieved using the LH9124/LH9320 chip
set.

Programming the algorithm is straightforward and
requires between 4-8 lines of program (depending on
the parameters).

Programming the algorithm for two cases is given.
In the first case, two channels are processed simulta-
neously; in the second case, only one channel is
processed. For both cases, the implementation for a
wide range of FFT lengths is given. The maximal
sampling rate that can be achieved by a single DSP

system with recursive mode is 5 MHz for Case 1, when
two channels are processed simultaneously, and 8
MHz for Case 2, when only one channel is processed.
The system performance has a small sensitivity to the
FFT length. If higher performance is needed, then a
multi-DSP configuration can be used.

REFERENCES

[11 A. Oppenheim and R. Schafer, Discrete-Time Sig-
nal Processing, Prentice-Hall, 1989.

[2] R. Crochiere and L. Rabiner, Multirate Digital Sig-
nal Processing, Prentice-Hall.

[3] LH9124 User’s Guide.
[4] LH9320 User’s Guide.

DSP Application Note




SHARP

DSP Application Note

LH9124

Digital Signal Processing

SPECTRAL ANALYSIS

INTRODUCTION

Spectral Analysis is the analysis of the magnitude
squared frequencies to determine the composition of
a signal. The following description demonstrates how
to perform a spectral analysis, and describes the
LH9124 functions that allow you to compute the dis-
crete Fourier transform of finite-duration sequences.

For this demonstration, spectral analysis will in-
volve estimating a Fourier transform X(f) of the signal
x(t). Within this relationship, the actual quantity of
interest is the power density spectrum (PDS), Pxx (f ),
which indicates how signal power is distributed over
frequency.

As such, when a discrete-time signal x(n) is given,
an FFT of the x(n), X(k) values is used for estimating

X(H). | X(k) l2 is a scaled estimate of the power den-
sity spectrum Pxx (f).

If x(t) is a random signal, such that x(n) is a random
sequence, the estimates cannot be used due to their
inherent inaccuracy. In this case, the spectral analysis
is performed by computing spectral estimates from the
non-overlapping sections of x(n), then by averaging
the results. This averaging operation improves the
accuracy of the approximations.

PDS of a Stationary Signal

To determine the power density spectrum of a sta-
tionary signal, consider the stationary random process
{xn}. For a zero initial condition, sampled sequence,
x(n), the mean value mx is defined as:

N

The variance of this process {x(n)} is:
R = [, — mx)z] B3]

When E is an operation for an expected value or mean
value, the auto-covariance sequence of {x(n)} is:

Yex (M) = E [(Xn -my (X:+m - m::)] 4]
where:
* denotes complex conjugation.

The Fourier transform of y,, (M), Pxx (®) is equal to the
power density spectrum as follows:

P (@) = 3 1y (M) €7 ]

Mm=—oco

The integral of Py, (w) over a band of frequencies is
proportional to the power of each signal. In the band.
Pyx (@) is a symmetrical function and is non-negative.

When myx =0, the PDS can be defined as the
Fourier transform of the auto-correlation sequence,
rather than the auto-covariance. In most applications
of spectral estimation, the ‘white noise’ or mx = O is the
case.

In the LH9124, the estimate of Pxx (») can be com-
puted from the 1’+ R? of FFT output, with the estimate
of yxx (m) obtained before Pxx (m) is computed. Be-
cause the auto-covariance and auto-correlation of a
random process are the same when mx = 0, the esti-
mate of either is called the estimate of the auto-corre-
lation sequence, denoted as

. 1
=lim —— Cxx(m) = E [X(n)X* (n+m
me=lim N Y x(n) 1 (m) = E [X()X* (n+m)]
n=N or:
If N is large enough, the estimate of mx, ﬁ\wx, is often Nel m 11
sufficiently accurate: C (m)=1ﬁ 3 x() xm+m) 6]
1 N-1 n=0
ﬁ'\x:N Y x (n) 2 0<|m|< N-1
n=0 Note that C,, (m) is a biased estimate of the auto-cor-
relation sequence, although it is asymptotically unbi-
ased.
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Averaged Periodogram
Spectral Estimation

Smoothing the Fourier transform of the variance
estimate produces a good estimate of the power spec-
trum. Where exact expressions for the variance of
spectral estimates become cumbersome, some ap-
proximate expressions can be easily interpreted. The
following description defines a spectrum analysis that
obtains approximate values for the PDS.

The Fourier transform of the biased auto-correlation
estimate Cxx (m) can be considered an estimate of the
power density spectrum, | n(m).

N . g
In@=Y Cume"

m=—(N-1)

For a finite length real sequence x(n), the Fourier
transform is:

N-1

X(€*) = Y x(n) e

n=0
where:
0<n<N-1
since:

18]

Coc (M) = [T - 5 (-)]

then:

h@= 1 XE)X @)= xe®r  ©

The spectral estimate In (w) is called a periodo-
gram. This periodogram is the biased estimate of the
power density spectrum Pxx (m).

In a zero mean process:

N —
E[Co i = "™ g, (m)

where:
Iml<N [10]
then:
@xx (M) is the auto-correlation of the random
process:

Elly(@] = Z( m')(pxx(m)e {11

m=—(N-1)

The equation can be interpreted as the Fourier trans-
form of a windowed auto-correlation sequence. The
triangular window (Bartlett’s window) is:

N-Im]l
w(m) = N
0, fmi=N

Iml<N

An alternative rectangular window function is:

_[1, Iml<N 2]
W(m)‘{o, Imi>N

Since a periodogram is not a consistent estimate of
the spectrum, modifications are necessary for more
accurate results. Welch has introduced the Bartlett
modification procedure which is particularly suited to
the direct computation of a power spectrum estimate
using an FFT.

In this procedure, the data record is segmented into
K= N/M. N is the total length of the data and M is the
sample number of each segment. There are K modi-
fied periodograms as indicated in the equation:

2

M-1
1M (@) = ﬁ %0 Xy w () e
where:
i=0,1,..,K [13]
then:

the superscript (i) indicates the segment index
number:

1 M-1
=g ZwWm
n=0

[14]

This equation is a normalizing factor for window w(n).

The estimate of the power density spectrum is the

average of l('a o, defined as:

1 . 10} (18]
Px (@) = Rz I'v (@)
i=1

This estimate of PDS is the Bartlett-Welch method
which is computed using an FFT as discussed later.

Spectral Analysis Applications
with Digital Signal Processors

The LH9124 uses a new architectural approach that
allows a variety of FFT based DSP system configura-
tions. This device can be used to estimate the power
density spectrum. Using the complex arithmetic

DSP Application Note
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instruction CMAG (the square of the magnitude of a
complex number, for example, ?+R? ), the spectrum
analysis is well supported using the following two
applications.

Computation of the Bartlett-Welch Method

To compute a spectrum estimate at equally spaced
frequencies by averaging periodograms, the fre-
quency o in Equations [13], [14] and [15] is substituted

by 2% . The data record is sectioned into K = N/M

segments ofM samples each, changing Equation [15] to:

2 iy 2
Bec (210 = 2 &

where:
k=0,1,...,M-1
then:
2 M-1 ) . 2
= 15 %x(')(n) wme e
n=
X ;',: is:
M-1
X 0 _ 2 X w (e —j (2nA1) kn
n=0
and:
k=0,1,...,M-1 7]

Equation [17] can be computed by using FFT algo-
rithm. Each data record segment can be transformed

into X {1 and then, by using the CMAG function of the
LH9124, | X} (k)|2 can be easily obtained and these

results added together. When all K of the estimates
have been accumulated, the result is divided by KMU.

Computation of the Correlation Estimate.

The correlation is a very important parameter in
spectral analysis, especially when a signal has an
infinite power spectrum. The correlation estimate is
obtained using the following method.

The FFT is used to efficiently compute the auto-cor-
relation estimate, which is defined as:

and:
M < N.

The convolution of x(m) and x(—m) is:

X(M) # X(-m) = > X(N) X(n +m)

n=- oo

NI M -1 [19]
Y () x(n +m)

n=0
where:

C,, (m) is the convolution of x(m) and x(-m).
Now suppose that:

X(K) = FFT [x(m)],
then:

X = FFT [x-m)]

and:

X(k) - X (k) = IX@)P = FFT [ X(m }#X(-m)]  [20]

The inverse FFT of IX(k)I2 is the circular convolution
of x(m) and x(-m). This means that by augmenting the
sequence x(n) with (L — N) zero samples and comput-
ing an L-point FFT, the values of the circular convolu-
tion are correct in the interval 0<m<M-1. If
0 <m <M -1, the number of padded zero samples is
M-1.

To obtain the correlation estimate, follow the steps:

1. Padx(n) with (M- 1) zero samples to construct an
L-point sequence.

2. Compute an L-point FFT:

L-1
j @A) kn

XK= x(n)e"
n=0
where:

k=0,1,..,L-1

3. Compute the magnitude-square of X(k):
IX(k)I®

4. Compute an L-point inverse FFT of IX(k)IZ:

L1
1 )
N cm=1 ¥ Xk e @ "
1 k=0
-1 18
Cy (M) N E’o X(n) X(n + m) [18] where:
m=0,1,..,L-1
where:
0<ImlI<sM-1
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5. Divide the result from (d) by N to obtain the
auto-correlation estimate:

G (M) = . (M)

Since the LH9124 is a very powerful device for FFT
computation, the correlation estimate, Cxx (m) can be
easily and efficiently obtained.

An FFT system can be implemented with the
LH9124 by using either a single or dual memory recur-
sive system. If necessary, cascaded system architec-
ture also can be used. In this case, the algorithm is
defined by programming the LH9230 Address Gener-
ator instruction memory in the LH9124, and the hard-
ware configuration is defined by appropriately pro-
gramming the LH9124 control registers.

The FFT algorithm can be turned into a spectrum
analysis algorithm by adding two additional passes
(two operation codes), BWND (complex window
pass) and CMAG, (square of magnitude of a complex
number).

Note that memory for holding the window coeffi-
cients is required in addition to the trigonometric coef-
ficient memory.

A pass means the transferring of a length of data
array from one memory to another under control of the
LH9230. (In a single memory system, a pass changes
the data array to the same memory.)

Note that these transfers can be implemented on a
recursive dual memory system, a recursive single
memory system, a cascaded memory system or inter-
mediate hybrid systems to achieve the desired per-
formance.
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IMAGE CORRELATION
INTRODUCTION Conjugate:
Recognition of objects is needed in many applica-
tions. These include fields such as robotics, military =ﬁ Y RN cosz%n— L(n )sn—Z{F
targeting, and satellite surveillance. n=0

The basis for many of these applications is the
correlation of a sample signal with a desired signal. N-1 \

This produces a ‘best fit' of where the desired signal is _ . 2mni 2nni
located in the sample, and of how good a fit it is. The J Z Ry(m) sin Nt (m) cos N
application can then use some sort of artificial intelli- n=0

gence to interpret the results. Recombine:

In robotics this can be used in determining location Nt «
and camera angle information by comparing a video 1 R | 2rni . . 27ni
input from the camera to a list of pre-stored location =N 2R il || cos N SNy
images. n=0

By using the LH9124 digital signal processor, XXXX
number of 256x256 grey scale images can be corre- 1 N ) —j2mnjy
lated each second. Thus, by using the LH9124, low =N Y R -jlLm)e
cost high end image recognition can be achieved. n=0
Correlation Theory > :

N-1 N1 Nt 1 * —2mnigy
- =— X)e
. . 1 j2rnigy 2
% X()h(k+) = 20, N %X(n)e Nl = [2]
- i By substituting [2] into [1]:
- ; - (1]
1 ]2nm(k+|)/N N-1
= > H(m)e
N2 -
- Y x@h(k+ i)
i=0
From the Alternate Inversion Formula:
1 N-1 o N 1 " —2mig || 1 n j2nmcr iy
7Tn| —_ — —
N 2 Xme 4 =2 | 2XHe N 2 Hme
n=0 i=0 n=0 m=0 3]

N-1 Since the second conjugation in [3] occurs only after

2
=N 2( L (N)+ jlx(n))[cos— +jsin Ln) calculating Rx an Ix, and since x(i) has only real

N N values, the second conjugation can be ignored.
1 N-1 omn omni By doing this, and by rearranging, equation [3]
=N Y R cosnT I(M)si 'n{T— becomes:
n=0 N-1 1 N-1  N-1 jormis
. . & N
Y x() h(k+ D=y Y Y XmHme
onni =0 n=0 m=0
+] ZR(n)smAH(n) cos= 1~ Nt
_ 1 - 2nrnjgy jermigy
n=0 N— 2 e e
i=0 [4]
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Since the right-hand side is periodic in N, it evalu-
ates to zero for all cases of n and m except n =m where
it equals N.

- -i2nnigy j2mmiyg N, for n=m
Ye e = .
” 0, otherwise
i

Therefore, [4] evaluates to:

N-1 1 N-1 — [5]
' x(© hac ) =5 3 X () Hm) e N
i=0 n=0

Thus, the correlation can be done in the frequency
domain: multiplying the conjugated frequency input by
the frequency input of the correlation mask, and taking
the inverse FFT (see Figure 1).

The boundaries required for correlation, as illus-
trated in Figure 2, need to be greater than the sum of
the boundaries of X and H. This is because the corre-
lation produces data on the correspondence between
X and H for both positive and negative shifts of H.

Therefore, N>a +b—1.

Also, since N points of each function have to be
transformed by shifting x(k) into the right-most points
as in Figure 3, the result will be contiguous with a
known shift of N — a.

INPUT INVERSE OUTPUT
. FFT L~ MULTIPLY
FRAME FFT FRAME
TRIG
FUNCTION
MEMORY
TRIG
ngsp%ﬁgE 1 FFT FUNCTION
MEMORY
L
9124-95|

Figure 1. Correlation Flow Graph
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FAST CONVOLUTION

INTRODUCTION

A linear convolution of two sequences is the proc-
ess of modeling (filtering) the output response of a
signal according to an input signal and the impulse
response of the system that affects the signal.

A Fast Convolution is a convolution (filtering) proc-
ess that is performed in the frequency domain. A fast
convolution transforms the data into the frequency
domain via a Fast Fourier Transform (FFT), the data
is then multiplied and the result is transformed back
into the time domain using the inverse FFT. Refer to
Figure 1.

Because the Fast Convolution corresponds to a
circular convolution of the two sequences, the key
question is:

How is the result of a linear convolution of obtained
using a circular convolution method?

The following description demonstrates how to im-
plement the linear convolution of two sequences, and
describes the LH9124 functions that allow you to com-
pute the discrete Fourier transform of finite-duration
sequences.

Linear & Circular Convolution

In a time-invariance system, suppose we have two
discrete sequences, x(n) and h(n), with the linear
convolution of these two sequences defined in the
following equation:

y(n) =x(n) * h(n) = Y h(k) x(n — k) i1
k=—oo

The order for convoluting these two sequences is
unimportant, hence:

y(n) =x(n) * h(n) = h(n) * x(n) 2]

Note that the convolution sum is fromk=—ccto . Ina
practical signal case, the sum can be from k = 0 to oo,

For a linear convolution, the basic operation in-
volves multiplying x(n) by a reversed and linearly
shifted version of h(n), and then by summing the
values of the products. To obtain the successive val-
ues of the sequence representing the convolution, the
two sequences are successively shifted relative to
each other.

INPUT FET PLY INVERSE ouTPUT
FRAME MULTIPL FFT FRAME
TRIG
FUNCTION
MEMORY
TRIG
IMPULSE -
RESPONSE rravARcH
9124-95

Figure 1. Fast Convolution Method
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Consider two finite-duration sequences x(n) and
h(n), both of length of N, with DFTs of X(k) and H(k)
respectively. For example:

N-1 N-1
X =Y xm) W' and Hk =3 h(m Wy @]
n=0 n=0

2n
Here, Wn = e'N . To determine sequence y(n) with
DFT coefficients, X(k) and H(k), assume that the two
corresponding periodic sequences of period N (x(n)
and h(n) are one period) are denoted by
X(n) and RA(n). Also, y(n) denotes one period of a peri-
odic sequence of §(n). Thus:

N
y(m =], -1 %K) fn-k) | Py
k=0
where:
p _| 1, 0<ns<N 4]
N™1 0, otherwise

This interpretation of convolution is often referred to
as circularconvolution. For a circular convolution, one
sequence is displayed around the circumference of a
cylinder with a circumference of N points. The other
sequence is displayed around the circumference of a
second cylinder with a circumference of N points, with
the display reversed in time. Then one of the cylinders
is placed inside the other. The successive values of
the convolution are obtained by multiplying the corre-
sponding values of the two cylinders and forming the
sum of these products.

To generate the successive results of the convolu-
tion, one cylinder must be rotated with respect to the
other. This operation is equivalent to the convolution
of two periodic sequences. The circular convolution
requires that x(n), h(n) and y(n), the result of the
circular convolution, are of N length. For a linear
convolution of two finite duration sequences x(n) and
h(n), both with length N:

N
ym) =Y x®hn-k 5]

k=0

The result of the linear convolution in Equation [5]
is different from the circular convolution, both in the
corresponding values and in the length of y(n), which
is 2N — 1. If x(n) and h(n) have different lengths, say
N and M respectively, the linear convolution of h(n) and
x(n) has alength of N + M —1.

Examples of Fast Convolution

Many applications require the implementation of a
linear convolution of two sequences. For example, a
filter impulse response (FIR) digital filter operation is

a linear convolution of the finite duration FIR with the
input signal.

To perform the filtering operation in the frequency
domain using the FFT and IFFT algorithm, the input
long sequence must be broken into data arrays of
length N. Length N depends on the length of the FIR
duration and the hardware/software system used with
the LH9124.

Because the FIR is usually known, the respective
FFT calculation H(k) can be executed beforehand and
the H(k) data can be stored in the constant/coefficient
RAM in the LH9124. The H(k) data is used to multiply
the FFT data of the input signal. (The products of this
multiplication are the next subject of the IFFT compu-
tation.)

This procedure is equal to the circular convolution
of h(n) and x(n) as shown. In this case, if a linear
convolution is to be obtained, the circular convolution
has to have the effect of a linear convolution. For the
LH9124, the preferable method for obtaining these
results is the technique of overlap-discard.

Overlap-Discard Procedure

Toillustrate the overlap-discard procedure in a prac-
tical application, assume that the signal and the FIR
are given by an equation where the length of h(n) is
equal to M = 4. Assuming that the FFT length is N = 8,
the overlap-discard method is used to achieve a linear
convolution. Refer to Figure 2 for block diagram of the
overlap-discard procedure.

Notice the following equation:

_|1for0<n<3
h(n) = {0 for otherwise

Oforn<0,n=3,7

1forn=0,2
X(n)=<-1forn=4,6
2forn=1
—2forn=5
X(N)=x(n+8) forn=0 [6]

The next subsection must be overlapped with the
previous subsection by an amount equal to M-1 points
(3 points in this example). To do this, the M-point h(n)
must be extended to N-point by padding with (N — M)
zeros. (In this case, four zeros.) In Figure 3, the first
M — 1 samples of x1(n) are padded with zeros since
the preceding section does not exist. That is, the initial
conditions of the system are set to zero. Then each of
the subsections x(n), x1(n), xa(n),and so on, perform
the circular convolution with h(n) as illustrated by the
multiplication of matrices.
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INPUT N-POINT FFT | _.] INVERSE ||| KEEP LAST . OUTPUT
FRAME [~ | [WINDOW RG] (N-POINT) [T [MULTIPLY FFT oS FRAME
FUNCTION POINT:
MEMORY
(M-POINT) N-POINT TRIG  |-={(N-POINT) MEMORY
FUNCTION
MEMORY
PERFORMED ONCE AND STORED
9124-96
Figure 2. Overlap-Discard Method for Fast Convolution
The circular convolution of subsection x1(n) with
zero-padded h(n) yields:
x(n) r 7 _ ~ _
Wﬁ; 0-1 01210 0]fy 0
Y4 0 0-1 01 2 10 -1
ot I l l 1
IIIIIIIIIIITTH e 0 00-10 12 1|1]|-1
l I l vi®| | 1 00 0-1 0 1 2{|1]_| 1
y®|| 2100 0-10 1|/[0|]| 3
X () v,(5) 12100 0-1 0[|0 4
v,(6) 012100 0-1 g 4
-o—o—g-J_'—‘__—n _y1(7)_ ..—1 o 1 2 1 0 0 0- L 2_
[7]
X (n) The circular convolution of subsection xz(n) with
zero-padded h(n) yields:
g Il [y, ] 4
IT1 : y2§1; (1.2 1 0-1-2-1 0][1 4
vz 0121 0-1-2-1[]1 4
V@ | -1 01 2 1 g-1-2||1 2
Xa(n) V@ | |[-2-1 0 1 2 1 5_1[[1] |-2
l v [|-1-2-1 0 1.2 4 o |07 -4
o111 y® | | 0-1-277 0 1 2 1110} -4
lll n @ | | 1 0-1-2-10 1 2 01 |-2
2 1 0-1-2-1 o 1
v |t / L 2]
8]

9124-97

The circular convolution of subsection x3(n) with

Figure 3. Example of Overlap-Discard Method h(n) yields:
v ’ ) o
y3(1) 0-1-2-1 0 1 2 111 -4
¥a(1) 1 0-1-2-1 0 1 2|[|1] |-2
Y32 2 1 g-1-2-1 0 1}}1 2
@ || 1 2 1 g-1-2-1 0111 | 4
;4| | O 1 21 0-1-2-1]]0|7| 4
y® | |71 01 21 0-1-2/10 2
¥ -2-1 01 2 1 0-1 8 -2
-1-2-1 01 2 1 0 -
L@ |t : 4]
1]
DSP Application Note 1A-81



LH9124 SHARP Fast Convolution

From the output of each circular convolution, the
last N - M + 1 = 5 points are saved and the first
M — 1 =3 points are discarded. The saved sequences
are concatenated successively, which yields the fil-
tered output:

y(n) = y3(n) ya(n) ya(n)

These are denoted as the sequences after the discard:

Yy =y}, () Y3, () ya ()

y(n) = y4(n), yo(n), y5(n)
=1,3,4,4,2,-2,-4,-4,-2,2,4,4,2, -2, 4
[10]

Continuation of the overlap-discard process results in
the indefinitely long filtered sequence given by:

y(N) = y4(n), Ya(n), ya(n), .. , Ya(n) 11

The application of the fast convolution method with
the overlap-discard method in the LH9124 is con-
cluded as follows:

1. X(n) pad (m— 1) with zeros to the first ahead of the
sequence.

2. Extend the filter’s FIR h(n) from M-point to N-point.
For example:

h(n), n=0,1,... M-1 [12]
0, n=M,M+1,... , N-1

Then perform N-point FFT for the h(n). Store the
FFT output in the coefficient RAM for subsequent
use.

3. Configure the LH9230 Address Generator for data
acquisition and data overlap addressing to enable
exact N points to be selected from the input signal
sequence based on the following expression:

XpM=xMN+m-1) (N-M+1)] [13]

h(n) = {

Where N is the length of FFT, M is the length of
filter impulse response and m is the subsection
index for the input segments. Figure 4 shows the
sectioning for the input signal sequence in Equa-
tion [13].

4. Execute the N-point FFT for the sectioned input
segment.

5. Multiply the stored output in the coefficient RAM
frequency response of the filter, such as H(k), by
the FFT of the input segment obtained in step 3.

6. Execute the N-point IFFT for each pass of the
output in step 4.

7. Discardthe first M — 1 points from each successive
output of step 5 and save the last N - M + 1 points.
Append the last N — M + 1 points to y(n). See
Figure 5.

LH9124 System Configuration

The overlap-discard method limits the performance
of most DSPs. In contrast, the LH9124 accommodates
this overlap-discard method by providing special se-
quences, control signals and a special control register
to set the overlap amount. Figure 6 illustrates the data
flow of this algorithm in the LH9124.

In general, the LH9124 is set to the recursive dual
memory system for the overlap-discard algorithm. For
example, the implementation of a recursive dual mem-
ory system is shown in Figure 7. The overlapping
frames are created by writing the sampled data into
the acquisition RAMs sequentially and by reading the
data from the RAMSs in frames. The frames are ad-
vanced by the overlap length for each frame read.

For example, if a 1 kilobyte frame with a 50 percent
overlap is configured, the address pointer of this frame
in the LH9230 would be advanced by 512 locations for
each frame that is read into the LH9124. The discard
is done by simply overwriting the discarded portions of
the array with the data that follows. The coefficient
RAMs store coefficients for windowing, the table and
the filter frequency response trigger coefficients.

N-M+1

2N-M

OVERLAP

2N-2M+2

3N-2M+1

OVERLAP

9124-98

Figure 4. Data Sectioning of the Overlap-Discard
Fast Convolution
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Y 4(n)
0 N-1
yon)
DISCARD
N-M+1 2N-M
y4(n)
DISCARD
2N-2M+2 3N-2M+1
DISCARD
y(n)
9124-99|
Figure 5. Discarding First M-1 Points from N-Point IFFT
WINDOW FUNCTION IS COMPLEX MULTIPLY IS
ADDEESaNG ROLLED INTO THE FIRST ROLLED INTO THE FIRST ALDAZARD o
COLUMN OF THE FFT OPERATION COLUMN OF THE FFT OPERATION
INPUT MULTIPLY FFT INVERSE OUTPUT
FRAME ™| MULTIPLY =1 ™ ppr FRAME
|
TRIG 2-D FILTER TRIG
WINDOW FUNCTION FREQUENCY FUNCTION
MEMORY RESPONSE MEMORY

9124-100

Figure 6. Fast Convolution Data Flow in the LH9124
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COMPLEX DATA IN — REAL TIME COMPLEX DATA OUT — REAL TIME
REAL ADDRESS GENERATOR REAL
—_— FOR DATA ACQUISITION ~ ADDRESS GENERATOR
IMAGINARY PERFORMS MEMORY FOR DATA OUTPUT IMAGINARY
EFFICIENT DATA PERFORMS DATA
OVERLAP ADDRESSING  DISCARD ADDRESSING
RAM/PROM/ RAM/PROM/
RAM RAM CNTR CNTR RAM RAM
|| -——| ]
IMAG.QO00 REAL.Q00 AG.Q00 AG.Q01 REAL.QO1 IMAG.QO1
REAL IMAGINARY
QR al
RAM REAL DATA REAL DATA RAM
AR BR
REAL.A00 REAL.B0O
FUNCTION CODE
FC
DSP
DATA FLOW DF
RAM IMAGINARY DATA A Bl IMAGINARY DATA RAM
IMAG.A0O IMAG.B0O
CR cl
REAL IMAGINARY
RAM RAM
RAM/PROM RAM/PROM WINDOWING WINDOWING RAM/PROM
fCNTR /CNTR TRIG FUNCTIONS —={ TRIG FUNCTIONS /CNTR
AG.A00 AG.C00 FILTER RESPONSE FILTER RESPONSE AG.B0O
REAL.C00 IMAG.C00
COEFFICIENTS
9124-101

Figure 7. Overlap-Discard Recursive Dual Memory
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Digital Signal Processing

2-D TIME DOMAIN CONVOLUTION

INTRODUCTION

The field of image processing ranges from simple
bit twiddling of individual picture elements (pixels) to
sophisticated analysis of picture objects (houses, peo-
ple, etc.). Most low to mid level real time manipulation
is done through the use of dedicated hardware. With
a general purpose transform engine, the LH9124, a
24-bit 800 MHz data stream can be filtered to allow
digital filtering in real time. For a frame size of
256 x 256 bits, 37.67 frames per second processing is
feasible.

Faster rates may be obtained by decreasing the
filter size (number of taps). This can be demonstrated
by implementing a 2-D high pass finite impulse
response (FIR) filter with a general purpose configu-
ration of the LH9124 DSP transform chip.

This publication will present a hardware implemen-
tation of a 2-D FIR filter and the program code for FIR
filter required for LH9124.

Time Domain Convolution: 2-D

A 2-dimensional (2-D) FIR filter is implemented by
applying the theory of a 1-D FIR filter to two dimen-
sions. For two-dimensional time domain convolution,
filters can be causal, non-causal, recursive or non-re-
cursive (Figures 1-4). The ¢ and d terms represent the
weighting values for the branch in which they are
shown. The delay blocks represent a delay in the
signal samples by a constant time or space increment.

The equations (equations [1]-[4]) that describe the
2-dimensional versions of these filters are described
below.

In general (by eliminating the recursive nature of the
digital filter) the filter design and implementation may
be simplified while still preserving the convolution
relation. This results in filters of Figures 2 and 4.
Equations [2] and [4] represent the 2-dimensional
versions of these filters.

A causal filter uses information about an event that
has not yet occurred to modify a current event. This
information can be obtained by making predictions
about the future event with knowledge about the
repeatability of the event, or the output can be delayed
until the future event has occurred.

in the case of image data, an entire frame can be
captured before the filtering of that frame begins,
introducing a small delay between the input to the filter
and the output. Therefore the non-causal, non-recur-
sive filter of Figure 5, equation [4] can be used for
digital filtering of image data.

In this Figure 5, the Cm1,m2 terms represents the
filter weighting values, and n1 and n2 values represent
the spacial coordinates.

Causal — Recursive:

M1 MZ
Y, n) =3 ¥ Cr m XNy =My, Ny —My) -
m;=0 m,=0
M1 M2
D X dn,m YN =My, np—my) gl
m,;=0 m,=0

Causal — Non-Recursive:

M1 M2
yn,n) =3, Y Cm,, m, XNy =My, Ny —my)
m=0 m=0 [2]

Non-Causal — Recursive:
M1 M2
YN N) =3, Y Cm X(Ny =My, Ny —My) —
m=-M; my=-M,

M M,

1

Y X dn,ms V(N —My ny—my) [3]

m=-M, m=—M,

2

Non-Causal — Non-Recursive:
M1 M2

YN N) =Y, Y Cnoms X(Ny =My, Np—my)
m=-M, m=-M,
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LH9124 SHARP 2-D Time Domain Convolution
x(n) —r>| z' I—r>| z' I—r>| z' l—r—l z F—r
Co Ci & Cs Cs
y(n)
z' |
9124-103
Figure 1. Causal - Recursive One-Dimensional Time Domain
Convolution Filter
y(n)
9124-104
Figure 2. Causal - Non-Recursive One-Dimensional
Time Domain Convolution Filter
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y(n)

9124-105

Figure 3. Non-Causal - Recursive One-Dimensional
Time Domain Convolution Filter

9124-106

Figure 4. Non-Causal - Non-Recursive One-Dimensional
Time Domain Convolution Filter
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Figure 5. Non-Causal - Non-Recursive Two-Dimensional
Time Domain Convolution Filter
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Determining the Coefficients

By assuming that the input to the system repre-
sented by equation [4] is a complex sinusoid:

X(Ny, Ny) = A g2 gi2rtn, o
where:

1 S(‘T‘:TE;X ,Xx=0... Xmax

N =Ymax ' Y=0- Ymax

f;=0... X_"21§§

f;=0... Yr;lax

Equation [4] becomes:

M, M,
y(n1 n2) _ z Z Cm N |21tf,(n1— m1)e jonf,(ny~ my,)
,
2
m=-M, my=-M
M,
jenf n1 j2nt,n,
=Ae 2 2 Cm,, m,
m=-M, m=-M
~ j2nf,m, 12n
e ‘e
MI M2
—j2nf,m, —j2nf,m
=x(pn) Y, D Come e e
=M, MmN, 6

The frequency response term for y(n4,ny,) is:

Ml MZ

H(e 12nf1’ e ]21!.1‘2) _ 2 Z Cm‘_ mze —12nf1m1e —j2nf,m,

m=-M; m,=-M, 7

Substituting a desired frequency response A(f;,f,) for
H (ej21rf1 ej21tf2)_

MI M2
At =Y D cn me TrMe M (8]

m=-M, my=-M,

If we assume that the image data (input) is circularly
Symmetrlc, Cmi1,m2 = C.m1,m2 = C.m1,-m2 = Cm1,-m2"

Ml M2
jenf.m,  jenf,m,
At =2,  DCmome el e
m=-M, m=-M,
M1 M2
—jenf.n, _—j2nf,n,
e e A f) =Y, Y Cm,
m=-M, mz=-M,

e jenf,m e ]2m2m2e —jenf, —j2nf,n, [9]

2N e

The maximum frequency of the data, as determined

f X .
by Nyquist, is %1 = %ax for the horizontal data, and
f Y ) . .
%2 = % for the vertical data. Then integrating over
these maximum frequency ranges:
fs1 fs st fso M,
j j Al fpe " Me T gt g, _j j2
m ——M'
M2
2 Cm‘_mze jenf,(m — n‘)e jemf,(m,~n,) df1df2
M, M, fs1 fs2
2 jenf (m,—n)
-Y Sowm [ [Te™
m=-M, m =—M
e M ot o, [10]

By using the Euler formula, the right hand side be-
comes:

M,

M, e
> .
]2nf2(m2— n,)
Y e Y, m,

0
-M, m=-M

my= 1

fst fs1 W
2 r2 .
{J.o cos((my—n,)2nf,)df+ JJO sin((m;—n4)2nxf,)df, )dfz
[11]

Since the integration is over an integer multiple of
the sinusoids period, the integral evaluates to zero
(area under a sinusoid), except for the case of n1=m1,

where it evaluates to fs1

5
L] fs1
J-2 ej(m1—n1)2nf‘ df, = ? ,  Ny=my
0 0, n=m,
and:
fs2 fS2
> -, N=m
J‘2 olmengert, yo | 2 e
o=
0 LO , Ny m,

Therefore the right hand side of equation [11] reduces
to:

121rf(m—n) f
Z J- e 2 n‘ m2 2df2

my=-M,
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and:
f M, fs2 £ 4
Z .[ e erlamemnd) df2 cn m, = S1482 Cn‘,nz
m2=—M

By substituting this (right hand side) back into equation
[10]:

fs1 foo
2 (2 i ~ foif
[2 17 Ayt @ 20 & 27 i o, = G,
0’0
[12]
Finally:
fs1 fs2
Con & j Afy f) @ Mg 120 g if,
i 1fs2 0
[13]

Since the integral is over one period of a sinusoid,
the integral boundaries can be changed to different
endpoints of the same period.

f52 fs1
j j Al e iy 2N o o,

4

C,

Ny, N,
N s1f

[14]

In order to simplify this further, the relationships
Af1 12 = A1 2 = A1 -2 = A1, -2, from the assumption of
a circularly symmetric impulse response, can be used.
The coefficient equation then becomes:

o far

4 4 (4
Cn,n, = 7fs1f32 J—_fz jjA(f1’f2) cos(2nfin,) -
4 4

cos(2nf,n,) df,df, [15]
If the first sampling frequency, fs4, is even:
fsz fs1
_[ ZI A(fy,f,) cos(@nfyny) -

Cn,n,= ff. s

cos(2nf,n,) df,df, [16]
And, if the second sampling frequency, fs,, is even:
fs2 f_

22 2} I Afy,fp) cog2nf;n,) -

1f 2
cos(2nt,ny) df df, [17]

n, N, =

At this point, if having a filter with a non-causal
response, or output before input, is not acceptable,
then further modifications of the final equations would
be made, for example, time shifting the impulse
response to make it causal. However, for 2-D time

domain filtering of digitized images, non-causal filter-
ing is acceptable, and the following two formulas can
be used together for the design and implementation of
a 2-D FIR filter.

fso fs1
o= s1f J I A(fy,f,) cos(2nfyny) -
cos(2nf,ny) df df2 (8]

Cn

To find the filter coefficients, and:
M1 M2

Yn,n, = Y, 2 hmy, my) - x(n—my,np-my)
m=-M; m,=-M,

My M,
=Y > C,,m, - X(Ny=My,Nx—My)

[19]
m= —M1 m,= —M2

To produce the filtered output from the filter coeffi-
cients and the input.

An Example of a Digital Non-Causal Non-
Recursive Filter Using an Image as Input

Choosing a desired frequency response, A(f1, f2),
to be a high pass step function, with a threshold,

6=90% 51_90% fzz produces:
0,0<f<6,0<f,<0
Adfyt) = f f
P2 ,esf1s§,esfzs%2

Since this is circularly symmetric, equation [18] may
be used to find the coefficients.

fso fs1
16
Cn,n,= T _[9_ 52_[ r,1- cos(2nfiny) -
4
cos(2nf,n,) dfdf,

Where the lower limit is due to the limit shift of equation
[14]. After integrating:

f f
sin(2niln1) — sin2n(® - %‘)no

C, =
Ml fofe 2mn,

f f
sin(21t%2n2) - sin2n(0 - %z)nz) -

2nn,

However, this equation is valid only for n1,n2 #0.
When either variable equals 0, the equation fails.
Using La Hospital’s rule, integrate the top and bottom
of the 0/0 term.
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For the case of ny=0:

16 sin2m 4n2)—sm(21t(e— 4)n2)

n, =
v fs1fsz

-9
[21]

[of
n 27“12

For the case of ny,=0:

sin(2nfs—1n )-sin(2r(6- fs'—1)n )
16 4" 47"

Cine T F_f 2nn, - 9[22]
For the case of ny=ny=0:
16 2 [23]
Cn1,n2 - fsifeo 0

By using equations [20], [21], [22], and [23], the
coefficients can now be generated. For example, as-
suming the image is 256 x 256 x 8 bits, fs1 = fs2 = 256,
the coefficient c.4,-4 can be calculated from equation
[20], as shown in Example 1.

Table 1 presents the coefficients c-4,.4 through c4,4
for a 90% filter.

Figures 6 and 7 demonstrate the effect of 2-D FIR
filter. The images in Figure 6 were passed through a
98% 2-D FIR filter. The filter rejected all low frequency
components, passing only the frequencies in the upper
2% of the normalized range.

SUMMARY

Figure 8 demonstrates a system implementation of
a 80 MHz data rate, 24-bit data, 2-D filter using the
LH9124 Digital Signal Processor. In this configuration,
two 24-bit (real) data lanes are input to the LH9124.
At a clock rate of 40 MHz, an 80 MHz data rate is
achieved. The performance of the system can be
calculated using the following equation:

clock rate - pixelsper clockcycleinput

pixels input per filtered pixels output - pixels per frame

40 MHz - 2
= 81256256 1007 """ Veecona

A system implemented with an LH9124 can filter
256 x 256 frames of 24 bit real data in a 2-D time
domain filter application in real time. This preserves
the original signal to noise ratio and provides 60 bits
of precision. To filter larger frames (e.g. 1K x 1K) at
higher performance rates, the LH9124 can be used to
implement 2-D frequency domain filtering, refer to
application note # SMT89016.

. 256(-4)
sm(ZnT 256
16

sin[zn[o.g-@ _ 256 ("4)] sin[

@(:‘i)}sin[zn(o.e@ _256 "‘“J

2 " 4 [256 "4 256 2 ~ 4 256
C-4-4 = 256.256 1 1
" 256 256
44 =0.0232
Example 1. c.4,-4 fora
256 x 256 x 8 Image, M1 = M2 =4
Table 1. Coefficients for an Image 256 x 256 x 8. M1 = M2 =4
Cn1,n2 nl=-4 nl=-3 nt=-2 n1=-1 n =0 n1=1 nt=2 n=3 nt=4
n2 = -4 0.0232 -0.0137 | -0.0289 | 0.0049 -0.1214 | 0.0049 -0.0289 | -0.0137 | 0.0232
n2 = -3 -0.0137 | 0.0081 0.0171 -0.0029 | 0.0717 -0.0029 | 0.0171 0.0081 -0.0137
n2 = -2 -0.0289 | 0.0171 0.0360 -0.0061 | 0.1511 -0.0061 0.0360 0.0171 -0.0289
n2 = -1 0.0049 -0.0029 | -0.0061 | 0.0010 -0.0256 | 0.0010 -0.0061 | -0.0029 | 0.0049
=0 -0.1214 | 0.0717 0.1511 -0.0256 | 0.413 -0.0256 | 0.1511 0.0717 -0.1214
2 =1 0.0049 -0.0029 | -0.0061 | 0.0010 -0.0256 | 0.0010 -0.0061 | -0.0029 | 0.0049
=2 -0.0289 | 0.0171 0.0360 -0.0061 | 0.1511 -0.0061 0.0360 0.0171 -0.0289
=3 -0.0137 | 0.0081 0.0171 -0.0029 | 0.0717 -0.0029 | 0.0171 0.0081 -0.0137
=4 0.0232 -0.0137 | -0.0289 | 0.0049 -0.1214 | 0.0049 -0.0289 | -0.0137 | 0.0232
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Figure 6. Input to 2-D Filter:
Raw Images Stored as 256 x 256 x 8

1A-92 DSP Application Note



2-D Time Domain Convolution LH9124

g
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Figure 7. Output From 2-D Filter:
0,0<f1<6,0<f2<6

fsz
—_ o/ 27 _ o/ —
0=98% 2 =98% 2,where A(f1,f2) = 1, <f1<fs1’ < <fs

fs1
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COMPLEX
DATA IN/OUT

/—/;_\

LH9320 RAM RAM
ADDRESS |—=
GENERATOR REAL.Q00 IMAG.Q00

QR Ql
RAM RAM
AR BR
REAL.A00 REAL.B0O
FUNCTION CODE__ |
LH9124
DATA FLOW oF
RAM RAM
Al BI
IMAG.AQ0 IMAG.B00
CR C
LH9320 LH9320 LH9320
ADDRESS ADDRESS —ﬂ RAM RAM ADDRESS
GENERATOR GENERATOR REAL.CO0|  |IMAG.C00 GENERATOR
9124-108

Figure 8. Hardware System Implementation of
200 MHz Data Rate, 24-Bit Data, 2-D Filter Using the LH9124
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Digital Signal Processing

TIME DOMAIN CONVOLUTION

INTRODUCTION

A Time Domain Convolution is used to perform
filtering for both real and complex filter impulse
response (FIR) filters. There are two types of Time
Domain Convolutions: recursive and non-recursive.
Each is described as follows.

Recursive System

The general form of a recursive system is shown in
Figure 1. Here x(n) represents a sampled input and
y(n) represents a sampled output. The bi and aj terms
represent weighting values for the respective
branches. The delay is used to block the signal sam-
ples by a constant time increment.

m m
y(n) = Y bix(n—i)— Y ayn-i (1]

i=0 i=0

Equation [1] describes a convolutional relationship
between the input and the output. In this case, the
system is also recursive because the current output
y(n) is dependent on the previous outputs. If a simpli-
fication is made, the recursive system can be elimi-
nated, with the convolutional relationship preserved.

X<">T*| z FT—I z" I-r’i z" }T
by by b, by

9124-1

Figure 1. Recursive m™ Order Digital Filter

Nonrecursive System

In a nonrecursive system, the output depends on
previous input values. A recursive system is a filter
since it discriminates against certain frequencies and
not others. A nonrecursive filter is also called a finite
impulse response (FIR) digital filter. An FIR is stable
and can be made to have exact linear phase charac-
teristics as shown in Equation [2].

In this case, the frequency response of the filter equa-
tion depends on the values of b; and m as shown:

y(m =Y b x(n—i 2]
i=0

If the input is a sampled complex sinusoid, then:
X(n) = Aejann

Consequently, the equation [2] becomes:
m . N
ym =Y bad™ ™ 3]
i=0
This can be rewritten as:

m
y(n) = A" p g 4]
i=0

If so, the frequency response term for y(n) is now:
m . .
3y be 51
i=0

Figure 2 illustrates a system which the impuise
response is causal and finite for finite m. The Fourier
transform of the impulse response is:

m
H(ejzm)= Z bie—janl 6l
i=0
The Fourier transform is periodic in the frequency

domain with period 2x. The amplitude response of the
Fourier transform is now:

m . .
Y be ™ 7

i=0
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With the proper choice of bi and m, the amplitude
response can be a bandpass, lowpass or highpass
filter.

The realization of Figure 2 uses a method whereby
the bj values can be stored in a programmable random
access memory. The filter characteristics can be modi-
fied for real time adaptive filtering programmatically,
rather than via the hardware.

X(n)~r—| z' I—T’l z' I—r‘—l z" I——’
by by b, O,

Y(n)

9124-2

Figure 2. Nonrecursive m™ Order Digital Filter

Example of a Digital Nonrecursive Filter

Figure 3 illustrates the simple three branch nonre-
cursive filter. The input x(n) is a sampled signal com-
posed of two sine waves:

cos © and Cos %:Lt
X(n) DELAY
07, 1.0 07

Y(n)

9124-3|

Figure 3. Three Stage Branch Nonrecursive
Digital Filter

Figures 4(a), 4(b), and 4(c) graph x(n) and its com-
ponents x(n) when expressed as:

3zn i8]
(e

x(n) = COS (%) + COS ()
Assuming bo = 0.7, b1=1.0,b2=0.7.
Using the expression for y(n):
y(n) =.7x(n) + 1 x(n—=1) +.7x(n - 2) 9]

The output sum of the two cosine waves may be
calculated by applying the point by point values of
Figure 4c to Equation [2] above, with the following
results:

y(0)=.7x2+1x0+.7x0=14
y(1)=.7x0+1x2+.7x0=2.0
y(2)=.7x0+1x0+.7x2=1.4
y8)=.7x0+1x0+.7x0=0
y4)=7x(-2)+1x0+.7x0=-1.4
y(5)=.7x0+1x(-2)+.7x0=-2.0
y6)=7x0+1x0+.7x(-2)=-1.4
y(7)=7x0+1x0+.7x0=0
y@)=7x2+1x0+.7x0=1.4 (0]

Plotting the values of y(n) for the time domain
output of the filter results in the waveform in Figure 5.

The output can be expressed as:

1
y(n) =2 COS (%n - g—) or o

y(n) =2 COS ((n-1) }) hel

Equation [12] describes the effects of the filter. This

equation has rejected the COSE)m term and passed

the COS ( J term. Compare Equations [8] and [12].

4
Further, the equation has a gain of two and has shifted
the phase of the COS(n) term by %

Figure 6 illustrates a hardware system using the
LH9124 to implement a FIR filter. The sampled data is
stored in a circular buffer.

For an n point FIR filter, the acquisition address
generator provides addressing to the RAMs sequen-
tially to access the sampled data from the 15! sampled
point to the nth sampled point for each pass. Each
sample acquired becomes the 18t point and is placed
on top of the queue dropping the previous nth sample
and initiating the next pass.

The coefficient address generator is nothing more
than a circular counter with length n. For a FIR filter,
the control inputs to the LH9124 are hardwired.

Figure 6 identifies the static states of the inputs
using the acquisition port as the input port and the B
port as the output port.
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Figure 4. Digital Nonrecursive Filter Example

+2
1.4 1.4
2cos|(n1)E —— + ' f
[e%] % 1 2 3 4

2

0 , |

]
o
o
w
N
3
A
o

-0.707

.
N
—————
-
.

n 3n
COS §n+COS < n

()

9124-109

9124-117

Figure 5. Filter Output: 2 COS ((n—1) g)
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COEFFICIENT ca g
ADDRESS REAL IMAGINARY
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FC[4:0] DF[2:0] SFI[2:0] CSFI CI CO
OE 02 00 0 00
9124-102
Figure 6. LH9124 System for FIR Filter Implementation
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IMAGE COMPRESSION

INTRODUCTION

When images are digitized, the amount of required
storage can become astronomical as the number of
pictures grow. For example, LANDSAT satellites send
images that actually consist of four digital images. In
this case, each image represents the same area of
land through different spectral windows.

The size of each image is 2340 x 3234 pixels, with
each pixel being a 7-bit binary word corresponding to
one of 128 different grey levels. Since the satellites
send about 30 pictures in a day, the storage needed
to record them is (2340)(3234)(7)(4)(30) ~ 6 Giga
bits/day ~ 800 Meg bytes/day.

Image compression techniques allow this number
to be halved while still allowing the image to be recon-
structed error free. Other types of compression can
reduce the storage requirements to as low as 0.5-0.3
bits per pixel. These compression schemes don’t pro-
duce exact reproductions, but the results are visually
acceptable.

These compression schemes usually use some
type of function to transform the image into a domain
consisting of orthogonal data types. Since images
usually have high correlation between pixels, map
onto a small region of the map space. Because of this,
the picture can be encoded with fewer bits, due to the
correlated data lumping into particular regions of the
map space, and leaving the rest zero.

The optimal transform for this mapping of data onto
a maximum set of uncorrelated eigenvectors, has
been proved to be the Karhunen-Love transform. How-
ever, this transform has no fast method of being imple-
mented and is rarely used. The Discrete Cosine Trans-
form (DCT), on the other hand, produces results that
closely approach the optimum. Plus, it can be imple-
mented using a Fast Fourier Transform, thus giving it
Order(NlogN) operations.

The Discrete Cosine Transform

The Discrete Cosine Transform, defined by [1] and
(2]

N-1

1

C©O = N >t 1
k=0
- 2nnk

C(n)=\[%_ Yt cos—nﬁ— 2
k=0

can easily be found by making f(x) into an even
function, he(k), and then taking the Fourier transform
to produce He(k).

In doing this, let he(k) be an even function of f(x),
created by mirroring f(x) about its origin, and Re(n) be
the real part of he(k)’s Fourier transform He(n). Plus,
since the summation is over an even number of cycles
of an odd function, the imaginary term sums to zero.

2N-1 o
—j2rni
Hom=Y hke
k=0
2N-1 > K 2N-1 > K
mnk . 2mn
= h(K) cos on Y he(k) sin oN
k=0 k=0
n 2nnk
m
=" hy(k) cos oN
k=0
=Re(n) [3]

Thus, the DCT could be done with only these two
steps. However, since the imaginary terms are zero,
this is a waste of their imaginary products, which are
automatically calculated during the FFT.

A more efficient way in which to calculate the FFT
of this 2N point even function, would be to use the
imaginary terms in an N-point FFT and then later
recombine the result to produce the correct output of
a 2N point FFT.
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By breaking up the 2N point real function into
m(k) = he (2k), and n(k) = he (2k + 1) fork =0, 1, ...,
N — 1, which ‘interlace’ each other, the transform can
be written as:

2N-1
H(n) =Y h (k)e Zben
k=0
N-1 ) N-1
=Shy@e "N L Thy@kte
k=0 k=0
N-1 . ) N-1 .
=y he(2k)e_]2myN e Y he(2k+1 )e_lzn
k=0 k=0

—j2mn(k+H )5y

Nk

N-1 o . N-1 0
—Jenn = —2rn
=3 mige M 6N S e
k=0 k=0

i
=M(n)+e NN “

This means that the original 2N point real even FFT
can now be done with two N point FFTs, and a recom-
bination phase with some twiddle factors. M(n) being
the FFT of the even points (2k), and N(n) being the
FFT of the odd points (2k + 1) fork =0,1, ... ,N—1.

However, this still isn’t the 2N point real transform,
done with one N point complex FFT. To yield this, the
principle of linearity, and the transform property are
used.

If we let y(k) be the complex combination of the two
desired functions to be transformed:

y(® =m() +jn) 18]
Then from the linearity property:
Y(n) =M(n) +jN(n)
=[ M)+ M+ [N + N, ()]
=M = N+ [M() + N
=R(n) +j I(n) [6]

Since the FFT of real input produces even real and
odd imaginary frequency terms, and imaginary input
produces odd real and even imaginary terms,

Plus, since a general function g(x) can be decom-
posed into even and odd components by the following:

00 90, 9
_|900  9(=91], |90 g(=x)
‘[ 2 T2 ]*[ 2 2 ]
= 0g(X) + Go(X) [9]

and if the function is periodicin N (as are m(t) and n(t)),
then: '

9(=x) = g(N-x) [10]
and:
®) ,  (Nx) [11]
ge (X) g 2 + g 2
g0 (0= g(X) (N2X) 2]

M(n) and N(n) can now be found by creating even
and odd functions of the real and imaginary terms of
[6] by using [11] and [12].

M) = [R(n) R(Nz- n)] 4 [I%n) _ I(N2— n)] [13]

| I(N - IR R(N -
N() = [(n) (zn)]‘l[“(zﬂ)‘- (N2 n)] [14]

Finally, by substituting [13] and [14] back into [4]:

Hy = [R(n) R(Nz— n)]+ j [I(_;) _ I(N2- n)]

o, o). (o_sito]

[15]
zn(ln)  IN-n)
] SN[2 T2 ]‘

7n R(n) RN-n| .J[in) IN-n)
S"N|T2 7T 2 ]“{{2' 2 ]"

By rearranging terms:

R +BN-m n)] +co

Him == 2

M(n) = Rg(n) + k() 7]
IN(n) = Ro(n) + jlg(n) sin % _'(2) + ——I(Nz— n)] —cos _1:\1_n [@ - —————R(Nz_ n)]
N(n) = 14(n) = jRy(n) 8]
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Finally, as in [3], the Real term is the desired DCT.

Re(H(n)) = [

. nmn{Rn_ RIN-n)
smN[2 B

2N
}: Y hk) cos
k=0

2

2nnk
2N

2

m R(N - n) nn | kn) I(N—n)_
> TT 5 ]+COSN[ +-——}

Thus, the transform has been accomplished, using
an N point FFT of the mirrored N point input to find
R(n) +j I(n), and a final recombination pass with twid-
dle factors to generate the DCT coefficients.

Since the LH9124 includes this last pass as one of
its instructions, the data rate of the DCT is that of an
FFT of size N, plus one pass to recombine the data.

NOTE: If the output is required to be scaled by \I%,

then one more pass must be performed.
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CONSTANT-FALSE-ALARM-RATE ANALYSIS USING THE LH9124/LH9320

INTRODUCTION

The Constant-False-Alarm-Rate (CFAR) process is
an important post process for detection systems such
as Sonar and Radar. The process is usually applied to
preprocessed data, before it's displayed to an operator
or transferred to an automatic detection and tracking
system.

The input to the CFAR process varies from applica-
tion to application, and could be one or two dimen-
sions. A typical one-dimension input is a spectrum,
where the input vector is the energy versus the fre-
quency. In this case the signal is a tonal line and the
background level is noise (Figure 1).

The detection criteria of CAR algorithm is:
E(i)/N()) >R
where:
E(i) = input vector level
N(i) = background noise level
R = detection threshold

The above criteria means that a point on the input
vector is detected as a signal if it is R time bigger than
the background noise.

The advantages of this criteria rather than a con-
stant level threshold are:

e The detection threshold is a normalized number and
does not depend on the absolute level of the input
level. Therefore, does not depend on the system
and process gains and the calibration.

e The detection is done with a constant-false-alarm
probability. The false-alarm rate is only a function of
the parameter R.

The key issue in the CFAR processor is estimating
the background noise level. Usually, the background
noise level is not constant, therefore it is necessary to
estimate it separately for each point on the input
vector. The most popular algorithm to estimate the
noise level is the Split Sliding Moving Window. For
each point of the input vector the estimated noise level
is a weighted average of the levels of the input vector
around the point of interest, excluding the very-close
neighborhood. The design of the window function usu-
ally gives more weight to the points that are close to
the center of the window. A typical window function is
illustrated in Figure 2.

The estimation of the noise level is given by:
NGi) = Y w(k) - EG + k=2 w(k) - E( — k) =
k k
w(—i) * E(i)
since w(i) is usually symmetric function:
N(i) = w(i) * E(i)
Where * is the convolution mark.

The meaning of the above is that the noise-level-es-
timation process is a convolution operation between
the input vector and the window function.

The CFAR algorithm is summarized in Figure 3.

Signals

Amplitude

Backgroud

o) 50 100

150 200 250 300

Figure 1. Spectrum Display
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Figure 2. Typical Weighting Window for Noise Estimation
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Figure 3. CFAR Process Block Diagram

The filter response should have a gain of one for
constant level input, therefore the DC gain of the filter
should be one, To obtain this requirement the filter
coefficient should be normalized as follows:

W(0) = > w(n) =1

The heavy number crunching part of the algorithm
is the FIR operation. Basically, there are two options
to implement the FIR operation in the time domain or
in the frequency domain (Fast Convolution). Usually,
it is more efficient to implement the frequency domain
(Fast Convolution).

When using a trivial window function (i.e., a con-
stant level with G zeros in the center). The moving
average can be computed in a complexity of four ADD
operations and one MUL operation for each input
point. Sliding the averaging window by one step in-
volves adding two new points; subtracting two points;
and multiplying the result by the factor R.

This option is not considered in this application note
for the following reasons:

1. It is not possible to handle a non-trivial window
function.

2. The algorithm is numerically unhealthy, since the
computation noise is accumulated in the back-
ground estimator with no fading mechanism. The
computation-noise variance increase linearly with
i, where i is the input-vector index.

3. The algorithm can not be described as a vector
operation. Therefore, it is not well mapped to the
LH9124/LH9320 based system.

USING THE LH9124/LH9320

One-Dimension Case

With this example the following parameters are
assumed:

Length of the input vector N = 4096
Length of the averaging window D = 32.

Algorithm Steps:

1. Perform the frequency-domain convolution be-
tween the input vector E and the window function
W to obtain the noise estimation N.

~ Perform FFT to the input vector using the opti-
mal mixed radix. For the case of N = 4096, the
most efficient radix is 16 x 16 x 16

— Multiply by the window-function-frequency re-
sponse. This response should be pre-prepared
at the C port. The window-function-frequency
response is:

W = FFTy - 4096(W)

DSP Application Note
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NOTE: the window function, as defined, contains
values for negative indexes (i < 0), while the input
to the FFT assumes that 0 <i < N, therefore the
negative-index points should be reflected to posi-
tive-index points prior to performing the Fourier
transform.

w(-i) =w(N —i) (see Figure 4)
— Perform IFFT

2. Normalize the input vector by a factor of 1/R and
transfer the result to the C port.

3. Compare the vectors (the result of steps 1 and 2).
The comparison is done by subtracting the vectors
and monitoring the sign bit.

Programming

In this one-dimension example a standard hard-
ware configuration is assumed (Figure 5).

1N

—200 — 100 o 100 200 [} 100 200 300
Fig. 4. Window Funct. Reflation Int. Positive Time Index
LH9320
ADDRESS
GENERATOR
CH 1
SRAM Dy FIFO 1 Doyr{__*Din  FIFO 2 Doy
ENI ENI
MSB % CH 2
MSB
R I
LH9124
48 (24 x 2 48 (24 x 2
SRAM 2ax3 A DIGITAL B { ) SRAM
SIGNAL
PROCESSOR
C
LH9320 LH9320
ADDRESS ADDRESS
GENERATOR 48 (24 x 2) GENERATOR
SRAM
LH9320
ADDRESS
GENERATOR
APP6-1
Figure 5. Hardware System Configuration Example
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The registers programming is:

In the implementation above, we assumed that the
input is real, in a case where the input is complex
a CMAG (magnitude square) pass should precede

REGISTER PROGRAMMING
N 4096
DIGITREV 0000 0000 1111 1111 1111
MEMSIZE 4096
ADRLENGTH 4096
ADRSTART 0
ADRINC 1

Explanation and Remarks

1. Steps 1-7 performs the FIR in the frequency do-
main to estimate the noise level.

the algorithm steps described above.

As detailed in Table 1, the CFAR algorithm is com-
pleted in ten passes (for the case of N = 4096).
However, it should be noted that two input vectors can
be processed simultaneously with exactly the same
algorithm (and the same number of passes) by loading
one vector to the real input memory and the second
channel to the imaginary-input memory. In this case,
the output will be:

e The sign bit of the real output will indicate a detec-
tion of the first channel.

When performing the IFFT (steps 5-7) itis possible
to use the twiddle-factor-lookup table used for the
FFT by controlling the LH9124 Cl and CO control
signals as follows:

Cl =1 during pass 5, and 0 for all other passes.

CO = 1during pass 7, and O for all other passes.
For details see reference 3.

Step 8 normalizes the input vector by 1/R

Step 10 performs (N(i) — E(i)/R). Whenever the
result is negative (the sign bit set to one) the point
is above the detection threshold and the address
of this point should be stored. In this example, we
propose a FIFO device to accumulate all the ad-
dress of all the detected points (Figure 5).

It is important to notice that when subtracting the
two vectors, N(i) and E(i)/R, they should have the
same scale factor. One way to guarantee this is to
use the BFPO outputs at the end of pass 7, as
DSFl input in pass 9, and by setting manual scale

The sign bit of the imaginary output will indicate the
detection of the second channel. This process is
correct since:

Out = IFFT{W - FFT{E}} - E/R}

Loading one vector to the real input and the second
channel to the imaginary input creates a complex
input.

E=E1+jE2

Out = IFFT{W - FFT{E}} - E/R} = IFFT{W -
FFT{E1 +jE2}} - (E1 +E2)/R}

Out = {{IFFT{W - FFT{E1}} - E1/R} +
H{IFFT{W - FFT{E2}} — E2/R}

Out = Out1 + jOut2

Since both Out1 and Out2 are real sequences:
Real{Out} = Out1;
Imaj(Out} = Out2;

factor mode-DSFISEL = 1.

Table 1. CFAR Programming for One-Dimension Case

PASS OP CODE DATA FLOW AGin AGout AG COEFF

1 BFLY16 Q-A RBFO BF160 TF160

2 BFLY16 A-B BFF161 BF161 TF161
| 3 BFLY16 B—A BF162 BF162 TF162

4 CMUL A—B INC INC INC

5 BFLY16 B—A RBFO BF160 TF160

6 BFLY16 A—B BF161 BF161 TF161

7 BFLY16 B—A BF162 BF162 TF162

8 CMUL Q-B INC INC INC

9 MOVD B-C INC INC INC

10 CSuB A-Q INC INC INC

DSP Application Note
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Two-Dimension Case

The CFAR algorithm can appear as a two-dimen-
sion problem. For example, a waterfall display, where
the spectrum as a function of time, is presented to the
operator to increase the detection probability. Another
example is a defect-detection system that looks for
crakes on a homogeneous surface.

In the two-dimension case the background level is
done by averaging over a two-dimension window
around the point-of-interest that excludes the vary
close neighborhood of the point itself. The design of
the averaging window is application dependent on the
case of a spectrum-waterfall display, where the system
looks for a vertical line on the display. A typical aver-
aging window is illustrated in Figure 6.

As in the one-dimension case the noise estimation
is a convolution operation between the input (two-di-
mensional input) and the window function. Basically,
the algorithm is the same as the one-dimensional
case, but the FFT and the IFFT should be two-dimen-
sional.

The method of performing a 2-D-FFT using the
LH9124/LH9320 chip set is explained in the LH9124-
FFT Application note. Basically, the two-dimension
transform can be presented as a one-dimension trans-
form with a length of N x M and with a proper address-
ing sequence setting.

In this application note the case of is 4096 x 256
is demonstrated. The transform length is 4096 x 256.
Therefore, the optimal radix is (16 x 16 x 16) x
(16 x 16).

/,/
.
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Figure 6. 2-D Window Function for Noise

Estimation

The registers programming is:

REGISTER PROGRAMMING
N 1M
DIGITREV 1111 1111 1111 1111 1111
MEMSIZE iM
ADRLENGTH 1M
ADRSTART 0 ]
ADRINC 1

NOTE: that the remarks stated for the one-dimension
case are relevant to the two-dimension case.
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Table 2. CFAR Programming for One-Dimension Case
PASS OP CODE DATA FLOW AGin AGout AG COEFF
1 BFLY16 Q-A RBFO BF160 TF160
2 BFLY16 A—B BFF161 BF161 TF161
3 BFLY16 B—oA BF162 BF162 TF162
4 BFLY16 A—B BFF163 INC INC
5 BFLY16 B—oA BF1624 BF160 TF160
6 BFLY16 A—B BFF165 BF161 TF161
7 CMUL B—A INC INC INC
8 BFLY16 Q-—B RBFO BF160 TF160
9 BFLY16 B—C BF161 BF161 TF161
10 BFLY16 A-Q BF162 BF162 TF162
11 BFLY16 B—A BFF163 BF163 TF161
12 BFLY16 A—B BF1624 BF160 TF162
13 BFLY16 B—A BFF165 BF161 TF161
14 CMUL A-B INC INC INC
15 MOVD B—C INC INC INC
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Synchronous and Asynchronous SRAM Memory
for SHARP’s LH9124/LLH9320 DSP Chip Set

INTRODUCTION

The SHARP LH9124/LH9320 Digital Signal Proc-
essing chip set typically uses either a recursive ping-
pong or a cascaded dataflow memory array configura-
tion. This application note focuses on the timing for a
recursive separate acquisition memory configuration
as shown in Figure 1.

Separate Acquisition Memory Configuration

This system configuration provides five separate
arrays of memory. Data enters the system through the
Q-port acquisition memory; is processed in a ping-
pong method (back and forth) between the A-port and
the B-port memory arrays; and then exits the system

through the Q-port output memory. The circuit timing
for the memories and the FIFO (First In, First Out
memory) control logic is discussed and illustrated later
in this application note.

The specification for the DSP chip set describes
setup and hold times that indicate an SRAM address
to data valid time of <10 ns (in a 40 MHz system). In
some applications the cost of this memory may be
prohibitive, however, synchronous SRAM design in
these cases is the recommended alternative. For
systems operating slower than 40 MHz, less expen-
sive and slower asynchronous SRAMs can be used.
This application note discusses designs for both syn-
chronous and asynchronous 40 MHz memory designs.

—

[

RAM RAM LH9320 LH9320 RAM RAM
IMAG REAL [*™] (AG) (AG) [ ReAL IMAG
RAM QPORT RAM
IMAG IMAG
A B
| port LH9124 ooy }

RAM RAM
REAL C PORT REAL
LH9320 RAM RAM LH9320
(AG) IMAG REAL (AG)

LH9320
(AG)

APP26-10

Figure 1. Separate Acquisition Memory Configuration
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Ping-Pong Memory

The Ping-Pong Memory Array implementation con-
sists of an A-port and B-port LH9320 Address Gener-
ator with a SRAM for each port (Figure 2). As the
system processes, its algorithm data is passed back
and forth between the A-port and the B-port memories.
The timing and the control logic for this memory is
straightforward and is shown in the Timing and Logic
(TL) Figures 5 and 6.

Coefficient/Twiddle Memory

The Coefficient/ Twiddle Memory Array contains the
DSP specific data that is used for either the function
or the algorithm implemented (Figure 3). Also, this
memory array is implemented as the host acquisition
port. The host port can read and write this memory to

RAM QPORT RAM
MAG [+ IMAG
A B
} porT LHI124 oop, }
RAM | Rram
REAL C PORT REAL
LH9320 LH9320
(AG) (AG)
APP26-11

Figure 2. Ping-Pong Memory Configuration

load data into the system or read results from the
system. Both the Q-port and C-port acquisition memo-
ries are separate I/O memories. Reading and writing
the C-port memory is straightforward. The circuit tim-
ing is shown in Figures 5 and 6.

FIFO and Acquisition Memory

The FIFO and Acquisition Memory implementation
consists of a LH9320 Address Generator, a SRAM,
and the acquisition FIFO (Figure 4). This FIFO insures
that data is not lost from the real-time data stream
when the acquired data is passed through the LH9124.

QPORT

A B
porT LH9124 popr

C PORT

P

RAM RAM
IMAG REAL

-

LH9320
(AG)

APP26-12

Figure 3. Coefficient/Twiddle Memory

I DATA STREAM
IMAG WCLK REAL
PEF
FIFO FIFO SYSTEM
IMAG REAL 1T CONTROL cLocK
RCLK RCLK
AG CLK
RDCLK
RAM RAM LH9320
IMAG REAL (AG)
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Figure 4. FIFO and Acquisition Memory Configuration
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Data is collected in the FIFO and passed to the
acquisition SRAM using the LH9320’s address se-
quence. Since the real-time data rate is slower than
the DSP system the FIFO indicates to the LH9320
when it is empty and that it needs to wait for more data.
When enough data is acquired, the FIFO indicates to
the LH9320 that it may resume loading the memory.

For the acquisition control, the FIFO turns off and
on the LH9320 clock. When the DSP is using the
acquisition memory, the LH9320 clock is the system
clock and the FIFO is ignored by the LH9320. Figures
9 and 10 show the timing and control logic for the
operation of the block.

MEMOE

16

TC

RDCLK

16

ADR[19:0]

|5 f .I’S ~TIMING ADJUSTMENT
AR Y N VANYS

BSYSCLK N\
OE, EN
13

\

RAM DATA

RDCLK

2 8-9

XXXXRDAXXXXK] \Ps
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Figure 5. Ping-Pong/Coefficient Read Cycle
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Output Memory

The Output Memory is very similar in design to the
Input Memory (Figure 7). The output data SRAM is
filled by the last pass of the DSP algorithm being
processed and then switched to the FIFO control mode
for output. As the FIFO fills, it stops the LH9320 until
its almost empty. The LH9320 is resumed after a
pause and then this pause/resume relationship contin-
ues until the data from the array is exhausted.

After the output data array is fully output, the output
array is switched and reloaded from the DSP for the
next pass of data. This unload/load processing contin-
ues until the system is either halted or reset.

Circuit Board Component Placement

Figure 8 illustrates a circuit board component place-
ment configuration. The SRAMs are positioned as
close as possible to the DSP ports that they are
servicing. The LH9320s are placed as close as pos-
sible to the SRAMs. Miscellaneous components
(host, etc.) are placed in the remaining spaces.

IMPORTANT DESIGN NOTE: The placement of
the SRAMs and the LH9320s is critical to insure for
short signal delays and more typical timing.

SUPPLEMENTARY INFORMATION

Generally, the control for this type of memory sys-
tem would be either an external bus or a microproces-
sor/controller. In the application discussed here, a
simple PLA controller was blocked out and imple-
mented. The PLA controller sends a status to all
LH9320s at once and switches the acquisition/output
memories. As the LH9320s complete their se-
quences, they send a TC (terminal count) back to the
scheduler so it can cycle to the next state and continue
the processing. Since this application note is con-
cerned with memory implementation, the scheduler is
defocused and is used only for simple operation. Fur-
ther reference information on scheduler applications
can be found in the application note for microprocessor
control for the LH9124/LH9320 DSP system.

DATA STREAM
IMAG RCLK REAL
PEF

FIFO FIFO SYSTEM
IMAG R PFF CONTROL = cLocK

WCLK WCLK

AG CLK
RDCLK
IMAG REAL (AG)
APP26-14

Figure 7. FIFO and Output Memory Configuration
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Figure 8. Circuit Board Component Placement
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Figure 11. Start Control Circuit Timing
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Digital Signal Processing

FREQUENCY DOMAIN LMS — DEMONSTRATED FOR
MULTICHANNEL ECHO CANCELLING

INTRODUCTION

Adaptive filters are used in a variety of applications,
such as channel equalizing, interference cancellation,
adaptive antennas, spectral line enhancement, and
echo cancelling. The most popular implementation is
a taped delay filter whose coefficients are updated
according to the LMS algorithm. This application note
describes the implementation of the frequency domain
LMS [2] using the the LH9124. For demonstration
purposes, this application note describes in detail the
echo cancellation problem. However, the principles
presented here can be used to implement other Adap-
tive-Filter systems. Frequency domain adaptive filter-
ing offers the following advantages over time-domain
implementations:

1. Better Use of Computational Resources. With
time-domain implementations of the LMS algo-
rithm, computation time increases linearly with
filter length. With the frequency domain implemen-
tation using the LH9124, increasing the filter
length introduces a very moderate increase in the
computation load. For example, increasing the
filter length from 128 to 2048 (factor of 15) in-
creases the computation load by 10-20%.

2. Better Stability. Since the frequency-domain im-
plementation of the LMS algorithm is block imple-
mentation, there is an averaging effect, which
makes the algorithm more stable than the point-
by-point instantaneous gradient estimation of the
time-domain approach.

However it should be noted that a frequency-do-
main implementation of the LMS algorithm is a block
implementation, therefore it introduces a latency (de-
lay) equal to the filter length.

The Echo-Cancellation Problem

True full-duplex telephony requires a four-wire sys-
tem, but telephones typically have only two wires. The
conversion from four-wire to two-wire is performed by
a device called a ‘hybrid,” which ideally has infinite
isolation between talker and listener. In practice,
hybrid attenuation between the talking and listening
sides of a four-wire transmission medium is guaran-
teed to be more than 6 dB. This small attenuation
means that when the talker at one end of a telephone
circuit is speaking the leakage of the hybrid at the other
end will return to the talker as an echo. For a long-dis-
tance circuit, the delay could be up to 500 ms, resulting
in a very noticeable and disturbing echo. A simplified
schematic of a long-distance connection is illustrated
in Figure 1.

In the past, the solution to this problem was to use
echo suppression, which identifies a single-connec-
tion talker situation by comparing the voltages on the
transmission and return sides of the hybrid, and then
switching off the return side to stop the retransmission
of the hybrid-leakage signal which causes echoes.
This is not a good solution for long-distance circuits,
because the return-path relay switching time causes
front-end clipping. Adaptive echo-cancellers were de-
veloped to stop echoes without introducing new arti-
facts.

The echo-causing mechanism can be modeled as
illustrated in Figure 2.

The usual assumption is that h(t) is a finite impulse
response. The basic idea behind adaptive echo-
cancellation, as illustrated in Figure 3, is to estimate
the echo-transfer function h(t) to reconstruct a replica
of the echo, and to subtract it from the signal on the
return path of the hybrid. Due to the quasi-stationary
character of the medium, it is not sufficient to assume
a constant known transfer function. Some form of
adaptive filter is required.

1A-122
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Figure 1. Simplified Schematic of
Long Distance Connection
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Figure 2. Adaptive Echo-Canceller Signals
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Adaptive Filter Structure

The adaptive algorithm works by subtracting a fil-
tered version of the received signal from the transmit-
ted signal. The filter coefficients must be updated from
time to time, in order to minimize the error energy, or
echo signal. The optimal solution, called the Wiener
Solution, is (refer to Figure 2):

e=d-X-W
It can be shown that
Wopt=R".P
where:

R=E(X - X') and P= E(X - d)
X is the received signal
d is the transmitted signal

However, this solution has no practical use for our
case, since R and P are not constant and not known.

The practical solution is to update the filter coeffi-
cients so that the error signal converges to the optimal
solution, or close to it. The most common convergence
algorithm is the time-domain Least Mean Square, or
LMS, algorithm. The LMS algorithm updates the filter
coefficients in a direction opposite to the gradient of
the error.

Wi, 1 () = wy (i) + 2UE {x(i — k) - e (i) |

NOTE: The term E{e(i)x(i-k)} is the cross-correlation
between e and x. Normally, a good estimate of the
cross-correlation is to average the instantaneous cor-
relation over time.

The algorithm proposed by Widrow uses the instan-
taneous correlation as an estimate, yielding an equa-
tion for updating the coefficients:

Wiy 1 () = wy (i) +2ux (i - k) - e (i)

Here, n is the adaptation step size. The step size
governs the behavior of the filter. Increasing p in-
creases the convergence rate, but at the expense of
lower stability and higher residual noise. Since the
convergence rate is also a function of the input power

o, =E {xz}), a high-power signal will have the same

effect as high u. A normalized step size is usually

defined as p = za

N is the filter length
0,2( is the input power
o is a pure number, usually selected to be 0.1

The time-domain LMS can be summarized by the
following equations, for each data point:

N-1
e)=d()-Y x(i-k wk (Filtering)
k=0
of i)=01-n) ci (i-1)+ X A (x-Power
estimate)

Wy, 1K) = w; (k) + T"‘ﬁ e(i) x (i — k)

X

In the system description, we did not assume that
there is only a single talker. In practice, the algorithm
converges much faster and to a better solution in the
single-talker case than for the full-duplex situation. It
is therefore recommended to identify the single-talker
situation, and to update the filter coefficients only
during this condition. The filtering operation and echo
subtraction is performed continuously in both full-du-
plex and single-talker situations.

The single-talker situation is identified by compar-
ing the estimated power at points x and d. A single

talker is declared if 6% > kog. k should be about four or
more, since the hybrid attenuates the leakage by more
than 6 dB.

Frequency-Domain Implementation

The frequency-domain implementation is equiva-
lent to a block-adaptive filter, where the filter coeffi-
cients are changed only once for each block. In the
frequency-domain implementation, both convolution
(filtering) and correlation (coefficient updating) are
done in the frequency domain, which is more efficient
computationally than doing these tasks in the time
domain.

Doing convolution in the frequency domain yields a
circular convolution, not a linear one. To produce a
linear convolution, an overlap and save (or overlap and
discard) technique is used. 4 This means that for a
filter of length N, a 2N Fourier transform is done, of
which only the last N points are valid.

The following section presents the main points of an

ox N adaptive frequency-domain-based LMS algorithm. A

here: detailed explanation and proof of convergence can be
where: found in.

1A-124 Rev. A, 6/29/93 DSP Application Note
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The Adaptive Frequency-Domain
Echo-Canceller

The algorithm is illustrated in Figure 4, and includes

the following steps:

1.

Read a block of new data (N points) from the signal
x and signal d.

. Form a 2N data block of x, by cascading the old

data block with the new data block.

. Calculate the estimated variance:

r=p K

iy o

. Do a 2N FFT on the block x:

x(f) = FFT2N{x(1)}

5. Perform the filtering operation in the frequency

domain:
Y(f) = X(f) * W(f)

then, transform the result back into the time
domain:

y(t) = IFF T,y (Y()

. Collect only the last N points of y(t), discarding the

first N points.

. Calculate the error data block, which is also the

output:
e(t) =d(t) —y()

. Form a 2N-length error block by zero padding e(t)

with N leading zeros, and perform a 2N-FFT.

1 62 >1003 (single-talker situation), then update

the filter coefficients in the frequency domain:

o x(f) E(f)
Wi 1 =W+ 5
N o}
2N
x(n) FFT X(f) (x) Y(f) 2N

oLD NEW IFFT y(n)

BLOCK BLOCK
w(f)
2

o z% DELETE

x % N FIRST

SINGLE POINTS
TALKER

JEID > R

d N

o XE E(f) FFT
WK+1_Wk +’\?'6)2( (—_,_ )
d COLLECT N 5 e(n)
DATA POINTS +
APP2-4
Figure 4. Adaptive Frequency-Domain Echo-Canceller
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Hardware Implementation Using the
LH9124 Digital Signal Processor

The LH9124 permits a straightforward implementa-
tion of the frequency-domain LMS adaptive echo-can-
celler, since each step of the algorithm corresponds to
one or two LH9124 instructions (with proper address-
ing mode for the memories). Presented here is an
implementation for 72 channels with a filter length of
128. Figure 5 illustrates a hardware system configura-
tion with a filter length of 128.

Data Encoding and Decoding

Data coming from the T1 interface is PCM encoded
in either A-Law or p-Law, in order to reduce the bit rate
on the line. Both A-Law and p-Law are nonlinear
functions which map 12 bits of linear dynamic range
into eight bits. Since the echo-cancelling algorithm
requires linear data, some form of translation is
needed before the data is processed. This translation
(or decoding and encoding) may be done simply with
look-up tables.

T1 INTERFACE
(PCM ENCODED DATA)
8
AQUISITION MEMORY (64K x 8)
8
ADDRESSING
LOGIC LOOK UP TABLE
p-Lin
Lin-p
12
CONTROLLER
Q
cl
FC
SRAM DF
1K COMPLEX A LH9124 DFSI
DFSO
5 24x2 SRAM
c 1K COMPLEX
ADDRESSING
LOGIC
ADDRESSING
SRAM LOGIC
ADDRESSING
LOGIC
APP2-5

Figure 5. Hardware System Configuration
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Addressing Logic

The frequency-domain adaptive-filter algorithm
described above operates on blocks of data. Calcula-
tion is performed on blocks of 256 data points, while
1/0 is done on blocks 128 data points long.

Addressing within each block is not always in a
consecutive sequence, as, for example, when calcu-
lating the FFT. The LH9320 Address Generator can be
used to supply these special patterns with a lot of
programming flexibility. However, since the algorithm
requires non-trivial sequences for only a few limited
cases, it is possible to calculate the required
sequences off-line, storing them in SRAM for use in
real-time operation. The SRAM can easily be loaded
from a PROM or other non-volatile memory during the
system initialization process. The LH9320 Real Time
Simulator software can be used to calculate the
required address sequences.

There are two additional requirements that the ad-
dressing logic must fulfill. First, it must compensate for
the latency of the LH9124 when creating addresses for
data output. Second, the addressing logic must handle
the demands of multichannel operation: that is, each
channel being processed has a different location in
physical memory for its respective data block. In the
present design, system memory is divided into blocks
of 128 locations, corresponding to the smallest unit of
block size used.

A functional block diagram of the addressing logic
for the following options is shown in Figure 6:

e using the LH9320 AG
e using predefined sequences methods

The pre-calculated address patterns needed to run
the algorithm are:

e Radix 16 — Pass 0, N = 256 with bit reverse
e Radix 16 — Pass 1, N = 256
e Continuous sequence 1-256
e Continuous sequence 1-128
The memory required to save the predefined
sequences is less than 2K x 8.
Acquisition Memory

The LMS algorithm is the frequency-domain LMS
operant on the reference input block of size 2N
(2 x 128) with 50% overlap, which means that N points

are old and N points are new. The memory space
needed for each channel is 3 x N points, where 2N
points are used as input to the algorithm, and N points
are used to fill the new data for the next cycle.

The memory for the output and for d-input should
be only 2N points for each channel, structured as a
ping-pong buffer.

The multichannel memory management is the con-
troller-task. However, it should be noted that the I/O is
not done at high speed; the average /O rate for 72
channels is 1.7 MHz. Thus, a simple controller can
handle the task.

A conceptual structure for the acquisition memory
is given in Figure 7.

The memory size for a 72-channel system is:

(3+2+2)x72x 128 x 8 bit = 64K x 8 bit
memory

This memory, in principle, is a dual-port memory;
but, since the LH9124 is communicating with the mem-
ory in short bursts only, a SRAM with a FIFO on the
interface side can be used by implementing simple
arbitration.

Block Floating-Point Arithmetic

The algorithm is implemented using Block Floating-
Point arithmetic. The controller is responsible for the
management of the block exponents by reading the
DSFO and by setting DSFI.

Port A and Port B Memories

These are small-size memories which contain tem-
porary buffers. Each memory should be 1K x 24 com-
plex. (‘Complex’ here implies two sets of memories.)

PortC

Port C contains three kinds of data:

Type a: Twiddle factor.
Window function.
(This data is loaded into this memory during
the initialization process.)

Type b: The frequency-domain coefficient of
the adaptive filters. Each channel has a
256 x complex coefficient.

Type c: Temporary buffers.
The memory size is 256 x 72 x 24 bit = 36K x 24 bit.

DSP Application Note
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Programming the Algorithm Lines  This two-line MOVD instruction creates an
. . . . 9,10: error signal leading by N zeros in the buffer
Programming the algorithm using the LH9124 is B2-B3.
straightforward, since each stage of the algorithm is o ) )
mapped to just one or two instructions (‘Pass-based’ Line 11: IFFT operation is done in two Radix-16
instruction). Table 1 shows the mapping of the algo- passes.

rithm to the LH9124-based system. Each line corre-
sponds to one or two pass-based instructions of the
LH9124, as explained below.

Line 1: Loading 2N points data x-input (received sig-
nal) from the acquisition memory to buffer A2
(in port A memory) using MOVD instruction.
Line 2: Calculating the variance of the new-data

block variance. This calculation is done in
two passes:

Pass 2.1: Move the data to port C memory (buffer
CO0).

Pass 2.2: Pass of length N of FIR operation using
the BCFIR instruction, which gives

N-1

> am) - c(n) =y x(m) x(m)

i=0

The result of this process is one number,
which should be retained in the controller
memory for later use.

Line 3: FFT transform of length 2N is done in two
Radix 16 passes. The scaling of the first pass
of the FFT is the DSFO value, as measured
in the first stage. The second-pass scaling is
the value of DSFO as measured in the first
pass of the FFT. The accumulated scaling

factor sx is saved in the controller memory.

Line 4: Complex vector multiplication pass, using
the CMUL instruction. The vector W is the
adaptive-filter frequency response, saved in

the C port memory.

Line 5: IFFT operation is done by two Radix-16
passes. When doing the IFFT, manual scal-
ing should be used. The total scale factor in
the two passes should be 8-SH: the factor 8
is needed by the definition of the IFFT trans-
form, and the -sx term is to compensate for

the scaling that was applied during FFT(X).

Line 6: Loading d-input N-data points block from
acquisition memory to port C memory (in

buffer C2).

Calculating the variance of d-input data
block. (See the Line 2 explanation.)

Line 7:

Line 8: Calculating the error data block—which is the
output data. This operation is done using the

VSUB instruction.

Line 12: Transferring buffer B2 (E(f)) into the C port
memory — Buffer CO. This line is just a prepa-
ration to Line 13.

Line 13: Calculating zaN X E is done by the CMUL

X
instruction. The scale-factor multiplication is
implemented using the DSFI signals. The

controller should approximate ci (calculated
. KX
atline2)to2 7, so
ioc _ o 10HKX
oy N
The actual scale factor signal that should
apply is K =sx + se + KX-10,

where sx and se are the floating-point scale
factors which were applied to X, and E during
the FFTs.

Usually K is a negative number, which means
that a scale-down operation is needed. In the
case K> 0, no scale-down is done, which has
the effect of stabilizing (and slowing the con-
vergence rate) of the algorithm.

Computation Load

From Table 1, we can see that one channel compu-
tation time is about 100 pusec. All the channel compu-
tation times should not exceed the filter length
%: 16 ms Therefore, theoretically, one LH9124
can handle up to 160 channels. Practically, a design
goal could be 100 channels.

If a longer filter length is needed, the computation
load grows slightly. For example, if a filter length of
2048 points is needed, then the computation time of
one channel is 1.8 ms, but the filter length is 256ms;
therefore, the theoretical number of channels that can
be handled by one chip is 140. It should be empha-
sized that the small sensitivity to the filter length is a
feature of the LH9124 chip due to its increasing effi-
ciency when doing higher-radix computations. With
time-domain implementation using general-purpose
DSP, increasing the filter length by a factor of 16
increases the computation load (or the hardware
requirement) by a factor of 16.
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As mentioned before, the filter introduces a delay in
the telephone line. It is possible to reduce this delay,
at the expense of increasing the computational load.
The delay can be reduced by a factor of L, if the input

sliding window is updated with every new% point, and

not with every N point. This modification increases the
computational load by a factor of L.

Simulation

In order to demonstrate the performance of the
frequency-domain algorithm, two simulation runs were
performed using the MATLAB 1 language.

Case 1
The simulation condition:
e X-input — Normal random noise with variance of 1

e Channel leakage — Six reflections of different delays
(a maximum delay of 10 ms)

e D-input is received by convolving X input with the
channel transfer function

The simulation result and the program listing are
given in Figure 8.

The plotted graph describes the transmitted signal.
At a time close to time 0, we can see that the transmit-
ted signal is high, which means a strong echo. At
longertimes, we see that the algorithms converge, and
subtract the echo from the transmitted signal.

" MATLAB is a trademark of The Math Works, Inc.

The time constant for this case is about 300 ms. An
explanation of the program is given in Table 2.

For comparison, we implement the time-domain
LMS, and the results are given in Figure 9. It may be
seen that the algorithms give about the same results.

Case 2
The simulation condition:

e X-input — Sample of voice recorded from telephone
line

e D-input received is as in the previous example

The simulation results are given in Figures 10
and 11.

Looking at the result shows that the algorithm per-
formed very well under quite real conditions.

SUMMARY

In this application note, we presented the fre-
quency-domain LMS implementation based on the
LH9124 Digital Signal Processor. The proposed solu-
tion is very hardware-efficient; it was shown that a
practical design goal could be to implement 100 chan-
nels with one DSP. Furthermore, the hardware require-
ment has a very small sensitivity to the filter length.

The algorithm was tested using MATLAB simula-
tion, to demonstrate the algorithm performance both
for simulated white noise and for real speech data.
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Table 1. Mapping Frequency-Domain Echo-Cancelling to the LH9124
BLOCK | TIME
NO. FUNCTION SIZE ) REMARKS
x(n) - A2
This operation is done in two stages:
1. Old block — A3
1 In_x —» A2 256 6.4 5 New block — A2
Save DSFO for proper scaling for the first pass of the
next FFT.
q1 is the variance of x = ¢2.
2 z AZ/8 — qil 128 6.4 The 2 operation is accomplished by a FIR operation of
x(m). By itself, the controller rounds o2~ 27,
FFT x(n) — A2
When doing the FFT, the controller sets the scale factor
3 | FFT (A2) - A2, sx 256 14.8 for the first pass of the FFT to be the value of DSFO as
detected in stage 1 and uses DSFO for the second pass.
sx is the accumulated scale factor.
4 | A2-W—-B2 256 64 | yf)=x{f) w
y(n) — B2
When doing the IFFT, the controller should apply a scale
5 | IFFT(B2)>B2 256 148 factor of sx-8, to compensate for sx and 1/256 needed in
the IFFT.
6 |In_d—>C2 128 3.2 | d(n)—>C2
7 | Y C%28—q2 128 | 32 |[ofoq2
_ e(n) = d(n) - y(n)
8 |C2-B3->Ou 128 32 This is the output signal.
9 |'O—-B2 128 | 3.2 | To form the error signal padded by N leading zeros. The
10 | Out B3 128 3.2 controller should save DSFO for proper scaling of the FFT.
11 | FFT (B2) »> B2, se 256 14.8 | E(f) —» B2, see remarks of step 4.
12 | B—>CO 256 6.4 20.-X-E
Wiert = Wi+ AN
13 | A2.CO—-BO X
k=sx +se+kx-10
where sx, se are to compensate for the shiftin X and E
during FFT, kx is the normalizing to oxXe.
14 | W+BO —AO 256 | 6.4 The step size factor 2oy =2""" for a=0.1
NOTE: Normally k is negative, which means scale-down.
For the case k > O, no scale factor is implemented, which
has the effect of stabilizing (and slowing) the algorithm.
15 ifq1 > 1092 —» 256 6.4 If single talker, update coefficient. This decision is made in
—-AO->W ’ the controller.
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SIMULATION MAIN PROGRAM

(Produces Input Data) 1. for k=2:20

1. rand(normar); 2. xkex((k-2)"128+1:k*128);

2. rand(seed’,0); 3. dk=d((k-1)*128+1:k*128);

3. x=rand(1,10240); 4. xi=tft(xk);

4. e=zeros(1,128); 5. yi=xf.'w;

5. b=zeros(1,128); 6. ykereal(ifit(yf):

6. b([4 1020 44 54 78 ])=rand(1,6); 7. ykeyk(129:256):

7. d=conv(x,b); 8. ek=dk-yk:

8. d=d(257:10240); 9. ecfeckl

9. x=x(257:10240); 10. ef=fft([zeros(1,128),ek]);

10. w=zeros(1,256); 11. w=w-+0.2*conj(xf).*ef/128;

12. end
Figure 8. Frequency-Domain Echo-Canceller
(Refer to Table 2 for Program Explanation)
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Table 2. Frequency-Domain Echo-Canceller
SIMULATION OF INPUT DATA MAIN PROGRAM

1. Specify normal probability distribution. 1. Set up loop to handle 19 blocks of data.

2. Initial condition for random function. 2. Read reference input data block of length 2N.
3. Fill vector with random numbers. 3. Read echo signal data block of length N.

4. Set initial conditions. 4. FFT of input reference block.

5. Set initial conditions. 5. Frequency-domain filtering (multiplication).

6. Select random echo-transfer function. 6. Do inverse FFT, transform back to time domain.
7. Convolve input with filter to produce echo. 7. Select last N points of the filtered data block.

8. Start after filter transient. 8. Calculate error (output).

9. Start after filter transient. 9. Build output vector.

10. Initial condition for adaptive filter. 10. FFT of leading-zero-padded error signal.

11. Update filter coefficients.
12. Go back to Line 1 for block.
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Amplitude
o
L

_2%

6F

1 1 I 1

SIMULATION
1=10240+256;
rand(’normal’);
rand(’seed’,0);
x=rand(1,10240);
e=zeros(1,100);
b=zeros(1,128);
b([4 10 20 44 54 78 ])=rand(1,6);
d=conv(x,b);
d=d(257:10240);

. X=x(257:10240);

. w=zeros(1,128);

© ® N s w2

- -
- o

300 400 500 600

Time [ms]

MAIN PROGRAM

for n=128:2500
xn=x(n-127:n);
yn=w*xn’;
e(n)=d(n)-yn;
w=w+0.2*xn*e(n)/128;

end

A

Figure 9. Time-Domain Echo-Canceller

700
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Figure 10. Echo Before Adaptive Cancellation
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Figure 11. Residual Echo After Adaptive Cancellation
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Address Generator

Controlling the Falling Edge of MEMW With the Resistor Value of RPROG

INTRODUCTION

The LH9320 Address Generator has a built-in delay
circuit feature that allows users to control the falling
edge of the MEMW signal by changing RPROG's
resistor value (external resistor). This feature saves
board space and also reduces components by gener-
ating the WRITE enable signal for the memories.

Since the falling edge of SYSCLK has control over
the falling edge of the MEMW signal, the maximum
delay time, controlled by RPROG, is limited by the
falling edge of SYSCLK plus 5 ns.

The MEMW signal is generated from both the
SYSCLK and the delay circuit (Figure 1). The AND
gate generates a falling edge of MEMW either from the
SYSCLK driver or from the delay circuit, whichever
arrives to an input first (Figure 2). NOTE: bit 7 in the
pipeline/memory must be programmed to ‘0’ to gener-
ate the MEMW pulise.

The delay times from the rising edge of SYSCLK to
the falling edge of MEMW are proportional to
RPROG’s resistor value (Figure 3).

DELAY

BIT7

APP29-1

Figure 1. MEMW Signal Generation

tormw (MAX)
GENERATED BY THE FALLING
EDGE OF SYSCLK DRIVER

N
SYSCLK /

MEMW \
/

FALLING EDGE GENERATED
BY THE DELAY CIRCUIT

N
N
N\

APP29-2

Figure 2. MEMW Pulse Generation
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SHARP Controlling the Falling Edge of MEMW

20

18

16

Delay Tim e From 14

SYSCLK Rising Edge
to MEMW Low 12

io0

1k 2k 5 k 10 k 15 x 20 k 25 k 30

RPROG 's ResistorValues (O hm s)

5.6 Ve -10

——*—— 4.4 Ve -10
a 5.6 Ve 80
e 4.4ve 80

Figure 3. RPROG’s Resistor Value vs. MEMW Low Time
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An Ultra-High Speed DSP Chip Set For
Real-Time Applications

Michael E. Fleming
SHARP Microelectronics Technology Inc.
5700 NW Pacific Rim Blvd.
Camas, Washington 98607

We are in the age of multi-million transistor integrated
circuits with 10’s of millions on the horizon. This ability to
get a tremendous amount of functionality on one piece of
silicon dictates that the silicon manufacturers begin to
think in ‘systems terms’ instead of ‘component terms’ if
they want to have a chance of being the company to
introduce the next Weitek floating point, TI digital signal
processor, or Intel microprocessor success.

The gate array and ASIC businesses attempt to place
the silicon power in the hands of the system designer with
ever increasing CAD and functional cell capability. The
silicon vendor late to the ASIC game or not setup to
compete needs to rely on bringing a cost-effective “sys-
tem solution” that makes ultimate utilization of every
transistor and internal bus structure.

SHARP’s LH9124/LH9320 chip set applies this “the
system is the chip” solution to a category of DSP applica-
tions that can be best described as the replacement of

These functions, when combined in specific order and
specific array sizes, can perform powerful DSP tasks
such as:

e Machine vision

® Error correction

e Data communications

e Machine health monitoring

e Speech recognition

e Full motion video

e Spread spectrum communications

The industry benchmark for DSP performance is the
1024 point complex FFT execution time. Table 1 gives
some relative perspective on how the new SHARP
LH9124 performs against other possible solutions.

classical analog signal processing and conditioning with Table _1 y
digital signal processing for real-time applications. A sin- Benchmark 1024 Point Complex FFT
gle LH9124 system performs a 1024 point complex FFT PROCESSOR TIME PRECISION | FACTOR
in 80.7 microseconds; three LH9124s cascaded in 25 80386 16-bit fixed
microseconds. (20MHz) 200msec | it 1X
The advantages of digital signal processing over ana- 68030 150 msec | lE-bitfixed |
log signal processing are rapidly becoming accepted (20MHz) pomt. :
without examination. A few of these advantages include: VAX 11/780 150 msec | 1E-bitfixed | o
no aging or temperature variation of components, exact point
repeatability in production without the usually required TMS 320C25 | 15.8 msec 16-bit fixed 12.6X
final adjustments, and the ability to apply mathematical ' point :
finess to the signal processing that previously was very 32-bit
limited with analog techniques. TMS 320C30 | 2.5 msec floating 80X
. . point
Most real time DSP algorithms can be reduced to a few T
. : . ADSP 2100 16-bit fixed
high level functions such as: (8MHz2) 7 msec point 28.6X
iaital filteri e
e Digital filtering MOTO 56001 | 5 msec 24'rt1)tlt fixed 40X
e Time-to-frequency transformation gg' bit
-bi
e Signal detection MOTO 96001 | 2 msec floating 100X
e Frequency-to-time transformation point
] 64-bit
e Data buffering CRAY X-MP | 1 msec floating 200X
e Signal comparison point
. ) ) SHARP -
e Signal modulation/demodulation LH9124 80 usec 24jbt't fixed | 5e00x
oin
e Correlation (40MHz) P
Reprint: International Conference on DSP Applications and Technology — Berlin Oct 91
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Table 2 shows execution times for both the single chip
and the multi-chip (cascaded) LH9124 implementations
for various common DSP tasks.

Table 2.
24-Bit Performance Benchmarks

Atypical LH9124/LH9320 system level block diagram
is shown in Figure 1. The main components to be dis-
cussed are:

e | H9320 Address Generator
e | H9124 Digital Signal Processor

FUNCTION PERFORMANCE @ 40MHz | . e System Memory
SINGLE | CASCADED e Scheduler Unit
25.6
1K Complex FFT 80.7 S
P (3 Stages) | * LH9320 ADDRESS GENERATOR
4K Complex FFT 3123 1024 1 s The LH9320 AG shown in Figure 2 is designed for use
(3 Stages) with the LH9124 DSP and can be used with almost any
64 x 64 2-D 102.4 pipelined processor capable of utilizing the set of over 150
Complex FFT 413.9 (4 Stages) | M generated address patterns.
256-Tap Complex Optimized for FFTs, FCTs, DFTs, DCTs, and FIRs the
FIR 156 - kHz LH9320 generates addresses at a 40MHz rate with virtu-
MH ally no overhead. A summary of the address patterns is
3x 3Tap FIR 8 - z shown in Table 3. These patterns allow arbitrary mixing
10 x 10 Matrix 125 of radix-2, radix-4, and radix-16 multi-channel sample
Multiply ’ - us arbitration and circular buffering, real only transforms, etc.
Complex Integer _
Multiply 25 us
USER DEFINED DATA INPUT/OUTPUT
ACQUISITION SYSTEM
r——7r——"7
| 11 l
(I 1L J
REAI ‘t_IMAGINARY
QR Ql REAL
RAM * REAL DATA AR BR DATA AV -
FUNCTION CODE FC
SCHEDULER *** DATA ELOW LHo124
DF
IMAGINARY
IMAGINARY DATA DATA
RAM * Al Bl RAM *
CR cl
REAL IMAGINARY
LH9320 LH9320 LH9320
ADDRESS ADDRESS _ fupm| COEFFICIENT L |COEFFICIENT ADDRESS
GENERATOR ** GENERATOR ** GENERATOR **
* Data width selectable from 8 to 24-bits
** LH9320 address generator, RAM, ROM, or a counter
*** Host microprocessor, PROM and counter, or a single-chip microprocessor 9124-129
Figure 1. Typical LH9124/LH9320 System Block Diagram
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Table 3.
LH9320 Address Pattern Set Summary
MNEMONIC | DESCRIPTION MNEMONIC \ DESCRIPTION

FAST FOURIER TRANSFORMS (FFTs) FINITE IMPULSE RESPONSE (FIR) FILTERS

BF2nn (0 to 19)

Radix-2 data addresses

Linear phase FIR, odd length, even

LPFIR1 symmet
BF4n (0to 9) Radix-4 data addresses ymmetry
BF16n (0 to 4) Radix-16 data addresses LPFIR2 Linear phase FIR, even length, even
symmetry
LPFIR3 Linear phase FIR, odd length, odd
TF2n (0 to 19) Radix-2 twiddle factor addresses symmetry
TF4n (0to 9) Radix-4 twiddle factor addresses LPFIR4 Linear phase FIR, even length, odd

TF16n (0 to 4)

Quasi radix-16 twiddle factor addresses

symmetry

GENERAL PURPOSE ADDRESSING/UTILITIES

MODIN Modulo i t
MXB24n (0t08) | Mixed radix (2,4) data addresses ODINC odulo incremen
MODDE I
MXB216n (010 3) | Mixed radix (2,16) data addresses ODDEC Modulo decrement
MXB416n (0 to 3) Mixed radix (4,16) data addresses
MXB2416n (0 to 3) | Mixed radix (2,4,16) data addresses INTER Interpolate/index fil
INTERP Interpolate/index fill using PO flag
INTEREP terpolate/i fill usi ly PO fi
MXT24n (0to8) | Mixed radix (2,4) widdle addresses i :"terpolatej fn:ex ff" - :%t" VPOC:' 49
MXT216n (0to3) | Mixed radix (2,16) twiddle addresses nterpolate/index 11 using fate ) ag
MXT416n (0t03) | Mixed radix (4,16) twiddle addresses PADHIGH Pad at end of sequence
MXT2416n (00 3) | Mixed radix (2,4,16) twiddle addresses PADHIGHP Pad at end of sequence using PO flag
PADHIGHEP Pad at end of sequence using early PO flag
PADHIGHLP Pad at f ing late PO fl
RBFO Digit-reversed data address column 0 G ad at end of sequence using late PO flag
SEPARATION PASSES PADLOW Pad at start of sequence
-atati EFT i oN PADLOWP Pad at start of sequence using PO flag
BRFTL Io-:d- ermered separationpass, =% Pad at start of sequence using early PO
PADLOWEP flag
BRETLS 2-at-a-time real FFT separation pass, N, -
load PADLOWLP Pad at start of sequence using late PO flag
BRFTU ﬁ;lakt)-:(;time real FFT separation pass, 2N,
OVERLAP Overlap
BRFTUS ﬁaalz)-:(-itume real FFT separation pass, N, DISCARD Discard
DISCARDP Discard using PO flag
BFCTL Fast cosine transform separation pass DISCARDEP Discard using early PO flag
data addresses, 2N (long), load DISCARDLP Discard using late PO flag
Fast cosine transform separation pass
BFCTT .
twiddle addresses, 2N CMAG ’ Square of magnitude of a complex number
Fast cosine transform separation pass
BFCTUS data addresses, N (short), load
BECTU Fast cosine transform separation pass INC ‘ Index Increment
data addresses, 2N, unload
BFCTUP zast czzine transzf?\lrm slep%ration pggsﬂ NOP | No operation
ata addresses, 2N, i
unioac using o 189 CIRCULAR BUFFER ADDRESSING
Fast cosine transform separation pass N i
BFCTUEP data addresses, 2N, unload using early CBUFFIR Circular buffering for FIRs
PO flag CBUFFFT Circular buffering for FFTs
Fast cosine transform separation pass OTHER
BFCTULP data addresses, 2N (long), unload using
late PO flag CLRSIG Clear signature
DECIMATION VIEWSIG View signature
DECIM Decimate
ADECIM Auto decimate
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LH9320 ADDRESS GENERATOR (cont’d)

The LH9320 AG supplies a series of addresses to any
array of memory for use in conjunction with an execution
unit. The AG is programmed by the user and uses a
minimum amount of glue logic, making it independent of
the execution unit (LH9124), in most cases.

The AG has two modes, local pass mode and external
pass mode. In local pass mode the user programs ad-
dress patterns in the AG’s internal memory (local mem-
ory), which can handle operation codes up to 32 patterns.
The user must also set up the appropriate status values
(other than the default) in the AG’s twenty configuration
registers. Once the scheduler gives the START signal, the
AG begins to execute and generate arrays of addresses
according to the address patterns programmed in the
local memory. The generated address arrays are output
through the 20-bit address bus.

For some sophisticated processing, where the number
of address patterns exceed 32, local memory space may
not be sulfficient. The AG then switches to external pro-
gram mode and accesses external memory space to read
the address patterns. The AG accesses the address
patterns in the external memory through data bus DBO-
DB7. The address calculation logic is output as address
arrays to Q, A, B, or C memory for the LH9124 execution
unit.

The LH9320 also utilizes a powerful circular buffer
technique for multiple-channel processing. Circular buff-
ering is used extensively in real time DSP systems.
Spectral accuracy can be improved if the incoming data
is overlapped by a small percentage before the transform
takes place, as in circular convolution, FIR structures, and
time domain correlation. This circular buffer is applied
usually when the system is used in a multiple-channel
configuration.

Using the LH9320
The LH9320 can perform three different functions:

e Acquisition address generator
e Data address generator
o Coefficient address generator

Figure 2 shows a simple system and the related con-
nections. The LH9320 is a small pin count addressing
device that is initiated and controlled through a series of
programmable commands that configure the AG and
specify the address patterns to be generated over the
entire length of the memory array. The AG then outputs a
Terminal Count (TC) signal and enters an idle state until

the next START signal is received. PO can go to the
scheduler or the LH9124’s CCI, CCR, ZEROOUT, or
ZEROIN, depending on the DSP algorithm. If only one of
these signals is needed for the whole program, they can
all be tied together. Otherwise the scheduler must multi-
plex them into the correct location.

Acquisition Address Generator

As shown in Figure 2, the general configuration for an
AG includes the following connections:

e Sample request input lines from the input channels
or decode unit

e System clock
e Control signals from the scheduler

e Address register/data latch (AO, A1) control from the
scheduler

e Data bus connection to the scheduler

e Terminal count (TC) connection to the scheduler or
LH9124

e Program out (PO) connected to the LH9124 DSP

e Read clock (RDCLK) output connected to the
LH9124

e Write enable (WE) signal connected to RAM
e Address bus connected to RAM port

When an LH9320 is used as an acquisition AG for
multiple-channel processing, the input lines ASG0-ASG4
are used for circular buffer input. When there are < 5
multiple channel numbers, ASG0-ASG4 connect directly
to each channel. If there are > 5 channel numbers, those
5 pins connect to the decode unit. This unit can have up
to 32 input pins, each one connected to a separate
channel, and five output pins connected to AGS0-AGS4.

Data Address Generator

The configuration of the data AG is generally the same
as the acquisition and coefficient AG’s, however, the input
lines AGS0-AGS4 are always left idle.

Coefficient Address Generator

The configuration of the coefficient AG is similar to that
of data AG, however, the inputlines AGS0-AGS4 are idle.

Each AG has separate lines to the scheduler for CS
and TC. Note that all of the AGs share a common data
bus and R/W line. They also share SYSCLK and START
signals with the LH9124 DSP.
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SHARP

LH9124/LH9320

MEMORY

POWER —|VDD
SUPPLY | —{VSS

LH9320 CCOMR|—=

CONTROL ——|RPROG
MULTI-
8&%%'\1% { = AGSVALID
BUFFER | AGS [4:0]
CONTROL
SYSTEM ooc
i {—— SYSCLK ADDRESS
—|START GENERATOR
— ] R/W
—]|Cs
HOST —1A0
INTERFACE | —=]A1
478-4> DB [7:0]

TCH—

} FLAGS

PO [—=

RDCLK |—=
MEMW MEMORY
MEMOE [ ¢ cONTROL
CCOMI[—=

20, ADDRESS
ADR [19:0]|==r ‘5T buT

9320-800

Figure 2. LH9320 DSP Address Generator

LH9124 DIGITAL SIGNAL PROCESSOR

The LH9124 is a high-performance DSP device that is
suitable for most high-performance DSP algorithms.

ACQUISITION PORT
REAL IMAGINARY
24* 24,

QR Ql
DATA PORT A - REAL DATA PORT B - REAL
B e

24* AR BR 24
FUNCTION CODE
= FC
LH9124
DATA FLOW
DF
3
4—24.—> Al Bl 24
DATA PORT A DATA PORT B
IMAGINARY CR Cl IMAGINARY
24* 24*
REAL IMAGINARY

COEFFICIENTS

* DATA WIDTH SELECTABLE FROM 8 TO 24 9124-70

Figure 3. LH9124 Digital Signal Processor
The LH9124 performs the following types of functions
as detailed in Table 4:
e Digital signal processing

e Complex arithmetic functions

e Vector arithmetic

e Vector logical

e Matrix arithmetic

e General purpose functions

Each of these functions requires an address pattern to
select data from memory for use by the DSP. The sched-
uler unit outputs the necessary instruction codes to the
LH9124.

The LH9124 uses a multi-port data flow structure that
frees the user from externally multiplexing data, thereby
increasing throughput and minimizing system component
count. Each of the bidirectional LH9124 ports and their
functions are listed as follows:

® AR —real data port

e Al —imaginary data port

® BR —real data port

e Bl —imaginary data port

e QR - real acquisition port

e QI —imaginary acquisition port
e CR - real coefficient port

e Cl —imaginary coefficient port

The 16- to 48-bit fixed point data (8- to 24-bit real and
8- to 24-bit imaginary) enters and exits the processor
through the bidirectional data and acquisition ports.
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Table 4.
Function Codes
FUNCTION  |FC OPCODE
MNEMONIC (HEX) DESCRIPTION
DSP FUNCTIONS

BFLY2 02 Radix-2 butterflies.
BFLY4 01 Radix-4 butterfly.
BFLY16 00 Radix-16 butterfly.
BWND2 05 Radix-2 complex window butterflies. Performs a radix-2 butterflies with a complex

window function that is multiplied with the incoming data.

Radix-4 complex window butterfly. Performs radix-4 butterfly with a complex window
BWND4 04 4 : L . : .

function that is multiplied with the incoming data.

Dual real FFT separation. Performs the separation of two real data streams for a two-
BRFT 07 h .

at-a-time FFT operation.

Fast cosine transform/double length (N output). Performs the fast cosine transform
BFCT 06 .

(FCT) operation.

Fast cosine transform/double length (2N output). Performs the fast cosine transform
BFCT2 OE .

double length operation.
BCFIR 08 Complex finite impulse response (FIR) filter.
BDFIR 09 Double real finite impulse response (FIR) filter.
BRFIR 0A Real finite impulse response (FIR) filter.

COMPLEX ARITHMETIC FUNCTIONS
CADD 10 Complex add. Adds complex input data to complex coefficient data.
CMAG oC Complex magnitude squared. Performs the magnitude squared of an input.
CMUL oD Complex multiply. Multiplies complex input data by complex coefficient data.
csuB 11 Complex subtract. Subtracts complex coefficient data from complex input data.
VECTOR ARITHMETIC FUNCTIONS

VABS 13 Vector absolute value. Determines the absolute value of the input data.
VADD 10 Vector add. Adds the input data pairs to the coefficient data pairs.
VMUL 12 Vector multiply. Multiplies the input data by the coefficient data.

Vector maximum and minimum. Determines the maximum/minimum vector of the
VMXM 1E .

input data.
VSUB 11 Vector subtract. Subtracts the input data from the coefficient data.

VECTOR LOGICAL FUNCTIONS

Vector logical NAND. Performs a logical NAND between the input data and the
VNAND 18 -

coefficient data.

Vector logical NOR. Performs a logical NOR between the input data pairs and the
VNOR 1A - .

coefficient pairs.
VPAS 19 Vector logical pass. Performs a VPAS on the input data.

Vector logical exclusive NOR. Performs a logical exclusive NOR between the input
VXNOR 1B . - :

data pairs and the coefficient pairs.

GENERAL PURPOSE FUNCTIONS
MOVC 1D Move coefficient data from the coefficient port to another (A,B,Q) port.
MOVD 1C Move data from one port (A,B,C,Q) to another port (A,B,C,Q).
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The acquisition ports and related memory provide
communication with the external system. The signal data
is mapped into the acquisition RAM before execution
begins. Processing begins by reading the signal data
through the QR and QI ports. During processing, the data
recursively exchanges location between the AR, Al and
BR, Bl dual memory system. The data is arithmetically
processed using the coefficient data which enters via the
CR and ClI ports. After processing is complete, the data
is written to the acquisition RAM through the QR and Ql
ports, and is ready for output to the external devices or
the system. Data can be routed through any one of 11
data flow paths.

These features give the LH9124 versatility in a variety
of applications. Essentially, the LH9124 system can be
configured to provide three levels of performance:

® a high-performance system using multiple parallel
and/or cascaded LH9124 units;

e a medium-level system using dual memory and one
LH9124 unit;

e alow-performance system using a single memory
stage and one LH9124 unit.

Each LH9124 unitthatis added to the systemimproves
the performance of that system by a factor of one. For
example, a 1K complex FFT performed using one
LH9124 would take approximately 80us while the same
calculation could be done in approximately 25us on a
system utilizing three paraliel LH9124 devices as shown
in Figure 4, thus producing a three-fold improvement in
performance. The efficiency of the system would show an
even greater improvement in a cascaded configuration
due to decreased latency.

A system based on the LH9124 unit can be configured
using SHARP’s LH9320 address generators which are
companion devices to the LH9124. The address gener-

ators and programmable memory schedulers are vital for
memory address generation and are responsible for man-
aging system memory addresses. The control logic
downloaded from ROM during initialization determines
the management task that the address generators will
perform. The setup/control logic also defines the algo-
rithms to be executed by the DSP system.

System Bus Operation

Bus operation for the LH9124 DSP system can be
divided into three main categories:

® a high-speed 48-bit complex data bus that routes
signal data between the LH9124 and
memory/acquisition hardware;

e several high speed 20-bit address buses;
e alow speed control bus.

The LH9124 performs all signal data routing between
the different data ports. External signal data multiplexing
to the LH9124 is confined to acquisition port Q. This
permits the memories on ports A and B to be connected
directly to the LH9124, thereby reducing output loads and
allowing functions to proceed between the A and B ports
at the maximum clock rate.

While processing between ports Aand B, data is input
and output asynchronously via the Q port memories and
associated hardware. Input data, once gathered, can be
loaded synchronously through the LH9124 to the high
speed Aand B ports. Similarly, processed data from ports
A and B is output synchronously to Q port memory for
subsequent output.

The address signals for all memories are loaded or
generated locally to each memory group via the LH9320
address generator, or from counters, sequencers,
PROMs, and/or the LH9320 address generator. Depend-

27 uS DATA
STREAM
80 uS
LH9124 LK 1K 1K 1K 1K 1K
SYSTEM I f0 f3 I f6 I f9 I f12I f15|
80 usS
LH9124 1K | 1K | 1K | 1K | 1K | 1K
SYSTEM i T f T T hg | fig ! fie
80 usS
LH9124 JIK 1K 1K 1K 1K K
SYSTEM [ L A L
9124-128

Figure 4. Parallel LH9124 System Processing
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ing on the number of memory units to be addressed,
buffering can also be required.

Control signals for the LH9124 system are low speed
since each is changed on a per pass basis. Thus, when
operating on N length data sets, the scheduler for the
LH9124 function and data codes is required to operate
only at 1/N times the frequency of the LH9124. For this
reason, these signals can be set up by a microcontroller,
or read from a memory unit.

Control signals to program the address generators will
need to be clocked slightly faster than the function and
data flow codes, depending on the number of address
generators and the number of registers per address
generator. These signals can be set up by a microcontrol-
ler or read from a memory unit.

MEMORY

The LH9124/LH9320 system requires three types of
memory: Data, Coefficient, and Acquisition.

Data Memory

Each of the four data memory units (real and complex)
is used as a temporary storage area for data as it moves
recursively through the LH9124 during processing. In
most cases, two of the units house real data and two
house imaginary data. Each RAM buffer can have a
maximum 24-bit width, depending on the precise memory
configuration. Each set of two real/imaginary data mem-
ory units is connected to an adjacent address generator
which outputs addresses to the data arrays.

Coefficient Memory

The two coefficient memory units use two 24-bit wide
RAM units store the real and imaginary coefficients nec-
essary for data processing. Different coefficients must be
externally loaded for each type of calculation that the
LH9124 performs. The units typically contain three types
of coefficients: windowing coefficients, trigonometric
functions (twiddle factors), and filter response coeffi-
cients.

Acquisition Memory

There are two acquisition memory units: one for real
data and one for imaginary data. Each is a 24-bit wide
RAM or FIFO. The acquisition memory holds input data
until it is loaded into the system for processing. Input data
can be from many different sources, including external
devices such as a video camera or user-generated data.
Processed data then returns to acquisition memory where
it is accessed externally by the user.

MEMORY CONFIGURATIONS

In an LH9124 system, the DSP is surrounded by RAM
buffers. The RAM for a maximum performance system
must be static RAM (SRAM) and have a fast access time.
The user also must consider the word size and the depth
of the RAM buffer, which will have to be configured
depending on the application.

Word Size and RAM Buffer Depth

The RAM buffer depth necessary for an application
depends on the size of the processed data. A 1K RAM
buffer for each array of real and imaginary data may be
sufficient for a small segment of signal, however, for a 256
x 256 pixel digitized image signal, a RAM buffer 64K deep
must be used. RAM buffers are addressed by the AG. The
LH9320 AG has a 20-bit address bus output and can
address up to 1M of RAM, which means that the maxi-
mum size for each RAM buffer is 1M x 24. The acquisition
port Q can be configured with a FIFO and, in this case,
no address generator is needed for the FIFO buffer and
there is no maximum size limit for the Q RAM buffer.

The bit width of the RAM buffer depends on the mem-
ory configuration. Each of the I/O ports of the LH9124
have 48-bits; 24-bits for real data and 24-bits for imagi-
nary data. This means that each RAM buffer has up to a
24-bit width. A 24-bit wide RAM buffer is not readily
available, however, and the user may have to configure
this buffer using three 8-bit RAM’s. In some cases if only
8-bit or 16-bit data is needed for processing, just one 8-bit
or 16-bit bus may be used.

NOTE

It is important that the 8-bit or 16-bit data bus from the
RAM buffer be connected to the 8 or 16 most significant
bits of the I/O port and that the rest of the I/O port bits are
set to zero. This will alleviate the error/noise caused by
truncation or round off which right-shifts the data during
calculation.

Figure 5 is a static RAM Buffer and Figure 6 illustrates
how to configure a 2K x 24 RAM Buffer using three 2K x
8 RAM devices.

The acquisition port can be equipped with a FIFO (first
in, first out) dual port memory with internal addressing.
The use of FIFOs for the acquisition port can simplify the
system design in some applications. Since FIFO memory
provides fully synchronous read/write operations and in-
ternal logic for unlimited expansion in both word size and
depth, real-time processing in LH9124 is possible be-
cause the system will never be interrupted for loading or
unloading data to/from the external device. Since in most
FIFO’s the address sequence is internally predefined, no
external address information is required for operation
and, thus, no address generator is needed.
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Figure 6. Word Width Expansion for the SRAM
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The input port of the FIFO is connected to an external
source device through the data-in bus and the output port
is connected to the LH9124 acquisition port. In general,
a FIFO memory is 8-bits wide and 512 to 4K deep and
may need expansion to be configured with the LH9124
for digital signal processing tasks. Word width expansion
is implemented by placing multiple devices in parallel.
Each FIFO device should be configured for SINGLE
mode. Inthis arrangement, the behavior of the status flags
will be identical for all devices, so these flags may be
derived from any one device. Depth expansion is imple-
mented by configuring the required number of FIFO’s in
EXPANSION mode.

The WE and RS pin of the FIFO should be connected
to the delay signal of the system clock (SYSCLK) or to
the WE pin from the AG of the data RAM.

For both RAM’s and FIFQ’s, the timing arrangement
can be a delicate task. Refer to SHARP technical docu-
mentation for timing information.

SCHEDULER UNIT

The control device in the LH9124 system plays only a
limited role and does not “control” the workings of the
system as much as it “schedules” the sequence of events.
The LH9124 system works with any general purpose
control device or microcontroller. Minimally, the scheduler
must have a sequencer (counter) connected to a memory
device, which includes loop and interrupt or enable hard-
ware.

Generally, when the control unit senses that the termi-
nal count (TC) is low, it enables the device to output
control sequences to the system. The START command
and subsequent control codes and enables for the DSP
system are output until the last instruction is reached,
whereupon the control unit executes a loop and the
process is repeated.

While more elaborate microcontrollers are available,
the basic control device is a counter and RAM. The
scheduler must be able to generate arbitrary control
codes, be started after each pass, and be able to restart
itself. When connected to a RAM or PROM, the ad-
dresses provided by the scheduler allow the memory unit
to output the function and data flow codes for the LH9124
DSP. A more sophisticated microcontroller with internal
memory reduces the total number of devices needed for

the system and can perform some or all of the following
functions:

® Self-programming

e Address generator programming

® Routing data on and off the board

® Post-processing of data

The device can be programmed using an EPROM or
EEPROM as the memory unit, or with a direct connection
to a PC in design environments.

The following are examples of control devices that can
be used with the LH9124 system:

e Iintel 8051
® Motorola MC68120
® [ntel 8096
e Motorola MC146805
e Intel 8960
e Motorola MC68705

Connecting the Scheduler Unit

Any general purpose control device used for an
LH9124 system will need to have common bus lines to all
the AG’s for data, RW, and START signals. In addition,
each AG has a separate line to the scheduler for CS and
TC.

The two control buses labeled Function Code (FC) and
Data Flow (DF) are to be connected to the LH9124. The
programmed control function and data flow mode signals
are assigned to these two buses. Figure 7 shows the
minimum hardware required to generate these signals.

A basic scheduler is composed of one EPROM, one
counter and one gate. In this three-unit simple scheduler,
the DF, FC, and extra control signals are tied to the
LH9124 DSP. The TC pin signal is from the AG. Each AG
has its own individual TC and CS line to the scheduler.

Refer to the manufacturer documentation for more
information on connecting microcontrollers and other
specific control units.
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Figure 7. A Simple Scheduler Unit
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Address Patterns. Lists of memory address locations
which store data for specific DSP algorithms and general
purpose applications.

Algorithm. A set of steps (procedure) that performs a
specific calculation or process.

Array Processing. The process of performing a fixed set
of operations on every element of an array.

Bidirectional Data Bus. A data bus that allows for a two
way (I/O) transmission of data.

Block Floating-Point. The accumulated number of right
shifts (divide by two) that are performed on an entire data
array (block) to prevent overflowing.

Coefficient Data Arrays. Memory arrays that provide
trigonomic terms for filtering and transforming input data
via the coefficient port.

Complex Bus Architecture. Each of the LH9124 buses
are composed of a tandem 24-bit real bus and a 24-bit
imaginary bus.

Complex Number. Extends the real number system to
provide solutions to equations like: X2 = —1. Complex
numbers have 2 essential components: the real and the
imaginary. Complex number representation is essential
to the type of applications/problems DSP addresses and
solves.

Complex Multiply. Multiplying 2 complex numbers re-
quires 4 multiplications and 2 additions n.b. Sharp DSP
performs a complex multiply in one cycle versus an
average of 4-6 cycles for other DSPs.

Complex Window. A complex number sequence which,
when multiplied against complex input data, smooths the
effects of transforming a finite data set. Acomplex window
can also be used to filter out unwanted frequencies.

Convolution. The process of modeling (filtering) the
output response of a signal according to an input signal
and the impulse response of the system that affects the
signal.

Correlation. Process to find similarities between two
signals.

Example: High end copiers correlate the original
image with the output image to verify high quality
output.

Data Arrays. Sequences of numbers representing infor-
mation that is usually separated in time or space (for
DSP).

Data Flow. The directional path that an array follows in a
unit or a system of units in order to perform a specific
algorithm.

Digital Signal Processor. A unit that performs DSP
algorithms on number sequences.

Digital Signal Processing (DSP). The practice of proc-
essing analog waveforms using digital techniques. Any
signal can be converted into digital formats.

Fast Convolution. A fast convolution transforms the
input and impulse response into the frequency domain via
a Fast Fourier Transform (FFT). The transformed data is
then multiplied by a filter coefficient and the result is
transformed back into the time domain using the inverse
FFT.

FFT. Fast algorithm to implement the Fourier Transform.
The basic idea is to ‘break’ the computation into interme-
diate stages. The intermediate computations of the FFT
are called radix passes.
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Filtering. The process of removing or smoothing selected
frequencies in data sequences.

Finite Impulse Response (FIR) Filter. The process of
filtering data sequences by computing the impulse re-
sponse of the desired filter and multiplying the finite data
sequence in the time domain.

Fixed Point. Numbers represented as integer values: 1,
2, 3, etc. The advantage is that itis easy to implement the
arithmetic in hardware.
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Floating Point. Numbers represented by a mantissa and
an exponent.

Example: 2.34 x 10 exp 2. The advantage is that
you get a large dynamic range, but it is expensive to
implement the arithmetic in hardware.

Fourier Series. A series of periodic functions that, when
summed, produce a desired (arbitrary) waveform.

Fourier Transform. The algorithm for separating a signal
into its component set of frequencies.

Function Codes. A set of numbers that trigger specific
operations in a DSP algorithm.

Image Compression. The process of storingimage data
in less space using algorithms which find and notate
repetitive data.

Image Correlation. The process of locating patterns in
images using image templates (a set of predefined pat-
terns).

Image Processing. The practice of manipulating images
to produce, enhance or locate areas or items of interest.

Matrix Arithmetic. Mathematical operations performed
on multiple rows and columns of numbers.

Precision. Accuracy. An example in DSP: The concept
of ‘round-off error’ whereby numerical computations trun-
cate data through many iterations, sometimes resulting
in a very large ‘round-off error’ that can distort the results
and, depending on the sort of information, must be com-
pensated for somewhere in the analysis.

Example:
Precision to 3 Precision to 2
Decimal Places Decimal Places
addition of: 0.666 0.67
+0.444 0.44
+0.246 0.25
+0.129 0.13
1.485 1.49

The number 1.485 is more accurate than 1.49

Radix Considerations. A number base by which a Fast
Fourier Transform (FFT) algorithm breaks down into an
input signal.

RTS. Sharp’s LH9124/LH9320 Real Time Simulators
which simulate the capabilities of the LH9124 DSP and
LH9320 AG.

Scaling. The process of dividing an entire data set by the
same number (scaling factor) to prevent overflowing.

Spectrum Analysis. The analysis of the magnitude of
squared frequencies which determines the composition
of a signal.

Vector Dot Product. The vector result of multiplying the
corresponding elements of two input vectors.

Windowing. A complex number sequence which, when
multiplied against real input data, smooths the effects of
transforming a finite data set. Acomplex window can also
filter out unwanted frequencies when combined with an
inverse fourier transform.
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HIGH SPEED/CONTROLLED OUTPUT FIFOS

INTRODUCTION
Sharp FIFOs include three product families:

1. Asynchronous 2. Clocked
e 64x8/9 e 4K x9
e 512 x9 e 4K x 9 Parallel to Serial
e 1Kx9 e 4K x 9 Serial to Parallel
e 2Kx9 3. Bidirectional
o 4Kx9 e 256 x 36 x2

These FIFOs boast high speed, low noise opera-
tion. System designers can use these parts to achieve
cycle times of up to 40 MHz, without introducing the
large current transients and ground bounce into the
board environment typically associated with high per-
formance CMOS devices. This achievement has been
accomplished through the use of a unique architecture
and current controlled output buffers and ensured by
thorough evaluation.

Look Ahead Access Architecture

The Sharp FIFO memories are high-performance
asynchronous dual-port memories that use a First-In
First-Out (FIFO) addressing scheme. FIFO devices
that incorporate random access memory architectures
must be preconditioned within each cycle to allow an
access to any location within the entire address space.
All word-lines must be turned off and all bit-lines must
be equilibrated every cycle. In the case of a FIFO
memory, itis possible to take advantage of the sequen-
tial data access to hide or eliminate many of the
overhead functions necessary for the operation of a
conventional RAM array. Sharp has developed a
unique architecture (patent pending) that uses these
techniques to reduce access/cycle time and reduce
power consumption. This ‘Look-Ahead-Access’ archi-
tecture incorporates the following:

o The use of multiple arrays to allow the equilibration
of bit-lines to occur over multiple cycles.

e Selecting word-lines once for consecutive address
locations mapped by columns.

e Shorting read bit-lines to write bit-lines when read-
ing and writing occur on the same row within the
same array. This prevents read pushout and/or
write failure.

The ‘Look-Ahead-Access’ architecture allows
Sharp to achieve extremely high-performance levels
in the memory array. Sharp has also incorporated
noise reducing techniques in the output buffers of the
device.

Figure 1 illustrates a general block diagram of the
Sharp FIFO architecture. The memory is segmented
into two arrays A and B. Each array is organized into
N rows, 8 words (9 bits per word) wide. The value of
N is dependent on the depth of the FIFO. The arrays
are dual-ported to support asynchronous read and
write operations. Array A contains the even rows and
B contains the odd rows. As consecutive read or write
operations occur, the accessed location marches
across a row to the array boundary. At the end of the
row, the accessed location jumps to the alternate
array. Subsequent accesses continue to march along
the next row to the array boundary where the accesses
jump back to the original array.

The use of multiple arrays allows equilibration of
bit-lines to occur over multiple cycles. When consecu-
tive accesses reach an array boundary and transition
to the alternate array, equilibration of the bit-lines of the
current array is initiated. Equilibration of the bit-lines
of the passive array has a full 8 cycles to complete.

On the transition from one array to the other, the
word-line in the newly accessed array is active for the
accessed row during the recovery time between cy-
cles. No additional delay is incurred in the transition
between arrays, since the bit-lines are equilibrated in
advance.

Managing Output Noise

The ‘Look-Ahead-Access’ architecture allows
Sharp to achieve high performance without relying on
high current, large transistor outputs. In addition, sys-
tem level noise is minimized and output signal integrity
is maximized by controlling output edge rates. The
following techniques were used to further reduce
noise:

FIFO Application Note
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e Current supplied to the output buffers is controlled
to prevent large current spikes.

e On-chip capacitance has been incorporated be-
tween the two power planes to supply currentin high
demand situations and thereby reduce current tran-
sients through the supply pins.

e Lead inductance for the power pins has been mini-
mized to reduce the voltage response to current
transients through the supply pins.

Rigorous Component Evaluation

Thorough evaluation of FIFO memories is para-
mount to ensuring reliability. All DC electrical charac-
teristics and AC switching characteristics were estab-
lished through an intensive characterization process.
These parameters are tested in the production envi-
ronment for all modes of operation. An evaluation was
conducted by testing the devices over a broad range
of timing relationships between read and write opera-
tions. The timing relationship between the read and

write operations may be asynchronous. Therefore,
Sharp conducted a thorough evaluation of the FIFO
memory architectures to ensure proper operation for
all possible variations of asynchronous read/write tim-
ing conditions.

Asynchronous Evaluation

The Asynchronous test was modelled after experi-
ments conducted at Xerox Corporation by M. Sheperd
and D. Rogers as described in their paper, Asynchro-
nous FIFO’s Require Special Attention, IEEE Interna-
tional Test Conference, 1985. The FIFO is exercised
with the following pattern:

a. 2 writes and 1 read until full
b. 1 write and 2 reads until empty

c. 1readand 1 write to increment both read and write
address pointers.

d. repeat stepsa—c.
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Figure 1. FIFO Architecture Block Diagram
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The test pattern described above was used to exer-
cise the FIFO for varying timing relationships between
the read and write signals. Steps a — ¢ constitute one
pass. Figure 3 illustrates the timing relationships for
sequential passes. A random delay generator setup
was introduced between the tester and the write sig-
nal, see Figure 2. The random delay generator added
a constantly varying 0 to 10 ns delay to the write signal
within each pass of the test. The write signal is swept
pass the read signal by making one nanosecond

increments between passes. The test software was
set up to loop continuously, see step d of the above
test pattern.

The testing was conducted at room temperature
over the specified voltage range. The continuous loop
testing was conducted over a period of several hours.
Data out and flags were tested to determine pass/fail.
After several hours, no errors were recorded.
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Synchronous Bidirectional FIFO

DATABUS FUNNELING MADE EASY

Mike Yee, Senior Applications Engineer

INTRODUCTION

The Sharp LH5420 256 x 36 x 2 CMOS Bidirectional
FIFO is an innovative device which turns the difficult task
of funneling and defunneling different-size databuses into
an easy one-component solution. Funneling refers to a
situation where data from a larger databus (e.g., 32-bits
wide, 36-bits with parity) must be segmented (usually in
increments of 8-bits, 9-bits with parity) and transferred to
a smaller databus (e.g., 8-bits wide, 9-bits with parity).
The funneling options available on the LH5420 are ‘36-
bits to 9-bits’ and ‘36-bits to 18-bits.’ Defunneling refers to
just the opposite of funneling. To defunnel, data from a
smaller databus (e.g., 8-bits wide, 9-bits with parity) is
combined together sequentially with other data from that
databus, and transferred in parallel to a larger databus

(e.g., 32-bit wide, 36-bit with parity). The defunneling
options available are ‘9-bits to 36-bits’ and ‘18-bits to
36-bits.” For wide word applications on both ports, ‘36-bit
to 36-bit’ buffering is also available.

A very important feature of the LH5420 is the ability to
operate bidirectionally. The term Bidirectional refers to the
LH5420s ability to funnel and defunnel between different
sized databuses, allowing datato travel in both directions.
Bidirectional operation is also available when the full
width of both ports are used (e.g., 36-bit to 36-bit buffer-
ing).

The advantages of the LH5420 bidirectional FIFO to
the system designer are: elimination of several conven-
tional FIFOs and glue logic; significant reduction of board
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Figure 1. LH5420 Block Diagram
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space; elimination of the complexities of handling bus
contention; and improved system performance. But, most
importantly, it makes databus funneling easy.

Conventional Databus Funneling
Solutions Can Be Awkward

The rapid transfer of information between a databus of
one size to a databus of a different size (funneling or
defunneling) seems like a simple enough operation, when
viewed on paper in block diagram form; but the block
diagram must be transformed into a high-speed circuit
design. Conventional solutions require many compo-
nents, and considerable board area. Further, the timing
required for reading, writing, and flag detection for multi-
ple parts in parallel, places a heavy burden on reliable
high speed operation.

Conventional Funneling Circuit
Design

Figure 2 shows a bus-funneling circuit designed using
conventional components. Figure 2a is an example of the
timing required to use the circuit in Figure 2. Figure 3
shows the circuit which must accompany Figure 2 if the
circuit were expected to operate bidirectionally (funnel

and defunnel). Figure 3a is an example of the timing
required to use the circuit in Figure 3. An obvious disad-
vantage of this conventional funneling circuit is the num-
ber of components required. One "Programmable Logic
Device" (PLD) and four standard 256 x 9 FIFOs are
required for one-way funneling. If bidirectional operation
(funneling and defunneling) is important, two PLD’s and
eight 256 x 9 FIFOs are required. The combination of all
these components results in very restrictive data setup
(tos) and hold (tpy) timings during a Write cycle, and
restrictive access timings (ta) due to the risk of databus
contention during a Read cycle. In many cases, high
speed operation would be out of the question. Tight
controls on signal noise and signal skew might also be
required to keep the four FIFOs synchronized. After all
this, the circuit designer would do just about anything for
a single-chip solution. Setup and Hold times for a single
asynchronous 256 x 9 FIFO are typically 10 ns and 0 ns
respectively for access times of 20 ns. Because this
defunneling circuit is a combination of separate compo-
nents (see Figure 3), setup and hold times would have to
be increased significantly to ensure correct synchroniza-
tion due to signal propagation delays of the control signals
and data. In a conventional defunneling circuit, there
could be as many as four 9-bit words waiting to be written
sequentially into four different FIFOs. Each of the four
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Figure 2. 36-Bit to 9-Bit Conventional Funneling FIFO Circuit
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9-bit words requires its own setup (tps) and hold (tpy) time
(see Figure 3a). These restrictions will limit the maximum
defunneling frequency of this circuit.

Databus contention is a common problem experi-
enced when combining two or more output pins from
different devices in parallel, on the same databus (see
Figure 2). If during a Read cycle, atleast two of the output
pins happen to be momentarily on at the same time, the
two output drivers potentially could fight against each
other driving the data bus to opposite logic states (one
driver pulling the bus to 0V, while the other driver is
simultaneously pulling the bus to 5 V). Databus conten-
tion degrades system performance and increases the
system operating current.

Anocther significant disadvantage with using the con-
ventional component solution is handling the flags. Each
256 x 9 FIFO has 3 types of flags which can be used in
the application to indicate the current FIFO status (Empty,
Full, or Half Full). Most designers use a flag from only one
of the four FIFOs. This flag-handling technique has a
significant disadvantage. When a flag from only one of
the four 9-bit wide FIFOs is used to represent the entire
36-bit word, there is no way to insure that the other three
FIFO flags are synchronized (empty, full, or half full at the

same time) with the first. There is the possibility that one,
two, or all three of the other FIFOs may have become
unsynchronized (due to signal noise, excessive signal
skew, etc.) and are now contributing incorrect data to the
36-bit word.

Sharp’s Single Chip Solution to the
Complexities of Funneling

The LH5420 CMOS Bidirectional FIFO was designed
specifically to simplify the handling of wide-word (up to
36-bits) data buffering. The notable features of this device
relating to data bus funneling are:

e Selectable 36/18/9-bit Word Width on Port B

e Two 256 x 36-bit FIFO Buffers for Bidirectional
Operation

e Synchronous operation on both Ports Aand B

e Fully Asynchronous Communications between Port
Aand Port B

e Only One Set of Flags for the Entire 36-bit Wide
Word

e Capable of 40 MHz operation

READ CYCLES

WRITE CYCLE
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=

z n__/

__/

D - Das ( NOT|VALID NOT|VALID K NOT

VALID NOT|VALID DATA\ VALID x

Qo- Qs qu > ar ><><

X

’ CLK CLK CLK ; CLK CLK
NOTE: 1y, Ty, Tp, f3, = PLD generated READ signals. APP1-4
Figure 2a. 36-Bit to 9-Bit Conventional Funneling Write and Read Timing Diagram
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The LH5420 provides an easy one chip solution to the
problems associated with funneling one size databus to
a different size databus (see Figure 3). The LH5420 also
provides a simple method of buffering wide word dat-
abusses up to 36 bits wide on each port. There are two
ports on the LH5420, Port A and Port B. A Port is defined
as an interface between the outside databus and the
internal FIFO memory. Each port can be used as an input
or an output depending on which direction the data will
travel. The LH5420 allows Port B to be selectable in word
widths from 36, 18 or 9 bits wide, while Port A is fixed at
36-bits wide.

Two separate 256 x 36-bit FIFO buffers work side-by-
side to move data in opposite directions. This is what
enables the LH5420 to operate bidirectionally. As an
example, a 36-bit databus and a 9-bit databus can send
and receive data back and forth, giving unrestricted com-
munication privileges between an 8-bit microcontroller
and a 32-bit microprocessor. Clock-frequency differences
between the two busses are not an issue. Even though
the individual ports are synchronous in nature, each port

is controlled from separate system clocks (CKA and
CKB). Each port operates independently from the other,
so that port-to-port communication occurs asynchro-
nously.

The LH5420 has five different types of flags available:
Full Flag (FF), Empty Flag (EF), Half Full Flag (HF),
Almost Full Flag (AF), and Almost Empty Flag (AE). The
Almost Empty and Almost Full Flags are programmable.
One set of these flags are available for each 256 x 36
FIFO buffer, to cover the status of data going in either
direction. The low skew inherent in a single monolithic
solution eliminates the risk that desynchronization will
occur within the 36-bit wide word in the FIFO. Further
protection is afforded because the flags cover the full
36-bit word width and not just the 9 bits that were used in
the conventional funneling design mentioned above. The
problems of designing a system around restrictive read
and write timing constraints are no longer an issue,
because the complexities of funneling timing synchroni-
zation are handled automatically within the LH5420 bidi-
rectional FIFO.

CLK
T O @ STATUS FLAGS
Wo . To R
el
_ T EF
W PLD o FE
o 5
Ymnld, ¥ Q 2 Qo-Qg
Wy @] [
w
o
[}
x
©
%ply, & q 2 Qs-Qy
WZ (@] FZ
s
w
»
x
©
Ywld, & Q 2 Qug- Qg
W T
3 8 3
T
[}
x
©
D,-Dg Simldy & Q 3 Qz7- Qg5
APP1-1

Figure 3. 9-Bit to 36-Bit Conventional Funneling FIFO Circuit
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Figure 4a. LH5420 9-Bit to 36-Bit Funneling Write and Read Timing Diagram

SUMMARY

The Sharp LH5420 bidirectional FIFO provides many
benefits to a system designer working on applications
which use wide word databusses (36 bits wide), or appli-
cations which require funneling and defunneling between
databusses of different widths (e.g., 8-bit to 32-bit, 18-bit

to 36-bit, etc.). In comparison with conventional databus
funneling methods, the LH5420 simplifies your circuit
design, allows faster operating speeds, uses less board
space, reduces component count, and provides bidirec-
tional funneling with no additional circuitry. But best of all,
it is easy to use.

1B-10
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‘SMART RETRANSMIT’ FIFOs

Baruch Berdugo, Applications Engineer Il, Product/Applications

INTRODUCTION

Basically, a FIFO is a self-addressing two-port mem-
ory. Data is written into the FIFO from the input side, and
is read by an independent process from the output side.
Because the timing of the input process is decoupled from
that of the output process, FIFOs are very useful for
communication between independent processes.

The internal structure of most modern FIFOs includes
a dual-port memory; a Write Pointer (WP) that defines the
address of the next datum that will be written into the
FIFO; and a Read Pointer (RP) that defines the address
of the next datum that will be read out of the FIFO. Both
pointers, WP and RP, are counters modulo in the FIFO
depth. Writing into the FIFO and reading out from the
FIFO are always done sequentially; thus data can be
read out from the FIFO only once. Some recently-
implemented FIFOs include the option to perform a
‘retransmit’ operation, which resets RP to address zero
(the address of the first physical memory location).

However, this simple retransmit option provides only a
limited solution. Many applications require a ‘smarter’
retransmit operation to control RP.

This Application Note defines the new retransmit
mechanism used in the LH543620 1024 x 36 FIFO, which
allows flexible control on RP. The flexibility and the po-
tential of the new Retransmit are demonstrated by appli-
cation examples from different areas: Digital Signal
Processing (DSP), Computer Communications and In-
strumentation.

THE LH543620 RETRANSMIT DEFINITION

Associated with the new retransmit feature are the
following resources:

e Two registers: RBASE and ROFFSET.

® Three control signals. RTMD[1:0] defines the
operation mode, RT enables the operation.

The resource registers are zeroed whenever the FIFO
is reset. They may be reprogrammed in the same way as
the Almost-Full and the Almost-Empty flag offset regis-
ters. The RBASE register also may receive new contents
at any time, whenever the Retransmit control input (RT)

is asserted. The new contents are derived from the
current values of RP and the ROFSETT register.

Table 1. Retransmit Operation Modes

RTMD: | RTMDo | OPERATION ACTION TAKEN
H H Mark (RP) — (RBASE)
) (RBASE) +
L HA Retransmit (ROFFSET) - RP
(RBASE) +
(ROFFSET) — RP
H L Retransmit | and
and Mark (RBASE) +
(ROFFSET) —
RBASE
The Almost-Empty
L L ﬁij‘;ade Flag is delayed by
one CKO clock

NOTE: The cascade mode has no functional connection to the retrans-
mit mechanism.

The Retransmit operation is acknowledge whether or
not the read enable signals (ENO;, ENO,) are asserted.
However, in order to read the new data word it is required
to issue three enabled Read clocks (CKO). See Figure 1.

There is an inherent conflict between the Retransmit
feature and the flags mechanism. The flags prediction
logic is based on a state-machine, but the retransmit
operation sets a new value to the Read Pointer; therefore,
the ‘state’ of the state machine is incorrect at this moment.
It is required to define a reasonable temporary state to
enforce upon the state machines. The LH543620 flags
indicate an ‘Almost-Full State’ when retransmit is as-
serted. For example:

e Empty flag and Aimost-Empty flag are deasserted.

e Half-Full flag, Almost-Full flag, and Full flag are
asserted.

The Flags’ state machine is ‘recovered’ and shows the
new state of the FIFO after three enabled read cycles (the
same time a new data is read out of the FIFO). Actually,
a complete recovery of the flags state machine from
retransmit is guaranteed after two enabled read cycles
with no enabled write.

FIFO Application Note
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The flags (AF and HF), when synchronized to the write
clock, are further delayed to the next write clock.

During regular FIFO operation, the FF inhibits writing
into the FIFO when it is full, and the EF inhibits reading
when the FIFO is empty. This behavior inhibits a wrap-
around scenario; i.e., the Read Pointer getting ahead of
the Write pointer. However, when using retransmit, there
is no self-protection against wraparound. It is the user’s
responsibility to avoid it. In the 1K x 36 FIFO, the user has
to guarantee that the ‘distance’ between the marked point
(RBASE) and WP is less than or equal to 1024.

APPLICATION EXAMPLES

This section presents some applications, which use
the new Retransmit mechanism to gain a simple and
efficient system implementation.

FIR Filter Using FIFOs

Finite Impulse Response (FIR) filters are widely used
in digital signal processing (DSP) applications because
of their well-behaved nature.

The FIR filter equation is.
N-1
Y() =Y, x(n—k) h(k) 1l
k=0
where:

x(n) is the input data
h(n) is the filter coefficients
y(n) is the output data

Equation [1] implies that, for every new input datum,
the execution multiplies and accumulates the last N input
points, against N coefficients.

Reference 1 describes a FIR filter implementation
using FIFOs that are not equipped by the ‘smart’ retrans-
mit capability. The idea in reference [1] is to rewrite N-1
points back to the FIFO every time a new datum is
received. Since the FIFO’s input is also used to rewrite
the old data, the inherent decoupling between the input
process and the output process is violated. To maintain
this decoupling, the suggestion in [1] is to use an addi-
tional FIFO in front of the main FIFO. With this configura-
tion the minimal hardware to sequence the data for the
Multiply-Accumulate (MACC) is: three FIFOs, a multi-
plexer, a programmable logic device, and a counter.

By contrast, in the implementation described here,
using the new retransmit, sequencing the input data for
the FIR filter mechanism is implemented with two FIFOs
with no additional logic (besides the initialization program-
ming).

FIR Implementation Using the LH543620

This system includes two FIFOs as illustrated in Figure
2. FIFOO is used for data acquisition, and FIFO1 is used
to store the filter coefficients. FIFOO is configured to
Retransmit and Mark mode — RTMD[1:0] = 2; FIFO1 is
configured to Retransmit mode — RTMD[1:0] = 1.

RTMD[1:0] —2
DATA x(n)
DATA IN D FIFOO Q
CKI &7 ENO, AE CKO oK
) COMMON CLOCK i MACC
CLR
RT AE ENO, CKO
INITIALIZATION COEFFICIENT h(n)
DATA D FIFO1 Q
AF RTMD[1:0] —1
APP5-2
Figure 2. System Configuration for FIR Filtering
FIFO Application Note 1B-13
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At the initialization stage the controller should do the
following:

1.  Write the coefficients, plus 9 zeros, to FIFO1.
2. Write 1to the ROFFSET register of FIFOO.

3. Program the AE flag of both FIFOs to be synchro-
nized to the output clock.

Figure 3 shows the process when the filter length is 5.

When AE of FIFO1 is asserted it asserts the RT inputs
of both FIFOs which causes the following:

® The RP of FIFO1 is set back to address 0.

® The RP of FIFOO is set to (RBASE), which contains
the address of start of block.

® RBASE register is incremented by 1, to point the
beginning of the next block.

e Data is read simultaneously from both FIFOs.

When N data points are read out of the FIFOs, FIFO1
became Almost-Empty and its AE flag is asserted, then
the process is repeated. If there is not sufficient data in
FIFOO, the AE flag of FIFOO is asserted ‘LOW’ and
disables reading data from the FIFOs, until A new sam-
ples are entered at the input side. The AE flag of FIFO1
can be used to indicate that data is ready at the output of
the MACC. The AF flag can be used to clear the MACC
so it is ready for the next filtering cycle.

Every word is written to the FIFO one time but is read
out of the FIFO N times. If Fout is the output frequency of
the common clock, the average input frequency should
be smaller then N*Fout.

Overlap for FFT

The requirement for overlap addressing is common for
FFT-based applications. For example, when performing
the frequency-domain convolution using the overlap-and-
save method, the input data is used in overlap, where the
number of overlapping points is equal to the filter length.
When performing spectral analysis using the Weilch
method, each processed block overlaps the previous
block. The amount of the overlap depends on the window
function. The used techniques to handle this overlap
requirement normally is handled by means of a circular
buffer, either internally in the processor, or externally
using an Address Generator.

Figure 4 illustrates a system that implements overlap
addressing using the LH543620 FIFO. The FIFO is set to
Retransmit and Mark mode: RTMD[1:0] = 2. The AF offset
register is programmed to N = FFT_Length, and ROFF-
SET register is set to (N-Overlap). The data is loaded to
the FIFO each time CKin is triggered.

The DSP senses the AF (Almost-Full) flag of the FIFO.
Whenever this flag is being asserted, a new block of data
is available in the FIFO. The DSP then reads a block of
data having the size of the FFT_length and then asserts
the FIFO’s RT signal, which causes the RP and RBASE
registers to be set at the beginning of the new block. See
Figure 4.

Computer Communication

FIFOs are widely used in computer-communications
applications, so that each computer can send or receive
amessage at its own natural rate. Most systems perform
some level of error-checking; whenever an error is de-
tected, the receiver reads the last massage using retrans-
mission. The simple Retransmit mechanism currently
implemented in FIFOs sets the RP back to absolute

AE (FIFO1) | | l_[

AF (FIFO1) | |

I

L]

[

aFrFo_ X o XniXnhexhaXmaxhsX o XniXhexXhaXnaXhsX 0 Xhixhe
QFFo) _ X x0  Xx1XxeXeXxXsX 6 XeXeXxXos X6 X x7 Xxa X
APP5-3
Figure 3. Sequence of Events for FIR Filtering
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address zero. This mode of retransmission inherently
assumes that the message must have started at absolute
address zero. This constraint is burdensome since it
implies that the sender cannot start sending any new
message until it has received an acknowledge from the
receiver. With the new Retransmit mechanism, this con-
straint no longer exists and a more efficient protocol can
be implemented, as follows:

e The FIFO is set to mode 0 (MARK).

e The sender fills the FIFO, without being synchronized
to the receiver.

When the receiver reads a block of data and finds no
errors in the data block, it can mark the beginning of the
new massage by setting the FIFO in Mark mode
RTMDJ[1:0] = 3 and assert the RT signal for one clock
cycle.

If the receiver finds an error in the data block, it can
read the last massage again by setting the FIFO in
Retransmit mode RTMDJ[1:0] = 1 and assert the RT signal
for one clock cycle.

Waveform Generator

A typical implementation of a waveform generator
instrument s to store one cycle of the waveformin a digital
memory, and then to output it repetitively. The digital
signals are converted into analog signals by a D/A fol-
lowed by a low-pass filter. Some instrument manufactur-
ers have found that FIFOs are attractive components for
implementing the digital memory. The data for one cycle
of the waveform is loaded into the FIFO during an initiali-

zation stage. The Empty (or Almost-Empty) FIFO flag
signal is used to trigger Retransmit. Thus the same data
block is read out from the FIFO in a cyclic pattern. The
simple Retransmit mechanism always sets RP to address
zero; therefore, only one waveform can be generated by
the FIFO. With the new Retransmit mechanism, it is
possible to store more then one waveform in the FIFO.
Selection of a specific waveform is done by proper pro-
gramming of the RBASE and AE registers. The system
configuration is illustrated in Figure 4.

During the initialization process, the FIFO is loaded
with all required waveforms. Playing a specific waveform
is done by programming RBASE to the starting address
of that waveform, and the AE register to the distance
between the ending address of the selected waveform
and the ending address of the last waveform. The FIFO
is set to Mode 1, and the data is read out of the FIFO
according to a constant clock when the AE flag is as-
serted, RT is asserted, and the RP is set to the value of
RBASE, which is the beginning of the waveform

SUMMARY

This Application Note presented a new Retransmit
mechanism that allows for a flexible control on RP of the
FIFO. Basically the new Retransmit consists of four op-
erations: Mark, Retransmit Read, Retransmit Read and
Mark, and Retransmit Write. The capability of the new
Retransmit was demonstrated by four examples from
different engineering areas.
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Figure 4. FIFO-DSP Connection For Overlapped Addressing
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Figure 5. Waveform Generator
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FIFO MEMORIES: EFFECTIVE, COMPACT, AND EASY TO USE

Chuck Hastings, Marketing/Applications Manager, FIFO and Specialty Memories

INTRODUCTION

FIFO memories (‘FIFOs’) are VLSI semiconductor
memory devices which store information temporarily.

The word ‘FIFO’is an ‘acronym’ in English. An acronym
is a word formed from the first letters of other words, in
this case ‘First-In, First-Out.” This term was first used in
the mathematical field of operations research to describe
one particular ‘queue discipline,’ that is, priority rule for
dealing with the members of some ‘queue.” The other
major possible queue discipline is ‘Last-In, First-Out,’ or
‘LIFO.’ The terms ‘FIFO’ and ‘LIFO’ also are used in the
fields of cost accounting and inventory control, for the two
major methods of assigning a current cost to an item
which has been withdrawn from an inventory stock of
items bought at varying times and at varying prices.

Data words may be pushed into a FIFO memory in
sequence, one word at a time, without ever having to give
the FIFO any ‘address’ to tell it exactly where to store a
given word. Later on, the same sequence of data words
may be pulled out of the FIFO at its other end, one word
at a time, in the same order in which they entered the
FIFO. Because the position of each word remains the
same within the block of words, there is no need to
‘address’ the FIFO to tell it where a particular word is to
be found.

Single-chip FIFO devices of several different word
widths are available. The most common word width today
is 9 bits. But there still are older FIFOs being sold with
word widths of 4 or 5 or 8 bits, and newer FIFOs with word
widths of 18 or even 36 bits. Sharp has been the first FIFO
manufacturer to have brought 36-bit FIFOs to market.

FIFO memories are used for several diverse purposes
in digital systems:

* Matching different data rates.

* Holding data temporarily, away from any main
memory.

o Eliminating ‘skew’ between parallel data streams.

e Acquiring a time-sequential record of successive
events.

* Reading out the same data over and over again
repetitively.

Some uses of FIFOs perhaps may serve more than
one of these purposes.

MATCHING DIFFERENT DATA RATES

Data-rate matching probably is the most common type
of FIFO application. There are three common patterns for
the timing of a stream of data words. The data words may
arrive and/or depart

o at RANDOM times, individually.

e in BURSTS, that is, in blocks of some given number
of words.

e ata CONSTANT rate.

A FIFO may be used to hold input-data-stream words,
which are arriving according to any of the above timing
patterns, for a variable and controllable duration, so that
they depart according to the timing pattern needed for
output-data-stream words. On the average and over the
long term, however, exactly as many words must depart
from the FIFO as previously arrived — no more, and no
less. Otherwise, either the FIFO memory would become
permanently full, or else it would become permanently
empty.

Since there are three timing patterns for the arrival of
data words, and also the same three timing patterns for
their departure, there are nine possible timing patterns in
all for a FIFO’s complete data-transfer task. Probably the
four most important of these are ‘random-to-random,’
‘burst-to-burst,” ‘burst-to-constant, and ‘constant-to-
burst.’

The ‘random-to-random’ case is referred to as the
‘single-server-problem’ in operations-research mathe-
matics, where it is often described using the illustration of
hungry customers arriving at a hamburger stand at ran-
dom intervals, and departing with their hamburgers at
different random intervals.

Often some electromechanical peripheral device is
connected to one end of a FIFO, while a purely electronic
device is connected to the other end. Electromechanical
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devices usually must acquire or emit data at fixed times,
which are a function of their own design; their timing can’t
be rearranged on command by an electronic system. On
the other hand, most all-electronic devices are much
more able to adjust their data-transfer timing to the needs
of other devices with which they are communicating,
although there are some major exceptions.

Even all-electronic devices may have their operating
efficiency badly degraded, if they are subjected to con-
stant ‘overhead’ interruptions by electromechanical
devices. Thus, FIFOs often perform in the useful role of
isolating all-electronic devices such as microprocessors
from common electromechanical devices such as disk
memories, laser and ink-jet printers, and bar-code read-
ers.

As mentioned, there are some important all-electronic
devices, without any moving parts, with timing charac-
teristics just as inflexible as those of electromechanical
devices. Many kinds of computer-graphic displays must
be refreshed or changed at some predetermined rate. A
telephone-line network or a local-area network likewise
has an established data-transfer frequency, to which any
external device connected to the network must adapt
itself, often via a FIFO.

Also, industry-standard databus specifications restrict
the timing allowed for many signals, so as to ensure
reliable communications interfacing between hardware
modules designed independently by different groups of
people.

Most newer FIFO memory devices provide built-in
status outputs, called ‘flags,” which help the system’s
controlling logic implement efficient FIFO-memory oper-
ating strategies. Typically, there are five of these flags:
‘Full,” ‘Almost-Full,” ‘Half-Full,” ‘Almost-Empty,” and
‘Empty.” The ‘Almost’ flags may be used as advance
warnings to the system that some action must be taken
soon. For, once the FIFO memory has reached the ‘Full
condition or the ‘Empty’ condition, it may already be too
late to avoid losing or scrambling data.

One simple but effective control strategy, for ‘burst-to-
burst’ FIFO operation, is to select a FIFO memory having
a depth of twice as many words as the usual system
datablock size. Anew block of data is brought in whenever
the ‘Half-Full’ flag indicates that the memory is now less
than half full, thus making efficient use of the FIFO’s
memory capacity.

There also are some more sophisticated strategies,
which use the ‘Almost’ flags as well. In many FIFO
devices, the ‘offset’ values for these ‘Almost’ flags are
‘programmable.’ This ‘offset value is a specification by the
system of the number of FIFO-memory words by which
‘Almost-Full’ is to differ from ‘Full,” and may be changed
by the system during operation; likewise for ‘Almost-
Empty’ and ‘Empty.’

Occasionally there is a ‘constant-to-constant’ FIFO
application. Here, the FIFO has to serve as a pure time-
delay element, and the data rates at both ends of the FIFO
must be exactly the same.

HOLDING DATA TEMPORARILY, AWAY
FROM ANY MAIN MEMORY

The information-storage capacity of FIFO memories
usually is smaller than that of random-access memories
(‘RAMS’). Nevertheless, today’s FIFO memories are large
enough to fulfill many needs for ‘local’ storage at various
points in a system remote from any ‘main memory.’

FIFOs don’t require that the system create or monitor
any ‘addresses’ for the information stored within them.
Whatever goes in one end simply comes out the other
end, in the same order. Thus, FIFOs provide a convenient
form of ‘data storage at a point.” In some cases, what is
being stored is control information, such as commands or
instructions; it is not necessarily always ‘data.’

One other unique and valuable property of FIFOs is
that, within one given ‘family’ of architecturally-compatible
FIFO parts, FIFOs having different sizes of internal mem-
ory are DIRECTLY ‘drop-in-compatible’ with each other
without ANY system redesign. Thus, a ‘deeper’ FIFO,
having more memory-word capacity, often is used to
replace a smaller or ‘shallower’ FIFO, which may have
turned out not to have enough memory-word capacity for
the application.

Sometimes, the need to replace smaller FIFOs with
larger FIFOs may come about because of a deliberate
system-engineering strategy, of upgrading the perform-
ance of a microprocessor-based system design by in-
creasing the system datablock size. With larger
datablocks, the microprocessor does not need to be
interrupted as often in order to deal with FIFO data, and
can be focused more efficiently on its main tasks.

ELIMINATING SKEW BETWEEN
PARALLEL DATA STREAMS

Parallel data streams which are supposed to be mutu-
ally synchronized, but which get out of synchronization by
varying amounts, are said to be ‘skewed’ with respect to
one another. An interesting specialized FIFO application
is that of ‘deskewing’ the individual bits read from the
parallel bit-recording longitudinal data ‘tracks’ of a multi-
ple-channel magnetic tape. The magnetic-tape skew
problem arises primarily because a particular tape may
first have been recorded on one physical tape drive, and
later on moved to a different physical tape drive for
reading. Similar applications arise when dealing with
other not-too-precise synchronous devices.
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The solution to this design problem, in its usual form,
requires one FIFO memory device per magnetic-tape
longitudinal data track. The FIFO devices are operated at
a repetition rate which is much higher than the databits-
per-unit-time rate for each magnetic-tape track. Using an
algorithm which depends on the magnetic recording for-
mat in use, the system must continuously determine the
current phase timing for each track, and then must
advance or hold back the unloading of each FIFO to keep
all of the FIFO outputs in phase together.

ACQUIRING A TIME-SEQUENTIAL
RECORD OF SUCCESSIVE EVENTS

A FIFO, with its data inputs connected to some ‘inter-
esting’ system point, can serve as an ‘event recorder.’ In
such applications, the FIFO’s ‘Write Clock’ or ‘Shift-In
Strobe’ (or other signal which tells the FIFO when it is to
write in a new data word) is controlled by system logic,
which decides WHEN the information at that system point
is ‘interesting’ and hence should be captured by writing it
into the FIFO.

One ‘event-recording’ application for FIFOs is that of
serving as the data-capture memory within a logic
analyzer or amedical ulirasound scanner. Acharacteristic
feature of such instrumentation applications for FIFOs is
that the very same data, once captured, must be read out
over and over again. Many FIFO devices have a ‘Retrans-
mit’ facility which allows doing so.

A similar application, within a processor, is that of a
‘jump-trace memory.’ The FIFO’s data inputs are con-
nected to the processor’s ‘program counter’ or ‘micropro-
gram counter’ (or other control-sequencing register), and
a FIFO input word is recorded every time that a jump out
of the normal incremental program-step-addressing
sequence occurs. Such a ‘jump-trace memory’ feature
can be very helpful when debugging real-time operating
systems; if the system crashes, having a ‘trace’ record of
the last few dozen jump addresses can be very valuable
in analyzing the cause of the crash, since in real-time
applications there usually isn’tany way to repeat the exact
sequence of events which led up to the crash.

Another processor application for FIFOs is the queue-
ing of ‘interrupts,” which are high-speed requests for the
processor’s attention. In certain types of systems, such
as digital-telephony processors, the number of real-time
interrupts is extremely high; but a delay of a few millisec-

onds is permissible when responding to each of them.
A useful technical approach in such cases is to form an
encoded interrupt-information word by hardware means,
for each interrupt as it is received, and store these inter-
rupt-information words in time-sequenced order within a
FIFO, to be unloaded and dealt with whenever the proc-
essor has the free time to do so.

READING OUT THE SAME DATA OVER
AND OVER AGAIN REPETITIVELY

When implementing reliable data-communications
hardware which must use an unreliable communications
channel, it is customary for the receiving device to trans-
mit an ‘acknowledge’ signal back to the sending device
to indicate that the last datablock was received, and that
it appeared to be correct. If no such ‘acknowledge’ signal
gets received by the sending device, or if — worse yet! —
a ‘negative-acknowledge’ signal gets received instead,
then the sending device must transmit the erroneously-
received datablock another time. A FIFO with a ‘Retrans-
mit’ facility, as described above, is a convenient means of
implementing this capability within the sending device.

Awaveform generator is a laboratory instrument which
can produce a repetitive waveform of any desired shape
or frequency, up to its performance limits. Some wave-
form generators use digital electronics; the heart of one
of these may be a large-but-slow read-only memory,
which holds an extensive library of waveforms expressed
as successive digital sample values, plus a FIFO. The
FIFO loads up the desired waveform once, at the read-
only memory’s slow speed; then it reads out the waveform
over and over again, using its ‘Retransmit’ facility, often
at a much higher speed.

SUMMARY

Once, FIFOs were rather high-priced as compared to
other digital semiconductor components. Now, competi-
tion and manufacturing improvements have reduced the
price of FIFOs substantially. Today, more than ever, FIFOs
should be considered for many applications for which they
have always offered a superior design approach, but for
which they have been considered too expensive. If your
application can be described as ‘data-rate matching,’
‘local memory,” ‘skew elimination,’ ‘sequential event re-
cording,’” or ‘repetitive readout,” a FIFO is your best an-
swer.
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PARITY CHECKING IN THE LH5420 BiFIFO

Bob Laird, Field Applications Engineer

INTRODUCTION

Sharp’s LH5420 256 x 36 x 2 bidirectional FIFO
(BiFIFO) was the first monolithic FIFO from the semicon-
ductor industry to offer customers a full 36-bit data word-
width.

The LH5420’s 36-bit wordwidth makes it the ideal
choice for those 32-bit or 64-bit systems which use parity.
It remains an ideal choice, even for those wide-word
systems that don’t use parity, because there are no
available 32-bit FIFOs, and because systems frequently
use an extra bit per byte for some type of ‘tag’ information
anyway.

WHAT IS PARITY?

Many systems need to have error detection and cor-
rection (EDAC) implemented into the design, but cannot
afford the added overhead — memory requirements
increase dramatically. The most common compromise is
to use just error detection.

By adding a single bit to each byte of data, the occur-
rence of single-bit errors may be monitored. This extra bit
is referred to as the parity bit.

Parity is not a perfect means of detecting errors; but it
is easy to implement. In fact, many off-the-shelf memory,
microprocessor, and general-purpose-logic integrated
circuits make provision for parity bits.

A system using parity requires a parity-generation
circuit. The purpose of a parity-generation circuit is to
examine each data byte, and set that byte’s parity bit
based on the number of ones (logic ‘HIGH’ levels) in the
eight data bits.

Either ‘odd parity’ or ‘even parity’ may be chosen.
These are defined as follows:

e Odd Parity. The parity bit is set to one if there is an
even number of ones; otherwise, it is cleared (not set).
Thus, the total number of ones, including the parity bit,
is odd.

® FEven Parity. The parity bit is set to one if there is an
odd number of ones; otherwise, it is cleared (not set).
Thus, the total number of ones, including the parity bit,
is even.

In either case, a single-bit error in any bit position
within a data byte, including an error in the parity bit itself,
causes a parity-error indication.

The type of parity chosen may be dictated by the
system design. However, neither type of parity offers any
major economic or performance advantage over the other
one. Some designers prefer odd parity, on the grounds
that the correct parity bit is a one for an all-zero byte.
Thus, a completely-blank byte (which presumably arose
from some type of data-recording failure) shows up as
having a parity error.

In any case, itis a good idea to maintain the same type
of parity throughout the entire system.

LH5420 PARITY CHECKING

The LH5420 offers parity checking, which means that
it examines each data byte to determine what its parity is,
thereby computing an internal parity bit for that byte. This
parity bit then is compared with the Parity Mode bit in the
LH5420’s Control Register. If they do not match, then
there is the presumption of a parity error in that byte.

Since an LH5420 word is 36 bits wide, parity checking
is done in parallel on the four bytes that make up a 36-bit
word. If an error is detected in ANY of these four bytes,
the parity flag is asserted LOW, indicating the parity error.

Figures 1 and 2 show the parity-flag logic for Port A.
The ten-bit parity trees for the other three bytes are
configured identically with the one shown in Figure 1,
which is for the low-order byte. Also, the parity-flag logic
for Port B is configured identically with that for Port A.

Since there is parity-flag circuitry associated with both
LH5420 ports, data words may be checked both entering
and exiting the BIiFIFO. The parity-tree inputs are con-
nected to the actual port input/output pads, through iso-
lation transistors. Data words are monitored as they
change on the system bus, which connects to the pads
at that port.

It should be noted that the parity-flag circuitry at an
LH5420 port is not controlled by the Output Enable (OE)
control signal at that port. Hence, parity checking always
is active, regardless of whether or not the BiFIFO itself is
driving the system bus. Therefore, as data constantly
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changes on the bus, the parity flag may keep on changing
states also. Some transitions on the data lines may make
it appear that a parity error has occurred.

According to the LH5420 data sheet specification, the
parity flag at a port is not guaranteed to be valid, until
some given delay time after stable data is present at the
input/output pads. For the LH5420P-25, for instance, this
delay time is a maximum of 17 ns. Thus, to monitor the
parity of data entering the LH5420, the sum of the data
setup time and the data hold time must be sufficient to
satisfy this 17 ns delay time.

Also, when monitoring the parity of data words being
read from the LH5420, it is necessary to keep OE as-
serted long enough to satisfy this parity-flag delay time. If
the LH5420 is being operated at the minimum cycle time
of 25 ns, then OE would have to remain asserted 6 ns into
the next cycle. In most designs, this requirement does not
present a problem.

As it is, an LH5420 cannot perform a read operation
and a write operation on consecutive cycles, when oper-
ating at the minimum cycle time. The reason is that the
sum of the data-access time (for outbound data words)
and the data-setup time (for inbound data words) already
exceeds the minimum cycle time, for all three LH5420
speed grades.

The LH5420 Control Register Parity Mode bit is initial-
ized for odd parity during a reset operation. However, it
may be reprogrammed for even parity, and then back to
odd parity, at will during system operation. Programming
is performed by loading a full 36-bit word into the Control
Register from Port A, with the code HLL at the LH5420’s
Address (resource-register-selection) inputs Asp-Aga. The
least-significant bit of that 36-bit word, Dy,, selects the
Parity Mode: HIGH for odd, and LOW for even. The
Control Register is written into at the next rising edge of
CKj.

Note that the Control Register is a ‘blind’ or write-only
register. The system cannot read it back.

The normal convention for parity-bit position is to use
the most-significant bit of each byte; that is, Dga, D174,
D25A, D35A, DSB’ D17B! DZGBs and D35B. Now, the LH5420
is designed in such a way that any bit position within a
data byte may be used as the parity bit. However, when
programming the Almost-Full Flags and the Almost-
Empty Flags, the offset values are written into the re-
source register using data pins Dga-D7a, Dga-Dieas
D1ga-Dasa, @and Doza-Daga. Thus, there is a presumption
that the least-significant eight bits of a byte are ‘the data
bits.’

So, for systems using byte parity with the most-signifi-
cant bit as the parity bit, which use the programmable-flag
feature. The fields line up as they should. Otherwise,
special consideration must be given when using the parity
bit as a data bit for programming.

Figure 1 is a simple schematic for the ten-bit parity-
checking logic circuit for one byte, in this case the least-
significant byte at Port A. The tenth bit is the Control
Register Parity Mode bit. Since this bit is HIGH for odd
parity and LOW for even parity, the output of the ten-bit
parity checker is LOW whenever the parity of the data
byte being examined agrees with the LH5420’s Parity
Mode bit.

The parity-circuit outputs for the four bytes of Port A,
designated in Figure 1 as PCga-PCga, are NORed to-
gether to compute the parity flag PF . Similar logic is used
at Port B, to compute PFg.

Note that the PF, and PFgz NOR gates do not incorpo-
rate latches. The states of these two outputs depend
directly on the data words present at Port A and at Port B
respectively.

USING PARITY CHECKING TOGETHER
WITH WORDWIDTH SELECTION

Another useful feature offered by the LH5420 BiFIFO
is wordwidlth selection, also known as funneling/defunnel-
ing, at Port B. Port A always assumes a wordwidth of 36
bits. But Port B may assume a 36-bit, 18-bit, or 9-bit
wordwidth, according to the setting of two LH5420 control
input signals, WS, and WS;. In the latter two cases, there
is an effect on parity checking at Port B.

For example, assume that Port B has been set for 9-bit
wordwidth. As a byte is being written into Dgg-Dgg, the
lowest-order Port B byte, the Port B parity checker is
monitoring not only this byte, but also the three unused
bytes Dgg-Dasg. If any of those three bytes has improper
parity, according to the current Parity Mode setting, then
PFg is asserted LOW to indicate a parity error.

If the Port B 9-bit-wordwidth setting never changes
during system operation, then it may be advantageous to
tie pins Dgg-Dasg all HIGH for odd parity, or all LOW for
even parity. Similar statements apply for pins D4gg-D3sg,
given the use of 18-bit wordwidth at Port B.
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Figure 1. Example of Byte-Parity Gate:
Port A, Low Order Byte
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PCi, _
PC2, PFa
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Figure 2. Example of Parity-Flag Logic: Port A

When outputting a byte from Port B with 9-bit word-
width in effect, the LH5420 actually conveys a full 36-bit
word to the output buffers; although, presumably, the
other devices on the output bus are examining only
Dog-Dgg- Presenting the remaining bytes to the output bus
is accomplished by circular-shifting operations, which
are inherently available in the Port B output logic. The
second byte of the word is read by shifting Dgg-D4,5 down
to Dgg-Dgg. Concurrently, Dy75-Ds3sg are shifted down to
D1BB-DZGB' D1BB'DZGB are shifted down to DQB'D17Bv and
Dog-Dgg are shifted circularly to Dy7g-Dasg.

This circular-shifting procedure is repeated twice
more, for the remaining two bytes of that data word. After
that, another full 36-bit data word is again fetched, to
output the next byte. Assuming that the fetched data bytes
all have correct parity, then PFg continues to indicate
correct parity, after each successive circular shift of the
data word.

SUMMARY

Sharp’s LH5420 256 x 36 x 2 BIiFIFO features two
built-in parity checkers, one connected to each 36-bit data
bus. The parity of each 9-bit data byte may be checked
twice as it passes through an LH5420: once as it enters,
and once as it leaves.

An LH5420 parity checker may be used to examine a
data word which is present on either of the LH5420’s two
36-bit data buses, even if that word never actually gets
read into one of the LH5420’s internal FIFO memories.

The LH5420 may be programmed to consider either
odd parity or even parity as correct. A parity error in any
byte, of a data word passing through an LH5420 port, is
signaled by asserting the LH5420’s parity flag at that port
LOW, as long as that data word remains present there.

Proper use of this port parity flag can detect any
single-bit error in any data byte passing through an
LH5420, assuming that the parity flag gets read at the
appropriate time. No additional hardware is required.
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PQFP-to-PGA CONVERTER

Dan Holton, Sr. Product Engineer

A PQFP-to-PGA converter allows a system board
designer the ability to use fine-pitch surface-mount PQFP
packages with thru-hole board designs. For example,
Sharp’s LH543620P PQFP would be soldered onto the
converter’s printed circuit board PQFP land pattern/foot-
print, then the converter’s PGA pins dropped into a thru-
hole board design. The board designer need only layout
the thru-hole board according to the LH543620P PGA
converter pin assignment.

Sharp recommends converters from ITT Pomona
Electronics, specifically ITT SMT/PGA Generic Converter
Model No. 5853. This converter accepts a 132-pin PQFP
(25-mil pitch) and maps all pins to a generic 13 x 13,
132-pin PGA (100-mil pitch). For ease of use with Sharp’s
LH543620P, a pin mapping table for the LH543620P is

shown in Table 1; however, ITT’s generic converter is
device independent. Physical PQFP pin to PGA pin as-
signment layouts are shown in Figures 1-3. Figure 4
shows the specific dimensions of the ITT converter.
Please note that the PQFP pin numbering scheme on the
converter itself may differ from the numbering scheme of
the LH543620P. The PQFP pin numbering labels on the
ITT converter can simply be ignored.

To order converters, contact ITT directly at:

ITT Pomona Electronics
1500 East Ninth St.
Pomona, CA 91766
(909) 469-2900
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Table 1. LH543620P Pin List and PQFP-to-PGA Pin Mapping
PINNAME | hOFP co;:??ﬁ;en PINNAME | ndFP co::i\;/:%gsn PINNAME | nOFP CO;{\:%?!(‘)I"ER
D14 1 A7 Q1s 61 M5 D2s 116 B13
D13 2 Cc7 Q14 62 K6 Doz 117 A12
D12 3 B6 Q13 64 L6 D2g 119 Al
D11 4 C6 Q12 65 M6 D2s 120 B11
D10 5 A6 Q11 67 N7 D24 121 A10
Dg 6 D6 Q1o 68 L7 D23 122 C10
Ds 8 C5 Qg 70 L8 D22 123 B10
D7 9 A5 Qs 71 N8 D21 124 D9
Ds 10 D5 Q7 73 M9 D20 125 A9
Ds 11 B4 Qs 74 L9 D1g 126 C9
Dag 12 C4 Qs 76 K9 D1s 127 B9
D3 13 A4 Q4 77 M10 CKI 128 D8
D2 14 B3 Q3 79 N10 D17 130 Cc8
D1 15 A3 Qo 80 M11 D16 131 B8
Do 16 C3 Q1 82 L11 D1s 132 B7
MEF 18 B1 Qo 83 N12 Vss 7 B5
MFF 19 B2 OE 85 M12 Vce 17 A2
EF 20 C1 RT 86 L13 Vss 22 D1
AE 21 C2 RTMD1 87 L12 Vce 28 E2
HF 23 D3 RTMDo 88 K13 Vss 31 F3
AF 24 D2 RS 89 K11 Vee 34 G1
FF 25 E4 WSO+ 90 K12 Vss 37 H3
PF 26 E1 WSOo 91 J10 Vce 40 J2
CKO 27 E3 ADO2 93 J11 Vss 43 J4
Qszs 29 F4 ADOq 94 J12 Vce 46 K1
Qa4 30 F1 ADOg 95 H10 Vss 49 L3
Qa3 32 F2 ENO2 96 H13 Vss 50 M1
Qa2 33 G2 ENO1 97 H11 Vce 51 N2
Qa1 35 G3 BYE 98 H12 Vce 54 M3
Qa0 36 H2 CAPR 99 G12 Vss 57 M4
Q29 38 HA1 WSl 101 Gi1 Vce 60 L5
Qos 39 H4 WSlo 102 F12 Vss 63 N6
Qg7 41 J3 ADI2 103 F11 Vce 66 M7
Qzs 42 J1 ADI4 104 F13 Vss 69 M8
Qzs 44 K2 ADlg 105 F10 Vce 72 K8
Qz4 45 K3 ENI2 106 E12 Vss 75 N9
Qo3 47 L2 ENI4 107 E11 Vce 78 L10
Q22 48 L1 Da3s 109 E10 Vss 81 N11
Qo1 52 M2 D34 110 D12 Vce 84 M13
Q20 53 N3 D33 111 D11 Vce 92 J13
Q19 55 N4 D32 112 D13 Vss 100 G13
Q1s 56 L4 D31 113 C12 Vce 108 E13
Q17 58 K5 Dso 114 C13 Vss 118 B12
Qi 59 N5 D2g 115 Ci1 Vce 129 A8
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NOTE:

Figure 1. LH543620P PQFP Pin Assignment (Top View)
Showing Converter ! PGA Pin Labels

1. ITT Model No. 5853.
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LH543620 SHARP 1024 x 36 Synchronous FIFO
1 2 3 4 5 6 7 8 9 10 1" 12 13
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N O O O O O O O O O @) O
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APP23-2
Figure 2. Converter ' PGA Pin Assignment
(Top View) 2 Showing LH543620P PQFP Pin Numbers
NOTES:

1. ITT Model No. 5853.

2. This Top View is equivalent to how the actual system board would
have to be layed out for the converter pins.
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1024 x 36 Synchronous FIFO SHARP LH543620
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83 81 79 75 7 67 63 59 55 53 51
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Figure 3. Converter 1PGA Pin Assignment
(Bottom View) Showing LH543620P PQFP Pin Numbers

NOTE:
1. ITT Model No. 5853.
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LH543620 SHARP 1024 x 36 Synchronous FIFO

TOP VIEW
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NOTES: Shown with permission of ITT Pomona Electronics.
ITT Converter PQFP pin numbering scheme differs from LH543620P.
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APP23-4

Figure 4. PQFP-to-PGA Converter Specifications
(ITT Model No. 5853)
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FIFO FLAG TIMING: MARCHING TO TWO DIFFERENT DRUMMERS

Chuck Hastings, Marketing/Applications Manager, FIFO and Specialty Memory

INTRODUCTION

A FIFO (First-In, First-Out memory device) can. be
thought of as a ‘passthrough window’ between two inde-
pendently-clockeddigital subsystems —each marching to
its own drummer, as it were. To adequately perform this
role in practical digital systems, FIFOs are ‘schizoid’: they
are memory devices, and they also are logic-synchroni-
zation circuits.

Increasingly, newer FIFOs have been made capable
of recognizing commands from the overall digital system
of which they are part, and also of providing that system
with timely status information in the form of ‘flag’ values.

AFIFO can undergo a change in its status because of
an event synchronized either to the subsystem atits input
end, or to the subsystem at its output end. These two
subsystems usually are independently clocked; and
either of the two clock signals can affect a flag value. The
external logic normally uses one or the other of these
clock signals to synchronize reading the flag, which leads
directly to a potential metastability hazard. The very new-
est FIFOs incorporate internal logic to minimize any prac-
tical metastability hazard; but, even then, their
specifications have to include ‘skew parameters,” which
must be complied with by the external logic.

This paper includes a short review of FIFO basics,
followed by a more detailed discussion of flag-synchroni-
zation and metastability issues. Finally, the flag-synchro-
nization features of the new Sharp LH540215/25 18-bit
synchronous FIFOs are described, as a case in point.

WHAT IS IT THAT FIFOs DO, IN THE FIRST
PLACE?

Conceptually, using a FIFO as a ‘passthrough window’
accomplishes two related but different system functions:

® Providing ‘rubber-band memory’ between Subsystem
A and Subsystem B.

® Decoupling the clocking of each subsystem from that
of the other subsystem.

As long as each subsystem deals with the other sub-
system through a FIFO, the two subsystems don’t have
to be synchronized or coordinated with each other in any
way, at least for the purpose of passing a data stream
from one to the other. This is a powerful simplifying
assumption in digital-system design and integration.
FIFOs often are used to save design effort and leadtime,
and to reduce the complexity of timing logic, when inter-
facing two independent subsystems together.

Subsystem A, functionally upstream, stuffs data into a
FIFO at whatever rate Subsystem A likes best; and Sub-
system B, functionally downstream, unloads the data
from the FIFO at whatever rate Subsystem B likes best.
These rates may be derived from oscillator-driven clock
circuits; or, they may not even be constant, if the ‘clock’
actually is an aperiodic ‘demand’ signal.

To cope with the requirements of this usage, a FIFO
must include an input register which can be synchronized
or ‘clocked’ by Subsystem A, and an output register which
can be synchronized or ‘clocked’ by Subsystem B. In
between, there needs to be the ‘rubber-band memory.’
(Also known as ‘elastic storage,’ if you prefer more for-
mal-type technobabble.) This rubber-band memory
should appear both to Subsystem A and to Subsystem B
as having unlimited depth; that is, as containing enough
words that neither subsystem ever bumps up against
finite FIFO-memory capacity as a bothersome constraint.
If you've designed with FIFOs previously, then maybe you
knew all that.

Historically, FIFOs have been perceived by system-de-
sign engineers as premium semiconductor parts which
Make Problems Go Away. That is, FIFOs are supposed
to be liberating. It follows, of course, that these same
customers can become severely annoyed with FIFOs, if
they ever begin to feel that using FIFOs gets them entan-
gled in lots of timing hassles. But, sometimes, they fail to
distinguish between those timing issues which arise from
the use of a particular part, and those timing issues which
arise intrinsically from the characteristics of their applica-
tion.
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REAL-WORLD MATHEMATICAL ISSUES
WHEN USING FIFOs

The term ‘FIFO’ comes from operations research, a
branch of mathematics. It stands for a queue discipline,
that of ‘First In, First Out.’ The term FIFO also turns up in
cost-accounting methodology, for reckoning the cost of
items being withdrawn from an inventory after having
been bought at varying prices.

The operations-research ‘single-server’ model fits FI-
FOs being used to buffer ‘randomly-arriving’ data, as well
as fitting the classic example of hamburger stands serving
‘randomly-arriving’ customers. In this model, the arrival of
a piece of data at the FIFO’s input end (‘a customer’) and
the unloading of a piece of data from the output end of
the FIFO (‘serving a customer’) are random events. In
between the input end and the output end, there is a
queue of customers waiting to be served — here, words
being temporarily stored within the FIFO’s internal mem-
ory array. If you like mathematical lingo, the entire scene
is a ‘stochastic process,” meaning that the events which
are occurring are ‘probabilistic’ and not ‘determinate.’

Why is this operations research model of interest? In
the ‘single-server’ model, the queue length is a ‘random
walk,” and — if it is given enough time to fluctuate — is
unbounded, meaning that no FIFO used to queue up fruly
random data can ever be quite big enough, if it has to
operate for an infinitely-long time. Thus, this operations-
research model in principle contradicts the common-
sense notion that there is some ‘large-enough’ size for
every FIFO application.

So, it's not just that semiconductor manufacturers
don’t choose to develop FIFOs having deep-enough in-
ternal memory-array capacities. It's that there isn’t any
finite depth which can provide theoretically-absolute pro-
tection, in the truly-random case.

DESIGN STRATEGIES USING FIFOs

But, in practical systems, there always is a ‘large-
enough’ FIFO size. The probability of any queue length
growing past a certain value, before the next ice age,
usually can be made very small without making the
FIFO’s queue-length capacity uneconomically large.

If a catastrophic increase in queue length starts to
occur, often because of some sudden-onset system prob-
lem, the designer’s line of defense is the FIFO's ‘fullness
flags.’ If the system is monitoring these, they can provide
an adequate early warning of impending trouble, so that
the system can take timely and effective countermea-
sures.

The key point here is that finite-depth FIFOs — and the
semiconductor industry hasn’t built any other kind of
FIFOs yet! — must, for basic mathematical reasons, incor-

porate some kind of bulletproof logic for dealing with full’
and ‘empty’ queue conditions.

Of course, there are also ‘block-oriented’ FIFO appli-
cations, in which Subsystem A dumps another block of
data into the FIFO only when the FIFO is less than half
full, and the FIFO size has been chosen a priori to be large
enough to hold two blocks of data. Here, Subsystem A is
doing some of the ‘elastic’ adaptation to fluctuations in the
data rate, and is no longer depending upon the down-
stream FIFO to do all of that adaptation. Consequently,
not all of the pessimistic assumptions of the ‘single-serv-
er’ model still have to be satisfied. But limiting the queue
length in this manner can exact a price, in some other
system-level performance characteristic.

Prudent digital-system designers usually try to avoid
ever allowing their FIFOs to get either completely ‘full’ or
completely ‘empty’ during normal system operation. Fol-
lowing this rule means that many fascinating ‘gotchas,’
which in principle can raise their ugly heads at these
boundary conditions, never get to disturb the serenity of
the system’s operation, or of the system designer’s work-
ing day. However, the Product Engineering and Test
Engineering staffs of semiconductor manufacturers often
must spend major time and effort dealing with these
boundary-condition ‘gotchas.’

FIFO ‘FULLNESS’ STATUS FLAGS

Contemporary FIFOs commonly provide several
status flags, to inform the system logic external to the
FIFO as to the FIFO-memory array’s relative state of
fullness or emptiness. Often, there are five such flags:
‘Full,’ ‘Almost Full,” ‘Half Full,” ‘Almost Empty,” and ‘Empty.’
These ‘Almost’ flags originated some years ago, as a
semiconductor-piece-part adaptation of the “Yellow Warn-
ing’ interrupt-flag scheme used in DEC’s PDP-11 family
of minicomputers.

Sometimes, when there aren’t quite enough pins to
provide every FIFO feature desired by the semiconductor
manufacturer and its customers, the ‘Almost-Full Flag’
signal and the ‘Almost-Empty Flag’ signal are combined
as an ‘inclusive-ORed’ ‘Almost Full/Empty Flag’ signal on
one pin. The external logic can distinguish these condi-
tions one from another by examining the ‘Half-Full Flag,’
on the assumption that a FIFO which is ‘almost full’ can
be presumed to be more than ‘half full,” and likewise that
a FIFO which is ‘almost empty’ can be presumed to be
less than ‘half full.’

This last assumption sounds obvious to the point of
silliness. Still, it needs to be rechecked when designing
with FIFOs which feature ‘programmable’ ‘Almost-Full
Flag’ and ‘Almost-Empty Flag’ signals, whenever large
‘offset’ values are being ‘programmed’ into the ‘offset-
value registers’ which are associated with each of these
two flags. These ‘offset’ values define the ‘almost-full’
condition as some exact number of words away from ‘full,’
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and the ‘almost-empty’ condition as some exact number
of words away from ‘empty.’ Obviously, the rules are going
to change, if ever one or both of these offset values
exceeds half of the number of words in the FIFO-memory
array.

THE FLAG-SYNCHRONIZATION DILEMMA

Back to Subsystem A, which is being synchronized by
Clock A, and Subsystem B, which is being synchronized
by Clock B. Subsystem Ais ‘synchronously’ dumping data
destined for Subsystem B into a FIFO, which is there to
make everything come out OK so that Subsystem B can
‘synchronously’ read these same data back out.

Whenever Subsystem A stuffs in one more word, the
FIFO can suddenly become ‘full,’ ‘almost full,” or ‘half full’;
or it can suddenly cease to be ‘almost empty’ or ‘empty.’
Similarly, Subsystem B unloading one word can cause
the FIFO now suddenly to become ‘almost empty’ or
‘empty,” or now suddenly to cease to be ‘full,’ ‘almost full,’
or ‘half full.” Thus, each flag signal can be affected for one
transition by a ‘write event,” and can be affected for the
other transition by a ‘read event.’ Therefore,

Events widhaonaasethestaed any fulness flog todhonge
anaar d gther endd theFIFO,

So, each of the five flags can change state either in
synchronism with Clock A, or else with Clock B. So all
five flags are ‘synchronized to both clocks,’” which is the
same as saying that they aren’t really synchronized to
either clock — that is, that they are asynchronous. These
statements, of course, apply strictly to the internal values
of the five flags, as these values are computed by the
FIFO’s control circuits.

Incidentally, if this operational description seems to be
stacked lopsidedly in favor of fullness, it's because the
‘Half-Full Flag’ customarily is called just that, rather than
being called the ‘Half-Empty Flag.’ Probably, the term
‘Half-Empty Flag’ just sounded too negativistic for the
tastes of positive-thinking FIFO marketeers! Anyway, the
logic which controls the ‘Half-Full Flag’ behaves exactly
in accordance with what one would expect from that
name.

Now, in a ‘synchronous’ FIFO having ‘enable’ inputs as
well as ‘clock’ inputs for both writing and reading, a ‘write
event’ is synchronized to the ‘write clock’ input, and is
made to occur by asserting the ‘write enable’ input. Like-
wise, a ‘read event’ is synchronized to the ‘read clock’
input, and is made to occur by asserting the ‘read enable’
input.

In principle, the ‘write clock’ and the ‘read clock’ both
may be free-running periodic waveforms derived from
crystal-oscillator frequency sources. However, most con-
temporary FIFOs avoid the use of any internal circuit
techniques which would require that these ‘clock’ signals
must be periodic.

So, now, what happens when either Subsystem A or
Subsystem B wants to read the value of one of these
flags? If Subsystem A and Subsystem B are connected
by a ‘synchronous’ FIFO, then the logic outside the FIFO
which is trying to read the FIFO’s flag(s) very likely also
is synchronized, probably either to the ‘write clock’ (here,
Clock A) or to the ‘read clock’ (here, Clock B). Which is
fine, as long as the flag value is stable, or as long as the
most recent event which is capable of affecting this flag
value was synchronized to the same ‘clock’ signal to
which flag reading also is being synchronized.

But what, then, if the most recent event which has
affected this flag value was synchronized to the other
‘clock’ signal? Then, we have a signal getting changed in
synchronism with one ‘clock’ signal, but being read in
synchronism with a second, different ‘clock’ signal which
is not necessarily in any way synchronized or coordinated
with the first ‘clock’ signal. Thus, the FIFO’s flag output is
most unlikely always to be meeting the setup-time and
hold-time specifications for the downstream semiconduc-
tor-device input which it is driving.

METASTABILITY

This latter situation is, of course, the recipe for instant
metastability. Metastability is a digital-system form of ‘bad
vibes.’ It arises as the result of trying to read a digital signal
while that signal is changing.

A potential ‘metastability hazard’ exists whenever the
signal being read isn’t a stable HIGH or a stable LOW, as
of the exact instant when the clock-signal transition edge
comes along to synchronize the reading process. If there
are many ongoing attempts to read the signal, and the
timing of the signal is unrelated to that of the clock signal,
then what we have here is another example of a ‘stochas-
tic process.” And, eventually, there is bound to be an
attempt to read the signal at exactly the wrong time.

When attempting to read such an unstable signal,
three different outcomes are possible:

® The signal can be read as a HIGH.
® The signal can be read as a LOW.

e The reading circuit element itself can just get
confused and ‘hang up’ in a ‘metastable’ state,
outputting a signal close to its own input ‘trip point’
or ‘transition threshold’ for a while, before settling
back either into a stable HIGH condition or else into
a stable LOW condition.

This ‘metastable’ state can, in some circuit technolo-
gies, last for as long as several additional clock periods.
Now, the probability of ‘going metastable’ remains very
small as long as the reading circuit isn’t being operated
at a frequency really close to its maximum; but it in-
creases, quite dramatically, as this maximum is
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approached. The potentially-ruinous impacts on system
reliability are all too obvious.

Notice that we got into this metastability issue as a
direct consequence of the burden which FIFOs are ex-
pected to take on in systems, of Making Synchronization
Problems Go Away. Ultimately, metastability is not intrin-
sically just a circuit-design problem; it arises mathemati-
cally as an operations-research problem, when
deterministic digital circuits are used — whether wittingly
or not! —to try to deal with ‘stochastic processes.’

RESYNCHRONIZING FLAG SIGNALS

FIFO customers, like customers for any other prod-
ucts, develop new Wants over time, as suppliers learn to
satisfy their previous Wants. So customers now Want to
be able to perform flag-reading operations from which-
ever end of the FIFO they wish, for any of the five usual
‘fullness flags,” without having to spend time and circuit-
board real estate protecting themselves against metasta-
bility hazards.

FIFO manufacturers first began to address this cus-
tomer Want by attempting to handle the potential metas-
tability problems internally within the FIFO, but for just two
out of the five flags — the ‘Full Flag,” and the ‘Empty Flag.’
The approach was to resynchronize each of these two
flag signals, for both of its possible state transitions, to the
clock signal for that end of the FIFO where there usually
is the greatest interest in reading that flag: the ‘Full Flag’
to the ‘write clock,” and the ‘Empty Flag’ to the ‘read clock.’

The premise for these choices was, of course, that it's
essential for Subsystem A to know if a FIFO which it's
trying to write into is ‘Full’; if it is, then the write operation
can’t be completed. But there’s no similarly-urgent reason
why Subsystem A needs to know if the FIFO which it's
trying to write into is ‘Empty.” Analogous reasoning also
applies at the other end of the FIFO, where words are
being read out.

USING PROGRAMMABLE FLAGS TO DO
END-OF-BLOCK DETECTION

Certainly, this resynchronization of the external values
for the ‘Full Flag’ and the ‘Empty Flag’ was a step in the
right direction. It costs some on-chip resynchronizing
flipflops; but it provides system designers with an easier-
to-use FIFO part. But it didn’t go quite far enough, since
customers also turned out to be intensely concerned
about getting absolutely dead-on-accurate readings from
the ‘Almost-Full Flag’ and from the ‘Almost-Empty Flag'—
not just readings accurate to within a word or two.

A puzzling attitude, if one assumes that these latter
flags are being used only as warnings to the system that
it needs to do something soon, before the FIFO becomes
either completely full or else completely empty as the
case may be. But, as often happens, customers found a

major use for the ‘Almost-Full Flag’ feature and the ‘Al-
most Empty Flag’ feature which was utterly different from
the type of use planned for by the semiconductor manu-
facturers. In this case, the unanticipated major usage was
as cheap block-length counters.

The semiconductor industry originally opened the door
to this block-length-counter trick, while trying simultane-
ously to satisfy all of the different customers who could
not agree on just what ‘almost full’ and ‘almost empty’
ought to mean — that is, how many words away from ‘full’
should be defined to mean ‘almost full,” and how many
words away from ‘empty’ should be defined to mean
‘almost empty.’

The industry’s response was to say, in effect, "Hey, you
guys decide," by including programmable registers within
FIFOs to hold ‘offset values’ which could be loaded during
the operation of a system. These ‘offset values’ allowed
the system to specify the ‘how-many-words-away’
parameters, during operation.

In older-architecture FIFOs which date back to when
‘almost’ flags first were introduced, these ‘offset values’
were fixed, ‘wired-in,’ architectural-design parameters.
There are even certain newer FIFOs which have wired-in
offset values, generally because they come in small
packages without any extra pins to spare which could be
used for controlling the necessary programmable regis-
ters, if their offset values were to be specifiable. Eight has
been one very common wired-in offset value.

However, the very newest FIFOs generally have archi-
tectural provisions for reading in these ‘offset values’ from
the external logic. If the external logic never gets around
to imposing its own choice of ‘offset values’ on the FIFO,
the FIFO’s ‘default values’ for these parameters remain
in effect during system operation. Again, eight is a very
common ‘default value.” Another frequent choice is one-
eighth of the FIFO depth.

As for block-length counting, to make a long story
short, if the sum of the two ‘offset values’ and the desired
block length equals the depth of the FIFO, then the
system can use a state change by one of the ‘almost’ flags
as an ‘end-of-block’ signal. The details are left as an
Exercise For The Reader.

A CONTEMPORARY EXAMPLE OF
SYNCHRONOUS-FIFO ARCHITECTURE

Consider now Sharp’s new 18-bits-wide synchronous
FIFOs, LH540215 (512 x 18) and LH540225 (1024 x18).
These new x18 FIFOs are pin-compatible drop-in
replacements for the IDT72215B and IDT72225B x18
synchronous FIFOs. But they also have some useful
enhanced features, which go some ways beyond the
architecture of the original IDT parts.
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Naturally, they offer programmable offset-value regis-
ters for the Almost-Full Flag (PAF) and the Almost-Empty
Flag (PAE). The default values for the contents of these

registers are one-eighth of the FIFO depth, minus one.
Also, the LH540215/25’s Full Flag (FF) and Empty Flag

(EF) signals have been made to behave fully ‘synchro-
nously,” as far as the outside world is concerned. In order
to avoid metastability problems, these flags have been
resynchronized, to the clock at that end of the FIFO where

the external logic is most likely to be trying to read them.

To review the rationale for this resynchronization, Sub-
system A (the writing/input side) normally won’t need to
read EF, since writing can occur at any time when the
FIFO isn’t actually full. Likewise, Subsystem B (the read-
ing/output side) normally won’t need to read FF, since
reading can occur at any time when the FIFO isn't actually
empty. Therefore, FF has been resynchronized to change
only as the result of a rising edge of WCLK (the writing-
side clock); and EF has been resynchronized to change

only as the result of a rising edge of RCLK (the reading-
side clock).

This flag-signal behavior is probably optimum, from the
viewpoint of a digital-system designer trying to make use
of these FIFOs. However, for the resynchronization cir-
cuits within the FIFO to have time to function properly, it
has proven necessary to specify two new ‘skew’ timing
parameters, tsxew1 and tskewe; see Figure 1 and Figure
2.

tskews is the minimum delay for a rising edge of WCLK
to occur after a rising edge of RCLK, in order to guarantee
that the value of FF will be accurate as of this rising edge
of WCLK, and won't get delayed until the nextrising edge
of WCLK. Similarly, tskew. is the minimum delay for a
rising edge of RCLK to occur after a rising edge of WCLK,
in order to guarantee that the value of EF will be accurate
as of this rising edge of RCLK, and will not get delayed
until the next rising edge of RCLK.

tok
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NOTE:
1. tskewy is the minimum time between a rising RCLK edge and a
rising WCLK edge for FF to change predictably during the current
clock cycle. If the time between the rising edge of RCLK and the
rising edge of WCLK is less than tgkgws, then it is not guaranteed
that FF will change state until the next following WCLK edge. 40215.6

Figure 1. Synchronous Write Operation
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Impatient digital-system designers sometimes are an-
noyed by having to observe the timing restrictions implied
by these ‘skew parameters.” However, even the fastest
digital logic can’t respond instantaneously. It appears that
their objections really are to restrictions which are inher-
ent inwhat FIFOs must be, if they are to solve the system
timing problems which they are expected to solve. The
basic flag-synchronization problem can be moved
around, and changed in form, in all sorts of different ways;
but it can’t ever be totally eliminated.

Because a FIFO is inherently a pass-through window,
between two logic subsystems which are synchronized
differently, at some point there is always going to be a
boundary between these two subsystems. And, at this

boundary, the system designer inevitably is going to have
to make allowances for some ‘boundary effects.’

THE ‘MIDDLE’ FLAG SIGNALS

In the IDT x18 FIFOs, the three ‘middle’ flags — the
‘Programmable Almost-Full Flag’ (PAF), the ‘Half-Full
Flag' (HF), and the ‘Programmable Almost-Empty Flag’
(PAE) — have been passed straight through to the outside
world in the exact same form in which, as we have seen,
the FIFO’s internal logic inevitably must generate them.
That is, these flags are ‘synchronized to both clocks,’
which is to say that they are ‘asynchronous.’
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NOTE:
1. tskewe is the minimum time between a rising WCLK edge and a

that EF will change state until the next following RCLK edge.
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But the Sharp x18 replacements for these IDT parts go
one step further. They incorporate a programmable ‘Com-
mand Register, by means of which the system can
specify ‘synchronous’ behavior for these three ‘middle’
flags also.

PAF, like FF, normally gets read at the writing side of
the FIFO; and so there is a Command-Register bit which
can be used to program PAF to be resynchronized to
WCLK. PAE, like EF, normally gets read at the reading
side of the FIFO; and so there is a Command-Register bit
which can be used to program PAE to be resynchronized
to RCLK.

However, a priori, HF is equally likely to be needed at
either end of the FIFO. Therefore, fwo Command-Regis-
ter bits have been allocated for HF resynchronization. The
system can select either WCLK or RCLK as the resyn-
chronizing clock for HF. Or, it can leave HF ‘synchronized
to both ends of the FIFO’ —i.e., as ‘asynchronous.’

These Sharp x18 FIFOs incorporate an ‘Enhanced
MODE'’ control signal (EMODE), which allows the system
to select between two different sets of Command-Regis-
ter ‘default’ conditions. If EMODE is held HIGH during a
reset operation, the FIFO is initialized to function exactly
like the same-depth IDT x18 FIFO. But, if EMODE is held
LOW during a reset operation, a selection is made from
the Sharp x18-FIFO menu of enhanced features; see
Table 1. Also, the Command Register then becomes
accessible for further modification of these selections.

The pin used for the EMODE control input is a Vcc pin
inthe IDT72215B and IDT72225B x18 FIFOs. So, when-
ever the Sharp LH540215 and LH540225 x18 FIFOs are
used in pre-existing IDT x18-FIFO sockets, they auto-
matically get ‘strapped’ (pin-programmed) to behave ex-
actly like the IDT FIFOs which they are replacing.

SUMMARY

A FIFO’s mission is to serve as a ‘pass-through win-
dow’ between two conceptually-independent subsys-
tems, which should not need to be coordinated or
synchronized together in any way. To perform this mission
well, the FIFO must provide ‘rubber-band memory’ be-
tween the two subsystems, and also must decouple their
clocking synchronizations one from another.

In its ‘pass-through window’ role, the FIFO itself has its
input side and its output side ‘marching to two different
drummers.” The values of the FIFO’s status flags, by
which the FIFO informs the outside world of its state of
relative fullness or emptiness, arise from computations
which unavoidably are synchronized first to one subsys-
tem, and then to the other.

These status-flag values must be resynchronized to
one or the other of the two subsystem clocks. Otherwise,
the external logic must contend with the hazards of
metastability, which can give rise to profound system
processing errors if no countermeasures are taken.

Two new Sharp x18 synchronous FIFOs, the
LH540215 (512 x 18) and LH540225 (1024 x 18), offer
advanced new functionality for controiling status-flag syn-
chronization. For practical purposes, when reading
status-flag values, fully-synchronous status flags can
reduce the risk of metastability to negligible levels.
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Table 1. Command-Register Format for Sharp LH540215/25 x18-Bit FIFOs

COMMAND VALUE AFTER RESET FLAG
REGISTER| CODE |[——— p—— AFFECTED, DESCRIPTION NOTES
BITS EMODE =H | EMODE = L IF ANY
Deassertion of LD does not
L reset the programmable- IDT-compatible addressing
register write pointer and of programmable registers.
read pointer.
Deassertion of LD resets
the programmable-register
00 L H _ write pointer and read
pointer to address Word 0, .
the Programmable-Almost- Non-aml_a Iguous
" Empty-Flag-Offset Register. af"dn:aslsr;lr:wgaglfe registers.
The change takes effect prog 9 )
after a valid write operation
or a valid read operation,
respectively.
L Set by TRCLK, reset by Asynchronous flag
01 L H PAE TWCLK. clocking.
H Set and reset by TRCLK. Synchronous flag clocking.
LL Set by TWCLK, reset by Asynchronous flag
TRCLK. clocking.
HE Synchronous flag clocking
, 02 LL HH HF
03, 0. LH Set and reset by TRCLK. at output port.
HL, Synchronous flag clocking
HH Set and reset by TWCLK. atinput port.
L Set by TWCLK, reset by Asynchronous flag
04 L H PAF TRCLK. clocking.
H Set and reset by TWCLK. Synchronous flag clocking.
‘OE has no effect on an Allows the read-address
L internal read operation, pointer to advance even
apart from disabling the when Qo - Q7 are not
outputs. driving the output bus.
05 L H _ OE inhibits a read Inh_lblts the read-add_ress
y pointer from advancing
operation whenever the
when Qp — Qy7 are not
H data outputs L i
Qo — Qy» are in the high-Z driving the output bus;
0~ W17 g thus, guards against data
state.
loss.
L Future use to control depth
06 L L - Reserved. cascading and interlocked
H paralleling.
07,08 | yyyir|| LLLLL | LLLLL - Reserved. Reserved.
09, 10,11 . )
NOTES:

1. When EMODE is HIGH, and Command Register bits 00-05 are LOW, the FIFO behaves in a manner functionally equivalent to the
IDT72215B/25B FIFO of similar depth and speed grade. Under these conditions, the Command Register is not visible or accessible
to the external system which includes the FIFO.

2. If EMODE is not asserted (is HIGH), Command Register bits 00-05 remain LOW after a reset operation. However, if EMODE is as-
serted (is LOW) during a reset operation, Command Register bits 00-05 are forced HIGH, and remain HIGH until changed. Com-
mand Register bits 06-11 are unaffected by EMODE.

BOLD ITALIC = Enhanced Operating Mode
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THE SHARP LH5402X5 FAMILY:
MAINSTREAM, DESIGNER-FRIENDLY,
18-BIT-WIDE SYNCHRONOUS FIFOs *

Chuck Hastings, Applications Consultant

INTRODUCTION

The new Sharp LH5402X5-family 18-bit-wide First-In,

First-Out memories (FIFOs) are high-speed, synchro-
nous digital specialty-memory devices, useful for local
temporary storage and for data-rate-matching applica-
tions in high-performance digital systems. [1]

These FIFOs are implemented in recent-vintage
0.8u/0.71 CMOS static-RAM technology, and feature
many conveniences and useful options for digital-system
designers. One of them can replace two industry-stand-
ard 9-bit-wide asynchronous FIFOs of the same depth,
and at the same time provide higher-speed operation and
more convenient timing characteristics. They also can
replace other existing 18-bit-wide FIFOs, in many cases
without design changes to the system.

The LH5402X5 family includes four pin-compatible
FIFOs, differing in depth: LH540215 (512 x 18, meaning
512 18-bit words); LH540225 (1024 x 18); LH540235

(2048 x 18); and LH540245 (4096 x 18). As of this writing,

the first two of these FIFOs are in production; the other
two are in design. These FIFOs are available in speed
grades up to 50 MHz (20 nsec-cycle-time).

DESIGN ADVANTAGES OF
LH5402X5-FAMILY FIFOs

The flexible LH5402X5 control scheme allows select-
ing a wide variety of useful operating configurations.
Some of these implement Sharp-proprietary functionality;
the rest either are industry-standard, or else support
emulating the behavior of other FIFOs.

These Sharp FIFOs are pin- and functionally-compat-
ible with the existing IDT722X5B industry-standard 18-
bit-wide FIFO family. And they are functionally-similar,
although not quite fully 100% pin-compatible, with the
existing TI SN74ACT7801/11/81 18-bit-wide FIFO family.

Figure 1 is the common block diagram for all Sharp
LH5402X5-family FIFOs. Figure 2 is the pinout common
to all LH5402X5 family members, for the industry-stand-
ard 68-pin PLCC (Plastic Leadless Chip Carrier) pack-
age. Table 1 summarizes the meanings of the pin names.

Bold-italic typeface is used in LH5402X5-family-
related figures, tables, and text to indicate Sharp-pro-
prietary functionality and/or signals.

Synchronous Operation

In LH5402X5-family FIFOs, all input and output data-
transfer processes and most input control signals are fully
synchronized, with respect to one or the other of the two
port clocks. If their function relates to the input port, it’s to
the write clock WCLK. If their function relates to the output
port, then it’s to the read clock RCLK.

Some of the output status signals (‘flags’) are fully
synchronized by design. Others may be programmed, at
any time, to behave either synchronously or asynchro-
nously. When flags are synchronized, it's always to the
port clock most likely to be used by the system to syn-
chronize reading them.

In addition to being respectively synchronized by the
write clock and the read clock, input and output data-
transfer steps likewise must be enabled by write-enable
and read-enable control signals. These control signals
are themselves synchronized to the respective port
clocks.

* A slightly-modified version of this paper was presented at Northcon/94. It appeared in the Northcon/94 Conference Record, Session 1, paper 5.
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Figure 1. LH5402X5-Family Common Block Diagram

Table 1. LH5402X5-Family Common Pin Designations

PIN NAME PIN NAME
Do - D17 Data Inputs RXI/REN2 Read Expansion Input/Read Enable 2
RS Reset FF Full Flag
EMODE Enhanced Operating Mode PAF Programmable Almost-Full Flag
WCLK Write Clock ﬂ)iOIHF Write Expansion Output/Half-Full Flag
WEN Write Enable ;;E Prograr::mable Almost-Empty Flag
RCLK Read Clock EF__ Emply Flag _
— RXO/EF2 Read Expansion Output/Empty Flag 2
REN Read Enable
— Qo - Qi7 Data Outputs
j Output Enable Voo Power
!‘E Load Vss Ground
FL/RT First Load/Retransmit
WXI/WEN2 Write Expansion Input/ Write Enable 2

BOLD ITALIC = Enhanced Operating Mode
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Figure 2. LH5402X5-Family Common PLCC Pinout

High-speed state machines, implemented with regis-
tered PLDs (Programmable-Logic Devices), often are
used to control the operation of fast synchronous FIFOs
such as these LH5402X5-family devices. A PLD which is
controlling the input side of a synchronous FIFO may itself
be synchronized to the same waveform which is being
supplied as that FIFO’s write clock. Likewise, a PLD which
is controlling the output side of a synchronous FIFO may
be synchronized to that FIFO’s read clock. Simple, eas-
ily-generated, periodic symmetric square waves may be
used for both of these FIFO clocks, as well as for PLD
clocks.

Such a PLD-FIFO combination may be operated at
fast cycle times — as small as the worst-case sum, of a
clock-to-output time of one of the two parts added to a
setup time of the other part, presumably with some small
wiring-delay time factor also added in.

Asynchronous FIFOs aren’t nearly as amenable to this
same state-machine, symmetric-clock control strategy.
Most such parts lack the separate write-enable and read-
enable control signals, distinct from the write clock and

BOLD ITALIC = Enhanced Operating Mode

the read clock. Rather, they have write-demand and
read-demand control signals, often loosely referred to as
‘clocks,” which combine within the same edge-sensitive
signal both the clocking and the enabling functionality —
in a manner which isn’t too convenient for control of the
FIFO by the system. Carefully-shaped, gated, asymmet-
ric clock waveforms may in fact be needed to drive these
demand signals, at least with optimized timing, whenever
asynchronous FIFOs are run at data-transfer repetition
rates faster than approximately 20-30 MHz.

Compatibility with Other FIFO Families

The Sharp LH5402X5-family FIFOs have a pinout
identical to that of the Integrated Device Technology
IDT722X5B-family FIFOs, and can directly replace them
in existing applications with no system-design changes
whatever. The pinout shown in Figure 2 also is the pinout
for IDT722X5B-family FIFOs, with only the following
changes: all signal names written in bold-italic type are
disregarded, and V¢ is substituted for EMODE (pin 48).
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However, the Sharp FIFOs have functionality and flexi-
bility which go beyond that of the IDT FIFOs. An
LH5402X5 master-control pin, EMODE (Enhanced Op-
erating Mode), selects strict IDT-compatible operation
when tied HIGH, but enables additional non-IDT Sharp
‘Enhanced-Operating-Mode’ features when tied LOW.
Since the EMODE pin was a V¢ pin in the original IDT
pinout, it always will have been tied HIGH in any design
originally based on IDT722X5B FIFOs.

Several of these Enhanced-Operating-Mode fea-
tures are directed at emulating the functionality of the
Texas Instruments SN74ACT7801/11/81 FIFOs, which
have a pinout very similar to — although not fully identical
to—the Sharp and IDT FIFOs. In particular, all input-data
and output-data pins are in the same locations, and
likewise for many power and ground voltage-supply pins.
Refer to Figure 3a and Figure 3b for the exact pinout
similarities and differences.

Thus, the Sharp FIFOs can replace the IDT FIFOs,
with no wiring or control-logic changes; and they also can
replace the Tl FIFOs, with minor wiring and control-logic
changes. When operated in an appropriately-chosen
mode, the Sharp FIFOs exhibit no major behavioral dif-
ferences which would affect a system-level block dia-
gram, for a system design originally based either on
IDT722X5B FIFOs or on TI SN74ACT7801/11/81 FIFOs.

One proprietary Sharp feature, Retransmit capability,
is available regardless of the state of EMODE. However,
the Retransmit capability never becomes activated
when a Sharp FIFO is used in a socket already prewired
for an IDT FIFO, which has the FL/RT pin grounded.

Configurability

As already mentioned, the Sharp LH5402X5 FIFOs
use one IDT722X5B V¢ pin for their EMODE control
signal; otherwise, they strictly follow the IDT722X5B pin-
out. When EMODE is tied HIGH, as it always would be in
any design originally based on IDT722X5B FIFOs, IDT-
compatible behavior is selected. However, when EMODE
is tied LOW, Sharp’s proprietary Enhanced-Operating-
Mode features are activated.

Switching this EMODE signal dynamically during
FIFO operation is not recommended. EMODE should
remain in the same state following any FIFO reset opera-
tion, during subsequent system operation, until another
FIFO reset operation occurs.

BOLD ITALIC = Enhanced Operating Mode

Tying EMODE LOW in and of itself changes the
functionality of three LH5402X5 pins. In IDT-Compatible
Operating Mode, these three pins are used to link to-
gether successive FIFOs being cascaded according to
the IDT ‘two-wire-token-passing’ principle [2]. Tying
EMODE LOW also makes the Sharp-proprietary Control
Register visible and accessible to the system, via the
normal FIFO input and output data ports.

When EMODE is LOW during a reset operation, the
Control Register is initialized to activate all of Sharp’s
proprietary programmable Enhanced-Operating-Mode
features. If any of these features are not desired in a given
application, they may be disabled individually by writing
different contents into bits 00-05 of the Control Register.
They also may be subsequently reenabled, at any time,
in the same manner.

The programmable LH5402X5 features include: syn-
chronizing the three ‘middle’ flags (Almost-Full, Half-Full,
Almost-Empty) to the appropriate port clocks; suppress-
ing the advancement of the internal read-address pointer
whenever the data outputs are disabled (‘data-loss pre-
vention’); and simplifying the procedure for programming,
or verification readback, of the FIFO’s loadable registers.

When the Control Register is active, the Aimost-Full
Flag may be synchronized to the write clock; the Almost-
Empty Flag may be synchronized to the read clock; and
the Half-Full Flag may be synchronized to either one of
these clocks. The Full Flag and the Empty Flag aren’t
programmable in this manner; they always are synchro-
nized respectively to the write clock and to the read clock.
This scheme assigns the synchronization of each flag to
that clock most likely to be used for synchronizing the
reading of the flag by the system, in order to minimize
metastability hazards. [3] The Almost-Empty, Half, and
Almost-Full Flags, when chosen to be synchronous, util-
ize two-stage synchronizers for a high level of metasta-
bility protection.

However, itis possible to program any or all of the three
‘middie’ flags to operate asynchronously, even in the
Enhanced Operating Mode. In the IDT-Compatible
Operating Mode, they always operate asynchronously. In
either mode, they operate faster than the corresponding
flags of the same speed grade of the equivalent IDT
device.

The LH5402X5 architecture also includes two other
configuration-control registers, the ‘offset’ registers.
These offset registers define the system meaning of the
Almost-Full Flag and the Almost-Empty Flag respectively,
and are fully equivalent to the similar registers in the
IDT722X5B architecture. The number of bits actually
implemented in these registers, and their default contents
after a reset operation, increases somewhat for the
deeper LH5402X5-family members.
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Figure 3a. Common Pin Locations for Voltage-Supply and
Data Pins in Sharp and Tl 18-Bit-Wide FIFOs
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The prewired default values contained in these offset
registers vary somewhat according to FIFO depth. For the
smaller LH5402X5-family members, these default values
are one-eighth of the FIFO depth, minus one — respec-
tively, 63y for the LH540215, and 1274 for the
LH540225. For both the LH540235 and LH540245, the
default values are again 127,,. Whenever the prewired
default values are acceptable for an application, no repro-
gramming is necessary.

The offset registers and the Control Register may be
programmed with new contents from the input-data bus,
and their contents may be read back out for verification
on the output-data bus. Asserting a special control signal,
LD (LoaD), distinguishes configuration-register accesses
from normal FIFO-memory accesses. Two simple state
machines, one for each data bus, select the register to be
written into or to be read back from, according to a fixed
sequence.

In Enhanced Operating Mode, each of these two
state machines has three states apiece, so that all three
registers are accessible and visible. However, in IDT-
Compatible Operating Mode, the two state machines
have only two states apiece, and the Control Register is
neither accessible nor visible.

CASCADING AND PARALLELING
LH5402X5-FAMILY FIFOs

For FIFOs, as for other semiconductor memories,
there’s always a memory-capacity gap — between the
largest FIFOs currently in production, and the largest
FIFOs which customers need for the new state-of-the-art
digital systems which they are attempting to design. Over
time, both the immediately-available FIFOs and the
needed-but-not-yet-available FIFOs get larger and larger;
but the gap between them always remains!

An approach which semiconductor manufacturers
have taken, trying to address customers’ perceived needs
for ever-larger FIFOs, is to provide support within FIFO
architectures for combining individual FIFO devices into
larger ‘effective FIFOs.” This support takes the form of
extra control inputs and status outputs (‘hooks’) for control
connections between FIFOs, and sometimes also of
other additional on-chip resources.

BOLD ITALIC = Enhanced Operating Mode

There are two fundamental ways in which FIFO de-
vices may thus be combined: cascading, or ‘depth-cas-
cading,’ in which the effective FIFO has more memory
words than do each of the individual FIFO devices; and
paralleling, sometimes rather confusingly called ‘width-
cascading,” in which the effective FIFO has widermemory
words than do each of the individual FIFO devices. Some-
times, both cascading and paralleling are used within a
single FIFO application, to implement an effective FIFO
which is both deeper and wider than one individual FIFO
device.

LH5402X5-family FIFOs feature architectural support
for two entirely different FIFO-cascading schemes: ‘two-
wire token passing,” which is the scheme used by
IDT722X5B-family FIFOs; and ‘handclasp’ or ‘pipelining,’
which is the scheme used by TI SN74ACT7801/11/81
FIFOs. [2] They also support one ‘interlocked’ paralleling
scheme, in which two FIFOs side-by-side operate to-
gether in strictly-synchronized lockstep. [2]

In principle, the two-wire token-passing cascading
scheme also ‘parallels’ FIFOs, but in a fundamentally-dif-
ferent manner — as alternates, with a common input bus
and a common output bus, arranged like a bunch of
bananas. (See Figure 4a.) The pipelining cascading
scheme, on the other hand, arranges FIFOs one after
another in series, connected like a string of sausages.
(See Figure 4b.)

Cascading by Two-Wire Token Passing

In the two-wire token-passing scheme, two or more
individual LH5402X5 FIFO devices are connected in
parallel. (See Figure 5.) Their input data buses (pins
Do-D47) are all tied together; and their output data buses
(pins Qy-Q4) also are all tied together. However, only one
of the paralleled FIFOs may be written into at any given
time. Likewise, only one of the paralleled FIFOs may be
read from at any given time. [2] A data word passing
through the effective FIFO passes through only one single
physical FIFO device, and gets handled just once.

The FIFO which is currently activated for writing is not
necessarily the same one which is currently activated for
reading, except under system-startup conditions —that is,
when all FIFOs have just completed being reset, and
FIFO operation has only recently commenced.
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Figure 5. LH5402X5-Family FIFO Depth Cascading
Using IDT-Compatible ‘Token-Passing’ Scheme
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LH5402X5 FIFOs must have their EMODE control
pins held at Ve, whenever they are being cascaded
according to the two-wire token-passing scheme.

Exactly one of the LH5402X5 FIFOs in the cascade
must have its FL/RT pin grounded; the FL/RT pins of the
remaining FIFOs are tied to V. In this operating mode,
the FL/RTpin is being used to designate one of the FIFOs
as the ‘first-load’ or ‘master’ device; the remaining FIFOs
are sometimes referred to as ‘slave’ devices. After a reset
operation has initialized the entire FIFO cascade, each
FIFO has figured out whether it is serving as a master
device, or as a slave device; and both the ‘write token’
and the ‘read token’ reside within the first-load FIFO. [4]
(See in particular Tables 1 and 2 of [4].)

Within a FIFO, these tokens are implicit. When a FIFO
‘has one of the tokens,’ that simply means that it is the
FIFO device which is activated to respond and perform
the requested operation, whenever a write-enable or
read-enable control signal is broadcast to all the FIFOs
within the cascade. Obviously, one —and onlyone — FIFO
device should respond, for each requested operation.
One consequence is that any FIFO which ‘does not have
the read token’ has its outputs disabled, in a high-imped-
ance state, even ifits OE (Output Enable) control signal
currently is being asserted (LOW).

However, when the ‘token’ (associated with the
counter within the FIFO) has traversed all of the FIFO’s
memory locations, it does not return to physical location
zero of that FIFO device, even though the counter does
thus return. Rather, the token briefly becomes explicit; it
takes the form of a narrow LOW-going pulse on one of
the two Expansion Out outputs, WXO and RXO. These
are connected respectively to the Expansion In inputs,
WXI and RXI, of the next FIFO device in the cascade.
After the (write or read) token pulse has been transmitted
and received, the sending FIFO becomes deactivated for
writing or reading as the case may be, and the receiving
FIFO immediately becomes activated in its place, so that
there never is any hiatus in the effective FIFOs’ capability
of performing a required operation.

The Half-Full Flag status output, HF, shares a pin with
the WXO token output. Hence, HF is not available from a
cascaded LH5402X5-family FIFO, which has been initial-
ized by a reset operation to be either a master or a slave.
HF is available only from a FIFO which has been initial-
ized to be a ‘standalone.’ [4] In any case, this signal does
not have any really useful meaning for FIFOs within a
cascade.

The two-wire token-passing cascading scheme was
developed to eliminate one difficulty with the much-older
one-wire token-passing cascading scheme — an occa-
sional, intermittent, serious extra logic delay, in the event
that the read pointer catches up with the write pointer in
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a FIFO, just as that FIFO is about to emit a write or a read
Expansion Out token pulse. Of course, that combination
of circumstances is infrequent; but it is by no means
impossible! In cascaded FIFOs which use the one-wire
scheme, if this delay is not explicitly allowed for in the
system timing, then data may be lost unpredictably.

Now, in the one-wire token-passing architecture, both
the write token pulse and the read token pulse must travel
along to the next FIFO over the very same wire. Thus,
every so often, both pulses must pass over that wire within
one single word time, with enough of a gap in between
them that they are recognized clearly at the other end as
two distinct pulses. So, once in a great while, and at
unforeseeable intervals, the system must halt briefly be-
tween two words, in order to head off the occurrence of
an unrecoverable system error — or else the data rate
must be slowed down greatly, in order to allow the time
for this occasional extra pulse during every word time.

Because the two-wire token-passing cascading
scheme avoids this troublesome flaw of the older one-
wire scheme, it is much more appropriate for state-of-the-
art high-performance synchronous FIFOs.

Cascading by Pipelining

In the pipelined cascading scheme, two or more
individual LH5402X5 FIFO devices are connected in
series; the output data bus (pins Qy-Q;;) of the (n-1)st
FIFO connects to the input data bus (pins Dy-D47) of the
(n)th FIFO.

A crosscoupled ‘handclasp’ signaling scheme is used
between successive FIFOs in the cascade, so that they
coordinate their operations with each other properly. (See
Figure 6.) The handclasp ensures that the upstream FIFO
device does not attempt to force another data word upon
the downstream FIFO device when the latter is full — and,
conversely, that the downstream device does not attempt
to read another word from the upstream device when the
latter is empty.

TRANSFER
CLOCK

i

RCLK WCLK

UPSTREAM  REN,|~——Y —(]FF DOWNSTREAM

LH5402X5 _ LH5402x5
FIFO EF, O———Y—{ WEN, FIFO

QO - cJ17

Do - D47

DATA FLOW —

NOTE: BOLD ITALIC = Enhanced Operating Mode.  ,ppq, 5

Figure 6. ‘Handclasp’ Depth-Cascading Interface
Between LH5402X5-Family FIFOs
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In this scheme, all of the LH5402X5 FIFOs must have
their EMODE and OE control inputs grounded. A data
word passing through the effective FIFO passes through
every physical FIFO device in the cascade, and gets
handled once per device.

A ‘transfer clock’ signal must be provided, at each
FIFO-to-FIFO interface, to synchronize passing data from
the (n-1)st FIFO to the (n)th FIFO. To optimize smooth-
ness of operation, the same transfer-clock waveform may
be used everywhere within a given FIFO cascade. Now,
the write clock at the input end of the first FIFO in the
cascade, and the read clock at the output end of the last
FIFO in the cascade, may or may not be synchronous
periodic waveforms. If both of these clocks are periodic
waveforms, the faster one is an excellent choice for use
also as the transfer-clock signal.

Grounding the EMODE control input of an LH5402X5-
family FIFO changes the functionality of several dual-pur-
pose control pins: WXI/WEN,, RXI/REN,, and RXO/EF,.
The Enhanced-Operating-Mode functionality is in each
case that which is indicated by the second signal name,
the one which is written in bold-italic type.

WEN, and REN, are alternative, assertive-HIGH
write-enable and read-enable control inputs respectively.
They have the correct polarity, for the handclasp signaling
scheme to operate properly with the assertive-LOW Full
Flag and Empty Flag status signals.

EF,is an exact duplicate of the usual Empty Flag EF,
except thatit is delayed by one full read-clock interval with
respect to EF. This extra-clock-interval delay is neces-
sary, in order for the handclasp signaling scheme to
operate with the proper timing. [5]

For an LH5402X5 FIFO-to-FIFO interface connected
as shown in Figure 6, whenever the upstream FIFO
device is not empty and the downstream FIFO device is
not full, a data word is transferred from the upstream
device to the downstream device after every transfer-
clock rising edge.

If some interval of time passes without the entire FIFO
cascade either being written into or being read from, the
meaningful data within the cascade will accumulate in the
FIFOs furthest downstream — fall to the bottom of the
hopper,” as it were. In fact, ‘hopper’ is one of the many
technojargon synonyms for ‘FIFO.’
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Paralleling

The LH5402X5-family architecture supports ‘inter-
locked’ paralleling of two identical side-by-side 18-bit-
wide physical FIFO devices, so that they function as a
36-bit-wide effective FIFO of the same depth. (See Figure
7.) The LH5402X5 interlocking scheme is the same one
used with TI SN74ACT7801/11/81 FIFOs; however, the
pinout and the signal nomenclature are somewhat differ-
ent.

The purpose of ‘interlocking’ is to ensure that the two
side-by-side FIFO devices never get out of step with each
other: one cannot write a word unless the other one also
is ready to write a word, and similarly for reading a word.
Without interlocking, very minor timing differences be-
tween the two physical devices, or circuit-board wire-
length differences affecting them, occasionally might
result in one FIFO having half of some word present on
its outputs, while the other FIFO has the other half of the
previous word in the data block present on its outputs!

Such a mistake may occur, for instance, when the two
FIFO devices have been entirely emptied out, and an-
other full 36-bit word is written in, at such a time that tgr_
(First-Read-Latency time) isn’t quite met — so that one
device responds properly with the next word, but the other
device doesn’t quite make it. A similar and logically-dual
possibility exists when the two FIFO devices have been
entirely filled, and one word is read out at exactly the
worst-case time — and one of the two devices takes
slightly longer, to become ready to receive another word,
than does the other one.

This type of problem may arise either with synchronous
FIFOs or with asynchronous FIFOs, although the latter
are much more vulnerable to it. Thus, the interlocking
scheme of Figure 7 is recommended whenever
LH5402X5-family FIFOs are used two abreast, to handle
36-bit data words. For wider data words, variations on
this same scheme are possible; but they require external
logic in addition to the FIFO devices themselves, since
now more than two write enables and two read enables
per physical device become necessary.

The architecture of LH5402X5-family FIFOs supports
combining interlocked paralleling with pipelined cascad-
ing, which is the recommended approach to implement-
ing large effective FIFOs using arrays of LH5402X5
devices. [4] (See Figure 8.) Unfortunately, these devices
can’t offer any similar support for combining interlocked
paralleling with two-wire-token-passing cascading; the
additional pins which would be required aren’t available.

1B-46

FIFO Application Note



-n
e __
3 HFC
>
S
T
=
o
=
]
-]
z b
o O 103
o HF EF,
WRITE CLOCK WCLK  RCLK READ CLOCK
WRITE ENABLE WEN REND READ ENABLE
Q- LOAD 5} EMODE [0—
24Q drs GEo=— OUTPUT ENABLE
«Q 3 18 18
5 ~ D[17:0]  Q[17:0]
~ — PR
o5 —(JPAF PAED————
32 o -
32 o FF EF —
] FFC FURT WEN, REN,| EFC
58 T
o1
4 o
T
£g -
ST
ge
o
.'n % DATA IN _:ﬁ.__ ) A ._—%A———p DATA OUT
g9 0.
i o} HF EF,
5 '75' WCLK  RCLK
3 g‘ WEN RENP
& _ ____
dio EMODE[0—
RESET RS OE -
12 DI70]  Q17:0] =
PAFC «—OC@ __ __ >O—— PAEC
PAF PAE [0—
FF EFOo——
FL/RT WEN, REN,
RETRANSMIT (MUST BE LOW Qi v
DURING A RESET OPERATION
—h . 4
@ .
Iﬂ NOTE: BOLD ITALIC = Enhanced Operating Mode. 540215-32

Ajwedq GXZ0vSH

dRAVHS

sO4I4 snououyouis




s-ga1

ajoN uonesnddy Odid

sO4Id Awed-Xg0vSH Jo Aedly € x g papeosed
-ypdag-pauljedid pue pajajjeled-paxoope| ‘g ainbiy

READ CLOCK

READ ENAB LE

%‘L» DATA OUT

TRANSFER CLOCK
HF EF, HF EF, HE EF,
WRITE CLOCK WCLK  ROLK WCLK  RCLK WCLK  RCLK
WRITE ENABLE WEN REN REN :><—T—>C WEN REN
LOAD ) EMODE EMODE = Vee—=~—diD EMODE
——=CRS OE OE —CO|RS OE
18 — 18 —
D[17:0]  Q[17:0] D[17:0]  Q[17:0] D70l QUI7:0] RS
—(|PAF PAE PAED— PAF PAE[D—
e @ FF EF EF— FF EF
FL WEN, REN,| WEN, REN,| FL_WEN, REN,|
— = Y
A 4
» A 4
v
36
DATA IN
HF EF, HF EF, HF EF,
WCLK  RCLK: WCLK  RCLK WCLK  RCLK
WEN REN p=———1—qwen REN D= WEN REND
D EMODE = Vg—~—dLD EMODE = Vee—~dLD EMODE
RS OE —=CRS OE —=QRS OE
i D[17:0]  Q[17:0] - i D[17:0]  Q[17:0] i D[17:0] Q[17:0] - 18
—JPAF PAE —(JPAF PAE PAF PAE|O—
JFF EF FF EF FF EF
FL WEN, REN, FL_WEN, REN,| FL WEN, REN,)|
T T i
= | 1 =
—_ A 4
v v - » v
RESET
NOTES:

The transfer clock may be any free-running clock. However, it is
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SUMMARY

The new Sharp LH5402X5-family 18-bit-wide FIFOs
provide attractive alternatives for local-temporary-stor-
age and data-rate-matching applications in contemporary
high-speed digital systems. Members of this family range
in capacity from 512 to 4096 18-bit words, with program-
mable choices between synchronous and asynchronous
operation for three status-flag signals.

LH5402X5-family FIFOs are eminently suitable for use
in new high-performance designs. Asingle such FIFO can
replace two paralleled conventional 9-bit-wide asynchro-
nous FIFOs, in many applications. Also, these FIFOs can
seamlessly replace IDT722X5B-family FIFOs in existing
18-bit-wide designs, without any rewiring. Moreover, they
have certain architectural features which support emulat-
ing TI SN74ACT7801/11/81 FIFOs, although their com-
patibility with these Tl FIFOs is not quite 100%.

LH5402X5 FIFOs may be used individually, in ‘stand-
alone’ mode. Also, they have many architectural features
which support ‘cascading’ — putting them together to
create deeper ‘effective FIFOs.” Still other features sup-
port ‘interlocked paralleling,” to create wider ‘effective
FIFOs.’

Check out these high-performance, full-featured, de-
signer-friendly FIFOs for your next digital-system design.
You'll be glad you did!
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A ONE-CHIP TWO-WAY STREET FOR MICROPROCESSOR COMMUNICATIONS:
THE SHARP LH5420 36-BIT BIDIRECTIONAL FIFO

Chuck Hastings
Marketing/Applications Manager, FIFO and Specialty Memories

Sharp Microelectronics Technology, Inc.
5700 N. W. Pacific Rim Boulevard
Camas, WA 98607
206/834-8615

INTRODUCTION

New integrated circuits often evolve as single-chip em-
bodiments of groups of lower-complexity parts. When the
same multiple-device configuration starts turning up in
many new designs, a semiconductor manufacturer may
get inspired to develop a one-chip-does-all replacement
just by listening to its customers. Bidirectional FIFOs,
wide enough to hold an entire word of data, are one such
frequently-occurring combination. Perhaps one out of
every five system applications for FIFOs fits this descrip-
tion. Usually, the role of a bidirectional FIFO is to provide
convenient two-way communication between two proc-
€SS0r's Or MiCroprocessors.

In the past, an effective bidirectional FIFO for communi-
cation back and forth between two 32-bit-processors has
needed to consist of at least eight industry-standard
byte-wide unidirectional FIFO devices, arranged into two
‘back-to-back’ ranks of four paralleled FIFOs each. When
parity checking is implemented, the data path between
processors becomes 36-bit. Sometimes only one of the
two processors is 32-bit, and the other one is 16-bit or
8-bit. In this event, even more devices must be added, to
implement multiplexing, demultiplexing, and control func-
tions at the narrower end of the bidirectional data path.

The LH5420 256 x 36 x 2 bidirectional FIFO, now avail-
able from Sharp, is a ‘one-chip-does-all’ solution to such
system requirements for two-way interprocessor commu-
nication. One LH5420 can provide either a convenient
fully-parallel two-way connection from one 36-bit bus to
another such bus, or it can provide a two-way ‘funnel-
ing/defunneling’ connection from a 36-bit bus to an 18-bit
bus, or to a 9-bit bus. Thus, the LH5420 supports all of
the usual microprocessor word widths, and accommo-
dates the extra bit per byte for parity or marker-bit usage.
It operates at up to 40 MHz, and is available either in a
120-pin PGA package or in a 132-pin PQFP package.

LH5420 ARCHITECTURE
AND OPERATION

The LH5420 includes several enhancements, aimed at
making a system designer’s life easier. The LH5420 itself
can check the parity of all bytes passing through itin either
direction. And it features programmable almost-full and
almost-empty flags, retransmission capability in either
direction, ‘mailbox’ capability in either direction, a limited
form of transceiver-mode oper-ation, and a synchronous
request/acknowledge capability which is useful in burst-
mode communications.

Conceptually, an LH5420 is organized as two 36-bit-wide
bidirectional ports, Port A and Port B. Two full-width
256-word FIFOs, FIFO # 1 and FIFO # 2, are connected
between the two ports, one transmitting in each direction.
(See Figure 1.) There are also two full-width one-word
mailboxes between the two ports, one likewise transmit-
ting in each direction. And there is a full-width bidirectional
data bypass path, which functions during a reset opera-
tion. Two asynchronous control inputs set the data width
of Port B at 36 bits, at 18 bits, or at 9 bits.

Each port has its own clock input. In typical applications,
aport’s clock input is connected to a periodic free-running
clock signal, which may or may not be derived from the
same frequency source as the other port’'s clock input.
Each port also has three control inputs which are sampled
at the rising edge (LOW-to-HIGH transition) of its clock:
read/write, enable, and request. Each port also has an
‘Acknowledge’ output which is synchronized to its clock,
a parity flag output, and asynchronous control inputs for
initiating data re-transmission and for enabling/disabling
its data outputs.

FIFO # 1 and FIFO # 2 each have five status flags to
indicate relative fullness: Full, Almost-Full, Half-Full, Al-
most-Empty, and Empty. The Full, Half-Full, and Empty
flags are hard-wired to signal exactly what their names
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indicate. But there are programmable ‘offsets’ controlling
the operation of the Almost-Full and Almost-Empty flags,
to numerically define the boundaries of the ‘Almost-Full’
region and the ‘Almost-Empty’ region. These offset values
are both initialized to eight during a reset operation; but
either one may be changed under system control, inde-
pendently of the other one, to any value from zero to 255.

During a data transfer, the port's Acknowledge output
repeats the same information as either the Almost-Full
flag or the Almost-Empty flag, depending on the current
direction of data transfer — Aimost-Full when writing, and
Almost-Empty when reading.

The five relative-fullness status flags may change state
either in response to a write event clocked at one port, or
else in response to a read event clocked at the other port.
The port’s Acknowledge output signal, however, is totally
synchronous with the clock input signal at that port;
except, that it gets deasserted immediately if at any time
the Request input signal is deasserted.

Both the Request control input and the Enable control
input of a port must be asserted, in order for that port to
carry out a read operation or a write operation. The
Read/Write control input determines which type of opera-
tion gets performed.
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Figure 1. LH5420 Block Diagram
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The action of the Request and Enable signals within the
LH5420 are generally similar; but their detailed timing is
different. The Enable signal is presumed to be originating
as a synchronous signal referenced to the same clock
signal used by the port. On the other hand, the Request
signal may arise asynchronously, elsewhere in the sys-
tem; the LH5420 contains resynchronizing circuits, which
reference the Request signal to the port clock internally
within the LH5420.

Either port may place a full 36-bit word in the other port’'s
mailbox register. Doing so sets a mailbox flag, which is
synchronized to the receiving port’s clock. This flag is
reset whenever the receiving port has read the word in
the mailbox register. Both ports have the ability to select
either their outgoing FIFO or their outgoing mailbox for
writing, or either their incoming FIFO or their incoming
mailbox for reading.

Although Port A and Port B both have the capability to
send and receive 36-bit data words, each port has one
major function unique to it. Port A is the master port for
purposes of resource-allocation and control functions,
such as changing the value of the offsets for the Almost-
Full and Almost-Empty flags, or changing the byte parity
scheme from odd parity to even parity. Port B, on the
other hand, is the port which is capable of setting its
effective data width at 36 bits, 18 bits, or 9 bits.

Two asynchronous inputs control the data width of Port
B. Changing this data width does not require any reset
operation. However, sufficient time must be allowed for
the LH5420’s internal byte-shifting and demultiplexing
circuits to settle; waiting for two full Port B clock cycles is
recommended.

‘SYNCHRONOUS'’ FIFOs AND
‘ASYNCHRONOUS’ FIFOs

The antonyms ‘synchronous’ and ‘asynchronous’ each
have taken on two very different meanings in FIFO appli-
cations literature. The first meaning has to do with the
timing of the FIFO’s data and control inputs, and of its data
and status outputs. The second meaning has to do with
the capability of the FIFO to adjust itself to different and
unrelated timing requirements at each of its two ends.

According to the first meaning of these terms, a ‘synchro-
nous’ FIFO operates with a free-running clock input, but
performs operations such as writing or reading only when
these operations are ‘enabled.’ Data inputs, and control
inputs such as enable signals and mode-control signals,
must all meet setup time and hold time requirements with
respect to the free-running clock. Data outputs and status
outputs are presumed valid after some specified delay
time has elapsed, following a transition of the free-running
clock.

FIFOs which are ‘asynchronous,’ according to this mean-
ing of ‘asynchronous,’” do not use any such free-running
clock. Some older-architecture ‘asynchro-nous’ FIFOs

even use edge-sensitive, rather than level-sensitive, con-
trol inputs. ‘Synchronous’ FIFOs sometimes may be
made to behave as ‘asynchronous’ FIFOs, if desired, by
connecting their ‘enable’ inputs to be permanently as-
serted, and using their free-running clock inputs as asyn-
chronous edge-sensitive ‘demand’ control input signals.

According to the second meaning of the terms ‘synchro-
nous’ and ‘asynchronous,” however, a ‘syn-chronous’
FIFO would be a FIFO having both its input port and its
output port always synchronized to the same ‘clock’ sig-
nal; in other words, a glorified shift register. An ‘asynchro-
nous’ FIFO, on the other hand, can operate with its input
port synchronized to one timing signal, and its output port
synchronized to a second timing signal having no neces-
sary relation to the first one; and neither timing signal
needs to be regular or periodic.

The LH5420 has a free-running-clock-plus-enable control
structure; and so its two internal FIFOs are ‘synchronous’
FIFOs in the first sense of this term, except that the
behavior of the five relative-fuliness flags is not entirely
‘synchronous.” However, they are completely ‘asynchro-
nous’ FIFOs in the second sense; there is no necessary
synchronization relation between the Port A clock and the
Port B clock, nor is either of these clocks required to be
strictly periodic. This type of behavior is usually consid-
ered to be useful, system-friendly, and what FIFOs are all
about.

DESIGNING WITH THE LH5420

In some applications, data bursts get pushed through a
FIFO at or close to the FIFO’s maximum word rate; but
the system must take some immediate action if the FIFO
ever becomes completely full or completely empty. The
LH5420’s Request/Acknowledge feature supports such a
mode of operation. The Acknowledge output signal meets
the setup time and hold time requirements for the Enable
input, and may simply be tied back to it, in order to prevent
complete filling or complete emptying of the active FIFO.
This mode of operation slightly decreases the maximum
data rate.

In essence, the Acknowledge signal is a synchronous
‘proxy’ or ‘predictor’ for whichever ‘Almost’ fiag is pertinent
to the current data-transfer operation. Because synchro-
nous predictive logic is used to determine the state of this
signal, it is actually faster than the corresponding flag.

Assume now that a port's Request input is being continu-
ously asserted, say for writing into the outbound FIFO for
that port. As long as the FIFO does not get into the
‘Almost-Full’ region, that is, the number of vacant FIFO
physical words never falls below the ‘Almost-Full’ offset
value, then the Acknowledge output is continuously as-
serted by the LH5420 control logic, and a word gets
written into the FIFO as a result of every write-clock pulse.
However, if the FIFO does become ‘Almost Full,’ then the
Acknowledge output gets asserted only on every third

1B-52

FIFO Conference Paper



A One-Chip Two Way Street

SHARP

FIFO Memories

write-clock pulse, rather than continuously. Thus, if the
Acknowledge output has been tied back to the Enable
input, the wide-open data rate then gets slowed down
immediately, so that the writing of each word can be
handled on a full-handshake basis. This operational tech-
nique allows achieving the maximum data rate much of
the time, and yet protects the system against data loss
caused by overrunning the FIFO boundaries.

When the system is operating an LH5420 in block-trans-
fer mode, where a full block gets loaded at one port and
then gets unloaded at the other port, the Acknowledge
signals may be used to locate the end of a block, in lieu
of having to implement an external block-length counter.
As a simple example, say that the system block length is
193 words. The sending port loads in one complete block,
and 55 words from the next block, in burst mode. At this
point, its Acknowledge signal gets deasserted, indicating
that the FIFO is ‘Almost Full.’ The Acknowledge signal
does behave exactly in this manner, provided that the
corresponding ‘Almost-Full’ flag offset still remains at its
default value of eight. The receiving port then unloads the
block. If its ‘Almost-Empty’ offset value has been set to
55, its Acknowledge signal will get deasserted exactly at
the end of the block. Since this indication occurs within
a clock period, it is fast enough to be accurate without any
uncertainty.

The LH5420’s parity-checking facilities treat all nine bits
alike, of each byte passing through one of the two FIFOs;
the ‘parity bit' may be in any position within a byte. A
ten-input parity gate scans each group of nine bits in the
output register of each port; the tenth input of each parity

COPYRIGHT INFORMATION: This paper is a slightly modified version of the paper with the same title which appeared in the Northcon/91 Conference

gate is from the even/odd-parity control flipflop, which
may be programmed from Port A. This flipflop is set for
odd parity when the LH5420 is reset; but it may be
reprogrammed to even, or back to odd, at any time
subsequently. If any of the four parity gates at a port ever
detects an odd number of ‘ones’ in a byte, including the
control flipflop in the ‘ones’ count, then the port’s parity
flag is asserted as long as the word containing the erro-
neous byte remains in the output register.

SUMMARY

The LH5420 36-bit bidirectional synchronous FIFO, avail-
able now from Sharp, is a system-oriented ‘one-chip-
does-all’ part, intended to simplify back-and-forth
communications between two microprocessors, micro-
controllers, or similar devices.

The LH5420 offers several sophisticated features: on-
the-fly parity checking, word-width matching of a 36-bit
bus to an 18-bit bus or to a 9-bit bus, two-way mailbox
communications, and synchronous Acknowledge signals
which can be used to give a quick and accurate end-of-
block indication or an advance warning of FIFO fullness
or emptiness.

In most bidirectional-FIFO applications, one LH5420 re-
places many lower-level and discrete parts, and simplifies
system design. It offers high performance for burst opera-
tions; it can transfer a 36-bit word in each direction every
25 nanoseconds.

Record, paper D6/1; 1-3 October 1991. Also, in the Wescon/91 Conference Record, paper 7/4; 19-21 November 1991,
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INTRODUCTION

Single-chip First-In, First-Out memories (‘FIFOs’) have
been available since 1969, when Fairchild introduced the
64 x 4, 800-kHz, type 3341. Today’s production-model
FIFOs are often 40 MHz, with even faster ones being
sampled. Although 64 x 4 FIFOs, pin-compatible with the
venerable 3341, are still sold, the most common size
todayis 1024 x 9. And other parts as deep as 16384 words
and as wide as 36 bits are in production.

More recently, there has been a virtual explosion in the
functionality of FIFOs. They still handle data words on a
First-In, First-Out basis. But they also, now,

® Provide the system with useful information as to how
many data words are being stored.

® May be cascaded (to create a deeper ‘effective FIFO’),
or paralleled (to create a wider ‘effective FIFO’), in
several different ways.

e May check the parity of data words passing through
them.

e May include ‘funneling/defunneling,’ to convert data
back and forth between different word- lengths.

‘Serialization/deserialization’ is the one-bit-wide limit-
ing special case of ‘funneling/defunneling.’

Even more enhancements, beyond these, are being
urged upon semiconductor manufacturers by today’s de-
manding FIFO customers.

This paper provides a perspective on several of these
FIFO enhancements, along with the applications ration-
ale for them, and describes how some of them fit into the
architecture of the new Sharp LH5420 36-bit bidirectional
FIFO.

FIFO ENHANCEMENTS
There are two main types of FIFO enhancements:

(1) Enhancements which simply improve the usefulness
and controllability of FIFOs in carrying out their basic
‘rubber-band-memory’ or ‘FIFOing’ task.

(2) Enhancements which go beyond plain ordinary ‘FI-
FQing,’ to provide a convenient means of performing
various useful tests and modifications on data words
as they pass through FIFOs.

Historically, Type (1) enhancements came first. The
first two, a decade or more ago, were three-state outputs
(with an Output Enable control signal) and a Half-Full
Flag. Prior to that time, FIFOs needed eight-bit three-state
‘interface’ buffers, after their outputs, whenever they were
required to be able to connect to/disconnect from a bus.
And numerous customers were using two ‘depth-cas-
caded’ FIFOs in series, even when they didn’t need that
many words of FIFO capacity, just to derive a Half-Full
Flag for the ‘effective FIFO.” (An ‘effective FIFO’ is an
interconnected group of FIFO devices, behaving overall
as one single larger FIFO). The usual system purpose of
the Half-Full Flag was to serve as a ‘set point,’ in the
control-theory sense of that term, about which the FIFO
was constrained to operate.

The next major enhancement, ‘Almost’ Flags, origi-
nally was introduced by Monolithic Memories as a prod-
uct-definition afterthought — to use up all twenty pins of
the type 67413 64 x 5 bipolar FIFO! The product goal was
to provide an ‘early warning’ of impending FIFO fullness
or emptiness, before one of those conditions actually
came to pass, analogous to the ‘yellow warning’ indicator
provided in the architecture of the Digital Equipment
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PDP-11? series of computers. But there was only one
uncommitted pin left in the 67413 pinout; hence, the flag
feature as implemented signified ‘Almost Full or Almost
Empty’ (AFE). Because the 67413 also had a Half-Full
Flag, external logic could easily tell the ‘Almost-Full’ con-
dition from the ‘Almost-Empty’ condition. ‘Almost Full’ was
defined as fifty-six or more words filled, and ‘Almost
Empty’ was defined as eight or fewer words filled.

Cypress®, IDT, Sharp, and other FIFO manufacturers
adapted and improved this AFE-Flag feature. Higher-pin-
count packages allowed the Almost-Full Flag and the
Almost-Empty Flag each to have their own separate pin.
Even more important, the definition of what these condi-
tions meant was implemented in logic, with loadable
‘offset’ registers, so that the system could program how
many words away from totally full (the ‘offset’) the Almost-
Full Flag first would be asserted, and likewise for the
Aimost-Empty Flag.

Although this ‘programmable-flag’ feature was intro-
duced originally as a more-flexible form of ‘early warning,’
customers soon found an entirely different use for it —as
a low-cost means of counting the length of a datablock
passing through a FIFO, by programming the offset to be
equal to the FIFO depth (its word capacity) minus the
desired block length. Which meant that block counts now
had to be precise, and notjust accurate to within one word
or so, more or less. So the next customer demand was
that the flags all must be FAST, meaning that the correct
updated flag values had to be available within one word
time; or, better yet, within the FIFO’s data-access time!
By this time, most newer FIFOs featured five flags: Full,
Almost-Full, Half-Full, Almost-Empty, and Empty.

AFIFQisintended to be a bridge between two systems
or subsystems which don’t necessarily operate on the
same clock, or perhaps don’t even operate synchro-
nously. Now, a Write operation at the input port adds one
word to the FIFO’s internal memory, which moves the
evaluation of each of these five flags forward one step
towards fullness. Likewise, a Read operation at the output
port subtracts one word from the FIFO’s internal memory,
which moves the evaluation of each of these five flags
back one step towards emptiness. If a Write operation and
a Read operation occur simultaneously, all flag values are
supposed to stay the same. The important point here is
that each flag may be affected by an operation synchro-
nized to the input-port clock, and also may be affected by
an operation synchronized to the output-port clock — and
that these clocks probably aren’t even directly related to
each other.

So, what happens when the external logic tries to read
the value of a flag? Instant metastability hazard, since this
external logic almost certainly is associated with the clock
at one of the two ports, but not with the clock at the other
port. The way to resolve this potential metastability prob-
lem is to make all five of the flags be ‘synchronous’ —that
is, to allow each flag to change state only when triggered

by the clock from that port where it is most likely to be
read.

The Full Flag and the Almost-Full Flag, for instance,
are of most interest to the input-port logic, which needs to
be warned when there’s no longer room within the FIFO
memory for many more words. Conversely, the Almost-
Empty Flag and the Empty Flag are of most interest to the
output-port logic, which needs to be warned when there
are only a very few words left within the FIFO memory.
The Half-Full Flag may be up for grabs; often itis assigned
to the input port for synchronization purposes.

Anyway, making all of the five standard flags synchro-
nous entails some additional synchronization logic within
the FIFOs. But doing so makes FIFOs much easier to use
in systems, and so FIFO customers want this flag behav-
ior very much. Thus, a rapid industry-wide shift to ‘syn-
chronous’ flags is going on at present.

MORE COMPLEX FIFOs

A common situation is for FIFOs to be used to imple-
ment two-way data communication between two micro-
processors or microcontrollers, which leads to two FIFOs
being interconnected ‘back-to-back’ — the input port of
each is tied directly to the output port of the other. This
‘bidirectional-FIFO’ or ‘BiFIFO’ configuration has been
turned into full- duplex dedicated BiFIFO parts, by AMD,
by IDT, and by Sharp.

Full-duplex BiFIFOs, such as Sharp’s 40-MHz full-
word-width, 36-bit LH5420, contain two physical FIFO
macrocells on one single piece of silicon, connected
‘back-to-back’ between the two ports.

There are, however, such things as half-duplex BiFl-
FOs. One of these can carry data messages in just one
direction at a time, and contains only one single physical
FIFO macrocell. But it can reverse the direction in which
its internal physical FIFO is interconnected between its
two ports.

Data communication between two processors relies
on software protocols. Thus, BiFIFOs typically include a
‘mailbox’ feature — a single-word register, in parallel with
each main physical FIFO, between the BiFIFO’s two
ports. Also between the two ports, in parallel with the FIFO
and with the mailbox, there sometimes is a ‘bypass’ data
path, which allows for direct high-priority communications
without disturbing the contents either of the FIFO or of the
mailbox. The LH5420, for instance, features a mailbox in
each direction, with a ‘new-mail-alert flag to indicate when
there is updated mail to be read; and there is also a
bidirectional data-bypass facility.

Implementing data communication between proces-
sors or buses having different wordlengths is an aggra-
vating design problem for systems companies.
Increasingly, however, BiFIFOs implement ‘funneling/de-
funneling’ — word-width matching. The Sharp LH5420
BiFIFO, for instance, has a 36-bit Port A, and a variable-
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width Port B, which can operate as a 36-bit port, as an
18-bit port, or as a 9-bit port. Note that we’ve now moved
beyond simple Type (1) ‘FIFOing’ enhancements; ‘funnel-
ing/defunneling’ actually does something to the data
words as they pass through the FIFO, and hence may be
considered a Type (2) enhancement.

The extreme case of ‘funneling/defunneling,’ of
course, is where the narrower bus is just one bit wide.
Several manufacturers produce FIFOs which serialize or
deserialize, or even do both. Sharp’s serializing LH5493
and deserializing LH5494 are examples. Both of these
FIFOs are 4096 x 9, and operate at 40 MHz.

Another Type (2) enhancement, which the LH5420
also incorporates, is parity checking. Each new data word
which enters the LH5420 from either port, bound for the
other port, gets parity-checked before it is stored into the
respective internal FIFO memory going in the appropriate
direction. One LH5420 36-bit word is examined as four
9-bit bytes, and each byte is individually parity-checked.
A parity flag indicates whenever a byte with erroneous
parity gets detected; each port has its own parity flag. The
parity scheme may be selected, via a programmable
control register, to be either ‘even parity’ or ‘odd parity.’

Although early FIFOs made use of ‘bucket-brigade’
shift-register technology for data storage, almost all Fi-
FOs in use today incorporate internal static random-ac-
cess memory (SRAM) for data storage; a few large, slow,
low-cost FIFOs use internal dynamic random-access
memory (DRAM) instead. SRAM-based FIFOs all have

the property that, after a datablock has been read out via
the output port, it still is present within the FIFO device, if
only the FIFO logic is smart enough to allow it to be
reread. Since there often is a system purpose for reading
out the same datablock more than once, many recent
SRAM-based FIFOs have a ‘retransmit’ or ‘reread’ facility,
which moves the FIFO’s internal readout pointer back
either to the first internal physical-memory location, or to
a location addressed by a special internal register. Sys-
tem applications for such FIFOs include data communi-
cations, signal-processing memory (for data samples,
and also for coefficients), display refreshment, and repeti-
tive waveform generation. The LH5420 provides a ‘re-
transmit’ facility in both directions.

Other Type (2) enhancements now being studied by
FIFO manufacturers for future products include limited
forms of data reformatting/format conversion, matching
against a test word, and parity generation.

CONCLUSION

The constant pressure for progress in digital electron-
ics is leading to more and more functionality within newer
FIFOs, which makes them easier to use in systems.
Today, these functionality enhancements have gone be-
yond mere ‘FIFOing,” and are aimed at eliminating other
external logic from customers’ boards by absorbing addi-
tional functions into FIFOs. A new generation of ‘system-
level FIFOs’ is starting to appear, beginning with the
Sharp LH5420 36-bit bidirectional FIFO.

COPYRIGHT INFORMATION: This paper is a slightly modified version of the paper with the same title which appeared in the Electro92 Conference

Record, paper 58/1; 11-14 May 1992.
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INTRODUCTION

First-In, First-Out memories (‘FIFOs’) are VLS| semi-
conductor memory devices which store information se-
quentially. FIFOs have a wide variety of applications. [1]

As the name ‘FIFO’ implies, data words may be pushed
into a FIFO memory in sequence, one word at a time,
without ever having to give the FIFO any ‘address’ to tell
it precisely where to store a given word. Later on, the exact
same sequence of data words may be pulled out of the
FIFO atits other end, one word at a time, in the same order
in which these words entered the FIFO. Because the
position of each word is known within the sequence, there
is no need to ‘address’ the FIFO to tell it where a particular
word is to be found.

Single-chip LSI FIFOs have been available since 1969,
when Fairchild introduced the four-bits-wide 64 x 4 800-
kHz type 3341. Now, single-chip FIFO devices of several
different word widths are available. The most common
FIFO word width today is 9 bits. But there still are older
FIFOs being sold with word widths of 4 or 5 or 8 bits, and
newer FIFOs with word widths of 18 or even 36 bits. Sharp
is the first FIFO manufacturer to have brought 36-bit FIFOs
to market.

As semiconductor products, FIFOs are in some ways
like SRAMs (Static Random-Access Memories). But, in
some other ways, they are like logic devices. Like an
SRAM, a FIFO includes a memory array. In most FIFOs,
this memory array is very similar to an SRAM memory
array; although, a few semiconductor manufacturers have
used DRAM-type (dynamic, rather than static) memory
cells within FIFOs.

But, unlike an SRAM, a FIFO also must include sophis-
ticated counting and comparison logic for generating inter-
nal-memory-array addresses automatically, and for
determining the relative fullness’ of its internal-memory
array. And, because in most FIFOs allmemory addressing
is sequential, the circuit-design techniques and tricks used

within a FIFO memory array often exploit this sequentiality,
in ways which would not be allowable within the design of
a conventional SRAM device. In particular, FIFO memory
arrays often are extensively ‘interleaved’ and ‘pipelined.’

2]

Recently, there has been a virtual explosion in the
functionality of FIFOs. They still handle data words on a
First-In, First-Out basis. But today, FIFO functionality en-
hancements have gone far beyond mere ‘FIFOing,” and
are aimed at eliminating other external logic from custom-
ers’ boards by absorbing additional functions into FIFOs.
FIFQOs already, now,

o Provide the system with useful information as to how
many data words are being stored.

e May be cascaded (to create a deeper ‘effective FIFO’),
or paralleled (to create a wider ‘effective FIFO’), in
several different ways.

e May check the parity of data words passing through
them.

e May include ‘funneling/defunneling,’ to convert data
back and forth between different wordwidths. When one
of these wordwidths is just one-bit, then ‘funneling/
defunneling’ becomes ‘serialization/deserialization.’

Even more enhanced features, beyond these, are be-
ing urged upon semiconductor manufacturers by today’s
demanding FIFO customers.

This paper discusses several of these FIFO enhance-
ments, along with the applications rationale for them, and
describes their use in two new synchronous, 36-bit-word-
width, ‘system-level’ Sharp FIFO products: the LH5420
dual-256-word bidirectional FIFO, which is now in full
production; and the LH543620 1024-word unidirectional
FIFO, which is now in development.
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FIFO ENHANCEMENTS
There are two main types of FIFO enhancements:

® Enhancements that simply improve the usefulness
and controllability of FIFOs in carrying out their basic
‘rubber-band-memory’ or ‘FIFOing’ task.

@ Enhancements that go beyond plain ordinary ‘Fl-
FOing,’ to provide a convenient means of performing
various useful tests and modifications on data words
as they pass through FIFOs.

Table 1 lists the Type @ enhancements and Type @
enhancements which are considered in this paper.

Historically, Type ® enhancements came first. The first
two, a decade or more ago, were three-state outputs (with
an Output Enable control signal) and a Half-Full Flag. Prior
to that time, FIFOs needed eight-bit three-state ‘interface’
buffers after their outputs, whenever it was required that
the FIFO outputs must be able to connect to/disconnect
from a bus.

And numerous customers were using two ‘depth-cas-
caded’ FIFOs in series, even when they actually didn’t
need that many words of FIFO capacity, just to derive a
Half-Full Flag for the ‘effective FIFO.’ (An ‘effective FIFO’
is an interconnected group of individual FIFO devices,
behaving overall as one single larger FIFO). The usual
system purpose of the Half-Full Flag was to serve as a ‘set
point,” in the control-theory sense of that term, about which
the effective FIFO was constrained to operate, in the same
manner as a room heater operating about the ‘set point’
on a thermostat.

The next major enhancement, ‘Aimost’ Flags, originally
was introduced by Monolithic Memories as a product-defi-
nition afterthought —to use up all twenty pins of the 67413
64 x 5 bipolar FIFO! The product goal was to provide an
‘early warning’ of impending FIFO fullness or emptiness,
before one of those conditions actually came to pass,

analogous to the ‘yellow warning’ indicator provided in the
architecture of the Digital Equipment PDP-11° series of
computers.

But there was only one uncommitted pin left in the
67413 pinout. Hence, as implemented, the 67413 flag
feature signified ‘Almost Full or Almost Empty’ (AFE).
Because the 67413 also had a Half-Full Flag, external
logic could tell these two conditions apart quite easily.
‘Almost Full’ was defined as fifty-six or more words filled;
and ‘Almost Empty’ was defined as eight or fewer words
filled.

Cypress,® IDT, Sharp, and other FIFO manufacturers
adapted and improved this AFE-Flag feature. Higher-pin-
count packages allowed the Almost-Full Flag and the
Almost-Empty Flag each to have their own separate pin,
rather than having to be ‘ORed’ together on the same pin.
Even more important, the definition of what these condi-
tions meant was implemented in logic, with loadable ‘off-
set’ registers, so that the system could program a value
(the ‘offset’) for how many words away from totally full the
Almost-Full Flag first would be asserted, and likewise for
the Aimost-Empty Flag.

Although this ‘programmable-flag’ feature was intro-
duced originally as a more-flexible form of ‘early warning,’
customers soon found an entirely different use for it — as
a low-cost means of counting the length of a datablock
passing through a FIFO, by programming the offsets so
that their sumis equal to the FIFO depth (its word capacity)
minus the desired block length. For instance, if the desired
block length was 193 words (which is used in digital
telephony), and the FIFO was 256 words deep, one offset
could be set to eight and the other one to 55, and the FIFO
could be operated between ‘Aimost Full and ‘Almost
Empty.’

Which meant that block counts now had to be precise
— not just accurate to within one word or so, more or less.
So the next customer demand was that the flags all must

Table 1. FIFO Enhancements

TYPE @ ENHANCEMENTS
e Three-State Outputs
e Half-Full Flag
o ‘Almost’ Flag(s)
¢ Programmable ‘Almost’-Flag Offsets
e Synchronous Data Transfer
e Synchronous Flags

e Single-Chip Bidirectional FIFOs: Full-Duplex,
Half-Duplex

e Mailbox
e Bypass

TYPE @ ENHANCEMENTS
o ‘Funneling/Defunneling’ (Word-Width Matching)

* ‘Big-Endian’ «» ‘Little-Endian’ Conversion (Byte-Order
Reversal)

o Serialization/Deserialization

e Parity Checking

o Parity Generation

o Retransmit: Basic (to ‘Location 0), ‘Smart’
e JTAG Test Port
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be fast, meaning that the correct updated flag values had
to be available within one word time; or, better yet, within
the FIFO’s data-access time! By this time, most newer
FIFOs featured five flags: Full, Almost-Full, Half-Full, Al-
most-Empty, and Empty.

In the 64-words-deep 67413, eight words was one-
eighth of the depth of the entire FIFO memory array.
Nowadays, virtually all newer FIFOs are much deeper than
64 words. Still, aimost all of them use either eight words,
or else one-eighth of the number of words in the entire
FIFO memory array, as their ‘default’ value for the contents
of the loadable ‘Almost-Full’ and ‘Almost-Empty’ program-
mable-flag-offset-value registers.

FIFOs usually are marketed in product families, with the
depths of the family members differing one from another
by powers of two. Choosing eight words as the default
offset value implies that all family members use the same
default offset value. Whereas, choosing one-eighth of the
depth as the default offset value implies that, for the deeper
family members, these default offset values increase with
depth.

AFIFO is intended to be a bridge between two systems
or subsystems which don’t necessarily operate according
to the same clock, or perhaps don’t even operate synchro-
nously. Now, a Write operation at the input port adds one
word to the FIFO’s internal memory, which moves the
evaluation of each of these five flags forward one step
towards fullness. Likewise, a Read operation at the output
port subtracts one word from the FIFO’s internal memory,
which moves the evaluation of each of these five flags
back one step towards emptiness.

If a Write operation and a Read operation occur simul-
taneously, all flag values are supposed to stay the same.
The important point here is that each flag may be affected
by an operation synchronized to the input-port clock, and
also may be affected by an operation synchronized to the
output-port clock — and, that these clocks probably aren’t
even directly related to each other.

So, what happens when the external logic tries to read
the value of a flag? Instant metastability hazard, since this
external logic almost certainly is associated with the clock
at one of the two ports, but not with the clock at the other
port. Thus, it is all too possible that the external logic may
attempt to read the flag value, at the exact instant while it
is in the process of changing.

The way to resolve this potential metastability problem
is to make all five of the flags be ‘synchronous’ - that is, to
allow each flag output to change state only when triggered
by the clock from that port where it is most likely to be read.
The Full Flag and the Almost-Full Flag, for instance, are of
most interest to the input-port logic, which needs to be
warned when there’s no longer room within the FIFO
memory for very many more words. Conversely, the Al-
most-Empty Flag and the Empty Flag are of most interest
to the output-port logic, which needs to be warned when
there are only a very few words left within the FIFO

memory. The Half-Full Flag may be up for grabs; often, for
synchronization purposes, it is assigned to the input port.

Anyway, making all of the five standard flags ‘synchro-
nous’ entails some additional synchronization logic within
the FIFOs. But doing so makes FIFOs much easier to use
in systems, and so FIFO customers (at least, those with
some sophistication about metastability!) very much prefer
this flag behavior. Thus, a rapid industry-wide shift to
‘synchronous’ flags is going on at the present time.

MORE COMPLEX FIFOs

A common situation is for FIFOs to be used to imple-
ment two-way data communications between two micro-
processors or microcontrollers, which leads to two FIFOs
being interconnected ‘back-to-back’ — the input port of
each is tied directly to the output port of the other. This
‘bidirectional-FIFO’ or ‘BiFIFO’ configuration has been
turned into full-duplex dedicated BiFIFO parts, by AMD
and IDT, and more recently by Sharp.

Full-duplex BiFIFOs, such as Sharp’s full-word-width
36-bit LH5420 [3], contain two physical FIFO macrocells
on one single piece of silicon. (See Figure 1.) These are
connected ‘back-to-back,” between the two ports. At any
given time, such a full-duplex BiFIFO can be performing
two simultaneous write operations or two simultaneous
read operations, with both physical FIFOs active. Or, it can
be performing a write operation and a read operation
simultaneously, with one physical FIFO active and one
physical FIFO idle.

There are, however, also such things as half-duplex
BiFIFOs. One of these can carry data messages in just
one direction at a time, and contains only one single
physical FIFO macrocell. But it can at least reverse the
direction in which its internal physical FIFO is intercon-
nected, between its two ports. So it can perform a write
operation and a read operation simultaneously, in either
direction, like a full-duplex BiFIFO. But, unlike a full-duplex
BiFIFO, it cannot perform two simultaneous write opera-
tions, or two simultaneous read operations. And it cannot
begin a data transferin one direction, until it has completed
any data transfer which may have been in progress in the
other direction, and its internal FIFO-memory array has
been completely emptied out.

Data communication between two processors relies on
software protocols. Thus, BiFIFOs typically include a ‘mail-
box’ feature — a single-word register, in parallel with each
main physical FIFO, between the BiFIFO’s two ports, to
convey ‘mail.” Also between the two ports, in parallel with
the FIFO and with the mailbox, there sometimes is a
‘bypass’ data path, which allows for direct high-priority
communications without disturbing the contents either of
the FIFO or of the mailbox. The LH5420, for instance,
features a mailbox in each direction, with a ‘new-mail-alert’
flag to indicate when there is updated mail to be read; and
there is also a bidirectional data-bypass facility.
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Implementing data communication between proces-
sors or buses having different wordwidths is an aggravat-
ing design problem for systems companies. Increasingly,
however, BiFIFOs implement ‘funneling/defunneling’ —
word-width matching. The Sharp LH5420 BiFIFO, for in-
stance, has a 36-bit Port A, and a variable-width Port B.
Port B can operate as a 36-bit port, as an 18-bit port, or as
a 9-bit port. [4]

The Sharp LH543620 1024 x 36 unidirectional FIFO
has a different form of this word-width-matching feature,
adapted to its unidirectional architecture. Both its Input
Port and its Output Port have similar variable-width capa-
bilities, with somewhat differing implementations due to
the different structures of these two ports.

Although the LH543620 itself is unidirectional, it is
intended to support very deep BiFIFO applications, with
two parts —or, perhaps, even two cascaded strings of parts
—connected ‘back-to-back.’ Accordingly, it too has mailbox
and bypass facilities. (See Figure 2.)

Because, in the past, competing major computer-sys-
tems vendors made different architectural choices regard-

ing byte ordering within words, an almost-universal data-
formatting nuisance in processor-to-processor communi-
cations these days is ‘Big-Endian’ « ‘Little-Endian’
conversion. (This terminology is a computer-technology
adaptation of a phrase used in Jonathan Swift’s satirical
literary classic, Gulliver’s Travels.) The LH543620 can
perform this conversion as a ‘byte-order-reversal’ opera-
tion, on the fly, on each 36-bit data word passing through
it.

Note that we’ve now moved beyond simple Type ©
‘FIFOing’ enhancements. ‘Funneling/defunneling’ and
‘byte-order-reversal’ actually do something to the data
words as they pass through the FIFO, and hence are
clearly Type @ enhancements.

The extreme case of ‘funneling/defunneling,’ of course,
is where the narrower bus is just one bit wide. Several
manufacturers produce FIFOs that serialize or deserialize,
or even do both. Sharp’s serializing LH5493 and deserial-
izing LH5494 are examples. Both of these FIFOs are 4096
x 9, and operate at 40 MHz.
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Figure 1. LH5420 256 x 36 x 2 Synchronous Bidirectional FIFO
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Figure 2. LH543620 1024 x 36 Synchronous Unidirectional FIFO

Another Type @ enhancement, which the LH5420 and
LH543620 also incorporate, is parity checking. Each new
data word which enters the LH5420 from either port, bound
for the other port, gets parity-checked twice; once before
it gets stored, into whichever of the two interal FIFO-
memory array goes in the appropriate direction; and again
when it gets read out of the internal FIFO-memory array,
and arrives at the opposite port. The inputs to the parity-
checking circuits for each port are connected at the data
input/output bonding pads for that port.

One LH5420 36-bit word is examined as four nine-bit
bytes; each byte is individually parity-checked. Aparity flag
indicates whenever a byte with erroneous parity gets
detected. Each port has its own parity flag. The parity
scheme may be selected, via a programmable control
register, to be either ‘even parity’ or else ‘odd parity,” and
may be changed subsequently at any time.

Besides checking parity, the LH543620 has the addi-
tional capability of generating parity, ‘on the fly,’ from the
eight least-significant bits of each of the four nine-bit bytes
of a 36-bit word, and of storing the generated parity bit for
each byte into its most-significant bit.

Although early FIFOs made use of ‘bucket-brigade’
shift-register technology for data storage, aimost all FIFOs
in use today incorporate internal static random-access

memory (SRAM) for data storage. However, there are a
few large, slow, low-cost FIFOs which use internal dy-
namic random-access memory (DRAM) instead. SRAM-
based FIFOs all have the property that, after a datablock
has been read out via the output port, it still is present within
the FIFO device, if only the FIFO logic is smart enough to
allow it to be reread.

Since there often is a system purpose for reading out
the same datablock more than once, many recent SRAM-
based FIFOs have a ‘retransmit’ or ‘reread’ facility, which
moves the FIFO'’s internal readout pointer back to the first
internal physical-memory location (‘Location 0’). The
LH543620 has a new ‘smart retransmit’ feature, with sev-
eral operating modes, which goes even further, and per-
mits resetting the read pointer to any prestored
internal-FIFO-memory-array address value. System appli-
cations for FIFOs with such retransmit capabilities include
data communications, DSP (digital-signal- processing)
memory for data samples and also for coefficients, display
refreshment, and repetitive waveform generation. The
LH5420 ‘retransmit’ facility can operate in either direction.

One more new LH543620 feature, applicable to system
reliability and self-test design practice, is an IEEE1149.1-
compliant (‘JTAG’) test port, believed to be the first such
use of a JTAG port in a FIFO.
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CONCLUSION

The constant pressure for progress in digital electronics
is leading to more and more functionality within newer
FIFOs, which is making them easier and easier to use in
systems. Today, these functionality enhancements have
gone far beyond mere ‘FIFOing,” and are aimed at elimi-
nating other external logic from customers’ boards by
absorbing additional functions into FIFOs. A new genera-
tion of ‘system-level FIFOs’ is starting to appear, beginning
with two Sharp 36-bit synchronous FIFOs: the LH5420
bidirectional FIFO, and the LH543620 unidirectional FIFO.
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CMOS Static RAM

AUTOMATIC POWER DOWN

INTRODUCTION

This application note describes a feature available
in some CMOS static RAMs known as Automatic
Power Down. Automatic Power Down is a circuit de-
sign technique that reduces the supply current re-
quired by the static RAM during long Read and/or
Write cycles. Since many systems using static RAMs
operate at cycle times significantly exceeding the mini-
mum cycle time allowable, Automatic Power Down is
a very useful feature for many systems with strict
power budgets.

Equivalent System Level Implementation

The circuit in Figure 1 represents a common sys-
tem-level technique used for the reduction of supply
current in systems with long Read cycles. The static
RAM in the circuit has a much faster access time than
the system cycle time, along with a transparent latch
used in the Data-out path. The static RAM is enabled
only for a short interval following the beginning of the
Read cycle, long enough for valid data to appear at the
Data bus. The latch is transparent while the static RAM
is enabled, latching the accessed data when the static
RAM is disabled. The time where the static RAM is
enabled is controlled either by a delay line or another
similar circuit technique. This circuit operates by re-
ducing the duty cycle for the static RAM, thereby
reducing the average DC supply current. The two
implementations result in the average instantaneous
current levels shown in Figure 2. Note that for the
timing shown, the implementation using the fast static

RAM requires less current from the power supply, even
though both Active and Standby current specifications
are higher than the slow SRAM. The values used are
typical values, and may vary significantly for specific
devices and system timing values. Figure 3 contains
the system timing waveforms.

On-Chip Implementation

Automatic Power Down circuit is implemented on-
chip with circuitry similar to the system level circuitry
(see Figure 4). In addition to the long Chip Enable
controlled Read cycles, the on-chip implementation
also reduces power following an extended Address
access cycle. Since a standard SRAM is often ac-
cessed with the Address changing after the falling
edge of Chip Enable, the SRAM must time the access
from both Chip Enable and Address bus transitions.
Changes in the state of the Address bus, while the
Chip is enabled, are detected by a frequently used
(and well named) circuit: the Address Transition De-
tector. Further details of this circuit are the subject of
another application note.

Some static RAM’s Automatic Power Down circuits
may also reduce supply current during extended Write
cycles. The fundamental difference between Read and
Write cycles is that all input signals are valid at the
beginning of a Read cycle. Chip Enable and Write
Enable are LOW and the Address bus is valid at the
beginning of the Write cycle, but the Data-in bus may
change during almost any time during the entire Write
cycle. The Automatic Power Down circuit must detect
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ADDRESS === SRAM
E
READ — =] TIMING
CONTROL

APP7-1

Figure 1. System Level Implementation
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changes in the Data-in bus in order to minimize supply
current during long Write cycles. This circuit is effec-
tive, provided that the Data-in bus is stable during the
Write cycle. The circuit used to detect Data-in bus
transitions is similar to the circuit used to detect Ad-
dress bus transitions. Static RAMs that do not reduce
current during extended Write cycles will not benefit in
the lower supply current requirement.

The block diagram in Figure 4 describes the method
used for implementing Automatic Power Down on-chip
for a static RAM. Note the dashed line indicating the
optional used of Automatic Power Down for Write
cycles.

Supply Current Specifications

When the Automatic Power Down circuit is acti-
vated, reducing the supply current to a level near the
Standby value, the instantaneous current level is re-
duced. The measurement of instantaneous supply cur-
rent is very difficult and requires very sophisticated

instrumentation. The system designer requires the
specification of the static RAM’s average DC supply
current, under the conditions of system operation. The
system variables involved are supply voltage, ambient
temperature, static RAM cycle time and, to some ex-
tent, the input voltage levels for the static RAM. The
Automatic Power Down advantage appears in the
specification of significantly reduced supply current at
longer cycle times. Since many static RAMs operate
at cycle times much lower than the minimum allowed
cycle time, the Automatic Power Down feature pro-
vides a significant reduction in actual supply current.

SUMMARY

Static RAMs are used in many applications, some
with stringent power supply requirements. Those ap-
plications with relatively long Read and/or Write cycles
will benefit from reduced power supply current with the
use of static RAMs with Automatic Power Down.
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Figure 2. Current Waveforms
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Figure 4. On-Chip Automatic Power Down
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POWER GATING

INTRODUCTION

Power Gating is a design technique used in CMOS
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